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ABSTRACT

RECURSIVE SHORTEST SPANNING TREE
ALGORITHMS FOR IMAGE SEGMENTATION

YALGCIN BAYRAMOGLU, Neslihan
M.Sc., Department of Electrical and Electronics Engineering
Supervisor  : Asst. Prof. Dr. Ciineyt F. BAZLAMACCI

July 2005, 118 pages

Image segmentation has an important role in image processing because it
is a tool to obtain higher level object descriptions for further processing. In some
applications such as large image databases or video image sequence
segmentations, the speed of the segmentation algorithm may become a drawback
of the application. This thesis work is a study to improve the run-time
performance of a well-known segmentation algorithm, namely the Recursive
Shortest Spanning Tree (RSST). Both the original and the fast RSST found in the
literature are analyzed and a comparison is made between these techniques.
Simple modifications and an alternative link cost structure are proposed and

v



evaluated. Finally, a distributed implementation based on a simple image
partitioning strategy is attempted. The thesis presents the results of an extensive
computational study with respect to both run-time performance and image

segmentation quality.

Keywords: Recursive Shortest Spanning Tree, Graph Theory, Image
Segmentation.
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OZYINELEMELI EN KISA UZANIM AGAC
ALGORITMALARI iLE GORUNTU PARCALAMA

YALCIN BAYRAMOGLU, Neslihan
Yiiksek Lisans, Elektrik ve Elektronik Mithendisligi
Tez Yonetcisi  : Asst. Prof. Dr. Ciineyt F. BAZLAMACCI

Temmuz 2005, 118 sayfa

Goriintii pargalamanin  goriintii islemede 6nemli bir yeri vardir. Ciinkii
goriintli pargalama goriintiide bulunan nesleri baska islemlerde kullanmak iizere
daha st diizey nesne tammmlamasinda kullanilan bir yontemdir. Pargalama
yonteminin ¢alisma hiz1 biiyiik veritabanlar1 ya da video goriintii dizileri gibi
uygulamalarda kullamldifinda sorun olabilir. Bu tezde goriintii pargalamada
kaliteli sonuglar veren ve oldukga iyi bilinen Ozyinelemeli En Kisa Uzanim

Agac (RSST) algoritmas: ¢aligilmigtir. Literatiirde yer alan hem orjinal RSST
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hem de hizli RSST incelenmis ve bu teknikler kargilagtirnlmigtir. Basit
degisiklikler ve alternatif baginti fonksiyonu Onerilip degerlendirilmistir. Son
olarak basit bir gériintii b6lme stratejisine dayanan dagmik algoritma uygulamasi
denenmigtir. Bu tez, ¢alisma zamam performansmin ve pargalanmig resim

kalitesinin kapsamli 6l¢iim ¢aligmalarim sunmaktadir.

Anahtar Kelimeler: Ozyinelemeli en kisa uzamim agaci, RSST, ¢izge kurami

goriintii pargalama.
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CHAPTER 1

INTRODUCTION

Graph theory has an important application area in computer vision
problems and graph theory concepts, algorithms and results are widely used in
this field. It is becoming more and more popular to use graph theory in computer
vision problems because of its powerful representation capability and ease of use.
The importance and status of graph theory in vision problems are considered in
[1], which emphasizes the advantages of formulating computer vision problems
as graph problems and geometric methods. Graph theory allows vision problems
to be represented as pure and abstract structures in which strong accumulation
can be accessed. Computer science and operations research areas which
developed graph theory are good resources for vision problems. Due to the
geometric characteristics of the vision problems, graph theory is proven to be
relevant to this field. Algorithms coming from graph theory such as maximum
flow, minimum spanning tree, shortest path, maximal common subtree/subgraph,

etc. have applications in vision problems. A number of basic techniques that were



designed in the graph algorithms community have recently been applied to many

computer vision problems and one such problem is image segmentation [1].

Dividing an image into semantically meaningful several regions by
grouping pixels is called segmentation. The main objective in image
segmentation is to distinguish objects from the background. Segmentation has an
important role in image recognition. The segmentation part of the recognition
system gives the decision of the “objects” in the image for further processing,
which can be either further description or recognition. In short, segmentation

means classification of the pixels of the image to one of the image parts [2].

Graph theory has introduced several methods including normalized cuts,
minimum cuts, dominant set, minimum spanning trees, region adjacency graphs,
partition trees etc. for image segmentation. Morris et al. [4,5] applied graph
theory to image segmentation and edge detection. They applied shortest spanning
tree to partition the graph and to obtain a segmentation or edge detection
recursively. Recursion is used to obtain global information. The recursive shortest
spanning tree (RSST) was proven to be highly accurate to define regions [6].
Since it has applications in more complex settings such as video coding, the run-
time performance has a great importance. Hence, efficiency became a major
concern in later studies. For example, Kwok and Constantinides [7] proposed
Fast RSST (FRSST) algorithm. The algorithm is faster than the conventional
RSST but segmented images differ slightly. Kwok and Constantinides [8] also
proposed a parallel RSST algorithm. It is claimed that this parallel
implementation proposal is cost optimal such that the complexity of the RSST
algorithm is reduced from O(#’) to O(n) in the worst case where # is the total

number of vertices in the image graph [8].

This study aims to improve the run-time performance of the Recursive
Shortest Spanning Tree (RSST) algorithm. Both the original and the fast RSST

found in the literature are analyzed and a comparison is made between these

2



techniques. Simple modifications and an alternative link cost structure are
proposed and evaluated. Finally, a distributed implementation based on a simple
image partitioning strategy is attempted. The thesis presents the results of an
extensive computational study with respect to both run-time performance and

image segmentation quality.

The organization of the study is as follows: Chapter 2 describes the

problem, namely image segmentation and its relation to graph theory.

Chapter 3 is a summary of the graph theoretic approaches used in image
analysis. A literature survey, which concentrates mostly on image segmentation,

is presented.

In Chapter 4, Conventional RSST and Fast RSST are examined and some
simple modifications are proposed. In these methods, the link weight costs are
used as the absolute pixel intensity differences but Chapter 4 also proposes the
use of an alternative link weight cost, named as the optimum cost RSST. Finally,
a distributed RSST algorithm is developed in this chapter. The implementation

details of the discussed methods are presented in Chapter 5.

Chapter 6 gives the computational results and presents the execution times

of the algorithms and the objective quality of their segmentation results.

Finally, Chapter 7 concludes the thesis and states some possible future

work.



CHAPTER 2

PROBLEM DEFINITION

2.1. INTRODUCTION

A fundamental problem in image analysis and pattern recognition is image
segmentation. The problem is partitioning an image into semantically meaningful
connected regions which have similar properties in some sense e.g. similar color

or gray level, similar texture; and which are different from neighboring regions

[5109].

Algorithms that have been proposed to solve this problem can be
classified into two groups. First, one is to define the regions by boundary
detection based approaches. These techniques partition the image by finding out
closed boundary contours. Second group of algorithms consist of region growing
and clustering based approaches. In these approaches regions are defined by the

union of their component pixels. Region based approaches can be further



classified into two groups, one using global and the other using local information
[5,9].
2.2. GRAPH THEORY AND IMAGE ANALYSIS

Graph theory is the study of graphs and their applications. A graph
G(V,E) is a set consisting of set of vertices, ¥, and set of edges, E. The number of
vertices is called the order of graph and denoted by |V]. The number of edges is
called the size of graph and denoted by |E|. Vertices V; and V; are said to be
adjacent to each other by links E; ; , for i#j, and where 7; and ¥ are the vertices
that the link connects. A weighted graph has an associated weight for every edge
E;j, and for every vertex V;, in the graph. The complete graph is a simple graph in
which every vertex is adjacent to every other. A subgraph of a graph G is a graph
whose vertex and edge sets are subsets of those of G. A path is a set of successive
vertices in which each vertex is connected to the next by an edge in the graph. A
cycle in a graph consists of a sequence of successively incident edges and their
end vertices, where the terminating vertices are identical. A free is a connected
set of paths having no cycles. A forest is a set of trees. A spanning tree is a tree,
which is a subgraph containing all vertices and having no cycles. The shortest
spanning tree of a weighted graph is a spanning tree such that the sum of its link
weights is minimum for all possible spanning trees. Extensive information about

graph theory can be found on various resources such as [18, 6].

2.2.1. MAPPING IMAGES ONTO GRAPHS

To analyze images by graph theory, the original image must be mapped
onto a graph. It can be done simply by mapping each image pixel onto a vertex of
the graph. Pixel intensity value (for gray level images) can be assigned to the
vertex weight. A vertex in this graph can be linked to any other vertex but a

meaningful connection is to link each vertex to its nearest neighbors. Either four

5



or eight neighbors can be considered. Figure 2.1 shows a mapping of a 5x5 image

onto a four neighbor connected graph.

Weights associated with each link are based on some property of the
pixels that it connects, such as their image intensities [10]. If the link weights are
defined as the absolute value of the difference between the weights of the vertices
that they join, then the link weight is a measure of similarity between the two

vertices, and hence between the two corresponding pixel intensities [5].

a) Image b) Graph

Figure 2.1. Mapping an image onto a four connected graph

2.2.2. CONSTRUCTING MINIMUM SPANNING TREES

Constructing the minimum spanning tree of the graph obtained from the
image is used commonly in graph based image segmentation. Minimum spanning
tree (MST) of a graph is a sub-graph thaf contains all the vertices and the sum of
its link costs is minimum for all possible spanning trees. If a forest forms part of a
MST then the complete MST can be found by successively adding new links to it.
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The MST therefore tends to include links with low weights. More costly links are
only included when there is no alternative. The MST of an image is shown in

Figure2.2.

