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ABSTRACT

THE CONTROL OF ROBOT MANIPULATORS
AT SINGULARITY CONFIGURATIONS

Dini, Maryam

Mechatronics Engineering

Thesis Supervisor: Assist. Prof. Dr. M. Berke Gir

May 2017, 60 pages

Singularities in manipulators are quite complex conditions where the end effector loses
its one or more degrees of freedom along or about the singular direction(s). The control of
robot manipulator in singular regions and configurations is considered as a remarkable
problem since large torques in the joints lead the robot to breakdown. Hence, these
singular configurations must normally be avoided, and defining the specified workspace
and trajectory is essential for appropriate use of robots. The reduction in the end effector
mobility affects its behavior to perform desired tasks in work space.

This study focused on the control of robot manipulator in singular region for performing
its desired task. In this order, the dynamic consistency is used to avoid any acceleration
and torque of joints which can influence the performance of the end effector. The regular
control is applied to show how singularity can affect the manipulator behavior. The
potential field controller and singular controller are used to lead the manipulator into the
singular region. The potential field algorithm based on attractive forces drew the
manipulator toward its singular configuration. The singular controller leads the
manipulator into the singular boundary to follow its desired task. At the end, applying the
switch control between regular control and singular control helps the manipulator to enter
the singular region.

In purpose to design the controllers, it is important to observe the performance of
manipulator during the simulation. MATLAB program and V-REP software are used to
build the controllers and to monitor the manipulator in singular region. In order to
develop the controllers, the essential definitions and the dynamic equations are
introduced. Then, the kinematic and dynamic analysis is presented for the PHANTOM
Omni manipulator as a RRR planar robot which used in this thesis.

Keywords: Manipulators, Singularity, Artificial Potential Fields.
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OZET

ROBOT KOLLARININ TEKIL DURUMLARDA KONTROLU

Maryam Dini

Mekatronik Miihendisligi

Tez Danigmani: Yrd. Dog. Mehmet Berke Giir

Mayis 2017, 60 sayfa

Robot kolarindaki tekillik, u¢ efektoriin tekil yon(leri) boyunca ya da etrafinda, bir ve ya
daha fazla serbestlik derecesini kaybettigi durumlarda olduk¢a karmasiktir. Eklemlere
etkiyen yiiksek torklar robotun arizalanmasina yol acabilecegi i¢in robot kollarinin tekil
bolgelerde ve yapilandirmalardaki kontr6lii dikkate deger bir konudur. Bu nedenle,
normal sartlarda tekil yapilandirmalardan kaciilmalidir ve belirlenen ¢alisma alani ve
yorlingenin tanimlanmasi, uygun robot kullanimi i¢in ¢ok Onemlidir. Ug¢ efektor
hareketliligindeki azalma, ¢alisma alanindaki istenen isleri yerine getirme davranigini
etkiler. Bu calisma, istenilen isi yerine getirmek icin tekil bolgedeki robot kolunun
kontrolii iizerine odaklanmistir. Dinamik tutarlilik, eklemlerdeki ug¢ efektoriin
performansini etkileyebilecek hizlanma ve torklardan kaginmak i¢in kullanilir. Normal
kontrol, tekilliklerin robot kolu davranisini nasil etkiledigini géstermek i¢in uygulanir.
Potansiyel alan kontrolorl ve tekil kontrolor, robot kolunu tekil bélgeye yonlendirmek
i¢cin kullanilir. Cekici kuvvetler tizerine kurulu potansiyel alan algoritmasi robot kolunu
tekil yapilandirmaya c¢eker.Tekil kontroldr, robot kolunu istenen isi takip etmesi i¢in tekil
sinirlara gotiirlir. Sonunda, normal kontrol ve tekil kontrol arasinda gecis kontroliiniin
uygulanmasi, robot kolunun tekil bdlgeye girmesine yardimci olur. Kontrolor
tasariminda, robot kolunun performansinin simiilasyon esnasinda gézlenmesi 6nemlidir.
MATLAB programi ve V-REP yazilimi, kontréler yapiminda ve robot kolunun tekil alan
gozleminde kullanilmistir. Kontrolorleri gelistirmek igin temel tanimlar ve dinamik
denklemler olusturulmustur. Son olarak, bu tezde RRR diizlemsel robot olarak kullanilan
Phantom Omni robot koluna kinematik ve dinamik analiz uygulanmistir.

Anahtar Kelimeler: Robot Kollari, Tekillik, Yapay Potansiyel Alanlar.
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1. INTRODUCTION
The term of "robot” is used to describe a device that can perceive its environment, make
decisions and after all take action. Robots have the potential to improve the safety and
efficiency in performing a task compare to human. These abilities and potentials of
robots can be provided with the vast investigations and researches in different
disciplines. Motion is common for all kinds of robots, both fixed and mobile ones. So
motion planning and robot controlling play the vital role in the function of the robot.
While motion is considered as an important task in robots, the necessity of motion
planning and control of the robot will be become more clear by the accomplishment of
the desired tasks under various constrains. Every type of robots is designed for
performing specific tasks or multi-task based to its abilities.
In motion control of the robot manipulator, there are one or more configurations which
the end effector cannot move or rotate along or about them. It means that the
end-effector losses its mobility in these directions, as a result, performing the task in
those configurations would not be feasible. In this study the degree of freedom of the
end effector becomes less than the manipulator’s, and the robot acts as a redundant
system in the singular configuration. For a serial arm robot the common singular
configuration happens while at least two links are stretching along each other or folding
completely, this configuration is known as kinematic singularity.
Kinematic singularity is one of the challenging problems in the manipulator controlling,
the main reason for this is that the Jacobian matrix rank collapses along or about the
singular direction(s). When this matrix loses its rank(s), it means that the Jacobian
determinant for non-redundant manipulator is zero and then the inverse of this matrix
will not be existed anymore. Conventionally the inverse of the Jacobian matrix is used
for transforming the Cartesian space control to the joint space control. So this method is
not sufficient in the neighborhood of singularity due to the high velocity of joints which
have significantly affected the end effector performance.
Most of the studies were done to avoid the singular region and configuration; however,
avoiding the singular region also needs to detect the singular-free region. Therefore, it is
one of the important issues to know where the singular region starts, where the vicinity
of the singular boundary is, and which posture is the singular configuration of the robot.

The main purpose of this study is to go in the singular region with the aim of



performing the desired task along singular direction. It should be considered that high
joint velocities and joint torques in the singular boundary and configuration have a
substantial impact on the behavior of the end effector for following the desired task.
Instead of avoiding singular configuration, its features and properties can be used in
practical purposes. For instance, one of its advantages is that the generated joint torques,
which can be used to pull or lift up and down the objects without knowing their weights.
Urakobo, Yoshioka, Mashimo and Wan [10] experimentally used this advantage of the
singular configuration. They described how the end effector can move the heavy object
in the vicinity of the singular configurations since the joint torques produce the efficient
Kinetic energy.

This thesis describes the singular control of the PHANTOM Omni manipulator since it

is not that much dynamically complicated for investigation.

1.1 MOTIVATION AND PROBLEM STATEMENT:

Motion control for manipulator performance is known as a key factor for working with
robots. Beside of the robot motion control, force control brings another opportunity to
control the robot. This force control gives a new development in robot control
approaches such as lower mechanical stiffness and lower weighted robots. The obvious
plus points of these improvements are power decreasing and safety enhancement.
Recognition of the manipulator singularities is the first step to control the robot in
singular region. One of the unfavorable qualities of Singularity is that it leads to
unattainable motion of the end-effector in certain directions. This problem limits joint
velocities which may cause to unlimited end-effector forces and torques.
The singular control of the manipulator has been playing a certain role in the recent
researches. Avoiding the singular configuration and region directs to separate the area
into two regions in terms of regular and singular, in this order, the attempts would be
made to maximize the singular-free region. Hence, the existence of a singular
configuration of robot manipulators has considerable impact on the manipulator
function and control. Eventually, the singular configuration is resulting in large torques
or forces on the manipulator arms, then stiffness and regular control algorithms will not
work anymore. For almost all robots manipulator, there are singularities in joint space.

2



To protect robots from singular configuration problems, many works and researches
were done to handle the singularities by avoiding them. It means that instead of
controlling and dealing with singularities, the desired tasks are planned to be performed
out of the singular region. Moreover, the robot control is designed to perform the
desired tasks ina regular region not in singular region. This is due to the fact that
many limitations and depreciation are existed for robot components. The literatures and
researches on the analysis of singularity is significant, but limited knowledge of the
singularities consequences and its resulted phenomena are not being satisfied. Among
all those different kinds of singularity investigations, the kinematic singularity
avoidance is drawn many researchers’ attention in this field.

