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ABSTRACT 

IMAGING AND EVALUATING THE MEMORY ACCESS FOR 

MALWARE 

YÜCEL, Çağatay 

Ph.D., Computer Engineering 

Advisor: Assoc. Prof. Ahmet Hasan Koltuksuz 

August 2019 

Malware analysis is a forensic process. After infection and the damage represented 

itself with the full scale, then the analysis of the attack, the structure of the executable 

and the aim of the malware can be discovered. These discoveries are converted into 

analysis reports and malware signatures and shared among antivirus databases and 

threat intelligence exchange platforms. This highly valuable information is then 

utilized in the detection mechanisms in order to prevent further dissemination and 

infections of malware. The types of analysis of the malware sample in this process can 

be grouped into two categories: static analysis and dynamic analysis. In static analysis, 

the executable file is reverted to the source code through disassemblers and reverse 

engineering software and analyzed whereas dynamic analysis includes running the 

sample in an isolated environment and analyzing its behavior. Both static and dynamic 

analysis have limitations such as packing, obfuscation, dead code insertion, sandbox 

detection, and anti-debugging techniques. Memory operations, on the other hand, are 

not possible to hide by these limitations and inevitable for any software since the 

inventions of the computational models. Therefore, in this research, memory 

operations and access patterns for the malicious acts are examined and a contribution 

of a novel approach for extracting of memory access images is presented. In addition 

to extraction, methods of how these images can be used for detection and comparison 

is introduced through an image comparison technique. 

Key Words: Malware Analysis, Malware Imaging, Memory Analysis, Dynamical 

Binary Analysis, Memory Operations Analysis.
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ÖZ 

ZARARLI YAZILIMLAR İÇİN BELLEK ERİŞİMLERİNİN 

GÖRÜNTÜLENMESİ VE DEĞERLENDİRİLMESİ 

YÜCEL, Çağatay 

Doktora Tezi, Bilgisayar Mühendisliği Bölümü 

Danışman: Doç. Dr. Ahmet Hasan Koltuksuz 

Ağustos 2019 

 

 Kötü amaçlı yazılım analizi adli bilişsel bir süreçtir. Zararlı yazılım; başarılı 

bir şekilde hedef bilgisayara bulaştıktan, amaçladığı zarar hedef bilgisayarda 

oluştuktan ve yazılım kendini tam ölçekte gösterdikten sonra ancak çalıştırılabilir 

dosyanın hedefi ve yapısı gerçek anlamda anlaşılabilir. Zararlı yazılım analizi ile elde 

edilen bu bulgular kötü amaçlı yazılım imzalarına dönüştürülmekte; antivirüs 

veritabanları ve tehdit istihbarat değişim platformları arasında paylaşılmaktadır. Bu 

çok değerli bilgiler daha sonra kötü amaçlı yazılımların daha fazla yayılmasını 

önlemek amacıyla saptama/önleme mekanizmalarında kullanılır. Bu süreçte kötü 

amaçlı yazılım örneğinin analizi iki kategoriye ayrılır: statik analiz ve dinamik analiz. 

Statik analizde çalıştırılabilir dosya, tersine mühendislik yazılımları aracılığıyla 

kaynak koduna geri döndürülüp analiz edilirken, dinamik analiz, çalıştırılabilir 

dosyanın dışarıya kapalı bir ortamda çalıştırılmasını ve davranışlarının analizini içerir. 

Hem statik hem de dinamik analiz, paketleme, perdeleme, ölü kod ekleme, sanal 

makinenin algılanması ve hata ayıklama önleme teknikleri gibi analiz önleme 

teknikleriyle sınırlıdır. Öte yandan bellek üzerinden gerçekleştirilen analiz işlemleri 

bu sınırlamalarla gizlenemez ve bilgisayar sistemlerinin modellerinin icadından bu 

yana herhangi bir yazılım için kaçınılmazdır. Bu nedenle, bu araştırmada, kötü niyetli 

eylemler için bellek işlemleri ve bellek erişim örüntüleri incelenmiş, bellek erişim 

görüntülerinin çıkarılması için yeni bir yaklaşımın katkısı litaretüre sunulmuştur. Bu 

çıkarma yöntemine ek olarak, bu görüntülerin tespiti ve karşılaştırma için nasıl 

kullanılabileceği görüntü karşılaştırma tekniği ile ortaya konulmuştur. 

 

Anahtar Kelimeler: Zararlı Yazılım Analizi, Zararlı Yazılım Görüntüleme, Bellek 

Analizi, Dinamik Çalıştırılabilir Dosya Analizi, Bellek Operasyonları Analizi.
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CHAPTER 1 

INTRODUCTION 

 A malware, short for malicious software is a software to accomplish harmful, 

unwanted, and illegal tasks on a computer system. There are many types of malware 

as of today; viruses, worms, trojans, spyware, ransomware, botnets and so on. Malware 

analysis is the forensics process performed to reveal the aim, structure, characteristics, 

damages, and impacts of malicious software. 

 The ever-evolving race between malware developers and cybersecurity 

professionals is an arms race. Just as in any other regular software development 

community, malware developing community evolves as well. There are newly 

developed techniques, new anti-detection mechanisms and zero-day vulnerabilities 

that have come to light every day. These improvements lead to trends between malware 

developers and these crafts are shared on the market (usually on the darknet, which is 

the common name for the hidden parts of the Internet that is not routed with the general 

routing algorithms). Malware also evolves through a process called anonymization:  

when a new feature for developing malware is present, it is shared with this community 

of malware developers for utilizations and modifications. Hence, every malware 

developer modifies the code for their selves. Within days, the same feature is integrated 

into several other malware or altered versions of the same malware are accustomed to 

harm other computer systems and networks.  Therefore, this process of anonymization 

provides a large domain for a malware to evolve, whilst keeping the original version 

unknown (Ding, Fung, & Charland, 2016).  

 Until now, anti-malware techniques that are based on signature matching have 

been successful in known types of malware. A signature is a predefined pattern of the 

malicious software extracted by the analysis and scanning of the machine code of the 

software (Gandotra, Bansal, & Sofat, 2014).  There are two types of malware analysis: 

Static Analysis and Dynamic Analysis. Static analysis has the means to analyze the 

binary of the malware through reverse-engineering and disassembling. Specific strings 

and patterns are extracted from the reversed code and shared as signatures of the 
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sample. In dynamic analysis, the executable is run in a preset secure environment 

(called sandbox), and the behavior of the malicious is observed through debugging and 

hooking on the network communications, system calls, memory accesses, and disk 

operations.  

 Malware developers have integrated several countermeasures to their software 

to evade from static analysis and signature detection. These are mainly; obfuscation, 

packing, metamorphism, polymorphism, and encryption techniques. Obfuscation is a 

process applied to the source code so that it is not readable by humans. Several 

methods are involved in the process of obfuscation; dead code insertion, instruction 

substitution, register substitution, function reordering (Farhadi et al., 2015). Dead code 

insertion is to insert code blocks and random instructions to the original code that are 

never going to be executed. This technique leads to loss of performance of the malware; 

however, as the source code is modified, the signature detection can be evaded.  

Another technique is the instruction substitution. In this technique, the instructions that 

can be used interchangeably such as jump instructions are replaced. Register 

substitution similarly substitutes data registers for the alteration of the source code. 

The signature and function reordering is, as the name suggests, reorders all the 

subroutines in the executable (You & Yim, 2010). A packer malware archives and 

combines one or more malicious files and codes to modify its code structure. In 

addition to the packing operation, a packer malware deletes its import address tables 

to complicate the analysis (Cheng et al., 2018). In 2006, it is reported that 92% of the 

malware used similar techniques to evade detection (Wei, Zheng, & Ansari, 2008). A 

metamorphic malware contains a mutation engine that alters itself in each execution 

via the packing, encryption, and obfuscation techniques. Although the structure and 

the instructions of the code is altered in every different version, the aim and 

functionality of the malware stay the same. In a polymorphic virus, a part of the code 

that does encryption/decryption is visible in every alteration. Therefore, polymorphic 

viruses are easier to detect compared with the other techniques. 

 Dynamic analysis is running the malicious sample in an isolated, secure 

laboratory environment while examining the behavioral analysis on the sample. 

Dynamic analysis eliminates the anti-analysis measures of the static analysis, as the 

dynamic analysis strips the malware out of any encryption, packing, and obfuscation 

by running it on a sandbox and monitoring its behaviors. Therefore, in dynamic 
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analysis, the malware is analyzed and caught red-handed during the execution, and any 

obfuscation, encryption, or alternation to the original code, therefore, becomes 

meaningless at this stage. This is the main advantage compared to static analysis (Shijo 

& Salim, 2015).  However, dynamic analysis has its limitations. Dynamic malware 

analysis at its core is accomplished in two significant techniques: binary 

instrumentation and debugging. The binary instrumentation is a method of fooling the 

malware by hooking the Application Programming Interface (API) calls and providing 

the necessary responses to these requests to the malware. These hooks are then logged 

and converted into behavioral signatures under the assumption that malicious behavior 

is generally accomplished through utilizing the underlying operating system’s API 

calls. This assumption holds for many cases unless the functions from APIs are 

natively coded in the malware. The second technique, debugging, suffers from 

detection by the malware authors since the debugging generally slows down the 

execution of the steps even though the debugging scheme for detection is automated.    

 Moreover, Dynamic analysis involves memory analysis techniques such as taint 

analysis (Korczynski & Yin, 2017) and memory image differentiating (Teller & Hayon, 

2014).  Taint analysis includes marking some specific memory locations and tracing 

them along the execution and memory image differentiating is taking snapshots of the 

malicious process memory on an interval basis or with predefined triggers and 

contrasting those memory images for maliciousness.  These techniques and the 

literature have been explained in detail in the following chapters in this thesis. 

1.1. History of Malware 

 John Von Neumann gives the first formal definition of a virus in the title of “Self-

reproducing automata” (Neumann, 1969). This definition of this kinematic machine is 

assumed to be the first mention of a machine that is designed to reproduce itself, given 

the parts and the algorithm. The algorithm in this definition is written on an infinite 

tape which is considered to be analogous to the definition of the memory.  In this tape, 

a set of instructions which define the definition of the machine itself are stored. These 

instructions include (i) creating another machinery just as it is from the infinite number 

of parts that constructs the machine. (ii) creating a tape for the new machine and 

copying the contents of its tape. (iii) Attaching the new tape to the new machine and 

thus completing the self-reproduction.  This kinematic machine had some physical, 
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mechanical, and logical limitations such as the infinite number of parts and an infinite 

tape. With the suggestions of Stanislaw Ulam, one of the simultaneous inventors of the 

Cellular Automata (Neumann, 1969), Neumann shifts his kinematic model to a 

Cellular Automata, where the self-reproducing automaton is defined as a Cellular 

Automata with a finite number of states. An implementation of this work is realized in 

1972 by an Austrian computer scientist named Veith Risak (Risak, 1972). In his work, 

he implemented a fully functional model of a self-replication program on SIEMENS 

4004/35 computer system (Miles, 1986). 

 In 1971, a computer program named “creeper” which was the first version of a 

worm invented by Bob Thomas was spreading in the DARPANET. This program is 

not considered to be malicious at all although it copies itself through the network on 

Tenex Operating Systems on DEC PDP-10 computers and runs its copies on the 

memory space of another process. This self-propagation property in malicious 

executables leads to the definition of a computer worm. The name “worm” is 

originated from the science fiction novel by John Brunner named “Shockwave Rider” 

in 1975 describes a universe of networked phones and a shutdown software 

propagating in this universe (Brunner, 1984). Moreover, an early version of anti-virus, 

Reaper, a worm removal program is then written to remove the Creeper worm from 

the network and infected computers.  

 The Creeper and Reaper software both having the properties of a worm and 

chasing one another inspired A. K. Dewdney to design a game called Core War. The 

name comes from the early designs of the memories with ferromagnetic cores.  The 

game includes writing two computer programs in a language called Redcode and 

letting them hunt each other in the memory until one of them dies and erased from the 

memory completely (Dewdney, 1989).  

 The first of the significant attacks to the Internet was in 1988. A worm named 

“Morris Worm” is created and released by the computer graduate from Berkeley, 

Robert Tappan Morris. The worm was released from a terminal in Massachusetts 

Institute of Technology laboratories to cover his tracks, and it hits approximately 6000 

of computers where an estimate of 60.000 computers was connected to the Internet. 

This outbreak then leads to the creation of the first Cyber Emergency Response Team 

(CERT) (FBI, 2018).  
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 In 1984, Kenneth Thompson in his work of  “Reflections on Trusting Trust”, he 

has shown how to modify a compiler to insert a backdoor on any computer program 

that contains “login” command (Thompson, 1984).   A Trojan is a computer program 

that installs itself as a legit program on the host system. In the Thompson’s version of 

a Trojan in this case, the compiler was being the Trojan itself because of inserting a 

backdoor to a source code even though the source code does not have any 

vulnerabilities in it. The first Trojan being reported was a game named “ANIMAL” 

which was a self-replicating program disguised as an animal guessing game. The game 

asks users questions to find out which animal the user was thinking of while in the 

background; it copies itself to all the folders of the UNIVAC system which was 

designed as a folder shared operating system (Miles, 1986).  

 A critical improvement, self-mutation in virus programming was present in 1990. 

In 1990, as a part of an analysis project of virus families, a polymorphic virus family 

called Chameleon was invented by Mark Washburn.  A polymorphic virus is a 

combination of self-reproduction and a mutation engine. The mutation engine is 

provided by a cipher in this family, and this research has proven that many of the 

antivirus programs were useless against such a mutation engine (Kaspersky, 2019). 

 The malicious programs are designed to harm the host systems by inserting 

backdoors, spreading and attaching itself into files and operating systems or copying 

themselves through the network and do harm on file systems and disks of the 

computers. Thereafter, a new type of malware had been released in the early 2000s, 

the spyware. Although the name “spyware” was invented to mock the business 

strategies of Microsoft in a Usenet post in 1996, the term then used to define hardware 

designed for espionage purposes and after that, a software that installs without 

permission, collects user-related information secretively and transfers the data without 

the consent of the user. The term is used in a press release in 2000 by Gregor Freund, 

the founder of Zone Labs for the first time and widely used since then (Avoine, 

Oechslin, & Junod, 2007).  The spyware that is being used for advertisement purposes 

only is called Adware. As of today, this type of spyware can be found in many 

freeware/shareware software bundles and installed automatically at the installation of 

another software.    

 There were many epidemics in malware history.  The first malware that spreads 

out of the laboratory it was written (in the wild) was the ELK Cloner. It was a virus 
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for the Apple computers written in 1982 by Rich Skrenta for Apple DOS systems, and 

the spread was through the floppy disks. Not much long after, in 1989, a hacker with 

a nickname of “Dark Avenger” in Sofia, Bulgaria, had written a virus for MS-DOS 

systems that spread globally. It was corrupting up the storage space, directories and 

files with random codes and the sentence “Eddie lives… Somewhere in time”. The 

spread was so big that it was all around Europe, even USA and Australia (BitDefender, 

2010).   

 Around December 1989, the first sample of the ransomware has been produced 

by Joseph L. Popp. It was before crypto coins and even the internet. The virus was 

spread through a floppy drive, disguised as an educational floppy diskette about AIDS 

virus. After the infection, the virus was encrypting all the files and folders of the 

computer and asked the user to send money to a post office box in Panama.  

 The first virus exchange platform was set up in Bulgaria at the beginning of the 

1990s as a Bulletin-Board System (BBS). The virus database was open to anyone who 

uploads a new virus code. This system had led the malware writers to evolve and 

improve while letting the malware to be anonymized. In 1992, these contributions to 

the virus databases had resulted in the creation of tools and engines that generates 

viruses such as Self-mutating engine (MtE) and Virus Creation Laboratory (VCL). 

These engines contain prearranged payloads and scripts, with which, even script 

kiddies could generate new viruses by mixing the viruses in their databases.  