Figure2.2. Constructing minimum spanning tree from the image. Bold links are

included in the MST, dashed ones are not included.

2.2.3. FORMING PARTITIONS FROM SPANNING TREES

To form partitions from the spanning tree representation of an image,
some links included in the spanning tree must be cut. By cutting its links, a
spanning forest is obtained and partitions of the image are formed. To form ‘n’
number of partitions ‘n-1’ cuts must be performed. This is because of the fact
that each cut produces a subtree which is disjoint from all of the other previously
formed subtrees. Because of this property every subtree represents a region of the
image. The number of cuts depends on the user. Once the spanning tree
representation is obtained, region number can be selected as much as desired up

to the pixel number of the image. User determined region number is not



applicable to many other segmentation methods such as threshold based ones.
Figure 2.3 illustrates obtaining two regions by cutting a single link of the

spanning tree of the image.

Figure 2.3. Cutting a single link of a spanning tree to obtain two regions.



CHAPTER 3

GRAPH THEORETIC APPROACHES FOR IMAGE
ANALYSIS

Table 3.1 shows graph theoretic algorithms having applications to image

analysis and states their advantages and disadvantages.

Table 3.1 Application of graph theoretic algorithms to image analysis [13]

Applications to

Image Analysis Pros and Cons

Graph-Theoretic Algorithms

o Simple distance functions | e Fast and simple

Breadth-First Search and » Connectivity ¢ Implement by queue
¢ Euler number or stack respectively
Depth-First Search computation for shape ¢ Distance function
description very restricted




Table 3.1. Cont’d

¢ Euclidean
distances

s  Weighted
(geodesic)

Dijkstra, Fast Marching (hybrid distances

*  Segmentation (2D

graph/PDE), Dynamic images only)

¢ Tracking

Programming (generic
e  Stereo matching

e Relatively
simple

e Very flexible

e Limited to one
parameter (1D)
sequences;

can’t be

optimization tool) with 1D extended to
constraints optimal
e 1 parameter (1D) surfaces
sequence
optimization
e Fairly complicated
e Segmentation (any ¥ comp
) . . ¢ Algorithms are
image dimension)
relatively slow

® Feature clustering

¢ Lots of research

Minimum cuts * Minimal surfaces :
going into this area
s  Stereo matching
] e Extensible to N-1
with 2D
) degree manifolds in
constraints
N dimensions
¢ Greedy algorithm
e  Watersheds (Priority First Search)
Optimal Spanning e Seeded region e Simple, but can ‘leak’
growing (variant) through one bad edge
Trees/Forests e  Feature clustering in the graph (not very

o Segmentation

robust to noise or

€rrors)
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Table 3.1 Cont’d

e  Character
" e No polynomial
recognition
Graph e algorithms exist
e Recognition of .
. . . yet (undecided
isomorphism/homomorphism shapes by
problem)
topology only
. . o  Simplified
Optimal Matching and 4. Multiple object mp
minimum cut
. tracking
Assignment problem

Following the above general classification, a literature on image segmentation
based on graph methods is presented in this chapter. Zahn’s [11] segmentation
method depends on cutting the minimum spanning tree of an image from edges
having largest weights. This algorithm is highly noise sensitive and inadequate to
determine high variability regions and usually results in incorrect partitioning,

This is illustrated by the example in Figure3.1 and Figure3.2.

a)

c)
Figure 3.1. a) Original image will be partitioned into five regions, b)

Expected segmentation of the image, c) Image is segmented into five regions by
cutting most costly four links after constructing the minimum spanning tree of the

image graph. High variability region is partitioned into several regions.
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a) b) c)
Figure3.2. a) Original image will be partitioned into four regions, b)

Expected segmentation of the image, c) Image is segmented into four regions by
cutting most costly three links after constructing the minimum spanning tree of

the image graph. Noisy pixels are interpreted as regions and objects.

In order to solve this problem Urquhart [12] proposes to normalize the
weight of an edge using the smaliest link weight of the links incident on the
vertices touching that edge. However, the application of this method to image
segmentation showed that the smallest weight edge alone is not adequate for a
reasonable segmentation. It can be realized by looking at the high variability
region pixels in Figure3.1. Many pixels in the region have some highly similar
neighbors [10].

Morris et al. [4, 5] stated that these methods do not depend on global
information and do not achieve good segmentation. Hence, he proposed a method
called Recursive Shortest Spanning Tree (RSST) Algorithm and claims that this
approach improved the segmentation results considerably. RSST has a
hierarchical structure and due to this property, any number of region
representations of an image can be chosen. Zeng [14] emphasizes that the
generated subtrees obtained by RSST do not properly represent the regions in the
order of perceptual significance. He introduced homogeneity and saliency

information in his modified RSST algorithm.
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RSST is used in many applications. In [6] these applications are
summarized pretty well. Researchers used RSST algorithm in segmented image
coding [15] and segmented video coding [16]. Morris and Constantinides in [22]
propose a progressive image coding scheme using RSST. Kwok et al. extended
RSST to temporal segmentation [23] and temporal decimation [24] for video
processing applications. Alatan et al. [25] applied RSST in interactive multimedia
services to motion vector-based segmentation. RSST is also used for object
extraction [26] and for object segmentation and tracking [27, 28] in video
applications. Tuncel and Onural [29] applied RSST to 2-D affine motion
modeling and video content representation wusing its multiresolution
implementation by [30] and {31]. RSST has another application area used for
multiresolution segmentation and is called M-RSST. This algorithm is applied for
content-based face detection [32], an active contour-based video object
segmentation scheme for stereoscopic video sequences [33], an efficient
unsupervised content-based segmentation in stereoscopic video sequences [34],
and video databases [35]. Vlachos and Constantinides proposed RSST for color
images [36], in which color components of red, green, and blue are translated to
the cost function. Before this, RSST algorithms and its applications were based

on grayscale images [6].

Efficient implementations of RSST were reported by Kwok and
Constantinides [6, 7, 8]. In [8], they proposed a tailored data partitioning strategy
to assign jobs to processing elements in their parallel algorithm; they claim that
their parallel implementation is cost-optimal, however they did not implement it
since their proposed algorithm’s architecture is a Concurrent Read Exclusive
Write Parallel Random Access Machine (CREW PRAM) which is not available
today. They simulated their proposed algorithm for one processor, which implies
a sequential run. In the fast RSST implementation, they claim that they speed up
the RSST algorithm from the complexity of O(#’) to O(n) in the worst case,
where n is the number of vertices in the graph [7]. In our study, fast

implementation is achieved by removing the sorting algorithm from the

13



conventional algorithm. However, our study showed that accelerating only
sorting part does not improve the complexity of RSST that much. Outputs of
these efficient RSST algorithms [7, 8], are truncated versions of RSST, which is
different from the RSST generated by [4], [5], and [6]. It is worth noting that the
literature survey shows that the studies on RSST algorithm use only absolute
intensity difference as the link weight cost. No other cost function is mentioned
and we are currently unaware of a study, which examines the link weight cost

function effects on the performance of the algorithm.
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CHAPTER 4

RECURSIVE SHORTEST SPANNING TREE
ALGORITHM

This chapter presents the Recursive Shortest Spanning Tree (RSST)
Algorithm, its fast version and a simple modification on RSST. A second link
weight cost function, which is not used in the previous algorithms, is applied to
the conventional RSST and its performance analysis is presented. Lastly, a

distributed approach is proposed and analyzed afterwards.

4.1. SEQUENTIAL ALGORITHMS

4.1.1. CONVENTIONAL RSST

The Recursive Shortest Spanning Tree (RSST) Algorithm proposed by
Morris et al. [4,5] was used for image segmentation and edge detection. The
flowchart of RSST is given in Figure4.1. The first stage of the RSST algorithm is
mapping the image onto a graph as described in section 2.2. Initially, each pixel

15



corresponds to an individual region and each region is represented as a node
(vertex) on the graph. Pixel intensity values are assigned to vertex weights. Link
weights are assigned by the cost function, which can be a function of the vertex
weights and the sizes of the connected regions [6]. Morris et al. [4,5] define the
link weights as the absolute value of the difference between the weights of the
vertices that they connect. Therefore, link weight becomes a measure of

similarity between two regions.

IMAGE
Image Mapped To Graph O(n+m)
v
Initialize the heap O(nlogn)
[ g
Is the tree Complete STOP O(c)
Save the next least weighted o
link and merge the two vertices (€)
(n-1) fimes < Recalculate the new vertex o
weights and link weights (€)
Remove duplicated links O(c)
Sort the heap in order O(HrlogHr)

Hr= # remaining links in the heap

Figure 4.1. Flowchart of conventional RSST Algorithm

After mapping the image onto a graph, next comes the process of finding
similar vertices. This is done by constructing the minimum spanning tree from

the given graph with least weighted links. Firstly, all the links are sorted
16



according to their link weights. Since one of the most efficient sorting algorithms
is the heap sort, links are stored in a heap structure. The link at the top of the
heap, having the minimum cost is then chosen. The chosen link is saved as it is

the part of the SST of the graph and two connecting regions are merged.

