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OZET

YUKSEK LiSANS TEZi

INSAN ELININ POZiSYON VE KUVVETLERININ KESTIiRIiMi AMACIYLA
EMG SINYALLERININ SINIFLANDIRILMASI

Rahime YILMAZ

istanbul Universitesi
Fen Bilimleri Enstitiisii

Bilgisayar Miihendisligi Anabilim Dah

Damisman : Yrd. Do¢. Dr. Tolga ENSARI
I1. Damisman : Do¢. Dr. Yunus Ziya ARSLAN

Kaza, travma veya eklemleri etkileyen herhangi bir hastalik nedeniyle iist ekstremitesini
kaybetmis insanlar, el kullanimimni gerektiren, nesneleri tutma, tagima, yemek yeme ve
benzeri giinliik hayata ait iglevleri yerine getiremezler. Bu insanlarin giinliik hayatlarini
kolaylastirmak, hareket 6zgiirliigii ve kendi kendilerine yetmelerini saglamak amaciyla
giiniimiizde ¢ok genis 6l¢ekli biyomekanik calismalar1 yapilmaktadir. Bu ¢alismalardan
en yaygin ve etkili olan1 kesilen kisim yerine takma bir uzuv yani protez tasarimi
calismalaridir. Ampute olmus (belirli bir uzvun kesilme hali) kolun geri kalan kismindaki
kaslarin normal bir sekilde islev gérmesi ve bu kisimlardan elde edilen elektromiyografi
(EMG) sinyallerinin degerlendirilip anlamlandirilmasiyla EMG kontrollii protezler
tasarlanmaktadir. Bu tasarimlarda kullanilan yeni teknikler sayesinde, fiziksel engelli
insanlara daha fonksiyonel hareketleri yapabilme kabiliyeti saglanmaktadir.

Bu tez ¢alismasi, insan kolunun farkli pozisyonlarinda ve dinlenme durumunda kola
uygulanan degisken kuvvetlerin etkisi altinda dl¢iilen EMG sinyallerinin analizini ve bu
sinyallerin siniflandirilmasini igermektedir. Bunun i¢in, kolun izometrik (kas uzunlugu
sabit) kasilmasi sirasinda eszamanli olarak iki ayr1 kastan yiizeyel elektrotlar kullanilarak
EMG sinyalleri kaydedilmistir. Elde edilen sinyallere bir takim sinyal isleme teknikleri
uygulandiktan sonra siniflandirma yapabilmek ig¢in bu sinyallerden sekiz farkl
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smiflandirici 6znitelik ¢ikarilmistir. Daha sonra elde edilen bu EMG sinyali 6znitelikleri,
makine 6grenmesi tekniklerinden olan yapay sinir aglar1 kullanilarak siniflandirilmistir.
Yapilan bu siniflandirma ile hareket sirasinda alinan EMG sinyaline karsilik gelen kolun
0 anki pozisyon ve kuvvet degerleri belirlenmistir. Belirlenen bu degerlere gore
siniflandirma performanslari incelenip kiyaslanmastir.

Tiim bu ¢alismalarin sonunda ampute olmus bir kol uzvu yerine kullanilan protez kollarin
daha hassas tasarimlar olmasi ve gergek bir kolun yaptigi aktivitelere yakin bir
performans gostermesi amaglanmaktadir. Bu konuda yapilmis literatiirdeki ¢aligmalara
katki saglanmas1 ongoriilmektedir.

Mayis 2017, 82 sayfa.

Anahtar kelimeler: Elektromiyografi, EMG Sinyallerinin Islenmesi, EMG Sinyallerinin
Smuflandirilmasi, Kas Hareketlerinin - Tahmini, Kas Kuvveti
Tahmini
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SUMMARY

M.Sc. THESIS

EMG SIGNAL CLASSIFICATION TO PREDICT THE POSITION AND
FORCE PATTERNS OF HUMAN HAND

Rahime YILMAZ

Istanbul University
Institute of Graduate Studies in Science and Engineering

Department of Computer Engineering

Supervisor : Asst. Prof. Dr. Tolga ENSARI
Co-Supervisor : Assoc. Prof. Dr. Yunus Ziya ARSLAN

People who lost their upper extremities due to an accident, trauma or a joint-affecting
disease; may not be able to do simple tasks which require hand usage such as holding,
carrying or eating. In order to provide a better life for the physically disabled, many
biomechanical studies are done to implement basic physical movements for their lives
and make them self-sufficient, so that they can live without depending on another people.
The most effective and common practice is prostetics, which is an artificial substitute for
alost limb. EMG signals measured from the remaining working muscles of the amputated
arm are interpreted in order to produce EMG-controlled prostetics. With new design
techniques being used on these products, more functional capacity for physically disabled
is provided.

This thesis includes analysis and classification of EMG signals recorded under the
influence of variable forces applied to human arm in both resting position and different
positions. In order to do so, EMG signals are recorded simultaneously by using surface
electrodes from two different muscles; while the arm is in isometric contraction. After
applying several signal processing techniques to the measured signals, eight different
features are determined for classification. Then, Artificial Neural Networks algorithms
are applied in order to classify the signals into pre-determined features. With these
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classifications, the position and force values corresponding to EMG signals are predicted.
The classification performances are compared based on these predicted values.

After all these studies, the main purpose is to make prostetic arms better by implementing
more sensitive designs and perform in a level which is on part with a real arm. It is
anticipated that this study will contribute to the studies on this subject in the literature.

May 2017, 82 pages.

Keywords: Electromyography, EMG Signal Processing, EMG Signal Classification,
Muscle Force Prediction, Hand Movement Prediction
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1. GIRIS

Uzun yillar viicut kaslarinin ¢aligma mekanizmasi ile degisken yon hiz ve ivmedeki
hareketler arasindaki baglantiy1 tespit etmek amaciyla kaslarin mekanik yapisi ve sinir -
kas isleyisi tizerine gesitli ¢alismalar yapilmistir ve giiniimiizde de yapilmaya devam
etmektedir. Fakat yapilan ¢alismalar kas aktivitesi ile EMG sinyalleri arasindaki iligkiyi
aciklamada yetersiz kalmaktadir. Yapilan ¢alismalarin dogru ve giivenilir sonuglarinin
olmasi, el kol gibi viicut uzuvlarin1 kaybetmis, proteze ihtiya¢ duyan bireylerin yasam

standartlarinin artirilmasi agisindan biiyiik 6nem tagimaktadir.

Giiniimiizde kullanilan protez ellerin hareket kabiliyeti temel hareketlerle sinirlidir. Insan
eli gibi oldukg¢a karmasik ve birgok farkli fonksiyona sahip bir uzvun hareketlerini bire
bir yerine getirebilecek bir teknoloji heniiz gelistirilememistir. Fakat miyoelektrik
kontrollii protezler sayesinde giin gectikce daha islevsel protezler tasarlanmaktadir.
Protez tasariminda, bir protez, gergek el modelinde oldugu gibi sinir sistemi mekanizmasi

tarafindan kontrol edilir.

Viicutta hareketler, Merkezi Sinir Sistemi (MSS) tarafindan kontrol edilir. istemli
hareketlerin kontrolil, iskelet kaslar1 tarafindan yapilir. Bir iskelet kasi, lif (fiber) ad:
verilen uzun ve ince hiicrelerden meydana gelir. Bu lifler ise miyofibrillerden olusur.
Liflerin dis yiizeyleri sakrolemma adi verilen bir kilif ile ortiilmiistiir. Bu lifler kikirdak
dokuya baglidir. Hareketin anlamlandirilmasi, omurilik veya beyinden viicudun diger
boliimlerine dogru, bilginin ndral aglarla taginip islenmesiyle yapilir. Tasiman bu bilgi,

noral aglarda bulunan motor sinirlerdeki elektriksel degisimler ile anlam kazanir.

Motor {inite, bir motor néron ve innerve ettigi kas lifleri grubundan olusur. Aktif olan
(recruited) motor iinite sayisi ne kadar fazla ise, kas o kadar aktiftir, kasilma kuvveti de
o kadar ytiksektir. Kaslardaki elektrik potansiyel farklarinin varligi, merkezi sinir sistemi
tarafindan iiretilen motor birim aksiyon potansiyelinin sonucudur (Cipriani ve dig., 2008).
Bu elektrik potansiyel farklarin toplamina elektromiyografik (EMG) sinyal denir. EMG
sinyali, kasilmakta olan kasin ilgili motor biriminin etkinligini gosteren fizyolojik bir

sinyaldir (Dionisio ve dig., 2008). Elektrotlar ile kaydedilen EMG sinyali, stokastik



(rastlantisal) bir 6zellik gosterir ve yaklasik 0-10 mV’ luk bir sinyal genligine sahiptir.
Sinyalin 0-500 Hz aras1 bir frekansa sahip olmasi kullanilabilir enerji araliginda oldugunu

gosterir. 0-150 Hz arasi ise sinyal genliginin en biiyiik oldugu frekans degerleridir.

EMG sinyalinin genligi, derideki elektrotlarin yakinindaki tim aktif motor {initeleri ile
ilgili bir kas i¢indeki elektrik potansiyel farklarinin toplamidir. Bu nedenle EMG genligi,
gerceklestirilen kas hareketi sirasinda motor {inite aktivitesinin bir 6lglimii olarak ifade

edilebilir.

EMG sinyalleri, kaslarin kasilmasi sonucu olusan biyoelektriksel sinyallerdir (Zecca ve
dig., 2002). Bu sinyallerin kaynagi, viicudumuzda meydana gelen farkli elektrokimyasal
olaylardir. Bu sinyallerin dogru siniflandirilmasi protez tasarimi, klinik teshis ve tani
acisindan biiyiikk 6nem arz etmektedir. EMG sinyalleri, viicuttan alinma sekline gore kas
i¢i ve yiizeyel olmak tizere iki sekilde adlandirilir (Farina ve Negro, 2012). Yiizeyel EMG
(SEMG), ylizey elektrotlari ile deri lizerinden elde edilen ve non invaziv olmasi sebebiyle

daha ¢ok tercih edilen yontemdir (Bitzer ve Van Der Smagt, 2006).

EMG sinyalleri genellikle protezler i¢in kontrol sinyalleri olarak kullanilir. Miyoelektrik,
kaslarin elektriksel 6zelliklerini ifade eden bir terimdir. Bir miyoelektrik kontrollii protez,
Kisinin kendi kaslar tarafindan dogal olarak tiretilen elektrik sinyalleriyle kontrol edilen
harici olarak gii¢lendirilmis yapay bir ekstremitedir. Ust ekstremite icin el, bilek ve dirsek
miyoelektrik kontrollii protezler bulunmaktadir. Siirekli geligsen teknoloji sayesinde yeni

protez sistemleri sasirtict 6zelliklere sahip olmaktadir:

e Esnek bir protez dirsek bir i¢ecegi alip dudaklara kadar gotiiriir ve igilebilmesini
saglar,

e Biikiilerek donen yapay bilekler, nesneleri rahatca konumlandirmaya olanak tanir,

e Protez eller, bir ¢antay1 agabilir veya ¢atlamadan yumurtay1 tutabilir,

e Protez parmaklar, yoniinii birden fazla el pozisyonuna degistirebilir.

EMG sinyalleri, sabit olmayan karakteristigi ve sinyallerin konu bagimlilig1 (subject
dependency) nedeniyle karmasiktir (Aschero ve Gizdulich, 2009). Yapay uzuvlarin
tasarimi ve tiretiminde yiizey EMG sinyallerinin kullanilmasi dikkat ¢ekicidir (Fukuda ve
dig., 2003). Kuvvet, motor iinite aksiyon potansiyeli (motor unit action potential) ve kas

yorgunlugu gibi cesitli parametrelere bagl olarak EMG sinyali etkilendigi i¢cin EMG



sinyallerinin siniflandirilmasi karmasik bir islemdir. Bu tez ¢alismasinda EMG sinyalleri
islenerek bu karmasik yapidaki sinyallerin siniflandirilmasi amaglanmaktadir. Bu

dogrultuda, tez organizasyonu su sekildedir:

Bu tez calismasiin 2. B6limii’'nde Genel Kisimlar baslig1 altinda, gegmisten giiniimiize
yapilan EMG tabanli protez kol ile EMG sinyali ve kuvvet iliskisi ile ilgili yapilan

calismalardan bahsedilmistir.

3. Bolim Malzeme ve Yontem’ de, oncelikle insan kolunun anatomik yapisindan
bahsedilmistir. Tezin en Onemli kismini olusturan deneyler iki farkli protokolden
olugmaktadir. Birinci protokolde, elin degisen pozisyonlarinda EMG sinyali ile el
pozisyonu arasindaki iliski belirlenmistir. Bu islem i¢in sag elin gosterilen bes farkli
pozisyonda hareket etmesini saglayan bir deney diizeneginden elde edilen verilerden
yararlanilmustir. ikinci protokolde ise, ilk olarak sag kolun dinlenme pozisyonunda
maksimum goniillii kasilma kuvveti ve ardindan farkli degiskenliklerde uygulanan kuvvet
degerleri olglilmistiir. Sinyal isleme ve siiflandirma islemleri igin bu 6lgtimlerden elde
edilen verilerden yararlanilmistir. Bu o6l¢timler i¢in kullanilan deney diizenekleri ve
aciklamalar1 bu boliimde anlatilmistir. Her iki deney i¢in de ayni anda iki farkli kastan
yiizeyel EMG sinyalleri kaydedilmistir. 2. Deney protokoliinde elektronik bir
dinamometre yardimiyla uygulanan kuvvetler dl¢iilmiistiir. Tiim bu 6l¢iimlerin analizi
yapilmadan once, M.S. Baltaliman1 Metin Sabanci Kemik Hastaliklar1 Egitim ve
Arastirma Hastanesi Yiirlime Analizi Laboratuvarinda kaydedilen EMG sinyallerinin

degerlendirilmesi yapilmistir.

Kas kasilmasi sirasinda EMG sinyallerinin davraniglari, EMG sinyallerinin genliklerini
etkileyen durumlar ve sinyallerin kaydinin alinmasi esnasinda dikkat edilmesi gereken
kurallar da bu boltim igerisinde yer almaktadir. 3. Boliim’ iin son kisminda, bu ¢alismanin
onemli bir asamasi olan deneyler sonucu elde edilen EMG sinyallerinin yapay sinir ag1
yapist ile egitilmesi ¢aligmasi anlatilmistir. Tez ¢alismasinin bu asamasinda, her iki deney
protokoliine gére EMG sinyallerinin sekiz farkli 6zniteligi hesaplanmis ve elde edilen bu
oznitelikler yapay sinir aglarinin egitilmesinde kullanilmistir. Olusturulan yapay sinir agi
yapisinda geri yayilimli ileri beslemeli (backpropagation feedforward) 6gretim metodu
kullanilmistir. Birinci protokol i¢in tasarlanan yapay sinir aglarinda giris degerleri sinyal

oznitelikleri, cikis degerleri ise bu sinyallere kars1 gelen hareket pozisyonlaridir. Ikinci



protokol i¢in tasarlanan yapay sinir aglarinda giris degerleri yine sinyal 6znitelikleri, ¢ikis

degerleri ise bu sinyallere kars1 gelen kuvvet degerlerinin tahminidir.
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Sekil 1.1: Tezde yapilan ¢alismalarin sistematik akis diyagrama.

Sekil 1.1° de tezde yapilan islemlerin akis semasi goriilmektedir. Bu ¢alismay1 diger
caligmalardan ayiran 6zellik, yaygin olarak kullanilan EMG sinyali 6zniteliklerine ek
olarak, bu ozniteliklerinin diferansiyel versiyonlarinin da hesaplanip 6znitelik olarak
kullanilmasidir. Bu 6zniteliklerin ¢alismaya dahil edilmesiyle bir EMG sinyaline karsilik
gelen hem pozisyon bilgisi hem de kuvvet degeri diisiik bir hata orani ile basarili bir

sekilde belirlenmistir.

4. Boluim Bulgular’ da ise; on farkli gonilliiniin farkli sekilde pozisyonlanmis sag
kollarindan alinan EMG sinyallerinin analiziyle pozisyon kestirimi yapilmis ve sonug
elde edilmistir. Ayrica dinlenme durumunda on goniilliiniin degisken biiyiikliikte
uyguladigi kuvvetlere karsi alinan EMG sinyallerinin analiziyle kuvvet kestirimi de

yapilmis ve sonuglari elde edilmistir. Tiim bu sonuglar bu boliimde bulunmaktadir.

