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Kaza, travma veya eklemleri etkileyen herhangi bir hastalık nedeniyle üst ekstremitesini 

kaybetmiş insanlar, el kullanımını gerektiren, nesneleri tutma, taşıma, yemek yeme ve 

benzeri günlük hayata ait işlevleri yerine getiremezler. Bu insanların günlük hayatlarını 

kolaylaştırmak, hareket özgürlüğü ve kendi kendilerine yetmelerini sağlamak amacıyla 

günümüzde çok geniş ölçekli biyomekanik çalışmaları yapılmaktadır. Bu çalışmalardan 

en yaygın ve etkili olanı kesilen kısım yerine takma bir uzuv yani protez tasarımı 

çalışmalarıdır. Ampute olmuş (belirli bir uzvun kesilme hali)  kolun geri kalan kısmındaki 

kasların normal bir şekilde işlev görmesi ve bu kısımlardan elde edilen elektromiyografi 

(EMG) sinyallerinin değerlendirilip anlamlandırılmasıyla EMG kontrollü protezler 

tasarlanmaktadır. Bu tasarımlarda kullanılan yeni teknikler sayesinde, fiziksel engelli 

insanlara daha fonksiyonel hareketleri yapabilme kabiliyeti sağlanmaktadır.  

Bu tez çalışması, insan kolunun farklı pozisyonlarında ve dinlenme durumunda kola 

uygulanan değişken kuvvetlerin etkisi altında ölçülen EMG sinyallerinin analizini ve bu 

sinyallerin sınıflandırılmasını içermektedir. Bunun için, kolun izometrik (kas uzunluğu 

sabit) kasılması sırasında eşzamanlı olarak iki ayrı kastan yüzeyel elektrotlar kullanılarak 

EMG sinyalleri kaydedilmiştir. Elde edilen sinyallere bir takım sinyal işleme teknikleri 

uygulandıktan sonra sınıflandırma yapabilmek için bu sinyallerden sekiz farklı 

İNSAN ELİNİN POZİSYON VE KUVVETLERİNİN KESTİRİMİ AMACIYLA 

EMG SİNYALLERİNİN SINIFLANDIRILMASI 
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sınıflandırıcı öznitelik çıkarılmıştır. Daha sonra elde edilen bu EMG sinyali öznitelikleri, 

makine öğrenmesi tekniklerinden olan yapay sinir ağları kullanılarak sınıflandırılmıştır. 

Yapılan bu sınıflandırma ile hareket sırasında alınan EMG sinyaline karşılık gelen kolun 

o anki pozisyon ve kuvvet değerleri belirlenmiştir. Belirlenen bu değerlere göre 

sınıflandırma performansları incelenip kıyaslanmıştır. 

Tüm bu çalışmaların sonunda ampute olmuş bir kol uzvu yerine kullanılan protez kolların 

daha hassas tasarımlar olması ve gerçek bir kolun yaptığı aktivitelere yakın bir 

performans göstermesi amaçlanmaktadır. Bu konuda yapılmış literatürdeki çalışmalara 

katkı sağlanması öngörülmektedir. 

Mayıs 2017, 82 sayfa. 

Anahtar kelimeler: Elektromiyografi, EMG Sinyallerinin İşlenmesi, EMG Sinyallerinin 

Sınıflandırılması, Kas Hareketlerinin Tahmini, Kas Kuvveti 

Tahmini 
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People who lost their upper extremities due to an accident, trauma or a joint-affecting 

disease; may not be able to do simple tasks which require hand usage such as holding, 

carrying or eating. In order to provide a better life for the physically disabled, many 

biomechanical studies are done to implement basic physical movements for their lives 

and make them self-sufficient, so that they can live without depending on another people. 

The most effective and common practice is prostetics, which is an artificial substitute for 

a lost limb. EMG signals measured from the remaining working muscles of the amputated 

arm are interpreted in order to produce EMG-controlled prostetics. With new design 

techniques being used on these products, more functional capacity for physically disabled 

is provided. 

This thesis includes analysis and classification of EMG signals recorded under the 

influence of variable forces applied to human arm in both resting position and different 

positions. In order to do so, EMG signals are recorded simultaneously by using surface 

electrodes from two different muscles; while the arm is in isometric contraction. After 

applying several signal processing techniques to the measured signals, eight different 

features are determined for classification.  Then, Artificial Neural Networks algorithms 

are applied in order to classify the signals into pre-determined features. With these 

EMG SIGNAL CLASSIFICATION TO PREDICT THE POSITION AND 

FORCE PATTERNS OF HUMAN HAND 
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classifications, the position and force values corresponding to EMG signals are predicted. 

The classification performances are compared based on these predicted values. 

After all these studies, the main purpose is to make prostetic arms better by implementing 

more sensitive designs and perform in a level which is on part with a real arm. It is 

anticipated that this study will contribute to the studies on this subject in the literature. 

May 2017, 82 pages. 

Keywords: Electromyography, EMG Signal Processing, EMG Signal Classification, 

Muscle Force Prediction, Hand Movement Prediction     
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1. GİRİŞ 

Uzun yıllar vücut kaslarının çalışma mekanizması ile değişken yön hız ve ivmedeki 

hareketler arasındaki bağlantıyı tespit etmek amacıyla kasların mekanik yapısı ve sinir - 

kas işleyişi üzerine çeşitli çalışmalar yapılmıştır ve günümüzde de yapılmaya devam 

etmektedir. Fakat yapılan çalışmalar kas aktivitesi ile EMG sinyalleri arasındaki ilişkiyi 

açıklamada yetersiz kalmaktadır. Yapılan çalışmaların doğru ve güvenilir sonuçlarının 

olması, el kol gibi vücut uzuvlarını kaybetmiş, proteze ihtiyaç duyan bireylerin yaşam 

standartlarının artırılması açısından büyük önem taşımaktadır.  

Günümüzde kullanılan protez ellerin hareket kabiliyeti temel hareketlerle sınırlıdır. İnsan 

eli gibi oldukça karmaşık ve birçok farklı fonksiyona sahip bir uzvun hareketlerini bire 

bir yerine getirebilecek bir teknoloji henüz geliştirilememiştir. Fakat miyoelektrik 

kontrollü protezler sayesinde gün geçtikçe daha işlevsel protezler tasarlanmaktadır. 

Protez tasarımında, bir protez, gerçek el modelinde olduğu gibi sinir sistemi mekanizması 

tarafından kontrol edilir. 

Vücutta hareketler, Merkezi Sinir Sistemi (MSS) tarafından kontrol edilir. İstemli 

hareketlerin kontrolü, iskelet kasları tarafından yapılır. Bir iskelet kası, lif (fiber) adı 

verilen uzun ve ince hücrelerden meydana gelir. Bu lifler ise miyofibrillerden oluşur. 

Liflerin dış yüzeyleri sakrolemma adı verilen bir kılıf ile örtülmüştür. Bu lifler kıkırdak 

dokuya bağlıdır. Hareketin anlamlandırılması, omurilik veya beyinden vücudun diğer 

bölümlerine doğru, bilginin nöral ağlarla taşınıp işlenmesiyle yapılır. Taşınan bu bilgi, 

nöral ağlarda bulunan motor sinirlerdeki elektriksel değişimler ile anlam kazanır.   

Motor ünite, bir motor nöron ve innerve ettiği kas lifleri grubundan oluşur. Aktif olan 

(recruited) motor ünite sayısı ne kadar fazla ise,  kas o kadar aktiftir, kasılma kuvveti de 

o kadar yüksektir. Kaslardaki elektrik potansiyel farklarının varlığı, merkezi sinir sistemi 

tarafından üretilen motor birim aksiyon potansiyelinin sonucudur (Cipriani ve diğ., 2008). 

Bu elektrik potansiyel farkların toplamına elektromiyografik (EMG) sinyal denir. EMG 

sinyali, kasılmakta olan kasın ilgili motor biriminin etkinliğini gösteren fizyolojik bir 

sinyaldir (Dionisio ve diğ., 2008).  Elektrotlar ile kaydedilen EMG sinyali,  stokastik 
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(rastlantısal) bir özellik gösterir ve yaklaşık 0-10 mV’ luk bir sinyal genliğine sahiptir. 

Sinyalin 0-500 Hz arası bir frekansa sahip olması kullanılabilir enerji aralığında olduğunu 

gösterir. 0-150 Hz arası ise sinyal genliğinin en büyük olduğu frekans değerleridir. 

EMG sinyalinin genliği, derideki elektrotların yakınındaki tüm aktif motor üniteleri ile 

ilgili bir kas içindeki elektrik potansiyel farklarının toplamıdır. Bu nedenle EMG genliği, 

gerçekleştirilen kas hareketi sırasında motor ünite aktivitesinin bir ölçümü olarak ifade 

edilebilir. 

EMG sinyalleri, kasların kasılması sonucu oluşan biyoelektriksel sinyallerdir (Zecca ve 

diğ., 2002). Bu sinyallerin kaynağı, vücudumuzda meydana gelen farklı elektrokimyasal 

olaylardır. Bu sinyallerin doğru sınıflandırılması protez tasarımı, klinik teşhis ve tanı 

açısından büyük önem arz etmektedir. EMG sinyalleri, vücuttan alınma şekline göre kas 

içi ve yüzeyel olmak üzere iki şekilde adlandırılır (Farina ve Negro,  2012). Yüzeyel EMG 

(sEMG), yüzey elektrotları ile deri üzerinden elde edilen ve non invaziv olması sebebiyle 

daha çok tercih edilen yöntemdir (Bitzer ve Van Der Smagt, 2006). 

EMG sinyalleri genellikle protezler için kontrol sinyalleri olarak kullanılır. Miyoelektrik, 

kasların elektriksel özelliklerini ifade eden bir terimdir. Bir miyoelektrik kontrollü protez, 

kişinin kendi kasları tarafından doğal olarak üretilen elektrik sinyalleriyle kontrol edilen 

harici olarak güçlendirilmiş yapay bir ekstremitedir. Üst ekstremite için el, bilek ve dirsek 

miyoelektrik kontrollü protezler bulunmaktadır. Sürekli gelişen teknoloji sayesinde yeni 

protez sistemleri şaşırtıcı özelliklere sahip olmaktadır: 

 Esnek bir protez dirsek bir içeceği alıp dudaklara kadar götürür ve içilebilmesini 

sağlar, 

 Bükülerek dönen yapay bilekler, nesneleri rahatça konumlandırmaya olanak tanır, 

 Protez eller, bir çantayı açabilir veya çatlamadan yumurtayı tutabilir, 

 Protez parmaklar, yönünü birden fazla el pozisyonuna değiştirebilir. 

EMG sinyalleri, sabit olmayan karakteristiği ve sinyallerin konu bağımlılığı (subject 

dependency) nedeniyle karmaşıktır (Aschero ve Gizdulich, 2009). Yapay uzuvların 

tasarımı ve üretiminde yüzey EMG sinyallerinin kullanılması dikkat çekicidir (Fukuda ve 

diğ., 2003). Kuvvet, motor ünite aksiyon potansiyeli (motor unit action potential) ve kas 

yorgunluğu gibi çeşitli parametrelere bağlı olarak EMG sinyali etkilendiği için EMG 
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sinyallerinin sınıflandırılması karmaşık bir işlemdir. Bu tez çalışmasında EMG sinyalleri 

işlenerek bu karmaşık yapıdaki sinyallerin sınıflandırılması amaçlanmaktadır. Bu 

doğrultuda, tez organizasyonu şu şekildedir: 

Bu tez çalışmasının 2. Bölümü’nde Genel Kısımlar başlığı altında, geçmişten günümüze 

yapılan EMG tabanlı protez kol ile EMG sinyali ve kuvvet ilişkisi ile ilgili yapılan 

çalışmalardan bahsedilmiştir. 

3. Bölüm Malzeme ve Yöntem’ de, öncelikle insan kolunun anatomik yapısından 

bahsedilmiştir. Tezin en önemli kısmını oluşturan deneyler iki farklı protokolden 

oluşmaktadır. Birinci protokolde, elin değişen pozisyonlarında EMG sinyali ile el 

pozisyonu arasındaki ilişki belirlenmiştir. Bu işlem için sağ elin gösterilen beş farklı 

pozisyonda hareket etmesini sağlayan bir deney düzeneğinden elde edilen verilerden 

yararlanılmıştır. İkinci protokolde ise, ilk olarak sağ kolun dinlenme pozisyonunda 

maksimum gönüllü kasılma kuvveti ve ardından farklı değişkenliklerde uygulanan kuvvet 

değerleri ölçülmüştür. Sinyal işleme ve sınıflandırma işlemleri için bu ölçümlerden elde 

edilen verilerden yararlanılmıştır.  Bu ölçümler için kullanılan deney düzenekleri ve 

açıklamaları bu bölümde anlatılmıştır. Her iki deney için de aynı anda iki farklı kastan 

yüzeyel EMG sinyalleri kaydedilmiştir. 2. Deney protokolünde elektronik bir 

dinamometre yardımıyla uygulanan kuvvetler ölçülmüştür. Tüm bu ölçümlerin analizi 

yapılmadan önce, M.S. Baltalimanı Metin Sabancı Kemik Hastalıkları Eğitim ve 

Araştırma Hastanesi Yürüme Analizi Laboratuvarında kaydedilen EMG sinyallerinin 

değerlendirilmesi yapılmıştır.  

Kas kasılması sırasında EMG sinyallerinin davranışları, EMG sinyallerinin genliklerini 

etkileyen durumlar ve sinyallerin kaydının alınması esnasında dikkat edilmesi gereken 

kurallar da bu bölüm içerisinde yer almaktadır. 3. Bölüm’ ün son kısmında, bu çalışmanın 

önemli bir aşaması olan deneyler sonucu elde edilen EMG sinyallerinin yapay sinir ağı 

yapısı ile eğitilmesi çalışması anlatılmıştır. Tez çalışmasının bu aşamasında, her iki deney 

protokolüne göre EMG sinyallerinin sekiz farklı özniteliği hesaplanmış ve elde edilen bu 

öznitelikler yapay sinir ağlarının eğitilmesinde kullanılmıştır. Oluşturulan yapay sinir ağı 

yapısında geri yayılımlı ileri beslemeli (backpropagation feedforward) öğretim metodu 

kullanılmıştır.  Birinci protokol için tasarlanan yapay sinir ağlarında giriş değerleri sinyal 

öznitelikleri, çıkış değerleri ise bu sinyallere karşı gelen hareket pozisyonlarıdır. İkinci 
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protokol için tasarlanan yapay sinir ağlarında giriş değerleri yine sinyal öznitelikleri, çıkış 

değerleri ise bu sinyallere karşı gelen kuvvet değerlerinin tahminidir. 

 

Şekil 1.1: Tezde yapılan çalışmaların sistematik akış diyagramı. 

 

Şekil 1.1’ de tezde yapılan işlemlerin akış şeması görülmektedir. Bu çalışmayı diğer 

çalışmalardan ayıran özellik, yaygın olarak kullanılan EMG sinyali özniteliklerine ek 

olarak, bu özniteliklerinin diferansiyel versiyonlarının da hesaplanıp öznitelik olarak 

kullanılmasıdır. Bu özniteliklerin çalışmaya dâhil edilmesiyle bir EMG sinyaline karşılık 

gelen hem pozisyon bilgisi hem de kuvvet değeri düşük bir hata oranı ile başarılı bir 

şekilde belirlenmiştir.   

4. Bölüm Bulgular’ da ise; on farklı gönüllünün farklı şekilde pozisyonlanmış sağ 

kollarından alınan EMG sinyallerinin analiziyle pozisyon kestirimi yapılmış ve sonuç 

elde edilmiştir. Ayrıca dinlenme durumunda on gönüllünün değişken büyüklükte 

uyguladığı kuvvetlere karşı alınan EMG sinyallerinin analiziyle kuvvet kestirimi de 

yapılmış ve sonuçları elde edilmiştir. Tüm bu sonuçlar bu bölümde bulunmaktadır. 

5. Bölüm Tartışma ve Sonuç’ ta, elde edilen deney sonuçlarının değerlendirilmesi 

yapılmış ve bu sonuçlar yorumlanmıştır. 
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2. GENEL KISIMLAR 

EMG kavramı, kasların elektriksel ya da nöromüsküler aktivitesinin anlaşılması, kasların 

istemli kasılmalarının altında yatan temel mekanizmanın ortaya çıkarılması, protez, dış 

iskelet vb. yardımcı teknolojilerin kontrolü açısından oldukça önemlidir. Kasların 

kasılmaları sırasında ortaya çıkan elektriksel aktivitenin kaydedilmesi ve çeşitli amaçlarla 

analizini ifade eden EMG metodolojisi, kaslarda üretilen biyoelektrik sinyallere verilen 

isimdir. 

