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ÖZET

HALKALARDA TERSİNİR DEĞERLİ DÖNÜŞÜMLER

FİDAN, Utku

Yüksek Lisans Tezi, Matematik Anabilim Dalı

Tez Danışmanı: Prof. Dr. Emine ALBAŞ

Ağustos 2022, 99 sayfa

Bu tez esas olarak beş bölümden oluşmaktadır.

Birinci bölümde tez konusu tanıtılmış ve bu konu ile ilgili literatürdeki

bazı çalışmalar hakkında bilgiler verilmiştir.

İkinci bölümde, diğer bölümleri daha iyi anlamak adına, tezin

okunabilirliğini arttıracak bazı temel tanım, teorem ve özelliklere, alındıkları

kaynaklar ile beraber yer verilmiştir.

Üçüncü bölümde J. Bergen et al. tarafından 1983 yılında yapılan birimli

bir halkada tersinir değerli türevler ile ilgili çalışma incelenmiş, sıfırdan farklı

tersinir değerli bir türevi olan birimli halkaların karakterizasyonu verilmiş ve

bazı durumlarda türevin karakterizasyonu ayrıca belirtilmiştir.

Dördüncü bölümde M. Hongan ve H. Komatsu tarafından 1987 yılında

yapılan tersinir değerli (σ, τ)-türevler ile ilgili çalışma incelenmiş, belirli

koşullar altında bu tip türevi olan birimli halkaların ve ilgili türevin

karakterizasyonu verilmiştir.

Beşinci bölümde H. Komatsu ve A. Nakajima tarafından 2004 yılında

yapılan tersinir değerli genelleştirilmiş türevler ile ilgili çalışma incelenmiş,

üzerinde sıfırdan farklı tersinir değerli genelleştirilmiş türev tanımlı olan birimli

halkaların ve bu tip genelleştirilmiş türev dönüşümünün yapısı belirtilmiştir.

Anahtar sözcükler: Türev, tersinir değerli türev, bölümlü halka,

matrisler halkası, yerel halka.
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ABSTRACT

MAPPINGS WITH INVERTIBLE VALUES IN RINGS

FİDAN, Utku

MSc. in Mathematics Department

Supervisor: Prof. Dr. Emine ALBAŞ

August 2022, 99 pages

This thesis essentially consists of five chapters.

In the first chapter, the subject of the thesis is introduced and some

studies in the literature related to this subject are given.

In the second chapter, some basic definitions, theorems and properties

that will increase the readability of the thesis are given together with their

references in order to better understand the other parts.

In the third chapter, Bergen et al.’s work in 1983 on derivations

with invertible values is studied, characterization of unital rings having a

nonzero derivation with invertible values are given and in some cases, the

characterization of derivation is given.

In the fourth chapter, M. Hongan and H. Komatsu’s work in 1987 on

(σ, τ)-derivations with invertible values is studied, characterization of unital

rings with this type derivation under certain conditions are given and the

characterization of related derivation is given.

In the fifth chapter, H. Komatsu and A. Nakajima’s work in 2004 on

generalized derivations with invertible values is studied and characterization

of unital rings having a nonzero generalized derivation with invertible values

are given and the characterization of generalized derivation in this type are

also given.

Key Words: Derivation, derivation with invertible values, division ring,

matrices ring, local ring.
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1 GİRİŞ

Halkalar ve üzerinde tanımlı olan dönüşümler üzerine bugüne kadar

birçok çalışma yapılmıştır. Bu çalışmalardan biri, çoğu alanda önem arz eden

türev dönüşümleri olmuştur.

1957 yılında E. C. Posner ile başlayan türev teorisi macerası ile beraber

çok fazla problem de gün yüzüne çıkmıştır.

Daha sonrasında teorinin gelişimi, farklı türev tanımlarını ve bazı

koşulları sağlayan türevleri ortaya çıkarmıştır. Bu türev tanımları içerisinde

özellikle genelleştirilmiş türev kavramı, oldukça önemli bir yere sahiptir.

Çalışmamızda, tersinir değerlilik koşulunu sağlayan farklı türev

kavramları ve tanımlı oldukları halkalar incelenecektir. Tersinir değerlilik

koşulu ise birimli bir halkanın her bir elemanının görüntüsü, ya halkanın sıfırı

ya da halkanın tersinir elemanlarının grubunda olacak şekilde sıfırdan farklı bir

dönüşümün olarak ifade edilebilir. Elbette bir bölümlü halkanın sıfırdan farklı

her dönüşümü tersinir değerlidir. Özel olarak, bir bölümlü halkanın sıfırdan

farklı her türevi tersinir değerlidir. Fakat sıfırdan farklı bir tersinir değerli

türeve sahip halkaların kesinlikle bir bölümlü halka olması gerekliliği de yoktur.

Tersinir değerli türevler ile ilgili yapılan ilk çalışma, 1983 yılında J.

Bergen et al. tarafından yapılan çalışmadır. Bu çalışmada birimli bir halka

üzerinde, tersinir değerlilik koşulunu sağlayan sıfırdan farklı bir (adi) türevin

var olduğu durum incelenmiştir. Halkanın ve türev dönüşümünün yapısı ile

ilgili sonuçlara yer verilmiştir. Sonrasında, bu çalışmayı genelleştiren diğer

çalışmalar literatürde yer edinmiştir.

Bu çalışmalardan biri 1987 yılında M. Hongan ve H. Komatsu tarafından

yapılan çalışmadır. Bu çalışmada birimli bir halkanın belirli koşulları sağlayan

σ ve τ dönüşümleri ve halkanın sıfırdan farklı bir sağ ideali için, bu sağ

idealin her elemanının görüntüsü ya halkanın sıfırı ya da halkanın tersinir

elemanlarının grubunda olacak şekilde tanımlı bir (σ, τ)-türevinin var olduğu

durum ele alınmıştır. Halkanın ve türev dönüşümünün yapısı ile ilgili sonuçlara

yer verilmiştir. Ayrıca bu çalışma, 1983 yılında J. Bergen et al., 1983 yılında

J. Bergen ve I.N. Herstein ve 1985 yılında J.-C. Chang tarafından yapılan

çalışmaları genelleştirdiğinden, önemli bir yere sahiptir.

Daha sonrasında, 2004 yılında H. Komatsu ve A. Nakajima, sıfırdan
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farklı bir tersinir değerli genelleştirilmiş türeve sahip birimli halkaların yapısını

incelemiştir. Bu çalışmada, 1983 yılında J. Bergen et al. tarafından yapılan

çalışma tersinir değerli genelleştirilmiş türevlere genişletilmiştir. Üzerinde

bir tersinir değerli genelleştirilmiş türev tanımlı olan birimli halkaların ve

genelleştirilmiş türev dönüşümlerinin karakterizasyonu ile ilgili önemli

sonuçlara yer verilmiştir. Ayrıca bir D bölümlü halkası üzerinde 2× 2 tipinde

matrisler halkası M2(D) nin bir genelleştirilmiş türevinin eşleniği tanımlanmış

ve bu halkanın tersinir değerli genelleştirilmiş türevlerinin eşlenik sınıflarının

temsilcilerinin bir tam kümesi karakterize edilmiştir.

Çalışmamızda, yukarıda belirtilen bu üç çalışma üzerine

yoğunlaşılacaktır. Amacımız, tersinir değerlilik koşulunu sağlayan bu üç tipteki

türev kavramlarını ele alarak, hem bu dönüşümlerin hem de üzerinde tanımlı

oldukları birimli halkaların yapısını incelemektir.
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2 ÖN BİLGİLER

Bu bölümde, çalışmanın ilerleyen bölümlerini daha iyi anlamak adına,

sonraki bölümlerde geçecek olan tanımlar, yardımcı özellikler, teoremler ve

örneklere, alındıkları kaynaklar ile beraber yer verilecektir.

Tanım 2.1 (Hungerford, 1980) R bir halka olmak üzere, R deki ikinci işlem

“.” ya göre her a ∈ R için 1Ra = a1R = a olacak şekilde 1R ∈ R var ise R

halkasına birimli halka ve 1R ∈ R elemanına R halkasının birimi denir.

Tanım 2.2 (Hungerford, 1980) R bir birimli halka ve a ∈ R olsun. Eğer

ca = 1R (sırasıyla ab = 1R) olacak şekilde bir c ∈ R (sırasıyla b ∈ R) var ise

o zaman a elemanına sol (sırasıyla sağ) tersinir denir. Burada c elemanına

(sırasıyla b) a elemanının sol (sırasıyla sağ) tersi denir. Eğer a ∈ R elemanı

hem sol tersinir hem de sağ tersinir ise o zaman a elemanına tersinir denir.

Tanım 2.3 (Hungerford, 1980) D bir birimli halka ve 1D ̸= 0 olsun. Eğer

D nin sıfırdan farklı her bir elemanı tersinir ise o zaman D halkasına bir

bölümlü halka denir.

Tanım 2.4 (Hungerford, 1980) R bir halka olsun. Eğer her a ∈ R için

na = 0 olacak şekilde bir en küçük n pozitif tam sayısı var ise o zaman R

ye n karakteristiklidir veya R nin karakteristiği n dir denir. Burada n

pozitif tam sayısına R nin karakteristiği denir ve charR = n notasyonu ile

gösterilir. Eğer bu koşulu sağlayan bir n pozitif tam sayısı yok ise o zaman R

nin karakteristiği sıfırdır denir ve charR = 0 notasyonu ile gösterilir.

Tanım 2.5 (Brešar, 2014) R bir halka olmak üzere

Z(R) = {c ∈ R : cx = xc, her x ∈ R}

ile tanımlı R nin alt kümesine R nin merkezi ve Z(R) nin elemanlarına R

nin merkezi elemanları denir.

Tanım 2.6 (Brešar, 2014) Bir R halkasının, R deki çarpma işlemi altında

kapalı olan bir toplamsal alt grubuna R nin alt halkası denir. Örneğin, Z(R)

kümesi R nin bir alt halkasıdır.
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Teorem 2.1 (Bhattacharya et al, 1994) R bir halka ve R nin boştan farklı bir

alt kümesi S olsun. O zaman S nin, R nin bir alt halkası olabilmesi için gerek

ve yeter bir koşul her a, b ∈ S için a− b ∈ S ve ab ∈ S olmasıdır.

Tanım 2.7 (Brešar, 2014) R bir birimli halka olsun. Eğer R nin bir alt halkası,

R nin birimini içeriyor ve her elemanı tersinir ise o zaman o alt halkaya R

nin bir bölümlü alt halkası denir.

Tanım 2.8 (Jacobson, 1985) Bir R halkasının tüm tersinir elemanlarının

kümesi, R deki çarpma işlemi ile bir grup teşkil eder. Bu gruba R nin tersinir

elemanlarının grubu denir ve U veya U(R) notasıyonu ile gösterilir.

Tanım 2.9 (Hungerford, 1980) Bir değişmeli G grubunun sonlu mertebeli

elemanlarından oluşan alt kümesi Gt olsun. Bu durumda Gt kümesi, G nin

bir alt grubudur. Burada eğer G = Gt ise o zaman G ye burulma grubu

denir. Eğer Gt alt grubu G nin sadece birim elemanını içeriyorsa o zaman G

ye burulmasız grup denir.

R bir halka, x ∈ R ve n bir tam sayı olsun. Eğer nx = 0 iken n = 0 veya x = 0

ise o zaman R ye n-burulmasız halka denir. Eğer nx = 0 olacak şekilde bir

0 ̸= x ∈ R ve 0 ̸= n tam sayısı var ise o zaman R ye n-burulmalı halka

denir.

Tanım 2.10 (Brešar, 2014) R bir birimli halka ve 0 ̸= n ∈ N olmak üzere,

{eij ∈ R : 1 ≤ i, j ≤ n} kümesi için eğer

e11 + e22 + · · ·+ enn = 1

ve her 1 ≤ i, j, k ≤ n için

δjk =

 1, j = k

0, j ̸= k

olmak üzere

eijekl = δjkeil

eşitlikleri sağlanıyorsa {eij ∈ R : 1 ≤ i, j ≤ n} kümesine n×n tipinde matris

birimlerinin kümesi denir.
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Tanım 2.11 (Hungerford, 1980) R bir halka ve R nin bir alt halkası S olsun.

Eğer her x ∈ S ve r ∈ R için xr ∈ S (rx ∈ S) ise o zaman S ye R nin sağ

(sol) ideali denir. Eğer S, R nin hem bir sağ hem de bir sol ideali ise o zaman

S ye R nin iki yanlı ideali ya da sadece ideali denir.

Tanım 2.12 (Hungerford, 1980) Bir R halkasının sadece sıfır elemanından

oluşan alt kümesi (0) ile gösterilir. Ayrıca R nin kendisi ve sadece sıfır

elemanından oluşan alt kümesi, R nin idealleridir. Bu iki ideale R nin öz

olmayan ideali denir. Bir R halkasının I ̸= (0) ve I ̸= R koşullarını sağlayan

bir I ideali var ise o zaman I ya R nin öz ideali denir. Benzer tanımlar, sağ

ve sol idealler için de yapılabilir. Burada eğer R bir birimli halka ve I, R nin

bir ideali ise o zaman I = R olması için gerek ve yeter bir koşul 1R ∈ I

olmasıdır. Sonuç olarak, I nın bir öz ideal olması için gerek ve yeter bir koşul

I idealinin tersinir eleman içermemesidir. Özellikle, bir bölümlü D halkasının

sıfırdan farklı her elemanı tersinir olduğundan, D nin öz sağ, sol ve iki yanlı

ideali yoktur.

Tanım 2.13 (Brešar, 2014) R bir halka ve I ile J , R nin sol(sağ) idealleri

olsunlar. O zaman I + J = {
∑
u + v : u ∈ I, v ∈ J}, R nin bir sol

(sağ) idealidir ve I ile J sol (sağ) ideallerinin toplamı denir. Benzer şekilde

IJ = {
∑n

i=1 uivi : ui ∈ I, vi ∈ J, n ∈ N}, R nin bir sol (sağ) idealidir ve I ile

J idealinin çarpımı denir.

Tanım 2.14 (Brešar, 2014) R bir halka ve a ∈ R olsun. Bu durumda

Za = {ka : k ∈ Z} ve aR = {ar : r ∈ R} olmak üzere I = aR + Za, R

nin bir sağ idealidir ve bu ideale a elemanı ile üretilen sağ ideal denir.

Ayrıca a elemanına ise I nın üreteci denir. Benzer şekilde Ra+Za kümesine

R nin a elemanı ile üretilen sol ideali denir ve (a) = RaR + Ra + aR + Za

kümesine R nin a elemanı ile üretilen iki yanlı ideali denir. Özel olarak R bir

birimli halka ise o zaman a elemanı ile üretilen sağ ideal aR, a elemanı ile

üretilen sol ideal Ra ve a elemanı ile üretilen iki yanlı ideal RaR olur.

Tanım 2.15 (Brešar, 2014) Bir R halkasının e elemanı için e2 = e koşulu

sağlanıyorsa o zaman e ye bir idempotent eleman denir. Özel olarak e

elemanı, R nin merkezinde ise o zaman e ye R nin merkezi idempotent

elemanı denir.
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Tanım 2.16 (Brešar, 2014) R bir halka ve R nin bir sol ideali L olsun. Eğer

L ̸= (0) ise ve R nin sıfırdan farklı L de kapsanan bir sol ideali yok ise o

zaman L ye R nin bir minimal sol ideali denir. Minimal sağ ve minimal iki

yanlı ideal tanımları da benzer şekilde yapılabilir.

Yardımcı Özellik 2.1 (Lam, 2001) R bir halka ve R nin bir minimal sol

ideali U olsun. O zaman ya U2 = (0) dır ya da U = Re olacak şekilde bir

e2 = e ∈ R idempotenti vardır.

Tanım 2.17 (Brešar, 2014) R bir halka ve R nin bir sol ideali U olsun. Eğer

U ̸= R ve U yu kapsayan R nin hiçbir öz sol ideali yok ise o zaman U ya R

nin bir maksimal sol ideali denir. Maksimal sağ ve maksimal iki yanlı ideal

tanımları da benzer şekilde yapılabilir.

Yardımcı Özellik 2.2 (Brešar, 2014) Eğer R bir birimli halka ve R nin bir

öz sol ideali L olsun. O zaman L, R nin bir maksimal sol idealinde kapsanır.

Yardımcı Özellik 2.2, birimli halkaların maksimal tek yanlı ideallerinin

varlığını garantiler.

Tanım 2.18 (Brešar, 2014) R bir halka ve I, R nin bir alt kümesi olmak üzere

Annl(I) = {x ∈ R | xI = 0}

sol idealine I nın R deki sol sıfırlayanı ve

Annr(I) = {x ∈ R | Ix = 0}

sağ idealine de I nın R deki sağ sıfırlayanı denir.

Tanım 2.19 (Brešar, 2014) R bir halka ve R nin bir ideali I olsun. Eğer

In = (0) olacak şekilde bir n pozitif tam sayısı var ise o zaman I ya nilpotent

ideal denir. Benzer şekilde nilpotent sağ ve nilpotent sol ideal tanımı da

yapılabilir.

Tanım 2.20 (Brešar, 2014) Bir R halkasındaki a elemanı için an = 0 olacak

şekilde bir 0 ̸= n ∈ N var ise o zaman a elemanına bir nilpotent eleman

denir. Burada bu koşulu sağlayan en küçük 0 ̸= n doğal sayısına o elemanın

nilpotentlik derecesi denir.
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Tanım 2.21 (Brešar, 2014) R bir halka ve R nin bir ideali I olsun. Eğer I

nın her elemanı nilpotent ise o zaman I ya nil ideal denir. Benzer şekilde nil

sağ ve nil sol ideal tanımları da yapılabilir.

Tanım 2.19, Tanım 2.20 ve Tanım 2.21 den her nilpotent idealin aslında bir nil

ideal olduğu görülür.

Yardımcı Özellik 2.3 (Brešar, 2014) R bir halka olsun. O zaman aşağıdaki

koşullar denktir:

(i) Her a ∈ R için, aRa = (0) iken a = 0 dır;

(ii) R nin her I sol ideali için, I2 = (0) ise I = (0) dır;

(iii) R nin her I sağ ideali için, I2 = (0) ise I = (0) dır;

(iv) R nin her I ideali için, I2 = (0) ise I = (0) dır;

(v) R nin sıfırdan farklı nilpotent ideali yoktur.

Tanım 2.22 (Brešar, 2014) Bir R halkası, Yardımcı Özellik 2.3 deki

özelliklerden herhangi birini (dolayısıyla hepsini) sağlıyorsa o zaman R ye

yarı asal halka denir.

Sonuç 2.1 (Brešar, 2014) Bir yarı asal R halkasının bir e idempotenti için,

aşağıdaki ifadeler birbirine denktir:

(i) eRe bir bölümlü halkadır.

(ii) Re bir minimal sol idealdir.

(iii) eR bir minimal sağ idealdir.

Tanım 2.23 (Brešar, 2014) R bir halka olsun. Eğer R2 ̸= (0) ise ve R nin

kendisi ve (0) dan başka ideali yok ise o zaman R ye bir basit halka denir.

Tanım 2.24 (Brešar, 2014) R bir halka ve M bir toplamsal grup olsun. Eğer

her r, s ∈ R ve her m,n ∈M için

(i) (r + s)m = rm+ sm

(ii) r(m+ n) = rm+ rn
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(iii) r(sm) = (rs)m

koşullarını sağlayan, R ×M den M ye, (r,m) → rm ile tanımlı bir dönüşüm

var ise, M ye sol R-modül denir. Ek olarak, R birimli bir halka ve her m ∈M

için 1m = m ise M ye bir üniter sol R-modül denir. Benzer şekilde (üniter)

sağ R-modül tanımı da yapılabilir.

Tanım 2.25 (Brešar, 2014) R ve S iki halka olsun. Eğer M bir sol R-modül,

bir sağ S-modül ve üstelik her r ∈ R, m ∈M , s ∈ S için

(rm)s = r(ms)

koşulu sağlanıyor ise o zaman M ye (R,S)-bimodül denir. Bu tanımdan

hareketle, bir (R,R)-bimodüle R-bimodül denir.

Tanım 2.26 (Brešar, 2014) R bir halka ve M bir sol R-modül olsun. Bir

L ⊆ M için eğer L, M nin bir toplamsal alt grubu ve her r ∈ R, x ∈ L için

rx ∈ L ise o zaman L ye M nin bir sol alt R-modülü denir. Benzer şekilde

bir sağ R-modül için sağ alt R-modül tanımı yapılabilir.

Tanım 2.27 (Brešar, 2014) R bir halka ve M bir sol R-modül olsun. Eğer

RM ̸= (0) ve R nin kendisi ve (0) dan başka sol alt R-modülü yok ise o zaman

M ye basit sol R-modül denir. Benzer şekilde basit sağ R-modül tanımı da

yapılabilir.

Tanım 2.28 (Brešar, 2014) R bir halka, M ve N birer sol R-modül ve

φ :M → N bir dönüşüm olsun. Eğer her m,m′ ∈M ve her r ∈ R için

φ(m+m
′
) = φ(m) + φ(m

′
)

ve

φ(rm) = rφ(m)

eşitlikleri sağlanıyorsa o zaman φ dönüşümüne bir sol R-modül

homomorfizması denir. Benzer şekilde sağ R-modül homomorfizması tanımı

da yapılabilir. Burada Ker φ = {m ∈ M : φ(m) = 0} kümesi M nin

bir sol alt R-modülüdür ve bu alt modüle φ nin çekirdeği denir. Aynı

zamanda Imφ = {φ(m) : m ∈ M} kümesi N nin bir sol alt R-modülüdür

ve bu alt modüle φ nin görüntü kümesi denir. Bire-bir ve örten bir sol
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R-modül homomorfizmasına sol R-modül izomorfizması denir ve

M ∼= N ile gösterilir. Ayrıca M/Ker φ ∼= Imφ dir (Modüllerde I.

İzomorfizma Teoremi). Benzer tanımlar bir sağ R-modül için de yapılabilir.

Yardımcı Özellik 2.4 (Brešar, 2014) R bir halka olsun. Her basit R-modül,

R nin bazı U maksimal sol idealleri için R/U ya izomorftur. Tersine, eğer U,

R nin R2 ̸⊆ U (eğer R birimli ise bu koşul otomatik olarak sağlanır) olacak

şekilde bir maksimal sol ideali ise o zaman R/U bir basit R-modüldür.

Tanım 2.29 (Brešar, 2014) M bir modül ve {Mi : i ∈ I} kümesi M nin alt

modüllerinin bir ailesi olsun. Burada
∑

i∈I Mi, M nin bir alt modülüdür ve bu

alt modüle Mi alt modüllerinin toplamı denir. Eğer Mj∩
(∑

i∈I−{j}Mi

)
= {0}

ise o zaman bu toplama direkt toplam denir ve ⊕i∈IMi ile gösterilir.

Teorem 2.2 (Brešar, 2014) R, R′ iki halka ve φ : R → R
′ bir halka

homomorfizması olsun. O zaman R/Kerφ ∼= φ(R
′
) olur (Halkalarda I.

İzomorfizma Teoremi).

Tanım 2.30 (Brešar, 2014) R bir halka ve M bir sol R-modül olsun. Bir

B ⊆M alalım. Eğer her farklı b1, . . . , bn ∈ B elemanları ve ve her r1 . . . , rn ∈

R elemanları için r1b1 + · · · + rnbn = 0 iken her bir i için ri = 0 ise o zaman

B ye lineer bağımsız denir. Eğer B lineer bağımsız değil ise o zaman B ye

lineer bağımlı denir.

Tanım 2.31 (Brešar, 2014) Bir M sol R-modülünün bir B lineer bağımsız alt

kümesi eğer M yi üretiyorsa o zaman B ye M nin bir bazı denir.

Tanım 2.32 (Brešar, 2014) R bir birimli halka olsun. Bir üniter R-modül,

eğer bir baza sahip ise o modüle bir serbest R-modül denir.

Tanım 2.33 (Brešar, 2014) D bir bölümlü halka olsun. O zaman bir üniter

(sol) D-modüle, D üzerinde bir (sol) D-vektör uzayı denir.

Tanım 2.34 (Brešar, 2014) R bir halka olsun. Bir R-modül M ,eğer basit alt

modüllerinin bir ailesinin direkt toplamı ise o zaman M ye yarı basit denir.

Sonuç 2.2 (Anderson and Fuller, 1974) Bir R halkasının yarı basit olabilmesi

için gerek ve yeter bir koşul RR nin yarı basit olmasıdır.
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Sonuç 2.3 (Lam, 2001) Bir sol yarı basit R halkası her zaman sağ yarı basittir.

Bunun tersi de doğrudur.

Tanım 2.35 (Brešar, 2014) Eğer bir M modülünün her bir M1 ⊇M2 ⊇ . . . alt

modül zinciri için, Mm = Mm+1 . . . olacak şekilde bir m ∈ N var ise o zaman

M modülüne artin (ya da azalan zincir kuralını sağlıyor) denir.

Tanım 2.36 (Brešar, 2014) Eğer bir N modülünün her bir N1 ⊆ N2 ⊆ . . . alt

modül zinciri için, Nn = Nn+1 . . . olacak şekilde bir n ∈ N var ise o zaman N

modülüne noether (ya da artan zincir kuralını sağlıyor) denir.

Tanım 2.37 (Brešar, 2014) Eğer bir R halkası, bir artin sol (sırasıyla sağ)

R-modül ise o zaman R ye sol (sırasıyla sağ) artin denir. Eğer R halkası

hem sol hem de sağ artin ise o zaman R ye artin denir.

Tanım 2.38 (Brešar, 2014) Eğer bir R halkası, bir noether sol (sırasıyla sağ)

R-modül ise o zaman R ye sol (sırasıyla sağ) noether denir. Eğer R halkası

hem sol hem de sağ noether ise o zaman R ye noether denir.

Sonuç 2.4 (Hungerford, 1980) Eğer I, bir yarı basit sol artin halkası R nin

bir ideali ise o zaman e, R nin merkezinde bir idempotent olmak üzere I = Re

dir.

Tanım 2.39 (Brešar, 2014) Bir R halkasının bir P ideali bir basit R-modülün

sıfırlayanı ise P ye primitif ideal denir.

Tanım 2.40 (Brešar, 2014) Bir R halkasının tüm primitif ideallerinin

arakesitine R nin Jacobson radikali denir ve J(R) ile gösterilir.

Sonuç 2.5 (Brešar, 2014) Birimli bir R halkasının Jacobson radikali, R nin

tüm maksimal sol (sağ) ideallerinin arakesitine eşittir.

Eğer R bir birimli halka ise o zaman R nin maksimal sol idealleri vardır

(Yardımcı Özellik 2.2). Ayrıca J(R), R nin tüm maksimal sol ideallerinin

arakesitine eşittir (Sonuç 2.5).

Sonuç 2.6 R bir birimli halka ise J(R) ̸= R dir.

Yardımcı Özellik 2.5 (Brešar, 2014) Bir R halkasının her nil sağ ya da sol

ideali J(R) de kapsanır.
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Teorem 2.3 (Lam, 2001) R bir sol artin halkası olsun. O zaman J(R), R nin

en büyük nilpotent sol idealidir, aynı zamanda en büyük nilpotent sağ idealidir.

Tanım 2.41 (Lam, 2001) Bir R halkasına, eğer J(R) = (0) ise Jacobson

yarı basit (ya da kısaca J-yarı basit) denir.

Yardımcı Özellik 2.6 (Lam, 2001) Herhangi bir R halkası için, aşağıdaki

ifadeler birbirine denktir:

(1) R yarı basittir;

(2) R J-yarı basittir ve sol artindir;

(3) R J-yarı basittir ve esas sol idealleri üzerinde azalan zincir kuralını

sağlar.

Tanım 2.42 (Anderson and Fuller, 1974) M sıfırdan farklı bir modül ve M

nin M0,M1, . . . ,Mn, alt modülleri için M = M0 ⊇ M1 ⊇ · · · ⊇ Mn = (0)

olsun. Eğer her i = 1 . . . n için Mi−1/Mi bir basit modül ise o zaman bu zincire

M için bir n uzunluklu kompozisyon serisi denir.

Teorem 2.4 (Anderson and Fuller, 1974) Eğer bir M modülünün bir

kompozisyon serisi var ise o zaman M için kompozisyon serilerinin her çifti

eşittir (Jordan-Hölder Teoremi).

Tanım 2.43 (Anderson and Fuller, 1974) Eğer bir modülün bir kompozisyon

serisi var ise o zaman o modülün her kompozisyon serisinin uzunluğu aynıdır.

Bir M modülü hem artin hem noether ise M modülüne sonlu uzunluklu

denir ve (kompozisyon) uzunluğu c(M) ile gösterilir. Eğer c(M) = 0 ise o

zaman M = (0) dır, eğer c(M) = n ̸= 0 ise o zaman M nin bir n uzunluklu

kompozisyon serisi vardır.

Teorem 2.5 (Lam, 2001) R bir basit halka olsun. Aşağıdakiler denktir:

(i) R sol Artin halkasıdır;

(ii) R (sol) yarı basittir;

(iii) R nin bir minimal sol ideali vardır;

(iv) Bir D bölümlü halkası ve bir 0 ̸= n doğal sayısı için R ∼= Mn(D) dir.
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Teorem 2.5 (iv) de n ve D tek türlü belirlidir (Lam, 2001, Corollary 3.13) ve

n = c(RR) dir (Anderson and Fuller, 1974, Theorem 13.4, Proposition 13.5).

Teorem 2.5 deki denkliklerden, eğer bir basit R halkası sol artin ise o zaman

sağ artindir (simetriden, tersi de doğrudur) (Lam, 2001, syf 37). Ayrıca Sonuç

2.2 ve Sonuç 2.3 den yararlanarak, Teorem 2.5 de sol yerine sağ alınabilir.

Tanım 2.44 (Anderson and Fuller, 1974) Bir R halkası için aşağıdakiler

denktir:

(a) R bir yerel halkadır;

(b) R tek bir maksimal sol ideali vardır;

(c) J(R) bir maksimal sol idealdir;

(d) R nin sol tersleri olmayan tüm elemanlarının kümesi, R deki toplama

işlemi altında kapalıdır;

(e) J(R) = {x ∈ R : Rx ̸= R} dir;

(f ) R/J(R) bir bölümlü halkadır;

(g) J(R) = {x ∈ R : x tersinir değil} dir;

(h) Eğer x ∈ R ise o zaman ya x ya da 1− x tersinirdir.

Tanım 2.44 (b) de, sol yerine sağ alınabilir (Lam, 2001, Theorem 19.1 ).

Tanım 2.45 (Brešar, 2014) D bir bölümlü halka olmak üzere,

D[[ω]] = {
∑∞

n=0 anω
n : an ∈ D} olsun. Bu küme üzerinde toplama ve çarpma

işlemini; her
∑∞

n=0 anω
n,
∑∞

n=0 bnω
n ∈ D için

∞∑
n=0

anω
n +

∞∑
n=0

bnω
n =

∞∑
n=0

(an + bn)ωn

ve cn =
∑n

i=0 aibn−i olmak üzere
∞∑
n=0

anω
n

∞∑
n=0

bnω
n =

∞∑
n=0

cnω
n

ile tanımlayalım. O zaman D[[ω]] bu işlemlerle beraber bir halka teşkil eder ve

bu halkaya D üzerinde formal kuvvet serilerinin halkası denir. Ayrıca D

üzerinde ω değişkenli polinomlar halkası olan D[ω] halkası, D[[ω]] halkasının

bir alt halkasıdır. Bu tanımda D yerine keyfi bir R halkası da alınabilir.
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Yardımcı Özellik 2.7 (Brešar, 2014) D bir bölümlü halka olsun. O zaman

bir
∑∞

n=0 anω
n nin D[[ω]] da tersinir olabilmesi için gerek ve yeter bir koşul

a0 ̸= 0 olmasıdır.

Tanım 2.46 (Brešar, 2014) R keyfi bir halka ve R((ω)) = {
∑∞

n=−∞ anω
n :

an ∈ R ve sadece sonlu sayıdaki n < 0 için an ̸= 0} olsun. Eğer R((ω))

üzerindeki toplama ve çarpma işlemi, formal kuvvet serileri halkaları

üzerindeki toplama ve çarpma işlemi gibi tanımlanırsa o zaman R((ω)) bir

halka temsil eder ve bu halkaya Laurent serilerinin halkası denir. Burada

R yerine bir D bölümlü halkası alınırsa, D((ω)) bir bölümlü halka olur.

Tanım 2.47 (Brešar, 2014) R bir halka ve R[ω], R üzerinde ω değişkenli

polinomlar halkası olsun. Burada σ, R nin bir endomorfizması olmak üzere

ωa = aω yerine ωa = σ(a)ω alalım. Buna uygun olarak her a, b ∈ R için

(aωi)(bωj) = aσi(b)ωi+j

dir. Bu durumda ortaya çıkan halkaya skew polinomlar halkası denir

ve R[ω;σ] ile gösterilir. Benzer şekilde R üzerinde skew kuvvet serileri

halkası da tanımlanabilir ve R[[ω;σ]] ile gösterilir. Özel olarak burada σ,

R nin bir otomorfizması ise R üzerinde skew Laurent serileri halkası da

tanımlanabilir ve R((ω;σ)) ile gösterilir.