 One example of utilization of these databases was the Loveletter virus and its 90 

variants in the 2000s. The virus also is known by the name “ILOVEYOU” or “The 

Love Bug”. The malicious code was spread through emails disguised as love letters.  

Within ten days of the first outbreak, %15 of all networked computers were infected 

with one of the samples of Loveletter (BitDefender, 2010).  

Malicious worldwide spreads have continued from the 2000s to the present day. 

Conficker (or Downadup) Worm was first of the greatest hits in malware industry, 

affecting 15 million systems worldwide in 2009s (Touchette, 2015).  The Rebirth of 

the ransomware: Cryptolocker affected 250.000 machines in 2013. The ransomware 

families have grown a lot since then with the Locky, CryptoWall, CryptoDefense, 

WannaCry and several other ransomware.  
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 In 2007, the malware had evolved into a new type of attack mechanism with the 

Stuxnet worm. Malware has been used as a weapon by the governments with the 

pronouncements of cyberspace as one of the war domains. This very sophisticated 

worm had been tailored for a specific device, and a persistent campaign is followed 

until the attack had reached its goals. This type of attack is called an Advanced 

Persistent Threat (APT). Similar aimed malware had been developed after the Stuxnet: 

Flame, Duqu, Duqu2. All of them were tailored and weaponized malware aimed at a 

specific purpose and used in a campaign of a government or groups.  

 Malicious outbreaks and infections are continuing today with the malicious code 

databases, state-sponsored actors, ransomware and botnet developers, code exchange 

platforms on unsolicited and unmapped domains of the Internet such as Darknet or 

Deep web. As our security measures evolve, the malware and malware families are 

evolving at a fast pace as well.  

1.2. Problem Definition, Motivation, and Aim 

 The purpose of malware is to hide from the infected host system and conduct 

malicious acts using the functions, resources, and communications of the system when 

triggered. Therefore, malware developers intend to find new solutions of hiding from 

anti-virus systems day to day and integrate these solutions and evolve their malware 

into new versions by these solutions.  

 A signature of malware is a unique set of bytes that shows the existence of the 

malware in a file or on memory. This set of bytes can also be the hash or checksum 

value of a specific portion of the code, a particular file that the malware drops to host 

system, or malware-specific indicators on memory when the malware runs.  

 There are also behavioral signatures that show if a malicious binary is present 

such as special registry keys that the malware creates and alters or a connection to a 

malicious IP address which is generally the command and control (C2) server. These 

signatures can also be an operating system kernel call to allocate some memory to 

unpack and decipher itself on memory, or an attempt to shut down some a property of 

an operating system or anti-virus to continue executing without detection.  

 There are many ways of malware to alter itself and evade from the static 

signature detection.  
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1.2.1. Obfuscation 

 Obfuscation is a defense mechanism for static analysis. It is a technique to 

transform the malicious code into identical but differently represented new code.  A 

signature generated by a signature analysis consists of a piece of codes represented in 

their byte form and/or relationships between jumps and calls. For such signatures, 

instruction-level obfuscations such as using redundancies in instruction sets, dead 

variable and code insertions, obfuscating the imports table are generally used to evade 

signature detection.    

1.2.2. Oligomorphic Malware 

 An oligomorphic malware is a type of polymorphic malware where there is a 

simple decryptor engine for changing the malicious code with encryption. Usually a 

simple, low-cost and, with a small key size encryption mechanism is used to change 

the byte code of the malware, and since the number of possible alterations of the code 

is low because of the small key size, it is possible to detect such malware by generating 

signatures for all possible keys.  

1.2.3. Polymorphic Malware 

 A polymorphic malware changes its shape at every infection and execution 

through encryption. This type of malware contains a mutation engine inside its code. 

The mutation engine generates not only a new key, a new decryption routine as for 

every execution as well. Therefore, polymorphic malware with a moderately complex 

mutation engine typically can reshape itself into around a billion of different versions 

of itself.  

1.2.4. Metamorphic Malware 

  A metamorphic malware changes its shape and form at every infection and 

execution just as a polymorphic malware but to do so, it utilizes code renaming, adding 

random codes to itself, changing used registers in the code and, changing the level of 

optimization provided by compilers.  
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1.2.5. Dead Code Insertion 

 Inserting codes and functions that are never going to be executed by the code is 

called Dead Code Insertion. This technique aims to evade detection by the signatures 

generated from file hashes. By adding random extra functions and codes to its file, the 

hash value of the executable changes and the detection is tried to be avoided.  

There are also problems in signatures that are extracted from dynamic analysis as well.  

1.2.6. Anti-Vm And Virtual Interface Detection 

 Sandboxing techniques for dynamic analysis involve creating a safe and isolated 

environment for running the executables. Due to their ease at maintenance and 

reproduction, Virtual Machines are selected for this task. However, Virtual Machines 

and their interfaces such as Virtual Network Cards uses particular keys in the registry 

and also leave particular imprints on the memory on the operating system of the Virtual 

Machine. Malware writers analyze these imprints and use them to avoid sandboxes by 

adding extra countermeasures such as not decrypting itself if an indication of Virtual 

Machine is present.    

1.2.7. Anti-Debugging  

 There are conventional techniques among malware writers for understanding 

debugging. The interrupt INT 3 is commonly used for debuggers to break execution at 

each step and hand the control to the debuggers and malware writers generally check 

these interrupt flag to avoid being analyzed. Another common technique is to check 

the time interval between two instructions. If the wait is longer than a regular fetch-

decode-execute cycle, the malware does not reveal itself.  

1.2.8. Execution Stalling 

 The typical approach for running an executable on a sandbox is to pre-set a 

duration for the analysis. This time duration is generally set by the analyst to automate 

the analysis of the malware. For another anti-sandboxing measure, the malware writers 

add a sleep cycle at the beginning of their code, so that if it is a sandbox, the malicious 

activities will not be caught by the sandbox as the analysis time would be over.  
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1.2.9. Logic Bombs – Extended Sleeps 

 Similar to the execution stalling, malware writers set a random date and time to 

execute their malicious goals and let the code stay dormant and inactive until this time 

comes. The malware won’t be caught by the sandbox as the analysis time would be 

over. Another stalling technique to add extended sleeps to avoid being analyzed in the 

timespan of sandbox analysis.  

1.2.10. Native DLL Coding 

 Most behavioral and dynamic analysis and signature extraction techniques are 

based on the API calls of the malware. The decision of maliciousness, the aim of the 

executable, the countermeasures being taken by the malware writer and, the 

communications are generally detected by hooking API calls by the sandbox Operating 

System or a particular DLL that is injected into the binary that is being analyzed. 

Malware writers try to avoid these signatures by writing their native DLLs and system 

calls. However, coding native system calls require expertise on operating systems and 

hardware, and therefore, it is not common among malware to be written in such an 

expert-level way.  

1.2.11. Process Injection 

 As mentioned above, the malware is being monitored and analyzed by the API 

and system calls. In sandboxing, the malicious code and the child processes that it 

starts are monitored. However, some malware tries to inject itself into address space 

of another process and run their API and system calls from another process that is not 

being monitored. This technique, of course, requires to integrate a module of 

exploitation into the malicious code. 

 The summary of these evasion techniques, both static and dynamic, and their 

countermeasures are given in a problem tree in Figure 1.1. In Figure 1.1, the techniques 

are given in rounded rectangles, and the countermeasures are given as rectangles.  
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Figure 1.1- Problem Tree of Signature Generation with Malware Analysis.
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 Moreover, memory forensics had provided several ways to generate signatures 

from the address space of the executable from memory. This kind of signature 

generation involves capturing the address space either by taking the snapshot of the 

process address space between time intervals (Interval Process Dump in Figure 1.1.) 

or taking the snapshot of the memory space by some triggers such as suspicious API 

calls. Considering the case of saving the regular snapshots, the problems within this 

technique are (a) it produces gigabytes of memory data to analyze (b) the malicious 

actions can slip between two intervals. When utilizing system calls to trigger taking 

snapshots of the memory, with this evolving structure of malware, it is hard to decide 

which system and API calls are suspicious.  

 In this thesis, the primary motivation is to propose a novel approach to imaging 

the malware through the artifacts from the memory operations, and the primary aim is 

by utilizing these artifacts and patterns, to identify malicious acts visually and test a 

software rapidly for maliciousness.  

  So far, in the literature, Deep Learning and Machine Learning approaches have 

been explored. Several metrics are constructed utilizing Call Function Graphs, and API 

calls from the static and dynamic analysis. However, to the best of our knowledge, 

there are no comprehensive comparison and classification technique that uses memory 

patterns has been suggested to the literature. This thesis aims to accomplish this by 

extracting unique runtime patterns of malware from memory. In the purpose of 

comparison, the patterns are converted into 3d images, and a very well-known pattern 

and image comparison technique that is widely used in the literature has been 

integrated into this research.  

 The results of this work generated a framework for the visual detection of 

maliciousness with memory patterns. These patterns are inserted into a graph database 

for having a structural and queryable platform. The 3d images are stored along with 

the memory data. This implementation and collection of patterns will act as a visual 

aid and a fingerprint database.    
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1.3. Thesis Outline 

This thesis is outlined as follows: 

• Chapter 2 – Defines the modularity and anonymity of malware, introduces the 

malware families, and explains the spread of malware.  

• Chapter 3 – Presents the static analysis methods and the literature along with 

results of static analysis with their graph database representations. 

• Chapter 4 – Surveys the literature of dynamic analysis. 

• Chapter 5 – Identifies the memory layout of an executable, presents the memory 

forensics literature and explains the idea used in this thesis.  

• Chapter 6 – Reveals the methodology, the algorithms for binary instrumentation, 

and the extraction of the memory patterns. 

• Chapter 7 – Shows the results of a malware dataset that is constructed for this 

research.  

• Chapter 8 – Concludes this thesis with novelties, results, and future work.  
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CHAPTER 2 

BACKGROUND: MALWARE STRUCTURE, FAMILIES AND 

CONSTRUCTION 

This section contains the general background information on the structure of the 

malware, how the malware is designed and executed and, how they exploit the general 

structure of executables on target hosts. Because of the extensive usage of the Portable 

Executable (PE) Format among malware authors, this information is exampled in this 

format throughout this chapter.  

  In a highly abstract view, the structure of different malware characteristics can 

be captured. While the syntactic features can be altered through evasion techniques 

that are mentioned in Chapter 1, structural properties are not likely to change as easy. 

In general, malware is designed to exploit a vulnerability of either an operating system 

component or a user application to accomplish its tasks. No matter how much the code 

itself modified, the target and the exploitation methodology stay the same or very 

similar for malware. This chapter aims to reveal these characteristics in a general view.  

Along with the general algorithms and methodologies of malware types and the 

modular malware are presented in this Chapter.  

2.1. General Layout of PE Files 

 The PE format is the general data structures for the binary files compiled for 

Windows applications in 32 and 64 bits. The format is used both on-disk and in-

memory representations. Because of the memory address alignments and dynamically 

loaded modules of a binary, the memory layout is slightly different from the on-disk 

representation.  

 The general format of a PE file is depicted in Figure 2. The explanation of each 

part of the header is as follows: 
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Figure 2.1. Structure of PE file Format (Pietrek, 2011). 

• MS-DOS Header: This header contains the file signature of executables MZ 

(initials for Mark Zbikowski) and an MS-DOS stub program that is left in 

this header for backward compatibility. This MS-DOS stub only prints out a 

message that states that the program can not be run under MS-DOS. 

• PE Header: It contains two separate headers: image file header structure or 

namely the COFF header and image optional header as stated in Figure 2.  

• COFF Header: This header has seven fields in its data structure:  

o Machine: It holds the information about the architecture of the target 

machine. 

o NumberOfSections: it defines the number of sections in the PE file.  

o TimeDateStamp: holds the compilation time and date.  

o NumberOfSymbols: Number of symbols in the Symbol Table. 

o SizeOfOptionalHeader: Size of the optional header in bytes.  
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o Characteristics: contains information about the PE file.  

• Image Optional Header: This optional header contains the critical 

information about the executable file such as entry point, alignment of the 

executable file sections and memory sections, beginning of the code section, 

DLL characteristics and so on.  

• Section Headers defines the size, location, and permissions of each section 

in the PE file.  

• In section images, there are several sub sections that contains data (.data), 

uninitialized data (.bss), code (.text), resources (.rsrc), import address 

information (.idata) and export address information (.edata). 

 

 Malware authors try to hide their mal-intended codes inside the parts of this data 

structure using obfuscations, encryptions, polymorphism techniques, etc. The 

techniques for understanding this data structure, and the sections without executing the 

code, therefore has limitations that are emerged from this structure itself. These 

limitations are discussed and shown through 2-dimensional and 3-dimensional models 

in this thesis in Chapter 3 and Chapter 6. Following parts of this Chapter concentrates 

on the clean and stripped versions of the types of malware.  

2.2. Structure of a Virus 

 The definition of a virus is a piece of malicious code that copies itself on other 

files and executes a payload to accomplish its malicious tasks. Thus, there are at least 

two parts for a virus, which are the infection code and the payload (Sharp, 2007).  

General pseudocode for a virus is presented in Listing 1.  
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Listing 1 – Pseudocode for a schematic virus (Sharp, 2007). 

Begin Procedure: 

if 𝑠𝑝𝑟𝑒𝑎𝑑_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ≔ 𝒕𝒓𝒖𝒆: 

 for  𝑣 ∈ 𝑣𝑖𝑐𝑡𝑖𝑚_𝑓𝑖𝑙𝑒𝑠 : 

   if not_infected(v): 

    begin_code, end_code = get_placement_for_virus(v); 

    copy_virus(begin_code_ end_code, v); 

    modify_to_execute_inserted_virus(begin_code, v); 

   endif; 

 endfor; 

endif; 

execute_payload(); 

start_execution_of_infected_program(); 

End Procedure 

 

 The procedure of a virus starts with checking the replication environment first. 

In the execution of this part, malicious code might check whether the machine is an 

actual machine or a known sandbox, how much ram does the host machine has, how 

many users are registered to this computer, any known signature of antivirus is present 

and so on. These are the critical decisions of malware regarding its purpose and aim. 

There are some types of malware produced explicitly for particular machines as a part 

of highly advanced campaigns in Advanced Persistent Threats (APT) (Bencsáth, Pék, 

Buttyán, & Félegyház, 2012; Falliere, Murchu, & Chien, 2011). 

 The virus then lists the potential targets in the host system and starts iterating 

them for replication. If the file is not already infected (as every copy of this abstract 

virus will work concurrently), it finds the suitable section in the file for replication and 

drops itself inside the file. During this environment, if the target file is an executable 

(generally preferred to be such), the structure of the executable is exploited, and the 

entry point of the target executable is altered for the replicated virus to start. After all 

the potential files are infected, the payload is executed. Execution of the payload is the 

part where actual harm is done besides the illegal replication process. In general, after 
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the job of the virus is completed, the infected program is also run so that the virus itself 

lives undetected in the infected program.  

 As an example of this process, the virus code with the name of 

Virus.W32.Virut.ce is presented and analyzed in this part. The technical analysis of 

this virus is done by Kaspersky Laboratories and presented as a web page in 2010 

(Zakorzhevsky, 2010).  This sample is known as one of the fastest spreading types of 

a virus, and it utilizes many evading techniques such as polymorphism, obfuscation, 

anti-debugging, and anti-virtual machine.  

 As for the spreading conditions, this sample checks the tick count of the host 

machine by the instruction rdtsc and GetTickCount() function of Windows API. 

Getting the tick count between instructions are aimed for determining if the virus is 

being debugged or analyzed in a sandbox environment. If the tick count holds the virus 

continues with the spreading. 

 This virus tries to replicate itself through a Portable Document File (PDF) 

plugins vulnerabilities of browsers. The virus copies a download link line for 

the .htm, .php, .asp files of the target computer. Also, it attaches itself to small 

executable files such as keygens and crack programs.  