 

Vücuttaki sağlam kaslardan elde edilen EMG sinyalleri kullanılarak protez kollar 

oluşturulmaktadır. Bu protezlerin hareket kontrolü, biyomekanik, elektronik gibi farklı 

disiplinler içeren oldukça hassasiyet gerektiren çalışmalarla yapılmaya çalışılmaktadır. 

Yıllardır araştırmacılar, kas nörofizyolojisi (neurophysiology) ve kas sistemlerinin 

biyomekaniği üzerine geniş çaplı araştırmalar yapmaktadır. Bu araştırmaların kritik bir 

sorunu, EMG sinyallerinden etkili özniteliklerin çıkarılması ve hesaplanmasıdır 

(Boostani ve Moradi, 2003). Bu öznitelikler, kolu ampute olmuş bir kişinin istemli kas 

kontrolünün, kas aktivasyon durumunun doğru bir şekilde tahmin edilmesine izin verecek 

bir şekilde işlem görmelidir. Ayrıca, kas aktivasyonlarının durumları, istenen protez 

kontrol işlemlerine uygun bir şekilde düzenlenmelidir. Bu konu ile ilgili çok sayıda 

çalışma yapılmıştır. 

 

EMG sinyalleri, hareketlerin sınıflandırılma oranını iyileştirmek ve daha fazla temsili 

öznitelikler çıkarmak için zaman-frekans alanında işlenmiştir. Bu şekilde, Jung ve diğ. 

(1994) altı farklı hareketi sınıflandırmak için üst ekstremite EMG sinyallerine Wigner-

Ville dönüşümü uygulamıştır. Wellig ve Moschytz (1999) ayrıca EMG sinyallerinin 

ayrıştırılması için paket dalgacık dönüşümü kullanmış ve yanlış sınıflandırma oranını 

azaltmıştır. Liyu ve diğ. (1999), önkola ait dört hareketi, iki kanal EMG sinyallerinin altı 

seviyede dalgacık dönüşümü ile ayrıştırarak ayırt etmiş ve sonunda bu katsayıları bir 

yapay sinir ağı (YSA) sınıflandırıcısı ile sınıflandırmıştır. Abel ve diğ. (1998), EMG 

sinyallerinin dalgacık katsayılarına ölçekler arası yerel maksimum yöntemi uygulayarak, 
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nöropatik, miyopatik ve normal gruplar arasında sınıflandırma hızını geliştiren yeni 

özellikler sunmuştur. Englehart ve diğ. (1999), üst ekstremiteden dört kanallı bir sistem 

kullanarak EMG sinyallerini kaydetmiştir ve daha sonra dalgacık katsayıları çıkararak 

boyutlarını PCA transformasyonu ile azaltıp yanlış sınıflandırma oranını düşürmüştür. 

Literatür, protez kolları kontrol etmek için EMG'den özelliklerin çıkartılmasını araştıran 

birçok bildiri içermesine rağmen, literatürde bu protezlerin kalitelerini nicel olarak 

karşılaştıran çok az çalışma bulunmaktadır.  

EMG sinyal genliğine bağlı zaman alanı öznitelikleri, göz gönünde bulundurulan ilk 

özniteliklerdir (Hudgins ve diğ., 1993). Matematiksel bir dönüşüme ihtiyaç duyulmadan 

doğrudan çıkarılması, bu öznitelikleri en iyi seçenek haline getirir. Tipik zaman alanı 

öznitelikleri şunlardır; ortalama karesel kök (Root Mean Square - RMS), ortalama mutlak 

değer (Mean Absolute Value - MAV) (Phinyomark ve diğ., 2012; Farina ve diğ., 2000), 

tümleşik mutlak değer (Integrated Absolute Value - IAV) (Micera ve diğ., 1999), varyans 

(Variance - VAR) (Zecca ve diğ., 2002), Willison genliği (Willison Amplitude - WAMP) 

(Farina ve diğ., 2000), sıfır geçiş (Zero Crossing - ZC) (Phinyomark ve diğ., 2012), eğim 

işareti değişiklikleri (Slope Sign Change - SSC) (Phinyomark, 2010), dalga boyu 

uzunluğu (Waveform Length - WL) (Kamavuako ve diğ., 2013)  ve EMG histogramı 

(Phinyomark ve diğ., 2012).   

EMG sinyallerinin sınıflandırılmasında ve örüntü tanıma işlemlerinde başarılı olabilmek 

için, veri ön-işleme kadar öznitelik çıkarımı ve sınıflandırma yöntemleri de önem taşır. 

(Phinyomark ve diğ., 2012). EMG sinyallerinin, karmaşık ve kararsız özelliklerinden 

dolayı sınıflandırma, örüntü tanıma ve kestirim gibi işlemlerde ham halleriyle 

kullanılmaları mümkün değildir. Bu yüzden sinyallerin esas karakteristiklerini yansıtan 

çeşitli matematiksel ifadelerle hesaplanan özniteliklerin elde edilerek pozisyon ve kuvvet 

gibi parametrelerle ilişkilendirilmesi sağlanır. Literatürdeki çalışmalarda, sınıflandırma 

işleminde öznitelik vektörünün uygun bir şekilde seçilmesinin, sınıflandırıcının başarısını 

etkilediği görülmüştür (Zecca ve diğ., 2002; Boostani & Moradi, 2003; Farrell ve Weir, 

2007; Phinyomark ve diğ., 2012). EMG sinyallerini sınıflandırma uygulamalarını içeren 

çalışmalarda en uygun öznitelik vektörüne ulaşmak için araştırmaya ve incelemeye 

çalışılmış olsa da (Boostani & Moradi, 2003;  Phinyomark ve diğ., 2009; Zardoshti-

Kermani ve diğ., 1995; Zecca ve diğ., 2002), özniteliklerin sınıflandırmadaki başarısını 
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sayısal olarak karşılaştıran çalışmalar oldukça azdır. Özellikle öznitelik sayısının fazla 

olması sebebiyle bu özniteliklerin performanslarının kuantatif olarak birbiri ile 

karşılaştırılması gerekmektedir (Oskoei ve Hu, 2008).  

EMG sinyallerinin öznitelikleri temelde zaman ve frekans bölgelerinde (domain) ifade 

edilir. Ham EMG sinyalleri zaman bölgesinde incelenir ve herhangi bir dönüşüm (fourier 

dönüşümü vb.) gerektirmez. Bu sebeple protez kontrolü vb. pratik alanlarda EMG 

sinyallerinin zaman bölgesindeki öznitelikleri daha çok tercih edilmektedir  (Zecca ve 

diğ., 2002; Farrell ve Weir, 2007; Phinyomark ve diğ., 2012). Ayrıca zaman bölgesindeki 

öznitelikler, miyoelektrik kontrollü protezlerin hassas kontrolü için daha düşük 

gecikmeye (delay) sebep olduklarından kullanımları daha yaygındır. Ancak genellikle 

zaman bölgesindeki özniteliklerin performansı, dinamik (non stationary) kasılmalardaki 

sinyallerin kuantatif hale getirilmesi için tatmin edici değildir (Phinyomark ve diğ., 2014). 

Bu tür uygulamalar için literatürde, özniteliklerin birinci mertebeden diferansiyellerinin 

hesaplanması önerilmektedir (Phinyomark ve diğ., 2012). EMG sinyalinin zaman 

bölgesindeki öznitelik vektörü (x(t)) yerine bu özniteliklerin birinci dereceden farkı olan 

d(1)(t) vektörü hesaplanarak diferansiyel öznitelikler elde edilmiş olup sınıflandırma 

işleminde diferansiyel halleri kullanılır. Literatürdeki çalışmalar göstermiştir ki birinci 

mertebeden diferansiyellerin sınıflandırmadaki performansı, orijinal zaman bölgesi 

özniteliklerinin performansından daha yüksektir  (Oskoei ve Hu, 2008;  Phinyomark ve 

diğ., 2010; Kim ve diğ., 2011; Phinyomark ve diğ., 2014).  

Bir protezin hareket veya kuvvet kontrolü için, sinyallerden çıkarılan özniteliklerin çeşitli 

makine öğrenmesi teknikleri kullanılarak sınıflandırılması gerekmektedir. EMG 

sinyallerinin işlenmesi ve sınıflandırılması için yapay sinir ağları temel olmak üzere 

(Sübasi, 2012) destek vektör makineleri (SVM) (Lucas ve diğ., 2008; Oskoei ve Hu, 

2008; Yoshikawa ve diğ., 2006), doğrusal diskriminant analizi (LDA) (Alkan ve Günay, 

2012; Kim ve diğ., 2011) ve bulanık mantık (FL) (Chan ve diğ., 2000; Ajiboye ve Weir, 

2005; Micera ve diğ., 1999) gibi çok sayıda metodoloji önerilmiş ve uygulanmıştır. EMG 

özniteliklerinin sınıflandırılmasında, öne çıkan performansı ve zamanla değişen hedefleri 

tahmin etme kabiliyeti nedeniyle YSA, bu teknikler arasında en geniş uygulama alanına 

sahiptir (Young ve diğ., 2013; Reaz ve diğ., 2006; Erik Scheme ve Kevin Englehart, 

2011).  
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Örüntü tanıma işlemi için yapılan çalışmalarda, doğrusal ve doğrusal olmayan ilişkileri 

göstermesi ve sınıflandırma performansının yüksek olması nedeniyle, yapay sinir 

ağlarının başarısı vurgulanmıştır (Oskoei ve Hu, 2007). Hiraiwa ve diğ. (1989), yapay 

sinir ağlarını kullanarak fleksor digitorium superficialis kasının hareket örüntülerini elde 

etmiştir. Hudgins ve diğ. (1989) da miyoelektrik kontrollü protezler için zaman alanı 

özniteliklerini sınıflandırma amacıyla yapay sinir ağlarını kullanmıştır. Savelberg ve 

Herzog (1997), kediden alınan EMG sinyali ile kedi gastroknemius kas kuvvetini tahmin 

etmek için geri yayılım algoritmasına (back propagation algorithm) dayanan bir yapay 

sinir ağı yaklaşımı kullanmıştır. Liu ve diğ. (1999), yapay sinir ağları kullanarak EMG 

sinyalini sınıflandırmış ve ilk kez insana ait kas kuvvetini, düşük bir hata ile tahmin 

etmiştir. Yapay sinir ağları kullanılarak dışarıdan uygulanan kuvvetin ve torkların 

kestirimi, yapay insan eklemlerinin tasarımında önemli bir role sahiptir (Aslan ve diğ., 

2010; Morita ve diğ., 2000; Corbett ve diğ., 2011). Morita ve diğ. (2000), EMG 

sinyallerinden eklem torkunu tahmin edebilen bir el protezi için bir kontrol yöntemi 

önermiştir. EMG sinyali kullanılarak tasarlanan, fiziksel engelli insanların günlük 

hayatlarını kolaylaştıran protezler zamanla gelişim göstermiştir. Morita ve diğ.’ nin 

(2000), önerdiği bu el protezi, EMG kontrollü diğer protez çalışmalarına kıyasla daha 

hızlı hareket etme ve daha karmaşık hareketleri yapma yetisine sahiptir.   

 

Ortalama mutlak değer ve ortalama karesel kök genellikle EMG genlik tahmini için 

kullanılan popüler özniteliklerdir (Phinyomark ve diğ., 2013). Her iki öznitelik, sırasıyla 

mutlak ortalama değerin farkı (Difference Absolute Mean Value - DMAV) ve mutlak 

standart sapma değerinin farkı (Difference Absolute Standart Deviation Value - DASDV) 

olarak adlandırılan farklılaştırma tekniği kullanılarak (birinci mertebeden türevleri 

alınarak) değiştirilmiştir (Phinyomark ve diğ., 2012; Kim ve diğ. 2011). Kim ve diğ. 

(2011) ve Yu ve diğ. (2012), bir doğrusal ayrıştırma analizi (Linear Discriminant Analysis 

- LDA), kuadratik ayrıştırma analizi (Quadratic Discriminant Analysis - QDA), k-en 

yakın komşu (k-Nearest Neighbors - kNN) sınıflandırma algoritması kullanarak MAV ve 

DAMV arasındaki ve RMS ve DASDV arasındaki sınıflandırma performansını 

incelemişlerdir. Yapılan bu çalışmalar neticesinde, DAMV ve DASDV' den elde edilen 
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sınıflandırma doğrulukları, MAV ve RMS' den elde edilen doğruluklardan anlamlı 

derecede yüksek olduğu görülmüştür. 

 

Bu çalışmanın amacı, sinyal öznitelikleri kullanılarak EMG sinyalinden elde edilen 

kuvvet ve pozisyon verilerinin karşılaştırılmasıdır. EMG sinyalinden elde edilen öznitelik 

verileriyle, kuvvet ve pozisyon kestirimi karşılaştırılarak, bu kontrol yaklaşımlarının 

başarısı incelenmiştir. 
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3. MALZEME VE YÖNTEM 

3.1. İNSAN KOLUNUN ANATOMİSİ 

İnsan vücudunda çeşitli hareketlerin ve işlerin yapılmasında önemli bir rolü bulunan kol, 

iki bölüm halinde değerlendirilir. Omuz ekleminden dirseğe kadar uzanan kısma kol, 

dirsekten el bileğine kadar giden kısma önkol denir. Genellikle kol kavramı bu iki 

bölümün tamamı için kullanılır. Vücudun kol bölgesinde bulunan kaslar önkol ve arka 

kol kasları olmak üzere iki gruba ayrılarak incelenir. Önkolun kasları ön ve arka olmak 

üzere iki gruba ayrılırken, ön grup da kendi arasında yüzeyel, orta ve derin olmak üzere 

üç gruba ayrılır. Ön kaslar, fleksör kaslar; arka kaslar ise ekstansör kaslardır.  

Bu tez çalışmasında EMG sinyalleri, eşzamanlı olarak iki ayrı kastan elde edilmiştir. 

Bunlar, fleksör ve ekstansör kaslarıdır. EMG sinyallerinin bu iki kastan alınmasının 

sebebi, el bileği ile yapılan uzatma (ekstansiyon), bükme (fleksiyon) ve döndürme 

(rotasyon) hareketleri sırasında özellikle bu iki kasın aktif olmasıdır.  

Bu bölümde öncelikle insan önkol kas yapısından bahsedilecek ve daha sonra basit bir 

şekilde, ölçüm yapılan bu iki kas anatomik açıdan incelenecektir. 

3.1.1. Önkol Anatomisi 

İnsan önkol anatomisinde önkol, dirsek ve bilek arkasında kalan kısımdır. Bu anatomik 

kısım kemikler, eklemler, kaslar, sinirler, damarlar ve diğer yapılardan oluşmaktadır. 

İnsan önkol anatomisinde iki uzun kemik ve bu kemiklerin arasında membran 

bulunmaktadır. Önkol fleksör ve ekstansör yapıda kaslar içermektedir. Bu kaslar parmak 

ve önkolda yapılan hareketlerden sorumludur. Ayrıca önkolda supinator ve pronator 

denen kaslar önkolun çevrilmesini sağlamaktadır. Önkolun arka kasları daha ziyade 

ekstansör niteliklidir ve radyal sinir tarafından kontrol edilir. 

Önkolda bulunan eklemler birçok sinir damarları ile kaplıdır ve merkezi sinir sisteminden 

gelen uyarılarla işlevlerini yerine getirirler. Bu kasların yeteri derecede kullanılmaması 

ve sinir damarlarının işlevini görmemesi sonucunda bu kaslar atrofiye uğrar ve küçülür. 
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 3.1.1.1. Flexor Karpi Radiyalis Kası 

 

Şekil 3.1: Flexor Karpi Radiyalis kası. 

 

Yüzeyel tabaka kaslarından, Şekil 3.1’ de gösterilen fleksör karpi radiyalis (flexor carpi 

radialis), pronator teres kasının ulnar tarafında yerleşen, önkoldaki ince ve yüzeysel 

kastır. Epikondilus mediyalis’ten başlar 2. ve 3. Metakarpal kemiklerin tabanlarına 

yapışarak sonlanır. Bu kası innerve eden sinir ise nervus medianus’ tur. Fleksör karpi 

radiyalis kası el bileğini fleksiyona getirme fonksiyonu görür. Buna ek olarak, esneklik 

ve eli kaçırmaya yardımcı olur ve el bileğine radyal abdüksiyon yaptırır. 

3.1.1.2. Ekstansör Karpi Radiyalis Longus Kası 

Şekil 3.2’ de görülen ekstansör karpi radiyalis longus (extansor carpi radialis longus) kası, 

önkolun dış tarafında bulunan iki kastan biridir. Fleksör karpi radiyalis kası ile aynı etkiye 

sahiptir. Crista supracondylaris lateralis’ in alt parçasından ve epicondylis lateralis’ten 

başlar. 

