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ABSTRACT

IMAGING AND EVALUATING THE MEMORY ACCESS FOR
MALWARE

YUCEL, Cagatay
Ph.D., Computer Engineering
Advisor: Assoc. Prof. Ahmet Hasan Koltuksuz
August 2019

Malware analysis is a forensic process. After infection and the damage represented
itself with the full scale, then the analysis of the attack, the structure of the executable
and the aim of the malware can be discovered. These discoveries are converted into
analysis reports and malware signatures and shared among antivirus databases and
threat intelligence exchange platforms. This highly valuable information is then
utilized in the detection mechanisms in order to prevent further dissemination and
infections of malware. The types of analysis of the malware sample in this process can
be grouped into two categories: static analysis and dynamic analysis. In static analysis,
the executable file is reverted to the source code through disassemblers and reverse
engineering software and analyzed whereas dynamic analysis includes running the
sample in an isolated environment and analyzing its behavior. Both static and dynamic
analysis have limitations such as packing, obfuscation, dead code insertion, sandbox
detection, and anti-debugging techniques. Memory operations, on the other hand, are
not possible to hide by these limitations and inevitable for any software since the
inventions of the computational models. Therefore, in this research, memory
operations and access patterns for the malicious acts are examined and a contribution
of a novel approach for extracting of memory access images is presented. In addition
to extraction, methods of how these images can be used for detection and comparison

is introduced through an image comparison technique.

Key Words: Malware Analysis, Malware Imaging, Memory Analysis, Dynamical

Binary Analysis, Memory Operations Analysis.
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ZARARLI YAZILIMLAR ICIN BELLEK ERISIMLERININ
GORUNTULENMESIi VE DEGERLENDIRILMESI

YUCEL, Cagatay
Doktora Tezi, Bilgisayar Miihendisligi Bolimii
Danigsman: Do¢. Dr. Ahmet Hasan Koltuksuz
Agustos 2019

Kot amagh yazilim analizi adli biligsel bir siirectir. Zararli yazilim; basarili
bir sekilde hedef bilgisayara bulastiktan, amacgladigi zarar hedef bilgisayarda
olustuktan ve yazilim kendini tam Olgekte gosterdikten sonra ancak calistirilabilir
dosyanin hedefi ve yapis1 ger¢ek anlamda anlasilabilir. Zararh yazilim analizi ile elde
edilen bu bulgular kotii amagli yazilim imzalarma donistiirilmekte; antivir(s
veritabanlar1 ve tehdit istihbarat degisim platformlar1 arasinda paylasilmaktadir. Bu
cok degerli bilgiler daha sonra kotii amaghi yazilimlarin daha fazla yayilmasim
onlemek amaciyla saptama/onleme mekanizmalarinda kullanilir. Bu stiregte koti
amagli yazilim 6rneginin analizi iki kategoriye ayrilir: statik analiz ve dinamik analiz.
Statik analizde ¢alistirilabilir dosya, tersine miihendislik yazilimlari aracilifiyla
kaynak koduna geri dondiiriiliip analiz edilirken, dinamik analiz, calistirilabilir
dosyanin disariya kapali bir ortamda galistirilmasini ve davranislarinin analizini igerir.
Hem statik hem de dinamik analiz, paketleme, perdeleme, 610 kod ekleme, sanal
makinenin algilanmas1 ve hata ayiklama Onleme teknikleri gibi analiz Onleme
teknikleriyle siirlidir. Ote yandan bellek iizerinden gerceklestirilen analiz islemleri
bu sinirlamalarla gizlenemez ve bilgisayar sistemlerinin modellerinin icadindan bu
yana herhangi bir yazilim i¢in kaginilmazdir. Bu nedenle, bu arastirmada, kotii niyetli
eylemler icin bellek islemleri ve bellek erisim oriintlileri incelenmis, bellek erisim
goriintlilerinin ¢ikarilmasi i¢in yeni bir yaklagimin katkisi litaretiire sunulmustur. Bu
cikarma yontemine ek olarak, bu goriintiilerin tespiti ve karsilastirma icin nasil

kullanilabilecegi goriintii karsilastirma teknigi ile ortaya konulmustur.

Anahtar Kelimeler: Zararli Yazilim Analizi, Zararli Yazilim Gorintileme, Bellek

Analizi, Dinamik Calistirilabilir Dosya Analizi, Bellek Operasyonlari Analizi.

vii






ACKNOWLEDGEMENTS

First and foremost, | want to thank my advisor, Prof. Ahmet Hasan
KOLTUKSUZ, not only for the valuable insights and vision of his, also for the
opportunity, support, patience, and guidance he has given me since | was an
undergraduate. Without his vision this work wouldn’t have been written, and his
enlightenment on many aspects had kept me on the right track many times.

This work is a product of the Cyber Security Research Laboratory of Yasar
University. For this lab to exist, Prof. Koltuksuz had put years of knowledge and his
significant expertise. | want to express my sincere gratitude to him once more; since
throughout my computer security research career in this lab, not a single day went by
without excitement.

My thesis committee guided me through all these years. Very special thanks
for my thesis committee members, Prof. Tugkan TUGLULAR and Prof. Mutlu
BEYAZIT, for their valuable insights, guidance, and support throughout my thesis.
Prof. Tuglular has always shown me the angles and perspectives, which makes this
work better in many ways, many thanks to him. Prof. Beyazit had supported me not
only on the scientific merits of this thesis, but also he had provided me lots of support
as well throughout the writing and completion of this thesis.

I would like to thank Jury Members, Prof. Saban EREN and Prof. Murat Osman
UNALIR. With the guidance and help of Prof. Eren, this work had sit on solid grounds
scientifically and statistically. My sincere gratitude to Prof. Unalir for his advice on
Data Analytics and Big Data.

| want to thank Prof. Timur KOSE on his help on Classification and Machine
Learning subjects. Special thanks to Prof. Hiiseyin HISIL for his moral support and
guidance for all these years. | would also like to thank my lab mates Mr. Anas M uaz
Kademi and Mr Murat ODEMIS. I also would like to thank my roommate Dr. Gékhan
DEMIRKIRAN and Dr. Mustafa BUYUKKECECI for their support on MATLAB.
Many thanks to my student Mr. Armagan YILDIRAK for his support in coding and
automation.

Very special thanks to my beloved wife, Mrs Ozgiin YUCEL for her loving
support and extraordinary patience for all of these years. And finally, last but by no
means least, | would like to thank my mother Ms Muazzez YUCEL and my brother
Mr. Cagan Selguk YUCEL for supporting me spiritually and patiently throughout
writing of this thesis.

Cagatay Yiicel
[zmir, 2019






TEXT OF OATH

I declare and honestly confirm that my study, titled “IMAGING AND EVALUATING
THE MEMORY ACCESS FOR MALWARE” and presented as a Ph.D. Thesis, has
been written without applying to any assistance inconsistent with scientific ethics and
traditions. I declare, to the best of my knowledge and belief, that all content and ideas
drawn directly or indirectly from external sources are indicated in the text and listed

in the list of references.

Cagatay Yiicel

Signature

September 16, 2019

X1






TABLE OF CONTENTS

AB ST RAC T .ttt ettt e et re e nre e e anreanrn Y
O Z e bbb vii
ACKNOWLEDGEMENTS ..ot tee e st e ntae e e e e sneee e iX
TEXT OF OATH .ttt et e et e e te e sre e sneesnne s Xi
TABLE OF CONTENTS ..ot e st te s tae e ste e et e e tae e snree e snee e e xiii
LIST OF FIGURES. .......c oottt et Xvii
LIST OF TABLES ... ..ottt e st e et e e e saae e s nbaeesnneeans XiX
ABBREVIATIONS ...ttt e e tae e st e e s e e st e e s ntaeesnreeenneeas XXi
CHAPTER 1 INTRODUCTION ...ttt sttt e s snne e 1
1.1. HISTORY OF MALWARE ..ottt sttt 3
1.2. PROBLEM DEFINITION, MOTIVATION, AND AlM.....cccccoiiiiiiniie e 7
1.2.1. OBFUSCATION ...ttt rte sttt e st e et e e snae e aaeeesneeeaneeans 8
1.2.2. OLIGOMORPHIC MALWARE ...ttt sttt 8
1.2.3. POLYMORPHIC MALWARE ......oooiie ittt stee e 8
1.2.4. METAMORPHIC MALWARE ......oooi st 8
1.2.5. DEAD CODE INSERTION.... .ottt ittt stve e stne e s e 9
1.2.6. ANTI-VM AND VIRTUAL INTERFACE DETECTION.......cccceciviviieeciie e 9
1.2.7. ANTI-DEBUGGING .......oooii ettt et s eaee s 9
1.2.8. EXECUTION STALLING ...ttt ste st 9
1.2.9. LOGIC BOMBS — EXTENDED SLEEPS ........ccooeeiiiiie e, 10
1.2.10. NATIVE DLL CODING .....cooii ittt ettt et 10
1.2.11. PROCESS INJECTION .....coiiiiiiie ettt nee s 10

L3 . THESIS OUTLINE ...ttt st stre et e e sabe e ana e 13

CHAPTER 2 BACKGROUND: MALWARE STRUCTURE, FAMILIES AND
CONSTRUCTION. ...ttt n e nr e nn e e nenne e 14



