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CELLULAR AUTOMATA BASED RESERVOIR COMPUTING 

IN SEQUENCE LEARNING 

ABSTRACT 

Reservoir computing based on cellular automata (ReCA) constructs a novel bridge 

between automata computational theory and recurrent neural architectures. In this 

study, ReCA has been developed to solve different types of tasks. Several methods 

have been proposed to extract the features from the cellular automata reservoir. In most 

tasks, ReCA results outperform the state-of-the-art results. 

Concerning the model complexity, a sparsely connected network with simple binary 

units like elementary cellular automata in ReCA could perform the computational 

requirements of the reservoir in order to solve hard sequence tasks that have long term 

dependencies. Thus, ReCA can be considered to operate around the lower bound of 

complexity.  

Sequence learning is an essential capability for a wide collection of intelligence tasks 

such as language, continuous vision, symbolic manipulation in a knowledge base, etc. 

Therefore, ReCA has been tested using pathological synthetic tasks of sequence 

learning that are widely used in RNNs field. ReCA achieves zero error in all 

pathological tasks; using only the CA evolution states, at last time step, as a feature 

vector to predict the output (LAST method). The CA evolution states at all time steps 

(ALL method) can also be used, which improves the ReCA accuracy with large feature 

space. To reduce the feature space size, three options are proposed: Each by using only 

few states from the reservoir as features, Half by using only one side of CA evolution 

states, or f by reducing the dimension of the zero buffers. Using these three options 

together significantly reduces the ReCA complexity in some tasks by up to 98% for 

training and 94% for testing. 

The distributed representation of CA in recurrent architecture (ReCA) could solve the 

5-bit tasks with minimum complexity, using only two training examples which is the 

lowest number of training examples for any model. Comparing between different 

architectures and data representations; ReCA outperforms the local representation in 
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recurrent architecture (stack reservoir), then echo state networks and feed-forward 

architecture using local or distributed representation. 

ReCA also could solve nonbinary tasks after using one hot encoding to binarize the 

dataset. The results are perfect for the signal classification and IRIS tasks where ReCA 

achieves zero error. While for the Japanese vowels task the results are competitive; 

less than the state-of-the-art results a little bit. Finally, ReCA has been tested using the 

20 QA bAbI tasks from Facebook; These tasks are very hard and require an 

understanding of the meaning of a text and the ability to reason over relevant facts. 

Using only supporting facts, ReCA could solve most of bAbI tasks 15 out of 20 has 

100% accuracy and 2 tasks above 90%, whilst 3 tasks less than 90%. 

In addition, the usage of cellular automata in the reservoir computing paradigm greatly 

simplifies the architecture, makes the computation more transparent for analysis, and 

provide enough computation for large domain of tasks. Furthermore, the reservoir in 

ReCA can be implemented using ordinary logic gates or Field programmable gate 

arrays FPGAs, resulting in reducing the complexity in space, time and power 

consumption. 

Thus, our work raises the question of whether real-valued neuron units are mandatory 

for solving complex problems that are distributed over time. 

Keywords: Recurrent neural networks, reservoir computing, cellular automata, 

ReCA, sequence learning, long term dependencies, complexity, recurrent architecture, 

feed-forward architecture, distributed representation, local representation. 
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DİZİ ÖĞRENMESİNDE HÜCRESEL OTOMAT TEMELLİ 

REZERVUAR HESAPLAMA 

ÖZ 

Hücresel otomasyon temelli rezervuar hesaplama (ReCA) otomasyon hesaplama 

teorisi ve yinelemeli sinir ağları mimarileri arasında yenilikçi bir köprü kurmaktadır. 

Bu çalışmada, çeşitli tipteki görevlerin çözülmesi amacıyla ReCA önerilmiştir. 

Bununla birlikte, hücresel otomasyon rezervuarından çeşitli öznitelikleri çıkarmak için 

birçok yöntem önerilmiştir. ReCA birçok görevde tekniğin bilinen durumundan iyi 

performans göstermiştir. 

Model karmaşıklığı göz önünde bulundurulduğunda, ReCA bünyesindeki temel 

hücresel otomasyon benzeri basit ikili birimler ile bağlı seyrek bağlanmış bir ağ, uzun 

süreli bağlılık içeren zor dizi görevlerin çözülebilmesi için gerekli hesaplama 

gereksinimlerini karşılayabilmektedir.  Bu yönüyle ReCA’nın karmaşıklığın alt 

sınırlarında işlediği düşünülebilir. 

Dizi öğrenmesi, dil işleme, sürekli görü işleme, bilgi tabanında sembolik 

manipülasyon gibi problemlerin çözülmesi için gerekli bir kabiliyet olarak karşımıza 

çıkmaktadır. Bu yönüyle ReCA, RNN literatüründe yaygın olarak kullanılan patolojik 

sentetik görevleri kullanarak test edilmiştir. ReCA sadece son adımdaki CA evrim 

durumlarını çıkışı tahmin etmek için öznitelik vektörü olarak kullanarak tüm patolojik 

görevlerde sıfır hataya ulaşmıştır (LAST yöntemi). Ayrıca tüm zaman adımlarındaki 

CA evrim durumları (ALL yöntemi) büyük öznitelik uzayı ile ReCA hassasiyetini 

arttırmak için kullanılabilmektedir. Öznitelik uzayı büyüklüğünü düşürmek için 3 

yöntem önerilmiştir: EACH: Rezervuardaki sadece birkaç durumun kullanılması, 

HALF: CA evrim durumlarının sadece bir yarısının kullanılması veya f: sıfır 

tamponlarının boyutunun düşürülmesi. Bu üç yöntemin bir arada kullanılması ReCA 

karmaşıklığını bazı görevlerde eğitimde %98 ve testte %94 olmak üzere büyük oranda 

düşürmüştür. 

ReCA mimarisinde CA’nın dağıtık gösterimi 5-bitlik görevleri sadece 2 eğitim örneği 

ile minimum karmaşıklık ile çözmekte olup bu durum herhangi bir model için en düşük 
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sayıda eğitim örneğidir. Farklı mimariler ve veri gösterimleri karşılaştırıldığında, 

ReCA’nın yinelemeli mimarilerdeki yerel temsiller (yığın rezervuarı) ile yerel ve 

dağıtık temsil kullanan yankı durum ağları ve ileri beslemeli mimarilerden iyi 

performans gösterdiği görülmüştür.  

ReCA, veri seti bire bir kodlama ile ikili hale getirildiğinde ikili olmayan görevleri de 

çözebilmektedir. Bu şekilde gerçekleştirildiğinde sinyal sınıflandırma ve IRIS 

görevlerinde ReCA sıfır hataya ulaşarak mükemmel sonuçlar vermiştir. Öte yandan 

Japon ünlü harfleri görevindeki sonuçlar tekniğin bilinen durumunun bir miktar altında 

kalmıştır. Son olarak ReCA Facebook tarafından önerilen 20 QA bAbI görevinde test 

edilmiştir. Bu görevler oldukça zor olup, metnin anlaşılması ve ilgili gerçekler 

hakkında yorum yapılabilmesini gerektirmektedir. Sadece destekleyici gerçekler 

kullanılarak ReCA bu görevlerin çoğunu çözebilmiştir (15 görevde %100 doğruluk, 2 

görevde %90 üzeri doğruluk ve 3 görevde %90 altı doğruluk) 

Bununla birlikte, hücresel otomasyonun rezervuar hesaplamasındaki kullanımı 

mimariyi büyük ölçüde basitleştirerek hesaplamaların analiz amacıyla daha şeffaf 

olmasını sağlamakta ve büyük alan görevleri için yeterli hesaplama kabiliyeti 

sunmaktadır. Ayrıca, ReCA bünyesindeki rezervuar, basit mantık kapıları ve FPGA 

ile de gerçeklenerek ebat, zaman ve güç tüketimi karmaşıklıklarını azaltabilmektedir. 

Böylelikle bu çalışma zaman içerisine yayılmış kompleks problemlerin çözülebilmesi 

için reel-değerli nöronların gerekliliğinin sorgulanmasını sağlamaktadır. 

Anahtar kelimeler: Yinelemeli sinir ağları, rezervuar hesaplama, hücresel 

otomasyon, ReCA, dizi öğrenmesi, uzun süreli bağlılık, karmaşıklık, yinelemeli 

mimari, ileri beslemeli mimari, dağıtık temsil, yerel temsil 
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CHAPTER 1  

INTRODUCTION 

Artificial neural networks (ANNs) are powerful tools for artificial intelligence (AI) 

and machine learning (ML), which have remarkable progress in recent years, and they 

are increasingly employed in real-life applications [1]. ANNs are computational 

models that mimic biological neural networks. They are represented by a network of 

units (neurons) interconnected via weighted links (synapses). The ANN architectures 

can be classified into two classes from the point of view of the connection direction: 

feedforward neural networks (FNNs) and recurrent neural networks (RNNs) [2]. In 

FNNs there are only one-way connections (from input to output), which makes it 

suitable for static data processing and representing the nonlinear input-output 

functions. But, in RNNs, the feedback connections are allowed; thus, they can 

represent dynamical systems driven by sequential inputs owing to their feedback 

connections, that make them powerful tools for dynamic (time-dependent) data 

processing [2]. Unfortunately, RNNs are very difficult to train by traditional methods 

as gradient descent [3]. To overcome this difficulty; RNN is divided into two networks: 

a non-trainable RNN (fixed dynamic reservoir) and trainable feedforward ANN (read-

out). Thus, the problem changes from RNN training to feedforward ANN training 

which is very common in ML, but instead very often becomes a simple linear readout 

as in echo state networks (ESNs) [4]. This method of simplification became known as 

reservoir computing (RC). ESNs [4], Liquid State Machines (LSMs) [5] and the back-

propagation decorrelation neural network (BPDC) [6] are some popular examples for 

RC models. The high dimensional projection can be provided by cellular automata 

(CA) evolution states instead of the RNN reservoir as in [7], which greatly simplifies 

the architecture complexity and makes the computation faster and more transparent for 

analysis [8, 9]. 

The following subsections are a review of reservoir computing, cellular automata, and 

overview of reservoir computing based on cellular automata, then our contributions, 

finally the thesis structure. 
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1.1 Reservoir Computing 

RNNs are connectionist computational systems where they can embed temporal 

correlations of the inputs into their dynamical behavior, which makes them suitable to 

solve time-dependent tasks (problems) such as speech recognition, language modeling, 

financial data analysis, etc.  

RNNs are universal approximators of dynamical systems [10] and can simulate Turing 

machines [11], but it is very difficult to train them, due to convergence problems [12] 

and the difficulties of finding optimal representations for long-term memory learning 

[3, 13]. Reservoir Computing is an approach that could avoid these difficulties by 

splitting the network into two layers, as defined above: the first one is a non-trainable 

(fixed) layer called (a reservoir) whilst the second layer is a trainable feedforward 

FNNs (a readout layer). Hence, the sequence input is projected into spatiotemporal 

patterns in a high-dimensional space by the RNN reservoir. Then, the features are 

extracted in the readout, as shown in Figure 1.1(a). The main advantage of RC 

framework is that the output matrix weights Wout are only trained, but the input matrix 

weights Win and the recurrent connection weights W in the reservoir are not trained. 

This simple and fast training process overcomes the issues in [3, 12, 13] and further 

reduces the computational cost of learning compared with standard RNNs. The RC 

models differ in the reservoir construction and the read-out type. For example, ESNs 

[4] that have randomly and sparsely connected recurrent neurons in the reservoir and 

linear read-out. In LSMs [5], the reservoirs are driven by the dynamics of a set of 

coupled spiking integrate-and-fire neuron models and they mostly have linear read-out 

(some cases have FNNs or sigmoid neurons) [14]. BPDC is an online RNN learning 

algorithm using the algorithm of Atiya and Parlos in [15] by adapting only the output 

weights. Other types of reservoirs can be found in [16-23]. 

In this thesis, ESNs have been adopted due to their simplicity and effectiveness, also 

they have been successfully applied in multiple tasks, e.g., dynamic pattern 

classification [24], time-series prediction and noise modelling [25], reinforcement 

learning [18], speech recognition [26], language modelling [27], human action 
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recognition [28], finally handwriting recognition and movement detection [29]. In [29] 

the authors call ESNs by reservoir computing networks (RCNs). 

 

Figure 1.1 Reservoir computing paradigm: (a) The input is projected randomly in an RNN (reservoir) 

and the evolution states of the reservoir x(n) are harvested to calculate the output weight matrix Wout 

which is then used to predict the output. (b) Physical Reservoir: The RNN reservoir in (a) is replaced 

by a high dimensional dynamic physical system. 

1.1.1 ESNs Framework 

In the RC model shown in Figure 1.1(a), and for more precise ESNs with 

mathematically speaking; given K examples for training, the target is to find M-

dimensional output 𝐲𝐲(n) as a function of L-dimensional input 𝐮𝐮(n), where n is the 

time step number n=1, 2, …, T where T is the input sequence length. 

The update equation of the reservoir states is: 

𝒙𝒙(𝑛𝑛) = 𝐹𝐹�𝑾𝑾.𝒙𝒙(𝑛𝑛 − 1) + 𝑾𝑾𝒕𝒕𝒕𝒕.𝒖𝒖(𝑛𝑛)� (1.1) 

where, x(n) is the reservoir state vector at time step n, 𝐱𝐱(0) = 𝟎𝟎, F is the reservoir 

activation function, Win is an N×L matrix of random projection of the input to the 

reservoir, W is an N×N matrix which describes the internal connections and weights 

of the reservoir neurons and N is the reservoir size (the number of reservoir neurons).  

In order to efficiently solve computational tasks, the reservoir should verify the 

following requirements:  
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1-  High dimensionality; to map inputs into a high-dimensional space.  

2- Nonlinearity; to transform not linearly separable inputs into those that are 

linearly separable.  

3- Echo state property or fading memory; the network should gradually lose 

information that has been received from previous states and inputs [5, 30]. To 

ensure the echo state property in the reservoir, the spectral radius ρ(W)1 of the 

reservoir matrix should be less than 1 [31], but in [32] it was proved that the 

spectral radius ρ(W) still has to be found by task-specific experimentation.  

4- Edge of chaos; it is often preferred to operate ESNs at the edge of chaos [33,34]. 

Due to the rich dynamics in the reservoir, the output can be simply expressed as the 

weighted sum of the reservoir states as in equation (1.2): 

 𝒚𝒚(𝑛𝑛) = 𝑾𝑾𝒐𝒐𝒖𝒖𝒕𝒕.𝒙𝒙(𝑛𝑛) (1.2) 

where Wout is the M × N-dimensional output weight matrix which is only trained whilst 

Win and W are created randomly and are not changed during training. However, in 

traditional RNNs, the training methods adapt all the weights (Win, W, Wout). 

In ESNs,  Wout can be obtained directly in training stage from equation (1.3): 

 𝑾𝑾𝒐𝒐𝒖𝒖𝒕𝒕 = 𝒀𝒀𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕) † (1.3) 

where (𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕) †is the pseudo-inverse of 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 which is the state collection matrix 

from all training examples and 𝒀𝒀𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 is the collection output matrix from all training 

examples (the target). Thus, the most expensive calculation in the training stage of the 

RC model is to find the pseudo-inverse of x(n).  

Finally, to predict new output values ŷ other than the output y of the K training 

examples that have been used to find the output weight matrix Wout; equation (1.4) is 

used as follows:  

                                                 
1 The spectral radius ρ(W) is the maximum eigenvalue of the reservoir weight matrix W. 
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𝒚𝒚�(𝑛𝑛) = 𝑾𝑾𝒐𝒐𝒖𝒖𝒕𝒕𝒙𝒙�(𝑛𝑛) (1.4) 

where  𝒙𝒙�(𝑛𝑛)  is the new reservoir states that are obtained from the new input. For more 

details, Lukosevicius in [35] presents practical techniques and recommendations for 

applying ESNs. 

1.1.2 Physical Reservoir 

Some of high dimensional dynamic physical systems can be considered as a 

computational model [36], which led the researchers to exploit these systems as 

physical reservoirs (Figure 1.1(b)). The physical reservoir, of course, should verify the 

requirements of a conventional reservoir that are mentioned in Section 1.1.1. Using 

physical systems as a reservoir starts in 2003 by water waves in a bucket [37], then the 

genetic regulatory network of the Escherichia coli bacterium [38, 39], optoelectronics 

[40–42], random Boolean networks (RBNs) [43], carbon nanotubes [44, 45], coupled 

oscillators; chemical [46], phase [47] and mechanical [48], finally using CA as a 

reservoir [7-9, 49-51]. Other types of physical reservoirs can be found in the review 

paper [52]. Also, there are many unconventional computing methods in [53] can be 

used as physical reservoirs. 

1.2 Cellular Automata 

Cellular automata (CA) have been originally studied by J. von Neuman in the 1950s 

as a mathematical model for the self-reproducing phenomena [54-56]. CA have since 

been used to simulate a wide variety of physical and biological systems [57-59]. They 

are also useful for parallel computation and can be easily implemented using hardware 

such as field programmable gate arrays (FPGAs) [60] and graphics processing unit 

(GPU) [61]. 

CA are composed of simple computational cells arranged on a lattice to produce a 

network, which can be evolved to extremely complicated behavior2, thus CA can 

                                                 
2 CA have emergent properties; because their global behavior arises from the complex interactions 
between their cells; is not designed into these cells [62]. 
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perform larger computational tasks. Precisely, CA are a discrete (in time and space) 

parallel computational model composing of a lattice of cells. The cell state evolves in 

time according to a certain transition function (rule), depending on its current state and 

the state of neighbors [63]. The states of all cells in the array are updated 

simultaneously, each update is called iteration and the total number of iterations is 

denoted by I.  

1.2.1 Dimension and Neighborhood 

The original CA, that have been proposed by J. von Neumann [54], is of 2-dimensional 

with 5-neighborhood dependency (orthogonal ones and itself) as shown in Figure 

1.2(a). In 1962, the neighborhood dependency has been extended by Moore [64] to the 

9-neighborhood dependency as shown in Figure 1.2(b), the Moore neighborhood 

structure has been utilized to design the famous Game of Life by John Conway and 

popularized by Martin Gardner (1970) [65]. 

 

Figure 1.2 Neighborhood Dependency: (a) 5-Neighbors, (b) 9-Neighbors, (c) 3-Neighbors, and 

(d) 5-Neighbors. 

Figure 1.2(c,d) describes the 1-dimensional CA with 3-neighborhood (Figure 1.2(c)) 

and 5-neighborhood (Figure 1.2(d)). The neighborhood is sometimes represented by 

radius r, i.e., the number of consecutive cells in a direction on which the dependency, 

e.g., r=1 in Figure 1.2(c) and, r=2 in Figure 1.2(d). In 1-dimensional CA, the number 
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of neighborhood dependency Nn=2r+1. The radius is usually the same in every 

direction, but this restriction is removed in some literature as [66-68]. 

1.2.2 Cell States 

A CA cell can be in any state s of a finite state set S. The simplest representation of the 

state set S is the binary, i.e., S ϵ {0,1} and the number of states Ns=2, which has been 

used in the 2-dimensional Conway’s game of life. The cell is alive and is normally 

represented by a black square, and as opposed, when s=0 the cell is died and is 

normally represented by a white square. The 1-dimension CA with binary state set 

with three dependent neighbors is called elementary cellular automata (ECA), which 

is widely used in CA discipline; due to its simplicity. If the state set S consists of three 

numbers {0, 1, 2} and the new state is the average of its previous state and the two 

neighbors, CA will be called totalistic CA [63]. Finally, if the state set S is any real 

number, CA will be called continuous CA [63]. 

1.2.3 Local Rule 

A cell (in present state PS) of CA changes its state (to next state NS) after applying a 

transition function (rule) on its previous state and the previous state of the dependent 

neighbors. 

Table 1.1 ECA rules: PS is the present state of the 3-neighbors, NS is the next state (update) of the 

center cell, the last column is the rule number, which is the decimal equivalent of its 8-bit binary string. 

PS 111 110 101 100 011 010 001 000 Rule # 

NS 

0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 1 
: : : : : : : : : 
0 1 0 1 1 0 1 0 90 
: : : : : : : : : 
0 1 1 0 1 1 1 0 110 
1 1 0 0 1 0 1 1 203 
: : : : : : : : : 
1 1 1 1 1 1 1 0 254 
1 1 1 1 1 1 1 1 255 

The local rule can be represented in a tabular form as demonstrated in Table 1.1 that 

contains the next state values corresponding to each of the possible neighborhood 
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combinations according to the local rule [69]. ECA rules have got their numbers 

(or names) after the decimal equivalents (last column of Table 1.1) of their 8-bit binary 

string. Obviously, Table 1.1 shows there are 256 different ECA rules from rule 0 to 

rule 255, where it can be mathematically expressed as follows: for ECA rule space 

there are (𝑁𝑁𝑁𝑁)(𝑁𝑁𝑁𝑁)𝑁𝑁𝑁𝑁=223=256 different rules [70].  

Table 1.2 88 equivalent sets of ECA rules with their Wolfram classes. 

Rule Class Equivalent  
Rules 

Rul
e 

Class Equivalent  
Rules 

Rule Class Equivalent  
Rules 

0 I 255 35 II 49, 59, 115 106 IV 120, 169, 225 
1 II 127 36 II 219 108 II 201 
2 II 16, 191, 247 37 II 91 110 IV 124, 137, 193 
3 II 17, 63, 119 38 II 52, 155, 211 122 III 161 
4 II 223 40 I 96, 235, 249 126 III 129 
5 II 95 41 IV 97, 107, 121 128 I 254 
6 II 20, 159, 215 42 II 112, 171, 241 130 II 144, 190, 246 
7 II 21, 31, 87 43 II 113 132 II 222 
8 I 64, 239, 253 44 II 100, 203, 217 134 II 148, 158, 214 
9 II 65, 111, 125 45 III 75, 89, 101 136 I 192, 238, 252 

10 II 80, 175, 245 46 II 116, 139, 209 138 II 174, 208, 224 
11 II 47, 81, 117 50 II 179 140 II 196, 206, 220 
12 II 68, 207, 221 51 II - 142 II 212 
13 II 69, 79, 93 54 IV 147 146 III 182 
14 II 84, 143, 213 56 II 98, 185, 227 150 III - 
15 II 85 57 II 99 152 II 188, 194, 230 
18 III 183 58 II 114, 163, 177 154 II 166, 180, 210 
19 II 55 60 III 102, 153, 195 156 II 198 
22 III 151 62 II 118, 131, 145 160 I 250 
23 II - 72 II 237 162 II 176, 186, 242 
24 II 66, 189, 231 73 II 109 164 II 218 
25 II 61, 67, 103 74 II 88, 173, 229 168 I 224, 234, 248 
26 II 82, 167, 181 76 II 205 170 II 240 
27 II 39, 53, 83 77 II - 172 II 202, 216, 228 
28 II 70, 157, 199 78 II 92, 141, 197 178 II - 
29 II 71 90 III 165 184 II 226 
30 III 86, 135, 149 94 II 133 200 II 236 
32 I 251 104 II 233 204 II - 
33 II 123 105 III - 232 II - 
34 II 48, 187, 243       

 

These 256 rules have a lot of equivalences.  Consequently, a similar behavior can be 

classified in a set of rules, thus ECA rule-space can be reduced to 88 equivalent sets 

of rules as listed in Table 1.2 [71]. But, the most commonly used is the visual 

representation where the zero is represented by a white square and the one by a black 

square [63] as illustrated in Figure 1.3 for rule 150 as an example. 
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Figure 1.3 ECA Rule 150: All possible combination for one iteration of the center cell xi for rule 150 

and its Boolean expression. The binary string (10010110)2 produces the rule number (150)10 [85]. 

1.2.4 Boundary Condition 

In 1-dimensional finite CA, two boundary conditions are generally used; fixed and 

periodic boundary conditions.  

 

Figure 1.4 Boundary Conditions: (a) Null Boundary, (b) Periodic Boundary, (c) Adiabatic Boundary, 

(d) Reflexive Boundary, (e) Intermediate Boundary. 

In fixed boundary condition; the rightmost and the leftmost neighbors are in a fixed 

value, it is also possible to take different boundary values between right and left 

terminal as in [72]. The most popular boundary condition in fixed type is null 

boundary, where the rightmost and the leftmost neighbors are always in state 0 as 

shown in Figure 1.4(a). In periodic boundary condition, the grid is folded, i.e., the 

leftmost cell becomes the neighbor of the rightmost one and vice versa as described in 

Figure 1.4(b). There are other types of boundary conditions that fall within the periodic 
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type; depending on the position of the selected boundary cell as demonstrated in Figure 

1.4(c, d, e) [73]. 

1.2.5 Elementary Cellular Automata Classification 

From here, ECA will only be used; due to its simplicity, but the other types of CA can 

be used in future work to exploit the other specifications rather than ECA. Starting by 

a random initial vector, the evolution of ECA states obeys different behaviors, that can 

be categorized into 4 classes (Wolfram classes) [63]:  

Class I (Uniform): the initial states evolve to a stable (constant) state, e.g., rule 235, 

255 all the cells become 1s and rule 0, 128 all the cells become 0s (Figure 1.5(a)); 

Class II (Periodic): CA states evolve into static or oscillating states, e.g., rule 42, 108 

(Figure 1.5(b));  

Class III (Chaotic): CA states evolve chaotically, e.g., rule 90, 105, 150 (Figure 

1.5(c));  

Class IV (Complex or Edge of Chaos): the initial vector evolves in an unpredictable 

manner (complex behaviors), e.g., rule 106, 110 (Figure 1.5(d)).  

