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In the present work, the canonical bases of finitely generated graded 

algebras such as the commutative associative polynomial algebra, free associative 

algebra and free metabelian Lie algebra were investigated, and an elementary proof 

was proposed in the computation of Hilbert series of free metabelian Lie algebra. 

 

Keywords: Free Lie algebras, Free metabelian Lie algebras, Hall bases, Hilbert 

Series. 

 

 

 

 

 

 

 

 

 



 

II 
 

ÖZ 
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Bu çalıĢmada derecelendirilmiĢ cebirler olan sonlu üretilmiĢ değiĢmeli ve 

birleĢmeli polinomlar cebirinin, serbest birleĢmeli cebirin ve serbest metabelyen 

Lie cebirinin kanonik bazları incelenmiĢ ve serbest metabelyen Lie cebirinin 

Hilbert serisinin hesabında elementer bir ispat önerilmiĢtir. 

 

Anahtar Kelimeler: Serbest Lie cebirleri, Serbest metabelyen Lie cebirleri,  Hall 

bazları, Hilbert Serileri. 
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EXTENDED ABSTRACT 

 

In this thesis it is shown how to construct a canonical basis for unitary polynomial 

algebra 𝐾 𝑋𝑚  = 𝐾[𝑥1 , … , 𝑥𝑚 ] of finite rank 𝑚 generated by 𝑋𝑚 , unitary 

associative algebra 𝐾 𝑋𝑚  = 𝐾 𝑥1 , … , 𝑥𝑚   of finite rank 𝑚 generated by 𝑋𝑚  (not 

necessarily commutative), free Lie algebra 𝐿𝑚 = 𝐾 𝑥1 , … , 𝑥𝑚   of finite rank 𝑚 

generated by 𝑋𝑚 , free Akivis algebra 𝐴𝑚 = 𝐾 𝑥1 , … , 𝑥𝑚   of finite rank 𝑚 

generated by 𝑋𝑚 , free metabelian Lie algebra  

𝐹𝑚 =
𝐿𝑚

𝐿𝑚
′′ =

𝐿𝑚
  𝐿𝑚 , 𝐿𝑚  ,  𝐿𝑚 , 𝐿𝑚   

 = 𝐾 𝑦1 , … , 𝑦𝑚   

of finite rank 𝑚 generated by  𝑦1 , … , 𝑦𝑚  . All these algebras are graded vector 

spaces. Recall that  𝑉 is called a graded 𝐾- vector space if it has a direct sum 

𝑉 =⊕𝑛≥0 𝑉
(𝑛) =  𝑉(𝑛)

𝑛≥0

 

where 𝑉𝑛  is subspace and 𝑛 ≥ 1. Since  𝑉 =⊕𝑛≥0 𝑉
(𝑛) is a finitely generated 

graded 𝐾-algebra, then we could define the Hilbert function of 𝑉 as  

𝐻 𝑉, 𝑛 = dim𝐾𝑉
(𝑛) 

where 𝑑𝑖𝑚𝐾(𝑉(𝑛)) is the dimension of the vector space 𝑉(𝑛)over 𝐾. For all 𝑛 ≥ 0, 

we can define formal power series in this form: 

𝐻 𝑉, 𝑡 = 𝐻𝑖𝑙𝑏 𝑉, 𝑡 =  dim𝐾𝑉
(𝑛)

𝑛≥0

𝑡𝑛  

is called the Hilbert (or Poincaré) series of 𝑉. 

 We investigate and formulate the dimensions of homogeneous subspaces 

dim𝐾𝑉
(𝑛) for 𝑉 = 𝐾 𝑋𝑚  ,  𝑉 = 𝐾 𝑋𝑚  , 𝑉 = 𝐹𝑚  and find the Hilbert series of 

these graded algebras. In proving the formula for Hilbert series of free metabelian 

Lie algebra 𝐹𝑚 , which is 

𝐻 𝐹𝑚 , 𝑡 = 1 + 𝑚𝑡 +
𝑚𝑡 − 1

(1 − 𝑡)𝑚
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we give an elementary proof which is main objective of this thesis. The first proof 

given by Drensky (1994) is relatively theoretical and very nice however it is not 

easy to follow without a good background, while the proof proposed here is so 

simple to understand even in undergraduate stage. 
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1. INTRODUCTION 

 

The Hilbert Series known also as Poincaré Series was firstly proposed by 

David Hilbert himself in the years of 1890s when he wanted to study the context of 

finitely generated commutative algebras. As the years come up the Hilbert Series 

have been intensively studied, like in 1890 to 1893, Hilbert described the shape of 

commutative algebra by using the most four famous results which are the basis 

theorems based on finite generation of invariant, the theorem of zeros also called 

Nullustellensatz in German, the polynomial nature which is named as the Hilbert 

function and Syzygy theorem. By definition the Hilbert series is the formal power 

series in the variables of the degrees ring whose coefficients are the dimensions of 

the corresponding graded component.  

In this thesis we investigate on the notions of free Lie algebras, polynomial 

algebras, graded algebras and free metabelian algebras. We suppose that  𝐿𝑚 =

𝐾 𝑥1 , … , 𝑥𝑚   is the free Lie algebra of finite rank 𝑚 generated by 𝑥1 , … , 𝑥𝑚  over a 

field 𝐾 of characteristic zero and let 𝐹𝑚 = 𝐾 𝑥1 + 𝐿𝑚
′′ , … , 𝑥𝑚 + 𝐿𝑚

′′  =

𝐾 𝑦1 , … , 𝑦𝑚   be the free metabelian Lie algebra of rank 𝑚 over 𝐾. Then the 

discussion here is based on graded algebras. We introduce the freeness of Lie 

algebras and their monomials, where these helped us to find the canonical basis of 

free (metabelian) Lie algebras. We investigate Hilbert series of both polynomial 

algebra and free metabelian Lie algebra and we come out with an elementary proof 

of formula of Hilbert series of free metabelian Lie algebra which was our main 

objective of our thesis.  

Our work has two major chapters, one is coupled the basic definitions and 

theorems here we recalled some definition and we tried to discuss and prove some 

theorems and propositions as well which will conduct us to the well understandable 

of our objectives.  
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Second chapter is computational results. Here we have discussed the graded bases 

and we investigate the free metabelian Lie algebra thereafter we come out with a 

simple way to formulate the Hilbert Series of metabelian Lie algebra.   
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2. BASIC DEFINITIONS AND THEOREMS 

 

Definition 2.1: Let  𝐾 , +,⋅  be a field of characteristic 0 and let 𝑉 be a nonempty 

set together with the operations of addition ⨁:𝑉 × 𝑉 → 𝑉 and scalar multiplication 

⊙:𝐾 × 𝑉 → 𝑉. 𝑉 is called a vector space over 𝐾 if the following conditions hold 

for every element 𝑢, 𝑣, 𝑤 ∈ 𝑉 and scalars 𝛼, 𝛽 ∈ 𝐾:  

(i) Commutativity: 𝑢⨁𝑣 = 𝑣⨁𝑢  

(ii) Associativity:  𝑢⨁𝑣 ⨁𝑤 = 𝑢⨁(𝑣⨁𝑤) and  𝛼 ⋅ 𝛽 ⊙ 𝑣 = 𝛼 ⊙ (𝛽 ⊙ 𝑣)  

(iii) Additive identity: There exists an element 0 ∈ 𝑉 such that 0⨁𝑣 = 𝑣⨁0 = 𝑣 

for all 𝑣 ∈ 𝑉; 

(iv) Additive inverse: For any 𝑣 ∈ 𝑉 , there exists an element  𝑤 such that 

𝑣⨁𝑤 = 𝑤⨁𝑣 = 0; 

(v) Multiplicative identity: 1 ⊙ 𝑣 = 𝑣; 

(vi) Distributivity: 

𝛼 ⊙  𝑢⨁𝑣 =  𝛼 ⊙ 𝑢 ⨁ 𝛼 ⊙ 𝑣  

 𝛼 + 𝛽 ⊙ 𝑢 =  𝛼 ⊙ 𝑢 ⨁ 𝛽 ⊙ 𝑢 . 

 Usually, a vector space over ℝ is called a real vector space and a vector 

space over ℂ is called a complex vector space. Elements of the vector space 𝑉 are 

called vectors. 

Example 2.2: 𝐾𝑛   is a vector space over 𝐾 under the operations 

 𝑣1 , … , 𝑣𝑛 ⨁ 𝑤1, … , 𝑤𝑛 = (𝑣1 + 𝑤1 ,⋯ , 𝑣𝑛 + 𝑤𝑛) 

𝛼 ⊙  𝑣1 , … , 𝑣𝑛 = (𝛼 ⋅ 𝑣1 , … , 𝛼 ⋅ 𝑣𝑛), 

where 𝛼, 𝑣1 , … , 𝑣𝑛 , 𝑤1 , … , 𝑤𝑛 ∈ 𝐾. 

Definition 2.3: Let 𝑉 and 𝑊 be two vector spaces. A linear transformation 𝑓 is a 

function from 𝑉 to 𝑊 such that 

𝑓  𝛼 ⊙ 𝑣1 ⨁𝑣2 =  𝛼 ⊙ 𝑓 𝑣1  ⨁𝑓(𝑣2) 



2. BASIC DEFINITIONS AND THEOREMS Andre DUSHIMIRIMANA 

4 
 

for all 𝑣1 , 𝑣2 ∈ 𝑉 and 𝛼 ∈ 𝐾. Sometimes we can say that 𝑓 is linear just for 

meaning of linear transformation. 

 For simplicity, we will shorten the followings from now on:  𝛼 ⊙ 𝑣 = 𝛼𝑣, 

𝑢⨁𝑣 = 𝑢 + 𝑣. 

Definition 2.4: A linear transformation is an isomorphism if it is one-to-one and 

onto. If there is an isomorphism 𝑓: 𝑉 → 𝑊, we say that 𝑉 is isomorphic to 𝑊  and 

write 𝑉 ≅ 𝑊. 

The inverse of an isomorphism is an isomorphism and the composition of two 

isomorphisms is also an isomorphism, when defined. 

Definition 2.5: Let 𝑉 be a finite dimensional vector space. End (𝑉) is the space of 

linear homomorphisms from 𝑉 to 𝑉. End (𝑉) is a vector space over 𝐾. 

Definition 2.6: A vector space 𝑉 over a field 𝐾 is called algebra (or 𝐾-algebra) if 

𝑉 is equipped with a binary operation ∗: 𝑉 × 𝑉 → 𝑉 called multiplication, such that 

for any 𝑢, 𝑣, 𝑤 ∈ 𝑉 and  𝛼 ∈ 𝐾 we have the following identities: 

                                          𝑢 + 𝑣 ∗ 𝑤 = 𝑢 ∗ 𝑤 + 𝑣 ∗ 𝑤, 

                                         𝑢 ∗  𝑣 + 𝑤 = 𝑢 ∗ 𝑣 + 𝑢 ∗ 𝑤, 

                                         𝛼 𝑢 ∗ 𝑣 =  𝛼𝑢 ∗ 𝑣 = 𝑢 ∗ (𝛼𝑣). 

 A basis of 𝑉 as a vector space is said to be a basis of algebra 𝑉. If 𝑉 is 

finite dimensional then 𝑉 has a finite basis over 𝐾. The algebra 𝑉 is a commutative 

algebra if 𝑉 is a commutative ring with respect to ∗. 

 Usually we denote the multiplication of 𝑉 by ⋅ however we are going to 

use 𝑢𝑣 instead of 𝑢 ⋅ 𝑣 and 𝑢 × 𝑣, etc. Clearly, the notion of algebra generalizes 

both the notion of vector space and of ring. We do not require 1 ∈ 𝑉 and 

associativity of 𝑉. 

Remark 2.7: Let 𝑉 be an 𝑛-dimensional algebra over a field 𝐾 with the 

basis { 𝑒1, … , 𝑒𝑛}. For each pair (𝑒𝑖 , 𝑒𝑗 ) we can express the product 𝑒𝑖𝑒𝑗  as a linear 

combination of the basic elements of  𝑉 as follows: 
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𝑒𝑖𝑒𝑗 =  𝛼𝑖𝑗
𝑘𝑛

𝑘=1 𝑒𝑘 , 

where   𝛼𝑖𝑗
𝑘  𝜖 𝐾. 

 The bilinear multiplication in 𝑉 is completely determined by 𝑛3 

multiplication constants 𝛼𝑖𝑗
𝑘 ∈ 𝐾. To prove this let us take 𝑥 =  𝛾𝑖𝑒𝑖

𝑛
𝑖=0  and 

𝑦 =  𝜎𝑗
𝑛
𝑗=0 𝑒𝑗  as two arbitrary elements of 𝑉 then 

𝑥𝑦 =   𝛾𝑖𝑒𝑖
𝑛
𝑖=0    𝜎𝑗

𝑛
𝑗=0 𝑒𝑗  =  𝛾𝑖𝜎𝑗𝑒𝑖𝑒𝑗

𝑛
𝑖,𝑗=1 =  𝛾𝑖𝜎𝑗𝛼𝑖𝑗

𝑘 𝑒𝑘
𝑛
𝑖,𝑗 ,𝑘=1 . 

Therefore the multiplication can be completely specified by giving a set of 𝑛3 

constants 𝛼𝑖𝑗
𝑘 ∈ 𝐾 . These constants are called structure constants, because they 

determine the algebra structure of 𝑉. If 𝑖 and 𝑗 are fixed then the only finite number 

of constants 𝛼𝑖𝑗
𝑘  are not zero. If for all , 𝑗, 𝑘 𝛼𝑖𝑗

𝑘 = 0, then the product of two 

elements of 𝑉 is 0, otherwise, 𝛼𝑖𝑗
𝑘 ≠ 0 which is our case where we have a basis for 

𝑉 over 𝐾. 

Definition 2.8: A subalgebra of algebra 𝑉 over K is a subset of elements that is 

closed under addition, multiplication, and scalar multiplication. If a subset 𝑆 of 𝑉 is 

a subalgebra, then for all 𝑠1, 𝑠2 ∈  𝑆 and 𝛼 ∈ 𝐾, we have that 𝑠1 ∗ 𝑠2 , 𝑠1 + 𝑠2, 

and 𝛼𝑠1 are all in 𝑆. 

 A subset 𝐼 of 𝑉 is a left ideal if for all 𝑠1, 𝑠2 ∈ 𝐼, 𝑝 ∈ 𝑉, and 𝛼 ∈ 𝐾  it 

satisfies the following conditions: 

i) 𝑠1 + 𝑠2 ∈ 𝐼, 

ii) 𝛼𝑠1 ∈ 𝐼, 

iii) 𝑝 ∗ 𝑠1 ∈ 𝐼. 

 If condition (iii) is replaced by 𝑠1 ∗ 𝑝 ∈ 𝐼, then 𝐼 is a right ideal. A two-

sided ideal is a subset that is both a left and a right ideal. The term ideal is usually 

taken to mean a two-sided ideal. When the algebra is commutative, then both of 

these notions of ideal are equivalent.  
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Examples 2.9: 

 (i) Let 𝑥 be an indeterminate over 𝐾. It is known that 

𝐾 𝑥 =   𝛼𝑖𝑥
𝑖𝑛

𝑖=1   𝑛 ∈ ℕ, 𝛼𝑖 ∈ 𝐾}  

𝐾 𝑥1 , … , 𝑥𝑛  =   𝑐𝑖1 ,…,𝑖𝑛𝑥1
𝑖1 , … , 𝑥𝑛

𝑖𝑛 | 𝑖1 , … , 𝑖𝑛 ∈ ℕ𝑛 , 𝑐𝑖1 ,…,𝑖𝑛 ∈ 𝐾  

are algebras over 𝐾.  

(ii) Let 𝑀𝑛(𝐾) denote the collection of 𝑛 × 𝑛 matrices. The 𝑀𝑛(𝐾) is of 

dimension 𝑛2 as a vector space over 𝐾 in which the addition operation is the usual 

matrix addition and multiplication is matrix multiplication.  

(iii) Let 𝑈𝑛(𝐾) be the subset of 𝑀𝑛(𝐾) consisting of all upper triangular 

matrices. 

𝑈𝑛 𝐾 =   𝑎𝑖𝑗  : 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑎𝑖𝑗 = 0 𝑓𝑜𝑟 𝑖 > 𝑗  

𝑈𝑛(𝐾) is a subalgebra of 𝑀𝑛(𝐾).  

(iv) Let 𝑠𝑙𝑛 𝐾  be the set of 𝑛 × 𝑛 matrices with trace zero and with 

multiplication  

  𝐴, 𝐵 = 𝐴𝐵 − 𝐵𝐴, 𝐴, 𝐵 ∈ 𝑠𝑙𝑛 𝐾  

The trace of a 𝑛 × 𝑛 square matrix is defined by  

𝑇𝑟 𝐴 = 𝑎11 + 𝑎22 + ⋯𝑎𝑛𝑛 =  𝑎𝑖𝑖
𝑛
𝑖=1 . 

The trace of product of two square matrices is independent of the order of 

multiplication using Einstein Summation  

𝑇𝑟 𝐴𝐵 =  (𝐴𝐵)𝑖𝑖

𝑚

𝑖=1

=   𝐴𝑖𝑗𝐵𝑗𝑖 =   𝐵𝑗𝑖𝐴𝑖𝑗 =  (𝐵𝐴)𝑗𝑗 = 𝑇𝑟(𝐵𝐴)

𝑛

𝑗=1

𝑚

𝑖=1

𝑛

𝑗=1

𝑛

𝑗=1

𝑚

𝑖=1

 

Therefore, the trace of the commutator of 𝐴 and 𝐵 is given by  

𝑇𝑟  𝐴, 𝐵  = 𝑇𝑟 𝐴𝐵 − 𝑇𝑟(𝐵𝐴) 

This shows that 𝑠𝑙𝑛 𝐾  is a 𝐾- algebra. 
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Definition 2.10: A homomorphism between two algebras 𝑈 and 𝑉 over a field 𝐾 is 

a map 𝜙:𝑈 → 𝑉 such that for all 𝛼 ∈ 𝐾 and 𝑢, 𝑣 ∈ 𝑈, 

 𝜙 𝛼𝑢 = 𝛼𝜙(𝑢) 

𝜙 𝑢 + 𝑣 = 𝜙(𝑢) + 𝜙(𝑣) 

𝜙 𝑢 ∗ 𝑣 = 𝜙 𝑢 ∗ 𝜙(𝑣). 

A homomorphism 𝜙 of algebra 𝑈 into algebra 𝑉 is called 

(i) a monomorphism if 𝜙 is one-to-one, 

(ii) an epimorphism if 𝜙 is onto 𝑉, and 

(iii)  an isomorphism if 𝜙 is one-to-one and maps 𝑈 onto 𝑉. 

 If 𝜙 is an isomorphism of algebra 𝑈 onto 𝑉, then 𝜙−1 is an isomorphism of 

𝑉 onto 𝑈.  

A homomorphism from 𝑈 to itself is called an endomorphism and an 

isomorphism of algebra 𝑈 to 𝑈 is called an automorphism. 

Theorem 2.11: Let 𝜙 be an algebra homomorphism between algebras 𝑈 and 𝑉, 

then 𝜙 0𝑈 = 0𝑉 . 

Proof: 𝜙 0𝑈 = 𝜙 0𝑈 + 0𝑈 = 𝜙 0𝑈 + 𝜙 0𝑈  

Let 𝑦 = 𝜙 0𝑈 ∈ 𝑉 

𝑦 = 𝑦 + 𝑦 

𝑦 +  −𝑦 =  𝑦 + 𝑦 + (−𝑦) 

0𝑉 = 𝑦 + (𝑦 + (−𝑦)       
0𝑉

 

0𝑉 = 𝑦 = 𝜙 0𝑈 . 

Theorem 2.12: Let 𝜙: 𝑈 → 𝑉 be a homomorphism of algebras. Then the kernel 

Ker 𝜙  of 𝜙 

                                          Ker 𝜙 = {𝑢 ∈ 𝑈 |𝜙 𝑢 = 0} 

is a two-sided ideal of 𝑈 and the factor algebra 𝑈/Ker(𝜙) is isomorphic to the 

image  

Im 𝜙 =  𝜙 𝑢    𝑢 𝜖 𝑈}  



2. BASIC DEFINITIONS AND THEOREMS Andre DUSHIMIRIMANA 

8 
 

of 𝜙. 

Proof: From theorem 2.11, 0 ∈ Ker(𝜙), so 𝐾𝑒𝑟𝜙 ≠ ∅ and if 𝑢, 𝑣 ∈ Ker𝜙 then 

𝜙 𝑢 = 𝜙 𝑣 = 0, thus 𝜙 𝑢 − 𝜙 𝑣 = 𝜙 𝑢 − 𝑣 = 0. For any 𝑟 ∈ 𝑈, 𝜙 𝑟𝑢 =

𝜙 𝑟 𝜙 𝑢 = 𝜙 𝑟 ∙ 0 = 0. Similarly, 𝜙 𝑢𝑟 = 0. Thus 𝑢 − 𝑣, 𝑢𝑟, 𝑟𝑢 are also in 

Ker𝜙, hence Ker𝜙 is a two-sided ideal of 𝑈. 

On the other hand, let us consider the map 𝜑 ∶  𝑈 Ker𝜙 → Im𝜙 ⊂ 𝑉 , 

defined by 𝑢 + Ker𝜙 → 𝜙(𝑢). We have to show that 𝜑 is well defined: 

Let 𝑢 + Ker𝜙 = 𝑣 + Ker𝜙, then 𝑢 − 𝑣 ∈ Ker𝜙 and so 𝜙 𝑢 − 𝑣 = 0 ⇒ 𝜙 𝑢 −

𝜙 𝑣 = 0 ⇒ 𝜙 𝑢 = 𝜙(𝑣)  ⇒ 𝜑 𝑢 + Ker𝜙 = 𝜑 𝑣 + Ker𝜙 . Hence 𝜑 is well 

defined.  

