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ABSTRACT

INVESTIGATION ON IONICITY AND ITS EFFECT ON CHARGE
CARRIER SELECTIVITY FOR N-TYPE CRYSTALLINE SILICON
SOLAR CELLS

Eldeeb, Basil
Master of Science, Physics
Supervisor : Prof. Dr. Rasit Turan

August 2022, 86 pages

Optoelectronic device performance is not exactly governed by the band alignment
between two materials. Interfacial layers in combination with a metal cap dictate
charge-carrier selectivity and hence semiconductor device performance. Considering
the investigations done on a wide array of solid-state surfaces and heterojunctions
done both experimentally and theoretically, it is found that the electron localizability,
which is quantifiable through the bandgap energy and band width, plays an integral
role in the degree of obeying the Schottky-Mott rule and hence the optoelectronic
properties of interfaces. By proposing and utilizing novel ionic crystals (NaF and
NaCl) as ultrathin interfacial layers between Aluminum and n-type silicon, we
demonstrate Fermi-level unpinning and show contacts having an effect similar to
that of heavily doping the surface of silicon. We managed to achieve 17.3%
efficiency for NaF with suboptimal passivation. For planar interfaces, a strategy for

contacts is proposed for enhancing electron transport across boundaries.

Keywords: Ionicity, Tunneling, Charge-carrier-selectivity, Schottky barrier.



0z

N-TiPi KRISTAL SILIKON GUNES HUCRELERI iCIN IYONIKLIK VE
YUK TASIYICI SECiMI UZERINE ETKIiSININ INCELENMESI

Eldeeb, Basil
Yiksek Lisans, Fizik
Tez Yoneticisi: Prof. Dr. Rasit Turan

Agustos 2022, 86 sayfa

Optoelektronik cihaz performansi, iki malzeme arasindaki bant hizalamasi
tarafindan yonetilir. Metal bir kapak ile birlikte arayiizey katmanlari, yiik tasiyici
seciciligini ve dolayisiyla yari iletken cihaz performansini belirler. Hem deneysel
hem de teorik olarak ¢ok ¢esitli kati hal yiizeyleri ve heteroeklemler tizerinde yapilan
aragtirmalar g6z Oniline alindiginda, bant araligi enerjisi ve bant genisligi ile
Olgiilebilen elektron yerellestirilebilirliginin, kurallara uyma derecesinde ayrilmaz
bir rol oynadigi bulunmustur. Schottky-Mott kurali ve dolayisiyla arayiizlerin
optoelektronik ozellikleri. Aliminyum ve n-tipi silikon arasinda ultra ince ara yiizey
katmanlar1 olarak yeni iyonik kristalleri (NaF ve NaCl) onererek ve kullanarak,
Fermi diizeyinde sabitlemeyi ve silikon ylizeyini yogun bir sekilde dopinge benzer
bir etkiye sahip temaslar1 gosterdik. Optimalin altinda pasiflestirme ile NaF i¢in
%17,3 verimlilik elde etmeyi basardik. Diizlemsel arayiizler i¢in, siirlar arasinda

elektron taginmasini arttirmak i¢in temaslar i¢in bir strateji Onerilmistir.

Anahtar Kelimeler: Iyoniklik, Tiinelleme, Yiik tasiyici secicilik, Schottky engeli.
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CHAPTER 1

INTRODUCTION

Electric phenomenon, arguably, was first mentioned in writing by the ancient Greeks
in its electrostatic form: rubbing amber (called electron in ancient Greek) against
animal fur later causes the amber to attract certain objects like feathers. Even the
sun’s name in ancient Greek was elector; now, we are researching how to maximize
our cultivation of electricity from FElector. Almost concurrently, magnetic
phenomenon was first mentioned by Thales of Miletus (south of present-day Izmir,
Turkey) around 600 B.C.. Almost two thousand years later, before Newton’s
invention/use of mathematics to predict Halley’s comet’s trajectory, W. Gilbert
started studying amber and electricity and others studied the lodestone [1]. After
almost three centuries of observations and experimentation, J.C. Maxwell had
established that any electromagnetic phenomenon can be described by five simple
equations (the, famously named, Maxwell’s equations and the Lorentz force
equation) and the fact that light is an electromagnetic phenomenon. Around the same
time, rectifying current response to electric potential difference was discovered by

F. Braun [2].

In 1905, Albert Einstein used Max Planck’s concept of quantization of energy, that
solved the UV catastrophe, to explain the photoelectric effect, revealing the quantum
nature of electromagnetic phenomena. Soon after, quantum mechanics was used to
describe other macroscopic phenomena, including the rectifying current response,

that cannot be explained by classical statistical mechanics.

Till the advent of quantum mechanics, the only manner by which electricity was
generated was through exhausting an exothermic fuel to evaporate water where the

vapor is used to constantly change a strong magnet’s relative position (flux density)



to wires such that the change in flux results in an electric current, inspired by
Faraday’s observations. Using quantum mechanics, we can understand the behaviour
of electrons such that we can generate electricity by placing a sub-millimeter “slab”
(solar cell) under the sun. The question becomes: how does this occur and how do
we maximize the electricity generation and extraction?

Classically, the discontinuity of matter gives rise to surfaces that can be described by
boundary conditions such that the electic and magnetic fields must act accordingly
[3]. Depending on the charge density of the matter, electromagnetic fields could
either propagate within the material or be forbidden from moving more than a few
nanometers, such is the case of dielectrics and metals, respectively. Which is why
we can see through one form of matter and not the other. This was studied from a
macroscopic perspective up to the beginning of the 20" century. The nanoscopic and
quantum mechanical perspectives of matter and the discovery of semiconductors
gave rise to technology as we know it. In this context, our understanding of matter
changed.

The main motivation behind this thesis is the fact that inserting an ultrathin (on the
order of a few nanometers) ionic crystal between a metal and a semiconductor
enhances the electric transport across the interface such that the configuration is
comparable, in performance, to heavily doping the surface of Si then contacting it
with a metal. To our knowledge, this was first demonstrated by L.S. Hung et al. in
1997 [4]. Later, the device structure was studied under different circumstances from
different perspectives. Afterwards, J. Bullock et al. demonstrated photovoltaic
conversion efficiencies of 19% [5] by utilizing Al/LiFx (X < 1) and, later, 20.7% [6]
by using, both, Al/LiFx (X < 1) and Ag/MoOx (x < 3) contacts for charge collection
in crystalline silicon (c-Si) solar cells (without surface doping). By employing other
contact strategies, (texturing at the front and passivation by dielectric layers) the
efficiency reached 23% [7]. Later, researchers went in a similar direction to optimize
contacts beyond surface doping c-Si [8]-[14].

Thus, the concern of this thesis is to accumulate the models and studies done on

crytalline surfaces. Another concern is to understand the effect of the arising different



phenomena manifesting due to contacting different crystals on the electrical

properties of contacts with an application on silicon (Si)-based photovoltaic cells.

1.1 Solids

Categorizing and modelling solids started with the start of humanity. It was simple;
mechanically, one solid broke/dented the other. Optically, one solid was shiny, the
other was not (opaque). After millennia of investigation, we are at the stage of
describing/categorizing solids by their electrons’ environment (work function) [15]
( more generally, band theory). Briefly, band theory describes how discrete energy
levels, that are found by solving the Schrodinger equation of a single electron in a
potential well, are perturbed and split by constructing solids atom by atom [16].
Thus, in a solid with Avogadro’s number of atoms, each discrete level turns to a band
of almost infinitesimally spaced levels. In some solids, bands overlap (some metals),

and in most, they repel one another forming bandgaps.

As the electron is categorized as a fermion, which is a particle with half-integral spin,
it obeys Fermi-Dirac (FD) statistics. Soon after the development of FD statistics, A.
Sommerfeld proposed to use it to describe macroscopic phenomena of metals, such
as conductivity and heat capacitance [17]. Although, the first motivation was to
describe metals, one could apply FD statistics to any system of electrons and ascribe
the system a Fermi-level (FL). The FL describes the probability of electrons
occupying energy levels below it in a continuum of allowed states. The FL of an
intrinsic solid will always be situated near the midgap [17]. The location of the FL
could be changed relative to its intrinsic location by doping, which is the controlled
addition of elements either having more or less valence electrons than the host solid
[16]. Another manner by which the FL could change its location is through defects,

which mainly occurs at the surface [18].



1.2 Junctions

A junction, in the context of solid-state physics, is defined as the physical contact
between two solids. When both solids are the same and differ in majority charge-
carrier concentration, the junction is referred to as a homojunction or a PN junction.

Other junctions are referred to as heterojunctions.

1.2.1 The PN Junction

Starting with the simplest type of junction: two intrisically identical semiconductors
with different doping type, (n)egative-type and (p)ositive-type. In this case, the FL
on the p-doped side will be lower than the intrinsic level, E;, while on the n-doped
side it will be at a relatively higher position. Upon contact, thermodynamic

equilibrium dictates that the FL be constant throughout the interface [16].

1.2.2 The Metal/Semiconductor (MS) Junction:

For the ideal MS junction, W. Schottky proposed that an electron would experience
an energy barrier corresponding to the difference between the metal (M) work
function (¢,;) and the electron affinity (y) of the semiconductor (S) when
transporting from M to S such that the potential barrier that an electron experiences

from the metal side is:
b =Pu —x

where ¢ is the Schottky barrier height (SBH), this is the Schottky-Mott rule for n-
type semiconductors [16]. Under forward bias, the barrier diminishes, while in
reverse bias, the depletion region increases in width such that it is increasingly
difficult for electrons to cross from M to S. The formulation does not impose an
upper limit on the size of the bandgap energy, such that it should be capable of

describing any metal/non-metal junction. However, numerous experiments revealed



that the barrier is insensitive to ¢,, and surface orientation for many semiconductors,

especially Si and germanium (Ge) [2].

However, as real crystals are not infinite in space, the concept of the forbidden region
is not completely valid at the edge of a crystal where some neighbors are missing
(technically, an infinite number of neighbors is missing, however due to screening
effects, an ion’s perception of neighbors exponentially decays with each cascading
neighbor). This causes some charge transfer between the surface and the bulk of the
crystal to render the surface neutral [19]. Such effect, among others, was not
accounted for in W. Schottky’s formulation. This is the main reason why the

Schottky-Mott’s rule is not applicable in most interfaces.

Since photovoltaic solar cells are PN junctions contacted with a metal, understanding
the MS interface is paramount to maximizing the efficiency of such devices and other
optoelectronics-based devices. Therefore, after a literature review, we tested sodium
chloride (NaCl) and sodium fluoride (NaF) as interfacial layers (ILs) on different
substrates with different metals to gain a better understanding of what ionic crystals
do in such regime. We observed Fermi level unpinning when using such layers
between c-Si and different metals (i.e., the thermionic barrier highly depends on the
metal’s work function). Then, we measured the contact resistivity of the ionic
crystals for different thicknesses, in nanometers, to see their viability for future solar
cell applications. LiF was studied first, to reproduce literature results, such that we
could compare the performance of the layers in the simple contact schemes (planar

and textured).