 

Figure 1.5 State-time diagram of some examples of ECA Wolfram Classes: (a) Class I Uniform, (b) 

Class II Periodic, (c) Class III Chaotic, and (d) Class IV Complex or Edge of Chaos. 
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The fourth-class rules have very high computational representation (universal 

computation) [74-76]. Table 1.2 illustrates the Wolfram classes of the 88 ECA 

equivalent sets. The most interesting rules are in the Classes III and IV because of their 

applications; the chaotic rules are used for random number generators and 

cryptography, also due to the capacity of class IV rules to contain complex systems; it 

has been used in the simulations of particles, waves, or gliders [36, 63, 77, 78]. In this 

thesis, it will be shown that the periodic rules of class II, despite their simplicity, they 

can also be used in machine learning, and even they give the best results in some tasks, 

e.g., generalized 5-bit memory task. 

1.2.6 Linear Cellular Automata 

1-dimensional CA is linear, or additive, if its ECA local rule (CAr) has the following 

form: 

𝐶𝐶𝐴𝐴𝐶𝐶(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚) = 𝜆𝜆1𝑥𝑥1 + 𝜆𝜆2𝑥𝑥2 + ⋯+ 𝜆𝜆𝑚𝑚𝑥𝑥𝑚𝑚 (1.5) 

where the constants λ1, λ2, … λm ϵ S. If only one of the constants λ is nonzero CA is 

trivial, otherwise it is non-trivial [62]. For the 88 ECA different rules in Table 1.2, 

there are only six rules are additive as follows: 

𝐶𝐶𝐴𝐴𝐶𝐶(𝑥𝑥−1,𝑥𝑥0, 𝑥𝑥1 ) = 0                                                  Rule 0  (1.6) 

𝐶𝐶𝐴𝐴𝐶𝐶(𝑥𝑥−1,𝑥𝑥0, 𝑥𝑥1 ) = 𝑥𝑥1                                                Rule 170 (1.7) 

𝐶𝐶𝐴𝐴𝐶𝐶(𝑥𝑥−1,𝑥𝑥0, 𝑥𝑥1 ) = 𝑥𝑥0                                                Rule 204 (1.8) 

𝐶𝐶𝐴𝐴𝐶𝐶(𝑥𝑥−1,𝑥𝑥0, 𝑥𝑥1 ) = 𝑥𝑥−1 ⊕ 𝑥𝑥0                                   Rule 60 (1.9) 

𝐶𝐶𝐴𝐴𝐶𝐶(𝑥𝑥−1,𝑥𝑥0, 𝑥𝑥1 ) = 𝑥𝑥−1 ⊕ 𝑥𝑥1                                   Rule 90 (1.10) 
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𝐶𝐶𝐴𝐴𝐶𝐶(𝑥𝑥−1,𝑥𝑥0, 𝑥𝑥1 ) = 𝑥𝑥−1 ⊕ 𝑥𝑥0 ⊕ 𝑥𝑥1                        Rule 150 (1.11) 

Hence, Rules 0, 170 and 204 are trivial, and rules 60, 90 and 150 are non-trivial. Rule 0 

immediately maps to zeros, rule 170 shifts the initial state one cell to the left, rule 204 

is the identity, and the other rules (60, 90, 150) have complex behavior. 

Mathematically, in ECA, the additive rules can be represented as linear functions 

modulo two, thus these rules allow to compute independently the evolution for 

different initial states, then the results can be combined by simply adding which 

significantly simplifies the hardware implementation of these rules. 

1.2.7 Elementary Cellular Automata with Memory 

Conventional CA are memoryless i.e., a new state of a cell depends only on the 

neighbors at the previous time step. A relatively new class of CA is Elementary 

Cellular Automata with Memory (ECAM), which is an ECA with an added memory 

function. This new class extended the domain of rules based on the ECA domain. In 

ECAM the basic ECA rule should be selected and then it is composed with a memory 

function. Therefore, the memory function will determine if the original ECA rule 

conserves the same original Wolfram’s class or not. Following this principle, the 

ECAM rules can be classified as follows:  

1- Strong: The memory functions are unable to change the rule class,  

2- Moderate: The memory function can transform the rule to another class and 

conserve the original class as well, and  

3- Weak: The memory function transforms the rule class to another class quickly 

[71, 79, 80]. 

1.3 Overview of Reservoir Computing based on Cellular Automata 

The first appearance of reservoir computing based on Boolean networks was in 2013 

using random Boolean networks RBNs [43], in 2014 [81] the RBNs have been 
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replaced by cellular automata CA3 which are a special case of RBNs with a regular 

structure, then such framework of CA has been used in detail for connectionist 

machine intelligence [7] and symbolic computation [82, 83]. In previous studies 

[7, 81], the initial (first time step) Lin-dimensional input is randomly permuted R times 

to produce the (Lin.R)-dimensional vector X1 (Figure 1.6) which is projected into the 

CA reservoir as initial state and evolved up to I iterations utilizing a certain ECA rule. 

 

Figure 1.6 Random permutation of the original input to produce the processed input X, which is 

projected into the CA reservoir. 

All the CA iteration states at the first time step are concatenated to produce a single 

feature vector4,  which is used in linear regression to find the weight values of the 

output weight matrix Wout, that will be used to predict the output at first time step and 

this is analogous to ESNs in Section1.1.1. In order to insert the second time step input 

into the CA reservoir; the last CA iteration state of first time step is added to the next 

time step (Lin.R)-dimensional input X2 using normalized addition5 as an insertion6 

function to produce the initial state of CA reservoir at 2nd time step as shown in Figure 

1.7. Hence, the 2nd time step initial state offers the recurrent connection which 

memorizes the history of the first and second time step inputs. The previous procedures 

are repeated up to the last time step. The obtained state vectors from the CA reservoir 

are used to predict the output for connectionist machine learning [7, 81]. Intuitively, 

there should be something better than a random (input projection and normalized 

addition); that’s why, in 2016 [8], another type of CA reservoir was designed including 

                                                 
3 The physical system in Figure 1.1(b) has been substituted by cellular automata. 
4 The dimension of the feature vector is (Lin.R.I). 
5 In normalized addition; 0 + 0 = 0, 1 + 1 = 1 and for 1 + 0 or 0 + 1 the result is decided randomly 0 or 1. 
6 Insertion function is to insert a new input time step into the reservoir. 
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the use of zero array buffers instead of the input random projection in [5, 41], also 

replacing the normalized addition by XOR operation. This model is called ReCA 

(CHAPTER 2 in this thesis). 

 

Figure 1.7 Normalized addition as an insertion function (ɸ) to create the recurrent connection which 

produces the next initial state of the CA reservoir. 

Using zero buffers in ReCA enhances the results to solve all pathological sequence 

tasks, these tasks have been introduced in 1997 by Hochreiter and Schmidhuber to 

examine Long short-term memory (LSTM) method in [13] then they have been widely 

used in RNNs literature. In 2017, RC based on CA was used by applying Non-Uniform 

ECA (using 2 rules horizontally) [49] or by repeating the entire model in series (deep 

reservoir) [50]. The authors of the last two methods [49,50] have utilized the random 

permutation to create the initial states of CA reservoir from the original input also to 

insert the initial states consecutively into the reservoir. These two methods have been 

tested using only one type of pathological sequence tasks (5-bit memory task), which 

is a binary dataset. In 2017, the RC based on CA framework was tested using a 

nonbinary dataset by applying a multilayer CA in the reservoir; by using 2 rules 

vertically in [51], the first rule is for projection and the other is for memorization. In 

2018, ReCA in software and hardware implementation was tested using a pattern 

recognition task of handwritten numbers (MNIST), which is a time-independent task 

[84]. In 2019 [9], new methods of ReCA feature extraction has been proposed to 

reduce the model complexity. The results were promising where the feature dimension 
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has been reduced by up to 98% in some pathological tasks (CHAPTER 3 in this thesis). 

Finally, in [85], the recurrent architecture with CA distributed representation of ReCA 

have been compared with feedforward architecture and local representation after 

applying new methods of feature extraction and another insertion function (CHAPTER 

4 in this thesis). 

1.4 Contributions 

As presented in Sections 1.1.1 and 1.3; ESNs and the proposed models of using CA in 

RC have parameters randomly assigned and preprocessing the input by random 

permutation. Intuitively, there should also be something better than a random, this was 

the starting point.  The contributions of this thesis are as follows: 

- RC based on CA framework has been developed to produce ReCA model in 

which the random parameters in ESNs are replaced by an ECA rule and the 

input random permutation is replaced by adding two buffers to the input to 

enable the natural diffusion of the CA evolution states in the reservoir, finally 

the normalized addition (random operation see footnote 5) in Section 1.3 is 

replaced by XOR operation as insertion function. 

- Two subroutines are added in order to preprocess the input before the reservoir: 

a-  Ri expansion to reduce the interference between the nonzero elements in 

the reservoir. 

b- Multilayer CA to increase the nonlinearity in the model. 

- Similar to ESNs the evolution states at last time step are used as feature vector 

for LAST method. 

- Creating different options for feature extraction ALL, Each, Half, and 

expansion ratio f instead of LAST, in order to control the ReCA complexity 

and reduce the required training examples. 

- Using the whole pathological synthetic tasks (binary dataset) to evaluate ReCA 

with all the above different options. 

- Three different models: feedforward architecture with CA distributed 

representation, feedforward architecture with local representation, and 

recurrent architecture with local representation (stack reservoir) are provided 
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to compare them with ReCA (recurrent architecture with CA distributed 

representation) in order to find the optimum model. 

- Three other options of feature extraction (XOR, Binary, Gray) are created to 

reduce the feature vector dimension. Also, a new insertion function (Overwrite) 

is proposed rather than XOR, which increases the ReCA accuracy while 

reducing required training examples in generalized 5-bit task, which is also 

created in this thesis. 

To evaluate ReCA, it has also been tested using real and nonbinary tasks such as 

signal classification, Japanese vowels dataset [109], and IRIS dataset [118] which 

is time-independent. Finally, ReCA has been tested utilizing the 20 QA bAbI tasks 

from Facebook [120] in order to study its ability to solve these hard tasks. 

1.5 Thesis Outline 

The main goal of this thesis is to demonstrate that reservoir computing based on 

cellular automata can be used to successfully process sequence data. A suitable model 

called ReCA has been proposed and then developed using several methods to train such 

data and compare its performance with the state-of-the-art reservoir computing 

methods. Most of the original work appears in Chapters 2, 3, 4, 5, and 6. 

- In CHAPTER 2, we go into the details of how ReCA can be implemented, 

starting by the different methods of preprocessing the input data, then we 

present a formalization of the CA reservoir structure, finally the read-out stage 

where the training parameters are estimated. The results of pathological 

synthetic tasks are introduced using an intuitive method of feature extraction 

called LAST. 

- In CHAPTER 3, deferent methods of feature extraction from the reservoir are 

created to improve ReCA by decreasing the complexity and reducing the 

required training examples. 

- CHAPTER 4 discusses the effects of using different architectures (feedforward 

or recurrent) and different data representations (local or distributed) to find the 

optimum model. Also, three options of feature extraction (XOR, Binary, and 
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Gray) are proposed to reduce the dimension of feature vector. Another insertion 

function (Overwrite) is also used instead of XOR in the reservoir. 

- In all previous chapters, the used tasks are artificial and binary (pathological 

synthetic tasks), Therefore, CHAPTER 5 focuses on how can ReCA deal with 

real and nonbinary tasks. 

- In CHAPTER 6, ReCA tackles the question answering problems (20 QA bAbI 

tasks from Facebook), that are very complicated and hard tasks [120]. 

- Finally, CHAPTER 7 gives some concluding remarks with a summary of 

achieved results also offers the future work. 

1.6 Publications from the Thesis  

-  M. Margem, and O. S. Gedik, “Reservoir Computing Based on Cellular Automata 
(ReCA) in Sequence Learning” Journal of Cellular Automata. 14 (1-2) (2019) 153-
170. 

-  M. Margem, and O. S. Gedik, “Feed-forward vs. Recurrent Architecture and Local 
vs. Cellular Automata Distributed Representation Based Reservoir Computing in 
Sequence Memory Learning” under review in Artificial Intelligence Review (AIRE), 
2019. 
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CHAPTER 2  

RESERVOIR COMPUTING BASED ON CELLULAR 

AUTOMATA (ReCA) 

The setup of ReCA is presented in Section 2.1 with its three stages: encoding, CA 

reservoir, and read-out. In order to compare ReCA with other approaches, from the 

point of view of distributedness, two reservoirs with different representations of cell 

evolution are introduced in Section 2.2. The eight pathological synthetic tasks are 

defined in Section 2.3. These tasks have been used to examine ReCA by the method 

which is demonstrated in the experiments of Section 2.4. Section 2.5 focusses on the 

results of ReCA and the comparison with other approaches. Finally, the discussion is 

in Section 2.6. 

2.1 ReCA Implementation 

 

Figure 2.1 ReCA framework stages indicating vector lengths for each stage: (a) Encoding Stage 

composed of; (CA) Multilayer expansion using CA rules, (Ri ) which expandes each input bit by Ri bits 

and adding (Zero Array) R-dimensional buffers for both sides of the input. (b) CA Reservoir Stage; The 

L-dimensional output of Encoding Stage is projected onto CA reservoir which evolves it using certain 

ECA rule in multiple time iterations I. (c) Read-out Stage; The reservoir output (LCA-dimensional 

feature vector) is trained by Linear regression to find the output weights of Wout matrix, which is used 

to predict the output y [8]. 
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The ReCA framework consists of three stages as shown in Figure 2.1. The encoding 

stage translates the input u into the initial states of CA reservoir. In the reservoir stage, 

the ECA rules are applied for a fixed period of iterations I, in order to evolve the CA 

initial states. The CA states in the reservoir are concatenated to produce a feature 

vector that will be used in the read-out stage using Linear Regression to predict the 

output y. The details of the method are given below step by step. 

2.1.1 Encoding Stage 

The encoding stage can be divided into three subroutines as shown in Figure 2.1(a): 

CA, Ri and Zero Array R.  

2.1.1.1 Utilizing Buffers (Zeros Array R) 

In the encoding stage, the input u is translated into the initial states of a cellular 

automaton reservoir. For handling a sequence of inputs, each having a length Lin, the 

size of the input to the reservoir needs to be expanded. An array of zeros with length 

of R is added to both sides of original input; to hold the activity of the reservoir 

corresponding to previous input time steps. Then, the expanded input to cellular 

automata reservoir becomes of length L=Lin + 2R as shown in Figure 2.2. 

 

Figure 2.2 Two R-dimensional zero vectors (buffers) are added to both sides of the original input u(n), 

to produce the L-dimensional initial state Xn that will be evolved using ECA rule in the reservoir 

stage [85]. 

In most of the experiments, R=I×T (I is the number of CA iterations and T is the 

sequence length of the input), to guarantee that CA states have conserved all the input 

sequences. But, in some experiments, to reduce the time and space complexity an 

expansion ratio 𝐟𝐟 ∈ [𝟎𝟎,𝟏𝟏] has been introduced as follows R = 𝑓𝑓(I × T), to adjust the 

dimension of the buffers, thus the size of the reservoir (complexity) decreases with the 
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value of f. It should be noted that only the utilizing buffers (Zero Array R) have to be 

used in our model, but the next two subroutines (Ri and Multilayer CA) are applied 

selectively according to the task requirement. 

2.1.1.2 Reducing Interference Ri 

To improve the accuracy in some tasks, the interference between nonzero elements in 

the reservoir should be reduced. The interference is due to the cancellation of cell 

activity when two nonzero cells collide during additive cellular automaton rules such 

as rule 907. In order to avoid it, each bit of the input can be represented by Ri bits. At 

the insertion of a new time step, the location of the nonzero will rotate right one bit to 

reduce the interference between nonzero bits that have the same location in 

consecutive time steps as explained schematically in Figure 2.3.  

 

Figure 2.3 An example for how to reduce the interference between nonzero bits in rule 90 by adding Ri 

with rotation, when there are nonzero bits that have the same location in consecutive time steps as in; 

(a) The original 3-bit input for two time steps, (b) Ri = 4 bits to represent each input bit, with two 

iterations of CA evolution. The new input at n = 2 is represented using Ri, it might interfere with the 

previous input, and (c) But, due to the rotation, there is no interference between the 1’s (in yellow) from 

1st time step and the bold 1’s (in orange) from the 2nd time step. 

The value of Ri should be chosen carefully; to reduce the interference between nonzero 

bits that have different locations in consecutive time steps as demonstrated in Figure 

                                                 
7 Boolean expression of rule 90: 𝑥𝑥𝑖𝑖(𝑛𝑛 + 1) = 𝑥𝑥𝑖𝑖−1(𝑛𝑛) ⊕ 𝑥𝑥𝑖𝑖+1(𝑛𝑛). 
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2.4. Hence, the input dimension is artificially expanded to increase the feature space 

size and reduce the interference between nonzero bits in the reservoir. 

 

Figure 2.4 An example for how to reduce the interference between nonzero bits in rule 90,  by selecting 

Ri = 4 (even value) and rotation, when there are nonzero bits that have different locations in consecutive 

time steps as in; (a) The original 3-bit input for two time steps, (b) Ri = 4 bits to represent each input 

bit, with two iterations of CA evolution. The new input at n = 2 is represented using Ri, it might interfere 

with the previous input, and (c) But, due to the rotation and even value of Ri, there is no interference 

between the 1’s (in yellow) from first time step n = 1 and the bold 1’s (in pink) from second time step 

n = 2. 

2.1.1.3 Multilayer Cellular Automata Expansion CA 

Before zero paddings with right-left buffers R and expanding each binary input with 

Ri, the original binary input can be transformed into another binary vector using 

nonlinear CA rules to increase the nonlinearity of the model. Suppose that we have a 

binary vector of size Lin. We apply a nonlinear ECA rule, onto this vector for a certain 

amount of iterations, then use the last state of the evolution as our new input. Hence, 

this stage enables a multilayer CA architecture8, in which the first layer projects the 

input into a nonlinear space, and the next layer evolves it further with linear rules in 

                                                 
8 Our method should not be confused with conventional multilayer CA, they are similar only at the 
first-time step and they both use two different CA rules in different times (iterations). But, the multilayer 
CA that have been used in our work is structurally and algorithmically very different from Layered CA 
which is used to predict nerve axonal extension process [86] and in Cryptographic [87]. 
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time to expand the feature space. Linearity in the second layer is essential for lossless 

injection of the input at each time step. 

2.1.2 Cellular Automata Reservoir Stage 

After the data is processed in the encoding stage as the initial states of a cellular 

automaton, it is passed on a CA reservoir (instead of an ESN as in [4]) for computation. 

The dynamics of CA provide the necessary projection of the input data onto an 

expressive and discriminative space, as shown in Figure 2.1(b). It was previously 

shown that the cellular automata reservoir holds a distributed representation of high 

order attribute statistics [7]. Thus, the sequence of inputs at each time step is processed 

to extract the input statistics and these are represented in a distributed manner as in 

recurrent neural networks. However, different from recurrent neural networks, for each 

input we can allocate a distinct memory slot in the reservoir space and avoid 

interference between different time steps altogether (at the cost of increased feature 

space). This is due to the fact that additive cellular automata rules propagate the cell 

activities of the previous time steps in a predictable manner, creating "empty spots" 

for injection of new input in the sequence. 

The cellular automaton is initialized with the first time step input of the sequence (X1) 

that has been obtained from the encoding stage; A0
(1) = X1 (with size of L), where the 

subscript 0 denotes initial state and increases to I, which is the number of CA iterations 

in the reservoir and the superscript (1) denotes to the number of time steps (from 1 to 

T), where T is the input sequence length. Then, the cellular automata evolution of A0
(1) 

is computed using a pre-specified ECA rule CAr up to I iterations as illustrated in 

Figure 2.1(b) and the following equations: 

𝐴𝐴1
(1) = 𝐶𝐶𝐴𝐴𝐶𝐶(𝐴𝐴0

(1))                                                  (2.1) 

𝐴𝐴2
(1) = 𝐶𝐶𝐴𝐴𝐶𝐶(𝐴𝐴1

(1))                                                (2.2) 

             ⁞   
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𝐴𝐴𝐼𝐼
(1) = 𝐶𝐶𝐴𝐴𝐶𝐶(𝐴𝐴𝐼𝐼−1

(1) )                                               (2.3) 

The evolution of CA states is concatenated to obtain a single state vector as in equation 

(2.4) with length of LCA = I×L, that will be used as a feature vector to predict the output 

at 1st time step: 

𝐴𝐴(1) = �𝐴𝐴1
(1) 𝐴𝐴2

(1) … 𝐴𝐴𝐼𝐼
(1)�                                               (2.4) 

At the 2nd time step, the input X2 will be inserted into the reservoir state vector. 

Applying an insertion function, which is in our model, an XOR operation9 to the last 

state vector AI
(1) with the input vector at second time step X2. Then the new initial state 

vector of the cellular automaton at time step n = 2 will be as: 

𝐴𝐴0
(2) = 𝐴𝐴𝐼𝐼

(1) ⊕𝑋𝑋2                                               (2.5) 

where ⊕ is a bitwise XOR. 

Then, the cellular automaton is evolved for I steps to obtain A(2) as in equation (2.6). 

𝐴𝐴(2) = �𝐴𝐴1
(2) 𝐴𝐴2

(2) … 𝐴𝐴𝐼𝐼
(2)�                                               (2.6) 

A(2) is used for estimation at 2nd time step. This procedure is continued until the end 

of the sequence at n = T when XT is inserted into the reservoir and obtaining A(T) that 

will be used to predict the output at last time step, the details are depicted in Figure 

2.5. 

Note: Any feature vector A(n) memorizes the input information from 1st time step up 

to its time step n, i.e., A(T) memorizes the whole input information. 

                                                 
9 XOR computes the correlation, which provides a lossless merging of two binary numbers: it outputs 
1 if the content of input cells is different and 0 if the input cells  
are identical. 
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Figure 2.5 (a) original input sequence before the encoding stage. (b) Encoding stage and CA Reservoir 

stage: Adding zero array with length R to obtain the reservoir input sequence from X1 to XT. Then, the 

cellular automaton is initialized with the first time step input of the sequence, so 𝐴𝐴0
(1) = X1 (with size of 

L). The CA evolution states 𝐴𝐴𝑖𝑖
(𝑛𝑛) (i changes from 1 to I) will be used as a feature space to estimate the 

output y(n) using linear regression in the read-out stage [8]. 

2.1.3 Read-out Stage 

In this stage, the output states of CA reservoir will be used as a feature vector (with 

dimension of LCA) in the linear regression to compute the weight values of Wout matrix, 

which is used to predict the output. There are two cases for the output: 

1- There is only one output y at last time step n = T, thus the output is a vector 

with dimension of Lout. Therefore, as in equation (1.2) for ESNs, the output 

y(T) can be expressed as follows: 

                 𝒚𝒚(𝑇𝑇) = 𝑾𝑾𝑜𝑜𝑜𝑜𝑜𝑜.𝐴𝐴(𝑇𝑇)                                               (2.7) 
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where A(T) is the feature vector of the last time step with dimension of I.L and the size 

of regression parameters matrix Wout is Lout×IL. 

2-  There is an output for each time step, therefore the output is a matrix Y 

with size of Lout×T. Hence, the output y for each time step n > 0 is: 

                      𝒚𝒚(𝑛𝑛) = 𝑾𝑾𝒐𝒐𝒖𝒖𝒕𝒕.𝐴𝐴(𝑛𝑛)                                               (2.8) 

After combining all time steps together; the feature space A becomes as in (2.9): 

𝑨𝑨 = �𝐴𝐴(1)𝐴𝐴(2) … 𝐴𝐴(𝑇𝑇)�                                               (2.9) 

Finally, the output will be calculated as follows: 

𝒀𝒀 = 𝑾𝑾𝒐𝒐𝒖𝒖𝒕𝒕.𝑨𝑨                                                (2.10) 

where the size of feature space matrix A is IL×T and the size of Wout matrix is Lout×IL. 

2.2 Covariance and Stack Reservoir 

Other two types of reservoirs are used to study the effect of different levels of 

distributedness on computation in the reservoir. CA have a high distributed 

representation than covariance and finally stack that has local representation. 

2.2.1 Covariance Reservoir 

In covariance reservoir, A(k) is the state evolution at iteration k which is defined as in 

equation (2.11): 

𝐴𝐴(𝑘𝑘) = ∏ 𝐴𝐴0−𝑘𝑘 ⊕∏ 𝐴𝐴0+𝑘𝑘                                                 (2.11) 

where A0 is the initial state input, ∏−k and ∏+k are permutation matrices -k and +k 

shifts and ⊕ is a bitwise XOR. A(k)
 computes the pairwise covariance of the input 
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attributes as in tensor products [92] and memorizes those for each sequence input. In 

covariance representation, there is no relation between time steps evolution with each 

other as in CA; there is relation only with the initial state. That is why it can be 

considered between CA and local representation in distributedness. The used 

algorithm is the same with CA algorithm, but rather than using CA rules in the 

reservoir, the covariance representation in equation (2.11) is used to produce the 

covariance evolution states, that will be utilized as a feature space to estimate the 

output. The covariance representation has been used in [7] on a feedforward 

architecture for 5-bit task, but in this dissertation, it will be applied on recurrent 

architecture for all pathological tasks, that will be explained in detail in Section 2.3. 

2.2.2 Stack Reservoir 

In stack reservoir, there is no computation involved10; the sequence input is memorized 

consecutively step by step as shown in Figure 2.6.  

 

Figure 2.6 Stack reservoir (Local recurrent architecture): (a) The input sequence u, and (b) The input 

is consecutively memorized as in stack memory to produce the feature space; the first row at n = 1 is 

used to predict the output at first time step, the second row is used to predict the output at second time 

step and so on [85]. 

