ANKARA YILDIRIM BEYAZIT UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED
SCIENCES

CELLULAR AUTOMATA BASED RESERVOIR
COMPUTING IN SEQUENCE LEARNING

Ph.D. Thesis by

Mrwan A. H. MARGEM

Department of Electrical and Computer Engineering

July, 2019

ANKARA

CELLULAR AUTOMATA BASED RESERVOIR
COMPUTING IN SEQUENCE LEARNING

A Thesis Submitted to
The Graduate School of Natural and Applied Sciences of
Ankara Yildirim Beyazit University

In Partial Fulfillment of the Requirements for the Degree of Doctor of
Philosophy in Electrical and Computer Engineering, Department of Electrical

and Computer Engineering

by
Mrwan A. H. MARGEM

July, 2019

ANKARA

Ph.D. THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “CELLULAR AUTOMATA BASED
RESERVOIR COMPUTING IN SEQUENCE LEARNING” completed by
MRWAN A. H. MARGEM under the supervision of ASSIST. PROF. DR. OSMAN
S. GEDIK and we certify that in our opinion it is fully adequate, in scope and in
quality, as a thesis for the degree of Ph.D.

Assist. Prof. Dr. Osman S. GEDIK

Supervisor

Associate Prof. Dr. Shafgat UR REHMAN Associate Prof. Dr. Omer KARAL

Jury Member Jury Member
Assist. Prof. Dr. Elif VURAL Assist. Prof. Dr. Javad RAHEBI
Jury Member Jury Member

Prof. Dr. Ergin ERASLAN

Director

Graduate School of Natural and Applied Sciences

ETHICAL DECLARATION

| hereby declare that, in this thesis which has been prepared in accordance with the

Thesis Writing Manual of Graduate School of Natural and Applied Sciences,

e All data, information and documents are obtained in the framework of

academic and ethical rules,

¢ All information, documents and assessments are presented in accordance with

scientific ethics and morals,
¢ All the materials that have been utilized are fully cited and referenced,
¢ No change has been made on the utilized materials,
o All the works presented are original,

and in any contrary case of above statements, | accept to renounce all my legal rights.

Date: Signature:

Name & Surname: Mrwan MARGEM

ACKNOWLEDGMENTS

Writing an acknowledgement... How can | fulfill this job without forgetting someone?
So many interested people asked me how my PhD was progressing. | could not have

succeeded without the help of so many, but I would like to give some special thanks.

Firstly, I would like to express my sincere gratitude to my supervisor, Assist. Prof. Dr.
Osman S. GEDIK for his constant support, sharing the knowledge, mentoring, and his
precious recommendations that assisted me all the time of my research and while

writing this thesis.

I would like to express my appreciation and special thanks to my thesis committee:
Associate Prof. Dr. Shafgat Ur REHMAN and Associate Prof. Dr. Omer KARAL for

their advices and the extended discussions during my thesis.

Special acknowledgement is given to the examiners of the thesis, Assist. Prof. Dr. Elif
VURAL and Assist. Prof. Dr. Javad RAHEBI for agreeing to be the examiners of my
PhD Viva.

My mother was there for me all the time, supporting and encouraging me all the way.
I am really grateful to have such a loving and caring mother. My wife was critical to
the success of this thesis, being there in good times and bad times, giving me strength

to keep going. My children, thank you for your patience with me this long time.

Maybe also a small word of thanks to my own laptop which did not get tired despite

the long trip.

Last, but not least, | thank my personal friends for their unconditional support and

encouragement. This support means a lot to me.

2019, 18 July Mrwan MARGEM

CELLULAR AUTOMATA BASED RESERVOIR COMPUTING
IN SEQUENCE LEARNING

ABSTRACT

Reservoir computing based on cellular automata (ReCA) constructs a novel bridge
between automata computational theory and recurrent neural architectures. In this
study, ReCA has been developed to solve different types of tasks. Several methods
have been proposed to extract the features from the cellular automata reservoir. In most

tasks, ReCA results outperform the state-of-the-art results.

Concerning the model complexity, a sparsely connected network with simple binary
units like elementary cellular automata in ReCA could perform the computational
requirements of the reservoir in order to solve hard sequence tasks that have long term
dependencies. Thus, ReCA can be considered to operate around the lower bound of

complexity.

Sequence learning is an essential capability for a wide collection of intelligence tasks
such as language, continuous vision, symbolic manipulation in a knowledge base, etc.
Therefore, ReCA has been tested using pathological synthetic tasks of sequence
learning that are widely used in RNNs field. ReCA achieves zero error in all
pathological tasks; using only the CA evolution states, at last time step, as a feature
vector to predict the output (LAST method). The CA evolution states at all time steps
(ALL method) can also be used, which improves the ReCA accuracy with large feature
space. To reduce the feature space size, three options are proposed: Each by using only
few states from the reservoir as features, Half by using only one side of CA evolution
states, or f by reducing the dimension of the zero buffers. Using these three options
together significantly reduces the ReCA complexity in some tasks by up to 98% for
training and 94% for testing.

The distributed representation of CA in recurrent architecture (ReCA) could solve the
5-bit tasks with minimum complexity, using only two training examples which is the
lowest number of training examples for any model. Comparing between different
architectures and data representations; ReCA outperforms the local representation in

recurrent architecture (stack reservoir), then echo state networks and feed-forward

architecture using local or distributed representation.

ReCA also could solve nonbinary tasks after using one hot encoding to binarize the
dataset. The results are perfect for the signal classification and IRIS tasks where ReCA
achieves zero error. While for the Japanese vowels task the results are competitive;
less than the state-of-the-art results a little bit. Finally, ReCA has been tested using the
20 QA bADI tasks from Facebook; These tasks are very hard and require an
understanding of the meaning of a text and the ability to reason over relevant facts.
Using only supporting facts, ReCA could solve most of bAbl tasks 15 out of 20 has
100% accuracy and 2 tasks above 90%, whilst 3 tasks less than 90%.

In addition, the usage of cellular automata in the reservoir computing paradigm greatly
simplifies the architecture, makes the computation more transparent for analysis, and
provide enough computation for large domain of tasks. Furthermore, the reservoir in
ReCA can be implemented using ordinary logic gates or Field programmable gate
arrays FPGAs, resulting in reducing the complexity in space, time and power

consumption.

Thus, our work raises the question of whether real-valued neuron units are mandatory

for solving complex problems that are distributed over time.

Keywords: Recurrent neural networks, reservoir computing, cellular automata,
ReCA, sequence learning, long term dependencies, complexity, recurrent architecture,

feed-forward architecture, distributed representation, local representation.

Vi

DiZi OGRENMESINDE HUCRESEL OTOMAT TEMELLI
REZERVUAR HESAPLAMA

0z

Hicresel otomasyon temelli rezervuar hesaplama (ReCA) otomasyon hesaplama
teorisi ve yinelemeli sinir aglart mimarileri arasinda yenilik¢i bir koprii kurmaktadir.
Bu calismada, cesitli tipteki gorevlerin ¢ozlilmesi amaciyla ReCA Onerilmistir.
Bununla birlikte, hiicresel otomasyon rezervuarindan ¢esitli 6znitelikleri ¢ikarmak igin
birgok yontem Onerilmistir. ReCA bir¢ok gorevde teknigin bilinen durumundan iyi

performans gostermistir.

Model karmasikligi goéz oniinde bulunduruldugunda, ReCA biinyesindeki temel
hiicresel otomasyon benzeri basit ikili birimler ile bagh seyrek baglanmis bir ag, uzun
stireli baglilik iceren zor dizi gorevlerin ¢oziilebilmesi igin gerekli hesaplama
gereksinimlerini karsilayabilmektedir. Bu yoniiyle ReCA’nin karmasikligin alt

sinirlarinda isledigi distiniilebilir.

Dizi 6grenmesi, dil isleme, siirekli gorii isleme, bilgi tabaninda sembolik
manipiilasyon gibi problemlerin ¢oziilmesi i¢in gerekli bir kabiliyet olarak karsimiza
cikmaktadir. Bu yoniiyle ReCA, RNN literatiiriinde yaygin olarak kullanilan patolojik
sentetik gorevleri kullanarak test edilmistir. ReCA sadece son adimdaki CA evrim
durumlarini ¢ikis1 tahmin etmek igin 6znitelik vektorii olarak kullanarak tiim patolojik
gorevlerde sifir hataya ulasmistir (LAST yontemi). Ayrica tiim zaman adimlarindaki
CA evrim durumlart (ALL yontemi) biiyiik 6znitelik uzay: ile ReCA hassasiyetini
arttirmak i¢in kullanilabilmektedir. Oznitelik uzay:r biiyiikliigiinii diisiirmek igin 3
yontem Onerilmistir: EACH: Rezervuardaki sadece birka¢ durumun kullanilmasi,
HALF: CA evrim durumlarimin sadece bir yarisinin kullanilmast veya f: sifir
tamponlarinin boyutunun disiiriilmesi. Bu ii¢ yontemin bir arada kullanilmas1 ReCA
karmasikligin1 bazi gorevlerde egitimde %98 ve testte %94 olmak izere biiyuk oranda

diistirmiistir.

ReCA mimarisinde CA’nin dagitik gosterimi 5-bitlik gorevleri sadece 2 egitim 6rnegi

ile minimum karmasgiklik ile ¢6zmekte olup bu durum herhangi bir model i¢in en diisiik

vii

sayida egitim Ornegidir. Farklt mimariler ve veri gosterimleri karsilagtirildiginda,
ReCA’nin yinelemeli mimarilerdeki yerel temsiller (yi8in rezervuari) ile yerel ve
dagitik temsil kullanan yanki durum aglar1 ve ileri beslemeli mimarilerden iyi

performans gosterdigi goriilmiistiir.

ReCA, veri seti bire bir kodlama ile ikili hale getirildiginde ikili olmayan gorevleri de
cozebilmektedir. Bu sekilde gerceklestirildiginde sinyal siniflandirma ve IRIS
gorevlerinde ReCA sifir hataya ulasarak miikkemmel sonuclar vermistir. Ote yandan
Japon iinlii harfleri gérevindeki sonuglar teknigin bilinen durumunun bir miktar altinda
kalmistir. Son olarak ReCA Facebook tarafindan 6nerilen 20 QA bADbI gorevinde test
edilmigstir. Bu gorevler olduk¢a zor olup, metnin anlagilmasi ve ilgili gergekler
hakkinda yorum yapilabilmesini gerektirmektedir. Sadece destekleyici gercekler
kullanilarak ReCA bu gorevlerin cogunu ¢ozebilmistir (15 gérevde %100 dogruluk, 2
gorevde %90 tizeri dogruluk ve 3 gorevde %90 alt1 dogruluk)

Bununla birlikte, hiicresel otomasyonun rezervuar hesaplamasindaki kullanimi
mimariyi biiyiik Olciide basitlestirerek hesaplamalarin analiz amaciyla daha seffaf
olmasin1 saglamakta ve biiyllk alan gorevleri i¢in yeterli hesaplama kabiliyeti
sunmaktadir. Ayrica, ReCA biinyesindeki rezervuar, basit mantik kapilar1 ve FPGA

ile de gerceklenerek ebat, zaman ve gii¢ tiiketimi karmagikliklarini azaltabilmektedir.

Boylelikle bu ¢aligma zaman igerisine yayilmis kompleks problemlerin ¢6ziilebilmesi

icin reel-degerli noronlarin gerekliliginin sorgulanmasini saglamaktadir.

Anahtar kelimeler: Yinelemeli sinir aglari, rezervuar hesaplama, hicresel
otomasyon, ReCA, dizi 6grenmesi, uzun sireli baglilik, karmasiklik, yinelemeli

mimari, ileri beslemeli mimari, dagitik temsil, yerel temsil

viii

CONTENTS

Ph.D. THESIS EXAMINATION RESULT FORMc.coooiiiiiiieciic e i
ETHICAL DECLARATIONooiiieieeseee et i
ACKNOWLEDGMENTS ...ttt iv
ABSTRACT .ottt ettt bttt b et st e st et et et e bt ene et s %
(7 vii
NOMENCLATURE ..ottt ettt anas Xiii
LIST OF TABLESottt e nna e XVI
LIST OF FIGURES ..ottt et Xix
CHAPTER 1 - INTRODUCTION......oeitiiiiieiitsierisie st es 1
1.1 ReServoir COMPULINGooeeiiieiieie et siie e e see sttt sbe s sreesee e e sree e 2
11,1 ESNS FramMEWOTK ...c.cooviiiiiiiiiiiisiieieie sttt 3
1.1.2 PRySICAl RESEIVOIIocvieiiiiiieiiesieee e 5

1.2 Cellular AUTOMALAooveieiiiiiiiiseeieee e 5
1.2.1 Dimension and Neighborhoodcccccoiiiniiniiiin e 6
1,22 Cell STAES ..ot 7
1.2.3 LOCAI RUIE ..o 7
1.2.4 Boundary CONItION.......ccceieiiieieeriesie s eie e e eie e sie e e sre e e enae s 9
1.2.5 Elementary Cellular Automata Classification............c.ccceevvveiinnennnnne 10
1.2.6 Linear Cellular AUtOMALA...........ccevurriiiiieieieree e 11
1.2.7 Elementary Cellular Automata with Memory..........c.cccoevvivnienennnne. 12

1.3 Overview of Reservoir Computing based on Cellular Automata................ 12
1.4 CONIIDULIONS ...ttt 15
1.5 THeSIS OULHNE ..vociieiiciiiee s 16
1.6 Publications from the TheSISccccoiiiiiiiiiieie e 17

CHAPTER 2 -RESERVOIR COMPUTING BASED ON CELLULAR

AUTOMATA (RECA) ..ttt bbb 18
2.1 ReCA IMPIementation..........ccooeiieiiieieeie e 18

0 St = 0 Tof Yo [To] = Vo - USRS 19
2.1.1.1 Utilizing Buffers (Zeros Array R).......ecoccueieeeiiiiee et e 19
2.1.1.2 Reducing INterference Ri......cccceeeeeicciiiieeee ettt e e 20

2.1.1.3 Multilayer Cellular Automata Expansion CA........cccccceeerieeecccieeeecciiee e 21

2.1.2 Cellular Automata ReServoir Stage.........ccceeveruerivereeresieeseesesiesaeneeas 22
2.1.3 REAA-0OUL STAGEeoveeiiieeiieerieeie et 24
2.2 Covariance and StaCk RESEIVOINccevviriiiiriieniseeee e 25
2.2.1 COoVarianCe RESEIVOIcccueiiiieiieieeie e 25
2.2.2 SEACK RESEIVOIN ..ot 26
2.3 Pathological Synthetic Taskscccooiiiiiiiinie e 27
2.3. 1 IMEMOIY TASKS ..vveivieiieiiesiee et see e e e e nae e eneeas 27
0 T8 0t R T =) A I 1 PP 28
2.3.1.2 20-Bit TASK..uiiueeeueteiiiseeetetesetsesse sttt st s st es s nsnses 29
2.3.1.3 Random Permutation TasK.ccccccceeiriiieeiiiiieeiniiieessreeessieeeessveee s e 29
2.3.2 Temporal Order TaSK.cccccvereriieieeiiesie e sie e sie e 29
2.3.2.1 2 SYymMDbBOIS TaSK. ..uuriiieeeiee e 29
2.3.2.2 3 SYMDbBOIS TASK. ..uuiiiiieiiieieiee e 30
2.3.3 XOR, Addition and Multiplication Tasks.cccccceeeirirrinnieninniennnns 30
2.3.3.1 XOR TASK cuvvririuieietsiriiseieieteesestese e ses st esess et sssessne e s s sssesessesesnnses 30
2.3.4 Binary ENCOAed TaSKSccccoveiueiieriieiieieeseeiesiesee e see e sie e snaeneeas 31
2.4 EXPEIIMENTS. .. .iiiiitietieie sttt sttt st et e esbeeneeereesreenee e 32
2.4.1 TraINING STAQE ...c.veiveeie e cees ettt re e 32
2.4.2 TESHNG STAQE ..o ieeitieiieie ettt 32
243 Model EVAlUALION........oiiiiiiiieiee e 33
2.5 RESUILS ..o 33
2.5.1 General RESUITScooiiiiieiieee e 34
2.5.2 The Effect of Training EXamples Nirain.......ccoeererreeniriniienenieseennens 35
2.5.3 The Effect of Sequence Length Tcccoovveiveie i 35
2.5.4 The Effect of the Expansion Ratio f...........cccooeriiiiiinin i 36
2.5.5 Multilayer CA EXPaNSIONcceiieiierieiieieeieseeseesis e e sse e saeneeas 36
2.5.6 ONE HOt ENCOUING....cviiiiiiieiieie st 37
2.5.7 Comparison with Other APProaches...........cceeveeerveresriesieeseseseenieas 37
2.6 DISCUSSIONSuiiuiitieiietiesteeie sttt ettt steete s e be e besreesbeese e s e sbeeneesreesteenee e 38
CHAPTER 3- COMPLEXITY REDUCTIONOFReCA.......cccoviiiiiiinnn. 40
3.1 ReCA IMPIementation..........cccceiverireiieieeie e 40
3.1.1 Feature Extraction from the ReSErVoIr........cccccooeiiiiiiinnienenieieens 40

3.1.1.1 Essential FEature EXTraCtionueeeeereeeeuieieeeiiiereeereeerereeerereeereeeeereeseeee.. 41

3.1.1.2 Supplementary Feature EXtraction........ccccecuieeeeciiieeeciiee e 42

T o d o 1= 1111 0] USSR 43
33 RESUILS e 44
3.3.1 5-Bitand 20-Bit TaSKScccoiriiiiiiieiirer e 45
3.3.2 Random Permutation TaskK.........cccouiiiiiiiriiiienie e 46
3.3.3 Temporal Order TASKScccccvererieiieiesiee e ee e see e sa e 48
3.3 4 XOR TASK .ttt et 50
34 DISCUSSIONSc.uitiitieiieteesie ettt sttt ettt sttt sttt e et bbb ene e 50

CHAPTER 4 - ReCA VS. FEEDFORWARD ARCHITECTURE AND LOCAL

REPRESENTATION ..ottt e s 52
4.1 ReCA IMpPIementation.......c.cccveieiieieiieieese e e sie e sie e sae e srae e 52
4.1.1 Feature Extraction from the RESEIVOIr.........ccccoviiieiiiinnieieeeceeas 53
4.1.2 ReCA in Feedforward ArchiteCtureccocuvvriiriveieieie s 54
4.2 EXPEITMENTS...uviiiiiitieieitiestee it eeeste et este et seesbeesbessaesbeesbesseesreesbesneesbeeneens 55
421 5Bt TASK ettt 55
4.2.2 Generalized 5-Bit TaskKcccccoiiriiiiiiiie e 56
4.2.3 Training\TeStiNg STAgESvevveieeiecieie e 56
424 ReCA EVAlUBLIONoiiiiiiiii e 57
4.3 RESUITS ..ottt 57
4.3 1 5-BItTaSK ..ot s 58
4.3.2 Generalized 5-Bit TaSKcceveiriiiniiieiiiesiseeeee e 61
4.3.3 CA Feedforward ArchiteCture..........ccooveiiiiiieneseseee e 63
4.3.4 Local Representation Models...........ccoooviiiiiiininieie e 64
4.3.5 Comparison with other Approaches............cccooveveiieiiveiecieseeie e 64
A4 DISCUSSIONS...ccueiiuieiteetesiiesteestesseesteestesseesbeesteeseesbeesbesseesbeesbesseesbeesbesseesseenens 66

CHAPTER 5 - NONBINARY AND STATIC TASKS.......c.coiiiiiii 71

51 ReCA IMpIementation..........ccccceiveriiiieieere e se e 71
5.2 ONE HOt ENCOUING .ccuviiiiiiiieiiciie et 71
5.3 Sin/Square Classification TasK...........ccoivereiiierieeiesie e 72
5.3.1 INPUt BINANZALIONc.viiiieiiieiieeie e 73
5.3.2 RESUIS ..ottt 73

Xi

5.4 Japanese VOWEIS TaSK.......ccccecierveriiieiierie e 74

541 RESUILS ..ottt et 75
5.5 TRIS TASK..iiiiiieieiieieiesie ettt 76
55.1 Feedforward and Recurrent ArchiteCture...........cccocevvrieiieeneniesieennns 76
552 RESUIS....oiiiiiiet e 76
5.6 DISCUSSIONSuiiueitieiieiiesteeiesitestee e sseesteetesseesbe e eesseesbeeneesseesbeeneesseesbeenee e 78

CHAPTER 6 - ReCA in QUESTION ANSWERING...............ccoceveeet... 80

6.1 The (20) QA DADI TaASKS....cceciieiieicie e 80
0.2 REIAIEU WOTK...coee e 85
6.3 Training MethodScooveiiiiecie e 87
0.4 RESUILS .ottt 89
B.5 DUSCUSSIONS....eeeeee et e ettt e e e e e e e et ettt e e e e e e e e e e e e e e e e e e aeeeereeens 90
CHAPTER 7 - CONCLUSION AND FUTURE WORKcoiiiiiiciiia 92
T 1 FULUIE WOTK oo 94
REFERENGCES. oot ettt e e aa e 96
CURRICULUM VT AE oottt 106

Xii

NOMENCLATURE

Roman Letter Symbols

Nitest
Ntrain

-

-4 »w = ™

Combination of A®™ for all time steps, i.e., n changes from1to T

Vector concatenation of A

CA evolution state at iteration i in time step n
Concatenation of all iterations (from 1 to I) of CA evolution states in time
step n

Reservoir activation function in ESNs

Expansion ratio

Total number of CA iterations in the reservoir at single time step
Number of selected states in Each option that are used as feature vectors
Dimension of X,

Dimension of feature vector

Dimension of u(n)

Dimension of y(n)

Number of reservoir neurons (Reservoir size)

Number of Neighbors

Number of States

Number of testing examples

Number of training examples

CA radius

Number of input permutation or the dimension of the zero buffer.
Number of bits to represent a single bit of input to reduce the interference.
CA state set

Number of time steps in the dataset (Sequence Length)

Distractor period

Original Input at time step n

Reservoir weight matrix in ESNs

Input Weight Matrix in ESNs

Output Weight Matrix

Reservoir state vector at time step n in ESNs.

Input at time step n after preprocessing before the reservoir
State collection matrix from all training examples

Xiii

(Xtrain) T Pseudo-inverse of X;yqin

Y
Y
y(n)
y(n)

Ytrain

Output matrix
Binarized output
Output at time step n
Predicted output

Collection output matrix from all training examples (the target)

Greek Letter Symbols

a Leaking rate in ESNs

p(W) Spectral radius of W in ESNs

o Input weight scaling in ESNs

Subscripts

b Binarized

d Distractor

i Iteration number

in Input

out Output

n Time step

train Training examples

test Testing examples

Acronyms

Al Artificial Intelligence

ALL Using all iterations of CA evolution states in all time steps as a feature
space.

ANNSs Artificial Neural Networks

BPDC Back-Propagation Decorrelation Neural Network

CA Cellular Automata

CAr Local Rule of Cellular Automata

DL Deep Learning

Each Using only k evolution states for each time step as a feature space

ECA Elementary Cellular Automata

Xiv

ECAM
ELMs
ESNs
FNNs
FPGAs
GPU
Half
LAST

LPC
LRi
LSB
LSMs
LSTM
MemN2N
MemNN
ML
MSB
NLP
NMSE
NMT
NR
NS
NTM
PS
QA
RC
RCNs
ReCA
RNNs
SF
SVMs
TPR

var(y)

Elementary Cellular Automata with Memory
Extreme Learning Machines
Echo State Networks
Feedforward Neural Networks
Field Programmable Gate Arrays
Graphics Processing Unit
Using only one side of CA evolution states as a feature space
Using all iterations of CA evolution states in last time step as a feature
space.
Linear Predictive Coding
Linear Regression Input
Least Significant Bit
Liquid State Machines
Long Short-Term Memory
End-to-End Memory Networks
Memory Networks
Machine Learning
Most Significant Bit
Natural Language Processing
Normalized Mean Square Error
Neural Machine Translation
Neural Reasoner
Next State
Neural Turing Machine
Present State
Question Answering
Reservoir Computing
Reservoir Computing Networks
Reservoir Computing based on Cellular Automata
Recurrent Neural Networks
Supporting Facts
Supporting Vector Machines
Tensor Product Representation
Output variance

XV

LIST OF TABLES

Table 1.1 ECA rules: PS is the present state of the 3-neighbors, NS is the next state
(update) of the center cell, the last column is the rule number, which is the decimal
equivalent of its 8-bit DINArY StriNg. ..o 7

Table 1.2 88 equivalent sets of ECA rules with their Wolfram classes. 8

Table 2.1 Results for all pathological tasks using the three proposed reservoirs (CA,
Covariance, Stack). The last column is the number of false bits in the predicted output
of the test set. The 3™ column presents the used rule in multilayer CA with its number
of iterations. The other columns are for various parameters of the proposed models [8].
.. 34

Table 2.2 The increasing of Ntain improves the accuracy in ReCA: where, Nest = 100
and f = 1, for 20-bit task (Tq¢ = 300, | = 20 and Ri = 2), and random permutation task
(T=1000and 1 =2). USING Ul 90.cooeeieiieiieie e 35

Table 2.3 The minimum training examples to achieve zero test error w.r.t. the
increasing of sequence length T. For random permutation binary encoded task, where
1=4 and =1 uSiNg rUIE 0.eeiee e 36

Table 2.4 The effect of expansion ratio on the accuracy (No of False bits) in 5-bit task.

Table 2.5 The No of False bits in XOR task; using various ECA classes and rules in
the MUltilayer eXPanSION.oiiiiiieiie e 37

Table 2.6 20-Bit task with binary encoded input using ESNs: The No of false bits for
different values of reservoir size K at T¢ = 200, Ntrain = 500 and Ntest = 100. For the
input matrix weights in Basic ESNs ¢1,2,3 =2.5%x10—-6,04 =1 x 10 — 6, and
o5 = 1. For more details about Blind, Basic conditions, reservoir size (K) and input
matrix weights (o) in ESNs please refer to [90].cccovveveiieniiie e 38

Table 2.7 The comparison of the number of operations and correspondence required
bits between ESNs and ReCA for examples of pathological tasks [8]............cce..... 38

Table 3.1 Feature vector dimension Lca for several methods of feature extraction from
the CA reservoir where Lin is the length of the original input (before the encoding
stage), T is the input sequence length, R; is the input expansion to minimize the
interference, R is the buffer dimension, | is the iterations in the CA reservoir, Kk is the
selected states in the Each option, L is the length of the CA reservoir input (after the
encoding stage) and f is the expansion ratio. Notes: a- The first column (LAST) is the
classical method that has been used in the previous chapter [8] and it will be compared
with the other new methods that proposed in this chapter [9]. b- For Lca of the Half
option, it is dependent on the condition that will be used LAST, ALL or Each [9].. 44

Table 3.2 5 and 20-Bit Tasks: The reservoir parameters of the best results to achieve
zero test error using different methods for feature extraction. Lca and LRi are in bits,
%Test and %Train Reducing are the reducing percentages of Lca and LRi between the
new methods in this chapter (the methods in [9]). and the LAST method in Chapter 2
(the method in [8]). The other parameters are explained in Table 3.1. The first column
presents the results of the LAST method used in [8] and we compare its results with

XVi

other new methods. The bold values are the best obtained results (minimum dimension
for Lca and LRi) and the minimum number of training examples Nin to achieve the
p4=] (O (= =T o] g 1 OSSP 45

Table 3.3 Random Permutation Task: The reservoir parameters of the best results to
obtain the zero test error using different methods for feature extraction. The parameters
are explained in Table 3.1. If the %Test or %Train Reducing is greater than 100%, it
means our result is greater than the result in [8]; i.e., there is no reduction. The bold
values are the best obtained results [9].ccooiriiiiiii e 47

Table 3.4 Random Permutation Task (Binary Encoded): The effect of sequence length
increasing T on the minimum number of training examples to attain zero test error,
using LAST and ALL MEthOdS.cccoieiiiiecieicce e 47

Table 3.5 Random Permutation task: No of False Bits and Feature vector dimension
Lca w.r.t. Niain for ALL, LAST and ALL-Each methods with different values of
expansion ratio f, where T=500, 1=2 and Ntest = 100 using rule 90.cccceevrnne. 48

Table 3.6 Temporal Order Tasks: The reservoir parameters of the best results to obtain
the zero test error using different methods for feature extraction, where T = 50, Lin = 6
and Ri= 1. The parameters are explained in Table 3.1. If the %Test or %Train Reducing
is greater than 100%, it means our result is greater than the result in [8]; i.e., there is

no reduction. The best results are in bold [9].........cocevivevieie i 48
Table 3.7 Temporal Order Tasks: different parameters for ALL-Each and LAST
methods to achieve zero test error using rule 150.........cccooeviiiiiiecieeie e 50

Table 3.8 XOR Task: The reservoir parameters of the best results to obtain the zero
test error using different methods for feature extraction, where the Multilayer CA Rule
is 40 and the number of iterations in the Multilayer CA stage is I-Multilayer = 1. The
parameters are explained in Table 3.1. If the %Test or %Train Reducing is greater than
100%, it means our result is greater than the result in [8]; i.e., there is no reduction [9].
.. 50

Table 4.1 ECA rules that achieve zero test error in 5-bit task using Normal and
Overwrite methods with the parameters (I, k, f) and feature vector dimension Lca
where | is the number of all CA iterations in the reservoir, k is the number of selected
iterations that will only be used for training in Each option, and f is the expansion ratio.