Teorem 2.6 (Hungerford, 1980) R bir değişmeli halka ve S, her a, b ∈ S için

ab ∈ S koşulunu sağlayan R nin boştan farklı bir alt kümesi olsun (çarpımsal

altküme). Burada R× S üzerinde bir ∼ bağıntısını

(r, s) ∼ (r
′
, s

′
) ⇔ bazı s1 ∈ S için s1(rs

′ − r
′
s) = 0

olarak tanımlayalım. O zaman ∼ bağıntısı, R × S üzerinde bir denklik

bağıntısıdır. Üstelik R nin sıfır böleni yok ve 0 /∈ S ise o zaman bu tanım

(r, s) ∼ (r
′
, s

′
) ⇔ rs

′ − r
′
s = 0

olarak ifade edilir.

Teorem 2.7 (Hungerford, 1980) R, S ve ∼, Teorem 2.1.8 deki gibi olsun.

Burada R× S nin ∼ bağıntısına göre tüm denklik sınıflarının kümesini S−1R

ile ve (r, s) ∈ R× S elemanının denklik sınıfını r/s ile gösterelim.
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(i) S−1R kümesi üzerinde toplama ve çarpma

r/s+ r
′
/s

′
= (rs

′
r
′
s)/ss

′
ve (r/s)(r

′
/s

′
) = rr

′
/ss

′

ile tanımlanmak üzere S−1R bir birimli ve değişmeli halkadır.

(ii) Eğer R sıfır böleni olmayan sıfırdan farklı bir halka ve 0 /∈ S ise o zaman

S−1R bir tamlık bölgesidir.

(iii) Eğer R sıfır böleni olmayan sıfırdan farklı bir halka ve S, R nin tüm

sıfırdan farklı elemanlarının kümesi ise o zaman S−1R bir cisimdir.

Tanım 2.48 (Hungerford, 1980) Teorem 2.7 deki gibi tanımlı olan S−1R

halkasına, R nin kesir halkası denir.

Örnek 2.1 (Brešar, 2014) F bir cisim ve F [x], F üzerinde x değişkenli

polinomlar halkası ve F (x) =
{

p(x)
q(x)

: p(x), q(x) ∈ F [x], (p(x), q(x)) = 1, q(x) ̸= 0
}

olsun. Böylece her p(x)
q(x)

, s(x)
r(x)

∈ F (x) için

p(x)

q(x)
+
s(x)

r(x)
=
p(x)r(x) + s(x)q(x)

q(x)r(x)

ve
p(x)

q(x)
.
s(x)

r(x)
=
p(x)s(x)

q(x)r(x)

ile tanımlı “+” ve “.” işlemlerine göre F (x) bir birimli ve değişmeli halka teşkil

eder ve S kümesi, F [x] in tüm sıfırdan farklı elemanlarından oluştuğundan

Teorem 2.7 (iii) den bir cisimdir. Bu cisme F [x] in rasyonel fonksiyonlar

cismi denir.

Tanım 2.49 (Hungerford, 1980) R bir birimli halka olsun. Eğer A,B ∈Mn(R)

için, B = PAP−1 olacak şekilde bir P tersinir matrisi var ise o zaman A ve

B ye benzer matrisler denir ve A ∼ B ile gösterilir. Burada A ∼ B ⇔ B

= PAP−1, ∃P ∈Mn(R) ile tanımlı bağıntı bir denklik bağıntısı teşkil eder. Bu

durumda A ve B aynı denklik sınıfındadır; yani eşleniktirler denir.

Tanım 2.50 (Brešar, 2014) F bir cisim, n bir pozitif tam sayı olmak üzere

A ∈ Mn(F ) olsun. Burada A nın determinant değeri det(A) ve Mn(F ) nin

birimi I olmak üzere p(x) = det(xI − A) ∈ F [x] polinomuna A matrisinin

karakteristik polinomu denir.
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Teorem 2.8 (Brešar, 2014) F cisim, n bir pozitif tam sayı olmak üzere A ∈

Mn(F ) olsun. O zaman A, kendi karakteristik polinomunun bir köküdür; yani A

nın karakteristik polinomu pA(x) olmak üzere, pA(A) = 0 dır (Cayley-Hamilton

Teoremi).

Teorem 2.9 (Koç, 2010) F bir cisim, n bir pozitif tam sayı olmak üzere A ∈

Mn(F ) olsun. Eğer P ∈ Mn(F ) bir tersinir matris ise o zaman A ile P−1AP

matrislerinin karakteristik polinomları aynıdır (Section 1, Chapter 6, Theorem

10).

Tanım 2.51 (Bhattacharya et al, 1994) Eğer F , bir E cisminin alt cismi ise

o zaman E ye F nin bir cisim genişlemesi veya daha basit olarak F nin bir

genişlemesi denir.

Tanım 2.52 (Bhattacharya et al, 1994) Eğer E, F nin bir genişlemesi ise

o zaman E nin F üzerinde bir vektör uzayı olduğu açıktır. Burada E nin F

üzerindeki vektör uzayı olarak boyutuna E nin F üzerindeki derecesi denir.

Tanım 2.53 (Posner, 1957) R bir halka ve d : R → R bir toplamsal dönüşüm

olsun. Eğer her x, y ∈ R için

d(xy) = d(x)y + xd(y)

eşitliği sağlanıyorsa o zaman d ye R nin bir türevi denir. Özel olarak a ∈ R

olmak üzere, her x ∈ R için δ(x) = ax − xa ile tanımlı dönüşüm R nin bir

türevidir ve bu tip bir türeve a elemanı ile belirli iç türev denir.

Tanım 2.54 (Hongan and Komatsu, 1987) R bir halka, σ, τ : R → R iki

dönüşüm olsun. Burada R nin bir toplamsal dönüşümü δ olmak üzere, her

x, y ∈ R için

δ(xy) = δ(x)σ(y) + τ(x)δ(y)

eşitliği sağlanıyorsa o zaman δ ya R nin bir (σ, τ)-türevi denir.

Tanım 2.55 (Brešar, 1991) R bir halka ve f : R → R bir toplamsal dönüşüm

olsun. Eğer her x, y ∈ R için

f(xy) = f(x)y + xd(y)

olacak şekilde R nin bir d türevi var ise o zaman f ye R nin bir

genelleştirilmiş türevi (Brešar anlamında) denir. Ayrıca burada d türevine,
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f genelleştirilmiş türevinin ilişkili türevi denir. Özel olarak a, b ∈ R olmak

üzere, her x ∈ R için g(x) = ax + xb ile tanımlı dönüşüm bir genelleştirilmiş

türevdir ve bu tip genelleştirilmiş türevlere genelleştirilmiş iç türev (Brešar

anlamında) denir.

Tanım 2.56 (Nakajima, 1999) Eğer k birimli ve değişmeli bir halka, M bir

sol ve sağ S-modül olmak üzere herhangi s, t ∈ S, a ∈ k ve m ∈M için

s(mt) = (sm)t, a(sm) = s(am) am = ma

oluyorsa o zaman S, k üzerinde bir cebir olmak üzere M ye S/k-bimodül

denir.

Tanım 2.57 (Nakajima, 1999) S, k ve M Tanım 2.56 daki gibi olsun. Bir

k-modül dönüşümü f : S → M ve bir m ∈ M için, eğer f(st) = f(s)t +

sf(t) + smt eşitliği herhangi s, t ∈ S için sağlanıyorsa o zaman (f,m) çiftine

bir genelleştirilmiş türev (Nakajima anlamında) denir.

Tanım 2.58 (Leger and Luks, 2000) A, karakteristiği 2 den farklı bir cisim

üzerinde birleşmeli olmayan bir cebir ve A nın Z-modül homomorfizmalarının

kümesi Hom(A,A) olsun. Bir f ∈ Hom(A,A) olmak üzere, her x, y ∈ A için

f(x)y + xf
′
(y) = f

′′
(xy)

olacak şekilde f
′
, f ′′ ∈ Hom(A,A) var ise o zaman f ye A nın bir

genelleştirilmiş türevi (Leger ve Luks anlamında) denir.
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3 TERSİNİR DEĞERLİ TÜREVLER

Bu bölümde Jeffrey Bergen, Israel Nathan Herstein ve Charles Lanski’

nin 1983 yılında yapmış oldukları “Derivations With Invertible Values” adlı

çalışma incelenecektir.

Çalışmanın temel sonucu aşağıda verilen teoremdir. Teoremde, üzerinde

her x ∈ R için ya d(x) = 0 ya da d(x) R de tersinir olacak şekilde 0 ̸= d türevi

tanımlı olan birimli R halkalarının karakterizasyonu ve R halkası ile d türevi

arasındaki ilişki ele alınacaktır. Bu durumda 2R = (0) iken oluşan özel bir

durum dışında, R nin ya bir D bölümlü halkası ya da bir D bölümlü halkası

üzerindeki 2× 2 tipindeki matrisler halkası D2 olduğu sonucuna ulaşılacaktır.

Teorem 3.1 Bir birimli R halkasının her bir x ∈ R için ya d(x) = 0 ya da

d(x) tersinir olacak şekilde bir 0 ̸= d türevi var olsun. O zaman R halkası

1. bir D bölümlü halkasıdır, ya da

2. D bir bölümlü halka olmak üzere D2 dir, ya da

3. D bir bölümlü halka olmak üzere D[x]/(x2) dir ve charD = 2,

d(D) = {0}, d(x) = 1 + ax olacak şekilde D nin merkezi Z de bir a

elemanı vardır.

Üstelik, eğer 2R ̸= (0) ise o zaman R = D2 olması için gerek ve yeter

bir koşul D nin merkezi Z nin tüm ikinci dereceden genişlemelerinin D de

içerilmemesidir, denk olarak; gerek ve yeter bir koşul D nin merkezi Z nin

bazı elemanlarının D nin bir elemanının karesi şeklinde yazılamamasıdır.

Bu çalışmada 2R ̸= (0) koşulu altında R = D2 ise d nin R üzerinde bir

iç türev olduğu ve 2R = (0) olması durumunda d nin R üzerinde bir iç türev

olamayabileceği de görülecektir. Buna ek olarak eğer R = D[x]/(x2) ise d nin

R üzerinde bir iç türev olamayacağı sonucuna ulaşılacaktır.

Son olarak R nin her elemanı için değil, ama R nin uygun bir alt

kümesindeki her x elemanı için ya d(x) = 0 veya tersinir olması durumu ele

alınacaktır.

Bu bağlamda, D bir bölümlü halka olmak üzere ya R = D ya R = D2 ya

da R = D[x]/(x2) olduğu sonucu elde edilir. Fakat bu durumda R halkası ile

d türevi arasındaki ilişki, Teorem 3.1 de açıklanandan biraz farklı olacaktır.
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Bu çalışmada, R bir birimli halka ve 0 ̸= d, R nin bir türevi olmak üzere

“her x ∈ R için ya d(x) = 0 ya da d(x) R de tersinirdir” kabulü temel hipotez

olarak geçecektir.

Öncelikle ana teoremin ispatı için gerekli olan yardımcı özellikler

verilecektir.

Yardımcı Özellik 3.1 Eğer x ∈ R için d(x) = 0 ise o zaman ya x = 0 dır

ya da x tersinirdir.

İspat d(x) = 0 olacak şekilde bir 0 ̸= x ∈ R olsun. Hipotezden d ̸= 0

olduğundan d(y) ̸= 0 olacak şekilde bir y ∈ R vardır ve d(y) elemanı R de

tersinirdir. Böylece d(yx) = d(y)x + yd(x) = d(y)x elde edilir. Burada x ̸= 0

olduğundan d(yx) ̸= 0 olmalıdır. Bu ise hipotezden d(yx) in R de tersinir

olduğunu verir. Son bağıntının her iki tarafı soldan d(y)−1 ∈ R ile çarpılarak

x = d(y)−1d(yx) bulunur. Bir halkada tersinir elemanların çarpımının da

bir tersinir eleman olduğu gerçeğinden, x ∈ R elemanının tersinir olması

gerektiğine ulaşılır.

Yardımcı Özellik 3.1 in bir sonucu olarak aşağıdaki yardımcı özellik elde

edilir.

Yardımcı Özellik 3.2 Eğer R nin bir tek yanlı ideali (0) ̸= L ise o zaman

d(L) ̸= {0} dır.

İspat Hipotezden d(R) ̸= {0} olduğundan eğer L = R ise {0} ̸= d(L) olur

ve böylece ispat biter. O zaman L ̸= R olduğunu varsayalım. Eğer 0 ̸= a ∈ L

ise kabulden dolayı a nın tersinir olamayacağı açıktır. Dolayısıyla Yardımcı

Özellik 3.1 den d(a) ̸= 0 olmalıdır. Böylece d(L) ̸= {0} dır. Buradan L nin

sıfırdan farklı elemanları üzerinde d nin sıfır olamayacağı görülmüş olur.

Yardımcı Özellik 3.1 in diğer bir sonucu da aşağıdaki gibidir:

Yardımcı Özellik 3.3 Eğer R deki bazı x ̸= 0 elemanları için 2x = 0 ise o

zaman 2R = (0) dır.

İspat 2x = 0 olacak şekilde bir 0 ̸= x ∈ R var olduğunu kabul edelim. O

zaman 0 = d(2x) = 2d(x) olur. Burada eğer d(x) = 0 ise Yardımcı Özellik 3.1

den x tersinir olmalıdır. Bu durumda 2x = 0 olduğundan 0 = (2x)x−1 = 2

bulunur ve böylece 2R = (0) olur. Diğer yandan, eğer d(x) ̸= 0 ise hipotez
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gereği d(x) tersinir olmalıdır. Böylece son bağıntıdan 0 = (2d(x))d(x)−1 = 2

elde edilir ve dolayısıyla 2R = (0) olur. Her iki durumda da 2R = (0) olduğu

sonucuna ulaşılır.

Yardımcı Özellik 3.3 aslında R nin 2-burulmalı olması için gerek ve yeter

bir koşulun R nin karaktersitiğinin 2 olması gerektiğini söyler.

Yardımcı Özellik 3.4 Eğer R nin bir öz sol ideali L ise o zaman L hem

maksimal hem de minimaldir.

İspat İspat için öncelikle R nin her öz sol idealinin aslında R nin bir maksimal

sol ideali olduğunu görelim: O halde R nin L ⊆ T koşulunu sağlayan iki öz

sol ideali L ve T olsun. Bu durumda L + d(L) = {a + d(b) : a, b ∈ L} ⊆ R

kümesini ele alalım. Öncelikle 0 ∈ L + d(L) olduğu açıktır. Her a, b, c, e ∈ L

her r ∈ R için

(a+ d(b))− (c+ d(e)) = (a− c) + d(b− e) ∈ L+ d(L)

olur. Ayrıca rd(b) = d(rb)− d(r)b olduğundan

r(a+ d(b)) = ra+ rd(b) = ra+ d(rb)− d(r)b ∈ L+ d(L)

olur. Son iki bağıntı, L + d(L) kümesinin R nin bir sol ideali olduğunu verir.

Kabulden L bir öz sol ideal olduğundan L ̸= (0) dır ve Yardımcı Özellik 3.2

den d(L) ̸= {0} olmalıdır. Dolayısıyla d(y) ̸= 0 olacak şekilde bir y ∈ L vardır

ve hipotezden d(y) tersinirdir. Üstelik d(y) ∈ d(L) ⊆ L + d(L) olduğundan

L + d(L) sol ideali R nin bazı tersinir elemanlarını içerir. Bu ise R = L +

d(L) olduğunu verir. Böylece eğer t ∈ T ise, T ⊆ R = L + d(L) olduğundan

t = a+ d(b) olacak şekilde a, b ∈ L vardır ve L ⊆ T olduğundan d(b) = t− a ∈

T ∩ d(L) olur. Burada eğer T ∩ d(L) ̸= {0} ise o zaman T sol ideali R nin

bazı tersinir elemanlarını içerir ve böylece T = R çelişkisine ulaşılır. O zaman

d(b) = t − a ∈ T ∩ d(L) = {0} olduğundan t = a ∈ L ve dolayısıyla T ⊆ L

olur. Ayrıca L ⊆ T kabulünden dolayı L = T elde edilir. Böylece L sol ideali

bir maksimal sol ideali olur.

Benzer şekilde R nin M ⊆ L olacak şekilde keyfi bir öz sol M idealinin de

maksimal sol ideal olduğu görülebilir. Bu iseM = L olduğunu verir. Dolayısıyla

L bir minimal sol idealdir.
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Not Benzer işlemler R nin bir öz sağ ve ya öz iki yanlı ideali için yapılırsa

benzer sonuçlar elde edilir.

Şimdi R nin yapısı daraltılabilir:

Yardımcı Özellik 3.5 (a) Eğer R nin bir öz ideali I ise o zaman I2 = (0)

dır.

(b) Eğer 2R ̸= (0) ise o zaman R basittir.

İspat (a) Eğer R nin bir öz ideali I ise o zaman d(I2) ⊂ d(I)I + Id(I) ⊂ I

olur. Böylece d(I2) ⊂ I elde edilir. Burada I2 ̸= (0) ise Yardımcı Özellik 3.2

den d(I2) ̸= {0} olur. Buradan d(y) ̸= 0 olacak şekilde bir y ∈ I2 vardır ve

hipotezden d(y) tersinir olmalıdır. Ayrıca d(I2) ⊆ I olduğundan d(y) ∈ I dır.

Bu durumda I ideali R nin d(y) gibi bir tersinir elemanını içerir ve buradan

I = R çelişkisi elde edilir. Böylece I2 = (0) sonucuna ulaşılır.

(b) 2R ̸= (0) olduğunu varsayalım ve R nin bir öz ideali I olsun. O zaman

Yardımcı Özellik 3.2 den d(I) ̸= {0} dır. Bu durumda d(b) ̸= 0 olacak şekilde

bir b ∈ I vardır ve hipotezden d(b) tersinir olmalıdır. Ayrıca (a) dan I2 = (0)

dır ve b ∈ I olduğundan b2 = 0 olur. Böylece

0 = d2(b2) = d(d(b)b+ bd(b)) = d(d(b)b) + d(bd(b))

= d2(b)b+ d(b)d(b) + d(b)d(b) + bd2(b)

= d2(b)b+ 2d(b)2 + bd2(b)

elde edilir. Son bağıntıda d2(b)b+ bd2(b) ∈ I olması, 2d(b)2 ∈ I olduğunu verir.

O zaman 4d(b)4 = (2d(b))2 ∈ I2 = (0) elde edilir. Böylece d(b) tersinir bir

eleman olduğundan 4 = 0 dır. Burada 2R ̸= (0) olduğundan 2y ̸= 0 olacak

şekilde bir y ∈ R vardır ve özel olarak 0 ̸= z = 2y ∈ R alırsak 2z = 4y = 0

olur. Bu ise Yardımcı Özellik 3.3 den 2R = (0) çelişkisini verir. Böylece R nin

öz ideali yoktur, dolayısıyla R bir basit halkadır.

Yardımcı Özellik 3.4 ve 3.5 i birleştirerek, Teorem 2.5 den eğer 2R ̸= (0)

ise o zamanD bir bölümlü halka olmak üzere yaR = D ya daR = D2 olduğunu

görürüz. Herhangi bir D bölümlü halkası ve D nin sıfırdan farklı bir d türevi,

her x ∈ D için ya d(x) = 0 dır ya da d(x) tersinirdir, koşulunu kesin olarak

sağlar. Şimdi bir D bölümlü halkası üzerinde 2 × 2 tipinde matrisler halkası

D2 nin bu koşulu sağlayan sıfırdan farklı bir d türevine sahip olabilmesi için
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D halkası üzerindeki koşulun ne olması gerektiğini analiz edelim. Bu analizi

yapmak için öncelikle keyfi bir halka üzerinde 2×2 tipinde matrisler halkasının

türevlerini araştırmamız gerekir. Aşağıdaki iki yardımcı özellikte S herhangi

bir birimli halka, R = S2 ve d, R nin herhangi bir türevi kabul edilecektir.

Literatürde çok iyi bilinen aşağıdaki Yardımcı Özellik 3.6, (Bergen et al., 1983)

de ispatsız olarak yer almıştır. Şimdi bu özelliğin ispatını verelim:

Yardımcı Özellik 3.6 S herhangi bir birimli halka ve R = S2 olsun. Eğer

R nin bir türevi d ise o zaman eij ∈ R elemanı (i, j). içeriği 1, diğer tüm

içerikleri 0 olan matris olmak üzere

d(e11) =

0 α

β 0

 , d(e12) =

−β γ

0 β

 ,

d(e21) =

−α 0

−γ α

 , d(e22) =

 0 −α

−β 0


ve her a ∈ S için

d

a 0

0 a

 =

 f(a) aα− αa

−(aβ − βa) f(a) + aγ − γa


olacak şekilde α, β, γ ∈ S ve S nin bir f türevi vardır.

İspat Burada S nin birim elemanını 1 ve sıfırını 0 ile gösterelim. O zaman R

nin birim elemanı 1R ve sıfırı 0R olmak üzere 1R =

1 0

0 1

 ve 0R =

0 0

0 0


olur. Böylece d(1R) = d(1R1R) = d(1R)1R + 1Rd(1R) = d(1R) + d(1R)

eşitliğinden, d(1R) = 0R dır. Ayrıca 1R = e11+e22 olduğundan d(e11) = −d(e22)

olur. Şimdi a, b, c, e ∈ S olmak üzere d(e11) =

a b

c e

 ∈ R olsun. Bu durumda

d(e22) =

−a −b

−c −e

 olur ve e11e22 = 0R dan

0R = d(e11e22) = d(e11)e22 + e11d(e22)

=

a b

c e

 e22 + e11

−a −b

−c −e


=

−a 0

0 e


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bulunur. Bu ise a = 0 = e demektir. Burada α, β ∈ S olmak üzere b = α,

c = β denilirse d(e11) =

0 α

β 0

 ve d(e22) =

 0 −α

−β 0

 elde edilir. Şimdi

d(e12) =

a b

c e

 ∈ R olsun. Burada e12 = e11e12 olduğundan

a b

c e

 = d(e12) = d(e11e12) = d(e11)e12 + e11d(e12)

=

0 α

β 0

 e12 + e11

a b

c e


=

a b

0 β


olur. Benzer şekilde e12 = e12e22 eşitliğindena b

0 β

 = d(e12) = d(e12e22) = d(e12)e22 + e12d(e22)

=

a b

0 β

 e22 + e12

 0 −α

−β 0


=

−β b

0 β


bağıntısına ulaşılır. Böylece a = −β olur ve γ ∈ S olmak üzere b = γ alınarak

d(e12) =

−β γ

0 β

 elde edilir. Şimdi d(e21) =

a b

c e

 ∈ R olsun. e21 = e21e11

olduğundana b

c e

 = d(e21) = d(e21e11) = d(e21)e11 + e21d(e11) =

a 0

c α


olur. Buradan e = α ve b = 0 elde edilir. Ayrıca e21 = e22e21 eşitliğindena 0

c α

 = d(e21) = d(e22e21) = d(e22)e21 + e22d(e21) =

−α 0

c α


bulunur. O zaman a = −α dır. Üstelik e12e21 = e11 eşitliği kullanılarak0 α

β 0

 = d(e11) = d(e12e21) = d(e12)e21 + e12d(e21) =

γ + c α

β 0


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elde edilir. Buradan γ + c = 0 yani c = −γ sonucuna ulaşılır. Bu sonuçların

ışığı altında d(e21) =

−α 0

−γ α

 elde edilir. Şimdi s ∈ S olmak üzere

d

s 0

0 s

 =

x y

z t

 ∈ R olsun. Böylece

s 0

0 s

 = e11

s 0

0 s

 +s 0

0 s

 e22 eşitliğinden

x y

z t

 = d

s 0

0 s

 = d

e11
s 0

0 s

+

s 0

0 s

 e22


=

 x 2y + αs− sα

βs− sβ t


bulunur. Buradan y = 2y + αs − sα yani y = sα − αs ve z = −(sβ − βs)

elde edilir. Dolayısıyla d

s 0

0 s

 =

 x sα− αs

−(sβ − βs) t

 olur. Benzer

şekilde

s 0

0 s

 =

s 0

0 s

1 −1

0 0

+

0 1

0 1

s 0

0 s

 eşitliğinden ve d nin

bir türev olduğu gerçeğinden yararlanarak

d

s 0

0 s

 =

 x t− x+ sα− αs− sγ + γs

−(sβ − βs) t


bulunur. Bu ise t − x + sα − αs − sγ + γs = sα − αs demektir. Buradan

t − x = sγ − γs elde edilir. Şimdi f : S → S dönüşümü, her a ∈ S

elemanını

a 0

0 a

 ∈ R matrisinin d türevi altındaki görüntüsünün 1. satır

1. sütun içeriğine resmetsin. Burada s1, s2 ∈ S olmak üzere d

s1 0

0 s1


=

 k l

m n

 ve d

s2 0

0 s2

 =

p q

r s

 diyelim. Böylece d nin R üzerinde

bir türev olduğu ile beraber matrislerde toplama ve çarpma tanımı kullanılarak

f(s1 + s2) = k + p = f(s1) + f(s2) ve f(s1s2) = ks2 + s1p = f(s1)s2 +

s1f(s2) olduğu görülür. Son iki bağıntıdan f , S üzerinde bir türevdir ve

d

s 0

0 s

 =

 x sα− αs

−(sβ − βs) t

 olduğundan f(s) = x olur. Ayrıca

t − x = sγ − γs ve f(s) = x eşitlikleri kullanılarak t = f(s) + sγ − γs
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elde edilir. Böylece tüm bulunan değerlerin yerine yazılması ile d

s 0

0 s


=

 f(s) sα− αs

−(sβ − βs) f(s) + sγ − γs

 olacak şekilde S üzerinde bir f türevinin

varlığı kanıtlanmış olur.

Şimdi d türevi ile R halkası arasındaki ilişki, Yardımcı Özellik 3.7 ile

birlikte ele alınacaktır. Bunun için, Yardımcı Özellik 3.6 dan yararlanılacaktır.

Yardımcı Özellik 3.7 Eğer R, S, d ve f Yardımcı Özellik 3.6 da tanımlandığı

şeklinde ise d nin R üzerinde bir iç türev olması için gerek ve yeter bir koşul

f nin S üzerinde bir iç türev olmasıdır.

İspat Eğer d, R üzerinde M =

s t

u v

 ∈ R elemanı ile belirli bir iç türev ise

her x ∈ S için d

x 0

0 x

 =

sx− xs tx− xt

ux− xu vx− xv

 olur. Ayrıca Yardımcı

Özellik 3.6 dan

d

x 0

0 x

 =

 f(x) xα− αx

−(xβ − βx) f(x) + xγ − γx


olmalıdır. Son iki bağıntıdan her x ∈ S için f(x) = sx− xs elde edilir. Bu ise

f nin, S üzerinde s ∈ S elemanı ile belirli bir iç türev olduğunu ifade eder.

Tersine f , S üzerinde r ∈ S elemanı ile bir iç türev olsun; yani her

x ∈ S için f(x) = rx − xr olsun. O halde her T =

a b

c e

 ∈ R için

T =

a 0

0 a

 e11 +

b 0

0 b

 e12 +

c 0

0 c

 e21 +

e 0

0 e

 e22 eş,tliğinden, d

nin bir türev olduğu kullanılarak

d(T ) = d

a b

c e

 =

r −α

β r − γ

+

a b

c e

−

a b

c e

r −α

β r − γ



bulunur. Bu ise d nin R üzerinde

r −α

β r − γ

 ∈ R elemanı ile belirli bir iç

türev teşkil ettiğini ifade eder.

Şimdi R nin birimli bir halka olduğu ve her x ∈ R için ya d(x) = 0 ya

da d(x) tersinir olacak şekilde R nin sıfırdan farklı bir d türevinin var olduğu
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kabulü olan orjinal duruma geri dönülecektir. En azındanD nin karakteristiği 2

den farklı olduğunda R = D2 nin her x ∈ R için ya d(x) = 0 ya da d(x) tersinir

olacak şekilde 0 ̸= d türevine sahip olduğu D bölümlü halkaları karakterize

edilecektir.

Yardımcı Özellik 3.8 Eğer R = D2 ve 2R ̸= (0) ise d bir iç türevdir.

İspat d, f , α, β, γ Yardımcı Özellik 3.6 tanımlandığı gibi olsun. O zaman

Yardımcı Özellik 3.7 den f nin D üzerinde bir iç türevi olduğunu göstermek,

ispatı tamamlamak için yeterlidir. Eğer a, b, c, d ∈ D ise o zaman Yardımcı

Özellik 3.6 dan ve

a b

c e

 =

a 0

0 a

 e11 +

b 0

0 b

 e12 +

c 0

0 c

 e21 +e 0

0 e

 e22 eşitliğinden,

d

a b

c e

 =

 f(a)− bβ − αc f(b) + aα + bγ − αe

f(c) + βa− eβ − γc f(e) + eγ − γe+ βb+ cα

 (1)

bulunur. Burada e11 ̸= 0R ve e11 ∈ R tersinir olmadığından Yardımcı Özellik

3.1 den d(e11) ̸= 0R dır. O halde hipotez gereği d(e11) ∈ R tersinir olmalıdır.

Yardımcı Özellik 3.6 dan d(e11) =

0 α

β 0

 olduğu göz önüne alınarak α, β ∈

D elemanlarının tersinir elemanlar olduğu sonucuna ulaşılır. Böylece (1) den

u = f(α−1f(a)) + βa − α−1aαβ − γα−1f(a) ve v = f(α−1aα) + α−1aαγ −

γα−1aα + α−1f(a)α olmak üzere

d

 a 0

α−1f(a) α−1aα

 =

0 0

u v


elde edilir. Burada

0 0

u v

 ∈ R tersinir olmadığından hipotezden u = v

= 0 olmalıdır. Ayrıca f bir türev olduğundan f(1) = 0 dır. Böylece 0 = f(1)

= f(α−1α) = f(α−1)α + α−1f(α) olur. Son eşitlikten f(α−1) = −α−1f(α)α−1

elde edilir. Buradan f bir türev olduğundan ve son bağıntıdan

0 = v = −α−1f(α)α−1aα + α−1f(a)α + α−1af(α)

+ α−1aαγ − γα−1aα + α−1f(a)α
(2)

elde edilir. Yukarıdaki eşitlik

2α−1f(a)α = α−1f(α)α−1aα + γα−1aα− α−1af(α)− α−1aαγ
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olarak düzenlenir ve eşitliğin her iki tarafı soldan α ∈ D, sağdan α−1 ∈ D ile

çarpılarak

2f(a) = (f(α)α−1 + αγα−1)a− a(f(α)α−1 + αγα−1)

bağıntısına ulaşılır. D bir bölümlü halka ve charD ̸= 2 olduğundan 0 ̸= 1 + 1

= 2 ∈ D dir ve dolayısıyla 2 ∈ D tersinirdir. Son bağıntıda eşitliğin her iki

tarafı 2 ∈ D elemanının tersi ile çarpılarak her a ∈ D için

f(a) =
f(α)α−1 + αγα−1

2
a− a

f(α)α−1 + αγα−1

2

elde edilir. Sonuç olarak f , D üzerinde 1
2
(f(α)α−1 + αγα−1) ∈ D elemanı ile

belirli bir iç türevdir. Böylece ispat tamamlanır.

Şimdi D2 nin, üzerinde her x ∈ D2 için ya d(x) = 0 ya da d(x)

tersinir olacak şekilde bir 0 ̸= d iç türevine sahip olduğu D bölümlü

halkaları (karakteristikten bağımsız olarak) tamamen karakterize edilecektir.

Bu yapılırken şu ana kadar elde edilen sonuçlar ışığında, üzerinde her x ∈ R

için ya d(x) = 0 ya da d(x) tersinir olacak şekilde bir 0 ̸= d türevi tanımlı

olan, 2R ̸= (0) olacak şekildeki tüm halkalar tamamen betimlenecektir.

Yardımcı Özellik 3.9 Eğer D bir bölümlü halka ise R = D2 halkasının her

x ∈ R için ya d(x) = 0 ya da d(x) tersinir olacak şekilde bir 0 ̸= d iç türevinin

var olması için gerek ve yeter bir koşul D nin, merkezi Z deki tüm ikinci

dereceden genişlemeleri içermemesidir.

