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ABSTRACT

RECONFIGURABLE MODULAR SNAKE ROBOT
LOCOMOTION VIA LEARNING BASED HYBRID
MOTION CONTROL SYSTEM ARCHITECTURE

İlyas KOCAER

M.S. in Electrical and Electronics Engineering

Advisor: Ömer MORGÜL

September 2022

Snake robots propose significant advantages especially for indeterminate, chaotic

environments through their robustness and versatility against unforeseen condi-

tions and scenarios. In addition to distinct locomotion characteristics of snake

robots, their redundant structure provides also fault tolerant operation capacity.

However, sophisticated and versatile locomotion characteristics and redundant

body structure also bring difficulty for dynamic modelling and motion control

of snake robots and, for this reason, generation of snake locomotion patterns

have been an ongoing challenge. To address this point; a reconfigurable, mod-

ular snake robot is designed and modelled with fundamental electromechanical

structure, joint and actuation subsystem and contact force modellings based on

minimal requirements which are determined by presented mathematical analy-

sis for snake locomotion. A hybrid motion control system architecture which is

constituted with state-of-the-art reinforcement learning based algorithms and a

cascaded PID controller which comprises command shaper and gain scheduling

components is presented. While reinforcement learning based algorithms which

indicate promising potential for generation of sophisticated behaviours are em-

ployed for generation of 2D snake gait patterns with corresponding reward func-

tion terms, locomotion capabilities are expanded to 3D space with the proposed

cascaded PID architecture and possible high level planners. Various experimen-

tations that cover comparison of different reinforcement learning algorithms, in-

dividual effects of specified reward function terms, locomotion of snakes which

are composed by different number of modules, fault tolerant locomotion trainings

for defective snake robots and realization of 3D operation scenarios are investi-

gated. In this content, from a holistic perspective, future directions are drawn

for potential physical realization of the electro-mechanical structure, mechanical
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design details for self-assembly mechanisms, further improvements of the train-

ing process and curriculum, and learning based multi-robot scenarios which cover

swarms of differently configured snakes to realize collaborative tasks.

Keywords: Snake Robots, Modular and Reconfigurable Robots, Robot Architec-

ture Modelling, Contact Force Modelling, Reinforcement Learning Based Motion

Control, Cascaded PID Based Motion Control, Hybrid Motion Control System

Architecture.



ÖZET

ÖĞRENME TEMELLİ MELEZ HAREKET KONTROL
SİSTEM MİMARİSİ İLE YENİDEN

YAPILANDIRILABİLİR MODÜLER YILAN ROBOT
HAREKET KABİLİYETİ

İlyas KOCAER

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: Ömer MORGÜL

Eylül 2022

Yılan robotlar, gürbüzlükleri ve çok yönlü operasyon kabiliyetleri sayesinde

bilhassa belirsiz, kaotik ortamlara ve öngörülemeyen senaryolara yönelik

kayda değer avantajlar sunmaktadırlar. Birbirinden farklı karakteristikte

gerçekleyebildikleri hareket kontrol kabiliyetlerine ek olarak, minimum gerekler-

den fazlasını barındıran mimarileri sayesinde olası hatalara ve arızalara karşı di-

rençli şekilde operasyon gösterme kapasitesine sahiptirler. Elektromekanik mi-

marileri açısından yılan robotların sunmakta olduğu söz konusu üstünlüklere

rağmen komplike ve çok yönlü hareket karakteristikleri dolayısıyla hareket kon-

trolü güncel zamana değin süregelen bir problem olarak ortaya çıkmaktadır. Bu

noktayı ele almak üzere, yılan robot lokomasyonuna yönelik matematiksel anali-

zler temel alınarak minimum gerekler belirlenmiştir. Belirlenen gerekler temelinde

yeniden yapılandırılabilir modüler bir yılan robot tasarımı ve ilgili tasarıma

yönelik temel elektromekanik mimarinin, tahrik bileşenlerinin ve sürtünme kuvve-

tinin modelleme işlemleri gerçeklenmiştir. Pekiştirmeli öğrenme temelli algo-

ritmalar ve komut şekillendirme, kazanç planlama bileşenlerini barındıran kat-

manlı PID kontrolcü tasarımı ile bir hibrit hareket kontrol sistem mimarisi

sunulmaktadır. Bu kapsamda, iki boyuttaki sofistike yılan hareket karakter-

istikleri pekiştirmeli öğrenme temelli algoritmalar ile elde edilirken, üst se-

viye planlama algoritmaları ve katmanlı PID kontrolcü mimarisi ile hareket ka-

biliyeti üç boyutlu uzaya taşınmıştır. Gerçekleştirilen incelemeler kapsamında

farklı pekiştirmeli öğrenme algoritmalarına dair kıyaslamalar, ödül fonksiyonunu

oluşturan bileşenlerin hareket karakteristikleri üzerine bireysel etkileri, farklı

sayıda modüler bileşenden oluşan yılan robotların hareket karakteristikleri, arızalı

bileşenler içeren robotların hata toleranslı eğitimleri ve üç boyutta olası operasyon
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senaryoları ele alınmaktadır. Ek olarak, bütüncül bir bakış açısı ile, ilgili robotun

elektromekanik mimarisinin fiziki olarak gerçeklenmesine, kendiliğinden birleşme

mekanizmalarının mekanik tasarım detaylarına, eğitim sürecine ve izlencesine ve

farklı işlevler özelinde konfigüre edilmiş işbirlikçi robot sürülerine yönelik öğrenme

temelli çoklu robot senaryolarına yönelik gelecek güzergahlar çizilmiştir.

Anahtar sözcükler : Yılan Robotlar, Modüler ve Yeniden Yapılandırılabilir Robot-

lar, Robot Mimarisi Modelleme, Temas Kuvveti Modellemesi, Pekiştirmeli

Öğrenme Temelli Hareket Kontrolü, Katmanlı PID Temelli Hareket Kontrolü,

Melez Hareket Kontrol Sistem Mimarisi.
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Chapter 1

Introduction

Snake robots have significant advantages especially in terms of terrain adaptabil-

ity, diversity of possible operation duties and mediums, robustness and flexibil-

ity against unexpected, undesired scenarios among the robotics implementations

which have a monotonically increasing impact in both scientific research and in-

dustrial area in addition to daily life. Variety and comprehensiveness of snake

robot applications for distinct tasks arise from their potential to realize sophisti-

cated locomotion characteristics and electromechanical characteristics. However,

generation of the corresponding snake locomotion characteristics is an ongoing

challenge for the aimed operation concept. In the scientific research area, it is

taken into consideration in terms of different perspectives which can be put in

order as electro-mechanical architecture design, motion control system design for

generation of snake gait patterns and perception and planning capabilities.

For these reasons, in the scope of the thesis, fundamental focal points are de-

termined as the implementation of learning based algorithms, presentation of a

motion control system architecture which provides operation capability in both

2D and 3D environments via presented hybrid motion control system architecture

which is followed by an investigation on mathematical background for snake loco-

motion and a simple design of modular, reconfigurable snake robot architecture

with corresponding modelling operations.
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1.1 Advantages and Disadvantages of Snake

Robots

Snake robots whose architectures and capabilities can potentially reach out even

beyond of biological diversity boundaries provide advantages especially for oper-

ations in constrained, indeterminate environments with their high adaptability

and versatility potential through distinct locomotion characteristics. In addition

to the diverse gait patterns, redundant body structures of snake robots which can

also be designed in a modular configuration ensures fault tolerance and different

capabilities which can be required depending on diversified operation conditions

and aimed tasks. For a specific objective, sensors and payloads which are carried

by the modules can be re-determined and the snake robot can be re-configured

in accordance with the intended purpose thanks to its modular structure. Fur-

thermore, in this way, collaborative snake robot swarms can also be formed with

differently configured robots which is customized to realize a specific task. Ad-

ditionally, as snake robots can be designed to operate in a 2D surface or 3D

space, the medium where robot operates can also be diversified. A snake robot

can potentially have amphibious characteristics and can operate both on loose or

rigid solid surfaces and in liquid mediums. On the other hand, several disadvan-

tages can be put in order for snake robots especially comparing with wheeled and

legged robots. The primarily noticed incompetence is the velocity limits which

inherently emerge due to electro-mechanical structure. For this reason, in rela-

tively unconstrained, regular terrains and wide spaces, wheeled or legged robots

can possibly predominate snake robots in terms of effectiveness of operational

capabilities. As the other drawback, even though it also extends the capabilities

and flexibility of snake robots, high number of degrees of freedom characteristic

also brings difficulty in dynamics modelling, motion planning and control as this

challenge will be addressed in Chapter 3. Additionally, although snake robots

can be equipped with various sensors and different configurations can be practi-

cally composed depending on the specific requirements through a reconfigurable

modular architecture design, payload capacity of snake robots is limited in terms

of both weight and size.

2



1.2 Application Fields of Snake Robots

Snake robots, as aforementioned, provide significant advantages for operations in

chaotic environments. They are especially used with exploration and inspection

purposes in environments which can include constrained routes with different

kinds of obstacles, narrow passages, unpredictable medium and surface condi-

tions. In this content; caves, debris zones [27], radioactive or poisonous sites,

accident or disaster regions [28] and even body of a living organism [29] can be

operation environment for snake robots. In these operation environments, appli-

cation range of snake robots extends from search and rescue operations to military

purposes. High versatility and robustness of snake robots provide them to oper-

ate in challenging environmental conditions where wheeled/crawler or even legged

robots are not able to function properly.

1.3 Operation Concepts of Snake Robots

Operation concepts of snake robots differentiate in terms of robotic gait patterns

and operation environment properties with aimed mission in addition to actuation

characteristics and body structure. Some snake robots are designed to operate

on a 2D surface whereas some others are designed for operation in a 3D medium.

Depending on the electro-mechanical structure and locomotion characteristics of

the designed snake robot, operable environments are also implicitly determined.

Based on the operation mission, characteristics of medium and surface can en-

close one or several of the environmental conditions which can be put in order

as; smooth surfaces, slope surfaces, rough terrains, corridors, pipes, regular or

irregular pole-like structures and various obstacles where the operation medium

can be loose or rigid solid, liquid or combination of solid and liquid elements.

For example; irregular rocky areas, trees and their branches, poles and pipes

with various diameters, debris zones, human-made obstacles like wire netting

or underwater operations are possible challenges that cannot be overcome eas-

ily in an intended task through legged, wheeled/crawler or flying robots. Snake

3



robots can potentially impersonate climbing [2] [4], floating [13], crawling [9] and

rolling [6] [7] [14] vehicles. Furthermore, they can be used as robotic manipulators

on a static or dynamic platform as well [3]. Modular and redundant structure of

snake robots provides reconfiguration potentials and fault tolerance against mal-

function possibilities as these properties can provide beneficial operation concepts

especially in hazardous environments. Furthermore, operation potentials of snake

robots, which already provides significant opportunities, can be extended with the

progress in material science especially by evaluating in a soft robotics concept.

In this way, diversity and strength of snake robots in locomotion characteristics

can also be reflected to their electro-mechanical architectures.

1.4 Snake Robot Examples From Industry and

Academy

Some notable snake robots with distinct capabilities from both academic and

industrial applications are presented in Figure 1.1. OriSnake is a continuously

deformable snake robot which is formed by origami-inspired continuum modules

[1]. Modular snake robot which is shown in image b can climb inside of a pipe [2].

ETR robot is developed especially for search and rescue tasks. It can be used

as a robotic manipulator on other vehicles to collaboratively realize an intended

task [3]. Unified Snake Robot has 3D gait capabilities and can climb poles, pipes,

trees and their branches. It can also keep its existing position without consuming

any power through its bistable brake system [4]. S5 snake robot is developed

for search and rescue purposes. It holds passive wheels on the underside and

has high number of modules which corresponds to high degrees of freedom and

redundancy [5]. PolyBot is a modular, self-reconfigurable robot which provides

versatility and robustness through redundancy and self-repair properties [6] [7].