Uzun kas kirişi retinaculum musculorum extensorum'un altından geçerek, 2. metakarpal 

kemiğin tabanın arka yüzüne yapışarak sonlanır. Bu kası innerve eden sinir nervus 

radialis’tir. Görevi, ele ekstansiyon hareketi yaptırmaktır. Elin radyal abdüksiyon 

hareketine de yardım eder. 
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Şekil 3.2: Extansor Karpi Radiyalis Longus kası. 

 

3.2. KAS KOORDİNASYONU 

Kaslar tüm vücut hareketleri için kuvvet sağlayan yapılardır ve özel hücrelerden 

oluşmaktadır. Kasın yapısal ünitesi kas hücresi veya kas lifidir. Bir motor nöron ve bu 

motor nöronun innerve ettiği kas liflerinden oluşan kasın işlevsel birimine motor ünite 

adı verilir.  

Bütün hareketler birçok kasın koordineli bir şekilde birlikte çalışması ile oluşur. Hareketi 

doğrudan yaptıran kas veya kas grubuna esas hareket ettirici kas denir. Belirli bir 

harekette, esas hareket ettirici kas diğer bir kasa göre zıt yönde hareket ediyorsa bu kaslara 

antagonist kaslar denir. Örnek olarak, önkolun fleksiyon hareketi sırasında, ekstansör 

kaslar antagonist çalışırlar. Esas hareket ettirici kasa aynı yönde yardımcı olan kaslara da 

sinerjist kaslar denir. Bir hareket yapılırken istenmeyen diğer hareketlerin oluşmasını 

engelleyen kaslar da fiksasyon kaslarıdır. 
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Şekil 3.3: Kas yapısının şematik gösterimi. 

 

3.2.1. Kas Hareketleri  

Anatomik hareket açılımları iskelet üzerindeki kasların hareketlerini tanımlamak için 

kullanılır. Kaslar eklem hareketleri üretmek için kasılıp, gevşer ve bundan sonra oluşacak 

hareketler aşağıdaki terminoloji kullanılarak tam olarak açıklanabilir. 

Konumların anatomik terimleri için, kullanılan terimler vücudun anatomik pozisyonda 

başladığını varsaymaktadır. Çoğu hareketin zıddı bir hareketi vardır, ve bu zıt hareketler 

karşıt (antagonist) hareket olarak tanımlanmaktadır. Daha kolay anlaşılması için terimler 

karşıt çiftler olarak açıklanmıştır. 

Abduksiyon/Adduksiyon (Abduction/Adduction): Vücudun orta düzlemine doğru veya 

vücudun orta düzleminden uzaklaşma hareketlerini tanımlamak için kullanılan iki 

terimdir. Vücutta bulunan herhangi bir uzvun vücut orta düzleminden uzaklaşması 

hareketine abduksiyon; uzvun vücut orta düzlemine yaklaşması hareketine ise 

adduksiyon denilir. Bu iki hareket de vücudun frontal düzlemi üzerinde gerçekleşir.   

Fleksiyon/Ekstansiyon (FIexion/Extension): Fleksiyon ve ekstansiyon, sagital düzlemde 

meydana gelen hareketlerdir. İki vücut kısmı arasındaki açıyı artırma ve azaltmayı ifade 

eden terimlerdir. Fleksiyon hareketinde eklem açısının küçülmesi veya bükülme, 

ekstansiyon hareketinde ise eklem açısının büyümesi veya gerilme söz konusudur. 
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İç Rotasyon/ Dış Rotasyon: Bir uzvun veya vücut kısmının(eklemlerin?) uzun eksen 

etrafında dönme hareketini tanımlayan iki terimdir. İçe dönme hareketine iç rotasyon, 

dışa dönme hareketine ise dış rotasyon denir. Bu hareketlere önkolda özel olarak 

pronasyon ve supinasyon ismi verilir. Alt kolun kendi ekseni etrafında döndürülerek, 

avuç içinin yukarıya döndürülmesi supinasyon ve aynı eksen etrafında döndürülerek avuç 

içinin aşağıya bakacak şekilde çevrilmesi pronasyon olarak bilinir. Radius'un ulnar 

etrafında içe döndürülmesi pronasyon; dışa döndürülmesi ise supinasyon adını alır. 

3.2.3. Kas Kuvvetini Etkileyen Faktörler 

3.2.3.1. Kas Aktivasyon Dinamiği  

Kas gücü, kas kuvvetinin ve kasılma hızının ürünüdür ve her biri kasın yapısal 

özelliklerinden etkilenmektedir (Neptune ve Kautz, 2001). Kas kuvvetinin gelişimini 

düzenleyen başlıca yapısal özellikler, kuvvet-boy ve kuvvet-hız ilişkileri ve kas 

aktivasyonu ve deaktivasyon dinamiğidir. Aktivasyon (etkinleştirme) ve deaktivasyon 

(etkisizleştirme) dinamikleri, kas kuvveti oluşumu ile dinlenme (sinir uyarımının durması 

ile kas kuvvetinin sıfıra düşmesi durumu) arasındaki gecikmeyi (kasa gelen sinir uyarımı 

ile kasta kuvvet oluşması arasındaki gecikme) tanımlayan süreçlerdir. Kas kuvveti 

oluşumu ve dinlenme durumlarındaki bu gecikmeler öncelikle kalsiyum dinamiklerine ve 

çapraz köprü (cross-bridge) oluşması-bozulması durumlarına bağlıdır (Zajac, 1989). 

İnsan hareketinin modelleme çalışmalarının çoğunda, aktivasyon ve deaktivasyon 

dinamiklerini birinci mertebeden diferansiyel denklemler ile temsil edilen Hill tipi kas 

modeli kullanılmıştır (Zajac, 1989). Bu model, karmaşık moleküler dinamiklerin yerine, 

sinirsel uyarım ile kas kasılmasının net sonucunu belirtir. Aktivasyon ve deaktivasyon 

dinamiklerinin önemli bir özelliği de, aktivasyon oranının deaktivasyon daha yüksek 

olmasıdır. 

Kas performansının başlıca belirleyicileri, kuvvet-boy-hız-güç ilişkileri ve aktivasyon-

deaktivasyon dinamikleridir. Aktivasyon ve deaktivasyon dinamikleri ile diğer yapısal 

kas özellikleri arasındaki etkileşim, tercih edilen kas koordinasyon stratejilerini 

etkileyebilir. Kuvvet hız ilişkisi, kas kuvveti ile kasılma hızı arasındaki ters ilişkiyi 

tanımlayan esas bir kas özelliğidir.   
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3.3. DENEYLER 

Bu tez çalışmasında, insan kolunun izometrik hallerinde yapılan deneylerde elde edilen 

veriler kullanılmıştır. Kolun farklı pozisyonlarda ve değişen kuvvetlerde kasılması 

sırasında kaydedilen sinyallerin değerlendirilmesinde hata oranının en az olması 

istenmiştir. Bunu sağlamak amacıyla, kolun dinlenme (sabit) pozisyonunda kaydedilen 

EMG sinyalleri kullanılmıştır. Bu bölümde öncelikle deney düzeneği ve ölçüm kriterleri 

anlatılacak ve daha sonra sinyal kayıt aşamalarından bahsedilecektir. 

İnsan önkol kasları üzerinde yapılan deneyler, Baltalimanı Metin Sabancı Kemik 

Hastalıkları Eğitim ve Araştırma Hastanesi Etik Kurul Komitesi tarafından onaylanmıştır. 

3.3.1. Deney Düzeneği 

Baltalimanı Metin Sabancı Kemik Hastalıkları Eğitim ve Araştırma Hastanesi Yürüme 

Analizi Laboratuvarı’ nda gerçekleştirilen bu deneylerde yaşları 18-35 aralığında olan 5 

sağlıklı erkek, 5 sağlıklı kadın bireyin, izometrik kasılma durumunda sağ kollarında EMG 

ölçümleri yapılmıştır. Ortalama yaş 26.7; vücut yüksekliği ortalaması 169.1 cm; vücut 

kütlesi ortalama 68.5 kg'dır. Tüm gönüllülere deneylerden önce yazılı ve bilgilendirilmiş 

onay formu imzalatılıp onayı alınmıştır. 

Gönüllülerin araştırmaya dâhil edilme kriterleri: 

• Gönüllüler sağlıklı bireyler olmalı, 

• Son bir yıl içinde kol- omuz bölgesinde operasyon geçirmemiş olmalı, 

• Ampute olmuş bir uzva sahip olmamalı, 

• Kronik bir rahatsızlığı olmamalı, 

• Organ yetmezliği, kalp pili, tansiyon vb. rahatsızlıkları olmamalıdır. 

Bu kriterler göz önüne alınarak çalışmaya katılacak gönüllüler belirlenmiştir. 

Gönüllülerin Kayıt için Hazırlanması 

Gönüllü onay formunu imzalayan gönüllü ilk olarak uzman doktor tarafından muayene 

edilir. Muayene tamamlandıktan sonra, sağlıklı olduğuna karar verilen gönüllülere 
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ölçümler ve deney sırasında yapılması istenenler ile ilgili bilgi verilir. Gönüllüden ölçüm 

almadan önce, kol yüzeyinin ölçüm yapılacak şekilde hazırlanması gerekir. Öncelikle 

ölçüm alınacak (sağ kol) önkol üzerinde bulunan saat, takı vb. süs eşyaları çıkarılmalıdır. 

Kol üzerinde eğer kıl varsa kol yüzeyi gürültü sinyallerinin oluşmasını önlemek için bu 

kıllar traş edilir. Önkol üzerinde herhangi bir harici nesne bulunmayacak şekilde 

hazırlandıktan sonra, cilt alkol ile temizlenir ve alkolün buharlaşmasına izin verilir, 

böylece elektrotlar yerleştirilmeden önce cildin kuru kalması sağlanmış olur (Şekil 3.a). 

Kol temizlendikten sonra, kolun çeşitli kas içeren bölgeleri tespit edilip geçici olarak 

çizilecek(tükenmez kalem kullanılarak)işaretçiler ile hastaların ilgili kaslarının yerleri 

belirlenecektir (Şekil 3.b) . Bir metre yardımıyla dirsek başlangıç noktası olarak alınıp el 

bileği arasındaki mesafenin üçte birlik mesafesi işaretlenir (Şekil 3.c). İşaretlenen yerlere 

elektrotlar yapıştırılır ve bileğe harici karşı bir kuvvet uygulanarak yerinin doğruluğu 

kontrol edilir. (Şekil 3.d). Elektrotların yerleşim yerinden emin olunduktan sonra, şarj 

edilmiş EMG alıcıları elektrotların üzerine yerleştirilir (Şekil 3.e). Aynı işlemler diğer 

kas çifti için tekrarlanır (Şekil 3.f). Her iki kasın ölçüm için hazırlanmış hali Şekil 3.g’de 

gösterilmiştir. 

 

 

Şekil 3.4: EMG elektrot yerleştirimi ve gönüllülerin kayıt için hazırlanma evreleri. 

a) Cildin alkol ile temizlenmesi, b) Kas yerinin tespiti, c) Bilek uzunluğunun ölçülüp kas yerinin 

işaretlenmesi d) Elektrotların yerleştirilmesi e) Sensörlerin yapıştırılıp kola sabitlenmesi f) Kas 

yerinin doğruluğunun kontrol edilmesi g) Her iki kas için de ölçüme hazır kol hali 
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Aşağıdaki Tablo 3.1’ de, bireylerin yaş, boy ve kilo bilgileri görülmektedir. 

Tablo 3.1: Gönüllülerin cinsiyet, yaş, boy ve kilo bilgileri. 

Gönüllü No Cinsiyet Yaş Boy (cm) Kilo (kg) 

01 Erkek 23 172 65 

02 Kadın  23 160 50 

03 Kadın 35 165 56 

04 Kadın 25 174 62 

05 Kadın 35 157 54 

06 Erkek 26 183 86 

07 Kadın 26 161 58 

08 Erkek 32 181 86 

09 Erkek 24 178 108 

10 Erkek 18 160 60 

 

3.3.2. Sinyal Verilerinin Elde Edilmesi 

Sağlıklı gönüllülerin sağ üst ekstremitesi önkol kaslarından fleksör karpi radiyalis ve 

ekstansör karpi radiyalis longus kaslarına EMG elektrotları yerleştirildikten sonra 

protokollere ve bu protokollerin kurallarına göre sinyaller kaydedilmiştir. İlk olarak kolun 

istirahat halindeki EMG sinyalleri alınmıştır. Bu sinyaller alındıktan sonra omuz 45° 

abduksiyonda, dirsek 90° fleksiyonda iken gönüllülerden maksimum ve submaksimum 

olarak el bilek ekstansiyonu ve fleksiyonu yapmaları istenmiş ve EMG sinyalleri 

kaydedilmiştir. Daha sonra omuz adduksiyonda ve dirsek 90° fleksiyonda iken 

gönüllülerin maksimum ve submaksimum el bilek ekstansiyon ve fleksiyonu hareketi 

esnasında EMG sinyalleri kaydedilmiştir. Bu kontraksiyonlar esnasında el dinamometresi 

ile hastanın uygulamış olduğu istemli kuvvetler ölçülmüştür. Gönüllüler, ölçüm yapan 

kişiden aldığı uyarılarla harekete başlama ve bitirme zamanlarını belirlemiştir. 

EMG sinyalleri insan fizyolojisinden ve ortam şartlarından kolaylıkla 

etkilenebileceğinden, gönüllülerden ölçüm süresince olabildiğince doğal ve rahat 

davranmaları istenmiştir. Ölçüm sırasında sinyallerde gürültü oluşmasını engellemek 

amacıyla sinyal yayan tüm elektronik cihazlar (cep telefonu, PDA vs.) kapatılmıştır. 
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EMG sinyallerinin etkilenmemesi için konum değişimini önlemek amacıyla ölçümler 

sırasında kolun konumunun olabildiğince sabit tutulmasına dikkat edilmiştir.  

Tüm protokollerde aynı EMG cihazı (kablosuz yüzeyel EMG sistemi - Cometa Wave 

Wireless EMG) kullanılmıştır. Deneyde kullanılan 32 kanallı EMG cihazından (Cometa 

Wave) kablosuz olarak ölçüm alınabilmektedir. Bu özelliği sayesinde kablo vb. fiziksel 

bağımlılıklar ve mesafe kısıtı gibi sorunların önüne geçilmiştir. 

EMG kayıtları için, kendinden jelli elektrot (self-adhesive electrode) olarak adlandırılan, 

10 mm çaplı (~ 20 mm elektrotlar arası mesafe) ve metalik kısımları Ag-AgCl (Gümüş-

Gümüş Klorür) maddesinden oluşan elektrotlar kullanılmıştır. Jelli elektrotlar cilt ile 

elektrot arasındaki bir kimyasal arayüz olarak elektrolitik jel meteryali içerir. Bunlar, 

kendiliğinden yapışan ve tek kullanımlık yüzey elektrotlarıdır. 

Ölçüm sırasında kaydedilen EMG sinyallerine, geçirme bandı 15 Hz düşük ve 450 Hz üst 

frekans kesintileri olan bir bant geçiren filtre uygulanmıştır (Aslan ve diğ., 2010). Elde 

edilen EMG sinyallerinin örnekleme frekansı 1 kHz’dir ve çözünürlüğü 16 bit'tir. 

Örnekleme frekansı kavramı, tezin ilerideki bölümlerinden “Sayısal Sinyal İşleme” (Böl. 

3.4.1) başlığı altında detaylı bir şekilde incelenecektir. Kablosuz sensör boyutu 33 x 23 x 

19 mm'dir ve garanti edilen sensör performansı 20 metreye kadardır.  

Sinyal kayıt işlemleri için yapılan ve yukarıda detaylarıyla anlatılan bu deneyler iki farklı 

protokolden oluşmaktadır. Protokol 1 kuvvet kestirimini, Protokol 2 ise pozisyon 

kestirimini ifade etmektedir.  

3.3.2.1. Protokol 1 için EMG Sinyalinin Kayıt Edilmesi ve Veri Toplama 

Deneyler, elin farklı hareketlerine bağlı olarak değişen pozisyonlarında alınan sinyal 

kayıt denemelerinden oluşmaktadır. Sinyal kayıtları için öncelikle tüm gönüllülerden, 

bilek fleksiyonu (BF), bilek ektansiyonu (BE), bilek iç rotasyonu (BIR) ve bilek dış 

rotasyonu (BDR) olmak üzere dört farklı günlük üst ekstremite hareketlerini yapması 

istenmiştir. Tüm bu hareketleri yapmadan önce gönüllülerin (daha sonra yapılacak 

analizler için) dinlenme pozisyonunda (bilek nötr bir konumda ve hareketsiz, omuz 45° 

abduksiyonda, dirsek 90° fleksiyonda iken) EMG sinyalleri kaydedilmiştir (Şekil 3.5). 
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İlk kayıttan sonra gönüllüden Şekil 3.5’ te verilen hareketleri yapması istenmiştir. Bu 

sırada gönüllünün ve el bileğinin bulunması gereken konumlar sırasıyla aşağıda 

anlatılmıştır. 

