
T.R.
GEBZE TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

PAIRING BASED CRYPTOGRAPHY

AND ITS APPLICATIONS

ÖZNUR KALKAR
A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
DEPARTMENT OF MATHEMATICS

GEBZE

2022

T.R.
GEBZE TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

PAIRING BASED CRYPTOGRAPHY
AND ITS APPLICATIONS

ÖZNUR KALKAR

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF MATHEMATICS

THESIS SUPERVISOR

ASSOC. PROF. DR. SEHER TUTDERE KAVUT

II. THESIS SUPERVISOR

DR. İSA SERTKAYA

GEBZE

2022

T.C.

GEBZE TEKNİK ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

EŞLEME TABANLI KRİPTOGRAFİ
VE UYGULAMALARI

ÖZNUR KALKAR

DOKTORA TEZİ

MATEMATİK ANABİLİMDALI

DANIŞMANI

DOÇ. DR. SEHER TUTDERE KAVUT

II. DANIŞMANI

DR. İSA SERTKAYA

GEBZE

2022

ÖZET

Eşleme fonksiyonlarının kriptografide saldırı yöntemi olarak ortaya çıkışından

sonra, eşleme tabanlı kriptografi oldukça aktif bir araştırma alanı haline geldi.

Eşleme fonksiyonlarının bilineer özelliği, daha önce mümkün olmayan çok çeşitli

kriptografik uygulamaları mümkün kılar; kimlik tabanlı şifreleme, kısa imzalar,

anonim öznitelik ve kısa sıfır bilgi protokolleri bu örneklerden sadece birkaçıdır.

Bununla birlikte, eşleme fonksiyonunun hesaplanması, kriptografik işlemler arasında

en pahalı olanlardan biridir. Bu tezin temel olarak eşleme tabanlı kriptografiye üç

alanda katkıları vardır. Bu tezde ilk olarak, mahremiyet arttırıcı ve transfer edilebilir

bir elektronik çek defteri şeması ve bu şemalar için oyun tabanlı güvenlik tanımları

önerikmektedir ve önerilen bu sistemin elektronik çek defterinin değiştirilemezliği,

elektronik çek değiştirilemezliği ve manipüle edilemezliği ve elektronik çekin

anonimliği özelliklerine sahip olduğu gösterilmektedir.

İkinci olarak, doğrulanabilir öznitelik (örneğin anonim öznitelik)

mekanizmalarıyla gerçeklenen blok zinciri tabanlı bir sınav mekanizması

verilmektedir. Bu şemanın, elektronik sınavların sağlaması gereken özellikleri

sağladığını tartışılmaktadır.

Son olarak, eşleme fonksiyonunun güvenli ve doğrulanabilir bir şekilde

tevdii edilmesine odaklanılmaktadır. Tek bir hesaplamanın tevdii edilmesi için

önerilen mekanizmalar araştırılmış, bazılarına yapılan saldırılardan bahsedilmektedir,

iki sunucu kullanarak güvenli ve tamamen doğrulanabilir bir protokol veriyor

ve bahsedilen mekanizmaların verimlilikleri karşılaştırılmaktadır. Ayrıca, eşleme

fonksiyonlarının toplu bir şekilde tevdii edilmesi araştırılmakta ve eşleme

fonksiyonların girdilerinin gizli/açık, değişken/sabit olma durumlarına göre farklı

türler için en verimli algoritmalar önerilmektedir.

Anahtar Kelimeler: Eşleme Tabanlı Kriptografi, Eşleme Fonksiyonunun Delege

Edilmesi, Elektronik Çek Defteri, Blokzincir Tabanlı Sınav.

v

SUMMARY

Pairing-based cryptography has become a highly active research area since

pairings’ first appearance in the cryptography as an attack method. The bilinear

property of pairings enable wide range of cryptographic applications that were not

possible before; identity-based encryption, short signatures, anonymous credentials,

and zero-knowledge succint non-interactive arguments of knowledge protocols are

only a few of these examples. However, pairing computation is one of the most

expensive tasks among cryptographic operations. This thesis has contributions

mainly in three areas of pairing based cryptography. First, we give a privacy

enhanced transferable e-checkbook mechanism along with formal game-based security

definitions and prove that the proposed mechanism has e-checkbook unforgeability,

e-check unforgeability and non-manipulability, and e-check anonymity properties.

Second, we give a blockchain based remote exam mechanism which is realized

by verifiable credentials, for example anonymous credentials. The scheme satisfies

test answer authentication, examiner authentication, anonymous marking, anonymous

examiner, question secrecy, question privacy, mark privacy, test verifiability, and mark

verifiability properties.

Lastly, we focus on secure and verifiable pairing outsource. For the single

pairing outsource, we investigate the proposed mechanisms, include attacks for some

of them, give a secure and fully verifiable outsourcing scheme in multi server setting,

and compare their efficiency. Furthermore, we delve into batch pairing outsource and

propose the most efficient algorithms for different types based on inputs to the pairing

being secret/public, variable/constant.

Keywords: Pairing-based Cryptography, Pairing Outsource, Pairing Delegation,

Electronic Checkbook, Blockchain-based Exam.

vi

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my co-advisor Dr. İsa

Sertkaya. He has been a great mentor since the day we met. If he has not been there,

this thesis would not be completed. I am also grateful to my advisor Assoc. Prof. Dr.

Seher Tutdere and I also would like to thank to my committee members.

I would like to dedicate this thesis to my son Deniz, and would like to extend my

sincere thanks to my husband Sabri for being there for me, and Deniz for making me

see the joy in little things. I wish he never stops experimenting and having joy. My

thanks also go to my family for always believing in me.

Studying mathematics was a fun but challenging but fun journey. So, thank you

Roger Penrose for writing The Emporer’s New Mind, and Dan Brown for making me

interested in cryptography and leading to creation of my own super unsafe ciphers

in the high school. All my mathematician friends whom we studied together so many

nights also deserve a sincere thank you. Studying mathematics gave me the opportunity

to study/work/converse with many bright people, for that, i am very grateful.

vii

TABLE of CONTENTS

Page

ÖZET v

SUMMARY vi

ACKNOWLEDGMENTS vii

TABLE of CONTENTS viii

LIST of ABBREVIATIONS and ACRONYMS x

LIST of FIGURES xi

LIST of TABLES xii

1. INTRODUCTION 1

2. FOUNDATIONS 3

2.1. Notation 3

2.2. Cryptographic Primitives 3

2.3. Elliptic Curves 5

2.4. Elliptic Curve Pairings 6

2.4.1. Pairing Types 7

2.5. Pairing Based Cryptography 7

2.5.1. Identity Based Encryption 8

2.5.1.1. Boneh-Franklin Identity Based Encryption 8

2.5.2. Digital Signature 9

2.5.2.1. BLS Signature 10

2.5.3. Signcryption 11

2.5.3.1. BLCQ Signcryption 11

3. ELECTRONIC CHECKBOOK 17

3.1. Electronic Checkbook Scheme 19

3.1.1. Requirements 20

3.1.2. Security Definitions 20

viii

3.2. Proposed Scheme 23

3.3. Security & Performance Analysis 30

4. ELECTRONIC EXAM 36

4.1. Electronic Checkbook Scheme 39

4.1.1. Requirements 40

4.2. Proposed Scheme 41

4.3. Security & Performance Analysis 48

5. OUTSOURCING PAIRING COMPUTATIONS 51

5.1. Security Model 52

5.2. Protocols 57

5.2.1. Single Server 57

5.2.1.1. Comparison 66

5.2.2. Multiple Servers 67

5.3. Proposed Scheme 81

5.3.1. Rand: Proposed Scheme’s Precomputation Step 82

5.3.2. VerPair: A Fully Verifiable Secure Delegation Scheme 84

5.4. Security & Performance Analysis 86

5.4.1. Comparison 96

6. BATCH OUTSOURCING PAIRING COMPUTATIONS 98

6.1. Protocols 98

6.1.1. Single Server 99

6.1.2. Multiple Servers 102

6.2. Proposed Schemes 103

6.3. Comparison 108

7. CONCLUSION 110

REFERENCES 112

REFERENCES 121

BIOGRAPHY 122

APPENDICES 123

ix

LIST of ABBREVIATIONS and ACRONYMS

Abbreviations Explanations

and Acronyms

E : Elliptic Curve

e : Bilinear Pairing Map

G1 : Additively written group of prime order r

G2 : Additively written group of prime order r

GT : Multiplicatively written group of prime order r

H : Cryptographically secure hash function

pec : Public-key encryption scheme

sig : Digital signature scheme

pp(·) : Public parameters for the cryptographic primitive or protocol (·)
sk(·) : Secret key of (·)
pk(·) : Public key of (·) corresponding to the secret key sk(·)

DLP : Discrete Logarithm Problem

ECDLP : Elliptic Curve Discrete Logarithm Problem

SSI : Self-sovereign Identity

x

LIST of FIGURES

Figure No: Page

4.1: Architectural overview of the proposed secure e-exam scheme. 39

xi

LIST of TABLES

Table No: Page

3.1: Feature and Security Comparisons of E-checkbook Schemes 35

5.1: Comparison of single server single pairing outsource algorithms. 67

5.2: Comparison of the Computational Costs and Communication Complexities. 97

6.1: Efficiency of batch pairing algorithms. 109

xii

1. INTRODUCTION

Bilinear pairings have great importance in cryptography and this thesis focus on

both applications of pairings and how to outsource computation of pairings.

The security of public key cryptosystems relies on difficulty of solving some

mathematical problems. In order to break the public key cryptosystems, people focus

on finding fast ways to solve these problems. One of these problems is called Discrete

Logarithm Problem (DLP). Suppose that we have a multiplicatively written cyclic

group G =< g > of order n, then DLP can be described as given g, h, finding

1  x  n� 1 such that h = gx.

In 1985, Koblitz [1987] and Miller [1985] proposed using elliptic curves in

public key cryptosystems and their setting introduced another hard problem, namely

Elliptic Curve Discrete Logarithm Problem (ECDLP). This problem is very similar to

the discrete logarithm problem as name suggests. Suppose we are given an elliptic

curve E defined over a finite field Fq, P 2 E(Fq) of order n and Q 2< P >, the

ECDLP is to find the integer 1  x  n � 1 such that xP = Q. In 1993, Menezes

et al. [1993] proposed an algorithm to attack the Elliptic Curve Discrete Logarithm

Problem. The MOV attack used elliptic curve pairings successfully in order to reduce

ECDLP to DLP in a smaller group. This was the introduction of bilinear pairings to

the cryptography community.

Key exchange protocols have importance in cryptography. A key-exchange

algorithm basically enables multiple parties to agree on a shared secret in order to use

that secret for encryption. In 2000, Joux [2000] proposed a fairly simple three party

key exchange protocol using bilinear pairings which allows three parties to construct

a shared secret in a single round. This was the first construction which used elliptic

curve pairings. In 2001, another two cryptographic schemes were proposed which

are identity based encryption by Boneh and Franklin [2001] and short signature by

Boneh et al. [2001]. Prior to identity-based encryption, if someone wanted to send an

encrypted message to a party, then that someone needed to know the public key of the

recipient. Identity-based encryption enabled sending an encrypted message to a party

without knowing their public key before hand with the help of a key-generation center.

These applications made bilinear pairings gain public attention. Later on, another

1

use cases were discovered for bilinear pairings like attribute-based encryption and

searchable encryption. Nowadays one of the most popular use case of bilinear pairings

is verification of a zero-knowledge proof. A zero-knowledge proof is a method where

a prover can convince a verifier that a given statement is true while without giving any

additional information other than the fact that the statement is true. These proofs have

many use-cases in the blockchain space, private-payments, self-sovereign identity, and

roll-ups are the most significant examples.

Even though elliptic curve pairings offer many use-cases, they are the most

expensive computation in cryptography. In order to benefit elliptic curve pairings,

people have been working on finding ways to improve efficiency of calculating a

pairing. Some are trying to achieve this by means of finding faster calculation and

implementation methods Koblitz and Menezes [2005]; Hess et al. [2006]; Scott et al.

[2006]; Barreto et al. [2007]; Beuchat et al. [2010] and some others are trying to

find secure and efficient ways to outsource this computation to more powerful agents

Hohenberger and Lysyanskaya [2005]; Chevallier-Mames et al. [2005]; Kang et al.

[2005]; Canard et al. [2014]; Chen et al. [2015]; Tian et al. [2015]; Arabacı et al.

[2015]; Ren et al. [2017].

This thesis gives the background on elliptic curves and pairings and describes

applications of pairing based cryptography in Chapter 2. Chapter 3 defines

electronic checkbook schemes, gives game-based security definitions, proposes an

electronic checkbook mechanism and proves that the scheme satisfies e-checkbook

unforgeability, e-check unforgeability and non-manipulability, e-check anonymity and

resistant againt double payments and replay attacks. Chapter 4 defines electronic

exams, gives requirements and security definitions, and propose a blockchain

based solution which satisfies test answer authentication, examiner authentication,

anonymous marking, anonymous examiner, question secrecy, question privacy, mark

privacy, test verifiability, and mark verifiability properties. Chapter 5 describes

delegation of a single pairing, gives a literature review and compares the algorithms.

After single pairing outsourcing, Chapter 6 studies batch pairing delegation, defines

the problem, states the taxonomy, proposes mechanisms for different types, and gives

a comparison. Finally, Chapter 7 concludes the thesis.

2

2. FOUNDATIONS

This chapter aims to give the necessary background on the concepts that are

mentioned throughout the thesis. We set the notation, describe some cryptographic

primitives, give a brief description of elliptic curves and elliptic curve pairings, and

present some of the fundamental pairing based cryptographic applications.

2.1. Notation

• : assigning an output value to a specific variable,

• $: assigning to a variable, a random, uniformly distributed element of a set,

• : security parameter,

• {0, 1}⇤: arbitrary length bit-string,

• {0, 1}: bit string of length ,

• negl(): negligible function that not only tends to zero as  increases but also
does so faster than the inverse of any polynomial,

• s||t: ordered concatenation of two strings s then t,

• ?: error returned from a process,

• H : {0, 1}⇤ ! {0, 1}: pre-image resistant hash function,

• Hx(·): iterative computation of x-th hash of the given input,

• [a]P : a scalar multiplication of in an additive group containing P of order r by a
scalar a 2 Zr, i.e. P + P + · · ·+ P , a times,

2.2. Cryptographic Primitives

Before public key cryptography, there was symmetric cryptography where a key

is used both for encrypting and decrypting a message. For that to happen, sender and

recipient needs to somehow agree on a shared secret key. This process is quite tricky

because either this key can be shared in-person or via a secure-channel. Even if this is

satisfied, this key need to be updated and this sharing process becomes a burden when

the number of participants increases. Asymmetric-key cryptography on the other hand,

3

allows anyone knowing the public key of the recipient to send an encrypted message

and sharing that public key is not a problem. In the asymmetric-key cryptography,

people have two keys, a secret key and a public key which is generated using the

private key. For an encryption algorithm, anyone can send a message using the public

key while only the secret key can decrypt the encrypted message.

Asymmetric-key cryptography also provides a mechanism for signature. Again,

people have two keys and this time the signer can sign a message with his private

key while the verifier is able to verify the given signature if he has the message and

the public key of the signer. Generally, that message needs to be hashed before signing

process and hashing can be described as mapping an arbitrary length data to a fixed-size

bit array. They are one-way functions, i.e given a message, computing the hash is

easy while given the hash value, finding the message that results in the given hash is

infeasible.
Now we describe public key encryption and digital signature scheme in more

details.

• Public key encryption scheme Pec = (Gpec,Kpec,Epec,Dpec) where

– Setup (pppec Gpec()): On input a security parameter , outputs public
parameters as pppec,

– Keygen ((sk, pk) Kpec(pppec)): Takes public parameters pppec and
outputs a public/private encryption key pair,

– Encrypt (c Epec(pk,m)): Takes a public key pk and a message m,
encrypts the message m and outputs ciphertext as c,

– Decrypt (m Dpec(sk, c)): On input of private key sk and a ciphertext c,
decrypts c to m.

• Digital signature scheme Sig = (Gsig,Ksig, Ssig,Vsig) where

– Setup (ppsig Gsig()): Given a security parameter , yields public
parameters as ppsig,

– Keygen ((sk, pk) Ksig(ppsig)): On input of public parameters ppsig,
outputs a public/private signing key pair,

– Sign (� Ssig(sk,m)): On input a message m and private signing key sk,
generates the signature �,

– Verify ({0, 1} Vsig(pk,m, �)): On input public key pk, a message m and
signature �, checks if the signature � is valid. If valid, outputs 1, otherwise
0.

4

2.3. Elliptic Curves

To make the thesis self-contained, here we are going to recall elliptic curve

definitions, mainly following El Mrabet and Joye [2017]; Silverman [2009].

Elliptic curves are curves of genus one having a specified base point. Every such

curve can be written as the locus in P2 of a cubic equation with only one point, the

base point, on the line at 1. Then, after X and Y are scaled appropriately, an elliptic

curve has an equation of the form

Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3. (2.1)

Here O = [0, 1, 0] is the base point and a1, a2, . . . , a6 2 K.

We generally write elliptic curves in non-homogeneous coordinates by letting

x = X/Z, and y = Y/Z,

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (2.2)

with an extra point O = [0, 1, 0], point at infinity, in mind. Equation 2.2 is called as

Weierstrass equation, and E is said to be defined over K if a1, a2, . . . , a6 2 K.

Definition 2.1: Silverman [2009] Let P,Q 2 E, let L be the line through P and Q (if

P = Q, let L be the tangent line to E at P), and let R be the third point of intersection

of L with E. Let L0 be the line through R and O. Then L0 intersects E at R,O, and a

third point. We denote that third point by P �Q.

Proposition 2.1: Silverman [2009] The composition law (Definition 2.1) has the
following properties:

i) If a line L at the (not necessarily distinct) points P,Q,R, then

(P �Q)�R = O. (2.3)

ii) P �O = P for all P 2 E.

iii) P �Q = Q� P for all P,Q 2 E.

5

iv) Let P 2 E. There is a point of E, denoted by P , satisfying

P � (P) = O. (2.4)

v) Let P,Q,R 2 E. Then

(P �Q)�R = P � (Q�R). (2.5)

In other words, the composition law (2.1) makes E into an abelian group with
identity element O. Further,

vi) Suppose that E is defined over K. Then

E(K) = {(x, y) 2 K2 : y2+a1xy+a3y = x3+a2x
2+a4x+a6}[{O} (2.6)

is a subgroup of E.

For the following, we drop the special symbols �, and simply write +,� for

the group operation on an elliptic curve E. For m 2 Z and P 2 E, we let

[m]P = P + . . .+ P, m terms if m > 0, (2.7)

[m]P = �P � . . .� P, |m| terms if m < 0, (2.8)

[0]P = O. (2.9)

Definition 2.2: Silverman [2009] An elliptic curve is a pair (E,O), where E is a

non-singular curve of genus one and O 2 E. (We generally denote the elliptic curve

by E, the point O being understood.) The elliptic curve E is defined over K, written

E/K, if E is defined over K as a curve and O 2 E(K).

2.4. Elliptic Curve Pairings

Definition 2.3: El Mrabet and Joye [2017] Let G1,G2 (additively written) and GT

6

(multiplicatively written) be groups of prime order r. A pairing e is defined as a map
e : G1 ⇥G2 ! GT having the following properties:

• bilinearity: for all A 2 G1, B 2 G2 and a, b 2 Zr, we have

e([a]A, [b]B) = e(A,B)ab, (2.10)

• non-degenerecy: for A 6= 0G1 , B 6= 0G2 , e(A,B) 6= 1GT , where 0G1 (resp. 0G2

and 1GT) is the identity element of G1 (resp. G2 and GT).

Then, a bilinear environment is a tuple, (r,G1,G2,GT , P,Q, e), where

r,G1,G2,GT and e are defined as above, and P (resp. Q) is a generator of G1 (resp.

G2).

For cryptographic and efficiency purposes, e is required to be efficiently

computable, hard to inverse and to possess underlying groups on which the necessary

computational assumptions holds.

2.4.1. Pairing Types

Let G1,G2, and GT be groups of order `, and e : G1 ⇥ G2 ! GT . Pairings are
classified into three among cryptographers.

• Type I: G1 = G2,

• Type II: G1 6= G2 but there is an efficiently computable homomorphism � :

G2 ! G1,

• Type III: G1 6= G2 and there is no efficiently computable homomorphism
between G1 and G2.

2.5. Pairing Based Cryptography

Pairing based cryptography is an area of cryptography that uses bilinear pairing

functions in order to construct cryptographic algorithms. The unique features of these

pairings enabled many new cryptographic algorithms that were not feasible before.

When constructed properly, pairings provide the same level of security with traditional

public key cryptosytems with smaller key sizes.

7

2.5.1. Identity Based Encryption

In 1984, the concept of identity-based encryption was introduced by Shamir.

Identity-based encryption enables users having a secure communication without the

need of exchanging public keys or acquiring a private key before the communication

occurs. Although there were some non-pairing based identity based encryption

protocols, Boneh and Franklin [2001] proposed the first fully functional scheme.
An identity-based encryption scheme E requires a Private Key Generator(KGC)

in order to create the system parameters and distribute private keys to the users, and
described by four randomized algorithms: Setup, Extract, Encrypt, Decrypt:

• Setup: On input of a security parameter K, creates the public system parameters
and publishes as params. In addition, it outputs a master-key for PKG.

• Extract: By using master-key, public parameters and an ID, generates a private
key d for ID.

• Encrypt: On input of params, ID, and a message M , encrypts M for ID and
returns the ciphertext C.

• Decrypt: On input of params, C, and D, decrypts C by d and returns the plaintext
message M .

2.5.1.1. Boneh-Franklin Identity Based Encryption

In 2001, Boneh and Frankin proposed a fully functional identity-based
encryption scheme Boneh and Franklin [2001] using the Weil pairing. The scheme
is defined as follows:

• Setup: Given a security parameter k 2 Z+,

i) generates a prime q, two groups G1,G2 of order q, and a bilinear map
e : G1 ⇥G1 ! G2 and chooses a random generator P 2 G1.

ii) picks a random s 2 Z⇤
q

and sets Ppub = sP .

iii) chooses cryptographic hash functions H1 : {0, 1}⇤ ! G⇤
1, H2 : G2 !

{0, 1}n.

The message space is M = {0, 1}n. The ciphertext space is C = G⇤
1 ⇥ {0, 1}n.

The system parameters are params =< q,G1,G2, e, n, P, Ppub, H1, H2 >. The
master-key is s 2 Z⇤

q
.

• Extract: For a given string ID 2 {0, 1}⇤,

8

i) computes QID = H1(ID) 2 G⇤
1, and

ii) sets the private key dID to be dID = sQID where s is the master key.

• Encrypt: To encrypt M 2M under the public key ID,

i) computes QID = H1(ID) 2 G⇤
1,

ii) chooses a random r 2 Z⇤
q
,

iii) sets the ciphertext to be

C =< rP,M�H2(g
r

ID) >, where gID = e(QID, Ppub) 2 G⇤
2. (2.11)

• Decrypt: Let C =< U, V >2 C be a ciphertext encrypted using the public key
ID. To decrypt C using the private key dID 2 G⇤

1, computes

V �H2(e(dID, U)) = M. (2.12)

Theorem 2.1: Suppose the hash functions H1, H2 are random oracles. Then given

mechanism is a semantically secure identity based encryption scheme (IND-ID-CPA)

assuming BDH is hard in groups G1, G2. Concretely, suppose there is an IND-ID-CPA

adversary A that has advantage ✏(k) against the scheme. Suppose A makes at most

qE > 0 private key extraction queries and qH2 > 0 hash queries to H2. Then there is

an algorithm B that solves BDH in groups G1,G2 with advantage at least:

AdvG1,G2,B(k) �
2✏(k)

e(1 + qE) · qH2

. (2.13)

Here e ⇡ 2.71 is the base of the natural logarithm. The running time of B is

O(time(A)).

2.5.2. Digital Signature

The digital signature concept was suggested by Diffie and Hellman in 1976 when

they put forward the idea of public key cryptography Diffie and Hellman [1976]. The

aim of digital signature is to ensure the source authentication, non-repudiation and

integrity.

9

The standard security of the digital signature is existential unforgeability against

adaptively chosen messages attacks (EUF-CMA), which guarantees that the adversary

cannot forge a valid signature on a new message, even if it can access the signing oracle

that could provide the signing service.

2.5.2.1. BLS Signature

Boneh Lynn Shacham Short Signature was first proposed by Boneh and Franklin

[2001]. Even if this signature allows aggregating of signatures, if extra precautions are

not taken, rogue-key attacks are possible. In order to overcome this issue, Boneh et al.

[2018] proposed a new version, that also supports multi-signature features.

Definition 2.4: Boneh et al. [2018]
Setup:

i) Generate a prime q, three groups G1,G2,GT of order q, and an admissible
bilineer map e : G1 ⇥ G2 �! GT . Choose a random generators P 2 G1

and Q 2 G2, i.e. G1 = hP i, G2 = hQi.

ii) Choose two hash functions H0 : {0, 1}⇤ ! G1 and H1 : {0, 1}⇤ ! Zq

iii) The system parameters are, params:(q,G1,G2,GT , e, P,Q,H0, H1)

Key Generation: Choose private key sk Zq and compute public key as pk

[sk]Q.

Key Aggregation:

apk
nX

i=1

[ai]pki, (2.14)

where ai H1(pki, {pk1, . . . , pkn}).
Signing:

i) Each party computes si [aiski]H0(m) (recall that ai
H1(pki, {pk1, . . . , pkn}))

ii) Send si to a designated combiner

iii) Combiner computes the final signature as

�
nX

i=1

si. (2.15)

10

Multi-Signature Verification: Accept if and only if the following holds.

e (�,�Q) · e (H0(m), apk)
?
= 1GT (2.16)

2.5.3. Signcryption

A signcryption scheme is a cryptographic primitive which combines signature

and encryption in one setting, in a more efficient way than performing encryption and

signing individually.

2.5.3.1. BLCQ Signcryption

Here, we are going to recall the signcryption scheme proposed in Barreto et al.

[2005], that is updated from the protocol given in McCullagh and Barreto [2004].

Please note that, here the protocol will be given in Type-III setting (as defined in

Galbraith et al. [2008]). This is mainly due to the recent attacks on elliptic curves

and hence on pairings, see Barbulescu and Duquesne [2019] and the references therein.

Since we will use this scheme as a building block for our electronic checkbook scheme,

it is given in more detail compared to the rest of the given primitives.
Pairing-based protocols generally involve hashing to elliptic curve subgroups, in

the sequel, the following hash functions will be utilized.

• H1 : {0, 1}⇤ ! Z⇤
r
,

• H2 : {0, 1}⇤ ⇥GT ! Z⇤
r
,

• H3 : GT ! {0, 1}⇤.

SignC = (G,K,S,V) is a signcryption scheme, where each algorithm is given

as follows.

