OVERLAPPING LATTICE MODELING FOR CONCRETE FRACTURE
SIMULATIONS USING SEQUENTIALLY LINEAR ANALYSIS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

BEYAZIT BESTAMI AYDIN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
CIVIL ENGINEERING

JANUARY 2017






Approval of the thesis:

OVERLAPPING LATTICE MODELING FOR CONCRETE FRACTURE
SIMULATIONS USING SEQUENTIALLY LINEAR ANALYSIS

submitted by BEYAZIT BESTAMI AYDIN in partial fulfillment of the
requirements for the degree of Master of Science in Civil Engineering

Department, Middle East Technical University by,
Prof. Dr. Giilbin Dural Unver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Ismail Ozgiir Yaman
Head of Department, Civil Engineering

Prof. Dr. Baris Binici
Supervisor, Civil Engineering Dept.,, METU

Prof. Dr. Kagan Tuncay
Co-Supervisor, Civil Engineering Dept., METU

Examining Committee Members:
Prof. Dr. Erdem Canbay
Civil Engineering Dept., METU

Prof. Dr. Baris Binici
Civil Engineering Dept., METU

Prof. Dr. Kagan Tuncay
Civil Engineering Dept., METU

Assoc. Prof. Dr. Yalin Arici
Civil Engineering Dept., METU

Assoc. Prof. Dr. Tolga Akis
Civil Engineering Dept., Atilim University

Date: Jan 18, 2017



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last name: Beyazit Bestami Aydin

Signature :



ABSTRACT

OVERLAPPING LATTICE MODELING FOR CONCRETE FRACTURE
SIMULATIONS USING SEQUENTIALLY LINEAR ANALYSIS

Aydin, Beyazit Bestami
M.S., Department of Civil Engineering
Supervisor: Prof. Dr. Baris Binici

Co-advisor: Prof. Dr. Kagan Tuncay

January 2017, 81 pages

Estimation of the crack location and width in concrete structures is important due to
the sustained damage in structures as a result of extreme loads and aging. The location
and width of cracks are the most influential parameters for making decisions on the
structure service life. Despite significant developments, the computational modelling

of concrete fracture initiation and propagation are still challenging tasks.

Many different numerical approaches, most of them based on finite element analysis,
have been used in the past employing the smeared or discrete cracking approaches.
Such models lack the ability to capture local nature of cracking, the direction of crack
propagation and require incorporating ad hoc approaches with extensive calibrations
with tests. Recent studies in the last decade have focused on using particle based
simulation methods (such as the discrete element method, the lattice-based methods,
smoothed particle hydrodynamics, etc) to capture the local character of fracture

phenomenon. Among these approaches, lattice modeling and particle based method of



peridynamics have been used as non-local fracture simulation tools. Peridynamics can
be viewed as an overlapping lattice approach in which continuum is discretized using
pin connected bar elements extending over a predefined horizon. The advantages of
these tools are the relative ease of modeling and the simulation of crack propagation
using a few key parameters with the ability to bridge various scales from micro to
macro levels. In this work, an overlapping lattice approach is proposed, where the
continuum is discretized using truss elements extending over a predefined horizon
similar to the concept used in peridynamics with the sequentially linear analysis (SLA)
technique which is a non-iterative direct solution technique for nonlinear problems.
The key difference of our application from the literature is the use of a classical
structural analysis with SLA for the simulations as opposed to a particle based
approach and a novel calibration of the constitutive model parameters using tension
test results. Simulation results for several reinforced concrete (RC) and unreinforced
concrete tests focusing on the influence of the mesh size, horizon and the softening
functions on the sensitivity of results demonstrate the ability of accurately predicting
the direction of crack propagation and the crack widths with the proposed modeling

approach with a rather simple and intuitive method.

Keywords: Concrete, fracture, peridynamic modeling, direct tension
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SIRALI LINEER ANALIZ ILE BETON CATLAMA SIMULASYONLARI
ICIN UST USTE BINDIRILMIS KAFES MODELI

Aydin, Beyazit Bestami
Yiiksek Lisans, insaat Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Baris Binici

Ortak Tez Yoneticisi: Prof. Dr. Kagan Tuncay

Ocak 2017, 81 sayfa

Beton yapilarda catlak yerinin ve genisliginin tahmin edilmesi, asir1 yiiklerin ve
yipranmanin sonucu olarak yapilarda siirekli hasarin olmasi nedeniyle 6nemlidir.
Catlaklarin yeri ve genisligi, yapt Oomrii hakkinda karar vermek i¢in en etkili
parametrelerdir. Onemli gelismelere ragmen, betonun kirilmaya baslamasmin ve

catlagin yayiliminin bilgisayar modellemesi hala zorlu gorevlerdir.

Cogu sonlu elemanlar analizine dayanan birgok farkli sayisal yaklagim, ge¢cmiste
daginik ve ayrik ¢atlama yaklagimiyla kullanilmistir. Bu tiir modeller, ¢atlamanin yerel
dogasini, ¢atlak yayiliminin yoniinii yakalamada eksiktir ve testlerle gerceklestirilecek
kapsamli kalibrasyonlar ile gegici yaklasimlar gerektirir. Son on yildaki ¢alismalar,
kirik olgusunun yerel karakterini yakalamak ic¢in parcacik tabanli simiilasyon

yontemlerini (ayrik elemanlar yontemi, kafes tabanli yontemler, diizlestirilmis

parcacik hidrodinamigi, vb.) kullanmaya odaklanmistir. Bu yaklagimlar arasinda, yerel
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olmayan kirilma simiilasyon aracglar1 olarak kafes modellemesi ve pargacik tabanh
peridinamik yontem kullanilmigtir. Peridinamik, 6nceden tanimlanmig bir evrende
uzanan pim baglantili gubuk elemanlar1 kullanilarak siirekliligin ayriklagtirildigr st
iiste binmis kafes yaklagimi olarak goriilebilir. Bu araglarin avantaji, birka¢ 6nemli
parametre ile ¢atlak yayilimi simiilasyonu ve modellemesinin nispeten kolay olmasi
ve mikrodan makroya cesitli dlgeklere koprii kurma yetenegidir. Bu ¢aligmada, sirali
dogrusal analiz (SLA) teknigi ile peridinamikte kullanilan konsepte benzer sekilde
onceden tanimlanmig bir evrende uzanan bag elemanlar1 kullanilarak, devamliligin
ayristirildigr s liste binmis bir kafes yaklasimi oOnerilmistir. Uygulamamizin
literatiirdeki en 6nemli farki, bir pargacik tabanl yaklasimin aksine simiilasyonlar i¢in
SLA ile klasik bir yapisal analizin kullanilmasi ve gerilme testi sonuglarini kullanarak
kurucu model parametrelerinin yeniden kalibrasyonunun yapilmasidir. Kafes
blyiikliigli, evren ve yumusama fonksiyonlarinin sonuglarin hassasiyeti lizerindeki
etkisine odaklanan birkag betonarme ve donatisiz beton testi i¢in simiilasyon sonuglari,
Onerilen modelleme yaklagimi ile oldukea basit ve sezgisel bir yaklasim sunan catlak

yayilim yonlerini ve genisliklerini dogru olarak tahmin etme yetenegi gostermektedir.

Anahtar Kelimeler: Beton, Yirtilma, Peridinamik Model, Yalin Cekme
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CHAPTER 1

INTRODUCTION

1.1 General

The concrete industry, which uses 12.6 billion tons (11.4 billion tonnes) of raw
materials each year, is the largest user of natural resources in the world (Mehta 2002).
Despite its widespread use, a detailed understanding of concrete mechanics is still not
available. The modeling and the prediction of the performance of concrete structures
are controversial due to its heterogeneous nature as a consequence of the highly
complex microstructure. The determination of the crack initiation and propagation
should provide information on structural weaknesses and retrofit regions. This makes
it mandatory to understand the behavior of concrete in tension from an engineering
point of view. Cracking of concrete in reinforced concrete structures is an evidence of
increasing steel stresses owing to the bond between two materials. On the other hand,
cracking in plain concrete structures may occur depending on the load pattern, aging
or settlement. According to the locations of crack and patterns, assessment of existing

structures should be conducted for a well-sustained built environment.

According to a 2013 Report Card for America’s infrastructure from ASCE (2013), the
infrastructure is in poor grade for USA so that the cost to repair/replace deterioration
of infrastructure is estimated to be about 3.6 trillion dollars by 2020. Also, Michael
Groschek, Transport Minister of North Rhine-Westphalia of Germany, mentioned that
80% of inspected 100 bridges are in desperate need to be repaired and maintained and
it was estimated that some 4.2 billion euros must be invested (Der Spiegel website).
Most of the damage in existing structures are somehow related to concrete cracking
due to extreme repeated loads, environmental loads, corrosion or chemical attack.
Hence, the prediction of damage, which means understanding and simulating the

behavior of concrete in tension, is crucial for the next generation infrastructures.



Infrastructure problems will also accelerate for developing countries in the 21% century
such as Turkey and China as the most of the structures such as bridges, railways etc.
have started to be built by 1980s and 1990s. In this regard, finding the most suitable
procedures for design and assessment plays a significant role for these structures in the

short/long term.

Concrete is a complicated material due to the following reasons: 1- It is a
heterogeneous material, 2- It does not follow mixture rules (Mehta 1993), 3- It exhibits
significant variability. These properties make it extremely difficult to accurately track
cracks. Micro cracks are dormant cracks and they usually cannot be observed in
experiments. They may or may not be the cause of the main cracks and affect the load
carrying capacity, durability and water tightness of concrete. The main reason for
initiation of these cracks is the region surround the aggregate and cement paste (Figure
1.1). These interface regions, called as the interfacial transition zone (ITZ), are the
weak zones due to higher porosity as a result of higher water/cement ratio. The
available knowledge on concrete strength of ITZ is still insufficient making it
extremely difficult to model concrete. Also, representation of concrete at different

scales is shown in Figure 1.1.

ViI: VI: V: Mortar  IV: Concrete II: Plain II: Structural I: Full Structure Scale
C-S-H Cement  Scale Mesoscale Concrete Scale Element Scale T
Scale  Paste

Scale

Figure 1.1. Concrete at Different Scales



1.2 Literature Review

Physical explanation of the tensile resistance of concrete is highly complicated.
Foundation of (crack) fracture mechanics was developed by the pioneering work of
Griffith (1920) by observing and describing the rupture of glass. Subsequently, Irwin
(1958) explained the fracturing from the point of strain energy release rate and
combined the idea with the Weibull’s (1939) statistical approach for fracture strength.
This fracture theory was incapable of describing the fracture of concrete because of
the heterogeneous nature of concrete leading to a quasi-brittle response. Linear elastic
fracture mechanics (Figure 1.2.a) assumes that stress suddenly drops to zero at the
crack tip and this cannot be used for concrete materials (Figure 1.2.b) as concrete can
still carry tensile load at the crack tip, a phenomenon introduced for the first time by
Kesler et al (1971). This is mainly because of the softening phenomenon in concrete
as a result of the distributed and localized cracking in order to describe the fracture of
concrete, Hillerborg et al (1976) proposed a new theory named as the Fictitious Crack
Model (Figure 1.2.c). He and his co-workers stated that after concrete reaches its
tensile strength, stress transmitted in the cracked region can still carry tension, however
with a decreasing amount in the crack surface (Figure 1.2.d). The area under the stress-
crack width at Figure 1.2.d was stated as the energy absorbed for the unit area of crack.
Bazant and Oh (1983) later proposed their fracture process zone approach that led to
the inclusion of the stress-displacement models to describe tensile behavior with using
fracture energy and characteristic length concept in numerical simulations. This

approach was adopted to reduce mesh dependency of computational results.

