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ABSTRACT

RECONFIGURABLE MODULAR SNAKE ROBOT
LOCOMOTION VIA LEARNING BASED HYBRID
MOTION CONTROL SYSTEM ARCHITECTURE

Ilyas KOCAER
M.S. in Electrical and Electronics Engineering
Advisor: Omer MORGUL
September 2022

Snake robots propose significant advantages especially for indeterminate, chaotic
environments through their robustness and versatility against unforeseen condi-
tions and scenarios. In addition to distinct locomotion characteristics of snake
robots, their redundant structure provides also fault tolerant operation capacity.
However, sophisticated and versatile locomotion characteristics and redundant
body structure also bring difficulty for dynamic modelling and motion control
of snake robots and, for this reason, generation of snake locomotion patterns
have been an ongoing challenge. To address this point; a reconfigurable, mod-
ular snake robot is designed and modelled with fundamental electromechanical
structure, joint and actuation subsystem and contact force modellings based on
minimal requirements which are determined by presented mathematical analy-
sis for snake locomotion. A hybrid motion control system architecture which is
constituted with state-of-the-art reinforcement learning based algorithms and a
cascaded PID controller which comprises command shaper and gain scheduling
components is presented. While reinforcement learning based algorithms which
indicate promising potential for generation of sophisticated behaviours are em-
ployed for generation of 2D snake gait patterns with corresponding reward func-
tion terms, locomotion capabilities are expanded to 3D space with the proposed
cascaded PID architecture and possible high level planners. Various experimen-
tations that cover comparison of different reinforcement learning algorithms, in-
dividual effects of specified reward function terms, locomotion of snakes which
are composed by different number of modules, fault tolerant locomotion trainings
for defective snake robots and realization of 3D operation scenarios are investi-
gated. In this content, from a holistic perspective, future directions are drawn
for potential physical realization of the electro-mechanical structure, mechanical
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design details for self-assembly mechanisms, further improvements of the train-
ing process and curriculum, and learning based multi-robot scenarios which cover

swarms of differently configured snakes to realize collaborative tasks.

Keywords: Snake Robots, Modular and Reconfigurable Robots, Robot Architec-
ture Modelling, Contact Force Modelling, Reinforcement Learning Based Motion
Control, Cascaded PID Based Motion Control, Hybrid Motion Control System

Architecture.



OZET

OGRENME TEMELLI MELEZ HAREKET KONTROL
SISTEM MIMARISI ILE YENIDEN
YAPILANDIRILABILIR MODULER YILAN ROBOT
HAREKET KABILIYETI

Ilyas KOCAER
Elektrik ve Elektronik Miihendisligi, Yiiksek Lisans
Tez Damgmant: Omer MORGUL
Eylil 2022

Yilan robotlar, giirbiizliikleri ve cok yonlii operasyon kabiliyetleri sayesinde
bilhassa belirsiz, kaotik ortamlara ve oOngoriillemeyen senaryolara yonelik
kayda deger avantajlar sunmaktadirlar.  Birbirinden farkli karakteristikte
gergekleyebildikleri hareket kontrol kabiliyetlerine ek olarak, minimum gerekler-
den fazlasini barindiran mimarileri sayesinde olas1 hatalara ve arizalara karsi di-
rencli gekilde operasyon gosterme kapasitesine sahiptirler. Elektromekanik mi-
marileri acisindan yilan robotlarin sunmakta oldugu soz konusu tstiinliiklere
ragmen komplike ve ¢ok yonli hareket karakteristikleri dolayisiyla hareket kon-
trolii giincel zamana degin stiregelen bir problem olarak ortaya ¢ikmaktadir. Bu
noktay1 ele almak tizere, yilan robot lokomasyonuna yonelik matematiksel anali-
zler temel alinarak minimum gerekler belirlenmigtir. Belirlenen gerekler temelinde
yeniden yapilandirilabilir modiiler bir yilan robot tasarimi ve ilgili tasarima
yonelik temel elektromekanik mimarinin, tahrik bilesenlerinin ve siirtiinme kuvve-
tinin modelleme iglemleri gerceklenmistir. Pekigtirmeli ogrenme temelli algo-
ritmalar ve komut sekillendirme, kazang planlama bilegenlerini barindiran kat-
manli PID kontrolcii tasarimi ile bir hibrit hareket kontrol sistem mimarisi
sunulmaktadir. Bu kapsamda, iki boyuttaki sofistike yilan hareket karakter-
istikleri pekistirmeli ogrenme temelli algoritmalar ile elde edilirken, iist se-
viye planlama algoritmalar1 ve katmanli PID kontrolcii mimarisi ile hareket ka-
biliyeti ti¢ boyutlu uzaya tasinmigtir. Gergeklestirilen incelemeler kapsaminda
farkl pekisgtirmeli 6grenme algoritmalarina dair kiyaslamalar, 6diil fonksiyonunu
olugturan bilegenlerin hareket karakteristikleri tizerine bireysel etkileri, farklh
sayida modiiler bilesenden olusan yilan robotlarin hareket karakteristikleri, arizal

bilegenler iceren robotlarin hata toleransh egitimleri ve ti¢ boyutta olasi operasyon
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senaryolar1 ele alimmaktadir. Ek olarak, biitiinciil bir bakig acisi ile, ilgili robotun
elektromekanik mimarisinin fiziki olarak gerceklenmesine, kendiliginden birlesme
mekanizmalarinin mekanik tasarim detaylarina, egitim siirecine ve izlencesine ve
farkli iglevler 6zelinde konfigiire edilmis igbirlik¢i robot siiriilerine yonelik 6grenme

temelli ¢coklu robot senaryolarina yonelik gelecek giizergahlar ¢izilmigtir.

Anahtar sézciikler: Yilan Robotlar, Modiiler ve Yeniden Yapilandirilabilir Robot-
lar, Robot Mimarisi Modelleme, Temas Kuvveti Modellemesi, Pekistirmeli
Ogrenme Temelli Hareket Kontrolii, Katmanli PID Temelli Hareket Kontrolii,
Melez Hareket Kontrol Sistem Mimarisi.
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Chapter 1

Introduction

Snake robots have significant advantages especially in terms of terrain adaptabil-
ity, diversity of possible operation duties and mediums, robustness and flexibil-
ity against unexpected, undesired scenarios among the robotics implementations
which have a monotonically increasing impact in both scientific research and in-
dustrial area in addition to daily life. Variety and comprehensiveness of snake
robot applications for distinct tasks arise from their potential to realize sophisti-
cated locomotion characteristics and electromechanical characteristics. However,
generation of the corresponding snake locomotion characteristics is an ongoing
challenge for the aimed operation concept. In the scientific research area, it is
taken into consideration in terms of different perspectives which can be put in
order as electro-mechanical architecture design, motion control system design for

generation of snake gait patterns and perception and planning capabilities.

For these reasons, in the scope of the thesis, fundamental focal points are de-
termined as the implementation of learning based algorithms, presentation of a
motion control system architecture which provides operation capability in both
2D and 3D environments via presented hybrid motion control system architecture
which is followed by an investigation on mathematical background for snake loco-
motion and a simple design of modular, reconfigurable snake robot architecture

with corresponding modelling operations.



1.1 Advantages and Disadvantages of Snake
Robots

Snake robots whose architectures and capabilities can potentially reach out even
beyond of biological diversity boundaries provide advantages especially for oper-
ations in constrained, indeterminate environments with their high adaptability
and versatility potential through distinct locomotion characteristics. In addition
to the diverse gait patterns, redundant body structures of snake robots which can
also be designed in a modular configuration ensures fault tolerance and different
capabilities which can be required depending on diversified operation conditions
and aimed tasks. For a specific objective, sensors and payloads which are carried
by the modules can be re-determined and the snake robot can be re-configured
in accordance with the intended purpose thanks to its modular structure. Fur-
thermore, in this way, collaborative snake robot swarms can also be formed with
differently configured robots which is customized to realize a specific task. Ad-
ditionally, as snake robots can be designed to operate in a 2D surface or 3D
space, the medium where robot operates can also be diversified. A snake robot
can potentially have amphibious characteristics and can operate both on loose or
rigid solid surfaces and in liquid mediums. On the other hand, several disadvan-
tages can be put in order for snake robots especially comparing with wheeled and
legged robots. The primarily noticed incompetence is the velocity limits which
inherently emerge due to electro-mechanical structure. For this reason, in rela-
tively unconstrained, regular terrains and wide spaces, wheeled or legged robots
can possibly predominate snake robots in terms of effectiveness of operational
capabilities. As the other drawback, even though it also extends the capabilities
and flexibility of snake robots, high number of degrees of freedom characteristic
also brings difficulty in dynamics modelling, motion planning and control as this
challenge will be addressed in Chapter 3. Additionally, although snake robots
can be equipped with various sensors and different configurations can be practi-
cally composed depending on the specific requirements through a reconfigurable
modular architecture design, payload capacity of snake robots is limited in terms

of both weight and size.



1.2 Application Fields of Snake Robots

Snake robots, as aforementioned, provide significant advantages for operations in
chaotic environments. They are especially used with exploration and inspection
purposes in environments which can include constrained routes with different
kinds of obstacles, narrow passages, unpredictable medium and surface condi-
tions. In this content; caves, debris zones [27], radioactive or poisonous sites,
accident or disaster regions [28] and even body of a living organism [29] can be
operation environment for snake robots. In these operation environments, appli-
cation range of snake robots extends from search and rescue operations to military
purposes. High versatility and robustness of snake robots provide them to oper-
ate in challenging environmental conditions where wheeled /crawler or even legged

robots are not able to function properly.

1.3 Operation Concepts of Snake Robots

Operation concepts of snake robots differentiate in terms of robotic gait patterns
and operation environment properties with aimed mission in addition to actuation
characteristics and body structure. Some snake robots are designed to operate
on a 2D surface whereas some others are designed for operation in a 3D medium.
Depending on the electro-mechanical structure and locomotion characteristics of
the designed snake robot, operable environments are also implicitly determined.
Based on the operation mission, characteristics of medium and surface can en-
close one or several of the environmental conditions which can be put in order
as; smooth surfaces, slope surfaces, rough terrains, corridors, pipes, regular or
irregular pole-like structures and various obstacles where the operation medium
can be loose or rigid solid, liquid or combination of solid and liquid elements.
For example; irregular rocky areas, trees and their branches, poles and pipes
with various diameters, debris zones, human-made obstacles like wire netting
or underwater operations are possible challenges that cannot be overcome eas-

ily in an intended task through legged, wheeled/crawler or flying robots. Snake



robots can potentially impersonate climbing [2] [4], floating [13], crawling [9] and
rolling [6] [7] [14] vehicles. Furthermore, they can be used as robotic manipulators
on a static or dynamic platform as well [3]. Modular and redundant structure of
snake robots provides reconfiguration potentials and fault tolerance against mal-
function possibilities as these properties can provide beneficial operation concepts
especially in hazardous environments. Furthermore, operation potentials of snake
robots, which already provides significant opportunities, can be extended with the
progress in material science especially by evaluating in a soft robotics concept.
In this way, diversity and strength of snake robots in locomotion characteristics

can also be reflected to their electro-mechanical architectures.