• Setup (pp G(1)). Given a security parameter , Key generation Center
(KGC) constructs a bilinear environment with groups G1,G2, and GT of prime
order r > 2. Then, chooses a random secret s $ Z⇤

r
as its master private key

skKGC = s, and publishes system wide public parameters pp as

{r,G1,G2,GT , P,Q, e,H1,H2,H3, g, pkKGC} (2.17)

11

where g = e(P,Q) and pkKGC = ([s]P, [s]Q) for the signcryption scheme.

• Keygen ((skU, pkU) K(pp,U)). Given the public parameters pp and a user’s
identity U, within Keygen phase, private key of U is generated by KGC. First,
user’s identity U is hashed as a public element u H1(U) 2 Z⇤

r
. Then, KGC

computes the user’s private keys as

skU (skPU, sk
Q
U) = ([(s+ u)�1]P, [(s+ u)�1]Q) (2.18)

where the inverses are computed modulo r. The corresponding public keys of
the user can be publicly computed from U and pkKGC as

pkU (pkPU, pk
Q
U) (2.19)

= ([s]P + [H1(U)]P, [s]Q+ [H1(U)]Q) (2.20)

= ([s]P + [u]P, [s]Q+ [u]Q) (2.21)

= ([s+ u]P, [s+ u]Q) . (2.22)

• Signcrypt (�UV S(skU,m,V)). To signcrypt a message m 2 {0, 1}⇤ to
Bob-with identity V-, Alice-with identity U- generates a random integer x $

Z⇤
r

and computes:

R gx (2.23)

c m�H3(R) (2.24)

h H2(m,R) (2.25)

S [x+ h]skPU (2.26)

T [x]pkPV (2.27)

The signcrypted message from Alice to Bob is �UV (c, S, T).

• Unsigncrypt (V(skV, �UV,U)). Given the signcrypted message �UV, Bob

12

computes

R e(T, skQV) (2.28)

m c�H3(R) (2.29)

h H2(m,R) (2.30)

W e(S, pkQU) (2.31)

and verifies that

W
?
= Rgh. (2.32)

If the verification holds, returns the message m, otherwise outputs an error ?.

Whenever the signer follows this scheme as supposed to, the following and hence

correctness holds as expected.

R = e(T, skQV) = e([x(s+ v)]P, [(s+ v)�1]Q (2.33)

=e(P,Q)x = gx , (2.34)

W = e(S, pkQU) = e([(x+ h)(s+ u)�1]P, [s+ u]Q) (2.35)

= e(P,Q)x+h = Rgh . (2.36)

As it can be seen easily, Unsigncrypt step is not publicly verifiable because the

signature computation depends on R, that can only be recovered by the legitimate

receiver. However, if the the legitimate receiver cooperates and shares �UV and R,

anyone can successfully run Unsigncrypt. Obviously, in this case this would also result

in leaking the message itself.

Signcryption schemes naturally involve both encryption and signature

procedures. Based on this, Malone-Lee [2002] stated two security notions separately,

following the de facto security models by Rackoff and Simon [1992]; Bellare et al.

13

[1998] for public key encryption and by Goldwasser et al. [1988] for signature

schemes.

Security model definitions for identity-based signcryption schemes is

constructed with two parts, namely indistinguishability of identity-based signcryptions

under chosen ciphertext attack (IND-IBSC-CCA) for encryption and existentially

signature-unforgeability under adaptive chosen messages and ciphertexts attacks

(ESUF-IBSC-CMA), separately. Based on these definitions, Barreto et al.

[2005] also shows that security of the given signcryption scheme satisfies

both IND-IBSC-CCA and ESUF-IDSC-CMA properties under the assumption of

q-Bilinear Diffie-Hellman Inversion Problem and q-Strong Diffie-Hellman Problem

are intractable, respectively. Boyen [2003] formalizes security definitions for

multi-purpose signcryption schemes, based on the message confidentiality, signature

non-repudiation, ciphertext unlinkability, ciphertext authentication and ciphertext

anonymity properties. We now recall three of these definitions following the notations

of McCullagh and Barreto [2004]; Barreto et al. [2005]; Boyen [2003] on which

the eChb scheme’s security reductions will be built. For further details on security

formalization, reader may also refer to Boyen [2003]; Wang et al. [2013].

Definition 2.5: An identity-based signcryption scheme (IBSC) has the
indistinguishability against adaptive chosen ciphertext attacks property
(IND-IBSC-CCA) if no polynomially bounded adversary A has a non-negligible
advantage in the following game.

i) The challenger C runs the Setup algorithm with a security parameter  and sends
the system parameters pp to the adversary A.

ii) Find Phase: In this phase, A adaptively performs a polynomially bounded
number of queries to the following oracles:

• Keygen: returns private keys associated to arbitrary identities.

• Signcrypt: given (U, V, m) as input with a pair of identities U, V
(presumably sender’s and receiver’s, respectively) and a plaintext m, it
returns an encryption under the receiver’s identity V of the message m in
the name of the sender’s identity U.

• Unsigncrypt: given (�, U, V) as input with a pair of identities U, V
and a ciphertext �, it generates the receiver’s private key skV and returns
either a valid message-signature pair (m, (h, S)) for the sender’s identity

14

V or the ? if under the private key skV, � does not decrypt into a valid
message-signature pair.

iii) A chooses two plaintexts m0, m1, and identities U⇤, V⇤. She may not have
queried the private key of V⇤ and she obtains c = Signcrypt(mb, skU⇤ ,V⇤)

under system public parameters pp, for a random bit b $ {0, 1}.

iv) Guess Phase: A asks new queries as in Find Phase, however she may not issue
a key extraction request on V⇤ and cannot submit c to Unsigncrypt oracle for
target identity V⇤.

v) A outputs a bit b0 and wins if b0 = b.

Then, adversary A’s advantage is defined to be

Adv(A) = |Prob(b0 = b)� 1

2
| , (2.37)

hence an IBSC has possesses the IND-IBSC-CCA property only if

Adv(A) = |Prob(b0 = b)� 1

2
|  negl() . (2.38)

Definition 2.6: An identity-based signcryption scheme is said to be existentially
signature-unforgeable for adaptive chosen messages and ciphertext attacks
(ESUF-IBSC-CMA) if no polynomially bounded adversary has a non-negligible
advantage in the following game.

i) The challenger C runs the Setup algorithm with a security parameter  and gives
the system parameters pp to the adversary A.

ii) A performs a polynomially bounded number of requests as in the Definition 2.5.

iii) Finally, A produces a triple (�⇤,U⇤,V⇤) and wins the game

• if the sender’s identity U⇤ was not corrupted and

• if the result of Unsigncrypt oracle on �⇤ under the private key associated to
V⇤ is a valid message-signature pair (m⇤, (h⇤, S⇤)) such that no Signcrypt
query

– involved m⇤, U⇤ and some receiver V0 (possibly different from V⇤) and

– resulted in a ciphertext �0 whose decryption under the private key skU0

is alleged forgery
(m⇤, (h⇤, S⇤),U⇤).

15

Then adversary A’s advantage is Adv(A) = |Prob(A wins)|. Thus an IBSC has

possesses the ESUF-IBSC-CMA property only if

Adv(A) = |Prob(A wins)|  negl() . (2.39)

Definition 2.7: An identity-based signcryption scheme is said to be ciphertext
anonymous against adaptive chosen-ciphertext insider attacks, or (ANON-IBSC-CCA)
secure, if no polynomially bounded adversary A has a non-negligible advantage in the
following game.

i) The challenger C runs the Setup algorithm with a security parameter and
provides the public parameters pp to the adversary A.

ii) Find Phase: A performs a polynomially bounded number of requests as in the
Definition 2.5.

iii) A chooses two sender identities U1,U2 and two recipient identities V1,V2 along
with a message m.

iv) C flips two random coins b1, b2 2 {0, 1} and gives c = Signcrypt(m, skUb1
,Vb2)

to A.

v) Guess Phase: A performs new queries as in Find Phase, however she may not
request key extraction on neither Vb1 nor Vb2 and cannot submit c to Unsigncrypt
oracle.

vi) Finally, A outputs (b01, b02) and wins if (b01, b02) = (b1, b2).

Then, adversary A’s advantage is defined to be

Adv(A) = |Prob((b01, b
0
2) = (b1, b2))�

1

4
|. (2.40)

Similarly, an IBSC has the ANON-IBSC-CCA property only if

Adv(A) = |Prob((b01, b
0
2) = (b1, b2))�

1

4
|  negl(). (2.41)

16

3. ELECTRONIC CHECKBOOK

In a traditional paper check system, when a payer chooses to pay with a paper

check, the check is signed with the recipient’s name, date, and desired amount (face

value). Naturally, these checks are bundled in a checkbook, a collection of blank

checks issued by the payer’s bank. The number of checks in a checkbook varies, but a

checkbook usually has 10, 20, or as many as 100 checks. An electronic check (e-check)

is the electronic version of a paper check.

The idea of e-checks was introduced by Chaum et al. [1990a], where they also

provide an offline e-check system. However, the proposed solution has a very high

computational complexity. An enhanced version is provided by Chaum et al. [1990b],

but the amount must be determined before the electronic check is issued. Then, another

offline electronic control mechanism was proposed by Brands [1993] based on the

representation problem and claimed to be more efficient than Chaum et al. [1990a] and

Chaum et al. [1990b].

An analysis and comparison of initial propositions for electronic payment

systems put forward by Yu et al. [2002]. Kim and Oh [2002] proposed a scheme

based on partially blind RSA-based signatures and one-way accumulators, but again

the amount needs to be determined before e-check issuance. In 2005, Chen [2005]

proposed a mechanism where the amount no longer needs to be determined before

the e-check was issued, but instead embedded in the e-check. Hinarejos et al. [2012]

suggested a solution satisfying anonymity and transferability. Later, security enhanced

version of 3D-Secure protocol is given by Plateaux et al. [2013]. Again, these systems

require the issuance of an e-check for each payment.

The aforementioned mechanisms require the payer to interact with the issuing

bank for each electronic check issuance and are therefore not considered as electronic

checkbook mechanisms. To the best of the authors’ knowledge, the first attempt at an

e-checkbook system was presented by Pasupathinathan et al. [2005]. At the end of the

issuance period, the payer receives an e-checkbook with different Schnorr signatures

for each e-check. Although the payer no longer has to interact with the issuing bank

for each e-check payment, the computational and storage complexity is linear with

the number of e-checks. Then, people studied achieving constant computational and

17

storage complexity. Four e-checkbook schemes were proposed based on Chen [2005]

’s scheme and all four Chen et al. [2009]; Chang et al. [2009]; Chen et al. [2010];

Chang et al. [2016] satisfy constant computational complexity and storage property.

However, all of these schemes have flows as shown by Sertkaya and Kalkar [2020]:

• Pasupathinathan et al. [2005]’s proposal does not satisfy the correctness,
anonymous identity and payment unlinkability properties,

• Chen et al. [2009]’s scheme is not secure against e-check manipulation and
e-check forgery attacks,

• Chang et al. [2009]’s protocol is susceptible to e-check manipulation attack,

• Chen et al. [2010]’s proposal is vulnerable against e-check manipulation attack,

• Chang et al. [2016]’s scheme is susceptible to e-check manipulation attack.

With the exception of Sertkaya and Kalkar [2019, 2021], there are no

new e-checkbook propositions. Sertkaya and Kalkar [2019] does not support

transferability and meet anonymity property, i.e. eavesdroppers naturally derive

payers and payees from the information on e-checks. In Sertkaya and Kalkar [2021],

Sertkaya and Kalkar propose an e-checkbook scheme that supports transferable

electronic checks and meets anonymity against eavesdroppers. More specifically, they

first provide game-based security definitions for e-checkbook unforgeability, e-check

unforgeability and non-manipulability, and e-check anonymity. After explaining the

details of the proposed scheme, they prove that their scheme meets these properties

along with resistance to double payments and replay attacks.

Notation. We use the following notation for the upcoming subsections in addition
to the abbreviations.

• ⌦U: e-checkbook of U,

• !UV: e-check with payer U and payee V,

• d: date,

• a: amount,

• �UV: signcryption of a value by U for V,

• RBU: auxiliary value required for signcryption verification by entities other than
the recipient.

18

3.1. Electronic Checkbook Scheme

An e-checkbook scheme involves four entities:

• Issuer: The bank who issues e-checkbook for its customers/users, performs the
actual e-check settlement, and makes the money transfers.

• Payer: An issuing bank customer who wishes to obtain an e-checkbook and make
payments by e-checks.

• Payee: An entity that receives an e-check from a payer. Upon receipt of an
e-check, payee performs the necessary checks and requests payment of the
e-check through her own bank.

• Acquirer: The bank maintaining the payee’s bank account.

It is assumed that inter-bank transactions are handled using existing conventional

mechanisms. Therefore, for the sake of simplicity, it is further assumed that the Issuer

and the Acquirer banks are the same and are denoted by B.
eChb = (G,K, I,P , T ,D) is a transferable e-checkbook scheme consisting of

the following protocols.

• Setup G - Given security parameter , system environment is constructed and
system-wide public parameters are generated and published.

• Keygen K - On input of the public parameters pp and an identity U, it generates
private and public key pair for the entity U.

• Issuance I - User U and the bank B follows the e-checkbook issuance protocol
and U gets the e-checkbook ⌦U.

• Payment P - Based on an agreement on the date d and amount a with the payee
V, the payer U creates a signed e-check !UV, sends it to V. V authenticates the
issuance of the e-check.

• Transfer T - In this optional protocol, instead of cashing out the received
e-check, the payee V applies to the bank B to make the e-check transferable.
After B makes the check transferable, V creates an e-check !VY and sends it to
the payee Y.

• Deposit D - Upon receiving a cash out order for an e-check !, the bank B first
authenticates e-check issuance and checks against double spending, only then
deducts the amount from the account of the first issuer of the e-check and adds it
to the payee.

19

3.1.1. Requirements

Just like in the paper check system, banks are assumed to be honest and follow

the protocol. So, we assume there is no attack from the bank B. However, both the

payer U and the payee V, are thought to be malicious. So, they will try to deviate from

the protocol as much as possible.
Known attacks that can be pursued by payers, payees or eavesdroppers against

an e-checkbook scheme can be summarized as below.

• E-checkbook forgery: unauthorized creation of a verifiable e-checkbook as if it
is issued by B,

• E-check forgery: unauthorized creation of a verifiable new e-check as if it is
spent by U,

• E-check manipulation: manipulation (changing the payee, the amount or the
date) of a transmitted e-check,

• Double spending: paying with the same indexed e-check more than once,
probably with different payee, amount or date,

• Replay attack: depositing same e-check more than once.

To combat these attacks and ensure user privacy, any e-checkbook system must meet
the following properties.

• E-checkbook validation: E-checkbook is issued by B for U,

• E-check validation: E-check belongs to an e-checkbook issued for U by B,

• E-check integrity: E-check has not been manipulated since it was created.

• E-check source authentication: E-check is issued and signed by the dedicated
owner U.

• E-check anonymity: E-check appears anonymous to anyone who does not
possess the payee’s secret key, i.e. hides both the payer’s and the payee’s
identities and other than the payer, the payee and the bank, no one can learn
the e-check.

3.1.2. Security Definitions

The following definitions follow the security definitions defined for the

signcryption schemes that are included in Section 2.5.3.1..

20

Definition 3.1: An e-checkbook scheme is said to possess the e-checkbook

unforgeability property if no polynomially bounded adversary A has a non-negligible

advantage in the following game.

i) The challenger C creates and gives the system parameters pp to the adversary
A.

ii) A performs polynomially bounded number of queries to the C to get:

• the public-private key pair associated to an arbitrary identity U

• the e-checkbook ⌦U for U

iii) Finally, A produces an e-checkbook ⌦U⇤ and wins the game if

• the bank’s identity B was not corrupted and

• ⌦U⇤ is a valid e-checkbook that was not queried.

The adversary’s advantage is defined to be

Adv(A) = |Prob(A) wins|. (3.1)

Definition 3.2: (E-check unforgeability and non-manipulability) An e-checkbook
scheme has the e-check unforgeability and non-manipulability property if no
polynomially bounded adversary A has a non-negligible advantage in the following
game.

i) The challenger C creates and gives the system parameters pp to the adversary
A.

ii) A performs a polynomially bounded number of queries to the C to get:

• the public-private key pair associated to an arbitrary identity U

• the e-checkbook ⌦U for an arbitrary identity U with ↵, k.

• the e-check !UV from U to V for arbitrary identities U and V along with
desired date, amount, e-check index.

iii) Finally, A produces an e-check !U⇤V⇤ and wins the game if

• the payer’s identity U⇤ was not corrupted and

• !U⇤V⇤ is a valid e-check that was not queried.

21

The adversary’s advantage is defined to be

Adv(A) = |Prob(A) wins|. (3.2)

Remark: Note that, in order to successfully execute e-check forgery or e-check

manipulation attacks, a malicious entity must necessarily generate valid e-checks.

Therefore, Definition 3.2 simulates both of these attack types.

Definition 3.3: An e-checkbook scheme has the e-check anonymity property if no

polynomially bounded adversary A has a non-negligible advantage in the following

game.

i) The challenger C creates and gives the system parameters pp to the adversary
A.

ii) A performs a polynomially bounded number of queries to the C to get:

• the public-private key pair associated to an arbitrary identity U

• the e-checkbook ⌦U for an arbitrary identity U.

• the e-check !UV from U to V for arbitrary identities U and V.

iii) Eventually, A submits two sender identities U1,U2 and two recipient identities
V1,V2 (along with desired date, amount, e-check index) to C .

iv) C selects two bits b1, b2 uniformly at random and sends the "challenge" e-check
!Ub1

Vb2
to A.

v) A is free to perform a polynomially bounded number of queries to the C to get

• the public-private key pair associated to an arbitrary identity U

• the e-checkbook ⌦U of U.

• the e-check !UV from U to V for an arbitrary identity V along with date,
amount, e-check index.

under the additional constraint that A can not ask for the private key of V1 and
V2.

vi) Finally, A outputs a guess (b⇤1, b⇤2) and wins the game if

• the identities of V1,V2 are not corrupted

• (b⇤1, b
⇤
2) = (b1, b2).

22

The adversary’s advantage is defined to be

Adv(A) = |Prob((b⇤1, b
⇤
2) = (b1, b2))�

1

4
|. (3.3)

3.2. Proposed Scheme

Our e-checkbook scheme eChb consists of six phases; namely Setup G, Keygen

K, Issuance I, Payment P , Transfer T and Deposit D as defined in Section 3.1.. Setup

G generates system-wide public parameters and publishes them. Keygen K is used

to generate and distribute public/private key pairs for the related entities. Issuance I

describes the process for a registered user of the bank to receive an e-checkbook from

the bank. Whenever a registered user with an e-checkbook ⌦ wants to issue an e-check

!, she follows the Payment P . Anytime a payee receives an e-check !, she makes it

transferable so that she can use for another payment or cashes out the e-check. Here,

without loss of generality, making an electronic check transferable and paying with a

transferable e-check is described in the Transfer T phase. Finally, Deposit D phase

is the protocol between the payee and the bank, where, after the necessary checks, an

electronic check is transferred from the payer’s account to the payee’s account.

An e-check ! should include payee’s identity V, the date value d, and the amount

value a along with the e-checkbook page index i and the source authenticator hash

chain value Hr�i(↵), in signcrypted form.

Our eChb scheme uses the signcryption scheme described in 2.5.3.1.. This

choice can be changed with any cryptographically secure signcryption scheme that

has ESUF-IBSC-CMA and ANON-IBSC-CCA properties.

More specifically, the details of each phases of eChb scheme are as follows.

Setup Phase

Given a security parameter , Key generation Center (KGC) runs the SignC’s setup

phase which constructs a bilinear environment, uniformly selects KGC’s master key

skKGC = s, and publishes the public parameters pp as

{r,G1,G2,GT , P,Q, e,H,H1,H2,H3, g, pkKGC},

where g = e(P,Q) and pkKGC = ([s]P, [s]Q).

23

Keygen Phase
For any identity U, KGC;

i) hashes its identity to a public element u H1(U) 2 Z⇤
r
.

ii) computes the user’s private keys

skU (skPU, sk
Q
U) = ([(s+ u)�1]P, [(s+ u)�1]Q). (3.4)

Corresponding public keys can be publicly computed from u and pkKGC as

pkU (pkPU, pk
Q
U) = ([s+ u]P, [s+ u]Q). (3.5)

Issuance Phase
A payer U first registers with the bank B, then opens a check account and acquires an
e-checkbook with k e-checks as follows.

i) U selects ↵ $ {0, 1} uniformly at random.

ii) U computes mUB = U||k||Hk(↵) and signcrypts mUB as

�UB (cUB, SUB, TUB) = S(skU,mUB,B) . (3.6)

iii) U sends �UB to B for recording and signing.

iv) B runs V(skB, �UB,U) to verify the signature, extracts mUB = U||k||Hk(↵),
records k and Hk(↵) within the U’s bank account information.

v) B constructs mBU = U||Hk(↵) and signcrypts mBU as

�BU (cBU, SBU, TBU) = S(skB,mBU,U) . (3.7)

vi) B sends �BU to U for e-checkbook creation acknowledgement and verification.

vii) U runs V(skU, �BU,B) to verify the signature, extracts mBU = U||Hk(↵), checks
Hk(↵).

24

viii) If all of the controls hold, U records ⌦U as his e-checkbook and keeps it secret,
i.e. ⌦U (↵, k,�BU, RBU) , where RBU is the auxiliary value computed by U
while unsigncrypting �BU.

Payment Phase

Assume that U has already used i � 1 (i < k) e-checks from his e-checkbook ⌦U. In

order to create an e-check as a payment to V with face value a and date d as the i-th

e-check !i

UV, U and V follow steps below.

i) U computes

mi

UV d||a||i||Hk�i(↵)||U||V||�BU||RBU, (3.8)

!i

UV (cUV, SUV, TUV) = S(skU,mi

UV,V). (3.9)

ii) U sends !i

UV to V.

iii) V runs V(skV,!i

UV,U), verifies the signature, extracts

mi

UV d||a||i||Hk�i(↵)||U||V||�BU||RBU . (3.10)

iv) V verifies her identity, the amount a and the date d is correct; computes
Hi(Hk�i(↵)), constructs mBU U||Hk(↵) , and by using RBU and mBU, verifies
the B’s signature �BU.

Transfer Phase

Whenever a payee receives an e-check, she has two choices, namely transfer and

deposit, where both are send to the bank B. In the sequel, this choice is denoted by the

Boolean flag t, that is prefixed to plain order message.

Assume that V received an e-check !i

UV from U and wants to make a payment

with it to another payee Y.

i) V sets the flag t to “1” for indicating transfer order, and computes

25

mi

VB t||d||a||i||Hk�i(↵)||U||V||�BU||RBU|| (3.11)

!i

UV||Ri

UV, (3.12)

�i

VB (cVB, SVB, TVB) = S(skV,mi

VB,B), (3.13)

where Ri

UV is the auxiliary value computed by V while unsigncrypting !i

UV.

ii) V sends �i

VB to B for double spending control and transfer order settlement.

iii) B runs V(skB, �i

VB,V) to verify the signature, extracts

mi

VB t||d||a||i||Hk�i(↵)||U||V||�BU||RBU|| (3.14)

!i

UV||Ri

UV . (3.15)

iv) B constructs mi

UV d||a||i||Hk�i(↵)||U||V||�BU||RBU , and by using Ri

UV and
mi

UV verifies the e-check !i

UV.

v) By computing Hi(Hk�i(↵)) and using RBU, B verifies the signature �BU.

vi) B assures that !i

UV was not already spent or transferred.

vii) B computes

mi

BV d||a||i||Hk�i(↵)||U||V (3.16)

�i

BV (cBV, SBV, TBV) = S(skB,mi

BV,V), (3.17)

and records (i,Hk�i(↵), a, d,!i

UV, �
i

VB) as transferred check.

viii) B sends �i

BV to V.

ix) V runs V(skV, �i

BV,B), verifies the signature, extracts

mi

BV d||a||i||Hk�i(↵)||U||V . (3.18)

x) In order to make a payment to Y with the transferred e-check, V computes

26

mi

VY d||a||i||Hk�i(↵)||U||V||Y||�i

BV||Ri

BV (3.19)

!i

VY (cVY, SVY, TVY) = S(skV,mi

VY,Y). (3.20)

xi) V sends !i

VY to Y.

xii) Y runs V(skY,!i

VY,V) to verify the signature, extracts

mi

VY d||a||i||Hk�i(↵)||U||V||Y||�i

BV||Ri

BV . (3.21)

xiii) Y verifies her identity, the amount a and the date d is correct; constructs

mi

BV d||a||i||Hk�i(↵)||U||V , (3.22)

and by using Ri

BV and mi

BV, verifies the B’s signature �i

BV.

The e-check that is ordered to be made transferable in the Transfer Phase may

have already been transferred, i.e. the e-checkbook owner U makes a payment with to

U1 with the e-check !i

UU1
, U1 passes it to U2 as !i

U1U2
, and so on, till Ul transfers it to

V. Eventually, V transfers it to Y as !i

VY. In this payment traverse, the bank B always

includes the owner U of the e-checkbook and the owner of the last transfer order in the

text to be signcrypted. If required by the law, all involved users may be included.
Each time a payee Y receives an e-check !i

VY, she can deduce if this e-check
belongs to the e-checkbook owner V or from a previous payee V at the end of the
Payment or Transfer phase.
Deposit Phase
Suppose that a payee Y wants to deposit !i

VY.

• If V is the owner of the e-checkbook:

i) Y sets the flag t to “0” for indicating the deposit order, computes

27

mi

YB t||d||a||i||Hk�i(↵)||V||Y||�BV||RBV|| (3.23)

!i

VY||Ri

VY , (3.24)

�i

YB (cYB, SYB, TYB) = S(skY,mi

YB,B) . (3.25)

ii) Y sends �i

YB to B for double spending control and deposit order settlement.

iii) B runs V(skB, �i

YB,Y), verifies the signature, extracts

mi

YB t||d||a||i||Hk�i(↵)||V||Y||�BV||RBV|| (3.26)

!i

VY||Ri

VY. (3.27)

iv) B constructs

mi

VY d||a||i||Hk�i(↵)||V||Y||�BV||RBV , (3.28)

and by using Ri

VY and mi

VY verifies the e-check !i

VY.

v) B computes Hi(Hk�i(↵)), constructs

mBV V||Hk(↵) ,

and by using RBV and mBV, verifies the B’s signature �BV.

vi) B now assures that the e-check !i

VY was not already spent or transferred.

vii) Then, B records

(i,Hk�i(↵), a, d,!i

VY, �
i

YB) (3.29)

as spent check, deducts the amount a from V’s account, adds it into the Y’s
account, and informs Y.