Starting from 1960s, concrete finite element simulations were conducted in two
mainstream directions. The first approach was done by adjusting the material stiffness
matrix (i.e., smeared crack concept) introduced by Rashid (1968). Then this approach
was modified to incorporate size effects following the Hillerborg model by Rots
(1988). A two-dimensional nonlinear finite element model was used by Vecchio
(1989) for monotonic simulations and by Palermo and Vecchio (2003) for cycling
loading scenarios. There are essentially two methods for smeared crack models, i.e.,
the rotating (Rots 1988, Vecchio and Collins 1986) and fixed crack models (Willam
et al 1987, deBorst and Nauta 1985) to estimate the crack initiation and propagation

directions. Names refer to the concept on the orientation of the crack. For the fixed
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smeared crack model, the orientation of the crack remains fixed in the direction of the
first crack during all steps. On the other hand, gradual re-orientation of the crack is
permitted for the rotational crack model. The main drawback of the continuum based
finite element modeling whether using fixed or rotating crack models, is the inability
to represent the actual separation due to cracking and operating with average strains

across a gauge length rather than the reporting actual crack openings.

(b) Concrete

4] wl w

(c)Proposed model (d) Stress-crack width

Figure 1.2. Fracture Mechanics: (a); (b) Fracture Process Zone (F), linear zone (L),
nonlinear zone (N); (c); (d) Fictitious Crack Model by Hillerborg (1976)

Discrete crack models were developed to overcome the situation about the physical
representation of cracking. The main idea was to discretize the element edges with
special discontinuity elements at possible crack locations in the structure. Ngo and
Scordelis (1967), who implemented such interface elements for the first time, placed
links within the concrete for single reinforced concrete beams by using linear elastic
analysis with predefined crack patterns. Later, Ingraffea and Saouma (1985)
mentioned the deficiencies of this primitive discrete approach criticizing the difficulty

of having to know the crack locations a priori. They developed a computer program



with a discrete crack approach and remeshing capabilities after each crack. Moreover,
to enhance the discrete crack approach, Blaauwendraad (1985) proposed a technique
where cracks can go into finite elements to eliminate difficulties about changing the
topology of meshes. The performance of the interface elements was investigated for
the cyclic behavior of concrete by Oliveira and Lourengo (2004). According to them,
interface elements are essential to capture nonlinear behavior for micro-modeling of
masonry structures. Koutromanos and Shing (2012) extended this approach for
concrete and masonry structures under cyclic loads by using the discrete crack
approach with a plasticity based constitutive model for the interfaces. Despite the
apparent advantages of modeling the cracks via discrete elements explicitly, the issues
of identifying crack locations a priori, remeshing, pre- and post-processing, and the
necessity of defining different constitutive models for the cracks and continuum parts
are the key disadvantages of discrete crack models.

Prior to the development of the finite element-based approaches, many researchers
attempted to explain the force flow and load carrying capacity mechanisms in
structural members. The most basic way could be thought as defining a structure by
using truss networks. The pioneer of truss models, Ritter (1899), proposed the model
for shear design for reinforced concrete beams. He noticed that the occurrence of
cracks due to the diagonal tensile stresses, compression diagonals inclined at 45 degree
as shown in Figure 1.3.a describe the load carrying mechanism through parallel chords.
In parallel to this idea, Morsch (1909) proposed his famous truss analogy for the shear
transfer in reinforced concrete beams (Figure 1.3.b). Later, Morsch (1920,1922)
introduced that the angle can be different than 45 degree and employed his idea for
torsion resistance of reinforced concrete beams. About the same time, Wagner (1929)
presented the tension field theory to explain the behavior of thin metal webs in carrying
shear in excess of their initial buckling loads. Although developed for steel plate

structures, the key idea was similar to that of Mdrsch (1922).

In light of the truss analogy as mentioned above, an alternative approach to discretize
the continuum system was proposed by Hrennikoff (1941) by using a simple lattice
truss network model (Figure 1.4.a) in the time that finite element method was not
available. He calibrated the parameters for the truss elements so that the continuum
has approximately similar elastic properties compared to a plane stress. This is

5



demonstrated in Figure 1.4.b where a shell element representing the elastic continuum
and the equivalent lattice under generalized plane stress is shown. For determining the
geometrical properties of the lattice members, three loading cases (pure tension in the
x and y directions and pure shear) must be considered (Figure 1.4.c). Upon applying
the equivalent nodal forces on the lattice network, two set of equations can be found;

First Set:

02 -V

A=l = (1.1)
Ayl I (L2)
Second Set:
AW 3)
T gl 4vlai2v) (14)

Where I=l1, c=l2/l1 , w is the thickness and v is the Poisson’s ratio. It can be shown
that the lattice network is unique only for a Poisson’s ratio of 1/3. Also, he mentioned
that the results from structural analysis of the unit size were quite close to the exact
solution in terms of stresses and deformations. If unit sizes were smaller, more
reasonable results were taken. It was the first attempt to create a gridwork approach

for continuum.

(b) Morsch (1909)

Figure 1.3. Truss Models in Early Ages
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Truss Lattice; (c) Three Loading Cases [Hrennikoff (1941)]

These remarkable early works inspired the later developments for analysis and design
using trusses for RC structural members. For example, Mitchel and Collins (1974)
established a new method called the Compression Field Theory (CFT). In this theory,
using compatibility of the angle of the diagonal compression regions mentioned as
Wagner (1929), use of equilibrium and constitutive equations for the trusses enabled
to define the full range load deflection behavior of reinforced concrete. The basics of
Compression Field Theory is shown in Figure 1.5. It can be observed that it was
envisioned as a fully rotating smeared crack model. Principle strain direction was taken
as same with principle stress direction by compromising from actual compatibility.
Stress-strain model was employed in the principle stress direction as an orthotropic
model. Then Vecchio and Collins (1986) validated this idea by conducting a number
of experiments and finalized the Modified Compression Field Theory (MCFT) for both
in shear and torsion. Around the same time, Hsu et al (1987) proposed his softened
truss model. They performed a vast number of tests to understand the constitutive laws
for the compression struts. Softened compression stress-strain relations and tensile

7



behavior of concrete and steel embedded in concrete were defined. The softened-truss
model was developed with a systematic and unified manner and the response of
membrane elements were simulated by using both as rotating angle softened truss
model (RA-STM) (Hsu 1988) and fixed angle softened truss model (FA-STM) (Pang
and Hsu 1996). In this way, the behavior of cracked concrete in shear was better

described without violating compatibility.
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Figure 1.5. Fundamentals of CFT

As mentioned above, explaining the force flow in design is quite important as it
provides the engineers an intuitive approach. If the flow can be described by using
simple components that can carry compression and tension, a handy design tool could
be revised. A very intelligent approach along this line came from Schlaich et al (1987),

who established a detailed design procedure named as the Strut and Tie Model (STM).



They employed the well-known truss model such that it can be used for every part (B
and D-region) of the structure. The model was simple to understand because the main
goal was to distribute the load applied the structure by using compression and tension
members and nodes connecting them. The procedures were based on the separating
the sections whether they have Bernoulli hypothesis of linear strain distribution (B-
regions) or nonlinear strain distribution (D-regions). Definition of these regions were
based on stress trajectories in the structure (Figure 1.6.a). An example of STM after

determined stress trajectories is given in Figure 1.6.b.

These developments encouraged further seeking of such truss based models to
simulate the concrete fracture. Simple lattice network that was composed of central
force Hookean springs was conducted by Meakin et al (1989). The two dimensional
triangular lattice model was inspired from the crack propagation model of Louis and
Guinea (1987). According to them, the bond breaking probability was proportional
with the strain of bond. A particle model with random generation of the system for
aggregate or fiber composites was developed by Bazant et al (1990). Particles were
connected with trusses and the softening stress-strain relationship was implemented at
contact layers of the matrix based on the fracture energy approach. Problems due to
material inhomogeneities were encountered during the simulations. For the fracture
modeling, the softening of the particles were studied in detail. Substantially, their
model was similar to Burt and Dougill (1977)’s random truss model. The trusses were
constructed with nodes with randomly generated circular particles as can be shown in
Figure 1.7.a-b. The lengths were determined by the two interaction circles as Li = yri
and L;j = yrj where y taken as 0.9 empirically and the two dimensional cross sectional
areas of the truss were taken as 2 min (ri, rj). The softening behavior was defined in
the region of the matrix within a circle with the length of Lm. The employed triangular
stress strain relationship is given Figure 1.7.c. For the relationship, the fracture energy
concept was used with G™. The main idea was to make the area under the triangular
stress-displacement curve constant for every length because energy dissipation must
be same with regard to fracture energy concept. This was done by calibrating the strain

value (ef) of the complete crack.
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Jirasek and Bazant (1995) developed a particle model for quasibrittle fracture of solids
with zones of distributed cracking and applied this model for ice with brittle and highly
heterogeneous nature. The model incorporated the heterogeneity of sea ice which can
be thought to be analogous to heterogeneity observed in concrete. They developed the
model at the micro level by using a micro truss network. Due to the lack of data on the
distribution of ice heterogeneity, the particle sizes were same for the model and a

simple lattice geometry was used (Figure 1.8.a). In the micro level, a constitutive law
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for ice particles were used to simulate the interaction between the ice floe and rigid
particles. A three parameter force displacement model was defined for the elements as
shown in Figure 1.8.b. where tensile threshold Sp, element stretching at peak stress ep
and element stretching at forming complete crack er were needed. Strength and fracture
properties of the four principle and two diagonal elements were adjusted to provide
optimum approximation of isotropy. The idea was to hold the maximum force per unit
length fixed in each direction of cracking. It was needed to overcome the directional
bias of crack propagation in the model. Explicit integration for the solution of the
equation of motion was used. It was concluded that using a regular lattice network
gave directional prejudice through the line that had lattice elements. Providing
different strength values of the elements could not solve this type of problem regarding
cracking whereas randomly generated particles gave reasonable agreement in terms of

the isotropic fracturing.

1
|
.
1 & ¢ ©
k
(a) Lattice Geometry (b) Stress-Displacement Curve

Figure 1.8. (a) Basic Lattice of Square Pattern; (b) Constitutive Law for Regular
Lattices [Jirasek and Bazant 1995]

A regular lattice network modeling approach was studied by Schlangen and VVan Mier
(1992). Direct tension experiments with single edge notches based on the work of
Herrmann (1988) was used for validation. The model constituted a triangular lattice
model (Figure 1.9.a) with brittle breaking beams. The analysis process was conducted
by removing beam elements from the mesh when it reached its maximum tensile

strength computed based on beam theory. The heterogeneity of concrete was defined
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by providing a distribution for the bar strength and stiffness. Another alternative
considered was to generate numerical grain distribution either manually or using
statistical tools so that strength and stiffness of the beams would be assigned (Figure
1.9.b). The beams were assigned three different properties representing aggregate
particles, binding matrix and the interface between the matrix and the aggregate
(Figure 1.9.c). The simulation result are presented in Figure 1.9.d demonstrating the

crack propagation around aggregates.
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(a) Lattice Model

matrix (M)

bond (B)

aggregate (A}
(c) Beam names (d) Simulation Result
Figure 1.9. (a)Triangular Lattice Model [Schlangen and VVan Mier 1992]; (b) The

Model Projected on the Grain Skeleton; (c) Definiton of Beams and (d) Crack Pattern
at Crack Width of 80 um

Schlangen and Garboczi (1996) proposed a 2D lattice model by using beam elements
to simulate shear test conducted by Nooru-Mohammed (1993). The beam elastic
properties were determined based on the calculation of the elastic energy stored within
a unit cell of the lattice. The effect of orientation of the lattice geometry was also
investigated. Influence of the element types (i.e., spring elements, spring and shear
elements and beam elements with regular triangular networks) was studied and use of
beam elements due to necessity of the elements with three degree of freedom in
complex crack patterns. A random lattice model was also studied to simulate
heterogeneity. Regular lattice network caused different crack patterns but the random

mesh enabled the objectivity at the crack propagation. The main reason of the inability
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of the demonstration of the actual crack pattern was the high directional constraint of

regular lattice networks occurring naturally.