Table 4.2 ECA rules that achieve zero test error in 5-bit task using Normal and
Overwrite methods with the parameters (I, k, f) and feature vector dimension Lca.
The minimum dimension Lca is in bold numbers. Note: For Half option, the right side
was used in rule 15, any side from the both can be used in rules 90, 165 and the left
side was used in the Other TUIES.cooieiiee e 59

Table 4.3 ECA rules that attain zero test error in 5-bit task using Normal method for
XOR, Binary and Gray options with the parameters (I, k, f) and feature vector
(o[TeT 0K [o] o I G N TSRO P PSRRI 60

Table 4.4 ECA rules that achieve zero error in 5-bit task using Normal method for
XOR, Binary and Gray options with the parameters (I, k, f) and feature vector
dimension Lca. The minimum dimension Lca is in bold numbers. Note: For Half

XVii

option, the right side was used in rule 15, any side from the both can be used in rules
165 and the left side was used in the other rules. ... 61

Table 4.5 ECA rules that Succeeded to obtain zero test error using several methods
for feature extraction with two and three examples for training and 100 trials. The
minimum dimension of Lca S INDO0Id. ..o 62

Table 4.6 The minimum complexity results for 5-bit task where T4=200; using several
approaches that utilize recurrent architecture of RC based on CA except stack reservoir
which is used local representation instead of CA. The results are listed in ascending
order, i.e., the best result is on the top. For any details, please see the appropriate
reference in the 2™ COIUMN.c.cvevecceccce et 65

Table 4.7 Minimum training examples for the generalized 5-bit task where Tq=200 to
attain zero test error using echo state networks ESNs with three levels of
effort/expertise, where N is the reservoir size, « is the leaking rate and p is the spectral

radius. For more details please See [90].....ccoviieiiiiiiieree e 66
Table 4.8 Minimum training examples for the generalized 5-bit task where Tq=200 to
achieve zero test error using different methods with their parameters. 66
Table 5.1 One hot encoding: Decimal numbers are represented by one hot encoding.
.. 72
Table 5.2 Binarization of 20 samples of a sine wave with an amplitude of 0.5 using 11
DitS 0Ne NOt rePreSENTALION.cc.eeiiiiie et 73

Table 5.3 ReCA parameters to solve the Sine/Square task and comparison between
our results with 4 ECA rules (top) and the model in [51], which is also used RC based
(0] (T 07 N o To 1 0] 1) SRS 74

Table 5.4 Japanese Vowels Task: Results obtained from ReCA. Where I is the number
of CA iterations in the reservoir, k is the selected evolution states in the reservoir to be

used for prediction in the read-0ut StAJE.cereriiiierenie s 75
Table 5.5 IRIS Task. Feedforward architecture results.cccoceveveniinnieniinnnnnn, 77
Table 5.6 IRIS Task. Recurrent architecture results.coccooeveniiieniieneseneene 77
Table 5.7 IRIS Task: Comparison between ReCA and the related work that uses RC
based on CA with a different approach in [51].......ccooeiiniiiiiiieeeee e 77
Table 5.8 IRIS dataset results for various classification algorithms using WEKA tools
[L27]. oottt 78

Table 6.1 The 20 QA bADlI tasks results: Facebook team work on MemNN [120] and
MemN2N [123], MitaMind Lab works on DMN [119], Microsoft team work on
reasoning in vector space (TPR model) [121], IBM team work on NMT and NTM
[125], and Noah's Ark Lab, Huawei Technologies team work on NR [126]. LSTM

results are obtained from [120] using the LSTM created in [13]......cccccevvvivervenenne. 86
Table 6.2 ReCA accuracy for all 20 QA bAbI tasks using ALL and LAST options,
where | is the number of CA iterations in the reServoir........cc.cccovevveveiieesiesiesieennnns 89

Table 6.3 Comparison between ReCA, NMT, and NTM using only supporting facts:
the results of NMT and NTM from [125].....cccoieiieiiieieee e 90

Xviii

LIST OF FIGURES

Figure 1.1 Reservoir computing paradigm: (a) The input is projected randomly in an
RNN (reservoir) and the evolution states of the reservoir x(n) are harvested to calculate
the output weight matrix Wout which is then used to predict the output. (b) Physical
Reservoir: The RNN reservoir in (a) is replaced by a high dimensional dynamic

PRYSICAL SYSTEIM. ...ttt bbbt b et sbeebesneesbe e e 3
Figure 1.2 Neighborhood Dependency: (a) 5-Neighbors, (b) 9-Neighbors,
(c) 3-Neighbors, and (d) 5-NeighbOrS.cccviiiiiii e 6

Figure 1.3 ECA Rule 150: All possible combination for one iteration of the center cell
xi for rule 150 and its Boolean expression. The binary string (10010110) produces the

rule NUMDBEr (150)10 [B5]. .vvovverveeieiieie ettt sre e 9
Figure 1.4 Boundary Conditions: (a) Null Boundary, (b) Periodic Boundary,
(c) Adiabatic Boundary, (d) Reflexive Boundary, (e) Intermediate Boundary. 9

Figure 1.5 State-time diagram of some examples of ECA Wolfram Classes: (a) Class
I Uniform, (b) Class Il Periodic, (c) Class Il Chaotic, and (d) Class IV Complex or

EAQE OF CNA0S. ...ttt e 10
Figure 1.6 Random permutation of the original input to produce the processed input
X, which is projected into the CA FeSEIVOIN.cceveiieiiiii et 13

Figure 1.7 Normalized addition as an insertion function ($) to create the recurrent
connection which produces the next initial state of the CA reservoir. 14

Figure 2.1 ReCA framework stages indicating vector lengths for each stage: (a)
Encoding Stage composed of; (CA) Multilayer expansion using CA rules, (Ri) which
expandes each input bit by Ri bits and adding (Zero Array) R-dimensional buffers for
both sides of the input. (b) CA Reservoir Stage; The L-dimensional output of Encoding
Stage is projected onto CA reservoir which evolves it using certain ECA rule in
multiple time iterations I. (c) Read-out Stage; The reservoir output (LCA-dimensional
feature vector) is trained by Linear regression to find the output weights of Wout
matrix, which is used to predict the output y [8]. ...c.covereriiiiii e, 18

Figure 2.2 Two R-dimensional zero vectors (buffers) are added to both sides of the
original input u(n), to produce the L-dimensional initial state Xn that will be evolved
using ECA rule in the reservoir stage [85].......ccccvverierieerienieiiese e 19

Figure 2.3 An example for how to reduce the interference between nonzero bits in rule
90 by adding R; with rotation, when there are nonzero bits that have the same location
in consecutive time steps as in; (a) The original 3-bit input for two time steps, (b) Ri =
4 bits to represent each input bit, with two iterations of CA evolution. The new input
at n = 2 is represented using R;, it might interfere with the previous input, and (c) But,
due to the rotation, there is no interference between the 1’s (in yellow) from 1% time
step and the bold 1’s (in orange) from the 2" time Step.ccoveveveveeerreeeeeeereennns 20

Figure 2.4 An example for how to reduce the interference between nonzero bits in rule
90, by selecting Ri =4 (even value) and rotation, when there are nonzero bits that have
different locations in consecutive time steps as in; (a) The original 3-bit input for two
time steps, (b) Ri = 4 bits to represent each input bit, with two iterations of CA

Xix

evolution. The new input at n = 2 is represented using Ri, it might interfere with the
previous input, and (c) But, due to the rotation and even value of R;, there is no
interference between the 1’s (in yellow) from first time step n = 1 and the bold 1’s (in
PINK) from Second tIMe STEP N = 2. woveiiiiiieese e 21

Figure 2.5 (a) original input sequence before the encoding stage. (b) Encoding stage
and CA Reservoir stage: Adding zero array with length R to obtain the reservoir input
sequence from Xy to Xt. Then, the cellular automaton is initialized with the first time
step input of the sequence, so A0(1) = X1 (with size of L). The CA evolution states
Ai(n) (i changes from 1 to I) will be used as a feature space to estimate the output y(n)
using linear regression in the read-out stage [8].cccovveririiiinie i 24

Figure 2.6 Stack reservoir (Local recurrent architecture): (a) The input sequence u,
and (b) The input is consecutively memorized as in stack memory to produce the
feature space; the first row at n = 1 is used to predict the output at first time step, the
second row is used to predict the output at second time step and so on [85]. 26

Figure 2.7 An example of 5-bit task: The input and output length Lin=Louw=4 bits. The
first 5-time steps are the 2-dimensional input memory pattern and the last 5-time steps
are the main output which is a repeated (memorized) input pattern (Shadow Bold), but
we have to note that the whole output bits (4 bits) for all time steps (T) should be
predicted. The distractor input [0 0 1 0] is at the middle of the task for Tq time steps,
and the last time step of it is a cue signal (Bold 1 in u3) as a mark to repeat the input

pattern in the output. The total sequence length of the task is T=T4+10 [85]............ 28
Figure 2.8 Temporal Order (2 Symbols) Task: The order of the two events A and B
with the four possible indicator outputs at last time Step.cccoceviveveviievieeic e 30
Figure 2.9 XOR Task in different SitUations.cccccevereeninienienise e 31

Figure 2.10 Binary encoding for payload inputs of 20-bit task, the length is reduced
from 5 to 3. Thus, the total input and output length for 20-bit task are reduced from 7
101 TSRS 31

Figure 3.1 Feature extraction from the space-time diagram of the CA evolution states
in the reservoir at a certain time step n (CAout matrix). As an example, ECA rule 150
is used with a single "1' initial state and 15 iterations. Only k iterations can be used as
features in Each option and/or using only the Half (Right or left) side of CAou matrix
as features, and/or using the features after reducing the columns of CAqut matrix by
selecting expansion ratio f < 1 [9]. Note: White squares represent the zeros. 43

Figure 3.2 20 Bits Task: No of false bits vs Nain for LAST and LAST-Each-Half
(Right and Left) methods, where k =3, I =16, T =50 and Ri = 8, using Rule 90.... 46

Figure 3.3 Random Permutation Task: No of False Bits vs the expansion ratio f using
rule 90 for ALL and LAST methods. Where, I =2, T = 100, Nirain = 100 and Nest =

L00. ettt e et e e a b r e e abe e e a e e e n e e e nrreeaas 47
Figure 3.4 2 Symbols Order Task: No of False Bits vs expansion ratio f where T = 50,
I =16 and Ntrain = 900 USING FUIE 150, ...veiiiiiiieieiee e 49

Figure 3.5 3 Symbols Temporal Order Task: No of false bits vs Nin for ALL, LAST,
ALL-Each and ALL-Each-half (Right, Left) methods, where T =50, | =8and k =1
USING TUIE 150, ...ttt e e e e teene e s neeeeeneenns 49

XX

Figure 4.1 Types of feature extraction (a) Each; using 3 iterations out of 15 from CAout
matrix in Figure 3.1, i.e., k=3. (b) XOR; using bitwise XOR operation for all columns
of the matrix in part (a) to produce the feature vector, (c) Binary; converting the binary
value of each column of the matrix in part (a) to decimal number, and (d) Gray; using
the Gray code instead of the binary code in (C) [85].....cccccerviieriveiiiiiiiece e 54

Figure 4.2 Information flow in ECA for five iterations space-time diagram of different
rules for a single non-zero initial state with one iteration of a center cell for each rule:
(a) One-way and (D) TWO-WaY [85]......cccrieriiiieriieie e s 60

Figure 4.3 Feature space for a one-way rule: (a) Complete; using the whole space
(Both sides and f = 1), hence the largest length L=16 bits, (b) Half, f =1; Using only
the left side but f should be equal to 1 to conserve the whole information. In this case,
L=10 bits, and (c) f = 0.5; Using both sides for R = 3 bits rather than 6 bits in (b). The
first three columns in (b) are transferred to last three columns in (c) after using periodic
boundary condition, thus (b) and (c) are identical in the regressor. White squares
FEPFESENT ZEIOS [B5]. ..viuviiiieiieeiisiie st ettt reeaeeneenns 61

Figure 4.4 Shift rules; five iterations space-time diagram of different ECA rules for a
single non-zero initial state with one iteration of a center cell for each rule. (a) left
shift, (b) right shift, (c) left shift single and double bits, (d) left shift double bits, and
(e) inverted right shift. Note: The shift is independent on the initial state only for two
rules 170 and 15 where their Boolean expressions are xi(n + 1) = xi + 1(n) and

xi(n + 1) = xi — 1(n) respectively, where x is the inverse of x [85]..........c.ccceeu.. 63
Figure 5.1 Sine/Square wave classification Dataset.c.ccoocevveeieniieniinnieerieseeen 72
Figure 5.2 The 12 LPC coefficients for a sample that has 20 time steps in Japanese
VOWEIS TASK [LLB]. ..eveveeieeeieeiie sttt sne e b 75
Figure 6.1 One, Two, or Three SFs tasks: Story, question(bold), answer, and indices
of the supporting facts (DOId).cooiiiiii 81

Figure 6.2 Two or Three argument relation tasks: Story, question(bold), answer, and
indices of the supporting facts (D0Id).........cccveiiriiiii e 81

Figure 6.3 Yes/No Question Task: Story, question(bold), answer, and indices of the
supporting facts (DOIA).c..ooviiiie e 82

Figure 6.4 Counting and Lists/Sets: Story, question(bold), answer, and indices of the
supporting facts (DOIA).c..ooviiiie e 82

Figure 6.5 Simple negation and Indefinite knowledge: Story, question(bold), answer,
and indices of the supporting facts (D01d).cccoveiiiiiniii 83

Figure 6.6 Basic Coreference, Conjunctions, and Compound Coreference: Story,
question(bold), answer, and indices of the supporting facts (bold).cceuenneee. 83

Figure 6.7 Time Reasoning: Story, question(bold), answer, and indices of the
supporting facts (DOIA).c..ooviiiie 84

Figure 6.8 Basic Deduction and Induction: Story, question(bold), answer, and indices
of the supporting facts (DOId).ccoeiiriii 84

Figure 6.9 Positional and Size Reasoning: Story, question(bold), answer, and indices
of the supporting facts (DOIA).ccoeiiiiii 84

XXi

Figure 6.10 Path Finding: Story, question(bold), answer, and indices of the supporting

FACES (DO1A). e e 85
Figure 6.11 Agents Motivations: Story, question(bold), answer, and indices of the
SUPPOItINgG FACLS (DONA). ...cveeeeieie e e 85

Figure 6.12 The original story of task3 where supporting facts (bold), question,
answer, and indices of supporting facts (bold NUMDErS).........ccocevveiiiniiiiiiie 88

Figure 6.13 Using only supporting facts for task 3 in Figure 6.12: dataset will be used
FOr trainiNg ANd TESTING. ..ooveeeeiie e et ee s 88

Figure 6.14 Input and output of task3 (Only supporting facts): Converting the story
and question in Figure 6.13 to a matrix after representing each word by a number.
Thus, the input matrix is 4 x 7 (4 time steps, i.e., T=4) and output is labeled by 6
(means office). The number 1 did not use because it is reserved to represent the space
DETWEEN SENTENCES. ...ttt bbbttt bbb sne s 88

XXii

CHAPTER 1

INTRODUCTION

Artificial neural networks (ANNS) are powerful tools for artificial intelligence (Al)
and machine learning (ML), which have remarkable progress in recent years, and they
are increasingly employed in real-life applications [1]. ANNs are computational
models that mimic biological neural networks. They are represented by a network of
units (neurons) interconnected via weighted links (synapses). The ANN architectures
can be classified into two classes from the point of view of the connection direction:
feedforward neural networks (FNNs) and recurrent neural networks (RNNs) [2]. In
FNNSs there are only one-way connections (from input to output), which makes it
suitable for static data processing and representing the nonlinear input-output
functions. But, in RNNs, the feedback connections are allowed; thus, they can
represent dynamical systems driven by sequential inputs owing to their feedback
connections, that make them powerful tools for dynamic (time-dependent) data
processing [2]. Unfortunately, RNNs are very difficult to train by traditional methods
as gradient descent [3]. To overcome this difficulty; RNN is divided into two networks:
a non-trainable RNN (fixed dynamic reservoir) and trainable feedforward ANN (read-
out). Thus, the problem changes from RNN training to feedforward ANN training
which is very common in ML, but instead very often becomes a simple linear readout
as in echo state networks (ESNs) [4]. This method of simplification became known as
reservoir computing (RC). ESNs [4], Liquid State Machines (LSMs) [5] and the back-
propagation decorrelation neural network (BPDC) [6] are some popular examples for
RC models. The high dimensional projection can be provided by cellular automata
(CA) evolution states instead of the RNN reservoir as in [7], which greatly simplifies
the architecture complexity and makes the computation faster and more transparent for

analysis [8, 9].

The following subsections are a review of reservoir computing, cellular automata, and
overview of reservoir computing based on cellular automata, then our contributions,

finally the thesis structure.

1.1 Reservoir Computing

RNNs are connectionist computational systems where they can embed temporal
correlations of the inputs into their dynamical behavior, which makes them suitable to
solve time-dependent tasks (problems) such as speech recognition, language modeling,

financial data analysis, etc.

RNNSs are universal approximators of dynamical systems [10] and can simulate Turing
machines [11], but it is very difficult to train them, due to convergence problems [12]
and the difficulties of finding optimal representations for long-term memory learning
[3, 13]. Reservoir Computing is an approach that could avoid these difficulties by
splitting the network into two layers, as defined above: the first one is a non-trainable
(fixed) layer called (a reservoir) whilst the second layer is a trainable feedforward
FNNSs (a readout layer). Hence, the sequence input is projected into spatiotemporal
patterns in a high-dimensional space by the RNN reservoir. Then, the features are
extracted in the readout, as shown in Figure 1.1(a). The main advantage of RC
framework is that the output matrix weights Wyt are only trained, but the input matrix
weights Win and the recurrent connection weights W in the reservoir are not trained.
This simple and fast training process overcomes the issues in [3, 12, 13] and further
reduces the computational cost of learning compared with standard RNNs. The RC
models differ in the reservoir construction and the read-out type. For example, ESNs
[4] that have randomly and sparsely connected recurrent neurons in the reservoir and
linear read-out. In LSMs [5], the reservoirs are driven by the dynamics of a set of
coupled spiking integrate-and-fire neuron models and they mostly have linear read-out
(some cases have FNNs or sigmoid neurons) [14]. BPDC is an online RNN learning
algorithm using the algorithm of Atiya and Parlos in [15] by adapting only the output

weights. Other types of reservoirs can be found in [16-23].

In this thesis, ESNs have been adopted due to their simplicity and effectiveness, also
they have been successfully applied in multiple tasks, e.g., dynamic pattern
classification [24], time-series prediction and noise modelling [25], reinforcement

learning [18], speech recognition [26], language modelling [27], human action

recognition [28], finally handwriting recognition and movement detection [29]. In [29]

the authors call ESNs by reservoir computing networks (RCNs).

(a) (b)
(W X (A
A_O |
Win O’f]) Woul .
@ gy) \ fr:*"(;,) —(\(L'j: Physical
! O'.-:z-{:‘ Q‘»é/O Q —Qy u_ < Reservoir
Input \ C/C) / ! O_' Input
utput P
O O |)

RNN Reservoir

Physical Reservoir

Figure 1.1 Reservoir computing paradigm: (a) The input is projected randomly in an RNN (reservoir)
and the evolution states of the reservoir x(n) are harvested to calculate the output weight matrix Wout
which is then used to predict the output. (b) Physical Reservoir: The RNN reservoir in () is replaced

by a high dimensional dynamic physical system.

1.1.1 ESNs Framework

In the RC model shown in Figure 1.1(a), and for more precise ESNs with
mathematically speaking; given K examples for training, the target is to find M-
dimensional output y(n) as a function of L-dimensional input u(n), where n is the

time step number n=1, 2, ..., T where T is the input sequence length.

The update equation of the reservoir states is:

x(n) = F(W.x(n— 1) + Wi, u(n)) 1.1

where, x(n) is the reservoir state vector at time step n, x(0) = 0, F is the reservoir
activation function, Win is an NxL matrix of random projection of the input to the
reservoir, W is an NxN matrix which describes the internal connections and weights

of the reservoir neurons and N is the reservoir size (the number of reservoir neurons).

In order to efficiently solve computational tasks, the reservoir should verify the

following requirements:

1- High dimensionality; to map inputs into a high-dimensional space.

2- Nonlinearity; to transform not linearly separable inputs into those that are
linearly separable.

3- Echo state property or fading memory; the network should gradually lose
information that has been received from previous states and inputs [5, 30]. To
ensure the echo state property in the reservoir, the spectral radius p(W)* of the
reservoir matrix should be less than 1 [31], but in [32] it was proved that the
spectral radius p(W) still has to be found by task-specific experimentation.

4- Edge of chaos; it is often preferred to operate ESNs at the edge of chaos [33,34].

Due to the rich dynamics in the reservoir, the output can be simply expressed as the

weighted sum of the reservoir states as in equation (1.2):

y(n) = Wy x(n) (1.2)

where Woyt is the M x N-dimensional output weight matrix which is only trained whilst
Win and W are created randomly and are not changed during training. However, in
traditional RNNs, the training methods adapt all the weights (Win, W, Wout).

In ESNs, Woyt can be obtained directly in training stage from equation (1.3):

Wour = Ytrain(Xtrain) T (1-3)

where (X;rqin) Tis the pseudo-inverse of X4, Which is the state collection matrix
from all training examples and Y ,.4in i the collection output matrix from all training
examples (the target). Thus, the most expensive calculation in the training stage of the

RC model is to find the pseudo-inverse of x(n).

Finally, to predict new output values § other than the output y of the K training
examples that have been used to find the output weight matrix Wout; equation (1.4) is

used as follows:

! The spectral radius p(W) is the maximum eigenvalue of the reservoir weight matrix W.

y(n) = WouX(n) (1.4)

where x(n) is the new reservoir states that are obtained from the new input. For more
details, Lukosevicius in [35] presents practical techniques and recommendations for

applying ESNs.
1.1.2 Physical Reservoir

Some of high dimensional dynamic physical systems can be considered as a
computational model [36], which led the researchers to exploit these systems as
physical reservoirs (Figure 1.1(b)). The physical reservoir, of course, should verify the
requirements of a conventional reservoir that are mentioned in Section 1.1.1. Using
physical systems as a reservoir starts in 2003 by water waves in a bucket [37], then the
genetic regulatory network of the Escherichia coli bacterium [38, 39], optoelectronics
[40-42], random Boolean networks (RBNs) [43], carbon nanotubes [44, 45], coupled
oscillators; chemical [46], phase [47] and mechanical [48], finally using CA as a
reservoir [7-9, 49-51]. Other types of physical reservoirs can be found in the review
paper [52]. Also, there are many unconventional computing methods in [53] can be

used as physical reservoirs.
1.2 Cellular Automata

Cellular automata (CA) have been originally studied by J. von Neuman in the 1950s
as a mathematical model for the self-reproducing phenomena [54-56]. CA have since
been used to simulate a wide variety of physical and biological systems [57-59]. They
are also useful for parallel computation and can be easily implemented using hardware
such as field programmable gate arrays (FPGASs) [60] and graphics processing unit
(GPU) [61].

CA are composed of simple computational cells arranged on a lattice to produce a

network, which can be evolved to extremely complicated behavior?, thus CA can

2 CA have emergent properties; because their global behavior arises from the complex interactions
between their cells; is not designed into these cells [62].

perform larger computational tasks. Precisely, CA are a discrete (in time and space)
parallel computational model composing of a lattice of cells. The cell state evolves in
time according to a certain transition function (rule), depending on its current state and
the state of neighbors [63]. The states of all cells in the array are updated
simultaneously, each update is called iteration and the total number of iterations is

denoted by I.
1.2.1 Dimension and Neighborhood

The original CA, that have been proposed by J. von Neumann [54], is of 2-dimensional
with 5-neighborhood dependency (orthogonal ones and itself) as shown in Figure
1.2(a). In 1962, the neighborhood dependency has been extended by Moore [64] to the
9-neighborhood dependency as shown in Figure 1.2(b), the Moore neighborhood
structure has been utilized to design the famous Game of Life by John Conway and
popularized by Martin Gardner (1970) [65].

2 ONREEINS

3 E 3. K

4 716|535

(a) Von Neumann (b) Moore
Neighborhood Neighborhood

r=1

-1
[1 [HGT [[]

(¢) 3-Neighborhood

r=2

(1=2
[GIEs] []

(d) 5-Neighborhood

Figure 1.2 Neighborhood Dependency: (a) 5-Neighbors, (b) 9-Neighbors, (c) 3-Neighbors, and
(d) 5-Neighbors.

Figure 1.2(c,d) describes the 1-dimensional CA with 3-neighborhood (Figure 1.2(c))
and 5-neighborhood (Figure 1.2(d)). The neighborhood is sometimes represented by
radius r, i.e., the number of consecutive cells in a direction on which the dependency,

e.g., r=1in Figure 1.2(c) and, r=2 in Figure 1.2(d). In 1-dimensional CA, the number

of neighborhood dependency Nn=2r+1. The radius is usually the same in every

direction, but this restriction is removed in some literature as [66-68].
1.2.2 Cell States

A CA cell can be in any state s of a finite state set S. The simplest representation of the
state set S is the binary, i.e., S € {0,1} and the number of states Ns=2, which has been
used in the 2-dimensional Conway’s game of life. The cell is alive and is normally
represented by a black square, and as opposed, when s=0 the cell is died and is
normally represented by a white square. The 1-dimension CA with binary state set
with three dependent neighbors is called elementary cellular automata (ECA), which
is widely used in CA discipline; due to its simplicity. If the state set S consists of three
numbers {0, 1, 2} and the new state is the average of its previous state and the two
neighbors, CA will be called totalistic CA [63]. Finally, if the state set S is any real
number, CA will be called continuous CA [63].

1.2.3 Local Rule

A cell (in present state PS) of CA changes its state (to next state NS) after applying a
transition function (rule) on its previous state and the previous state of the dependent

neighbors.

Table 1.1 ECA rules: PS is the present state of the 3-neighbors, NS is the next state (update) of the

center cell, the last column is the rule number, which is the decimal equivalent of its 8-bit binary string.

ps | 111 110 101 100 011 010 001 000 | Rule#
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1
0 1 0 1 1 0 1 0 90
NS |9 1 1 0 1 1 1 0 110
1 1 0 0 1 0 1 1 203
1 1 1 1 1 1 1 0 254
1 1 1 1 1 1 1 1 255

The local rule can be represented in a tabular form as demonstrated in Table 1.1 that

contains the next state values corresponding to each of the possible neighborhood

combinations according to the local rule [69]. ECA rules have got their numbers
(or names) after the decimal equivalents (last column of Table 1.1) of their 8-bit binary
string. Obviously, Table 1.1 shows there are 256 different ECA rules from rule 0 to
rule 255, where it can be mathematically expressed as follows: for ECA rule space

)Nn_

there are (Ns) V)" =22°=256 different rules [70].

Table 1.2 88 equivalent sets of ECA rules with their Wolfram classes.

Rule | Class | Equivalent | Rul | Class Equivalent Rule | Class Equivalent

Rules e Rules Rules

0 I 255 35] 49, 59, 115 106 v 120, 169, 225

1] 127 36] 219 108] 201

2] 16,191, 247 | 37] 91 110 v 124,137, 193

3] 17,63,119 | 38] 52, 155, 211 122 i 161

4 Il 223 40 I 96, 235, 249 126 i 129

5] 95 41 v 97, 107,121 128 I 254

6] 20, 159,215 | 42 I 112,171,241 | 130] 144, 190, 246

7] 21, 31, 87 43 I 113 132] 222

8 I 64,239,253 | 44 I 100, 203,217 | 134] 148, 158, 214

9 I 65,111,125 | 45 i 75, 89, 101 136 I 192, 238, 252

10] 80, 175,245 | 46 Il 116, 139,209 | 138] 174, 208, 224

11] 47,81,117 | 50 Il 179 140] 196, 206, 220

12 Il 68,207,221 | 51 I - 142 Il 212

13 I 69, 79, 93 54 v 147 146 Il 182

14 I 84,143,213 | 56 Il 98, 185, 227 150 Il -

15] 85 57 I 99 152] 188, 194, 230

18 i 183 58] 114,163,177 | 154] 166, 180, 210

19] 55 60 i 102,153,195 | 156] 198

22 i 151 62] 118,131,145 | 160 I 250

23] - 72] 237 162] 176, 186, 242

24] 66, 189,231 | 73] 109 164] 218

25] 61,67,103 | 74] 88, 173, 229 168 I 224,234, 248

26] 82,167,181 | 76] 205 170] 240

27] 39, 53, 83 77] - 172] 202, 216, 228

28] 70,157,199 | 78] 92, 141, 197 178] -

29] 71 90 i 165 184] 226

30 i 86, 135,149 | 94] 133 200] 236

32 I 251 104] 233 204] -

33] 123 105 i - 232] -

34] 48, 187, 243

These 256 rules have a lot of equivalences. Consequently, a similar behavior can be
classified in a set of rules, thus ECA rule-space can be reduced to 88 equivalent sets
of rules as listed in Table 1.2 [71]. But, the most commonly used is the visual
representation where the zero is represented by a white square and the one by a black

square [63] as illustrated in Figure 1.3 for rule 150 as an example.

Vi Xp Xy

PresentState PS n [2] a]a]| [aafo| [a2floel2] [2]o]o] [o]a]a] [olafe| [e]efz] [o]o]o]

Next state NS n+l El El El El El El El El

X,
Rule 150 = X;@+) = X () DX (0D Xpy, 1)

I

Figure 1.3 ECA Rule 150: All possible combination for one iteration of the center cell x; for rule 150

and its Boolean expression. The binary string (10010110), produces the rule number (150)10 [85].
1.2.4 Boundary Condition

In 1-dimensional finite CA, two boundary conditions are generally used; fixed and

periodic boundary conditions.

loJ[alBfclple|rlclufr]as]x|[o]
(a) Null Boundary

x| Gle o[[Telnls []x][+]

(b) Periodic Boundary

(allalelclo|efrlefu|r]a|x|[K]
(c) Adiabatic Boundary

(3jlalelclolefrlefu|r][a|x|[/]
(d) Reflexive Boundary

Lc][alelcloe|rlca]r]s]x][1]

(e) Intermediate Boundary

Figure 1.4 Boundary Conditions: (a) Null Boundary, (b) Periodic Boundary, (c) Adiabatic Boundary,

(d) Reflexive Boundary, (e) Intermediate Boundary.