2.1. GENERAL LAYOUT OF PE FILES ... 14

2.2. STRUCTURE OF A VIRUS ... 16
2.3. STRUCTURE OF A WORM ..ottt s 20
2.4. STRUCTURE FOR A TROJAN .....ooiiiiiieinieene e 22
2.5. MALWARE FAMILIES ..o s 23
2.6. CONCLUSION ... ..ottt sr e sn e nr e nnas 25
CHAPTER 3 STATIC ANALYSIS OF MALWARE .....oooiiiieeee e 27
3.1. STATIC ANALYSIS TECHNIQUES........cooiiiiiiiii e 27
3.2. LITERATURE ON STATIC MALWARE ANALYSIS AND MACHINE LEARNING
METHODS ... et re e 34
3.3. TOOL SUPPORT FOR STATIC MALWARE ANALYSIS AND

VISUALIZATIONS. ...t 37
3.4. A GRAPH DATABASE APPROACH FOR STATIC ANALYSIS ..o, 37
3.5. VISUALIZATIONS OF STATIC ANALYSIS.....coo i 39
3.6. LIMITATIONS OF STATIC ANALYSIS .. .ottt 41
3.7. CONVOLUTIONAL NEURAL NETWORKS (CNN) ON STATIC IMAGES.......... 45
3.8. CONCLUSION OF CHAPTER 3 ...ttt 45
CHAPTER 4 DYNAMIC ANALYSIS OF MALWARE .......ccccooiiiie 47
4.1. DYNAMIC ANALYSIS TECHNIQUES........ccocoiiiiiir e 47
4.2. THE LITERATURE OF DYNAMIC MALWARE ANALYSIS......ccccoiiiiien 49
4.3. TOOL SUPPORT FOR DYNAMIC MALWARE ANALYSIS. ... 53
4.4. A SHOWCASE OF DYNAMIC ANALYSIS WITH INTEL PIN TOOL..........ccc...... 54
4.5. CONCLUSION AND DISCUSSION OF CHAPTER 4. ..o, 59
CHAPTER 5 MALWARE MEMORY FORENSICS. ... 61
5.1. MEMORY FORENSICS. ......oooiiii s 61
5.2. MALWARE OPERATIONS ON MEMORY ......ooiiiiiiiiiie e 63
5.2.1. PACKING AND COMPRESSION........coitiiiriiieiiiiee s 63
5.2.2. CODE INJECTION ...ttt e 65
5.2.3. DLL INJECTION AND REFLECTIVE DLL INJECTION .......c.ccoeovviveririrnne. 66
5.2.4. PROCESS HOLLOWING.......ccoiiiiiiee e 67
5.3. MANUAL ANALYSIS DETECTION OF MEMORY OPERATIONS.............ccce.. 69

5.4. THE LITERATURE ON AUTOMATED MALWARE DETECTION WITH
MEMORY ANALYSIS ...t e 70
5.5. CONCLUSION ... .ottt bbbttt b et n b e 71
CHAPTER 6 MALWARE MEMORY IMAGING AND EVALUATION .......ccccccoiviennnn 73

XIv



B.1. MOTIVATION L.t 73

6.2. INSTRUMENTING THE MEMORY OPERATIONS ......cccoiiiiiiiie e 75
6.2.1. MEMORY LAYOUT ...t 75
6.2.2. FLOWCHART OF THE METHODOLOGY .....cccooiiiiiiiiiiiiisscseee s 76
6.2.3. ALGORITHM FOR THE PIN TOOL .....oooiiiiiiiiee e s 78
6.2.4. AMEMORY IMAGE EXTRACTION EXAMPLE .......ccooeiiiiiiiiiiii 79

6.3. GRAPH DATABASE MODEL FOR MEMORY ACCESS AND A SHOWCASE... 80

6.4. STRUCTURED SIMILARITY INDEX MEASURE (SSIM) ....cccoviiiiiiiiincee 83
6.5. CONCLUSION OF CHAPTER B.....ccuviiiiiiieiie e 84
CHAPTER 7 TESTS AND RESULTS......ooiiiiiiiir e 85
7.1. SOFTWARE SUPPORT ..ottt e 85
7.2. MALWARE DATASET ..ot 85
7.3. MALWARE MEMORY PATTERNS .......oooiiiiiii e 86
7.4. MALWARE FAMILIES. ... ..o 95
7.5, DISCUSSION ...ttt e 95
CHAPTER 8 CONCLUSION .....ooiiiiiiieiesieeie sttt 99
8.1. PROBLEM DEFINITION RE-VISITED .....ccccoiiiiiiiiiieieeee e 99
8.2. CONTRIBUTIONS ... .ot nre e 99
8.3. DISCUSSIONS AND CHALLENGES ..o 100
8.4. FUTURE WORK ..ottt 101
REFERENGCES..... ..o e 103

XV






LIST OF FIGURES
Figure 1.1- Problem Tree of Signature Generation with Malware Analysis. ...........c..c......... 11
Figure 2.1. Structure of PE file Format (Pietrek, 2011).......cccceveviveiieieiieiese e 15

Figure 2.2. (a) The virus inserts itself into another executable. (b) The virus alters the entry

point in the header. (c) New entry point jumps to decryptor of the static encrypted

virus body. (d) The decrypted virus body eXECULES...........cccevvrievieveeiieie e, 19
Figure 2.3. A Flow Chart of a COMPULEr TrOJaN. .....c.ccvvvveiiiiiiie e 22
Figure 3.1 CFG of Virus Xpaj.C With hash ...........ccccciiiviiiiii e 32
Figure 3.2 Graph Database Output of a CFG of the Virus Xpaj.C with hash........................ 33

Figure 3.3 Function-Imported and API Functions illustrated Together of the same executable

N FIQUIE 2. .ttt 33
Figure 3.4 - The schema of the Graph Database..............cccoviiiiiiiiiiiiicic, 37
Figure 3.5- Insertion process of the Static Analysis ReSUltS............cccccovveiiiiiniiiiiices 39

Figure 3.6 - The visualization of the malware sample with Shal
33e8e894297e0f94c5df36¢ch4e5b3ee68662ceff (a) An overview of the malware (b)
Hovering on a function node (c) Hovering on an APl node (d) Hovering on an edge

DEWEEN TUNCLIONS. ....c.iiiiee et nne s 40
Figure 3.7 - 3d model of the same sample in FIguUre 6............ccoceveeieve e 41

Figure 3.8 The visualization of the malware samples with Shal
0f241d84aa44034c924197d3bce94faa07811f35,
f53e68832af99cf553471cf87cc5da332c695659,
ada9efdf8dee612599377f6ade3e78e06d4069f4,
a9accc4fe6cd45b9a54c25a1447ed74cc61d5675 respectively, showing (a) dead

code insertion (b) encryption engine (c) obfuscation (d) packing..........cc.cccccene..e. 43
Figure 4.1 Architecture of Pin TOOl.........coiiiiii e 53
Figure 4.2. Static Analysis Graphs of the Samples. ... 55

Figure 4.3. Function Hit Traces(a), (b) and Function Traces (c), (d) of Ramnit v1 and v2
TESPECTIVEIY. <o 56

Figure 4.4. DLL Addresses and Sequence graphs of the Samples. (a) Ramnit v1 (b) Ramnit



Figure 4.5. Instruction Pointer Traces of the Samples. (a) Ramnit v1 (b) Ramnit v2. ........... 59

Figure 5.1. lllustration of packing of an executable. ............c.ccooeiiiiiiiiii e 65
Figure 5.2. lllustration of Code INJECLION. ........cceiviieiiiiirece e 66
Figure 5.3. Remote DLL Injection using LoadLibrary method............ccccoovviiiiniiciinnnn 67
Figure 5.4. lllustration of Process HOHOWING.........cccoiiiiriiiiiiecce e 69
Figure 6.1. Memory Layout of @ PE FOrmMat. .........cccoovviiiiiiiiecceeee e 76
Figure 6.2. Flowchart of the Proposed Methodology. ........cccoeiviieiiiecie e, 77

Figure 6.3. The Extracted image of one of the images from the Keygen Trojan family. The

md5 of the malware is 5fe2aebb2fe4abe503d297¢318a37a62. .......ccccvvvvveveenennne. 80
Figure 6.4. Memory Accesses of a Sample connected with Euclidean Distances.................. 81
Figure 6.5. Consecutive writes of the malicious sample. .........ccccoceiiviieiiiicicii e, 82

Figure 6.6. The nodes with Euclidean distances are smaller than 100 are merged in this

example. An apparent clustering of the memory access can be seen from this

Figure 7.1 UPX patterns for the samples respectively, (a), (b) portable benign executables,

(c), (d), (e) Trojans from Keygen Family, (f) a trojan from Sub7 family. The

average similarity ratio for these patterns is 0.6724712. ......c..cccocvevvvivvcvevenieernennn. 88
Figure 7.2. Observed Packing and Self-decrypting patterns. ...........cccoovvveiirieneneneneenses 90
Figure 7.3. Process Injection Indications on Various Patterns. ...........cccccovvvienninnicnennnnns 91
Figure 7.4 Ransomware Patterns with the pairwise similarity average of 0.822487.............. 93

Figure 7.5. Viruses and Infectors Fingerprints. For the family samples of Rex Virus given

above, the similarity rate is 0.999994, and for the Autorun samples, the same ratio

IS 0.947L8BL. ..ot 94
Figure 7.6. Pairwise Similarity ratio average values for all the families in our dataset. ........ 95
Figure 7.7 - Heatmap of the Malware Dataset Similarities. ...........ccccooereiiiniininiereneeee, 97

xviii



LIST OF TABLES

Table 3.1 Suspicious strings of W32.eternalrocks creating and installing an onion network

node in the Microsoft updates folder...........ccoovveiiiiiiiii i 29

Table 3.2 Suspicious strings of W32.carberp extracted possible signature filenames.
(sha256:4297ad0f5bb72616337d88f14c07a6¢c6d6e0c93d2a9bb5eaa7e09219556aaf