While evaluating the new link weights and vertex weights, sizes of
regions and their weights are considered. For example after merging the region
R1 with N1 pixels with a vertex weight equal to W1 with a region R2 with N2
pixels and W2 weight, the vertex weight of the resulting region R’ is defined as

follows;

W2 =[(WIxN1)+(W2xN2)]/(NIFN oo 4.1
1SS N S N SR (4.2)

Links connecting the newly merged region to other regions must be

updated since their costs are changed after merging as shown in Figure 4.2,

2 26

2] 13

a) b)

Figure 4.2 Merging process. a) Before merging, two regions, vertices,
with weights 77 and 69 will be merged, b) After merging vertex weights and link

costs are updated, two pixels represent one region.
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In the merging process, duplicated link removal must be considered to
avoid cycles in the MST. When two regions are connected with more than one

link, redundant ones are called duplicated links. This is shown in Figure 4.3.

a) b) ¢)  Duplicated link

Figure 4.3 Duplicated link formation and removal. a) Before merging, b)
After one merging process, ¢) Second merging forms a duplicated link, which

must be removed.

After merging and duplicated link removal process, links must be sorted
again. Due to the removal of duplicated links and saved links, rearranging of the
heap is inevitable. This is the most costly and time consuming, part of the

algorithm.

The merging, duplicated link removal and heap rearrangement processes
are repeated until the spanning tree representation of the image is completed.
Hierarchical representation of the image is obtained by noting down the order of
the saved links. Now by cutting this spanning tree representation of the image
from N links, N+1 regions are obtained. The user can define the number of

regions to be segmented.

4.1.2. FAST RSST (FRSST)

The conventional RSST is computationally inefficient but gives good
segmentation results. Therefore, some research has aimed at obtaining fast

implementations of the RSST. Researchers have claimed that the execution time
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of the RSST is heavily dependent upon the sorting algorithm. Therefore, to speed
up the algorithm sorting part is generally modified. Fast RSST algorithm [7]
depends on this idea.

The flowchart of the Fast RSST algorithm is given in Figure 4.4. The
algorithm is as follows: Image is mapped to the graph in the same way as in
RSST but only link weights are truncated to integer values. Instead of using a
heap structure stacks are used. All links are stored in the stacks, which are called
link weight stacks (LWS). In LWS(i), only links with weights equal to i are
placed. So the maximum possible number of stacks is equal to the upper range of
the link weight function. If link weight function is the absolute difference of
region intensities then the biggest possible link weight stack is LWS(255) (for
gray level images). Fast RSST algorithm uses links in an ascending order starting
from LWS(0) to the largest possible LWS(i). Working stack is defined as the stack
with the least link weight. [8].

Image mapped to Graph
Bulld Link Welght Stacks O(n+m)

y

Build Link Weight Stacks
Find Working Stack

Y

Is working stack empty?
Yes

No

Take a link from WS
Merge two regions
Update link costs

Yes » Stop

Figure 4.4 Flowchart of the Fast RSST Algorithm
19



After building the link weight stacks, merging process starts. Finding the
least weighted link in this case is easy and can be done in constant time. It is
found in the working stack. Any of the links in the working stack can be chosen
and inserted in the merging process. Merging is done as in RSST. The process is

illustrated in Figure 4.5.

LWS(1) LWS§(12) LWS(90) LWS(181)

a) )

. T

LWS(1) LWS(12) LWS(90) LWS(181)
h)

i)

Figure 4.5. a) A 3x3 image, b)Associated link weight stacks, Working Stack:
LWS(1), c) One link is chosen from WS and connecting regions are merged, d)
Link weight stack states, €) Resulting graph after second merging, f) Link weight
stacks state after second merging, g) Resulting graph after third merging,
duplicated links are formed, h) Link weight stack states after third merging, )
Resulting graph after fourth merging and WS is now empty, j) Link weight stack
states after fourth merging and working stack becomes LWS(12).
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Updating link weights are postponed until the working stack becomes
empty. When working stack becomes empty, all affected link costs are updated
and placed into appropriate stacks. This is shown in Figure4.5. While rebuilding
the stacks, working stack determination is done. Again this procedure is repeated

until the spanning tree representation of the image is completed.

In the fast implementation of the algorithm, sorting part is done more
efficiently than the conventional RSST algorithm but output quality degrades
slightly. To improve the output quality while keeping this stack structure we
propose a small change in the fast RSST algorithm.

4.1.2.1. Modified Fast RSST (M-FRSST)

The flowchart of the modified fast RSST algorithm is given in Figure 4.6.

Image mapped to Graph
Bulld Link Welght Stacks O(n+m)

Take a link from WS
Merge two regions
Update link costs (update stacks)

O(c)

Is the tree complete? Stop

Yes

(n-1) times <
No

WS=WS previous?

Yes

O(c)

I Find Working Sfackw O(c)

\

Image =height x width: hxw
Total # of Pixels: n=h xw
Number of Edges=m
WS=Working Stack

Figure 4.6. Flowchart of the modified Fast RSST Algorithm
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This approach is very similar to the first one except the process of
rebuilding the link weight stacks. In the first approach, stacks are required to be
rebuilt after the working stack becomes empty. In the second approach, updating
vertex weight and removing duplicated links processes are same as in RSST. That
is after every merging process link weights are needed to be rebuilt. Additional
control on the working stack determination is included. In example in Figure 4.7
before merging working stack is LWS(1), after merging working stack becomes
LWS(@). L1=1
L2=1
13=12
L4=12
L5=1
L6=1
L7=12
18=90
L9=181
L10=181

L11=90
L12=12

c)

LWS(12)  LWS(90) LWS(181)

LWS(0) LWwS(1) LwS(12) LWS(13) LWS(90) LWS(181)

f)

Figure 4.7. a) A 3x3 image, b) Links are numbered, c) Link costs are
evaluated, d) Links are stored in LWS(i)’s, ) Link1 is chosen and two regions are

merged, f) States of stacks after merging.
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4.1.3. MODIFIED RSST (MRSST)

To improve the run-time performance of the RSST algorithm, we propose
a simple change in the algorithm. In the conventional algorithm heap is
rearranged after each merging process. Rearrangement is done by finding and
updating the place of the modified links in the binary heap. The new place of
each link in the heap, which is a neighbor of the recently merged region, is found
in this process. What we propose is to bring a condition for the relocation of a
link in the heap structure. If the link weight does not change too much with the
merging process, relocation is not necessary. If the link weight is changed
reasonably, than a rearrangement of the heap structure is needed. The minimum
change in the link weight to relocate the link in the heap is determined by

experimentation in the computational study.

4.1.4. OPTIMUM COST RSST (ORSST)

With segmentation, pixel values in each region changes according to
Equation 4.1. The measure of success in segmentation is usually an error measure
between the original image gray value matrix G[x,y] and the segmented image
gray value matrix G[x,y]. It is called Mean Square Error and given by Equation
4.3. No mathematical error function is known that corresponds to human

perceptual assessment of error [21].

m

1 ¢ .
ol = DN - =8y) e 4.3)

MXR iy a2

To minimize this function at every merging step, costs of links
neighbouring to the regions should be updated and link cost d(regl,reg2) must be

defined as follows:
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nl.n2
+n2

d(regl,reg2) = ML= 2| oo (4.4)
where nl and n2 corresponds to region sizes in terms of pixel number, m1 and

m2 corresponds to mean intensity values of the regions.

Detailed information about this MSE minimization can be found in [3]. If
the link cost is chosen as defined by equation 4.4. RSST minimizes mean square
error between the original image and the segmented one. This may make the
RSST more advantageous among all other segmentation algorithms. Up to this
point, the previously mentioned algorithms seen in literature use absolute
intensity difference as the link weight cost function. To our best knowledge, no
RSST report about the effects of using the above cost function exists. Therefore,
we performed experiments using this cost and its run-time performance figures

and segmentation quality results are presented in chapter six.

4.2. DISTRIBUTED RSST

A paralle] RSST algorithm has already been proposed by Kwok and
Constantinides [8]. It is claimed that this parallel implementation proposal is cost
optimal such that the complexity of the RSST algorithm is reduced from O(#’) to
O(n) in the worst case where # is the total number of vertices in the image graph
[8]. A CREW PRAM (concurrent-read-exclusive-write parallel random access
machine) model is assumed for their algorithm [8], which is not a realizable
computer model for today. Hence, Kwok and Constantinides propose the theory
of their algorithm and present results only for the case where the number of
processors is equal to one. This means that the algorithm runs sequentially. Due
to the unavailability of the PRAM architecture, current thesis work proposes and
implements a practically possible distributed algorithm instead.
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In the literature, we are faced with the idea that if the image is physically
partitioned and segmented in parallel, then the resulting segmentation will not be
optimal and a suboptimal solution will be obtained. This judgment is also
presented in [8]. However, to the best of our knowledge, there exists no report,
which studies the extent of this sub-optimality. It may be worth investigating
whether a simple image partitioning and solving the partitions with ORSST and
then combining the separate processor results, generates an acceptable level of
degradation in segmentation quality or not. If there exists a speed up against a
slight quality decrease, this approach may still be acceptable in various

applications where there is a need for segmentation of large images.

In distributed computing, network traffic affects the speed of the
algorithm greatly. Communication types (blocking or non-blocking), message
size, bandwidth of the network are among the parameters that affect the
complexity and performance of the algorithm. The communication between the
processors should be kept at minimum to minimize the degradation in the timing

performance.

In our distributed algorithm there is a master and several slave processors.
The algorithm divides the image into equal size partitions. The number of
partitions is equal to the number of available slave processors. Each partition is
processed by a single slave. Each slave uses link weight cost function as defined

by Equation 4.4. Our distributed algorithm is briefly stated as follows:

1. (Master) Divide the image into equal size regions in
such a way that the partitions have overlapping parts
with neighborhood partitions.