In fixed boundary condition; the rightmost and the leftmost neighbors are in a fixed
value, it is also possible to take different boundary values between right and left
terminal as in [72]. The most popular boundary condition in fixed type is null
boundary, where the rightmost and the leftmost neighbors are always in state O as
shown in Figure 1.4(a). In periodic boundary condition, the grid is folded, i.e., the
leftmost cell becomes the neighbor of the rightmost one and vice versa as described in

Figure 1.4(b). There are other types of boundary conditions that fall within the periodic

10

type; depending on the position of the selected boundary cell as demonstrated in Figure
1.4(c, d, e) [73].

1.2.5 Elementary Cellular Automata Classification

From here, ECA will only be used; due to its simplicity, but the other types of CA can
be used in future work to exploit the other specifications rather than ECA. Starting by
a random initial vector, the evolution of ECA states obeys different behaviors, that can

be categorized into 4 classes (Wolfram classes) [63]:

Class I (Uniform): the initial states evolve to a stable (constant) state, e.g., rule 235,
255 all the cells become 1s and rule 0, 128 all the cells become 0s (Figure 1.5(a));

Class 11 (Periodic): CA states evolve into static or oscillating states, e.g., rule 42, 108
(Figure 1.5(b));

Class 111 (Chaotic): CA states evolve chaotically, e.g., rule 90, 105, 150 (Figure
1.5(c));

Class IV (Complex or Edge of Chaos): the initial vector evolves in an unpredictable

manner (complex behaviors), e.g., rule 106, 110 (Figure 1.5(d)).

Rule 128 Rule 108

= = o
i

== N
(e e s)

4 10 18 20 26 30 34 40 5 10 15

20 25 30 35 40
(a) (b)
Rule 90 Rule 110
[W]]
-
5 -t e

Figure 1.5 State-time diagram of some examples of ECA Wolfram Classes: (a) Class | Uniform, (b)
Class Il Periadic, (c) Class 11l Chaotic, and (d) Class IV Complex or Edge of Chaos.

11

The fourth-class rules have very high computational representation (universal
computation) [74-76]. Table 1.2 illustrates the Wolfram classes of the 88 ECA
equivalent sets. The most interesting rules are in the Classes 111 and IV because of their
applications; the chaotic rules are used for random number generators and
cryptography, also due to the capacity of class IV rules to contain complex systems; it
has been used in the simulations of particles, waves, or gliders [36, 63, 77, 78]. In this
thesis, it will be shown that the periodic rules of class Il, despite their simplicity, they
can also be used in machine learning, and even they give the best results in some tasks,

e.g., generalized 5-bit memory task.

1.2.6 Linear Cellular Automata

1-dimensional CA is linear, or additive, if its ECA local rule (CAr) has the following
form:

CAT(x1, X9, o) Xm) = A X1 + Aoxy + -+ A (1.5)

where the constants A1, A2, ... Am € S. If only one of the constants A is nonzero CA is
trivial, otherwise it is non-trivial [62]. For the 88 ECA different rules in Table 1.2,
there are only six rules are additive as follows:

CAr(x_q,x9,%,) =0 Rule 0 (1.6)
CAr(x_q,%0, X1) = X1 Rule 170 (1.7)
CAr(x_q1,%0,%1) = X, Rule 204 (1.8)
CAr(x_1,%9,%1) = x_1 D x, Rule 60 (1.9

CAr(x_q,%0,%1) = X_1 D x Rule 90 (1.10)

12

CAr(x_1,%0,%1) = X%_1 D x0 D x; Rule 150 (1.11)

Hence, Rules 0, 170 and 204 are trivial, and rules 60, 90 and 150 are non-trivial. Rule 0
immediately maps to zeros, rule 170 shifts the initial state one cell to the left, rule 204
is the identity, and the other rules (60, 90, 150) have complex behavior.

Mathematically, in ECA, the additive rules can be represented as linear functions
modulo two, thus these rules allow to compute independently the evolution for
different initial states, then the results can be combined by simply adding which
significantly simplifies the hardware implementation of these rules.

1.2.7 Elementary Cellular Automata with Memory

Conventional CA are memoryless i.e., a new state of a cell depends only on the
neighbors at the previous time step. A relatively new class of CA is Elementary
Cellular Automata with Memory (ECAM), which is an ECA with an added memory
function. This new class extended the domain of rules based on the ECA domain. In
ECAM the basic ECA rule should be selected and then it is composed with a memory
function. Therefore, the memory function will determine if the original ECA rule
conserves the same original Wolfram’s class or not. Following this principle, the

ECAM rules can be classified as follows:

1- Strong: The memory functions are unable to change the rule class,

2- Moderate: The memory function can transform the rule to another class and
conserve the original class as well, and

3- Weak: The memory function transforms the rule class to another class quickly
[71, 79, 80].

1.3 Overview of Reservoir Computing based on Cellular Automata

The first appearance of reservoir computing based on Boolean networks was in 2013
using random Boolean networks RBNs [43], in 2014 [81] the RBNs have been

13

replaced by cellular automata CA® which are a special case of RBNs with a regular
structure, then such framework of CA has been used in detail for connectionist
machine intelligence [7] and symbolic computation [82, 83]. In previous studies
[7, 81], the initial (first time step) Lin-dimensional input is randomly permuted R times
to produce the (Lin.R)-dimensional vector X1 (Figure 1.6) which is projected into the

CA reservoir as initial state and evolved up to I iterations utilizing a certain ECA rule.

Original Input L, =7 bits
M xl x2 ¥ ™ 35 .36

[elofofa]ofaful]

x2 x3 =x6 x1 x4 x20 x5 ¥ x0 x2 x6 x5 x3 xl % x2 x5 x1 x0 x4 x3
[ofafslofofafa] [ofsfofafafafo| [sfofafofafofn]

Processed input X, R=3
Dimension =21 bits

Figure 1.6 Random permutation of the original input to produce the processed input X, which is

projected into the CA reservoir.

All the CA iteration states at the first time step are concatenated to produce a single
feature vector®, which is used in linear regression to find the weight values of the
output weight matrix Woy, that will be used to predict the output at first time step and
this is analogous to ESNs in Sectionl.1.1. In order to insert the second time step input
into the CA reservoir; the last CA iteration state of first time step is added to the next
time step (Lin.R)-dimensional input X2 using normalized addition® as an insertion®
function to produce the initial state of CA reservoir at 2" time step as shown in Figure
1.7. Hence, the 2" time step initial state offers the recurrent connection which
memorizes the history of the first and second time step inputs. The previous procedures
are repeated up to the last time step. The obtained state vectors from the CA reservoir
are used to predict the output for connectionist machine learning [7, 81]. Intuitively,
there should be something better than a random (input projection and normalized

addition); that’s why, in 2016 [8], another type of CA reservoir was designed including

3 The physical system in Figure 1.1(b) has been substituted by cellular automata.

4 The dimension of the feature vector is (Lin.R.1).

> In normalized addition; 0+0=0, 1+ 1=1and for 1 + 0 or 0 + 1 the result is decided randomly 0 or 1.
8 Insertion function is to insert a new input time step into the reservoir.

14

the use of zero array buffers instead of the input random projection in [5, 41], also
replacing the normalized addition by XOR operation. This model is called ReCA
(CHAPTER 2 in this thesis).

Processed input X at time step n Last CA iteration state of time step n-1
[ol Jofafolofa] [2lofofafofafal]
q f(plilsertion function
&
e
“fﬁb o
G,
:'/d)):
. =/_¢\=
\.,i G

T@f)
[l o To [a o [l

Initial state of CA reservoir at time step n

Figure 1.7 Normalized addition as an insertion function (¢) to create the recurrent connection which

produces the next initial state of the CA reservoir.

Using zero buffers in ReCA enhances the results to solve all pathological sequence
tasks, these tasks have been introduced in 1997 by Hochreiter and Schmidhuber to
examine Long short-term memory (LSTM) method in [13] then they have been widely
used in RNNSs literature. In 2017, RC based on CA was used by applying Non-Uniform
ECA (using 2 rules horizontally) [49] or by repeating the entire model in series (deep
reservoir) [50]. The authors of the last two methods [49,50] have utilized the random
permutation to create the initial states of CA reservoir from the original input also to
insert the initial states consecutively into the reservoir. These two methods have been
tested using only one type of pathological sequence tasks (5-bit memory task), which
is a binary dataset. In 2017, the RC based on CA framework was tested using a
nonbinary dataset by applying a multilayer CA in the reservoir; by using 2 rules
vertically in [51], the first rule is for projection and the other is for memorization. In
2018, ReCA in software and hardware implementation was tested using a pattern
recognition task of handwritten numbers (MNIST), which is a time-independent task
[84]. In 2019 [9], new methods of ReCA feature extraction has been proposed to
reduce the model complexity. The results were promising where the feature dimension

15

has been reduced by up to 98% in some pathological tasks (CHAPTER 3 in this thesis).
Finally, in [85], the recurrent architecture with CA distributed representation of ReCA
have been compared with feedforward architecture and local representation after
applying new methods of feature extraction and another insertion function (CHAPTER
4 in this thesis).

1.4 Contributions

As presented in Sections 1.1.1 and 1.3; ESNs and the proposed models of using CA in
RC have parameters randomly assigned and preprocessing the input by random
permutation. Intuitively, there should also be something better than a random, this was
the starting point. The contributions of this thesis are as follows:

- RC based on CA framework has been developed to produce ReCA model in
which the random parameters in ESNs are replaced by an ECA rule and the
input random permutation is replaced by adding two buffers to the input to
enable the natural diffusion of the CA evolution states in the reservoir, finally
the normalized addition (random operation see footnote 5) in Section 1.3 is
replaced by XOR operation as insertion function.

- Two subroutines are added in order to preprocess the input before the reservoir:
a- Ri expansion to reduce the interference between the nonzero elements in

the reservoir.
b- Multilayer CA to increase the nonlinearity in the model.

- Similar to ESNs the evolution states at last time step are used as feature vector
for LAST method.

- Creating different options for feature extraction ALL, Each, Half, and
expansion ratio f instead of LAST, in order to control the ReCA complexity
and reduce the required training examples.

- Using the whole pathological synthetic tasks (binary dataset) to evaluate ReCA
with all the above different options.

- Three different models: feedforward architecture with CA distributed
representation, feedforward architecture with local representation, and

recurrent architecture with local representation (stack reservoir) are provided

16

to compare them with ReCA (recurrent architecture with CA distributed
representation) in order to find the optimum model.

Three other options of feature extraction (XOR, Binary, Gray) are created to
reduce the feature vector dimension. Also, a new insertion function (Overwrite)
is proposed rather than XOR, which increases the ReCA accuracy while
reducing required training examples in generalized 5-bit task, which is also

created in this thesis.

To evaluate ReCA, it has also been tested using real and nonbinary tasks such as

signal classification, Japanese vowels dataset [109], and IRIS dataset [118] which
is time-independent. Finally, ReCA has been tested utilizing the 20 QA bAbI tasks

from Facebook [120] in order to study its ability to solve these hard tasks.

1.5 Thesis Outline

The main goal of this thesis is to demonstrate that reservoir computing based on

cellular automata can be used to successfully process sequence data. A suitable model

called ReCA has been proposed and then developed using several methods to train such

data and compare its performance with the state-of-the-art reservoir computing

methods. Most of the original work appears in Chapters 2, 3, 4, 5, and 6.

In CHAPTER 2, we go into the details of how ReCA can be implemented,
starting by the different methods of preprocessing the input data, then we
present a formalization of the CA reservoir structure, finally the read-out stage
where the training parameters are estimated. The results of pathological
synthetic tasks are introduced using an intuitive method of feature extraction
called LAST.

In CHAPTER 3, deferent methods of feature extraction from the reservoir are
created to improve ReCA by decreasing the complexity and reducing the
required training examples.

CHAPTER 4 discusses the effects of using different architectures (feedforward
or recurrent) and different data representations (local or distributed) to find the

optimum model. Also, three options of feature extraction (XOR, Binary, and

17

Gray) are proposed to reduce the dimension of feature vector. Another insertion
function (Overwrite) is also used instead of XOR in the reservoir.

- In all previous chapters, the used tasks are artificial and binary (pathological
synthetic tasks), Therefore, CHAPTER 5 focuses on how can ReCA deal with
real and nonbinary tasks.

- InCHAPTER 6, ReCA tackles the question answering problems (20 QA bADbI
tasks from Facebook), that are very complicated and hard tasks [120].

- Finally, CHAPTER 7 gives some concluding remarks with a summary of

achieved results also offers the future work.
1.6 Publications from the Thesis

- M. Margem, and O. S. Gedik, “Reservoir Computing Based on Cellular Automata
(ReCA) in Sequence Learning” Journal of Cellular Automata. 14 (1-2) (2019) 153-
170.

- M. Margem, and O. S. Gedik, “Feed-forward vs. Recurrent Architecture and Local
vs. Cellular Automata Distributed Representation Based Reservoir Computing in
Sequence Memory Learning” under review in Artificial Intelligence Review (AIRE),
20109.

18

CHAPTER 2

RESERVOIR COMPUTING BASED ON CELLULAR
AUTOMATA (ReCA)

The setup of ReCA is presented in Section 2.1 with its three stages: encoding, CA
reservoir, and read-out. In order to compare ReCA with other approaches, from the
point of view of distributedness, two reservoirs with different representations of cell
evolution are introduced in Section 2.2. The eight pathological synthetic tasks are
defined in Section 2.3. These tasks have been used to examine ReCA by the method
which is demonstrated in the experiments of Section 2.4. Section 2.5 focusses on the
results of ReCA and the comparison with other approaches. Finally, the discussion is

in Section 2.6.

2.1 ReCA Implementation

Cellular Automata
Reservoir Stage
. o ECARWde) Read-out Stage
Encoding Stage AU|1|0|0|1]O|0|0|1|
"Ahii]ea]e[a]a] | . Wout
.)—= . | Zero array - E Linear B
al .| cA|R S 2| A, [o]o[1]o]o]o]1]o] 2| Regression L
Input L : e e
= i cA Output
y
A;|0]0 0
Cinonnonno)
(a) (b) (c)

Figure 2.1 ReCA framework stages indicating vector lengths for each stage: (a) Encoding Stage
composed of; (CA) Multilayer expansion using CA rules, (Ri) which expandes each input bit by Ri bits
and adding (Zero Array) R-dimensional buffers for both sides of the input. (b) CA Reservoir Stage; The
L-dimensional output of Encoding Stage is projected onto CA reservoir which evolves it using certain
ECA rule in multiple time iterations I. (¢c) Read-out Stage; The reservoir output (LCA-dimensional
feature vector) is trained by Linear regression to find the output weights of Wout matrix, which is used

to predict the output y [8].

19

The ReCA framework consists of three stages as shown in Figure 2.1. The encoding
stage translates the input u into the initial states of CA reservoir. In the reservoir stage,
the ECA rules are applied for a fixed period of iterations I, in order to evolve the CA
initial states. The CA states in the reservoir are concatenated to produce a feature
vector that will be used in the read-out stage using Linear Regression to predict the

output y. The details of the method are given below step by step.
2.1.1 Encoding Stage

The encoding stage can be divided into three subroutines as shown in Figure 2.1(a):
CA, Rjand Zero Array R.

2.1.1.1 Utilizing Buffers (Zeros Array R)

In the encoding stage, the input u is translated into the initial states of a cellular
automaton reservoir. For handling a sequence of inputs, each having a length Lin, the
size of the input to the reservoir needs to be expanded. An array of zeros with length
of R is added to both sides of original input; to hold the activity of the reservoir
corresponding to previous input time steps. Then, the expanded input to cellular
automata reservoir becomes of length L=Li» + 2R as shown in Figure 2.2.

[aEi= IDIOIDHIIDIIIU-(? [[51a] e Jajes)

Figure 2.2 Two R-dimensional zero vectors (buffers) are added to both sides of the original input u(n),
to produce the L-dimensional initial state X, that will be evolved using ECA rule in the reservoir
stage [85].

In most of the experiments, R=IXT (I is the number of CA iterations and T is the
sequence length of the input), to guarantee that CA states have conserved all the input
sequences. But, in some experiments, to reduce the time and space complexity an
expansion ratio f € [0, 1] has been introduced as follows R = f(I x T), to adjust the

dimension of the buffers, thus the size of the reservoir (complexity) decreases with the

20

value of f. It should be noted that only the utilizing buffers (Zero Array R) have to be
used in our model, but the next two subroutines (R; and Multilayer CA) are applied

selectively according to the task requirement.
2.1.1.2 Reducing Interference R;

To improve the accuracy in some tasks, the interference between nonzero elements in
the reservoir should be reduced. The interference is due to the cancellation of cell
activity when two nonzero cells collide during additive cellular automaton rules such
as rule 90”. In order to avoid it, each bit of the input can be represented by R; bits. At
the insertion of a new time step, the location of the nonzero will rotate right one bit to
reduce the interference between nonzero bits that have the same location in

consecutive time steps as explained schematically in Figure 2.3.

(n=1 1/0]0
a) n=2 [ol
R R R
(1)
n=1 0 1 0 0 Ay
(b) =1 0 0 0 0ololo 0 0 5
=2 |[o|oj1|ofojof1(ofojojofojofofo]o]A;
XOR l Rotation l
— @
n=2 1 0 1 A
(c) =1 0 1 B ofofofofol
I=2 |1 |(o /o o|o|off8ll1|o0|lo|lo|lo|o|o0]|0]|A;

Figure 2.3 An example for how to reduce the interference between nonzero bits in rule 90 by adding R;
with rotation, when there are nonzero bits that have the same location in consecutive time steps as in;
(a) The original 3-bit input for two time steps, (b) Ri = 4 bits to represent each input bit, with two
iterations of CA evolution. The new input at n = 2 is represented using R;, it might interfere with the
previous input, and (c) But, due to the rotation, there is no interference between the 1’s (in yellow) from

1% time step and the bold 1’s (in orange) from the 2™ time step.

The value of R; should be chosen carefully; to reduce the interference between nonzero

bits that have different locations in consecutive time steps as demonstrated in Figure

" Boolean expression of rule 90: x;(n + 1) = x;_,(n) D x;,.,(n).

21

2.4. Hence, the input dimension is artificially expanded to increase the feature space

size and reduce the interference between nonzero hits in the reservoir.

n=1 1|0]|0
(a) n=2 0|10
i % i
(1)
n= 0 0 0 0 Ay
(b) =t 0 0 0 0 &
I=2 1 1 0|0 0 A5
XOR l l Rotation

—_— o
n=2 1 1(o0]o 0 2
(©) =1 0 o [Fll o NS olofofofo]
=2 [l oo o o o ol o ol oo o o] Aj

Figure 2.4 An example for how to reduce the interference between nonzero bits in rule 90, by selecting
Ri = 4 (even value) and rotation, when there are nonzero bits that have different locations in consecutive
time steps as in; (a) The original 3-bit input for two time steps, (b) Ri = 4 bits to represent each input
bit, with two iterations of CA evolution. The new input at n = 2 is represented using Ri, it might interfere
with the previous input, and (c) But, due to the rotation and even value of R, there is no interference
between the 1’s (in yellow) from first time step n = 1 and the bold 1’s (in pink) from second time step

n=2.

2.1.1.3 Multilayer Cellular Automata Expansion CA

Before zero paddings with right-left buffers R and expanding each binary input with
Ri, the original binary input can be transformed into another binary vector using
nonlinear CA rules to increase the nonlinearity of the model. Suppose that we have a
binary vector of size Lin. We apply a nonlinear ECA rule, onto this vector for a certain
amount of iterations, then use the last state of the evolution as our new input. Hence,
this stage enables a multilayer CA architecture®, in which the first layer projects the

input into a nonlinear space, and the next layer evolves it further with linear rules in

8 Our method should not be confused with conventional multilayer CA, they are similar only at the
first-time step and they both use two different CA rules in different times (iterations). But, the multilayer
CA that have been used in our work is structurally and algorithmically very different from Layered CA
which is used to predict nerve axonal extension process [86] and in Cryptographic [87].

22

time to expand the feature space. Linearity in the second layer is essential for lossless

injection of the input at each time step.
2.1.2 Cellular Automata Reservoir Stage

After the data is processed in the encoding stage as the initial states of a cellular
automaton, it is passed on a CA reservoir (instead of an ESN as in [4]) for computation.
The dynamics of CA provide the necessary projection of the input data onto an
expressive and discriminative space, as shown in Figure 2.1(b). It was previously
shown that the cellular automata reservoir holds a distributed representation of high
order attribute statistics [7]. Thus, the sequence of inputs at each time step is processed
to extract the input statistics and these are represented in a distributed manner as in
recurrent neural networks. However, different from recurrent neural networks, for each
input we can allocate a distinct memory slot in the reservoir space and avoid
interference between different time steps altogether (at the cost of increased feature
space). This is due to the fact that additive cellular automata rules propagate the cell
activities of the previous time steps in a predictable manner, creating “"empty spots"

for injection of new input in the sequence.

The cellular automaton is initialized with the first time step input of the sequence (X1)
that has been obtained from the encoding stage; AE)” = X; (with size of L), where the
subscript 0 denotes initial state and increases to I, which is the number of CA iterations
in the reservoir and the superscript (1) denotes to the number of time steps (from 1 to
T), where T is the input sequence length. Then, the cellular automata evolution of AE)”
is computed using a pre-specified ECA rule CAr up to | iterations as illustrated in

Figure 2.1(b) and the following equations:
AV = cara?y (2.1)

A = cara™) (2.2)

23

AW = carat, (2.3)

The evolution of CA states is concatenated to obtain a single state vector as in equation
(2.4) with length of Lca = IXL, that will be used as a feature vector to predict the output
at 1% time step:

AW = [AD 4P . 4] (2.4)

At the 2" time step, the input Xz will be inserted into the reservoir state vector.
Applying an insertion function, which is in our model, an XOR operation® to the last

state vector Agl) with the input vector at second time step X». Then the new initial state

vector of the cellular automaton at time step n = 2 will be as:

4P =AY o x, (2.5)

where @ is a bitwise XOR.

Then, the cellular automaton is evolved for | steps to obtain A®® as in equation (2.6).

A® = [AD 4D . 4P (2.6)

A® is used for estimation at 2" time step. This procedure is continued until the end
of the sequence at n = T when Xr is inserted into the reservoir and obtaining A(™ that
will be used to predict the output at last time step, the details are depicted in Figure
2.5.

Note: Any feature vector A™ memorizes the input information from 1% time step up

to its time step n, i.e., A memorizes the whole input information.

9 XOR computes the correlation, which provides a lossless merging of two binary numbers: it outputs
1 if the content of input cells is different and O if the input cells
are identical.

First time step n=1
R Lin R

OO0 Aololoii1|o|1|};- [e[olt] (oo o[[o]oo]

T
L=Lin+2R

m
Initial of Cellular Automata Ag = X
CA :Evohltionl : P
Last State of Cellular Automata A;

Second time step n=2 .
R Lin R

Ll TRl LTl Lol P o]

7 N 2)
Original Input Sequence L=Lin+2R Tnitial of Gelilir Antofina A(D)ZXJGL) Ay
Lin CA Evoh.ltionl] oy
I] 1 Last State of Cellular Automata A
wi[1fofu] - ofo]1]
Last time step n=T
=2 1|0|0| ‘0‘1‘0‘
¥ R Lin R
:) 4 4
' I L) 1T 1
wtloftfo] - [ofofo] [ofeJe[- JoTo[e][o]s o] --- Jo[o[o][e]o]e] - [o]o]o]
) X1 ‘
T @ . (T-1)
L=Lin+2R Initial of Cellular Automata AD=}$T®A1
CA Evohltionl ; -
Last State of Cellular Automata Ap
(a) (b)

24

Figure 2.5 (a) original input sequence before the encoding stage. (b) Encoding stage and CA Reservoir

stage: Adding zero array with length R to obtain the reservoir input sequence from X to Xr. Then, the

cellular automaton is initialized with the first time step input of the sequence, so Agl) = X (with size of

L). The CA evolution states AE") (i changes from 1 to 1) will be used as a feature space to estimate the

output y(n) using linear regression in the read-out stage [8].

2.1.3 Read-out Stage

In this stage, the output states of CA reservoir will be used as a feature vector (with

dimension of Lca) in the linear regression to compute the weight values of Woyt matrix,

which is used to predict the output. There are two cases for the output:

1- There is only one output y at last time step n = T, thus the output is a vector

with dimension of Lout. Therefore, as in equation (1.2) for ESNs, the output

y(T) can be expressed as follows:

}’(T) = Wout-A(T)

2.7)

25

where A s the feature vector of the last time step with dimension of I.L and the size

of regression parameters matrix Wout IS LoutxIL.

2- There is an output for each time step, therefore the output is a matrix Y

with size of LouwtXT. Hence, the output y for each time step n > 0 is:

Y1) = Wy A™ (2.8)

After combining all time steps together; the feature space A becomes as in (2.9):

A=[ADA@ | AD] (2.9)

Finally, the output will be calculated as follows:

Y = Wout-A (210)

where the size of feature space matrix A is ILxT and the size of Wout matrix is LoutXIL.
2.2 Covariance and Stack Reservoir

Other two types of reservoirs are used to study the effect of different levels of
distributedness on computation in the reservoir. CA have a high distributed

representation than covariance and finally stack that has local representation.
2.2.1 Covariance Reservoir
In covariance reservoir, A% is the state evolution at iteration k which is defined as in

equation (2.11):

AW = [T-x Ao @ I1+k Ao (2.11)

where A, is the initial state input, []_x and [].x are permutation matrices -k and +k

shifts and @ is a bitwise XOR. A® computes the pairwise covariance of the input

26

attributes as in tensor products [92] and memorizes those for each sequence input. In
covariance representation, there is no relation between time steps evolution with each
other as in CA; there is relation only with the initial state. That is why it can be
considered between CA and local representation in distributedness. The used
algorithm is the same with CA algorithm, but rather than using CA rules in the
reservoir, the covariance representation in equation (2.11) is used to produce the
covariance evolution states, that will be utilized as a feature space to estimate the
output. The covariance representation has been used in [7] on a feedforward
architecture for 5-bit task, but in this dissertation, it will be applied on recurrent

architecture for all pathological tasks, that will be explained in detail in Section 2.3.
2.2.2 Stack Reservoir

In stack reservoir, there is no computation involved'?; the sequence input is memorized

consecutively step by step as shown in Figure 2.6.

Input sequence

‘ u(l) ‘ 11=1‘ 0 ‘_0 ‘ 0 ‘ 0 ‘ u(1) ‘

| we |2 0o [0 | o | wy | w |

‘ u(3) ‘ n:3‘ 0 ‘--_0_-- ‘ u(1) ‘ u(2) ‘ u3) ‘

L - J i i J
i Lin b ;

L=TLi

@ ®

Figure 2.6 Stack reservoir (Local recurrent architecture): (a) The input sequence u, and (b) The input
is consecutively memorized as in stack memory to produce the feature space; the first row at n =1 is
used to predict the output at first time step, the second row is used to predict the output at second time

step and so on [85].

Thus, the insertion function is similar to the stack memory, the first row of feature
space which has only the first time step input is used to predict the output at first time

step and so on up to last time step which consists of all input time steps as demonstrated

10 The local representation is applied only in the reservoir. Thus, the model still has a computational
power from the regressor in the read-out stage.

27

in Figure 2.6. This representation can also be considered as a type of variable size
sliding window that has been used in [93, 94] for frequent itemset mining and speech
identification respectively, but in our case, the variation is in the amount of given

information to each time-step not in the window’s length.
2.3 Pathological Synthetic Tasks

The pathological synthetic problems (tasks) have been used to examine ReCA
framework for long-short-term-memory capability. These tasks have been proposed
by Hochreiter and Schmidhuber in [13] with minor modifications in [88], they offer
long-term dependencies and are effectively impossible to solve using gradient descent
[89]. They are widely used in RNNs field, e.g., [90, 91, 7, 8, 49, 50].

All these tasks are binary and can be divided into 3 categories:

1- Memory Task (5-Bit, 20-Bit and Random permutation);
2- Temporal order task (2 and 3 symbols);
3- Arithmetic/logic operation Tasks (XOR, Addition, and Multiplication).

In these tasks, the input data consists of two parts: The Information and the
Distractor period. The Distractor period is selected randomly and does not contain
any information. It expands the task sequence and adds irrelevant data to increase
its difficulty due to the longer-range dependencies. The output is either a particular
function of the input information (XOR, Addition, Multiplication and Temporal
order tasks) or repeating (memorize) the same information (from previous time
steps) at final time steps (Memory and Random permutation tasks). The difficulty
of these tasks increases with the value of time steps (Sequence Length) T. The

following sections describe these tasks in detail.
2.3.1 Memory Tasks

Memory tasks consist of 3 types (5-Bit, 20-Bit, and Random permutation) where the

input information is repeated in the output after distractor period.

28

2.3.1.1 5-Bit Task

In 5-bit task, the input length is 4 bits Lin=4, the information is a memory pattern which
is the sequence of first two bits D=2 for five-time steps M=5 where one of these two
bits is randomly set to 1, thus there are 2° = 32 possible patterns, that’s why this task
is named the 5-bit task. Then, at the sixth time step, the input memory pattern is
followed by a distractor [0 0 1 0] for period Tq time steps. Finally, the initial memory
pattern should be repeated in the output after arriving a cue signal in the fourth input
bit at the last time step of the distractor. Thus, the total sequence length of this task
T=Tq+10. The fourth output bit is always zero, so it should be dropped, but it has been
kept; because it is included in the original task. The details of 5-bit task are

demonstrated in Figure 2.7.