𝜑 is a homomorphism: Let 𝑢 + Ker𝜙, 𝑣 + Ker𝜙 ∈ 𝑈 Ker𝜙 . Making use of the 

fact that 𝜙 is a homomorphism, we have  

𝜑  𝑢 + Ker𝜙 +  𝑣 + Ker𝜙  = 𝜑  𝑢 + 𝑣 + Ker𝜙 = 𝜙 𝑢 + 𝑣 

= 𝜙 𝑢 + 𝜙 𝑣 = 𝜑 𝑢 + Ker𝜙 + 𝜑(𝑣 + Ker𝜙) 

𝜑( 𝑢 + Ker𝜙  𝑣 + Ker𝜙 = 𝜑  𝑢𝑣 + Ker𝜙 = 𝜙 𝑢𝑣 = 𝜙 𝑢 𝜙 𝑣 

= 𝜑(𝑢 + Ker𝜙)𝜑(𝑣 + Ker𝜙) 

 Finally let us prove that 𝜑 is bijective. If 𝑢 + Ker𝜙 ∈ Ker𝜑, then 

𝜑 𝑢 + Ker𝜙 = 𝜙 𝑢 = 0 

and so 𝑢 ∈ Ker𝜙 or equivalently 𝑢 + Ker𝜙 = Ker𝜙, hence kernel of 𝜑 contains 

only the zero element Ker𝜙, so that 𝜑 is injective. Now let 𝑣 ∈ 𝐼𝑚𝜑, then there 

exist  𝑢 ∈ 𝐴 such that 𝜙 𝑢 = 𝑣 or equivalently that 𝜑 𝑢 + Ker𝜙 = 𝜙 𝑢 = 𝑣. 

Thus 𝑣 ∈ Im𝜑 and so 𝜑 is surjective. Therefore 𝜑 is an isomorphism. 

Definition 2.13: Let 𝑈, 𝑉 and 𝑊 be 𝐾-modules where 𝐾 is a commutative ring 

with 1. A tensor product of 𝑈 and 𝑉 is a 𝐾-module 𝑉 ⊗𝑊 along with a bilinear 

map 𝜏: 𝑈 × 𝑉 → 𝑈⊗𝑉, such that for every 𝐾-module 𝑊 and every bilinear map 

𝜑:𝑈 × 𝑉 → 𝑊, there exists a unique linear map 𝜙:𝑈 ⊗𝑉 → 𝑊 such that the 

diagram  
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commutes, that is, 𝜑 = 𝜙 ∘ 𝜏.  

The existence of the map 𝜙 satisfying the above conditions is called the 

universal property of the tensor product. Note that extending the above definition 

and gives us the definition of tensor product of usual algebras over the field 𝐾. 

The next proposition came from (Garrett, 2008). 

Proposition 2.14: Tensor product 𝑈⊗𝑉 exists and is unique up to unique 

isomorphism.  

Theorem 2.15: Let 𝑈 and 𝑉 be a vector spaces with the bases 𝔙𝑈  and 𝔙𝑉  

respectively. Then the set  

{𝑢 ⊗ 𝑣: 𝑢 ∈ 𝔅𝑈  𝑎𝑛𝑑 𝑣 ∈ 𝔅𝑉} 

is a basis of 𝑈⊗𝑉. 

Lemma 2.16: 𝑈⊗ 𝑉 is isomorphic to 𝑉 ⊗ 𝑈. 

The next example is in Conrad (2016). 

Example 2.17: 𝐾[𝑥] ⊗ 𝐾[𝑦] ≅ 𝐾[𝑥, 𝑦]. 

Solution: 𝐾[𝑥] ⊗ 𝐾[𝑦]  is made up of a finite sum of elements like 𝑓(𝑥) ⊗ 𝑔(𝑦) 

and since 𝑓(𝑥) 𝑔(𝑦) are polynomials with coefficients in 𝐾, if 

𝑓 𝑥 =  𝑎𝑖
𝑛
𝑖=1 𝑥𝑖  and 𝑔 𝑦 =  𝑏𝑗

𝑚
𝑗=1 𝑦𝑗  where 𝑎𝑖 , 𝑏𝑗 ∈ 𝐾, then 

𝑓 𝑥 ⊗ 𝑔 𝑦 =  𝑎𝑖

𝑛

𝑖=1

𝑥𝑖 ⊗ 𝑏𝑗

𝑚

𝑗=1

𝑦𝑗  

 Let’s define a map 𝜙 in order to make isomorphism 

𝜙 𝑓 ⊗ 𝑔 =  𝑎𝑖
𝑖,𝑗

𝑏𝑗𝑥
𝑖𝑦𝑗  
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where this sum spans over all possible 𝑖, 𝑗 considered. Using the property of tensor 

products 𝐾[𝑥] ⊗ 𝐾[𝑦], 𝜙  is a well-defined in 𝐾-module homomorphism. 

 Define the following map: 

𝜓  𝑐𝑖,𝑗
𝑖,𝑗

𝑥𝑖𝑦𝑗 =  𝑐𝑖,𝑗 (𝑥𝑖 ⊗𝑦𝑗 )

𝑖,𝑗

 

 It takes an element like the one we get from 𝜙 and places a tensor in between the 𝑥 

and 𝑦 terms and pulls out the coefficient.  If we get 𝑐𝑖,𝑗 = 𝑎𝑖𝑏𝑗   then by the 

properties of tensors: 

𝑐𝑖,𝑗  𝑥
𝑖 ⊗𝑦𝑖 = 𝑏𝑗  𝑎𝑖𝑥

𝑖 ⊗𝑦𝑖 = 𝑎𝑖𝑥
𝑖 ⊗𝑏𝑗𝑦

𝑗  

this is linear and a well-defined homomorphism and the compositions of these 

maps give us the identity. The only thing that is really different is the properties of 

tensor products so, 

 𝑎𝑖
𝑖,𝑗

𝑥𝑖 ⊗𝑏𝑗𝑦
𝑗 =  𝑎𝑖

𝑖

𝑥𝑖 ⊗ 𝑏𝑗
𝑗

𝑦𝑗 = 𝑓⊗ 𝑔 

 This is what we want and we get the number of these equalities by 

linearity. Similarly, 

 𝜙

𝑖,𝑗

 𝑐𝑖,𝑗𝑥
𝑖 ⊗𝑦𝑗  =  𝑐𝑖,𝑗

𝑖,𝑗

𝑥𝑖𝑦𝑗  

and so we see that this actually gives an isomorphism.  Thus, we have that [𝑥] ⊗

𝐾[𝑦] ≅ 𝐾[𝑥, 𝑦] . 

The following definition came from Szymiczek (1997). 

Definition 2.18: Let 𝐵 be a class of algebras and 𝐴 be an algebra generated by a 

set 𝑋. The algebra 𝐴 is called a free algebra in the class 𝐵, if it is generated by 𝑋 

and for any algebra 𝐶 ∈ 𝐵, every mapping 𝜑:𝑋 → 𝐶 can be extended to a unique 

algebra homomorphism 𝜑 : 𝐴 → 𝐶, such that the following diagram commutes, 

i.e. 𝜑 𝑖 = 𝜑: 
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where 𝑖: 𝑋 → 𝐴 is the inclusion map. The cardinality |𝑋| of the set 𝑋 is called the 

rank of 𝐴. 

Example 2.19: The unitary polynomial algebra 𝐾 𝑋𝑚  = 𝐾[𝑥1 , … , 𝑥𝑚 ] of rank 𝑚, 

where 𝑚 is finite, is generated by 𝑋𝑚 , and the set 𝑋𝑚  generates 𝐾[𝑋𝑚 ] as an 

algebra in the class of all unitary commutative and associative algebras. 

Remark 2.20: A basis 𝔅𝐾[𝑥] of 𝐾 𝑥  with one generator is 

𝔅𝐾[𝑥] =  1, 𝑥, 𝑥2 , 𝑥3 , 𝑥4 , …  . 

while we have a basis 𝔅𝐾[𝑋𝑚 ] of 𝐾 𝑋𝑚   is 

𝔅𝐾[𝑋𝑚 ] =  𝑥1
𝛼1 ⋯𝑥𝑚

𝛼𝑚    𝛼1, … , 𝛼𝑚 ≥ 0 }. 

Example 2.21: 𝐾 𝑋𝑚  = 𝐾 𝑥1 , … , 𝑥𝑚   be the polynomial algebra which is 

associative but not commutative. Then 𝐾 𝑋𝑚   is a free 𝐾-algebra in the class of all 

unital associative 𝐾-algebras. 

Remark 2.22: Subalgebras of a free associative algebra is not necessarily free 

because the subalgebra of the polynomial ring 𝐾[𝑋] generated by 𝑥2 and 𝑥3 is not 

free.  

Definition 2.23: Let 𝑉 be a vector space over 𝐾.  𝑉 is called a graded 𝐾- vector 

space if it has a direct sum 

𝑉 =⊕𝑛≥0 𝑉
(𝑛) =  𝑉(𝑛)

𝑛≥0

 

where 𝑉𝑛  is subspace and 𝑛 ≥ 0. An element 𝑣 ∈ 𝑉(𝑛)  is said to be homogeneous 

of degree 𝑛 and write deg 𝑣 = 𝑛 or  𝑣 = 𝑛. At the same time, we define a 

multigrading on 𝑉 if  
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𝑉 =   𝑉(𝑛1 ,…,𝑛𝑚 )

𝑛 𝑖≥0

𝑚

𝑖=1

, 

and 𝑉(𝑛1 ,…,𝑛𝑚 ) is called homogenous component of degree  𝑛1 , … , 𝑛𝑚  . 

The subspace 𝑊 of the graded vector space 𝑉 =  𝑉(𝑛)
𝑛≥0  is graded with 

𝑊 =  (𝑊 ∩ 𝑉 𝑛 )𝑛≥0 . In this case, the factor space 𝑉/𝑊 can also be naturally 

graded and we say that 𝑉/𝑊 inherits the grading of 𝑉. 

Let us consider a construction of 𝒯(𝑉) and correspond to tensor algebra as 

follows. A vector space 𝒯(𝑉) is the direct sum: 

𝒯 𝑉 = 𝕂⊕𝑉⊕𝑉⊕2 ⊕⋯⊕𝑉⊕𝑛⋯ =  𝑉⊕𝑖

∞

𝑖=0

 

Thus the elements of 𝒯(𝑉) are finite sums 𝑣𝑖1 + 𝑣𝑖2 + ⋯+ 𝑣𝑖𝑗 , 𝑣𝑖𝑗 ∈ 𝑉
⊕𝑖𝑗 . The 

multiplication in 𝒯 can be defined by extending the multiplication 

𝑉⊗𝑛 × 𝑉⊗𝑚 → 𝑉⊗(𝑛+𝑚)               𝑣, 𝑤 ⟼ 𝑣⊗𝑤, 

bilinearly to all of 𝒯(𝑉). The tensor algebra 𝒯(𝑉) of a vector space 𝑉 is a graded 

associative algebra with 1. Note that by construction, the elements of 𝒯(𝑉) are 

sums of products of elements of 𝑉, that is, 𝒯(𝑉) is generated by 𝑉. 

The following example is in Drensky (2000) 

Example 2.24: Polynomial algebras 𝐾[𝑥1 ,⋯ , 𝑥𝑚 ] and the free associative algebra 

𝐾 𝑥1 ,⋯ , 𝑥𝑚   are graded.  

Definition 2.25: If  𝑉 =⊕𝑛≥0 𝑉
(𝑛) is a finitely generated graded 𝐾-algebra, then 

we define the Hilbert function of 𝑉 as  

𝐻 𝑉, 𝑛 = dim𝐾(𝑉(𝑛)) 

where dim𝐾(𝑉(𝑛)) is the dimension of the vector space 𝑉(𝑛) over 𝐾.  

Since 𝑉 is finitely generated for each non-negative integer 𝑗, then there are many 

finitely monomials of degree 𝑗 in the generators of 𝑉.  
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Definition 2.26: Suppose that 𝑉 =  𝑉(𝑛)
𝑛≥0  is a graded vector space with 

dim𝑉(𝑛) < ∞ for all 𝑛 ≥ 0, then we can define formal power series 

𝐻 𝑉, 𝑡 = 𝐻𝑖𝑙𝑏 𝑉, 𝑡 =  𝑑𝑖𝑚𝐾(𝑉(𝑛))

𝑛≥0

𝑡𝑛  

called the Hilbert (or Poincaré) series of 𝑉. If the vector space  

𝑉 =  𝑉(𝑛1 ,⋯,𝑛𝑚 )

𝑛≥0

,      𝑛 =  𝑛1 ,⋯ , 𝑛𝑚  , 

is multigraded, then the Hilbert series of 𝑉 is  

𝐻 𝑉, 𝑡1 ,⋯ , 𝑡𝑚  = 𝐻𝑖𝑙𝑏 𝑉, 𝑡1 ,⋯ , 𝑡𝑚  =  𝑑𝑖𝑚𝐾(𝑉(𝑛1 ,⋯,𝑛𝑚 ))

𝑛≥0

𝑡1
𝑛1 ⋯𝑡𝑚

𝑛𝑚 . 

If 𝑉 =⊕𝑉(𝑛) and 𝑊 =⊕𝑊(𝑛) are graded vector spaces with the same grading, 

then 𝑉 ⊕𝑊, 𝑉 ⊗𝑊 are also graded with homogeneous components 

 𝑉 ⊕𝑊 (𝑛) = 𝑉(𝑛) ⊕𝑊(𝑛),           (𝑉 ⊗𝑊)(𝑛) =⊕𝑛 ′ +𝑛 ′′ =𝑛 𝑉
(𝑛 ′ ) ⊗𝑊(𝑛 ′′ ). 

The Hilbert series of 𝑉 ⊕𝑊 and 𝑉 ⊗𝑊, satisfy this relations 

𝐻 𝑉 ⊕𝑊, 𝑡 = 𝐻 𝑉, 𝑡 + 𝐻(𝑊, 𝑡) 

𝐻 𝑉 ⊗𝑊, 𝑡 = 𝐻 𝑉, 𝑡 ⋅ 𝐻(𝑊, 𝑡) 

Example 2.27: Let us prove that 

𝐻𝑖𝑙𝑏 𝐾 𝑥 , 𝑡 =
1

1 − 𝑡
 

Proof: Let 𝑉 = 𝐾[𝑥] and let 𝑉 have the basis {1, 𝑥, 𝑥2 , 𝑥3 , ⋯ } 

𝑉(0) = 𝐾 = 𝑆𝑝 1  → dim𝐾 𝑉
 0  = 1 

  𝑉 1 = 𝑆𝑝 𝑥 = 𝐾 ∙ 𝑥 =  𝑐. 𝑥   𝑐 ∈ 𝐾} → dim𝐾 𝑉
 1  = 1 

𝑉 2 = 𝑆𝑝 𝑥2 = 𝐾 ∙ 𝑥2 =  𝑐 ∙ 𝑥2   𝑐 ∈ 𝐾 } → dim𝐾 𝑉
 2  = 1 

⋮ 

𝐻 𝑉, 𝑡 =  𝑑𝑖𝑚𝐾 𝑉
 𝑛  

𝑛≥0

∙ 𝑡𝑛  

𝐻 𝑉, 𝑡 =  1

𝑛≥0

∙ 𝑡𝑛 = 1 + 𝑡 + 𝑡2 + ⋯ =
1

1 − 𝑡
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Note that we assume 𝑡 is a real variable where the series converges to a 

rational function. 

Example 2.28: Let 𝐾[𝑥1 , 𝑥2 , ⋯ , 𝑥𝑛 ] be the polynomial algebra then  

𝐻 𝐾[𝑥1 , 𝑥2 , ⋯ , 𝑥𝑛 ], 𝑡 =
1

(1 − 𝑡)𝑛
 

Proof: This can be proved by induction on the number of variables 𝑛. The case 

𝑛 = 1 is trivial from the Example 2.27. We are going to consider the case for 𝑛 >

1, suppose now that it holds in 𝑛 − 1 variables 𝑥1 , 𝑥2 ,⋯ 𝑥𝑛−1, so  

𝐻 𝐾 𝑥1 , 𝑥2 , ⋯ , 𝑥𝑛−1 , 𝑡 =
1

(1 − 𝑡)𝑛−1
 

By Example 2.27 we have inductively that  

𝐾 𝑥1 , 𝑥2 ,⋯ , 𝑥𝑛  =  𝐾 𝑥1 ⊗ 𝐾[𝑥2] ⊗⋯⊗𝐾[𝑥𝑛−1] ⊗ 𝐾[𝑥𝑛 ] 

= 𝐾 𝑥1 , 𝑥2 ,⋯ , 𝑥𝑛−1 ⊗ 𝐾[𝑥𝑛 ] 

On the other hand we have  

𝐻 𝑉 ⊗𝑊, 𝑡 = 𝐻 𝑉, 𝑡 ⋅ 𝐻 𝑊, 𝑡  

which gives that 

𝐻 𝐾 𝑥1 , 𝑥2 ,⋯ , 𝑥𝑛  , 𝑡 = 𝐻(𝐾 𝑥1 , 𝑥2 ,⋯ , 𝑥𝑛−1 ⊗ 𝐾 𝑥𝑛  , 𝑡) 

= 𝐻(𝐾 𝑥1 , 𝑥2 ,⋯ , 𝑥𝑛−1 , 𝑡) ∙ 𝐻(𝐾 𝑥𝑛  , 𝑡) 

=
1

1 − 𝑡
⋅

1

(1 − 𝑡)𝑛−1
 

Therefore   

𝐻 𝑉(𝑛), 𝑡 =
1

(1 − 𝑡)𝑛
 

Example 2.29: Let 𝐾 𝑥1 , 𝑥2 , … , 𝑥𝑚   be the free associative algebra then  

𝐻 𝐾 𝑥1 , 𝑥2 , … , 𝑥𝑚  , 𝑡 =
1

1 −𝑚𝑡
 

Proof: In the case 𝑚 = 1, 𝐾 𝑥1 = 𝐾[𝑥1] and thus 

𝐻 𝐾 𝑥1 , 𝑡 =
1

1 − 𝑡
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Let 𝐾 𝑥1 , 𝑥2 , … , 𝑥𝑚  
(𝑛) be the 𝑛-th homogeneous subspace of 𝐾 𝑥1 , 𝑥2 , … , 𝑥𝑚  . 

For the dimension of 𝐾 𝑥1 , 𝑥2 , … , 𝑥𝑚  
(𝑛), we need the number of elements in its 

canonical basis 

𝐵𝑛 =  𝑥1
𝑙1 , 𝑥2

𝑙2 , … , 𝑥𝑚
𝑙𝑚 ∶   𝑙𝑗 = 𝑛 . 

Number of such elements is equivalent to the possibilities of words written 

in length 𝑛 filled by 𝑥1 , 𝑥2 , … , 𝑥𝑚 . Because the words are not commutative, for any 

position, we have 𝑚-candidates. Hence dim𝐾𝐾 𝑥1 , 𝑥2 , … , 𝑥𝑚  
(𝑛) = 𝑚𝑛  

The Hilbert Series of free associative algebra becomes  

𝐻 𝐾 𝑥1 , 𝑥2 , … , 𝑥𝑚  , 𝑡 =  dim𝐾𝐾 𝑥1 , 𝑥2 , … , 𝑥𝑚  
 𝑛 

∞

𝑛=0

. 𝑡𝑛  

=  𝑚𝑛𝑡𝑛
∞

𝑛=0

=  (𝑚𝑡)𝑛
∞

𝑛=0

=
1

1 −𝑚𝑡
 

Definition 2.30: A Lie algebra 𝐿 is a vector space over 𝐾 endowed with a bilinear 

map  . , .  ∶ 𝐿 × 𝐿 → 𝐿,  𝑥, 𝑦 → [𝑥, 𝑦], such that the following conditions hold: 

𝐿 1 :  𝑥, 𝑥 = 0 

𝐿 2 :   𝑥, 𝑦 , 𝑧 +   𝑦, 𝑧 , 𝑥 +   𝑧, 𝑥 , 𝑦 = 0 

where 𝑥, 𝑦, 𝑧 ∈ 𝐿. The Lie bracket [𝑥, 𝑦] is often referred to as the commutator of 𝑥 

and 𝑦. Condition (𝐿2) is known as the Jacobi identity. As the Lie bracket [. , . ] is 

bilinear, we have 

0 =  𝑥 + 𝑦, 𝑥 + 𝑦 =  𝑥, 𝑥 +  𝑥, 𝑦 +  𝑦, 𝑥 +  𝑦, 𝑦 =  𝑥, 𝑦 +  𝑦, 𝑥 . 

Hence condition (𝐿1) implies  

 𝑥, 𝑦 = − 𝑦, 𝑥   for all 𝑥, 𝑦 ∈ 𝐿. 

One can rewrite The Jacobi identity as 

  𝑥, 𝑦 , 𝑧 =  𝑥,  𝑦, 𝑧  +   𝑥, 𝑧 , 𝑦 . 

Definition 2.31: For every element 𝑥 ∈ 𝐿 we define the map 𝑎𝑑𝑥 , called adjoint 

action, as follows: 
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𝑎𝑑𝑥 : 𝐿 ⟶ 𝐿, 𝑦 ⟼ [𝑥, 𝑦] 

Here the linear map  

 𝑎𝑑: 𝑥 ⟼ 𝑎𝑑𝑥 , 

is called the adjoint representation which is one of the well known examples of Lie 

homomorphisms. Let us show that 𝑎𝑑 is a homomorphism. For all 𝑧 ∈ 𝐿 we have 

that 

 𝑎𝑑 𝑥 , 𝑎𝑑 𝑦   𝑧 =  𝑎𝑑𝑥 , 𝑎𝑑𝑦   𝑧 =  𝑎𝑑𝑥𝑎𝑑𝑦 − 𝑎𝑑𝑦𝑎𝑑𝑥  𝑧  

=  𝑎𝑑𝑥𝑎𝑑𝑦  𝑧 −  𝑎𝑑𝑦𝑎𝑑𝑥  𝑧  

= 𝑎𝑑𝑥  𝑎𝑑𝑦 𝑧  − 𝑎𝑑𝑦 𝑎𝑑𝑥 𝑧   

= 𝑎𝑑𝑥  𝑦, 𝑧  − 𝑎𝑑𝑦  𝑥, 𝑧  =  𝑥,  𝑦, 𝑧  −  𝑦,  𝑥, 𝑧   

=   𝑧, 𝑦 , 𝑥 +   𝑥, 𝑧 , 𝑦 = −  𝑦, 𝑥 , 𝑧 =   𝑥, 𝑦 , 𝑧  

= 𝑎𝑑 𝑥,𝑦  𝑧 = 𝑎𝑑  𝑥, 𝑦   𝑧  

Thus 

𝑎𝑑  𝑥, 𝑦  =  𝑎𝑑 𝑥 , 𝑎𝑑 𝑦   

and this implies that 𝑎𝑑 is a homomorphism.  