• Else (U is the e-checkbook owner):

i) Y sets the flag t to “0” for indicating the deposit order, computes

28

mi

YB t||d||a||i||Hk�i(↵)||U||V||Y||�i

BV||Ri

BV|| (3.30)

!i

VY||Ri

VY , (3.31)

�i

YB (cYB, SYB, TYB) = S(skY,mi

YB,B) . (3.32)

ii) Y sends �i

YB to B for double spending control and deposit order settlement.

iii) B runs V(skB, �i

YB,Y), verifies the signature, extracts

mi

YB t||d||a||i||Hk�i(↵)||U||V||Y||�i

BV||Ri

BV|| (3.33)

!i

VY||Ri

VY. (3.34)

iv) B constructs

mi

VY d||a||i||Hk�i(↵)||U||V||Y||�i

BV||Ri

BV , (3.35)

and by using Ri

VY and mi

VY verifies the e-check !i

VY.

v) B constructs

mi

BV d||a||i||Hk�i(↵)||U||V , (3.36)

and by using Ri

BV and mi

BV, verifies the B’s signature �i

BV.

vi) B now assures that the e-check !i

VY was not already spent or transferred.

vii) Then, B updates the record of

(i,Hk�i(↵), a, d,!i

UV, �
i

VB) (3.37)

with �i

YB as spent check, deducts the amount a from U’s account, adds it
into the Y’s account, and informs Y.

If the payer and the payee honestly follow the protocol, the correctness of

the eChb protocol naturally follows from correctness of the underlying signcryption

scheme.

29

3.3. Security & Performance Analysis

Here, we are going to prove that our scheme satisfies e-checkbook unforgeability,

e-check unforgeability and non-manipulability, and e-check anonymity properties. In

addition to that, we are going to discuss the performance and security of our scheme

with respect to the previously mentioned proposals.

Theorem 3.1: If the signcryption scheme SignC given in Section 2.5.3.1. is

existentially signature-unforgeable for adaptive chosen messages and ciphertext

attacks (ESUF-IBSC-CMA), then EChb scheme has the e-checkbook unforgeability

property.

Proof . Let A be an adversary that can win the e-checkbook unforgeability game,
given in Definition 3.1, with some non-negligible probability p. We are going to show
that if such an adversary exists, then it can be used to construct an adversary B that
can win the ESUF-IBSC-CMA game (see Definition 2.6) for SignC scheme.

i) The challenger C runs the Setup algorithm of SignC scheme with a security
parameter  and gives the system parameters pp to the adversary B.

ii) B passes pp to the adversary A.

iii) A performs a polynomially bounded number of queries to B to get:

• the public-private key pair associated to an arbitrary identity U,

• the e-checkbook ⌦U of U with ↵, k.

iv) For each query of A, B

• queries Keygen oracle for the public-private key pair associated to U,

• queries Signcrypt oracle with (B,U,mBU) to get
�BU = (cBU, SBU, TBU) on mBU = U||Hk(↵),

• computes RBU = e(TBU, sk
Q

U).

v) B returns the following query results to A:

• the public-private key pair associated to U,

• the e-checkbook ⌦U = (↵, k,�BU, RBU) of U.

vi) Finally, A produces an e-checkbook ⌦U⇤ = (↵⇤, k⇤, �BU⇤ , RBU⇤), where

• the bank’s identity B was not corrupted,

30

• ⌦U⇤ is a valid e-checkbook that was not queried.

vii) B sends (�BU⇤ ,B,U⇤) to C and wins the ESUF-IBSC-CMA game with probability
p since

• sender’s identity B was not corrupted,

• the result of Unsigncrypt oracle on �BU⇤ under the private key associated
to U⇤ is a valid message-signature pair (m⇤, (h⇤, S⇤)), where m⇤ =

U⇤||Hk
⇤
(↵⇤) such that no Signcrypt query

– involved m⇤, B and some receiver U0 (possibly different from U⇤) and

– resulted in a ciphertext �0 whose decryption under the private key skU0

is alleged forgery (m⇤, (h⇤, S⇤),U⇤).

However, as it was already proved, (see [Barreto et al., 2005, Theorem 3]), an

adversary can only win the ESUF-IBSC-CMA game for SignC with negligible

probability. Thus, EChb scheme has the e-checkbook unforgeability property.

⌅

Theorem 3.2: (E-check unforgeability and non-manipulability) If the signcryption

scheme SignC described in 2.5.3.1. satisfies ESUF-IBSC-CMA property, then EChb

scheme has the e-check unforgeability and non-manipulabity property, that is EChb

scheme is resistant against e-check forgery and e-check manipulation attacks.

Proof . Let A be an adversary that can win the e-check unforgeability game, given
in Definition 3.2, with some non-negligible probability p. We will show that if such
an adversary exists, then it can be used to construct an adversary B that can win the
ESUF-IBSC-CMA game (see Definition 2.6) for SignC scheme.

i) The challenger C runs the SignC scheme’s Setup algorithm with a security
parameter  and gives the system parameters pp to the adversary B.

ii) B passes pp to the adversary A.

iii) A performs a polynomially bounded number of queries to B to get:

• the public-private key pair associated to an arbitrary identity U

• the e-checkbook ⌦U of U with ↵, k.

• the e-check !UV from U to V for an arbitrary identity V and d, a, i.

iv) For each query of A, B

31

• queries Keygen oracle for the public-private key pair associated to U,

• queries Signcrypt oracle with (B,U,mBU) to get �BU = (cBU, SBU, TBU) on
mBU = U||Hk(↵),

• computes RBU = e(TBU, sk
Q

U).

• computes !i

UV = �i

UV = S(skU ,mi

UV, V), where

mi

UV = d||a||i||Hk�i(↵)||U||V||�BU||RBU. (3.38)

v) B returns the following query results to A:

• the public-private key pair associated to U,

• the e-checkbook ⌦U = (↵, k,�BU, RBU) of U,

• the e-check !i

UV from U to V with d, a, i.

vi) Finally, A produces an e-check !j

U⇤V⇤ with d⇤, a⇤, j where

• the payer’s identity U⇤ was not corrupted and

• !j

U⇤V⇤ is a valid e-check that was not already queried.

vii) B sends (�j

U⇤V⇤ ,U⇤,V⇤) to C and wins the ESUF-IBSC-CMA game with
probability p since

• sender’s identity U⇤ was not corrupted,

• the result of Unsigncrypt oracle on (�j

U⇤V⇤ under the private key associated
to V⇤ is a valid message-signature pair (m⇤, (h⇤, S⇤)), where

m⇤ = d⇤||a⇤||j||Hk
⇤�j(↵⇤)||U⇤||V⇤||�BU⇤ ||RBU⇤ (3.39)

such that no Signcrypt query

– involved m⇤, U⇤ and some receiver V0 (possibly different from V⇤) and

– resulted in a ciphertext �0 whose decryption under the private key skV0

is alleged forgery (m⇤, (h⇤, S⇤),V⇤).

However, as it is already proved, (see [Barreto et al., 2005, Theorem 3]),

any adversary can win the ESUF-IBSC-CMA game for SignC with only negligible

probability. Thus one can conclude that EChb scheme has the e-check unforgeability

property. ⌅

32

Theorem 3.3: If the signcryption scheme SignC given in 2.5.3.1. is ciphertext

anonymous against adaptive chosen-ciphertext insider attacks (ANON-IBSC-CCA),

then EChb scheme has the e-check anonymity property.

Proof . Let A be an adversary that has a non-negligible advantage � in the e-check

anonymity game, given in Definition 3.3, and let p be the probability of A correctly

guessing the sender and the receiver of the e-check. We are going to show that if

such an adversary exists, then it can be used to construct an adversary B who has a

non-negligible advantage in the ANON-IBSC-CCA game (see Definition 2.7) for SignC

scheme.

i) The challenger C runs the SignC scheme’s Setup algorithm with a security
parameter  and gives the system parameters pp to the adversary B.

ii) B passes pp to the adversary A.

iii) A performs a polynomially bounded number of queries to B to get:

• the public-private key pair associated to an arbitrary identity U

• the e-checkbook ⌦U of U with ↵, k.

• the e-check !UV from U to V for an arbitrary identity V and d, a, i.

iv) For each query of A, B

• queries Keygen oracle for the public-private key pair associated to U,

• queries Signcrypt oracle with (B,U,mBU) to get �BU = (cBU, SBU, TBU) on
mBU = U||Hk(↵),

• computes RBU = e(TBU, sk
Q

U).

• computes !i

UV = �i

UV = S(skU ,mi

UV, V), where

mi

UV = d||a||i||Hk�i(↵)||U||V||�BU||RBU (3.40)

v) B returns the following query results to A:

• the public-private key pair associated to U,

• the e-checkbook ⌦U = (↵, k,�BU, RBU) of U,

• the e-check !i

UV from U to V with d, a, i.

33

vi) Eventually, A submits two sender identities U1,U2 and two recipient identities
V1,V2 along with d, a, i to B, where A has queried B for ⌦U1 and ⌦U2 .

vii) B guesses b01, b02 2R {0, 1}, creates

mb
0
1b

0
2
= d||a||i||H

kU
b01
�i

(↵Ub01
)||Ub01

||Vb02
||�BUb01

||RBUb01
(3.41)

viii) B submits mb
0
1b

0
2

and U1,U2,V1,V2 to C.

ix) C selects two bits b1, b2 uniformly at random, computes �Ub1
Vb2

on mb
0
1b

0
2

for
identities Ub1 and Vb2 , and sends �Ub1

Vb2
to B.

x) B sends !Ub1
Vb2

= �Ub1
Vb2

to A.

xi) A and B may adaptively repeat find phases (Steps 3, 4 and 5), without querying
the private key and e-checkbook of U1 and U2, and e-checks to V1 and V2.

xii) if B correctly guessed (b1, b2), i.e. (b01, b
0
2) = (b1, b2), A outputs (b1, b2) with

probability p.

xiii) if B correctly guessed (b1, b2), then B sends (b⇤1, b⇤2) = (b1, b2) to C. Otherwise,
B passes random (b⇤1, b

⇤
2) to C. So, B wins the ANON-IBSC-CCA game with

probability p

4 +
3
16 since

• neither sender’s nor recipient’s identity was not corrupted,

• probability of (b⇤1, b⇤2) = (b1, b2) is 1
4p+

3
4
1
4 .

A’s advantage is

Adv(A) = |Prob((b⇤1, b
⇤
2) = (b1, b2))�

1

4
| (3.42)

= |p
4
+

3

16
� 1

4
| (3.43)

= |p
4
� 1

16
|, (3.44)

which is non-negligible given that p � 1
4 is non-negligible. On the other hand, as it is

already stated in Barreto et al. [2005], any adversary can win the ANON-IBSC-CCA

game for SignC with only negligible probability. Thus one can conclude that eChb

scheme has the e-check anonymity property. ⌅

34

Furthermore, naturally eChb scheme is resistant to double spending and replay

attacks, since each deposit and transfer order is validated by the bank B and spent /

transferred checks are recorded.

Comparison

Current standing of e-checkbook proposals can be summarized as in Table 3.1.

Table 3.1: Feature and Security Comparisons of E-checkbook Schemes

Attacks presented in Sertkaya and Kalkar [2020].

Unfortunately, with the exception of Sertkaya and Kalkar [2019], the previous
schemes have some flaws. Additionally, the protocol given in Sertkaya and Kalkar
[2019] does not satisfy e-check anonymity and transferability properties. Thus, the
eChb protocol proposed by Sertkaya and Kalkar [2021] is the first protocol that enables
e-check anonymity and transferability. This protocol utilizes the signcryption scheme
SignC given in 2.5.3.1., which requires

• 1 exponentiation in GT and 2 scalar multiplications in G1 for Signcrypt, and

• 1 multiplication and exponentiation in GT and 2 pairing computations for
Unsigncrypt.

Our e-checkbook protocol requires

• 2 Signcrypt and 2 Unsigncrypt for Issuance phase,

• 1 Signcrypt and 2 Unsigncrypt for Payment phase,

• 3 Signcrypt and 6 Unsigncrypt for Transfer phase,

• 1 Signcrypt and 3 Unsigncrypt for Deposit phase.

35

4. ELECTRONIC EXAM

Generally, traditional exams involve three entities and four phases. Firstly,

during the registration phase, the exam authority organizes the exams and the

candidates sign up for it. Then at the testing phase, candidates receive the exam

and submit their answers. Next, during the marking phase, the examiners receive and

evaluate the candidates’ answers. Finally, the exam authority registers the candidates’

marks and the candidates learn their marks at the notification phase.

Multiple-choice, truth or false, matching, arrangement, fill in the blank, essays,

and other types of questions make up an e-exam. There is a distinction to be

made between a remote electronic exam (or shortly e-exam) and a computer-based

assessment, which relies on the use of specialized software that is not linked to the

internet. Network-based assessment, on the other hand, is based on the use of internet

techniques such as a remote exam network, Ahmed et al. [2021]. Here we consider

network based assessments.

E-exams are organized following the same principles of traditional exams

and require the same main security and privacy features. Naturally, in traditional

face-to-face exams, candidate authentication and exam rules compliance can be

checked more easily. However, e-exam schemes require specific security and privacy

concerns on authentication due to the increased attack surface. Besides authentication,

candidates that take the exam should be proctored for cheating.

There are various e-exam proposals that aim to assure security and privacy

as summarized in the sequel. Here, we revisit secure and privacy preserving

e-exam protocol proposals and propose an e-exam protocol Kalkar and Sertkaya

[2022] that utilizes decentralized identity-based verifiable credentials for proof of

authentication and public-permissioned blockchain for immutably storing records. In

regard to the previously proposed e-exam schemes, our scheme offers both privacy

enhancement and better efficiency. More concretely, the proposed solution satisfies

test answer authentication, examiner authentication, anonymous marking, anonymous

examiner, question secrecy, question privacy, mark privacy, test verifiability, and mark

verifiability properties.

36

Since our scheme is based on a permissioned blockchain, here we briefly explain.

A blockchain is an immutable transaction ledger that is maintained by a distributed

network of nodes, with each node maintaining a copy of the ledger by appending new

transactions that have been checked by a consensus protocol. The data on the ledger is

organized into blocks, each of which has a hash that links it to the one before it. While

public permissionless blockchains allow anyone to write on the ledger, permissioned

blockchains follow a governance model that allows only approved nodes to write on it.

Although this system can be realized on existing public blockchains, students and

examiners would need to pay fees to the miners to get their transactions written to the

ledger. In order to avoid changing costs and being dependent on systems’ performance

to process transactions, we believe it would be better if this system uses its own

blockchain. Permissioned blockchain is chosen over permissionless since it is faster,

more scalable, energy-efficient, and participants(schools) are known beforehand.

One example of permissioned blockchain is Hyperledger Fabric that has been

developed under the Linux Foundation as an open source project, Androulaki et al.

[2018]. Our scheme utilizes a permissioned blockchain as an append-only immutable

bulletin board.

Related Work. Online exam proposals dates back to 2006. Castella-Roca

et al. [2006] introduced a secure e-exam management system with trusted exam

authority who is fully trusted for assuring candidate’s privacy. Later, Huszti and Petho

[2010] proposed to reduce Castella-Roca et al. [2006]’s trust assumptions by utilizing

pseudonyms for the candidates. However, Dreier et al. [2014] showed that Huszti

and Petho [2010]’s scheme suffers from several security flaws. Next, Giustolisi et al.

[2014] proposed an e-exam protocol called Remark! that utilizes a mix net with at

least one honest entity and uses a bulletin board. Bella et al. [2017] proposed a secure

exam protocol that does not rely on any trusted party by relying on oblivious transfer

and visual cryptography schemes. Traoré et al. [2017] proposed an e-exam system

called ExamShield that again fully trusts the exam authorities and focus on biometric

authentication that further involves mouse dynamics, keystroke dynamics, and face

biometrics.

Islam et al. designed a blockchain based exam system named BSSSQS Islam

et al. [2018]. They address the problem of question leaking and their solution depends

37

on encryption and randomization of the questions. However, they only deal with the

delivery of the questions to the candidates.

Mitchell et al. [2019] proposed a decentralized application for an examination

review called "dAppER". In fact, dAppER implements existing procedures and

documents them on a permissioned blockchain to ensure irreversibility, immutability

and auditability. Deborah et al. Deborah L et al. [2019], focuses on a simple

e-exam scheme for mutual authentication between the candidate and the server and

secure delivery of question paper from the server. However, both of these proposals

unfortunately assume the exam authorities are trusted and will not act maliciously.

Therefore, they can not determine the misconducts, summarized in Catalano and Gatti

[2017], caused by the exam authorities.

For a recent survey on online exams, reader may refer to Muzaffar et al. [2021].

Of all the examined papers, there are three that focus on security. Kausar et al. [2020]

focus on authentication and authorization of the candidates and aim to protect security

and integrity of the questions. Mathapati et al. [2017] propose to use graphical own

image password to eliminate the modifications in the result and generation of fake

question papers. Sukadarmika et al. [2018] aims to improve availability of e-exam

which is implemented in wireless network. In case of connection problem, this model

automatically provides additional time. None of these papers handles marking and

notification. In addition to that, they do not fulfill the e-exam security and privacy

requirements that are summarized in Section 4.1.1..

Even if there exists many computer-based exam management systems, most of

these system designs rely on trusted exam authorities, please refer to Ahmed et al.

[2021] for a recent e-exam survey. There are only a few proposals that rely solely on

cryptographic primitives to assure security and privacy.

In Kalkar and Sertkaya [2022], we give an online exam proposal based on

blockchain which eliminates the need of bulletin boards. As illustrated in Figure 4.1,

Our proposal also uses a blind signature scheme which helps to achieve anonymity of

the users without using mix nets or trusting a third party. Moreover, due to the nature

of the blockchain, the data remains indefinitely and unchanged which also makes audit

procedures much easier.

38

Figure 4.1: Architectural overview of the proposed secure e-exam scheme.

4.1. Electronic Checkbook Scheme

As illustrated in Figure 4.1, typically, there are three type of entities involved in

an exam: candidates (c), examiners who grade the exams (e), and an exam authority

(EA) that takes part in the organization and execution of the exam. E-exams and

traditional exams consist four phases: registration, testing, marking, and notification.

The exam authority arranges the exam and candidates enroll for the exam during the

registration phase. Testing phase is the phase where candidates receive and take the

exam, and submit their answers. Examiners receive and grade the answers during

marking phase. Finally, candidates learn their marks in the notification phase.

Exam= {Setup, Registration, Testing, Marking, Notification} is an online exam,
where each phase is defined as follows:

• Setup: Secret keys of the EA and public parameters of the scheme is output as
ppex.

• Registration: Candidates and examiners follow the registration phase together
with the exam authority in order to register their pseudonyms.

• Testing: Exam authority and the candidates perform this phase. EA publish the
test questions for the candidates, candidates solve the questions, append their
answers to the questions, and publish.

39

• Marking: Examiners get the answers and questions of the candidates, mark them
and publish the marked answers.

• Notification: During this phase, candidates’ marks are registered by EA.

e-Exam Threats

In our scheme, we aim to rule out the following threats same as Remark! scheme
proposed in Giustolisi et al. [2014].

i) An intruder impersonating a candidate during the testing.

ii) An intruder tampering with a candidate’s test answer or mark.

iii) A candidate seeking to get higher mark than she deserved.

iv) A candidate seeking to coerce the examiner who evaluates her test.

v) The manager tampering with the marks.

vi) An examiner seeking to assign a biased mark to a specific candidate’s test.

4.1.1. Requirements

In this subsection, we give the security requirements that a secure e-exam should

satisfy. These requirements follow from the previous studies Giustolisi et al. [2013]

and Giustolisi et al. [2014].

• Test Answer Authentication. The exam authority only accepts test answers
submitted by registered candidates.

• Examiner Authentication. The exam authority only accepts evaluations provided
by a registered examiner.

• Anonymous Marking. No one learns the author of a test answer before the test
is marked.

• Anonymous Examiner. No candidate learns the identity of the examiner who
evaluates their test answers.

• Question Secrecy. No candidate learns the test question before the testing phase
begins.

• Question Privacy. The exam authority does not learn which test question is
assigned to a specific candidate.

40

• Mark Privacy. The candidate learns only her mark and not those of other
candidates.

• Test Verifiability. The candidate can verify that her test is considered for
evaluation.

• Mark Verifiability. The candidate can verify that the exam authority registers the
mark she was assigned to by the examiner and the exam authority can verify that
the candidate gets the mark she was given by the examiner.

e-Exam Assumptions

Design and analysis of the proposed online exam scheme rely on the following
assumptions.

i) We assume that there exists an authentication mechanism for the exam authority
to authenticate the candidates and the examiners at the beginning of the
registration phase. This can be realized for example anonymous credential
Camenisch et al. [2016] based self-sovereign identity solutions Khovratovich
and Law [2016].

ii) To mitigate cheating, candidates are invigilated during the testing phase.

iii) A private, permissioned blockchain is already established and ready to use.

4.2. Proposed Scheme

Our scheme assumes existence of an SSI mechanism and each entity holds a set
of verifiable credentials to prove her identity and use for authentication. For concrete
SSI primitives, please refer to Camenisch et al. [2016] and Sovrin’s self-sovereign
identity Khovratovich and Law [2016]. Proposed protocol is illustrated in Figure 4.1.
In a nutshell, the protocol is pursued as follows.

• The exam authority EA determines Pec and Sig primitives, runs Setup phase for
generating system-wide public parameters and her key pairs for blind Schnorr
signature scheme,

• At the Registration phase, the candidate C proves her identity using her verifiable
credentials to EA and requests EA to blindly sign her public keys,

• Following EA’s randomly pairing candidates and examiners and generating test
questions, C takes the test during the Testing phase. After answering the
questions, C signs her answers and encrypts for the examiner.

41

• During the Marking phase, the examiner decrypts the answers, marks the test,
appends her mark, signs and encrypts for the candidate.

• The candidate decrypts the examiner’s mark, learns her mark, adds her
identifying information to bind the public keys to her real identity, and encrypts
for the exam authority. The exam authority decrypts that information, matches
the public keys of the candidate to the candidate’s real identity, and saves the
candidate’s mark at the end of Notification.

For concrete instantiation of the proposed protocol,

• verifiable credentials and corresponding metadata can be stored on Hyperledger
Indy Foundation [2018].

• ElGamal encryption schemeElGamal [1985] can be utilized for Pec scheme.

• Schnorr signaturesSchnorr [1989] can be utilized for Sig scheme.

• Blind Schnorr signature scheme will be used for blindly signing the public keys
of the examiners and candidates.

• the permissioned blockchain that will be utilized as bulletin board can be
Hyperledger Fabric Androulaki et al. [2018].

There is a famous chart in NIST’s technical report (Page 42, Figure 6 Yaga et al.

[2018]) that guides someone to decide if they really need a blockchain for their

problem. Referring to the mentioned figure; online-exam system needs a shared,

consistent data store in order to archive exams, there are more than one entity(schools,

students, teachers) that contributes to the data, data records are never updated or

deleted, sensitive identifiers are not stored on the blockchain(exams, answers, and

marks are encrypted; identities of students and examiners are anonymous), since the

exam system is nation-wide or even global, entities can not decide who should be in

control of the data store, and finally a tamper-proof log of all writes to the data store

are required for any dispute resolution.

In this thesis, we treat Pec and Sig algorithms as black-box since any CCA-secure

encryption algorithm and existentially-unforgeable signature algorithm can be utilized

as Pec and Sig, respectively. However, since the blind signature algorithm is crucial

for the protocol, we give it in detail in the Setup and Registration phases even though

we just follow blind Schnorr signature scheme. More concretely, steps 6-9 and steps

42

2-5 of Setup and Registration phases correspond to the blind Schnorr signature scheme.

Setup
During the Setup phase, the exam authority EA publishes the exam public parameters
ppex and examiners register themselves for the exam.

i) EA determines a public key encryption scheme Pec that is going to be used for
encrypting and decrypting questions, answers, and marks and generates its public
parameters pppec.

ii) EA determines a digital signature scheme Sig that is going to be used to sign
questions, answers, and marks and generates its public parameters ppsig along
with its signing key pair (skEAsig , pkEAsig).

iii) EA generates the public parameters for blind Schnorr signature scheme ppSch =

(p,G, P,H) along with its signing key pair (skEASch, pkEASch), where skEASch r

Zp, pkEASch = xP.

iv) EA publishes the exam public parameters ppex as

ppex (pppec, ppsig, ppSch, pk
EA
sig). (4.1)

v) e proves herself to EA using verifiable credentials .

vi) EA chooses r r Zp, computes R0 [r]P and sends R0 to e.

vii) e creates key pairs for encryption and signature algorithms,

(skepec, pk
e
pec) Kpec(pppec), (4.2)

(skesig, pk
e
sig) Ksig(ppsig), (4.3)

chooses ↵, � r Zp, computes

R R0 + [↵]P + [�]pkEASch (4.4)

c H(R, pkepec||pkesig) (4.5)

c0 c+ � mod p, (4.6)

43

and sends c0 to EA.

viii) EA computes s0 r + c0x mod p and sends s0 to e.

ix) e checks if

[s0]P = R0 + [c0]pkEASch, (4.7)

computes s = s0 + ↵ mod p and EA’s signature on pkepec||pkesig is

�e (R, s). (4.8)

x) e sends (pkepec||pkesig, �e) to the blockchain along with a signature on it signed
using skesig.

xi) Nodes first verify the outer signature by pkesig, then checks if

[s]P = R + [c]pkEASch, (4.9)

where

c = H(R, pkepec||pkesig). (4.10)

If only all the checks holds, the transaction is added to the ledger.

Registration
After the examiner registration is completed, an eligible candidate c and the exam
authority EA performs the registration phase together.

i) c proves herself to EA using verifiable credentials .

ii) EA chooses r r Zp, computes R0 [r]P and sends R0 to c.

iii) c creates key pairs for encryption and signature algorithms,

44

(skcpec, pk
c
pec) Kpec(pppec), (4.11)

(skcsig, pk
c
sig) Ksig(ppsig), (4.12)

(4.13)

chooses ↵, � r Zp, records �, computes

R R0 + [↵]P + [�]pkEASch (4.14)

c H(R, pkcpec||pkcsig) (4.15)

c0 c+ � mod p, (4.16)

and sends c0 to EA.

iv) EA records c0 for c, computes s0 r + c0x mod p and sends s0 to c.

v) c checks if

[s0]P = R0 + [c0]pkEASch, (4.17)

computes s = s0 + ↵ mod p and EA’s signature on pkcpec||pkcsig is �c (R, s).

vi) c sends (pkcpec||pkcsig, �c) to the blockchain along with a signature on it signed
using skcsig.

vii) Nodes first verify the outer signature by pkcsig, then checks if

[s]P = R + [c]pkEASch, (4.18)

where

c = H(R, pkcpec||pkcsig). (4.19)

If only all of the checks are successful, nodes append the transaction to their
ledger.

45

Testing

Before the testing stars, the exam authority randomly selects an examiner ec for each

candidate c and generates the test questions qc.

i) EA signs (qc, pkec), Sqc Ssig(skex, (qc, pkc, pkec)).

ii) EA encrypts (pkec , Sqc , qc, pkec) under pkc, i.e.