5. Bolim Tartisma ve Sonug’ ta, elde edilen deney sonuglarinin degerlendirilmesi

yapilmis ve bu sonuglar yorumlanmaistir.



2. GENEL KISIMLAR

EMG kavramu, kaslarin elektriksel ya da néromiiskiiler aktivitesinin anlasilmasi, kaslarin
istemli kasilmalarinin altinda yatan temel mekanizmanin ortaya ¢ikarilmasi, protez, dis
iskelet vb. yardimci teknolojilerin kontrolii agisindan oldukc¢a 6nemlidir. Kaslarin
kasilmalar1 sirasinda ortaya ¢ikan elektriksel aktivitenin kaydedilmesi ve ¢esitli amaglarla
analizini ifade eden EMG metodolojisi, kaslarda iiretilen biyoelektrik sinyallere verilen

isimdir.

Viicuttaki saglam kaslardan elde edilen EMG sinyalleri kullanilarak protez kollar
olusturulmaktadir. Bu protezlerin hareket kontrolii, biyomekanik, elektronik gibi farkli
disiplinler iceren oldukga hassasiyet gerektiren ¢alismalarla yapilmaya calisilmaktadir.
Yillardir arastirmacilar, kas norofizyolojisi (neurophysiology) ve kas sistemlerinin
biyomekanigi iizerine genis ¢apl arastirmalar yapmaktadir. Bu arastirmalarin kritik bir
sorunu, EMG sinyallerinden etkili ozniteliklerin ¢ikarilmasi ve hesaplanmasidir
(Boostani ve Moradi, 2003). Bu 6znitelikler, kolu ampute olmus bir kisinin istemli kas
kontroliiniin, kas aktivasyon durumunun dogru bir sekilde tahmin edilmesine izin verecek
bir sekilde islem gormelidir. Ayrica, kas aktivasyonlarmimn durumlari, istenen protez
kontrol islemlerine uygun bir sekilde diizenlenmelidir. Bu konu ile ilgili ¢ok sayida

calisma yapilmistir.

EMG sinyalleri, hareketlerin siniflandirilma oranini iyilestirmek ve daha fazla temsili
Oznitelikler ¢ikarmak igin zaman-frekans alaninda islenmistir. Bu sekilde, Jung ve dig.
(1994) alt1 farkli hareketi siniflandirmak igin iist ekstremite EMG sinyallerine Wigner-
Ville doniistimii uygulamigtir. Wellig ve Moschytz (1999) ayrica EMG sinyallerinin
ayristirtlmasi i¢in paket dalgacik donilistimii kullanmis ve yanlis siiflandirma oranini
azaltmistir. Liyu ve dig. (1999), 6nkola ait dort hareketi, iki kanal EMG sinyallerinin alt1
seviyede dalgacik doniisiimii ile ayristirarak ayirt etmis ve sonunda bu katsayilar1 bir
yapay sinir ag1 (YSA) siniflandiricist ile siiflandirmigtir. Abel ve dig. (1998), EMG

sinyallerinin dalgacik katsayilarina dlgekler arasi yerel maksimum yontemi uygulayarak,



noropatik, miyopatik ve normal gruplar arasinda simiflandirma hizin1 gelistiren yeni
ozellikler sunmustur. Englehart ve dig. (1999), iist ekstremiteden dort kanalli bir sistem
kullanarak EMG sinyallerini kaydetmistir ve daha sonra dalgacik katsayilar1 gikararak
boyutlarin1 PCA transformasyonu ile azaltip yanlis simiflandirma oranini diislirmiistiir.
Literatiir, protez kollar1 kontrol etmek i¢in EMG'den 6zelliklerin ¢ikartilmasini arastiran
birgok bildiri igermesine ragmen, literatiirde bu protezlerin kalitelerini nicel olarak

karsilastiran ¢ok az ¢alisma bulunmaktadir.

EMG sinyal genligine bagli zaman alan1 6znitelikleri, géz goniinde bulundurulan ilk
Ozniteliklerdir (Hudgins ve dig., 1993). Matematiksel bir doniisiime ihtiya¢ duyulmadan
dogrudan c¢ikarilmasi, bu 6znitelikleri en iyi segenek haline getirir. Tipik zaman alani
Oznitelikleri sunlardir; ortalama karesel kok (Root Mean Square - RMS), ortalama mutlak
deger (Mean Absolute Value - MAV) (Phinyomark ve dig., 2012; Farina ve dig., 2000),
timlesik mutlak deger (Integrated Absolute Value - IAV) (Micera ve dig., 1999), varyans
(Variance - VAR) (Zecca ve dig., 2002), Willison genligi (Willison Amplitude - WAMP)
(Farina ve dig., 2000), sifir gegis (Zero Crossing - ZC) (Phinyomark ve dig., 2012), egim
isareti degisiklikleri (Slope Sign Change - SSC) (Phinyomark, 2010), dalga boyu
uzunlugu (Waveform Length - WL) (Kamavuako ve dig., 2013) ve EMG histogrami
(Phinyomark ve dig., 2012).

EMG sinyallerinin siiflandirilmasinda ve oriintii tanima islemlerinde basarili olabilmek
icin, veri On-isleme kadar 6znitelik ¢ikarimi ve smiflandirma yontemleri de 6nem tagir.
(Phinyomark ve dig., 2012). EMG sinyallerinin, karmasik ve kararsiz 6zelliklerinden
dolaytr smiflandirma, Oriintli tanima ve kestirim gibi islemlerde ham halleriyle
kullanilmalar1 miimkiin degildir. Bu ylizden sinyallerin esas karakteristiklerini yansitan
cesitli matematiksel ifadelerle hesaplanan 6zniteliklerin elde edilerek pozisyon ve kuvvet
gibi parametrelerle iliskilendirilmesi saglanir. Literatiirdeki ¢aligmalarda, siniflandirma
isleminde 6znitelik vektdriiniin uygun bir sekilde segilmesinin, siniflandiricinin basarisini
etkiledigi goriilmistiir (Zecca ve dig., 2002; Boostani & Moradi, 2003; Farrell ve Weir,
2007; Phinyomark ve dig., 2012). EMG sinyallerini siniflandirma uygulamalarini igeren
caligmalarda en uygun Oznitelik vektoriine ulasmak i¢in arastirmaya ve incelemeye
calisilmig olsa da (Boostani & Moradi, 2003; Phinyomark ve dig., 2009; Zardoshti-
Kermani ve dig., 1995; Zecca ve dig., 2002), 6zniteliklerin siniflandirmadaki basarisini



sayisal olarak karsilastiran calismalar oldukga azdir. Ozellikle 6znitelik sayisinin fazla
olmasi sebebiyle bu Ozniteliklerin performanslarinin kuantatif olarak birbiri ile

karsilastirilmast gerekmektedir (Oskoei ve Hu, 2008).

EMG sinyallerinin 6znitelikleri temelde zaman ve frekans bolgelerinde (domain) ifade
edilir. Ham EMG sinyalleri zaman bolgesinde incelenir ve herhangi bir doniistim (fourier
dontlistimii vb.) gerektirmez. Bu sebeple protez kontrolii vb. pratik alanlarda EMG
sinyallerinin zaman bolgesindeki 6znitelikleri daha ¢ok tercih edilmektedir (Zecca ve
dig., 2002; Farrell ve Weir, 2007; Phinyomark ve dig., 2012). Ayrica zaman bolgesindeki
Oznitelikler, miyoelektrik kontrollii protezlerin hassas kontrolii i¢in daha diisiik
gecikmeye (delay) sebep olduklarindan kullanimlar1 daha yaygindir. Ancak genellikle
zaman bolgesindeki 6zniteliklerin performansi, dinamik (non stationary) kasilmalardaki
sinyallerin kuantatif hale getirilmesi i¢in tatmin edici degildir (Phinyomark ve dig., 2014).
Bu tiir uygulamalar i¢in literatiirde, 6zniteliklerin birinci mertebeden diferansiyellerinin
hesaplanmasi1 Onerilmektedir (Phinyomark ve dig., 2012). EMG sinyalinin zaman
bolgesindeki 6znitelik vektori (x(t)) yerine bu ozniteliklerin birinci dereceden farki olan
d®(t) vektorii hesaplanarak diferansiyel oznitelikler elde edilmis olup siniflandirma
isleminde diferansiyel halleri kullanilir. Literatiirdeki ¢aligmalar gdstermistir ki birinci
mertebeden diferansiyellerin siiflandirmadaki performansi, orijinal zaman bdlgesi
ozniteliklerinin performansindan daha yiiksektir (Oskoei ve Hu, 2008; Phinyomark ve

dig., 2010; Kim ve dig., 2011; Phinyomark ve dig., 2014).

Bir protezin hareket veya kuvvet kontrolii i¢in, sinyallerden ¢ikarilan 6zniteliklerin gesitli
makine Ogrenmesi teknikleri kullanilarak siniflandirilmasi gerekmektedir. EMG
sinyallerinin islenmesi ve smiflandirilmasi igin yapay sinir aglari temel olmak iizere
(Siibasi, 2012) destek vektor makineleri (SVM) (Lucas ve dig., 2008; Oskoei ve Hu,
2008; Yoshikawa ve dig., 2006), dogrusal diskriminant analizi (LDA) (Alkan ve Giinay,
2012; Kim ve dig., 2011) ve bulanik mantik (FL) (Chan ve dig., 2000; Ajiboye ve Weir,
2005; Micera ve dig., 1999) gibi ¢ok sayida metodoloji 6nerilmis ve uygulanmistir. EMG
Ozniteliklerinin siniflandirilmasinda, 6ne ¢gikan performansi ve zamanla degisen hedefleri
tahmin etme kabiliyeti nedeniyle YSA, bu teknikler arasinda en genis uygulama alanina
sahiptir (Young ve dig., 2013; Reaz ve dig., 2006; Erik Scheme ve Kevin Englehart,
2011).



Oriintii tanima islemi i¢in yapilan ¢alismalarda, dogrusal ve dogrusal olmayan iliskileri
gostermesi ve simiflandirma performansinin yiiksek olmasi nedeniyle, yapay sinir
aglarinin basaris1 vurgulanmistir (Oskoei ve Hu, 2007). Hiraiwa ve dig. (1989), yapay
sinir aglarini kullanarak fleksor digitorium superficialis kasinin hareket oriintiilerini elde
etmistir. Hudgins ve dig. (1989) da miyoelektrik kontrollii protezler igin zaman alani
Ozniteliklerini simiflandirma amaciyla yapay sinir aglarmi kullanmigtir. Savelberg ve
Herzog (1997), kediden alinan EMG sinyali ile kedi gastroknemius kas kuvvetini tahmin
etmek i¢in geri yayilim algoritmasia (back propagation algorithm) dayanan bir yapay
sinir ag1 yaklagimi kullanmigtir. Liu ve dig. (1999), yapay sinir aglart kullanarak EMG
sinyalini siniflandirmis ve ilk kez insana ait kas kuvvetini, diigiik bir hata ile tahmin
etmistir. Yapay sinir aglar1 kullanilarak disaridan uygulanan kuvvetin ve torklarin
kestirimi, yapay insan eklemlerinin tasariminda 6nemli bir role sahiptir (Aslan ve dig.,
2010; Morita ve dig., 2000; Corbett ve dig., 2011). Morita ve dig. (2000), EMG
sinyallerinden eklem torkunu tahmin edebilen bir el protezi i¢in bir kontrol yontemi
onermistir. EMG sinyali kullanilarak tasarlanan, fiziksel engelli insanlarin giinliik
hayatlarini kolaylastiran protezler zamanla gelisim gostermistir. Morita ve dig.” nin
(2000), onerdigi bu el protezi, EMG kontrollii diger protez caligmalarina kiyasla daha

hizli hareket etme ve daha karmasik hareketleri yapma yetisine sahiptir.

Ortalama mutlak deger ve ortalama karesel kok genellikle EMG genlik tahmini igin
kullanilan popiiler 6zniteliklerdir (Phinyomark ve dig., 2013). Her iki 6znitelik, sirasiyla
mutlak ortalama degerin farki (Difference Absolute Mean Value - DMAV) ve mutlak
standart sapma degerinin fark: (Difference Absolute Standart Deviation Value - DASDV)
olarak adlandirilan farklilastirma teknigi kullanilarak (birinci mertebeden tiirevleri
alinarak) degistirilmistir (Phinyomark ve dig., 2012; Kim ve dig. 2011). Kim ve dig.
(2011) ve Yuve dig. (2012), bir dogrusal ayristirma analizi (Linear Discriminant Analysis
- LDA), kuadratik ayristirma analizi (Quadratic Discriminant Analysis - QDA), k-en
yakin komsu (k-Nearest Neighbors - kNN) siniflandirma algoritmasi kullanarak MAV ve
DAMV arasindaki ve  RMS ve DASDV arasindaki siniflandirma performansini
incelemislerdir. Yapilan bu ¢alismalar neticesinde, DAMYV ve DASDV' den elde edilen



siniflandirma dogruluklari, MAV ve RMS' den elde edilen dogruluklardan anlamli
derecede yiiksek oldugu goriilmiistiir.

Bu c¢alismanin amaci, sinyal 6znitelikleri kullanilarak EMG sinyalinden elde edilen
kuvvet ve pozisyon verilerinin karsilastirilmasidir. EMG sinyalinden elde edilen 6znitelik
verileriyle, kuvvet ve pozisyon kestirimi karsilagtirilarak, bu kontrol yaklagimlarinin

basaris1 incelenmistir.
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3. MALZEME VE YONTEM

3.1. INSAN KOLUNUN ANATOMISI

Insan viicudunda cesitli hareketlerin ve islerin yapilmasinda énemli bir rolii bulunan kol,
iki boliim halinde degerlendirilir. Omuz ekleminden dirsege kadar uzanan kisma kol,
dirsekten el bilegine kadar giden kisma onkol denir. Genellikle kol kavrami bu iki
boliimiin tamamu i¢in kullanilir. Viicudun kol bolgesinde bulunan kaslar 6nkol ve arka
kol kaslar1 olmak {izere iki gruba ayrilarak incelenir. Onkolun kaslar1 6n ve arka olmak
tizere iki gruba ayrilirken, 6n grup da kendi arasinda yiizeyel, orta ve derin olmak tizere

lic gruba ayrilir. On kaslar, fleksor kaslar; arka kaslar ise ekstansér kaslardir.

Bu tez ¢alismasinda EMG sinyalleri, eszamanli olarak iki ayr1 kastan elde edilmistir.
Bunlar, fleksor ve ekstansor kaslaridir. EMG sinyallerinin bu iki kastan alinmasinin
sebebi, el bilegi ile yapilan uzatma (ekstansiyon), biikkme (fleksiyon) ve dondiirme

(rotasyon) hareketleri sirasinda 6zellikle bu iki kasin aktif olmasidir.

Bu boliimde 6ncelikle insan 6nkol kas yapisindan bahsedilecek ve daha sonra basit bir

sekilde, 6l¢iim yapilan bu iki kas anatomik agidan incelenecektir.

3.1.1. Onkol Anatomisi

Insan 6nkol anatomisinde 6nkol, dirsek ve bilek arkasinda kalan kisimdir. Bu anatomik
kistm kemikler, eklemler, kaslar, sinirler, damarlar ve diger yapilardan olusmaktadir.
Insan onkol anatomisinde iki uzun kemik ve bu kemiklerin arasinda membran
bulunmaktadir. Onkol fleksor ve ekstansor yapida kaslar igermektedir. Bu kaslar parmak
ve onkolda yapilan hareketlerden sorumludur. Ayrica 6nkolda supinator ve pronator
denen kaslar énkolun gevrilmesini saglamaktadir. Onkolun arka kaslar1 daha ziyade

ekstansor niteliklidir ve radyal sinir tarafindan kontrol edilir.

Onkolda bulunan eklemler bir¢ok sinir damarlari ile kaplidir ve merkezi sinir sisteminden
gelen uyarilarla islevlerini yerine getirirler. Bu kaslarin yeteri derecede kullanilmamasi

ve sinir damarlarmin islevini gérmemesi sonucunda bu kaslar atrofiye ugrar ve kiigiiliir.
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3.1.1.1. Flexor Karpi Radiyalis Kast

» Flexor Carpi Radialis

Sekil 3.1: Flexor Karpi Radiyalis kasi.