Despite of all limitations included in singularity points, the main purpose of this study is
that how to use those outcomes as a good result for reliable control of robot in different
regions, and how the smoother transition between singular and regular regions will be
held. The approximate boundary of each region can be detected by some related
parameters such as condition number. This parameter can help to depict the variation in
its amount, especially when the robot goes into the neighborhood or in the boundary of
the singular region. But the objective idea is to know how the manipulator can detect
these kinds of boundaries and regions through the inverse kinematic approach. It should
be mentioned that in this study, the decomposing control of joint space torques and
force of operational space is chosen according to Chang and Khatib’s paper [2] since it

is practical and useful for both redundant and non-redundant robot manipulator.

1.2 CONRIBUTION:

In this thesis the in-depth research is done on the control of the robot in the singular
region with regard to the dynamically consistent. The null space motion is decoupled
from the end effector motion and it is also based on potential function to generate the
motion by the negative gradient of the attractive potential function.

Applying attractive force field leads the manipulator to its goal configuration and makes
path planning a little more complicated. To design some objects as obstacles provides
the opportunity to observe and analyze the behavior of the manipulator accurately. The
manipulator passes through the repulsive potential field and avoids any collision with

3



the obstacles to reach its final position. It helps to provide a better assumption of the
potential field application in the null space motion.

Simulating in MATLAB is used in the aim of investigation into RRR planar robot
manipulator’s singularities. In this simulation decoupling the robot control in
operational space and null space directs to better and stable manipulator controlling
which is based on dynamic consistency. Detecting the kinematic singularity of the robot
and also computing properly the Jacobian matrix are the important parts in recognizing
the configurations as the singular configurations.

In the current study a broad overview has been done on joints, control motions in the
joint space and force control of the manipulator in operational space. Finding the
singular regions of the PHANTOM Omni robot manipulator is essential to apply the
switch control between the regular and singular regions. This approach presents the
method to enable the manipulator to enter the vicinity and also to go into the singular
region with the reliable manner.

The control algorithm is performed in MATLAB in the aim of monitoring the behavior
of RRR planar robot under the singular control and to guide the end effector through
performing its desired task. The simulation is done in V-REP software according to the
dynamic properties of the real robot manipulator.

1.3 RELATED PUBLICATIONS:

This section highlights the researches were carried out the relevant fields of this study,
and also briefly explains and reviews some of the related articles.
Khatib [4] worked on performing the end effector task by involving the motion and
active force control in operational space. He built the fundamental of the operational
space equation regards to the end-effector motion control with respect to the joint force
behavior in the null space.
Based on the operational space theory and formulation, Kyong-Sok Chang and Khatib
[2] worked on two different types of kinematic singularities for identifying and dealing
properly with those singularities. First of all, they decomposed the end-effector control
in operational space from the joint control in the null space. The potential function was
also used to control the null space motion. This potential field was applied to the
calculation of the joint torques, and then this joint torques projected onto the null space.
4



The decouple control of end effector from joints was achieved by using dynamic
consistency between operational space and joint space. They worked on two different
types of kinematic singularities of PUMAS60.

In Type 1 kinematic singularity, the end-effector motion in the singular direction was
controlled directly by the motion in null space. The end-effector motion along the
singular direction was controlled by the potential function in the null space. Type 2 of
the singularity, joint motion in the null space was controlled the end-effector motion
along or about the direction which was perpendicular to singular direction. The
singularity problems which were occurred at kinematic singularity were handled by
force and motion control in the operational space and the null space of the manipulator.
Then this manipulator acted as a redundant mechanism in the neighborhood of singular
configuration.

Denny Oetomo and Marcelo Ang Jr. [8] built on Chang and Khatib’s work [4]. They
began with identifying the singular directions and then eliminating the motion’s
degenerated components from Jacobian matrix, in order to control the robot in or about
the singular direction(s). After that they applied the dynamically consistency to create
the inverse Jacobian matrix. They also tried to move into non-feasible directions by
tracking the position and orientation error in non-feasible direction with feasible
directions. For this purpose, they used the inverse of Jacobian matrix and degeneration
of the elements of Jacobian matrix, and then they performed the dynamical consistent
inverse of Khatib. It was possible to control the force and motion of a manipulator in the
singularity directions.

Caccavale, Chiaverini and Siciliano [5] tried to reach a smooth motion in the
neighborhood of kinematic singularity, in this way, they used DLS (Damped
Least-Squares inverse of Jacobian matrix) and CLIK (Closed-Loop Inverse Kinematic).
Hence, they were able to calculate the joint position, velocity and acceleration as input
for obtaining the joint torques. The base of closed loop inverse kinematics is in (pseudo)
inverse of the Jacobian matrix of the manipulator. Damp least squares inverse of the
Jacobian matrix was used for getting numerical robustness. A kinematic
control presets for a six-joint industrial manipulator by transforming the end-effector

position, velocity and acceleration into joint trajectories. This aim was gained from the

5



CLIK (second-order algorithm) and DLS (Damp least squares inverse) to control the
stable motion in the vicinity of kinematic singularities.

In the other study [9], virtual joints were used to avoid collapsing the Jacobian rank in
the neighborhood of singular configuration. This method handles the problems of
switching control between two regions in and out of singularity by maintaining the rank
of the Jacobian matrix. The benefit of using the extra joints in this method is that the
workspace does not require to be divided. In addition, the motion and force control
across the singularities is smoother. It should be considered that the end effector cannot
do the task in the degenerated direction(s), it only prevents the excessive joint rates.
Urakubo, Yoshioka, Mashimo and Wan [10] used two-link robot arms in the vicinity of
singular configuration to pull or lift up an unknown object regardless of its mass. They
have a benefit from the relatively small joint torque. This method is not implemented on
more than three-link manipulator based on dynamically consistent. The singular
configuration of two-linked robot is used to make the unknown object to follow the
desired trajectory. In the singular configuration the joint angle excessively accelerates
regardless of the object weight. On the other side, the small joint torques on the singular
configuration creates a large amount of kinetic energy. They used this excessive kinetic
energy to pull and lift-up and down of heavy object by two-link manipulator. The joint
torques depend on the joint acceleration, but their directions were related to the length
of links.

In-depth study of the singularities of robot kinematics started in the1980s, especially for
the serial manipulator. However, these studies could not compensate the lack of
defining general framework for singularities. Until 1998 [13] the singular configuration
was defined in general frame, FIKP (Forward Instantaneous Kinematic Problem) and
IIKP (Inverse Instantaneous Kinematic Problem) which were used for computing the
total configuration input or output velocities. The singularity definition was proposed by
Zlatanov. This definition was more general than those earlier types of singularities, such
as type I/l1l. He works to determine the singularity in specific configuration, not only in
real robot, but also intheory. This computation needs to know all singular

configurations for better controlling and path planning of the robot.



The difficult part of finding the exact set of configuration and singularity configurations
Is a great approach for singularity analyzing. One approach which is used by some
researchers [6] is to give the specific configuration and then check and determine it is
singular position or not. Maybe it is possible for determining some local singular
configurations. But due to the lack of direct solution for the inverse kinematics,
computing the global structure of singularities is not achievable.

There are other studies which are used geometric algebra for analyzing kinematic
singularities of manipulators. It is a common concept that the singularity relates to some
specific configurations of joints or links. For instance, when two jointed links become
aligned (stretched out or folded), singularity will occur. This kind of situation can

provide simple algebraic equations.

1.4 TERMINOLOGY:

Some terms have a specific meaning in the robotics context, they are briefly mentioned

here:

DOF (Degree Of Freedom): motion freedom of the robot which make it able to move
transitionally(x, y and z axis) and rotationally (pitch, yaw and roll).

Manipulator: An arm-like mechanism which its links are connected serially with
sliding or joints connections.

End-effector: The robot device is connected to the last arm of the robot to perform
specific task and also depends on the expected task and the function of the robot.
Configuration: A complete position specification of each point of physical robot.
Configuration space/ Joint space/ Null space: The space of all joints’ possible position
specification.

Cartesian Space: The normal Euclidean space which the end-effector operates there.
Operational space/ Task space/ Work space: The space robot’s end-effector performs
its task, with the same concepts of Cartesian space.

Forward kinematic: The mapping from joint space to operational space.

Inverse kinematic: The mapping from operational space to joint space.



Redundant manipulator: The manipulator has more degree of freedom than it’s

needed for executing the task.

1.5 OUTLINE:

This section includes a brief description of each chapter embodies in this study, with
description of contributions and the related works. The structure of this thesis is as
follows:

Chapter 2 " Operational Space Control of Manipulators” presents a good vision of
fundamental and theory concepts which are needed to tackle with the robot manipulator
motion, operational forces and joint torques. In Chapter 3 " Potential Field
Simulation” the theoretical concepts and the related algorithms are used to perform
potential function and the behavior of the manipulators on the effects of potential forces.
In chapter 4 ” Phantom Omni Manipulator” reviews and demonstrates the kinematic and
dynamic equations of the Phantom Omni manipulator which are used in this study. In
chapter 5 ” Simulation and Results” the fundamental researches in this thesis presented
by the simulation of manipulator in MATLAB coding and V-REP to depict the end
effector behavior under the control algorithms which are applied to reach the desired
tasks. Finally, in the chapter 6 ” Conclusion” the process and approaches which are took

place in this study is briefly explained.



