
T.R.
ONDOKUZ MAYIS UNIVERSITY

INSTITUTE OF GRADUATE STUDIES
DEPARTMENT OF COMPUTER ENGINEERING

SOLVING AUTOMATIC PROGRAMMING PROBLEMS
WITH FIREFLY PROGRAMMING METHOD

Master’s Thesis

Mohamed ALIWI

Supervisor

Asst. Prof. Dr. Sercan DEMİRCİ

II. Supervisor

Assoc. Prof. Dr. Selçuk ASLAN

SAMSUN
2022

ACCEPTANCE AND APPROVAL OF THE THESIS

The study entitled “SOLVING AUTOMATIC PROGRAMMING
PROBLEMS WITH FIREFLY PROGRAMMING METHOD” prepared by
Mohamed ALIWI and supervised by Asst. Prof. Dr. Sercan DEMİRCİ and Assoc.
Prof. Dr. Selçuk ASLAN was found successful and unanimously accepted by
committee members as master thesis of the Department of Computer Engineering,
following the examination on the date 29/08/2022.

Title Name SURNAME
University Final
Department/Art Signature Decision

Chairman
Assoc. Prof. Dr. Geylani KARDAŞ
Ege University
Department of Information Technologies

⊠
Accept
□

Reject

Member
Assoc. Prof. Dr. Sedat AKLEYLEK
Ondokuz Mayıs University
Department of Computer Engineering

⊠
Accept
□

Reject

Member
Asst. Prof. Dr. Sercan DEMİRCİ
Ondokuz Mayıs University
Department of Computer Engineering

⊠
Accept
□

Reject

This thesis has been approved by the committee members that already stated
above and determined by the Institute Executive Board.

APPROVAL
..../..../2022

Prof. Dr. Ali BOLAT
Head of Institute of Graduate Studies

DECLARATION OF COMPLIANCE WITH SCIENTIFIC ETHIC

I hereby declare and undertake that I complied with scientific ethics and academic
rules in all stages of my M.S. thesis, that I have referred to each quotation that I used
directly or indirectly in the study, and that the works I have used consist of those shown
in the references, that it was written in accordance with the institute writing guide and
that the stated cases in article 3, section 9 of the Regulation for TÜBİTAK Research
and Publication Ethics Board were not violated.

Is an Ethics Committee Necessary?
□ Yes
⊠ No

29/08/2022
Mohamed ALIWI

DECLARATION OF THE THESIS STUDY ORIGINALITY
REPORT

Thesis Title: SOLVING AUTOMATIC PROGRAMMING PROBLEMS
WITH FIREFLY PROGRAMMING METHOD

As a result of the originality report taken by me from the plagiarism detection
program on 23/06/2022 for the thesis titled above:

Similarity ratio : %10

Single source rate : %1 has been released.

29/08/2022
Asst. Prof. Dr. Sercan DEMİRCİ

ÖZET

ATEŞBÖCEĞİ PROGRAMLAMA YÖNTEMİ İLE OTOMATİK
PROGRAMLAMA PROBLEMLERİNİN ÇÖZÜLMESİ

Mohamed ALIWI
Ondokuz Mayıs Üniversitesi
Lisansüstü Eğitim Enstitüsü

Bilgisayar Mühendisliği Ana Bilim Dalı
Yüksek Lisans, Ağustos/2022

Danışman: Dr. Öğr. Üyesi Sercan DEMİRCİ
II. Danışman: Doç. Dr. Selçuk ASLAN

Klasik regresyon yöntemleri, verimlilik ve doğru çözümler bulma yetenekleri
nedeniyle farklı problemlerin çözümünde yaygın olarak kullanılmaktadır. Klasik
yöntemlerin çoğu özelleşmiş olarak kabul edilmesine rağmen, farklı problemleri
çözmelerini engelleyen bazı kısıtlamalara sahiptir. Otomatik programlama veya
sembolik regresyon yöntemleri, önceden belirlenmiş herhangi bir desen veya yapı
kullanmadan karmaşık veriye dayalı problemleri çözebilen makine öğrenme
teknikleridir. Otomatik programlama yöntemleri, optimal modeli oluşturmak için
farklı matematiksel ifadeleri ve sabitleri birleştirir.

Bu tez, sembolik regresyon prensiplerini kullanarak karmaşık problemleri
çözebilen yeni bir otomatik programlama yöntemi sunmayı amaçlamaktadır. Bu tez
kapsamında, sembolik regresyon problemlerini çözebilmek için ateşböceği
algoritmasını modifiye eden ilk otomatik programlama yöntemi olarak ateşböceği
programlama önerilmiştir. Ateşböceği programlama süreçlerinin iyileştirilmesi
sonucunda, farka dayalı ateşböceği programlama adlı geliştirilmiş bir versiyon da
önerilmiştir.

Yeni önerilen yöntemler, performanslarını iki farklı problem kullanarak test
etmeden önce ayrıntılı olarak açıklanmıştır. Önerilen ateşböceği programlama
yöntemleri, farklı sembolik regresyon kıyaslama problemlerinin çözümlemesinde ve
Box-Jenkins zaman serilerinin modellemesinde kullanılmıştır. Deneysel testlerin
sonuçları, yeni önerilen yöntemlerin veriye dayalı farklı problemleri ne kadar iyi
çözebileceğini göstermektedir.

Anahtar Sözcükler: Sembolik Regresyon, Otomatik Programlama, Ateşböceği
Algoritması, Ateşböceği Programlama, Makine Öğrenme

iii

ABSTRACT

SOLVING AUTOMATIC PROGRAMMING PROBLEMS WITH FIREFLY
PROGRAMMING METHOD

Mohamed ALIWI
Ondokuz Mayıs University

Institute of Graduate Studies
Department of Computer Engineering

Master, August/2022
Supervisor: Asst. Prof. Dr. Sercan DEMİRCİ

II. Supervisor: Assoc. Prof. Dr. Selçuk ASLAN

Classical regression methods are used widely to solve different problems due to
their efficiency and ability to find accurate solutions. Although most of the classical
methods are considered specialized, they have some limitations that prevent them from
solving various problems. Automatic programming or symbolic regression methods
are machine learning techniques that can solve complex data-driven problems without
using any pre-defined pattern or structure. Automatic programming methods are usually
based on evolutionary computation algorithms that search among several candidate
solutions to find the best one. Automatic programming methods combine different
mathematical expressions and constants to form the optimal model.

This thesis aims to present a new automatic programming method that can solve
complex problems using the principles of symbolic regression. In the scope of this
thesis, firefly programming is proposed as the first automatic programming method that
modifies the firefly algorithm to be able to solve symbolic regression problems. As a
result of improving the processes of firefly programming, an improved version called
difference-based firefly programming is proposed also.

The newly proposed methods are described in detail before testing their
performance using two different problems. The proposed firefly programming
methods were used in solving different symbolic regression benchmark problems, and
modeling Box-Jenkins time series. The results of the experimental tests show how
well the newly proposed methods can solve different data-driven problems.

Keywords: Symbolic Regression, Automatic Programming, Firefly Algorithm, Firefly
Programming, Machine Learning

iv

ACKNOWLEDGEMENT

First of all, I would like to say “Alhamdulillah”, Almighty God for his blessings

and mercy that guided and helped me to finish this work. Following the Sunnah of our

Prophet Muhammad, peace and blessings be upon him, who said: “He who does not

thank the people is not thankful to Allah”, I would like to thank my family, my beloved

mother, father, brothers, and sisters who helped and supported me, not only in this

work but in all my life. I would like to thank my supervisors Asst. Prof. Dr. Sercan

DEMİRCİ, and Assoc. Prof. Dr. Selçuk ASLAN for their encouragement, advice,

and support throughout this work. Thanks to all my friends who also supported me to

finish this work. Thanks to everyone who helped me directly or indirectly to complete

this thesis.

Mohamed ALIWI

v

CONTENTS

ACCEPTANCE AND APPROVAL OF THE THESIS ... i
DECLARATION OF COMPLIANCE WITH SCIENTIFIC ETHIC ii
DECLARATION OF THE THESIS STUDY ORIGINALITY REPORT ii
ÖZET .. iii
ABSTRACT .. iv
ACKNOWLEDGEMENTS ... v
CONTENTS.. vi
SYMBOLS AND ABBREVIATIONS.. vii
FIGURES LEGENDS .. viii
TABLES LEGENDS .. x
1. INTRODUCTION .. 1

1.1. Research Objectives ... 2
1.2. Thesis Structure .. 3

2. LITERATURE REVIEW .. 5
2.1. Machine Learning ... 5

2.1.1. Machine Learning Tasks .. 6
2.1.2. Learning Process.. 7

2.2. Classical Regression .. 9
2.3. Symbolic Regression.. 11

2.3.1. Difference Between Classical & Symbolic Regression Methods 11
2.3.2. Advantages & Disadvantages of Symbolic Regression 12
2.3.3. Genetic Programming (GP) .. 13

2.3.3.1. Development of the Basic Operators ... 15
2.3.3.2. Development of Individual’s Representation Structure 17

2.3.4. Other Evolutionary Automatic Programming Methods 20
3. MATERIALS AND METHODS ... 24

3.1. Firefly Algorithm .. 24
3.1.1. The Behavior of the Fireflies in Nature.. 24
3.1.2. The Describe of Firefly Algorithm ... 25
3.1.3. Escaping Local Optima ... 28

3.2. Firefly Programming .. 30
3.2.1. Standard Firefly Programming (FP) .. 30
3.2.2. Difference-based Firefly Programming (DFP)... 34

4. EXPERIMENTAL RESULTS .. 39
4.1. Solving Benchmark Problems .. 39

4.1.1. FP & DFP Performance Comparison .. 45
4.2. Box-Jenkins Gas Furnace Time Series Modeling and Forcasting 49

5. CONCLUSION AND RECOMMENDATIONS... 57
5.1. Conclusion... 57
5.2. Recommendations ... 59

REFERENCES.. 60
APPENDICES... 67

1. Box-Jenkins Gas Furnace Dataset ... 67
CURRICULUM VITAE ... 74

vi

SYMBOLS AND ABBREVIATIONS

ABCP : Artificial Bee Colony Programming
ACO : Ant Colony Optimization
AP : Ant Programming
AI : Artificial Intelligence
AIS : Artificial Immune System
CGP : Cartesian Genetic Programming
CSA : Clonal Selection Algorithm
DE : Differential Evolution
DFP : Distance-based Firefly Programming
EC : Evolutionary Computation
FP : Firefly Programming
GA : Genetic Algorithm
GEP : Gene Expression Programming
GE : Grammatical Evolution
GP : Genetic Programming
IP : Immune Programming
IPA : Immune Plasma Algorithm
IPP : Immune Plasma Programming
KNN : K-Nearest Neighbour
LGP : Linear Genetic Programming
MEP : Multi Expression Programming
MHABCP : Multi Hive Artificial Bee Colony Programming
ML : Machine Learning
MSE : Mean Square Error
NN : Neural Network
QABCP : Quick Artificial Bee Colony Programming
QSABCP : Quick Semantic Artificial Bee Colony Programming
SA : Simulated Annealing
SABCP : Semantic Artificial Bee Colony Programming
SGP : Stack-based Genetic Programming
SIHC : Stochastic Iterated Hill Climbing
SVM : Support Vector Machine

vii

FIGURES LEGENDS

Figure 2.1. Flowchart of the learning process .. 8

Figure 2.2. System model with 𝑛 input variables and 𝑚 output variables 9

Figure 2.3. Examples of different regression analysis models’ graphs: (a) Linear
regression - (b) Logistic regression - (c) Polynomial regression.................. 10

Figure 2.4. Functional and terminal sets in symbolic regression 12

Figure 2.5. Individual representation in GP... 14

Figure 2.6. Crossver example in GP .. 15

Figure 2.7. Mutation example in GP .. 16

Figure 2.8. Stack-based individual representation in GP... 18

Figure 2.9. Individual representation in CGP... 19

Figure 2.10. Gene expression representation in GEP... 19

Figure 2.11. Linear representation in LGP.. 20

Figure 2.12. Pheromone rate tables in AP .. 21

Figure 3.1. Flowchart of firefly algorithm ... 26

Figure 3.2. Firefly subgroups positions while solving maximization problem with FA 29

Figure 3.3. Expression representation in Koza tree ... 30

Figure 3.4. Flowchart of firefly programming (FP) method....................................... 31

Figure 3.5. Full and Grow methods ... 32

Figure 3.6. Sharing operation... 33

Figure 3.7. Flowchart of difference-based firefly programming (DFP) method 35

Figure 3.8. Simplification operation .. 36

Figure 3.9. Substitution operation ... 37

Figure 4.1. FP/DFP-generated and targeted graphs of 𝐹1 .. 41

Figure 4.2. FP/DFP-generated and targeted graphs of 𝐹2 .. 42

Figure 4.3. FP/DFP-generated and targeted graphs of 𝐹3 .. 42

Figure 4.4. FP/DFP-generated and targeted graphs of 𝐹4 .. 42

Figure 4.5. FP/DFP-generated and targeted graphs of 𝐹5 .. 43

Figure 4.6. FP/DFP-generated and targeted graphs of 𝐹6 .. 43

Figure 4.7. FP/DFP-generated and targeted graphs of 𝐹7 .. 44

Figure 4.8. FP/DFP-generated and targeted graphs of 𝐹8 .. 44

Figure 4.9. DFP-generated expression of 𝐹6 .. 44

Figure 4.10. The change in the error value through evaluations using FP and DFP 46

viii

Figure 4.11. Number of exact generated solutions by FP/DFP..................................... 47

Figure 4.12. Number of the generated solutions with an error ⩽ 0.2 by FP/DFP.............. 48

Figure 4.13. FP-best generated model - Exp 1 ... 51

Figure 4.14. DFP-best generated model - Exp 1 ... 51

Figure 4.15. FP/DFP-best generated graph of Box-Jenkins-GFTS model (Exp. 1) 51

Figure 4.16. FP-best generated model - Exp 2 ... 52

Figure 4.17. DFP-best generated model - Exp 2 ... 52

Figure 4.18. FP/DFP-best generated graph of Box-Jenkins-GFTS model (Exp. 2) 53

Figure 4.19. FP-best generated model - Exp 3 ... 53

Figure 4.20. DFP-best generated model - Exp 3 ... 53

Figure 4.21. FP/DFP-best generated graph of Box-Jenkins-GFTS model (Exp. 3) 54

Figure 4.22. FP/DFP-best generated graph of Box-Jenkins-GFTS model (Exp. 4) 55

Figure 4.23. FP-best generated model - Exp 4 ... 55

Figure 4.24. DFP-best generated model - Exp 4 ... 56

ix

TABLES LEGENDS

Table 3.1. Attraction cases according to difference .. 36

Table 4.1. Symbolic regression test problems... 39

Table 4.2. Symbolic regression benchmark problems’ common parameters 40

Table 4.3. FP, DFP, ABCP, and GP special parameters ... 40

Table 4.4. Mean error values of GP, ABCP, FP, and DFP.. 41

Table 4.5. FP results with different population size values .. 45

Table 4.6. DFP results with different population size values 47

Table 4.7. DFP results with different 𝛼 parameter values (𝛽 : 0.75, 𝛾 : 1.5) 48

Table 4.8. DFP results with different 𝛽 parameter values (𝛼 : 0.1, 𝛾 : 1.5) 48

Table 4.9. DFP results with different 𝛾 parameter values (𝛼 : 0.1, 𝛽 : 0.75) 49

Table 4.10. FP and DFP parameters... 50

Table 4.11. FP/DFP results of forecasting Box-Jenkins-GFTS model - Exp 1 50

Table 4.12. FP/DFP results of forecasting Box-Jenkins-GFTS model - Exp 2 52

Table 4.13. FP/DFP results of forecasting Box-Jenkins-GFTS model - Exp 3 53

Table 4.14. FP/DFP results of forecasting Box-Jenkins-GFTS model - Exp 4 54

Table 4.15. Results comparison between FP, DFP, PUNN, and ANN 55

x

1. INTRODUCTION

The role of technology in human daily lives increased during the last two decades

significantly. Data is obtained from almost everything now. The increase in data

collecting raised the need to develop different techniques that can handle it. The interest

in artificial intelligence (AI) increased dramatically because of its ability to handle

and solve problems efficiently. AI techniques are used widely for different purposes;

data analysis, problem-solving, forecasting and modeling, and others (Goodfellow et

al., 2016). Developing new AI and machine learning (ML) methods is essential to

maximize the benefit of the obtained data as much as possible.

Data varies between structured and unstructured types (Eryurek et al., 2021).

Structured data has a certain pattern in contrast with unstructured data. The type of

data impacts the success of the used method. Methods manipulate data in different

ways according to its structure in most cases (Goodfellow et al., 2016; Alpaydin,

2020). Performing and analyzing data is an important process to determine the most

suitable technique to solve the problem (Goodfellow et al., 2016; Alpaydin, 2020). Data

analysts confirm the major role of the analysis in obtaining good results. For instance,

classification task methods are incompatible to be used for dimensionality reduction

problems. Therefore, it is essential to take the previous points into consideration to

ensure the success of the chosen method and to obtain desired results.

Regression analysis is a machine learning method concerned with analyzing

data and making predictions. Most classical regression methods search for the relation

between dataset variables using a specific structure. The pre-specified model limits

the classical regression methods and prevents them from solving various problems

since not all data has a recognizable pattern (Rusell & Norvig, 2003; Mundhenk et al.,

2021). This issue motivated researchers to develop new methods that can overcome

this limitation. Developers succeeded in developing methods with the ability to detect

the pattern of the data without relying on any pre-specified model. Methods with

pattern-detection abilities are called later symbolic regression or automatic

programming methods (Mundhenk et al., 2021).

Most symbolic regression methods are developed using different evolutionary

algorithms that use evolutional principles to improve different solutions through

consecutive generations. Several algorithms used this mechanism to solve problems.

