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Bu tez esas olarak beg boliimden olugmaktadir.

Birinci boliimde tez konusu tanitilmig ve bu konu ile ilgili literatiirdeki
baz1 ¢caligmalar hakkinda bilgiler verilmistir.

Ikinci boliimde, diger boliimleri daha iyi anlamak adina, tezin
okunabilirligini arttiracak bazi temel tanim, teorem ve 6zelliklere, alindiklar:
kaynaklar ile beraber yer verilmistir.

Uciincii boliimde J. Bergen et al. tarafindan 1983 yilinda yapilan birimli
bir halkada tersinir degerli tiirevler ile ilgili ¢calisma incelenmis, sifirdan farklh
tersinir degerli bir tiirevi olan birimli halkalarin karakterizasyonu verilmis ve
baz1 durumlarda tiirevin karakterizasyonu ayrica belirtilmistir.

Doérdiincii boliimde M. Hongan ve H. Komatsu tarafindan 1987 yilinda
yapilan tersinir degerli (o, 7)-tiirevler ile ilgili ¢aligma incelenmis, belirli
kosullar altinda bu tip tlirevi olan birimli halkalarin ve ilgili tiirevin
karakterizasyonu verilmigtir.

Besinci boliimde H. Komatsu ve A. Nakajima tarafindan 2004 yilinda
yapilan tersinir degerli genellestirilmig tiirevler ile ilgili calisma incelenmis,
iizerinde sifirdan farkl tersinir degerli genellegtirilmis tiirev tanimli olan birimli
halkalarin ve bu tip genellestirilmis tiirev doniigtimiiniin yapisi belirtilmigtir.

Anahtar sozciikler: Tiirev, tersinir degerli tiirev, boéliimli halka,

matrisler halkasi, yerel halka.
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ABSTRACT
MAPPINGS WITH INVERTIBLE VALUES IN RINGS
FIDAN, Utku

MSc. in Mathematics Department
Supervisor: Prof. Dr. Emine ALBAS
August 2022, 99 pages

This thesis essentially consists of five chapters.

In the first chapter, the subject of the thesis is introduced and some
studies in the literature related to this subject are given.

In the second chapter, some basic definitions, theorems and properties
that will increase the readability of the thesis are given together with their
references in order to better understand the other parts.

In the third chapter, Bergen et al.’s work in 1983 on derivations
with invertible values is studied, characterization of unital rings having a
nonzero derivation with invertible values are given and in some cases, the
characterization of derivation is given.

In the fourth chapter, M. Hongan and H. Komatsu’s work in 1987 on
(o, 7)-derivations with invertible values is studied, characterization of unital
rings with this type derivation under certain conditions are given and the
characterization of related derivation is given.

In the fifth chapter, H. Komatsu and A. Nakajima’s work in 2004 on
generalized derivations with invertible values is studied and characterization
of unital rings having a nonzero generalized derivation with invertible values
are given and the characterization of generalized derivation in this type are
also given.

Key Words: Derivation, derivation with invertible values, division ring,

matrices ring, local ring.
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1 GIRIS

Halkalar ve iizerinde tanimli olan doniigiimler iizerine bugiine kadar
bircok caligma yapilmigtir. Bu ¢aligmalardan biri, ¢cogu alanda 6nem arz eden
tiirev dontigiimleri olmustur.

1957 yilinda E. C. Posner ile baglayan tiirev teorisi macerasi ile beraber
¢ok fazla problem de giin yiiziine ¢ikmigtir.

Daha sonrasinda teorinin geligimi, farkli tiirev tanimlarimi ve bazi
kosullar1 saglayan tiirevleri ortaya ¢ikarmigtir. Bu tiirev tamimlar: icerisinde
ozellikle genellegtirilmis tiirev kavrami, oldukca 6nemli bir yere sahiptir.

Caligmamizda, tersinir degerlilik kosulunu saglayan farkli tiirev
kavramlart ve taniml olduklari halkalar incelenecektir. Tersinir degerlilik
kosulu ise birimli bir halkanin her bir elemaninin goériintiisii, ya halkanin sifiri
va da halkanin tersinir elemanlarinin grubunda olacak sekilde sifirdan farkl bir
doniigiimiin olarak ifade edilebilir. Elbette bir boliimlii halkanin sifirdan farklh
her déniisiimii tersinir degerlidir. Ozel olarak, bir boliimlii halkanm sifirdan
farkli her tiirevi tersinir degerlidir. Fakat sifirdan farkli bir tersinir degerli
tiireve sahip halkalarin kesinlikle bir boliimlii halka olmasi1 gerekliligi de yoktur.

Tersinir degerli tiirevler ile ilgili yapilan ilk ¢alisma, 1983 yilinda J.
Bergen et al. tarafindan yapilan ¢aligmadir. Bu ¢alismada birimli bir halka
tizerinde, tersinir degerlilik kogulunu saglayan sifirdan farklh bir (adi) tiirevin
var oldugu durum incelenmigtir. Halkanin ve tiirev doniigiimiiniin yapisi ile
ilgili sonuglara yer verilmigtir. Sonrasinda, bu caligmayi genellestiren diger
caligmalar literatiirde yer edinmigtir.

Bu ¢aligmalardan biri 1987 yilinda M. Hongan ve H. Komatsu tarafindan
yapilan calismadir. Bu calismada birimli bir halkanin belirli kogullar1 saglayan
o ve 7 doniistimleri ve halkanin sifirdan farkli bir sag ideali i¢in, bu sag
idealin her elemaninin goriintiisii ya halkanin sifir1 ya da halkanin tersinir
elemanlarinin grubunda olacak gekilde tanimli bir (o, 7)-tlirevinin var oldugu
durum ele alinmigtir. Halkanin ve tiirev doniigtimiiniin yapisi ile ilgili sonuglara
yer verilmigtir. Ayrica bu galigma, 1983 yilinda J. Bergen et al., 1983 yilinda
J. Bergen ve LLN. Herstein ve 1985 yilinda J.-C. Chang tarafindan yapilan
calismalar1 genellestirdiginden, énemli bir yere sahiptir.

Daha sonrasinda, 2004 yilinda H. Komatsu ve A. Nakajima, sifirdan



farkl bir tersinir degerli genellestirilmis tiireve sahip birimli halkalarin yapisini
incelemigtir. Bu ¢aligmada, 1983 yilinda J. Bergen et al. tarafindan yapilan
calisma tersinir degerli genellestirilmis tiirevlere genisletilmistir. Uzerinde
bir tersinir degerli genellestirilmig tiirev tanimli olan birimli halkalarin ve
genellegtirilmis tiirev doniigiimlerinin  karakterizasyonu ile ilgili 6nemli
sonuclara yer verilmistir. Ayrica bir D boéliimli halkas: tizerinde 2 x 2 tipinde
matrisler halkasi My(D) nin bir genellegtirilmis tiirevinin eglenigi tanimlanmig
ve bu halkanin tersinir degerli genellegtirilmis tiirevlerinin eslenik siniflarinin
temsilcilerinin bir tam kiimesi karakterize edilmistir.

Caligmamizda, yukarida  belirtilen bu ii¢ c¢alisma  iizerine
yogunlagilacaktir. Amacimiz, tersinir degerlilik kogulunu saglayan bu ii¢ tipteki
tiirev kavramlarini ele alarak, hem bu doniisiimlerin hem de iizerinde tanimh

olduklar1 birimli halkalarin yapisini incelemektir.



2  ON BILGILER

Bu boéliimde, ¢alismanin ilerleyen béliimlerini daha iyi anlamak adina,
sonraki boliimlerde gececek olan tanmimlar, yardimci Ozellikler, teoremler ve

orneklere, alindiklar1 kaynaklar ile beraber yer verilecektir.

Tanim 2.1 (Hungerford, 1980) R bir halka olmak tizere, R deki ikinci islem

" ya gore her a € R i¢in 1ga = alr = a olacak sekilde 1 € R var ise R

halkasina birtmli halka ve 1 € R elemanina R halkasinin birima denair.

Tanim 2.2 (Hungerford, 1980) R bir birimli halka ve a € R olsun. Eger
ca = 1g (swraswyla ab = 1g) olacak sekilde bir ¢ € R (swraswyla b € R) var ise
o zaman a elemanina sol (siraswyla sag) tersinir denir. Burada ¢ elemanina
(swraswyla b) a elemaninan sol (siraswyla sag) tersi denir. Ejer a € R elemana

hem sol tersinir hem de sag tersinir ise o zaman a elemanina tersinir denir.

Tanim 2.3 (Hungerford, [1980) D bir birimli halka ve 1p # 0 olsun. Eger
D nin sifirdan farkly her bir elemana tersinir ise o zaman D halkasina bir

boliimli halka denir.

Tanim 2.4 (Hungerford, [1980) R bir halka olsun. Eger her a € R igin
na = 0 olacak sekilde bir en kii¢iik n pozitif tam sayisy var ise o zaman R
ye n karakteristiklidir veya R nin karakteristigi n dir denir. Burada n
pozitif tam sayisina R nin karakteristigi denir ve char R = n notasyonu ile
gosterilir. Eger bu kosulu saglayan bir n pozitif tam sayist yok ise o zaman R

nin karakteristigs sifirdir denir ve char R = 0 notasyonu ile gosterilir.
Tanim 2.5 (Bresar, 2014) R bir halka olmak iizere
Z(R)={c€ R:cx=uc, herx € R}

ile tanimly R nin alt kimesine R nin merkezi ve Z(R) nin elemanlarina R

nin merkezt elemanlar: denir.

Tanim 2.6 (Bresar, 2014) Bir R halkasinin, R deki ¢arpma islemi altinda
kapale olan bir toplamsal alt grubuna R nin alt halkasy denir. Ornegin, Z(R)

kiimesi R nin bir alt halkasidar.



Teorem 2.1 (Bhattacharya et al, [1994) R bir halka ve R nin bostan farkl bir
alt kiimest S olsun. O zaman S nin, R nin bir alt halkasy olabilmesi i¢in gerek

ve yeter bir kosul her a,b € S i¢ina —b € S ve ab € S olmasidir.

Tanim 2.7 (Bresar, 2014) R bir birimli halka olsun. Eger R nin bir alt halkas,
R nin birtming iceriyor ve her eleman tersinir ise o zaman o alt halkaya R

nin bir bolumlu alt halkasr denir.

Tanim 2.8 (Jacobson, 1985) Bir R halkasin tim tersinir elemanlarinin
kiimesi, R deki ¢carpma islema ile bir grup teskil eder. Bu gruba R nin tersinir

elemanlarimin grubu denir ve U veya U(R) notaswyonu ile gosterilir.

Tanmim 2.9 (Hungerford, (1980) Bir degismeli G grubunun sonlu mertebeli
elemanlarindan olusan alt kiimesi Gy olsun. Bu durumda G; kiimesi, G nin
bir alt grubudur. Burada ejer G = G, ise o zaman G ye burulma grubu
denir. Eger Gy alt grubu G nin sadece birim elemanini iceriyorsa o zaman G

ye burulmasiz grup denir.

R bir halka, x € R ven bir tam sayr olsun. Eger nx =0 tkenn = 0 veya x =0
1se 0 zaman R ye n-burulmasiz halka denir. Eger nx = 0 olacak sekilde bir
0 # x € R ve 0 # n tam sayst var ise o zaman R ye n-burulmaly halka

denir.

Tanmim 2.10 (Bresar, 2014) R bir birimli halka ve 0 # n € N olmak iizere,

{e;; € R:1<i,j <n} kiimesi i¢in eger
611+€22+"'—|—6nn:1

ve her 1 <1i,5,k <n i¢in

1, j=k
0, j#Fk

djk =
olmak “zere
€ijCkl = 5jk6il

esitliklert saglanyorsa {e;; € R: 1 <1i,j < n} kiimesine n X n tipinde matris

birimlerinin kiimesi denir.



Tanim 2.11 (Hungerford, 1980) R bir halka ve R nin bir alt halkasy S olsun.
Eger her x € S ver € R i¢in zr € S (rx € S) ise 0o zaman S ye R nin sag
(sol) ideali denir. Eger S, R nin hem bir sag hem de bir sol ideali ise o zaman

S ye R nin ikt yanl ideali ya da sadece ideali denir.

Tanim 2.12 (Hungerford, (1980) Bir R halkasinin sadece sifir elemanindan
olusan alt kiimesi (0) ile gosterilir. Ayrmca R nin kendisi ve sadece sifir
elemanindan olusan alt kiumesi, R nin idealleridir. Bu iki ideale R min 0z
olmayan ideali denir. Bir R halkasinin I # (0) ve I # R kosullarini saglayan
bir I ideali var ise o zaman I ya R nin 0z tdeali denir. Benzer tanmimlar, sag
ve sol idealler i¢in de yapilabilir. Burada eger R bir birimli halka ve I, R nin
bir ideali 1se o zaman I = R olmast i¢in gerek ve yeter bir kosul 1 € I
olmasidir. Sonug olarak, I nin bir 0z ideal olmasi i¢in gerek ve yeter bir kosul
I idealinin tersinir eleman icermemesidir. Ozellikle, bir bolimli D halkasinin
sifirdan farkly her elemans tersinir oldugundan, D nin 6z sag, sol ve iki yanl

idealt yoktur.

Tamim 2.13 (Bresar} [2014) R bir halka ve I ile J, R nin sol(sag) idealleri
olsunlar. O zaman I +J = {du+v : v € I,v € J}, R nin bir sol
(sag) idealidir ve I ile J sol (sag) ideallerinin toplama denir. Benzer sekilde
IJ={>""  wv; :u; € I,u; € J,n € N}, R nin bir sol (sag) idealidir ve I ile

J idealinin ¢carpima denir.

Tanim 2.14 (Bresar, 2014) R bir halka ve a € R olsun. Bu durumda
Za = {ka : k € Z} ve aR = {ar : r € R} olmak tzere I = aR + Za, R
nin bir sag idealidir ve bu ideale a elemana ile tretilen sag ideal denir.
Ayrica a elemamina ise I min tdretect denir. Benzer sekilde Ra+ Za kiimesine
R nin a elemany ile dretilen sol ideali denir ve (a) = RaR + Ra + aR + Za
kiimesine R nin a eleman ile tretilen iki yanl ideali denir. Ozel olarak R bir
birimli halka ise o zaman a elemans ile tretilen sag ideal aR, a elemanu ile

tretilen sol ideal Ra ve a elemana ile tretilen iki yanl ideal RaR olur.

Tanim 2.15 (Bresar, 2014) Bir R halkasimin e elemanu igin e

= e kosulu
saglamyorsa o zaman e ye bir tdempotent eleman denir. Ozel olarak e
elemani, R nin merkezinde ise o zaman e ye R nin merkezi idempotent

elemant denir.



Tanim 2.16 (Bresar, 2014) R bir halka ve R nin bir sol ideali L olsun. Eger
L # (0) ise ve R nin sifirdan farklh L de kapsanan bir sol ideali yok ise o
zaman L ye R nin bir minimal sol ideali denir. Minimal sag ve minimal k1

yanlh ideal tanymlar, da benzer sekilde yapilabilir.

Yardimc1 Ozellik 2.1 (Lam, 2001) R bir halka ve R nin bir minimal sol

ideali U olsun. O zaman ya U? = (0) dir ya da U = Re olacak sekilde bir

e? = e € R idempotenti vardar.

Tanim 2.17 (Bresar, [2014) R bir halka ve R nin bir sol ideali U olsun. Eger
U # R ve U yu kapsayan R nin hi¢bir oz sol ideali yok ise o zaman U ya R
nin bir maksimal sol idealt denir. Maksimal sag ve maksimal iki yanl ideal

tanimlary da benzer sekilde yapilabilir.

Yardimer Ozellik 2.2 (Bresar, 2014) Eger R bir birimli halka ve R nin bir

oz sol ideali L olsun. O zaman L, R nin bir maksimal sol idealinde kapsanar.

Yardimer Ozellik 2.2, birimli halkalarin maksimal tek yanl ideallerinin

varhgime garantiler.

Tanim 2.18 (Bresar, 2014) R bir halka ve I, R nin bir alt kiimesi olmak tizere
Anny(I)={x € R | =zl =0}

sol idealine I man R deki sol sifirlayana ve
Ann,(I)={x € R | Iz=0}

sag idealine de I nin R deki sag sifirlayant denir.

Tanim 2.19 (Bresar, 2014) R bir halka ve R nin bir ideali I olsun. Eger
I" = (0) olacak sekilde bir n pozitif tam sayist var ise o zaman I ya nilpotent
ideal denir. Benzer sekilde nilpotent sag ve nilpotent sol ideal tanima da

yaprlabilir.

Tanim 2.20 (Bresar, 2014) Bir R halkasindaki a elemans i¢in a™ = 0 olacak
sekilde bir 0 # n € N wvar ise o zaman a elemanina bir nilpotent eleman
denir. Burada bu kosulu saglayan en kiigik 0 # n dogal sayisina o elemanin

nilpotentlik derecest denir.



Tanim 2.21 (Bresar, 2014) R bir halka ve R nin bir ideali I olsun. Eger I
nin her elemans nilpotent ise o zaman I ya nil ideal denir. Benzer sekilde nil

sag ve nil sol ideal tanimlar, da yapilabilir.

Tanim 2.19, Tanim 2.20 ve Tanim 2.21 den her nilpotent idealin aslinda bir nil

ideal oldugu gorilir.

Yardimcir Ozellik 2.3 (Bresar, [2014) R bir halka olsun. O zaman asagidaki

kosullar denktuir:

(i) Her a € R i¢in, aRa = (0) iken a = 0 dur;

(i) R min her I sol ideali igin, I* = (0) ise I = (0) dur;
(i1i) R nin her I sag ideali igin, I* = (0) ise I = (0) dary
() R nin her I ideali i¢in, I? = (0) ise I = (0) dur;

(v) R nin sifirdan farkl nilpotent ideali yoktur.

Tanim 2.22 (Bresar, 2014) Bir R halkasi, Yardima Ozellik 2.3 deki
ozelliklerden herhangi birini (dolayiswyla hepsini) sagliyorsa o zaman R ye

yart asal halka denir.

Sonug 2.1 (Bresar, 2014) Bir yar asal R halkasimn bir e idempotenti i¢in,

asaqrdaki ifadeler birbirine denktir:
(i) eRe bir bolimli halkadur.
(i) Re bir minimal sol idealdir.
(i3) eR bir minimal sag idealdir.

Tamim 2.23 (Bresar}, [2014) R bir halka olsun. Eger R* # (0) ise ve R nin

kendisi ve (0) dan baska ideali yok ise o zaman R ye bir basit halka denir.

Tanim 2.24 (Bresar, 2014) R bir halka ve M bir toplamsal grup olsun. Eger

herr,s € R ve her m,n € M i¢in
(i) (r+s)m=rm-+sm

(ii) r(m+n)=rm-+rn



(ii) r(sm) = (rs)m

kosullarini saglayan, R x M den M ye, (r,m) — rm ile tansml bir donigim
var ise, M ye sol R-moddil denir. Ek olarak, R birimli bir halka ve her m € M
i¢in 1m = m ise M ye bir diniter sol R-moddil denir. Benzer sekilde (initer)

sag R-modil tanims da yapilabilir.

Tanim 2.25 (Bresar, [2014) R ve S iki halka olsun. Eger M bir sol R-modiil,

bir sag S-modil ve tstelik her r € R, m € M, s € S i¢in
(rm)s = r(ms)

kosulu saglanwyor ise o zaman M ye (R,S)-bimodiil denir. Bu tamimdan

hareketle, bir (R, R)-bimodiile R-bimoddl denir.

Tanim 2.26 (Bresar, [2014) R bir halka ve M bir sol R-modil olsun. Bir
L C M i¢in eger L, M nin bir toplamsal alt grubu ve her r € R, x € L i¢in
re € L ise o zaman L ye M nin bir sol alt R-modili denir. Benzer sekilde

bir sag R-modil i¢in sag alt R-modil tanyma yapilabilir.

Tanmim 2.27 (Bresar, |2014) R bir halka ve M bir sol R-modiil olsun. Eger
RM # (0) ve R nin kendisi ve (0) dan baska sol alt R-modili yok ise o zaman
M ye basit sol R-modiil denir. Benzer sekilde basit sag R-modiil tanima da

yaprlabilir.

Tanim 2.28 (Bresar, 2014) R bir halka, M wve N birer sol R-modil ve

@ : M — N bir doniisiim olsun. Ejer her m,m € M ve her r € R icin

p(m+m') = p(m) + p(m')

p(rm) = ro(m)

esitliklert  saglanwyorsa o zaman ¢ donisimine bir sol R-modil
homomorfizmast denir. Benzer sekilde sag R-modil homomorfizmasi tanyma
da yaplabilir. Burada Keryo = {m € M : p(m) = 0} kimesi M nin
bir sol alt R-modilidir ve bu alt modile @ min ¢ekirdegs denir. Aym
zamanda Ime = {p(m) : m € M} kimesi N nin bir sol alt R-modilidir

ve bu alt modiile ¢ nin gorinti kimesi denir. Bire-bir ve orten bir sol



R-modill homomorfizmasina sol R-modil izomorfizmast denir ve
M = N ile gosterilir. Ayrica M/Kery = Imy dir (Modillerde 1.

Tzomorfizma Teoremi). Benzer tanamlar bir sag R-modiil i¢in de yapilabilir.

Yardimc1 Ozellik 2.4 (Bresar, 2014) R bir halka olsun. Her basit R-modiil,
R nin baz U maksimal sol idealleri i¢in R/U ya izomorftur. Tersine, eger U,
R nin R?> € U (eger R birimli ise bu kosul otomatik olarak saglanir) olacak

sekilde bir maksimal sol ideali ise o zaman R/U bir basit R-modiildiir.

Tanim 2.29 (Bresar, 2014) M bir modil ve {M; : i € I} kiimesi M nin alt

modillerinin bir ailesi olsun. Burada ., M;, M nin bir alt modilidir ve bu

el

alt modiile M; alt modiillerinin toplama denir. Eger M;N (Ziel_{j} MZ> = {0}

ise o zaman bu toplama direkt toplam denir ve ®;c; M; ile gosterilir.

Teorem 2.2 (Bresar, 2014) R, R iki halka ve ¢ : R — R bir halka
homomorfizmasiy olsun. O zaman R/Kerp = o(R) olur (Halkalarda I.

Lzomorfizma Teoremi).

Tanim 2.30 (Bresar, 2014) R bir halka ve M bir sol R-modil olsun. Bir
B C M alalim. Eger her farklh by,...,b, € B elemanlar, ve ve herry...,r, €
R elemanlary i¢in r1by + - - - + r,b, = 0 iken her bir i i¢in r; = 0 ise o zaman
B ye lineer bagimsiz denir. Eger B lineer bagimsiz degil ise o zaman B ye

lineer bagimly denir.

Tanim 2.31 (Bresar} |2014)) Bir M sol R-modilinin bir B lineer bagimsiz alt

kiimesi eger M i tretiyorsa o zaman B ye M nin bir bazy denir.

Tanim 2.32 (Bresar, 2014) R bir birimli halka olsun. Bir tuniter R-modiil,

eger bir baza sahip ise o modiile bir serbest R-modiil denir.

Tanim 2.33 (Bresar, [2014) D bir bolimli halka olsun. O zaman bir tniter

(sol) D-modiile, D tzerinde bir (sol) D-vektor uzayr denir.

Tanim 2.34 (Bresar, 2014) R bir halka olsun. Bir R-modil M eger basit alt

modiillerinin bir ailesinin direkt toplama ise o zaman M ye yar: basit denir.

Sonug 2.2 (Anderson and Fuller, [1974) Bir R halkasinin yar: basit olabilmesi

wein gerek ve yeter bir kosul Rr nin yar: basit olmasidar.
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Sonug 2.3 (Lam, [2001)) Bir sol yar: basit R halkasi her zaman sag yar: basittir.

Bunun tersi de dogrudur.

Tanim 2.35 (Bresar, 2014) Eger bir M modilinin her bir My O My O ... alt
modiil zinciri i¢in, M, = M, 11 ... olacak sekilde bir m € N var ise o zaman

M modiiliine artin (ya da azalan zincir kuraliny saglwyor) denir.

Tanmim 2.36 (Bresar, [2014) Eger bir N modilinin her bir Ny C Ny C ... alt
modil zinciri i¢in, Ny = Npiq ... olacak sekilde bir n € N var ise o zaman N

modiline noether (ya da artan zincir kuraliny saglwyor) denir.

Tanim 2.37 (Bresar, [2014) Eger bir R halkasi, bir artin sol (siwraswyla sag)
R-modiil ise o zaman R ye sol (swraswyla sag) artin denir. Eger R halkas

hem sol hem de sag artin ise o zaman R ye artin denir.

Tanmim 2.38 (Bresar, 2014) Eger bir R halkasi, bir noether sol (siraswyla sag)
R-modiil ise o zaman R ye sol (swraswyla sag) noether denir. Eger R halkas

hem sol hem de sag noether ise o zaman R ye noether denir.

Sonug 2.4 (Hungerford, 1980) Eger I, bir yar: basit sol artin halkasi R nin

bir ideali ise o zaman e, R nin merkezinde bir idempotent olmak tizere I = Re

dir.
Tanim 2.39 (Bresar, 2014) Bir R halkasinin bir P ideali bir basit R-modiilin

sifirlayans ise P ye primitif ideal denir.

Tanim 2.40 (Bresar, [2014) Bir R halkasinan tim primitif ideallerinin

arakesitine R nin Jacobson radikali denir ve J(R) ile gosterilir.

Sonug 2.5 (Bresar, 2014)) Birimli bir R halkasimn Jacobson radikali, R nin

tim maksimal sol (sag) ideallerinin arakesitine egittir.

Eger R bir birimli halka ise o zaman R nin maksimal sol idealleri vardwr
(Yardimer Ozellik 2.2). Ayrica J(R), R nin tim maksimal sol ideallerinin

arakesitine egittir (Sonug 2.5).
Sonug 2.6 R bir birimli halka ise J(R) # R dir.

Yardimcir Ozellik 2.5 (Bresar, 2014) Bir R halkasin her nil sag ya da sol
ideali J(R) de kapsanar.
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Teorem 2.3 (Lam, 2001)) R bir sol artin halkas: olsun. O zaman J(R), R nin

en biiyik nilpotent sol idealidir, ayni zamanda en biiyiik nilpotent sag idealidir.

Tanim 2.41 (Lam, 2001) Bir R halkasina, ejer J(R) = (0) ise Jacobson

yar basit (ya da kisaca J-yar basit) denir.

Yardimcr Ozellik 2.6 (Lam| 2001) Herhangi bir R halkas: igin, asagidaki

ifadeler birbirine denktir:
(1) R yaru basittir;
(2) R J-yar: basittir ve sol artindir;

(3) R J-yaru basittir ve esas sol idealleri tzerinde azalan zincir kuralina

saglar.

Tanim 2.42 (Anderson and Fuller, 1974) M sifirdan farkly bir modil ve M
nin Mo, My, ..., M,, alt modilleri i¢cin M = My 2O My O --- 2O M, = (0)
olsun. Eger heri = 1...n igin M;_1/M; bir basit modil ise o zaman bu zincire

M icin bir n uzunluklu kompozisyon serist denir.

Teorem 2.4 (Anderson and Fuller, 1974) FEger bir M modilinin bir
kompozisyon serisi var ise o zaman M i¢in kompozisyon serilerinin her ¢ifti

esittir (Jordan-Hélder Teorems).

Tanim 2.43 (Anderson and Fuller, [1974)) Eger bir modilin bir kompozisyon
serisi var ise o zaman o modilin her kompozisyon serisinin uzunlugu aynidar.
Bir M modiilii hem artin hem noether ise M modiliine sonlu uzunluklu
denir ve (kompozisyon) uzunlugu c(M) ile gosterilir. Eger ¢(M) = 0 ise o
zaman M = (0) dur, eger ¢(M) =n # 0 ise o zaman M nin bir n uzunluklu

kompozisyon serisi vardar.

Teorem 2.5 (Lam) 2001)) R bir basit halka olsun. Asagidakiler denktir:
(i) R sol Artin halkasidur;

(i) R (sol) yar basittir;

(#3) R nin bir minimal sol ideali vardur;

() Bir D bolimli halkasy ve bir 0 # n dogal sayist i¢in R = M, (D) dir.
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Teorem 2.5 (iv) de n ve D tek tirli belirlidir (Lam, 2001, Corollary 3.13) ve
n = c(xR) dir (Anderson and Fuller, 1974, Theorem 13.4, Proposition 13.5).
Teorem 2.5 deki denkliklerden, eger bir basit R halkasi sol artin ise o zaman
sag artindir (simetriden, tersi de dogrudur) (Lam, 2001, syf 37). Ayrica Sonug

2.2 ve Sonug 2.3 den yararlanarak, Teorem 2.5 de sol yerine sag alinabilir.

Tanim 2.44 (Anderson and Fuller, (1974)) Bir R halkas: i¢in asagidakiler
denktir:

(a) R bir yerel halkadur;
(b) R tek bir maksimal sol ideali vardur;
(¢) J(R) bir maksimal sol idealdir;

(d) R nin sol tersleri olmayan tim elemanlarimin kiimesi, R deki toplama

1slemi altinda kapalidur;
(e) J(R)={z € R: Rx # R} dir;
(f) R/J(R) bir boliimli halkadur;
(9) J(R) ={z € R: x tersinir degil} dir;
(h) Eger x € R ise o zaman ya x ya da 1 — x tersinirdir.
Tanim 2.44 (b) de, sol yerine sag alinabilir (Lam, 2001, Theorem 19.1).

