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ÖZET 

SÜSPANSİYON SİSTEMİNİN YAY VE AMORTİSÖR DOĞRUSALSIZLIKLARI 

DİKKATE ALINARAK ELEKTRİKLİ OTOMOBİLLERDE BATARYA 

KONUMUNUN SÜRÜŞ KONFORU ÜZERİNE ETKİLERİNİN ANALİZİ 

Elektrikli otomobiller, içten yanmalı motorlu emsallerine göre hava ve gürültü kirliliğini 

azaltmak ve fosil yakıtlara olan ihtiyacı azaltmak gibi kayda değer avantajlara sahiptir. 

Bu nedenle otomotiv sektörünün geleceği olarak görülmektedirler. Tasarımlarındaki 

güncel konulardan biri de batarya yerleşimi için uygun yerlerin tespit edilmesidir. Bunun 

nedeni, bataryanın aracın toplam ağırlığına katkıda bulunan en büyük kalemlerden biri 

olması ve konumunun sürüş konforunu doğrudan etkilemesidir. Bu konu üzerine 

literatürde son zamanlarda birtakım çalışmalar yapılmıştır. Önceki bu çalışmalar, yayların 

ve amortisörlerin doğrusal olduğunun varsayıldığı süspansiyon modellerine 

dayanmaktadır. Bununla birlikte, gerçek yay ve amortisörler, ihmal edildikleri takdirde 

sürüş kalitesini olumsuz etkileyebilecek doğrusal olmayan karakteristiklere sahiptir. 

Bildiğimiz kadarıyla, bugüne kadar literatürde süspansiyonun yay ve amortisör 

doğrusalsızlıkları varlığında elektrikli otomobillerin batarya yerleşimi problemine 

odaklanmış herhangi bir çalışma mevcut değildir. Bu tez, literatürdeki bu önemli eksikliği 

gidermeyi amaçlamaktadır: Elektrikli otomobillerde batarya konumunun süspansiyon 

performansı üzerindeki etkileri literatürde ilk kez dinamik modelde doğrusal olmayan 

yaylar ve amortisörler kullanılarak analiz edilmiştir. Analizlerde tekerlek içi motorların 

ve bunların titreşim izolatörlerinin eklendiği ve tüm yay ve amortisörlerin kübik 

doğrusalsızlığa sahip olduğu modifiye bir yarım araba modeli kullanılmıştır. Tarif edilen 

bu matematiksel model kullanılarak bataryanın boylamasına eksen boyunca konumunun 

sürüş kalitesi üzerindeki etkileri incelenmiştir. İyi bir sürüş konforu için uygun batarya 

konumlarını oldukça gerçekçi bir şekilde belirlemek suretiyle, bu tezin elektrikli 

otomobillerin yaygınlaşmasını sağlayacağına inanılmaktadır.  
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ABSTRACT 

AN ANALYSIS OF THE EFFECTS OF BATTERY LOCATION IN ELECTRIC 

AUTOMOBILES ON RIDE COMFORT CONSIDERING SPRING AND DAMPER 

NONLINEARITIES OF SUSPENSION SYSTEM 

Electric vehicles have remarkable advantages over internal combustion engine vehicles 

such as reducing air and noise pollution and decreasing the need for fossil fuels. These 

advantages make electric vehicles the future of automobile industry. One recent problem 

in the design of electric vehicles is determination of suitable battery locations. This is 

because battery pack is one of the heaviest parts of electric vehicles and its location 

directly affects ride comfort. There is a growing number of studies on this topic. These 

previous studies are based on a model which assumes that springs and dampers are linear. 

In fact, real springs and dampers have nonlinearities which may affect ride comfort if 

neglected. To our best knowledge, there is not any research that investigates the effects 

of nonlinearities of the springs and dampers on suitable battery locations for electric 

vehicles. This thesis aims to fulfil this important gap in the literature. Effects of the battery 

location on the performance of suspension system of electric vehicles are analysed using 

a dynamic model with nonlinear springs and dampers for the first time in literature. A 

modified half-car model is used for the analyses, in which the in-wheel motors and their 

vibration isolators are included, and all the springs and dampers have cubic nonlinearities. 

Effects of the longitudinal battery location on ride comfort are analysed using the 

described model. This thesis is believed to contribute for increasing the usage of electric 

automobiles by realistically determining the appropriate battery locations for high quality 

ride comfort. 
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SYMBOLS 

Lagrangian Method 

L   : Lagrangian of the system 

K   : Total kinetic energy of the system 

U   : Total potential energy of the system 

D   : Dissipation function 

Rear Axle 

,Susp Rk   : Linear spring coefficient of rear suspension spring 

,UnMass Ry  : Vertical displacement of rear unsprung mass 

, ,Susp R NonLik  : Nonlinear spring coefficient of rear suspension spring 

,Susp Rc   : Linear damping coefficient of rear suspension damper 

,UnMass Ry  : Vertical velocity of rear unsprung mass 

, ,Susp R NonLic  : Nonlinear damping coefficient of rear suspension damper 

,Tire Rk   : Linear spring coefficient of rear tire 

,UnMass Ry  : Vertical displacement of rear unsprung mass 

, ,Tire R NonLik  : Nonlinear spring coefficient of rear tire 

,Tire Rc   : Linear damping coefficient of rear tire 

,UnMass Ry  : Vertical velocity of rear unsprung mass 

, ,Tire R NonLic  : Nonlinear damping coefficient of rear tire 

,UnMass Rm  : Rear unsprung mass 

,UnMass Ry  : Acceleration of rear unsprung mass 
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Front Axle 

,Susp Fk   : Linear spring coefficient of front suspension spring 

,UnMass Fy  : Vertical displacement of front unsprung mass 

, ,Susp F NonLik  : Nonlinear spring coefficient of front suspension spring 

,Susp Fc   : Linear damping coefficient of front suspension damper 

,UnMass Fy  : Vertical velocity of front unsprung mass 

, ,Susp F NonLic  : Nonlinear damping coefficient of front suspension damper 

,Tire Fk   : Linear spring coefficient of front tire 

,UnMass Fy  : Vertical displacement of front unsprung mass 

, ,Tire F NonLik  : Nonlinear spring coefficient of front tire 

,Tire Fc   : Linear damping coefficient of front tire 

,UnMass Fy  : Vertical velocity of front unsprung mass 

, ,Tire F NonLic  : Nonlinear damping coefficient of front tire 

,UnMass Fm  : Front unsprung mass 

,UnMass Fy  : Acceleration of the front unsprung mass 

Vehicle Body 

Bodym   : Mass of the vehicle body 

Chm   : Mass of the chassis 

Batm   : Mass of the battery 

Bodyy   : Vertical displacement of the vehicle body 
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Bodyy   : Vertical velocity of the vehicle body 

Bodyy   : Acceleration of the vehicle body 

CGl   : Distance of centre of gravity of the vehicle body from rear axle 

l   : Wheelbase of the vehicle 

Chl   : Distance of centre of gravity of the chassis from rear axle 

Batl   : Directed distance of centre of gravity of the battery from rear axle 

BodyI   : Mass moment of inertia of the vehicle body 

ChI   : Mass moment of inertia of the chassis 

BatI   : Mass moment of inertia of the battery 

   : Pitch angle of the vehicle body 

   : Pitch velocity of the vehicle body 

   : Pitch acceleration of the vehicle body 

Rear Motor 

Re   : Eccentricity of rear in-wheel motor’s unbalanced mass 

R   : Angular velocity of rear in-wheel motor 

RRPM   : Revolutions per minute of rear in-wheel motor 

V   : Velocity of the vehicle 

,Tire RD   : Diameter of the rear tire 

,MotorUnb Rm  : Rear in-wheel motor’s unbalanced mass 

,MVI Rk   : Linear spring coefficient of rear in-wheel motor isolator spring 

,M Ry   : Vertical displacement of rear in-wheel motor 
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,UnMass Ry  : Vertical displacement of rear unsprung mass 

, ,MVI R NonLik  : Nonlinear spring coefficient of rear in-wheel motor isolator spring 