All of the lattice networks explained above employed beam or trusses for the lattice
models. Cusatis et al (2003) argued that models calibrated according to only mode 1
fracturing (i.e., tensile cracking) were incapable of predicting other modes of fracture.
A three dimensional lattice was used for their simulations by defining the response
separately in tensile and compression. The elements were connected between adjacent
aggregates which were distributed randomly. The model was different than the
previous models as the particles were connected with both axial and shear springs.
Cusatis et al (2003) argued that bending of beam like lattice networks (as in Schlangen
and Van Mier 1992) could not reflect the real physics at the micro structures. ITZ
region affects the properties of concrete at the macroscale. Thus; in mesoscale,
discretization of this region was not implemented because it caused a high increase in
the number of unknowns and expensive computations. The interaction of ITZ and
mortar interaction was considered by using two elements coupled in series providing
an indirect simulation. Behavior of ITZ and of mortar (or cement paste) was considered
with common constitutive law of the element that connect particles. The experiment
conducted by van Vliet and van Mier (1995) was used to calibrate the parameters of
the model (Figure 1.10.a-b.) Results with these calibrated parameters of this model are
shown in Figure 1.10.c-d. Two bounds of the experiments and numerical simulations
were about the frictional stresses at the end of the specimens. According to this stress
value, both peak stress and post peak load deflection response were influenced. Results

from the numerical solution were in good agreement with the experiments.

A lattice model approach was implemented by Van Mier (2013) recently at the
mesoscale. He modeled concrete explicitly by modeling aggregates, cement paste and
ITZ separately with different material constants. Hence, the lattice network was
described as a multi-scale approach for concrete simulations. This approach was

successful for simulations of experiments but it was computationally expensive.
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et al 2003a,b] and Results for (c) 100 mm Long and (d) 200 mm Long Specimen

Nonlocal and continuum aspects of numerical models have been investigated by many
researchers. Silling (2000) mentioned that the main problem in solid mechanics was
the discontinuity resulting from cracking. Classical approaches used partial derivatives
arising from relative displacement and forces. The main advantage of his proposed
model so called bond-based peridynamics (PD) was the integration rather than
differentiation to determine the forces for a material particle by using the Newton’s
second law of motion applied for every infinitesimally small particle at a specific
region. Accordingly, by using the relative displacement of two adjacent particles, a
pairwise force function was proposed. The idea of the particle interactions was that a
particle can interact with other particles within a specific distance creating the model
nonlocality. This distance was called as the “material horizon (8)” (Figure 1.11.a).
Horizon was the most important parameter determining the nonlocality of the system,
meaning that higher fine horizon corresponds to more nonlocal interactions. The

original formulation for PD is shown in Eqg. 1.5;
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LEH=[, fE(x.)U .0, X5-X)dV; VX ER, 0. (1.5)

More concisely,
LE)=[, f@-u, xx)dV; on R (1.6)
Where f is the pairwise force function arising from each pair of particle interaction,

L(X) is the force per unit reference volume due to interaction with other particles, u is
the displacement field, t is time, V is particle volume and X is the location of the

particle. The PD equation of motion was used as Eq. 1.7;
pi=L+b on R, 0. (1.7)
Where b is some prescribed loading force density, p is the mass density, L is the

resultant force of a particle within 5.

There were restrictions on the Poisson’s ratio due to the fundamental mathematical
background of preliminary PD model Silling (2000). In the bond-based PD model, the
Poisson’s ratio was limited to 1/3 and 1/4 for the two- and three-dimensional problems,
respectively. Restrictions on the Poisson’s ratio for homogeneous deformations of

linear isotropic materials could be eliminated with some adjustments. It would require

fundamental changes of L(X). The main alteration was the modification of the macro-
elastic energy density as given in Eq. 1.8;

W(E)=W(x)+e(8(x)) (1.8)
where

9= [j(eDIEI AV onR (1.9)
1 IS the relative displacement vectors, € is the relative position vectors, the value of 3
Is a weighted average of the extension of all the springs connecting x with all the other
particles in the body, e is the function of a volume dependent strain energy term and |
is scalar valued function. Poisson’s ratio was restricted if only for the bond between
two particles interactions was thought. However; adjustment of the original PD models
was done by changing the idea of the calculation of the strain energy density from the
interaction of just two particles to include local volume change (Macek and Silling
2007). In other words, bond properties depend on stretch of all neighboring particles

to overcome the restriction of Poisson ratio.
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As the internal length approached zero for a problem with no damage, the method
converged to results obtained with classical continuum mechanics. PD was capable of
representing linear theory of elasticity if the response function was used with the
vanishing length scale (Silling et al 2003). PD could be thought as springs or trusses
connected between particles in the material horizon according to Silling (2000) (Figure
1.11.b). For brittle materials that exhibited no tension softening, after a bond broke,
points at the ends of the bond were disconnected from each other. Damage was
incorporated in the pairwise force function by allowing bonds to break when
elongation was exceed. Wave propagation in solid mechanic was also studied by using
PD. A PD formulation was developed to understand behavior of an infinite bar
subjected to a self-equilibrated load distribution by Silling et al (2003). According to
the study, the model had two main advantages: i-Discontinuities were included without
any special treatment or as a priori, ii- Thanks to material horizon concept, forces could

be transferred within a long range of particles.

u® Stretch >

(@) Interaction in horizon (3) (b) Brittle behavior

Figure 1.11. (a) Interaction of Particles in Specific Distance (3); (b) Brittle Behavior
for Elements of Connecting Particles [Silling 2000]

The PD of Silling works on multiple scale of modeling and did not need any stress-
strain concepts. Gerstle and Sau (2004) used this model to simulate concrete for the
first time. Simulations of plain and reinforced concrete was proposed by using the
EMU (Silling 2000) a molecular dynamics code. A micro elastic PD model was used
for concrete which connected particles as shown in Figure 1.11.b. The modeling of a
specimen in uniaxial tension and an anchor pullout problem were conducted and the

tensile fracture was simulated (Figure 1.12.).
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(@) Uniaxial Tension (b) Anchor pullout

Figure 1.12. Result of EMU for Concrete [Gerstle and Sau 2004]

Constitutive models in PD was discussed by many other researchers in 2000s. For
example, Silling and Bobaru (2005) proposed a constitutive model for the tearing and
stretching of rubbery sheets to simulate membranes. PD was capable of simulating
bond softening/breakage and the resulting load redistribution was calculated with the
solution of the equation of motion. This enabled the method to simulate autonomous
multi-crack initiation, interaction, and propagation, and the consequential anisotropy.
When the bonds were represented with lines, the bond-based PD can be viewed as an
overlapping lattice model (OLM) as defined in the title of this work. Silling and Askari
(2005) attempted to find critical stretch value, so (shown in Figure 1.9.b. as u®). First,
the required energy released rate, Go, to break all the bonds per unit fracture area was
found by Eq. 1.10;

n2 235
Go="0 (1.10)
18K

where cs is the spring constant, K is the bulk modulus. Solving these two equations for

the critical stretch value, Eq. 1.12 is obtained,;

5Gg

o (1.12)

So=

Moreover, the horizon could be thought as the interaction between the atoms or
molecules in nanoscale. However, for PD in macroscale, horizon was recommended
as three times the grid spacing. A horizon longer than the recommended value is shown
to create excessive wave dispersion while requiring very expensive computations
(Silling and Askari 2005). Gerstle et al (2005) employed PD for plain and reinforced
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concrete elements subjected to different loadings. A zeroth-order micro elastic damage
(i.e., brittle response) was used. For materials that exhibited tension softening, the
bond force could be a nonlinear function of elongation. They also determined breaking
stretch, so (shown in Figure 1.9.b. as u®), with objectively by using fracture energy

concept for their brittle constitutive model with the Eq. 1.13;

Sy= 52‘2 \/Etf for 2D (1.13)

where d is the material horizon, ¢ is a micro elastic constant.

In order to overcome the limitation on the Poisson’s ratio (i.c., 1/3 in 2D, 1/4 in 3D),
a number of approaches were developed. Silling et al (2007) enhanced the PD model
with the idea of a state concept which was called later as “State-Based Peridynamic
Model”. The model was a generalization of the bond based PD augmented by the
deformation and force states by using the principle of virtual work. In state-based PD,
the response of material points was dependent on the deformation of a region.

Collective behavior of all the points was used to determine the material response.

The bond based PD model was generalized for concrete and other quasibrittle
structures by Gerstle et al (2007). The model was called as “micro-polar peridynamic
model”. The main idea was to implement extra moment density with a pairwise force
density. They changed the “micro-truss” model to a “micro-beam” one with both axial
and bending stiffness. In Figure 1.13.b, i and j represent adjacent particles and dVi and
dV;j are volumes of the particles. Classical approach already had uiand uj which are
displacements of the particles whereas in the micro-polar model, rotational degree of
freedom (6i, 6;) was added. Obviously, the moment densities (m) and the force
densities (f) were combined (Figure 1.13.c). The first order micro elastic damage
model (Figure 1.13.a) was implemented as a constitutive model by Gerstle et al (2007).
In order to decrease the computational cost, the model was implemented in a finite
element framework by using implicit solution algorithm for parallel processing. Then
the micro-polar PD model was enhanced by Gerstle and coworkers (Gerstle et al
2007a, Gerstle et al 2007b, Gerstle et al 2009). Different constitutive models for the
bonds which connect two close particles within the horizon were conducted to
represent the fracture mechanics of concrete. An example of using micropolar

constitutive model for concrete proposed by Gerstle et al (2007b) are shown in Figure
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1.14.a. This model was used for uniaxial specimen. Discretized model of this specimen
is shown in Figure 1.14.b. The response from simulation and damages are shown in
Figure 1.14.c with the color coding presented in constitutive model curve. Blue curve
represents the results of the micropolar peridynamic simulation; red curve represents

a typical laboratory response.