CHAPTER 2

THEORY & LITERATURE REVIEW

Although, optical and electronic properties of interfaces are the most relevant in
device physics, they remain elusive in nature. This is reflected in the several
proposed theories from Fowler-Nordheim theory of cold emission (Metal/Vacuum)
[20], and its corrections for image effect [21], to Schottky/Mott models for MS
contacts and Bethe’s theory of thermionic emission [2] (metal/non-metal), to the
various models that account for the lack of predictability of Schottky’s theory due to
the Fermi level pinning (FLP) (Bardeen's interface states [18], The S-Parameter [22],
and Metal-Induced Gap States (MIGS)) [23]. Some of these models are qualitative,
while others are quantitative with limited success. As R. Tung mentioned (who also
contributed with a theory of inhomogeneous barriers at the interface [24], [25]); the
Schottky Barrier Height (SBH) is a multidisciplinary phenomenon, ranging from
quantum mechanics to chemistry and engineering, which keeps it shrouded in
mystery for almost a century. There are even different reports on the work function
of noble metals e.g., for Au, in the 80s, its work function was reported as 4.7-4.8eV
yet, currently it is reported as 5.1-5.3eV [2], [26], [27]. This, among other factors,
further complicates the understanding of the SBH and FLP phenomena. It was
reported that even the vacuum chamber usage history altered interface parameters

significantly, however reproducible [28].

As companies do not need exact physics to demonstrate and produce repeatable
solid-state devices, especially transistors, a combination of precise calibration and a
device construction recipe are all that is needed for technology to reach the current
level at which we see it, as technology relies on the identical performance of billions

of components (e.g., transistors) whose only job is either pass or block current.



Since Moore’s law reached its limit, the next generation devices will possess a high
surface to volume ratio. This necessitates the exact understanding of surface
phenomena, electronically, as their contributions to new devices will be substantial,
especially in regard to 2D transistors [29] and spin-based devices and their

integration with current solid-state devices within nanoscopic volumes.

2.1 Theory

In order to understand the phenomena occurring at the surface of matter, we ought
to start from the ideal state of an infinite solid and then look at the surface. In order
to do that, we must describe the environment an electron perceives in an infinite
solid. This can be done by using the Schrédinger equation, as the electron is a

quantum particle, with the appropriate boundary conditions.

2.1.1 Modelling Solids

When a solid is viewed from a classical point of view, the Drude model, it fails to
predict many features of almost all metals, not to mention other solids, such as: the
sign in the Hall coefficient, mean square electronic speed, electronic contribution to
heat capacity [17] (p.21-25). This is due to the faulty assumptions used:
e All valence electrons are detached from the mother ion (only valid for
metals).
e lons’ role in physical phenomena is ignored, other than maintaining
charge neutrality.
e FElectron-electron interactions are ignored.
e Conduction electrons obey the classical Maxwell-Boltzmann statistics.
Sommerfeld’s model used Fermi-Dirac (FD) statistics, which fixed some features.
This quickly established the undeniable quantum nature of solids. However, since

Sommerfeld did not change the other assumptions, it still failed to account for many



observations. One can see a list of failed predictions in [17] (p.58-60). Both models
are usually referred to as “the free electron model”.

Seeing that the classical description fails and simply using FD statistics does not
work for almost all solids. We need to use the Schrodinger equation. We start by
describing how an electron is moving when it is surrounded by nothing, i.e. when an
electron is in vacuum. The general Schrodinger equation (SE) is:

~ p>

HyY = <—+ U(r))gb =Ey

2m
(2.1)

where p is the momentum operator and V is the potential, becomes

Hy = ﬁ—zlli = Ey
2m
2.2)
as there is no potential in vacuum. In this case, the energy of an electron is arbitrary,
it can be moving at any speed depending on the observer. In order to describe electron
behavior, one must properly describe the environment in which they reside which is
summarized in the potential term U. Solids tend to form crystals, which are periodic
structures composed of ions situated at Bravais lattice points (which are points that
can be defined by primitve vectors, a;, and generated by translation vectors). The size
of the crystal can vary from nanometers to centimeters, in range, all having different
applications. Bloch’s theorem takes advantage of the structure and states that given
a periodic potential, the electron wavefunction 1, as a function of space, for all
Bravais lattice vector R, obey:
Y+ B) = p(relr
or
(1) = ¥ U (1)
(2.3)
For a given wave vector k = x;b; (b;a; = 2m§;;) where u(r) has the periodicity of
the lattice (i.e. upk (1) = Upk(r + R)). The index n can be understood as follows:

as isolated atoms, having discrete electronic energy levels labeled n, are brought to



form a crystal, the discrete levels form a band of continuous levels, satisfying the SE
for a given k value. When we apply Bloch’s theorem to the Born-Von Karman
(BVK) boundary conditions:
Y(r+ Nay) = P(r)

(2.4)
Where Nj are the number of primitive cells in each direction such that N=NiN>Nj3 is
the total number of primitive cells in the volume under study. This leads us to:

exp(iN;k.a;) =1
2.5)

Nix;b;a; = 2mm, where m=1,2,3,....

xi ="y,
(2.6)
The coefficients x; show that allowed k values become continuous in the limit of
infinite volume. Looking for the Bloch solutions to the SE for a periodic potential
U(r) (=U(r+R)), under BVK boundary condition for a given a given k:
Hippie = ™7 Hyty (1)
2.7)

Where,

2 2

h
Hiue(r) = [ (TV + k) + UM ]u(r) = epup(r)
(2.8)
Thus, for a given k there is a family of eigenvalues &, x=en(k). For a given n, the

wavefunction and eigenvalues are periodic functions of k in the reciprocal lattice

vector (RLV) K defined by R ( K.R=2mm, where m=1,2,3,...):
lpn,k+K(r) = P (1)

Enk+K = €nk
2.9)

When ¢, is plotted against k we arrive at the band structure of the crystalline solid.
The wavefunction obeying the BVK boundary condition can always be expanded as

the set of all plane waves satisfying the boundary condition:

10



lpn,k(r) = Zq quiq.r

(2.10)

Where it can shown that q=k-K. The kinetic energy term gives:
h2 h2 i(k—
- %VZI/) = o~ Lk-k(k = K)%cy_ge'k-tOT
(2.11)
As for the periodic potential:
U(r) = LpUge™ =Yg Uge™r
(2.12)
As Uk is only nonvanishing when k is a RLV. Operating with the potential on the
wavefunction, we get:
Uy = Z UKeiK.r Z Ck_K,ei(k—K')_r
K k—K'
i(k—(K'-K).r

Uy = Z UkCr-k'-K)€
Kk-K'

(2.13)

Changing the index from K’-K to K’, the SE becomes:

. h? .
Z el(k—K).r{% (k — K)ch—K _ Z Uk'—kCr-i'} = z Eck_Kel(k—K)-r
KI

k—-K k—-K

S hZ
Yk-K ellk K)'r{[% (k- K)Z_E]Ck—K — 2k Uy _gCrg} =0
(2.14)

The expression within the parantheses must seperately vanish as the plane waves
satisfying BVK form an orthogonal set. Therefore the SE in k-space for allowed k:
hZ
—_— — 2_ K — Uy =0
5. (k = K)"—¢]ci-k Z K'-KCk-K
KI
(2.15)
This equation is quite general, as the form of the potential is not even expressed.

However, one can still gain insight. In the free-electron case, all Uk are zero. Then

we have:

11



[ek-k—¢€lck-k =0

(2.16)

Where,

ek = oo (k - K)?

(2.17)
(2.17) can be regarded as the energy of a free electron moving in a Braivais lattice
devoid of potential. (2.16) can be valid in two ways: ckk is zero or € = €p_g. The
first possibility is trivial. The latter may occur in two different ways: there is only

one K for which & = &j_ is true, unless there are multiple K where &j_j are equal.

If there is no degeneracy, then we have:
£=¢l p Y pl(k—K).r

(2.18)
For the degenerate case, there is a set of RLVs Kj,...,K; all corresponding to the
same energy. Then, the choice of cofficients ck-k becomes arbitrary.
Considering the case where the potential is nonzero and weak. This case corresponds
to most metals. There will be two cases, again:
One: where the considered energy levels are not degenerate. This can be expressed

as follows: fix k and consider a particular RLV K such that the free electron energy
En_x (18 far from the values corresponding to other K compared with U:
len-k, —en-x| > U, forK #K;
Setting K=K in (2.15):
[5_5£—K1]‘7k—K1 = Yk Uk—k,Ck—k
(2.19)

Since the potential is unique up to a constant, Uk can be set to zero for K=0. For

K#K we have:

_ Uky-kCk-k, 4 Ug'—Kk,Ck-k’
kK =70 g—¢g?

(2.20)

12



In the case of no near degeneracy, the denominator will always be an order of

magnitude higher than U, thus:
U Ck—
Ck—K — —K; St + O(UZ)

ep-x
(2.21)

Plugging this into (2.19), we get:

Uk-k, Uk, -KkCk-K
[e—ep_k,ICk-k; = § S L+ 0(U?)
e €~ &k

(2.22)

Since the Hamiltonian is real and a set of coordinates can chosen such that the crystal

possesses inversion symmetry (U(r) = U(—1)):

UK = U—K = UI*(
(2.23)
Then the energy can be expressed as:
s—ekK1+Z v KKl +0(U3)
Ex- K1
(2.24)

So up to the second order in U, the perturned energy level is shifted by a small
negligible quantity since the potential is already taken to be weak. In the case of near
degeneracy, we have m levels whose difference is within the first order in U,
however, they are far from the other £f_ on the scale of U:
Eh-k, — Eh-k,| » U,i=1,..,mK # K,
(2.25)
This gives rise to m equations that need to be solved, in 1D, m can be at most 2,
however, in 3D, it can be a large number. We have:
[e—ep—k,]Ch—K;, = Xjes Uk;-K,Ck-K; + LKy, K UK-K;Ch-k ;1 =1,...,m
(2.26)

For the remaining levels, using (2.15):

13



(2.27)

Since cx_g < U when K + K;, (2.27) becomes

ZUK ~K;Ck-K; +0(U?%

C_ =
kK = [5_3k1(

(2.28)

Putting this in (2.22),

Uk-k;Ukj-K

le—er-k)Ck-k; = Zj=1{ U,k Chi; + Ck2ky,..km ck-k;) + 0(U?)}

(2.29)

e—ep_g

The shift for the nearly degenerate case is approximately of order U, if we ignore the
second and third terms, as they are mearly corrections. This implies that that the
perturbed levels (an electron moving in a periodic structure relative to one that is

moving in free space) a shifted from above and below by U:

m

[e—ep_k ICk-k; = Z{ Uk;-K;Ck-K; }
=1
(2.30)

Looking at the case of m=2; the m equations reduce to:
0 ~
le—ék-k,Jk-k, = Uk,—k, Ckk,

0 ~
[E—Ek_Kz]Ck_KZ = UKl—KZCk—Kl
(2.31)

Since we decided that Up=0. Using q=k-K; and K=K>-K; we can write the equations

as such:
[e—ed]cq = Ukcq—k

[e—e9_klcq-k = U_gcq = Ugcq

(2.32)

Since we are assuming that the levels are nearly degenerate, we have:

14



€q— €g-k =0, |£q - 53_K1| » U, forK' + K

(2.33)
The assertion that only the single value of K' = K makes ¢, = 83_ k requires that
gl = 1q'| = |q — K| which is the condition for elastic scattering; squaring both
sides:

q? =q* +K*-2q.K
K.K =2q.K
KK=2q.K=K
The condition can be written as:
1K =q.K
2

(2.34)
This amounts to requiring that q lie on the Bragg plane defined by K/2. The plane is
called a Bragg plane, because he and his son were the ones to identify enhanced
reflections at certain angles when X-ray was directed towards macroscopically
crystalline solids which was accounted for by regarding the crystal to be made of
parallel planes of ions, for which he and his son received the Nobel prize. His
formulation forms the basis for identifying crystal orientations and lattice constants
through XRD. More on that in the related section. Equations (2.32) have a solution
when the determinant is zero:

e—¢gg —Ug

—Ugx e—¢&9 g
(e —eg)( e —eg_k) = Uk

€2 — (e +eg_g)e+eded_k— Ukl =0

ed+ 0 1 2 v
- T ) ()]

(94l k) [1 2
&g T &gk
S—fi[ﬂgé’

1/2
2
+eg_kx +2edeg_x) —edeg_k + IUKIZI
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0,0 2 1/2
£ = (€q+:q—K) + E (88 _ gg_K) + |UK|2]

(2.35)

The roots € give the main (higher orders in U are less significant) shifts caused by
the periodic potential on the free electron energy levels 83 and 83_ x When q is close
to the Bragg plane at K/2, corresponding to near degeneracy. When q is exactly on
the Bragg plane, the free electron levels become identical and the roots become:
e=¢q + |Ugl

(2.36)
Such that the difference between the nearly identical levels become 2|Ug|. This can
be regarded as an indirect manifestation of Pauli’s exclusion principle; no two
electrons can be in the same exact quantum state. Even nearly identical levels “repel”

each others’ existence such that they are modified.