D=2
1
Input Output
B0 al [w w0yl]32] 3
Imput [[1Jafo]ofo]ofo]1]o
Pattern 2lafofofoflofo]1]o
M=5 1 3lof1|ofo]o|lofj1]o
sfofalofololo]1]o
L sfxfe]oJoJolol1t]of
[e6]o|lofl1]|o]lo|lo]1]o
7lofol1]ofloflo]1]o
ool aloflolo]1]o
ololtfololo]l1]o
oot {ololo] 1|0
Distractor | l .

, , rTa - T
ofoJ1fo]o]o]1]o
olo|l1fo]olol1]o

JoJoliJoflo]o]1]oe

Cuel|Ts[oo o|1]o|o|1]o]]
T4l oo 1 {ofafo]ofo
T3] 0 0 1 ol 1]0 0|0 Outpu‘[‘
T2l 0o |1 |ofj@]Q1 o]0 Repeated
T1Hlofof1{ofola]o]o Pattern
TloJol1Jola]o]olo

Figure 2.7 An example of 5-bit task: The input and output length Lix=Lou=4 bits. The first 5-time steps
are the 2-dimensional input memory pattern and the last 5-time steps are the main output which is a
repeated (memorized) input pattern (Shadow Bold), but we have to note that the whole output bits
(4 bits) for all time steps (T) should be predicted. The distractor input [0 0 1 0] is at the middle of the
task for T4 time steps, and the last time step of it is a cue signal (Bold 1 in u3) as a mark to repeat the

input pattern in the output. The total sequence length of the task is T=T4+10 [85].

29

2.3.1.2 20-Bit Task

The 20-bit task is similar to the 5-bit; the difference is only for the size of memory
pattern where D=5 bits and M=10 time steps. Hence, the input and output length
Lin=Lout=7 bits, the total sequence length T=T4+20, therefore 20-bit task is more
difficult than 5-bit task. Notice that there are a set of 5 different possible patterns,
which is a little bit more than 20 bits information per input sequence and has given this

task its name.
2.3.1.3 Random Permutation Task.

The input in this task is 100-dimensional binary vector Lin = 100 bits. At each time
step, one of the 100 bits gets a “1” value. At first time step n = 1, one of the first two
input bits is randomly assigned to ‘1’. For the remaining time stepsn=2,3,..., T, at
each time step, one of the 98 remaining inputs is set to 1 in a random fashion. The
relevant output is at the last time step at n = T; the target output is the 100-dimensional

input vector at 1 time step, thus Lout = 100 bits.
2.3.2 Temporal Order Task.

Temporal order task consists of two parts; according to the number of ordered events

two or three.
2.3.2.1 2 Symbols Task.

The input vector in this task is 6-dimensional Li, = 6 bits, the first two inputs are for a
critical event (A = [01]) or (B = [10]) and the last four inputs are distractor. There are
two critical event times T and T» associated with critical events A and B. At all-time
steps except for T1 and To, only one of the four distractor inputs is set to ‘1’. Atn =Ty
the first or second input is randomly set to “1’; the same is executed for time step

n=To.

The target output is only at the last time step, which is one of the four possible indicator
outputs [1, O, O, 0], [0, 1, O, 0], [0, O, 1, O] and [1, O, O, O] according to the four
possibilities of the order of A and B, thus the output length Lot = 4 bits. Figure 2.8
demonstrates this task in detail.

30

n Input Output n Input Output

1|olo|of1]o0]o0 1loJoflof[1]o0]o0

2]oJofoJo]1]0 Al[Ti[o]1JoJofo]o
AlT;|of[1]|o|o]o0]|o0O p|lo|lo|o|o]|1

]JoJojolol1]o ololo|lo|[1]0

~lolo|lo|o]o]1 ololo|ofo]1

.lofo]1]lo0]o]o o|lo|l1|o]o]o
AlT;lofl1]o0o]lo]o]o Bl|To{1]o0|lo]|o]o]o

-fo]Jofo]1]0]o0 A-A ojofof1|0]o0 g

TloloJololol1]loJoJo]1 TloloJolol1]oflo]o]1To

n @

n Input Output n Input Output

1 [oolo[1]o] o B|TiJ1]o]o|o|o]o

2]loJoJ1]o]o]o 2lolol1]lo]o]o

. Jo]Jo|olo]1]o0 ~Jololol1]o]o
B|T;{1]ojofo]jo]o .lolofo]1|o]o

- [oJoeJo]o]o]1 -[oTJoJoeJo]o[1

loJol1]ofo]o0 B|T;]1]/0|ofo|o0]o0
A|T|o|1]o|o]o]o0 "]lojJo|l1]o]o]o

s Jo|lojo|o]1| o B-A ojofofo|1]o0 B-B

TlofoJoJ1lofoloM oo TloJoJoJolo|[1[1JoJo]o

3

=
E

Figure 2.8 Temporal Order (2 Symbols) Task: The order of the two events A and B with the four

possible indicator outputs at last time step.

2.3.2.2 3 Symbols Task.

The 3 Symbols temporal order task is completely analogous to the 2 symbols task,
except that in this task there are three critical times Ty, T2 and Ts. This makes 8 possible
indicator outputs, which have to be classified by the 8 bits output at the last time step.
Thus, the input dimension is still Lin = 6 bits, but the output becomes Loyt = 8 bits.

2.3.3 XOR, Addition and Multiplication Tasks.

These three tasks are the same; the difference is only for the used operation XOR,
addition or multiplication. As an example, the XOR task is explained in the following

section.
2.3.3.1 XOR Task

In this task there are two inputs Li, = 2 bits; The first input uy(n) is a stream of zeros
or ones distributed randomly. The second stream is zeros uz(n) = 0 at all-time steps
except at two-time steps T1 and T, where uz(T:) = u(T-) = 1 1. The objective is that at

11 The one in second input bit is a cue signal for localization of uy(n).

31

the last time step where n=T (much later than Ti or T); the output

y(T)=uy(T,)Du;(T,). The task details are illustrated in Figure 2.9.

n Input Qutput n Input Qutput n Input Output n Input Qutput
T 1 0 1 0 1 1 0 1 1 0
2 0 0 2 0 0 2 0 0 2 1 1
i 0 1 1 1 ‘ 0 1 0 0
1 0 : 1 0 1 0 ‘ 1 0
0®0 : ; 0@ 1 : : 190 : : 193
0 | o L : 6 [1 | : o [o J L : o | o] | L
0 1 T 1 0 17 i 1 7 : i 1 1/
0 0 / 0 0 i 0 0 v) 0 0 v
T 0 0 0 T 0 0 1 T 0 0 1 T 0 0 0

m @ 3) @

Figure 2.9 XOR Task in different situations.

2.3.4 Binary Encoded Tasks

The inputs of all pathological tasks have only one nonzero (one hot encoding) for each
time step. The binary encoding is applied to the classical inputs; the location of the
nonzero element will be represented by a binary number as shown in Figure 2.10, to
make the task input closer to real data'?, but this leads the tasks to become harder.

Original Input 5 Bits 3 Bits

Encoding
[ofo]o[o]1] == [o]o[:]
[o]o]o] o] == [o[1]o]
[of o]t ToJo] == [e[1]1]
o] [o]o]o] = [1]o]o]
[t]o[efefo] == [1]o]1]

Figure 2.10 Binary encoding for payload inputs of 20-bit task, the length is reduced from 5 to 3. Thus,
the total input and output length for 20-bit task are reduced from 7 to 5.

These new hard tasks have been used to test our model ReCA. The binary encoding
will only be used for Random Permutation and 20-Bit tasks because the input of the

other tasks is very small, so we do not need this encoding.

12As an example, this encoding is essential for word prediction application of language modeling, for
which one hot encoded input should be of length tens of thousands (size of word dictionary).

32

2.4 Experiments

For all pathological tasks, a set of Niain (training set) and Nest (testing set)*2input time
sequence and its associated outputs (Target) is synthesized. ReCA is trained by the
Nirain €xamples to find the feature vectors AM™), that is used to compute the regression
parameters of Woyu matrix, which is used to predict the output of Nrst examples. Then,
the predicted output is compared with the original one in the testing set to evaluate the
model.

2.4.1 Training Stage

After applying the input of N.in examples on the model and then preparing the feature
vectors A™ as demonstrated in Sections 2.1 and 2.2. These vectors are used to
compute the linear regression weights of Woyu matrix via pseudo-inverse as illustrated
in equation (2.12) for the tasks that have only one output at the last time step and

equation (2.13) for the tasks that have an output at each time step:
Wout = Yerain- (A (T))-l- (2.12)
Wout = Yirain- (A)T (2.13)

where Yirainand Yirain are the output of training set (target) depend on the task, (AM™)*
and (A)T are the pseudo-inverse of the features that extracted from the reservoir.

2.4.2 Testing Stage

The predicted output of testing set can be obtained from equation (2.14) for the tasks
that have only one output at the last time step and equation (2.15) for the tasks that

have an output at each time step:

Viest = Wout-Ag_)gt (2.14)

BIn all experiments, Neest = 100.

33

?test = Wour-Atest (2.15)
where Agzt and A Vectors are harvested from the Niest examples of testing set.

Note: In 5-bit task (Section 2.3.1.1), there is no testing set; due to the small value of
task examples. Therefore, the whole of the 32 examples is used for training. Thus, the

equation (2.15) will be used to find the predicted output of training set as in (2.16):
?train = Wou-A (2.16)

2.4.3 Model Evaluation

The dataset of the pathological tasks is binary; therefore, each bit of the predicted
output ¥; should be binarized as illustrated in equation (2.17):

. {o if ;<05 (2.17)
Yoi 1 if §; =05

The binarized output (§p)tes: aNd §p)erain) Will be used to find the model errors as
follows: testing error=[y)est — Yeest| for all pathological tasks except 5-bit task
where training error = [§,)rain — target|. This error represents the number of false
bits over all relevant time steps in output bits. The goal of our experiments is to achieve
zero test error with minimal complexity, hence the parameters I (CA evolution
iterations), Ri (the input expansion to reduce the interference) and f (the expansion
ratio) should be tuned to their minimum values using the smallest number of training

examples.
2.5 Results

This section consists of the general results, that are the comparison between the
proposed three models (ReCA, Covariance and Stack), then study the effect of some
parameters on the model. At the end, the comparison between ReCA and other

approaches to train RNNSs.

34

2.5.1 General Results

Table 2.1 Results for all pathological tasks using the three proposed reservoirs (CA, Covariance, Stack).
The last column is the number of false bits in the predicted output of the test set. The 3" column presents
the used rule in multilayer CA with its number of iterations. The other columns are for various

parameters of the proposed models [8].

Pathological Multilayer 15 _ _ No of
Task Method ECA rule® | | bl Nuan | T)R o6 Biits
5-Bit ECA Rule 90 - 1000 | 4 32 1 1 0

_ ECA Rule 90 - 300 | 20 | 120 1 2 0
20-Bit Covariance : 300 | 19| 120 | 1 | 3 0
Normal
Stack - 1000 | - 5 - - 0
o ECA Rule 90 - 200 | 24 | 250 1 8 0
20-BitBinary ™0 iance) 100 19| 250 | 1 | 2 0
Encoded
Stack - 100 - 500 - - 47
ECA Rule 90 - 1000 | 2 200 1 1 0
Random Covariance i 000 2 | 200 | 1 |1 0
Permutation
Stack - 1000 | - 1200 - - 0
Randor_n ECA Rule 90 - 300 | 4 600 1 1 0
Permutation ™= 0 Hance - 300 | 4| 700 | 1|1 0
Binary
Encoded Stack = 300 - 1400 - = 0
ECA Rule 90 - 500 | 8 | 6000 | 1 1 0
Covariance - 200 8 6000 1 1 151
Stack - 200 - 6000 - - 4
2 Symbols
ECA Rule 150 122 (1) 1000 | 8 | 8000 |05 | 1 0
Covariance 122 (1) 50 8 | 1500 | 1 | 1 56
Stack 122 (1) 500 - | 14000 | - - 0
3 Symbols ECA Rule 90 - 50 | 24 | 7000 | 1 1 0
ECA rule 150 40 (1) 500 | 20 | 2500 |05 1 0
Addition Covariance 110 (1) 50 (20| 3300 | 1 | 1 6
Stack 110 (2) 1000 | - 3500 - - 0
ECA rule 150 110 (2) 500 | 12 | 2000 | 05| 1 0
Multiplication Covariance 110 (2) 50 |12 | 2000 | 1 | 1 17
Stack 110 (2) 1000 | - | 14000 | - - 0
ECA rule 150 40 (1) 1000 | 4 500 |05 1 0
XOR Covariance 110 (2) 50 4 13200 | 1 |1 35
Stack 110 (2) 50 - 3200 - - 39

14 The number between brackets is the number of iterations that are used in multilayer CA.
5T is the input sequence length except for 5-bit and 20-bit tasks where it means the distractor length T.

35

Table 2.1 collects the results of all pathological tasks using the three proposed models
(CA, Covariance, and Stack). ReCA has solved all pathological tasks a. directly: in
random permutation, 5-bit and temporal order tasks, or b. by expanding the input either
utilizing Ri to reduce the interference in 20-bit task or using the CA multilayer in

addition, multiplication and XOR tasks.

Covariance and Stack representations could solve only memory and random
permutation tasks, but Stack fails in binary encoded 20-bit task. Covariance could not
solve the temporal order tasks and arithmetic/logic operator tasks while Stack could
solve them using multilayer CA expansion except XOR. Surprisingly, the Stack
reservoir achieves zero test error up to 1000 time steps with Niin = 5 for 20-bit task,
which is a very hard task in [88, 90, 91], even though the stack model is very simple.
The superior results that are seen for ReCA are due to its large distributed

representation and higher attribute statistics.
2.5.2 The Effect of Training Examples Ntrain

Providing the model more information, by increasing the number of training examples
Nitrain, IMproves the accuracy as illustrated in Table 2.2 for random permutation and
20-bit tasks using rule 90.

Table 2.2 The increasing of Niain improves the accuracy in ReCA: where, Nest = 100 and f = 1, for
20-bit task (Tq = 300, | = 20 and Ri = 2), and random permutation task (T = 1000 and | = 2). Using
rule 90.

20-Bit Task Random Permutation Task
Ntrain No of False bits Ntrain No of False bits
50 4 100 22
100 2 150 2
120 0 200 0

2.5.3 The Effect of Sequence Length T

The increasing of sequence length T increases the range of temporal dependencies,
that makes the task harder. Therefore, the task then requires more training examples
to obtain zero test error as experimentally proved in Table 2.3 for random permutation
binary encoded task as an example using rule 90.

36

Table 2.3 The minimum training examples to achieve zero test error w.r.t. the increasing of sequence

length T. For random permutation binary encoded task, where 1=4 and f=1 using rule 90.

Sequence Length T Min Nirain
30 100
50 150
100 200
200 300
300 600

2.5.4 The Effect of the Expansion Ratio f

The increasing of expansion ratio f reduces the number of false bits due to the
increasing of the feature vector dimension, i.e., increasing the provided information to
the regressor. As illustrated in Table 2.4, the zero error is obtained at f = 0.3 in the 5-bit
task, this means; the feature space can be reduced to 0.3 of its maximum value without

losing the model accuracy.

Table 2.4 The effect of expansion ratio on the accuracy (No of False bits) in 5-bit task.

Expansion ratio f No of False bits

0 224

0.05 58

0.1 32

0.15 32

0.2 32

0.25

0.3

0.35
1 0

2.5.5 Multilayer CA Expansion

Table 2.5 indicates that for XOR task, all the nonlinear ECA rules from class IV with
a complex behavior could achieve zero test error, thus they can be used for input
multilayer expansion with some of rules from other classes; to increase the nonlinearity
in the model. But, on the contrary, all linear (additive) ECA rules could not solve the

XOR task. This result is predicted; because the reservoir utilizes a linear rule, hence

37

any addition of linear rule in multilayer expansion is the same with increasing the
iterations in the reservoir using the original rule, which already cannot solve the task

by itself.

Table 2.5 The No of False bits in XOR task; using various ECA classes and rules in the multilayer

expansion.
ECA Linear Rules Nonlinear Rules

Class ECA Rule No of False bits ECA Rule No of False bits

| 250 73 40 0

32 45

1 170 73 118 0

204 77 138 76

60 71 122 0

1l 90 66 45 62

150 80 X X

v X X 41, 54, 106, 110 0

2.5.6 One Hot Encoding

Instead of using multilayer CA expansion, it can be used other type of input
transformation such as one hot encoding, which significantly improves the results of
XOR task. In one hot encoding, the original task input Lin = 2 will be expanded to
Lin = 4; as follows [00] — [0001], [01] — [0010], [10] — [0100] and [11] — [1000].

ReCA alone could not solve the original XOR task, but after using the one hot
encoding, the task has been easily solved using rule 150 with small effort (I=2 and
Niain=50) and even without using the buffers R in the encoding stage, i.e., the

expansion ratio f=0.
2.5.7 Comparison with Other Approaches

The ReCA results outperform: 1. [88] (2011) and [91] (2013) where the zero test error
has been obtained for sequence length T ranging from 50 to 200 time steps, while in
our experiments T ranging from 200 to 1000 time steps. 2. [90] (2012) where the zero
test error could not be achieved in 20-Bit binary encoded task using ESNs even if a
large reservoir has been used and after changing the weights of input matrix as listed
in Table 2.6. Also, ReCA outperforms ESN in computational complexity for most of

the tasks as illustrated in

38

Table 2.7. Comparing the representations of ReCA and ESNs where ReCA
outperform in 20-bit and 3 Symbols tasks but ESNs outperform in 5-bit task. Also, the
computation performed in ReCA is much more transparent for analysis and
improvement, while in ESNs the state evolution is untraceable due to random and

irregular distributivity.

Table 2.6 20-Bit task with binary encoded input using ESNs: The No of false bits for different values
of reservoir size K at T4 = 200, Ntrain = 500 and Ntest = 100. For the input matrix weights in Basic
ESNS 03,5 = 2.5 % 107%,0, = 1 X 107°, and g5 = 1. For more details about Blind, Basic conditions,

reservoir size (K) and input matrix weights () in ESNs please refer to [90].

Reservoir Size No of False Bits

N (neurons) Blind Basic
2000 50 27
4000 46 15
6000 27 24
8000 25 66
10000 25 59
15000 81 55

Table 2.7 The comparison of the number of operations and correspondence required bits between ESNs

and ReCA for examples of pathological tasks [8].

Task ESNs (Floating point = Bits) ReCA Speedup
20-Bit, Td=200 105.6M = 3380 Mbit 24.8 Mbit 136X
3 Symbols, T=200 5M =160 Mbit 20.5 Mbit 7.8X
XOR, T=1000 0.2 M = 6.4 Mbit 16 Mbit 0.4X

2.6 Discussions

The proposed framework (ReCA) could solve all the pathological tasks either directly
or after expanding (preprocessing) the input using multilayer CA and/or R; to reduce

the interference between the nonzero elements in the reservoir.

ReCA outperforms the Covariance and Stack representations because it has the highest
distributed representation, while Stack representation provides only pure

memorization, and Covariance representation computes only second order statistics.

Usage of cellular automaton instead of real-valued neurons in ESNs greatly simplifies

the architecture and makes the computation faster and more transparent for analysis.

39

The linear (additive) ECA rules (90 and 150) have been used in the reservoir evolution,
to achieve lossless injection of input at each time step, because the linearity of these
rules maximizes one-to-one correspondence between the input sequence and the
reservoir activity due to the sequence. Moreover, the additive rules can be represented
as linear functions modulo two, thus these rules allow to compute independently the
evolution for different initial states, then the results can be combined by simply adding

which significantly simplifies the hardware implementation of these rules.

On the other hand, ReCA outperforms conventional methods of reservoir computing

including ESNs by:

1- Using binary numbers instead of floating point numbers,

2- Multiplication in ESNs being replaced with bit-wise logic in the ReCA reservoir
and multiplication in the regressor being replaced with summation due to the
binary data,

3- The CA reservoir hardware can be implemented using ordinary digital gates or
field-programmable gate arrays FPGAs. Hence, the model complexity (space,

time) and the power consumption are reduced.

40

CHAPTER 3

COMPLEXITY REDUCTION OF ReCA

The model selection should be based not only on the accuracy of fit, but the model
complexity must also be taken into account. A simple model will generalize better in
new data sets than a complex one and thus will have more predictive accuracy. In
addition, a simple model's behavior is more tractable because parameter estimates will
be more stable. Therefore, it is necessary to consider the complexity in model
evaluating [95]. Finally, the complex models are very expensive in space and time for
a program running. That is why, in this chapter, we will deal with ReCA complexity
by creating new methods to extract the features from CA reservoir. Then, observing

the effect of using these methods on the ReCA model complexity.

Most parts of this chapter are published in [9].
3.1 ReCA Implementation

The ReCA framework (Figure 2.1) in Section 2.1 is also used in this chapter with its
three stages: Encoding, CA reservoir, and Read-out. The contributions in this chapter
are the new methods that are created to extract the features from the reservoir to be
used in read-out stage in order to compute the regression weight of Wout matrix, which

is used to predict the output.
3.1.1 Feature Extraction from the Reservoir

In CHAPTER 2, the reservoir states of the last time step have only been utilized as a
feature space, which memorizes all input information at the last time step, after which
it is used to predict the output at the same time step. In this chapter, ReCA will be
improved by creating new methods to extract the features from the reservoir while
maintaining the high performance of ReCA. This improvement is performed in two

ways:

41

1- The first is by reducing the CA reservoir size, thereby leading also to a decrease in

the input size of the read-out (linear regression) stage.

2- The second way is by using all time steps to predict the last time step output, i.e.,
increasing the feature space to reduce the training examples that are required for a zero

test error.

The first way can be introduced into the second one to obtain a distinguish results as

depicted in the results Section 3.3.

The feature expansion can also be categorized into two types: essential and

supplementary.
3.1.1.1 Essential Feature Extraction

In order to predict the output at last time step y(T); the model can use the CA evolution
states (iterations) in the reservoir at the last time step as a feature space. Then, these
states are concatenated to produce a single feature vector A (with dimension of
Lca=I.L). This method has been used in the previous chapter, from now, it will be

called LAST because ReCA uses the CA evolution states only at the last time step.

The feature space can be increased by choosing the CA evolution states at all time
steps from n=1 to n=T. Then, all of these states are concatenated to produce a large
single feature vector AAY (with dimension of Lgy = I x L X T). This method will be
called ALL and used to predict the output at last time step y(T). ALL method can be

considered as an extra memory resource in RNNSs as in [96-99].

We should not confuse the feature vector AAMD with the feature matrix A which has a
dimension of Lca=1.LxT and has been used in Section 2.1.3 in equation (2.10) to
predict the output matrix Y. Hence, this method is LAST not ALL because the features
that have been used to predict the output y(n), at time step n, have only been extracted
from the CA evolution states at a single time step n (not from all time steps as in ALL

method). For more details please refer to Section 2.1.3.

ALL and LAST methods are essential because ReCA should use one of them to extract

the features from the reservoir.

42

3.1.1.2 Supplementary Feature Extraction

The CA evolution states in the reservoir at a certain time step n can be expressed as a

matrix (CAout) With I rows, and L columns as exhibited in Figure 3.1. The size of the

feature space that obtained from ALL or LAST methods can be reduced; using three

options:

1-

Notes:

Each: Selecting only the last k rows out of all the I rows to be used as a feature
space as described in Figure 3.1. Thus, the new dimension of the feature vector

becomes as follows:

where L;, is the dimension of the original input (before encoding stage) and R
is the dimension of the added buffers in the encoding stage.

Half: The dimension of the feature space can be reduced to half by using only
the right or left side of CAout columns as in Figure 3.1. Thus, the feature vector

dimension is reduced by using only one buffer R as shown in equation (3.2)

Lea=1L.1=(Lip+R).I (3.2)

Expansion ratio f: The feature space can also be reduced by selecting only the
middle columns of CAout matrix (Figure 3.1), i.e., reducing the dimension of
the two buffers. Hence, the buffer dimension R = f(I x T) where the

expansion ratio f € [0,1].

The options (Each, Half and f) should be used with one from the two methods
(LAST and ALL).

Due to the rich dynamics that are provided by the CA reservoir; the three
options (Each, Half and f) can be used together to obtain a significant

complexity reduction as will be shown later in the results.

43

3- The (Each, Half and f) options are supplementary feature extraction. Hence, it

is possible to confine only LAST or ALL methods, but with large feature space.

4 f »]—T + f *
R Il.in R
0 1
. 1 i | 5t
time| 2 1 1 1
ila| (1] |a2f2
1 1 1
4 alafa] [afala] [a]a]2
B 1 B
1la] [ala| [alafa] [a]a] [1]2
1 1 1
111 111 111
| |a] [1 1| |2| |2 | |2 [2
102 (2] |22 |aja| |2| [2]2] [2f2]| |2] 2|2
1 1 1 1 1 Each
1|11 |1]1]1 1l i 1|11 |1]1]1 k=3
N N H B . N N k=2 —
I=15|2]2] |2|2 |2f|2] |2)2| |2]|2] |2| |2]|2| |2|2| |2]|2| |[2|2]| |2 2(k=!
;
(Half) Left

(Half) Right

Figure 3.1 Feature extraction from the space-time diagram of the CA evolution states in the reservoir
at a certain time step n (CAout matrix). As an example, ECA rule 150 is used with a single 1" initial state
and 15 iterations. Only k iterations can be used as features in Each option and/or using only the Half
(Right or left) side of CAqu matrix as features, and/or using the features after reducing the columns of

CA.ut matrix by selecting expansion ratio f < 1 [9]. Note: White squares represent the zeros.

3.2 Experiments

All the pathological synthetic tasks in Section 2.3 have been used to examine ReCA
utilizing the new feature extraction methods in the previous section. Following the
same procedures of the experiments'® in Section 2.4; to evaluate ReCA from the point
of view of complexity using the new methods of feature extraction. In our experiments,
the feature vector dimension Lca indicates the complexity, which is used to evaluate

the model. Then, comparing our new results with the classical results in Section 2.5.1.

6 The difference is only how to select the feature vector A™, which is explained in detail in
Section 3.1.1.

44

3.3 Results

In order to compare between the feature extraction methods in ReCA for space and
time complexity, the feature vector dimension Lca will be used as a measure to this
complexity as in Table 3.1. But, for the training stage, Lca is not enough because the
linear regression which is used in the read-out stage depends on the number of training
examples Nip,in- Thus, the size of Linear Regression inputs (LRi) is also important,
where LRi = L¢ca X Nirain, hence LRi will be used as an indicator of complexity in
the training stage. However, in the testing stage, only the L, Is important because of
a fixed value of testing examples N.s; = 100 has been used in all our work for a fair

comparison.

Table 3.1 Feature vector dimension Lca for several methods of feature extraction from the CA reservoir
where Li, is the length of the original input (before the encoding stage), T is the input sequence length,
Ri is the input expansion to minimize the interference, R is the buffer dimension, | is the iterations in
the CA reservoir, k is the selected states in the Each option, L is the length of the CA reservoir input
(after the encoding stage) and f is the expansion ratio. Notes: a- The first column (LAST) is the classical
method that has been used in the previous chapter [8] and it will be compared with the other new
methods that proposed in this chapter [9]. b- For Lca of the Half option, it is dependent on the condition
that will be used LAST, ALL or Each [9].

Method
Parameters | LAST Y7 LAST-Each ALL ALL-Each Half
Ley LxI Lxk LXIXT LXxkxT
L (Lin X R) + 2R (Lin XR) +R
R fXIXT

In our experiments, we are seeking minimum complexity, i.e., the minimum value of
(iterations 1, selecting states in Each option k, and the expansion ratio f) that will
produce a minimum feature vector dimension Lca in bits to achieve zero test error
using minimum training examples Nin. The expression “the model could solve the
task” means that the model could predict correctly (with zero test error) all the output

bits in all time step® for the whole 100 examples of the testing set.

17 In 5-bit and 20-bit tasks with LAST, Lo = L X I X T because there is an output at every time step.
18 1t is dependent on the task; if it has an output at every time step as in 5-bit and 20-bit tasks, or there
is an output at only last time step (the other tasks).

45

3.3.1 5-Bit and 20-Bit Tasks

In 5-bit task, the zero train error can be obtained with up to a 94 percent reduction of
LRi using three states k = 3 out of | = 4 with a small expansion ratio f = 0.15 and only

one side of the CA evolution states (Half option) as listed in Table 3.2.

Table 3.2 5 and 20-Bit Tasks: The reservoir parameters of the best results to achieve zero test error
using different methods for feature extraction. Lca and LRi are in bits, %Test and %Train Reducing are
the reducing percentages of Lca and LRi between the new methods in this chapter (the methods in [9]).
and the LAST method in CHAPTER 2 (the method in [8]). The other parameters are explained in Table
3.1. The first column presents the results of the LAST method used in [8] and we compare its results
with other new methods. The bold values are the best obtained results (minimum dimension for Lca and

LRi) and the minimum number of training examples Nirin to achieve the zero test error [9].