Pipe inspection modular robot which is shown in image g can move throughout

different pipes and elbows. It can also detect obstacles and walls [8]. MOIRA2

is also developed as an inspection robot for rescue missions but with a different

architecture. It is composed by four body modules and holds crawler at the
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faces to improve its locomotion ability in the rubble [9]. OmniTread OT-4 robot

comprises seven segments which are covered by motorised drive tracks in all sides

and pneumatic bellows for actuation of the joints. It aims to climb obstacles

which is higher than the robot height, propel itself inside pipes and operate in

challenging terrain conditions [10]. The presented robots in images from j to

m are different generations of the same Active Cord Mechanism snake robot

family which are progressively developed on their predecessors. Gradually, both

their electro-mechanical architecture and locomotion capabilities with various

gait types are improved and diversified. Even though there are also intermediate

forms in the development process, at this point, only ACM III [11], ACM-R3

[12], ACM-R5 [13] and ACM-R7 [14] are introduced as the representatives of

fundamental milestones. ACM III is one of the oldest ancestors of snake robots

which are developed since 1972 [30]. Glide propulsion approach is realized with

ACM III and further capabilities, and new degrees of freedom, different gait

patterns are proposed with the subsequent designs [11] ACM-R3 snake robot

is equipped with large passive wheels that wraps its body and different gait

patterns are examined along with it [12]. ACM-R5 is an amphibious robot which

can operate both in water and on solid terrain. It comprises passive wheels on

its six sides of modules for locomotion on solid surfaces [13]. ACM-R7 robot

can take loop form and correspondingly a loop gait which is named as serpenoid

oval is proposed for its locomotion [14]. Snake robot with toroidal skin drive

aims to improve speed specifications beyond the existing limits via continuous

propulsive force which is provided by entire surface of the robot. Therefore,

novel locomotion techniques as a combination of skeletal actuation and skin drive

are obtained [15]. Slim Slime Robot is a pneumatically driven snake robot which

has a flexibly deformable mechanical structure [16]. Wheeko and Kulko share

the same internal electro-mechanical structure. Wheeko comprises twelve passive

wheels which encircles its outer diameter. Kulko is covered with a spherical shell

and holds contact force sensors. It is specifically developed for the purpose of

obstacle-aided locomotion in uneven and cluttered surface conditions [17].

5



Figure 1.1: Snake robot examples with distinct architectures and capabilities.
(a) OriSnake Origami Inspired Snake Robot [1], (b) Modular Snake Robot Climb-
ing the Inside of a Pipe [2], (c) USAR-ETR Urban Search and Rescue Elephant-
Trunk Like Snake Robot [3], (d) Unified Snake Robot [4], (e) S5 Snake Robot [5],
(f) PolyBot Self-Reconfigurable Snake Robot [6] [7], (g) Pipe Inspection Modular
Micro Snake Robot [8], (h) MOIRA2 Inspection Snake Robot [9], (i) OmniTread
OT-4 Serpentine Robot [10], (j) ACM III [11], (k) ACM-R3 [12], (l) ACM-R5 Am-
phibious Snake Robot [13], (m) ACM-R7 Loop Forming Snake Robot [14], (n)
Snake Robot with Toroidal Skin Drive [15], (o) Slim Slime Robot (SSR) Flexibly
Deformable Snake Robot [16], (p) Wheeko Snake Robot [17], (q) Kulko Snake
Robot for Uneven and Cluttered Environments [17].
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1.5 Purpose and Contributions of the Thesis

For snake robots, motion control approaches can be classified under two essential

categories which are constructed on dynamics and kinematics characteristics and

morphological characteristics. In this content; central pattern generators, sliding

mode controllers and PID controllers are proposed for snake-like robots which

are developed in academic and industrial applications including [1] - [17]. Even

though reinforcement learning is a prominent candidate which can cope with

the generation of diversity and sophisticated characteristics of snake locomotion,

it is not sufficiently investigated for snake robots until the present time and

scope of the current researches and applications are quite limited. In contrary

to legged robots and especially quadrupedal robots where reinforcement learning

based motion control methodologies are investigated and practiced relatively in

more detail especially after 2018, realized researches for snake robots are in the

emergence phase in terms of both quantitatively and qualitatively. The purpose

and some of the major contributions of the thesis concentrate on this deficient

point.

In the scope of the thesis;

1. A reinforcement learning based motion control architecture is proposed for

generation of gait patterns in 2D environment for snake robots which are

formed by different number of modules.

2. For realization of locomotion through reinforcement learning, novel reward

functions are designed for the desired gait patterns and effects of each term

on locomotion characteristics are investigated.

3. Functionality of the proposed and constructed learning based motion con-

trol architecture is verified with 5, 7 and 9 modules snake robots by realizing

commanded motion control objectives.

4. As a fault tolerant locomotion training, robustness of proposed motion con-

trol architecture is also tested and verified with a defective snake robot

which includes various malfunctions in its actuation joints.
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5. Functionality of snake robot locomotion, with trained reinforcement learn-

ing algorithms, is also verified with unseen surface conditions. Therefore,

generalizability of the proposed motion control system is validated for op-

erations in different conditions.

6. Operation capabilities of the snake robots are expanded to 3D space by

a cascaded PID architecture with command shaper and gain scheduling

components where different high level planners can also be integrated con-

veniently.

7. Consequently, a hybrid novel motion control system architecture is pre-

sented for snake robots which is versatile for realization of various high level

motion plannings and robust against possible faults and dysfunctionalities.

Afterwards, as the finalizing marks, the future directions are drawn in a holistic

view which covers different aspects of snake robot applications including multi-

robot scenarios that cover collaborative behaviours and reconfiguration tasks. In

this content, learning based swarm robotics applications are also evaluated.

1.6 Overview of the Thesis

Chapter 2 describes anatomy and locomotion characteristics of biological snakes

and mathematical analysis for snake robot locomotion with corresponding con-

trollability analyzes and propulsive forces synthesis. In this content, minimal

requirements to realize proper snake locomotion are discussed and determined.

Chapter 3 portrays fundamental features of electro-mechanical architecture of

trained snake robot and modelling of re-configurable modular structure, actuation

and joint mechanisms, contact force modelling with passive wheeled structure to

obtain anisotropic friction.

Chapter 4 clarifies the reasoning and justification for the use of reinforcement

learning to generate snake locomotion behavior and implemented reinforcement

8



learning algorithms among existing options. Subsequently, design details of algo-

rithmic architecture, observation and action spaces, hyperparameter settings and

reward function with individual roles of corresponding components are described.

Chapter 5 presents obtained training results for two different reinforcement learn-

ing algorithms and snake robots which are constructed by 5, 7, 9 modules and

11 modules which include defective components. In this content, resulting snake

locomotion characteristics are separately illustrated for each case and investiga-

tions with trained robots are extended with experimentations on unexperienced

surface conditions. In addition to reinforcement learning motion control scheme

which corresponds to generation of 2D gait patterns for proper snake locomo-

tion, motion control system design which extends the operation capability to 3D

medium is presented and several sample scenarios are realized with 7 and 11

modules snake robots. Consequently, overall hybrid motion control system archi-

tecture which includes Twin Delayed Deep Deterministic Policy Gradient (TD3)

and Cascaded PID with a command shaper, gain scheduling and notch filter com-

ponents which will operate based on the generated commands by a higher level

planner are presented.

Chapter 6 concludes the thesis with evaluations and discussions for obtained

outcomes by taking into account both positive and negative aspects. Reasonings

for resulting outcomes are underlined and the points which are open for further

improvements are indicated.

Chapter 7 draws the future directions which are aimed to realize for simulation

environment, training process, high level motion planners for 3D tasks and multi-

robot scenarios which cover collaborative behaviours and reconfiguration tasks to

take the obtained results one step further.
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Chapter 2

Snake Locomotion Investigation

The snake locomotion characteristics differentiate depending on the correspond-

ing snake structure in both biological snakes and electro-mechanical snake robots.

Although there are similarities in fundamental ruling features among biological

snakes and between biological and electro-mechanical snakes, locomotion pat-

terns and gait types are indirectly determined depending on the corresponding

architecture. The essential variables at this point can be put in order as the

joint structures and numbers, contact properties between snake body and loco-

motion surface with corresponding limitations and degrees of freedom, properties

of the material that covers and shapes the snake body and motion control and

planning system architecture. In snake locomotion, the propulsive force which

carries forward the snake body is obtained via repeating motions. In biological

snakes, required coordinated repeating motions is generated through neural im-

pulses and activated local muscle groups which bend the snake body whereas, in

electro-mechanical snake robots, corresponding complex motions are realized via

applied torque commands to the integrated joints of the snake architecture.

In this content, through the following subsections, essential features are defined

and requirements are determined for a proper snake locomotion in terms of struc-

ture of the snake, fundamental snake locomotion patterns, contact properties

between surface and snake body and generation of propulsive forces.
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2.1 The Anatomy and Locomotion Behaviour of

Biological Snakes

Typical skeletal structure of a snake consists of a skull, 130 to 500 vertebrae and

ribs which are attached to each one of vertebrae as it can be seen from Figure

2.1. Vertebrae components corresponds to movable joints of a snake where rela-

tive rotation between consecutive components are approximately between 10° and
20° in vertical axis and limited with only a few degrees in horizontal axis [18].

However, through high number of consecutive vertebrae components, resultant

sum of the limited rotations results in remarkable flexibility and mobility capa-

bilities of snakes. Body movements such as bending, extension or contraction are

realized through the muscles which are attached to ribs and their contraction or

relaxation determines the characteristics of locomotion [18].

The other fundamental component in the anatomy of snakes is scales which cover

the body of snakes as it can be seen in the Figure 2.2. In addition to physical

protection purpose of the scales, they also provide anisotropic friction charac-

teristics by creating higher friction coefficient in transversal direction comparing

with in tangential direction of the body.

Even though there exist anatomical differences between snake species, which ul-

timately leads differences in locomotion types, most common locomotion types

can be investigated under four major categories based on the illustrated anatomy.

They can be put in order as lateral undulation, concertina, rectilinear crawling

and sidewinding [18] [28]. However, four primary locomotion types can be ex-

tended further with burrowing, jumping, sinus-lifting, skidding, swimming, climb-

ing gait types [28]. Moreover, lateral undulation and concertina can be respec-

tively divided into five and four sub-categories based on diversifying motor pat-

terns. Lateral undulation can be analyzed with terrestrial lateral undulation,

forward aquatic lateral undulation, backward aquatic lateral undulation, lateral

undulation with a ventrolateral keel and arboreal lateral undulation locomotion

types while concertina types can be put in order as flat-surface concertina, tun-

nel concertina, arboreal concertina with alternate bends and arboreal concertina
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Figure 2.1: Skeleton of a snake consisting of vertebrae and ribs [18].

Figure 2.2: Snake skin which is covered by scales [18].
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with helical wrapping [31]. In addition to these locomotion characteristics, de-

pending on the designed robotic architecture, unlimited gait types which are not

observed in biological snakes can be generated for aimed objective. Correspond-

ing gait types can be definite based on a specifically dictated behavior or can be

indefinite by focusing only on the objective and leaving required characteristics

to be determined by the implemented algorithm.

For snake locomotion, as stated, most common four locomotion characteristics

can be described as below and illustrated in Figure 2.3;

Figure 2.3: Fundamental snake locomotion patterns [19].
(a) Lateral undulation, (b) Concertina, (c) Rectilinear crawling, (d) Sidewinding.

Lateral Undulation: For both biological and electro-mechanical snakes,

lateral undulation is the most common locomotion type since it covers

a broad functionality for various cases and environments with relatively

smooth and higher velocity values. During lateral undulation, continuous

sinuous waves are generated by the entire body of the snake to propagate

resultant forward propulsion effect. Lateral undulation locomotion form is

not appropriate for exceedingly smooth, low-friction slippery contact sur-

faces whereas it operates most efficiently in rough ground contact surfaces.
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Concertina: Concertina locomotion is especially required for narrow

spaces, although it is an inefficient mode of movement, where lateral undula-

tion cannot be realized properly due to limited motion range. In concertina

gait, back and front parts of snake body are subsequently used as an anchor

for the narrow environment and the free part of the body is the extended

to proceed forward.

Rectilinear Crawling: Rectilinear crawling is a substantially slow form

of locomotion and it is generated by biological snakes as reciprocating the

muscles from the ribs attached to the skin where the edges of scales located

on the underside of the body is used as the anchor points to proceed forward

approximately on a straight line.

Sidewinding: Sidewinding locomotion type is a continuous transverse os-

cillation which makes movement possible on uncluttered and low shear sur-

faces where motion generation by other gait types is inefficient or completely

impossible. Through sidewinding gait, long distance travelling becomes pos-

sible for snakes even on loose terrain. To realize this gait, head part and

rest of the body consecutively act as anchor on the ground and pulling

component for the body.