Tanim 2.45 (Bresar, (2014) D bir bolimli halka olmak izere,
D[w]] = {>°"yanw™ : a,, € D} olsun. Bu kiime tzerinde toplama ve ¢arpma

islemand; her Y o~ a,w™, > 7 byw™ € D igin

i apw’ + i byw" = i(an + bn)w"
n=0 n=0 n=0

ve ¢, = Y i o aiby—; olmak tzere

i an,w" f: b,w" = i Cpw'"

n=0 n=0 n=0
ile tanumlayalim. O zaman DI[w]] bu islemlerle beraber bir halka teskil eder ve
bu halkaya D dizerinde formal kuvvet serilerinin halkast denir. Ayrica D
tzerinde w degiskenli polinomlar halkasi olan D[w] halkas:, D[[w]] halkasinin

bir alt halkasidir. Bu tanimda D yerine keyfi bir R halkasy da alinabilir.
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Yardimc1 Ozellik 2.7 (Bresar, 2014) D bir blimli halka olsun. O zaman
bir > 07y a,w™ nin D[[w]] da tersinir olabilmesi i¢in gerek ve yeter bir kosul

ag # 0 olmasidar.

Tamim 2.46 (Bresar, 2014) R keyfi bir halka ve R((w)) = {d 2 _ apw™ :
a, € R vesadece sonlu sayidakin < 0igin a, # 0} olsun. Eger R((w))
tizerindeki toplama wve c¢arpma islemi, formal kuvvet serileri halkalar:
tzerindeki toplama ve ¢arpma islemi gibi tanwmlanirsa o zaman R((w)) bir
halka temsil eder ve bu halkaya Laurent serilerinin halkasi denir. Burada

R yerine bir D bélimli halkasy alinwrsa, D((w)) bir bolimli halka olur.

Tanim 2.47 (Bresar, 2014) R bir halka ve R[w]|, R tzerinde w degiskenli
polinomlar halkasy olsun. Burada o, R nin bir endomorfizmast olmak tizere

wa = aw yerine wa = o(a)w alalim. Buna uygun olarak her a,b € R i¢in
(aw")(bw’) = ac’ (b)w'*?

dir. Bu durumda ortaya c¢ikan halkaya skew polinomlar halkast denir
ve Rlw;o] ile gdsterilir. Benzer sekilde R tzerinde skew kuvvet serileri
halkas: da tanimlanabilir ve R[w;o]] ile gdsterilir. Ozel olarak burada o,
R nin bir otomorfizmas: ise R tizerinde skew Laurent serileri halkasi da

tanemlanabilir ve R((w; o)) ile gosterilir.

Teorem 2.6 (Hungerford, |1980) R bir degismeli halka ve S, her a,b € S i¢in
ab € S kosulunu saglayan R nin bostan farkl bir alt kiimesi olsun (¢arpimsal

altkime). Burada R x S tzerinde bir ~ bagintisin
(r,s) ~ (r',s) < baz sy € Sicin s1(rs —r's) =0

olarak tanimlayalim. O zaman ~ bagintiss, R x S tizerinde bir denklik

bagintisider. Ustelik R nin sifur boleni yok ve 0 ¢ S ise o zaman bu tamim
(r,s) ~(r',s)ers —rs=0
olarak ifade edilir.

Teorem 2.7 (Hungerford, 1980) R, S ve ~, Teorem 2.1.8 deki gibi olsun.
Burada R x S nin ~ bagntisina gore tiim denklik simflarimin kiimesini S~'R

ile ve (r,s) € R x S elemanwmn denklik sinifiny r/s ile gosterelim.
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(1) ST'R kiimesi tizerinde toplama ve ¢arpma
r/s+r1 /s = (rsrs)/ss ve (r/s)(r/s)=rr/ss
ile tanamlanmak tizere STYR bir birimli ve degismeli halkadar.

(i) Eger R sifur boleni olmayan sifirdan farkl bir halka ve 0 ¢ S ise o zaman

STIR bir tamhk bolgesidir.

(ii) Eger R sifir béoleni olmayan sifirdan farkly bir halka ve S, R nin tim

sifirdan farkly elemanlarinan kiimesi ise o zaman S™'R bir cisimdir.

Tanim 2.48 (Hungerford, [1980) Teorem 2.7 deki gibi tamimly olan S™'R

halkasina, R nin kesir halkast denir.

Ornek 2.1 (Bresar, 2014) F bir cisim ve Flz], F tizerinde x degiskenli

polinomlar halkasi ve F(x {7;( (x) € Flz], (p(x),q(z)) = 1,q(x) # O}

olsun. Boylece her (xg % € F(x) i¢in

p(a) s(@) _ pla)s(a)
a@) (@)~ q@)r()

iglemlerine gore F(x) bir birimli ve degismeli halka tegkil

“wo»

ile tanwmly “+7 ve
eder ve S kimesi, F[z| in tim sifirdan farkl elemanlarindan olustugundan
Teorem 2.7 (i) den bir cisimdir. Bu cisme F|x] in rasyonel fonksiyonlar

cismsi denir.

Tanim 2.49 (Hungerford|,[1980) R bir birimli halka olsun. Eger A, B € M,(R)
icin, B = PAP~! olacak sekilde bir P tersinir matrisi var ise o zaman A ve
B ye benzer matrisler denir ve A ~ B ile gosterilir. Burada A ~ B < B
= PAP~', 3P € M, (R) ile tanuml bagintr bir denklik bagintist teskil eder. Bu

durumda A ve B ayni denklik sinifindadar; yani esleniktirler denir.

Tanim 2.50 (Bresar, 2014) F' bir cisim, n bir pozitif tam sayr olmak tizere
A € M,(F) olsun. Burada A mn determinant degeri det(A) ve M,(F) nin
birimi I olmak tzere p(z) = det(xl — A) € Flx] polinomuna A matrisinin

karakteristik polinomu denir.
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Teorem 2.8 (Bresar, 2014) F' cisim, n bir pozitif tam sayr olmak tizere A €
M, (F) olsun. O zaman A, kendi karakteristik polinomunun bir kékidir; yani A
nin karakteristik polinomu pa(z) olmak tizere, pa(A) = 0 dur (Cayley-Hamilton

Teorems).

Teorem 2.9 (Kog, 2010) F' bir cisim, n bir pozitif tam say olmak tizere A €
M, (F) olsun. Eger P € M,(F) bir tersinir matris ise o zaman A ile P~*AP
matrislerinin karakteristik polinomlar aynidir (Section 1, Chapter 6, Theorem

10).

Tanim 2.51 (Bhattacharya et al, |1994) Eger F, bir E cisminin alt cismi ise
o zaman E ye F nin bir cistm geniglemesi veya daha basit olarak F nin bir

genislemest denir.

Tanim 2.52 (Bhattacharya et al, [1994) Eger E, F nin bir genislemesi ise
o zaman E min F dzerinde bir vektor uzayr oldugu ac¢iktir. Burada E nin F

tizerindeki vektor uzayr olarak boyutuna E nin F' tzerindek: derecest denir.

Tanim 2.53 (Posner} 1957) R bir halka ve d : R — R bir toplamsal déniisim

olsun. Eger her x,y € R i¢in

d(zy) = d(z)y + zd(y)

esitligi saglamyorsa o zaman d ye R nin bir tirevi denir. Ozel olarak a € R
olmak tizere, her x € R i¢in 0(x) = ax — xa ile tanwiml donisim R nin bir

tirevidir ve bu tip bir tireve a elemans tle belirly i¢ tiirev denar.

Tanim 2.54 (Hongan and Komatsu, (1987) R bir halka, o,7 : R — R ki
doniistim olsun. Burada R nin bir toplamsal donisimii 6 olmak dizere, her
x,y € R i¢in

o(zy) = 0(x)o(y) + 7(x)d(y)
esitligi saglanwyorsa o zaman § ya R nin bir (o, T)-tidrevi denir.
Tanim 2.55 (Bresar, [1991) R bir halka ve f: R — R bir toplamsal donisim

olsun. Eger her x,y € R i¢in

fzy) = f(x)y + 2d(y)

olacak sekilde R nin bir d tirevi var ise o zaman f ye R mnin bir

genellestirilmig tiirevi (BreSar anlamanda) denir. Ayrica burada d tirevine,
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f genellestirilmis tirevinin iligkili tirevi denir. Ozel olarak a,b € R olmak
tizere, her x € R i¢in g(x) = ax + xb ile tanimly donisim bir genellestirilmis
tirevdir ve bu tip genellestirilmis tireviere genellegtirilmis i¢ tirev (Bresar

anlaminda) denir.

Tanmim 2.56 (Nakajima, 1999) Eger k birimli ve degismeli bir halka, M bir

sol ve sag S-modiil olmak tizere herhangi s,t € S, a € k ve m € M i¢in
s(mt) = (sm)t, a(sm) = s(am) am = ma

oluyorsa o zaman S, k tzerinde bir cebir olmak tizere M ye S/k-bimodil

denair.

Tanim 2.57 (Nakajimal 1999) S, k ve M Tamm 2.56 daki gibi olsun. Bir
k-modil donisimi f : S — M wve bir m € M igin, ejer f(st) = f(s)t +
sf(t) 4+ smt esitligi herhangi s,t € S i¢in saglanwyorsa o zaman (f,m) ¢iftine

bir genellegtirilmig tirev (Nakajima anlaminda) denir.

Tanmim 2.58 (Leger and Luks, 2000) A, karakteristigi 2 den farkly bir cisim
tizerinde birlesmeli olmayan bir cebir ve A min Z-modil homomorfizmalarimin

kiimesi Hom(A, A) olsun. Bir f € Hom(A, A) olmak iizere, her x,y € A i¢in

f@y+af () = f (xy)

olacak sekilde f',f" € Hom(A,A) wvar ise o zaman f ye A mn bir

genellegtirilmig tirevi (Leger ve Luks anlaminda) denir.
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3 TERSINIR DEGERLI TUREVLER

Bu boliimde Jeffrey Bergen, Israel Nathan Herstein ve Charles Lanski’
nin 1983 yilinda yapmig olduklar1 “Derivations With Invertible Values” adl
calisma incelenecektir.

Caligmanin temel sonucu asagida verilen teoremdir. Teoremde, iizerinde
her x € R i¢in ya d(x) = 0 ya da d(z) R de tersinir olacak sekilde 0 # d tiirevi
taniml olan birimli R halkalarinin karakterizasyonu ve R halkasi ile d tiirevi
arasindaki iligki ele alinacaktir. Bu durumda 2R = (0) iken olusan 6zel bir
durum diginda, R nin ya bir D boliimli halkas1 ya da bir D béliimlii halkas:

iizerindeki 2 x 2 tipindeki matrisler halkasi Dy oldugu sonucuna ulagilacaktir.

Teorem 3.1 Bir birimli R halkasiman her bir x € R i¢in ya d(x) = 0 ya da

d(x) tersinir olacak sekilde bir 0 # d tirevi var olsun. O zaman R halkast

1. bir D bolimli halkasider, ya da
2. D bir bolimli halka olmak tizere Dy dir, ya da

3. D bir béliimli halka olmak iizere Dlz]/(x?) dir ve charD = 2,
d(D) = {0}, d(z) = 1 + ax olacak sekilde D nin merkezi Z de bir a

elemany vardur.

Ustelik, ejer 2R (0) ise o zaman R = Dy olmast i¢in gerek ve yeter
bir kosul D nin merkezi Z nin tim ikinci dereceden genislemelerinin D de
wcerilmemesidir, denk olarak; gerek wve yeter bir kosul D nin merkezi Z nin

bazr elemanlarinin D nin bir elemaninin karesi seklinde yazilamamasidar.

Bu galigmada 2R # (0) kosulu altinda R = D5 ise d nin R iizerinde bir
i¢ tlirev oldugu ve 2R = (0) olmasi durumunda d nin R iizerinde bir i¢ tiirev
olamayabilecegi de goriilecektir. Buna ek olarak eger R = D[z]/(z?) ise d nin
R iizerinde bir i¢ tiirev olamayacag sonucuna ulagsilacaktir.

Son olarak R nin her elemam i¢in degil, ama R nin uygun bir alt
kiimesindeki her = elemam igin ya d(z) = 0 veya tersinir olmasi durumu ele
alinacaktur.

Bu baglamda, D bir boliimlii halka olmak iizere ya R = D ya R = D5 ya
da R = D[z]/(z?*) oldugu sonucu elde edilir. Fakat bu durumda R halkasi ile

d tiirevi arasindaki iligki, Teorem 3.1 de aciklanandan biraz farkh olacaktir.
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Bu ¢aligmada, R bir birimli halka ve 0 # d, R nin bir tiirevi olmak fizere
“her z € R igin ya d(x) = 0 ya da d(z) R de tersinirdir” kabulii temel hipotez
olarak gececektir.

Oncelikle ana teoremin ispati icin gerekli olan yardimeci oOzellikler

verilecektir.

Yardimc1 Ozellik 3.1 Eger x € R icin d(x) = 0 ise 0o zaman ya x = 0 dir

ya da x tersinirdir.

Ispat d(z) = 0 olacak sekilde bir 0 # 2 € R olsun. Hipotezden d # 0
oldugundan d(y) # 0 olacak gekilde bir y € R vardir ve d(y) elemam R de
tersinirdir. Boylece d(yx) = d(y)x + yd(x) = d(y)x elde edilir. Burada = # 0
oldugundan d(yz) # 0 olmalidir. Bu ise hipotezden d(yz) in R de tersinir
oldugunu verir. Son bagmtinin her iki tarafi soldan d(y)~' € R ile garpilarak
r = d(y)~'d(yz) bulunur. Bir halkada tersinir elemanlarin ¢arpiminin da
bir tersinir eleman oldugu gerceginden, r € R elemaninin tersinir olmasi
gerektigine ulagilir.

Yardime1 Ozellik 3.1 in bir sonucu olarak asagidaki yardimer ézellik elde

edilir.

Yardimcr Ozellik 3.2 Eger R nin bir tek yanh ideali (0) # L ise o zaman
d(L) # {0} dor.

Ispat Hipotezden d(R) # {0} oldugundan eger L = R ise {0} # d(L) olur
ve boylece ispat biter. O zaman L # R oldugunu varsayalim. Eger 0 # a € L
ise kabulden dolay1 a nin tersinir olamayacag1 aciktir. Dolayisiyla Yardimei
Ozellik 3.1 den d(a) # 0 olmalidir. Boylece d(L) # {0} dir. Buradan L nin
sifirdan farkli elemanlar: {izerinde d nin sifir olamayacag1 goriilmiis olur.

Yardime1 Ozellik 3.1 in diger bir sonucu da asagidaki gibidir:

Yardimer Ozellik 3.3 Ejer R deki baz x # 0 elemanlar i¢in 2z = 0 ise o
zaman 2R = (0) dur.

Ispat 22 = 0 olacak sekilde bir 0 # x € R var oldugunu kabul edelim. O
zaman 0 = d(2z) = 2d(z) olur. Burada eger d(x) = 0 ise Yardimc Ozellik 3.1
den z tersinir olmahdir. Bu durumda 2z = 0 oldugundan 0 = (2z)z~! = 2

bulunur ve béylece 2R = (0) olur. Diger yandan, eger d(z) # 0 ise hipotez
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geregi d(x) tersinir olmalidir. Boylece son bagmtidan 0 = (2d(z))d(z)™! = 2
elde edilir ve dolayisiyla 2R = (0) olur. Her iki durumda da 2R = (0) oldugu
sonucuna ulagilir.

Yardimer Ozellik 3.3 aslinda R nin 2-burulmali olmas icin gerek ve yeter

bir kogulun R nin karaktersitiginin 2 olmasi gerektigini soyler.

Yardimcr Ozellik 3.4 Ejer R nin bir 6z sol ideali L ise o zaman L hem

maksimal hem de minimaldir.

Ispat Ispat icin éncelikle R nin her 6z sol idealinin ashnda R nin bir maksimal
sol ideali oldugunu goérelim: O halde R nin L C T kogulunu saglayan iki 6z
sol ideali L ve T olsun. Bu durumda L + d(L) = {a +d(b) : a,b € L} C R
kiimesini ele alalim. Oncelikle 0 € L + d(L) oldugu aciktir. Her a,b,c,e € L

her 7 € R igin
(a+d(b) — (c+d(e)) = (a—c) +d(b—e) € L+d(L)
olur. Ayrica rd(b) = d(rb) — d(r)b oldugundan
r(a+d(b)) =ra+ rd(b) = ra+d(rb) — d(r)b € L + d(L)

olur. Son iki bagmti, L + d(L) kiimesinin R nin bir sol ideali oldugunu verir.
Kabulden L bir 6z sol ideal oldugundan L # (0) dir ve Yardimc Ozellik 3.2
den d(L) # {0} olmalidir. Dolayisiyla d(y) # 0 olacak sekilde bir y € L vardir
ve hipotezden d(y) tersinirdir. Ustelik d(y) € d(L) C L + d(L) oldugundan
L + d(L) sol ideali R nin baz tersinir elemanlarmi igerir. Bu ise R = L +
d(L) oldugunu verir. Béylece eger t € T ise, T C R = L + d(L) oldugundan
t = a+d(b) olacak sekilde a,b € L vardir ve L C T oldugundan d(b) =t —a €
T Nd(L) olur. Burada eger T'Nd(L) # {0} ise o zaman T sol ideali R nin
baz1 tersinir elemanlarini igerir ve boylece T' = R ¢eligkisine ulagilir. O zaman
d(b) =t —a € TNd(L) = {0} oldugundan t = a € L ve dolayisiyla T C L
olur. Ayrica L C T kabuliinden dolay1 L = T elde edilir. Boylece L sol ideali
bir maksimal sol ideali olur.

Benzer gekilde R nin M C L olacak sekilde keyfi bir 6z sol M idealinin de
maksimal sol ideal oldugu goriilebilir. Buise M = L oldugunu verir. Dolayisiyla

L bir minimal sol idealdir.
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Not Benzer iglemler R nin bir 6z sag ve ya 6z iki yanlh ideali i¢in yapilirsa
benzer sonuglar elde edilir.

Simdi R nin yapisi daraltilabilir:

Yardimci Ozellik 3.5 (a) Eger R nin bir 6z ideali I ise o zaman I* = (0)
dar.

(b) Eger 2R # (0) ise o zaman R basittir.

Ispat (a) Eger R nin bir 6z ideali I ise o zaman d(I?) C d(I)I + Id(I) C I
olur. Béylece d(I?) C I elde edilir. Burada I? # (0) ise Yardimer Ozellik 3.2
den d(I?) # {0} olur. Buradan d(y) # 0 olacak sekilde bir y € I? vardir ve
hipotezden d(y) tersinir olmaldir. Ayrica d(1?) C I oldugundan d(y) € I dr.
Bu durumda [ ideali R nin d(y) gibi bir tersinir elemanim igerir ve buradan
I = R celigkisi elde edilir. Béylece I2 = (0) sonucuna ulagilir.

(b) 2R # (0) oldugunu varsayalim ve R nin bir 6z ideali I olsun. O zaman
Yardimer Ozellik 3.2 den d(I) # {0} dir. Bu durumda d(b) # 0 olacak sekilde
bir b € I vardir ve hipotezden d(b) tersinir olmahdir. Ayrica (a) dan I* = (0)

dir ve b € I oldugundan b? = 0 olur. Boylece

0= d*(b*) = d(d(b)b+ bd(b)) = d(d(b)b) + d(bd(b))
= d?(b)b + d(b)d(b) + d(b)d(b) + bd>(b)
= d*(b)b + 2d(b)* + bd*(b)

elde edilir. Son bagmtida d?(b)b+bd?(b) € I olmasi, 2d(b)? € I oldugunu verir.
O zaman 4d(b)* = (2d(b))? € I* = (0) elde edilir. Béylece d(b) tersinir bir
eleman oldugundan 4 = 0 dir. Burada 2R # (0) oldugundan 2y # 0 olacak
sekilde bir y € R vardir ve 6zel olarak 0 # 2z = 2y € R alirsak 2z = 4y = 0
olur. Bu ise Yardimecr Ozellik 3.3 den 2R = (0) geligkisini verir. Boylece R nin
0z ideali yoktur, dolayisiyla R bir basit halkadir.

Yardimer Ozellik 3.4 ve 3.5 i birlestirerek, Teorem 2.5 den eger 2R # (0)
ise o zaman D bir boliimli halka olmak tizere ya R = D yada R = D, oldugunu
goriirtiz. Herhangi bir D boliimlii halkas: ve D nin sifirdan farklh bir d tiirevi,
her z € D i¢in ya d(z) = 0 dir ya da d(z) tersinirdir, kogulunu kesin olarak
saglar. Simdi bir D boliimli halkas: tizerinde 2 x 2 tipinde matrisler halkasi

Dy nin bu kogulu saglayan sifirdan farkli bir d tiirevine sahip olabilmesi igin
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D halkas1 iizerindeki kosulun ne olmasi gerektigini analiz edelim. Bu analizi
yapmak i¢in oncelikle keyfi bir halka tizerinde 2 x 2 tipinde matrisler halkasinin
tiirevlerini aragtirmamiz gerekir. Asagidaki iki yardimci 6zellikte S herhangi
bir birimli halka, R = S5 ve d, R nin herhangi bir tiirevi kabul edilecektir.
Literatiirde cok iyi bilinen agagidaki Yardime1 Ozellik 3.6, (Bergen et al., [1983)

de ispatsiz olarak yer almigtir. Simdi bu 6zelligin ispatini verelim:

Yardimcir Ozellik 3.6 S herhangi bir birimli halka ve R = Sy olsun. Eger
R nin bir tirevi d ise o zaman e;; € R elemam (4,7). icerigi 1, diger tim

weertklert O olan matris olmak tizere

0 _
d(en) = ) yd(e12) = 7 :
B0 0 g
—a 0 0 —«
d(eg1) = , d(ex) =
e -5 0
ve her a € S i¢in
a0 [ 0 - f(a) ac — aa
0 a —(ap — Ba) f(a) +ay—a

olacak sekilde o, B,~v € S ve S nin bir [ tirevi vardor.

ispat Burada S nin birim elemanini 1 ve sifirim 0 ile gosterelim. O zaman R
10 00

nin birim elemani 1z ve sifir1 O olmak tlizere 1z = ve Og =

01 0 0
olur. B('jylece d(lR) = d(lRlR) = d(lR)lR + 1Rd(1R) = d(lR) + d(lR)

esitliginden, d(1r) = Og dir. Ayrica 1g = e11+e22 oldugundan d(eq;) = —d(ea2)

a b
olur. Simdi a, b, ¢, e € S olmak tizere d(ey;) = € R olsun. Bu durumda
c e
—a —b
d(eg) = olur ve ej;e9 = Op dan
—c —e

Or = d(e11€22) = d(e11)ea + e11d(e22)
a b —a —b
= €22 + €11
c e —c —e
—a 0
0 e
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bulunur. Bu ise a = 0 = e demektir. Burada «, 3 € S olmak iizere b = «,

. 0 « 0 —«
¢ = [ denilirse d(e;) = ve d(ex) = elde edilir. Simdi
B0 -5 0
a b
d(egs) = € R olsun. Burada e = e11e12 oldugundan
c e
a b
= d(€12) = d(€11€12) = d(€11)€12 + 611d(€12)
c e
0 « a b
= €12 + e
g 0 c e
a b
0 B

olur. Benzer gekilde ejs = ej9e99 esitliginden

a b
= d(e12) = d(e12e22) = d(e12)es + e12d(e22)
0 p
a b 0 —«o
= €22 + €12
0 g -6 0
—B8 b
0 B
bagintisina ulagilir. Boylece a = —f olur ve v € S olmak tizere b = v alinarak
-5 v e e s a
d(e1n) = elde edilir. Simdi d(ey;) = € Rolsun. ey; = egreq1
0 p c e
oldugundan
a b a 0
= d(e21) = d(€21€11) = d(621)611 + 621d(€11) =
c e c «

olur. Buradan e = a ve b = 0 elde edilir. Ayrica ey; = eg9e9; esitliginden

a 0 —a 0
= d(e91) = d(exnesn) = d(ean)ear + exnd(err) =
c « c «
bulunur. O zaman a = —a dir. Ustelik ejpe01 = €17 esitligi kullanilarak
0 « Yy+c o

=d(e11) = d(e1ze21) = d(e12)ea; + e1ad(e91) =
8 0 b0
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elde edilir. Buradan v + ¢ = 0 yani ¢ = —~ sonucuna ulasilir. Bu sonuglarin
—a
15181 altinda d(eq) = elde edilir. Simdi s € S olmak {izere
s 0 Ty s 0 s 0
d = € R olsun. Boylece = e +
0 s z 1 0 s 0 s
s 0
€99 esitliginden
0 s
r Yy s 0 s 0 s 0
=d =d | en + €22
z 0 s 0 s 0 s
x 2y + as — s«
Bs — sp t
bulunur. Buradan y = 2y + as — sa yani y = sa — as ve z = —(s8 — f3s)
s 0 i sa — as
elde edilir. Dolayisiyla d = olur. Benzer
0 s —(sB — Bs) t
s 0 s 0 1 -1 01 s 0
sekilde = + esitliginden ve d nin
0 s 0 s 0 0 01 0 s

bir tiirev oldugu gerceginden yararlanarak

s 0 x t—x+sa—as—sy+ys
0 s —(sB — Bs) t

bulunur. Bu ise t — x + sa — as — sy + vs = sa — as demektir. Buradan

t —x = sy — s elde edilir. Simdi f : § — S doniigiimii, her a € S

a 0
elemanini € R matrisinin d tiirevi altindaki gortintiisiintin 1. satir
0 a
RO : i} s1 0
1. silitun igerigine resmetsin. Burada s;,ss € S olmak iizere d
0 S1
kol s3 0 poay o e
= ve d = diyelim. Bdylece d nin R iizerinde
m n 0 s9 r s

bir tiirev oldugu ile beraber matrislerde toplama ve ¢arpma tanimi kullanilarak

f(s1+s2) = k+p = f(s1) + f(s2) ve f(s152) = ksy + sip = f(s1)s2 +
s1f(s2) oldugu goriiliir. Son iki bagintidan f, S {izerinde bir tirevdir ve

s 0 T sa— as
= oldugundan f(s) = z olur. Ayrica

0 s —(sB — Bs) t
t—x = sy — s ve f(s) = x egitlikleri kullamlarak ¢ = f(s) + sy — s
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elde edilir. Boylece tiim bulunan degerlerin yerine yazilmasi ile d

f(s) s — as . . . -
= olacak gekilde S {izerinde bir f tiirevinin

—(s8—Bs) f(s)+s7—7s

varligi kanitlanmig olur.
Simdi d tiirevi ile R halkas1 arasindaki iligki, Yardimer Ozellik 3.7 ile

birlikte ele alacaktir. Bunun icin, Yardimer Ozellik 3.6 dan yararlanilacaktir.

Yardimaci Ozellik 3.7 Eger R, S, d ve f Yardimer Ozellik 3.6 da tanumlandae
seklinde ise d nin R izerinde bir i¢ tirev olmast i¢in gerek ve yeter bir kosul

f nin S dzerinde bir i¢ tirev olmasidur.

. s t
Ispat Eger d, R lizerinde M = € R elemani ile belirli bir i¢ tiirev ise

u v
z 0 sr—axs tx—xt
her x € S i¢in d — olur. Ayrica Yardimci
0 x Ur — rU VT — TV
Ozellik 3.6 dan
Nk 0 f(z) T —ax
0 = (@B = Bz) f(z)+wy—s

olmalidir. Son iki bagmtidan her x € S i¢in f(z) = sz — xs elde edilir. Bu ise
f nin, S {izerinde s € S elemamn ile belirli bir i¢ tiirev oldugunu ifade eder.

Tersine f, S lizerinde r € S eleman ile bir i¢ tiirev olsun; yani her

a b
r € S igin f(zr) = rz — xr olsun. O halde her T = € R icin
c e
a 0 b 0 c 0 e 0
T = e + e1s + €91 + €99 eg,tliginden, d
0 a 0 b 0 c 0 e
nin bir tiirev oldugu kullanilarak
a b r -« a b a b r -«
c e B r—rvy c e c e B r—vy
r -«
bulunur. Bu ise d nin R iizerinde € R eleman ile belirli bir ig
Bor—n

tiirev tegkil ettigini ifade eder.
Simdi R nin birimli bir halka oldugu ve her x € R i¢in ya d(z) = 0 ya

da d(z) tersinir olacak gekilde R nin sifirdan farkl bir d tiirevinin var oldugu
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kabulii olan orjinal duruma geri doniilecektir. En azindan D nin karakteristigi 2
den farkli oldugunda R = D, nin her € R igin ya d(x) = 0 ya da d(x) tersinir
olacak gekilde 0 # d tiirevine sahip oldugu D boliimlii halkalar1 karakterize

edilecektir.
Yardimeci Ozellik 3.8 Eger R = Dy ve 2R # (0) ise d bir i¢ tiirevdir.

Ispat d, f, o, 8, v Yardimer Ozellik 3.6 tammlandigi gibi olsun. O zaman
Yardimer Ozellik 3.7 den f nin D fizerinde bir i¢ tiirevi oldugunu géstermek,

ispat1 tamamlamak i¢in yeterlidir. Eger a,b,c¢,d € D ise o zaman Yardimci

i a b a 0 b 0 c 0
Ozellik 3.6 dan ve = e + ez + €21 +
c e 0 a 0 b 0 c
e
€99 esitliginden,
0 e
a0 [ b f(a) = b8 — ac f(b) +ac + by — e .
c e fle)+ Ba—eB —yc fle) +ey—e+ b+ ca

bulunur. Burada e;; # O ve e;; € R tersinir olmadigindan Yardimci Ozellik

3.1 den d(ey1) # Or dir. O halde hipotez geregi d(e;1) € R tersinir olmalidir.