 The virus uses Entry Point Obscuring (EPO) methods to run its payload. It inserts 

itself to the address space of Explorer.exe (or services.exe, iexplorer.exe) and it alters 

the entry point line in the optional header of the PE structure so that the payload 

executes. This strategy is illustrated in Figure 2; it contains injection into another 

process address space, obscuring the entry point, decrypting the original virus code 

and execution.  

  Afterward, it connects to a Command and Control address and retrieves further 

instructions. Although this property is a Trojan-type malware property, these lines in-

between malware types are quite blurred as every malware author tries to improve their 

code by adding several functions from other malware. This property is discussed in the 

malware families part later in this Chapter.  
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Figure 2.2. (a) The virus inserts itself into another executable. (b) The virus alters 

the entry point in the header. (c) New entry point jumps to decryptor of the static 

encrypted virus body. (d) The decrypted virus body executes. 

 The virus uses two engines for modifications while spreading to avoid signature-

based detections. While the first one changes the code itself, which decrypts the 

malware, the other one decrypts the static body of the malware. More details on this 

malware can be found in the reference article (Zakorzhevsky, 2010). 

 

 



20 

 

 

2.3. Structure of a Worm 

  Similar to a virus, a worm also has the capability of reproduction on a network 

environment. The anti-inspection and disguise techniques are similar, but a worm 

generally contains other parts for finding new targets on the network and exploiting 

some vulnerability to a new host. Therefore, all worms contain the three essential parts: 

the sniffer, the propagator, and the payload. Since the infection is on a target network 

rather than on a target host, there are some other managemental parts for a worm such 

as life-cycle manager, remote control and update manager (Szor, 2005).  

 A general worm strategy can be given in the following pseudocode in Listing 2.   

Listing 2 – Pseudocode for a schematic worm (Sharp, 2007). 

Begin Procedure: 

if 𝑠𝑝𝑟𝑒𝑎𝑑_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ≔ 𝒕𝒓𝒖𝒆: 

 victim_hosts_addresses = search_for_victims(); 

 for  𝑣 ∈ 𝑣𝑖𝑐𝑡𝑖𝑚_ℎ𝑜𝑠𝑡𝑠_𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠 : 

   if not_infected(v): 

    fingerprint_network_host(v); 

    transfer_code(v_address, port, payload); 

    send_message_to_execute_on_host(v); 

   endif; 

 endfor; 

endif; 

execute_payload(); 

check_for_updates(); //optional 

listen_remote_connections(); //optional 

End Procedure 

 

 Many versions of worms rely on human interactions to execute on the targeted 

hosts. It can be an email attachment to view or a network connection to accept. 

However, as the sophistication of malware improves, the vulnerabilities on target hosts 

are utilized, and the need for the interaction is decreased for the propagation.  
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 New targets of the worm can be found in many ways depending on the 

propagation strategy. The most common ones are as follows: 

• Email Discovery: In this type of spreading strategy, the worm looks for contacts 

and email addresses in human readable files and send itself to these addresses 

through an email client.  

• File Share Discovery: The worm searches for shared files, folders and drives and 

locates itself to these drives or files for propagation.  

• Communications Discovery: This strategy includes the worm sniffing the 

network communications of the current host and trying to exploit 

vulnerabilities of network communications.  

• Network Discovery: This strategy needs the worm to have network scanning 

modules to provide propagation. Some search strategies on a networked 

environment for a worm would be random scanning, permutation scanning,  

localized scanning, hit-list scanning, topological scanning, meta-server 

scanning (Smith & Matrawy, 2008).  

 As an example of this strategy, the analysis report for W32.Waledac worm is 

used in this part (Tenebro, 2009). The worm Waledac is a multipurpose worm; it has 

the functionalities of emailing, vulnerability exploiting, mining the host, acting as a 

proxy and acting as a binary downloader.  

 The first propagation strategy of this worm is social engineering, which involves 

sending Christmas themed emails, phishing emails about the election campaigns of 

2008-2009 and a popular news site. The second strategy is about the websites that host 

this virus; these websites exploit browser vulnerabilities for the victims to download 

the malware.  

 This malware aims to create a botnet through spamming and steal FTP 

information from the infected targets. After successfully running on a host, the emails 

in user files (other than video and music files) are gathered and spamming continues. 

As for the payload, the malware creates a node list of other bots in its neighborhood 

and generates a fast-flux network structure for malware hosting nodes. The nodes act 

as a proxy for the hosting websites to avoid detection.  
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2.4. Structure for a Trojan 

 A trojan is engineered to resemble a useful, harmless program that gains control 

of the target computer and do harm or steal data and network information. A trojan is 

a software that aims to acquire full control of the target machine. There are many types 

of Trojans such as a banking trojan, a fake anti-virus trojan, a distributed denial-of-

service trojan, a backdoor trojan, a ransom trojan, an info-stealer trojan, and so on. 

Therefore, it is hard to derive a single procedure to cover all these aspects. However, 

their code structure contains an installment procedure, a sign-on procedure, a privilege 

escalation procedure, and a connection interface with the command and control (C&C). 

These procedures are depicted in Figure 2.3.  

  

 

Figure 2.3. A Flow Chart of a Computer Trojan. 

 In the installment procedure, the malicious code is generally hidden inside 

another executable, such as an online gaming client or a keygen. The fake cover 
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executable is designed to trick the user into installing to the target system. It can also 

use social engineering techniques to install itself on the potential host.  

 The sign-on procedure involves connecting to the master server for further 

instructions. It generally includes getting general information on the host machine to 

create a unique identification code for the host computer. An example of this procedure 

is the banking Trojan.Dyre (Symantec, 2015). Trojan.Dyre aims to steal banking 

credentials by directing the user of the host computer to fraud websites. It uses spam 

email messages as an infection vector and installs itself through the 

Downloader.Upatre which is used in many attack campaigns in computer crimes 

history. After Trojan.Dyre has been installed on the target computer, it collects the 

banking information from vulnerabilities of popular browsers, generates a campaign 

Id, host Id and logs in to the C&C server to transfer the credentials.  

 In the privilege escalation procedure, computer trojans use an operating system 

vulnerability to gain root access on the host system. In the example of Trojan.Dyre, a 

vulnerability in a database compatibility service program, is utilized to redirect root 

privileges to run the malware component. As for the C&C procedure, either a full 

remote control is provided, or an interface or an encapsulation module for the desired 

commands are provided to the attacker. 

2.5. Malware Families 

 A group of malware that shares common properties and functionalities is called 

malware families. There are many reasons for malware to grow into a family. The first 

one is a process called anonymization. Anonymization is done by the malware authors 

to hide the actual author of the malware; they upload their malware to a code-sharing 

platform, and within hours, several new instances of the malware are created. Other 

malware authors can get parts of it and turns into some other weapon for another attack, 

or they can directly use it as happened in the case of the Downloader malware family 

(Gupta, Kuppili, Akella, & Barford, 2009). Many trojans use one instance from the 

Downloader family to spread their malware; and as mentioned in the previous part of 

this chapter, a downloader may be configured to download several different malware. 

In the case above, it was used for downloading several botnets so that once a computer 

is part of a botnet, it is automatically becoming part of several others. 
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 Another reason the number of malware instances from the same sample increases 

in the wild is the self-mutation engine written by the author. It is done to avoid 

detection, especially from the signature detection mechanisms. In general, the tactics 

involve adding several NOP operations to change the cryptographic hash values of 

sections, and the number of NOP operations picked randomly, using interchangeable 

assembly instructions such as conditional jumps that check the same condition, 

pushing and popping values from the stack without the actual need or using 

unnecessary swap operations between registers. Utilized these and similar approaches, 

hundreds of different versions of malware can be encountered in the wild.  

 There is an arms race between malware authors and computer security specialists. 

As the anti-virus vendors find new solutions and detection techniques to stop malware, 

the authors of the malware continue to patch their malware to survive in the wild. As 

mentioned in the structure of trojans section, many new generation malware has 

capabilities of updating themselves while the malware authors manage their lifespans 

through controlled C&Cs. A recent study researching the questions about the lineage, 

lifespan, and the number of generations of a malware family is presented in the work 

Gupta et al. (Gupta et al., 2009). In this study, 669 different malware families identified 

over 19 years of malicious code metadata. This research shows that some malware 

families can survive for a few years using the patches and updates coming from the 

malware authors community. Malware lineage is the problem of identifying the 

versions of malware among samples which is another research field approaching the 

same problem (Haq, Chica, Caballero, & Jha, 2018; Heinricher & Jilcott, 2013; Karim, 

Walenstein, Lakhotia, & Parida, 2005; Walenstein & Lakhotia, 2007; Xin & Zhang, 

2007).  

 Contemporary attack vectors include several malware in their weaponization: 

trojans are used for initial attacks, worms are included for their lateral movement and 

rootkits are deployed for remaining the communication with the targeted systems. This 

is another reason because of which a number of malware samples in a family increase. 

Malware authors constructing several malware as a bundle and generating malware 

families in a modular, compartmented fashion. These malwares are called modular 

malware. In this type of malware, the attacks are staged into phases, and for every 

phase, a different portion of the code harms the targeted system. A recent example of 

such malware family is the botnet service named DiamondFox, which is a malware-
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as-a-service platform. It has several modules and functionalities such as browser 

password stealer, FTP stealer, DDoS, Email Grabber, RAM scraper, Spam Function, 

CryptoWallet Stealer and so on. All of these functions are provided as a plugin to this 

malware. It has a technical support staff; all of these features bundled as a fully-fledged 

business service.     

2.6. Conclusion 

 In this chapter, the general structure of an executable and, the capabilities of 

contemporary malware are investigated. It is intended to explain how the malware 

evolves, how the malware families are constructed, and to what extent the capabilities 

of malware authors reach. In the following chapters, the malware analysis mechanisms, 

both static and dynamic, and a novel contribution of memory analysis is presented.  

 





 

27 

 

 

 

 

CHAPTER 3 

STATIC ANALYSIS OF MALWARE 

 This chapter is aimed at identifying the contemporary techniques of static binary 

analysis along with the literature of malware detection and classification based on 

these techniques. The limitations of static analysis and the evasion techniques from 

static signature-based detection schemas are introduced in the previous chapters. In 

this chapter, while a novel methodology of visualizing and fingerprinting of malware 

is provided, also the limitations of static analysis are exampled and illustrated through 

this developed methodology.  

 Moreover, in this Chapter, an implementation of Convolutional Neural Networks 

(CNN) to the static features of malware is provided. For this aim, first, a graph database 

representation of malware is presented along with the feature extraction queries. This 

representation is created by the extraction of static properties such as Call function 

graphs and API calls; which are extracted with the reverse engineering tool RADARE, 

and these results of the static analysis are inserted into a graph database which is 

created by the Neo4j Graph Database application. Secondly, the implementation of a 

CNN classifier is demonstrated on the images that are extracted from such data. For 

demonstration, a collection of a recent malware sample space is analyzed.  Finally, the 

limits of static analysis are also discussed on the results of the implemented CNN.  

3.1. Static Analysis Techniques 

 Static analysis of malware is the collection of the techniques that are used on the 

binary file without mapping on the memory and without executing. It provides a rapid 

overall inspection of the binary file, reveals general information about how the binary 

is compiled, gives insight about which API calls and libraries are used and, presents 

the structure of the malicious file. It is also used for understanding if the binary has 

been encrypted, obfuscated, and packed. In general, tools such as disassemblers, PE 

file analyzers, and tools for searching for strings and binary patterns are utilized. The 

section headers, mapped resources, symbolic links, and dynamically linked libraries 
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and modules are also available if no counter-measures are taken when compiling and 

preparing the binary.  

Extraction of Strings  

 Hardcoded strings inside a binary can sometimes provide useful insight into the 

file. By utilizing string search algorithms, the following indicators of a suspicious file 

can be found. 

• In the cases of creating malicious files on the targeted system, malware 

can be matched using these hardcoded names extracted from the 

executable. 

• Most current malware searches for the processes with the names of 

most common anti-virus vendors. Finding these names in the 

executable files can be an indicator of maliciousness.  

• When a malware tries to connect with the C&C, it is done by resolving 

a domain name or trying to establish a connection with an IP address. 

This information is generally hard-coded in the executable; therefore 

searching for a string with the format of IP addresses or URLs are useful.  

• When the malware drops another executable as a backdoor or a bot 

service, it registers the file as a service and therefore inserts and alters 

the registry keys. Because of this reason, searching for a registry key in 

the strings can be identifying for malware as well.  

 The string extraction can be used to quickly check for suspicious things in a 

binary, although generally, it does not provide a clear picture. The string extraction of 

malware is exampled in the following Table 3.1. and 3.2.  
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Table 3.1 Suspicious strings of W32.eternalrocks creating and installing 

an onion network node in the Microsoft updates folder. 

(Sha256:1ee894c0b91f3b2f836288c22ebeab44798f222f17c255f557af2260b8

c6a32d) 

Ordinal 

Virtual 

Address 

Physical 

Address Size Length Section-Type-String 

298 

 

0x0000a79e 

 

0x0040c59e 14 15 (.text) ascii 020430Project1 

299 

 

0x0000a7ad 

 

0x0040c5ad 7 8 (.text) ascii 0-C000- 

300 

 

0x0000a81d 

 

0x0040c61d 4 5 (.text) ascii orm1 

301 

 

0x0000a826 

 

0x0040c626 5 6 (.text) ascii Form1 

302 

 

0x0000a839 

 

0x0040c639 5 6 (.text) ascii Form1 

303 

 

0x0000a8b0 

 

0x0040c6b0 4 5 (.text) ascii VB5! 

304 

 

0x0000a928 

 

0x0040c728 8 9 (.text) ascii TorUnzip 

305 

 

0x0000a931 

 

0x0040c731 8 9 (.text) ascii Project1 

306 

 

0x0000a93b 

 

0x0040c73b 8 9 (.text) ascii Project1 

308 

 

0x0000aac8 

 

0x0040c8c8 47 96 

(.text) utf16le 

*\AC:\Users\tmc\Documents\TorUnzip\Project1.vbp 

309 

 

0x0000ad70 

 

0x0040cb70 8 9 (.text) ascii Project1 

310 

 

0x0000ad7c 

 

0x0040cb7c 5 6 (.text) ascii Form1 

312 

 

0x0000adec 

 

0x0040cbec 59 60 

(.text) ascii C:\Program Files (x86)\Microsoft Visual 

Studio\VB98\VB6.OLB 

313 

 

0x0000ae54 

 

0x0040cc54 12 13 (.text) ascii WindowsUnZip 

314 

 

0x0000ae78 

 

0x0040cc78 45 92 

(.text) utf16le \Program Files\Microsoft 

Updates\temp\tor.zip 

315 

 

0x0000aedc 

 

0x0040ccdc 37 76 (.text) utf16le \Program Files\Microsoft Updates\temp 

316 

 

0x0000af60 

 

0x0040cd60 24 50 (.text) utf16le ripting.FileSystemObject 
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Table 3.2 Suspicious strings of W32.carberp extracted possible signature 

filenames. 

(sha256:4297ad0f5bb72616337d88f14c07a6c6d6e0c93d2a9bb5eaa7e09219556aafdb) 

Ordinal 

Virtual 

Address 

Physical 

Address Size Length Section-Type-String 

6  0x00025d10  0x0044e110 12 26 (.rsrc) utf16le BuML8ymRlYnf 

7  0x00025d32  0x0044e132 15 32 (.rsrc) utf16le FileDescription 

8  0x00025d54  0x0044e154 10 22 (.rsrc) utf16le 0mJ8otjGpz 

9  0x00025d72  0x0044e172 11 24 (.rsrc) utf16le FileVersion 

10  0x00025d8c  0x0044e18c 12 26 (.rsrc) utf16le S3BF7IZ2ZLiF 

11  0x00025dae  0x0044e1ae 12 26 (.rsrc) utf16le InternalName 

12  0x00025dc8  0x0044e1c8 6 14 (.rsrc) utf16le KayU1y 

13  0x00025dde  0x0044e1de 16 34 (.rsrc) utf16le OriginalFilename 

14  0x00025e00  0x0044e200 9 20 (.rsrc) utf16le 7AhVva8ai 

15  0x00025e1a  0x0044e21a 11 24 (.rsrc) utf16le ProductName 

16  0x00025e34  0x0044e234 14 30 (.rsrc) utf16le 08ZkvxeDt8DPLE 

17  0x00025e5a  0x0044e25a 14 30 (.rsrc) utf16le ProductVersion 

18  0x00025e78  0x0044e278 7 16 (.rsrc) utf16le lxqR7dS 

19  0x00025e90  0x0044e290 10 22 (.rsrc) utf16le arFileInfo 

 

Symbols 

 Symbols are the various entities about the executable such as variable names, 

imported functions, function names, and objects. This information is stored in the 

Symbol Table by the compiler. This table reveals useful information about the code 

itself when the binary is not stripped. An example of symbols in a malicious binary is 

demonstrated in Table 3.3. 

