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ABSTRACT

MSc THESIS

FREE LIE ALGEBRAS AND THEIR HILBERT SERIES
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Year: 2017, Pages: 83
Jury : Assoc. Prof. Dr. Sehmus FINDIK
: Assoc. Prof. Dr. Nazar Sahin OGUSLU
: Assoc. Prof. Dr. Tuncay TUNGC

In the present work, the canonical bases of finitely generated graded
algebras such as the commutative associative polynomial algebra, free associative
algebra and free metabelian Lie algebra were investigated, and an elementary proof
was proposed in the computation of Hilbert series of free metabelian Lie algebra.

Keywords: Free Lie algebras, Free metabelian Lie algebras, Hall bases, Hilbert
Series.
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YUKSEK LiSANS TEZi

SERBEST LIE CEBIiRLERi VE ONLARIN HiLBERT SERILERI

Andre DUSHIMIRIMANA

CUKUROVA UNIVERSITESI
FEN BIiLIMLERIi ENSTITUSU
MATEMATIK ANABILIiM DALI

Danisman: Dog¢. Dr. Sehmus FINDIK
Yil: 2017, Sayfa: 83
Juri : Dog. Dr. Sehmus FINDIK
: Dog. Dr. Nazar Sahin OGUSLU
: Dog. Dr. Tuncay TUNC

Bu calismada derecelendirilmis cebirler olan sonlu tiretilmis degismeli ve
birlesmeli polinomlar cebirinin, serbest birlesmeli cebirin ve serbest metabelyen
Lie cebirinin kanonik bazlar1 incelenmis ve serbest metabelyen Lie cebirinin
Hilbert serisinin hesabinda elementer bir ispat dnerilmistir.

Anahtar Kelimeler: Serbest Lie cebirleri, Serbest metabelyen Lie cebirleri, Hall
bazlari, Hilbert Serileri.



EXTENDED ABSTRACT

In this thesis it is shown how to construct a canonical basis for unitary polynomial
algebraK[X,,] = K[x4,...,x,,] of finite rankm generated byX,,, unitary
associative algebra K(X,,,) = K(x4, ..., x,,) of finite rank m generated by X,,, (hot
necessarily commutative), free Lie algebra L,, = K(xq, ..., x,,) of finite rank m
generated by X,,, free AKkivis algebra A,, = K(xq,...,x,,) of finite rankm

generated by X,,,, free metabelian Lie algebra
— Lm T Lm =
Fm - /Lm /[[LmJLm]'[Lm:Lm]] K(YLJ’m)

of finite rank m generated by {yy, ..., ¥, }. All these algebras are graded vector

spaces. Recall that V is called a graded K- vector space if it has a direct sum
V=@,V = Z ym
n=>0

where V™ is subspace and n > 1. Since V =@, V™ is a finitely generated
graded K-algebra, then we could define the Hilbert function of V as

H(V,n) = dim, V™
where dimy (V™) is the dimension of the vector space V™over K. For alln > 0,

we can define formal power series in this form:

H(V,t) = Hilb(V, t) = Z dim V@ ¢n
n=>0

is called the Hilbert (or Poincaré) series of V.

We investigate and formulate the dimensions of homogeneous subspaces
dimgV® for V = K[X,,], V = K(X,,), V =F,, and find the Hilbert series of
these graded algebras. In proving the formula for Hilbert series of free metabelian
Lie algebra F,,, which is

H(E,,t) =1 +mt+L_1
1-om



we give an elementary proof which is main objective of this thesis. The first proof
given by Drensky (1994) is relatively theoretical and very nice however it is not
easy to follow without a good background, while the proof proposed here is so

simple to understand even in undergraduate stage.
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1. INTRODUCTION Andre DUSHIMIRIMANA

1. INTRODUCTION

The Hilbert Series known also as Poincaré Series was firstly proposed by
David Hilbert himself in the years of 1890s when he wanted to study the context of
finitely generated commutative algebras. As the years come up the Hilbert Series
have been intensively studied, like in 1890 to 1893, Hilbert described the shape of
commutative algebra by using the most four famous results which are the basis
theorems based on finite generation of invariant, the theorem of zeros also called
Nullustellensatz in German, the polynomial nature which is named as the Hilbert
function and Syzygy theorem. By definition the Hilbert series is the formal power
series in the variables of the degrees ring whose coefficients are the dimensions of
the corresponding graded component.

In this thesis we investigate on the notions of free Lie algebras, polynomial
algebras, graded algebras and free metabelian algebras. We suppose that L,, =
K(xy, ..., x,,) is the free Lie algebra of finite rank m generated by x4, ..., x,,, Over a
field K of characteristic zero and let FE, = K(x; + Ly, ., Xy + L) =
K(yy,...,¥m) be the free metabelian Lie algebra of rank m over K. Then the
discussion here is based on graded algebras. We introduce the freeness of Lie
algebras and their monomials, where these helped us to find the canonical basis of
free (metabelian) Lie algebras. We investigate Hilbert series of both polynomial
algebra and free metabelian Lie algebra and we come out with an elementary proof
of formula of Hilbert series of free metabelian Lie algebra which was our main
objective of our thesis.

Our work has two major chapters, one is coupled the basic definitions and
theorems here we recalled some definition and we tried to discuss and prove some
theorems and propositions as well which will conduct us to the well understandable

of our objectives.
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Second chapter is computational results. Here we have discussed the graded bases
and we investigate the free metabelian Lie algebra thereafter we come out with a
simple way to formulate the Hilbert Series of metabelian Lie algebra.
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2. BASIC DEFINITIONS AND THEOREMS

Definition 2.1: Let (K, +,") be a field of characteristic 0 and let V' be a nonempty
set together with the operations of addition @:V x V — V and scalar multiplication
O:K xV - V. Vis called a vector space over K if the following conditions hold
for every element u, v,w € V and scalars a, 8 € K:
(i) Commutativity: u®v = v@u
(if) Associativity: (u®v)®w = u®wdw)and (a- L) Ov=a O (B O V)
(iii) Additive identity: There exists an element 0 € V such that 0@v = v®0 = v
forallv e V;
(iv) Additive inverse: For any v € V , there exists an element w such that
v®w = whv = 0;
(v) Multiplicative identity: 1 © v = v;
(vi) Distributivity:
a® udv) =(a ©udlaOv)
(@+B)Qu=(@@OuwdB Ou).

Usually, a vector space over R is called a real vector space and a vector
space over C is called a complex vector space. Elements of the vector space V are
called vectors.

Example 2.2: K™ is a vector space over K under the operations
(V1) e U)®B Wy, oo, wy) = (V1 + Wy, =, v, + W)
a@® Wy, .,v) =@ v, ..,a-1v,),
where a, vy, ..., v, Wy, ..., W,, € K.
Definition 2.3: Let IV and W be two vector spaces. A linear transformation f is a

function from V to W such that

f((@ ©v)®V;) = (2 O f(v1))®f (v2)
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for all v{,v, €V and a € K. Sometimes we can say that f is linear just for
meaning of linear transformation.

For simplicity, we will shorten the followings from now on: a O v = av,
udv =u+v.

Definition 2.4: A linear transformation is an isomorphism if it is one-to-one and
onto. If there is an isomorphism f:V — W, we say that V is isomorphic to W and
writeV = W.
The inverse of an isomorphism is an isomorphism and the composition of two
isomorphisms is also an isomorphism, when defined.
Definition 2.5: Let V be a finite dimensional vector space. End (V) is the space of
linear homomorphisms from V to V. End (V) is a vector space over K.
Definition 2.6: A vector space V over a field K is called algebra (or K-algebra) if
V' is equipped with a binary operation *: V x V' — V called multiplication, such that
forany u,v,w € V and a € K we have the following identities:
uU+v)*sw=uxw+uvs*w,
ux(+w)=usv+u*w,
a(u*v) = (au) *v = u * (av).

A basis of V as a vector space is said to be a basis of algebra V. If V is
finite dimensional then V has a finite basis over K. The algebra V' is a commutative
algebra if V is a commutative ring with respect to *.

Usually we denote the multiplication of VV by - however we are going to
use uv instead of u - v and u X v, etc. Clearly, the notion of algebra generalizes
both the notion of vector space and of ring. We do not require1 € V and
associativity of .

Remark 2.7: Let V be an n-dimensional algebra over a field K with the
basis { ey, ..., e, }. For each pair (e;, ¢;) we can express the product e;e; as a linear

combination of the basic elements of V as follows:
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€ig = Yk=1 azkj ks
where af K.
The bilinear multiplication in V is completely determined by n3
multiplication constants alf‘j € K. To prove this let us take x =Y ,y;e; and

y = Xj=0; € as two arbitrary elements of V' then

xy = Xizo Viei)(zjr‘lzooj' ej) = 23;:1 Yioje e = E?,j,k:1 Yi0j al,l; €
Therefore the multiplication can be completely specified by giving a set of n3
constants a{‘j € K . These constants are called structure constants, because they

determine the algebra structure of V. If i and j are fixed then the only finite number

of constants a{‘j are not zero. If for all ,j, k a{‘j = 0, then the product of two

elements of I/ is 0, otherwise, “t’f‘ # 0 which is our case where we have a basis for
V over K.
Definition 2.8: A subalgebra of algebra VV over K is a subset of elements that is
closed under addition, multiplication, and scalar multiplication. If a subset S of V is
a subalgebra, then for all s;,s, € Sanda € K, we have thats; * s, , 51 + S5,
and as; are allin S.
A subset] of Vis a left ideal if for alls;,s, €I,p€V, and a €K it
satisfies the following conditions:
i) s;+sy€]
i) as; €1,
iii) p*xs; €L
If condition (iii) is replaced by s; * p € I, then I is aright ideal. A two-
sided ideal is a subset that is both a left and a right ideal. The term ideal is usually
taken to mean a two-sided ideal. When the algebra is commutative, then both of

these notions of ideal are equivalent.
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Examples 2.9:
(i) Let x be an indeterminate over K. It is known that
Klx] = {Z a;x'|n € N,q; € K}

K[xq1, ., x,] = {Z Ci1,...,inxi1' ...,x,il" [(i1, i) €Ny i € K}
are algebras over K.

(if) Let M, (K) denote the collection of n X n matrices. The M, (K) is of
dimension n? as a vector space over K in which the addition operation is the usual
matrix addition and multiplication is matrix multiplication.

(iii) Let U, (K) be the subset of M, (K) consisting of all upper triangular

matrices.