4

35T

25T

1.5

Figure 2.1 The band structure of a 1D periodic structure. Here, we plot the 2 free electron energy levels for
wave vectors q and q-K, signified by the dashed lines, along with the perturbed versions, signified by the solid
lines. The inset shows the bands near degeneracy, where the potential strength is 0.1eV causing a bandgap of
0.2eV. The energy scale is mainly dictated by the lattice constant chosen, which was 5 angstroms, so in some
sense it is arbitrary in this demonstration of near degeneracy.
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Looking at Figure 2.1. We see, in the inset, how the 83 band starts deviating -around
a difference Uk from 82_ k - from a parabola, to being “deflected” by the 83_ x band

and vice versa. As the bandstructure basically repeats itself such that every K/2 the
plot is mirrored, if we include levels corresponding to more RLVs such as q+2K,
qzK, and so on. Now, the black line can be indexed with n=1 while the red one with
n=2. Including more RLVs introduces more bands, above the 2 bands plotted. All
the unique solutions defining the band structure g(q) lie in the region between +K/2,
which is what is referred to as the first Brillouin zone (1% BZ).
The bandgap of a crystal signifies the degree of near-degeneracy of solutions, i.e.,
how many energy eigenvalues are relatively close to each other around a given K-
value, which is related to the strength of the potential (2|Uk|) (i.e., the stronger the
potential the more levels that will satisfy near degeneracy). This can be seen from
another side; as “nature” does not accept the degeneracy of fermions (Pauli’s
exclusion principle), the solutions cannot be accessed, hence the energy region
between a minimum of a band and the maximum of the previous band is referred to
as the forbidden region. Therefore, the bandgap is a direct consequence of a periodic
potential.
In the case of 3D periodic structures, beyond translation symmetry, one can rely on
other symmetries defined by the structure to further reduce the BZ. However, it is
still extremely complicated to calculate the complete band structure even for the case
of weak periodic potential. However, one can still gain intuition from 1D models,
like the Kronig-Penney model [30] and intuition gained from it [19], [31], [32].
Effective Mass
According to kaxiras we can define an effective mass through the second derivative
of energy with respect to the wave vector [33]:
1 1 0%€
m;;  h?0k;0k;’

(2.37)

for a given energy band n. The effective mass is generally expressed relative to its

free-counterpart, 1.e. the mass of an electron moving in vacuum, as in both cases they
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can be expressed as propagating plane waves. Such quantity plays a major role in
solid-state devices. However, the band structure problem, for real solids, becomes
intractable in 3-D. Even though we can simplify the examined k-values through other
symmetries, the problem arises from the potential term. Numerical methods have
been developed to approximate the Hamiltonian to simulate real solids and generate
their band structures for specific directions.

Within the band gap, there lies the FL, which is a statistical measure of how many
states are occupied at a given temperature. At T=0, by definiton, all states below the
FL are filled, exactly, while all states above it are unoccupied. The higher the
temperature, the more states, above the FL, are filled. Bands above the FL are usually
called conduction bands, as electrons lying there are able conduct electricity in the
presence of an external electric field. There is one manner by which states above FL
can be filled, momentarily, and this is through the reception of a photon with energy
equivalent to the bandgap energy or higher. This is the main concept around which
all optoelectronic devices revolve, including solar cells.

Due to the impossibility of generating analytical € — k relations for 3D solids no
matter how many symmetries it contains, density functional theory (DFT) was
developed, where the Schrodinger equation for periodic structures with symmetries
are solved self-consistently. One of the most successful methods used for generating
band structures is referred to as the GW method, in term of predicting the bandgap
energy of many solids. Thus one may rely on other generated features of the band
structure, especially the curvature around band minima and maxima to extract the

effective masses of charge carriers.

In real devices, a crystal is cut in planar form in a specific direction, such that when
an external electric field is applied the electron is bound to move along the normal
of the crystal. Thus, the band structure is reduced to a band diagram for the electron
with an effective mass that includes correlation and/or exchange effects implicitly.
If the effective mass is found experimentally, then it must include both correlationa

and exchange effects. To find the best sectioning of a crystal, firstly, band diagrams
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of single crystals are calculated numerically through DFT/GW calculations. For c-Si

used in solar cell application, the <100> direction was found to be the most suitable.

Later, optimum combinations of interfaces are to be investigated. P. W. Peacock and
J. Robertson have collected and calculated several band diagrams and structures
showing conduction band minima (CBM) and valence band maxima (VBM) for
several semiconductors and insulators in effort to guide the search for low carrier
loss across heterojunctions [34], [35]. However, the barriers/offsets found

numerically do not always correspond to real devices.

2.1.2 Modelling Surfaces

As crystals are not infinite in extent, some theories were developed for different types
of crystals to describe their surfaces. The easiest surface to model would be the
metallic surface. Classically, metals are known to forbid electric fields from
propagating within them. In the presence of an electric field, the metallic surface will
respond by developing a surface charge cancelling the propagation of electric fields
inside. This view may not be generalized due to lack of almost-free electrons in other

solids.

2.1.2.1 The WKB Approximation and Fowler-Nordheim Tunnelling (FNT)

The WKB approximation deals with non-trivial potentials experienced by quantum
particles [36]. Following Sakurai, we start from the SE with an unspecified potential

as:

(ﬁ—2+ U(T)—E)l/)ZO

2m
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(—th—+U(r) E>¢ 0

2m dr?
(2.38)
Examining the 1D case r — x and defining
k(x) = [ (E - U(x))]
(2.39)
As the quantity in parenthesis can be negative, we define
1
k(x) = —ik(x) = —l[ (U(x) — E)] for E <V(x)
(2.40)
Then the SE becomes
d*y
ozt [k ()] =
(2.41

For constant U, we get the plane-wave solutions, exp(Zikx). Assuming that U slowly
varies with X, we try a solution in the form of a plane-wave whose wave-vector

depends on position and has the form W (x) /xh such that the wavefunction becomes:

¥ = exp (LW(X)/h)
(2.42)

Plugging this solution in the SE and evaluating:

iW(x)
d?exp ((ixz /h) + [k ()] 2exp (iW(x)/h) —0

< G /h)d(W(x)) (iW(x) /h)>
dx

. d W (x) ]
fpeslen Gl 200 o (e

+ kG2 exp (W) = 0

+ [k(x)]? exp (iW(x)/h) =0
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(%')Zd(vgx))d(vgix))exp (W) 4 (iymy LW < YD) e (W)

+ [k(x)]? exp (lW(x)/h) =0

i\? (d(W(x)) 2( ())
() (T) (/W) =22 + k()P =

d(W @)\ d*(w
) S

(2.43)
The concept of slow variation, within a region, can be understood by comparing the
first and second derivative of the function:

‘d(W(x)) y

d*(W (x))
dx h

dx?

(2.44)
Using this, we can approximate the SE to write the zeroth order approximation for
W (x):
dWs(x)

o
I + hk(x)
(2.45)
Then use it to find the first order approximation W, (x):
2
d(Wi(x)) L W) |,
—<T + (lh)T-l-ﬁ [k(x)]*=0
2
d(Wy(0)) d(k(x))
- -~ 77 = +i 2NN 2 2
< P t+in I + h[k(x)]* =0
(2.46)

Such that

W(x) ~ Wy(x) = ihfxdx’[kz(x’) + ik’ (x")]/?
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W(x) = Wy(x) = ihfxdx'[kz(x’) + ik’ (x")]/?

(2.47)
Given that k' (x) « [k(x)]*(*), we can binomially expand the integrand
x ik'(x")
~ + 'k(xH) |1+ ——=
W, (x) _hf dx'k(x") [1 22
i X
Wi (x) = h{zln [k(x)] £ f dx’k(x’)}
(2.48)
Thus, we can express the wavefunction as
. 1 X
Y =~ exp (lWl(x)/h) = T exp Ii—if dx’k(x’)].
[k(x)]2
(2.49)

We can check whether a potential is varying “slowly” enough from the first-order
approximation. This relates the de Broglie wavelength of the particle to the variation
of the potential [36].

However, one may not always need to approximate the SE. Such is the case for
constant and linear potentials [37]. Consequently, Fowler and Nordheim solved the
SE for a triangular barrier outside a cold metal exactly [20], which is almost never
exactly the case at interfaces of interest. However, it proves useful to understand this
barrier and in which cases it can arise, other than cold metal/vacuum interfaces.
Ignoring image effects, for an electronic state above the FL, the potential takes the
form:

(¢ —qEx forx >0
U(x)—{ 0forx<o0

(2.50)
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Figure 2.2 A schematic of the energy-space near the surface of a metal. On the left, the electron is bound to the
metal but can freely move within it. Outside the metal under no electric field, the probability of finding an
electron increases exponentially with distance, since it is practically a rectangular barrier, ignoring image

effect. In the case of an external field, the classically forbidden region is reduced and hence the probability of
finding an electron outside the metal is greatly enhanced.

where, ¢ is the barrier height, g is the fundamental charge of an electron, and E is

the applied electric field component normal to the surface (Figure 2.2). The SE takes

the form
—h2
(—1/)” + U(r)t/;) =gy forx >0
H = 2m
Y= _p2
o =& o.w.
(2.51)
With the definition
—€
y = (x — (CZ;,—)> (2mF /n)/3
(2.52)

The SE can be rewritten as
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dy
d_yz + yll} =0
(2.53)

And the solution to the SE can be written in terms of Bessel functions of order 1/3:

2
Y = \/;]J_r1/3(§y3/2)

(2.54)
Requiring a travelling wave far from the interface implies using Hankel functions of
the second kind. After requiring the continuity of the wavefunction and its first
derivative at the interface and some mathematical manipulation, the wavefunction
coefficients, for both regions, can be found and an expression for the current of
electrons exiting the metal under the external field is produced:

e E? —4 [ 3
I = exp <_ 2m¢ E)

ho 3h

(2.55)

2.1.2.2 Frenkel-Poole Emission (FPE) and Dielectric Surfaces

Frenkel described how, pre-breakdown, electrons in a dielectric responds to an
electric field, explaining ionic conductivity thermodynamically [38]. In his paper,
Frenkel describes crystals as a system of neutral atoms. For a given temperature,
there will be ionized atoms where electrons will be “freely” swimming in the grid of
neutral (polarizable) atoms and positive ions. As the fields of the positive ions are
screened by the polarizable medium, the ionization energy will be reduced by a factor
& which is the dielectric constant of the medium. In an external field, the ionization

energy is further reduced:

AU=ETO+

TLET)

(2.56)

24



Where 1 is given by E = € /4zer-2 Such that
0

(2.57)

The ionic conductivity is assumed to be proportional to the number of free electrons

due to the combined thermal ionization and field-assisted ionization:

o= e () oy (90040 )

(2.58)
In Frenkel’s view of dielectric crystals, at T=0, the crystals are perfect in the sense
there are no defects, and no atom is ionized, such that ionic conductivity is exactly

zero. In this view, the proportionality becomes an equality.