Researchers have chosen different models for PD. For example, after proposed micro-
polar PD model, Mitchell (2011) developed a state-based model as a nonlocal ordinary
perfect plasticity model. Also, in 2013, Beckmann et al used bond based PD model by
using trusses to model of the system under thermal load. The PD model with increasing
horizon ensured the increase of directions reducing the grid-dependency of results
commonly observed in lattice models. The model could be used for flow problems

using general state based PD formulations as well. (Katiyar et al 2014).
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Force density, | A ﬁj 9,
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(@) First Order Model (b) Kinematics Terminology

’ (c) Kinetics Terminology
Figure 1.13. (a) First Order Micro Elastic Damage Model [Gerstle et al 2005;

Gerstle et al 2007]; Interaction of Two Adjacent Particles in (b) Kinematics;
(c) Kinetics Terminology [Gerstle et al 2007]
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21



In order to solve the nonlinear response for crack propagation simulations, methods
such as Newton-Raphson, arc length methods etc are commonly employed. Such
algorithms are prone to convergence problems due to severe softening and snap-back
response that can be observed in the simulation of quasi-brittle materials. In order to
overcome these limitations, the load deformation response of the system modeled with
an overlapping lattice approach in this study was solved by using the Sequentially
Linear Analysis (SLA) as proposed by Rots (2001). It is a solution method for
nonlinear problems and offers a simple to a nonlinear problem as there is no
convergence problems due to the softening or snapback phenomena. This provides an

important advantage over other solution strategies.

A similar approach based on an element removal algorithm was successfully used by
Schlangen and van Mier (1992) as explained before. Rots (2001) used SLA approach
to solve structural mechanic problems within a finite element framework for the first
time. Instead of removing elements, a softening function was used with a fracture
mechanics framework by Rots (2001) (Figure 1.15.). The main procedure can be

outlined as follows;

o External force is applied to the system as a unit load

e Linear elastic analysis is performed

e Critical element which has the highest value of current stress divided by its
current strength is found

e Load factor, A, that is the ratio of the strength and stress level is the scale value
by which unit load elastic solutions are multiplied

e The stiffness and strength of critical element is reduced according to its
constitutive model

e The procedure is repeated in a damage controlled manner

This procedure represented a saw-tooth curve. In SLA, the analysis sequence was
controlled by the damage imposed on the most critically stressed element as opposed
to direct force or displacement control. Series of linear elastic solution were always
implemented rather than working with negative incremental slopes. This type of

solution method always converges.
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Fracture energy which was taken as the area under the stress displacement curve was

used to determine the ultimate strain, eu in Eq. 1.14;

_ 2xGy
" fe+h

where Gt is the fracture energy, ft is the tensile strength and h is the crack band width.

€y

(1.14)

Modulus of elasticity of the critical element was reduced with arbitrary reduction
factor, a. Afterwards, new strength was found by using this new Young’s modulus
and constitutive diagram. A saw-tooth curve was proposed for an initial Young's
modulus E of 38000 N/mm?, initial tensile strength f: of 3 N/mm?, fracture energy Gt
of 0.06 N/mm, crack band width h of 5 mm and a reduction factor o of 1/2 with 10
steps by Rots (2001) as shown in Figure 1.15.a. eu was found as 0.008 by using Eq.

1.14. The result of an analysis of a notched beam conducted with a very fine mesh is

also shown in Figure 1.15.b.

Delong et al (2008) further extended this method for non-proportional loads within a
finite element framework. SLA is easy to program as it only requires elastic analysis
with no iterations and is capable of obtaining the response even with a snapback
behavior. The analysis results are usually jagged as given in Figure 1.15.b due to the
sequential elastic nature of the analysis and the solution obtained is accepted as the

envelope of the response curve.
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Figure 1.15. (a) Softening Stress-Strain Diagram (dashed) and Saw-tooth
Approximation (drawn) and (b) Result for Very Fine Mesh [Rots 2001]
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There are some alternative robust SLA models proposed by Rots (2008) to solve other
structural problems in the literature. Revised and first implemented models were
compared. The main reason for the requirement to construct revised model was to
employ the actual fracture energy in the stress strain response. In the previous
approach, the energy dissipation observed in constitutive model was taken from the
area under saw tooth curve and it was different than the actual fracture energy
depending on the chosen reduction factor for the modulus of elasticity. Thus, the new
model was conducted to overcome this misrepresentation. A constitutive model was
constructed according to the given fracture energy with Eq. 1.14. The graphical
representation on the previous and the updated models are shown in Figure 1.16. In
the revised version, the energy dissipation could be matched to the actual fracture area
defined by the model if the tensile strength of the curve was taken as slightly more

than the actual one.

=
-

€ €
(a) First Implementation (Rots 2001)  (b) Revised Implementation (Rots 2008)

Figure 1.16. Comparing SLA Models

These studies demonstrate that the fracture energy concept for concrete and its
simulation techniques are recently shifting from the finite elements to particle and
lattice based methods. The main concern for this direction is to obtain a good
prediction of the actual crack patterns and response of the structures. Classical
structural analysis technique has not been implemented into the lattice framework
including the horizon concept of the PD by any researchers. Combining these two
concepts leads to a decrease in the computational efforts to solve full structural
problems. In addition, we could not find published research on calibration of the
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softening response observed in average length of the concrete for microscale in the

literature until this time.

1.3 Objective and Scope

This study provides a new computational approach named as the overlapping lattice
model to simulate the autonomous fracture initiation and propagation in concrete
media. It follows the truss network analogy to model the concrete and borrows the idea
of using different horizon distances in connecting nodes from peridynamics. The study
is conducted at the mesoscale (i.e., few millimeters of mesh resolution), however the
concrete continuum is treated as a single phase medium to preserve engineering
practicality. In contrast to the approaches presented in the literature, a new calibration
approach is presented while retaining the grid size objectivity. The sequentially linear
analysis (SLA) technique is employed for all simulations. The success of the proposed
approach and its potential in simulating structural problems is discussed. The

objectives of the study are:

e To propose an overlapping lattice model along with the appropriate
constitutive models and their calibrations

e To validate the overlapping lattice model for crack propagation and response
in unreinforced concrete

e To validate the overlapping lattice model for the prediction of the response of

reinforced concrete.

The details of the overlapping lattice model are explained in Chapter 2. In this chapter,
the calibrations of element constitutive model are also presented. In Chapter 3, the
validation of the Overlapping Lattice Model for several structural experiments in
literature for both the plain and reinforced concrete cases is presented. Finally, in

chapter 4, some conclusions and future works are drawn.
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CHAPTER 2

OVERLAPPING LATTICE MODELING

2.1 General

In this chapter, the overlapping lattice model (OLM) is explained. Afterwards, the
constitutive model is presented along with the Sequentially Linear Analysis (SLA)
used for the nonlinear solutions. Calibration of softening parameters for constitutive
models is conducted by simulating uniaxial tension tests along with numerical

experiments.

2.2 Overlapping Lattice Model Approach (OLM)

In the proposed OLM, each node interacts with points within a predetermined distance
called horizon (8) to account for the nonlocal effects. For the two-dimensional
problems defined with uniformly distributed particles separated by a grid spacing, d,
in X, y directions, a particle located away from its neighboring elements is connected
to 8 and 28 nodes for o of 1.5d and 3.01d, respectively (Figure 2.1.a-b). To consider
the optimum horizon, & was commonly taken slightly more than three times d in the
previous studies (Silling and Askari 2005). With such a horizon, the number of
elements connected to a node within the & can better represent the formation of cracks
at various directions despite the use of a structured grid. The horizon (3.01d) is chosen
slightly larger than 3d in order to take all the nodes including those at a distance of 3d.
Using a horizon size longer than 3.01d may lead to take very large computational times
due to exponential increase in the number of elements. For example, the simulation
time of the direct tension test discussed in Section 2.4.1 for a grid size of 3 mm, 10202
total number of elements and 1.5d horizon is 168 seconds. The computation time
increases to 1800 seconds upon increasing the model to 3.01d horizon with 34702
elements. On the other hand, computational time increases to 25922 seconds when the
grid size is reduced from 3 mm to 1 mm for a 1.5d horizon. Simulations were
conducted with Intel Core i7-4720 HQ processor and 16 GB ram. A classical structural

analysis approach to treat the interaction forces between nodes was used for
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simulations as opposed to the explicit integration commonly used in the particle based
approach. This approach was confirmed to be valid by Macek and Silling (2007).

The slope of the linearly elastic segment EA: (modulus of elasticity times cross
sectional area of truss elements) can be obtained from simple energy principles. First,
a deformation field introduced to estimate the elastic properties of elements in OLM
(for example ex=constant, ey=0). ex is taken as an arbitrary constant by giving
deformation in the x direction i.e., multiplying every node only x location (i.e., 1+&x).
Then, the total elastic energy, Energyoriginai, Stored in the original geometry is computed
using the modulus of elasticity as shown in Eq. 2.1 for the plane stress problems.
Appropriate modifications should be made for plane strain problems.

_ B*E2xw*A
original  2%(1-y2)

Ener (2.2)
gy,

Above E is the modulus of elasticity, &x is strain in the x direction, w is the thickness
of the system, A is the volume per unit thickness area into the page (i.e., multiplying

w and A give the volume of the system), v is the Poisson’s ratio taken as 1/3 for 2D,
1/4 for 3D.

8 nodes 28 nodes
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Figure 2.1. Lattice Model for (a) 6 = 1.5d and (b) 6 = 3.01d
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The deformation field from the OLM obtained by summing all the energy from lattice
elements gives the total elastic energy, EnergyoLm. While computing EnergyoLm, EA¢
was taken as 1. The elastic energy of a truss element is calculated by Eq. 2.2 due to the
induced deformation field;

N°L
Energy = 5 (2.2)

where N is element force and L is length of the element. The stored energy was
proportional to the total elastic energy computed as the sum of all individual truss
elements multiplied by EA:. Therefore, EA: can be computed as the ratio of original
energy in the elastic system subjected to the deformation field by the energy of the

lattice network with EA«=1 as given in Eq. 2.3;

Energyoriginal
EAt: origina (23)
2. EnergyoLm

The same procedure is repeated for the deformation field in the y direction by using &y
instead of ex in Eq. 2.1. Total elastic energy was computed by Eq. 2.2. EAtvalue was
then found by using Eq. 2.3. It is concluded that Energyoriginat and Energyorm values

are close to each other for both directions as anticipated due to isotropy of the system.

Stiffnesses of all trusses in OLM were taken constant as EAt, which can also be viewed
as the slope of the force-strain diagram. It should be noted that EA:computed above is
the product of modulus of elasticity of concrete and At, which is a pseudo area that
enforces the system to dissipate elastic energy similar to the energy in the elastic
continuum. The modulus of elasticity for tension and compression are taken the same

due to the assumed isotropy of the system.

The proposed OLM employs a multilinear softening force deformation response for
truss elements. As concrete exhibits tension softening, beyond a critical strain (or
cracking strain, ecr), the element can transfer further tension described with the
softening function as shown in Figure 2.2. Nonlinear tension softening function is
assumed to be in the form of a stepwise linear softening. The force-strain diagram is
used for the structural analysis (instead of a stress displacement response), as EAt is
already available from the previous energy calibration. As can be seen in Figure 2.2,
there are five material model parameters which are multipliers of critical force (b1 and

b2) and strain (a1, a2 and as), Fer, and ecr. The material model parameters for the tension
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behavior of the truss elements are calibrated by using the approach presented below.
Concrete in compression is assumed to be elastic as the focus of this research is the
failure due to cracking or steel yielding. Compression performance of OLM is not
studied within the scope of this thesis. It should be mentioned that compression failure
in concrete is also related with cracking in different directions. However; detailed
studies focusing on compressive failure simulations are needed in order to generalize
the proposed OLM.