5-Bit Task 20-Bit Task
Parametres | Rule 150, T=200, Lin=4, 1=4, and Ri=1 | Rule 90, T=50, Lin=7, =16, and Ri=8
LAST | LAST-Half | LAST-Each- | LAST | LAST-Each | LAST-Each-
Half Half
f 1 0.15 0.15 1 0.9 0.9
k 4 4 3 16 1 3
Nirain 32 32 32 150 100 300
Lca (bits) | 1.28M 99.2K 74.4K 1.33M 74.8K 116K
%Test - - - 0 94 91
Reducing
LRi (bits) | 41.1M 3.17M 2.38M 200M 7.48M 35M
%Train 0 92 94 0 96 82
Reducing

For 20 bit task, Lca and LRi can be reduced to 94% and 96%, respectively, using only
k = 1 states out of 1 = 16 with an expansion ratio of f = 0.9. Moreover, the required
training examples to achieve zero test error decreased from 150 examples in LAST to
100 examples in LAST-Each. However, if the Half option is used, the required training
examples increase to 300 examples and k increases to 3; due to the decreasing of

features to the half as listed in Table 3.2.

Figure 3.2 shows that, for the 20-bit task, LAST method requires minimum training
examples to attain zero test error due to the large amount of information that it has,
compared with LAST-Each-Half where using only 3 states out of 16 with half space.

Using the right or left side is almost the same in this task.

46

—e— LAST
—#— Right (k=3 }
—#— Left (k=3

False Bits

= — = o
50 100 150 200 250 300 350 400

N:rain

Figure 3.2 20 Bits Task: No of false bits vs Nuain for LAST and LAST-Each-Half (Right and Left)
methods, where k = 3, 1 =16, T =50 and Ri = 8, using Rule 90.

3.3.2 Random Permutation Task

The best results are reached using different options, such as a 74 percent reduction in
Lca using the LAST-Each-Half method and a 48 percent reduction in the LRi using
the LAST- Half case, whereas the minimum training examples was 60 from the ALL-
Each option, as illustrated in Table 3.3. The zero buffers R can be removed in the ALL
case, but the removing of the most state evolutions in the CA reservoir leads to an
increase in the required training examples to 150 to solve the task. Moreover, in the
minimum Lca case (LAST-Each-Half), the maximum value of Niin = 650 is required
to obtain the zero test error to overcome the under-fitting caused by a small value of
features, as shown in Table 3.3.

Figure 3.3 also presents that the zero buffers R can be removed (f = 0) in ALL method
and achieve zero test error, but for LAST option to obtain zero test error, the zero

vector buffers R should be kept complete, i.e., R =1 x T to solve this task.

The increase in the sequence length T makes the task harder due to the longer time
dependencies; that is why ReCA needs more training examples to solve the task as
illustrated in Table 3.4. The trend of increasing Nirain IS NOt the same between ALL and

47

LAST methods where in LAST the requiring of training examples is large enough to

increase the cost of programming running, even the laptop exceeds its RAM limitation.

Table 3.3 Random Permutation Task: The reservoir parameters of the best results to obtain the zero test
error using different methods for feature extraction. The parameters are explained in Table 3.1. If the
%Test or %Train Reducing is greater than 100%, it means our result is greater than the result in [8]; i.e.,

there is no reduction. The bold values are the best obtained results [9].

Parametres Rule 90, T=500, Li»=100, I=2, and Ri=1
LAST ALL ALL-Each LAST-Half LAST-Each-Half
f 1 0 0.85 1 1
k 2 2 1 2 1
Nirain 90 150 60 90 650
Lca (bits) 4.2K 100K 900K 2.2K 1.1K
%Test 0 2381 21429 48 74
Reducing
LRi (bits) 378K 15M 540M 198K 715K
%Train 0 3968 14286 48 189
Reducing
150 . , . . LAST
' —+—AlLL
% 100 | TS e T T g ...
3 E
L S0k L 5 d i
DD — :U:z: : :Dh: } :D:E: } :D:E: 4
f

Figure 3.3 Random Permutation Task: No of False Bits vs the expansion ratio f using rule 90 for ALL

and LAST methods. Where, | =2, T = 100, Nirain = 100 and Niest = 100.

Table 3.4 Random Permutation Task (Binary Encoded): The effect of sequence length increasing T on
the minimum number of training examples to attain zero test error, using LAST and ALL methods.

Minimum Niain

T LAST ALL
30 100 35
50 150 40
100 200 100
200 300 100
300 600 100
500 >2000 (Out of Memory) 150

Based on Table 3.5, the minimum feature vector dimension is obtained using the LAST
method with 90 examples for training, to reduce the training examples, ALL or

48

All-Each can be used but with increasing of the feature vector dimension. Hence, there
is a trade-off between the number of training examples and feature space size. The

worst case is ALL with zero expansion ratio f=0 because it can be replaced by LAST
with better performance.

Table 3.5 Random Permutation task: No of False Bits and Feature vector dimension Lca W.r.t. Nirain

for ALL, LAST and ALL-Each methods with different values of expansion ratio f, where T=500, 1=2

and Niest = 100 using rule 90.

Method f Ntrain No of False bits Lca (bits) LRi (bits)

130 12

ALL 0 140 1
150 0 100K 15M

40 55

ALL 1 50 6
60 0 2.1M 126M

40 16

ALL-Each 1 50 2
k=1 60 0 1.05M 63M

70 11

LAST 1 80 4
90 0 4.2K 378K

3.3.3 Temporal Order Tasks

Table 3.6 shows that the best results are obtained using ALL-Each-Half except that the

minimum Lca for the 2 symbols task was in the LAST-Half case.

Table 3.6 Temporal Order Tasks: The reservoir parameters of the best results to obtain the zero test
error using different methods for feature extraction, where T = 50, Li, = 6 and R; = 1. The parameters

are explained in Table 3.1. If the %Test or %Train Reducing is greater than 100%, it means our result

is greater than the result in [8]; i.e., there is no reduction. The best results are in bold [9].

2 Symbols Task 3 Symbols Task
Parametres Rule 150, 1=8 Rule 90, 1=24 Rule 150, 1=8
LAST | LAST-Half | ALL-Each-Half LAST ALL-Each-Half
f 1 0.75 0.5 1 0.85
k 8 8 1 24 1
Nirain 900 800 110 7000 500
Lca (bits) | 6.45K 2.45K 10.3K 57.7K 17.3K
%Test 0 62 160 0 70
Reducing
LRi (bits) | 5.8M 1.96M 1.13M 400M 8.65M
%Train 0 66 80 0 98
Reducing

49

In 2 symbols task, ALL-Each method outperforms ALL and LAST where zero test
error has been achieved using minimum expansion ratio f=0.15 while f=0.35 for ALL
and LAST as depicted in Figure 3.4.

400 ! ! ! - -
@ : : : —=— LAST
0 : : : —+— ALL
F ! ?Q R e AILFach
w 1) w = : :
Dl—{—*—ﬁ—ﬂ* o 6o oo b oo o oo 0o J
0 0.2 04 f 06 0.3 1

Figure 3.4 2 Symbols Order Task: No of False Bits vs expansion ratio f where T = 50, | = 16 and
Nitrain = 900 using rule 150.

Figure 3.5 shows that ALL and LAST methods could not solve the 3 symbols task
using small training examples N i, < 800 examples while ALL-Each and ALL-
Each-Half could solve such task starting by Niq,in = 500 examples. ALL-Each and
ALL-Each-Half are almost the same, therefore it is preferred to use ALL-Each-Half

due to its small feature vector dimension.

3 Symbols Temparal Order Task —— All

T ! ! —&— Last

—&— All-Each k=1

—#— Right; Each k=1
Left; Each k=1

105

| = S BB e

L

o TRRR (P TR TR - .. SN

904

False Bits

P 5. e ST S SR, PO
306

(5l g . V-) —-— e

] ; : ; o
300 400 200 B00 700 G300
I\Jmin

100 200

Figure 3.5 3 Symbols Temporal Order Task: No of false bits vs Nuain for ALL, LAST, ALL-Each and
ALL-Each-half (Right, Left) methods, where T =50, | =8 and k = 1 using rule 150.

In temporal order tasks, the LAST method has the smaller feature vector dimension
Lca, but with large value of examples for training. On the contrary, ALL-Each method

has the larger feature vector dimension Lca, but with small number of examples for

50

training which leads to small LRi as illustrated in Table 3.7. Thus, to choose the best
method, it depends on which is the priority; the feature vector dimension or the number

of training examples and the complexity of the training process.

Table 3.7 Temporal Order Tasks: different parameters for ALL-Each and LAST methods to achieve

zero test error using rule 150.

Task Method Ntrain T I f Lca (hits) LRi (bits)
ALL-Each | 800 1000 16 0.25
2 Symbols | ALL-Each | 350 200 8 0.35 225K 78.8M
LAST 3500 200 8 1 25.6K 89.8M
ALL-Each | 2000 200 16 1
3 Symbols | ALL-Each | 700 50 8 1 40.3K 28.2M
LAST 7000 50 24 1 57.7K 404 M

3.3.4 XOR Task

The multilayer CA expansion should be used to solve this task. Rule 40 has been
applied to the original input with Rule 150 to the reservoir. The best results for Lca
and LRi are in the LAST-Half option, but the minimum required training examples

was obtained using the ALL-Each-Half case, as shown in Table 3.8.

Table 3.8 XOR Task: The reservoir parameters of the best results to obtain the zero test error using
different methods for feature extraction, where the Multilayer CA Rule is 40 and the number of
iterations in the Multilayer CA stage is I-Multilayer = 1. The parameters are explained in Table 3.1. If
the %Test or %Train Reducing is greater than 100%, it means our result is greater than the result in [8];

i.e., there is no reduction [9].

Parametres Rule 150, T=50, Lir=2, I1=4, and Ri=1
LAST LAST-Half ALL-Each-Half

f 0.5 0.5 0.5

k 4 4 1

Ntrain 100 60 50
Lca (bits) 816 416 5.2K
%Test Reducing 0 49 637
LRi (bits) 81.6K 25K 260K
%Train Reducing 0 69 319

3.4 Discussions

In Chapter 2 [8], ReCA used only the last time step of the CA evolution states in the
reservoir for all iterations I to train RNNs (LAST method). But, in this chapter other

methods for training have been introduced to improve ReCA as listed below [9]:

51

1. All CA evolution states are used for all time steps (ALL method) in which the
learning requires a small training set, but with large feature space and possibility of

overfitting due to the increasing of model complexity.

2. The method ALL-Each is similar to ALL but the last k iteration states are only used
from all CA evolution iterations I for all time steps. Thus, the feature space dimension
decreases which leads to a reduction in the model complexity and then reduction in the

possibility of overfitting.

3. The dimension of zero vector buffer R is reduced by selecting small values of
expansion ratio f. This reduction is only suitable for ALL and ALL-Each methods,
because of their large size, but in LAST, it reduces the model efficiency; to overcome

such issue, a very large training set is required.

4. The right or left side of CA evolution states are only used for training in the three
methods (LAST, ALL, and ALL-Each). The results show symmetry in feature space;
therefore, the half space (right or left) can only be used for training, which also
improved the results in temporal order tasks. Hence, in half option, the same level of

performance can be achieved using only 50% of the space size.

Due to the rich dynamics being provided by the CA reservoir, multiple methods can
be utilized together (ALL-Each-Half, LAST-Each-Half, ..., f) which highly reduces

the required features by up to 98% in some tasks.

Using All-Each instead of LAST significantly improves ReCA to train the pathological
tasks to obtain a zero test error with minimum complexity and required training
examples. The minimum required N.,i, €xamples were obtained in the ALL-Each
case as it exploits a large amount of information provided from all time steps with a
relatively small feature space after using a few evolution states k instead of all states
I. However, LAST is still the best method in a large sequence T and small iterations I,
as in random permutation tasks. But, the lack of training examples requires using
ALL-Each method.

52

CHAPTER 4

ReCA VS. FEEDFORWARD ARCHITECTURE AND
LOCAL REPRESENTATION

In previous chapter the complexity of ReCA was discussed and we will continue in
this chapter by creating three other options XOR, Binary, and Gray to reduce the model
complexity. In addition, ReCA in feedforward architecture is proposed, also new
reservoirs with local representation are proposed to study the effect of the data

representation in the reservoir on its function in machine learning.

By reason of comparison, we confine 5-bit task to test ReCA because only this task
from the pathological tasks has been used to test other approaches of reservoir
computing based on elementary cellular automata [7, 49, 50]. The ordinary 5-bit task
is also modified by creating a test set to adapt the machine learning principles for
testing the models.

Most parts of this chapter are submitted in Artificial Intelligence Review [85].
4.1 ReCA Implementation

The ReCA framework (Figure 2.1) in Section 2.1 is also used in this chapter with its
three stages: Encoding, CA reservoir, and Read-out. The difference in this chapter is

that the zero buffers R are only used in the encoding stage as shown in Figure 2.2.

Another difference is creating a new insertion function in the reservoir rather than
XOR in previous chapters as demonstrated in Figure 2.5 and explained in
Section 2.1.2. The second input with a dimension of Li, can be directly inserted into
the reservoir by overwriting the middle cells in A/® with this input to produce the
initial state Ao® at second time step. The overwriting (deleting) of A/Y) middle cells
does not lose the first time step information, because the two evolution sides (the
propagation in the buffers) of A" are still conserving the information of the first time

step. Therefore, to ensure that, there is no any loss of information; the number of

53

iterations | should be large enough to propagate the whole input information into the
buffers depending on the task nature (size and information position) and ECA rule.
Then, the same steps will be repeated up to the last time step to produce the vector A™M
which also memorizes the history of all input sequences. In results section, this option
will be called Overwrite and using XOR operation as an insertion function will be

called Normal.
4.1.1 Feature Extraction from the Reservoir

As demonstrated in CHAPTER 2 and the results of Section 3.3, the best method of
feature extraction is LAST-Each in 5 and 20-bit tasks and ALL-Each in the other tasks.
Therefore, in this chapter, LAST-Each in 5-bit task will only be used with expansion
ratio f and Half option. Also, three new options for feature extraction XOR, Binary,
and Gray are created as follows, but to make the context more informative; we will

start by Each option:

Each: In this option for each time step n; only k states of CA evolution are selected to
be used as a feature space. Figure 4.1(a) shows an example of Each option for a certain
time step n where k=3 have been used from the feature space CAout matrix of Figure
3.1 to produce a feature matrix with size of 3xL, thus the dimension of the feature
vector A™ pbecomes 3L after concatenation. In general, the feature vector dimension
in Each is Lca=(Lin+t2R)k.

XOR: the matrix CAout in Figure 3.1 can be reduced to one row; using bitwise XOR
operation for every column of CAout as shown in Figure 4.1(b) where k=3. Thus, the
dimension Lca=L=Lin+2R. This case can be considered as an ECA with memory
(ECAM); because there is a memory function (XOR operation) added to ECA, but the
difference in our case is that this function is only applied after the last iteration, whilst

in ECAM the function is applied in all iterations [79].

Binary: Every column vector in CAoyt matrix can be represented by converting its
binary value to a decimal number with the least significant bit (LSB) at the first row*°.
Figure 4.1(c) shows the Binary option where k=3 in Figure 4.1(a), also it can be used

19 The most significant bit (MSB) can also be at the first row.

54

for the whole columns of CAoyt matrix in Figure 3.1, the dimension Lca= L. Binary
option has also been used in [51] utilizing two ECA rules (one for projection and the

other for memory) in the reservoir.

Gray: the binary code is replaced by Gray code (Figure 4.1(d)), the dimension of
Lca= L. Gray code is normally used to decrease the noise effect on the binary bits in

digital communications and in binary counters [100].

(a)Each

=3

—- b L

o
o
(=
(=Y
(=Y
o
=
(=Y
(=Y
o
o
o
=}
o
=

0 S [0 e]
(=Y
o
=}
o
=}
o
=
[
(=
=}
(=Y
(=Y
=
o
o

() XOR [a2]oflafa]olololalafofalofafofafafafolajolaolalalololofafa]o]a]

(©Binary |alelil7]slols{7]i]elaJolal6fa]7alelaflolalelafz]solslslal6lal

(Gray [7]al1[s]slolels]efal7]ol7]alrls]1]al7]o]7lal1]s]6]ole6ls]ala]7]

Figure 4.1 Types of feature extraction (a) Each; using 3 iterations out of 15 from CAou: matrix in Figure
3.1, i.e., k=3. (b) XOR; using bitwise XOR operation for all columns of the matrix in part (a) to produce
the feature vector, (c) Binary; converting the binary value of each column of the matrix in part (a) to
decimal number, and (d) Gray; using the Gray code instead of the binary code in (c) [85].

Notes:

1- Due to the rich dynamics provided by the CA reservoir; (Each, Half, and f)
options can be used together with any case of XOR, Binary, and Gray.

2- For XOR, Binary and Gray options, the selected iterations k should be greater
than or equal 2, because if k=1 they will be similar to Each method with k=1.
The advantage of those three options is the low dimension of feature vector
Lcaeven if k is large; still Lca=L, i.e., Lca is independent on the value of k as

in Each method where Lca=L.k.
4.1.2 ReCA in Feedforward Architecture

Sequential data can also be handled using feedforward architectures by using a portion
of the input to predict an output as in sliding window methods [101] or using the whole
input sequence to predict all the output as in [7]. In our work the second method will

be adopted via two ways:

55

All the flattened input sequence is projected to the CA reservoir at once, this method
will be called All-ff.

The input of each time step is separately projected to the reservoir then the obtained
CA evolution states of all time steps are concatenated together to produce the feature

vector that will be used to predict the whole output, this method will be called Each-ff.

In feedforward case the buffer dimension R should be equal to | to hold all CA
sequence representations rather than R=IXT for recurrent architecture in
Section 2.1.1.1, thus the feature dimension in feedforward architecture is smaller than
it in recurrent architecture. But, the advantage of recurrent architecture over the
feedforward is the capability to keep a fixed size representation by adjusting the
expansion ratio f to a certain length for the feature vector which is similar to the
reservoir size N (number of neurons) in ESNs. The CA feedforward architecture is
very similar to Extreme Learning Machines ELMs [102, 103], where the random

connections in ELM are replaced by the CA reservoir.
4.2 Experiments

In this chapter, ReCA will be tested for long short-term memory capability using only
5-bit memory task which is a part of the pathological synthetic tasks that has been
explained in detail in Section 2.3. By reason of comparison, we confine 5-bit task to
test ReCA because only this task from the pathological tasks has been used to test other

approaches of reservoir computing based on elementary cellular automata [7, 49, 50].
4.2.1 5-Bit Task

The 5-bit memory task is widely used in RNN literature, e.g., [7-9,49,50,88,90,91].
This task is one of the hardest tasks for ESNs in [90], also as reported in [7, 50] it is
problematic to solve the 5-bit memory task using feedforward architectures. But, as it
will be shown later in Section 4.3.3, it is possible to solve this task using feedforward
architecture with some limitations using ECA and even without using it. The weakness
of using this task is that; due to its small number of examples (only 32 examples), the
whole examples are used to train the model, and then the model is tested using the

same 32 examples and finding the error, this approach has been used in [7-9,49,50,

56

88,90,91], thus the proposed models are not general as it will be explained in the next
Section 4.2.2. The details of 5-bit task are demonstrated in Section 2.3.1.1.

4.2.2 Generalized 5-Bit Task

As mentioned in previous section, the 5-bit task has only training set. Thus, the model
is only designed for this set and there is no guarantee for the model to solve new
(unseen in training) examples that have the same behavior of the training examples,
i.e., the model is not general which is a disadvantage for any model. Therefore, to
generalize the model and respect the machine learning principles for model evaluation,
the dataset should be divided into two sets that generally have different examples;
training and testing set. The training set is used for training to calculate the model
parameters (the weights of W,,; matrix), and then the model is tested using the input
of testing set to predict their output and finding the error between the given output in
testing set and predicted one to evaluate the model.

The small dataset is a challenge in machine learning, but nevertheless, we will divide
the 32 examples into two sets and even we will search the smallest number of examples
that can efficiently train the model to give zero test error. Thus, all the 32 examples of
the original 5-bit task are randomly shuffled, then the first Nain €xamples are selected
for training and then the rest examples will be used for model testing. Hence, the

number of testing examples Nest can be expressed as follows:

Ntest = 32 — Nirain (4-1)

4.2.3 Training\Testing Stages

After preparing the feature matrix A using the various methods of feature extraction
mentioned in Section 4.1.1, the features A are used in equation (2.13) in Section 2.4.1
for training to find the regression parameters of W,,. matrix, which is used in
equations (2.15) or (2.16) in Section 2.4.2 to predict the output. The output is
dependent on the task; the predicted output is for testing set output in generalized 5-
bit task, or the predicted output is for training set output in 5-bit task.

57

4.2.4 ReCA Evaluation

After binarization of the predicted output according to the equation (2.17) in
Section 2.4.3, the binarized output (§(pytese aNd §(p)train) Will be used to find the

model errors as follows:

1- testing error=|9)test — Veest| for the generalized 5-bit task, and

2- training error = |§,ytrain — target| for the 5-bit task.

These errors represent the number of false bits over all relevant time steps in output
bits. The goal of our experiments is to achieve zero test error with minimal
complexity, hence the parameters I (CA evolution iterations), Ri (the input
expansion to reduce the interference) and f (the expansion ratio) should be tuned
to their minimum values in order to obtain the shortest length of the feature vector
Lca, using the whole 88 equivalent sets of ECA rules that are listed in Table 1.2
excluding the 8 sets of Class I rules; because the evolution of class I rules vanishes
after the first iteration in 5-bit task due to the single nonzero in its input at each
time step as shown in Figure 2.7. Hence, the ECA rules that will be used are 1, 2,
3,4,5,6,7,9,10,11, 12, 13, 14, 15, 19, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 36,
37, 38, 42, 43, 44, 46, 50, 51, 56, 57, 58, 62, 72, 73, 74, 76, 77, 78, 94, 104, 108,
130, 132, 134, 138, 140, 142, 152, 154, 156, 162, 164, 170, 172, 178, 184, 200,
204 and 232 from class Il and 18, 22, 30, 45, 60, 90, 105, 122, 126, 146 and 150
from class 11l and 41, 54, 106 and 110 from class IV, as well as rule 165 (the
conjugate of rule 90) and rule 102 (the reflection of rule 60) [104], Thus the total
number of used rules in our experiments becomes 82 rules instead of using all the
256 ECA rules.

4.3 Results

The ReCA model has been examined using 5-bit task (32 examples for training) as in
[7-9, 49, 50, 90], and using generalized 5-bit task (32 examples for training and
testing). Then, ReCA results using several feature extraction methods have been
compared with the state-of-the-art results of RC based on CA approaches.

58

In all experiments; the distractor period T¢=200 time steps, thus the total sequence
length becomes T=210. For notation, (I, k, f) indicates the number of total iterations I
in the reservoir, k is the selected iterations in Each option and f is the expansion ratio

unless otherwise described.

In our experiments, we are seeking minimum complexity, i.e., the minimum value of
I, k, and f that will produce a minimum feature vector dimension Lca in bits to achieve
zero test error using minimum training examples in generalized 5-bit Task?®. The
expression ‘the model could solve the task’ means that the model could predict
correctly (zero error) all the four output bits for every time step for the whole 32
examples, i.e., 4x210x32 bits are correctly predicted in 5-bit task or 4x210xNest bits

are correctly predicted in generalized 5-bit task.
4.3.1 5-Bit Task

All proposed methods with several rules and different Wolfram classes could solve the
5-bit task and achieve zero test error as listed in Table 4.1 and Table 4.2 for Normal
and Overwrite methods and Table 4.3 and Table 4.4 for XOR, Binary and Gray options
with Normal method, i.e., using XOR operator as an insertion. The minimum
complexity was attained at (2, 1, 0.26) using rule 165 from class 111 in Normal method,
Lca=224 bits, then Overwrite method using also the rule 165 at (2, 1, 0.33), Lca=282
bits as illustrated in Table 4.2.

Table 4.1 ECA rules that achieve zero test error in 5-bit task using Normal and Overwrite methods with
the parameters (1, k, f) and feature vector dimension Lca where 1 is the number of all CA iterations in
the reservoir, k is the number of selected iterations that will only be used for training in Each option,

and f is the expansion ratio.

Method (I, k,), Lca (Bit)
(3,3,1) Leca 22,1 Len
106, 30, 45, 105, 165, 150, 2, | 3792 | 105, 165, 15, 34, | 1688
Normal | 10, 34, 38, 42, 46, 56, 74, 130, 38, 42, 162, 170.
138, 162, 170, 184.
106, 30, 45, 90, 102, 105, 165, | 3792 | 90,38,42, 154, | 1688
overwrite | 150 2,10, 11, 15, 34, 38, 42, 170.
43, 46, 56, 74, 130, 138, 154,
162, 170, 184.

20 In 5-bit task, all the 32 examples should be used.

59

Table 4.2 ECA rules that achieve zero test error in 5-bit task using Normal and Overwrite methods
with the parameters (1, k, f) and feature vector dimension Lca. The minimum dimension Lca is in bold
numbers. Note: For Half option, the right side was used in rule 15, any side from the both can be used

in rules 90, 165 and the left side was used in the other rules.

.k 0, Lea (BiD
Method 2 LDOHf | Loa | 2105 | Lea | @LD | Lea
ormal | 165.15,34 42, | 424 | 15,34,42, | 424 | 165 f=0.26 | 224
162, 170. 162, 170.
overmria | 90.42,170. | 424 | 42,170, | 424 | 165,1=033 | 282
90, f=0.55 | 466

There is an obvious risk of information loss when using Overwrite with two iterations
(1=2) and one-way flow rules 38, 42 and 170 (see Figure 4.2) for the input with 4 bits
dimension as in 5-bit task; the last two inputs uz and us in Figure 2.7 will be deleted
after using the Overwrite insertion function in the reservoir for the next time-step, the
question why did Overwrite method give good results as listed in the above tables?
Because the input memory pattern is in the first two inputs uo and u; thus, they will be
reserved in the buffers R using two iterations and then they can be repeated at the
output as demonstrated in Figure 2.7 in the last time steps. The nonzero in the third
input uz is not important for the output it is only a distractor, but the cue signal in forth
input us is important because after its arrival the output will repeat the input pattern,
thus the importance here is ‘when does the cue signal arrive?’, the cue signal still
appears in the CA reservoir state at the time step T — 5 as shown in Figure 2.7, then it
is followed by the input memory pattern in the output. Hence, the Overwrite method,
with the nature of 5-bit task, could save the necessary task information and provide

good results.

But, the using of Overwrite method generally requires the number of iterations
| > (dimension of Lin) / 2 for ECA rules with two-way flow or | > (dimension of Lin)

for ECA rules with one-way flow, Figure 4.2 depicts some examples of such rules.

In XOR, Binary and Gray, the minimum complexity was reached at (2, 2, 0.5) and (2,
2, 1) Half where Lca=424 bits; using the rules (15, 34, 38, 42, 162, and 170) from class
Il and 165 from Class I11 for only Half option as listed in Table 4.4.

60

Rule 102 Rule 90
% o | -
T Rule 170 Rule 165
&{:H] ﬁ b ahsiln"db:ai-dl Ae=das
(a) (b)

Figure 4.2 Information flow in ECA for five iterations space-time diagram of different rules for a single

non-zero initial state with one iteration of a center cell for each rule: (a) One-way and (b) Two-way [85].

Notes:

1- Inthe XOR, Binary and Gray options, k=1 was not used; because in this case,
those three options will be as Normal method when k=1 which was already
listed in Table 4.2.

2- For simplification, the insertion function XOR has only been used in the XOR,

Binary, and Gray options. The overwrite function will be used in future work.

Table 4.3 ECA rules that attain zero test error in 5-bit task using Normal method for XOR, Binary and

Gray options with the parameters (I, k, f) and feature vector dimension Lca.

(K 7). Lea (BiD)
Method 3.3.1) Len G.2.1) Len
106, 2, 10, 15, 24, 34, 38
XOR | 2,10,38,74,130,138. | 1264 | 42,46, 56,74,130,138, | 1264
152, 162,170, 184,
106, 165, 2, 10, 34, 38, 106, 165, 2, 10, 24, 34, 38
Binary | 42,46, 56, 74, 130, 1264 | 42, 46,56 74 130,138, | 1264
138, 162, 170, 184, 152, 162, 170, 184,
106, 90, 165, 2, 10, 34, 106, 90, 165, 2, 10, 15, 24,
Gray | 38,42, 46,56, 74,130, | 1264 | 34, 38,42, 46, 56, 74,130, | 1264
138, 162, 170, 184, 138, 152, 162, 170, 184

In the cases where f=0.5 and Half option with f=1 (not less) are almost the same
because the periodic boundary condition has been utilized with one-way rules (15, 34,
38, 42, 162 and 170) as represented in Figure 4.4. Hence, the same features are
obtained in the 2 cases; because it is just a columns permutation (as described in Figure
4.3(a), (b), and (c)) where the columns permutation does not affect the regressor results
in the read-out stage.

61

Table 4.4 ECA rules that achieve zero error in 5-bit task using Normal method for XOR, Binary and
Gray options with the parameters (I, k, f) and feature vector dimension Lca. The minimum dimension
Lca is in bold numbers. Note: For Half option, the right side was used in rule 15, any side from the

both can be used in rules 165 and the left side was used in the other rules.

(LKD), Loa(BiD)
Method @ 2.1) Lea | (2,2,05)and (2,2, 1) Half | Lea
XOR 34, 162. 844 34, 162. 424
165 Half, 15, 34, 38, 42, 162,
Binary | 1% 12’23‘1"738' 42, | gas 170, gég
, 170. 165, f=0.66
Gray | 18534 13786 42,162, | g4y 34, 38, 42, 162, 170. 424

But the difference is still existing in the rules 90 and 165 where they have two sides of
propagation. Therefore, the obtained information from both sides is different.
Moreover, for rule 165 with Half option; f can be less than 1 (f = 0.9 experimentally in
5-bit task) due to its high distributedness that has also been proved for rules 90 and
150in[8, 9].