Thus, the insertion function is similar to the stack memory, the first row of feature 

space which has only the first time step input is used to predict the output at first time 

step and so on up to last time step which consists of all input time steps as demonstrated 

                                                 
10 The local representation is applied only in the reservoir. Thus, the model still has a computational 
power from the regressor in the read-out stage. 
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in Figure 2.6.  This representation can also be considered as a type of variable size 

sliding window that has been used in [93, 94] for frequent itemset mining and speech 

identification respectively, but in our case, the variation is in the amount of given 

information to each time-step not in the window’s length.  

2.3 Pathological Synthetic Tasks 

The pathological synthetic problems (tasks) have been used to examine ReCA 

framework for long-short-term-memory capability. These tasks have been proposed 

by Hochreiter and Schmidhuber in [13] with minor modifications in [88], they offer 

long-term dependencies and are effectively impossible to solve using gradient descent 

[89]. They are widely used in RNNs field, e.g., [90, 91, 7, 8, 49, 50]. 

All these tasks are binary and can be divided into 3 categories:  

1- Memory Task (5-Bit, 20-Bit and Random permutation);  

2- Temporal order task (2 and 3 symbols); 

3- Arithmetic/logic operation Tasks (XOR, Addition, and Multiplication).  

In these tasks, the input data consists of two parts: The Information and the 

Distractor period. The Distractor period is selected randomly and does not contain 

any information. It expands the task sequence and adds irrelevant data to increase 

its difficulty due to the longer-range dependencies. The output is either a particular 

function of the input information (XOR, Addition, Multiplication and Temporal 

order tasks) or repeating (memorize) the same information (from previous time 

steps) at final time steps (Memory and Random permutation tasks). The difficulty 

of these tasks increases with the value of time steps (Sequence Length) T. The 

following sections describe these tasks in detail. 

2.3.1 Memory Tasks 

Memory tasks consist of 3 types (5-Bit, 20-Bit, and Random permutation) where the 

input information is repeated in the output after distractor period. 
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2.3.1.1 5-Bit Task 

In 5-bit task, the input length is 4 bits Lin=4, the information is a memory pattern which 

is the sequence of first two bits D=2 for five-time steps M=5 where one of these two 

bits is randomly set to 1, thus there are 25 = 32 possible patterns, that’s why this task 

is named the 5-bit task. Then, at the sixth time step, the input memory pattern is 

followed by a distractor [0 0 1 0] for period Td time steps. Finally, the initial memory 

pattern should be repeated in the output after arriving a cue signal in the fourth input 

bit at the last time step of the distractor. Thus, the total sequence length of this task 

T=Td+10. The fourth output bit is always zero, so it should be dropped, but it has been 

kept; because it is included in the original task. The details of 5-bit task are 

demonstrated in Figure 2.7. 

 

Figure 2.7 An example of 5-bit task: The input and output length Lin=Lout=4 bits. The first 5-time steps 

are the 2-dimensional input memory pattern and the last 5-time steps are the main output which is a 

repeated (memorized) input pattern (Shadow Bold), but we have to note that the whole output bits 

(4 bits) for all time steps (T) should be predicted. The distractor input [0 0 1 0] is at the middle of the 

task for Td time steps, and the last time step of it is a cue signal (Bold 1 in u3) as a mark to repeat the 

input pattern in the output. The total sequence length of the task is T=Td+10 [85]. 
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2.3.1.2 20-Bit Task 

The 20-bit task is similar to the 5-bit; the difference is only for the size of memory 

pattern where D=5 bits and M=10 time steps. Hence, the input and output length 

Lin=Lout=7 bits, the total sequence length T=Td+20, therefore 20-bit task is more 

difficult than 5-bit task. Notice that there are a set of 5 different possible patterns, 

which is a little bit more than 20 bits information per input sequence and has given this 

task its name. 

2.3.1.3 Random Permutation Task. 

The input in this task is 100-dimensional binary vector Lin = 100 bits. At each time 

step, one of the 100 bits gets a ‘1’ value. At first time step n = 1, one of the first two 

input bits is randomly assigned to ‘1’. For the remaining time steps n = 2, 3, . . . , T, at 

each time step, one of the 98 remaining inputs is set to 1 in a random fashion. The 

relevant output is at the last time step at n = T; the target output is the 100-dimensional 

input vector at 1st time step, thus Lout = 100 bits. 

2.3.2 Temporal Order Task. 

Temporal order task consists of two parts; according to the number of ordered events 

two or three. 

2.3.2.1 2 Symbols Task.  

The input vector in this task is 6-dimensional Lin = 6 bits, the first two inputs are for a 

critical event (A = [01]) or (B = [10]) and the last four inputs are distractor. There are 

two critical event times T1 and T2 associated with critical events A and B. At all-time 

steps except for T1 and T2, only one of the four distractor inputs is set to ‘1’. At n = T1 

the first or second input is randomly set to ‘1’; the same is executed for time step 

n = T2. 

The target output is only at the last time step, which is one of the four possible indicator 

outputs [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0] and [1, 0, 0, 0] according to the four 

possibilities of the order of A and B, thus the output length Lout = 4 bits. Figure 2.8 

demonstrates this task in detail. 
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Figure 2.8 Temporal Order (2 Symbols) Task: The order of the two events A and B with the four 

possible indicator outputs at last time step. 

2.3.2.2 3 Symbols Task. 

The 3 Symbols temporal order task is completely analogous to the 2 symbols task, 

except that in this task there are three critical times T1, T2 and T3. This makes 8 possible 

indicator outputs, which have to be classified by the 8 bits output at the last time step. 

Thus, the input dimension is still Lin = 6 bits, but the output becomes Lout = 8 bits. 

2.3.3 XOR, Addition and Multiplication Tasks. 

These three tasks are the same; the difference is only for the used operation XOR, 

addition or multiplication. As an example, the XOR task is explained in the following 

section. 

2.3.3.1 XOR Task  

In this task there are two inputs Lin = 2 bits; The first input u1(n) is a stream of zeros 

or ones distributed randomly. The second stream is zeros u2(n) = 0 at all-time steps 

except at two-time steps T1 and T2 where u2(T1) = u2(T2) = 1 11. The objective is that at 

                                                 
11 The one in second input bit is a cue signal for localization of u1(n). 
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the last time step where n=T (much later than T1 or T2); the output 

y(T)=u1(T1)⊕u1(T2). The task details are illustrated in Figure 2.9.  

 

Figure 2.9 XOR Task in different situations. 

2.3.4 Binary Encoded Tasks 

The inputs of all pathological tasks have only one nonzero (one hot encoding) for each 

time step. The binary encoding is applied to the classical inputs; the location of the 

nonzero element will be represented by a binary number as shown in Figure 2.10, to 

make the task input closer to real data12, but this leads the tasks to become harder.  

 

Figure 2.10 Binary encoding for payload inputs of 20-bit task, the length is reduced from 5 to 3. Thus, 

the total input and output length for 20-bit task are reduced from 7 to 5. 

These new hard tasks have been used to test our model ReCA. The binary encoding 

will only be used for Random Permutation and 20-Bit tasks because the input of the 

other tasks is very small, so we do not need this encoding. 

                                                 
12As an example, this encoding is essential for word prediction application of language modeling, for 
which one hot encoded input should be of length tens of thousands (size of word dictionary). 
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2.4 Experiments 

For all pathological tasks, a set of Ntrain (training set) and Ntest (testing set)13 input time 

sequence and its associated outputs (Target) is synthesized. ReCA is trained by the 

Ntrain examples to find the feature vectors A(n), that is used to compute the regression 

parameters of Wout matrix, which is used to predict the output of Ntest examples. Then, 

the predicted output is compared with the original one in the testing set to evaluate the 

model. 

2.4.1 Training Stage 

After applying the input of Ntrain examples on the model and then preparing the feature 

vectors A(n) as demonstrated in Sections 2.1 and 2.2. These vectors are used to 

compute the linear regression weights of Wout matrix via pseudo-inverse as illustrated 

in equation (2.12) for the tasks that have only one output at the last time step and 

equation (2.13) for the tasks that have an output at each time step: 

𝑾𝑾𝒐𝒐𝒖𝒖𝒕𝒕 = 𝒚𝒚𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕. (𝐴𝐴(𝑇𝑇))†                                               (2.12) 

𝑾𝑾𝒐𝒐𝒖𝒖𝒕𝒕 = 𝒀𝒀𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕. (𝐴𝐴)†                                               (2.13) 

where ytrain and Ytrain are the output of training set (target) depend on the task, (A(T))† 

and (𝐀𝐀)† are the pseudo-inverse of the features that extracted from the reservoir. 

2.4.2 Testing Stage  

The predicted output of testing set can be obtained from equation (2.14) for the tasks 

that have only one output at the last time step and equation (2.15) for the tasks that 

have an output at each time step: 

𝒚𝒚�𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = 𝑾𝑾𝒐𝒐𝒖𝒖𝒕𝒕.𝐴𝐴𝑜𝑜𝑡𝑡𝑁𝑁𝑜𝑜
(𝑇𝑇)                                                (2.14) 

                                                 
13In all experiments, Ntest = 100. 
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𝒀𝒀�𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = 𝑾𝑾𝒐𝒐𝒖𝒖𝒕𝒕.𝐴𝐴𝑜𝑜𝑡𝑡𝑁𝑁𝑜𝑜                                               (2.15) 

where Atest
(T)  and 𝐀𝐀test vectors are harvested from the Ntest examples of testing set. 

Note: In 5-bit task (Section 2.3.1.1), there is no testing set; due to the small value of 

task examples. Therefore, the whole of the 32 examples is used for training. Thus, the 

equation (2.15) will be used to find the predicted output of training set as in (2.16):  

𝒀𝒀�𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = 𝑾𝑾𝒐𝒐𝒖𝒖𝒕𝒕.𝐴𝐴                                               (2.16) 

2.4.3 Model Evaluation 

The dataset of the pathological tasks is binary; therefore, each bit of the predicted 
output y�i should be binarized as illustrated in equation (2.17):                                      

ŷ𝑏𝑏𝑖𝑖 = �0   𝐴𝐴𝑓𝑓  ŷ𝑖𝑖 < 0.5
1  𝐴𝐴𝑓𝑓   ŷ𝑖𝑖 ≥ 0.5                                               (2.17) 

The binarized output (ŷ(𝑏𝑏)𝑜𝑜𝑡𝑡𝑁𝑁𝑜𝑜 and ŷ(𝑏𝑏)𝑜𝑜𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛) will be used to find the model errors as 

follows: testing error=|ŷ(𝑏𝑏)𝑜𝑜𝑡𝑡𝑁𝑁𝑜𝑜 − 𝒚𝒚𝑜𝑜𝑡𝑡𝑁𝑁𝑜𝑜| for all pathological tasks except 5-bit task 

where training error = |ŷ(𝑏𝑏)𝑜𝑜𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛 − 𝑡𝑡𝑡𝑡𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡|. This error represents the number of false 

bits over all relevant time steps in output bits. The goal of our experiments is to achieve 

zero test error with minimal complexity, hence the parameters I (CA evolution 

iterations), Ri (the input expansion to reduce the interference) and f (the expansion 

ratio) should be tuned to their minimum values using the smallest number of training 

examples. 

2.5 Results 

This section consists of the general results, that are the comparison between the 

proposed three models (ReCA, Covariance and Stack), then study the effect of some 

parameters on the model. At the end, the comparison between ReCA and other 

approaches to train RNNs.  
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2.5.1 General Results 

Table 2.1 Results for all pathological tasks using the three proposed reservoirs (CA, Covariance, Stack). 

The last column is the number of false bits in the predicted output of the test set. The 3rd column presents 

the used rule in multilayer CA with its number of iterations. The other columns are for various 

parameters of the proposed models [8].  

                                                 
14 The number between brackets is the number of iterations that are used in multilayer CA. 
15T is the input sequence length except for 5-bit and 20-bit tasks where it means the distractor length Td. 

  Pathological 
Task Method Multilayer 

ECA rule14 T 15 I Ntrain f Ri 
No of  

False Bits 
5-Bit ECA Rule 90 - 1000 4 32 1 1 0 

20-Bit 
Normal 

ECA Rule 90 - 300 20 120 1 2 0 
Covariance - 300 19 120 1 3 0 

Stack - 1000 - 5 - - 0 

20-Bit Binary 
Encoded 

ECA Rule 90 - 200 24 250 1 8 0 
Covariance - 100 19 250 1 2 0 

Stack - 100 - 500 - - 47 

Random  
Permutation 

ECA Rule 90 - 1000 2 200 1 1 0 
Covariance - 1000 2 200 1 1 0 

Stack - 1000 - 1200 - - 0 
Random  

Permutation 
Binary 

Encoded 

ECA Rule 90 - 300 4 600 1 1 0 
Covariance - 300 4 700 1 1 0 

Stack - 300 - 1400 - - 0 

2 Symbols 

ECA Rule 90 - 500 8 6000 1 1 0 
Covariance - 200 8 6000 1 1 151 

Stack - 200 - 6000 - - 4 
ECA Rule 150 122 (1) 1000 8 8000 0.5 1 0 

Covariance 122 (1) 50 8 1500 1 1 56 
Stack 122 (1) 500 - 14000 - - 0 

3 Symbols ECA Rule 90 - 50 24 7000 1 1 0 

Addition 
 ECA rule 150 40 (1) 500 20 2500 0.5 1 0 

 Covariance 110 (1) 50 20 3300 1 1 6 
 Stack 110 (2) 1000 - 3500 - - 0 

Multiplication 
 ECA rule 150 110 (2) 500 12 2000 0.5 1 0 

 Covariance 110 (2) 50 12 2000 1 1 17 
 Stack 110 (2) 1000 - 14000 - - 0 

XOR 
 ECA rule 150 40 (1) 1000 4 500 0.5 1 0 

 Covariance 110 (2) 50 4 3200 1 1 35 
 Stack 110 (2) 50 - 3200 - - 39 
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Table 2.1 collects the results of all pathological tasks using the three proposed models 

(CA, Covariance, and Stack). ReCA has solved all pathological tasks a. directly: in 

random permutation, 5-bit and temporal order tasks, or b. by expanding the input either 

utilizing Ri to reduce the interference in 20-bit task or using the CA multilayer in 

addition, multiplication and XOR tasks.  

Covariance and Stack representations could solve only memory and random 

permutation tasks, but Stack fails in binary encoded 20-bit task. Covariance could not 

solve the temporal order tasks and arithmetic/logic operator tasks while Stack could 

solve them using multilayer CA expansion except XOR. Surprisingly, the Stack 

reservoir achieves zero test error up to 1000 time steps with Ntrain = 5 for 20-bit task, 

which is a very hard task in [88, 90, 91], even though the stack model is very simple. 

The superior results that are seen for ReCA are due to its large distributed 

representation and higher attribute statistics.  

2.5.2 The Effect of Training Examples Ntrain 

Providing the model more information, by increasing the number of training examples 

Ntrain, improves the accuracy as illustrated in Table 2.2 for random permutation and 

20-bit tasks using rule 90. 

Table 2.2 The increasing of Ntrain improves the accuracy in ReCA:  where, Ntest = 100 and f = 1, for 

20-bit task (Td = 300, I = 20 and Ri = 2), and random permutation task (T = 1000 and I = 2). Using 

rule 90. 

20-Bit Task Random Permutation Task 
Ntrain No of False bits Ntrain No of False bits 

50 4 100 22 
100 2 150 2 
120 0 200 0 

2.5.3 The Effect of Sequence Length T 

The increasing of sequence length T increases the range of temporal dependencies, 

that makes the task harder. Therefore, the task then requires more training examples 

to obtain zero test error as experimentally proved in Table 2.3 for random permutation 

binary encoded task as an example using rule 90. 
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Table 2.3 The minimum training examples to achieve zero test error w.r.t. the increasing of sequence 

length T. For random permutation binary encoded task, where I=4 and f=1 using rule 90. 

Sequence Length T min Ntrain 
30 100 
50 150 

100 200 
200 300 
300 600 

 

2.5.4 The Effect of the Expansion Ratio f 

The increasing of expansion ratio f reduces the number of false bits due to the 

increasing of the feature vector dimension, i.e., increasing the provided information to 

the regressor. As illustrated in Table 2.4, the zero error is obtained at f = 0.3 in the 5-bit 

task, this means; the feature space can be reduced to 0.3 of its maximum value without 

losing the model accuracy. 

Table 2.4 The effect of expansion ratio on the accuracy (No of False bits) in 5-bit task. 

Expansion ratio f No of False bits 
0 224 

0.05 58 
0.1 32 

0.15 32 
0.2 32 

0.25 8 
0.3 0 

0.35 0 
⁞ ⁞ 

1 0 

2.5.5 Multilayer CA Expansion  

Table 2.5 indicates that for XOR task, all the nonlinear ECA rules from class IV with 

a complex behavior could achieve zero test error, thus they can be used for input 

multilayer expansion with some of rules from other classes; to increase the nonlinearity 

in the model. But, on the contrary, all linear (additive) ECA rules could not solve the 

XOR task. This result is predicted; because the reservoir utilizes a linear rule, hence 
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any addition of linear rule in multilayer expansion is the same with increasing the 

iterations in the reservoir using the original rule, which already cannot solve the task 

by itself. 

Table 2.5 The No of False bits in XOR task; using various ECA classes and rules in the multilayer 

expansion.  

ECA 
Class 

Linear Rules Nonlinear Rules 
ECA Rule No of False bits ECA Rule No of False bits 

I 250 73 40 0 
32 45 

II 170 73 118 0 
204 77 138 76 

           
III 

60 71 122 0 
90 66 45 62 

150 80 × × 
IV × × 41, 54, 106, 110 0 

2.5.6 One Hot Encoding 

Instead of using multilayer CA expansion, it can be used other type of input 

transformation such as one hot encoding, which significantly improves the results of 

XOR task.  In one hot encoding, the original task input Lin = 2 will be expanded to 

Lin = 4; as follows [00] → [0001], [01] → [0010], [10] → [0100] and [11] → [1000]. 

ReCA alone could not solve the original XOR task, but after using the one hot 

encoding, the task has been easily solved using rule 150 with small effort (I=2 and 

Ntrain=50) and even without using the buffers R in the encoding stage, i.e., the 

expansion ratio f=0. 

2.5.7 Comparison with Other Approaches 

The ReCA results outperform: 1. [88] (2011) and [91] (2013) where the zero test error 

has been obtained for sequence length T ranging from 50 to 200 time steps, while in 

our experiments T ranging from 200 to 1000 time steps. 2. [90] (2012) where the zero 

test error could not be achieved in 20-Bit binary encoded task using ESNs even if a 

large reservoir has been used and after changing the weights of input matrix as listed 

in Table 2.6. Also, ReCA outperforms ESN in computational complexity for most of 

the tasks as illustrated in  
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Table 2.7. Comparing the representations of ReCA and ESNs where ReCA 

outperform in 20-bit and 3 Symbols tasks but ESNs outperform in 5-bit task. Also, the 

computation performed in ReCA is much more transparent for analysis and 

improvement, while in ESNs the state evolution is untraceable due to random and 

irregular distributivity.  

Table 2.6 20-Bit task with binary encoded input using ESNs: The No of false bits for different values 

of reservoir size K at Td = 200, Ntrain = 500 and Ntest = 100. For the input matrix weights in Basic 

ESNs 𝜎𝜎1,2,3 = 2.5 × 10−6,𝜎𝜎4 = 1 × 10−6, and 𝜎𝜎5 = 1. For more details about Blind, Basic conditions, 

reservoir size (K) and input matrix weights (𝜎𝜎) in ESNs please refer to  [90]. 

Reservoir Size 
N (neurons) 

No of False Bits 
Blind Basic 

2000 50 27 
4000 46 15 
6000 27 24 
8000 25 66 
10000 25 59 
15000 81 55 

 

Table 2.7 The comparison of the number of operations and correspondence required bits between ESNs 

and ReCA for examples of pathological tasks [8]. 

Task ESNs (Floating point     Bits)       ReCA  Speedup 
20-Bit, Td=200 105.6M      3380 Mbit 24.8 Mbit 136X 

3 Symbols, T=200 5M     160 Mbit 20.5 Mbit 7.8X 
XOR, T=1000 0.2 M      6.4 Mbit 16 Mbit 0.4X 

2.6 Discussions  

The proposed framework (ReCA) could solve all the pathological tasks either directly 

or after expanding (preprocessing) the input using multilayer CA and/or Ri to reduce 

the interference between the nonzero elements in the reservoir.  

ReCA outperforms the Covariance and Stack representations because it has the highest 

distributed representation, while Stack representation provides only pure 

memorization, and Covariance representation computes only second order statistics. 

Usage of cellular automaton instead of real-valued neurons in ESNs greatly simplifies 

the architecture and makes the computation faster and more transparent for analysis.  
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The linear (additive) ECA rules (90 and 150) have been used in the reservoir evolution, 

to achieve lossless injection of input at each time step, because the linearity of these 

rules maximizes one-to-one correspondence between the input sequence and the 

reservoir activity due to the sequence. Moreover, the additive rules can be represented 

as linear functions modulo two, thus these rules allow to compute independently the 

evolution for different initial states, then the results can be combined by simply adding 

which significantly simplifies the hardware implementation of these rules. 

On the other hand, ReCA outperforms conventional methods of reservoir computing 

including ESNs by:  

1- Using binary numbers instead of floating point numbers,  

2- Multiplication in ESNs being replaced with bit-wise logic in the ReCA reservoir 

and multiplication in the regressor being replaced with summation due to the 

binary data,  

3- The CA reservoir hardware can be implemented using ordinary digital gates or 

field-programmable gate arrays FPGAs. Hence, the model complexity (space, 

time) and the power consumption are reduced. 
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CHAPTER 3  

COMPLEXITY REDUCTION OF ReCA  

The model selection should be based not only on the accuracy of fit, but the model 

complexity must also be taken into account. A simple model will generalize better in 

new data sets than a complex one and thus will have more predictive accuracy. In 

addition, a simple model's behavior is more tractable because parameter estimates will 

be more stable. Therefore, it is necessary to consider the complexity in model 

evaluating [95]. Finally, the complex models are very expensive in space and time for 

a program running. That is why, in this chapter, we will deal with ReCA complexity 

by creating new methods to extract the features from CA reservoir. Then, observing 

the effect of using these methods on the ReCA model complexity. 

Most parts of this chapter are published in [9]. 

3.1 ReCA Implementation 

The ReCA framework (Figure 2.1) in Section 2.1 is also used in this chapter with its 

three stages: Encoding, CA reservoir, and Read-out. The contributions in this chapter 

are the new methods that are created to extract the features from the reservoir to be 

used in read-out stage in order to compute the regression weight of Wout matrix, which 

is used to predict the output.  

3.1.1 Feature Extraction from the Reservoir 

In CHAPTER 2, the reservoir states of the last time step have only been utilized as a 

feature space, which memorizes all input information at the last time step, after which 

it is used to predict the output at the same time step. In this chapter, ReCA will be 

improved by creating new methods to extract the features from the reservoir while 

maintaining the high performance of ReCA. This improvement is performed in two 

ways: 



41 
 

 

1- The first is by reducing the CA reservoir size, thereby leading also to a decrease in 

the input size of the read-out (linear regression) stage.  

2- The second way is by using all time steps to predict the last time step output, i.e., 

increasing the feature space to reduce the training examples that are required for a zero 

test error.  

The first way can be introduced into the second one to obtain a distinguish results as 

depicted in the results Section 3.3. 

The feature expansion can also be categorized into two types: essential and 

supplementary. 

3.1.1.1 Essential Feature Extraction 

In order to predict the output at last time step 𝐲𝐲(T); the model can use the CA evolution 

states (iterations) in the reservoir at the last time step as a feature space. Then, these 

states are concatenated to produce a single feature vector A(T) (with dimension of 

LCA=I.L). This method has been used in the previous chapter, from now, it will be 

called LAST because ReCA uses the CA evolution states only at the last time step.  

The feature space can be increased by choosing the CA evolution states at all time 

steps from n=1 to n=T. Then, all of these states are concatenated to produce a large 

single feature vector A(ALL) (with dimension of LCA = I × L × T). This method will be 

called ALL and used to predict the output at last time step 𝐲𝐲(T). ALL method can be 

considered as an extra memory resource in RNNs as in [96-99]. 

We should not confuse the feature vector A(ALL) with the feature matrix A which has a 

dimension of LCA=I.L×T and has been used in Section 2.1.3 in equation (2.10) to 

predict the output matrix Y. Hence, this method is LAST not ALL because the features 

that have been used to predict the output 𝐲𝐲(n), at time step n, have only been extracted 

from the CA evolution states at a single time step n (not from all time steps as in ALL 

method). For more details please refer to Section 2.1.3. 

ALL and LAST methods are essential because ReCA should use one of them to extract 

the features from the reservoir. 



42 
 

 

3.1.1.2 Supplementary Feature Extraction 

The CA evolution states in the reservoir at a certain time step n can be expressed as a 

matrix (CAout) with I rows, and L columns as exhibited in Figure 3.1. The size of the 

feature space that obtained from ALL or LAST methods can be reduced; using three 

options: 

1- Each: Selecting only the last k rows out of all the I rows to be used as a feature 

space as described in Figure 3.1. Thus, the new dimension of the feature vector 

becomes as follows: 

            𝐿𝐿𝐶𝐶𝐶𝐶 = 𝐿𝐿.𝑘𝑘 = (𝐿𝐿𝑖𝑖𝑛𝑛 + 2𝑅𝑅).𝑘𝑘                                           (3.1) 

where Lin is the dimension of the original input (before encoding stage) and R 

is the dimension of the added buffers in the encoding stage. 