 

Şekil 3.5: El bileği pozisyonları. 

 

Dinlenme pozisyonu (D): Gönüllü öne doğru yatay olacak şekilde düz oturur ve bilek nötr 

bir konumda ve hareketsizdir. 

Bilek Fleksiyonu (BF):  Omuz 45° abduksiyonda, dirsek 90° fleksiyonda iken bilek nötral 

konumda, el içe doğru bükülür. 

Bilek Ekstansiyonu (BE): Omuz 45° abduksiyonda, dirsek 90° fleksiyonda iken bilek 

nötral konumda, el dışa doğru gerilir. 

Bilek İç Rotasyonu (BIR): Önkol kendi ekseni etrafında döndürülerek, avuç içi aşağı yöne 

bakacak şekilde çevrilir. 

Bilek Dış Rotasyonu (BDR): Önkol kendi ekseni etrafında döndürülerek, avuç içi yukarı 

yöne bakacak şekilde çevrilir. 

Hareket pozisyonu gönüllüye gösterildikten sonra, gönüllünün hareketi beş saniye 

boyunca sürdürmesi istenmiştir. Her hareket üç kez tekrarlanır. İki tekrar arası geçiş 

durumunu (transitional stage) önlemek için gönüllünün iki saniye dinlenme 

pozisyonunda, kasılma olmaksızın dinlenmesi sağlanmıştır (Phinyomark ve diğ., 2012). 
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Üç tekrarla bir hareket tamamlandıktan sonra kas yorgunluğunu önlemek için, gönüllü 

bir sonraki harekete başlamadan önce minimum iki dakika beklemek zorundadır (Ju ve 

diğ., 2013). 

 

 

Şekil 3.6: Protokol 1 için (sol) ve Protokol 2 için (sağ) EMG sinyali ölçüm düzeneği. 

 

3.3.2.2. Protokol 2 için EMG Sinyalinin Kayıt Edilmesi ve Veri Toplama 

Bu protokol, gönüllü tarafından isteğe bağlı şiddetlerde uygulanan kuvvetlere karşı 

oluşan sinyallerin kaydedilmesini sağlayan denemelerden oluşmaktadır. Bu protokol, el 

pozisyonlarından bağımsız ve yalnızca kuvvet değerleri ile buna karşılık gelen sinyalleri 

ölçmeyi sağlayan deneydir. Bu deneyin amacı, uygulanan kuvvetlerin, EMG sinyalleri 

yardımıyla kestirimini elde edebilmektir. 

Bu işlemi gerçekleştirmek için, farklı kuvvet değerine karşı önkolun istirahat halinde 

iken, iki ayrı kastan EMG sinyal ölçümleri yapılmıştır. Şekil 3.6 (sağ) ’da, ölçüm 

yapılırken gönüllünün pozisyonu ile omuz ve kolların durumu görülmektedir. Kuvvet 

ölücümü için gönüllü, standart bir konumda düz oturarak, önkol ve bilek nötral 

pozisyonda iken sağ eliyle el dinamometresi tutmuştur (Şekil 3.6 (sağ)). İlk olarak 

gönüllülerden EMG sinyalinin, değerlendirilen her bir kasın maksimum EMG sinyaline 

normalizasyonu için beş saniye boyunca maksimum kuvvet uygulamaları istenmiştir. 

Maksimum gönüllü kasılma anındaki sinyaller kaydedildikten sonra, kas yorgunluğu 
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oluşmasını engellemek için üç dakika dinlenme durumunda beklenmiştir (Kamavuako ve 

diğ., 2009). Dinlenme durumunda ayrıca el dinamometresi de bırakılmıştır. Hiçbir 

kasılmama olmamasına dikkat edilmiştir.  Dinleme sonrası üç defa gönüllü tarafından 

belirlenen şiddette kuvvet uygulanmış ve bu esnada sinyaller kaydedilmiştir. Eş zamanlı 

olarak da dinamometre sayesinde kuvvet değerleri kaydedilmiştir. Her iki tekrar arasında 

minimum iki dakika beklenmiştir. 

3.4. EMG SİNYALİNİN TEMEL KAVRAMLARI 

Elektromiyografi, kasların elektriksel aktivesinin incelenmesi çalışmasıdır (Basmajian ve 

diğ., 1985). Kas liflerinin kasılmasına neden olan kas hareket potansiyellerinin toplamını 

temsil eder. Bir elektrot aracılığyla bu sinyallerin toplanıp, çeşitli özelliklerdeki EMG 

cihazları vasıtasıyla kaydedilmesiyle EMG sinyalleri oluşur. EMG sinyallerinin 

anlaşılması için kas yapısının ve kasların biyoelektrik sinyaller üretme biçiminin 

anlaşılması gerekmektedir. (Merletti ve Parker, 2004). 

De Luca’ya göre (1997), “Elektromiyografi ilgi çekici bir ilham kaynağıdır, çünkü kasın 

güç üretmesine, harekete geçmesine ve çevremizdeki dünyayla etkileşime girmemize izin 

veren sayısız işlevin yerine getirilmesine neden olan fizyolojik süreçlere kolay erişim 

sağlar. Elektromiyografinin kullanımı çok kolay dolayısıyla kötüye kullanımı da çok 

kolaydır. "  

Hayvansal yaşamın en temel özelliği olan hareket etme kabiliyeti, yıllar boyunca kaslar 

ve kas fonksiyonlarının araştırılmasını ve üzerine çalışmalar yapılmasını sağlamıştır. 

Rönesans döneminde Leonardo da Vinci’nin kas analizi çalışmalarıyla başlayan bu süreç 

birçok bilim insanının katkılarıyla üzerinde en çok çalışan konulardan biri olmuştur. 

1666’da Francesco Redi, kasların elektrik üretimi ile ilgili yaptığı çalışmalar EMG ile 

ilgili ilk belgelendirilmiş deneyler olarak görülmektedir. Galvani 1786 yılında, bir 

rastlantı sonucu elektrikten yararlanarak yaptığı fizyoloji araştırmaları sonucunda elektrik 

ve kas kasılması arasındaki ilişkiyi ilk keşfeden kişi olmuştur. Laboratuvarda 

kurbağaların sinirleri üzerinde incelemeler yaparken derisi yüzülmüş bir kurbağa sinirleri 

üzerinde elektrik yükü bulunan bir cisim ile teması sonucunda bacaktaki hareket sinirleri 

üzerinden bir elektrik akımı geçtiğini ve ölü hayvanın kaslarında kasılmalar meydana 

geldiğini fark etmiştir. Çalışmalarına devam eden Galvani, kasılmaların oluşması için 

sinirlere iletken bir cisimle dokunulması gerektiğini kesin olarak anlamış ve daha sonra 
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kurbağa gibi diğer bütün hayvanların vücutlarında elektrik yükü taşıdıkları sonucuna 

varmıştır. Bu güç Avrupa'da büyük bir heyecanla kabul edilen "hayvan elektriği" kavramı 

olarak adlandırılmıştır. Bu araştırmalarını 1791 yılında yayımladığı “De viribus 

electricitatis in motu musculari commeritarius” (Elektriğin Kas Hareketlerindeki Etkisi 

Üstüne Düşünceler) adlı eserinde açıklamıştır. Tüm bu çalışmalar sonucunda Galvani, 

nörofizyolojinin “babası” ünvanını almıştır. 1849 yılında Emil du Bois-Reymond, 

gönüllü bir kas kasılması sırasında elektriksel aktivitenin kaydedilebileceğini 

keşfetmiştir. Bu etkinliğin ilk gerçek kaydı Marey tarafından 1890'da yapılmıştır ve 

elektromiyografi terimini de ortaya çıkarmıştır. 

3.4.1. Yüzeyel EMG Sinyallerinin Kayıt Tekniği 

Bir kas ve onu kontrol eden motor sinirlerin elektriksel aktivitesini gösteren EMG sinyali, 

iki farklı yöntemle kaydedilir: Kas içerisine iğne şeklindeki elektrotlar sokularak 

kaydedilmesi; iğne EMG (Intramuscular EMG) yöntemi ve deri yüzeyine yerleştirilen 

elektrotlarla kaydedilmesiİ; yüzeyel EMG (surface EMG - sEMG) yöntemi. Önceki 

yıllarda, iğne EMG sadece bir kasa ait aktivasyonun başarılı bir şekilde elde edilmesi ve 

yüzeyden uzakta bulunan kaslara da erişim sağlaması nedenlerinden dolayı daha çok 

tercih edilen bir yöntemdi. Fakat invaziv bir yöntem olması ve uygulanabilmesi için 

operasyon ve hekim gerektirmesi sebepleriyle klinik uygulamalarda oldukça yavaş 

sonuçlar elde edilmektedir. Ayrıca bu yöntemle yapılan ölçümler sırasında insanların acı 

duyması da sinyal kayıt prosedürlerini oldukça zorlaştırmaktadır. Günümüzde 

biyomedikal alanında yapılan çalışmalar neticesinde, yüzeyel EMG sonuçları neredeyse 

iğne EMG kadar doğru sonuçlar verebilecek kadar iyileştirilmiştir. Hem benzer doğruluk 

oranı, hem de hızlı sonuçlar elde edilebilmesi açısından yüzeyel EMG yöntemi, en çok 

kullanılan EMG sinyali kayıt yöntemidir.  

Yüzeyel EMG tekniğinde deri yüzeyine yerleştirilecek elektrotların konumu çok 

önemlidir. Doğru ve başarılı sonuç elde edebilmek için, elektrotların kas aktivasyonunun 

en yoğun olduğu bölge üzerine yerleştirilmelidir. Yani, elektrotlar, mutlaka kasın 

kenarlardan uzak, orta bölümüne yapıştırılmalıdır. Bunun için, elektrotların 

yerleştirileceği bölge, sadece EMG elektrotlarının yapıştırılacağı kas kontraksiyonda iken 

saptanmalıdır. Yanlış yer tespiti hatalı sonuçlara neden olacağı için, elektrot bölgesi 

seçimi uzman (hekim, fizik tedavi uzmanı vb.) bir kişi tarafından belirlenmelidir. 
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Elektrot konumu tespit edildikten sonra belirlenen lokasyonun etrafına elektrotların 

yerleştirilmesi ve sabitlenmesi gerekir. Elektrot yerleştirilirken ve sabitlenirken, elektrot 

mesafesi, yönlendirme, sabitleme yöntemi ve referans elektrotun konumu seçilmelidir. 

Elektrotlar arası mesafe, iki bipolar elektrotun iletken alanı arasındaki merkezden 

merkeze uzaklık olarak tanımlanır. Yönlendirme, kas liflerinin yönüne göre iki bipolar 

elektrot arasındaki çizginin konumu olarak tanımlanır.  Referans elektrotu, sinyal bozma 

riski minimum olacak bir yere yerleştirilmelidir. Genellikle referans elektrotunun 

elektriksel olarak etkin doku üzerinde yer aldığı kabul edilir. Literatürde, EMG' nin 

kaydedildiği kaslara bağlı olarak bir dizi referans elektrot konumu tercih edilebilir. Bu 

parametreler, SENIAM (Surface ElectroMyoGraphy for the Non-Invasive Assessment of 

Muscles) projesinde belirtildiği şekilde seçilmelidir. Bu çalışma kapsamında seçilen 

parametre değerleri “Deneyler” bölümünde açıklanmıştır. 

 

 

Şekil 3.7: Farklı bölgelere yerleştirilen elektrotların sinyal üzerine etkisi (De Luca, 1997). 
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Gürültü (noise), EMG sinyalinin kayıt altına alınmasında sinyalin doğruluğunu 

güçlendiren önemli etkenlerdendir.  Gürültü çoğunlukla, EMG sinyalleri için 

istenmemekte olan elektriksel sinyallerdir. Gürültünün kaynakları farklıdır. Örneğin, 

elektronik her cihaz için elektriksel gürültüler söz konusudur. Gürültülerin frekans 

aralıkları değişkendir. Bu gürültüler tamamen engellenememekte fakat gürültüye bağlı 

kirlilik seviyesi azaltılmaktadır. Gürültüye sebep olan faktörlerin başında elektrotları 

yükselticiye ulaştırmak için kullanılan kablolar gelmektedir. Eğer kablolu bir sistem 

kullanılıyorsa elektrot ile EMG cihazı bağlantısını sağlayan kablolar çok iyi bir şekilde 

kontrol edilmeli gürültüye sebep vermeyecek şekilde deri yüzeyine ya da ilgili alana 

sabitlenmelidir. Eğer kayıt cihazı kablosuz (wireless) bir sistem ise, gürültü kablo, fiziksel 

şartlar vb. nedenlerinden gürültü oluşma ihtimali daha azdır. Gerçek sinyalleri, gürültü 

sinyallerinden ayırt etmek için kullanılan filtreleme işlemi, sinyalin karakteristik 

yapısının belirlenmesinde engelleyici olabilir. Bu sebepten, EMG sinyallerinin 

kaydedilmesi sırasında, sinyallerde davranış bozukluğuna neden olabilecek her tür 

filtreleme işlemlerinden ve sinyalleri düzeltmeye yönelik işlemlerden uzak durulması 

gerekmektedir. Bu çalışmada kullanılan EMG sinyali kayıt cihazı, EMG sinyallerini 

elektriksel gürültüden ayıklamak için 10Hz ile 500 Hz bant aralığını geçiren filtreye 

sahiptir.  

Yanses (crosstalk) de, EMG sinyalini etkileyen bir başka etkendir. Başarılı bir sinyal 

kaydı için yanses engellenemese bile en aza indirilmelidir. Komşu kaslardan 

kaynaklanarak elektrotlara sızan gürültüyü engellemek ya da azaltmak için elektrotlar 

arası uzaklık yeteri kadar kısaltılmalıdır. Yanses “EMG-Kas Kuvveti İlişkisi” başlığı 

altında detaylı bir şekilde anlatılacaktır. 

EMG sinyallerinin genlik aralığı 0–10 mV (+5 to -5) aralığında değişkenlik gösterir. 

EMG sinyalleri genlikleri küçük olduğu için alındıktan sonra yükseltilirler. Kullanılabilir 

sinyal enerji aralığının frekans değeri ise 0-500 Hz ‘dir. En büyük frekans değerlerine 

sahip frekans genliği aralığı 0-150 Hz’ dir. Şekil 3.8’de ise fleksör karpi radiyalis 

kasından elde edilmiş bir EMG sinyali ve onun frekans dağılımı (spektrum) 

görülmektedir. 
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Şekil 3.8: (a) Fleksör karpi radiyalis kasına ait bir EMG sinyali (b) Sinyalin frekans dağılımı. 

 

Bu tez çalışması kapsamında yukarıda anlatılan etkenler göz önüne alınarak ölçüm 

yapılmış ve elektrot yerleşimi için uzman kişilerden yardım alınmıştır.  

 

 

Şekil 3.9: Kablosuz elektrotların önkol üzerindeki yerleşim yerleri. 

 

 Şekil 3.9’da önkolda iki kasa yerleştirilen elektrotların, kas yüzeyiyle olan temas yerleri 

görülmektedir. 

3.4.2. EMG Sinyalinin Uygulama Alanları 

Yüzeyel EMG  spor bilimleri, nörofizyoloji ve rehabilitasyon gibi birçok farklı uygulama 

alanına sahiptir. Yüzeyel EMG, non-invaziv nöromüsküler değerlendirme olanağı 

sağladığı için hem araştırma hem de klinik uygulamalarda kullanılmaktadır. Kas 
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yorgunluğu, sırt-boyun ağrısı gibi nörolojik hastalıklar ve diğer nöromüsküler değişikler 

EMG sinyalindeki değişiklikler analiz edilerek saptanmaktadır. Ayrıca yüzeyel EMG 

sinyali kullanılarak kas aktivasyon aralıkları izlenebilmektedir. Kas aktivasyon 

aralıklarının belirlenmesi, motor koordinasyonunun ve tedavi etkisini değerlendirilmesi 

açısından oldukça yararlıdır (Rainoldi ve diğ., 2004).  

EMG'nin kullanımı için pek çok uygulama vardır. EMG klinik olarak nörolojik ve 

nöromüsküler problemlerin teşhisi için kullanılır. Yürüme laboratuvarlarında, biyolojik 

tepkiler ve ergonomik değerlendirme ile ilgili eğitim almış klinisyenler tarafından tanı 

amaçlı olarak kullanılır. Ayrıca EMG, biyomekanik, motor kontrol, nöromüsküler 

fizyoloji, hareket bozuklukları, postürel kontrol ve fizik tedavi alanlarının içinde 

bulunduğu birçok araştırma laboratuvarında kullanılır. 