Table 3.3 Imports table extracted from the symbol table of malware 

Win32.Emotet. 

(sha256:6393fe8dd4721190f240e22feeb769675b6194a70cabd5a415c2364686a9089c) 

Ordinal 

Virtual  

Address 

Physical  

Address Type Size Name 

107  0x00001134  0x00401134  FUNC 0 imp.MSVBVM60.DLL__CIatan 

108  0x00001138  0x00401138  FUNC 0 imp.MSVBVM60.DLL___vbaStrMove 

109  0x0000113c  0x0040113c  FUNC 0 imp.MSVBVM60.DLL___vbaStrVarCopy 

110  0x00001140  0x00401140  FUNC 0 imp.MSVBVM60.DLL___vbaR8IntI4 

111  0x00001144  0x00401144  FUNC 0 imp.MSVBVM60.DLL__allmul 

112  0x00001148  0x00401148  FUNC 0 imp.MSVBVM60.DLL__CItan 

113  0x0000114c  0x0040114c  FUNC 0 imp.MSVBVM60.DLL___vbaAryUnlock 
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114  0x00001150  0x00401150  FUNC 0 imp.MSVBVM60.DLL___vbaVarForNext 

115  0x00001154  0x00401154  FUNC 0 imp.MSVBVM60.DLL__CIexp 

116  0x00001158  0x00401158  FUNC 0 imp.MSVBVM60.DLL___vbaFreeObj 

117  0x0000115c  0x0040115c  FUNC 0 imp.MSVBVM60.DLL___vbaFreeStr 

 

Control Flow Graphs (CFGs) 

 Control Flow Graph is one of the most common used signatures in the malware 

analysis community to identify the characteristics of a binary. It is a directed graph 

where each node represents a block of code or a function, and each arrow represents 

the flow of execution calls or jumps in the executable binary (Nguyen, Nguyen, 

Nguyen, & Quan, 2018).   

 To obtain these graphs, the complete disassembly of the binary should be 

searched for cross-references. A cross-reference can be a call to a function, a jump in 

the address space, a return function, and so on. An example of CFG is illustrated in 

Figure 3.1. As can be seen in the example, the flow of execution is given for the sample 

Virus.Xpaj.c with the given cryptographic hash function sha256 of 

5cb89de13b078839bf8c56549de1fbf99a73dd8179d150d2cd975722e9f70e5. Each 

node represents a function either from the code section (named as fcn symbols) or a 

function from an imported library (named as dll_). Figure 3.1 contains only a portion 

of the given sample as the whole CFG is too large to fit. In the second figure, another 

version of CFG of this sample is provided. Figure 3.2 is an output of the graph database 

that is constructed for this research.  
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Figure 3.1 CFG of Virus Xpaj.C with hash  

95cb89de13b078839bf8c56549de1fbf99a73dd8179d150d2cd975722e9f70e5 

 

These CFGs are converted into nodes and edges in a graph database to store 

much more characteristics than a regular CFG such as degrees of a node, size of a 

function, addresses of jumps, calls as well as the beginning of the function itself. 

These are detailed later in this Chapter. The function calls within the code section of 

the executable is given in Figure 3.2., Figure 3.3. contains the imported library and 

API functions together in one graph.  
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Figure 3.2 Graph Database Output of a CFG of the Virus Xpaj.C with hash 

95cb89de13b078839bf8c56549de1fbf99a73dd8179d150d2cd975722e9f70e5 

 

Figure 3.3 Function-Imported and API Functions illustrated Together of the same 

executable in Figure 2. 
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3.2. The literature on Static Malware Analysis and Machine Learning 

Methods 

 The problem of detecting new malicious executables is not new. Majority of the 

computer security community have identified this problem as a classification problem 

where the classes are benign and malicious. Another problem is that the community 

tries to tackle is the problem of identifying the family of a malware which has been 

reduced to a multi-class classification problem.  

 With the success of data mining techniques on Intrusion Detection and 

Prevention Systems (IDPs), the first research on malware detection is conducted in 

2001 by Schultz et al. (Schultz, Eskin, Zadok, & Stolfo, 2001).  This paper discusses 

the significant limitations of signature detection methodology and joins the data 

mining and machine learning approaches with the static analysis techniques that are 

mainly based on DLL and imported functions extraction.  

 Next, in the paper of (Christodorescu & Jha, 2003), a malicious code checking 

algorithm based on CFGs is defined. This research mainly attacks the problem of 

detection of obfuscated malware; a solution is generated with the annotation of 

obfuscated CFGs, and an algorithm is developed for checking the maliciousness. 

Another significant milestone in the literature is the introduction of graph isomorphism 

and utilization of graph algorithms in similarity checking. In the work of Bruschi et 

al., graph isomorphism is used for discovering self-mutating malware (Bruschi, 

Martignoni, & Monga, 2006). The research is based on the intuition that self-mutating 

malware will result in isomorphic malware, and by converting the malware into a 

graph, similarities can be reported with the detection of isomorphisms.   

 Machine learning algorithms are researched in the same year in the work of 

Kolter and Maloof; the bytecodes of the executables are vectorized into fixed-size 

vectors by n-gram methodology, and learning techniques are applied. Another research 

on learning technique called Objective Oriented Association (OOA) which is based on 

API sequences (Ye, Wang, Li, & Ye, 2007). This study generates rules based on the 

API sequences extracted by the static analysis and reaches 93 percent of accuracy in 

detecting the malicious executables.  

 Extracting opcode sequences by disassembling malware is another technique 

that is heavily used in the literature. This technique has been researched by learning 
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algorithms in the works of Santos et al. and Shabtai et al. (Santos, Brezo, Ugarte-

Pedrero, & Bringas, 2013; Shabtai, Moskovitch, Feher, Dolev, & Elovici, 2012). N-

grams, KNN, RF, SVM, Naïve Bayes, K2, Hill Climber, TAN learning algorithms are 

used in these researches and 91, and the results of these studies have reached 95 

percentages of accuracy.  

 Static analysis methodologies are investigated and tried with Deep Learning 

methodologies as well. Convolutional Neural Networks (CNN) which is the state-of-

the-art Deep Learning technique on images and matrices have been investigated with 

malware classification in the works of (Karbab, Debbabi, Derhab, & Mouheb, 2018; 

Ni, Qian, & Zhang, 2018). In the paper Maldozer, API sequences extracted from 

mobile malware are converted into matrices and fed into a CNN classifier; resulted in 

98 percent of accuracy. Another work exploiting CNN’s success in image 

classification; converting the malware hashes into images and researched the CNN on 

these images had resulted in approximately 99 percentages of accuracy.   

 Classifying and analyzing the malicious codes based on the data from the static 

analysis are summarized in Table 3.4. Some of the research is attacking the problem 

of detection while some focuses on obfuscation, polymorphism, and self-mutation. 

The aims of the studies and the features that have been used are given in the Features 

column. The technique that has been invented or incorporated is provided in the Used 

Technique column, and the results in the formats of classification accuracy (accuracy), 

false positive (FP) and false-negative (FN) rates are given in the last column. 

 In this thesis, a version of CNN is applied on Function-API call graphs to show 

the applicability of our graph database approach with deep learning. Function Call 

Graphs reveal an essential characteristic for the code to be analyzed, whether it is 

malicious or not. This research also integrates this vital data into account as the 

branching in the execution provides a backbone structure for the malicious code. 

Another significant characteristic is the API calls of the malicious code as it reveals 

the intention of the analyzed code by showing the interaction with the underlying 

operating system. Although the main focus on this thesis is extracting characteristics 

from malware analysis instead of the exploitation of deep learning on these results; the 

applicability of these images on a Deep Learning methodology is discussed in this 

Chapter.
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Table 3.4. Comparison of Researches that utilizes Static Analysis Techniques. 

Reference Work Dataset Features Used Technique Success Rate /Classification Accuracy 

(Schultz et al., 2001) 3,265 malware and 1,001 

benign programs. 

Function Calls, DLLs, Opcodes, 

Strings 

Naïve Bayes, Ripper, Multi-Naïve 

Bayes  

97,11% Naïve Bayes Accuracy on Strings 

SAFE (Christodorescu & 

Jha, 2003) 

10 Obfuscated Viruses Annotated Function Call Graphs 

of Obfuscated Executables 

Malicious Code Checking Algorithm FN and FP rates are 0   

(Bruschi et al., 2006) 115 samples of Metaphor 

Virus 

Detection of Self-mutated 

malware on Control Flow 

Graphs. 

Graph Isomorphism 70% of equivalent viruses and %100 of different 

software. 

(Kolter & Maloof, 2006) 1,971 benign and 1,651 

malicious executables 

n-grams  Naive Bayes, decision trees, SVM, and 

boosting 

TP  98%., FP  0.05% 

IMDS (Ye et al., 2007) 12214 benign and 17366 

malicious samples 

Objective Oriented Association 

(OOA) 

Rule Mining Based 93% Accuracy 

(Shabtai et al., 2012) 7,688 malicious and 

22,735benign files. 

Opcode Sequences represented 

as n-grams 

n-grams 91% Accuracy with DF Classifier with n=2 

(Santos et al., 2013) 17,000 malware, 585 

malware families 

Opcode Sequences KNN, RF, SVM, Naïve Bayes, K2, Hill 

Climber, TAN 

95.90% Accuracy with SVM 

Maldozer(Karbab et al., 

2018) 

Malgenome, Drebin and 

Maldozer set of 33k 

malicious apps. 

API Call Sequences Convolutional Neural Networks (CNN) Over 98% Accuracy on datasets and Over 99% on 

Family Classification. 

MCSC(Ni et al., 2018) 10,805 samples Hash results are converted into 

visual images. 

Hashing and CNN 99.260% Accuracy 
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3.3. Tool support for Static Malware Analysis and Visualizations. 

The construction of the graph database is accomplished through the reverse 

engineering framework Radare2 version 2.3.0 (Sergi Alvarez, 2006). All the functions 

are analyzed, and all the calls and imports are retrieved by automation of this tool 

written in Python scripts given by the open-source project R2graphity 

(GDATAAdvancedAnalytics, 2016). The extracted information inserted into the graph 

database instance created on the engine of Neo4j version 3.5.6. The 2d and 3d 

visualizations are designed with the 3d-force JavaScript library (Asturiano, n.d.).  

3.4. A Graph Database approach for Static Analysis 

 The static analysis of the malware constructs the graph database.  This analysis 

includes the complete disassembling and matching the calls that are made to the code 

section of the malware. All the functions are analyzed to the parameters of address, 

size, API references, in-degrees (how many times the function is called) and out-

degrees (how many times the functions call another function). These properties then 

converted into the queries of the graph database. API references are also inserted as 

nodes in this graph database with the address of the calling instruction stored as 

relationships. General schema of the database is in Figure 3.4, and information on 

nodes and relationships can be found in the following Table 3.5.  

 

Figure 3.4 - The schema of the Graph Database. 
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Table 3.5 - Properties of the Nodes of the Graph Database. 

Node/Relationship Label Properties 

SAMPLE Sha1 hash, File Name, Section Count, 

Binary Type, Compilation Date, File 

Size, Section Entry Point, Original File 

Name, Entry Point Address. 

FUNCTION In degree, Out degree, Number of API 

calls, Function Size, Call Type, Function 

Type. 

API API name 

CALLS Distance, Calling Instructions Address 

IMPORTS Calling Instructions Address 

STARTS <none>  

 

 Some of these properties play a significant role in the visualization process, 

which is discussed in the Visualizations part of this Chapter. The distance in functions 

is calculated as the absolute value difference in addresses between functions. The 

addresses of calling instructions are the relative addresses of the instruction that made 

the API or the function call and not presented as an offset notation. The function size 

is the size of the function in the code segment, the entry point is the entry point 

provided by the static analysis, and in many cases, it is an obfuscated value showing 

some function other than actual main function of the malware.  

 The process of inserting static analysis results is quite straightforward. First, the 

static analysis of the sample is done, and a SAMPLE node is created. All the functions 

of the sample are extracted and inserted as FUNCTION nodes. Thereafter, all the 

cross-references captured by the static analysis are iterated and matched with API 

names and functions and inserted as API nodes. The flowchart of the construction of 

the graph database is illustrated in Figure 3.5 below.  
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Figure 3.5- Insertion process of the Static Analysis Results. 

3.5. Visualizations of Static Analysis 

 In this part of the thesis, the visualization methodology developed for static 

analysis and for the aim of producing fingerprints is presented. This fingerprinting 

technique is formed in the hope of being helpful to a malware analyst to provide a 

general idea about the analyzed malicious sample rapidly.  

 In Figure 3.6, the round nodes represent functions, while the square nodes 

present API calls or Imports. As can be seen in Figure 3.6, the node size of the function 

nodes on visualizations varies according to their actual sizes. Moreover, the distances 

between function nodes are scaled from the exact sizes the functions have from the 

graph database. However, as many operating systems integrate memory address 

randomization schemas such as Address Space Layout Randomization (ASLR), the 

size of and the distances to API calls are ignored in this visualization as these measures 

may provide inconsistent results due to this randomization process. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.6 - The visualization of the malware sample with Sha1 33e8e894297e0f94c5df36cb4e5b3ee68662ceff (a) An overview of the malware 

(b) Hovering on a function node (c) Hovering on an API node (d) Hovering on an edge between functions. 
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 For this research, a 3-dimensional visualization model is also presented. 

The 3d visualization is analog to the 2d model and can be seen in Figure 3.7 below.  

 

Figure 3.7 - 3d model of the same sample in Figure 6. 

3.6. Limitations of Static Analysis 

 The limits to the static analysis and its results are given in the work of (Moser, 

Kruegel, & Kirda, 2007) through a custom designed obfuscator that is available on the 

binary without having the source code itself. In this work, the polymorphism, 

metamorphism, and obfuscation properties of the malicious executables are discussed, 

and a binary obfuscation approach is presented to show the insufficiency of the static 

analysis alone in detection malware. The fundamental limits of obfuscation are also 

provided in a trade-off with performance. In this part of Chapter 3, it is aimed to show 

the limitations of the static analysis by examples from the designed and deployed graph 

database.  

 The following Figure 3.8 presents four different types of anti-static-analysis 

techniques. In Figure 3.8a, it is possible to see unreachable and dead functions that are 

designed to evade signature level detection. Figure 3.8b contains API calls related to 
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the cryptography scheme and virtual memory allocations; while Figure 3.8c has 

randomly generated, same-sized functions in the numbers of the order of 10, therefore 

showing the features of obfuscation. In Figure 3.8d, only the unpacking functions are 

present since a kind of packing is applied. 
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(a)  

(b) 

 

 
(c) 

 

 
(d) 

Figure 3.8 The visualization of the malware samples with Sha1 0f241d84aa44034c924197d3bce94faa07811f35, 

f53e68832af99cf553471cf87cc5da332c695659, ada9efdf8dee612599377f6ade3e78e06d4069f4, a9accc4fe6cd45b9a54c25a1447ed74cc61d5675 

respectively, showing (a) dead code insertion (b) encryption engine (c) obfuscation (d) packing.
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3.7. Convolutional Neural Networks (CNN) on Static Images 

 CNN's, are a particular type of neural network for implementing a matrix or grid-

like data. It utilizes a specific operator, convolution operator, which is specialized kind 

of a linear operator and a CNN is a neural network that uses at least one convolution 

layer in its layers (Lecun & Bengio, 1995).   