2. OPERATIONAL SPACE CONTROL OF MANIPULATOR
In this section before going through the problem some background materials which are
used in the rest of this thesis, are presented briefly. The descriptions are more focused

on serial manipulators.
2.1 KINEMATIC MODEL.:

In the kinematic model, the manipulator has motion without including the effect of the
force that causes it. The relationship between dimensions, joints, links position, velocity
and acceleration in the manipulator is known as the robot kinematic. The kinematic is
the function of joint position and orientation. Generally it is the relationship between the
robot behavior in static space and the control parameters which defined the motion

without the impact force on it [1].

In kinematic problem of all kinds of robots, there are both Forward Kinematic and
Inverse Kinematic, which later will be explained them more. In the Forward (direct)
Kinematic, the joint variables such as position and velocity and acceleration link to
compute the end-effector variables respected to the base frame. But in the Inverse
Kinematic the work space variables (end-effector’s position, velocity and acceleration)

leads to calculate the joint space variables.

The joint motion in the joint space causes the change at the end-effector motion which
includes position/rotation in the task space. Every manipulator joint is numbered from O
to n so it has related links:

X =1(q)=f(q,q,d,0,) (2.1)

The set of configuration q =[q0,q1,q2,...qn]T is expressed the joint space. X is defined
the task space includes the rotation and position of the end-effector. Each robot
manipulator with n joints has n+1 links, joint j; connects two links together, its previous
linksl,_,with its next linkl;, generally L;is named for base link and L, defines the last

link.



2.1.1 Forward and Inverse Kinematic:

Forward Kinematic equations help to access end-effector position and orientation from
the joint angles.

X = f(q) :Lﬂ (22)

X is the tool frame position and orientation and f is a nonlinear function. p is the
positional motion of the end effector and ¢ is the rotational motion of the end effector.

The tool frame is defined by the reference frame in the base of the robot.

In the inverse kinematics, the reverse process is used to achieve the joint angle from a
specific position of end-effector. In the manipulator kinematic system the configuration
of the end-effector is the function of manipulator joint coordinate, x= f (g). The time

derivative of end-effector configurations X is the function of ( joint velocity

multiplied J which is the Jacobian matrix.

X =J(0)qg (2.3)

In order to gain end-effector desired position, it requires determining the associated
joint angles of manipulator through the inverse kinematic method. The forward
kinematic is computed from the relevant equations (2.2) and (2.3) for required joint

configurations @,, 0,, ..., 6, which makes it possible to get the desired result from the

robot end-effector.

Many manipulators decompose the inverse kinematic problem into two simple one: For
getting position variable, inverse kinematic used as: (X, Yy, z)—(ql,q2,q3) and for
orientation: R—(q4,95,96).
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2.1.2 Jacobian Matrix:

A robot Jacobian matrix computes the inter-relation between the velocities of task space
and joints space. It means that joint velocities can calculate the linear and angular

velocities of work space end-effector.

Generally Jacobian matrix columns individually can express the effect of each joint on
the end-effector position derivative. So the end-effector linear or rotational velocity is

the composition of joints angles’ derivatives:
. v ]
X=| |=J@9q (2.4)
()

By presenting n joints and their linear and angular velocities, the Jacobian can be

calculated such as follows matrix:

'8_x a_x _
o, o (2.5)
]=
_aql ’ vaqn |

In the above matrix first three rows compute linear velocities in each joint and the last

three rows express angular velocities.

Jacobian determines a relationship between the end-effector velocity (Cartesian

velocity) and the joint velocity.

The higher derivative is calculated by the differentiation of the equation (2.3):

X =J(@)4+J(a)q (2.6)

The velocity of the Jacobian can be used in many cases such as the relationship between

the applied force F and torque on the end-effector with joint torques 7 :

11



r=J"(q)F (2.7)
2.1.3 Singular configuration:

The Jacobian is compiled by the joints variable and the rank of the Jacobian which is
min (6, n); n is the number of joints. If the Jacobian loses its rank it is known as the
manipulator is in singularities, hence these configurations are called Kinematic

Singularities. The singularity configurations are important due to some main reasons:

The manipulator loses its capability of motions in some configurations and the
end-effector is not able to move arbitrary in some directions. In the vicinity of the
singular configuration a small velocity in operational space can generate a large velocity
in joint space. The kinematic singularities may be without solution or with infinite

solutions.

Generally the singularity is the configuration where the manipulator end-effector cannot
move at or in the workspace boundary when two or more link is lined-up. The kinematic

singularity is the set of singular configurations:

S(a) =s,(q).s,(q)...s,(a) (2.8)

At the singularity the Jacobian determinant for non-redundant manipulators becomes

equal to zero: |J|=0so0 J7*(q) does not exist.

Those components of Jacobian matrix which are in the direction of singularity are
eliminated so the rank of this matrix is less than its full rank. There are different types of
singularities, maybe more than one, which the joint angles excessively accelerate and

large kinematic energy generated from joint torques. When the Cartesian movement is

near the singularity, it causes joint large velocity ¢ = J *(q) X .

Most of the robot manipulators have one or more singularity position, so it is very
important how to deal with singularity configuration. So depends on using the
singularity or avoiding from it, it is important considering the accurate trajectory.

Motion control should be planned whether to avoid from or go through singularities,

12



because near this singular configuration possibly there are many solutions or no solution

for the inverse kinematics problem.

Singularities occur inside the boundary of the workspace or on the border of the work
space when the motions of two or more links are aligned in the workspace area. On the
border of task space when the manipulator arms stretch out or fold, it can generate
singularity. Generally, when there is a change in the expected or typical degree of
freedom of a robot manipulator configuration it can be recalled as kinematic singularity.
This definition will be explained in more details, especially for the rank of Jacobian
matrix when there is a change in the joint variables as input and end-effector position as

the output.
In purpose to denote the kinematic singularities characters in brief:

a. Sometimes a manipulator controlling in work space goes into difficulties since
mapping from joint space to work space has a problem. This problem for robot

positioning is named as singularities.

b. At the singular configuration the mobility of the manipulator is losing and the
motion of the end-effector in work space lost. This problem is known as losing a

degree of freedom.

c. A common term in singularities is singularity boundary which is the same with
work space boundary. It is required to reach to maximum work space by
stretching the manipulator links to move into the maximum area as work space

area.

d. For the internal singularities may be infinite solutions. A small work space

motion may need lots of joint velocities which cause problems.

e. By the determinant of the Jacobian matrix of the manipulator, singular position

and configuration could be found.

13



2.2 DYNAMIC MODEL:

Dynamic models of the robot describe the relationship between the motion and
associated force and torques of the end-effector. During the motion the kinematic forces
of static status turn into inertial, centrifugal and Coriolis forces that have a large effect
on the performance of the end-effector, especially when the motion speed and

acceleration exceed.

In the operational space the end-effector equation of motion is:
AKX+ u(X,X)+ p(x)=F (2.9)

Where A(x) is the kinetic energy matrix, u(x, X) represents the end-effector centrifugal
and Coriolis forces, p(x) is the gravity force vector and F is the vector of operational
force [4].

The motion equation of manipulator in joint space is:

A(@)d+b(a,d)+g(q) =T (2.10)

Where A represents the kinetic energy of joint space, b is centrifugal and Coriolis and g
is gravity matrix respectively.

From the motion equation of manipulator in joint space (2.10), the inverse dynamic

equation can be computed as:

4=A"(@)T~-(b(a.q97)+g(a) (2.11)

The relationship between each similar component of motion equation in operational
space and joint space can be found as followings:

A= @A (@I (@) (2.12)

This above equation shows the kinetic energy matrix of operational space and joint
space.

The relationship between b(q,q) and u(x,X)in operational space and joint space
respectively is:

p(x, %) =377 (a)b(a,§) — A(@)h(a, &)

h(a,d) = J(a)qg (2.13)
14



The equation (2.13) depicts the relationship between the gravity forces in operational
space and joint space one:

p(x)=J7"(q)g(a) (2.14)

By using all equations (2.9), (2.10), (2.11), (2.12) and (2.14), the established equation
between F and I' is written as:

I (@)[A@)G+b(a,d)+g(a)]=F (2.15)

And the main relationship between end-effector and the manipulator dynamic equation
iIs represented in the following equation:

r=J'(qF (2.16)

This equation is the basis of manipulator control in operational space. Where F is
known as end-effector operational force and I' is the manipulator joint force.

2.2.1 Motion Control in Operational Space:

The operational control of the end-effector is directly depends on the joint space control
of the manipulator. In this regards there are many approaches to establish the safe and
stable control between these two systems. One of these practical approaches which
Khatib [4] used in his method is a nonlinear dynamic decoupling approach. The

structure of this approach is decoupling the end-effector controlling as below:

F = Fm + Fccg (217)

Fo = AMF,

n ] R 2.18
Fooy = A0, X) + P(X) (218)

As could be seen, A(x),2(x,X), p(x) are the estimation of kinetic energy matrices,
centrifugal and Coriolis forces and also gravity force. F._is the end-effector command

vector in this approach. With this fully exploit of nonlinear dynamic approach, the end
effector becomes like a unit mass.