2.1.2.3 Thermionic Emission (TE)

Although Schottky’s model of the MS interface does not predict the right value for
SBH, Bethe’s theory of TE is still a powerful tool to characterize MS interfaces,
where an effective barrier may be attributed to an interface constructed under certain

parameters [2]. Starting with the main assumptions of the theory:

e The barrier is much greater than the thermal voltage: q¢pg > kT
e Thermal equilibrium is established.
e Existence of a net current does not affect the equilibrium.

e Ignore the image effect.

And the postulate that conduction electrons’ energy is purely kinetic. Now, we may
state that the total current density is equal to the current density of electrons going
from semiconductor to metal (J;_,,,,) minus the current density going from metal to

semiconductor (J,;,_5):
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Jtot = Jsom — Jmos -
(2.59)

From the semiconductor’s side, the current density is equal to the number of
electrons whose energies are enough to overcome the barrier moving towards the

interface with velocities corresponding to their energies:

oo

Jsom = f quxdn,

Ertqdp
(2.60)
where

4 (2m*)3/?

= (e — sc)l/zexp (_(5 — &t an)/kT) ds

dn = N(e)F(e)de =

(2.61)

and
qVn = &c — €.
(2.62)
Using the postulate:
— — _m*p2
€= =omv
m* 1/2
(e —e)V? = (7> v and de = m*vdv
(2.63)
Such that

4m(2m*)3/2 rm\V/?
in =

W3 7) v exp (—an/kT) exp (_m*vz/ZkT) S
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m*3

dn =2 (T) exp (_an/kT) exp (—m*vz/sz) Amvidv

(2.64)

Which is the number of electrons per unit volume that have speeds between v and

v + dv distributed over all directions. Expanding v:
v =vi+v)+ 07

4nvidv = dvydvydv,

(2.65)
The current J_,,, takes the form:
- m* 3 v "
l-m f a2 () exp ("M p) exp (V) dusdvya,
ep+qdp
*\3 - *( 1,2 2 2
m —qVy —
= 2g (T) o f A exp( m*(vZ + v + v )/ZkT> dvydv,dv,
er+qdp
m*\* —qVn ‘ —m*%zc/ [ -m'vj r —m*vg/
= 2q (T) e Ikt fvx e 2kT dv, fe ZdeUy fe 2kTdv,
Vox — —0
(2.66)
where
Vox = 24 Vi — V)/m*
(2.67)

And V is the applied potential across the barrier. The integrals in the y and z

*

-m

directions are in the form of the Gaussian integral f_ooooe_axzdx with a = v

Therefore,
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oo
*

mH\°> —an/ 2kT —m*v,zc/
Jsom = 2q (T) e RTWT[ fvx e 2kTdv,
Vox

(2.68)

Solving the last integral by substitution (vZ = u, 2v,dv, = du):

(2.69)

Therefore, the current density from the semiconductor’s side is

*

3 *,.2
m —qVn, 2kT kT —-m*v
Jom =20 () & M S e"’”( )

2kT

4rm*q(kT)? —qV, —m*vé,
Jsom = Texp( n/kT) exp\~—%pr

(2.70)

4mrm*qk?
h3

Where = A" is defined as Richardson’s constant. Finally, we express 1}, and

Vo, 1n terms of the band diagram quantities and using q¢pg = Vj; + V},, we reach the
expression:

—q(Vpi — V))

Jr = AT~ ) exp (1

—qVpi + Vi — V))

= A*T? (
exp T
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|4

o= AT ey ("1, ) e ()

2.71)

As for the current density from the metal’s side, since the FL of metals does not
change depending on the applied voltage, electrons going from m — s will always

see the same barrier. Therefore,

Jms = A°T%exp (T995/,.p)

(2.72)
Therefore, the TE current density is:
JrE = Jsom = Jmos
— | a4*2 —q¢p ﬂ) —_ )
Jre = [A T<exp ( /kT)] (exp (kT 1
(2.73)

Where the quantity inside the square brackets is referred to as the saturation current,
Jsat- However, in real contacts, the current does not really saturate. This is due to the
image effect, which was neglected in the derivation. It is usually partially accounted

for by n the ideality factor such that:

Jre = Jsat (exp (%) - 1)

(2.74)
Including the diffusion current can be summarized as an adjustment in the
Richardson constant [2]. For n-type Si <100>, A* = 120 A. K~2.cm~2 while for p-
type Si; A* = 30 A. K~2.cm™? in the typical electric field range, since it is electric
field dependent. Such specifications contribute to the obscurity of MS barrier height
reports, albeit not by much; ~20 meV for the use of different values for the effective

mass in Richardson’s constant.
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2.1.24 The image effect

The image effect could be thought of as one of the manners with which the
discontinuity of matter is smoothed in space as potential fields cannot be
discontinuous, except in electrostatics or other theoretics. The barrier (q¢pp = Vp; +
;) used in the previous section is necessarily the reduced barrier due to the image
effect. Since the image-effect is dependent on the applied field, the barrier reduction
is, likewise, field dependent. The dependence on the applied field may be accounted
for by the ad-hoc ideality factor, n. Modelling the current as such will yield an
effectively lowered barrier [2] which is the same case for FNT [21], [37], [39]. In
the reverse bias, the current’s dependence on the barrier-lowering is much stronger
than in the forward bias regime [2]. Thus, the explicit inclusion of the image-effect

in the analysis is a must for a full characterization of the interface [40].

Figure 2.3 Schematics of the image effect in the case of a metallic surface along with a band diagram
representation of the same configuration where En is the electric field component normal to the surface.



The simplest case of the image effect is the electrostatic configuration where there is
a metallic surface with an electron, ¢, being placed in front of it at distance x, normal
to the surface (Figure 2.3). Due to the property of metals of not allowing electric
fields to develop within them, the potential field is necessarily zero (or a constant)
below the surface [3]. The electric field outside the metal will, then, behave as if
there is an oppositely charged particle (hole) within the metal that seems to be located
at the same distance from the surface. This manifests as a surface charge on the metal
(that negate the electric field) since the image-particle is a fictitious one. Hence, the
force that the charged particle experiences is an attractive one, towards the surface.

The potential due to the image-particle at distance x from the surface:

q 1

Uimag 1 . A

lémey x
(2.75)

In the presence of an electric field, the potential becomes:
q
= —+ Epx

l6meyx "

(2.76)

Where x is the distance between the metal and the electric field source. The amount
by which the barrier has been lowered can be found by taking the first derivative of

the potential and setting it to zero:

du qg 1

dx " 16meyx?

e
m 167T€0En

Where x,,, corresponds to the place where the potential barrier is at its peak. Plugging

(2.77)

(2.78)

it in the expression for the potential:
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q

0*m
qEy q qEy
U = +E =
(m) = | Tgmec T En /167180En 4me,
qEn
Ad =
¢ 4me,

(2.79)

Where A¢ is the barrier reduction. Recalling the FNT barrier, which was a constant
term plus a term linear in E. If we add this barrier lowering term to the problem, we

will need to use the WKB approximation to find an expression for the current.

In the case of a metal/vacuum interface, the expression for E is simply the applied
voltage divided by the distance between the metal and electrode. On the other hand,
in the case of a MS interface, the expression for E is not as simple. However,
simplifying the interface by approximating it as an abrupt p++/n junction, we can

find the electric field across the junction through Poisson’s equation [41].

2.2 Literature Review

After establishing the potentially relevant theories regarding bulk properties and
surface modelling, we examine the observations done in the literature over the last 8
decades. Due to the huge time span of research into semiconductors, some of the
observed phenomena was due to the primitive manufacturing procedures of devices.

Such observations were disregarded.

2.2.1 MS Interfaces

Almost all MS contacts did not strictly follow Schottky’s rule and in the case of Si

and germanium (Ge), the SBH became almost metal independent. Bardeen [18]
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proposed that the reason is due to the presence of states in the bandgap that are
created due to lattice termination. Such states could be collectively thought of as an
energy level (termed as charge neutrality level (CNL)). If the Fermi level (FL) is
above CNL, it would mean that the surface is negatively charged, and vice versa, this
concept was developed by Tersoff [19]. This forces the FL to be pinned near the
CNL to achieve charge neutrality with the bulk, before contact.

Cowley and Sze introduced the S-Parameter [22], a quantification of how strongly

an interface obeys the Schottky-Mott rule:

_ 0¢s
O

S

(2.80)

This establishes a FLP scale where S = 1 corresponds to the Schottky-Mott rule (the
Schottky limit (SL)) and S = 0 corresponds to complete pinning (the Bardeen limit
(BL)). Simultaneously, Heine [23] proposed a semi-quantitative analysis of the
surface states. He postulated that k-matching electronic wave functions with energies
around the mid-gap are responsible for the FLP observed, which were later referred
to as MIGS. This is further corroborated by the observed transition from almost
complete pinning in the cases of elemental semiconductors (Si and Ge) to a
weakened pinning observed in the silicides and germanides, which generally have a
lower electronic density of states than pure metals [42]-[44]. Going along the MIGS
analysis, one finds a simple guideline: decrease the metal’s electronic density at the
contact to decrease the pinning effect. This is what Nishimura et al. [45] did by
studying the Bismuth (Bi)/Si and Bi/Ge interfaces and found that Bi obeys the
Schottky-Mott rule. This was attributed to the Bi low carrier density (~1017 ¢cm™3)
even though its work function has a comparable work function to that of aluminum
(Al: 4.16-4.3 eV; Bi: 4.26 eV). Thus, it is proven, experimentally, that the density of
conducting electrons on the metal side contributes to the pinning. In the same work,
they experimented the surface orientation effect from the semiconductor side where

they revealed some dependence. This is understandable since the orientation dictates
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the surface density of atoms and hence electronic states [46]. Such effect was

obscured by the pinning.

C.A. Mead measured the barrier height of CdSxSei.x contacted with different metals
(e.g., Cu, Ag, Au, Pt) [47]. A transition from a metal dependent barrier height for
pure cadmium sulfide (CdS), corresponding to the SL, to an almost independent
barrier height for pure cadmium selenide (CdSe), corresponding to the BL. This
transition is attributed to the high ionicity of CdS compared to CdSe, based on
Shockley’s description of surface states in non-metals [48]. Inspired by Mead's
experiment, Kurtin et al. [49] tried to establish the relation between the S-Parameter
with the degree of ionicity and quantified ionicity using Pauling's electronegativity
scale [50] Catlow et al. [S1] and J. Robertson [35] have attempted to point out the
inconsistencies accompanying the definition of ionicity and its ability to predict the
SBH, respectively. Later, J. Robertson [35], assessed the relation between the
extracted S-Parameter for various crystals as a function of polarizability/static
dielectric constant, and Miedema's electronegativity scale [52] and found an
undeniable trend. All these observations bring us to conclude that the surface states

are controlled by the electrons wave-function with the unit cell of crystals.