3.4.3. EMG-Kas Kuvveti İlişkisi  

Aktif bir kas tarafından üretilen kuvvetin kestirimi, sadece biyomekanik çalışmalar için 

değil aynı zamanda fizyoterapi çalışmaları açısından da büyük önem taşımaktadır. EMG 

sinyali ile kas kuvveti arasındaki ilişki kas kuvveti ile ilgili yapılan çalışmalarda 

fizyoterapistlerin tanı ve tedaviye ilişkin verdiği kararların dayanağıdır. Yüzey EMG 

sinyalleri, iskelet kaslarının aktivasyon derecesini gösterir ve bu sinyaller kas 

kuvvetleriyle oldukça yakın ilişkilidir (Disselhorst-Klug ve diğ., 2009). Bununla birlikte, 

kas kuvvetini yüzeyel EMG'den tahmin etmenin en büyük dezavantajı, bir kas tarafından 

üretilen kuvvetin gerçek değerinin doğrudan, invaziv olmayan şekilde ölçülmesinin 

oldukça zor olmasıdır. Kas kuvvetinin dolaylı ölçümü, elde edilen kuvveti etkileyen 

tahmin edilmeyen diğer faktörler ile birlikte kuvvet bilgisi almaya yarar. Bu nedenle bu 

yüzeyel EMG sinyallerinin yorumlanması zordur ve bir hekim tarafından yapılmalıdır.  

Farklı kas uzunluklarına göre EMG sinyali kuvvet ilişkisini etkileyecek en az dört faktör 

vardır (Disselhorst-Klug ve diğ., 2009). Bunlar; 

1) Motor ünitelerinin (MU'lar) aktivasyon örüntülerindeki değişikliler, 

2) Kasın anatomik, mekanik veya elektriksel özellikleri,  

3) İlgili kasa bağlı olarak yerleştirilecek EMG elektrodlarının konumu, 
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4) Hücrelerdeki kasılma filamanı (filament) özellikleridir. 

Kaslarda kasılmayı etkileyen bir diğer faktör kas yorgunluğudur (fatigue). İzometrik 

kasılma durumunda sürekli olarak uygulanan kuvvet sırasında EMG aktivitesi sürekli 

olarak artar; kuvvet seviyesi daha yüksek tutulduğunda artış oranı artmaktadır Aschero 

ve Gizdulich, 2010). Fakat kas uzun süre aktiviteye maruz kalırsa kasta “yorulma” 

meydana gelir. Bu yorulma EMG sinyallerini olumsuz etkiler. Yorulmayı önlemek için 

deney sırasında yapılması istenen görevler parçalara ayrılmış ve her iki görev arasında 

yorgunluğun oluşmaması için belirlenen ölçüde dinlenme sağlanmıştır. 

Kasların kasılmasını etkileyen fizyolojik etkenlerin yanı sıra, bu kasılmalar sırasında 

yapılan ölçümleri etkileyen faktörler de vardır. Bu faktörlerin en önemlilerinden biri 

yanses olayıdır. Yanses, belirli bir kas üzerinde tespit edilen çoğunlukla bu kasın 

yakınındaki diğer kas tarafından üretilen EMG sinyalidir  (Winter, 1994).  Bu yanses 

sinyalleri, aktif kas üzerinde tespit edilen sinyallere göre farklı bir şekle sahiptir ve yüksek 

frekans bileşenler içerir (Solomonow ve diğ., 1994). Yanses, yüzeyel EMG sinyallerinin 

yorumlanmasında en önemli hata kaynaklarından biridir. Yanses sorunu, özellikle farklı 

kas aktivasyonunun karşılaştırılması istenen durumlarda önemlidir. Bu sorun tam olarak 

ortadan kaldırılamasa da, EMG sinyallerinden sağlıklı sonuçlar elde etmek için yanses 

etkisini en aza indirmek gerekmektedir (Farina ve diğ., 2004). 

Yukarıda anlatılan ve EMG sinyali kas kuvveti ilişkisini olumsuz etkileyen faktörlerin 

büyük bir kısmı EMG sinyaline ve kuvvet genliğine normalizasyon işlemi uygulanarak 

ortadan kaldırılabilmektedir. 

3.5. EMG SİNYALİNİN İŞLENMESİ 

Kaydedilen EMG sinyallerinden, doğruluğu ve performansı yüksek bir sınıflandırma 

sonucu elde edilmek isteniyorsa, ham EMG sinyallerinin bir dizi işlemlerden geçirilmesi 

gerekmektedir. Sinyalin doğası değiştirilmeden uygulanan bu işlemlere sinyal işleme 

denir. Sinyal işleme işleminin amacı sinyali kullanılabilir ve analiz edilebilir bir formata 

dönüştürmektir. Oldukça hassasiyet gerektiren EMG sinyal çalışmaları sırasında yapılan 

sinyal işleme işleminin sinyalin davranışını ve özelliklerinin değiştirmemesine özen 

gösterilmelidir. Bu doğrultuda, elde edilen sinyal verilerine bant geçiren filtre 

kullanılarak filtreleme işlemi uygulanmıştır. Daha sonra ise bu sinyaller, bu bölümde 
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anlatılan sırasıyla sinyal işleme adımlarından geçerek örüntü çıkarma işlemi ve yapılacak 

analizler için hazır hale getirilmiştir.  

3.5.1. Sayısal Örnekleme Frekansı 

Sinyaller genel olarak sürekli zamanlı sinyaller (continious time) ve ayrık zamanlı 

(discrete time) sinyaller olmak üzere iki gruba ayrılır. Sürekli zamanlı sinyaller analog 

sinyaller, ayrık zamanlı sinyaller ise dijital sinyaller olarak adlandırılır. Analog sinyal,  

verileri sürekli değişen bir miktarda gösterir. Dijital sinyal, verileri ayrı, sayısal formda 

temsil eder. Tıpkı diğer analog sinyaller gibi yüzeyel EMG sinyallerinin de bilgisayar ve 

elektronik sistemlerinde değerlendirilebilmesi için, bu sinyallerin sayısal diziler olarak 

ifade edilmesi gerekir. Yüzey EMG sinyallerinin sayısallaştırılması sırasında, kaydedilen 

sinyaller belirli bir örnekleme oranında, bilgisayar sistemleri tarafından analog sinyalden 

dijital sinyale (A / D) dönüştürücü ile dönüştürülür. Bu işlemden sonra analog EMG 

sinyali “örneklenmiş” sinyale dönüşür. Şekil 3.10’da analog bir EMG sinyali ve onun 

örneklenmiş dijital hali görülmektedir. 

 

 

Şekil 3.10: Tipik bir EMG sinyali (sol) ve örneklenmiş EMG sinyali (sağ). 

 

Örnekleme frekansı kavramı, sinyallerin sayısal hale dönüştürülmesi olarak tanımlanır. 

Sinyal işleme için kullanılan örnekleme frekansı çok dikkatli seçilmelidir; çünkü yüksek 

bir frekans seçilirse sinyal, gürültü sinyalleri içerebilir ya da düşük bir frekans hatalara 

neden olabilir (Sadhukhan ve diğ., 1993). 

Herhangi bir sinüzoidal sinyalin, yeniden ve bozulmadan elde edilebilmesi için kullanılan 

minimum örnekleme frekansı değerine Nyquist frekansı denir. Bu örnekleme işleminin 

nasıl olması gerektiğini belirten teorem de Nyquist Teoremi olarak adlandırılmaktadır.  
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Nyquist Teoremi’ne göre bir sinyalin örnekleme frekansı, ne kadar büyük olursa, orijinal 

sinyale benzerlik de o kadar artar. Bu teoreme göre, bu benzerliğin sağlanması ve 

bozulmaların minimum olması için, seçilen örnekleme frekansının kullanılan en yüksek 

frekans değerinin en az iki katı olmalıdır. EMG sinyali gibi rastgele bir sinyalin son 

derece karmaşık yapıda olan kas fonksiyonlarının özelliklerini aktarabilmesi için, büyük 

frekans değerlerinde örneklenmesi gerekmektedir. Bu çalışmada kaydedilen EMG 

sinyalleri 2 kHz’lik örnekleme frekansı değeriyle örneklenmiştir. 

3.5.2. Fourier Dönüşümü 

Dünyadaki hemen her şey bir dalga formuyla tanımlanabilir. Örneğin, ses dalgaları, 

elektromanyetik alanlar, bir tepenin konuma göre yükselmesi, stokların zamana karşı 

fiyatı vb. Fourier dönüşümü, bu dalga formlarını görüntüleme konusunda benzersiz ve 

güçlü bir yol sağlar. Tüm dalga formları aslında yalnızca farklı frekansların basit sinüs 

sinyallerinin toplamıdır. Yani, Fourier dönüşümü, bir dalga formunu temsil etmenin 

başka bir yolunu sunar. 

Fourier dönüşümü, bir dalga fonksiyonunu, bir sinyali ya da bir matematiksel ifadeyi 

zaman alanından (time domain) frekans alanına (frequency domain) çevirmeye yarar.   

Fourier dönüşümü, bir sinyali, bir dalga fonksiyonunu ya da bir matematiksel ifadeyi 

sinüs ve kosinüslerle karakterize edilen alternatif bir gösterime dönüştüren bir araçtır. 

Fourier dönüşümü, herhangi bir dalganın sinüzoidal fonksiyonların toplamı olarak 

yeniden yazılabileceğini gösterir. Fourier dönüşümü, dalga biçiminin sinüzoidal 

bileşenlerine nasıl çevrileceğini gösteren matematiksel araçtır. 

Sürekli bir sinyal, sonsuz sayıdaki sinüzoidallerin toplamı olarak ifade edilebilir. Bu 

sinüzoidal setine Fourier Serisi denilmektedir. Fourier Serisi periyodik bir fonksiyonu 

sinüzoidal fonksiyonların toplamına böler. Bu, periyodik fonksiyonlar için Fourier 

dönüşümü' dür. Fourier serilerinin analizi için, Fourier serisinin trigonometrik ifadesi, 

𝑥(𝑡) = 𝐴 + ∑(𝐵𝑛 𝑐𝑜𝑠(𝑓𝑛. 𝑡) + 𝐶𝑛 𝑠𝑖𝑛(𝑓𝑛. 𝑡))

∞

𝑛=1

 

(3.1) 

𝑥(𝑡) = 𝐴 + 𝐵1 𝑐𝑜𝑠(𝑓1. 𝑡) + 𝐶1 𝑠𝑖𝑛(𝑓1. 𝑡) + 𝐵2 𝑐𝑜𝑠(𝑓2. 𝑡) + 𝐶2 𝑠𝑖𝑛(𝑓2. 𝑡) + ⋯     

         +𝐵𝑛 𝑐𝑜𝑠(𝑓𝑛. 𝑡)  + 𝐶𝑛 𝑠𝑖𝑛(𝑓𝑛. 𝑡) 
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şeklinde gösterilebilir. Denklemde A sinyalin sahip olabileceği DC bileşeni, Bn ve Cn 

kosinüs ve sinüs terimlerinin her birinin genliklerini, fn ise frekanslarını göstermektedir. 

 

 

Şekil 3.11: Fourier Serisi kullanılarak bir EMG sinyalinin bileşenlerine ayrıştırılması. 

 

3.5.3. EMG Sinyalinin Zaman Alanında İncelenmesi 

Kas kuvvetine ve zamana bağlı olarak değişen EMG sinyali, genliği rastgele negatif ve 

pozitif değerler alarak değişen bir sinyaldir. Literatürde, EMG sinyalinin sınıflandırılması 

amacıyla, zaman etki alanında çeşitli analizler yapıldığı görülmektedir  (Basmajian ve 
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diğ., 1985). Bu bölümde, EMG sinyalinin analizi için yaygın olarak kullanılan 

yöntemlerden bahsedilecektir. 

3.5.3.1. Doğrultma  

Yaygın olarak kullanılan ve bir ön işleme prosedürü olan sinyal doğrultma (rectification) 

işlemi, EMG ile ölçülen kortikal sinyaller arasında önemli tutarlılığın saptanmasına 

olanak tanır. (Myers ve diğ., 2003). Ham EMG sinyalini tek bir polariteye çevirir. Yarım 

dalga doğrultma ve tam dalga doğrultma olmak üzere iki farklı sinyal doğrultma yöntemi 

vardır. 

EMG sinyalini işleme sırasında yalnızca pozitif değerler analiz edilir. Yarım dalga 

doğrultma yapılırken, tüm negatif veriler atılır ve pozitif veriler tutulur. Tam dalga 

doğrultmada ise sinyalin mutlak değeri alınır. Bu işlemde, EMG sinyalinin taban çizgisi 

altında kalan kısmı alınıp, bu sinyalin taban çizgisi üstünde kalan kısmına eklenir. Yarım-

dalga doğrultucu, negatif girişleri sıfırlarken, tam dalga doğrultucu, negatif girişleri 

pozitif yapar. Genellikle doğrultma işlemi için tam dalga doğrultma tercih edilir (Reaz ve 

diğ., 2006). 

Yarım-dalga doğrultucu için dönüşüm fonksiyonu: 

𝑉0 = {  
0   𝑖ç𝑖𝑛  𝑉𝑠 < 0 
𝑉𝑠 𝑖ç𝑖𝑛   𝑉𝑠 > 0

                                                                                       (3.2) 

Vs transfer (dönüşüm) fonksiyonunu, Vo  ise çıkış fonksiyonunu temsil eder. 

Örneğin aşağıdaki gibi bir sinüzoidal girdi ele alınırsa:  

 

Şekil 3.12: Örnek bir sinüzoidal eğri. 
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Yarım dalga doğrultucunun çıkışı şöyle olacaktır: 

 

Şekil 3.13: Yarım dalga doğrultucu uygulanan sinüzoidal eğri. 

 

Tam-dalga doğrultucu için dönüşüm fonksiyonu: 

𝑉0 = {  
−𝑉𝑠   𝑖ç𝑖𝑛  𝑉𝑠 < 0 

𝑉𝑠 𝑖ç𝑖𝑛   𝑉𝑠 > 0
                                                                                     (3.3) 

Yukarıda verilen sinüzoidal girdi tekrar göz önüne alınırsa, tam dalga doğrultucunun 

çıkışı şu şekilde olur: 

 

Şekil 3.14: Tam dalga doğrultucu uygulanan sinüzoidal eğri. 

 

3.5.3.2. Doğrultulmuş Sinyalin Yumuşatılması 

EMG sinyali, işleme alınan motor ünitelerin sürekli olarak değişmesi (motor ünitelerinin 

çapına ve motor ünitesi aksiyon potansiyellerindeki çakışmanın rastgele olmasına bağlı 

olarak) nedeniyle rastgele niteliktedir (Konrad, 2005). Doğrultma işlemi uygulanmış 

sinyal, sinyalin rastgele genliğinin doğasını niteler. Sinyalden genlik ile ilgili anlamlı 

bilgiler elde etmek için kullanılan yönteme yumuşatma (smoothing) denir. Yumuşatma 

işlemi, ilgili sinyal içerisinde bulunan yüksek frekanslı dalgalanmaların (high-frequency 
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fluctuations) sinyalden atılması ile gerçekleştirilir. Böylece sinyalin yansıması 

(deflections) daha pürüzsüz görünür. Yumuşatma işlemi, sinyalin alçak geçiren süzgeçten 

(low pass filter) geçirilmesi şeklinde de ifade edilebilir. Sinyal üzerinde gerçekleştirilen 

yumuşatma miktarı, kullanılan düşük geçiren filtrenin bant genişliğine bağlıdır; Bant 

genişliği ne kadar küçükse yumuşatma da o kadar büyük olur (Basmajian ve diğ., 1985). 

3.5.3.3. Doğrultulmuş Sinyalin Ortalaması 

Bir sinyalin ortalamasının alınması, sayısal olarak yumuşatma işlemine karşılık 

gelmektedir. T uzunluğundaki bir m(t) sinyalinin ortalaması; 

|𝑚(𝑡)| tj − ti   =  
1

ti−tj
∫ |𝑚(𝑡)|𝑑𝑡

ti

tj
               (3.4) 

matematiksel ifade ile hesaplanır (Basmajian ve diğ., 1985).  Burada tj ve ti, sinyale ait 

integrasyonun alt ve üst zaman sınır değerleridir. Yukarıda verilen ifade, T= tj – ti zaman 

aralığındaki sinyalin tamamının ortalamasını hesaplamaya yarar. Eğer sinyalin 

tamamının, zamana göre değişen ortalamasının hesaplanması istenirse, sinyal bir T 

uzunluğunda pencere ile taranarak ilerlenir ve bu pencere içine giren her bir sinyal 

aralığının ortalaması alınır. Bu ortalama değeri: 

|𝑚(𝑡)| =  
1

T
∫ |𝑚(𝑡)|𝑑𝑡

t+𝑇

t
                  (3.5) 

Denklemiyle hesaplanır (Basmajian ve diğ., 1985).  Literatürde yapılan birçok 

uygulamada T değeri 100 ms ile 200 ms arasında seçilmektedir (Basmajian ve diğ., 1985). 