The main issues of evolutionary algorithms are unreliability and randomness which

are a result of the different basis that have been used in each algorithm. Thus, each

one has strengths and weak points different than the others. Therefore, it is necessary

to develop different automatic programming methods based on several evolutionary

algorithms to overcome such problems. Various automatic programming methods

were presented and used to solve different problems including classification (Loveard

& Ciesielski, 2001; Espejo et al., 2009; Santoso et al., 2020), clustering (Dimopoulos

& Mort, 2001; De Falco et al., 2006), feature selection (Muni et al., 2006; Arslan &

Ozturk, 2019b), modeling and planning (Contreras-Cruz et al., 2015), predictions

(Kaboudan, 2000; Fallah-Mehdipour et al., 2013), and more. Within the scope of this

thesis, “automatic programming methods” and “symbolic regression methods” terms

are used interchangeably since they both refer to the same meaning.

1.1. Research Objectives

This research aims to propose a new automatic programming method as a new

machine learning technique that can detect the pattern of different types of data, and

solve complex problems which are not solvable using the traditional methods. This work

introduces firefly programming (FP) as an automatic programming method that extends

the firefly algorithm and improvs it by using the principles of symbolic regression.

Firefly programming is the first method to use the firefly algorithm as a basis to solve

problems by detecting and recognizing the pattern of the data (Aliwi et al., 2020a).

FP offers a new choice to solve complex problems efficiently. Within the scope of

this thesis, firefly programming is proposed and described in detail. FP uses different

functional and terminal searching space sets to create the structure of the problem

solution. FP uses different metrics as objective functions to evaluate and improve

the accuracy of the generated structure. In order to increase the efficiency of the

newly introduced method, a new improved version of FP is proposed and discussed by

explaining the difference between its operations and the operations of FP.

2

1.2. Thesis Structure

After excluding this introduction, the rest of the thesis consists of four other

chapters. The second chapter “literature review” starts by giving an overview of

machine learning by explaining the most important concepts related to it, and the main

tasks achieved via machine learning methods. It also describes the learning process

starting by gathering data and ending by exporting results of the different learning

scenarios. Classical regression methods are briefly explained by listing the cases in

which are used. Symbolic regression is also described by explaining the difference

between it and classical regression. At the end of this chapter, the history of automatic

programming methods is reviewed by mentioning and discussing the related works.

The third chapter: “materials and methods” starts by describing the firefly

algorithm which is used later as a basis for developing both firefly programming (FP)

and difference-based firefly programming (DFP) methods. It starts by describing the

behavior of the fireflies in nature that inspired Yang to develop the firefly algorithm

(Yang, 2008, 2009, 2010, 2017). It enumerates the characteristic properties of the

firefly algorithm and clarifies its concepts. It also discusses the efficiency of the firefly

algorithm and how it can deal with local traps and avoids them. Within the scope of

this chapter, the newly introduced FP method is described by explaining the concepts

of forming solution trees and the sharing operator. It also presents the improved

version of the firefly programming method by explaining the most important

differences between it and the standard firefly programming method.

In the fourth chapter, two different experiments are performed to evaluate the

performance of FP and DFP. The first experiment used a set of symbolic regression

benchmark equations to be modeled using FP and DFP. The results of FP and DFP

are compared to the results of the genetic programming (GP) (Uy et al., 2013) and the

artificial bee colony programming (ABCP) (Gorkemli & Karaboga, 2015) methods.

A comparison between FP and DFP was performed also using different population

size values to evaluate the efficiency of each method. In the second experiment, both

FP and DFP were used in modeling the famous Box-Jenkins gas furnace time series

(Box & Jenkins, 1976; Box et al., 2015). This experiment was performed using four

different cases using different functional sets and depth limitation values. The results of

3

this experiment were compared to the results of different product-unit neural networks

(Öztürk, 2011).

The last chapter discusses the results of FP and DFP and evaluates their

performance in the pre-mentioned experiments. It investigates the strengths and

weaknesses of FP and DFP and discusses the reasons behind each point. It gives the

conclusion about this work and suggests recommendations to improve the proposed

methods in future works.

4

2. LITERATURE REVIEW

Automatic programming techniques use the principles of symbolic regression to

solve problems. Symbolic regression is a type of regression analysis that is used for

finding the relation between problem’s data records. In general, regression analysis is

a part of machine learning tasks. Therefore, it is necessary to give a brief overview of

machine learning by explaining its basic concepts before discussing the main tasks of

machine learning methods. This section also explains the difference between classical

and symbolic regression before giving an overview of the history of automatic

programming methods.

2.1. Machine Learning

Machine learning (ML) is a branch of artificial intelligence (AI) that uses

several techniques to learn from data. Machine learning techniques are used to solve

various types of problems starting by analyzing data before performing different

processes to give optimal solutions (Burkov, 2019; Mitchell, 1997). Mohri et al. in his

book “Foundations of Machine Learning”, stated that ML techniques are

computational methods that can learn by repeating to gain experience in solving

problems automatically (Mohri et al., 2018). This process is similar to the person that

gets experience after performing a specific task frequently. Since ML methods use

data to solve problems, they share some principles with statistical methods; therefore,

ML methods are used for data analysis, optimization problems, and other data-driven

problems (Mohri et al., 2018). It is essential to choose an appropriate algorithm to

solve a specific problem to obtain good results. The efficiency of the chosen algorithm

is determined by measuring the correctness and accuracy of the solutions at the end of

the optimization process. Quality measurements such as space and time complexity

must be considered before using any algorithm since these measurements play an

important role in determining the overall efficiency (Mohri et al., 2018).

2.1.1. Machine Learning Tasks

Nowadays, machine learning methods are used to solve most data-driven

problems. Defining the task of machine learning methods is required to get the

expected results. The purpose of the learning process is determined by the type of

data, and the expected goals. According to (Mohri et al., 2018; Alpaydin, 2020), ML

tasks are classified into several main tasks:

• Classification: A process of categorization different data and determining the class

that belongs. Data is classified into two or more categories according to the purpose of

the classification process (Mohri et al., 2018). For instance, the process of evaluating

students’ academic status at the end of the year is a classification process since it has

only two possible results, pass or fail.

• Clustering: A process that is almost similar to classification. In the clustering task,

data is divided into an unspecified number of groups, where the algorithm searches

for the common attributes between the data values and regroups them (Mohri et al.,

2018). The difference between clustering and classification processes is that the

number of classes is prespecified initially in the classification process. Grouping

users according to their interests in social networks is an example of the clustering

process.

• Regression: A process of modeling a system that predicts results depending on input

values. Some of the regression types are used for classifying data where it generates a

continuous model, in contrast to classification that generates a discrete model (Rusell

& Norvig, 2003; Alpaydin, 2020). More details about regression methods are given

within the scope of this chapter.

• Association Rules: A process that is concerned with finding the patterns that link

data values to each other. It shows the probability 𝑃(𝐵 |𝐴) of occurring event

𝐵 considering event 𝐴 (Agrawal et al., 1993). Recommendation system in video

streaming platforms uses association rules to predict user’s watching lists.

• Dimension Reduction: A technique that is used for reducing the number of the

problem features or input variables (Mohri et al., 2018). It helps to reduce the

complexity of the problems and increases the performance of the used method.

6

2.1.2. Learning Process

The learning process starts by defining the dataset that will be used and analyzed.

Usually, the dataset contains different features which represent data inputs. The model

that is generated by the ML method depends on the problem features, thus, deciding

which features are used in the learning process is important. Feature selection methods

aim to reduce the number of features to the least possible limit without affecting the

efficiency of the model (Kuhn et al., 2013). After analyzing data and selecting features,

the dataset is split into training and testing sets. The selected method uses the training

set to discover the model and optimize its parameters if any exist. On the other hand,

the testing set is used for evaluating the generated model (Mitchell, 1997). In most

cases, the ratio of the training set to the testing one ranges between 6:4 and 8:2. At

the end of the evaluation process, the deployment process allows the model to be used

later. Figure 2.1 shows the flowchart of the learning process.

The learning process scenario differs according to the type of data. Data records

may either be labeled, unlabeled, or even a combination of them. The next example

describes label data types. Think about a data table that describes different animals,

Features are the columns that have the properties of each animal like the number of legs,

food type, and others. Labels such as animal names depend directly on other features

(Serrano, 2021). Back to learning scenarios, there are many scenarios according to the

type of data. In most cases, there are three common types (Rusell & Norvig, 2003;

Goodfellow et al., 2016):

• Supervised Learning: Data training set contains labeled data that can help the

algorithm to generate better predictions. Classification and regression methods

including K-Nearest Neighbour (KNN), Support Vector Machine (SVM), and

Logistic Regression are considered supervised learning algorithms.

• Unsupervised Learning: Unlabeled datasets are used in this type of learning method.

Since data is not labeled, the learning process usually will be more difficult than it

is in supervised learning methods. K-Means algorithm which is used as a clustering

method is an example of unsupervised learning techniques. The same is true for

dimension reduction algorithms such as the popular matrix factorization methods.

Association rule mining methods are also considered unsupervised.

7

Start

Gathering Data

Analyzing Data &

Feature Selection

Testing Set

Training Set

Learning Model

Test &

Evaluate

Split Data

Deployment

Stop

Passed

Failed

Figure 2.1. Flowchart of the learning process

• Reinforcement Learning: In this scenario, the learning method which generally uses

unlabeled data gets either rewards or punishments to optimize the learning process.

The Q-learning algorithm is an example of this learning scenario.

8

2.2. Classical Regression

Regression analysis concerns finding the mathematical form of a specific system

that can predict the dependent variables (outputs) after analyzing the independent

variable set. In other words, regression analysis searches for the relationship between

the independent inputs that give a particular output through a specific system (Rusell

& Norvig, 2003; Alpaydin, 2020). Regression analysis methods are mostly used in

modeling and prediction problems. The general form for different classical regression

methods is shown in Eq. 2.1 where 𝑌 represents the dependent variable (predicted), 𝑋

is the vector of independent variables, 𝑊 is the 𝑋’s weight vector, and 𝜖 represents the

error term.

𝑌 = 𝑓 (𝑋,𝑊) + 𝜖 (2.1)

It is worth mentioning that the predicted output𝑌 can be a vector of multiple dependent

variables as we can see in Figure 2.2. The generated model is represented with 𝑓 (𝑋,𝑊)

and it is different for each regression method.

X

x1

x2

x3

.

.
xn

System

Model

w1

w2

w3

.

.
wn

f(X,W)W Y

y1

y2

y3

.

.
ym

Figure 2.2. System model with 𝑛 input variables and 𝑚 output variables

Regression analysis methods have different prespecified expression forms, which

make each method specialized in modeling specific types of problems (Mohri et al.,

2018). The distribution of the data plays an important role in selecting the most suitable

method. The following list contains the most common regression methods that are used

to solve problems:

• Linear Regression: The most used regression analysis method duo to its efficiency in

predicting linear models (Burkov, 2019). Linear regression has a prespecified model

shown in Eq. 2.2:

𝑓 (𝑋,𝑊) = 𝑥1𝜔1 + 𝑥2𝜔2 + 𝑥3𝜔3 + · · · + 𝑥𝑛𝜔𝑛 + 𝑏 (2.2)

9

where 𝑥𝑛 is the 𝑛𝑡ℎ input variable, 𝜔𝑛 is the weight of the 𝑛𝑡ℎ input variable, and

𝑏 is the bias value. Figure 2.3 (a) shows an example graph of a linear regression

generated model.

• Logistic Regression: This type is efficient in modeling two-values discrete datasets.

Logistic regression is classified as a binary classification method since it’s used only

for solving two class-based problems (Burkov, 2019). The basic model has the same

structure as the linear regression model, but the difference lies in using the sigmoid

function to generate the final model with a curve that is similar to the one in Figure 2.3

(b). The mathematical expression form of this method is (Eq. 2.3):

𝑧(𝑋,𝑊) = 𝑥1𝜔1 + 𝑥2𝜔2 + 𝑥3𝜔3 + · · · + 𝑥𝑛𝜔𝑛 + 𝑏

𝑓 (𝑋,𝑊) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑧) = 1
(1 + 𝑒−𝑧)

(2.3)

• Polynomial Regression: In this method, the generated model’s curve is not linear

because of the non-linearity distribution of the data. This type of regression is used

for both linear and non-linear datasets due to its ability to optimize inputs’ weights to

fit data values. Although this can be considered an advantage, this ability may leads

to an overfitting learning case, therefore, it is not used for solving linear regression

problems. Figure 2.3 (c) shows a polynomial regression model example which has

an expression form as in Eq. 2.4:

𝑓 (𝑋,𝑊) = 𝑥1𝜔1 + 𝑥2𝜔
2
2 + 𝑥2𝜔

3
3 + · · · + 𝑥𝑛𝜔

𝑛
𝑛 + 𝑏 (2.4)

x

y

(a)

x

y

(b)

x

y

(c)

Figure 2.3. Examples of different regression analysis models’ graphs: (a) Linear regression -
(b) Logistic regression - (c) Polynomial regression

10

Alongside the previously listed regression methods, it’s worthy to mention some

other common methods such Ridge, Lasso, and ElasticNet regression that are used for

solving complex regression problems (Mohri et al., 2018; Tibshirani, 1996; Ogutu et

al., 2012).

2.3. Symbolic Regression

Symbolic regression is a method that is concerned with identifying the

mathematical form that generates output variables using a set of independent inputs

through a particular system (Mundhenk et al., 2021). The process starts by searching

in the space of the different functional expression spaces and combining them to form

a mathematical model. The previous Section 2.2. mentioned that different regression

methods have a predefined form that is used as an initial form to be optimized.

Therefore, data analysis process is important since it helps detect the general pattern

of the data which in turn leads to obtaining good results (Shamoo & Resnik, 2009).

2.3.1. Difference Between Classical & Symbolic Regression Methods

In real-world problems, not all have a pattern that makes the problem predictable.

the usage of the classical regression methods may not be efficient enough to give good

results for different data-driven problems. In other words, classical regression methods

are not capable to solve problems that do not have a well-known data pattern, or pattern

is too complex. Symbolic regression is suitable for such problems since it does not have

a predefined model structure, both structure and parameters are unknown. The methods

that use the principles of symbolic regression try to recognize the pattern of the data in

order to form a suitable structure and optimize its parameters at the same time (Billard

& Diday, 2002). Symbolic regression methods use different mathematical expressions

and combine them to form the structure of the solution (Schmidt & Lipson, 2006).

The used expressions include simple mathematical operators (addition, subtraction,

multiplication, and division), trigonometric functions (sine, cosine, tangent, . . . , etc.),

logical (and, or, not, nor, if-else, . . . , etc.), and others (Koza, 1992, 1994). Besides

the functional expressions, it uses also different variables and constants as terminals.

While terminals represent coefficients (in case the terminal is a constant) or one of

the problem features (terminal is a variable), the functional expressions describe the

11

relationship between the connected functional nodes and terminals. The combination

of the functional and terminal sets (Figure 2.4) creates the searching space which is

defined by analysts.

Functional Set Terminal Set

Variables

x, y, z, ..., etc
Constants

Trigonometric

Functions

Arithmetic

Operators

Logarithmic

Functions

Logical

Operators

Exponential

Functions

Root

Functions

Symbolic Regression Search Space

Figure 2.4. Functional and terminal sets in symbolic regression

2.3.2. Advantages & Disadvantages of Symbolic Regression

Smits and Kotanchek in their work discussed the benefits of symbolic regression

by mentioning its contribution as a machine learning method. They also listed the

motivations that push analysts and researchers to use and develop symbolic regression

methods (Smits & Kotanchek, 2005). Vladislavleva et al. in their paper discussed the

advantages of symbolic regression methods over other non-linear models such neural

networks (Vladislavleva et al., 2008). The following points summarize the advantages

of using symbolic regression methods:

• Simple Expressions: Most automatic programming methods are developed using

different swarm-based methods, hence, the complexity of the generated expressions

varies between complex and simple solutions.

• Fewer Limitations: Unlike classical methods which have predefined structures,

symbolic regression does not have such limitations since it searches for both

structure and its parameters by evaluating the solutions before exporting the best

one.

• Human-expected Results: The generated expressions reflect the expectations of the

12

analysts because the model uses a combination of the pre-defined searching space

set. This point makes generated model predictable and trustworthy.

• Low-cost Preprocessing: Symbolic regression methods generate different

expressions without using any feature-selection methods since they are based on

evolutionary algorithms which can detect the more important features and ignore

the rest.

• Diversity: Symbolic regression methods generate different candidate solutions

evolved through the evaluation process. Each one of these solutions has different

properties.

Smits and Kotanchek also discussed the disadvantages of symbolic regression

methods and the difficulties that face the users of them. The disadvantages are listed

below:

• Increased Time-execution: The most important disadvantage is the slowness in

exporting solutions compared to the classical methods. The main reason behind this

is that symbolic regression does not have a predefined structure and it has to

recognize the pattern of the given data. This process will increase the total

execution time and show symbolic regression methods as slow techniques.

• Difficulties in Exporting Best Solutions: Since symbolic regression evaluates the

solutions using a proper objective function, the selected best solution is not always

the desired one because most evaluations do not consider the complexity of the

generated solutions.

• Unspecialized: The results of using symbolic regression compared to other methods

are not always the best since most machine learning methods are developed as

specialized techniques for solving specific problems.

2.3.3. Genetic Programming (GP)

Symbolic regression methods try to find the fittest model of the problem by

transforming it into an optimization problem that can be solved with evolutionary

computation (EC) techniques such as the popular genetic algorithm (GA) (Koza, 1992;

Langdon & Poli, 2002; Poli et al., 2008). GA was the basis for developing genetic

programming (GP), the first automatic programming method that can solve problems

using the principles of symbolic regression (Koza, 1992, 1994; Koza et al., 1999). In

13

GP, each individual is a program that represents a solution for the problem. Koza used

a hierarchical parse-tree structure that consists of connected functional expressions and

terminals to represent the individuals of the GP as in Figure 2.5.