1.4 Snake Robot Examples From Industry and
Academy

Some notable snake robots with distinct capabilities from both academic and
industrial applications are presented in Figure 1.1. OriSnake is a continuously
deformable snake robot which is formed by origami-inspired continuum modules
[1]. Modular snake robot which is shown in image b can climb inside of a pipe [2].
ETR robot is developed especially for search and rescue tasks. It can be used
as a robotic manipulator on other vehicles to collaboratively realize an intended
task [3]. Unified Snake Robot has 3D gait capabilities and can climb poles, pipes,
trees and their branches. It can also keep its existing position without consuming
any power through its bistable brake system [4]. S5 snake robot is developed
for search and rescue purposes. It holds passive wheels on the underside and
has high number of modules which corresponds to high degrees of freedom and
redundancy [5]. PolyBot is a modular, self-reconfigurable robot which provides
versatility and robustness through redundancy and self-repair properties [6] [7].
Pipe inspection modular robot which is shown in image ¢ can move throughout
different pipes and elbows. It can also detect obstacles and walls [8]. MOIRA2
is also developed as an inspection robot for rescue missions but with a different

architecture. It is composed by four body modules and holds crawler at the



faces to improve its locomotion ability in the rubble [9]. OmniTread OT-/4 robot
comprises seven segments which are covered by motorised drive tracks in all sides
and pneumatic bellows for actuation of the joints. It aims to climb obstacles
which is higher than the robot height, propel itself inside pipes and operate in
challenging terrain conditions [10]. The presented robots in images from j to
m are different generations of the same Active Cord Mechanism snake robot
family which are progressively developed on their predecessors. Gradually, both
their electro-mechanical architecture and locomotion capabilities with various
gait types are improved and diversified. Even though there are also intermediate
forms in the development process, at this point, only ACM III [11], ACM-R3
[12], ACM-R5 [13] and ACM-R7 [14] are introduced as the representatives of
fundamental milestones. ACM III is one of the oldest ancestors of snake robots
which are developed since 1972 [30]. Glide propulsion approach is realized with
ACM III and further capabilities, and new degrees of freedom, different gait
patterns are proposed with the subsequent designs [11] ACM-R3 snake robot
is equipped with large passive wheels that wraps its body and different gait
patterns are examined along with it [12]. ACM-R5 is an amphibious robot which
can operate both in water and on solid terrain. It comprises passive wheels on
its six sides of modules for locomotion on solid surfaces [13]. ACM-R7 robot
can take loop form and correspondingly a loop gait which is named as serpenoid
oval is proposed for its locomotion [14]. Snake robot with toroidal skin drive
aims to improve speed specifications beyond the existing limits via continuous
propulsive force which is provided by entire surface of the robot. Therefore,
novel locomotion techniques as a combination of skeletal actuation and skin drive
are obtained [15]. Slim Slime Robot is a pneumatically driven snake robot which
has a flexibly deformable mechanical structure [16]. Wheeko and Kulko share
the same internal electro-mechanical structure. Wheeko comprises twelve passive
wheels which encircles its outer diameter. Kulko is covered with a spherical shell
and holds contact force sensors. It is specifically developed for the purpose of

obstacle-aided locomotion in uneven and cluttered surface conditions [17].



Figure 1.1: Snake robot examples with distinct architectures and capabilities.
(a) OriSnake Origami Inspired Snake Robot [1], (b) Modular Snake Robot Climb-
ing the Inside of a Pipe [2], (c) USAR-ETR Urban Search and Rescue Elephant-
Trunk Like Snake Robot [3], (d) Unified Snake Robot [4], (e) S5 Snake Robot [5],
(f) PolyBot Self-Reconfigurable Snake Robot [6] [7], (g) Pipe Inspection Modular
Micro Snake Robot [8], (h) MOIRA2 Inspection Snake Robot [9], (i) OmniTread
OT-4 Serpentine Robot [10], (j) ACM III [11], (k) ACM-R3 [12], (1) ACM-R5 Am-
phibious Snake Robot [13], (m) ACM-R7 Loop Forming Snake Robot [14], (n)
Snake Robot with Toroidal Skin Drive [15], (o) Slim Slime Robot (SSR) Flexibly
Deformable Snake Robot [16], (p) Wheeko Snake Robot [17], (q) Kulko Snake
Robot for Uneven and Cluttered Environments [17].



1.5 Purpose and Contributions of the Thesis

For snake robots, motion control approaches can be classified under two essential
categories which are constructed on dynamics and kinematics characteristics and
morphological characteristics. In this content; central pattern generators, sliding
mode controllers and PID controllers are proposed for snake-like robots which
are developed in academic and industrial applications including [1] - [17]. Even
though reinforcement learning is a prominent candidate which can cope with
the generation of diversity and sophisticated characteristics of snake locomotion,
it is not sufficiently investigated for snake robots until the present time and
scope of the current researches and applications are quite limited. In contrary
to legged robots and especially quadrupedal robots where reinforcement learning
based motion control methodologies are investigated and practiced relatively in
more detail especially after 2018, realized researches for snake robots are in the
emergence phase in terms of both quantitatively and qualitatively. The purpose
and some of the major contributions of the thesis concentrate on this deficient

point.

In the scope of the thesis;

1. A reinforcement learning based motion control architecture is proposed for
generation of gait patterns in 2D environment for snake robots which are

formed by different number of modules.

2. For realization of locomotion through reinforcement learning, novel reward
functions are designed for the desired gait patterns and effects of each term

on locomotion characteristics are investigated.

3. Functionality of the proposed and constructed learning based motion con-
trol architecture is verified with 5, 7 and 9 modules snake robots by realizing

commanded motion control objectives.

4. As a fault tolerant locomotion training, robustness of proposed motion con-
trol architecture is also tested and verified with a defective snake robot

which includes various malfunctions in its actuation joints.
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5. Functionality of snake robot locomotion, with trained reinforcement learn-
ing algorithms, is also verified with unseen surface conditions. Therefore,
generalizability of the proposed motion control system is validated for op-

erations in different conditions.

6. Operation capabilities of the snake robots are expanded to 3D space by
a cascaded PID architecture with command shaper and gain scheduling
components where different high level planners can also be integrated con-

veniently.

7. Consequently, a hybrid novel motion control system architecture is pre-
sented for snake robots which is versatile for realization of various high level

motion plannings and robust against possible faults and dysfunctionalities.

Afterwards, as the finalizing marks, the future directions are drawn in a holistic
view which covers different aspects of snake robot applications including multi-
robot scenarios that cover collaborative behaviours and reconfiguration tasks. In

this content, learning based swarm robotics applications are also evaluated.

1.6 Overview of the Thesis

Chapter 2 describes anatomy and locomotion characteristics of biological snakes
and mathematical analysis for snake robot locomotion with corresponding con-
trollability analyzes and propulsive forces synthesis. In this content, minimal

requirements to realize proper snake locomotion are discussed and determined.

Chapter 3 portrays fundamental features of electro-mechanical architecture of
trained snake robot and modelling of re-configurable modular structure, actuation
and joint mechanisms, contact force modelling with passive wheeled structure to

obtain anisotropic friction.

Chapter 4 clarifies the reasoning and justification for the use of reinforcement

learning to generate snake locomotion behavior and implemented reinforcement
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learning algorithms among existing options. Subsequently, design details of algo-
rithmic architecture, observation and action spaces, hyperparameter settings and

reward function with individual roles of corresponding components are described.

Chapter 5 presents obtained training results for two different reinforcement learn-
ing algorithms and snake robots which are constructed by 5, 7, 9 modules and
11 modules which include defective components. In this content, resulting snake
locomotion characteristics are separately illustrated for each case and investiga-
tions with trained robots are extended with experimentations on unexperienced
surface conditions. In addition to reinforcement learning motion control scheme
which corresponds to generation of 2D gait patterns for proper snake locomo-
tion, motion control system design which extends the operation capability to 3D
medium is presented and several sample scenarios are realized with 7 and 11
modules snake robots. Consequently, overall hybrid motion control system archi-
tecture which includes Twin Delayed Deep Deterministic Policy Gradient (TD3)
and Cascaded PID with a command shaper, gain scheduling and notch filter com-
ponents which will operate based on the generated commands by a higher level

planner are presented.

Chapter 6 concludes the thesis with evaluations and discussions for obtained
outcomes by taking into account both positive and negative aspects. Reasonings
for resulting outcomes are underlined and the points which are open for further

improvements are indicated.

Chapter 7 draws the future directions which are aimed to realize for simulation
environment, training process, high level motion planners for 3D tasks and multi-
robot scenarios which cover collaborative behaviours and reconfiguration tasks to

take the obtained results one step further.



Chapter 2

Snake Locomotion Investigation

The snake locomotion characteristics differentiate depending on the correspond-
ing snake structure in both biological snakes and electro-mechanical snake robots.
Although there are similarities in fundamental ruling features among biological
snakes and between biological and electro-mechanical snakes, locomotion pat-
terns and gait types are indirectly determined depending on the corresponding
architecture. The essential variables at this point can be put in order as the
joint structures and numbers, contact properties between snake body and loco-
motion surface with corresponding limitations and degrees of freedom, properties
of the material that covers and shapes the snake body and motion control and
planning system architecture. In snake locomotion, the propulsive force which
carries forward the snake body is obtained via repeating motions. In biological
snakes, required coordinated repeating motions is generated through neural im-
pulses and activated local muscle groups which bend the snake body whereas, in
electro-mechanical snake robots, corresponding complex motions are realized via

applied torque commands to the integrated joints of the snake architecture.

In this content, through the following subsections, essential features are defined
and requirements are determined for a proper snake locomotion in terms of struc-
ture of the snake, fundamental snake locomotion patterns, contact properties

between surface and snake body and generation of propulsive forces.
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2.1 The Anatomy and Locomotion Behaviour of

Biological Snakes

Typical skeletal structure of a snake consists of a skull, 130 to 500 vertebrae and
ribs which are attached to each one of vertebrae as it can be seen from Figure
2.1. Vertebrae components corresponds to movable joints of a snake where rela-
tive rotation between consecutive components are approximately between 10° and
20° in vertical axis and limited with only a few degrees in horizontal axis [18].
However, through high number of consecutive vertebrae components, resultant
sum of the limited rotations results in remarkable flexibility and mobility capa-
bilities of snakes. Body movements such as bending, extension or contraction are
realized through the muscles which are attached to ribs and their contraction or

relaxation determines the characteristics of locomotion [18].

The other fundamental component in the anatomy of snakes is scales which cover
the body of snakes as it can be seen in the Figure 2.2. In addition to physical
protection purpose of the scales, they also provide anisotropic friction charac-
teristics by creating higher friction coefficient in transversal direction comparing

with in tangential direction of the body.

Even though there exist anatomical differences between snake species, which ul-
timately leads differences in locomotion types, most common locomotion types
can be investigated under four major categories based on the illustrated anatomy.
They can be put in order as lateral undulation, concertina, rectilinear crawling
and sidewinding [18] [28]. However, four primary locomotion types can be ex-
tended further with burrowing, jumping, sinus-lifting, skidding, swimming, climb-
ing gait types [28]. Moreover, lateral undulation and concertina can be respec-
tively divided into five and four sub-categories based on diversifying motor pat-
terns. Lateral undulation can be analyzed with terrestrial lateral undulation,
forward aquatic lateral undulation, backward aquatic lateral undulation, lateral
undulation with a ventrolateral keel and arboreal lateral undulation locomotion
types while concertina types can be put in order as flat-surface concertina, tun-

nel concertina, arboreal concertina with alternate bends and arboreal concertina

11



Figure 2.1: Skeleton of a snake consisting of vertebrae and ribs [18].

Figure 2.2: Snake skin which is covered by scales [18].
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with helical wrapping [31]. In addition to these locomotion characteristics, de-
pending on the designed robotic architecture, unlimited gait types which are not
observed in biological snakes can be generated for aimed objective. Correspond-
ing gait types can be definite based on a specifically dictated behavior or can be
indefinite by focusing only on the objective and leaving required characteristics

to be determined by the implemented algorithm.

For snake locomotion, as stated, most common four locomotion characteristics

can be described as below and illustrated in Figure 2.3;

® ©

Figure 2.3: Fundamental snake locomotion patterns [19].
(a) Lateral undulation, (b) Concertina, (c) Rectilinear crawling, (d) Sidewinding,.

Lateral Undulation: For both biological and electro-mechanical snakes,
lateral undulation is the most common locomotion type since it covers
a broad functionality for various cases and environments with relatively
smooth and higher velocity values. During lateral undulation, continuous
sinuous waves are generated by the entire body of the snake to propagate
resultant forward propulsion effect. Lateral undulation locomotion form is
not appropriate for exceedingly smooth, low-friction slippery contact sur-

faces whereas it operates most efficiently in rough ground contact surfaces.
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Concertina: Concertina locomotion is especially required for narrow
spaces, although it is an inefficient mode of movement, where lateral undula-
tion cannot be realized properly due to limited motion range. In concertina
gait, back and front parts of snake body are subsequently used as an anchor
for the narrow environment and the free part of the body is the extended

to proceed forward.