,MVI Rc   : Linear damping coefficient of rear in-wheel motor isolator damper 

,M Ry   : Vertical velocity of rear in-wheel motor 

,UnMass Ry  : Vertical velocity of rear unsprung mass 

, ,MVI R NonLic  : Nonlinear damping coefficient of rear in-wheel motor isolator damper 

,Motor Rm  : Mass of rear in-wheel motor 

,M Ry   : Vertical acceleration of rear in-wheel motor 

Front Motor 

Fe   : Eccentricity of front in-wheel motor’s unbalanced mass 

F   : Angular velocity of front in-wheel motor 

FRPM   : Revolutions per minute of front in-wheel motor 

,Tire FD   : Diameter of the front tire 

,MotorUnb Fm  : Front in-wheel motor’s unbalanced mass 

,MVI Fk   : Linear spring coefficient of front in-wheel motor isolator spring 

,M Fy   : Vertical displacement of front in-wheel motor 

,UnMass Fy  : Vertical displacement of front unsprung mass 

, ,MVI F NonLik  : Nonlinear spring coefficient of front in-wheel motor isolator spring 

,MVI Fc   : Linear damping coefficient of front in-wheel motor isolator damper 

,M Fy   : Vertical velocity of front in-wheel motor 
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,UnMass Fy  : Vertical velocity of front unsprung mass 

, ,MVI F NonLic  : Nonlinear damping coefficient of front in-wheel motor isolator damper 

,Motor Fm  : Mass of front in-wheel motor 

,M Fy   : Vertical acceleration of front in-wheel motor 

Driver and Seat 

Seatk   : Linear spring coefficient of driver’s seat suspension spring 

Seaty   : Vertical displacement of driver and seat 

,Seat CGl   : Distance of driver’s seat from vehicle’s centre of gravity 

,Seat NonLik  : Nonlinear spring coefficient of driver’s seat suspension spring 

Seatc   : Linear damping coefficient of driver’s seat suspension damper 

Seaty   : Vertical velocity of driver and seat 

,Seat NonLic  : Nonlinear damping coefficient of driver’s seat suspension damper 

Seatm   : Mass of driver and seat 

Seaty   : Vertical acceleration of driver and seat 

Road Input 

h   : Height of the speed hump or bump 

   : Time difference between front and rear axle for passing the same obstacle 

Fu   : Road displacement input to the front tire 

Fu   : Road velocity input to the front tire 

Ru   : Road displacement input to the rear tire 
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Ru   : Road velocity input to the rear tire 

x   : Coordinate variable along the road 

   : Wavelength of the sinusoidal road profile 

A   : Amplitude of the sinusoidal road profile 

  



xi 

 

ABBREVIATIONS 

MVI  : Motor vibration isolator 

RMS  : Root-mean-square 
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1 INTRODUCTION 

Air pollution caused by motorway traffic is one of the most important problems for 

today’s cities (Andre et al., 2020; Harrison et al., 2021). For example, according to U.S. 

Environmental Protection Agency (EPA), 29% of total greenhouse gas emission 2019 in 

USA is caused by transportation sector. 25% of total greenhouse gas emissions in 

European Union is caused by transportation sector (European Commission, 2020). This 

situation is the result of the fact that the transportation sector heavily depends on fossil 

fuels (Vatsa et al., 2021) and it is the second largest energy consumer after the industry 

sector (Alimujiang and Jiang, 2020). According to World Health Organization (WHO), 

more than 80% of the world population lives in cities that have air pollution above the 

standard emission limits (Sofia et al., 2020). This statistical figure suggests that 

automotive industry should focus its efforts on increasing air quality in cities and 

decreasing the global climate change effects (Shafique et al., 2021). Electric vehicles are 

considered to provide an effective solution to these problems (Choma et al., 2020; Guo et 

al., 2020) and are expected to be the future of automotive industry (Verma et al., 2021). 

In addition to the advantages described above, electric vehicles operate quieter (Hua et 

al., 2021) and this advantage plays a key role to solve noise pollution (Pardo-Ferreira et 

al., 2020; Campello-Vicente et al., 2017). At this point it should be mentioned that electric 

vehicle technology product range is not just limited only to passenger cars but covers a 

wide variety from bicycles (e.g Tuncel, 2019; Uyar, 2019) to public transportation 

vehicles (e.g Avcı, 2019; Sazak, 2019; Tanyeri, 2019). This master thesis concentrates on 

battery electric passenger cars which have the biggest share in the market. There are three 

reasons for this: First, the number of electric vehicles that use other power sources 

including fuel cells is at relatively low levels (Parajuly et al., 2020). Second, the ultimate 

goal of the automotive industry is the full electric vehicle that uses battery as power source 

and hybrid vehicles are just an intermediate step in this market transition (Li et al., 2019a). 

Third, statistical analyses showed that in the European Union (UN) countries, 72% of 

greenhouse gas emissions are caused by highway transportation vehicles and the 

passenger cars are the first among the vehicles in this category (European Commission, 

2020). 

Increasing consumer awareness has begun to affect vehicle sales data. Market share of 

full electric vehicles and plug-in hybrid vehicles increased in 2020 to 74.8% in Norway, 
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52.4% in Iceland and 32.3% in Sweden (International Energy Agency (IEA), 2021). In 

order to increase these sales to desired levels globally, universities and industrial 

establishments are performing more and more research and development (R&D) studies 

on electric vehicles. Some of these studies can be reviewed under the following 

categories: 

a) Charging solutions (Arif et al., 2021; Bagchi et al., 2021; Mohammed and Jung, 

2021; Triviño et al., 2021; Machura and Li, 2019; Zhao et al., 2019; Ahmad et al., 

2018; Sun et al., 2018) 

b) Charging stations (Mishra et al., 2021; Chen et al., 2020; Funke et al., 2019; Deb 

et al., 2018; Khan et al., 2018) 

c) Battery cooling systems (Tete et al., 2021; Akinlabi and Solyali, 2020; Aswin 

Karthik et al., 2020; Choudhari et al., 2020; Kalaf et al., 2020; Kumar et al., 2020; 

Kim et al., 2019a; Xia et al., 2017) 

d) Battery safety (Aalund et al., 2021; Xu et al., 2020; Feng et al., 2018) 

e) Estimation of battery state-of-charge (Zhang et al., 2021; How et al., 2020; Ali et 

al., 2019; Kim et al., 2019b; Wang and Mu, 2019; Zhou et al., 2019) 

f) Estimation of remaining useful life of battery (Li et al., 2020; Lipu et al., 2018; Li 

et al., 2017b) 

g) Battery degradation (Nimesh et al., 2021; Iwafune and Ogimoto, 2020; Han et al., 

2019; Redondo-Iglesias et al., 2019; Pelletier et al., 2017) 

h) Reuse of used batteries (Braco et al., 2021; Gu et al., 2021; Živčák et al., 2021; 

Wu et al., 2020; Yang et al., 2020; Ioakimidis et al., 2019; Reinhardt et al., 2019; 

Casals et al., 2017a, 2017b; Li et al., 2017a) 

i) Waste battery management (Li et al., 2021; Preeti and Sayali, 2021; Skeete et al., 

2020; Hu et al., 2017; Xu et al., 2017) 

j) Crashworthiness and collision safety of electric vehicles (Albarella et al., 2021; 

Navale et al., 2021; Ijeh, 2020; Li et al., 2019b; Wu et al., 2019; Lian et al., 2018) 

However, perhaps the most important criterion influencing consumers’ automobile 

preferences is the satisfaction of the driving comfort needs at the highest level. For that 

reason, suspension system becomes a key component of automobiles. Ride comfort 

analysis of traditional internal combustion engine vehicles is a classical subject of vehicle 

dynamics (Jazar, 2014). In electric vehicles, depending on the vehicle’s manufacturer and 
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model, batteries can be located under the front or rear seats, or at the middle, underneath 

the floor (Ganesh and Venkatesan, 2021; Arora et al., 2016; Mazumder et al., 2012; 

Besselink et al., 2010). This fact makes the battery location an additional parameter that 

must be considered in the ride comfort analysis. Wang (2020) focusing on passive 

suspension systems stated that battery location must be optimised to improve ride comfort 

quality. Wang et al. reached similar results on their study focused on active suspension 

systems published in 2014. However, in these studies, suspension system members are 

modelled as linear springs and dampers. This modelling approach is commonly used in 

ride comfort analysis to simplify calculations (Narayanan and Senthill, 1998). But in all 

real springs and dampers, there are always nonlinearities (Doebelin, 1998).  