14



2.2 Controllability Analysis of Snake Robots

In the following steps, controllability with resultant propulsive force analyzes are

performed and correspondingly minimum requirements are determined in terms

of contact friction properties and number of modules which forms the architecture

for realization of proper snake locomotion. The analyzes are realized for planar

surface locomotion since it determines the minimal requirements for generalized

terrain conditions and with the assumption of viscous contact friction since it

provides sufficient approximation and corresponding analyzes take a more feasible

form to conclude corresponding analyzes [17, 18]. Friction characteristics which

depends on both contact surface of the snake and the terrain properties is one

of the fundamental components which directly affects locomotion characteristics.

As it is shown for planar surface locomotion in article [32] and inclined surface

locomotion in article [33], optimal snake behavior significantly changes depending

on the tangential and normal components of friction force.

The notation for the corresponding analyzes in the following sections are pre-

sented with required definitions in Table 2.1.

Definition Notation

Number of modules N
Mass of each module m

Link length 2l
Angle between module i and the global x axis θi

Global coordinates of the module i center of mass (xi, yi)
Global coordinates of the robot center of mass (px, py)

Viscous friction coefficient c
Ground friction force on module i (fR,x,i, fR,y,i)

Table 2.1: Snake Robot and Locomotion Characterization Parameters
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2.2.1 Controllability with Isotropic Viscous Friction and

Anisotropic Viscous Friction

For a modular snake robot, the isotropic viscous friction which affects on the

module i can be stated as the following equation.

fR,i = −c

[
ẋi

ẏi

]
= −c

[
ṗx − σiSθθ̇

ṗy + σiCθθ̇

]
(2.1)

where;

Sθ = diag(sinθ)

sinθ = [sin θ1, ..., sin θN ]
T

Cθ = diag(cosθ)

cosθ = [cos θ1, ..., cos θN ]
T

σi = [a1, a2, ..., ai−1,
ai + bi

2
, bi+1, bi+2, ..., bN ]

ai =
l(2i− 1)

N

bi =
l(2i− 1− 2N)

N

The equation which describes acceleration of the center of mass can be stated as;

[
p̈x

p̈y

]
=

1

Nm

[
eT fR,x

eT fR,y

]
=

1

Nm

[∑N
i=1 fR,x,i∑N
i=1 fR,y,i

]
(2.2)

where;

e = [1, 1, ..., 1]T

16



When equation 2.1 is inserted into equation 2.2, center of mass acceleration of

the robot is obtained as;

[
p̈x

p̈y

]
=

c

Nm

[
−Nṗx + (

∑N
i=1 σi)Sθθ̇

−Nṗy − (
∑N

i=1 σi)Cθθ̇

]
= − c

m

[
ṗx

ṗy

]
(2.3)

Through σ definition in Equation 2.1, since it can be shown that
∑N

i=1 σi = 0,

Equation 2.3 indicates that center of mass acceleration is proportional to center

of mass velocity. For this reason, in the cases of snake robot starts from the

stationary conditions, it is not possible to obtain a non-zero acceleration for center

of mass. Consequently, it is concluded that a snake robot on a planar surface is

not controllable with applied torque commands to its joints if the effective friction

force reflects isotropic characteristics. In other words, to control the position of

the snake robot through a targeted route, center of mass of the snake robot must

be accelerated. However, since center of mass acceleration is proportional to the

center of mass velocity as indicated in Equation 2.3, when the robot starts from

zero velocity initial condition, it is not possible to create non-zero center of mass

acceleration [18] [34–36].

On the other hand, under anisotropic viscous friction, two viscous friction coef-

ficients are needed to be defined as ct and cn which describe the friction force

in the tangential and normal directions of the corresponding link. In anisotropic

viscous friction characteristics, friction coefficients are not equal in tangential and

normal directions ct ̸= cn whereas their equality ct = cn reduces the friction char-

acteristics to isotropic viscous friction. The viscous friction force on link i in the

local link frame flink,iR,i can be stated as in Equation 2.4 [18].

flink,iR,i = −

[
ct 0

0 cn

]
vlink,i
i (2.4)

where vlink,i
i is the link velocity.
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In the global frame, by re-arranging Equation 2.4, it can be presented as in

Equation 2.5 [18].

fR =

[
fR,x

fR,y

]
= −

[
ctCθ

2 + cnSθ
2 (ct − cn)SθCθ

(ct − cn)SθCθ ctSθ
2 + cnCθ

2

][
Ẋ

Ẏ

]
(2.5)

However, equation of motion of the snake robot becomes significantly more com-

plex with anisotropic friction characteristics. For this reason, Liljebäck et al. [18]

evaluates controllability through partial feedback linearization of the model and

computing Lie brackets of the system vector fields at an equilibrium point [34–36].

Since the intermediate steps of derivation operations are not in the scope of the

thesis, they are not explicitly presented and left to personal initiative for in-

vestigation through indicated references. As the main results of the employed

operations, it is stated that the realized analysis is valid when the snake robot

has N ≥ 4 links and it is concluded that a snake robot with N ≥ 4 links which are

affected by anisotropic ground friction force on a planar surface is locally strongly

accessible from any equilibrium point.

Consequently, Liljebäck et al. [18] points out that a snake robot, on a planar

surface, which is composed from N ≥ 4 links and affected by anisotropic friction

is controllable.
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2.3 Propulsive Forces Under Anisotropic Fric-

tion

Total resultant force which acts on the snake robot where the forward direction

is defined as the global positive x-axis, can be stated as the following equation

when anisotropic viscous friction on each link and dynamics of the snake robot are

included into the analysis. In the equation, θi corresponds to the angle between

the global x-axis and link i ∈ {1, 2, 3...N}.

Fprop = −
N∑
i=1

Fx(θi)ẋi −
N∑
i=1

Fy(θi)ẏi (2.6)

where Fx(θi) and Fy(θi) are defined with equations 2.7 and 2.8 respectively.

Fx(θi) = ct cos
2 θi + cn sin

2 θi (2.7)

Fy(θi) = (ct − cn) sin θi cos θi (2.8)

The stated two components of Fprop corresponds to the forward and normal di-

rections of motion. As it can be interpreted from the individual equations of

components, Fx(θi) does not contribute to the forward propulsion of the robot.

On the contrary, it causes a counter effect on the motion since it always creates

positive outcomes which result in as a negative factor in the resultant force Fprop

whereas propulsive force which ensures the forward locomotion is generated by

the Fy(θi) term (when cn > ct for ordinary undulatory gait pattern) [18] [36].

Following this point that is sufficient to determine the minimum requirements

which should be taken into consideration in design and experimentation phases,

synthesis for propulsive snake motion based on an aimed gait pattern and mod-

ellings of the corresponding snake robot with significantly complex operations

which arise due to sophisticated nature of snake locomotion and, followingly, mo-

tion controller design can be realized. However, as stated in the purposes of the

thesis, reinforcement learning is employed to realize snake locomotion in consid-

eration of its potential to overcome complicated problems. Therefore, necessity

and burden of problem specific further analyzes are eliminated.
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Chapter 3

Architecture and Modelling of

the Designed Snake Robot

A modular and reconfigurable snake robot is designed for investigations and

various experimentations of snake robot locomotion. Correspondingly, to real-

ize aimed analyzes by implementing described algorithms in Chapter 4, electro-

mechanical architecture of the snake robots with different number of modules are

modelled in the simulation environment [37] with required sensory operations, ac-

tuation systems, filtering operations and contact force modelling. In the scope of

design and modelling steps, fundamental points with corresponding backgrounds

are described under the following subsections.

3.1 Modular and Reconfigurable Structure

The snake robot architecture which is employed in 2D and 3D locomotion ex-

perimentations is designed in a modular approach where each joint module is

identical with each other but the sensors and payloads they carry can be differ-

entiated depending on the specific requirement. Its outer structure is designed
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so that it can be manufactured through 3D printing and in a lightweight ap-

proach where, depending on the used material, it can also be manufactured in a

deformable manner to gain advantages of soft structures. However, it should be

noted that internal structure and corresponding electro-mechanical components

are not taken into account in detail since the focus of this thesis is to investigate

snake locomotion and learning based algorithms for locomotion patterns. On

the other hand, for consistency of the realized operations and to provide infras-

tructure for future studies which can potentially comprise hardware components,

especially the robots which are presented in [13], [15], [16] and [17] are taken into

account as a source of inspiration in terms of mass and dimensional features. For

anisotropic friction requirement, as stated in Chapter 2, each module of the snake

robot is covered with passive wheels. The resulting specifications of the designed

snake robot is stated in Table 3.1 below.

Snake Robot Specifications
Specification Value Unit
Mass of a Module 0.700 kg
Diameter of a Module 0.130 m
Yaw Joint Motion Range Limit ±42.5 deg
Pitch Joint Motion Range Limit ±42.5 deg
Actuation Torque Limit 6.5 Nm
Yaw Joint Speed Limit 65 deg/s
Pitch Joint Speed Limit 65 deg/s
Degrees of Freedom of the Robot 2 x ModuleNumber + 6 N/A

Table 3.1: Specifications of the Designed Snake Robot

3.1.1 Electro-Mechanical Modelling

For electro-mechanical modelling, CAD assembly models [38] are realized in the

simulation environment [37] as a simplified model in terms of visual features and

unrelated components for simulations of physical interactions to accelerate the

simulation process and consequently training process. The single reason for the

executed simplifications is related about the solving times which are encountered

as the major challenge and limitation during experimentations. However; mass,

inertia and dimensional properties are preserved and properly reflected to the
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physical modelling as stated in Table 3.1 for convenience of the realized experi-

mentations. Additionally, as described in the following subsections, mechanical

modellings are realized for actuation of joint mechanisms and representations of

contact forces between the passive wheels and the locomotion platform.

3.1.2 Actuation and Joint Mechanisms

Each module of the snake robot includes two joints which correspond to degrees of

freedom in yaw and pitch axes. Both axes are in the identical characteristics and,

depending on the current posture, the snake robot can operate by interchanging

the axes with proper switchings in the motion planning and control architecture.

In the instantaneous state, the corresponding joints that provide motion in yaw

axis forms 2D snake gait patterns where the joints provide motion in pitch axis

extends the motion capabilities to 3D. Joint mechanisms in each module of the

snake robot are represented with revolute joints which are modelled based on

spring-damper force law in the simulation environment [39] and their actuation

is realized via provided torque inputs. The modelling operations of joints require

two sets of stiffness and damping parameters where one of them specifies the

joint characteristics in the operation range, the other determines characteristics

in the limits of motion range. Although various parameter sets are employed

throughout the modelling trials, the eventual parameter sets for operational and

limit mechanics of the revolute joints are presented in Table 3.2.

Mechanical Modelling Parameters of Revolute Joints
Operational Mechanics Value Unit

Spring Stiffness 0 Nm/rad
Damping Coefficient 1.1 Nm/(rad/s)

Operation Range Limit Mechanics Value Unit
Spring Stiffness 104 Nm/rad
Damping Coefficient 2 Nm/(rad/s)
Transition Region Width 0.0175 rad

Table 3.2: Mechanical Modelling Parameters of Revolute Joints
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3.2 Passive Wheeled Structure for Anisotropic

Friction

Anisotropic friction, as indicated in Chapter 2, is an indispensable requirement

for controllability of a snake robot with stationary initial conditions on a pla-

nar surface that points out to the extreme circumstances. As aforementioned,

anisotropic friction can be obtained via passive (or, depending on a specific ap-

plication, through active, semi-active) wheels or mechanical processing of the

contact surface. For designed snake robot in the scope of the thesis, passive

wheeled structure approach is adopted and correspondingly realized contact force

modelling operations are described in the following section.

3.2.1 Contact Force Modelling

Contact force modelling between passive wheels of the snake robot and operation

environment is realized based on the approach which is represented in Figure

3.1 where base frame and follower frame correspond respectively the locomotion

surface and passive wheels. In this approach, contact frame moves around the

specified geometry depending on corresponding motions of contact point as long

as the contact between two frames is kept.

Figure 3.1: Spatial Contact Force Modelling with Base and Follower Geometries

23



The normal force fn and the frictional force ff are two fundamental components

which determine characteristics of the contact force model. By employing low

and high level tools of Simscape Multibody [39] for contact force modelling, fn

and ff are respectively evaluated as in Equation 3.1 and 3.2.

fn = s(d)(kd+ bd′) (3.1)

where;

fn: Normal force in the opposite direction with the same magnitude to each

contact geometries

d: Penetration depth between geometries which are in contact

d′: First time derivative of d

k: Specified stiffness value for the normal force

b: Specified damping value for the normal force

s(d): Implicitly operated smoothing function

In addition to the stated parameters, the transition region width which will be

denoted as w is also specified for contact force modelling. In the cases when

penetration depth is smaller than the transition region width, d < w, normal force

fn is scaled with the implicit smoothing function s(d) where it leads continuous

and monotonically increasing characteristic in the interval [0, w]. Therefore, it

equals to 0 when d = 0 and equals to 1 when d = w.