N 0 «
Yardimer Ozellik 3.6 dan d(e1;) = oldugu goz 6ntine almarak a, 8 €

g 0

D elemanlarimin tersinir elemanlar oldugu sonucuna ulagilir. Boylece (1) den
u = f(a"'f(a)) + Ba — ataaB — ya~lf(a) ve v = fla taa) + a taary —

ya~taa + a7 f(a)a olmak iizere

a 0 0 0
d =
a lf(a) alaa u v
elde edilir. Burada € R tersinir olmadigindan hipotezden v = v
u v

= 0 olmahdir. Ayrica f bir tiirev oldugundan f(1) = 0 dir. Boylece 0 = f(1)
= f(a™'a) = f(a™)a+ a™! f(a) olur. Son esitlikten f(a™) = —a' f(a)a™!

elde edilir. Buradan f bir tiirev oldugundan ve son bagintidan

0=v=—a"'fla)ataa +a 'fla)a+a  af(a)
(2)

+ataay — yaraa + a7 f(a)a
elde edilir. Yukaridaki egitlik

207 f(a)a = a ' fla)a raa + ya laa — o taf(a) — o laay
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olarak diizenlenir ve esitligin her iki tarafi soldan o € D, sagdan o~ € D ile

carpilarak
2f(a) = (f(@)a™ +aya™a —a(f(a)a™ +aya™)

bagintisina ulagilir. D bir boliimlii halka ve charD # 2 oldugundan 0 # 1 + 1
= 2 € D dir ve dolayisiyla 2 € D tersinirdir. Son bagintida egitligin her iki
tarafi 2 € D elemaninin tersi ile carpilarak her a € D i¢in

fla) = fla)a™t + oz’yofla B af(oz)of1 + aya™t
1

2 2
elde edilir. Sonug olarak f, D iizerinde ;(f()a™" + aya™') € D elemam ile

belirli bir i¢ tiirevdir. Boylece ispat tamamlanir.

Simdi Dy nin, iizerinde her # € Dy i¢in ya d(z) = 0 ya da d(z)
tersinir olacak gekilde bir 0 # d i¢ tiirevine sahip oldugu D bolimli
halkalar1 (karakteristikten bagimsiz olarak) tamamen karakterize edilecektir.
Bu yapilirken su ana kadar elde edilen sonuclar 1siginda, iizerinde her x € R
i¢cin ya d(z) = 0 ya da d(x) tersinir olacak sekilde bir 0 # d tiirevi tanimh
olan, 2R # (0) olacak sekildeki tiim halkalar tamamen betimlenecektir.
Yardimc1 Ozellik 3.9 Eger D bir bolimli halka ise R = D, halkasinin her
z € R igin ya d(x) =0 ya da d(x) tersinir olacak sekilde bir 0 # d i¢ tirevinin
var olmast i¢in gerek ve yeter bir kosul D nin, merkezi Z deki tim ikinci

dereceden genislemeleri icermemesidir.

Ispat R iizerinde bu sart: saglayan M € R elemam ile belirli bir i¢ tiirev

oldugunu varsayalim. Simdi M nin bir kogegen matris olamayacagini gorelim:

a 0
Eger M = olacak gekilde a,b € D var ise

0 b
a 0 a 0 0 a—0»
Meys —e1aM = €12 — €12 =
0 b 0 b 0 0
0 a—0»
bulunur. Bu matris tersinir olmadigindan, hipotezden = Or dir
0 0
a 0
ve bdylece a = b dir. Buradan M = bulunur. Boylece her ¢ € D i¢in
0 a
a 0 c 0 c 0 a 0 ac—ca 0

0 a 0 0 00 0 a 0 0
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elde edilir. Bu matris tersinir olmadigindan hipotezden ac — ca = 0 olmalidir.
Bu ise her ¢ € D i¢in ac = ca olmasini gerektirir. O zaman a € Z dir ve
dolayisiyla M € Z(R) olur. Buradan M € R eleman ile belirli bir d ig
tirevinin sifir tiirevi olmasi gerektigi sonucuna ulagilir. Fakat bu hipotez ile

geliseceginden kabul yanligtir. O zaman M € R bir kosegen matris olamaz.
P q

Buradan hareketle M = € R olmak iizere q # 0 veya r # 0 dir. Eger
ros

0 1 1 0
q# 0ise TMT™! = olacak sekilde 7' = € R tersinir matrisi

a B pq
1 0
vardir ve burada 77! = ,a=qr—qsq p,B=p+qsqgteD
P -1
q P q
_ _ 0 1 ) 0 1
dir. Eger r # 0 ise TMT™! = olacak sekilde T' = €R
a [ ros
o . » W —7”718 7”71
tersinir matrisi vardir ve burada 7! = .o = —rpr-ts 4+ rq,
1 0
. 0 1
B = rpr~'+s € D dir. Sonug olarak a, 8 € D olmak iizere TMT ! =
a p

olacak sekilde bir 7' € R tersinir matrisi vardir. Genelligi kaybetmeden d nin,
TMT~! € R eleman ile belirli bir i¢ tiirev oldugunu kabul edelim. Eger v € D
ise o zaman

v 0 0 1 v 0 v 0 0 1 0 0

0 v a B)\0 v 0 v/ \a B ay—ya fy =B
olur. Bu matris tersinir olmadigindan, hipotezden sifir matrisi olmahdir ve

bunun sonucunda ay —ya = 0 = Sy — [ elde edilir. Boylece o, 5 € Z oldugu

sonucuna ulagilir. Ayrica

d(Ol)_OlOl 0 1 01_00
a 3 a ] \a B a B \a B 0 0

oldugundan Yardimer Ozellik 3.1, € R matrisinin tersinir oldugunu
o p
soyler. Buradan o # 0 olmalidir. Béylece o € D oldugundan o' € D dir. Bu

durumda v € D igin
0 1 0 1 0 1 0 1 0 1 —a 7—p

0 v a 0 v 0 v a —ay o«
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bulunur. Burada a # 0 oldugundan bu matris sifir matrisi olamaz. O zaman
hipotez geregi bir tersinir matristir. Bu durumda o, € Z oldugundan
0# —a?— (v — B)(—ay) = a(y? — By — a) olur. Son bagmmtidan o' € D
oldugundan her v € D icin 4* — By — a # 0 elde edilir. Diger bir deyisle,
7 dizerinde t? — Bt — « ikinci dereceden polinomunun D icinde hicbir kokii
yoktur ve boylece D, Z nin tiim ikinci dereceden geniglemelerini igermez. Son
olarak dy; ve dpyp-1, sirasiyla M € R ve TMT ! € R elemanlan ile belirli
i¢ tiirevler olmak tizere, her X € R i¢in ya dp(X) = Op ya da dp(X) tersinir
olmasi igin gerek ve yeter bir kogulun ya dryr-1(X) = Og ya da dpyr-1(X)
tersinir olmasi oldugu gosterilirse ispatin ilk kismi tamamlanir. Oncelikle
¢ : R — R doniigiimiinii her X € R icin ¢(X) = TXT ! seklinde
tanimlayalim. Bu durumda ¢, R nin bir i¢ otomorfizmasidir. Ek olarak d,
R iizerinde bir tiirev olmak {izere dy = ¢d¢~" olsun. Buradan her X,Y € R
i¢in
do(X +Y) = pd6™ (X +Y) = ¢d(¢™'(X +Y))
= ¢d(¢™ (X) +¢7(Y))
= ¢(do~(X) +do~'(Y))
= ¢d¢~'(X) + ¢do~'(Y)
— dy(X) + dy(Y)
dir ve ayni zamanda
dy(XY) = ¢do™ ' (XY) = ¢d(¢™ (X)¢™(Y))
— Hd6(X)eT (V)
= ¢~ (X))o (V) + o~ (X)d(6™ (V)
= ¢do~ (X)Y + Xodo™ (V)
= de(X)Y + Xdy(Y)
olur. Son iki bagntidan d,, R iizerinde bir tiirev tegkil eder. Simdi d, M € R

eleman ile belirli i¢ tiirev olsun. Bu durumda her X € R i¢in
dy(X) = ¢do™"(X) = é(do™' (X))
= (Mo (X) — ¢ (X)M)
= o(M)X — X¢(M)
= (TMT "X — X(TMT™)
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olur; yani d dontigtimii, TMT ! € R eleman ile belirli ig tiirev olur. Oncelikle
her X € R igin ya d(X) = Og ya da d(X) tersinir oldugunu kabul edelim. Her
X € Ricin ¢~ }(X) € R olacagindan ya d¢~(X) = 0 ya da d¢~(X) tersinir
olmahidir. ¢, R nin bir otomorfizmasi oldugundan son bagmnt1 ya ¢d¢~1(X)
= 0g ya da ¢d¢~1(X) tersinir oldugunu verir. Bu durumda her X € R i¢in ya
ds(X) = Og dir ya da d,(X) tersinirdir. Tersine her X € R i¢in ya dy(X) = Og
va da dg(X) tersinir oldugunu kabul edelim. Buradan ya ¢d¢—'(X) = Or ya
da ¢d¢~1(X) tersinirdir. Ayrica ¢, R nin bir otomorfizmas: oldugundan ¢!
ortendir. Bu durumda her Y € R i¢in ¢71(X) = Y olacak sekilde bir X € R
vardir. O zaman her Y € R i¢in ya ¢d(Y) = Or ya da ¢d(Y) tersinir olur.
Tekrar ¢ bir otomorfizma oldugundan ya d(Y') = 0g ya da d(Y’) tersinir oldugu
aciktir. Boylece ispatin ilk kismi tamamlanmig olur.

Tersine eger D, Z nin tliim ikinci dereceden geniglemelerini icermiyorsa,

ax? — Bz — 1 polinomunun D de ¢oziimii olmayacak sekilde «, 8 € Z vardir ve

a # 0 dir. Simdi d, Dy iizerinde € D, elemanu ile belirli i¢ tiirev olsun.
a B

Burada d nin her sifirdan farkli degerinin tersinir oldugunu iddia ediyoruz.

a,b,c,e € D olmak {izere

a b 0 1 a b a b 0 1

c e a f c e c e a f

c—ab e—a—fb
ala—e)+Pc  ab—c

bulunur. Burada m = c—ab ve n = e—a— (b denilirse —an+pm = a(a—e)+Sc

olur ve son bagintidan

a b m n

c e —an+ fm —m

elde edilir. 1k olarak m = 0 oldugunu kabul edelim. O zaman son bagintidan

a b 0 n
= olur. Bu durumda « # 0 oldugundan eger
c e —an 0
a a
n = 0 ise d = Og olur, eger n # 0 ise d tersinir
c e c e

olur ve boylece hipotez saglanmig olur. Diger taraftan eger m # 0 ise o zaman
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w = m~!n olmak iizere

a b m n m 0 1 w
c e —an+ fm  —m 0 m —aw+ [ —1
a b L - .
olur. Burada m # 0 oldugundan d matrisinin tersinir olmasi igin
c e
: 1 w L -
gerek ve yeter bir kogul matrisinin tersinir olmasidir. O
—aw+p -1

zaman 0 # —1 — w(—aw + ) = aw? — fw — 1 dir. Fakat a ve 3 seciliglerinden,
her w € D icin aw? — Bw — 1 # 0 dir. Béylece d, D, iizerinde tiim sifirdan
farkli degerleri tersinir olan bir i¢ tiirevdir.

Teorem 3.1 in ispatin1 tamamlamak i¢in geriye kalan tek durum 2R = (0),
R # D ve R # D, oldugu durumdur. Bu durum, Yardimer Ozellik 3.10 ile

birlikte ele alinacaktuir.

Yardimci Ozellik 3.10 Eger R bir basit halka degil ise o zaman D bir bolimli
halka olmak dizere R = Dl[z]/(2?) dir. Burada charD = 2, d(D) = {0} ve Z,
D nin merkezi olmak tizere d(z) = 1 + ax olacak sekilde a € Z vardur. Ustelik

d bir i¢ tirev degildir.

Ispat R nin bir basit halka olmadigini varsayalim. Bu durumda R nin M gibi
bir 6z ideali vardir. Yardimer Ozellik 3.5 den M2 = (0) ve 2R = (0) dir. Ayrica
Yardimer Ozellik 3.4 ten M, R nin hem maksimal hem de minimal (sag, sol,
iki yanl) idealidir.

Simdi R nin tek 6z (sag, sol, iki yanh) idealinin M oldugunu gorelim.
Eger R nin M # N olacak sekilde bir 6z N ideali var ise Yardimc
Ozellik 3.4 ten N, R nin hem maksimal hem de minimal ideali olur. Burada
N C M + N oldugundan ve N nin maksimalliginden ya N = M + N dir
vada R = M + N dir. Eger N = M + N ise M C N dir. Boylece M nin
maksimalliginden M = N celigkisine ulagilir. Eger R = M + N ise M? = (0)
oldugundan M = MR = M(M+ N) C M?+ MN = MN C N elde edilir. Bu
durumda da M nin maksimalliginden M = N geligkisine ulagilir. O zaman R
nin tek 6z ideali M dir. Benzer gekilde R nin tek 6z sag ve 6z sol idealinin de
M oldugu goriiliir.

Yardimer Ozellik 3.4 iin ispatindan, R = M + d(M) oldugundan

yararlanarak, eger r € R ise d(r) = m + d(n) olacak sekilde m,n € M
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vardir. Boylece d(r —n) = m € M N d(R) olur. Simdi M Nd(R) = {0}
oldugunu gorelim. Burada eger bir 0 # x € M Nd(R) var ise, 0 # = € d(R)
oldugundan, hipotez geregi x tersinir olmahdir. Ayrica x € M oldugundan, R
nin baz1 tersinir elemanlar1 M de icerilir. Bu ise M = R celigkisini verir.
O zaman M Nd(R) = {0} dir ve d(r —n) = m € M NdR) = {0}
dan d(r — n)

d(0) = 0 = d(1) oldugundan 0,1 € D oldugu agiktir. Ayrica her x,y € D
icind(x—y) =d(z)—d(y) =0—-0=0ve d(zy) = d(x)y+xd(y) = 0y+20=0
dan D, R nin bir birimli alt halkasi olur. Simdi bir 0 # x € D olsun. Burada

= 0 olur. Bu nedenle, eger D = Kerd denilirse o zaman

d(x) = 0 oldugundan, Yardimc1 Ozellik 3.1 den z tersinirdir ve
0=d(1) =d(zz™!) =d(x)z™ " +zd(z™") = zd(z™)

bulunur. Burada son bagmtinimn her iki tarafi soldan ! € R ile carpilarak
d(z~') = 0 elde edilir. O zaman x~! € D dir. Boylece tiim bu verilerin 15181
altinda D nin, R nin bir boliimlii alt halkasi oldugu sonucuna ulagilir. Yukarida
d(r —n) = m = 0 olarak bulundugundan, »r —n € D dir. Buradan R C D+ M
elde edilir. Ayrica D + M C R oldugu agiktir. Boylece R = D + M olur.
Diger taraftan 0 £ x € M ise o zaman M, R nin bir 6z ideali oldugundan

Dx C M # R dir. Her sy, € D igin
$1T — Sox = (81 — S9)x € Dx

olur. Ayrica M? = (0) oldugu gergegi goz oniinde bulundurularak, her

r=e+feR=D+ M veseD igin
r(sz) = (e+ f)sx = (es)x + (fs)xr = (es)x € Dz

olur. Son iki bagmmti Dz in, R nin bir sol ideali oldugunu verir. Ustelik
0 # x = lz € Dz oldugundan Dz # (0) dir. Burada M nin tekliginden
Dx = M dir. Boylece R = D + M esitliginden, R = D + Dx elde edilir. Bu
durumda d(z) € R oldugundan d(z) = s + tx olacak sekilde s,t € D vardir.
[k olarak s # 0 oldugunu gérelim. Eger s = 0 ise d(z) = tv € Dz = M
oldugundan, d(x) = 0 ise Yadimci Ozellik 3.1 den w tersinir olmahdir ve
x € M oldugundan R nin bazi tersinir elemanlar1 M de igerilir. Buise M = R
geligkisini verir. Eger d(z) # 0 olursa hipotezden d(z) tersinirdir ve d(z) € M
oldugundan benzer sekilde M = R geligkisine ulagilir. O zaman s # 0 olmalidir.
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Boylece s7! € D dir ve Ds™'z = Dx olur. Buise R = D + Ds 'z oldugunu
verir. Ayrica d(D) = {0} dan d(s7'x) = s7ld(z) = s (s +tx) = 1+ s 'tz
= 1+ s 'tss7 'z bulunur. Burada 0 # s'x = y € M ve s 'ts = a € D
denilirse R = D 4 Dy ve d(y) = 1 + ay olur. Bu durumda bir 0 # = € M igin
R = D + Dz oldugunu ve d(x) = 1 + az olacak sekilde bir a € D oldugunu
kabul edebilebilir.

Eger s € D ise o zaman M = Rz, M?* = (0), d(s) = 0 ve bir a € D igin

d(z) = 1+ az gergeginden, sz € M = Rz ve (sz)? = 0 olmas1 kullanilarak

0=d(0)=d((sz)?) = d(swsz)
= sxd(sx)+ d(sz)sz
= sz(d(s)z + sd(z)) + (d(s)x + sd(z))sz
= sws(1+ax) + s(1 + ax)sz
= sws+ swsax + s + sarsy
= srs+ s’

= s(xs+ sx)

elde edilir. Eger s # 0 ise s nin tersinirliginden ve son bagintidan zs + sx = 0
bulunur. Eger s = 0 olursa xs+sx = 0 esitligi saglanir. Bu durumda her s € D
i¢cin xs + sz = 0 dir ve 2R = (0) oldugundan her s € D igin s = sz olur.

Boylece her r =a + bxr € R = D + Dx igin
(a+bx)z = ax +br* = ar + 0 = ax = va = va + 0 = xa + zbx = x(a + bx)

bulunur. Son bagmti, x € Z(R) oldugunu verir.

Simdi R = D[z]/(2?) oldugunu gorelim. Burada D[t] = {} [ ait' : a; €
D, 0 <i<n,n e N} olmak iizere ¢ : D[t| - R = D + Dz doniigiimiinii her
o g aitt € DJt] i¢in ¢(3 0, ait') = ag + ayx seklinde tammlayalim. Burada ¢
nin bir 6rten halka homomorfizmasi oldugu agiktir. Ek olarak eger > a;it’ €
Ker¢ ise 0 = ¢(> 1 ait") = ag + ayz olur. Burada esitligin her iki tarafi
sagdan = € R ile arpilarak M? = (0) oldugundan 0 = 0z = (ag + a17)r = apx
elde edilir. Burada eger ag # 0 olursa ag € D oldugundan x = 0 celigkisine
ulagilir. O zaman ag = 0 dir ve dolayisiyla 0 = ag + a1z = a1z olur. Bu

durumda a; # 0 ise benzer gekilde x = 0 ¢eligkisine ulagilir. O zaman a; = 0
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dir. Béylece t* € Z(D|t]) ve D[t] bir birimli halka oldugundan

Kergp = {Zaiti:aieD,Zgign,neN}
i=2
= {axt? +ast’...a,t" :a; € D,n € N}

= {(ay +ast...a,t" *)t*:a; € D,n € N}
= {pt’ :pe D[t]}

= (")

olur. Halkalarda I. Izomorfizma Teoremi nden R = D[t]/(t?) dir. Buradan
R = D[z]|/(z?*) olur.

Simdi eger s € D ise o zaman sz + xs = 0 olur ve boylece

0=d(0) =d(sx +xs) =d(sx) +d(zs) = d(s)x+ sd(z)+ d(x)s + zd(s)
= s(l+ax)+ (14 ax)s
= sax + axs

= (sa+as)z

bulunur. Burada sa + as € D dir ve D nin sifirdan farkli her elemanm1 R de
tersinir oldugundan, eger sa + as # 0 ise son bagintidan z = 0 ¢eligkisi elde
edilir. O zaman sa + as = 0 olmaldir ve 2R = (0) oldugundan sa = as olur.
Bu ise a nin, D nin merkezinde olmasini gerektirir.

Son olarak, d nin bir i¢ tiirev olmadigini gérelim: Burada eger d, bir a € R
elemani ile belirli i¢ tiirev ise M, R nin bir 6z ideali oldugundan bir 0 # x € M
i¢in d(z) = ax —za € M dir. Burada eger d(x) # 0 ise hipotezden d(x) tersinir
olmahdir. Boylece d(z) € M oldugundan M = R geligkisine ulagilir. O zaman
d(r) = 0 olmahdir. Bu ise 7 # 0 oldugundan ve Yardimc Ozellik 3.1 den z
in tersinir olmasi demektir ki, buradan tekrar x € M oldugundan M = R
geligkisine ulagilir. O zaman d bir i¢ tiirev degildir.

Simdi baglangicta belirtilen ve asagidaki gibi verilen ana sonug

ispatlanabilir.

Teorem 3.1 Bir birimli R halkasinan her bir x € R i¢in ya d(x) = 0 ya da

d(x) tersinir olacak sekilde bir 0 # d tirevi var olsun. O zaman R halkast

1. bir D bolumli halkasidir, ya da
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2. D bir bolimli halka olmak tizere Do dir, ya da

3. D bir bélimli halka olmak idizere Dlz]/(x?) dir ve charD = 2,
d(D) = {0}, d(z) = 1+ ax olacak sekilde D nin merkezi Z de bir a

elemant vardar.

Ustelik, ejer 2R +# (0) ise o zaman R = Dy olmast i¢in gerek ve yeter
bir kosul D min merkezi Z nin tim ikinci dereceden genislemelerinin D de
icerilmemesidir, denk olarak; gerek ve yeter bir kosul D nin merkezi Z nin

bazr elemanlarinain D nin bir elemaninin karesi seklinde yazilamamasidar.

Ispat Eger R bir basit halka ise o zaman Yardimer Ozellik 3.4 den ¢(zR) < 2
dir. Boylece Teorem 2.5 den D bir boliimlii halka olmak iizere ya R = D dir
ya da R = D, dir. Ustelik 2R # (0) ise o zaman Yardime1 Ozellik 3.8 den D,
nin boyle bir tiireve sahip olabilmesi i¢in gerek ve yeter bir kogul D; nin bu
ozelligi tagiyan bir i tiireve sahip olmasidir. Bununla birlikte Yardime Ozellik
3.9 ise D5 nin boyle bir i¢ tiirevinin olmasi i¢in gerek ve yeter bir kogulun D
nin, Z nin tiim ikinci dereceden geniglemelerini icermemesi oldugunu séyler.

Eger R bir basit halka degilse Yardimer Ozellik 3.10 dan Teorem 3.1 (3)
elde edilir. Boylece teorem ispatlanir.

Geriye Teorem 3.1 ile ilgili bir soru kalir. Bu soru, Teorem 3.1 de R = D,
durumunda d nin bir ig tiirev oldugunu ispatlamak i¢in 2R # (0) kabuliintin
gerekli olup olmadigidir. Agagida sunulan 6rnek, 2R = (0) ise o zaman R = D,
halkasinin her z € R i¢in ya d(z) = 0 ya da d(z) tersinir olacak sekilde bir
0 # d dig tiirevine sahip oldugunu gosterir:

Ornek F = GF(2)(z){(y)), katsayilar1 GF(2) de olan bir degiskenli
rasyonel fonksiyonlar cismi tizerindeki (sonlu) Laurent serilerinin cismi olsun
ve R = My(F) alalm. Burada F' iizerindeki bir ¢ tiirevini 0(f(z)) = 0 ve
d(y) = xy hareketini genigleterek tanimlayalim. S6yle ki, bu hareket altinda her
S Fnly™ € Figin 855 ful@)y™) = S mfu(@)zy™ olarak
tammlanir. Bu durumda f(x) € F igin 6(f(z)) = 6(f(z)y°) = 0vey € F
icin 6(y) = 6(1y') = xy tammlar saglanmig olur. Burada § nin toplamsal
oldugu agiktir. Eger a = > °_ | f,(x)y™ € F ise ap, a € F de goriilen y
nin ¢ift kuvvetlerinin serisi ve ap = a — ag olmak iizere a = ag + ap olarak

yazilabilir. Burada ap, a € F' de goriilen y nin tek kuvvetlerinin serisidir ve
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charF = 2 oldugundan 6(a) = d(ag + ap) = 0(ap) = wap olur. Boylece
her a = ag + ap,b = bg +bo € F igin 6(ab) = 0((ag + ao)(be + bo))
= d(apbg + apbo + apbr + apbo) = 0(agbo) + §(apbp) = zapbo + rapbg
= zagbo+rapbo+rapbp+rapbo = rao(bp+bo)+(ag+ao)rbo = 6(a)b+ad(b)

olur. Ayrica ¢ toplamsal bir déniistim oldugundan ve son bagintidan 6, F' nin

rz 1
bir tiirevidir. Simdi A = € My(F) olmak tizere da, A € My(F)
10
elemani ile belirli ic tiirev olsun ve & : My(F) — My(F) déniisiimiinii her
a b o ([a b d(a) 4o(b) ‘
€ My(F) igin 0 = seklinde tanimlayalim.
c e c e d(c) o(e)

Burada d = d4 + 6 olsun. Oncelikle 6 nin toplamsalligindan ¢ nin toplamsalligi
agiktir ve matrislerde toplama ve garpmanin tanmimindan her A, B € My (F)
igin 0(AB) = §(A) B+ Ad(B) oldugu kolayca goriiliir. Béylece 0, My (F) nin bir
tiirevidir. ki tiirevin toplaminin da bir tiirev oldugu gercegi, bize d = d4 + 6

nin bir tiirev oldugunu verir. Simdi d nin bir i¢ tiirev olmadigini gorelim.

. . y 0 [0 0 y 0
Eger d bir ig tiirev ise € Z(My(F)) igin =d
0 vy 00 0 vy
- 0 o 0(0 x
= Y = () o(0) = Y olur ve boylece zy = 0
0y 6(0) 4(y) 0wy
geligkisi elde edilir. O zaman d bir i¢ tiirev degildir.
a b
Simdi bir € Ms(F') olsun. Burada charF = 2 oldugundan, d4
c e

ve 0 tanimlar1 kullamlarak

a b b+c+zxapo a+e-+ zbg

c e a+e+xzcg b+ c+ zep
bulunur. Bu durumda d # 0 tiirevinin, her X € R i¢in ya d(X) = O ya da
d(X) tersinir sartim saglayan bir tiirev oldugu biraz sikic1 da olsa dogrudan
bir hesaplama ile gosterilebilir. Ayrintilar J. Bergen in ¢aligmasinda (Bergen

et al [1983)) atlanmigtir, fakat bu tezde tarafimizdan verilmeye ¢aligilmigtir.

a b b+c+zxapo a-+e+ zbg
Burada A = d = olmak iizere ya
c e a+e+xcg b+ c+ xeo
A = yva da A nin tersinir oldugunu iddia ediyoruz. Bu iddiay:
00
ispatlamak i¢in A min tersinir olmadigini kabul edip A = oldugunu

0
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gostermeye galigalim. Eger A tersinir degilse det(A) = 0 dir ve

b+ c+zap = k(a+ e+ zcg)

a+e+xbp =k(b+ c+ zep)

olacak sekilde bir k = kg +ko € F vardir. Buradan a+e = k(b+c+zep)+xbg

olup, son bagintida bu esitlik kullanilarak

b+c+azao = k(a+e+acg)
= k(k(b+c+zeo) + z(bg + cp))
= K (b+ c+weo) + kz(bg + cp)
= k(b + cg) + k2 (bo + co + zeo)

+ kpx(bg + cg) + kox(bg + cg)
elde edilir. Bu durumda y nin ¢ift kuvvetleri diigtintiliirse
(bg +ce)(K* + kpr +1) =0
bulunur. Benzer sekilde b+ ¢ = k(a + e + xcg) + xap olup, buradan

a+e+aby = k(b+c+zeo)
= k(k(a+e+xcg)+x(ao +eo))
= Kk*(a+e+xcp) + kx(ao + eo)
= k*(ag +ep+xcp) + K (ao + o)

+ kpz(ao + eo) + kox(ao + €o)
elde edilir. Son bagintida y nin tek kuvvetleri diigiiniiliirse
(ao +eo)(k* + kpx +1) =0

bulunur. Béylece va by +cg = 0 = ap +eo va da k> + kgx +1 = 0
olmahdir. Burada k* + kpz + 1 = 0 oldugunu kabul edelim. O zaman
k? + kpx € F elemaninin ¢° I teriminin katsayis1 1 olmahdir. Simdi ¢t € Z
olmak tizere k = > °_ . fi(x)y™ € F olsun. Burada charF' = 2 oldugundan
k> =3 fm(x)*y*™ olur. Boylece k? + kpx € F elemaninm y° I teriminin
katsayist fo(x)? + xfo(x) olur ve fo(x)? + xfo(x) = 1 olmahdir. Notasyondaki
karigikhig1 gidermek adina simdilik fo(z) = r € GF(2)(z) diyelim. O zaman
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r = § olacak gekilde p,q € GF(2)[x] vardir ve ¢ # 0 dir. Burada eger p = 0
ise r = 0 olur ve boylece 1 = r? + ar = 0 celigkisi elde edilir. O zaman
p # 0 olmahdir. Bu durumda p # 0 ve ¢ # 0 oldugundan deg(p) = m > 0 ve
deg(q) = n > 0 olacak sekilde m,n € Z vardir. Boylece

2
0= fofe) +fola) +1=0 +ar 4 1=2

L
g

olur. Buradan p? + zpq + ¢® = 0 ve dolayisiyla,
P’ + ¢ = pgx
elde edilir. Bu durumda
deg(p* + ¢*) = deg(pqz) = m +n + 1

olmahdir. Burada eger m = n ise bagmtidan deg(p® + ¢*) = deg(pgx)
= 2n + 1 olur. Ayrica char(GF(2)[z]) = 2 ve deg(p?) = 2n = deg(q¢?)
oldugundan deg(p* + ¢*) < 2n bulunur. Bu ise 2n + 1 = deg(p* + ¢*) < 2n
geligkisini verir. O zaman m # n dir, dolayisiyla ya m > n ya dan > m
olmalidir. Bu durumda son bagmtidan m + n + 1 = deg(pgz) = deg(p* + ¢?)
= max{deg(p?), deg(q*)} = maz{2m,2n} oldugundan ya m +n + 1 = 2m dir
vadam+n+1=2ndir. Buise yam =n+ 1 ya dan =m+ 1 oldugunu
verir. Sirasiyla bu iki durumu inceleyelim.