Rectilinear Crawling: Rectilinear crawling is a substantially slow form
of locomotion and it is generated by biological snakes as reciprocating the
muscles from the ribs attached to the skin where the edges of scales located
on the underside of the body is used as the anchor points to proceed forward

approximately on a straight line.

Sidewinding: Sidewinding locomotion type is a continuous transverse os-
cillation which makes movement possible on uncluttered and low shear sur-
faces where motion generation by other gait types is inefficient or completely
impossible. Through sidewinding gait, long distance travelling becomes pos-
sible for snakes even on loose terrain. To realize this gait, head part and
rest of the body consecutively act as anchor on the ground and pulling

component for the body.
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2.2 Controllability Analysis of Snake Robots

In the following steps, controllability with resultant propulsive force analyzes are
performed and correspondingly minimum requirements are determined in terms
of contact friction properties and number of modules which forms the architecture
for realization of proper snake locomotion. The analyzes are realized for planar
surface locomotion since it determines the minimal requirements for generalized
terrain conditions and with the assumption of viscous contact friction since it
provides sufficient approximation and corresponding analyzes take a more feasible
form to conclude corresponding analyzes [17,18]. Friction characteristics which
depends on both contact surface of the snake and the terrain properties is one
of the fundamental components which directly affects locomotion characteristics.
As it is shown for planar surface locomotion in article [32] and inclined surface
locomotion in article [33], optimal snake behavior significantly changes depending

on the tangential and normal components of friction force.

The notation for the corresponding analyzes in the following sections are pre-

sented with required definitions in Table 2.1.

Definition H Notation

Number of modules || N

Mass of each module || m

Link length || 21

Angle between module ¢ and the global x axis || 6;
Global coordinates of the module ¢ center of mass || (x;, ;)
Global coordinates of the robot center of mass || (ps,py)

Viscous friction coefficient || ¢

Ground friction force on module i || (fg 4, fry.i)

Table 2.1: Snake Robot and Locomotion Characterization Parameters
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2.2.1 Controllability with Isotropic Viscous Friction and

Anisotropic Viscous Friction

For a modular snake robot, the isotropic viscous friction which affects on the

module i can be stated as the following equation.

fri=—c x = —c p 7 ] (2.1)
Yi py + 0,Cpl
where;
Sy = diag(sin 0)
sin@ = [sin 6y, ..., sin Ox]"
Cy = diag(cos )
cos @ = [cos by, ..., cos On]"
a; + b;
0; = [a17a27"'aai—17 D) ,bi+1,bi+27...,b]\]]
1(2i — 1)
=N
, _ l2i—1-2N)
t N

The equation which describes acceleration of the center of mass can be stated as;

px - 1 eTfR,a: . 1 Zfil fR,x,i (2 2)
Py Nm eTfRy Nm Zz]\il fry.i ‘
where;
e=[1,1,.., 1"
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When equation 2.1 is inserted into equation 2.2, center of mass acceleration of

the robot is obtained as;

Dy Nm

H o [—Nm + (30, 04)Seb
—Npy — (Zi\il Uz‘)099

- H 23)
m py

Through o definition in Equation 2.1, since it can be shown that Zfil o, =0,
Equation 2.3 indicates that center of mass acceleration is proportional to center
of mass velocity. For this reason, in the cases of snake robot starts from the
stationary conditions, it is not possible to obtain a non-zero acceleration for center
of mass. Consequently, it is concluded that a snake robot on a planar surface is
not controllable with applied torque commands to its joints if the effective friction
force reflects isotropic characteristics. In other words, to control the position of
the snake robot through a targeted route, center of mass of the snake robot must
be accelerated. However, since center of mass acceleration is proportional to the
center of mass velocity as indicated in Equation 2.3, when the robot starts from
zero velocity initial condition, it is not possible to create non-zero center of mass

acceleration [18] [34-36].

On the other hand, under anisotropic viscous friction, two viscous friction coef-
ficients are needed to be defined as ¢; and ¢, which describe the friction force
in the tangential and normal directions of the corresponding link. In anisotropic
viscous friction characteristics, friction coefficients are not equal in tangential and
normal directions ¢; # ¢, whereas their equality ¢; = ¢, reduces the friction char-
acteristics to isotropic viscous friction. The viscous friction force on link 7 in the

local link frame flﬁkl can be stated as in Equation 2.4 [18].

o 0 .
gk — _ [Ct ]vgmkﬂ (2.4)

0 ¢,

link,i
%

where v is the link velocity.
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In the global frame, by re-arranging Equation 2.4, it can be presented as in
Equation 2.5 [18].

frq
fr=| " =~
i,

However, equation of motion of the snake robot becomes significantly more com-

c:Cy® 4 nSp”  (cr — ¢,)SeCo
(Ct — Cn)SQCg Ct892 + Cang2

X
4w

plex with anisotropic friction characteristics. For this reason, Liljebéck et al. [18]
evaluates controllability through partial feedback linearization of the model and
computing Lie brackets of the system vector fields at an equilibrium point [34-36].
Since the intermediate steps of derivation operations are not in the scope of the
thesis, they are not explicitly presented and left to personal initiative for in-
vestigation through indicated references. As the main results of the employed
operations, it is stated that the realized analysis is valid when the snake robot
has N > 4 links and it is concluded that a snake robot with N > 4 links which are
affected by anisotropic ground friction force on a planar surface is locally strongly

accessible from any equilibrium point.

Consequently, Liljebdck et al. [18] points out that a snake robot, on a planar
surface, which is composed from N > 4 links and affected by anisotropic friction

is controllable.
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2.3 Propulsive Forces Under Anisotropic Fric-

tion

Total resultant force which acts on the snake robot where the forward direction
is defined as the global positive x-axis, can be stated as the following equation
when anisotropic viscous friction on each link and dynamics of the snake robot are
included into the analysis. In the equation, 6; corresponds to the angle between
the global x-axis and link i € {1,2,3..N}.

N N
Forop = — Z Fo(0:)%; — Z Fy(0)y (2.6)
i=1 i=1
where Fy(6;) and Fy(6;) are defined with equations 2.7 and 2.8 respectively.
F(0;) = ¢; cos® 0; + ¢, sin? 6; (2.7)
Fy(6;) = (¢t — ¢,) sinb; cos b; (2.8)

The stated two components of F},,, corresponds to the forward and normal di-
rections of motion. As it can be interpreted from the individual equations of
components, Fy(6;) does not contribute to the forward propulsion of the robot.
On the contrary, it causes a counter effect on the motion since it always creates
positive outcomes which result in as a negative factor in the resultant force £},
whereas propulsive force which ensures the forward locomotion is generated by

the Fy(6;) term (when ¢, > ¢; for ordinary undulatory gait pattern) [18] [36].

Following this point that is sufficient to determine the minimum requirements
which should be taken into consideration in design and experimentation phases,
synthesis for propulsive snake motion based on an aimed gait pattern and mod-
ellings of the corresponding snake robot with significantly complex operations
which arise due to sophisticated nature of snake locomotion and, followingly, mo-
tion controller design can be realized. However, as stated in the purposes of the
thesis, reinforcement learning is employed to realize snake locomotion in consid-
eration of its potential to overcome complicated problems. Therefore, necessity

and burden of problem specific further analyzes are eliminated.
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Chapter 3

Architecture and Modelling of
the Designed Snake Robot

A modular and reconfigurable snake robot is designed for investigations and
various experimentations of snake robot locomotion. Correspondingly, to real-
ize aimed analyzes by implementing described algorithms in Chapter 4, electro-
mechanical architecture of the snake robots with different number of modules are
modelled in the simulation environment [37] with required sensory operations, ac-
tuation systems, filtering operations and contact force modelling. In the scope of
design and modelling steps, fundamental points with corresponding backgrounds

are described under the following subsections.

3.1 Modular and Reconfigurable Structure

The snake robot architecture which is employed in 2D and 3D locomotion ex-
perimentations is designed in a modular approach where each joint module is
identical with each other but the sensors and payloads they carry can be differ-

entiated depending on the specific requirement. Its outer structure is designed

20



so that it can be manufactured through 3D printing and in a lightweight ap-
proach where, depending on the used material, it can also be manufactured in a
deformable manner to gain advantages of soft structures. However, it should be
noted that internal structure and corresponding electro-mechanical components
are not taken into account in detail since the focus of this thesis is to investigate
snake locomotion and learning based algorithms for locomotion patterns. On
the other hand, for consistency of the realized operations and to provide infras-
tructure for future studies which can potentially comprise hardware components,
especially the robots which are presented in [13], [15], [16] and [17] are taken into
account as a source of inspiration in terms of mass and dimensional features. For
anisotropic friction requirement, as stated in Chapter 2, each module of the snake
robot is covered with passive wheels. The resulting specifications of the designed
snake robot is stated in Table 3.1 below.

Snake Robot Specifications

Specification Value Unit
Mass of a Module 0.700 kg
Diameter of a Module 0.130 m
Yaw Joint Motion Range Limit +42.5 deg
Pitch Joint Motion Range Limit +42.5 deg
Actuation Torque Limit 6.5 Nm
Yaw Joint Speed Limit 65 deg/s
Pitch Joint Speed Limit 65 deg/s
Degrees of Freedom of the Robot 2 x ModuleNumber + 6 | N/A

Table 3.1: Specifications of the Designed Snake Robot

3.1.1 Electro-Mechanical Modelling

For electro-mechanical modelling, CAD assembly models [38] are realized in the
simulation environment [37] as a simplified model in terms of visual features and
unrelated components for simulations of physical interactions to accelerate the
simulation process and consequently training process. The single reason for the
executed simplifications is related about the solving times which are encountered
as the major challenge and limitation during experimentations. However; mass,

inertia and dimensional properties are preserved and properly reflected to the
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physical modelling as stated in Table 3.1 for convenience of the realized experi-
mentations. Additionally, as described in the following subsections, mechanical
modellings are realized for actuation of joint mechanisms and representations of

contact forces between the passive wheels and the locomotion platform.

3.1.2 Actuation and Joint Mechanisms

Each module of the snake robot includes two joints which correspond to degrees of
freedom in yaw and pitch axes. Both axes are in the identical characteristics and,
depending on the current posture, the snake robot can operate by interchanging
the axes with proper switchings in the motion planning and control architecture.
In the instantaneous state, the corresponding joints that provide motion in yaw
axis forms 2D snake gait patterns where the joints provide motion in pitch axis
extends the motion capabilities to 3D. Joint mechanisms in each module of the
snake robot are represented with revolute joints which are modelled based on
spring-damper force law in the simulation environment [39] and their actuation
is realized via provided torque inputs. The modelling operations of joints require
two sets of stiffness and damping parameters where one of them specifies the
joint characteristics in the operation range, the other determines characteristics
in the limits of motion range. Although various parameter sets are employed
throughout the modelling trials, the eventual parameter sets for operational and

limit mechanics of the revolute joints are presented in Table 3.2.

Mechanical Modelling Parameters of Revolute Joints
Operational Mechanics Value Unit
Spring Stiffness 0 Nm/rad
Damping Coefficient 1.1 Nm/(rad/s)
Operation Range Limit Mechanics | Value Unit
Spring Stiffness 104 Nm/rad
Damping Coefficient 2 Nm/(rad/s)
Transition Region Width 0.0175 rad

Table 3.2: Mechanical Modelling Parameters of Revolute Joints
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3.2 Passive Wheeled Structure for Anisotropic

Friction

Anisotropic friction, as indicated in Chapter 2, is an indispensable requirement
for controllability of a snake robot with stationary initial conditions on a pla-
nar surface that points out to the extreme circumstances. As aforementioned,
anisotropic friction can be obtained via passive (or, depending on a specific ap-
plication, through active, semi-active) wheels or mechanical processing of the
contact surface. For designed snake robot in the scope of the thesis, passive
wheeled structure approach is adopted and correspondingly realized contact force

modelling operations are described in the following section.