In this context, J. C. Phillips [53] and C. Falter et al. [54] defined ionicity by
examining the orbital wavefunction of valence electrons (sp*® hybridization) and
charge transfer between the constituent ions of different crystals, respectively.
Interestingly, J. C. Phillips' definition coincides well with the
polarizability/permittivity relation shown by J. Robertson [35]. The ionicity analysis
done by J. C. Phillips shows that CdS and CdSe are somewhat ionic. This is due to
the exclusion of d-electrons from J. C. Phillips analysis. Additionally, J. Tersoff [19]
calculated the CNL of the surface semiconductors where he considered the creation
of a dipole, which is associated with the gap states, generated by lattice termination.
His values for CNL corresponded very well with where the FLP occurred in Ge and

Si in other reports [55].
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2.2.2 Surfaces and Interfaces

However, the interface subtleties remain hidden, especially if it is composed of
several layers. To reveal such subtleties, it is easier to start with the observed
behavior of simple junctions such as Metal-Insulator (MI), MS, and Semiconductor-
Insulator (SI). Starting with the Metal/Vacuum interface, the only transport
mechanism would be Fowler-Nordheim Tunneling (FNT) as there are no states to be

occupied in vacuum.

By considering this, the set of experiments done by C. K. Perkin et al. [56] elegantly
demonstrate the transition from defect/trap assisted transport to pure FNT in terms
of increasing degrees of purity and order of the solution based deposited Al.Oxon a
TaN substrate. Having prepared the flat-Ali3 precursor solution, the conversion to
AL Oy occurs by annealing the substrate after spin-coating. In the first experiment,
they controlled the purity of AlLOx by varying annealing temperatures and
monitoring the presence of H,O and NO. For nominally 9 nm thick Al,Ox capped
with Al, the current density as a function of electric field curves shows the transition
from Frenkel-Poole (FP) emission (Tannea= 350 C°) to pure FNT (Tannecai = 600 C°),
as different species desorb at different temperatures, which acted as defects. In the
second experiment, they controlled the purity of the precursor, such that, metal
impurity is varied. Again, a transition from space-charge-limited conduction (SCLC)
towards FNT was observed as metal impurities are diminished. This could be used
to view insulators, in the nanoscopic regime, as an “effective” vacuum from the

electrons’ perspective.

Furthermore, several I-VII and II-VI crystals (ionic crystals) were studied
spectroscopically under different deposition conditions. It was a common
observation to find epitaxial growth with minimal mismatch with the substrates [57]—
[60]. Combining XPS and UPS to study the deposition process in-situ effectively
reveals the actual band diagram. Using UPS, one could measure the FL/work

function at the surface of a material. It was also common observation that depositing
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ionic crystals lowered the UPS measured work function of the surface [5], [14], [58],

[61]-[64].

For the case of MI interfaces, metals did not show any chemical reaction with the
ionic crystals. However, while R. Schlaf et al. [63] were investigating LiFx deposited
on Al and Pt, they observed a shoulder in the Al 2p signal, which is indicative of
oxidation of Al and was attributed to the water that chemisorbed upon depositing 1A
of LiFx. In the same work, the thickness dependent work function of both interfaces
was also measured and found that for Al/(3 nm) LiFx a work function of 2.5 eV and
practically saturating at this value upon further increasing the LiFx thickness
deposition. As for the Pt/LiFyx interface, at 3 nm coverage the work function was
found to be 3.8 eV, with no saturation observed in the measured range of depositing
25 nm LiF. The work function seemed to be decreasing linearly for the Pt/LiFx

interface.

Additionally, Y. M. Wang et al. [64] deposited LiFx on Diamond with different
surface properties (H- and O- terminated) where they found that the effective work
function ¢ of LiFx saturates at ~2.5 eV after 2.5 nm thickness. Zhengyi Sun et al.
[26] further investigated the interface of LiFx with coinage metals where they found
after deposition of 3 nm of LiFx on any of the considered metals (Cu, Ag, and Au),
the ¢egri1s ~3.8 €V. Similarly, rubidium fluoride was also shown to lower the work

function of polycrystalline diamond [62].

In another work [57], CaF; and SrF> were deposited onto InP substrates using
molecular beam epitaxy (MBE), at substrate temperature of 820 K, and similarly
showed crystalline growth and lack of chemical reaction at the interface was
confirmed. The (Ca/Sr)F, bands were found to bend at the interface and lower the
work function of the substrate from 4.1 to 2.7 eV for InP/CaF; and 2.4 eV for
InP/SrF2. Due to the chemical inertness of the interfaces and continuation of bending
beyond the screening of the substrate, it was concluded that Frenkel defect pairs were
responsible for the observed bending. In bulk, the defects are created in pairs to

maintain crystal neutrality, while at the surface one type of defect is more
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thermodynamically favorable than the other which creates a potential difference
between surface and bulk [65]. Modelling the defect pair density as a step function
and using independently found values of enthalpy/entropy of Frenkel defect pair
formation, the bulk defect pair density was found to correspond to the substrate
temperature at which deposition occurred, not room temperature at which
measurements were collected. Unfortunately values of enthalpy/entropy of
formation of defects are dissimilar in different sources, and in the case of entropy of
formation information is wanting, such that one cannot specify the concentration of
defects of such crystals, with certainty, to predict which would work better as ILs for

c-Si [66]-[69].
The work function discrepancy

Since the discovery of the photoelectric effect, measurements of metal work function
started to be complied. One might expect that due to the fact that the photoelectric
phenomenon is a threshold phenomenon, the error in extracting the work function of
metal surfaces would not be large and should be around the thermal voltage
(~26 meV). However, a glance at literature tells us otherwise. R. Smoluchowski was
one of the first to describe how one material can possess multiple work function
values, due to the fact that at different lattice orientation the electron perceives
different atomic densities [70]. Taking the surface of Au as an example. In the case
of thermal evaporation, we expect amorphous deposition. Interestingly, single
crystalline and polycrystalline clusters were observed in the same deposition [71].
This is an example of how it is difficult for any exact prediction to be made regarding

interfaces, although reproducible.

37






CHAPTER 3

INSTRUMENTS AND MEASURING TECHNIQUES

In this chapter, we discuss the tools used to construct the devices on which we
experimented, and the tools/analyses used to characterize said devices. The Si wafers
used in this study were purchased and later characterized by us for crystallinity and
resistivity values. All Si wafers used for characterization were RCA/RCA2 cleaned
and dipped in diluted HF (to remove the native oxide) immediately before

depositions.

3.1  Deposition Techniques

There are several techniques of depositing one solid onto another solid. The manner
in which this was done changed since the time of Schottky. This may add insight as
to why there were differences in reported values of the Schottky barrier height over

the decades.

3.1.1 Physical Vapor Deposition (PVD)

There are multiple ways in which thin layers are deposited onto a substrate. In this
thesis, thermal evaporation is used, exclusively. In thermal evaporation, the main
idea is that solids are placed in conductive boats inside a vacuum chamber where
pressure can go as low as 1x107 Torr (i.e., 1 trillionth the number of atoms in normal
atmosphere is present in the vacuum chamber) such that once they become liquid
they easily and controllably evaporate then adsorb to the substrate. Then, using a

sensor based on a quartz crystal, the amount of material evaporated is monitored in
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terms of thickness with angstrom resolution after selecting the parameters identifying

the material (Z-ratio and density) [72].

3.2 Characterization Techniques

For our study of ultrathin ILs, we require high accuracy in knowing the deposited
thicknesses and crystallinity such that we can quantify the electrical properties of

such layers with certainty.

3.2.1 Spectroscopic Ellipsometry

As we are dealing with ultrathin layers, we must cross check the accuracy of the
quartz thickness monitor, in the vacuum chamber. The thickness monitor is set up
with a tilt, slightly far from the sample holder. This causes it to be at the edge of the
“vapor” and hence will not report the exact thickness of deposition. Using
spectroscopic ellipsometry, one can measure thicknesses with a resolution of few
angstroms. Thus, basic knowledge on how it operates is integral to the process of

quantifying the effects that the ILs have in the MIS geometry.

The basic principle of spectroscopic ellipsometry is using linearly polarized light to
investigate the properties of thin films by analyzing the reflected/transmitted light.
Since the sample’s thickness, refractive index, and extinction coefficient uniquely
alter the incident electromagnetic wave (light), for a given incident angle and
wavelength. Upon irradiating the sample with linearly polarized light the reflected
light becomes elliptically polarized, almost always, hence the name of the technique.
The reflected light is compared to the incident one in terms of phase difference (A)
and the amplitude ratio (y) of (p)arallel-polarized light and (s)urface-polarized light.
The measurement sensitivity is maximized when the incident light is at the Brewster
angle dictated by the sample, where the ratio between p-polarized light and s-
polarized light is maximized. Since we are dealing with c-Si, the incidence angle

should be around 73° [73].
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Upon retrieving Y and A, we can find the refractive index (n) from 1y and the
extinction coefficient (k) from A using the Fresnel equations defining the reflection
coefficients; the ratio of reflected s-polarized (7;) and p-polarized (7,) light to the

incident light (7, is essentially the same):

E, ncosf —n'cosf’
= —=
ST E, ncosf +n'cosf’

(3.1)
Where n is simply 1 for air and n’ is that of the sample, 6 and 6’ are incident angle
and transmittance angle, respectively, and E|, is the incident electric field component

(s- or p-polarized).

n

n'

Figure 3.1 Electric field components at the boundary defined by a discontinuity in the refractive index.

Equation (3.1) can be derived by imposing the appropriate boundary conditions on
the electric field components. From the definition of the electric and magnetic fields,
the tangential components (E; and H;) and the normal component (D, and B, ) are

continuous, such that the boundary conditions at the interface are [3]:
[(E—0+E—r) —ET’)] x#i=0,(E cont.)

(3.2)
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[S(E(;-i-E;) —8’ET’)].r’i =0,(D, cont.)

(3.3)
1, — — 1~ —1
[‘[_,l(kXEO-i_erET)_Ek,XEé] XTLZO,(H” COl’lt.)
(3.4)
(ExET+E><Ej—PxE§).ﬁ=0,(Blcont.)
(3.5)

Where 7 is a unit vector normal to the surface. First, we consider when the electric

field component is perpendicular to the plane of incidence (defined by the

wavevector k and 7, and labelled s-polarized). Along with the reasonable
approximation that the relative permeabilities of air and our layers are 1, it can be
shown that the ratio between the reflected and incident is (3.1). Using conditions

(3.2) and (3.4):

Eo+E,—Ey=0

(3.6)
€ By — E)cosh — |=Elcoso’ = 0
_ — cosf — |—E,cosf =
u 0 0 'ul 0
(3.7)
Such that,
£ &
—(Ey — Ey)cos — |—(Ey + E;)cosf' =0
U U
n ) n, o'
: s 1/ €olbo ﬁCOS — ECOS ~F (nCOSQ - n’COSe,)
0= Fr n n' N\~ " (ncos6 + n'cosf")
v Eolo (ﬁ cosO + wcos@ )
(3.8)
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For the p-polarized component, we use the other two boundary conditions and find
that the refractive indices are interchanged in equation (3.1) (i.e., n takes the place
of n' and vice versa). Next, we can compute (n, k) through the definition (in the

reflection regime):

. T-
p =tan (P)et =2
p
(3.9
Sample
(n,k)

Figure 3.2 Schematic of incident linearly polarized light and reflected elliptically polarized light. Retrieved
from [73].