2- Half: The dimension of the feature space can be reduced to half by using only 

the right or left side of CAout columns as in Figure 3.1. Thus, the feature vector 

dimension is reduced by using only one buffer R as shown in equation (3.2) 

            𝐿𝐿𝐶𝐶𝐶𝐶 = 𝐿𝐿. 𝐼𝐼 = (𝐿𝐿𝑖𝑖𝑛𝑛 + 𝑅𝑅). 𝐼𝐼                                           (3.2) 

3- Expansion ratio f: The feature space can also be reduced by selecting only the 

middle columns of CAout matrix (Figure 3.1), i.e., reducing the dimension of 

the two buffers. Hence, the buffer dimension R = 𝑓𝑓(I × T) where the 

expansion ratio 𝑓𝑓 ∈ [0,1]. 

Notes: 

1- The options (Each, Half and f) should be used with one from the two methods 

(LAST and ALL). 

2- Due to the rich dynamics that are provided by the CA reservoir; the three 

options (Each, Half and f) can be used together to obtain a significant 

complexity reduction as will be shown later in the results. 
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3- The (Each, Half and f) options are supplementary feature extraction. Hence, it 

is possible to confine only LAST or ALL methods, but with large feature space. 

 

Figure 3.1 Feature extraction from the space-time diagram of the CA evolution states in the reservoir 

at a certain time step n (CAout matrix). As an example, ECA rule 150 is used with a single `1' initial state 

and 15 iterations. Only k iterations can be used as features in Each option and/or using only the Half 

(Right or left) side of CAout matrix as features, and/or using the features after reducing the columns of 

CAout matrix by selecting expansion ratio f < 1 [9]. Note: White squares represent the zeros.  

3.2 Experiments  

All the pathological synthetic tasks in Section 2.3 have been used to examine ReCA 

utilizing the new feature extraction methods in the previous section. Following the 

same procedures of the experiments16 in Section 2.4; to evaluate ReCA from the point 

of view of complexity using the new methods of feature extraction. In our experiments, 

the feature vector dimension LCA indicates the complexity, which is used to evaluate 

the model.  Then, comparing our new results with the classical results in Section 2.5.1. 

                                                 
16 The difference is only how to select the feature vector A(n), which is explained in detail in 
Section 3.1.1. 
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3.3 Results 

In order to compare between the feature extraction methods in ReCA for space and 

time complexity, the feature vector dimension LCA will be used as a measure to this 

complexity as in Table 3.1. But, for the training stage, LCA is not enough because the 

linear regression which is used in the read-out stage depends on the number of training 

examples Ntrain. Thus, the size of Linear Regression inputs (LRi) is also important, 

where LRi =   LCA  ×  Ntrain, hence LRi will be used as an indicator of complexity in 

the training stage. However, in the testing stage, only the LCA is important because of 

a fixed value of testing examples Ntest = 100 has been used in all our work for a fair 

comparison.  

Table 3.1 Feature vector dimension LCA for several methods of feature extraction from the CA reservoir 

where Lin is the length of the original input (before the encoding stage), T is the input sequence length, 

Ri is the input expansion to minimize the interference, R is the buffer dimension, I is the iterations in 

the CA reservoir, k is the selected states in the Each option, L is the length of the CA reservoir input 

(after the encoding stage) and f is the expansion ratio. Notes: a- The first column (LAST) is the classical 

method that has been used in the previous chapter [8] and it will be compared with the other new 

methods that proposed in this chapter [9]. b- For LCA of the Half option, it is dependent on the condition 

that will be used LAST, ALL or Each [9]. 

   
Parameters 

Method 
LAST 17 LAST-Each ALL ALL-Each Half 

𝐿𝐿𝐶𝐶𝐶𝐶 𝐿𝐿 × 𝐼𝐼 𝐿𝐿 × 𝑘𝑘 𝐿𝐿 × 𝐼𝐼 × 𝑇𝑇 𝐿𝐿 × 𝑘𝑘 × 𝑇𝑇  
𝐿𝐿 (𝐿𝐿𝑖𝑖𝑛𝑛 × 𝑅𝑅𝑖𝑖) + 2𝑅𝑅 (𝐿𝐿𝑖𝑖𝑛𝑛 × 𝑅𝑅𝑖𝑖) + 𝑅𝑅 
𝑅𝑅 𝑓𝑓 × 𝐼𝐼 × 𝑇𝑇 

 

In our experiments, we are seeking minimum complexity, i.e., the minimum value of 

(iterations I, selecting states in Each option k, and the expansion ratio f) that will 

produce a minimum feature vector dimension LCA in bits to achieve zero test error 

using minimum training examples Ntrain. The expression “the model could solve the 

task” means that the model could predict correctly (with zero test error) all the output 

bits in all time step18 for the whole 100 examples of the testing set.  

                                                 
17 In 5-bit and 20-bit tasks with LAST, LCA = L × I × T because there is an output at every time step. 
18 It is dependent on the task; if it has an output at every time step as in 5-bit and 20-bit tasks, or there 
is an output at only last time step (the other tasks). 
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3.3.1 5-Bit and 20-Bit Tasks 

In 5-bit task, the zero train error can be obtained with up to a 94 percent reduction of 

LRi using three states k = 3 out of I = 4 with a small expansion ratio f = 0.15 and only 

one side of the CA evolution states (Half option) as listed in Table 3.2.  

Table 3.2  5 and 20-Bit Tasks: The reservoir parameters of the best results to achieve zero test error 

using different methods for feature extraction. LCA and LRi are in bits, %Test and %Train Reducing are 

the reducing percentages of LCA and LRi between the new methods in this chapter (the methods in [9]). 

and the LAST method in CHAPTER 2  (the method in [8]). The other parameters are explained in Table 

3.1. The first column presents the results of the LAST method used in [8] and we compare its results 

with other new methods. The bold values are the best obtained results (minimum dimension for LCA and 

LRi) and the minimum number of training examples Ntrain to achieve the zero test error [9]. 

 
Parametres 

5-Bit Task 20-Bit Task 
Rule 150, T=200, Lin=4,  I=4, and Ri=1 Rule 90, T=50, Lin=7,  I=16, and Ri=8 
LAST LAST-Half LAST-Each-

Half 
LAST LAST- Each LAST-Each-

Half 
f 1 0.15 0.15 1 0.9 0.9 
k 4 4 3 16 1 3 

Ntrain 32 32 32 150 100 300 
LCA (bits) 1.28M 99.2K 74.4K 1.33M 74.8K 116K 

%Test 
Reducing 

- - - 0 94 91 

LRi (bits) 41.1M 3.17M 2.38M 200M 7.48M 35M 
%Train 

Reducing 
0 92 94 0 96 82 

 

For 20 bit task, LCA and LRi can be reduced to 94% and 96%, respectively, using only 

k = 1 states out of I = 16 with an expansion ratio of f = 0.9. Moreover, the required 

training examples to achieve zero test error decreased from 150 examples in LAST to 

100 examples in LAST-Each. However, if the Half option is used, the required training 

examples increase to 300 examples and k increases to 3; due to the decreasing of 

features to the half as listed in Table 3.2. 

Figure 3.2 shows that, for the 20-bit task, LAST method requires minimum training 

examples to attain zero test error due to the large amount of information that it has, 

compared with LAST-Each-Half where using only 3 states out of 16 with half space.  

Using the right or left side is almost the same in this task.  
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Figure 3.2 20 Bits Task: No of false bits vs Ntrain for LAST and LAST-Each-Half (Right and Left) 

methods, where k = 3, I = 16, T = 50 and Ri = 8, using Rule 90. 

3.3.2 Random Permutation Task 

The best results are reached using different options, such as a 74 percent reduction in 

LCA using the LAST-Each-Half method and a 48 percent reduction in the LRi using 

the LAST- Half case, whereas the minimum training examples was 60 from the ALL-

Each option, as illustrated in Table 3.3. The zero buffers R can be removed in the ALL 

case, but the removing of the most state evolutions in the CA reservoir leads to an 

increase in the required training examples to 150 to solve the task. Moreover, in the 

minimum LCA case (LAST-Each-Half), the maximum value of Ntrain = 650 is required 

to obtain the zero test error to overcome the under-fitting caused by a small value of 

features, as shown in Table 3.3. 

Figure 3.3 also presents that the zero buffers R can be removed (f = 0) in ALL method 

and achieve zero test error, but for LAST option to obtain zero test error, the zero 

vector buffers R should be kept complete, i.e., R = I × T to solve this task. 

The increase in the sequence length T makes the task harder due to the longer time 

dependencies; that is why ReCA needs more training examples to solve the task as 

illustrated in Table 3.4. The trend of increasing Ntrain is not the same between ALL and 
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LAST methods where in LAST the requiring of training examples is large enough to 

increase the cost of programming running, even the laptop exceeds its RAM limitation. 

Table 3.3 Random Permutation Task: The reservoir parameters of the best results to obtain the zero test 

error using different methods for feature extraction. The parameters are explained in Table 3.1. If the 

%Test or %Train Reducing is greater than 100%, it means our result is greater than the result in [8]; i.e., 

there is no reduction. The bold values are the best obtained results [9]. 

Parametres Rule 90, T=500, Lin=100, I=2, and Ri=1  
LAST ALL ALL-Each LAST-Half LAST-Each-Half 

f 1 0 0.85 1 1 
k 2 2 1 2 1 

Ntrain 90 150 60 90 650 
LCA (bits) 4.2K 100K 900K 2.2K 1.1K 

%Test 
Reducing 

0 2381 21429 48 74 

LRi (bits) 378K 15M 540M 198K 715K 
%Train 

Reducing 
0 3968 14286 48 189 

 
 

 

Figure 3.3 Random Permutation Task: No of False Bits vs the expansion ratio f using rule 90 for ALL 

and LAST methods. Where, I = 2, T = 100, Ntrain = 100 and Ntest = 100. 

Table 3.4 Random Permutation Task (Binary Encoded):  The effect of sequence length increasing T on 

the minimum number of training examples to attain zero test error, using LAST and ALL methods. 

 
T 

Minimum Ntrain 
LAST ALL 

30 100 35 
50 150 40 

100 200 100 
200 300 100 
300 600 100 
500 >2000 (Out of Memory) 150 

Based on Table 3.5, the minimum feature vector dimension is obtained using the LAST 

method with 90 examples for training, to reduce the training examples, ALL or 
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All-Each can be used but with increasing of the feature vector dimension. Hence, there 

is a trade-off between the number of training examples and feature space size. The 

worst case is ALL with zero expansion ratio f=0 because it can be replaced by LAST 

with better performance. 

Table 3.5  Random Permutation task: No of False Bits and Feature vector dimension LCA w.r.t. Ntrain 

for ALL, LAST and ALL-Each methods with different values of expansion ratio f, where T=500, I=2 

and Ntest = 100 using rule 90. 

Method f Ntrain No of False bits LCA (bits) LRi (bits) 
 

ALL 
 

0 
130 12   
140 1   
150 0 100K 15M 

 
ALL 

 
1 

40 55   
50 6   
60 0 2.1M 126M 

 
ALL-Each 

      k=1 

 
1 

40 16   
50 2   
60 0 1.05M 63M 

 
LAST 

 
1 

70 11   
80 4   
90 0 4.2K 378K 

3.3.3 Temporal Order Tasks 

Table 3.6 shows that the best results are obtained using ALL-Each-Half except that the 

minimum LCA for the 2 symbols task was in the LAST-Half case. 

Table 3.6 Temporal Order Tasks: The reservoir parameters of the best results to obtain the zero test 

error using different methods for feature extraction, where T = 50, Lin = 6 and Ri = 1. The parameters 

are explained in Table 3.1. If the %Test or %Train Reducing is greater than 100%, it means our result 

is greater than the result in [8]; i.e., there is no reduction. The best results are in bold [9]. 

 
Parametres 

2 Symbols Task 3 Symbols Task 
Rule 150, I=8 Rule 90, I=24 Rule 150, I=8 

LAST LAST-Half ALL-Each-Half LAST ALL-Each-Half 
f 1 0.75 0.5 1 0.85 
k 8 8 1 24 1 

Ntrain 900 800 110 7000 500 
LCA (bits) 6.45K 2.45K 10.3K 57.7K 17.3K 

%Test 
Reducing 

0 62 160 0 70 

LRi (bits) 5.8M 1.96M 1.13M 400M 8.65M 
%Train 

Reducing 
0 66 80 0 98 
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In 2 symbols task, ALL-Each method outperforms ALL and LAST where zero test 
error has been achieved using minimum expansion ratio f=0.15 while f=0.35 for ALL 
and LAST as depicted in Figure 3.4. 

 

 

Figure 3.4 2 Symbols Order Task: No of False Bits vs expansion ratio f where T = 50, I = 16 and 

Ntrain = 900 using rule 150. 

Figure 3.5 shows that ALL and LAST methods could not solve the 3 symbols task 

using small training examples Ntrain < 800 examples while ALL-Each and ALL-

Each-Half could solve such task starting by Ntrain = 500 examples. ALL-Each and 

ALL-Each-Half are almost the same, therefore it is preferred to use ALL-Each-Half 

due to its small feature vector dimension. 

 

Figure 3.5 3 Symbols Temporal Order Task: No of false bits vs Ntrain for ALL, LAST, ALL-Each and 

ALL-Each-half (Right, Left) methods, where T = 50, I = 8 and k = 1 using rule 150. 

In temporal order tasks, the LAST method has the smaller feature vector dimension 

LCA, but with large value of examples for training. On the contrary, ALL-Each method 

has the larger feature vector dimension LCA, but with small number of examples for 
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training which leads to small LRi as illustrated in Table 3.7. Thus, to choose the best 

method, it depends on which is the priority; the feature vector dimension or the number 

of training examples and the complexity of the training process. 

Table 3.7 Temporal Order Tasks: different parameters for ALL-Each and LAST methods to achieve 

zero test error using rule 150. 

Task Method Ntrain T I f LCA (bits) LRi (bits) 
 

2 Symbols 
ALL-Each 800 1000 16 0.25   
ALL-Each 350 200 8 0.35 225K 78.8M 

LAST 3500 200 8 1 25.6K 89.8M 
 

3 Symbols 
ALL-Each 2000 200 16 1   
ALL-Each 700 50 8 1 40.3K 28.2M 

LAST 7000 50 24 1 57.7 K 404 M 

3.3.4 XOR Task 

The multilayer CA expansion should be used to solve this task. Rule 40 has been 

applied to the original input with Rule 150 to the reservoir. The best results for LCA 

and LRi are in the LAST-Half option, but the minimum required training examples 

was obtained using the ALL-Each-Half case, as shown in Table 3.8. 

Table 3.8 XOR Task: The reservoir parameters of the best results to obtain the zero test error using 

different methods for feature extraction, where the Multilayer CA Rule is 40 and the number of 

iterations in the Multilayer CA stage is I-Multilayer = 1. The parameters are explained in Table 3.1. If 

the %Test or %Train Reducing is greater than 100%, it means our result is greater than the result in [8]; 

i.e., there is no reduction [9]. 

Parametres Rule 150, T=50, Lin=2, I=4, and Ri=1 
LAST LAST-Half ALL-Each-Half 

f 0.5 0.5 0.5 
k 4 4 1 

Ntrain 100 60 50 
LCA (bits) 816 416 5.2K 

%Test Reducing 0 49 637 
LRi (bits) 81.6K 25K 260K 

%Train Reducing 0 69 319 

3.4 Discussions 

In Chapter 2 [8], ReCA used only the last time step of the CA evolution states in the 

reservoir for all iterations I to train RNNs (LAST method). But, in this chapter other 

methods for training have been introduced to improve ReCA as listed below [9]: 
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1. All CA evolution states are used for all time steps (ALL method) in which the 

learning requires a small training set, but with large feature space and possibility of 

overfitting due to the increasing of model complexity. 

2. The method ALL-Each is similar to ALL but the last k iteration states are only used 

from all CA evolution iterations I for all time steps. Thus, the feature space dimension 

decreases which leads to a reduction in the model complexity and then reduction in the 

possibility of overfitting.  

 3. The dimension of zero vector buffer R is reduced by selecting small values of 

expansion ratio f. This reduction is only suitable for ALL and ALL-Each methods, 

because of their large size, but in LAST, it reduces the model efficiency; to overcome 

such issue, a very large training set is required.  

4. The right or left side of CA evolution states are only used for training in the three 

methods (LAST, ALL, and ALL-Each). The results show symmetry in feature space; 

therefore, the half space (right or left) can only be used for training, which also 

improved the results in temporal order tasks. Hence, in half option, the same level of 

performance can be achieved using only 50% of the space size. 

Due to the rich dynamics being provided by the CA reservoir, multiple methods can 

be utilized together (ALL-Each-Half, LAST-Each-Half, ..., f ) which highly reduces 

the required features by up to 98% in some tasks. 

Using All-Each instead of LAST significantly improves ReCA to train the pathological 

tasks to obtain a zero test error with minimum complexity and required training 

examples. The minimum required Ntrain examples were obtained in the ALL-Each 

case as it exploits a large amount of information provided from all time steps with a 

relatively small feature space after using a few evolution states k instead of all states 

I. However, LAST is still the best method in a large sequence T and small iterations I, 

as in random permutation tasks. But, the lack of training examples requires using 

ALL-Each method.  
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CHAPTER 4  

ReCA VS. FEEDFORWARD ARCHITECTURE AND 

LOCAL REPRESENTATION 

In previous chapter the complexity of ReCA was discussed and we will continue in 

this chapter by creating three other options XOR, Binary, and Gray to reduce the model 

complexity. In addition, ReCA in feedforward architecture is proposed, also new 

reservoirs with local representation are proposed to study the effect of the data 

representation in the reservoir on its function in machine learning. 

By reason of comparison, we confine 5-bit task to test ReCA because only this task 

from the pathological tasks has been used to test other approaches of reservoir 

computing based on elementary cellular automata [7, 49, 50]. The ordinary 5-bit task 

is also modified by creating a test set to adapt the machine learning principles for 

testing the models. 

Most parts of this chapter are submitted in Artificial Intelligence Review [85]. 

4.1 ReCA Implementation 

The ReCA framework (Figure 2.1) in Section 2.1 is also used in this chapter with its 

three stages: Encoding, CA reservoir, and Read-out. The difference in this chapter is 

that the zero buffers R are only used in the encoding stage as shown in Figure 2.2.  

Another difference is creating a new insertion function in the reservoir rather than 

XOR in previous chapters as demonstrated in Figure 2.5 and explained in 

Section 2.1.2.  The second input with a dimension of Lin can be directly inserted into 

the reservoir by overwriting the middle cells in AI
(1) with this input to produce the 

initial state A0
(2) at second time step. The overwriting (deleting) of AI

(1) middle cells 

does not lose the first time step information, because the two evolution sides (the 

propagation in the buffers) of  AI
(1) are still conserving the information of the first time 

step. Therefore, to ensure that, there is no any loss of information; the number of 
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iterations I should be large enough to propagate the whole input information into the 

buffers depending on the task nature (size and information position) and ECA rule. 

Then, the same steps will be repeated up to the last time step to produce the vector A(T) 

which also memorizes the history of all input sequences. In results section, this option 

will be called Overwrite and using XOR operation as an insertion function will be 

called Normal. 

4.1.1 Feature Extraction from the Reservoir 

As demonstrated in CHAPTER 2 and the results of Section 3.3, the best method of 

feature extraction is LAST-Each in 5 and 20-bit tasks and ALL-Each in the other tasks. 

Therefore, in this chapter, LAST-Each in 5-bit task will only be used with expansion 

ratio f and Half option. Also, three new options for feature extraction XOR, Binary, 

and Gray are created as follows, but to make the context more informative; we will 

start by Each option: 

Each: In this option for each time step n; only k states of CA evolution are selected to 

be used as a feature space. Figure 4.1(a) shows an example of Each option for a certain 

time step n where k=3 have been used from the feature space CAout matrix of Figure 

3.1 to produce a feature matrix with size of 3×L, thus the dimension of the feature 

vector A(n) becomes  3L after concatenation. In general, the feature vector dimension 

in Each is LCA=(Lin+2R)k. 

XOR: the matrix CAout in Figure 3.1 can be reduced to one row; using bitwise XOR 

operation for every column of CAout as shown in Figure 4.1(b) where k=3. Thus, the 

dimension LCA=L=Lin+2R. This case can be considered as an ECA with memory 

(ECAM); because there is a memory function (XOR operation) added to ECA, but the 

difference in our case is that this function is only applied after the last iteration, whilst 

in ECAM the function is applied in all iterations [79]. 

Binary: Every column vector in CAout matrix can be represented by converting its 

binary value to a decimal number with the least significant bit (LSB) at the first row19. 

Figure 4.1(c) shows the Binary option where k=3 in Figure 4.1(a), also it can be used 

                                                 
19 The most significant bit (MSB) can also be at the first row. 
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for the whole columns of CAout matrix in Figure 3.1, the dimension LCA= L. Binary 

option has also been used in [51] utilizing two ECA rules (one for projection and the 

other for memory) in the reservoir. 

Gray: the binary code is replaced by Gray code (Figure 4.1(d)), the dimension of 

LCA= L. Gray code is normally used to decrease the noise effect on the binary bits in 

digital communications and in binary counters [100]. 

 

Figure 4.1 Types of feature extraction (a) Each; using 3 iterations out of 15 from CAout matrix in Figure 

3.1, i.e., k=3. (b) XOR; using bitwise XOR operation for all columns of the matrix in part (a) to produce 

the feature vector, (c) Binary; converting the binary value of each column of the matrix in part (a) to 

decimal number, and (d) Gray; using the Gray code instead of the binary code in (c) [85]. 

Notes:  

1- Due to the rich dynamics provided by the CA reservoir; (Each, Half, and f) 

options can be used together with any case of XOR, Binary, and Gray.  

2- For XOR, Binary and Gray options, the selected iterations k should be greater 

than or equal 2, because if k=1 they will be similar to Each method with k=1. 

The advantage of those three options is the low dimension of feature vector 

LCA even if k is large; still LCA=L, i.e., LCA is independent on the value of k as 

in Each method where LCA=L.k. 

4.1.2 ReCA in Feedforward Architecture 

Sequential data can also be handled using feedforward architectures by using a portion 

of the input to predict an output as in sliding window methods [101] or using the whole 

input sequence to predict all the output as in [7]. In our work the second method will 

be adopted via two ways:  
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All the flattened input sequence is projected to the CA reservoir at once, this method 

will be called All-ff.  

The input of each time step is separately projected to the reservoir then the obtained 

CA evolution states of all time steps are concatenated together to produce the feature 

vector that will be used to predict the whole output, this method will be called Each-ff.  

In feedforward case the buffer dimension R should be equal to I to hold all CA 

sequence representations rather than R=I×T for recurrent architecture in 

Section 2.1.1.1, thus the feature dimension in feedforward architecture is smaller than 

it in recurrent architecture. But, the advantage of recurrent architecture over the 

feedforward is the capability to keep a fixed size representation by adjusting the 

expansion ratio f to a certain length for the feature vector which is similar to the 

reservoir size N (number of neurons) in ESNs. The CA feedforward architecture is 

very similar to Extreme Learning Machines ELMs [102, 103], where the random 

connections in ELM are replaced by the CA reservoir. 

4.2 Experiments 

In this chapter, ReCA will be tested for long short-term memory capability using only 

5-bit memory task which is a part of the pathological synthetic tasks that has been 

explained in detail in Section 2.3. By reason of comparison, we confine 5-bit task to 

test ReCA because only this task from the pathological tasks has been used to test other 

approaches of reservoir computing based on elementary cellular automata [7, 49, 50]. 

4.2.1 5-Bit Task 

The 5-bit memory task is widely used in RNN literature, e.g., [7-9,49,50,88,90,91]. 

This task is one of the hardest tasks for ESNs in [90], also as reported in [7, 50] it is 

problematic to solve the 5-bit memory task using feedforward architectures. But, as it 

will be shown later in Section 4.3.3, it is possible to solve this task using feedforward 

architecture with some limitations using ECA and even without using it. The weakness 

of using this task is that; due to its small number of examples (only 32 examples), the 

whole examples are used to train the model, and then the model is tested using the 

same 32 examples and finding the error, this approach has been used in [7-9,49,50, 
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88,90,91], thus the proposed models are not general as it will be explained in the next 

Section 4.2.2. The details of 5-bit task are demonstrated in Section 2.3.1.1.  

4.2.2 Generalized 5-Bit Task 

As mentioned in previous section, the 5-bit task has only training set. Thus, the model 

is only designed for this set and there is no guarantee for the model to solve new 

(unseen in training) examples that have the same behavior of the training examples, 

i.e., the model is not general which is a disadvantage for any model. Therefore, to 

generalize the model and respect the machine learning principles for model evaluation, 

the dataset should be divided into two sets that generally have different examples; 

training and testing set. The training set is used for training to calculate the model 

parameters (the weights of 𝐖𝐖out matrix), and then the model is tested using the input 

of testing set to predict their output and finding the error between the given output in 

testing set and predicted one to evaluate the model. 