3.2.1 Contact Force Modelling

Contact force modelling between passive wheels of the snake robot and operation
environment is realized based on the approach which is represented in Figure
3.1 where base frame and follower frame correspond respectively the locomotion
surface and passive wheels. In this approach, contact frame moves around the
specified geometry depending on corresponding motions of contact point as long

as the contact between two frames is kept.

Figure 3.1: Spatial Contact Force Modelling with Base and Follower Geometries
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The normal force f,, and the frictional force f are two fundamental components
which determine characteristics of the contact force model. By employing low
and high level tools of Simscape Multibody [39] for contact force modelling, f,

and f; are respectively evaluated as in Equation 3.1 and 3.2.

fn = s(d)(kd + bd') (3.1)

where;

fn: Normal force in the opposite direction with the same magnitude to each
contact geometries

d: Penetration depth between geometries which are in contact

d': First time derivative of d

k: Specified stiffness value for the normal force

b: Specified damping value for the normal force

s(d): Implicitly operated smoothing function

In addition to the stated parameters, the transition region width which will be
denoted as w is also specified for contact force modelling. In the cases when
penetration depth is smaller than the transition region width, d < w, normal force
fn is scaled with the implicit smoothing function s(d) where it leads continuous
and monotonically increasing characteristic in the interval [0, w]. Therefore, it

equals to 0 when d = 0 and equals to 1 when d = w.

Frictional force f; is correlated with normal force f,, as Equation 3.2 where p
is the friction coefficient which varies depending on the magnitude of relative

velocity of contact surfaces.

[l = plfal (3.2)

To determine effective friction coefficient based on the relative velocities of con-
tact points, a smoothed stick-slip behaviour is implicitly employed. Effective pu
gradually increases with increasing relative velocity until predetermined critical
velocity to upper limit value of the coefficient jigq4. and it converges to flaynamic
value by gradually decreasing with increasing relative velocity beyond critical

velocity.
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Based on the presented contact force modelling approach above, even though
various parameter sets are implemented and different tests are realized to ver-
ify proper snake locomotion under different contact models which consequently
corresponds different surface characteristics, to obtain consistently comparable
outcomes, all the trainings which are presented in Chapter 5 are realized with
the values stated in Table 3.3 and, followingly, realized experimentations are ex-
tended to unexperienced surface conditions by defining new parameter sets and
robustness of trained snake robots against variations of locomotion surface char-
acteristics are tested. Before determination of contact force modelling parameter
set for trainings, experimented values for stiffness and damping parameters of
normal force specification respectively range from 10? to 10° N/m and from 30
to 10® N/(m/s) while 1073, 10~* and 10~° m values are implemented for transi-
tion region width. For static and dynamic friction coefficients of frictional force
specification, values between 0.5 to 8.0 are employed and tested while 1072 and
10~* m/s values are implemented for critical velocity parameter. It can also be
noted that contact force modelling parameters can be randomized or varied in a
planned way in a predetermined training curriculum to reflect characteristics of

different contact properties.

Contact Force Modelling Parameters
Normal Force Value Unit
Stiffness 104 N/m
Damping 40 N/(m/s)
Transition Region Width 10~ m
Frictional Force Value Unit
Method Smooth Stick-Slip | N/A
Static Friction Coefficient 3.2 N/A
Dynamic Friction Coefficient | 3.0 N/A
Critical Velocity 1073 m/s

Table 3.3: Parameters of the Contact Force Model

25



Chapter 4

Reinforcement Learning for

Snake Robot Locomotion

Motion controller architecture design for the purpose of robotic locomotion which
can preserve its robustness under various types of disturbances and environments
is a continuing challenge in the present times for different types of robots and un-
limited possibilities of external conditions. The designed motion controller archi-
tecture provides the movement capability to the robot whereas it also determines
the boundaries of this capability. In the content of robotic locomotion, imple-
mented motion control components can be categorized essentially with three fun-
damental approaches which are deterministic, adaptive and stochastic/learning
based control systems. Reinforcement learning based approaches indicate promis-
ing potential to realize sophisticated behaviors through their evolutionary charac-
teristics and to reach an adequate robustness level which can overcome distinctive
environmental conditions and disturbances. For this reason, reinforcement learn-
ing is employed for generation of snake gait patterns in the proposed hybrid

motion control system architecture.
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4.1 Reinforcement Learning and Deep Rein-

forcement Learning

Reinforcement learning can be defined as the extraction of mapping which corre-
sponds to cases-to-actions with the purpose of predefined reward function maxi-
mization. In accordance with this purpose, an optimal policy is learned through
trial and error without explicit specification of the followed methodology. Even
though its premise concept dates back a relatively long time, in the recent past,
reinforcement learning algorithms have advanced and made significant progress
while various algorithmic structures have been proposed and their successes have
been proven with applications on distinct problems and tasks from social sciences
to engineering challenges. State-of-the-art reinforcement learning algorithms, as
described step by step in the following section, mostly originate from the -
Learning [40] basics and certain inspirations from State-Action-Reward-State-
Action (SARSA) [41] approach. Applicability of reinforcement learning algo-
rithms to different tasks and problems which approximates real-world complexity
has gradually extended with sequential improvements and especially with Deep
Q-Network [42] which incorporates deep neural networks into @-Learning concept

as it results in the emergence of deep reinforcement learning term.

4.2 Description and Comparison of State-
of-the-Art Reinforcement Learning Algo-

rithms

Majority of state-of-the-art reinforcement learning algorithms originate from
Deep @Q-Network [42] foundations. Even though numerous variations have been
proposed around the fundamental algorithms, as essential milestones, Deep Q-
Network (DQN) [42], Deep Deterministic Policy Gradient (DDPG) [43], Trust Re-
gion Policy Optimization (TRPO) [44], Prozimal Policy Optimization (PPO) [45]
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with Distributed Proxzimal Policy Optimization (DPPO) [46] variation, Soft Actor-
Critic (SAC) [47] [48] and Twin Delayed Deep Deterministic Policy Gradient
(TD3) [49] can be put in order. In the presented order of neural based algorithms,
a gradual development is experienced in terms of sample efficiency, training sta-
bility and comprehensiveness of applicability for different problems from discrete
domains to continuous domains and from low dimensional observation and action
space cases to high dimensional possibilities. Even though DQN creates human-
level performances in many tasks and even above human-level performance for
some tasks [42], it experiences inadequacies especially in continuous action and
large observation and action space tasks. With DDPG algorithm, significant im-
provements are realized in continuous control tasks [50] but it still suffers from
training instability problems and bears the risk of insufficiency to reach a conver-
gence in relatively large observation and action space cases. Moreover, it is seen
that training process generally shows a noisy characteristic and it is quite brittle

to hyperparameter settings.

In addition to the neural based reinforcement learning algorithms, as an algo-
rithm which does not include any neural structure, Augmented Random Search
(ARS) [51] also provides competitive outcomes in terms of sample efficiency and
training stability especially comparing with DDPG, TRPO and PPO. It is con-
structed on the basic random search basis with proposed three main augmen-
tations. They can be pointed out as scaling operation of update steps by the
standard deviation, normalization of the states and using top performing direc-

tions for the optimization task.

In terms of sample efficiency, training stability and capability in relatively com-
plex tasks which include high dimensional observation and action spaces, Soft
Actor-Critic (SAC) and Twin Delayed Deep Deterministic Policy Gradient (TD3)
algorithms can be put forward as state-of-the-art algorithms and experienced
outcomes in different tasks, agents and environment settings also verifies the
presented benchmark results [47] - [49], [52]. Both SAC and TD3 algorithms
are developed on DDPG fundamentals with several regulations and additions to
eliminate experienced vulnerabilities as described step by step in the following

section. Therefore, since SAC and T'D3 algorithms ensure an obvious superiority
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over the other alternatives as presented with corresponding mathematical back-
grounds and benchmark outcomes whereas they may outperform over each other
depending on the corresponding task and hyperparameter tunings, they both
employed to train a 9-modules snake robot and resulting outcomes are compared
as presented in Chapter 5. In this content, definitions of the notations in the
following equations which describe and legitimize adopted methodologies in SAC
and TD3& algorithms to eliminate the aforementioned deficiencies are indicated
in Table 4.1.

Definition H Notation

Time step

State

State space

Action

Action space

Reward

Termination conditions
Policy

Optimal policy

Marginals of the trajectory distribution
Temperature parameter
Discount factor

Q-function

Q-function parameters
Policy parameters

Replay buffer

Batch of transitions

Desired minimum expected entropy
Value function

Objective funtion

Gradient

Update proportion
Temporal difference residual
Noise

S e

*

SEIE

NN AU TSP IISTOH2 2

Table 4.1: Definition of Terms for Reinforcement Learning Algorithms
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4.3 Soft Actor-Critic (SAC) Algorithm

Soft Actor-Critic approach [47] [48] aims to overcome two main challenges, where
they are frequently experienced with previously developed algorithms in espe-
cially complicated tasks, that can be stated as sample inefficiency, instabilities in
training process which is also related with brittleness to hyperparameter settings.
In this way, applicability of model-free reinforcement learning framework in rel-
atively complex systems and tasks in both simulation and real-world domains

becomes possible.

In Soft Actor-Chritic approach, the actor aims to maximize expected return and
entropy while, in this framework, entropy can be evaluated as exploration. Op-
timization of the corresponding stochastic policy is performed in an off-policy

manner.

In general, previously developed and widely implemented reinforcement learning
algorithms until the present time intends to maximize expected sum of rewards
which can be formulated as in Equation 4.1 below, where 7, r s; and a; respec-
tively corresponds to employed policy, reward term, states and actions in time

step t as stated in Table 4.1.

T = arg meZE(st,at)pr[T(Smat)] (4.1)
t

In Soft Actor-Critic approach, a maximum entropy objective is sought and the
standard objective is augmented with an entropy term so that optimal policy
intends to maximize its entropy for each corresponding state as indicated in
Equation 4.2 where v and ‘H correspond to temperature parameter and desired

minimum expected entropy respectively.

Tt = arg mﬂa’XZE(St,at)pr [7(s¢, ar) + aH(m(-|s:))] (4.2)
¢
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where, temperature parameter o determines the relative dominance between en-
tropy and reward components. As another interpretation, « directly controls
exploration versus exploitation trade-off where increase in « indicates a more
predominant exploration attitude. Therefore, it consequently appoints stochas-

ticity level of the policy.

The stated objective function in Equation 4.2 can be extended for infinite horizon
problems by introducing a discount factor, 7 , to assure sum of expected rewards
and corresponding entropy values are finite. In this content, the objective func-

tion is re-composed as;
n - t
T = arg mEXE(st,at)NPw I:ny <(T(St7 at) + Oé%(”(“%)))] (43)
t

For soft policy iteration process, the soft Q-function parameters are trained with

the objective of soft Bellman residual minimization as presented in Equation 4.4.

1

Jol0) = e | (@l 00 = r(st) 49 Be oy i)’ (40

where the implicitly parameterized soft state value function, through soft Q-

function parameters, is stated in equation 4.5.
V(st) = Egpr [Q(8t, ar) — alog m(as|s)] (4.5)

and the optimization equation form with stochastic gradients is attained as pre-

sented below with Equation 4.6.