Definition 2.32: The center of Lie algebra 𝐿 is defined by  

𝑍 𝐿 =  𝑥 ∈ 𝐿;  𝑥, 𝑦 = 0, for all 𝑦 ∈ 𝐿 . 

Proposition 2.33: The center of Lie algebra 𝐿 is an ideal in 𝐿 and is the kernel of 

the adjoint representation 𝑎𝑑. 

Definition 2.34: The derived subalgebra 𝐿′  of Lie algebra 𝐿 is defined as follows: 

𝐿′ =  𝐿, 𝐿 =    𝑥, 𝑦 : 𝑥, 𝑦 ∈ 𝐿  

Proposition 2.35: The derived subalgebra 𝐿′  is an ideal of 𝐿. 

Proof: From definition 2.34, let 𝑥, 𝑦 ∈ 𝐿, so we have 

[ 𝑥 
∈𝐿

, 𝑦 ]
∈𝐿

∈ 𝐿′  ,    [ 𝑦 
∈𝐿

, 𝑥]
∈𝐿
∈ 𝐿′   

therefore the subalgebra 𝐿′  is an ideal of 𝐿. 

Definition 2.36: For all non-negative integer 𝑚, the ideal 𝐿(𝑚) of 𝐿 is defined as  
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𝐿(0) = 𝐿, 

𝐿(1) =  𝐿, 𝐿 = 𝐿′ , 

𝐿(2) =  𝐿 1 , 𝐿 1  , 

⋮ 

𝐿(𝑚+1) =  𝐿 𝑚 , 𝐿 𝑚   

Hence, we can iterate to define the derived sequence of 𝐿 as follows: 

𝐿 = 𝐿(0) ⊇ 𝐿(1) ⊇ ⋯ ⊇ 𝐿(𝑚) ⊇ ⋯ 

The first derived 𝐿(1) and second derived 𝐿(2) can be denoted by 𝐿′  and 𝐿′′ , 

respectively. 

The following lemma is stated in Erdmann and Wildon (2006)   

Lemma 2.37: Let 𝐼 be an ideal of Lie algebra 𝐿,  if 𝐿 𝐼  is an abelian then 𝐿′ =

[𝐿, 𝐿] ⊂ 𝐼. 

Definition 2.38: 𝐿 is solvable if for some 𝑚 ≥ 1, 𝐿(𝑚) = 0. 

Definition 2.39: The lower center of a Lie algebra 𝐿 is the series with terms  

𝐿1 = 𝐿′ =  𝐿, 𝐿      and  𝐿𝑘 =  𝐿𝑘−1 , 𝐿1        for 𝑘 ≥ 2. 

Thus, 𝐿 ⊇ 𝐿1 ⊇ 𝐿2 ⊇ 𝐿3 ⊇ ⋯ is called central series and 𝐿
𝑘

𝐿𝑘+1  is in the center 

of 𝐿
𝐿𝑘+1 . 

Definition 2.40: The Lie algebra 𝐿 is said to be nilpotent if for some positive 

integer 𝑚, 𝐿𝑚 = 0. 

Lemma 2.41: Any nilpotent Lie algebra 𝐿 is solvable. 

Proof: Let’s use induction of 𝑘 to show that 𝐿(𝑘) ⊆ 𝐿𝑘  

For 𝑘 = 1, 𝐿(1) = 𝐿′ =  𝐿, 𝐿 = 𝐿1 

For 𝑘 − 1, let’s consider 𝐿(𝑘−1) ⊆ 𝐿𝑘−1. 

𝐿𝑘 =  𝐿 𝑘−1 , 𝐿 𝑘−1  ⊆  𝐿𝑘−1 , 𝐿 = 𝐿𝑘  . 

For 𝑚 ≥ 1, we have 𝐿𝑚 = {0}, then 𝐿(𝑚) ⊆ 𝐿𝑚 =  0 . Hence 𝐿(𝑚) =  0 . 

Therefore 𝐿 is solvable.  
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Theorem 2.42: Let 𝑋 be a set. There exist a Lie algebra generated by 𝑋, satisfying 

no relations other than (𝐿1) and (𝐿2). 

Proof: Let 𝑀 𝑋  be the set called free magma on 𝑋 then by inductive on the 

integer 𝑛 ≥ 1, we define the sets 𝑋𝑛  by writing  

𝑋1 = 𝑋 

𝑋𝑛 =  𝑋𝑝

𝑛−1

𝑝=1

× 𝑋𝑛−𝑝  

where 𝑝 = 1,2,⋯ , 𝑛 − 1 if 𝑋 is finite, so each 𝑋𝑛 . The sum set of the family 

(𝑋𝑛)𝑛≥1 is denoted by 𝑀(𝑋); each of sets 𝑋𝑛  is identified with a subset of 𝑀(𝑋) 

hence we can also write  

𝑀 𝑋 =  𝑋𝑝

∞

𝑛=1

. 

 Let 𝑎, 𝑏 ∈ 𝑀(𝑋) and let 𝑝 and 𝑞 denote the integers such that 𝑎 ∈ 𝑋𝑝  and 

𝑏 ∈ 𝑋𝑞  and let 𝑛 = 𝑝 + 𝑞; the image of the ordered pair (𝑎, 𝑏) under the canonical 

injection of 𝑋𝑝 × 𝑋𝑛−𝑝  into 𝑋𝑛  is denoted by 𝑎 ∙ 𝑏 and called the product of 𝑎 and 

𝑏. Every mapping of 𝑋 into magma 𝑀 can be extended in a unique way to a 

magma homomorphism of 𝑀(𝑋) into 𝑀. 

 Since 𝑎 ∈ 𝑀(𝑋); the unique integer 𝑛 such that 𝑎 ∈ 𝑋𝑛  is called the length 

of 𝑎 and denoted by 𝑙(𝑎), then 𝑙 𝑎 ∙ 𝑏 = 𝑙 𝑎 + 𝑙(𝑏) for 𝑎, 𝑏 ∈ 𝑀(𝑋). The set 𝑋 is 

the subset of 𝑀 𝑋  consisting of the elements of length 1. Every elements 𝑎 of 

length ≥ 2 can be written uniquely in the form 𝑎 = 𝑏 ∙ 𝑐. 

 Let 𝐾 be a field and let 𝐴(𝑋) be the vector space over 𝐾 spanned by 𝑀(𝑋). 

If we extend the binary operation on 𝑀(𝑋) bilinearly to 𝐴(𝑋), then 𝐴(𝑋) becomes 

a (non-associative) algebra; it is called the free algebra over 𝐾 on 𝑋. Let 𝑓 ∈ 𝐴(𝑋); 

if also 𝑓 ∈ 𝑀(𝑋), then 𝑓 is said to be a monomial. For 𝑓 ∈ 𝐴(𝑋) we define deg(𝑓) 

to be the maximum of the degrees of 𝑎, where 𝑎 runs over all 𝑎 ∈ 𝑀(𝑋) that occur 

in 𝑓 with non-zero coefficient. 
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Let 𝐼𝑜  be the ideal of 𝐴(𝑋) generated by all elements 

 𝑎, 𝑎     for 𝑎 ∈ 𝑀(𝑋) 

 𝑎, 𝑏 + (𝑏, 𝑎)   for 𝑎, 𝑏 ∈ 𝑀(𝑋) 

 𝑎,  𝑏, 𝑐  +  𝑏,  𝑐, 𝑎  + (𝑐,  𝑎, 𝑏 )  for 𝑎, 𝑏, 𝑐 ∈ 𝑀(𝑋). 

 Set 𝐿 𝑋 = 𝐴(𝑋)/𝐼𝑜 . Let 𝔙 be a basis of 𝐿(𝑋) consisting of (images of) 

elements of 𝑀(𝑋). Then it is immediate that we have  𝑥, 𝑥 = 0,  𝑥, 𝑦 +  𝑦, 𝑥 =

0 and  𝑥,  𝑦, 𝑧  +  𝑦,  𝑧, 𝑥  +  𝑧,  𝑥, 𝑦  = 0 for all 𝑥, 𝑦, 𝑧 ∈ 𝔙. It follows that 

the relations  𝐿1  and (𝐿2) are holds for all elements of 𝐿(𝑋) so that 𝐿(𝑋) is Lie 

algebra. Therefore we will use the bracket to denote the product in 𝐿(𝑋). 

Definition 2.43: The Lie algebra 𝐿(𝑋) is called the free Lie algebra on 𝑋. 

Definition 2.44: If 𝑅  is an associative algebra and the Lie algebra 𝐿 is isomorphic 

to subalgebra of 𝑅(−) , we say that 𝑅 is an enveloping algebra of 𝐿. The associative 

algebra 𝑈 = 𝑈(𝐿) is the universal enveloping algebra of the lie algebra 𝐿, if 𝐿 is a 

subalgebra of 𝑈(−) and 𝑈 has the following universal property: For any associative 

algebra 𝑅 and any homomorphism of Lie algebras 𝜙 ∶ 𝐿 → 𝑅(−) there exist a 

unique homomorphism of associative algebras 𝜓 ∶ 𝑈 → 𝑅 which extends 𝜙, i.e. 𝜓 

is equal to 𝜙 on 𝐿. 

Theorem 2.45 (The Poincaré-Birkhoff –Witt Theorem): Every Lie algebra 𝐿 has 

a unique (up to an isomorphism) universal enveloping algebra 𝑈(𝐿). If 𝐿 has a 

basis  𝑒𝑖    𝑖 ∈ 𝐼}, and the set of indices 𝐼 is ordered, then 𝑈(𝐿) has a basis 1 and 

𝑒𝑖1 ⋯𝑒𝑖𝑝 ,  𝑖1 ≤ ⋯ ≤ 𝑖𝑝 ,  𝑖𝑘 ∈ 𝐼, 𝑝 = 1,2,⋯ 
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3. COMPUTATIONAL RESULTS 

 

3.1. Hall Basis  

A set 𝑀 with binary operations is called magma, and the condition of being 

associative is not necessarily.  A basis for a free Lie algebra is the Hall set or the 

Hall basis, which is a particular kind of subset of the free magma on an alphabet. 

Serre  1962  defined the magma 𝑀 as free magma on 𝑋 denoted as 𝑀𝑋 , for the set 

𝑋 which is defined inductively by the family of sets 𝑋𝑛  for 𝑛 ≥ 1 and satisfy the 

following conditions: 

a. 𝑋1 = 𝑋 

b. 𝑋𝑛 =  𝑋𝑝𝑝+𝑞=𝑛 × 𝑋𝑞   𝑛 ≥ 2  (disjoint union) where we put 𝑀𝑋 =

 𝑋𝑛
∞
𝑛=1  and define 𝑀𝑋 × 𝑀𝑋 → 𝑀𝑋  for 𝑤,𝑤 ′  of 𝑀𝑋 , we note that the 

natural 𝑝 and 𝑞 such that 𝑤 ∈ 𝑋𝑝  and 𝑤 ′ ∈ 𝑋𝑞 , suppose that 𝑛 = 𝑝 + 𝑞 is 

image of couple of (𝑤,𝑤 ′) of canonical injection of 𝑋𝑝 × 𝑋𝑞 → 𝑋𝑝+𝑞 ⊂

𝑀𝑋  this is denoted by 𝑤 ⋅ 𝑤 ′  and is called the product of 𝑤 and 𝑤 ′  where 

the arrow is the canonical inclusion resulting from 𝑏. 

An element 𝑤 of 𝑀𝑋  is called a non- associative word on 𝑋 and the unique of 

natural 𝑛 such that 𝑤 ∈ 𝑋𝑛  is called length and is denoted by 𝑙(𝑤). We have 

𝑙 𝑤 ⋅ 𝑤 ′ = 𝑙 𝑤 + 𝑙(𝑤 ′) for 𝑤,𝑤 ′  in 𝑀𝑋 . The set of 𝑋 is a party of 𝑀𝑋  formed by 

the element of length 1 and 𝑀𝑋  is defined as a finite and nonempty set where it can 

be identified with a set of binary, complete, rooted trees with leaves labeled by 

elements in 𝑋. All element 𝑤 of length ≥ 2 is written in unique way with this form 

𝑤 = 𝑤 ′ ⋅ 𝑤 ′′  

where 𝑤 ′  and 𝑤 ′′  is its immediate left and right subtree respectively. The binary 

operation of 𝑀𝑋  is the mapping 𝑀𝑋 × 𝑀𝑋 → 𝑀𝑋 , (𝑤 ′ , 𝑤 ′′ ). We define the degree 

|𝑤| of a tree 𝑤 to be the number of its leaves, i.e  𝑤 = 1 if 𝑤 ∈ 𝑋 and 

 (𝑤 ′ , 𝑤 ′′ ) = |𝑤 ′ | + |𝑤 ′′ |. 
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There is a canonical map from 𝑀𝑋  onto 𝑋∗ (free monoid over 𝑋) defined by 

𝑓 𝑎 = 𝑎 if 𝑎 ∈ 𝑋 and 𝑓 𝑤 = 𝑓 𝑤 ′ 𝑓(𝑤 ′′ ) is of degree greater than 1. Degree 

(length) of a tree (word) is usually defined to be the number of its leaves (letters). 

We note that  𝑤 = |𝑓(𝑤)|, therefore 𝑓(𝑤) is called the foliage of 𝑤. 

Definition 3.1.1: A subset 𝐻 of 𝑀𝑋  is called a Hall set if its holds the following 

conditions  

i) 𝐻 has total order ≤𝑀; 

ii)  𝑋 ⊆ 𝐻; 

iii) For any tree 𝑕 = (𝑕′ , 𝑕′′ ) in 𝐻, we have 𝑕′′ ∈ 𝐻 and 𝑕 > 𝑕′′ . 

iv) For any tree 𝑕 = (𝑕′ , 𝑕′′ ) in 𝐻, we have 𝑕 ∈ 𝐻 iff 𝑕′ , 𝑕′′ ∈ 𝐻 and 𝑕′ > 𝑕′′  

and either 𝑕′ ∈ 𝑋 and (𝑕′)′′ ≤𝑀 𝑕′′ . 

where 𝑋 is called generating set and the elements in 𝑋 are called 

generators. Here 𝑕′ , 𝑕′′  are denoted as left and right subtree of 𝑕 

respectively and (𝑕′)′′  is denoted the right subtree of the left subtree of 𝑕. 

Definition 3.1.2: For a fixed Hall set, Hall tree is called an element of Hall set and 

every subtree of Hall tree is also Hall tree. 

Definition 3.1.3: We call the Hall word the foliage of the Hall tree. 

Corollary 3.1.4: Reutenauer  1993  show how every Hall word is the foliage of a 

unique Hall tee. 

Here we may identify clearly Hall trees and Hall words, where Hall set in 𝑋∗ is 

called the image under 𝑓 of Hall set in 𝑀𝑋 , for a given corresponding total order on 

Hall set.   

 Reutenauer  1993  and Hu  2009  identify on how each node in a Hall 

tree can be interpreted as a lie bracket. In the example given there a Hall tree 

𝑕 = (𝑕′ , 𝑕′′ ) of order greater than or equal to 2 can be written as  

𝑕 = [𝑕′ , 𝑕′′ ] 
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where 𝑕′ , 𝑕′′  is left and right subtree respectively and [∗,∗] is denoted as the lie 

bracket. 

 Actually, Hall set are not unique that why a specific Hall set depends on 

how you define the total order. In this thesis we define the order of Hall set of 

2, 3, 4 generators using the idea generated by Hall  1950  where he said that in the 

free ring, every element may be written as linear combination of the “Left normed” 

elements    𝑥1, 𝑥2 , 𝑥3 ,⋯ , 𝑥𝑛  = [𝑥1 , 𝑥2 , 𝑥3 ,⋯ , 𝑥𝑛 ] but these are not independent. 

Let 𝑋 = {𝑥, 𝑦} and define a total order on 𝑋 by setting 𝑥 >𝑋 𝑦. Let 𝑀𝑋  denote the 

free magma on 𝑋; so 𝑀𝑋  is the set of all nonassociative words in {𝑥, 𝑦}. Any 

𝑕 ∈ 𝑀𝑋  can be written uniquely as 𝑕 = [𝑕′ , 𝑕′′ ] where 𝑕′ , 𝑕′′ ∈ 𝑀𝑋 . Now we can 

define the total order >𝑀𝑋
 or simply >𝑀  on 𝑀𝑋  by making >𝑀  agree with >𝑋  on 

𝑋, then for 𝑕, 𝑡 ∈ 𝑀𝑋/𝑋, with 𝑡 = [𝑡′ , 𝑡′′ ], we define 𝑕 >𝑀 𝑡 iff: 

a) deg(𝑕) > deg(𝑡), or 

b) deg(𝑕) = deg(𝑡), but 𝑕′ >𝑀 𝑡′ , or 

c) deg(𝑕) = deg(𝑡) and 𝑕′ = 𝑡′ , but 𝑕′′ >𝑀 𝑡′′ . 

Example 3.1.5: Hall Words of 2 Generators: 

The construction of the recursive computation to generate Hall words (Hall trees) 

of degree 𝑛 ≤ 8 denotes 𝐿2 = 𝐾 𝑥, 𝑦  for 𝑥 > 𝑦 are illustrate accordingly by total 

order >𝑀: 

𝑛 = 1       𝑥, 𝑦              𝑥 > 𝑦 

𝑛 = 2       [𝑥, 𝑦] 

𝑛 = 3         𝑥, 𝑦 , 𝑦 , [ 𝑥, 𝑦 , 𝑥] 

𝑛 = 4          𝑥, 𝑦 , 𝑦 , 𝑦 ,    𝑥, 𝑦 , 𝑦 , 𝑥 ,    𝑥, 𝑦 , 𝑥 , 𝑥  

𝑛 = 5           𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 ,     𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑥 ,     𝑥, 𝑦 , 𝑦 , 𝑥 , 𝑥 ,  

    𝑥, 𝑦 , 𝑥 , 𝑥 , 𝑥 ,    𝑥, 𝑦 , 𝑦 ,  𝑥, 𝑦  ,    𝑥, 𝑦 , 𝑥 ,  𝑥, 𝑦    
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𝑛 = 6            𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 ,      𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑥 ,      𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑥 , 𝑥 , 

     𝑥, 𝑦 , 𝑦 , 𝑥 , 𝑥 , 𝑥 ,      𝑥, 𝑦 , 𝑥 , 𝑥 , 𝑥 , 𝑥 ,     𝑥, 𝑦 , 𝑦 , 𝑦 ,  𝑥, 𝑦  ,  

    𝑥, 𝑦 , 𝑦 , 𝑥 ,  𝑥, 𝑦  ,     𝑥, 𝑦 , 𝑥 , 𝑥 ,  𝑥, 𝑦  ,    𝑥, 𝑦 , 𝑥 ,   𝑥, 𝑦 , 𝑦    

𝑛 = 7             𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 ,       𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑥 ,  

      𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑥 , 𝑥 ,       𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑥 , 𝑥 , 𝑥 , 

      𝑥, 𝑦 , 𝑦 , 𝑥 , 𝑥 , 𝑥 , 𝑥 ,       𝑥, 𝑦 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 

     𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 ,  𝑥, 𝑦  ,      𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑥 ,  𝑥, 𝑦  , 

     𝑥, 𝑦 , 𝑦 , 𝑥 , 𝑥 ,  𝑥, 𝑦  ,      𝑥, 𝑦 , 𝑥 , 𝑥 , 𝑥 ,  𝑥, 𝑦  , 

   𝑥, 𝑦 , 𝑦 ,  𝑥, 𝑦 ,  𝑥, 𝑦  ,    𝑥, 𝑦 , 𝑥 ,  𝑥, 𝑦 ,  𝑥, 𝑦  , 

    𝑥, 𝑦 , 𝑦 , 𝑦 ,   𝑥, 𝑦 , 𝑦  ,     𝑥, 𝑦 , 𝑦 , 𝑦 ,   𝑥, 𝑦 , 𝑥  , 

    𝑥, 𝑦 , 𝑦 , 𝑥 ,   𝑥, 𝑦 , 𝑦  ,     𝑥, 𝑦 , 𝑦 , 𝑥 ,   𝑥, 𝑦 , 𝑥  , 

    𝑥, 𝑦 , 𝑥 , 𝑥 ,   𝑥, 𝑦 , 𝑦  ,     𝑥, 𝑦 , 𝑥 , 𝑥 ,   𝑥, 𝑦 , 𝑥    

𝑛 = 8              𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 ,        𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑥 , 

        𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑥 , 𝑥 ,        𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑥 , 𝑥 , 𝑥 , 



3. COMPUTATIONAL RESULTS  Andre DUSHIMIRIMANA 

25 
 

        𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑥 , 𝑥 , 𝑥 , 𝑥 ,        𝑥, 𝑦 , 𝑦 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 ,  

       𝑥, 𝑦 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 ,       𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 ,  𝑥, 𝑦  , 

      𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑥 ,  𝑥, 𝑦  ,       𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑥 , 𝑥 ,  𝑥, 𝑦  , 

       𝑥, 𝑦 , 𝑦 , 𝑥 , 𝑥 , 𝑥 ,  𝑥, 𝑦  ,       𝑥, 𝑦 , 𝑥 , 𝑥 , 𝑥 , 𝑥 ,  𝑥, 𝑦  , 

     𝑥, 𝑦 , 𝑦 , 𝑦 ,  𝑥, 𝑦 ,  𝑥, 𝑦  ,     𝑥, 𝑦 , 𝑦 , 𝑥 ,  𝑥, 𝑦 ,  𝑥, 𝑦  , 

     𝑥, 𝑦 , 𝑥 , 𝑥 ,  𝑥, 𝑦 ,  𝑥, 𝑦  ,      𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 ,   𝑥, 𝑦 , 𝑦  , 

      𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 ,   𝑥, 𝑦 , 𝑥  ,      𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑥 ,   𝑥, 𝑦 , 𝑦  ,  

     𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑥 ,   𝑥, 𝑦 , 𝑥  ,      𝑥, 𝑦 , 𝑦 , 𝑥 , 𝑥 ,   𝑥, 𝑦 , 𝑦  ,  

     𝑥, 𝑦 , 𝑦 , 𝑥 , 𝑥 ,   𝑥, 𝑦 , 𝑥  ,      𝑥, 𝑦 , 𝑥 , 𝑥 , 𝑥 ,   𝑥, 𝑦 , 𝑦  ,  

     𝑥, 𝑦 , 𝑥 , 𝑥 , 𝑥 ,   𝑥, 𝑦 , 𝑥  ,    𝑥, 𝑦 , 𝑦 ,  𝑥, 𝑦 ,   𝑥, 𝑦 , 𝑦  ,  

   𝑥, 𝑦 , 𝑦 ,  𝑥, 𝑦 ,   𝑥, 𝑦 , 𝑥  ,    𝑥, 𝑦 , 𝑥 ,  𝑥, 𝑦 ,   𝑥, 𝑦 , 𝑦  ,  

   𝑥, 𝑦 , 𝑥 ,  𝑥, 𝑦 ,   𝑥, 𝑦 , 𝑥  ,     𝑥, 𝑦 , 𝑥 , 𝑥 ,    𝑥, 𝑦 , 𝑦 , 𝑥  ,  

    𝑥, 𝑦 , 𝑥 , 𝑥 ,    𝑥, 𝑦 , 𝑦 , 𝑦  ,     𝑥, 𝑦 , 𝑦 , 𝑥 ,    𝑥, 𝑦 , 𝑦 , 𝑦  . 