Yiizeyel tabaka kaslarindan, Sekil 3.1” de gosterilen fleksor karpi radiyalis (flexor carpi
radialis), pronator teres kasimnin ulnar tarafinda yerlesen, onkoldaki ince ve yiizeysel
kastir. Epikondilus mediyalis’ten baglar 2. ve 3. Metakarpal kemiklerin tabanlarina
yapisarak sonlanir. Bu kas1 innerve eden sinir ise nervus medianus’ tur. Fleksor karpi
radiyalis kasi el bilegini fleksiyona getirme fonksiyonu goriir. Buna ek olarak, esneklik

ve eli kagirmaya yardimci olur ve el bilegine radyal abdiiksiyon yaptirir.

3.1.1.2. Ekstansor Karpi Radiyalis Longus Kast

Sekil 3.2’ de goriilen ekstansor karpi radiyalis longus (extansor carpi radialis longus) kasi,
onkolun dis tarafinda bulunan iki kastan biridir. Fleksor karpi radiyalis kasi ile ayni etkiye
sahiptir. Crista supracondylaris lateralis’ in alt parcasindan ve epicondylis lateralis’ten

baslar.

Uzun kas kirisi retinaculum musculorum extensorum'un altindan gegerek, 2. metakarpal
kemigin tabanin arka yiiziine yapisarak sonlanir. Bu kasi innerve eden sinir nervus
radialis’tir. Gorevi, ele ekstansiyon hareketi yaptirmaktir. Elin radyal abdiiksiyon

hareketine de yardim eder.
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Ekstansor Carpl Radialis Longus «

Sekil 3.2: Extansor Karpi Radiyalis Longus kasi.

3.2. KAS KOORDINASYONU

Kaslar tiim viicut hareketleri i¢in kuvvet saglayan yapilardir ve 06zel hiicrelerden
olusmaktadir. Kasin yapisal iinitesi kas hiicresi veya kas lifidir. Bir motor néron ve bu
motor ndronun innerve ettigi kas liflerinden olusan kasin islevsel birimine motor iinite

ad1 verilir.

Biitlin hareketler bir¢ok kasin koordineli bir sekilde birlikte ¢alismasi ile olusur. Hareketi
dogrudan yaptiran kas veya kas grubuna esas hareket ettirici kas denir. Belirli bir
harekette, esas hareket ettirici kas diger bir kasa gore zit yonde hareket ediyorsa bu kaslara
antagonist kaslar denir. Ornek olarak, 6nkolun fleksiyon hareketi sirasinda, ekstansor
kaslar antagonist calisirlar. Esas hareket ettirici kasa ayn1 yonde yardimci olan kaslara da
sinerjist kaslar denir. Bir hareket yapilirken istenmeyen diger hareketlerin olusmasini

engelleyen kaslar da fiksasyon kaslaridir.
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Sekil 3.3: Kas yapisinin sematik gosterimi.

3.2.1. Kas Hareketleri
Anatomik hareket agilimlar1 iskelet lizerindeki kaslarin hareketlerini tanimlamak icin
kullanilir. Kaslar eklem hareketleri tiretmek i¢in kasilip, gevser ve bundan sonra olusacak

hareketler agsagidaki terminoloji kullanilarak tam olarak aciklanabilir.

Konumlarin anatomik terimleri i¢in, kullanilan terimler viicudun anatomik pozisyonda
basladigin1 varsaymaktadir. Cogu hareketin ziddi bir hareketi vardir, ve bu zit hareketler
karsit (antagonist) hareket olarak tanimlanmaktadir. Daha kolay anlasilmas1 i¢in terimler

karsit ciftler olarak agiklanmistir.

Abduksiyon/Adduksiyon (Abduction/Adduction): Viicudun orta diizlemine dogru veya
viicudun orta diizleminden uzaklasma hareketlerini tanimlamak ig¢in kullanilan iki
terimdir. Viicutta bulunan herhangi bir uzvun viicut orta diizleminden uzaklasmasi
hareketine abduksiyon; uzvun viicut orta diizlemine yaklagmasi hareketine ise

adduksiyon denilir. Bu iki hareket de viicudun frontal diizlemi tizerinde gerceklesir.

Fleksiyon/Ekstansiyon (Flexion/Extension): Fleksiyon ve ekstansiyon, sagital diizlemde
meydana gelen hareketlerdir. Iki viicut kismi arasindaki ag1y1 artirma ve azaltmay1 ifade
eden terimlerdir. Fleksiyon hareketinde eklem agisinin kiigiilmesi veya biikiilme,

ekstansiyon hareketinde ise eklem acgisinin biiyliimesi veya gerilme s6z konusudur.
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I¢ Rotasyon/ Dis Rotasyon: Bir uzvun veya viicut kismmin(eklemlerin?) uzun eksen
etrafinda dénme hareketini tanimlayan iki terimdir. ice dénme hareketine i¢ rotasyon,
disa donme hareketine ise dig rotasyon denir. Bu hareketlere dnkolda 6zel olarak
pronasyon ve supinasyon ismi verilir. Alt kolun kendi ekseni etrafinda dondiiriilerek,
avug icinin yukariya dondiirilmesi supinasyon ve ayni eksen etrafinda dondiirtilerek avug
icinin asagiya bakacak sekilde ¢evrilmesi pronasyon olarak bilinir. Radius'un ulnar

etrafinda ige dondiiriilmesi pronasyon; disa dondiiriilmesi ise supinasyon adini alir.

3.2.3. Kas Kuvvetini Etkileyen Faktorler

3.2.3.1. Kas Aktivasyon Dinamigi

Kas giicli, kas kuvvetinin ve kasilma hizinin {iriiniidiir ve her biri kasin yapisal
ozelliklerinden etkilenmektedir (Neptune ve Kautz, 2001). Kas kuvvetinin gelisimini
diizenleyen baslica yapisal Ozellikler, kuvvet-boy ve kuvvet-hiz iliskileri ve kas
aktivasyonu ve deaktivasyon dinamigidir. Aktivasyon (etkinlestirme) ve deaktivasyon
(etkisizlestirme) dinamikleri, kas kuvveti olusumu ile dinlenme (sinir uyariminin durmasi
ile kas kuvvetinin sifira diismesi durumu) arasindaki gecikmeyi (kasa gelen sinir uyarimi
ile kasta kuvvet olusmasi arasindaki gecikme) tanimlayan siireclerdir. Kas kuvveti
olusumu ve dinlenme durumlarindaki bu gecikmeler 6ncelikle kalsiyum dinamiklerine ve

capraz kopri (cross-bridge) olusmasi-bozulmasi durumlarina baghdir (Zajac, 1989).

Insan hareketinin modelleme calismalarmin ¢ogunda, aktivasyon ve deaktivasyon
dinamiklerini birinci mertebeden diferansiyel denklemler ile temsil edilen Hill tipi kas
modeli kullanilmistir (Zajac, 1989). Bu model, karmasik molekiiler dinamiklerin yerine,
sinirsel uyarim ile kas kasilmasinin net sonucunu belirtir. Aktivasyon ve deaktivasyon
dinamiklerinin 6nemli bir 6zelligi de, aktivasyon oraninin deaktivasyon daha yiiksek

olmasidir.

Kas performansinin baslica belirleyicileri, kuvvet-boy-hiz-gii¢ iliskileri ve aktivasyon-
deaktivasyon dinamikleridir. Aktivasyon ve deaktivasyon dinamikleri ile diger yapisal
kas oOzellikleri arasindaki etkilesim, tercih edilen kas koordinasyon stratejilerini
etkileyebilir. Kuvvet hiz iligkisi, kas kuvveti ile kasilma hizi arasindaki ters iliskiyi

tanimlayan esas bir kas 6zelligidir.
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3.3. DENEYLER

Bu tez ¢alismasinda, insan kolunun izometrik hallerinde yapilan deneylerde elde edilen
veriler kullanilmistir. Kolun farkli pozisyonlarda ve degisen kuvvetlerde kasilmasi
sirasinda  kaydedilen sinyallerin degerlendirilmesinde hata oranmin en az olmasi
istenmistir. Bunu saglamak amaciyla, kolun dinlenme (sabit) pozisyonunda kaydedilen
EMG sinyalleri kullanilmistir. Bu boliimde oncelikle deney diizenegi ve 6l¢tim kriterleri

anlatilacak ve daha sonra sinyal kayit asamalarindan bahsedilecektir.

Insan 6nkol kaslari iizerinde yapilan deneyler, Baltalimani Metin Sabanci Kemik

Hastaliklar1 Egitim ve Arastirma Hastanesi Etik Kurul Komitesi tarafindan onaylanmastir.

3.3.1. Deney Diizenegi

Baltaliman1 Metin Sabanci Kemik Hastaliklar1 Egitim ve Arastirma Hastanesi Yiiriime
Analizi Laboratuvar1’ nda gergeklestirilen bu deneylerde yaglar1 18-35 araliginda olan 5
saglikl erkek, 5 saglikli kadin bireyin, izometrik kasilma durumunda sag kollarinda EMG
Ol¢timleri yapilmistir. Ortalama yas 26.7; viicut yiiksekligi ortalamast 169.1 cm; viicut
kiitlesi ortalama 68.5 kg'dir. Tiim goniilliilere deneylerden 6nce yazili ve bilgilendirilmis

onay formu imzalatilip onay1 alinmistir.

Goniilliilerin arastirmaya dahil edilme kriterleri:

* Goniilliiler saglikli bireyler olmaly,

* Son bir yi1l i¢cinde kol- omuz bolgesinde operasyon gegirmemis olmali,

* Ampute olmus bir uzva sahip olmamali,

* Kronik bir rahatsizlig1 olmamall,

* Organ yetmezligi, kalp pili, tansiyon vb. rahatsizliklar1 olmamalidir.

Bu kriterler goz oniine alinarak ¢calismaya katilacak goniilliiler belirlenmistir.

Goniilliilerin Kayit icin Hazirlanmasi

Gondillii onay formunu imzalayan goniillii ilk olarak uzman doktor tarafindan muayene

edilir. Muayene tamamlandiktan sonra, saglikli olduguna karar verilen goniilliilere
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ol¢timler ve deney sirasinda yapilmasi istenenler ile ilgili bilgi verilir. Goniilliidden 6l¢iim
almadan once, kol yiizeyinin 6lgiim yapilacak sekilde hazirlanmasi gerekir. Oncelikle
Olciim alinacak (sag kol) onkol tizerinde bulunan saat, taki vb. siis esyalari ¢ikarilmalidir.
Kol tizerinde eger kil varsa kol yiizeyi giiriiltii sinyallerinin olusmasini 6énlemek i¢in bu
killar tras edilir. Onkol iizerinde herhangi bir harici nesne bulunmayacak sekilde
hazirlandiktan sonra, cilt alkol ile temizlenir ve alkoliin buharlasmasina izin verilir,
boylece elektrotlar yerlestirilmeden once cildin kuru kalmasi saglanmis olur (Sekil 3.a).
Kol temizlendikten sonra, kolun ¢esitli kas igeren bolgeleri tespit edilip gegici olarak
cizilecek(tiilkenmez kalem kullanilarak)isaretciler ile hastalarin ilgili kaslarinin yerleri
belirlenecektir (Sekil 3.b) . Bir metre yardimiyla dirsek baslangi¢ noktas1 olarak alinip el
bilegi arasindaki mesafenin iicte birlik mesafesi isaretlenir (Sekil 3.c). Isaretlenen yerlere
elektrotlar yapistirilir ve bilege harici karsi bir kuvvet uygulanarak yerinin dogrulugu
kontrol edilir. (Sekil 3.d). Elektrotlarin yerlesim yerinden emin olunduktan sonra, sarj
edilmis EMG alicilart elektrotlarin iizerine yerlestirilir (Sekil 3.e). Ayni islemler diger
kas ¢ifti i¢in tekrarlanir (Sekil 3.f). Her iki kasin 6l¢tim igin hazirlanmis hali Sekil 3.g’de

gosterilmistir.

® (@

Sekil 3.4: EMG elektrot yerlestirimi ve goniilliilerin kayit i¢in hazirlanma evreleri.

a) Cildin alkol ile temizlenmesi, b) Kas yerinin tespiti, ¢) Bilek uzunlugunun 6l¢iiliip kas yerinin
isaretlenmesi d) Elektrotlarin yerlestirilmesi e) Sensorlerin yapistirilip kola sabitlenmesi f) Kas
yerinin dogrulugunun kontrol edilmesi g) Her iki kas i¢in de 6l¢iime hazir kol hali
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Asagidaki Tablo 3.1° de, bireylerin yas, boy ve kilo bilgileri goriilmektedir.

Tablo 3.1: Goniilliilerin cinsiyet, yas, boy ve kilo bilgileri.

Gonulli No  Cinsiyet Yas Boy (cm) Kilo (kg)

01 Erkek 23 172 65
02 Kadin 23 160 50
03 Kadin 35 165 56
04 Kadin 25 174 62
05 Kadin 35 157 54
06 Erkek 26 183 86
07 Kadin 26 161 58
08 Erkek 32 181 86
09 Erkek 24 178 108
10 Erkek 18 160 60

3.3.2. Sinyal Verilerinin Elde Edilmesi

Saglikli goniilliilerin sag iist ekstremitesi 6nkol kaslarindan fleksor karpi radiyalis ve
ekstansor karpi radiyalis longus kaslarma EMG elektrotlart yerlestirildikten sonra
protokollere ve bu protokollerin kurallarina gore sinyaller kaydedilmistir. ilk olarak kolun
istirahat halindeki EMG sinyalleri alinmistir. Bu sinyaller alindiktan sonra omuz 45°
abduksiyonda, dirsek 90° fleksiyonda iken goniilliilerden maksimum ve submaksimum
olarak el bilek ekstansiyonu ve fleksiyonu yapmalari istenmis ve EMG sinyalleri
kaydedilmistir. Daha sonra omuz adduksiyonda ve dirsek 90° fleksiyonda iken
goniillillerin maksimum ve submaksimum el bilek ekstansiyon ve fleksiyonu hareketi
esnasinda EMG sinyalleri kaydedilmistir. Bu kontraksiyonlar esnasinda el dinamometresi
ile hastanin uygulamis oldugu istemli kuvvetler 6l¢iilmiistiir. Goniilliiler, 6l¢iim yapan

kisiden aldig1 uyarilarla harekete baglama ve bitirme zamanlarini belirlemistir.

EMG sinyalleri insan fizyolojisinden ve ortam sartlarindan kolaylikla
etkilenebileceginden, goniilliillerden Ol¢lim siiresince olabildigince dogal ve rahat
davranmalar1 istenmistir. Ol¢iim sirasinda sinyallerde giiriiltii olusmasimni engellemek

amaciyla sinyal yayan tiim elektronik cihazlar (cep telefonu, PDA vs.) kapatilmigtir.



18

EMG sinyallerinin etkilenmemesi i¢in konum degisimini onlemek amaciyla 6l¢timler

sirasinda kolun konumunun olabildigince sabit tutulmasina dikkat edilmistir.

Tiim protokollerde aynt EMG cihazi (kablosuz yilizeyel EMG sistemi - Cometa Wave
Wireless EMG) kullanilmistir. Deneyde kullanilan 32 kanalli EMG cihazindan (Cometa
Wave) kablosuz olarak 6l¢iim alinabilmektedir. Bu 6zelligi sayesinde kablo vb. fiziksel

bagimliliklar ve mesafe kisit1 gibi sorunlarin 6niine gegilmistir.

EMG kayitlari i¢in, kendinden jelli elektrot (self-adhesive electrode) olarak adlandirilan,
10 mm ¢apli (~ 20 mm elektrotlar aras1 mesafe) ve metalik kisimlar1 Ag-AgCl (Glimiis-
Gilimiis Kloriir) maddesinden olusan elektrotlar kullanilmistir. Jelli elektrotlar cilt ile
elektrot arasindaki bir kimyasal arayiiz olarak elektrolitik jel meteryali igerir. Bunlar,

kendiliginden yapisan ve tek kullanimlik yiizey elektrotlaridir.

Olgiim sirasinda kaydedilen EMG sinyallerine, gecirme band1 15 Hz diisiik ve 450 Hz ist
frekans kesintileri olan bir bant gegiren filtre uygulanmistir (Aslan ve dig., 2010). Elde
edilen EMG sinyallerinin 6rnekleme frekanst 1 kHz’dir ve ¢oziiniirligi 16 bit'tir.
Ornekleme frekansi kavramu, tezin ilerideki boliimlerinden “Sayisal Sinyal Isleme” (Bol.
3.4.1) bashg altinda detayli bir sekilde incelenecektir. Kablosuz sensér boyutu 33 x 23 x

19 mm'dir ve garanti edilen sensor performansi 20 metreye kadardir.