VoJo(0) = VoQo(ar, 5:)(Qa(se, ar) — (r(se, ar)+

(4.6)
Y(Qg(8t41, ar1) — alog(my(arii]sis1))))

Consequently, corresponding equation which dictates learning process of policy

parameters is obtained as;

Jr(0) = Eg,p [an% [alog(my(at|st)) — Qo(st, at)H (4.7)
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Since the policy should more dominantly explore where optimal action is uncer-
tain and should remain more deterministic where distinction between the desired
and undesired actions are clear, forcing the entropy to a fixed, static value is
not an effective solution. For this reason and to eliminate manual adjustment of
optimal temperature parameter which is a non-trivial operation, learning objec-
tive is re-arranged where entropy is treated as a constraint. As the result, for
automation of entropy adjustment, dual variable o is optimized based on the

objective which is presented in Equation 4.8.
af = arg H(iltn E(a;nr) [—at log 7} (a|ss; ar) — Ozﬂ-_[] (4.8)

However, due to practical considerations for the implementation process, gradient

values for «, is computed with the objective function given in Equation 4.9 below.
J(OZ) — ]E'atNﬂ't [—Ol log 7Tt(atlst) — 047:[} (49)

The overall SAC algorithmic structure, which is assembled from the fundamental

components and key equations based on [47] and [48], is presented as following;
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Algorithm 1: Soft Actor-Critic (SAC)

Initialize:
Policy parameters ¢,
Q-function parameters 61, 6y
Replay buffer D
Set target parameters to main parameters:
49/1 — 91
0y < 0,
while Convergence # true do
Observe state s and take action a ~ mg(.|s)
Observe following state s, reward r and termination conditions d
Store s, a, T, s/, d in replay buffer D
if & € d then
| Reset environment
else
if ' & d & Time —to — Update = true then
for i < UpdateNumber do
Randomly sample batch of transitions, B = {(s,a,r,s',d)} in D
Compute targets for the Q-functions:

y(r,s',d) = r+y(1-d) ( min Qg (s', @) —alog 7r¢(d’\8’))
where: @’ ~ my(.]s")
Update Q-functions through gradient descent:

V@ii Z <Q9i(s,a) —y(r, 5’,d)>2 i=1,2

(s,a,r,s’,d)€B

Update Q-functions through gradient descent:
VeE 2 (1min Qs (s, du(s)) — alog my(as(s)]s))
se

where:  ag4(s) € my(.|s)
Update target networks:

/

0, < 70, + (1 — 1)0, i=1,2

end

end
end
end
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4.4 Twin Delayed Deep Deterministic Policy
Gradient (TD3) Algorithm

Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm [49] which
holds two critic networks and single actor network aims to overcome similar prob-
lems with Soft Actor-Critic (SAC) algorithm, which can be re-stated as sample
inefficiency and instabilities in training process. To eliminate existing vulnera-
bilities such as brittleness to hyperparameter tuning and drastic overestimation
problem of Q-values in DDPG algorithm, three fundamental modifications are
introduced as they can be put in order as clipped double Q)-learning, delayed
policy updates and target policy smoothing. Via these modifications, training in-
stability problems are eliminated for especially continuous action tasks which are
formed by a high dimensional observation and action spaces, training process re-
flects considerably less noisy characteristics and sample efficiency is significantly

improved.

In TDS3 algorithm, to address overestimation problem, a Clipped Double Q-
Learning approach is proposed. In this way, it is aimed to eliminate overestima-
tion bias problem whereas underestimation bias can possibly take place. How-
ever, in contrary to overestimation bias, underestimation occurrence in actions is
preferable since it is not propagated through the policy updates. Consequently,
the target update rule with clipped double Q)-learning algorithm is given in the
Equation 4.10 where s’ corresponds to the subsequent state value and (), corre-

sponds to a secondary frozen network.
=71+ vg%g Q(,; (s', Ty (s’)) (4.10)

In addition to overestimation bias, through 7'D3 algorithm, high variance esti-
mates problem is also aimed to be eliminated since it causes noisy gradient for
policy updates and consequently ends up with reduction in learning performance.
For this purpose, several fundamental modifications are proposed for the learning

process with TD3 algorithm to reduce the experienced variance problem.
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Since estimation errors can potentially accumulate due to temporal difference up-
date, it can result in overestimation bias and suboptimal policy updates. Because
Bellman Equation is not strictly satisfied, some amount of residual temporal dif-

ference error occurs after each update as pointed out in Equation 4.11 below.

Qo(s,a) =r +E[Qq(s',a")] — d(s,a) (4.11)

where (s',a’) and § respectively corresponds to subsequent state-action pair and

temporal difference residual.

Furthermore, the value estimate converges to expected return minus expected
discounted sum of future temporal difference errors instead of learning an esti-
mate of the expected return. In this content, error accumulation is tackled as in

Equation 4.12.

Q9(5t7 @t> =T+ ’YE[QO(StH, Clt+1)] — 0
=1 +YE[rie1 + VE[Qo(St42, Grg2) — 6pa1]] — O

T
- ESiNPw,aiNTF [Z /yi_toai - 5%)]
1=t

(4.12)

It is also claimed that the use of fast updating target networks causes divergent
behaviors. Therefore, it is suggested that the policy network should be updated
at a lower frequency comparing with the value network to reach a minimized
error before policy update. For this reason, to obtain lower variance in value
estimates, updates of the policy (and target networks) are delayed as presented
in Equation 4.13 below where # indicates to target networks and 7 is employed

for parameterization of update rate and takes values between 0 and 1.
0 70+ (1—7)0 (4.13)

Finally, a target policy smoothing is implemented, which performs as a regular-
izer to prevent sharp changes in actions that ultimately causes brittleness of the

training process. Therefore, obtaining similar values for similar actions aim is
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approximated over actions through the added clipped noise to the target policy
which is averaged over mini batches. The added random noise is clipped by pre-
determined limiting upper and lower borders as defined in Equation 4.14 to keep

the target close to the original action.

With aforementioned modifications, modified target update approach takes the

following form:;

y=71+yminQy <s/,7r /(s/) + e)
=Ly i (4.14)

€ ~ clip(N(0,0), —c,c)

The overall TD& algorithmic structure, which is assembled from the fundamental

components and key equations based on [49], is presented as following;
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Algorithm 2: Twin Delayed Deep Deterministic Policy Gradient (TD3)

Initialize:

Policy parameters ¢; Q-function parameters 6, #5;  Replay buffer D
Set target parameters to main parameters:

¢« ¢;

0, < 601 Oy <6,

while Convergence # true do

else

end
end

end

Observe state s and take action a = clip(py(s) + €, Giows Ahigh)
Observe following state §',reward r and termination conditions d
Store s, a, T, s/, d in replay buffer D

if s € d then
Reset environment

if & & d & Time — to— Update = true then

for j < UpdateNumber do

Randomly sample batch of transitions, B = {(s,a,r,s',d)} in D
Compute targets actions:

da'(s') = clip (/%/ (s")+clip(e, —¢, €), Qrow, &mgh); e ~N(0,0)
Compute targets:
y(r,s'sd) =7 +~(1 = d) min Qy (s',d'(s))

Update Q-functions through gradient descent:

V@ii Z <Q9i(s,a) —y(r, s’,d)>2 i=1,2

B
(s,a,r,s',d)EB

if (j mod PolicyDelay = 0) then
Update policy through gradient ascent:

w,—; S Qui(s 15(5))

seB

Update target networks:

0, < 760, + (1 — 1)6, i=1,2

¢ 1o+ (1—7)d

end

end
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The presented algorithmic architectures take observation space terms, summed
reward function value and checked termination conditions as inputs while applied
commands which form the action space as its outputs. The objective of the algo-
rithm is to maximize the value of the reward function by learning a policy which
extracts a mapping from observation set to outcomes of the actions. As a motion
control system implementation; observation space and action space terms respec-
tively correspond to control system inputs and outputs where reward function
corresponds to the baseline assessment criteria for the optimization problem. In
this content, corresponding components are described and presented in the fol-

lowing sections with required details.

4.5 QObservation Space and Action Space Deter-

mination for Snake Robot Locomotion

Observation space comprises 6 sets of data where three of them include N com-
ponents and the other three of them include N - 1 components while action space
comprises N - 1 term command signals for an N-modules snake robot. Table 4.2
presents definitions of notations which are denoted in the observation space and

action space terms.

Definition H Notation

Module number

Joint number

Time step

Commanded direction

Perpendicular direction to the command
Joint torque

Position information

Linear velocity information

SV 2R g Tt

Table 4.2: Definition of Notations in Observation Space and Action Space Terms
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Observation space for the N-module snake robot includes;

1. Velocity information of each module in the commanded direction in the

current time step, v; ,4: [N x 1]

2. Velocity information of each module in the perpendicular direction to the

commanded direction in the current time step, v;,,: [N x 1]

3. Position information of each module in the perpendicular direction to the

commanded direction in the current time step, p; 4 [N x 1]

4. Position information of the yaw axis joints of each module in the current

time step, p; ¢ [(N-1) x 1]

5. Velocity information of the yaw axis joints of each module in the current
time step, v;+: [(N-1) x 1]

6. Applied torque values to the yaw axis joints of each modules from the

previous time step, u;;—1: [(N-1) x 1]

where the signals which have certain limit values in the observation set is nor-
malized between [-1, 1] interval to equalize the range of different components
for a proper learning process while the others that are not limited with certain
values are approximately normalized between [-1, 1] interval based on emerging
experimental outcomes by taking into account their upper and lower values and

by leaving a sufficient level of margin.

As the output components of the algorithm, action space for the N-modules snake
robot corresponds to the applied torque commands to the joints. Corresponding
torque command values are generated in [-1, 1] interval and scaled with torque

limit value on the verge of applying to the joints.

Therefore, observation space comprises 6N - 3 components while action space
includes N - 1 components whose mapping is created by the implemented rein-
forcement learning algorithm and N components which are determined by the

non-stochastic motion control algorithms.
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4.6 Reward Function Design

Reward function is composed as the weighted sum of 8 different terms where
each of them intends to realize a specific feature for snake locomotion. One by
one, they can be described and investigated with their individual purposes as
below where corresponding definitions of notations in reward function terms are

presented in Table 4.3.

Definition H Notation

Module number

Joint number

Number of total modules
Number of total considered joints
Diameter of a module

Time step

Sampling time

Initial time step

Initial time step

Commanded direction
Perpendicular direction to the command
Joint torque

Position information

Linear velocity information
Acceleration of a joint

===

d

STESERAS IS E%Jﬁlﬂﬁ‘*

Table 4.3: Definition of Notations in Reward Function Terms

The first component is the control effort punishment (or torque penalty), denoted
as Tp,, which aims to realize commanded motion with minimal torque values.
Therefore, applied torque values in the joints are punished based on Equation
4.15 below.

N
T, = —wr Z uit_l (4.15)
J

The second term is the reward of linear velocity of the robot in the commanded
direction where it is denoted as V,.. For a modular snake robot, linear velocity

values of the geometric center of each module are taken into account. Although
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considering the velocity value of only single module such as the leading module
or the central module (in the case of snake robot is constituted an odd number of
modules) may seem sufficient, it is experienced that training process may tend to
converge to an undesired local minima and disruptions which hinder continuous
snake locomotion can occur. In this content, the reward term which evaluates

linear velocities of the modules is presented in Equation 4.16.

N
Vo=wy Y vig (4.16)

The third term compares the orders of consecutive modules. If consecutive mod-
ules are not in the expected order in terms of intended direction of movement, a
constant penalty with a relatively high weight is applied in each sample time for
each module which disrupts the expected sequential order. Corresponding term

is denoted as C, and given in Equation 4.17 as below.

N-—1
Cp = —Wc¢ E Cix
i=1

(4.17)
L, pie <Dit1)z

0, otherwise

The fourth component aims to keep indispensable deviation from the commanded
direction due to undulation motion in minimal level by applying proportional
punishments with the perpendicular distances from the commanded direction.

Defined component is denoted as U, and presented in Equation 4.18 as below.

N
U, =—wy Z Diy (4.18)
i=1

The fifth component checks the summed lateral deviation from the commanded

direction by also defining a dead zone to particularly punish excessive deviations
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while allowing freedom for undulation and proper actuation of curved path com-
mands. It should be noticed that it differentiates from the term which is stated in
Equation 4.18 since it does not introduce any punishment due to ordinary undu-
lation motion by considering summed deviation value with a dead zone boundary.
In other words, it takes into account the cases when whole snake body deviates
from the commanded route instead of undulation pattern on the commanded line.

It is denoted as L, and introduced as in Equation 4.19.

Lp = —lep

N

0, ‘ Zi:l Piy
N

) > im1 Pig

<2/9x N x My (4.19)

, otherwise

The sixth term takes into account the number of zero crossings along commanded
direction for each module and the accompanying velocity value. It intends to
maximize product of averaged velocity of the modules and total number of zero
crossings of each module throughout the commanded direction. It is denoted as

Z, and formulated as in Equation 4.20.