The small dataset is a challenge in machine learning, but nevertheless, we will divide 

the 32 examples into two sets and even we will search the smallest number of examples 

that can efficiently train the model to give zero test error. Thus, all the 32 examples of 

the original 5-bit task are randomly shuffled, then the first Ntrain examples are selected 

for training and then the rest examples will be used for model testing. Hence, the 

number of testing examples Ntest can be expressed as follows: 

            𝑁𝑁𝑜𝑜𝑡𝑡𝑁𝑁𝑜𝑜 = 32 − 𝑁𝑁𝑜𝑜𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛                                           (4.1) 

4.2.3 Training\Testing Stages 

After preparing the feature matrix A using the various methods of feature extraction 

mentioned in Section 4.1.1, the features A are used in equation (2.13) in Section 2.4.1 

for training to find the regression parameters of 𝐖𝐖out matrix, which is used in 

equations (2.15) or (2.16) in Section 2.4.2 to predict the output. The output is 

dependent on the task; the predicted output is for testing set output in generalized 5-

bit task, or the predicted output is for training set output in 5-bit task. 
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4.2.4 ReCA Evaluation 

After binarization of the predicted output according to the equation (2.17) in 

Section 2.4.3, the binarized output (ŷ(𝑏𝑏)𝑜𝑜𝑡𝑡𝑁𝑁𝑜𝑜 and ŷ(𝑏𝑏)𝑜𝑜𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛) will be used to find the 

model errors as follows:  

1- testing error=|ŷ(b)test − 𝐲𝐲test| for the generalized 5-bit task, and  

2- training error = |ŷ(b)train − target| for the 5-bit task.  

These errors represent the number of false bits over all relevant time steps in output 

bits. The goal of our experiments is to achieve zero test error with minimal 

complexity, hence the parameters I (CA evolution iterations), Ri (the input 

expansion to reduce the interference) and f (the expansion ratio) should be tuned 

to their minimum values in order to obtain the shortest length of the feature vector 

LCA, using the whole 88 equivalent sets of ECA rules that are listed in Table 1.2 

excluding the 8 sets of Class I rules; because the evolution of class I rules vanishes 

after the first iteration in 5-bit task due to the single nonzero in its input at each 

time step as shown in Figure 2.7. Hence, the ECA rules that will be used are 1, 2, 

3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 19, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 36, 

37, 38, 42, 43, 44, 46, 50, 51, 56, 57, 58, 62, 72, 73, 74, 76, 77, 78, 94, 104, 108, 

130, 132, 134, 138, 140, 142, 152, 154, 156, 162, 164, 170, 172, 178, 184, 200, 

204 and  232 from class II and 18, 22, 30, 45, 60, 90, 105, 122, 126, 146 and 150 

from class III and 41, 54, 106 and 110 from class IV, as well as rule 165 (the 

conjugate of rule 90) and rule 102 ( the reflection of rule 60) [104], Thus the total 

number of used rules in our experiments becomes 82 rules instead of using all the 

256 ECA rules. 

4.3 Results 

The ReCA model has been examined using 5-bit task (32 examples for training) as in 

[7-9, 49, 50, 90], and using generalized 5-bit task (32 examples for training and 

testing). Then, ReCA results using several feature extraction methods have been 

compared with the state-of-the-art results of RC based on CA approaches.   
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In all experiments; the distractor period Td=200 time steps, thus the total sequence 

length becomes T=210. For notation, (I, k, f) indicates the number of total iterations I 

in the reservoir, k is the selected iterations in Each option and f is the expansion ratio 

unless otherwise described.  

In our experiments, we are seeking minimum complexity, i.e., the minimum value of 

I, k, and f that will produce a minimum feature vector dimension LCA in bits to achieve 

zero test error using minimum training examples in generalized 5-bit Task20. The 

expression ‘the model could solve the task’ means that the model could predict 

correctly (zero error) all the four output bits for every time step for the whole 32 

examples, i.e., 4×210×32 bits are correctly predicted in 5-bit task or 4×210×Ntest bits 

are correctly predicted in generalized 5-bit task. 

4.3.1 5-Bit Task 

All proposed methods with several rules and different Wolfram classes could solve the 

5-bit task and achieve zero test error as listed in Table 4.1 and Table 4.2 for Normal 

and Overwrite methods and Table 4.3 and Table 4.4 for XOR, Binary and Gray options 

with Normal method, i.e., using XOR operator as an insertion. The minimum 

complexity was attained at (2, 1, 0.26) using rule 165 from class III in Normal method, 

LCA=224 bits, then Overwrite method using also the rule 165 at (2, 1, 0.33),  LCA=282 

bits as illustrated in Table 4.2.  

Table 4.1 ECA rules that achieve zero test error in 5-bit task using Normal and Overwrite methods with 

the parameters (I, k, f) and feature vector dimension LCA where I is the number of all CA iterations in 

the reservoir, k is the number of selected iterations that will only be used for training in Each option, 

and f is the expansion ratio. 

Method 
(I, k, f),   LCA (Bit) 

(3, 3, 1) LCA (2, 2, 1) LCA 

Normal 
106, 30, 45, 105, 165, 150, 2, 

10, 34, 38, 42, 46, 56, 74, 130, 
138, 162, 170, 184. 

3792 105, 165, 15, 34, 
38, 42, 162, 170. 

1688 

Overwrite 

106, 30, 45, 90, 102, 105, 165, 
150, 2, 10, 11, 15, 34, 38, 42, 
43, 46, 56, 74, 130, 138, 154, 

162, 170, 184. 

3792 90, 38, 42, 154, 
170. 

1688 

                                                 
20 In 5-bit task, all the 32 examples should be used. 
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Table 4.2 ECA rules that achieve zero test error in 5-bit task using Normal and Overwrite methods 

with the parameters (I, k, f) and feature vector dimension LCA. The minimum dimension LCA is in bold 

numbers. Note:  For Half option, the right side was used in rule 15, any side from the both can be used 

in rules 90, 165 and the left side was used in the other rules. 

Method (I, k, f),   LCA (Bit) 
(2, 1, 1) Half LCA (2, 1, 0.5) LCA (2, 1, f) LCA 

Normal 165, 15, 34, 42, 
162, 170. 

424 15, 34, 42, 
162, 170. 

424 165, f=0.26 224 

Overwrite 90, 42, 170. 424 42, 170,  
90, f=0.55 

424 
466 

165, f=0.33 282 

There is an obvious risk of information loss when using Overwrite with two iterations 

(I=2) and one-way flow rules 38, 42 and 170 (see Figure 4.2) for the input with 4 bits 

dimension as in 5-bit task; the last two inputs u2 and u3 in Figure 2.7 will be deleted 

after using the Overwrite insertion function in the reservoir for the next time-step, the 

question why did Overwrite method give good results as listed in the above tables? 

Because the input memory pattern is in the first two inputs u0 and u1 thus, they will be 

reserved in the buffers R using two iterations and then they can be repeated at the 

output as demonstrated in Figure 2.7 in the last time steps. The nonzero in the third 

input u2 is not important for the output it is only a distractor, but the cue signal in forth 

input u3 is important because after its arrival the output will repeat the input pattern, 

thus the importance here is ‘when does the cue signal arrive?’, the cue signal still 

appears in the CA reservoir state at the time step 𝑇𝑇 − 5 as shown in Figure 2.7, then it 

is followed by the input memory pattern in the output. Hence, the Overwrite method, 

with the nature of 5-bit task, could save the necessary task information and provide 

good results.  

But, the using of Overwrite method generally requires the number of iterations 

I ≥ (dimension of Lin) / 2 for ECA rules with two-way flow or I ≥ (dimension of Lin) 

for ECA rules with one-way flow, Figure 4.2 depicts some examples of such rules. 

In XOR, Binary and Gray, the minimum complexity was reached at (2, 2, 0.5) and (2, 

2, 1) Half where LCA=424 bits; using the rules (15, 34, 38, 42, 162, and 170) from class 

II and 165 from Class III for only Half option as listed in Table 4.4. 
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Figure 4.2 Information flow in ECA for five iterations space-time diagram of different rules for a single 

non-zero initial state with one iteration of a center cell for each rule: (a) One-way and (b) Two-way [85]. 

Notes:  

1- In the XOR, Binary and Gray options, k=1 was not used; because in this case, 

those three options will be as Normal method when k=1 which was already 

listed in Table 4.2. 

2- For simplification, the insertion function XOR has only been used in the XOR, 

Binary, and Gray options. The overwrite function will be used in future work.  

 

Table 4.3 ECA rules that attain zero test error in 5-bit task using Normal method for XOR, Binary and 

Gray options with the parameters (I, k, f) and feature vector dimension LCA. 

Method (I, k, f),   LCA (Bit) 
(3, 3, 1) LCA (3, 2, 1) LCA 

XOR 2, 10, 38, 74, 130, 138. 1264 
106, 2, 10, 15, 24, 34, 38, 
42, 46, 56, 74, 130, 138, 

152, 162, 170, 184. 
1264 

Binary 
106, 165, 2, 10, 34, 38, 

42, 46, 56, 74, 130, 
138, 162, 170, 184. 

1264 
106, 165, 2, 10, 24, 34, 38, 
42, 46, 56, 74, 130, 138, 

152, 162, 170, 184. 
1264 

Gray 
106, 90, 165, 2, 10, 34, 
38, 42, 46, 56, 74, 130, 

138, 162, 170, 184. 
1264 

106, 90, 165, 2, 10, 15, 24, 
34, 38, 42, 46, 56, 74, 130, 
138, 152, 162, 170, 184. 

1264 

In the cases where f=0.5 and Half option with f=1 (not less) are almost the same 
because the periodic boundary condition has been utilized with one-way rules (15, 34, 
38, 42, 162 and 170) as represented in Figure 4.4. Hence, the same features are 
obtained in the 2 cases; because it is just a columns permutation (as described in Figure 
4.3(a), (b), and (c)) where the columns permutation does not affect the regressor results 
in the read-out stage. 
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Table 4.4 ECA rules that achieve zero error in 5-bit task using Normal method for XOR, Binary and 

Gray options with the parameters (I, k, f) and feature vector dimension LCA. The minimum dimension 

LCA is in bold numbers. Note:  For Half option, the right side was used in rule 15, any side from the 

both can be used in rules 165 and the left side was used in the other rules. 

Method (I, k, f),   LCA (Bit) 
(2, 2, 1) LCA (2, 2, 0.5) and (2, 2, 1) Half LCA 

XOR 34, 162. 844 34, 162. 424 

Binary 165, 15, 34, 38, 42, 
162, 170. 844 

165 Half, 15, 34, 38, 42, 162, 
170.  

165, f=0.66 

424 
560 

Gray 165, 34, 38, 42, 162, 
170. 844 34, 38, 42, 162, 170. 424 

But the difference is still existing in the rules 90 and 165 where they have two sides of 

propagation. Therefore, the obtained information from both sides is different. 

Moreover, for rule 165 with Half option; f can be less than 1 (f = 0.9 experimentally in 

5-bit task) due to its high distributedness that has also been proved for rules 90 and 

150 in [8, 9]. 

 

Figure 4.3 Feature space for a one-way rule: (a) Complete; using the whole space (Both sides and f = 1), 

hence the largest length L=16 bits, (b) Half, f =1; Using only the left side but f should be equal to 1 to 

conserve the whole information. In this case, L=10 bits, and (c) f = 0.5; Using both sides for R = 3 bits 

rather than 6 bits in (b). The first three columns in (b) are transferred to last three columns in (c) after 

using periodic boundary condition, thus (b) and (c) are identical in the regressor. White squares 

represent zeros [85].  

4.3.2 Generalized 5-Bit Task 

As mentioned in Section 4.2.2, the training and testing sets are selected randomly from 

all the 32 examples of the 5-bit task. Hence, there are a lot of different samples, 

therefore to get stable estimates of model performance; Monte Carlo cross-validation 
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technique was applied where the algorithm run should be applied multiple 

times21 [105]. The single run (trial) is said to be successful (zero test error) if the ReCA 

could find the correct binary value for all the 4 output bits for all time steps for whole 

testing examples Ntest, this means 4×210×Ntest bits are correctly predicted for one trial, 

to solve the generalized 5-bit task, the correct prediction should be for all the 100 trials. 

ReCA could solve the generalized 5-bit task using a very small number of training 

examples Ntrain=2 or 3 to achieve zero test error as listed in Table 4.5. The minimum 

complexity was at (2, 1, 0.5) using Overwrite method with the rules 42 and 170 from 

class II where Ntrain=3 examples and LCA=424 bits. But, for Ntrain=2 examples, the task 

becomes harder. Therefore, the feature vector dimension LCA increases from 424 to 

634 bits and the number of CA iterations I increases from 2 to 3 to obtain zero test 

error using Overwrite and XOR methods with the rules 42 and 170 from class II as 

listed in Table 4.5. Based on the same table, the increasing of the values of ReCA 

parameters I, k and/or f makes more rules can achieve zero test error but of course with 

larger complexity. 

Table 4.5 ECA rules that Succeeded to obtain zero test error using several methods for feature extraction 

with two and three examples for training and 100 trials. The minimum dimension of LCA is in bold. 

Method Ntrain (I, k, f) ECA rule LCA (Bit) 

Normal 

2 

(4, 1, 0.5) 106, 2, 10, 15, 34, 38, 42, 
 74, 138, 162, 170, 184.  844 

Overwrite22 (3, 1, 0.5) 42, 170. 634 
XOR23 (3, 2, 0.5) 42, 170. 634 
Binary (4, 2, 0.5) 106, 34, 42, 162, 170. 844 

Gray24 (4, 2, 0.5) 34, 162. 844 

Normal 
3 

(3, 1, 0.5) 106, 34, 42, 162, 170. 634 
Overwrite (2, 1, 0.5) 42, 170. 424 

XOR, Binary, and Gray (3, 2, 0.5) 106, 34, 42, 162, 170. 634 

 

                                                 
21 The experiments have been repeated 100 times, i.e., Ntrials =100 runs (trials). 
22 Rules 106, 34 and 162 gave only 1 error in 100 trials. 
23 Rules 106, 34 and 162 gave only 2 errors in 100 trials. 
24 Rules 106, 42 and 170 gave only 1 error in 100 trials. 
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4.3.3 CA Feedforward Architecture 

In CA feedforward architecture, there are two methods to project the sequence input 

into the reservoir All-ff or Each-ff as explained in Section 4.1.2. The most of ECA 

rules except the rules 23, 72, 104, 200 and 232 could solve the 5-bit task using those 

two methods with a small value of the parameters (I, k) = (1, 1). All-ff outperforms in 

the complexity with feature vector dimension LCA=842 bits while LCA=1260 bits for 

Each-ff. For the generalized 5-bit task, Each-ff outperforms a little bit where the model 

achieves zero test error using only 10 training examples while 11 examples are 

required for training to achieve zero test error in All-ff model. 

The small number of iterations I in the previous results (recurrent and feedforward) 

also the shift property in the most success rules as shown in Figure 4.4 for a single 

nonzero initial state as in our case for 5-bit task lead us to test the local representation 

in 5-bit tasks.  

 

Figure 4.4 Shift rules; five iterations space-time diagram of different ECA rules for a single non-zero 

initial state with one iteration of a center cell for each rule. (a) left shift, (b) right shift, (c) left shift 

single and double bits, (d) left shift double bits, and (e) inverted right shift. Note: The shift is 

independent on the initial state only for two rules 170 and 15 where their Boolean expressions are 

𝑥𝑥𝑖𝑖(𝑛𝑛 +  1) = 𝑥𝑥𝑖𝑖+1(𝑛𝑛) and 𝑥𝑥𝑖𝑖(𝑛𝑛 + 1) = �̅�𝑥𝑖𝑖−1(𝑛𝑛) respectively, where x� is the inverse of x [85]. 
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It is an encroachment for using the word 'shift' for these rules (Figure 4.4) because they 

are shift rules only at first time-step, but after insertion the second time-step to the 

reservoir, there is no guarantee to stay as shift rules, it is dependent on the nonzero 

positions in the new initial state at second time step and so on for the other time steps. 

Also, we should note that the local representation is applied only in the reservoir, but 

the model still has a computational power from the regressor in the read-out stage to 

solve the tasks. 

4.3.4 Local Representation Models 

In local representation, there are also feedforward and recurrent architectures, in the 

local feedforward the input sequence is flattened (vectorization) and is directly used 

as features for training to predict the whole output, it will be called (without CA). But, 

in local recurrent, the sequence input is memorized consecutively step by step as 

shown in Figure 2.6. Thus, the insertion function is similar to the stack memory, the 

first row of feature space which has only the first time step input is used to predict the 

output at first time step and so on up to last time step consisting of all input time steps 

as illustrated in Figure 2.6.  This model has been used in Section 2.2.2 and [8] for 

comparison with ReCA to study the required distributedness and computational to 

solve sequence tasks and is called stack reservoir. The dimension of feature vectors in 

stack reservoir is dependent on the input dimension Lin and the sequence length T as 

shown in Figure 2.6. Thus, it is not a fixed length model and from this point of view; 

it is like feedforward, which is problematic for large T and Lin. 

Surprisingly, the local feedforward and stack reservoir could solve the 5-bit task with 

feature vector dimension LCA=840 bits for both; but, this vector is used to predict the 

whole output for local feedforward (without CA) while for stack representation it is 

only utilized to predict the output in a single time step n. The local feedforward 

(without CA) and stack reservoir could solve the generalized 5-bit using 11 examples 

and only 3 training examples respectively.  

4.3.5 Comparison with other Approaches 

The model complexity is a useful metric to evaluate different models [95]. Therefore, 

the feature vector dimension LCA (bits) will be used to compute the model complexity 
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for different RC based on CA approaches (a snapshot of this approaches is presented 

in Section 1.3) that have been used 5-bit task. Table 4.6 shows the best results of 

recurrent architectures from those approaches.  

Table 4.6 The minimum complexity results for 5-bit task where Td=200; using several approaches that 

utilize recurrent architecture of RC based on CA except stack reservoir which is used local 

representation instead of CA. The results are listed in ascending order, i.e., the best result is on the top.  

For any details, please see the appropriate reference in the 2nd column.  

Method Reference LCA equation The values of LCA 
Parameters 

LCA 
(Bits) 

Successful 
Rules 

Normal Chapter 4 (Lin+2(f.I.T)).k (4+2(0.26×2×210))×1 224 165 
Overwrite Chapter 4 (Lin+2(f.I.T)).k (4+2(0.33×2×210))×1 282 165 

Non-
Uniform 

CA 
[49]  (C.Lin).R.I (10×4)×4×2 320 90 with 165 

ReCA 
LAST-

Each-Half 
[9] (Lin+(f.I.T)).k (4+(0.15×4×210)) ×3 390 150 

XOR Chapter 4 (Lin+2(f.I.T)) (4+2(0.5×2×210)) 424 34, 162 

Binary Chapter 4 (Lin+2(f.I.T)) (4+2(0.5×2×210)) 424 15, 34, 38, 
42, 162, 170 

Gray Chapter 4 (Lin+2(f.I.T)) (4+2(0.5×2×210)) 424 34, 38, 42, 
162, 170 

ReCA 
LAST [8]25  (Lin+2(f.I.T)).I (4+2(0.1×4×210))×4 688 90 

Stack 
Reservoir Chapter 4 T.Lin 210×4 840  

Deep 
learning 

CA Single 
reservoir 

[50]  Ld.R.I 40×8×8 2560 90 

Deep 
learning 
CA Two 
reservoirs 

[50]  (Ld1.R1.I1)+(Ld2.R2.I2) (40×8×8)+(30×8×8) 4480 90 and 90 

CA Based 
Feature  

Expansion 
 and RC 

[7]  Lin.R.I 4×38×32 4864 150 

For the generalized 5-bit task, there are no other results except our results in 

Section 4.3.2. Therefore, to compare our results with another model, the ESN 

experiments in [90] have been repeated applying the generalized 5-bit task with three 

                                                 

25 In this reference Td=1000.  For that, the experiment has been repeated for Td=200. 
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levels of effort/expertise (Blind, Basic, and Smart) [90], the results are listed in Table 

4.7. Finally, Table 4.8 shows the minimum training examples that are required to solve 

the generalized 5-bit task using several methods with different architectures. 

Table 4.7 Minimum training examples for the generalized 5-bit task where Td=200 to attain zero test 

error using echo state networks ESNs with three levels of effort/expertise, where N is the reservoir size, 

α is the leaking rate and ρ is the spectral radius. For more details please see [90].   

Method N α ρ Ntrain 

ESNs 

Blind 2500 1 1 28 

Basic 500 1 1 22 

Smart 200 1 1 10 

Table 4.8 Minimum training examples for the generalized 5-bit task where Td=200 to achieve zero test 

error using different methods with their parameters. 

Architecture Method Ntrain (I, k, f) 

Recurrent 

Normal 2 (4, 1, 0.5) 

Overwrite 2 (3, 1, 0.5) 

XOR 2 (3, 2, 0.5) 

Binary and Gray 2 (4, 2, 0.5) 

Stack reservoir 3   

Feedforward 

All-ff 11 (I, k) = (1,1) 

Each-ff 10 (I, k) = (1,1) 

Without CA 11   

ESNs with the highest level of effort (Smart) [90] could achieve zero test error using 

10 training examples with N=200 neurons in the reservoir while for basic and blind 

the value of training examples increased to 22 and 28 respectively. But, all ReCA 

methods in this paper could solve the generalized 5-bit task using only 2 or 3 training 

examples with a very low effort 3 or 2 iterations, using 634 bits or 424 bits as a feature 

vector instead of 6400 bits in the best case (smart) of ESNs for 32 bits floating point.  

4.4 Discussions 

Three methods are provided to extract the features from CA evolution states in ReCA 

model. 5-bit and generalized 5-bit tasks have been used in order to compare and 
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evaluate these methods with each other and with the state-of-the-art of other 

approaches in RC based on CA domain.  

The presented results reveal that some of ECA rules in classes II, III and IV with all 

proposed methods could solve the 5-bit task with different levels of complexity. The 

minimum complexity was obtained using Normal method and rule 165 from class III 

with feature vector length of 224 bits due to its high distributedness, compared with 

shift rules, which enabled it to collect large information in a small dimension. 

Increasing the model complexity by increasing the number of CA iterations I increases 

the number of rules that could solve the 5-bit task due to the increasing of 

computational power as proved in [7].  

All proposed methods with some of class II rules and rule 106 from class IV could 

solve the generalized 5-bit task with different levels of complexity. The minimum 

complexity was achieved using Overwrite and XOR methods with rules 42 and 170 

from class II and feature vector with dimension of 634 bits using only two examples 

for training, while for the three training examples the minimum complexity was 

obtained using Overwrite method with rules 42 and 170 from class II with feature 

vector dimension of 424 bits. Increasing the training examples provides the model 

more information which enables more ECA rules to solve the generalized 5-bit task 

with less complexity, also increasing the model complexity by increasing I increases 

the model computational power to use less training examples and more rules can also 

solve the task. Hence, there is a trade-off between complexity and the required training 

examples, but we should be careful of the overfitting in complicated (large complexity) 

models then further of training examples will be required to generalize the model. That 

is why the minimum complexity (LCA=224 bits) has been reached for the 5-bit task 

where all the 32 examples have been used for training, i.e., the model is not general. 

ReCA could solve the generalized 5-bit task using only 2 training examples, which is 

the lowest limit number for training for any model. Thus, we can argue that ReCA can 

be used in the cases of lack of examples, especially the same result was obtained in [8] 

for all the eight pathological tasks. But, ReCA must be tested for large space of tasks 

to prove such claim. 
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In most literature, the researchers focus on classes III and IV of ECA due to the chaotic 

behavior of class III which is used in cryptography and random number generators, 

and the complex behaviors of class IV with its computational universality. But, as it 

has demonstrated in this chapter, class II ECA rules have presented the best results in 

the generalized 5-bit task. Hence, class II rules should be given more prominence in 

the next studies. 

The combination of all iterations I of CA evolution states using XOR, Binary and Gray 

options provides an efficient feature vector which could solve the 5-bit memory tasks. 

to take advantages of XOR, Binary or Gray options over Normal and Overwrite 

methods the parameter k should be k ≥ 2 because in this case, the XOR, Binary and 

Gray options change the parameter k to 1, which reduces the dimension of feature 

vector that will be used in the read-out stage. The reservoir size for all methods is 

equally and depends on I, k and f; the difference is in the feature vector dimension 

LCA
26 to be used in the regressor in order to find the pseudo-inverse, that implies the 

most expensive computational part in the model.  

For 5-bit task, the best results have been obtained using rule 165 which outperformed 

its conjugate rule 90 due to the increasing of nonzero bits (Figure 4.2(b)), which 

decreases the mean pairwise correlation of the CA features for different inputs as 

in [7], i.e., improving the computational power [32]. But, both rules 165 and 90 could 

not solve the generalized 5-bit task due to their complex behavior (class III), which is 

introduced the model to overfitting, to overcome this problem; an excess of training 

examples are required or reducing the model complexity by choosing more simple 

rules, e.g., shift rules 42 and 170 as we have done in Section 4.3.2.  

Only, class II ECA rules could solve the generalized 5-bit task with minimum 

complexity. But, due to the relative simplicity of their behavior and to avoid the 

underfitting; the model needs more iterations I for a small number of training examples 

or needs more training examples for a small number of iterations. We should not be 

confused with rule 106 which could solve the generalized 5-bit task, yet it is from class 

                                                 
26 For Normal and Overwrite, LCA depends on I, k, f, but it depends only on I, f for XOR, Binary and 
Gray. 
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IV; because its behavior is similar to the shift rules from class II for a single nonzero 

input as illustrated in Figure 4.4. 

Only 82 rules out of all the 256 ECA rules have been utilized in this chapter and these 

rules have been selected from the equivalent sets of ECA rules [71], but it is not 

enough; because as an example, the rule 90 and its conjugate rule 165 (also rule 60 and 

its reflection rule 102) are in the same equivalent set in [71] but experimentally they 

have obtained different results. Therefore, the whole ECA rule space has to be 

exploited in future work. 

The stack reservoir is a recurrent architecture because its states in the reservoir 

memorize the input information gradually time-step by time-step, but on the other 

hand, it has not a fixed length, so it is like feedforward architecture. 