Ik olarak m = n + 1 oldugunu kabul edelim. O zaman deg(p) = n + 1
ve deg(q) = n olur. Simdi p = 3 a2’ ve ¢ = S0 b’ olsun. charF = 2
oldugundan p? = 37 a?a% ve 2 = 321 b2a% olur. Ayrica ¢; = Zj’:o a;bi_;
olmak fizere pgr = (3" ciat)r = 7 ! olur. Boylece tiim bu

bilgilerden yararlanilarak, p* + ¢ = pgx esitliginden

n 2n+1
E (a; + b;)*2™ + al 2*" 2 + E cir'th =
1=0 i=0

bulunur. Burada son bagintidan
(ao —f- b0>2 = O =
ve her 1 <t < n igin

(az + bt)2 +e1=0vecy =0
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olmalidir. O zaman ag + by = 0 ve ¢g = agbg = 0 dir. Bu ise ag = 0 = by
oldugunu verir. Son bagntidan ¢t = 1 i¢in (a; + b1)> +¢; = 0 ve ¢ = 0 elde
edilir. Fakat ¢; = a1bg + agby = 0 ve ¢o = asby + a1by + apbs = a1b; oldugundan
a1 + by = 0 ve a;b; = 0 bulunur. Bu ise a; = 0 = b; oldugunu verir. Benzer
sekilde son bagintidan ¢ = 2 i¢in (as + b2)* + c3 = 0 ve ¢y = 0 elde edilir. Fakat
c3 = asbg + asby +a1bs +agbs = 0 ve ¢y = asbg + asby + asby + a1bs +agbs = asbsy
oldugundan a4+ by = 0 ve agbs = 0 bulunur. Bu ise yukaridaki gibi as = 0 = by
oldugunu verir. Bu gekilde devam edilirse, (n — 1). adimda a,—1 = 0 = b,,_4
bulunur. Bu durumda her 0 <1 < n —1 i¢in a; = 0 = b; elde edilir. Son olarak
t =n icin (a, + b,)? + can_1 = 0 ve ¢, = 0 olmalidir. Fakat ¢y, 1 = ag,_1bo +
Gon_2b1+- -+ a,bp_1+ay, 10,4+ - -+ a1ba,_o+agbe, 1 = 0 esitliginden, simdiye
kadar bulunan sonuclar kullanilarak a, + b, = 0 olmas1 gerektigi sonucuna
ulagilir. Ayrica 0 = co,, = aopbo + a2,-1b1 + -+ - + api1by_1 + anby + an_1b,01 +
o +aybo, 1 +agbs, = ayb, elde edilir. Dolayisiyla tiim bu bulunan degerlerden
a, + b, =0 = a,b, olup, a, = 0 = b, oldugu goriiliir. Buradan her 0 <i < n
igin b; = 0 olur. Boylece ¢ = Y7 bz’ = 0 geliskisine ulagilir. O zaman
m = n + 1 olamaz. Eger n = m + 1 ise deg(p) = m ve deg(q) = m + 1 olur.
Benzer iglemler tekrar edilerek p = 0 celigkisine ulagilir. Her iki durumda da bir
celiski elde edildiginden, k? + kgpx + 1 = 0 olacak sekilde bir k = kg + ko € F
olmadig1 sonucuna ulasilir. Bu durumda bg + cg = 0 = ap + ep ve dolayisiyla

bg = cg ve ap = ep olmalidir. Buradan

a b b+c+xap a-+e+xb
A d _ o) E

c e a+e+xcg b+c+ zeo
bo+co+zxao ap+eg+ xbg

aE+eE+be bO—FCO—f—l’aO

elde edilir. Ayrica charF = 2 ve det(A) = 0 oldugundan

0 = (bo+co+mwap)*+ (ag + e + xbg)?

= (bo +co +zap +ap +ep + xbg)?

bulunur. Son bagintidan bp + co + rap + ag + eg + zbg = 0 ve dolayisiyla
bo + co +xap = ag + e+ xbg olur. Bu esitlik ise bp + co + xrap € F nin, y nin
sadece tek kuvvetlerini ve ag +ep+xbg € F nin, y nin sadece tek kuvvetlerini

icermesinden dolay1 bp + co + xap = 0 = ag + eg + by oldugu anlamina
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0 0
gelir. Boylece istenilen A = sonucuna varilir. O zaman Teorem 3.1 de

00
R = D, durumunda, 2R # (0) kosulu kaldirilamaz.

Simdi Teorem 3.1 de R halkas1 yerine R nin bir 6z sol idealinin alinmasi

durumunda elde edilen sonuclari ele alalim.

Burada R birimli bir halka, 0 # d R nin bir tiirevi olsun ve L, R
nin d(L) # {0}, her z € L igin ya d(z) = 0 ya da d(z) R de tersinir
olacak sekilde bir sol ideali olsun. L = R durumunda cevap zaten bilindigi
igin, L # R oldugunu varsayalim. Bu durumda R nin yapisini belirlemek
istiyoruz. Argiimanlar daha once verilen ile benzer oldugundan, J. Bergen in
galigmasinda (Bergen et al., [1983)) ayrintilar atlanmigtir. Ancak bu ¢aligmanin

bundan sonraki kismi tarafimizdan ayrintilari ile verilmeye caligilmigtir.

Oncelikle, sirasiyla Yardimer Ozellik 3.1, Yardimer Ozellik 3.2 ve

Yardime1 Ozellik 3.3 iin bu durumda da saglandigim gorelim:

Ik olarak d(x) = 0 olacak sekilde bir 0 # = € R olsun. Burada L bir
sol ideal oldugundan zL C L dir ve her y € L igin d(zy) = d(z)y + zd(y)
= zd(y) oldugundan d(xL) = xd(L) dir. O zaman xd(L) = d(zL) C d(L) olur.
Hipotezden d(y) # 0 olacak sekilde bir y € L vardir ve d(y) R de tersinirdir.
Buradan zd(y) = d(zy) € d(zL) C d(L) elde edilir ve boylece ya xd(y)
= d(zxy) = 0 dir ya da zd(y) = d(zy) R de tersinirdir. Eger ilk durum soz
konusu ise; yani zd(y) = d(yz) = 0ise d(y) ™' € R oldugundan z = 0 celigkisine
ulagilir. Diger taraftan ikinci durum s6z konusu ise; yani zd(y) = d(xy) R de
tersinir ise z = d(xy)d(y) ! olur ve bir halkada tersinir elemanlarin ¢arpiminin
da tersinir oldugu gercegi, bize * € R nin tersinir oldugunu verir. Buradan
Yardimer Ozellik 3.1 in sonucunu kolayca elde ederiz; yani d(z) = 0 olacak

sekilde bir x € R i¢in ya x = 0 dir ya da x R de tersinirdir.

Simdi W, R nin d(W) = {0} olacak sekilde bir sol ideali olsun. Burada
W = (0) oldugunu iddia ediyoruz. Bunu gorebilmek i¢in W # (0) oldugunu
varsayalim. O zaman bir 0 # w € W igin d(w) = 0 dir ve yukarida belirtilen
sonuc¢tan w elemani, R de bir tersinir eleman olmalidir. Boylece W, R nin bazi
tersinir elemanlarini igerdiginden W = R dir ve dolayisiyla {0} = d(W) = d(R)
olur. Buise d(L) # {0} kabulii ile ¢elisir. O zaman W = (0) olmaldir. Buradan
Yardimer Ozellik 3.2 nin sonucunu elde edilir; yani W, R nin d(W) = (0) olacak
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sekilde bir sol ideali ise W = (0) dir. Ayrica bu sonucun, R nin 6z sag ve 6z
iki yanh idealleri i¢in de gecerli oldugu kolayca goriilebilir.

Simdi eger R bir 2-burulmali halka ise o zaman 2R = (0) oldugunu
gorelim. Eger R 2-burulmali bir halka ise 2x = 0 olacak sekilde bir 0 # = € R
vardir. Buradan bir 0 # y € L i¢in 0 = 2zd(y) = zd(2y) olur ve d(2y) € d(L)
oldugundan, hipotez geregi ya d(2y) = 0 dir ya da d(2y) R de tersinirdir. Eger
d(2y) R de tersinir ise o zaman xd(2y) = 0 esitliginin her iki tarafi sagdan
d(2y)™' € R ile garpilarak z = 0 celigkisi elde edilir. O zaman d(2y) = 0
olmalidir ve Yardime1 Ozellik 3.1 in sonucu geregi ya 2y = 0 dir ya da 2y R de
tersinirdir. Eger 2y € L eleman1 R de tersinir ise, L = R c¢eligkisi elde edilir.
O zaman 2y = 0 olmahdir. Burada ya d(y) = 0 dir ya da d(y) eleman R de
tersinirdir. Eger d(y) = 0 ise 0 # y € L seciminden ve Yardimer Ozellik 3.1
den L = R geligkisi elde edilir. O zaman d(y) # 0 olmalhdir ve hipotezden d(y)
R de eleman tersinirdir. Buradan hareketle her r € R i¢in 0 = rd(2y) = 2rd(y)
olur ve d(y)~' € R oldugundan 2r = 0 bulunur. Bu ise Yardime1 Ozellik 3.3
in sonucuna ulagtirir; yani R 2-burulmali bir halka ise o zaman 2R = (0) dur.

Yardimer Ozellik 3.4 de gosterildigi gibi, L + d(L) kiimesi R nin bir sol
idealidir. Hipotezden ve d(L) C L + d(L) oldugundan L + d(L) kiimesi R nin
baz1 tersinir elemanlarim igerir. Bu ise R = L + d(L) oldugunu verir. Buradan
eger T', R nin L C T olacak gekilde bir 6z sol ideali ise o zaman keyfi bir ¢t € T
i¢in t = a + d(b) olacak sekilde a,b € L vardir ve t —a = d(b) € T Nd(L) olur.
Bu durumda eger T'Nd(L) # {0} ise bir 0 # = € T'Nd(L) igin hipotezden x
elemani R de tersinir bir eleman olur ve 7' = R geligkisi elde edilir. O zaman
T Nnd(L) = {0} olmalhdir ve buradan ¢ — a = 0 sonucuna ulagilir. Boylece
t =a € L dir. Buise T' C L oldugunu ve dolayisiyla 7' = L oldugunu verir;
yani L, R nin bir maksimal sol idealidir. Benzer islemler L de kapsanan R nin
bir S sol ideali i¢in yapilirsa, R = S + d(S) olur ve .S, R nin bir maksimal sol
idealidir. O zaman L ve L de kapsanan her sol ideal maksimaldir. Boylece L,
R nin hem maksimal hem de minimal sol idealidir.

Simdi I(L) = {x € R: 2L = (0)} kiimesini inceleyelim. R = L + d(L)
birimli oldugundan 1 = a + d(b) olacak sekilde a,b € L vardir ve eger x € [(L)

1se 0 zaman

r=x(a+d0b)) =xa+ xd(b) = xd(b) = d(xb) — d(x)b=—d(x)b € L
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olur. Bu ise I(L) C L oldugunu verir. Burada L nin minimalliginden ya
I(L) = (0) dir ya da (L) = L dir. Sirastyla bu iki durumu inceleyelim.

Oncelikle I(L) = (0) olsun. Bu durumda R nin bir basit halka oldugunu
iddia ediyoruz. Bunu gorebilmek igin, ilk olarak R nin bir yar1 asal halka
oldugunu gorelim. Burada eger R bir yar asal halka degilse, R nin I? = (0)
olacak sekilde bir (0) # I ideali vardir. Ustelik /L C L oldugundan ve L
nin minimalliginden ya IL = (0) dir ya da IL = L dir. Eger IL = (0) ise
(0) # I CU(L) = (0) geliskisi elde edilir. Eger IL = L ise I? = (0) oldugundan
(0) = I’L = I(IL) = IL = L celigkisi elde edilir. Her iki durumda da geligki
elde edildiginden R bir yar1 asal halka olmalidir. Simdi R nin bir basit halka
oldugunu gorelim. Bunun i¢in, R nin sifirdan farkl bir ideali I olsun. Béylece
yukaridaki agiklamalardan I? # (0) oldugu soylenebilir. Burada I°L C L
oldugundan ve L nin minimalliginden ya I?L = (0) dir ya da [*L = L dir.
Eger I’L = (0) ise (0) # I? C (L) = (0) geligkisi elde edilir. O zaman [*L = L
olmahdir. Bu durumda {0} # d(L) = d(I?L) C I oldugundan

[0} £ d(I’L) Cd(L)N I

olur. Hipotezden d(L) = d(I?L) kiimesi, R nin baz tersinir elemanlarin igerir.
Bu ise I = R oldugunu verir. O zaman R nin bir 6z ideali yoktur. Boylece R
nin bir basit halka oldugu sonucuna ulagilir.

Simdi R nin her 6z sag idealinin hem maksimal hem de minimal sag
ideal oldugunu goérelim. Burada M, R nin bir 6z sag ideali olsun. O zaman
ML C L ve ML C M dir. Boylece d(ML) C d(L) ve d(ML) C d(M) elde
edilir. Bu ise d(M L) C d(L) Nd(M) oldugunu verir. Bu durumda eger d(L) N
d(M) = {0} ise d(ML) = {0} olur. Buradan, yukarida verilen bilgilerden
yararlamlarak, Yardimer Ozellik 3.2 nin sonucu olarak, M L = (0) bulunur. Bu
durumda (0) # M C I(L) = (0) geligkisi elde edilir. O zaman d(L) N d(M)
# {0} dir ve boylece hipotezden d(M) kiimesi, R nin baz: tersinir elemanlarini
icerir. Yardimer Ozellik 3.4 de oldugu gibi M + d(M) kiimesi R nin bir sag
idealidir ve d(M) C M + d(M) oldugundan M + d(M) kiimesi R nin baz
tersinir elemanlarni igerir. Bu ise R = M + d(M) demektir. Simdi R nin
M C N olacak sekilde bir N 6z sag ideali olsun. Bu durumda bir n € N C R
= M + d(M) i¢gin n = a + d(b) olacak sekilde a,b € M vardir ve buradan
n—a = d(b) € NNd(M) = {0} olur. Buradan n = a € M ve dolayisiyla N C M
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olur. Boylece N = M dir; yani M bir maksimal sag idealdir. Benzer sekilde M
de kapsanan her 6z sag idealin bir maksimal sag ideal oldugu goriilebilir. Bu
ise M nin hem maksimal hem de minimal sag ideal oldugunu verir.

Eger R nin bir 6z sag ideali var ise, R nin her 6z sag ideali hem minimal
hem de maksimal sag ideal oldugundan ¢(Rg) = 2 dir ve R bir basit halka
oldugundan, Teorem 2.5 geregi D bir boliimli halka olmak tizere R = D, dir.
Eger R nin bir 6z sag ideali yok ise, her 0 # a € R i¢in aR kiimesi R nin
bir sag ideali ve 0 # a = al € aR oldugundan R = aR olmalidir. Ayrica
1 € R = aR olup, 1 = ab olacak sekilde bir 0 # b € R vardir. Benzer
sekilde bR = R olup, 1 = bc olacak gekilde bir 0 # ¢ € R vardir. Boylece,
a = al = a(bc) = (ab)c = lc = ¢ bulunur. Bu ise her 0 # a € R igin
ab = 1 = ba olacak sekilde bir b € R oldugunu ve dolayisiyla R nin bir
boliimlii halka oldugunu verir. Sonug olarak eger I(L) = (0) ise D bir bélimlii
halka olmak tizere ya R = D dir ya da R = D, dir.

Diger taraftan, I(L) = L olsun. Bu durumda L? = [(L)L = (0) olur. Ozel
olarak L = [(L) oldugundan, L bir iki yanlh idealdir. Burada R nin tek 6z (sag,
sol, iki yanli) idealinin L oldugunu gorelim. Eger R nin I # L olacak sekilde
bir 6z I sol ideali var ise o zaman I + L, R nin bir sol ideali olur ve L C [ + L
dir. Burada L nin maksimalliginden ya L = [ 4+ L dir ya da R = I + L dir.
Eger L = I + L ise I C L olup, L nin minimalliginden I = L celigkisi elde
edilir. O zaman R = [ 4+ L olmalidir. Béylece

L=LR=L(I+L)=LI+L[*=LICI

bulunur ve L nin maksimalligi, I = L celigkisine neden olur. Bu ise R nin tek 6z
sol idealinin L oldugunu verir. Eger burada R nin I # L olacak sekilde bir 6z I
ideali var ise o zaman [ ayni zamanda R nin bir sol ideali olacagindan benzer
sekilde I = L celigkisi elde edilir. Boylece R nin tek 6z iki yanlh idealinin L
oldugu sonucuna ulagilir. Jimdi R nin tek 6z sag idealinin L oldugunu gorelim.
Bunun igin, ilk olarak L nin hem maksimal hem de minimal sag ideal oldugunu
gormeliyiz. Eger R nin L C T olacak sekilde bir 6z T sag ideali var ise,
R = L+d(L) oldugundan keyfi bir t € T i¢in t = a+d(b) olacak sekilde a,b € L
vardir ve buradan t —a = d(b) € T'Nd(L) olur. Burada eger T'Nd(L) # {0} ise
hipotezden d(L) kiimesi R nin baz tersinir elemanlarimi icerdiginden 7' = R

geligkisi elde edilir. Boylece T' N d(L) = {0} olmalidir ve dolayisiyla t =a € L
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olur. Buradan 7" C L kapsamasi elde edilir. Bu sonug, L nin bir maksimal sag
ideal oldugunu verir. Burada eger R nin (0) # M C L olacak sekilde bir M
sag ideali var ise {0} # d(M) C d(L) oldugundan, d(M) kiimesi R nin baz
tersinir elemanlarini igerir. Ayrica M+d(M), R nin bir sag ideali oldugundan ve
d(M) C M+d(M) oldugundan, R = M +d(M) olur. Béylece benzer islemlerle
M = L elde edilir. Bu ise L nin bir minimal sag ideal oldugunu verir. O zaman
L, R nin hem maksimal hem de minimal sag idealidir. Buradan hareketle, eger
R nin I # L olacak sgekilde bir I 6z sag ideali var ise, L C I + L oldugundan
ve L nin maksimalliginden ya L. = [ + L ya da R = I + L olmahdir. Eger
L =1+ LiseI C L olur ve L nin minimalliginden I = L c¢eligkisi elde edilir.
Eger R =1+ L ise L? = (0) olmasindan

L=RL=(I+L)L=ILCI

olur. L nin maksimalliginden I = L celigkisi elde edilir. Her iki durumda da
geligki elde edildiginden, R nin tek 6z sag ideali L dir. Sonug olarak L, R nin
tek 6z (sag, sol, iki yanlh) idealidir.

Simdi Yardima Ozellik 3.5 de oldugu gibi, d(b) # 0 olacak sekilde bir

b€ L igin b* € L* = (0) olmasindan
0 = d*(b*) = d*(b)b + 2d(b)* + bd*(b)

bulunur. Burada d?(b)b + bd?*(b) € L oldugundan, son bagmtidan 2d(b)* € L
elde edilir. Bu durumda 4d(b)* = (2d(b)?)* € L? = (0) olur. Ayrica 0 # d(b) €
d(L) oldugu i¢in, hipotezden d(b) eleman1 R de tersinir olmahdir. Béylece her

r € R igin
0 = 4d(b)*r

olur. Son bagntidan, d(b) nin bir tersinir eleman oldugu kullanilarak 4r = 0
elde edilir. Simdi 0 # = € R olsun. Eger 2z = 0 ise R bir 2-burulmali halka
olup, 2R = (0) elde edilir. Eger 2z # 0 ise 2(2z) = 42 = 0 olur ve bu durumda
da R bir 2-burulmali halka olup, 2R = (0) elde edilir. Sonug olarak 2R = (0)
dir. Burada D = {x € R : d(x) € L} kiimesinin bir birimli halka oldugu agiktir.
Ayrica d(L) # {0} dan d(y) # 0 olacak sekilde bir y € L vardir ve hipotezden
d(y) tersinir bir elemandir. Béylece L? = (0) oldugundan her 0 # x € D igin

d(zy) = d(z)y + zd(y) = zd(y)
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bulunur. Eger d(zy) = 0 ise d(y)~' € R oldugundan, son bagmtidan z = 0
geligkisine ulagilir. O zaman d(zy) # 0 olmahdir. Ayrica xy € L oldugundan
hipotezden d(zy) eleman: tersinir bir elemandir. Bu durumda son bagintidan
x = d(zy)d(y)~! olur. Bir halkada tersinir elemanlarinin ¢arpiminin da tersinir

oldugu gergegi, bize x in R de bir tersinir bir eleman oldugunu sdyler. Buradan
0=d(1) =d(zaz™) =d(z)z™" +ad(z™)

elde edilir. Son bagmtidan, d(z) € L oldugundan zd(x~ ') = —d(x)z™! € L ve
buradan x~(zd(z™1)) = d(z~!) € L oldugu sonucuna ulagilir. Bu durumda
D nin tamimindan x~! € D dir ve bdylece D nin bir boliimlii halka oldugu
sonucu elde edilir. Burada keyfi bir r € R alahm. R = L + d(L) oldugundan
d(r) = a + d(b) olacak sekilde a,b € L vardir ve d(r —b) = a € L olur. Bu
ise D nin tamimindan r — b € D oldugunu ve dolayisiyla r € D + L oldugunu
verir. Boylece R C D + L dir. Ayrica D + L C R oldugu agiktir. Sonug olarak
R = D+ L elde edilir. Simdi keyfi bir 0 # = € L alalim. Burada her ay,as € D

icin
a1x — asx = (a3 — ag)xr € Dx
dirveherae€ D, herr =y+2z€ R= D+ L igin L? = (0) oldugundan
r(az) = (y + 2)ax = (ya)x € Dz

olur. Son iki baginti, Dz in R nin bir sol ideali oldugunu verir. Ustelik z € L
oldugundan Dz C L dir ve 0 # = = lo € Dz oldugundan Dz # (0) dir.
Bu ise L nin minimalliginden L = Dz oldugunu verir. Béylece R = D + Dx
olur. Burada d(z) € R = D + Dz oldugundan d(z) = s + tx olacak sekilde
s,t € D vardir. Burada eger s = 0 ise d(x) = tx € Dx = L olur. Eger
d(x) # 0 ise hipotezden d(z) tersinir bir elemandir ve boylece L = R ¢eligkisine
ulagilir. Eger d(x) = 0 ise x # 0 oldugundan x tersinir bir eleman olmahdir
ve bu durumda da L = R geligkisine ulagilir. Her iki durumda da celigkiye
ulasildigindan, s # 0 olmalidir ve s™' € D olur.

Burada s !z € Dz olsun. O zaman Dx = Ds !z esitliginden,

R = D + Ds 'z olur. Ayrica D nin tammindan d(s™!') € L oldugundan,
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L?* = (0) ve d(z) = s + tz oldugu kullanilarak

d(s7'z) = d(s Yz +sd(z)
= s 'd(z)
= s (s+tr)
= 1+s 't
= 1+s 'tss'o
elde edilir. Burada stz =y € Dx = Lve s~ 'ts = a € D denilirse, R = D+Dy

ve d(y) = 1+ ay olur. O zaman burada R = D + Dx ve d(z) = 1 + ax olacak
sekilde bir a € D oldugu kabul edilebilir. Simdi sz € Dx = L olsun. L? = (0),

d(z) =1+ ax ve D nin tammimdan hareketle
0=d((sz)?) = d(swsz)

= szd(sz)+d(sx)sx
= sz(d(s)r + sd(z)) + (d(s)x + sd(x))sz
= szs(l+ax) + s(l + ax)sx
= sws+ srsar + s°x + sarsw
= sxs+s'w
= s(xs+ sx)

bulunur. Burada eger s # 0ise s~! € D oldugundan son bagintidan zs+sz = 0

dir. Ayrica 2R = (0) oldugundan zs = sz elde edilir ve bu egitlik s = 0 igin de

saglanir. O zaman her s € D i¢in s = sz dir. Buradan her a + bx € R i¢in
(a+bx)r = ax + br* = ax + 0 = xa + 0 = za + vbr = x(a + bx)

olup, x € Z(R) elde edilir. Ayrica her s € D igin d(s) € L, sz + xs = 0,
L? =(0), d(x) = 1+ az, z € Z(R) ve 2R = (0) sonuglar1 kullamlarak
0=d(sx 4+ zs) =d(sx) +d(zs) = d(s)x+ sd(x)+d(x)s+ xd(s)
= s(l+az)+ (14 ax)s
= saxr +axs
= (sa+as)z

bulunur. Burada 0 # sa + as € D ise x = 0 geligkisi elde edilir. O

zaman sa + as = 0 dir ve dolaysiyla sa = as olur. O zaman D nin
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merkezi Z olmak fizere, ¢ € Z dir. Yardimc Ozellik 3.10 un ispatinda
gosterildigi gibi, D[t] = {3 7 ,ait" : a; € D,0 < i < n,n € N} olmak
lizere ¢ : D[t] - R = D + Dz doniigiimi, her > " ja;t* € DI[t] i¢in
o> gait’) = ap + aiz olarak tammlansm. O zaman ¢ bir orten halka
homomorfizmasidir ve Ker¢ = (t?) dir. Burada Halkalarda I. Izomorfizma
Teoremi nden R = D[t]/(t?) olur. Boylece R = Dlz]/(z?) elde edilir. Bu
durumda Yardimer Ozellik 3.10 dan farkli olarak elde edilen tek durum
d(D) C L olmasma ragmen d(D) = {0} olmasi gerckmedigidir. Ashnda keyfi
bir s € D icin d(s) = s'& € Dz = L olacak sekilde bir s € D oldugundan,
s € D elemanini s € D elemanina resmeden ' : D — D déniisiimiiniin D nin

bir tiirevi oldugu kolayca goriiliir. Gergekten, her s1, so € D igin

!

5/11: + s;x =d(s1) +d(s9) =d(s1+ s2) = (51 + s2) @

olup, (s1 4+ 53)" = s, + s, bulunur. Ayrica z € Z(R) oldugundan

(5152) @ = d(s155) = d(s1)82 + 51d(53) = (51282 + 515,%) = (5152 + 5154)
olup, (s152) = 5159 + 515, elde edilir.
Simdiye kadar yapilanlar aslinda asagida Teorem 3.2 olarak verilen

teoremin ispatidir.

Teorem 3.2 Birimli bir R halkasi, bir L sol ideali i¢in ejer d(L) # {0} wve
her x € L i¢in ya d(z) = 0 ya da d(z) elemant R de tersinir olacak sekilde bir
0 # d tirevine sahip ise o zaman D bir bolimli halka olmak tizere ya R = D

ya R = Dy ya da R = Dlx]/(x?) dir. Ayrica son durumda 2R = (0) dur.

Burada R = D[z|/(z*) durumunda, L iizerinde d nin hipotezinin
mutlaka R iizerine taginmasi gerekliliginin olmadigini not edelim. Bu ¢alisma
R = Dy durumunda, d nin L fiizerindeki davraniginin mutlaka R {izerine
tagimmasi gerekmediginin yan sira, R nin her = € R i¢in ya 6(xz) = 0 ya da
d(x) tersinir olacak gekilde bir 0 # ¢ tiirevine sahip olamayabilecegini gésteren
agagidaki ornek vurgulanarak bitirilecektir.

Simdi D bir boliimli halka, D halkasinin merkezi Z olmak tizere o ¢ Z
olacak gekilde ve D nin bir elemaninin karesi olarak yazilamayacak sekilde bir

o € D elemani oldugunu varsayalim. O zaman o = a? olacak sekilde bir a € D
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yoktur. Burada d : Dy — Dy doniigiimiinii her € D, i¢in
t u
p r s 0 o r s r s 0 o ot—s ou—ro
t u 10 t u t u 10 r—u s—to
_ _ 0 o
seklinde tamimlayalim. Boylece d doniisiimii, D, iizerinde e D,
10
. . . . . T .
eleman ile belirli i¢ tiirev olur. Eger L = :r,t € D ) ise o zaman
t 0
- o 00 r 0 . .
L, D5 nin bir sol idealidir ve #+ € L igin(yani 0 # r ya da
0 0 t 0
0 # t igin)
r 0 ot —ro
d —
t 0 r —to
ot —ro o )
olur. Eger € D, tersinir degilse o zaman (ot,r) = k(—ro, —to)
r —to
ot T
olacak gekilde bir £ € D vardir ve dolayisiyla matrisi de tersinir
—ro —to

degildir. Buradan —ot?c + 7?0 = 0 elde edilir. Burada ¢ ¢ Z oldugundan

o # 0 dir ve dolayisiyla o' € D dir. Boylece ot? — r? = 0 bulunur. O zaman

ot T
€ D, matrisi de tersinir degildir. Burada
r ot
ot r T 0
r i Y 0

denklem sisteminin en az bir sifir olmayan ¢oziimii vardir ve son baginti

otr +ry=0=rx+ty

r
verir. Gergekten, burada € D, tersinir olmadigindan, eger » = 0 ise
r 1

t = 0 geligkisi, eger t = 0 ise r = 0 ¢eligkisi elde edilir. O zaman r # 0 ve
t # 0 dir. Ayrica (ot,r) = p(r,t) olacak sekilde bir p € D vardir. Eger p = 0
ise r = 0 =t celigkileri elde edilir. Boylece son bagintidan rx + ty = 0 olacak
sekilde z,y € D vardir, r # 0 ve t # 0 dir. Burada iki bilinmeyen ve bir denklem
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oldugundan, bir serbest degiskene bagl sonsuz sayida ¢oziim vardir. Dolayisiyla
son bagintiy1 saglayacak sekilde ikisi de aymi anda sifir olmayan z,y € D
bulunur. Burada x serbest degisken olmak {izere, genelligi kaybetmeksizin
r = —1 almabilir. Bu durumda son bagmtidan r = ty ve ot = ry = ty?

olur. Boylece son bagintidan ot = ry = ty? ve t—' € D oldugundan
o=ty’t ' = (tyt™')?

elde edilir. Ancak yukaridaki baginti ¢ € D elemaninin D nin bir elemanini

r 0
karesi  geklinde yazilamamasi ile celigir.  Boylece d
t 0
ot —ro o
= € Dy elemaninin tersinir oldugu sonucuna ulagilir. Sonug olarak
r —to

d nin L iizerindeki sifirdan farkli degerlerinin tersinir oldugu goriiliir.
Fakat bununla birlikte ¢ ¢ Z oldugundan, ca # ac ve dolayisiyla
a — o tao # 0 olacak sekilde bir a € D secilebilir. Buradan

y a 0 _ 0 0 4 00
0 o lac a—otac 0 0 0
olur. Fakat bu matrisin tersinir olmadigr agiktir. O zaman d nin L tizerindeki
davranigi D, {izerine taginamaz.