Frictional force ff is correlated with normal force fn as Equation 3.2 where µ

is the friction coefficient which varies depending on the magnitude of relative

velocity of contact surfaces.

|ff | = µ|fn| (3.2)

To determine effective friction coefficient based on the relative velocities of con-

tact points, a smoothed stick-slip behaviour is implicitly employed. Effective µ

gradually increases with increasing relative velocity until predetermined critical

velocity to upper limit value of the coefficient µstatic and it converges to µdynamic

value by gradually decreasing with increasing relative velocity beyond critical

velocity.
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Based on the presented contact force modelling approach above, even though

various parameter sets are implemented and different tests are realized to ver-

ify proper snake locomotion under different contact models which consequently

corresponds different surface characteristics, to obtain consistently comparable

outcomes, all the trainings which are presented in Chapter 5 are realized with

the values stated in Table 3.3 and, followingly, realized experimentations are ex-

tended to unexperienced surface conditions by defining new parameter sets and

robustness of trained snake robots against variations of locomotion surface char-

acteristics are tested. Before determination of contact force modelling parameter

set for trainings, experimented values for stiffness and damping parameters of

normal force specification respectively range from 102 to 106 N/m and from 30

to 103 N/(m/s) while 10−3, 10−4 and 10−5 m values are implemented for transi-

tion region width. For static and dynamic friction coefficients of frictional force

specification, values between 0.5 to 8.0 are employed and tested while 10−3 and

10−4 m/s values are implemented for critical velocity parameter. It can also be

noted that contact force modelling parameters can be randomized or varied in a

planned way in a predetermined training curriculum to reflect characteristics of

different contact properties.

Contact Force Modelling Parameters
Normal Force Value Unit

Stiffness 104 N/m
Damping 40 N/(m/s)
Transition Region Width 10−4 m

Frictional Force Value Unit
Method Smooth Stick-Slip N/A
Static Friction Coefficient 3.2 N/A
Dynamic Friction Coefficient 3.0 N/A
Critical Velocity 10−3 m/s

Table 3.3: Parameters of the Contact Force Model
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Chapter 4

Reinforcement Learning for

Snake Robot Locomotion

Motion controller architecture design for the purpose of robotic locomotion which

can preserve its robustness under various types of disturbances and environments

is a continuing challenge in the present times for different types of robots and un-

limited possibilities of external conditions. The designed motion controller archi-

tecture provides the movement capability to the robot whereas it also determines

the boundaries of this capability. In the content of robotic locomotion, imple-

mented motion control components can be categorized essentially with three fun-

damental approaches which are deterministic, adaptive and stochastic/learning

based control systems. Reinforcement learning based approaches indicate promis-

ing potential to realize sophisticated behaviors through their evolutionary charac-

teristics and to reach an adequate robustness level which can overcome distinctive

environmental conditions and disturbances. For this reason, reinforcement learn-

ing is employed for generation of snake gait patterns in the proposed hybrid

motion control system architecture.
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4.1 Reinforcement Learning and Deep Rein-

forcement Learning

Reinforcement learning can be defined as the extraction of mapping which corre-

sponds to cases-to-actions with the purpose of predefined reward function maxi-

mization. In accordance with this purpose, an optimal policy is learned through

trial and error without explicit specification of the followed methodology. Even

though its premise concept dates back a relatively long time, in the recent past,

reinforcement learning algorithms have advanced and made significant progress

while various algorithmic structures have been proposed and their successes have

been proven with applications on distinct problems and tasks from social sciences

to engineering challenges. State-of-the-art reinforcement learning algorithms, as

described step by step in the following section, mostly originate from the Q-

Learning [40] basics and certain inspirations from State-Action-Reward-State-

Action (SARSA) [41] approach. Applicability of reinforcement learning algo-

rithms to different tasks and problems which approximates real-world complexity

has gradually extended with sequential improvements and especially with Deep

Q-Network [42] which incorporates deep neural networks into Q-Learning concept

as it results in the emergence of deep reinforcement learning term.

4.2 Description and Comparison of State-

of-the-Art Reinforcement Learning Algo-

rithms

Majority of state-of-the-art reinforcement learning algorithms originate from

Deep Q-Network [42] foundations. Even though numerous variations have been

proposed around the fundamental algorithms, as essential milestones, Deep Q-

Network (DQN) [42], Deep Deterministic Policy Gradient (DDPG) [43], Trust Re-

gion Policy Optimization (TRPO) [44], Proximal Policy Optimization (PPO) [45]
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withDistributed Proximal Policy Optimization (DPPO) [46] variation, Soft Actor-

Critic (SAC) [47] [48] and Twin Delayed Deep Deterministic Policy Gradient

(TD3) [49] can be put in order. In the presented order of neural based algorithms,

a gradual development is experienced in terms of sample efficiency, training sta-

bility and comprehensiveness of applicability for different problems from discrete

domains to continuous domains and from low dimensional observation and action

space cases to high dimensional possibilities. Even though DQN creates human-

level performances in many tasks and even above human-level performance for

some tasks [42], it experiences inadequacies especially in continuous action and

large observation and action space tasks. With DDPG algorithm, significant im-

provements are realized in continuous control tasks [50] but it still suffers from

training instability problems and bears the risk of insufficiency to reach a conver-

gence in relatively large observation and action space cases. Moreover, it is seen

that training process generally shows a noisy characteristic and it is quite brittle

to hyperparameter settings.

In addition to the neural based reinforcement learning algorithms, as an algo-

rithm which does not include any neural structure, Augmented Random Search

(ARS) [51] also provides competitive outcomes in terms of sample efficiency and

training stability especially comparing with DDPG, TRPO and PPO. It is con-

structed on the basic random search basis with proposed three main augmen-

tations. They can be pointed out as scaling operation of update steps by the

standard deviation, normalization of the states and using top performing direc-

tions for the optimization task.

In terms of sample efficiency, training stability and capability in relatively com-

plex tasks which include high dimensional observation and action spaces, Soft

Actor-Critic (SAC) and Twin Delayed Deep Deterministic Policy Gradient (TD3)

algorithms can be put forward as state-of-the-art algorithms and experienced

outcomes in different tasks, agents and environment settings also verifies the

presented benchmark results [47] - [49], [52]. Both SAC and TD3 algorithms

are developed on DDPG fundamentals with several regulations and additions to

eliminate experienced vulnerabilities as described step by step in the following

section. Therefore, since SAC and TD3 algorithms ensure an obvious superiority
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over the other alternatives as presented with corresponding mathematical back-

grounds and benchmark outcomes whereas they may outperform over each other

depending on the corresponding task and hyperparameter tunings, they both

employed to train a 9-modules snake robot and resulting outcomes are compared

as presented in Chapter 5. In this content, definitions of the notations in the

following equations which describe and legitimize adopted methodologies in SAC

and TD3 algorithms to eliminate the aforementioned deficiencies are indicated

in Table 4.1.

Definition Notation

Time step t
State s

State space S
Action a

Action space A
Reward r

Termination conditions d
Policy π

Optimal policy π∗

Marginals of the trajectory distribution ρ
Temperature parameter α

Discount factor γ
Q-function Q

Q-function parameters θ
Policy parameters ϕ

Replay buffer D
Batch of transitions B

Desired minimum expected entropy H
Value function V

Objective funtion J
Gradient ∇

Update proportion τ
Temporal difference residual δ

Noise ϵ

Table 4.1: Definition of Terms for Reinforcement Learning Algorithms
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4.3 Soft Actor-Critic (SAC) Algorithm

Soft Actor-Critic approach [47] [48] aims to overcome two main challenges, where

they are frequently experienced with previously developed algorithms in espe-

cially complicated tasks, that can be stated as sample inefficiency, instabilities in

training process which is also related with brittleness to hyperparameter settings.

In this way, applicability of model-free reinforcement learning framework in rel-

atively complex systems and tasks in both simulation and real-world domains

becomes possible.

In Soft Actor-Critic approach, the actor aims to maximize expected return and

entropy while, in this framework, entropy can be evaluated as exploration. Op-

timization of the corresponding stochastic policy is performed in an off-policy

manner.

In general, previously developed and widely implemented reinforcement learning

algorithms until the present time intends to maximize expected sum of rewards

which can be formulated as in Equation 4.1 below, where π, r st and at respec-

tively corresponds to employed policy, reward term, states and actions in time

step t as stated in Table 4.1.

π∗ = argmax
π

∑
t

E(st,at)∼ρπ [r(st, at)] (4.1)

In Soft Actor-Critic approach, a maximum entropy objective is sought and the

standard objective is augmented with an entropy term so that optimal policy

intends to maximize its entropy for each corresponding state as indicated in

Equation 4.2 where α and H correspond to temperature parameter and desired

minimum expected entropy respectively.

π∗ = argmax
π

∑
t

E(st,at)∼ρπ [r(st, at) + αH(π(·|st))] (4.2)
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where, temperature parameter α determines the relative dominance between en-

tropy and reward components. As another interpretation, α directly controls

exploration versus exploitation trade-off where increase in α indicates a more

predominant exploration attitude. Therefore, it consequently appoints stochas-

ticity level of the policy.

The stated objective function in Equation 4.2 can be extended for infinite horizon

problems by introducing a discount factor, γ , to assure sum of expected rewards

and corresponding entropy values are finite. In this content, the objective func-

tion is re-composed as;

π∗ = argmax
π

E(st,at)∼ρπ

[
∞∑
t

γt
(
(r(st, at) + αH(π(·|st))

)]
(4.3)

For soft policy iteration process, the soft Q-function parameters are trained with

the objective of soft Bellman residual minimization as presented in Equation 4.4.

JQ(θ) = E(st,at)∼D

[
1

2

(
Qθ(st, at)− (r(st, at) + γEst+1∼p[Vθ̄(st+1)])

)2]
(4.4)

where the implicitly parameterized soft state value function, through soft Q-

function parameters, is stated in equation 4.5.

V (st) = Eat∼π [Q(st, at)− α log π(at|st)] (4.5)

and the optimization equation form with stochastic gradients is attained as pre-

sented below with Equation 4.6.

∇̂θJQ(θ) = ∇θQθ(at, st)(Qθ(st, at)− (r(st, at)+

γ(Qθ̃(st+1, at+1)− α log(πϕ(at+1|st+1))))
(4.6)

Consequently, corresponding equation which dictates learning process of policy

parameters is obtained as;

Jπ(ϕ) = Est∼D

[
Eat∼πϕ

[α log(πϕ(at|st))−Qθ(st, at)]
]

(4.7)
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Since the policy should more dominantly explore where optimal action is uncer-

tain and should remain more deterministic where distinction between the desired

and undesired actions are clear, forcing the entropy to a fixed, static value is

not an effective solution. For this reason and to eliminate manual adjustment of

optimal temperature parameter which is a non-trivial operation, learning objec-

tive is re-arranged where entropy is treated as a constraint. As the result, for

automation of entropy adjustment, dual variable α∗
t is optimized based on the

objective which is presented in Equation 4.8.

α∗
t = argmin

αt

E(at∼π∗
t )

[
−αt log π

∗
t (at|st; at)− αtH̄

]
(4.8)

However, due to practical considerations for the implementation process, gradient

values for α, is computed with the objective function given in Equation 4.9 below.