 In this research, a CNN network with three times two convolutional ReLU layers 

plus a max-pooling layer, and a SoftMax layer as output have been tried. However, 

because of the aforementioned limitations, no satisfying result could be achieved. 

Although with a fine-tuned CNN approaches worked well on the examples and studies 

in the literature, as the focal point of this thesis is to extract analysis data particularly 

on memory, the continuation of Deep Learning approaches is left as future work. In 

the following chapters, a successful training attempt on the memory patterns is 

presented in both Machine Learning and Deep Learning methods.  

3.8. Conclusion of Chapter 3  

 As shown in this chapter, static analysis has some serious drawbacks when 

applied  for detection. The evasion techniques mentioned in this chapter are commonly 

used in contemporary malware, and therefore, in many cases, the methods based on 

only static techniques seem to be failing. One useful methodology in this context 

would be stripping malware from all the static evasion techniques, extracting the 

executable from the memory address space and applying static analysis after the 

extraction. However, this technique will also suffer from randomization techniques 

employed by the malware authors.  

 In the following chapters, the dynamic analysis and memory forensics 

techniques are discussed and evaluated before presenting the novel methodology used 

in this thesis.   
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CHAPTER 4 

DYNAMIC ANALYSIS OF MALWARE 

 Dynamic analysis techniques involve running the malware instance in an 

isolated environment and extracting characteristics of the instance by monitoring it. In 

the dynamical analysis, the malware is analyzed red-handed during the execution, and 

the analysis system becomes robust to any obfuscation, encryption or alternation to the 

original code. This is the main advantage of dynamic analysis compared to the static 

analysis. However, every instance of the malware should be run separately which 

would result in a computational overhead which is the main disadvantage (Shijo & 

Salim, 2015; Yadegari, Stephens, & Debray, 2017).   

In this chapter, the methods of Dynamic Analysis are presented, the methodologies are 

exampled and visualized; it’s relevance and pitfalls are discussed. Moreover, a 

dynamic analysis method, Dynamic Binary Instrumentation, which constructs one of 

the building blocks of this thesis, is introduced in this Chapter.  

4.1. Dynamic Analysis Techniques 

 A sandbox system is a secure dedicated or virtual system for running and testing 

unknown executables. Sandbox systems employ a simulating environment similar to 

or identical to the system that is to be protected. The idea is to detect and monitor the 

effects of the unknown executable on the simulating system without compromising the 

actual hosts and users.  

 The sandbox systems are based on the architecture of a client-server model 

where the simulating system acts as a client, and analysis machine is the host. The 

client’s APIs and kernel functions are hooked and monitored to collect relevant 

information about the binary that runs on the client, and communication between 

analysis machine and client is established either by virtual local networks or by the 

API functions of the virtualization software.  
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 Most of the sandboxing solutions are closed-proprietary software as of today. 

However, there are powerful open-source alternatives such as Cuckoo Sandbox 

(Cuckoo Sandbox, 2019), Joe’s Sandbox (Joe Sandbox, 2019) and Zerowine 

(Zerowine, 2019). These automated sandboxing solutions construct the basics of 

dynamic binary analysis and provide a rapid and easy method to analyze various 

features of the binary.  

 The dynamic analysis makes use of many changes and differentiation within the 

system. In this part, these indicators are presented and explained.  

Registry Snapshots 

 Registry analysis is a significant indicator for malware as malware needs 

persistence in the infected system. The persistence of malware is the property that the 

malware will stay dormant on the compromised computers until some triggering event 

or some predefined time for the attack to start. In such cases, the malware needs to 

hide in the system, should be restart resilient and should be reachable to the C&C. 

Therefore, malware should place the necessary indicators in the auto-start locations of 

the registry, scheduled tasks, and cronjob events.  

 Another significant contemporary threat is a new malware type file-less malware. 

These types of malware reside as scheduled tasks in the registry, retrieves itself every 

item an event is triggered and run on memory without any filesystem indicators. 

Because of these reasons, the analysis of the registry holds paramount importance for 

the dynamic analysis of the sandbox. 

API Call Sequences 

 The API calls are the user-space requests of kernel operations of the operating 

system. The execution of malware needs various types of API calls such as registry 

operations, file operations, and virtual memory operations. In most cases, if not evaded, 

these calls show the actual intention of the malware. However, as the malware authors 

become aware of these analysis techniques, they are implementing evasion procedures 

such as code injection, native DLL coding and target process obfuscation (Kawakoya, 

Iwamura, Shioji, & Hariu, 2013).  
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Memory Forensics 

 The dynamic binary analysis integrates the memory forensics procedures and 

practices with its analysis methodologies. These details are discussed in Chapter 5.  

Dynamic Taint Analysis 

In dynamic taint analysis, the data originating from or arithmetically derived from 

untrusted sources such as the network is referred to as tainted. These tainted resources 

are followed during the execution to detect buffer overwrite attacks. The method is 

first introduced in (Newsome & Song, 2005).  

 Dynamic taint analysis (DTA) is utilized for analyzing execution paths that an 

attacker may use to exploit a system. DTA is studied extensively in the literature: 

TaintCheck(Newsome and Song, 2005), Dytan (Clause, Li, and Orso, 2007), BitBlaze, 

DTA++ (Gyung et al., 2011) and SworDTA (Cai et al., 2016).  

Logging Network Attempts 

Another result of the dynamic analysis of malware is its network connections. With 

utilizing a network generator sandbox server and attaching the analysis machine as a 

client, all the network traffic can be diverted over the sandbox server, and the network 

dump data (such as TCPDUMP) can be collected.  

Dynamic Binary Instrumentation (DBI) 

 DBI is a technique of Dynamic Binary Analysis. It requires an analysis program 

working on the side with the actual process that is to be instrumented. The analysis 

program is injected as a DLL or a kernel process to the analyzed system (Kawakoya et 

al., 2013). With the analysis code inserted into the execution of the target program, 

instruction level, API level, Stack and Heap level analysis can be done through DBI 

systems. This thesis covers and utilizes DBI for capturing memory operations of a 

binary. The methodology and used tools are being included in the next Chapter.   

4.2. The literature of Dynamic Malware Analysis  

 The effectiveness of Dynamic Analysis has been tested rigorously in the malware 

analysis literature. Machine Learning, Deep Learning, and Graph Matching methods 

have been applied on API call sequences and graphs, hooking behaviors, kernel-level 
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executions, memory usage, imported DLLs, and network communications. Table 1 

below summarizes the building blocks of the malware analysis literature. 

The first study on dynamic malware analysis is the study of (Yin, Song, Egele, Kruegel, 

& Kirda, 2007). In this work, a particular dynamical analysis technique called taint 

analysis is used. In dynamic taint analysis, the data originating from or arithmetically 

derived from untrusted sources such as the network is referred to as tainted. These 

tainted resources are followed during the execution to detect buffer overwrite attacks. 

 In the study of  (Bailey et al., 2007), dynamic analysis results are collected as 

event logs and converted into non-transient state changes. These state changes are 

converted into trees, and the distances between samples are researched. Similarly, in 

the work of Kolbitsch et al., taint analysis results are converted into behavioral graphs, 

and a similar rate of success has been achieved with subgraph matching (Kolbitsch et 

al., 2009). An extension to Kolbitsch et al. is the dependency graph study of (Park, 

Reeves, & Stamp, 2013), where dynamic system calls are converted into graphs and 

tested similarly. The results of this work showed a 100 percent success rate for some 

of the malware families.  

Code slicing methodologies are integrated with the extraction of API call sequences in 

the work of (Lanzi, Sharif, & Lee, 2009), The aim is to extract and use kernel-level 

operations within the malicious executable, and the data access patterns and data 

modifications using these calls are comprehended. A similar idea is presented in the 

work of (Park et al., 2013) where the behavioral indicators are constructed as a graph, 

and instead of slicing the code and analyzing the flow, the graph data is clustered. The 

results of this work showed zero false positives.   

 The tests on API call data is also extended on the machine learning and deep 

learning subjects. N-gram technique is used in two significant studies in the literature; 

Uppal et al. utilize Naïve Bayes, Random Forests, SVM and Decision Tree Classifiers 

on the call sequence n-grams; Kolosnjaji et al. use the same feature on a Deep Learning 

approach with Convolutional Neural Networks. The results of these two studies are 

shown in Table 1.  

Another study on API calls converted into matrices, utilizes Random Forests on the 

matrix data by (Pirscoveanu et al., 2015) and a similar research with unsupervised 



51 

 

learning methods presented in the same year, (Fujino, Murakami, & Mori, 2015) 

utilizing Term Frequency- Inverse Document Frequency (TF-IDF) matrices.  

 Finally, a research paper on Android operating systems malware is presented to 

extract TCP/IP features for testing in various machine learning algorithms is presented 

in Table 1 (Narudin, Feizollah, Anuar, & Gani, 2016).  



 

52 

 

 

Table 4.1. Comparison of Researches that utilizes Dynamic Analysis Techniques. 

Reference Work Dataset Features Used Technique Success Rate /Classification 

Accuracy 

Panorama (Yin et al., 2007) 42 malware and 56 benign 

samples 

Taint Graphs Policy generation based on 

Taint Graphs 

Around 3% FP rate. 

(Bailey et al., 2007) 3698 Samples Non-transient State Changes Normalized Fingerprint 

Distances 

91.6% detection rate 

(Kolbitsch et al., 2009) Six malware families with 50 

samples each 

Behavior graphs extracted from 

taint analysis and program 

slicing 

Subgraph matching 90%at maximum for known 

malware, 23% for an unknown 

malware 

K-Tracer(Lanzi et al., 2009) 8 Rootkits Data Access, Triggers, 

Hardware Events 

Dynamic Slicing Detects all the rootkits that have 

been tested with it. 

(Park, Reeves, Mulukutla, & 

Sundaravel, 2010) 

Six malware families with 50 

samples each 

Dynamic system Call 

Dependence Graphs 

Graph Similarity Measurement Some of the families showed 

100% accuracy, while some 

have poorer results.  

(Park et al., 2013) 563 and 520 samples in two 

datasets 

HotPath (constructed by kernel 

objects and system call traces) 

extraction 

Graph Clustering and Matching No false positives. 

(Uppal, Sinha, Mehra, & Jain, 

2014) 

120 malicious and 150 benign 

software 

Call-grams generated from call 

sequences 

Naïve Bayes, Random Forests, 

SVM and Decision Tree 

Classifiers 

Accuracy of 98.5% 

(Pirscoveanu et al., 2015) 42,000 malware samples API Call Matrices Random Forests 89.6% TP and 0.049 FP rates. 

(Narudin et al., 2016) Android Malgenome (1260 

Malicious apps)  

TCP/IP packages RF, J48, MLP, Bayesian Net, 

KNN 

99,97% Accuracy with BN and 

RF 

(Kolosnjaji, Zarras, Webster, & 

Eckert, 2016) 

4753 malware samples Malware System Call 

Sequences 

Sequence-grams on feed-

forward, convolutional and 

hybrid neural networks 

85.6% on precision and 89.4% 

on recall 

(Pektaş & Acarman, 2017) 17,900 recent malign codes API-call sequences N-grams Training and Testing Accuracy 

of 94% and 92.5% 
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4.3. Tool support for Dynamic Malware Analysis. 

 The dynamic binary instrumentation system is provided by the Intel PIN Tool 

version 3.7. Intel pin tool is a dynamic binary instrumentation framework where a 

process state containing registers, memory, heaps, stacks, memory access, and the 

execution flow can be traced and analyzed (Luk et al., 2005). In this API, the 

instrumentation is accomplished by the just-in-time (JIT) compiler. Just-in-time 

compiler in this API, as distinct from its Java version de facto standard, takes in a 

native opcode instead of bytecode and observes and generates the native opcode for 

the executable (Luk et al., 2005). The architectural structure of the Pin Tool is 

illustrated in Figure 1. 

 

 

Figure 4.1 Architecture of Pin Tool 

 As can be seen from Figure 4.1, the application to be instrumented, and 

the pin tool shares the same address space. The instrumentation application is written 

as a DLL for this library using the Pin API. The instrumented and traced opcodes are 

cached in the Code Cache as the execution flows through the Just-in-time compiler 

and the emulated native opcodes are then forwarded to the Operating System 

underneath.  
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4.4. A Showcase of Dynamic Analysis with Intel PIN Tool. 

 For the demonstration purposes, dynamic traces and indicators are extracted 

from two malware samples. These samples are selected from the family of 

Worm.Ramnit malware family and hash values are given in the following Table 4.2.  

Table 4.2. Sha1 hashes and compilation information of the malware 

samples 

 Malware Information  

Ramnit Worm v1 { 

  "sha1": "33e8e894297e0f94c5df36cb4e5b3ee68662ceff", 

  "fname": 

"Worm.ramnit.9a08d9b7853a65fb52f119806b2f3aae.exe", 

  "sectionCount": 5, 

  "binType": "PE32 executable (GUI) Intel 80386, for MS 

Windows, Nullsoft Installer self-extracting archive", 

  "compilation": "2009-06-18 21:33:23", 

  "fileSize": 18430835, 

  "sectionEp": ".text|0", 

  "originalFilename": "", 

  "addressEp": 12577 

} 

Ramnit Worm v2 { 

  "sha1": "8293f7ddbb7a6163aafed7ebeaea9bc5d60716fb", 

  "fname": 

"Worm.ramnit.9ad7b41a1f0bee2112c1b497094aa085.exe", 

  "sectionCount": 5, 

  "binType": "PE32 executable (GUI) Intel 80386, for MS 

Windows, InstallShield self-extracting archive", 

  "compilation": "2009-12-05 22:50:46", 

  "fileSize": 3363317, 

  "sectionEp": ".text|0", 

  "originalFilename": "", 

  "addressEp": 12860 

} 
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 The execution flow and its indications on the memory address space is the main 

interest of this research, and the samples are analyzed and dissected according to their 

instruction flow. As a result, three indicators are extracted for the two samples: 

Function Hit Trace, Function Trace, and Instruction Trace. For the demonstration, the 

static analysis features of Function and API relationship graphs are extracted and 

presented in Figure 4.2, as shown in Chapter 3.  

  

Worm.Ramnit v1 Worm.Ramnit v2 

Figure 4.2. Static Analysis Graphs of the samples. 

Function Hit Trace and Function Trace 

 The function hit trace and function trace are the features of the execution flow. 

These properties are extracted by following the instruction pointer and recording the 

functions that the instruction belongs as the execution continues. The recordings are 

then converted to 2d images where the x-axis shows the sequence of the instruction 

and the y-axis shows the memory address of the function.  

• Function Hit Trace is the analysis where a function is recorded only the first 

time that the instruction pointer is inside the memory space of that function 

(Luk et al., 2005).   

• Function Trace is the analysis where a function is recorded every time the 

instruction pointer enters the address space of the function (Luk et al., 2005). 

 For the two samples, the function trace and the function hit trace graphs are given 

in the following Figure 4.3. 
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(a) (b) 

  

(c) (d) 

Figure 4.3. Function Hit Traces(a), (b) and Function Traces (c), (d) of Ramnit v1 and v2 respectively. 
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 Function and Function Hit Traces are beneficial when debugging a known 

function for bug fixing. Moreover, these measures can be used to un-obfuscate 

function obfuscation and sieve the functions that are used and unused in the code space. 

For unpacked malware, this measure can be advantageous when used with static 

analysis. Execution flow can be understood and taken into malware analysis with the 

identification of all the functions. Function Hit Traces can replace Function Trace 

when the analyzed malware contains recursive functions which can obfuscate the 

analysis.  

API Call Sequences 

 Following a similar idea, memory address space access of the imported functions 

can also be traced using dynamic instrumentation. This feature is the memory 

representations of the API call sequence property that is being utilized in several works 

in the literature. The following Figure 4.4 illustrates this feature.  