The equations for the reflection coefficients (r; and 1) are slightly different when
analyzing a thin layer on top of a substrate, where the transmitted light from the layer
of interest reflects at the boundary (between it and that of the substrate) and
contributes to the measured reflected light, with a phase difference. This phase
difference is how we can measure the thickness of the thin film. Coupling our
knowledge of the substrate’s complex refractive index with the measured (i and A),

we can determine the thickness of the ultrathin layer [73].
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| Thin film

Substrate

Figure 3.3 Electric field components of the primary and secondary beam when considering thin film
interference.

In Figure 3.3, we see the primary reflected beam (Er,o) and the secondary one (Em).
From the figure, for a given wavelength A, the optical path difference between the

primary beam and the secondary one amounts to:

B 4rtdn’

a= cos@’

(3.10)

Which introduces a phase difference (e~'*) that either causes constructive or
destructive interference with the primary beam. With each successive reflection from
the thin film/substrate interface, higher order reflections diminish while picking up
cascaded phase difference. Thus, including the contribution of all reflections coming

from the thin film/substrate interface, the total reflected ratio is [73]:

E,o+ Eje™@
r= .
1+E,  Ele @

(3.11)

Where E; q is that of the previous analysis (E;.), and

-, n'cosf@’ —n"cosf"
T

n'cos@’' + n' cos0"

(3.12)
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For s-polarized light. Again, the refractive indices are interchanged for p-polarized
light. Since the substrate is Si and its extinction coefficient is nonzero in the range of
analysis (1.23 — 4.29 eV), the complex nature of the refractive index must be used

in the expressions.

As an example, we show the results of the analysis of one of our layers (NaF) under
study (Figure 3.4). We have deposited 250 A of NaF on a clean Si substrate,
according to the quartz sensor. The analysis (angle of incidence= 70°) shows that
approximately 272 A were deposited. Another deposition (not shown) was done for
reproducibility, where the layer was found to be 258 A. Taking the average, the
results tell us that for every angstrom claimed (by the sensor) to be deposited, 1.06 A
is actually deposited. The refractive index found in the analysis matched that of
literature, almost exactly (difference ~0.005 at A = 632 nm) [74][75]. This
difference could be due to a combination of the relaxation at the interface and the
error in the measurements in the literature values (+0.008) [75]. However, it is too

small for any conclusions to be made, other than that we have NaF.
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Figure 3.4 In the upper graph, we have the measured values of psi and delta along with their fit using the
Caushy model. Using these values along with the expected contribution from the Si substrate, the refractive
index and extinction coefficent of our thin film is found.
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3.2.2 X-Ray Diffraction (XRD)

Returning to the concept of XRD, we recall how Bragg observed unique X-ray
reflection patterns from macroscopically crystalline solids. His formulation led to the
characterization crystallinity of solids; from how many orientations there are in a
poly-crystalline solid to the lattice constant of powders. W.L. Bragg considered the
crystal as composed of evenly spaced parallel planes of ions where reflection peaks
occur at the same angle of incidence (specular reflection) when the reflected ray
constructively interfere with a reflected ray from the adjacent plane. The angle at
which this peak occurs corresponds to the wavelength of the incident ray and the
spacing between crystal planes. The condition for constructive interference is that
the path difference of the rays is an integer multiple of the wavelength. Thus, for a

given set of planes separated by distance d, the “Bragg” condition is:

nA = 2dsin@

(3.13)

Where 6 is the incident angle which is conventionally measured from the surface
plane as opposed to the normal plane in optics (previous section). Another physicist,
Von Laue, similarly formulated the diffraction of X-rays, by considering the crystal
to be composed of evenly spaced ions in a Bravais lattice. His conclusion was the
same, minus the assumption of specular reflection [17]. Thus, scanning for the angle
at which reflection peaks occur will provide us with the interatomic spacing.
Learning the interatomic spacing from known samples allows us to identify layers

and their crystal orientations.

3.23 Dark Current-Voltage (I-V)

Extracting electronic properties from semiconductor-based devices is somewhat
challenging. This is why, several methods exist for extracting, contact resistance and
barrier heights. We chose to use Cheung’s analysis and the Cox-Strack method

(CSM) to find the barrier heights and contact resistivity, respectively.
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3.2.3.1 CSM

A well-known method for extracting contact resistivity is the CSM. This method is
based on constructing different contacts surface different areas on the same substrate
such that one is able to isolate the contact term in the total resistance. The total
resistance is assumed to be a combination of 3 resistors connected in series. Thus,

the total resistance can be expressed as such:

RT:RC+RS+RO

(3.14)

Figure 3.5 On the left we have a substrate with differently sized contacts on the top and on the bottom, there is
an ohmic contact (drawn by my friend, Loay Akmal). On the right we have the electrical schematic of the
device. The electric field is found to spread throughout the substrate in a conic-like fashion. The lower contact
must be ohmic such that its resistance is not current dependent.

Where Rs is the spreading resistance of the substrate, which was based empirically

on electrolytic tank measurements [76]:

R = , 4t
s = _—arctan—
(3.15)
R.— Pc _ Pc
€7 nd?2/4 " Area
(3.16)
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and Ry is the residual resistance which is composed of the resistance of that which is
neither contact nor substrate. This quantity (Ro) is assumed to be contact and
substrate independent and to be constant. The method was first devised for ohmic
devices such that Rt could be extracted from the linear I-V measurement. On the
other hand, for rectifying contacts Rt would be hard to extract. Some researchers
[77] would take a linear regression of the I-V curve at several voltages to
approximate Rt. However, there is a more methodological manner by which we can
extract Rr, which is using Cheung’s analysis. This was dubbed “Expanded CSM”
[78]. In Cheung’s analysis, the resistance is found by taking the derivative of the
potential with respect to the natural logarithm of the current and extracting the slope.

Starting from the diode equation:

1= 1 [exp (FY 7 1R) 1], g = 117

(3.17)

When we are looking at forward bias of V' > 3kT /q, we may approximate the current

as such:

I = I;exp (ﬁ(V B IR)/n)

(3.18)
n
V=IR+ Eln([) + ngp — INAA*T?
(3.19)
av. / av — IR+ n
dinl —  dl B
(3.20)

where n is the ideality factor. Then, one plots (dV/dInl vs I) where the slope will
correspond to the resistance of the device. Then, we go back to the CSM and repeat
the process for each contact to plot Rt vs 1/Area. As an example of the analysis, we
show the steps for the test structure for Al/(1.3 nm)LiF contact on an n-type Si

substrate of resistivity ~2.3 2cm; first we measure the current response:
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Figure 3.6 The I-V of 8 circular contacts of diameters 0.8mm to 3.5mm.

Next, we take the derivative of V with respect to I then multiply by I, since it is
mathematically equivalent to taking the derivative of V with respect to the natural

logarithm of I, and plot the result vs I:

0.0 02 0.4 06 0.8
current (A)

Figure 3.7 the first step of the analysis where dV/dInl is computed and plotted versus the current, 1.
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As can be seen for ohmic contacts, such as the Al/(1.3nm)LiF on an n-Si substrate,
the dV/dInl vs I y-intercept is almost zero (Figure 3.7). The difference between
considering whether the contact is ohmic or not can be quantified by this step, since
we can always apply a linear regression to any set of points. In the last step, we plot

R1-Rs vs 1/Area such that :
RT —_ RS = RC + RO

Pc

Ry = Rs = nd? /4

+ R,

(3.21)
As can be seen from Figure 3.8, the plot is linear when plotted according to (3.21).
Such analysis (calculating R using the diode equation) could be applied to ohmic

contacts, as well, and will produce extremely small n values.

In an error analysis paper that used finite-element analysis, it was shown that at low
contact resistivity interfaces, the CSM overestimates p. [76]. The paper also
developed a different expression for the spreading resistance and suggested some
guidelines to reduce the error in extracting pc. One of the guidelines can be
summarized as: make the resistivity of the substrate as low and comparable to p. as
possible. Since in this region, the 3 series resistors model is valid. When p, =
0.1 p,,t, the error is in p. is less than 5% for the original CSM expression for
spreading resistance. Thus, we moved to using 200 pm thick n-Si wafers with

~0.8 2cm resistivity (thinner and less resistive wafers).
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Figure 3.8 On the right, we have the total resistance calculated from the previous step, while on the left we
remove the calculated spreading resistance from each contact correspondingly.

3.2.3.2  Barrier Height Measurement

Although there are other techniques such as capacitance-voltage measurements and
spectroscopy-based methods, we can use [-V measurements to extract the barrier
height as well, which requires a simpler setup. One could use Cheung’s analysis for
extracting the barrier height, as well. Starting from the diode equation, we extract the
resistance, by taking the derivative of V as shown in CSM, and n from the dV/dInl-

I curve (Note: J and I may be used interchangeably in this analysis). Then we define

a function H(I):
HID)=V- (E> In( i )
B AA*T?
(3.22)
Such that
H(I) = IR + n¢p
(3.23)
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Where we plot H vs I to extract R again and the intercept will be n¢pgwhere we have
found n from the previous plot. The consistency of the analysis can be tested by
comparing the first R with the second. For some reason, extracting R from JdV/dJ
plots is more consistent than the one extracted from dV/dInl plots, although they
should be mathematically identical (Figure 3.9). As an example, we apply the

analysis to the Ag/3nm of LiF/n-Si contact having the structure shown in Figure 3.5:

> 3
208t Z 08
0.6F 0.6F
041 04rf
02t 02¢f
0 : L 0 : :
0 20 40 60 0 20 40 60
J [Af’cmz] J [A.:"mnz]

Figure 3.9 As can be seen from the computed derivatives, the difference is negligible. However, both plots
provide slightly different resistance values along with different ideality factors. The effect of the different
ideality facts can be seen in the H(J) plot.

Comparing both models, we can see both are almost identical to the experimental
data (Figure 3.10). However, since we are modelling for 3 numbers simultaneously
(R, n, and ¢ ) we opt for the more consistent model, that is, model 1, whose values
are: R = 6.61Q, n = 1.8, and ¢p5 = 0.53 eV. The high ideality factor indicates that

a mechanism other than TE is active [79].
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Figure 3.10 The difference in computed R for JdV/dJ is 0.0071 Q. For dV/dInJ it is 0.1184 Q. thus, we use the
ideality factor produced by the first method. It should be noted that plotting H(J) or H(I) does not cause a
difference. Using the results of the analysis using 2 different derivatives show small differences. Model 1 used
JdV/d], while model 2 used dV/dInJ.

3.24 1-Sun and External Quantum Efficiency (EQE)

The 1-sun simulator is a device that mimics the operating environment of solar cells
by placing the sample cell under a source with the optical spectrum of the sun having
an intensity of 1 kW/m?. The sample cell is put under such illumination and a bias
voltage scan is applied to find the open-circuit voltage (Voc) and its current

response.
EQE

Due to the fact that the 1-Sun simulator retrieves current values, it needs to be
corrected for the area to express our results in terms of current density. The main
method to do so is through EQE measurements. Thus, we can retrieve the correct

short circuit current density and calculate the correct efficiency of our samples.