For the reasons and facts given above, this master thesis’s main research question is 

determined as follows: “What are the effects of battery location on electric vehicle 

vibrations in cases where the nonlinear characteristics of springs and dampers within the 

suspension system are not negligible?” 

1.1 Aim and Scope of the Thesis 

In recent years, global warming due to the climate change has reached critical points 

(Jena, 2020). A recent compilation of the reports published by World Health Organization 

(WHO) and United Nations (UN) can be found in an article by Nguyen et al. (2020). With 

transition to electric vehicles, emission of greenhouse gasses, air and noise pollution and 

the need for fossil fuels will decrease (Di Felice et al., 2020; Pandey et al., 2020; Praticò 

et al., 2020; Varma et al., 2020) and important gains for human health are being expected 

(Choma et al., 2020; Gai et al., 2020). Different types of electric motors and batteries are 

used in electric vehicles (Kaya and Kıyak, 2020; Iclodean et al., 2017). For this reason, 

developments on battery and charging technologies have a key role in this transition 

(Yang et al., 2021; Ball et al., 2020; Daga et al., 2017; Bindra, 2017). Some of the other 

important factors that contribute to the growth of the electric automobile market are 

growth of charging infrastructure (Illmann and Kluge, 2020; Ou et al., 2020), financial 

incentives for electric vehicles (Münzel et al., 2019; Lévay et al., 2017), and development 

and improvement of product portfolios (Kieckhäfer et al., 2017). Another worthy factor 

regarding to this transition is consumers’ habits and their willingness towards the 

adoption of new technologies (Huang et al., 2021; Jaiswal et al., 2021; Shetty et al., 2020; 

Rezvani et al., 2015). Ride comfort is one of the indispensable criteria for customers while 
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selecting a car. For that reason, the analysis of vehicle vibrations is a main research 

subject in automotive engineering. As shown in a recent study by Wang (2020) where 

linear spring and damper models are used, battery location is a key parameter that must 

be taken into account while analysing ride comfort of electric vehicles. Linear spring and 

damper models are used to simplify the computations; however, it is well known that real 

springs and real dampers inherently have nonlinear characteristics (Sever et al., 2019). To 

our best knowledge, there is no previous study or research that analysed the effects of 

battery location on vibrations of electric vehicles in the presence of suspension 

nonlinearities. This master thesis aims to fulfil this important gap in literature. 

The objectives of the thesis are as follows: 

1. To analyse the effects of battery location on vehicle vibrations induced by road 

irregularities and rotating unbalance of the in-wheel motors by using a dynamic 

model that has nonlinear suspension springs and dampers 

2. To model the wheels’ structural elasticity and damping characteristics as 

nonlinear spring and damper model in the analyses described in the first objective 

3. To model the seat suspension and the in-wheel motor vibration isolators by using 

nonlinear springs and dampers in order to ensure the completeness of the work 

4. To determine the optimal battery location for electric vehicles based on the results 

of the analyses performed under conditions that are very close to those of the real-

world situations as described in first, second and third objectives 

5. To contribute to the design of electric vehicles with high ride comfort 

The theories and models that the thesis is built on are explained below: 

a) The vehicle is modelled based on the bicycle vibration model (Jazar, 

2014). In-wheel motors and motor isolators are added to this model by using the 

studies of Quynh et al. (2019) and Wang (2020). 

b) The equations of motion of the vehicle are derived using the Lagrange 

theory (Wachter and Hoeber, 2006). 

c) Each spring is modelled as Duffing spring (Schmitz and Smith, 2012). 

d) Each damper is modelled to have cubic nonlinearities (Shafiei, 2021; 

Zilletti et al., 2017; Ho et al., 2014, 2012; Peng et al., 2012; Meskell, 2006). 
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2 DYNAMIC MODEL OF THE VEHICLE 

Vibration model of the electric vehicle relies on the bicycle vibration model (Jazar, 2014). 

This model is also known as the half-car model, and it has four degrees of freedom. These 

are the vehicle body’s heave and pitch motions, and vertical translations of the rear and 

front axles (Rajamani, 2012). For ensuring acceptable cornering performance, the centre 

of gravity of the vehicle is placed at the midpoint of the lateral axis (Mazumder et al., 

2012). But the battery, which has a significant contribution to the total weight of the 

vehicle, is placed at various locations along the longitudinal axis according to the 

manufacturer and model (Ganesh and Venkatesan, 2021; Arora et al., 2016; Mazumder 

et al., 2012; Besselink et al., 2010). This fact implies that the modified half-car model is 

suitable for realizing this thesis’ aim and objectives. This model is modified in accordance 

with the studies done by Quynh et al. (2019) and Wang (2020) to include in-wheel motors 

and their vibration isolator. A model like this modified model was also used in an article 

published by Huang and Nguyen in 2021. The difference of the model in this thesis is in 

that all springs are modelled as Duffing spring (Schmitz and Smith, 2012) and all dampers 

modelled as they have cubic nonlinearities (Shafiei, 2021; Zilletti et al., 2017; Ho et al., 

2014, 2012; Peng et al., 2012; Meskell, 2006). The seat suspension dynamics are also 

included in the model. The equations of motion of the vehicle are derived using the 

Lagrange method (Wachter and Hoeber, 2006). The obtained differential equations are 

numerically solved. 

2.1 The Half-Car Model 

The vehicle dynamic model used in this thesis is based on the classical half-car model 

shown in Figure 2.1. In this model, vehicle is considered as a two-wheeler which has four 

degrees of freedom. These are the vertical motion and pitch motion of the sprung mass, 

and the vertical motions of the unsprung masses. Tires and suspensions are modelled as 

spring-damper systems. Damping and spring characteristics are generally modelled using 

linear equations. 

Battery is located within the sprung mass and does not have any suspension. In-wheel 

motors are attached to rear and front unsprung mass, as shown in Figure 2.2. Each motor 

vibration isolator is composed of one spring and one damper. Each motor has one 

translational degree of freedom in the vertical direction. 
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Figure 2.1. Schematics of the classical half-car model.
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Figure 2.2. Considered half-car model.
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For ride comfort analysis, driver and driver’s seat with seat suspension is also included 

in the half-car model. Seat suspension has one spring and one damper. The combined 

mass of the driver and seat has one translational degree of freedom in the vertical 

direction. Model has totally seven degrees of freedom. All springs and dampers are 

modelled using nonlinear equations. Trigonometric nonlinearities are also considered. 

2.2 Equations of Motion of the Vehicle 

The equations of motion of the vehicle are derived by using the Lagrange’s equation as 

follows: 

 i

i i i

d L L D
Q

dt q q q

   
− + = 

   
,      i = 1, 2…, 7 (1) 

where t  denotes the time, iq ’s are the generalised coordinates of the system, L  is the 

Lagrangian, D is the dissipation function, and iQ ’s are the nonconservative generalised 

forces other than the dissipation forces. The Lagrangian of the system is defined as  

 L K U= −  (2) 

where U  is the total potential energy of the vehicle and K  is its total kinetic energy. 