In order to minimize the mesh size dependency, a fracture energy regularization is
proposed. The parameters of the softening functions are determined for the element
with the smallest length (i.e., orthogonal elements in Figure 2.1) to avoid brittle
behavior of the longer elements as explained later in detail. For other elements, strain
values in the softening part are decreased in proportion to the ratio of lengths (i.e.,
d/L). The fracture energy is the energy required to open a unit area of crack surface
and it is taken as a material property independent from the size of the structure. This
energy is the area under the stress-displacement response of the concrete. According
to CEB-FIB Model Code 1990, fracture energy is related to maximum aggregate size
and compressive strength of concrete. So, for truss elements with lengths other than
the minimum length of an element (d), a1, a2 and as values are multiplied by d/L so
that the area under the force-displacement response for each truss member is

approximately the same as illustrated in Figure 2.2.

bchr
bZFcr -

Ecr A1&r A2€cr as€cr

Figure 2.2. Constitutive Model for Overlapping Lattice Models for Different
Element Lengths

The length scaling procedure described above is also applied for different grid sizes,

(d' shown in Figure 2.3), different than the grid size d to ensure the incorporation of
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size effect. The fracture energy concept is applied similarly for a different grid size by
ensuring same stress-displacement curve for all member sizes. It should be noted that
for a grid size different than d, Fcr value can be different (Figure 2.3.a) because of a
different EA: value computed from energy balance. ecr is taken a material property and
Is computed from fe/E. However, Atmay change depending on the grid size which can
result in a different force-displacement response as shown in Figure 2.3.a. Fer value
can be computed as fer* At. To conclude, for all members regardless of their grid size
or mesh size, critical stress and strain values, fracture energy and stress-displacement

curves are same in the proposed OLM.
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Figure 2.3. Element Constitutive Diagrams (a) Force-Strain for Different Grid Sizes;
Corresponding (b) Stress-Strain Diagram and (c) Stress-Displacement Diagram
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The proposed approach outlined above is a mesoscale approach (i.e., elements in the
order of few millimeters). This requires modeling of the force displacement response
of the concrete ingredients to relate the meso- and macro-scale response instead of
taking 1TZ, cement paste and aggregates separately. However, an engineering
approach, where the truss elements have similar force-deformation response curves, a
homogenized continuum was assumed in this study. In this way, the number of
parameters was kept to a minimum while providing a global match of the force-

deformation response along with the crack propagation pattern.

When long elements exist in the OLM, then there is a potential of snap-back behavior
for force-strain response. For this case, brittle behavior was assumed i.e., sharp drop
is employed for that element as seen in Figure 2.4. For reinforced concrete simulations,
steel elements are assumed to have elastic perfectly plastic load-strain response (Figure
2.5.a.). Elements connecting steel and concrete nodes must also be calibrated. For
steel-concrete connecting elements, studies indicate that all connecting elements could
be assumed to carry at least 70% of the tensile critical force of concrete (fcr) ensure
perfect bond. Accordingly, an elastic perfectly plastic load-strain response is assigned
to elements connecting to steel and concrete nodes (Figure 2.5.b). This requirement is
found to be necessary to stop pullout of steel from concrete. In addition, strain
hardening was not considered for steel elements as the conducted simulations for RC
structures in this study do not experience strain values beyond the onset of strain
hardening.

v avoided

» &€

Figure 2.4. Brittle Behavior for Long Elements
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(a) Steel Elements (b) Bonds

Figure 2.5. Force-Strain Diagram of Elements for (a) Steel Elements; (b) Links
Connecting Steel and Concrete Particles

2.3 Sequentially Linear Analysis and The OLM Simulator

SLA is chosen as the solution algorithm in this study. SLA has the following

advantages;

i- SLA ensures that results are obtained even for snapback type response

ii- SLA is easy to implement and run

ii- SLA is quite suitable for the calibration of constitutive model with steep

softening function

In this thesis, the 2001 version of SLA was used (Rots 2001). The main object is not
to enhance the state of the art of SLA, but rather use it as a simulation tool. Illustration
of the saw-tooth curve for the constitutive law can be seen in Figure 2.6 for concrete
and steel elements. The reduction factor of modulus of elasticity, o, is taken as 0.995
in all the simulations. This step reduction is much smaller than the number used by
Rots (2001). The reason of selecting such a small o is for accuracy with a reasonable
computation time. After EA: reaches to EA*1073, o is taken as 0.8. In this way, EAtis
reduced faster for completely failed elements to increase the efficiency of the
computational method.. In reinforced concrete simulations, the reduction of EA: for

steel is taken as 0.9.

A computer program was developed to automatically create the OLM with a

predetermined element size and &, to conduct SLA steps with a preconditioned
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conjugate gradient iterative solver for the solution of the algebraic set of equations.
The code was slightly different compared to the earlier SLA implementations. For
example, force ratios to determine load factor were used instead of using stress ratios
as discussed in Rots (2001). Algorithm of the code is given in Appendix A.

The provided essential input needed for the overlapping lattice simulations are E,
tensile strength (fcr) and the fracture energy (Gr) obtain from traditional material tests.
In addition, the multilinear softening function parameters (a1,az,as and bi,bz) of the
truss elements are also required for the calibration of the constitutive model (Figure
2.6.2).

yield

€
yield

(b) Steel Elements
Figure 2.6. Illustration of the SLA with Saw-Tooth Behavior
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2.4 Calibration of The Constitutive Model Parameters

The preliminary simulations revealed that the softening function of truss elements,
when selected from the available softening models in the literature, cannot provide
accurate tensile response predictions mainly due to the local nature of the OLM. It is
well known that all available softening models were derived from average
displacement measurements from tension tests and cannot reflect the meso-scale
response of concrete in tension. An example to explain the local nature of the OLM
can be given from stretching the OLM model in the Figure 2.1.a. When the overlapping
trusses are stretched in one direction, series of two diagonal and one orthogonal
members are in tension. Combining the responses of these members give the total
response of the specimen. Thus, assigning total response of the specimen in a gauge
length as a member response can be a misrepresentation. Therefore, the fracture energy
concept for explaining the stress displacement response of concrete in tension cannot
be related with the individual lattice members directly. Furthermore, the softening
parameters cannot be directly taken from a typical tension test due to the absence of
reliable test data with densely located local displacement measurements similar to the
overlapping lattice grid. Therefore, tensile stress-average displacement (within a
specific gauge length) curves can be employed to calibrate the multilinear softening
function parameters. For different grid sizes, the length scale can then use to adjust the
input stress-strain function similar to the approach used in the mesh regularization in
finite element simulations (Bazant and Oh 1983). Afterwards, structural member
simulations are performed by using the input material properties and calibrated

softening function parameters.

The first set of calibrations were performed by using the tension test results of
Gopalaratnam and Shah (1985) (GS), and Cornelissen et al (1986) (COR). In order to
consider a larger notch for the model, a numerical test simulation was conducted. GS
and COR simulation results were compared with their experiment results. Thus, for
numerical experiments due to the lack of experimental data, the stress-displacement
model of Cornelissen et al (1986) (Figure 2.7.a) given in Eq. 2.4. was employed as the
“representative” test result for the softening part and the calibration of the input

parameters conducted based on those results.
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1, =5.136% 2 (2.5)

cr

for is the uniaxial tensile strength, and ci1 and c2 values are the constants. uui is the
ultimate crack width, Gr is the fracture energy and u is the average crack displacement
within the gauge length. Cornelissen et al (1986) conducted these experiments using
both lightweight and normal weight concretes. In this study, normal weight concrete
considered so c1 and c2 constants were taken as 3 and 6.93, respectively. The accuracy
of this equation is shown in Figure 2.7.b by comparing it with test results. Elastic part
was added to Figure 2.7.a in order to obtain full stress-displacement plot. Grand tensile
strength, for, parameters are the necessary parameters to construct the stress
displacement plot. Finally, the measurement length and the net cross section area of
specimen (i.e., notch region) are needed to obtain results for a given gauge length. GS
and COR experimental results and predictions from Eq. 2.4 and 2.5 are compared in
Figure 2.8.a-b. The results are in very good agreement stating that this formulation can

be used as “representative” test results.

Three uniaxial direct tension tests were simulated by using OLM to calibrate the
multilinear softening function parameters. Two of them are from experiments (GS and
COR) and the other from numerical experiments. The simulations were conducted for
different 5 (1.5d and 3.01d) and grid sizes.
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(a) Stress-Displacement Curve (b) Stress-Crack Opening Relation

Figure 2.7. (a) Stress-Displacement Curve of Cornelissen et al (1986); (b) Stress-
Crack Width Curve Compared with Experiments
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Figure 2.8. Comparison Formulation and Experiments (a) Stress-Displacement for
Gopalaratnam and Shah (1985); (b) Cornelissen et al (1986)

2.4.1 Gopalaratnam and Shah (1985) (GS)

A specimen was tested to observe softening response of plain concrete in direct tension
by GS (1985). The rectangular prism specimen had dimensions of 76 mm x 19 mm X
305 mm. The test specimen is shown in Figure 2.9. Notches at both side had heights
of 13 mm and width of 3 mm. E, fer, and Grvalues are taken as 29.1 GPa, 3.41 MPa,
0.054 kKN/m from test results. The measurement gauge length of the experiment was
reported as 83 mm. In the comparisons of simulation results, the closest points to the
measurement length used in the experiment were used. The displacement differences
between these two points were calculated to determine the change in length. For
uniaxial tension test simulations, average changes in the lengths of the left end, right

end, and midpoint were recorded.

The test specimen was modeled with a grid spacing, d, of 1 mm. Afterwards, the
optimum parameters for ai, az, as, bi, and bz that minimized the difference between the
reported and computed fracture energies were determined with a tolerance of 10%
(difference between the areas under stress-displacement responses of experiment and
simulations). Simulations were also conducted for grid spacing of 3 mm, 5 mm and 15
mm in & of 1.5d. In addition, 1 mm and 3 mm grid spacings were used with for & of
3.01d in the simulations. Whenever an OLM analysis was performed with an initial
spacing other than 1 mm for GS, a1, a2 and as values were computed with the ratio of

the length scales (a1, a2 and as decreased proportional with increasing element length)
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as explained in Section 2.2. Therefore, the smallest grid size for a given & always
dictated the selection of a1, a2 and as. Simulations showed that the best match was

obtained when b1 and b2 values were kept constant as explained later.
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The comparisons of the experimental and analysis results for stress-deformation
responses are presented in Figure 2.10 for 6=1.5d, 6=3.01d. The damage patterns at
the end of simulations (i.e., changes in length are at 5.5%10° mm) are shown in Figure
2.11 for 6=1.5d. In all uniaxial tension damage patterns, color legend denotes the strain
value of elements ranging from 0.00012 to 0.02. Amplification factor for the
deformation field presented for the notch region is 20 for illustration purposes. Only
notch region of the specimens is shown. Furthermore; for coarse grids whose length
exceeded the notch height, the elements that were in the notch region were weakened
by multiplying ecr value with an appropriate small number for §=1.5d (i.e., 4.6%10°°
and 3.5*10° were used for d of 5 mm and 15 mm, respectively for GS, 9.5%10° was

used for d of 20 mm for COR) to account for the notch geometry.

Multilinear function parameters optimized with tension test results are shown in Table
1. The analysis results upon increasing the & is shown in Figure 2.12 for 56=3.01d. It
should be noted that the use of a longer & required the change of only a1 among all
parameters as shown in Table 1 in order to match accurately the tension test results.
The results for the & of 3.01d results have different crack patterns compared to 1.5d
cases as the cracks tended to extend beyond the notch region. This was due to the
increasing nonlocal effects, which tended to diffuse the crack beyond the notch region.
The key reason for this situation is the presence of long diagonal elements connected
from the notch region to the region outside the notch. This is believed to spread the

cracking and misrepresentation of the nonlocal damage interactions.