3.5.3.4. Tümleştirme  

Tümleştirme (Integration), bir fonksiyon eğrisi altında kalan alanın hesaplanması 

işlemidir. Ham EMG sinyali bipolar bir sinyal olduğu için, ortalaması sıfır olan bir sinyal 

eğrisinin altında kalan alan hesaplanmak istenirse (tümleştirilirse) elde edilen değer sıfır 

olur. Bu nedenle,  tümleştirme işlemi yalnızca tam dalga doğrultma işlemi yapıldıktan 

sonra elde edilen sinyal üzerinde gerçekleştirilir. Elde edilen parametrelerin birimi V.s 

veya mV.ms.’dir. Matematiksel olarak tümleştirme işlemi; 
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        𝐼{|𝑚(𝑡)|} = ∫|𝑚(𝑡)|𝑑𝑡

𝑡

0

 (3.6) 

denklemiyle ifade edilir (Basmajian ve diğ., 1985).  Denklemde I bir EMG sinyalini, m(t) 

sinyal eğrisini ve t zamanı temsil etmektedir. 

Tümleştirilmiş EMG sinyali, girişin büyüklüğüne yanıt olarak çıkış büyüklüğünü 

arttırarak bir periyot üzerindeki aktivitenin bir göstergesini verir. Tümleştirme işlemi, 

doğrultulmuş sinyal üzerinden işlem yapılmasını gerektirdiği için, doğrultulmuş sinyal 

değeri her zaman pozitif değer alır. Doğrultulmuş değer her zaman pozitif olduğu için, 

doğrultulmuş sinyalin tümleştirilmiş değeri (integrated rectified value) de daima pozitif 

de olur ve zamanın bir fonksiyonu olarak sürekli artarak devam eder. Doğrultulmuş 

sinyalin ortalama (average rectified value) ile doğrultulmuş sinyalin tümleştirme değeri 

arasındaki tek fark ortalama alınırken doğrultulmuş sinyal değerinin ortalamanın üzerinde 

olan bir T zamanına bölünmesidir (Basmajian ve diğ., 1985). Doğrultulmuş sinyalin 

ortalama değeri, tıpkı doğrultulmuş sinyalin tümleşik değeri gibi sinyalin zaman bağımlı 

değişikliklerini gösterir ve bu sayede, sinyal sınıflandırma uygulamaları için oldukça 

yararlı bilgiler sağlamaktadır. Bu işlem; 

     𝐼{|𝑚(𝑡)|} = ∫ |𝑚(𝑡)|𝑑𝑡

𝑡+𝑇

𝑡

 (3.7) 

denklemi ile elde edilir. Eğer yeterince uzun bir tümleştirme süresi (T) seçilirse, 

doğrultulmuş tümleştirme değeri sinyalin ya da bir zaman fonksiyonunun zamanla 

değişimini yumuşak bir değişim ile ifade edecektir. 

3.5.3.5. EMG Sinyalinin Normalizasyonu 

EMG sinyallerinin analizi yapılırken karşılaşılan en büyük zorluklardan biri, sinyal 

genliğinin ortam koşullarından büyük ölçüde etkilenmesidir (Halaki ve Ginn, 2012). Bu 

sorunu ortadan kaldırmak için, bir referans değerine göre sinyale normalleştirme işlemi 

uygulanmalıdır. Normalleştirme, sinyalin, bilinen ve tekrarlanabilir bir değere bağlı 

ölçeklendirilmesi anlamına gelir (Halaki ve Ginn, 2012).  EMG sinyalleri kullanılarak 

yapılan deneysel çalışmalarda, elde edilen EMG sinyalini, kendi maksimum istemli 

kasılması (MVC) sırasında kaydedilen EMG referans değerine göre normalize etmek en 
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yaygın yöntemlerden biridir. EMG sinyallerinin normalleştirilmesi, genellikle, bir görev 

sırasında, EMG sinyallerinin aynı kastan elde edilen bu MVC referans değerine 

bölünmesiyle gerçekleştirilir. Normalleştime işlemi için kullanılan normalizasyon 

referans değerlerini elde etmek için çeşitli yöntemler kullanılmıştır (Burden, 2010). Bu 

yöntemler;  

1. Maksimum kasılmalar sırasında maksimum (tepe) aktivasyon seviyeleri 

2. Araştırılan görev sırasında elde edilen tepe veya ortalama aktivasyon seviyeleri 

3. En alt maksimum izometrik kasılmalar sırasında aktivasyon seviyeleri 

4. Maksimum M dalgasının (M-max) tepe-tepe (peak to peak) genlik değerinin 

hesaplanmasıdır (Halaki ve Ginn, 2012). 

Normalizasyon yönteminin seçimi,  EMG sinyallerinin genliğini ve şeklini etkileyeceği 

için EMG sinyallerinin yorumlanması açısından çok kritik bir konudur. EMG verilerinin 

normalleştirilmesi için kullanılan yöntemler arasında hangisinin "en iyi" yöntem olduğu 

konusunda ortak bir görüş bulunmamaktadır (Halaki ve Ginn, 2012; Farina ve diğ., 2014).  

EMG sinyali normalizasyonun temel amacı, ortam koşullarının etkisini ortadan kaldırmak 

ve verileri, sinyal genliğinin seçilen referans değerine göre yeniden ölçeklendirmektir. 

Genlik normalizasyonunun EMG eğrilerinin şeklini değiştirmediği, yalnızca Y ekseni 

ölçeklemesinin değiştiği unutulmamalıdır.  

3.5.3.6. Pencereleme  

Bir sinyal için pencereleme (windowing) işlemi, sinyalin zaman aralığının, sinyal 

genliğine ait düzgün ve kenarlarda kademeli olarak sıfıra doğru değişen sonlu uzunlukta 

bir yumuşatma penceresi ile çarpılmasıdır. Pencere uzunluğu ise sinyalin örnekleme 

sayısı ile tanımlanır. Pencereleme işlemi, sinyalin zaman alanındaki şekli değiştirir. 

El pozisyonu deneylerinde, beş saniye aralıklarla EMG sinyalleri ölçülmüştür. Beş 

saniyelik bir sinyalin tamamının tek bir seferde güç izgesini hesaplamak sinyalin sağlıklı 

karakterize edilmesini engelleyecektir. Bu sebeple kaydedilen EMG sinyalleri, 500 ms 

uzunluğunda bir pencere taranmış ve bu pencerenin taradığı veriler kullanılarak 
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hesaplama yapılmıştır. Pencere sinyal üzerinde 25 ms’ lik aralıklarla kaydırılarak 

ilerletilmiştir. 

 

 

Şekil 3.15: Kayan pencerelerle EMG sinyalinin güç izgelerinin elde edilmesi. 

 

3.5.4. EMG Sinyalinin Özniteliklerinin Çıkarılması 

Bir kasın ya da kas grubunun kasılması sırasında elde edilen EMG sinyallerinin bir 

hareket hareketi sınıfına dönüştürülebilmesi için nicel olarak ifade edilmesi 

gerekmektedir (Zecca ve diğ., 2002). EMG sinyallerinin matematiksel ifadesi, öznitelik 

çıkarma yaklaşımı kullanılarak tanımlanabilir. Bir EMG sinyali özniteliği, zaman ve 

frekans alanları olmak üzere iki alanda ifade edilir. Bu çalışmada EMG sinyali sadece 

zaman alanında incelenmiştir. Bir sonraki bölümde EMG sinyallerinin zaman alanındaki 

öznitelikleri anlatılmıştır. 

Verilerin analizi MATLAB (The MathWorks, Inc.) programı ile yapılmıştır Öznitelik 

çıkarma ve sınıflandırma işlemleri için de yine MATLAB programı kullanılmıştır.  
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3.5.4.1. Ortalama Karesel Kök 

Ortalama karesel kök (RMS) hesaplaması, EMG sinyalinin analizinde kullanılan en 

yaygın yöntemlerden biridir (Boostani ve Moradi, 2003; Phinyomark ve diğ., 2012). RMS 

özniteliği, genellikle verilerin herhangi bir ön işleme tabi tutulmadan, sinyalin ikinci 

dereceden ortalaması alınarak elde edilir (Farina ve Merletti, 2000). RMS, MAV 

özniteliğine bir alternatiftir ve standart sapma yöntemine (standart deviation method) 

benzerdir (Phinyomark ve diğ., 2012). Bir sinyalin RMS değeri hesaplanırken sırasıyla 

aşağıda belirtilen işlemler yapılır: 

 Sinyalin bir periyot boyunca belirli örnekleme zamanıyla genlik değerleri alınır. 

 Elde edilen bu değerlerin kareleri alınıp toplanır. 

 Bu toplam, belirlenen örnek sayısına bölünür. 

 Hesaplanan bölümün karekök değeri alınır ve RMS değeri elde edilmiş olur. 

RMS özelliğinin hesaplanması aşağıdaki şekilde ifade edilir: 

RMS = √
1

𝑁 
∑ 𝑥𝑘

2

𝑁

𝑘=1

 (3.8) 

xk örnek sinyali, N ise her segmentte bulunan örnek sayısını ifade etmektedir. 

3.5.4.2. Tümleşik EMG  

Tümleşik EMG (IEMG), doğrultulmuş EMG sinyali eğrisinin altında kalan alan olarak 

tanımlanmaktadır. Bir başka ifadeyle, EMG sinyalinin mutlak değerinin matematiksel 

integralidir (Phinyomark ve diğ., 2009). IEMG, sinyali sabit genişlikli zaman aralıklarına 

böler ve her zaman aralığının başlangıcında integral değerini sıfırlar. IEMG, EMG sinyali 

genliğinin mutlak değerlerinin toplamının hesaplanmasıyla elde edilen özniteliktir. IEMG 

özelliğinin hesaplanması şu şekilde tanımlanmıştır: 

IEMG = ∑|𝑥𝑘|

𝑁

𝑘=1

 (3.9) 
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Burada xk bir bölümdeki EMG sinyali ve sinyalin uzunluğu N'dir. 

3.5.4.3. Dalga Formu Uzunluğu  

Dalga Formu Uzunluğu (WL), bir segmentteki EMG dalga formunun kümülatif 

uzunluğunun hesaplanmasıdır. Aktif kaslardan alınan sinyallerin dalgalanmalarına 

bağlıdır. WL özniteliği, EMG sinyalinin frekans, zaman ve dalga genliğinin ölçülmesini 

sağlar (Kamavuako ve diğ., 2013; Phinyomark ve diğ. 2010). EMG dalga formu uzunluğu 

şu şekilde tanımlanır: 

WL = ∑|𝑥𝑘+1 −  𝑥𝑘|

𝑁−1

𝑘=1

 (3.10) 

Burada xk bir bölümdeki EMG sinyali ve sinyalin uzunluğu N'dir. 

3.5.4.4. Ortalama Mutlak Değer 

Ortalama mutlak değer (MAV), hareketli bir pencere kullanarak EMG sinyalinin mutlak 

değerinin ortalaması alınarak hesaplanır (Phinyomark ve diğ., 2011). MAV özniteliği, her 

veri penceresi için ayrı hesaplanır.  Bir sinyalin ortalama değeri,  sinyalin kendisi ile 

zaman ekseni arasında kalan alanı ifade eder. EMG sinyalinin (S) ortalama mutlak 

değerinin hesaplanması şu şekilde tanımlanır: 

MAV =
1

𝑁 
∑|𝑥𝑘|

𝑁

𝑘=1

 (3.11) 

Burada xk pencere içindeki k’nıncı örneği ve N, EMG sinyalinin pencere uzunluğunu 

temsil eder (Phinyomark ve diğ., 2011; Zecca ve diğ., 2002). 

Denkleme göre, MAV özelliğinin hesaplanması iki adımdan oluşur: 

 İlk olarak, her penceredeki verilerin mutlak değeri hesaplanır. 

 Daha sonra elde edilen bu değerler toplanır ve bu toplam, alınan örnek sayısına 

(pencere uzunluğuna) bölünerek ortalaması hesaplanır. 
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3.5.4.5. Varyans Değeri 

EMG sinyalinin varyansı (VAR), EMG sinyalinin gücünün bir ölçüsü olarak ifade 

edilmektedir. VAR özelliği kas tarafından üretilen kuvvete bağlı olarak o ölçümün 

kareleri toplamının ortalama değeridir (Zecca ve diğ., 2002; Phinyomark ve diğ., 2012). 

EMG sinyalinin varyans değeri aşağıdaki gibi tanımlanmıştır: 

VAR =
1

𝑁 − 1 
∑ 𝑥𝑘

2

𝑁

𝑘=1

 (3.12) 

Burada xk bir bölümdeki EMG sinyali ve sinyalin uzunluğu N'dir. 

3.5.4.6. Mutlak Standart Sapma Değerinin Farkı  

Mutlak standart sapma değerinin farkı (DASDV),  bitişik örnekler arasındaki farkın 

standart sapma mutlak değeridir. RMS özniteliğinin birinci dereceden diferansiyel değeri 

alınarak hesaplanır (Phinyomark ve diğ., 2014) ve aşağıdaki şekilde tanımlanır: 

        RMS = √
1

𝑁 − 1 
∑(𝑥𝑘+1 − 𝑥𝑘)2

𝑁−1

𝑘=1

 (3.13) 

Burada xk bir bölümdeki EMG sinyali ve sinyalin uzunluğu N'dir. 

3.5.4.7. Mutlak Ortalama Değerinin Farkı 

Daha önce yapılan birçok çalışmada fark mutlak ortalama değeri DAMV' ye "ortalama 

genlik değişimi" adı verilmiştir (Phinyomark ve diğ., 2014). Mutlak ortalama değerinin 

farkı, aşağıdaki denklem kullanılarak her veri penceresi için hesaplanır.  

DAMV =
1

𝑁 − 1 
∑|𝑥𝑘+1 −  𝑥𝑘|

𝑁−1

𝑘=1

 (3.14) 

 

Burada xk bir pencerede bulunan k’ nıncı örneği ve N, bir zaman çerçevesi içinde bulunan 

örnek sayısını temsil eder (Phinyomark ve diğ., 2014). 
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3.5.4.8. Varyans Değerinin Farkı  

EMG sinyalinin varyans değerini hesaplamaya yarayan denklemin birinci dereceden 

türevinin alınmasıyla elde edilir (Phinyomark ve diğ., 2014). Varyans değerinin farkı 

(DVARV), aşağıdaki denklem kullanılarak hesaplanır. 

DVARV =
1

𝑁 − 2 
∑(𝑥𝑘+1 − 𝑥𝑘)2

𝑁−1

𝑘=1

 (3.15) 

Burada xk bir pencerede bulunan k’nıncı örneği ve N, bir zaman çerçevesi içinde bulunan 

örnek sayısını temsil eder (Phinyomark ve diğ., 2014). 

3.6. ÖZNİTELİK SINIFLANDIRMA VE ÖRÜNTÜ TANIMA 

Hareket veya uygulanan kuvvet örüntülerini belirlemek için zaman veya frekans alanı 

özniteliklerinin sınıflandırılması gerekir (Oskoei ve Hu, 2007). Protez kolların hareket 

yeteneği, sınıflandırma doğruluğuna bağlı olarak seçilen sınıflandırıcının sınıflandırma 

performansıyla yakın ilişkilidir ve insan kaslarının temel nöromüsküler aktivitesini 

yansıtır. Miyoelektrik sinyallerine uygulanan örüntü tanıma işleminin asıl amacı, her 

kuvvet veya hareket sınıfının, çıkarılan öznitelik kümesiyle temsil edilen kas aktivasyonu 

kullanılarak tanımlanmasıdır (Farina ve diğ., 2014). 