U,(K) = {(aij): 1<ij<na; =0fori >j}
U, (K) is a subalgebra of M,, (K).
(iv) Let sl,(K) be the set of nxn matrices with trace zero and with
multiplication
[A,B] = AB—BA, A,B € sl,(K)
The trace of a n X n square matrix is defined by
Tr(A) = a;1 + azg + -+ apy = Xizq Ay
The trace of product of two square matrices is independent of the order of

multiplication using Einstein Summation

m

Tr(4B) = ) (AB)q

n

i=1
m n m n
= D ayBi =) > Budy = ) (BAY; =Tr(BA)
i=1j=1 j=1i=1 j=1
Therefore, the trace of the commutator of A and B is given by

Tr([A,B]) = Tr(AB) — Tr(BA)

This shows that si,, (K) is a K- algebra.
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Definition 2.10: A homomorphism between two algebras U and V over a field K is
amap ¢: U —» V suchthatforalla € Kandu,v € U,
¢(au) = ap(u)
pu+v) = dp(u) + p(v)
Ppuxv) =) * p(v).
A homomorphism ¢ of algebra U into algebra V is called
(i) amonomorphism if ¢ is one-to-one,
(ii) an epimorphism if ¢ is onto V, and
(iii) an isomorphism if ¢ is one-to-one and maps U onto V.
If ¢ is an isomorphism of algebra U onto V, then ¢~ is an isomorphism of
VontoU.
A homomorphism from U to itself is called an endomorphism and an
isomorphism of algebra U to U is called an automorphism.
Theorem 2.11: Let ¢ be an algebra homomorphism between algebras U and V/,
then ¢(0y) = Oy.
Proof: ¢(0y) = ¢(0y + 0y) = ¢(0y) + $(0y)
Lety = ¢(0y) €V
y=y+y
y+En =0+ +(=y)

oy =y+ @+ (y)
Oy

Oy =y = ¢(0y).
Theorem 2.12: Let¢: U — V be a homomorphism of algebras. Then the kernel
Ker(¢) of ¢

Ker(¢) = {u € U [¢p(w) = 0}
is a two-sided ideal of U and the factor algebra U/Ker(¢) is isomorphic to the
image

Im(¢) = {pw) | ue U}
7
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of ¢.
Proof: From theorem 2.11, 0 € Ker(¢), so Ker¢ #= @ and if u,v € Ker¢ then
pw) = ¢p(w) =0, thus p(u) —p(w) =p(u—v) =0. For anyr e U, p(ru) =
d(r)p(u) = ¢p(r) -0 = 0. Similarly, ¢(ur) = 0. Thusu — v, ur, ru are also in
Kerg, hence Ker¢ is a two-sided ideal of U.

On the other hand, let us consider the map ¢ : U/Ker¢p - Im¢ c V,
defined by u + Ker¢p — ¢p(u). We have to show that ¢ is well defined:
Let u + Ker¢p = v + Ker¢, then u — v € Ker¢p and so ¢p(u —v) =0 = ¢(u) —
() =0 = ¢dp(uw) = p(w) = @(u+Kerp) = (v + Kergp). Hence ¢ is well
defined.
¢ is a homomorphism: Let u + Ker¢, v + Ker¢p € U/Ker¢p. Making use of the
fact that ¢ is a homomorphism, we have

@((u + Kerg) + (v + Kerg)) = ¢((u + v) + Kergp) = ¢p(u + v)

=¢u) + p(v) = p(u + Kerg) + ¢(v + Kero)
(1 + Ker) (v + Kerg) = ¢((uv) + Ker) = ¢(uv) = pw)p(v)
= @(u + Kergp)p(v + Kerg)
Finally let us prove that ¢ is bijective. If u + Ker¢ € Kerg, then
¢(u+Kerg) = p(u) =0

and so u € Ker¢ or equivalently u + Ker¢ = Ker¢, hence kernel of ¢ contains
only the zero element Kerg, so that ¢ is injective. Now let v € Im¢, then there
exist u € A such that ¢(u) = v or equivalently that ¢(u + Kergp) = ¢p(u) = v.
Thus v € Img and so ¢ is surjective. Therefore ¢ is an isomorphism.
Definition 2.13: Let U,V and W be K-modules where K is a commutative ring
with 1. A tensor product of U and V is a K-module V @ W along with a bilinear
map 7: U XV = U @ V, such that for every K-module W and every bilinear map
@:U XV - W, there exists a unique linear map ¢:U @ V - W such that the

diagram
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commutes, that is, ¢ = ¢ o 7.

The existence of the map ¢ satisfying the above conditions is called the
universal property of the tensor product. Note that extending the above definition
and gives us the definition of tensor product of usual algebras over the field K.

The next proposition came from (Garrett, 2008).
Proposition 2.14: Tensor product U @ V exists and is unique up to unigue
isomorphism.
Theorem 2.15: Let U and V be a vector spaces with the bases B, and By
respectively. Then the set
fu®uviueByand v € By}
isabasisof U ® V.
Lemma 2.16: U ® V is isomorphictoV Q U.
The next example is in Conrad (2016).
Example 2.17: K[x] Q K[y] = K|[x, y].
Solution: K[x] ® K[y] is made up of a finite sum of elements like f(x) ® g(y)
and since f(x) g(y) are polynomials with coefficients in K, if
fxX) =" a;x and g(y) = i=1b; y/ where a;, by € K, then

n m

FO®g0) =Y ax®) by
i=1 j=1
Let’s define a map ¢ in order to make isomorphism
P(f®g) = Z a; bjx'y/
Lj
9
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where this sum spans over all possible i, j considered. Using the property of tensor
products K[x] @ K[y], ¢ is a well-defined in K-module homomorphism.

Define the following map:

Y Zci,jxiyj =Zci,j(xi®yj)

ij i,j
It takes an element like the one we get from ¢ and places a tensor in between the x
and y terms and pulls out the coefficient. If we get c;; = a;b; then by the
properties of tensors:
cj(x' ®y') =b(ax' ®y') = a;x' @ by

this is linear and a well-defined homomorphism and the compositions of these
maps give us the identity. The only thing that is really different is the properties of
tensor products so,

Zal-xi®bjyj :Zaixi®zbjyj =f®g
J

i,j i
This is what we want and we get the number of these equalities by

linearity. Similarly,

Z ¢ (c;x' ®y) = Z cij X'y’

i) i
and so we see that this actually gives an isomorphism. Thus, we have that [x] ®
K[yl = K[x,y].
The following definition came from Szymiczek (1997).
Definition 2.18: Let B be a class of algebras and A be an algebra generated by a
set X. The algebra A is called a free algebra in the class B, if it is generated by X
and for any algebra C € B, every mapping ¢: X — C can be extended to a unique
algebra homomorphism ¢: A — C, such that the following diagram commutes,

i.e. pi = ¢:

10
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X i A

c
where i: X — A is the inclusion map. The cardinality |X| of the set X is called the
rank of A.
Example 2.19: The unitary polynomial algebra K[X,, ] = K[x4, ..., X, ] of rank m,
where m is finite, is generated by X,,, and the set X,, generates K[X,,] as an
algebra in the class of all unitary commutative and associative algebras.
Remark 2.20: A basis B, of K[x] with one generator is
Bix] = {1,x,x%,x3,x% ...
while we have a basis By, 1 of K[X,,] is
Brx,, ] = {21 x| ag, @ 203
Example 2.21: K(X,,) = K(xq,...,x,,) be the polynomial algebra which is
associative but not commutative. Then K(X,,) is a free K-algebra in the class of all
unital associative K-algebras.
Remark 2.22: Subalgebras of a free associative algebra is not necessarily free
because the subalgebra of the polynomial ring K[X] generated by x? and x3 is not
free.
Definition 2.23: Let VV be a vector space over K. V is called a graded K- vector

space if it has a direct sum
V=@, V™ = Z 4@
n=0

where V™ is subspace and n > 0. An element v € V) is said to be homogeneous
of degreen and write degv =n or |v| =n. At the same time, we define a

multigrading on V if

11
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m
V = Z z V(nlv---rnm)'

i=1n;=0

and V®1-mm) s called homogenous component of degree (ny, ..., n,,).

The subspace W of the graded vector space V = ¥,,5 V™ is graded with
W = ¥,s0(W n V). In this case, the factor space V/W can also be naturally
graded and we say that V /W inherits the grading of V.

Let us consider a construction of 7 (V) and correspond to tensor algebra as

follows. A vector space 7 (V) is the direct sum:
TW) = K@v@vﬂﬂ @...@V@n... :ZVGBL'
i=0

Thus the elements of 7'(V) are finite sums v;, + v, +-+ v, v;, € Vi, The

multiplication in T can be defined by extending the multiplication

y®n x y®m _, y®rntm) v,w)—vQw,
bilinearly to all of 7 (V). The tensor algebra 7' (V) of a vector space V is a graded
associative algebra with 1. Note that by construction, the elements of (V) are
sums of products of elements of V, that is, 7(V) is generated by V.
The following example is in Drensky (2000)
Example 2.24: Polynomial algebras K[xq, -, x,, ] and the free associative algebra
K(xy,+, x,,) are graded.
Definition 2.25: If V =@, V™ is a finitely generated graded K-algebra, then
we define the Hilbert function of IV as

H(V,n) = dimg (V™)

where dimy (V™) is the dimension of the vector space V™ over K.
Since V is finitely generated for each non-negative integer j, then there are many

finitely monomials of degree j in the generators of V.

12
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Definition 2.26: Suppose that V =¥,V ™ is a graded vector space with

dimV™ < oo for all n > 0, then we can define formal power series
H(V,t) = Hilb(V, ) = Z dimy (V) ¢
n>0
called the Hilbert (or Poincaré) series of V. If the vector space

V= Z V(nl.""nm) , n= (nlr ’nm),
n=>0

is multigraded, then the Hilbert series of V is

H(V‘ ti, ""tm) — Hilb(V, t1, ""tm) = Z dimK(V(nl,...,nm)) t?l t:rllm_
n>0

If V=@ V™ and W =@ W™ are graded vector spaces with the same grading,
thenV @ W,V @ W are also graded with homogeneous components
W ewW)™ =ym gpwm, VW)W =@, ", V) @wr),
The Hilbert series of V. @ W and V ® W, satisfy this relations
HV @& WwW,t)y=HWV,t)+ HW,t)
HV QW,t) =H(V,t)- HW,t)
Example 2.27: Let us prove that
_ 1
1-t
Proof: LetV = K[x] and let V have the basis {1, x, x?,x3,---}

VO =K = Sp{1} > dimg (V®) =1

Hilb(K[x],t)

VD =$p{x} =K x ={c.x | c € K} » dimg (VD) =1
V@ =$p{x?}=K-x* ={c-x*|c € K} > dimg (VD) =1

HWV,t) = z dimy (V) - ¢
n=0

1
H(V,t)=21't"=1+1:+1§2.|_...:E
n=0

13
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Note that we assume t is a real variable where the series converges to a
rational function.
Example 2.28: Let K[xq, x5, +, x, ] be the polynomial algebra then
1
a-or

Proof: This can be proved by induction on the number of variables n. The case

H(K[xl,xz, "'rxn]'t) =

n = 1 is trivial from the Example 2.27. We are going to consider the case for n >

1, suppose now that it holds in n — 1 variables x4, x,,-* x,,_1, SO

H(K[xq, %2, xXp—1],8) = #
By Example 2.27 we have inductively that
Klxy, %2, %,] = (K[x1] ® K[x2] ® - ® K[x,_1]) & K[x,,]
= K[x1,%2,, Xq—1] ® K[x,,]
On the other hand we have
HVQW,t) =HW,t)- HW,t)
which gives that
H(K[x1,x3,,x,],6) = H(K[x1, %2, %7 1] @ K[x,,], 1)
= H(K[x1, %2, %,-1],t) - H(K[x,,],£)
1 . 1
1—-t (1—t)nt

Therefore

1
e =G =g

Example 2.29: Let K(x1, x5, ..., X,, ) be the free associative algebra then

H(K(xl,xz, ...,xm>,t) = 1—mt

Proof: In the case m = 1, K(x;) = K[x] and thus

1
H(K(x1),t) = 1-¢

14
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Let K(x1,%p, ..., %)™ be the n-th homogeneous subspace of K(xy,xy, ..., X, ).
For the dimension of K{x;,x,, ..., x,, )™, we need the number of elements in its

canonical basis

_ [, D b . _
B, —{xl Xy ey X le —n}.