J(α) = Eat∼πt

[
−α log πt(at|st)− αH̄

]
(4.9)

The overall SAC algorithmic structure, which is assembled from the fundamental

components and key equations based on [47] and [48], is presented as following;
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Algorithm 1: Soft Actor-Critic (SAC)

Initialize:
Policy parameters ϕ,
Q-function parameters θ1, θ2
Replay buffer D
Set target parameters to main parameters:
θ
′
1 ← θ1
θ
′
2 ← θ2
while Convergence ̸= true do

Observe state s and take action a ∼ πθ(.|s)
Observe following state s′, reward r and termination conditions d
Store s, a, r, s′, d in replay buffer D
if s′ ∈ d then

Reset environment
else

if s′ ̸∈ d & Time− to− Update = true then
for i ≤ UpdateNumber do

Randomly sample batch of transitions, B = {(s, a, r, s′, d)} in D
Compute targets for the Q-functions:

y(r, s′, d) = r+γ(1−d)
(
min
i=1,2

Qθtarg,i(s
′, ã′))−α log πϕ(ã

′|s′)
)

where: ã′ ∼ πϕ(.|s′)

Update Q-functions through gradient descent:

∇θi

1

|B|
∑

(s,a,r,s′,d)∈B

(
Qθi(s, a)− y(r, s′, d)

)2
i = 1, 2

Update Q-functions through gradient descent:

∇ϕ
1

|B|
∑
s∈B

(
min
i=1,2

Qθi(s, ãθ(s))− α log πϕ(ãϕ(s)|s)
)

where: ãϕ(s) ∈ πϕ(.|s)

Update target networks:

θ
′

i ← τθi + (1− τ)θ
′

i i = 1, 2

end

end

end

end
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4.4 Twin Delayed Deep Deterministic Policy

Gradient (TD3) Algorithm

Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm [49] which

holds two critic networks and single actor network aims to overcome similar prob-

lems with Soft Actor-Critic (SAC) algorithm, which can be re-stated as sample

inefficiency and instabilities in training process. To eliminate existing vulnera-

bilities such as brittleness to hyperparameter tuning and drastic overestimation

problem of Q-values in DDPG algorithm, three fundamental modifications are

introduced as they can be put in order as clipped double Q-learning, delayed

policy updates and target policy smoothing. Via these modifications, training in-

stability problems are eliminated for especially continuous action tasks which are

formed by a high dimensional observation and action spaces, training process re-

flects considerably less noisy characteristics and sample efficiency is significantly

improved.

In TD3 algorithm, to address overestimation problem, a Clipped Double Q-

Learning approach is proposed. In this way, it is aimed to eliminate overestima-

tion bias problem whereas underestimation bias can possibly take place. How-

ever, in contrary to overestimation bias, underestimation occurrence in actions is

preferable since it is not propagated through the policy updates. Consequently,

the target update rule with clipped double Q-learning algorithm is given in the

Equation 4.10 where s′ corresponds to the subsequent state value and Qθ′ corre-

sponds to a secondary frozen network.

y1 = r + γ min
i=1,2

Qθ
′
i

(
s′, πϕ1(s

′)
)

(4.10)

In addition to overestimation bias, through TD3 algorithm, high variance esti-

mates problem is also aimed to be eliminated since it causes noisy gradient for

policy updates and consequently ends up with reduction in learning performance.

For this purpose, several fundamental modifications are proposed for the learning

process with TD3 algorithm to reduce the experienced variance problem.
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Since estimation errors can potentially accumulate due to temporal difference up-

date, it can result in overestimation bias and suboptimal policy updates. Because

Bellman Equation is not strictly satisfied, some amount of residual temporal dif-

ference error occurs after each update as pointed out in Equation 4.11 below.

Qθ(s, a) = r + γE[Qθ(s
′, a′)]− δ(s, a) (4.11)

where (s′, a′) and δ respectively corresponds to subsequent state-action pair and

temporal difference residual.

Furthermore, the value estimate converges to expected return minus expected

discounted sum of future temporal difference errors instead of learning an esti-

mate of the expected return. In this content, error accumulation is tackled as in

Equation 4.12.

Qθ(st, at) = rt + γE[Qθ(st+1, at+1)]− δt

= rt + γE[rt+1 + γE[Qθ(st+2, at+2)− δt+1]]− δt

= Esi∼ρπ ,ai∼π

[
T∑
i=t

γi−t(ri − δi)

] (4.12)

It is also claimed that the use of fast updating target networks causes divergent

behaviors. Therefore, it is suggested that the policy network should be updated

at a lower frequency comparing with the value network to reach a minimized

error before policy update. For this reason, to obtain lower variance in value

estimates, updates of the policy (and target networks) are delayed as presented

in Equation 4.13 below where θ
′
indicates to target networks and τ is employed

for parameterization of update rate and takes values between 0 and 1.

θ
′ ← τθ + (1− τ)θ

′
(4.13)

Finally, a target policy smoothing is implemented, which performs as a regular-

izer to prevent sharp changes in actions that ultimately causes brittleness of the

training process. Therefore, obtaining similar values for similar actions aim is
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approximated over actions through the added clipped noise to the target policy

which is averaged over mini batches. The added random noise is clipped by pre-

determined limiting upper and lower borders as defined in Equation 4.14 to keep

the target close to the original action.

With aforementioned modifications, modified target update approach takes the

following form;

y = r + γ min
i=1,2

Qθ
′
i

(
s
′
, πϕ′ (s

′
) + ϵ

)
ϵ ∼ clip(N (0, σ),−c, c)

(4.14)

The overall TD3 algorithmic structure, which is assembled from the fundamental

components and key equations based on [49], is presented as following;
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Algorithm 2: Twin Delayed Deep Deterministic Policy Gradient (TD3)

Initialize:
Policy parameters ϕ; Q-function parameters θ1, θ2; Replay buffer D
Set target parameters to main parameters:
ϕ

′ ← ϕ; θ
′
1 ← θ1; θ

′
2 ← θ2

while Convergence ̸= true do
Observe state s and take action a = clip(µϕ(s) + ϵ, alow, ahigh)
Observe following state s′, reward r and termination conditions d
Store s, a, r, s′, d in replay buffer D
if s′ ∈ d then

Reset environment
else

if s′ ̸∈ d & Time− to− Update = true then
for j ≤ UpdateNumber do

Randomly sample batch of transitions, B = {(s, a, r, s′, d)} in D
Compute targets actions:

a′(s′) = clip
(
µϕ′ (s′)+clip(ϵ,−c, c), alow, ahigh

)
; ϵ ∼ N (0, σ)

Compute targets:

y(r, s′, d) = r + γ(1− d) min
i=1,2

Qθ
′
i
(s′, a′(s′))

Update Q-functions through gradient descent:

∇θi

1

|B|
∑

(s,a,r,s′,d)∈B

(
Qθi(s, a)− y(r, s′, d)

)2
i = 1, 2

if (j mod PolicyDelay = 0) then
Update policy through gradient ascent:

∇ϕ
1

|B|
∑
s∈B

Qθi(s, µϕ(s))

Update target networks:

θ
′

i ← τθi + (1− τ)θ
′

i i = 1, 2

ϕ
′ ← τϕ+ (1− τ)ϕ

′

end

end

end

end

end
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The presented algorithmic architectures take observation space terms, summed

reward function value and checked termination conditions as inputs while applied

commands which form the action space as its outputs. The objective of the algo-

rithm is to maximize the value of the reward function by learning a policy which

extracts a mapping from observation set to outcomes of the actions. As a motion

control system implementation; observation space and action space terms respec-

tively correspond to control system inputs and outputs where reward function

corresponds to the baseline assessment criteria for the optimization problem. In

this content, corresponding components are described and presented in the fol-

lowing sections with required details.

4.5 Observation Space and Action Space Deter-

mination for Snake Robot Locomotion

Observation space comprises 6 sets of data where three of them include N com-

ponents and the other three of them include N - 1 components while action space

comprises N - 1 term command signals for an N -modules snake robot. Table 4.2

presents definitions of notations which are denoted in the observation space and

action space terms.

Definition Notation

Module number i
Joint number j

Time step t
Commanded direction x

Perpendicular direction to the command y
Joint torque u

Position information p
Linear velocity information v

Table 4.2: Definition of Notations in Observation Space and Action Space Terms
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Observation space for the N -module snake robot includes;

1. Velocity information of each module in the commanded direction in the

current time step, vi,x,t: [N x 1]

2. Velocity information of each module in the perpendicular direction to the

commanded direction in the current time step, vi,y,t: [N x 1]

3. Position information of each module in the perpendicular direction to the

commanded direction in the current time step, pi,y,t: [N x 1]

4. Position information of the yaw axis joints of each module in the current

time step, pj,t: [(N-1) x 1]

5. Velocity information of the yaw axis joints of each module in the current

time step, vj,t: [(N-1) x 1]

6. Applied torque values to the yaw axis joints of each modules from the

previous time step, uj,t−1: [(N-1) x 1]

where the signals which have certain limit values in the observation set is nor-

malized between [-1, 1] interval to equalize the range of different components

for a proper learning process while the others that are not limited with certain

values are approximately normalized between [-1, 1] interval based on emerging

experimental outcomes by taking into account their upper and lower values and

by leaving a sufficient level of margin.

As the output components of the algorithm, action space for the N -modules snake

robot corresponds to the applied torque commands to the joints. Corresponding

torque command values are generated in [-1, 1] interval and scaled with torque

limit value on the verge of applying to the joints.

Therefore, observation space comprises 6N - 3 components while action space

includes N - 1 components whose mapping is created by the implemented rein-

forcement learning algorithm and N components which are determined by the

non-stochastic motion control algorithms.
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4.6 Reward Function Design

Reward function is composed as the weighted sum of 8 different terms where

each of them intends to realize a specific feature for snake locomotion. One by

one, they can be described and investigated with their individual purposes as

below where corresponding definitions of notations in reward function terms are

presented in Table 4.3.

Definition Notation

Module number i
Joint number j

Number of total modules N
Number of total considered joints K

Diameter of a module Md

Time step t
Sampling time Ts

Initial time step Ti

Initial time step Tf

Commanded direction x
Perpendicular direction to the command y

Joint torque u
Position information p

Linear velocity information v
Acceleration of a joint v̇

Table 4.3: Definition of Notations in Reward Function Terms

The first component is the control effort punishment (or torque penalty), denoted

as Tp, which aims to realize commanded motion with minimal torque values.

Therefore, applied torque values in the joints are punished based on Equation

4.15 below.

Tp = −wT

N∑
j

u2
j,t−1 (4.15)

The second term is the reward of linear velocity of the robot in the commanded

direction where it is denoted as Vr. For a modular snake robot, linear velocity

values of the geometric center of each module are taken into account. Although
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considering the velocity value of only single module such as the leading module

or the central module (in the case of snake robot is constituted an odd number of

modules) may seem sufficient, it is experienced that training process may tend to

converge to an undesired local minima and disruptions which hinder continuous

snake locomotion can occur. In this content, the reward term which evaluates

linear velocities of the modules is presented in Equation 4.16.

Vr = wV

N∑
i

vi,x (4.16)

The third term compares the orders of consecutive modules. If consecutive mod-

ules are not in the expected order in terms of intended direction of movement, a

constant penalty with a relatively high weight is applied in each sample time for

each module which disrupts the expected sequential order. Corresponding term

is denoted as Cp and given in Equation 4.17 as below.

Cp = −wC

N−1∑
i=1

ci,x

ci,x =

1, pi,x < p(i+1),x

0, otherwise

(4.17)

The fourth component aims to keep indispensable deviation from the commanded

direction due to undulation motion in minimal level by applying proportional

punishments with the perpendicular distances from the commanded direction.

Defined component is denoted as Up and presented in Equation 4.18 as below.

Up = −wU

N∑
i=1

|pi,y| (4.18)

The fifth component checks the summed lateral deviation from the commanded

direction by also defining a dead zone to particularly punish excessive deviations
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while allowing freedom for undulation and proper actuation of curved path com-

mands. It should be noticed that it differentiates from the term which is stated in

Equation 4.18 since it does not introduce any punishment due to ordinary undu-

lation motion by considering summed deviation value with a dead zone boundary.

In other words, it takes into account the cases when whole snake body deviates

from the commanded route instead of undulation pattern on the commanded line.

It is denoted as Lp and introduced as in Equation 4.19.

Lp = −wLlp

lp =

0,
∣∣∣∑N

i=1 pi,y

∣∣∣ ≤ 2/9×N ×Md∣∣∣∑N
i=1 pi,y

∣∣∣, otherwise

(4.19)

The sixth term takes into account the number of zero crossings along commanded

direction for each module and the accompanying velocity value. It intends to

maximize product of averaged velocity of the modules and total number of zero

crossings of each module throughout the commanded direction. It is denoted as

Zr and formulated as in Equation 4.20.

Zr = wZ
1

N

N∑
i=1

vi,x

(
Tf∑

t=Ti+1

N∑
i=1

nzc(pi,x,t, pi,x,t−1)

)

nzc(f1, f2) =

1, f1f2 < 0

0, otherwise

(4.20)

The seventh component aims to minimize sharp, instant changes in velocity char-

acteristics of the module joints to provide more natural, smooth behaviour to the

snake locomotion. It is denoted as Ap and presented in Equation 4.21 as below.