Eqc Epec(pkc, (pkec , Sqc , qc, pkec))). (4.20)

iii) EA sends Eqc to the blockchain along with a signature on it signed using skEAsig .

iv) Nodes verify the outer signature by pkEAsig . If successful, writes the transaction to
the ledger.

v) c decrypts Eqc , i.e (pkec , Sqc , pkc, pkec) Dpec(skc,Eqc).

vi) c verifies Sqc by checking that

1 = Vsig(pk
EA
sig , (qc, pkec), Sqc). (4.21)

vii) When c finishes her test, she appends her answers and her public key to the
questions,

Tc = (qc, pkec , ac, pkc). (4.22)

viii) c signs the filled test Tc,

�c Ssig(sk
c
sig,Tc). (4.23)

ix) c encrypts (�c,Tc) under the public key of the stated examiner ec and sends ETc

to the blockchain along with a signature on it signed using skcsig.

ETc Epec(pk
ec
pec, (�c,Tc)) (4.24)

x) Nodes verify the outer signature by pkcsig. Then, they also verify that c completed
the registration step. (The candidate can send Transaction ID belonging to the

46

registration transaction). If both checks are successful, writes the transaction to
the ledger.

Marking

i) ec decrypts ETc and gets

(�c,Tc) Dpec(sk
ec
pec,ETc). (4.25)

ii) ec verifies the signature �c.

iii) After marking the exam, the examiner ec appends the mark mc and generates

Mc (Tc,mc). (4.26)

iv) ec signs Mc with his private key skecsig,

�e,c Ssig(sk
ec
sig,Mc). (4.27)

v) ec encrypts (�e,c,Mc) for c and sends EMc to the blockchain along with a signature
on it signed using skecsig.

EMc Epec(pk
c
pec, (�e,c,Mc)). (4.28)

vi) Nodes verify the outer signature by pkecsig. Then, they also verify that c completed
the registration step (The examiner can send Transaction ID belonging to the
setup transaction.). If both checks are successful, writes the transaction to the
ledger.

Notification
An eligible candidate c and the exam authority performs the notification phase

together.

i) c decrypts EMc and gets (�e,c,Mc) Dpec(skcpec,EMc).

47

ii) c verifies the signature �e,c.

iii) c creates a message M (Mc, �e,c, pkcpec||pkcsig, (R, s), �), encrypts M for EA,
and sends EM to the blockchain along with a signature on it signed using skcsig,

EM Epec(pk
EA
pec,M). (4.29)

iv) Nodes verify the outer signature by pkecsig. Then, they also verify that c completed
the registration step(The candidate can send Transaction ID belonging to the
registration transaction.). If both checks are successful, writes the transaction to
the ledger. If successful, write the transaction to the ledger.

v) EA decrypts EM and gets

(Mc, �e,c, pk
c
pec||pkcsig, (R, s), �) Dpec(sk

EA
pec,EM). (4.30)

vi) EA verifies the signature �e,c on Mc and also verifies (R, s) on pkcpec||pkcsig.

vii) EA finds the candidate’s identity using � and assigns the candidate’s mark.

4.3. Security & Performance Analysis

Below, we give reasons why the properties of an online exam are satisfied
assuming invigilation is in place.

• Test Answer Authentication. The exam authority encrypts the questions for the
candidates who have pseudonyms signed by EA and only accepts marks whose
signature can be verified by pseudonyms that have exam authority’s signature on
it. Since this signature can not be forged, test answer authentication property is
satisfied.

• Examiner Authentication. Candidates encrypt their answers using the public key
of the assigned examiner and this public key is signed by EA and EA only accepts
marks whose signature can be verified by pseudonyms that have exam authority’s
signature on it. Since this signature can not be forged, examiner authentication
property is also satisfied.

• Anonymous Marking. Since the examiner and the exam authority only knows the
pseudonym of the candidate, anonymous marking property is satisfied. The exam

48

authority can not associate the pseudonym of a candidate with the candidate’s
real identity since blind signature is used.

• Anonymous Examiner. Since the candidate only knows the pseudonym of the
examiner that is going to mark that candidate’s answers, anonymous examiner
property is satisfied.

• Question Secrecy. The exam authority publishes the test questions after the
candidates are under invigilation, so no candidate learns the test questions before
the testing phase starts, hence question secrecy holds.

• Question Privacy. Since test questions are encrypted with the candidate’s
pseudonym which does not link to the candidate’s real identity, EA can not
learn which test questions are assigned to a particular candidate. This guarantees
question privacy.

• Mark Privacy. Mark privacy property requires that a candidate only learns her
mark not the other candidates’. Since each mark is only carried encrypted under
either the candidate’s or the exam authority’s public key, no one other than the
candidate, the examiner that marked the exam, and the exam authority learns that
candidate’s mark.

• Test Verifiability. This property requires that both the exam authority and the
candidate can verify that the mark given by the examiner is not changed. Since
the mark is sent to the candidate by the examiner, candidate part is satisfied.
Then, candidate sends the mark to the exam authority. Since this mark has
signature of the examiner which is assigned to mark the test, the exam authority
also is able to verify.

Please note that this scheme is not resistant to the situation where the exam authority

and the candidate collude in any way. The exam authority may behave maliciously

and give the exam questions to a specific candidate before the testing phase starts

using other channels. Similar to the previously proposed schemes Castella-Roca et al.

[2006]; Huszti and Petho [2010]; Giustolisi et al. [2014, 2017], our scheme would

suffer from this.

Castella-Roca et al. [2006]; Deborah L et al. [2019]; Traoré et al. [2017];

Mitchell et al. [2019] require full trust on exam authority. BSSSQS Islam et al. [2018]

only focuses on delivery of the test questions and Kausar et al. [2020]; Mathapati

et al. [2017]; Sukadarmika et al. [2018] do not have marking and notification phases.

There are four full e-exam proposals that do not rely on a trusted exam authority Bella

49

et al. [2017]; Giustolisi et al. [2014, 2017]; Huszti and Petho [2010], aside from this

thesis. Bella et al. [2017] requires an administrator and candidates to physically meet

since they use visual cryptography in order to jointly generate candidates’ pseudonyms.

Giustolisi et al. [2017] is slightly modified version of Giustolisi et al. [2014] and both

of them relies on exponential mix-nets for student and examiner anonymization and

assume that "an authenticated, append-only, bulletin board is available. On it, everyone

is guaranteed to see the same data. Write access will be restricted however to the

appropriate entities ." Using blind signatures eliminates costly mix-net computations

and the described bulletin is exactly a permissioned blockchain. Huszti and Petho

[2010] does not satisfy test answer authentication, anonymous marking, anonymous

examiner, and mark privacy properties as shown by Dreier et al. [2014].

Please note that from the five proposals that do not require a trusted exam

authority; Bella et al. [2017]; Giustolisi et al. [2014], and ours do not provide full

security proofs while Giustolisi et al. [2017]; Huszti and Petho [2010] verify their

proposals using ProVerif Blanchet [2014].

Although we do not provide any implementation, Hyperledger Indy already

supports verifiable credentials and can be used in our system for authentication

purposes. Other than that, our system can work on Hyperledger Fabric.

50

5. OUTSOURCING PAIRING COMPUTATIONS

Pairing computation is one of the most expensive tasks among cryptographic

primitives. Reducing the computational cost of pairings is a widely explored area

Barreto et al. [2007]; Beuchat et al. [2010]; Hess et al. [2006]; Koblitz and Menezes

[2005]; Scott et al. [2006]. However, results are not practical enough to be deployed

within resource constrained and energy limited devices. Furthermore, there has been

advances Barbulescu and Duquesne [2019]; Kiyomura et al. [2017] on the complexity

of solving the discrete logarithm problem on the image group of pairing function, and

these advances require to increase key sizes which results in increased computations

for calculating a pairing. Thus, delegation of pairing computation to more powerful

and possibly untrusted servers is a cost-effective way of realizing pairing-based

cryptography for resource constrained devices.

Outsourcing a pairing computation to a more resourcefull but potentially

malicious server is first mentioned by Girault and Lefranc [2005] as a part of

speeding up the verification step of an authentication/signature scheme. The first

verifiable pairing outsource scheme was proposed by Chevallier-Mames et al. [2005]

and later improved by Kang et al. [2005] and Canard et al. [2014]. However

their proposal were not applicable since their outsourcing computations were more

costly than calculating a pairing. Chen et al. [2015] proposed the first efficient

pairing outsourcing method which is secure under the One-Malicious Version of a

Two-Untrusted Program (OMTUP) model. This model assumes that there exists two

untrusted programs performing the delegated computation but exactly one of them may

behave maliciously.

After Chen et al. [2015]’s efficient proposition, Tian et al. [2015] and Arabacı

et al. [2015] further improved the efficiency of delegating pairing computation.

However, schemes were only 1/2-checkable, i.e. servers can cheat the outsourcer

with 1/2 probability. Tian et al. [2015] also proposed another solution with adjustable

checkability, i.e. one can achieve higher checkability with the cost of more

computations. Then many people including Kalkar et al. claimed that they proposed

fully checkable outsourcing schemes Ren et al. [2016]; Luo et al. [2016]; Ren et al.

[2017]; Kalkar et al. [2018]; Luo et al. [2018].

51

Following the lines of Chevallier-Mames et al. [2005]; Canard et al. [2014], a

secure fully verifiable delegation protocol for pairing computation is expected to satisfy

informally the following main properties:

• Completeness: After completion of the protocol with an honest program U , the
delegator T obtains e(A,B) on the inputs A 2 G1 and B 2 G2, except with
negligible probability.

• Secrecy & Privacy: An untrusted program should not learn any information about
the input points A 2 G1 and B 2 G2. More formally, for any malicious program
U , there exists a simulator S such that for any A 2 G1 and B 2 G2, the output of
S , to which the points A are B are not given, is computationally indistinguishable
from the program’s view:

S c⌘ ViewU(A,B). (5.1)

• Verifiability: The delegator should be able to detect a cheating program, except
with negligible probability. More formally, for any cheating program U and
for any input values A 2 G1 and B 2 G2, the delegator outputs either ? or
e(A,B) 2 G3, except with negligible probability.

5.1. Security Model

For secure and verifiable outsourcing of cryptographic computations in the

presence of potentially malicious servers, the first simulation-based security notions

were provided by Hohenberger and Lysyanskaya [2005]. Their model first defines

three models:

• One-Untrusted Program (OUP): The delegated computation is performed by a
single program which is malicious.

• One-Malicious version of a Two-Untrusted Program (OMTUP): The delegated
computation is performed by two programs. Both of them are curious and
untrusted however, only one of them is malicious.

• Two-Untrusted Program (TUP): The delegated computations are performed by
two programs. Both of the programs are untrusted and malicious however they
are not allowed to maliciously collude.

52

Different protocols chose to follow different security models. However, most of the

protocols follow Hohenberger and Lysyanskaya [2005]’s security model and we give

its definition here.
Informally, a trusted honest but resource-component part T securely delegates

some work to a potentially untrusted component U , and (T, U) forms a
delegated-secure implementation of a cryptographic scheme Alg if

· T and U jointly implements Alg = TU ,

· if T is given oracle access to a malicious U 0, U 6= U 0, then despite the assumption
that U 0 acts maliciously every time it is invoked by recording its own computation
over time, it cannot obtain any information about both the input and the output
of TU

0 .

Since U 0 is not the single entity acting maliciously and interacting with Alg, the

adversary A consists of two parts:

· the adversarial component U 0 operating in place of U ,

· an adversarial component environment E submitting adversarially chosen inputs
to Alg.

The fundamental assumption in Hohenberger and Lysyanskaya [2005] is that E and

U 0 are allowed to collude to create a strategy but only until interacting with T . Then,

first logical divisions of inputs to Alg are

· secret information solely available to T ,

· environmentally protected information available to both T and E but nor
available to U 0,

· protected information available to both T and U 0 but nor available to E,

· unprotected information available to T , E, and U 0.

This division includes in particular the cases where E may have access something

about the protected inputs to Alg which is either not available to U 0 or not available to

E. More concretely, T might hide some of these from U 0 whereas E can clearly see all

of its own adversarial inputs to Alg. Likewise, T might hide some information from

E whereas U 0 can see some of protected random inputs generated solely by T which

E cannot see as E and U 0 can only communicate through T . Throughout the thesis

53

both environmentally protected and protected information are called protected if there

is no need to distinguish the cases from which adversarial component the information

is protected.

Moreover, the above divisions have additional subdivisions depending on

whether the inputs were generated honestly or adversarially. Note that there cannot

however exist a adversarial secret input.

Similarly, the outputs of Alg are logically divided into secret, protected, and

unprotected outputs. The simplified formal definition is given as follows (i.e. by

neglecting possible relations of the inputs and outputs to each other):

Definition 5.1: Hohenberger and Lysyanskaya [2005] (Algorithm with delegated-IO)

An algorithm Alg is said to obey the delegation input/output specification if it takes

five inputs, and produces three outputs. The first three inputs are generated by an

honest party T , and are classified by how much information about them is available

to the adversary A = (E,U 0), where E is the adversarial environment submitting

adversarially chosen inputs to Alg, and U 0 is the adversarial component operating in

place of oracle U . The first input is called the honest, secret input, which is unknown

to both E and U ; the second is called the honest, protected input, which may either be

known to E, but is protected from U , or known to U , but is protected from E; and the

third is called the honest, unprotected input, which may be known by both E and U . In

addition, there are two adversarially-chosen inputs generated by the environment E;

the adversarial, protected input, which is known to E, but protected from U ; and the

adversarial, which may be known by both E and U . Similarly, the first output called

secret is unknown to both E and U ; the second is protected, which may be known to E,

but it is protected from U; and the third is unprotected, which may be known by both

E and U .

Definition 5.2: Hohenberger and Lysyanskaya [2005] (Delegated Security)
Let Alg(·, ·, ·, ·, ·) be an algorithm with delegated-IO. A pair of algorithms (T, U) is
said to be a delegated-secure implementation of an algorithm Alg if:
Completeness. TU is a correct implementation of Alg.
Security. For all probabilistic polynomial-time adversaries A = (E,U 0), there exist
probabilistic expected polynomial-time simulators (S1, S2) such that the following
pairs of random variables are computationally indistinguishable. We assume that the
honestly-generated inputs are chosen by a process I .

54

• Pair One: EV IEWreal⇠EV IEWideal:

– The view that the adversarial environment E obtains by participating in
the following REAL process:

EV IEW i

real
= {(istatei, xi

hs
, xi

hp
, xi

hu
) I(1k, istatei�1);

(estatei, ji, xi

ap
, xi

au
, stopi) E(1k, EV IEW i�1

real
, xi,hp , xi

hu
);

(tstatei, ustatei, yi
s
, yi

p
, yi

u
)

TU
0(ustatei�1)(tstatei�1, xj

i

hs
, xj

i

hp
, xj

i

hu
, xi

ap
, xi

au
) :

(estatei, yi
p
, yi

u
)}

EV IEWreal = EV IEW i

real
if stopi = TRUE.

The real process proceeds in rounds. In round i, the honest (secret,
protected, and unprotected) inputs (xi

hs
, xi

hp
, xi

hu
) are picked using an

honest, stateful process I to which the environment does not have access.
Then the environment, based on its view from the last round, chooses (0)

the value of its estatei variable as a way of remembering what it did next
time it is invoked; (1) which previously generated honest inputs

(xj
i

hs
, xj

i

hp
, xj

i

hu
)

to give to TU
0 (note that the environment can specify the index ji of these

inputs, but not their values); (2) the adversarial, protected input xi

ap
; (3)

the adversarial, unprotected input xi

au
; (4) the Boolean variable stopi that

determines whether round i is the last round in this process. Next, the
algorithm TU

0 is run on the inputs

(tstatei�1, xj
i

hs
, xj

i

hp
, xj

i

hu
, xi

ap
, xi

au
),

where tstatei�1 is T ’s previously saved state, and produces a new state
tstatei for T , as well as the secret yi

s
, protected yi

p
, and unprotected yi

u

outputs. The oracle U 0 is given its previously saved state, ustatei�1, as
input, and the current state of U 0 is saved in the variable ustatei. The view
of the real process in roundi consists of estatei, and the values yi

p
and yi

u
.

The overall view of the environment in the real process is just its view in the
last round, i.e. for i with stopi = TRUE.

– The IDEAL process:

EV IEW i

ideal
= {(istatei, xi

hs
, xi

hp
, xi

hu
) I(1k, istatei�1);

(estatei, ji, xi

ap
, xi

au
, stopi) E(1k, EV IEW i�1

ideal
, xi,hp , xi

hu
);

(astatei, yi
s
, yi

p
, yi

u
) Alg(astatei�1, xj

i

hs
, xj

i

hp
, xj

i

hu
, xi

ap
, xi

au
);

55

(sstatei, ustatei, Y i

p
, Y i

u
, replacei)

 SU
0(ustatei�1)

1

(sstatei�1, · · · , xj
i

hp
, xj

i

hu
, xi

ap
, xi

au
, yi

p
, yi

u
);

(zi
p
, zi

u
) = replacei(Y i

p
, Y i

u
) + (1� replacei)(yi

p
, yi

u
) :

(estatei, zi
p
, zi

u
)}

EV IEWideal = EV IEW i

ideal
if stopi = TRUE.

The ideal process also proceeds in rounds. In the ideal process, we have
a stateful simulator S1 who, shielded from the secret input xI

hs
, but given

the non-secret outputs that Alg produces when run all the inputs for round
i, decides to either output the values (yi

p
, yi

u
) generated by Alg, or replace

them with some other values (Y i

p
, Y i

u
) Note that this process is captured

by having the indicator variable replacei be a bit determining whether yi
p

will be replaced with Y i

p
. In doing so, it is allowed to query the oracle U 0;

moreover, U 0 saves its state as in the real experiment.

• Pair Two: UV IEWreal⇠UV IEWideal:

– The view that the untrusted software U 0 obtains by participating in the
REAL process described in Pair One. UV IEWreal = ustatei if stopi =
TRUE.

– The IDEAL process:

UV IEW i

ideal
= {(istatei, xi

hs
, xi

hp
, xi

hu
) I(1k, istatei�1);

(estatei, ji, xi

ap
, xi

au
, stopi) E(1k, estatei�1, xi

hp
, xi

hu
, yi�1

p
, yi�1

u
);

(astatei, yi
s
, yi

p
, yi

u
) Alg(astatei�1, xj

i

hs
, xj

i

hp
, xj

i

hu
, xi

ap
, xi

au
);

(sstatei, ustatei) SU
0(ustatei�1)

2 (sstatei�1, xj
i

hu
, xi

au
) :

(ustatei)}

UV IEWideal = UV IEW i

ideal
if stopi = TRUE.

In the ideal process, we have a stateful simulator S2 who, equipped with
only the unprotected inputs (xi

hu
, xi

au
), queries U 0. As before, U 0 may

maintain state.

Definition 5.3: (↵-Efficiency)

A pair of algorithms (T, U1, U2) are an ↵-efficient delegated-implementation of an

algorithm Alg if (1) TU1,U2 is a complete implementation of Alg, and (2) 8 inputs x,

the running time of T is smaller than an ↵-multiplicative factor of the running time of

Alg(x).

56

Definition 5.4: (�-Verifiability)

A pair of algorithms (T, U1, U2) are a �-verifiable delegated implementation of an

algorithm Alg if (1) TU1,U2 is a complete implementation of Alg, and (2) 8 inputs

x, if U 0
i
, i = 1, 2 deviates from its advertised functionality during the execution of

T (U 0
1,U

0
2)(x), T will detect the error with probability larger than �. In particular,

if T will always detect the error, except with negligible probability, i.e. 1 � � is

negligibly small, then a pair of algorithms (T, U1, U2) are a fully verifiable delegated

implementation of an algorithm Alg.

Definition 5.5: (↵, �-Delegated Secure Implementation)

A pair of algorithms (T, U1, U2) are an (↵, �)-delegated secure implementation of an

algorithm Alg if they are both ↵-efficient and �-verifiable. In particular, a pair of

algorithms (T, U1, U2) are a fully verifiable (↵, 1)-delegated secure implementation of

an algorithm Alg if they are a fully verifiable delegated implementation of an algorithm

Alg.

5.2. Protocols

Pairing outsource protocols can be divided into two depending on the number of

the servers that are used to outsource the computation; single server, multiple servers.

Then, these categories are further divided into 8 depending on the inputs to the pairing

function being secret/public, constant/variable.

5.2.1. Single Server

In this subsection we present the outsourcing protocols that delegates a single

pairing computation to a single server.

For the verification step of an authentication or a signature scheme, Girault and

Lefranc [2005] give a method for checking the equation

e(�, f(I,m, r)) = e(g, g), (5.2)

where e : G ⇥ G ! G1 is a bilinear map, G and G1 are cyclic groups of prime order
p, e(g, g) 6= 1, f is a public function specific to the scheme, I is the public parameters
including the public key, and (r, �) is the signature of a message. In order to verify

57

e(�, f(I,m, r)) = e(g, g), C

i) randomly picks an integer t 2 Zp and precomputes � = e(g, g)t,

ii) computes ↵ = (f(I,m, r))t and sends (�,↵) to S to get � = e(�,↵),

iii) checks if � = �.

So, instead of calculating a pairing, the client now computes two exponentiations; one

offline and one online.

The scheme of Girault and Lefranc is only able to verify a pairing equation,

so it may not be seen as a pairing delegation protocol. In this sense, the first scheme

which is able to calculate a pairing e(A,B) directly is given by Chevallier-Mames et al.

[2005]. In their scheme, a computationally limited device outsources the computation

of e(A,B) to a more powerful device while the powerful device does not learn the

points A,B and the limited device is able to detect if powerful device cheats. Now we

present their algorithms in the following.

• Generic case with secret A,B
In order to compute e(A,B) with secret A 2 G1, B 2 G2, C

i) generates random g1, g2, a1, a2, r1, r2 2 Zp and queries S to get

↵1 = e(A+ g1P,Q), (5.3)

↵2 = e(P,B + g2Q), (5.4)

↵3 = e(A+ g1P,B + g2Q), (5.5)

↵4 = e(a1A+ r1P, a2B + r2Q). (5.6)

ii) checks ↵1,↵2,↵3 2 GT , by checking that (↵i)p = 1 for i = 1, 2, 3.
Otherwise, the card outputs ? and halts. Then, computes

eAB = ↵�g1
1 ↵�g2

2 ↵3e(P,Q)g1g2 , (5.7)

↵0
4 = ea1a2

AB
↵a1r2
1 ↵a2r1

2 e(P,Q)r1r2�a1g1r2�a2g2r1 (5.8)

58

and checks that ↵0
4 = ↵4. In this case, outputs eAB, otherwise outputs ?.

• secret A, public B

In order to compute e(A,B) with secret A 2 G1 and public B 2 G2, the protocol
is the same as the generic case, except that g2 = 0. C

i) generates random g1, a1, a2, r1, r2 2 Zp and queries S to get

↵1 = e(A+ g1P,Q), (5.9)

↵2 = e(P,B), (5.10)

↵3 = e(A+ g1P,B), (5.11)

↵4 = e(a1A+ r1P, a2B + r2Q). (5.12)

ii) checks ↵1,↵2,↵3 2 GT , by checking that (↵i)p = 1 for i = 1, 2, 3.
Otherwise, the card outputs ? and halts. Computes

eAB = ↵�g1
2 ↵3, (5.13)

↵0
4 = ea1a2

AB
↵a1r2
1 ↵a2r1

2 e(P,Q)r1r2�a1g1r2 , (5.14)

and checks that ↵0
4 = ↵4. In this case, outputs eAB, otherwise outputs ?.

• public A,B

In order to compute e(A,B) with public A 2 G1, B 2 G2), the protocol is the
same as the generic case, except that g1 = 0 and g2 = 0. C

i) generates random a1, a2, r1, r2 2 Zp and queries S to get

↵1 = e(A,Q), (5.15)

↵2 = e(P,B), (5.16)

↵3 = e(A,B), (5.17)

↵4 = e(a1A+ r1P, a2B + r2Q). (5.18)

59

ii) checks ↵1,↵2,↵3 2 GT , by checking that (↵i)p = 1 for i = 1, 2, 3.
Otherwise, the card outputs ? and halts. Computes

↵0
4 = ↵a1a2

3 ↵a1r2
1 ↵a2r1

2 e(P,Q)r1r2 (5.19)

and checks that ↵0
4 = ↵4. In this case, outputs ↵3, otherwise outputs ?.

• public constant A, public B

C is given Q1 and e(A,Q1) which are kept secret. In order to compute e(A,B)

with constant public A 2 G1 and public B 2 G2), C

i) generates random r 2 Zp and queries S to get

↵1 = e(A,B), (5.20)

↵2 = e(A, rB +Q1). (5.21)

ii) checks ↵1,↵2 2 GT by checking that (↵i)p = 1 for i = 1, 2 and

↵r

1e(A,Q1) = ↵2. (5.22)

In this case, outputs ↵1, otherwise outputs ?.

• secret constant A, public B

C is given Q1 and e(A,Q1) which are kept secret. In order to compute e(A,B)

with constant secret A 2 G1 and public B 2 G2), C

i) generates random x, y 2 Zp and queries S to get

↵1 = e(xA,B), (5.23)

↵2 = e(yA, z(B +Q1)). (5.24)

ii) computes eAB = ↵x
�1

1 , ↵3 = ↵(yz)�1

2 .

iii) checks ↵1,↵2 2 GT by checking that (↵i)p = 1 for i = 1, 2 and
eABe(A,Q1) = ↵3. In this case, outputs eAB, otherwise outputs ?.

60

Following Chevallier-Mames et al. [2005], Kang et al. [2005] proposed more
efficient solutions. Like Chevallier-Mames et al. [2005], Kang et al. give a generic
solution than modify it for different cases.

• Generic case with secret A,B
In order to compute e(A,B) with secret A 2 G1, B 2 G2), C

i) generates random g1, g2, r1, r2 2 Zp and queries S to get

↵1 = e(g1A,Q), (5.25)

↵2 = e(P, g2Q), (5.26)

↵3 = e(g1A, g2B), (5.27)

↵4 = e(A+ r1P,B + r2Q), (5.28)

ii) checks that ↵1,↵2,↵3 2 GT by checking ↵p

i
= 1. Otherwise, outputs ?

and halts. Computes

↵0
4 = ↵g1g2

�1

3 ↵
g
�1
1 r2

1 ↵
g
�1
2 r1

2 e(P,Q)r1r2 , (5.29)

and checks that ↵4 = ↵0
4. In this case, outputs ↵g1g2

�1

3 as e(A,B);
otherwise outputs ?.

• secret A, public B

In order to compute e(A,B) with private A 2 G1 and public B 2 G2, the
protocol is the same as the generic case, except that g2 = 1. C

i) generates random g1, a2, r1, r2 2 Zp and queries S to get

↵1 = e(g1A,Q), (5.30)

↵2 = e(P,Q), (5.31)

↵3 = e(g1A,B), (5.32)

↵4 = e(A+ r1P, a2B + r2Q). (5.33)

61

ii) checks that ↵1,↵2,↵3 2 GT by checking ↵p

i
= 1. Otherwise, outputs ?

and halts. Computes

↵0
4 = ↵

g
�1
1 a2

3 ↵
g
�1
1 r2

1 ↵a2r1
2 e(P,Q)r1r2 , (5.34)

and checks that ↵4 = ↵0
4. In this case, outputs ↵g2

�1

3 as e(A,B); otherwise
outputs ?.