Table 3.3 Imports table extracted from the symbol table of malware Win32.Emotet.
(sha256:6393fe8dd4721190f240e22feeb769675b6194a70cabd5a415¢2364686a908

C) vt e ettt e et e e s e 30
Table 3.4. Comparison of Researches that utilizes Static Analysis Techniques.................... 36
Table 3.5 - Properties of the Nodes of the Graph Database..............cccoevvreiniiiininincneenn 38
Table 4.1. Comparison of Researches that utilizes Dynamic Analysis Techniques. ............. 52
Table 4.2. Shal hashes and compilation information of the malware samples ..................... 54
Table 6.1. Linked list of memory images of the malware Keygen...........cccccoovnininenennenn. 79
Table 6.2. Sample Details for Example Analysis. ... 80
Table 7.1. The distribution of the malware samples in our dataset. ...........cccovvririnerennnn 86

XiX






ABBREVIATIONS

API Application Programming Interface
APT Advanced Persistent Threat

ASLR Address Space Layout Randomization
BBS Bulletin Board System

CERT Cyber Emergency Response Team
CFG Control Flow Graph

CNN Convolutional Neural Networks
COFF Common Object File Format

DBI Dynamic Binary Instrumentation

DLL Dynamically Loaded Library

DTA Dynamic Taint Analysis

EPO Entry Point Obscuring

FN False Negative

FP False Positive

FTP File Transfer Protocol

IDPS Intrusion Detection Prevention System
IP Internet Protocol

JIT Just-in-Time

KNN K Nearest Neighbor

XXi



NOP

OOA

PDF

PE

PEB

RAM

RelLU

RF

SSIM

SVM

TAN

TF-IDF

TN

TP

UPX

VAD

VCL

VM

No Operation

Obijective Oriented Association
Portable Document File

Portable Executable

Process Environment Block
Random Access Memory

Rectified Linear Unit

Random Forest

Structured Similarity Index Measure
Support Vector Machine

Tree Augmented Naive Bayes

Term Frequency - Inverse Document Frequency
True Negative

True Positive

Ultimate Packer for Executables
Virtual Address Descriptor

Virus Creation Laboratory

Virtual Machine

XXii



CHAPTER 1
INTRODUCTION

A malware, short for malicious software is a software to accomplish harmful,
unwanted, and illegal tasks on a computer system. There are many types of malware
as of today; viruses, worms, trojans, spyware, ransomware, botnets and so on. Malware
analysis is the forensics process performed to reveal the aim, structure, characteristics,

damages, and impacts of malicious software.

The ever-evolving race between malware developers and cybersecurity
professionals is an arms race. Just as in any other regular software development
community, malware developing community evolves as well. There are newly
developed techniques, new anti-detection mechanisms and zero-day vulnerabilities
that have come to light every day. These improvements lead to trends between malware
developers and these crafts are shared on the market (usually on the darknet, which is
the common name for the hidden parts of the Internet that is not routed with the general
routing algorithms). Malware also evolves through a process called anonymization:
when a new feature for developing malware is present, it is shared with this community
of malware developers for utilizations and modifications. Hence, every malware
developer modifies the code for their selves. Within days, the same feature is integrated
into several other malware or altered versions of the same malware are accustomed to
harm other computer systems and networks. Therefore, this process of anonymization
provides a large domain for a malware to evolve, whilst keeping the original version

unknown (Ding, Fung, & Charland, 2016).

Until now, anti-malware techniques that are based on signature matching have
been successful in known types of malware. A signature is a predefined pattern of the
malicious software extracted by the analysis and scanning of the machine code of the
software (Gandotra, Bansal, & Sofat, 2014). There are two types of malware analysis:
Static Analysis and Dynamic Analysis. Static analysis has the means to analyze the
binary of the malware through reverse-engineering and disassembling. Specific strings

and patterns are extracted from the reversed code and shared as signatures of the
1



sample. In dynamic analysis, the executable is run in a preset secure environment
(called sandbox), and the behavior of the malicious is observed through debugging and
hooking on the network communications, system calls, memory accesses, and disk

operations.

Malware developers have integrated several countermeasures to their software
to evade from static analysis and signature detection. These are mainly; obfuscation,
packing, metamorphism, polymorphism, and encryption techniques. Obfuscation is a
process applied to the source code so that it is not readable by humans. Several
methods are involved in the process of obfuscation; dead code insertion, instruction
substitution, register substitution, function reordering (Farhadi et al., 2015). Dead code
insertion is to insert code blocks and random instructions to the original code that are
never going to be executed. This technique leads to loss of performance of the malware;
however, as the source code is modified, the signature detection can be evaded.
Another technique is the instruction substitution. In this technique, the instructions that
can be used interchangeably such as jump instructions are replaced. Register
substitution similarly substitutes data registers for the alteration of the source code.
The signature and function reordering is, as the name suggests, reorders all the
subroutines in the executable (You & Yim, 2010). A packer malware archives and
combines one or more malicious files and codes to modify its code structure. In
addition to the packing operation, a packer malware deletes its import address tables
to complicate the analysis (Cheng et al., 2018). In 2006, it is reported that 92% of the
malware used similar techniques to evade detection (Wei, Zheng, & Ansari, 2008). A
metamorphic malware contains a mutation engine that alters itself in each execution
via the packing, encryption, and obfuscation techniques. Although the structure and
the instructions of the code is altered in every different version, the aim and
functionality of the malware stay the same. In a polymorphic virus, a part of the code
that does encryption/decryption is visible in every alteration. Therefore, polymorphic

viruses are easier to detect compared with the other techniques.

Dynamic analysis is running the malicious sample in an isolated, secure
laboratory environment while examining the behavioral analysis on the sample.
Dynamic analysis eliminates the anti-analysis measures of the static analysis, as the
dynamic analysis strips the malware out of any encryption, packing, and obfuscation

by running it on a sandbox and monitoring its behaviors. Therefore, in dynamic

2



analysis, the malware is analyzed and caught red-handed during the execution, and any
obfuscation, encryption, or alternation to the original code, therefore, becomes
meaningless at this stage. This is the main advantage compared to static analysis (Shijo
& Salim, 2015). However, dynamic analysis has its limitations. Dynamic malware
analysis at its core is accomplished in two significant techniques: binary
instrumentation and debugging. The binary instrumentation is a method of fooling the
malware by hooking the Application Programming Interface (API) calls and providing
the necessary responses to these requests to the malware. These hooks are then logged
and converted into behavioral signatures under the assumption that malicious behavior
is generally accomplished through utilizing the underlying operating system’s API
calls. This assumption holds for many cases unless the functions from APIs are
natively coded in the malware. The second technique, debugging, suffers from
detection by the malware authors since the debugging generally slows down the

execution of the steps even though the debugging scheme for detection is automated.

Moreover, Dynamic analysis involves memory analysis techniques such as taint
analysis (Korczynski & Yin, 2017) and memory image differentiating (Teller & Hayon,
2014). Taint analysis includes marking some specific memory locations and tracing
them along the execution and memory image differentiating is taking snapshots of the
malicious process memory on an interval basis or with predefined triggers and
contrasting those memory images for maliciousness. These techniques and the

literature have been explained in detail in the following chapters in this thesis.

1.1. History of Malware

John Von Neumann gives the first formal definition of a virus in the title of “Self-
reproducing automata” (Neumann, 1969). This definition of this kinematic machine is
assumed to be the first mention of a machine that is designed to reproduce itself, given
the parts and the algorithm. The algorithm in this definition is written on an infinite
tape which is considered to be analogous to the definition of the memory. In this tape,
a set of instructions which define the definition of the machine itself are stored. These
instructions include (i) creating another machinery just as it is from the infinite number
of parts that constructs the machine. (ii) creating a tape for the new machine and
copying the contents of its tape. (iii) Attaching the new tape to the new machine and

thus completing the self-reproduction. This kinematic machine had some physical,



mechanical, and logical limitations such as the infinite number of parts and an infinite
tape. With the suggestions of Stanislaw Ulam, one of the simultaneous inventors of the
Cellular Automata (Neumann, 1969), Neumann shifts his kinematic model to a
Cellular Automata, where the self-reproducing automaton is defined as a Cellular
Automata with a finite number of states. An implementation of this work is realized in
1972 by an Austrian computer scientist named Veith Risak (Risak, 1972). In his work,
he implemented a fully functional model of a self-replication program on SIEMENS
4004/35 computer system (Miles, 1986).

In 1971, a computer program named “creeper” which was the first version of a
worm invented by Bob Thomas was spreading in the DARPANET. This program is
not considered to be malicious at all although it copies itself through the network on
Tenex Operating Systems on DEC PDP-10 computers and runs its copies on the
memory space of another process. This self-propagation property in malicious
executables leads to the definition of a computer worm. The name “worm” is
originated from the science fiction novel by John Brunner named “Shockwave Rider”
in 1975 describes a universe of networked phones and a shutdown software
propagating in this universe (Brunner, 1984). Moreover, an early version of anti-virus,
Reaper, a worm removal program is then written to remove the Creeper worm from

the network and infected computers.