İspat R üzerinde bu şartı sağlayan M ∈ R elemanı ile belirli bir iç türev

olduğunu varsayalım. Şimdi M nin bir köşegen matris olamayacağını görelim:

Eğer M =

a 0

0 b

 olacak şekilde a, b ∈ D var ise

Me12 − e12M =

a 0

0 b

 e12 − e12

a 0

0 b

 =

0 a− b

0 0


bulunur. Bu matris tersinir olmadığından, hipotezden

0 a− b

0 0

 = 0R dır

ve böylece a = b dir. Buradan M =

a 0

0 a

 bulunur. Böylece her c ∈ D için

a 0

0 a

c 0

0 0

−

c 0

0 0

a 0

0 a

 =

ac− ca 0

0 0


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elde edilir. Bu matris tersinir olmadığından hipotezden ac− ca = 0 olmalıdır.

Bu ise her c ∈ D için ac = ca olmasını gerektirir. O zaman a ∈ Z dir ve

dolayısıyla M ∈ Z(R) olur. Buradan M ∈ R elemanı ile belirli bir d iç

türevinin sıfır türevi olması gerektiği sonucuna ulaşılır. Fakat bu hipotez ile

çelişeceğinden kabul yanlıştır. O zaman M ∈ R bir köşegen matris olamaz.

Buradan hareketle M =

p q

r s

 ∈ R olmak üzere q ̸= 0 veya r ̸= 0 dır. Eğer

q ̸= 0 ise TMT−1 =

0 1

α β

 olacak şekilde T =

1 0

p q

 ∈ R tersinir matrisi

vardır ve burada T−1 =

 1 0

−q−1p q−1

, α = qr − qsq−1p, β = p+ qsq−1 ∈ D

dir. Eğer r ̸= 0 ise TMT−1 =

0 1

α β

 olacak şekilde T =

0 1

r s

 ∈ R

tersinir matrisi vardır ve burada T−1 =

−r−1s r−1

1 0

, α = −rpr−1s + rq,

β = rpr−1+s ∈ D dir. Sonuç olarak α, β ∈ D olmak üzere TMT−1 =

0 1

α β


olacak şekilde bir T ∈ R tersinir matrisi vardır. Genelliği kaybetmeden d nin,

TMT−1 ∈ R elemanı ile belirli bir iç türev olduğunu kabul edelim. Eğer γ ∈ D

ise o zaman

d

γ 0

0 γ

 =

0 1

α β

γ 0

0 γ

−

γ 0

0 γ

0 1

α β

 =

 0 0

αγ − γα βγ − γβ


olur. Bu matris tersinir olmadığından, hipotezden sıfır matrisi olmalıdır ve

bunun sonucunda αγ− γα = 0 = βγ− γβ elde edilir. Böylece α, β ∈ Z olduğu

sonucuna ulaşılır. Ayrıca

d(

0 1

α β

) =

0 1

α β

0 1

α β

−

0 1

α β

0 1

α β

 =

0 0

0 0


olduğundan Yardımcı Özellik 3.1,

0 1

α β

 ∈ R matrisinin tersinir olduğunu

söyler. Buradan α ̸= 0 olmalıdır. Böylece α ∈ D olduğundan α−1 ∈ D dir. Bu

durumda γ ∈ D için

d

0 1

0 γ

 =

0 1

α β

0 1

0 γ

−

0 1

0 γ

0 1

α β

 =

 −α γ − β

−αγ α


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bulunur. Burada α ̸= 0 olduğundan bu matris sıfır matrisi olamaz. O zaman

hipotez gereği bir tersinir matristir. Bu durumda α, β ∈ Z olduğundan

0 ̸= −α2 − (γ − β)(−αγ) = α(γ2 − βγ − α) olur. Son bağıntıdan α−1 ∈ D

olduğundan her γ ∈ D için γ2 − βγ − α ̸= 0 elde edilir. Diğer bir deyişle,

Z üzerinde t2 − βt − α ikinci dereceden polinomunun D içinde hiçbir kökü

yoktur ve böylece D, Z nin tüm ikinci dereceden genişlemelerini içermez. Son

olarak dM ve dTMT−1 , sırasıyla M ∈ R ve TMT−1 ∈ R elemanları ile belirli

iç türevler olmak üzere, her X ∈ R için ya dM(X) = 0R ya da dM(X) tersinir

olması için gerek ve yeter bir koşulun ya dTMT−1(X) = 0R ya da dTMT−1(X)

tersinir olması olduğu gösterilirse ispatın ilk kısmı tamamlanır. Öncelikle

ϕ : R → R dönüşümünü her X ∈ R için ϕ(X) = TXT−1 şeklinde

tanımlayalım. Bu durumda ϕ, R nin bir iç otomorfizmasıdır. Ek olarak d,

R üzerinde bir türev olmak üzere dϕ = ϕdϕ−1 olsun. Buradan her X, Y ∈ R

için

dϕ(X + Y ) = ϕdϕ−1(X + Y ) = ϕd(ϕ−1(X + Y ))

= ϕd(ϕ−1(X) + ϕ−1(Y ))

= ϕ(dϕ−1(X) + dϕ−1(Y ))

= ϕdϕ−1(X) + ϕdϕ−1(Y )

= dϕ(X) + dϕ(Y )

dir ve aynı zamanda

dϕ(XY ) = ϕdϕ−1(XY ) = ϕd(ϕ−1(X)ϕ−1(Y ))

= ϕ(d(ϕ−1(X)ϕ−1(Y ))

= ϕ(d(ϕ−1(X))ϕ−1(Y ) + ϕ−1(X)d(ϕ−1(Y ))

= ϕdϕ−1(X)Y +Xϕdϕ−1(Y )

= dϕ(X)Y +Xdϕ(Y )

olur. Son iki bağıntıdan dϕ, R üzerinde bir türev teşkil eder. Şimdi d, M ∈ R

elemanı ile belirli iç türev olsun. Bu durumda her X ∈ R için

dϕ(X) = ϕdϕ−1(X) = ϕ(dϕ−1(X))

= ϕ(Mϕ−1(X)− ϕ−1(X)M)

= ϕ(M)X −Xϕ(M)

= (TMT−1)X −X(TMT−1)
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olur; yani dϕ dönüşümü, TMT−1 ∈ R elemanı ile belirli iç türev olur. Öncelikle

her X ∈ R için ya d(X) = 0R ya da d(X) tersinir olduğunu kabul edelim. Her

X ∈ R için ϕ−1(X) ∈ R olacağından ya dϕ−1(X) = 0R ya da dϕ−1(X) tersinir

olmalıdır. ϕ, R nin bir otomorfizması olduğundan son bağıntı ya ϕdϕ−1(X)

= 0R ya da ϕdϕ−1(X) tersinir olduğunu verir. Bu durumda her X ∈ R için ya

dϕ(X) = 0R dir ya da dϕ(X) tersinirdir. Tersine her X ∈ R için ya dϕ(X) = 0R

ya da dϕ(X) tersinir olduğunu kabul edelim. Buradan ya ϕdϕ−1(X) = 0R ya

da ϕdϕ−1(X) tersinirdir. Ayrıca ϕ, R nin bir otomorfizması olduğundan ϕ−1

örtendir. Bu durumda her Y ∈ R için ϕ−1(X) = Y olacak şekilde bir X ∈ R

vardır. O zaman her Y ∈ R için ya ϕd(Y ) = 0R ya da ϕd(Y ) tersinir olur.

Tekrar ϕ bir otomorfizma olduğundan ya d(Y ) = 0R ya da d(Y ) tersinir olduğu

açıktır. Böylece ispatın ilk kısmı tamamlanmış olur.

Tersine eğer D, Z nin tüm ikinci dereceden genişlemelerini içermiyorsa,

αx2 − βx− 1 polinomunun D de çözümü olmayacak şekilde α, β ∈ Z vardır ve

α ̸= 0 dır. Şimdi d,D2 üzerinde

0 1

α β

 ∈ D2 elemanı ile belirli iç türev olsun.

Burada d nin her sıfırdan farklı değerinin tersinir olduğunu iddia ediyoruz.

a, b, c, e ∈ D olmak üzere

d

a b

c e

 =

0 1

α β

a b

c e

−

a b

c e

0 1

α β


=

 c− αb e− a− βb

α(a− e) + βc αb− c


bulunur. Buradam = c−αb ve n = e−a−βb denilirse −αn+βm = α(a−e)+βc

olur ve son bağıntıdan

d

a b

c e

 =

 m n

−αn+ βm −m


elde edilir. İlk olarak m = 0 olduğunu kabul edelim. O zaman son bağıntıdan

d

a b

c e

 =

 0 n

−αn 0

 olur. Bu durumda α ̸= 0 olduğundan eğer

n = 0 ise d

a b

c e

 = 0R olur, eğer n ̸= 0 ise d

a b

c e

 tersinir

olur ve böylece hipotez sağlanmış olur. Diğer taraftan eğer m ̸= 0 ise o zaman
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ω = m−1n olmak üzere

d

a b

c e

 =

 m n

−αn+ βm −m

 =

m 0

0 m

 1 ω

−αω + β −1


olur. Burada m ̸= 0 olduğundan d

a b

c e

 matrisinin tersinir olması için

gerek ve yeter bir koşul

 1 ω

−αω + β −1

 matrisinin tersinir olmasıdır. O

zaman 0 ̸= −1−ω(−αω+β) = αω2−βω− 1 dir. Fakat α ve β seçilişlerinden,

her ω ∈ D için αω2 − βω − 1 ̸= 0 dır. Böylece d, D2 üzerinde tüm sıfırdan

farklı değerleri tersinir olan bir iç türevdir.

Teorem 3.1 in ispatını tamamlamak için geriye kalan tek durum 2R = (0),

R ̸= D ve R ̸= D2 olduğu durumdur. Bu durum, Yardımcı Özellik 3.10 ile

birlikte ele alınacaktır.

Yardımcı Özellik 3.10 Eğer R bir basit halka değil ise o zaman D bir bölümlü

halka olmak üzere R = D[x]/(x2) dir. Burada charD = 2, d(D) = {0} ve Z,

D nin merkezi olmak üzere d(x) = 1 + ax olacak şekilde a ∈ Z vardır. Üstelik

d bir iç türev değildir.

İspat R nin bir basit halka olmadığını varsayalım. Bu durumda R nin M gibi

bir öz ideali vardır. Yardımcı Özellik 3.5 den M2 = (0) ve 2R = (0) dır. Ayrıca

Yardımcı Özellik 3.4 ten M , R nin hem maksimal hem de minimal (sağ, sol,

iki yanlı) idealidir.

Şimdi R nin tek öz (sağ, sol, iki yanlı) idealinin M olduğunu görelim.

Eğer R nin M ̸= N olacak şekilde bir öz N ideali var ise Yardımcı

Özellik 3.4 ten N , R nin hem maksimal hem de minimal ideali olur. Burada

N ⊆ M + N olduğundan ve N nin maksimalliğinden ya N = M + N dir

ya da R = M + N dir. Eğer N = M + N ise M ⊆ N dir. Böylece M nin

maksimalliğinden M = N çelişkisine ulaşılır. Eğer R = M + N ise M2 = (0)

olduğundan M =MR =M(M +N) ⊆M2+MN =MN ⊆ N elde edilir. Bu

durumda da M nin maksimalliğinden M = N çelişkisine ulaşılır. O zaman R

nin tek öz ideali M dir. Benzer şekilde R nin tek öz sağ ve öz sol idealinin de

M olduğu görülür.

Yardımcı Özellik 3.4 ün ispatından, R = M + d(M) olduğundan

yararlanarak, eğer r ∈ R ise d(r) = m + d(n) olacak şekilde m,n ∈ M
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vardır. Böylece d(r − n) = m ∈ M ∩ d(R) olur. Şimdi M ∩ d(R) = {0}

olduğunu görelim. Burada eğer bir 0 ̸= x ∈ M ∩ d(R) var ise, 0 ̸= x ∈ d(R)

olduğundan, hipotez gereği x tersinir olmalıdır. Ayrıca x ∈ M olduğundan, R

nin bazı tersinir elemanları M de içerilir. Bu ise M = R çelişkisini verir.

O zaman M ∩ d(R) = {0} dır ve d(r − n) = m ∈ M ∩ d(R) = {0}

dan d(r − n) = 0 olur. Bu nedenle, eğer D = Ker d denilirse o zaman

d(0) = 0 = d(1) olduğundan 0, 1 ∈ D olduğu açıktır. Ayrıca her x, y ∈ D

için d(x−y) = d(x)−d(y) = 0−0 = 0 ve d(xy) = d(x)y+xd(y) = 0y+x0 = 0

dan D, R nin bir birimli alt halkası olur. Şimdi bir 0 ̸= x ∈ D olsun. Burada

d(x) = 0 olduğundan, Yardımcı Özellik 3.1 den x tersinirdir ve

0 = d(1) = d(xx−1) = d(x)x−1 + xd(x−1) = xd(x−1)

bulunur. Burada son bağıntının her iki tarafı soldan x−1 ∈ R ile çarpılarak

d(x−1) = 0 elde edilir. O zaman x−1 ∈ D dir. Böylece tüm bu verilerin ışığı

altında D nin, R nin bir bölümlü alt halkası olduğu sonucuna ulaşılır. Yukarıda

d(r−n) = m = 0 olarak bulunduğundan, r−n ∈ D dir. Buradan R ⊆ D+M

elde edilir. Ayrıca D +M ⊆ R olduğu açıktır. Böylece R = D +M olur.

Diğer taraftan 0 ̸= x ∈M ise o zaman M , R nin bir öz ideali olduğundan

Dx ⊆M ̸= R dir. Her s1, s2 ∈ D için

s1x− s2x = (s1 − s2)x ∈ Dx

olur. Ayrıca M2 = (0) olduğu gerçeği göz önünde bulundurularak, her

r = e+ f ∈ R = D +M ve s ∈ D için

r(sx) = (e+ f)sx = (es)x+ (fs)x = (es)x ∈ Dx

olur. Son iki bağıntı Dx in, R nin bir sol ideali olduğunu verir. Üstelik

0 ̸= x = 1x ∈ Dx olduğundan Dx ̸= (0) dır. Burada M nin tekliğinden

Dx = M dir. Böylece R = D +M eşitliğinden, R = D + Dx elde edilir. Bu

durumda d(x) ∈ R olduğundan d(x) = s + tx olacak şekilde s, t ∈ D vardır.

İlk olarak s ̸= 0 olduğunu görelim. Eğer s = 0 ise d(x) = tx ∈ Dx = M

olduğundan, d(x) = 0 ise Yadımcı Özellik 3.1 den x tersinir olmalıdır ve

x ∈M olduğundan R nin bazı tersinir elemanları M de içerilir. Bu ise M = R

çelişkisini verir. Eğer d(x) ̸= 0 olursa hipotezden d(x) tersinirdir ve d(x) ∈M

olduğundan benzer şekildeM = R çelişkisine ulaşılır. O zaman s ̸= 0 olmalıdır.
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Böylece s−1 ∈ D dir ve Ds−1x = Dx olur. Bu ise R = D + Ds−1x olduğunu

verir. Ayrıca d(D) = {0} dan d(s−1x) = s−1d(x) = s−1(s + tx) = 1 + s−1tx

= 1 + s−1tss−1x bulunur. Burada 0 ̸= s−1x = y ∈ M ve s−1ts = a ∈ D

denilirse R = D +Dy ve d(y) = 1 + ay olur. Bu durumda bir 0 ̸= x ∈M için

R = D + Dx olduğunu ve d(x) = 1 + ax olacak şekilde bir a ∈ D olduğunu

kabul edebilebilir.

Eğer s ∈ D ise o zaman M = Rx, M2 = (0), d(s) = 0 ve bir a ∈ D için

d(x) = 1 + ax gerçeğinden, sx ∈M = Rx ve (sx)2 = 0 olması kullanılarak

0 = d(0) = d((sx)2) = d(sxsx)

= sxd(sx) + d(sx)sx

= sx(d(s)x+ sd(x)) + (d(s)x+ sd(x))sx

= sxs(1 + ax) + s(1 + ax)sx

= sxs+ sxsax+ s2x+ saxsx

= sxs+ s2x

= s(xs+ sx)

elde edilir. Eğer s ̸= 0 ise s nin tersinirliğinden ve son bağıntıdan xs+ sx = 0

bulunur. Eğer s = 0 olursa xs+sx = 0 eşitliği sağlanır. Bu durumda her s ∈ D

için xs + sx = 0 dır ve 2R = (0) olduğundan her s ∈ D için xs = sx olur.

Böylece her r = a+ bx ∈ R = D +Dx için

(a+ bx)x = ax+ bx2 = ax+ 0 = ax = xa = xa+ 0 = xa+ xbx = x(a+ bx)

bulunur. Son bağıntı, x ∈ Z(R) olduğunu verir.

Şimdi R = D[x]/(x2) olduğunu görelim. Burada D[t] = {
∑n

i=0 ait
i : ai ∈

D, 0 ≤ i ≤ n, n ∈ N} olmak üzere ϕ : D[t] → R = D +Dx dönüşümünü her∑n
i=0 ait

i ∈ D[t] için ϕ(
∑n

i=0 ait
i) = a0 + a1x şeklinde tanımlayalım. Burada ϕ

nin bir örten halka homomorfizması olduğu açıktır. Ek olarak eğer
∑n

i=0 ait
i ∈

Ker ϕ ise 0 = ϕ(
∑n

i=0 ait
i) = a0 + a1x olur. Burada eşitliğin her iki tarafı

sağdan x ∈ R ile çarpılarak M2 = (0) olduğundan 0 = 0x = (a0+a1x)x = a0x

elde edilir. Burada eğer a0 ̸= 0 olursa a0 ∈ D olduğundan x = 0 çelişkisine

ulaşılır. O zaman a0 = 0 dır ve dolayısıyla 0 = a0 + a1x = a1x olur. Bu

durumda a1 ̸= 0 ise benzer şekilde x = 0 çelişkisine ulaşılır. O zaman a1 = 0
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dır. Böylece t2 ∈ Z(D[t]) ve D[t] bir birimli halka olduğundan

Kerϕ = {
n∑

i=2

ait
i : ai ∈ D, 2 ≤ i ≤ n, n ∈ N}

= {a2t2 + a3t
3 . . . ant

n : ai ∈ D,n ∈ N}

= {(a2 + a3t . . . ant
n−2)t2 : ai ∈ D,n ∈ N}

= {pt2 : p ∈ D[t]}

= (t2)

olur. Halkalarda I. İzomorfizma Teoremi nden R ∼= D[t]/(t2) dir. Buradan

R = D[x]/(x2) olur.

Şimdi eğer s ∈ D ise o zaman sx+ xs = 0 olur ve böylece

0 = d(0) = d(sx+ xs) = d(sx) + d(xs) = d(s)x+ sd(x) + d(x)s+ xd(s)

= s(1 + ax) + (1 + ax)s

= sax+ axs

= (sa+ as)x

bulunur. Burada sa + as ∈ D dir ve D nin sıfırdan farklı her elemanı R de

tersinir olduğundan, eğer sa + as ̸= 0 ise son bağıntıdan x = 0 çelişkisi elde

edilir. O zaman sa + as = 0 olmalıdır ve 2R = (0) olduğundan sa = as olur.

Bu ise a nın, D nin merkezinde olmasını gerektirir.

Son olarak, d nin bir iç türev olmadığını görelim: Burada eğer d, bir a ∈ R

elemanı ile belirli iç türev ise M , R nin bir öz ideali olduğundan bir 0 ̸= x ∈M

için d(x) = ax−xa ∈M dir. Burada eğer d(x) ̸= 0 ise hipotezden d(x) tersinir

olmalıdır. Böylece d(x) ∈ M olduğundan M = R çelişkisine ulaşılır. O zaman

d(x) = 0 olmalıdır. Bu ise x ̸= 0 olduğundan ve Yardımcı Özellik 3.1 den x

in tersinir olması demektir ki, buradan tekrar x ∈ M olduğundan M = R

çelişkisine ulaşılır. O zaman d bir iç türev değildir.

Şimdi başlangıçta belirtilen ve aşağıdaki gibi verilen ana sonuç

ispatlanabilir.

Teorem 3.1 Bir birimli R halkasının her bir x ∈ R için ya d(x) = 0 ya da

d(x) tersinir olacak şekilde bir 0 ̸= d türevi var olsun. O zaman R halkası

1. bir D bölümlü halkasıdır, ya da
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2. D bir bölümlü halka olmak üzere D2 dir, ya da

3. D bir bölümlü halka olmak üzere D[x]/(x2) dir ve charD = 2,

d(D) = {0}, d(x) = 1 + ax olacak şekilde D nin merkezi Z de bir a

elemanı vardır.

Üstelik, eğer 2R ̸= (0) ise o zaman R = D2 olması için gerek ve yeter

bir koşul D nin merkezi Z nin tüm ikinci dereceden genişlemelerinin D de

içerilmemesidir, denk olarak; gerek ve yeter bir koşul D nin merkezi Z nin

bazı elemanlarının D nin bir elemanının karesi şeklinde yazılamamasıdır.

İspat Eğer R bir basit halka ise o zaman Yardımcı Özellik 3.4 den c(RR) ≤ 2

dir. Böylece Teorem 2.5 den D bir bölümlü halka olmak üzere ya R = D dir

ya da R = D2 dir. Üstelik 2R ̸= (0) ise o zaman Yardımcı Özellik 3.8 den D2

nin böyle bir türeve sahip olabilmesi için gerek ve yeter bir koşul D2 nin bu

özelliği taşıyan bir iç türeve sahip olmasıdır. Bununla birlikte Yardımcı Özellik

3.9 ise D2 nin böyle bir iç türevinin olması için gerek ve yeter bir koşulun D

nin, Z nin tüm ikinci dereceden genişlemelerini içermemesi olduğunu söyler.

Eğer R bir basit halka değilse Yardımcı Özellik 3.10 dan Teorem 3.1 (3)

elde edilir. Böylece teorem ispatlanır.

Geriye Teorem 3.1 ile ilgili bir soru kalır. Bu soru, Teorem 3.1 de R = D2

durumunda d nin bir iç türev olduğunu ispatlamak için 2R ̸= (0) kabulünün

gerekli olup olmadığıdır. Aşağıda sunulan örnek, 2R = (0) ise o zaman R = D2

halkasının her x ∈ R için ya d(x) = 0 ya da d(x) tersinir olacak şekilde bir

0 ̸= d dış türevine sahip olduğunu gösterir:

Örnek F = GF (2)(x)⟨⟨y⟩⟩, katsayıları GF (2) de olan bir değişkenli

rasyonel fonksiyonlar cismi üzerindeki (sonlu) Laurent serilerinin cismi olsun

ve R = M2(F ) alalım. Burada F üzerindeki bir δ türevini δ(f(x)) = 0 ve

δ(y) = xy hareketini genişleterek tanımlayalım. Şöyle ki, bu hareket altında her∑∞
m=−k fm(x)y

m ∈ F için δ(
∑∞

m=−k fm(x)y
m) =

∑∞
m=−kmfm(x)xy

m olarak

tanımlanır. Bu durumda f(x) ∈ F için δ(f(x)) = δ(f(x)y0) = 0 ve y ∈ F

için δ(y) = δ(1y1) = xy tanımları sağlanmış olur. Burada δ nın toplamsal

olduğu açıktır. Eğer a =
∑∞

m=−k fm(x)y
m ∈ F ise aE, a ∈ F de görülen y

nin çift kuvvetlerinin serisi ve aO = a − aE olmak üzere a = aE + aO olarak

yazılabilir. Burada aO, a ∈ F de görülen y nin tek kuvvetlerinin serisidir ve
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charF = 2 olduğundan δ(a) = δ(aE + aO) = δ(aO) = xaO olur. Böylece

her a = aE + aO, b = bE + bO ∈ F için δ(ab) = δ((aE + aO)(bE + bO))

= δ(aEbE + aEbO + aObE + aObO) = δ(aEbO) + δ(aObE) = xaEbO + xaObE

= xaEbO+xaObO+xaObE+xaObO = xaO(bE+bO)+(aE+aO)xbO = δ(a)b+aδ(b)

olur. Ayrıca δ toplamsal bir dönüşüm olduğundan ve son bağıntıdan δ, F nin

bir türevidir. Şimdi A =

x 1

1 0

 ∈ M2(F ) olmak üzere dA, A ∈ M2(F )

elemanı ile belirli iç türev olsun ve δ : M2(F ) → M2(F ) dönüşümünü hera b

c e

 ∈ M2(F ) için δ

a b

c e

 =

δ(a) δ(b)

δ(c) δ(e)

 şeklinde tanımlayalım.

Burada d = dA+ δ olsun. Öncelikle δ nın toplamsallığından δ nın toplamsallığı

açıktır ve matrislerde toplama ve çarpmanın tanımından her A,B ∈ M2(F )

için δ(AB) = δ(A)B+Aδ(B) olduğu kolayca görülür. Böylece δ, M2(F ) nin bir

türevidir. İki türevin toplamının da bir türev olduğu gerçeği, bize d = dA + δ

nın bir türev olduğunu verir. Şimdi d nin bir iç türev olmadığını görelim.

Eğer d bir iç türev ise

y 0

0 y

 ∈ Z(M2(F )) için

0 0

0 0

 = d

y 0

0 y


= δ

y 0

0 y

 =

δ(y) δ(0)

δ(0) δ(y)

 =

xy 0

0 xy

 olur ve böylece xy = 0

çelişkisi elde edilir. O zaman d bir iç türev değildir.

Şimdi bir

a b

c e

 ∈ M2(F ) olsun. Burada charF = 2 olduğundan, dA

ve δ tanımları kullanılarak

d

a b

c e

 =

b+ c+ xaO a+ e+ xbE

a+ e+ xcE b+ c+ xeO


bulunur. Bu durumda d ̸= 0 türevinin, her X ∈ R için ya d(X) = 0R ya da

d(X) tersinir şartını sağlayan bir türev olduğu biraz sıkıcı da olsa doğrudan

bir hesaplama ile gösterilebilir. Ayrıntılar J. Bergen in çalışmasında (Bergen

et al., 1983) atlanmıştır, fakat bu tezde tarafımızdan verilmeye çalışılmıştır.

Burada A = d

a b

c e

 =

b+ c+ xaO a+ e+ xbE

a+ e+ xcE b+ c+ xeO

 olmak üzere ya

A =

0 0

0 0

 ya da A nın tersinir olduğunu iddia ediyoruz. Bu iddiayı

ispatlamak için A nın tersinir olmadığını kabul edip A =

0 0

0 0

 olduğunu
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göstermeye çalışalım. Eğer A tersinir değilse det(A) = 0 dır ve

b+ c+ xaO = k(a+ e+ xcE)

a+ e+ xbE = k(b+ c+ xeO)

olacak şekilde bir k = kE+kO ∈ F vardır. Buradan a+e = k(b+c+xeO)+xbE

olup, son bağıntıda bu eşitlik kullanılarak

b+ c+ xaO = k(a+ e+ xcE)

= k(k(b+ c+ xeO) + x(bE + cE))

= k2(b+ c+ xeO) + kx(bE + cE)

= k2(bE + cE) + k2(bO + cO + xeO)

+ kEx(bE + cE) + kOx(bE + cE)

elde edilir. Bu durumda y nin çift kuvvetleri düşünülürse

(bE + cE)(k
2 + kEx+ 1) = 0

bulunur. Benzer şekilde b+ c = k(a+ e+ xcE) + xaO olup, buradan

a+ e+ xbE = k(b+ c+ xeO)

= k(k(a+ e+ xcE) + x(aO + eO))

= k2(a+ e+ xcE) + kx(aO + eO)

= k2(aE + eE + xcE) + k2(aO + eO)

+ kEx(aO + eO) + kOx(aO + eO)

elde edilir. Son bağıntıda y nin tek kuvvetleri düşünülürse

(aO + eO)(k
2 + kEx+ 1) = 0

bulunur. Böylece ya bE + cE = 0 = aO + eO ya da k2 + kEx + 1 = 0

olmalıdır. Burada k2 + kEx + 1 = 0 olduğunu kabul edelim. O zaman

k2 + kEx ∈ F elemanının y0 lı teriminin katsayısı 1 olmalıdır. Şimdi t ∈ Z

olmak üzere k =
∑∞

m=−t fm(x)y
m ∈ F olsun. Burada charF = 2 olduğundan

k2 =
∑∞

m=−t fm(x)
2y2m olur. Böylece k2 + kEx ∈ F elemanının y0 lı teriminin

katsayısı f0(x)2 + xf0(x) olur ve f0(x)2 + xf0(x) = 1 olmalıdır. Notasyondaki

karışıklığı gidermek adına şimdilik f0(x) = r ∈ GF (2)(x) diyelim. O zaman
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r = p
q

olacak şekilde p, q ∈ GF (2)[x] vardır ve q ̸= 0 dır. Burada eğer p = 0

ise r = 0 olur ve böylece 1 = r2 + xr = 0 çelişkisi elde edilir. O zaman

p ̸= 0 olmalıdır. Bu durumda p ̸= 0 ve q ̸= 0 olduğundan deg(p) = m ≥ 0 ve

deg(q) = n ≥ 0 olacak şekilde m,n ∈ Z vardır. Böylece

0 = f0(x)
2 + xf0(x) + 1 = r2 + xr + 1 =

p2

q2
+
xp

q
+ 1

olur. Buradan p2 + xpq + q2 = 0 ve dolayısıyla

p2 + q2 = pqx

elde edilir. Bu durumda

deg(p2 + q2) = deg(pqx) = m+ n+ 1

olmalıdır. Burada eğer m = n ise bağıntıdan deg(p2 + q2) = deg(pqx)

= 2n + 1 olur. Ayrıca char(GF (2)[x]) = 2 ve deg(p2) = 2n = deg(q2)

olduğundan deg(p2 + q2) < 2n bulunur. Bu ise 2n + 1 = deg(p2 + q2) < 2n

çelişkisini verir. O zaman m ̸= n dir, dolayısıyla ya m > n ya da n > m

olmalıdır. Bu durumda son bağıntıdan m + n + 1 = deg(pqx) = deg(p2 + q2)

= max{deg(p2), deg(q2)} = max{2m, 2n} olduğundan ya m+ n+ 1 = 2m dir

ya da m + n + 1 = 2n dir. Bu ise ya m = n + 1 ya da n = m + 1 olduğunu

verir. Sırasıyla bu iki durumu inceleyelim.

İlk olarak m = n + 1 olduğunu kabul edelim. O zaman deg(p) = n + 1

ve deg(q) = n olur. Şimdi p =
∑n+1

i=0 aix
i ve q =

∑n
i=0 bix

i olsun. charF = 2

olduğundan p2 =
∑n+1

i=0 a
2
ix

2i ve q2 =
∑n

i=0 b
2
ix

2i olur. Ayrıca ci =
∑i

j=0 ajbi−j

olmak üzere pqx = (
∑2n+1

i=0 cix
i)x =

∑2n+1
i=0 cix

i+1 olur. Böylece tüm bu

bilgilerden yararlanılarak, p2 + q2 = pqx eşitliğinden

n∑
i=0

(ai + bi)
2x2i + a2n+1x

2n+2 +
2n+1∑
i=0

cix
i+1 = 0

bulunur. Burada son bağıntıdan

(a0 + b0)
2 = 0 = c0

ve her 1 ≤ t ≤ n için

(at + bt)
2 + c2t−1 = 0 ve c2t = 0
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olmalıdır. O zaman a0 + b0 = 0 ve c0 = a0b0 = 0 dır. Bu ise a0 = 0 = b0

olduğunu verir. Son bağıntıdan t = 1 için (a1 + b1)
2 + c1 = 0 ve c2 = 0 elde

edilir. Fakat c1 = a1b0+ a0b1 = 0 ve c2 = a2b0+ a1b1+ a0b2 = a1b1 olduğundan

a1 + b1 = 0 ve a1b1 = 0 bulunur. Bu ise a1 = 0 = b1 olduğunu verir. Benzer

şekilde son bağıntıdan t = 2 için (a2+ b2)
2+ c3 = 0 ve c4 = 0 elde edilir. Fakat

c3 = a3b0+a2b1+a1b2+a0b3 = 0 ve c4 = a4b0+a3b1+a2b2+a1b3+a0b4 = a2b2

olduğundan a2+b2 = 0 ve a2b2 = 0 bulunur. Bu ise yukarıdaki gibi a2 = 0 = b2

olduğunu verir. Bu şekilde devam edilirse, (n − 1). adımda an−1 = 0 = bn−1

bulunur. Bu durumda her 0 ≤ l ≤ n− 1 için al = 0 = bl elde edilir. Son olarak

t = n için (an + bn)
2 + c2n−1 = 0 ve c2n = 0 olmalıdır. Fakat c2n−1 = a2n−1b0 +

a2n−2b1+· · ·+anbn−1+an−1bn+· · ·+a1b2n−2+a0b2n−1 = 0 eşitliğinden, şimdiye

kadar bulunan sonuçlar kullanılarak an + bn = 0 olması gerektiği sonucuna

ulaşılır. Ayrıca 0 = c2n = a2nb0 + a2n−1b1 + · · ·+ an+1bn−1 + anbn + an−1bn+1 +

· · ·+a1b2n−1+a0b2n = anbn elde edilir. Dolayısıyla tüm bu bulunan değerlerden

an + bn = 0 = anbn olup, an = 0 = bn olduğu görülür. Buradan her 0 ≤ i ≤ n

için bi = 0 olur. Böylece q =
∑n

i=0 bix
i = 0 çelişkisine ulaşılır. O zaman

m = n + 1 olamaz. Eğer n = m + 1 ise deg(p) = m ve deg(q) = m + 1 olur.