Burada D5 nin bir sol ideali L olmak tizere d(L) # {0} ve d(L) kiimesinin
sifirdan farkli elemanlar1 tersinir olacak gekilde Dy nin bir 0 # d tiirevi var
olmasi i¢in yeter bir kosulun D nin bazi elemanlarinin D nin bir elemanini
karesi geklinde yazilamamasi oldugu gosterildi. Teorem 3.1 de ise 2R # (0)
iken Dy nin her x € D, i¢in ya d(z) = 0 ya da d(z) tersinir olacak sekilde bir
0 # d tiirevine sahip olabilmesi igin gerek ve yeter bir sartin D nin merkezi
Z olmak tizere, Z nin bazi elemanlarinin D nin bir elemaninin karesi geklinde
yazilamamasi oldugu gosterildi.

Son olarak, yukaridaki tartigmada yer alan béliimlii halka yerine 6zel bir
boliimlii halka alalim. Burada C kompleks sayilar cismi ve F' ise C iizerinde x
degiskenli rasyonel fonksiyonlar cismi olsun. Katsayilar1 F' de olan y degigkenli
Laurent serilerinin halkas1 D yi ele alalim. Boylece D = {}">°_ , fi.(z)y™ :
fi(r) € F,—k < i} olur. Burada keyfi bir 7(x) € F igin r(2z) = yr(z)y™!
olsun; yani her r(z) € F i¢in o(r(x)) = r(2z) ile tamml olmak {izere

yr(x) = r(z)y yerine yr(x) = o(r(x))y olsun. Bu durumda o dontigiimiiniin,
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F' nin halka izomorfizmasi oldugu kolayca goriilebilir. O zaman D bir boliimlii
halkadir.
Simdi D nin merkezi Z olmak iizere, C = Z oldugunu goérelim. Ilk

olarak C C Z oldugu agktir. Tersine keyfi bir > *°_, g,(x)y™ € Z

[e.e]

igin, 307 gm(@)y" = y (o ki gm(@)y™) Yy = o ygm(@)y Ty
= . gm(22)y™ bulunur. Son bagmtidan her —k < ¢ icin g;(z) = g;(2z)

1

olmalidir. Ayrica z € D oldugundan yzy~' = 2z ve dolayisiyla yz = 2zy
dir. Boylece (Z;osz gm(x)ym) =30 gm(@)y" e =30 gm(x)y" Yz
= Dok Im (@)Y 20y = 3 g ()29 wy = 300 g ()29 Yy
= D G (@)2y" 2 2wy? = 3T g (€)%Y Py = 300 gm(2) 27y

bulunur. Ayrica Y °_ , gn(2)y™ € Z ve x € F oldugundan

( > gm(x)ym> r=ux ( > gm(l’)ym> = > gmlz)zy™

m=—k m=—k m=—k

dir. Son iki bagmtidan >~ g (z)zy™ = >, gm(x)2™2y™ elde edilir.
Bu ise her —k < i i¢in gi(z) = ¢;(2)2° oldugunu soyler ve buradan

(2" — 1)gi(x) = 0 bulunur. O zaman i # 0 iken g;(z) = 0 olmaldr

ve boylece > gn(x)y™ = go(x) = go(2z) olur. Burada go(z) = %

= 283 olacak sekilde p(z),q(z) € Clx] vardir ve g(x) # 0 dir. Ayrica
q(z) = @yo € D oldugundan ¢(z)~! € D dir. Bu durumda eger p(z) = 0

ise > gm(@)ay™ = go(x) = % = 0 € C elde edilir. Eger p(x) # 0

ise benzer gekilde p(x)™' € D olur ve go(z) = % =t 523 € Z oldugundan
(

2
x) = p(2z) oldugunu verir.

pl@) _ p(@), —1 _ yp@y ' _ p(2z) :
a0 =Yy T T T g olur Buisep
Buradan ‘;% = gi; = (ﬂ(;;)) oldugundan ¢(z) = ¢(2x) bulunur. O zaman

p(x),q(z) € C dir. Boylece >~ gm(2)zy™ = go(z) = % € C elde edilir.
Bu ise Z C C oldugunu verir. Sonug olarak Z = C dir.

Ayrica C nin her elemaninin, C nin bir elemaninin karesi geklinde
yazilabildigini gorelim: Keyfi bir z = a + b € C igin, eger b = 0 ve 0 < a
ise z = (ya)’ dir. Eger b = 0 ve a < 0 ise z = ( —ai)2 dir. Eger b # 0

2
ise z = a+bi = (( atvar +57 V’;QH’Q) + % ( —atvae +y VQ“QH’Q) z) dir. Bu durumda

Z = C C D oldugundan Z nin her elemani, D nin bir elemaninin karesi
seklinde yazilabilir. Boylece Teorem 3.1 den, D, nin 0 # d ve her € Dy igin
ya d(x) = 0 ya da d(z) tersinir olacak gekilde bir tiirevi yoktur.

Fakat x elemaninin D deki bir elemanin karesi seklinde yazilamadigini
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agiklayalim. Eger z = (3, fm(x)ym)2 olacak gekilde bir Y *°_ , f,.(z)y™ €
D var olsa ¢;(z) = Z;Jj_k () fizj(x) olmak tizere x = Y2, c,(x)y" olur.
Béylece ¢ # 0 iken ¢;(x) = 0 oldugu elde edilir. Buradan —k < j < —1 iken
fi(x) = 0 ve dolaywsiyla (fo(z))? = x bulunur. Burada fo(z) = % olacak
sekilde p(z) = Y0 @z’ € Clz] ve 0 # ¢(z) = Y1 bia' € Clz] vardur, 2%;2
= (fo(2))* = z ve ¢(x)*z = p(x)? dir. Bu durumda z; = Zj’:o aja;_j ve
r; = Z;:o bibi_; olmak fizere 32" ria™! = q(x)%z = p(x)? = 32", za' olur,
O zaman a3 = 0 ve dolayisiyla ag = 0 olmahdir. Ayrica b2 = aga; + ajag = 0
oldugundan by = 0 olmalidir. Bu sekilde devam edilirse, 0 = b1bg + boby
= agay + aja; + azag = a? oldugundan a; = 0 ve b3 = boby + b1by + by
= agag + asa; + ajas + agas = 0 oldugundan b; = 0 bulunur. Benzer iglemlerle
her 0 < i < n i¢in a; = 0 oldugu goriiliir. Béylece p(x) = 0 elde edilir. Bu ise

0 = fo(z) = x celigkisini verir. Sonug olarak z elemani D nin bir elemanimin

karesi geklinde yazilamaz ve © ¢ C = Z dir. Bu yiizden yukarida verilen
r

bilgiler 1s181nda, D, iizerinde :r,t € D ) sol idealinin sifirdan farkl
t 0

her elemaninin goriintiisii tersinir olacak sekilde bir 0 # d tiirevi vardir.

Son olarak Dy nin bir sol ideali L olmak {izere, Dy nin d(L) # {0} ve
d(x) # 0 olacak sekilde her x € L igin d(z) tersinir kogulunu saglayan bir
0 # d tiirevine sahip olabilmesi i¢in D iizerinde oldukca ilging bir gerek ve
yeter kosul verilebilir. Ornegin, Yardimeci Ozellik 3.6 da f = 0 alinarak ve bu
ozellikte bir i¢ tiirev olmasi i¢in gerek ve yeter bir kosulun her t € D igin
t? — ayta™! + aff # 0 olacak sekilde «, 3,7 € D bulunmasi oldugunu gorelim.

Burada f, D nin bir i¢ tiirevi oldugundan Yardimc Ozellik 3.7 den d,

D, nin bir i¢ tiirevi olur. Ozel olarak Yardimer Ozellik 3.8 in ispatinda oldugu

a b
gibi her € D, i¢in
c e
a [ b fla) = b8 — ac f(b)+ac+by—ae
¢ e J(©)+ Ba—eB—ve f(e)+ey— e+ Bb+ca
0 —«o a b a b 0 —«o
p =) \c e c el \B —v
—«
olur. Yani d, € Dy elemani ile belirli i¢ tiirevdir. Burada D,
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r
nin L = :r,t € D 3 sol idealinin sifirdan farkli her elemanini d

t 0
altindaki goriintiisiiniin tersinir olmasi i¢in gerek ve yeter bir kogul r # 0 ya da

r 0 —at  ra
t # 0 olacak sekilde her r,t € D i¢in d = € D,

t 0 Br—~t ta
matrisinin tersinir olmasidir; yani

—at*a —rafr +rayt £ 0

0 «
olmasidir. Ayrica e;; € L oldugundan d(ej;) = € D, matrisi

30

tersinirdir. O zaman af # 0 dir. Bu ise a1, 87! € D oldugunu verir. Son

bagmtinin her iki tarafi sagdan ve soldan o~! € D ile carpilarak
—t* —atrafrat + o traytat #0
elde edilir. Son bagintida 6zel olarak 0 # r = a € D alinirsa
—t2 —af+aytat #0

bulunur. Son baginti, r # 0 alindigindan her ¢ € D i¢in saglanmalidir. Béylece
Dy nin bir sol ideali L olmak ftizere, d(L) # {0} ve d(x) # 0 olacak sekilde
her z € L igin d(z) tersinir kosulunu saglayan, Yardimer Ozellik 3.6 da f = 0
olacak gekilde bir 0 # d i¢ tiirevine sahip olabilmesi igin gerek ve yeter bir

kosul her t € D i¢in
2 —ayta ™' +aB #0

olacak gekilde o, 5, € D olmasidir.
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4 TERSINIR DEGERLI (0, 7)-TUREVLER

Bu boliimde Motoshi Hongan ve Hiroaki Komatsu’ nun 1987 yilinda
yapmig olduklar1 “(o, 7)-Derivations With Invertible Values” adli galigma
incelenecektir.

Bu caligma boyunca R bir birimli halka, R nin tersinir elemanlarinin
grubu U ve R nin Jacobson radikali J olacaktir. Birimli bir R halkasi {izerinde
iki déniisiim o ve 7 olsun. Eger R iizerinde her z € R igin 6(z) = '’ ile tanimli
§ toplamsal déniisiimii, herhangi z,y € Ricin (zy)" = 2'o(y) +7(z)y esitligini
sagliyorsa § doniigiimiine R nin bir (o, 7)-tiirevi denir. (Bergen et al., |1983)
de, J. Bergen, I.N. Herstein ve C. Lanski eger bir R halkasinin her x € R i¢in
d(x) = 2" ile tamimh ve {0} # R' C U U {0} olacak sekilde bir tiirevi var ise o
zaman R nin ya bir D boliimlii halkasi, veya bir D boliimlii halkas: tizerindeki
2 x 2 tipindeki matrisler halkas1 Dy, veya charD = 2, D" = {0} ve D nin
merkezindeki baz1 @ € D i¢in t' = 1 4 at olacak sekilde bir D béliimlii halkas
igin D[t]/(¢*) kesir halkasi oldugunu ispatlamiglardir. (Bergen and Herstein)
1983)) de, J. Bergen ve I.N. Herstein R halkasinin birim otomorfizmadan farklh
bir otomorfizmasi o olmak iizere d yerine 1 — ¢ alarak, R nin ya bir D boliimlii
halkasi, ya bir D boliimlii halkas1 {izerinde 2 x 2 tipinde matrisler halkas1 Ds,
ya da D bir boliimlii halka olmak {izere D & D oldugunu ispatlamiglardir.
(Chang, [1985) de, J.-C. Chang d yerine R nin do = ¢ olacak sekilde bir o
otomorfizmasi icin (o, 1)-tiirevi olan, her z € R i¢in §(z) = = ile tammli § y1
alarak, R nin ya bir D boliimlii halkasi, veya bir D boéliimlii halkasi tizerindeki
2 x 2 tipindeki matrisler halkasi Dy, veya charD = 2, D" = {0} ve bazi a € D
icin t = 1+ at ile her s € D i¢in sa = o(a)s olacak sekilde bir D béliimlii
halkas: i¢in D[t; o]/(t*) halkasi oldugunu ispatlamiglardir (Burada D[t; o], ¢
degiskenli o ile belirli skew polinomlar halkasidir).

Eger 2,y € R ise R halkasmm birim otomorfizmas: 1 olmak iizere
d(zy) = d(z)y + zd(y) = d(z)1(y) + 1(z)d(y)
dir ve
(1=0)(zy) = zy — o(ay) = 2y — o(z)o(y) = ((1 — 0)(x))o(y) + 1(z)((1 — 0)(y))

dir. Son iki bagintidan d nin bir (1, 1)-tiirev oldugu ve 1 — o nin bir (o, 1)-tiirev

oldugu aciktir.
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Bu caligmada, yukarida bahsedilen bu ii¢ sonu¢ ayni anda asagidaki gibi

genellestirilecektir:

Teorem 4.1 R nin sifirdan farkl bir sag ideali T', bir halka otomorfizmasi o ve
bir érten dondisimi T olsun. Burada R nin her x € R i¢in 6(x) = & ile tanvml
bir (o, 7)-tirevi igin {0} # T C UU{0} kosulunun saglandigina varsayalm. O
zaman T dontsimi R nin bir halka otomorfizmasidir ve R halkasy (1) bir D
bolimli halkasidir, veya (2) D bir bolimli halka olmak tzere Do dir, veya (3)
D bir boliimlii halka olmak tizere R = D®D dir, veya (4) D = {x € R:x € J}
boliimlii halkas dizerinde {1,v} sag ve sol serbest bazl yerel halkadwr ve v* = 0
dir, her r € R igin rv = vo'7(r) dir, v' = 1 4 vb olacak sekilde bir b € D
vardir. Eger (4) durumunda b = 0 ise o zaman o(D) = 7(D) dir ve eger
o178 = 0o~ '7 ise o zaman o(D) = 7(D) dir, charD = 2 dir ve v elemam R

halkasinin merkezindedir.

Oncelikle Teorem 4.1 in ispat1 icin yapilan hazirliklarda, asagidaki

yardimc1 ozellikler belirtilecektir.

Yardimca1 Ozellik 4.1 § doniisimi R halkasinan bir (o, T)-tirevi olsun.

Burada R NU # 0 varsayalim. O zaman

(1) o ve T toplamsal déniisimlerdir.

(2) o man bir halka homomorfizmasi olmast igin gerek ve yeter bir kosul T

nwn bir halka homomorfizmasi olmasidar.

(3) 1" = 0 olmas i¢in gerek ve yeter bir kosul o(1) = 7(1) = 1 olmasdar.
Ozellikle, ejer o R nin bir drten halka homomorfizmas: ve T érten ise o

zaman T R nin bir halka homomorfizmasidir ve 1" = 0 dar.

Ispat (1) Hipotezden, z° € R N U olacak sekilde bir z € R vardir. Burada

her z,y € R igin (z + y)z = xz + yz ve § bir (o, 7)-tiirev oldugundan

0 = ((z+y)2) — (xz+yz)

/

= (x+ y)la(z) +7(z + y)z/ — xla(z) — T(ZE)Z, — yla(z) +7(y)z

’

= (tle+y) —7() = 7(y)2

olur. Burada 2" € U oldugundan, son bagmtinin her iki tarafi sagdan 2z° € U

elemaninin tersi ile ¢arpilarak 7(x +vy) = 7(z) + 7(y) elde edilir. Benzer gekilde
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z(x+y) = zx + zy esitliginden yararlanarak o(z +vy) = o(z) +o(y) elde edilir.
Buradan o ve 7 birer toplamsal doniigtimlerdir.
(2) Herhangi z,y,z € R igin (xy)z = x(yz) ve § bir (o,7)-tiirev

oldugundan

’

0 = ((zy)2) — (z(y2))
= (2y)o(2) + 1(ay)z —2'o(yz) — m(z)(yz)
- / L / /

oy)+7(x)y)o(z) +7(zy)z —xo(yz) —m(x)(y o(z) +7(y)z)

= wo(y)o(z) + @)y o(z) + r(xy)e —2'o(yz) — T(x)y o(2) = 7(x)7(y)z

!/

I

= 2 (o(y)a(z) —a(yz)) + (7(xy) — 7(2)7(y))2

/

olur. Burada eger o bir halka homomorfizmasi ise son bagmtidan (7(xy) —
7(2)7(y))z = 0 elde edilir. Boylece hipotezden, 6zel olarak 2 € U olacak
sekilde bir z € R icin 7(2y) — 7(x)7(y) = 0 bulunur. Bu ise Yardimei Ozellik
4.1 (1) ile beraber, 7 nmin bir halka homomorfizmas1 oldugunu verir. Tersine,
eger 7 bir halka homomorfizmasi ise benzer sekilde son bagintidan ¢ nin bir
halka homomorfizmasi oldugu goriiliir.

(3) Agikca goriildiigii gibi
0=0=01-1)"=1-1"=(11) -1"=1c1)+r(1)1 -1

dir. Burada eger o(1) = 7(1) = 1 ise 0 zaman son bagimntidan 1" = 0 elde edilir.
Tersine, 1" = 0 oldugunu varsayalim ve z* € U olacak sekilde bir z € R secelim.

O zaman

/

/

O:O:(z—z):z/—z = — (12)
= Te(s) - 7(1)

’

= 2 —7(1)z
= (1-7(1)%

olur. Son bagmtinin her iki tarafi sagdan z' elemaniin tersi ile carpilarak
7(1) = 1 elde edilir. Benzer gekilde 0 = 0 = 2z — (z1) esitliginden
yararlanilarak (1) = 1 elde edilir.

Ozel olarak o nin bir érten halka homomorfizmasi oldugunu ve 7 nin érten

oldugunu kabul edelim. Bu durumda Yardimc1 Ozellik 4.1 (2) den 7 déniisiimii
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bir halka homomorfizmasidir. Burada her b € R i¢in o(a) = b olacak sekilde

bir a € R vardir. Boylece
b=o(a) = o(al) = o(a)o(1) = bo(1)
dir ve ayrica
b=o(a) = o(la) = o(1)o(a) = o(1)b

olur. Bu durumda son iki bagmtidan o(1) = 1 olmalidir. Benzer gekilde

7(1) = 1 oldugu goriiliir. Boylece Yardimer Ozellik 4.1 (3) den 1" = 0 dr.
Yardimec1 Ozellik 4.2 Teorem 4.1 kabulleri altinda, asagidakiler saglanur:
(1) Kerd CUU{0} dur.

(2) R ninT de kapsanan sifirdan farkl bir sag ideali I olsun. Eger (1) # R
ise o zaman toplamsal grup olarak R = I & 7(I) dwr ve I, R nin bir

manimal sag idealidir.

Ispat (1) Keyfi bir 0 # 2 € Kerd alahm ve t € U olacak sekilde bir t € T

secelim. Kabulden 7', R nin bir sag ideali oldugundan tx € T' dir. O zaman
(t?[f)/ = t,O'(ZL') + T(t)x/ = t,g(x) c T CUU {0}

olur. Burada eger (tr) =t o(x) = 0 ise son bagmtmin her iki tarafi soldan #
elemaninin tersi ile garpilarak o(z) = 0 bulunur ve o, R nin bir otomorfizmasi
oldugundan z = 0 celigkisi elde edilir. Béylece son bagmtidan (tz) =t o(z) €
U olmalidir. Buradan o(z) = (t)~'(tz) bulunur. Bir halkada tersinir iki
elemaninin ¢arpiminin da tersinir oldugu gergegi, bizi o(z) elemaninin tersinir
oldugu sonucuna ulastirir. Ustelik o, R nin bir otomorfizmasi oldugundan o ()
in tersinir olmasi, z in tersinir oldugunu verir. Boylece x € U olur. Buradan
hareketle Kerd C U U {0} dur.

(2) Hipotezden ¢, R nin bir otomorfizmasi oldugundan, Yardimer Ozellik
4.1 (2) den 7, R nin bir halka homomorfizmasidir. Ayni zamanda kabulden 7
ortendir. Burada I C T ve 7(I) # R olacak sekilde R nin bir (0) # I sag ideali

var olsun. Her x,y € [ i¢in

7(x) = 7(y) = 7(z —y) e 7(I)
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olur. Ayrica 7 nin Ortenliginden her » € R i¢in » = 7(z) olacak sekilde bir

z € R vardir ve boylece
T(x)r = 7(2)7(2) = 7(22) € (1)

olur. Son iki bagintidan 7(7), R nin bir sag idealidir. Ek olarak her a € I ve her
r € Rigind o(r) = (ar) —7(a)r" € (IR) +7(I)R dir. Buise I'c(R) C (IR) +
7(I)R' oldugunu verir ve boylece R = o(R) oldugundan I'R = I'0(R) C
(IR) +7(I)R' C I' + 7(I) bulunur. Benzer sekilde 7(I)R C 7(I) C I' + 7(I)
dir. Béylece 7 ve 0 nin toplamsal oldugu gerceginden, I' 4+ 7(I) nin R nin bir
sag ideali oldugu sonucuna ulagilir. Burada eger 7(I) NI # {0} ise I' CT' C
U U {0} oldugundan 7(I), R nin baz tersinir elemanlarini igerir ve dolayisiyla
7(I) = R celigkisi elde edilir. Béylece 7(I) NI = {0} olmaldir. Buradan
I' @ 7(I) kiimesi R nin bir sag idealidir. Bunun yaninda, Yardimci Ozellik 4.2
(1) den Kerdo C U U {0} olduguna dikkat ¢ekereck I N Kerd = {0} oldugu
goriiliir. Gergekten tersi oldugu durumda; yani I N Kerd # {0} ise I sag
ideali R nin baz1 tersinir elemanlarini igereceginden I = R olur. Ayrica 7 6rten
oldugundan 7(I) = 7(R) = R geliskisi elde edilir. Boylece I N Kerd = {0}
olmalidir.

Simdi R = I' ®7(I) oldugunu gorelim. Burada eger I' = {0} ise o zaman
0+#x¢clicgina =0olur ve buise 0 # 2 € I'N Kerd = {0} celigkisini verir.
O zaman I' # {0} olmalidir ve I' C 7" C U U {0} oldugundan I' N U # () olur.
Béylece I’ kiimesi R nin baz tersinir elemanlarii igerir. Ayrica I' C I' @ 7([)
her zaman saglandigindan, I' @ 7(I) sag ideali R nin bazi tersinir elemanlarini
icerir. Béylece R = I' @ 7(I) sonucuna ulagilir.

Simdi [ da kapsanacak sekilde R nin sifirdan farkli bir sag ideali K
olsun. Yukarida yapilan iglemlerle R = K @& 7(K) oldugu goriilebilir. Burada
bir 2 € I alalm. O zaman 2’ +7(2) € [ @ 7(I) = R = K @©7(K) oldugundan
¢ +7(x) = a +7(b) olacak sekilde a,b € K vardir ve béylece (z —a) = 7(b—
z) € I'N7(I) = {0} olur. Bu durumda x —a € I N Kerd = {0} olur. Buradan
x = a € K elde edilir. Boylece I C K bulunur. Ayrica K C [ kabuliinden
I = K sonucuna ulagilir. Bu ise I nin bir minimal sag ideal oldugunu verir.

Simdi Teorem 4.1 in ispatin1 tamamlamaya haziriz.

Teorem 4.1 in Ispati Yardime Ozellik 4.1 (2) den 7 bir érten halka

homomorfizmasidir; yani 7(R) = R dir. Burada eger R nin kendisi bir boliimlii
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halka ise Kerr, R nin bir ideali oldugundan ve 7(R) = R oldugundan
Kert # R oldugu agiktir. Buradan Ker7 = (0) sonucuna ulagilir; yani 7
bire-birdir. Bdéylece 7 bir halka otomorfizmasidir. Bu durumda ispatlanacak
bir ey yoktur, Teorem 4.1 (1) elde edilir.

Bundan bdéyle R nin bir boliimlii halka olmadigini varsayalim. Burada
eger KertNT # (0) ise o zaman KertNT C T ve R# (0) = 7(KertNT)

bagntilar1 géz oniine alinarak, Yardimer Ozellik 4.2 (2) den ve hipotezden
R=(KertNT) &r(KertNT)=(KertNT) CT CUU{0}

olur. Ayrica U U {0} C R oldugu agiktir. Bu ise R = U U {0} oldugunu;
yani R nin bir boliimlii halka olmas: geligkisini verir. Boylece Ker T NT = (0)
olmalidir. Buradan 7 : 7" — 7(7") € R doniislimiiniin bir halka izomorfizmasi
oldugu sonucuna ulagilir. Burada eger 7(7') # Rise I = T i¢in (0) #1 C T
ve 7(I) # R oldugundan Yardimci Ozellik 4.2 (2) geregi R = I' @ 7(I) olur
ve I, R nin bir minimal sag idealidir. Eger 7(T) = Rise 7 : T — 7(T) = R
doniigimii bir halka izomorfizmasi olur. Burada eger R nin bir 6z sag ideali
yok ise bir 0 # a € R igin 0 # a = al € aR olur. Fakat (0) # aR, R nin
bir sag ideali oldugundan kabul geregi bu aR = R olmasim gerektirir. Ayrica
1 € R = aR oldugundan 1 = ab olacak gekilde bir 0 # b € R vardir. Benzer
sekilde bR = R oldugundan bc = 1 olacak sekilde bir ¢ € R vardir ve bdylece
a=al = a(bc) = (ab)c = 1c = colur. O zaman her 0 # a € Riginab= 1= ba
olacak sekilde bir b € R var olur. Bu sonug, R nin bir boliimlii halka olmamasi
ile geligir. Boylece R nin bir 6z L sag ideali vardir ve 771(L) = {x € T : 7(z) €
L} C T kiimesi R nin bir sag idealidir. Burada 7 : 7" — R bir izomorfizma
oldugundan her z € L i¢in 77'(z) € T dir. Ek olarak = = 7(77%(z)) € L
oldugundan 77 '(x) € 77!(L) olur. Burada eger 7='(L) = (0) ise her z € L
icin 77!(x) = 0 olur ve dolaysiyla z = 7(77'(x)) = 7(0) = 0 bulunur. Bu
ise L = (0) celigkisini verir. O zaman (0) # 77'(L) C T olmahdir. Burada
7(r7Y(L)) = L # R oldugundan I = 77'(L) denilirse, Yardime1 Ozellik 4.2 (2)
den R = I' @ 7(I) olur. Ayrica I, R nin bir minimal sag idealidir. Tiim bu
bilgilerin 151g1nda,

R=1 @(I) (1)
olacak gekilde 7" de kapsanan R nin bir minimal [ sag idealinin oldugu

gosterilmis olur. Simdi o(/) ve 7(I) min her ikisinin de R nin minimal sag
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idealleri olduklarini gorelim. Burada (0) # M C 7([) olacak sekilde R nin bir
M sag ideali var olsun. O zaman I C T oldugundan Ker NI C Ker TNT = (0)
dir ve dolaywsiyla 7 : I — 7(I) doniigtimii bir izomorfizmadir. Bu durumda
T (M)NI={zxel:7(x) € M} C I kiimesi R nin bir sag idealidir ve I nin
minimalliginden ya 7=1(M) NI = (0) veya 7~ (M) NI = I olmahdir. Burada
eger 7Y (M) N T = (0) ise keyfi bir x € M C 7(I) igin x = 7(y) olacak sekilde
bir y € I vardir ve béylece y = 77(z) € 7=Y(M) NI = (0) olur. Buradan
x = 7(y) = 7(0) = 0 bulunur. Béylece her x € M i¢in x = 0 dir, bu ise bizi
M = (0) geligkisine ulagtirir. O zaman 7=*(M) NI = I olmahdir. Bu durumda
ise I C 771(M) dir ve dolayisiyla 7(I) C 7(77}(M)) = M elde edilir. Ayrica
M C 7(I) kabuliinden M = 7(I) olur. Boylece 7(I) min R nin bir minimal sag
ideali oldugu sonucuna ulagilir. Benzer sekilde o(/) nin da R nin bir minimal
sag ideali oldugu goriilebilir.

[k olarak I? # (0) durumunu ele alahm. Bu durumda ab # 0 olacak
sekilde a, b € I vardir. Ayrica al kiimesi R nin bir sag idealidir. Burada al C I
ve I bir minimal sag ideal oldugundan ya al = (0) ya da al = I olmalidir.
Eger al = (0) ise b € I oldugundan ab = 0 ¢eligkisi elde edilir. O zaman af = [
olmahdir. Burada a € I = al oldugundan ae = a olacak sekilde bir 0 £ e €
vardir. Son bagmntinin her iki tarafi sagdan e € I ile carpilarak ae? = ae ve
béylece a(e? — e) = 0 bulunur. Burada (e* —¢) € r(a) ={z €l :ax =0} C T
dir ve r(a) kiimesi R nin bir sag idealidir. Boylece I nin minimalliginden ya
r(a) = (0) ya da r(a) = I olmahdir. Eger r(a) = I ise ab = 0 geligkisi
elde edilir. O zaman r(a) = (0) olmahdir ve buradan ¢ — ¢? € r(a) = (0)
oldugundan e = e? elde edilir. Benzer sekilde el kiimesi R nin bir sag idealidir
ve el C I dir. Ayrica 0 # e = €* € el oldugundan el # (0) dir ve béylece [
nin minimalliginden el = I sonucuna ulagilir. Bu ise I = el olacak sekilde bir

e? = e € I idempotentinin secilebilecegini verir. Buradan hareketle
I'=(el) Ceéo(l)+7(e)] Cea(l)+7(I)

olur. Son bagmtidan ve (1) den R = I' + 7(I) C e'o(l) + (1) + 7(1)
=€ o(l)+7(I) dir. Ayrica €' o(I) +7(I) C R oldugu aciktir. Boylece

!