(a) 
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(b) 

 

Figure 4.4. DLL Addresses and Sequence graphs of the Samples. (a) Ramnit v1 (b) 

Ramnit v2. 

DLL Addresses and API imports have already been explored in the literature 

excessively. However, an address-wise representation of imported functions is 

provided in Figures 4.4 (a) -(b), and executed addresses of the imported calls and 

functions are shown similarities for this two malware. It is crucial to turn off the ASLR 

for this measure to have an implementable metric.  

Instruction Address Trace 

 Instruction level tracing shows the traversal of the address space by the 

instruction pointer. For the vast amount of the processes that have been tested, this 

trace results in gigabytes of trace data thus become infeasible to graph and analyze. 

However, for the demonstration purpose, two graphs are generated for the first one 

thousand entry of these two sample traces. 

 As can be seen in Figure 4.5, the first 1000 instruction trace of the two malware 

can result in similarities when the two malware are stripped from any obfuscation. 

However, the resulting data of such trace for a malware reaches the order of 10 

gigabytes thus become unfeasible quickly. 
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(a) 

 

(b) 

 

 

Figure 4.5. Instruction Pointer Traces of the Samples. (a) Ramnit v1 (b) Ramnit v2. 

4.5. Conclusion and Discussion of Chapter 4.  

  The dynamic analysis techniques, the binary instrumentation, and the 

demonstration of these techniques are presented in Chapter 4. For the following 

chapters, the utilization of this binary instrumentation on extracting the memory access 

patterns and the generation of a graph database from this information and the results 

for this dissertation is provided. 
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CHAPTER 5 

MALWARE MEMORY FORENSICS 

 

As previously mentioned in Chapter 1, this dissertation aims to shed light on 

the memory access patterns of malware, to visualize these patterns and to compare and 

contrast the access patterns to identify similar characteristics on memory. For this aim, 

Chapter 5 identifies the contemporary memory operations of malware. These 

operations include packing, code injection, DLL injection, and process hollowing 

methods which malware integrates into their code to avoid being detected.  

5.1. Memory Forensics 

 Memory Forensics is the process of acquiring, dissecting, and analyzing the 

volatile memory data for suspicious events and operations.  The process of memory 

forensics provides a detailed description of the state of the computation for the time 

that the memory image is captured. Every operation on a computer either done by an 

operating system or a user application allocates itself on the memory. These operations 

are grouped by the data structures of the operating system as processes, and every 

process has its threads (at least one, the main thread) which are the smallest chunks of 

executable memory contents. The structure of a process is discussed in Chapter 2 for 

the Microsoft Windows operating system for which the majority of malware is 

designed for. 

 Memory Forensics provides significant data about the processes on the memory 

such as; 

• How many processes are running on the system? 

• What is the current state of the processes on the system? 

• Which executable files are associated with the processes on the system? 

• Which files are open currently? By whom they are opened? 
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• Which DLLs are loaded and by which processes?  

• How many active network connections are there? Which processes are ported to 

network and at which ports? 

 Memory Forensics can answer all of these questions and many similar to them. 

It is the closest analysis method to in-vivo analysis while hard drive forensics is the 

post-mortem analysis for a system.  

 As mentioned in Chapter 3 and 4, contemporary malware utilize many 

techniques to evade from detection. Malware, when running on the memory, is in its 

exact form, stripped out of all obfuscations, packing and encryption. Therefore 

capturing the characteristics from memory is one of the best options for automated 

search mechanisms.  

 A recent, on-the-rise malware type is file-less malware. This type of malware 

works only on the memory, leaving no traces on the storage spaces and steals other 

process's address space to do their malicious work. This type of malware is impossible 

to analyze without taking memory images and investigating them. This type of 

malware and their techniques are discussed later on in this Chapter.  

 Another reason the memory is the actual key to understand malware is that the 

authors are now aware of malware analysis techniques, and they incorporate this 

knowledge into their works. The signature detection mechanisms depended on 

cryptographic hash algorithms to identify malware. However, polymorphic malware 

with mutation engines is capable of attacking this system stealthily. For that reason, 

current hash-based detection techniques involve a method called Fuzzy Hashing, 

which involves hashing of the parts of the malicious executable on memory and 

comparing/detecting partially (Li et al., 2015; Sarantinos, Benzaïd, Arabiat, & Al-

Nemrat, 2016).  

 Moreover, contemporary malware exploits vulnerabilities in the user 

applications to rewrite the application code, reuse existing code in a way that is not 

intended to be used by changing the execution flow with Return Oriented 

Programming and Jump Oriented Programming methods (Korczynski & Yin, 2017). 

To detect the aforementioned on-memory strategies of malware leads to on-memory 

malware detection techniques to be developed, which are based on memory forensics. 

In the following section, these techniques are detailed.  



63 

 

 

5.2. Malware Operations on Memory  

5.2.1. Packing and Compression 

 Packing is the method of compressing and/or encrypting the malicious 

components before infection. The sections of the executable are compressed into a data 

section, and an unpacking stub of code is inserted into the PE file. For some standard 

packers such as UPX, the section names can reveal if the binary is packer or not. 

Otherwise, the section name can be anything as it does not result in any changes in the 

execution of the program.  

 After the packed program runs on the memory of the target computer, it unpacks 

itself by allocating space from its or other processes address space. The DLL functions 

used for such operations are as follows:  

• VirtualAlloc, 

• VirtualAllocEx, 

• VirtualFree, 

• VirtualLock, 

• VirtualProtect, 

• VirtualQuery.  

The function that is used for accessing DLLs and imports from within an address space 

are also listed below.  

• LoadLibraryA 

• LoadLibraryW 

• LoadLibraryExA 

• LoadLibraryExW 

• FreeLibrary 

• GetProcAddress 
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 Extracting DLL functions of a binary and observing that the above functions are 

called in a library, does not necessarily specify the maliciousness of a program. 

However, in most of the studies mentioned in Chapter 4 – Dynamic Analysis of 

Malware extracts the data into their machine learning-deep learning approaches. In the 

learning approaches, if a value of a feature does not yield into differences in 

classification, then their weights become smaller, and their importance in the process 

of classification degrades. Our research which will be detailed in the next chapter 

considers these functions and features as it is for that matter.  

 The operation of packing is illustrated in Figure 5.1. below. The address space 

illustrated on the left is the version of the executable before it is packed. Moving to the 

right, the second image shows a packed version of the same executable and the image 

on the rightmost of the illustration shows the unpacked executable. The unpacked 

version of the executable is accessible from the moment the executable finishes 

unpacking itself to the end of the execution(Ligh, Case, Levy, & Walters, 2014).  

 Although it has been stressed in this dissertation, the unpacking operation can 

include modules that obfuscate the executable code which will produce different 

signatures for the leftmost and rightmost images of the executable (Ligh et al., 2014).  
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Figure 5.1. Illustration of packing of an executable. 

 

5.2.2. Code Injection  

 Code injection is the process of copying malicious executable code payloads or 

malicious pe executables into another process address space and running the code from 

there. It requires the malware to have the debugging permissions to access another 

process address space.  

 The procedure of code injection is as follows and ill (Ligh et al., 2014):  

1.  Malware process acquires debugging privileges (SE_DEBUG_PRIVILAGE) 

that enables read and write access to another process address space.  

2.  Malware process opens the target process and receives its handle through 

OpenProcess() function.  

3.  Malware process allocates memory space using virtual memory functions with 

the PAGE_EXECUTE_READWRITE permission. 
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4.  Malware transfers payload, shellcode, or a complete PE executable to the 

allocated address space using WriteProcessMemory().  

5.  The malware calls a CreateRemoteThread() and gives the address of the injected 

code to the thread.  

 

Figure 5.2. Illustration of Code Injection. 

5.2.3. DLL Injection and Reflective DLL Injection 

 DLL injection is a similar approach to the Code Injection with some minor 

differences that effects the detection of malicious acts. In DLL Injection, the malicious 

code is loaded from disk to the target process address space using the LoadLibrary() 

method.  

 The allocated address space is not required to be executable in this method; 

instead, PAGE_READWRITE permissions are sufficient enough to insert a DLL to 

the target process. CreateRemoteThread() method is used again for running the 

DLLmain.This schema is illustrated in Figure 5.3.  
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Figure 5.3. Remote DLL Injection using LoadLibrary method. 

  

 Reflective DLL Injection is the hybrid process of Code Injection and DLL 

Injection. This method involves loading a DLL to the target address space from 

memory and in which the loading process is done by native DLL coding instead of 

using LoadLibrary() method. This property of a DLL loading itself is making this 

procedure stealthier as it leaves no mark on the Disk. The loaded DLL can also be 

downloaded from a URL of the malicious actors, which makes this method a file-less 

malware.  

5.2.4. Process Hollowing 

 This method is one of the stealthiest methods of hiding a process. This method 

has been used in highly effective APTs such as Stuxnet, Duqu, and Patchwork 

(Bencsáth et al., 2012; Cymmetria Reseach, 2016; Falliere et al., 2011). 

 The process of hollowing a process is illustrated in Figure 4, and it is as follows:  
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1.  The malware starts a new instance of a legit system process such as lsass.exe. 

This process starts in the suspended state by providing the parameter of the 

creation flag to CREATE_SUSPENDED.  

2.  The malicious code is fetched from memory, disk, or over the network.  

3.  The code section of the target process is unmapped, and the process becomes a 

hollow process. The commands used here can be  ZwUnmapViewOfSection or 

NtUnmapViewOfSection. 

4.  A new memory segment with PAGE_EXECUTE_READWRITE permission is 

allocated from the memory space of this hollow process using the virtual 

memory allocation calls. 

5.  PE Header of the malicious process is copied into the hollow process. 

6.  Each segment of the malicious code is transferred to the proper virtual address 

space of the hollow process.  

7.  The start address is set so that the malicious code starts from its entry point.  

8.  Suspended thread is resumed.  
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Figure 5.4. Illustration of Process Hollowing. 

5.3. Manual Analysis Detection of Memory Operations 

 A rule of thumb approach for understanding memory operations is to check the 

Process Environment Block (PEB) structure and cross-reference with the Virtual 

Address Description (VAD) structure of the Kernel Space of the memory.  

 PEB structure is a data structure that exists for every process, and it contains the 

full path of the executable, the full command line that starts the process, pointers to 

heaps, standard I/O handles and data structure for holding the loaded DLLs and 

Modules. PEB structure is accessible within the process itself, and malware authors 

most commonly play with these structures to hide their intentions. However, the VAD 

structure is in the kernel space of the memory, and under normal circumstances, the 

information in the VAD and different PEBs should be aligned. Therefore, cross-

referencing these two structures would identify most of the malicious code and DLL 

injection attacks. For example, in DLL Injection, if the injected DLL and its loading 

place from the disk are not consistent in these two structures, or the DLL has no record 

in the PEB but exists in the VAD, it means the DLL forced into the process address 
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space. However, in Process Hollowing and its variants, as the process is a legit process, 

and only the contents of the sections are modified, it is harder to detect with cross-

referencing.  

5.4. The literature on Automated Malware Detection with Memory 

Analysis  

 While the vast amount of the literature uses API call sequences and call traces 

for the behavioral graph, there is a relatively short list that uses memory access for the 

detection for the malware. By utilizing the memory forensics techniques, operating 

systems resources and their handles, registry keys (Zhu, Gladyshev, & James, 2009),  

running processes and threads, network connections, loaded DLL files and even 

commands that had been previously given can be retrieved (Stevens & Casey, 2010).  

In the study by  (Kolbitsch et al., 2009), the memory access of malware families had 

also been integrated into the behavior graph of the sample. Moreover, in the work of 

Duan et al., the tool Detective, extracts DLL imports from the memory snapshots and 

applies HNB classifier to this data (Duan et al., 2015).  

 In the work of Korczynski and Yin, a tool named Tartarus, a solution to the 

aforementioned injection techniques and code propagation approaches is given by 

generating and combining taint analysis with the tracing of the memory writes through 

execution tracing (Korczynski & Yin, 2017). 

 Another line of work incorporates memory differences; snapshots of the memory 

image are taken several times, and the differences are identified. One of the work in 

this line is (Zaki & Humphrey, 2014); This research has identified the modifications 

(file system changes, newly loaded driver or a newly loaded image) that are done in 

kernel space by a rootkit and generates signatures using this information. 

 A similar memory differencing approach attacking this problem is given by 

(Teller & Hayon, 2014). A Cuckoo Sandbox plugin is described in their paper, and the 

applied idea was to take snapshots of the memory whenever something important 

(defined by API call triggers) comes up such as loading some image into memory or 

generating a call to a registry call. With a similar approach, the studies (Mosli, Li, 

Yuan, & Pan, 2016, 2017a)  and  (Aghaeikheirabady, Farshchi, & Shirazi, 2015) extract 

DLL, API calls and registry activities using the memory analysis program volatility to 

generate features to be fed into a machine learning tool.  
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Observations 

 Our approach differentiates from the above by binary instrumentation of the 

memory access instructions and logging every memory access in different regions of 

the process memory separately. A similar approach is taken in the work of (Banin, 

Shalaginov, & Franke, 2016). In this study, their memory accesses are reduced to read 

and write operations regardless of the region and section information of the memory. 

The order n-grams are then fed into a learning network to identify maliciousness. 

However, our work differentiates from this one by taking into spatial properties of the 

memory access in addition to just using the order of the memory access types. In the 

referenced work, only the order of operation, and the type R/W is taken into 

consideration.  

 Taking the snapshots of memory regions within an interval and comparing them 

through the kernel objects identifies a lot about the malware however in most cases 

the malware creates several other processes, injects itself to another process or service 

as explained in the previous section of this Chapter. This contagious behavior of the 

malware results in a vast region of memory space to be snapshot within the interval, 

and therefore the method becomes infeasible (Bletsch, Jiang, Freeh, & Liang, 2011).  

 Another problem of taking a snapshot of the memory is that deciding the 

frequency of snapshots. If there are too many snapshots, there will be gigabytes of data 

to be analyzed for just malware, and if the interval is set long enough, there might be 

a chance that the malicious activity can slip from the memory before getting in one of 

those memory images snapshots.   

5.5. Conclusion 

 This chapter identifies the memory operations of malware, the tricks, and 

workarounds that are being used by contemporary malware. The literature of the filed 

in the intersection of malware detection and memory forensics also provided in this 

Chapter.  In the following Chapter 6, the dissertations main work, the general idea, and 

the graph database for created for memory access is described and detailed. 
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CHAPTER 6 

MALWARE MEMORY IMAGING AND EVALUATION 

 This Chapter presents and defines the main aims and contributions of this 

dissertation, along with the problems and contributions to solutions to these problems. 

A malware memory image is a 3-dimensional representation of the memory access 

patterns of malware. The methodology presented in this chapter is a method of 

identifying these access patterns through binary instrumentation.  

 As presented in Chapter 5, different malware has different methods of doing 

malicious work on memory, which results in distinctive behavioral characteristics for 

malware families as malware adopt code from its predecessors. In this dissertation, it 

is aimed to show and compare these characteristics by the memory images between 

several types of different malware families and types. 

6.1. Motivation  

 The vast amount of work is relying on the dynamic API calls and DLLs as 

discussed in Chapter 4 – Dynamic Analysis of Malware, and it is so far one of the most 

promising methods in the literature. However, as malware authors become aware of 

this detection technique, they start to implement a workaround with Native DLL 

coding. Native DLL is the dynamic library written directly in the machine language, 

and malware authors prefer to include binary formatted DLLs instead of calling them 

from Windows libraries. Native DLL coding provides a level of stealthiness against 

behavioral detection mechanisms.    