+

* -

x y7.63.14

Figure 2.5. Individual representation in GP

Parse-tree structure is implemented easily as computer programs using the syntax

of LISP which is also known as symbolic expression or S-expression. For instance,

the computer program visualized in Figure 2.5 is represented using S-expression as in

Eq. 2.5:

+(∗𝑥3.14) (−7.6𝑦) (2.5)

GP uses crossover, mutation, and reproduction operators to find the best

program that describes the relationship between the problem’s variables (Koza, 1992;

Johnson, 2002; Uy et al., 2010). The crossover operator in GP is done by taking two

subtrees of the hierarchically structured parent programs to create the new offspring

(see Figure 2.6). In mutation, a randomly selected subtree is replaced with another

formed one as Figure 2.7 shows. The reproduction operator copies a

current-generation program into the next generation. Programs are evaluated using a

suitable objective function to determine their fitnesses. At the end of the evaluation

process, GP exports the best program among all candidate programs as a symbolic

expression (Koza, 1992, 1994; Koza et al., 1999). This made GP able to solve

problems without the need for any predefined structure, which gave it an advantage

over other machine learning methods.

Koza used his model (Koza, 1994) in simulating an 11-input multiplexer (11-MX)

where the searching space set included (and, or, not, if) expressions as functions, in

addition to the 11-inputs as terminals. GP successfully simulated the multiplexer and

14

+

y -

x y7.63.14

/

pow 9.2

y x

+

y -

x y7.63.14

/

pow 9.2

y x

New-Generation Offspring

Old-Generation Parents

Figure 2.6. Crossver example in GP

generated a symbolic model that is equivalent to it. Koza also used its method to model

empirical data as real-world data values, which resulted in excellent results.

Solving problems using symbolic regression methods started after Koza

introduced his first GP model. As a result of being the first automatic programming

technique, and due to its capability to solve different problems in different working

fields, GP attracted researchers to inspect and work on improving it. The development

process did not focus on developing the GP syntactically only, semantically

developments were also done (Uy et al., 2010). Some imporovments focused on the

basic GP operators such as crossover and mutation, whereas the others were working

on developing the representation structure of the individuals.

2.3.3.1. Development of the Basic Operators

Koza in his initial model proposed a crossover operator with a probability of 90%

to choose a functional node as a subtree root. The proposed crossover operator in GP

produces new solutions easily, but also complex ones (Koza, 1992; Beadle & Johnson,

2008). On the other hand, the initial mutation operator was as simple as described in the

previous paragraph. Researchers started to develop new operator variants to increase

15

/

pow

y x

-

y7.6

+

4.2sin

x

/

pow
Mutation

y x

Figure 2.7. Mutation example in GP

the efficiency and performance of GP. O’Reilly and Oppacher proposed performing a

height-fair crossover process that takes into consideration the height of the subtrees

compared to their parent trees. O’Reilly and Oppacher implemented a new crossover

operator and performed three experimental tests by simulating the 11-MX, 6-MX,

and sorting problems. The results of GP with the modified crossover operators were

compared to the results of simulated annealing (SA), standard genetic programming

(GP), and stochastic iterated hill climbing (SIHC) algorithms. The results showed that

GP with the modified crossover operator gave better results than standard GP. However,

GP was not as successful as SA which was the best in all experiments. On the other

side, GP gave better results than the SIHC for all experimental test cases (O’Reilly &

Oppacher, 1994).

Harries et al. investigated the performance of seven different GP-crossover

operators (GP-Standard, GP-NoBias, GP-SameDepths, GP-DiffDepths, GP-Std/Same,

GP-Std/Diff, and GP-Half&Half) using four different experimental problems: the

problem of the artificial ant, simple polynomial problem, boolean 4-PARITY, and

5-PARITY problems. The results showed that the standard same depth-based

(GP-Std/Same) crossover operator gave the best performance compared to the others

(Harries et al., 1997).

Ito et al. proposed two depth-dependent crossover operators which choose a

node with the same depth value as the other selected one. Ito et al. performed several

experiments to evaluate the performance of the new operators, in the first and second

experiments (11-MX and 4-PARITY problem), both depth-dependent (DD) and

revised depth-dependent (RDD) crossover operators outperformed the standard

16

crossover operator. Ito et al. used DD and RDD models to solve the artificial ANT

problem where the performance of both DD and RDD was not as predicted and very

similar to the results of the standard GP crossover operator (Ito et al., 1998).

In 1998, Poli and Langdon introduced two new crossover operators: one-point,

and strict one-point crossover. These two operators inspect the shape of the parents’

subtrees, then, find subtrees with the same arity before swapping them to generate the

new offspring. Poli and Langdon investigated the behaviors of these operators using

three problems: 3-PARITY, 4-PARITY, and 5-PARITY. The results showed that it will

be good only if the initial tree’s depth was selected correctly (Poli & Langdon, 1998;

Langdon, 2000).

The research on GP basic operators continued and resulted in more studies that

focused on the process of selecting nodes in both crossover and mutation operators. It

is impossible to discuss all the research made about this subject, but it will be useful

to mention some of them (Altenberg et al., 1994; Tackett, 1994; Tackett & Carmi,

1994; Hengpraprohm & Chongstitvatana, 2001; Majeed & Ryan, 2006; Uy et al., 2011,

2013).

2.3.3.2. Development of Individual’s Representation Structure

GP uses a hierarchical parse-tree structure to represent solutions. This structure

can be easily transformed into LISP expression using S-expression. Parse-tree

representation was not the only one used in GP. Several approaches were developed

and implemented to increase the performance, and decrease the execution time of GP.

The developed structures varied between linear, stacked, binary, and other.

In 1994, a stack-based GP model was introduced with the ability to work in

stack-based virtual machines. In this new model, functional terms are protected and

will not be executed if its arity is not satisfied. For instance, if a sin functional node

has a stack value equal to zero, the model will bypass it because it will not be executed

correctly. Perkis used the reverse polish notation to make the calculations since the

expressions in this notation are executed in its sequence unlike the syntax of parse trees.

Perkis stated that this model can decrease the total execution time as it ignores the

unsatisfied expressions. Figure 2.8 shows an example of the stack-based representation

17

where it helps to protect the unsatisfied functional terms. Perkis evaluated his model

using the same problems used by Koza (Koza, 1992, 1994). The results showed that the

model gave almost the same results using the same functional sets, but the performance

increased when additional functions were added (Perkis, 1994).

/

/

+

x x

x

* x

+ x

0

1

2

* x + x * x x + x / /

*

3

4 5

6

7 8

9 10

11

12

1 2 3 4 5 6 7 8 9 10 11 12

Left-Right-Root

Seq

0

Figure 2.8. Stack-based individual representation in GP

Miller and Thomson introduced cartesian genetic programming (CGP) in which

solutions are represented and indexed in a layered graph-based structure. Each node

is replaced with an arity-inputs functional block. This structure will transform each

individual into a digits-string as shown in Figure 2.9. The main advantage of this

method is reducing the bloat in the tree-based methods which happens due to the

continuous growth. The performance of this method was investigated using different

sizes/lengths of individuals (Miller & Thomson, 2000).

In 2001, gene expression programming (GEP) was presented as a new method

for representing programs/solutions (Ferreira, 2001). Parse trees are transformed into

a linear combination structure with a head and tail using a breadth-first sequence.

Figure 2.10 shows an example of a parse tree converted to gene expression. While the

head part contains functional and terminal expressions, the tail contains only terminals.

Both head and tail parts have fixed sizes to prevent expression from growing infinitely.

The performance of GEP was investigated using a set of problems including symbolic

18

2

4

3

0

1
5 5

100 121 201 234 5

1

2

0

0

2

0

1
4

2

1

1

3

x1

x0

y

inputs

function Functions: add: 0 - multiply: 1 - subtract: 2

y = (x0
2 * x1) - (x0 - x1) 001 211 012 342 5

Figure 2.9. Individual representation in CGP

regression, classification, and block stacking problems. GEP was improved later in

2006 when a new modified version of it was presented by the Chinese researcher Xin

Li (Li, 2006).

+

Log -

zy*

x y

Head Size: 8

+ L - * y z x y y x z x x yy z x

Head Tail

Figure 2.10. Gene expression representation in GEP

In linear genetic programming (LGP), programs are represented as simple code

instructions with at most one operation. Every instruction is assigned to a variable. Each

program in LGP consists of multiple instructions. Programs are limited to a specific

size to prevent continuous growth problems (Brameier, 2004). Figure 2.11 shows an

example of a solution tree represented linearly. Multi Expression Programming (MEP)

is very similar to LGP since it uses fixed-size chromosomes that have different genes.

MEP is considered one of the linear-based representation GPs (Oltean & Dumitrescu,

2021).

In the grammatical evolution (GE) method, expressions are represented in binary

19

void LGP()

{

 double r[5];

 int x = 5;

 int y = 2;

 r[0] = x;

 r[1] = y;

 r[2] = sin(r[0]);

 r[3] = r[0] - r[1];

 r[4] = r[2] + r[3];

 \\ ...

 \\ rest of program

}

+

sin -

yxx

Figure 2.11. Linear representation in LGP

variable arrays. It uses the Backus Naur Form (BNF) notation to produce the rules for

selecting the expressions that form the different individuals or programs. GE prunes

the unnecessary genes to help the crossover operator be faster and more effective (Ryan

& O’Neill, 1998; Ryan et al., 1998). (McKay et al., 2010) discussed the formalized

grammar structure that is used in GP where it plays important role in improving

efficiency while solving problems. Oltean and Grosan performed different experiments

using five test problems to evaluate the performance of MEP, GEP, LGP, and GE (Oltean

& Grosan, 2003).

2.3.4. Other Evolutionary Automatic Programming Methods

Developments and research were not limited to genetic algorithm-based automatic

programming methods. Other nature-inspired algorithms proved their efficiency in

solving optimization problems, especially numeric ones. Therefore, different swarm

intelligence optimization algorithms were taken also as a starting point for developing

new automatic programming methods.

Johnson modified the clonal selection algorithm (CSA) which is an artificial

immune system (AIS) and added the ability to solve symbolic regression problems

(De Castro & Von Zuben, 2000; De Castro & Timmis, 2002). CSA used a parse-tree

structure for representing solution programs. The experimental tests showed that CSA

outperformed the standard GP in solving a simple symbolic regression problem

(Johnson, 2003). In 2006, Musilek et al. introduced the AIS-based immune

programming (IP) method which uses stacks to represent the antibodies (programs) as

in the stack-based GP. IP method uses a sequence of operations to evolve the

20

antibodies or the candidate programs such as cloning, replacement, and

hypermutation. These operations help the IP method to develop and export several

programs as problem solutions. Musilek et al. investigated the performance of IP

using several test problems including polynomial and bivariant symbolic regression

problems.

Dorigo et al. introduced the ant colony optimization (ACO) algorithm in 1996 as

a new optimization system (Dorigo et al., 1996). In 2000, Roux and Fonlupt modified

ACO to be able to solve symbolic regression problems. Roux and Fonlupt introduced

the first model of ant programming (AP) method in which each ant creates a program

using a parse-tree structure as in GP. The difference is that every node in the tree has a

table to store the pheromone rate of each term in both functional and terminal sets. AP

initializes pheromone rates equally before updating them at the end of each generation.

Terms with higher pheromone rates are more likely to be selected to replace the current

node’s term. Figure 2.12 shows an example of pheromone rates tables.

+

-

*

/

sin

rlog

pow

:

:

:

:

:

:

:

0.9

0.6

0.4

0.3

0.1

0.1

0.1

Figure 2.12. Pheromone rate tables in AP

The performance of AP was investigated using two symbolic regression

problems, and an 11-MX simulation. Roux and Fonlupt compared the results of the

experimental tests with the results of the standard GP (Roux & Fonlupt, 2000). In

2002, Keber and Schuster introduced the generalized ant programming (GAP) method

which can solve problems using context-free-grammar represented solutions. Keber

and Schuster used GAP in approximating the valuation of paying stock databases

(Keber & Schuster, 2002). Shirakawa et al. presented the dynamic ant programming

(DAP) method that uses a new tree construction method in which the artificial ants

21

create the solution tree using functional terms once, whereas terminals can be used

repeatedly. Shirakawa et al. evaluated the performance of DAP by solving three

various symbolic regression problems and compared the results to GP where the

results of DAP showed its superiority over GP in all test cases (Shirakawa et al., 2008).

Another approach was introduced when Karaboga et al. presented the artificial

bee colony programming (ABCP) method. ABCP used the artificial bee colony (ABC)

algorithm which is a nature-inspired algorithm introduced in 2005 (Karaboga, 2005;

Karaboga & Basturk, 2007, 2008). Solutions/Programs in ABCP are represented in a

parse tree structure as in GP. In ABCP, bees are divided into three groups, employed,

onlooker, and scout bees. While employed bees create the new programs by performing

sharing process, the onlooker bees use the probability to select programs to modify

it. Programs in ABCP have an expiration limit which determines the validity of the

program. If a program became invalid, then APCP replaces it with a new one using scout

bees. Karaboga et al. evaluated ABCP using different symbolic regression problems

and compared the results to different automatic programming methods (Karaboga et

al., 2012). Gorkemli and Karaboga presented three different improved versions of

ABCP; quick ABCP (QABCP), semantic ABCP (SABCP), and quick-semantic ABCP

(QSABCP). The three versions added improvements to the standard version, especially

QSABCP which combined the advantages of the two other improved versions (Gorkemli

& Karaboga, 2019). Arslan and Ozturk presented another version in 2019 which is

the multi hive ABCP (MHABCP) and used it to solve high dimensional symbolic

regression problems (Arslan & Ozturk, 2019b, 2019a).

Covid-19 treatment-inspired immune plasma algorithm (IPA) (Aslan & Demirci,

2020) was modified also to gain the ability to solve symbolic regression problems when

Arslan introduced the immune plasma programming (IPP) method in 2021. In IPP,

programs are evolving using the restoration operator that has the same characteristics

as the sharing operator. The newly proposed IPP method was used in forecasting and

modeling a time-series dataset and the results were compared to the results of ABCP

(Arslan, 2021).

All developments led to a significant increase in the performance of the automatic

programming methods. These methods are used in different working fields due to their

22

reliability and efficiency in solving real-world data-driven problems. The development

process will continue to improve the performance of current methods or present new

automatic programming techniques.

23

3. MATERIALS AND METHODS

Most automatic programming techniques are developed using swarm-based

optimization algorithms. This chapter gives a brief overview of the nature-inspired

firefly algorithm (FA) that is taken as a starting point to develop firefly programming

(FP) and difference-based firefly programming (DFP) methods. The first section

describes the characteristics of FA and the mechanisms that it uses to avoid local

traps. The second section delves into the details of both FP and DFP by explaining

their concepts and processes.

3.1. Firefly Algorithm

Firefly algorithm (FA) is a swarm-based nature-inspired algorithm introduced by

Chinese mathematician Xin-She Yang in 2008 (Yang, 2008, 2009, 2010, 2017). Yang

inspired the idea of FA by observing the behavior of fireflies in nature as in most of the

nature-inspired algorithms (Fisher, 2009). FA is used for solving different optimization

problems due to its efficiency in finding the optimal solutions. FA was used for

UAV route planning (Henrio et al., 2019; Gharrad et al., 2021), 3D localization of

UAV-based stations (Aliwi et al., 2020b), text summarization (Tomer & Kumar, 2021)

and classification (Marie-Sainte & Alalyani, 2020), clustering (Senthilnath et al., 2011)

and classifying data (HimaBindu et al., 2020), big data processing (Tian et al., 2019),

objects tracking (Gao et al., 2013), and much more optimization problems.

3.1.1. The Behavior of the Fireflies in Nature

Firefly is an insect that belongs to the beetle insect group that is classified as a

winged type and emits discrete lights at night (Branham et al., 2010). According to the

living environment, more than two thousand types with different shapes and lights were

registered around the world (Martin et al., 2019; Lewis & Cratsley, 2008). Fireflies

usually live in high-temperature and tropical regions, especially in the forests where

the light does not reach inside because of the high-density overlapping trees. Because

of the high temperature of these regions, fireflies prefer to be active nightly when the

temperature goes down. Since fireflies live in such environments, communicating using

lights becomes very effective. Fireflies use this ability for different purposes including

mating with the other sex, prey catching, warning the swarm from a possible danger,

or even telling each other about food sources.

3.1.2. The Describe of Firefly Algorithm

Communication way between fireflies within the swarm inspired Yang to develop

FA. As in most swarm-based AI algorithms, each firefly in the swarm represents a

possible solution to the problem (Yang, 2008, 2009, 2010, 2017). Yang stated that FA

is based on two main concepts: brightness and attractiveness. While brightness in FA

determines the performance of each firefly, attractiveness shows the extent of the effect

a firefly has over the others (Yang, 2008, 2009, 2010, 2017). Yang summarized FA

using the following characteristic points:

• Fireflies are unisex, there is no difference between fireflies.

• The more light-emitting firefly will attract the less emitting ones.

• With the increase of brightness, the attractiveness will increase too.

• The distance between fireflies impacts the amount of attractiveness. The increase in

the distance will reduce the attractive power of the firefly due to the absorption of the

emitted light by the surrounding environment.

• A suitable objective function determines the brightness of each firefly.

Figure 3.1 shows the flowchart of FA. It starts by defining the three control

parameters; 𝛼, 𝛽0, and 𝛾. Control parameters are used to optimize the performance of

FA. Then, a set of 𝑛 fireflies is generated randomly as the initial generation after taking

into consideration the limitations of the problem. Each firefly in this generation is a

solution to the problem that is being solved. A proper objective function is selected

to determine the brightness of each firefly (Yang, 2008, 2009, 2010, 2017). In case

of maximization problems, brightness 𝐼0(𝑥) is directly proportional to the value of

objective function 𝑓 (𝑥), while it is inversely proportional to it in case of minimization

problems, see Eq. 3.1.