EQE is defined as the ratio between the generated charge carriers that left the solar
cell and incident photons [80]. EQE may also indicate which recombination losses
are limiting the performance of the solar cell, where the UV/blue region is mainly

affected by the front side, while the red/IR region is affected by the rear side .
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CHAPTER 4

RESULTS & DISCUSSION

4.1 Experimental Results

Based on the observations done over the past decades, it is evident that an IL intended
for the enhancement of current across the MS interface should possess certain

features:

1. High lonicity on Phillips’ scale.
2. Large band gap.

3. Low defect formation energy.

4

. Nanoscopic.

Accordingly, we decided to explore the applicability of thermally evaporated sodium
chloride (NaCl) and sodium fluoride (NaF) as prospective ILs for c-Si solar cells.
Under proper optimization (which is outside the scope of this thesis), these materials
could prove more economic due to their abundance in nature, especially NaCl. The
preemptive venture into tackling the abundance issue reveals itself in the solid-state
battery industry where research is partially dedicated to exploring sodium as a

replacement for lithium [81]—[83] .

4.1.1 XRD

For XRD measurements, we used the Rigaku Ultima-IV X-ray diffractometer which
possesses automatic alignment for grazing angle analyses. Thin films of NaCl and

NaF; of varying thickness between 5-100 nm, were deposited on c-Si (Fz (100), DSP,
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thickness 200 pm) and glass substrates, by thermal evaporation at room temperature.

NaCl or NaF powder (99.99%, pure) were used as the source material.

—20 nm
— 100 nm

NaCl (200)]

Count

l

1 [ | 1 1 1 1 1 1 1 1
25 30 35 40 45 50 55 60 65 70
2theta [6]

Figure 4.1 XRD results of NaCl deposited on a clean Si wafer. For two thicknesses we can see certain spikes
corresponding to the NaCl. However, for the 20nm, there is practically only one peak that corresponds to the
200 direction.

The base pressure was 1-5x10 Torr. The c-Si wafers were cleaned by RCA/RCA2
followed by HF dip before loading into the thermal evaporation system. XRD
diffraction revealed that the 20 and 100 nm thick NaCl (Figure 4.1) and 100 nm NaF
(Figure 4.2) exhibit single peaks in the (200) direction for NaCl (at 32°) and [100]
for NaF (at 39°). Samples with layers of thicknesses lower than 20 nm did not show
peaks other than that of the substrate. This does not necessarily mean that 20 nm is
the threshold at which the layer becomes crystalline. For NaCl, another group made
the same observation that only a single peak exists, at least for layers of 100nm or

below [84].
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For the silicon substrate we can see that the silicon peak dominates but there are other
peaks around angles 62 and 67. We could conclude it belongs to the NaCl layer,
however, the same peaks appear for the NaF layer (Figure 4.2). As for the peak at 33
degrees, it is referred to as the Si (200) forbidden peak. The origin of its occurrence
is most likely that the sample has a non-zero in-plane angle [85]. It is interesting to
note that in the case of not applying HF, those peaks (at 62° and 67°) were stronger

and other small peaks appeared.
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Figure 4.2 XRD results for 100 nm NaF on different substrates. It can be seen that in the case of glass substrate
and not applying HF does not cause the peak to differ much in strength.

The HF/no HF comparison tells us the substrate's crystallinity boosts the crystallinity
of our layer, since without applying HF, NaF is being deposited on amorphous silica.

This may be relevant, later.
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4.1.2 Dark I-V measurements

We prepared circular contacts of the same radius using shadow masks. The ILs and
metals were deposited without breaking vacuum under 1 uTorr on 200 um thick DSP
n-Si<100> with resistivity of approximately 0.8 Q.cm. In the first set of experiments,
we fixed the IL and changed the metals and in the other we varied the IL. In another
set of experiments, we extracted the contact resistivity using CSM for LiF, NaF, and
NaCl IL capped with Al. Finally, we verify the selectivity qualitatively by changing
the majority charge carrier in the substrate. For the first set of experiments, It can be
seen from Figure 4.3 that adding LiF effectively removed the pinning effect observed

for the Metal/Si contacts (i.e., SBH now depends on ¢,;,).
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Figure 4.3 IV measurement of AI/LiF/Si, Ag/LiF/Si, and Au/LiF/Si where the contact diameter was 0.6mm for
the Ag and Au contacts and 0.8cm for the Al contact. The higher reverse current in the case of Ag/NaF is
indicative of a lowered barrier. After forward bias of 0.6V the current becomes dependent on the system’s

resistance.

For the Al/LiF contact, we deposited 1.3 nm only to have an effective workfunction
(~3 eV at this thickness) comparable to the other contacts(~3.8 eV). In literature, the
success of LiF as an IL in c-Si solar cells has been attributed to different causes. The
main three hypotheses, summarized by J. Bullock et al. [86] regarding the

enhancement of current due to adding LiF as an IL are as follows:

1. Lithium chemically dopes the surface of the semiconductor, in this case Si.
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2. Protection from Al at the surface of Si.

3. The extremely low work function value of the AI/LiF interface.

For the first hypothesis, it was concluded that it could not be the case as the LiF layer
was shown to be stable through STEM imaging [86] such that Li did not diffuse in
the Si substrate. S. Wan et al. also have shown chemical inertness of the LiF/Si
interface [87]. The second hypothesis relies on the MIGS explanation; as LiF is
acting as a region of no electrons, the gap states of Si cannot be filled by the Al
electrons since they are screened by the distance. The third hypothesis goes in line
with R. Schlaf et al.’s experimental results and others [63][26]. Although Zhengyi
Sun et al. [26] showed that the effective work function of coinage metals (Cu, Ag,
Au) was 3.8 eV upon depositing 3nm of LiF, the barrier height of such contacts is
actually different. This shows that that the effective work function is not the only
cause for enhanced electron transport across such interface. It must be a combination
of reduced MIGS at the interface and an effective work function and potentially in

combination with other surface parameters, like orientation.

On the other hand, when using Cheung’s analysis on the Au/LiF contact, it produced
an ideality factor of approximately 0.2 which led to a high barrier height of 1.26 eV,
which is somewhat unreasonable. Using the formula relating the BH to the saturation

current density:

p le <A*T2>
=—1In
g q Jsat

(4.1)
the BH for the Au/LiF contact was found to be 0.663 ¢V, while for Ag/LiF it is 0.55
eV (0.584 eV using Cheung’s analysis). The discripancy between Cheung’s analysis
and the reverse saturation current is most probably due to the small number of data
points in the forward bias region such that the numerical derivative was not well
defined, and not accounting for the image-effect that diminishes the barrier in the

reverse bias.
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Figure 4.4 Using the same structure as in the previous figure, we compare the performance of NaF with LiF for
Ag contacts on n-Si.

Next, we compare the performance of using our proposed material with using LiF.
Although LiF has the largest known bandgap, both experimentally and numerically,
NaF still outperformed it in lowering the barrier height at the Ag/n-Si interface
(Figure 4.4). The outperformance can be attributed to the slightly higher ionicity of
NaF on the Phillips’ ionicity scale.

Table 1 Extracted effective SBH of different contacts on the same substrate (n-Si).

Contact Structure Barrier Height (eV)
Bare Ag 0.698
Ag/LiF 0.584
Ag/NaF 0.472
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4.1.3 Charge-Carrier Selectivity

Next, we show the charge-carrier selectivity by comparing the current response of
the contact on substrates of different doping type. Due to the extremely high
ionization energy (VBM) of the alkaline halides, we expected NaF to be electron
selective such that when the substrate has holes as the majority charge carriers it, the
current response becomes rectifying. Our expectation is justified by the large band
gap that such material possess such that the tunneling probability is diminished for
holes and due to the unpinning there will be a thermionic barrier that the holes must
overcome. This naturally leads to valence band offset larger than that of the
conduction band offset, which primarily cause the selectivity. This is visible in

Figure 4.5.
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Figure 4.5 J-V measurement of Al/NaF( 5Snm) on different substrates. It can be seen that for the p-Si substrate,
there is a saturation current corresponding to an effective barrier height of 0.619¢V. However, one cannot use
the TE model to quantify the barrier across the Al/NaF/p-Si interface.

Following Sze’s use for Richardson’s constant; for the p-type substrate we used a
value of 30, while for the n-type substate whose orientation was <100>, we used a
value of 120 in order to deduce the barrier height from the forward direction current.

The barrier deduced is really an effective one, which reveals itself in the ideality
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factor deviating from n = 1 [79]. This is a sign that the barrier is field-dependent

and that tunneling is occurring alongside with TE, which is expected.

4.1.4 Contact Resistivity Measurement

We used CSM to extract the contact resistivity of AI/IL/n-Si contacts (IL= LiF, NaF,
NaCl) by making contacts with different radii. From Figure 4.6, we Note that NaF
and NaCl outperformed LiF in the range of thicknesses tested, which were calibrated
by spectroscopic ellipsometry with a resolution of +2 A. We may conclude that the
size of the bandgap is not the only factor causing the IL to have high electrical
performance. This is because, NaF’s bandgap is approximately 11.4 eV, while for

NaCl and LiF, it is 9.5 eV and 13.6-14.2 eV, respectively [88].
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Figure 4.6 The extracted contact resistivity using the CSM analysis for different IL thicknesses of NaF, NaCl,
and LiF.

The dependency of contact resistivity on thickness can be understood from the
transport mechanism, which is a combination of TE and FNT. The TE model tells us
how many electrons have energy enough to move across an energy barrier. The

tunnelling barrier tells us the likelihood of an electron passing a barrier, depending
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on its energy. Thus, the current across the contact should, approximately, be the

likelihood of electrons that passed the energy barrier to pass the tunnelling barrier:

Jtor = OJrg

Where 0 is an overall tunnelling probability, which is inversely proportional to
exponent of the root of the thickness of IL (by defining the electric field in the FNT
expression as E = V /d), for a given bias voltage. This is a simplistic view of electron
transport across such junctions. However, it qualitatively accounts for the behaviour
seen in Figure 4.6, between 1-10 nm. After this thickness range, one could model

such layers as capacitors [5], [86].

4.1.5 EQE and 1-Sun Results

Finally, we try utilizing the IL in a n-Si solar cell at the backside as shown in Figure
4.7. The front side’s optimization was done by another team, where SiNx passivation,
texturing, and Boron surface doping were implemented with Ag/Al paste front

contacts.

pe/SiN /Ag

—

ESL/Al
—

Figure 4.7 Schematic of the solar cell structure. At the front, we have surface doping, creating a thin p+ layer
passivated with SiNx and metal capped with silver. At the back, we deposited the IL dubbed ESL short for
electron selective layer.

The EQE results shown in Figure 4.8 revealed almost identical behavior throughout
the spectrum for the three IL, which was expected. In the inset graph, we can see
how the cell with NaF had higher EQE, fractionally, throughout the spectrum except
for the UV region. Whereas NaCl was identical to LiF, it showed slightly lower
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efficiency in the IR region indicating slightly higher surface recombination relative

to both NaF and LiF.
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Figure 4.8 EQE results for the champion cells with different layers implemented at the backside capped with Al
as the metal contact.

Table 2 Results for the n-type solar cells after the EQE corrections.

Contact Voe (mV) | Je (mA/cm?) | FF (%) | Efficiency (%)
NaCl (2 nm) 581.4 3548 78.7 16.23
581.2 35.63 79.1 16.38
NaF (~1.5nm) 591.2 36.07 81.13 17.30
591.2 35.85 79.22 16.79
NaF (1.5 nm) 586.3 35.40 78.59 16.31
591.3 35.88 78.11 16.57
LiF (1.8 nm) 591.3 35.44 78.84 16.52
591.3 35.72 80.62 17.03

In Table 2, the results of the sample cells are summarized, after the EQE correction.