Image height: h
Image width: w

Number of processor: p
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Overlapping area height: v

Size of a region: (h/p + v).w

2. (Master) Assign each partition to a different
processor.

3. (Slave) Each processor runs the RSST algorithm on the
given image partition to obtain the shortest spanning
tree representation of the corresponding image
partition (i.e. number of segmentation region 1is
equal to one).

4. (Slave) Each processor sends its own links that are
included in the spanning tree of that partition to
the master processor with associated 1link weights
that corresponding to those set at the time of their
selection to the tree.

5. (Master) Master processor examines the received
links, constructs a new but reduced graph from the
received links only and selects the least weighted
link among the received 1links. The chosen link is
saved as part of the final SST of the whole image
graph and the two connecting regions are merged in
the reduced graph. Then the duplicated link removal
process 1s performed. Next link is searched among the
remaining received links set and this selection and
merging process is repeated until the desired number
of region representation is obtained.

6. (Master) Master maps the graph onto the image.

Figure 4.8 shows image partitioning.
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Figure 4.8 Division of the image into equal size partitions

Slave processors have smaller size images so they compute their spanning
trees in a shorter time. Master processor initially constructs the whole data
structure from the whole image. After receiving the spanning trees of the slave
processors, it reduces this data structure. This is equivalent to constructing a new
graph consisting of received links only. Links that are not included in any of the
spanning trees of the slave processors can be removed from the original graph.
This minimization decreases the duplicated link removal complexity in the final
reconstruction phase (step 5) considerably. When this algorithm is compared with
the original RSST, the heap sort operations are expected to be reduced. The
division of the image into partitions by the distributed RSST results in the loss of
global information, i.e., each processor has the knowledge of its own partition
only. This drawback results in a different spanning tree representation of the
image, which might result in a different segmentation. In chapter 6, besides the
timing issues, the segmentation quality of the distributed RSST algorithm is also
evaluated by checking the SNR figures.
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Figure 4.9. illustrates the algorithmic steps for the one master, three slave
case. The image, which will be processed, is in the shared memory. Firstly, the
master processor informs the slaves about their starting and ending pixels
(Figure4.9.i). This information transfer is not done in the form of message
passing but a calculation of pixel ids using the id of slave processor is carried out.
Pixel assignment is done considering the overlapping condition. We use two
overlapping rows in our executions. Increasing the overlapping area will decrease
the speed up because of increasing slave time. All slaves start their processing at
the same time. With this starting and ending pixel information, slave processors
individually construct their conventional RSST data structures (Figure 4.9.ii).
This procedure is completely the same as conventional RSST. The number of
regions are used as “one” for all slaves. This makes them to build the whole
spanning tree of their own image parts. Choosing the least weighted link and the
merging processes are very similar to the conventional algorithm. However
during the merging process the slaves store the link’s id and the accompanying
link cost one after the other to an array, called the spanning tree information array
(Figure 4.9.viii). During this time, the master processor waits in the idle state. It
waits for the spanning tree information arrays from the slaves. After constructing
their own spanning trees, the slaves send their spanning tree information arrays to

the master processor (Figure 4.9.iv).

Receiving all spanning tree information arrays from the slave processors,
actual work for the master begins. It already has the information of all the graph
links. Because of the reconstruction approach proposed, which is to find a
minimum spanning tree using the received costs on a graph consisting of the
received spanning tree links only, most of the links in the original graph become
redundant. These redundant links are then deleted from the master’s data

structure (Figure 4.9.vi) in the graph reduction procedure.

Up to now there is no region information obtained by the master but it

only has the recursive shortest spanning trees of the image partitions that are
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constructed independently. Link selection and region merging is the next step at
this point. Links and accompanying costs of the spanning tree information arrays
sent by slaves are in sorted order and therefore an efficient linear search among
the arrays is possible. The minimum cost link is then selected easily. Merging and
duplicated link removal procedure is done next as is done in the conventional
algorithm. Above link selection, merging and duplicated link removal procedure
is repeated until we reach the desired region number. Then the graph can be
mapped onto the image by assigning every pixel in a region the average gray

values of the pixels forming that region.
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Figure 4.9. Distributed Algorithm’s steps for the three slave processors case
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CHAPTER S

IMPLEMENTATION

This chapter presents the implementation details of the conventional
RSST, Fast RSST, Modified RSST, Optimum Cost RSST and Distributed RSST
algorithms. Microsoft Visual C++ 6.0 is used as the programming language and
software development environment. OpenCV libraries are included into the
projects for image reading and writing operations. OpenCV is Intel® Open
Source Computer Vision Library, which is a collection of C functions and a few
C++ classes that implement some popular algorithms of Image Processing and

Computer Vision [17].

In this study implementation of the Recursive Shortest Spanning Tree for
COST 211 AM is used. It was implemented in 1997 by Patrick Mulroy from BT
Labs, Paulo Villegas from Telefonica I+D and with help from Ertem Tuncel,
Bilkent University. Data structures, functions and algorithm used in this project
are given in Appendix A, B and C.

31



In Fast RSST implementations, the basic data structures are inherited from
the above RSST implementation but stacks are used instead of the heap structure
to speed the algorithm up.

Modified RSST has completely the same data structure with the original
one. Only a simple condition is added to the heap sorting part.

In some distributed memory systems, each processor has its own local
memory and this memory can be accessed only by itself. Data transfer from one
processor to another is performed over a network by message passing. (Figure
5.1)

Distributed Memory System

Processor1 Processor?2 Processor 3 Processor 4

Memory Memory Memory Memory
A A A A

NETWORK

Figure 5.1. Distributed Memory System

The distributed RSST developed in this work uses Message Passing
Interface (MPI) standard for processor communications. In this study ANL/MSU
(Argonne National Laboratory /Mississippi State University) MPICH, which is a
freely available, portable implementation of MPI is used [19]. MPI is a
specification for message passing libraries, which aims to standardize these
libraries. In MPI programs number of processes are static, no new processes can
be included dynamically during the run. It can be used with C and FORTRAN. It

has over 115 routines to accomplish send, receive and other message passing
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functions. MPI provides both blocking and non-blocking communication types.
In blocking communication for send operations data must be safely placed to the
receiver side before the system buffer can be reused. Similarly for receive
operations data must be copied to the system buffer safely before it can be used.
This is a simple acknowledgement based system. Both of the receiver and sender
cares about the message whether it is sent and received correctly or not.
Distributed RSST implementation should use blocking send and receive

operations since the system can not tolerate data losses.

MPI firstly uses MPI_Init subroutine; which is called by every processor;
to guarantee the processors in the environment are ready to run the MPIL. Every
processor has an integer identification number supplied by the system. This
unique number is owned when the process is initialized and can be used to
specify the source and destination of a message. An MPI program should call a
finalization subroutine when all the communications are completed.
MPI_Finalize routine cleans all MPI data structures after which no other MPI
calls can be made. A simple “Hello World” program is depicted in Figure 5.2.

#include "mpi.h"

#include <stdio.h>

int main( int argec, char *argv(] )
{

MPI_Init( &argc, &argv );

printf( "Hello, world!\n" );
MPI_Finalize();

return O;

}
Figure 5.2. A simple MPI Program written in C language

If the code in Figure 5.2 is executed all processors in the environment
print the sentence “Hello World” onto the screen in a random order. This is an
example of a single program on a single data. Multiple instructions multiple data
(MIMD) programs can be implemented using MPI. An example of a MIMD

program is shown in Figure 5.3.
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#include "mpi.h"

#include <math.h>

#include <stdio.h>

void main(int argc, char *argvl(])

{

int i, spd, n, wmyid, numprocs;

MPI_TInit (&argc, &argv) ;

MPI_Comm_size (MPI_COMM_WORLD, &numprocs) ;

MPI_Comm_rank (MPI_COMM_WORLD, &myid) ; // each processor is
//assigned with identifier

if (myid==0) // specific processor is selected

spd=0;
for(i=0;i<5;1i++)
spd=spd+i;
printf (*My id is %d and sum is %d\n”,myid, spd);

if (myid==1) // specific processor is selected

spd=1;
for(i=2;i<=5;i++)
spd=spd*i;
printf (*My id is %d and product is %d\n”,myid, spd);

if (myid==2) // specific processor is selected

spd=2;
for(i=0;1i<5;1++)
d=spd*spd;
printf{(*My id is %d and exp is %d\n”, myid, spd);
}

MPI Finalize();

Figure 5.3. A MIMD MPI program example

Possible output of the program will be as follow:

My id is 2 and exp is 64
My id is 0 and sum is 10
My id is 1 and product is 120

Our implementation is also a MIMD program since the master and the

slave processor do different tasks. Selection of master and slave processors is
done same as is done in this example, i.e. by stating its rank. This strategy of

programming allows single code construction for all processes.

Since MPI is the available distributed implementation facility in this

work, communication between the master and the slave processors are only
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blocking send-receive operations. Therefore, a slave waits the master if at the
same time the master is communicating with another slave. Similarly, the master
has to wait for a slave processor if the slave has not finished its work yet. Thus
selecting similar performance slave processors will utilize the processors more
efficiently, decreasing idle processor time. The master waits for the spanning tree
information arrays from the slaves in the order of their processor ids. Therefore,
the worst case regarding the speed of the overall distributed algorithm is the case

where the first processor is the slowest among others.
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CHAPTER 6

COMPUTATIONAL RESULTS

This chapter presents the comparison of the performances of the RSST,
Fast RSST, Modified Fast RSST, Optimum Cost RSST and Distributed RSST
algorithms. In order to compare their performances, two criteria, namely
execution time of the algorithms and objective quality of the segmented images

(Signal to Noise Ratio (SNR)), are considered.