Number of such elements is equivalent to the possibilities of words written
in length n filled by x4, x5, ..., x,,,. Because the words are not commutative, for any
position, we have m-candidates. Hence dimygK(xq, X3, ..., X, )™ = m"

The Hilbert Series of free associative algebra becomes

HK 1, % ), 0) = ) dimgK (0,3, e, )

n=0

(e o)

% 1
— ntn — n —
Z /o Z g 1—mt
n=0

n=0

Definition 2.30: A Lie algebra L is a vector space over K endowed with a bilinear
map [.,.]: L XL - L,(x,y) = [x,y], such that the following conditions hold:
L(1):[x,x] =0
L(2): [[x, y],z] + [[y, Z],x] + [[z, x],y] =0
where x,y,z € L. The Lie bracket [x, y] is often referred to as the commutator of x
and y. Condition (L2) is known as the Jacobi identity. As the Lie bracket [.,.] is
bilinear, we have
0=[x+yx+yl=[xx]+[xy]+[yx]+ [yl =[xyl +[yx]
Hence condition (L1) implies
[x,y] = —[y,x] forall x,y € L.
One can rewrite The Jacobi identity as
[x,1. 2] = [x.[y.2]] + [[x. 219
Definition 2.31: For every element x € L we define the map ad,, called adjoint

action, as follows:

15
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ad,:L — L,y — [x,V]
Here the linear map
ad:x — ad,,
is called the adjoint representation which is one of the well known examples of Lie
homomorphisms. Let us show that ad is a homomorphism. For all z € L we have
that

[ad(x),ad(¥)](2) = [adx,ady](z) = (adx ad, — ad, adx)(z)
= (ad,ad,)(2) — (ad,ad, )(z)
= ad, (ady (z)) — ad, (ad,(2))
= ad,([y,2]) — ady ([x,2]) = [x, [y, 2]] = [y, [x, 2]]
= [[z,y].x] + [[x, 2], y] = =[[y, x], 2] = [[x,¥], 7]
= adjy 1(2) = ad([x, y])(2)
Thus
ad([x,y]) = [ad(x), ad (y)]
and this implies that ad is a homomorphism.
Definition 2.32: The center of Lie algebra L is defined by
Z(L)={x€L; [x,y] =0,forally € L}.
Proposition 2.33: The center of Lie algebra L is an ideal in L and is the kernel of
the adjoint representation ad.
Definition 2.34: The derived subalgebra L' of Lie algebra L is defined as follows:
L =[LL] = {[xyl:x,y €L}
Proposition 2.35: The derived subalgebra L is an ideal of L.

Proof: From definition 2.34, let x, y € L, so we have

[x,yl€eLl, [y, x]€L
€L €L €L €L

therefore the subalgebra L is an ideal of L.
Definition 2.36: For all non-negative integer m, the ideal L™ of L is defined as

16
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LO =1,
LW =[LL]=L,
L® = [L0, 0],

L(m+1) — [L(m)’L(m)]
Hence, we can iterate to define the derived sequence of L as follows:
L=LO®O> MW o..om ..

The first derived L™ and second derived L3 can be denoted by L' and L,
respectively.
The following lemma is stated in Erdmann and Wildon (2006)
Lemma 2.37: Let I be an ideal of Lie algebra L, if L/I is an abelian then L =
[L,L] c I
Definition 2.38: L is solvable if for some m > 1, L(™ = 0.
Definition 2.39: The lower center of a Lie algebra L is the series with terms

=L =[LL] and L¥F=[Lk1,1'] fork>2.

: . k .
Thus, L 2 L' 212 213 2 - is called central series and L /Lk+1 is in the center

of L/ s

Definition 2.40: The Lie algebra L is said to be nilpotent if for some positive
integer m, L™ = 0.

Lemma 2.41: Any nilpotent Lie algebra L is solvable.

Proof: Let’s use induction of k to show that L&) < L*

Fork=1LM =L =[L L] =1L

For k — 1, let’s consider L&D ¢ k-1,

Lf = [L4D, LD o [k L] = [F

Form>1, we havel™ ={0}, thenL(™ c ™ ={0}. HenceL(™ = {0}.

Therefore L is solvable.
17
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Theorem 2.42: Let X be a set. There exist a Lie algebra generated by X, satisfying
no relations other than (L1) and (L2).

Proof: Let M(X) be the set called free magma on X then by inductive on the
integer n > 1, we define the sets X,, by writing

X, =X
n-1

X, = pr X Xn—p
p=1

where p =1,2,---,n—1 if X is finite, so each X,. The sum set of the family
(X, )n>1 Is denoted by M(X); each of sets X,, is identified with a subset of M (X)

hence we can also write

M(X) = CJX,,.
n=1

Leta,b € M(X) and let p and g denote the integers such that a € X,, and
b € X, and let n = p + q; the image of the ordered pair (a, b) under the canonical
injection of X, X X,,_,, into X, is denoted by a - b and called the product of a and
b. Every mapping of X into magma M can be extended in a unique way to a
magma homomorphism of M (X) into M.

Since a € M(X); the unique integer n such that a € X,, is called the length
of a and denoted by [(a), then l(a - b) = l(a) + I(b) fora,b € M(X). The set X is
the subset of M(X) consisting of the elements of length 1. Every elements a of
length > 2 can be written uniquely in the forma = b - c.

Let K be a field and let A(X) be the vector space over K spanned by M (X).
If we extend the binary operation on M(X) bilinearly to A(X), then A(X) becomes
a (non-associative) algebra; it is called the free algebra over K on X. Let f € A(X);
if also f € M(X), then f is said to be a monomial. For f € A(X) we define deg(f)
to be the maximum of the degrees of a, where a runs over all a € M(X) that occur

in f with non-zero coefficient.
18
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Let I, be the ideal of A(X) generated by all elements
(a,a) fora e M(X)
(a,b) + (b,a) fora,b € M(X)
(a, (b, c)) + (b, (c, a)) + (¢, (a, b)) fora,b,c € M(X).

Set L(X) = A(X)/I,. Let B be a basis of L(X) consisting of (images of)
elements of M(X). Then it is immediate that we have (x,x) =0, (x,y) + (y,x) =
0 and (x,(¥,2)) + (¥, (z,x)) + (2, (x,y)) = 0 for all x,y,z € B. It follows that
the relations (L1) and (L2) are holds for all elements of L(X) so that L(X) is Lie
algebra. Therefore we will use the bracket to denote the product in L(X).
Definition 2.43: The Lie algebra L(X) is called the free Lie algebra on X.
Definition 2.44: If R is an associative algebra and the Lie algebra L is isomorphic
to subalgebra of R(™) , we say that R is an enveloping algebra of L. The associative
algebra U = U(L) is the universal enveloping algebra of the lie algebra L, if L is a
subalgebra of U and U has the following universal property: For any associative
algebra R and any homomorphism of Lie algebras ¢ : L — R(7) there exist a
unique homomorphism of associative algebras iy : U — R which extends ¢, i.e. ¥
is equal to ¢ on L.

Theorem 2.45 (The Poincaré-Birkhoff —Witt Theorem): Every Lie algebra L has
a unique (up to an isomorphism) universal enveloping algebra U(L). If L has a
basis {e; | i € I}, and the set of indices I is ordered, then U(L) has a basis 1 and

eil "'eip, il <. <Z ip, ik € I, p = 1,2,"'

19
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3. COMPUTATIONAL RESULTS

3.1. Hall Basis
A set M with binary operations is called magma, and the condition of being
associative is not necessarily. A basis for a free Lie algebra is the Hall set or the
Hall basis, which is a particular kind of subset of the free magma on an alphabet.
Serre (1962) defined the magma M as free magma on X denoted as My, for the set
X which is defined inductively by the family of sets X,, for n = 1 and satisfy the
following conditions:
a X, =X
b. X, =Upsg=nXp XXy, n =2 (disjointunion) where we put My =
U%_, X, and define My x My — My for w,w" of My, we note that the
natural p and g such that w € X, and w € Xgq, suppose thatn = p + q is
image of couple of (w,w") of canonical injection of Xy X Xq = Xpiq C
My this is denoted by w - w' and is called the product of w and w" where
the arrow is the canonical inclusion resulting from b.
An element w of My is called a non- associative word on X and the unique of
natural n such that w € X,, is called length and is denoted by [(w). We have
Iw-w') =1(w)+Iw) forw,w inMy. The set of X is a party of My formed by
the element of length 1 and My is defined as a finite and nonempty set where it can
be identified with a set of binary, complete, rooted trees with leaves labeled by
elements in X. All element w of length > 2 is written in unique way with this form
w = W’ . W”
where w' and w" is its immediate left and right subtree respectively. The binary
operation of My is the mapping My x My — My, (w,w’ ). We define the degree
[w| of a tree w to be the number of its leaves, i.e |w|=1 if we X and

! " ’ "
(W, w)l=|w[+]w |

21
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There is a canonical map from My onto X* (free monoid over X) defined by
f(a)=aifaeX and fw) = f(w)f(w") is of degree greater than 1. Degree
(length) of a tree (word) is usually defined to be the number of its leaves (letters).
We note that |w| = |f(w)], therefore f(w) is called the foliage of w.
Definition 3.1.1: A subset H of My is called a Hall set if its holds the following
conditions

i) H has total order <j;

i) XCH,;

i) Foranytree h = (h,h")inH,wehaveh” e Handh > h".

iv) Foranytree h = (h',h")in H,wehave h € Hiff k' ,h" € Hand h' > h"

and either k' € X and (h)" <y h".

where X is called generating set and the elements in X are called

generators. Here h', h" are denoted as left and right subtree of h

respectively and (h')" is denoted the right subtree of the left subtree of h.
Definition 3.1.2: For a fixed Hall set, Hall tree is called an element of Hall set and
every subtree of Hall tree is also Hall tree.

Definition 3.1.3: We call the Hall word the foliage of the Hall tree.

Corollary 3.1.4: Reutenauer (1993) show how every Hall word is the foliage of a
unique Hall tee.

Here we may identify clearly Hall trees and Hall words, where Hall set in X* is
called the image under f of Hall set in My, for a given corresponding total order on
Hall set.

Reutenauer (1993) and Hu (2009) identify on how each node in a Hall
tree can be interpreted as a lie bracket. In the example given there a Hall tree
h = (h',h") of order greater than or equal to 2 can be written as

h=1[h',h"]

22
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where h',h" is left and right subtree respectively and [*,] is denoted as the lie
bracket.

Actually, Hall set are not unique that why a specific Hall set depends on
how you define the total order. In this thesis we define the order of Hall set of
2, 3,4 generators using the idea generated by Hall (1950) where he said that in the

free ring, every element may be written as linear combination of the “Left normed”
elements [[[xl,xZ],X3], xn] =[xy, %5, X3, -+, X, ] but these are not independent.

Let X = {x, y} and define a total order on X by setting x >y y. Let My denote the
free magma on X; so My is the set of all nonassociative words in{x,y}. Any
h € My can be written uniquely as h = [h',h" ] where h',h" € My. Now we can
define the total order >,;, or simply >, on My by making >, agree with >y on
X, then for h,t € My /X, witht = [t,t" ], we define h >, t iff:

a) deg(h) > deg(t), or

b) deg(h) = deg(t),buth’ > t, or

¢) deg(h) =deg(t)andh =t , buth >yt .