In spite of good results obtained from the feedforward models for 5-bit task, there are 

some points should be discussed here: feedforward is conceptually not plausible; 

because the subsequent (new) inputs are used to predict some previous (old) output. 

So, the provided information is increased for prediction, that is why it gives good 

results. Feedforward architecture needs more training examples 10 or 11 to solve the 

generalized 5-bit task while the recurrent architecture requires 2 or 3 as listed in Table 

4.8. Finally, the Stack and feedforward models are problematic for large input 

dimension Lin and/or large sequence T; because they have not a fixed length, i.e., their 

feature vector length increases proportionally with Lin and T. Therefore, ReCA is still 

the best choice for sequence learning. 

The comparison in Table 4.6 indicates that the best results of all RC based on CA 

approaches have been achieved using the linear (additive) rules (165, 90 and 150) or 

shift rules (15, 34, 38, 42, 162 and rule 170 which is also additive) that provide lossless 

injection of input at each time step, i.e., maximizes one-to-one correspondence 

between input sequence and the reservoir activity due to the sequence. Moreover, the 

additive rules can be represented as linear functions modulo two, thus these rules allow 

to compute independently the evolution for different initial states, then the results can 

be combined by simply adding which significantly simplifies the hardware 

implementation of these rules. 
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The comparison in Table 4.6 demonstrates that the feature expansion using zero 

buffers is better than using random permutation; due to the natural information 

diffusion into the CA reservoir there is no information loss, but the random 

permutation may need a lot of permutations (large size) to ensure there is no 

information loss. Moreover, the permutations increase the random interference 

between the input cells into the reservoir while the model becomes more robust using 

the zero buffers; because the evolution states of the input obey a certain rule. This 

interpretation agrees with our results where the Normal and Overwrite methods 

outperform a little bit the other options (XOR, Binary and Gray); because in Normal 

and Overwrite methods the feature vector is the pure CA evolution states without any 

intervention but in XOR, Binary and Gray options, the feature vector is modified by 

an operator. This interpretation is, of course, valid for the used 5-bit memory tasks. 

Thus, these methods should be tested using other types of tasks, then study which 

method is the best for every task as will be done in future work. 

In ReCA, there is no parameter selected randomly as in ESNs or the other approaches 

of RC based on CA [7, 49, 50], that’s why we did not repeat our experiments multiple 

times in 5-bit task as in [7, 49, 50, 90], but for the generalized 5-bit task we have 

repeated the experiments 100 trials due to the random selection of training examples 

from the whole dataset, not from ReCA model. 

ReCA has outperformed ESNs for the 5-bit task, as demonstrated in [7, 8]. For the 

generalized 5-bit task, ReCA also outperforms ESNs where ReCA could solve the task 

using only two training examples with a very simple model but smart ESNs which is 

the most complicated model could solve this task using ten training examples while 

for the lower complexity models basic and blind ESNs, they require 22 and 28 training 

examples respectively to solve this task.  
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CHAPTER 5  

NONBINARY AND STATIC TASKS 

After the promising results of ReCA in previous chapters using pathological synthetic 

tasks, that are binary tasks, ReCA will be tested using real and nonbinary tasks in order 

to generalize its applications. We will start with a simple signal classification task in 

Section 5.3 then continue with the Japanese vowels task [109] (Section 5.4), which is 

multidimensional dynamic pattern recognition. Finally, tough ReCA is designed for 

sequence learning; it will be tested using static IRIS data set [118] in Section 5.5. All 

those tasks are nonbinary dataset, but ReCA deals with only binary data. Therefore, 

the nonbinary data have been binarized using one hot encoding in Section 5.2.   

5.1 ReCA Implementation 

ReCA is implemented as in Section 4.1 using the option Each as a feature extraction 

from the CA reservoir as in Section 4.1.1, where I is the total number of iterations in 

the reservoir and k is the number of selected iterations, that is used in training to 

compute the regression parameters of Wout matrix, which is then used to predict the 

output. 

5.2 One Hot Encoding 

All tasks that will be used in this chapter are nonbinary, but ReCA deals only with 

binary data. Therefore, the one hot encoding, due to its simplicity, will be used to 

binarize such data27.  

One hot encoding is widely used to encode the categorical variables (integer numbers) 

to orthogonal and equidistant categories, which agrees with classical intuitions about 

nominal categorical variables [106]. But, the one hot encoding is problematic in large 

data because each variable is represented by one bit. 

                                                 
27 Other binarization methods can be used such as Binary or Gray code. 
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In one hot encoding, each decimal value is represented by ‘1’ which is located 

according to its decimal value in zero array as illustrated in Table 5.1.   

Table 5.1 One hot encoding: Decimal numbers are represented by one hot encoding. 

Decimal 
No 

One hot representation 
1 2 3 …. n …. max 

1 1 0 0 . 0 . 0 . 0 . 0 
2 0 1 0 . 0 . 0 . 0 . 0 
3 0 0 1 . 0 . 0 . 0 . 0 
⁞ 0 0 0 1 0 0 0 
n 0 0 0 . 0 . 1 . 0 . 0 
⁞ 0 0 0 0 0 1 0 

max 0 0 0 . 0 . 0 . 0 . 1 
 

5.3 Sin/Square Classification Task 

Sine/Square wave classification task is a time-series binary classification problem. In 

this task, the input is a random concatenation of sine and square waves (blue waves in 

Figure 5.1). ReCA should be capable to correctly classify whether the input wave is 

sine or square at every time step. The output is represented by ‘1’ for square wave and 

‘0’ for sine wave, which is represented in Figure 5.1 by the red points. 

 

Figure 5.1 Sine/Square wave classification Dataset. 

At first glance, this task seems very simple, but the problem is the nonlinearity at the 

input values -1 and 1 where the output is either sine or square wave. Hence, the model 
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should remember what is before these values (-1 and 1) to decide the wave type, i.e., 

the model should have a memory. 

5.3.1 Input Binarization 

The sine wave is a continuous signal, therefore it should be discretized and produce 

a specific number of samples, 20 as an example, from a sine wave with an amplitude 

of 0.5 as illustrated in the second row of Table 5.2, then it will be binarized using one 

hot encoding with 11 bits as listed in Table 5.2. For square wave, there are only two 

levels −0.5 and +0.5 that can be represented by one hot encoding as follows: 

(00000000001) for −0.5 and (10000000000) for +0.5. 

Table 5.2 Binarization of 20 samples of a sine wave with an amplitude of 0.5 using 11 bits one hot 

representation. 

 

5.3.2 Results 

The ReCA performance on this task is essentially perfect where ReCA could correctly 

predict 500 waves, i.e. 10000 bits, in the test set with very low effort; using only one 

state k=1 out of 4 iterations with rule 106 using only 10 waves for training. Whilst, for 

the other three rules (54, 41, 90) ReCA requires more iterations I and training examples 

as listed in Table 5.3. For comparison, Table 5.3 shows that ReCA outperforms, with 

a significant gap, the results in [51], which is also used reservoir computing based on 

cellular automata with another approach.  

The model performance can also be measured by the normalized mean square error 

(NMSE) as follows: 
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𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝟏𝟏
𝑻𝑻
∑ (𝒚𝒚(𝒕𝒕)−𝒚𝒚�(𝒕𝒕))𝟐𝟐𝑻𝑻
𝒕𝒕=𝟏𝟏

𝒗𝒗𝒕𝒕𝒕𝒕(𝒚𝒚)
                                               

(5.1) 

where y(n) is the desired output in test set,  y�(n) is the predicted output, var(y) is the 

variance of the desired output 𝐲𝐲, and T is the sequence length. 

Table 5.3 ReCA parameters to solve the Sine/Square task and comparison between our results with 4 

ECA rules (top) and the model in [51], which is also used RC based on CA (bottom). 

Method ECA rule Class I k Ntrain (waves) Ntest (waves) All test bits 
 

ReCA 
106 IV 4 1 10 500 10000 
54 IV 5 1 100 500 10000 
41 IV 7 1 220 500 10000 
90 III 15 15 200 500 10000 

[51]  Multiple  80 2 200 200 4000 

ReCA could solve the task with NMSE=1.6×10-4. Hence, ReCA outperforms the 

methods in [40] using an optoelectronic reservoir and [107] using a photonic reservoir 

where the NMSE was 1.5 ×10-3 for both methods. Moreover, the NMSE can be 

improved to 2×10-5 by increasing the number of training waves to 20 instead of 10 

waves as in Table 5.3. 

5.4 Japanese Vowels Task 

Japanese vowels task is widely used in machine learning to test models for 

multidimensional dynamic patterns recognition. The first presentation of this task was 

by Kudo et al. [108] to validate their multidimensional curve classification system and 

is available at the UCI Knowledge Discovery in Databases Archive [109], then it was 

used in, e.g., [110-114]. It is a real-world dataset consisting of samples of speakers 

saying the Japanese vowels “ae” successively. This dataset is a time series of different 

length (from 7 to 29) depending on the duration of the articulation; comprised of 

multiple feature dimensions 12 inputs (12 Linear predictive coding (LPC) cepstrum 

coefficients [115]), each of which is spoken by one of nine males; Figure 5.2 shows a 

sample of the 12 LPC coefficients in Japanese vowels task. The dataset consists of 640 

time series; 270 for training (30 for each speaker), and the rest 370 time series are used 

for testing that contains several samples for the 9 speakers. 
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Figure 5.2 The 12 LPC coefficients for a sample that has 20 time steps in Japanese vowels task [116]. 

5.4.1 Results 

One hot encoding has been used for representing both the input and output. Since the 

task has 9 speakers, therefore 9-bit output array should be used. After completing the 

ReCA algorithm as in last chapters and obtaining the predicted output; the maximum 

value in the predicted output array was set to be ‘1’ and the other values were set to be 

‘0’s. Then converting the one hot output array to a decimal value and compare it with 

the correct output (whose male does speak?) to find the training and testing error.  

Table 5.4 shows the results of Japanese Vowels Task. The minimum test error can be 

achieved by ReCA is 3.5%, whereas the-state-of-the-art machine learning methods 

achieve between 1.1% and 2.7% in percentage test error [114]. Thus, ReCA results are 

not far from these results. The small difference in our results due to the binarization 

error, because all the other methods deal directly with decimal numbers. 

Table 5.4 Japanese Vowels Task: Results obtained from ReCA. Where I is the number of CA iterations 

in the reservoir, k is the selected evolution states in the reservoir to be used for prediction in the read-

out stage. 

ECA Rule Class I k No of errors in testing set Test error % 
41 IV 2 1 13 3.5% 
60 III 2 2 14 3.8% 

126 III 1 1 15 4.1% 
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5.5 IRIS Task 

The aim of IRIS task is to classify iris flowers among 3 types (classes) Setosa, 

Versicolor or Virginica; from measurements of length and width of their sepals and 

petals in cm’s28. Each class consists of 50 examples see [117] and can be obtained 

from [118] in UCI Knowledge Discovery. Hence, there are 150 examples, that can be 

divided as follows: 105 (70%) for training and 45 (30%) examples for testing. 

5.5.1 Feedforward and Recurrent Architecture 

In previous tasks, ReCA deals with dynamic dataset. But, in this section, ReCA is 

tested in static learning. Therefore, two architectures are proposed:  

1. Feedforward Architecture: all the inputs are concatenated in one array, which 

is used as an initial state for the CA reservoir, so we have only one time step, 

but with a large dimension. 

2. Recurrent Architecture; In this case, the inputs are considered as time steps. 

Thus, the first input is used as an initial state for the CA reservoir in first time 

step, then inserting the second input using XOR as an insertion function and so 

on up to the last input. 

Using time-dependent data into a feedforward architecture has been used in the 

literature, e.g., Section 4.1.2. But, using time-independent data into a recurrent 

architecture, it was never used as far as I know. 

5.5.2 Results 

The binarization of IRIS dataset is similar to that of Japanese Vowels task, but the 

output will only be 3 bits because there are only 3 classes. the IRIS dataset is static; 

thus, the two architectures feedforward and recurrent are used as explained in the 

previous section. 

 

                                                 
28 IRIS is time-independent dataset. 
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Table 5.6 indicates that the results of recurrent architecture have reached zero test error 

and outperform the feedforward architecture in Table 5.5 where the best results are 14 

out of 45 (31.11%). 

Table 5.5 IRIS Task. Feedforward architecture results. 

ECA rule Class I k No of errors in test set Test error % 
126  

 
 

III 

3 1  
 

14 
 

 
 

31.11% 
105 7  

2 
 

150 7 
 

30 
8 
8 3 
2 1 15 33.33% 

126 3 3 

 

Table 5.6 IRIS Task. Recurrent architecture results. 

ECA rule Class I k No of errors in test set Test error % 
110 IV 4 3  

 
 

0 

 
 
 

0% 

110 4 
122  

 
III 

5 3 
105  

6 
5 

150 4 
150 5 
60 7 3 

The ReCA performance in recurrent architecture outperforms the related work that 

uses RC based on CA with different approach reported in [51], where the test error 

was 3.8% with very high effort compared with ReCA in this chapter, which has a zero 

test error with a very low effort as listed in Table 5.7. 

 

Table 5.7 IRIS Task: Comparison between ReCA and the related work that uses RC based on CA with 

a different approach in [51]. 

Method ECA 
Rule 

Class I k Ntrain Ntest Test error% 

ReCA 110 IV 4 3 105 45 0% 
[51] (2017) 158 II > 70 2 112 38 3.8% 

Table 5.8 shows that four classifiers in [127] (decision tree, multilayer perceptron FNNs, 

Naïve Bayes and supporting vector machines (SVMs) multiclass classifier) couldn’t 

reach zero error. These classifiers have been implemented using WEKA tools which 

is an open source data mining software issued under General Public License [128]. 
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Table 5.8 IRIS dataset results for various classification algorithms using WEKA tools [127].  

Method Error% 
Decision tree 50% 

Multilayer Perceptron 2.7% 
Naïve Bayes 4% 

Multiclass Classifier SVM 4% 

 

5.6 Discussions 

In the previous three chapters, ReCA could solve the pathological synthetic tasks, that 

are binary and time-dependent data set. In order to study the powerful of ReCA; real 

and nonbinary tasks (signal classification and Japanese vowels) are proposed to 

examine ReCA. Also, to generalize the applications of ReCA, it has tested using a 

time-independent task (IRIS dataset). 

The sine/square classification task has been used where the continuous input has been 

discretized then binarized using one hot encoded. ReCA performance was perfect and 

outperforms the related work that uses RC based on CA with different approach 

reported in [51], also ReCA results have the smallest NMSE comparing to the state-

of-the-art results. 

ReCA could solve real and nonbinary task like Japanese vowels which is a 

multidimensional dynamic task with competitive results 3.5% test error compared with 

1.1% to 2.7% test error in the-state-of-the-art machine learning methods. The small 

difference in our results due to the binarization error, because all the other methods 

deal directly with decimal numbers. 

Finally, ReCA was also tested by a real, nonbinary and static task (IRIS Task), to solve 

this task two models are proposed (Feedforward) and (Recurrent). The recurrent 

architecture could achieve a zero test error whilst feedforward could not solve this task 

with zero error due to the high distributedness which is provided by the recurrent 

architecture as proved in [7, 8]. In IRIS dataset, ReCA outperforms the decision tree, 

multilayer perceptron feedforward ANNs, Naïve Bayes and supporting vector 
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machines (SVMs) multiclass classifiers where ReCA achieves zero test error however 

the other classifiers could not achieve zero training error. Also, ReCA outperforms the 

related work that uses RC based on CA with different approach in [51], where the test 

error was 3.8% with very high effort compared with ReCA which reaches zero test 

error with a very low effort. 
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CHAPTER 6  

ReCA in QUESTION ANSWERING 

After the ReCA success in (Real and Artificial), (Binary and Nonbinary), and (Static 

and Dynamic) tasks in previous chapters, it should be tested by a more difficult and 

recent task as a question answering (QA) task. The QA 20 bAbI task from Facebook 

[120] is a very hard and complex natural language processing (NLP) and requires an 

understanding of the meaning of a text and the ability to reason over relevant facts. 

Most tasks in NLP can be considered as a QA problem: high level tasks like machine 

translation (What is the translation into French?); sequence modeling tasks like named 

entity recognition (What are the named entity tags in this sentence?) or part-of-speech 

tagging (What are the part-of-speech tags?); classification problems like sentiment 

analysis (What is the sentiment?); even multi-sentence joint classification problems 

like coreference resolution (Who does ‘their’ refer to?) [119]. 

6.1 The (20) QA bAbI Tasks 

The (20) QA bAbI tasks are a synthetic question and answering dataset from the bAbI 

project of Facebook AI Research which is organized towards the goal of automatic 

text understanding and reasoning. It contains 20 tasks, each of them is composed of a 

set of sentences29 (story), a question related to some of that sentences, and followed 

by an answer, which is mostly a single word (in some tasks, the answer is a set of 

words). For most cases, only a subset of facts (sentences) is relevant to the given 

question (called supporting facts (SF) which are also included in the training set). All 

the tasks are noiseless and a human able to read that language can potentially achieve 

100% accuracy. Two versions of the data are available, the 1st one has 1K training 

examples per task and the 2nd has 10K examples per task, while the testing set is 1K 

examples for both versions [120]. The questions in these tasks are quite hard, they not 

only require lots of knowledge in natural sciences but also abilities to make inferences, 

                                                 
29 The sentences are as independent from others as possible. 
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generalize the concepts, apply the general ideas to the examples and so on. These 20 

tasks can be summarized into 11 groups: 

1- One, Two, or Three supporting facts (Task 1, 2 and 3): In order to answer the 
question; one, two, or three supporting sentences have to be used as 
demonstrated in Figure 6.1. 
 
 
 
 
 
 

 

 

 

Figure 6.1 One, Two, or Three SFs tasks: Story, question(bold), answer, and indices of the supporting 

facts (bold). 

2- Two or Three argument relations (Task 4 and 5): The ability to differentiate 

and recognize subjects and objects is necessary to answer the task as illustrated 

in Figure 6.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.2 Two or Three argument relation tasks: Story, question(bold), answer, and indices of the 

supporting facts (bold). 

Task 3 (Three SFs) 

1  Mary moved to the bathroom. 
2  Sandra journeyed to the bedroom. 
3  Mary got the football there. 
4  John went back to the bedroom. 
5  Mary journeyed to the office. 
6  John journeyed to the office. 
7  John journeyed to the bathroom. 
8  Mary journeyed to the bathroom. 
9  Sandra went back to the garden. 
10  Daniel journeyed to the office. 
11  Mary dropped the football. 
12  John moved to the bedroom. 

Where was the football before the bathroom?    Office   11  8  5 

 

 

 

 

Task 1 (Single SF) 

1  Mary moved to the bathroom. 
2  John went back to the bedroom. 
Where is Mary?   bathroom.  1 
 
 
_________________________ 
Task 2 (Two SFs) 
1  Mary moved to the bathroom. 
2  John went back to the bedroom. 
3  Mary got the key there 
4  Mary travelled to the garden. 

Where is the key?  garden   3  4 

 

 

 

 

Task 4 (Two Argument relations) 

1  The office is north of the kitchen. 
2  The garden is south of the kitchen. 

What is north of the kitchen?   office.  1 

What is the kitchen north of?   garden.  2 
____________________________________ 
Task 5 (Three Argument relations) 
1  Jeff took the milk there. 
2  Jeff gave the milk to Bill. 

Who did Jeff give the milk to?  Bill   2 

Who received the milk?   Bill   2 

What did Jeff give to Bill?   Milk   2 
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Yes/No Questions (Task 6): to test the ability of the model to answer true/false type questions as 

demonstrated in Figure 6.3. 

 

 

 

Figure 6.3 Yes/No Question Task: Story, question(bold), answer, and indices of the supporting facts 

(bold). 

Counting and Lists/Sets (Task 7 and 8):  Task 7 tests the ability of the model to perform the counting 

operations. Task 8 tests the ability to produce a list of single word answers as demonstrated in Figure 

6.4. 

 

 
 
 
 
 
 
 
 

Figure 6.4 Counting and Lists/Sets: Story, question(bold), answer, and indices of the supporting facts 

(bold). 

Simple Negation and Indefinite Knowledge (Task 9 and 10): Task 9 is similar to Task 6, but with the 

possibility of negative supporting facts. Task 10 tests if the model can describe the uncertainty as 

demonstrated in Figure 6.5. 

 

 

Task 6 (Yes / No Questions) 

1  Daniel went back to the hallway. 
2  John got the apple there. 

Is Daniel in the hallway?   yes.  1 

 
3  Sandra travelled to the hallway 
4  Daniel moved to the bedroom. 

Is Daniel in the hallway?   no.   4 

 

 

 

 

 

Task 7 (Conting) 

1  Mary took the apple there. 
2  Sandra travelled to the hallway. 

How many objects is Mary carrying?   one.  1 

 
3  Mary travelled to the hallway. 
4  Mary got the apple there. 

How many objects is Mary carrying?   two.   4 

 

 

 

 

 

Task 8 (List / Sets) 

1  Mary took the apple there. 
3  Mary travelled to the hallway. 

What is Mary carrying?   apple.  1 

3  Sandra travelled to the hallway 
4  Mary took the milk there. 

What is Mary carrying?   apple  milk.  1  4 
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Figure 6.5 Simple negation and Indefinite knowledge: Story, question(bold), answer, and indices of the 

supporting facts (bold). 

Basic Coreference, Conjunctions and Compound Coreference (Task 11, 12 and 13): Task 11 tests the 

basic type of coreference to detect the single subject. Task 12 tests referring to multiple subjects in a 

single sentence. Task 13 tests the referring of multiple subjects in multiple sentences as demonstrated 

in Figure 6.6. 

 

 

 

 

 

 

Figure 6.6 Basic Coreference, Conjunctions, and Compound Coreference: Story, question(bold), 

answer, and indices of the supporting facts (bold). 

Time Reasoning: (Task 14): tests the understanding of time expressions within the story as illustrated 

in Figure 6.7. 

. 

 

Task 9 (Simple Negation) 
1  Sandra travelled to the hallway. 
2  Sandra is no longer in the hallway. 

Is Sandra in the hallway?   no.  2 

 
3  Sandra is in the hallway. 
4  Sandra journeyed to the garden. 

Is Sandra in the garden?    yes   4 

 

 

 

 

 

Task 10 (Indefinite Knowledge) 

1  Mary took the apple there. 
3  Mary travelled to the hallway. 

What is Mary carrying?   apple.  1 

3  Sandra travelled to the hallway 
4  Mary took the milk there. 

What is Mary carrying?   apple  milk.  1  4 

 

 

 

 

 

 

Task 11 (Basic Coreference) 
1  Sandra went back to the hallway. 
2  After that she went to the bedroom. 

Where is Sandra?   bedroom   1  2 

 

 

 

 

 

 

Task 12 (Conjunction) 
1  Daniel and Sandra went back to the kitchen. 
2  Daniel and John went back to the hallway. 

Where is Daniel?   hallway.  2 

 

 

 

 

 

 

Task 13 (Compound Coreference) 
1  Daniel and Sandra went back to the kitchen. 
2  Then they journeyed to the hallway. 

Where is Daniel?   hallway.  1  2 
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Figure 6.7 Time Reasoning: Story, question(bold), answer, and indices of the supporting facts (bold). 

Basic Deduction and Induction (Task 15 and 16): Task 15 tests basic deduction. Task 16 tests basic 

induction as demonstrated in Figure 6.8. 

 

 
 
 
 

Figure 6.8 Basic Deduction and Induction: Story, question(bold), answer, and indices of the supporting 

facts (bold). 

Positional and Size Reasoning (Task 17 and 18): Task 17 tests the spatial reasoning about the relative 

positions. Task 18 tests the understanding of the relative size of objects as illustrated in Figure 6.9. 

 
 
 
 
 

Figure 6.9 Positional and Size Reasoning: Story, question(bold), answer, and indices of the supporting 

facts (bold). 

Path Finding (Task 19): To test the ability to find the path between locations as demonstrated in 

Figure 6.10. 

 
 
 

      Task 14 (Time Manipulation) 

1 Yesterday Julie went back to the park. 
2 This morning Bill went back to the park. 
3 Julie went to the bedroom this morning. 

       Where was Julie before the bedroom?   park    3   1 

 

 

 

 

 

Task 15 (Basic Deduction) 

1 Mice are afraid of cats. 
2 Wolves are afraid of mice. 
3 Emily is a mouse. 

What is Emily afraid of?   cat    3   1 

 

 

 

 

 

Task 16 (Basic Induction) 

1 Lily is a lion. 
2 Bernhard is green. 
3 Lily is a green. 
4 Brian is a lion 

What color is Brian?   green    4   1    3 

 

 

 

 

 
Task 17 (Positional Reasoning) 
1  The triangle is above the pink rectangle. 
2  The blue square is to the left of the triangle. 

Is the pink rectangle to the right of the blue 
square ?   yes   1   2 

 

 

 

 

 

Task 18 (Reasoning about Size) 
1  The chest is bigger than the chocolate. 
2  The suitcase fits inside the box. 
3  The chest fits inside the box. 

Does the chocolate fit in the box?   yes   3    1 
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Figure 6.10 Path Finding: Story, question(bold), answer, and indices of the supporting facts (bold). 

Agents Motivations (Task 20):  tests why the agent performs an action and why the action has been 

done. 

 
 
 
 
 

Figure 6.11 Agents Motivations: Story, question(bold), answer, and indices of the supporting facts 

(bold). 