6.1. COMPARISON OF SEQUENTIAL ALGORITHMS

6.1.1. EXECUTION TIME COMPARISON

The aim of these experiments is to compare the run-time performance of
the algorithms with respect to increasing image size. In these experiments five
different images are used. Each image is resampled at 20 different sizes and has a
maximum size of 1,440,000 pixels (1200x1200). Images used throughout the

thesis are shown in Figure6.l1 ab,c,d, and e. The number of regions to be
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segmented is selected to be one. With this selection, a spanning tree of the whole
image is constructed at the end of each run. Execution time of the corresponding

image size is given as the average of the execution times of these five images.

d) €)
Figure 6.1. Images used throughout the thesis, a) Image No:1, b) Image No:2, c)
Image No:3, d) Image No:4, e) Image No: 5

Algorithms are run on Intel Pentium 4, 1.8GHz processor and 512 Mbytes
RAM. The run-time performances of the algorithms are plotted in Figure6.2 and
Figure6.3. Figure 6.2 is for smaller image sizes and it is the magnified portion of
the corresponding parts in Figure 6.3. Execution time versus image size graphs
for each image is given in Appendix E separately for a more detailed
investigation. In the rest of the thesis, a preceding graph is usually the magnified

portion of the corresponding parts in the successive plot.

RSST and Modified Fast RSST algorithms have the slowest execution
time characteristic. Heap structure, which is used in the RSST algorithm for
sorting the links are removed and a stack structure is introduced in Fast RSST.

Finding the least weighted link process can now be done in constant time. Also
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link weight updating procedure is postponed until a certain time. The speed-up of
FRSST results from these changes. However Modified Fast RSST algorithm
which is implemented for improving the SNR of the Fast RSST segmented image
showed similar execution time characteristics with conventional RSST. In this
interpretation of the algorithm link weight stacks are rebuilt after every merging
process which is a time consuming job however in the original Fast RSST
updating link weight stacks are rare and done when the working stack becomes
empty. Due to this modification, speed up is decreased and processing time

converges to the conventional RSST algorithm.

Modified RSST (MRSST) showed quite good performance. Speed up is
nearly %50. MRSST algorithm uses the same structure as the original algorithm.
Only a simple modification is applied. In this algorithm link cost updating is done
if the change in the cost function is greater than a certain value. This value is
chosen as 10% after some experimentation. With this modification, heap
reconstruction is done rarely in comparison with the original algorithm and M-
RSST runs faster because of this change. Experimental results show that if less
then 10% changes in the link weight function are ignored and such links are not
relocated, the segmentation gives reasonably good results. This is verified by
examining the SNR of the image obtained by the modified RSST. SNR of the

resulting image is very similar to the RSST segmented image.

Optimum Cost RSST showed the best performance regarding its running
time. This cost favors the merging of small regions to bigger ones. This type of
region growing pattern decreases the duplicated link removal complexity.
Detailed analysis about duplicated link removal can be found in Appendix E.

Speed up is very high and nearly %75.
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Figure 6.2. Execution time comparison between RSST, FRSST, M-FRSST,
MRSST and ORSST; image size is up to 400,000 pixels, # of regions=1
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Figure 6.3. Execution time comparison between RSST, FRSST, M-FRSST,
MRSST and ORSST; image size is up to 1,440,000 pixels, # of regions=1.
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Results have shown that run-time performances of five of the algorithms
depend on the number of pixels in the image. In execution time graphs of RSST,
FRSST, M-FRSST and MRSST, time is not a linear function of the number of
pixels, however, Optimum Cost RSST showed quite linear characteristics up to

the tested image sizes.

6.1.2. SNR COMPARISON

It is common practice in the RSST literature to use the Signal to Noise
Ratio (SNR) to evaluate the objective quality of the segmented images. SNR is

defined as follows:

2
SNR =10 1ogw(2—525-—J .................................................. (6.1)
where
1 14 m 2
2 n
O oror = R T G, .. ............. 6.2
ror = 2 285 8y) (6.2)

j=1

The symbols g; and &, refer to the pixel intensity values of the original

and the segmented image, respectively. Segmented image is expected to be
similar to the original image in visual sense, so equation 6.2, which is the average
mean square error, is expected to be close to zero for good segmentation. The
term mxn refers to the size of the image and i,j refers to the indices of the image
array. For this experiment, two different image sizes are selected. These are
600x600 and 900x900. Images are divided up to 10,000 regions. SNR versus
image size (in pixels) graphs are shown in Figure 6.4 [image size 600x600 and
region number up to 1000], Figure 6.5 [ image size 600x600 and region number
up to 10,000], Figure 6.6 [ image size 900x900 and region number up to 1,000],
and Figure 6.7 [ image size 900x900 and region number up to 10,000].
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SNR Comparison , Image size= 600x600
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Figure6.4. SNR comparison between RSST, FRSST, M-FRSST, MRSST and
ORSST, region number is up to 1000, image size is 600x600.

SNR Comparison , Image size= 600x600
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Figure6.5. SNR comparison between RSST, FRSST, M-FRSST, MRSST and
ORSST, region number is up to 10,000, image size is 600x600.
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SNR Comparison , Image size= 900x900
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Figure 6.6. SNR comparison between RSST, FRSST, M-FRSST, MRSST and
ORSST, region number is up to 1000, image size is 900x900.
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Figure 6.7. SNR comparison between RSST, FRSST, M-FRSST, MRSST and
ORSST, region number is up to 10,000, image size is 900x900.
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SNR graphs of the RSST, FRSST, M-FRSST and MRSST showed similar
characteristics. However, SNR measure of the Optimum Cost RSST algorithm is
much higher than other algorithms for each case. SNR measure of all algorithms
increases as the number of regions to be segmented increases. This result is
reasonable because as the number of regions to be segmented is increased pixels
get closer to their original values and in the limit region number is equal to the
number of pixels in the image which converges to the original image. Subjective
comparisons on visual segmentation results can also be made. The segmented
images for all tests for the two different sizes considered are given in Appendix F

for this purpose.

6.2. COMPARISON OF SEQUENTIAL AND DISTRIBUTED
ALGORITHMS

This section presents the comparison of the performances of the ORSST,
and distributed RSST algorithms. In previous section it is shown that ORSST
algorithm has the best performance in both execution time and SNR comparison.
So now, it will make sense if we can further speed up this algorithm and therefore
we compare the distributed implementation with the ORSST. In order to compare
their performances, the same two criteria, namely execution time of the
algorithms and objective quality of the segmented images (Signal to Noise Ratio
(SNR)) are considered.

6.2.1. EXECUTION TIME COMPARISON

The aim of these experiments is to compare the run-time performance of
the algorithms with respect to increasing image size. In these experiments the
previously used set of images are used. Each image is resampled at 10 different

sizes in this case and has a maximum size of 1,440,000 pixels (1200x1200). The
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test images were already shown in Figure6.1 ab,c,d, and ¢. The number of
regions to be segmented is also selected to be one. Execution time of the
corresponding image size is given as the average of the execution times of these
five images. Same convention as in sequential algorithm comparison is applied
here. For the distributed algorithm running times also include the communication
overheads, i.e., the time that it takes for the slaves to send their results and for the
master to receives them. Figure 4.16 and 4.17 show the execution time vs image

size graphs. Number of processor is abbreviated as ‘p’.

Sequential algorithm, ORSST, is run on Intel Pentium 4, 1.8GHz
processor and 512 Mbytes RAM. For parallel implementation up to 4 processors
are used. Two of them are Intel Pentium 4, 1.8GHz processor, and 512 Mbytes
RAM, one of them is Intel Pentium 4, 2,4 GHz processor, and 256 Mbytes RAM
the other one is Intel Pentium 4, 2,7 GHz processor and 512 Mbytes RAM.

Execution time improves for two and three processor cases, however for
the four processors case no further improvement is observed. It is conjectured
that this is due to the communication overhead increase. To investigate this, we
compared the three and the four processor cases. A comparison on their average
master and slave times only is carried out. In other words, the communication
overhead, which is not possible to determine in the MPI environment is
determined indirectly. Average slave and master time summation comparison
graphs are shown in Figure 6.10. The sum of the master and slave processing
times turned out to be shorter in the four processor case than the three processor
one, meaning that the degradation is due to the communication overhead.
Communication overhead seems to increase as the number of processors
increases because of using a point to point and blocking communication structure
due to the limitations of the MPL. Such a communication structure obviously
increases the idle waiting times of the processors. Therefore, in a simple LAN
environment similar to the one we use during these experiments, it is not

advisable to use the four processor structure. On the other hand, different
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architectures with better communications facilities might generate much better

performance curves.

Time vs Image Size Comparison
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Figure 6.8. Execution time comparison of ORSST with Distributed RSST
for p=2, p=3 and p=4, image size is up to 400,000, the number of regions is one.

30 Time vs Image Size Comparison
25 4 - e - e -
20
M
@ /
5 15
£
a /‘///:////
10
5 J
0 T T T T
0 350000 700000 1050000 1400000
Image size (# of pixels)

—4—ORSST ——P=2 —8— P=3 —%— P=4]

Figure 6.9. Execution time comparison of RSST with Distributed
RSST for p=2, p=3, p=4, image size is up to 1,440,000 pixels and the number of

region is one.
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Average Worker plus Master Time Comparison
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Figure 6.10. Execution time (excluding the communication times) comparison of

p=3 and p=4.