The Creeper and Reaper software both having the properties of a worm and
chasing one another inspired A. K. Dewdney to design a game called Core War. The
name comes from the early designs of the memories with ferromagnetic cores. The
game includes writing two computer programs in a language called Redcode and
letting them hunt each other in the memory until one of them dies and erased from the

memory completely (Dewdney, 1989).

The first of the significant attacks to the Internet was in 1988. A worm named
“Morris Worm” is created and released by the computer graduate from Berkeley,
Robert Tappan Morris. The worm was released from a terminal in Massachusetts
Institute of Technology laboratories to cover his tracks, and it hits approximately 6000
of computers where an estimate of 60.000 computers was connected to the Internet.
This outbreak then leads to the creation of the first Cyber Emergency Response Team

(CERT) (FBL, 2018).



In 1984, Kenneth Thompson in his work of “Reflections on Trusting Trust”, he
has shown how to modify a compiler to insert a backdoor on any computer program
that contains “login” command (Thompson, 1984). A Trojan is a computer program
that installs itself as a legit program on the host system. In the Thompson’s version of
a Trojan in this case, the compiler was being the Trojan itself because of inserting a
backdoor to a source code even though the source code does not have any
vulnerabilities in it. The first Trojan being reported was a game named “ANIMAL”
which was a self-replicating program disguised as an animal guessing game. The game
asks users questions to find out which animal the user was thinking of while in the
background; it copies itself to all the folders of the UNIVAC system which was
designed as a folder shared operating system (Miles, 1986).

A critical improvement, self-mutation in virus programming was present in 1990.
In 1990, as a part of an analysis project of virus families, a polymorphic virus family
called Chameleon was invented by Mark Washburn. A polymorphic virus is a
combination of self-reproduction and a mutation engine. The mutation engine is
provided by a cipher in this family, and this research has proven that many of the

antivirus programs were useless against such a mutation engine (Kaspersky, 2019).

The malicious programs are designed to harm the host systems by inserting
backdoors, spreading and attaching itself into files and operating systems or copying
themselves through the network and do harm on file systems and disks of the
computers. Thereafter, a new type of malware had been released in the early 2000s,
the spyware. Although the name “spyware” was invented to mock the business
strategies of Microsoft in a Usenet post in 1996, the term then used to define hardware
designed for espionage purposes and after that, a software that installs without
permission, collects user-related information secretively and transfers the data without
the consent of the user. The term is used in a press release in 2000 by Gregor Freund,
the founder of Zone Labs for the first time and widely used since then (Avoine,
Oechslin, & Junod, 2007). The spyware that is being used for advertisement purposes
only is called Adware. As of today, this type of spyware can be found in many
freeware/shareware software bundles and installed automatically at the installation of

another software.

There were many epidemics in malware history. The first malware that spreads

out of the laboratory it was written (in the wild) was the ELK Cloner. It was a virus
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for the Apple computers written in 1982 by Rich Skrenta for Apple DOS systems, and
the spread was through the floppy disks. Not much long after, in 1989, a hacker with
a nickname of “Dark Avenger” in Sofia, Bulgaria, had written a virus for MS-DOS
systems that spread globally. It was corrupting up the storage space, directories and
files with random codes and the sentence “Eddie lives... Somewhere in time”. The
spread was so big that it was all around Europe, even USA and Australia (BitDefender,

2010).

Around December 1989, the first sample of the ransomware has been produced
by Joseph L. Popp. It was before crypto coins and even the internet. The virus was
spread through a floppy drive, disguised as an educational floppy diskette about AIDS
virus. After the infection, the virus was encrypting all the files and folders of the

computer and asked the user to send money to a post office box in Panama.

The first virus exchange platform was set up in Bulgaria at the beginning of the
1990s as a Bulletin-Board System (BBS). The virus database was open to anyone who
uploads a new virus code. This system had led the malware writers to evolve and
improve while letting the malware to be anonymized. In 1992, these contributions to
the virus databases had resulted in the creation of tools and engines that generates
viruses such as Self-mutating engine (MtE) and Virus Creation Laboratory (VCL).
These engines contain prearranged payloads and scripts, with which, even script

kiddies could generate new viruses by mixing the viruses in their databases.

One example of utilization of these databases was the Loveletter virus and its 90
variants in the 2000s. The virus also is known by the name “ILOVEYOU” or “The
Love Bug”. The malicious code was spread through emails disguised as love letters.
Within ten days of the first outbreak, %15 of all networked computers were infected

with one of the samples of Loveletter (BitDefender, 2010).

Malicious worldwide spreads have continued from the 2000s to the present day.
Conficker (or Downadup) Worm was first of the greatest hits in malware industry,
affecting 15 million systems worldwide in 2009s (Touchette, 2015). The Rebirth of
the ransomware: Cryptolocker affected 250.000 machines in 2013. The ransomware
families have grown a lot since then with the Locky, CryptoWall, CryptoDefense,

WannaCry and several other ransomware.



In 2007, the malware had evolved into a new type of attack mechanism with the
Stuxnet worm. Malware has been used as a weapon by the governments with the
pronouncements of cyberspace as one of the war domains. This very sophisticated
worm had been tailored for a specific device, and a persistent campaign is followed
until the attack had reached its goals. This type of attack is called an Advanced
Persistent Threat (APT). Similar aimed malware had been developed after the Stuxnet:
Flame, Duqu, Duqu2. All of them were tailored and weaponized malware aimed at a

specific purpose and used in a campaign of a government or groups.

Malicious outbreaks and infections are continuing today with the malicious code
databases, state-sponsored actors, ransomware and botnet developers, code exchange
platforms on unsolicited and unmapped domains of the Internet such as Darknet or
Deep web. As our security measures evolve, the malware and malware families are

evolving at a fast pace as well.

1.2. Problem Definition, Motivation, and Aim

The purpose of malware is to hide from the infected host system and conduct
malicious acts using the functions, resources, and communications of the system when
triggered. Therefore, malware developers intend to find new solutions of hiding from
anti-virus systems day to day and integrate these solutions and evolve their malware

into new versions by these solutions.

A signature of malware is a unique set of bytes that shows the existence of the
malware in a file or on memory. This set of bytes can also be the hash or checksum
value of a specific portion of the code, a particular file that the malware drops to host

system, or malware-specific indicators on memory when the malware runs.

There are also behavioral signatures that show if a malicious binary is present
such as special registry keys that the malware creates and alters or a connection to a
malicious [P address which is generally the command and control (C2) server. These
signatures can also be an operating system kernel call to allocate some memory to
unpack and decipher itself on memory, or an attempt to shut down some a property of

an operating system or anti-virus to continue executing without detection.

There are many ways of malware to alter itself and evade from the static

signature detection.



1.2.1. Obfuscation

Obfuscation is a defense mechanism for static analysis. It is a technique to
transform the malicious code into identical but differently represented new code. A
signature generated by a signature analysis consists of a piece of codes represented in
their byte form and/or relationships between jumps and calls. For such signatures,
instruction-level obfuscations such as using redundancies in instruction sets, dead
variable and code insertions, obfuscating the imports table are generally used to evade

signature detection.

1.2.2. Oligomorphic Malware

An oligomorphic malware is a type of polymorphic malware where there is a
simple decryptor engine for changing the malicious code with encryption. Usually a
simple, low-cost and, with a small key size encryption mechanism is used to change
the byte code of the malware, and since the number of possible alterations of the code
is low because of the small key size, it is possible to detect such malware by generating

signatures for all possible keys.

1.2.3. Polymorphic Malware

A polymorphic malware changes its shape at every infection and execution
through encryption. This type of malware contains a mutation engine inside its code.
The mutation engine generates not only a new key, a new decryption routine as for
every execution as well. Therefore, polymorphic malware with a moderately complex
mutation engine typically can reshape itself into around a billion of different versions

of itself.

1.2.4. Metamorphic Malware

A metamorphic malware changes its shape and form at every infection and
execution just as a polymorphic malware but to do so, it utilizes code renaming, adding
random codes to itself, changing used registers in the code and, changing the level of

optimization provided by compilers.



1.2.5. Dead Code Insertion

Inserting codes and functions that are never going to be executed by the code is
called Dead Code Insertion. This technique aims to evade detection by the signatures
generated from file hashes. By adding random extra functions and codes to its file, the

hash value of the executable changes and the detection is tried to be avoided.

There are also problems in signatures that are extracted from dynamic analysis as well.

1.2.6. Anti-Vm And Virtual Interface Detection

Sandboxing techniques for dynamic analysis involve creating a safe and isolated
environment for running the executables. Due to their ease at maintenance and
reproduction, Virtual Machines are selected for this task. However, Virtual Machines
and their interfaces such as Virtual Network Cards uses particular keys in the registry
and also leave particular imprints on the memory on the operating system of the Virtual
Machine. Malware writers analyze these imprints and use them to avoid sandboxes by
adding extra countermeasures such as not decrypting itself if an indication of Virtual

Machine is present.

1.2.7. Anti-Debugging

There are conventional techniques among malware writers for understanding
debugging. The interrupt INT 3 is commonly used for debuggers to break execution at
each step and hand the control to the debuggers and malware writers generally check
these interrupt flag to avoid being analyzed. Another common technique is to check
the time interval between two instructions. If the wait is longer than a regular fetch-

decode-execute cycle, the malware does not reveal itself.

1.2.8. Execution Stalling

The typical approach for running an executable on a sandbox is to pre-set a
duration for the analysis. This time duration is generally set by the analyst to automate
the analysis of the malware. For another anti-sandboxing measure, the malware writers
add a sleep cycle at the beginning of their code, so that if it is a sandbox, the malicious

activities will not be caught by the sandbox as the analysis time would be over.