Complete Half, /=1 Jf=05
R=6bits Ly =4 bits R =6 bits R =6 bits Ly, =4 bits R=3bits Lin=4bis p_3pps
! i _ .
0 1 1 1
1 1|1 1|1 1|1
2 1 1 1 1 1 1
3 1|11]1(1 1|1]1]1(1 1)]1]1(1
4 1 1 it 1 1 1
5 1|1 1|1 s B 1|1 1 1|1 1
6 1 1 1 1 1k 1 1k 1 1 1 1 1
b 1 e S e e e e e 5 e e e 1|11|1|1]|1 1|]1|1
T T 5 T
L = 16 bits L =10 bits L =10 bits
(a) (b) (c)

Figure 4.3 Feature space for a one-way rule: (a) Complete; using the whole space (Both sides and f = 1),
hence the largest length L=16 bits, (b) Half, f =1; Using only the left side but f should be equal to 1 to
conserve the whole information. In this case, L=10 bits, and (c) f = 0.5; Using both sides for R = 3 bits
rather than 6 bits in (b). The first three columns in (b) are transferred to last three columns in (c) after
using periodic boundary condition, thus (b) and (c) are identical in the regressor. White squares

represent zeros [85].

4.3.2 Generalized 5-Bit Task

As mentioned in Section 4.2.2, the training and testing sets are selected randomly from
all the 32 examples of the 5-bit task. Hence, there are a lot of different samples,

therefore to get stable estimates of model performance; Monte Carlo cross-validation

62

technique was applied where the algorithm run should be applied multiple
times?* [105]. The single run (trial) is said to be successful (zero test error) if the ReCA
could find the correct binary value for all the 4 output bits for all time steps for whole
testing examples Nest, this means 4x210xNeest bits are correctly predicted for one trial,

to solve the generalized 5-bit task, the correct prediction should be for all the 100 trials.

ReCA could solve the generalized 5-bit task using a very small number of training
examples Nain=2 or 3 to achieve zero test error as listed in Table 4.5. The minimum
complexity was at (2, 1, 0.5) using Overwrite method with the rules 42 and 170 from
class Il where Nain=3 examples and Lca=424 bits. But, for Niain=2 examples, the task
becomes harder. Therefore, the feature vector dimension Lca increases from 424 to
634 bits and the number of CA iterations | increases from 2 to 3 to obtain zero test
error using Overwrite and XOR methods with the rules 42 and 170 from class Il as
listed in Table 4.5. Based on the same table, the increasing of the values of ReCA
parameters I, k and/or f makes more rules can achieve zero test error but of course with

larger complexity.

Table 4.5 ECA rules that Succeeded to obtain zero test error using several methods for feature extraction

with two and three examples for training and 100 trials. The minimum dimension of Lca is in bold.

Method Nirain (I k,) ECA rule Lca (Bit)
Normal 4109 | "9 T 102 170,104 | O
Overwrite?? (3,1,0.5) 42, 170. 634
XORZ 2 (3,2,0.5) 42, 170. 634
Binary (4,2,0.5) 106, 34, 42, 162, 170. 844
Gray?* (4,2,0.5) 34, 162. 844
Normal (3,1,0.5) 106, 34, 42, 162, 170. 634
Overwrite 3 (2,1,0.5) 42, 170. 424
XOR, Binary, and Gray (3,2,0.5) 106, 34, 42, 162, 170. 634

2L The experiments have been repeated 100 times, i.e., Niiais =100 runs (trials).
22 Rules 106, 34 and 162 gave only 1 error in 100 trials.

23 Rules 106, 34 and 162 gave only 2 errors in 100 trials.

24 Rules 106, 42 and 170 gave only 1 error in 100 trials.

63

4.3.3 CA Feedforward Architecture

In CA feedforward architecture, there are two methods to project the sequence input
into the reservoir All-ff or Each-ff as explained in Section 4.1.2. The most of ECA
rules except the rules 23, 72, 104, 200 and 232 could solve the 5-bit task using those
two methods with a small value of the parameters (I, k) = (1, 1). All-ff outperforms in
the complexity with feature vector dimension Lca=842 bits while Lca=1260 bits for
Each-ff. For the generalized 5-bit task, Each-ff outperforms a little bit where the model
achieves zero test error using only 10 training examples while 11 examples are

required for training to achieve zero test error in All-ff model.

The small number of iterations | in the previous results (recurrent and feedforward)
also the shift property in the most success rules as shown in Figure 4.4 for a single
nonzero initial state as in our case for 5-bit task lead us to test the local representation
in 5-bit tasks.

Rule 2 Rule 24

o 3 [[R [e
10 56

TR EERE g e B O
34 e 152

(R T E
42 184

T e W e EEE
74 (b)
?T?TOZEF?EB: Rule 38

i kil Wil

esln b daiil e wic s ihdeiaal i
130 (¢)

T

138 5 Rule 46

TEOTEERE e s
162 (d)

R

170 Rule 15

o ah-db"dhcEE JE-E ﬁ B P PP
(a) (e)

Figure 4.4 Shift rules; five iterations space-time diagram of different ECA rules for a single non-zero
initial state with one iteration of a center cell for each rule. (a) left shift, (b) right shift, (c) left shift
single and double bits, (d) left shift double bits, and (e) inverted right shift. Note: The shift is
independent on the initial state only for two rules 170 and 15 where their Boolean expressions are

xin+ 1) = x;,,(n) and x;(n + 1) = x;_, (n) respectively, where X is the inverse of x [85].

64

It is an encroachment for using the word 'shift' for these rules (Figure 4.4) because they
are shift rules only at first time-step, but after insertion the second time-step to the
reservoir, there is no guarantee to stay as shift rules, it is dependent on the nonzero
positions in the new initial state at second time step and so on for the other time steps.
Also, we should note that the local representation is applied only in the reservoir, but
the model still has a computational power from the regressor in the read-out stage to

solve the tasks.

4.3.4 Local Representation Models

In local representation, there are also feedforward and recurrent architectures, in the
local feedforward the input sequence is flattened (vectorization) and is directly used
as features for training to predict the whole output, it will be called (without CA). But,
in local recurrent, the sequence input is memorized consecutively step by step as
shown in Figure 2.6. Thus, the insertion function is similar to the stack memory, the
first row of feature space which has only the first time step input is used to predict the
output at first time step and so on up to last time step consisting of all input time steps
as illustrated in Figure 2.6. This model has been used in Section 2.2.2 and [8] for
comparison with ReCA to study the required distributedness and computational to
solve sequence tasks and is called stack reservoir. The dimension of feature vectors in
stack reservoir is dependent on the input dimension Li, and the sequence length T as
shown in Figure 2.6. Thus, it is not a fixed length model and from this point of view;

it is like feedforward, which is problematic for large T and Lin.

Surprisingly, the local feedforward and stack reservoir could solve the 5-bit task with
feature vector dimension Lca=840 bits for both; but, this vector is used to predict the
whole output for local feedforward (without CA) while for stack representation it is
only utilized to predict the output in a single time step n. The local feedforward
(without CA) and stack reservoir could solve the generalized 5-bit using 11 examples

and only 3 training examples respectively.
4.3.5 Comparison with other Approaches

The model complexity is a useful metric to evaluate different models [95]. Therefore,

the feature vector dimension Lca (bits) will be used to compute the model complexity

65

for different RC based on CA approaches (a snapshot of this approaches is presented
in Section 1.3) that have been used 5-bit task. Table 4.6 shows the best results of

recurrent architectures from those approaches.

Table 4.6 The minimum complexity results for 5-bit task where T4=200; using several approaches that
utilize recurrent architecture of RC based on CA except stack reservoir which is used local
representation instead of CA. The results are listed in ascending order, i.e., the best result is on the top.

For any details, please see the appropriate reference in the 2™ column.

. The values of Lca Lca Successful
Method Reference Lca equation Parameters (Bits) Rules
Normal Chapter 4 (Lin+2(f.1.T)).k (4+2(0.26%2x210))x1 224 165
Overwrite Chapter 4 (Lin+2(f.1.T)).k (4+2(0.33%2x210))x1 282 165
Non-
Uniform [49] (C.Lin).R.1 (10x4)x4x2 320 90 with 165
CA
ReCA
LAST- [9] (Lin+(f.1.T)).k (4+(0.15%4x210)) x3 | 390 150
Each-Half
XOR Chapter 4 (Lin+2(f.1.T)) (4+2(0.5x2x210)) 424 34,162
. . 15, 34, 38,
Binary Chapter 4 (Lin+2(f.1.T)) (4+2(0.5x2x210)) 424 42,162, 170
Gray | Chapter4 | (Lin+2(f.L.T)) (4+2(05x2x210)) | 424 | %3842
162, 170
E;%{*r 8] (Lint2(FITY).1 | (4+2(0.1x4x210))x4 | 688 90
Stack | cpanter 4 T.Lin 210x4 840
Reservoir
Deep
learning
CA Single [50] Lq.R.1 40x8x8 2560 90
reservoir
Deep
learning [50] | (LovRul)+(LeeRed?) | (40x8x8)+(30x8x8) | 4480 | 90 and 90
CA Two o o
reservoirs
CA Based
Feature 7] LinR.I 4x38x32 4864 150
Expansion
and RC

For the generalized 5-bit task, there are no other results except our results in
Section 4.3.2. Therefore, to compare our results with another model, the ESN

experiments in [90] have been repeated applying the generalized 5-bit task with three

25 In this reference T¢=1000. For that, the experiment has been repeated for T4=200.

66

levels of effort/expertise (Blind, Basic, and Smart) [90], the results are listed in Table
4.7. Finally, Table 4.8 shows the minimum training examples that are required to solve

the generalized 5-bit task using several methods with different architectures.

Table 4.7 Minimum training examples for the generalized 5-bit task where T4=200 to attain zero test
error using echo state networks ESNs with three levels of effort/expertise, where N is the reservoir size,

o is the leaking rate and p is the spectral radius. For more details please see [90].

Method N a p Nirain
Blind 2500 1 1 28
ESNs Basic 500 1 1 22
Smart 200 1 1 10

Table 4.8 Minimum training examples for the generalized 5-bit task where T4=200 to achieve zero test

error using different methods with their parameters.

Acrchitecture Method Nirain (I, k,)
Normal 2 (4,1,0.5)
Overwrite 2 (3,1,0.5)
Recurrent XOR 2 (3,2,0.5)
Binary and Gray 2 (4,2,0.5)
Stack reservoir 3
All-ff 11 (ILk)=(11)
Feedforward Each-ff 10 (L k) =(2)
Without CA 11

ESNs with the highest level of effort (Smart) [90] could achieve zero test error using
10 training examples with N=200 neurons in the reservoir while for basic and blind
the value of training examples increased to 22 and 28 respectively. But, all ReCA
methods in this paper could solve the generalized 5-bit task using only 2 or 3 training
examples with a very low effort 3 or 2 iterations, using 634 bits or 424 bits as a feature

vector instead of 6400 bits in the best case (smart) of ESNs for 32 bits floating point.
4.4 Discussions

Three methods are provided to extract the features from CA evolution states in ReCA

model. 5-bit and generalized 5-bit tasks have been used in order to compare and

67

evaluate these methods with each other and with the state-of-the-art of other

approaches in RC based on CA domain.

The presented results reveal that some of ECA rules in classes I, 11l and 1V with all
proposed methods could solve the 5-bit task with different levels of complexity. The
minimum complexity was obtained using Normal method and rule 165 from class IlI
with feature vector length of 224 bits due to its high distributedness, compared with
shift rules, which enabled it to collect large information in a small dimension.
Increasing the model complexity by increasing the number of CA iterations | increases
the number of rules that could solve the 5-bit task due to the increasing of

computational power as proved in [7].

All proposed methods with some of class Il rules and rule 106 from class IV could
solve the generalized 5-bit task with different levels of complexity. The minimum
complexity was achieved using Overwrite and XOR methods with rules 42 and 170
from class Il and feature vector with dimension of 634 bits using only two examples
for training, while for the three training examples the minimum complexity was
obtained using Overwrite method with rules 42 and 170 from class Il with feature
vector dimension of 424 bits. Increasing the training examples provides the model
more information which enables more ECA rules to solve the generalized 5-bit task
with less complexity, also increasing the model complexity by increasing | increases
the model computational power to use less training examples and more rules can also
solve the task. Hence, there is a trade-off between complexity and the required training
examples, but we should be careful of the overfitting in complicated (large complexity)
models then further of training examples will be required to generalize the model. That
is why the minimum complexity (Lca=224 bits) has been reached for the 5-bit task

where all the 32 examples have been used for training, i.e., the model is not general.

ReCA could solve the generalized 5-bit task using only 2 training examples, which is
the lowest limit number for training for any model. Thus, we can argue that ReCA can
be used in the cases of lack of examples, especially the same result was obtained in [8]
for all the eight pathological tasks. But, ReCA must be tested for large space of tasks

to prove such claim.

68

In most literature, the researchers focus on classes I11 and 1V of ECA due to the chaotic
behavior of class Il which is used in cryptography and random number generators,
and the complex behaviors of class IV with its computational universality. But, as it
has demonstrated in this chapter, class Il ECA rules have presented the best results in
the generalized 5-bit task. Hence, class Il rules should be given more prominence in

the next studies.

The combination of all iterations | of CA evolution states using XOR, Binary and Gray
options provides an efficient feature vector which could solve the 5-bit memory tasks.
to take advantages of XOR, Binary or Gray options over Normal and Overwrite
methods the parameter k should be k > 2 because in this case, the XOR, Binary and
Gray options change the parameter k to 1, which reduces the dimension of feature
vector that will be used in the read-out stage. The reservoir size for all methods is
equally and depends on |, k and f; the difference is in the feature vector dimension
Lca?® to be used in the regressor in order to find the pseudo-inverse, that implies the

most expensive computational part in the model.

For 5-bit task, the best results have been obtained using rule 165 which outperformed
its conjugate rule 90 due to the increasing of nonzero bits (Figure 4.2(b)), which
decreases the mean pairwise correlation of the CA features for different inputs as
in [7], i.e., improving the computational power [32]. But, both rules 165 and 90 could
not solve the generalized 5-bit task due to their complex behavior (class I1l), which is
introduced the model to overfitting, to overcome this problem; an excess of training
examples are required or reducing the model complexity by choosing more simple

rules, e.g., shift rules 42 and 170 as we have done in Section 4.3.2.

Only, class 1l ECA rules could solve the generalized 5-bit task with minimum
complexity. But, due to the relative simplicity of their behavior and to avoid the
underfitting; the model needs more iterations | for a small number of training examples
or needs more training examples for a small number of iterations. We should not be
confused with rule 106 which could solve the generalized 5-bit task, yet it is from class

% For Normal and Overwrite, Lca depends on I, k, f, but it depends only on I, f for XOR, Binary and
Gray.

69

IV; because its behavior is similar to the shift rules from class Il for a single nonzero

input as illustrated in Figure 4.4.

Only 82 rules out of all the 256 ECA rules have been utilized in this chapter and these
rules have been selected from the equivalent sets of ECA rules [71], but it is not
enough; because as an example, the rule 90 and its conjugate rule 165 (also rule 60 and
its reflection rule 102) are in the same equivalent set in [71] but experimentally they
have obtained different results. Therefore, the whole ECA rule space has to be

exploited in future work.

The stack reservoir is a recurrent architecture because its states in the reservoir
memorize the input information gradually time-step by time-step, but on the other

hand, it has not a fixed length, so it is like feedforward architecture.

In spite of good results obtained from the feedforward models for 5-bit task, there are
some points should be discussed here: feedforward is conceptually not plausible;
because the subsequent (new) inputs are used to predict some previous (old) output.
So, the provided information is increased for prediction, that is why it gives good
results. Feedforward architecture needs more training examples 10 or 11 to solve the
generalized 5-bit task while the recurrent architecture requires 2 or 3 as listed in Table
4.8. Finally, the Stack and feedforward models are problematic for large input
dimension Li, and/or large sequence T; because they have not a fixed length, i.e., their
feature vector length increases proportionally with Li, and T. Therefore, ReCA is still

the best choice for sequence learning.

The comparison in Table 4.6 indicates that the best results of all RC based on CA
approaches have been achieved using the linear (additive) rules (165, 90 and 150) or
shift rules (15, 34, 38, 42, 162 and rule 170 which is also additive) that provide lossless
injection of input at each time step, i.e., maximizes one-to-one correspondence
between input sequence and the reservoir activity due to the sequence. Moreover, the
additive rules can be represented as linear functions modulo two, thus these rules allow
to compute independently the evolution for different initial states, then the results can
be combined by simply adding which significantly simplifies the hardware

implementation of these rules.

70

The comparison in Table 4.6 demonstrates that the feature expansion using zero
buffers is better than using random permutation; due to the natural information
diffusion into the CA reservoir there is no information loss, but the random
permutation may need a lot of permutations (large size) to ensure there is no
information loss. Moreover, the permutations increase the random interference
between the input cells into the reservoir while the model becomes more robust using
the zero buffers; because the evolution states of the input obey a certain rule. This
interpretation agrees with our results where the Normal and Overwrite methods
outperform a little bit the other options (XOR, Binary and Gray); because in Normal
and Overwrite methods the feature vector is the pure CA evolution states without any
intervention but in XOR, Binary and Gray options, the feature vector is modified by
an operator. This interpretation is, of course, valid for the used 5-bit memory tasks.
Thus, these methods should be tested using other types of tasks, then study which

method is the best for every task as will be done in future work.

In ReCA, there is no parameter selected randomly as in ESNs or the other approaches
of RC based on CA [7, 49, 50], that’s why we did not repeat our experiments multiple
times in 5-bit task as in [7, 49, 50, 90], but for the generalized 5-bit task we have
repeated the experiments 100 trials due to the random selection of training examples

from the whole dataset, not from ReCA model.

ReCA has outperformed ESNs for the 5-bit task, as demonstrated in [7, 8]. For the
generalized 5-bit task, ReCA also outperforms ESNs where ReCA could solve the task
using only two training examples with a very simple model but smart ESNs which is
the most complicated model could solve this task using ten training examples while
for the lower complexity models basic and blind ESNs, they require 22 and 28 training

examples respectively to solve this task.

71

CHAPTER 5

NONBINARY AND STATIC TASKS

After the promising results of ReCA in previous chapters using pathological synthetic
tasks, that are binary tasks, ReCA will be tested using real and nonbinary tasks in order
to generalize its applications. We will start with a simple signal classification task in
Section 5.3 then continue with the Japanese vowels task [109] (Section 5.4), which is
multidimensional dynamic pattern recognition. Finally, tough ReCA is designed for
sequence learning; it will be tested using static IRIS data set [118] in Section 5.5. All
those tasks are nonbinary dataset, but ReCA deals with only binary data. Therefore,

the nonbinary data have been binarized using one hot encoding in Section 5.2.
5.1 ReCA Implementation

ReCA is implemented as in Section 4.1 using the option Each as a feature extraction
from the CA reservoir as in Section 4.1.1, where 1 is the total number of iterations in
the reservoir and k is the number of selected iterations, that is used in training to
compute the regression parameters of Wout matrix, which is then used to predict the

output.
5.2 One Hot Encoding

All tasks that will be used in this chapter are nonbinary, but ReCA deals only with
binary data. Therefore, the one hot encoding, due to its simplicity, will be used to

binarize such data?’.

One hot encoding is widely used to encode the categorical variables (integer numbers)
to orthogonal and equidistant categories, which agrees with classical intuitions about
nominal categorical variables [106]. But, the one hot encoding is problematic in large

data because each variable is represented by one bit.

27 Other binarization methods can be used such as Binary or Gray code.

72

In one hot encoding, each decimal value is represented by ‘1’ which is located

according to its decimal value in zero array as illustrated in Table 5.1.

Table 5.1 One hot encoding: Decimal numbers are represented by one hot encoding.

Decimal One hot representation
No
1
2
3

OOO|O(FRrOOo|w
o|o|o|-[2[=/o
oO|Oo|IRr|O|O|0O|O|S
o|-[olo[o[oo
HOOOOOO%

O|O|O|O(O(Fk|O|N

O|O|0O|0|(O(O|F |-

max

5.3 Sin/Square Classification Task

Sine/Square wave classification task is a time-series binary classification problem. In
this task, the input is a random concatenation of sine and square waves (blue waves in
Figure 5.1). ReCA should be capable to correctly classify whether the input wave is
sine or square at every time step. The output is represented by 1’ for square wave and

‘0’ for sine wave, which is represented in Figure 5.1 by the red points.

Figure 5.1 Sine/Square wave classification Dataset.

At first glance, this task seems very simple, but the problem is the nonlinearity at the
input values -1 and 1 where the output is either sine or square wave. Hence, the model

73

should remember what is before these values (-1 and 1) to decide the wave type, i.e.,

the model should have a memory.
5.3.1 Input Binarization

The sine wave is a continuous signal, therefore it should be discretized and produce
a specific number of samples, 20 as an example, from a sine wave with an amplitude
of 0.5 as illustrated in the second row of Table 5.2, then it will be binarized using one
hot encoding with 11 bits as listed in Table 5.2. For square wave, there are only two
levels —0.5 and +0.5 that can be represented by one hot encoding as follows:
(00000000001) for —0.5 and (10000000000) for +0.5.

Table 5.2 Binarization of 20 samples of a sine wave with an amplitude of 0.5 using 11 bits one hot
representation.

1011111213 [14[15]|16 17|18 19| 20
0.15] 0.00 (-0.15(-0.29|-0.40(-0.48|-0.50|-0.48 (-0.40|-0.29|-0.15

Sample No
Value 0.
MSB

Qo
(=]

=T ee T an B e T o R T © R o [o N o I o | AP (8
wn
(=]

O 0O 00000 kKOO O|n|lw
=)
o

O 0000000 MmO Ok | (&
(=]
(=]
o0
[=]

=N« el R
[=]
(=]

O OO0 00000 0RO
]
(=]

OO0 00000 MmO O|k| o0
(=]
=

o OO0 0o oo r oOoOoO|n|w
-]

o
o
=]
(=]
o
o
o
(=]
o
o
o

One hot
Representation

(=R ellelell sl ol LS
o OO0 0000 Q00O O|k|n
o OO0 C O OoOkr OO0
o OO0 QO oo oo
(e T e I e e e B e Y e Y e N e
oo RO oo oo
(=T T = i o i B o B = BN o B« |
o= O Qo oo o oo
= OO C O OO OO OO
(== T I e B e B o B o B e B e I o I e |
o oL, OOCOoOOoOOoOOoOOo
o oo R, O oo o oo
O o0 Q0O K OO OOoOOoO

LsB

5.3.2 Results

The ReCA performance on this task is essentially perfect where ReCA could correctly
predict 500 waves, i.e. 10000 bits, in the test set with very low effort; using only one
state k=1 out of 4 iterations with rule 106 using only 10 waves for training. Whilst, for
the other three rules (54, 41, 90) ReCA requires more iterations | and training examples
as listed in Table 5.3. For comparison, Table 5.3 shows that ReCA outperforms, with
a significant gap, the results in [51], which is also used reservoir computing based on
cellular automata with another approach.

The model performance can also be measured by the normalized mean square error
(NMSE) as follows:

74

23 () —(n)? (5.1)
var(y)

NMSE =
where y(n) is the desired output in test set, §(n) is the predicted output, var(y) is the
variance of the desired output y, and T is the sequence length.

Table 5.3 ReCA parameters to solve the Sine/Square task and comparison between our results with 4
ECA rules (top) and the model in [51], which is also used RC based on CA (bottom).

Method | ECArule | Class I k Nitrain (Waves) Niest (Waves) All test bits
106 v 4 1 10 500 10000
ReCA 54 v 5 1 100 500 10000
41 v 7 1 220 500 10000
90 "l 15 | 15 200 500 10000
[51] Multiple 80 2 200 200 4000

ReCA could solve the task with NMSE=1.6x10". Hence, ReCA outperforms the
methods in [40] using an optoelectronic reservoir and [107] using a photonic reservoir
where the NMSE was 1.5 x107 for both methods. Moreover, the NMSE can be
improved to 2x10° by increasing the number of training waves to 20 instead of 10

waves as in Table 5.3.
5.4 Japanese Vowels Task

Japanese vowels task is widely used in machine learning to test models for
multidimensional dynamic patterns recognition. The first presentation of this task was
by Kudo et al. [108] to validate their multidimensional curve classification system and
is available at the UCI Knowledge Discovery in Databases Archive [109], then it was
used in, e.g., [110-114]. It is a real-world dataset consisting of samples of speakers
saying the Japanese vowels “ae” successively. This dataset is a time series of different
length (from 7 to 29) depending on the duration of the articulation; comprised of
multiple feature dimensions 12 inputs (12 Linear predictive coding (LPC) cepstrum
coefficients [115]), each of which is spoken by one of nine males; Figure 5.2 shows a
sample of the 12 LPC coefficients in Japanese vowels task. The dataset consists of 640
time series; 270 for training (30 for each speaker), and the rest 370 time series are used

for testing that contains several samples for the 9 speakers.

75

Frequency

: '-';_.'__\ b
3:_ = ‘—__—T'_;\ —_—
=%
- 4 ey

) -
A
i
8
Dimension

Figure 5.2 The 12 LPC coefficients for a sample that has 20 time steps in Japanese vowels task [116].

5.4.1 Results

One hot encoding has been used for representing both the input and output. Since the
task has 9 speakers, therefore 9-bit output array should be used. After completing the
ReCA algorithm as in last chapters and obtaining the predicted output; the maximum
value in the predicted output array was set to be “1” and the other values were set to be
‘0’s. Then converting the one hot output array to a decimal value and compare it with
the correct output (whose male does speak?) to find the training and testing error.

Table 5.4 shows the results of Japanese VVowels Task. The minimum test error can be
achieved by ReCA is 3.5%, whereas the-state-of-the-art machine learning methods
achieve between 1.1% and 2.7% in percentage test error [114]. Thus, ReCA results are
not far from these results. The small difference in our results due to the binarization
error, because all the other methods deal directly with decimal numbers.

Table 5.4 Japanese Vowels Task: Results obtained from ReCA. Where | is the number of CA iterations

in the reservoir, k is the selected evolution states in the reservoir to be used for prediction in the read-

out stage.
ECARule | Class | | k No of errors in testing set | Test error %
41 v 2 1 13 3.5%
60 "l 2 2 14 3.8%
126 "l 1 1 15 4.1%

76

5.5 IRIS Task

The aim of IRIS task is to classify iris flowers among 3 types (classes) Setosa,
Versicolor or Virginica; from measurements of length and width of their sepals and
petals in cm’s?®. Each class consists of 50 examples see [117] and can be obtained
from [118] in UCI Knowledge Discovery. Hence, there are 150 examples, that can be
divided as follows: 105 (70%) for training and 45 (30%) examples for testing.

5.5.1 Feedforward and Recurrent Architecture

In previous tasks, ReCA deals with dynamic dataset. But, in this section, ReCA is

tested in static learning. Therefore, two architectures are proposed:

1. Feedforward Architecture: all the inputs are concatenated in one array, which
is used as an initial state for the CA reservoir, so we have only one time step,
but with a large dimension.

2. Recurrent Architecture; In this case, the inputs are considered as time steps.
Thus, the first input is used as an initial state for the CA reservoir in first time
step, then inserting the second input using XOR as an insertion function and so

on up to the last input.

Using time-dependent data into a feedforward architecture has been used in the
literature, e.g., Section 4.1.2. But, using time-independent data into a recurrent

architecture, it was never used as far as | know.
5.5.2 Results

The binarization of IRIS dataset is similar to that of Japanese Vowels task, but the
output will only be 3 bits because there are only 3 classes. the IRIS dataset is static;
thus, the two architectures feedforward and recurrent are used as explained in the

previous section.

2 |RIS is time-independent dataset.

77

Table 5.6 indicates that the results of recurrent architecture have reached zero test error
and outperform the feedforward architecture in Table 5.5 where the best results are 14
out of 45 (31.11%).

Table 5.5 IRIS Task. Feedforward architecture results.

ECA rule | Class I k No of errors in test set | Test error %
126 3 1
105 7
150 7 2 14 31.11%
I 8
30 8 3
2 1 15 33.33%
126 3 3

Table 5.6 IRIS Task. Recurrent architecture results.

ECA rule | Class I k No of errors in test set | Test error %
110 v 4 3
110 4
122 5 3
105 5 0 0%
150 I 6 4
150 5
60 7 3

The ReCA performance in recurrent architecture outperforms the related work that
uses RC based on CA with different approach reported in [51], where the test error
was 3.8% with very high effort compared with ReCA in this chapter, which has a zero

test error with a very low effort as listed in Table 5.7.

Table 5.7 IRIS Task: Comparison between ReCA and the related work that uses RC based on CA with
a different approach in [51].

Method ECA Class | k Nrain Nest Test error%
Rule
ReCA 110 v 4 3 105 45 0%
[51] (2017) 158 I > 70 2 112 38 3.8%

Table 5.8 shows that four classifiers in [127] (decision tree, multilayer perceptron FNNs,
Naive Bayes and supporting vector machines (SVMs) multiclass classifier) couldn’t
reach zero error. These classifiers have been implemented using WEKA tools which

IS an open source data mining software issued under General Public License [128].

78

Table 5.8 IRIS dataset results for various classification algorithms using WEKA tools [127].

Method Error%
Decision tree 50%
Multilayer Perceptron 2.7%
Naive Bayes 4%
Multiclass Classifier SVM 4%

5.6 Discussions

In the previous three chapters, ReCA could solve the pathological synthetic tasks, that
are binary and time-dependent data set. In order to study the powerful of ReCA; real
and nonbinary tasks (signal classification and Japanese vowels) are proposed to
examine ReCA. Also, to generalize the applications of ReCA, it has tested using a
time-independent task (IRIS dataset).