Sinyal kayit iglemleri i¢in yapilan ve yukarida detaylariyla anlatilan bu deneyler iki farkli
protokolden olugmaktadir. Protokol 1 kuvvet kestirimini, Protokol 2 ise pozisyon
kestirimini ifade etmektedir.

3.3.2.1. Protokol 1 icin EMG Sinyalinin Kayit Edilmesi ve Veri Toplama

Deneyler, elin farkli hareketlerine bagli olarak degisen pozisyonlarinda alinan sinyal
kayit denemelerinden olusmaktadir. Sinyal kayitlar1 i¢in Oncelikle tiim goniilliilerden,
bilek fleksiyonu (BF), bilek ektansiyonu (BE), bilek i¢ rotasyonu (BIR) ve bilek dis
rotasyonu (BDR) olmak flizere dort farkli giinliik iist ekstremite hareketlerini yapmasi
istenmistir. Tim bu hareketleri yapmadan 6nce goniilliilerin (daha sonra yapilacak
analizler i¢in) dinlenme pozisyonunda (bilek nétr bir konumda ve hareketsiz, omuz 45°

abduksiyonda, dirsek 90° fleksiyonda iken) EMG sinyalleri kaydedilmistir (Sekil 3.5).



19

[k kayittan sonra goniilliiden Sekil 3.5 te verilen hareketleri yapmasi istenmistir. Bu
sirada gonilliiniin ve el bileginin bulunmasi gereken konumlar sirasiyla asagida

anlatilmistir.

Sekil 3.5: El bilegi pozisyonlari.

Dinlenme pozisyonu (D): Gondillii 6ne dogru yatay olacak sekilde diiz oturur ve bilek n6tr

bir konumda ve hareketsizdir.

Bilek Fleksiyonu (BF): Omuz 45° abduksiyonda, dirsek 90° fleksiyonda iken bilek nétral

konumda, el ice dogru biikdiliir.

Bilek Ekstansiyonu (BE): Omuz 45° abduksiyonda, dirsek 90° fleksiyonda iken bilek

ndtral konumda, el disa dogru gerilir.

Bilek i¢ Rotasyonu (BIR): Onkol kendi ekseni etrafinda dondiiriilerek, avug ici asag1 yone
bakacak sekilde ¢evrilir.

Bilek Dis Rotasyonu (BDR): Onkol kendi ekseni etrafinda dondiiriilerek, avug ici yukari

yone bakacak sekilde cevrilir.

Hareket pozisyonu goniilliiye gosterildikten sonra, goniilliiniin hareketi bes saniye
boyunca siirdiirmesi istenmistir. Her hareket ii¢ kez tekrarlanir. Iki tekrar aras1 gegis
durumunu (transitional stage) oOnlemek igin gonilliniin iki saniye dinlenme

pozisyonunda, kasilma olmaksizin dinlenmesi saglanmistir (Phinyomark ve dig., 2012).
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Ug tekrarla bir hareket tamamlandiktan sonra kas yorgunlugunu &nlemek igin, goniillii
bir sonraki harekete baslamadan 6nce minimum iki dakika beklemek zorundadir (Ju ve

dig., 2013).

Sekil 3.6: Protokol 1 igin (sol) ve Protokol 2 i¢in (sag) EMG sinyali 6l¢iim diizenegi.

3.3.2.2. Protokol 2 icin EMG Sinyalinin Kayit Edilmesi ve Veri Toplama

Bu protokol, goniillii tarafindan istege bagli siddetlerde uygulanan kuvvetlere karsi
olusan sinyallerin kaydedilmesini saglayan denemelerden olusmaktadir. Bu protokol, el
pozisyonlarindan bagimsiz ve yalnizca kuvvet degerleri ile buna karsilik gelen sinyalleri
Olgmeyi saglayan deneydir. Bu deneyin amaci, uygulanan kuvvetlerin, EMG sinyalleri

yardimiyla kestirimini elde edebilmektir.

Bu islemi gergeklestirmek igin, farkli kuvvet degerine karsi onkolun istirahat halinde
iken, iki ayr1 kastan EMG sinyal olgiimleri yapilmistir. Sekil 3.6 (sag) ’da, 6l¢iim
yapilirken goniilliiniin pozisyonu ile omuz ve kollarin durumu gériilmektedir. Kuvvet
Oliicimii i¢in gonilli, standart bir konumda diiz oturarak, onkol ve bilek nétral
pozisyonda iken sag eliyle el dinamometresi tutmustur (Sekil 3.6 (sag)). ilk olarak
goniilliilerden EMG sinyalinin, degerlendirilen her bir kasin maksimum EMG sinyaline
normalizasyonu i¢in bes saniye boyunca maksimum kuvvet uygulamalari istenmistir.

Maksimum goniillii kasilma anindaki sinyaller kaydedildikten sonra, kas yorgunlugu
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olusmasini engellemek i¢in {i¢ dakika dinlenme durumunda beklenmistir (Kamavuako ve
dig., 2009). Dinlenme durumunda ayrica el dinamometresi de birakilmistir. Higbir
kasilmama olmamasina dikkat edilmistir. Dinleme sonrasi ti¢ defa goniilli tarafindan
belirlenen siddette kuvvet uygulanmis ve bu esnada sinyaller kaydedilmistir. Es zamanl
olarak da dinamometre sayesinde kuvvet degerleri kaydedilmistir. Her iki tekrar arasinda

minimum iki dakika beklenmistir.

3.4. EMG SINYALININ TEMEL KAVRAMLARI

Elektromiyografi, kaslarin elektriksel aktivesinin incelenmesi ¢alismasidir (Basmajian ve
dig., 1985). Kas liflerinin kasilmasina neden olan kas hareket potansiyellerinin toplamini
temsil eder. Bir elektrot araciligyla bu sinyallerin toplanip, ¢esitli dzelliklerdeki EMG
cihazlar1 vasitasiyla kaydedilmesiyle EMG sinyalleri olusur. EMG sinyallerinin
anlasilmasi i¢in kas yapisinin ve kaslarin biyoelektrik sinyaller iiretme bi¢iminin

anlasilmasi gerekmektedir. (Merletti ve Parker, 2004).

De Luca’ya gore (1997), “Elektromiyografi ilgi ¢ekici bir ilham kaynagidir, ¢linkii kasin
gii¢ liretmesine, harekete gegmesine ve ¢cevremizdeki diinyayla etkilesime girmemize izin
veren sayisiz islevin yerine getirilmesine neden olan fizyolojik siireglere kolay erisim
saglar. Elektromiyografinin kullanimi ¢ok kolay dolayisiyla kotiiye kullanimi da ¢ok
kolaydir. "

Hayvansal yasamin en temel 6zelligi olan hareket etme kabiliyeti, yillar boyunca kaslar
ve kas fonksiyonlarin arastirilmasimi ve iizerine ¢aligsmalar yapilmasini saglamistir.
Ronesans doneminde Leonardo da Vinci’nin kas analizi ¢alismalariyla baslayan bu siireg
birgok bilim insaninin katkilariyla iizerinde en ¢ok ¢alisan konulardan biri olmustur.
1666°da Francesco Redi, kaslarin elektrik iiretimi ile ilgili yaptig1 calismalar EMG ile
ilgili ilk belgelendirilmis deneyler olarak goriilmektedir. Galvani 1786 yilinda, bir
rastlant1 sonucu elektrikten yararlanarak yaptigi fizyoloji arastirmalart sonucunda elektrik
ve kas kasilmasi arasindaki iliskiyi ilk kesfeden kisi olmustur. Laboratuvarda
kurbagalarin sinirleri iizerinde incelemeler yaparken derisi yiiziilmiis bir kurbaga sinirleri
tizerinde elektrik yiikii bulunan bir cisim ile temasi sonucunda bacaktaki hareket sinirleri
tizerinden bir elektrik akimi gectigini ve 6lii hayvanin kaslarinda kasilmalar meydana
geldigini fark etmistir. Calismalarina devam eden Galvani, kasilmalarin olugmasi igin

sinirlere iletken bir cisimle dokunulmasi gerektigini kesin olarak anlamis ve daha sonra
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kurbaga gibi diger biitiin hayvanlarin viicutlarinda elektrik yiikii tasidiklar1 sonucuna
varmistir. Bu gii¢c Avrupa'da biiyiik bir heyecanla kabul edilen "hayvan elektrigi" kavrami
olarak adlandirilmistir. Bu arastirmalarini 1791 yilinda yayimladigr “De viribus
electricitatis in motu musculari commeritarius” (Elektrigin Kas Hareketlerindeki Etkisi
Ustiine Diisiinceler) adli eserinde agiklamistir. Tiim bu ¢alismalar sonucunda Galvani,
norofizyolojinin “babas1” tnvanii almistir. 1849 yilinda Emil du Bois-Reymond,
goniilli  bir kas kasilmasi sirasinda elektriksel aktivitenin kaydedilebilecegini
kesfetmistir. Bu etkinligin ilk gercek kaydi Marey tarafindan 1890'da yapilmistir ve

elektromiyografi terimini de ortaya ¢ikarmustir.

3.4.1. Yiizeyel EMG Sinyallerinin Kayit Teknigi

Bir kas ve onu kontrol eden motor sinirlerin elektriksel aktivitesini gosteren EMG sinyali,
iki farkli yontemle kaydedilir: Kas igerisine igne seklindeki elektrotlar sokularak
kaydedilmesi; igne EMG (Intramuscular EMG) yontemi ve deri yiizeyine yerlestirilen
elektrotlarla kaydedilmesil; yiizeyel EMG (surface EMG - sEMG) ydntemi. Onceki
yillarda, igne EMG sadece bir kasa ait aktivasyonun basarili bir sekilde elde edilmesi ve
ylizeyden uzakta bulunan kaslara da erisim saglamasi nedenlerinden dolayr daha c¢ok
tercih edilen bir yontemdi. Fakat invaziv bir yontem olmasi ve uygulanabilmesi i¢in
operasyon ve hekim gerektirmesi sebepleriyle klinik uygulamalarda oldukga yavas
sonuglar elde edilmektedir. Ayrica bu yontemle yapilan dlgiimler sirasinda insanlarin act
duymasi1 da sinyal kayit prosediirlerini olduk¢a zorlagtirmaktadir. Gilinlimiizde
biyomedikal alaninda yapilan ¢aligmalar neticesinde, yiizeyel EMG sonuglar1 neredeyse
igne EMG kadar dogru sonuglar verebilecek kadar iyilestirilmistir. Hem benzer dogruluk
orani, hem de hizli sonuglar elde edilebilmesi agisindan yiizeyel EMG ydntemi, en ¢ok

kullanilan EMG sinyali kayit yontemidir.

Yiizeyel EMG tekniginde deri yiizeyine yerlestirilecek elektrotlarin konumu c¢ok
onemlidir. Dogru ve basarili sonug elde edebilmek i¢in, elektrotlarin kas aktivasyonunun
en yogun oldugu bolge ilizerine yerlestirilmelidir. Yani, elektrotlar, mutlaka kasin
kenarlardan wuzak, orta boliimiine yapistirilmalhidir. Bunun icin, elektrotlarin
yerlestirilecegi bolge, sadece EMG elektrotlarinin yapistirilacagi kas kontraksiyonda iken
saptanmalidir. Yanlis yer tespiti hatali sonuglara neden olacag: icin, elektrot bolgesi

secimi uzman (hekim, fizik tedavi uzmani vb.) bir kisi tarafindan belirlenmelidir.
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Elektrot konumu tespit edildikten sonra belirlenen lokasyonun etrafina elektrotlarin
yerlestirilmesi ve sabitlenmesi gerekir. Elektrot yerlestirilirken ve sabitlenirken, elektrot
mesafesi, yonlendirme, sabitleme yontemi ve referans elektrotun konumu se¢ilmelidir.
Elektrotlar arast mesafe, iki bipolar elektrotun iletken alani arasindaki merkezden
merkeze uzaklik olarak tanimlanir. Yonlendirme, kas liflerinin yoniine gore iki bipolar
elektrot arasindaki ¢izginin konumu olarak tanimlanir. Referans elektrotu, sinyal bozma
riski minimum olacak bir yere yerlestirilmelidir. Genellikle referans elektrotunun
elektriksel olarak etkin doku iizerinde yer aldigi kabul edilir. Literatiirde, EMG' nin
kaydedildigi kaslara bagli olarak bir dizi referans elektrot konumu tercih edilebilir. Bu
parametreler, SENIAM (Surface ElectroMyoGraphy for the Non-Invasive Assessment of
Muscles) projesinde belirtildigi sekilde segilmelidir. Bu ¢alisma kapsaminda segilen

parametre degerleri “Deneyler” béliimiinde agiklanmustir.

Zaman (s)

Motor Noron

Sekil 3.7: Farkli bolgelere yerlestirilen elektrotlarin sinyal iizerine etkisi (De Luca, 1997).
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Glriiltii (noise), EMG sinyalinin kayit altina alinmasinda sinyalin dogrulugunu
giiclendiren onemli etkenlerdendir.  Glriiltii ¢ogunlukla, EMG sinyalleri igin
istenmemekte olan elektriksel sinyallerdir. Giiriiltiiniin kaynaklari farklidir. Ornegin,
elektronik her cihaz icin elektriksel giiriiltiller s6z konusudur. Giiriiltiilerin frekans
araliklar1 degiskendir. Bu giiriiltiiler tamamen engellenememekte fakat giiriiltiiye bagl
kirlilik seviyesi azaltilmaktadir. Giiriiltiiye sebep olan faktorlerin basinda elektrotlar
yiikselticiye ulastirmak i¢in kullanilan kablolar gelmektedir. Eger kablolu bir sistem
kullaniliyorsa elektrot ile EMG cihazi baglantisini saglayan kablolar ¢ok iyi bir sekilde
kontrol edilmeli giiriiltiiye sebep vermeyecek sekilde deri yilizeyine ya da ilgili alana
sabitlenmelidir. Eger kayit cihazi kablosuz (wireless) bir sistem ise, giiriiltii kablo, fiziksel
sartlar vb. nedenlerinden giiriiltii olusma ihtimali daha azdir. Gergek sinyalleri, giiriiltii
sinyallerinden ayirt etmek i¢in kullanilan filtreleme islemi, sinyalin karakteristik
yapisinin  belirlenmesinde engelleyici olabilir. Bu sebepten, EMG sinyallerinin
kaydedilmesi sirasinda, sinyallerde davranis bozukluguna neden olabilecek her tiir
filtreleme islemlerinden ve sinyalleri diizeltmeye yonelik islemlerden uzak durulmasi
gerekmektedir. Bu ¢alismada kullanilan EMG sinyali kayit cihazi, EMG sinyallerini
elektriksel giiriiltiiden ayiklamak i¢in 10Hz ile 500 Hz bant araligini gegiren filtreye
sahiptir.

Yanses (crosstalk) de, EMG sinyalini etkileyen bir bagka etkendir. Basarili bir sinyal
kaydi icin yanses engellenemese bile en aza indirilmelidir. Komsu kaslardan
kaynaklanarak elektrotlara sizan giiriiltiiyli engellemek ya da azaltmak i¢in elektrotlar
aras1 uzaklik yeteri kadar kisaltilmahdir. Yanses “EMG-Kas Kuvveti liskisi” baslig

altinda detayl bir sekilde anlatilacaktir.

EMG sinyallerinin genlik araligi 0-10 mV (+5 to -5) araliginda degiskenlik gosterir.
EMG sinyalleri genlikleri kiiciik oldugu i¢in alindiktan sonra ytikseltilirler. Kullanilabilir
sinyal enerji araliginin frekans degeri ise 0-500 Hz ‘dir. En biiyiik frekans degerlerine
sahip frekans genligi araligi 0-150 Hz’ dir. Sekil 3.8’de ise fleksor karpi radiyalis
kasindan elde edilmis bir EMG sinyali ve onun frekans dagilimi (spektrum)

gorilmektedir.
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Sekil 3.8: (a) Fleksor karpi radiyalis kasina ait bir EMG sinyali (b) Sinyalin frekans dagilim.

Bu tez c¢alismasi kapsaminda yukarida anlatilan etkenler géz Oniine alinarak Ol¢iim

yapilmis ve elektrot yerlesimi i¢in uzman kisilerden yardim alinmustir.

Sekil 3.9: Kablosuz elektrotlarin dnkol tizerindeki yerlesim yerleri.