15



For performing the desired task of end-effector in operational space, it is necessary to
have the desired acceleration and velocity and position of it. So the command vector of
the decoupled end-effector is obtained as:

Fm:Imox.d_kp(x_xd)_kv(x_xd) (2.19)
Where Imois a mo by mo Identity matrix, k ; andk, are gain matrices.

If command vector equation (2.18) substituted into (2.16), the joint force control vector
is computed as follows:

I =J7(q)A@)F, +B(@)[adl+C(a)[4*]+g(q) (2.20)

B(q) & C(q) are the dynamic coefficient of isolating end-effector. It means that they are

joint forces under the mapping of end-effector Coriolis and centrifugal forces in the

joint spaces [11]. In Figure (2.1) the motion controller diagram is illustrated clearly.

Figure 2.1: End — effector motion controller diagram

Fsensor

Position/velocity
EVALUATION

omega pelLambda_0 = w! Jo -1(0)

— O K

dlxd

B(d).C(a)a(g

dx

2.2.2 Dynamic Consistency:

Decoupling of the manipulator motion in the null space from motion in operational
space is one of the approaches to obtain the dynamic consistency of manipulator [4]. It
means that any null space torque changes should not create any acceleration in

operational space.

In this achievement the relationship between joint torques and operational force is as

follows:
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C=J"(Q)F +[1 =37 (@) 3" (@I, (2.21)

J is dynamic consistency which generalized Jacobian matrix inverse:

J=AMa)I" (a)A(a) (2.22)

As explained in this chapter, q is joint coordinate vector, A is a kinetic energy matrix in

joint space, J is Jacobian matrix, A is kinetic energy matrix in operational space and F is
operational space control forces act to end-effector. [I —J7 (q)J " (q)]is the projection on

null space and I", is torques of joint control for desired movement in null space.

The (2.21) relationship shows the decomposition of joint torques into two decoupling
dynamic controls. J'(q)F joint torque, which is related to active force on the
end-effector and the second part [I —J7(q)J " (), joint torques that has affected the

joint motion in null space.

The main purpose is the maintenance of the end effector motion in task space by
operational forces which controlled the end-effector position, while the manipulator has
motion in null space. The null space torque (I'o) is produced by the negative gradient of
the attractive potential function (VVo); I', =—A(q)(gradV,), A is a weight to account for
the manipulator dynamic. In the next chapter, potential field is applied to RR planar robot
in MATLAB.
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3. POTENTIAL FIELD SIMULATION
One of the approaches for path planning of manipulators is potential field, especially for
robots with the representation of obstacles in their task spaces. The potential field is
similar to the electrostatic field which is assigned to obstacles and the manipulator has
motion in the field of forces. The desired position is attractive pole for the end-effector
and obstacles surfaces are repulsive force for manipulator parts, links and joints [3].

3.1 INTRODUCTION:

Treating the configuration of the robot in potential field with the combination of
attracting to the specific goal and repulsing obstacles is an approach with advantages and
disadvantages. The less computing trajectory process would be considered as its
advantage and the probability of getting stuck in local minima in this field and losing the
path could be remarked as disadvantages of this approach. The goal position of the
end-effector is considered as an attractive potential field and the objects or obstacles
cause collisions with manipulator parts are known as repulsive fields. The tool or
end-effector is drawn to the goal position or direction by attractive force and the joints
avoid from collisions by repulsive forces which come from obstacles. If the attractive
force and the repulsive forces become balanced, it means their resultant force equals zero,
so no progress will be occurred in the manipulator motions. The desired result would be
the end-effector motion toward the goal configuration while the manipulator parts try to
avoid any collision with the objects scattered in the joint pace. The attractive force
decreases while the end-effector approaches to its final configuration as a goal position,
and repulsive forces increase when robot parts are near the collision.

U is known as a field which includes an additive field consisting of one component that
attracts the manipulator to g final and the other component that repels the manipulator
from the boundary of the configuration space obstacle.

U(@@) = U, @) + U, (a)

@) = VU@ =—(VUL@ + VU, @) (Up@ = YU@) O
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Uatt is the attractive potential which moves toward the goal and Urep is the repulsive
potential which avoids obstacles. Energy is minimized by force as the negative gradient
of the potential energy function is applying on the manipulator, -V U(q).

In the attractive field, the field grows linearly with the distance (conic well potential)

when the goal position is near (|(d(q)-d"(0lgea)

) and grows quadratically with the

distance (parabolic well potential) while the end-effector is very far from its final

configuration (% & |d (@) — d (agoa) .

%gdz(qiqgoal)’ d(q!qgoal)gdgoal
U, () = (3.2)
d;0al gd (q’ qgoal ) - % é(d;oal )2’ d (q' qgoal) > d;;oal

$(9—Ygoar): d(9, Agoar) < oy

VU, ()= (3:3)

d;oalé:(q — Ogoar)
d (9, dgoar)

’ d (q1 qgoal) > d;oal

d is the distance while moves from conic to parabolic well potential, q is joint

configuration, q goal is the joint goal configuration and ¢ is the parameter to scale the

effects of attractive field.
When the obstacles are very far from the robot parts, they do not have an influence on the

manipulator, as a result, the repulsive potential field will be equal to zero. In the definition
of repulsive potential field boundary, if this condition (d, (q)) < Qi) is met, obstacles will

influence the manipulator.

e B LR
U repi (q) = (34)
0, it 4@>Q
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11 ) 1
Q  di(r, (@) d’(r;(@)
VU, (@)= (3.5)
0, d(r(@)>Q

77,'( di(rj () SQ,*

q-c

vd,(q) = (3.6)
d(a,c)

Where g-c is the distance between joint and obstacles, c is the point in the boundary of

the obstacle which is nearer to . d(g) is the shortest distance between joint

configuration and a configuration space obstacle boundary, Q* is the distance of

influence of an obstacle. n is a scalar gain coefficient that depicts the repulsive filed

influence. The gradient of the distance to the nearest obstacle is Vd (q).

In this chapter, field of attractive force and repulsive forces are applied on planar
two-link manipulators. In MATLAB programing the potential field control algorithm is
applied to see the behavior of this planar manipulator. Moving towards the goal position
and avoiding any obstacle collision generates a specific trajectory for manipulator,
which affected by the artificial potential field U. Potential field should be computed for

every @, as a manipulator configuration.

U
e.g., if g(x,y) €R* and gradient of U at qisVU (q) = gLXJ then:
o
ouU ouU
VU| =, [(=)? +(=—)? 3.7
VUl=\G + () (37)
F (q) = _VUatt (q) -VU rep (q) (38)

When g goes far from its goal configuration the attractive potential force increases for
drawing it to the desired position, while g is near the environment of an obstacle the

repulsive force field from the surface of that obstacle repels g to avoid any collision.
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3.2 RR PLANAR ROBOT SIMULATION:

In this section, the potential functions are applied on 2-arm planar manipulator. The
behavior which is expected from this manipulator is to avoid any collision with the

obstacle surface and keep moving to get the target configuration.

The concepts and equations which are used in this section are briefly described for
better understanding of manipulator behavior. In this simulation both arm length and

mass are equal to unit of values.
F, =ddx, + K, dE +K E_ (3.9)

In the computing of the command vector F_ equation, ddx,is the desired acceleration
and K K__ are gains for velocity and position control respectively. Error in the

Vm 7 pm

position ( E, ) and error in the velocity (dE,,) are as below:

E, =X, —X

m

dE. = dx, —dx (3.10)

The operational space dynamic equation includes the inverse of Jacobian matrix and

kinetic energy matrix from the equation J*(q) = A(x)JT (9)A™(q) .

The end effector speed is according to the equation (2.3), includes joint 1and 2 angle

velocities.
The forward kinematic equation for this 2R-planar robot is:

X =1,cosé, +1, cos(é, +6,)

. . (3.11)
y=1Issinég +1,sin(6, +6,)
So the Jacobian matrix can be calculated as:
|:_I1$1 - IZSIZ’ _Izslz :|
J= (3.12)
Ilcl + |2C12’ |2C12
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And the mass matrix, centrifugal and Coriolis and also gravity matrix are all computed
by:

2 2 2
_ m2|2 +2m2ll|2c2 +(m1+m2)ll ' m2|2 + m2|1|2c2

T mlZmlle,  myl2 (3.13)
C, =[ -m,ll,s,dqf —2m,L1,s,da,da,; m,Lls,dgy; | (3.14)
G, = [m.l,gc,, +(m,+m,)lgc; m,l,9c;, ] (3.15)

Now the potential force for joints land 2 are computed individually. The joint space
torque is calculated by the sum of both joints torques:

I=T,+T, (3.16)

The following Figure (3.1) is depicted path and behavior of 2R planar robot for reaching
target position, in the influence of repulsive and attractive potential field. It is clearly
illustrated the repulsive forces how affect every individual joint for the purpose of
avoiding the collision. The forces from the final configuration attract the joints to place

in their desired positions.