 Another reason the detection mechanisms fail is the general assumption that a 

malware process should be executed/started from a hidden file somewhere on the disk 

and it needs to spread to other files. On the contrary, new types of malware are 

designed to work, spread, and complete their lifecycles only on memory. They are 

downloaded from network to memory via exploiting vulnerabilities in operating 

system tools and programs. For this reason, signature-based detection, static analysis, 

and sandboxing effectiveness are significantly decreased for such malware.  
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 As discussed in the previous chapter, incorporating memory forensics into 

dynamic analysis and detection provides promising results on these types of malware 

(Mosli et al., 2016; Mosli, Li, Yuan, & Pan, 2017b; Rughani & Rughani, 2017; Teller 

& Hayon, 2014). However, the approaches for taking memory dumps and snapshots 

of process address space suffers from two problems. Firstly, it is vital to decide how 

often the memory dumps are going to be taken. When it is too frequent, there will be 

tens of gigabytes data for just one malware, and when the interval between dumps are 

long, it is possible that the malware execution can slip away between dumps without 

detection. The second problem is when taking memory dumps of a process; it is 

possible that the malware injects itself to another process and continue its execution 

from another address space. In this case, complete memory dumps have to be taken, 

but unfortunately, this approach also leads to the analysis of gigabytes of data for 

malware again.   

 In this dissertation, the developed solution to this problem is to instrument 

memory access operations. Instead of taking memory dumps, every operation of a 

process is traced, and the memory usage patterns are observed. This way, the memory 

operations are captured as the process is still running on the memory, and taking 

memory dumps becomes unnecessary. Our method is also promising for file-less 

malware as the instrumentation is done on a memory level.  

 The memory access operations are converted to 3-dimensional patterns to 

capture significant characteristics of malware. These 3-dimensional patterns are 

constructed from a type of access (Read/Write), access sequence, instruction address, 

and access address. Since the patterns are built from the physical operations to memory, 

natively coded DLLs are recorded as well as operating systems API calls, functions, 

DLL calls, and several other procedures that affect memory. It is shown in this research 

that similar malware samples coming from the same families show similar memory 

access patterns in 3- dimensional space constructed by the sequence of the access 

relative to the computation instruction sequence, the instructions address and the 

memory address that is being accessed. Also, in the defined 3-dimensional space, 

process injection, packing, and malicious acts affecting other processes address space 

can be identified by our methodology.  
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6.2. Instrumenting the Memory Operations 

  The dynamic binary instrumentation system presented in this research is 

provided by the Intel PIN Tool version 3.7  (Luk et al., 2005). The executable samples 

to be imaged are executed by the Intel PIN Tool and our memory tracer DLL is inserted 

into the executions address space to instrument every single memory operation. The 

details on Intel PIN Tool is given in Chapter 4.  

6.2.1. Memory Layout 

The memory layout for all the Win32 applications, which is called Portable 

Executable (PE) format consists of several images that are dynamically loaded into 

memory during the execution.  

Majority of the malicious files intend to work Win32 based systems and to develop 

our methodology; selected samples are executables in the PE format. The Structure of 

Portable Executable format is given in Chapter 2. The standard layout of the 

executables on the memory is given in Figure 6.1. Two main sections: the header and 

the sections are present in the PE format (Pietrek, 2011). The execution of an 

executable starts from the loader of the operating system. The loader first reads the 

header page of the PE file and retrieves the image base. The process memory space is 

allocated and divided by sections according to the image base. The import tables are 

read for loading all the DLLs which are set to be loaded at the initialization of the 

program. After loading the DLLs, the real addresses of the functions is resolved and 

stored in the import address table. Afterward, the main thread is created; the instruction 

pointer is set to the entry point of the main thread and execution starts.  

The images of the DLLs and Libraries are also in the format of a PE layout. During 

an execution when a function is referenced inside an image, the instruction pointer 

jumps to that specific location of the instruction and the memory accesses occur from 

these addresses. 
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Figure 6.1. Memory Layout of a PE Format. 

Even though the memory layout is a one-dimensional address space, there are more 

dimensions to consider when it is a memory operation. Three compounds are defined 

in our methodology for a memory operation: the sequence of the operation, the 

instruction addresses, and the address that is being accessed. The sequence defines the 

order of the access, which creates an ordered set from these operations. Another 

valuable property is the mode of the accesses of which can be a read or a write 

operation.  

6.2.2. Flowchart of the Methodology 

 Figure 6.2 below is the flowchart of our methodology. The process starts with 

creating a Windows 7 SP2 virtual machine with Intel PIN Tool installed on it. The 

virtual machine is hardened for the virtual machine detection modules of the malware 

with the analysis program Paranoid Fish – Pafish (Ortega, 2016).  The virtual machine 
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(VM)’s snapshot is taken with the clean state before any infection, and every new 

sample is analyzed on this clean state of the VM.  

 

Figure 6.2.  Flowchart of the Proposed Methodology. 

After the new sample is loaded into the VM, the process is started with the PIN 

Tool with our memory tracer DLL utilized. During the execution, when an image is 

loaded, an entry table for images in our module keeps their traces to bin the memory 

accesses according to their module address spaces. There is a time limit of three 

minutes for the execution to finish, or the process is ended automatically.  

The automation approach taken in this methodology is similar to the one in the 

work of (Banin et al., 2016) although it differentiates from it by the custom pin tool 

that is developed specifically for this research. Distinguishing from the work of Banin 

et al., the developed pin tool captures the memory layout of the process by continually 

monitoring the image loading and unloading operations. While doing so, the memory 

access operations are also logged and classified by the memory images inside the 

process memory. The accesses to stack, heap, and memory images are logged 
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separately for each image in the process memory layout.  

As explained in the previous Chapter 5, most of the malware memory operations 

are done from the code section. The binary should execute a series of memory writes 

to unpack itself or to copy and inject its malicious components to other memory spaces. 

Therefore in our methodology, the memory accesses of the code section are traced and 

imaged to generate these characteristics.   

6.2.3. Algorithm for the PIN Tool 

 In the algorithm below, the work of our tracer is described.  The instrumentation 

is done one instruction level; every instruction is checked for stack access and memory 

access. Stack operations can lead to compiler characteristics results as the optimization 

levels, and stack operations are most likely to be arranged by the compilers. Memory 

reads and writes are tracked for the cases as described in the algorithm.  

Algorithm: Pin Memory Tracer 

Input:  A program for tracing, An image linked list - imgs,   

Output: A trace file -  trace.out, sequence, containing instruction pointer, accessed memory 

location, mode of the operation, the base of the image that has done the access.  

0: seq := 0 

1: for each instruction ins: 

2:  if new_image_loaded is true: 

3:      Get the base address and highest address of the image and insert it in imgs. 

4:  if ins has stack read: 

5:      Write it in output buffer as stack_read. 

6:  else if ins has stack write: 

7:      Write it in output buffer as stack_write. 

8:  else: 

9:   if ins is a memory read: 

10:    Look up ins address in the imgs, write it in outbut buffer as  

    <seq, instruction address, accessed memory location, ‘R’> 

11:   else if ins has memory read: //such as in adding a value from memory  

               // to a register 

12:    Look up ins address in the imgs, write it in outbut buffer as  

    <seq, instruction address, accessed memory location, ‘R’>  

13:   if ins is a memory write: 

14:    Look up ins address in the imgs, write it in outbut buffer as  

    <seq, instruction address, accessed memory location, ‘W’>  

15:  Increment seq by 1 
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INS_InsertPredicatedCall API Function 

 An instruction is traced in the PIN tool by the JIT compiler, the dynamic 

compilation process, by the function INS_InsertPredicatedCall. This call inserts our 

recording function if the next instruction has stack or memory operation in its byte 

code. Therefore the runtime is affected by the number of memory operations and added 

overhead for the dynamic compilation. The detailed runtime analysis for PIN tool can 

be found in (Luk et al., 2005). 

6.2.4. A Memory Image Extraction Example 

 In the example below, a malware from the Keygen Trojan family with the md5: 

5fe2aebb2fe4abe503d297c318a37a62 is exampled. By observing the traces of the 

memory operations and image loadings of this malware, a linked list with images is 

constructed.  The table of the linked list entries is given in Table 6.1 for this particular 

malware. The table is snipped as there are 42 images in the address space of this 

malware. 

Table 6.1. Linked list of memory images of the malware Keygen 

with md5: 5fe2aebb2fe4abe503d297c318a37a62. 

Memory Image Image Name Size in bytes 

1 ADVAPI32.dll 1241704 

2 CFGMGR32.dll 246345 

3 COMCTL32.dll 624878 

4 CRYPTBASE.dll 157748 

5 DEVOBJ.dll 242715 

6 devrtl.dll 243177 

7 dwmapi.dll 167310 

8 GDI32.dll 1192927 

9 heap.csv 67104884 

10 imm32.dll 524073 

11 kernel32.dll 6307693 

12 KERNELBASE.dll 2341679 

13 LPK.dll 148552 

14 Keygen.exe 24399092 

15 mfc42.dll 1947667 

16 MSCTF.dll 567270 

 After the extraction of the memory images, the memory access from malware’s 

code section is converted into 3d data patterns where the dimensions are the sequence, 
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instruction pointer, and access pointers. The data is visualized through plotting the 3d 

data, and the points in the patterns are given colors regarding whether it is a read or 

write operation. Following Figure 6.3. is the extracted image of the example malware.  

 

Figure 6.3. The Extracted image of one of the images from the Keygen Trojan 

family. The md5 of the malware is 5fe2aebb2fe4abe503d297c318a37a62. 

6.3. Graph Database Model for Memory Access and a Showcase 

 In our methodology, the extracted data is saved on a graph database provided by 

Neo4j. Every memory access is saved as a node in this database for further analysis. 

The reason for utilizing such data tool is to increase the efficiency of pattern 

recognition algorithms for future studies. An example analysis of a sample from the 

Ramnit Worm family is provided in this section for further reference (see Table 6.2).  

Table 6.2. Sample Details for Example Analysis. 

Malware Sample Worm.Ramnit.0fe268b9d7eade3a9270e5ab4e54e77d 

Memory Access Count  8579 

Sha1 Hash Value a0abbf36a32d22a2e178bb8e2fb82ba6d17c651d 

Type PE32 executable (GUI) Intel, 80386, for MS Windows, 

Nullsoft Installer self-extracting archive 

Section Count 5 
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 Memory access nodes are not connected in the beginning, since there are in total 

of 134.535.767 memory access entries in our database. However, the selected sample 

can be connected with a simple relationship called DISTANCE providing the 

Euclidean distances between nodes. The following Figure 6.4. shows a six hundred of 

the memory accesses connected with DISTANCE relationship (the result is reduced 

due to the visibility of the nodes).  

 

Figure 6.4. Memory Accesses of a Sample connected with Euclidean Distances. 

 A meaningful query would be looking for consecutive writes on the memory as 

it is an indication of code injection. Therefore, our demo analysis result is queried for 
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consecutive writes, which have Euclidean distances between nodes smaller than 2. The 

shortened query results in Figure 6.5.  

 

Figure 6.5. Consecutive writes of the malicious sample. 

 After getting the instruction addresses of the consecutive writes, an analyst can 

quickly get the image base of the code section and extract the memory exploiting parts. 

This methodology would significantly reduce the time of the analysis. Another 

analysis demonstration would be that understanding the memory access clustering of 

the malware. As memory accesses should be done on memory sections either created 

by LoadLibrary() or one of the Virtual Allocation functions, there needs to be a 

clustering of sections. A straightforward analysis would be to merge the nodes with 

Euclidean distances are smaller than some threshold value. This value should be 

selected based on the observations on the data. In the following Figure 6.6, the nodes 

with Euclidean distances are smaller than 100 are shown.  
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Figure 6.6. The nodes with Euclidean distances are smaller than 100 are merged in 

this example. An apparent clustering of the memory access can be seen from this 

figure. 

6.4. Structured Similarity Index Measure (SSIM) 

The comparison of the memory images is given by the Structural Similarity 

Index given by the work of Wang et al. (Wang, Bovik, Sheikh, & Simoncelli, 2004). 

This method is used to measure the similarity between malware families in this 

research. The method takes two images and calculates their average, variance and 

cross-correlations of the binary strings of the two images and return the luminance, 

contrast and structural similarities. These similarities then merged into one similarity 

metric. The derivation of the metric is as follows: 
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𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(𝑥, 𝑦)]𝛼. [𝑐(𝑥, 𝑦)]𝛽 . [𝑠(𝑥, 𝑦)]𝛾 

where 

𝑙(𝑥, 𝑦) =
2𝜇𝑥𝜇𝑦 + 𝐶1

𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1
 

c(x, y) =
2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎𝑥
2 +  𝜎𝑦

2 + 𝐶2
 

𝑠(𝑥, 𝑦) =
𝜎𝑥𝑦 + 𝐶3

𝜎𝑥𝜎𝑦 + 𝐶3
 

where 𝜇𝑥, 𝜇𝑦, 𝜎𝑥, 𝜎𝑦 and 𝜎𝑥𝑦 are the local means, standard deviations, and cross-

covariance for images. The exponents  𝛼, 𝛽 and 𝛾 are the weight of the similarities of 

luminance, contrast and structural similarities. These exponents are selected as 1 

which is the default settings of the implementation of the SSIM in MATLAB 2018b 

which is given by the authors of (Wang et al., 2004).  

6.5. Conclusion of Chapter 6 

 In our methodology, we highlight two contributions to this chapter. The first one 

is the memory access analysis can be a characteristics feature of a binary. By analyzing 

the access patterns in 3d dimensions, as explained in this chapter, various patterns for 

memory operations can be extracted from this data. By instrumenting the memory 

access instructions in the binary in an isolated environment, both the benefits of the 

dynamic analysis and memory forensics can be merged as shown in this Chapter.  

 The second contribution is the demonstration of spatial properties of the 3d data 

can be used to identify even more signatures and characteristics. However, the 

investigation of these properties are left as future work, and only a showcase is 

presented.  

 In the next chapter, we present our tests on a malware dataset, which led to 

134.535.767 memory access. SSIM has been used as a measure of similarity and 

relevance between similar memory operations and malware families are presented.
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CHAPTER 7 

TESTS AND RESULTS 

 This chapter presents the test and results on extracted malware memory images 

with the methodology provided by the previous chapter. The memory images are tested 

against their behavioral characteristics, and these characteristics are matched with the 

memory artifacts and results. Similarities on the memory images are revealed, and the 

memory images, particularly on the merits of their similarities amongst their malware 

families are evaluated and discussed.  

7.1. Software Support  

  Several open source projects are utilized in this research. Intel’s Pin Tool version 

3.7 is used for the dynamic binary instrumentation, as mentioned in the methodology 

chapter. The malware memory images are inserted in a graph database, and the graph 

database engine is provided by Neo4j version 3.5. For the implementation of the 

sandboxing and automation, Oracle’s Virtualbox Software version 5.2 and its API are 

integrated into the research. To compare and contrast our malware for their behavioral 

analysis, Cuckoo Sandbox version 2.0.6 is combined. MATLAB R2018b and SSIM 

implementation in this software is used. In the rest of this chapter, similarity ratio refers 

to the value of the result of SSIM. 

7.2. Malware Dataset 

 A dataset consisting of malicious and benign programs are collected to test our 

methodology. The malicious samples come from 24 families of different types of 

malware composed of trojans, ransomware, viruses, and worms in a total of 121 

malware samples. In addition to malware families, six benign portable executable files 

are included in the dataset. The malware families and the number of samples from each 

can be found in Table 7.1. The malware samples are downloaded from Virusign 
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website (ViruSign, 2019), and the benign files are downloaded from 

http://www.portablefreeware.com website (Freeware, 2019). 

 For demonstrating and testing our methodology, six system internal programs 

are included in the dataset. These programs although being extremely useful for system 

analysis, process tracking and memory tracking, their methods show similarities with 

that of the malicious samples. These programs are downloaded from  from 

http://www.sysinternals.com website (Microsoft, 2019). 

Table 7.1. The distribution of the malware samples in our dataset. 