Example 3.1.5: Hall Words of 2 Generators:
The construction of the recursive computation to generate Hall words (Hall trees)

of degree n < 8 denotes L, = K(x,y) for x > y are illustrate accordingly by total

order >
n=1 X,y x>y
n=2 [x, y]

n=23 [[X'J’]JY]: [[x:}’]:x]

n=4 i[[x, y],y],y] : [[[x, y],y],x] : [[[x, y],x],x]

n=>5 :[[[x.y].y].y] .y]. [[[[x,y].y].y] .x] : [[[[x.y].y].x] ,x],

([0, ] ] [ [ 91,9), By [0, 2], [, 1]
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[[x, v], y]y

__ [x,¥1,y]. ]
: [x,y1y], ]

_:[xy y]y

::[[x, LyLy)yv|.x|,

::[[x, y],y],x: ,

1)
I+
I

X,y

::[[x, y1yl

[[x.31.4]

:[[[[x. 1y1y| ,y] (2]
:mhmhiﬂJLMﬂ;

x5, 7], [, 1, b, 1],

[[x1.5]5].

x|, x|, x

[[x, y1, y]: ,

x: [, y],y]: ,

x: [, y],y]_ ,

S ([CREEREEE

[

vl x

|—|,_|,_|
)

;y ;y )

, ::[[x, yl.x],

::[[x, y1.y].]

x|, x

: ::[[x, L.yly|.x|,

Y

1y;

, X

[[[x, yl, y],y] ,y] ,x] : “[[[x, vy, y] ,x] ,x],
[[[x, y].x],x] ,x] ,x] : [[[[x, y],y].y] [, y]],

(61,12, 11, ([0, 2] [, 91, 7]

x|,

I‘x’

[::[[x, y)x],

::[[x, 1yl

[[Bxy1,4] %

Ix)

24

::[[x, y1.y1y|

X: ’ [[x' }’]’ X] ’

| [::[[x, y],y],y],x] [x, y]],

o]

(13, x], 1,1, [x,91],

[xy12])

J (b1
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“[ eyl ]” “[ bo1). ]”

_““[” . ]’“] x] x ’___:[xy yly]y ];v_ [xy]_,

“[[[x,y],y],y],y],x],[x,y] : _::[[x,y],y],y],x],x-,[x,y].

“[[[[x,y],y],x],x],x],[x,y] [l s 212 ] 2] e,

:[[[x,y],y],y],[x.y],[x,y]] [[x vyl x|, eyl [, y]],

[[[[x, y1.y1y| .Y] [lxy1, y]],

(16312 2] e 1 B,
:[[x, y1yly] y lx vl x|, ::[[x. y1.y]y] x Ayl yl|,

::[[x.y],y],y:.x:,[[x,y],x] , ::[[x,y],y],x:.xi.[[x.y].y],

::[[x,y],y],x:.x:,[[x,y],x] , ::[[x,y],x].x:,xi,[[x,y].y],

:_[[x.y],x],x:,x:,[[x yl, ] .-[ [x, ], y]. [x, 1. [[x, ¥], y]]

[x.y,y], [x,y1, [[x, y]. x ] [[ [x, y1, x], [x, %], [[x, y], y]]
[0 91,x], by, [y 1] [ [0 0 6] ] [0, 9] 2] |
[[[[x,y],x].x],[[[x,y].y].y]] [[[xy y], ] [[xy vl y]]

Example 3.1.6: Hall Words of 3 Generators:
Let X = {x,y, z} and define a total order on X by settingx >y y >y z. Let

My denote the free magma on X; so My is the set of all nonassociative words
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in{x,y,z}. All the properties used in Example 3.1.5 are equally applied to Hall
words of 3 generators case.

The construction of the recursive computation to generate Hall words (Hall
trees) of degree n <4 denotes L3 = K(x,y,z) for x >y >z are illustrate
accordingly by total order >;:
n=1 X, ¥,z xX>y>z
n=2 [xy][xz][y 2]
n=3 [[x, J/]; }’]; [[x, }’]' X], [[x, Z], Z]' [[X, Z]' }’]' [[X, Z]' X], [[)’; Z]: Z],

[y, 2], y]. [y, 2], x]
n=4 |[lxylyly].|[beyly)x] [y x] 2], [[lx 2], 2] 2],
[[[x. z], Z],y] , [[[x, z], Z],x] , [[[x, Z],y],y] , [[[x, Z],y],x],
[[[x, Z],x],x] , [[[y, Z],Z],Z] , [[[y, z], Z],y], [[[y, z], Z],x] , [[[y, Z].y].y].

[, 21,91 %], [y, 21 2], ] [, ¥1, [, 21], [, 90, [y, 2], [, 20, [, 21].

Example 3.1.7: Hall Words of 4 Generators:
Let X ={x,y,zt} and define a total order on X by

setting x >y y >y z >y t. Let My denote the free magma on X; so My is the set of
all nonassociative words in {x,y, z, t}. All the properties used in the Hall word of
Example 3.1.5 and Example 3.1.6 are equally applied to Hall words of 4 generators
case.
The construction of the recursive computation to generate Hall words (Hall trees)
of degree n <3 denotes L, = K(x,y,z t) for x >y >z >t are illustrate
accordingly by total order >,:
n=1 xy,2zt x>y>z>t
n=2 [xyllxz][xtl[yz][yt][z1]
n=3 [[xyly] [[xy]x] [[x 2],2] [[x, 2], y] [[x, 21, ], [, €], ¢],

[x, ¢, 2], [[x, €1, v], [Dx, €1, x], [ [y, 21, 2], [y, 20, ), [ [y, 20, 2] [y, ), £],
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[y t], 2], [y, t), y]. [y, ] x], [[z €], t], [[2 t], 2], [z £], y]. [[ €], x].
The Hall word of 2,3 and 4 generators can also be calculated using Witt Dimension
Formula and Mébius Function so, we are going to look on this as following:
Definition 3.1.8: Suppose that n is a positive integer, if n is divisible by the square
of a prime number, we can define u(n) as follow:

1,if n is a squarefree positive integer with even number
u(n) =< —1,if nasquarefree positive integer with odd number
0,if n is not squarefree

The function u : N — {—1,0,1} defined above is called Mébius Function.
For more use Bourbaki (2006).
Table 1: The values of Mdbius function g forn > 10

n 1 2 3 4 5 6 7 8 9 10

umy | 1 | -1 [ =1 o | 1] 1] =10 o] 1

Recall that given two integersn; = 1,n, = 2, we can write nq|n, if ng
divides n,.
From Bahturin (1987),
Theorem 3.1.9: If L, is the free Lie algebra with generators d, then the dimension
of the space of homogeneous expression of degree n or the number of Hall words
in Hall basis is:
dim L% Z (dyrmid
dn
where the u is Mobius function.
ForL, = K(x,y) x>y weget

a) n=1 r=2

1
dimL{"” = IZ B(d)2M4 = 1u(1)-2 =2
|l
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1 1 21 1
dimLY = Ez B(d)2? =5 [/1(1)22 + y(2)27] =5@-2=1

| 1 a1 3 31 1, 6
dim LS :§Z(d)2 =§[u(1)21+u(3)23]=§(2 ~2)=2=2
aP3

d n=4 r=2

.o 1 ag 1 4 4 o1, 0 12
dimL; :Zz a(d)2* =Z[M(1)21+,u(2)22+u(4)24] :Z(Z -2 ):T
d|4
=3
e) n=5 r=2
1 1 5 51 1 30
dim L = Ez B(d)251d = g[,1(1)21 +uE)2B| =@ -2 =% =6
d|5
) n=6 r=2
e 1 1 6 6 6 6
dimLy” = EZ A(d)2%4 = A [y(l)Zl + 1(2)22 + u(3)23 + u(6)26
d|6
1 54
=-(20-23-224+2)=—=
6( +2) 6~
g n=7 r=2
o _ 1 7a 1 7 1., 126
d|7

h)y n=8 r=2
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di L(S)_l d28|d_1 12% 22% 42% 82g
imLy” =g ) B2 =1p(D21 + u(2)22 + p(4)2% + pu(8)
d|8
240
:—(28—24)— 8 =30

i) n=9 r=2

@ 1 41 9 9 91 1
dimL,’ = 52 A(d)2°4 = 5 [u(1)21 +u(3)23 + u(9)29] =35 (22 -2%)
d|9

(10) _ 10]d 2 2 5 o
dim L§ Z B (d)2101 = —0 u(D2T + u(2)27 + u(5)25 + u(10)210
d|10
1 990
— _— (910 _ 95 _ 92 —
10 (2 2 24 2) = 0 =99
ForL; = K(x,y,z) x>y >z we get

a) n=1 r=3

dimL§” = Z B(d)3M4 = 1u(1)-3 =3
|l

b) n=2r=3

1 1 21 1 6
dim LY = 52 B(d)3%¢ = E[p¢(1)32 + y(2)37] =53 -3)=5=3
a2

c) n=3 r=3
dim 1) = B(d)33l4 = u(1)31 +u(3)33| = —(33 —3="=
DR R

d n=4 r=3
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w1 ag 1 4 4 o1 72
dim L =ZZ(d)3| =Z[y(1)31+y(2)32+y(4)34]=Z(3 -3 ):T

|4
=18
e) n=5r=3

1 1 5 511 240
dim L) = 52 B(d)3* = [u(l)ST + u(5)3§] =3 -3)=—=48
dJs

) n=6 r=3

dim1© = (d)36|d=l (1)3%+ (2)3§+ (3)3§+ (6)32
3 =2 ) AR u u u
d|6

1 696
=-(3%-33-32+3)=—=116
6 =
g n=7 r=3

1 1 7 7 1 2184
dim1{’ =23 B3 = - [u(1)31 + ,47)37] = -7 -3) = =312

|7
h) n=8 r=3

dim 1® = 1N, gla _ 1 8 8 8 8
imLy” = 8 2(d)3°* = 8 u(1)3T + u(2)3z + u(4)34 + u(8)38
s
1 6480
=-(3%-3%)=——=810
8( ) 8

i) n=9 r=3
o 1 R TIN: ’ o 1
dim 1§ = 53" B@3F = 2 [u (131 + k(337 +uOP| =53 - 3%)
P
19656

) n=10 r=3
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dimLy "’ = EZ a(d)3101d = E[;1(1)3 T +u(2)32 +u(5)35 + u(10)310
d|10
1 58800
=_—(310%-35-32+43)=—"-="5880
10( +3) 10
ForL, = K(x,y,z,t) x>y >z>t weget

a n=1 r=4

1
dimL{"” = 12 B(d)4atld = 1u(1) - 4 = 4
|l

b) n=2r=4

1 1 21 1 12
dim L% = Ez B =2 [u(1)42 + u(2)42] =S -4 =—=6

dJ2

) n=3 r=4
1 1 3 31 60
dim ¥ = 52 B(@)# =2 [y(l)zﬁ + y(3)4§] =@ -9 =2=20
a3

d n=4 r=4

dim 1 = X B (d)4*ld _1 (1)4%+ (2)4%+ (4)4% 21(44—42)
4 =70 2 |# H 2 2

a4
240
== =60
e) n=5r=4
dimL® = 23 p(ayast = 1 T =l — =120
¢ _52' = 2 |4 + u(5)85| = 2 (#° — 1) = —— =204

d|5
) n=6 r=4
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dim 1) = (al)46|d—1 (1)4%+ (2)4§+ (3)4§+ (6)42
a6
1 4020
=g(46—43—42+4)=T=670
g n=7 r=4
dim 17 =2 B@)a = 2 [uat + w47 = 27 — 4y = 22380
mL == BN = = (D4 +p(D47| = 5@ -4 = —
a7