6.2.2. SNR COMPARISON

It was already stated earlier that it is the common practice in the RSST
literature to use the Signal to Noise Ratio (SNR) to evaluate the objective quality
of the segmented images. For this comparison of the ORSST and the distributed
implementation, two different image sizes are selected as 600x600 and 900x900.
Images are divided up to 10,000 regions as before. SNR versus image size (in
pixels) graphs are shown in Figure 6.11 [image size 600x600 and region number
up to 1000], Figure 6.12 [ image size 600x600 and region number up to 10,000],
Figure 6.13 [image size 900x900 and region number up to 1,000], and Figure
6.14 [image size 900x900 and region number up to 10,000].
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Figure 6.11. SNR comparison of distributed algorithm, region number is up to

1000, image size is 600x600.
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Figure 6.12. SNR comparison of distributed algorithm, region number is up to
10,000, image size is 600x600.
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SNR Comparison , Image Size=900x900
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Figure 6.13. SNR comparison of sequential and distributed algorithm, region
number is up to 1000, image size is 900x900.
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Figure 6.14. SNR comparison of sequential and distributed algorithm, region
number is up to 10,000, image size is 900x900.
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Since the global information is lost in the distributed algorithm, the SNR
of the sequential ORSST turned out to be better than the distributed algorithm as
expected for any number of processors. Growing pattern of the whole spanning
tree radically changes because when the slaves reach their boundaries, they are
forced to grow their spanning tree within their region only. As the recursive
shortest spanning tree of the whole image is changed, region representations are
also expected to differ. Degradation in the SNR for the distributed
implementation can be acceptable for applications where speed is much more
important than the high segmentation quality. The segmented images for all tests
for the two different sizes considered are given in Appendix F for this purpose.

6.3. PROS AND CONS OF THE RSST ALGORITHM

The execution time of the RSST does not depend only on the image size
but also on some image characteristics. It is stated in the literature that the
execution time of the algorithm heavily depends on the link sorting part [7],
however this may not be true for all cases. Execution times of the duplicated link
removal and link cost updating operations depend on the region that is growing
because at every growing step all links neighboring to that region are traversed
for the number of links in the added region. As the region gets bigger, the number
of neighboring links also increases. If the image contains large size objects or
background, the processing time is bound by the duplicated link removal and link
cost updating processes since the number of traversed links has a cumulative
behavior. To validate this claim, fixed size images having different background

and object sizes have been compared in the following experiment.

The aim of this experiment is to compare the running times of the ORSST
algorithm for different region and background sizes for a fixed image size. Table
6.1. shows the simulation results. Image size is equal to 600x600 (width x

height), however rectangular objects have different sizes in each image. As a
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result, background sizes are different. The image shown in Figure 6.15.a has the
smallest background and the biggest rectangle size, the image in Figure 6.15.c
has the biggest background and the smallest rectangle size. Execution time of the
third image is higher than the other two, since duplicated link removal process for
background costs much higher. Execution time of the first image is the smallest
since the total number of traversed links for duplicated link removal and also for

link cost updating is less. Proof of this reasoning can be found in Appendix D.

a) b) c)
Figure 6.15. Test images with variable background sizes

Table 6.1. Comparison of execution times for variable background sizes

Image Object Size Background Size ?x el
& (% of image size) (% of image size) Ime (sec)
(ORSST)
Figure6.15.a | 24,5%t24,5%=49% 51% 30.10
Figure6.15.b 10%+10%=20% 80% 109.17
0,
Figure6.15.c 2%+2%=4% 26% 201.68

Another disadvantage of the RSST algorithm is its dependence on global
information. The algorithm is not very suitable for simple parallelization by
directly dividing the image into pieces and than merging the resulting spanning

trees by a master processor. The problem has two aspects. First one is the quality
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of segmentation result. The image partitions, which are assigned to different
processors, are hindered to reach to other partitions. In the distributed
implementation developed in this work, the heap reconstruction is done in
parallel gaining valuable time but duplicated link removal, which is the duty of
the master processor, is done sequentially. When duplicated link removal
processing time becomes dominant in the total process, increasing the number of

processors does not improve the total processing time significantly.

RSST is flexible in using different link costs. The measure of the success
of segmentation result is evaluated using the “Mean Square Error” which can be
minimized by the RSST using an appropriate cost function (Equation 4.4.).
Therefore, if MSE minimization is considered, RSST becomes the best

segmentation algorithm.

RSST is very simple because of using only gray level values of the pixels
and not requiring any other information. Also the user has the freedom to decide
on the number of regions to be segmented but of course determining the number
of regions in automatic recognition processes remains a difficult task and is an

active research area.

51



CHAPTER 7

CONCLUSION

A fundamental problem in image analysis is image segmentation. Since
objects and background determination is done by segmentation, it has an
important role also in pattern recognition. The recursive shortest spanning tree
(RSST) was proven to be highly accurate to define regions. In this thesis,
Recursive Shortest Spanning Tree (RSST) for image segmentation is studied.
Aim of the study was to accelerate the execution time of the RSST algorithm,

which might have positive effects on some applications such as video coding,

In this study, first, the conventional Recursive Shortest Spanning Tree
Algorithm is reviewed and its algorithmic steps are investigated. It is
implemented and tested on five different images, which are also rescaled to
obtain images of different sizes. It is observed that the execution times of the
RSST for five different images having the same image size are quite different.
Execution time of the conventional algorithm does not only depend on the image

size but also on some image characteristics such as the object size versus
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background size, etc. An execution time of 371 seconds is observed for a
1200x1200 image (Image No: 4) in the experiments, which could be regarded as
considerably high.

The above level of run-time performance makes it viable to search for
faster implementations of the RSST. Therefore, fast RSST Algorithm (FRSST)
found in the literature is reviewed and discussed in Chapter 4. It is claimed in [7]
that FRSST brings a considerable improvement on RSST, however this claim was
supported using only a limited size and limited number of images. Through a
more comprehensive experimentation, it is observed within this study that the
expected improvement on the run-time performance of the FRSST is not as much
as stated. Examining the execution time and Signal to Noise Ratio (SNR) graphs,
it is possible to infer that the run-time performance is improved despite a
degradation in SNR figures. Fast RSST achieves this speed up by implementing a
different link sorting structure, which is faster than the rearrangement of the heap
structure. Subjective comparisons on visual segmentation results of the Fast
RSST also indicate a poorer performance when compared to conventional RSST.
This decrease in the quality is expected because link weight costs are rounded

and the link weight updating process is done much rarely.

Our aim is to improve the run-time performance of the RSST preserving
the quality of the segmentation but it is observed that the Fast RSST degrades the
segmentation quality. To compensate for this degradation, we propose to update
the link weights after every merging process in the Fast RSST, which is what the
conventional RSST does. With this modification, the only difference between the
modified Fast RSST (M-FRRST) and the RSST becomes the link sorting process.
The RSST sorts the links using a heap data structure while M-FRRST sorting the
links with rounded weights using a stack data structure. Segmentation qualities of
both algorithms are shown to be similar in our computational study and no
significant difference is observed in the subjective comparisons of their visual

outputs. However, it is observed that the run-time performance gain in FRSST is
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lost with the proposed modification. The execution times of M-FRSST are
slightly better than the conventional RSST for small size images and slightly
worse for larger sizes. As a result, it is possible to conclude that none of these two
algorithms, RSST and M-FRSST, is superior to each other and FRSST may be
used only if the speed-up is more important than the segmentation quality

degradation.

Heap reconstruction in the conventional algorithm is a time consuming
task and hence the studies have focused on speeding up this process. This thesis
work also focuses on that aspect and recommends using the heap reconstruction
selectively. Heap is a data structure that is needed to sort the links after every
merging step due to the dynamically changing link weight costs. However, not
every change in the link weight cost is important. Some of the link costs may
change dramatically during the merging process and this change may affect the
growing pattern of the spanning tree. However, some of the link costs may not
alter significantly and is not that critical. For these cases where cost change may
be ignored, there is no need to perform any heap operations. The thesis work have
found through experimentation that ignoring heap operations for link cost
changes below 10% results in similar SNR figures with original but expedites the
algorithm execution time in the order of 50%. This modification is verified to
bring no significant segmentation quality degradation by comparing the
segmentation result of the modification and the original approach. In fact,
considering the timing and SNR curves simultaneously, it can be concluded that

the MRSST achieves better performance than the FRSST.

In the RSST, FRSST and simple modification work, absolute intensity
difference between the regions are used as the link weight cost function. It is also
compulsory to use the absolute intensity difference cost function in the fast
algorithm because stacks should be finite in number. In clustering theory, a
distance function, which minimizes the mean square error of the clustering, is

already proposed. Minimizing MSE of a clustering, in our case segmentation,

54



means obtaining the best quality segmentation results. The thesis studies effects
of using the alternative cost structure and finds out besides SNR improvement,
run-time performance of the RSST algorithm is improved dramatically. This
optimum cost (ORSST) algorithm is also found to have an almost linear
execution time with respect to increasing image size. Subjective comparisons on
visual segmentation results are also satisfactory. Therefore, the thesis points the
ORSST as the best algorithm among the studied RSST versions according to both

run-time performance and SNR figures.