6.2 Related Work 

The 20 QA bAbI tasks have been studied within the context of the Memory Network 

(MemNN) model [96,120], which consists of four learnable modules: the I-module 

encodes the input into feature representation, the G-module updates relevant memory 

slots, the O-module performs inferences to compute output features given the input 

representation and the current memory, and finally the R-module decodes the output 

feature-based representation to the final response. Since the proposal of the basic 

MemNN [96] model, the Adaptive/Nonlinear MemNN [120], Dynamic Memory 

Networks (DMN)30 [119], and End-to-End Memory Networks (MemN2N) [123] 

models have been developed by varying certain parts of these modules. The difference 

for MemN2N is that the indices of supporting facts are no longer provided in the 

dataset (weakly supervised) while in the other models the indices of supporting facts 

are used in training process (strongly supervised). Hence, the MemN2N model must 

                                                 
30 In DMN Global Vectors for Word Representation (GloVe) [122] has been used instead of the random 
numbers for word representation in the other methods. 

Task 19 (Path Finding) 
1  The kitchen is west of the garden. 
2  The garden is south of the office. 
3  The office is south of the bedroom. 

How do you go from the garden to the bedroom?    n   n    2   3 

 

 

 

 

 Task 20 (Reasoning about Motivations) 
1  Summit is bored. 

Where will Summit go?  garden    1 
 
2  Yann is hungry. 

Where will Yann go?   kitchen    2 
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deduce for itself at training and test time which sentences are relevant and which are 

not; making MemN2N harder and more generally applicable in realistic settings. 

MemN2N can also be considered as an extension of RNNsearch [124] to the case 

where multiple computational steps (hops) are performed per output symbol [123]. 

Within the context of Deep Learning (DL), Neural Machine Translation (NMT) and 

Neural Turing Machine (NTM) have been proposed to solve the 20 bAbI tasks [125].  

Table 6.1 The 20 QA bAbI tasks results: Facebook team work on MemNN [120] and MemN2N [123], 

MitaMind Lab works on DMN [119], Microsoft team work on reasoning in vector space (TPR model) 

[121], IBM team work on NMT and NTM [125], and Noah's Ark Lab, Huawei Technologies team work 

on NR [126]. LSTM results are obtained from [120] using the LSTM created in [13]. 

Task 
No 

Strongly supervised Weakly supervised 
MemNN DMN NMT NTM TPR MemN2N NR NMT LSTM 

1 100% 100% 100% 100% 100% 100%  98.2% 50% 
2 100% 98.2% 99.6% 100% 100% 91.7%  41.3% 20% 
3 100% 95.2% 99.5% 100% 100% 59.7%  33.4% 20% 
4 100% 100% 97.5% 100% 100% 97.2%  97.8% 61% 
5 98% 99.3% 90.6% 73.7% 99.8% 86.9%  90.3% 70% 
6 100% 100% 99.8% 100% 100% 92.4%  84.6% 48% 
7 85% 96.9% 96.6% 100% 100% 82.7%  82.4% 49% 
8 91% 96.5% 92.7% 98% 100% 90%  70.8% 45% 
9 100% 100% 99.7% 100% 100% 86.8%  89.3% 64% 
10 98% 97.5% 96.8% 85.9% 100% 84.9%  73.5% 44% 
11 100% 99.9% 100% 100% 100% 99.1%  99.8% 62% 
12 100% 100% 100% 100% 100% 99.8%  99.4% 74% 
13 100% 99.8% 100% 100% 100% 99.6%  99.7% 94% 
14 99% 100% 97.5% 100% 100% 99.3%  44.4% 27% 
15 100% 100% 92.7% 100% 100% 100%  42.9% 21% 
16 100% 99.4% 88.1% 100% 99.5% 98.7%  42.7% 23% 
17 65% 59.6% 58% 61.2% 100% 49% 66.4% 64.6% 51% 
18 95% 95.3% 91.8% 93% 100% 88.9%  90.9% 52% 
19 36% 34.5% 29.7% 100% 100% 17.2% 17.3% 9.3% 8% 
20 100% 100% 93.3% 100% 100% 100%  91.6% 91% 

Mean 
accuracy 

93.3% 93.6% 91.2% 95.6% 99.97% 86.1%  72.3% 48.7% 

Neural Reasoner (NR) is another approach using the deep architecture, which is a 

framework for neural network-based reasoning over natural language sentences. NR 

has two essential specifications: 1. An interaction-pooling mechanism which allows 

NR to examine multiple facts, and 2. a deep architecture, allowing it to deal with the 

complicated logical relations in reasoning tasks [126], in which only the most difficult 

tasks (task 17 Positional Reasoning and task 19 Path Finding) from the 20 tasks have 

been tested and gave superior results for both tasks in weakly supervised.  
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Finally, in [121] the authors propose vector-space model inspired by Tensor Product 

Representation (TPR) [92], which achieves the best results for all the 20 bAbI tasks, 

but with using the language principles in the preprocessing of the QA bAbI dataset. 

The human intervention, e.g., using the language principles is not allowed in the 20 

QA bAbI tasks from Facebook [120], because the target of the Facebook research team 

is to produce a language-independent model. 

Table 6.1 lists the best results obtained from different models that were used to solve 

question answering bAbI tasks and indicates that using supporting facts (Strongly 

supervised) increases the accuracy due to the extra information provided by the task. 

The most difficult tasks for all models are task 17 (Positional Reasoning) and 19 (Path 

Finding) because they require a general search algorithm to be built into the inference 

procedure [120], only TPR model in [121] could solve both tasks due to using external 

resources, not in the training data (the language principles that has been used in the 

TPR model).  

6.3 Training Methods 

The 20 QA bAbI Tasks dataset can be trained in three ways:  

1- Using only supporting facts (sentences) and removing all distractor facts.  

2- Using all facts (all story) with the indices of supporting facts, this method is 

called (strongly supervised).  

3- Using only all facts (all story) without the indices of supporting facts this 

method is called (weakly supervised). 

In this dissertation, we adopt the first way to check whether ReCA can solve these 

tasks or not31. 

Figure 6.12 shows the original story of task 3 as an example while Figure 6.13 presents 

task3 using only supporting facts and inserting the question at the end of the story. 

                                                 
31 Because, if ReCA could not solve bAbI tasks using only Supporting facts, a fortiori it can 
not solve them using strongly or weakly supervised 
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Figure 6.14 demonstrated how to convert the story and question to a matrix using 

random numbers to represent all words. 

 

Figure 6.12 The original story of task3 where supporting facts (bold), question, answer, and indices of 

supporting facts (bold numbers). 

 

Figure 6.13 Using only supporting facts for task 3 in Figure 6.12: dataset will be used for training and 

testing. 

 

Figure 6.14 Input and output of task3 (Only supporting facts): Converting the story and question in 

Figure 6.13 to a matrix after representing each word by a number. Thus, the input matrix is 4 × 7 (4 

time steps, i.e., T=4) and output is labeled by 6 (means office). The number 1 did not use because it is 

reserved to represent the space between sentences. 

Task 3 (Original) 

1  Mary moved to the bathroom. 
2  Sandra journeyed to the bedroom. 
3  Mary got the football there. 
4  John went back to the bedroom. 
5  Mary journeyed to the office. 
6  John journeyed to the office. 
7  John journeyed to the bathroom. 
8  Mary journeyed to the bathroom. 
9  Sandra went back to the garden. 
10  Daniel journeyed to the office. 
11  Mary dropped the football. 
12  John moved to the bedroom. 

Where was the football before the bathroom?     Office       11  8  5 

 

 

 

 Task 3  (Only Supporting Facts) 

Mary journeyed to the office. 
Mary journeyed to the bathroom. 
Mary dropped the football. 

Where was the football before the bathroom?     Office        
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Then, binarizing the decimal numbers in the input matrix and the output number of 

Figure 6.14 using one hot encoding as in Section 5.2. The binarized matrix is the input 

sequence u that will be used in ReCA as in previous chapters. The target is that ReCA 

can capture the pattern of the input sequence to predict correctly the output, thus our 

model is language-independent, i.e., the model can be used for any language. 

6.4 Results 

After preparing the dataset as in previous section, ReCA is implemented as in 

Chapter 3, where I is the number of CA evolution iterations in the reservoir and Rule 

No is the number of ECA rule has been used to achieve best results. 

ReCA could solve 15 tasks with 100% accuracy and 2 tasks above 90%, whilst 3 tasks 

less than 90%. most of tasks achieve best results with rule 90 only 2 tasks use rules 60 

and 150. The options ALL and LAST are almost the same as listed in Table 6.2. 

Table 6.2 ReCA accuracy for all 20 QA bAbI tasks using ALL and LAST options, where I is the number 

of CA iterations in the reservoir. 

Task Method Rule No I Accuracy 
1 ALL/LAST 90 1 100% 
2 ALL/LAST 90 2 100% 
3 ALL/LAST 90 1 100% 
4 ALL/LAST 90 1 100% 
5 ALL/LAST 90 56 100% 
6 ALL/LAST 90 12 100% 
7 ALL/LAST 60/150 17/4 77%/76% 
8 ALL/LAST 90 4 91%/90% 
9 ALL/LAST 90 8 100% 
10 ALL/LAST 150 39 96% 
11 ALL/LAST 90 2 100% 
12 ALL/LAST 90 2 100% 
13 ALL/LAST 90 3 100% 
14 ALL/LAST 90 1/6 100%/90% 
15 ALL/LAST 90 2 100% 
16 ALL/LAST 90 2 100% 
17 ALL/LAST 60/90 128/99 43%/44% 
18 ALL/LAST 90 22/17 100% 
19 ALL/LAST 90 56/84 38%/39% 
20 ALL/LAST 90 17 100% 

For comparison, there is only the IBM research team in [125] have used only SFs as 

our work. The results of their two methods; Neural Machine Translator and Neural 

Turing Machine are listed in Table 6.3, which shows that ReCA has very good results 
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where it outperforms in 4 tasks (4, 5, 14, and 18) and falls behind also in 4 tasks (8, 

14, 17, and 19).  The low number for ReCA in mean accuracy due to very poor 

accuracy in tasks 17 and 19 compared with NMT and NTM which affected 

dramatically on the mean accuracy. 

Table 6.3 Comparison between ReCA, NMT, and NTM using only supporting facts: the results of NMT 

and NTM from [125]. 

 
Task No 

RECA  
NMT 

 
NTM ALL LAST 

1 100% 100% 100% 100% 
2 100% 100% 100% 100% 
3 100% 100% 100% 100% 
4 100% 100% 99.1% 100% 
5 100% 100% 99.3% 79.2% 
6 100% 100% 100% 100% 
7 77% 76% 68.5% 100% 
8 91% 90% 99% 100% 
9 100% 100% 100% 100% 
10 96% 96% 98.9% 94.6% 
11 100% 100% 100% 100% 
12 100% 100% 100% 100% 
13 100% 100% 100% 100% 
14 100% 90% 99.8% 100% 
15 100% 100% 100% 100% 
16 100% 100% 100% 100% 
17 43% 44% 64.2% 69.3% 
18 100% 100% 97.8% 93% 
19 38% 39% 80.7% 100% 
20 100% 100% 100% 100% 

Mean Accuracy 92.25% 91.75% 95.37% 96.81% 

6.5 Discussions 

After the success of ReCA in (Real and Artificial), (Binary and Nonbinary), and (Static 

and Dynamic) tasks in previous chapters. ReCA has been tested in this chapter by the 

20 QA bAbI tasks from Facebook. bAbI tasks are very hard and complex natural 

language processing (NLP) and require an understanding of the meaning of a text and 

the ability to reason over relevant facts. 

ReCA could solve most of bAbI tasks 15 out of 20 has 100% accuracy and 2 tasks 

above 90%, whilst 3 tasks less than 90%. Most of tasks achieve best results with rule 

90 only 2 tasks using rules 60 and 150. Hence, all the successful rules are linear 

(additive) to maximize one-to-one correspondence between the input sequence and the 
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reservoir activity due to the sequence, i.e., reducing the unwanted interference. The 

options ALL and LAST are almost the same because the sequence is not long in the 

most tasks. The harder tasks need a greater number of iterations to achieve high 

accuracy, i.e., to improve computational power [7, 85]. The most difficult tasks for 

ReCA are 17 (Positional Reasoning) and 19 (Path Finding) with a large difference 

compared with NMT and NTM which made the mean accuracy of ReCA is the lowest. 

The tasks 17 and 19 are the hardest tasks for the most models as explained in Section 

6.2. The task 7 (Counting) can also be considered as a hard task for ReCA (accuracy 

77%) because the answer is not a word in the story also needs mathematical operations 

(adding and subtracting). 
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CHAPTER 7  

CONCLUSION AND FUTURE WORK 

Reservoir computing based on cellular automata ReCA constructs a novel bridge 

between automata computational theory and recurrent neural architectures. In this 

thesis, ReCA has been developed to solve different types of tasks. Several methods 

have been proposed to extract the features from the cellular automata reservoir. In most 

tasks, ReCA results outperform the state-of-the-art results. 

Concerning the model complexity, a sparsely connected network with simple binary 

units like elementary cellular automata in ReCA could perform the computational 

requirements of the reservoir in order to solve hard sequence tasks that have long term 

dependencies. Thus, ReCA can be considered to operate around the lower bound of 

complexity. 

Sequence learning is an essential capability for a wide collection of intelligence tasks 

such as language, continuous vision, symbolic manipulation in a knowledge base, etc. 

Therefore, ReCA has been tested using pathological synthetic tasks of sequence 

learning that are widely used in RNNs field. ReCA achieves zero error in all 

pathological tasks; using only the CA evolution states, at last time step, as a feature 

vector to predict the output (LAST method). CHAPTER 2 shows that the results of 

LAST outperform the state-of-the-art results in pathological synthetic tasks.  

The CA evolution states at all time steps (ALL method) can be used instead of using 

only the last time step states. Thus, the increasing of provided information using ALL 

method allows ReCA to solve longer tasks (large T) and using lower training examples 

but, of course, with large complexity (dimension of feature vector). To overcome this 

disadvantage, few k states can be used (Each option) rather than using all states in ALL 

method, exploiting the large information of ALL and low complexity of Each. Further 

reduction of complexity can be obtained using only on side of the CA evolution states 

(Half option) or reducing the number of used columns in the matrix of CA evolution 

states CAout by selecting small value of expansion ratio f, i.e., reducing the dimension 
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of the zero buffers. CHAPTER 3 shows that the dimension of features (model 

complexity) is reduced in some tasks by up to 98% for training and 94% for testing. 

This large reduction is due to the capability of using multiple options together (Each, 

Half and f). Therefore, these results lead us to argue that CA evolution states in the 

reservoir have very rich dynamics, which is why it could reduce the complexity to 

these large values and why they can also be used to solve more complicated tasks. 

Another insertion function (Overwrite) is used instead of XOR in the CA reservoir, 

which increases the model accuracy with decreasing the required training examples in 

generalized 5-bit task.  

In Chapter 4, The distributed representation of CA in recurrent architecture (ReCA) 

could solve the 5-bit tasks with minimum complexity, using only two training 

examples which is the lowest number of training examples for any model. Comparing 

between different architectures and data representations; CA distributed representation 

in recurrent architecture (ReCA) outperforms the local representation in recurrent 

architecture (stack reservoir), then echo state networks and feedforward architecture 

using local or distributed representation. Extracted features from the reservoir, using 

the natural diffusion of CA states in the reservoir with rule 165 (additive rule) for 5-

bit task, and rules 42 and 170 (shift rules) for generalized 5-bit task offers the state-of-

the-art results in terms of feature vector dimension and the required training examples. 

Another extension is obtained by combining the reservoir CA states using XOR, 

Binary, or Gray operator to produce a single feature vector to reduce the feature space. 

This method gives promising results, however using the natural diffusion of CA states 

still outperform a little bit. 

After testing ReCA using the pathological synthetic tasks, that are a binary and time-

dependent dataset, ReCA has been examined using other types of tasks in order to 

extend the ReCA applications. Starting by a simple signal classification task then the 

Japanese vowels task, which is real multidimensional dynamic pattern recognition, the 

previous both tasks are time-dependent tasks. Finally, tough ReCA is designed for 

sequence learning; it will be tested using static IRIS dataset. All those tasks are 

nonbinary dataset; therefore, one hot encoding has been used to binarize the dataset. 

In signal classification task, ReCA performance was perfect and outperforms the 
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related work that uses ReCA with a different approach in [51], also ReCA results have 

the smallest NMSE comparing to the state-of-the-art results. Whilst, ReCA could solve 

the Japanese vowels task with competitive results 3.5% test error compared with 1.1% 

to 2.7% test error in the-state-of-the-art machine learning methods. For IRIS dataset, 

the recurrent architecture could achieve a zero test error while feedforward could not 

solve this task with zero error due to the high order statistics and distributedness which 

are provided by the recurrent architecture. The ReCA performance in recurrent 

architecture outperforms the related work that uses ReCA with different approach 

reported in [51], where the test error was 3.8% with very high effort compared with 

ReCA which has a zero test error with a very low effort. 

Finally, ReCA has been tested using the 20 QA bAbI tasks from Facebook; These tasks 

are very hard and require an understanding of the meaning of a text and the ability to 

reason over relevant facts. Using only supporting facts, ReCA could solve most of 

bAbI tasks 15 out of 20 has 100% accuracy and 2 tasks above 90%, whilst 3 tasks less 

than 90%. The options ALL and LAST are almost the same because the sequence is 

not long in these tasks. The ReCA results are very close to the state-of-the-art results, 

that provided from Neural Machine Translation and Neural Turing Machine models 

from IBM research group. 

In addition, the usage of cellular automata in the reservoir computing paradigm greatly 

simplifies the architecture, makes the computation more transparent for analysis, and 

provide enough computation for large domain of tasks. Furthermore, the reservoir in 

ReCA can be implemented using ordinary logic gates or Field programmable gate 

arrays FPGAs, resulting in reducing the complexity in space, time and power 

consumption. 

7.1 Future Work 

ReCA framework is very novel, hence there is a lot of research should be done. These 

are some points to enrich the ReCA research field:  
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- Using ECA with memory (ECAM) in the reservoir to study the effect of large 

distributed representation provided by ECAM rules, and even using 

2-dimensional CA, e.g., the game of life which has a universal computation. 

- Using the rest 256 ECA rules that have not been used in this dissertation to 

explore their specifications. 

- Preprocessing the input before the reservoir as in [8] where it provided 

promising results. 

- Other training methods can be used in the read-out stage rather than linear 

regression, e.g. logistic regression, support vector machines SVMs or even 

feedforward neural networks in order to augment the model computational 

power. 

- Overwrite insertion function should be studied extensively due to its promising 

results in Chapter 4. 

- Using hybrid ReCA (multiple rules in the reservoir) as in [49, 51] or deep 

ReCA (cascade models) as in [50] to solve more complicated tasks. 

- In QA tasks, adding Attention mechanisms in order to allow ReCA to focus on 

a specific part of the input (supporting facts) leading to use ReCA in weakly 

supervised. 

 

 

 

 

 

 

 

 



96 
 

 

REFERENCES 

[1] Samarasinghe, S., Neural networks for applied sciences and engineering: from 
fundamentals to complex pattern recognition. CRC Press, 2016. 

[2] Poznyak, T. I., Oria, I. C., & Poznyak, A. S., Ozonation and Biodegradation in 
Environmental Engineering, Dynamic Neural Network Approach.  (Chapter 3: 
Background on dynamic neural networks), Elsevier Inc., 58-74, 2019. 

[3] Bengio, Y., Simard, P., & Frasconi, P., Learning Long-Term Dependencies with 
Gradient Descent Is Difficult. IEEE Transactions on Neural Networks, 5(2), 157-166, 
1994.  doi:10.1109/72.279181. 

[4] Jaeger, H., The ‘Echo State’ Approach to Analyzing and Training Recurrent Neural 
Networks—with an Erratum Note. GMD Technical Report, 148:34, Bonn, Germany: 
German National Research Center for Information Technology, 2001.  

[5] Maass W., Natschlager T., & Markram H., Real-time computing without stable 
states: A new framework for neural computation based on perturbations. Neural 
computation., 14(11), 2531–2560, 2002. 

[6] Steil, J. J., Backpropagation-decorrelation: online recurrent learning with O(N) 
complexity. In IEEE International Joint Conference on Neural Networks, 2, 843-848, 
2004. 

[7] Yilmaz, O., Machine Learning using Cellular Automata based Feature Expansion 
and Reservoir Computing. Journal of Cellular Automata, 10(5-6), 435-472, 2015. 

[8] Margem, M., & Yilmaz, O., How much computation and distributedness is needed 
in sequence learning tasks?” In Artificial General Intelligence, AGI-16, Lecture 
Notes in Computer Science, Springer, 9782, 274-283, 2016. 

[9] Margem, M., & Gedik, O. S., Reservoir Computing Based on Cellular Automata 
(ReCA) in Sequence Learning. Journal of Cellular Automata. 14(1-2), 153-170, 
2019. 

[10] Funahashi, K., & Nakamura, Y., Approximation of dynamical systems by continuous 
time recurrent neural networks. Neural networks, 6(6), 801-806, 1993. 

[11] Siegelmann, H. T., & Sontag, E. D., On the computational power of neural   nets. 
Journal of computer and system sciences, 50(1), 132-150, 1995. 

[12] Doya, K., Bifurcations in the learning of recurrent neural networks. In IEEE 
International Symposium on Circuits and Systems, 2777–2780, 1992. 

[13] Hochreiter, S., & Schmidhuber, j., Long short-term memory” Neural computation, 
9(8), 1735-1780, 1997. 



97 
 

 

[14] Al Rodan, A. A., Architectural design of Echo state network. School of Computer 
Science, College of Engineering and Physical Sciences, The University of 
Birmingham, Ph.D. Thesis, 2012. 

[15] Atiya, A. F., & Parlos, A. G., New results on recurrent network training: Unifying 
the algorithms and accelerating convergence. IEEE Transactions on Neural 
Networks, 11, 697-709, 2000. 

[16] Tino, P., & Dorffner, G., Predicting the future of discrete sequences from fractal 
representations of the past. Machine Learning. 45(2), 187-218, 2001. 

[17] Ishii, K., van der Zant, T., Becanovic, V., & Ploger, P., Identification of motion with 
echo state network. In Proceedings of the Oceans 2004 MTS/IEEE -Techno-Ocean 
Conference, 3 1205-1210, 2004. 

[18] Bush, K., & Anderson, C., Modeling reward functions for incomplete state 
representations via echo state networks. In Proceedings of the International Joint 
Conference on Neural Networks, Montreal, Quebec, 2005. 

[19] Deng, Z., & Y., Zhang., Collective behavior of a small-world recurrent neural system 
with scale-free distribution. IEEE Transactions on Neural Networks, 18(5), 
1364-1375, 2007. 

[20] Jones, B., Stekel, D., Rowe, J., & Fernando, C., Is there a liquid state machine in the 
bacterium escherichia coli?. In Proceedings of the 2007 IEEE Symposium on 
Artificial Life (CI-Alife), 18-191., 2007. 

[21] Schmidhuber, J., Wierstra, D., Gagliolo, M., & Gomez, F., Training recurrent 
networks by evolino. Neural Computation, 19, 757-779, 2007. 

[22] Rad, A. A., Jalili, M., & Hasler, M., Reservoir optimization in recurrent neural 
networks using kronecker kernels. In IEEE International Symposium on Circuits and 
Systems, 868-871, IEEE, 2008. 

[23] Dockendorf, K. P., Park, I., Ping, H., Príncipe, J. C., & DeMarse, T. B., Liquid state 
machines and cultured cortical networks: The separation property. Biosystems, 
95(2), 90-97, 2009. 

[24] Jaeger, H., A tutorial on training recurrent neural networks, covering BPPT, RTRL, 
EKF and the ‘echo state network’ approach. Technical report GMD report 159, 
German National Research Center for Information Technology, 2002. 

[25] Jaeger, H., & Hass, H., Harnessing nonlinearity: predicting chaotic systems and 
saving energy in wireless telecommunication. Science, 304, 78-80, 2004. 

[26] Skowronski, M. D., & Harris, J. G., Minimum mean squared error time series 
classification using an echo state network prediction model. In IEEE International 
Symposium on Circuits and Systems, Island of Kos, Greece, 3153-3156, 2006. 



98 
 

 

[27] Tong, M. H., Bicket, A. D., Christiansen, E. M., & Cottrell, G. W., Learning 
grammatical structure with echo state network. Neural Networks, 20, 424-432, 2007. 

[28] Soh, H., & Demiris, Y., Iterative temporal learning and prediction with the sparse 
online echo state gaussian process. In International Joint Conference on Neural 
Networks (IJCNN), 1-8, IEEE, 2012. 

[29] Jalalvand, A., Van Wallendael, G., & Van de Walle, R., Real-time reservoir 
computing network-based systems for detection tasks on visual contents. In 7th 

International Conference on Computational Intelligence, Communication Systems 
and Networks (CICSyN), 146-151, IEEE, 2015. 

[30] Maass, W., Natschläger, T., & Markram, H., Fading memory and kernel properties 
of generic cortical microcircuit models. Journal of Physiology-Paris 98, 315-330, 
2004. 

[31] Yildiz, I. B., Jaeger, H., & Kiebel, S. J., Re-visiting the echo state property. Neural 
networks, 35, 1-9, 2012. 

[32] Lukoševičius, M., & Jaeger, H., Reservoir computing approaches to recurrent neural 
network training. Computer Science Review, 3(3), 127-149, 2009. 

[33] Bertschinger, N., & Natschläger, T., Real-time computation at the edge of chaos in 
recurrent neural networks. Neural computation, 16(7), 1413-1436, 2004. 

[34] Legenstein, R., & Maass, W., Edge of chaos and prediction of computational 
performance for neural circuit models. Neural Networks. 20(3), 323-334, 2007. 