= 2340
h) n=8 r=4

di ® _ 1\, gla _ 1 8 8 8 8
imL,”’ = 3 2(d)4°'¢ = r u(1)4T + u(2)4z + u(4)44 + u(8)48
d|8
1 65280
= 5(4‘8 N 44) = T = 8160

i) n=9 r=4

di L(9)=1 dz].9|d=1 14% 34-% 94-g =149—43
imL,” =3 > B(d) g [HDAT +u(3)43 + u(9) 5( )
dpo
262080
9

) n=10 r=4

= 29120

dim 100 = = mﬂﬂmm__l (Df£+ QM%A-(54?+ GOM%
+ TT0L ~“10l# K K #
d]10
1047540

1
=16Gw—45—ﬂ+4)=—75——=um%4
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Table 2: Summary of Dimension

dim LY = Ly =K{x,y) | L3 =K(x,y,2) | Ly=K{x,y2¢)

—1Zd n|d x>y x>y>Z .9C>y>Z>LL

== A(d)r
d|n
n=1 2 3 4
n=2 1 3 6
n=3 2 8 20
n=4 3 18 60
n=>5 6 48 204
n=6 9 116 670
n=7 18 312 2340
n=8 30 810 8160
n=09 56 2184 29120
n=10 99 5880 104754

Definition 3.1.10: A vector space A over the field K with bilinear and trilinear
operations [x,y] and [x,y,z] is said to be an Akivis algebra if the bilinear
operation is anticommutative and the two operations are verifying the Akivis
identity
[[x, y],z] + [[y, z],x] + [[Z, x],y] =
[x,y,z] + [y, z,x] + [z,x,y] — [x,z,y] = [y, x, 2] = [2,y,x].
For more look on Akivis (1976).
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Example 3.1.11: A nonassociative algebra A with commutator [x,y] = xy — yx
and associator [x,y, z] = (xy)z — x(yz) becomes an Akivis Algebra.
Here we present few homogenous Akivis elements on one generator:

x, [x,x, x], [[x, x,], x],

[[[x, x,x], x|, x] I, x, x], x, x], [, [x, %, %], %], [%, %, [x, %, x]]
The following proposition is in Bremner, Hentzel and Peresi (2005)
Proposition 3.1.12: If X = {x}, then we have the dimensions

dimA® = 1,dimA® = 0,dimA® = 1,dimA® = 1,dim4A® = 4,

dimA® = 7,dim A7 = 23,dim A® = 53,dimA® = 157,
where A®™) is the homogeneous subspace of degree n.
We illustrate the bases elements until length 4:
Basis elements of A®: x
Basis elements of A®®): none
Basis elements of A®): [x, x, x]
Basis elements of A®: [[x, x, x], x|

For the Basis elements of A forn > 5, we have to generate all possible

monomials of degree n, containing anticommutative binary and ternary operations.
These monomials will span the subspace of Akivis elements. In the case of

degree 5, a basis of subspace of Akivis elements is spanned by 4 elements below:
[[[x, x,x], x|, x] ;o [exxlxx], e lxxxlxl, 6 [xxx]]

From the above elements, there are 14 nonassociative monomials from 14, so

those monomials of degree 5 are:

1. ((((xx)x)x)x) 2. (((x(xx))x)x) 3. (((xx)x)(xx)) 4. (((xx)(xx))x)
5. ((x((xx)x))x) 6. ((x(x(xx)))x) 7. ((x(xx))(xx)) 8. ((xx)((xx)x))
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9. ((xx)(x(xx))) 10. (x (((xx)x)x)) 11. (x ((x(xx))x)) 12. (x((xx)(xx)))
13. (x (x((xx)x))) 14. (x (x(x(xx))))

Let’s write the bases of subspace of Akivis elements in times of monomials

in other to find our matrix.
[[[x, X, x],x],x] = [[{(xx)x —x(xx)}, x],x]

= [({Gex)x — x () }x — x{(xx)x — x(xx)}), x]
= ({(xx)x — x(xx)}x — x{(xx)x — x(xx)Px
—x({(xx)x — x(Cex)}x — x{(Cex)x — x(xx)})

3 ((((xx)x)x) x) - (((x(xx))x) x) — ((x((xx)x)) x)
+ ((x(x(xx))) x) — (x (((xx)x)x)) + (x ((x(xx))x))
+ (x (x(@on)) ) = (x (x(x6e02)))

[[x, x,x], x, x] = [Cex)x — x(xx), x, x] = {(xx)x — x(Cex) o) x — x ({(xx)x —

XXX =XXXXX— XXX

- (((xx)x) (xx)) ((x(xx))(xx))

[x, [x, %, x], x] = [x, Cex)x — x(xx), x] = (x{(xx)x — x(xx)Px — x({(ex)x —

XXX =HXXXE — XXX — VXXX A XXX

[x, x, [x, x, x]] =[x, x, (xx)x — x(xx)] = (xex){(xx)x — x(xx)} — x(Ce{xx)x —

XXX =HXXXN — XXX — XXX XXX

So we form a matrix 4 x 14:
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1 -10 0 -1 1 000 -110 1 -1
1 -10-10 0100 0 O0OO0TO0O O
o 0 00 1 -12000 -110 O

o 0 00 0 0O0O1-1000-11

The rank of this matrix is 4, therefore the space of Akivis element with degree 5
has dimension 4.
For the degree 6, a basis of subspace of Akivis elements is spanned by 7

elements below:

[[[[x, X, x],x],x] ,x] ) [[[x, x,x],x], x, x] ) [[[x, x,x], x, x],x], [x, [[x x, x], x], x],

[[x, [x, x, x], x], x|, [x, x, [[x, x, x],x]] ; [[x x, [x, x, x]],x]

There are 42 nonassociative monomials, and those monomials of degree 6 are:

1.<((((xx)x)x)x)x) 2.<(((x(xx))x) x)x) 3. (o) (xx))
4. (@) 0) x) (( x(Co0x) ) ) ) ( x(x(xx)) ) x
7.(((eeo0)x) (xx)) 8. () ) %) 9.
(eo@EE))x) 1 < x ((Ge)x)x) x) (

10. (x(xx))x

—_

21. ((xx) x((xx)x)

(xx)((xx)x) x)
)
)

19. { (xx) ((xx)x)x)) ((xx) (x(xx))x

(
(
()
13 ((x((Co)e) ) 14( (o)) ) is. (( D) )
) e ((
(
)

(
(
6< (x(x(xx))) > 17, ((x(@0x) e0) 18 ((x(xe0)) ()
(
(

)
22. () (x(x(e0)))) 23< ((Gox)x)x ) ( ((xG))x) x
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(x((x((xx)x) x)> 6. ( D) )) (¢ (o))

28, (x((xe0)0)) 2 < ((Goom)x) ) ( (o)) )

(x( x((ex)x) )) 2 (x(e0 (@) 33 (x(Co0(x@)))

< (x (x(Cer) )> s. ((0G0))x) 36, ((x(Co@n))x)
7. (@) 38 (NG 39 ((xe)(Gox)
30, ((Co0G0)0) 41. (o)) 42 <x (x (x(x(xx))))).

Let’s write the bases of subspace of Akivis elements in times of monomials in

other to find our matrix.
[[[[x, X, x],x],x] ,x] = [[[{(xx)x — x(xx)}, x],x],x]

=[G x = x(xx)}xc — {(x)x — x(ex)}), x], %]
= [({Gex)x — x (o)} — x{(xx)x — x(xx) Px
—x({Cex)x — x(xx)}x — x{(xx)x — x(xx)}), x]

= {({Cex)x — x (o)} — x{ (o) x — x(xx)Px
—x({(xx)x — x(xx)}x — x{(xx)x — x(Cxx)P}x
—x{({(xx)x — x(ex)}x — x{(xx)x — x(xx)Px

— x({Cex)x — x ()} — x{(ex)x — x(xx) 1}

_ <(( (0)2)) x) - <(((x(xx))x) x) x)
(s} () )
) <(x (o)) x) : ((x ((x(xx))x))x>
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= [({Cex)x — x(xex)}x — x{(xx)x — x(xx)}), x, x]
= {({(xx)x — x(ex) }oe — x{ (ex)x — x(xx) PDa}x
—{((xx)x — x(xx)}x — x{(xx)x — x(xx)}) (xx)

4 <((((xx)x)x) x) x) - <(((x(xx))x) x) x)
( x((ex)x) ) x >+( x(x(xx)) ) x >
= (((Co0)x) ) + (((ree)x) (e0))

(x

)
(x((xx)x) (xx)) ( (x(xx)) (xx))

[[[x,x,x],x,x],] [[{(xx)x x(xx)},x,x,x]

= [{{Geo0)x — x () }a)x — {(e)x — x (ex) }(ex) } (x) }, x]
= {({G0)x — x () })x — {(ex)x — x (o) }(xx) Jx
—x{({(x0)x = x(xx) Ja)x — {(ex)x — x (xx) 3 (xx)}

_ <((((xx)x)x) x) x) - <(((x(xx))x) x) x)
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- ((((xx)x}(xx)) x) + (((x(xx))(xx)) x)
~(%(((@)2)x)) + (x (o))
( )= (=

+(x ((xx)x)(xx) )— X (x(xx))(xX)))

[x, [[x, %, x], x], x] = [x, [{(xx)x — x(xx)}, x], x]
= [x, {(ex)x — x(xx) }x — x{(xx)x — x(xx)}), x]
= {x({(ex)x — x(xex) e — x{(xx)x — x(xx)})}x
—x{({(xx)x — x(ex)}x — x{ (ex)x — x(xx) ) x}

= (< (()2)) ) = (= (Geoo)2)) )
( (x(ce0))) >+(
~(x(((emn)x) )+ (x(

# (((x(@00) ) - (x(

[[x [x, x, x], x] = [ x, {(xx)x — x(xx)}, x], x]
= [{Cef{Cex)x — x(x) PDx — x({(ex)x — x(xx)}x)}, x]
= {(e{Oex)x — x(ex)PDx — x({(xx)x — x(xx)}x)Jx
—x{(x{Gex)x — x(ex) Px — x2({Gex)x — x (xx)}x) }

_ <((x((xx)x)) ) x) - <((x(x(xx))) x) x)
) (<x (o)) x) + ((x (o)) x)
- (+((e)2)) + (x{ (o))
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+ (x (x (((xx)x)X))> - (x (x ((x(xx))x))>

[x, x, [[x, x, x],x]] =[x, x, [{(xx)x — x(xx)}, x]]

=[x, x, ({(ex)x — x(ex) I — x{Cex)x — x(xx) )]
= (xx) ({(ex)x — x(x0)}x — x{(xx)x — x(xx)})
—x{x({(xx)x — x(Cex)}x — x{(xx)x — x(xx) P}

= ((xx) (((xx)x)x)) — ( (xx) ((x(xx))x))
— ((xx) (x((xx)x) )+ (xx) x(x(xx))

(
( )
—(x(x( ))>+<x (x (x(xx))x))>
( (x(x ((xx)x)))> (x(x x(x(xx))))>

[[x x, [x,x,x ] ] = [ x, x, {(xx)x — x(xx)}], x]

= [{G){(e0)x — x(xx)} = x(xe{(xx)x — x(xx) 1)}, x]
= {0 {Ga)x — x(ex)} — x (xe{ (ex)x — x(xx) )}
—x{ () {(ex)x — x(xx)} — x(e{ Gex)x — x(xx) D}