To achieve further improvements in the run-time performance, a
distributed implementation of the algorithm is proposed and studied. Existing
work on parallel RSST is a completely theoretic one and that proposal cannot be
applicable in today’s computer architectures. Therefore we focused on and
attempted a distributed implementation of the algorithm on a simple locally
networked computers based on a simple partitioning strategy. Such networks are
widespread and easily available to users. The selected distributed environment in
this part is MPI and the biggest disadvantage in MPI is its support for only point-
to-point communications. This forced us to design the algorithm such that the
overall communication requirement is kept at a minimum. Therefore the
distributed the algorithm depends on a physical and equal size partitioning of the
image the number of partitions being equal to the number of available processors.

In this thesis work, experiments using up to four processors are carried out.

The computational results reveal that the SNR figures of our distributed
implementation are above the SNR figures of the sequential algorithms studied
except ORSST, for two and in some cases for three processors. The SNR figures
in the two processor case is better than three processor case for most image sizes.
For four processor case, the SNR figures are nearly same as the sequential
algorithms other than the ORSST.
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A speed up is achieved by our distributed implementation up to three
processors case beyond which the communication overhead becomes dominant.
Approximately 25% and 40% speed up is obtained in two and three processor

cases, respectively.

To sum up; the thesis work has aimed to accelerate the RSST algorithm
keeping the quality of segmentation. The best performance among all algorithms
studied regarding the segmented image quality is shown by Optimum Cost RSST,
1.e., by the use of the alternative link cost function. Moreover, ORSST’s run-time
performance is the best among the sequential algorithms. FRSST, M-FRSST and
MRSST expedite the conventional RSST but their SNR figures and speed ups
still lag the ORSST. Speed-up obtained by the distributed RSST by three
processors is the highest among other implementations however segmentation
quality still lags ORSST. For applications where the quality of segmentation is
more critical, ORSST will be the appropriate solution. For applications where the
run-time performance is more crucial than the high quality of the segmentation,

the distributed RSST using two processor may fit the requirements.

This study accelerated the RSST algorithm mostly by concentrating on the
link sorting part, however the complexity of RSST does not only depend on the
image size and the number of links to be sorted but also on the object and

background sizes.
As future work, alternative partitioning strategies can be investigated and

the duplicated link removal process, which seems to be the most time consuming

part for some of the cases, can be focused for parallelization.
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APPENDICES

APPENDIX A. EXPLANATIONS OF THE MAIN DATA STRUCTURES

RA: region array

An array of (rsst_region_t) elements, containing information about each
region.
LA: link array

An array of (rsst_link t) elements, containing information about each link
between two regions. It is never accessed directly, but through pointers to it
stored in LPA and RLL.

LPA: link pointer array

An array of integers containing pointers to the elements in LA. The array
is arranged by link cost to form a heap (a balanced binary tree in which each
parent has always lower cost than its two children). The heap structure means that
the lowest cost link will always be the first one (note that the first element in LPA
is element #1, not #0).

RLL: region link list

A linked list of elements which contains pointers to all links (i.e., LA

elements) of the region.
PL: pixel list
A linked list of elements which contains the indexes of all pixels in a

region.”
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APPENDIX B. DATA STRUCTURES USED IN COST 211 AM PROJECT
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Figure Al. RSST basic data structures
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APPENDIX C. RSST ALGORITHM USED IN COST 211 AM PROJECT
The following is an explanation of the three main steps:

C.1 Initialisation, in "InitColourRSST()"

Creates & fills in arrays & structures
1. Type dependent structures.Region array (LA): fills in the mean & area for
every region (each region is formed by a single pel).
2. Type independent structures.
2.1 Pixel list (PL): sets the PL for every region.
2.2 LPA & RLL: creates a link between each pair of adjacent regions
(i.e., adjacent pels). Each link stored in LPA must be followed by
a reorder of the LPA structure (reheap).

C.2 Region merge, in "MergeRegionRSST()"

We take the first link in the LPA, which will have the lowest cost, and
join its two regions.
Let's say region #B is to be added to region #A. List of operations needed:
1. UpdateRegion
1.1 Actualize #A entry in RA: compute new mean & new area of
#(A+B) and store it in RA --> this operation (new mean) is different for Colour
& MV
1.2 Add pixels of #B to #A. Easy, just add #B's PL to #A.
2. UpdateLinks
2.1 Update links for region #B

For each link in #B's RLL
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if #A already had that link (which includes the link #A-#B) mark as
deleted, remove from LPA, reheap LPA else make it point to #A add it to #A's
RLL
2.2 Update links for region #A
For each link in #A's RLL
if it's marked as deleted, remove from #A's RLL, else (i.e. link to
#C) compute new cost of link (cost of joining #(A+B) with #C)--> this operation

is different for Colour & MV,reheap LPA

C.3) Mask creation, in "CreateMaskRSST()"

create a mask image ,index =0
for each link in LIA
for each link's region
if area of region is nonzero
set area of region to zero
for each pixel in region's RLL
set mask[pixel] = index

index++
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APPENDIX D. COMPLEXITY ANALYSIS OF DUPLICATED LINK

REMOVAL PROCESS IN RECURSIVE SHORTEST SPANNING TREE

Assume the image being processed has a constant intensity rectangular
shape shown in FigureA.2 for the simplicity of analysis. Let the width of the
region be w, and the height of the region be h.

Figure A.2. Constant intensity rectangular region.

Initially each pixel in that region represents an individual region and all
the links within that region has a zero cost. A worse, but not the worst, growing
scenario of that region can be as follow: Each pixel at the beginning of each row
grows towards to the right of itself up to the end of the row. Now each row

represents a region. After that point rows will be merged to obtain a single region.

To analyze the complexity of duplicated link removal process of this
scenario how many links are accessed throughout the process will be found. At
every merging step number of the links being accessed equal to the product of the
number of the links’ of the growing region and number of the links’ of added

region plus number of links in the growing region.
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TableA.1.Table of number of links which are processed during merging

Links incident to Number of links Links incident to

the growing region | that are accessed in | the growed region

(Before Merging) the merging (After merging)
4 4+4x4 20
6 6+4x6 30

Vv P
4links 4 links One region and 6 4 links
initially  initially neighbouring links

Figure A.3. Merging process and link numbers in the growing region

TableA.2.Table of number of links which are processed during merging

Links incident to | Number of links | Links incident to
the growing region | that are accessed in | the growed region
(Before Merging) the merging (After merging)

4 4+4x4 20

6 6+4x6 30

8 8+4x8 40

10 10+4x10 50

12 12+4x12 60

14 14+4x14 70

To represent one row as a single region link number that is accessed is:

# of links= 4x2 2+3+.(w+1)) +2 (2 + 3 +..coot (WH]D) ) (A.1)
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Region with h row height has to do this for h number of rows. So total number of
links touched for inter row merging is equal to
# of links = h . [ 5w* +5w]
= SWANH5WH e (A.2)

Each row represents a region and has [ 2.(w +1) ] links neighboring to it
FigureA 4.

FigureA.4. Each row represents one region

Number of links accessed in row merging:

Merging 1% and 2™ row:

# links touched= [ 2.(w +1) ]+ [ 2.(w +1) ] [ 2.(w +1) ] =2w’+6w+4

Merging new region with 3™ row:

# links touched=[ 2.(w +1) ]+ [ 2.(w +1) ] [ 2.(w +1) = 2w’ +6w+4.......... (A3)
This procedure repeats until all the rows are included to the growing region. So

total number of links touched for row merging for h row image is equal to:

# Of links= (2W2HOWH4) . (1-1).cuveieeeeereerereereereeeseeseeseseserssens (A4)
Total number of links touched from the beginning of the procedure is:
Total number of links= (5w”h + 5.w.h ) + (Qw*+6w+4) . (h-1))............ A5,
) J
v
Eqn A.2. Eqn A4.
=(7Wht 1 IWhT4h-2WHEW+HA)). oo (A.5)

The term “w.h” is equal to the number of pixels in that region, call it n. By
examining the equation it is found that complexity of this duplicated link removal

is equal to O (n.w) where n is the pixel number in that region.
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APPENDIX E. TIME AND SNR GRAPHS OF IMAGES

E.1. EXECUTION TIME COMPARISON OF SEQUENTIAL
ALGORITHMS

Execution Time Comparison, Image No:1
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Figure A.5. Execution time comparison of image number 1, image size is up to
400,000 pixels, # of regions=1
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Figure A.6. Execution time comparison ofr image number 1, image size is up to
1,440,000 pixels, # of regions=1
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Execution Time Comparison, Image No:2
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Figure A.7. Execution time comparison of image number 2, image size is up to
400,000 pixels, # of regions=1
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Figure A.8. Execution time comparison of image number 2, image size is up to
1,440,000 pixels, # of regions=1
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Execution Time Comparison, Image No:3
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Figure A.9. Execution time comparison of image number 3, image size is up to
400,000 pixels, # of regions=1
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Figure A.10. Execution time comparison of image number 3, image size is up to
1,440,000 pixels, # of regions=1
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Execution Time Comparison, Image No:4
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Figure A.11. Execution time comparison of image number 4, image size is up to
400,000 pixels, # of regions=1
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Figure A.12. Execution time comparison of image number 4, image size is up to
1,440,000 pixels, # of regions=1
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Execution Time Comparison, Image No:5
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Figure A.13. Execution time comparison of image number 5, image size is up to
400,000 pixels, # of regions=1
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Figure A.14. Execution time comparison of image number 5, image size is up to
1,440,000 pixels, # of regions=1

72



E.2. SNR COMPARISON OF SEQUENTIAL ALGORITHMS

SNR Comparison , Image size= 600x600, Im No:1
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Figure A.15. SNR comparison of image number 1, region number is up to 1000,
image size is 600x600.
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Figure A.16. SNR comparison of image number 1, region number is up to 10,000,
image size is 600x600.
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SNR Comparison , Image size= 600x600, Im No:2
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Figure A.17. SNR comparison of image number 2, region number is up to 1000,
image size is 600x600.
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Figure A.18. SNR comparison of image number 2, region number is up to 10,000,
image size is 600x600.
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SNR Comparison , Image size= 600x600, Im No:3
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Figure A.19. SNR comparison of image number 3, region number is up to 1000,
image size is 600x600.
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Figure A.20. SNR comparison of image number 3, region number is up to 10,000,
image size is 600x600.