Benzer işlemler tekrar edilerek p = 0 çelişkisine ulaşılır. Her iki durumda da bir

çelişki elde edildiğinden, k2 + kEx+ 1 = 0 olacak şekilde bir k = kE + kO ∈ F

olmadığı sonucuna ulaşılır. Bu durumda bE + cE = 0 = aO + eO ve dolayısıyla

bE = cE ve aO = eO olmalıdır. Buradan

A = d

a b

c e

 =

b+ c+ xaO a+ e+ xbE

a+ e+ xcE b+ c+ xeO


=

bO + cO + xaO aE + eE + xbE

aE + eE + xbE bO + cO + xaO


elde edilir. Ayrıca charF = 2 ve det(A) = 0 olduğundan

0 = (bO + cO + xaO)
2 + (aE + eE + xbE)

2

= (bO + cO + xaO + aE + eE + xbE)
2

bulunur. Son bağıntıdan bO + cO + xaO + aE + eE + xbE = 0 ve dolayısıyla

bO+ cO+xaO = aE +eE +xbE olur. Bu eşitlik ise bO+ cO+xaO ∈ F nin, y nin

sadece tek kuvvetlerini ve aE+eE+xbE ∈ F nin, y nin sadece tek kuvvetlerini

içermesinden dolayı bO + cO + xaO = 0 = aE + eE + xbE olduğu anlamına
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gelir. Böylece istenilen A =

0 0

0 0

 sonucuna varılır. O zaman Teorem 3.1 de

R = D2 durumunda, 2R ̸= (0) koşulu kaldırılamaz.

Şimdi Teorem 3.1 de R halkası yerine R nin bir öz sol idealinin alınması

durumunda elde edilen sonuçları ele alalım.

Burada R birimli bir halka, 0 ̸= d R nin bir türevi olsun ve L, R

nin d(L) ̸= {0}, her x ∈ L için ya d(x) = 0 ya da d(x) R de tersinir

olacak şekilde bir sol ideali olsun. L = R durumunda cevap zaten bilindiği

için, L ̸= R olduğunu varsayalım. Bu durumda R nin yapısını belirlemek

istiyoruz. Argümanlar daha önce verilen ile benzer olduğundan, J. Bergen in

çalışmasında (Bergen et al., 1983) ayrıntılar atlanmıştır. Ancak bu çalışmanın

bundan sonraki kısmı tarafımızdan ayrıntıları ile verilmeye çalışılmıştır.

Öncelikle, sırasıyla Yardımcı Özellik 3.1, Yardımcı Özellik 3.2 ve

Yardımcı Özellik 3.3 ün bu durumda da sağlandığını görelim:

İlk olarak d(x) = 0 olacak şekilde bir 0 ̸= x ∈ R olsun. Burada L bir

sol ideal olduğundan xL ⊆ L dir ve her y ∈ L için d(xy) = d(x)y + xd(y)

= xd(y) olduğundan d(xL) = xd(L) dir. O zaman xd(L) = d(xL) ⊆ d(L) olur.

Hipotezden d(y) ̸= 0 olacak şekilde bir y ∈ L vardır ve d(y) R de tersinirdir.

Buradan xd(y) = d(xy) ∈ d(xL) ⊆ d(L) elde edilir ve böylece ya xd(y)

= d(xy) = 0 dır ya da xd(y) = d(xy) R de tersinirdir. Eğer ilk durum söz

konusu ise; yani xd(y) = d(yx) = 0 ise d(y)−1 ∈ R olduğundan x = 0 çelişkisine

ulaşılır. Diğer taraftan ikinci durum söz konusu ise; yani xd(y) = d(xy) R de

tersinir ise x = d(xy)d(y)−1 olur ve bir halkada tersinir elemanların çarpımının

da tersinir olduğu gerçeği, bize x ∈ R nin tersinir olduğunu verir. Buradan

Yardımcı Özellik 3.1 in sonucunu kolayca elde ederiz; yani d(x) = 0 olacak

şekilde bir x ∈ R için ya x = 0 dır ya da x R de tersinirdir.

Şimdi W , R nin d(W ) = {0} olacak şekilde bir sol ideali olsun. Burada

W = (0) olduğunu iddia ediyoruz. Bunu görebilmek için W ̸= (0) olduğunu

varsayalım. O zaman bir 0 ̸= w ∈ W için d(w) = 0 dır ve yukarıda belirtilen

sonuçtan w elemanı, R de bir tersinir eleman olmalıdır. Böylece W , R nin bazı

tersinir elemanlarını içerdiğindenW = R dir ve dolayısıyla {0} = d(W ) = d(R)

olur. Bu ise d(L) ̸= {0} kabulü ile çelişir. O zaman W = (0) olmalıdır. Buradan

Yardımcı Özellik 3.2 nin sonucunu elde edilir; yaniW , R nin d(W ) = (0) olacak
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şekilde bir sol ideali ise W = (0) dır. Ayrıca bu sonucun, R nin öz sağ ve öz

iki yanlı idealleri için de geçerli olduğu kolayca görülebilir.

Şimdi eğer R bir 2-burulmalı halka ise o zaman 2R = (0) olduğunu

görelim. Eğer R 2-burulmalı bir halka ise 2x = 0 olacak şekilde bir 0 ̸= x ∈ R

vardır. Buradan bir 0 ̸= y ∈ L için 0 = 2xd(y) = xd(2y) olur ve d(2y) ∈ d(L)

olduğundan, hipotez gereği ya d(2y) = 0 dır ya da d(2y) R de tersinirdir. Eğer

d(2y) R de tersinir ise o zaman xd(2y) = 0 eşitliğinin her iki tarafı sağdan

d(2y)−1 ∈ R ile çarpılarak x = 0 çelişkisi elde edilir. O zaman d(2y) = 0

olmalıdır ve Yardımcı Özellik 3.1 in sonucu gereği ya 2y = 0 dır ya da 2y R de

tersinirdir. Eğer 2y ∈ L elemanı R de tersinir ise, L = R çelişkisi elde edilir.

O zaman 2y = 0 olmalıdır. Burada ya d(y) = 0 dır ya da d(y) elemanı R de

tersinirdir. Eğer d(y) = 0 ise 0 ̸= y ∈ L seçiminden ve Yardımcı Özellik 3.1

den L = R çelişkisi elde edilir. O zaman d(y) ̸= 0 olmalıdır ve hipotezden d(y)

R de eleman tersinirdir. Buradan hareketle her r ∈ R için 0 = rd(2y) = 2rd(y)

olur ve d(y)−1 ∈ R olduğundan 2r = 0 bulunur. Bu ise Yardımcı Özellik 3.3

ün sonucuna ulaştırır; yani R 2-burulmalı bir halka ise o zaman 2R = (0) dır.

Yardımcı Özellik 3.4 de gösterildiği gibi, L + d(L) kümesi R nin bir sol

idealidir. Hipotezden ve d(L) ⊆ L+ d(L) olduğundan L+ d(L) kümesi R nin

bazı tersinir elemanlarını içerir. Bu ise R = L+ d(L) olduğunu verir. Buradan

eğer T , R nin L ⊆ T olacak şekilde bir öz sol ideali ise o zaman keyfi bir t ∈ T

için t = a+ d(b) olacak şekilde a, b ∈ L vardır ve t− a = d(b) ∈ T ∩ d(L) olur.

Bu durumda eğer T ∩ d(L) ̸= {0} ise bir 0 ̸= x ∈ T ∩ d(L) için hipotezden x

elemanı R de tersinir bir eleman olur ve T = R çelişkisi elde edilir. O zaman

T ∩ d(L) = {0} olmalıdır ve buradan t − a = 0 sonucuna ulaşılır. Böylece

t = a ∈ L dir. Bu ise T ⊆ L olduğunu ve dolayısıyla T = L olduğunu verir;

yani L, R nin bir maksimal sol idealidir. Benzer işlemler L de kapsanan R nin

bir S sol ideali için yapılırsa, R = S + d(S) olur ve S, R nin bir maksimal sol

idealidir. O zaman L ve L de kapsanan her sol ideal maksimaldir. Böylece L,

R nin hem maksimal hem de minimal sol idealidir.

Şimdi l(L) = {x ∈ R : xL = (0)} kümesini inceleyelim. R = L + d(L)

birimli olduğundan 1 = a+ d(b) olacak şekilde a, b ∈ L vardır ve eğer x ∈ l(L)

ise o zaman

x = x(a+ d(b)) = xa+ xd(b) = xd(b) = d(xb)− d(x)b = −d(x)b ∈ L
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olur. Bu ise l(L) ⊆ L olduğunu verir. Burada L nin minimalliğinden ya

l(L) = (0) dır ya da l(L) = L dir. Sırasıyla bu iki durumu inceleyelim.

Öncelikle l(L) = (0) olsun. Bu durumda R nin bir basit halka olduğunu

iddia ediyoruz. Bunu görebilmek için, ilk olarak R nin bir yarı asal halka

olduğunu görelim. Burada eğer R bir yarı asal halka değilse, R nin I2 = (0)

olacak şekilde bir (0) ̸= I ideali vardır. Üstelik IL ⊆ L olduğundan ve L

nin minimalliğinden ya IL = (0) dır ya da IL = L dir. Eğer IL = (0) ise

(0) ̸= I ⊆ l(L) = (0) çelişkisi elde edilir. Eğer IL = L ise I2 = (0) olduğundan

(0) = I2L = I(IL) = IL = L çelişkisi elde edilir. Her iki durumda da çelişki

elde edildiğinden R bir yarı asal halka olmalıdır. Şimdi R nin bir basit halka

olduğunu görelim. Bunun için, R nin sıfırdan farklı bir ideali I olsun. Böylece

yukarıdaki açıklamalardan I2 ̸= (0) olduğu söylenebilir. Burada I2L ⊆ L

olduğundan ve L nin minimalliğinden ya I2L = (0) dır ya da I2L = L dir.

Eğer I2L = (0) ise (0) ̸= I2 ⊆ l(L) = (0) çelişkisi elde edilir. O zaman I2L = L

olmalıdır. Bu durumda {0} ≠ d(L) = d(I2L) ⊆ I olduğundan

{0} ≠ d(I2L) ⊆ d(L) ∩ I

olur. Hipotezden d(L) = d(I2L) kümesi, R nin bazı tersinir elemanlarını içerir.

Bu ise I = R olduğunu verir. O zaman R nin bir öz ideali yoktur. Böylece R

nin bir basit halka olduğu sonucuna ulaşılır.

Şimdi R nin her öz sağ idealinin hem maksimal hem de minimal sağ

ideal olduğunu görelim. Burada M , R nin bir öz sağ ideali olsun. O zaman

ML ⊆ L ve ML ⊆ M dir. Böylece d(ML) ⊆ d(L) ve d(ML) ⊆ d(M) elde

edilir. Bu ise d(ML) ⊆ d(L) ∩ d(M) olduğunu verir. Bu durumda eğer d(L) ∩

d(M) = {0} ise d(ML) = {0} olur. Buradan, yukarıda verilen bilgilerden

yararlanılarak, Yardımcı Özellik 3.2 nin sonucu olarak, ML = (0) bulunur. Bu

durumda (0) ̸= M ⊆ l(L) = (0) çelişkisi elde edilir. O zaman d(L) ∩ d(M)

̸= {0} dır ve böylece hipotezden d(M) kümesi, R nin bazı tersinir elemanlarını

içerir. Yardımcı Özellik 3.4 de olduğu gibi M + d(M) kümesi R nin bir sağ

idealidir ve d(M) ⊆ M + d(M) olduğundan M + d(M) kümesi R nin bazı

tersinir elemanlarını içerir. Bu ise R = M + d(M) demektir. Şimdi R nin

M ⊆ N olacak şekilde bir N öz sağ ideali olsun. Bu durumda bir n ∈ N ⊆ R

= M + d(M) için n = a + d(b) olacak şekilde a, b ∈ M vardır ve buradan

n−a = d(b) ∈ N∩d(M) = {0} olur. Buradan n = a ∈M ve dolayısıylaN ⊆M
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olur. Böylece N =M dir; yani M bir maksimal sağ idealdir. Benzer şekilde M

de kapsanan her öz sağ idealin bir maksimal sağ ideal olduğu görülebilir. Bu

ise M nin hem maksimal hem de minimal sağ ideal olduğunu verir.

Eğer R nin bir öz sağ ideali var ise, R nin her öz sağ ideali hem minimal

hem de maksimal sağ ideal olduğundan c(RR) = 2 dir ve R bir basit halka

olduğundan, Teorem 2.5 gereği D bir bölümlü halka olmak üzere R = D2 dir.

Eğer R nin bir öz sağ ideali yok ise, her 0 ̸= a ∈ R için aR kümesi R nin

bir sağ ideali ve 0 ̸= a = a1 ∈ aR olduğundan R = aR olmalıdır. Ayrıca

1 ∈ R = aR olup, 1 = ab olacak şekilde bir 0 ̸= b ∈ R vardır. Benzer

şekilde bR = R olup, 1 = bc olacak şekilde bir 0 ̸= c ∈ R vardır. Böylece,

a = a1 = a(bc) = (ab)c = 1c = c bulunur. Bu ise her 0 ̸= a ∈ R için

ab = 1 = ba olacak şekilde bir b ∈ R olduğunu ve dolayısıyla R nin bir

bölümlü halka olduğunu verir. Sonuç olarak eğer l(L) = (0) ise D bir bölümlü

halka olmak üzere ya R = D dir ya da R = D2 dir.

Diğer taraftan, l(L) = L olsun. Bu durumda L2 = l(L)L = (0) olur. Özel

olarak L = l(L) olduğundan, L bir iki yanlı idealdir. Burada R nin tek öz (sağ,

sol, iki yanlı) idealinin L olduğunu görelim. Eğer R nin I ̸= L olacak şekilde

bir öz I sol ideali var ise o zaman I +L, R nin bir sol ideali olur ve L ⊆ I +L

dir. Burada L nin maksimalliğinden ya L = I + L dir ya da R = I + L dir.

Eğer L = I + L ise I ⊆ L olup, L nin minimalliğinden I = L çelişkisi elde

edilir. O zaman R = I + L olmalıdır. Böylece

L = LR = L(I + L) = LI + L2 = LI ⊆ I

bulunur ve L nin maksimalliği, I = L çelişkisine neden olur. Bu ise R nin tek öz

sol idealinin L olduğunu verir. Eğer burada R nin I ̸= L olacak şekilde bir öz I

ideali var ise o zaman I aynı zamanda R nin bir sol ideali olacağından benzer

şekilde I = L çelişkisi elde edilir. Böylece R nin tek öz iki yanlı idealinin L

olduğu sonucuna ulaşılır. Şimdi R nin tek öz sağ idealinin L olduğunu görelim.

Bunun için, ilk olarak L nin hem maksimal hem de minimal sağ ideal olduğunu

görmeliyiz. Eğer R nin L ⊆ T olacak şekilde bir öz T sağ ideali var ise,

R = L+d(L) olduğundan keyfi bir t ∈ T için t = a+d(b) olacak şekilde a, b ∈ L

vardır ve buradan t−a = d(b) ∈ T ∩d(L) olur. Burada eğer T ∩d(L) ̸= {0} ise

hipotezden d(L) kümesi R nin bazı tersinir elemanlarını içerdiğinden T = R

çelişkisi elde edilir. Böylece T ∩ d(L) = {0} olmalıdır ve dolayısıyla t = a ∈ L
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olur. Buradan T ⊆ L kapsaması elde edilir. Bu sonuç, L nin bir maksimal sağ

ideal olduğunu verir. Burada eğer R nin (0) ̸= M ⊆ L olacak şekilde bir M

sağ ideali var ise {0} ≠ d(M) ⊆ d(L) olduğundan, d(M) kümesi R nin bazı

tersinir elemanlarını içerir. AyrıcaM+d(M),R nin bir sağ ideali olduğundan ve

d(M) ⊆M+d(M) olduğundan, R =M+d(M) olur. Böylece benzer işlemlerle

M = L elde edilir. Bu ise L nin bir minimal sağ ideal olduğunu verir. O zaman

L, R nin hem maksimal hem de minimal sağ idealidir. Buradan hareketle, eğer

R nin I ̸= L olacak şekilde bir I öz sağ ideali var ise, L ⊆ I + L olduğundan

ve L nin maksimalliğinden ya L = I + L ya da R = I + L olmalıdır. Eğer

L = I + L ise I ⊆ L olur ve L nin minimalliğinden I = L çelişkisi elde edilir.

Eğer R = I + L ise L2 = (0) olmasından

L = RL = (I + L)L = IL ⊆ I

olur. L nin maksimalliğinden I = L çelişkisi elde edilir. Her iki durumda da

çelişki elde edildiğinden, R nin tek öz sağ ideali L dir. Sonuç olarak L, R nin

tek öz (sağ, sol, iki yanlı) idealidir.

Şimdi Yardımcı Özellik 3.5 de olduğu gibi, d(b) ̸= 0 olacak şekilde bir

b ∈ L için b2 ∈ L2 = (0) olmasından

0 = d2(b2) = d2(b)b+ 2d(b)2 + bd2(b)

bulunur. Burada d2(b)b + bd2(b) ∈ L olduğundan, son bağıntıdan 2d(b)2 ∈ L

elde edilir. Bu durumda 4d(b)4 = (2d(b)2)2 ∈ L2 = (0) olur. Ayrıca 0 ̸= d(b) ∈

d(L) olduğu için, hipotezden d(b) elemanı R de tersinir olmalıdır. Böylece her

r ∈ R için

0 = 4d(b)4r

olur. Son bağıntıdan, d(b) nin bir tersinir eleman olduğu kullanılarak 4r = 0

elde edilir. Şimdi 0 ̸= x ∈ R olsun. Eğer 2x = 0 ise R bir 2-burulmalı halka

olup, 2R = (0) elde edilir. Eğer 2x ̸= 0 ise 2(2x) = 4x = 0 olur ve bu durumda

da R bir 2-burulmalı halka olup, 2R = (0) elde edilir. Sonuç olarak 2R = (0)

dır. BuradaD = {x ∈ R : d(x) ∈ L} kümesinin bir birimli halka olduğu açıktır.

Ayrıca d(L) ̸= {0} dan d(y) ̸= 0 olacak şekilde bir y ∈ L vardır ve hipotezden

d(y) tersinir bir elemandır. Böylece L2 = (0) olduğundan her 0 ̸= x ∈ D için

d(xy) = d(x)y + xd(y) = xd(y)
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bulunur. Eğer d(xy) = 0 ise d(y)−1 ∈ R olduğundan, son bağıntıdan x = 0

çelişkisine ulaşılır. O zaman d(xy) ̸= 0 olmalıdır. Ayrıca xy ∈ L olduğundan

hipotezden d(xy) elemanı tersinir bir elemandır. Bu durumda son bağıntıdan

x = d(xy)d(y)−1 olur. Bir halkada tersinir elemanlarının çarpımının da tersinir

olduğu gerçeği, bize x in R de bir tersinir bir eleman olduğunu söyler. Buradan

0 = d(1) = d(xx−1) = d(x)x−1 + xd(x−1)

elde edilir. Son bağıntıdan, d(x) ∈ L olduğundan xd(x−1) = −d(x)x−1 ∈ L ve

buradan x−1(xd(x−1)) = d(x−1) ∈ L olduğu sonucuna ulaşılır. Bu durumda

D nin tanımından x−1 ∈ D dir ve böylece D nin bir bölümlü halka olduğu

sonucu elde edilir. Burada keyfi bir r ∈ R alalım. R = L + d(L) olduğundan

d(r) = a + d(b) olacak şekilde a, b ∈ L vardır ve d(r − b) = a ∈ L olur. Bu

ise D nin tanımından r − b ∈ D olduğunu ve dolayısıyla r ∈ D + L olduğunu

verir. Böylece R ⊆ D + L dir. Ayrıca D + L ⊆ R olduğu açıktır. Sonuç olarak

R = D+L elde edilir. Şimdi keyfi bir 0 ̸= x ∈ L alalım. Burada her a1, a2 ∈ D

için

a1x− a2x = (a1 − a2)x ∈ Dx

dir ve her a ∈ D, her r = y + z ∈ R = D + L için L2 = (0) olduğundan

r(ax) = (y + z)ax = (ya)x ∈ Dx

olur. Son iki bağıntı, Dx in R nin bir sol ideali olduğunu verir. Üstelik x ∈ L

olduğundan Dx ⊆ L dir ve 0 ̸= x = 1x ∈ Dx olduğundan Dx ̸= (0) dır.

Bu ise L nin minimalliğinden L = Dx olduğunu verir. Böylece R = D + Dx

olur. Burada d(x) ∈ R = D + Dx olduğundan d(x) = s + tx olacak şekilde

s, t ∈ D vardır. Burada eğer s = 0 ise d(x) = tx ∈ Dx = L olur. Eğer

d(x) ̸= 0 ise hipotezden d(x) tersinir bir elemandır ve böylece L = R çelişkisine

ulaşılır. Eğer d(x) = 0 ise x ̸= 0 olduğundan x tersinir bir eleman olmalıdır

ve bu durumda da L = R çelişkisine ulaşılır. Her iki durumda da çelişkiye

ulaşıldığından, s ̸= 0 olmalıdır ve s−1 ∈ D olur.

Burada s−1x ∈ Dx olsun. O zaman Dx = Ds−1x eşitliğinden,

R = D + Ds−1x olur. Ayrıca D nin tanımından d(s−1) ∈ L olduğundan,
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L2 = (0) ve d(x) = s+ tx olduğu kullanılarak

d(s−1x) = d(s−1)x+ s−1d(x)

= s−1d(x)

= s−1(s+ tx)

= 1 + s−1tx

= 1 + s−1tss−1x

elde edilir. Burada s−1x = y ∈ Dx = L ve s−1ts = a ∈ D denilirse, R = D+Dy

ve d(y) = 1 + ay olur. O zaman burada R = D +Dx ve d(x) = 1 + ax olacak

şekilde bir a ∈ D olduğu kabul edilebilir. Şimdi sx ∈ Dx = L olsun. L2 = (0),

d(x) = 1 + ax ve D nin tanımından hareketle

0 = d((sx)2) = d(sxsx)

= sxd(sx) + d(sx)sx

= sx(d(s)x+ sd(x)) + (d(s)x+ sd(x))sx

= sxs(1 + ax) + s(1 + ax)sx

= sxs+ sxsax+ s2x+ saxsx

= sxs+ s2x

= s(xs+ sx)

bulunur. Burada eğer s ̸= 0 ise s−1 ∈ D olduğundan son bağıntıdan xs+sx = 0

dır. Ayrıca 2R = (0) olduğundan xs = sx elde edilir ve bu eşitlik s = 0 için de

sağlanır. O zaman her s ∈ D için xs = sx dir. Buradan her a+ bx ∈ R için

(a+ bx)x = ax+ bx2 = ax+ 0 = xa+ 0 = xa+ xbx = x(a+ bx)

olup, x ∈ Z(R) elde edilir. Ayrıca her s ∈ D için d(s) ∈ L, sx + xs = 0,

L2 = (0), d(x) = 1 + ax, x ∈ Z(R) ve 2R = (0) sonuçları kullanılarak

0 = d(sx+ xs) = d(sx) + d(xs) = d(s)x+ sd(x) + d(x)s+ xd(s)

= s(1 + ax) + (1 + ax)s

= sax+ axs

= (sa+ as)x

bulunur. Burada 0 ̸= sa + as ∈ D ise x = 0 çelişkisi elde edilir. O

zaman sa + as = 0 dır ve dolayısıyla sa = as olur. O zaman D nin
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merkezi Z olmak üzere, a ∈ Z dir. Yardımcı Özellik 3.10 un ispatında

gösterildiği gibi, D[t] = {
∑n

i=0 ait
i : ai ∈ D, 0 ≤ i ≤ n, n ∈ N} olmak

üzere ϕ : D[t] → R = D + Dx dönüşümü, her
∑n

i=0 ait
i ∈ D[t] için

ϕ(
∑n

i=0 ait
i) = a0 + a1x olarak tanımlansın. O zaman ϕ bir örten halka

homomorfizmasıdır ve Kerϕ = (t2) dir. Burada Halkalarda I. İzomorfizma

Teoremi nden R ∼= D[t]/(t2) olur. Böylece R = D[x]/(x2) elde edilir. Bu

durumda Yardımcı Özellik 3.10 dan farklı olarak elde edilen tek durum

d(D) ⊆ L olmasına rağmen d(D) = {0} olması gerekmediğidir. Aslında keyfi

bir s ∈ D için d(s) = s
′
x ∈ Dx = L olacak şekilde bir s′ ∈ D olduğundan,

s ∈ D elemanını s′ ∈ D elemanına resmeden ′
: D → D dönüşümünün D nin

bir türevi olduğu kolayca görülür. Gerçekten, her s1, s2 ∈ D için

s
′

1x+ s
′

2x = d(s1) + d(s2) = d(s1 + s2) = (s1 + s2)
′
x

olup, (s1 + s2)
′
= s

′
1 + s

′
2 bulunur. Ayrıca x ∈ Z(R) olduğundan

(s1s2)
′
x = d(s1s2) = d(s1)s2 + s1d(s2) = (s

′

1xs2 + s1s
′

2x) = (s
′

1s2 + s1s
′

2)x

olup, (s1s2)
′
= s

′
1s2 + s1s

′
2 elde edilir.

Şimdiye kadar yapılanlar aslında aşağıda Teorem 3.2 olarak verilen

teoremin ispatıdır.

Teorem 3.2 Birimli bir R halkası, bir L sol ideali için eğer d(L) ̸= {0} ve

her x ∈ L için ya d(x) = 0 ya da d(x) elemanı R de tersinir olacak şekilde bir

0 ̸= d türevine sahip ise o zaman D bir bölümlü halka olmak üzere ya R = D

ya R = D2 ya da R = D[x]/(x2) dir. Ayrıca son durumda 2R = (0) dır.

Burada R = D[x]/(x2) durumunda, L üzerinde d nin hipotezinin

mutlaka R üzerine taşınması gerekliliğinin olmadığını not edelim. Bu çalışma

R = D2 durumunda, d nin L üzerindeki davranışının mutlaka R üzerine

taşınması gerekmediğinin yanı sıra, R nin her x ∈ R için ya δ(x) = 0 ya da

δ(x) tersinir olacak şekilde bir 0 ̸= δ türevine sahip olamayabileceğini gösteren

aşağıdaki örnek vurgulanarak bitirilecektir.

Şimdi D bir bölümlü halka, D halkasının merkezi Z olmak üzere σ /∈ Z

olacak şekilde ve D nin bir elemanının karesi olarak yazılamayacak şekilde bir

σ ∈ D elemanı olduğunu varsayalım. O zaman σ = a2 olacak şekilde bir a ∈ D
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yoktur. Burada d : D2 → D2 dönüşümünü her

r s

t u

 ∈ D2 için

d

r s

t u

 =

0 σ

1 0

r s

t u

−

r s

t u

0 σ

1 0

 =

σt− s σu− rσ

r − u s− tσ



şeklinde tanımlayalım. Böylece d dönüşümü, D2 üzerinde

0 σ

1 0

 ∈ D2

elemanı ile belirli iç türev olur. Eğer L =


r 0

t 0

 : r, t ∈ D

 ise o zaman

L, D2 nin bir sol idealidir ve

0 0

0 0

 ̸=

r 0

t 0

 ∈ L için(yani 0 ̸= r ya da

0 ̸= t için)

d

r 0

t 0

 =

σt −rσ

r −tσ



olur. Eğer

σt −rσ

r −tσ

 ∈ D2 tersinir değilse o zaman (σt, r) = k(−rσ,−tσ)

olacak şekilde bir k ∈ D vardır ve dolayısıyla

 σt r

−rσ −tσ

 matrisi de tersinir

değildir. Buradan −σt2σ + r2σ = 0 elde edilir. Burada σ /∈ Z olduğundan

σ ̸= 0 dır ve dolayısıyla σ−1 ∈ D dir. Böylece σt2 − r2 = 0 bulunur. O zamanσt r

r t

 ∈ D2 matrisi de tersinir değildir. Burada

σt r

r t

x
y

 =

0

0


denklem sisteminin en az bir sıfır olmayan çözümü vardır ve son bağıntı

σtx+ ry = 0 = rx+ ty

verir. Gerçekten, burada

σt r

r t

 ∈ D2 tersinir olmadığından, eğer r = 0 ise

t = 0 çelişkisi, eğer t = 0 ise r = 0 çelişkisi elde edilir. O zaman r ̸= 0 ve

t ̸= 0 dır. Ayrıca (σt, r) = p(r, t) olacak şekilde bir p ∈ D vardır. Eğer p = 0

ise r = 0 = t çelişkileri elde edilir. Böylece son bağıntıdan rx + ty = 0 olacak

şekilde x, y ∈ D vardır, r ̸= 0 ve t ̸= 0 dır. Burada iki bilinmeyen ve bir denklem
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olduğundan, bir serbest değişkene bağlı sonsuz sayıda çözüm vardır. Dolayısıyla

son bağıntıyı sağlayacak şekilde ikisi de aynı anda sıfır olmayan x, y ∈ D

bulunur. Burada x serbest değişken olmak üzere, genelliği kaybetmeksizin

x = −1 alınabilir. Bu durumda son bağıntıdan r = ty ve σt = ry = ty2

olur. Böylece son bağıntıdan σt = ry = ty2 ve t−1 ∈ D olduğundan

σ = ty2t−1 = (tyt−1)2

elde edilir. Ancak yukarıdaki bağıntı σ ∈ D elemanının D nin bir elemanını

karesi şeklinde yazılamaması ile çelişir. Böylece d

r 0

t 0


=

σt −rσ

r −tσ

 ∈ D2 elemanının tersinir olduğu sonucuna ulaşılır. Sonuç olarak

d nin L üzerindeki sıfırdan farklı değerlerinin tersinir olduğu görülür.

Fakat bununla birlikte σ /∈ Z olduğundan, σa ̸= aσ ve dolayısıyla

a− σ−1aσ ̸= 0 olacak şekilde bir a ∈ D seçilebilir. Buradan

d

a 0

0 σ−1aσ

 =

 0 0

a− σ−1aσ 0

 ̸=

0 0

0 0


olur. Fakat bu matrisin tersinir olmadığı açıktır. O zaman d nin L üzerindeki

davranışı D2 üzerine taşınamaz.

Burada D2 nin bir sol ideali L olmak üzere d(L) ̸= {0} ve d(L) kümesinin

sıfırdan farklı elemanları tersinir olacak şekilde D2 nin bir 0 ̸= d türevi var

olması için yeter bir koşulun D nin bazı elemanlarının D nin bir elemanını

karesi şeklinde yazılamaması olduğu gösterildi. Teorem 3.1 de ise 2R ̸= (0)

iken D2 nin her x ∈ D2 için ya d(x) = 0 ya da d(x) tersinir olacak şekilde bir

0 ̸= d türevine sahip olabilmesi için gerek ve yeter bir şartın D nin merkezi

Z olmak üzere, Z nin bazı elemanlarının D nin bir elemanının karesi şeklinde

yazılamaması olduğu gösterildi.

Son olarak, yukarıdaki tartışmada yer alan bölümlü halka yerine özel bir

bölümlü halka alalım. Burada C kompleks sayılar cismi ve F ise C üzerinde x

değişkenli rasyonel fonksiyonlar cismi olsun. Katsayıları F de olan y değişkenli

Laurent serilerinin halkası D yi ele alalım. Böylece D = {
∑∞

m=−k fm(x)y
m :

fi(x) ∈ F,−k ≤ i} olur. Burada keyfi bir r(x) ∈ F için r(2x) = yr(x)y−1

olsun; yani her r(x) ∈ F için σ(r(x)) = r(2x) ile tanımlı olmak üzere

yr(x) = r(x)y yerine yr(x) = σ(r(x))y olsun. Bu durumda σ dönüşümünün,
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F nin halka izomorfizması olduğu kolayca görülebilir. O zaman D bir bölümlü

halkadır.