 (((G00)) ) - (@0 G00))
(et + (s et
(¢ (0000 + (s (o0 x0)
¥ (x (x (X((xx)x)))> - (x (x (x(x(’“)))))

So, from here the matrix of 7 x 42 is as follows:

((xx)x)x
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In the above matrix —1 is replaced by *.
This matrix has rank 7: Here the columns 42,3,4,11,13,19 and 10 are chosen

respectively to formulate the following matrix 7 x 7

1 0 0 -1 0 0 O

0O -1 0 0 0 O O

0O 0 -1 0 0 0 O

0O 0 0 1 0 0 O

0O 0 0 0O -10 O

-1 0 0 0O O 1 O

-1 0 0 0 0 0 -1
The determinant becomes:

1 0 0 -1 0 0 O 1 0 0 -1 0 O
0O -1 0 0 O 0 O 0O -1 0 0 0 O
0O 0 -1 0 0 0 O 0O 0 -1 0 0 O
0o 0 0 1 000 Py g 0 1 0 o0
0O 0 0 0 -10 O 0O 0 0 0 -10
-1 0 0 0 O 1 O -1 0 0 0O O 1
-1 0 0 O 0 0 -1
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10 0 -1 0
1.0 0 -
0 -1 0 0 0 " 1 o
=-p@mo o0 -1 0 O =(—1)(1)(—1)O 1
00 0 1 O -
0 0
00 0 0 -1
1.0 0
=-DWEHMWOo -1 0
0 0 -1

1 0
= =DOELOEDED

= =DMOEHMED 0 1

=1+#0
Therefore the space of Akivis element with degree 6 has dimension 7.
For the degree 7, a basis of subspace of Akivis elements is spanned by 23 elements

below:
:[[[[x, X, x],x],x] ,x] ,x] , [[[[x, X, x],x],x] , X, x] , [[[[x, x,x], x|, x, x] , x],

[[[x,x,x],x, x],x],x], [[[x, x,x], %, x), x, x], [[[x, x,x], x], [x, x,x]],

:[[x, [x, x, x],x],x],x] , [[[x, x, [x, x, x]],x] , x] , [[x, x,x],x, [x, x, x]],

[[x, x, x], [, x, x], x], [[x, [[x, x, x], x],x],x] , [[x, x, [[x, x, x],x]] , x],
[[x, [x, x, x], x], x, x], [[x, x, [x, x, x]], x, x] , [x, [[[x, X, x],x],x] ,x],

[x, X, [[[x, x, x], x],x” , [x, [[x, x, x], %, x], x], [x, x, [[x, x, x], x, x]],
[x, [x, [x, x, x], x], x], [x, %, [x, [x, x, x], x]], [x, [x, x, [x, x, x]], x],

[x, x, [x, x, [x, x, x]]] , [, [x, x, x], [, x, x]].
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Table 3: In the same way, the computation is founded in this way up to degree 9

n matrix size dim A
7 23 x132 23
8 54 x 429 53
9 162 x 1430 157

3.2. Hilbert Series of Free Metabelian Lie Algebras
Let L,, be the free Lie algebra over the field K freely generated by a finite set
X ={xq,"",x,} with m>2. We assume that the elements of X are Lie
monomials of length 1. If x and y are Lie monomials of any length, then length of
[x, y] is the sum of lengths x and y.

We will show the monomials of the form [[zy, z,], z3] by [z1, ,, z3] for the
sake of simplicity. Hence we can extent this inductively as

[21,22,23,, 2] = [ [[Zl,Zz],Z3],-'-,Zk], k>3,

for all zy,2,,-++,2, € L,,,. In this way every element of L,, can be written as a
linear combination of the left normed monomials, which means that, the set of all
left normed Lie monomials spans the whole free Lie algebra L,,, on X.

Definition 3.2.1: The quotient algebra
L L
E ="m/, = m/
n =" (Lo, Lin ], [, L 1]

is called the free metabelian Lie algebra of rank m defined by metabelian
identity [[x, vl, [z, t]] = 0. The second derived ideal of E,, is equal to zero. E,, is
generated by free generators y; = x; + L, -+, iy = Xm + Ly, and this algebra is
of a basis consisting of yy, -+, y,,, together with all left normed monomials of the

form:
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[yil,yiz,---,yik], W>p <3< <i,<m
Let w € F,, and let x,y € E,, be arbitrary elements. Then as a consequence of
Jacobi identity we have
w,x,y] + [x,y,w] + [y,w,x] = 0.
Since 0 = [x,y,w] € F,, = {0} we get
w,x,y] = =[y,w,x] = [w,y,x].
Thus, F,;L is furnished with a natural structure of module of K[yy, -, ¥, 1.

Example 3.2.2: Basis elements in 2 Generators:
Let F, = (x,y) be a free metabelian Lie algebra with generators x, y over a

field K of characteristic 0.
The alternating of generators with the condition of x > y is used to construct F,
which is a closed formula and generate the numbers of basis. Form <9, the

number of elements in basis are illustrate manually in the following way by total

order >;
n=1 X,y x>y
n=2 [x, y]

n=3  [[lxyly] [[xylx]

n=4 |[xylyly] [[xyylx], |[xy]x]]
n=>5 [[[[x.y],y],y].y], [[[[x.y].y],y],x],

[[[[x.y],y],x],x], [[[[x,y],x],x],x]
n=6 :::[[x,y].y].y:.y:.y: “[[xy yl.y], ] x],
|

::[[x,y],y],y: ,x: ,x- ) [[[ ,y],x , X ,x],

=

([ y1x],x
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n=7 :“[[[x.y]

“[[[[x, vl

n=2_8 [

""[

Hﬂn

n=9 “H[[[[x.y]

,y],y]'y]’ ] [
[x,y],Y]»y]'y]' ] x H[
,y]'x]’x]’x]’x]’ [

[ ylyly|.yv|.v|.v|.|. “

::[[x,y]

,y],y:,y_,y x|, x|,

,y],y],y |y

r
—
1

[Lx.y

s l \
J)

46
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y ’x lx )

-:[[[[x,y].y].y].y],y:.y x|, -:[[[[x,y],y],y],y],y:

_:[[[[x.y],y],y],y].y:,x—.x x|, _:[[[[X,y],y],y],y],x:,x_,x x|,

=
=
=
=
=

_:[[[[x, vy, 3’] 'x] ,X _[[[[[x, yl.y], x] ,x] ,x] ’x_

-:[[[[x,y],x],x],x].x: ,x- x|, x|

Example 3.2.3: Basis elements in 3 Generators:
Let F, = (x,y,z) be a free metabelian Lie algebra with generators x,y, z

over a field K of characteristic 0. The alternating of generators with conditions x >
y >z, [x,y] > zand y < z are used to construct F; which is a closed formula and
generate the numbers of basis. Form < 6, the number of basis are illustrate
manually in the following way by total order >;
n=1 xyz xX>y>z
n=2 |[xy] [xz] [y2]
n=3 [[x, }’]' J/]' [[XJ }’]'x]; [[x, Z],Z], [[X, Z], }’], [[x, Z], X],
[[y.z]. 2], [y, 2], y]. [, 2], x]
n=4 '[[x, Lyly|s [[ylylx], [[ylalx], [z 2], 2],
[Lx,21,2], v ], |[Ix. 20 2], ] [[x, 21, 9] 9] [ 21, 7] ]
xz x] ] [[yz z] ] [[yz Z]y] [[yz z] ]

[yz y1y| [, 2 v] %], [y 21 2], x|
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n=>5

::[[y, z], Z], Z:

[[0x.21. 514,

[[.21.2],5),

::[[y, z2y)y],

X

)y )

X

x|, [ 21.2).4].

- , ::[[x, Z],x],x],

::[[y, Z],Z],Z: x|,

: _:[[y, zy)x|,

48

x|,
x
x

X

| ::[[y. z),

21,40

::[[[x,y],y],y].y],y], “[[[x,y],y],y:, x|,

[[6e31.515] ). [[[0eo1915] 2] [[[ea19)2] ],
(1631, 2] 2] [l 21,21 2] 2] [ 202 2]y

I 0 1 B Y
1212 . [l 51] ) [0
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“[[xy yy],x ] [[ [x, 1, 5], ] ],“[[[X,y],x],x],x],x],
_[[xzz] PE H[[xzz] H[ [6v21,2),2) ] ]
[[xz]z]zyy [x,2],2], 2 y] ] [[[xz Z] ] ]

::[[x,z],z],y:,y:,y , :_[[x,z,z],y_,y_,x 1l [[x, ], z], y] ] ]

::[[x.Z],Z],x:,x:,x, ::[[x,Z],y],y:,y:,y, :[xz vl y] y] ]

:[[x,z],y],y:,x:,x, :[xz y] x ,x_ x|, :_[xz x|, ] ]

[l12.212] 2] ], |[[1.21.41.2] ] ][::[[y,z],z],z],z],x],
[[J'z]z]z}'}’[yzz] ] ] ]“[[[yz]z]z]x]x]

:[[y,Z],Z],y:.y:,y, ::[[y,Z],Z].y:,y:.x. [y, 2], 2], y] ] ]

:[[y.Z].Z],x:,x:,x, ::[[y.Z].y].y:.y:.y. i[yz vl.y|. y] ]

[y, 21 y].7], x| x [ ([ 213) 2] x| x| || [ 21,2, #] ] ]
Example 3.2.4: Basis elements in 4 Generators:

Let F, = (x,y,z,t) be a free metabelian Lie algebra with generators
x,y,z,t over a field K of characteristic 0. The alternating of generators with
conditionsx >y >z, [x,y] >z and y < z are used to construct F, which is a
closed formula and generate the numbers of basis. For m < 5, the number of basis
are illustrate manually in the following way by total order >;

n=1 xX,Y,2t xX>y>z>t
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2 [xy] [xz], [xt] [v.z], tl [zt]
3 [luylyl [[xylx][lx 2 z), [[x2].y] [[x 2].x]
[[x, ], t], [[x, t]. 2], [[x, £1, y], [[x. ), x], [ [ 2). 2], [ [y, 2], y].
[y, 21, ] [y, e). 2], [y, €], 2], [y, €] y]. [y, e, x] [z, ). €],
[[z,t], 2], [[z t]. ¥ [[z t], x]

([t 31 y)y] (B y) v 2] [y ) 2] [ 21, 2] 2]

(152421 [l [ 1] [l 101

[Lx, 21, ), x| [[[x. 1, ¢], 2] [[x, 2 €], 2] [ [ €1, 2] ),

[[x tl t], x] [[[x,t ,z), ][[ x, t ,z],y], »[ X, t],z],x],

[T, 61, v]y] | [0 61y x| [[[x € x] %] | [ 21, 2], 2]

v,21,2],y]. [y, 21, 2], %], [y 2. y1, 9] | [, 21, v) 2,

2], [l e el ] [ ed el 2] [ [Dy. 21 e] 5]

[y eLel x| [, 6 2], 2] [y 6. 2] v] [ 1, 2], %],

[y, Ly y] [y el y) ] [, 61 <) ] [ €1, e] €] [ 61, €] 2],
[[ z,t] t],y] ) [[ z,t ,t],x] ) [[[z, t],z],z] ) [[[z, t],z],y] ) [[[z, t],Z],x],
e1505] [ 15}, [0

n=>5 [[[xy v, y] ][[[[x.y],y],y].x].[[[[x,y].y].x],x],

([l 312 ]« [ 21,2, 2] 2] [, 20. 20 2] )
([[6e21.2) 2] ] [[[e 21 2L ] o] [l 21 219,
] [[x, 21,717 .y] : [:[[x, 21y]y] ,x],

n

n

S
Il
N

,Z], x

<
N

,_|,_|

[xzz] x
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[[[xz vl x] x] [ x,z], x|, x] x] [[[x,t,t],t ,t],
[[x, t] t]t] ][xtt] y][xt t]t] ]
_[xt t],z ,z]_[xt t],z y” [[x, t] t]]x]