Since deposition was done on textured surfaces, the optimum thicknesses did not
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exactly correspond to the ones from contact resistivity measurements. Figure 4.9
shows the current density response of the champion cells for each layer, ceteris
paribus. Given that the cells based on LiF were reported to be at above 19% efficient
and could go up to 23% efficient with proper passivation, and that NaF was slightly

better than LiF in our tests, NaF should perform better under the same circumstances.
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Figure 4.9 The J-V results of the solar cells, having average area of 2x2cm?, with different ILs after the EQE
correction of the short circuit current density.

4.2 Discussion

The XRD indirectly shows how after a certain thickness the ionic crystals become
crystalline. This is quite interesting as the crystals do not need a crystalline substrate
for the atoms to arrange themselves after a certain thickness. This is not seen in most

evaporated solids. This further corroborates Frenkel’s analysis of ionic surfaces.

Since J. Bullock et al. [6] has shown, indirectly, that 3 of [-VII crystals act almost
identically in the IL regime, we may start with LiF as it has been studied the most

among the ionic crystals as an IL since L.S. Hung’s work [4]. Based on a band gap
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of 12-14.5 eV [4], [87]-[89] and ionization energy of 11.3 eV [63] , we may draw
the band diagram of LiF [100] and compare it with what happens upon contacting

another crystal.
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Figure 4.10 Schematic of the band diagram of the Al/LiF/n-Si interface.

In Figure 4.10, outside the metal, we see the experimentally demonstrated lower
work function of AI/LiFx [63] for 3 nm coverage. It has been attributed to a dipole
layer [63][4][5]. This is true to an extent, however calling it a dipole layer is
misleading since a dipole layer is an electrostatic configuration that will not continue
to exist if time is allowed to pass. Since the interface is chemically inert for LiFx/n-

Si [87], the CBM of Si must remain at 4.05 eV below vacuum at the interface.
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Figure 4.11 The IV result of Al/(2nm)NaCl/n-Si. The device structure is similar to the CSM structure where the
front contact is a circular contact of radius 1.7mm and the back contact is fully covered and ohmic.

This causes accumulation to occur to an extent that Si acts as degenerately doped Si
near the interface. This is justified by the range over which such contacts (ionic
crystals as IL) are Ohmic in the reverse bias, as in the case of Al/2nm NaCl where
the contact was ohmic up to -4 V (Figure 4.11). Now, in this case, on either side of
the IL the CBM should be below the FL such that the band diagram is symmetric
about the contact. Analytically, it was shown that for a FN-type barrier the tunnelling
probability is the same whether the electron is leaving the emitter or entering it from
vacuum [90], which may be generalized for smooth barriers. This corroborates the
picture that when tunnelling is the dominant mechanism of current transport across
the contact, the device appears ohmic. This is because the contact, after a fractional
bias, passes more electrons than the substrate can pass. Furthermore, if the CBM
were to be above FL by anything below 0.3 eV (¢p5 < 0.3eV) it would not have

shown in the analysis due to the parameters under which the current was measured.

Next, in the case when the metal is Ag and Au (higher work function), we can look
at the interface as being composed of two cascading barriers, that of the IL and the
band bending caused by the mismatch in FL before contact. The theoretical electron

SBHs for Ag (¢,,~4.6 eV') and Au (¢,,~5.3 eV) [26] is 0.55 eV and approximately
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1.25 eV, neglecting the image effect. However, by the inclusion of LiF or similar
ionic crystals, the work function of the surface becomes 3.8 eV, approximately.
Although Au and Ag possess the same effective work function upon depositing the
same thickness of LiF, their J-V response is not the same which implies that the
inherent workfunction of the metal somehow acts as a parameter, since the difference
between Ag and Au’s electronic densities is negligible. This further validates the lack

of FLP at the interface.

In terms of quantifying observations, the most effective theories are still TE and
FNT, where the former ignores the exact origin of the barrier height, and the latter
simplifies its shape to that of a triangle (ignoring the image-effect). In the case of
TE, one can always model any rectifying contact and establish an effective barrier,
which would encompass other conduction mechanisms that partially appear in the
ideality factor (n). If n does not deviate much from unity, TE is enough to effectively

characterize the MS interface [79].

As for FNT, R. G. Forbes [39] pointed out that a good portion of the literature is
neglecting the image-effect correction (Schottky-Nordheim tunnelling (SNt))
presented in the fifties [21], which was shown to be of significance, especially in
nonplanar emitter surfaces. Although the difference between SNt and FNT amounts
to a correction factor [37], this correction factor is electric field-dependent in case of
nonplanar emitters. A perfectly planar surface is quite rare. The correction factor if
not accounted for, will convolute the measured barrier. This may be one of the
causes, on top of surface morphology and measurement techniques, as to why some
report different ¢, and ¢ values for metals and interfaces of similar crystallinities

and bulk properties, respectively, in the literature.

The manner in which the tunnelling barrier and the thermionic barrier are resolved

is usually done through temperature dependent IV measurements. As the temperature
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goes down, TE is suppressed while the tunnelling current remains constant [77].

Unfortunately, the system was not available for further analysis.

FL

Interface

L 50 51

Figure 4.12 A Schematic of the band structure an electron perceives in a single direction in a periodic structure.
A. Vacuum, no structure. B. A metal where the band gap is of the order of thermal voltage or less. C-E Group
IV and binary crystals. F. Ionic crystals, characterizable by different phenomena including negative electron
affinity, i.e., the CBM is above vacuum level. Note: the FL is not always the same distance from vacuum, as it
can vary from 2-6eV. At the top, circles signify degree of localization near the parent ion. At the bottom, we
see the scale of degree of FLP.

The studies done on metal/non-metal contacts show the trend of moving towards the
SL with increasing bandgap/ionicity through contact resistivity measurements and
their functionality as Si-based solar cells [5], [8], [10], [11], [14], [35], [91]-[94].
Schlaf et al. and others have also revealed that the MI interface exhibits relatively
lower metal work function. One can summarize the observations done throughout
the decades as shown in Figure 4.12. We see how when we move from vacuum to a
structure of very weak periodic (practically, most metals), the continuum of states is
not fully accessible (Chapter 2). As we go from left to right, the periodic potential

goes from non-existent, in vacuum, to extremely strong, in ionic crystals, as evident
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from the huge bandgap. Exact accounting for the different weights of interface
mechanisms is almost impossible, right now. This is due to errors in the metal work
function extraction, different topology of surfaces studied in literature over time, and
unaccounted substrate effects that include substrate thickness and resistivity.
However, it is evident that for ionic crystals, unlike Si and Ge, electrons are well
localized such that, at the surface, the ions become freer to move, instead of
generating extra electronic states in the forbidden region as a response to lattice

termination. Here is a set of strategies that will enhance MIS-based contacts:

Frenkel/Gibbs picture: for ionic crystals, it is evident that band bending is
occurring because of the difference in the Gibbs free energy of defects allowing ions
to move more freely at the surfaces and acting as dipoles in the sub-nanometer
regime. If the moving ions are participating in the conduction, then using impure
(doped) ionic crystals will increase the density of defects hence enhancing the field
effect present in these layers[95]-[97].In addition to this, thermodynamically,
defects generated by high substrate temperature may be partially frozen by capping.
Thus, experimenting with substrate temperature during deposition may reveal

contacts with superior electronic properties.

Bardeen/Tersoff/Heine picture: As MIGS qualitatively explains the observed
partial depinning in silicides and germanides, and almost full depinning in the case
of Bi/Si and Bi/Ge, the use of semi-metals could be used to further minimize the
influence of gap-states in MIS contacts. MIGS could also be used to view IL as a
screen [95], [97] thereby lowering the matching DOS that would pin the FL of Si
near CNL.
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CHAPTER 5

CONCLUSION

In conclusion, we found that adding an ultrathin layer of NaF or NaCl between Si
and metals unpins the FL from around CNL such that the barrier perceived by the
electrons is dependent on the metal work function. We attribute this to their ionic
nature such that on the one hand they distance the metal from silicon, while, on the
other hand, they possess no electronic states that matches that of silicon’s unoccupied
gap states to pin the FL. From Frenkel’s analysis, the ions themselves spread at the
surface of ionic crystals to achieve neutrality with bulk as opposed to forming
dangling bonds to be filled in the case of covalent solids. This is another reason why

such crystals have poor passivation quality.

Due to these layers’ band structure, they act as electron selective layers, in the sense
that they diminish the passage of holes by having a much larger tunnelling barrier.
To this end, we utilized these layers as rear planar contacts in an n-Si solar cell and
compared their performance to that of an optimized cell with LiF in their stead. NaF
outperformed LiF by a slight margin (0.3%), ceteris paribus, achieving a power
conversion efficiency of 17.3%. Since the enhancement was in the short circuit
current density and fill factor, coupling the use of NaF with a better passivation at
the front and optimized partial contact coverage at the back side offers guaranteed

routes for improvement.

Finally, since we proposed and tested NaF and NaCl as ILs based on the experiments
and several existing models explaining some of the isolated features of solid-state
surfaces, and their success in lowering the contact resistivity of Metal/Si contacts up
to 3 to 4 orders of magnitude without sophisticated contact strategies, we propose a

set of materials that can also function as IL in contact design where contact resistivity
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is minimized: beryllium oxide (BeO), strontium fluoride (SrF2), and silver iodide
(Agl). Qualitatively, any transparent crystal would partially unpin the FL as an
ultrathin IL.

Choosing the parameter that dictates which ionic crystal would outperform the other
is tricky. Although NaF has a smaller bandgap, it outperformed LiF as an IL in terms
of current density in rectifying contacts and contact resistivity in ohmic contacts,
which tells us that the size of the bandgap is but a parameter for superior contacts.
The only scale that consistently correlated with the reported contact resistivity
values, both in this thesis and in literature, was the ionicity scale. It is even correlated
with the degree of pinning. Unfortunately, Philips’ scale lacks generality since it was
made for binary crystals without accounting for d or f valence electrons. This limits
its usability in predicting the performance of other more complex ionic crystals in
the IL regime, e.g., lithium niobate’s ionicity is undefinable (in Philips’ model),
because niobium has d electrons, and the crystal is not composed of a binary

compound.

As for a strategy, the contact should incorporate an optimized combination of both
pictures (the ionic surface and MIGS). Combining both the MIGS picture and the
Frenkel picture, we are led to conclude that depositing a semi-metal, with an
appropriate work function, between the IC and the metal is the best strategy in terms
of minimizing the contact resistivity of the contact. Thus, for n-type semiconductors:
Al/semi-metal/IC/S is potentially the ultimate recipe for minimal resistance, where
the thickness of the semi-metal is on the order of 10 nm (as they are more resistive
than metals). However, the thickness should be enough to completely eliminate the

influence of the MIGS from partially pinning the FL.

As an example, for n-Si, adding a few nanometers of Bi between Al and the ionic
IL should further reduce the MIGS at the interface, while unpinning the FL through
the mobile ions in the IC. Implementing this exact combination of Al/Bi/IC/S may

have varying outcomes for different c-Si orientations, not to mention other
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semiconductors. This is mainly due to how different layers have varying passivation

effects depending on the substrate, which is beyond the scope of this thesis.
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