Example 3.1.6:  Hall Words of 3 Generators: 

 Let 𝑋 = {𝑥, 𝑦, 𝑧} and define a total order on 𝑋 by setting 𝑥 >𝑋 𝑦 >𝑋 𝑧. Let 

𝑀𝑋  denote the free magma on 𝑋; so 𝑀𝑋  is the set of all nonassociative words 
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in {𝑥, 𝑦, 𝑧}. All the properties used in Example 3.1.5 are equally applied to Hall 

words of 3 generators case.  

 The construction of the recursive computation to generate Hall words (Hall 

trees) of degree 𝑛 ≤ 4 denotes 𝐿3 = 𝐾 𝑥, 𝑦, 𝑧  for 𝑥 > 𝑦 > 𝑧 are illustrate 

accordingly by total order >𝑀: 

𝑛 = 1       𝑥, 𝑦, 𝑧                   𝑥 > 𝑦 > 𝑧 

𝑛 = 2        𝑥, 𝑦 ,  𝑥, 𝑧 , [𝑦, 𝑧] 

𝑛 = 3         𝑥, 𝑦 , 𝑦 ,   𝑥, 𝑦 , 𝑥 ,   𝑥, 𝑧 , 𝑧 ,   𝑥, 𝑧 , 𝑦 ,   𝑥, 𝑧 , 𝑥 ,   𝑦, 𝑧 , 𝑧 , 

   𝑦, 𝑧 , 𝑦 ,   𝑦, 𝑧 , 𝑥  

𝑛 = 4          𝑥, 𝑦 , 𝑦 , 𝑦 ,    𝑥, 𝑦 , 𝑦 , 𝑥 ,    𝑥, 𝑦 , 𝑥 , 𝑥 ,    𝑥, 𝑧 , 𝑧 , 𝑧 ,  

   𝑥, 𝑧 , 𝑧 , 𝑦 ,    𝑥, 𝑧 , 𝑧 , 𝑥 ,    𝑥, 𝑧 , 𝑦 , 𝑦 ,    𝑥, 𝑧 , 𝑦 , 𝑥 ,  

   𝑥, 𝑧 , 𝑥 , 𝑥 ,    𝑦, 𝑧 , 𝑧 , 𝑧 ,    𝑦, 𝑧 , 𝑧 , 𝑦 ,    𝑦, 𝑧 , 𝑧 , 𝑥 ,    𝑦, 𝑧 , 𝑦 , 𝑦 ,  

   𝑦, 𝑧 , 𝑦 , 𝑥 ,    𝑦, 𝑧 , 𝑥 , 𝑥 ,   𝑥, 𝑦 ,  𝑥, 𝑧  ,   𝑥, 𝑦 ,  𝑦, 𝑧  ,   𝑥, 𝑧 ,  𝑦, 𝑧  . 

Example 3.1.7: Hall Words of 4 Generators: 

 Let 𝑋 = {𝑥, 𝑦, 𝑧, 𝑡} and define a total order on 𝑋 by 

setting 𝑥 >𝑋 𝑦 >𝑋 𝑧 >𝑋 𝑡. Let 𝑀𝑋  denote the free magma on 𝑋; so 𝑀𝑋  is the set of 

all nonassociative words in {𝑥, 𝑦, 𝑧, 𝑡}. All the properties used in the Hall word of 

Example 3.1.5 and Example 3.1.6 are equally applied to Hall words of 4 generators 

case.  

The construction of the recursive computation to generate Hall words (Hall trees) 

of degree 𝑛 ≤ 3 denotes 𝐿4 = 𝐾 𝑥, 𝑦, 𝑧, 𝑡  for 𝑥 > 𝑦 > 𝑧 > 𝑡 are illustrate 

accordingly by total order >𝑀: 

𝑛 = 1     𝑥, 𝑦, 𝑧, 𝑡                     𝑥 > 𝑦 > 𝑧 > 𝑡 

𝑛 = 2     𝑥, 𝑦 ,  𝑥, 𝑧 ,  𝑥, 𝑡 ,  𝑦, 𝑧 ,  𝑦, 𝑡 , [𝑧, 𝑡] 

𝑛 = 3      𝑥, 𝑦 , 𝑦 ,   𝑥, 𝑦 , 𝑥 ,   𝑥, 𝑧 , 𝑧 ,   𝑥, 𝑧 , 𝑦 ,   𝑥, 𝑧 , 𝑥 ,   𝑥, 𝑡 , 𝑡 , 

   𝑥, 𝑡 , 𝑧 ,   𝑥, 𝑡 , 𝑦 ,   𝑥, 𝑡 , 𝑥 ,   𝑦, 𝑧 , 𝑧 ,   𝑦, 𝑧 , 𝑦 ,   𝑦, 𝑧 , 𝑥 ,   𝑦, 𝑡 , 𝑡 ,  
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  𝑦, 𝑡 , 𝑧 ,   𝑦, 𝑡 , 𝑦 ,   𝑦, 𝑡 , 𝑥 ,   𝑧, 𝑡 , 𝑡 ,   𝑧, 𝑡 , 𝑧 ,   𝑧, 𝑡 , 𝑦 ,   𝑧, 𝑡 , 𝑥 . 

The Hall word of 2,3 and 4 generators can also be calculated using Witt Dimension 

Formula and Mӧbius Function so, we are going to look on this as following: 

Definition 3.1.8: Suppose that 𝑛 is a positive integer, if 𝑛 is divisible by the square 

of a prime number, we can define 𝜇(𝑛) as follow: 

𝜇 𝑛 =  

1, if  𝑛 is a squarefree positive integer with even number
−1, 𝑖𝑓 𝑛 a squarefree positive integer with odd number        

0, if 𝑛 is not squarefree                                                                

  

The function 𝜇 ∶  ℕ → {−1,0,1} defined above is called Mӧbius Function. 

For more use Bourbaki  2006 . 

Table 1: The values of Mӧbius function 𝝁 for 𝒏 ≥ 𝟏𝟎  

𝑛 1 2 3 4 5 6 7 8 9 10 

𝜇(𝑛) 1 −1 −1 0 −1 1 −1 0 0 1 

 

Recall that given two integers 𝑛1 ≥ 1, 𝑛2 ≥ 2, we can write 𝑛1| 𝑛2 if 𝑛1 

divides 𝑛2. 

From Bahturin  1987 , 

Theorem 3.1.9: If 𝐿𝑑  is the free Lie algebra with generators 𝑑, then the dimension 

of the space of homogeneous expression of degree 𝑛 or the number of Hall words 

in Hall basis is: 

dim𝐿𝑑
(𝑛)

 µ

𝑑|𝑛

(𝑑)𝑟𝑛|𝑑  

where the 𝜇 is Mӧbius function. 

For 𝐿2 = 𝐾 𝑥, 𝑦      𝑥 > 𝑦    we get         

a) 𝑛 = 1     𝑟 = 2   

dim𝐿2
(1)

=
1

1
 µ

𝑑|1

 𝑑 21|𝑑 = 1𝜇 1 ∙ 2 = 2 
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b) 𝑛 = 2  𝑟 = 2 

dim𝐿2
(2)

=
1

2
 µ

𝑑|2

 𝑑 22|𝑑 =
1

2
 𝜇  1 22 + 𝜇 2 2

2
2 =

1

2
 4 − 2 = 1 

c) 𝑛 = 3   𝑟 = 2 

dim𝐿2
(3)

=
1

3
 µ

𝑑|3

 𝑑 23|𝑑 =
1

3
 𝜇 1 2

3
1 + 𝜇 3 2

3
3 =

1

3
 23 − 2 =

6

3
= 2 

d) 𝑛 = 4   𝑟 = 2 

dim𝐿2
(4)

=
1

4
 µ

𝑑|4

 𝑑 24|𝑑 =
1

4
 𝜇 1 2

4
1 + 𝜇 2 2

4
2 + 𝜇 4 2

4
4 =

1

4
 24 − 22 =

12

4

= 3 

e) 𝑛 = 5   𝑟 = 2 

dim𝐿2
(5)

=
1

5
 µ

𝑑|5

 𝑑 25|𝑑 =
1

5
 𝜇 1 2

5
1 + 𝜇 5 2

5
5 =

1

5
 25 − 2 =

30

5
= 6 

f) 𝑛 = 6      𝑟 = 2 

dim𝐿2
(6)

=
1

6
 µ

𝑑|6

 𝑑 26|𝑑 =
1

6
 𝜇 1 2

6
1 + 𝜇 2 2

6
2 + 𝜇 3 2

6
3 + 𝜇 6 2

6
6 

=
1

6
 26 − 23 − 22 + 2 =

54

6
= 9 

g) 𝑛 = 7     𝑟 = 2 

dim𝐿2
(7)

=
1

7
 µ

𝑑|7

 𝑑 27|𝑑 =
1

7
 𝜇 1 2

7
1 + 𝜇 7 2

7
7 =

1

7
 27 − 2 =

126

7
= 18 

h) 𝑛 = 8    𝑟 = 2 
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dim𝐿2
(8)

=
1

8
 µ

𝑑|8

 𝑑 28|𝑑 =
1

8
 𝜇 1 2

8
1 + 𝜇 2 2

8
2 + 𝜇 4 2

8
4 + 𝜇 8 2

8
8 

=
1

8
 28 − 24 =

240

8
= 30 

i) 𝑛 = 9   𝑟 = 2 

dim𝐿2
(9)

=
1

9
 µ

𝑑|9

 𝑑 29|𝑑 =
1

9
 𝜇 1 2

9
1 + 𝜇 3 2

9
3 + 𝜇 9 2

9
9 =

1

9
 29 − 23 

=
504

9
= 56 

j) 𝑛 = 10   𝑟 = 2 

dim𝐿2
(10)

=
1

10
 µ

𝑑|10

 𝑑 210|𝑑 =
1

10
 𝜇 1 2

10
1 + 𝜇 2 2

10
2 + 𝜇 5 2

10
5 + 𝜇 10 2

10
10 

=
1

10
 210 − 25 − 22 + 2 =

990

10
= 99 

For 𝐿3 = 𝐾 𝑥, 𝑦, 𝑧     𝑥 > 𝑦 > 𝑧   we get       

a) 𝑛 = 1     𝑟 = 3   

dim𝐿3
(1)

=
1

1
 µ

𝑑|1

 𝑑 31|𝑑 = 1𝜇 1 ∙ 3 = 3 

b) 𝑛 = 2  𝑟 = 3 

dim𝐿3
(2)

=
1

2
 µ

𝑑|2

 𝑑 32|𝑑 =
1

2
 𝜇 1 32 + 𝜇 2 3

2
2 =

1

2
 32 − 3 =

6

2
= 3 

c) 𝑛 = 3   𝑟 = 3 

dim𝐿3
(3)

=
1

3
 µ

𝑑|3

 𝑑 33|𝑑 =
1

3
 𝜇 1 3

3
1 + 𝜇 3 3

3
3 =

1

3
 33 − 3 =

24

3
= 8 

d) 𝑛 = 4   𝑟 = 3 
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dim𝐿3
(4)

=
1

4
 µ

𝑑|4

 𝑑 34|𝑑 =
1

4
 𝜇 1 3

4
1 + 𝜇 2 3

4
2 + 𝜇 4 3

4
4 =

1

4
 34 − 32 =

72

4

= 18 

e) 𝑛 = 5   𝑟 = 3 

dim𝐿3
(5)

=
1

5
 µ

𝑑|5

 𝑑 35|𝑑 =
1

5
 𝜇 1 3

5
1 + 𝜇 5 3

5
5 =

1

5
 35 − 3 =

240

5
= 48 

f) 𝑛 = 6      𝑟 = 3 

dim𝐿3
(6)

=
1

6
 µ

𝑑|6

 𝑑 36|𝑑 =
1

6
 𝜇 1 3

6
1 + 𝜇 2 3

6
2 + 𝜇 3 3

6
3 + 𝜇 6 3

6
6 

=
1

6
 36 − 33 − 32 + 3 =

696

6
= 116 

g) 𝑛 = 7     𝑟 = 3 

dim𝐿3
(7)

=
1

7
 µ

𝑑|7

 𝑑 37|𝑑 =
1

7
 𝜇 1 3

7
1 + 𝜇 7 3

7
7 =

1

7
 37 − 3 =

2184

7
= 312 

h) 𝑛 = 8    𝑟 = 3 

dim𝐿3
(8)

=
1

8
 µ

𝑑|8

 𝑑 38|𝑑 =
1

8
 𝜇 1 3

8
1 + 𝜇 2 3

8
2 + 𝜇 4 3

8
4 + 𝜇 8 3

8
8 

=
1

8
 38 − 34 =

6480

8
= 810 

i) 𝑛 = 9   𝑟 = 3 

dim𝐿3
(9)

=
1

9
 µ

𝑑|9

 𝑑 39|𝑑 =
1

9
 𝜇 1 3

9
1 + 𝜇 3 3

9
3 + 𝜇 9 3

9
9 =

1

9
 39 − 33 

=
19656

9
= 2184 

j) 𝑛 = 10   𝑟 = 3 
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dim𝐿3
(10)

=
1

10
 µ

𝑑|10

 𝑑 310|𝑑 =
1

10
 𝜇 1 3

10
1 + 𝜇 2 3

10
2 + 𝜇 5 3

10
5 + 𝜇 10 3

10
10 

=
1

10
 310 − 35 − 32 + 3 =

58800

10
= 5880 

For 𝐿4 = 𝐾 𝑥, 𝑦, 𝑧, 𝑡     𝑥 > 𝑦 > 𝑧 > 𝑡   we get       

a) 𝑛 = 1     𝑟 = 4   

dim𝐿4
(1)

=
1

1
 µ

𝑑|1

 𝑑 41|𝑑 = 1𝜇 1 ∙ 4 = 4 

b) 𝑛 = 2  𝑟 = 4 

dim𝐿4
(2)

=
1

2
 µ

𝑑|2

 𝑑 42|𝑑 =
1

2
 𝜇 1 42 + 𝜇 2 4

2
2 =

1

2
 42 − 4 =

12

2
= 6 

c) 𝑛 = 3   𝑟 = 4 

dim𝐿4
(3)

=
1

3
 µ

𝑑|3

 𝑑 43|𝑑 =
1

3
 𝜇 1 4

3
1 + 𝜇 3 4

3
3 =

1

3
 43 − 4 =

60

3
= 20 

d) 𝑛 = 4   𝑟 = 4 

dim𝐿4
(4)

=
1

4
 µ

𝑑|4

 𝑑 44|𝑑 =
1

4
 𝜇 1 4

4
1 + 𝜇 2 4

4
2 + 𝜇 4 4

4
4 =

1

4
 44 − 42 

=
240

4
= 60 

e) 𝑛 = 5   𝑟 = 4 

dim𝐿4
(5)

=
1

5
 µ

𝑑|5

 𝑑 45|𝑑 =
1

5
 𝜇 1 4

5
1 + 𝜇 5 4

5
5 =

1

5
 45 − 4 =

1020

5
= 204 

f) 𝑛 = 6      𝑟 = 4 
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dim𝐿4
(6)

=
1

6
 µ

𝑑|6

 𝑑 46|𝑑 =
1

6
 𝜇 1 4

6
1 + 𝜇 2 4

6
2 + 𝜇 3 4

6
3 + 𝜇 6 4

6
6 

=
1

6
 46 − 43 − 42 + 4 =

4020

6
= 670 

g) 𝑛 = 7     𝑟 = 4 

dim𝐿4
(7)

=
1

7
 µ

𝑑|7

 𝑑 47|𝑑 =
1

7
 𝜇 1 4

7
1 + 𝜇 7 4

7
7 =

1

7
 47 − 4 =

16380

7

= 2340 

h) 𝑛 = 8    𝑟 = 4 

dim𝐿4
(8)

=
1

8
 µ

𝑑|8

 𝑑 48|𝑑 =
1

8
 𝜇 1 4

8
1 + 𝜇 2 4

8
2 + 𝜇 4 4

8
4 + 𝜇 8 4

8
8 

=
1

8
 48 − 44 =

65280

8
= 8160 

i) 𝑛 = 9   𝑟 = 4 

dim𝐿4
(9)

=
1

9
 µ

𝑑|9

 𝑑 49|𝑑 =
1

9
 𝜇 1 4

9
1 + 𝜇 3 4

9
3 + 𝜇 9 4

9
9 =

1

9
 49 − 43 

=
262080

9
= 29120 

j) 𝑛 = 10   𝑟 = 4 

dim𝐿4
(10)

=
1

10
 µ

𝑑|10

 𝑑 410|𝑑 =
1

10
 𝜇 1 4

10
1 + 𝜇 2 4

10
2 + 𝜇 5 4

10
5 + 𝜇 10 4

10
10 

=
1

10
 410 − 45 − 42 + 4 =

1047540

10
= 104754 
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Table 2: Summary of Dimension  

dim𝐿𝑑
(𝑛)

=

=
1

𝑛
 µ

𝑑|𝑛

(𝑑)𝑟𝑛|𝑑  

𝐿2 = 𝐾 𝑥, 𝑦  

𝑥 > 𝑦 

𝐿3 = 𝐾 𝑥, 𝑦, 𝑧  

𝑥 > 𝑦 > 𝑧 

𝐿4 = 𝐾 𝑥, 𝑦, 𝑧, 𝑡  

𝑥 > 𝑦 > 𝑧 > 𝑡 

𝑛 = 1 2 3 4 

𝑛 = 2 1 3 6 

𝑛 = 3 2 8 20 

𝑛 = 4 3 18 60 

𝑛 = 5 6 48 204 

𝑛 = 6 9 116 670 

𝑛 = 7 18 312 2340 

𝑛 = 8 30 810 8160 

𝑛 = 9 56 2184 29120 

𝑛 = 10 99 5880 104754 

 

Definition 3.1.10: A vector space 𝐴 over the field 𝐾 with bilinear and trilinear 

operations [𝑥, 𝑦] and [𝑥, 𝑦, 𝑧] is said to be an Akivis algebra if the bilinear 

operation is anticommutative and the two operations are verifying the Akivis 

identity  

  𝑥, 𝑦 , 𝑧 +   𝑦, 𝑧 , 𝑥 +   𝑧, 𝑥 , 𝑦 = 

 𝑥, 𝑦, 𝑧 +  𝑦, 𝑧, 𝑥 +  𝑧, 𝑥, 𝑦 −  𝑥, 𝑧, 𝑦 −  𝑦, 𝑥, 𝑧 −  𝑧, 𝑦, 𝑥 . 

For more look on Akivis (1976). 
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Example 3.1.11: A nonassociative algebra 𝐴 with commutator   𝑥, 𝑦 = 𝑥𝑦 − 𝑦𝑥 

and associator  𝑥, 𝑦, 𝑧 =  𝑥𝑦 𝑧 − 𝑥(𝑦𝑧) becomes an Akivis Algebra.  

Here we present few homogenous Akivis elements on one generator: 

𝑥,  𝑥, 𝑥, 𝑥 ,   𝑥, 𝑥,  , 𝑥 ,  

   𝑥, 𝑥, 𝑥 , 𝑥 , 𝑥 ,   𝑥, 𝑥, 𝑥 , 𝑥, 𝑥 ,  𝑥,  𝑥, 𝑥, 𝑥 , 𝑥 ,  𝑥, 𝑥,  𝑥, 𝑥, 𝑥   

The following proposition is in Bremner, Hentzel and Peresi  2005  

Proposition 3.1.12: If 𝑋 = {𝑥}, then we have the dimensions 

dim𝐴 1 = 1, dim𝐴 2 = 0, dim𝐴 3 = 1, dim𝐴 4 = 1, dim𝐴 5 = 4,  

dim𝐴 6 = 7, dim𝐴 7 = 23, dim𝐴 8 = 53, dim𝐴 9 = 157, 

where 𝐴 𝑛  is the homogeneous subspace of degree 𝑛. 

We illustrate the bases elements until length 4: 

Basis elements of 𝐴 1 : 𝑥 

Basis elements of 𝐴 2 : none 

Basis elements of 𝐴 3 : [𝑥, 𝑥, 𝑥] 

Basis elements of 𝐴 4 :   𝑥, 𝑥, 𝑥 , 𝑥  

 For the Basis elements of 𝐴 𝑛  for 𝑛 ≥ 5, we have to generate all possible 

monomials of degree 𝑛, containing anticommutative binary and ternary operations. 

These monomials will span the subspace of Akivis elements. In the case of 

degree 5, a basis of subspace of Akivis elements is spanned by 4 elements below: 

   𝑥, 𝑥, 𝑥 , 𝑥 , 𝑥 ,   𝑥, 𝑥, 𝑥 , 𝑥, 𝑥 ,  𝑥,  𝑥, 𝑥, 𝑥 , 𝑥 ,  𝑥, 𝑥,  𝑥, 𝑥, 𝑥   

From the above elements, there are 14 nonassociative monomials from 14, so 

those monomials of degree 5 are: 

1.      𝑥𝑥 𝑥 𝑥 𝑥   2.     𝑥 𝑥𝑥  𝑥 𝑥   3.     𝑥𝑥 𝑥  𝑥𝑥    4.     𝑥𝑥  𝑥𝑥  𝑥  

5.    𝑥  𝑥𝑥 𝑥  𝑥   6.    𝑥 𝑥 𝑥𝑥   𝑥  7.    𝑥 𝑥𝑥   𝑥𝑥   8.    𝑥𝑥   𝑥𝑥 𝑥   
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9.    𝑥𝑥  𝑥 𝑥𝑥     10.   𝑥    𝑥𝑥 𝑥 𝑥    11.   𝑥   𝑥 𝑥𝑥  𝑥    12.   𝑥  𝑥𝑥  𝑥𝑥    

13.   𝑥  𝑥  𝑥𝑥 𝑥     14.   𝑥  𝑥 𝑥 𝑥𝑥     

 Let’s write the bases of subspace of Akivis elements in times of monomials 

in other to find our matrix. 