1.2.9. Logic Bombs — Extended Sleeps

Similar to the execution stalling, malware writers set a random date and time to
execute their malicious goals and let the code stay dormant and inactive until this time
comes. The malware won’t be caught by the sandbox as the analysis time would be
over. Another stalling technique to add extended sleeps to avoid being analyzed in the

timespan of sandbox analysis.

1.2.10. Native DLL Coding

Most behavioral and dynamic analysis and signature extraction techniques are
based on the API calls of the malware. The decision of maliciousness, the aim of the
executable, the countermeasures being taken by the malware writer and, the
communications are generally detected by hooking API calls by the sandbox Operating
System or a particular DLL that is injected into the binary that is being analyzed.
Malware writers try to avoid these signatures by writing their native DLLs and system
calls. However, coding native system calls require expertise on operating systems and
hardware, and therefore, it is not common among malware to be written in such an

expert-level way.

1.2.11. Process Injection

As mentioned above, the malware is being monitored and analyzed by the API
and system calls. In sandboxing, the malicious code and the child processes that it
starts are monitored. However, some malware tries to inject itself into address space
of another process and run their API and system calls from another process that is not
being monitored. This technique, of course, requires to integrate a module of

exploitation into the malicious code.

The summary of these evasion techniques, both static and dynamic, and their
countermeasures are given in a problem tree in Figure 1.1. In Figure 1.1, the techniques

are given in rounded rectangles, and the countermeasures are given as rectangles.
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Figure 1.1- Problem Tree of Signature Generation with Malware Analysis.




Moreover, memory forensics had provided several ways to generate signatures
from the address space of the executable from memory. This kind of signature
generation involves capturing the address space either by taking the snapshot of the
process address space between time intervals (Interval Process Dump in Figure 1.1.)
or taking the snapshot of the memory space by some triggers such as suspicious API
calls. Considering the case of saving the regular snapshots, the problems within this
technique are (a) it produces gigabytes of memory data to analyze (b) the malicious
actions can slip between two intervals. When utilizing system calls to trigger taking
snapshots of the memory, with this evolving structure of malware, it is hard to decide

which system and API calls are suspicious.

In this thesis, the primary motivation is to propose a novel approach to imaging
the malware through the artifacts from the memory operations, and the primary aim is
by utilizing these artifacts and patterns, to identify malicious acts visually and test a

software rapidly for maliciousness.

So far, in the literature, Deep Learning and Machine Learning approaches have
been explored. Several metrics are constructed utilizing Call Function Graphs, and API
calls from the static and dynamic analysis. However, to the best of our knowledge,
there are no comprehensive comparison and classification technique that uses memory
patterns has been suggested to the literature. This thesis aims to accomplish this by
extracting unique runtime patterns of malware from memory. In the purpose of
comparison, the patterns are converted into 3d images, and a very well-known pattern
and image comparison technique that is widely used in the literature has been

integrated into this research.

The results of this work generated a framework for the visual detection of
maliciousness with memory patterns. These patterns are inserted into a graph database
for having a structural and queryable platform. The 3d images are stored along with
the memory data. This implementation and collection of patterns will act as a visual

aid and a fingerprint database.
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1.3. Thesis Outline

This thesis is outlined as follows:

e Chapter 2 — Defines the modularity and anonymity of malware, introduces the

malware families, and explains the spread of malware.

e Chapter 3 — Presents the static analysis methods and the literature along with

results of static analysis with their graph database representations.
e Chapter 4 — Surveys the literature of dynamic analysis.

e Chapter 5 — Identifies the memory layout of an executable, presents the memory

forensics literature and explains the idea used in this thesis.

e Chapter 6 — Reveals the methodology, the algorithms for binary instrumentation,

and the extraction of the memory patterns.

e Chapter 7 — Shows the results of a malware dataset that is constructed for this

research.

e Chapter 8 — Concludes this thesis with novelties, results, and future work.
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CHAPTER 2
BACKGROUND: MALWARE STRUCTURE, FAMILIES AND
CONSTRUCTION

This section contains the general background information on the structure of the
malware, how the malware is designed and executed and, how they exploit the general
structure of executables on target hosts. Because of the extensive usage of the Portable
Executable (PE) Format among malware authors, this information is exampled in this

format throughout this chapter.

In a highly abstract view, the structure of different malware characteristics can
be captured. While the syntactic features can be altered through evasion techniques
that are mentioned in Chapter 1, structural properties are not likely to change as easy.
In general, malware is designed to exploit a vulnerability of either an operating system
component or a user application to accomplish its tasks. No matter how much the code
itself modified, the target and the exploitation methodology stay the same or very
similar for malware. This chapter aims to reveal these characteristics in a general view.
Along with the general algorithms and methodologies of malware types and the

modular malware are presented in this Chapter.

2.1. General Layout of PE Files

The PE format is the general data structures for the binary files compiled for
Windows applications in 32 and 64 bits. The format is used both on-disk and in-
memory representations. Because of the memory address alignments and dynamically
loaded modules of a binary, the memory layout is slightly different from the on-disk

representation.

The general format of a PE file is depicted in Figure 2. The explanation of each

part of the header is as follows:
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MS.-DOS Header » File Signature
PE Header MS-DOS stub program
Section Image
Sections Table PE Signathure
idata
COFF Header
.edata
PE Optiona Header
Jbss
Section Image — — - —_—— — — —
S .data
................ Image Section Header 1
text
| Image Section Header 2
g 1s1C
Image Section Header 3
Section Image =

Figure 2.1. Structure of PE file Format (Pietrek, 2011).

MS-DOS Header: This header contains the file signature of executables MZ

(initials for Mark Zbikowski) and an MS-DOS stub program that is left in

this header for backward compatibility. This MS-DOS stub only prints out a

message that states that the program can not be run under MS-DOS.

PE Header: It contains two separate headers: image file header structure or

namely the COFF header and image optional header as stated in Figure 2.

o

COFF Header: This header has seven fields in its data structure:

Machine: It holds the information about the architecture of the target

machine.

NumberOfSections: it defines the number of sections in the PE file.
TimeDateStamp: holds the compilation time and date.
NumberOfSymbols: Number of symbols in the Symbol Table.

SizeOfOptionalHeader: Size of the optional header in bytes.
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o Characteristics: contains information about the PE file.

e Image Optional Header: This optional header contains the critical
information about the executable file such as entry point, alignment of the
executable file sections and memory sections, beginning of the code section,

DLL characteristics and so on.

e Section Headers defines the size, location, and permissions of each section

in the PE file.

e In section images, there are several sub sections that contains data (.data),
uninitialized data (.bss), code (.text), resources (.rsrc), import address

information (.idata) and export address information (.edata).

Malware authors try to hide their mal-intended codes inside the parts of this data
structure using obfuscations, encryptions, polymorphism techniques, etc. The
techniques for understanding this data structure, and the sections without executing the
code, therefore has limitations that are emerged from this structure itself. These
limitations are discussed and shown through 2-dimensional and 3-dimensional models
in this thesis in Chapter 3 and Chapter 6. Following parts of this Chapter concentrates

on the clean and stripped versions of the types of malware.

2.2. Structure of a Virus

The definition of a virus is a piece of malicious code that copies itself on other
files and executes a payload to accomplish its malicious tasks. Thus, there are at least
two parts for a virus, which are the infection code and the payload (Sharp, 2007).

General pseudocode for a virus is presented in Listing 1.
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Listing 1 — Pseudocode for a schematic virus (Sharp, 2007).
Begin Procedure:
if spread_condition := true:
for v € victim_files :
if not_infected(v):
begin_code, end code = get placement for virus(v);
copy virus(begin_code end code, v);
modify to execute inserted virus(begin code, v);
endif;
endfor;
endif;
execute_payload(),
start_execution_of infected program();

End Procedure

The procedure of a virus starts with checking the replication environment first.
In the execution of this part, malicious code might check whether the machine is an
actual machine or a known sandbox, how much ram does the host machine has, how
many users are registered to this computer, any known signature of antivirus is present
and so on. These are the critical decisions of malware regarding its purpose and aim.
There are some types of malware produced explicitly for particular machines as a part
of highly advanced campaigns in Advanced Persistent Threats (APT) (Bencsath, P¢k,
Buttyan, & Félegyhaz, 2012; Falliere, Murchu, & Chien, 2011).

The virus then lists the potential targets in the host system and starts iterating
them for replication. If the file is not already infected (as every copy of this abstract
virus will work concurrently), it finds the suitable section in the file for replication and
drops itself inside the file. During this environment, if the target file is an executable
(generally preferred to be such), the structure of the executable is exploited, and the
entry point of the target executable is altered for the replicated virus to start. After all
the potential files are infected, the payload is executed. Execution of the payload is the

part where actual harm is done besides the illegal replication process. In general, after
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the job of the virus is completed, the infected program is also run so that the virus itself

lives undetected in the infected program.

As an example of this process, the virus code with the name of
Virus.W32.Virut.ce is presented and analyzed in this part. The technical analysis of
this virus is done by Kaspersky Laboratories and presented as a web page in 2010
(Zakorzhevsky, 2010). This sample is known as one of the fastest spreading types of
a virus, and it utilizes many evading techniques such as polymorphism, obfuscation,

anti-debugging, and anti-virtual machine.