For our modified half-car model, the kinetic energy expression is  

 

2 2 2

, , , ,

2 2 2 2

, , , ,

1
(

2

)

UnMass R UnMass R Motor R M R Body Body

UnMass F UnMass F Motor F M F Seat Seat Body

K m y m y m y

m y m y m y I 

= + +

+ + + +

 (3) 

where all the displacements are measured from the undeformed state. If the springs in 

the model were all linear, the total elastic potential energy of the vehicle would be 

written as 

 

2 2
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, , ,
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( ) ( (
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Susp F Body CG UnMass F

MVI F M F UnMass F Seat Seat Body

U k y u k y l y

k y y k y u

k y l l y

k y y k y y l





= − + + −

+ − + −

+ − − −

+ − + − − 2

, sin( ))) )Seat CG 

 (4) 

Similarly, if the viscous dampers in the model were all linear, the dissipation function 

would be expressed as 
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 (5) 

However, there are instances where a nonlinear model better describes the system 

behaviour. One way to incorporate nonlinear behaviour is the use of nonlinear springs. A 

common nonlinear spring model, referred to as a Duffing spring, includes a cubic 

nonlinearity and is given by (Schmitz and Smith, 2012) 

 
3

0 1f k k = +  (6) 

Here, f  denotes the spring force,   denotes deflection of spring, and 0k  and 1k  are 

linear and cubic spring constants, respectively. When the nonlinearities of the springs 

are taken into account, the total elastic potential energy expression becomes 
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(7) 

So, the total potential energy of the system is 
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where g  denotes the gravitational acceleration, and 0U  is a constant that depends on the 

selected datum for gravitational potential energy. 

In the presence of cubic damping nonlinearities, the dissipation function can be written 

as 
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(9) 

Using the equations written above, we can derive equations of motion for rear axle, 

front axle, vehicle body, front motor, rear motor, and the driver and seat as explained 

below. 

2.2.1 Rear motor 

 , ,
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 (10) 

 , ,
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 (11) 
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(14) 

Therefore, the equation of motion that corresponds to the generalised coordinate 
,M Ry  

can be written as 
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where 

 
2

, , sin( )MotorUnb R MotorUnb R R R RF m e t =  (16) 

with 

 2
60
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RPM
 =  (17) 

 
,

60

3.6
R

Tire R

V
RPM

D
=  (18) 

Here, R is in rad/s, the vehicle velocity V  is in km/h, and 
,Tire RD  is in meters. 

2.2.2 Front motor 
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(23) 

Hence, the equation of motion that corresponds to the generalised coordinate 
,M Fy  can 

be written as 
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where 
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Here, F  is in rad/s, the vehicle velocity V  is in km/h, and 
,Tire FD  is in meters. 

2.2.3 Rear axle 
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Thus, the equation of motion that corresponds to the generalised coordinate 
,UnMass Ry  can 

be written as 
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2.2.4 Front axle 
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Therefore, the equation of motion that corresponds to the generalised coordinate 
,UnMass Fy  

can be written as 
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 (39) 

2.2.5 Driver and seat 

 Seat Seat
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
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
 (40) 
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 Seat Seat

Seat
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m y
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 (41) 
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 (44) 

Hence, the equation of motion that corresponds to the generalised coordinate Seaty  can be 

written as 

 

,
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( ( cos( )))

( ( cos( ))) 0

Seat Seat Seat Seat Body Seat CG
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 (45) 

2.2.6 Vehicle body 

The inertial parameters of the vehicle body can be computed as follows: 

 Body Ch Batm m m= +  (46) 

 
Ch Ch Bat Bat

CG

Ch Bat

m l m l
l

m m

+
=

+
 (47) 

 ( ) ( )
2 2

Body Ch Ch CG Ch Bat Bat Bat CGI I m l l I m l l= + − + + −  (48) 

Then, 

 Body Body

Body

L
m y

y


=


 (49) 
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 Body Body

Body

d L
m y

dt y
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 (50) 
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Thus, the equation of motion that corresponds to the generalised coordinate 
Bodyy  can be 

written as 
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(54) 

Similarly, 
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 (55) 
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(59) 

Finally, the equation of motion that corresponds to the generalised coordinate   can be 

written as 
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(60) 

2.3 Initial Conditions for the Model 

To solve the dynamic equations of the model, we need to find the initial values of the 

model’s generalised coordinates. We can write the static equilibrium equations and solve 

them together to find the necessary initial conditions at position level. The initial 

generalised velocities of the model are zero. 

2.3.1 Static equilibrium equation for rear axle 
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2.3.2 Static equilibrium equation for front axle 
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2.3.3 Static equilibrium equation for front motor 
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, , , , , , , ,( ) ( ) 0MVI F M F UnMass F MVI F NonLi M F UnMass F Motor Fk y y k y y m g− + − + =  (63) 
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2.3.4 Static equilibrium equation for rear motor 
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2.3.5 Static equilibrium equations for vehicle body 
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2.3.6 Static equilibrium equation for driver and seat 
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2.4 Selection of the Model Parameter Values 

This section explains the procedure for the selection of the numerical values of the 

vehicle suspension model parameters. 

2.4.1 Rear and front motor parameters 

The numerical values found in the literature for rear and front in-wheel motor parameters 

are presented in Table 2.1. 

2.4.2 Rear axle parameters 

The numerical values found in the literature for rear axle parameters are presented in 

Table 2.2. 

2.4.3 Front axle parameters 

The numerical values found in the literature for front axle parameters are presented in 

Table 2.3. 
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Table 2.1. Parameter values for rear and front motors. 

Rear and front motors 

Reference 
MVIk  

(N/m) 

,MVI NonLik  

(N/m3) 

MVIc  

(N·s/m) 

,MVI NonLic  

(N·s3/m3) 

Motorm  

(kg) 

MotorUnbm  

(kg) 

e  

(mm) 

Tan et al., 2017 - - - - 60 - - 

Tan and Wang, 

2016 

- - - - 50 - - 

Liu et al., 2017 2615 - 3226 - 45 - - 

Qin et al., 2018 53000 - 1900 - 45 - - 

Toksoy, 2020 25000 - 1686 - 30 - - 

Shao et al., 

2017 

41000 - 1000 - 30 - - 

Yu et al., 2019 - - - - 20 - 1.5 

Tong and Hou, 

2013 

13200 - 90 - 10 - - 

Qin et al., 2021 53000 - 1900 - 45 - - 

 

2.4.4 Chassis and battery parameters 

The numerical values found in the literature for chassis and battery parameters in the 

half-vehicle model are presented in Table 2.4. 

2.4.5 Parameters for driver and seat 

The numerical values found in the literature for driver and seat parameters are presented 

in Table 2.5. 

2.4.6 Selected values for the vehicle dynamic model parameters 

The numerical values provided in Tables 2.6 through 2.11 are used for the vehicle 

dynamic model parameters in our numerical analyses. These values are selected based on 

the averages of the corresponding values found in the literature. The values that are not 

found in the previous studies are reasonably estimated. 
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Table 2.2. Parameter values for rear axle. 

Rear axle 

Reference 
,Susp Rk  

(N/m) 

, ,Susp R NonLik  

(N/m3) 

,Susp Rc  

(N·s/m) 

, ,Susp R NonLic  

(N·s3/m3) 

,Tire Rk  

(N/m) 

, ,Tire R NonLik  

(N/m3) 

,Tire Rc  

(N·s/m) 

, ,Tire R NonLic  

(N·s3/m3) 

,UnMass Rm  

(kg) 

Jiao, 2013 300000 - 20000 - 1000000 - 500 - 350 

Gao et al., 2007 66824.4 - 1190 - 101115 - - - 87.15 

Mahala et al., 2009 15000 - 1070 - 190000 - - - 59 

Shelke and Mitra, 2018 18000 - 500 - 102017.2 - 138 - 45 

Yildirim and Esen, 2020 20000 - 1000 - 120000 - 50 - 50 

Zou et al., 2018 46000 - - - 250000 - - - 42 

Patole and Sawant, 2015 14662 - 1635.2 - 181818.88 - 13.8 - 28 

Zhu and Ishitobi, 2006 38000 1.5 1000 - 190000 1.25 10 - 59 

Hassanzadeh et al., 2010 10000 10000 1000 500 100000 - - - 30 

El-Mezayen et al., 2020 15302 2728 3482 580 60063 22875 - - 39 

Goga and Kľúčik, 2012 18615 - 1000 - 200000 - - - 140.04 
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Table 2.3. Parameter values for front axle. 