Şimdi D nin merkezi Z olmak üzere, C = Z olduğunu görelim. İlk

olarak C ⊆ Z olduğu açıktır. Tersine keyfi bir
∑∞

m=−k gm(x)y
m ∈ Z

için,
∑∞

m=−k gm(x)y
m = y

(∑∞
m=−k gm(x)y

m
)
y−1 =

∑∞
m=−k ygm(x)y

−1ym

=
∑∞

m=−k gm(2x)y
m bulunur. Son bağıntıdan her −k ≤ i için gi(x) = gi(2x)

olmalıdır. Ayrıca x ∈ D olduğundan yxy−1 = 2x ve dolayısıyla yx = 2xy

dir. Böylece
(∑∞

m=−k gm(x)y
m
)
x =

∑∞
m=−k gm(x)y

mx =
∑∞

m=−k gm(x)y
m−1yx

=
∑∞

m=−k gm(x)y
m−12xy =

∑∞
m=−k gm(x)2y

m−1xy =
∑∞

m=−k gm(x)2y
m−2yxy

=
∑∞

m=−k gm(x)2y
m−22xy2 =

∑∞
m=−k gm(x)2

2ym−2xy2 · · · =
∑∞

m=−k gm(x)2
mxym

bulunur. Ayrıca
∑∞

m=−k gm(x)y
m ∈ Z ve x ∈ F olduğundan(

∞∑
m=−k

gm(x)y
m

)
x = x

(
∞∑

m=−k

gm(x)y
m

)
=

∞∑
m=−k

gm(x)xy
m

dir. Son iki bağıntıdan
∑∞

m=−k gm(x)xy
m =

∑∞
m=−k gm(x)2

mxym elde edilir.

Bu ise her −k ≤ i için gi(x) = gi(x)2
i olduğunu söyler ve buradan

(2i − 1)gi(x) = 0 bulunur. O zaman i ̸= 0 iken gi(x) = 0 olmalıdır

ve böylece
∑∞

m=−k gm(x)y
m = g0(x) = g0(2x) olur. Burada g0(x) = p(x)

q(x)

= p(2x)
q(2x)

olacak şekilde p(x), q(x) ∈ C[x] vardır ve q(x) ̸= 0 dır. Ayrıca

q(x) = q(x)
1
y0 ∈ D olduğundan q(x)−1 ∈ D dir. Bu durumda eğer p(x) = 0

ise
∑∞

m=−k gm(x)xy
m = g0(x) = p(x)

q(x)
= 0 ∈ C elde edilir. Eğer p(x) ̸= 0

ise benzer şekilde p(x)−1 ∈ D olur ve g0(x) = p(x)
q(x)

= p(2x)
q(2x)

∈ Z olduğundan
p(x)
q(x)

= y p(x)
q(x)

y−1 = yp(x)y−1

q(x)
= p(2x)

q(x)
olur. Bu ise p(x) = p(2x) olduğunu verir.

Buradan p(x)
q(x)

= p(2x)
q(2x)

= p(x)
q(2x)

olduğundan q(x) = q(2x) bulunur. O zaman

p(x), q(x) ∈ C dir. Böylece
∑∞

m=−k gm(x)xy
m = g0(x) =

p(x)
q(x)

∈ C elde edilir.

Bu ise Z ⊆ C olduğunu verir. Sonuç olarak Z = C dir.

Ayrıca C nin her elemanının, C nin bir elemanının karesi şeklinde

yazılabildiğini görelim: Keyfi bir z = a + bi ∈ C için, eğer b = 0 ve 0 ≤ a

ise z = (
√
a)

2 dir. Eğer b = 0 ve a < 0 ise z =
(√

−ai
)2 dir. Eğer b ̸= 0

ise z = a + bi =

((√
a+

√
a2+b2

2

)
+ b

|b|

(√
−a+

√
a2+b2

2

)
i

)2

dir. Bu durumda

Z = C ⊆ D olduğundan Z nin her elemanı, D nin bir elemanının karesi

şeklinde yazılabilir. Böylece Teorem 3.1 den, D2 nin 0 ̸= d ve her x ∈ D2 için

ya d(x) = 0 ya da d(x) tersinir olacak şekilde bir türevi yoktur.

Fakat x elemanının D deki bir elemanın karesi şeklinde yazılamadığını
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açıklayalım. Eğer x =
(∑∞

m=−k fm(x)y
m
)2 olacak şekilde bir

∑∞
m=−k fm(x)y

m ∈

D var olsa ci(x) =
∑i+k

j=−k fj(x)fi−j(x) olmak üzere x =
∑∞

n=−2k cn(x)y
n olur.

Böylece i ̸= 0 iken ci(x) = 0 olduğu elde edilir. Buradan −k ≤ j ≤ −1 iken

fj(x) = 0 ve dolayısıyla (f0(x))
2 = x bulunur. Burada f0(x) = p(x)

q(x)
olacak

şekilde p(x) =
∑n

i=0 aix
i ∈ C[x] ve 0 ̸= q(x) =

∑n
i=0 bix

i ∈ C[x] vardır, p(x)2

q(x)2

= (f0(x))
2 = x ve q(x)2x = p(x)2 dir. Bu durumda zi =

∑i
j=0 ajai−j ve

ri =
∑i

j=0 bjbi−j olmak üzere
∑2n

i=0 rix
i+1 = q(x)2x = p(x)2 =

∑2n
i=0 zix

i olur.

O zaman a20 = 0 ve dolayısıyla a0 = 0 olmalıdır. Ayrıca b20 = a0a1 + a1a0 = 0

olduğundan b0 = 0 olmalıdır. Bu şekilde devam edilirse, 0 = b1b0 + b0b1

= a0a2 + a1a1 + a2a0 = a21 olduğundan a1 = 0 ve b21 = b2b0 + b1b1 + b0b2

= a3a0 + a2a1 + a1a2 + a0a3 = 0 olduğundan b1 = 0 bulunur. Benzer işlemlerle

her 0 ≤ i ≤ n için ai = 0 olduğu görülür. Böylece p(x) = 0 elde edilir. Bu ise

0 = f0(x) = x çelişkisini verir. Sonuç olarak x elemanı D nin bir elemanının

karesi şeklinde yazılamaz ve x /∈ C = Z dir. Bu yüzden yukarıda verilen

bilgiler ışığında, D2 üzerinde


r 0

t 0

 : r, t ∈ D

 sol idealinin sıfırdan farklı

her elemanının görüntüsü tersinir olacak şekilde bir 0 ̸= d türevi vardır.

Son olarak D2 nin bir sol ideali L olmak üzere, D2 nin d(L) ̸= {0} ve

d(x) ̸= 0 olacak şekilde her x ∈ L için d(x) tersinir koşulunu sağlayan bir

0 ̸= d türevine sahip olabilmesi için D üzerinde oldukça ilginç bir gerek ve

yeter koşul verilebilir. Örneğin, Yardımcı Özellik 3.6 da f = 0 alınarak ve bu

özellikte bir iç türev olması için gerek ve yeter bir koşulun her t ∈ D için

t2 − αγtα−1 + αβ ̸= 0 olacak şekilde α, β, γ ∈ D bulunması olduğunu görelim.

Burada f , D nin bir iç türevi olduğundan Yardımcı Özellik 3.7 den d,

D2 nin bir iç türevi olur. Özel olarak Yardımcı Özellik 3.8 in ispatında olduğu

gibi her

a b

c e

 ∈ D2 için

d

a b

c e

 =

 f(a)− bβ − αc f(b) + aα + bγ − αe

f(c) + βa− eβ − γc f(e) + eγ − γe+ βb+ cα


=

0 −α

β −γ

a b

c e

−

a b

c e

0 −α

β −γ



olur. Yani d,

0 −α

β −γ

 ∈ D2 elemanı ile belirli iç türevdir. Burada D2
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nin L =


r 0

t 0

 : r, t ∈ D

 sol idealinin sıfırdan farklı her elemanını d

altındaki görüntüsünün tersinir olması için gerek ve yeter bir koşul r ̸= 0 ya da

t ̸= 0 olacak şekilde her r, t ∈ D için d

r 0

t 0

 =

 −αt rα

βr − γt tα

 ∈ D2

matrisinin tersinir olmasıdır; yani

−αt2α− rαβr + rαγt ̸= 0

olmasıdır. Ayrıca e11 ∈ L olduğundan d(e11) =

0 α

β 0

 ∈ D2 matrisi

tersinirdir. O zaman αβ ̸= 0 dır. Bu ise α−1, β−1 ∈ D olduğunu verir. Son

bağıntının her iki tarafı sağdan ve soldan α−1 ∈ D ile çarpılarak

−t2 − α−1rαβrα−1 + α−1rαγtα−1 ̸= 0

elde edilir. Son bağıntıda özel olarak 0 ̸= r = α ∈ D alınırsa

−t2 − αβ + αγtα−1 ̸= 0

bulunur. Son bağıntı, r ̸= 0 alındığından her t ∈ D için sağlanmalıdır. Böylece

D2 nin bir sol ideali L olmak üzere, d(L) ̸= {0} ve d(x) ̸= 0 olacak şekilde

her x ∈ L için d(x) tersinir koşulunu sağlayan, Yardımcı Özellik 3.6 da f = 0

olacak şekilde bir 0 ̸= d iç türevine sahip olabilmesi için gerek ve yeter bir

koşul her t ∈ D için

t2 − αγtα−1 + αβ ̸= 0

olacak şekilde α, β, γ ∈ D olmasıdır.
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4 TERSİNİR DEĞERLİ (σ, τ )-TÜREVLER

Bu bölümde Motoshi Hongan ve Hiroaki Komatsu’ nun 1987 yılında

yapmış oldukları “(σ, τ)-Derivations With Invertible Values” adlı çalışma

incelenecektir.

Bu çalışma boyunca R bir birimli halka, R nin tersinir elemanlarının

grubu U ve R nin Jacobson radikali J olacaktır. Birimli bir R halkası üzerinde

iki dönüşüm σ ve τ olsun. Eğer R üzerinde her x ∈ R için δ(x) = x
′ ile tanımlı

δ toplamsal dönüşümü, herhangi x, y ∈ R için (xy)
′
= x

′
σ(y)+τ(x)y

′ eşitliğini

sağlıyorsa δ dönüşümüne R nin bir (σ, τ)-türevi denir. (Bergen et al., 1983)

de, J. Bergen, I.N. Herstein ve C. Lanski eğer bir R halkasının her x ∈ R için

d(x) = x
′ ile tanımlı ve {0} ≠ R

′ ⊆ U ∪ {0} olacak şekilde bir türevi var ise o

zaman R nin ya bir D bölümlü halkası, veya bir D bölümlü halkası üzerindeki

2 × 2 tipindeki matrisler halkası D2, veya charD = 2, D′
= {0} ve D nin

merkezindeki bazı a ∈ D için t′ = 1 + at olacak şekilde bir D bölümlü halkası

için D[t]/(t2) kesir halkası olduğunu ispatlamışlardır. (Bergen and Herstein,

1983) de, J. Bergen ve I.N. Herstein R halkasının birim otomorfizmadan farklı

bir otomorfizması σ olmak üzere d yerine 1−σ alarak, R nin ya bir D bölümlü

halkası, ya bir D bölümlü halkası üzerinde 2× 2 tipinde matrisler halkası D2,

ya da D bir bölümlü halka olmak üzere D ⊕ D olduğunu ispatlamışlardır.

(Chang, 1985) de, J.-C. Chang d yerine R nin δσ = σδ olacak şekilde bir σ

otomorfizması için (σ, 1)-türevi olan, her x ∈ R için δ(x) = x
′ ile tanımlı δ yı

alarak, R nin ya bir D bölümlü halkası, veya bir D bölümlü halkası üzerindeki

2× 2 tipindeki matrisler halkası D2, veya charD = 2, D′
= {0} ve bazı a ∈ D

için t
′
= 1 + at ile her s ∈ D için sa = σ(a)s olacak şekilde bir D bölümlü

halkası için D[t;σ]/(t2) halkası olduğunu ispatlamışlardır (Burada D[t;σ], t

değişkenli σ ile belirli skew polinomlar halkasıdır).

Eğer x, y ∈ R ise R halkasının birim otomorfizması 1 olmak üzere

d(xy) = d(x)y + xd(y) = d(x)1(y) + 1(x)d(y)

dır ve

(1− σ)(xy) = xy − σ(xy) = xy − σ(x)σ(y) = ((1− σ)(x))σ(y) + 1(x)((1− σ)(y))

dir. Son iki bağıntıdan d nin bir (1, 1)-türev olduğu ve 1−σ nın bir (σ, 1)-türev

olduğu açıktır.
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Bu çalışmada, yukarıda bahsedilen bu üç sonuç aynı anda aşağıdaki gibi

genelleştirilecektir:

Teorem 4.1 R nin sıfırdan farklı bir sağ ideali T , bir halka otomorfizması σ ve

bir örten dönüşümü τ olsun. Burada R nin her x ∈ R için δ(x) = x
′ ile tanımlı

bir (σ, τ)-türevi için {0} ≠ T
′ ⊆ U ∪{0} koşulunun sağlandığını varsayalım. O

zaman τ dönüşümü R nin bir halka otomorfizmasıdır ve R halkası (1) bir D

bölümlü halkasıdır, veya (2) D bir bölümlü halka olmak üzere D2 dir, veya (3)

D bir bölümlü halka olmak üzere R = D⊕D dir, veya (4) D = {x ∈ R : x
′ ∈ J}

bölümlü halkası üzerinde {1, v} sağ ve sol serbest bazlı yerel halkadır ve v2 = 0

dır, her r ∈ R için rv = vσ−1τ(r) dir, v′
= 1 + vb olacak şekilde bir b ∈ D

vardır. Eğer (4) durumunda b = 0 ise o zaman σ(D) = τ(D) dir ve eğer

σ−1τδ = δσ−1τ ise o zaman σ(D) = τ(D) dir, charD = 2 dir ve v′ elemanı R

halkasının merkezindedir.

Öncelikle Teorem 4.1 in ispatı için yapılan hazırlıklarda, aşağıdaki

yardımcı özellikler belirtilecektir.

Yardımcı Özellik 4.1 δ dönüşümü R halkasının bir (σ, τ)-türevi olsun.

Burada R′ ∩ U ̸= ∅ varsayalım. O zaman

(1) σ ve τ toplamsal dönüşümlerdir.

(2) σ nın bir halka homomorfizması olması için gerek ve yeter bir koşul τ

nın bir halka homomorfizması olmasıdır.

(3) 1
′
= 0 olması için gerek ve yeter bir koşul σ(1) = τ(1) = 1 olmasıdır.

Özellikle, eğer σ R nin bir örten halka homomorfizması ve τ örten ise o

zaman τ R nin bir halka homomorfizmasıdır ve 1
′
= 0 dır.

İspat (1) Hipotezden, z′ ∈ R
′ ∩ U olacak şekilde bir z ∈ R vardır. Burada

her x, y ∈ R için (x+ y)z = xz + yz ve δ bir (σ, τ)-türev olduğundan

0 = ((x+ y)z)
′ − (xz + yz)

′

= (x+ y)
′
σ(z) + τ(x+ y)z

′ − x
′
σ(z)− τ(x)z

′ − y
′
σ(z) + τ(y)z

′

= (τ(x+ y)− τ(x)− τ(y))z
′

olur. Burada z′ ∈ U olduğundan, son bağıntının her iki tarafı sağdan z
′ ∈ U

elemanının tersi ile çarpılarak τ(x+y) = τ(x)+τ(y) elde edilir. Benzer şekilde
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z(x+y) = zx+ zy eşitliğinden yararlanarak σ(x+y) = σ(x)+σ(y) elde edilir.

Buradan σ ve τ birer toplamsal dönüşümlerdir.

(2) Herhangi x, y, z ∈ R için (xy)z = x(yz) ve δ bir (σ, τ)-türev

olduğundan

0 = ((xy)z)
′ − (x(yz))

′

= (xy)
′
σ(z) + τ(xy)z

′ − x
′
σ(yz)− τ(x)(yz)

′

= (x
′
σ(y) + τ(x)y

′
)σ(z) + τ(xy)z

′ − x
′
σ(yz)− τ(x)(y

′
σ(z) + τ(y)z

′
)

= x
′
σ(y)σ(z) + τ(x)y

′
σ(z) + τ(xy)z

′ − x
′
σ(yz)− τ(x)y

′
σ(z)− τ(x)τ(y)z

′

= x
′
(σ(y)σ(z)− σ(yz)) + (τ(xy)− τ(x)τ(y))z

′

olur. Burada eğer σ bir halka homomorfizması ise son bağıntıdan (τ(xy) −

τ(x)τ(y))z
′
= 0 elde edilir. Böylece hipotezden, özel olarak z

′ ∈ U olacak

şekilde bir z ∈ R için τ(xy) − τ(x)τ(y) = 0 bulunur. Bu ise Yardımcı Özellik

4.1 (1) ile beraber, τ nın bir halka homomorfizması olduğunu verir. Tersine,

eğer τ bir halka homomorfizması ise benzer şekilde son bağıntıdan σ nın bir

halka homomorfizması olduğu görülür.

(3) Açıkça görüldüğü gibi

0 = 0
′
= (1− 1)

′
= 1

′ − 1′ = (1.1)
′ − 1′ = 1

′
σ(1) + τ(1)1

′ − 1
′

dir. Burada eğer σ(1) = τ(1) = 1 ise o zaman son bağıntıdan 1
′
= 0 elde edilir.

Tersine, 1′
= 0 olduğunu varsayalım ve z′ ∈ U olacak şekilde bir z ∈ R seçelim.

O zaman

0 = 0
′
= (z − z)

′
= z

′ − z
′

= z
′ − (1z)

′

= z
′ − 1′σ(z)− τ(1)z

′

= z
′ − τ(1)z

′

= (1− τ(1))z
′

olur. Son bağıntının her iki tarafı sağdan z
′ elemanının tersi ile çarpılarak

τ(1) = 1 elde edilir. Benzer şekilde 0 = 0
′

= z
′ − (z1)

′ eşitliğinden

yararlanılarak σ(1) = 1 elde edilir.

Özel olarak σ nın bir örten halka homomorfizması olduğunu ve τ nın örten

olduğunu kabul edelim. Bu durumda Yardımcı Özellik 4.1 (2) den τ dönüşümü
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bir halka homomorfizmasıdır. Burada her b ∈ R için σ(a) = b olacak şekilde

bir a ∈ R vardır. Böylece

b = σ(a) = σ(a1) = σ(a)σ(1) = bσ(1)

dir ve ayrıca

b = σ(a) = σ(1a) = σ(1)σ(a) = σ(1)b

olur. Bu durumda son iki bağıntıdan σ(1) = 1 olmalıdır. Benzer şekilde

τ(1) = 1 olduğu görülür. Böylece Yardımcı Özellik 4.1 (3) den 1
′
= 0 dır.

Yardımcı Özellik 4.2 Teorem 4.1 kabulleri altında, aşağıdakiler sağlanır:

(1) Ker δ ⊆ U ∪ {0} dır.

(2) R nin T de kapsanan sıfırdan farklı bir sağ ideali I olsun. Eğer τ(I) ̸= R

ise o zaman toplamsal grup olarak R = I
′ ⊕ τ(I) dır ve I, R nin bir

minimal sağ idealidir.

İspat (1) Keyfi bir 0 ̸= x ∈ Ker δ alalım ve t′ ∈ U olacak şekilde bir t ∈ T

seçelim. Kabulden T , R nin bir sağ ideali olduğundan tx ∈ T dir. O zaman

(tx)
′
= t

′
σ(x) + τ(t)x

′
= t

′
σ(x) ∈ T

′ ⊆ U ∪ {0}

olur. Burada eğer (tx)
′
= t

′
σ(x) = 0 ise son bağıntının her iki tarafı soldan t

′

elemanının tersi ile çarpılarak σ(x) = 0 bulunur ve σ, R nin bir otomorfizması

olduğundan x = 0 çelişkisi elde edilir. Böylece son bağıntıdan (tx)
′
= t

′
σ(x) ∈

U olmalıdır. Buradan σ(x) = (t
′
)−1(tx)

′ bulunur. Bir halkada tersinir iki

elemanının çarpımının da tersinir olduğu gerçeği, bizi σ(x) elemanının tersinir

olduğu sonucuna ulaştırır. Üstelik σ, R nin bir otomorfizması olduğundan σ(x)

in tersinir olması, x in tersinir olduğunu verir. Böylece x ∈ U olur. Buradan

hareketle Ker δ ⊆ U ∪ {0} dır.

(2) Hipotezden σ, R nin bir otomorfizması olduğundan, Yardımcı Özellik

4.1 (2) den τ , R nin bir halka homomorfizmasıdır. Aynı zamanda kabulden τ

örtendir. Burada I ⊆ T ve τ(I) ̸= R olacak şekilde R nin bir (0) ̸= I sağ ideali

var olsun. Her x, y ∈ I için

τ(x)− τ(y) = τ(x− y) ∈ τ(I)
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olur. Ayrıca τ nın örtenliğinden her r ∈ R için r = τ(z) olacak şekilde bir

z ∈ R vardır ve böylece

τ(x)r = τ(x)τ(z) = τ(xz) ∈ τ(I)

olur. Son iki bağıntıdan τ(I), R nin bir sağ idealidir. Ek olarak her a ∈ I ve her

r ∈ R için a′
σ(r) = (ar)

′−τ(a)r′ ∈ (IR)
′
+τ(I)R

′ dir. Bu ise I ′
σ(R) ⊆ (IR)

′
+

τ(I)R
′ olduğunu verir ve böylece R = σ(R) olduğundan I

′
R = I

′
σ(R) ⊆

(IR)
′
+ τ(I)R

′ ⊆ I ′ + τ(I) bulunur. Benzer şekilde τ(I)R ⊆ τ(I) ⊆ I
′
+ τ(I)

dır. Böylece τ ve δ nın toplamsal olduğu gerçeğinden, I ′
+ τ(I) nın R nin bir

sağ ideali olduğu sonucuna ulaşılır. Burada eğer τ(I) ∩ I ′ ̸= {0} ise I ′ ⊆ T
′ ⊆

U ∪ {0} olduğundan τ(I), R nin bazı tersinir elemanlarını içerir ve dolayısıyla

τ(I) = R çelişkisi elde edilir. Böylece τ(I) ∩ I
′
= {0} olmalıdır. Buradan

I
′ ⊕ τ(I) kümesi R nin bir sağ idealidir. Bunun yanında, Yardımcı Özellik 4.2

(1) den Ker δ ⊆ U ∪ {0} olduğuna dikkat çekerek I ∩ Ker δ = {0} olduğu

görülür. Gerçekten tersi olduğu durumda; yani I ∩ Ker δ ̸= {0} ise I sağ

ideali R nin bazı tersinir elemanlarını içereceğinden I = R olur. Ayrıca τ örten

olduğundan τ(I) = τ(R) = R çelişkisi elde edilir. Böylece I ∩ Ker δ = {0}

olmalıdır.

Şimdi R = I
′ ⊕τ(I) olduğunu görelim. Burada eğer I ′

= {0} ise o zaman

0 ̸= x ∈ I için x
′
= 0 olur ve bu ise 0 ̸= x ∈ I ∩Ker δ = {0} çelişkisini verir.

O zaman I ′ ̸= {0} olmalıdır ve I ′ ⊆ T ′ ⊆ U ∪{0} olduğundan I ′ ∩U ̸= ∅ olur.

Böylece I ′ kümesi R nin bazı tersinir elemanlarını içerir. Ayrıca I ′ ⊆ I
′ ⊕ τ(I)

her zaman sağlandığından, I ′ ⊕ τ(I) sağ ideali R nin bazı tersinir elemanlarını

içerir. Böylece R = I
′ ⊕ τ(I) sonucuna ulaşılır.

Şimdi I da kapsanacak şekilde R nin sıfırdan farklı bir sağ ideali K

olsun. Yukarıda yapılan işlemlerle R = K
′ ⊕ τ(K) olduğu görülebilir. Burada

bir x ∈ I alalım. O zaman x′
+ τ(x) ∈ I

′ ⊕ τ(I) = R = K
′ ⊕ τ(K) olduğundan

x
′
+ τ(x) = a

′
+ τ(b) olacak şekilde a, b ∈ K vardır ve böylece (x− a)

′
= τ(b−

x) ∈ I
′ ∩ τ(I) = {0} olur. Bu durumda x− a ∈ I ∩Kerδ = {0} olur. Buradan

x = a ∈ K elde edilir. Böylece I ⊆ K bulunur. Ayrıca K ⊆ I kabulünden

I = K sonucuna ulaşılır. Bu ise I nın bir minimal sağ ideal olduğunu verir.

Şimdi Teorem 4.1 in ispatını tamamlamaya hazırız.

Teorem 4.1 in İspatı Yardımcı Özellik 4.1 (2) den τ bir örten halka

homomorfizmasıdır; yani τ(R) = R dir. Burada eğer R nin kendisi bir bölümlü
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halka ise Ker τ , R nin bir ideali olduğundan ve τ(R) = R olduğundan

Ker τ ̸= R olduğu açıktır. Buradan Ker τ = (0) sonucuna ulaşılır; yani τ

bire-birdir. Böylece τ bir halka otomorfizmasıdır. Bu durumda ispatlanacak

bir şey yoktur, Teorem 4.1 (1) elde edilir.

Bundan böyle R nin bir bölümlü halka olmadığını varsayalım. Burada

eğer Ker τ ∩ T ̸= (0) ise o zaman Ker τ ∩ T ⊆ T ve R ̸= (0) = τ(Ker τ ∩ T )

bağıntıları göz önüne alınarak, Yardımcı Özellik 4.2 (2) den ve hipotezden

R = (Ker τ ∩ T )′ ⊕ τ(Ker τ ∩ T ) = (Ker τ ∩ T )′ ⊆ T
′ ⊆ U ∪ {0}

olur. Ayrıca U ∪ {0} ⊆ R olduğu açıktır. Bu ise R = U ∪ {0} olduğunu;

yani R nin bir bölümlü halka olması çelişkisini verir. Böylece Ker τ ∩ T = (0)

olmalıdır. Buradan τ : T → τ(T ) ⊆ R dönüşümünün bir halka izomorfizması

olduğu sonucuna ulaşılır. Burada eğer τ(T ) ̸= R ise I = T için (0) ̸= I ⊆ T

ve τ(I) ̸= R olduğundan Yardımcı Özellik 4.2 (2) gereği R = I ′ ⊕ τ(I) olur

ve I, R nin bir minimal sağ idealidir. Eğer τ(T ) = R ise τ : T → τ(T ) = R

dönüşümü bir halka izomorfizması olur. Burada eğer R nin bir öz sağ ideali

yok ise bir 0 ̸= a ∈ R için 0 ̸= a = a1 ∈ aR olur. Fakat (0) ̸= aR, R nin

bir sağ ideali olduğundan kabul gereği bu aR = R olmasını gerektirir. Ayrıca

1 ∈ R = aR olduğundan 1 = ab olacak şekilde bir 0 ̸= b ∈ R vardır. Benzer

şekilde bR = R olduğundan bc = 1 olacak şekilde bir c ∈ R vardır ve böylece

a = a1 = a(bc) = (ab)c = 1c = c olur. O zaman her 0 ̸= a ∈ R için ab = 1 = ba

olacak şekilde bir b ∈ R var olur. Bu sonuç, R nin bir bölümlü halka olmaması

ile çelişir. Böylece R nin bir öz L sağ ideali vardır ve τ−1(L) = {x ∈ T : τ(x) ∈

L} ⊆ T kümesi R nin bir sağ idealidir. Burada τ : T → R bir izomorfizma

olduğundan her x ∈ L için τ−1(x) ∈ T dir. Ek olarak x = τ(τ−1(x)) ∈ L

olduğundan τ−1(x) ∈ τ−1(L) olur. Burada eğer τ−1(L) = (0) ise her x ∈ L

için τ−1(x) = 0 olur ve dolayısıyla x = τ(τ−1(x)) = τ(0) = 0 bulunur. Bu

ise L = (0) çelişkisini verir. O zaman (0) ̸= τ−1(L) ⊆ T olmalıdır. Burada

τ(τ−1(L)) = L ̸= R olduğundan I = τ−1(L) denilirse, Yardımcı Özellik 4.2 (2)

den R = I
′ ⊕ τ(I) olur. Ayrıca I, R nin bir minimal sağ idealidir. Tüm bu

bilgilerin ışığında,

R = I
′ ⊕ τ(I) (1)

olacak şekilde T de kapsanan R nin bir minimal I sağ idealinin olduğu

gösterilmiş olur. Şimdi σ(I) ve τ(I) nın her ikisinin de R nin minimal sağ
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idealleri olduklarını görelim. Burada (0) ̸= M ⊆ τ(I) olacak şekilde R nin bir

M sağ ideali var olsun. O zaman I ⊆ T olduğundanKer τ∩I ⊆ Ker τ∩T = (0)

dır ve dolayısıyla τ : I → τ(I) dönüşümü bir izomorfizmadır. Bu durumda

τ−1(M) ∩ I = {x ∈ I : τ(x) ∈M} ⊆ I kümesi R nin bir sağ idealidir ve I nın

minimalliğinden ya τ−1(M) ∩ I = (0) veya τ−1(M) ∩ I = I olmalıdır. Burada

eğer τ−1(M) ∩ I = (0) ise keyfi bir x ∈M ⊆ τ(I) için x = τ(y) olacak şekilde

bir y ∈ I vardır ve böylece y = τ−1(x) ∈ τ−1(M) ∩ I = (0) olur. Buradan

x = τ(y) = τ(0) = 0 bulunur. Böylece her x ∈ M için x = 0 dır, bu ise bizi

M = (0) çelişkisine ulaştırır. O zaman τ−1(M)∩ I = I olmalıdır. Bu durumda

ise I ⊆ τ−1(M) dir ve dolayısıyla τ(I) ⊆ τ(τ−1(M)) = M elde edilir. Ayrıca

M ⊆ τ(I) kabulünden M = τ(I) olur. Böylece τ(I) nın R nin bir minimal sağ

ideali olduğu sonucuna ulaşılır. Benzer şekilde σ(I) nın da R nin bir minimal

sağ ideali olduğu görülebilir.

İlk olarak I2 ̸= (0) durumunu ele alalım. Bu durumda ab ̸= 0 olacak

şekilde a, b ∈ I vardır. Ayrıca aI kümesi R nin bir sağ idealidir. Burada aI ⊆ I

ve I bir minimal sağ ideal olduğundan ya aI = (0) ya da aI = I olmalıdır.

Eğer aI = (0) ise b ∈ I olduğundan ab = 0 çelişkisi elde edilir. O zaman aI = I

olmalıdır. Burada a ∈ I = aI olduğundan ae = a olacak şekilde bir 0 ̸= e ∈ I

vardır. Son bağıntının her iki tarafı sağdan e ∈ I ile çarpılarak ae2 = ae ve

böylece a(e2 − e) = 0 bulunur. Burada (e2 − e) ∈ r(a) = {x ∈ I : ax = 0} ⊆ I

dır ve r(a) kümesi R nin bir sağ idealidir. Böylece I nın minimalliğinden ya

r(a) = (0) ya da r(a) = I olmalıdır. Eğer r(a) = I ise ab = 0 çelişkisi

elde edilir. O zaman r(a) = (0) olmalıdır ve buradan e − e2 ∈ r(a) = (0)

olduğundan e = e2 elde edilir. Benzer şekilde eI kümesi R nin bir sağ idealidir

ve eI ⊆ I dır. Ayrıca 0 ̸= e = e2 ∈ eI olduğundan eI ̸= (0) dır ve böylece I

nın minimalliğinden eI = I sonucuna ulaşılır. Bu ise I = eI olacak şekilde bir

e2 = e ∈ I idempotentinin seçilebileceğini verir. Buradan hareketle

I
′
= (eI)

′ ⊆ e
′
σ(I) + τ(e)I

′ ⊆ e
′
σ(I) + τ(I)

olur. Son bağıntıdan ve (1) den R = I
′
+ τ(I) ⊆ e

′
σ(I) + τ(I) + τ(I)

= e
′
σ(I) + τ(I) dır. Ayrıca e′σ(I) + τ(I) ⊆ R olduğu açıktır. Böylece

R = e
′
σ(I) + τ(I)

olur. Burada e
′
σ(I), R nin bir sağ idealidir. Üstelik e

′
σ(I) ∩ τ(I) ⊆ τ(I)
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olduğundan ve τ(I) nın minimalliğinden ya e′σ(I)∩τ(I) = (0) dır ya da e′σ(I)∩

τ(I) = τ(I) dır. Eğer e′σ(I)∩τ(I) = τ(I) ise o zaman τ(I) ⊆ e
′
σ(I) dır ve son

bağıntıdan R = e
′
σ(I) + τ(I) = e

′
σ(I) bulunur. Burada R ̸= {0} olduğundan

e
′ ̸= 0 dır ve e

′ ∈ I
′ ⊆ T

′ ⊆ U ∪ {0} olduğundan e
′ ∈ U olur. Böylece

R = (e
′
)−1R = (e

′
)−1(e

′
)σ(I) = σ(I) olur ve σ dönüşümü bir otomorfizma

olduğundan R = σ−1(R) = σ−1(σ(I)) = I elde edilir. Ancak burada τ nın

örtenliğinden τ(I) = τ(R) = R çelişkisine ulaşılır. Böylece e′σ(I) ∩ τ(I) = (0)

olmalıdır. Bu durumda son bağıntıdan

R = e
′
σ(I)⊕ τ(I)

olur. Burada eğer N ⊆ e
′
σ(I) olacak şekilde R nin bir N sağ ideali var ise

(e
′
)−1N ⊆ σ(I) olur ve σ(I) nın minimalliğinden ya (e

′
)−1N = (0) dır ya

da (e
′
)−1N = σ(I) dır. Eğer (e

′
)−1N = (0) ise N = (0) elde edilir, eğer

(e
′
)−1N = σ(I) iseN = e

′
σ(I) elde edilir. Bu ise bize e′σ(I) nın bir minimal sağ

ideal olduğunu verir. Böylece τ(I) nın bir minimal sağ ideal oluşu ile beraber

son bağıntı, R nin bir yarı basit halka olduğu sonucunu verir.