1 N Ty N
Zr = wZN Z Vi x < Z Z nzc(pi,z,typi,a:,t—1>>

=1 t=T;+1 i=1
(4.20)
17 f1f2 <0

0, otherwise

nzc(flafZ) =

The seventh component aims to minimize sharp, instant changes in velocity char-
acteristics of the module joints to provide more natural, smooth behaviour to the

snake locomotion. It is denoted as A, and presented in Equation 4.21 as below.

K
Ap = —way [’ (4.21)
j=1
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The eighth and last term is the duration reward which indicates the elapsed time
interval until one of the training termination conditions occurred. In other words,
it takes into account that how long the robot has been operating. It is denoted

as D, and given in Equation 4.22.

T

D, =wp=>
U)DTf

(4.22)

Consequently, the overall reward function is composed as Equation 4.23 with the

proposed eight terms.

N N N—-1 N
R=—w 2 iy . — - piy| — wil
= T Ujp 1 T Wy Uiz — WC Cix — Wy Diy Wby
J i i=1 i=1

al Ts 4 . . (4.23)
1 | 8
‘|_U}ZN Z Uiz < Z Z nzc(pi,m,ta pi,a:,t—l)) —wa E ”Uj ||2 + wD,_ZTf
=1 t=T;+1 i=1 j=1

In the process of premise trainings, weights of the defined eight terms are tuned
separately based on the experienced outcomes. The finalized values for weights
of the each term are stated in Table 4.4.

Weight Term H Value

Torque Penalty Weight: wy || 0.01
Velocity Reward Weight: wy || 5
Inconsecutive Order Punishment Weight: w¢ || 50
Undulation Penalty Weight: wy || 1.5
Lateral Deviation Punishment Weight: wy, || 0.5
Zero Crossing Reward Weight: wy || 1
Sharp Velocity Change Punishment Weight: w, || 107*
Duration Reward Weight: wp || 5

Table 4.4: Determined Weights for Components of Reward Function
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Therefore, with weighted terms, the overall reward function which is stated in
Equation 4.23 takes finalized form as in Equation 4.24 to employ in the snake

locomotion trainings.

N N N-1 N
R=—001> ul, 1 +53 0a—50> cio—15Y |piyl— 0.5,
J i i=1 i=1

1 N Ty N K -
DA, ”x( > nzc(pi,ﬁ,t,pi,x,t1)> — 107 (o + g
=1 et

t=T;+1 i=1

(4.24)

where;

1, pie <Pit+1)2

Cix =
0, otherwise
I = 0’ ‘Zi]ilpi,y SQ/QXNXMd
p =
‘le\il Piy|, otherwise
1, 1t <0
nZC(tb t2) =

0, otherwise
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4.7 Determination of Termination Conditions

Training process includes four conditions which terminate the current episode and
leads to continuation with the next episode. Three of the four conditions form
the early stopping criteria while one of them is the termination of the episode
reaching after the maximum number of steps. The current episode is terminated

before predetermined maximum number of steps if;

1. Central module of the robot moves perpendicularly more than 1.5 meters

from the commanded direction.

2. Minimum number of modules which are in contact with the ground is less

than 4/9 of total number of modules.

3. Absolute velocity value of the central module in the commanded direction

is less than 0.15 m/s for 2.5 seconds.
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Chapter 5

Motion Control System
Architecture and Training
Results

Motion control system architecture for designed modular and reconfigurable snake
robot is presented at this stage with realized experimentations that cover differ-
ent robotic architectures, fault scenarios, 2D locomotion characteristics and 3D
operation concepts. The realized scenarios with implementation details are illus-
trated in the corresponding sections and obtained outcomes with both positive
and negative aspects are evaluated and discussed for the related cases. Realized
experimentations are based on the mathematical analysis backgrounds which are
described in Chapter 2, robotic architecture design and modelling specifications
which are stated in Chapter 3 and algorithmic design details in Chapter 4. Conse-
quently, the proposed hybrid motion control system architecture for snake robot

locomotion is portrayed.
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5.1 Snake Robot Locomotion via Reinforcement

Learning

The designed and modelled snake robot, as corresponding details are presented
in Chapter 3, is trained with Soft Actor-Critic (SAC) and Twin Delayed Deep
Deterministic Policy Gradient (TD3) reinforcement learning algorithms due to
the reasonings which are offered in Chapter 4. The employed reward function in
the training process with corresponding design details and justifications, obser-
vation space and action space of the trained snake robots are also described in
Chapter 4. Based on the illustrated perspective, as one by one presented in the
following sections, a 9-modules snake robot is trained with SAC and TDS3 algo-
rithms at the initial phase with same reward function, contact force model and
electro-mechanical model characteristics to investigate comparative performances
of algorithms. Afterwards, trainings are realized with determined algorithm for 5,
7, 9 modules snake robots and 11 modules snake robot which includes 3 distinct
defective modules where further regulations and tunings are performed on reward
function terms and hyperparameters to improve the performance and efficiency
on the verge of stated experimentations. Afterwards, realized experimentations
are extended to locomotion on unexperienced surface conditions and three di-

mensional operation concepts.

Evaluation criteria for the realized motions during training episodes are implicitly
evaluated based on termination conditions and resulting reward value as described
in Chapter 4. Therefore, if one of the termination conditions takes place where
they take into account lateral deviation of central module, minimum number of
modules which are in contact with the ground and minimum absolute velocity
value of the central module in the commanded direction for a predetermined time
interval, the adopted attitude by the snake robot is evaluated as unsuccessful in
corresponding episode and the episode is terminated. On the reverse case, the
current episode is evaluated as successful and its grade of success is associated
with the resulting reward value as higher reward values indicate to improved

performance based on the predetermined criteria. In other words, for a snake
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locomotion which can be accepted successful, a continuous movement capabil-
ity on the commanded direction by keeping the (minimal) contact points with
the ground and staying inside the maximum deviation borders is defined as the

indispensable requirement.

During the realized trainings, initial states of yaw joints of each module are inde-
pendently randomized in the intervals [-15, 15] degrees for angular positions and
[-60, 60] degrees per second for angular velocities of the joints with 0.5 probability
and zero initial states are set for velocity and position values with 0.5 probability
at the beginning of each episode. The path following should be achieved both
with zero initial states of the joints and the randomized initial states which corre-
sponds to random deviation of the robot posture from the commanded line with
non-zero initial joint angular velocities. In other words, the snake robot should
follow the commanded path even if its heading points out another direction and
its posture and joint velocities are in a random state for recently commanded
direction by appropriately arranging its posture, position and velocity states to
aimed locomotion line. In addition to randomization operation; for exploration
purpose, Ornstein-Uhlenbeck (OU) noise model [53] is employed for all the train-
ings. Also, a relatively aggressive learning process is intentionally followed and
learning rates are set relatively higher than common values to overcome repet-
itive behaviours which are encountered during various trials along high number
of episodes. As a consequence of these factors, relatively noisy characteristics
are observed in the resulting reward functions as they can be investigated in the

following sections.

As it is aforementioned, snake robot locomotion gait patterns are determined by
mainly two factors which can be restated as the electro-mechanical architecture
of the robot and capabilities of the implemented motion control and planning
system. For scope of the investigations of this thesis, essential determinant factor
is the architecture of the robot. Therefore, commanded locomotion operations
are aimed to be realized with undulation gait pattern both in straight and curved
path commands. In addition to the underlined points, purpose specific motion
control objectives and the scope of realized investigations are described under the

corresponding subsections.
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5.1.1 Comparative Training Results of SAC and TD3 with
9 Modules Snake Robot Locomotion

To compare the performances of SAC' and TD3 algorithms, trainings are real-
ized with a 9 modules snake robot with separately tuned parameters for each
algorithm and under equal conditions. At this comparison stage, randomization
of initial states is not applied and zero initial conditions are set for yaw joint
position and velocity values. As the motion control objective, a straight path
following is aimed by maximizing the forward velocity and keeping the lateral
deviations limited with the inevitable undulation patterns. Consequently, since
there are clear differences between obtained outcomes which indicate TDS3 supe-
riority for this specific case as can be seen in Figure 5.1, the following operations
which include further hyperparameter tunings, arrangements in reward function
terms and experimentations with different snake robots whose number of modules

varies and may include defective components are realized with T'D3 algorithm.

2000

Training Reward Outcomes of TD3 and SAC Algorithms with 9 Modules Snake Robot
T T T

T

——TD3 Episode Reward

——TD3 Average Reward (Last 100 Episodes)
SAC Episode Reward

——SAC Average Reward (Last 100 Epi

1500 - i

‘ J\"" dwl‘ }\w it
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Figure 5.1: Comparative reward outcomes of SAC and TD3 algorithms for 9
modules snake robot training
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5.1.2 Training Results for 5 Modules Snake Robot

At this point, 5 modules snake robot is trained with T'D3 algorithm with finalized
parameter settings after its comparison with SAC algorithm and subsequent var-
ious trials by evaluation of emerging outcomes. For motion control objective, a
straight path following purpose is pursued independent from the initial conditions.
In other words, the snake robot should follow the commanded path with both
zero initial states and independently randomized initial states in the intervals
[-15, 15] and [-60, 60] respectively for angular position and velocities. Actually,
the case of randomized initial states corresponds to commanding the robot to
another target while the snake robot is already realizing a previously applied dif-
ferent command which contradicts and is not compatible with newly commanded
straight path. In this content, lateral deviations from the commanded line are
aimed to be prevented except inevitably required lateral undulations and the
forward velocity in the commanded direction is intended to be maximized. Con-
sequently, reward values for 5 modules snake robot training with 7'D3 algorithm

through 5000 episodes are presented in Figure 5.2.

5 Modules Snake Robot Training wnh TD3 Algorlthm
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|
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il i h‘ |
1000 - ‘ l‘ H\ “ ‘ | “
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|
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1 1 1 1 1 1 1 1 1
-1000
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Episode Number

Figure 5.2: Reward values for training of 5 modules snake robot

For 5 modules snake robot locomotion patterns, position and velocity values of
each module are respectively presented in Figure 5.3 and Figure 5.4 with zero

initial states and in Figure 5.5 and Figure 5.6 with random initial states.
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Figure 5.3: Module positions of 5 modules snake robot.
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Figure 5.4: Module velocities of 5 modules snake robot.
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Figure 5.5: Module positions of 5 modules snake robot when initial states are

randomized.
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Figure 5.6: Module velocities of 5 modules snake robot when initial states are

randomized.
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5.1.3 Training Results for 7 Modules Snake Robot

The 7 modules snake robot is also trained with T'D3 algorithm with same hy-
perparameter settings for straight path following objective with both zero initial
states and randomized initial states of yaw joints of the modules. Therefore, in
the case of randomized initial states, the robot should appropriately re-arrange
its direction, posture and module velocities and execute convenient sequences to
realize the latest command. Reward outcomes of training with 5000 episodes
and randomized initial conditions of yaw axis joints is presented in Figure 5.7.
However, it should be note that reward values are not directly comparable or
interpretable between the snake robots whose module numbers are different due
to stochastic nature and implicit changes in reward function terms depending on
the number of modules.

7 Modules Snake Robot Training wnh TD3 Algorlthm
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Figure 5.7: Reward values for training of 7 modules snake robot

In this content, position and velocity values of each module in the commanded di-
rection are respectively presented in Figure 5.8 and Figure 5.9 for the specific case
of zero initial states for module joints where resulting outcomes for randomized

initial states are given in Figure 5.10 and Figure 5.11.
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Figure 5.8: Module positions of 7 modules snake robot.
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Figure 5.9: Module velocities of 7 modules snake robot.
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Figure 5.10: Module positions of 7 modules snake robot when initial states are

randomized.