Sekil 3.9°da 6nkolda iki kasa yerlestirilen elektrotlarin, kas yiizeyiyle olan temas yerleri

gorilmektedir.

3.4.2. EMG Sinyalinin Uygulama Alanlar:
Yiizeyel EMG spor bilimleri, noérofizyoloji ve rehabilitasyon gibi bir¢ok farkli uygulama
alanma sahiptir. Yiizeyel EMG, non-invaziv ndromiiskiiler degerlendirme olanag:

sagladigr icin hem arastirma hem de klinik uygulamalarda kullaniimaktadir. Kas
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yorgunlugu, sirt-boyun agrisi gibi nérolojik hastaliklar ve diger néromiiskiiler degisikler
EMG sinyalindeki degisiklikler analiz edilerek saptanmaktadir. Ayrica ylizeyel EMG
sinyali kullanilarak kas aktivasyon araliklar1 izlenebilmektedir. Kas aktivasyon
araliklarmin belirlenmesi, motor koordinasyonunun ve tedavi etkisini degerlendirilmesi

acisindan oldukga yararlidir (Rainoldi ve dig., 2004).

EMG'nin kullanimi ig¢in pek ¢ok uygulama vardir. EMG klinik olarak norolojik ve
noromiiskiiler problemlerin teshisi i¢in kullanilir. Yiiriime laboratuvarlarinda, biyolojik
tepkiler ve ergonomik degerlendirme ile ilgili egitim almis klinisyenler tarafindan tani
amagh olarak kullanilir. Ayrica EMG, biyomekanik, motor kontrol, ndromiiskiiler
fizyoloji, hareket bozukluklari, postiirel kontrol ve fizik tedavi alanlarinin ig¢inde

bulundugu bir¢ok arastirma laboratuvarinda kullanilir.

3.4.3. EMG-Kas Kuvveti Iliskisi

Aktif bir kas tarafindan tiretilen kuvvetin kestirimi, sadece biyomekanik ¢aligsmalar i¢in
degil ayn1 zamanda fizyoterapi ¢aligmalar1 agisindan da biiylik 6nem tagimaktadir. EMG
sinyali ile kas kuvveti arasindaki iliski kas kuvveti ile ilgili yapilan caligmalarda
fizyoterapistlerin tan1 ve tedaviye iliskin verdigi kararlarin dayanagidir. Yiizey EMG
sinyalleri, iskelet kaslarmin aktivasyon derecesini gosterir ve bu sinyaller kas
kuvvetleriyle oldukg¢a yakin iliskilidir (Disselhorst-Klug ve dig., 2009). Bununla birlikte,
kas kuvvetini ylizeyel EMG'den tahmin etmenin en biiyiik dezavantaji, bir kas tarafindan
tiretilen kuvvetin ger¢ek degerinin dogrudan, invaziv olmayan sekilde Ol¢iilmesinin
oldukca zor olmasidir. Kas kuvvetinin dolayli dl¢limii, elde edilen kuvveti etkileyen
tahmin edilmeyen diger faktorler ile birlikte kuvvet bilgisi almaya yarar. Bu nedenle bu

yiizeyel EMG sinyallerinin yorumlanmasi zordur ve bir hekim tarafindan yapilmalidir.

Farkli kas uzunluklarina gore EMG sinyali kuvvet iliskisini etkileyecek en az dort faktor
vardir (Disselhorst-Klug ve dig., 2009). Bunlar;

1) Motor iinitelerinin (MU'lar) aktivasyon oriintiilerindeki degisikliler,
2) Kasin anatomik, mekanik veya elektriksel 6zellikleri,

3) Ilgili kasa bagl olarak yerlestirilecek EMG elektrodlarinin konumu,
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4) Hiicrelerdeki kasilma filamani (filament) 6zellikleridir.

Kaslarda kasilmay1 etkileyen bir diger faktor kas yorgunlugudur (fatigue). izometrik
kasilma durumunda siirekli olarak uygulanan kuvvet sirasinda EMG aktivitesi stirekli
olarak artar; kuvvet seviyesi daha yiiksek tutuldugunda artis orani artmaktadir Aschero
ve Gizdulich, 2010). Fakat kas uzun siire aktiviteye maruz kalirsa kasta “yorulma”
meydana gelir. Bu yorulma EMG sinyallerini olumsuz etkiler. Yorulmay1 6nlemek igin
deney sirasinda yapilmasi istenen gorevler pargalara ayrilmis ve her iki gorev arasinda

yorgunlugun olusmamasi i¢in belirlenen 6l¢iide dinlenme saglanmastir.

Kaslarin kasilmasini etkileyen fizyolojik etkenlerin yani sira, bu kasilmalar sirasinda
yapilan Ol¢limleri etkileyen faktorler de vardir. Bu faktorlerin en 6nemlilerinden biri
yanses olayidir. Yanses, belirli bir kas tlizerinde tespit edilen ¢ogunlukla bu kasin
yakimindaki diger kas tarafindan iiretilen EMG sinyalidir (Winter, 1994). Bu yanses
sinyalleri, aktif kas iizerinde tespit edilen sinyallere gore farkli bir sekle sahiptir ve yiiksek
frekans bilesenler igerir (Solomonow ve dig., 1994). Yanses, yiizeyel EMG sinyallerinin
yorumlanmasinda en dnemli hata kaynaklarindan biridir. Yanses sorunu, 6zellikle farkl
kas aktivasyonunun karsilastirilmasi istenen durumlarda 6nemlidir. Bu sorun tam olarak
ortadan kaldirilamasa da, EMG sinyallerinden saglikli sonuglar elde etmek igin yanses

etkisini en aza indirmek gerekmektedir (Farina ve dig., 2004).

Yukarida anlatilan ve EMG sinyali kas kuvveti iliskisini olumsuz etkileyen faktorlerin
biiyiik bir kismi EMG sinyaline ve kuvvet genligine normalizasyon islemi uygulanarak
ortadan kaldirilabilmektedir.

3.5. EMG SINYALININ ISLENMESI

Kaydedilen EMG sinyallerinden, dogrulugu ve performansi yiiksek bir siiflandirma
sonucu elde edilmek isteniyorsa, ham EMG sinyallerinin bir dizi islemlerden gegirilmesi
gerekmektedir. Sinyalin dogasi degistirilmeden uygulanan bu islemlere sinyal isleme
denir. Sinyal isleme isleminin amac1 sinyali kullanilabilir ve analiz edilebilir bir formata
dontstiirmektir. Oldukga hassasiyet gerektiren EMG sinyal ¢aligmalar sirasinda yapilan
sinyal isleme isleminin sinyalin davranisini ve Ozelliklerinin degistirmemesine 6zen
gosterilmelidir. Bu dogrultuda, elde edilen sinyal verilerine bant geciren filtre

kullanilarak filtreleme igslemi uygulanmistir. Daha sonra ise bu sinyaller, bu bdliimde
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anlatilan sirasiyla sinyal isleme adimlarindan gegerek oriintii ¢ikarma islemi ve yapilacak

analizler i¢in hazir hale getirilmistir.

3.5.1. Sayisal Ornekleme Frekansi

Sinyaller genel olarak siirekli zamanli sinyaller (continious time) ve ayrik zamanli
(discrete time) sinyaller olmak iizere iki gruba ayrilir. Siirekli zamanli sinyaller analog
sinyaller, ayrik zamanli sinyaller ise dijital sinyaller olarak adlandirilir. Analog sinyal,
verileri siirekli degisen bir miktarda gosterir. Dijital sinyal, verileri ayri, sayisal formda
temsil eder. Tipki diger analog sinyaller gibi yiizeyel EMG sinyallerinin de bilgisayar ve
elektronik sistemlerinde degerlendirilebilmesi i¢in, bu sinyallerin sayisal diziler olarak
ifade edilmesi gerekir. Yiizey EMG sinyallerinin sayisallastirilmasi sirasinda, kaydedilen
sinyaller belirli bir 6rnekleme oraninda, bilgisayar sistemleri tarafindan analog sinyalden
dijital sinyale (A / D) doniistiiriicii ile donistiiriilir. Bu islemden sonra analog EMG
sinyali “Orneklenmis” sinyale donisiir. Sekil 3.10’da analog bir EMG sinyali ve onun

orneklenmis dijital hali goriilmektedir.

x(H) %()

D-T B

Sekil 3.10: Tipik bir EMG sinyali (sol) ve drneklenmis EMG sinyali (sag).

Ornekleme frekans1 kavrami, sinyallerin sayisal hale déniistiiriilmesi olarak tanimlanir.
Sinyal isleme i¢in kullanilan 6rnekleme frekansi ¢ok dikkatli se¢ilmelidir; ¢iinkii yiiksek
bir frekans segilirse sinyal, giiriiltii sinyalleri igerebilir ya da diisiik bir frekans hatalara

neden olabilir (Sadhukhan ve dig., 1993).

Herhangi bir siniizoidal sinyalin, yeniden ve bozulmadan elde edilebilmesi i¢in kullanilan
minimum Ornekleme frekansi degerine Nyquist frekansi denir. Bu 6rnekleme isleminin

nasil olmasi gerektigini belirten teorem de Nyquist Teoremi olarak adlandiriimaktadir.
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Nyquist Teoremi’ne gore bir sinyalin 6rnekleme frekansi, ne kadar biiyiik olursa, orijinal
sinyale benzerlik de o kadar artar. Bu teoreme gore, bu benzerligin saglanmasi ve
bozulmalarin minimum olmasi i¢in, secilen 6rnekleme frekansinin kullanilan en yiiksek
frekans degerinin en az iki kati olmalidir. EMG sinyali gibi rastgele bir sinyalin son
derece karmasik yapida olan kas fonksiyonlarinin 6zelliklerini aktarabilmesi i¢in, biiyiik
frekans degerlerinde Orneklenmesi gerekmektedir. Bu calismada kaydedilen EMG

sinyalleri 2 kHz’lik 6rnekleme frekansi degeriyle 6rneklenmistir.

3.5.2. Fourier Doniisiimii

Diinyadaki hemen her sey bir dalga formuyla tanimlanabilir. Ornegin, ses dalgalari,
elektromanyetik alanlar, bir tepenin konuma gore yiikselmesi, stoklarin zamana karsi
fiyat1 vb. Fourier doniisiimii, bu dalga formlarin1 goriintiileme konusunda benzersiz ve
giiclii bir yol saglar. Tiim dalga formlar1 aslinda yalnizca farkli frekanslarin basit siniis

sinyallerinin toplamidir. Yani, Fourier doniisiimii, bir dalga formunu temsil etmenin

baska bir yolunu sunar.

Fourier doniisiimii, bir dalga fonksiyonunu, bir sinyali ya da bir matematiksel ifadeyi
zaman alanindan (time domain) frekans alanina (frequency domain) ¢evirmeye yarar.
Fourier doniigiimi, bir sinyali, bir dalga fonksiyonunu ya da bir matematiksel ifadeyi
sinilis ve kosiniislerle karakterize edilen alternatif bir gosterime doniistiiren bir aragctir.
Fourier doniisiimii, herhangi bir dalganin siniizoidal fonksiyonlarn toplami olarak
yeniden yazilabilecegini goOsterir. Fourier doniisiimii, dalga big¢iminin siniizoidal

bilesenlerine nasil ¢evrilecegini gdsteren matematiksel aractir.

Siirekli bir sinyal, sonsuz sayidaki siniizoidallerin toplami olarak ifade edilebilir. Bu
sinilizoidal setine Fourier Serisi denilmektedir. Fourier Serisi periyodik bir fonksiyonu
siniizoidal fonksiyonlarin toplamina béler. Bu, periyodik fonksiyonlar i¢in Fourier

doniistimi' diir. Fourier serilerinin analizi i¢in, Fourier serisinin trigonometrik ifadesi,

x(t) = A+ Z(Bn cos(fy. t) + Cy sin(fy. £))

(3.1)
x(t) = A+ By cos(f;.t) + C; sin(f;.t) + B, cos(f,.t) + C, sin(f. t) + -
+B,, cos(fp.t) + Cysin(fy.t)
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seklinde gosterilebilir. Denklemde A sinyalin sahip olabilecegi DC bileseni, Bn ve Cp

kosiniis ve siniis terimlerinin her birinin genliklerini, f, ise frekanslarin1 géstermektedir.

Orijinal Sinyal
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Sekil 3.11: Fourier Serisi kullanilarak bir EMG sinyalinin bilesenlerine ayristirilmas.

3.5.3. EMG Sinyalinin Zaman Alaninda Incelenmesi
Kas kuvvetine ve zamana baglh olarak degisen EMG sinyali, genligi rastgele negatif ve
pozitif degerler alarak degisen bir sinyaldir. Literatiirde, EMG sinyalinin siniflandirilmasi

amaciyla, zaman etki alaninda gesitli analizler yapildig1 goriilmektedir (Basmajian ve
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dig., 1985). Bu boéliimde, EMG sinyalinin analizi i¢in yaygin olarak kullanilan

yontemlerden bahsedilecektir.

3.5.3.1. Dogrultma

Yaygin olarak kullanilan ve bir 6n isleme prosediirii olan sinyal dogrultma (rectification)
islemi, EMG ile 6lgiilen kortikal sinyaller arasinda onemli tutarliligin saptanmasina
olanak tanir. (Myers ve dig., 2003). Ham EMG sinyalini tek bir polariteye ¢evirir. Yarim
dalga dogrultma ve tam dalga dogrultma olmak iizere iki farkli sinyal dogrultma yontemi

vardir.

EMG sinyalini isleme sirasinda yalnizca pozitif degerler analiz edilir. Yarim dalga
dogrultma yapilirken, tim negatif veriler atilir ve pozitif veriler tutulur. Tam dalga
dogrultmada ise sinyalin mutlak degeri alinir. Bu islemde, EMG sinyalinin taban ¢izgisi
altinda kalan kismi alinip, bu sinyalin taban ¢izgisi iistiinde kalan kismina eklenir. Yarim-
dalga dogrultucu, negatif girisleri sifirlarken, tam dalga dogrultucu, negatif girisleri
pozitif yapar. Genellikle dogrultma islemi i¢in tam dalga dogrultma tercih edilir (Reaz ve
dig., 2006).

Yarim-dalga dogrultucu i¢in doniisiim fonksiyonu:

v, :{ 0 icin ;<0 (3.2)

Vs icin V>0
Vs transfer (doniisiim) fonksiyonunu, Vo ise ¢ikis fonksiyonunu temsil eder.

Ornegin asagidaki gibi bir siniizoidal girdi ele almirsa:

Mt V.(t)= A sinwt

Sekil 3.12: Ornek bir siniizoidal egri.
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Yarim dalga dogrultucunun ¢ikisi sOyle olacaktir:

imvVAvVAV;

Sekil 3.13: Yarim dalga dogrultucu uygulanan siniizoidal egri.

Tam-dalga dogrultucu i¢in doniisiim fonksiyonu:

v, :{ =V icin V; <0 (3.3)

Vsigin V>0

Yukarida verilen siniizoidal girdi tekrar gbz Oniine alinirsa, tam dalga dogrultucunun

c¢ikist su sekilde olur:

AV Vylt)

‘ /

VARV

Sekil 3.14: Tam dalga dogrultucu uygulanan siniizoidal egri.

3.5.3.2. Dogrultulmus Sinyalin Yumusatilmast

EMG sinyali, isleme alinan motor tinitelerin siirekli olarak degismesi (motor iinitelerinin
capina ve motor iinitesi aksiyon potansiyellerindeki ¢akismanin rastgele olmasina bagl
olarak) nedeniyle rastgele niteliktedir (Konrad, 2005). Dogrultma islemi uygulanmis
sinyal, sinyalin rastgele genliginin dogasini niteler. Sinyalden genlik ile ilgili anlamli
bilgiler elde etmek i¢in kullanilan yonteme yumusatma (smoothing) denir. Yumusatma

islemi, ilgili sinyal icerisinde bulunan yiiksek frekansli dalgalanmalarin (high-frequency
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fluctuations) sinyalden atilmasi ile gercgeklestirilir. Bdylece sinyalin yansimasi
(deflections) daha piiriizsiiz goriiniir. Yumusatma islemi, sinyalin al¢ak geciren siizgecten
(low pass filter) gegirilmesi seklinde de ifade edilebilir. Sinyal {izerinde gergeklestirilen
yumusatma miktari, kullanilan diisiik geciren filtrenin bant genisligine baglidir; Bant

genisligi ne kadar kiigiikse yumusatma da o kadar biiyiik olur (Basmajian ve dig., 1985).