75



SNR Comparison , Image size= 600x600, Im No:4
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Figure A.21. SNR comparison of image number 4, region number is up to 1000,
image size is 600x600.

SNR Comparison , Image size= 600x600, Im No:4
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Figure A.22. SNR comparison of image number 4, region number is up to 10,000,
image size is 600x600.
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SNR Comparison , Image size= 600x600, Im No:5
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Figure A.23. SNR comparison of image number 5, region number is up to 1000,
image size is 600x600.

SNR Comparison , Image size= 600x600, Im No:5
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Figure A.24. SNR comparison of image number 5, region number is up to 10,000,
image size is 600x600.
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SNR Comparison , Image size= 900x900, Im No:1
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Figure A.25. SNR comparison of image number 1, region number is up to 1000,
image size is 900x900.
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Figure A.26. SNR comparison of image number 1, region number is up to 10,000,
image size is 900x900.
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SNR Comparison , Image size= 900x900, Im No:2
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Figure A.27. SNR comparison of image number 2, region number is up to 1000,

image size is 900x900.
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Figure A.28. SNR comparison of image number 2, region number is up to 10,000,
image size is 900x900.
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SNR Comparison , Image size= 900x900, Im No:3
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Figure A.29. SNR comparison of image number 3, region number is up to 1000,
image size is 900x900.
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Figure A.30. SNR comparison of image number 3, region number is up to 10,000,
image size is 900x900.
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SNR Comparison , Image size= 900x900, Im No:4
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Figure A.31. SNR comparison of image number 4, region number is up to 1000,
image size is 900x900.
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Figure A.32. SNR comparison of image number 4, region number is up to 10,000,
image size is 900x900.
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SNR Comparison , Image size= 900x900, Im No:5
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Figure A.33. SNR comparison of image number 5, region number is up to 1000,
image size is 900x900.
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Figure A.34. SNR comparison of image number 5, region number is up to 10,000,
image size is 900x900.
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E.3. EXECUTION TIME COMPARISON OF DISTRIBUTED
ALGORITHM

Time vs Image Size Comparison, Image No:1
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Figure A.35. Execution time comparison of image number 1, image size is up to
400,000 pixels, # of regions=1
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Figure A.36. Execution time comparison of image number 1, image size is up to
1,440,000 pixels, # of regions=1
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25 Time vs Image Size Comparison, Image No:2
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Figure A.37. Execution time comparison of image number 2, image size is up to
400,000 pixels, # of regions=1

25 Time vs Image Size Comparison, Image No:2
20
- 15
@
e
g
F 10 20
A /
0 T T T T
0 350000 700000 1050000 1400000
Image size (# of pixels)
—a&— O-RSST —¢—P=2 —a— P=3 —%—P=4

Figure A.38. Execution time comparison of image number 2, image size is up to
1,440,000 pixels, # of regions=1
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10 Time vs Image Size Comparison, Image No:3
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Figure A.39. Execution time comparison of image number 3, image size is up to
400,000 pixels, # of regions=1
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Figure A.40. Execution time comparison of image number 3, image size is up to
1,440,000 pixels, # of regions=1
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12 Time vs Image Size Comparison, Image No:4
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Figure A.41. Execution time comparison of image number 4, image size is up to
400,000 pixels, # of regions=1
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Figure A.42. Execution time comparison of image number 4, image size is up to
1,440,000 pixels, # of regions=1
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12 Time vs Image Size Comparison, Image No:5
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Figure A.43. Execution time comparison of image number 5, image size is up to
400,000 pixels, # of regions=1
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Figure A.44. Execution time comparison of image number 5, image size is up to
1,440,000 pixels, # of regions=1
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E.4. SNR COMPARISON OF DISTRIBUTED ALGORITHM

SNR Comparison , Image Size=600x600, im No:1
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Figure A.45. SNR comparison of image number 1, region number is up to 1000,
image size is 600x600.
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Figure A.46. SNR comparison of image number 1, region number is up to 10,000,
image size is 600x600.
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SNR Comparison , Image Size=600x600, Im No:2
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Figure A.47. SNR comparison of image number 2, region number is up to 1000,
image size is 600x600.
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Figure A.48. SNR comparison of image number 2, region number is up to 10,000,
image size is 600x600.
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SNR Comparison , Image Size=600x600, Im No:3
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Figure A.49. SNR comparison of image number 3, region number is up to 1000,

image size is 600x600.
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Figure A.50. SNR comparison of image number 3, region number is up to 10,000,
image size is 600x600.
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SNR Comparison , Image Size=600x600, Im No:4
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Figure A.51. SNR comparison of image number 4, region number is up to 1000,
image size is 600x600.
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Figure A.52. SNR comparison of image number 4, region number is up to 10,000,
image size is 600x600.
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SNR Comparison , Image Size=600x600, Im No:5
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Figure A.53. SNR comparison of image number 5, region number is up to 1000,
image size is 600x600.
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Figure A.54. SNR comparison of image number 5, region number is up to 10,000,
image size is 600x600.
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SNR Comparison , Image Size=900x900, Image No:1
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Figure A.55. SNR comparison of image number 1, region number is up to 1000,
image size 1s 900x900.
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Figure A.56. SNR comparison of image number 1, region number is up to 10,000,
image size is 900x900.
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SNR Comparison , Image Size=900x900, Image No:2
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Figure A.57. SNR comparison of image number 2, region number is up to 1000,
image size is 900x900.
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Figure A.58. SNR comparison of image number 2, region number is up to 10,000,
image size is 900x900.

94



SNR Comparison , image Size=900x900, Image No:3
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Figure A.59. SNR comparison of image number 3, region number is up to 1000,
image size is 900x900.
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Figure A.60. SNR comparison of image number 3, region number is up to 10,000,
image size is 900x900.
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SNR Comparison , Image Size=900x900, Image No:4
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Figure A.61. SNR comparison of image number 4, region number is up to 1000,
image size is 900x900.

SNR Comparison , Image Size=900x900, Image No:4

SNR (dB)

10 T T T T T
0 2000 4000 6000 8000 10000
# of regions

—a— O-RSST —e— P=2 —&— P=3 —%— P=4

Figure A.62. SNR comparison of image number 4, region number is up to 10,000,
image size is 900x900.
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28 SNR Comparison , Image Size=900x900, Image No:5
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Figure A.63. SNR comparison of image number 5, region number is up to 1000,
image size is 900x900.
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Figure A.64. SNR comparison of image number 1, region number is up to 10,000,
image size is 900x900.
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APPENDIX F. VISUAL COMPARISON OF SEQUENTIAL
ALGORITHMS

Figure A. 65. Images used throughout the thesis.

Figure A.65 shows the original images used is our experiments. For visual
comparison two different image sizes are used. One is 600x600 (360,000 pixels)
the other is 900x900 (810,000 pixels).
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Figure A.66. Segmentation results of Image No: 1 of size 600x600
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Figure A.67. Segmentation results of Image No: 1 of size 900x900
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Figure A.68. Segmentation results of Image No: 2 of size 600x600
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Figure A.69. Segmentation results of Image No: 2 of size 900x900
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3, IMAGE SIZE: 600 x 600
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Figure A.70. Segmentation results of Image No: 3 of size 600x600
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Figure A.71. Segmentation results of Image No: 3 of size 900x900
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Figure A.72. Segmentation results of Image No: 4 of size 600x600
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Figure A.73. Segmentation results of Image No: 4 of size 900x900
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Figure A.74. Segmentation results of Image No: 5 of size 600x600
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Figure A.75. Segmentation results of Image No: 5 of size 900x900
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VISUAL COMPARISON OF DISTRIBUTED ALGORITHM
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Figure A.76. Segmentation results of Image No: 1 of size 600x600
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IMAGE NO: 1, IMAGE SIZE: 900 x 900
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Figure A.77. Segmentation results of Image No: 1 of size 900x900
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IMAGE NO: 2, IMAGE SIZE: 600 x 600
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Figure A.78. Segmentation results of Image No:2 of size 600x600
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IMAGE NO: 2, IMAGE SIZE: 900 x 900
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Figure A.79. Segmentation results of Image No:2 of size 900x900
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MAGE NO: 3, IMAGE SIZE: 600 x 600
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Figure A.80. Segmentation results of Image No: 3 of size 600x600
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3, IMAGE SIZE: 900 x 900
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Figure A.81. Segmentation results of Image No: 3 of size 900x900
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Figure A.82. Segmentation results of Image No: 4 of size 600x600
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IMAGE NO: 4, IMAGE SIZE: 900 x 900
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Figure A.83. Segmentation results of Image No: 4 of size 900x900
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IMAGE NO: 5, IMAGE SIZE: 900 x 900
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Figure A.85. Segmentation results of Image No: 5 of size 900x900
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