[35] Lukoševičius, M., A Practical Guide to Applying Echo State Networks. In Neural 
Networks: Tricks of the Trade, Lecture Notes in Computer Science, 659-686, 
Springer, 2012, 

[36] Adamatzky, A., Computing in nonlinear media and automata collectives. CRC Press, 
2001. 

[37] Fernando, C., & Sojakka, S., Pattern recognition in a bucket. In European Conference 
on Artificial Life (ECAL 2003), 588-597, Springer, 2003. 

[38] Dai, X., Genetic Regulatory Systems Modeled by Recurrent Neural Network. In 
Proceedings, Part II, Advances in Neural Networks: International Symposium on 
Neural Networks (ISNN 2004), 519-524, Springer, 2004.  

[39] Jones, B., Stekel, D., Rowe, J., & Fernando, C., Is There a Liquid State Machine in 
the Bacterium Escherichia coli?. In Proceedings of the IEEE Symposium on 
Artificial Life 2007 (ALIFE’07), 187-191, IEEE, 2007. 

[40] Paquot Y., Duport, F., Smerieri, A., Dambre, J., Schrauwen, B., Haelterman, M., & 
Massar, S., Optoelectronic Reservoir Computing. Scientific Reports in Nature, 2, 
287, 2012. doi:10.1038/srep00287 



99 
 

 

[41] Larger, L., Soriano, M. C., Brunner, D., Appeltant, L., Gutiérrez, J. M., Pesquera, L., 
Mirasso, C. R., & Fischer, I., Photonic Information Processing beyond Turing: An 
Optoelectronic Implementation of Reservoir Computing. Optics Express, 20(3), 
3241-3249, 2012. doi:10.1364/OE.20.003241. 

[42] Ortín, S., Soriano, M. C., Pesquera, L., Brunner, D., San-Martín, D., Fischer, I., 
Mirasso C. R., & Gutiérrez, J. M., A unified framework for reservoir computing and 
extreme learning machines based on a single time-delayed neuron. Scientific reports, 
5, 14945, 2015. 

[43] Snyder, D., Goudarzi, A., & Teuscher, C., Computational Capabilities of Random 
Automata Networks for Reservoir Computing. Physical Review E, 87(4), 042808, 
2013. doi:10.1103/PhysRevE.87.042808. 

[44] Dale, M., Miller, J. F., Stepney, S., & Trefzer, M. A., Evolving Carbon Nanotube 
Reservoir Computers. In Proceedings of International Conference on 
Unconventional Computation and Natural Computation (UCNC 2016), 49-61, 
Springer International Publishing, 2016. doi:10.1007/978-3-319-41312-9_5. 

[45] Dale, M., Miller, J. F., & Stepney, S., Reservoir Computing as a Model for in-Materio 
Computing. Advances in Unconventional Computing: Volume 1: Theory 
(Adamatzky, A., ed.), 533-571, Springer International Publishing, 2017. 

[46] Goudarzi, A., Lakin, M.R., & Stefanovic, D., DNA reservoir computing: a novel 
molecular computing approach. In International Workshop on DNA Based 
Computers, 76-89, Springer, 2013. 

[47] Yamane, T., Katayama, Y., Nakane, R., Tanaka, G., & Nakano, D., Wave based 
reservoir computing by synchronization of coupled oscillators. In International 
Conference on Neural Information Processing, 198-205, Springer, 2015. 

[48] Coulombe, J.C., York, M.C., & Sylvestre, J., Computing with networks of nonlinear 
mechanical oscillators. PloS one, 12(6), e0178663. 2017. 

[49] Nichele, S., & Gundersen, M. S., Reservoir Computing Using Non-Uniform Binary 
Cellular Automata. Complex Systems, 26(3), 225-245, Complex Systems 
Publications Inc., 2017. 

[50] Nichele, S., & Molund, A., Deep learning with cellular automaton-based reservoir 
computing. Complex Systems, 26(4), 319-339, Complex Systems Publications Inc., 
2017. 

[51] McDonald, N., Reservoir Computing & Extreme Learning Machines using Pairs of 
Cellular Automata Rules. In International Joint Conference on Neural Networks 
(IJCNN), USA, 88, 2429-2436, 2017. 

[52] Tanaka, G., Yamane, T., Héroux, J. B., Nakane, R., Kanazawa, N., Takeda, S., 
Numata, H., Nakano, D., & Hirose, A., Recent advances in physical reservoir 
computing: A review. Neural Networks, 2019. doi: 10.1016//j.neunet.2019.03.005.  



100 
 

 

[53] Hadaeghi, F., He, X., Jaeger, H., Unconventional Information Processing Systems, 
Novel Hardware: A Tour D'Horizon. IRC-Library, Information Resource Center der 
Jacobs University Bremen, 2017. 

[54] von Neumann, J., The General and Logical Theory of Automata. In L.A. Jeffress 
(ed.), Cerebral Mechanisms in Behavior: The Hixon Symposium, 1-31, New York, 
John Wiley, 1951. 

[55] von Neumann, J., Theory of Self-Reproducing Automata. Urbana: University of 
Illinois Press (ed. A.W. Burks), 1966. 

[56] Burks, A. W., (ed.), Essays on Cellular Automata. University of Illinois Press, 1970. 

[57] Frisch, U., Hasslacher, B., & Pomeau. Y., Lattice-gas automata for the Navier-Stokes 
equation. Physical Review Letters, 56(14), 1505-1508, 1986. 

[58] Toffoli, T., & Margolus, N., Cellular automata machines: a new environment for 
modeling. MIT Press, 1987. 

[59] L., Lam, (ed.), Nonlinear Physics for Beginners: Fractals, chaos, solitons, pattern 
formation, cellular automata and complex systems. World Scientific, 1998. 

[60] Shackleford, B., Tanaka, M., Carter, R. J., & Snider, G. FPGA implementation of 
neighborhood-of-four cellular automata random number generators. In Proceedings 
of the 2002 ACM/SIGDA tenth international symposium on Field-programmable 
gate arrays, 106-112, ACM, 2002. 

[61] Gobron, S., Devillard, F., & Heit, B. Retina simulation using cellular automata and 
GPU programming. Machine Vision and Applications, 18(6), 331-342, 2007. 

[62] Powley, E. J., Global properties of cellular automata. PhD Thesis, University of 
York, Department of Computer Science, 2009. 

[63] Wolfram, S., A new kind of science. Wolfram media Champaign, 2002. 

[64] Moore, E.F., Machine models of self-reproduction. In Proceedings of symposia in 
applied mathematics, 14, 17-33, American mathematical society, New York, 1962. 

[65] Gardner, M., The fantastic combinations of John Conway’s new solitaire game of 
life. Sci. Am., 223, 120–123, 1970. 

[66] Jump, J. R., & Kirtane, J. S., On the interconnection structure of cellular automata 
networks. Information and Control, 24(1), 74-91, 1974. 

[67] Dyer, C., One-way bounded cellular automata. Information and Control 44(3), 
261-281, 1980. 

[68] Boccara, N., & Fuks, H., Cellular automaton rules conserving the number of active 
sites. Journal of Physics A: Mathematical and General, 31(28), 6007, 1998. 



101 
 

 

[69] Wolfram, S., Statistical mechanics of cellular automata. Reviews of modern physics, 
55(3), 601-644, 1983. 

[70] Li, W., & Packard, N., The Structure of the Elementary Cellular Automata Rule 
Space. Complex Systems, 4(3), 281-297, 1990. 

[71] Martínez, G. J., A Note on Elementary Cellular Automata Classification. Journal of 
Cellular Automata, 8(3-4), 233-259, 2013. 

[72] Salman, K., Analysis of elementary cellular automata boundary conditions. 
International Journal of Computer Science & Information Technology, 5(4), 35, 
2013. 

[73] Bhattacharjee, K., Naskar, N., Roy, S., & Das, S. A survey of cellular automata: 
types, dynamics, non-uniformity and applications. Natural Computing, 1-29, 2018. 

[74] Martínez, G., Seck-Tuoh-Mora J., & Zenil H., Computation and Universality: Class 
IV versus Class III Cellular Automata. Journal of Cellular Automata, 7(5-6), 
393-430, 2013. 

[75] Martínez, G. J., Seck-Tuoh-Mora, J. C., & Zenil, H. Wolfram’s classification and 
computation in cellular automata classes III and IV. Irreducibility and Computational 
Equivalence, Zenil, H. (ed.), Chapter 17, 237-259, Springer, 2013. 

[76] Cook, M., Universality in elementary cellular automata. Complex Systems, 15(1), 
1-40, 2004. 

[77]  Langton, C. G., Studying Artificial Life with Cellular Automata. Physica D: 
Nonlinear Phenomena, 22(1-3), 120-149, 1986. 

[78] Toffoli, T., & Margolus, N., Cellular Automata Machines. The MIT Press, 1987. 

[79] Martínez, G. J., Adamatzky, A., & Alonso-Sanz, R., “Designing complex dynamics 
in cellular automata with memory. International Journal of Bifurcation and Chaos in 
Applied Sciences and Engineering, 23(10), 1330035, 2013. 

[80] Alonso-Sanz, R., & Martin, M., Elementary cellular automata with elementary 
memory rules in cells: The case of linear rules. Journal of Cellular Automata, 1(1), 
71-87, 2006. 

[81] Yilmaz, O., Reservoir computing using cellular automata. arXiv preprint 
arXiv:1410.0162v1, 2014. 

[82] Yilmaz, O., Symbolic Computation using Cellular Automata based 
Hyperdimensional Computing. Neural Computation, 27(12), 2661-2692, 2015. 

[83] Yilmaz, O., Analogy Making and Logical Inference on Images using Cellular 
Automata based Hyperdimensional Computing. In NIPS, Workshop on Cognitive 
Computation, 2015 



102 
 

 

[84]  Morán, A., Frasser, C. F., & Rosselló, J. L., Reservoir Computing Hardware with 
Cellular Automata. arXiv preprint arXiv:1806.04932v2, 2018. 

[85] Margem, M., & Gedik, O. S., Feed-forward vs. Recurrent Architecture and Local vs. 
Cellular Automata Distributed Representation Based Reservoir Computing in 
Sequence Memory Learning. under review in Artificial Intelligence Review (AIRE), 
2019. 

[86] Nakayama, A., Yamamoto, T., Morita, Y., & Nakamachi, E., Development of multi-
layered cellular automata model to predict nerve axonal extension process. In VI 
International Conference on Computational Bioengineering, 2015. 

[87] Zhang, X., Lu, R., Zhang, H., & Xu, C., A New Digital Signature Scheme from 
Layered Cellular Automata. International Journal of Network Security, 18(3), 
544-552, 2016. 

[88] Martens, J., Sutskever, I., Learning recurrent neural networks with hessian-free 
optimization. In Proceedings of the 28th International Conference on Machine 
Learning (ICML-11), 1033-1040, 2011. 

[89] Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J., A Field Guide to 
Dynamical Recurrent Neural Networks. Chapter Gradient flow in recurrent nets: the 
difficulty of learning long-term dependencies, IEEE press, 2001. 

[90] Jaeger, H., Long Short-Term Memory in Echo State Networks: Details of a 
Simulation Study. Technical report No. 27, Jacobs University Bremen, 2012. 

[91] Pascanu, R., Mikolov, T., & Bengio, Y., On the difficulty of training Recurrent 
Neural Networks” In the 30th International Conference on Machine Learning, USA, 
2013. 

[92] Smolensky, P., Tensor product variable binding and the representation of symbolic 
structures in connectionist systems. Artificial intelligence, 46(1-2), 159-216, 1990. 

[93] Deypir, M., Sadreddini, M. H., & Hashemi, S., Towards a variable size sliding 
window model for frequent itemset mining over data streams. Computers & 
Industrial Engineering, 63, 161–172, 2012.  doi: 10.1016/j.cie.2012.02.008. 

[94] Kang, G., & Guo, S., Variable sliding window DTW speech identification algorithm. 
In 2009 Ninth International Conference on Hybrid Intelligent Systems, 1, 304-307, 
IEEE, 2009. doi: 10.1109/HIS.2009.66. 

[95] Myung, I. J., The importance of complexity in model selection. Journal of 
mathematical psychology, 44(1), 190-204, 2000. 

[96] Weston, J., Chopra, S., & Bordes, A., Memory Networks. International Conference 
on Learning Representations (ICLR), USA, 2015. 

[97] Graves, A., Wayne, G., & Danihelka, I., Neural Turing machines” arXiv preprint 
arXiv:1410.5401, 2014. 



103 
 

 

[98] Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, 
A., et al. Hybrid computing using a neural network with dynamic external memory. 
Nature, 538(7626), 471, 2016. 

[99] Collier, M., & Beel, J., Implementing Neural Turing Machines. Artificial Neural 
Networks and Machine Learning – ICANN 2018, Lecture Notes in Computer 
Science, 11141, 94-104, Springer International Publishing, 2018.  

[100] Doran, R. W., The Gray Code. Journal of Universal Computer Science, 13(11), 
1573-1597, 2007. 

[101] Dietterich, T. G., Machine learning for sequential data: A review. Structural, 
syntactic, and statistical pattern recognition, 15-30. Springer, 2002. 

[102] Huang, G. B., Zhu, Q. Y., & Siew, C. K., Extreme learning machine: a new learning 
scheme of feedforward neural networks. In Proceedings 2004 IEEE International 
Joint Conference on Neural Networks IJCNN, 2, 985-990, 2004.  

[103] Huang, G. B., Wang, D. H., & Lan, Y., Extreme learning machines: a survey. 
International Journal of Machine Learning and Cybernetics, 2(2), 107-122, 2011. 

[104] Wolfram, S., Tables of Cellular Automaton properties 1986. Appendix in Cellular 
automata and complexity: collected papers, 513-584, Westview Press, 1994. 

[105] Kuhn, M., & Johnson, K., Applied Predictive Modeling. Science+Business Media 
New York, 26, 71-72, Springer, 2013.  doi: 10.1007/978-1-4614-6849-3.   

[106] Cerda, P., Varoquaux, G., & Kégl, B., Similarity encoding for learning with dirty 
categorical variables. Machine Learning, 107(8-10), 1477-1494, 2018. 

[107] Zhang, H., Feng, X., Li, B., Wang, Y., Cui, K., Liu, F., Dou, W., & Huang,                                                                                                                                                                                                                                                                                                                                                                                                                                
Y., Integrated photonic reservoir computing based on hierarchical time-multiplexing 
structure. Optics express., 22(25), 31356-31370. 2014. 

[108] Kudo, M., Toyama, J., & Shimbo, M., Multidimensional curve classification using 
passing-through regions. Pattern Recognition Letters., 20(11), 1103-1111, 1999. 

[109] kdd.ics.uci.edu/databases/JapaneseVowels/JapaneseVowels.html, retrieved 1 Oct. 
2017. 

[110] Geurts, P., Pattern extraction for time series classification. In European Conference 
on Principles of Data Mining and Knowledge Discovery, 115-127, Springer, 2001. 

[111]  Barber, D., Dynamic Bayesian networks with deterministic latent tables. In 
Advances in Neural Information Processing Systems (NIPS). 2003. 

[112] Strickert, M., Self-organizing neural networks for sequence processing. Ph.D. thesis, 
Univ. of Osnabruck, Dpt. of Computer Science. 2004. 



104 
 

 

[113] Jaeger, H., Lukoševičius, M., Popovici, D., & Siewert, U., Optimization and 
applications of echo state networks with leaky-integrator neurons. Neural networks, 
20(3), 335-352, 2007. 

[114] Jaeger, H., Controlling recurrent neural networks by conceptors. arXiv preprint 
arXiv:1403.3369, 2017. 

[115] Antoniol, G., Rollo, V. F., & Venturi, G., Linear predictive coding and cepstrum 
coefficients for mining time variant information from software repositories. ACM 
SIGSOFT software engineering notes, 30(4), 1-5, 2005. 

[116] Molund, A., Deep Reservoir Computing Using Cellular Automata. M.Sc. thesis, 
Norwegian University of Science and Technology, Department of Computer 
Science, 2017. 

[117] Fisher, R., The use of multiple measurements in taxonomic problems. Contributions 
to Mathematical Statistics, John Wiley, NY, 1950.                                                                                                                                                                                                                                                                                           

[118] archive.ics.uci.edu/ml/datasets/iris, retrieved 20 Nov 2017. 

[119] Kumar, A., Ondruska, F., Iyyer, M., Bradbury, J., Gulrajani I., Zhong, V., Paulus, R., 
& Socher, R., Ask Me Anything: Dynamic Memory Networks for Natural Language 
Processing. In Proceedings of the 33rd International Conference on Machine 
Learning in PMLR., 48, 1378-1387, 2016. 

[120] Weston, J., Bordes, A., Chopra, S., Rush, A. M., van Merrienboer, B., Joulin, A., & 
Mikolov, T., Towards AI-Complete Question Answering: A set of Prerequisite Toy 
Tasks. arXiv preprint arXiv: 1502.05698v10, 2015. 

[121] Lee, M., He, X., Yih, W. T., Gao, J., Deng, L., & Smolensky, P., Reasoning in Vector 
Space: An Exploratory Study of Question Answering. arXiv preprint arXiv: 
1511.06426v4., 2016. 

[122] Pennington, J., Socher, R., & Manning, C., Glove: Global vectors for word 
representation. In Proceedings of the 2014 conference on empirical methods in 
natural language processing (EMNLP), 1532-1543, 2014. 

[123] Sukhbaatar, S., Weston, J., & Fergus, R., End-to-end memory networks. In Advances 
in neural information processing systems, 2440-2448, 2015. 

[124] Bahdanau, D., Cho, K., & Bengio, Y., Neural machine translation by jointly learning 
to align and translate. arXiv preprint arXiv:1409.0473, 2014. 

[125] Yu, Y., Zhang, W., Hang, C. W., Xiang, B., & Zhou, B., Empirical study on deep 
learning models for question answering. arXiv preprint arXiv:1510.07526, 2015. 

[126] Peng, B., Lu, Z., Li, H., & Wong, K. F., Towards neural network-based reasoning. 
arXiv preprint arXiv:1508.05508, 2015. 



105 
 

 

[127] Patel, K., Vala, J., & Pandya, J., Comparison of various classification algorithms on 
iris datasets using WEKA” International journal of Advance Engineering and 
Research Development (IJAERD), 1(1). 2014. 

[128] WEKA at http://www.cs.waikato.ac.nz/~ml/weka. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.cs.waikato.ac.nz/%7Eml/weka


106 
 

 

CURRICULUM VITAE 

PERSONAL INFORMATION 

Name Surname : Mrwan MARGEM  

Date of Birth  : 21/08/1968  

Phone   : 0090 537 49 35 301  

E-mail   : m_mrwan@yahoo.com  

EDUCATION 

1982 – 1985  

Baccalaureate in sciences, Zawit Al Dehmani higher school, Tripoli / 

Libya. 

1985 – 1990  

B.Sc. of Engineering sciences, Electrical & Electronic Dept., Faculty 

of Engineering, Tripoli University, Tripoli / Libya. 

2002 – 2004 

M.Sc. of Control Engineering, Henri Poincaré University, Nancy / 

France. 

  

WORK EXPERIENCE 

1991 – 1993 

Assistant lecturer in computer laboratory in Electrical & Electronic 

Dept. at Tripoli University. 

 



107 
 

 

1994 – 1996 

lecturer in Digital circuits at the Higher Institute of Industrial 

Technology. Tripoli / Libya 

1997 – 2001 

lecturer in Electronic circuits at the Higher Institute of Electronic 

Professions. Tripoli / Libya 

2005 – 2007 

lecturer in Electronic Instrumentation & Maintenance at the Higher 

Institute of Electronic Professions. Tripoli / Libya 

2008 – 2013 

lecturer in Sensors, Data Acquisition & Power Electronics at the 

College of Electronic Technology-Tripoli. 

 

LANGUAGES 

                        Arabic (Native), English, French. 

TECHNICAL SKILLS 

Programing Languages: Matlab, Python. 

Networking   :  CISCO Network Academy (CCNA) 1,2,3,4. CCNA certified trainer. 

Platforms      :  Windows 98/2000/XP/Vista/7/8/10. 

Tools             :   Latex, MS Office. 

 

TOPICS OF INTEREST 

Control Engineering, Power Electronics, Machine Learning. 



108 
 

 

PUBLICATIONS 

- Margem, M., El-Mezugi, D., & Najmeddin, H., “Comparison between the 
actual and standard specifications of Op-amp 741 and study their effects on the 
experiments at the College of Electronic Technology-Tripoli” In the 1st 
Conference of Technology Education, Ezzawia / Libya, 2013. 
 

- Margem, M., & Yilmaz, O., “How much computation and distributedness is 
needed in sequence learning tasks?” In Artificial General Intelligence, AGI-16, 
Lecture Notes in Computer Science, Springer, 9782, 274-283, 2016. 
 

- Margem, M., & Gedik, O. S., “Reservoir Computing Based on Cellular 
Automata (ReCA) in Sequence Learning. Journal of Cellular Automata. 
14(1-2), 153-170, 2019. 
 

- Margem, M., & Gedik, O. S., “Feed-forward vs. Recurrent Architecture and 
Local vs. Cellular Automata Distributed Representation Based Reservoir 
Computing in Sequence Memory Learning. under review in Artificial 
Intelligence Review (AIRE), 2019. 

 

 

 

 

 

 

 

 

 

 

 

 


	Ph.D. THESIS EXAMINATION RESULT FORM
	ETHICAL DECLARATION
	ACKNOWLEDGMENTS
	ABSTRACT
	ÖZ
	NOMENCLATURE
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1
	INTRODUCTION
	1.1 Reservoir Computing
	1.1.1 ESNs Framework
	1.1.2 Physical Reservoir

	1.2 Cellular Automata
	1.2.1 Dimension and Neighborhood
	1.2.2 Cell States
	1.2.3 Local Rule
	1.2.4 Boundary Condition
	1.2.5 Elementary Cellular Automata Classification
	1.2.6 Linear Cellular Automata
	1.2.7 Elementary Cellular Automata with Memory

	1.3 Overview of Reservoir Computing based on Cellular Automata
	1.4 Contributions
	1.5 Thesis Outline
	1.6 Publications from the Thesis

	CHAPTER 2
	RESERVOIR COMPUTING BASED ON CELLULAR AUTOMATA (ReCA)
	2.1 ReCA Implementation
	2.1.1 Encoding Stage
	2.1.1.1 Utilizing Buffers (Zeros Array R)
	2.1.1.2 Reducing Interference Ri
	2.1.1.3 Multilayer Cellular Automata Expansion CA

	2.1.2 Cellular Automata Reservoir Stage
	2.1.3 Read-out Stage

	2.2 Covariance and Stack Reservoir
	2.2.1 Covariance Reservoir
	2.2.2 Stack Reservoir

	2.3 Pathological Synthetic Tasks
	2.3.1 Memory Tasks
	2.3.1.1 5-Bit Task
	2.3.1.2 20-Bit Task
	2.3.1.3 Random Permutation Task.

	2.3.2 Temporal Order Task.
	2.3.2.1 2 Symbols Task.
	2.3.2.2 3 Symbols Task.

	2.3.3 XOR, Addition and Multiplication Tasks.
	2.3.3.1 XOR Task

	2.3.4 Binary Encoded Tasks

	2.4 Experiments
	2.4.1 Training Stage
	2.4.2 Testing Stage
	2.4.3 Model Evaluation

	2.5 Results
	2.5.1 General Results
	2.5.2 The Effect of Training Examples Ntrain
	2.5.3 The Effect of Sequence Length T
	2.5.4 The Effect of the Expansion Ratio f
	2.5.5 Multilayer CA Expansion
	2.5.6 One Hot Encoding
	2.5.7 Comparison with Other Approaches

	2.6 Discussions

	CHAPTER 3
	COMPLEXITY REDUCTION OF ReCA
	3.1 ReCA Implementation
	3.1.1 Feature Extraction from the Reservoir
	3.1.1.1 Essential Feature Extraction
	3.1.1.2 Supplementary Feature Extraction


	3.2 Experiments
	3.3 Results
	3.3.1 5-Bit and 20-Bit Tasks
	3.3.2 Random Permutation Task
	3.3.3 Temporal Order Tasks
	3.3.4 XOR Task

	3.4 Discussions

	CHAPTER 4
	ReCA VS. FEEDFORWARD ARCHITECTURE AND LOCAL REPRESENTATION
	4.1 ReCA Implementation
	4.1.1 Feature Extraction from the Reservoir
	4.1.2 ReCA in Feedforward Architecture

	4.2 Experiments
	4.2.1 5-Bit Task
	4.2.2 Generalized 5-Bit Task
	4.2.3 Training\Testing Stages
	4.2.4 ReCA Evaluation

	4.3 Results
	4.3.1 5-Bit Task
	4.3.2 Generalized 5-Bit Task
	4.3.3 CA Feedforward Architecture
	4.3.4 Local Representation Models
	4.3.5 Comparison with other Approaches

	4.4 Discussions

	CHAPTER 5
	NONBINARY AND STATIC TASKS
	5.1 ReCA Implementation
	5.2 One Hot Encoding
	5.3 Sin/Square Classification Task
	5.3.1 Input Binarization
	5.3.2 Results

	5.4 Japanese Vowels Task
	5.4.1 Results

	5.5 IRIS Task
	5.5.1 Feedforward and Recurrent Architecture
	5.5.2 Results

	5.6 Discussions

	CHAPTER 6
	ReCA in QUESTION ANSWERING
	6.1 The (20) QA bAbI Tasks
	6.2 Related Work
	6.3 Training Methods
	6.4 Results
	6.5 Discussions

	CHAPTER 7
	CONCLUSION AND FUTURE WORK
	7.1 Future Work

	REFERENCES
	CURRICULUM VITAE