3.5.3.3. Dogrultulmus Sinyalin Ortalamasi
Bir sinyalin ortalamasinin alinmasi, sayisal olarak yumusatma islemine karsilik

gelmektedir. T uzunlugundaki bir m(t) sinyalinin ortalamas;

mOI -t = g [ Im(O)ldt (34)

ti—tj

matematiksel ifade ile hesaplanir (Basmajian ve dig., 1985). Burada tj ve ti, sinyale ait
integrasyonun alt ve iist zaman sinir degerleridir. Yukarida verilen ifade, T= tj — ti zaman
araligindaki sinyalin tamaminin ortalamasini hesaplamaya yarar. Eger sinyalin
tamaminin, zamana gore degisen ortalamasinin hesaplanmasi istenirse, sinyal bir T
uzunlugunda pencere ile taranarak ilerlenir ve bu pencere icine giren her bir sinyal

araliginin ortalamasi alinir. Bu ortalama degeri:

N 1 (t+T

m@®)| =3[, Im@®ldt (3.5)
Denklemiyle hesaplanir (Basmajian ve dig., 1985). Literatiirde yapilan bircok
uygulamada T degeri 100 ms ile 200 ms arasinda se¢ilmektedir (Basmajian ve dig., 1985).

3.5.3.4. Tiimlestirme

Timlestirme (Integration), bir fonksiyon egrisi altinda kalan alanin hesaplanmasi
islemidir. Ham EMG sinyali bipolar bir sinyal oldugu i¢in, ortalamasi sifir olan bir sinyal
egrisinin altinda kalan alan hesaplanmak istenirse (tiimlestirilirse) elde edilen deger sifir
olur. Bu nedenle, timlestirme islemi yalnizca tam dalga dogrultma iglemi yapildiktan
sonra elde edilen sinyal lizerinde gerceklestirilir. Elde edilen parametrelerin birimi V.s

veya mV.ms.’dir. Matematiksel olarak tlimlestirme islemi;
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I{m@©)} = f Im(©)|dt (3.6)

denklemiyle ifade edilir (Basmajian ve dig., 1985). Denklemde I bir EMG sinyalini, m(t)

sinyal egrisini ve t zamani temsil etmektedir.

Tiimlestirilmis EMG sinyali, girisin biiyiikliigline yanit olarak c¢ikis biiylkligiini
arttirarak bir periyot iizerindeki aktivitenin bir gostergesini verir. Tiimlestirme islemi,
dogrultulmus sinyal iizerinden islem yapilmasini gerektirdigi i¢in, dogrultulmus sinyal
degeri her zaman pozitif deger alir. Dogrultulmus deger her zaman pozitif oldugu igin,
dogrultulmus sinyalin tiimlestirilmis degeri (integrated rectified value) de daima pozitif
de olur ve zamanin bir fonksiyonu olarak siirekli artarak devam eder. Dogrultulmus
sinyalin ortalama (average rectified value) ile dogrultulmus sinyalin tiimlestirme degeri
arasindaki tek fark ortalama alinirken dogrultulmus sinyal degerinin ortalamanin iizerinde
olan bir T zamanina boliinmesidir (Basmajian ve dig., 1985). Dogrultulmus sinyalin
ortalama degeri, tipki dogrultulmus sinyalin tiimlesik degeri gibi sinyalin zaman bagimli
degisikliklerini gosterir ve bu sayede, sinyal siniflandirma uygulamalar: i¢in oldukca

yararl bilgiler saglamaktadir. Bu islem;

t+T

I{m@©)} = j Im(©)|dt 3.7)

t

denklemi ile elde edilir. Eger yeterince uzun bir tiimlestirme siiresi (T) segilirse,
dogrultulmus tiimlestirme degeri sinyalin ya da bir zaman fonksiyonunun zamanla

degisimini yumusak bir degisim ile ifade edecektir.

3.5.3.5. EMG Sinyalinin Normalizasyonu

EMG sinyallerinin analizi yapilirken karsilagilan en biiylik zorluklardan biri, sinyal
genliginin ortam kosullarindan biiyiik 6l¢iide etkilenmesidir (Halaki ve Ginn, 2012). Bu
sorunu ortadan kaldirmak i¢in, bir referans degerine gore sinyale normallestirme islemi
uygulanmalidir. Normallestirme, sinyalin, bilinen ve tekrarlanabilir bir degere bagl
Olgeklendirilmesi anlamina gelir (Halaki ve Ginn, 2012). EMG sinyalleri kullanilarak
yapilan deneysel caligmalarda, elde edilen EMG sinyalini, kendi maksimum istemli

kasilmas1 (MVC) sirasinda kaydedilen EMG referans degerine gore normalize etmek en
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yaygin yontemlerden biridir. EMG sinyallerinin normallestirilmesi, genellikle, bir gérev
sirasinda, EMG sinyallerinin aym1 kastan elde edilen bu MVC referans degerine
boliinmesiyle gerceklestirilir. Normallestime islemi icin kullanilan normalizasyon
referans degerlerini elde etmek icin ¢esitli yontemler kullanilmigtir (Burden, 2010). Bu

yontemler;

1. Maksimum kasilmalar sirasinda maksimum (tepe) aktivasyon seviyeleri

2. Arastirilan gorev sirasinda elde edilen tepe veya ortalama aktivasyon seviyeleri
3. En alt maksimum izometrik kasilmalar sirasinda aktivasyon seviyeleri

4. Maksimum M dalgasinin (M-max) tepe-tepe (peak to peak) genlik degerinin
hesaplanmasidir (Halaki ve Ginn, 2012).

Normalizasyon yonteminin se¢imi, EMG sinyallerinin genligini ve seklini etkileyecegi
icin EMG sinyallerinin yorumlanmasi agisindan ¢ok kritik bir konudur. EMG verilerinin
normallestirilmesi i¢in kullanilan yontemler arasinda hangisinin "en iyi" yontem oldugu
konusunda ortak bir goriis bulunmamaktadir (Halaki ve Ginn, 2012; Farina ve dig., 2014).
EMG sinyali normalizasyonun temel amaci, ortam kosullarinin etkisini ortadan kaldirmak
ve verileri, sinyal genliginin secilen referans degerine gore yeniden dlgeklendirmektir.
Genlik normalizasyonunun EMG egrilerinin seklini degistirmedigi, yalmizca Y ekseni

6l¢eklemesinin degistigi unutulmamalidir.

3.5.3.6. Pencereleme

Bir sinyal i¢in pencereleme (windowing) islemi, sinyalin zaman araligmnin, sinyal
genligine ait diizglin ve kenarlarda kademeli olarak sifira dogru degisen sonlu uzunlukta
bir yumusatma penceresi ile carpilmasidir. Pencere uzunlugu ise sinyalin drnekleme

sayisi ile tanimlanir. Pencereleme islemi, sinyalin zaman alanindaki sekli degistirir.

El pozisyonu deneylerinde, bes saniye araliklarla EMG sinyalleri dl¢iilmiistiir. Bes
saniyelik bir sinyalin tamaminin tek bir seferde gii¢ izgesini hesaplamak sinyalin saglikli
karakterize edilmesini engelleyecektir. Bu sebeple kaydedilen EMG sinyalleri, 500 ms

uzunlugunda bir pencere taranmis ve bu pencerenin taradigi veriler kullanilarak
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hesaplama yapilmistir. Pencere sinyal {izerinde 25 ms’ lik araliklarla kaydirilarak

ilerletilmistir.

Kayma Yonii
0.04

0.02

Genlik (mV)

Zaman (s)

Sekil 3.15: Kayan pencerelerle EMG sinyalinin gii¢ izgelerinin elde edilmesi.

3.5.4. EMG Sinyalinin Ozniteliklerinin Cikarilmasi

Bir kasin ya da kas grubunun kasilmasi sirasinda elde edilen EMG sinyallerinin bir
hareket hareketi smifina donistiiriilebilmesi i¢in nicel olarak ifade edilmesi
gerekmektedir (Zecca ve dig., 2002). EMG sinyallerinin matematiksel ifadesi, 6znitelik
cikarma yaklagimi kullanilarak tanimlanabilir. Bir EMG sinyali 06zniteligi, zaman ve
frekans alanlar1 olmak {izere iki alanda ifade edilir. Bu ¢alismada EMG sinyali sadece
zaman alaninda incelenmistir. Bir sonraki boliimde EMG sinyallerinin zaman alanindaki

Oznitelikleri anlatilmistir.

Verilerin analizi MATLAB (The MathWorks, Inc.) programi ile yapilmistir Oznitelik

cikarma ve smiflandirma islemleri i¢in de yine MATLAB programi kullanilmistir.
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3.5.4.1. Ortalama Karesel Kok

Ortalama karesel kok (RMS) hesaplamasi, EMG sinyalinin analizinde kullanilan en
yaygin yontemlerden biridir (Boostani ve Moradi, 2003; Phinyomark ve dig., 2012). RMS
Ozniteligi, genellikle verilerin herhangi bir 6n isleme tabi tutulmadan, sinyalin ikinci
dereceden ortalamasi alinarak elde edilir (Farina ve Merletti, 2000). RMS, MAV
Ozniteligine bir alternatiftir ve standart sapma yontemine (standart deviation method)
benzerdir (Phinyomark ve dig., 2012). Bir sinyalin RMS degeri hesaplanirken sirasiyla
asagida belirtilen islemler yapilir:

e Sinyalin bir periyot boyunca belirli 6rnekleme zamaniyla genlik degerleri alinir.
e Elde edilen bu degerlerin kareleri alinip toplanir.

e Bu toplam, belirlenen 6rnek sayisina boliiniir.

e Hesaplanan boliimiin karekok degeri alinir ve RMS degeri elde edilmis olur.

RMS 6zelliginin hesaplanmasi asagidaki sekilde ifade edilir:

RMS = (3.8)

Xk ornek sinyali, N ise her segmentte bulunan 6rnek sayisini ifade etmektedir.

3.5.4.2. Tiimlesik EMG

Timlesik EMG (IEMG), dogrultulmus EMG sinyali egrisinin altinda kalan alan olarak
tanimlanmaktadir. Bir baska ifadeyle, EMG sinyalinin mutlak degerinin matematiksel
integralidir (Phinyomark ve dig., 2009). IEMG, sinyali sabit genislikli zaman araliklarina
boler ve her zaman araliginin baslangicinda integral degerini sifirlar. IEMG, EMG sinyali
genliginin mutlak degerlerinin toplaminin hesaplanmasiyla elde edilen 6zniteliktir. IEMG

0zelliginin hesaplanmasi su sekilde tanimlanmistir:

N
[EMG = lekl (3.9)
k=1
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Burada Xk bir boliimdeki EMG sinyali ve sinyalin uzunlugu N'dir.

3.5.4.3. Dalga Formu Uzunlugu

Dalga Formu Uzunlugu (WL), bir segmentteki EMG dalga formunun kiimiilatif
uzunlugunun hesaplanmasidir. Aktif kaslardan alinan sinyallerin dalgalanmalarina
baglidir. WL 6zniteligi, EMG sinyalinin frekans, zaman ve dalga genliginin 6l¢iilmesini
saglar (Kamavuako ve dig., 2013; Phinyomark ve dig. 2010). EMG dalga formu uzunlugu

su sekilde tanimlanir:

N-1
WL = Z|xk+1 — x (3.10)
k=1

Burada xk bir bolimdeki EMG sinyali ve sinyalin uzunlugu N'dir.

3.5.4.4. Ortalama Mutlak Deger

Ortalama mutlak deger (MAYV), hareketli bir pencere kullanarak EMG sinyalinin mutlak
degerinin ortalamasi alinarak hesaplanir (Phinyomark ve dig., 2011). MAYV 06zniteligi, her
veri penceresi i¢in ayri hesaplanir. Bir sinyalin ortalama degeri, sinyalin kendisi ile
zaman ekseni arasinda kalan alani ifade eder. EMG sinyalinin (S) ortalama mutlak

degerinin hesaplanmasi su sekilde tanimlanir:

1 N
MAV = —lekl (3.12)
N
k=1
Burada xk pencere igindeki k’ninci 6rnegi ve N, EMG sinyalinin pencere uzunlugunu
temsil eder (Phinyomark ve dig., 2011; Zecca ve dig., 2002).
Denkleme gore, MAV 06zelliginin hesaplanmasi iki adimdan olugur:
e Ik olarak, her penceredeki verilerin mutlak degeri hesaplanir.

e Daha sonra elde edilen bu degerler toplanir ve bu toplam, alinan 6rnek sayisina

(pencere uzunluguna) béliinerek ortalamasi hesaplanir.
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3.5.4.5. Varyans Degeri

EMG sinyalinin varyansi (VAR), EMG sinyalinin giiciiniin bir 6lgiisii olarak ifade
edilmektedir. VAR o6zelligi kas tarafindan tretilen kuvvete bagli olarak o Ol¢limiin
kareleri toplaminin ortalama degeridir (Zecca ve dig., 2002; Phinyomark ve dig., 2012).

EMG sinyalinin varyans degeri asagidaki gibi tanimlanmustir:

N
1
— 2 3.12
VAR = N1 kilxk (3.12)

Burada Xk bir boliimdeki EMG sinyali ve sinyalin uzunlugu N'dir.

3.5.4.6. Mutlak Standart Sapma Degerinin Farki
Mutlak standart sapma degerinin farki (DASDV), bitisik ornekler arasindaki farkin
standart sapma mutlak degeridir. RMS 6zniteliginin birinci dereceden diferansiyel degeri

alinarak hesaplanir (Phinyomark ve dig., 2014) ve asagidaki sekilde tanimlanir:

N-1
1
RMS = N1 kzl(xkﬂ — xp)? (313)

Burada x bir boliimdeki EMG sinyali ve sinyalin uzunlugu N'dir.

3.5.4.7. Mutlak Ortalama Degerinin Farki
Daha once yapilan bir¢ok ¢aligmada fark mutlak ortalama degeri DAMV' ye "ortalama
genlik degisimi" adi1 verilmistir (Phinyomark ve dig., 2014). Mutlak ortalama degerinin

farki, asagidaki denklem kullanilarak her veri penceresi i¢in hesaplanir.

N-1

1

DAMY = ——— kZ|xk+1 — x, (3.14)
=1

Burada xk bir pencerede bulunan k’ ninci 6rnegi ve N, bir zaman ¢ergevesi i¢inde bulunan

ornek sayisini temsil eder (Phinyomark ve dig., 2014).
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3.5.4.8. Varyans Degerinin Farki
EMG sinyalinin varyans degerini hesaplamaya yarayan denklemin birinci dereceden
tiirevinin alinmasiyla elde edilir (Phinyomark ve dig., 2014). Varyans degerinin farki

(DVARYV), asagidaki denklem kullanilarak hesaplanir.

N-1

1
DVARV = m kz_l(xk+1 - xk)z (315)

Burada Xk bir pencerede bulunan k’ninc1 6rnegi ve N, bir zaman ¢ergevesi i¢inde bulunan

ornek sayisini temsil eder (Phinyomark ve dig., 2014).

3.6. OZNITELIK SINIFLANDIRMA VE ORUNTU TANIMA

Hareket veya uygulanan kuvvet oriintiilerini belirlemek i¢in zaman veya frekans alani
Ozniteliklerinin siniflandirilmasi gerekir (Oskoei ve Hu, 2007). Protez kollarin hareket
yetenegi, siniflandirma dogruluguna bagl olarak segilen siniflandiricinin siniflandirma
performansiyla yakin iligkilidir ve insan kaslarinin temel néromiiskiiler aktivitesini
yansitir. Miyoelektrik sinyallerine uygulanan oriintii tanima isleminin asil amaci, her
kuvvet veya hareket sinifinin, ¢ikarilan 6znitelik kiimesiyle temsil edilen kas aktivasyonu

kullanilarak tanimlanmasidir (Farina ve dig., 2014).