   𝑥, 𝑥, 𝑥 , 𝑥 , 𝑥 =     𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  , 𝑥 , 𝑥 

=     𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  𝑥 − 𝑥  𝑥𝑥 𝑥 − 𝑥 𝑥𝑥   , 𝑥   

 =    𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  𝑥 − 𝑥  𝑥𝑥 𝑥 − 𝑥 𝑥𝑥   𝑥 

−𝑥   𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  𝑥 − 𝑥  𝑥𝑥 𝑥 − 𝑥 𝑥𝑥    

                         =     𝑥𝑥 𝑥 𝑥 𝑥 −    𝑥 𝑥𝑥  𝑥 𝑥 −   𝑥  𝑥𝑥 𝑥  𝑥 

+   𝑥 𝑥 𝑥𝑥   𝑥 −  𝑥    𝑥𝑥 𝑥 𝑥  +  𝑥   𝑥 𝑥𝑥  𝑥  

+  𝑥  𝑥  𝑥𝑥 𝑥   −  𝑥  𝑥 𝑥 𝑥𝑥     

  𝑥, 𝑥, 𝑥 , 𝑥, 𝑥 =   𝑥𝑥 𝑥 − 𝑥 𝑥𝑥 , 𝑥, 𝑥 =    𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  𝑥 𝑥 − 𝑥   𝑥𝑥 𝑥 −

𝑥𝑥𝑥𝑥  =𝑥𝑥𝑥𝑥𝑥−𝑥𝑥𝑥𝑥𝑥 

−   𝑥𝑥 𝑥  𝑥𝑥    𝑥 𝑥𝑥   𝑥𝑥   

 𝑥,  𝑥, 𝑥, 𝑥 , 𝑥 =  𝑥,  𝑥𝑥 𝑥 − 𝑥 𝑥𝑥 , 𝑥 =  𝑥  𝑥𝑥 𝑥 − 𝑥 𝑥𝑥   𝑥 − 𝑥   𝑥𝑥 𝑥 −

𝑥𝑥𝑥𝑥=𝑥𝑥𝑥𝑥𝑥−𝑥𝑥𝑥𝑥𝑥−𝑥𝑥𝑥𝑥𝑥+𝑥𝑥𝑥𝑥𝑥 

 𝑥, 𝑥,  𝑥, 𝑥, 𝑥  =  𝑥, 𝑥,  𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  =  𝑥𝑥   𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  − 𝑥 𝑥  𝑥𝑥 𝑥 −

𝑥𝑥𝑥=𝑥𝑥𝑥𝑥𝑥−𝑥𝑥𝑥𝑥𝑥−𝑥𝑥𝑥𝑥𝑥+𝑥𝑥𝑥𝑥𝑥 

So we form a matrix 4 × 14: 
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



























11000110000000

00011000110000

00000001001011

11011000110011

 

The rank of this matrix is 4, therefore the space of Akivis element with degree 5 

has dimension 4. 

For the degree 6, a basis of subspace of Akivis elements is spanned by 7 

elements below: 

    𝑥, 𝑥, 𝑥 , 𝑥 , 𝑥 , 𝑥 ,    𝑥, 𝑥, 𝑥 , 𝑥 , 𝑥, 𝑥 ,    𝑥, 𝑥, 𝑥 , 𝑥, 𝑥 , 𝑥 ,  𝑥,   𝑥, 𝑥, 𝑥 , 𝑥 , 𝑥 , 

  𝑥,  𝑥, 𝑥, 𝑥 , 𝑥 , 𝑥 ,  𝑥, 𝑥,   𝑥, 𝑥, 𝑥 , 𝑥  ,   𝑥, 𝑥,  𝑥, 𝑥, 𝑥  , 𝑥  

There are 42 nonassociative monomials, and those monomials of degree 6 are: 

1.      𝑥𝑥 𝑥 𝑥 𝑥 𝑥   2.     𝑥 𝑥𝑥  𝑥 𝑥 𝑥   3.     𝑥𝑥 𝑥 𝑥  𝑥𝑥    

4.     𝑥𝑥 𝑥  𝑥𝑥  𝑥  5.    𝑥  𝑥𝑥 𝑥  𝑥 𝑥  6.    𝑥 𝑥 𝑥𝑥   𝑥 𝑥  

7.    𝑥 𝑥𝑥  𝑥  𝑥𝑥   8.    𝑥 𝑥𝑥   𝑥𝑥  𝑥  9.    𝑥𝑥   𝑥𝑥 𝑥  𝑥   

10.    𝑥𝑥  𝑥 𝑥𝑥   𝑥  11.   𝑥    𝑥𝑥 𝑥 𝑥  𝑥  12.   𝑥   𝑥 𝑥𝑥  𝑥  𝑥   

13.    𝑥    𝑥𝑥 𝑥 𝑥  𝑥   14.    𝑥   𝑥 𝑥𝑥  𝑥  𝑥   15.    𝑥  𝑥  𝑥𝑥 𝑥   𝑥   

16.    𝑥  𝑥 𝑥 𝑥𝑥    𝑥   17.    𝑥  𝑥𝑥 𝑥   𝑥𝑥    18.    𝑥 𝑥 𝑥𝑥    𝑥𝑥    

19.    𝑥𝑥    𝑥𝑥 𝑥 𝑥    20.    𝑥𝑥   𝑥 𝑥𝑥  𝑥    21.    𝑥𝑥  𝑥  𝑥𝑥 𝑥     

22.    𝑥𝑥  𝑥 𝑥 𝑥𝑥      23.   𝑥     𝑥𝑥 𝑥 𝑥 𝑥    24.   𝑥    𝑥 𝑥𝑥  𝑥 𝑥    
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25.   𝑥   𝑥  𝑥𝑥 𝑥  𝑥    26.   𝑥   𝑥 𝑥 𝑥𝑥   𝑥   27.   𝑥    𝑥𝑥 𝑥  𝑥𝑥     

28.   𝑥   𝑥 𝑥𝑥   𝑥𝑥     29.   𝑥  𝑥    𝑥𝑥 𝑥 𝑥     30.   𝑥  𝑥   𝑥 𝑥𝑥  𝑥     

31.   𝑥  𝑥  𝑥  𝑥𝑥 𝑥      32.   𝑥   𝑥𝑥   𝑥𝑥 𝑥     33.   𝑥   𝑥𝑥  𝑥 𝑥𝑥      

34.   𝑥  𝑥  𝑥  𝑥𝑥 𝑥      35.      𝑥𝑥  𝑥𝑥  𝑥 𝑥   36.    𝑥  𝑥𝑥  𝑥𝑥   𝑥   

37.   𝑥𝑥   𝑥𝑥  𝑥𝑥    38.     𝑥𝑥 𝑥  𝑥 𝑥𝑥     39.    𝑥 𝑥𝑥    𝑥𝑥 𝑥    

40.     𝑥𝑥  𝑥𝑥   𝑥𝑥    41.     𝑥𝑥 𝑥   𝑥𝑥 𝑥    42.   𝑥  𝑥  𝑥 𝑥 𝑥𝑥     .  

Let’s write the bases of subspace of Akivis elements in times of monomials in 

other to find our matrix. 

    𝑥, 𝑥, 𝑥 , 𝑥 , 𝑥 , 𝑥 =      𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  , 𝑥 , 𝑥 , 𝑥  

=      𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  𝑥 −   𝑥𝑥 𝑥 − 𝑥 𝑥𝑥   , 𝑥 , 𝑥  

= [   𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  𝑥 − 𝑥  𝑥𝑥 𝑥 − 𝑥 𝑥𝑥   𝑥 

−𝑥   𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  𝑥 − 𝑥  𝑥𝑥 𝑥 − 𝑥 𝑥𝑥   , 𝑥] 

=     𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  𝑥 − 𝑥  𝑥𝑥 𝑥 − 𝑥 𝑥𝑥   𝑥

− 𝑥   𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  𝑥 − 𝑥  𝑥𝑥 𝑥 − 𝑥 𝑥𝑥    𝑥 

−𝑥    𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  𝑥 − 𝑥  𝑥𝑥 𝑥 − 𝑥 𝑥𝑥   𝑥

− 𝑥   𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  𝑥 − 𝑥  𝑥𝑥 𝑥 − 𝑥 𝑥𝑥     

=      𝑥𝑥 𝑥 𝑥 𝑥 𝑥 −     𝑥 𝑥𝑥  𝑥 𝑥 𝑥  

−   𝑥  𝑥𝑥 𝑥  𝑥 𝑥 +    𝑥 𝑥 𝑥𝑥   𝑥 𝑥  

−  𝑥    𝑥𝑥 𝑥 𝑥  𝑥 +   𝑥   𝑥 𝑥𝑥  𝑥  𝑥  
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+  𝑥  𝑥  𝑥𝑥 𝑥   𝑥 −   𝑥  𝑥 𝑥 𝑥𝑥    𝑥  

− 𝑥     𝑥𝑥 𝑥 𝑥 𝑥  +  𝑥    𝑥 𝑥𝑥  𝑥 𝑥   

+ 𝑥   𝑥  𝑥𝑥 𝑥  𝑥  −  𝑥   𝑥 𝑥 𝑥𝑥   𝑥   

+ 𝑥  𝑥    𝑥𝑥 𝑥 𝑥   −  𝑥  𝑥   𝑥 𝑥𝑥  𝑥    

− 𝑥  𝑥  𝑥  𝑥𝑥 𝑥    +  𝑥  𝑥  𝑥 𝑥 𝑥𝑥      

   𝑥, 𝑥, 𝑥 , 𝑥 , 𝑥, 𝑥 =     𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  , 𝑥 , 𝑥, 𝑥  

                               =     𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  𝑥 − 𝑥  𝑥𝑥 𝑥 − 𝑥 𝑥𝑥   , 𝑥, 𝑥  

                          =     𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  𝑥 − 𝑥  𝑥𝑥 𝑥 − 𝑥 𝑥𝑥   𝑥 𝑥 

−   𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  𝑥 − 𝑥  𝑥𝑥 𝑥 − 𝑥 𝑥𝑥    𝑥𝑥  

=      𝑥𝑥 𝑥 𝑥 𝑥 𝑥 −     𝑥 𝑥𝑥  𝑥 𝑥 𝑥  

−   𝑥  𝑥𝑥 𝑥  𝑥 𝑥 +    𝑥 𝑥 𝑥𝑥   𝑥 𝑥  

−    𝑥𝑥 𝑥 𝑥  𝑥𝑥  +    𝑥 𝑥𝑥  𝑥  𝑥𝑥   

+  𝑥  𝑥𝑥 𝑥   𝑥𝑥  −   𝑥 𝑥 𝑥𝑥    𝑥𝑥   

   𝑥, 𝑥, 𝑥 , 𝑥, 𝑥 , 𝑥 =     𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  , 𝑥, 𝑥 , 𝑥  

                                  =      𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  𝑥 𝑥 −   𝑥𝑥 𝑥 − 𝑥 𝑥𝑥   𝑥𝑥   𝑥𝑥  , 𝑥]  

=     𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  𝑥 𝑥 −   𝑥𝑥 𝑥 − 𝑥 𝑥𝑥   𝑥𝑥  𝑥 

−𝑥{   𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  𝑥 𝑥 −   𝑥𝑥 𝑥 − 𝑥 𝑥𝑥   𝑥𝑥 } 

=      𝑥𝑥 𝑥 𝑥 𝑥 𝑥 −     𝑥 𝑥𝑥  𝑥 𝑥 𝑥  
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−    𝑥𝑥 𝑥  𝑥𝑥  𝑥 +    𝑥 𝑥𝑥   𝑥𝑥  𝑥  

− 𝑥     𝑥𝑥 𝑥 𝑥 𝑥  +  𝑥    𝑥 𝑥𝑥  𝑥 𝑥   

+ 𝑥    𝑥𝑥 𝑥  𝑥𝑥   −  𝑥   𝑥 𝑥𝑥   𝑥𝑥    

 𝑥,   𝑥, 𝑥, 𝑥 , 𝑥 , 𝑥 =  𝑥,    𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  , 𝑥 , 𝑥  

=  𝑥,    𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  𝑥 − 𝑥  𝑥𝑥 𝑥 − 𝑥 𝑥𝑥   , 𝑥  

=  𝑥   𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  𝑥 − 𝑥  𝑥𝑥 𝑥 − 𝑥 𝑥𝑥    𝑥 

−𝑥{   𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  𝑥 − 𝑥  𝑥𝑥 𝑥 − 𝑥 𝑥𝑥   𝑥} 

=   𝑥    𝑥𝑥 𝑥 𝑥  𝑥 −   𝑥   𝑥 𝑥𝑥  𝑥  𝑥  

−  𝑥  𝑥  𝑥𝑥 𝑥   𝑥 +   𝑥  𝑥 𝑥 𝑥𝑥    𝑥  

− 𝑥     𝑥𝑥 𝑥 𝑥 𝑥  +  𝑥    𝑥 𝑥𝑥  𝑥 𝑥   

+ 𝑥   𝑥  𝑥𝑥 𝑥  𝑥  −  𝑥   𝑥 𝑥 𝑥𝑥   𝑥   

  𝑥,  𝑥, 𝑥, 𝑥 , 𝑥 , 𝑥 =   𝑥,   𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  , 𝑥 , 𝑥  

=    𝑥  𝑥𝑥 𝑥 − 𝑥 𝑥𝑥   𝑥 − 𝑥   𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  𝑥  , 𝑥  

=   𝑥  𝑥𝑥 𝑥 − 𝑥 𝑥𝑥   𝑥 − 𝑥   𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  𝑥  𝑥 

−𝑥  𝑥  𝑥𝑥 𝑥 − 𝑥 𝑥𝑥   𝑥 − 𝑥   𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  𝑥   

=    𝑥  𝑥𝑥 𝑥  𝑥 𝑥 −    𝑥 𝑥 𝑥𝑥   𝑥 𝑥  

−  𝑥    𝑥𝑥 𝑥 𝑥  𝑥 +   𝑥   𝑥 𝑥𝑥  𝑥  𝑥  

− 𝑥   𝑥  𝑥𝑥 𝑥  𝑥  +  𝑥   𝑥 𝑥 𝑥𝑥   𝑥   
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+ 𝑥  𝑥    𝑥𝑥 𝑥 𝑥   −  𝑥  𝑥   𝑥 𝑥𝑥  𝑥    

 𝑥, 𝑥,   𝑥, 𝑥, 𝑥 , 𝑥  =  𝑥, 𝑥,    𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  , 𝑥   

=  𝑥, 𝑥,    𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  𝑥 − 𝑥  𝑥𝑥 𝑥 − 𝑥 𝑥𝑥     

=  𝑥𝑥    𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  𝑥 − 𝑥  𝑥𝑥 𝑥 − 𝑥 𝑥𝑥    

−𝑥 𝑥   𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  𝑥 − 𝑥  𝑥𝑥 𝑥 − 𝑥 𝑥𝑥     

=   𝑥𝑥    𝑥𝑥 𝑥 𝑥  −   𝑥𝑥   𝑥 𝑥𝑥  𝑥   

−  𝑥𝑥  𝑥  𝑥𝑥 𝑥   +   𝑥𝑥  𝑥 𝑥 𝑥𝑥     

− 𝑥  𝑥    𝑥𝑥 𝑥 𝑥   +  𝑥  𝑥   𝑥 𝑥𝑥  𝑥    

+ 𝑥  𝑥  𝑥  𝑥𝑥 𝑥    −  𝑥  𝑥  𝑥 𝑥 𝑥𝑥      

  𝑥, 𝑥,  𝑥, 𝑥, 𝑥  , 𝑥 =   𝑥, 𝑥,   𝑥𝑥 𝑥 − 𝑥 𝑥𝑥   , 𝑥  

=    𝑥𝑥   𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  − 𝑥 𝑥  𝑥𝑥 𝑥 − 𝑥 𝑥𝑥    , 𝑥  

=   𝑥𝑥   𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  − 𝑥 𝑥  𝑥𝑥 𝑥 − 𝑥 𝑥𝑥    𝑥 

−𝑥  𝑥𝑥   𝑥𝑥 𝑥 − 𝑥 𝑥𝑥  − 𝑥 𝑥  𝑥𝑥 𝑥 − 𝑥 𝑥𝑥     

=    𝑥𝑥   𝑥𝑥 𝑥  𝑥 −    𝑥𝑥  𝑥 𝑥𝑥   𝑥  

−  𝑥  𝑥  𝑥𝑥 𝑥   𝑥 +   𝑥  𝑥 𝑥 𝑥𝑥    𝑥  

− 𝑥   𝑥𝑥   𝑥𝑥 𝑥   +  𝑥   𝑥𝑥  𝑥 𝑥𝑥     

+ 𝑥  𝑥  𝑥  𝑥𝑥 𝑥    −  𝑥  𝑥  𝑥 𝑥 𝑥𝑥      

So, from here the matrix of 7 × 42 is as follows: 
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In the above matrix −1 is replaced by  ∗.  

This matrix has rank 7: Here the columns 42, 3, 4, 11, 13, 19 and 10 are chosen 

respectively to formulate the following matrix 7 × 7  









































1000001

0100001

0010000

0001000

0000100

0000010

0001001

 

The determinant becomes: 

=  −1 

100001

010000

001000

000100

000010

001001











 

 
1000001

0100001

0010000

0001000

0000100

0000010

0001001












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=  −1  1 

10000

01000

00100

00010

01001









=  −1  1  −1 

1000

0100

0010

1001







=  −1  1  −1  1 

100

010

001





=  −1  1  −1  1  −1 
10

01


=  −1  1  −1  1  −1  −1 

= 1 ≠ 0 

Therefore the space of Akivis element with degree 6 has dimension 7. 

For the degree 7, a basis of subspace of Akivis elements is spanned by 23 elements 

below: 

     𝑥, 𝑥, 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 ,     𝑥, 𝑥, 𝑥 , 𝑥 , 𝑥 , 𝑥, 𝑥 ,     𝑥, 𝑥, 𝑥 , 𝑥 , 𝑥, 𝑥 , 𝑥 , 

    𝑥, 𝑥, 𝑥 , 𝑥, 𝑥 , 𝑥 , 𝑥 ,    𝑥, 𝑥, 𝑥 , 𝑥, 𝑥 , 𝑥, 𝑥 ,    𝑥, 𝑥, 𝑥 , 𝑥 ,  𝑥, 𝑥, 𝑥  ,   

   𝑥,  𝑥, 𝑥, 𝑥 , 𝑥 , 𝑥 , 𝑥 ,    𝑥, 𝑥,  𝑥, 𝑥, 𝑥  , 𝑥 , 𝑥 ,   𝑥, 𝑥, 𝑥 , 𝑥,  𝑥, 𝑥, 𝑥  ,   

  𝑥, 𝑥, 𝑥 ,  𝑥, 𝑥, 𝑥 , 𝑥 ,   𝑥,   𝑥, 𝑥, 𝑥 , 𝑥 , 𝑥 , 𝑥 ,   𝑥, 𝑥,   𝑥, 𝑥, 𝑥 , 𝑥  , 𝑥 ,   

  𝑥,  𝑥, 𝑥, 𝑥 , 𝑥 , 𝑥, 𝑥 ,   𝑥, 𝑥,  𝑥, 𝑥, 𝑥  , 𝑥, 𝑥 ,  𝑥,    𝑥, 𝑥, 𝑥 , 𝑥 , 𝑥 , 𝑥 ,   

 𝑥, 𝑥,    𝑥, 𝑥, 𝑥 , 𝑥 , 𝑥  ,  𝑥,   𝑥, 𝑥, 𝑥 , 𝑥, 𝑥 , 𝑥 ,  𝑥, 𝑥,   𝑥, 𝑥, 𝑥 , 𝑥, 𝑥  ,   

 𝑥,  𝑥,  𝑥, 𝑥, 𝑥 , 𝑥 , 𝑥 ,  𝑥, 𝑥,  𝑥,  𝑥, 𝑥, 𝑥 , 𝑥  ,  𝑥,  𝑥, 𝑥,  𝑥, 𝑥, 𝑥  , 𝑥 ,   

 𝑥, 𝑥,  𝑥, 𝑥,  𝑥, 𝑥, 𝑥   ,  𝑥,  𝑥, 𝑥, 𝑥 ,  𝑥, 𝑥, 𝑥  . 
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Table 3: In the same way, the computation is founded in this way up to degree 𝟗 

𝑛 matrix size dim𝐴 𝑛  

7 23 × 132 23 

8 54 × 429 53 

9 162 × 1430 157 

3.2. Hilbert Series of Free Metabelian Lie Algebras 

Let 𝐿𝑚  be the free Lie algebra over the field 𝐾 freely generated by a finite set 

𝑋 = {𝑥1,⋯ , 𝑥𝑚 } with 𝑚 ≥ 2. We assume that the elements of 𝑋 are Lie 

monomials of length 1. If 𝑥 and 𝑦 are Lie monomials of any length, then length of 

[𝑥, 𝑦] is the sum of lengths 𝑥 and 𝑦.  

 We will show the monomials of the form   𝑧1 , 𝑧2 , 𝑧3  by  𝑧1 , 𝑧2 , 𝑧3  for the 

sake of simplicity. Hence we can extent this inductively as  

 𝑧1 , 𝑧2 , 𝑧3 , ⋯ , 𝑧𝑘  =  ⋯   𝑧1 , 𝑧2 , 𝑧3 ,⋯ , 𝑧𝑘  , 𝑘 ≥ 3, 

for all 𝑧1 , 𝑧2 ,⋯ , 𝑧𝑘 ∈ 𝐿𝑚 . In this way every element of 𝐿𝑚  can be written as a 

linear combination of the left normed monomials, which means that, the set of all 

left normed Lie monomials spans the whole free Lie algebra 𝐿𝑚  on 𝑋. 