A close agreement between the test and simulation results were observed even with
significantly large grid spacings. It is interesting to note that the mesh regularization
by scaling the softening function seemed to provide objective results while slight
differences in the response estimations stemmed from the inability of placing the notch

accurately when the mesh sizes are larger than the notch depth.
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Figure 2.12. Damage Patterns with Different Initial Spacing with 56=3.01d

2.4.2 Cornelissen et al (1986) (COR)

COR conducted uniaxial tension tests to understand fracturing of concrete subjected

to tension. The specimen dimensions were 250 mm x 60 mm x 50 mm (Figure 2.13).
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Saw-cut notches at both sides had heights and widths of 5 mm, which reduced the net
cross section to 50 mm x 50 mm. E, fer, and Gt values were taken as 21.0 GPa, 3.47
MPa, 0.1 KN/m from test results. LVDTSs that were used to measure the displacements
within a gauge length of 35 mm.
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- glue(F88)

Figure 2.13. View of Test Specimen and Testing Equipment

This experiment was modeled first with a grid spacing of 2.5 mm. Then the length
scaling was reflected on the force strain curve for other grid sizes and element lengths.
Calibrated parameters a1, az, as for different specimens and horizons are presented in
Table 1 for a grid spacing (d) of 2.5 mm. Simulations were conducted for d values of
2.5 mm, 5 mm and 25 mm for 6 of 1.5d, and 2.5 mm and 5 mm for & of 3.01. The
comparisons of the experimental and analysis results for stress-deformation responses

are presented in Figure 2.14 for both 6=1.5d, 6=3.01d.
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Figure 2.14. Force Deformation Curves for (a) 6=1.5d and (b) 6=3.01d [Cornelissen
et al 1986]
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The results of simulations are in good agreement with the test results in terms of force

deformation response. Also, mesh regularization which is the size effect corrections

using fracture energy for different grid sizes gave objective results for this simulation

(i.e., mesh independent). The damage patterns at the end of simulations (i.e., changes

in length are at 9.5*10° mm) are shown in Figure 2.15 for §=1.5d. The damage

patterns after simulations with increasing the 6 for 2.5 mm and 5 mm grid spacing are

shown in Figure 2.16 for 6=3.01d. Again, the only problem was the spread of the

cracks beyond the notch. The reason was thought to be the long diagonal elements

connected from the notch region to the region outside the notch causing a

misrepresentation of the nonlocal damage interactions as explained before. In order to

objectively observe the effect of & on the tension test results, a numerical experiment

was conducted on a specimen with a relatively large notch in the next section.
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Figure 2.15. Damage Patterns with Different Initial Spacing with 6=1.5d
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Figure 2.16. Damage Patterns with Different Initial Spacing with 6=3.01d
2.4.3 Numerical Experiments

A relatively large notched numerical specimen was prepared properly to observe the &
effect objectively. This specimen was prepared with a height of 208 mm, width of 64
mm and thickness of 32 mm. The notch height and width were taken as 16 mm which
made the specimen net area 32x32 mm. With this larger notch, it was ensured to have
a sufficiently dense mesh within the notch region with a reasonable element size. The
prepared specimen (NES) can be shown in Figure 2.17.a. E, for, and Gr, and gauge
length values were taken as 27.0 GPa, 3.1 MPa, 0.07 kN/m, and 48 mm for NES,
respectively. The stress displacement model given Eq. 2.4 and 2.5 was used as the
“representative” result which were assumed as an experimental result. Simulations
were done for d of 2 and 4 mm for 6=1.5d and 6=3.01d. The stress-deformation results

were represented in Figure 2.18 for both &.

The damage patterns are presented in Figure 2.19 for both &. Only notch region of the
specimen is shown. The cracks are shown for change in length value at 7%10° mm.
Color legend denotes the strain value of elements ranging from 0.00012 to 0.02.
Amplification factor for the deformation field presented for the notch region is 20 for

illustration purposes.

Two new numerical specimens named as S1 and S2 were created as shown in Figure
2.17.b-c. The notch sizes on these two specimens were selected as even multiples of

the selected grid size of 5 mm which was later used in structural element simulations.
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In this way, a uniform grid could be used for calibrations in the absence of tension
tests. In addition, a 5 mm grid size for S1 and S2 were selected such that the diagonal
elements remain within the notch region. Simulations from S1 and S2 are used as
benchmark results of tension tests needed for structural simulations described in
Chapter 3.
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(a) Numerical Experiment  (b) Specimen 1 (S1) (c) Specimen 2 (S2)

Specimen (NES)

Figure 2.17. (a) Numerical Experiment Specimen; for Other Structural Problems, (b)
Specimen 1 and (c) Specimen 2 (all units in mm)
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Figure 2.18. Force Deformation Curves for (a) 6=1.5d and (b) 6=3.01d for
Numerical Tests.
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Figure 2.19. Damage Patterns for 6 of (a) 1.5d and (b)3.01d

Heights and widths of the notches were 5 mm and 15 mm for specimen 1, 15 mm and
15 mm for specimen 2 respectively. S1 was used with 6=1.5d while S2 was used with
6=3.01d simulations. Both specimens had 80 mm width but their thickness were taken
similar as the thickness used for the validation problems. Heights of S1 and S2 were
taken as 305 mm and 315 mm respectively (Figure 2.17.b-c). For both S1 and S2, the
strain gauge value was taken as 45 mm. In order to ensure mesh objectivity, S1 was

simulated with 6=1.5d and S2 was simulated with 6=3.01d.

The material model for the problems simulated in the next chapter were found by first
simulating a tension test with the models S1 or S2. All multilinear function parameters
were determined for both 6=1.5d and 6=3.01d. Parameters of the notched beam
(Petersson 1981) were determined for Grof 124 N/m and 150 N/m. Parameters for the
dam test (Aldemir et al 2016) were conducted for Gr of 60 N/m, 100 N/m and 150
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N/m. Finally, parameters of the tension stiffening test (Gijsbers and Hehemann 1977)
were computed (Table 1). With using S1 and S2 and material properties provided from
experiments, series of direct tension tests were implemented. Results from simulations
are represented in Figure 2.20 for 6=1.5d and Figure 2.21 for 3.01d. Errors of the area
under the curves are also presented in the same figures. In the response curves of

numerical experiments, Eq. 2.4 calculation results are represented as ‘experiment’.

The optimum parameters of OLM for a grid size of 2 mm for NES and 5 mm for S1
and S2 are shown in Table 1. It must be noted that initial stiffness of global response
of the systems is always in agreement with the “representative” solution for all
simulations so it can be concluded that the energy balance approach is quite

satisfactory for the linear elastic regime.

In summary, optimum ai, a2 and as were determined for the smallest grid size in
6=1.5d. For 6=3.01d, only a1 value was investigated for the best match with correct
stress-deformation curve and other grid size parameters was taken as the parameters
from 6=1.5d as can be seen in Table 1. Interestingly, the values of b1 and b2 were found
as 0.6 and 0.2, respectively, regardless of the fracture energy, & or mesh size.
Collecting responses of all elements within the damage zone provide the global
response of the specimen to tension force as described in Section 2.4. Simulations
show that rather than the values of a1, a2 and as, slopes play an important role in the
response. As seen in Figure 2.2, there are three slopes in the softening part of
constitutive model in OLM. The first descending slope in softening part influences
both the capacity and the softening slope of the global response. The second and third
slopes are of secondary importance and they affect the global response for high strains.
All parameters that give these curves are represented in Table 1 with the smallest grid

size.

These numerical experiments revealed three important conclusions: i- the increase of
the & seem to provide a better match of the softening part resulting in a better
representation of the coalescence of cracks. ii- The mesh regularization upon scaling
the input softening function for different mesh sizes seem to be successful for larger

horizons similar to the lattice results as long as sufficiently small mesh size are used
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to account for the geometry of the notch. iii- Thanks to the larger notch length, the
crack was contained within the notch region for the numerical experiments. These
results provided confidence on the ability of estimating cracks for concrete in tension
tests while accurately modeling the average stress-displacement response with the

overlapping lattice approach.
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Figure 2.21. Stress-Change in Length Curves for Series of Direct Tension with

6=3.01d

Table 1. Multilinear Function Parameters and Properties of Specimens

Smallest

4=1.5d 6=3.01d Grid Size Properties
a & a  a a as d” EY fo© G W
GS 6.6 75 450 12 75 450 1 29.1 341 54 19
COR 36 40 280 5.0 40 280 2.5 21.0 347 100 50
Numerical 32 60 300 6.2 60 300 2 27.0 3.10 70 32
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Table 1. (continued)

Notched
Beam 15 50
G=150

Tension
Stiffening
Gi=60
*: Dimensions for E, fer, Gt, w and d are GPa, MPa, N/m ,mm and mm respectively
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CHAPTER 3

VALIDATION OF OLM

3.1 General

In this chapter, OLM is employed for the nonlinear static analysis of unreinforced and
reinforced concrete problems. First, three point bending test for a notched beam is
modelled with OLM. Then, a gravity dam test is simulated. Tension stiffening and four
point bending beam tests were studied to explore the performance of OLM to predict
reinforced concrete behavior. Detailed parametric studies are conducted. Effect of & is
investigated in the studied examples. In the structural simulations, effect of fracture
energy on the global response is studied at the member level. The response and crack
pattern of all conducted validations of OLM examples are presented and discussed in
detail.

3.2 Notch Beam Test

Three point bending experiment was performed by Petersson (1981) to determine the
fracture energy of beams. This beam test was simulated in order to assess the
performance of the overlapping lattice approach for a bending induced crack
propagation problem. The geometry of the specimen can be seen in Figure 3.1. The
notch height was half the width of the beam i.e., 100 mm. Notch geometry information
was not provided in the conducted experiment report. So, a 5 mm notch width was
assumed. E, fer, and Gr values were taken from the test results as 30.0 GPa, 3.33 MPa,
0.124 kN/m, respectively. The thickness of the beam was 50 mm as can be seen in
Table 1. First, the parameters required for the lattice elements were determined such
that the numerical direct tension test results (for S1 and S2) of stress-average
displacement matched with the response function in Eq. 2.4. The calibrated model

parameters are prevented in Table 1.
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Figure 3.1. Experiment Geometry [Petersson 1981]

As can be seen Figure 3.1, a point load was applied at middle of the specimen, where
two ends of the beam were restrained against to translations. The transverse deflection
was monitored under the loading point at the middle of specimen in the experiment.
The load was applied as a distributed load over 5 mm spanning to two elements as the
actual loading plate width was not reported.

The OLM was constructed for the beam test by using the parameters (modified
according to length scale) obtained from the uniaxial tension test for a grid size of 5
mm. The load deflection curve results and obtained crack patterns are shown in Figure
3.2 where the two black lines represent the experimental values obtained by Petersson
(1981), the blue line (6=1.5d), and the red line (6=3.01d) represent the computational
predictions. The damage pattern of the selected around the notch is shown as a square
region in Figure 3.1.b for 6=1.5d and Figure 3.2.c for 6=3.01d. The color contours in
the damage figures show the strain values in the elements (i.e., ecr ranging from
0.00012 to 0.02). Amplification factor for the deformation field presented for the notch
region was taken as 10 for illustration purposes. All crack patterns were reported for
the end of the simulations.