Secilen smiflandirici, ayrilan gorevleri deneme yanilma yaklasimi ile siniflandirir ve
bdylece kas aktivasyonu, Oznitelikler ve gercek diinya gorevleri arasinda bir baglanti
kurulmasini saglar. Bu nedenle, 6riintii tanima islemi i¢in uygun siniflandiricinin se¢imi,
dogru oOriintiilerin tanimlamasi ve yeterince hizli bir sekilde gerceklestirilmesi 6nemli bir
konudur. Siniflandiricilarin optimal performansinin belirlenmesi ve boylece en uygun
olaninin se¢ilmesini saglamak amaciyla yapilmis ¢ok sayida literatiir 6rnegi vardir. En
sik kullanilan siniflandiricilara 6rnek olarak; yapay sinir aglari, bulanik mantik, destek
vektor makineleri, kiimeleme ve dogrusal diskriminant analizi yontemleri verilebilir. Bu
tez ¢alismasinda her iki deney protokolii i¢in siniflandirma yontemi olarak yapay sinir
aglar1 kullanilmistir. Bu bolimde, miyoelektrik kontrollii protezlerin kontroliinde
kullanmak amaciyla kullanilan siniflandiricilarda YSA temel yapisi ve uygulamalar

anlatilmistir.
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3.6.1. YAPAY SINIR AGI MODELI

Yapay sinir aglari, insan beyninin biyolojik yapisindan esinlenen, dgrenme islevini
gerceklestiren ve genellikle "sinirsel aglar" olarak adlandirilan bilgisayar sistemleridir
(Haykin, 1999). Yapay sinir aglarinda 6grenme islemi Ornekler kullanilarak
gerceklestirilir. Insan beyninde, sinir aglar1 karar verme siirecinin merkezinde yer alir.
Reseptorler, harici ortamdan uyaranlari alir ve onlari sinir aglarina iletmek icin elektriksel
uyarilara doniistiiriirler. Sonra, sinir aglar1 bilgi algilar ve karar verirler. Sonunda, karar
impulslart ¢ikt1 olarak tepki haline doniistiirmek icin efektorlerle iletilir. Girisler ve
cikislar arasinda dogrusal veya dogrusal olmayan bir iligki kurularak karar verilir. Yapay
sinir aglar1 da biyolojik olarak gerceklesen bu olaylara benzer sekilde bir sisteme sahiptir

(Haykin, 1999). Yapay sinir aglari;
e bulunduklar: her ortama adapte olabilen,
o cksik bilgi ile ¢alisabilen,
o belirsiz durumlarda bile karar verebilen,
e hatalara kars1 yliksek toleransl

e giinliik hayatta birgok alanina basarili bir sekilde uygulanabilen hesaplama

yontemidir.

YSA modellerinde genellikle giris, gizli ve ¢ikis katmanlari olmak {izere 3 tip katman
bulunur. Girig katmani, egitime tabi tutulacak verilerin ag yapisina aktarildigi katmandir
ve veri sayist giris katmanindaki néron sayisina esit olmalidir. Giris katmaninda veri
herhangi bir isleme ugramadan gizli katmana gecer. Gizli katman; agda yapilmasi istenen
temel iglevlerin icra edildigi katmandir. Uygulamalarda, ag yapisinda tek bir gizli katman
kullanilabilecegi gibi birden fazla gizli katman da kullanilabilir. Gizli katman sayis1 ve
kullanilacak noron sayist probleme ve ag tasarimcisinin bakis acisina gore degisir.
Genellikle deneme yanilma yoluyla bu sayilara karar verilir (Savelberg ve Herzog, 1997).
Gizli katmanin gorevi, girig katmanindan aldig1 veriyi probleme uygun bir sekilde isleyip
bir sonraki katmana iletmektir. Gizli katmanda kullanilan ndron sayisi en uygun olacak
sekilde secilmelidir. Noron sayisinin fazla ya da az olmasi durumunda YSA’nda

egitilecek verilerin islenmesinde zorluklar ortaya ¢ikmaktadir. Ag yapisinin son katmani
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olan ¢ikis katmani, gizli katmandan aldig1 veriyi isleyerek bu verinin ¢iktisini verir. Cikis
katmaninin noron sayisi, aga verilen her bir verinin ¢ikis sayist kadardir. Cikis

katmanindan elde edilen degerler, yapay sinir aglariin egitim sonuglaridir.

Cok katmanli yapay sinir aglar iginde de insan beynine benzer sekilde yerlestirilmis
noronlar bulunmaktadir. Her néron diger ndronlara belli katsayilar ile baglantilidir.
Egitim sirasinda bilgi bu baglanti noktalarina dagitilarak agin 6grenilmesi saglanir. YSA
modellerinde genellikle giris, gizli ve ¢ikis katmanlari olmak {izere {ig tip katman bulunur.
Bu calismada, bir giris katmanu, iki gizli katman ve bir ¢ikt1 katmani iceren bir YSA yapisi
kullanilmistir (Sekil 3.16). Ug katmanli ag adi verilen bu sinir agmin, herhangi bir
karmasikligin problemlerini modellemek i¢in yeterli oldugu gosterilmistir (Carotti ve

dig., 2007).

YSA kullanarak yiizey EMG o6zniteliklerinin smiflandirilmasi, insan kol protezinin
kontrolii ile ilgili yapilan bilimsel ¢aligmalar i¢in olduk¢a popiiler bir konudur. EMG

sinyallerinin oriintli tanmima siirecinde kullanilan YSA'min temel yapisi Sekil 1'de

gosterilmektedir.
f f Pozisyon
EMG Sinyali '@ {} p @/
Oznitelikleri | ‘
b - % . \ Kuvvet
-] o y ] C|k|$
o o o Katmani

Girig Gizli Gizli
Katmani Katman Katman

Sekil 3.16: Kuvvet ve pozisyon kestiriminde kullanilan yapay sinir ag1 yapisi sematik gosterimi.
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Bir yapay sinir agi, birbirine bagli ve katmanlar halinde dagitilan "néronlar" olarak
adlandirilan bir islem birimleri grubudur (Liu ve dig., 1999). Noéronlar Sekil 16’ da daire

ile gosterilirken, diiz ¢izgiler "ndronlar1" agirlik faktdrlerine baglar.

Insan kolunun temel hareketlerinin ve bu hareketler sirasinda olusan kas kuvvetlerinin
kestirimini gerceklestirebilmek i¢in YSA, EMG sinyalinin Ortiisen (overlapping)
pencerelerinin pozisyon ve kuvvet degerleri ile egitilmistir. Sinir agiin ¢ikisinda kuvvet
degerleri ve hareket pozisyonlar: elde edilmektedir. Olusturulacak olan yapay sinir ag1
yapisinin belirlenmesinde, ag parametrelerinin, néron sayilarinin se¢iminde, belirli bir
standardin olmamasi nedeniyle ag yapisi ve néron sayist literatiirde kullanilan yapilarin
deneme yanilma yoluyla test edilmesiyle olusturulmustur. Her iki protokol i¢in farkli bir
YSA yapist kullanilmistir. Her protokol icin, deneyde 6l¢iim alinan iki kas ayn1 YSA
yapisi ile fakat ayri ayr1 egitilmistir. Pozisyon kestirimi i¢in kullanilan sinir aginda giris
katmaninda, (10 goniilliiniin 5 hareketinin 3 tekrariyla elde edilen) 149 ( (10x5x3) -1)
noéron bulunmaktadir. YSA yapisindaki birinci katman 30, ikinci katman 30 ve ¢ikis
katman ise 1 noronludur. Kuvvet kestirimi i¢in kullanilan YSA yapisinda ise Qiris
katmanindaki ndron sayisi, 10 goniilliiden 3 deneme ile elde edilen veri sayisina esittir
((10 x3) -1)). YSA yapisindaki birinci katman 10, ikinci katman 10 ve ¢ikis katman ise 1
noronludur. Her iki ag yapisinda da birinci ve ikinci katmanlardaki néron sayisi,
literatiirde yapilan c¢alismalarda Onerildigi gibi giris katmanindaki ndron sayisinin
yaklagik olarak ligte birine esit olacak sekilde se¢ilmistir. Bu konuda kesin bir bilgi
olmamas1 sebebiyle bu katmanlar i¢in farkli sayida ndéron degerleri denenmis fakat
performans degeri en yiliksek olan yukaridaki degerler alinmistir. Cok fazla deneme
yapilip farkli dogrulukta sonuglar elde edildigi i¢in, “Bulgular” ve “Tartisma ve Sonug”

boliimlerinde en yiiksek dogruluga sahip YSA sonuglar verilmistir.

Yapay sinir ag1 yapisinda kullanilacak egitim ve test verileri, mevcut durumun en uygun
egitim-test ciftlerine ulasilabilecek sekilde ayarlanmistir. Bunu gergeklestirmek ig¢in
farkli denemelerin verilerini igeren tiim siitunlar kullanilmistir. Ag yapisini egitmek ve
ayni ag tarafindan ongoriilen sonuglarin dogrulugunu test etmek i¢in, k katli capraz
dogrulama (k-fold cross-validation) tekniginin 6zel bir tiirii olan, bir-¢ikisli ¢apraz
dogrulama (Leave-one-out cross validation - LOOCV) yontemi uygulanmistir. Bu

yonteme gore ag, yalnizca bir deneme haricinde tiim veriler kullanarak egitilir ve bu
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deneme icin tahmin (veya test) yapilir. Bu ¢alismada LOOCV yontemi, tiim denemeler
test ve egitimde kullanilana kadar tekrar edilmistir. Buna gore, ortalama hata her test

denemesinin tiim hatalarinin aritmetik ortalamasi alinarak hesaplanmaistir.

Cikis degeri, YSA’ nda tanimli zamana bagl bir fonksiyon olan geri yayiliml ileri
beslemeli (backpropagation feed-forward) egitim algoritmasi kullanilarak elde edilmistir
(Cilimkovic, 2015). Geri yayilim algoritmasi, ¢ok katmanli YSA’lardaki agirliklarin
(weights) egitilmesi i¢in kullanilan en yaygin 6gretme algoritmasidir. Oldukga basit ve
kolay anlasilir bir 6gretme algoritmasidir. Bu 6grenme algoritmasi; hatalar1 ¢ikistan
girise geriye dogru azaltma prensibiyle c¢alisti§i i¢cin geri yayillim ifadesiyle
isimlendirilmistir. Geri yayilim algoritmasi, verilen bir giris riintiileri kiimesi i¢in, bir
ileri beslemeli cok katmanli YSA yapisimi egitir. Ornek setin her bir girisi aga verildigi
zaman, ag ornek giris Ortintiistine karsilik gelen ¢ikis yanitini inceler. Cikig yaniti, bilinen
ve hedeflenen ¢ikis degeri le karsilagtirilir ve hata degeri hesaplanir. Hata temel alinarak
baglant1 agirliklar1 ayarlanir. Geri yayilim algoritmasi, 6rnek girise karsilik gelen ¢ikis
degerinin hata oraninin karesinin ortalamasi alinarak agirlik ayarlama hesabi yapan
Widrow-Hoff delta 6grenme kuralina dayanir. Bu 6rnek oriintiiler kiimesi, hata degeri en

alt diizeye indirilinceye kadar tekrar tekrar aga sunulur.

Transfer fonksiyonu bir katmanin giris degerlerinden ¢ikis degerini hesaplamak icin
kullanilan fonksiyonlardir. Bir néronun ¢ikis degerini hesaplamak icin kullanilir. Bu
calismada log-sigmoid (LOGSIG) transfer fonksiyonu kullanilmistir. Bu transfer
fonksiyonu, art1 ve eksi sonsuz arasinda herhangi bir degere sahip giris degeri alir ve 0
ile 1 araliginda bir ¢ikig verir. Log-sigmoid fonksiyonu, tiirevlenebilir bir fonksiyon
oldugu i¢in geri yayilim algoritmasi kullanilarak egitilmis ¢ok tabakali aglarda yaygin
olarak kullanilir (Harrington, 1993). Sekil 3.17°de gosterilen Logsig fonksiyonu,

(3.16)

a = Logsig(n) = T

denklemiyle hesaplanir, denklemde n noron sayisin1 gostermektedir.
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Sekil 3.17: Log-sigmoid fonksiyonu.

Logsig transfer fonksiyonu sekil 3.17” de gosterilmistir.
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4. BULGULAR

41. POZISYON KESTIRIMINE AIT DENEYSEL VERILERIN
DEGERLENDIRILMES]

EMG sinyalinin islenmesinde ve degerlendirilmesinde kullanilan 6znitelikler yapay sinir

aglar1 kullanilarak egitilmistir. Sonuglar her bir goniillii i¢in ayr1 ayr1 kaydedilmistir.

Hareketin gerceklesme basarist oransal tablolar halinde verilmistir. Dinlenme hali i¢in

yapay sinir aglarindan elde edilen egitim sonuglar1 Tablo 4.1° de verildigi tizeredir.

Tablo 4.1: Dinlenme hali igin yapay sinir aglarindaki egitim sonuglart.

RMS IEMG WL VAR MAV DASDV DMAV DVARV
Gonulla 1 6/6 6/6 6/6 6/6 6/6 6/6 3/6 3/6
Gonulla 2 6/6 6/6 6/6 6/6 6/6 6/6 3/6 2/6
Gonulla 3 5/6 3/6 6/6 2/6 3/6 4/6 3/6 2/6
Gonulla 4 6/6 6/6 6/6 6/6 6/6 6/6 3/6 1/6
Gonulla 5 3/6 1/6 6/6 0/6 0/6 6/6 3/6 1/6
Gonulla 6 6/6 6/6 5/6 6/6 6/6 5/6 3/6 3/6
Gonulla 7 6/6 6/6 6/6 6/6 6/6 6/6 3/6 2/6
Gonulla 8 6/6 6/6 6/6 6/6 6/6 6/6 3/6 2/6
Gonulla 9 6/6 6/6 6/6 6/6 6/6 6/6 3/6 2/6
Gondllu 10 3/6 2/6 6/6 0/6 0/6 6/6 3/6 3/6

*Dogru yapilan hareket sayisi/Toplam hareket sayisi

Tablo 4.2: Fleksiyon hareketi i¢in yapay sinir aglarindaki egitim sonuglari.

RMS  IEMG WL VAR MAV DASDV DMAV DVARV
Gonulla 1 4/6 3/6 6/6 2/6 4/6 6/6 3/6 5/6
Gonulla 2 4/6 4/6 6/6 2/6 2/6 4/6 3/6 6/6
Gonulla 3 4/6 2/6 6/6 0/6 6/6 5/6 3/6 2/6
Gonulla 4 0/6 0/6 5/6 1/6 0/6 4/6 3/6 6/6
Gonulla 5 5/6 5/6 6/6 6/6 5/6 6/6 3/6 6/6
Gonalla 6 1/6 2/6 6/6 0/6 1/6 6/6 3/6 2/6
Gonulla 7 6/6 3/6 6/6 0/6 6/6 6/6 4/6 3/6
Gonulla 8 0/6 0/6 6/6 0/6 1/6 5/6 3/6 4/6
Gonulla 9 5/6 5/6 6/6 5/6 3/6 4/6 3/6 5/6
Gondlli 10 2/6 0/6 6/6 0/6 1/6 6/6 3/6 2/6

*Dogru yapilan hareket sayisi/Toplam hareket sayisi
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Fleksiyon hareketi i¢in yapay sinir aglarindan elde edilen egitim sonuglar1 Tablo 4.2” de

verilmistir.

Ekstansiyon hareketi i¢in yapay sinir aglarindan elde edilen egitim sonuglar1 Tablo 4.3’

te sunulmustur.

Tablo 4.3: Ekstansiyon hareketi i¢in yapay sinir aglarindaki egitim sonuglart.

RMS  IEMG WL VAR MAV DASDV DMAV DVARV
Gonulla 1 5/6 2/6 6/6 5/6 4/6 5/6 6/6 3/6
Gonulla 2 4/6 4/6 6/6 4/6 5/6 6/6 4/6 6/6
Gonulla 3 5/6 6/6 6/6 5/6 5/6 6/6 3/6 4/6
Gonulla 4 6/6 4/6 6/6 2/6 5/6 6/6 6/6 2/6
Gonulla 5 4/6 4/6 6/6 3/6 5/6 6/6 6/6 1/6
Gonulla 6 5/6 5/6 6/6 5/6 4/6 5/6 6/6 2/6
Gonulla 7 5/6 5/6 6/6 6/6 6/6 6/6 4/6 3/6
Gonulla 8 4/6 4/6 6/6 4/6 4/6 6/6 3/6 5/6
Gonulla 9 4/6 4/6 6/6 4/6 3/6 6/6 5/6 5/6
Gondlli 10  6/6 6/6 6/6 4/6 5/6 6/6 5/6 5/6

*Dogru yapilan hareket sayisi/Toplam hareket sayisi

I¢ rotasyon hareketi i¢in yapay sinir aglarindan elde edilen egitim sonuglar1 Tablo 4.4’te

verildigi tizeredir.