Definition 3.2.1: The quotient algebra 

𝐹𝑚 =
𝐿𝑚

𝐿𝑚
′′ =

𝐿𝑚
  𝐿𝑚 , 𝐿𝑚  ,  𝐿𝑚 , 𝐿𝑚   

  

is called the free metabelian Lie algebra of rank 𝑚 defined by metabelian 

identity   𝑥, 𝑦 ,  𝑧, 𝑡  = 0. The second derived ideal of 𝐹𝑚  is equal to zero. 𝐹𝑚  is 

generated by free generators 𝑦1 = 𝑥1 + 𝐿𝑚
′′ ,⋯ , 𝑦𝑚 = 𝑥𝑚 + 𝐿𝑚

′′  and this algebra is 

of a basis consisting of 𝑦1 , ⋯ , 𝑦𝑚  together with all left normed monomials of the 

form: 



3. COMPUTATIONAL RESULTS  Andre DUSHIMIRIMANA 

45 
 

 𝑦𝑖1 , 𝑦𝑖2 , ⋯ , 𝑦𝑖𝑘  , 𝑖1 > 𝑖2 ≤ 𝑖3 ≤ ⋯ ≤ 𝑖𝑘 ≤ 𝑚. 

Let 𝑤 ∈ 𝐹𝑚
′  and let  𝑥, 𝑦 ∈ 𝐹𝑚  be arbitrary elements. Then as a consequence of 

Jacobi identity we have  

 𝑤, 𝑥, 𝑦 +  𝑥, 𝑦, 𝑤 +  𝑦,𝑤, 𝑥 = 0. 

Since 0 =  𝑥, 𝑦, 𝑤 ∈ 𝐹𝑚
′′ = {0} we get 

 𝑤, 𝑥, 𝑦 = − 𝑦,𝑤, 𝑥 =  𝑤, 𝑦, 𝑥 . 

Thus, 𝐹𝑚
′  is furnished with a natural structure of module of 𝐾 𝑦1 , ⋯ , 𝑦𝑚  . 

Example 3.2.2: Basis elements in 2 Generators: 

 Let 𝐹2 =  𝑥, 𝑦  be a free metabelian Lie algebra with generators 𝑥, 𝑦 over a 

field 𝐾 of characteristic 0.  

The alternating of generators with the condition of 𝑥 > 𝑦 is used to construct 𝐹2 

which is a closed formula and generate the numbers of basis. For 𝑚 ≤ 9, the 

number of elements in basis are illustrate manually in the following way by total 

order >; 

𝑛 = 1         𝑥, 𝑦              𝑥 > 𝑦 

𝑛 = 2          𝑥, 𝑦  

𝑛 = 3           𝑥, 𝑦 , 𝑦 ,   𝑥, 𝑦 , 𝑥  

𝑛 = 4            𝑥, 𝑦 , 𝑦 , 𝑦 ,      𝑥, 𝑦 , 𝑦 , 𝑥 ,    𝑥, 𝑦 , 𝑥 , 𝑥  

𝑛 = 5             𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 ,     𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑥 ,   

    𝑥, 𝑦 , 𝑦 , 𝑥 , 𝑥 ,     𝑥, 𝑦 , 𝑥 , 𝑥 , 𝑥  

𝑛 = 6              𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 ,      𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑥 ,   

     𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑥 , 𝑥 ,      𝑥, 𝑦 , 𝑦 , 𝑥 , 𝑥 , 𝑥 ,   

     𝑥, 𝑦 , 𝑥 , 𝑥 , 𝑥 , 𝑥  
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𝑛 = 7            𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 ,       𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑥 ,   

      𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑥 , 𝑥 ,       𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑥 , 𝑥 , 𝑥 ,   

      𝑥, 𝑦 , 𝑦 , 𝑥 , 𝑥 , 𝑥 , 𝑥 ,       𝑥, 𝑦 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥    

𝑛 = 8            𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 ,        𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑥 ,   

       𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑥 , 𝑥 ,        𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑥 , 𝑥 , 𝑥 ,   

       𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑥 , 𝑥 , 𝑥 , 𝑥 ,        𝑥, 𝑦 , 𝑦 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 ,   

       𝑥, 𝑦 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥  

𝑛 = 9            𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 ,  
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        𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑥 ,         𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑥 , 𝑥 ,

        𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑥 , 𝑥 , 𝑥 ,         𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑥 , 𝑥 , 𝑥 , 𝑥 ,

        𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 ,         𝑥, 𝑦 , 𝑦 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 ,

        𝑥, 𝑦 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 . 

Example 3.2.3: Basis elements in 3 Generators: 

 Let 𝐹2 =  𝑥, 𝑦, 𝑧  be a free metabelian Lie algebra with generators 𝑥, 𝑦, 𝑧 

over a field 𝐾 of characteristic 0. The alternating of generators with conditions 𝑥 >

𝑦 > 𝑧,  𝑥, 𝑦 > 𝑧 and 𝑦 ≤ 𝑧 are used to construct 𝐹3 which is a closed formula and 

generate the numbers of basis. For 𝑚 ≤ 6, the number of basis are illustrate 

manually in the following way by total order >; 

𝑛 = 1     𝑥, 𝑦, 𝑧        𝑥 > 𝑦 > 𝑧 

𝑛 = 2      𝑥, 𝑦 ,  𝑥, 𝑧 ,  𝑦, 𝑧  

𝑛 = 3       𝑥, 𝑦 , 𝑦 ,   𝑥, 𝑦 , 𝑥 ,   𝑥, 𝑧 , 𝑧 ,   𝑥, 𝑧 , 𝑦 ,   𝑥, 𝑧 , 𝑥 ,  

   𝑦, 𝑧 , 𝑧 ,   𝑦, 𝑧 , 𝑦 ,   𝑦, 𝑧 , 𝑥  

𝑛 = 4        𝑥, 𝑦 , 𝑦 , 𝑦 ,    𝑥, 𝑦 , 𝑦 , 𝑥 ,    𝑥, 𝑦 , 𝑥 , 𝑥 ,    𝑥, 𝑧 , 𝑧 , 𝑧 , 

    𝑥, 𝑧 , 𝑧 , 𝑦 ,    𝑥, 𝑧 , 𝑧 , 𝑥 ,    𝑥, 𝑧 , 𝑦 , 𝑦 ,    𝑥, 𝑧 , 𝑦 , 𝑥 ,  

   𝑥, 𝑧 , 𝑥 , 𝑥 ,    𝑦, 𝑧 , 𝑧 , 𝑧 ,    𝑦, 𝑧 , 𝑧 , 𝑦 ,    𝑦, 𝑧 , 𝑧 , 𝑥 ,  

    𝑦, 𝑧 , 𝑦 , 𝑦 ,    𝑦, 𝑧 , 𝑦 , 𝑥 ,    𝑦, 𝑧 , 𝑥 , 𝑥  
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𝑛 = 5        𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 ,     𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑥 ,     𝑥, 𝑦 , 𝑦 , 𝑥 , 𝑥 ,   

    𝑥, 𝑦 , 𝑥 , 𝑥 , 𝑥 ,     𝑥, 𝑧 , 𝑧 , 𝑧 , 𝑧 ,     𝑥, 𝑧 , 𝑧 , 𝑧 , 𝑦 ,   

    𝑥, 𝑧 , 𝑧 , 𝑧 , 𝑥 ,     𝑥, 𝑧 , 𝑧 , 𝑦 , 𝑦 ,     𝑥, 𝑧 , 𝑧 , 𝑦 , 𝑥 ,   

    𝑥, 𝑧 , 𝑧 , 𝑥 , 𝑥 ,     𝑥, 𝑧 , 𝑦 , 𝑦 , 𝑦 ,     𝑥, 𝑧 , 𝑦 , 𝑦 , 𝑥 ,   

    𝑥, 𝑧 , 𝑦 , 𝑥 , 𝑥 ,     𝑥, 𝑧 , 𝑥 , 𝑥 , 𝑥 ,     𝑦, 𝑧 , 𝑧 , 𝑧 , 𝑧 ,   

    𝑦, 𝑧 , 𝑧 , 𝑧 , 𝑦 ,     𝑦, 𝑧 , 𝑧 , 𝑧 , 𝑥 ,     𝑦, 𝑧 , 𝑧 , 𝑦 , 𝑦 ,   

    𝑦, 𝑧 , 𝑧 , 𝑦 , 𝑥 ,     𝑦, 𝑧 , 𝑧 , 𝑥 , 𝑥 ,     𝑦, 𝑧 , 𝑦 , 𝑦 , 𝑦 ,   

    𝑦, 𝑧 , 𝑦 , 𝑦 , 𝑥 ,     𝑦, 𝑧 , 𝑦 , 𝑥 , 𝑥 ,     𝑦, 𝑧 , 𝑥 , 𝑥 , 𝑥  

𝑛 = 6        𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 ,      𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑥 ,  
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      𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑥 , 𝑥 ,      𝑥, 𝑦 , 𝑦 , 𝑥 , 𝑥 , 𝑥 ,      𝑥, 𝑦 , 𝑥 , 𝑥 , 𝑥 , 𝑥 ,

     𝑥, 𝑧 , 𝑧 , 𝑧 , 𝑧 , 𝑧 ,      𝑥, 𝑧 , 𝑧 , 𝑧 , 𝑧 , 𝑦 ,      𝑥, 𝑧 , 𝑧 , 𝑧 , 𝑧 , 𝑥 ,

     𝑥, 𝑧 , 𝑧 , 𝑧 , 𝑦 , 𝑦 ,      𝑥, 𝑧 , 𝑧 , 𝑧 , 𝑦 , 𝑥 ,      𝑥, 𝑧 , 𝑧 , 𝑧 , 𝑥 , 𝑥 ,

     𝑥, 𝑧 , 𝑧 , 𝑦 , 𝑦 , 𝑦 ,      𝑥, 𝑧 , 𝑧 , 𝑦 , 𝑦 , 𝑥 ,      𝑥, 𝑧 , 𝑧 , 𝑦 , 𝑥 , 𝑥 ,

     𝑥, 𝑧 , 𝑧 , 𝑥 , 𝑥 , 𝑥 ,      𝑥, 𝑧 , 𝑦 , 𝑦 , 𝑦 , 𝑦 ,      𝑥, 𝑧 , 𝑦 , 𝑦 , 𝑦 , 𝑥 ,

     𝑥, 𝑧 , 𝑦 , 𝑦 , 𝑥 , 𝑥 ,      𝑥, 𝑧 , 𝑦 , 𝑥 , 𝑥 , 𝑥 ,      𝑥, 𝑧 , 𝑥 , 𝑥 , 𝑥 , 𝑥 ,

     𝑦, 𝑧 , 𝑧 , 𝑧 , 𝑧 , 𝑧 ,      𝑦, 𝑧 , 𝑧 , 𝑧 , 𝑧 , 𝑦 ,      𝑦, 𝑧 , 𝑧 , 𝑧 , 𝑧 , 𝑥 ,

     𝑦, 𝑧 , 𝑧 , 𝑧 , 𝑦 , 𝑦 ,      𝑦, 𝑧 , 𝑧 , 𝑧 , 𝑦 , 𝑥 ,      𝑦, 𝑧 , 𝑧 , 𝑧 , 𝑥 , 𝑥 ,

     𝑦, 𝑧 , 𝑧 , 𝑦 , 𝑦 , 𝑦 ,      𝑦, 𝑧 , 𝑧 , 𝑦 , 𝑦 , 𝑥 ,      𝑦, 𝑧 , 𝑧 , 𝑦 , 𝑥 , 𝑥 ,

     𝑦, 𝑧 , 𝑧 , 𝑥 , 𝑥 , 𝑥 ,      𝑦, 𝑧 , 𝑦 , 𝑦 , 𝑦 , 𝑦 ,      𝑦, 𝑧 , 𝑦 , 𝑦 , 𝑦 , 𝑥 ,

     𝑦, 𝑧 , 𝑦 , 𝑦 , 𝑥 , 𝑥 ,      𝑦, 𝑧 , 𝑦 , 𝑥 , 𝑥 , 𝑥 ,      𝑦, 𝑧 , 𝑥 , 𝑥 , 𝑥 , 𝑥 . 

Example 3.2.4: Basis elements in 4 Generators: 

 Let 𝐹4 =  𝑥, 𝑦, 𝑧, 𝑡  be a free metabelian Lie algebra with generators 

𝑥, 𝑦, 𝑧, 𝑡 over a field 𝐾 of characteristic 0. The alternating of generators with 

conditions 𝑥 > 𝑦 > 𝑧,  𝑥, 𝑦 > 𝑧 and 𝑦 ≤ 𝑧 are used to construct 𝐹4 which is a 

closed formula and generate the numbers of basis. For 𝑚 ≤ 5, the number of basis 

are illustrate manually in the following way by total order >; 

𝑛 = 1        𝑥, 𝑦, 𝑧, 𝑡                    𝑥 > 𝑦 > 𝑧 > 𝑡     
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𝑛 = 2         𝑥, 𝑦 ,  𝑥, 𝑧 ,  𝑥, 𝑡 ,  𝑦, 𝑧 ,  𝑦, 𝑡 ,  𝑧, 𝑡  

𝑛 = 3          𝑥, 𝑦 , 𝑦 ,   𝑥, 𝑦 , 𝑥 ,   𝑥, 𝑧 , 𝑧 ,   𝑥, 𝑧 , 𝑦 ,   𝑥, 𝑧 , 𝑥 ,   

  𝑥, 𝑡 , 𝑡 ,   𝑥, 𝑡 , 𝑧 ,   𝑥, 𝑡 , 𝑦 ,   𝑥, 𝑡 , 𝑥 ,   𝑦, 𝑧 , 𝑧 ,   𝑦, 𝑧 , 𝑦 ,  

  𝑦, 𝑧 , 𝑥 ,   𝑦, 𝑡 , 𝑡 ,   𝑦, 𝑡 , 𝑧 ,   𝑦, 𝑡 , 𝑦 ,   𝑦, 𝑡 , 𝑥 ,   𝑧, 𝑡 , 𝑡 ,  

  𝑧, 𝑡 , 𝑧 ,   𝑧, 𝑡 , 𝑦 ,   𝑧, 𝑡 , 𝑥  

𝑛 = 4           𝑥, 𝑦 , 𝑦 , 𝑦 ,    𝑥, 𝑦 , 𝑦 , 𝑥 ,    𝑥, 𝑦 , 𝑥 , 𝑥 ,    𝑥, 𝑧 , 𝑧 , 𝑧 ,   

   𝑥, 𝑧 , 𝑧 , 𝑦 ,    𝑥, 𝑧 , 𝑧 , 𝑥 ,    𝑥, 𝑧 , 𝑦 , 𝑦 ,    𝑥, 𝑧 , 𝑦 , 𝑥 ,  

   𝑥, 𝑧 , 𝑥 , 𝑥 ,    𝑥, 𝑡 , 𝑡 , 𝑡 ,    𝑥, 𝑡 , 𝑡 , 𝑧 ,    𝑥, 𝑡 , 𝑡 , 𝑦 ,  

   𝑥, 𝑡 , 𝑡 , 𝑥 ,    𝑥, 𝑡 , 𝑧 , 𝑧 ,    𝑥, 𝑡 , 𝑧 , 𝑦 ,    𝑥, 𝑡 , 𝑧 , 𝑥 , 

    𝑥, 𝑡 , 𝑦 , 𝑦 ,    𝑥, 𝑡 , 𝑦 , 𝑥 ,    𝑥, 𝑡 , 𝑥 , 𝑥 ,    𝑦, 𝑧 , 𝑧 , 𝑧 ,   

   𝑦, 𝑧 , 𝑧 , 𝑦 ,    𝑦, 𝑧 , 𝑧 , 𝑥 ,    𝑦, 𝑧 , 𝑦 , 𝑦 ,    𝑦, 𝑧 , 𝑦 , 𝑥 ,  

   𝑦, 𝑧 , 𝑥 , 𝑥 ,    𝑦, 𝑡 , 𝑡 , 𝑡 ,    𝑦, 𝑡 , 𝑡 , 𝑧 ,    𝑦, 𝑡 , 𝑡 , 𝑦 ,   

   𝑦, 𝑡 , 𝑡 , 𝑥 ,    𝑦, 𝑡 , 𝑧 , 𝑧 ,    𝑦, 𝑡 , 𝑧 , 𝑦 ,    𝑦, 𝑡 , 𝑧 , 𝑥 ,  

               𝑦, 𝑡 , 𝑦 , 𝑦 ,    𝑦, 𝑡 , 𝑦 , 𝑥 ,    𝑦, 𝑡 , 𝑥 , 𝑥 ,    𝑧, 𝑡 , 𝑡 , 𝑡 ,    𝑧, 𝑡 , 𝑡 , 𝑧 , 

    𝑧, 𝑡 , 𝑡 , 𝑦 ,    𝑧, 𝑡 , 𝑡 , 𝑥 ,    𝑧, 𝑡 , 𝑧 , 𝑧 ,    𝑧, 𝑡 , 𝑧 , 𝑦 ,    𝑧, 𝑡 , 𝑧 , 𝑥 ,  

   𝑧, 𝑡 , 𝑦 , 𝑦 ,    𝑧, 𝑡 , 𝑦 , 𝑥 ,    𝑧, 𝑡 , 𝑥 , 𝑥  

𝑛 = 5           𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 ,     𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑥 ,     𝑥, 𝑦 , 𝑦 , 𝑥 , 𝑥 ,  

     𝑥, 𝑦 , 𝑥 , 𝑥 , 𝑥 ,     𝑥, 𝑧 , 𝑧 , 𝑧 , 𝑧 ,     𝑥, 𝑧 , 𝑧 , 𝑧 , 𝑦 , 

     𝑥, 𝑧 , 𝑧 , 𝑧 , 𝑥 ,     𝑥, 𝑧 , 𝑧 , 𝑦 , 𝑦 ,     𝑥, 𝑧 , 𝑧 , 𝑦 , 𝑥 ,   

    𝑥, 𝑧 , 𝑧 , 𝑥 , 𝑥 ,     𝑥, 𝑧 , 𝑦 , 𝑦 , 𝑦 ,     𝑥, 𝑧 , 𝑦 , 𝑦 , 𝑥 ,  
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    𝑥, 𝑧 , 𝑦 , 𝑥 , 𝑥 ,     𝑥, 𝑧 , 𝑥 , 𝑥 , 𝑥 ,     𝑥, 𝑡 , 𝑡 , 𝑡 , 𝑡 , 

     𝑥, 𝑡 , 𝑡 , 𝑡 , 𝑧 ,     𝑥, 𝑡 , 𝑡 , 𝑡 , 𝑦 ,     𝑥, 𝑡 , 𝑡 , 𝑡 , 𝑥 , 

     𝑥, 𝑡 , 𝑡 , 𝑧 , 𝑧 ,     𝑥, 𝑡 , 𝑡 , 𝑧 , 𝑦 ,     𝑥, 𝑡 , 𝑡 , 𝑧 , 𝑥 ,   

    𝑥, 𝑡 , 𝑡 , 𝑦 , 𝑦 ,     𝑥, 𝑡 , 𝑡 , 𝑦 , 𝑥 ,     𝑥, 𝑡 , 𝑡 , 𝑥 , 𝑥 , 

     𝑥, 𝑡 , 𝑧 , 𝑧 , 𝑧 ,     𝑥, 𝑡 , 𝑧 , 𝑧 , 𝑦 ,     𝑥, 𝑡 , 𝑧 , 𝑧 , 𝑥 ,  

    𝑥, 𝑡 , 𝑧 , 𝑦 , 𝑦 ,     𝑥, 𝑡 , 𝑧 , 𝑦 , 𝑥 ,     𝑥, 𝑡 , 𝑧 , 𝑥 , 𝑥 , 

     𝑥, 𝑡 , 𝑦 , 𝑦 , 𝑦 ,     𝑥, 𝑡 , 𝑦 , 𝑦 , 𝑥 ,     𝑥, 𝑡 , 𝑦 , 𝑥 , 𝑥 , 

     𝑥, 𝑡 , 𝑥 , 𝑥 , 𝑥 ,     𝑦, 𝑧 , 𝑧 , 𝑧 , 𝑧 ,     𝑦, 𝑧 , 𝑧 , 𝑧 , 𝑦 , 

     𝑦, 𝑧 , 𝑧 , 𝑧 , 𝑥 ,     𝑦, 𝑧 , 𝑧 , 𝑦 , 𝑦 ,     𝑦, 𝑧 , 𝑧 , 𝑦 , 𝑥 , 

     𝑦, 𝑧 , 𝑧 , 𝑥 , 𝑥 ,     𝑦, 𝑧 , 𝑦 , 𝑦 , 𝑦 ,     𝑦, 𝑧 , 𝑦 , 𝑦 , 𝑥 ,  

    𝑦, 𝑧 , 𝑦 , 𝑥 , 𝑥 ,     𝑦, 𝑧 , 𝑥 , 𝑥 , 𝑥 ,     𝑦, 𝑡 , 𝑡 , 𝑡 , 𝑡 , 

     𝑦, 𝑡 , 𝑡 , 𝑡 , 𝑧 ,     𝑦, 𝑡 , 𝑡 , 𝑡 , 𝑦 ,     𝑦, 𝑡 , 𝑡 , 𝑡 , 𝑥 ,  

    𝑦, 𝑡 , 𝑡 , 𝑧 , 𝑧 ,     𝑦, 𝑡 , 𝑡 , 𝑧 , 𝑦 ,     𝑦, 𝑡 , 𝑡 , 𝑧 , 𝑥 , 

     𝑦, 𝑡 , 𝑡 , 𝑦 , 𝑦 ,     𝑦, 𝑡 , 𝑡 , 𝑦 , 𝑥 ,     𝑦, 𝑡 , 𝑡 , 𝑥 , 𝑥 , 

     𝑦, 𝑡 , 𝑧 , 𝑧 , 𝑧 ,     𝑦, 𝑡 , 𝑧 , 𝑧 , 𝑦 ,     𝑦, 𝑡 , 𝑧 , 𝑧 , 𝑥 ,  

    𝑦, 𝑡 , 𝑧 , 𝑦 , 𝑦 ,     𝑦, 𝑡 , 𝑧 , 𝑦 , 𝑥 ,     𝑦, 𝑡 , 𝑧 , 𝑥 , 𝑥 , 

     𝑦, 𝑡 , 𝑦 , 𝑦 , 𝑦 ,     𝑦, 𝑡 , 𝑦 , 𝑦 , 𝑥 ,     𝑦, 𝑡 , 𝑦 , 𝑥 , 𝑥 , 
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     𝑦, 𝑡 , 𝑥 , 𝑥 , 𝑥 ,     𝑧, 𝑡 , 𝑡 , 𝑡 , 𝑡 ,     𝑧, 𝑡 , 𝑡 , 𝑡 , 𝑧 , 

     𝑧, 𝑡 , 𝑡 , 𝑡 , 𝑦 ,     𝑧, 𝑡 , 𝑡 , 𝑡 , 𝑥 ,     𝑧, 𝑡 , 𝑡 , 𝑧 , 𝑧 , 

     𝑧, 𝑡 , 𝑡 , 𝑧 , 𝑦 ,     𝑧, 𝑡 , 𝑡 , 𝑧 , 𝑥 ,     𝑧, 𝑡 , 𝑡 , 𝑦 , 𝑦 , 

     𝑧, 𝑡 , 𝑡 , 𝑦 , 𝑥 ,     𝑧, 𝑡 , 𝑡 , 𝑥 , 𝑥 ,     𝑧, 𝑡 , 𝑧 , 𝑧 , 𝑧 , 

     𝑧, 𝑡 , 𝑧 , 𝑧 , 𝑦 ,     𝑧, 𝑡 , 𝑧 , 𝑧 , 𝑥 ,     𝑧, 𝑡 , 𝑧 , 𝑦 , 𝑦 , 

     𝑧, 𝑡 , 𝑧 , 𝑦 , 𝑥 ,     𝑧, 𝑡 , 𝑧 , 𝑥 , 𝑥 ,     𝑧, 𝑡 , 𝑦 , 𝑦 , 𝑦 ,  

                    𝑧, 𝑡 , 𝑦 , 𝑦 , 𝑥 ,     𝑧, 𝑡 , 𝑦 , 𝑥 , 𝑥 ,     𝑧, 𝑡 , 𝑥 , 𝑥 , 𝑥 . 