𝐼0(𝑥) ∝ 𝑓 (𝑥) , for maximization problems

𝐼0(𝑥) ∝
1

𝑓 (𝑥) , for minimization problems
(3.1)

25

Start

Define parameters,
Create initial population,
Define objective function

Evaluate the fitness
of each firefly

Calculate relative light
intensity and
attractiveness

Update the locations
of the fireflies

Rank the fireflies

Check
stopping
criteria

Return the best
solution

Stop
YesNo

Figure 3.1. Flowchart of firefly algorithm

As long as termination criteria are not met, FA continues to compare the relative

brightness of each firefly with all other fireflies as lines 5-7 show in Alg. 1, where FA

compares the relative brightness of firefly 𝑖 with firefly 𝑗 . If the relative brightness of

firefly 𝑖 at distance 𝑟 is more than the value of relative brightness of firefly 𝑗 at the same

distance, firefly 𝑖 is considered brighter and it will start to attract firefly 𝑗 towards itself

(Yang, 2008, 2009, 2010, 2017). The relative brightness is defined as the amount of

light that reaches a specific point, which can be calculated using Eq. 3.2,

𝐼 = 𝐼0𝑒
−𝛾𝑟2

𝑖 𝑗 (3.2)

where 𝐼0 represents the value of the brightness, 𝐼 is the amount of this brightness that

26

reaches the other firefly at 𝑟 distance, and 𝛾 is the absorption coefficient. Eq. 3.2 shows

that the relative brightness 𝐼 is inversely proportional to the distance 𝑟 between fireflies.

Therefore, the light intensity at distance 𝑟 is less than its intensity at the source. This is

a real phenomenon where the light intensity gradually decreases due to the absorption

of light from the surrounding medium. In FA, light absorption is determined using the

control parameter 𝛾 (Yang, 2008, 2009, 2010, 2017). The distance between fireflies is

the euclidean distance which is calculated using Eq. 3.3, where 𝑥𝑘𝑖, 𝑥𝑘 𝑗 represents the

𝑘 𝑡ℎ location’s parameter of fireflies 𝑖 and 𝑗 , 𝐷 is the problem’s dimension.

𝑟𝑖 𝑗 =

√√√
𝐷∑︁
𝑘=1

(𝑥𝑘𝑖 − 𝑥𝑘 𝑗)2 (3.3)

Light intensity affects the attractiveness of the firefly, where it is directly

proportional to the light intensity (this is observed in real life when insects are

attracted to brighter light sources). Similarly, the relative attractiveness at distance 𝑟 is

calculated using Eq. 3.4 where 𝛽0 is the globally initialized attractiveness parameter.

𝛽 = 𝛽0𝑒
−𝛾𝑟2

𝑖 𝑗 (3.4)

If the light intensity 𝐼𝑖 of firefly 𝑖 near firefly 𝑗 is more than the light intensity 𝐼 𝑗

of firefly 𝑗’s near firefly 𝑖, then, firefly 𝑖 starts to attract firefly 𝑗 causing a change in the

location of firefly 𝑗 . The change in location is determined using Eq. 3.5,

𝑥𝑛𝑒𝑤𝑘𝑖 = 𝑥𝑜𝑙𝑑𝑘𝑖 + 𝛽(𝑥𝑘 𝑗 − 𝑥𝑜𝑙𝑑𝑘𝑖) + 𝛼(𝜎 − 1/2) , ∀𝑘 ∈ 𝐷 (3.5)

where 𝜎 is taken randomly between 0 and 1 once before every attraction process, and

𝛼 is the randomness coefficient that is initialized at the beginning. Replacing Eq. 3.4 in

Eq. 3.5 shows that the change in the location depends on the value of the 𝛽0 parameter.

When 𝛽0 = 0, the attracted fireflies start to move randomly. Therefore, the value of 𝛽

must be selected carefully (Yang, 2008, 2009, 2010, 2017).

As the pseudo-code of FA (Alg. 1) shows, the attraction process continues until a

specific terminating criterion is met, which is the maximum evaluation number in our

case studies.

27

Algorithm 1 Firefly Algorithm
1: Initialize all the parameters (𝛼, 𝛽0, 𝛾 and 𝑀𝑎𝑥𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠)
2: Initialize randomly a population of 𝑛 fireflies
3: Evaluate the brightness of the initial population at 𝑥𝑖 by 𝑓 (𝑥𝑖) for 𝑖 = 1, . . . , 𝑛
4: while 𝑔 < 𝑀𝑎𝑥𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
5: for All fireflies (𝑖 = 1, . . . , 𝑛) do
6: for All fireflies (𝑗 = 1, . . . , 𝑛) do
7: if firefly 𝑗 is better than 𝑖 then
8: Move firefly 𝑖 towards 𝑗

9: Evaluate the new solution and accept better solutions
10: end if
11: end for
12: end for
13: Rank and update the best solution found so far
14: Update iteration counter 𝑔 ⇐ 𝑔 + 1
15: end while
16: Export the best solution

Although the basic suggested algorithm is efficient, Yang stated that tuning up

some control parameters can help FA to speed up the process of optimization in

addition to increasing its performance, which will give the algorithm flexibility in

solving different problems (Yang, 2008, 2009, 2010, 2017). Yang proposed updating

the randomness coefficient (𝛼) at the end of every generation using two different ways,

the first one as in Eq. 3.6, where 𝛼0 is the initial value of 𝛼 parameter, 𝜃 is a random

value in range (0, 1], 𝑔 represents the current generation.

𝛼 = 𝛼0𝜃
𝑔 (3.6)

The second model updates the value of 𝛼 parameter using both of the initial (𝛼0) and

final (𝛼∞) values as in Eq. 3.7:

𝛼 = 𝛼∞ + (𝛼0 − 𝛼∞)𝑒𝑔 (3.7)

3.1.3. Escaping Local Optima

In swarm-based algorithms, escaping local traps is a very important or even an

essential mechanism. Firefly algorithm uses a simple mechanism to avoid such traps.

The firefly algorithm depends primarily on the total number of fireflies to find the best

optimal solution. As a result of applying the attraction process, fireflies are divided

28

into small groups in which each group swarms around a local optimum. If the total

number of the groups is enough to cover all local optimums, then, the global optimum

is covered too (Yang, 2008, 2009, 2010, 2017). This helps FA escape local traps and

makes it suitable to solve several optimization problem types. Figure 3.2 shows how

the attraction process creates firefly groups in which each of them swarms around a

local optimum.

Min Max

(a) Before optimization

Min Max

(b) After optimization

Figure 3.2. Firefly subgroups positions while solving maximization problem with FA

29

3.2. Firefly Programming

Firefly programming (FP) is an automatic programming method that uses the

principles of symbolic regression to solve problems (Aliwi et al., 2020a). As well as in

most automatic programming methods, FP extends the firefly algorithm (FA) to gain

the ability to solve different problems by optimizing several candidate solutions at a

time. This section presents the standard version of FP before introducing an improved

version too.

3.2.1. Standard Firefly Programming (FP)

Firefly programming (FP) is an extended version of the firefly algorithm presented

in 2020 (Aliwi et al., 2020a). In FP, every individual represents a possible solution

to the problem. FP uses a parse-tree structure to represent solutions as in the genetic

programming method (Koza, 1992, 1994; Koza et al., 1999). Tree solutions consist

of different-value connected nodes. Nodes are either functional or terminal nodes.

Terminal nodes are leaf nodes that are found only on the edges, and the value of it

is constant number or a problem-dependent variable (𝑥1, 𝑥2, 𝑥3, . . .). The others are

functional nodes that link terminal or other functional nodes together and determine

the relation between them. To make it clear to the reader, Figure 3.3, shows a possible

solution for a symbolic regression problem represented in a parse-tree structure where

nodes are connected and combined forming the mathematical expression 𝑠𝑖𝑛(𝑥1) − (1+

𝑥2). As shown in the figure, terminal nodes exist only at the ends, unlike functional

nodes.

-

sin +

x1 x21

Figure 3.3. Expression representation in Koza tree

30

Start

Define functional nodes & terminal

space sets

Generate initial solution trees

Evaluate solution trees

Compare every tree with all other trees

& perform sharing process

Evaluate new solutions and apply greedy

selection

Stopping
criteria

are met?

No

Stop

Yes

Figure 3.4. Flowchart of firefly programming (FP) method

The flowchart of FP in Figure 3.4, shows that it starts by generating initial tree

solutions randomly using ramped half and half method which is a combination of

two sub-methods; full and grow. Koza in his first model used this forming method to

increase diversity and avoid similarity in the generated solutions (Koza, 1992, 1994;

Koza et al., 1999). In both full and grow methods, trees are formed depending on two

forming limits; initial minimum and maximum depth limits. These two limits are only

used while generating trees. While the initial minimum depth determines the minimum

node levels that the tree is consisted of, the initial maximum depth determines the

maximum node levels. In both full and grow methods, all nodes that have a depth value

equal to the minimum limit or less must be functional nodes. In the full method, all

nodes are functional nodes except the nodes with a depth equal to the initial maximum

31

depth limit. On the other hand, in grow method, the solution tree doesn’t have to reach

the maximum depth limit in all branches. Figure 3.5 shows two different trees built

with full and grow methods with a minimum depth of 2 and an initial maximum depth

of 4. The previous figure shows that in grow method, terminal nodes can be found in

level 3 and level 4 while they can be found only in level 4 nodes in full method.

-

+

log /

1 x1 x2

+

+ cos

1 x2 x2

-

+

log x2

1

+

+ 1

1 x2

Minimum
Depth

Initial
Maximum

Depth

Full Grow

Figure 3.5. Full and Grow methods

After generating the initial solution trees, FP uses the selected objective function

to determine the brightness of each tree (firefly). Then, FP compares the brightness

of each tree to all other ones. Although FA stated that brighter firefly attracts the

less bright one, this cannot happen in FP since fireflies (trees) are not moving on a

geometric surface. Therefore, the attraction process in FP is replaced with another one

called sharing operation. In sharing operation, a subtree instance is taken from the

brighter tree and glued to an instance of the less bright tree. The subtree’s instance is

randomly selected, which increases the diversity in solution trees. Figure 3.6 shows

an example of sharing operation. After applying the sharing operation, FP evaluates

the new tree and compares it with the original one to choose the best among them in a

greedy selection as in Eq. 3.8.

𝑥𝑖 =


𝑥𝑛𝑒𝑤
𝑖

if 𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠(𝑥𝑛𝑒𝑤
𝑖

) is better than 𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠(𝑥𝑜𝑙𝑑
𝑖

)

𝑥𝑜𝑙𝑑
𝑖

otherwise
(3.8)

Due to the continuous application of the sharing operation, solution trees will

continue to grow to unlimited depth values, which creates too complex solutions. To

prevent this, FP uses two limitation parameters to handle this problem; the maximum

tree depth, and the maximum node number.

32

-

sin +

x1 x21

*

/ log

x1 x22

*

log

x2

sin

x1

Sharing
operation

Tree A

Tree B

Modified
Tree B

Figure 3.6. Sharing operation

Algorithm 2 Firefly Programming (FP)
1: Initialize parameters (𝑖𝑛𝑖𝑡𝑀𝑖𝑛𝐷𝑒𝑝𝑡ℎ, 𝑖𝑛𝑖𝑡𝑀𝑎𝑥𝐷𝑒𝑝𝑡ℎ, 𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ and

𝑀𝑎𝑥𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠)
2: Define functional and terminal sets
3: Generate initial 𝑛 solution trees using ramped hald and half.
4: Evaluate trees using objective function
5: while 𝑔 < 𝑀𝑎𝑥𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
6: for All trees (𝑖 = 1, . . . , 𝑛) do
7: for All trees (𝑗 = 1, . . . , 𝑛) do
8: if 𝑇𝑟𝑒𝑒 𝑗 is better than 𝑡𝑟𝑒𝑒𝑖 then
9: Perform sharing operation from 𝑇𝑟𝑒𝑒 𝑗 to 𝑇𝑟𝑒𝑒𝑖

10: Check new tree’s depth
11: Evaluate the new tree and accept if better
12: end if
13: end for
14: end for
15: Rank and update the best solution tree found so far
16: Update iteration counter 𝑔 ⇐ 𝑔 + 1
17: end while
18: Export the best solution tree

If a solution tree exceeded one of the controlling limits, FP applies a proper mechanism

to override this problem, like replacing the subtrees that exceeded the limits with

high-value terminal nodes as suggested in (Gorkemli & Karaboga, 2015; Johnson,

33

2009), pruning the exceeded branches, or even generating a new tree to replace the old

one. Alg. 2 shows the pseudo-code of FP.

3.2.2. Difference-based Firefly Programming (DFP)

In order to improve the performance of FP, a modified version of it is presented

which is called difference-based firefly programming (DFP). In DFP, the main processes

are modified in a way that increases the efficiency of FP. This section explains the

main differences between FP and DFP according to the flowchart of the new version

(Figure 3.7).

After generating the initial solution trees and before evaluating each one of

them, DFP performs a new operation to decrease the complexity of the trees, called

the simplification operation. The previous subsection mentioned that FP uses some

parameters to prevent trees from growing continuously by limiting the maximum depth

or the total number of nodes. Although these two parameters are still used in DFP, it

uses the simplification operation to reduce such cases. The simplification operation

merges subtree nodes into one with an equivalent value, and it’s applied only to branches

that do not have any variable nodes. Figure 3.8 shows an example of the simplification

operation where the expression 1 + 1 is replaced with only one node with a value of

2. The simplification operation reduces the possibility of exceeding the limits and

generates new terminal values too.

After evaluating solution trees using a proper objective function, DFP starts to

compare each solution tree to all other trees before performing the sharing operation.

According to Eq. 3.4 in Section 3.1., FA performs the attraction process depending on

the distance between fireflies. Therefore, two close fireflies attract each other more than

two far ones. In FP, sharing operation (which is equivalent to the attraction process in

FA) is applied to all fireflies without taking into consideration the difference between

fireflies, which can be unfair. This is the major difference between DFP and FP, where

there are four different cases according to the difference in brightness values compared

to the three control parameters: 𝛼, 𝛽, and 𝛾. The four cases are not valid if the condition

𝛼 < 𝛽 < 𝛾 is not met. In the scope of this work, the number of repeated operations

according to the different cases is shown in Table 3.1. It is worthy to mention that

the four mentioned cases can have different operations than the listed operations in

34

Start

Define functional nodes & terminal

space sets

Generate initial solution trees

Simplify solution trees & evaluate them

Compare every tree with all other trees

& check d-based cases

Stopping
criteria

are met?

No

Stop

Yes

Simplify the generated tree & evaluate it &

apply greedy selection

Case 1

Case 2

Case 3

Perform case-1 steps

Perform case-2 steps

Perform case-3 steps

Perform case-4 steps

Yes

Yes

Yes

No

No

No

Figure 3.7. Flowchart of difference-based firefly programming (DFP) method

Table 3.1. These operations must be set previously by the analysts before starting the

optimization process. The difference between two solution trees 𝑖 and 𝑗 is calculated

using Eq. 3.9, where the brightness of each tree is determined using the objective

function.

𝑑 =
��𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠𝑖 − 𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 𝑗

�� (3.9)

35

-

/

x21

+

11

-

/

x21

2
Simplification

operation

Figure 3.8. Simplification operation

Table 3.1. Attraction cases according to difference

Attraction process

Cases Sharing operation Substitution operation

Case-1: 𝑑 > 𝛾 2 1
Case-2: 𝛾 > 𝑑 > 𝛽 1 1
Case-3: 𝛽 > 𝑑 > 𝛼 1 0
Case-4: 𝛼 > 𝑑 0 1

Table 3.1 shows that the attraction process in DFP is consisted of two

operations, sharing, and substitution. Unlike the sharing operation which was

described in Subsection 3.2.1. previously, the substitution operation happens in just

one tree. In this operation, a random node is chosen and replaced with a suitable one.

To perform this without changing the structure of this node’s subtree, nodes are

classified into different classes: 0-child nodes that represent terminal nodes, 1-child

nodes like trigonometric, logarithmic function nodes, 2-child nodes like addition,

subtraction, multiplication, and division expressions, or the power function nodes, and

so on. In the substitution operation, the chosen node is replaced randomly with a new

node from the same class. Taking Figure 3.9 as an example, the logarithmic functional

node is replaced with a trigonometric functional node since both of them are classified

as 1-child nodes. Applying the substitution operation generates solutions with a minor

difference from the original solution which is useful when the algorithm needs to

make small changes to reach the optimal solution.

As an optional step, tuning up control parameters can be done according to the

results of DFP at the end of each iteration or generation which will lead to speeding

36

*

/ log

x1 x22

Substitution
operation

*

/ cos

x1 x22

Figure 3.9. Substitution operation

up the method, and increases its performance too. Tuning up values must be done

by calculating the maximum 𝑑𝑚𝑎𝑥 and minimum 𝑑𝑚𝑖𝑛 difference values, then using

these values to update each control parameter value at the end of each generation as in

Eq. 3.10:

𝑑𝑟𝑎𝑛𝑔𝑒 = |𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛 |

𝛼 = (1/4) ∗ 𝑑𝑟𝑎𝑛𝑔𝑒

𝛽 = (2/4) ∗ 𝑑𝑟𝑎𝑛𝑔𝑒

𝛾 = (3/4) ∗ 𝑑𝑟𝑎𝑛𝑔𝑒

(3.10)

Algorithm 3 Difference-based Firefly Programming (DFP)
1: Initialize parameters (𝛼, 𝛽, 𝛾, 𝐷𝑒𝑝𝑡ℎ𝐿𝑖𝑚𝑖𝑡𝑠, and 𝑀𝑎𝑥𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠)
2: Define functional and terminal sets
3: Generate initial 𝑛 solution trees using ramped hald and half.
4: Simplfy and evaluate trees using objective function
5: while 𝑔 < 𝑀𝑎𝑥𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
6: for All trees (𝑖 = 1, . . . , 𝑛) do
7: for All trees (𝑗 = 1, . . . , 𝑛) do
8: if 𝑇𝑟𝑒𝑒 𝑗 is better than 𝑡𝑟𝑒𝑒𝑖 then
9: Perform attraction operations

10: Check new tree’s depth
11: Simplifiy, evaluate the new tree and accept if better
12: end if
13: end for
14: end for
15: Rank and update the best solution tree found so far
16: Update iteration counter 𝑔 ⇐ 𝑔 + 1
17: Tune up control parameters 𝛼, 𝛽, and 𝛾

18: end while
19: Export the best solution tree

37

To summarize the difference between FP and DFP, two new operations were

developed to improve the performance of FP. The simplification operation reduces the

size of the tree without changing its actual value, which gives trees more flexibility

within the same limits. The substitution operation performs minor changes to solution

trees in a way that cannot be done using only the sharing operation. Although these

operations slightly increase the execution time, they will increase the performance of

the method as the results in Chapter 4. show. The pseudo-code of DFP is shown in

Alg. 3.