• secret constant A, secret B
C is given P1 2 G1, and e(P1, B) which are kept secret. In order to compute
e(A,B) with private A 2 G1 and constant private B 2 G2, C

i) generates random r1, r2, g1, g2 2 Zp and queries S to get

↵1 = e(A+ r1P1, r2B), (5.35)

↵2 = e(g1A, g2B). (5.36)

ii) checks ↵1 = ↵(g1g2)�1
r2

2 e(P1, B)r1r2 and ↵1 2 GT . If it is satisfied, outputs
↵(g1g2)�1

2 as e(A,B), otherwise outputs ?.

• secret A, public constant B
C is given P1 2 G1, and e(P1, B) which are kept secret. In order to compute
e(A,B) with private A 2 G1 and constant public B 2 G2, C

i) generates random r1, g1 2 Zp and queries S to get

↵1 = e(A+ r1P1, B), (5.37)

↵2 = e(g1A,B). (5.38)

ii) checks ↵1 = ↵g1
�1

2 e(P1, B)r1 and ↵2 2 GT . If it is satisfied, outputs ↵g
�1
1

2

as e(A,B), otherwise outputs ?.

Canard et al. [2014] argue that the previous solutions Chevallier-Mames et al.
[2005] and Kang et al. [2005] for the generic case are more costly than calculating
the pairing itself. Then, they propose more efficient solutions and introduce the idea
of offline computations for the computations of the values that do not depend on the
inputs.

62

• Generic case with secret A,B
In order to compute e(A,B) with secret A 2 G1 and secret B 2 G2, C

i) generates random x1, x2 2 Zp and pre-computes

X1 = x1P, X2 = x2Q, (5.39)

� = e(P,Q)x1x2 . (5.40)

ii) generates random u, v 2 Zp, computes

A0 = uA, B0 = vB (5.41)

T1 = x�1
2 A+X1, T2 = x�1

1 B +X2, (5.42)

and queries S to get

↵1 = e(T1, T2)[e(G1, B
0)e(A0, G2)]

�1, (5.43)

↵2 = e(A0, B0). (5.44)

iii) checks ↵2 2 GT and ↵1 = �↵(x1x2)�1

2 . In this case, outputs ↵(uv)�1

2 as
e(A,B). Otherwise, the card outputs ? and halts.

• public A, public B

In order to compute e(A,B) with public A 2 G1 and public B 2 G2, the protocol
is the same as the generic case, except that u = 0 and v = 0.

i) generates random x1, x2 2 Zp and pre-computes

X1 = x1P, X2 = x2Q, (5.45)

� = e(P,Q)x1x2 . (5.46)

ii) computes T1 = x�1
2 A+X1, T2 = x�1

1 B +X2, and queries S to get

63

↵1 = e(T1, T2)[e(G1, B)e(A,G2)]
�1, (5.47)

↵2 = e(A,B). (5.48)

iii) checks ↵2 2 GT and ↵1 = �↵(x1x2)�1

2 . In this case, outputs ↵2 as e(A,B).
Otherwise, the card outputs ? and halts.

• secret A, public constant B
Canard et al. assumes that the client knows � = e(P,B) and this assumption
helps them to give much more efficient solution than Kang et al. [2005]. In order
to compute e(A,B) with secret A 2 G1 and public constant B 2 G2, C

i) generates random x, y 2 Zp and pre-computes

X = xP, Y = yP, (5.49)

�1 = �x, �2 = �y. (5.50)

ii) generates random u 2 Zp, computes T1 = A + X, T2 = uA + Y, and
queries S to get

↵1 = e(T1, B), (5.51)

↵2 = e(T2, B). (5.52)

iii) checks ↵1 2 GT and ↵2 = �2(↵1�
�1
1)u. In this case, outputs ↵1��1 as

e(A,B). Otherwise, the card outputs ? and halts.

Protocols given so far, namely Chevallier-Mames et al. [2005]; Kang et al.

[2005]; Canard et al. [2014], are verifiable, i.e. outsourcer is able to detect a cheating

verifier. Guillevic and Vergnaud argue that this is not always required for encryption

primitives where verifiability can be achieved by other means. As a result, they give

two protocols which are not verifiable. One of them uses a knapsack-based approach,

and the other one delegates only the non-critical steps in the pairing algorithm.

• Secret constant A, public B

The protocol to outsource e(A,B) with secret constant A 2 G1 and public B 2
G2 is given in 3 stages.

64

i) C generates random P1, P2, . . . , Pn�1 2 G1, chooses random �i 2 S and
computes Qi = �i(Pi), where S is the set of efficient endomorphisms on
the curve. Then, for each Qi, chooses random ↵i 2 {0, 1, . . . , 2`�1} and
pre-computes

Pn = A� (↵1Q1 + ↵2Q2 + . . .+ ↵n�1Qn�1) (5.53)

= A�
n�1X

i=1

↵iQi. (5.54)

ii) C sends P1, P2, . . . , Pn, B to S to get fi = e(Qi, B).

iii) C outputs e(A,B) as

(f�1
1)↵1(f�2

2)↵2 . . . (f�n�1
n�1)↵n�1fn. (5.55)

Luo et al. [2018] proposed the following scheme for delegation of pairing computation
under OUP model. In order to compute e(A,B), C

i) calls Rand to get

a, b, k1, k2, aP, bQ, ak�1
2 P, bk�1

1 Q, e(P,Q)�ab(k1k2)�1
,

where a, b, k1, k2 2R Z⇤
p
.

ii) queries S in random order to get:

V1 = e(A+ aP,B + bQ), (5.56)

V2 = e(k1A+ ak�1
2 P, k2B + bk�1

1 Q), (5.57)

V3 = e(A,B + bQ), (5.58)

V4 = e(A+ aP,B), (5.59)

V5 = e(k1A, k2B + bk�1
1 Q), (5.60)

V6 = e(k1A+ ak�1
2 P, k2B). (5.61)

65

iii) verifies

V3 · V �1
4

?
= V5 · V �1

6 . (5.62)

iv) If the verification step fails T outputs ?.

v) Else, T outputs

e(A,B) =

V2 · e(P1, P2)�ab(k1k2)�1

V1

!(k1k2�1)�1

. (5.63)

Attacks on The Security and Verifiability of Luo et al. [2018]. When we look at the

values send to S, we see that they are of the form:

V1 = e(X,K), V2 = e(Y, L), (5.64)

V3 = e(A, K), V4 = e(X,B), (5.65)

V5 = e(Z,L), V6 = e(Y,M). (5.66)

By looking at the first part of the inputs, S has two possibilities for A either A or Z.

Similarly, B is either B or M . Hence, e(A,B) is also known.

On the other side, the authors’ claim for full verifiability of the scheme in Luo

et al. [2018] does not hold either. Since S is able to distinguish the queries for

V3, V4, V5, and V6 as illustrated above, S sends correct values for V3, V4, V5, and V6

while sending any random value for V1 and V2. These V1 and V2 are not checked at any

step, so the client can not detect that S misbehaves.

Uzunkol et al. [2017] show that the schemeLuo et al. [2018] given by Luo et al

is 0-checkable and not secure.

5.2.1.1. Comparison

The efficiency comparison of single server pairing outsourcing algorithms

presented so far are given in Table 5.1. Since the scheme of Luo et al. [2018] is shown

to be broken by Uzunkol et al. [2017], we do not include it in the comparison. The

66

following values are calculated by computational cost of operations on a BN Curve

that satisfies 128-bit level of security.

Table 5.1: Comparison of single server single pairing outsource algorithms.

5.2.2. Multiple Servers

All algorithms presented in Section 5.2.2. require scalar multiplication on G1,G2

and/or exponentiation on GT . These operations are computationally heavy operations,

especially exponentiation. By utilizing multiple servers, it is possible to outsource

pairing computations without requiring the client to compute scalar multiplication and

exponentiation. However, eliminating exponentiation introduces checkability issues.

So, one needs to decide when to use single/multiple server depending on the particular

situation. It should be also noted that, algorithms given in multi-server setting are all

generic algorithms, they work for all type of inputs(public/private, constant/variable).

Chen et al. [2015] proposed the first efficient and secure outsourcing algorithm

of bilinear pairings in the one-malicious version of two untrusted program model.

However, their scheme is 1/2-checkable, i.e. a malicious server is able to cheat the

client with probability 1/2.

The algorithm given in Chen et al. [2015] uses a sub-routine called Rand which

is responsible for some offline calculations that do not depend on the inputs. We omit

the details of Rand.
In order to outsource e(A,B), C

i) runs Rand to create three six-tuple

67

(V1, V2, v1V1, v2V2,� = e(v1V1, v2V2)), (5.67)

(x1, X2, x1X1, x2X2, e(x1X1, x2X2)), (5.68)

(y1, Y2, y1Y1, y2Y2, e(y1Y1, y2Y2)). (5.69)

ii) queries S1 in random order to get

↵1 = e(A+ v1V1, B + v2V2), (5.70)

↵4 = e(v1V1 + v2V1, V2), (5.71)

�11 = e(x1X1, x2X2), (5.72)

�12 = e(y1Y1, y2Y2). (5.73)

iii) queries S2 in random order to get

↵2 = e(A+ V1, v2V2), (5.74)

↵3 = e(v1V1, B + V2), (5.75)

�21 = e(x1X1, x2X2), (5.76)

�22 = e(y1Y1, y2Y2). (5.77)

iv) checks that �11 = �21 and �12 = �22. If not, outputs ? and halts. Otherwise
outputs ↵1↵

�1
2 ↵�1

3 ��1↵4 as e(A,B).

Later Tian et al. [2015] proposed two algorithms. First one is more efficient
than Chen et al. [2015] while providing the same checkability, 1/2. Second one offers
verifiable checkability which is inversely proportional to efficiency. Both algorithms
use subroutines to compute values that do not depend on the inputs and we omit the
details.

• First Algorithm. In order to outsource e(A,B), C

68

i) calls RandA to get

(x1P, x3P, x1x
�1
2 x5P, x7P, x

�1
1 x2Q, x4Q, x�1

1 x6Q, x8Q, e(P,Q)x7x8 , e(P,Q)x5+x6�x2).

ii) queries S1 in random orders to get

↵1 = e(A+ x1P,B + x�1
1 x2Q), (5.78)

↵2 = e(x3P, x4Q). (5.79)

iii) queries S2 in random orders to get

↵0
1 = e(A+ x1x

�1
2 x5P,�x�1

1 x2Q), (5.80)

↵0
2 = e(�x1P,B + x�1

1 x6Q), (5.81)

↵0
3 = e(x3P, x4Q), (5.82)

↵0
4 = e(x7P, x8Q). (5.83)

iv) checks ↵2 = ↵0
3 and e(P,Q)x7x8 = ↵0

4. If both equations hold, it computes
e(A,B) as ↵1↵0

1↵
0
2e(P,Q)x5+x6�x2 . Otherwise it rejects and outputs ?.

• Flexible Version.

In order to compute e(A,B), C

i) calls RandB two times to get

(x1P, x1x
�1
2 x3P, x

�1
1 x2Q, x�1

1 x4Q, x8Q, e(P,Q)x3+x4�x2),

and

(x0
1P, x

0
1x2

0�1x0
3P, x1

0�1x0
2Q, x0�1

1 x0
4Q, x8Q, e(P,Q)x

0
3+x

0
4�x

0
2)

ii) randomly selects a small integer t 2 {1, . . . , s}

iii) queries S1 in random orders to get

69

↵1 = e(A+ x1P,B + x�1
1 x2Q) (5.84)

↵2 = e(tA+ x0
1x

0
2
�1x0

3P,�x0
1
�1x0

2Q) (5.85)

↵3 = e(�x0
1P,B + x0

1
�1x0

4Q) (5.86)

iv) queries S2 in random orders to get

↵0
1 = e(tA+ x1x

�1
2 x3P,�x0

1
�1x2Q) (5.87)

↵0
2 = e(A+ x1x2

�1x3P,�x�1
1 x2Q) (5.88)

↵0
3 = e(�x1P,B + x�1

1 x4Q) (5.89)

v) computes � = ↵1↵0
2↵

0
3e(P,Q)x3+x4�x2 and �0 = ↵0

1↵2↵3e(P,Q)x
0
3+x

0
4�x

0
2

vi) checks �t = �0 and � 2 GT , ↵2 = ↵0
3 and e(P,Q)x7x8 = ↵0

4. If the
equations hold, it computes e(A,B) as ↵1↵0

1↵
0
2e(P,Q)x5+x6�x2 . Otherwise

it rejects and outputs ?.

Arabacı et al. [2015] improves the algorithms given by Chen et al. [2015] and
Tian et al. [2015] efficieny-wise while decreasing communication cost and server’s
workload while still offering the same checkability, 1/2. They propose two algorithms
and both use subroutines for offline computations. Again, we omit the details of Rand1

and Rand2.

• Algorithm 1. In order to outsource e(A,B), C

i) calls Rand1 to get

(x1P, 2x1P, x3P, x2Q,�2x2Q, x4Q,�1 = e(P,Q)2x1x2 ,�2 = e(P,Q)x3x4)

ii) queries S1 in random orders to get

↵1 = e(A+ 2x1P,�B � 2x2Q) (5.90)

↵0
1 = e(x3P, x4Q) (5.91)

iii) queries S2 in random orders to get

70

↵2 = e(A+ x1P,B + x2Q) (5.92)

↵0
2 = e(x3P, x4Q) (5.93)

iv) checks ↵0
1 = ↵0

2 = �2. If the verifications are successful then it outputs
↵1↵2

2� as e(A,B). Otherwise, it outputs ? and halts.

• Algorithm 2. In order to outsource e(A,B), C

i) calls Rand2 to get

(x1P, x3P, x4P, x2Q, x5Q, (x2 � x�1
1 x2x3)Q,� = e(P,Q)x4x5)

ii) queries S1 in random orders to get

↵1 = e(A+ x1P,B + x2Q), (5.94)

↵0
1 = e(x4P, x5Q). (5.95)

iii) queries S2 in random orders to get

↵2 = e(A+ x3P,�x2Q), (5.96)

↵� 4 = e(�x1P,B + (x2 � x�1
1 x2x3)Q), (5.97)

↵0
2 = e(x4P, x5Q). (5.98)

iv) checks ↵0
1 = ↵0

2 = �. If the verifications are successful then it outputs
↵1↵2↵3 as e(A,B). Otherwise, it outputs ? and halts.

In 2016, Ren et al. [2016] proposed two algorithms for bilinear pairing outsource.
One is for single pairing outsource and the other one aims batch outsource. Here, we
give the first one. Ren et al. [2016] claim that their algorithm is 1-checkable, i.e. there
is no way a malicious server is able to cheat the client without getting caught. However,
it is shown by Uzunkol et al. [2017] that they fail to satisfy their claim. A server is able
to cheat the outsourcer with probability at least 1/6.
In order to outsource e(A,B), C

i) calls Rand and gets

71

a�1, b�1, aP, bQ, a2P, b2Q, e(aP, bQ), (5.99)

e(a2P, bQ)�1, e(aP, b2Q)�1, (5.100)

a�1
1 , b�1

1 , a1P, b1Q, a3P, b3Q, e(a1P, b1Q), (5.101)

e(a3P, b1Q)�1, e(a1P, b3Q)�1, (5.102)

where a, b, ai, bi 2R Z⇤
p
, 1  i  3.

ii) queries S1 in random order to get:

↵11 = e(A� aP,B � bQ), (5.103)

↵12 = e(A� aP + a3P, b1Q), (5.104)

↵13 = e(a1P,B � bQ+ b3Q). (5.105)

iii) similarly, queries S2 in random order to get:

↵21 = e(A� aP + a1P,B � bQ+ b1Q), (5.106)

↵22 = e(A� aP + a2P, bQ), (5.107)

↵23 = e(aP,B � bQ+ b2Q). (5.108)

iv) computes

72

↵12 · e(a3P, b1Q)�1 = e(A� aP, b1Q), (5.109)

↵13 · e(a1P, b3Q)�1 = e(a1P,B � bQ), (5.110)

↵22 · e(a2P, bQ)�1 = e(A� aP, bQ), (5.111)

↵23 · e(aP, b2Q)�1 = e(aP,B � bQ). (5.112)

(5.113)

v) chooses t1, t2 2R Z⇤
p

and queries S1 in random order to get:

↵14 = e(A� aP, t1Q), (5.114)

↵15 = e(t2P,B � bQ). (5.115)

vi) similarly, queries S2 in random order to get:

↵24 = e(A� aP, t1Q), (5.116)

↵25 = e(t2P,B � bQ). (5.117)

vii) verifies

↵14
?
= ↵24, (5.118)

↵15
?
= ↵25, (5.119)

↵21
?
= ↵11 · e(A� aP, b1Q) · e(a1P,B � bQ) · e(a1P, b1Q) (5.120)

If the verification step fails, outputs ?. Else, outputs

↵11 · e(A� aP, bQ), e(aP,B � bQ) · e(aP, bQ) (5.121)

73

as e(A,B).

The above algorithm is shown to be broken by Uzunkol et al. [2017]. Suppose

S1 is a malicious and S2 is an honest server. Firstly, S1 could successfully guess the

correct positions of ↵1i, i = 1, 2, 3 with probability 1/6. After a successful guess, U1

knows a1P and b1Q, and could easily compute a3P by subtracting the first component

of ↵12 from the first component of ↵11 as well. Similarly, by subtracting the second

component of ↵13 from the second component of ↵11, the point b3Q could be computed

by S1. Then, S1 could compute e(a3P, b1Q) and e(a1P, b3Q). Moreover, it could

compute the values

�
↵12 · e(a3P, b1Q)�1

��1
= e(A� aP, b1Q)�1, (5.122)

�
↵13 · e(a1P, b3Q)�1

��1
= e(a1P,B � bQ)�1. (5.123)

Then, S1 could simply send to C the following bogus values instead of ↵1i, i = 1, 2, 3:

✓11 = ↵11 · e(A� aP, b1Q)�1 · e(a1P, b3Q)�1, (5.124)

✓12 = ↵2
12 · e(a3P, b1Q)�1, (5.125)

✓13 = ↵2
13 · e(a1P, b3Q)�1. (5.126)

After receiving the values ✓1i,↵2i, i = 1, 2, 3, the delegator C computes the following

values following the scheme specification:

✓12 · e(a3P, b1Q)�1 = e(A� aP, 2b1Q), (5.127)

✓13 · e(a1P, b3Q)�1 = e(2a1P,B � bQ), (5.128)

↵22 · e(a2P, bQ)�1 = e(A� aP, bQ), (5.129)

↵23 · e(aP, b2Q)�1 = e(aP,B � bQ). (5.130)

74

In the second round, the malicious server S1 could send

✓14 = ↵2
14 = e(A� aP, 2t1Q), (5.131)

✓15 = ↵2
15 = e(2t2P,B � bQ), (5.132)

instead of ↵14 and ↵14, respectively. Note that S1 could manipulate ↵14 and ↵15

with ✓14 and ✓15 with probability 1 since only squares are taken which are independent

of the correct positions of ↵14 and ↵15. Then, following the protocol honestly, the

second server S2 would compute

U2(e(A� aP, 2b1Q), t1b
�1
1) ↵24 = e(A� aP, 2t1Q), (5.133)

U2(e(2a1P,B � bQ), t2a
�1
1) ↵25 = e(2t2P,B � bQ), (5.134)

implying that

✓14 = ↵24, (5.135)

↵21 = ✓11 · e(A� aP, 2b1Q) · e(2a1P,B � bQ) · e(a1P, b1Q). (5.136)

After passing the verification step with these bogus values, the output would be the

bogus value

e(A,B)e(A�aP, b1Q)�1e(a1P, b3Q)�1 = ✓11·e(A�aP, bQ), e(aP,B�bQ)·e(aP, bQ).

instead of e(A,B). Note that the values e(A � aP, b1Q) and e(a1P,B � bQ) are

computed by the honest server S2, hence these values remain unchanged.

This attack shows that the scheme in Ren et al. [2016] does not satisfy the full

verifiability claim and it is a scheme in which a malicious S1 could pass the

verification step with bogus values with probability at least 1/6. Hence, S1 could

manipulate the output with probability at least 1/6.

75

In 2017, Ren et al. [2017] proposed a delegation protocol utilizing multiple

servers and claimed that their scheme’s checkability is almost 1. However, as shown

by Uzunkol et al. [2017], their scheme fails to satisfy this claim and Tian et al. [2015]’s

second scheme is much more efficient for the same checkability level. The scheme is

given below.

i) C calls Rand to get

t1, t2, a1P + a2P, a3P, a4P, b1P + b2P, b3P, (5.137)

� (a1P + a2P + b3P), �(t2a1P + a2P), �(a1P + t2a2P), (5.138)

a1Q+ a2Q, a3Q, b1Q+ b2Q, b3Q, b4Q, �(b1Q+ b2Q+ a3Q), (5.139)

� (t1b1Q+ b2Q), �(b1Q+ t1b2Q), e(a3P, a3Q), (5.140)

e(b3P, b3Q), e(a4P, b1Q+ b2Q)t1+1, (5.141)

e(a1P + a2P, b4Q)t2+1, e(a1P + a2P, b1Q+ b2Q)�1, (5.142)

where ai, bi 2R Z⇤
q
, 1  i  4, tj 2 {2, 3, · · · , s}, and s 2 N is a small number.

ii) C queries S1 in random order to get:

↵11 = e(A+ a1P + a2P,B + b1Q+ b2Q), (5.143)

↵12 = e(A+ b1P + b2P, a3Q), (5.144)

↵13 = e(�(a1P + a2P + b3P), B + b3Q), (5.145)

↵14 = e(A+ a4P,�(t1b1Q+ b2Q)), (5.146)

↵15 = e(�(t2a1P + a2P), B + b4Q). (5.147)

iii) Then similarly, C queries S2 in random order to get:

76

↵21 = e(A+ a1P + a2P,B + b1Q+ b2Q), (5.148)

↵22 = e(A� a3P,�(b1Q+ b2Q+ a3Q)), (5.149)

↵23 = e(b3P,B + a1Q+ a2Q), (5.150)

↵24 = e(A+ a4P,�(b1Q+ t1b2Q)), (5.151)

↵25 = e(�(a1P + t2a2P)), B + b4Q). (5.152)

iv) Upon receiving computation results from both servers, C checks if

↵11
?
= ↵21, (5.153)

(↵12↵22e(a3P, a3Q))t1+1 ?
= ↵14↵24e(a4P, b1Q+ b2Q)t1+1, (5.154)

(↵13↵23e(b3P, b3Q))t2+1 ?
= ↵15↵25e(a1P + a2P, b4Q)t2+1. (5.155)

If the check is not successful, outputs ?. Otherwise, outputs

↵11↵22e(a3P3, a3Q)↵13↵23e(b3P, b3Q)e(a1P + a2P, b1Q+ b2Q)�1 as e(A,B).

Despite the claims of Ren et al. [2017], Uzunkol et al. [2017] showed that their scheme

failed to satisfy this claim. Assume that the server S1 is malicious. The probability that

S1 chooses one of the pairs (↵12,↵14) or (↵13,↵15) out of 10 pairs from 5 random

queries is at least 1/5. Then, S1 can guess the right position of ↵12 or ↵13 with

probability at least 1/2. Moreover, S1 (resp. S2) could correctly guess the value of

the right exponent ti with probability 1/(s � 1), i = 1, 2. Hence, a malicious server

S1 (resp. S2) could correctly guess (↵12,↵14) or (↵13,↵15) with the correct exponent ti

with probability at least 1/10(s�1). Assume without loss of generality that (↵12,↵14)

is the correctly guessed pair with the exponent t1. Then, the server S1 could send the

bogus values with using an arbitrary element ✓ 2 G3, �12 = ↵12 · ✓, �14 = ↵14 · ✓t1+1,

to the delegator C which successfully enable S1 to cheat the delegator C, and pass

the verification step with probability at least 1/10(s � 1). Moreover, since after the

verification step, the value ↵12 (resp. ↵13) is also used to recover e(A,B), the output

yields to a bogus value instead of e(A,B) with probability at least 1/10(s � 1). It

77

is obvious that the same simple attack strategy could be used to manipulate ↵22 or

↵23 and ↵24 or ↵25 for S2. For s = 4, the verification step in Ren et al. [2017] is

successful with probability 1 � 1/10 · 3 ⇡ 0.967 instead of the author’s claim with

probability ⇡ 0.999. Now, if the verification probabilities of Tian et al. [2015] and

Ren et al. [2017] are chosen to be the same (i.e. by choosing appropriate values for

the adjustable verification probabilities in both schemes), then it can be seen that the

proposed scheme in Ren et al. [2017] has almost no efficiency benefit when carefully

compared with the Tian et al.’s scheme Tian et al. [2015]. Additionally, it has worse

communication overhead than Tian et al. [2015] (with 10 calls to the servers instead of

6 calls in Tian et al. [2015]). Hence, the scheme in Ren et al. [2017] is less practical

than the scheme in Tian et al. [2015] with almost no computational advantages and

requirement of additional bandwidth.
In 2017, Dong et al. [2017] proposed a scheme and claimed that it is the first

fully verifiable secure delegation scheme. However, Uzunkol et al. [2017] show that
their scheme is not secure and a malicious server is able to learn A,B, and (e(A,B)).
In order to outsource e(A,B), C

i) calls Rand and gets

a1P, a2P, a3P, a4P, a5P, a6P, a7P, (5.156)

b1Q, b2Q, b3Q, b4Q, b5Q, b6Q, b7Q, (5.157)

e(a1P, b1Q)�1, e(a2P, (b4 + b6)Q)�1, ri, r
0
i
, i 2 {4, 5, 6, 7}, (5.158)

e(a3P, (b5 + b7)Q)�1, e((a4 + a6)P, b2Q)�1, e((a5 + a7)P, b3Q)�1, (5.159)

where aj, bj 2R Z⇤
q
, 1  j  7, ri, r0i 2 {±1,±2,±4}, and

r4b4 = r6b6, r5b5 = r7b7, (5.160)

r04a4 = r06a6, r05a5 = r07a7, (5.161)

7X

j=4

bj = �b1,
7X

j=4

aj = �a1. (5.162)

78

ii) queries S1 in random order to get:

✓11 = e(A+ a1P,B + b1Q), (5.163)

↵11 = e(A+ a2P, b4Q), (5.164)

↵12 = e(A+ a3P, b5Q), (5.165)

�11 = e(a4P,B + b2Q), (5.166)

�12 = e(a5P,B + b3Q). (5.167)

iii) similarly, queries S2 in random order as follows:

✓21 = e(A+ a1P,B + b1Q), (5.168)

↵21 = e(A+ a2P, b6Q), (5.169)

↵22 = e(A+ a3P, b7Q), (5.170)

�21 = e(a6P,B + b2Q), (5.171)

�22 = e(a7P,B + b3Q). (5.172)

iv) performs the verification step using ✓11, ✓12, ↵ij , �ij , 1  i, j  2, and after
successful verification computes e(A,B) by multiplying these values with some
precomputed values. We refer to Dong et al. [2017] for the details of the
verification step and the computation of e(A,B).