R=co(l)+ ()

olur. Burada e'o(I), R nin bir sag idealidir. Ustelik ¢'o(I) N 7(I) C 7(I)



99

oldugundan ve 7(I) nin minimalliginden ya ¢ o(I)N7(I) = (0) dir yada €'o(I)N
7(I) = 7(I) dir. Eger €' o(I)N7(I) = 7(I) ise 0 zaman 7(I) C € o(I) dir ve son
bagmtidan R = ¢'o(I) + 7(I) = ¢'o(I) bulunur. Burada R # {0} oldugundan
e #0drvee € I CT C UUJ{0} oldugundan ¢ € U olur. Boylece
R = ()'R = (¢)"}(e)o(I) = o(I) olur ve o doniigiimii bir otomorfizma
oldugundan R = o7 Y(R) = o7 *(c(I)) = I elde edilir. Ancak burada 7 nm
ortenliginden 7(I) = 7(R) = R celiskisine ulasilir. Béylece € (1) N 7(1) = (0)

olmalidir. Bu durumda son bagintidan
R=eco(l)®7(I)

olur. Burada eger N C e'o(I) olacak sekilde R nin bir N sag ideali var ise
()N C o(I) olur ve o(I) mn minimalliginden ya (¢')"'N = (0) dir ya
da (e)'N = o(I) dir. Eger (¢)"'!N = (0) ise N = (0) elde edilir, eger
(€)'N = o(I)ise N = ¢ o(I) elde edilir. Bu ise bize ¢'o'(1) nin bir minimal sag
ideal oldugunu verir. Béylece 7(/) min bir minimal sag ideal olugu ile beraber
son baginti, R nin bir yar1 basit halka oldugu sonucunu verir.

Bundan sonra 7(7) nin R nin bir maksimal sag ideali oldugunu gérmeye
galigalim. Bunun i¢in R nin 7(I) C K olacak sekilde bir sag ideali K olsun.
Her 0 # z € K icin (1) den = a’ +7(b) olacak sekilde a,b € I vardir. Burada
eger a' = 0 ise 0 zaman x = 7(b) € 7(I) olur. Bu ise K C 7(I) oldugunu verir.

Boylece K = 7(I) elde edilir. Eger a’ # 0 ise hipotezden @' € U bulunur ve

I

a =x—70b)eUNK

elde edilir. Son baginti R nin baz elemanlarimin K da icerildigini gosterir.
Buradan K = R elde edilir. Boylece 7(I) bir maksimal sag idealdir. Burada
R nin tek yanli(sag) ideal kafesi icerisindeki (0) € 7(I) C R zincirini ele
alirsak, 7(1)/(0) = 7(I) bir minimal sag idealdir ve R = ¢€'o(I) @ 7(I)
oldugundan R/7(I) = € o(I) bir minimal sag idealdir. Bu sonug ise Jordan-
Holder Teoremi nden R nin sag R-modiil olarak 2 (kompozisyon) uzunluklu
olmasini gerektirir; yani ¢(Rg) = 2 dir. O zaman R nin her 6z sag ideali hem
maksimal hem de minimal sag idealdir. Burada 7 érten oldugundan Kert # R
dir. O zaman ya Kert = (0) dir ya da Ker7 bir 6z sag idealdir. Eger
Ker 1 bir 06z sag ideal ise yukaridaki aciklamalardan hem maksimal hem de

minimal sag idealdir. Burada bir x ¢ Ker 7 i¢in x + Ker1 € R/Ker T olsun.
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Bu durumda K = {y + zr : y € Kert, r € R} kiimesinin R nin bir sag
ideali oldugu ve Kert C K oldugu agiktir. Fakat = ¢ Ker 7 oldugundan ve
Ker 7 nin maksimalliginden K = R olmahdir. O zaman 1 = y; + xr; olacak
sekilde y; € Kert ve r; € R vardir. Buradan 1 — xr; = y; € Ker 7 olur; yani
1+ Kert=uari+Kert = (x+Ker7)(r + Ker 7) bulunur. Buradan R/Ker
halkasinin bir béliimli halka oldugu sonucuna ulagilir. Ayrica Halkalarda 1.
[zomorfizma Teoremi nden R/Kerr = 7(R) = R oldugundan, R nin bir
boliimlii halka olmasi geligkisi elde edilir. O zaman Ker7 = (0) olmalidir
ve boylece 7 nin bir halka otomorfizmasi oldugu sonucuna ulagilir.

Simdi 7? # (0) durumunda sirasiyla I nin bir iki yanl ideal oldugu ve
olmadigr durumlari ele alalim.

Oncelikle I nm bir iki yanh ideal oldugunu varsayalim. Bu durumda
o(I) ve 7(I) kiimeleri R nin iki yanh idealleri olurlar. Ayrica (0) # e o(I) C
o(I) oldugundan ve ¢(I) nin minimalliginden e¢'o(I) = o(I) dir. Boylece

R=¢o(I)®7(I) oldugundan
R=o(I)® (1)

elde edilir. Simdi r(e) = {z € I : ex = 0} C I kiimesini diigiinelim. Burada
r(e), R nin bir sag ideali oldugundan ve / nin minimalliginden ya r(e) = (0)
dir ya da r(e) = I dir. Eger r(e) = I ise o zaman [ = el = (0) geligkisi elde
edilir. O zaman r(e) = (0) olmalidir. Buradan her a € I igin e(a — ea) = 0
oldugundan (a — ea) € r(e) = (0) olur ve bu ise a = ea olmasim gerektirir.
Ustelik [(1) = {z € I : oI = (0)} C I kiimesi R nin bir sag idealidir ve I nin
minimal olusu ya (/) = (0) olmasini ya da [(I) = I olmasim gerektirir. Eger
[(I)=1ise I =I(I)I = (0) geliskisi elde edilir. Buradan [(I) = (0) olmahdr.

Béylece her a € I igin (a — ae)e = 0 oldugundan
(0) = (a —ae)el = (a —ae)l

olur. Bu durumda (a — ae) € (1) = (0) dir ve dolaysiyla a = ae elde edilir.
Sonug olarak her a € I i¢in ae = a = ea olur ve bu ise bize e € I elemaninin /
nin birim elemani oldugunu verir. Ayrica her 0 # a € [ i¢in al C I, R nin bir
sag ideali oldugundan ve I nin minimalliginden ya al = (0) dir ya da al = I
dir. Eger al = (0) ise 0 # a = ae € al = (0) ¢eligkisi elde edilir. Buradan

al = I olmaldir ve dolayisiyla e € I = al oldugundan ab = e olacak sekilde
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bir 0 # b € I var olur. Benzer bir muhakemeyle bI = I oldugunu sdyleyebiliriz.

Buradan be = e olacak sekilde bir ¢ € I vardir ve
a = ae = a(bc) = (ab)c =ec=rc

bulunur. Yukarida elde edilenlerden her 0 # a € [ igin ab = e = ba olacak
sekilde bir b € I nmin var oldugu sonucuna ulagilir. Bu ise I nin bir boliimlii
halka oldugunu soyler. Ustelik yukarida verilen bilgiler 11iginda, 7 : I — 7(1)
ve 0 : I — o(l) doniiglimleri birer izomorfizmadir. Buradan I = o([) ve
I = 7(I) birer boliimlii halka olur. ve Béylece D bir boliimlii halka olmak
tizere o(I) = I = 7(I) = D denilirse R = D @ D elde edilir. Bu ise istenilen
sonugctur.

Simdi [ nin bir iki yanl ideal olmadigini varsayalim. Bu durumda R nin
bir basit halka oldugunu gorelim. Burada R7(I), R nin bir sag idealidir ve
7(I) C R7(I) olur. Boylece 7(I) nmn maksimalligi, ya R7([/) = 7(I) olmasim
veya R7(I) = R olmasim gerektirir. Eger R7(I) = 7(I) ise 7([) kiimesi R nin
bir iki yanh ideali olur. Buradan her z € I ve r i¢in 7(rz) = 7(r)r(x) € 7(I)
olmalidir. Béylece 7 bir otomorfizma oldugundan rz € I bulunur. Bu ise I nin

bir iki yanh ideal olmamasi kabulii ile ¢eligir. O zaman
R = Rr(I)

olmalidir. Burada R nin S gibi bir iki yanl idealinin oldugunu kabul edelim.
Bu durumda 7(S) kiimesi de R nin bir iki yanli ideali olur. Ayrica R bir birimli

halka oldugundan ve son bagintidan
7(S) = R7(S) = Rr(I)7(S) = RT(IS)

bulunur. Fakat ayni zamanda .S C [ olmasi ve I nin minimalligi ya I.S = (0)
olmasini veya IS = I olmasm gerektirir. Eger 1.S = (0) ise son bagintidan
7(S) = R7r(1S) = (0) dir ve 7 bir otomorfizma oldugundan S = (0) elde edilir.
Eger 1S = I ise son iki bagintidan

7(S) = R7r(IS) = R7(I) = R =1(R)

olur. Boylece 7 bir otomorfizma oldugundan S = R olur. Buradan R nin 6z

ideali olmadig1 ve dolayisiyla R bir basit halka oldugu gercegine ulagilir. Ustelik
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¢(Rg) = 2 oldugundan ve Teorem 2.5 den, D bir béliimlii halka olmak tizere
R = D5 elde edilir.

Boylece biitiin bu elde edilenlerden, eger I? # (0) ise 7 déniigiimiiniin bir
halka otomorfizmasi oldugu ve D bir boliimlii halka olmak iizere ya R = D& D
ya da R = D, oldugu sonucuna ulagilir.

Simdi 72 = (0) durumunu ele alahm. Her a,b € I icin a'o(b) = (ab)’ —
7(a)b oldugundan

I'o(I)C (I? +7(DI =7(I)I
olur. Béylece (1) den ve R bir birimli halka oldugundan
o(I) C Ro(I) = (I @ 7(I)o(I) C I'o(I)+7(I)o(I) C (I + 7o) C (1)

elde edilir. Ayrica 7(I) bir minimal sag ideal oldugundan o(I) = 7(I) oldugu
sonucuna ulagilir. Burada I nin maksimalligini gormek i¢cin R nin I C K
kosulunu saglayan bir 6z sag ideali K nin oldugunu kabul edelim. Herhangi bir

k € K igin (1) den o(k) = 2" + o(y) olacak sekilde x,y € I vardir ve

/7

2 =ok—y) el No(K)

olur. Burada eger I' N o(K) # {0} ise I C T° C U U {0} oldugundan
0(K), R nin baz tersinir elemanlarim igerir ve buradan o(K) = R olur.
Fakat bu durumda ¢ nin bir halka otomorfizmas: olmas1 K = ¢ }(R) = R
celigkisini vereceginden I' N o(K) = {0} olmasi gerektigi sonucuna ulagilir.
Baéylece son bagmtidan 2° = o(k — y) = 0 bulunur. Burada ¢ doniigiimii bir
halka otomorfizmasi oldugundan k& = y € I olur. Bu durumda K C I dur.
Bu ise I = K oldugunu ve dolayisiyla I nin bir maksimal sag ideal oldugunu
verir. Ustelik R nin Jacobson radikali J olmak iizere, her nil sag-sol-iki yanl
ideal J de kapsandigindan I C J olur ve dolayisiyla I nin maksimalliginden
J = I bulunur. Bu durumda J bir maksimal sag idealdir. Ayrica J, R nin
tiim maksimal sag ideallerinin kesisimi oldugundan, R nin tek maksimal sag
ideali J dir. Béylece R bir yerel halkadir. Benzer sekilde o(I)? = (0) = 7(I)?
oldugundan o(I) = 7(I) C I dir ve I min minimalliginden o(I) =7() =1 =J
elde edilir. O zaman yerel halkanin tammindan, I = {z € R : x ¢ U} olur.
Ayrica burada I, R nin tek sag idealidir. Gercekten, R nin bir bagka 6z sag
ideali M olsun. O zaman her m € M igin m ¢ U dur ve dolayisiyla M C [
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olur. Ek olarak I nin minimalliginden I = M elde edilir. Bu ise R nin tek 6z
sag idealinin I oldugunu verir; yani R bir sag Artin halkasidir. Ayrica Ker T
nin, R nin bir sag ideali olusu burada ii¢ durumu kargimiza cikarir; bunlar
Kert = (0) veya Kert = I veya Kert = R oldugu durumlardir. Eger
Kert = R ise 7 nin ortenliginden R = 7(R) = 7(Kert) = {0} geligkisi elde
edilir. Eger Kert = [ ise [ = 7(I) = 7(Ker7) = (0) geligkisi elde edilir. O
zaman Kert = (0) olmalidir. Bu ise 7 déniigtimiiniin bir halka otomorfizmasi

oldugunu verir. Boylece (1) den

R=TaI (2)
elde edilir. Son bagmtidan 1 = v 4+ w olacak sekilde v,w € I vardir ve
dolaywisiyla v — 1 = —w € I olacak sekilde bir v € T secilebilir. Boylece

her r € R igin vrv € I? = (0) oldugundan, o(I) = 7(I) = [ ve v’ = 1 —w

bagintilar1 kullanilarak

! /

0= (vrv) = wvo(rv)+7(v)(rv)

= o(rv) —wo(rv) + 7(vr) — 7(vr)w

= o(rv) +7(vr)

elde edilir. Ozel olarak son bagntida r = 1 alinarak o(v) = —7(v) bulunur.

Béylece her r € R i¢in o(v)7(r) = —7(v)7(r) = —7(vr) = o(rv) oldugundan

rv = vol7(r) esitligine ulagilir. Sonug olarak

o(v) = —7(v) ve her r € R i¢in rv = vo ' 7(r) (3)

olur. Simdi D = {z € R: 2 € I} C R olsun. Burada 0 € D oldugundan
D # () dir. Ayrica her z,y € D i¢in

(w—y) =2’ —y el
dir ve

(zy) =a'a(y) +r(x)y €1
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olur. Son iki baginti, D nin R nin bir alt halkasi oldugunu verir. Ayrica
Yardimer Ozellik 4.1 (3) den 1" = 0 € I dir ve bu ise 1 € D oldugu, dolayisiyla
D nin R nin bir birimli alt halkasi oldugu gercegine ulastirir. Burada eger
IN Kerd # {0} ise Yardimer Ozellik 4.2 (1) den Kerd C U U {0} oldugundan
I ideali R nin bazi tersinir elemanlarini igerir ve buradan I = R c¢eligkisi elde
edilir. Buradan I N Kerd = {0} olmalidir. Simdi D nin sifirdan farkh keyfi bir
elemani @ olsun. Bu durumda D nin tamimimdan ¢’ € I dir. Burada eger a € T
ise 0 zaman o' € I' C T C U U {0} olur; yani yaa' =0 dir ya da ¢’ € U dur.
Eger a' = 0ise 0 # a € I N Kerd = {0} celigkisi elde edilir. Eger a' € U ise o
zaman a € I oldugundan I ideali R nin baz tersinir elemanlarini icerir ve bu
ise I = R ¢eligkisini verir. O zaman a ¢ [ = {x € R: x ¢ U} olmaldir. Bu ise
a nin R de bir tersinir eleman oldugu anlamina gelir. Burada Yardimc Ozellik

4.1 (3) den

bulunur. Son bagmtidan ¢’ € I oldugundan
(@) = 1@ YHao@) el

olur ve D nin tanmmmindan a=! € D dir. Béylece D, R nin bir boliimlii alt
halkasidir. Simdi R = D + I oldugunu gorelim. Burada (2) den bir r € R igin
r' = 2’ + y olacak sekilde z,y € I vardir. Bu bagmti diizenlenerek (r — z)’
= y € [ olduguna ulagilir. Bu durumda D nin tanimindan » — 2 € D dir ve
dolayisiyla r € D + I olur. Buradan R C D + I dir. Diger taraftan D+ 1 C R
oldugu aciktir. Boylece R = D + I elde edilir. Ustelik I, R nin bir 6z ideali
olmasindan R nin tersinir elemanlarini igermedigi gergegi, IND = {0} olmasini
gerektirir. Buradan

R=Dol (4)

elde edilir. Yukarida v — 1 € I olacak sekilde v € I secilisinden, eger v = 0
ise —1 = v —1 € I oldugundan I = R celiskisi ulagilir. Bu durumda v # 0
olmalidir. Ayrica vR, R nin bir sag idealidir. Ustelik vR C I ve 0 # v = vl €
v R kosullarini da saglar. Boylece I nin minimalligi, / = v R olmasinmi gerektirir.

Ayrica I? = (0) oldugundan ve son bagntidan

I'=vR=v(D&I)=0vD
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olur. Bu ise (4) den R = D @ vD oldugunu verir. Ustelik R bir sag D-vektor
uzayidir; D ve vD R nin sag alt D-vektor uzaylaridir. Burada her » € R
= D @ vD i¢in r = la + vb olacak sekilde a,b € D vardir; yani {1,v} kiimesi
R yi gerer. Ayrica eger x,y € D i¢in lx +vy = 0 ise x = —vy € D NovD
= {0} olacagindan, x = 0 = y sonucuna ulagilir. Bu ise {1,v} kiimesinin D-
bagimsiz oldugunu verir. Sonug olarak {1,v} kiimesi R nin bir sag D-bazidir
ve v’ —1 € I = vD oldugundan v = 1 + vb olacak sekilde bir b € D vardur.
Simdi {1,v} kiimesinin R nin bir sol D-bazi oldugunu gorelim. Burada (3)
den Rv C vR oldugu agiktir. Ayrica bir vr € vR icin o ve 7 birer halka
otomorfizmasi oldugundan r = o=1(r;) ve r; = 7(ry) olacak sekilde 71,79 € R

vardir. Bu durumda (3) den
vr =vo (r) =vo '7(ry) = rv € R

bulunur. O zaman vR C Rv dir. Boylece vR = Rv olur. Daha 6nce gosterildigi

gibi I = vR, I* = (0) oldugundan ve (4) den
I=vR=Rv=(D&I)v=Dv

dir. Burada tekrar (4) kullanilarak R = D @& Dwv olur. O zaman R bir sol D-
vektor uzayidir; D ve Dv R nin sol alt D-vektor uzaylaridir ve buradan benzer
sekilde {1, v} kiimesi R nin sol D-bazidir.

Simdi b = 0 oldugunu varsayalim. O zaman v — 1 = vb = 0 dir ve

buradan v" = 1 elde edilir. Kabulden I? = (0) oldugundan, her a € D icin

/ ’ ’ /

(av) =ao()+71(a)v =71(a)v =7(a)

bulunur. Son bagmti, I' = (Dv)" = 7(D) oldugunu verir. Benzer sekilde her

a € D igin

dir ve buradan, I' = (vD)" = ¢(D) bagmtisma ulasilr. Boylece o(D) = 7(D)
elde edilir. Son olarak 0 ~!76 = do~!7 oldugunu varsayalim. Bu durumda D nin

tamimindan her a € D igin @ € I dir ve boylece I = o(I) = 7(I) oldugundan

So'r(a)=0"'10(a) e r(I) =0 () =0 o(I) =1
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bulunur. Son bagmtidan ¢~'r(a) € D dir ve buradan 7(a) € o(D) olur. Bu
ise 7(D) C o(D) oldugunu verir. Ayrica kabulden § = o~ '767 10 oldugu

kolaylikla goriiliir. Buradan her a € D igin, D nin tanimi geregi
o 'rét o(a) = 0(a) €1

olur. Ayrica I = o(I) = 7(I) gergegi kullanilarak, 67 'o(a) € I ve tekrar D
nin tanimindan 7o (a) € D bulunur. Bu durumda o(a) € 7(D) dir. Buradan
(D) C 7(D) elde edilir. Boylece o(D) = 7(D) esitligine ulagilir. Burada (3)
den 7(vb) = 7(v)7(b) = —0(v)7(b) dir ve bu esitligin o~ altindaki goriintiisiine

bakilarak o~ (vb) = —vo~'7(b) bagmntisina ulagilir. Ayrica v’ —1 = vb oldugu

ve (3) kullanilarak;

l—vor(b)=1+07(wh) = 14+0 700 —1)
= 140 75(w) — o t7(1)
= o '70(v)
= do ' (v)
= 60 Y(=o(v))

= —v

= —1—wb

bulunur. Buradan 2 + v(b — o7 17(b)) = 0 elde edilir. Béylece o(D) = 7(D

)
ve {1,v} kiimesi R nin sag ve sol D-baz1 oldugundan 2 = 0 ve o(b ) 7(b)
olur. Bu durumda charD = 2 elde edilir. Ustelik I = o(I) = 7(I), I? = (0)
bagntilarindan ve D nin tammindan her a € D icin (av) = a'o(v) + 7(a)’

= 7(a)v" olur. Boylece (3) den 7(a)v’ = (av) = (vo'7(a)) = v'1(a) +

7(v)(c7'7(a)) = v'7(a) dir. Ayrica 7 doniisiimii bir halka otomorfizmasi
oldugundan ve (4) den her r € R i¢in r = 7(r1) ve 1, = = + y olacak sekilde

r € R, x € D vey € I vardir. Boylece v" — 1 = vb esitligi kullanilarak

’ ’

T(r)yv =7(x + y)v/ = T(Q?)U, + 7(y)v

’

= v7(z)+7(y)(1+ vb)

I

= vr(x) +7(y)
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dir ve

/ / ’

V() =vr(x+y) = vr(x)+0uT(y)

= UIT([E) + (14 vb)7(y)

’

= v7(z)+7(y)

. o ’ . . o
olur. Son iki baginti, v € R elemaninin merkezi bir eleman oldugu sonucunu

verir.

Uyar1 4.1 Teorem 4.1 (4) durumunda, ejer o(D) = 7(D) ise o zaman

a 0

R = € Dy:a,be D} dir. Eger, ayrica vD kiimesi R nin
b o7 '7(a)

sifirdan farkly merkezi bir elemanine iceriyorsa (Ozellikle, o~ lr dondisiimii R

a 0
nin bir i¢ otomorfizmasi ise) R = €Dy:a,be D, dir
b a

Biitiinliigii korumak i¢in (Hongan and Komatsu|, [1987) de yer alan ve
ispatsiz verilen Uyar1 4.1 i ispatlayalim.
Ispat Eger o(D) = 7(D) ise o~ '7(D) = D olur. Teorem 4.1 (4) de
R = D®vD oldugundan, f : R — Dy doéniigimiinii her a+vb € R i¢in f(a+wvb)

a 0
= olarak tanimlayalim. O zaman her a + vb, c + ve € R i¢in

b o '7(a)
f((a+vb)+ (c+wve) = f(la+c)+wv b+e))
a+c
(b—i—e o tr(a+c)
( c 0
b o 7(a e o 71(c)
= f(a+ vb) +fc+ve)

olur. Ayrica I? = (0) oldugundan ve (3) den

f((a+vb)(c+wve)) = flac+v(o  7(a)e+ be))
ac 0
o l7(a)e +bc o '7(ac)

= fla+vb)f(c+ ve)

bulunur. Son iki bagint1 f nin bir halka homomorfizmasi oldugunu verir. Simdi

00
herhangi bir r = x + vy € Ker f alalim. Buradan = f(r) = f(z
00
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x
vy) = dir. Boylece x = 0 = y olur ve buradan r = 0 oldugu;
y o l7(x)
yani Ker f = (0) oldugu goriiliir. Bu ise f nin bir halka monomorfizmasi
a 0
oldugunu verir. Boylece R = Im f = €Dy:a,be D
b o7 7(a)

bulunur.

Simdi vD nin, R nin sifirdan farkli merkezi bir vd elemanini icerdigini
kabul edelim. O zaman d # 0 oldugu agktir. Burada ilk olarak {1,wvd}
kiimesinin R nin bir sag D-baz1 oldugunu gorelim. Bunun i¢in a + vdb = 0
olacak gekilde a, b € D olsun. Bu durumda {1, v} kiimesi R nin bir sag ve sol D-
bazi oldugundan a = 0 = db olmalidir ve boylece a = 0 = b elde edilir. O zaman
{1,vd} kiimesi D-bagimsizdir. Ayrica her c,e € D igin ¢ + ve = ¢ + vdd 'e
olur. Bu ise {1, vd} kiimesinin R yi gerdigini verir. Sonug olarak {1, vd} kiimesi

R nin bir D-bazidir. Burada g : R — Dy doniigiimiinii her a + vdb € R igin

a 0
f(a+vdb) = olarak tanimlayalim. Bu durumda her a+vdb, c+vde € R

b a
icin
g((a+vdb) + (c+vde)) = g((a+c)+vd+e))
a—+c
b+e a+ec
B 0
b a e ¢
= g(a+vdb) + g(c+ vde)
dir ve

g((a+ vdb)(c+vde)) = g(ac+ avde + vdbe)

= g(ac+ vd(ae + b))

(=l
IS

(ae +bc ac

= g(a+vdb)g(c+ vde)

olur. Son iki bagintidan, g bir halka homomorfizmasidir. Simdi bir r = x +
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00 z 0
vdy € Ker g olsun. O zaman = g(r) = g(x + vdy) = olur.

00 Yy T
Buradan x = 0 = y bulunur. Son esitlik » = 0 oldugunu verir ve Ker g = (0)

bulunur. Bu ise g nin bir halka monomorfizmasi oldugu sonucuna ulagtirir.

a 0
Boylece R = Img = € Dy:a,be D p olur.
b a

Ozel olarak o=, R nin bir i¢ otomorfizmasi ise her r € R icin o~'7(r)
= uru~! olacak gekilde bir v € U vardir. Bu durumda ilk olarak Dv = UvU{0}
oldugunu gorelim. Burada D, R nin bir boliimlii alt halkas1 oldugundan Dv C
Uv U {0} oldugu agiktir. Tersine, bir 2 € U olsun. O zaman U C R = D & vD
oldugundan x = a + vb olacak sekilde a,b € D vardir ve bdylece I? = (0)
oldugundan zv = av + vbv = av € Dv olur. Bu ise Uv U {0} C Dv oldugunu
verir. Sonug olarak Dv = Uv U {0} dir. Benzer sekilde vD = vU U {0} oldugu
goriilebilir. Simdi her r € R igin 0~ '7(r) = uru~! oldugundan, o ~'7(r)u = ur
bulunur. Burada esitligin her iki tarafi soldan v € R ile garpilarak ve (3) den

yararlanarak

rou = vo 'T(r)u = vur
elde edilir. Bu ise vu € Z(R) oldugunu verir ve v # 0 oldugundan vu # 0 dir.
Ayrica vU U {0} = vD oldugundan, vD kiimesi R nin sifirdan farkli merkezi

bir vu elemamim igerir. Boylece yukarida yapilan iglemler tekrarlanarak,

a 0
R=Img= € Dy :a,be D ) bulunur.
b a
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5 TERSINIR DEGERLI GENELLESTIRILMIS
TUREVLER

Bu boliimde Hiroaki Komatsu ve Atsushi Nakajima’ nin 2004 yilinda
yapmig olduklar: “Generalized Derivations With Invertible Values” adli caligma
incelenecektir.

Bu caligma boyunca R, tersinir elemanlarinin grubu U olan bir birimli
halka olacaktir.

Genellegtirilmis tiirev kavrami, 1991 de Bresar (Bresar, 1991)) ve 1999 da
Nakajima (Nakajima, [1999)) tarafindan birlegmeli halkalarda, 2000 de Leger
ve Luks (Leger and Luks, 2000) tarafindan birlesmeli olmayan halkalarda
tanimlanmigtir. Bu ¢aligmada bu {i¢ tanim aslinda birbirine denk olacaktir.

Eger bir toplamsal f : R — R doniistimii her z,y € R i¢in

flzy) = f@)y +zf(y) —zf(1)y

esitligini sagliyorsa f doniigiimiine bir genellestirilmis tiirev (Nakajima
anlaminda) denir. Eger R nin bir genellegtirilmiy tiirevi f olmak {izere
{0} # f(R) C U U {0} kosulu saglaniyorsa, f ye tersinir denir (Komatsu
and Nakajimay, 2004)).

Eger f doniigimi R nin bir genellestirilmis tiirevi ise, f(1) € R elemam

ile soldan ¢arpim doniigtimi f(1); olmak tizere

d=f—f(1)

doniisiimii R nin bir tiirevidir. Béylece son iki bagintidan her z,y € R icin

f(zy) = f(2)y + zd(y)

olur.
Bergen, 1983 te tersinir tiirevli bir halkanin yapisini aragtirmigtir (Bergen
et al., [1983). Onlarin sonuglar1 Hongan ve Komatsu tarafindan 1987 de (o, 7)-
tiirevlere genigletilmigtir (Hongan and Komatsul |1987)). Bu ¢aligmada (Bergen
et al., [1983)) deki sonuglar, tersinir genellegtirilmis tiirevlere genisletilecektir.
Eger X kiimesi R nin bogtan farkll bir alt kiimesi ise rg(X) ile X
kiimesinin sag sifirlayan1 temsil edilecektir. Bir S halkasi igin, Z(S) ile S

halkasinin merkezi temsil edilecektir.
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5.1 ANA SONUCLAR

Asagidaki iki teorem, bu calismanin ana sonuglarii olusturmaktadir.

Teorem 5.1.1 Bir R halkasi tzerinde bir tersinir genellestirilmis tirev f
olsun. Eger Ker f, R min sifirdan farkly bir sag idealini i¢cermiyorsa o zaman

asaqidakilerden biri saglanr:
(1) R bir bolimli halkadr.

(2) R bir bélimli halka tzerindeki tim 2 x 2 tipinde matrislerin halkasina

izomorftur.