Bundan sonra τ(I) nın R nin bir maksimal sağ ideali olduğunu görmeye

çalışalım. Bunun için R nin τ(I) ⊆ K olacak şekilde bir sağ ideali K olsun.

Her 0 ̸= x ∈ K için (1) den x = a
′
+ τ(b) olacak şekilde a, b ∈ I vardır. Burada

eğer a′
= 0 ise o zaman x = τ(b) ∈ τ(I) olur. Bu ise K ⊆ τ(I) olduğunu verir.

Böylece K = τ(I) elde edilir. Eğer a′ ̸= 0 ise hipotezden a′ ∈ U bulunur ve

a
′
= x− τ(b) ∈ U ∩K

elde edilir. Son bağıntı R nin bazı elemanlarının K da içerildiğini gösterir.

Buradan K = R elde edilir. Böylece τ(I) bir maksimal sağ idealdir. Burada

R nin tek yanlı(sağ) ideal kafesi içerisindeki (0) ⊆ τ(I) ⊆ R zincirini ele

alırsak, τ(I)/(0) ∼= τ(I) bir minimal sağ idealdir ve R = e
′
σ(I) ⊕ τ(I)

olduğundan R/τ(I) ∼= e
′
σ(I) bir minimal sağ idealdir. Bu sonuç ise Jordan-

Hölder Teoremi nden R nin sağ R-modül olarak 2 (kompozisyon) uzunluklu

olmasını gerektirir; yani c(RR) = 2 dir. O zaman R nin her öz sağ ideali hem

maksimal hem de minimal sağ idealdir. Burada τ örten olduğundan Ker τ ̸= R

dir. O zaman ya Ker τ = (0) dır ya da Ker τ bir öz sağ idealdir. Eğer

Ker τ bir öz sağ ideal ise yukarıdaki açıklamalardan hem maksimal hem de

minimal sağ idealdir. Burada bir x /∈ Ker τ için x +Ker τ ∈ R/Ker τ olsun.
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Bu durumda K = {y + xr : y ∈ Ker τ, r ∈ R} kümesinin R nin bir sağ

ideali olduğu ve Ker τ ⊆ K olduğu açıktır. Fakat x /∈ Ker τ olduğundan ve

Ker τ nın maksimalliğinden K = R olmalıdır. O zaman 1 = y1 + xr1 olacak

şekilde y1 ∈ Ker τ ve r1 ∈ R vardır. Buradan 1− xr1 = y1 ∈ Ker τ olur; yani

1+Ker τ = xr1+Ker τ = (x+Ker τ)(r1+Ker τ) bulunur. Buradan R/Ker τ

halkasının bir bölümlü halka olduğu sonucuna ulaşılır. Ayrıca Halkalarda I.

İzomorfizma Teoremi nden R/Ker τ ∼= τ(R) = R olduğundan, R nin bir

bölümlü halka olması çelişkisi elde edilir. O zaman Ker τ = (0) olmalıdır

ve böylece τ nın bir halka otomorfizması olduğu sonucuna ulaşılır.

Şimdi I2 ̸= (0) durumunda sırasıyla I nın bir iki yanlı ideal olduğu ve

olmadığı durumları ele alalım.

Öncelikle I nın bir iki yanlı ideal olduğunu varsayalım. Bu durumda

σ(I) ve τ(I) kümeleri R nin iki yanlı idealleri olurlar. Ayrıca (0) ̸= e
′
σ(I) ⊆

σ(I) olduğundan ve σ(I) nın minimalliğinden e
′
σ(I) = σ(I) dır. Böylece

R = e
′
σ(I)⊕ τ(I) olduğundan

R = σ(I)⊕ τ(I)

elde edilir. Şimdi r(e) = {x ∈ I : ex = 0} ⊆ I kümesini düşünelim. Burada

r(e), R nin bir sağ ideali olduğundan ve I nın minimalliğinden ya r(e) = (0)

dır ya da r(e) = I dır. Eğer r(e) = I ise o zaman I = eI = (0) çelişkisi elde

edilir. O zaman r(e) = (0) olmalıdır. Buradan her a ∈ I için e(a − ea) = 0

olduğundan (a − ea) ∈ r(e) = (0) olur ve bu ise a = ea olmasını gerektirir.

Üstelik l(I) = {x ∈ I : xI = (0)} ⊆ I kümesi R nin bir sağ idealidir ve I nın

minimal oluşu ya l(I) = (0) olmasını ya da l(I) = I olmasını gerektirir. Eğer

l(I) = I ise I2 = l(I)I = (0) çelişkisi elde edilir. Buradan l(I) = (0) olmalıdır.

Böylece her a ∈ I için (a− ae)e = 0 olduğundan

(0) = (a− ae)eI = (a− ae)I

olur. Bu durumda (a − ae) ∈ l(I) = (0) dır ve dolayısıyla a = ae elde edilir.

Sonuç olarak her a ∈ I için ae = a = ea olur ve bu ise bize e ∈ I elemanının I

nın birim elemanı olduğunu verir. Ayrıca her 0 ̸= a ∈ I için aI ⊆ I, R nin bir

sağ ideali olduğundan ve I nın minimalliğinden ya aI = (0) dır ya da aI = I

dır. Eğer aI = (0) ise 0 ̸= a = ae ∈ aI = (0) çelişkisi elde edilir. Buradan

aI = I olmalıdır ve dolayısıyla e ∈ I = aI olduğundan ab = e olacak şekilde
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bir 0 ̸= b ∈ I var olur. Benzer bir muhakemeyle bI = I olduğunu söyleyebiliriz.

Buradan bc = e olacak şekilde bir c ∈ I vardır ve

a = ae = a(bc) = (ab)c = ec = c

bulunur. Yukarıda elde edilenlerden her 0 ̸= a ∈ I için ab = e = ba olacak

şekilde bir b ∈ I nın var olduğu sonucuna ulaşılır. Bu ise I nın bir bölümlü

halka olduğunu söyler. Üstelik yukarıda verilen bilgiler ışığında, τ : I → τ(I)

ve σ : I → σ(I) dönüşümleri birer izomorfizmadır. Buradan I ∼= σ(I) ve

I ∼= τ(I) birer bölümlü halka olur. ve Böylece D bir bölümlü halka olmak

üzere σ(I) ∼= I ∼= τ(I) = D denilirse R = D ⊕ D elde edilir. Bu ise istenilen

sonuçtur.

Şimdi I nın bir iki yanlı ideal olmadığını varsayalım. Bu durumda R nin

bir basit halka olduğunu görelim. Burada Rτ(I), R nin bir sağ idealidir ve

τ(I) ⊆ Rτ(I) olur. Böylece τ(I) nın maksimalliği, ya Rτ(I) = τ(I) olmasını

veya Rτ(I) = R olmasını gerektirir. Eğer Rτ(I) = τ(I) ise τ(I) kümesi R nin

bir iki yanlı ideali olur. Buradan her x ∈ I ve r için τ(rx) = τ(r)τ(x) ∈ τ(I)

olmalıdır. Böylece τ bir otomorfizma olduğundan rx ∈ I bulunur. Bu ise I nın

bir iki yanlı ideal olmaması kabulü ile çelişir. O zaman

R = Rτ(I)

olmalıdır. Burada R nin S gibi bir iki yanlı idealinin olduğunu kabul edelim.

Bu durumda τ(S) kümesi de R nin bir iki yanlı ideali olur. Ayrıca R bir birimli

halka olduğundan ve son bağıntıdan

τ(S) = Rτ(S) = Rτ(I)τ(S) = Rτ(IS)

bulunur. Fakat aynı zamanda IS ⊆ I olması ve I nın minimalliği ya IS = (0)

olmasını veya IS = I olmasını gerektirir. Eğer IS = (0) ise son bağıntıdan

τ(S) = Rτ(IS) = (0) dır ve τ bir otomorfizma olduğundan S = (0) elde edilir.

Eğer IS = I ise son iki bağıntıdan

τ(S) = Rτ(IS) = Rτ(I) = R = τ(R)

olur. Böylece τ bir otomorfizma olduğundan S = R olur. Buradan R nin öz

ideali olmadığı ve dolayısıyla R bir basit halka olduğu gerçeğine ulaşılır. Üstelik
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c(RR) = 2 olduğundan ve Teorem 2.5 den, D bir bölümlü halka olmak üzere

R = D2 elde edilir.

Böylece bütün bu elde edilenlerden, eğer I2 ̸= (0) ise τ dönüşümünün bir

halka otomorfizması olduğu ve D bir bölümlü halka olmak üzere ya R = D⊕D

ya da R = D2 olduğu sonucuna ulaşılır.

Şimdi I2 = (0) durumunu ele alalım. Her a, b ∈ I için a
′
σ(b) = (ab)

′ −

τ(a)b
′ olduğundan

I
′
σ(I) ⊆ (I2)

′
+ τ(I)I

′
= τ(I)I

′

olur. Böylece (1) den ve R bir birimli halka olduğundan

σ(I) ⊆ Rσ(I) = (I
′ ⊕ τ(I))σ(I) ⊆ I

′
σ(I) + τ(I)σ(I) ⊆ τ(I)I

′
+ τ(I)σ(I) ⊆ τ(I)

elde edilir. Ayrıca τ(I) bir minimal sağ ideal olduğundan σ(I) = τ(I) olduğu

sonucuna ulaşılır. Burada I nın maksimalliğini görmek için R nin I ⊆ K

koşulunu sağlayan bir öz sağ ideali K nın olduğunu kabul edelim. Herhangi bir

k ∈ K için (1) den σ(k) = x
′
+ σ(y) olacak şekilde x, y ∈ I vardır ve

x
′
= σ(k − y) ∈ I

′ ∩ σ(K)

olur. Burada eğer I
′ ∩ σ(K) ̸= {0} ise I

′ ⊆ T
′ ⊆ U ∪ {0} olduğundan

σ(K), R nin bazı tersinir elemanlarını içerir ve buradan σ(K) = R olur.

Fakat bu durumda σ nın bir halka otomorfizması olması K = σ−1(R) = R

çelişkisini vereceğinden I
′ ∩ σ(K) = {0} olması gerektiği sonucuna ulaşılır.

Böylece son bağıntıdan x
′
= σ(k − y) = 0 bulunur. Burada σ dönüşümü bir

halka otomorfizması olduğundan k = y ∈ I olur. Bu durumda K ⊆ I dır.

Bu ise I = K olduğunu ve dolayısıyla I nın bir maksimal sağ ideal olduğunu

verir. Üstelik R nin Jacobson radikali J olmak üzere, her nil sağ-sol-iki yanlı

ideal J de kapsandığından I ⊆ J olur ve dolayısıyla I nın maksimalliğinden

J = I bulunur. Bu durumda J bir maksimal sağ idealdir. Ayrıca J , R nin

tüm maksimal sağ ideallerinin kesişimi olduğundan, R nin tek maksimal sağ

ideali J dir. Böylece R bir yerel halkadır. Benzer şekilde σ(I)2 = (0) = τ(I)2

olduğundan σ(I) = τ(I) ⊆ I dır ve I nın minimalliğinden σ(I) = τ(I) = I = J

elde edilir. O zaman yerel halkanın tanımından, I = {x ∈ R : x /∈ U} olur.

Ayrıca burada I, R nin tek sağ idealidir. Gerçekten, R nin bir başka öz sağ

ideali M olsun. O zaman her m ∈ M için m /∈ U dur ve dolayısıyla M ⊆ I
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olur. Ek olarak I nın minimalliğinden I = M elde edilir. Bu ise R nin tek öz

sağ idealinin I olduğunu verir; yani R bir sağ Artin halkasıdır. Ayrıca Ker τ

nın, R nin bir sağ ideali oluşu burada üç durumu karşımıza çıkarır; bunlar

Ker τ = (0) veya Ker τ = I veya Ker τ = R olduğu durumlardır. Eğer

Ker τ = R ise τ nın örtenliğinden R = τ(R) = τ(Kerτ) = {0} çelişkisi elde

edilir. Eğer Ker τ = I ise I = τ(I) = τ(Ker τ) = (0) çelişkisi elde edilir. O

zaman Kerτ = (0) olmalıdır. Bu ise τ dönüşümünün bir halka otomorfizması

olduğunu verir. Böylece (1) den

R = I
′ ⊕ I (2)

elde edilir. Son bağıntıdan 1 = v
′
+ ω olacak şekilde v, ω ∈ I vardır ve

dolayısıyla v
′ − 1 = −ω ∈ I olacak şekilde bir v ∈ I seçilebilir. Böylece

her r ∈ R için vrv ∈ I2 = (0) olduğundan, σ(I) = τ(I) = I ve v′
= 1 − ω

bağıntıları kullanılarak

0 = (vrv)
′

= v
′
σ(rv) + τ(v)(rv)

′

= v
′
σ(rv) + τ(v)r

′
σ(v) + τ(v)τ(r)v

′

= v
′
σ(rv) + τ(vr)v

′

= (1− ω)σ(rv) + τ(vr)(1− ω)

= σ(rv)− ωσ(rv) + τ(vr)− τ(vr)ω

= σ(rv) + τ(vr)

elde edilir. Özel olarak son bağıntıda r = 1 alınarak σ(v) = −τ(v) bulunur.

Böylece her r ∈ R için σ(v)τ(r) = −τ(v)τ(r) = −τ(vr) = σ(rv) olduğundan

rv = vσ−1τ(r) eşitliğine ulaşılır. Sonuç olarak

σ(v) = −τ(v) ve her r ∈ R için rv = vσ−1τ(r) (3)

olur. Şimdi D = {x ∈ R : x
′ ∈ I} ⊆ R olsun. Burada 0 ∈ D olduğundan

D ̸= ∅ dir. Ayrıca her x, y ∈ D için

(x− y)
′
= x

′ − y
′ ∈ I

dır ve

(xy)
′
= x

′
σ(y) + τ(x)y

′ ∈ I
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olur. Son iki bağıntı, D nin R nin bir alt halkası olduğunu verir. Ayrıca

Yardımcı Özellik 4.1 (3) den 1
′
= 0 ∈ I dır ve bu ise 1 ∈ D olduğu, dolayısıyla

D nin R nin bir birimli alt halkası olduğu gerçeğine ulaştırır. Burada eğer

I ∩Kerδ ̸= {0} ise Yardımcı Özellik 4.2 (1) den Kerδ ⊆ U ∪ {0} olduğundan

I ideali R nin bazı tersinir elemanlarını içerir ve buradan I = R çelişkisi elde

edilir. Buradan I ∩Kerδ = {0} olmalıdır. Şimdi D nin sıfırdan farklı keyfi bir

elemanı a olsun. Bu durumda D nin tanımından a′ ∈ I dır. Burada eğer a ∈ I

ise o zaman a′ ∈ I
′ ⊆ T

′ ⊆ U ∪ {0} olur; yani ya a′
= 0 dır ya da a′ ∈ U dur.

Eğer a′
= 0 ise 0 ̸= a ∈ I ∩Kerδ = {0} çelişkisi elde edilir. Eğer a′ ∈ U ise o

zaman a′ ∈ I olduğundan I ideali R nin bazı tersinir elemanlarını içerir ve bu

ise I = R çelişkisini verir. O zaman a /∈ I = {x ∈ R : x /∈ U} olmalıdır. Bu ise

a nın R de bir tersinir eleman olduğu anlamına gelir. Burada Yardımcı Özellik

4.1 (3) den

0 = 1
′
= (a−1a)

′
= (a−1)

′
σ(a) + τ(a−1)a

′

bulunur. Son bağıntıdan a′ ∈ I olduğundan

(a−1)
′
= −τ(a−1)a

′
σ(a−1) ∈ I

olur ve D nin tanımından a−1 ∈ D dir. Böylece D, R nin bir bölümlü alt

halkasıdır. Şimdi R = D + I olduğunu görelim. Burada (2) den bir r ∈ R için

r
′
= x

′
+ y olacak şekilde x, y ∈ I vardır. Bu bağıntı düzenlenerek (r − x)

′

= y ∈ I olduğuna ulaşılır. Bu durumda D nin tanımından r − x ∈ D dir ve

dolayısıyla r ∈ D+ I olur. Buradan R ⊆ D+ I dır. Diğer taraftan D+ I ⊆ R

olduğu açıktır. Böylece R = D + I elde edilir. Üstelik I, R nin bir öz ideali

olmasından R nin tersinir elemanlarını içermediği gerçeği, I∩D = {0} olmasını

gerektirir. Buradan

R = D ⊕ I (4)

elde edilir. Yukarıda v′ − 1 ∈ I olacak şekilde v ∈ I seçilişinden, eğer v = 0

ise −1 = v
′ − 1 ∈ I olduğundan I = R çelişkisi ulaşılır. Bu durumda v ̸= 0

olmalıdır. Ayrıca vR, R nin bir sağ idealidir. Üstelik vR ⊆ I ve 0 ̸= v = v1 ∈

vR koşullarını da sağlar. Böylece I nın minimalliği, I = vR olmasını gerektirir.

Ayrıca I2 = (0) olduğundan ve son bağıntıdan

I = vR = v(D ⊕ I) = vD
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olur. Bu ise (4) den R = D ⊕ vD olduğunu verir. Üstelik R bir sağ D-vektör

uzayıdır; D ve vD R nin sağ alt D-vektör uzaylarıdır. Burada her r ∈ R

= D ⊕ vD için r = 1a + vb olacak şekilde a, b ∈ D vardır; yani {1, v} kümesi

R yi gerer. Ayrıca eğer x, y ∈ D için 1x + vy = 0 ise x = −vy ∈ D ∩ vD

= {0} olacağından, x = 0 = y sonucuna ulaşılır. Bu ise {1, v} kümesinin D-

bağımsız olduğunu verir. Sonuç olarak {1, v} kümesi R nin bir sağ D-bazıdır

ve v′ − 1 ∈ I = vD olduğundan v
′
= 1 + vb olacak şekilde bir b ∈ D vardır.

Şimdi {1, v} kümesinin R nin bir sol D-bazı olduğunu görelim. Burada (3)

den Rv ⊆ vR olduğu açıktır. Ayrıca bir vr ∈ vR için σ ve τ birer halka

otomorfizması olduğundan r = σ−1(r1) ve r1 = τ(r2) olacak şekilde r1, r2 ∈ R

vardır. Bu durumda (3) den

vr = vσ−1(r1) = vσ−1τ(r2) = r2v ∈ Rv

bulunur. O zaman vR ⊆ Rv dir. Böylece vR = Rv olur. Daha önce gösterildiği

gibi I = vR, I2 = (0) olduğundan ve (4) den

I = vR = Rv = (D ⊕ I)v = Dv

dır. Burada tekrar (4) kullanılarak R = D ⊕ Dv olur. O zaman R bir sol D-

vektör uzayıdır; D ve Dv R nin sol alt D-vektör uzaylarıdır ve buradan benzer

şekilde {1, v} kümesi R nin sol D-bazıdır.

Şimdi b = 0 olduğunu varsayalım. O zaman v
′ − 1 = vb = 0 dır ve

buradan v′
= 1 elde edilir. Kabulden I2 = (0) olduğundan, her a ∈ D için

(av)
′
= a

′
σ(v) + τ(a)v

′
= τ(a)v

′
= τ(a)

bulunur. Son bağıntı, I ′
= (Dv)

′
= τ(D) olduğunu verir. Benzer şekilde her

a ∈ D için

(va)
′
= v

′
σ(a) + τ(v)a

′
= v

′
σ(a) = σ(a)

dır ve buradan, I ′
= (vD)

′
= σ(D) bağıntısına ulaşılır. Böylece σ(D) = τ(D)

elde edilir. Son olarak σ−1τδ = δσ−1τ olduğunu varsayalım. Bu durumdaD nin

tanımından her a ∈ D için a′ ∈ I dır ve böylece I = σ(I) = τ(I) olduğundan

δσ−1τ(a) = σ−1τδ(a) ∈ σ−1τ(I) = σ−1(I) = σ−1(σ(I)) = I
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bulunur. Son bağıntıdan σ−1τ(a) ∈ D dir ve buradan τ(a) ∈ σ(D) olur. Bu

ise τ(D) ⊆ σ(D) olduğunu verir. Ayrıca kabulden δ = σ−1τδτ−1σ olduğu

kolaylıkla görülür. Buradan her a ∈ D için, D nin tanımı gereği

σ−1τδτ−1σ(a) = δ(a) ∈ I

olur. Ayrıca I = σ(I) = τ(I) gerçeği kullanılarak, δτ−1σ(a) ∈ I ve tekrar D

nin tanımından τ−1σ(a) ∈ D bulunur. Bu durumda σ(a) ∈ τ(D) dir. Buradan

σ(D) ⊆ τ(D) elde edilir. Böylece σ(D) = τ(D) eşitliğine ulaşılır. Burada (3)

den τ(vb) = τ(v)τ(b) = −σ(v)τ(b) dir ve bu eşitliğin σ−1 altındaki görüntüsüne

bakılarak σ−1τ(vb) = −vσ−1τ(b) bağıntısına ulaşılır. Ayrıca v′ −1 = vb olduğu

ve (3) kullanılarak;

1− vσ−1τ(b) = 1 + σ−1τ(vb) = 1 + σ−1τ(v
′ − 1)

= 1 + σ−1τδ(v)− σ−1τ(1)

= σ−1τδ(v)

= δσ−1τ(v)

= δσ−1(−σ(v))

= −v′

= −1− vb

bulunur. Buradan 2 + v(b − σ−1τ(b)) = 0 elde edilir. Böylece σ(D) = τ(D)

ve {1, v} kümesi R nin sağ ve sol D-bazı olduğundan 2 = 0 ve σ(b) = τ(b)

olur. Bu durumda charD = 2 elde edilir. Üstelik I = σ(I) = τ(I), I2 = (0)

bağıntılarından ve D nin tanımından her a ∈ D için (av)
′
= a

′
σ(v) + τ(a)v

′

= τ(a)v
′ olur. Böylece (3) den τ(a)v

′
= (av)

′
= (vσ−1τ(a))

′
= v

′
τ(a) +

τ(v)(σ−1τ(a))
′
= v

′
τ(a) dır. Ayrıca τ dönüşümü bir halka otomorfizması

olduğundan ve (4) den her r ∈ R için r = τ(r1) ve r1 = x + y olacak şekilde

r1 ∈ R, x ∈ D ve y ∈ I vardır. Böylece v′ − 1 = vb eşitliği kullanılarak

τ(r)v
′
= τ(x+ y)v

′
= τ(x)v

′
+ τ(y)v

′

= v
′
τ(x) + τ(y)(1 + vb)

= v
′
τ(x) + τ(y)
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dır ve

v
′
τ(r) = v

′
τ(x+ y) = v

′
τ(x) + v

′
τ(y)

= v
′
τ(x) + (1 + vb)τ(y)

= v
′
τ(x) + τ(y)

olur. Son iki bağıntı, v′ ∈ R elemanının merkezi bir eleman olduğu sonucunu

verir.

Uyarı 4.1 Teorem 4.1 (4) durumunda, eğer σ(D) = τ(D) ise o zaman

R ∼=


a 0

b σ−1τ(a)

 ∈ D2 : a, b ∈ D

 dir. Eğer, ayrıca vD kümesi R nin

sıfırdan farklı merkezi bir elemanını içeriyorsa (Özellikle, σ−1τ dönüşümü R

nin bir iç otomorfizması ise) R ∼=


a 0

b a

 ∈ D2 : a, b ∈ D

 dir.

Bütünlüğü korumak için (Hongan and Komatsu, 1987) de yer alan ve

ispatsız verilen Uyarı 4.1 i ispatlayalım.

İspat Eğer σ(D) = τ(D) ise σ−1τ(D) = D olur. Teorem 4.1 (4) de

R = D⊕vD olduğundan, f : R → D2 dönüşümünü her a+vb ∈ R için f(a+vb)

=

a 0

b σ−1τ(a)

 olarak tanımlayalım. O zaman her a+ vb, c+ ve ∈ R için

f((a+ vb) + (c+ ve)) = f((a+ c) + v(b+ e))

=

a+ c 0

b+ e σ−1τ(a+ c)


=

a 0

b σ−1τ(a)

+

c 0

e σ−1τ(c)


= f(a+ vb) + f(c+ ve)

olur. Ayrıca I2 = (0) olduğundan ve (3) den

f((a+ vb)(c+ ve)) = f(ac+ v(σ−1τ(a)e+ bc))

=

 ac 0

σ−1τ(a)e+ bc σ−1τ(ac)


= f(a+ vb)f(c+ ve)

bulunur. Son iki bağıntı f nin bir halka homomorfizması olduğunu verir. Şimdi

herhangi bir r = x + vy ∈ Ker f alalım. Buradan

0 0

0 0

 = f(r) = f(x +
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vy) =

x 0

y σ−1τ(x)

 dir. Böylece x = 0 = y olur ve buradan r = 0 olduğu;

yani Ker f = (0) olduğu görülür. Bu ise f nin bir halka monomorfizması

olduğunu verir. Böylece R ∼= Imf =


a 0

b σ−1τ(a)

 ∈ D2 : a, b ∈ D


bulunur.

Şimdi vD nin, R nin sıfırdan farklı merkezi bir vd elemanını içerdiğini

kabul edelim. O zaman d ̸= 0 olduğu açıktır. Burada ilk olarak {1, vd}

kümesinin R nin bir sağ D-bazı olduğunu görelim. Bunun için a + vdb = 0

olacak şekilde a, b ∈ D olsun. Bu durumda {1, v} kümesi R nin bir sağ ve solD-

bazı olduğundan a = 0 = db olmalıdır ve böylece a = 0 = b elde edilir. O zaman

{1, vd} kümesi D-bağımsızdır. Ayrıca her c, e ∈ D için c + ve = c + vdd−1e

olur. Bu ise {1, vd} kümesinin R yi gerdiğini verir. Sonuç olarak {1, vd} kümesi

R nin bir D-bazıdır. Burada g : R → D2 dönüşümünü her a + vdb ∈ R için

f(a+vdb) =

a 0

b a

 olarak tanımlayalım. Bu durumda her a+vdb, c+vde ∈ R

için

g((a+ vdb) + (c+ vde)) = g((a+ c) + vd(b+ e))

=

a+ c 0

b+ e a+ c


=

a 0

b a

+

c 0

e c


= g(a+ vdb) + g(c+ vde)

dır ve

g((a+ vdb)(c+ vde)) = g(ac+ avde+ vdbc)

= g(ac+ vd(ae+ bc))

=

 ac 0

ae+ bc ac


=

a 0

b a

c 0

e c


= g(a+ vdb)g(c+ vde)

olur. Son iki bağıntıdan, g bir halka homomorfizmasıdır. Şimdi bir r = x +
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vdy ∈ Ker g olsun. O zaman

0 0

0 0

 = g(r) = g(x + vdy) =

x 0

y x

 olur.

Buradan x = 0 = y bulunur. Son eşitlik r = 0 olduğunu verir ve Ker g = (0)

bulunur. Bu ise g nin bir halka monomorfizması olduğu sonucuna ulaştırır.

Böylece R ∼= Img =


a 0

b a

 ∈ D2 : a, b ∈ D

 olur.

Özel olarak σ−1τ , R nin bir iç otomorfizması ise her r ∈ R için σ−1τ(r)

= uru−1 olacak şekilde bir u ∈ U vardır. Bu durumda ilk olarak Dv = Uv∪{0}

olduğunu görelim. Burada D, R nin bir bölümlü alt halkası olduğundan Dv ⊆

Uv ∪ {0} olduğu açıktır. Tersine, bir x ∈ U olsun. O zaman U ⊆ R = D⊕ vD

olduğundan x = a + vb olacak şekilde a, b ∈ D vardır ve böylece I2 = (0)

olduğundan xv = av + vbv = av ∈ Dv olur. Bu ise Uv ∪ {0} ⊆ Dv olduğunu

verir. Sonuç olarak Dv = Uv ∪ {0} dır. Benzer şekilde vD = vU ∪ {0} olduğu

görülebilir. Şimdi her r ∈ R için σ−1τ(r) = uru−1 olduğundan, σ−1τ(r)u = ur

bulunur. Burada eşitliğin her iki tarafı soldan v ∈ R ile çarpılarak ve (3) den

yararlanarak

rvu = vσ−1τ(r)u = vur

elde edilir. Bu ise vu ∈ Z(R) olduğunu verir ve v ̸= 0 olduğundan vu ̸= 0 dır.

Ayrıca vU ∪ {0} = vD olduğundan, vD kümesi R nin sıfırdan farklı merkezi

bir vu elemanını içerir. Böylece yukarıda yapılan işlemler tekrarlanarak,

R ∼= Img =


a 0

b a

 ∈ D2 : a, b ∈ D

 bulunur.
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5 TERSİNİR DEĞERLİ GENELLEŞTİRİLMİŞ

TÜREVLER

Bu bölümde Hiroaki Komatsu ve Atsushi Nakajima’ nın 2004 yılında

yapmış oldukları “Generalized Derivations With Invertible Values” adlı çalışma

incelenecektir.

Bu çalışma boyunca R, tersinir elemanlarının grubu U olan bir birimli

halka olacaktır.

Genelleştirilmiş türev kavramı, 1991 de Brešar (Brešar, 1991) ve 1999 da

Nakajima (Nakajima, 1999) tarafından birleşmeli halkalarda, 2000 de Leger

ve Luks (Leger and Luks, 2000) tarafından birleşmeli olmayan halkalarda

tanımlanmıştır. Bu çalışmada bu üç tanım aslında birbirine denk olacaktır.

Eğer bir toplamsal f : R → R dönüşümü her x, y ∈ R için

f(xy) = f(x)y + xf(y)− xf(1)y

eşitliğini sağlıyorsa f dönüşümüne bir genelleştirilmiş türev (Nakajima

anlamında) denir. Eğer R nin bir genelleştirilmiş türevi f olmak üzere

{0} ≠ f(R) ⊆ U ∪ {0} koşulu sağlanıyorsa, f ye tersinir denir (Komatsu

and Nakajima, 2004).

Eğer f dönüşümü R nin bir genelleştirilmiş türevi ise, f(1) ∈ R elemanı

ile soldan çarpım dönüşümü f(1)l olmak üzere

d = f − f(1)l

dönüşümü R nin bir türevidir. Böylece son iki bağıntıdan her x, y ∈ R için

f(xy) = f(x)y + xd(y)

olur.

Bergen, 1983 te tersinir türevli bir halkanın yapısını araştırmıştır (Bergen

et al., 1983). Onların sonuçları Hongan ve Komatsu tarafından 1987 de (σ, τ)-

türevlere genişletilmiştir (Hongan and Komatsu, 1987). Bu çalışmada (Bergen

et al., 1983) deki sonuçlar, tersinir genelleştirilmiş türevlere genişletilecektir.

Eğer X kümesi R nin boştan farklı bir alt kümesi ise rR(X) ile X

kümesinin sağ sıfırlayanı temsil edilecektir. Bir S halkası için, Z(S) ile S

halkasının merkezi temsil edilecektir.
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5.1 ANA SONUÇLAR

Aşağıdaki iki teorem, bu çalışmanın ana sonuçlarını oluşturmaktadır.

Teorem 5.1.1 Bir R halkası üzerinde bir tersinir genelleştirilmiş türev f

olsun. Eğer Ker f , R nin sıfırdan farklı bir sağ idealini içermiyorsa o zaman

aşağıdakilerden biri sağlanır:

(1) R bir bölümlü halkadır.

(2) R bir bölümlü halka üzerindeki tüm 2 × 2 tipinde matrislerin halkasına

izomorftur.

(3) R nin karakteristiği 2 dir, D =
{
a ∈ R : f(a) = f(1)a

}
kümesi R nin

bir bölümlü alt halkasıdır, R = D ⊕ tD, t2 = 0 ve her a, b ∈ D için

f(a + tb) = (ca + b) + t(α + c)(ca + b) olacak şekilde 0 ̸= t ∈ Z(R),

α ∈ Z(D) vardır.

Teorem 5.1.2 Bir R halkası üzerinde bir tersinir genelleştirimliş türev f

olsun. Eğer Ker f , R nin sıfırdan farklı bir sağ idealini içeriyorsa, o zaman

R sıfırdan farklı Jacobson radikali ne sahiptir ve R nin Jacobson radikali

J olmak üzere J2 = (0) dır, D =
{
a ∈ R : f(a) = f(1)a

}
kümesi R

nin bir bölümlü alt halkasıdır, R = D ⊕ J dir ve her a ∈ D, x ∈ J için

f(a+ x) = (α + ω)a olacak şekilde 0 ̸= α ∈ Z(D) ve ω ∈ J vardır.