38

4. EXPERIMENTAL RESULTS

In order to evaluate the performance of the newly proposed methods, FP and DFP

were used in solving a set of symbolic regression benchmark problems, and modeling

the Box-Jenkins gas furnace time series dataset. The results of both FP and DFP were

compared to a set of different methods used to solve the same problems. The results

of FP and DFP were taken after being coded and tested within Windows 10 WSL2.0

developing environment with 8.0 GB of memory and an Intel Core i7-7500U processor.

4.1. Solving Benchmark Problems

In this subsection, the results of FP and DFP are compared to the results of other

methods that are used for solving symbolic regression problems which are genetic

programming (GP) (Uy et al., 2013), and artificial bee colony programming (ABCP)

(Gorkemli & Karaboga, 2015). To make sure that the introduced methods can solve

different problems efficiently, a set of different problems were chosen including linear,

polynomial, trigonometric, and logarithmic problems (Johnson, 2009; Keijzer, 2003;

Hoai et al., 2002; Uy et al., 2013). These problems are listed in Table 4.1.

Table 4.1. Symbolic regression test problems

Problems Number of random points Domain

𝐹1 = 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 20 [-1, 1]
𝐹2 = 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 20 [-1, 1]
𝐹3 = 𝑠𝑖𝑛(𝑥) + 𝑠𝑖𝑛(𝑥 + 𝑥2) 20 [0, 1]
𝐹4 = 𝑠𝑖𝑛(𝑥2)𝑐𝑜𝑠(𝑥) − 1 20 [0, 𝜋

2]
𝐹5 = 𝑙𝑜𝑔(𝑥 + 1) + 𝑙𝑜𝑔(𝑥2 + 1) 20 [0, 2]
𝐹6 =

√
𝑥 20 [0, 4]

𝐹7 = 𝑠𝑖𝑛(𝑥0) + 𝑠𝑖𝑛(𝑥2
1) 100 [0, 1] × [0, 1]

𝐹8 = 2𝑠𝑖𝑛(𝑥0)𝑐𝑜𝑠(𝑥1) 100 [0, 1] × [0, 1]

Table 4.2 shows the parameters of the testing problems. In the functional set, the

protected division function returns the value 1 if the denominator value is equal to zero

(Gorkemli & Karaboga, 2015). In the same way, rlog function is a protected version

of the natural logarithmic function which returns the value of zero if the data is equal

to zero, otherwise, it returns the normal logarithmic value of the absolute given data

(Gorkemli & Karaboga, 2015).

Table 4.2. Symbolic regression benchmark problems’ common parameters

Parameter Value

Initial maximum depth 6
Maximum depth 15
Functional nodes +,−,×,÷ (protected ver.), sin, cos, rlog, exp
Terminal nodes 1-variable: [𝑥, 1] , 2-variables: [𝑥0, 𝑥1]
Number of runs 100
Maximum evaluations 25,000

Table 4.3. FP, DFP, ABCP, and GP special parameters

FP / DFP ABCP GP

Parameter Value Parameter Value Parameter Value

Pop. size 50 Colony size 500 Pop. size 500
𝛼 0.1 Limit 500 𝑃𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 0.9
𝛽 0.5 𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 0.5
𝛾 1.0 Tournament 3

While forming the initial trees, the initial minimum depth limit was not used. All

methods used ramped half and half as a tree forming method. In order to obtain better

results, each problem was solved 100 times independently before taking the median

value of these runs. The maximum evaluation number for each run is 25,000. The sum

of difference between the targeted (𝑓 (𝑥)) and the generated (𝑔(𝑥)) functions for all 𝑘

testing points is used as an objective function as in Eq. 4.1. Other methods’ special

parameter values are shown in Table 4.3.

𝑒𝑟𝑟𝑜𝑟𝑖 =

𝑘∑︁
𝑛=1

| 𝑓 (𝑥𝑛) − 𝑔𝑖 (𝑥𝑛) | , ∀𝑖 ∈ [0, 𝑃𝑜𝑝𝑆𝑖𝑧𝑒) (4.1)

Table 4.4 shows the mean error of the testing problems after running all methods

100 times. DFP has the best result for 𝐹1 while ABCP came in second place before

FP and GP respectively. In 𝐹2, the same results were obtained as DFP showed the best

performance. The best performance in these two problems shows the efficiency of DFP

in solving polynomial symbolic regression problems. Taking a look into Figure 4.1 and

Figure 4.2, it is clear that the DFP-generated graphs are just the same as the targeted

40

Table 4.4. Mean error values of GP, ABCP, FP, and DFP

Method 𝐹1 𝐹2 𝐹3 𝐹4 𝐹5 𝐹6 𝐹7 𝐹8

GP 0.30 0.40 0.11 0.24 0.15 0.25 1.67 1.19
ABCP 0.11 0.19 0.21 0.55 0.24 0.17 0.62 0.69
FP 0.25 0.34 0.26 0.53 0.33 0.34 0.48 0.67
DFP 0.08 0.17 0.11 0.48 0.15 0.33 0.21 0.34
Lower is better

ones, whereas the FP-generated graph has an observable difference in 𝐹1.

x x

DFPFP

Figure 4.1. FP/DFP-generated and targeted graphs of 𝐹1

In 𝐹3, while FP gave the worst result, both DFP and GP gave the best error value

with just 0.11. ABCP gave an average result which is not far from the result of FP.

Figure 4.3 shows the FP/DFP-generated graphs of 𝐹3 which clearly shows that DFP is

more accurate than FP. In 𝐹4 which is a trigonometric expression with two different

functions, GP is the only one that performed well in this problem. All other methods

gave below-average results while solving this problem. Taking a look into Figure 4.4

that shows the generated functions of 𝐹4 using FP and DFP, the generated graphs have

a significant difference from the targeted ones. This difference is unobservable in the

DFP-generated graphs of 𝐹1, 𝐹2, and 𝐹3.

In 𝐹5, while DFP and GP performed well in solving the logarithmic function

problem, the other two methods gave average results. The generated graphs are very

similar to the targeted graph of 𝐹5 as in Figure 4.5.

41

x x

DFPFP

Figure 4.2. FP/DFP-generated and targeted graphs of 𝐹2

x x

DFPFP

Figure 4.3. FP/DFP-generated and targeted graphs of 𝐹3

x x

DFPFP

Figure 4.4. FP/DFP-generated and targeted graphs of 𝐹4

Solving root function problems was not efficient enough using both FP and DFP

where they both fell behind ABCP and GP respectively, and the graph of 𝐹6 (Figure 4.6)

42

x x

DFPFP

Figure 4.5. FP/DFP-generated and targeted graphs of 𝐹5

x x

DFPFP

Figure 4.6. FP/DFP-generated and targeted graphs of 𝐹6

is not as good as the graphs of 𝐹1,𝐹2,𝐹3, and 𝐹5. For the last two testing problems, 𝐹7

and 𝐹8 which are bivariant trigonometric functions, both FP and DFP performed better

than ABCP which came third in solving this problem. On the other hand, GP failed to

detect the pattern of these problems where the results were too far from the results of

the other methods. The generated graphs of 𝐹7 and 𝐹8 with both FP and DFP were too

close and accurate to the original graphs as Figure 4.7 and Figure 4.8 show.

Result comparison between the previous methods showed the superiority of DFP

over other methods. Comparing DFP results to GP, DFP performed better in four

problems, has the same performance in two, and its results were worse only in two. In

the same way, DFP performed better than ABCP in all problems except 𝐹6, where it

was difficult to solve using FP and DFP. On the other hand, FP gave average results

compared to GP and ABCP.

43

The generated solution is either an exact mathematical expression or a complex

expression that gives almost the same values as the original expression. Table 4.1

shows that 𝐹6 contains a square root function which is not included in the functional

searching set. This means that it’s impossible to generate the same expression using

FP or DFP. The expression in Figure 4.9 represents a DFP-generated expression that is

too close to 𝐹6 within the domain of [0,4] with taking into consideration the protected

division and logarithmic functions.

x
0

x
0

DFPFP

Figure 4.7. FP/DFP-generated and targeted graphs of 𝐹7

x
0

x
0

DFPFP

Figure 4.8. FP/DFP-generated and targeted graphs of 𝐹8

y=(((x)-(rlog(((x)-(rlog(cos(((cos(1))*((cos(rlog(x)))+(x)))+(0)))))*(cos(1))
)))exp((x)/(((x)/(rlog(x)))*(((x)/(x))+(1)))))

Figure 4.9. DFP-generated expression of 𝐹6

44

4.1.1. FP & DFP Performance Comparison

Both FP and DFP were tested also using different population size values. Table 4.5

and Table 4.6 show the results of FP and DFP after solving the same benchmark problem

set in Table 4.1. The results confirm the superiority of DFP over FP in almost all cases.

Table 4.6 showed that the best results were obtained in almost all cases when the

population size equals 50. With the increase in population size value, the results

decreased too. The main reason behind this point is the total number of evaluations.

According to Alg. 3, FP and DFP have two nested for loops in lines 6-7 where each

tree (firefly) is compared to all other trees. The total number of evaluations in each

iteration equals 𝑃𝑜𝑝𝑆𝑖𝑧𝑒2 which is 62,500 when the population size equals 250. This

number exceeds the total evaluation limit in this test which is 25,000. When the number

of evaluations exceeds the limit, it means that not all trees will be evaluated during

the execution time. On the other hand, the results decreased also when the population

size is equal to 25. The convincing explanation of this case is that the total number of

solution trees is insufficient to cover all possible solutions, which led DFP to fall into a

local trap as mentioned in Subsection 3.1.3..

Table 4.5. FP results with different population size values

Pop. size 𝐹1 𝐹2 𝐹3 𝐹4 𝐹5 𝐹6 𝐹7 𝐹8

25 0.35 0.58 0.39 0.61 0.39 0.42 0.68 0.96
50 0.25 0.34 0.26 0.53 0.33 0.34 0.48 0.67
75 0.19 0.32 0.26 0.58 0.35 0.33 0.41 0.51
100 0.18 0.37 0.24 0.64 0.36 0.36 0.40 0.47
250 0.22 0.48 0.24 0.72 0.49 0.35 0.42 0.71
500 0.37 0.57 0.33 0.77 0.58 0.45 0.54 0.66
Lower is better

After taking a look at Figure 4.10 which shows the change in the error value

through evaluations, DFP needed fewer evaluations to minimize the error values than

FP in all test cases. The graphs proved that both simplification and difference-based

attraction processes increased the performance of FP significantly.

The chart in Figure 4.11 shows the total number of the generated expressions

that is 100% identical to the targeted functions within testing domains after running

each method (FP/DFP) 100 times independently. It shows that DFP is better than FP in

45

(a) 𝐹1 (b) 𝐹2

(c) 𝐹3 (d) 𝐹4

(e) 𝐹5 (f) 𝐹6

(g) 𝐹7 (h) 𝐹8

Figure 4.10. The change in the error value through evaluations using FP and DFP

46

Table 4.6. DFP results with different population size values

Pop. size 𝐹1 𝐹2 𝐹3 𝐹4 𝐹5 𝐹6 𝐹7 𝐹8

25 0.19 0.23 0.13 0.42 0.19 0.33 0.30 0.53
50 0.08 0.17 0.11 0.48 0.15 0.33 0.21 0.34
75 0.13 0.23 0.16 0.53 0.20 0.38 0.21 0.31
100 0.16 0.29 0.14 0.58 0.22 0.35 0.28 0.35
250 0.18 0.40 0.18 0.73 0.31 0.42 0.27 0.43
500 0.22 0.46 0.25 0.82 0.36 0.51 0.31 0.62
Lower is better

six functions: 𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5 and 𝐹7, whereas FP is better only in two: 𝐹6, and 𝐹8.

Figure 4.12 shows the numbers of the generated models with an error equal to or less

than 0.2. Again, DFP is better in six functions, while FP is in only two.

Figure 4.11. Number of exact generated solutions by FP/DFP

The three control parameters in DFP (𝛼, 𝛽, and 𝛾) can be optimized to increase

the performance of the optimization process. While performing the pre-experiments,

the difference in the error values for most cases was between 0 and 2. Taking into

consideration the condition 𝛼 < 𝛽 < 𝛾, several tests were performed using different

controlling values. Before starting the experiments, 0.1, 0.75, and 1.5 were chosen as

initial values to 𝛼, 𝛽, and 𝛾 respectively. Tables 4.7, 4.8, and 4.9 show that the most

successful results were obtained when 𝛼 = 0.1, 𝛽 = 0.5, and 𝛾 = 1.0.

47

Figure 4.12. Number of the generated solutions with an error ⩽ 0.2 by FP/DFP

Table 4.7. DFP results with different 𝛼 parameter values (𝛽 : 0.75, 𝛾 : 1.5)

𝛼 𝐹1 𝐹2 𝐹3 𝐹4 𝐹5 𝐹6 𝐹7 𝐹8

0.05 0.13 0.24 0.13 0.46 0.21 0.30 0.24 0.31
0.10 0.13 0.17 0.17 0.48 0.19 0.29 0.23 0.28
0.15 0.17 0.25 0.14 0.44 0.20 0.35 0.27 0.32
0.20 0.15 0.28 0.13 0.46 0.21 0.37 0.27 0.41
0.25 0.14 0.24 0.16 0.51 0.21 0.32 0.22 0.48
0.30 0.15 0.26 0.15 0.51 0.23 0.39 0.24 0.28
0.35 0.15 0.22 0.13 0.53 0.24 0.36 0.25 0.46
0.40 0.17 0.26 0.14 0.47 0.21 0.37 0.27 0.23
0.45 0.18 0.25 0.14 0.51 0.25 0.32 0.26 0.31
0.50 0.13 0.30 0.19 0.54 0.21 0.46 0.26 0.42

Table 4.8. DFP results with different 𝛽 parameter values (𝛼 : 0.1, 𝛾 : 1.5)

𝛽 𝐹1 𝐹2 𝐹3 𝐹4 𝐹5 𝐹6 𝐹7 𝐹8

0.40 0.15 0.18 0.17 0.52 0.21 0.31 0.24 0.52
0.50 0.16 0.17 0.13 0.48 0.19 0.28 0.19 0.28
0.60 0.14 0.19 0.16 0.49 0.20 0.23 0.23 0.37
0.70 0.10 0.23 0.14 0.50 0.21 0.26 0.27 0.44
0.80 0.13 0.21 0.13 0.48 0.20 0.30 0.21 0.36
0.90 0.12 0.30 0.14 0.43 0.19 0.33 0.21 0.31
1.00 0.16 0.24 0.14 0.52 0.19 0.24 0.26 0.35
1.10 0.14 0.22 0.15 0.42 0.19 0.26 0.21 0.34
1.20 0.08 0.23 0.16 0.43 0.20 0.32 0.26 0.30
1.30 0.11 0.21 0.13 0.46 0.19 0.31 0.27 0.45

48

Table 4.9. DFP results with different 𝛾 parameter values (𝛼 : 0.1, 𝛽 : 0.75)

𝛾 𝐹1 𝐹2 𝐹3 𝐹4 𝐹5 𝐹6 𝐹7 𝐹8

0.90 0.19 0.21 0.16 0.46 0.19 0.27 0.22 0.44
1.00 0.10 0.23 0.13 0.45 0.19 0.37 0.24 0.34
1.10 0.13 0.27 0.15 0.47 0.20 0.32 0.26 0.54
1.20 0.12 0.22 0.17 0.49 0.19 0.32 0.19 0.31
1.30 0.12 0.25 0.16 0.47 0.21 0.29 0.25 0.54
1.40 0.14 0.19 0.16 0.50 0.24 0.28 0.26 0.41
1.50 0.12 0.24 0.16 0.47 0.21 0.32 0.27 0.50
1.60 0.13 0.27 0.16 0.48 0.20 0.32 0.24 0.50
1.70 0.13 0.26 0.15 0.45 0.20 0.27 0.20 0.36
1.80 0.19 0.26 0.13 0.49 0.23 0.36 0.27 0.41

4.2. Box-Jenkins Gas Furnace Time Series Modeling and Forcasting

A time-series dataset is a sequence of data values that are tracked and recorded

after performing experimental measurements within a system in a specific period (Box

& Jenkins, 1976; Box et al., 2015). The statistical data are used in analyzing the system

that generated this data to understand how it works, improve it, or even predict the

outputs. In this sub-section, FP and DFP are used in modeling and forecasting the

system of time series. Box-Jenkins gas furnace time series dataset was obtained by

George Box and Gwilym Jenkins in 1970 (Box & Jenkins, 1976; Box et al., 2015).

This dataset has 296 pairs of data that represent the amount of carbon dioxide-𝐶𝑂2

(𝑌𝑡) concentration produced by burning gas in a furnace at a specific rate (𝑈𝑡). In this

experimental test, 𝑈𝑡 and 𝑌𝑡−1 are used as inputs to the system that outputs 𝑌𝑡 .