:_[[x,t],t],y:,y: ) [ x, t], t], y: ,x_ ) ::[[x,t],t],x ,x|,

,_|

|-+
::[[x, t],z],z: ,Z: , ::[[x, t],z],z: ,y: , ::[[x, t],z],z] ,x],

:[[[x, t],z],y: ,y: , ::[[x, t],Z],y: ,x: , ::[[x, t],z],x] ,x],

:[[[x, tl,y].y] y : ::[[x. t,y],] x : ::[[x, tl,y]x x

(633 e 23 e I o e
[[1.71,4).7]
::[[y, Z],Z],x],x], :[[[y, 21y]y] y .[[[[y. 2]y] .x].
| 112 e e e R

o
—

:[[Y'Z]»Z]'Y: 'y ’ [[}’:Z]:Z]'Y !x::

—
—
-
=
o~
e
~
—_
o~
<
—_—
" T 1
—
—
—
=
~ -
~
e
~
e
o~
—_—
=
—_—

—
=<
~
~
—
N
] e
—
—
lapa!
=<
~
e
~
—
~ <
N
<
—_—
—
—
el
=<
~
e
~
e
N
—_—
=
S

::[[y. t.t].y] .y] : [[[[y, t.t]y] ,x] : [[[[y. tl.t],x] x|,
[[012)2] o] [[1 b o] [[10-121.]
[[[[y,t].Z];y:.y:,: .¢,2). ). ] [[[yt ), x|
[[[[y,t].y].y:.y:,: .. y].y]. ] [[[yt y]. ] ]

51



3. COMPUTATIONAL RESULTS Andre DUSHIMIRIMANA

([ 1] ] x| [tz 1, ] ] [T 21, 6) ] 2
(12,1, ¢] ). [Ttz 1) ] | | [0 21,¢). 2] 2],
[iz1.12]o) I

[[iz.61.615] x| [[[6z.e1.6)#] ] [[[62.e1.21.2] 2]

[z.61.6v].5)

>[[[Z, t],z],z] ,y] , —[[[Z, t],z],z: ,x— , ::[[z, t],z],y: ,y:,

([l ¢1.20v]. %] [[[12 €1, ).
([ 81715 x| [l 03] ¢

Theorem 3.2.5: Consider equation n; + n, + -+ n, = n, forr e Z*, n,n; = 0

and 1 < i < r. Then number of distinct nonnegative integer solutions satisfying the

n+r—1
( r—1 )
For more on combinatorial use Lipschutz (1966).
From above theorem we can obtain the number of basis of free metabelian

::[[z, t],y],y: y

x| ) _:[[z, t],x],x: x|

equation is

Lie algebra in different generators. Let B, ,, indicate the canonical basis for the
homogeneous subspace of degree n in the free metabelian Lie algebra E,,, and let
Nm » denote the number of elements in 2B, ,, which coincides with dimF,,(l”).

Example 3.2.6: Number of Elements of Basis in 2 Generators
Consider the free metabelian Lie algebra F, = K(x,y) with 2 generators

and assuming that x > y. Here we shall compute 77, ,,.
n=1 By ={xy} and 1my1=2

n=2, By, ={[xyl} and my=1

n=3, By3={[[xyly]|[lx ylx]} and M3 =2
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n=4, By = {[[xyLy]y]. | [y y] x| [yl xlx[} and  mpe =3

In general

Bon ={[%Y,p1,  Pn2]:Yy<P1 < S Pz < x}

n—2 position
where p; € {x,y},j =1,..,n—2 and n = 2. Thus considering n — 2 positions
filled by p;s, must start by several ys followed by xs. That is because, the number
12, 1S the number of nonnegative solutions of equation

n+n,=n—2
where n; indicates the number of ys and n, stands for the number of xs used in

those n — 2 positions. Hence by Theorem 3.2.5 we have

((n=-2)+2-1 _(n—l)_ "
fl2n = 2-1 L1 )7"
Example 3.2.7: Number of Elements of Basis in 3 Generators
Now let F; = K(x,y, z) be the free metabelian Lie algebra with condition
of x > y > z. Similar steps as in the previous computations give
n=1 Bz;={x,y,z} and 1n3;=3
n= 21 EB3,2 = {[ny]' [X,Z], [y; Z]} and T’3,2 =3

n=3 Byq-= {[[X,Y],)/], [[x, 1, x|, [[x, 2], 2], [, ], ], [[X,Z],x],} aa =8,
' [y, 2], 2], [[y. 2], y], [y, 2], %] '
In general
B3, = By UB, U B,
where
By ={[x,y,p1, >, Pn—2]:y SP1 S S Ppp S X}
n—2 position
B, ={[xz,p1, " ,Pn—2]:2<p; < <ppp <x}
n—2 position
By ={y,z,p1, " ,bn2]:z2<p; < <pyp <x}

n—2 position
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Therefore,
N3n=|B1l + |B2| + |B3|=|B1| + 2[Bz| = myn + 2|B,|
The key point is to find number of elements in B;. Again, considering n — 2
positions filled by p; s, must start by several zs followed by ys and then by xs. That
is because, the number 7, ,, is the number of nonnegative solutions of equation
n+n, +nzg=n-—2
where n, indicates the number of zs, n, indicates the number of ys, and n3 stands

for the number of xs used in those n — 2 positions. Theorem ... gives

=" 0)

= (17 )+ 23 =

Example 3.2.8: Number of Elements of Basis in 4 Generators
Now let F; = K(x,y, z) be the free metabelian Lie algebra with condition

Consequently

of x > y > z. Similar steps as in the previous computations give
n=1 Bz, ={x,y,z} and 713, =3
n=2, EB3_2 = {[x;)’]' [X,Z], [y; Z]} and N32 = 3

n=3 By = {[[x,y],y], [l y). %], [[x, 21, 2], [, Z],Y],[[x.z].x].} R
‘ [[y.z). 2], [[y. 2], y]. [ 2], x] ’
In general
B3, =B UB, UB;
where
By ={[x,y,p1, >, Pn—2]:y SP1 S - S P S X}
n—2 position
B, ={[xz,p1, " ,Pn2]:2<p; < <ppp <x}
n—2 position
By ={[y,z,p1,",Pn2]iz<py < <ppp <x}

n—2 position
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Therefore,
N3n=|B1l + |B2| + |B3|=|B1| + 2[Bz| = myn + 2|B,|
The key point is to find number of elements in B,. Again, considering n — 2
positions filled by p; s, must start by several zs followed by ys and then by xs. That
is because, the number 7, ,, is the number of nonnegative solutions of equation
n+n, +nzg=n-—2
where n, indicates the number of zs, n, indicates the number of ys, and n3 stands

for the number of xs used in those n — 2 positions. Theorem ... gives

=" 0)
ma= ("] ) +2(5) = -1

n4,n=(n11)+2(721)+3(n;1) =n;1(n+1)(n+2).

Proposition 3.2.9: Generalization for Number of Elements of Basis in m
Generators
To generalize a formula for the number of homogeneous basis of degree n

Consequently

in the free metabelian Lie algebra of rank m with generators y,, ---, y,,,. We have to
prove by induction what we obtained in the cases 2, 3, and 4 generators

respectively.

Theorem 3.2.10: Dimension 7,,, ,, of FT,(I”) is

Nmn =(n11>+2(;)+”'+(m—1)(”;7’&;3)

Proof: We prove the statement by induction on number of generators m > 2. Let
us assume y; > --- > y,,. As illustrated before, it is straightforward to check the

formula for m = 2,3,4. Now let
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) (5

And let us explicitly write down the elements of B, ,,. Firstly it is a direct result
that

n
T]m—l,n = (

SBm,n = Bz UB3U UBm_1 UBm

where the subset B; is of elements of the form

LY p1 - Pr—2]

n—2 position
Thus p;s can be chosen from the set {yl, y]} The first place allows y;, -+, y;_1
and number of elements in B; is (j — 1) times number of nonnegative solutions of
equation
ng+-+n =n—-2
such that n, indicates number of y,s used for those n — 2 places. One must
observe from this point that
1Bm—1| = Mm-1, = [B2UB3U -+ UB,, 4|

Hence it is sufficient to show that

Bal=m-n (" ")

The elements of B,,, are of the form

[ Yms P15 Pn—2]

n—2 position
Thus p;s can be chosen from the set {y,---,y,}. The first place allows
Vi,*,VYm—1 and number of elements in B, is (m—1) times number of
nonnegative solutions of equation

n+-+n, =n-—2
such that n; indicates number of y,s used for those n — 2 places. By Theorem
3.2.5 this number is

56



3. COMPUTATIONAL RESULTS Andre DUSHIMIRIMANA

|Bm|=(m—1)<("_,2n)_+f1_1)

which completes the proof.

Example 3.2.11: Table of Dimension of Free Metabelian Lie Algebra
From the general formula of dimension of free metabelian Lie algebra we

can make table of free metabelian Lie algebra of 2, 3 and 4 generator up to n <
10.

General formula is

n—1

A E" = =21

m+1)(n+2)-(n+m-3)

For m = 2, we have dim F{™ = n — 1.

So, we obtain,

n=1, n—-1=1-1=0
n=2, n—-1=2-1=1
n =3, n—1=3-1=2,
n =4, n—1=4-1=3,
n=>5, n—1=5-1=4,
n==6, n—1=6-1=5,
n=717, n—1=7-1=6,
n =8, n—-1=8-1=7,
n=09, n—1=9-1=8,
n =10, n—1=10-1=09.

Form = 3, we have dim F3(") =n?—1.

So, we obtain,

n=1, n?—-1=0,

n=2, n?—1=4-1=3,
n =3, n—-1=9-1=38,
n =4, n?—-1=16-1=15,
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n=>5, n%—1=25-1=24,
n==6, n®—1=36—-1=35,
n="7, n?—1=49—1 =48,
n =S8, n:—1=64—1=63,
n=09, n?—-1=81-1 =80,
n =10, n?—-1=100—-1=99.