Front axle 

Reference 
,Susp Fk  

(N/m) 

, ,Susp F NonLik  

(N/m3) 

,Susp Fc  

(N·s/m) 

, ,Susp F NonLic  

(N·s3/m3) 

,Tire Fk  

(N/m) 

, ,Tire F NonLik  

(N/m3) 

,Tire Fc  

(N·s/m) 

, ,Tire F NonLic  

(N·s3/m3) 

,UnMass Fm  

(kg) 

Jiao, 2013 400000 - 40000 - 1800000 - 1000 - 450 

Gao et al., 2007 18615 - 1000 - 101115 - - - 140.4 

Mahala et al., 2009 15000 - 1070 - 190000 - - - 59 

Shelke and Mitra, 2018 18000 - 500 - 102017.2 - 138 - 45 

Esen, 2020 30000 - 1200 - 150000 - 60 - 50 

Zou et al., 2018 42000 - - - 250000 - - - 40 

Patole and Sawant, 2015 12394 - 138.54 - 181818.88 - 13.8 - 23.61 

Zhu and Ishitobi, 2006 35000 1.5 720 - 190000 1.25 10 - 59 

Hassanzadeh et al., 2010 10000 10000 1000 500 100000 - - - 40 

El-Mezayen et al., 2020 15302 2728 3482 580 60063 22875 - - 39 

Goga and Kľúčik, 2012 66824.2 - 1190 - 200000 - - - 87.15 
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Table 2.4. Parameter values for chassis and battery in the half-vehicle model. 

Chassis and battery 

Reference Chm  (kg) Batm  (kg) l  (mm) Chl  (mm) ChI  (kg·m2) Battery Location 

Jiao, 2013 8800 - 3600 2540 50000 - 

Gao et al., 2007 1794.4 - 2987 1271 3443.05 - 

Mahala et al., 2009 677 - 3417 1633 1406.895 - 

Shelke and Mitra, 2018 600 - 2650 1150 730 - 

Esen, 2020 1500/2 - 2500 1100 1680/2 - 

Zou et al., 2018 900 - 2850 1480 1850 - 

Patole and Sawant, 2015 515.45 - 2500 1550 1238.369 - 

Zhu and Ishitobi, 2006 1500/2 - 3000 1700 2160/2 - 

Hassanzadeh et al., 2010 580 - 2700 1450 910 - 

El-Mezayen et al., 2020 (4 × 295)/2 - - - - - 

Goga and Kľúčik, 2012 1794 - 2984 1713 3443.05 - 

Average of 28 recent EVs in the 

market (EVSpecifications, 

2022)  

1360/2 382.73/2 2701 - - Under the floor, middle 
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Table 2.5. Parameter values for driver and seat. 

Driver and seat 

Reference 
Seatk  

(N/m) 

,Seat NonLik  

(N/m3) 

Seatc  

(N·s/m) 

,Seat NonLic  

(N·s3/m3) 

Seatm  

(kg) 

Esen, 2020 8000 - 600 - 80 

Sever and Yazıcı, 2017 31000 - 830 - 67.2 

Toksoy, 2020 10000 - 800 - 100 

Rajkumar et al., 2015 31000 - 830 - 71.2 

Zhao et al., 2010 31000 - 830 - 71.2 

Devdutt, 2017 7550 - 850 - 75 

 

Table 2.6. Selected parameter values for the rear motor. 

,MVI Rk  (N/m) 27500 

, ,MVI R NonLik  (N/m3) 5500 

,MVI Rc  (N·s/m) 1520 

, ,MVI R NonLic  (N·s3/m3) 304 

,Tire RD  (m) 0.632 

,Motor Rm  (kg) 36 

,MotorUnb Rm  (kg) 30 

Re  (m) 0.015 
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Table 2.7. Selected parameter values for the front motor. 

,MVI Fk  (N/m) 27500 

, ,MVI F NonLik  (N/m3) 5500 

,MVI Fc  (N·s/m) 1520 

, ,MVI F NonLic  (N·s3/m3) 304 

,Tire FD  (m) 0.632 

,Motor Fm  (kg) 36 

,MotorUnb Fm  (kg) 30 

Fe  (m) 0.015 

 

Table 2.8. Selected parameter values for the chassis and battery in the half-vehicle 

model. 

Chm  (kg) 1450/2 

Batm  (kg) 385/2 

l  (m) 2.7 

Batl  (m) From -0.4 to 3.1 

Chl  (m) 1.5 

ChI  (kg·m2) 4400/2 

BatI  (kg·m2) 140/2 
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Table 2.9. Selected parameter values for the rear axle. 

,Susp Rk  (N/m) 61000 

, ,Susp R NonLik  (N/m3) 12000 

,Susp Rc  (N·s/m) 3600 

, ,Susp R NonLic  (N·s3/m3) 720 

,Tire Rk  (N/m) 280000 

, ,Tire R NonLik  (N/m3) 56000 

,Tire Rc  (N·s/m) 300 

, ,Tire R NonLic  (N·s3/m3) 60 

,UnMass Rm  (kg) 45 

 

Table 2.10. Selected parameter values for the front axle. 

,Susp Fk  (N/m) 61000 

, ,Susp F NonLik  (N/m3) 12000 

,Susp Fc  (N·s/m) 3600 

, ,Susp F NonLic  (N·s3/m3) 720 

,Tire Fk  (N/m) 280000 

, ,Tire F NonLik  (N/m3) 56000 

,Tire Fc  (N·s/m) 300 

, ,Tire F NonLic  (N·s3/m3) 60 

,UnMass Fm  (kg) 45 
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Table 2.11. Selected parameter values for the driver and seat. 

Seatk  (N/m) 19000 

,Seat NonLik  (N/m3) 3800 

Seatc  (N·s/m) 600 

,Seat NonLic  (N·s3/m3) 120 

Seatm  (Including driver) (kg) 85 

Seatl  (m) 1.45 

2.5 Road Profiles for the Numerical Analyses 

Equation (68) is used for generating the road profiles. Function parameters are modified 

to resemble speed bumps and speed humps used on city roads as shown in Figures 2.3 

and 2.4. 

where N is the number of obstacles, h is the height of the obstracle and x is the 

coordinate variable along the road. Using the numerical values reported by Weber (1998), 

the road profiles with speed bumps and speed humps are generated as shown in Figures 

2.3 and 2.4, respectively. 

 

Figure 2.3. Road profile with speed bumps. 

 

 

Figure 2.4. Road profile with speed humps. 
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2.5.1 Road input to the front tire 

The road input functions acting on the front tire are given by 

where V  is the vehicle speed in m/s and 

2.5.2 Road input to the rear tire 

The road input functions acting on the rear tire are given by 

where V  is the vehicle speed in m/s and  is the time delay in seconds for the rear tire to 

pass the same obstacle that the front tire passed.  value is calculated by dividing the 

vehicle’s wheelbase by the vehicle’s velocity. 

2.6 Root-Mean-Square 

The root-mean-square (RMS) is used to analyse and compare the vertical accelerations 

of driver and seat obtained with different velocities, battery locations and road profiles. 
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The RMS value of an n -dimensional vector p  is calculated as follows (MathWorks, 

2022): 

2.7 Solving the Model and Obtaining the RMS Values 

Dynamic model is numerically solved using a fixed-step solver, namely, the fourth order 

Runge-Kutta method (Burden and Faires, 2011). The step size is selected as 0.0001 s. An 

example of obtaining the RMS values with the vehicle speed 60 km/h and the battery 

located at lBat = 0.5 m for the road with speed bumps is given below step by step. 

First, we determine the initial conditions for the model. Equations (61)-(67) are solved 

together numerically to find the initial values of the generalised coordinates. 

 

Table 2.12. Numerically found initial values of the generalised coordinates. 

Symbol Value 

st  -0.0025 rad 

,Body sty  -0.1011 m 

, ,M F sty  -0.0326 m 

, ,M R sty  -0.0338 m 

,Seat sty  -0.1445 m 

, ,UnMass F sty  -0.0198 m 

, ,UnMass R sty  -0.0210 m 

 

Then, the road profile having speed bumps is generated according to Figure 2.3 and the 

road inputs are obtained for front and rear tires using equations (69), (70), (72) and (73). 

The resulting front and rear road displacement inputs are shown in Figures 2.5 and 2.6, 

respectively. 

2

1

1 n

RMS i

i

p p
n =

=   (74) 
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Figure 2.5. Bumpy road input to the front tire as a function of time. 