Table 4.10 shows the different parameters used in FP and DFP. In the scope of

this work, four different experiments were performed using two different searching sets

and maximum depth values. Since the maximum number of nodes in a solution tree

(which has the same structure as the binary tree) is calculated by 2ℎ − 1, the number

of the nodes is exponentially increased with the height of the tree. This helped us

define two different values of the maximum tree depth. When the maximum height is

less than 6, the solution tree can contain at most 31 nodes, which will generate only

simple mathematical expressions. Therefore, the first value equals the initial maximum

depth in experiments 1 and 3. On the other hand, the second value is equal to 17 in

49

Table 4.10. FP and DFP parameters

Parameter Experiment Value

Population Size 1, 2, 3, 4 50
Evaluations Number 1, 2, 3, 4 1,000,000
𝛼, 𝛽, 𝛾 1, 2, 3, 4 10−4, 10−2, 10−1 respectively
Functional nodes 1, 2 +,−,×,÷ (protected ver.), pow

3, 4 +,−,×,÷ (protected ver.),
sin, cos, rlog, exp, pow

Terminal nodes 1, 2, 3, 4 𝑈𝑡 , 𝑌𝑡−1, 𝐶 ∈ [−1, 1]
Initial maximum depth 1, 2, 3, 4 6
Maximum depth 1, 3 6

2, 4 17

experiments 2 and 4. This value allows trees to contain up to 131071 nodes which are

more than enough to generate complex solutions. The terminal set in all experiments

contains the two input variables𝑈𝑡 (𝑥0),𝑌𝑡−1(𝑥1), and𝐶 which is a random float number

between -1 and 1.

Table 4.11. FP/DFP results of forecasting Box-Jenkins-GFTS model - Exp 1

MSE* STD.* Best MSE* Worst MSE*

Training Set FP 0.00069363 0.00010782 0.00048284 0.00084566
DFP 0.00062661 0.00012619 0.00039488 0.00086772

Testing Set FP 0.00220236 0.00110347 0.00102831 0.00468918
DFP 0.00196375 0.00087678 0.00111447 0.00420571

* Lower is better

The dataset used for all these experiments is split into two subsets, the training set

with 200 data pairs, and the testing set with 90 data pairs (Öztürk, 2011). The testing

set represents 30% of the total data pairs used, which is suitable for evaluating the

performance of the method. Dataset values are listed in Appendix A. In all experiments,

the mean square error (MSE) in Eq. 4.2 is used as an objective function,

𝑀𝑆𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

((𝑦𝑖 − 𝑌𝑖)2) , ∀𝑖 ∈ 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (4.2)

where 𝑌𝑖 is the 𝑖𝑡ℎ records’ prediction, 𝑦𝑖 is the 𝑖𝑡ℎ truth value.

50

y=(((x1)pow(((x0)+(x1))pow((x1)+((x0)+(x1)))))pow(((x0)+(x0))pow(-0.14)))

Figure 4.13. FP-best generated model - Exp 1

y=(((((x0)+(x1))pow((0.5)/(x1)))-((1.0)*(x0)))+((0.03)*((((x0)+(x1))-(x0))-(x0))))

Figure 4.14. DFP-best generated model - Exp 1

Table 4.11 shows the results of FP and FP in the first experiment which shows

close results for both methods. The reason behind these close results is the limitation of

the maximum tree depth which limits the trees from growing and producing complex

models (Figure 4.13 and Figure 4.14). The predicted graphs of the generated models

are shown in Figure 4.15.

y

t

Training Set Testing Set

Targeted Trained Predicted

FP

DFP

Figure 4.15. FP/DFP-best generated graph of Box-Jenkins-GFTS model (Exp. 1)

In the second experiment, DFP performed well as the results in Table 4.12 show.

Both MSE mean value and the standard deviation were far better than the results of FP.

By taking a look at the generated models in Figure 4.16 and Figure 4.17, DFP was able

to generate a very complex model with only a 0.00036475 MSE value. The predicted

graphs of experiment-2 are shown in Figure 4.18.

51

Table 4.12. FP/DFP results of forecasting Box-Jenkins-GFTS model - Exp 2

MSE* STD.* Best MSE* Worst MSE*

Training Set FP 0.00057583 0.00012647 0.00040541 0.00095067
DFP 0.00042820 0.00003565 0.00034540 0.00047759

Testing Set FP 0.00629257 0.02079564 0.00113152 0.11816179
DFP 0.00216890 0.00057936 0.00136828 0.00371233

* Lower is better

y=(((((-0.09)*((0.71)+(0.42)))-((-0.49)/(x1)))-((((x1)+(x0))pow(((-0.09)*(((0.71)+((-0.49
)/(x1)))pow((x1)pow(-0.76))))-((-0.49)/(x1))))+(((0.96)pow((x0)pow(((x1)pow(-0.76))*(
(-0.49)/(x1)))))/(-0.48))))-(((((-0.09)*(((0.71)+(0.42))pow((x1)pow(-0.76))))-((-0.49)/(x
1)))+((((x1)-(0.39))-(-0.42))/(((-0.36)+(-0.48))-(x1))))/((((x0)*(x0))*((x0)*(x1)))+(((0.71
)+(0.42))pow((x1)pow(-0.76))))))

Figure 4.16. FP-best generated model - Exp 2

y=(((x1)-((-0.01)*((((((1.41)/(x1))-((-0.77)+(x1)))pow((-0.57)*((-0.77)+(((((((x1)+(x0))/((
1.41)pow(x1)))*(x0))*((x0)*(((((x1)+(x1))*(x1))*(x1))+(x0))))+((-0.77)+(((-0.77)+(((1.41)/
((x1)-(x0)))*((0.55)pow(x0))))*(x1))))+(((((((-0.77)+((x1)*(x1)))*(((x1)+(x1))-((x1)+(x0)))
)+(((x1)*((x1)+(x0)))*(x0)))+(x1))-((-4.51)-(((1.41)pow(((x1)+(x0))+((1.0)*(x0))))+((((1.4
1)-(x0))*((x1)-(x0)))+((-0.77)+(x1))))))*(((((1.41)*(x1))*((1.0)*(x0)))-((0.94)-(x0)))*(((0.5
5)-((-0.77)+((x1)*(x1))))-(x0))))))))*((((1.41)/(x1))-(x0))-((((1.41)/(x1))*(((x0)+((-0.77)+((
(x1)-((-0.01)*((1.41)/(x1))))*((x1)*(x1)))))-(x1)))+((2.38)*(((x0)+((-0.77)+(((x1)+((((0.55)-
(x1))+((1.0)*(x0)))*((x0)/(x1))))*((x1)+(((1.0)/((1.41)pow(x1)))*((1.0)*(x0)))))))-((0.55)-(
x1)))))))+((((x0)*((x1)*(((x1)+((((-0.01)*(((x1)-(x1))-((1.0)*(x0))))-(x1))*(x1)))*((x1)*(x1)))
))pow(((((((x1)+(x0))*(x1))*(x1))+((-0.77)+(x1)))+(((x1)-(((-0.01)*((1.41)pow(((1.41)pow(
x1))+((1.41)pow(x1)))))*((((((x1)+(x1))+((x1)-(x0)))+((0.55)pow(x0)))*((1.41)pow(x1)))-((
(((x1)+(x0))/((1.41)pow(x1)))+(((x0)+(x0))pow(x1)))*(((1.0)*(x0))*(((x1)+(x0))+((-0.77)
+(x1))))))))*(x0)))+((-0.77)+(((((1.41)pow((x1)+(x1)))*(x0))*(((1.41)pow(x1))+(x1)))*(x1))
)))*((x1)*((1.41)pow(((1.41)pow((1.5)-((-0.77)+((x0)*((x1)+((((x0)/(x1))*((0.55)pow(x0)))
(((1.41)pow(x1))(x0))))))))-(((1.0)*(((x1)+(x0))*(x0)))+((-0.77)+((((((1.41)pow(x1))*((0.
55)pow(x0)))+(((0.55)pow(x0))+(((x1)+(x0))+((1.0)*(x0)))))*(((((0.94)-(x0))-(x1))-(x0))
+((1.41)pow((0.55)pow(x0)))))*((-0.77)+((x1)*(x1)))))))))))))-((-0.01)+(((1.0)*(((x1)+(((1.
0)/((1.41)pow(x1)))*((1.0)*(x0))))*((1.0)*((1.0)*(x0)))))*(((((1.41)/(x1))pow(((x1)*((((0.5
5)pow(x0))pow((((((-0.01)-(x0))-((1.0)*((0.34)*(x0))))-(x0))+((1.0)*(((0.55)pow((x0)+(x
0)))-(x0))))-((((x0)+((-0.77)+((x1)*(x1))))+(((-0.01)-(x0))+((x1)*(x1))))+((x0)+((-0.77)+((
x1)*(x1)))))))*(x1)))*(((((1.41)pow(((((0.55)pow(x0))*(((0.55)pow(x0))/(x1)))-(x0))*((1.4
1)pow(((1.41)pow((0.55)pow(x0)))pow(((1.41)pow(x1))+(x1))))))/((((1.0)pow((1.41)pow(
(x1)+((1.41)pow(x1)))))-(x1))-((x1)pow((1.0)+((2.0)+(x0))))))-((x1)*((((((1.41)pow((x1)*(x
1)))+((0.55)pow(x0)))+(x1))pow((-0.77)+(((x1)*((x1)*(x1)))*(x1))))*((((1.41)*(x1))+((0.94
)-(x0)))+(x1)))))/(x1))))+((1.0)*(x0)))*(((0.34)*(((1.0)/((1.41)pow(x1)))*((1.0)*(x0))))*((1
.0)*(((((0.94)-(((1.0)*(x0))+((-0.77)+((x1)*(x1)))))pow((((x1)+(x0))*((1.0)*((x0)*((x1)+(x
0)))))*(((((((0.55)pow(x0))*((0.55)pow(x0)))*(x1))pow(((x1)*((x1)+(x0)))pow(((-0.01)-(
x0))-((1.0)*(x0)))))-((x1)+(((x1)+(x0))*(x0))))-(x0))))*(x1))-(((1.0)-(((x1)-((-0.01)*((1.41)
pow(x1))))*(x1)))-(x0)))))))))

Figure 4.17. DFP-best generated model - Exp 2

Although the functional node-set has more expressions in experiment 3 than in

experiment 1, the results of experiment 3 in Table 4.13 are still close to each other

52

y

t

Training Set Testing Set

Targeted Trained Predicted

FP

DFP

Figure 4.18. FP/DFP-best generated graph of Box-Jenkins-GFTS model (Exp. 2)

Table 4.13. FP/DFP results of forecasting Box-Jenkins-GFTS model - Exp 3

MSE* STD.* Best MSE* Worst MSE*

Training Set FP 0.00072172 0.00016841 0.00045719 0.00106048
DFP 0.00067008 0.00012331 0.00049263 0.00084566

Testing Set FP 0.00237389 0.00164109 0.00108379 0.00867992
DFP 0.00218937 0.00105215 0.00105584 0.00519639

* Lower is better

due to the limitation of the maximum depth. This shows the important role of these

limits in generating models. The graphs of the best-generated models in Figure 4.19

and Figure 4.20 are shown in Figure 4.21.

y=(((rlog(exp(x1)))pow(((x0)+(x1))pow((exp(x1))pow(x1))))pow(((x0)+(x0))pow(((0.23)
(-0.65))((x0)+(x1)))))

Figure 4.19. FP-best generated model - Exp 3

y=(((((0.03)+(x1))pow((sin(x1))-((0.03)-(x0))))*(cos(((x0)-(x1))*((-0.0)-(x0)))))*(cos((co
s((-0.0)-(x0)))*(((x0)+(x1))*((-0.0)-(x0))))))

Figure 4.20. DFP-best generated model - Exp 3

The results of experiment 4 in Table 4.14 show that the DFP method has good

53

y

t

Training Set Testing Set

Targeted Trained Predicted

FP

DFP

Figure 4.21. FP/DFP-best generated graph of Box-Jenkins-GFTS model (Exp. 3)

Table 4.14. FP/DFP results of forecasting Box-Jenkins-GFTS model - Exp 4

MSE* STD.* Best MSE* Worst MSE*

Training Set FP 0.00054704 0.00037606 0.00038181 0.00255220
DFP 0.00042635 0.00005534 0.00036475 0.00063770

Testing Set FP 0.00242676 0.00098444 0.00124539 0.00542701
DFP 0.00266292 0.00106410 0.00133588 0.00747385

* Lower is better

performance in the training set only where FP performed better in the testing set.

Figure 4.23 and Figure 4.24 shows the generated models by FP and DFP respectively.

The complexity of the generated models is too close in both FP and DFP. The predicted

graphs of the generated models are shown in Figure 4.22 which shows that the generated

graphs were too similar to the targeted ones in the training set with an observable

difference in the testing set.

One more comparison was performed between the results of FP/DFP, and the

results in (Öztürk, 2011) which used the same dataset to train different product-unit

neural networks (PUNN) and additive units neural networks (ANN) using different

meta-heuristic algorithms like ABC, PSO, and DE. Although standard deviation results

of PSO-trained neural networks were better than the others, DFP showed the best MSE

values in experiment 4 in the training set, and experiment 1 in the testing set.

54

y

t

Training Set Testing Set

Targeted Trained Predicted

FP

DFP

Figure 4.22. FP/DFP-best generated graph of Box-Jenkins-GFTS model (Exp. 4)

Table 4.15. Results comparison between FP, DFP, PUNN, and ANN

MSE. STD.

Method Train Test Train Test

PSO-trained PUNN (2-6-1) 0.000436 0.002586 0.000025 0.000142
PSO-trained ANN (2-6-1) 0.010611 0.015363 0.001932 0.000142
DE-trained PUNN (2-6-1) 0.000438 0.002650 0.000015 0.000150
DE-trained ANN (2-6-1) 0.007835 0.011906 0.001395 0.000150
ABC-trained PUNN (2-6-1) 0.000637 0.003589 0.000072 0.000711
ABC-trained ANN (2-6-1) 0.006626 0.010572 0.000029 0.000711
FP Exp. 1 0.000694 0.002202 0.000108 0.001103
FP Exp. 2 0.000576 0.006293 0.000126 0.020796
FP Exp. 3 0.000722 0.002374 0.000168 0.001641
FP Exp. 4 0.000547 0.002427 0.000376 0.000984
DFP Exp. 1 0.000627 0.001964 0.000126 0.000877
DFP Exp. 2 0.000428 0.002169 0.000036 0.000579
DFP Exp. 3 0.000670 0.002189 0.000123 0.001052
DFP Exp. 4 0.000426 0.002663 0.000055 0.001064

y=(((sin(0.51))pow(((sin(-0.9))/(rlog(0.74)))pow(((exp((0.42)pow(((0.42)pow((x0)+(x1)
))+(x1))))*((x0)+(x1)))*((x1)/(x0)))))*(((exp(rlog(((x0)+(x1))-(x0))))+(cos((x0)+(cos(cos(
x1))))))pow((exp((-0.34)*(rlog(0.18))))*(((0.42)pow((x0)+(x1)))pow((sin(0.51))pow(((si
n(-0.9))/(rlog(0.74)))pow((((exp(rlog(((x0)+(x1))-(x0))))+(cos((x0)+(cos(cos(x1))))))*((
0.42)+(sin(0.51))))*((cos((x0)+(cos(cos(x1)))))/(x0)))))))))

Figure 4.23. FP-best generated model - Exp 4

55

y=(((((x1)*(cos(x0)))-((((x0)-(((0.99)-(x1))/((0.99)-(x1))))*(exp(rlog(((x1)*(sin((x1)*(cos(
((x1)*(x1))*((x1)/(cos(x0))))))))-((((x0)-((cos(((0.99)-(x1))-((x1)/(cos(x0)))))-(x1)))*((((x1
)*(exp((x1)*(x0))))/((x1)/(x1)))*(x0)))+((-0.17)*(((cos(cos((0.99)-((x1)*(x0)))))pow(((x1)*
(exp((x1)*(x0))))/((x1)/(x1))))*(((x0)+((0.99)-(x1)))+(((cos((0.99)-(x1)))pow(x1))-(x1)))))
)))))+((-0.17)*(((sin(sin(sin(x1))))/((0.99)-((0.99)-(x1))))*((x0)+((cos(((x0)+(((x1)/(x1))*
((0.99)-(x1))))pow((exp(((x0)/(exp((x1)*(x0))))*(x0)))/(exp((x1)*(x0))))))*((x0)/(exp((x1
)*(x0))))))))))-(x0))+((x0)/(exp((x1)*(x0)))))

Figure 4.24. DFP-best generated model - Exp 4

56

5. CONCLUSION AND RECOMMENDATIONS

5.1. Conclusion

Symbolic regression or automatic programming methods are ML techniques

that generate programs automatically to solve a specific problem. Automatic

programming methods can recognize the pattern of the data without using any

pre-defined structure. Therefore, automatic programming methods are used in solving

complex data-driven problems. In the scope of this thesis, a new automatic

programming method is introduced which is firefly programming (FP). FP is

developed based on the firefly algorithm which is an evolutionary swarm-based

algorithm introduced by Yang in 2008 and inspired by the behavior of fireflies in

nature (Yang, 2008, 2009, 2010, 2017). To increase the efficiency of FP, an improved

version is introduced called difference-based firefly programming (DFP) which

depends on the difference between solutions.

While FP used sharing operation to exchange nodes between two trees, DFP used

two operations to perform the attraction process according to the difference between

trees. The first one “Sharing operation”, takes an instance of a randomly selected subtree

and glues it to another tree. The other operation “substitution” changes the value of

one tree’s node with another value without changing the structure. It is impossible to

perform the attraction process in DFP without using the three control parameters: 𝛼,

𝛽, and 𝛾. The difference between FP and DFP is not limited to the application of the

attraction process, another operation was added also which reduces the complexity of

the solution trees by simplifying its subtrees and combining them into one equivalent

node.