Theorem 3.2.5: Consider equation 𝑛1 + 𝑛2 + ⋯+ 𝑛𝑟 = 𝑛, for 𝑟 ∈ ℤ+, 𝑛, 𝑛𝑖 ≥ 0 

and 1 ≤ 𝑖 ≤ 𝑟. Then number of distinct nonnegative integer solutions satisfying the 

equation is 

 
𝑛 + 𝑟 − 1

𝑟 − 1
 . 

For more on combinatorial use Lipschutz  1966 . 

From above theorem we can obtain the number of basis of free metabelian 

Lie algebra in different generators. Let 𝔙𝑚,𝑛  indicate the canonical basis for the 

homogeneous subspace of degree 𝑛 in the free metabelian Lie algebra 𝐹𝑚 , and let   

𝜂𝑚,𝑛  denote the number of elements in 𝔙𝑚,𝑛  which coincides with dim𝐹𝑚
 𝑛 

. 

Example 3.2.6: Number of Elements of Basis in 2 Generators 

 Consider the free metabelian Lie algebra 𝐹2 = 𝐾 𝑥, 𝑦  with 2 generators 

and assuming that 𝑥 > 𝑦. Here we shall compute 𝜂2,𝑛 .      

𝑛 = 1,     𝔙2,1 =  𝑥, 𝑦    and        𝜂2,1 = 2 

𝑛 = 2,   𝔙2,2 =   𝑥, 𝑦     and        𝜂2,2 = 1 

𝑛 = 3,   𝔙2,3 =    𝑥, 𝑦 , 𝑦 ,   𝑥, 𝑦 , 𝑥     and        𝜂2,3 = 2 
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𝑛 = 4,   𝔙2,4 =     𝑥, 𝑦 , 𝑦 , 𝑦 ,    𝑥, 𝑦 , 𝑦 , 𝑥 ,    𝑥, 𝑦 , 𝑥 , 𝑥     and        𝜂2,4 = 3 

                 ⋮ 

In general 

𝔙2,𝑛 = {[𝑥, 𝑦, 𝑝1 ,⋯ , 𝑝𝑛−2]         
𝑛−2 position

: 𝑦 ≤ 𝑝1 ≤ ⋯ ≤ 𝑝𝑛−2 ≤ 𝑥} 

where 𝑝𝑗 ∈  𝑥, 𝑦 , 𝑗 = 1,… , 𝑛 − 2 and 𝑛 ≥ 2. Thus considering 𝑛 − 2  positions 

filled by 𝑝𝑗 s, must start by several 𝑦s followed by 𝑥s. That is because, the number 

𝜂2,𝑛  is the number of nonnegative solutions of equation 

 𝑛1 + 𝑛2 = 𝑛 − 2 

where  𝑛1 indicates the number of 𝑦s and  𝑛2 stands for the number of 𝑥s used in 

those 𝑛 − 2  positions. Hence by Theorem 3.2.5  we have  

𝜂2,𝑛 =  
 𝑛 − 2 + 2 − 1

2 − 1
 =  

𝑛 − 1

1
 = 𝑛 − 1 

Example 3.2.7: Number of Elements of Basis in 3 Generators 

  Now let 𝐹3 = 𝐾 𝑥, 𝑦, 𝑧  be the free metabelian Lie algebra with condition 

of 𝑥 > 𝑦 > 𝑧. Similar steps as in the previous computations give 

𝑛 = 1,   𝔙3,1 =  𝑥, 𝑦, 𝑧    and        𝜂3,1 = 3 

𝑛 = 2,   𝔙3,2 =   𝑥, 𝑦 ,  𝑥, 𝑧 ,  𝑦, 𝑧      and        𝜂3,2 = 3 

𝑛 = 3,   𝔙3,3 =  
  𝑥, 𝑦 , 𝑦 ,   𝑥, 𝑦 , 𝑥 ,   𝑥, 𝑧 , 𝑧 ,   𝑥, 𝑧 , 𝑦 ,   𝑥, 𝑧 , 𝑥 ,

  𝑦, 𝑧 , 𝑧 ,   𝑦, 𝑧 , 𝑦 ,   𝑦, 𝑧 , 𝑥 
   , 𝜂3,3 = 8. 

In general 

𝔙3,𝑛 = 𝐵1 ∪ 𝐵2 ∪ 𝐵3 

where 

𝐵1 = {[𝑥, 𝑦, 𝑝1 ,⋯ , 𝑝𝑛−2]         
𝑛−2 position

: 𝑦 ≤ 𝑝1 ≤ ⋯ ≤ 𝑝𝑛−2 ≤ 𝑥} 

𝐵2 = {[𝑥, 𝑧, 𝑝1 , ⋯ , 𝑝𝑛−2]         
𝑛−2 position

: 𝑧 ≤ 𝑝1 ≤ ⋯ ≤ 𝑝𝑛−2 ≤ 𝑥} 

𝐵3 = {[𝑦, 𝑧, 𝑝1 , ⋯ , 𝑝𝑛−2]         
𝑛−2 position

: 𝑧 ≤ 𝑝1 ≤ ⋯ ≤ 𝑝𝑛−2 ≤ 𝑥} 
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Therefore, 

𝜂3,𝑛= 𝐵1 +  𝐵2 +  𝐵3 = 𝐵1 + 2 𝐵2 = 𝜂2,𝑛 + 2 𝐵2  

The key point is to find number of elements in 𝐵1. Again, considering 𝑛 − 2  

positions filled by 𝑝𝑗 s, must start by several 𝑧s followed by 𝑦s and then by 𝑥s. That 

is because, the number 𝜂2,𝑛  is the number of nonnegative solutions of equation 

 𝑛1 + 𝑛2 + 𝑛3 = 𝑛 − 2 

where  𝑛1 indicates the number of 𝑧s,  𝑛2 indicates the number of 𝑦s, and 𝑛3 stands 

for the number of 𝑥s used in those 𝑛 − 2  positions. Theorem … gives  

 𝐵2 =  
 𝑛 − 2 + 3 − 1

3 − 1
 =  

𝑛

2
  

Consequently 

𝜂3,𝑛 =  
𝑛 − 1

1
 + 2  

𝑛

2
 = 𝑛2 − 1 

Example 3.2.8: Number of Elements of Basis in 4 Generators 

 Now let 𝐹3 = 𝐾 𝑥, 𝑦, 𝑧  be the free metabelian Lie algebra with condition 

of 𝑥 > 𝑦 > 𝑧. Similar steps as in the previous computations give 

𝑛 = 1,   𝔙3,1 =  𝑥, 𝑦, 𝑧    and        𝜂3,1 = 3 

𝑛 = 2,   𝔙3,2 =   𝑥, 𝑦 ,  𝑥, 𝑧 ,  𝑦, 𝑧      and        𝜂3,2 = 3 

𝑛 = 3,   𝔙3,3 =  
  𝑥, 𝑦 , 𝑦 ,   𝑥, 𝑦 , 𝑥 ,   𝑥, 𝑧 , 𝑧 ,   𝑥, 𝑧 , 𝑦 ,   𝑥, 𝑧 , 𝑥 ,

  𝑦, 𝑧 , 𝑧 ,   𝑦, 𝑧 , 𝑦 ,   𝑦, 𝑧 , 𝑥 
   , 𝜂3,3 = 8. 

In general 

𝔙3,𝑛 = 𝐵1 ∪ 𝐵2 ∪ 𝐵3 

where 

𝐵1 = {[𝑥, 𝑦, 𝑝1 ,⋯ , 𝑝𝑛−2]         
𝑛−2 position

: 𝑦 ≤ 𝑝1 ≤ ⋯ ≤ 𝑝𝑛−2 ≤ 𝑥} 

𝐵2 = {[𝑥, 𝑧, 𝑝1 , ⋯ , 𝑝𝑛−2]         
𝑛−2 position

: 𝑧 ≤ 𝑝1 ≤ ⋯ ≤ 𝑝𝑛−2 ≤ 𝑥} 

𝐵3 = {[𝑦, 𝑧, 𝑝1 , ⋯ , 𝑝𝑛−2]         
𝑛−2 position

: 𝑧 ≤ 𝑝1 ≤ ⋯ ≤ 𝑝𝑛−2 ≤ 𝑥} 
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Therefore, 

𝜂3,𝑛= 𝐵1 +  𝐵2 +  𝐵3 = 𝐵1 + 2 𝐵2 = 𝜂2,𝑛 + 2 𝐵2  

The key point is to find number of elements in 𝐵2. Again, considering 𝑛 − 2  

positions filled by 𝑝𝑗 s, must start by several 𝑧s followed by 𝑦s and then by 𝑥s. That 

is because, the number 𝜂2,𝑛  is the number of nonnegative solutions of equation 

 𝑛1 + 𝑛2 + 𝑛3 = 𝑛 − 2 

where  𝑛1 indicates the number of 𝑧s,  𝑛2 indicates the number of 𝑦s, and 𝑛3 stands 

for the number of 𝑥s used in those 𝑛 − 2  positions. Theorem … gives  

 𝐵2 =  
 𝑛 − 2 + 3 − 1

3 − 1
 =  

𝑛

2
  

Consequently 

𝜂3,𝑛 =  
𝑛 − 1

1
 + 2  

𝑛

2
 = 𝑛2 − 1 

 

𝜂4,𝑛 =  
𝑛 − 1

1
 + 2  

𝑛

2
 + 3  

𝑛 + 1

3
  =

𝑛 − 1

2
 𝑛 + 1  𝑛 + 2 . 

Proposition 3.2.9: Generalization for Number of Elements of Basis in 𝑚 

Generators 

 To generalize a formula for the number of homogeneous basis of degree 𝑛 

in the free metabelian Lie algebra of rank 𝑚 with generators 𝑦1 , ⋯ , 𝑦𝑚 . We have to 

prove by induction what we obtained in the cases 2, 3, and 4 generators 

respectively. 

Theorem 3.2.10: Dimension 𝜂𝑚,𝑛  of 𝐹𝑚
 𝑛 

 is 

𝜂𝑚,𝑛 =  
𝑛 − 1

1
 + 2  

𝑛

2
 + ⋯+  𝑚 − 1  

𝑛 + 𝑚 − 3

𝑚 − 1
  

Proof: We prove the statement by induction on number of generators 𝑚 ≥ 2. Let 

us assume 𝑦1 > ⋯ > 𝑦𝑚 . As illustrated before, it is straightforward to check the 

formula for 𝑚 = 2,3,4. Now let 
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𝜂𝑚−1,𝑛 =  
𝑛 − 1

1
 + ⋯+  𝑚 − 2  

𝑛 + 𝑚 − 4

𝑚 − 2
  

And let us explicitly write down the elements of 𝔙𝑚,𝑛 . Firstly it is a direct result 

that 

𝔙𝑚,𝑛 = 𝐵2 𝐵3 ⋯ 𝐵𝑚−1 𝐵𝑚  

where the subset 𝐵𝑗  is of elements of the form 

[_, 𝑦𝑗 , 𝑝1 , ⋯ , 𝑝𝑛−2]         
𝑛−2 position

 

Thus 𝑝𝑖s can be chosen from the set  𝑦1 , ⋯ , 𝑦𝑗  . The first place allows 𝑦1 , ⋯ , 𝑦𝑗−1 

and number of elements in 𝐵𝑗  is  𝑗 − 1  times number of nonnegative solutions of 

equation 

𝑛1 + ⋯+ 𝑛𝑗 = 𝑛 − 2 

such that 𝑛𝑘  indicates number of 𝑦𝑘s used for those 𝑛 − 2 places. One must 

observe from this point that  

 𝔙𝑚−1,𝑛  = 𝜂𝑚−1,𝑛 =  𝐵2 𝐵3 ⋯ 𝐵𝑚−1  

Hence it is sufficient to show that 

 𝐵𝑚  =  𝑚 − 1  
𝑛 + 𝑚 − 3

𝑚 − 1
  

The elements of 𝐵𝑚  are of the form 

[_, 𝑦𝑚 , 𝑝1 , ⋯ , 𝑝𝑛−2]         
𝑛−2 position

 

Thus 𝑝𝑖s can be chosen from the set  𝑦1 , ⋯ , 𝑦𝑚  . The first place allows 

𝑦1 , ⋯ , 𝑦𝑚−1 and number of elements in 𝐵𝑚  is  𝑚 − 1  times number of 

nonnegative solutions of equation 

𝑛1 + ⋯+ 𝑛𝑚 = 𝑛 − 2 

such that 𝑛𝑘  indicates number of 𝑦𝑘s used for those 𝑛 − 2 places. By Theorem 

3.2.5 this number is  
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 𝐵𝑚  =  𝑚 − 1  
 𝑛 − 2 + 𝑚 − 1

𝑚 − 1
  

which completes the proof. 

Example 3.2.11: Table of Dimension of Free Metabelian Lie Algebra 

 From the general formula of dimension of free metabelian Lie algebra we 

can make table of free metabelian Lie algebra of 2, 3 and 4 generator up to 𝑛 ≤

10. 

General formula is 

dim𝐹𝑚
(𝑛)

=
𝑛 − 1

 𝑚 − 2 !
 𝑛 + 1 (𝑛 + 2)⋯  𝑛 + 𝑚 − 3  

For 𝑚 = 2, we have dim𝐹2
(𝑛)

= 𝑛 − 1. 

So, we obtain, 

𝑛 = 1,               𝑛 − 1 = 1 − 1 = 0 

𝑛 = 2,               𝑛 − 1 = 2 − 1 = 1 

𝑛 = 3,               𝑛 − 1 = 3 − 1 = 2, 

𝑛 = 4,               𝑛 − 1 = 4 − 1 = 3, 

𝑛 = 5,               𝑛 − 1 = 5 − 1 = 4, 

𝑛 = 6,               𝑛 − 1 = 6 − 1 = 5, 

𝑛 = 7,               𝑛 − 1 = 7 − 1 = 6, 

𝑛 = 8,               𝑛 − 1 = 8 − 1 = 7, 

𝑛 = 9,               𝑛 − 1 = 9 − 1 = 8, 

𝑛 = 10,             𝑛 − 1 = 10 − 1 = 9. 

For 𝑚 = 3, we have dim𝐹3
(𝑛)

= 𝑛2 − 1. 

So, we obtain, 

𝑛 = 1,               𝑛2 − 1 = 0,  

𝑛 = 2,               𝑛2 − 1 = 4 − 1 = 3,     

𝑛 = 3,               𝑛2 − 1 = 9 − 1 = 8,       

𝑛 = 4,               𝑛2 − 1 = 16 − 1 = 15,      
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𝑛 = 5,               𝑛2 − 1 = 25 − 1 = 24,      

𝑛 = 6,               𝑛2 − 1 = 36 − 1 = 35, 

𝑛 = 7,               𝑛2 − 1 = 49 − 1 = 48, 

𝑛 = 8,               𝑛2 − 1 = 64 − 1 = 63,            

𝑛 = 9,               𝑛2 − 1 = 81 − 1 = 80, 

𝑛 = 10,             𝑛2 − 1 = 100 − 1 = 99.            

 

For 𝑚 = 4, the dimension is 

dim𝐹4
(𝑛)

=
1

2
 𝑛 − 1  𝑛 + 1  𝑛 + 2 =

1

2
 𝑛3 + 2𝑛2 − 𝑛 − 2 . 

So, we obtain, 

𝑛 = 1,  
1

2
 𝑛3 + 2𝑛2 − 𝑛 − 2 =

1

2
 1 + 2 − 1 − 2 = 0, 

𝑛 = 2,  
1

2
 𝑛3 + 2𝑛2 − 𝑛 − 2 =

1

2
 23 + 2 ∙ 22 − 2 − 2 =

1

2
 8 + 8 − 4 =

12

2
 

                                                 = 6, 

𝑛 = 3,  
1

2
 𝑛3 + 2𝑛2 − 𝑛 − 2 =

1

2
 33 + 2 ∙ 32 − 3 − 2 =

1

2
 27 + 18 − 5 =

40

2
 

                                                 = 20, 

𝑛 = 4,  
1

2
 𝑛3 + 2𝑛2 − 𝑛 − 2 =

1

2
 43 + 2 ∙ 42 − 4 − 2 =

1

2
 64 + 32 − 6 =

90

2
 

                                                 = 45, 

𝑛 = 5,  
1

2
 𝑛3 + 2𝑛2 − 𝑛 − 2 =

1

2
 53 + 2 ∙ 52 − 5 − 2 =

1

2
 125 + 50 − 7  

                                                 =
168

2
= 84, 

𝑛 = 6,  
1

2
 𝑛3 + 2𝑛2 − 𝑛 − 2 =

1

2
 63 + 2 ∙ 62 − 6 − 2 =

1

2
 216 + 72 − 8  

                                                 =
280

2
= 140, 

𝑛 = 7,  
1

2
 𝑛3 + 2𝑛2 − 𝑛 − 2 =

1

2
 73 + 2 ∙ 72 − 7 − 2 =

1

2
 343 + 98 − 9  

                                                 =
432

2
= 216, 
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𝑛 = 8,  
1

2
 𝑛3 + 2𝑛2 − 𝑛 − 2 =

1

2
 83 + 2 ∙ 82 − 8 − 2 =

1

2
 512 + 128 − 10  

                                                 =
630

2
= 315, 

𝑛 = 9,  
1

2
 𝑛3 + 2𝑛2 − 𝑛 − 2 =

1

2
 93 + 2 ∙ 92 − 9 − 2 =

1

2
 729 + 162 − 11  

                                                 =
880

2
= 440, 

𝑛 = 10,  
1

2
 𝑛3 + 2𝑛2 − 𝑛 − 2 =

1

2
 103 + 2 ∙ 102 − 10 − 2  

=
1

2
 1000 + 200 − 12  =

1188

2
= 594. 

Table 4: Summary of Dimension  

 𝐹2 = 𝐾 𝑥, 𝑦  𝐹3 = 𝐾 𝑥, 𝑦, 𝑧  𝐹4 = 𝐾 𝑥, 𝑦, 𝑧, 𝑡  

1 2 3 4 

2 1 3 6 

3 2 8 20 

4 3 15 45 

5 4 24 84 

6 5 35 140 

7 6 48 216 

8 7 63 315 

9 8 80 440 

10 9 99 594 

 

Example 3.2.12: Hilbert Series of  𝐹2 = 𝐾 𝑥, 𝑦  

Let 𝐹2 = 𝐾 𝑥, 𝑦  be the free metabelian Lie algebra with generators 𝑥 and 𝑦. We 

know that number of elements in homogeneous subspace of degree 𝑛 is equal to 

𝜂2,𝑛 = 𝑛 − 1 for  𝑛 ≥ 2. The Hilbert Series of 𝐹2 comes out from this formula: 

𝐻 𝐹2 , 𝑡 =  (

∞

𝑛=0

dim𝐹2
 𝑛 ) ∙ 𝑡𝑛 = 0 + 2 ∙ 𝑡1 +  𝜂2,𝑛

∞

𝑛=2

∙ 𝑡𝑛  
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since dim𝐹2
 0 

= 0 and dim𝐹2
 1 

= 2. Hence we have 

𝐻 𝐹2 , 𝑡 = 2𝑡 +  (

∞

𝑛=2

𝑛 − 1)𝑡𝑛  

= 2𝑡 +  𝑛

∞

𝑛=2

𝑡𝑛 − 𝑡𝑛
∞

𝑛=2

= 2𝑡 + 𝐵 − 𝐴 

where 𝐴 and 𝐵 are the power series where  

𝐴 =  𝑡𝑛
∞

𝑛=2

  and    𝐵 =  𝑛

∞

𝑛=2

𝑡𝑛  

We are going to solve this accordingly: 

For 𝐴 =  𝑡𝑛∞
𝑛=2 , we know this from the Example 2.27 for polynomial algebra 

where we have  

𝐻 𝐾 𝑥 , 𝑡 =  dim𝐾 𝑥  𝑛 
∞

𝑛=0

𝑡𝑛  

=  𝑡𝑛
∞

𝑛=0

= 1 + 𝑡 + 𝑡2 + 𝑡3 + ⋯ =
1

1 − 𝑡
. 

Recall that in writing the rational formula on right side of equality, we 

assume that 𝑡 is a variable lying in the set of real numbers such that the series 

converges. Thus we can have derivative in computations. 