Figure 3.1: 2R Repulsive and Attractive
Potential Field
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In the color print, Figure (3.1) shows attractive forces in green line and repulsive forces
in violet line and the red line shows the path which the end effector follows its desired

position.

As it can be followed from Figure (3.2) that the RR manipulator starts to move from the
initial position [0, 1] to a the goal position of joints [0, 1] for first joint, and for second
joint moves from [0, 2] as the initial position to a goal position [-1,1]. The obstacles are
located in [2, -0.5] and [-2, -0.5] positions. As depicted, the motion of each joint is
influenced by the potential forces, in the way to lead the manipulator to its desired joint

configuration.

Figure 3.2: 2R Planar Manipulator Final Position in
Potential Field

2.5

1.5
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4. PHANTOM OMNI MANIPULATOR
The PHANTOM Omni is a 6R haptic device as shown in Figure (4.1). It has three drive
motors which are attached to its three first joints. These motors can only give the position
of end effector which is set by the computer. The first three joints are used for positioning
the end effector and the rest three joints are used for finding the orientations. The last
three joints can be considered as spherical joints due to their intersection in one point. In

this study the first three joints are used.

In this thesis, the PHANTOM robot is controlled in the purpose of following its desired
task in the singular region. The end effector requires both motion and force control for

representing its accurate task and performance in operational space.

In order to achieve the dynamic consistency in PHANTOM Omni, decoupling the null
space motion from operational space motion is necessary. This can be achieved by
computing the kinematic and dynamic equations and the relationship between operational

forces and joint torques.

Figure 4.1: PHANTOM Omni manipulator

4.1 FORWARD KINEMATICS

For computing the kinematics of PHANTOM as the others manipulator the frames should
be defined at first. Figure (4.2) shows the frames fixed on PHANTOM.
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Figure 4.2: PHANTOM with frames axes

link 1
L

Source: Beckman, John Albert, the phantom Omni, UMI Number: 1447474 .Figure 3.2

Denavit—Hartenberg method can be used with four parameters of joint positions and

orientations.

DH parameters express the position vector of an arbitrary point on the link or joint of
manipulator respect to its base, it is a standard method to determine link and joint
position. A brief expression of each parameter is defined as below:

a, . Distance between (Z;,Z,,,) along X,

. Angle between (Z,,Z,,) about X,
d,: Distance between (X,,,X;) along Z,
. Angle between (X, ,,X,;) about Z,

Denavit-Hartenberg parameters can be written in various ways for each robot. It depicts
the position of each link regarding the position of previous link from the base frame to
the end-effector frame.

The base frame is called frame 0 which is attached to the ground and the end effector
frame is defined as frame 4. By using the DH parameters as Table (4.1), it is easy to
describe the architecture of the PHANTOM Omni robot manipulator.
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Table 4.1: PHANTOM Omni DH table

| o; a, d, o,
0-1 0 0 0 o,
1-2 | -m/2 0 0 o,
2-3 0 11 0 o,
3-4 0 12 0 0

The transformation matrices refer to each frame are calculated as follows:

_cosal -sing;, 0 0 ] _COS(XZ -sine, 0 0 ]
sing,  cosey 0 0 0 0 1 0
T = 7=
1 0 0 LI i -sine, -cosa, O O
0 0 0 1 0 0 0 1
_cos% -sine, 0 | ] 1 0 o 1, |
Sina,  CoSa, 0 0 0 1 0 0
T o 0 1 0 T = (1)
0 0 1 0
0 0 0 1 0 0 0 1]

The end effector homogeneous transformation matrix with respect to base frame is given

as:

=TT (4.2)
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oy

cosa, COS(e, +a,) —cose,sSin(e, +a,) —sSing,

sing, cos(e, +a;)  —sing;sin(a, +a,)  C0Sey
-sin(a, +as) —cos(e, +as) 1
0 0 0

l, cose, cos(a, + ;) +1, cose, Cos e,
l,sine, cos(e, +a) +1, Sine, cosa,
l,sine, -1, sin(e, + ;)

1

X,y and z coordinate of the end-effector are as below:

X =1, cos¢, cos(e, + ;) +1, cos ¢, cos

y =1,sin¢, cos(e, +a,) +1, Sin e, cos ax,

z=Isina, —1,sin(e, + ;)

The Jacobian matrix of PHANTOM Omni computed as following:

-sine, (I, cosa, +1,008(cr, + ) —cosey(l,sine, +1,sin(e, +2;)) |, cos e, Sin(er, + ;)

J =] -cosa(l, cosa, +1,c08(ct, +@,))  —siney (| Sine, +1,8in(e, +@,)) 1,8ine sin(e, + ;)

0 -1, cose, -1, cos(e, + ;)

4.2 DYNAMICS

|, cos(e, + )

(4.3)

(4.4)

(4.5)

In this study, it is important to know the dynamic of the PHANTOM Omni manipulator

in the purpose of applying the regular and singular control on RRR serial manipulator.

In this section, a dynamic analysis for Omni is presented based on the Newton-Euler
algorithm [12].

In the Newton-Euler formulation, the equations describe linear motion and angular

motion for each link of the manipulator. Of course, since each link is coupled to other

links and between them there are action and reaction forces. So these equations of each

link contain coupling forces and torques. By computing the inward and outward

iterations it is possible to determine all terms of each link as velocity, acceleration, force

and torque.
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The following equations are used for outward and inward iterations to compute the joint
torques and forces and calculate the links velocities and accelerations. Outward iteration
(joint 0 to 2) computes link velocities and accelerations, and by using inward iteration

(joint 3 to 1), link forces and torques are determined.

Outward lteration:

Yo, ="R'o +0,,""2, (4.6)
Y, ="RG + R %G, "7, +6, 2, (4.7)
N = "RCG < P+ g x (o xRy + ) (4.8)
Wy = M, % Py + My < (May < R + L) (4.9)
ME, =m, x " (4.10)
N = S Ml + e e (4.11)
Inward Iteration:
'f= R +'F (4.12)
ini = iNi + i+1iRi+l i+lni+1 + iF)ci+1 X iI:i + iR+1 X i+1iRi+1 " fi (4.13)
r,="n"'z (4.14)

The dynamic parameters of the PHANTOM Omni are calculated by considering each
link in cylindrical shape which the diameter of every link is less than its length. The
gravity center of each link is the distance between the origins of link frame to the link

center of gravity.
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Figure 4.3: Inertia Calculation

Yo

By assuming link 2 and 3 as slender rods with cylindrical diameter which is shown in
Figure (4.3), their moments of inertia can be calculated by equation (4.15). Ixx is zero

since the x axis is a symmetry axis.

l, 0 0 0 0 0
l,=|0 1, 0 |=[0 m?/3 o0 (4.15)
o 0o 1, | [0 0 mli?/3

For the first link, moment of inertia is computed by assuming it as a solid sphere. Center
of mass coordinates is shown in equation (4.16), where m is the mass of the link and | is
the length.

P.,={0,0,0},F., ={l,/2,0,0}, P., ={l,/2,0,0} (4.16)

In order to assume the center of mass is too close to the first link rotation axis, its mass

location is considered as zero.

The dynamic equation of motion for the Omni robot is derived regarding to each link
inertial parameters. The mass matrices (M), centrifugal and Coriolis matrix (b) and

gravity (g) one are calculated in the form of the equation (4.17).

M 0007 o] fo] [T,
0 My, My qz"'bz"'gz :Fz

0 m32 m33 0 b3 0, Fs

(4.17)
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Each element of mass, centrifugal — Coriolis vector and gravitational vector is calculated as
followings. Assume that ci = cos(qi), si = sin(qi), cij = cos(qi + gj)and sij = sin(qgi + qj), (i
=1,2,3andj =1, 2, 3) anddq(1) = q(4), dq(2) = q(5), dq(3) = q(6).

= (1/8)(8(5; ) 1o + 8(5:5" ) los + 41y (14C, ,) +
41,5 (14C, 55) + 8l +(I7)my(1 + ¢, ,) +
4(12)my(1+c, ,) + 4lmy(c,+cy 5) + (17)My(1+¢, 1))
(1/8)( (41,00 + 415 +12m, + 4myl2 + dclm, + (1,7)m ))
(1/8)2(4l,, + I,m,(2c), + 1,))
w = (174)(41,, + 1L,m;(2c), +1,))
(1/ )( s+ M (1, ))

(4.18)

41
41

h=b+g

h1 = 1/8(2q(4)(q(5)(482_2(Ixx2 - Iyyz) T 432 23(|xx3 o yy3)
- 52_2(|12)(m2 +4m3) - 4322 3I1I2m - S2_23( 2)m3))+
4523q(4)Q(e)(C23 (4|xx3 — 4l yy3 +| m ) 2|1|2m302)) (4.19)
h, :1/8((q(24))(452_2(|yy2 - Ixxz) + 432_23(|yy3 - Ixx3) +

52_2(|12)(m2 + 4m3) + 4322_3I1I2m3 + 82_23(|22)m3) -

4(gC23|2m3 +Ilgc2m2 + 2|1gm3c2) + 8q(5)q(6)s3lll2m3 + 4Il|2m3s3q(6)2)

hy = 1/4(=2L,m,gc,, + 25,05blm, — S, (a0 ) (4, (1 —1ys) -
_Izma (2C2|1 + Czalz )))
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4.3 SINGULAR CONTROL OF OMNI MANIPULATOR

The robot manipulator in singular configuration behaves as a redundant robot which
means that the rank of the Jacobian collapses by eliminating the row along the direction

of the degenerated direction.