Teorem 5.1.1 (1) açıktır. Bir bölümlü halkanın sıfırdan farklı her

genelleştirilmiş türevi tersinirdir. Teorem 5.1.1 in diğer durumları çalışmanın

devamında ele alınacaktır.

Uyarı 5.1.1 (1) Teorem 5.1.1 (3) deki ile aynı notasyonu kullanarak

D
′
=
{
a

′ ∈ R : f(a
′
) = a

′
f(1)

}
olsun. O zaman D′

=
{
a+t(ac−ca) : a ∈ D

}
dir, D′ kümesi R nin bir bölümlü alt halkasıdır, R = D

′ ⊕ D
′
t dir ve her

a
′
, b

′ ∈ D
′ için f(a

′
+ b

′
t) = (a

′
c+ b

′
) + (a

′
c+ b

′
)(α + c)t dir.

(2) Teorem 5.1.2 deki ile aynı notasyonu kullanarak D
′
=
{
a

′ ∈ R :

f(a
′
) = a

′
f(1)

}
olsun. O zaman D

′
=
{
a + (ωa − aω)α−1 : a ∈ D

}
dir, D′

kümesi R nin bir bölümlü alt halkasıdır, R = D
′ ⊕ J dir ve her a′ ∈ D, x ∈ J

için f(a
′
+ x) = a

′
(α + ω) dır.
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Bütünlüğü korumak için (Komatsu and Nakajima, 2004) da ispatsız

verilen Uyarı 5.1.1 i ispatlayalım.

İspat (1) İlk olarak D =
{
a + t(ac − ca) : a ∈ D

}
olduğunu görelim. Her

a
′ ∈ D

′ ⊆ R = D ⊕ tD için a
′
= a + tb olacak şekilde a, b ∈ D vardır. Ayrıca

f(1) = f(1+t0) = (c1+0)+t(α+c)(c1+0) = c+t(α+c)c olur. Son bağıntıdan

ve D′ tanımından

(ca+ b) + t(α + c)(ca+ b) = f(a+ tb)

= f(a
′
)

= a
′
f(1)

= (a+ tb)(c+ t(α + c)c)

olur. Son bağıntının her iki tarafı soldan 0 ̸= t ∈ Z(R) ile çarpılarak ve t2 = 0

olduğundan yararlanılarak

tb = t(ac− ca)

elde edilir. Elde edilen bağıntı kullanılarak a′
= a+tb = a+t(ac−ca) bulunur.

Bu ise D′ ⊆
{
a + t(ac − ca) : a ∈ D

}
olmasını gerektirir. Tersine, bir a ∈ D

için a′
= a+ t(ac− ca) olsun. Bu elemanın f altındaki görüntüsü

f(a
′
) = f(a+ t(ac− ca))

= (ca+ ac− ca) + t(α + c)(ca+ ac− ca)

= ac+ t(α + c)ac

= ac+ tαac+ tcac

olur. Ayrıca α ∈ Z(D) ve charR = 2 olduğundan

a
′
f(1) = (a+ t(ac− ca))(c+ t(α + c)c)

= ac+ at(α + c)c+ t(ac− ca)c

= ac+ atαc+ atc2 + tac2 − tcac

= ac+ tαac+ tcac

dır. Son iki bağıntı karşılaştırılarak f(a
′
) = a

′
f(1) olduğu görülür. Bu ise

a
′
= a+ t(ac−ca) ∈ D

′ olduğunu verir. Böylece
{
a+ t(ac−ca) : a ∈ D

}
⊆ D

′

olur. Sonuç olarak D′
=
{
a+ t(ac− ca) : a ∈ D

}
dir.
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Şimdi D′ kümesinin R nin bir bölümlü alt halkası olduğunu görelim.

Burada D′ tanımından 0, 1 ∈ D
′ olduğu açıktır. Her a, b ∈ D için

(a+ t(ac− ca))− (b+ t(bc− cb)) = (a− b) + t(ac− ca− bc+ cb)

= (a− b) + t((a− b)c− c(a− b))

dir ve

(a+ t(ac− ca))(b+ t(bc− cb)) = ab+ at(bc− cb) + t(ac− ca)b

= ab+ t(abc− acb+ acb− cab)

= ab+ t((ab)c− c(ab))

dir. Son iki bağıntıdan D
′ , R nin bir birimli alt halkası olur. Üstelik her

0 ̸= a
′ ∈ D

′ için a
′
= a + t(ac − ca) olacak şekilde bir 0 ̸= a ∈ D vardır.

Buradan (a
′
)−1 = a−1+t(a−1c−ca−1) ∈ D

′ dir ve a′
(a

′
)−1 = 1 = (a

′
)−1a

′ olur.

Böylece yukarıda elde edilen verilerin ışığı altında D′ nin, R nin bir bölümlü

alt halkası olduğunu sonucuna ulaşılır.

Şimdi R = D
′ ⊕D

′
t olduğunu görelim. Her a ∈ D için, 0 ̸= t ∈ Z(R) ve

t2 = 0 olduğundan

at = (a+ t(ac− ca))t ∈ D
′
t

olur. Buradan Dt ⊆ D
′
t bağıntısı sağlanmış olur. Ayrıca her r ∈ R = D ⊕ tD

için r = a+ tb olacak şekilde a, b ∈ D elemanlarının varlığından,

r = a+ tb

= a+ t(ac− ca)− t(ac− ca) + (b+ t(bc− cb))t ∈ D
′
+D

′
t

bulunur. Bu ise R ⊆ D
′
+D

′
t olmasını gerektirir. Diğer taraftan, D′

+D
′
t ⊆ R

olduğu açıktır. Buradan R = D
′
+ D

′
t elde edilir. Şimdi D′ ∩ D

′
t = {0}

olduğunu görelim. Bunun için bir a′ ∈ D
′ ∩ D′

t alalım. Bu durumda a′ ∈ D
′

dir ve a′ ∈ D
′
t dir. Burada D′ tanımından a′

= a+t(ac−ca) olacak şekilde bir

a ∈ D vardır ve a′ ∈ D
′
t olduğundan a′

= (b+ t(bc− cb))t = bt olacak şekilde

bir b ∈ D vardır. Bu iki eşitlikten yararlanılarak a+ t(ac− ca) = a
′
= bt ve

a = t(b− ac+ ca) ∈ D ∩Dt = {0}

bulunur. Son bağıntıdan a = 0 dır. Bu ise a′
= a + t(ac − ca) = 0 olmasını

gerektirir. Böylece D′ ∩ D
′
t = {0} sonucuna ulaşılır. Bu ise R = D

′ ⊕ D
′
t

olduğunu verir.
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Son olarak, her a′
, b

′ ∈ D
′ için f(a′

+ b
′
t) = (a

′
c+ b

′
) + (a

′
c+ b

′
)(α+ c)t

olduğunu görelim. Her a′
, b

′ ∈ D
′ için, D′ tanımından a

′
= a + t(ac − ca)

ve b′ = b + t(bc − cb) olacak şekilde a, b ∈ D vardır. Ayrıca f(a
′
) = a

′
f(1),

f(1) = c+ t(α + c)c, 0 ̸= t ∈ Z(R) ve α ∈ Z(D) oldukları göz önüne alınarak

f(a
′
) = a

′
f(1) = a

′
(c + t(α + c)c) = a

′
c + a

′
t(α + c)c = a

′
c + a

′
tαc + a

′
tc2

= a
′
c + a

′
cαt + a

′
c2t = a

′
c + a

′
c(α + c)t bulunur. Burada b′ nin tanımından

ve t2 = 0 olduğundan b
′
t = (b + t(bc − cb))t = bt = tb olur ve f(b′t) = f(tb)

= f(0 + tb) = (c0 + b) + t(α + c)(c0 + b) = b + t(α + c)b elde

edilir. Ayrıca Teorem 5.1.1 (3) de charR = 2 olduğundan b
′
+ b

′
(α + c)t

= b+t(bc−cb)+b(α+c)t = b+tbc−tcb+bαt+bct = b−tcb+bαt = b+tcb+bαt

= b + tαb + tcb = b + t(α + c)b olur. Böylece son üç bağıntı ve f nin

toplamsallığından hareketle;

f(a
′
+ b

′
t) = a

′
c+ a

′
c(α + c)t+ b

′
+ b

′
(α + c)t

= (a
′
c+ b

′
) + (a

′
c+ b

′
)(α + c)t

elde edilir.

(2) İlk olarak D′
=
{
a+ (ωa− aω)α−1 : a ∈ D

}
olduğunu görelim. Her

a
′ ∈ D

′ ⊆ R = D⊕J için a′
= a+x olacak şekilde a ∈ D, x ∈ J vardır. Burada

f nin tanımından f(1) = f(1 + 0) = (α+ ω)1 = α+ ω olur. Aynı zamanda D′

tanımından f(a′
) = a

′
f(1) olduğundan, ayrıca J2 = (0) olduğundan hareketle

αa + ωa = (α + ω)a = f(a + x) = f(a
′
) = a

′
f(1) = (a + x)(α + ω)

= aα+aω+xα+xω = aα+aω+xα bulunur. Üstelik 0 ̸= α ∈ Z(D) olduğundan

son bağıntı, x = (ωa− aω)α−1 olduğunu verir. Tüm bu elde edilen verilerden

a
′
= a+ x = a+ (ωa− aω)α−1 olur. Bu ise D′ ⊆

{
a+ (ωa− aω)α−1 : a ∈ D

}
olmasını gerektirir. Tersine, herhangi bir a ∈ D için a

′
= a + (ωa − aω)α−1

olsun. Bu durumda f nin tanımından f(a′
) = f(a+(ωa−aω)α−1) = (α+ω)a

olur. Diğer taraftan J2 = (0) ve 0 ̸= α ∈ Z(D) bağıntılarından

a
′
f(1) = (a+ (ωa− aω)α−1)(α + ω)

= aα + aω + ωa− aω

= (α + ω)a

bağıntısına ulaşılır. Son iki bağıntı f(a′
) = a

′
f(1) olmasını gerektirir. Bu ise

D
′ tanımından a + (ωa − aω)α−1 = a

′ ∈ D
′ olduğunu verir. Buradan

{
a +
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(ωa− aω)α−1 : a ∈ D
}
⊆ D

′ olur. Böylece D′
=
{
a+ (ωa− aω)α−1 : a ∈ D

}
elde edilir.

Şimdi D′ kümesinin R nin bir bölümlü alt halkası olduğunu görelim.

Burada 0, 1 ∈ D
′ olduğu, D′ tanımından açıktır. Her a, b ∈ D için

(a+ (ωa− aω)α−1)− (b+ (ωb− bω)α−1) = (a− b) + (ω(a− b)− (a− b)ω)α−1

dir ve 0 ̸= α ∈ Z(D) olduğundan

(a+ (ωa− aω)α−1)(b+ (ωb− bω)α−1) = ab+ a(ωb− bω)α−1 + (ωa− aω)α−1b

= ab+ (aωb− abω + ωab− aωb)α−1

= ab+ (ω(ab)− (ab)ω)α−1

dir. Son iki bağıntıdan D
′ kümesi R nin bir birimli alt halkasıdır. Üstelik her

0 ̸= a
′ ∈ D

′ için a
′
= a + (ωa − aω)α−1 olacak şekilde bir 0 ̸= a ∈ D

vardır. Buradan (a
′
)−1 = a−1 + (ωa−1 − a−1ω)α−1 ∈ D

′ dir ve a′
(a

′
)−1 = 1

= (a
′
)−1a

′ olur. Böylece yukarıda elde edilen verilerin ışığı altında D′ nin, R

nin bir bölümlü alt halkası olduğu sonucuna ulaşılır.

Şimdi R = D
′ ⊕ J olduğunu görelim. Her r ∈ R = D ⊕ J için r = a+ x

olacak şekilde a ∈ D, x ∈ J vardır. Burada

r = a+ x = a+ (ωa− aω)α−1 − (ωa− aω)α−1 + x ∈ D
′
+ J

dir. Buradan R ⊆ D
′
+ J olur. Diğer taraftan D

′
+ J ⊆ R olduğu açıktır.

Böylece R = D
′
+ J elde edilir. Şimdi D′ ∩ J = {0} olduğunu görelim. Bunun

için bir a′ ∈ D
′ ∩ J alalım. Bu durumda a

′ ∈ D
′ dir ve a′ ∈ J dir. Burada

D
′ tanımından a′

= a+ (ωa− aω)α−1 olacak şekilde bir a ∈ D vardır. Ayrıca

a
′
= a+ (ωa− aω)α−1 = b olacak şekilde bir b ∈ J vardır. Bu durumda ω ∈ J

olduğundan, bu iki bağıntıdan yararlanılarak

a = b− (ωa− aω)α−1 ∈ D ∩ J = {0}

bulunur. Son bağıntıdan a = 0 dır. Bu ise a′
= a+ (ωa− aω)α−1 = 0 olmasını

gerektirir. Böylece D′∩J = {0} sonucuna ulaşılır. Bu ise R = D
′⊕J olduğunu

verir.

Son olarak her a′ ∈ D, x ∈ J için f(a′
+x) = a

′
(α+ω) olduğunu görelim.

Burada f nin tanımından f(1) = f(1 + 0) = (α + ω)1 = α + ω ve her y ∈ J
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için f(y) = f(0 + y) = (α + ω)0 = 0 olduğundan f(J) = {0} dır. Ayrıca D′

tanımından f(a′
) = a

′
f(1) dir. Tüm bu bilgilerden yararlanılarak

f(a
′
+ x) = f(a

′
) = a

′
f(1) = a

′
(α + ω)

elde edilir.

Şimdi Teorem 5.1.1 ve Teorem 5.1.2 nin ispatlamak için bazı yardımcı

özelliklere aşağıda yer verilecektir.

Yardımcı Özellik 5.1.3 Bir R halkasının bir genelleştirilmiş türevi f ve bir

sağ ideali I olsun. O zaman I + f(I), R nin bir sağ idealidir. Eğer f tersinir

ise ve I ̸= R ise o zaman I ∩ f(I) = {0} dır.

İspat Hipotezden f bir genelleştirilmiş türev olduğundan herhangi bir x ∈ I

ve r ∈ R için f(xr) = f(x)r + xd(r) olur ve d = f − f(1)l olmak üzere

f(x)r = f(xr)− xd(r) ∈ f(I) + I

elde edilir. Bu ise her a, b ∈ I ve her r ∈ R için

(a+ f(b))r = ar + f(b)r ∈ f(I) + I

olduğunu verir. Ayrıca 0 ∈ I + f(I) ve her x, y ∈ I + f(I) için x− y ∈ I + f(I)

olduğu açıktır. Böylece I + f(I), R nin bir sağ ideali olur. Burada f tersinir

ise ve f(I) ⊆ U ∪ {0} dır ve I ̸= R ise I ∩ (U ∪ {0}) = {0} olmalıdır. Böylece

I ∩ f(I) = {0} elde edilir.

Yardımcı Özellik 5.1.4 Bir R halkasının bir tersinir genelleştirilmiş türevi

f ve kendisinden farklı bir sol ideali I olsun. Burada d = f − f(1)l alalım. O

zaman d(I) ⊆ I olması için gerek ve yeter bir koşul f(I) = {0} olmasıdır.

İspat Hipotezden, her her x ∈ I için f(x) = f(1x) = f(1)x + 1d(x)

olduğundan f(x) − d(x) = f(1)x ∈ I elde edilir. Bu durumda d(I) ⊆ I

nın, f(I) ⊆ I olduğuna denk olduğu açıkça görülür. Ayrıca hipotezden

f(I) ⊆ U ∪ {0} olduğundan I ̸= R ise f(I) ⊆ I olması, f(I) = {0} olmasına

denktir.

Yardımcı Özellik 5.1.5 Birimli bir R halkasının bir tersinir genelleştirilmiş

türevi f ve bir sağ ideali I olsun. Burada d = f − f(1)l alalım.
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(1) Eğer f(I) = {0} ise o zaman d(R) ⊆ rR(I) dır.

(2) Eğer f(I) ̸= {0} ise o zaman ters görüntü kümesi d−1(rR(I)), U ∪ {0}

da kapsanır ve R nin bir bölümlü alt halkasıdır.

(3) Ker d, U ∪ {0} da kapsanır ve R nin bir bölümlü alt halkasıdır.

İspat (1) Öncelikle f(I) = {0} olduğunu kabul edelim. O zaman herhangi

x ∈ I ve r ∈ R için

0 = f(xr) = f(x)r + xd(r) = xd(r)

bulunur. Buradan d(r) ∈ rR(I) = {x ∈ R : Ix = (0)} olur. Böylece d(R) ⊆

rR(I) elde edilir.

(2) Burada f(I) ̸= {0} olsun. Ters görüntü kümesi tanımından,

d−1(rR(I)) = {x ∈ R : d(x) ∈ rR(I)} = {x ∈ R : Id(x) = (0)} dır ve

böylece 0, 1 ∈ d−1(rR(I)) elde edilir. Her x, y ∈ d−1(rR(I)) ve z ∈ I için

zd(x− y) = z(d(x)− d(y)) = zd(x)− zd(y) = 0− 0 = 0

olur. Son bağıntıdan x− y ∈ d−1(rR(I)) dır. Ayrıca

zd(xy) = (zd(x))y + (zx)d(y) = 0y + 0 = 0

olduğundan xy ∈ d−1(rR(I)) elde edilir. Tüm bulunan verilerin ışığı altında

d−1(rR(I)) nın, R nin bir birimli alt halkası olduğu görülür. Şimdi d−1(rR(I))

nın sıfırdan farklı her elemanının tersinir olduğunu görelim. Hipotezde f

tersinir genelleştirilmiş türev olduğundan, {0} ≠ f(I) ⊆ U∪{0} dır ve buradan

f(x) ∈ U olacak şekilde bir x ∈ I vardır. Şimdi 0 ̸= a ∈ d−1(rR(I)) olsun. O

zaman

f(xa) = f(x)a+ xd(a) = f(x)a

olduğu görülür. Burada f(x) ∈ U olduğundan f(x)a ̸= 0 olduğu açıktır.

O zaman son bağıntıdan f(xa) = f(x)a ̸= 0 olmalıdır. Bu ise f(xa) ∈ U

olduğunu verir. Buradan

a = f(x)−1f(xa)
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bulunur. Bir halkada iki tersinir elemanın çarpımının da tersinir olduğu gerçeği,

bize a nın bir tersinir eleman olduğunu verir. Böylece d−1(rR(I)) ⊆ U ∪ {0}

sonucuna ulaşılır. Üstelik

0 = d(1) = d(aa−1) = d(a)a−1 + ad(a−1)

olduğundan

ad(a−1) = −d(a)a−1

dir. Burada a ∈ U olduğundan

d(a−1) = −a−1d(a)a−1

bulunur. Böylece a ∈ d−1(rR(I)) olduğundan

Id(a−1) = I(−a−1d(a)a−1) ⊆ Id(a)a−1 ⊆ (0)a−1 = (0)

olur. Bu ise a−1 ∈ d−1(rR(I)) olduğu anlamına gelir. Buradan d−1(rR(I)), R

nin bir bölümlü alt halkasıdır.

(3) Hipotezden f tersinir genelleştirilmiş türev olduğundan,

{0} ̸= f(R) ⊆ U ∪ {0} dır. Buradan hareketle, Yardımcı Özellik 5.1.5 (2)

de I = R alınırsa d−1(rR(R)) ⊆ U ∪{0} elde edilir. İlk olarak Ker d ⊆ U ∪{0}

olduğunu görelim. Her x ∈ Ker d için d(x) = 0 dır. Dolayısıyla Rd(x) = (0)

olur. Böylece d(x) ∈ rR(R) elde edilir. Bu ise x ∈ d−1(rR(R)) olduğunu verir.

Buradan Ker d ⊆ d−1(rR(R)) ⊆ U ∪{0} elde edilir. Üstelik her 0 ̸= a ∈ Ker d

için

0 = d(1) = d(aa−1) = d(a)a−1 + ad(a−1) = ad(a−1)

olur ve burada a ∈ Ker d ∈ U∪{0} olduğundan d(a−1) = 0 elde edilir. Böylece

a−1 ∈ Ker d olur. Bu ise Ker d nin R nin bir bölümlü alt halkası olduğunu

verir.

Teorem 5.1.1 in İspatı Burada R nin bir bölümlü halka olmadığını

varsayalım ve d = f − f(1)l alalım. Bölümlü halka olmayan bir birimli R

halkasının I gibi bir öz sağ ideali vardır. Gerçekten; eğer R nin bir öz sağ

ideali yok ise o zaman her 0 ̸= a ∈ R için aR, R nin bir sağ ideali olduğundan

ve 0 ̸= a = a1 ∈ aR olduğundan aR ̸= (0) dır. Buradan aR = R elde edilir ve

1 ∈ R = aR olduğundan 1 = ab olacak şekilde bir 0 ̸= b ∈ R var olur. Aynı
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düşünce ile bR = R olduğu söylenebilir. Bu ise 1 = bc olacak şekilde bir c ∈ R

elemanının varlığını verir. Her iki bağıntıyı karşılaştırarak

a = a1 = a(bc) = (ab)c = 1c = c

sonucuna ulaşılır. Bu ise R nin bir bölümlü halka olmaması ile çelişir. O halde

R nin öz sağ ideali vardır. Bu ideale I diyelim.

O zaman, yukarıdan hareketle Yardımcı Özellik 5.1.3 den I⊕f(I) kümesi

R nin bir sağ idealidir. Hipotezden Ker f , R nin sıfırdan farklı bir sağ idealini

içermediğinden f(I) ̸= {0} dır. O zaman {0} ̸= f(I) ⊆ U ∪ {0} dır. Bu

durumda f(I), R nin bazı tersinir elemanlarını içerir ve f(I) ⊆ I ⊕ f(I)

olduğundan

R = I ⊕ f(I)

olur.

Şimdi c(RR) = 2 olduğunu görelim. Burada I sağ idealini kapsayan R nin

bir öz sağ ideali I ′ olsun. O zaman, yukarıda verilen bilgilerden R = I
′ ⊕ f(I

′
)

olur. Bu durumda, her x ∈ I
′ ⊆ R = I ⊕ f(I) için x = a+ f(b) olacak şekilde

a, b ∈ I vardır ve buradan

x− a = f(b) ∈ I
′ ∩ f(I ′

) = {0}

olur. Son bağıntıdan x = a ∈ I dır ve bu ise I ′ ⊆ I olduğunu verir. Ayrıca

I ⊆ I
′ kabulünden, I = I

′ elde edilir. Böylece I nın bir maksimal sağ ideal

olduğu sonucuna ulaşılır. Benzer işlemler, I da kapsanan R nin bir I ′′ öz sağ

ideali için yapılırsa, I ′′ nin de bir maksimal sağ ideal olduğu görülür. Buradan

I = I
′′ elde edilir. Bu ise I nın bir minimal sağ ideal olduğunu verir. Buradan

R nin sağ R-modül olarak (kompozisyon) uzunluğunun 2 olduğu elde edilir;

yani c(RR) = 2 dir.

Şimdi R nin bir merkezi e ̸= 0, 1 idempotenti olduğunu varsayalım. O

zaman her r ∈ R için f(er) = f(eer) = f(e)er+ed(er) = ef(e)r+ed(er) ∈ eR

olur. Buradan f(eR) ⊆ eR olduğu görülür. Yukarıdaki bilgilerden eR, R nin bir

öz sağ ideali olduğundan ve hipotezden f(eR) ⊆ f(R) ⊆ U ∪ {0} olduğundan

f(eR) ⊆ eR∩f(eR) = {0} bulunur. Bu ise f(eR) = {0} olduğunu verir. Benzer

şekilde 1 − e bir merkezi idempotent eleman olduğundan, f((1 − e)R) = {0}
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olmalıdır. Buradan f(R) = {0} olur. Bu ise f = 0 çelişkisini verir. Bu yüzden

R nin aşikâr olmayan merkezi idempotenti yoktur.

Burada eğer R bir yarı basit halka ise R nin Jacobson radikali J olmak

üzere J = (0) dır ve R bir sol Artin halkasıdır. Üstelik R bir sol Artin halkası

olduğundan eğer R nin bir ideali L ise o zaman bir e2 = e ∈ Z(R) için L = Re

dir. Fakat R nin aşikâr olmayan merkezi idempotenti olmadığından ya e = 0 dır

ya da e = 1 dir. Bu durumda ya L = (0) olmalıdır ya da L = R olmalıdır. Bu

ise R nin bir basit halka olduğu anlamına gelir. Ayrıca c(RR) = 2 olduğundan

D bir bölümlü halka olmak üzere R ∼= M2(D) olur. Böylece eğer R bir yarı

basit halka ise, Teorem 5.2.1 (2) formundadır.

Şimdi R nin sıfırdan farklı bir Jacobson radikali J ye sahip olduğunu

varsayalım; yani R bir yarı basit halka olmasın. O zaman c(RR) = 2

olduğundan J bir maksimal sağ idealdir ve J2 = (0) dır. Buradan R nin bir

yerel halka olduğu sonucuna ulaşılır. O zaman R nin tek maksimal sağ ideali J

dir. Ayrıca yerel halka tanımından J = {x ∈ R : x /∈ U} olur. Bu ise R nin tek

öz sağ idealinin ve tek öz sol idealinin J olduğunu verir. Hipotezden Ker f ,

R nin sıfırdan farklı bir sağ idealini içermediğinden f(J) ̸= {0} dır. Böylece

Yardımcı Özellik 5.1.4 den

d(J) ̸⊆ J (1)

olur. Ayrıca Yardımcı Özellik 5.2.3 den J + d(J), R nin bir sağ idealidir.

Bu durumda J ⊆ J + d(J) ve J bir maksimal sağ ideal olduğundan, eğer

J = J + d(J) ise d(J) ⊆ J çelişkisi elde edilir. O zaman R = J + d(J)

olmalıdır.

Şimdi R = d−1(J)+J olduğunu görelim. Burada d−1(J)+J ⊆ R olduğu

açıktır. Tersine, her r ∈ R için d(r) ∈ R = J+d(J) olduğundan d(r) = a+d(b)

olacak şekilde a, b ∈ J vardır ve buradan d(r − b) = a ∈ J olur. Bu durumda

r − b ∈ d−1(J) = {x ∈ R : d(x) ∈ J} dir ve böylece r ∈ d−1(J) + J elde edilir.

Bu ise R ⊆ d−1(J) + J olduğu anlamına gelir. Böylece R = d−1(J) + J olur.

Şimdi

E = d−1(J)

diyelim. O zaman R = E + J olur. Burada E ∩ J = {0} olduğunu görelim.

Hipotezden (0) ̸= J ̸⊆ Ker f dir. Ayrıca rR(J) = {x ∈ R : Jx = (0)} kümesi R
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nin bir sağ idealidir ve J2 = (0) olduğundan (0) ̸= J ⊆ rR(J) elde edilir. Ayrıca

R bir birimli halka olduğundan JR ̸= (0) dır; yani rR(J) ̸= R dir. Böylece J

nin maksimalliğinden J = rR(J) elde edilir. Burada Yardımcı Özellik 5.2.5 (2)

den d−1(rR(J)) = d−1(J) = E ⊆ U ∪{0} olur ve J , R nin tersinir elemanlarını

içermediğinden E ∩ J = {0} dır. Buradan

R = E ⊕ J

elde edilir.

Son bağıntıdan her bir x ∈ J için d(x) ∈ R olduğundan d(x) = ax + bx

olacak şekilde x ∈ J ye bağlı ax ∈ E ve bx ∈ J nin varlığı yazılabilir. Burada

hareket kümesi J olmak üzere, J nin her bir x elemanına bağlı d(x) in toplam

terimleri de x elemanına bağlı olarak değişecektir. O halde her bir x ∈ J

için φ(x) = ax ile tanımlı φ : J → E ve ψ(x) = bx ile tanımlı ψ : J → J

bağıntıları var olur. İlk önce bu bağıntıların birer dönüşüm olduğunu görelim.

Şimdi x = x
′ ∈ J olsun. Buradan d(x) = d(x

′
) olur. Böylece yukarıdaki

açıklamalardan d(x) = φ(x)+ψ(x) ve d(x′
) = φ(x

′
)+ψ(x

′
) eşitlikleri sağlanır.

Son üç bağıntıdan

φ(x) + ψ(x) = φ(x
′
) + ψ(x

′
)

dır ve

φ(x)− φ(x
′
) = ψ(x

′
)− ψ(x) ∈ E ∩ J = {0}

bulunur. Buradan φ(x) = φ(x
′
) ve ψ(x) = ψ(x

′
) eşitlikleri elde edilir; yani

φ ve ψ iyi tanımlıdır. Ayrıca her x ∈ J için d(x) ∈ R = E ⊕ J olduğundan

d(x) = ax + bx = φ(x) + ψ(x) olacak şekilde φ(x) = ax ∈ E ve ψ(x) = bx ∈ J

vardır. Bu ise φ ve ψ nin kapalılığını verir. Buradan φ ve ψ birer dönüşümdür.

Böylece her bir x ∈ J için, d(x) = φ(x) + ψ(x) olacak şekilde φ(x) ∈ E,

ψ(x) ∈ J vardır. Şimdi φ ve ψ nin birer E-modül homomorfizması olduğunu

görelim. Her x, y ∈ J için

d(x+ y) = d(x) + d(y) = φ(x) + ψ(x) + φ(y) + ψ(y)

ve

d(x+ y) = φ(x+ y) + ψ(x+ y)
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olur. Böylece son iki bağıntıdan

φ(x+ y)− φ(x)− φ(y) = ψ(x) + ψ(y)− ψ(x+ y) ∈ E ∩ J = {0}

bulunur. Buradan φ : J → E ve ψ : J → J nin birer toplamsal dönüşüm olduğu

sonucu elde edilir. Herhangi a ∈ E ve x ∈ J için, E = d−1(J) olduğundan

d(a) ∈ J dir ve J2 = (0) olduğundan

d(ax) = d(a)x+ ad(x) = ad(x)

olur. O zaman

aφ(x) + aψ(x) = ad(x) = d(ax) = φ(ax) + ψ(ax)

olur ve buradan

aψ(x)− ψ(ax) = φ(ax)− aφ(x) ∈ E ∩ J = {0}

elde edilir. Böylece her a ∈ E ve x ∈ J için φ(ax) = aφ(x) ve

ψ(ax) = aψ(x) olur. Benzer şekilde d(xa) = d(x)a olduğundan φ(xa) = φ(x)a

ve ψ(xa) = ψ(x)a eşitliği görülebilir. Ayrıca E ve J nin birer E-modül oldukları

açıktır.

Tüm bu verilen bilgilerden, φ ve ψ birer E-modül homomorfizmasıdırlar.

Şimdi φ nin bir E-modül izomorfizması olduğunu görelim. Burada Imφ, E

nin bir alt E-modülüdür. Eğer φ = 0 ise her x ∈ J için d(x) = φ(x) + ψ(x)

= ψ(x) ∈ J olduğundan d(J) ⊆ J çelişkisine ulaşılır. O zaman φ ̸= 0 olmalıdır.

Böylece 0 ̸= dimE(Imφ) ≤ dimE(E) = 1 olduğundan dimE(Imφ) = 1 elde

edilir. O zaman Imφ = E dir. Bu ise φ dönüşümünün örtenliğini verir. Şimdi

bir 0 ̸= j ∈ J olsun. Burada jR kümesi R nin bir sağ idealidir ve 0 ̸= j

= j1 ∈ jR olduğundan jR ̸= (0) dır. Bu durumda J nin tekliğinden J = jR

olur. Üstelik R = E ⊕ J ve J2 = (0) olduğundan J = jR = j(E ⊕ J) = jE

bulunur. Benzer şekilde J = Ej dir. Böylece her x ∈ J için jy = x = zj olacak

şekilde y, z ∈ E vardır. Dolayısıyla {j} kümesi J nin bir sağ ve sol E-bazıdır.

Bu ise dimE(J) = 1 olduğunu verir. Ayrıca Ker φ, J nin bir alt E-modülü

olduğundan dimE(Ker φ) ≤ dimE(J) = 1 olmalıdır. Burada dimE(Ker φ) = 1

ise Ker φ = J olur ve dolayısıyla φ = 0 çelişkisi elde edilir. Bu durumda

dimE(Ker φ) = 0 olmalıdır. Buradan Ker φ = {0} elde edilir. O zaman φ

dönüşümü bire-birdir. Sonuç olarak φ bir E-modül izomorfizmasıdır.
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Şimdi φ−1(1) = t ∈ J alalım. Burada t = 0 iken 1 = φ(0) = 0 çelişkisi

elde edileceğinden, t ̸= 0 dır ve üstelik J2 = (0) olduğundan t2 = 0 olur.