Seçilen sınıflandırıcı, ayrılan görevleri deneme yanılma yaklaşımı ile sınıflandırır ve 

böylece kas aktivasyonu, öznitelikler ve gerçek dünya görevleri arasında bir bağlantı 

kurulmasını sağlar. Bu nedenle, örüntü tanıma işlemi için uygun sınıflandırıcının seçimi, 

doğru örüntülerin tanımlaması ve yeterince hızlı bir şekilde gerçekleştirilmesi önemli bir 

konudur. Sınıflandırıcıların optimal performansının belirlenmesi ve böylece en uygun 

olanının seçilmesini sağlamak amacıyla yapılmış çok sayıda literatür örneği vardır. En 

sık kullanılan sınıflandırıcılara örnek olarak; yapay sinir ağları, bulanık mantık, destek 

vektör makineleri, kümeleme ve doğrusal diskriminant analizi yöntemleri verilebilir. Bu 

tez çalışmasında her iki deney protokolü için sınıflandırma yöntemi olarak yapay sinir 

ağları kullanılmıştır. Bu bölümde, miyoelektrik kontrollü protezlerin kontrolünde 

kullanmak amacıyla kullanılan sınıflandırıcılarda YSA temel yapısı ve uygulamaları 

anlatılmıştır. 
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3.6.1. YAPAY SİNİR AĞI MODELİ 

Yapay sinir ağları, insan beyninin biyolojik yapısından esinlenen, öğrenme işlevini 

gerçekleştiren ve genellikle "sinirsel ağlar" olarak adlandırılan bilgisayar sistemleridir 

(Haykin, 1999). Yapay sinir ağlarında öğrenme işlemi örnekler kullanılarak 

gerçekleştirilir. İnsan beyninde, sinir ağları karar verme sürecinin merkezinde yer alır. 

Reseptörler, harici ortamdan uyaranları alır ve onları sinir ağlarına iletmek için elektriksel 

uyarılara dönüştürürler. Sonra, sinir ağları bilgi algılar ve karar verirler. Sonunda, karar 

impulsları çıktı olarak tepki haline dönüştürmek için efektörlerle iletilir. Girişler ve 

çıkışlar arasında doğrusal veya doğrusal olmayan bir ilişki kurularak karar verilir. Yapay 

sinir ağları da biyolojik olarak gerçekleşen bu olaylara benzer şekilde bir sisteme sahiptir 

(Haykin, 1999). Yapay sinir ağları; 

 bulundukları her ortama adapte olabilen,  

 eksik bilgi ile çalışabilen,  

 belirsiz durumlarda bile karar verebilen, 

 hatalara karşı yüksek toleranslı   

 günlük hayatta birçok alanına başarılı bir şekilde uygulanabilen hesaplama 

yöntemidir. 

YSA modellerinde genellikle giriş, gizli ve çıkış katmanları olmak üzere 3 tip katman 

bulunur. Giriş katmanı, eğitime tabi tutulacak verilerin ağ yapısına aktarıldığı katmandır 

ve veri sayısı giriş katmanındaki nöron sayısına eşit olmalıdır. Giriş katmanında veri 

herhangi bir işleme uğramadan gizli katmana geçer. Gizli katman; ağda yapılması istenen 

temel işlevlerin icra edildiği katmandır. Uygulamalarda, ağ yapısında tek bir gizli katman 

kullanılabileceği gibi birden fazla gizli katman da kullanılabilir. Gizli katman sayısı ve 

kullanılacak nöron sayısı probleme ve ağ tasarımcısının bakış açısına göre değişir. 

Genellikle deneme yanılma yoluyla bu sayılara karar verilir (Savelberg ve Herzog, 1997). 

Gizli katmanın görevi, giriş katmanından aldığı veriyi probleme uygun bir şekilde işleyip 

bir sonraki katmana iletmektir. Gizli katmanda kullanılan nöron sayısı en uygun olacak 

şekilde seçilmelidir. Nöron sayısının fazla ya da az olması durumunda YSA’nda 

eğitilecek verilerin işlenmesinde zorluklar ortaya çıkmaktadır. Ağ yapısının son katmanı 
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olan çıkış katmanı, gizli katmandan aldığı veriyi işleyerek bu verinin çıktısını verir. Çıkış 

katmanının nöron sayısı, ağa verilen her bir verinin çıkış sayısı kadardır. Çıkış 

katmanından elde edilen değerler, yapay sinir ağlarının eğitim sonuçlarıdır. 

Çok katmanlı yapay sinir ağları içinde de insan beynine benzer şekilde yerleştirilmiş 

nöronlar bulunmaktadır. Her nöron diğer nöronlara belli katsayılar ile bağlantılıdır. 

Eğitim sırasında bilgi bu bağlantı noktalarına dağıtılarak ağın öğrenilmesi sağlanır. YSA 

modellerinde genellikle giriş, gizli ve çıkış katmanları olmak üzere üç tip katman bulunur. 

Bu çalışmada, bir giriş katmanı, iki gizli katman ve bir çıktı katmanı içeren bir YSA yapısı 

kullanılmıştır (Şekil 3.16). Üç katmanlı ağ adı verilen bu sinir ağının, herhangi bir 

karmaşıklığın problemlerini modellemek için yeterli olduğu gösterilmiştir (Carotti ve 

diğ., 2007). 

YSA kullanarak yüzey EMG özniteliklerinin sınıflandırılması, insan kol protezinin 

kontrolü ile ilgili yapılan bilimsel çalışmalar için oldukça popüler bir konudur. EMG 

sinyallerinin örüntü tanıma sürecinde kullanılan YSA'nın temel yapısı Şekil 1'de 

gösterilmektedir. 

 

 

Şekil 3.16: Kuvvet ve pozisyon kestiriminde kullanılan yapay sinir ağı yapısı şematik gösterimi. 
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Bir yapay sinir ağı, birbirine bağlı ve katmanlar halinde dağıtılan "nöronlar" olarak 

adlandırılan bir işlem birimleri grubudur (Liu ve diğ., 1999). Nöronlar Şekil 16' da daire 

ile gösterilirken, düz çizgiler "nöronları" ağırlık faktörlerine bağlar.  

İnsan kolunun temel hareketlerinin ve bu hareketler sırasında oluşan kas kuvvetlerinin 

kestirimini gerçekleştirebilmek için YSA, EMG sinyalinin örtüşen (overlapping) 

pencerelerinin pozisyon ve kuvvet değerleri ile eğitilmiştir. Sinir ağının çıkışında kuvvet 

değerleri ve hareket pozisyonları elde edilmektedir. Oluşturulacak olan yapay sinir ağı 

yapısının belirlenmesinde, ağ parametrelerinin, nöron sayılarının seçiminde, belirli bir 

standardın olmaması nedeniyle ağ yapısı ve nöron sayısı literatürde kullanılan yapıların 

deneme yanılma yoluyla test edilmesiyle oluşturulmuştur.  Her iki protokol için farklı bir 

YSA yapısı kullanılmıştır. Her protokol için, deneyde ölçüm alınan iki kas aynı YSA 

yapısı ile fakat ayrı ayrı eğitilmiştir. Pozisyon kestirimi için kullanılan sinir ağında giriş 

katmanında, (10 gönüllünün 5 hareketinin 3 tekrarıyla elde edilen) 149 ( (10x5x3) -1) 

nöron bulunmaktadır. YSA yapısındaki birinci katman 30, ikinci katman 30 ve çıkış 

katman ise 1 nöronludur. Kuvvet kestirimi için kullanılan YSA yapısında ise giriş 

katmanındaki nöron sayısı, 10 gönüllüden 3 deneme ile elde edilen veri sayısına eşittir 

((10 x3) -1)). YSA yapısındaki birinci katman 10, ikinci katman 10 ve çıkış katman ise 1 

nöronludur. Her iki ağ yapısında da birinci ve ikinci katmanlardaki nöron sayısı, 

literatürde yapılan çalışmalarda önerildiği gibi giriş katmanındaki nöron sayısının 

yaklaşık olarak üçte birine eşit olacak şekilde seçilmiştir. Bu konuda kesin bir bilgi 

olmaması sebebiyle bu katmanlar için farklı sayıda nöron değerleri denenmiş fakat 

performans değeri en yüksek olan yukarıdaki değerler alınmıştır. Çok fazla deneme 

yapılıp farklı doğrulukta sonuçlar elde edildiği için, “Bulgular” ve “Tartışma ve Sonuç” 

bölümlerinde en yüksek doğruluğa sahip YSA sonuçları verilmiştir. 

Yapay sinir ağı yapısında kullanılacak eğitim ve test verileri, mevcut durumun en uygun 

eğitim-test çiftlerine ulaşılabilecek şekilde ayarlanmıştır.  Bunu gerçekleştirmek için 

farklı denemelerin verilerini içeren tüm sütunlar kullanılmıştır. Ağ yapısını eğitmek ve 

aynı ağ tarafından öngörülen sonuçların doğruluğunu test etmek için, k katlı çapraz 

doğrulama (k-fold cross-validation) tekniğinin özel bir türü olan, bir-çıkışlı çapraz 

doğrulama (Leave-one-out cross validation - LOOCV) yöntemi uygulanmıştır. Bu 

yönteme göre ağ, yalnızca bir deneme haricinde tüm veriler kullanarak eğitilir ve bu 
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deneme için tahmin (veya test) yapılır. Bu çalışmada LOOCV yöntemi, tüm denemeler 

test ve eğitimde kullanılana kadar tekrar edilmiştir. Buna göre, ortalama hata her test 

denemesinin tüm hatalarının aritmetik ortalaması alınarak hesaplanmıştır. 

Çıkış değeri, YSA’ nda tanımlı zamana bağlı bir fonksiyon olan geri yayılımlı ileri 

beslemeli (backpropagation feed-forward) eğitim algoritması kullanılarak elde edilmiştir 

(Cilimkovic, 2015). Geri yayılım algoritması, çok katmanlı YSA’lardaki ağırlıkların 

(weights) eğitilmesi için kullanılan en yaygın öğretme algoritmasıdır. Oldukça basit ve 

kolay anlaşılır bir öğretme algoritmasıdır. Bu öğrenme algoritması;  hataları çıkıştan 

girişe geriye doğru azaltma prensibiyle çalıştığı için geri yayılım ifadesiyle 

isimlendirilmiştir.  Geri yayılım algoritması, verilen bir giriş örüntüleri kümesi için, bir 

ileri beslemeli çok katmanlı YSA yapısını eğitir. Örnek setin her bir girişi ağa verildiği 

zaman, ağ örnek giriş örüntüsüne karşılık gelen çıkış yanıtını inceler. Çıkış yanıtı, bilinen 

ve hedeflenen çıkış değeri le karşılaştırılır ve hata değeri hesaplanır. Hata temel alınarak 

bağlantı ağırlıkları ayarlanır. Geri yayılım algoritması, örnek girişe karşılık gelen çıkış 

değerinin hata oranının karesinin ortalaması alınarak ağırlık ayarlama hesabı yapan 

Widrow-Hoff delta öğrenme kuralına dayanır. Bu örnek örüntüler kümesi, hata değeri en 

alt düzeye indirilinceye kadar tekrar tekrar ağa sunulur. 

Transfer fonksiyonu bir katmanın giriş değerlerinden çıkış değerini hesaplamak için 

kullanılan fonksiyonlardır. Bir nöronun çıkış değerini hesaplamak için kullanılır. Bu 

çalışmada log-sigmoid (LOGSIG) transfer fonksiyonu kullanılmıştır. Bu transfer 

fonksiyonu, artı ve eksi sonsuz arasında herhangi bir değere sahip giriş değeri alır ve 0 

ile 1 aralığında bir çıkış verir.  Log-sigmoid fonksiyonu, türevlenebilir bir fonksiyon 

olduğu için geri yayılım algoritması kullanılarak eğitilmiş çok tabakalı ağlarda yaygın 

olarak kullanılır (Harrington, 1993). Şekil 3.17’de gösterilen Logsig fonksiyonu; 

a =  𝐿𝑜𝑔𝑠𝑖𝑔(𝑛)  =  
1

1 + 1𝑒
 (3.16) 

denklemiyle hesaplanır, denklemde n nöron sayısını göstermektedir. 
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Şekil 3.17: Log-sigmoid fonksiyonu. 

 

Logsig transfer fonksiyonu şekil 3.17’ de gösterilmiştir.
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4. BULGULAR 

4.1. POZİSYON KESTİRİMİNE AİT DENEYSEL VERİLERİN 

DEĞERLENDİRİLMESİ 

EMG sinyalinin işlenmesinde ve değerlendirilmesinde kullanılan öznitelikler yapay sinir 

ağları kullanılarak eğitilmiştir. Sonuçlar her bir gönüllü için ayrı ayrı kaydedilmiştir. 

Hareketin gerçekleşme başarısı oransal tablolar halinde verilmiştir. Dinlenme hali için 

yapay sinir ağlarından elde edilen eğitim sonuçları Tablo 4.1’ de verildiği üzeredir. 

Tablo 4.1: Dinlenme hali için yapay sinir ağlarındaki eğitim sonuçları. 

 RMS IEMG WL VAR MAV DASDV DMAV DVARV 

Gönüllü 1 6/6 6/6 6/6 6/6 6/6 6/6 3/6 3/6 

Gönüllü 2 6/6 6/6 6/6 6/6 6/6 6/6 3/6 2/6 

Gönüllü 3 5/6 3/6 6/6 2/6 3/6 4/6 3/6 2/6 

Gönüllü 4 6/6 6/6 6/6 6/6 6/6 6/6 3/6 1/6 

Gönüllü 5 3/6 1/6 6/6 0/6 0/6 6/6 3/6 1/6 

Gönüllü 6 6/6 6/6 5/6 6/6 6/6 5/6 3/6 3/6 

Gönüllü 7 6/6 6/6 6/6 6/6 6/6 6/6 3/6 2/6 

Gönüllü 8 6/6 6/6 6/6 6/6 6/6 6/6 3/6 2/6 

Gönüllü 9 6/6 6/6 6/6 6/6 6/6 6/6 3/6 2/6 

Gönüllü 10 3/6 2/6 6/6 0/6 0/6 6/6 3/6 3/6 

*Doğru yapılan hareket sayısı/Toplam hareket sayısı 

Tablo 4.2: Fleksiyon hareketi için yapay sinir ağlarındaki eğitim sonuçları. 

 RMS IEMG WL VAR MAV DASDV DMAV DVARV 

Gönüllü 1 4/6 3/6 6/6 2/6 4/6 6/6 3/6 5/6 

Gönüllü 2 4/6 4/6 6/6 2/6 2/6 4/6 3/6 6/6 

Gönüllü 3 4/6 2/6 6/6 0/6 6/6 5/6 3/6 2/6 

Gönüllü 4 0/6 0/6 5/6 1/6 0/6 4/6 3/6 6/6 

Gönüllü 5 5/6 5/6 6/6 6/6 5/6 6/6 3/6 6/6 

Gönüllü 6 1/6 2/6 6/6 0/6 1/6 6/6 3/6 2/6 

Gönüllü 7 6/6 3/6 6/6 0/6 6/6 6/6 4/6 3/6 

Gönüllü 8 0/6 0/6 6/6 0/6 1/6 5/6 3/6 4/6 

Gönüllü 9 5/6 5/6 6/6 5/6 3/6 4/6 3/6 5/6 

Gönüllü 10 2/6 0/6 6/6 0/6 1/6 6/6 3/6 2/6 

*Doğru yapılan hareket sayısı/Toplam hareket sayısı 
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Fleksiyon hareketi için yapay sinir ağlarından elde edilen eğitim sonuçları Tablo 4.2’ de 

verilmiştir. 

Ekstansiyon hareketi için yapay sinir ağlarından elde edilen eğitim sonuçları Tablo 4.3’ 

te sunulmuştur. 

Tablo 4.3: Ekstansiyon hareketi için yapay sinir ağlarındaki eğitim sonuçları. 

 RMS IEMG WL VAR MAV DASDV DMAV DVARV 

Gönüllü 1 5/6 2/6 6/6 5/6 4/6 5/6 6/6 3/6 

Gönüllü 2 4/6 4/6 6/6 4/6 5/6 6/6 4/6 6/6 

Gönüllü 3 5/6 6/6 6/6 5/6 5/6 6/6 3/6 4/6 

Gönüllü 4 6/6 4/6 6/6 2/6 5/6 6/6 6/6 2/6 

Gönüllü 5 4/6 4/6 6/6 3/6 5/6 6/6 6/6 1/6 

Gönüllü 6 5/6 5/6 6/6 5/6 4/6 5/6 6/6 2/6 

Gönüllü 7 5/6 5/6 6/6 6/6 6/6 6/6 4/6 3/6 

Gönüllü 8 4/6 4/6 6/6 4/6 4/6 6/6 3/6 5/6 

Gönüllü 9 4/6 4/6 6/6 4/6 3/6 6/6 5/6 5/6 

Gönüllü 10 6/6 6/6 6/6 4/6 5/6 6/6 5/6 5/6 

*Doğru yapılan hareket sayısı/Toplam hareket sayısı 
 

İç rotasyon hareketi için yapay sinir ağlarından elde edilen eğitim sonuçları Tablo 4.4’te 

verildiği üzeredir. 

Tablo 4.4: İç rotasyon hareketi için yapay sinir ağlarındaki eğitim sonuçları. 