=4
©

7 Modules Snake Robot

Velocity (m/s)
4 14 o
0 s o

)

I
o

Velocity Values of the Modules in Commanded Direction
T T T T T

0.4

1 1.5 2 2.5 3 35 4 45 5
Time (s)

Velocity (m/s)

Velocity Values of the Modules in Perpendicular Direction to Commanded Direction
T T T T T T T

1 1.5 2 2.5 3 35 4 45 5
Time (s)

Figure 5.11: Module velocities of 7 modules snake robot when initial states are

randomized.
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5.1.4 Training Results for 9 Modules Snake Robot

The 9 modules snake robot is also trained via previously described approach
along 5000 episodes and corresponding reward values are presented in Figure
5.12. As it can be seen from the resulting outcomes of 5, 7 and 9 modules snake
robot trainings, there are minor imperfections which remain with 5000 episodes
training like chatterings in lateral velocities of 5 module snake robot or minor
deviations from the commanded line of 9 modules snake robot, which can be
simply eliminated with further trainings. However, in contrary to instinctual
anticipation, a smooth sinusoidal locomotion pattern may or may not be optimal
attitude for snake locomotion depending on the surface friction characteristics.
Accordingly, minor or major divergences from smooth sinusoidal pattern should
not be interpreted as a deficiency or imperfection in snake locomotion which
emerges through trainings. It should be noticed that although the realized snake
motions after limited number of training episodes are not optimal, optimal snake
locomotion is dependent on the contact surface characteristics and the optimal

wave patterns significantly differentiate with various friction characteristics [32].
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Figure 5.12: Reward values for training of 9 modules snake robot

Resulting position and velocity characteristics of nine modules snake robot is
presented in Figure 5.13 and Figure 5.14 for the case of starting motion with zero

initial states and in Figure 5.15 and Figure 5.16 for a random initial states case.
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Figure 5.13: Module positions of 9 modules snake robot.
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Figure 5.14: Module velocities of 9 modules snake robot.
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Figure 5.15: Module positions of 9 modules snake robot when initial states are
randomized.
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Figure 5.16: Module velocities of 9 modules snake robot when initial states are
randomized.
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5.1.5 Fault Tolerant Locomotion Training for a Defective

Snake Robot

In this scenario, a defective 11 modules snake robot is created where correspond-
ing defects exist in the third, fifth and seventh modules. In the third module, the
yaw axis joint gets stuck and cannot actuate properly despite appropriately pro-
duced torques. It can move only in the interval [—0.05,0.05] degrees around zero
degree position. In the fifth module, there is not a case of being stuck and the
joint can move freely in the defined interval. However, torque commands cannot
be generated and the joint cannot be commanded appropriately. Consequently, it
is not actuated and it is directly open to be affected from external disturbances.
Lastly, the seventh module is also dysfunctional so that it cannot produce torque
commands and gets stuck in the interval 6.8 = 0.02 degrees by breaking the sym-
metric posture of the snake robot. Since it would create a contradictory case,
randomization operation is not employed for states of third and seventh module
joints to realize stuck scenario properly. However, for the fifth module, initial
states are randomized at the beginning of each episode since only torque is not
generated properly but it can freely move in the defined interval. Corresponding

outcomes after the training can be seen in Figures 5.17 - 5.19.

000 11 Modules Snake Robot Tralnlng with 3 Defective Modules via TD3 Algorlthm
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Figure 5.17: Reward values for training of 11 modules snake robot with 3 defective
modules
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11 Modules Snake Robot with 3 Defective Modules
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Figure 5.18: Module positions of 11 modules snake robot with 3 defective mod-
ules.
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Figure 5.19: Module velocities of 11 modules snake robot with 3 defective mod-
ules.
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11 Modules Snake Robot with 3 Defective Modules
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Figure 5.20: Module positions of 11 modules snake robot with 3 defective modules
when initial states are randomized.
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Figure 5.21: Module velocities of 11 modules snake robot with 3 defective modules
when initial states are randomized.
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5.1.6 Snake Robot Locomotion on Unexperienced Surface

Conditions

The presented trainings and corresponding experimentations until this point, as
it is underlined, are realized with modelling characteristics described in Chapter
3 and parametric values which describe contact properties as provided in Table
3.3. In this stage, the snake robot behaviours are investigated under unexperi-
enced, unseen surface conditions. Therefore, generalizability of the resulting pol-
icy which is obtained after trainings with unchanged contact surface properties is
examined. The snake locomotion objective is defined as following a straight path
with possible maximum velocity and minimum lateral deviation. In this content,
experimentations are realized with both zero initial states and randomized initial

velocity and position states of the yaw joints.

The experimentation for unexperienced surface conditions which correspond to
locomotion in different terrain properties from the snake robot has been trained is
realized with 7 modules snake robot with three different contact force modelling

parameter sets as presented in Table 5.1.

First set of contact force modelling parameters corresponds to a high frictional
surface with a significantly increased scale of static and dynamic friction coef-
ficients. Also, stiffness is decreased whereas damping value is increased. The
resulting locomotion characteristics with zero and randomized initial states are

respectively presented in Figures 5.22 - 5.25.

Second set of parameters reflect a slippery surface characteristics with consid-
erably decreased static and dynamic friction coefficients whereas stiffness is in-
creased and damping value is kept the same with the training set. Corresponding

snake locomotion behaviors are illustrated in Figures 5.26 - 5.29.

Additionally, a third set of contact parameters is determined as another interme-
diate set where static and dynamic friction coefficients are specified between first
and third set where stiffness value is significantly decreased and damping value

is increased. The resulting outcomes are presented in Figures 5.30 - 5.33.
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H Contact Force Modelling Parameter Sets H

Training Parameter Set

Normal Force Value Unit
Stiffness 104 N/m
Damping 40 N/(m/s)

Frictional Force Value Unit
Static Friction Coefficient 3.2 N/A
Dynamic Friction Coefficient | 3.0 N/A

Unexperienced Parameter Set - 1

Normal Force Value Unit
Stiffness 3 x 10 N/m
Damping Sl N/(m/s)

Frictional Force Value Unit
Static Friction Coefficient 5.8 N/A
Dynamic Friction Coefficient | 5.5 N/A

Unexperienced Parameter Set - 2

Normal Force Value Unit
Stiffness 4 x 10* N/m
Damping 40 N/(m/s)

Frictional Force Value Unit
Static Friction Coefficient 0.9 N/A
Dynamic Friction Coefficient | 0.8 N/A

Unexperienced Parameter Set - 3

Normal Force Value Unit
Stiffness 2 x 10° N/m
Damping 64 N/(m/s)

Frictional Force Value Unit
Static Friction Coefficient 1.6 N/A
Dynamic Friction Coefficient | 1.45 N/A

Table 5.1: Contact Force Model Parameter Sets for Realization of Unexperienced
Surfaces
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Figure 5.22: Module positions of 7 modules snake robot with unexperienced con-
tact surface conditions scenario as described contact force modelling parameter
set one.
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Figure 5.23: Module velocities of 7 modules snake robot with unexperienced con-
tact surface conditions scenario as described contact force modelling parameter
set one.
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7 Modules Snake Robot
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Figure 5.24: Module positions of 7 modules snake robot with unexperienced con-
tact surface conditions scenario as described contact force modelling parameter
set one when initial states are randomized.
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Figure 5.25: Module velocities of 7 modules snake robot with unexperienced con-
tact surface conditions scenario as described contact force modelling parameter
set one when initial states are randomized.
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Figure 5.26: Module positions of 7 modules snake robot with unexperienced con-
tact surface conditions scenario as described contact force modelling parameter

set two.

Figure 5.27: Module velocities of 7 modules snake robot with unexperienced con-
tact surface conditions scenario as described contact force modelling parameter

set two.
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7 Modules Snake Robot
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Figure 5.28: Module positions of 7 modules snake robot with unexperienced con-
tact surface conditions scenario as described contact force modelling parameter
set two when initial states are randomized.
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Figure 5.29: Module velocities of 7 modules snake robot with unexperienced con-
tact surface conditions scenario as described contact force modelling parameter
set two when initial states are randomized.
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Figure 5.30: Module positions of 7 modules snake robot with unexperienced con-
tact surface conditions scenario as described contact force modelling parameter

set three.

Velocity (m/s)

Figure 5.31: Module velocities of 7 modules snake robot with unexperienced con-
tact surface conditions scenario as described contact force modelling parameter

set three.
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7 Modules Snake Robot
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Figure 5.32: Module positions of 7 modules snake robot with unexperienced con-
tact surface conditions scenario as described contact force modelling parameter
set three when initial states are randomized.
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Figure 5.33: Module velocities of 7 modules snake robot with unexperienced con-
tact surface conditions scenario as described contact force modelling parameter
set three when initial states are randomized.
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5.2 Snake Robot Locomotion in Three Dimen-

sions

In the scope of previous sections, snake locomotion patterns are generated through
TD3 algorithm in 2D environments for distinct cases and robots which are formed
with different number of modules where they might also include defective com-
ponents. At this stage, snake locomotion is extended to 3D environment with a
cascaded PID architecture which comprises command shaper and gain scheduling
components where cascaded structure provides possibility for operations in both

speed control and position control depending on the aimed purpose.

Therefore, snake locomotion patterns are generated via trained 7'D3 algorithm to
realize locomotion in commanded direction and motion capabilities are extended
to 3D with the cascaded PID architecture and high level planner possibilities.
General motion control system framework is presented in Figure 5.34 and it should
be noted that, depending on current posture of the snake robot, reinforcement
learning based and cascaded PID based components with high level planners in
the proposed hybrid motion control system can be inter-switched to appropriately

drive the corresponding axes.

In the cascaded PID structure, the command shaper component re-forms the ap-
plied step commands to realizable S-shape commands in position and triangular-
like shapes in speed controller layers by taking into account current states, ac-
celeration and speed limit characteristics of the system. To illustrate, several
applied and shaped command examples are provided in Figure 5.35 for the cases
the system is commanded from zero initial states and it does not reach to pre-
determined speed limit. However, it should be emphasized that, the proposed
command shaper is also capable to handle with non-zero initial conditions and
for the commands which leads to operation in the limit values of the system as

several examples are provided in Figure 5.36 for this case.
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Shaped Position Commands
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Figure 5.35: Shaped position and speed layer commands for the cases system
does not reach predetermined speed limit.
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Figure 5.36: Shaped position and speed layer commands for the cases when new
commands are applied before previous command is not completely realized, when
new commands are applied after previous command is completely realized and
when system reaches predetermined speed limit value while realizing applied com-
mand.
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As the other employed component in the cascaded PID structure, gain scheduling
blocks simultaneously change the gain values in an exponential manner between
predetermined minimum and maximum borders depending on the instant error
value as it is defined in Equation 5.1 and illustrated with arbitrary parameters
in Figure 5.37. Gain scheduling is implemented in both proportional and inte-
gral components of PID controllers but derivative components are used with a
significantly lower gain value and not scheduled for snake locomotion. The im-

plemented gain scheduling component is formulated as in Equation 5.1 below.

(Gmax a Gm'm)

ep

0, Klg| <0

Gs = Gmin +

(5.1)
Pp=Kle|, 0<Kl|<c

¢, Kle| > ¢

where;
¢: Instant control error value
c: Saturation limit for power value

Gmin, Gmaz, K: Parametric values for gain scheduling
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Figure 5.37: Scheduled gain curves based on exponential manner between arbi-
trarily predetermined lower and upper values.

73



With presented motion control system framework, snake locomotion is realized
in 3D environment with mainly 2 different snake robot postures where they can

be diversified further depending on the purpose.

In the first case, an L-shape posture is realized where corresponding position and
speed information of joints with corresponding commands are presented in Figure
5.38 and the resulting snake posture in three different time steps is illustrated in
Figure 5.39.

In the second case, an arch shape posture is realized. Position and velocity values
of pitch joints of each module are presented in Figure 5.40 while gradual formation

of arch posture is depicted in Figure 5.41.

In both scenarios, the joint position commands are applied gradually based on
the foresight prediction of expected position values of the joints by the command
shaper. The subsequent command is applied after the previous one is expected to
settle in +1 degree interval around targeted point. In L-shape realization, position
and speed commands are shaped with 1/3 of the predetermined acceleration value
of previous joint since the moved inertia gradually increases whereas in arch shape

scenario, gradually applied commands are shaped with equal parametric values.

At this point, although two example scenarios are described and corresponding
outcomes are presented, 3D locomotion cases can be diversified depending on the

aimed purposes with correspondingly required high level planning operations.