(3) R nin karakteristigi 2 dir, D = {a €R: f(a) = f(l)a} kiimesi R nin
bir bolimli alt halkasidir, R = D @ tD, t> = 0 ve her a,b € D igin
fla+tb) = (ca +b) + t(a + ¢)(ca + b) olacak sekilde 0 # t € Z(R),
a € Z(D) vardar.

Teorem 5.1.2 Bir R halkasy tizerinde bir tersinir genellestirimlis tirev f
olsun. Eger Ker f, R nin sifirdan farkly bir sag idealini iceriyorsa, o zaman
R sifirdan farkly Jacobson radikali ne sahiptir ve R nin Jacobson radikali
J olmak iizere J*> = (0) dwr, D = {a € R: f(a) = f(l)a} kiimesi R
nin bir bolumli alt halkasidir, R = D & J dir ve her a € D, x € J i¢in
fla+x) = (a4 w)a olacak sekilde 0 # « € Z(D) ve w € J vardar.

Teorem 5.1.1 (1) agiktwr. Bir bolimli halkanin sifirdan farkli her
genellestirilmis tiirevi tersinirdir. Teorem 5.1.1 in diger durumlari ¢aligmanin

devaminda ele alinacaktir.

Uyar1 5.1.1 (1) Teorem 5.1.1 (3) deki ile aym notasyonu kullanarak
D' = {a/ €ER:fld)= alf(l)} olsun. O zaman D" = {a+t(ac—ca) ta € D}
dir, D' kiimesi R nin bir bolimli alt halkasidir, R = D" @& D't dir ve her
a b €D icin f(a' +bt)=(ac+b)+(ac+b)(a+c)t dir

(2) Teorem 5.1.2 deki ile aym notasyonu kullanarak D' = {a, € R:
fla) = a/f(l)} olsun. O zaman D" = {a + (wa — aw)a™ 1 a € D} dir, D'
kiimesi R nin bir bolimli alt halkasider, R = D" @ J dir ve hera € D, x € J
i¢in f(a' + ) =d (a+w) dir.
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Biittinligi korumak i¢in (Komatsu and Nakajimal 2004) da ispatsiz
verilen Uyar1 5.1.1 i ispatlayalim.
Ispat (1) ilk olarak D = {a +tlac —ca) : a € D} oldugunu gorelim. Her
d €D CR=D®&tD icin a = a+ tb olacak gekilde a,b € D vardir. Ayrica
f(1) = f(14+10) = (c140)+t(a+c)(c1+0) = c+t(a+c)c olur. Son bagmtidan

/
ve D tanimindan

(ca+b)+t(a+c)(ca+b) = fla+1tb)
= f(d)
= d'f(1)

= (a+tb)(c+tla+c)e)

olur. Son bagmtinin her iki tarafi soldan 0 # t € Z(R) ile carpilarak ve t? = (

oldugundan yararlanilarak
tb = t(ac — ca)

elde edilir. Elde edilen bagmti kullanilarak a* = a+tb = a+t(ac— ca) bulunur.
Buise D' C {a +t(lac—ca) 1 a € D} olmasini gerektirir. Tersine, bir a € D

icin @' = a + t(ac — ca) olsun. Bu elemann f altindaki goriintiisii

fla) = fla+t(ac— ca))
= (ca+ ac— ca)+t(a+ c)(ca+ ac — ca)
= ac+t(a+c)ac

= ac+taac+ tecac
olur. Ayrica o € Z(D) ve char R = 2 oldugundan

af(l) = (a+tlac—ca))(c+t(a+c)c)
= ac+ at(a+ c)c+ t(ac — ca)c
= ac+ atac+ atc® + tac® — tcac

= ac+ taac + tecac

dir. Son iki bagmnt1 karsilagtirilarak f(a') = a f(1) oldugu goriiliir. Bu ise
a = a+t(ac—ca) € D' oldugunu verir. Boylece {a+t(ac—ca) ta € D} cD
olur. Sonug olarak D" = {a +tlac—ca):a € D} dir.
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Simdi D" kiimesinin R nin bir boliimlii alt halkasi oldugunu gérelim.

Burada D’ tamimindan 0,1 € D’ oldugu aciktir. Her a,b € D icin
(a +tlac —ca)) — (b+t(bc — cb)) = (a—0b)+t(ac —ca—bc+ cb)
= (a—0b)+t((a—b)c—cla—D))

dir ve

(a +t(ac—ca))(b+t(bc — cb)) = ab+ at(bc — cb) + t(ac — ca)b
= ab+ t(abc — acb + acb — cab)
= ab+t((ab)c — c(ab))
dir. Son iki bagmmtidan D', R nin bir birimli alt halkasi olur. Ustelik her
0+#a € D icina = a+ t(ac — ca) olacak sekilde bir 0 # a € D vardr.
Buradan (¢') ' =a ' +t(a"'c—ca™') € D' dirved'(a')"' =1 = (a')"'a olur.
Boylece yukarida elde edilen verilerin 1181 altinda D’ nin, R nin bir boliimlii
alt halkasi oldugunu sonucuna ulagilir.
Simdi R = D' @ D't oldugunu gorelim. Her a € D igin, 0 # t € Z(R) ve
t? = 0 oldugundan

at = (a + t(ac — ca))t € D't

olur. Buradan Dt C D't bagmtisi saglanmus olur. Ayrica her r € R = D & tD

i¢in 7 = a + tb olacak sekilde a,b € D elemanlarinin varhgindan,

r = a+tb
= a+t(ac— ca) — tlac — ca) + (b +t(bc — cb))t € D'+ D't
bulunur. Buise R € D'+ D't olmasimi gerektirir. Diger taraftan, D'+DtCR
oldugu aciktir. Buradan R = D' + D't elde edilir. Simdi D' N D't = {0}
oldugunu gérelim. Bunun i¢in bir «' € D' N D't alalm. Bu durumda ¢ € D’
dir ve @' € D't dir. Burada D’ tamimindan a = a+t(ac— ca) olacak sekilde bir

a € D vardir ve @' € D't oldugundan a’ = (b + t(bc — cb))t = bt olacak sekilde

bir b € D vardir. Bu iki esitlikten yararlanilarak a + t(ac — ca) = a’ = bt ve
a=tb—ac+ca) € DN Dt = {0}

bulunur. Son bagntidan @ = 0 dir. Bu ise ' = a + t(ac — ca) = 0 olmasmi
gerektirir. Boylece D' N D't = {0} sonucuna ulagihr. Bu ise R = D' @ D't

oldugunu verir.
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Son olarak, her a’,b" € D" icin f(a' +b't) = (a'c+b )+ (a'c+b)(a+c)t
oldugunu gérelim. Her ',b € D" i¢in, D’ tammmindan ¢ = a + t(ac — ca)
ve b = b+ t(bc — cb) olacak sekilde a,b € D vardir. Ayrica f(a') = a f(1),
f(l)=cH+tla+c), 0#t e Z(R) ve a € Z(D) olduklar: goz 6niine alinarak
fld)y=df(1) =d(c+tla+c)) =dc+atla+c)e=dc+adtac+ a'tc
=dc+dcat+acPt =adc+adc(a+ c)t bulunur. Burada b nin tanimmdan
ve 12 = 0 oldugundan b't = (b + t(bc — cb))t = bt = tb olur ve f(b't) = f(tb)
= fO+1t) = (0+0b +tla+c)cd+0b = b+ tla + c)b elde
edilir. Ayrica Teorem 5.1.1 (3) de charR = 2 oldugundan b + b'(a + c)t
= b+t(bc—cb)+b(a+c)t = b+tbc—tcb+bat+bet = b—tcb+bat = b+tchb+bat
= b+ tab + tcb = b+ t(a + ¢)b olur. Boylece son ii¢ bagint1 ve f nin

toplamsalligindan hareketle;

fld +bt) = de+dela+)t+b +b(a+o)t

= (a,c + b,) + (a,c + b,)(a + o)t

elde edilir.

(2) 1k olarak D' = {a + (wa — aw)a™ 1 a € D} oldugunu gorelim. Her
a €D CR=D&Jicind = a+x olacak sekilde a € D, z € J vardir. Burada
f nin tammindan f(1) = f(1+0) = (o +w)1 = a +w olur. Ayni1 zamanda D’
tammmindan f(a') = a f(1) oldugundan, ayrica J? = (0) oldugundan hareketle
aa +wa = (a+w)a = fla+x) = fla) = df(l) = (a+ 2)(a+ w)
= aataw+ra+rw = aa+aw+za bulunur. Ustelik 0 # o« € Z(D) oldugundan
son bagmti, r = (wa — aw)a~! oldugunu verir. Tiim bu elde edilen verilerden
d =a+r=a+ (wa—aw)at olur. Buise D' C {a—i— (wa —aw)a™ 1 a € D}
olmasini gerektirir. Tersine, herhangi bir a € D icin ¢ = a + (wa — aw)a™?

olsun. Bu durumda f nin tammmindan f(a') = f(a+ (wa —aw)a™') = (o +w)a

olur. Diger taraftan J? = (0) ve 0 # o € Z(D) bagintilarindan

af(l) = (a+ (wa—aw)a ") (a+w)
= aa+ aw + wa — aw
= (a+wa

bagntisina ulagilir. Son iki bagmt1 f(a') = ' f(1) olmasimi gerektirir. Bu ise

1

D" tammindan a + (wa — aw)a™ = a' € D’ oldugunu verir. Buradan {a +
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(wa —aw)a™ 1 a € D} C D' olur. Béylece D' = {a+ (wa —aw)a™ 1 a € D}
elde edilir.
Simdi D" kiimesinin R nin bir boliimlii alt halkasi oldugunu gorelim.

Burada 0,1 € D' oldugu, D" tamimindan aciktir. Her a,b € D icin
(a+ (wa —aw)a™) — (b+ (wb — bw)a™) = (a — b) + (w(a —b) — (a — b)w)a™*
dir ve 0 # «a € Z(D) oldugundan

(a+ (wa —aw)a ) (b+ (Wb —bw)a™) = ab+ a(wb—bw)a ™ + (wa — aw)a b
= ab+ (awb — abw + wab — awb)a™

= ab+ (w(ab) — (ab)w)a™

dir. Son iki bagintidan D’ kiimesi R nin bir birimli alt halkasidir. Ustelik her
0#ad € D igind = a+ (wa — aw)a™" olacak sekilde bir 0 # a € D
vardir. Buradan (a')™! = a™' + (wa™! —a"'w)a"t € D' dir ve a'(a)7! =1
= (a')~'a olur. Béylece yukarida elde edilen verilerin 15181 altinda D" nin, R
nin bir béliimli alt halkasi oldugu sonucuna ulagilir.

Simdi R = D’ @ J oldugunu gorelim. Her r e R=D @ J icinr =a+z

olacak sekilde a € D, x € J vardir. Burada
r=a+z=a+ (wa—aw)a — (wa—aw)at+zx €D +J

dir. Buradan R C D’ + J olur. Diger taraftan D' + J C R oldugu acktir.
Béylece R = D' 4 J elde edilir. Simdi D' N.J = {0} oldugunu gorelim. Bunun
icin bir ¢ € D' N J alalm. Bu durumda ¢ € D’ dir ve @' € J dir. Burada
D" tammindan o = a + (wa — aw)a~! olacak sekilde bir a € D vardir. Ayrica
a = a+ (wa—aw)a~ = b olacak sekilde bir b € .J vardir. Bu durumda w € .J

oldugundan, bu iki bagintidan yararlanilarak
a=b—(wa—aw)a™' € DN J = {0}

bulunur. Son bagmtidan a = 0 dir. Bu ise ' = a + (wa — aw)a~" = 0 olmasim
gerektirir. Béylece D'N.J = {0} sonucuna ulagilir. Buise R = D' @ J oldugunu
Verir.

Son olarak her a' € D, x € J igin f(a +) = a' (a+w) oldugunu gorelim.
Burada f nin tanimindan f(1) = f(1+0) = (¢ +w)l = a+w ve her y € J
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icin f(y) = f(04+y) = (a +w)0 = 0 oldugundan f(J) = {0} dir. Ayrica D’
tammindan f(a') = a’ f(1) dir. Tiim bu bilgilerden yararlanilarak

/ ’

fld +a)=fld)=d f(1)=d(a+w)

elde edilir.
Simdi Teorem 5.1.1 ve Teorem 5.1.2 nin ispatlamak i¢in bazi yardimci

ozelliklere agagida yer verilecektir.

Yardimer Ozellik 5.1.3 Bir R halkasvman bir genellestirilmis tirevi f ve bir
sag ideali I olsun. O zaman I + f(I), R nin bir sag idealidir. Eger f tersinir
ise ve I # R ise o zaman I N f(I) = {0} dor.

Ispat Hipotezden f bir genellestirilmis tiirev oldugundan herhangi bir z € T
ver € Rigin f(zr) = f(z)r + zd(r) olur ve d = f — f(1); olmak {izere

flx)r = f(xr) —zd(r) € f(I)+1
elde edilir. Bu ise her a,b € I ve her r € R i¢in
(a+ f(b))r=ar+ f(b)re f(I)+1

oldugunu verir. Ayrica 0 € [+ f(I) ve her z,y € I+ f(I) iginz —y € I+ f(I)
oldugu agiktir. Boylece I + f(I), R nin bir sag ideali olur. Burada f tersinir
ise ve f(I) CUU{0} dir ve I # Rise I N(UU{0}) = {0} olmalidir. Boylece
I'n f(I)={0} elde edilir.

Yardimer Ozellik 5.1.4 Bir R halkasiman bir tersinir genellestirilmis tiirevi
f wve kendisinden farkl bir sol ideali I olsun. Burada d = f — f(1); alalim. O

zaman d(I) C I olmast i¢in gerek ve yeter bir kosul f(I) = {0} olmasidur.

Ispat Hipotezden, her her z € I i¢in f(z) = f(lz) = f()x + 1d(z)
oldugundan f(z) — d(z) = f(1)x € I elde edilir. Bu durumda d(I) C I
nin, f(I) C [ olduguna denk oldugu agikca goriiliir. Ayrica hipotezden
f(I) € UU{0} oldugundan I # R ise f(I) C I olmasi, f(I) = {0} olmasina
denktir.

Yardimer Ozellik 5.1.5 Birimli bir R halkasinin bir tersinir genellestirilmis

tirevi f ve bir sag ideali I olsun. Burada d = f — f(1); alalim.
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(1) Eger f(I) ={0} ise o zaman d(R) C rg(I) dur.

(2) Eger f(I) # {0} ise o zaman ters gorinti kimesi d~*(rg(I)), U U {0}

da kapsanir ve R nin bir bolimlii alt halkasidr.
(3) Kerd, UU{0} da kapsanur ve R nin bir bolimli alt halkasidor.

Ispat (1) Oncelikle f(I) = {0} oldugunu kabul edelim. O zaman herhangi

x €l ver € Rigin
0= f(zr) = f(z)r 4+ zd(r) = zd(r)

bulunur. Buradan d(r) € rg(I) = {x € R : Iz = (0)} olur. Boylece d(R) C
rr(I) elde edilir.

(2) Burada f(I) # {0} olsun. Ters goriintii kiimesi tanimindan,
d Y rg(l)) = {xr € R : d(x) € rg(I)} = {x € R : Id(z) = (0)} dir ve
boylece 0,1 € d~(rg(l)) elde edilir. Her z,y € d~'(rg(I)) ve z € I igin

2d(z — y) = (d(x) — d(y)) = d(x) = 2d(y) = 0—0 =0
olur. Son bagmtidan x —y € d~*(rg([)) dir. Ayrica
zd(zy) = (2d(x))y + (22)d(y) = 0y +0 =0

oldugundan zy € d~'(rg(I)) elde edilir. Tiim bulunan verilerin 15181 altinda
d~(rg(I)) mn, R nin bir birimli alt halkas1 oldugu gériiliir. Simdi d~*(rg (1))
nin sifirdan farkli her elemaninin tersinir oldugunu gorelim. Hipotezde f
tersinir genellestirilmis tiirev oldugundan, {0} # f(I) C UU{0} dir ve buradan
f(x) € U olacak sekilde bir x € I vardir. Simdi 0 # a € d~*(rg([)) olsun. O

zamarll

f(xa) = f(z)a+xd(a) = f(x)a

oldugu goriliir. Burada f(z) € U oldugundan f(x)a # 0 oldugu aciktir.
O zaman son bagmtidan f(zxa) = f(x)a # 0 olmahdir. Bu ise f(za) € U

oldugunu verir. Buradan

a=f(z)"" f(za)



78

bulunur. Bir halkada iki tersinir elemanin ¢arpiminin da tersinir oldugu gergegi,
bize a nin bir tersinir eleman oldugunu verir. Béylece d~'(rg(I)) C U U {0}

sonucuna ulagilir. Ustelik

oldugundan

dir. Burada a € U oldugundan
d(a™) = —a 'd(a)a™

bulunur. Béylece a € d~'(rg(I)) oldugundan

olur. Bu ise a™' € d7'(rg(I)) oldugu anlamima gelir. Buradan d'(rz(I)), R
nin bir boliimli alt halkasidir.

(3) Hipotezden f tersinir genellegtirilmis tiirev  oldugundan,
{0} # f(R) C U U {0} dir. Buradan hareketle, Yardimer Ozellik 5.1.5 (2)
de I = R almirsa d~'(rg(R)) C UU{0} elde edilir. 11k olarak Kerd C UU{0}
oldugunu goérelim. Her € Kerd igin d(z) = 0 dir. Dolayisiyla Rd(x) = (0)
olur. Béylece d(z) € rr(R) elde edilir. Bu ise z € d~!(rg(R)) oldugunu verir.
Buradan Kerd C d~!(rg(R)) C UU{0} elde edilir. Ustelik her 0 # a € Kerd

icin
0= d(1) = d(aa™") = d(a)a™ + ad(a™) = ad(a™)

olur ve burada a € Kerd € UU{0} oldugundan d(a™!) = 0 elde edilir. Boylece
a~! € Kerd olur. Bu ise Kerd nin R nin bir boliimlii alt halkasi oldugunu
verir.

Teorem 5.1.1 in Ispati Burada R nin bir béliimli halka olmadigini
varsayalim ve d = f — f(1); alalim. Boliimlii halka olmayan bir birimli R
halkasinin [ gibi bir 6z sag ideali vardir. Gergekten; eger R nin bir 6z sag
ideali yok ise o zaman her 0 # a € R i¢in aR, R nin bir sag ideali oldugundan
ve 0 # a = al € aR oldugundan aR # (0) dir. Buradan aR = R elde edilir ve
1 € R = aR oldugundan 1 = ab olacak sekilde bir 0 # b € R var olur. Ayni
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diigiince ile bR = R oldugu soylenebilir. Bu ise 1 = bc olacak gekilde bir ¢ € R

elemaninin varligin verir. Her iki bagintiy1 kargilagtirarak
a=al =a(bc) = (ab)c=1lc=c

sonucuna ulagilir. Bu ise R nin bir béliimlii halka olmamast ile gelisir. O halde
R nin 6z sag ideali vardir. Bu ideale I diyelim.

O zaman, yukaridan hareketle Yardimer Ozellik 5.1.3 den I® f(I) kiimesi
R nin bir sag idealidir. Hipotezden Ker f, R nin sifirdan farkl bir sag idealini
icermediginden f(I) # {0} dir. O zaman {0} # f(/) € U U {0} dir. Bu
durumda f(I), R nin baz tersinir elemanlarim igerir ve f(I) C I & f(I)

oldugundan
R=1I® f(I)

olur.

Simdi ¢(Rg) = 2 oldugunu gorelim. Burada I sag idealini kapsayan R nin
bir 6z sag ideali I' olsun. O zaman, yukarida verilen bilgilerden R = I' @ f(I')
olur. Bu durumda, her x € I' C R = I & f(I) i¢in # = a + f(b) olacak sekilde

a,b € I vardir ve buradan

z—a=f(byel nfI)=/{0}

olur. Son bagmtidan = a € I dir ve bu ise I' C I oldugunu verir. Ayrica
I C I kabuliinden, I = I elde edilir. Boylece I nin bir maksimal sag ideal
oldugu sonucuna ulagilir. Benzer islemler, I da kapsanan R nin bir I” 6z sag
ideali i¢in yapilirsa, I nin de bir maksimal sag ideal oldugu goriiliir. Buradan
I =1I" elde edilir. Bu ise I nin bir minimal sag ideal oldugunu verir. Buradan
R nin sag R-modiil olarak (kompozisyon) uzunlugunun 2 oldugu elde edilir;
yvani ¢(Rg) = 2 dir.

Simdi R nin bir merkezi e # 0,1 idempotenti oldugunu varsayalim. O
zaman her r € R igin f(er) = f(eer) = f(e)er+ed(er) = ef(e)r+ed(er) € eR
olur. Buradan f(eR) C eR oldugu goriiliir. Yukaridaki bilgilerden eR, R nin bir
6z sag ideali oldugundan ve hipotezden f(eR) C f(R) C U U {0} oldugundan
f(eR) C eRNf(eR) = {0} bulunur. Buise f(eR) = {0} oldugunu verir. Benzer
sekilde 1 — e bir merkezi idempotent eleman oldugundan, f((1 — e)R) = {0}
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olmahdir. Buradan f(R) = {0} olur. Bu ise f = 0 geligkisini verir. Bu yiizden
R nin agikdr olmayan merkezi idempotenti yoktur.

Burada eger R bir yar1 basit halka ise R nin Jacobson radikali J olmak
iizere J = (0) dir ve R bir sol Artin halkasidir. Ustelik R bir sol Artin halkasi
oldugundan eger R nin bir ideali L ise o zaman bir ¢* = e € Z(R) i¢in L = Re
dir. Fakat R nin agikar olmayan merkezi idempotenti olmadigindan ya e = 0 dir
ya da e = 1 dir. Bu durumda ya L = (0) olmahdir ya da L = R olmalidir. Bu
ise R nin bir basit halka oldugu anlamina gelir. Ayrica ¢(Rg) = 2 oldugundan
D bir boliimlii halka olmak iizere R = My(D) olur. Béylece eger R bir yar
basit halka ise, Teorem 5.2.1 (2) formundadar.

Simdi R nin sifirdan farkli bir Jacobson radikali J ye sahip oldugunu
varsayalim; yani R bir yar1 basit halka olmasm. O zaman c¢(Rg) = 2
oldugundan J bir maksimal sag idealdir ve J? = (0) dir. Buradan R nin bir
yerel halka oldugu sonucuna ulagilir. O zaman R nin tek maksimal sag ideali J
dir. Ayrica yerel halka tanimindan J = {x € R: x ¢ U} olur. Bu ise R nin tek
0z sag idealinin ve tek 6z sol idealinin J oldugunu verir. Hipotezden Ker f,
R nin sifirdan farkli bir sag idealini igermediginden f(J) # {0} dir. Boylece
Yardimer Ozellik 5.1.4 den

d(J) g J (1)

olur. Ayrica Yardimecir Ozellik 5.2.3 den J + d(J), R nin bir sag idealidir.
Bu durumda J C J 4 d(J) ve J bir maksimal sag ideal oldugundan, eger
J = J+d(J) ise d(J) C J celigkisi elde edilir. O zaman R = J + d(J)
olmalidir.

Simdi R = d~*(J) + J oldugunu gérelim. Burada d~*(J) +J C R oldugu
aciktir. Tersine, her r € Ri¢in d(r) € R = J+d(J) oldugundan d(r) = a+d(b)
olacak sekilde a,b € J vardir ve buradan d(r — b) = a € J olur. Bu durumda
r—bed(J)={r € R:d(z) € J} dir ve boylece r € d~*(J) + J elde edilir.
Buise R C d"!(J) + J oldugu anlammna gelir. Boylece R = d~'(J) + J olur.
Simdi

E=d'(J)

diyelim. O zaman R = E + J olur. Burada £ N J = {0} oldugunu gorelim.
Hipotezden (0) # J  Ker f dir. Ayricarg(J) = {x € R: Jr = (0)} kiimesi R
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nin bir sag idealidir ve J? = (0) oldugundan (0) # J C rg(J) elde edilir. Ayrica
R bir birimli halka oldugundan JR # (0) dir; yani rg(J) # R dir. Boylece J
nin maksimalliginden .J = rg(J) elde edilir. Burada Yardimer Ozellik 5.2.5 (2)
den d~Y(rg(J)) =d Y(J) = E CUU{0} olur ve J, R nin tersinir elemanlarim
icermediginden £ N J = {0} dir. Buradan

R=FE®J

elde edilir.

Son bagmtidan her bir x € J i¢in d(z) € R oldugundan d(z) = a, + b,
olacak sekilde x € J ye bagh a, € E ve b, € J nin varligi yazilabilir. Burada
hareket kiimesi J olmak tizere, J nin her bir x elemanina bagh d(x) in toplam
terimleri de x elemanina bagh olarak degisecektir. O halde her bir x € J
icin ¢(z) = a, ile tammh ¢ : J — E ve ¥(x) = b, ile tammh ¢ : J — J
bagintilar1 var olur. Ik énce bu bagmtilarin birer déniisiim oldugunu gérelim.
Simdi z = 2 € J olsun. Buradan d(z) = d(z') olur. Béylece yukaridaki
agiklamalardan d(x) = p(z) +1(z) ve d(z") = p(2') +1(z") esitlikleri saglanir.

Son ii¢ bagintidan

pla) + () = (o) + ()

dir ve

/

pr) —plr) =) —¢(r) e ENJ = {0}

bulunur. Buradan ¢(z) = ¢(z') ve ¢(x) = (') esitlikleri elde edilir; yani
¢ ve ¢ iyi tamimhdir. Ayrica her x € J i¢in d(x) € R = E & J oldugundan
d(z) = a, + b, = p(x) + ¥(x) olacak sekilde p(x) = a, € F ve ¢p(x) =b, € J
vardir. Bu ise ¢ ve 1) nin kapaliligini verir. Buradan ¢ ve 1 birer doniigtimdiir.
Boylece her bir x € J i¢in, d(z) = ¢(x) + (x) olacak sekilde ¢(x) € FE,
Y(x) € J vardir. Simdi ¢ ve ¢ nin birer E-modiil homomorfizmasi oldugunu

gorelim. Her z,y € J i¢in

d(z +y) =d(z) +d(y) = p(z) + V() + ¢(y) + ¥(y)

ve

dxz +y) =p(x+y)+(r+y)
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olur. Boylece son iki bagintidan

o(r+y) — o) —oly) =v@) +Y(y) — Y@ +y) € ENJ ={0}

bulunur. Buradan ¢ : J — E ve : J — J nin birer toplamsal doniigiim oldugu
sonucu elde edilir. Herhangi @ € E ve x € J igin, £ = d~'(J) oldugundan
d(a) € J dir ve J* = (0) oldugundan

d(ax) = d(a)z + ad(x) = ad(x)
olur. O zaman

ap(x) + ap(z) = ad(z) = d(az) = p(az) + (o)

olur ve buradan

ap(z) — Plaxr) = p(ar) — ap(r) € ENJ = {0}

elde edilir. Boylece her a € E ve z € J igin p(ax) = ap(x) ve
Y(ax) = arp(x) olur. Benzer gekilde d(za) = d(z)a oldugundan ¢(xa) = ¢(x)a
ve Y(za) = (x)a esitligi goriilebilir. Ayrica F ve J nin birer F-modiil olduklar
aciktir.

Tim bu verilen bilgilerden, ¢ ve 9 birer F-modiil homomorfizmasidirlar.
Simdi ¢ nin bir E-modiil izomorfizmas1 oldugunu gorelim. Burada Im ¢, E
nin bir alt E-modiilidiir. Eger ¢ = 0 ise her x € J igin d(x) = () + ¢¥(x)
=1 (z) € J oldugundan d(J) C J ¢eliskisine ulagilir. O zaman ¢ # 0 olmalidir.
Boylece 0 # dimg(Im ) < dimg(E) = 1 oldugundan dimg(Imy) = 1 elde
edilir. O zaman Im ¢ = FE dir. Bu ise ¢ doniigiimiiniin ortenligini verir. Simdi
bir 0 # j € J olsun. Burada jR kiimesi R nin bir sag idealidir ve 0 # j
= j1 € jR oldugundan jR # (0) dir. Bu durumda J nin tekliginden J = jR
olur. Ustelik R = E @ J ve J? = (0) oldugundan J = jR = j(E ® J) = jE
bulunur. Benzer sekilde J = Ej dir. Boylece her x € J i¢in jy = x = zj olacak
sekilde y, z € E vardir. Dolayisiyla {j} kiimesi J nin bir sag ve sol E-bazidir.
Bu ise dimg(J) = 1 oldugunu verir. Ayrica Ker ¢, J nin bir alt E-modiilii
oldugundan dimg(Ker ¢) < dimg(J) = 1 olmalidir. Burada dimg(Ker ¢) =1
ise Kerp = J olur ve dolayisiyla ¢ = 0 celigkisi elde edilir. Bu durumda
dimg(Ker ¢) = 0 olmalidir. Buradan Kerp = {0} elde edilir. O zaman ¢

doniigiimii bire-birdir. Sonug olarak ¢ bir E-modiil izomorfizmasidir.