Ap = −wA

K∑
j=1

∥v̇j∥2 (4.21)
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The eighth and last term is the duration reward which indicates the elapsed time

interval until one of the training termination conditions occurred. In other words,

it takes into account that how long the robot has been operating. It is denoted

as Dr and given in Equation 4.22.

Dr = wD
Ts

Tf

(4.22)

Consequently, the overall reward function is composed as Equation 4.23 with the

proposed eight terms.

R = −wT

N∑
j

u2
j,t−1 + wV

N∑
i

vi,x − wC

N−1∑
i=1

ci,x − wU

N∑
i=1

|pi,y| − wLlp

+wZ
1

N

N∑
i=1

vi,x

(
Tf∑

t=Ti+1

N∑
i=1

nzc(pi,x,t, pi,x,t−1)

)
− wA

K∑
j=1

∥v̇j∥2 + wD
Ts

Tf

(4.23)

In the process of premise trainings, weights of the defined eight terms are tuned

separately based on the experienced outcomes. The finalized values for weights

of the each term are stated in Table 4.4.

Weight Term Value

Torque Penalty Weight: wT 0.01
Velocity Reward Weight: wV 5

Inconsecutive Order Punishment Weight: wC 50
Undulation Penalty Weight: wU 1.5

Lateral Deviation Punishment Weight: wL 0.5
Zero Crossing Reward Weight: wZ 1

Sharp Velocity Change Punishment Weight: wA 10−4

Duration Reward Weight: wD 5

Table 4.4: Determined Weights for Components of Reward Function
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Therefore, with weighted terms, the overall reward function which is stated in

Equation 4.23 takes finalized form as in Equation 4.24 to employ in the snake

locomotion trainings.

R = −0.01
N∑
j

u2
j,t−1 + 5

N∑
i

vi,x − 50
N−1∑
i=1

ci,x − 1.5
N∑
i=1

|pi,y| − 0.5lp

+
1

N

N∑
i=1

vi,x

(
Tf∑

t=Ti+1

N∑
i=1

nzc(pi,x,t, pi,x,t−1)

)
− 10−4

K∑
j=1

∥v̇j∥2 + 5
Ts

Tf

(4.24)

where;

ci,x =

1, pi,x < p(i+1),x

0, otherwise

lp =

0,
∣∣∣∑N

i=1 pi,y

∣∣∣ ≤ 2/9×N ×Md∣∣∣∑N
i=1 pi,y

∣∣∣, otherwise

nzc(t1, t2) =

1, t1t2 < 0

0, otherwise
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4.7 Determination of Termination Conditions

Training process includes four conditions which terminate the current episode and

leads to continuation with the next episode. Three of the four conditions form

the early stopping criteria while one of them is the termination of the episode

reaching after the maximum number of steps. The current episode is terminated

before predetermined maximum number of steps if;

1. Central module of the robot moves perpendicularly more than 1.5 meters

from the commanded direction.

2. Minimum number of modules which are in contact with the ground is less

than 4/9 of total number of modules.

3. Absolute velocity value of the central module in the commanded direction

is less than 0.15 m/s for 2.5 seconds.
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Chapter 5

Motion Control System

Architecture and Training

Results

Motion control system architecture for designed modular and reconfigurable snake

robot is presented at this stage with realized experimentations that cover differ-

ent robotic architectures, fault scenarios, 2D locomotion characteristics and 3D

operation concepts. The realized scenarios with implementation details are illus-

trated in the corresponding sections and obtained outcomes with both positive

and negative aspects are evaluated and discussed for the related cases. Realized

experimentations are based on the mathematical analysis backgrounds which are

described in Chapter 2, robotic architecture design and modelling specifications

which are stated in Chapter 3 and algorithmic design details in Chapter 4. Conse-

quently, the proposed hybrid motion control system architecture for snake robot

locomotion is portrayed.
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5.1 Snake Robot Locomotion via Reinforcement

Learning

The designed and modelled snake robot, as corresponding details are presented

in Chapter 3, is trained with Soft Actor-Critic (SAC) and Twin Delayed Deep

Deterministic Policy Gradient (TD3) reinforcement learning algorithms due to

the reasonings which are offered in Chapter 4. The employed reward function in

the training process with corresponding design details and justifications, obser-

vation space and action space of the trained snake robots are also described in

Chapter 4. Based on the illustrated perspective, as one by one presented in the

following sections, a 9-modules snake robot is trained with SAC and TD3 algo-

rithms at the initial phase with same reward function, contact force model and

electro-mechanical model characteristics to investigate comparative performances

of algorithms. Afterwards, trainings are realized with determined algorithm for 5,

7, 9 modules snake robots and 11 modules snake robot which includes 3 distinct

defective modules where further regulations and tunings are performed on reward

function terms and hyperparameters to improve the performance and efficiency

on the verge of stated experimentations. Afterwards, realized experimentations

are extended to locomotion on unexperienced surface conditions and three di-

mensional operation concepts.

Evaluation criteria for the realized motions during training episodes are implicitly

evaluated based on termination conditions and resulting reward value as described

in Chapter 4. Therefore, if one of the termination conditions takes place where

they take into account lateral deviation of central module, minimum number of

modules which are in contact with the ground and minimum absolute velocity

value of the central module in the commanded direction for a predetermined time

interval, the adopted attitude by the snake robot is evaluated as unsuccessful in

corresponding episode and the episode is terminated. On the reverse case, the

current episode is evaluated as successful and its grade of success is associated

with the resulting reward value as higher reward values indicate to improved

performance based on the predetermined criteria. In other words, for a snake
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locomotion which can be accepted successful, a continuous movement capabil-

ity on the commanded direction by keeping the (minimal) contact points with

the ground and staying inside the maximum deviation borders is defined as the

indispensable requirement.

During the realized trainings, initial states of yaw joints of each module are inde-

pendently randomized in the intervals [-15, 15] degrees for angular positions and

[-60, 60] degrees per second for angular velocities of the joints with 0.5 probability

and zero initial states are set for velocity and position values with 0.5 probability

at the beginning of each episode. The path following should be achieved both

with zero initial states of the joints and the randomized initial states which corre-

sponds to random deviation of the robot posture from the commanded line with

non-zero initial joint angular velocities. In other words, the snake robot should

follow the commanded path even if its heading points out another direction and

its posture and joint velocities are in a random state for recently commanded

direction by appropriately arranging its posture, position and velocity states to

aimed locomotion line. In addition to randomization operation; for exploration

purpose, Ornstein-Uhlenbeck (OU) noise model [53] is employed for all the train-

ings. Also, a relatively aggressive learning process is intentionally followed and

learning rates are set relatively higher than common values to overcome repet-

itive behaviours which are encountered during various trials along high number

of episodes. As a consequence of these factors, relatively noisy characteristics

are observed in the resulting reward functions as they can be investigated in the

following sections.

As it is aforementioned, snake robot locomotion gait patterns are determined by

mainly two factors which can be restated as the electro-mechanical architecture

of the robot and capabilities of the implemented motion control and planning

system. For scope of the investigations of this thesis, essential determinant factor

is the architecture of the robot. Therefore, commanded locomotion operations

are aimed to be realized with undulation gait pattern both in straight and curved

path commands. In addition to the underlined points, purpose specific motion

control objectives and the scope of realized investigations are described under the

corresponding subsections.
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5.1.1 Comparative Training Results of SAC and TD3 with

9 Modules Snake Robot Locomotion

To compare the performances of SAC and TD3 algorithms, trainings are real-

ized with a 9 modules snake robot with separately tuned parameters for each

algorithm and under equal conditions. At this comparison stage, randomization

of initial states is not applied and zero initial conditions are set for yaw joint

position and velocity values. As the motion control objective, a straight path

following is aimed by maximizing the forward velocity and keeping the lateral

deviations limited with the inevitable undulation patterns. Consequently, since

there are clear differences between obtained outcomes which indicate TD3 supe-

riority for this specific case as can be seen in Figure 5.1, the following operations

which include further hyperparameter tunings, arrangements in reward function

terms and experimentations with different snake robots whose number of modules

varies and may include defective components are realized with TD3 algorithm.
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Figure 5.1: Comparative reward outcomes of SAC and TD3 algorithms for 9
modules snake robot training
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5.1.2 Training Results for 5 Modules Snake Robot

At this point, 5 modules snake robot is trained with TD3 algorithm with finalized

parameter settings after its comparison with SAC algorithm and subsequent var-

ious trials by evaluation of emerging outcomes. For motion control objective, a

straight path following purpose is pursued independent from the initial conditions.

In other words, the snake robot should follow the commanded path with both

zero initial states and independently randomized initial states in the intervals

[-15, 15] and [-60, 60] respectively for angular position and velocities. Actually,

the case of randomized initial states corresponds to commanding the robot to

another target while the snake robot is already realizing a previously applied dif-

ferent command which contradicts and is not compatible with newly commanded

straight path. In this content, lateral deviations from the commanded line are

aimed to be prevented except inevitably required lateral undulations and the

forward velocity in the commanded direction is intended to be maximized. Con-

sequently, reward values for 5 modules snake robot training with TD3 algorithm

through 5000 episodes are presented in Figure 5.2.
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Figure 5.2: Reward values for training of 5 modules snake robot

For 5 modules snake robot locomotion patterns, position and velocity values of

each module are respectively presented in Figure 5.3 and Figure 5.4 with zero

initial states and in Figure 5.5 and Figure 5.6 with random initial states.
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Figure 5.3: Module positions of 5 modules snake robot.
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Figure 5.4: Module velocities of 5 modules snake robot.
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Figure 5.5: Module positions of 5 modules snake robot when initial states are
randomized.
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Figure 5.6: Module velocities of 5 modules snake robot when initial states are
randomized.
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5.1.3 Training Results for 7 Modules Snake Robot

The 7 modules snake robot is also trained with TD3 algorithm with same hy-

perparameter settings for straight path following objective with both zero initial

states and randomized initial states of yaw joints of the modules. Therefore, in

the case of randomized initial states, the robot should appropriately re-arrange

its direction, posture and module velocities and execute convenient sequences to

realize the latest command. Reward outcomes of training with 5000 episodes

and randomized initial conditions of yaw axis joints is presented in Figure 5.7.

However, it should be note that reward values are not directly comparable or

interpretable between the snake robots whose module numbers are different due

to stochastic nature and implicit changes in reward function terms depending on

the number of modules.
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Figure 5.7: Reward values for training of 7 modules snake robot

In this content, position and velocity values of each module in the commanded di-

rection are respectively presented in Figure 5.8 and Figure 5.9 for the specific case

of zero initial states for module joints where resulting outcomes for randomized

initial states are given in Figure 5.10 and Figure 5.11.
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Figure 5.8: Module positions of 7 modules snake robot.
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Figure 5.9: Module velocities of 7 modules snake robot.
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Figure 5.10: Module positions of 7 modules snake robot when initial states are
randomized.
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Figure 5.11: Module velocities of 7 modules snake robot when initial states are
randomized.
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5.1.4 Training Results for 9 Modules Snake Robot

The 9 modules snake robot is also trained via previously described approach

along 5000 episodes and corresponding reward values are presented in Figure

5.12. As it can be seen from the resulting outcomes of 5, 7 and 9 modules snake

robot trainings, there are minor imperfections which remain with 5000 episodes

training like chatterings in lateral velocities of 5 module snake robot or minor

deviations from the commanded line of 9 modules snake robot, which can be

simply eliminated with further trainings. However, in contrary to instinctual

anticipation, a smooth sinusoidal locomotion pattern may or may not be optimal

attitude for snake locomotion depending on the surface friction characteristics.

Accordingly, minor or major divergences from smooth sinusoidal pattern should

not be interpreted as a deficiency or imperfection in snake locomotion which

emerges through trainings. It should be noticed that although the realized snake

motions after limited number of training episodes are not optimal, optimal snake

locomotion is dependent on the contact surface characteristics and the optimal

wave patterns significantly differentiate with various friction characteristics [32].
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Figure 5.12: Reward values for training of 9 modules snake robot

Resulting position and velocity characteristics of nine modules snake robot is

presented in Figure 5.13 and Figure 5.14 for the case of starting motion with zero

initial states and in Figure 5.15 and Figure 5.16 for a random initial states case.
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Figure 5.13: Module positions of 9 modules snake robot.
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Figure 5.14: Module velocities of 9 modules snake robot.
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Figure 5.15: Module positions of 9 modules snake robot when initial states are
randomized.
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Figure 5.16: Module velocities of 9 modules snake robot when initial states are
randomized.
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5.1.5 Fault Tolerant Locomotion Training for a Defective

Snake Robot

In this scenario, a defective 11 modules snake robot is created where correspond-

ing defects exist in the third, fifth and seventh modules. In the third module, the

yaw axis joint gets stuck and cannot actuate properly despite appropriately pro-

duced torques. It can move only in the interval [−0.05, 0.05] degrees around zero

degree position. In the fifth module, there is not a case of being stuck and the

joint can move freely in the defined interval. However, torque commands cannot

be generated and the joint cannot be commanded appropriately. Consequently, it

is not actuated and it is directly open to be affected from external disturbances.