74



11 Modules Snake Robot

Position Values of the Pitch Axis Joints
T T

'
S

@
=]
T

Position (deg)
5
T

o B
T

=t

|

|

Time (s)

@
S

Velocity Values of the Pitch Axis Joints
T T

»
a
T

)
S
T

o
T

Velocity (deg / s)
B
T
I

/* / ) ]

Time (s)

o
T

!
\

°
@
-o‘ {
a

Figure 5.38: Position and velocity values of pitch axis joints for L-shape snake
robot realization case.
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Figure 5.39: L-shape snake robot posture at initial, intermediate and final time
steps with followed module paths.
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Figure 5.40: Position and velocity values of pitch axis joints for arch shape snake
robot realization case.
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Chapter 6

Conclusions and Discussions

In the scope of the thesis, mathematical background essentials for snake robots
are investigated and fundamental requirements are presented. Differences and
similarities between biological snakes and electromechanical snake robots are dis-
cussed. Advantages and disadvantages of snake robots are evaluated with possible

application fields and operation concepts.

For implementation and realization of the proposed hybrid motion control sys-
tem architecture with different cases which comprises snake robots with differ-
ent number of modules which might also include defective components, various
surface characteristics, two dimensional and three dimensional tasks; a reconfig-
urable modular snake robot is designed and corresponding modelling operations
are realized including contact force modelling of passive wheeled structure which
satisfies anisotropic friction requirement for proper controllability of the snake
robot. For snake robot locomotion, two different state-of-the-art reinforcement
learning algorithms which are Soft Actor-Critic (SAC) and Twin Delayed Deep
Deterministic Policy Gradient (TD3) are constructed with corresponding tuning
operations of the hyperparameters. For primary snake locomotion gait patterns
in 2D, corresponding reward function terms are composed and weights for each
components are tuned based on the experiences of snake locomotion character-

istics that have occurred during the training trials. With the finalized reward
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function in terms of components which form the overall reward function and cor-
responding weight terms for the each component, the snake robots which are
formed by 5, 7 and 9 modules are trained to realize appropriate snake locomotion
patterns. In addition to these, a defective 11 modules snake robot whose cer-
tain joints have become dysfunctional are also trained with the same algorithmic
structure and reward functions as a fault tolerant locomotion trainings. In this
content, functionality of the designed algorithm and proposed reward function are
verified for the aimed purpose. Thereafter, the operational cases are extended to
three dimensional scenarios with cascaded PID architecture which can be inte-
grated with various high level planners and verifying outcomes of corresponding
experimentations are presented. In this content, proposed cascaded PID archi-
tecture for pitch axis joints provides broad application infrastructure for different
kind of high level planners via its operation capacity both in speed and position
modes independently and instantaneously for each joint. Additionally, command
shaper component provides mainly two significant advantages. Since it takes into
account current states and electro-mechanical capacity of the system for determi-
nation the command in the following time steps, command tracking performance
is significantly improved with minimized overshoot and undershoot effects. Also,
future steps of the system becomes accurately foreseeable for a specific sample

time interval.

In this context, the fundamental contributions of the thesis can be put in order

as;

1. A reinforcement learning based motion control architecture is proposed for
generation of gait patterns in 2D for snake robots which are formed by

different number of modules.

2. For realization of locomotion through reinforcement learning, novel reward
functions are designed for the desired gait patterns and effects of each term

on locomotion characteristics are investigated.

3. As a fault tolerant locomotion training, functionality of implemented rein-

forcement learning motion control architecture is also verified with defective
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snake robots which include various malfunctions through realization of cor-

responding experimentations.

4. In addition to electro-mechanical modelling operations, modelling of con-
tact forces with various parameter sets which represent different locomotion
terrain characteristics are also realized. Thereafter, functionality of snake
robot locomotion, with previously trained algorithms, is also verified with
unseen surface conditions. Therefore, generalizability and robustness of the
proposed motion control system and trained algorithms are validated for

distinct operation conditions.

5. For realizations of operations which span 3D medium, a cascaded PID archi-
tecture with command shaper and gain scheduling components is proposed
where it can be conveniently integrated with different high level planners.
Accordingly, sample operation scenarios are defined, realized and evidential

outcomes are presented.

6. Consequently, a hybrid novel motion control system architecture is pre-
sented for snake robots which is versatile for implementation in different
snake robots and for realization of various high level operation duties where
it is also robust against faults and dysfunctionalities that can possibly take

place during operation time.

In addition to the obtained and presented successful outcomes, some specific
points can also be evaluated and discussed to improve resulting outcomes fur-
ther. Although the proposed reward function fulfills the existing deficient point
for snake locomotion through reinforcement learning, it is still open for further
improvements in terms of faster convergence and increased efficiency of robot lo-
comotion. Especially, the components like L, and Z, which may produce sparse
values depending on the initial conditions of the robot, parameter initializations
of the networks and gained locomotion behaviors during training process, can
be arranged further to increase efficieny. Also, hyperparameter tunings for em-
ployed algorithms are open for further improvements. Even though TD3 clearly

outperforms SAC for designed and modelled snake robot with separately tuned
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hyperparemeter sets, in a specific setting in terms of both determined hyper-
parameters by tuning and characteristics of the trained robot, SAC algorithm
can reach or even outperform T'D3 in contrary to obtained results in the thesis.
Therefore, it should be emphasized that, for the specific architecture of snake
robot which is employed in the scope of the thesis, TD3 has created clearly su-
perior results compared to SAC with detailed tuning operations as practically
possible for both of the algorithms and, for this reason, following investigations
and experimentations have been realized through 7'D3 algorithm. However, it

does not point out to T'D3 superiority over SAC in a generalized aspect.

Throughout the investigations and experimentations, simulation and conse-
quently training times emerged as the main problem and fundamental limiting
factor. As it can be seen in the outcomes which are presented in Chapter 5, minor
level of imperfections remained with trainings of 5000 episodes. However, it is
foreseen that, they can be eliminated only by increasing the number of episodes
or by further repetition of the trainings. With advanced hardwares and/or more
efficient simulation environments, number of episodes can be extended by keeping
the training times in an acceptable level and corresponding imperfections can be
eliminated as well. In this way, minor deviations in the position values of drived
snake robot from the commanded route and minor differences between velocity
curves between different time intervals diminish. Similarly, chatter-like undesired
behaviors which are observed in velocity curves of 5 modules and 9 modules snake

robots can be eliminated as well.

In the training process, as aforementioned, initial angular position and veloc-
ity states of the yaw axis joints are randomized. Although the main reason for
randomization of states is to prevent possible memorization of snake locomotion
characteristics which require zero initial conditions for a successful outcome, it
is also experienced that randomization is also beneficial to eliminate potential
problems of convergence to a local minima which prevents continuous snake lo-
comotion. In other words, randomization is also useful for exploration of proper
gait patterns. In this way, the snake robot becomes capable to realize appropri-

ate gait patterns independent from the initial conditions which can deviate from
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zero initial states especially in position values as it is inevitable in physical re-
alizations and it can reach significantly more desirable local minima points with
realized trainings where it consequently leads superior locomotion performance.
However, it is seen that possibility of randomization, which is kept as 0.5 during
the trainings, can be increased as the snake robot gains fundamental locomotion
attitudes. In this way, risk of failure or degraded performance in rarely occur-
ring extreme cases in terms of position and speed values can be decreased. It
can also be underlined that, as expected, randomization also leads to a noisier
characteristics in reward values which points out learning process as it can be
realized by comparing presented outcomes in Figure 5.1 and Figures 5.2, 5.7,
5.12, 5.17. In addition to randomization process of initial states of the robot,
gradual diversification and randomization of contact surface properties can also
be integrated into the training curriculum even though operation capacity un-
der unexperienced conditions is verified with corresponding experimentations as
presented in Chapter 5. Also, to state as a finalizing remark, a relatively ag-
gressive exploration and learning attitude is adopted in the trainings in terms of
both exploration noise level, update and learning parameters. For this reason, an
aggressive learning attitude emerges as an additional factor which elevates noisy
characteristics in reward values. However, it should be noted that an aggressive
attitude is required to escape from undesired local minimas and it does not cause

an instability problem in the learning process.
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Chapter 7

Targets of the Future

The snake robot locomotion which reflects different patterns which can overcome
posssible challenges in distinct environments with their robust and versatile po-
tential capabilities is taken into account in a holistic view in this study. In this
content, a number of further steps are determined where they can be described

with underlying reasons one by one as below.

First of all, MATLAB Simulink [37] is employed as the simulation environment for
training process and corresponding electro-mechanical and locomotion environ-
ment modellings are realized via low and high level tools of Simulink. However,
despite the advantages which Simulink provides especially for electro-mechanical
modelling, two significant drawbacks can be stated as solving time of simulations
and infeasibility of environmental modellings. To reflect complex, real-world like
environmental conditions and variations in surface properties, it is aimed that
the robotic architecture will be transferred and trained in Isaac Gym [54] or Mu-
JoCo [55] simulation environments. They also provide significant advantages in
terms of solving times and consequently required time for training processes com-

paring with MATLAB Simulink while sufficient physical accuracy is preserved.

Secondarily, parallelization of the training process is another future target which

will accelerate the learning process and correspondingly shorten the required
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training time drastically. Isaac Gym provides an end-to-end GPU based physics
simulation for robot learning in a parallelized manner [54]. In this way, for train-
ing process, thousands of robots are used simultaneously and obtained experi-
ences are collected to update the policy. In [56], it is shown that ANYmal-C
quadrupedal robot learns to walk in under 20 minutes training by employing
4096 robots simultaneously in Isaac Gym environment and on NVIDIA RTX
A6000 GPU [57] where it is capable to walk in physical environment directly
after training in the simulation environment while proposed parallel training ap-
proach is also validated with different industrial robot models which are Unitree
A1 and Cassie in the simulation environment. In this content, training of the
presented modular and reconfigurable snake robot is aimed to be trained with
different number of modules in an environment where different surface properties

and obstacles are introduced.

In the scope of the thesis, mainly lateral undulation gait is taken into account
with their derivatives which emerge during the training processes. In addition to
these, sidewinding or lateral rolling based gait patterns for lateral motion capa-
bilities and concertina locomotion patterns for especially cluttered environments
as obstacle-aided locomotion will also be investigated. In a case when parallel
training is employed, since the required times for trainings will be significantly
decreased and therefore major practical concern will be eliminated, investigations

of different snake characteristics will become much more feasible.

In the scope of thesis, electromechanical design details for physical realization
possibility in the future is not considered in detail as required for manufactur-
ing phase. At this point, possible opportunities especially in soft materials will
be evaluated for the mechanical frame. In [58], Hawkes et al. presents a vine-
like growing soft robot which evokes a snake robot concept by its architecture
and operation purposes. A similar approach can be adapted to the modular
snake robot design to acquire re-shaping capability and to enhance motion ca-
pability over narrower regions than the module diameter of snake robot. Relat-
edly, mechanical design details of self-assembly mechanisms are not considered
for a self-reconfiguration capability instead of human intervention requirement.
In literature; PolyBot [6], FreeBOT [20], M-Blocks [21], [59], [60], SMORES [22],
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Roombots [23], ATRON [61], [24], UBot [25] and Sambot [26], [62] represents
remarkable robotic systems which holds self-assembly, self-reconfiguration capa-
bilities as presented in the Figure 7.1. In this content, not only snake robots
with different number of modules can be designed but also defined or undefined

robotic structures different than snakes can also be constructed and corresponding

locomotion capabilities can be searched over emergent architecture.

Figure 7.1: Self-reconfigurable modular robotic systems.
(a) PolyBot [6], (b) FreeBOT [20], (c) M-Blocks [21], (d) SMORES [22], (e)
Roombots [23], (f) ATRON [24], (g) UBot [25], (h) Sambot [26].

In a multi-agent case which is composed by snake robots with same or different
number of modules; a learning based coordinated, collaborative swarm behav-
iors and realization of common assignments like simultaneous localization and
mapping (SLAM) in a collaborative manner will be investigated. Scope will be
gradually expanded in terms of both capabilities of individual robots and real-
ized tasks in multi robot cases. Consequently, realization of a more comprehensive
learning based framework which comprises robotic locomotion and higher level

decision making and planning is aimed in a more efficient manner.
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