83

Simdi ¢~ (1) =t € J alahm. Burada ¢t = 0 iken 1 = ¢(0) = 0 geligkisi
elde edileceginden, t # 0 dir ve iistelik J?> = (0) oldugundan > = 0 olur.
Yukarida verilen bilgilerden, benzer sekilde J = tFE olur. Boylece R = E & J

bagintisindan

R=E®tE (2)

elde edilir. Bu durumda ) (t) = ta olacak sekilde bir v € E vardir. Ayrica son
bagintidan f(1) = ¢ + t¢ olacak sekilde ¢,¢ € E vardir. Burada t = ¢~ (1)

oldugundan her e € F icin

p(te) = p(t)e = e = ep(t) = p(et)

bulunur ve ¢ bir E-modiil izomorfizmasi oldugundan et = te elde edilir. O
zaman t € J elemani, F/ nin her elemani ile degigmelidir. Benzer sekilde 1 bir

E-modiil homomorfizmasi ve 1 (t) = ta oldugundan her e € E i¢in

tea = eta = e(t) = Y(et) = P(te) = P(t)e = tae

olur. Boylece t(eav — ae) = 0 olmalidir. Burada e« —ae € E CUU{0} vet # 0
oldugundan ae = ea elde edilir. Béylece o € Z(E) dir. Bu durumda J? = (0)

oldugundan her a,b € E igin
(a + th)t = at = ta = t(a + tb)

olur. Bu ise t € Z(R) oldugunu verir. Ayrica J?> = (0) oldugundan 0 = d(¢?)
= d(t)t + td(t) = (o(t) + L)t + t(e(t) + ¥(t)) = (1 + ta)t + t(1 + ta)
=t + tat + t + t?a = 2t olur. O zaman 2R = 2(F @ tE) = 2F olmahdir.
Burada 2R = 2F kiimesi E nin bir idealidir ve E kiimesinin R nin bir boliimlii
alt halkasi oldugu gergegi bizi ya 2R = 2F = (0) olmasma yada 2R =2E = F
olmasia ulagtirir. Eger 2R = 2F = FE ise 2R kiimesi R nin bir ideali
oldugundan ve R nin bazi tersinir elemanlarini igereceginden 2R = R olur.
Fakat bu durum, R = 2R = 2FE = F C U U {0} olmasim gerektirdiginden R
nin bir bolimli halka olmamasi kabulii ile ¢eligir. Buradan 2R = (0) olmasi

gerektigi sonucuna ulagilir. Béylece R nin karakteristiginin 2 dir.

Simdi E = Ker d oldugunu gorelim. Herhangi a,b € E igin, d = f— f(1),
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oldugundan

fla+tb) = d(a+1tb)+ f(1)(a+tb)

= d(a) + d(tb) + (c + tc )(a + tb)
= d(a) + (tb) + 1(tb) + ca + ctb + tc' a + tc'th
= d(a) + ()b + ()b + ca+tcb+tca
= d(a)+b+tab+ca+tchb+tca

= (b+ca) + (d(a) + t(ab + cb+ ¢ a))

olur. Burada F = d~!(J) esitligi goz 6niine alinarak, son bagimtida 6zel olarak
b= —ca € F i¢in

fla—tca) = (—ca+ ca)+d(a)+t(—aca — *a+ ca)

= d(a) —tlac+ S —claeJ

bulunur. Burada eger f(a —tca) # 0 ise f tersinir oldugundan f(a — tca) € U
olur ve son bagintidan J = R celiskisi elde edilir. O halde f(a — tca) = 0

olmalidir. Boylece son bagintidan, her a € F icin
d(a) = tlac+ = c)a
bagmtisma ulagilir. Ozel olarak, son bagintida a = 1 alirsak
d(1) =tlac+c —¢)

bulunur. Buradan, son iki bagint1 birlikte diigiiniilerek

olur ve d(1) = 0 esitliginden d(a) = 0 olmas1 gerekir. Buradan a € Kerd dir;
yvani E C Kerd elde edilir. Tersine, eger a + tb € Kerd ise 0 = d(a + tb)
= d(a) 4+ d(tb) = d(tb) = d(t)b + td(b) = d(t)b olur. Burada eger b # 0 ise
b e £ C UU{0} oldugundan, son bagmtidan d(t) = 0 elde edilir. Bu durumda
her te € tE/ = J igin

d(te) = d(t)e + td(e) = Oc + 0 = 0

olur. Boylece {0} = d(J) C J elde edilir. Fakat bu durum (1) den bir geligkidir.
O zaman b = 0 olmahdir. Buradan a + tb = a € E olur. Bu ise Kerd C F

oldugunu verir. Sonug olarak

E = Kerd
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dir. Ayrica 0 = d(1) = t(ac+ c —¢) ve t # 0 oldugundan ¢ = ac + ¢
olur. Boylece her a,b € E icin f(a + tb) = (b + ca) + (d(a) + t(ab + cb + c'a))

oldugundan

fla+tb) = (b4 ca)+ (d(a) +tlab+cb+ca))
= (ca+b)+t(ab+ cb + aca + c*a)

= (ca+b)+t(a+c)(ca+)

olur. Eger D = Kerd almirsa, bu durum Teorem 5.2.1 (3) e karsilik gelir.
Boylece ispat tamamlanir.

Teorem 5.2.2 nin ispatl Burada f nin bir tersinir genellegtirilmis tiirev
oldugunu, Ker f nin sifirdan farkli bir sag ideali icerdigini varsayalim ve
d = f — f(1); alahm. Eger D = Kerd almirsa o zaman Yardimc: Ozellik
5.1.5 (3) den D, R nin bir boliimlii alt halkas1 olur. Bu durumda Ker f nin
igerdigi tliim sag ideallerin toplami M olsun. O zaman M C Ker f dir ve her
x € M icin

d(x) = f(z) = f(Dr = —f(1)x (3)

olur. Kabulden, Ker f kiimesi R nin sifirdan farkli bir sag idealini igerdigi igin
M # (0) dir. Burada eger d(M) = {0} ise o zaman (0) # M C D C U U {0}
olur. Bu durumda M sag ideali R nin bazi tersinir elemanlarini icereceginden
R = M C Ker f elde edilir. Bu ise R = Ker f oldugunu verir. Buradan
f(R) = {0} celiskisine ulagilir. O zaman d(M) # {0} olmaldir. Béylece (3)
ten f(1) # 0 elde edilir. Bu ise f tersinir oldugundan

fyevu (4)

oldugu anlamma gelir. Simdi N = rg(M) = {r € R: Mr = (0)} olsun. Burada
N kiimesi R nin bir idealidir ve M nin tanimi geregi f(M) = {0} oldugundan,
Yardimer Ozellik 5.1.5 (1) den

d(R) C N (5)

elde edilir. Burada eger N = R ise, her r € R igin Mr = (0) olur, ozel
olarak r = 1 i¢in M = (0) celigkisine ulagihr. O zaman N # R dir ve (5)
den d(N) C N dir. Béylece Yardime1 Ozellik 5.1.4 ten f(N) = {0} elde edilir.
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Buradan N C Ker f olur ve Ker f de kapsanan tiim sag ideallerin toplami M
oldugundan

NCM (6)

bagintisina ulagilir. Son bagintidan ve N nin tanimindan her a,b € N igin
ab = 0 olur. Béylece

N?* = (0) (7)

elde edilir. Ayrica N bir ideal oldugundan, (4) den f(1)N = N dir.

Simdi d nin N ye kisitlanigi d|y olmak {izere, d|y nin bir R-modiil
izomorfizmas: oldugunu gérelim. Burada (5) den d|x : N — d(N) C N dir
ve her n € N igin d|y(n) = d(n) ile tammhidir. O zaman, her n,n;,ny € N ve

r € R icin

dn(ni +n2) = d(ng +no)
= d(ny) + d(ng)

= d|n(n1) +d|n(n2)
olur. Ayrica (5) ve (7) den
d|n(nr) = d(nr) = d(n)r + nd(r) = d(n)r = d|x(n)r
dir ve benzer sekilde
d|n(rn) = d(rn) = d(r)n + rd(n) = rd(n) = rd|x(n)

olur. Son ii¢ bagintidan, d|y : N — N dontigiimii bir R-modil homomorfizmasi
olur. §imdi Imd|y = N oldugunu goérelim. Burada Imd|y = d(N) C N
oldugu (5) den goriiliir. Tersine n € N olsun. Bu durumda (3) ve (6) dan
—f(1)n =d(n) € N dir. Ayrica (4) den ve son bagintidan

n=—f(1)"tdn)=d(—f(1)"'n) € d(N) = Imd|y

olur. Son bagnti, N C d(N) = I'md|y oldugunu verir. Béylece N = Imd|y
elde edilir. Bu ise d|y : N — N déniisiimiiniin 6rtenligini verir. Ustelik 2 €

Kerd|y ise (3) ve (6) dan
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olur ve bu ise (4) den x = 0 olmasmi gerektirir. Buradan Kerd|y = {0} dir
ve boylece d|y : N — N doniigiimii bire-birdir. Sonug olarak d|y : N — N
doniisiimii bir R-modiil izomorfizmasidir.

Simdi R = D @ N oldugunu gorelim. Her r € R i¢in, N = d(N)
oldugundan ve (5) den d(r) = d(n) olacak gekilde bir n € N vardir ve bdylece
d(r—mn) = 0olur. Buise r—n € D = Ker d oldugunu verir. Buradan r —n = a
olacak sekilde bir @ € D vardir; yani her » € R i¢in » = a+n olacak sekilde bir
a € D ven € N vardir. Buradan r € D + N elde edilir. O zaman R = D + N
dir. Ustelik D kiimesi R nin bir béliimlii alt halkasi oldugundan ve N # R
oldugundan D N N = {0} dir. Buradan

R=D&N

elde edilir.

Simdi R nin Jacobson radikali nin N oldugunu gorelim. Burada R nin
Jacobson radikali J olmak iizere, tiim nil (sag-sol-iki yanli) idealler J de
kapsandigindan ve (7) den N C J dir. Ayrica son bagmtidan, D bir bolimlii
halka oldugundan N bir maksimal sag idealdir. Gergekten de eger N C I olacak
sekilde R nin bir I 6z sag ideali var ise, her x € [ i¢in ©x = a + b olacak gekilde
a € Dvebe N vardir. Buradan z—b =a € IND = {0} olur. Buisez =be N
oldugunu verir. Buradan I C N ve dolayisiyla I = N elde edilir. O zaman N
bir maksimal sag idealdir ve J # R oldugundan J = N olur; yani N ile R nin
Jacobson radikali ¢akigir. Son bagintidan, f(1) = a + w olacak sekilde a € D
ve w € N vardir. Burada eger @ = 0 ise f(1) =w € N olur ve (4) ten N = R
geligkisine ulagihir. O zaman a # 0 olmalidir. Boylece herhangi bir a € D igin,
d = f—f(1); oldugundan f(a) = d(a)+ f(1)a = f(1)a = (¢ +w)a olur. Ayrica
f(N) = {0} oldugundan, bir 0 # = € D ve her a € D igin f(az) = 0 dir ve
tistelik d = f — f(1); oldugundan

0= f(ax) = f(a)r+ ad(z)
= fla)z+af(z) —af(l)z
= fla)z —af(D)z
= (a+w)ar —a(a+w)zx

= (aa —aa)x
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olur. Boylece aa — aax € D ve x # 0 olmasi gercegi, aa — acv = 0 olmasimni
gerektirir. Buradan her a € D igin aa = aa olur. Bu ise a € Z(D) oldugunu

verir.

5.2 M,(D) NIN TERSINIR GENELLESTIRILMIS
TUREVLERI

Bu béliimde D bir boliimlii halka ve M, (D) ise matris birimleri {e;; } olan
D iizerinde tiim 2 x 2 tipinde matrislerin halkasi olacaktir. Burada Ms(D) nin
tersinir genellegtirilmiy tiirevleri tartigilacaktir. Herhangi M, N € Ms(D) ve
her A € Ms(D) igin Fyy n(A) = M A+ AN ile tamimh Fiy n : My(D) — My(D)
doniisiim bir genellestirilmig tiirevdir ve bu doniisiime genellestirilmis ig

tiirev denir. Ozel olarak, Fy; ), déniisiimii M € My(D) ile belirli ig tiirevdir.

Teorem 5.2.1 Karakteristigi 2 den farkl bir bélimli halka D olsun. O zaman

My (D) nin her tersinir genellestirilmis tirevi bir i¢ tirevdir.

Ispat Oncelikle M,(D) nin bir tersinir genellegtirilmig tiirevi F' olsun. Burada

d = F — F(1); alahm. O zaman d doéniigimii Ms(D) nin bir tiirevidir. Bu

durumda
0 p —q r —p 0 0 —p
d(€11) = ,d(em) = ,d(621) = ,d(em) =
q 0 0 ¢ —r p —q 0
ve her a,b,c,e € D icin
([ b\ f(a) —bg — pc J(b) +ap +br —pe
c e fle)+qa—eq—rc fle)+er—re+gb+cp

olacak sekilde p,q,r € D ve D nin bir f tiirevi vardir (Bergen et al., |1983).

Burada o = —p, v = —r ve § = q olsun. O zaman son bagintidan her a, b, c,e €
D i¢in
a b a b 0 « a b a b 0 «
) (@ 5w | . .
c e fle) [fle) B v) \c e c el \B v

olacak gekilde o, 8,y € D ve D nin bir f tiirevi vardir. Simdi ¢,7n,0,¢ € D
olmak ftizere
¢ n-a
0—0 1—v
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diyelim. Burada F' = d + F(1); oldugundan, (8) den ve son bagmtidan her

a,c,e € D i¢in

I 0 _ f(a) + Ca+nc ne — ax ©)

c e fle)+0ba+ic—eB fle) —ca—ey+e

elde edilir. Simdi n = 0 oldugunu varsayalim. Burada f, D nin bir tiirevi

0 0
oldugundan f(1) = 0 dir. O zaman (9) dan F(ey) = dir ve bu

L —«
matrisin tersinir olmamasi « = ¢ = 0 olmasini gerektirir. Ayni diigiince ile

F(en) = ¢ 0 oldugundan ¢ = 6 = 0 ve F(ex) = o0 oldugundan
60 -8 =

B =~ = 0 olmahdir. Ustelik, her a € D i¢in F(aei;) = f(a)ey; olur ve bu

matris tersinir olmadigindan f(a) = 0 olmahdir. Bu ise f = 0 oldugunu verir.

Boylece tiim bu bilgilerin 15181 altinda, F' = 0 celigkisi elde edilir. Buradan

n # 0 olmalidir. Bu durumda (9) da ¢ = —n~!(f(a) +Ca) ve e = n tac alahm.

Boylece
a 0 0 0
P :
c e x  f(n7taa) + 07 (f(a) + Ca)a — n7taay + i~ taa

elde edilir. Yukaridaki tersinir olmadigindan
fntaa) + 07 fla)a+ 7 Caa =~ aary + i laa = 0

olmaldir. Ustelik f(n 'aa) = f(n Haa +n"'f(a)a+n"taf(a) esitligi ve son
bagint1 birlikte diigiiniildiigiinde

2n ' f(a)a + f(n Haa +n ' Caa + iy taa+ " taf () —n taay =0

0
bulunur. Ayrica (9) dan F(ey) = " olur. Burada n # 0 olmasi, bu

L —«
matrisin tersinir olmasi gerektigini séyler. Bu ise aw # 0 oldugunu verir. Béylece

son bagmtinim her iki tarafi soldan n € D, sagdan a~! € D carpilarak

2f(a) = —nf(n™"a—Ca—mnta—af(a)a™ +aaya™

= (=nfn ) =C—mn Na—a(f(a)a™ +aya™)

elde edilir. Burada hipotez geregi D nin karakteristigi 2 den farkl oldugundan,

son baginti

fla) = (_"f(”_l) ; ¢ — 77“7‘1> ‘u (f(a)a—12+ (moﬂ)
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esitligini verir. Bu durumda
1 1

_—nfn™) ; C—mm™t o _ fla)a” 2— aya~

denilerek yukaridaki esitlik, her @ € D i¢in f(a) = aX — pa bagmtisin verir.
Ustelik 0 = f(1) = A — p oldugundan A = u olur ve buradan her a € D icin
f(a) = aX — Aa bulunur. Boylece her a, b, c,e € D igin

f(a) f(b) a b A0 A0 a b
fle) f(e) c e 0 A 0 A c e

elde edilir. Ayrica

A0 0 « A0 0 «
M= — + —l—F(l) ve N = —

0 A oI 0 A B

olmak tizere, F' = d + F(1); oldugundan ve (8) den, her A € M,(D) igin
F(A)=MA+ AN

elde edilir. Bu ise F' nin M ve N elemanlar ile belirli genellegtirilmis i¢ tiirev
oldugunu verir.

M,(D) nin bir genellegtirilmis tiirevi F' ve S, T € My(D) tersinir matrisler
olmak iizere; her A € My(D) icin FT(A) = SF(ST'AT1)T ile tammh SF7
dontigtimiiniin My (D) nin bir genellegtirilmig tiirevi oldugu kolayca goriiliir ve
SFT ye F nin bir eglenigi denir. Ayrica F' nin tiim esleniklerinin kiimesine
F nin eslenik smifi denir. Eglenik simflar, Ms(D) nin tiim genellestirilmis
tiirevlerinin kiimesinin bir simflandirmasimi verir. Ustelik (1) F nin tersinir
olmas: icin gerek ve yeter bir kosul *F7 nin tersinir olmasidir ve (2) eger
F = Fyn ise o zaman SpT = Fgps-1 p-1y7 dir.

Biitiinliigii korumak adina, (Komatsu and Nakajima, [2004)) te ispatsiz
verilen yukaridaki iddialar:1 ispatlayalim.

Ispat Eger M(D) nin bir genellestirilmis tiirevi F' ise o zaman F toplamsaldir
ve her A, B € Ms(D) igin F(AB) = F(A)B+ Ad(B) olacak sekilde Ms(D) nin
bir d tiirevi vardir. Simdi S, T € My (D) tersinir matrisler olsun. Burada SF7
nin toplamsalligr agiktir. Bu durumda d(T-1)T € My (D) ile belirli ig tiirev &
olmak iizere @ = d — § alahm. O zaman @ nun M,(D) nin bir tiirevi oldugu
agiktir. Ustelik her A, B € My(D) i¢in SFT(AB) = SFT(A)B+ AQ(B) esitligi

saglanir. Béylece *F' T My(D) nin bir genellestirilmis tiirevidir.
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(1) Ik olarak S, T € My(D) tersinir matrisler olsun ve F nin tersinir
oldugunu varsayalim. O zaman her A € My(D) i¢in ya F(A) € U dur
ya da F(A) = 0 dir. Burada S,T tersinir matrisler oldugundan, her A €
My(D) igin ya SF(A)T € U dir ya da SF(A)T = 0 dw. Burada o6zel
olarak A yerine ST'AT~! almarak, ya SF(ST'AT YT € U olur ya da
SF(ST'ATYT = 0 olur. Bu ise *FT(R) C U U {0} oldugunu verir. Burada
eger SFT(R) = {0} ise o zaman her A € My(D) icin SF(ST'AT-Y)T
= 0 olur. Buradan F(S7'AT™') = 0 elde edilir. Ozel olarak A yerine SAT
alirsak, her A € My(D) i¢in F(A) = 0 olur ve bdylece F(R) = {0} geligkisine
ulagilir. O halde “FT(R) # {0} olmahdir. Béylece {0} # “FT(R) C U U {0}
elde edilir; yani “*F 7T tersinirdir.

Tersine, “F T nin tersinir oldugunu varsayalim. O zaman her A € M(D)
igin ya “FT(A) € U dir yada *FT(A) = 0 dir. Buradan ya SF(S™'AT-1)T €
U olmahdir ya da SF(S™*AT')T = 0 olmahdir. O zaman ya F(S7'AT!)
U dir yada F(S7'AT') = 0 dir. Burada 6zel olarak, A yerine SAT alnarak,
her A € M (D) igin ya F/(A) € U olur yada F(A) = 0 olur. Buise F(R) C UU
{0} oldugunu verir. Burada eger F\(R) = {0} ise her A € My(D) igin FI(A) =0
olur. O zaman SF(A)T = 0 dir. Ozel olarak A yerine S™'!AT~! yazilarak, her
A € My(D) igin SFT(A) = 0 elde edilir. Buradan “*FT(R) = {0} celigkisine
ulagilir. O zaman F(R) # {0} olmalidir. Boylece {0} # F(R) C U U {0} elde
edilir; yani F' tersinirdir.

(2) Eger F' = Fyy n ise o zaman her A € My(D) igin

SFT(A) = SF(ST'AT YT
= S(MSTAT™ + STIAT™'N)T
= SMS™'A+ AT™INT
= Fsus—1r-1nr(A)
olur. O zaman SF7 = Fgprg-1 p-1n7 dir.
a b st

Yardimec: Ozellik 5.2.2 Eger F, My (D) nin M = ve N =
c e u v

elemanlary ile belirli tersinir genellestirilmis i¢ tirevi ise o zaman b, c,t ve u
elemanlarinin hepsi sifirdan farklhdor.

. a b
Ispat Genellestirilmig i¢ tiirev tanimindan her A = € My (D) igin

cC €
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F(A) = MA+ AN dir. Boylece agagidaki

b 0
F(621) = (10)
e+s t
a+s t
F(en) = (11)
c 0
U a-+v
F(Glg) = (12)
0 c

matrisleri elde edilir. Burada b = 0 oldugunu varsayalim. Bu durumda F' bir

tersinir genellegtirilmis i¢ tiirev oldugundan ve (10) dan ¢t = 0 ve s = —e,

(11) den ¢ = 0 ve s = —a, (12) den u = 0 ve v = —a bulunur. Boylece
a 0 —a 0 ..

M = ve N = elde edilir. Ustelik, herhangi bir z € D i¢in
0 a 0 —a

F(zey1) = (ax — za)ey; olur. Bu matris tersinir olmadigindan sifir matrisine
esit olmahdir. Buradan ax — xa = 0 bulunur. Bu ise ax = xa oldugunu verir;
yani a € Z(D) dir. Fakat burada a € Z(D) oldugundan, F' = 0 geligkisine
ulagilir. O halde b # 0 olmahdir. Bu durumda (10) dan ¢ # 0, (11) den ¢ # 0
ve (12) den u # 0 olur.

Teorem 5.2.3 D bir biliimli halka olsun. O zaman \,u € Z(D), x* — px —

A = 0 denkleminin D de bir ¢éziimi olmayacak sekilde elemanlar olmak tizere

0 1
M5 (D) de eleman ile belirly tim i¢ tirevler, tersinir genellestirilmis

A p
i¢ tirevlerin eslenik siniflariman temsilcilerinin bir tam kiimesini verir.

Ispat Burada \, p € Z(D), 22 — pz — A = 0 denkleminin D de bir ¢oziimii

0 1
olmayacak sekilde elemanlar olmak iizere, My(D) de elemann ile belirli
A p
Ty
i¢ tiirev F olsun. O zaman bir A = € My(D) igin, m = s — \y ve
s 1
n = x —t 4 py olmak iizere
5—A —x+t— m -n
F(A) = Y Ky _
Mz —t)+pus  —s+ Ay An+pum —m

esitligi elde edilir. Burada eger A = 0ise o zaman z =0¢€ D, 22 —puz — A =0

denkleminin bir ¢6ziimii olur; bu ise kabul ile geligir. O zaman A\ # 0 olmaldir.



93

. —n
Oncelikle m = 0 ise o zaman F(A) = olur ve bu matris ya
An 0

sifir matrisidir ya da tersinirdir. Ciinkii A # 0 oldugundan, eger n = 0 ise F'(A)
sifir matrisi olur, eger n # 0 ise F'(A) tersinir olur.

Simdi eger m # 0 ise o zaman son bagintidan

1 nm~* m 0
F(A) =
Anm =t + u 1 0 —m
bulunur. Bu bagintida yer alan ikinci ¢arpan, m # 0 oldugundan daima tersinir
bir matristir. Bu durumda F'(A) matrisinin tersinir olmasi ilk garpana baghdir.
Eger F(A) tersinir degil ise ilk garpanin determinant degeri 1 — A(nm™')% —
p(nm=') = 0 olmahdir. Buradan, A\ — (Anm™1)? — u(Anm™!) = 0 elde edilir.
Fakat bu durumda, —Anm~! € D, 2?2 — uz — X\ = 0 denkleminin bir ¢oziimii

olur. Bu ise bir geligkidir. O zaman F'(A) tersinirdir. Béylece F' tersinir olur.

Sonug¢ olarak 2 — px — A = 0 denkleminin D de bir ¢oziimii olmayacak

0 1
sekilde A\, u € Z(D) igin, elemani ile belirli i¢ tiirev tersinirdir. Boylece
Ap
0 1
her i¢ tiirev bir genellegtirilmis i¢ tiirev oldugundan, elemani ile belirli
i

i¢ tiirev, tersinir genellegtirilmis i¢ tiirevlerin eglenik siniflarinin temsilcilerinin

bir tam kiimesinin elemanidair.

/ / 1

Diger taraftan, A, u € Z(D) olmak iizere, ., | elemanuile belirli ig
A

F' olsun. Bu durumda (X, i) # (X', i) oldugunu varsayalim. Bir baska deyisle,

22— 'z — X = 0 denkleminin D de bir ¢6ziimii olsun. Notasyondaki karisikligi

1 , 0
gidermek adina, M = ve M = | diyelim. Burada eger M ve

A u N
M’ benzer matrisler ise o zaman Cayley-Hamilton Teoremi yardimiyla M ve
M’ matrislerinin karakteristik polinomlarmm esit oldugu aciktir. Boylece M
ve M’ matrislerinin karakteristik polinomlar1 sirasiyla A(x) ve B(x) olmak
iizere, A(z) = 2* — pr — X\ ve B(x) = 2> — 'z — A" olur. Bu durumda
A(r) = B(x) oldugundan, (A, u) = (\,u') celigkisine ulagihir. O zaman
M ve M’ benzer matrisler degillerdir; yani M = PM P~' olacak sekilde
bir P € My(Z (D)) tersinir matrisi yoktur, dolayisiyla ayn eglenik sinmifinda

degillerdir. O zaman F ve F' eslenik degillerdir. Yukaridaki sonuclardan,
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’ / ’ / O 1

(A, p) # (N, p) olacak sekilde X',y € Z(D) igin elemani ile belirli
A/ Nl

i¢ tiirev, tersinir genellegtirilmis i¢ tiirevlerin eglenik siniflarinin temsilcilerinin

bir tam kiimesinin elemani degildir.

a b s t
Son olarak F, My(D) nin M = ve N =

c e u v
elemanlar1 ile belirli keyfi bir tersinir genellestirilmis i¢ tiirevi olsun. O

zaman Yardimer Ozellik 5.2.2 den b,c,t ve u elemanlarmin hepsi sifirdan

10
farkhidir. Burada S = ve T = alahm. O zaman
a b —s —t
1 0
St = oldugu ve A\ = bc —beb™'a € D, p = a + beb™?
—bta bt
0 1 d
olmak iizere SMS—! = oldugu kolaylikla goriiliir. Benzer sekilde,
A p
1 0
T = oldugu ve ¢ = tvt~ls — tu, ¥ = tvt~! + s olmak
—t7ls —t7!
0 — .
iizere TNT-! = oldugu elde edilir. Yardimc1 Ozellik 5.2.2 den
¢
e 4 . : 1 1
once belirtildigi gibi, “FT" = Fgyg-1pyr—1 dir; yani SF7 ve
A p
0 —1
elemanlar ile belirli tersinir genellestirilmis i¢ tiirevdir. Buradan,
¢
her x € D igin
SF T-1 — 0 0
0 1 A+ xp  pr+ )

olur. Fakat bu matris tersinir olmadigindan, hipotez geregi sifir matrisi

olmalidir. Buradan her z € D igin xp = —Ax ve ¢ = —pux elde edilir. Son

esitliklerde x = 1 almursa, ¢ = —\ € Z(D) ve p = —p € Z(D) oldugu goriiliir.
0 1 . [0 1 )

Boylece TNT—1 = olur. Buradan SF7T ", eleman: ile
A —u A

belirli i¢ tiirevdir. Bu durumda Yardimer Ozellik 5.2.2 den A # 0 dir. Simdi

bir x € D alalim. O zaman

0 1 A U
0 «x — AT A

SFTfl
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olur. Yukaridaki matris sifir matrisi olamayacagindan ve kabulden, tersinir
olmalidir. O zaman bu matrisin determinant degeri, A\, u € Z(D) oldugu goz

ontinde tutularak
Ae? — dzp — A2 #£0

olmalidir. Son bagmtimin her iki tarafi soldan A= € D ile carpilarak ve p €

Z(D) oldugu kullanmlarak

2 —pr —AN#0
_ 0 1 e
bulunur; yani SFT ' = s matrisinin tersinir
0 =z Az A

olabilmesi i¢in gerek ve yeter bir kosul 2> — pz — A = 0 denkleminin D de

bir ¢éziimii olmamasidir. Boylece ispat tamamlanir.
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6 SONUC

Uciincii boliimde, birimli halkalarin tersinir degerlilik kosulunu saglayan
(adi) tiirev doniigtimleri incelenmig ve bu inceleme ile beraber iizerinde
tersinir degerli bir tiirev tamimli olan birimli halkalar ile iligkili tiirevin
karakterizasyonuna yer verilmigtir.

Doérdiincti boliimde, ilk boliimde ele alinan problem (o, 7)-tiirevlere
genigletilmigtir; birimli halkalarmn tersinir degerlilik kogulunu saglayan (o, 7)-
tiirevleri incelenmis ve sonug olarak halka ile iligkili tiirevin yapisi hakkinda
onemli bulgulara yer verilmistir.

Besginci boliimde, ilk boliimde iizerine calisilan problem, genellestirilmis
tiirevlere genigletilmistir.

Incelenen calismalarm 15181 altinda, aslinda birimli bir halkanin yapisinin,
tiirevlerinden birine 6zel bir kosul dayatilmasi ile ne kadar siki bir bir gekilde
belirlendigi gosterilmeye cahisilmistir. Ustelik iizerinde tersinir degerli farkl
tiirev kavramlarindan herhangi biri tanimli olan birimli halkalarin ve ilgili tiirev
doniigiimlerinin yapilariin birbirine ne kadar ¢cok benzedigi gozlemlenmigtir.

Bu caligma, tersinir degerli olabilecek diger doniistimleri igeren halkalar:
belirlemeye referans olacaktir. Ayrica (Argag and Albag, 2002) caligma-
sinda verilen genellegtirilmis (o, 7)-tlirev kavrami ele alinarak, tersinir degerli
genellegtirilmiy (o, 7)-tiirevlere sahip birimli halkalarm yapisi tarafimizdan

incelenmeye baglanmigtir.
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