Yukarıda verilen bilgilerden, benzer şekilde J = tE olur. Böylece R = E ⊕ J

bağıntısından

R = E ⊕ tE (2)

elde edilir. Bu durumda ψ(t) = tα olacak şekilde bir α ∈ E vardır. Ayrıca son

bağıntıdan f(1) = c + tc
′ olacak şekilde c, c′ ∈ E vardır. Burada t = φ−1(1)

olduğundan her e ∈ E için

φ(te) = φ(t)e = e = eφ(t) = φ(et)

bulunur ve φ bir E-modül izomorfizması olduğundan et = te elde edilir. O

zaman t ∈ J elemanı, E nin her elemanı ile değişmelidir. Benzer şekilde ψ bir

E-modül homomorfizması ve ψ(t) = tα olduğundan her e ∈ E için

teα = etα = eψ(t) = ψ(et) = ψ(te) = ψ(t)e = tαe

olur. Böylece t(eα−αe) = 0 olmalıdır. Burada eα−αe ∈ E ⊆ U ∪{0} ve t ̸= 0

olduğundan αe = eα elde edilir. Böylece α ∈ Z(E) dir. Bu durumda J2 = (0)

olduğundan her a, b ∈ E için

(a+ tb)t = at = ta = t(a+ tb)

olur. Bu ise t ∈ Z(R) olduğunu verir. Ayrıca J2 = (0) olduğundan 0 = d(t2)

= d(t)t + td(t) = (φ(t) + ψ(t))t + t(φ(t) + ψ(t)) = (1 + tα)t + t(1 + tα)

= t + tαt + t + t2α = 2t olur. O zaman 2R = 2(E ⊕ tE) = 2E olmalıdır.

Burada 2R = 2E kümesi E nin bir idealidir ve E kümesinin R nin bir bölümlü

alt halkası olduğu gerçeği bizi ya 2R = 2E = (0) olmasına ya da 2R = 2E = E

olmasına ulaştırır. Eğer 2R = 2E = E ise 2R kümesi R nin bir ideali

olduğundan ve R nin bazı tersinir elemanlarını içereceğinden 2R = R olur.

Fakat bu durum, R = 2R = 2E = E ⊆ U ∪ {0} olmasını gerektirdiğinden R

nin bir bölümlü halka olmaması kabulü ile çelişir. Buradan 2R = (0) olması

gerektiği sonucuna ulaşılır. Böylece R nin karakteristiğinin 2 dir.

Şimdi E = Ker d olduğunu görelim. Herhangi a, b ∈ E için, d = f−f(1)l
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olduğundan

f(a+ tb) = d(a+ tb) + f(1)(a+ tb)

= d(a) + d(tb) + (c+ tc
′
)(a+ tb)

= d(a) + φ(tb) + ψ(tb) + ca+ ctb+ tc
′
a+ tc

′
tb

= d(a) + φ(t)b+ ψ(t)b+ ca+ tcb+ tc
′
a

= d(a) + b+ tαb+ ca+ tcb+ tc
′
a

= (b+ ca) + (d(a) + t(αb+ cb+ c
′
a))

olur. Burada E = d−1(J) eşitliği göz önüne alınarak, son bağıntıda özel olarak

b = −ca ∈ E için

f(a− tca) = (−ca+ ca) + d(a) + t(−αca− c2a+ c
′
a)

= d(a)− t(αc+ c2 − c
′
)a ∈ J

bulunur. Burada eğer f(a− tca) ̸= 0 ise f tersinir olduğundan f(a− tca) ∈ U

olur ve son bağıntıdan J = R çelişkisi elde edilir. O halde f(a − tca) = 0

olmalıdır. Böylece son bağıntıdan, her a ∈ E için

d(a) = t(αc+ c2 − c
′
)a

bağıntısına ulaşılır. Özel olarak, son bağıntıda a = 1 alırsak

d(1) = t(αc+ c2 − c
′
)

bulunur. Buradan, son iki bağıntı birlikte düşünülerek

d(a) = d(1)a

olur ve d(1) = 0 eşitliğinden d(a) = 0 olması gerekir. Buradan a ∈ Ker d dir;

yani E ⊆ Ker d elde edilir. Tersine, eğer a + tb ∈ Ker d ise 0 = d(a + tb)

= d(a) + d(tb) = d(tb) = d(t)b + td(b) = d(t)b olur. Burada eğer b ̸= 0 ise

b ∈ E ⊆ U ∪{0} olduğundan, son bağıntıdan d(t) = 0 elde edilir. Bu durumda

her te ∈ tE = J için

d(te) = d(t)e+ td(e) = 0e+ t0 = 0

olur. Böylece {0} = d(J) ⊆ J elde edilir. Fakat bu durum (1) den bir çelişkidir.

O zaman b = 0 olmalıdır. Buradan a + tb = a ∈ E olur. Bu ise Ker d ⊆ E

olduğunu verir. Sonuç olarak

E = Ker d
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dir. Ayrıca 0 = d(1) = t(αc + c2 − c
′
) ve t ̸= 0 olduğundan c

′
= αc + c2

olur. Böylece her a, b ∈ E için f(a+ tb) = (b+ ca) + (d(a) + t(αb+ cb+ c
′
a))

olduğundan

f(a+ tb) = (b+ ca) + (d(a) + t(αb+ cb+ c
′
a))

= (ca+ b) + t(αb+ cb+ αca+ c2a)

= (ca+ b) + t(α + c)(ca+ b)

olur. Eğer D = Ker d alınırsa, bu durum Teorem 5.2.1 (3) e karşılık gelir.

Böylece ispat tamamlanır.

Teorem 5.2.2 nin İspatı Burada f nin bir tersinir genelleştirilmiş türev

olduğunu, Ker f nin sıfırdan farklı bir sağ ideali içerdiğini varsayalım ve

d = f − f(1)l alalım. Eğer D = Ker d alınırsa o zaman Yardımcı Özellik

5.1.5 (3) den D, R nin bir bölümlü alt halkası olur. Bu durumda Ker f nin

içerdiği tüm sağ ideallerin toplamı M olsun. O zaman M ⊆ Ker f dir ve her

x ∈M için

d(x) = f(x)− f(1)x = −f(1)x (3)

olur. Kabulden, Ker f kümesi R nin sıfırdan farklı bir sağ idealini içerdiği için

M ̸= (0) dır. Burada eğer d(M) = {0} ise o zaman (0) ̸= M ⊆ D ⊆ U ∪ {0}

olur. Bu durumda M sağ ideali R nin bazı tersinir elemanlarını içereceğinden

R = M ⊆ Ker f elde edilir. Bu ise R = Ker f olduğunu verir. Buradan

f(R) = {0} çelişkisine ulaşılır. O zaman d(M) ̸= {0} olmalıdır. Böylece (3)

ten f(1) ̸= 0 elde edilir. Bu ise f tersinir olduğundan

f(1) ∈ U (4)

olduğu anlamına gelir. Şimdi N = rR(M) = {r ∈ R :Mr = (0)} olsun. Burada

N kümesi R nin bir idealidir ve M nin tanımı gereği f(M) = {0} olduğundan,

Yardımcı Özellik 5.1.5 (1) den

d(R) ⊆ N (5)

elde edilir. Burada eğer N = R ise, her r ∈ R için Mr = (0) olur, özel

olarak r = 1 için M = (0) çelişkisine ulaşılır. O zaman N ̸= R dir ve (5)

den d(N) ⊆ N dir. Böylece Yardımcı Özellik 5.1.4 ten f(N) = {0} elde edilir.
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Buradan N ⊆ Ker f olur ve Ker f de kapsanan tüm sağ ideallerin toplamı M

olduğundan

N ⊆M (6)

bağıntısına ulaşılır. Son bağıntıdan ve N nin tanımından her a, b ∈ N için

ab = 0 olur. Böylece

N2 = (0) (7)

elde edilir. Ayrıca N bir ideal olduğundan, (4) den f(1)N = N dir.

Şimdi d nin N ye kısıtlanışı d|N olmak üzere, d|N nin bir R-modül

izomorfizması olduğunu görelim. Burada (5) den d|N : N → d(N) ⊆ N dir

ve her n ∈ N için d|N(n) = d(n) ile tanımlıdır. O zaman, her n, n1, n2 ∈ N ve

r ∈ R için

d|N(n1 + n2) = d(n1 + n2)

= d(n1) + d(n2)

= d|N(n1) + d|N(n2)

olur. Ayrıca (5) ve (7) den

d|N(nr) = d(nr) = d(n)r + nd(r) = d(n)r = d|N(n)r

dir ve benzer şekilde

d|N(rn) = d(rn) = d(r)n+ rd(n) = rd(n) = rd|N(n)

olur. Son üç bağıntıdan, d|N : N → N dönüşümü bir R-modül homomorfizması

olur. Şimdi Imd|N = N olduğunu görelim. Burada Imd|N = d(N) ⊆ N

olduğu (5) den görülür. Tersine n ∈ N olsun. Bu durumda (3) ve (6) dan

−f(1)n = d(n) ∈ N dir. Ayrıca (4) den ve son bağıntıdan

n = −f(1)−1d(n) = d(−f(1)−1n) ∈ d(N) = Imd|N

olur. Son bağıntı, N ⊆ d(N) = Imd|N olduğunu verir. Böylece N = Imd|N
elde edilir. Bu ise d|N : N → N dönüşümünün örtenliğini verir. Üstelik x ∈

Ker d|N ise (3) ve (6) dan

0 = d(x) = −f(1)x
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olur ve bu ise (4) den x = 0 olmasını gerektirir. Buradan Ker d|N = {0} dır

ve böylece d|N : N → N dönüşümü bire-birdir. Sonuç olarak d|N : N → N

dönüşümü bir R-modül izomorfizmasıdır.

Şimdi R = D ⊕ N olduğunu görelim. Her r ∈ R için, N = d(N)

olduğundan ve (5) den d(r) = d(n) olacak şekilde bir n ∈ N vardır ve böylece

d(r−n) = 0 olur. Bu ise r−n ∈ D = Ker d olduğunu verir. Buradan r−n = a

olacak şekilde bir a ∈ D vardır; yani her r ∈ R için r = a+n olacak şekilde bir

a ∈ D ve n ∈ N vardır. Buradan r ∈ D +N elde edilir. O zaman R = D +N

dir. Üstelik D kümesi R nin bir bölümlü alt halkası olduğundan ve N ̸= R

olduğundan D ∩N = {0} dır. Buradan

R = D ⊕N

elde edilir.

Şimdi R nin Jacobson radikali nin N olduğunu görelim. Burada R nin

Jacobson radikali J olmak üzere, tüm nil (sağ-sol-iki yanlı) idealler J de

kapsandığından ve (7) den N ⊆ J dir. Ayrıca son bağıntıdan, D bir bölümlü

halka olduğundanN bir maksimal sağ idealdir. Gerçekten de eğerN ⊆ I olacak

şekilde R nin bir I öz sağ ideali var ise, her x ∈ I için x = a+ b olacak şekilde

a ∈ D ve b ∈ N vardır. Buradan x−b = a ∈ I∩D = {0} olur. Bu ise x = b ∈ N

olduğunu verir. Buradan I ⊆ N ve dolayısıyla I = N elde edilir. O zaman N

bir maksimal sağ idealdir ve J ̸= R olduğundan J = N olur; yani N ile R nin

Jacobson radikali çakışır. Son bağıntıdan, f(1) = α + ω olacak şekilde α ∈ D

ve ω ∈ N vardır. Burada eğer α = 0 ise f(1) = ω ∈ N olur ve (4) ten N = R

çelişkisine ulaşılır. O zaman α ̸= 0 olmalıdır. Böylece herhangi bir a ∈ D için,

d = f−f(1)l olduğundan f(a) = d(a)+f(1)a = f(1)a = (α+ω)a olur. Ayrıca

f(N) = {0} olduğundan, bir 0 ̸= x ∈ D ve her a ∈ D için f(ax) = 0 dır ve

üstelik d = f − f(1)l olduğundan

0 = f(ax) = f(a)x+ ad(x)

= f(a)x+ af(x)− af(1)x

= f(a)x− af(1)x

= (α + ω)ax− a(α + ω)x

= (αa− aα)x
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olur. Böylece αa − aα ∈ D ve x ̸= 0 olması gerçeği, αa − aα = 0 olmasını

gerektirir. Buradan her a ∈ D için αa = aα olur. Bu ise a ∈ Z(D) olduğunu

verir.

5.2 M2(D) NİN TERSİNİR GENELLEŞTİRİLMİŞ

TÜREVLERİ

Bu bölümde D bir bölümlü halka ve M2(D) ise matris birimleri {eij} olan

D üzerinde tüm 2× 2 tipinde matrislerin halkası olacaktır. Burada M2(D) nin

tersinir genelleştirilmiş türevleri tartışılacaktır. Herhangi M,N ∈ M2(D) ve

her A ∈M2(D) için FM,N(A) =MA+AN ile tanımlı FM,N :M2(D) →M2(D)

dönüşüm bir genelleştirilmiş türevdir ve bu dönüşüme genelleştirilmiş iç

türev denir. Özel olarak, FM,−M dönüşümü M ∈M2(D) ile belirli iç türevdir.

Teorem 5.2.1 Karakteristiği 2 den farklı bir bölümlü halka D olsun. O zaman

M2(D) nin her tersinir genelleştirilmiş türevi bir iç türevdir.

İspat Öncelikle M2(D) nin bir tersinir genelleştirilmiş türevi F olsun. Burada

d = F − F (1)l alalım. O zaman d dönüşümü M2(D) nin bir türevidir. Bu

durumda

d(e11) =

0 p

q 0

 , d(e12) =

−q r

0 q

 , d(e21) =

−p 0

−r p

 , d(e22) =

 0 −p

−q 0


ve her a, b, c, e ∈ D için

d

a b

c e

 =

 f(a)− bq − pc f(b) + ap+ br − pe

f(c) + qa− eq − rc f(e) + er − re+ qb+ cp


olacak şekilde p, q, r ∈ D ve D nin bir f türevi vardır (Bergen et al., 1983).

Burada α = −p, γ = −r ve β = q olsun. O zaman son bağıntıdan her a, b, c, e ∈

D için

d

a b

c e

 =

f(a) f(b)

f(c) f(e)

+

0 α

β γ

a b

c e

−

a b

c e

0 α

β γ

 (8)

olacak şekilde α, β, γ ∈ D ve D nin bir f türevi vardır. Şimdi ζ, η, θ, ι ∈ D

olmak üzere

F (1) =

 ζ η − α

θ − β ι− γ


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diyelim. Burada F = d + F (1)l olduğundan, (8) den ve son bağıntıdan her

a, c, e ∈ D için

F

a 0

c e

 =

 f(a) + ζa+ ηc ηe− aα

f(c) + θa+ ιc− eβ f(e)− cα− eγ + ιe

 (9)

elde edilir. Şimdi η = 0 olduğunu varsayalım. Burada f , D nin bir türevi

olduğundan f(1) = 0 dır. O zaman (9) dan F (e21) =

0 0

ι −α

 dır ve bu

matrisin tersinir olmaması α = ι = 0 olmasını gerektirir. Aynı düşünce ile

F (e11) =

ζ 0

θ 0

 olduğundan ζ = θ = 0 ve F (e22) =

 0 0

−β −γ

 olduğundan

β = γ = 0 olmalıdır. Üstelik, her a ∈ D için F (ae11) = f(a)e11 olur ve bu

matris tersinir olmadığından f(a) = 0 olmalıdır. Bu ise f = 0 olduğunu verir.

Böylece tüm bu bilgilerin ışığı altında, F = 0 çelişkisi elde edilir. Buradan

η ̸= 0 olmalıdır. Bu durumda (9) da c = −η−1(f(a)+ ζa) ve e = η−1aα alalım.

Böylece

F

a 0

c e

 =

0 0

∗ f(η−1aα) + η−1(f(a) + ζa)α− η−1aαγ + ιη−1aα


elde edilir. Yukarıdaki tersinir olmadığından

f(η−1aα) + η−1f(a)α + η−1ζaα− η−1aαγ + ιη−1aα = 0

olmalıdır. Üstelik f(η−1aα) = f(η−1)aα+ η−1f(a)α+ η−1af(α) eşitliği ve son

bağıntı birlikte düşünüldüğünde

2η−1f(a)α + f(η−1)aα + η−1ζaα + ιη−1aα + η−1af(α)− η−1aαγ = 0

bulunur. Ayrıca (9) dan F (e21) =

η 0

ι −α

 olur. Burada η ̸= 0 olması, bu

matrisin tersinir olması gerektiğini söyler. Bu ise α ̸= 0 olduğunu verir. Böylece

son bağıntının her iki tarafı soldan n ∈ D, sağdan α−1 ∈ D çarpılarak

2f(a) = −ηf(η−1)a− ζa− ηιη−1a− af(α)α−1 + aαγα−1

= (−ηf(η−1)− ζ − ηιη−1)a− a(f(α)α−1 + αγα−1)

elde edilir. Burada hipotez gereği D nin karakteristiği 2 den farklı olduğundan,

son bağıntı

f(a) =

(
−ηf(η−1)− ζ − ηιη−1

2

)
a− a

(
f(α)α−1 + αγα−1

2

)
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eşitliğini verir. Bu durumda

−µ =
−ηf(η−1)− ζ − ηιη−1

2
ve − λ =

f(α)α−1 − αγα−1

2

denilerek yukarıdaki eşitlik, her a ∈ D için f(a) = aλ − µa bağıntısını verir.

Üstelik 0 = f(1) = λ − µ olduğundan λ = µ olur ve buradan her a ∈ D için

f(a) = aλ− λa bulunur. Böylece her a, b, c, e ∈ D içinf(a) f(b)

f(c) f(e)

 =

a b

c e

λ 0

0 λ

−

λ 0

0 λ

a b

c e


elde edilir. Ayrıca

M = −

λ 0

0 λ

+

0 α

β γ

+ F (1) ve N =

λ 0

0 λ

−

0 α

β γ


olmak üzere, F = d+ F (1)l olduğundan ve (8) den, her A ∈M2(D) için

F (A) =MA+ AN

elde edilir. Bu ise F nin M ve N elemanları ile belirli genelleştirilmiş iç türev

olduğunu verir.

M2(D) nin bir genelleştirilmiş türevi F ve S, T ∈M2(D) tersinir matrisler

olmak üzere; her A ∈ M2(D) için SF T (A) = SF (S−1AT−1)T ile tanımlı SF T

dönüşümünün M2(D) nin bir genelleştirilmiş türevi olduğu kolayca görülür ve
SF T ye F nin bir eşleniği denir. Ayrıca F nin tüm eşleniklerinin kümesine

F nin eşlenik sınıfı denir. Eşlenik sınıfları, M2(D) nin tüm genelleştirilmiş

türevlerinin kümesinin bir sınıflandırmasını verir. Üstelik (1) F nin tersinir

olması için gerek ve yeter bir koşul SF T nin tersinir olmasıdır ve (2) eğer

F = FM,N ise o zaman SFT = FSMS−1,T−1NT ’dir.

Bütünlüğü korumak adına, (Komatsu and Nakajima, 2004) te ispatsız

verilen yukarıdaki iddiaları ispatlayalım.

İspat Eğer M2(D) nin bir genelleştirilmiş türevi F ise o zaman F toplamsaldır

ve her A,B ∈M2(D) için F (AB) = F (A)B+Ad(B) olacak şekilde M2(D) nin

bir d türevi vardır. Şimdi S, T ∈ M2(D) tersinir matrisler olsun. Burada SF T

nin toplamsallığı açıktır. Bu durumda d(T−1)T ∈ M2(D) ile belirli iç türev δ

olmak üzere Q = d − δ alalım. O zaman Q nun M2(D) nin bir türevi olduğu

açıktır. Üstelik her A,B ∈M2(D) için SF T (AB) = SF T (A)B+AQ(B) eşitliği

sağlanır. Böylece SF T , M2(D) nin bir genelleştirilmiş türevidir.
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(1) İlk olarak S, T ∈ M2(D) tersinir matrisler olsun ve F nin tersinir

olduğunu varsayalım. O zaman her A ∈ M2(D) için ya F (A) ∈ U dur

ya da F (A) = 0 dır. Burada S, T tersinir matrisler olduğundan, her A ∈

M2(D) için ya SF (A)T ∈ U dır ya da SF (A)T = 0 dır. Burada özel

olarak A yerine S−1AT−1 alınarak, ya SF (S−1AT−1)T ∈ U olur ya da

SF (S−1AT−1)T = 0 olur. Bu ise SF T (R) ⊆ U ∪ {0} olduğunu verir. Burada

eğer SF T (R) = {0} ise o zaman her A ∈ M2(D) için SF (S−1AT−1)T

= 0 olur. Buradan F (S−1AT−1) = 0 elde edilir. Özel olarak A yerine SAT

alırsak, her A ∈ M2(D) için F (A) = 0 olur ve böylece F (R) = {0} çelişkisine

ulaşılır. O halde SF T (R) ̸= {0} olmalıdır. Böylece {0} ≠ SF T (R) ⊆ U ∪ {0}

elde edilir; yani SF T tersinirdir.

Tersine, SF T nin tersinir olduğunu varsayalım. O zaman her A ∈M2(D)

için ya SF T (A) ∈ U dır ya da SF T (A) = 0 dır. Buradan ya SF (S−1AT−1)T ∈

U olmalıdır ya da SF (S−1AT−1)T = 0 olmalıdır. O zaman ya F (S−1AT−1) ∈

U dır ya da F (S−1AT−1) = 0 dır. Burada özel olarak, A yerine SAT alınarak,

her A ∈M2(D) için ya F (A) ∈ U olur ya da F (A) = 0 olur. Bu ise F (R) ⊆ U∪

{0} olduğunu verir. Burada eğer F (R) = {0} ise her A ∈M2(D) için F (A) = 0

olur. O zaman SF (A)T = 0 dır. Özel olarak A yerine S−1AT−1 yazılarak, her

A ∈ M2(D) için SF T (A) = 0 elde edilir. Buradan SF T (R) = {0} çelişkisine

ulaşılır. O zaman F (R) ̸= {0} olmalıdır. Böylece {0} ≠ F (R) ⊆ U ∪ {0} elde

edilir; yani F tersinirdir.

(2) Eğer F = FM,N ise o zaman her A ∈M2(D) için

SF T (A) = SF (S−1AT−1)T

= S(MS−1AT−1 + S−1AT−1N)T

= SMS−1A+ AT−1NT

= FSMS−1,T−1NT (A)

olur. O zaman SF T = FSMS−1,T−1NT dir.

Yardımcı Özellik 5.2.2 Eğer F , M2(D) nin M =

a b

c e

 ve N =

s t

u v


elemanları ile belirli tersinir genelleştirilmiş iç türevi ise o zaman b, c, t ve u

elemanlarının hepsi sıfırdan farklıdır.

İspat Genelleştirilmiş iç türev tanımından her A =

a b

c e

 ∈ M2(D) için
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F (A) =MA+ AN dir. Böylece aşağıdaki

F (e21) =

 b 0

e+ s t

 (10)

F (e11) =

a+ s t

c 0

 (11)

F (e12) =

u a+ v

0 c

 (12)

matrisleri elde edilir. Burada b = 0 olduğunu varsayalım. Bu durumda F bir

tersinir genelleştirilmiş iç türev olduğundan ve (10) dan t = 0 ve s = −e,

(11) den c = 0 ve s = −a, (12) den u = 0 ve v = −a bulunur. Böylece

M =

a 0

0 a

 ve N =

−a 0

0 −a

 elde edilir. Üstelik, herhangi bir x ∈ D için

F (xe11) = (ax − xa)e11 olur. Bu matris tersinir olmadığından sıfır matrisine

eşit olmalıdır. Buradan ax− xa = 0 bulunur. Bu ise ax = xa olduğunu verir;

yani a ∈ Z(D) dir. Fakat burada a ∈ Z(D) olduğundan, F = 0 çelişkisine

ulaşılır. O halde b ̸= 0 olmalıdır. Bu durumda (10) dan t ̸= 0, (11) den c ̸= 0

ve (12) den u ̸= 0 olur.

Teorem 5.2.3 D bir bölümlü halka olsun. O zaman λ, µ ∈ Z(D), x2 − µx −

λ = 0 denkleminin D de bir çözümü olmayacak şekilde elemanlar olmak üzere

M2(D) de

0 1

λ µ

 elemanı ile belirli tüm iç türevler, tersinir genelleştirilmiş

iç türevlerin eşlenik sınıflarının temsilcilerinin bir tam kümesini verir.

İspat Burada λ, µ ∈ Z(D), x2 − µx − λ = 0 denkleminin D de bir çözümü

olmayacak şekilde elemanlar olmak üzere,M2(D) de

0 1

λ µ

 elemanı ile belirli

iç türev F olsun. O zaman bir A =

x y

s t

 ∈ M2(D) için, m = s − λy ve

n = x− t+ µy olmak üzere

F (A) =

 s− λy −x+ t− µy

λ(x− t) + µs −s+ λy

 =

 m −n

λn+ µm −m


eşitliği elde edilir. Burada eğer λ = 0 ise o zaman x = 0 ∈ D, x2 − µx− λ = 0

denkleminin bir çözümü olur; bu ise kabul ile çelişir. O zaman λ ̸= 0 olmalıdır.
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Öncelikle m = 0 ise o zaman F (A) =

 0 −n

λn 0

 olur ve bu matris ya

sıfır matrisidir ya da tersinirdir. Çünkü λ ̸= 0 olduğundan, eğer n = 0 ise F (A)

sıfır matrisi olur, eğer n ̸= 0 ise F (A) tersinir olur.

Şimdi eğer m ̸= 0 ise o zaman son bağıntıdan

F (A) =

 1 nm−1

λnm−1 + µ 1

m 0

0 −m


bulunur. Bu bağıntıda yer alan ikinci çarpan, m ̸= 0 olduğundan daima tersinir

bir matristir. Bu durumda F (A) matrisinin tersinir olması ilk çarpana bağlıdır.

Eğer F (A) tersinir değil ise ilk çarpanın determinant değeri 1 − λ(nm−1)2 −

µ(nm−1) = 0 olmalıdır. Buradan, λ − (λnm−1)2 − µ(λnm−1) = 0 elde edilir.

Fakat bu durumda, −λnm−1 ∈ D, x2 − µx − λ = 0 denkleminin bir çözümü

olur. Bu ise bir çelişkidir. O zaman F (A) tersinirdir. Böylece F tersinir olur.

Sonuç olarak x2 − µx− λ = 0 denkleminin D de bir çözümü olmayacak

şekilde λ, µ ∈ Z(D) için,

0 1

λ µ

 elemanı ile belirli iç türev tersinirdir. Böylece

her iç türev bir genelleştirilmiş iç türev olduğundan,

0 1

λ µ

 elemanı ile belirli

iç türev, tersinir genelleştirilmiş iç türevlerin eşlenik sınıflarının temsilcilerinin

bir tam kümesinin elemanıdır.

Diğer taraftan, λ′
, µ

′ ∈ Z(D) olmak üzere,

 0 1

λ
′
µ

′

 elemanı ile belirli iç

F
′ olsun. Bu durumda (λ, µ) ̸= (λ

′
, µ

′
) olduğunu varsayalım. Bir başka deyişle,

x2−µ′
x−λ′

= 0 denkleminin D de bir çözümü olsun. Notasyondaki karışıklığı

gidermek adına, M =

0 1

λ µ

 ve M ′
=

 0 1

λ
′
µ

′

 diyelim. Burada eğer M ve

M
′ benzer matrisler ise o zaman Cayley-Hamilton Teoremi yardımıyla M ve

M
′ matrislerinin karakteristik polinomlarının eşit olduğu açıktır. Böylece M

ve M
′ matrislerinin karakteristik polinomları sırasıyla A(x) ve B(x) olmak

üzere, A(x) = x2 − µx − λ ve B(x) = x2 − µ
′
x − λ

′ olur. Bu durumda

A(x) = B(x) olduğundan, (λ, µ) = (λ
′
, µ

′
) çelişkisine ulaşılır. O zaman

M ve M
′ benzer matrisler değillerdir; yani M = PM

′
P−1 olacak şekilde

bir P ∈ M2(Z(D)) tersinir matrisi yoktur, dolayısıyla aynı eşlenik sınıfında

değillerdir. O zaman F ve F
′ eşlenik değillerdir. Yukarıdaki sonuçlardan,



94

(λ, µ) ̸= (λ
′
, µ

′
) olacak şekilde λ′

, µ
′ ∈ Z(D) için

 0 1

λ
′
µ

′

 elemanı ile belirli

iç türev, tersinir genelleştirilmiş iç türevlerin eşlenik sınıflarının temsilcilerinin

bir tam kümesinin elemanı değildir.

Son olarak F , M2(D) nin M =

a b

c e

 ve N =

s t

u v


elemanları ile belirli keyfi bir tersinir genelleştirilmiş iç türevi olsun. O

zaman Yardımcı Özellik 5.2.2 den b, c, t ve u elemanlarının hepsi sıfırdan

farklıdır. Burada S =

1 0

a b

 ve T =

 1 0

−s −t

 alalım. O zaman

S−1 =

 1 0

−b−1a b−1

 olduğu ve λ = bc − beb−1a ∈ D, µ = a + beb−1

olmak üzere SMS−1 =

0 1

λ µ

 olduğu kolaylıkla görülür. Benzer şekilde,

T−1 =

 1 0

−t−1s −t−1

 olduğu ve φ = tvt−1s − tu, ψ = tvt−1 + s olmak

üzere TNT−1 =

0 −1

φ ψ

 olduğu elde edilir. Yardımcı Özellik 5.2.2 den

önce belirtildiği gibi, SF T−1
= FSMS−1,TNT−1 dir; yani SF T−1 ,

0 1

λ µ

 ve0 −1

φ ψ

 elemanları ile belirli tersinir genelleştirilmiş iç türevdir. Buradan,

her x ∈ D için

SF T−1

x 0

0 1

 =

 0 0

λx+ xφ µx+ xψ


olur. Fakat bu matris tersinir olmadığından, hipotez gereği sıfır matrisi

olmalıdır. Buradan her x ∈ D için xφ = −λx ve xψ = −µx elde edilir. Son

eşitliklerde x = 1 alınırsa, φ = −λ ∈ Z(D) ve ψ = −µ ∈ Z(D) olduğu görülür.

Böylece TNT−1 =

 0 1

−λ −µ

 olur. Buradan SF T−1 ,

0 1

λ µ

 elemanı ile

belirli iç türevdir. Bu durumda Yardımcı Özellik 5.2.2 den λ ̸= 0 dır. Şimdi

bir x ∈ D alalım. O zaman

SF T−1

0 1

0 x

 =

 −λ x− µ

−λx λ


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olur. Yukarıdaki matris sıfır matrisi olamayacağından ve kabulden, tersinir

olmalıdır. O zaman bu matrisin determinant değeri, λ, µ ∈ Z(D) olduğu göz

önünde tutularak

λx2 − λxµ− λ2 ̸= 0

olmalıdır. Son bağıntının her iki tarafı soldan λ−1 ∈ D ile çarpılarak ve µ ∈

Z(D) olduğu kullanılarak

x2 − µx− λ ̸= 0

bulunur; yani SF T−1

0 1

0 x

 =

 −λ x− µ

−λx λ

 matrisinin tersinir

olabilmesi için gerek ve yeter bir koşul x2 − µx − λ = 0 denkleminin D de

bir çözümü olmamasıdır. Böylece ispat tamamlanır.
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6 SONUÇ

Üçüncü bölümde, birimli halkaların tersinir değerlilik koşulunu sağlayan

(adi) türev dönüşümleri incelenmiş ve bu inceleme ile beraber üzerinde

tersinir değerli bir türev tanımlı olan birimli halkalar ile ilişkili türevin

karakterizasyonuna yer verilmiştir.

Dördüncü bölümde, ilk bölümde ele alınan problem (σ, τ)-türevlere

genişletilmiştir; birimli halkaların tersinir değerlilik koşulunu sağlayan (σ, τ)-

türevleri incelenmiş ve sonuç olarak halka ile ilişkili türevin yapısı hakkında

önemli bulgulara yer verilmiştir.

Beşinci bölümde, ilk bölümde üzerine çalışılan problem, genelleştirilmiş

türevlere genişletilmiştir.

İncelenen çalışmaların ışığı altında, aslında birimli bir halkanın yapısının,

türevlerinden birine özel bir koşul dayatılması ile ne kadar sıkı bir bir şekilde

belirlendiği gösterilmeye çalışılmıştır. Üstelik üzerinde tersinir değerli farklı

türev kavramlarından herhangi biri tanımlı olan birimli halkaların ve ilgili türev

dönüşümlerinin yapılarının birbirine ne kadar çok benzediği gözlemlenmiştir.

Bu çalışma, tersinir değerli olabilecek diğer dönüşümleri içeren halkaları

belirlemeye referans olacaktır. Ayrıca (Argaç and Albaş, 2002) çalışma-

sında verilen genelleştirilmiş (σ, τ)-türev kavramı ele alınarak, tersinir değerli

genelleştirilmiş (σ, τ)-türevlere sahip birimli halkaların yapısı tarafımızdan

incelenmeye başlanmıştır.
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