 

 

Figure 2.6. Bumpy road input to the rear tire as a function of time. 

 

When we solve the equations of motions using the obtained initial conditions at position 

level and zero initial generalised velocities, we can find the time histories of the 

generalised coordinates, velocities, and accelerations for the given road profile with 60 

km/h vehicle velocity and the battery located at lBat = 0.5 m and these time histories are 

shown in Figures 2.7 through 2.27. 
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Figure 2.7. Vertical position of the driver and seat against time. 

 

Figure 2.8. Vertical velocity of the driver and seat against time. 

 

Figure 2.9. Vertical acceleration of the driver and seat against time. 
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Figure 2.10. Rear unsprung mass vertical position against time. 

 

Figure 2.11. Rear unsprung mass vertical velocity against time. 

 

Figure 2.12. Rear unsprung mass vertical acceleration against time. 
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Figure 2.13. Front unsprung mass vertical position against time. 

 

Figure 2.14. Front unsprung mass vertical velocity against time. 

 

Figure 2.15. Front unsprung mass vertical acceleration against time. 
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Figure 2.16. Vehicle body vertical position against time. 

 

Figure 2.17. Vehicle body vertical velocity against time. 

 

Figure 2.18. Vehicle body vertical acceleration against time. 
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Figure 2.19. Vehicle body pitch angle against time. 

 

Figure 2.20. Vehicle body pitch angular velocity against time. 

 

Figure 2.21. Vehicle body pitch angular acceleration against time. 
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Figure 2.22. Rear in-wheel motor vertical position against time. 

 

Figure 2.23. Rear in-wheel motor vertical velocity against time. 

 

Figure 2.24. Rear in-wheel motor vertical acceleration against time. 
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Figure 2.25. Front in-wheel motor vertical position against time. 

 

Figure 2.26. Front in-wheel motor vertical velocity against time. 

 

Figure 2.27. Front in-wheel motor vertical acceleration against time. 

To compare ride comfort quality between different vehicle velocities and different battery 

locations, RMS accelerations of the driver and seat are computed using Equation (74) and 

are used for comparisons. The solution process exemplified above is repeated for each 

vehicle velocity, battery location and road profile.  
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3 RESULTS AND DISCUSSION 

Dynamic model is numerically solved using vehicle speeds from 30 km/h to 120 km/h 

with 10 km/h increments and battery locations from -0.4 to 3.1 m when measured from 

the rear axle. All the model parameters are kept the same except the vehicle speed and 

battery location. The output response is considered as the vertical acceleration of the 

driver, and its RMS value is taken into account in the evaluations. The RMS acceleration 

values have been calculated for road profiles with speed bumps and speed humps that are 

given respectively in Figures 2.3. and 2.4. 

3.1 Results for the Road Profile with Speed Bumps 

The results of the RMS vertical acceleration of the driver and seat versus the battery 

location are given in Figure 3.1 and Table 3.1 for the road profile having speed bumps. 

3.2 Results for the Road Profile with Speed Humps 

The results of the RMS vertical acceleration of the driver and seat versus the battery 

location are given in Figure 3.2 and Table 3.2 for the road profile having speed humps. 
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Figure 3.1. RMS acceleration versus battery location for bumpy road profile. 
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Table 3.1. RMS acceleration values (m/s2) for different vehicle speeds and battery locations with bumpy road profile. 

Batl (m) 
V  Vehicle Speed (km/h) 

30 40 50 60 70 80 90 100 110 120 Average 

3.1 1.3728 1.7338 2.3956 3.3402 4.5673 6.1561 8.2848 11.1764 15.1831 20.7819 7.4992 

2.9 1.3725 1.7278 2.397 3.3569 4.5941 6.2354 8.4219 11.4059 15.5593 21.385 7.64558 

2.7 1.3715 1.7186 2.3942 3.369 4.6316 6.31 8.555 11.633 15.9362 21.996 7.79151 

2.5 1.3703 1.7062 2.387 3.3757 4.6633 6.3782 8.6817 11.8542 16.3084 22.6036 7.93286 

2.3 1.3695 1.6911 2.3754 3.3766 4.6881 6.4385 8.7994 12.0655 16.6698 23.1992 8.06731 

2.1 1.3696 1.6739 2.3594 3.3713 4.705 6.4892 8.9055 12.2627 17.0138 23.7727 8.19231 

1.9 1.3713 1.6553 2.3393 3.3596 4.7132 6.5286 8.9974 12.4418 17.3339 24.3136 8.3054 

1.7 1.3753 1.6365 2.3384 3.3417 4.7121 6.5555 9.0729 12.5989 17.6237 24.812 8.4067 

1.5 1.3821 1.6185 2.2894 3.3179 4.7017 6.5692 9.1301 12.7307 17.8777 25.2588 8.48761 

1.3 1.392 1.6027 2.2615 3.2848 4.6821 6.5693 9.1679 12.8347 18.0916 25.6467 8.55333 

1.1 1.3987 1.5905 2.2358 3.2525 4.6468 6.5341 9.1369 12.8133 18.0877 25.6725 8.53688 

0.9 1.4067 1.5829 2.2155 3.2253 4.6158 6.5022 9.1072 12.7902 18.0769 25.6828 8.52055 

0.7 1.4168 1.5798 2.2008 3.2046 4.5931 6.4814 9.0939 12.7922 18.1057 25.7551 8.52234 

0.5 1.4283 1.5809 2.1917 3.1909 4.5789 6.4718 9.0692 12.8176 18.1703 25.8822 8.53818 

0.3 1.4406 1.5854 2.188 3.184 4.5733 6.4731 9.1134 12.8642 18.2664 26.0595 8.57479 

0.1 1.4531 1.5929 2.1893 3.1836 4.5757 6.4846 9.144 12.9294 18.3894 26.27 8.6212 

0 1.4593 1.5974 2.1916 3.1857 4.5797 6.4938 9.1638 12.9681 18.4594 26.389 8.64878 

-0.2 1.4713 1.6078 2.1991 3.1936 4.5926 6.5185 9.2112 13.0559 18.6138 26.6469 8.71107 

-0.4 1.4827 1.6194 2.2096 3.2061 4.6112 6.5501 9.2674 13.1551 18.7833 26.9253 8.78102 
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Figure 3.2. RMS acceleration versus battery location for the road profile with speed humps. 
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Table 3.2. RMS acceleration values (m/s2) for different vehicle speeds and battery locations with the road profile having speed humps. 

Batl (m) 
V  Vehicle Speed (km/h) 

30 40 50 60 70 80 90 100 110 120 Average 

3.1 4.6872 3.1731 2.3161 2.1543 2.1804 2.2699 2.3992 2.5276 2.632 2.7154 2.70552 

2.9 4.5659 3.0353 2.2435 2.1272 2.1737 2.2754 2.4123 2.5456 2.6533 2.7397 2.67719 

2.7 4.3712 2.8589 2.158 2.0933 2.1616 2.2763 2.4213 2.5597 2.6711 2.7605 2.63319 

2.5 4.0936 2.6446 2.0634 2.0537 2.144 2.272 2.4253 2.5692 2.6844 2.777 2.57272 

2.3 3.727 2.3978 1.9659 2.0102 2.1212 2.2622 2.4238 2.573 2.6921 2.788 2.49612 

2.1 3.2708 2.1317 1.8745 1.965 2.0936 2.2464 2.4159 2.5702 2.6933 2.7925 2.40539 

1.9 2.7331 1.8718 1.8004 1.9212 2.062 2.2246 2.401 2.5601 2.6868 2.7893 2.30503 

1.7 2.1377 1.6615 1.756 1.8819 2.027 2.1966 2.3787 2.5419 2.6719 2.7774 2.20306 

1.5 1.5444 1.5595 1.7517 1.8503 1.9898 2.1626 2.3486 2.5151 2.6479 2.7561 2.1126 

1.3 1.1219 1.6116 1.7925 1.8291 1.9517 2.123 2.3109 2.4795 2.6146 2.725 2.05598 

1.1 1.1183 1.6568 1.7942 1.8002 1.9172 2.09 2.2799 2.4502 2.5867 2.6986 2.03921 

0.9 1.3198 1.8107 1.8601 1.8064 1.9032 2.0702 2.2581 2.4276 2.5641 2.6764 2.06966 