 RMS IEMG WL VAR MAV DASDV DMAV DVARV 

Gönüllü 1 5/6 4/6 6/6 4/6 5/6 6/6 3/6 4/6 

Gönüllü 2 5/6 4/6 6/6 2/6 2/6 6/6 3/6 2/6 

Gönüllü 3 4/6 6/6 6/6 4/6 5/6 5/6 4/6 4/6 

Gönüllü 4 2/6 1/6 6/6 0/6 0/6 3/6 3/6 0/6 

Gönüllü 5 4/6 6/6 5/6 6/6 6/6 4/6 3/6 5/6 

Gönüllü 6 5/6 6/6 6/6 4/6 6/6 5/6 0/6 4/6 

Gönüllü 7 6/6 5/6 6/6 5/6 4/6 6/6 3/6 1/6 

Gönüllü 8 4/6 3/6 5/6 2/6 4/6 6/6 3/6 1/6 

Gönüllü 9 0/6 0/6 3/6 0/6 0/6 1/6 3/6 0/6 

Gönüllü 10 3/6 2/6 6/6 2/6 5/6 5/6 3/6 3/6 

*Doğru yapılan hareket sayısı/Toplam hareket sayısı 
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Dış rotasyon hareketi için yapay sinir ağlarından elde edilen eğitim sonuçları Tablo 4.5’ 

te verilmiştir. 

Tablo 4.5: Dış rotasyon hareketi için yapay sinir ağlarındaki eğitim sonuçları. 

 RMS IEMG WL VAR MAV DASDV DMAV DVARV 

Gönüllü 1 1/6 0/6 6/6 0/6 3/6 5/6 3/6 0/6 

Gönüllü 2 6/6 6/6 6/6 5/6 6/6 6/6 4/6 3/6 

Gönüllü 3 6/6 3/6 6/6 5/6 4/6 6/6 4/6 6/6 

Gönüllü 4 2/6 3/6 6/6 1/6 4/6 6/6 3/6 4/6 

Gönüllü 5 6/6 5/6 6/6 4/6 5/6 6/6 4/6 4/6 

Gönüllü 6 0/6 0/6 6/6 0/6 3/6 5/6 3/6 0/6 

Gönüllü 7 1/6 1/6 6/6 0/6 4/6 6/6 3/6 0/6 

Gönüllü 8 3/6 3/6 6/6 2/6 5/6 6/6 4/6 3/6 

Gönüllü 9 2/6 3/6 6/6 2/6 4/6 5/6 3/6 2/6 

Gönüllü 10 2/6 3/6 5/6 4/6 5/6 5/6 4/6 3/6 

*Doğru yapılan hareket sayısı/Toplam hareket sayısı 
 

Özniteliklerin her bir hareket için başarısının değerlendirilmesinin yanında, özniteliklerin 

toplam başarısının değerlendirilmesi için ortalamalar alınmıştır. Elde edilen toplam başarı 

sonuçları oransal olarak Tablo 4.6’ da ve yüzdelik olarak Tablo 4.7’ de verilmiştir. 

Tablo 4.6: Pozisyon kestirimine ait yapay sinir ağlarındaki eğitim sonuçlarının başarı oranları. 

 RMS IEMG WL VAR MAV DASDV DMAV DVARV 

Gönüllü 1 21/30 15/30 30/30 15/30 22/30 28/30 18/30 15/30 
Gönüllü 2 25/30 24/30 30/30 19/30 21/30 28/30 17/30 17/30 

Gönüllü 3 24/30 20/30 30/30 16/30 23/30 26/30 17/30 18/30 

Gönüllü 4 16/30 14/30 29/30 10/30 15/30 25/30 18/30 13/30 

Gönüllü 5 18/30 21/30 29/30 19/30 21/30 28/30 19/30 17/30 

Gönüllü 6 17/30 19/30 29/30 15/30 20/30 27/30 15/30 11/30 

Gönüllü 7 18/30 20/30 30/30 17/30 26/30 30/30 17/30 9/30 

Gönüllü 8 11/30 16/30 29/30 14/30 20/30 29/30 16/30 15/30 

Gönüllü 9 16/30 18/30 27/30 17/30 16/30 22/30 17/30 14/30 

Gönüllü 10 16/30 13/30 29/30 10/30 16/30 28/30 18/30 16/30 
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Tablo 4.7:Pozisyon kestirimine ait yapay sinir ağlarındaki eğitim sonuçlarının başarı yüzdeleri. 

 RMS IEMG WL VAR MAV DASDV DMAV DVARV 

Gönüllü 1 0.7 0.5 1 0.5 0.73 0.93 0.6 0.5 
Gönüllü 2 0.83 0.8 1 0.63 0.7 0.93 0.57 0.57 

Gönüllü 3 0.8 0.67 1 0.53 0.77 0.87 0.57 0.6 

Gönüllü 4 0.53 0.47 1 0.33 0.5 0.83 0.6 0.43 

Gönüllü 5 0.6 0.7 0.97 0.63 0.7 0.93 0.63 0.57 

Gönüllü 6 0.57 0.63 0.97 0.5 0.67 0.9 0.5 0.37 

Gönüllü 7 0.6 0.67 1 0.57 0.87 1 0.57 0.3 

Gönüllü 8 0.37 0.53 0.97 0.47 0.67 0.97 0.53 0.5 

Gönüllü 9 0.53 0.6 0.9 0.57 0.53 0.73 0.57 0.47 

Gönüllü 10 0.53 0.43 0.97 0.33 0.53 0.93 0.6 0.53 

ORTALAMA 0.606 0.6 0.978 0.506 0.667 0.902 0.574 0.484 

STANDART 
SAPMA 

0.138 0.116 0.031 0.107 0.118 0.077 0.037 0.095 

 

 

 

 

Şekil 4.1: Pozisyon tahminine ait ortalama ve standart sapma değerleri – I. 
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Şekil 4.2: Pozisyon tahminine ait ortalama ve standart sapma değerleri – II. 

 

Özniteliklerin yapay sinir ağları kullanılarak verdikleri başarı oranlarını birbirine göre 

değerlendirmek için One-way ANOVA kullanıldı. Her bir öznitelik için ortalama başarı 

değerleri ve standart sapma değerleri (SS) hesaplandı. İstatistiksel olarak anlamlı olan 

öznitelikler * işareti ile belirtildi (p < 0.05). Elde edilen sonuçlar Şekil 4.1 ve Şekil 4.2’ 

de verilmiştir.  

4.2. KUVVET KESTİRİMİNE AİT DENEYSEL VERİLERİN 

DEĞERLENDİRİLMESİ 

EMG sinyalinin birçok parametrenin etkisiyle oluşması nedeniyle EMG sinyali ile kuvvet 

arasındaki ilişkinin doğrulukla tespiti oldukça güçtür.  Uygun kayıt teknikleri ve gerekli 

filtrelerin kullanımıyla olumsuz etki yaratan faktörler kontrol edilebilmektedir.  
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Tablo 4.8: Kuvvet kestirimine ait yapay sinir ağlarındaki eğitim sonuçlarının başarı yüzdeleri. 

 RMS IEMG WL VAR MAV DASDV DMAV DVARV 

Gönüllü 1 0.78 0.6 0.71 0.51 0.7 0.9 0.78 0.47 
Gönüllü 2 0.81 0.53 0.6 0.4 0.73 0.91 0.53 0.53 

Gönüllü 3 0.87 0.65 0.74 0.57 0.75 0.89 0.8 0.61 

Gönüllü 4 0.71 0.58 0.57 0.3 0.67 0.88 0.72 0.34 

Gönüllü 5 0.73 0.69 0.78 0.5 0.71 0.92 0.88 0.6 

Gönüllü 6 0.77 0.6 0.61 0.53 0.68 0.93 0.7 0.55 

Gönüllü 7 0.64 0.5 0.6 0.51 0.6 0.87 0.57 0.59 

Gönüllü 8 0.61 0.47 0.67 0.4 0.52 0.85 0.53 0.46 

Gönüllü 9 0.79 0.62 0.59 0.43 0.5 0.83 0.57 0.5 

Gönüllü 10 0.72 0.4 0.65 0.47 0.57 0.89 0.6 0.58 

ORTALAMA 0.74 0.56 0.65 0.46 0.64 0.89 0.67 0.52 

STANDART 
SAPMA 

0.074 0.083 0.067 0.075 0.084 0.029 0.118 0.079 

 

Kuvvet kestirimine ait sonuçlar, ölçüm sırasında kaydedilen kuvvet değerinin yapay sinir 

ağlarında eğitim sonucu tahmin edilen kuvvet değerine oranlanmasıyla elde edilmiş ve 

bu değerler Tablo 4.8’ de gösterilmiştir. 
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5. TARTIŞMA VE SONUÇ 

Bu tez çalışmasında,  yeni EMG öznitelikleri kullanılarak EMG sinyali ile el pozisyonları 

ve kuvvet arasında bir ilişki kurulmuştur. Çalışmalarda yaygın olarak kullanılan 

öznitelikler ile bu özniteliklerin birinci dereceden diferansiyelleri alınarak elde edilmiş 

öznitelikler tercih edilmiştir. Elin farklı pozisyonlarda kasılması ve farklı kuvvet 

uygulanması sonucu oluşan EMG sinyallerini birbirinden ayırt etmek için bu öznitelikler 

kullanılmıştır. İki farklı protokol kuralına göre EMG sinyalleri kaydedilip işlem yapıldığı 

için bu iki protokole ait iki farklı sonuç elde edilmiştir. EMG sinyallerinden elde edilen 

öznitelik vektörleri, yapay sinir ağlarında eğitilerek, elin o anki pozisyonunun ve 

uygulanan kuvvet değerinin belirlenmesi yüksek oranda bir başarı ile sağlanmıştır. 

Mevcut çalışmalardan farklı olarak bu çalışmada, özniteliklerin hem normal formları hem 

de diferansiyel alınmış formları birlikte hesaplanmış böylece çok sayıda öznitelik vektörü 

kullanılarak sınıflandırma yapılmıştır. Bu bölümde ilk olarak el pozisyonlarının 

tahminine ilişkin sonuçlar değerlendirilmiş ardından kuvvet tahmini sonuçları 

değerlendirilip yorumlanmıştır. 

Tablo 4.1’ deki dinlenme durumu sonuçları dikkate alındığında, elin farklı 

pozisyonlarında elde edilen sonuçlara göre sınıflandırma başarısı daha yüksektir. Bunun 

sebebi, dinlenme durumunda herhangi bir kasılma olmadığı için kas aktivasyonlarının 

değerlendirmede birbirine karışmaması sebebiyle yapay sinir ağlarındaki eğitim 

başarısının yüksek olmasıdır. Dinlenme durumu, özniteliklerin sınıflandırma performansı 

olarak değerlendirilmek istendiğinde ise en başarılı sonucu WL ve DASDV özniteliğinin 

verdiği görülmüştür. RMS özniteliği performansı ve bu özniteliğin diferansiyeli alınarak 

elde edilen DASDV özniteliği performansı karşılaştırıldığında, DASDV özniteliğine ait 

performans değerinin daha yüksek olduğu görülmüştür.  

Tıpkı dinlenme hali sonuçları gibi diğer dört hareket (fleksiyon, ekstansiyon, iç rotasyon 

ve dış rotasyon) sonuçlarında da en iyi sınıflandırma başarısına sahip öznitelikler WL ve 

DASDV öznitelikleridir. DASDV özniteliği, en yüksek performansı veren WL özniteliği 

ile neredeyse aynı sonuçları vermiştir (Tablo 4.2 -  4.3 - 4.4 - 4.5). 
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Elde edilen toplam başarı sonuçları dikkate alındığında en iyi sonucun WL ve DASDV 

özniteliklerinden elde edildiği görülmektedir (Tablo 4.6 ve Tablo 4.7). Bu sonuçlar 

doğrultusunda bu çalışma, literatürde yapılan benzer çalışmalar ile örtüşmektedir. Elde 

edilen bu performans değerleri neticesinde, el pozisyonu kestirimi için yapılacak 

çalışmalarda bu iki özniteliğin kullanılması önerilmektedir. Diğer iki öznitelik 

vektörünün diferansiyel formlarının başarısı yaygın olarak kullanılan özniteliklerin 

başarısına göre literatürde yapılan çalışmaların sonucunun aksine daha düşük sonuç 

vermiştir. Gerek diferansiyel öznitelik kullanımının yeni bir uygulama olması gerek veri 

setlerinin farklı örüntülerde olması bu sonuçların elde edilmesine neden olduğu 

düşünülmektedir.  

Kuvvet tahmini sonuçlarına bakıldığında (Tablo 4.8) ise, en başarılı öznitelik DASDV ve 

RMS’ tir ve bu sonuçlar, literatürde yapılan önceki çalışmalarla (Arslan ve diğ., 2010; 

Phinyomark ve diğ., 2013) örtüşmektedir. Diferansiyel alınarak elde edilen özniteliklerin 

sınıflandırma başarısı ise diğer öznitelik sonuçlarına göre daha yüksektir. Kuvvet tahmini 

ile ilgili elde edilen bu sonuçlar, bu çalışmanın savunduğu teoremi destekler niteliktedir. 

Kuvvet tahmini ile ilgili yapılacak sınıflandırma çalışmalarında en yüksek sınıflandırma 

başarısına sahip DASDV ve RMS özniteliklerinin kullanılması önerilmektedir. 

Pozisyon ve kuvvet kestirimine ait bu başarılı sonuçlar ve kullanılan yeni öznitelikler, 

dirsek seviyesinde ampütasyona uğramış uzva sahip insanlar için tasarlanan protez kol 

çalışmalarına, kas yorgunluğu, kas zayıflığı gibi miyopatik rahatsızlıkların tanı ve tedavi 

süreçlerinin kontrol edilmesine ve biyolojik sinyal işleme çalışmalarına katkı 

sağlayacaktır. 
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Ek 1. Terimler Sözlüğü 

 

Abdüksüyon: Kolu yandan omuz yüksekliğine kaldırma hareketi. 

Adduksiyon: Yana kaldırılmış kolun aşağı indirilerek gövdeye yaklaştırılması hareketi. 

Ampute : Belirli bir uzvun kesilme hali 

Antagonist: Karşıt olarak hareket eden. 

Atrofi: Bir kasın tek tek hücre ve liflerinin çapında, büyüklüğünde azalma olması. 

Bipolar: İki kutuplu olan. 

Ekstansiyon: Uzatma hareketi. 

Ekstremite: İnsan vücudunda kol ve bacaklara verilen genel isim. 

Epikondilus mediyalis: Kol kemiğinde kemik çıkıntı. 

Fleksiyon: Bükme hareketi. 

Fleksor digitorium superficialis: Kolda bulunan bir kas. 

Frontal düzlem: Anatomide, yukarıdan aşağıya ve alna paralel bir şekilde geçerek vücudu 

eşit olmayan ön ve arka bölümlere ayırdığı varsayılan düzlem. 

Gastroknemius: Bacak arka kısmında bulunan bir kas. 

İnnerve etmek: Sinirlerin ileti vermesi veya alması. 

İnvaziv: Hastaya fiziksel bir zarar verme ihtimali olan. 

Kontraksiyon: Kasılma hali. 

Kortikal : Dış 

Membran: Bir dokuyu saran ince tabaka. 

Metakarpal: Metakarp kemiklerinin oluşturduğu el tarağı ile ilgili olan 

Miyopatik: kas tutulumunu ifade etmek için kullanılan terim. 

Non-invaziv: Hastaya fiziksel bir zarar verme ihtimali olmayan.  (her tür girişim) 

Nöromüsküler: Sinir-kasla ilgili olan. 

Nöropatik: Sinirlerdeki hastalıkları ifade eden terim. 

Postürel: Vücudun duruş şekli. 
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Pranator: : El bileğini içeri doğru döndürücü kas. 

Rotasyon: Döndürme hareketi. 

Sagital: Vücudu sağ ve sol olmak üzere ikiye ayıran düzlem. 

Sinerjit: Aynı anda kasılıp gevşeyen. 

Supinator: El bileğini dışarıy doğru döndürücü kas. 

Ulnar: Kolda bulunan üç ana sinirden biri. 
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Ek 2: M. S. Baltalimanı Kemik Hastalıkları Eğitim Ve Araştırma Hastanesi Klinik 

Araştırmalar Etik Kurulu Karar Formu – I 
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Ek 3: M. S. Baltalimanı Kemik Hastalıkları Eğitim Ve Araştırma Hastanesi Klinik 

Araştırmalar Etik Kurulu Karar Formu – II 
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Ek 4: M. S. Baltalimanı Kemik Hastalıkları Eğitim Ve Araştırma Hastanesi Klinik 

Araştırmalar Etik Kurulu Karar Raporu 

 



65 

 

 

 

Ek 5: M. S. Baltalimanı Kemik Hastalıkları Eğitim Ve Araştırma Hastanesi Klinik 

Araştırmalar Eğitim Planlama ve Koordinasyon Kurulu Karar Raporu 
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