As for the spreading conditions, this sample checks the tick count of the host
machine by the instruction rdtsc and GetTickCount() function of Windows APL
Getting the tick count between instructions are aimed for determining if the virus is
being debugged or analyzed in a sandbox environment. If the tick count holds the virus

continues with the spreading.

This virus tries to replicate itself through a Portable Document File (PDF)
plugins vulnerabilities of browsers. The virus copies a download link line for
the .htm, .php, .asp files of the target computer. Also, it attaches itself to small

executable files such as keygens and crack programs.

The virus uses Entry Point Obscuring (EPO) methods to run its payload. It inserts
itself to the address space of Explorer.exe (or services.exe, iexplorer.exe) and it alters
the entry point line in the optional header of the PE structure so that the payload
executes. This strategy is illustrated in Figure 2; it contains injection into another
process address space, obscuring the entry point, decrypting the original virus code

and execution.

Afterward, it connects to a Command and Control address and retrieves further
instructions. Although this property is a Trojan-type malware property, these lines in-
between malware types are quite blurred as every malware author tries to improve their
code by adding several functions from other malware. This property is discussed in the

malware families part later in this Chapter.
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Figure 2.2. (a) The virus inserts itself into another executable. (b) The virus alters
the entry point in the header. (c) New entry point jumps to decryptor of the static

encrypted virus body. (d) The decrypted virus body executes.

The virus uses two engines for modifications while spreading to avoid signature-
based detections. While the first one changes the code itself, which decrypts the

malware, the other one decrypts the static body of the malware. More details on this

malware can be found in the reference article (Zakorzhevsky, 2010).
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2.3. Structure of a Worm

Similar to a virus, a worm also has the capability of reproduction on a network
environment. The anti-inspection and disguise techniques are similar, but a worm
generally contains other parts for finding new targets on the network and exploiting
some vulnerability to a new host. Therefore, all worms contain the three essential parts:
the sniffer, the propagator, and the payload. Since the infection is on a target network
rather than on a target host, there are some other managemental parts for a worm such

as life-cycle manager, remote control and update manager (Szor, 2005).

A general worm strategy can be given in the following pseudocode in Listing 2.

Listing 2 — Pseudocode for a schematic worm (Sharp, 2007).
Begin Procedure:
if spread_condition := true:
victim_hosts_addresses = search_for victims();
for v € victim_hosts_addresses :
if not_infected(v):
fingerprint_network _host(v),
transfer _code(v_address, port, payload);
send_message to_execute on_host(v);
endif;
endfor;
endif;
execute_payload(),
check_for updates(); //optional
listen _remote connections(); //optional

End Procedure

Many versions of worms rely on human interactions to execute on the targeted
hosts. It can be an email attachment to view or a network connection to accept.
However, as the sophistication of malware improves, the vulnerabilities on target hosts

are utilized, and the need for the interaction is decreased for the propagation.
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New targets of the worm can be found in many ways depending on the

propagation strategy. The most common ones are as follows:

e Email Discovery: In this type of spreading strategy, the worm looks for contacts
and email addresses in human readable files and send itself to these addresses

through an email client.

e File Share Discovery: The worm searches for shared files, folders and drives and

locates itself to these drives or files for propagation.

e Communications Discovery: This strategy includes the worm sniffing the
network communications of the current host and trying to exploit

vulnerabilities of network communications.

e Network Discovery: This strategy needs the worm to have network scanning
modules to provide propagation. Some search strategies on a networked
environment for a worm would be random scanning, permutation scanning,
localized scanning, hit-list scanning, topological scanning, meta-server

scanning (Smith & Matrawy, 2008).

As an example of this strategy, the analysis report for W32.Waledac worm is
used in this part (Tenebro, 2009). The worm Waledac is a multipurpose worm; it has
the functionalities of emailing, vulnerability exploiting, mining the host, acting as a

proxy and acting as a binary downloader.

The first propagation strategy of this worm is social engineering, which involves
sending Christmas themed emails, phishing emails about the election campaigns of
2008-2009 and a popular news site. The second strategy is about the websites that host
this virus; these websites exploit browser vulnerabilities for the victims to download

the malware.

This malware aims to create a botnet through spamming and steal FTP
information from the infected targets. After successfully running on a host, the emails
in user files (other than video and music files) are gathered and spamming continues.
As for the payload, the malware creates a node list of other bots in its neighborhood
and generates a fast-flux network structure for malware hosting nodes. The nodes act

as a proxy for the hosting websites to avoid detection.
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2.4. Structure for a Trojan

A trojan is engineered to resemble a useful, harmless program that gains control
of the target computer and do harm or steal data and network information. A trojan is
a software that aims to acquire full control of the target machine. There are many types
of Trojans such as a banking trojan, a fake anti-virus trojan, a distributed denial-of-
service trojan, a backdoor trojan, a ransom trojan, an info-stealer trojan, and so on.
Therefore, it is hard to derive a single procedure to cover all these aspects. However,
their code structure contains an installment procedure, a sign-on procedure, a privilege
escalation procedure, and a connection interface with the command and control (C&C).

These procedures are depicted in Figure 2.3.

L4

Updates Malware

l installment

update needed?
{optioral)

User installs Do malicious work. ¢
the trojanloader (encryptfiles, steal data, )
fake program
Privilege Escalation
spreading Establishes control
conditions? withC&C Gommand Received
fram CRC?
sgn-on
{optional)
Loader Dowrloads »|  Downloads other L] Waitfor C&C
a Control Program .
malicious programs

Figure 2.3. A Flow Chart of a Computer Trojan.

In the installment procedure, the malicious code is generally hidden inside

another executable, such as an online gaming client or a keygen. The fake cover
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executable is designed to trick the user into installing to the target system. It can also

use social engineering techniques to install itself on the potential host.

The sign-on procedure involves connecting to the master server for further
instructions. It generally includes getting general information on the host machine to
create a unique identification code for the host computer. An example of this procedure
is the banking Trojan.Dyre (Symantec, 2015). Trojan.Dyre aims to steal banking
credentials by directing the user of the host computer to fraud websites. It uses spam
email messages as an infection vector and installs itself through the
Downloader.Upatre which is used in many attack campaigns in computer crimes
history. After Trojan.Dyre has been installed on the target computer, it collects the
banking information from vulnerabilities of popular browsers, generates a campaign

Id, host Id and logs in to the C&C server to transfer the credentials.

In the privilege escalation procedure, computer trojans use an operating system
vulnerability to gain root access on the host system. In the example of Trojan.Dyre, a
vulnerability in a database compatibility service program, is utilized to redirect root
privileges to run the malware component. As for the C&C procedure, either a full
remote control is provided, or an interface or an encapsulation module for the desired

commands are provided to the attacker.

2.5. Malware Families

A group of malware that shares common properties and functionalities is called
malware families. There are many reasons for malware to grow into a family. The first
one is a process called anonymization. Anonymization is done by the malware authors
to hide the actual author of the malware; they upload their malware to a code-sharing
platform, and within hours, several new instances of the malware are created. Other
malware authors can get parts of it and turns into some other weapon for another attack,
or they can directly use it as happened in the case of the Downloader malware family
(Gupta, Kuppili, Akella, & Barford, 2009). Many trojans use one instance from the
Downloader family to spread their malware; and as mentioned in the previous part of
this chapter, a downloader may be configured to download several different malware.
In the case above, it was used for downloading several botnets so that once a computer

is part of a botnet, it is automatically becoming part of several others.
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Another reason the number of malware instances from the same sample increases
in the wild is the self-mutation engine written by the author. It is done to avoid
detection, especially from the signature detection mechanisms. In general, the tactics
involve adding several NOP operations to change the cryptographic hash values of
sections, and the number of NOP operations picked randomly, using interchangeable
assembly instructions such as conditional jumps that check the same condition,
pushing and popping values from the stack without the actual need or using
unnecessary swap operations between registers. Utilized these and similar approaches,

hundreds of different versions of malware can be encountered in the wild.

There is an arms race between malware authors and computer security specialists.
As the anti-virus vendors find new solutions and detection techniques to stop malware,
the authors of the malware continue to patch their malware to survive in the wild. As
mentioned in the structure of trojans section, many new generation malware has
capabilities of updating themselves while the malware authors manage their lifespans
through controlled C&Cs. A recent study researching the questions about the lineage,
lifespan, and the number of generations of a malware family is presented in the work
Gupta et al. (Gupta et al., 2009). In this study, 669 different malware families identified
over 19 years of malicious code metadata. This research shows that some malware
families can survive for a few years using the patches and updates coming from the
malware authors community. Malware lineage is the problem of identifying the
versions of malware among samples which is another research field approaching the
same problem (Haq, Chica, Caballero, & Jha, 2018; Heinricher & Jilcott, 2013; Karim,
Walenstein, Lakhotia, & Parida, 2005; Walenstein & Lakhotia, 2007; Xin & Zhang,
2007).

Contemporary attack vectors include several malware in their weaponization:
trojans are used for initial attacks, worms are included for their lateral movement and
rootkits are deployed for remaining the communication with the targeted systems. This
is another reason because of which a number of malware samples in a family increase.
Malware authors constructing several malware as a bundle and generating malware
families in a modular, compartmented fashion. These malwares are called modular
malware. In this type of malware, the attacks are staged into phases, and for every
phase, a different portion of the code harms the targeted system. A recent example of

such malware family is the botnet service named DiamondFox, which is a malware-
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as-a-service platform. It has several modules and functionalities such as browser
password stealer, FTP stealer, DDoS, Email Grabber, RAM scraper, Spam Function,
CryptoWallet Stealer and so on. All of these functions are provided as a plugin to this
malware. It has a technical support staff; all of these features bundled as a fully-fledged

business service.