First of all, for applying the singular control, it is required to compute the singular
Jacobian matrix of the PHANTOM Omni. This Singular Jacobian is built on the
singular frame of the end effector respects to the base frame of the manipulator. It
means that the singular frame could be different from the end effector frame. To be
more direct, the singularity can be occurred not exactly along or about of end effector
axis. Therefore, it is essential to calculate the rotation matrix of singular frame respects
to the base frame. This rotation matrix is used to find the Jacobian matrix of the singular

configuration.

Each link rotation matrix can be extracted from the transformation matrix of that link.
0p _ 0p 1p2p 3
sR_leRsRsR (4.20)

SSR IS a rotation matrix where the singular frame is different from the end effector’s

frame. The singular frame could be found from the singular configurations by

computing|3|: 0. In this study, the singular rotation matrix of PHANTOM Omni is an

identity matrix, which means that the singular frame and end effector’s frame are the

Same.

The singular rotation matrix is used to compute the singular Jacobian matrix J as

below:
Jo = JRJ (4.21)

In this study, J is the full-ranking Jacobian matrix of the robot, x direction is the
singular direction and the components of the Jacobian matrix along this direction are

eliminated. So J g isJs with the components of the matrix along y and z directions.
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The operational space inertia matrix from equation (2.12) is determined as:

A(X)= 1" (@)A@a )k

And then dynamically consistent inverse of the singularity Jacobian is computed as:

I7() = A() " (@)A™(a)

"y" and "z" coordinates are in task space which x is in null space. Task space’s desired
velocity and acceleration are zero, but null space’s desired velocity and acceleration are
derived from the desired motion equation along x direction.

Total torque is based on the dynamical consistency of the operational forces and null
space torques for this robot in singularity region isT" = J ' AF, . +[1 —=Jg' I, .
Figure (4.4) depicts the motion control of end effector along a desired direction in the
task space. The controller compares the actual end effector position and velocity in task
space with the desired end effector position and velocities. The components along
degenerated direction(x) are controlled in null space and the components along y and z
direction are controlled in operational space.

As explained, the Jacobian matrix in this controller is the singular Jacobian matrix
which includes the rows along two task space directions y and z. It should be considered

that the first row along x direction as the singular direction is eliminated.

Figure 4.4: Task space motion control

JSRAFm—TS

Controller ROBOT

The control diagram as shown in Figure (4.5) demonstrates decomposition of motion

control in the joint space from the operational space motion control. This decoupling is

32



based on achieving the dynamically consistent behavior of the manipulator. It means

that the null space motion control torques should not have any alteration in the end
effector function.

Figure 4.5: Singular control of manipulator
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The null space torque was eliminated from the control algorithm in order to investigate
the effect of null space control on the singular controller. From the Figure (4.6) can be
obviously seen that the robot was not able to follow its desired direction. It means that
the robot was unable to enter the singular region, and before the singular boundary it
started to have unstable motion. Therefore, the singular control is necessary to lead the
robot to its desired task along the singular direction, from the vicinity of singular
boundary into the singular region.

Figure 4.6: Eliminating Null Space Torque from Singular Control
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5. SIMULATION AND RESULTS
In order to observe the performance of controllers in the vicinity of singular boundary and
also in the singular region, MATLAB and V-rep (Virtual Robot Experimentation
Platform) are used for simulation. V-rep as a manipulator simulator [7] can be run and
communicate with the other coding language via remote API programming (Application
Interface). MATLAB sends and receives data to and from V-rep as shown in Figure (5.1).

V-rep is used for different applications such as fast algorithm development, industrial
automation simulator, quick prototyping and verification and remote controlling. This
simulator allows controlling simulation remotely from a real robot or another PC. It
includes four physics engines (Bullet Physics, ODE, Newton and Vortex Dynamic) for
fast and customizable dynamics calculation, to simulate real-world physics and object
interactions. V-rep can calculate forward /inverse Kinematics of any type of mechanism.
It contains powerful and realistic and accurate sensor simulation which can calculate

minimum distance within the customizable detection volume.

Figure 5.1: MATLAB and V-rep Communication

Torques(input)

MATLAE V-REP

Dynamic parameters

In this chapter, the PHANTOM Omni behavior is monitored in MATLAB and V-REP
under regular control and singular control and switching between these two controllers in

the vicinity and inside of singular boundary.
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Figure 5.2: Phantom Omni Robot in V-rep environment
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In V-REP simulation the Omni robot is imported as URDF (Universal Robot
Description Format) as depicted in Figure (5.2). The behavior of this robot and the
environment where is working, is very similar to a real robot. So it is preferred to
investigate on the robot control near and also in singular boundary. Joint limitation of
the real robot and the danger of damaging itself in singular boundary and configuration

are other important reasons to simulate with V-REP in this study.

The controllers’ algorithms are built in two different initial positions of PHANTOM
Omni. The desired motion equations are changed regarding each initial position. The
end effector is expected to have motion along x direction as a singular direction and to
reach the singular configuration. For Omni manipulator, the purposed singular

configuration is achievable when two adjacent links are stretched along each other.
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5.1 POTENTIAL FILED CONTROL

As explained in Chapter 3, one of approaches to control the manipulator for performing
its desired task would be the attractive potential field. In this part of the simulation
Omni robot manipulator is controlled to achieve its desired position and motion by

applying the attractive potential filed.

First the initial positions of the joints are defined and the final position as a goal
position is assigned in potential filed algorithms. The initial joints angles are qo[O,
60,120] xn/180 and the initial x0 of the end effector is computed as [0.135,0,0](m) and
the desired motion of the end effector along x direction is defined as: xd = [(xO+
(0.135/20)*t), 0, zO( Nt )], where xd is desired direction along x axis and any movement
along or about y axis is considered zero and z is computed regarding to the time
iteration (Nt). x0 and zO0 are representing the initial x and z position of the end effector.
No motion and rotation should be done along or about y direction. This equation is

derived from the condition that the end effector reaches its final position in t=20 sec.

From the Figure (5.3 a) the applied torques on joint 1, 2 and 3 could be seen. The first
joint torques are equal to zero, which means that there is no torques on this joint for
moving and rotating so this joint is fixed without any motion.

Figure (5.3 b) illustrates the motion of end effector in x, y and z direction. This figure is
also shown the actual motion of end effector in three directions (x, y and z). It also can
be seen that the end effector follows the desired x and y with high accuracy, but there is
considerable error between actual motion and desired motion along z direction. One of
the main reasons for this difference could perhaps be because of the mismatch between
the real Omni robot and URDF model in V-rep. It means that the length of the links in
URDF is not exactly same as the real Omni. Therefore, dynamic properties of V-rep
model such as mass, inertia matrix and Center Of Mass are different from those features
of computed in MATLAB. These differences cause that the torques which sent from
MATLAB to V-rep were not enough to move the end effector along the desired z
direction. But the torques would be adequate for the motion of the end effector along x

direction to follow its desired task.
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Figure 5.3: Potential Field Control for Omni Robot in V-REP

(a) Joints Torques and (b) End effector motion
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5.1.1 Potential Field in Singular Control

In this section the attractive potential field is applied in the singular control of Omni
manipulator. The attractive field is used to calculate the null space torque. Regarding to
the initial position which is defined as initial joints angles qo[0, 60,120] xn/180 and
initial x0 of the end effector is computed as [0.135,0,0](m). The desired motion of the
end effector along x direction is defined as: xd = [(x0+ (0.135/45)*t), 0, zO( Nt )], where
xd is desired direction along x axis and any motion along or about y axis is considered
zero and z is computed regarding to the time iteration (Nt). x0 and z0 are representing
the initial x and z position of the end effector. No motion and rotation should be done
along or about y direction. This equation is derived from the condition that the end
effector reaches its final position in t=45 sec. The final position as a goal position is
assigned in potential filed algorithms.

Figure (5.4 a) illustrates the motion of end effector in X, y and z direction. This figure is
also shown the actual motion of end effector in three directions (x, y and z). It can be
seen, the end effector follows the desired x and y with high accuracy.

As expected, there is no motion in y direction due to lack of applied torques on the first
joint names as U1.

From the Figure (5.4 b) the applied torques on joint 1, 2 and 3 could be seen. The first
joint torques are equal to zero, which means that there is no torques on this joint for
moving and rotating so this joint is fixed without any motion. The torques on second
and third joints is large enough to move links in the purpose of following the desired
task.