Lastly, the seventh module is also dysfunctional so that it cannot produce torque

commands and gets stuck in the interval 6.8± 0.02 degrees by breaking the sym-

metric posture of the snake robot. Since it would create a contradictory case,

randomization operation is not employed for states of third and seventh module

joints to realize stuck scenario properly. However, for the fifth module, initial

states are randomized at the beginning of each episode since only torque is not

generated properly but it can freely move in the defined interval. Corresponding

outcomes after the training can be seen in Figures 5.17 - 5.19.
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Figure 5.17: Reward values for training of 11 modules snake robot with 3 defective
modules
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Figure 5.18: Module positions of 11 modules snake robot with 3 defective mod-
ules.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

-0.2

0

0.2

0.4

0.6

0.8

V
e
lo

c
it

y
 (

m
/s

)

11 Modules Snake Robot with 3 Defective Modules

Velocity Values of the Modules in Commanded Direction

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

-0.4

-0.2

0

0.2

0.4

V
e

lo
c
it

y
 (

m
/s

)

Velocity Values of the Modules in Perpendicular Direction to Commanded Direction

Figure 5.19: Module velocities of 11 modules snake robot with 3 defective mod-
ules.
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Figure 5.20: Module positions of 11 modules snake robot with 3 defective modules
when initial states are randomized.
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Figure 5.21: Module velocities of 11 modules snake robot with 3 defective modules
when initial states are randomized.
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5.1.6 Snake Robot Locomotion on Unexperienced Surface

Conditions

The presented trainings and corresponding experimentations until this point, as

it is underlined, are realized with modelling characteristics described in Chapter

3 and parametric values which describe contact properties as provided in Table

3.3. In this stage, the snake robot behaviours are investigated under unexperi-

enced, unseen surface conditions. Therefore, generalizability of the resulting pol-

icy which is obtained after trainings with unchanged contact surface properties is

examined. The snake locomotion objective is defined as following a straight path

with possible maximum velocity and minimum lateral deviation. In this content,

experimentations are realized with both zero initial states and randomized initial

velocity and position states of the yaw joints.

The experimentation for unexperienced surface conditions which correspond to

locomotion in different terrain properties from the snake robot has been trained is

realized with 7 modules snake robot with three different contact force modelling

parameter sets as presented in Table 5.1.

First set of contact force modelling parameters corresponds to a high frictional

surface with a significantly increased scale of static and dynamic friction coef-

ficients. Also, stiffness is decreased whereas damping value is increased. The

resulting locomotion characteristics with zero and randomized initial states are

respectively presented in Figures 5.22 - 5.25.

Second set of parameters reflect a slippery surface characteristics with consid-

erably decreased static and dynamic friction coefficients whereas stiffness is in-

creased and damping value is kept the same with the training set. Corresponding

snake locomotion behaviors are illustrated in Figures 5.26 - 5.29.

Additionally, a third set of contact parameters is determined as another interme-

diate set where static and dynamic friction coefficients are specified between first

and third set where stiffness value is significantly decreased and damping value

is increased. The resulting outcomes are presented in Figures 5.30 - 5.33.
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Contact Force Modelling Parameter Sets

Training Parameter Set
Normal Force Value Unit

Stiffness 104 N/m
Damping 40 N/(m/s)

Frictional Force Value Unit
Static Friction Coefficient 3.2 N/A
Dynamic Friction Coefficient 3.0 N/A

Unexperienced Parameter Set - 1
Normal Force Value Unit

Stiffness 3× 104 N/m
Damping 57 N/(m/s)

Frictional Force Value Unit
Static Friction Coefficient 5.8 N/A
Dynamic Friction Coefficient 5.5 N/A

Unexperienced Parameter Set - 2
Normal Force Value Unit

Stiffness 4× 104 N/m
Damping 40 N/(m/s)

Frictional Force Value Unit
Static Friction Coefficient 0.9 N/A
Dynamic Friction Coefficient 0.8 N/A

Unexperienced Parameter Set - 3
Normal Force Value Unit

Stiffness 2× 103 N/m
Damping 64 N/(m/s)

Frictional Force Value Unit
Static Friction Coefficient 1.6 N/A
Dynamic Friction Coefficient 1.45 N/A

Table 5.1: Contact Force Model Parameter Sets for Realization of Unexperienced
Surfaces
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Figure 5.22: Module positions of 7 modules snake robot with unexperienced con-
tact surface conditions scenario as described contact force modelling parameter
set one.
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Figure 5.23: Module velocities of 7 modules snake robot with unexperienced con-
tact surface conditions scenario as described contact force modelling parameter
set one.
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Figure 5.24: Module positions of 7 modules snake robot with unexperienced con-
tact surface conditions scenario as described contact force modelling parameter
set one when initial states are randomized.
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Figure 5.25: Module velocities of 7 modules snake robot with unexperienced con-
tact surface conditions scenario as described contact force modelling parameter
set one when initial states are randomized.

65



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

-1

-0.5

0

0.5

1

1.5

2
P

o
s

it
io

n
 (

m
)

7 Modules Snake Robot

Position Values of the Modules in Commanded Direction

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

-0.2

-0.1

0

0.1

0.2

P
o

s
it

io
n

 (
m

)

Position Values of the Modules in Perpendicular Direction to Commanded Direction

Figure 5.26: Module positions of 7 modules snake robot with unexperienced con-
tact surface conditions scenario as described contact force modelling parameter
set two.
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Figure 5.27: Module velocities of 7 modules snake robot with unexperienced con-
tact surface conditions scenario as described contact force modelling parameter
set two.
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Figure 5.28: Module positions of 7 modules snake robot with unexperienced con-
tact surface conditions scenario as described contact force modelling parameter
set two when initial states are randomized.
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Figure 5.29: Module velocities of 7 modules snake robot with unexperienced con-
tact surface conditions scenario as described contact force modelling parameter
set two when initial states are randomized.
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Figure 5.30: Module positions of 7 modules snake robot with unexperienced con-
tact surface conditions scenario as described contact force modelling parameter
set three.
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Figure 5.31: Module velocities of 7 modules snake robot with unexperienced con-
tact surface conditions scenario as described contact force modelling parameter
set three.
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Figure 5.32: Module positions of 7 modules snake robot with unexperienced con-
tact surface conditions scenario as described contact force modelling parameter
set three when initial states are randomized.
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Figure 5.33: Module velocities of 7 modules snake robot with unexperienced con-
tact surface conditions scenario as described contact force modelling parameter
set three when initial states are randomized.
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5.2 Snake Robot Locomotion in Three Dimen-

sions

In the scope of previous sections, snake locomotion patterns are generated through

TD3 algorithm in 2D environments for distinct cases and robots which are formed

with different number of modules where they might also include defective com-

ponents. At this stage, snake locomotion is extended to 3D environment with a

cascaded PID architecture which comprises command shaper and gain scheduling

components where cascaded structure provides possibility for operations in both

speed control and position control depending on the aimed purpose.

Therefore, snake locomotion patterns are generated via trained TD3 algorithm to

realize locomotion in commanded direction and motion capabilities are extended

to 3D with the cascaded PID architecture and high level planner possibilities.

General motion control system framework is presented in Figure 5.34 and it should

be noted that, depending on current posture of the snake robot, reinforcement

learning based and cascaded PID based components with high level planners in

the proposed hybrid motion control system can be inter-switched to appropriately

drive the corresponding axes.

In the cascaded PID structure, the command shaper component re-forms the ap-

plied step commands to realizable S -shape commands in position and triangular-

like shapes in speed controller layers by taking into account current states, ac-

celeration and speed limit characteristics of the system. To illustrate, several

applied and shaped command examples are provided in Figure 5.35 for the cases

the system is commanded from zero initial states and it does not reach to pre-

determined speed limit. However, it should be emphasized that, the proposed

command shaper is also capable to handle with non-zero initial conditions and

for the commands which leads to operation in the limit values of the system as

several examples are provided in Figure 5.36 for this case.

70



Figure 5.34: Hybrid Motion Control System Framework for Snake Locomotion.
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Figure 5.35: Shaped position and speed layer commands for the cases system
does not reach predetermined speed limit.
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Figure 5.36: Shaped position and speed layer commands for the cases when new
commands are applied before previous command is not completely realized, when
new commands are applied after previous command is completely realized and
when system reaches predetermined speed limit value while realizing applied com-
mand.
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As the other employed component in the cascaded PID structure, gain scheduling

blocks simultaneously change the gain values in an exponential manner between

predetermined minimum and maximum borders depending on the instant error

value as it is defined in Equation 5.1 and illustrated with arbitrary parameters

in Figure 5.37. Gain scheduling is implemented in both proportional and inte-

gral components of PID controllers but derivative components are used with a

significantly lower gain value and not scheduled for snake locomotion. The im-

plemented gain scheduling component is formulated as in Equation 5.1 below.

Gs = Gmin +
(Gmax −Gmin)

ep

p =


0, K|ε| ≤ 0

K|ε|, 0 < K|ε| ≤ c

c, K|ε| > c

(5.1)

where;

ε: Instant control error value

c: Saturation limit for power value

Gmin, Gmax, K: Parametric values for gain scheduling
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Figure 5.37: Scheduled gain curves based on exponential manner between arbi-
trarily predetermined lower and upper values.
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With presented motion control system framework, snake locomotion is realized

in 3D environment with mainly 2 different snake robot postures where they can

be diversified further depending on the purpose.

In the first case, an L-shape posture is realized where corresponding position and

speed information of joints with corresponding commands are presented in Figure

5.38 and the resulting snake posture in three different time steps is illustrated in

Figure 5.39.

In the second case, an arch shape posture is realized. Position and velocity values

of pitch joints of each module are presented in Figure 5.40 while gradual formation

of arch posture is depicted in Figure 5.41.

In both scenarios, the joint position commands are applied gradually based on

the foresight prediction of expected position values of the joints by the command

shaper. The subsequent command is applied after the previous one is expected to

settle in±1 degree interval around targeted point. In L-shape realization, position

and speed commands are shaped with 1/3 of the predetermined acceleration value

of previous joint since the moved inertia gradually increases whereas in arch shape

scenario, gradually applied commands are shaped with equal parametric values.

At this point, although two example scenarios are described and corresponding

outcomes are presented, 3D locomotion cases can be diversified depending on the

aimed purposes with correspondingly required high level planning operations.
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Figure 5.38: Position and velocity values of pitch axis joints for L-shape snake
robot realization case.
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Figure 5.39: L-shape snake robot posture at initial, intermediate and final time
steps with followed module paths.

75



0 1 2 3 4 5 6 7 8 9 10

Time (s)

-30

-25

-20

-15

-10

-5

0
P

o
s

it
io

n
 (

d
e
g

)

7 Modules Snake Robot

Position Values of the Pitch Axis Joints

Module#1 Pitch Axis Joint Position Command

Module#1 Pitch Axis Joint Shaped Position Command

Module#1 Pitch Axis Joint Position

Module#2 Pitch Axis Joint Position Command

Module#2 Pitch Axis Joint Shaped Position Command

Module#2 Pitch Axis Joint Position

Module#3 Pitch Axis Joint Position Command

Module#3 Pitch Axis Joint Shaped Position Command

Module#3 Pitch Axis Joint Position

Module#4 Pitch Axis Joint Position Command

Module#4 Pitch Axis Joint Shaped Position Command

Module#4 Pitch Axis Joint Position

Module#5 Pitch Axis Joint Position Command

Module#5 Pitch Axis Joint Shaped Position Command

Module#5 Pitch Axis Joint Position

Module#6 Pitch Axis Joint Position Command

Module#6 Pitch Axis Joint Shaped Position Command

Module#6 Pitch Axis Joint Position

Module#7 Pitch Axis Joint Position Command

Module#7 Pitch Axis Joint Shaped Position Command

Module#7 Pitch Axis Joint Position

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-60

-50

-40

-30

-20

-10

0

V
e

lo
c
it

y
 (

d
e
g

 /
 s

)

Velocity Values of the Pitch Axis Joints

Module#1 Pitch Axis Joint Shaped Velocity Command

Module#1 Pitch Axis Joint Velocity

Module#2 Pitch Axis Joint Shaped Velocity Command

Module#2 Pitch Axis Joint Velocity

Module#3 Pitch Axis Joint Shaped Velocity Command

Module#3 Pitch Axis Joint Velocity

Module#4 Pitch Axis Joint Shaped Velocity Command

Module#4 Pitch Axis Joint Velocity

Module#5 Pitch Axis Joint Shaped Velocity Command

Module#5 Pitch Axis Joint Velocity

Module#6 Pitch Axis Joint Shaped Velocity Command

Module#6 Pitch Axis Joint Velocity

Module#7 Pitch Axis Joint Shaped Velocity Command

Module#7 Pitch Axis Joint Velocity

Figure 5.40: Position and velocity values of pitch axis joints for arch shape snake
robot realization case.
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Figure 5.41: Arch shape snake robot posture at initial, transition and final time
steps with followed module paths.
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Chapter 6

Conclusions and Discussions

In the scope of the thesis, mathematical background essentials for snake robots

are investigated and fundamental requirements are presented. Differences and

similarities between biological snakes and electromechanical snake robots are dis-

cussed. Advantages and disadvantages of snake robots are evaluated with possible

application fields and operation concepts.