2.6. Conclusion

In this chapter, the general structure of an executable and, the capabilities of
contemporary malware are investigated. It is intended to explain how the malware
evolves, how the malware families are constructed, and to what extent the capabilities
of malware authors reach. In the following chapters, the malware analysis mechanisms,

both static and dynamic, and a novel contribution of memory analysis is presented.
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CHAPTER 3
STATIC ANALYSIS OF MALWARE

This chapter is aimed at identifying the contemporary techniques of static binary
analysis along with the literature of malware detection and classification based on
these techniques. The limitations of static analysis and the evasion techniques from
static signature-based detection schemas are introduced in the previous chapters. In
this chapter, while a novel methodology of visualizing and fingerprinting of malware
is provided, also the limitations of static analysis are exampled and illustrated through

this developed methodology.

Moreover, in this Chapter, an implementation of Convolutional Neural Networks
(CNN) to the static features of malware is provided. For this aim, first, a graph database
representation of malware is presented along with the feature extraction queries. This
representation is created by the extraction of static properties such as Call function
graphs and API calls; which are extracted with the reverse engineering tool RADARE,
and these results of the static analysis are inserted into a graph database which is
created by the Neo4j Graph Database application. Secondly, the implementation of a
CNN classifier is demonstrated on the images that are extracted from such data. For
demonstration, a collection of a recent malware sample space is analyzed. Finally, the

limits of static analysis are also discussed on the results of the implemented CNN.

3.1. Static Analysis Techniques

Static analysis of malware is the collection of the techniques that are used on the
binary file without mapping on the memory and without executing. It provides a rapid
overall inspection of the binary file, reveals general information about how the binary
is compiled, gives insight about which API calls and libraries are used and, presents
the structure of the malicious file. It is also used for understanding if the binary has
been encrypted, obfuscated, and packed. In general, tools such as disassemblers, PE
file analyzers, and tools for searching for strings and binary patterns are utilized. The

section headers, mapped resources, symbolic links, and dynamically linked libraries
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and modules are also available if no counter-measures are taken when compiling and

preparing the binary.
Extraction of Strings

Hardcoded strings inside a binary can sometimes provide useful insight into the
file. By utilizing string search algorithms, the following indicators of a suspicious file

can be found.

e In the cases of creating malicious files on the targeted system, malware
can be matched using these hardcoded names extracted from the

executable.

e Most current malware searches for the processes with the names of
most common anti-virus vendors. Finding these names in the

executable files can be an indicator of maliciousness.

e  When a malware tries to connect with the C&C, it is done by resolving
a domain name or trying to establish a connection with an IP address.
This information is generally hard-coded in the executable; therefore

searching for a string with the format of [P addresses or URLs are useful.

e  When the malware drops another executable as a backdoor or a bot
service, it registers the file as a service and therefore inserts and alters
the registry keys. Because of this reason, searching for a registry key in

the strings can be identifying for malware as well.

The string extraction can be used to quickly check for suspicious things in a
binary, although generally, it does not provide a clear picture. The string extraction of

malware is exampled in the following Table 3.1. and 3.2.

28



Table 3.1 Suspicious strings of W32.eternalrocks creating and installing

an onion network node in the Microsoft updates folder.

(Sha256:1ee894c0b91f3b2f836288c22ebeahb44798f222f17c255f557af2260b8

c6a32d)
Virtual Physical
Ordinal | Address | Address | Size | Length | Section-Type-String
298 0x0000a79e | 0x0040c59% | 14 15 (-text) ascii 020430Projectl
299 0x0000a7ad | 0x0040c5ad | 7 8 (-text) ascii 0-C000-
300 0x0000a81d | 0x0040c61d | 4 5 (-text) ascii orm1
301 0x0000a826 | 0x0040c626 | 5 6 (-text) ascii Form1
302 0x0000a839 | 0x0040c639 | 5 6 (.text) ascii Form1
303 0x0000a8b0 | 0x0040c6b0 | 4 5 (.text) ascii VB5!
304 0x0000a928 | 0x0040c728 | 8 9 (-text) ascii TorUnzip
305 0x0000a931 | 0x0040c731 | 8 9 (-text) ascii Projectl
306 0x0000a93b | 0x0040c73b | 8 9 (-text) ascii Projectl
(.text) utfl6le
308 0x0000aac8 | 0x0040c8c8 | 47 96 *\AC:\Users\tmc\Documents\TorUnzip\Project1.vbp
309 0x0000ad70 | 0x0040ch70 | 8 9 (-text) ascii Projectl
310 0x0000ad7c | 0x0040ch7c | 5 6 (-text) ascii Form1
(-text) ascii C:\Program Files (x86)\Microsoft Visual
312 0x0000adec | 0x0040chec | 59 60 Studio\VB98\VB6.OLB
313 0x0000ae54 | 0x0040cc54 | 12 13 (-text) ascii WindowsUnZip
(-text) utfl6le \Program Files\Microsoft
314 0x0000ae78 | 0x0040cc78 | 45 92 Updates\temp\tor.zip
315 0x0000aedc | 0x0040ccdc | 37 76 (-text) utfl6le \Program Files\Microsoft Updates\temp
316 0x0000af60 | 0x0040cd60 | 24 50 (-text) utfl6le ripting.FileSystemObject
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Table 3.2 Suspicious strings of W32.carberp extracted possible signature

filenames.
(sha256:4297ad0f5bb72616337d88f14c07a6¢c6d6e0c93d2a9bb5eaa7e09219556aafdb)

Virtual Physical

Ordinal | Address | Address | Size | Length | Section-Type-String

6 0x00025d10 0x0044e110 | 12 26 (.rsrc) utfl6le BuML8yYmRIYnf

7 0x00025d32 0x0044e132 | 15 32 (.rsrc) utfl6le FileDescription

8 0x00025d54 | 0x0044e154 | 10 22 (.rsrc) utfl6le OmJ8otjGpz

9 0x00025d72 0x0044e172 | 11 24 (.rsrc) utfl6le FileVersion

10 0x00025d8c 0x0044e18c | 12 26 (.rsrc) utfl6le S3BF71Z2ZLiF

11 0x00025dae 0x0044elae | 12 26 (.rsrc) utfl6le InternalName

12 0x00025dc8 0x0044e1c8 | 6 14 (.rsrc) utfl6le KayUly

13 0x00025dde 0x0044elde | 16 34 (.rsrc) utfl6le OriginalFilename

14 0x00025e00 0x0044e200 | 9 20 (.rsrc) utfl6le 7AhVva8ai

15 0x00025ela 0x0044e21a | 11 24 (.rsrc) utfl6le ProductName

16 0x00025e34 0x0044e234 | 14 30 (.rsrc) utfl6le 08ZkvxeDt8DPLE

17 0x00025e5a 0x0044e25a | 14 30 (.rsrc) utfl6le ProductVersion

18 0x00025e78 0x0044e278 | 7 16 (.rsrc) utfl6le IxqR7dS

19 0x00025e90 0x0044e290 | 10 22 (.rsrc) utfl6le arFilelnfo
Symbols

Symbols are the various entities about the executable such as variable names,

imported functions, function names, and objects. This information is stored in the

Symbol Table by the compiler. This table reveals useful information about the code

itself when the binary is not stripped. An example of symbols in a malicious binary is

demonstrated in Table 3.3.

Table 3.3 Imports table extracted from the symbol table of malware

Win32.Emotet.

(sha256:6393fe8dd4721190f240e22feeb769675b6194a70cabd5a415c2364686a9089c¢)

Virtual | Physical
Ordinal | Address | Address | Type | Size | Name
107 0x00001134 0x00401134 FUNC 0 imp.MSVBVM60.DLL__Clatan
108 0x00001138 0x00401138 FUNC 0 imp.MSVBVM60.DLL___vbaStrMove
109 0x0000113c 0x0040113c FUNC 0 imp.MSVBVM®60.DLL___ vbaStrVarCopy
110 0x00001140 0x00401140 FUNC 0 imp.MSVBVM60.DLL___vbaR8Intl4
111 0x00001144 0x00401144 FUNC 0 imp.MSVBVM60.DLL__allmul
112 0x00001148 0x00401148 FUNC 0 imp.MSVBVM60.DLL__ Cltan
113 0x0000114c 0x0040114c FUNC 0 imp.MSVBVM60.DLL___ vbaAryUnlock
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114 0x00001150 0x00401150 FUNC 0 imp.MSVBVMG60.DLL___vbaVarForNext
115 0x00001154 0x00401154 FUNC 0 imp.MSVBVM60.DLL__Clexp

116 0x00001158 0x00401158 FUNC 0 imp.MSVBVMG60.DLL___vbaFreeObj
117 0x0000115¢ 0x0040115¢ FUNC 0 imp.MSVBVM60.DLL___vbaFreeStr

Control Flow Graphs (CFGs)

Control Flow Graph is one of the most common used signatures in the malware
analysis community to identify the characteristics of a binary. It is a directed graph
where each node represents a block of code or a function, and each arrow represents
the flow of execution calls or jumps in the executable binary (Nguyen, Nguyen,
Nguyen, & Quan, 2018).