0.7 1.6217 2.0597 1.9946 1.8509 1.9099 2.0627 2.2442 2.4103 2.5452 2.6569 2.13561 

0.5 1.9533 2.3486 2.1702 1.9244 1.9345 2.0669 2.2383 2.399 2.5309 2.6412 2.22073 

0.3 2.2746 2.6394 2.362 2.0164 1.9731 2.0811 2.24 2.3937 2.5218 2.6298 2.31319 

0.1 2.5643 2.91 2.5522 2.1171 2.0211 2.1034 2.2486 2.3944 2.5179 2.6232 2.40522 

0 2.6936 3.034 2.643 2.1681 2.0473 2.1168 2.255 2.3967 2.5178 2.6218 2.44941 

-0.2 2.9175 3.2553 2.8113 2.2677 2.1016 2.1468 2.2714 2.4051 2.5213 2.6223 2.53203 

-0.4 3.0942 3.44 2.9586 2.3604 2.1557 2.1792 2.2912 2.4171 2.5291 2.6272 2.60527 
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3.3 Optimal Battery Location for Ride Comfort 

Lower RMS acceleration values mean better ride comfort for vehicle driver and 

passengers. To find the optimal battery location for ride comfort, we need to find the 

battery location that gives the lowest RMS value. 

 

Figure 3.3. Average RMS values for different battery locations with bumpy road. 

 

Figure 3.4. Average RMS values for different battery locations with the road having 

speed humps. 
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When vehicle is passing through speed bumps, the RMS acceleration of the driver and 

seat is the lowest with the battery located ahead of the front axle. RMS value increases as 

the battery location is shifted towards the rear of the vehicle. The RMS acceleration of 

the driver and seat increases with vehicle speed. However, when vehicle is passing 

through speed humps, the lowest RMS vertical acceleration of the driver and seat is 

attained with the battery located at the middle of the rear and front axles. At lower speeds, 

the effect of battery location for ride comfort is significant. As the speed increases, the 

effect of battery location for ride comfort decreases drastically. 

For passenger cars, the road profile with speed humps represents daily usage and city 

driving scenarios better. The optimal battery location for ride comfort of passenger cars 

in daily driving is the middle of rear and front axles of the vehicle.  

For off-road vehicles and passenger cars that are used in rural areas, dirt roads and 

cobblestone roads, bumpy road profile represents the corresponding driving scenarios 

better. The optimal battery location for ride comfort of such usages is the front of the 

vehicle. 

If we want to design for highway usage with high speeds, the optimal battery location for 

ride comfort is between the rear axle and middle of the car. 

 

Figure 3.5. Optimal battery locations versus the corresponding velocity values for the 

road having speed humps. 
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If we want to design low speed off-road vehicles or construction and agricultural vehicles, 

the optimal battery location for ride comfort is between the middle of the vehicle and its 

rear axle and close to the rear axle. 

 

Figure 3.6. Optimal battery locations versus the corresponding velocity values for 

bumpy road. 

3.4 Comparison Between Other Studies and Real-World Vehicles 

In most of the recent electric passenger cars in the market, the battery is placed between 

rear and front axles of the vehicle (EVSpecifications, 2022; Ganesh, 2021). This is 

because there is a huge amount of spare space between rear and front axle, under the floor 

of the vehicle. Battery is the largest part of the vehicle in size and larger battery means 

higher driving range. Also, many vehicle manufacturers use the battery case as a part of 

chassis structure for rigidity and strength. For ride comfort, our study and the previous 

literature (Wang, 2020) found that placement of the battery in the middle of the rear and 

front axles is suitable for ride comfort. However, it is shown in this thesis that the optimal 

battery location for ride comfort in off-road usages is the front of the front axle of the 
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3.5 Further Analyses to Understand the Effect of Battery Location on Ride 

Comfort with Different Road Roughness Profiles 

In this section further driving scenarios are considered by using sinusoidal road profiles. 

Six different amplitude values, namely, A  = 0.01, 0.02, 0.03, 0.04, 0.05 and 0.1 m, and 

eight different wavelengths, namely,   = 0.2, 0.5, 1, 5, 10, 15, 20 and 30 m are used in 

the analyses. Road profile’s total length is 60 m for all amplitudes and wavelengths 

without any straight section. The road input to the front tire is represented by 

2
sin( )F

V
u A t




=  and the road input to the rear tire is 

2
sin( ( ))R

V
u A t





= −  where 

/l V = , as previously explained. In this manner, 48 different road profiles are taken into 

account. 

For each road profile, three different vehicle velocities, namely, V  = 30, 50 and 96 km/h, 

are used. Hence, 144 different riding scenarios are considered. For battery locations, 36 

different Batl values from -0.4 to 3.1 m with increments of 0.1 m are used. Therefore, 5184 

different analyses are conducted. In-wheel motors’ rotating unbalance forces are 

neglected in these analyses to concentrate on the effects of road roughness better. The 

analyses are performed using a variable-step solver. Results of the analyses are given in 

Tables 3.3 through 3.8, where aRMS.min is the minimum RMS value obtained for the 

vertical acceleration of the driver and seat, and 
,Bat optl  is the corresponding optimal value 

of battery location. 

 

Table 3.3. Analysis results for A = 0.01 m. 

A = 0.01 m 

V  = 30 km/h V  = 50 km/h V  = 96 km/h 

  

(m) 
,Bat optl  

(m) 

aRMS.min 

(m/s2) 

  

(m) 
,Bat optl  

(m) 

aRMS.min 

(m/s2) 

  

(m) 
,Bat optl  

(m) 

aRMS.min 

(m/s2) 

0.2 1.2 0.0010 0.2 1.2 0.0007 0.2 1.2 0.0006 

0.5 1.3 0.0625 0.5 1.3 0.0437 0.5 1.7 0.0346 

1 1.3 0.2770 1 1.2 0.2006 1 1.3 0.1740 

5 1.2 0.1315 5 1.3 0.5631 5 1.4 0.6513 

10 -0.4 0.2281 10 -0.4 0.7590 10 0.4 1.4281 

15 -0.4 0.1404 15 -0.4 0.3337 15 -0.4 1.3397 

20 -0.4 0.1001 20 -0.4 0.1921 20 -0.4 0.8117 

30 -0.4 0.0638 30 -0.4 0.1021 30 -0.4 0.2981 
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Table 3.4. Analysis results for A = 0.02 m. 

A = 0.02 m 

V  = 30 km/h V  = 50 km/h V  = 96 km/h 

  

(m) 
,Bat optl  

(m) 

aRMS.min 

(m/s2) 

  

(m) 
,Bat optl  

(m) 

aRMS.min 

(m/s2) 

  

(m) 
,Bat optl  

(m) 

aRMS.min 

(m/s2) 

0.2 1.2 0.0018 0.2 1.3 0.0014 0.2 1.3 0.0031 

0.5 1.4 0.1249 0.5 1.3 0.0797 0.5 1.2 0.0733 

1 1.2 0.5749 1 1 0.3911 1 1.2 0.3318 

5 1.2 0.2497 5 1.3 1.1148 5 1.5 1.2885 

10 -0.4 0.4557 10 -0.4 1.5058 10 0.4 2.8392 

15 -0.4 0.2815 15 -0.4 0.6651 15 -0.4 2.6304 

20 -0.4 0.2008 20 -0.4 0.3808 20 -0.4 1.5956 

30 -0.4 0.1251 30 -0.4 0.2037 30 -0.4 0.5864 

 

Table 3.5. Analysis results for A = 0.03 m. 