The following attack is given by Uzunkol et al. [2017] which shows that the

presented algorithm is not secure and the server is able to learn both the inputs and

output of the pairing function with probability 1. Suppose that S1 is malicious. We

will show that S1 is able to narrow down the possible A values to 300. S1 is given

A+ a1P , a4P , and a5P . We also know that

79

�a1 = a4 + a5 + a6 + a7+ (5.173)

a4 + a5 + (r04/r
0
6)a4 + (r05/r

0
7)a5. (5.174)

So, �a1P = a4P + a5P + (r04/r
0
6)a4P + (r05/r

0
7)a5P . (r04/r

0
6) and (r05/r

0
7) can only

take values in {±1/4,±1/2,±1,±2,±4}. We have five possible values for A+ a1P ,

4 for a4P , and 3 for a5P . We further have 10 possibilities for both (r04/r
0
6)a4P and

(r05/r
0
7)a5P . So, in total S1 has 6000 possible values that A can take. Similarly, S1 has

6000 possible values for B, and is able to guess e(A,B) with probability 1/36.106.

S2 is also able to mount the same attack. Hence, the scheme in Dong et al. [2017] is

completely insecure in its current form.

The only possible way of having a secure version of the scheme in Dong et al.

[2017] seems to choose ri and r0
i

such that bit-lengths of ri and r0
i

are long enough, e.g.

at least 76-bits for 80-bits security level. On the other side, this would make the scheme

totally inefficient. In other words, the scheme would have a huge computational

overhead when compared to the direct computation of e(A,B) by the client C.

In 2017, Kalkar et al. [2018] falsely claimed that they provide a verifiable and

efficient scheme which is given in the following.
In order to outsource e(A,B), C

i) calls Rand to get

↵, �, x, y,m, n,↵P, xP, yP,↵P � xP,↵P � yP,mQ, nQ, �Q, e(↵P, �Q),

where ↵, �, x, y,m, n 2R Z⇤
p
.

ii) queries S1 in random order to get

A11 = e(A� ↵P,mQ), (5.175)

A12 = e(A� ↵P,B � nQ), (5.176)

A13 = e(↵P � xP,B � �Q), (5.177)

A14 = e(yP,B � �Q). (5.178)

iii) Similarly, queries S2 in random order to get:

80

A21 = e(A� ↵P, nQ), (5.179)

A22 = e(A� ↵P,B �mQ), (5.180)

A23 = e(↵P � yP,B � �Q), (5.181)

A24 = e(xP,B � �Q). (5.182)

iv) verifies

A11A22
?
= A21A12, (5.183)

A13A24
?
= A23A14. (5.184)

v) If the verification step fails, outputs ?. Else, C outputs e(A,B) as

A11A22A13A24e(P1, P2)
↵�. (5.185)

Again, as shown by Uzunkol et al. [2017] the scheme fails to fulfill its verifiability

claim and a server is able to cheat the client with probability 1. A malicious server S1

could send the bogus values CA1i instead of A1i, i = 1, 2, 3, 4, and could successfully

pass the verification step always, i.e. with probability 1. Then, the delegator computes

the bogus output C2e(A,B) instead of e(A,B). Obviously, a malicious server S2

could also mount a similar attack and could always pass the verification step with

bogus values. This fairly simple attack shows that the the claim of having a fully

verifiable scheme is unfortunately false. In particular, no verifiability is provided in

Kalkar et al. [2018].

5.3. Proposed Scheme

In this section, we first propose an efficient fully verifiable secure partial

delegation scheme for the precomputation step Rand. Secondly, we introduce VerPair

which is a fully verifiable efficient secure delegation scheme for general pairing

81

computation under the OMTUP assumption.

5.3.1. Rand: Proposed Scheme’s Precomputation Step

The precomputation scheme Rand consists of a precomputation step realized
by one of the existing techniques Brickell et al. [1993]; Boyko et al. [1998]; Wang
et al. [2014]. The other part consists of a delegation scheme. Before initializing the
subroutine Rand, a global security parameter  is chosen which outputs the global
parameters

i) the prime number q,

ii) the groups (G1,+), (G2,+), and (G3, ·) of order q,

iii) the pairing map e : G1 ⇥G2 �! G3,

iv) the generators P1, P2, and g := e(P1, P2) of G1, G2, and G3, respectively.

Together with these global parameters, the static tuples

(↵1,↵1P1,↵1P2), (↵2,↵2P1,↵2P2) (5.186)

are computed at the initialization of the subroutine Rand, and loaded to the delegator

T (by a trusted party, e.g. by using HSM, TPM, etc.), where ↵1 and ↵2 are random

elements in Z⇤
q
. Note that (↵1,↵1P1,↵1P2) is secret and protected from U2, but not

necessarily from U1, and (↵2,↵2P1,↵2P2) is secret and protected from U1, but not

necessarily from U2. Rand takes no input except global parameters and static tuples

(5.186).

After calling Rand, the first part chooses random values a, b, s, , t 2R Z⇤
q

and outputs

(a, aP1), (b, bP2), (s, sP1, sP2) and (t, gt).
In the delegated second part of Rand, the delegator T chooses first randomly

t1, t2, c1, c2 2R Z⇤
q
. Then,

i) T queries U1 in random order as follows:

82

U1(a · b� t, g) �1 = gab�t, U1(t1 · s� t, g) �2 = gt1s�t,

(5.187)

U1(t2 · s� t, g) �3 = gt2s�t, U1(t1 � ↵1, P1) �4 = (t1 � ↵1)P1,

(5.188)

U1(t1 � ↵1, P2) �5 = (t1 � ↵1)P2, U1(t2 � ↵2, P1) �6 = (t2 � ↵2)P1,

(5.189)

U1(t2 � ↵2, P2) �7 = (t2 � ↵2)P2, U1(c1 · t1, ·�1) ✓11 = c�1
1 t�1

1 ,

(5.190)

U1(c2 · t2, ·�1) ✓12 = c�1
2 t�1

2 . (5.191)

ii) T queries U2 in random order as follows:

U2(ab� t, g) �1 = gab�t, U2(t1s� t, g) �2 = gt1s�t, (5.192)

U2(t2s� t, g) �3 = gt2s�t, U2(t1 � ↵1, P1) �4 = (t1 � ↵1)P1,

(5.193)

U2(t1 � ↵1, P2) �5 = (t1 � ↵1)P2, U2(t2 � ↵2, P1) �6 = (t2 � ↵2)P1,

(5.194)

U2(t2 � ↵2, P2) �7 = (t2 � ↵2)P2, U2(c1t1, ·�1) ✓21 = c�1
1 t�1

1 ,

(5.195)

U2(c2t2, ·�1) ✓22 = c�1
2 t�1

2 . (5.196)

iii) After receiving �i, ✓1j from U1 and �i, ✓2j from U2, 1  i  7, j  2, T verifies

�i
?
= �i and ✓1j

?
= ✓2j. (5.197)

iv) If Equations (5.197) do not hold simultaneously, then T outputs ?.

83

v) Else, T outputs

((a, aP1), (b, bP2), (s, sP1, sP2), (t, g
t), (t1, t1P1 = �4 + ↵1P1, t1P2 = �5 + ↵1P2),

(t2, t2P1 = �6 + ↵2P1, t2P2 = �7 + ↵2P2), g
ab = �1 · gt, gt1s = �2 · gt, gt2s = �3 · gt,

t�1
1 = c1 · ✓11, t�1

2 = c2 · ✓12, a · t�1
1 , a · t�1

2 , b · t�1
1 , b · t�1

2).

Remark 5.1: We note that the outputs of the delegated part of Rand is always

secret or (honest/adversarial) protected except possibly (t1, t1P1, t1P2) from U1 and

(t2, t2P1, t2P2) from U2. We refer to Section 5 for the further details. Furthermore, we

here give a simple but more efficient two-server version for secure delegation of the

modular inversion t�1 mod q which is first introduced in Cavallo et al. [2015].

5.3.2. VerPair: A Fully Verifiable Secure Delegation Scheme

The Rand scheme outputs the following values

((a, aP1), (b, bP2), (s1, s1P1), (s2, s2P2), (t, g
t),

(t1, t1P1, t1P2), (t2, t2P1, t2P2), g
ab, gt1s, gt2s,

t�1
1 , t�1

2 , at�1
1 , at�1

2 , bt�1
1 , bt�1

2),

where P1 is the generator of G1 (of prime order q) and P2 is the generator of G2 (of

prime order q) and a, b, t1, t2, s 2R Z⇤
q
.

Let T denote the delegator and U1 and U2 be the two untrusted servers. The

inputs of VerPair are the outputs of Rand scheme and the secret, private inputs A 2 G1

and B 2 G2.

The steps of VerPair are given as follows:

i) T queries U1 in random order as follows:

U1(t1P1, B � bP2 � sP2) D11 = e(t1P1, B � bP2 � sP2), (5.198)

U1(A� aP1 � sP1, t1P2) D12 = e(A� aP1 � sP1, t1P2). (5.199)

84

ii) Then similarly, T queries U2 in random order as follows:

U2(t2P1, B � bP2 � sP2) D21 = e(t2P1, B � bP2 � sP2), (5.200)

U2(A� aP1 � sP1, t2P2) D22 = e(A� aP1 � sP1, t2P2). (5.201)

iii) After receiving D11, D12 from U1 and D21, D22 from U2, T computes

�1 = D11 · gt1s = e(t1P1, B � bP2), (5.202)

�2 = D12 · gt1s = e(A� aP1, t1P2), (5.203)

�3 = D21 · gt2s = e(t2P1, B � bP2), (5.204)

�4 = D22 · gt2s = e(A� aP1, t2P2). (5.205)

iv) Then, T queries U1 in random order as follows:

U1(�3, at
�1
2) D13 = �

at
�1
2

3 = e(aP1, B � bP2), (5.206)

U1(�4, bt
�1
2) D14 = �

bt
�1
2

4 = e(A� aP1, bP2), (5.207)

U1(A� aP1, B � bP2) D15 = e(A� aP1, B � bP2). (5.208)

v) Similarly, T queries U2 in random order as follows:

U2(�1, at
�1
1) D23 = �

at
�1
1

1 = e(aP1, B � bP2), (5.209)

U2(�2, bt
�1
1) D24 = �

bt
�1
1

2 = e(A� aP1, bP2), (5.210)

U2(A� aP1, B � bP2) D25 = e(A� aP1, B � bP2). (5.211)

vi) T verifies

D13
?
= D23, D14

?
= D24, D15

?
= D25. (5.212)

85

vii) If Equations (5.212) do not hold simultaneously, then T outputs ?.

viii) Else, T outputs e(A,B) = D13 ·D14 ·D15 · gab.

5.4. Security & Performance Analysis

In this section, we analyze the security, verifiability and efficiency properties

of the delegated part of Rand and VerPair. Moreover, we compare VerPair with the

previous proposals with respect to its computational and communication complexities

for both the delegator T and the services Ui, i = 1, 2, i.e. the overall communication

overhead, number of rounds, memory requirements of the delegator T , and the

computational complexity for T .

Theorem 5.1: In the one-malicious version of a two-untrusted program model

(OMTUP), the algorithms (T, U1, U2) are a fully verifiable O(1
log q)-efficient

delegated-secure implementations of the delegated part of Rand scheme, where the

static inputs

(↵1,↵1P1,↵1P2), (↵2,↵2P1,↵2P2)

of Rand maybe honest, secret; or (↵1,↵1P1,↵1P2) honest, unprotected from U1; or

(↵2,↵2P1,↵2P2) honest, unprotected from U2.

Proof . We prove completeness, security, full verifiability and efficiency of Rand as

follows:

Completeness. Assume that the servers U1 and U2 run Rand honestly. Since we

delegate the same computations to both U1 and U2, we clearly have

�i = �i, ✓1j = ✓2j , for 1  i  7, j = 1, 2. (5.213)

Now, we show that the following equalities hold:

86

�1 · gt = gab�tgt = gab (5.214)

, �2 · gt = gt1s�tgt = gt1s, (5.215)

�3 · gt = gt2s�tgt = gt2s, (5.216)

�4 + ↵1P1 = (t1 � ↵1)P1 + ↵1P1 = t1P1, (5.217)

�5 + ↵1P2 = (t1 � ↵1)P2 + ↵1P2 = t1P2, (5.218)

�6 + ↵2P1 = (t2 � ↵2)P1 + ↵2P1 = t2P1, (5.219)

�7 + ↵2P2 = (t2 � ↵2)P2 + ↵2P2 = t2P2, (5.220)

c1✓11 = c1(c
�1
1 t�1

1) = t�1
1 , (5.221)

c2✓12 = c2(c
�1
2 t�1

2) = t�1
2 . (5.222)

Since the values a, b, t 2 Z⇤
q

with (aP1, bP2, sP1, sP1, gt) are computed in the first part

of Rand using a precomputation subroutine, and the outputs at�1
i
, bt�1

i
, i = 1, 2, are

solely computed by T itself, we are also done with completeness of Rand.

Security & Full verifiability. The proof is similar to Hohenberger and

Lysyanskaya [2005]. We assume now that A = (E,U 0
1, U

0
2) is a probabilistic

polynomial-time (PPT) adversary interacting with a PPT-based algorithm T in the

delegated-security model of Section (2). Our fist claim is EV IEWreal⇠EV IEWideal,

Note that all static inputs (↵1,↵1P1,↵1P2), (↵2,↵2P1,↵2P2) are assumed to be

honest, secret for an environmental adversary since neither E and U 0
1 nor E and U 0

2

cannot communicate directly to develop a joint strategy after interacting with T . Then,

ignoring the ith round, a simulator S1 first chooses elements xi, 1  i  9 randomly,

and makes 18 random queries to U 0
1 and U 0

2

87

U 0
1(xi, P1) �i, U 0

2(xi, P1) �ifori = 4, 6, (5.223)

U 0
1(xi, P2) �i, U 0

2(xi, P2) �ifori = 5, 7, (5.224)

U 0
1(xi, g) �i, U 0

2(xi, g) �ifori = 1, 2, 3, (5.225)

U 0
1(x8, ·�1) ✓11, U 0

2(x8, ·�1) ✓21, (5.226)

U 0
1(x9, ·�1) ✓12, U 0

2(x9, ·�1) ✓22. (5.227)

Note that we do not consider the outputs at�1
i
, bt�1

i
, i = 1, 2, to prove the result since

it is solely computed by T without any interaction with E, U 0
1 or U 0

2. Then, S1 behaves

. if the outputs of U 0
1 and U 0

2 are not equal for a randomly selected i, 1  i  9,
then the values Y i

p
=00 error00, Y i

u
= ;, and replacei = 1 (corresponding to the

output (estatei,00 error00, ;) in the ideal process) are produced by S1,

. if no 00error00 is detected , then the values Y i

p
= ;, Y i

u
= ;, and replacei = 0

(corresponding to the output (estatei, Y i

p
, Y i

u
) in the ideal process) are produced

by S1,

. otherwise, S1 selects a random element r and outputs Y i

p
= r, Y i

u
= ;, and

replacei = 1 (corresponding to the output (estatei, r, Y i

u
) in the ideal process).

In either cases, S1 saves the appropriate states.
The distributions of inputs in the real and ideal experiments are computationally

indistinguishable. In the ideal experiment, the inputs are chosen uniformly at random.
In the real experiment, all inputs of the delegated part of Rand are independently
randomized by the choice of uniformly distributed random elements t1, t2, c1, c2 2R Z⇤

q
.

Note that, by each invocation of Rand, new random values are generated which are
different from other invocations. Then, there are two cases

. if U 0
1 and U 0

2 behave honestly both in the real and the ideal experiments in the
round i, then we have EV IEW i

real
⇠EV IEW i

ideal
since in the real execution

TU
0
1,U

0
2 perfectly runs Rand and in the ideal execution S1 does not change the

output,

. If one of U 0
1 or U 0

2 behaves dishonestly in the round i, than this can be detected by
both T and S1 with probability 1. The reason is that one server is always honest
under OMTUP, and only the equality of the same delegated inputs are compared
coming from an honest and a potentially dishonest server. Then, any misbehavior

88

could always be detected, and this will result an output of an 00error00. This
argument also shows that Rand is fully verifiable.

Note that it is impossible that Rand could be corrupted implying that S1 never

executes the case of selecting a random element r and returning Y i

p
= r, Y i

u
= ;,

and replacei = 1 in the ideal experiment since Rand is fully verifiable, hence it is

impossible for both U 0
1 and U 0

2 to deviate from their functionalities. Thus, we have

EV IEW i

real
⇠EV IEW i

ideal

even in the case of a dishonest server U 0
1 or U 0

2. By the hybrid argument, we conclude

that

EV IEWreal⇠EV IEWideal.

Secondly, we claim that UV IEWreal⇠UV IEWideal, i.e. Pair Two of the

delegated-security model that the untrusted server Ui, i = 1 or i = 2, learns nothing

useful. By ignoring the ith round, a simulator S2 produces random queries for both U 0
1

and U 0
2, behaving exactly like S1, and saves its states. Furthermore, it saves the states

of (U 0
1, U

0
2). Due to OMTUP assumption, an external environment adversary cannot

tell U 0
1 or U 0

2 that the simulator S2 produces bogus outputs since neither E and U 0
1 nor

E and U 0
2 can communicate directly to develop a joint strategy after interacting with

T . Similarly, U 0
1 and U 0

2 cannot communicate directly to collaborate to test the random

inputs. Now, we have the following possibilities:

. (↵1,↵1P1,↵1P2), (↵2,↵2P1,↵2P2) are honest, secret for both U 0
1 and U 0

2,

. (↵1,↵1P1,↵1P2) is honest, unprotected from U 0
1,

and/or (↵2,↵2P1,↵2P2) is honest, unprotected from U 0
2.

If (↵1,↵1P1,↵1P2), (↵2,↵2P1,↵2P2) are honest, secret for both U 0
1 and U 0

2, then U 0
1

and U 0
2 cannot distinguish the real queries from the random ones due to the exactly

same reason when interacting with S1, whence UV IEW i

real
⇠UV IEW i

ideal
. Hence, by

a hybrid argument

UV IEWreal⇠UV IEWideal.

If (↵1,↵1P1,↵1P2) is honest, unprotected from U 0
1, then t1, t1P1, t1P2 are unprotected

from U 0
1 but honest, secret for U 0

2. If further (↵2,↵2P1,↵2P2) is honest, unprotected

from U 0
2, then t1, t1P1, t1P2 are unprotected from U 0

2 but honest, secret for U 0
1. Then,

89

the simulation S2 is trivial for unprotected values, i.e. S2 behaves the same way as

in the real execution. In this case, the rest of the proof follows exactly as above for

honest, secret static inputs, whence

UV IEWreal⇠UV IEWideal.

Efficiency. Since Rand needs

. two modular multiplications (MM’s) to prepare c1t1 and c2t2,

. four elliptic curve point additions (PA’s) to compute t1P1, t1P2, t2P1, t2P2,

. three MM’s to compute gab, gt1s, gt2s,

. two MM’s to compute t�1
1 and t�1

2 , and

. four MM’s to compute at�1
1 , bt�1

1 , at�1
2 , and bt�1

2 .

Moreover, computation of modular exponents and elliptic curve scalar multiplications

take O(log q) steps (e.g. by square-and-multiply and double-and-add methods or their

variants). Therefore, (T, U1, U2) is an O(1/ log q)-efficient implementation of Rand.

⌅

Theorem 5.2: In the one-malicious version of a two-untrusted program model,

the algorithms (C,U1,U2) are a fully verifiable O(1
log q)-efficient delegated-secure

implementations of VerPair, where the inputs (A,B) may be honest, secret; or honest,

protected; or adversarial protected.

Proof . We prove completeness, security, full verifiability and efficiency of VerPair as

follows:

Completeness. Assume that the servers U1 and U2 run VerPair honestly. It is not

difficult to see that

D13 = �
at

�1
2

3 = e(aP1, B � bP2) (5.228)

= �
at

�1
1

1 = D23, (5.229)

and

90

D14 = �
bt

�1
2

4 = e(A� aP1, bP2) (5.230)

= �
bt

�1
1

2 = D24. (5.231)

Similarly,

D15 = e(A� aP1, B � bP2) = D25. (5.232)

Hence, the verification step of VerPair is complete. Now,

D13 ·D14 ·D15 · gab = �
at

�1
2

3 · �bt
�1
2

4 · e(A� aP1, B � bP2) · gab (5.233)

= e(aP1, B � bP2) · e(A� aP1, bP2) · e(A� aP1, B � bP2) · e(aP1, bP2) (5.234)

= e(aP1, B � bP2) · e(aP1, bP2) · e(A� aP1, bP2) · e(A� aP1, B � bP2) (5.235)

= e(aP1, B) · e(A� aP1, B) (5.236)

= e(A,B). (5.237)

Full Verifiability. Assume without loss of generality that U1 is a malicious server

capable of cheating the delegator T with non-negligible probability. Let h = g! 2 G3

be given. Now, we consider the algorithms TU1,U2 implementing VerPair for which

aP1 = !P1 is chosen. The delegator T verifies at the end of the scheme

D13 = �
!t

�1
2

3 = e(!P1, B � bP2) = �
!t

�1
1

1 = D23, (5.238)

D14 = �
bt

�1
2

4 = e(A� !P1, bP2) = �
bt

�1
1

2 = D24, (5.239)

and

D15 = e(A� !P1, B � bP2) = D25. (5.240)

91

Since both D15 and D25 are used to delegate e(A�!P1, B�bP2) and U2 is honest, U1

can only cheat T during the verification formulas (5.238) and (5.239). Let x, y 2 Z⇤
q

with A�!P1�sP1 = xP1, B� bP2�sP2 = yP2 be given. Instead of sending D11 =

gxt1 (resp. D12 = gyt1), U1 chooses bogus values ✓1, ✓2 2 Z⇤
q

and send �11 = g✓1 and

�12 = g✓2 to the delegator. Then, T computes

'1 = �11 · gt1s = g✓1+t1s, (5.241)

'2 = �12 · gt1s = g✓2+t1s, (5.242)

�3 = D21 · gt2s = e(t2P1, B � bP2), (5.243)

�4 = D22 · gt2s = e(A� !P1, t2P2). (5.244)

instead of �1 and �2. Note that �3 and �4 are correct values since U2 is honest. Then,

U2 computes in the second round

�23 = (g✓1+t1s)!t
�1
1 = g✓1!t

�1
1 +s!, (5.245)

�24 = (g✓2+t1s)bt
�1
1 = g✓2bt

�1
1 +sb (5.246)

instead of D23 and D24 following TU1,U2 honestly. Hence, in order to pass the

verification steps (5.238) and (5.239), U1 must know exactly the values of �23 and �24.

Note that if B�bP2 = y2P2 and A�!P1 = x1P1, then U1 knows further �3 = gx1t2 and

�4 = gy1t2 , and the values !t�1
2 and bt�1

2 from the scheme specification. Furthermore,

sP1 (resp. sP2) is also known by U1 in the second round; since by subtracting A�!P1

(resp. B � bP2) from the first component of D12 (resp. from the second component of

D11), U1 can easily obtain sP1 (resp. sP2). Then, in order to compute the values

�23 = g✓1!t
�1
1 +sa = g!(✓1t

�1
1 +s) = (g✓1t

�1
1 +s)!, (5.247)

�24 = g✓2bt
�1
1 +sb = gb(✓2t

�1
1 +s) = (g✓2t

�1
1 +s)b. (5.248)

U1 needs to know the exponents ! and b from h!

1 and hb

2 with non-negligible probability

due the fact that h1 = g✓1t
�1
1 +s, h2 = g✓2t

�1
1 +s 2 G3 are known to U1. Notice that, !, b

92

and !b cannot also be computed from !t�1
2 , bt�1

2 and !b� t by the proof of secrecy of

the delegated part of Rand, i.e. t2 is only available to U2. Therefore, if U1 can compute

! from h✓1t
�1
1 +s = h!

1 , thence solves the discrete logarithm problem (DLP) to the base

g, with non-negligible probability. Since, U1 is a polynomially bounded adversary, this

gives a contradiction.

Security. The proof is similar to the proof of Theorem (5.1). We assume now that

A = (E,U 0
1, U

0
2) is a probabilistic polynomial-time (PPT) adversary interacting with

a PPT-based algorithm T in the delegated-security model of Section (2). Our fist claim

is

EV IEWreal⇠EV IEWideal,

e.g. Pair One in the security model that the external adversary environment E learns

nothing useful. If inputs (A,B) are either honest, protected or adversarial protected,

then a simulator S1 behaves exactly as in the real execution, i.e. it never requires to

access (A,B) since both of them are not secret to the adversary E. We now assume

that (A,B) are honest, secret inputs. Then, ignoring the ith round, S1 first chooses

elements `i 2 Z⇤
q
, 1  i  8 randomly, computes (`1P1, `2P2, `3P1, `4P2) for U 0

1 and

(`4P1, `6P2, `7P1, `8P2), and makes 2 random queries to U 0
1

U 0
1(`1P1, `2P2) D11, (5.249)

U 0
1(`3P1, `4P2) D12, (5.250)

and 2 random queries to U 0
2

U 0
2(`5P1, `6P2) D21, (5.251)

U 0
2(`7P1, `8P2) D22. (5.252)

After receiving the outputs of U 0
1 and U 0

2, the simulator S1 chooses random elements

(g1, �1), (g2, �2) 2 G3 ⇥ Z⇤
q

and random elements `9, `10 2 Z⇤
q
, compute (`9P1, `10P2),

and queries randomly to U 0
1

93

U 0
1(g1, �1) D13, (5.253)

U 0
1(g2, �2) D14, (5.254)

U 0
1(`9P1, `10P2) D15, (5.255)

similarly, S1 chooses random elements (g3, �3), (g4, �4) 2 G3 ⇥ Z⇤
q

and random

elements `11, `12 2 Z⇤
q
, compute (`11P1, `12P2), and queries randomly to U 0

2

U 0
2(g3, �3) D23, (5.256)

U 0
1(g4, �4) D24, (5.257)

U 0
1(`11P1, `12P2) D25. (5.258)

Then, S1 behaves

. if the outputs D1i of U 0
1 and D2i U 0

2 are not equal for a randomly selected i, 3 
i  5, then the values Y i

p
=00 error00, Y i

u
= ;, and replacei = 1 (corresponding

to the output (estatei,00 error00, ;) in the ideal process) are produced by S1,

. if no 00error00 is detected , then then the values Y i

p
= ;, Y i

u
= ;, and replacei = 0

(corresponding to the output (estatei, Y i

p
, Y i

u
) in the ideal process) are produced

by S1,

. otherwise, S1 selects a random element r and outputs Y i

p
= r, Y i

u
= ;, and

replacei = 1 (corresponding to the output (estatei, r, Y i

u
) in the ideal process).