Type Family Number of 

Samples 

Trojan Autorun 5 

Botnet BackOrifice 5 

Ransomware Ceber 4 

Ransomware Cryptowall 5 

Botnet Cutwail 5 

Ransomware Jigsaw 4 

Trojan Keygen 9 

Botnet Lethic 2 

Ransomware Locky 5 

Botnet Marina 3 

Trojan Matsnu 1 

Botnet Necurs 6 

Trojan Netbus 3 

Cleanware Portable 10 

Worm Ramnit 10 

Virus Rex 2 

Botnet Sality 6 

Botnet Storm 4 

Trojan Sub7 3 

Cleanware Sysinternals 6 

Trojan Tdss 3 

Ransomware TeslaCrypt 5 

Botnet Torpig 4 

Virus Virut 5 

Virus Xpaj 4 

  Total 121 

7.3. Malware Memory Patterns 

 In this section, our observed characteristics for similar patterns are presented. 

Observed patterns are grouped by the memory operations of malware, as discussed in 

Chapter 5. The common groups of patterns are; 
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• The Ultimate Packer for Executables (UPX) packing algorithm patterns, 

• Packing patterns, 

• Process or Code Injection Patterns 

• Encryption patterns, particularly ransomware patterns 

• Infectors and Virus patterns. 

These patterns are evaluated with the Average Similarity Measure built on SSIM 

method. This is a straightforward approach to apply the SSIM index to a group of 

pictures where the average value is calculated after the calculation of the pairwise 

similarities within a group of samples. Although there are ~134 billion memory 

operations that are investigated for this research, the number of malware samples is 

moderately low for a kernel-based similarity and clustering approach (Choi, Cha, & 

Tappert, 2010). Therefore applying an O(n2) algorithm to calculate all the similarities 

between the pairs exhaustively suffices for this research.  

For the memory images in this section of the dissertation, the red points are for the 

read operations, and green points are the write operations. The sequence of the access, 

instruction address, and accessed memory locations are given in x, y, and z-axis, 

respectively. The lines in between memory accesses construct the blue colored spaces. 

UPX Packing Patterns 

Our first observation was packed binaries, particularly the ones that are packed 

with UPX produce similar patterns on the 3d memory images while unpacking 

themselves on the memory. Figure 7.1. presents two benign software and two malware 

samples from Keygen family.  It has been detected that these four samples show similar 

patterns of consecutive writing to the memory space incrementally. The similarity ratio 

for UPX patterns is 0.6724712.  
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(a) Md5: 0ae3db62540fc9443e420e3f809072fb (b) Md5: 0b86536bba2a922f5f32ad1792d8a03b (c) Md5: 5fe2aebb2fe4abe503d297c318a37a62 

   

(d) Md5: 08039889e160893714465c1f5db811a6 (e) Md5: c8bdd8fb4e3dbda64d78ef5a90f3df9f (f) Md5:590e5724d3400abb3184341bb280d70 

Figure 7.1 UPX patterns for the samples respectively, (a), (b) portable benign executables, (c), (d), (e) Trojans from Keygen Family, (f) a trojan 

from Sub7 family. The average similarity ratio for these patterns is 0.6724712.
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As can be seen from Figure 7.1., there is a clear packing pattern in all the 

images, and the average similarity ratio is around 0.67. The sizes of the packed 

executables are varying, and the unpacking operation has resulted in more extended 

patterns for some executables, as in Figure 1 (e) and Figure 1 (b). The trojan from Sub7 

malware family, Figure 1 (f), is relatively different from the other images in this 

Figure, as it contains injection patterns in its memory image although the unpacking 

operation can be seen around the sequence 0.5 x 107.  

Packing and Self-Decrypting Patterns 

For packing algorithms other than UPX, the patterns from Figure 7.2. are 

observed. These patterns from different malware families show similar memory 

operations within their address space.  

Another observation in these patterns is the self-decrypting malware result in 

similar memory patterns with that of the ransomware. In Figure 2, the similarity ratio 

for Figure 2 (a) and (b) is 0.987532, which shows that their packed with the same 

algorithm and showing similar memory operations. 

 Figure 2 (c) and (d) are revealing another pattern for packing and self-

decrypting structure even though two samples are coming from different botnet 

families.  

 

  

(a) Necurs Botnet, Md5: 

8465be244e52d903b2b98781f3a

96aab 

(b) Ceber Ransomware, md5: 

2a919a45826055c1b6dbc19b659fcf

2e 



90 

 

  

(c) Sality Botnet, Md5: 

56ad40196a523b618b61f3c5b8b618

47 

(d) Necurs Botnet, Md5: 

050f2d3c27ca7402ea61dc141fc93d

3f 

Figure 7.2. Observed Packing and Self-decrypting patterns. 

Process or Code Injection Patterns 

Code injection is the process of copying malicious executable code payloads 

or malicious pe executables into another process address space and running the code 

from there. In the following Figure 7.3., indications of rate code injection are present.  

The observed patterns are from several malware families. These families are 

Marina, Torpig, Storm, Necurs, and Matsnu. The resulting patterns show the visibility 

of writing to the same memory space, possibly an opened pipe between process address 

spaces, and therefore forming straight green lines along the sequence axis.  

Two botnets in Figure 7.3. (a) and (c),  showing very close observations. This 

is generally the reason for using the same algorithm or code piece for injection into 

another process's address space. Their similarity ratio is  0.989123. Figure 7.3. (d) and 

(e), Trojan Matsnu and Botnet Torpig show injection to another module address space 

after reading either unpacked or decrypted the malicious code. These patterns they 

construct are unique in other samples, and these patterns occurred only among in their 

family members in our dataset. This observation can be seen later on this chapter in 

the results of malware family pairwise comparisons. In Figure 7.3. (b) consecutive 

reading and writing is done by the Necurs malware, which indicates a calculation on 

the written data done prior to injecting. This pattern also can be seen in ransomware 

samples. 
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(a) Marina Botnet, Md5: 

1cbeefe63d550d0648f86b08d8bacf52 

(b) Necurs Botnet, Md5: 

f2b45e5ac7d8393a89c485986a25748f 

(c) Storm Botnet, Md5: 

4e1d57de057c94d0b24f9468af950532 

   

(d) Torpig Botnet, Md5: 

585228c82d2c7642c5bb7a6b992734e0 

(e) Matsnu Trojan, Md5: 

7ea3d5d87f39a222c79291b201599ca8 

(f) Storm Botnet, Md5: 

8af33ef131ef54c1b114eeeadfd8db6f 

Figure 7.3. Process Injection Indications on Various Patterns. 
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Ransomware Patterns  

Another important observation in these patterns was from the ransomware 

samples. It has been seen that ransomware has a very distinctive memory trace that 

can easily be distinguished from our artifacts. The following figure contains three 

different families of 4 ransomware samples producing the same output pattern with the 

similarity ratio of 0.822487.  

 

  
Cryptowall 

Md5: 

3c45e0306f7b8921b7947a1e41b83e65 

Locky 

Md5: 

0d1c01615134f26fdc52bd7764b19996 

  
Locky 

Md5: 

1c75d83bf9e55b44b4b90b4b9dcb64a1 

TeslaCrypt 

Md5: 

1c8291eb7c1e8a98d3ba12a52e89b429 

Figure 7.4 Ransomware Patterns with the pairwise similarity average of 0.822487. 

 

As can be seen from Figure 7.4., these ransomware samples produce red and green 

straight lines on the same instruction write patterns in their images.  
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Observed Patterns among Infectors  

Similarly, slightly different patterns are also caught from the observations of virus 

(infector) files. Among the samples, the files that are infecting other files and their 

images have been extracted.  Some of the examples of viruses from the same families 

are given in pairs in the following Figure 7.5.  

 

  
Rex 

Md5: 

eabcc1ca51682d55b2451c4f5da1dc11 

Rex 

Md5: 

d477636cd715e375f6ec29280a2e7808 

  
Autorun 

Md5: 

2c3ccd32927839768639b88829a5c04a 

Autorun 

Md5: 

3b37acbeb2b4e2d4748ab0d80d6016ef 

Figure 7.5. Viruses and Infectors Fingerprints. For the family samples of Rex Virus 

given above, the similarity rate is 0.999994, and for the Autorun samples, the same 

ratio is 0.947181. 

These results are obtained on a computer with Intel Processor Intel(R) Core 

(TM) i7-7700HQ CPU @ 2.80GHz, 4 Core(s). In our dataset, nine of the malware 

could not be mapped into 3d space as the number of points was not feasible to map on 

our experiment computer.  It has been observed in our experimentation that 16 of the 
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malware from our sample did not run on our sandbox or detected that they are being 

observed.  

7.4. Malware Families 

 One of the main reasons for this research is to reveal malware family based 

characteristics in addition to identifying memory operations of malware. For this aim, 

the average pairwise similarity ratios of the samples coming from the same family are 

given in the following Figure 7.6.  Most of the families in this research resulted in 

ratios between 0.6 and 0.7, with a minimum similarity ratio of 0.6923085. It is shown 

that even for a small number of samples in our dataset, our mechanism and the search 

for memory patterns are evident. This is the main contribution of this dissertation.  

 

Figure 7.6. Pairwise Similarity ratio average values for all the families in our 

dataset. 

7.5. Discussion 

Figure 7.6. shows the average similarity ratio amongst the same malware 

family. As mentioned in the previous Chapter 7, the average similarity ratio is 

calculated by comparing all the pairs in a family and getting the arithmetic averages 

of these pair-wise similarity rates. The lower bound of this measure for our malware 

dataset is around the value of 0.50. As the SSIM measure is a tool for comparing 

images and our resulting patterns resides on the same axis structure in each image. 
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The higher bound is 1.00 which means the resulting patterns are the same.  

Figure 7.6. reveals the similarity of the families Rex Virus and Matsnu Trojan 

produced precisely the same memory images and patterns, although they have 

employed mechanisms to avoid signature-based detection. Although their 

cryptographical hash values and behavior analysis differs from sample to sample, their 

memory usage patterns and representations shows 0.995655667 for Marina Botnet 

Family and 0.999994 for Rex Virus Family.  

Virus Families result in the highest similar images with the average ratio of 

0.886347678. The pattern that the virus families produce is very similar to the patterns 

in Figure 7.5. Botnet Families in our dataset generates the second most similarities 

amongst their families with an average ratio around 0.82.  It is an expected property of 

a botnet as they are in general designed to tweak their code a little bit at every infection 

and connect to the same C&C with the same protocol.  

There are some striking cross-family similarities in our dataset. It is mainly 

because of the utilization of the same loader or downloader integrated into several 

types of malware.  As for an example to the cross-family similarities, Figure 7.2 (a) - 

(b)  and Figure 7.3 (a) - (c) can be considered. There are many more examples for the 

utilization of the same code-piece, and these can be observed from the Github page of 

our dataset and resulting images. A heatmap of the pairwise similarities of all malware 

in our dataset is given in Figure 7.7.  
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Figure 7.7 - Heatmap of the Malware Dataset Similarities. 
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 On the heatmap in Figure 7.7, the malware are numbered consecutively to their 

families in the order of Botnets, Cleanware, Ransomware, System Tools, Trojans, 

Viruses and Worms.  The numbers closed to each other represents the malware coming 

from the same family. Therefore, the tones around the diagonal line are lighter.  

 Thre rectangular areas with same tones in the heatmap in Figure 7.7 are mostly 

around the diagonal line. However in these results, our methodlogy shows significant 

similarities between worms and viruses which can be seen around 103-107 on X-axis 

and 114-120 on Y-axis. The light scalars distant from the diagonal line typically shows 

malware coming from different families and have integrated similar piece of codes in 

their developments. This heatmap and the data that constructs this heatmap can be 

found in the accompanying GitHub page given in Conclusion Chapter 8.  

In this chapter, common indicators of memory operations and similarities of the 

malicious samples on memory are shown and presented. The next chapter concludes 

this dissertation with the challenges and future works, as well as emphasizing our 

contributions in this study.  

 

  



99 

 

 

 

 

CHAPTER 8 

CONCLUSION 

8.1. Problem Definition Re-visited 

 Contemporary malware detection mechanisms and malware analysis techniques 

are not able to keep up with the malware authors because of the avoidance techniques 

employed. Static analysis techniques suffer from obfuscation, packing, and encryption 

methodologies, and thus, the limitations of static analysis are evident and discussed in 

Chapter 3.  

 Dynamic analysis and behavioral detection methods surpass these limitations. 

However, as the malware authors advance on the malware analysis techniques, new 

avoidance techniques such as native DLL coding, memory resident, file-less malware 

came into existence. Because of these reasons, the need for detection and analysis 

methodologies on the memory is present.  

 In this dissertation, a memory tracing technique combining dynamic analysis 

methodologies and memory forensics with dynamic binary instrumentation is 

employed. A novel method is explained and presented for memory imaging and pattern 

extraction of the malicious files. It has been shown on Windows PE Executable 

Malware that similar malware samples coming from the same families show similar 

memory access patterns in 3d space constructed by the sequence of the access relative 

to the computation instruction sequence, the instructions address and the memory 

address that is being accessed. 

8.2. Contributions 

Samples from a malicious and a benign software dataset experimented with the 

methodology, and the results are shared in this dissertation. Therefore; 

• The main contributions of this research are first providing a novel 

methodology for extracting memory usage patterns – namely obtaining the 

digital memory images of the various malware or benign software. 
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• Secondly demonstrating that the similar malware samples can be detected 

utilizing these memory images  

• Lastly, underlining the fact that the visual patterns of memory utilization 

of the various software may be utilized in computer forensics research. 

The instances, results, and the graph DB access is open to public on, 

http://github.com/cgyphd/Imaging-and-Evaluating-Memory-Access-for-Malware.  

8.3. Discussions and Challenges 

 The main challenge in this methodology is that the number of malware access 

entries can grow in the order of 107, therefore to generate and extract patterns in 

sufficient quantities for machine learning and deep learning becomes unfeasible.  

 The second challenge is pattern recognition in 3-dimensional data is still a big 

challenge in the pattern recognition community. Therefore, the technique employed in 

this dissertation is applied on the 2-d images of 3-d data. Moreover, for 3-dimensional 

pattern recognition, a graph database is used and integrated into this research for this 

reason.  

 The results of the static analysis visualizations are not explored further n this 

research, as mentioned in Chapter 3. Static analysis has its limitations set by 

obfuscations, packing and other avoidance schemes that are excessively explained in 

this dissertation. Therefore, the thesis is directed to and aimed at dynamical analysis 

methodologies.  

 This dissertation presents an analysis methodology that is designed for a post-

mortem strategy. The analysis and comparisons can be done after the infection has 

occurred. There is an absolute need for methods and techniques that are capable of 

identifying and deciding on memory patterns on a live system. It could be achieved 

through monitoring the state of the process memory either by utilizing external gates 

to the processors read/write gates by adding hardware components or by adding 

external software components to the virtual machines and monitoring the behavior of 

the virtual machine interfaces.  

 The methodology in this dissertation assumes that the memory patterns reside in 

3-dimensional spaces. Another question arises from this research is whether there will 

be an additional fourth dimension on the memory. This dissertation does not answer 
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this question. However, the evolution of the malware and observation of this evolution 

through a collection of malicious patterns of families over years might result in new 

links between malicious samples and their evolving patterns. These links may reveal 

new features and new dimensions yet to be discovered. For this aim, the similarity 

between families can be related to Open Source Intelligence on malware families for 

the time being. Collected open-source information content will result in better labeling 

of the patterns, which will, in return, result in better identification of malicious 

executables.  

8.4. Future Work 

Spatial properties of the graphs constructed with the memory extraction are 

demonstrated in Chapter 6. A line of future work is to investigate these properties 

rigorously and thoroughly. In that sense, the analysis of the malware can be enrichened 

utilizing those properties.  

This Ph.D. work hopes that with the advancement of Deep Learning 

methodologies, especially the state-of-the-art Convolutional Neural Networks (CNN) 

for image recognition, the cyber intelligence analysts will be able to identify malware 

in less amount of time than it already takes currently. 

The final and maybe the most crucial future work of this Ph.D. is to integrate 

the results and patterns of this research into big data platforms and live systems to 

engineering real-time detection systems through memory analysis.  

 

 

 

.  
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