Now, for 𝐴 we have 𝑛 ≥ 2 therefore our equation becomes 

1 + 𝑡 +  𝑡𝑛
∞

𝑛=2

=
1

1 − 𝑡
 

1 + 𝑡 + 𝐴 =
1

1 − 𝑡
 

and hence 

𝐴 =  𝑡𝑛
∞

𝑛=2

=
1

1 − 𝑡
−  1 + 𝑡 . 
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Now, for 𝐵 we have, 

𝐵 =  𝑛

∞

𝑛=2

𝑡𝑛 = 2𝑡2 + 3𝑡3 + ⋯ = 𝑡 2𝑡 + 3𝑡2 + ⋯  

= 𝑡   𝑛

∞

𝑛=2

𝑡𝑛−1 . 

It is seen that the parenthesis is derivative of 𝐴, so we obtain, 

𝐵 = 𝑡 ∙ 𝐴′ = 𝑡 ∙   𝑡𝑛
∞

𝑛=2

 

′

= 𝑡 ∙  
1

1 − 𝑡
−  1 + 𝑡  

′

 

= 𝑡 ∙  
1′ 1 − 𝑡 − 1 1 − 𝑡 ′

 1 − 𝑡 2
− 1 = 𝑡 ∙  

1

 1 − 𝑡 2
− 1   

Hence we have 

𝐵 =  𝑛

∞

𝑛=2

𝑡𝑛 =
𝑡

 1 − 𝑡 2
− 𝑡. 

Let come back on our Hilbert Series  

𝐻 𝐹2 , 𝑡 = 2𝑡 + 𝐵 − 𝐴 = 2𝑡 +
𝑡

 1 − 𝑡 2
− 𝑡 −  

1

1 − 𝑡
−  1 + 𝑡   

= 2𝑡 +
𝑡

 1 − 𝑡 2
− 𝑡 −

1

1 − 𝑡
+ 1 + 𝑡 = 1 + 2𝑡 +

𝑡

 1 − 𝑡 2
−

1

1 − 𝑡
 

= 1 + 2𝑡 +
𝑡 − (1 − 𝑡)

(1 − 𝑡)2
= 1 + 2𝑡 +

2𝑡 − 1

(1 − 𝑡)2
. 

 Therefore the Hilbert Series of free metabelian Lie algebra 𝐹2 of two 

generators is equal to: 

𝐻 𝐹2 , 𝑡 = 1 + 2𝑡 +
2𝑡 − 1

(1 − 𝑡)2
. 

 

Example 3.2.13: Hilbert Series of  𝐹3 = 𝐾 𝑥, 𝑦, 𝑧  
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Let 𝐹3 = 𝐾 𝑥, 𝑦, 𝑧  be the free metabelian Lie algebra with generators 

𝑥, 𝑦, 𝑧. We know that number of elements in homogeneous subspace of degree 𝑛 is 

equal to 𝜂3,𝑛 = 𝑛2 − 1  for  𝑛 ≥ 2. The Hilbert Series of 𝐹3 comes out from this 

formula: 

𝐻 𝐹3 , 𝑡 =  (

∞

𝑛=0

dim𝐹3
 𝑛 

) ∙ 𝑡𝑛 = 0 + 3 ∙ 𝑡1 +  𝜂3,𝑛

∞

𝑛=2

∙ 𝑡𝑛  

since dim𝐹3
 0 = 0 and dim𝐹3

 1 = 3. Hence we have 

𝐻 𝐹3 , 𝑡 = 3𝑡 +  (

∞

𝑛=2

𝑛2 − 1)𝑡𝑛 = 3𝑡 +  𝑛2

∞

𝑛=2

𝑡𝑛 − 𝑡𝑛
∞

𝑛=2

= 3𝑡 + 𝐶 − 𝐴 

 

where 𝐴 and 𝐶 are the power series  

𝐴 =  𝑡𝑛
∞

𝑛=2

  and    𝐶 =  𝑛2

∞

𝑛=1

𝑡𝑛  

It is known from the previous computations that  

𝐴 =
1

1 − 𝑡
−  1 + 𝑡  

Now, we are going to find a nice rational expression for 𝐶. 

𝐶 =  𝑛2

∞

𝑛=2

𝑡𝑛 = 4𝑡2 + 9𝑡3 + ⋯ = 𝑡 4𝑡 + 9𝑡2 + ⋯  

= 𝑡   𝑛2

∞

𝑛=2

𝑡𝑛−1 . 

It is seen that the parenthesis is derivative of 𝐵, so we obtain, 

𝐶 = 𝑡 ∙ 𝐵′ = 𝑡 ∙   𝑛

∞

𝑛=2

𝑡𝑛 

′

= 𝑡 ∙  
𝑡

 1 − 𝑡 2
− 𝑡 

′

= 𝑡 ∙   
𝑡

 1 − 𝑡 2
 
′

− 𝑡′   

= 𝑡 ∙  
𝑡′ 1 − 𝑡 2 − 𝑡( 1 − 𝑡 2)′

  1 − 𝑡 2 2
− 𝑡′  = 𝑡 ∙   

1 1 − 𝑡 2 − 2𝑡 1 − 𝑡  −1 

 1 − 𝑡 4
− 1  
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= 𝑡 ∙   
 1 − 𝑡 2 + 2𝑡 1 − 𝑡 

 1 − 𝑡 4
− 1 = 𝑡 ∙   

 1 − 𝑡  1 − 𝑡 + 2𝑡 

 1 − 𝑡 4
− 1  

= 𝑡 ∙   
 1 + 𝑡 

 1 − 𝑡 3
− 1 =

𝑡2 + 𝑡

 1 − 𝑡 3
− 𝑡. 

Hence we have 

𝐶 =  𝑛2

∞

𝑛=1

𝑡𝑛 =
𝑡2 + 𝑡

 1 − 𝑡 3
− 𝑡. 

Therefore 

3𝑡 + 𝐶 − 𝐴 = 3𝑡 +
𝑡2 + 𝑡

 1 − 𝑡 3
− 𝑡 −  

1

1 − 𝑡
−  1 + 𝑡   

= 3𝑡 +
𝑡2 + 𝑡

 1 − 𝑡 3
− 𝑡 −

1

1 − 𝑡
+ 1 + 𝑡 = 1 + 3𝑡 +

𝑡2 + 𝑡

 1 − 𝑡 3
−

1

1 − 𝑡
 

= 1 + 3𝑡 +
𝑡2 + 𝑡 − (1 − 𝑡)2

 1 − 𝑡 3
= 1 + 3𝑡 +

𝑡2 + 𝑡 − 1 + 2𝑡 − 𝑡2

 1 − 𝑡 3
 

= 1 + 3𝑡 +
3𝑡 − 1

(1 − 𝑡)3
. 

Thus the Hilbert Series of free metabelian Lie algebra 𝐹3 of 3 generators is equal 

to: 

𝐻 𝐹3 , 𝑡 = 1 + 3𝑡 +
3𝑡 − 1

(1 − 𝑡)3
. 

Example 3.2.14: Hilbert Series of  𝐹4 = 𝐾 𝑥, 𝑦, 𝑧, 𝑡  

Let 𝐹4 = 𝐾 𝑥, 𝑦, 𝑧, 𝑡  be the free metabelian Lie algebra with generators 

𝑥, 𝑦, 𝑧, 𝑡. We know that number of elements in homogeneous subspace of degree 𝑛 

is equal to 

𝜂4,𝑛 =
1

2
 𝑛 − 1  𝑛 + 1  𝑛 + 2 =

1

2
(𝑛3 + 2𝑛2 − 𝑛 − 2) 

for  𝑛 ≥ 2. The Hilbert Series of 𝐹4 comes out from this formula: 

𝐻 𝐹3 , 𝑡 =  (

∞

𝑛=0

dim𝐹4
 𝑛 ) ∙ 𝑡𝑛 = 0 + 4 ∙ 𝑡1 +  𝜂3,𝑛

∞

𝑛=2

∙ 𝑡𝑛  
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since dim𝐹4
 0 

= 0 and dim𝐹4
 1 

= 4. Hence we have 

𝐻 𝐹4 , 𝑡 = 0 ∙ 1 + 4 ∙ 𝑡 +  𝜂4,𝑛

∞

𝑛=2

∙ 𝑡𝑛 = 4𝑡 +  
1

2

∞

𝑛=2

 𝑛3 + 2𝑛2 − 𝑛 − 2 ∙ 𝑡𝑛  

= 4𝑡 +
1

2
 𝑛3

∞

𝑛≥2

𝑡𝑛 +  𝑛2

∞

𝑛≥2

𝑡𝑛 −
1

2
 𝑛

∞

𝑛=2

𝑡𝑛 − 𝑡𝑛
∞

𝑛=2

 

=4𝑡 +
1

2
𝐷 + 𝐶 −

1

2
𝐵 − 𝐴 

such that 

𝐷 =  𝑛3

∞

𝑛=2

𝑡𝑛 , 𝐶 =  𝑛2

∞

𝑛=2

𝑡𝑛 , 𝐵 =  𝑛

∞

𝑛=2

𝑡𝑛    and   𝐴 =  𝑡𝑛
∞

𝑛=2

       

Now, we are going to find a nice rational expression for 𝐷 since all of expressions 

for 𝐴, 𝐵, 𝐶 have just been computed. 

𝐷 =  𝑛3

∞

𝑛=2

𝑡𝑛 = 8𝑡2 + 27𝑡3 + ⋯ = 𝑡 8𝑡 + 27𝑡2 + ⋯ = 𝑡   𝑛3

∞

𝑛=2

𝑡𝑛−1 . 

 

It is seen that the parenthesis is derivative of 𝐶, so we have, 

𝐷 = 𝑡 ∙ 𝐶′ = 𝑡 ∙   𝑛2

∞

𝑛=2

𝑡𝑛 

′

= 𝑡 ∙  
𝑡2 + 𝑡

 1 − 𝑡 3
− 𝑡 

′

= 𝑡 ∙   
𝑡2 + 𝑡

 1 − 𝑡 3
− 𝑡 

′

− 𝑡′   

= 𝑡 ∙  
 𝑡2 + 𝑡 ′ 1 − 𝑡 3 −  𝑡2 + 𝑡 ( 1 − 𝑡 3)′

  1 − 𝑡 3 2
− 𝑡′   

= 𝑡 ∙   
 2𝑡 + 1  1 − 𝑡 3 − 3 𝑡2 + 𝑡  1 − 𝑡 2 −1 

 1 − 𝑡 6
− 1  

= 𝑡 ∙   
 2𝑡 + 1  1 − 𝑡 3 + 3 𝑡2 + 𝑡  1 − 𝑡 2

 1 − 𝑡 6
− 1  

= 𝑡 ∙   
 1 − 𝑡 2  2𝑡 + 1  1 − 𝑡 + 3 𝑡2 + 𝑡  

 1 − 𝑡 6
− 1  
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= 𝑡 ∙   
2𝑡 − 2𝑡2 + 1 − 𝑡 + 3𝑡2 + 3𝑡

 1 − 𝑡 4
− 1  

= 𝑡 ∙   
𝑡2 + 4𝑡 + 1

 1 − 𝑡 4
− 1 =

𝑡3 + 4𝑡2 + 𝑡

 1 − 𝑡 4
− 𝑡. 

Hence we have 

𝐷 =  𝑛3

∞

𝑛=2

𝑡𝑛 =
𝑡3 + 4𝑡2 + 𝑡

 1 − 𝑡 4
− 𝑡. 

Therefore the Hilbert Series becomes 

𝐻 𝐹4 , 𝑡 = 4𝑡 +
1

2
𝐷 + 𝐶 −

1

2
𝐵 − 𝐴 

= 4𝑡 +
1

2
 
𝑡3 + 4𝑡2 + 𝑡

 1 − 𝑡 4
− 𝑡 +

𝑡2 + 𝑡

 1 − 𝑡 3
− 𝑡 −

1

2
 

𝑡

 1 − 𝑡 2
− 𝑡  

     −  
1

1 − 𝑡
−  1 + 𝑡   

= 4𝑡 +
1

2

𝑡3 + 4𝑡2 + 𝑡

 1 − 𝑡 4
−
𝑡

2
+

𝑡2 + 𝑡

 1 − 𝑡 3
− 𝑡 −

1

2

𝑡

 1 − 𝑡 2
+
𝑡

2
−

1

1 − 𝑡
+ 1 + 𝑡 

= 1 + 4𝑡 +
1

2

𝑡3 + 4𝑡2 + 𝑡

 1 − 𝑡 4
+

𝑡2 + 𝑡

 1 − 𝑡 3
−

1

2

𝑡

 1 − 𝑡 2
−

1

1 − 𝑡
 

= 1 + 4𝑡 +
𝑡3 + 4𝑡2 + 𝑡 + 2 1 − 𝑡  𝑡2 + 𝑡 − 𝑡 1 − 𝑡 2 − 2 1 − 𝑡 3

2 1 − 𝑡 4
 

= 1 + 4𝑡 +
𝑡3 + 4𝑡2 + 𝑡 + 2𝑡 − 2𝑡3 − 𝑡 + 2𝑡2 − 𝑡3 − 2 + 6𝑡 − 6𝑡2 + 2𝑡3

2 1 − 𝑡 4
 

= 1 + 4𝑡 +
8𝑡 − 2

2 1 − 𝑡 4
= 1 + 4𝑡 +

4𝑡 − 1

 1 − 𝑡 4
 

 Therefore the Hilbert Series of free metabelian Lie algebra 𝐹4 of 4 

generators is equal to: 

𝐻 𝐹4 , 𝑡 = 1 + 4𝑡 +
4𝑡 − 1

(1 − 𝑡)4
. 

 To generalize this formula in 𝑚 generators, we have to prove by induction 

from what we have in Hilbert series of 2, 3 and 4 generators. 
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Theorem 3.2.15: For 𝑚 ≥ 3, We have 

𝐻 𝐹𝑚 , 𝑡 = 𝐻 𝐹𝑚−1 , 𝑡 + 𝑡 +
(𝑚 − 1)𝑡2

 1 − 𝑡 𝑚
 

Proof: Direct computations from Examples 3.2.12, 3.2.13, 3.2.14 give 

 𝐻 𝐹3 , 𝑡 − 𝐻 𝐹2 , 𝑡 = 1 + 3𝑡 +
3𝑡−1

 1−𝑡 3 −  1 + 2𝑡 +
2𝑡−1

 1−𝑡 2  

= 1 + 3𝑡 − 1 − 2𝑡 +
3𝑡 − 1

 1 − 𝑡 3
−

2𝑡 − 1

 1 − 𝑡 2
= 𝑡 +

3𝑡 − 1 −  2𝑡 − 1  1 − 𝑡 

 1 − 𝑡 3
 

= 𝑡 +
3𝑡 − 1 − (2𝑡 − 2𝑡2 − 1 + 𝑡)

 1 − 𝑡 3
= 𝑡 +

2𝑡2

 1 − 𝑡 3
. 

and, 

𝐻 𝐹4 , 𝑡 − 𝐻 𝐹3 , 𝑡 = 1 + 4𝑡 +
4𝑡 − 1

 1 − 𝑡 4
−  1 + 3𝑡 +

3𝑡 − 1

 1 − 𝑡 3  

= 1 + 4𝑡 − 1 − 3𝑡 +
4𝑡 − 1

 1 − 𝑡 4
−

3𝑡 − 1

 1 − 𝑡 3
= 𝑡 +

4𝑡 − 1 −  3𝑡 − 1  1 − 𝑡 

 1 − 𝑡 4
 

= 𝑡 +
4𝑡 − 1 − (3𝑡 − 3𝑡2 − 1 + 𝑡)

 1 − 𝑡 4
= 𝑡 +

3𝑡2

 1 − 𝑡 4
. 

Thus the formula holds for 𝑚 = 3,4. 

On the other hand, we have that  

𝐻 𝐾 𝑌𝑚  , 𝑡 =  dim𝐾 𝑌𝑚  
(𝑟)

𝑟≥0

𝑡𝑟 =
1

 1 − 𝑡 𝑚
 

For the dimension of  𝐾 𝑌𝑚  
(𝑟) we need to know the canonical forms of basis 

elements in 𝔙𝐾 𝑌𝑚  
(𝑟). They are of the form  

𝑦1
𝑛1𝑦2

𝑛2 ⋯𝑦𝑚
𝑛𝑚  

such that 𝑛1, 𝑛2, … , 𝑛𝑚 ≥ 0, 𝑛1 + ⋯+ 𝑛𝑚 = 𝑟. By the Theorem 3.2.5, the number 

of such elements is 

 
𝑟 + 𝑚 − 1

𝑚 − 1
 . 

Hence we have the new expression for 𝐻 𝐾 𝑌𝑚  , 𝑡  as follows: 
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𝐻 𝐾 𝑌𝑚  , 𝑡 =
1

 1 − 𝑡 𝑚
=  dim𝐾 𝑌𝑚  

(𝑟)

∞

𝑟=0

𝑡𝑟 =   
𝑟 + 𝑚 − 1

𝑚 − 1
 

∞

𝑟=0

𝑡𝑟  

Let us multiply the equality  

  
𝑟 + 𝑚 − 1

𝑚 − 1
 

∞

𝑟=0

𝑡𝑟 =
1

 1 − 𝑡 𝑚
 

by 𝑡2 to get  

  
𝑟 + 𝑚 − 1

𝑚 − 1
 

∞

𝑟=0

𝑡𝑟+2 =
𝑡2

 1 − 𝑡 𝑚
. 

Let 𝑛 = 𝑟 + 2, and rewrite the above formula: 

  
(𝑛 − 2) + 𝑚 − 1

𝑚 − 1
 

∞

𝑛=2

𝑡𝑛 =
𝑡2

 1 − 𝑡 𝑚
 

⟹   
𝑛 + 𝑚 − 3

𝑚 − 1
 

∞

𝑛=2

𝑡𝑛 =
𝑡2

 1 − 𝑡 𝑚
 

By multiplying (𝑚 − 1) and adding 𝑡 on both sides we obtain 

𝑡 +  (𝑚 − 1)  
𝑛 + 𝑚 − 3

𝑚 − 1
 

∞

𝑛=2

𝑡𝑛 = 𝑡 +
(𝑚 − 1)𝑡2

 1 − 𝑡 𝑚
 

Recall that, by Theorem 3.2.10, 

𝜂𝑚,𝑛 =  
𝑛 − 1

1
 + 2  

𝑛

2
 + ⋯+ (𝑚 − 1)  

𝑛 + 𝑚 − 3

𝑚 − 1
  

giving the numbers of element in 𝔙𝑚,𝑛 , hence 

𝜂𝑚,𝑛 − 𝜂𝑚−1,𝑛 =  𝑚 − 1  
𝑛 + 𝑚 − 3

𝑚 − 1
 . 

Rewriting the previous equation, we have   

𝑚𝑡 −  𝑚 − 1 𝑡 +  (𝜂𝑚,𝑛 − 𝜂𝑚−1,𝑛)

∞

𝑛=2

𝑡𝑛 = 𝑡 +
(𝑚 − 1)𝑡2

 1 − 𝑡 𝑚
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⟹  𝑚𝑡 +  𝜂𝑚,𝑛

∞

𝑛=2

𝑡𝑛 −   𝑚 − 1 𝑡 +  𝜂𝑚−1,𝑛

∞

𝑛=2

𝑡𝑛 = 𝑡 +
(𝑚 − 1)𝑡2

 1 − 𝑡 𝑚
 

𝐻 𝐹𝑚 , 𝑡 − 𝐻 𝐹𝑚−1 , 𝑡 = 𝑡 +
(𝑚 − 1)𝑡2

 1 − 𝑡 𝑚
 

Therefore we have 

𝐻 𝐹𝑚 , 𝑡 = 𝐻 𝐹𝑚−1 , 𝑡 + 𝑡 +
(𝑚 − 1)𝑡2

 1 − 𝑡 𝑚
 

which completes the proof. 

The following formula can be found in paper by Drensky (1994). 

Corollary 3.2.16: The Hilbert series of the free metabelian Lie algebra 𝐹𝑚  is  

𝐻 𝐹𝑚 , 𝑡 = 1 + 𝑚𝑡 +
𝑚𝑡 − 1

(1 − 𝑡)𝑚
 

Proof: Cleary the formula holds for 𝑚 = 2,3 and 4 by Examples 3.2.12, 3.2.13, 

and 3.2.14. Let assume that the formula is true for 𝑚 − 1 as the induction 

hypothesis: 

𝐻 𝐹𝑚−1 , 𝑡 = 1 +  𝑚 − 1 𝑡 +
 𝑚 − 1 𝑡 − 1

 1 − 𝑡 𝑚−1
. 

By Theorem 3.2.15, 

𝐻 𝐹𝑚 , 𝑡 = 𝐻 𝐹𝑚−1 , 𝑡 + 𝑡 +
 𝑚 − 1 𝑡2

 1 − 𝑡 𝑚
 

= 1 +  𝑚 − 1 𝑡 +
 𝑚 − 1 𝑡 − 1

 1 − 𝑡 𝑚−1
+ 𝑡 +

 𝑚 − 1 𝑡2

 1 − 𝑡 𝑚
 

= 1 +  𝑚 − 1 𝑡 + 𝑡 +
 𝑚 − 1 𝑡 − 1

 1 − 𝑡 𝑚−1
+
 𝑚 − 1 𝑡2

 1 − 𝑡 𝑚
 

= 1 + 𝑡 𝑚 − 1 + 1 +
  𝑚 − 1 𝑡 − 1  1 − 𝑡 +  𝑚 − 1 𝑡2

 1 − 𝑡 𝑚
 

= 1 + 𝑚𝑡 +
 𝑚 − 1 𝑡 −  𝑚 − 1 𝑡2 − 1 + 𝑡 +  𝑚 − 1 𝑡2

 1 − 𝑡 𝑚
 



3. COMPUTATIONAL RESULTS  Andre DUSHIMIRIMANA 

69 
 

= 1 + 𝑚𝑡 +
 𝑚 − 1 𝑡 + 𝑡 − 1

 1 − 𝑡 𝑚
= 1 + 𝑚𝑡 +

𝑡 𝑚 − 1 + 1 − 1

 1 − 𝑡 𝑚
 

Therefore, for all 𝑚 ≥ 2 

𝐻 𝐹𝑚 , 𝑡 = 1 + 𝑚𝑡 +
𝑚𝑡 − 1

(1 − 𝑡)𝑚
 

 

This completes the proof. 
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