In either cases, S1 saves the appropriate states.
The distributions of inputs in the real and ideal experiments are computationally

indistinguishable. In the ideal experiment, the inputs are chosen uniformly at random.
In the real experiment, all inputs of VerPair are independently randomized by the
choice of uniformly distributed random elements. Note that, by each invocation of
VerPair, new random values are generated by Rand which are different from other
invocations, and computationally indistinguishable from random elements. Since
VerPair is a fully verifiable secure-delegated scheme, we only have two cases

. if U 0
1 and U 0

2 behave honestly both in the real and the ideal experiments in the
round i, then we have EV IEW i

real
⇠EV IEW i

ideal
since in the real execution

TU
0
1,U

0
2 perfectly runs VerPair, and in the ideal execution S1 does not change the

output,

94

. If one of U 0
1 or U 0

2 behaves dishonestly in the round i, than this can be detected
by both T and S1 with probability 1, see full verifiability.

In particular, it is impossible that VerPair could be corrupted implying that S1 never

executes the case of selecting a random element r and returning Y i

p
= r, Y i

u
= ;,

and replacei = 1 in the ideal experiment. for further details. This implies that it is

impossible for both U 0
1 and U 0

2 to deviate from their functionalities. Thus, we have

EV IEW i

real
⇠EV IEW i

ideal

even in the case that one of U 0
i
, i = 1, 2, misbehaves. By the hybrid argument, we

conclude that

EV IEWreal⇠EV IEWideal.

It is clear that this argument only works if only one server misbehaves (under OMTUP

model), i.e. if both U1 and U2 are malicious simultaneously, then the misbehavior in

this case is not independent of the inputs (A,B) whereas the misbehavior of only one

of Ui, i=1,2, is independent of the inputs (A,B).

Secondly, we claim that

UV IEWreal⇠UV IEWideal,

i.e. Pair Two of the delegated-security model that the untrusted server Ui, i = 1 or

i = 2, learns nothing useful. For a round i, a simulator S2 behaves exactly like S1

to produce random queries by ignoring the ith round for both U 0
1 and U 0

2, and saves

its states. Furthermore, it saves the states of (U 0
1, U

0
2). Due to OMTUP assumption,

an external environment adversary can tell neither to U 0
1 nor to U 0

2 that the simulator

S2 produces bogus outputs since the output in the real experiment is not corrupted,

and neither E and U 0
1 nor E and U 0

2 can communicate directly in order to develop

a joint strategy after interacting with T . Hence, honest, secret; honest, protected; or

adversarial protected inputs are all private for both U 0
1 and U 0

2, although E could easily

distinguish between these real and ideal experiments. The reason, exactly as in the case

of interacting with S1, is that in the ith round of the real experiment, the values given

to either U 0
1 or U 0

2 are completely re-randomized by Rand, and S2 generates random,

independent queries for both U 0
1 and U 0

2 in the ideal experiment. Thus, we have

UV IEW i

real
⇠UV IEW i

ideal

95

for each round i. It follows then by a hybrid argument

UV IEWreal⇠UV IEWideal.

⌅

5.4.1. Comparison

We give the comparison of single pairing outsourcing mechanisms that utilizes

multiple servers in Table 5.2.

96

Ta
bl

e
5.

2:
C

om
pa

ris
on

of
th

e
C

om
pu

ta
tio

na
lC

os
ts

an
d

C
om

m
un

ic
at

io
n

C
om

pl
ex

iti
es

.

97

6. BATCH OUTSOURCING PAIRING
COMPUTATIONS

There are schemes that require multiple pairing computations, or systems that

runs multiple schemes involving pairing computations. In these cases, considering

batch outsource may be efficient. Essentially, one should use batch outsource when

outsourcing n computations at once is cheaper than outsourcing computations n times.

In blockchain, every transaction is signed with user’s secret key and nodes validate

these transactions by verifying signature on the transaction. Since there are multiple

transactions in a certain time period, batch signature verification is a desired property

for signature schemes. When there is not a batch verification algorithm in hand,

outsourcing these signature verifications can be useful.

6.1. Protocols

Pairings e(A,B) can be classified into 16 types depending each of points A,
and B is public/secret and constant/variable. Half of them are duplicates, and there
is no need for batch outsourcing when both points are public constant. This leads to
a taxonomy of pairings into 7 types, as given by Tsang et al. [2007]. These types
are denotes as SVSV, SVSC, SVPV, SVPC, PVPV, PVPC, PVSC; where P/S denotes
public/secret and V/C denotes variable/constant. There are 5 papersTsang et al. [2007];
Luo et al. [2016]; Mefenza and Vergnaud [2018]; Shao and Wei [2018]; Kalkar et al.
[2020] on batch pairing outsource.

• Tsang et al. [2007] give a solution for SVSC type pairings which can be modified
to work for SVPC, PVSC, and PVPC types.

• Mefenza and Vergnaud [2018] propose more efficient solutions for PVPC and
PVSC types, and also give the first solution for PVPV type.

• Shao and Wei [2018] proposes a more efficient solution for SVPC type.

• This thesis proposes solutions for all types. In detail, they propose solutions for
SVSV and SVPV types for the first time and also give more efficient algorithms
for other types.

Comparison of the proposed mechanisms are given in Table 6.1.

98

6.1.1. Single Server

In this section, we present batch pairing outsource mechanisms utilizing only

one server. Public Variable, Public Variable. PVPV type pairings have public variable

input on both sides. They are commonly used in cryptographic constructions, and can

be seen in verification of signature schemes and ciphertext validity checks of some

encryption schemes. Some schemes that need this type of pairing calculations are

Boldyreva [2002]; Boneh and Boyen [2008]; Boneh et al. [2003]; Baek and Zheng

[2004]; Chow et al. [2006]; Chow [2005]. First solution is proposed by Mefenza and

Vergnaud [2018], and we proposed a more efficient solution Kalkar et al. [2020] that

does not require pairing calculation.

In all algorithms, inputs are public variable A1, · · · , An, public variable

B1, · · · , Bn and outputs are e(A1, B1), · · · , e(An, Bn).
In order to calculate e(Ai, Bi), Mefenza and Vergnaud [2018] proposes the

following

i) C chooses random �i 2 0, 1, . . . , p� 1 and a random point R 2 G2.

ii) C precomputes Ri = �iR for 1  i  n.

iii) C selects n random elements b1, . . . , bn 2 {0, 1, . . . , 2t � 1}.

iv) C computes B0
i
= biBi +Ri for i 2 {1, . . . , n}.

v) C sends A1, . . . , An, B1, . . . , Bn, B0
1, . . . , B

0
n

to S.

vi) S computes and sends ↵i = e(Ai, Bi), ↵0
i
= e(Ai, B0

i
) to C.

vii) C verifies ↵i,↵0
i
2 GT for each 1  i  n.

viii) C computes A =
P

n

i=1 �iAi.

ix) C computes ↵ = e(A,R).

x) C computes ↵0 =
Q

n

i=1 ↵
0
i

and ↵00 =
Q

n

i=1 ↵
bi
i

.

xi) C verifies ↵0 = ↵00 ⇥ ↵.

xii) C outputs e(Ai, Bi) as ↵i if all verifications are succesfull. Otherwise, outputs
? and halts.

Secret Variable, Secret Variable. In this type batch pairing computation, both input

values are secret and variable. To the best of our knowledge, there are no cryptographic

99

schemes that require computation of SVSV type pairings. However, this is the most

generic way of batch pairing delegation and any construction for this type should also

work for other types since both input and output values should be secured. To the best

of our knowledge, no delegation protocol for this type is proposed until Kalkar et al.

[2020].

Secret Variable Secret Constant. Pairings of this type have secret inputs, one is variable

and one is constant. This type of pairings appear in few cryptographic schemes, some

are Boneh and Boyen [2004]; Chen and Kudla [2003]. Tsang et al. [2007] presents the

first outsourcing protocol for this type and we give a more efficient algorithm.
In order to calculate e(Ai, Bi), Tsang et al. [2007] proposes the following

protocol:

i) C chooses random rB, rP 2 Z⇤
p

and precomputes B̃ = rBB, P̃ = rPP , and
� = e(P̃ , B̃) = e(P,B)rP rB .

ii) C chooses random ri, ai 2 Z⇤
q

and computes

Ãi = riAi for 1  i  n, (6.1)

Ã = P̃ +
nX

i=1

aiÃi. (6.2)

iii) C sends Ã1, . . . , Ãn, Ã to S and gets ↵ = e(Ã, B̃) and ↵i = e(Ãi, B̃).

iv) C verifies that ↵,↵1, . . . ,↵n 2 GT .

v) C computes ↵0 = �
Q

n

i=1 ↵
ai
i

.

vi) C checks ↵ = ↵0 and outputs e(Ai, B) as ↵
1

rBri
i

. Otherwise, outputs? and halts.

Secret Variable, Public Variable.

SVPV type pairings have secret variables on one side of the input, and public variables

on the other side. This type of pairings appear in searchable encryption Boneh and

Waters [2007]; Shi et al. [2007], trace-and-revoke broadcast system Boneh and Waters

[2006], identity based encryption Gentry [2006]. To the best of our knowledge, no

delegation protocol for this type is proposed until Kalkar et al. [2020].

Secret Variable, Public Constant.

100

This type has secret variable inputs on the one side and a public constant input on

the other. Just like SVPC, this type of pairings are rare in cryptographic constructions.

One example is ciphertext-policy attribute based encryption, Bethencourt et al. [2007].

Tsang et al. [2007] proposed to use modified version of their SVSC algorithm. Later,

Shao and Wei [2018] proposed another algorithm which is more efficient. However,

their algorithm does not control if the pairing values returned by the delegatee are

elements of the target group GT , so their scheme is susceptible to subgroup attacks

Barreto et al. [2015]. This threat can be avoided using necessary group membership

tests. In addition to that, their scheme can be extremely more efficient if the scalar

ai’s are chosen from exponents of smaller bit length. We give another algorithm which

uses Kalkar et al. [2020] PVPV and is more efficient.

Public Variable, Secret Constant. This type of pairings have one public variable input

and one secret constant input. Some examples are identity based encryption Boneh

and Franklin [2001]; Gentry [2006]; Sakai et al. [2000], certificateless encryption

Chow et al. [2006]; Dent [2008], and attribute-based encryption Bethencourt et al.

[2007]; Goyal et al. [2006]. This type of batch pairing calculation commonly appears

in decryption algorithms, and the secret constant variable corresponds to the secret

key. Most of these encryption mechanisms includes a Key Generation Center (KGC),

and secret keys are distributed by KGC. Hence, it is reasonable to assume that

� = e(P,�B) is given by KGC to the delegator, where P is a generator of G1 and

B is the secret constant part of the inputs.

Tsang et al. [2007] presents the first outsourcing protocol for this type, later

Mefenza and Vergnaud [2018] proposes a faster version. Mefenza and Vergnaud

[2018]’s algorithm for PVSC type pairings, namely Algorihm 5, requires computing

n pairings �i = e(Xi, Q0)�1. Using our techniques, one can mitigate the need for

pairing computation. Following the same notation by Mefenza and Vergnaud [2018],

one can modify their Algorithm 5 to remove pairing computations performed by

outsourcer. During the precomputation phase, they choose random Xi 2 G1 and

compute �i = e(Xi, Q0)�1, where Q0 = rQ with random r. Instead, one can get

Xi = xiA with random xi’s and compute �i as �i = �xir, where � = e(P,�B) (in

their notation). In addition to that, they use their PVPC algorithm in PVSC algorithm.

Kalkar et al. [2020] uses Algorithm PVPV, instead. These changes make the algorithm

101

pairing free and improve efficiency.

Public Variable, Public Constant. PVPC type pairings have public variable input on

one side and public constant input on the other side. Some cryptographic schemes

involving this type of pairing calculations are Boldyreva [2002]; Boneh and Franklin

[2001]; Boneh and Boyen [2008]; Boyen and Waters [2007]; Chow [2005]; Yao et al.

[2004]. Tsang et al. [2007] proposed that their SVSC protocol can be used with slight

modifications. Then, Mefenza and Vergnaud [2018] improved the proposed protocol

efficiency wise, but it still requires pairing computation. Kalkar et al. [2020] proposes

the first solution which do not require calculating pairings.
In order to calculate e(Ai, Bi), Mefenza and Vergnaud [2018] proposes the

following mechanism:

i) C selects a random point P0 and precomputes � = e(P0, B).

ii) C sends A1, · · · , An and B to S.

iii) S computes ↵i = e(Ai, B) for i 2 {1, · · · , n}.

iv) C selects n

6.1.2. Multiple Servers

Luo et al. [2016] proposed a scheme for delegation of generic batch pairings.

They use a multiplicative notation for the groups G1 and G2. To be consistent with the

rest of the paper, we summarize their scheme for a single delegation e(A,B), where

A 2 G1 and B 2 G2 in the usual additive notation. The Rand algorithm outputs the

following values

uP, 2uP, vQ, 2vQ,�2vQ, xP, 2xP, yQ, 2yQ,�2yQ,

e(P,Q)2uv, e(P,Q)2xy,

where P is the generator of G1 (of prime order q) and Q is the generator of G2 (of
prime order q) and u, v, x, y 2R Z⇤

q
.

Let T denote the delegator and U1 and U2 be the two untrusted servers. The scheme in
by Luo et al. [2016] is as follows:

i) T queries U1 in random order as follows:

102

U1(A+ uP,B + vQ) ↵1 = e(A+ uP,B + vQ), (6.3)

U1(A+ 2xP,�B � 2yQ) ↵2 = e(A+ 2xP,�B � 2yQ). (6.4)

ii) Then similarly, T queries U2 in random order as follows:

U2(A+ xP,B + yQ) �1 = e(A+ xP,B + yQ), (6.5)

U2(A+ 2uP,�B � 2vQ) �2 = e(A+ 2uP,�B � 2vQ). (6.6)

iii) T verifies

↵2
1 · �2 · e(P,Q)2uv

?
= �2

1 · ↵2 · e(P,Q)2xy. (6.7)

iv) If the verification step fails T outputs ?.

v) Else, T outputs e(A,B) = ↵2
1 · �2 · e(P,Q)2uv.

Now we present an attack on the verifiability of Luo et al. [2016] by Uzunkol

et al. [2017]. Assume U1 is a malicious server. It could successfully guess the positions

of ↵1 and ↵2 with probability 1/2. Instead of sending ↵1 and ↵2, U1 could send the

bogus values ✓1 = ↵1 · C and ✓2 = ↵2 · C2 and would pass the verification step

with probability at least 1/2, where C 2 G3 is any arbitrary bogus value. Then, the

scheme outputs C2e(A,B) instead of e(A,B) with probability at least 1/2. Obviously,

a malicious server U2 could mount a similar simple attack.

This fairly simple attack shows that Luo et al. [2016]’ claim of having a fully verifiable

scheme is unfortunately false.

6.2. Proposed Schemes

Kalkar et al. [2020] brings together the techniques that help to make a batch

pairing outsourcing protocol secure and more efficient. Then by applying these

techniques, we propose solutions for SVSV and SVPV type batch pairing outsource

protocols which had no solutions before. In addition to this, we point out that Shao and

Wei [2018]’s SVPC proposal is susceptible to small subgroup attacks and propose a

secure and more efficient algorithm. For the PVPV type, we introduce a scheme which

103

is 1.5 times more efficient than Mefenza and Vergnaud [2018]’s. We also propose

solutions for the remaining two types, namely PVPC and PVSC, which require no

pairing computations on the end-user side with slightly less computational cost than

the ones proposed by Mefenza and Vergnaud [2018]. All of the proposed protocols

frees the delegator from including pairing arithmetic libraries.
Public Variable, Public Variable. Mefenza and Vergnaud [2018]’s second algorithm
for PVPV type pairings, namely Algorihm 4, requires computing a pairing e(P,R).
This can be avoided. In the following, we give a pairing free and more efficient batch
outsourcing algorithm for PVPV type. This algorithm is the base algorithm for Kalkar
et al. [2020] PVPC, PVSC, and SVSC.

i) C chooses random ai 2 0, . . . , 2t�1.

ii) C computes A00
i
= aiA0

i
for 1  i  n.

iii) C sends A1, . . . , An, A00
1, . . . , A

00
n
, B1, . . . , Bn to S.

iv) S computes and sends ↵i = e(Ai, Bi), ↵0
i
= e(A00

i
, Bi) to C.

v) C verifies ↵i,↵0
i
2 GT for each 1  i  n

vi) C verifies ↵0
i
= ↵ai

i
.

vii) C outputs e(Ai, Bi) as ↵i if all verifications are successful.

One can see that Kalkar et al. [2020] PVPV works correctly if the server S sends the

correct values of ↵1, . . . ,↵n, ↵0
1, . . . ,↵

0
n
.

Theorem 6.1: Kalkar et al. [2020] PVPV is ��verifiable with 1� 2�t.

Proof . Pairing values are outputed as ↵i’s which are checked at step 6 with the

equation ↵0
i
= ↵ai

i
. Probability of accepting a wrong pairing value at this step is 2�t

by the small exponents test. ⌅

Computational cost. Step 2 costs 10.7tnMp (n multiplications on G1 with scalars

of bit-length t), step 5 costs 108nMp(2n group membership tests), and step 5 costs

36tnMp (n exponentiations on GT with exponents of bit-length t). So, total cost is

46.7tn+ 108nMp.

Theorem 6.2: For 128-bit security(t = 128), Kalkar et al. [2020] PVPV is ↵-efficient

with ↵ = 3.76.

104

Secret Variable, Secret Variable. To the best of our knowledge, no delegation protocol
for this type is proposed until Kalkar et al. [2020]. This protocol does not require any
pairing calculations by the end user C under the assumption of e(P,Q) is known by
C, where P and Q are generators of G1 and G2, respectively. In some algorithms, � =

e(P,Q) is given among public parameters. Even if it is not given as a public parameter,
it can be added. Inputs are secret A1, · · · , An, secret B1, · · · , Bn and outputs are
e(A1, B1), · · · , e(An, Bn).

i) C chooses random x, y, y1, y2, . . . , yn 2 Z⇤
q

and precomputes X = xP, Y = yP ,
Y1 = y1Y, . . . , Yn = ynY, � = �xy.

ii) C chooses random ai, bi 2 Z⇤
q

for 1  i  n.

iii) C calculates A0
i
= aiAi, B0

i
= biBi for 1  i  n.

iv) C chooses ci 2 {0, 1, . . . , 2t � 1} for 1  i  n.

v) C computes B00
i
= ciB0

i
+ Yi for 1  i  n.

vi) C computes A =
P

n

i=1 yiA
0
i
�X .

vii) C sends A, Y,A0
1, . . . , A

0
n
, B0

1, . . . , B
0
n
, B00

1 , . . . , B
00
n

to S.

viii) S computes and sends ↵ = e(A, Y),↵i = e(A0
i
, B0

i
),↵0

i
= e(A0

i
, B00

i
) to C.

ix) C verifies ↵,↵i,↵0
i
2 GT . C computes ↵0 =

Q
n

i=1 a
0
i
, ↵00 =

Q
n

i=1 ↵
ci
i

.

x) C verifies ↵0 = ↵↵00�.

xi) C outputs e(Ai, Bi) as ↵1/aibi
i

, if all verifications are successful.

It is easy to see that above protocol works correctly if delegatee sends correct values

of ↵,↵1, . . . ,↵n,↵0
1, . . . ,↵

0
n
. In addition to that, delegatee can only cheat C with a

probability 1/2t.

Theorem 6.3: Kalkar et al. [2020] SVSV is secure and ��verifiable with � = 1� 2�t.

Proof . Final pairing results are calculated as e(Ai, Bi) = ↵1/aibi
i

. In this calculation

ai, bi values are on the client side. Only values that come from the server are

↵i’s. Correctness of these values are checked at step 12 with equation ↵0 = ↵↵00�.

Probability of excepting a wrong ↵i at this step is 1/2t, by the small exponents test. ⌅

Computational cost. Step 1 costs 4933n + 9866 + 16596Mp ((n + 2) multiplications

on G1, 1 exponentiation on GT) which is the precomputation cost. Step 3 costs

105

4933n + 11848nMp (n multiplications on G1, n multiplications on G2), step 5 costs

10.7tn + 29nMp (n multiplications on G2 by scalars of length t, n additions on G2),

step 6 costs 4933n + 11nMp (n multiplications and n additions on G1), step 9 costs

(2n+ 1)54Mp (2n+ 1 group membership tests), step 10 costs (2n� 2)54 + 36tnMp

(2n � 2 multiplications on GT and n exponentiations on GT by exponents of length

t), step 11 costs 108 (2 multiplications on GT), and finally step 12 costs 16596nMp(n

exponetiations on GT). So, total cost is 46.7tn+ 38566n+ 54Mp.

Theorem 6.4: For 128-bit security(t = 128), Kalkar et al. [2020] SVSV is ↵-efficient

with ↵ = 0.51.

Secret Variable, Secret Constant. We proposed a more efficient algorithm for this type.

Kalkar et al. [2020] PVSC can be used as its is for SVSC type. So, we get the following

theorems readily.

Theorem 6.5: The batch pairing delegation for SVSC type is secure and ��verifiable

with � = 1� 2�t.

Theorem 6.6: For 128-bit security(t = 128), the batch pairing delegation algorithm

for SVSC type is ↵-efficient with ↵ = 2.08.

Secret Variable, Secret Variable. To the best of our knowledge, no delegation protocol

for this type is proposed until Kalkar et al. [2020].

For this type of batch pairings, one can use algorithm suggested for SVSV type

by letting bi = 1.

Theorem 6.7: The batch pairing delegation algorithm for SVPV type is secure and

��verifiable with � = 1� 2�t.

Proof . The proof is similar to that of Theorem 6.3. ⌅

Computational cost. Cost of this algorithm is 46.7tn + 33633n + 54Mp which n

multiplications on G1 less than the cost of Kalkar et al. [2020] SVSV.

Theorem 6.8: For 128-bit security(t = 128), the batch pairing delegation algorithm

for SVSV is ↵-efficient with ↵ = 0.58.

106

Secret Variable, Public Constant.

Assume that � = e(P,B) is known by the outsourcer, where B is the public

constant part of the input. When an outsourcer C wants to calculate (Ai, B) for i 

1  n, for some n, C follows:
Kalkar et al. [2020] SVPC

i) C chooses random x1, x2, . . . , xn 2 Z⇤
q

and precomputes X1 = x1P, . . . , Xn =

xnP and !1 = �x1 ,!2 = �x2 , . . . ,!n = �xn .

ii) C calculates A0
i
= Ai �Xi.

iii) C uses Algorithm Algorithm PVPV to get ↵1 = e(A0
1, B), . . . ,↵n = e(A0

n
, B).

iv) C outputs ↵i.!i as e(Ai, B).

It is easy to see that above protocol works correctly if delegatee sends correct values

of ↵1, . . . ,↵n. In addition to that, delegatee can only cheat C with a probability 1/2t.

Theorem 6.9: Kalkar et al. [2020] SVPC is secure and ��verifiable with � = 1� 2�t.

Proof . The proof is similar to that of Theorem 6.1. ⌅

Computational cost. Step 1 costs 4933n + 16596nMp (n multiplications on G1 and

n exponentiations on GT), so cost of precomputations is 21529nMp. Step 2 costs

11nMp (n additions on G1), step 3 costs 46.7tn + 108nMp (Algorithm PVPV), and

finally step 4 costs 54nMp. So, total cost is 46.7tn+ 173nMp.

Theorem 6.10: For 128-bit security(t = 128), the batch pairing delegation algorithm

for PVPC type is ↵-efficient with ↵ = 3.72.

Public Variable, Secret Constant.
Inputs are public A1, · · · , An, secret constant B and outputs are

e(A1, B), · · · , e(An, Q)

i) C chooses random b, x1, x2, . . . , xn 2 Z⇤
q

and precomputes B0 = bB, Xi =

xiP,�i = �xib for 1  i  n.

ii) C computes A0
i
= b�1Ai �Xi for 1  i  n.

iii) C uses Algorithm PVPV to compute ↵i = e(A0
i
, B0) for 1  i  n.

iv) C computes e(Ai, Q) as ↵i�i.

107

Theorem 6.11: Kalkar et al. [2020] PVSC is secure and ��verifiable with � = 1�2�t.

Proof . The proof is similar to that of Theorem 6.1. ⌅

Computational cost. Step 1 costs 11848+4933n+16596nMp(1 multiplication on G2,

n multiplications on G1 and n exponentiations on GT). So, cost of precomputation

step is 21529n + 11848Mp. Step 2 costs 4933n + 11nMp(n multiplications and n

additions on G1), step 3 costs 46.7tn + 9nMp as calculated in Algorithm PVPV, and

finally step 4 costs 54nMp(n multiplications on GT). Total cost of Algorithm PVSC

is 46.7tn+ 5007nMp.

Theorem 6.12: For 128-bit security(t = 128), the batch pairing delegation algorithm

for PVSC type is ↵-efficient with ↵ = 2.08.

Public Variable, Public Constant.

Kalkar et al. [2020] PVPV can be used for PVPC type pairings by letting

B1, . . . , Bn = B.

Theorem 6.13: The batch pairing delegation algorithm for PVPC type is ��verifiable

with � = 1� 2�t.

Proof . The proof is similar to that of Theorem 6.1 ⌅

Theorem 6.14: For 128-bit security(t = 128), the batch pairing delegation algorithm

for PVPC type is ↵-efficient with ↵ = 3.76.

6.3. Comparison

We have used MIRACL library for efficiency comparison of the mentioned

protocols. We ran our tests 10000 times and calculated average timing. We used

optimal Ate-pairing on the curves BN256, KSS384, and BLS512 since cheap group

membership tests are possible. Please note that even though these curves are not

subgroup secure, cost of operations are the same with their subgroup secure versions,

except for pairing. Pairing costs slightly more on the subgroup secure versions of these

curves Barreto et al. [2015]. Since cost of group operations are the same, our efficiency

results hold for the subgroup secure versions too.

108

Table 6.1: Efficiency of batch pairing algorithms.

Mefenza and Vergnaud’s algorithm needs 1 constant pairing computation. We did not
take it into account while doing calculations since its efficiency changes depending on the
number of pairings outsourced.

While making calculations, we used 100-bit scalars for the curve BN256

since its security is shown to be 2100 Barbulescu and Duquesne [2019], and 128-bit

scalars for the curves KSS384 and BLS512 whenever multiplication/exponentiation

by a small scalar is mentioned.

Note that, for PVPC and PVSC types Mefenza et. al. Mefenza and

Vergnaud [2018] use endomorphisms and achieve 128-bit security with t = 126. Same

thing can be applied to our algorithms, too. For simplicity, we calculate efficiency of

the algorithms without taking use of endomorphisms into account.

Efficiency of the protocols are given in Table 6.1, where the most efficient

protocol for each type is shown with blue. Efficiency results are calculated by cost of

n pairing computations divided by cost of outsourcing n pairings. So, a greater value

means a more efficient scheme.