In this simulation, the potential field control at the singularity can be seen. The end
effector follows its desired motion, in x direction same as the singular control. This
means that the potential field can lead the end effector to perform its task at the singular
configuration. The error in z direction happened due to the mismatch problem which

was explained in the previous section (5.1).
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Figure 5.4: Potential Field in Singular Control for
Omni Robot in V-rep
(a) End effector motion, (b) Joint Torque and
(c) Condition Number
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5.2 REGULAR CONTROL

In this controller of PHANTOM Omni, the last two links should have motion to lead the
end effector along x direction. It is not expected to have any rotation and movement
about or along y axis. If these conditions are correctly performed Omni manipulator acts
like a RR planar robot. So for applying the regular control, at first it is required to
perform regular controller in MATLAB for monitoring and observing the performance
of the controller on this robot.

According to kinematic and dynamic of Omni robot, from Chapter 4, the regular control
is performed for monitoring how this Omni manipulator behaves while it is approaching

the vicinity of singular boundary.

Referring to Figure (5.5) the manipulator starts to move in x desired direction, but
almost after couples of seconds it stops and will not be able to follow the defined
direction and behaves in an unstable manner. It shows that in the regular control, the
robot cannot enter the singular boundary. In this simulation, the initial position is
defined as [0 -60 120] degree and this regular controller of the robot cannot establish the
stable behavior of the robot to track the desired direction in the neighborhood of the

singular boundary.

The desired task direction for end effector is defined along the x direction. The
movement along or about y axis is expected zero. The manipulator acts as a planar
robot:

xd = [(x0+ 0.00675*t), 0, z0 zO( Nt )], where xd is defined as a desired direction along x
axis and any motion along or about y axis considered as zero and z is computed

regarding to the time iteration (Nt).
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Figure 5.5: Regular Control for Omni Robot in MATLAB
(a) Joint Angle, (b) Joint Velocity and (c) End effector
position
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5.3 SINGULAR CONTROL

As explained in the previous chapter, in the singular control of Omni manipulator, the
robot completely follows the desired direction outside and inside of the singular
boundary. Finally manipulator reaches the singular configuration in a stable manner.
The Condition number which is the largest singular value of the Jacobian matrix over
the smallest value is used as a parameter to detect the singular boundary. When the
manipulator approaches its singular position this number increases to the highest value.
In Figure (5.6) for MATLAB simulation of singular control, it shows how the Omni
follows accurately the desired direction and also depicts the enhancement of Condition

number value in the vicinity of singularities.

Figure 5.6: Singular Control for Omni Robot in MATLAB
(a) End effector Position and (b) Condition
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5.4 SWITCH CONTROL

In this study, the parameter which is used for recognizing the singular boundary is
known as Condition Number. It is chosen as the case for switching between regular
control and singular control in V-REP simulation. This parameter is the ratio of the
largest to the smallest singular value in the singular value decomposition of the Jacobian
matrix. Depends on the robot manipulator structure-design the regions outside and
inside of the singular boundary are different. In this simulation, it is possible to use the
switching control regarding to dynamic of the robot and its singular boundary. In the
other word, the normal region needs to be large enough to show how the switching
control works between regular control and singular control, out of singular boundary

and inside the singular region.

In this thesis, respect to various initial positions, the controller is performed under
regular, singular and switching control of PHANTOM Omni. This manipulator behaves
differently in the singular boundary under various the controllers. In this order, joints’

positions and torques are monitored in V-REP simulation graph individually.
5.5 V-REP SIMULATION AND RESULTS

In this V-REP simulator, the torques are sent from MATLAB coding as input to Omni
in V-REP, the joints’ and end-effector’s actual motion and also torques and dynamic
parameters, all are obtained from V-REP and then sent to MATLAB.

First the manner of the manipulator is monitored under regular control and then singular
and switch controls. It will show how the robot acts under these controllers, before and
after passing singular boundary and region. MATLAB is used as a client to read data

from V-REP as a server to receive/ send data.

The initial position which will be seen in the next section, is the first, second and last
joint angles in V-REP: [ql,qz,qs] . X, y and z are end effector motion along the singular

direction , y axis and z axis in [m] unit respectively. U1, U2 and U3 are torques on joint

1 joint 2 and joint 3 in [Nm] unit respectively.
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5.5.1 Casel: Initial Position [0, 45, 90] x /180

Regarding to this defined initial position the desired task along x direction follows the
equation, x-desired = x0+ (0.00175)*t. which the x0 is the initial x in meter regarding to
the joint initial angles and t is time of simulation in second. The torque on the first joint
will be zero in this simulation (ul) due to the purpose that the end effector follows the
desired direction along x axis. If this manipulator has any rotation around z axis or any
movement along y direction, it will not result in a positive approach to desired x
direction.

The following Figure (5.7 c), according to condition number, shows that the singular
boundary is close to this initial position. The condition number after some fluctuations
becomes almost fixed, but with a very slight increasing in amount. It shows that in the
first seconds of the manipulator motions this singular boundary begins. So this robot
was close to the singular boundary and then stopped and did not have any further
motion (5.7 a). In Figure (5.7 b) the torque was sent to the first joint is zero (ul) so
approximately there is no rotation in this joint (about y axis). It is clear to see from the
torques on joint 2 and 3 that there is not any torque after a few seconds due to lack of
the robot motion in the vicinity of singular boundary. The torque on joint 2 which
causes the motion of link 1 is almost 3 times more than the torque on joint 3 for the

motion of link2.

As explained, the condition number is an index in this simulation to show how much the
end effector is near the singular boundary and singular configuration. This parameter
remains on its peak when the robot is reaching the singular position. In this simulation,
singular configuration is in the result of stretching of links 1 and 2 along x axis. In the
regular control of Omni the condition number is approximately 3.3 near the singular

region.
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Figure 5.7: V-REP Regular Control (Casel), Kp=25, Kv=5
(a) End effector motion, (b) Joint Torque and

(c) Condition Number
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From Figure (5.8) it can be seen that the singular controller handles the robot motion
along the singular direction. The end effector follows the desired Xd (5.8 a). By
comparing the condition number graph in regular control with singular one, it is clear that
at the first seconds of motion this parameter began to increase. The condition number of
regular control is 3.3 which in the singular control this value is for the start point of
motion. It can be explained that the singular region starts very soon after normal region.

The Figure (5.8 b) depicts that after the manipulator entered the singular region the joint
torques became stable but not zeros. Figure (5.8 a) shows the end effector tracks the
desired x direction with high accuracy and with very low errors in Y axis around 0.05 mm
at the beginning of the movement until zeros in singular configuration. Again in the same
figure the torque on joint 2 is almost 4 times bigger than the torque on joint 3. The
condition number trend can be seen clearly from Figure (5.8 c) which starts with
minimum amount such as regular control, but it keeps on increasing in the singular region
until maximum number in its singular configuration, while both of link 2 and 3 get

aligned in x direction.

The small movement of the robot in y axis is very tiny and can be considered as zero. At
the beginning of the motion the robot has a small fluctuation. These fluctuations mean
that the end effector comes near the surface of its work-table and follows with a small
moving up, after that tries to keep its movement in a reliable behavior. This small moving
up and down can be tracked in torques of joint 2 and 3 as small quick changes at the

beginning of their trend.

As illustrated in Figure (5.8), even with all small or slight altering in z-motion of the end
effector, it follows the desired task with high accuracy. In defined initial positions of the
joints, the singular control algorithm would be able to control the manipulator with the
reliable manner and with high performance in singular boundary and singular

configuration.
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Figure 5.8: V-REP Singular Control (Casel), Kp=25, Kv=5
(a) End effector motion, (b) Joint Torque and

(c) Condition Number
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If the torques in singular control are compared with in regular control, it can be seen
that, with the same gains for position and velocity Kp= 25 and Kv= 5 the torques on
joint 2 in regular control is less than 0.2 N.m. but this amount is more than 0.2 for
singular one. Even the gains are increased to 10 times bigger, no considerable changes
in the values of the torques are depicted in Figure (5.9). Only for 100 times bigger in
gains values, the unstable motion of manipulator will occur before the singular

boundary.

If the gains Kp and Kv were increasing, the only consequence would be the dangerous
behavior of the robot in the vicinity of singular boundary. It means that the robot cannot
enter the singular boundary with the stable manner to follow the desired task of the end

effector. It may damage itself and its environment.

Figure 5.9: V-REP Regular Control (Casel),
Kp=2500, Kv=500, (a) End effector motion,

(b) Joint Torque
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In the defined initial position: [0, 45, 90] x w/180, due to being closed to singular
boundary a very short motion can be seen in normal boundary. So the switching control
does not have opportunity to demonstrate how acts between two regular and singular
controls. The behavior of switching and singular controls is similar as shown in Figure
(5.10).

In this configuration the switching control is based on the condition number parameter

which obtained from the Condition Number of regular control. This parameter is

defined =3.3 in the controller that makes the switching from the regular control to

singular control. In this state condition number starts to increase from the first seconds,

so switching happens very soon and turns immediately into the singular control.