To evaluate the performance of FP and DFP, two different experimental tests

were performed. In the first one, FP and DFP were used to solve a set of symbolic

regression benchmark problems that varied between polynomial, trigonometric, root,

and multi-variable functions. The results of FP and DFP compared to the results of

GP (Uy et al., 2013) and ABCP (Gorkemli & Karaboga, 2015) (Table 4.4) showed the

superiority of DFP over the other methods as it gave the lowest mean error values in

four of eight problems: F1, F2, F7, and F8. DFP also shared the lowest mean error

values with GP in two problems: F3 and F5. In F4 and F6, the performance of FP and

DFP was not good as they both failed in giving good results. Generally, FP showed an

average performance compared to GP, ABCP, and DFP. The same experiment compared

the performance of the FP and DFP, where Table 4.5 and Table 4.6 showed that DFP

gave better results than FP using different population size values. It also confirmed that

DFP needed fewer evaluations to minimize error values as the graphs in Figure 4.10

show.

In the second experiment, FP and DFP were used in forecasting and modeling

the Box-Jenkins gas furnace time series dataset. The experiment tested 2 different

maximum depth limits: 6 and 17, where the experiments with a maximum depth of

17 gave better results. It also tested two different sets of the functional space sets, the

first one contained “+,−,×,÷ (protected ver.), pow” and the second set added “sin, cos,

rlog, exp” to the first set. The difference in the defined functional set did not impact

the results of FP and DFP as shown in tables 4.11, 4.12, 4.13, and 4.14. Comparing

the results of FP and DFP showed that DFP was better than FP in all cases. The results

of FP and DFP were compared also to the results of different neural networks trained

using evolutionary algorithms such as ABC, PSO, and DE (Öztürk, 2011). The results

of DFP in the 2𝑛𝑑 and 4𝑡ℎ experiment were better than the results of neural networks in

the training set, and the results of almost all experiments were better also in the testing

set as Table 4.15 shows.

In general, FP and DFP performed well in the previously mentioned

experiments with a remarkable superiority in performance for DFP. Nevertheless, the

good performance was accompanied by an increase in time as well as in most

evolution-based automatic programming methods (Smits & Kotanchek, 2005). Time

complexity in such methods depends directly on the value of population size (𝑛). For

instance, the pseudo-code of the firefly algorithm in Alg. 1 contains two nested for

loops in lines 5 and 6. This means that the firefly algorithm has a time complexity of

𝑂 (𝑛2) which is the same for FP and DFP. This time complexity is common among the

automatic programming methods since most of them use evolutionary principles. In

other words, in swarm-based methods, the time needed to improve the best model is

multiplied by 𝑛 since it improves 𝑛 models before selecting the best one.

58

5.2. Recommendations

For future works and developments, it is recommended to focus on reducing the

total execution time of FP. This can be achieved by developing a mini-version of the

firefly algorithm that uses a minimal number of fireflies to complete the optimization

process. Implementing additional operations and testing different structures to represent

solutions can be useful to obtain better results. It is important to use firefly programming

in solving different machine learning task problems including classifications, clustering,

and more.

59

REFERENCES

Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets
of items in large databases. In Proceedings of the 1993 acm sigmod international
conference on management of data (pp. 207–216).

Aliwi, M., Aslan, S., & Demirci, S. (2020a). Firefly programming for symbolic
regression problems. In 2020 28th signal processing and communications
applications conference (siu) (pp. 1–4).

Aliwi, M., Aslan, S., & Demirci, S. (2020b). Solving uav localization problem
with firefly algorithm. In 2020 28th signal processing and communications
applications conference (siu) (pp. 1–4).

Alpaydin, E. (2020). Introduction to machine learning. USA: MIT press.

Altenberg, L., et al. (1994). The evolution of evolvability in genetic programming.
Advances in genetic programming, 3, 47–74.

Arslan, S. (2021). Solving the problem of time series prediction using immune plasma
programming. European Journal of Science and Technology(29), 219–224.

Arslan, S., & Ozturk, C. (2019a). Feature selection for classification with artificial bee
colony programming. In Swarm intelligence-recent advances, new perspectives
and applications. IntechOpen.

Arslan, S., & Ozturk, C. (2019b). Multi hive artificial bee colony programming for high
dimensional symbolic regression with feature selection. Applied Soft Computing,
78, 515–527.

Aslan, S., & Demirci, S. (2020). Immune plasma algorithm: A novel meta-heuristic
for optimization problems. IEEE Access, 8, 220227–220245.

Beadle, L., & Johnson, C. G. (2008). Semantically driven crossover in genetic
programming. In 2008 ieee congress on evolutionary computation (ieee world
congress on computational intelligence) (pp. 111–116).

Billard, L., & Diday, E. (2002). Symbolic regression analysis. In Classification,
clustering, and data analysis (pp. 281–288). Springer.

Box, G. E., & Jenkins, G. M. (1976). Time series analysis. forecasting and control.
Holden-Day Series in Time Series Analysis.

Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series
analysis: forecasting and control. John Wiley & Sons.

Brameier, M. (2004). On linear genetic programming (Unpublished doctoral
dissertation). Citeseer.

Branham, M. A., Leschen, R., Beutel, R., & Lawrence, J. (2010). Lampyridae latreille,
1817. Morphology and Systematics.

Burkov, A. (2019). The hundred-page machine learning book (Vol. 1). Andriy Burkov
Quebec City, QC, Canada.

60

Contreras-Cruz, M. A., Ayala-Ramirez, V., & Hernandez-Belmonte, U. H. (2015).
Mobile robot path planning using artificial bee colony and evolutionary
programming. Applied Soft Computing, 30, 319–328.

De Castro, L. N., & Timmis, J. (2002). Artificial immune systems: a new computational
intelligence approach (1st ed.). Springer Science & Business Media.

De Castro, L. N., & Von Zuben, F. J. (2000). The clonal selection algorithm with
engineering applications. In Proceedings of gecco (Vol. 2000, pp. 36–39).

De Falco, I., Tarantino, E., Cioppa, A. D., & Fontanella, F. (2006). An innovative
approach to genetic programming—based clustering. In Applied soft computing
technologies: The challenge of complexity (pp. 55–64). Springer.

Dimopoulos, C., & Mort, N. (2001). A hierarchical clustering methodology based
on genetic programming for the solution of simple cell-formation problems.
International Journal of Production Research, 39(1), 1–19.

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 26(1), 29–41.

Eryurek, E., Gilad, U., Lakshmanan, V., Kibunguchy-Grant, A., & Ashdown, J. (2021).
Data governance: The definitive guide. ” O’Reilly Media, Inc.”.

Espejo, P. G., Ventura, S., & Herrera, F. (2009). A survey on the application of
genetic programming to classification. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 40(2), 121–144.

Fallah-Mehdipour, E., Haddad, O. B., & Mariño, M. (2013). Prediction and
simulation of monthly groundwater levels by genetic programming. Journal
of Hydro-Environment Research, 7(4), 253–260.

Ferreira, C. (2001). Gene expression programming: a new adaptive algorithm for
solving problems. arXiv preprint cs/0102027.

Fisher, L. (2009). The perfect swarm: The science of complexity in everyday life. Basic
Books.

Gao, M.-L., He, X.-H., Luo, D.-S., Jiang, J., & Teng, Q.-Z. (2013). Object tracking
using firefly algorithm. IET Computer Vision, 7(4), 227–237.

Gharrad, H., Jabeur, N., Yasar, A. U.-H., Galland, S., & Mbarki, M. (2021). A five-step
drone collaborative planning approach for the management of distributed spatial
events and vehicle notification using multi-agent systems and firefly algorithms.
Computer Networks, 198, 108282.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

Gorkemli, B., & Karaboga, D. (2015). Developing new artificial bee colony
programming (abcp) methods and symbolic regression applications (PhD
dissertation). Erciyes University.

Gorkemli, B., & Karaboga, D. (2019). A quick semantic artificial bee colony
programming (qsabcp) for symbolic regression. Information Sciences, 502,
346–362.

61

Harries, K., Smith, P., et al. (1997). Exploring alternative operators and search strategies
in genetic programming. Genetic Programming, 97, 147–155.

Hengpraprohm, S., & Chongstitvatana, P. (2001). Selective crossover in genetic
programming. Population, 400, 500.

Henrio, J., Deligne, T., Nakashima, T., & Watanabe, T. (2019). Route planning for
multiple surveillance autonomous drones using a discrete firefly algorithm and a
bayesian optimization method. Artificial Life and Robotics, 24(1), 100–105.

HimaBindu, G., Kumar, C. R., Hemanand, C., & Krishna, N. R. (2020). Hybrid
clustering algorithm to process big data using firefly optimization mechanism.
Materials Today: Proceedings.

Hoai, N. X., McKay, R. I., Essam, D., & Chau, R. (2002). Solving the symbolic
regression problem with tree-adjunct grammar guided genetic programming:
The comparative results. In Proceedings of the 2002 congress on evolutionary
computation. cec’02 (cat. no. 02th8600) (Vol. 2, pp. 1326–1331).

Ito, T., Iba, H., & Sato, S. (1998). Depth-dependent crossover for genetic programming.
In 1998 ieee international conference on evolutionary computation proceedings.
ieee world congress on computational intelligence (cat. no. 98th8360) (pp.
775–780).

Johnson, C. G. (2002). Deriving genetic programming fitness properties by static
analysis. In Genetic programming: 5th european conference (pp. 299–308).
Berlin, Germany: Springer.

Johnson, C. G. (2003). Artificial immune system programming for symbolic regression.
In European conference on genetic programming (pp. 345–353).

Johnson, C. G. (2009). Genetic programming crossover: Does it cross over? In
European conference on genetic programming (pp. 97–108). Berlin, Heidelberg.

Kaboudan, M. A. (2000). Genetic programming prediction of stock prices.
Computational Economics, 16(3), 207–236.

Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization..

Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (abc) algorithm. Journal of global
optimization, 39(3), 459–471.

Karaboga, D., & Basturk, B. (2008). On the performance of artificial bee colony (abc)
algorithm. Applied soft computing, 8(1), 687–697.

Karaboga, D., Ozturk, C., Karaboga, N., & Gorkemli, B. (2012). Artificial bee colony
programming for symbolic regression. Information Sciences, 209, 1–15.

Keber, C., & Schuster, M. G. (2002). Option valuation with generalized ant
programming. In Proceedings of the 4th annual conference on genetic and
evolutionary computation (pp. 74–81).

Keijzer, M. (2003). Improving symbolic regression with interval arithmetic and linear
scaling. In European conference on genetic programming (pp. 70–82). Berlin,
Heidelberg.

62

Koza, J. R. (1992). Genetic programming: On the programming of computers by
means of natural selection (Vol. 1). USA: MIT Press.

Koza, J. R. (1994). Genetic programming as a means for programming computers by
natural selection. Statistics and computing, 4(2), 87–112.

Koza, J. R., Andre, D., Bennett, F. H., & Keane, M. A. (1999). Genetic programming
iii: Darwinian invention and problem solving (1st ed.). San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.

Kuhn, M., Johnson, K., et al. (2013). Applied predictive modeling (Vol. 26). Springer.

Langdon, W. B. (2000). Size fair and homologous tree genetic programming crossovers.
Genetic programming and evolvable machines, 1(1/2), 95–119.

Langdon, W. B., & Poli, R. (2002). Foundations of genetic programming (1st ed.).
Berlin, Heidelberg: Springer Science & Business Media.

Lewis, S. M., & Cratsley, C. K. (2008). Flash signal evolution, mate choice, and
predation in fireflies. Annu. Rev. Entomol., 53, 293–321.

Li, X. (2006). Self-emergence of structures in gene expression programming. University
of Illinois at Chicago.

Loveard, T., & Ciesielski, V. (2001). Representing classification problems in genetic
programming. In Proceedings of the 2001 congress on evolutionary computation
(ieee cat. no. 01th8546) (Vol. 2, pp. 1070–1077).

Majeed, H., & Ryan, C. (2006). A less destructive, context-aware crossover operator
for gp. In European conference on genetic programming (pp. 36–48).

Marie-Sainte, S. L., & Alalyani, N. (2020). Firefly algorithm based feature selection
for arabic text classification. Journal of King Saud University-Computer and
Information Sciences, 32(3), 320–328.

Martin, G. J., Stanger-Hall, K. F., Branham, M. A., Da Silveira, L. F., Lower, S. E., Hall,
D. W., . . . Bybee, S. M. (2019). Higher-level phylogeny and reclassification
of lampyridae (coleoptera: Elateroidea). Insect Systematics and Diversity, 3(6),
11.

McKay, R. I., Hoai, N. X., Whigham, P. A., Shan, Y., & O’neill, M. (2010).
Grammar-based genetic programming: a survey. Genetic Programming and
Evolvable Machines, 11(3), 365–396.

Miller, J. F., & Thomson, P. (2000). Cartesian genetic programming. Proc. European
Conference on Genetic Programming, 1802, 121–132.

Mitchell, T. M. (1997). Machine learning. New York, United States: McGraw-Hill
Education.

Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Foundations of machine
learning. USA: MIT press.

Mundhenk, T. N., Landajuela, M., Glatt, R., Santiago, C. P., Faissol, D. M., & Petersen,
B. K. (2021). Symbolic regression via neural-guided genetic programming
population seeding. arXiv preprint arXiv:2111.00053.

Muni, D. P., Pal, N. R., & Das, J. (2006). Genetic programming for simultaneous

63

feature selection and classifier design. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 36(1), 106–117.

Musilek, P., Lau, A., Reformat, M., & Wyard-Scott, L. (2006). Immune programming.
Information Sciences, 176(8), 972–1002.

Ogutu, J. O., Schulz-Streeck, T., & Piepho, H.-P. (2012). Genomic selection using
regularized linear regression models: ridge regression, lasso, elastic net and their
extensions. In Bmc proceedings (Vol. 6, pp. 1–6).

Oltean, M., & Dumitrescu, D. (2021). Multi expression programming. Research
Square.

Oltean, M., & Grosan, C. (2003). A comparison of several linear genetic programming
techniques. Complex Systems, 14(4), 285–314.

O’Reilly, U.-M., & Oppacher, F. (1994). Program search with a hierarchical variable
length representation: Genetic programming, simulated annealing and hill
climbing. In International conference on parallel problem solving from nature
(pp. 397–406).

Perkis, T. (1994). Stack-based genetic programming. In Proceedings of the first ieee
conference on evolutionary computation. ieee world congress on computational
intelligence (pp. 148–153).

Poli, R., & Langdon, W. B. (1998). Genetic programming with one-point crossover.
In Soft computing in engineering design and manufacturing (pp. 180–189).
Springer.

Poli, R., Langdon, W. B., McPhee, N. F., & Koza, J. R. (2008). A field guide to genetic
programming. United Kingdom: Lulu Press.

Roux, O., & Fonlupt, C. (2000). Ant programming: or how to use ants for automatic
programming. In Proceedings of ants (Vol. 2000, pp. 121–129).

Rusell, S., & Norvig, P. (2003). Artificial intelligence: A modern approach. Pretice
Hall Series in Artificial Intelligence, 1, 649–789.

Ryan, C., Collins, J. J., & Neill, M. O. (1998). Grammatical evolution: Evolving
programs for an arbitrary language. In European conference on genetic
programming (pp. 83–96).

Ryan, C., & O’Neill, M. (1998). Grammatical evolution: A steady state approach. Late
Breaking Papers, Genetic Programming, 1998, 180–185.

Santoso, L., Singh, B., Rajest, S., Regin, R., & Kadhim, K. (2020). A
genetic programming approach to binary classification problem. EAI Endorsed
Transactions on Energy Web, 8(31), e11.

Schmidt, M. D., & Lipson, H. (2006). Co-evolving fitness predictors for accelerating
evaluations and reducing sampling. Genetic Programming Theory and Practice
IV , 5.

Senthilnath, J., Omkar, S., & Mani, V. (2011). Clustering using firefly algorithm:
performance study. Swarm and Evolutionary Computation, 1(3), 164–171.

Serrano, L. (2021). Grokking machine learning. Simon and Schuster.

64

Shamoo, A. E., & Resnik, D. B. (2009). Responsible conduct of research (2nd ed.).
Oxford University Press.

Shirakawa, S., Ogino, S., & Nagao, T. (2008). Dynamic ant programming for automatic
construction of programs. IEEJ transactions on electrical and electronic
engineering, 3(5), 540–548.

Smits, G. F., & Kotanchek, M. (2005). Pareto-front exploitation in symbolic regression.
In Genetic programming theory and practice ii (pp. 283–299). Springer.

Tackett, W. A. (1994). Recombination, selection, and the genetic construction of
computer programs (Unpublished doctoral dissertation). University of Southern
California Los Angeles.

Tackett, W. A., & Carmi, A. (1994). The unique implications of brood selection for
genetic programming. In Proceedings of the first ieee conference on evolutionary
computation. ieee world congress on computational intelligence (pp. 160–165).

Tian, M., Bo, Y., Chen, Z., Wu, P., & Yue, C. (2019). A new improved firefly clustering
algorithm for smc-phd filter. Applied Soft Computing, 85, 105840.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1), 267–288.

Tomer, M., & Kumar, M. (2021). Multi-document extractive text summarization based
on firefly algorithm. Journal of King Saud University-Computer and Information
Sciences.

Uy, N. Q., Hoai, N. X., O’Neill, M., & McKay, B. (2010). The role of syntactic
and semantic locality of crossover in genetic programming. In International
conference on parallel problem solving from nature (pp. 533–542).

Uy, N. Q., Hoai, N. X., O’Neill, M., McKay, R. I., & Galván-López, E. (2011).
Semantically-based crossover in genetic programming: application to real-valued
symbolic regression. Genetic Programming and Evolvable Machines, 12(2),
91–119.

Uy, N. Q., Hoai, N. X., O’Neill, M., McKay, R. I., & Phong, D. N. (2013). On the roles
of semantic locality of crossover in genetic programming. Information Sciences,
235, 195–213.

Vladislavleva, E. J., Smits, G. F., & Den Hertog, D. (2008). Order of nonlinearity as
a complexity measure for models generated by symbolic regression via pareto
genetic programming. IEEE Transactions on Evolutionary Computation, 13(2),
333–349.

Yang, X.-S. (2008). Nature-inspired metaheuristic algorithms. United Kingdom:
Luniver Press.

Yang, X.-S. (2009). Firefly algorithms for multimodal optimization. In International
symposium on stochastic algorithms (pp. 169–178).