A = 0.03 m 

V  = 30 km/h V  = 50 km/h V  = 96 km/h 

  

(m) 
,Bat optl  

(m) 

aRMS.min 

(m/s2) 

  

(m) 
,Bat optl  

(m) 

aRMS.min 

(m/s2) 

  

(m) 
,Bat optl  

(m) 

aRMS.min 

(m/s2) 

0.2 1.3 0.0027 0.2 1.3 0.0040 0.2 1.3 0.0256 

0.5 1.4 0.1886 0.5 1.3 0.1297 0.5 1.2 0.1590 

1 1.2 0.8987 1 1.3 0.5955 1 1.2 0.5087 

5 1.2 0.3454 5 1.3 1.6293 5 1.4 1.9073 

10 -0.4 0.6858 10 -0.4 2.2428 10 0.3 4.2422 

15 -0.4 0.4251 15 -0.4 0.9982 15 -0.4 3.8985 

20 -0.4 0.3034 20 -0.4 0.5706 20 -0.4 2.3791 

30 -0.4 0.1866 30 -0.4 0.3056 30 -0.4 0.8730 

 

Table 3.6. Analysis results for A = 0.04 m. 

A = 0.04 m 

V  = 30 km/h V  = 50 km/h V  = 96 km/h 

  

(m) 
,Bat optl  

(m) 

aRMS.min 

(m/s2) 

  

(m) 
,Bat optl  

(m) 

aRMS.min 

(m/s2) 

  

(m) 
,Bat optl  

(m) 

aRMS.min 

(m/s2) 

0.2 1.3 0.0050 0.2 1.3 0.0082 0.2 1.3 0.0873 

0.5 1.3 0.2536 0.5 1.4 0.1822 0.5 1.4 0.3757 

1 1.1 1.2436 1 1.2 0.8109 1 1.1 0.6919 

5 1.2 0.4143 5 1.3 2.0909 5 1.3 2.4935 

10 -0.4 0.9188 10 -0.4 2.9685 10 0.3 5.6417 

15 -0.4 0.5716 15 -0.4 1.3335 15 -0.4 5.1375 

20 -0.4 0.4080 20 -0.4 0.7618 20 -0.4 3.1598 

30 -0.4 0.2488 30 -0.4 0.4082 30 -0.4 1.1598 
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Table 3.7. Analysis results for A = 0.05 m. 

A = 0.05 m 

V  = 30 km/h V  = 50 km/h V  = 96 km/h 

  

(m) 
,Bat optl  

(m) 

aRMS.min 

(m/s2) 

  

(m) 
,Bat optl  

(m) 

aRMS.min 

(m/s2) 

  

(m) 
,Bat optl  

(m) 

aRMS.min 

(m/s2) 

0.2 1.3 0.0087 0.2 1.3 0.0430 0.2 1.3 0.2451 

0.5 1.3 0.3251 0.5 1.5 0.2793 0.5 1.5 0.7320 

1 1.2 1.6014 1 1.3 1.0418 1 1 0.8589 

5 1.2 0.4970 5 1.2 2.5081 5 1.3 2.9689 

10 -0.4 1.1548 10 -0.4 3.6820 10 0.2 7.0486 

15 -0.4 0.7209 15 -0.4 1.6713 15 -0.4 6.3445 

20 -0.4 0.5147 20 -0.4 0.9544 20 -0.4 3.9381 

30 -0.4 0.3121 30 -0.4 0.5117 30 -0.4 1.4472 

 

Table 3.8. Analysis results for A = 0.1 m. 

A = 0.1 m 

V  = 30 km/h V  = 50 km/h V  = 96 km/h 

  

(m) 
,Bat optl  

(m) 

aRMS.min 

(m/s2) 

  

(m) 
,Bat optl  

(m) 

aRMS.min 

(m/s2) 

  

(m) 
,Bat optl  

(m) 

aRMS.min 

(m/s2) 

0.2 1.3 0.2122 0.2 1.3 0.5123 0.2 1.4 2.4692 

0.5 1.4 0.9375 0.5 1.5 1.8071 0.5 1.3 7.8039 

1 1.3 3.4033 1 1.4 1.8560 1 1 2.9883 

5 1.4 1.0681 5 1.2 3.9596 5 1.5 4.3873 

10 -0.4 2.3731 10 -0.4 7.1285 10 -0.2 14.2349 

15 -0.4 1.5061 15 -0.4 3.3816 15 -0.4 11.9546 

20 -0.4 1.0754 20 -0.4 1.9362 20 -0.4 7.7847 

30 -0.4 0.6430 30 -0.4 1.0417 30 -0.4 2.8906 

 

The variation of aRMS.min with respect to   and A  are shown for each vehicle velocity in 

Figures 3.7 through 3.9. 
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Figure 3.7. aRMS.min against   for different values of A  with V  = 30 km/h. 

 

 

Figure 3.8. aRMS.min against   for different values of A  with V  = 50 km/h. 
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Figure 3.9. aRMS.min against   for different values of A  with V  = 96 km/h. 

 

The variation of optimal battery location with respect to the road profile wavelength can 

be seen in Figures 3.10 through 3.15 for each wave amplitude and vehicle velocity. 

 

Figure 3.10. Optimal battery locations for A  = 0.01 m. 
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Figure 3.11. Optimal battery locations for A  = 0.02 m. 

 

 

Figure 3.12. Optimal battery locations for A  = 0.03 m. 
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Figure 3.13. Optimal battery locations for A  = 0.04 m. 

 

 

Figure 3.14. Optimal battery locations for A  = 0.05 m. 
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Figure 3.15. Optimal battery locations for A  = 0.1 m. 

 

Finally, Figure 3.16 gives a graphical abstract of the 5184 analyses performed. 

 

Figure 3.16. Occurrence frequency of optimal battery locations in 5184 analyses. 
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As the road wavelength increases, the road gets flatter. By reviewing the results of the 

5184 analyses performed, we can conclude that the optimal battery location for 

wavelengths from 10 to 30 m is the rear end of the vehicle. For wavelengths from 0.2 to 

5 m, on the other hand, the optimal battery location is found to be the middle portion of 

the vehicle. These conclusions hold for all amplitudes and vehicle velocities considered. 

Furthermore, when Figures 3.7 through 3.9 are examined, it is seen that 10 m wavelength 

seems a critical value for aRMS.min, especially with 50 and 96 km/h vehicle velocities. 

However, this may be associated with the selected numerical values for the model 

parameters. For different values of the model parameters, different critical wavelengths 

can be observed. 
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4 CONCLUSIONS 

In this thesis, ride comfort of electric vehicles is analysed using different road profiles 

and driving conditions. 

Based on the analyses conducted, this thesis shows that the location of the battery in 

electric vehicles has a significant effect on ride comfort. The analyses performed in the 

study can be handled under two main groups. In the first group, two road profiles are 

considered, one with speed bumps and the other one with speed humps. The starting half 

of the road includes these obstacles, and the remaining half is straight. The rotating 

unbalance of in-wheel motors is taken into account. The following conclusions can be 

made based on the results of totally 380 analyses in this first group: 

1. Battery location affects ride comfort of electric vehicles. 

2. For electric vehicles in city driving conditions, the optimal battery location for 

ride comfort is the middle of rear and front axles of the vehicle. 

3. For electric vehicles in off-road driving conditions, the optimal battery location 

for ride comfort is ahead of the front axle of the vehicle. 

The previous literature (Wang, 2020) concluded that optimal battery location is the 

middle of the rear and front axles of the vehicle. This thesis gives similar result for 

passenger vehicles which are generally used in city roads and highways, while for electric 

vehicles which are used in off-road and rural areas, this thesis recommends that the 

optimal battery location for ride comfort is the front of the front axle of the vehicle. 

However, for low speeds the battery must be placed close to the rear axle. 

In the second group of analyses performed, 36 different battery locations are tested in 144 

different driving conditions. Sinusoidal road profiles are used and rotating unbalance of 

in-wheel motors is neglected to better focus on the effects of road roughness. Based on 

the results of totally 5184 analyses in this second group, the following conclusions are 

drawn: 

1. For road profile wavelengths from 0.2 to 5 m, the optimal battery location is found 

to be the middle portion of the vehicle. 

2. For road profile wavelengths from 10 to 30 m, the optimal battery location is at 

the rear section of the vehicle. 

The results in the first and second groups also agree with each other. 
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With considering spring and damper nonlinearities, real world scenarios can be 

represented more accurately and optimisation of battery location with spring and damper 

nonlinearities taken into account is beneficial for designing different electric vehicles that 

can be used in city and rural areas. 
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