The sine/square classification task has been used where the continuous input has been
discretized then binarized using one hot encoded. ReCA performance was perfect and
outperforms the related work that uses RC based on CA with different approach
reported in [51], also ReCA results have the smallest NMSE comparing to the state-
of-the-art results.

ReCA could solve real and nonbinary task like Japanese vowels which is a
multidimensional dynamic task with competitive results 3.5% test error compared with
1.1% to 2.7% test error in the-state-of-the-art machine learning methods. The small
difference in our results due to the binarization error, because all the other methods
deal directly with decimal numbers.

Finally, ReCA was also tested by a real, nonbinary and static task (IR1S Task), to solve
this task two models are proposed (Feedforward) and (Recurrent). The recurrent
architecture could achieve a zero test error whilst feedforward could not solve this task
with zero error due to the high distributedness which is provided by the recurrent
architecture as proved in [7, 8]. In IRIS dataset, ReCA outperforms the decision tree,

multilayer perceptron feedforward ANNSs, Naive Bayes and supporting vector

79

machines (SVMs) multiclass classifiers where ReCA achieves zero test error however
the other classifiers could not achieve zero training error. Also, ReCA outperforms the
related work that uses RC based on CA with different approach in [51], where the test
error was 3.8% with very high effort compared with ReCA which reaches zero test

error with a very low effort.

80

CHAPTER 6

ReCA in QUESTION ANSWERING

After the ReCA success in (Real and Artificial), (Binary and Nonbinary), and (Static
and Dynamic) tasks in previous chapters, it should be tested by a more difficult and
recent task as a question answering (QA) task. The QA 20 bAbI task from Facebook
[120] is a very hard and complex natural language processing (NLP) and requires an

understanding of the meaning of a text and the ability to reason over relevant facts.

Most tasks in NLP can be considered as a QA problem: high level tasks like machine
translation (What is the translation into French?); sequence modeling tasks like named
entity recognition (What are the named entity tags in this sentence?) or part-of-speech
tagging (What are the part-of-speech tags?); classification problems like sentiment
analysis (What is the sentiment?); even multi-sentence joint classification problems

like coreference resolution (Who does ‘their’ refer to?) [119].
6.1 The (20) QA bADbI Tasks

The (20) QA bADI tasks are a synthetic question and answering dataset from the bAbl
project of Facebook Al Research which is organized towards the goal of automatic
text understanding and reasoning. It contains 20 tasks, each of them is composed of a
set of sentences?® (story), a question related to some of that sentences, and followed
by an answer, which is mostly a single word (in some tasks, the answer is a set of
words). For most cases, only a subset of facts (sentences) is relevant to the given
question (called supporting facts (SF) which are also included in the training set). All
the tasks are noiseless and a human able to read that language can potentially achieve
100% accuracy. Two versions of the data are available, the 1% one has 1K training
examples per task and the 2" has 10K examples per task, while the testing set is 1K
examples for both versions [120]. The questions in these tasks are quite hard, they not

only require lots of knowledge in natural sciences but also abilities to make inferences,

2 The sentences are as independent from others as possible.

81

generalize the concepts, apply the general ideas to the examples and so on. These 20

tasks can be summarized into 11 groups:

1- One, Two, or Three supporting facts (Task 1, 2 and 3): In order to answer the
question; one, two, or three supporting sentences have to be used as
demonstrated in Figure 6.1.

Task 1 (Single SF) Task 3 (Three SFs)

1 Mary moved to the bathroom. 1 Mary moved to the bathroom.
2 John went back to the bedroom. 2 Sandra journeyed to the bedroom.
Where is Mary? bathroom. 1 3 Mary got the football there.
4 John went back to the bedroom.
5 Mary journeyed to the office.
6 John journeyed to the office.
Task 2 (Two SFs) 7 John journeyed to the bathroom.
8 Mary journeyed to the bathroom.
1 Mary moved to the bathroom. 9 Sandra went back to the garden.
2 John went back to the bedroom. 10 Daniel journeyed to the office.
3 Mary got the key there 11 Mary dropped the football.
4 Mary travelled to the garden. 12 John moved to the bedroom.

Where is the key? garden 3 4 Where was the football before the bathroom? Office 11 8 5

Figure 6.1 One, Two, or Three SFs tasks: Story, question(bold), answer, and indices of the supporting
facts (bold).

2- Two or Three argument relations (Task 4 and 5): The ability to differentiate
and recognize subjects and objects is necessary to answer the task as illustrated
in Figure 6.2.

Task 4 (Two Argument relations)
1 The office is north of the Kitchen.

2 The garden is south of the kitchen.
What is north of the kitchen? office. 1
What is the kitchen north of? garden. 2

Task 5 (Three Argument relations)

1 Jeff took the milk there.
2 Jeff gave the milk to Bill.

Who did Jeff give the milk to? Bill 2
Who received the milk? Bill 2
What did Jeff give to Bill? Milk 2

Figure 6.2 Two or Three argument relation tasks: Story, question(bold), answer, and indices of the

supporting facts (bold).

82

Yes/No Questions (Task 6): to test the ability of the model to answer true/false type questions as

demonstrated in Figure 6.3.

Task 6 (Yes / No Questions)
1 Daniel went back to the hallway.
2 John got the apple there.

Is Daniel in the hallway? yes. 1

3 Sandra travelled to the hallway
4 Daniel moved to the bedroom.

Is Daniel in the hallway? no. 4

Figure 6.3 Yes/No Question Task: Story, question(bold), answer, and indices of the supporting facts
(bold).

Counting and Lists/Sets (Task 7 and 8): Task 7 tests the ability of the model to perform the counting
operations. Task 8 tests the ability to produce a list of single word answers as demonstrated in Figure
6.4.

Task 7 (Conting) Task 8 (List / Sets)

1 Mary took the apple there. 1 Mary took the apple there.

2 Sandra travelled to the hallway. 3 Mary travelled to the hallway.
How many objects is Mary carrying? one. 1 What is Mary carrying? apple. 1

3 Sandra travelled to the hallway
3 Mary travelled to the hallway. 4 Mary took the milk there.

4 Mary got the apple there. What is Mary carrying? apple milk. 1 4

How many objects is Mary carrying? two. 4

Figure 6.4 Counting and Lists/Sets: Story, question(bold), answer, and indices of the supporting facts
(bold).

Simple Negation and Indefinite Knowledge (Task 9 and 10): Task 9 is similar to Task 6, but with the
possibility of negative supporting facts. Task 10 tests if the model can describe the uncertainty as

demonstrated in Figure 6.5.

Task 9 (Simple Negation)

1 Sandra travelled to the hallway.

Task 10 (Indefinite Knowledge)

1 Mary took the apple there.

83

2 Sandra is no longer in the hallway. 3 Mary travelled to the hallway

Is Sandra in the hallway? no. 2
s wandrain the haliway no What is Mary carrying? apple. 1
3 Sandra travelled to the hallway

8 Sandra is in the hallway. 4 Mary took the milk there

4 Sandra journeyed to the garden.

Is Sandra in the garden? yes 4 What is Mary carrying? apple milk. 1 4

Figure 6.5 Simple negation and Indefinite knowledge: Story, question(bold), answer, and indices of the

supporting facts (bold).

Basic Coreference, Conjunctions and Compound Coreference (Task 11, 12 and 13): Task 11 tests the
basic type of coreference to detect the single subject. Task 12 tests referring to multiple subjects in a
single sentence. Task 13 tests the referring of multiple subjects in multiple sentences as demonstrated

in Figure 6.6.

Task 12 (Conjunction)

1 Sandra went back to the hallway. 1 Daniel and Sandra went back to the kitchen.
2 After that she went to the bedroom. 2 Daniel and John went back to the hallway.

Task 11 (Basic Coreference)

Where is Sandra? bedroom 1 2 Where is Daniel? hallway. 2

Task 13 (Compound Coreference)

1 Daniel and Sandra went back to the kitchen.
2 Then they journeyed to the hallway.

Where is Daniel? hallway. 1 2

Figure 6.6 Basic Coreference, Conjunctions, and Compound Coreference: Story, question(bold),

answer, and indices of the supporting facts (bold).

Time Reasoning: (Task 14): tests the understanding of time expressions within the story as illustrated

in Figure 6.7.

84

Task 14 (Time Manipulation)

1 Yesterday Julie went back to the park.
2 This morning Bill went back to the park.
3 Julie went to the bedroom this morning.

Where was Julie before the bedroom? park 3 1

Figure 6.7 Time Reasoning: Story, question(bold), answer, and indices of the supporting facts (bold).

Basic Deduction and Induction (Task 15 and 16): Task 15 tests basic deduction. Task 16 tests basic
induction as demonstrated in Figure 6.8.

Task 15 (Basic Deduction) Task 16 (Basic Induction)
1 Mice are afraid of cats. 1 Lilyisalion.
2 Wolves are afraid of mice. 2 Bernhard is green.
3 Emily is a mouse. 3 Lilyisagreen.

What is Emily afraid of? cat 3 1 4 Brianisalion

What color is Brian? green 4 1 3

Figure 6.8 Basic Deduction and Induction: Story, question(bold), answer, and indices of the supporting
facts (bold).

Positional and Size Reasoning (Task 17 and 18): Task 17 tests the spatial reasoning about the relative

positions. Task 18 tests the understanding of the relative size of objects as illustrated in Figure 6.9.

Task 17 (Positional Reasoning) Task 18 (Reasoning about Size)
1 The triangle is above the pink rectangle. 1 The chest is bigger than the chocolate.
2 The blue square is to the left of the triangle. 2 The suitcase fits inside the box.

Is the pink rectangle to the right of the blue 8 The chest fits inside the box.
square? yes 1 2 Does the chocolate fit in the box? yes 3 1

Figure 6.9 Positional and Size Reasoning: Story, question(bold), answer, and indices of the supporting
facts (bold).

Path Finding (Task 19): To test the ability to find the path between locations as demonstrated in
Figure 6.10.

85

Task 19 (Path Finding)

1 The kitchen is west of the garden.
2 The garden is south of the office.
3 The office is south of the bedroom.

How do you go from the garden to the bedroom? n n 2 3

Figure 6.10 Path Finding: Story, question(bold), answer, and indices of the supporting facts (bold).

Agents Motivations (Task 20): tests why the agent performs an action and why the action has been

done.

Task 20 (Reasoning about Motivations)
1 Summit is bored.

Where will Summit go? garden 1

2 Yannis hungry.
Where will Yann go? kitchen 2

Figure 6.11 Agents Motivations: Story, question(bold), answer, and indices of the supporting facts
(bold).

6.2 Related Work

The 20 QA bADI tasks have been studied within the context of the Memory Network
(MemNN) model [96,120], which consists of four learnable modules: the I-module
encodes the input into feature representation, the G-module updates relevant memory
slots, the O-module performs inferences to compute output features given the input
representation and the current memory, and finally the R-module decodes the output
feature-based representation to the final response. Since the proposal of the basic
MemNN [96] model, the Adaptive/Nonlinear MemNN [120], Dynamic Memory
Networks (DMN)3 [119], and End-to-End Memory Networks (MemN2N) [123]
models have been developed by varying certain parts of these modules. The difference
for MemN2N is that the indices of supporting facts are no longer provided in the
dataset (weakly supervised) while in the other models the indices of supporting facts

are used in training process (strongly supervised). Hence, the MemN2N model must

%0 In DMN Global Vectors for Word Representation (GloVe) [122] has been used instead of the random
numbers for word representation in the other methods.

86

deduce for itself at training and test time which sentences are relevant and which are
not; making MemN2N harder and more generally applicable in realistic settings.
MemN2N can also be considered as an extension of RNNsearch [124] to the case
where multiple computational steps (hops) are performed per output symbol [123].
Within the context of Deep Learning (DL), Neural Machine Translation (NMT) and
Neural Turing Machine (NTM) have been proposed to solve the 20 bAbl tasks [125].

Table 6.1 The 20 QA bAbI tasks results: Facebook team work on MemNN [120] and MemN2N [123],
MitaMind Lab works on DMN [119], Microsoft team work on reasoning in vector space (TPR model)
[121], IBM team work on NMT and NTM [125], and Noah's Ark Lab, Huawei Technologies team work
on NR [126]. LSTM results are obtained from [120] using the LSTM created in [13].

Task Strongly supervised Weakly supervised
No MemNN | DMN | NMT | NTM TPR | MemN2N | NR NMT | LSTM
1 100% | 100% | 100% | 100% | 100% 100% 98.2% | 50%
2 100% | 98.2% | 99.6% | 100% | 100% 91.7% 41.3% | 20%
3 100% | 95.2% | 99.5% | 100% | 100% 59.7% 33.4% | 20%
4 100% | 100% | 97.5% | 100% | 100% 97.2% 97.8% | 61%
5 98% 99.3% | 90.6% | 73.7% | 99.8% 86.9% 90.3% | 70%
6 100% | 100% | 99.8% | 100% | 100% 92.4% 84.6% | 48%
7 85% 96.9% | 96.6% | 100% | 100% 82.7% 82.4% | 49%
8 91% 96.5% | 92.7% | 98% | 100% 90% 70.8% | 45%
9 100% | 100% | 99.7% | 100% | 100% 86.8% 89.3% | 64%
10 98% 97.5% | 96.8% | 85.9% | 100% 84.9% 73.5% | 44%
11 100% | 99.9% | 100% | 100% | 100% 99.1% 99.8% | 62%
12 100% | 100% | 100% | 100% | 100% 99.8% 99.4% | 74%
13 100% | 99.8% | 100% | 100% | 100% 99.6% 99.7% | 94%
14 99% 100% | 97.5% | 100% | 100% 99.3% 444% | 27%
15 100% | 100% | 92.7% | 100% | 100% 100% 42.9% | 21%
16 100% | 99.4% | 88.1% | 100% | 99.5% 98.7% 42.7% | 23%
17 65% 59.6% | 58% | 61.2% | 100% 49% 66.4% | 64.6% | 51%
18 95% 95.3% | 91.8% | 93% | 100% 88.9% 90.9% | 52%
19 36% 34.5% | 29.7% | 100% | 100% 17.2% [17.3% | 9.3% 8%
20 100% | 100% | 93.3% | 100% | 100% 100% 91.6% | 91%
Mean 93.3% | 93.6% | 91.2% | 95.6% | 99.97% | 86.1% 72.3% | 48.7%
accuracy

Neural Reasoner (NR) is another approach using the deep architecture, which is a
framework for neural network-based reasoning over natural language sentences. NR
has two essential specifications: 1. An interaction-pooling mechanism which allows
NR to examine multiple facts, and 2. a deep architecture, allowing it to deal with the
complicated logical relations in reasoning tasks [126], in which only the most difficult
tasks (task 17 Positional Reasoning and task 19 Path Finding) from the 20 tasks have

been tested and gave superior results for both tasks in weakly supervised.

87

Finally, in [121] the authors propose vector-space model inspired by Tensor Product
Representation (TPR) [92], which achieves the best results for all the 20 bAbl tasks,
but with using the language principles in the preprocessing of the QA bADI dataset.
The human intervention, e.g., using the language principles is not allowed in the 20
QA bADlI tasks from Facebook [120], because the target of the Facebook research team

is to produce a language-independent model.

Table 6.1 lists the best results obtained from different models that were used to solve
question answering bADbI tasks and indicates that using supporting facts (Strongly
supervised) increases the accuracy due to the extra information provided by the task.
The most difficult tasks for all models are task 17 (Positional Reasoning) and 19 (Path
Finding) because they require a general search algorithm to be built into the inference
procedure [120], only TPR model in [121] could solve both tasks due to using external
resources, not in the training data (the language principles that has been used in the
TPR model).

6.3 Training Methods

The 20 QA bADbI Tasks dataset can be trained in three ways:

1- Using only supporting facts (sentences) and removing all distractor facts.

2- Using all facts (all story) with the indices of supporting facts, this method is
called (strongly supervised).

3- Using only all facts (all story) without the indices of supporting facts this

method is called (weakly supervised).

In this dissertation, we adopt the first way to check whether ReCA can solve these

tasks or notL.

Figure 6.12 shows the original story of task 3 as an example while Figure 6.13 presents

task3 using only supporting facts and inserting the question at the end of the story.

31 Because, if ReCA could not solve bAbl tasks using only Supporting facts, a fortiori it can
not solve them using strongly or weakly supervised

88

Figure 6.14 demonstrated how to convert the story and question to a matrix using

random numbers to represent all words.

Task 3 (Original)

Mary moved to the bathroom.
Sandra journeyed to the bedroom.
Mary got the football there.

John went back to the bedroom.
Mary journeyed to the office.
John journeyed to the office.
John journeyed to the bathroom.
Mary journeyed to the bathroom.
Sandra went back to the garden.
10 Daniel journeyed to the office.
11 Mary dropped the football.

12 John moved to the bedroom.

Where was the football before the bathroom? Office 1185

©CoOoO~NOOTL b WwWNBE

Figure 6.12 The original story of task3 where supporting facts (bold), question, answer, and indices of

supporting facts (bold numbers).

Task 3 (Only Supporting Facts)

Mary journeyed to the office.
Mary journeyed to the bathroom.
Mary dropped the football.

Where was the football before the bathroom? Office

Figure 6.13 Using only supporting facts for task 3 in Figure 6.12: dataset will be used for training and

testing.

Input T

- S R e R]
Office

RS o

The output el el st el o

label is 6 a1 s N G | e

Figure 6.14 Input and output of task3 (Only supporting facts): Converting the story and question in
Figure 6.13 to a matrix after representing each word by a number. Thus, the input matrix is 4 x 7 (4
time steps, i.e., T=4) and output is labeled by 6 (means office). The number 1 did not use because it is

reserved to represent the space between sentences.

89

Then, binarizing the decimal numbers in the input matrix and the output number of
Figure 6.14 using one hot encoding as in Section 5.2. The binarized matrix is the input
sequence u that will be used in ReCA as in previous chapters. The target is that ReCA
can capture the pattern of the input sequence to predict correctly the output, thus our

model is language-independent, i.e., the model can be used for any language.

6.4 Results

After preparing the dataset as in previous section, ReCA is implemented as in
Chapter 3, where | is the number of CA evolution iterations in the reservoir and Rule

No is the number of ECA rule has been used to achieve best results.

ReCA could solve 15 tasks with 100% accuracy and 2 tasks above 90%, whilst 3 tasks
less than 90%. most of tasks achieve best results with rule 90 only 2 tasks use rules 60
and 150. The options ALL and LAST are almost the same as listed in Table 6.2.

Table 6.2 ReCA accuracy for all 20 QA bAblI tasks using ALL and LAST options, where I is the number

of CA iterations in the reservoir.

Task Method Rule No [Accuracy
1 ALL/LAST 90 1 100%
2 ALL/LAST 90 2 100%
3 ALL/LAST 90 1 100%
4 ALL/LAST 90 1 100%
5 ALL/LAST 90 56 100%
6 ALL/LAST 90 12 100%
7 ALL/LAST 60/150 17/4 77%/76%
8 ALL/LAST 90 4 91%/90%
9 ALL/LAST 90 8 100%
10 ALL/LAST 150 39 96%
11 ALL/LAST 90 2 100%
12 ALL/LAST 90 2 100%
13 ALL/LAST 90 3 100%
14 ALL/LAST 90 1/6 100%/90%
15 ALL/LAST 90 2 100%
16 ALL/LAST 90 2 100%
17 ALL/LAST 60/90 128/99 43%/44%
18 ALL/LAST 90 22/17 100%
19 ALL/LAST 90 56/84 38%/39%
20 ALL/LAST 90 17 100%

For comparison, there is only the IBM research team in [125] have used only SFs as
our work. The results of their two methods; Neural Machine Translator and Neural

Turing Machine are listed in Table 6.3, which shows that ReCA has very good results

90

where it outperforms in 4 tasks (4, 5, 14, and 18) and falls behind also in 4 tasks (8,
14, 17, and 19). The low number for ReCA in mean accuracy due to very poor
accuracy in tasks 17 and 19 compared with NMT and NTM which affected

dramatically on the mean accuracy.

Table 6.3 Comparison between ReCA, NMT, and NTM using only supporting facts: the results of NMT
and NTM from [125].

RECA
Task No ALL LAST NMT NTM
1 100% 100% 100% 100%
2 100% 100% 100% 100%
3 100% 100% 100% 100%
4 100% 100% 99.1% 100%
5 100% 100% 99.3% 79.2%
6 100% 100% 100% 100%
7 77% 76% 68.5% 100%
8 91% 90% 99% 100%
9 100% 100% 100% 100%
10 96% 96% 98.9% 94.6%
11 100% 100% 100% 100%
12 100% 100% 100% 100%
13 100% 100% 100% 100%
14 100% 90% 99.8% 100%
15 100% 100% 100% 100%
16 100% 100% 100% 100%
17 43% 44% 64.2% 69.3%
18 100% 100% 97.8% 93%
19 38% 39% 80.7% 100%
20 100% 100% 100% 100%
Mean Accuracy | 92.25% 91.75% 95.37% 96.81%

6.5 Discussions

After the success of ReCA in (Real and Artificial), (Binary and Nonbinary), and (Static
and Dynamic) tasks in previous chapters. ReCA has been tested in this chapter by the
20 QA bADbI tasks from Facebook. bAbl tasks are very hard and complex natural
language processing (NLP) and require an understanding of the meaning of a text and

the ability to reason over relevant facts.

ReCA could solve most of bAbI tasks 15 out of 20 has 100% accuracy and 2 tasks
above 90%, whilst 3 tasks less than 90%. Most of tasks achieve best results with rule
90 only 2 tasks using rules 60 and 150. Hence, all the successful rules are linear

(additive) to maximize one-to-one correspondence between the input sequence and the

91

reservoir activity due to the sequence, i.e., reducing the unwanted interference. The
options ALL and LAST are almost the same because the sequence is not long in the
most tasks. The harder tasks need a greater number of iterations to achieve high
accuracy, i.e., to improve computational power [7, 85]. The most difficult tasks for
ReCA are 17 (Positional Reasoning) and 19 (Path Finding) with a large difference
compared with NMT and NTM which made the mean accuracy of ReCA is the lowest.
The tasks 17 and 19 are the hardest tasks for the most models as explained in Section
6.2. The task 7 (Counting) can also be considered as a hard task for ReCA (accuracy
77%) because the answer is not a word in the story also needs mathematical operations

(adding and subtracting).

92

CHAPTER 7

CONCLUSION AND FUTURE WORK

Reservoir computing based on cellular automata ReCA constructs a novel bridge
between automata computational theory and recurrent neural architectures. In this
thesis, ReCA has been developed to solve different types of tasks. Several methods
have been proposed to extract the features from the cellular automata reservoir. In most

tasks, ReCA results outperform the state-of-the-art results.

Concerning the model complexity, a sparsely connected network with simple binary
units like elementary cellular automata in ReCA could perform the computational
requirements of the reservoir in order to solve hard sequence tasks that have long term
dependencies. Thus, ReCA can be considered to operate around the lower bound of

complexity.

Sequence learning is an essential capability for a wide collection of intelligence tasks
such as language, continuous vision, symbolic manipulation in a knowledge base, etc.
Therefore, ReCA has been tested using pathological synthetic tasks of sequence
learning that are widely used in RNNs field. ReCA achieves zero error in all
pathological tasks; using only the CA evolution states, at last time step, as a feature
vector to predict the output (LAST method). CHAPTER 2 shows that the results of

LAST outperform the state-of-the-art results in pathological synthetic tasks.

The CA evolution states at all time steps (ALL method) can be used instead of using
only the last time step states. Thus, the increasing of provided information using ALL
method allows ReCA to solve longer tasks (large T) and using lower training examples
but, of course, with large complexity (dimension of feature vector). To overcome this
disadvantage, few k states can be used (Each option) rather than using all states in ALL
method, exploiting the large information of ALL and low complexity of Each. Further
reduction of complexity can be obtained using only on side of the CA evolution states
(Half option) or reducing the number of used columns in the matrix of CA evolution
states CAout by selecting small value of expansion ratio f, i.e., reducing the dimension

93

of the zero buffers. CHAPTER 3 shows that the dimension of features (model
complexity) is reduced in some tasks by up to 98% for training and 94% for testing.
This large reduction is due to the capability of using multiple options together (Each,
Half and f). Therefore, these results lead us to argue that CA evolution states in the
reservoir have very rich dynamics, which is why it could reduce the complexity to

these large values and why they can also be used to solve more complicated tasks.

Another insertion function (Overwrite) is used instead of XOR in the CA reservoir,
which increases the model accuracy with decreasing the required training examples in

generalized 5-bit task.

In Chapter 4, The distributed representation of CA in recurrent architecture (ReCA)
could solve the 5-bit tasks with minimum complexity, using only two training
examples which is the lowest number of training examples for any model. Comparing
between different architectures and data representations; CA distributed representation
in recurrent architecture (ReCA) outperforms the local representation in recurrent
architecture (stack reservoir), then echo state networks and feedforward architecture
using local or distributed representation. Extracted features from the reservoir, using
the natural diffusion of CA states in the reservoir with rule 165 (additive rule) for 5-
bit task, and rules 42 and 170 (shift rules) for generalized 5-bit task offers the state-of-
the-art results in terms of feature vector dimension and the required training examples.
Another extension is obtained by combining the reservoir CA states using XOR,
Binary, or Gray operator to produce a single feature vector to reduce the feature space.
This method gives promising results, however using the natural diffusion of CA states

still outperform a little bit.

After testing ReCA using the pathological synthetic tasks, that are a binary and time-
dependent dataset, ReCA has been examined using other types of tasks in order to
extend the ReCA applications. Starting by a simple signal classification task then the
Japanese vowels task, which is real multidimensional dynamic pattern recognition, the
previous both tasks are time-dependent tasks. Finally, tough ReCA is designed for
sequence learning; it will be tested using static IRIS dataset. All those tasks are
nonbinary dataset; therefore, one hot encoding has been used to binarize the dataset.

In signal classification task, ReCA performance was perfect and outperforms the

94

related work that uses ReCA with a different approach in [51], also ReCA results have
the smallest NMSE comparing to the state-of-the-art results. Whilst, ReCA could solve
the Japanese vowels task with competitive results 3.5% test error compared with 1.1%
to 2.7% test error in the-state-of-the-art machine learning methods. For IRIS dataset,
the recurrent architecture could achieve a zero test error while feedforward could not
solve this task with zero error due to the high order statistics and distributedness which
are provided by the recurrent architecture. The ReCA performance in recurrent
architecture outperforms the related work that uses ReCA with different approach
reported in [51], where the test error was 3.8% with very high effort compared with

ReCA which has a zero test error with a very low effort.

Finally, ReCA has been tested using the 20 QA bADblI tasks from Facebook; These tasks
are very hard and require an understanding of the meaning of a text and the ability to
reason over relevant facts. Using only supporting facts, ReCA could solve most of
bADblI tasks 15 out of 20 has 100% accuracy and 2 tasks above 90%, whilst 3 tasks less
than 90%. The options ALL and LAST are almost the same because the sequence is
not long in these tasks. The ReCA results are very close to the state-of-the-art results,
that provided from Neural Machine Translation and Neural Turing Machine models

from IBM research group.

In addition, the usage of cellular automata in the reservoir computing paradigm greatly
simplifies the architecture, makes the computation more transparent for analysis, and
provide enough computation for large domain of tasks. Furthermore, the reservoir in
ReCA can be implemented using ordinary logic gates or Field programmable gate
arrays FPGAs, resulting in reducing the complexity in space, time and power

consumption.

7.1 Future Work

ReCA framework is very novel, hence there is a lot of research should be done. These
are some points to enrich the ReCA research field:

95

Using ECA with memory (ECAM) in the reservoir to study the effect of large
distributed representation provided by ECAM rules, and even using
2-dimensional CA, e.g., the game of life which has a universal computation.
Using the rest 256 ECA rules that have not been used in this dissertation to
explore their specifications.

Preprocessing the input before the reservoir as in [8] where it provided
promising results.

Other training methods can be used in the read-out stage rather than linear
regression, e.g. logistic regression, support vector machines SVMs or even
feedforward neural networks in order to augment the model computational
power.

Overwrite insertion function should be studied extensively due to its promising
results in Chapter 4.

Using hybrid ReCA (multiple rules in the reservoir) as in [49, 51] or deep
ReCA (cascade models) as in [50] to solve more complicated tasks.

In QA tasks, adding Attention mechanisms in order to allow ReCA to focus on
a specific part of the input (supporting facts) leading to use ReCA in weakly

supervised.

96

REFERENCES

[1] Samarasinghe, S., Neural networks for applied sciences and engineering: from
fundamentals to complex pattern recognition. CRC Press, 2016.

[2] Poznyak, T. I., Oria, I. C., & Poznyak, A. S., Ozonation and Biodegradation in
Environmental Engineering, Dynamic Neural Network Approach. (Chapter 3:
Background on dynamic neural networks), Elsevier Inc., 58-74, 2019.

[3] Bengio, Y., Simard, P., & Frasconi, P., Learning Long-Term Dependencies with
Gradient Descent Is Difficult. IEEE Transactions on Neural Networks, 5(2), 157-166,
1994. doi:10.1109/72.279181.

[4] Jaeger, H., The ‘Echo State” Approach to Analyzing and Training Recurrent Neural
Networks—with an Erratum Note. GMD Technical Report, 148:34, Bonn, Germany:
German National Research Center for Information Technology, 2001.

[5] Maass W., Natschlager T., & Markram H., Real-time computing without stable
states: A new framework for neural computation based on perturbations. Neural
computation., 14(11), 2531-2560, 2002.

[6] Steil, J. J., Backpropagation-decorrelation: online recurrent learning with O(N)
complexity. In IEEE International Joint Conference on Neural Networks, 2, 843-848,
2004.