In the performed tests, six beams were tested. The fracture energy of these beams
exhibited some variations. The mean fracture energy value of these beams was
reported as 124 N/m. Considering the uncertainty in the experimental data,
computational results seem to be in reasonable agreement with the bounds of the
experimental results. The increasing & caused a slight underestimation of the capacity

computed to 6=1.5d.
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Figure 3.2. Force Deflection Curve and Damage Patterns for Gi=124 N/m [Petersson
1981]

In order to observe the influence of the fracture energy on simulation results, OLM
simulations were repeated by keeping all the parameters same while assuming a
fracture energy of 0.15 kN/m. In the experiment, the highest and lowest fracture
energies value of the tested six beams were reported as 0.137, 0.115 kN/m,
respectively. Direct tension test for this fracture energy was re-conducted and
calibrated parameters are shown Table 1. The force deflection curve and corresponding

damage pattern for both 6=1.5d and 3.01d are shown in Figure 3.3.

It can be observed that increased fracture energy resulted in an enhanced capacity and
better estimation of the load deformation response. As such, uncertainty in the fracture
energy, which is usually uncovered by conducting a number of tests, can affect the

computational estimations by using the OLM.
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Figure 3.3. Force Deflection Curve and Damage Patterns for Gi=150 N/m [Petersson
1981]

The crack pattern was in agreement with expected crack propagation starting from the
top of the notch opened in the upward direction. The crack did not spread outside the
notch region for 6=1.5d. It was a zipper type crack. In the simulations conducted for
both Gr values, increasing the & resulted in a slight capacity reduction compared to the
capacity obtained for 6=1.5d. The damage patterns in simulations (i.e., the crack width
and length) were observed to be in a better agreement with the experimental results for

larger o.

3.3 Scaled Dam Test

Aldemir et al (2015) conducted a pseudo dynamic and static conventional concrete

dam experiment on a 1/75 scaled model of the 120 m high Melen Dam. Three different
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scaled ground motions were applied to the dam by using the pseudo-dynamic testing
technique. Then, the pushover experiment was also conducted. The original setup
enabled the use of only the bottom half of the dam section and the inertial and
hydrodynamic load effects were simulated using a lateral hydraulic actuator. The
geometry and loading of the model is presented in Figure 3.4. The vertical dead load

was applied to mimic the gravitational actions on the prototype dam.

672.27 kN/m
PPV

630 ) 595 135

35 _,,.,. 45 505 45 _ 75

950

Figure 3.4. Experiment Geometry [Aldemir et al 2015]

The OLM was constructed by using a 25 mm grid size to observe the performance
estimation for a continuum unreinforced concrete structure. A similar procedure as
discussed above for the notched beam simulation was conducted initially to estimate
model parameters by using a numerical uniaxial tension test since a laboratory uniaxial
tension test was not available. The calibrated parameters for the softening function are
given in Table 1 for the d of 5 mm. For the OLM of the dam appropriate length scaling

was performed due to the smaller element length in the tension test simulation.

As no information regarding the fracture energy value of the specimen was available
Gt values of 60 N/m, 100 N/m and 150 N/m were used in the simulations to investigate
response predictions over a wide range of Gr. E, for, and w values were taken as 10.5
GPa, 2.9 MPa and 200 mm, respectively, as reported in the test (Table 1) for these
simulations. In addition, the elements within the top 300 mm, equipped with a specially

designed threaded steel plate in the test to enable safe load transfer on the specimen,
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were assumed to remain elastic. For this reason, Fer as Finreshold and stiffness of the top
300 mm of the lattice elements in this region were taken as 100 times of critical force,
Fer, and 10 times of EA.

First, the vertical load was applied (400 kN) and this loading was assumed as the initial
stress condition. Afterwards, the specimen was loaded from the upstream direction
gradually (Figure 3.4) in a damage controlled manner with SLA. A slight modification
was conducted to incorporate initial stresses as explained in the original computer code
in Appendix B. In the experiment, first, the hydrostatic loading was applied. The
following earthquake loading patterns were operational based earthquake (OBE),
maximum design earthquake (MDE) and maximum characteristic earthquake (MCE).
After these loads, the pushover loading was applied. The crack patterns forming on the

test specimen are shown in Figure 3.5.

LVDTs was placed at the top of the specimen. Similarly, displacement of the middle
node was observed as the tip displacement in the simulations. For all Gt values and &
of 1.5d and 3.01d, the SLA results were compared with the experimental results found

by combining the consecutive PsD and pushover test results as shown in Figure 3.6.

Envelopes of the response results of simulation are shown in the base shear and tip
displacement curves for good representation. It can be observed that the initial stiffness
estimation of the specimen was perfect whereas the estimation of lateral load capacity
was about 20% lower than the test capacity. The deformation of the specimen was
predicted in a reasonable manner with some drop of load carrying capacity around 1.5
mm. In addition, the results for 6=1.5d and 6=3.01d in terms of force deflection
response of the specimen were quite similar. However, a smoother response curve was
obtained when the larger & is used (i.e., suddenly drop at the point tip displacement is
about 1.7). The marked three points on the load tip displacement curve were used to
compare damage patterns in this tip displacement value. It is interesting to note that
variation of fracture energy seemed to affect the response in a limited manner. Using

a 20% larger fracture energy value gave again a capacity enhancement of 1%.
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(a) Hydrostatic Loading

(e) Pushover Experiment

Figure 3.5. Cracks in Experiments [Aldemir 2016]
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Figure 3.6. Load-Tip Displacement Response of OLM

The crack patterns and lengths are shown in the Figure 3.7 around 3.5 mm tip
displacement as the points at Figure 3.6 for both 6=1.5d and 6=3.01d and for different
fracture energy value as mentioned. The color contours show the strain value in the
element ranging from 0.00012 to 0.05. Amplification factor was taken as 45 to
observed deflected shape well. As can be seen in the experiment geometry, x axis range
is from 0 to 1.36 m which is the bottom width of the specimen while y axis range is
from 0 to 1.08 m.

58



1
0.8
0.6
0.4

027,

0
0 02 04 06 08 1 1.2

G;=60N/mand L=0.91m

0O 02 04 06 08

G;=100 N/mand L=0.93 m

06 08 1 1.2

0.05

0.04

0.03

0.02

0.01

G, = 150 N/m and L=0.94 m

(a) 5= 1.5d

0.05

0.04

0.03

0.02

0.01

0.05

0.04

0.03

0.02

0.01

G;=60 N/mand L=0.92 m

1
0.8
0.6
0.4

02 4

0.05

0.04

0.03

0.02

0.01

G; =150 N/mand L=0.95m

(b) 6=3.01d

G; =100 N/m and L=0.93
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In the experiment, the crack length was measured as 1.05 m for both end of MCE
loading (i.e., tip displacement is around 1.1 mm) and pushover experiment (i.e., end
of curve). However, the cracks at the bottom of the specimens already existed in the
experiments. Thus, the crack lengths of Gr of 60,100,150 N/m were observed as 1.056,
1.060 and 1.065 m for 6=1.5d and 1.049, 1.056 and 1.070 m, respectively. The crack
pattern observed from the test seemed to agree well with the base cracking shown in
Figure 3.5. There existed some split cracking at the downstream of the dam for 6=1.5d
due to compressive loading. However, this problem was not observed for 6=3.01d.
This shows that using a larger 5 is also beneficial to model compression in concrete.
Crack length at the bottom of the dam was observed in a better agreement with the
experiment results for larger &. In short, it can be stated that the employed SLA
overlapping lattice simulation was found to reproduce the test results in a reasonable

manner.
3.4 Tension Stiffening Test

In order to test the ability of the overlapping lattice approach in estimating the force
transfer between steel reinforcement and concrete, first the basic test of tension
stiffening test was simulated. In this test, steel reinforcement with concrete cast around
it was subjected to uniaxial tension by applying a force only on the steel bar. In this
way, the ability of force transfer from steel to concrete including the axial tensile load-
deformation response of concrete and associated crack spacing can be deduced. The
test experiment carried out by Gijsbers and Hehemann (1977) was used for the
numerical simulations. In their experiment, the concrete bar had 600 mm length and a
cross section of 68 mm x 68 mm with a $8 mm rebar at the center. Half of the
experiment was modeled to get computational efficiency as shown in Figure 3.8. E,
for, and Gr values were taken as 28.0 GPa, 2.5 MPa, 0.06 kN/m, respectively (Table 1).
Modulus of elasticity, Es and yield stress, fyield, Of steel were 192.3 GPa and 400 MPa,
respectively. The load was applied from steel and elongation of steel was observed. In
order to satisfy the symmetry conditions, roller supports were placed at the top

boundary, and a pin support was placed at the left end of the rebar.

OLM was constructed by using a 5 mm grid size and 6=3.01d. The value of EA: for

the truss elements representing the steel rebar were taken as a half of the modulus of
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elasticity times cross sectional area of steel (EsAs/2). Here, As was half of the area of
8 mm bar. The softening parameters are given in Table 1 for this simulation. Moreover,
load was applied from top right point of the specimen and displacement of this point
was taken as the elongation value. The load was multiplied with 2 because of
symmetry condition to draw total load elongation response. In addition, there are three
types of elements, including concrete, bond and steel represented in purple, red and

green respectively in the Figure 3.9.

> F
]y D8 mm

600 mm

Figure 3.8. Half of the Experiment Geometry
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e
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Figure 3.9. Different types of elements for both &

In the preliminary studies, in order to observe & and bond strength effect in RC
structures, 6=1.5d with keeping the other properties same was used. The bond strength
was taken as 40%, 70%, 100% and 130% of the tensile strength of concrete elements,

respectively. Elastic perfectly plastic load-strain response was assigned for bonds (i.e.,
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after reaching bond strength with the same stiffness of the concrete members, the stress
level was kept constant). The load elongation responses and crack patterns at the end
of simulation are shown in Figure 3.10 and Figure 3.11. In comparison with test results,
response of 6=1.5d gave inaccurate result in terms of the ascending part after main
cracks initiated. Crack propagation was also observed to be unrealistic because three
main cracks was took place in the experiment. If the bond strength was taken too high,
cracks initiated just below the level where bond elements end. If the bond strength was
chosen too low, some sliding (i.e., pullout) region between concrete and steel was
observed. Both of these choices yielded inaccurate simulation results. Thus, it was
realized that there must be a range for bond strength. In addition, choosing small
horizons (6=1.5d) did not produce acceptable simulation results. In order to avoid
bond failure of the RC structures, the higher & must be used. In the following
simulations, 6 was taken as 3.01d and the bond strength was taken as 40%, 70%, 100%
and 130% of the tensile strength of concrete elements. The responses and crack
patterns at the end of simulations are shown in Figure 3.12 and Figure 3.13. Color

contours denote the strain values ranging from 0.00012 to 0.005.
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Figure 3.10. Load Elongation Responses for 6=1.5d with Different Bond Strengths
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Figure 3.13. Crack Patterns for 6=3.01d with Different Bond Strengths

The minimum bond strength value was found as 70% of Fcr. Using lower than 70% of
Fer as bond strength made the system less stiff than desired. Moreover, some sliding
regions were observed. Bond strengths higher than 70% was found to adequate for
simulations. In summary, a different constitutive law must be applied to overcome
bond failure for steel-concrete connections. 6=3.01d was chosen for OLM rather than
6=1.5d. The minimum value of the bond strength for the RC structures must be taken
as 70% of tensile strength of concrete. For those elements, tensile strength of them was
taken as 70% of the tensile strength of concrete elements. Load elongation response
by using OLM is shown in Figure 3.14.