Yang, X.-S. (2010). Firefly algorithm, stochastic test functions and design optimisation.
International journal of bio-inspired computation, 2(2), 78–84.

Yang, X.-S. (2017). Nature-inspired algorithms and applied optimization (Vol. 744).
USA: Springer.

65

Öztürk, C. (2011). Training artificial neural networks with artificial bee colony
algorithm (PhD dissertation). Erciyes University.

66

APPENDICES

Appendix A. Box-Jenkins Gas Furnace Dataset

Table A.1. Box-Jenkins Gas Furnace Dataset

𝑡 𝑈𝑡 𝑌𝑡−1 𝑌𝑡

1 0.52144204 0.50335040 0.47650480
2 0.55045102 0.47650480 0.45637060
3 0.55657714 0.45637060 0.44294780
4 0.56882938 0.44294780 0.42952500
5 0.57243298 0.42952500 0.42952500
6 0.55207264 0.42952500 0.45637060
7 0.51225286 0.45637060 0.49663900
8 0.45693760 0.49663900 0.56375300
9 0.38342416 0.56375300 0.62415560
10 0.29928010 0.62415560 0.69798100
11 0.23333422 0.69798100 0.75167220
12 0.21549640 0.75167220 0.75167220
13 0.25477564 0.75167220 0.72482660
14 0.34270348 0.72482660 0.67784680
15 0.40378450 0.67784680 0.63086700
16 0.45459526 0.63086700 0.58388720
17 0.50522584 0.58388720 0.51006180
18 0.56774830 0.51006180 0.44965920
19 0.62828878 0.44965920 0.40267940
20 0.64540588 0.40267940 0.37583380
21 0.64702750 0.37583380 0.34898820
22 0.64991038 0.34898820 0.32885400
23 0.66720766 0.32885400 0.29529700
24 0.71693734 0.29529700 0.24160580
25 0.80918950 0.24160580 0.18791460
26 0.84540568 0.18791460 0.15435760
27 0.83783812 0.15435760 0.13422340
28 0.82558588 0.13422340 0.12751200
29 0.81945976 0.12751200 0.12751200
30 0.80774806 0.12751200 0.13422340
31 0.77909944 0.13422340 0.16778040
32 0.71729770 0.16778040 0.22818300
33 0.63171220 0.22818300 0.29529700
34 0.55423480 0.29529700 0.36912240
35 0.51009070 0.36912240 0.41610220
36 0.50522584 0.41610220 0.42281360
37 0.54900958 0.42281360 0.40939080
38 0.60558610 0.40939080 0.37583380

67

Table A.1. Box-Jenkins Gas Furnace Dataset

𝑡 𝑈𝑡 𝑌𝑡−1 𝑌𝑡

39 0.66234280 0.37583380 0.29529700
40 0.74324362 0.29529700 0.18120320
41 0.97045060 0.18120320 0.09395500
42 1.00000012 0.09395500 0.01341820
43 0.99603616 0.01341820 0.00000000
44 0.93675694 0.00000000 0.02684100
45 0.83693722 0.02684100 0.08724360
46 0.75693730 0.08724360 0.14764620
47 0.70810852 0.14764620 0.17449180
48 0.71261302 0.17449180 0.18120320
49 0.77909944 0.18120320 0.15435760
50 0.83261290 0.15435760 0.10737780
51 0.85387414 0.10737780 0.10737780
52 0.81639670 0.10737780 0.16778040
53 0.58576630 0.16778040 0.25502860
54 0.51135196 0.25502860 0.33556540
55 0.49099162 0.33556540 0.39596800
56 0.51891952 0.39596800 0.40267940
57 0.61027078 0.40267940 0.37583380
58 0.67297342 0.37583380 0.32885400
59 0.69585628 0.32885400 0.30200840
60 0.69747790 0.30200840 0.28187420
61 0.68973016 0.28187420 0.26845140
62 0.69135178 0.26845140 0.25502860
63 0.70973014 0.25502860 0.24831720
64 0.71585626 0.24831720 0.24160580
65 0.69783826 0.24160580 0.24831720
66 0.65387434 0.24831720 0.27516280
67 0.60108160 0.27516280 0.31543120
68 0.53531590 0.31543120 0.38254520
69 0.43891960 0.38254520 0.48321620
70 0.29477560 0.48321620 0.59059860
71 0.20991082 0.59059860 0.69798100
72 0.16522618 0.69798100 0.75838360
73 0.16054150 0.75838360 0.79865200
74 0.22702792 0.79865200 0.78522920
75 0.31928008 0.78522920 0.73824940
76 0.38666740 0.73824940 0.69798100
77 0.41171242 0.69798100 0.65771260
78 0.38540614 0.65771260 0.65771260
79 0.31639720 0.65771260 0.72482660
80 0.19819912 0.72482660 0.77851780
81 0.15153250 0.77851780 0.83220900
82 0.14864962 0.83220900 0.85905460
83 0.17477572 0.85905460 0.85905460

68

Table A.1. Box-Jenkins Gas Furnace Dataset

𝑡 𝑈𝑡 𝑌𝑡−1 𝑌𝑡

84 0.22378468 0.85905460 0.83892040
85 0.27297382 0.83892040 0.81207480
86 0.32234314 0.81207480 0.76509500
87 0.39495568 0.76509500 0.69798100
88 0.49657720 0.69798100 0.61073280
89 0.63135184 0.61073280 0.51006180
90 0.65927974 0.51006180 0.43623640
91 0.65693740 0.43623640 0.40267940
92 0.67063108 0.40267940 0.36241100
93 0.69423466 0.36241100 0.32885400
94 0.70522564 0.32885400 0.32214260
95 0.67927972 0.32214260 0.36241100
96 0.59657710 0.36241100 0.41610220
97 0.47495560 0.41610220 0.45637060
98 0.43279348 0.45637060 0.49663900
99 0.43747816 0.49663900 0.52348460
100 0.46180246 0.52348460 0.53690740
101 0.46973038 0.53690740 0.54361880
102 0.45567634 0.54361880 0.55033020
103 0.44342410 0.55033020 0.55033020
104 0.44810878 0.55033020 0.55033020
105 0.48810874 0.55033020 0.51677320
106 0.53513572 0.51677320 0.49663900
107 0.54882940 0.49663900 0.48992760
108 0.50774836 0.48992760 0.52348460
109 0.41315386 0.52348460 0.60402140
110 0.28414498 0.60402140 0.72482660
111 0.07946050 0.72482660 0.83220900
112 0.02198308 0.83220900 0.92616860
113 0.00000000 0.92616860 0.97985980
114 0.03711820 0.97985980 0.96643700
115 0.16684780 0.96643700 0.92616860
116 0.24684772 0.92616860 0.85905460
117 0.29459542 0.85905460 0.80536340
118 0.32540620 0.80536340 0.75838360
119 0.33153232 0.75838360 0.72482660
120 0.32991070 0.72482660 0.69798100
121 0.34522600 0.69798100 0.67784680
122 0.39135208 0.67784680 0.65100120
123 0.41441512 0.65100120 0.63086700
124 0.44054122 0.63086700 0.59059860
125 0.48937000 0.59059860 0.54361880
126 0.56198254 0.54361880 0.48321620
127 0.64090138 0.48321620 0.40267940
128 0.72090130 0.40267940 0.33556540

69

Table A.1. Box-Jenkins Gas Furnace Dataset

𝑡 𝑈𝑡 𝑌𝑡−1 𝑌𝑡

129 0.77891926 0.33556540 0.25502860
130 0.80396428 0.25502860 0.21476020
131 0.79261294 0.21476020 0.19462600
132 0.75693730 0.19462600 0.20804880
133 0.66828874 0.20804880 0.24160580
134 0.60612664 0.24160580 0.28187420
135 0.59333386 0.28187420 0.32214260
136 0.59333386 0.32214260 0.34227680
137 0.60324376 0.34227680 0.35569960
138 0.62396446 0.35569960 0.34227680
139 0.65153200 0.34227680 0.32885400
140 0.66828874 0.32885400 0.32214260
141 0.66378424 0.32214260 0.30871980
142 0.63171220 0.30871980 0.32214260
143 0.56126182 0.32214260 0.37583380
144 0.46036102 0.37583380 0.44965920
145 0.38973046 0.44965920 0.51006180
146 0.38072146 0.51006180 0.55704160
147 0.41297368 0.55704160 0.57046440
148 0.45441508 0.57046440 0.56375300
149 0.48054118 0.56375300 0.53690740
150 0.50018080 0.53690740 0.51006180
151 0.51837898 0.51006180 0.49663900
152 0.54360418 0.49663900 0.48321620
153 0.58252306 0.48321620 0.44965920
154 0.59135188 0.44965920 0.42281360
155 0.59027080 0.42281360 0.40267940
156 0.59261314 0.40267940 0.40267940
157 0.59603656 0.40267940 0.38925660
158 0.61027078 0.38925660 0.37583380
159 0.65747794 0.37583380 0.34227680
160 0.73027066 0.34227680 0.29529700
161 0.75243280 0.29529700 0.25502860
162 0.73315354 0.25502860 0.24831720
163 0.62846896 0.24831720 0.27516280
164 0.52864924 0.27516280 0.33556540
165 0.44666734 0.33556540 0.41610220
166 0.36072148 0.41610220 0.49663900
167 0.29135218 0.49663900 0.56375300
168 0.26072158 0.56375300 0.65100120
169 0.27765850 0.65100120 0.69126960
170 0.36756832 0.69126960 0.69126960
171 0.49531594 0.69126960 0.60402140
172 0.58955008 0.60402140 0.53019600
173 0.60522574 0.53019600 0.45637060

70

Table A.1. Box-Jenkins Gas Furnace Dataset

𝑡 𝑈𝑡 𝑌𝑡−1 𝑌𝑡

174 0.57657712 0.45637060 0.43623640
175 0.50900962 0.43623640 0.44965920
176 0.43351420 0.44965920 0.49663900
177 0.36378454 0.49663900 0.55033020
178 0.30072154 0.55033020 0.60402140
179 0.26991076 0.60402140 0.65771260
180 0.27621706 0.65771260 0.69126960
181 0.33207286 0.69126960 0.69126960
182 0.42882952 0.69126960 0.64428980
183 0.50072134 0.64428980 0.59059860
184 0.50450512 0.59059860 0.54361880
185 0.48937000 0.54361880 0.53690740
186 0.48955018 0.53690740 0.53690740
187 0.52702762 0.53690740 0.51006180
188 0.58955008 0.51006180 0.46308200
189 0.63027076 0.46308200 0.42952500
190 0.64396444 0.42952500 0.38925660
191 0.65477524 0.38925660 0.36241100
192 0.64468516 0.36241100 0.35569960
193 0.56432488 0.35569960 0.45637060
194 0.42882952 0.45637060 0.53019600
195 0.31657738 0.53019600 0.67113540
196 0.16270366 0.67113540 0.83220900
197 0.06090196 0.83220900 0.93288000
198 0.03910018 0.93288000 0.96643700
199 0.04378486 0.96643700 0.99328260
200 0.06955060 0.99328260 0.99999400
201 0.11946046 0.99999400 0.97985980
202 0.17603698 0.97985980 0.94630280
203 0.26216302 0.94630280 0.89932300
204 0.38684758 0.89932300 0.80536340
205 0.46468534 0.80536340 0.72482660
206 0.48504568 0.72482660 0.64428980
207 0.48036100 0.64428980 0.59731000
208 0.46504570 0.59731000 0.57046440
209 0.43964032 0.57046440 0.57046440
210 0.39315388 0.57046440 0.59059860
211 0.33243322 0.59059860 0.66442400
212 0.26540626 0.66442400 0.71140380
213 0.23009098 0.71140380 0.76509500
214 0.23315404 0.76509500 0.78522920
215 0.27765850 0.78522920 0.79194060
216 0.34288366 0.79194060 0.76509500
217 0.37513588 0.76509500 0.72482660
218 0.38450524 0.72482660 0.69126960

71

Table A.1. Box-Jenkins Gas Furnace Dataset

𝑡 𝑈𝑡 𝑌𝑡−1 𝑌𝑡

219 0.37675750 0.69126960 0.66442400
220 0.36090166 0.66442400 0.65100120
221 0.33657736 0.65100120 0.64428980
222 0.30216298 0.64428980 0.65771260
223 0.24684772 0.65771260 0.69798100
224 0.19603696 0.69798100 0.73153800
225 0.19765858 0.73153800 0.77180640
226 0.28234318 0.77180640 0.78522920
227 0.40144216 0.78522920 0.75167220
228 0.46054120 0.75167220 0.67113540
229 0.48810874 0.67113540 0.63086700
230 0.47279344 0.63086700 0.57046440
231 0.37765840 0.57046440 0.58388720
232 0.29369452 0.58388720 0.65100120
233 0.21459550 0.65100120 0.72482660
234 0.15459556 0.72482660 0.77851780
235 0.12378478 0.77851780 0.81878620
236 0.12468568 0.81878620 0.85234320
237 0.13603702 0.85234320 0.87247740
238 0.13765864 0.87247740 0.88590020
239 0.16612708 0.88590020 0.88590020
240 0.25477564 0.88590020 0.87247740
241 0.30378460 0.87247740 0.83220900
242 0.32396476 0.83220900 0.79194060
243 0.34558636 0.79194060 0.76509500
244 0.33315394 0.76509500 0.72482660
245 0.30072154 0.72482660 0.71811520
246 0.28702786 0.71811520 0.72482660
247 0.33153232 0.72482660 0.72482660
248 0.41819890 0.72482660 0.69798100
249 0.52270330 0.69798100 0.64428980
250 0.60864916 0.64428980 0.56375300
251 0.61711762 0.56375300 0.49663900
252 0.59837890 0.49663900 0.42952500
253 0.57964018 0.42952500 0.40267940
254 0.59801854 0.40267940 0.40267940
255 0.65927974 0.40267940 0.36912240
256 0.70973014 0.36912240 0.32214260
257 0.71441482 0.32214260 0.29529700
258 0.63783832 0.29529700 0.29529700
259 0.50774836 0.29529700 0.42952500
260 0.49387450 0.42952500 0.56375300
261 0.55819876 0.56375300 0.63757840
262 0.65549596 0.63757840 0.59731000
263 0.67531576 0.59731000 0.48321620

72

Table A.1. Box-Jenkins Gas Furnace Dataset

𝑡 𝑈𝑡 𝑌𝑡−1 𝑌𝑡

264 0.64540588 0.48321620 0.38925660
265 0.58432486 0.38925660 0.34898820
266 0.50612674 0.34898820 0.37583380
267 0.40684756 0.37583380 0.42952500
268 0.35459536 0.42952500 0.48321620
269 0.31873954 0.48321620 0.55033020
270 0.30396478 0.55033020 0.59731000
271 0.32216296 0.59731000 0.62415560
272 0.37315390 0.62415560 0.62415560
273 0.41297368 0.62415560 0.61744420
274 0.43964032 0.61744420 0.59059860
275 0.46090156 0.59059860 0.54361880
276 0.48342406 0.54361880 0.51677320
277 0.50774836 0.51677320 0.48321620
278 0.53459518 0.48321620 0.46979340
279 0.53982040 0.46979340 0.46979340
280 0.48937000 0.46979340 0.49663900
281 0.40054126 0.49663900 0.58388720
282 0.35261338 0.58388720 0.69798100
283 0.34090168 0.69798100 0.76509500
284 0.35603680 0.76509500 0.83220900
285 0.39423496 0.83220900 0.87247740
286 0.45261328 0.87247740 0.86576600
287 0.49549612 0.86576600 0.85234320
288 0.52612672 0.85234320 0.81878620
289 0.53495554 0.81878620 0.78522920
290 0.52450510 0.78522920 0.76509500

73

CURRICULUM VITAE

Mohamed ALIWI graduated in 2019 as a computer engineer from Engineering
Faculty / Ondokuz Mayıs University. Started master program in 2019 at the Institute
of Graduate Studies / Ondokuz Mayıs University. Speaks Arabic (native), English and
Turkish. Worked as a developer with different organizations. (August, 2022).

Contact Information

ORCID NO : 0000-0002-9876-3430

Publications

1. M. Aliwi, S. Aslan and S. Demirci, ”Firefly Programming For Symbolic Regression
Problems,” 2020 28th Signal Processing and Communications Applications Conference
(SIU), 2020, pp. 1-4, doi: 10.1109/SIU49456.2020.9302201.

2. M. Aliwi, S. Aslan and S. Demirci, ”Solving UAV Localization Problem with
Firefly Algorithm,” 2020 28th Signal Processing and Communications Applications
Conference (SIU), 2020, pp. 1-4, doi: 10.1109/SIU49456.2020.9302366.

	Acceptance And Approval Of The Thesis
	Declaration Of Compliance With Scientific Ethic
	Declaration Of The Thesis Study Originality Report
	Özet
	Abstract
	Acknowledgements
	Contents
	Symbols and Abbreviations
	Figures Legends
	Tables Legends
	Introduction
	Research Objectives
	Thesis Structure

	Literature Review
	Machine Learning
	Machine Learning Tasks
	Learning Process

	Classical Regression
	Symbolic Regression
	Difference Between Classical & Symbolic Regression Methods
	Advantages & Disadvantages of Symbolic Regression
	Genetic Programming (GP)
	Development of the Basic Operators
	Development of Individual's Representation Structure

	Other Evolutionary Automatic Programming Methods

	Materials And Methods
	Firefly Algorithm
	The Behavior of the Fireflies in Nature
	The Describe of Firefly Algorithm
	Escaping Local Optima

	Firefly Programming
	Standard Firefly Programming (FP)
	Difference-based Firefly Programming (DFP)

	Experimental Results
	Solving Benchmark Problems
	FP & DFP Performance Comparison

	Box-Jenkins Gas Furnace Time Series Modeling and Forcasting

	Conclusion And Recommendations
	Conclusion
	Recommendations

	References
	Appendices
	Box-Jenkins Gas Furnace Dataset

	Curriculum Vitae