[7] Yilmaz, O., Machine Learning using Cellular Automata based Feature Expansion
and Reservoir Computing. Journal of Cellular Automata, 10(5-6), 435-472, 2015.

[8] Margem, M., & Yilmaz, O., How much computation and distributedness is needed
in sequence learning tasks?” In Artificial General Intelligence, AGI-16, Lecture
Notes in Computer Science, Springer, 9782, 274-283, 2016.

[9] Margem, M., & Gedik, O. S., Reservoir Computing Based on Cellular Automata
(ReCA) in Sequence Learning. Journal of Cellular Automata. 14(1-2), 153-170,
2019.

[10] Funahashi, K., & Nakamura, Y., Approximation of dynamical systems by continuous
time recurrent neural networks. Neural networks, 6(6), 801-806, 1993.

[11] Siegelmann, H. T., & Sontag, E. D., On the computational power of neural nets.
Journal of computer and system sciences, 50(1), 132-150, 1995.

[12] Doya, K., Bifurcations in the learning of recurrent neural networks. In IEEE
International Symposium on Circuits and Systems, 2777-2780, 1992.

[13] Hochreiter, S., & Schmidhuber, j., Long short-term memory” Neural computation,
9(8), 1735-1780, 1997.

97

[14] Al Rodan, A. A., Architectural design of Echo state network. School of Computer
Science, College of Engineering and Physical Sciences, The University of
Birmingham, Ph.D. Thesis, 2012.

[15] Atiya, A. F., & Parlos, A. G., New results on recurrent network training: Unifying
the algorithms and accelerating convergence. IEEE Transactions on Neural
Networks, 11, 697-709, 2000.

[16] Tino, P., & Dorffner, G., Predicting the future of discrete sequences from fractal
representations of the past. Machine Learning. 45(2), 187-218, 2001.

[17] Ishii, K., van der Zant, T., Becanovic, V., & Ploger, P., Identification of motion with
echo state network. In Proceedings of the Oceans 2004 MTS/IEEE -Techno-Ocean
Conference, 3 1205-1210, 2004.

[18] Bush, K., & Anderson, C., Modeling reward functions for incomplete state
representations via echo state networks. In Proceedings of the International Joint
Conference on Neural Networks, Montreal, Quebec, 2005.

[19] Deng, Z., & Y., Zhang., Collective behavior of a small-world recurrent neural system
with scale-free distribution. IEEE Transactions on Neural Networks, 18(5),
1364-1375, 2007.

[20] Jones, B., Stekel, D., Rowe, J., & Fernando, C., Is there a liquid state machine in the
bacterium escherichia coli?. In Proceedings of the 2007 IEEE Symposium on
Artificial Life (Cl-Alife), 18-191., 2007.

[21] Schmidhuber, J., Wierstra, D., Gagliolo, M., & Gomez, F., Training recurrent
networks by evolino. Neural Computation, 19, 757-779, 2007.

[22] Rad, A. A., Jalili, M., & Hasler, M., Reservoir optimization in recurrent neural
networks using kronecker kernels. In IEEE International Symposium on Circuits and
Systems, 868-871, IEEE, 2008.

[23] Dockendorf, K. P., Park, 1., Ping, H., Principe, J. C., & DeMarse, T. B., Liquid state
machines and cultured cortical networks: The separation property. Biosystems,
95(2), 90-97, 2009.

[24] Jaeger, H., A tutorial on training recurrent neural networks, covering BPPT, RTRL,
EKF and the ‘echo state network’ approach. Technical report GMD report 159,
German National Research Center for Information Technology, 2002.

[25] Jaeger, H., & Hass, H., Harnessing nonlinearity: predicting chaotic systems and
saving energy in wireless telecommunication. Science, 304, 78-80, 2004.

[26] Skowronski, M. D., & Harris, J. G., Minimum mean squared error time series
classification using an echo state network prediction model. In IEEE International
Symposium on Circuits and Systems, Island of Kos, Greece, 3153-3156, 2006.

98

[27] Tong, M. H., Bicket, A. D., Christiansen, E. M., & Cottrell, G. W., Learning
grammatical structure with echo state network. Neural Networks, 20, 424-432, 2007.

[28] Soh, H., & Demiris, Y., Iterative temporal learning and prediction with the sparse
online echo state gaussian process. In International Joint Conference on Neural
Networks (IJCNN), 1-8, IEEE, 2012.

[29] Jalalvand, A., Van Wallendael, G., & Van de Walle, R., Real-time reservoir
computing network-based systems for detection tasks on visual contents. In 7t
International Conference on Computational Intelligence, Communication Systems
and Networks (CICSyN), 146-151, IEEE, 2015.

[30] Maass, W., Natschlager, T., & Markram, H., Fading memory and kernel properties
of generic cortical microcircuit models. Journal of Physiology-Paris 98, 315-330,
2004.

[31] Yildiz, I. B., Jaeger, H., & Kiebel, S. J., Re-visiting the echo state property. Neural
networks, 35, 1-9, 2012.

[32] Lukosevicius, M., & Jaeger, H., Reservoir computing approaches to recurrent neural
network training. Computer Science Review, 3(3), 127-149, 20009.

[33] Bertschinger, N., & Natschlager, T., Real-time computation at the edge of chaos in
recurrent neural networks. Neural computation, 16(7), 1413-1436, 2004.

[34] Legenstein, R., & Maass, W., Edge of chaos and prediction of computational
performance for neural circuit models. Neural Networks. 20(3), 323-334, 2007.

[35] Lukosevicius, M., A Practical Guide to Applying Echo State Networks. In Neural
Networks: Tricks of the Trade, Lecture Notes in Computer Science, 659-686,
Springer, 2012,

[36] Adamatzky, A., Computing in nonlinear media and automata collectives. CRC Press,
2001.

[37] Fernando, C., & Sojakka, S., Pattern recognition in a bucket. In European Conference
on Artificial Life (ECAL 2003), 588-597, Springer, 2003.

[38] Dai, X., Genetic Regulatory Systems Modeled by Recurrent Neural Network. In
Proceedings, Part 11, Advances in Neural Networks: International Symposium on
Neural Networks (ISNN 2004), 519-524, Springer, 2004.

[39] Jones, B., Stekel, D., Rowe, J., & Fernando, C., Is There a Liquid State Machine in
the Bacterium Escherichia coli?. In Proceedings of the IEEE Symposium on
Artificial Life 2007 (ALIFE’07), 187-191, IEEE, 2007.

[40] Paquot Y., Duport, F., Smerieri, A., Dambre, J., Schrauwen, B., Haelterman, M., &
Massar, S., Optoelectronic Reservoir Computing. Scientific Reports in Nature, 2,
287, 2012. doi:10.1038/srep00287

99

[41] Larger, L., Soriano, M. C., Brunner, D., Appeltant, L., Gutiérrez, J. M., Pesquera, L.,
Mirasso, C. R., & Fischer, 1., Photonic Information Processing beyond Turing: An
Optoelectronic Implementation of Reservoir Computing. Optics Express, 20(3),
3241-3249, 2012. doi:10.1364/0OE.20.003241.

[42] Ortin, S., Soriano, M. C., Pesquera, L., Brunner, D., San-Martin, D., Fischer, 1.,
Mirasso C. R., & Gutiérrez, J. M., A unified framework for reservoir computing and
extreme learning machines based on a single time-delayed neuron. Scientific reports,
5, 14945, 2015.

[43] Snyder, D., Goudarzi, A., & Teuscher, C., Computational Capabilities of Random
Automata Networks for Reservoir Computing. Physical Review E, 87(4), 042808,
2013. doi:10.1103/PhysRevE.87.042808.

[44] Dale, M., Miller, J. F., Stepney, S., & Trefzer, M. A., Evolving Carbon Nanotube
Reservoir Computers. In Proceedings of International Conference on
Unconventional Computation and Natural Computation (UCNC 2016), 49-61,
Springer International Publishing, 2016. doi:10.1007/978-3-319-41312-9 5.

[45] Dale, M., Miller, J. F., & Stepney, S., Reservoir Computing as a Model for in-Materio
Computing. Advances in Unconventional Computing: Volume 1. Theory
(Adamatzky, A., ed.), 533-571, Springer International Publishing, 2017.

[46] Goudarzi, A., Lakin, M.R., & Stefanovic, D., DNA reservoir computing: a novel
molecular computing approach. In International Workshop on DNA Based
Computers, 76-89, Springer, 2013.

[47] Yamane, T., Katayama, Y., Nakane, R., Tanaka, G., & Nakano, D., Wave based
reservoir computing by synchronization of coupled oscillators. In International
Conference on Neural Information Processing, 198-205, Springer, 2015.

[48] Coulombe, J.C., York, M.C., & Sylvestre, J., Computing with networks of nonlinear
mechanical oscillators. PloS one, 12(6), e0178663. 2017.

[49] Nichele, S., & Gundersen, M. S., Reservoir Computing Using Non-Uniform Binary
Cellular Automata. Complex Systems, 26(3), 225-245, Complex Systems
Publications Inc., 2017.

[50] Nichele, S., & Molund, A., Deep learning with cellular automaton-based reservoir
computing. Complex Systems, 26(4), 319-339, Complex Systems Publications Inc.,
2017.

[51] McDonald, N., Reservoir Computing & Extreme Learning Machines using Pairs of
Cellular Automata Rules. In International Joint Conference on Neural Networks
(JCNN), USA, 88, 2429-2436, 2017.

[52] Tanaka, G., Yamane, T., Héroux, J. B., Nakane, R., Kanazawa, N., Takeda, S.,
Numata, H., Nakano, D., & Hirose, A., Recent advances in physical reservoir
computing: A review. Neural Networks, 2019. doi: 10.1016//j.neunet.2019.03.005.

100

[53] Hadaeghi, F., He, X., Jaeger, H., Unconventional Information Processing Systems,
Novel Hardware: A Tour D'Horizon. IRC-Library, Information Resource Center der
Jacobs University Bremen, 2017.

[54] von Neumann, J., The General and Logical Theory of Automata. In L.A. Jeffress
(ed.), Cerebral Mechanisms in Behavior: The Hixon Symposium, 1-31, New York,
John Wiley, 1951.

[55] von Neumann, J., Theory of Self-Reproducing Automata. Urbana: University of
Illinois Press (ed. A.W. Burks), 1966.

[56] Burks, A. W., (ed.), Essays on Cellular Automata. University of Illinois Press, 1970.

[57] Frisch, U., Hasslacher, B., & Pomeau. Y., Lattice-gas automata for the Navier-Stokes
equation. Physical Review Letters, 56(14), 1505-1508, 1986.

[58] Toffoli, T., & Margolus, N., Cellular automata machines: a new environment for
modeling. MIT Press, 1987.

[59] L., Lam, (ed.), Nonlinear Physics for Beginners: Fractals, chaos, solitons, pattern
formation, cellular automata and complex systems. World Scientific, 1998.

[60] Shackleford, B., Tanaka, M., Carter, R. J., & Snider, G. FPGA implementation of
neighborhood-of-four cellular automata random number generators. In Proceedings
of the 2002 ACM/SIGDA tenth international symposium on Field-programmable
gate arrays, 106-112, ACM, 2002.

[61] Gobron, S., Devillard, F., & Heit, B. Retina simulation using cellular automata and
GPU programming. Machine Vision and Applications, 18(6), 331-342, 2007.

[62] Powley, E. J., Global properties of cellular automata. PhD Thesis, University of
York, Department of Computer Science, 2009.

[63] Wolfram, S., A new kind of science. Wolfram media Champaign, 2002.

[64] Moore, E.F., Machine models of self-reproduction. In Proceedings of symposia in
applied mathematics, 14, 17-33, American mathematical society, New York, 1962.

[65] Gardner, M., The fantastic combinations of John Conway’s new solitaire game of
life. Sci. Am., 223, 120-123, 1970.

[66] Jump, J. R., & Kirtane, J. S., On the interconnection structure of cellular automata
networks. Information and Control, 24(1), 74-91, 1974.

[67] Dyer, C., One-way bounded cellular automata. Information and Control 44(3),
261-281, 1980.

[68] Boccara, N., & Fuks, H., Cellular automaton rules conserving the number of active
sites. Journal of Physics A: Mathematical and General, 31(28), 6007, 1998.

101

[69] Wolfram, S., Statistical mechanics of cellular automata. Reviews of modern physics,
55(3), 601-644, 1983.

[70] Li, W., & Packard, N., The Structure of the Elementary Cellular Automata Rule
Space. Complex Systems, 4(3), 281-297, 1990.

[71] Martinez, G. J., A Note on Elementary Cellular Automata Classification. Journal of
Cellular Automata, 8(3-4), 233-259, 2013.

[72] Salman, K., Analysis of elementary cellular automata boundary conditions.
International Journal of Computer Science & Information Technology, 5(4), 35,
2013.

[73] Bhattacharjee, K., Naskar, N., Roy, S., & Das, S. A survey of cellular automata:
types, dynamics, non-uniformity and applications. Natural Computing, 1-29, 2018.

[74] Martinez, G., Seck-Tuoh-Mora J., & Zenil H., Computation and Universality: Class
IV versus Class Il Cellular Automata. Journal of Cellular Automata, 7(5-6),
393-430, 2013.

[75] Martinez, G. J., Seck-Tuoh-Mora, J. C., & Zenil, H. Wolfram’s classification and
computation in cellular automata classes 111 and V. Irreducibility and Computational
Equivalence, Zenil, H. (ed.), Chapter 17, 237-259, Springer, 2013.

[76] Cook, M., Universality in elementary cellular automata. Complex Systems, 15(1),
1-40, 2004.

[77] Langton, C. G., Studying Artificial Life with Cellular Automata. Physica D:
Nonlinear Phenomena, 22(1-3), 120-149, 1986.

[78] Toffoli, T., & Margolus, N., Cellular Automata Machines. The MIT Press, 1987.

[79] Martinez, G. J., Adamatzky, A., & Alonso-Sanz, R., “Designing complex dynamics
in cellular automata with memory. International Journal of Bifurcation and Chaos in
Applied Sciences and Engineering, 23(10), 1330035, 2013.

[80] Alonso-Sanz, R., & Martin, M., Elementary cellular automata with elementary
memory rules in cells: The case of linear rules. Journal of Cellular Automata, 1(1),
71-87, 2006.

[81] Yilmaz, O., Reservoir computing using cellular automata. arXiv preprint
arXiv:1410.0162v1, 2014.

[82] Yilmaz, O., Symbolic Computation using Cellular Automata based
Hyperdimensional Computing. Neural Computation, 27(12), 2661-2692, 2015.

[83] Yilmaz, O., Analogy Making and Logical Inference on Images using Cellular
Automata based Hyperdimensional Computing. In NIPS, Workshop on Cognitive
Computation, 2015

102

[84] Moréan, A., Frasser, C. F., & Rosselld, J. L., Reservoir Computing Hardware with
Cellular Automata. arXiv preprint arXiv:1806.04932v2, 2018.

[85] Margem, M., & Gedik, O. S., Feed-forward vs. Recurrent Architecture and Local vs.
Cellular Automata Distributed Representation Based Reservoir Computing in
Sequence Memory Learning. under review in Artificial Intelligence Review (AIRE),
20109.

[86] Nakayama, A., Yamamoto, T., Morita, Y., & Nakamachi, E., Development of multi-
layered cellular automata model to predict nerve axonal extension process. In VI
International Conference on Computational Bioengineering, 2015.

[87] Zhang, X., Lu, R., Zhang, H., & Xu, C., A New Digital Signature Scheme from
Layered Cellular Automata. International Journal of Network Security, 18(3),
544-552, 2016.

[88] Martens, J., Sutskever, I., Learning recurrent neural networks with hessian-free
optimization. In Proceedings of the 28th International Conference on Machine
Learning (ICML-11), 1033-1040, 2011.

[89] Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J., A Field Guide to
Dynamical Recurrent Neural Networks. Chapter Gradient flow in recurrent nets: the
difficulty of learning long-term dependencies, IEEE press, 2001.

[90] Jaeger, H., Long Short-Term Memory in Echo State Networks: Details of a
Simulation Study. Technical report No. 27, Jacobs University Bremen, 2012.

[91] Pascanu, R., Mikolov, T., & Bengio, Y., On the difficulty of training Recurrent
Neural Networks” In the 30th International Conference on Machine Learning, USA,
2013.

[92] Smolensky, P., Tensor product variable binding and the representation of symbolic
structures in connectionist systems. Artificial intelligence, 46(1-2), 159-216, 1990.

[93] Deypir, M., Sadreddini, M. H., & Hashemi, S., Towards a variable size sliding
window model for frequent itemset mining over data streams. Computers &
Industrial Engineering, 63, 161-172, 2012. doi: 10.1016/j.cie.2012.02.008.

[94] Kang, G., & Guo, S., Variable sliding window DTW speech identification algorithm.
In 2009 Ninth International Conference on Hybrid Intelligent Systems, 1, 304-307,
IEEE, 2009. doi: 10.1109/H1S.2009.66.

[95] Myung, I. J., The importance of complexity in model selection. Journal of
mathematical psychology, 44(1), 190-204, 2000.

[96] Weston, J., Chopra, S., & Bordes, A., Memory Networks. International Conference
on Learning Representations (ICLR), USA, 2015.

[97] Graves, A., Wayne, G., & Danihelka, I., Neural Turing machines” arXiv preprint
arXiv:1410.5401, 2014.

103

[98] Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, ., Grabska-Barwinska,
A, et al. Hybrid computing using a neural network with dynamic external memory.
Nature, 538(7626), 471, 2016.

[99] Collier, M., & Beel, J., Implementing Neural Turing Machines. Artificial Neural
Networks and Machine Learning — ICANN 2018, Lecture Notes in Computer
Science, 11141, 94-104, Springer International Publishing, 2018.

[100] Doran, R. W., The Gray Code. Journal of Universal Computer Science, 13(11),
1573-1597, 2007.

[101] Dietterich, T. G., Machine learning for sequential data: A review. Structural,
syntactic, and statistical pattern recognition, 15-30. Springer, 2002.

[102] Huang, G. B., Zhu, Q. Y., & Siew, C. K., Extreme learning machine: a new learning
scheme of feedforward neural networks. In Proceedings 2004 IEEE International
Joint Conference on Neural Networks IJCNN, 2, 985-990, 2004.

[103] Huang, G. B., Wang, D. H., & Lan, Y., Extreme learning machines: a survey.
International Journal of Machine Learning and Cybernetics, 2(2), 107-122, 2011.

[104] Wolfram, S., Tables of Cellular Automaton properties 1986. Appendix in Cellular
automata and complexity: collected papers, 513-584, Westview Press, 1994,

[105] Kuhn, M., & Johnson, K., Applied Predictive Modeling. Science+Business Media
New York, 26, 71-72, Springer, 2013. doi: 10.1007/978-1-4614-6849-3.

[106] Cerda, P., Varoquaux, G., & Kégl, B., Similarity encoding for learning with dirty
categorical variables. Machine Learning, 107(8-10), 1477-1494, 2018.

[107] Zhang, H., Feng, X., Li, B., Wang, Y., Cui, K., Liu, F., Dou, W., & Huang,
Y., Integrated photonic reservoir computing based on hierarchical time-multiplexing
structure. Optics express., 22(25), 31356-31370. 2014.

[108] Kudo, M., Toyama, J., & Shimbo, M., Multidimensional curve classification using
passing-through regions. Pattern Recognition Letters., 20(11), 1103-1111, 1999.

[109] kdd.ics.uci.edu/databases/JapaneseVowels/JapaneseVowels.html, retrieved 1 Oct.
2017.

[110] Geurts, P., Pattern extraction for time series classification. In European Conference
on Principles of Data Mining and Knowledge Discovery, 115-127, Springer, 2001.

[111] Barber, D., Dynamic Bayesian networks with deterministic latent tables. In
Advances in Neural Information Processing Systems (NIPS). 2003.

[112] Strickert, M., Self-organizing neural networks for sequence processing. Ph.D. thesis,
Univ. of Osnabruck, Dpt. of Computer Science. 2004.

104

[113] Jaeger, H., LukoSevicius, M., Popovici, D., & Siewert, U., Optimization and
applications of echo state networks with leaky-integrator neurons. Neural networks,
20(3), 335-352, 2007.

[114] Jaeger, H., Controlling recurrent neural networks by conceptors. arXiv preprint
arXiv:1403.3369, 2017.

[115] Antoniol, G., Rollo, V. F., & Venturi, G., Linear predictive coding and cepstrum
coefficients for mining time variant information from software repositories. ACM
SIGSOFT software engineering notes, 30(4), 1-5, 2005.

[116] Molund, A., Deep Reservoir Computing Using Cellular Automata. M.Sc. thesis,
Norwegian University of Science and Technology, Department of Computer
Science, 2017.

[117] Fisher, R., The use of multiple measurements in taxonomic problems. Contributions
to Mathematical Statistics, John Wiley, NY, 1950.

[118] archive.ics.uci.edu/ml/datasets/iris, retrieved 20 Nov 2017.

[119] Kumar, A., Ondruska, F., lyyer, M., Bradbury, J., Gulrajani 1., Zhong, V., Paulus, R.,
& Socher, R., Ask Me Anything: Dynamic Memory Networks for Natural Language
Processing. In Proceedings of the 33rd International Conference on Machine
Learning in PMLR., 48, 1378-1387, 2016.

[120] Weston, J., Bordes, A., Chopra, S., Rush, A. M., van Merrienboer, B., Joulin, A., &
Mikolov, T., Towards Al-Complete Question Answering: A set of Prerequisite Toy
Tasks. arXiv preprint arXiv: 1502.05698v10, 2015.

[121] Lee, M., He, X., Yih, W. T., Gao, J., Deng, L., & Smolensky, P., Reasoning in VVector
Space: An Exploratory Study of Question Answering. arXiv preprint arXiv:
1511.06426v4., 2016.

[122] Pennington, J., Socher, R., & Manning, C., Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), 1532-1543, 2014.

[123] Sukhbaatar, S., Weston, J., & Fergus, R., End-to-end memory networks. In Advances
in neural information processing systems, 2440-2448, 2015.

[124] Bahdanau, D., Cho, K., & Bengio, Y., Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[125] Yu, Y., Zhang, W., Hang, C. W., Xiang, B., & Zhou, B., Empirical study on deep
learning models for question answering. arXiv preprint arXiv:1510.07526, 2015.

[126] Peng, B., Lu, Z., Li, H., & Wong, K. F., Towards neural network-based reasoning.
arXiv preprint arXiv:1508.05508, 2015.

105

[127] Patel, K., Vala, J., & Pandya, J., Comparison of various classification algorithms on
iris datasets using WEKA” International journal of Advance Engineering and
Research Development (IJAERD), 1(1). 2014.

[128] WEKA at http://www.cs.waikato.ac.nz/~ml/weka.

http://www.cs.waikato.ac.nz/%7Eml/weka

106

CURRICULUM VITAE

PERSONAL INFORMATION

Name Surname : Mrwan MARGEM
Date of Birth : 21/08/1968

Phone : 0090 537 49 35 301
E-mail : m_mrwan@yahoo.com
EDUCATION

1982 - 1985

Baccalaureate in sciences, Zawit Al Dehmani higher school, Tripoli /

Libya.
1985 - 1990

B.Sc. of Engineering sciences, Electrical & Electronic Dept., Faculty
of Engineering, Tripoli University, Tripoli / Libya.

2002 - 2004

M.Sc. of Control Engineering, Henri Poincaré University, Nancy /

France.

WORK EXPERIENCE
1991 - 1993

Assistant lecturer in computer laboratory in Electrical & Electronic
Dept. at Tripoli University.

107

1994 — 1996
lecturer in Digital circuits at the Higher Institute of Industrial
Technology. Tripoli / Libya

1997 - 2001
lecturer in Electronic circuits at the Higher Institute of Electronic
Professions. Tripoli / Libya

2005 - 2007
lecturer in Electronic Instrumentation & Maintenance at the Higher
Institute of Electronic Professions. Tripoli / Libya

2008 — 2013
lecturer in Sensors, Data Acquisition & Power Electronics at the
College of Electronic Technology-Tripoli.

LANGUAGES

Arabic (Native), English, French.

TECHNICAL SKILLS

Programing Languages: Matlab, Python.

Networking : CISCO Network Academy (CCNA) 1,2,3,4. CCNA certified trainer.

Platforms

Tools

: Windows 98/2000/XP/Vista/7/8/10.

Latex, MS Office.

TOPICS OF INTEREST

Control Engineering, Power Electronics, Machine Learning.

108

PUBLICATIONS

- Margem, M., EI-Mezugi, D., & Najmeddin, H., “Comparison between the
actual and standard specifications of Op-amp 741 and study their effects on the
experiments at the College of Electronic Technology-Tripoli” In the 1%
Conference of Technology Education, Ezzawia / Libya, 2013.

- Margem, M., & Yilmaz, O., “How much computation and distributedness is
needed in sequence learning tasks?” In Artificial General Intelligence, AGI-16,
Lecture Notes in Computer Science, Springer, 9782, 274-283, 2016.

- Margem, M., & Gedik, O. S., “Reservoir Computing Based on Cellular
Automata (ReCA) in Sequence Learning. Journal of Cellular Automata.
14(1-2), 153-170, 2019.

- Margem, M., & Gedik, O. S., “Feed-forward vs. Recurrent Architecture and
Local vs. Cellular Automata Distributed Representation Based Reservoir
Computing in Sequence Memory Learning. under review in Artificial
Intelligence Review (AIRE), 20109.

	Ph.D. THESIS EXAMINATION RESULT FORM
	ETHICAL DECLARATION
	ACKNOWLEDGMENTS
	ABSTRACT
	ÖZ
	NOMENCLATURE
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1
	INTRODUCTION
	1.1 Reservoir Computing
	1.1.1 ESNs Framework
	1.1.2 Physical Reservoir

	1.2 Cellular Automata
	1.2.1 Dimension and Neighborhood
	1.2.2 Cell States
	1.2.3 Local Rule
	1.2.4 Boundary Condition
	1.2.5 Elementary Cellular Automata Classification
	1.2.6 Linear Cellular Automata
	1.2.7 Elementary Cellular Automata with Memory

	1.3 Overview of Reservoir Computing based on Cellular Automata
	1.4 Contributions
	1.5 Thesis Outline
	1.6 Publications from the Thesis

	CHAPTER 2
	RESERVOIR COMPUTING BASED ON CELLULAR AUTOMATA (ReCA)
	2.1 ReCA Implementation
	2.1.1 Encoding Stage
	2.1.1.1 Utilizing Buffers (Zeros Array R)
	2.1.1.2 Reducing Interference Ri
	2.1.1.3 Multilayer Cellular Automata Expansion CA

	2.1.2 Cellular Automata Reservoir Stage
	2.1.3 Read-out Stage

	2.2 Covariance and Stack Reservoir
	2.2.1 Covariance Reservoir
	2.2.2 Stack Reservoir

	2.3 Pathological Synthetic Tasks
	2.3.1 Memory Tasks
	2.3.1.1 5-Bit Task
	2.3.1.2 20-Bit Task
	2.3.1.3 Random Permutation Task.

	2.3.2 Temporal Order Task.
	2.3.2.1 2 Symbols Task.
	2.3.2.2 3 Symbols Task.

	2.3.3 XOR, Addition and Multiplication Tasks.
	2.3.3.1 XOR Task

	2.3.4 Binary Encoded Tasks

	2.4 Experiments
	2.4.1 Training Stage
	2.4.2 Testing Stage
	2.4.3 Model Evaluation

	2.5 Results
	2.5.1 General Results
	2.5.2 The Effect of Training Examples Ntrain
	2.5.3 The Effect of Sequence Length T
	2.5.4 The Effect of the Expansion Ratio f
	2.5.5 Multilayer CA Expansion
	2.5.6 One Hot Encoding
	2.5.7 Comparison with Other Approaches

	2.6 Discussions

	CHAPTER 3
	COMPLEXITY REDUCTION OF ReCA
	3.1 ReCA Implementation
	3.1.1 Feature Extraction from the Reservoir
	3.1.1.1 Essential Feature Extraction
	3.1.1.2 Supplementary Feature Extraction

	3.2 Experiments
	3.3 Results
	3.3.1 5-Bit and 20-Bit Tasks
	3.3.2 Random Permutation Task
	3.3.3 Temporal Order Tasks
	3.3.4 XOR Task

	3.4 Discussions

	CHAPTER 4
	ReCA VS. FEEDFORWARD ARCHITECTURE AND LOCAL REPRESENTATION
	4.1 ReCA Implementation
	4.1.1 Feature Extraction from the Reservoir
	4.1.2 ReCA in Feedforward Architecture

	4.2 Experiments
	4.2.1 5-Bit Task
	4.2.2 Generalized 5-Bit Task
	4.2.3 Training\Testing Stages
	4.2.4 ReCA Evaluation

	4.3 Results
	4.3.1 5-Bit Task
	4.3.2 Generalized 5-Bit Task
	4.3.3 CA Feedforward Architecture
	4.3.4 Local Representation Models
	4.3.5 Comparison with other Approaches

	4.4 Discussions

	CHAPTER 5
	NONBINARY AND STATIC TASKS
	5.1 ReCA Implementation
	5.2 One Hot Encoding
	5.3 Sin/Square Classification Task
	5.3.1 Input Binarization
	5.3.2 Results

	5.4 Japanese Vowels Task
	5.4.1 Results

	5.5 IRIS Task
	5.5.1 Feedforward and Recurrent Architecture
	5.5.2 Results

	5.6 Discussions

	CHAPTER 6
	ReCA in QUESTION ANSWERING
	6.1 The (20) QA bAbI Tasks
	6.2 Related Work
	6.3 Training Methods
	6.4 Results
	6.5 Discussions

	CHAPTER 7
	CONCLUSION AND FUTURE WORK
	7.1 Future Work

	REFERENCES
	CURRICULUM VITAE