For m = 4, the dimension is
q (n) 1 1 3 2
dimF," = E(n —1Dn+1)(n+2)= E(n +2n° —n—2).
So, we obtain,

n=1, %(n3+2n2—n—2)=%(1+2—1—2)=0,

n=2 m+2m?-n-2)=5(23+2-22-2-2)=2(8+8-4) =
= 6,

n=3 -m+2m?-n-2)=5(3+2-32-3-2)=2(27+18-5) ==

= 20,

n=4 @+2mP-n-2)=;4+2-42-4-2)=2(64+32-6) ==

= 45,
n=-5, %(n3+2n2—n—2)=%(53+2-52—5—2)=%(125+50—7)

n=6, %(n3+2n2—n—2)=%(63+2-62—6—2)=%(216+72—8)

280
== 140,

n=17, %(n3+2n2—n—2)=§(73+2-72—7—2)=%(343+98—9)

432
== 216,
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n=S8, %(n3+2n2—n—2)=%(83+2-82—8—2)=%(512+128—10)

_ 630

= 315,

n=0o, %(n3+2n2—n—2)=%(93+2-92—9—2)=%(729+162—11)

880
2

n=10, (0 +2n? —n—2) =5 (10> +2-10% - 10 - 2)

= 440,

1 1188
=5 (1000 +200 — 12) = —— =594,

Table 4. Summary of Dimension

Fy = K{x,y) F; =K(x,y,2) F, = K{x,y,z,t)

1 2 3 4

2 1 3 6

3 2 8 20
4 3 15 45
5 4 24 84
6 5 35 140
7 6 48 216
8 7 63 315
9 8 80 440
10 9 99 594

Example 3.2.12: Hilbert Series of F, = K(x,y)

Let F, = K(x,y) be the free metabelian Lie algebra with generators x and y. We

know that number of elements in homogeneous subspace of degree n is equal to

N2, = n—1for n > 2. The Hilbert Series of F, comes out from this formula:

[oe) [ee]

H(F,,t) = z(disz(")) St =04+2-t1 4 Z"ZJ" Ctn

n=0 n=2
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since dim FZ(O) = 0 and dim Fz(l) = 2. Hence we have

H(F,,t) =2t + Z(n - D"
=2

n=
=2t+Znt”—Zt"=2t+B—A
n=2 n=2

where A and B are the power series where

A=Zt" and B=Znt"
n=2 n=2

We are going to solve this accordingly:
ForA =Y,_,t", we know this from the Example 2.27 for polynomial algebra

where we have

H(K[x],t) = Z dim K [x] ™ ¢»

n=0

[ee]

1
=Zt”=1+t+t2+t3+--.=—.
1—t

n=0
Recall that in writing the rational formula on right side of equality, we
assume that t is a variable lying in the set of real numbers such that the series
converges. Thus we can have derivative in computations.

Now, for A we have n = 2 therefore our equation becomes

= 1
1+t+Zt”=—
1-—t
n=2

1
14+t+A=—
1-t

n=2
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Now, for B we have,

B = Znt" =2t2+3t3 4+ - =t(2t + 3t> + )

(S )

n=2

It is seen that the parenthesis is derivative of A, so we obtain,

!

B=t-A'=t-<§:t") =t-[1L_t—(1+t)]

n=2

B _1’(1—t)—1(1—t)’ M 1
—t[ -0 ‘4”(@‘9

Hence we have

1

- t
T T a -2
n=2

Let come back on our Hilbert Series

H(Fz,t)=21:+B—A=2t+(1_t)2 [——(1+t)

=2t+ ' —t- ! +14+t=1+2t+ _

(1 —1t)? 1—t (1—)2 1—t
=1+2t+w=1+2t+£.
(1-1t)? (1—-1t)?

Therefore the Hilbert Series of free metabelian Lie algebra F, of two
generators is equal to:
2t—1

HFt) =142t + ——.
(2 ) (l_t)z

Example 3.2.13: Hilbert Series of F; = K(x,y, z)
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Let F3 = K(x,y,z) be the free metabelian Lie algebra with generators

x, v, z. We know that number of elements in homogeneous subspace of degree n is

equal to 13, =n% —1 for n > 2. The Hilbert Series of F; comes out from this

formula:

[oe) [ee]

H(F;,t) = E(dim@(n)) th=0+4+3-t1 4 2"3'" Ctn

n=0 n=2

since dim F{” = 0 and dim F{* = 3. Hence we have

H(F;,t) = 3t+2(n2 — 1t" =3t+Zn2t” —Zt” =3t+C—-A
n=2 n=2 n=2

where A and C are the power series

A=Zt" and C=Zn2t"
n=2 n=1

It is known from the previous computations that

1
A=———(1+t
T (A+0

Now, we are going to find a nice rational expression for C.

C=Zn2t" =4t2+9t3 + - =t(4t + 92 + )

n=2

_ t(g 2 t)

n=2

It is seen that the parenthesis is derivative of B, so we obtain,

!

c:t-B'=t'<§:"tn) :t'[ﬁ_t];tk(

1-0?

t

) -]

.. [t’(1 — )2 —t((1 - t)?) B t,] _.. [1(1 - 0)?-2t(1-0)(-1)

(1 -02?
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o Ja=-2+2t(1-0) o Ja-na-t+2t)
0 (1-0)?* - ]‘ ' (1-0)?* -
1+1t) t2+t
=t'[m—1]=m—

Hence we have

i t2 4t
1—t)3

n=1

Therefore
3t+C—A=3t+t2l—t— L—(1+t)]
(1-1)3 1-t
=3t + i A ! +14+t=1+3t+ L !
(1-1)3 1—-t (1-¢)3 1-t¢t
:1+3t+t2+t—(1—t)2:1+3t+t2+t—1+2t—t2
1-03 (1-1¢)°
S 143t
(1-1¢)°
Thus the Hilbert Series of free metabelian Lie algebra F; of 3 generators is equal
to:
H(F3,t)=1+3t+ﬂ.
(1-1)°

Example 3.2.14: Hilbert Series of F, = K{x,y,z,t)
Let F, = K(x,y,z,t) be the free metabelian Lie algebra with generators

x,,z,t. We know that number of elements in homogeneous subspace of degree n

is equal to
L 1 3. 50
174,,1=§(n—1)(n+1)(n+2)=§(n +2n* —n-—2)

for n = 2. The Hilbert Series of F, comes out from this formula:
H(Fs,t) = Z(dimF4(")) T =0+4+4-t! + Z Nap - t"
n=0 n=2
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since dim F4(°) = 0 and dim F4(1) = 4. Hence we have

[ee]

H(F4,t):0-1+4-t+2n4,n —4t+z m3+2n? —n-2)-t"
n=2
—ardy ey -3y ey e
=4ttt 2"
n>2 n=>2 n=2 n=2
=4t+5D+C—§B—A
such that
D=Zn3tn, C=Zn2t", B=Znt” and A=Zt"
n=2 n=2 n=2 n=2

Now, we are going to find a nice rational expression for D since all of expressions
for A, B, C have just been computed.

= Z ndt" =8t +27t3 + - = t(8t + 27t* + ---) = t(Z n3 t”_1>.
n=2

n=2

It is seen that the parenthesis is derivative of C, so we have,

!

, = 2+t ' 2+t -
vt =t<zt) -5 -l ) ]

_.. [(t2 +) 1= -+ -0% t,]

((1-1)3)2
L Qt+ 1A —-1t)3=3(t*>+t)(1 - t)*(-1) )
- [ (T- o5 ) ]
. Qt+ 1A —-t)3+3(t>+t)(1—1t)? )
- [ (a-0° } ]
(1-0)2[2t+1)(A —t) +3(t% +t)] .
-+ e |
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. [2t—2t2+1—t+3t2+3t 1]

1-0t
t2+4t+1 _t3+4t2+t
(1-0* I
Hence we have
i B4+t
4 T a-ot

Therefore the Hilbert Series becomes

1 1
H(E, 1) =4t +5D+C-5B—4A

_4t+1 t3+4t2 +t ) +t2+t . 1( t t)
B 2\ (1-0* (1-1)3 2\(1-1t)2

v

_4t+1t3+4t2+t t+t2+t . 1 t +t 1 .

B 2 (1-0)* 2 (1-1)3 2(1—1t)2 1—t
1t34+4t2+t 2+t 1 t 1

=14+4t+

2 a-0f Ta-o? za-0? 1-¢
B3 +at?2+t+20-)*+0) —-t(1—-t)*>—-2(1—1t)3

=14+4t+ A0
=1+4t+t3+4t2+t+2t—2t3—t+2t2—t3—2+6t—6t2+2t3
2(1—t)*
At gL
2(1—t)* (1-10)*

Therefore the Hilbert Series of free metabelian Lie algebra F, of 4
generators is equal to:
4t -1
(1-0*

To generalize this formula in m generators, we have to prove by induction

H(F,t) =1+ 4t +

from what we have in Hilbert series of 2, 3 and 4 generators.
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Theorem 3.2.15: For m = 3, We have

H(E,,t) = H(Fp_1,t) +t + n - De*
1-om
Proof: Direct computations from Examples 3.2.12, 3.2.13, 3.2.14 give
H(F3,t) — H(F,t) =1+ 3t +( )3 [1 +2t+ é:;]
143t 1_gep ot 2ot 3t-1-@-DA-Y
1-0* 1-v? 1-0?
=t+3t—1—(2t—2t2—1+t) - 2t2
1-03 (1-1)3¥
and,
H(F,,t) — H(F3,t) = Laatr L 1+3t+ﬁ]
(1-10)* (1-1)3
C1tar—1-3eqtzl 8-l A4m1-Gt-DU-Y
a-o* a1-03 (1—1t)*
:t+4t—1—(3t—3t2—1+t):t+ 3
1-o* (1-t)*

Thus the formula holds for m = 3,4.

On the other hand, we have that

1
= 1O ¢ =
H(K[Y,,],0) = ZdlmK v =G

For the dimension of K[Y,,]) we need to know the canonical forms of basis

elements in B[, 1. They are of the form

VY Y
such that nq, n,, ...,n,, = 0, nq + -+ n,,, = r. By the Theorem 3.2.5, the number
of such elements is
r+m-—1
( m-—1 )

Hence we have the new expression for H(K[Y,,], t) as follows:
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oo

K10 = g = Ym0 =) (e

r=0
Let us multiply the equality

by t? to get

had 2
z(r+m—1)tr+2: t .
m—1 (1-t)ym

r

Letn = r + 2, and rewrite the above formula:

i((n_z)ffq)t":ﬁ

:Z(n+m 3)n:$

By multiplying (m — 1) and adding t on both sides we obtain

t+Z(m—1)<";ri13)tn:t+%

Il
o

Recall that, by Theorem 3.2.10,
n—1 n n+m-—3
T =< 1 )+2(2)+"'+(m_1)( m—1 )
giving the numbers of element in B, ,,, hence
n+m-—3
Nmn — NMm-1n = (m - 1) ( -1 )
Rewriting the previous equation, we have

(m — 1)t?

mt—(m-—1)t+ Z(nm,n —NMp—1) " =t + 1-tm

n=2
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= - (m — 1)¢?
= mt+an,ntn — (m—l)t+2nm_1,ntn :t+w
n=2 n=2

(m — 1)t?
H(En,t) —H(Fp-1,t) =t + NG
Therefore we have
(m — 1)t?
H(E,,t) = H(F,_1,t) + t + W

which completes the proof.

The following formula can be found in paper by Drensky (1994).

Corollary 3.2.16: The Hilbert series of the free metabelian Lie algebra F,, is
mt—1

1-om

Proof: Cleary the formula holds for m = 2,3 and 4 by Examples 3.2.12, 3.2.13,

H(E,,t) =1+mt +

and 3.2.14. Let assume that the formula is true for m — 1 as the induction

hypothesis:
HF, ) =14 (m— 1)+ - DE 1
1-t)ym-t
By Theorem 3.2.15,
H(E, ) = H(Fy 1 6) + £ + T2 D8
1-om
(m-1Dt—-1 (m — 1t?

=1+(m—1)t+w+t+w

m-Dt—-1 (m-1)t?
d-om 1 T d-om
[((m—Dt—-1](1—t) + (m — 1)t?
a-om
m-Dt—(m-Dt>?—=1+t+ (m—-1Dt?
1-m

=14+ (m-Dt+t+

=1+tm-1+1+

=1+mt+
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:1+mt+(m—1)t+t—1:1+mt+t(m—1+1)—1
1-om 1-om
Therefore, for allm > 2
H(Fm,t)=1+mt+L_1
1-om

This completes the proof.
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