109

7. CONCLUSION

This thesis focuses on pairing based cryptography and its applications. After

investigating pairings, pairing friendly curves, and pairing based cryptographic

primitives, we proposed two applications involving pairings; an electronic checkbook

scheme and a blockchain-based electronic exam. Moreover, we investigated

outsourcing of pairing computation, gave a literature survey and proposed the most

efficient algorithms for batch pairing outsourcing.

Electronic checkbook schemes were proposed throughout the years,

however there were no formal security definitions regarding e-checkbooks. This

thesis fills this gap and proposes game-based security definitions for e-checkbook

unforgeability, e-check unforgeability and non-manipulability, and e-check anonymity

properties. In addition to that, it proposes a transferable mechanism with privacy in

mind. The proposed scheme prevents someone to forge a valid checkbook or check,

and manipulate an e-check while being still efficient than most of the previously

proposed schemes. Regarding electronic checkbook schemes, next steps would be

creating a blockchain based checkbook scheme.

The second contribution of this thesis is proposing a blockchain based

electronic exam that leverages verifiable credentials. The proposed scheme achieves

security and full privacy of the candidates/examiners and can easily be audited in

case of any dispute since the data always remains, unchanged due to the nature of

blockchain. We believe that, registration phase can be realized without introducing

other schemes, blind signatures in this case, using solely self-sovereign identity

concepts while satisfying anonymity of the candidates and also guaranteeing unique

enrollment of a candidate. This remains as a future work.

Even though pairing based cryptography promises many applications,

there are some cases that a limited device can not leverage the benefits of pairing based

cryptography. This device may have either have low storage or low power capacity. If

it has low storage, then deploying pairing libraries may be infeasible. If it has low

power, the power may not be enough for pairing computation. The last contribution

of this thesis is giving a literature survey on secure delegation of pairing computation,

stating attacks on some of the given protocols, and comparing their efficiency. In the

110

case of batch pairing delegation, this thesis also proposes mechanisms for all of the

batch pairing types depending on the inputs to the pairing function being secret/public,

constant, verifiable. For some types, there were no propositions up until this thesis,

and for the others, this thesis proposes the most efficient mechanisms and removes the

need of installing pairing libraries. Regarding pairing outsource, future work would

be investigating how these techniques can be applied to zero knowledge proofs or

researching if there is a way to not outsource the pairing computation itself but the

computation of Miller loop and final exponentiation.

111

REFERENCES

Ahmed F. R. A., Ahmed T. E., Saeed R. A., Alhumyani H., Abdel-Khalek S.,
Abu-Zinadah H. (2021). "Analysis and challenges of robust e-exams performance
under covid-19". Results in Physics, 23:103987.

Androulaki E., Barger A., Bortnikov V., Cachin C., Christidis K., De Caro A.,
Enyeart D., Ferris C., Laventman G., Manevich Y. (2018). "Hyperledger fabric: a
distributed operating system for permissioned blockchains". In Proceedings of the
13th EuroSys conference, pages 1–15.

Arabacı O., Kiraz M. S., Sertkaya I., Uzunkol, O. (2015). "More efficient secure
outsourcing methods for bilinear maps". Cryptology ePrint Archive, Report 2015/960.

Baek J., Zheng, Y. (2004). "Identity-based threshold decryption". Public Key
Cryptography – PKC 2004, pages 262–276, Springer Berlin Heidelberg.

Barbulescu R., Duquesne, S. (2019). "Updating key size estimations for pairings".
Journal of Cryptology, 32(4):1298–1336.

Barreto P. S. L. M., Costello C., Misoczki R., Naehrig M., Pereira G. C. C. F.,
Zanon G. (2015). "Subgroup security in pairing-based cryptography". Progress in
Cryptology – LATINCRYPT 2015, pages 245–265, Cham. Springer International
Publishing.

Barreto P. S. L. M., Galbraith S. D., hÉigeartaigh C. Ó., Scott M. (2007). "Efficient
pairing computation on supersingular abelian varieties". Designs, Codes and
Cryptography, 42(3):239–271.

Barreto P. S. L. M., Libert B., McCullagh N., Quisquater J.-J. (2005). "Efficient
and provably-secure identity-based signatures and signcryption from bilinear maps".
Advances in Cryptology - ASIACRYPT 2005, pages 515–532. Springer Berlin
Heidelberg.

Bella G., Giustolisi R., Lenzini G., Ryan P. Y. (2017). "Trustworthy exams
without trusted parties". Computers & Security, 67:291–307.

Bellare M., Garay J. A., Rabin T. (1998). "Fast batch verification for modular
exponentiation and digital signatures". Advances in Cryptology — EUROCRYPT’98,
pages 236–250. Springer Berlin Heidelberg.

Bethencourt J., Sahai A., Waters B. (2007). "Ciphertext-policy attribute-based
encryption". In 2007 IEEE Symposium on Security and Privacy (SP ’07), pages
321–334.

Beuchat J.L., González-Díaz J.E., Mitsunari S., Okamoto E., Rodríguez-Henríquez
F., Teruya T. (2010). "High-speed software implementation of the optimal ate pairing
over barreto–naehrig curves". Pairing-Based Cryptography - Pairing 2010: 4th

112

International Conference. Proceedings, pages 21–39. Springer Berlin Heidelberg.

Blanchet B. (2014). "Automatic Verification of Security Protocols in the Symbolic
Model: The Verifier ProVerif".

Boldyreva A. (2002). "Threshold signatures, multisignatures and blind signatures
based on the gap-diffie-hellman-group signature scheme". Public Key Cryptography
— PKC 2003, pages 31–46. Springer Berlin Heidelberg.

Boneh D., Boyen X. (2004). "Efficient selective-id secure identity-based encryption
without random oracles". Advances in Cryptology - EUROCRYPT 2004, pages
223–238. Springer Berlin Heidelberg.

Boneh D., Boyen X. (2008). "Short signatures without random oracles and the
sdh assumption in bilinear groups". Journal of Cryptology, 21(2):149–177.

Boneh D., Drijvers M., Neven G. (2018). "Compact multi-signatures for smaller
blockchains". Advances in Cryptology – ASIACRYPT 2018, pages 435–464.

Boneh D., Franklin M. (2001). "Identity-based encryption from the weil pairing".
Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer
Science, pages 213–229. Springer Berlin Heidelberg.

Boneh D., Gentry C., Lynn B., Shacham H. (2003). "Aggregate and verifiably
encrypted signatures from bilinear maps". Advances in Cryptology – EUROCRYPT
2003, pages 416–432. Springer Berlin Heidelberg.

Boneh D., Lynn B., Shacham H. (2001). "Short signatures from the weil pairing".
Advances in Cryptology – ASIACRYPT 2001, pages 514–532. Springer Berlin
Heidelberg.

Boneh D., Waters B. (2006). "A fully collusion resistant broadcast, trace, and
revoke system". In Proceedings of the 13th ACM Conference on Computer and
Communications Security, CCS ’06, pages 211–220, New York, NY, USA.

Boneh D., Waters, B. (2007). "Conjunctive, subset, and range queries on encrypted
data". Theory of Cryptography, pages 535–554. Springer Berlin Heidelberg.

Boyen X. (2003). "Multipurpose identity-based signcryption. Advances in
Cryptology" - CRYPTO 2003, pages 383–399. Springer Berlin Heidelberg.

Boyen X., Waters, B. (2007). "Full-domain subgroup hiding and constant-size
group signatures". Public Key Cryptography – PKC 2007, pages 1–15. Springer
Berlin Heidelberg.

Boyk V., Peinado M., Venkatesan R. (1998). "Speeding up discrete log and
factoring based schemes via precomputations". In Advances in Cryptology —
EUROCRYPT’98: International Conference on the Theory and Application of

113

Cryptographic Techniques Espoo, Finland, May 31 – June 4, 1998 Proceedings, pages
221–235. Springer Berlin Heidelberg.

Brands S. (1993). "An Efficient Off-line Electronic Cash System Based On The
Representation Problem". Technical report, Centrum Wiskunde & Informatica (CWI).

Brickell E. F., Gordon D. M., McCurley K. S., Wilson D. B. (1993). "Fast
exponentiation with precomputation". In Advances in Cryptology — EUROCRYPT’
92: Workshop on the Theory and Application of Cryptographic Techniques
Balatonfüred, Hungary, May 24–28, 1992 Proceedings, pages 200–207. Springer
Berlin Heidelberg.

Camenisch J., Drijvers M., Lehmann A. (2016). "Anonymous Attestation Using the
Strong Diffie Hellman Assumption Revisited". In TRUST, volume 9824 of LNCS,
pages 1–20. Springer.

Canard S., Devigne J., Sanders O. (2014). "Delegating a pairing can be both
secure and efficient". Applied Cryptography and Network Security: 12th International
Conference, ACNS 2014, Lausanne, Switzerland, June 10-13, 2014. Proceedings,
pages 549–565, Cham. Springer International Publishing.

Castella-Roca J., Herrera-Joancomarti J., Dorca-Josa A. (2006). "A secure e-exam
management system". In First International Conference on Availability, Reliability
and Security (ARES’06), pages 8–pp. IEEE.

Catalano T., Gatti L. (2017). "Representing teachers as criminals in the news:
A multimodal critical discourse analysis of the atlanta schools’ cheating scandal".
Social Semiotics, 27(1):59–80.

Cavallo B., Di Crescenzo G., Kahrobaei D., Shpilrain V. (2015). "Efficient and
secure delegation of group exponentiation to a single server". In Radio Frequency
Identification: 11th International Workshop, RFIDsec 2015, New York, NY, USA,
June 23-24, 2015, Revised Selected Papers, pages 156–173, Cham. Springer
International Publishing.

" Chang C.-C., Chang S.-C., Lee J.-S. (2009). "An on-line electronic check
system with mutual authentication". Computers & Electrical Engineering, 35(5):757
– 763.

Chang C.-C., Chang S.-C., Wu Y.-C. (2016). "Novel electronic check mechanism
using elliptic curve cryptosystem". Journal of Computers, 27(3):111–122.

Chaum D., den Boer B., van Heyst E., Mjølsnes S., Steenbeek A. (1990a).
"Efficient offline electronic checks". Advances in Cryptology — EUROCRYPT ’89,
pages 294–301. Springer Berlin Heidelberg.

Chaum D., Fiat A., Naor M. (1990b). "Untraceable electronic cash". Advances
in Cryptology — CRYPTO’ 88, pages 319–327. Springer New York.

114

Chen C.-L., Wu C.-H., Lin W.-C. (2010). "Improving an on-line electronic
check system with mutual authentication". In Proceedings of International Conference
on Advanced Information Technologies (AIT 2010).

Chen L., Kudla C. (2003). "Identity based authenticated key agreement protocols
from pairings". In 16th IEEE Computer Security Foundations Workshop, 2003.
Proceedings., pages 219–233.

Chen T.-H., Yeh S.-C., Liao K.-C., Lee W.-B. (2009). "A practical and efficient
electronic checkbook". Journal of Organizational Computing and Electronic
Commerce, 19(4):285–293.

Chen W.-K. (2005). "Efficient on-line electronic checks". Applied Mathematics
and Computation, 162(3):1259 – 1263.

Chen X., Susilo W., Li J., Wong D. S., Ma J., Tang S., Tang, Q. (2015). "Efficient
algorithms for secure outsourcing of bilinear pairings". Theoretical Computer Science,
562(Supplement C):112 – 121.

Chevallier-Mames B., Coron J.-S., McCullagh N., Naccache D., Scott M. (2005).
"Secure delegation of elliptic-curve pairing". Cryptology ePrint Archive, Report
2005/150.

Chow S. S. M. (2005). "Verifiable pairing and its applications". In Proceedings
of the 5th International Conference on Information Security Applications, WISA’04,
pages 170–187, Berlin, Heidelberg. Springer-Verlag.

Chow S. S. M., Boyd C., Nieto J. M. G. (2006). "Security-mediated certificateless
cryptography". Public Key Cryptography – PKC 2006, pages 508–524. Springer
Berlin Heidelberg.

Deborah L J., Rawal B. S., Wang Y. (2019). "Secure online examination system
for e-learning". In 2019 IEEE Canadian Conference of Electrical and Computer
Engineering (CCECE), pages 1–4. IEEE.

Dent A. W. (2008). "A survey of certificateless encryption schemes and security
models". International Journal of Information Security, 7(5):349–377.

Diffie W., Hellman M. (1976). "New directions in cryptography". IEEE transactions
on Information Theory, 22(6):644–654.

Dong M., Ren Y., Zhang X. (2017). "Fully verifiable algorithm for secure
outsourcing of bilinear pairing in cloud computing". KSII Transactions on Internet
and Information Systems, pages 3648–3663.

Dreier J., Giustolisi R., Kassem A., Lafourcade P., Lenzini G., Ryan P. Y. (2014).
"Formal analysis of electronic exams". In 2014 11th International Conference on
Security and Cryptography (SECRYPT), pages 1–12. IEEE.

115

El Mrabet N., Joye M. (2017). "Guide to Pairing-based Cryptography". Chapman and
Hall/CRC.

ElGamal T. (1985). "A public key cryptosystem and a signature scheme based
on discrete logarithms". IEEE transactions on information theory, 31(4):469–472.

Galbraith S. D., Paterson K. G., Smart N. P. (2008). "Pairings for cryptographers".
Discrete Applied Mathematics, 156(16):3113–3121.

Gentry C. (2006). "Practical identity-based encryption without random oracles".
Advances in Cryptology - EUROCRYPT 2006, pages 445–464. Springer Berlin
Heidelberg.

Girault M., Lefranc D. (2005). "Server-aided verification: Theory and practice".
Advances in Cryptology - ASIACRYPT 2005, pages 605–623. Springer Berlin
Heidelberg.

Giustolisi R., Iovino V., Lenzini G. (2017). "Privacy-preserving verifiability-a
case for an electronic exam protocol". In SECRYPT, pages 139–150.

Giustolisi R., Lenzini G., Bella G. (2013). "What security for electronic exams?" In
2013 International Conference on Risks and Security of Internet and Systems(CRiSIS),
pages 1–5. IEEE.

Giustolisi R., Lenzini G., Ryan P. Y. (2014). "Remark!: A secure protocol for
remote exams". In Cambridge International Workshop on Security Protocols, pages
38–48. Springer.

Goldwasser S., Micali S., Rivest R. L. (1988). "A digital signature scheme
secure against adaptive chosen-message attacks". SIAM J. Comput., 17(2):281–308.

Goyal V., Pandey O., Sahai A., Waters B. (2006). "Attribute-based encryption
for fine-grained access control of encrypted data". In Proceedings of the 13th ACM
Conference on Computer and Communications Security, CCS ’06, pages 89–98, New
York, NY, USA. ACM.

Hess F., Smart N., Vercauteren F. (2006). "The eta pairing revisited". Information
Theory, IEEE Transactions on, 52(10):4595–4602.

Hinarejos M. F., Ferrer-Gomila J., Draper-Gil G., Huguet-Rotger L. (2012).
"Anonymity and transferability for an electronic bank check scheme". In 2012 IEEE
11th International Conference on Trust, Security and Privacy in Computing and
Communications, pages 427–435.

Hohenberger S., Lysyanskaya A. (2005). "How to securely outsource cryptographic
computations". In Theory of Cryptography, Second Theory of Cryptography
Conference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005, Proceedings,
volume 3378 of Lecture Notes in Computer Science, pages 264–282. Springer.

116

Huszti A., Petho A. (2010). "A secure electronic exam system". Publicationes
Mathematicae Debrecen, 77(3-4):299–312.

Joux A. (2000). "A one round protocol for tripartite diffie–hellman". Algorithmic
Number Theory, pages 385–393. Springer Berlin Heidelberg.

Kalkar O., Kiraz M. S., Sertkaya I., Uzunkol O. (2018). "A more efficient 1-checkable
secure outsourcing algorithm for bilinear maps". Proceedings of The 11th WISTP
International Conference on Information Security Theory and Practice (WISTP’2017).

Kalkar O., Sertkaya I. (2022) "Permissioned blockchain based remote electronic
examination". Turkish Journal of Electrical Engineering and Computer Sciences, Vol.
30, No. 2, Article 3.

Kalkar O., Sertkaya I., Kavut S. T. (2020). "On the batch outsource of pairing
computations". The Computer Journal.

Kang B. G., Lee M. S., Park J. H. (2005). "Efficient delegation of pairing
computation". Cryptology ePrint Archive, Report 2005/259.

Kausar S., Huahu X., Ullah A., Wenhao Z., Shabir M. Y. (2020). "Fog-assisted
secure data exchange for examination and testing in e-learning system". Mobile
Networks and Applications, pages 1–17.

Kim S., Oh H. (2002). "A new electronic check system with reusable refunds".
International Journal of Information Security, 1(3):175–188.

Kiyomura Y., Inoue A., Kawahara Y., Yasuda M., Takagi T., Kobayashi T. (2017).
"Secure and efficient pairing at 256-bit security level". In Applied Cryptography and
Network Security: 15th International Conference, ACNS 2017, Kanazawa, Japan, July
10-12, 2017, Proceedings, pages 59–79, Applied Cryptography and Network Security:
15th International Conference, ACNS 2017. Springer International Publishing.

Koblitz N. (1987). "Elliptic curve cryptosystems". Mathematics of computation,
48(177):203–209.

Koblitz N., Menezes A. (2005). "Pairing-Based Cryptography at High Security
Levels". In Cryptography and Coding, volume 3796 of Lecture Notes in Computer
Science, pages 13–36. Springer Berlin Heidelberg.

Luo X., Yang X., Niu X. (2018). "An efficient and secure outsourcing algorithm
for bilinear pairing computation". In Advances in Internetworking, Data & Web
Technologies: The 5th International Conference on Emerging Internetworking, Data
& Web Technologies (EIDWT-2017), pages 328–339, Cham. Springer International
Publishing.

Luo Y., Fu S., Huang K., Wang D., Xu M. (2016). "Securely outsourcing
of bilinear pairings with untrusted servers for cloud storage". In 2016 IEEE

117

Trustcom/BigDataSE/ISPA, pages 623–629.

Malone-Lee J. (2002). "Identity-based signcryption". Cryptology ePrint Archive,
Report 2002/098.

Mathapati M., Kumaran T. S., Kumar A. K., Kumar, S. V. (2017). "Secure
online examination by using graphical own image password scheme". In 2017 IEEE
International Conference on Smart Technologies and Management for Computing,
Communication, Controls, Energy and Materials (ICSTM), pages 160–164. IEEE.

McCullagh N., Barreto P. S. L. M. (2004). "Efficient and forward-secure identity-based
signcryption". Cryptology ePrint Archive, Report 2004/117.

Mefenza T., Vergnaud D. (2018). "Verifiable outsourcing of pairing computations"

. Menezes A., Okamoto T., Vanstone S. A. (1993). "Reducing elliptic curve
logarithms to logarithms in a finite field". IEEE Trans. Information Theory,
39(5):1639–1646.

Miller V. S. (1985). "Use of elliptic curves in cryptography". In Conference on
the theory and application of cryptographic techniques, pages 417–426. Springer.

Mitchell I., Hara S., Sheriff M. (2019). "dapper: Decentralised application for
examination review". In 2019 IEEE 12th International Conference on Global Security,
Safety and Sustainability (ICGS3), pages 1–14. IEEE.

Muzaffar A. W., Tahir M., Anwar M. W., Chaudry Q., Mir S. R., Rasheed Y.
(2021). "A systematic review of online exams solutions in e-learning: Techniques,
tools, and global adoption". IEEE Access, 9:32689–32712.

Pasupathinathan V., Pieprzyk J., Wang H. (2005). "Privacy enhanced electronic
cheque system". In Seventh IEEE International Conference on E-Commerce
Technology (CEC’05), pages 431–434.

Plateaux A., Lacharme P., Coquet V., Vernois S., Murty K., Rosenberger C.
(2013). "An e-payment architecture ensuring a high level of privacy protection".
Security and Privacy in Communication Networks, pages 305–322, Cham. Springer
International Publishing.

Rackoff C., Simon D. R. (1992). "Non-interactive zero-knowledge proof of
knowledge and chosen ciphertext attack". Advances in Cryptology — CRYPTO ’91,
pages 433–444. Springer Berlin Heidelberg.

Ren Y., Ding N., Wang T., Lu H., Gu D. (2016). "New algorithms for verifiable
outsourcing of bilinear pairings". Science China Information Sciences, 59(9):99103.

Ren Y., Dong M., Niu Z., Du X. (2017). "Non-interactive verifiable outsourcing
algorithm for bilinear pairing with improved checkability". Security and

118

Communication Networks, pages 1–9.

Sakai R., Kasahara M. (2000). "Cryptosystems based on pairing" (in japanese).
In Symposium on Cryptography and Information Security SCIS’00, pages 26–28.

Schnorr C.-P. (1989). "Efficient identification and signatures for smart cards".
In Conference on the Theory and Application of Cryptology, pages 239–252. Springer.

Scott M., Costigan N., Abdulwahab W. (2006). "Implementing cryptographic
pairings on smartcards". In Cryptographic Hardware and Embedded Systems - CHES
2006, volume 4249 of Lecture Notes in Computer Science, pages 134–147. Springer
Berlin Heidelberg.

Sertkaya I., Kalkar O. (2019). "An efficient electronic checkbook scheme with
mutual authentication". Suleyman Demirel University Journal of Natural and Applied
Sciences, pages 590 – 596.

Sertkaya I., Kalkar O. (2020). "Security Analysis and Attacks on Some Electronic
Checkbook Schemes". under review.

Sertkaya I., Kalkar O. (2021). "A privacy enhanced transferable electronic checkbook
scheme". Wireless Personal Communications, pages 1–27.

Shao J., Wei G. (2018). "Secure outsourced computation in connected vehicular cloud
computing". IEEE Network, 32(3):36–41.

Shi E., Bethencourt J., Chan T.-H. H., Song D., Perrig A. (2007). "Multi-dimensional
range query over encrypted data". In Proceedings of the 2007 IEEE Symposium on
Security and Privacy, SP ’07, pages 350–364, Washington, DC, USA. IEEE Computer
Society.

Silverman J. (2009). "The Arithmetic of Elliptic Curves". Graduate Texts in
Mathematics. Springer New York.

Sukadarmika G., Hartati R. S., Sastra N. P. (2018). "Introducing tamex model
for availability of e-exam in wireless environment". In 2018 International Conference
on Information and Communications Technology (ICOIACT), pages 163–167. IEEE.

Tian H., Zhang F., Ren, K. (2015). "Secure bilinear pairing outsourcing made
more efficient and flexible". In Proceedings of the 10th ACM Symposium on
Information, Computer and Communications Security, ASIA CCS ’15, pages
417–426, New York, NY, USA. ACM.

Traoré I., Nakkabi Y., Saad S., Sayed B., Ardigo J. D., de Faria Quinan P. M. (2017).
"Ensuring online exam integrity through continuous biometric authentication". In
Information Security Practices, pages 73–81. Springer.

Tsang P. P., Chow S. S. M., Smith S. W. (2007). "Batch pairing delegation".

119

Advances in Information and Computer Security, pages 74–90. Springer Berlin
Heidelberg.

Uzunkol O., Kalkar O., Sertkaya I. (2017). "Fully verifiable secure delegation
of pairing computation: Cryptanalysis and an efficient construction". Cryptology
ePrint Archive, Report 2017/1173.

Wang Y., Manulis M., Au M. H., Susilo W. (2013). "Relations among privacy
notions for signcryption and key invisible "sign-then-encrypt”". Cryptology ePrint
Archive, Report 2013/230.

Wang Y., Wu Q., Wong D. S., Qin B., Chow S. S. M., Liu Z., Tan X. (2014).
"Securely outsourcing exponentiations with single untrusted program for cloud
storage". In Computer Security - ESORICS 2014: 19th European Symposium
on Research in Computer Security, Wroclaw, Poland, September 7-11, 2014.
Proceedings, Part I, pages 326–343, Cham. Springer International Publishing.

Yao D., Fazio N., Dodis Y., Lysyanskaya A. (2004). "Id-based encryption for
complex hierarchies with applications to forward security and broadcast encryption".
In Proceedings of the 11th ACM Conference on Computer and Communications
Security, CCS ’04, pages 354–363, New York, NY, USA. ACM.

Yu H.-C., Hsi K.-H., Kuo P.-J. (2002). "Electronic payment systems: an analysis and
comparison of types". Technology in Society, 24(3):331 – 347.

120

BIOGRAPHY

Öznur Kalkar achieved her Bachelor of Science and Master of Science degree

in Mathematics at Koc University in 2012 and 2014, respectively. She is pursuing her

PhD in Math at Gebze Technical University. If you are reading this, she completed her

PhD studies. She worked at TUBITAK BILGEM as an applied cryptographer during

2015-2022 with a demonstrated history of cryptographic protocol design. During

2018-2022, she worked at TUBITAK BILGEM Blockchain Research Lab and was

responsible for designing cryptographic protocols on blockchain and cryptocurrencies.

Since 2022 March, she is working as an applied cryptographer at Silent Protocol. She

is skilled in elliptic curve and pairing based cryptography, in particular zero-knowledge

proofs, threshold cryptography, and anonymous credentials.

121

APPENDICES

Appendix : Publications

Kalkar Ö., Sertkaya İ., (2021), "A privacy enhanced transferable electronic checkbook
scheme", Wireless Personal Communications, 123, 2895–2921.

Sertkaya İ., Kalkar Ö., (2022), "Permissioned blockchain based remote electronic
examination", Turkish Journal of Electrical Engineering & Computer Sciences, Vol.
30: No. 2, Article 3

Kalkar Ö., Sertkaya İ., Tutdere S., (2022), "On the batch outsource of pairing
computations", The Computer Journal

122

	ÖZET
	SUMMARY
	ACKNOWLEDGMENTS
	TABLE of CONTENTS
	LIST of ABBREVIATIONS and ACRONYMS
	LIST of FIGURES
	LIST of TABLES
	1. INTRODUCTION
	2. FOUNDATIONS
	Notation
	Cryptographic Primitives
	Elliptic Curves
	Elliptic Curve Pairings
	Pairing Types

	Pairing Based Cryptography
	Identity Based Encryption
	Boneh-Franklin Identity Based Encryption

	Digital Signature
	BLS Signature

	Signcryption
	BLCQ Signcryption

	3. ELECTRONIC CHECKBOOK
	Electronic Checkbook Scheme
	Requirements
	Security Definitions

	Proposed Scheme
	Security & Performance Analysis

	4. ELECTRONIC EXAM
	Electronic Checkbook Scheme
	Requirements

	Proposed Scheme
	Security & Performance Analysis

	5. OUTSOURCING PAIRING COMPUTATIONS
	Security Model
	Protocols
	Single Server
	Comparison

	Multiple Servers

	Proposed Scheme
	Rand: Proposed Scheme's Precomputation Step
	VerPair: A Fully Verifiable Secure Delegation Scheme

	Security & Performance Analysis
	Comparison

	6. BATCH OUTSOURCING PAIRING COMPUTATIONS
	Protocols
	Single Server
	Multiple Servers

	Proposed Schemes
	Comparison

	7. CONCLUSION
	REFERENCES
	REFERENCES
	BIOGRAPHY
	APPENDICES