As x-desired = x0+ (0.00175)*t is defined for this initial position of the joints angle, the
simulator calculates the initial X0 respect to its kinematic equation of the end effector. In
this simulation, the initial position is almost.0.1909 (m) and the end effector of Omni
manipulator is expected to move from this initial position to the singular configuration.
The stretching out both of the links along each other provides the singular position of

the end effector.

Respect to the link length of PHANTOM Omni, the singular configuration of Omni
manipulator is 0.270 (m) in x direction. The Omni robot manipulator should move from
X0 to the singular configuration in 45 seconds with the assigned gains. These gains
weight the position and velocity errors which are used in computing of the force and the

joint torques.
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Figure 5.10: V-REP Switching Control (Casel), Kp=25, Kv=5
(a) End effector motion, (b) Joint Torque and

(c) Condition Number
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The torque graph of singular control and switch control is illustrated in Figure (5.11). At
the first seconds of simulation of the current initial position, the end effector becomes

very close to singular boundary, so there is not any remarkable difference in torques of
singular and switching controls.

Figure 5.11: Joint Torques for Omni Robot in Case 1

(a) Singular Control and (b) Switching Control
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5.5.2 Case 2: Initial Position [0, 60, 120] x «/180

In this defined initial position the desired task along x direction follows the equation
x-desired = x0+ (0.003)*t, which the x0 is the initial x in meter regarding to the joint
initial angles and t is time of simulation in second unit. The torque on the first joint
becomes zero in this simulation (ul) so the end effector can follow the desired direction
along x axis. If this manipulator has rotation around z axis or any movement along y

direction, it is not possible to approach the desired task direction.

In the current initial configuration with regular control, as could be seen in Figure
(5.12), the behavior of Omni manipulator near the singular boundary is similar to
previous configuration in section 5.5.1. The manipulator after a little fluctuation is not

able to go through the singular region and it stops out of this boundary.

The torgues on joints can be observed in Figure (5.12 b). After the small change in the
amount of torques of joint 2 and 3, the torques will be stable for the rest of the
simulation. The torques on joints 1, 2 and 3 are zeros, 0.15 and 0.027 N.m. respectively.
The condition number has some variations in amount, but after a couple of second it

remains around 2.3 in the neighborhood of the singular boundary.

In order to compare the regular control of Omni in those two different configurations
are shown in Figures (5.7) and (5.12), obviously it is clear that none of them can pass
the singular boundary so they stop before this boundary. It shows that regular control is
not able to lead the end effector of the manipulator to pass the singular boundary and

reach its desired task in a singular direction.

By assigning the same position and velocity gains Kp=25 and Kv=5 in both defined
configurations, the joints 2 and 3 torques are bigger in the configuration [0, 45, 90] x
7/180 than the configuration [0, 60, 120] x «/180.
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Figure 5.12: V-REP Regular Control (Case 2), Kp=25, Kv=5
(a) End effector motion, (b) Joint Torque and
(c) Condition Number
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From Figure (5.13), it can be seen that the singular controller guides the robot towards
moving in x direction. The end effector follows the desired Xd (5.13 a) and passes the
singular boundary. After this, it can be seen that the joint torques is increasing slightly. In
Figure (5.13 a) the end effector tracks the desired direction with high accuracy and with
almost zero error in y axis, except a firm errors in the first seconds of the motion. After
those changes in y axis, the motion in y direction is stable at zero amounts to reach the

singular configuration.

In Figure (5.13 b) the torque on joint 2 is almost 4 times bigger than the torque on joint 3
but both of them have approximately stable trends inside the singular boundary. The first
fluctuation could be seen in z graph and also happened for torques u2 and u3, due to up

and down motion of the end effector at its beginning.

The condition number trend can be observed clearly from Figure (5.13 c). It starts with
minimum amount such as in regular control, but it keeps enhancement in singular region,

until achieving the maximum number in its singular configuration.

As explained in the previous initial configuration( 5.5.1) and can be seen in Figure (5.13),
even with small and slight altering in motion of the end effector along z axis and in the
amount of applied torques on links’ joints, the end effector follows its desired task with

high accuracy.

In this initial position of the joints, the singular control algorithm would be able to make
the reliable control of the end effector behavior with high performance in singular

boundary and singular configuration.
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Figure 5.13: V-REP Singular Control (Case 2), Kp=25, Kv=5
(a) End effector motion, (b) Joint Torque and
(c) Condition Number
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In this initial position: [0, 60, 120] x n/180 the end effector is close to a singular
boundary so there is a very small motion in normal boundary. It can be seen that the

switching control behavior is similar to singular control as shown in Figure (5.14).

In this configuration the switching control works based on condition number while

Condition Number is =22.3, so then the controller switches from regular control to

singular control. In this situation, condition number starts increasing from the first

seconds and then the controller switches very quickly into the singular control.

This switching control condition number is obtained from the Condition Number of

regular control. This parameter is defined =2.3 in the controller that switches from

regular control into singular control. In this situation, condition number starts to

increase very quickly then the switching happened shortly afterwards.

For the current initial configuration the x-desired is defined as Xd = x0+ (0.003)*t, the
simulator computes the initial X0, respects to kinematic equations of the end effector. In
this simulation, the initial position is almost.0.135 (m) and the end effector of Omni

manipulator is expected to move from this initial position to the singular configuration.

In regard to the link length of the manipulator, the singular configuration of Omni
manipulator is 0.270 (m) along x direction. The Omni robot manipulator should move
from x0 to the singular configuration in 45 seconds. The assigned gains weight the
position and velocity errors, which are used in computing the force and joint torques.
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Figure 5.14: V-REP Switch Control (Case 2)
(a) End effector motion, (b) Joint Torque and
(c) Condition Number

Vrep Data
0.4 T T
E
x
E
>
0 5 10 15 20 25 30 35 40 45
Time [s]
0.05
E O e
= ]
0.05 \ \ \ \ \ ,
0 5 10 15 20 25 30 35 40 45
(a) Time [s]
Vrep Data
1 : :
B
Z o
E . )
0 5 10 15 20 25 30 35 40 45
Time [s]
0
£ I —
Z  02f
= )
-0.4
0 5 10 15 20 25 30 35 40 45
Time [s]
0 T T
E -
= o005fF 7
:("1 L L
-0.1
0 5 10 15 20 25 30 35 40 45
(b\ Time [s]
7
90
80
70
S 60
o
5
= 50
=
S
= 40
=]
2
Q
© 30
20
10
o n 7 n n n n .
(0] 5 10 15 20 25 30 35 40 45
Time [s]
(c)

57



For comparing the torque graph of singular control and switch control of Initial
configuration ([0, 60, 120] x w/180), a small difference can be seen before singular

boundary at the beginning of the simulation, which is shown in Figure (5.15).

In the switch control, u2 torque of joint 2 is a little smoother than in singular control.

For u3 torque of joint 3 is illustrated that the switching happened between second 2 and
4 in Figure (5.15 b).

Figure 5.15: Joint Torques for Omni Robot in Case 2

(a) Singular Control and (b) Switching Control
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6. CONCLUSION

In this dissertation the kinematic and dynamic calculation of the Phantom Omni robot
was described and then the simulation and dynamic analysis was done in MATLAB and
V-REP in order to monitor the performance of the robot manipulator under different

controllers, such as regular, singular, and switch control of robot in singular region.

This thesis presents the fundamental mathematic equations of forward and inverse
kinematics and describes the singular configuration and dynamic equation of the

manipulator and also explains the operational space and null space.

The potential field simulation in MATLAB was described for RR planar robot with the
purpose of investigating the performance of this approach to control the manipulator in

the singular region under the attractive forces.

PHANTOM Omni manipulator was described according to its kinematic and dynamic
equations. Mathematical equations were used for regular and singular control of

simulation part.

In the simulation part the PHANTOM Omni robot in V-REP, was analyzed according to
its kinematic and dynamic architecture. Regular and singular control individually was
applied for this robot outside of singular boundary and inside of singular region. Switch
controller was applied between regular and singular control. Two different initial
positions were defined for this manipulator to observe its behavior under the various

conditions.

The results clearly show that PAHNTOM Omni robot could not enter the singular
boundary with the regular control. Potential field handled the singularity problem with
the attractive field and led the end effector to perform its desired task. In this study
singular control guided the robot to pass the singular boundary and followed the desired
task in the smooth motion of end effector in the singular direction which is defined
along x axis. The switch control was designed based on the Condition number which is
a parameter to show when the singular boundary starts. This control was applied in

order to switch between two controllers regular and singular ones.
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The more practical way to detect the singularity would perhaps be to monitor the rate of
changes of the condition number. This rate has definitely various values when the robot
moves from regular region to singular region. It means that this changing rate is
increasing constantly until the robot reaches to its singular configuration, where the
changing rate is at its peak. The rate of condition number can help the control algorithm
to detect the singularity automatically instead of defining the exact value of condition
number for switching from regular control to singular control. This method could be

considered as the future work to apply for various degrees of freedom of robots.
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