Tablo 4.4: ig rotasyon hareketi i¢in yapay sinir aglarindaki egitim sonuglari.

RMS IEMG WL VAR MAV DASDV  DMAV  DVARV
Gonulla 1 5/6 4/6 6/6 4/6 5/6 6/6 3/6 4/6
Gonulla 2 5/6 4/6 6/6 2/6 2/6 6/6 3/6 2/6
Gonulla 3 4/6 6/6 6/6 4/6 5/6 5/6 4/6 4/6
Gonulla 4 2/6 1/6 6/6 0/6 0/6 3/6 3/6 0/6
Gonulla 5 4/6 6/6 5/6 6/6 6/6 4/6 3/6 5/6
Gonalla 6 5/6 6/6 6/6 4/6 6/6 5/6 0/6 4/6
Gonulla 7 6/6 5/6 6/6 5/6 4/6 6/6 3/6 1/6
Gonulla 8 4/6 3/6 5/6 2/6 4/6 6/6 3/6 1/6
Gonulla 9 0/6 0/6 3/6 0/6 0/6 1/6 3/6 0/6
Gonulla 10 3/6 2/6 6/6 2/6 5/6 5/6 3/6 3/6

*Dogru yapilan hareket sayisi/Toplam hareket sayisi
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Dis rotasyon hareketi i¢in yapay sinir aglarindan elde edilen egitim sonuglar1 Tablo 4.5

te verilmistir.

Tablo 4.5: D1s rotasyon hareketi i¢in yapay sinir aglarindaki egitim sonuglart.

RMS IEMG WL VAR MAV DASDV  DMAV DVARV
Gonulla 1 1/6 0/6 6/6 0/6 3/6 5/6 3/6 0/6
Gonulla 2 6/6 6/6 6/6 5/6 6/6 6/6 4/6 3/6
Gonulla 3 6/6 3/6 6/6 5/6 4/6 6/6 4/6 6/6
Gonullu 4 2/6 3/6 6/6 1/6 4/6 6/6 3/6 4/6
Gonulla 5 6/6 5/6 6/6 4/6 5/6 6/6 4/6 4/6
Gonulla 6 0/6 0/6 6/6 0/6 3/6 5/6 3/6 0/6
Gonulla 7 1/6 1/6 6/6 0/6 4/6 6/6 3/6 0/6
Gonulla 8 3/6 3/6 6/6 2/6 5/6 6/6 4/6 3/6
Gonulla 9 2/6 3/6 6/6 2/6 4/6 5/6 3/6 2/6
Gonulla 10 2/6 3/6 5/6 4/6 5/6 5/6 4/6 3/6

*Dogru yapilan hareket sayisi/Toplam hareket sayisi

Ozniteliklerin her bir hareket i¢in basarisinin degerlendirilmesinin yaninda, dzniteliklerin

toplam basarisinin degerlendirilmesi i¢in ortalamalar alinmistir. Elde edilen toplam basari

sonuglari oransal olarak Tablo 4.6” da ve yiizdelik olarak Tablo 4.7 de verilmistir.

Tablo 4.6: Pozisyon kestirimine ait yapay sinir aglarindaki egitim sonuglarinin basari oranlart.

RMS IEMG WL VAR MAV DASDV  DMAV DVARV

Gonulla 1 21/30 15/30 30/30 15/30 22/30 28/30 18/30  15/30
Gonulla 2 25/30 24/30 30/30 19/30 21/30 28/30 17/30 17/30
Gonulla 3 24/30 20/30 30/30 16/30 23/30 26/30 17/30  18/30
Gonullu 4 16/30 14/30 29/30 10/30 15/30 25/30 18/30  13/30
Gonulla 5 18/30 21/30 29/30 19/30 21/30 28/30 19/30 17/30
Gonulla 6 17/30 19/30 29/30 15/30 20/30 27/30 15/30 11/30
Gonulla 7 18/30 20/30 30/30 17/30 26/30 30/30 17/30 9/30

Gonulla 8 11/30 16/30 29/30 14/30 20/30 29/30 16/30  15/30
Gonulla 9 16/30 18/30 27/30 17/30 16/30 22/30 17/30  14/30
Gondllu 10 16/30 13/30 29/30 10/30 16/30 28/30 18/30  16/30
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Tablo 4.7:Pozisyon kestirimine ait yapay sinir aglarindaki egitim sonuglarinin basar yiizdeleri.

RMS IEMG WL VAR MAV DASDV  DMAV  DVARV

Gonulla 1 0.7 0.5 1 0.5 0.73 0.93 0.6 0.5
Gonulla 2 0.83 0.8 1 0.63 0.7 0.93 0.57 0.57
Gonulla 3 0.8 0.67 1 0.53 0.77 0.87 0.57 0.6
Gonulla 4 0.53 0.47 1 0.33 0.5 0.83 0.6 0.43
Gonulla 5 0.6 0.7 0.97 0.63 0.7 0.93 0.63 0.57
Gonulla 6 0.57 0.63 0.97 0.5 0.67 0.9 0.5 0.37
Gonulla 7 0.6 0.67 1 0.57 0.87 1 0.57 0.3
Gonulla 8 0.37 0.53 0.97 0.47 0.67 0.97 0.53 0.5
Gonulla 9 0.53 0.6 0.9 0.57 0.53 0.73 0.57 0.47
Gondlla 10 0.53 0.43 0.97 0.33 0.53 0.93 0.6 0.53
ORTALAMA  0.606 0.6 0.978 0.506 0.667 0.902 0.574 0.484

STANDART 0.138 0.116 0.031 0.107 0.118 0.077 0.037  0.095
SAPMA
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50

[

5 ] - 1
= [ ~ ]
= r 1
o @ -
= r L L
w2 - -
% — — 1
5’ 007 003 f loog
= 09
o=
- 012
G 2.4 012
E Q.11 -
= 0.61 : 0.04
2 04 057 0.09
= 051 s
¥
s
=
s

v RMS IEMG WL VAR MAV DASDV __ DMAV ___ DVARV

Sekil 4.2: Pozisyon tahminine ait ortalama ve standart sapma degerleri — II.

Ozniteliklerin yapay sinir aglar1 kullanilarak verdikleri basar1 oranlarimi birbirine gore
degerlendirmek icin One-way ANOVA kullanildi. Her bir 6znitelik i¢in ortalama basari
degerleri ve standart sapma degerleri (SS) hesaplandi. Istatistiksel olarak anlamli olan
Oznitelikler * isareti ile belirtildi (p < 0.05). Elde edilen sonuglar Sekil 4.1 ve Sekil 4.2°

de verilmistir.

42. KUVVET  KESTIRIMINE AIT DENEYSEL  VERILERIN
DEGERLENDIRILMES]

EMG sinyalinin bir¢ok parametrenin etkisiyle olusmasi nedeniyle EMG sinyali ile kuvvet

arasindaki iliskinin dogrulukla tespiti oldukga giictiir. Uygun kayit teknikleri ve gerekli

filtrelerin kullanimiyla olumsuz etki yaratan faktorler kontrol edilebilmektedir.
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Tablo 4.8: Kuvvet kestirimine ait yapay sinir aglarindaki egitim sonug¢larinin basari yiizdeleri.

RMS IEMG WL VAR MAV DASDV  DMAV DVARV

Goéniilli 1 0.78 0.6 0.71 0.51 0.7 0.9 0.78  0.47
Goniilli 2 0.81 0.53 0.6 0.4 0.73 0.91 053  0.53
Goniilli 3 0.87 0.65 0.74 0.57 0.75 0.89 0.8 0.61
Gonilli 4 0.71 0.58 0.57 0.3 0.67 0.88 072  0.34
Gonilli 5 0.73 0.69 0.78 0.5 0.71 0.92 088 0.6

Gonilli 6 0.77 0.6 0.61 0.53 0.68 0.93 0.7 0.55
Goniilli 7 0.64 0.5 0.6 0.51 0.6 0.87 057  0.59
Gonilli 8 0.61 0.47 0.67 0.4 0.52 0.85 053 0.6
Gonilli 9 0.79 0.62 0.59 0.43 0.5 0.83 057 0.5

Goénilli 10  0.72 0.4 0.65 0.47 0.57 0.89 0.6 0.58
ORTALAMA  0.74 0.56 0.65 0.46 0.64 0.89 067  0.52

STANDART 0.074 0.083 0.067 0.075 0.084 0.029 0.118 0.079
SAPMA

Kuvvet kestirimine ait sonuglar, dl¢iim sirasinda kaydedilen kuvvet degerinin yapay sinir
aglarinda egitim sonucu tahmin edilen kuvvet degerine oranlanmasiyla elde edilmis ve

bu degerler Tablo 4.8’ de gosterilmistir.
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5. TARTISMA VE SONUC

Bu tez calismasinda, yeni EMG 6znitelikleri kullanilarak EMG sinyali ile el pozisyonlari
ve kuvvet arasinda bir iliski kurulmustur. Caligmalarda yaygin olarak kullanilan
Oznitelikler ile bu 6zniteliklerin birinci dereceden diferansiyelleri alinarak elde edilmis
Oznitelikler tercih edilmistir. Elin farkli pozisyonlarda kasilmasi ve farkli kuvvet
uygulanmasi sonucu olusan EMG sinyallerini birbirinden ayirt etmek i¢in bu 6znitelikler
kullanilmustir. Iki farkli protokol kuralina gére EMG sinyalleri kaydedilip islem yapildig:
igin bu iki protokole ait iki farkli sonug elde edilmistir. EMG sinyallerinden elde edilen
Oznitelik vektorleri, yapay sinir aglarinda egitilerek, elin o anki pozisyonunun ve
uygulanan kuvvet degerinin belirlenmesi yiiksek oranda bir basari ile saglanmistir.
Mevcut ¢alismalardan farkli olarak bu ¢alismada, 6zniteliklerin hem normal formlar: hem
de diferansiyel alinmis formlar1 birlikte hesaplanmis boylece ¢ok sayida 6znitelik vektorii
kullanilarak siniflandirma yapilmistir. Bu bolimde ilk olarak el pozisyonlarinin
tahminine iliskin sonucglar degerlendirilmis ardindan kuvvet tahmini sonuglari

degerlendirilip yorumlanmustir.

Tablo 4.1° deki dinlenme durumu sonuglari dikkate alindiginda, elin farkli
pozisyonlarinda elde edilen sonuglara gore siniflandirma basaris1 daha yiiksektir. Bunun
sebebi, dinlenme durumunda herhangi bir kasilma olmadig: i¢in kas aktivasyonlarinin
degerlendirmede birbirine karismamasi1 sebebiyle yapay sinir aglarindaki egitim
basarisinin yliksek olmasidir. Dinlenme durumu, 6zniteliklerin siniflandirma performansi
olarak degerlendirilmek istendiginde ise en basarili sonucu WL ve DASDV &zniteliginin
verdigi goriilmiistiir. RMS 6zniteligi performansi ve bu 6zniteligin diferansiyeli alinarak
elde edilen DASDV 6zniteligi performansi karsilastirildiginda, DASDV 6zniteligine ait

performans degerinin daha yiiksek oldugu goriilmiistiir.

Tipkt dinlenme hali sonuglar gibi diger dort hareket (fleksiyon, ekstansiyon, i¢ rotasyon
ve dis rotasyon) sonuclarinda da en 1yi siniflandirma basarisina sahip 6znitelikler WL ve
DASDV o6znitelikleridir. DASDV 6zniteligi, en yiiksek performansi veren WL 6zniteligi
ile neredeyse ayni sonuglar1 vermistir (Tablo 4.2 - 4.3 -4.4 - 4.5).
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Elde edilen toplam basar1 sonuglar1 dikkate alindiginda en iyi sonucun WL ve DASDV
Ozniteliklerinden elde edildigi goriilmektedir (Tablo 4.6 ve Tablo 4.7). Bu sonuglar
dogrultusunda bu calisma, literatiirde yapilan benzer ¢aligmalar ile ortiismektedir. Elde
edilen bu performans degerleri neticesinde, el pozisyonu kestirimi i¢in yapilacak
caligmalarda bu iki O6zniteligin kullanilmas1 Onerilmektedir. Diger iki 6znitelik
vektoriiniin diferansiyel formlarmin basarisi yaygin olarak kullanilan 6zniteliklerin
basarisina gore literatiirde yapilan ¢aligmalarin sonucunun aksine daha diisilk sonug
vermistir. Gerek diferansiyel 6znitelik kullaniminin yeni bir uygulama olmasi gerek veri
setlerinin farkli Oriintiilerde olmasit bu sonuclarin elde edilmesine neden oldugu

diistiniilmektedir.

Kuvvet tahmini sonuglarina bakildiginda (Tablo 4.8) ise, en basarili 6znitelik DASDV ve
RMS?’ tir ve bu sonuglar, literatiirde yapilan 6nceki ¢alismalarla (Arslan ve dig., 2010;
Phinyomark ve dig., 2013) ortiismektedir. Diferansiyel alinarak elde edilen 6zniteliklerin
siniflandirma basarisi ise diger 6znitelik sonuclarina gore daha yiiksektir. Kuvvet tahmini
ile ilgili elde edilen bu sonuglar, bu ¢aligmanin savundugu teoremi destekler niteliktedir.
Kuvvet tahmini ile ilgili yapilacak siniflandirma ¢alismalarinda en yiiksek siniflandirma

basarisina sahip DASDV ve RMS 6zniteliklerinin kullanilmasi 6nerilmektedir.

Pozisyon ve kuvvet kestirimine ait bu basarili sonuglar ve kullanilan yeni 6znitelikler,
dirsek seviyesinde ampiitasyona ugramis uzva sahip insanlar i¢in tasarlanan protez kol
caligmalarina, kas yorgunlugu, kas zayiflig1 gibi miyopatik rahatsizliklarin tan1 ve tedavi
stireclerinin  kontrol edilmesine ve biyolojik sinyal isleme ¢alismalarma katk:

saglayacaktir.
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EKk 1. Terimler Sozliigii

Abdiiksiiyon: Kolu yandan omuz yiiksekligine kaldirma hareketi.

Adduksiyon: Yana kaldirilmis kolun asag indirilerek gévdeye yaklastirilmasi hareketi.
Ampute : Belirli bir uzvun kesilme hali

Antagonist: Karsit olarak hareket eden.

Atrofi: Bir kasin tek tek hiicre ve liflerinin ¢apinda, biiylikliigiinde azalma olmasi.
Bipolar: iki kutuplu olan.

Ekstansiyon: Uzatma hareketi.

Ekstremite: Insan viicudunda kol ve bacaklara verilen genel isim.

Epikondilus mediyalis: Kol kemiginde kemik ¢ikinti.

Fleksiyon: Biikme hareketi.

Fleksor digitorium superficialis: Kolda bulunan bir kas.

Frontal diizlem: Anatomide, yukaridan asagiya ve alna paralel bir sekilde gegerek viicudu
esit olmayan On ve arka boliimlere ayirdigi varsayilan diizlem.

Gastroknemius: Bacak arka kisminda bulunan bir kas.

Innerve etmek: Sinirlerin ileti vermesi veya almast.

Invaziv: Hastaya fiziksel bir zarar verme ihtimali olan.

Kontraksiyon: Kasilma hali.

Kortikal : D1s

Membran: Bir dokuyu saran ince tabaka.

Metakarpal: Metakarp kemiklerinin olusturdugu el taragi ile ilgili olan
Miyopatik: kas tutulumunu ifade etmek i¢in kullanilan terim.
Non-invaziv: Hastaya fiziksel bir zarar verme ihtimali olmayan. (her tiir girigim)
Noromiiskiiler: Sinir-kasla ilgili olan.

Noropatik: Sinirlerdeki hastaliklari ifade eden terim.

Postiirel: Viicudun durus sekli.
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Pranator: : El bilegini i¢eri dogru dondiiriicii kas.

Rotasyon: Dondiirme hareketi.

Sagital: Viicudu sag ve sol olmak iizere ikiye ayiran diizlem.
Sinerjit: Ayn1 anda kasilip gevseyen.

Supinator: El bilegini disarty dogru dondiiriicii kas.

Ulnar: Kolda bulunan ii¢ ana sinirden biri.
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ARASTIRMANIN AGIK ADI insan Elinin Pozisyon ve Kuvyetlerinin Kestirimi Amaciyla
EMG Sinyallerinin Simiflandirilmasi
VARSA ARASTIRMANIN PROTOKOL KODU
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Karar No: 67

Saymn;
Tolga ENSARI (Koordinatér)
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