The four pictures of damage patterns (Figure 3.15) correspond to the consecutively
numbered locations on the graph in Figure 3.14. First, tensile cracks initiated at a force
level of about 12 kN, afterwards, number of cracks and their widths increased and steel
rebar started taking an increasing share of the external load. Finally, steel bar yielded
when the external load reached to about 20 kN. Numerical and experimental result
perfectly coincide at the yielding point of steel. Computational result was in good
agreement with the experimental results. The number of sudden drops in the force-
elongation diagram were the indicators of new crack formations agreeing with the
experimental results. First, second and third points in the Figure 3.15 represent the
formation of first, second and finally third cracks respectively. Fourth point shows the
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final damage pattern. For point 4, three main cracks in addition to some minor cracks
were observed. The spacing between first and second crack was determined to be
around 100 mm, whereas the spacing between the final cracks was around 40 mm in
OLM. The crack pattern observed from simulation of Rots et al (2008) is also shown
in Figure 3.15(e).
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Figure 3.14. Load Elongation [Gijsbers and Hehemann 1977]. (Crack Pattern at
Points Identified by Numbers are shown in Figure 3.15)
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Figure 3.15. Damage Patterns at Specific Points (shown in Figure 3.14) and Crack
Pattern by Rots (2008)
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These results encourage the use of the overlapping lattice approach to model reinforced
concrete structural members under loading, which is investigated with the next

validation study.

3.5 Reinforced Concrete Beam Test

As the last validation study, the reinforced beam experiment tested by Walraven
(1978) was simulated by OLM. This experiment was a four point bending test for a
reinforced concrete beam. Half of the experiment specimen can be shown in Figure
3.16. E, for, and Gr values were taken as 25.0 GPa, 2.5 MPa, 0.06 kN/m, respectively
from the reported results (Table 1). The beam thickness was 200 mm. The beam had a
height of 150 mm and length of 2300 mm with 2¢10+1$8 mm longitudinal rebars
whose modulus of elasticity and yield stress were taken as 210.0 GPa and 440 MPa
respectively. Force was applied at the point shown in Figure 3.16 and displacement

value was measured at the middle point of the test specimen.

D
X

125

2010+168

25

yiy

275 : 375 Y 500 %

Figure 3.16. Half of the Experiment Geometry (all units are in mm)

In light of the information provided by the tension stiffening simulation, this beam was
simulated by using a grid size of 25 mm with a & of 3.01d with OLM. Half of the beam
was simulated by placing roller supports at the right of the half beam. The force was
applied as a distributed load over 50 mm spanning three elements on the actual loading
plate width was not reported. The fracture energy, elastic modulus and tensile strength
were reported by Gijsbers and Hehemann (1977) and they were very close to those

reported by Walraven (1978). Consequently, same softening parameters employed in
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tension stiffening were used in these simulations (Table 1). Displacement was taken

from right top corner of the specimen.

In the preliminary studies, 6=3.01d was chosen to overcome bond failure in RC
structures. By using a 6=3.01d, in order to observe effect of bond strength on the results
as the tensile strength of lattice elements connected to steel bars taken as 40%, 70%,
100% and 130% of the tensile strength of concrete elements, respectively. Elastic
perfectly plastic load-strain response was assigned (i.e., after reaching bond strength,
the stress level was kept constant). The responses and crack patterns are shown in
Figure 3.17 and Figure 3.18. Color contours denote the strain values ranging from
0.00012 to 0.0008. An amplification factor of 3 was chosen.

If the bond strength was taken lower than 70% the concrete tensile strength, the steel
reinforcement pulled out from the concrete as can be seen in Figure 3.17.a and Figure
3.18.a. The structure could not reach the capacity due to the pullout failure upon
increasing the strength of bond elements to %70 capacity of tensile strength of concrete
with elastic perfectly plastic behavior. If the bond strength was increased above 70%
of the concrete tensile strength, it can be observed in Figure 3.17 that both stiffness
and strength were overestimated. These results seem to demonstrate optimum bond
strength for OLM simulations to be 0.7*Fr.

The model was capable of capturing the initial cracking load with a reasonable
accuracy (Figure 3.19). The cracked stiffness of the specimen was slightly
overestimated up until 5 mm of midspan deflection, afterwards the load deflection
curve from numerical simulations followed the result from the test. Ultimate capacity
of the test specimen was about 30 kN, which was in perfect agreement with the test
result. In short, it can be stated that OLM is quite successful in estimating the load-

deformation response of a beam failing in flexural mode.
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Figure 3.18. Crack Patterns for Different Bond Strengths
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Figure 3.19. Load Deflection at Midspan Curve

Crack patterns in the specimen are shown in Figure 3.20 for 70% of tensile strength of
concrete simulation related to given points in the load deflection curve as four different
points. In the figure, crack patterns are shown for only half of the beam. Mirror image
behavior will occur in the other half of the beam.
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It can be observed that the flexural cracks were spaced at about 10 cm spacing. The
only shortcoming of the simulation result, if to mention one was obtaining slightly
diffused crack patterns rather than discretely spaced flexural cracks.
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CHAPTER 4

CONCLUSION

4.1 Conclusion

A novel approach was proposed to simulate concrete fracture integrating OLM and
sequentially linear analysis. Numerical simulations have shown that the approach has
a great potential to estimate the spatial distribution and widths of cracks in both plain
and reinforced concrete. The horizon distance, tensile softening function and its
regularization for different mesh densities were investigated in detail. Following key
conclusions can be drawn based on these results:

e The overlapping lattice modeling is a highly nonlocal approach. This

necessitates the calibration of tensile stress-deformation response at the meso-scale

in order to successfully match the macro-scale response. In other words, one needs

to calibrate three softening function input parameters for its members by using a

computational direct tension test. The tensile force-deformation response is found

to be sensitive to the softening function input parameters requiring an objective
calibration strategy.

¢ When the tensile force-deformation response of a tension test is calibrated, other

crack propagation problems can be tackled with a reasonable level of accuracy and

a lower sensitivity to the input parameters.

e Increasing the horizon in the OLM provides smoother force-deformation

response with a more realistic crack pattern. However, it requires a finer mesh to

account for the geometric irregularities.

o Existence of reinforcing bars requires higher horizon values in order to overcome

bond failure of RC structure.

e Analysis of the tension stiffening and RC beam problem suggests that the

force/strain curve for steel-concrete interface elements are different than

concrete/concrete elements. A close match with tension stiffening and RC beam
problems was obtained using elastoplastic steel-concrete interface elements with

70% of tensile strength of concrete-concrete elements.
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e SLA provided a robust framework to analyze severely softening problems with
no convergence issues favoring the use of it for quasi-brittle problems.

4.2 Future Work

Although, the PD is being widely applied to study crack propagation problem, its
application to heterogeneous materials like concrete is quite limited as a consequence
of the need for calibration. In this work, a methodology was developed to calibrate for
concrete in the context of the OLM. Many research opportunities exist to further
advance the OLM. Some of the opportunities are:
e The constitutive model of bond elements could further be studied to describe the
bond response more realistically. To this end, the constitutive model could be
calibrated with bond failure tests in literature by using OLM simulations.
e Shear and compression experiments could be simulated in order to understand
the response of members in OLM other than tensile force (i.e., mode 1 crack).
o Dynamic loading could be incorporated in the OLM procedure so as to observe
the response of OLM while modeling the impact/blast type loadings.
e The presented procedure of OLM for RC simulations could be more meaningful
if 3D space was considered. In this way, the effect of reinforcements would be
simulated accurately.
e The Strut and Tie Model could be combined with the OLM procedure.
e The effect of mesh size and type on the performance of the OLM simulations
could be investigated by using different meshes. In addition, a random distribution
of nodes and elements could be used to examine the effect of them on the global
response.
e The fracture models to describe the compression failure would be implemented
in the OLM method.
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APPENDIX A

SEQUENTIALLY LINEAR ANALYSIS CODE

The coordinates of grid nodes and according to J, the elements were determined by
specified the nodes as steel which was inputted with its cross sectional area (As) or
concrete particles. Modulus of elasticity of concrete, E, and steel if exist, Es, critical
strain values corresponding to their strength of the concrete, ecr, and steel if exist, eyield,
and thickness, w, were obtained from experiments. Parameters (a1,az,asand b1,b2) were
added for the smallest member. Finally, boundary and load points were defined and
the points at which displacement value would be liked were determined in simulation.

First, EAt values from energy balance was computed. Afterward, stiffness matrix was
assembled by assigning EA: of 1 for all elements. The displacements in the nodes were
assigned by multiplying 1.001 with x-coordinates of them so the strain value in x
direction was taken as 0.001 with fixed strain in y direction as zero (i.e., £x=0.001,
gy=0). All forces and their corresponding energies were determined by using simple
truss solver algorithm. Finally, EA: value was found by stored energy over this energy
(described in Chapter 2). Force strain response of the elements from input file was
defined. All initial stiffness and threshold force value, Finreshold, @S Fer OF the truss
elements were assigned (i.e., EAt*ecr for concrete, Es*As*eyield for steel members). For
the reinforced concrete, there are three type of elements which were concrete, steel and
bond which connected steel and concrete nodes. Threshold force value was assigned

for bond members as %70 of threshold force value of concrete members.

The steps in iteration part were;

e Unit load was applied to the system
e Linear elastic analysis was performed
e Strains corresponding to their displacements were observed

e The forces were found for all members
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e Critical element which has the lowest load factor, Amin (i.e., A= Fthreshota/Current
force) was found

e min is the scale value by which unit load elastic results was multiplied. These
results was the point at global response such as load deflection at specified
node

e Other elements which have A value so close to determined Amin (i.€., A-
Amin<1.0e-05* Amin) were found and assigned as critical elements

o Finreshold (if concrete member) and EA: of critical elements was reduced

according to their constitutive model by using current o

Finreshold Was found by using new EA: of the element and small triangular similarities
like Rots (2001) for concrete members. There was no need to evaluate Ftnreshold fOr
other types of element due to assume elastic perfectly plastic response. Deflection in
any point or deflection differences in two points which is the definition of strain gauge

used in experiments corresponding to the force could be printed.
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APPENDIX B

SEQUENTIALLY LINEAR ANALYSIS CODE WITH INITIAL LOADING

All explained procedures in Appendix A until iteration part was conducted likewise.

Then, before starting iteration part, the following steps were implemented for dam

OLM simulation;

400 kN was distributed to the top grids uniformly (i.e., for 25 mm grid size,
16.67 KN is distributed to the 24 nodes) as a fixed load

Linear elastic analysis was performed

Strains corresponding to their displacements were calculated

The forces (Fv) for all elements were found

Iteration part started due to horizontal increment load

Unit load was applied to the system

Linear elastic analysis was performed

Strains corresponding to their displacements were calculated

The forces (Fn) were found for all members

Critical element which has the lowest load factor, Amin ( i.e., A= (Fthreshold-
Fv)/Fn) was determined

Amin IS the scale value by which unit load elastic results was multiplied. These
results is the point at global response such as load deflection at specified node.
Other elements which have A value so close to determined Amin (i.€., A-
Amin<1.0e-05* Amin) Were searched

Ftreshold (if concrete member) and EA: of critical elements was reduced
according to their constitutive model by using current a.

All other things were same with the code in Appendix A.
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