For implementation and realization of the proposed hybrid motion control sys-

tem architecture with different cases which comprises snake robots with differ-

ent number of modules which might also include defective components, various

surface characteristics, two dimensional and three dimensional tasks; a reconfig-

urable modular snake robot is designed and corresponding modelling operations

are realized including contact force modelling of passive wheeled structure which

satisfies anisotropic friction requirement for proper controllability of the snake

robot. For snake robot locomotion, two different state-of-the-art reinforcement

learning algorithms which are Soft Actor-Critic (SAC) and Twin Delayed Deep

Deterministic Policy Gradient (TD3) are constructed with corresponding tuning

operations of the hyperparameters. For primary snake locomotion gait patterns

in 2D, corresponding reward function terms are composed and weights for each

components are tuned based on the experiences of snake locomotion character-

istics that have occurred during the training trials. With the finalized reward
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function in terms of components which form the overall reward function and cor-

responding weight terms for the each component, the snake robots which are

formed by 5, 7 and 9 modules are trained to realize appropriate snake locomotion

patterns. In addition to these, a defective 11 modules snake robot whose cer-

tain joints have become dysfunctional are also trained with the same algorithmic

structure and reward functions as a fault tolerant locomotion trainings. In this

content, functionality of the designed algorithm and proposed reward function are

verified for the aimed purpose. Thereafter, the operational cases are extended to

three dimensional scenarios with cascaded PID architecture which can be inte-

grated with various high level planners and verifying outcomes of corresponding

experimentations are presented. In this content, proposed cascaded PID archi-

tecture for pitch axis joints provides broad application infrastructure for different

kind of high level planners via its operation capacity both in speed and position

modes independently and instantaneously for each joint. Additionally, command

shaper component provides mainly two significant advantages. Since it takes into

account current states and electro-mechanical capacity of the system for determi-

nation the command in the following time steps, command tracking performance

is significantly improved with minimized overshoot and undershoot effects. Also,

future steps of the system becomes accurately foreseeable for a specific sample

time interval.

In this context, the fundamental contributions of the thesis can be put in order

as;

1. A reinforcement learning based motion control architecture is proposed for

generation of gait patterns in 2D for snake robots which are formed by

different number of modules.

2. For realization of locomotion through reinforcement learning, novel reward

functions are designed for the desired gait patterns and effects of each term

on locomotion characteristics are investigated.

3. As a fault tolerant locomotion training, functionality of implemented rein-

forcement learning motion control architecture is also verified with defective
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snake robots which include various malfunctions through realization of cor-

responding experimentations.

4. In addition to electro-mechanical modelling operations, modelling of con-

tact forces with various parameter sets which represent different locomotion

terrain characteristics are also realized. Thereafter, functionality of snake

robot locomotion, with previously trained algorithms, is also verified with

unseen surface conditions. Therefore, generalizability and robustness of the

proposed motion control system and trained algorithms are validated for

distinct operation conditions.

5. For realizations of operations which span 3D medium, a cascaded PID archi-

tecture with command shaper and gain scheduling components is proposed

where it can be conveniently integrated with different high level planners.

Accordingly, sample operation scenarios are defined, realized and evidential

outcomes are presented.

6. Consequently, a hybrid novel motion control system architecture is pre-

sented for snake robots which is versatile for implementation in different

snake robots and for realization of various high level operation duties where

it is also robust against faults and dysfunctionalities that can possibly take

place during operation time.

In addition to the obtained and presented successful outcomes, some specific

points can also be evaluated and discussed to improve resulting outcomes fur-

ther. Although the proposed reward function fulfills the existing deficient point

for snake locomotion through reinforcement learning, it is still open for further

improvements in terms of faster convergence and increased efficiency of robot lo-

comotion. Especially, the components like Lp and Zr which may produce sparse

values depending on the initial conditions of the robot, parameter initializations

of the networks and gained locomotion behaviors during training process, can

be arranged further to increase efficieny. Also, hyperparameter tunings for em-

ployed algorithms are open for further improvements. Even though TD3 clearly

outperforms SAC for designed and modelled snake robot with separately tuned
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hyperparemeter sets, in a specific setting in terms of both determined hyper-

parameters by tuning and characteristics of the trained robot, SAC algorithm

can reach or even outperform TD3 in contrary to obtained results in the thesis.

Therefore, it should be emphasized that, for the specific architecture of snake

robot which is employed in the scope of the thesis, TD3 has created clearly su-

perior results compared to SAC with detailed tuning operations as practically

possible for both of the algorithms and, for this reason, following investigations

and experimentations have been realized through TD3 algorithm. However, it

does not point out to TD3 superiority over SAC in a generalized aspect.

Throughout the investigations and experimentations, simulation and conse-

quently training times emerged as the main problem and fundamental limiting

factor. As it can be seen in the outcomes which are presented in Chapter 5, minor

level of imperfections remained with trainings of 5000 episodes. However, it is

foreseen that, they can be eliminated only by increasing the number of episodes

or by further repetition of the trainings. With advanced hardwares and/or more

efficient simulation environments, number of episodes can be extended by keeping

the training times in an acceptable level and corresponding imperfections can be

eliminated as well. In this way, minor deviations in the position values of drived

snake robot from the commanded route and minor differences between velocity

curves between different time intervals diminish. Similarly, chatter-like undesired

behaviors which are observed in velocity curves of 5 modules and 9 modules snake

robots can be eliminated as well.

In the training process, as aforementioned, initial angular position and veloc-

ity states of the yaw axis joints are randomized. Although the main reason for

randomization of states is to prevent possible memorization of snake locomotion

characteristics which require zero initial conditions for a successful outcome, it

is also experienced that randomization is also beneficial to eliminate potential

problems of convergence to a local minima which prevents continuous snake lo-

comotion. In other words, randomization is also useful for exploration of proper

gait patterns. In this way, the snake robot becomes capable to realize appropri-

ate gait patterns independent from the initial conditions which can deviate from
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zero initial states especially in position values as it is inevitable in physical re-

alizations and it can reach significantly more desirable local minima points with

realized trainings where it consequently leads superior locomotion performance.

However, it is seen that possibility of randomization, which is kept as 0.5 during

the trainings, can be increased as the snake robot gains fundamental locomotion

attitudes. In this way, risk of failure or degraded performance in rarely occur-

ring extreme cases in terms of position and speed values can be decreased. It

can also be underlined that, as expected, randomization also leads to a noisier

characteristics in reward values which points out learning process as it can be

realized by comparing presented outcomes in Figure 5.1 and Figures 5.2, 5.7,

5.12, 5.17. In addition to randomization process of initial states of the robot,

gradual diversification and randomization of contact surface properties can also

be integrated into the training curriculum even though operation capacity un-

der unexperienced conditions is verified with corresponding experimentations as

presented in Chapter 5. Also, to state as a finalizing remark, a relatively ag-

gressive exploration and learning attitude is adopted in the trainings in terms of

both exploration noise level, update and learning parameters. For this reason, an

aggressive learning attitude emerges as an additional factor which elevates noisy

characteristics in reward values. However, it should be noted that an aggressive

attitude is required to escape from undesired local minimas and it does not cause

an instability problem in the learning process.
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Chapter 7

Targets of the Future

The snake robot locomotion which reflects different patterns which can overcome

posssible challenges in distinct environments with their robust and versatile po-

tential capabilities is taken into account in a holistic view in this study. In this

content, a number of further steps are determined where they can be described

with underlying reasons one by one as below.

First of all,MATLAB Simulink [37] is employed as the simulation environment for

training process and corresponding electro-mechanical and locomotion environ-

ment modellings are realized via low and high level tools of Simulink. However,

despite the advantages which Simulink provides especially for electro-mechanical

modelling, two significant drawbacks can be stated as solving time of simulations

and infeasibility of environmental modellings. To reflect complex, real-world like

environmental conditions and variations in surface properties, it is aimed that

the robotic architecture will be transferred and trained in Isaac Gym [54] or Mu-

JoCo [55] simulation environments. They also provide significant advantages in

terms of solving times and consequently required time for training processes com-

paring with MATLAB Simulink while sufficient physical accuracy is preserved.

Secondarily, parallelization of the training process is another future target which

will accelerate the learning process and correspondingly shorten the required

82



training time drastically. Isaac Gym provides an end-to-end GPU based physics

simulation for robot learning in a parallelized manner [54]. In this way, for train-

ing process, thousands of robots are used simultaneously and obtained experi-

ences are collected to update the policy. In [56], it is shown that ANYmal-C

quadrupedal robot learns to walk in under 20 minutes training by employing

4096 robots simultaneously in Isaac Gym environment and on NVIDIA RTX

A6000 GPU [57] where it is capable to walk in physical environment directly

after training in the simulation environment while proposed parallel training ap-

proach is also validated with different industrial robot models which are Unitree

A1 and Cassie in the simulation environment. In this content, training of the

presented modular and reconfigurable snake robot is aimed to be trained with

different number of modules in an environment where different surface properties

and obstacles are introduced.

In the scope of the thesis, mainly lateral undulation gait is taken into account

with their derivatives which emerge during the training processes. In addition to

these, sidewinding or lateral rolling based gait patterns for lateral motion capa-

bilities and concertina locomotion patterns for especially cluttered environments

as obstacle-aided locomotion will also be investigated. In a case when parallel

training is employed, since the required times for trainings will be significantly

decreased and therefore major practical concern will be eliminated, investigations

of different snake characteristics will become much more feasible.

In the scope of thesis, electromechanical design details for physical realization

possibility in the future is not considered in detail as required for manufactur-

ing phase. At this point, possible opportunities especially in soft materials will

be evaluated for the mechanical frame. In [58], Hawkes et al. presents a vine-

like growing soft robot which evokes a snake robot concept by its architecture

and operation purposes. A similar approach can be adapted to the modular

snake robot design to acquire re-shaping capability and to enhance motion ca-

pability over narrower regions than the module diameter of snake robot. Relat-

edly, mechanical design details of self-assembly mechanisms are not considered

for a self-reconfiguration capability instead of human intervention requirement.

In literature; PolyBot [6], FreeBOT [20], M-Blocks [21], [59], [60], SMORES [22],
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Roombots [23], ATRON [61], [24], UBot [25] and Sambot [26], [62] represents

remarkable robotic systems which holds self-assembly, self-reconfiguration capa-

bilities as presented in the Figure 7.1. In this content, not only snake robots

with different number of modules can be designed but also defined or undefined

robotic structures different than snakes can also be constructed and corresponding

locomotion capabilities can be searched over emergent architecture.

Figure 7.1: Self-reconfigurable modular robotic systems.
(a) PolyBot [6], (b) FreeBOT [20], (c) M-Blocks [21], (d) SMORES [22], (e)
Roombots [23], (f) ATRON [24], (g) UBot [25], (h) Sambot [26].

In a multi-agent case which is composed by snake robots with same or different

number of modules; a learning based coordinated, collaborative swarm behav-

iors and realization of common assignments like simultaneous localization and

mapping (SLAM) in a collaborative manner will be investigated. Scope will be

gradually expanded in terms of both capabilities of individual robots and real-

ized tasks in multi robot cases. Consequently, realization of a more comprehensive

learning based framework which comprises robotic locomotion and higher level

decision making and planning is aimed in a more efficient manner.
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