To obtain these graphs, the complete disassembly of the binary should be
searched for cross-references. A cross-reference can be a call to a function, a jump in
the address space, a return function, and so on. An example of CFG is illustrated in
Figure 3.1. As can be seen in the example, the flow of execution is given for the sample
Virus.Xpaj.c with the given cryptographic hash function sha256 of
5¢cb89de13b078839bf8c56549delfbf99a73dd8179d150d2c¢d975722e9f70e5.  Each
node represents a function either from the code section (named as fcn symbols) or a
function from an imported library (named as dll ). Figure 3.1 contains only a portion
of the given sample as the whole CFG is too large to fit. In the second figure, another
version of CFG of this sample is provided. Figure 3.2 is an output of the graph database

that 1s constructed for this research.
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sym.imp.KERNEL32.dll_Get TempPathA

sym.imp. KERNEL32.dll_GetTempPathA

sub. KERNEL32.dlI_CreateProcessA_477 sym.imp.K

sub. KERNEL32.dll_GeiTickCouni_946

sub. KERNEL32.dll_Get TickCount_946 sub KERNEL32.d1l_GetShortPathNameA_98f sub, KERNEL32-dll-GetShertPath

sym.imp. KERNEL32.dll_GetTempFileNameA sym.imp, KERNEL32.dll_CloseHandle

sym.imp. KERNEL32.d1l_Get TempFileNameA

sub. KERNEL32.d1I_llstrcatA_c65

sub. KERNEL32.dll_GetShortPathNameA_98f

|

USER32.dll_SendMessageA_fab sym.amp KERNEL32 dll GetShonPahNameA T sirs_s snnRenalIe str-Remame sy imp KERNEL32 0l _CloseHy|
Y

sym.imp.KERNEL32.dll_GetShortPathNameA SILS_S str.Rename sym.imp.KERNEL32.dl|_CloseHandle

Figure 3.1 CFG of Virus Xpaj.C with hash
95ch89de13b078839bf8c56549de1fbf99a73dd8179d150d2¢cd975722e9f70e5

These CFGs are converted into nodes and edges in a graph database to store
much more characteristics than a regular CFG such as degrees of a node, size of a
function, addresses of jumps, calls as well as the beginning of the function itself.
These are detailed later in this Chapter. The function calls within the code section of

the executable is given in Figure 3.2., Figure 3.3. contains the imported library and

API functions together in one graph.
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Figure 3.2 Graph Database Output of a CFG of the Virus Xpaj.C with hash
95cb89de13b078839bf8c56549de1fbf99a73dd8179d150d2cd975722e9f70e5

Figure 3.3 Function-Imported and API Functions illustrated Together of the same
executable in Figure 2.
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3.2. The literature on Static Malware Analysis and Machine Learning
Methods

The problem of detecting new malicious executables is not new. Majority of the
computer security community have identified this problem as a classification problem
where the classes are benign and malicious. Another problem is that the community
tries to tackle is the problem of identifying the family of a malware which has been

reduced to a multi-class classification problem.

With the success of data mining techniques on Intrusion Detection and
Prevention Systems (IDPs), the first research on malware detection is conducted in
2001 by Schultz et al. (Schultz, Eskin, Zadok, & Stolfo, 2001). This paper discusses
the significant limitations of signature detection methodology and joins the data
mining and machine learning approaches with the static analysis techniques that are

mainly based on DLL and imported functions extraction.

Next, in the paper of (Christodorescu & Jha, 2003), a malicious code checking
algorithm based on CFGs is defined. This research mainly attacks the problem of
detection of obfuscated malware; a solution is generated with the annotation of
obfuscated CFGs, and an algorithm is developed for checking the maliciousness.
Another significant milestone in the literature is the introduction of graph isomorphism
and utilization of graph algorithms in similarity checking. In the work of Bruschi et
al., graph isomorphism is used for discovering self-mutating malware (Bruschi,
Martignoni, & Monga, 2006). The research is based on the intuition that self-mutating
malware will result in isomorphic malware, and by converting the malware into a

graph, similarities can be reported with the detection of isomorphisms.

Machine learning algorithms are researched in the same year in the work of
Kolter and Maloof; the bytecodes of the executables are vectorized into fixed-size
vectors by n-gram methodology, and learning techniques are applied. Another research
on learning technique called Objective Oriented Association (OOA) which is based on
API sequences (Ye, Wang, Li, & Ye, 2007). This study generates rules based on the
API sequences extracted by the static analysis and reaches 93 percent of accuracy in

detecting the malicious executables.

Extracting opcode sequences by disassembling malware is another technique

that is heavily used in the literature. This technique has been researched by learning
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algorithms in the works of Santos et al. and Shabtai et al. (Santos, Brezo, Ugarte-
Pedrero, & Bringas, 2013; Shabtai, Moskovitch, Feher, Dolev, & Elovici, 2012). N-
grams, KNN, RF, SVM, Naive Bayes, K2, Hill Climber, TAN learning algorithms are
used in these researches and 91, and the results of these studies have reached 95

percentages of accuracy.

Static analysis methodologies are investigated and tried with Deep Learning
methodologies as well. Convolutional Neural Networks (CNN) which is the state-of-
the-art Deep Learning technique on images and matrices have been investigated with
malware classification in the works of (Karbab, Debbabi, Derhab, & Mouheb, 2018;
Ni, Qian, & Zhang, 2018). In the paper Maldozer, API sequences extracted from
mobile malware are converted into matrices and fed into a CNN classifier; resulted in
98 percent of accuracy. Another work exploiting CNN’s success in image
classification; converting the malware hashes into images and researched the CNN on

these images had resulted in approximately 99 percentages of accuracy.

Classifying and analyzing the malicious codes based on the data from the static
analysis are summarized in Table 3.4. Some of the research is attacking the problem
of detection while some focuses on obfuscation, polymorphism, and self-mutation.
The aims of the studies and the features that have been used are given in the Features
column. The technique that has been invented or incorporated is provided in the Used
Technique column, and the results in the formats of classification accuracy (accuracy),

false positive (FP) and false-negative (FN) rates are given in the last column.

In this thesis, a version of CNN is applied on Function-API call graphs to show
the applicability of our graph database approach with deep learning. Function Call
Graphs reveal an essential characteristic for the code to be analyzed, whether it is
malicious or not. This research also integrates this vital data into account as the
branching in the execution provides a backbone structure for the malicious code.
Another significant characteristic is the API calls of the malicious code as it reveals
the intention of the analyzed code by showing the interaction with the underlying
operating system. Although the main focus on this thesis is extracting characteristics
from malware analysis instead of the exploitation of deep learning on these results; the
applicability of these images on a Deep Learning methodology is discussed in this

Chapter.
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Table 3.4. Comparison of Researches that utilizes Static Analysis Techniques.

Reference Work

Dataset

Features

Used Technique

Success Rate /Classification Accuracy

(Schultz et al., 2001)

3,265 malware and 1,001

benign programs.

Function Calls, DLLs, Opcodes,
Strings

Naive Bayes, Ripper, Multi-Naive

Bayes

97,11% Naive Bayes Accuracy on Strings

SAFE (Christodorescu &
Jha, 2003)

10 Obfuscated Viruses

Annotated Function Call Graphs
of Obfuscated Executables

Malicious Code Checking Algorithm

FN and FP rates are 0

(Bruschi et al., 2006) 115 samples of Metaphor | Detection of  Self-mutated | Graph Isomorphism 70% of equivalent viruses and %100 of different
Virus malware on Control Flow software.
Graphs.
(Kolter & Maloof, 2006) 1,971 benign and 1,651 | n-grams Naive Bayes, decision trees, SVM, and | TP 98%., FP 0.05%

malicious executables boosting
IMDS (Ye et al., 2007) 12214 benign and 17366 | Objective Oriented Association | Rule Mining Based 93% Accuracy
malicious samples (00A)
(Shabtai et al., 2012) 7,688  malicious and | Opcode Sequences represented | n-grams 91% Accuracy with DF Classifier with n=2
22,735benign files. as n-grams
(Santos et al., 2013) 17,000 malware, 585 | Opcode Sequences KNN, RF, SVM, Naive Bayes, K2, Hill | 95.90% Accuracy with SVM
malware families Climber, TAN
Maldozer(Karbab et al., | Malgenome, Drebin and | API Call Sequences Convolutional Neural Networks (CNN) | Over 98% Accuracy on datasets and Over 99% on
2018) Maldozer set of 33k Family Classification.

malicious apps.

MCSC(Ni et al., 2018)

10,805 samples

Hash results are converted into

visual images.

Hashing and CNN

99.260% Accuracy
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3.3. Tool support for Static Malware Analysis and Visualizations.

The construction of the graph database is accomplished through the reverse
engineering framework Radare2 version 2.3.0 (Sergi Alvarez, 2006). All the functions
are analyzed, and all the calls and imports are retrieved by automation of this tool
written in Python scripts given by the open-source project R2graphity
(GDATAAdvancedAnalytics, 2016). The extracted information inserted into the graph
database instance created on the engine of Neo4j version 3.5.6. The 2d and 3d

visualizations are designed with the 3d-force JavaScript library (Asturiano, n.d.).

3.4. A Graph Database approach for Static Analysis

The static analysis of the malware constructs the graph database. This analysis
includes the complete disassembling and matching the calls that are made to the code
section of the malware. All the functions are analyzed to the parameters of address,
size, API references, in-degrees (how many times the function is called) and out-
degrees (how many times the functions call another function). These properties then
converted into the queries of the graph database. API references are also inserted as
nodes in this graph database with the address of the calling instruction stored as
relationships. General schema of the database is in Figure 3.4, and information on

nodes and relationships can be found in the following Table 3.5.

AP IMPORTS ——{ FUINCTI... STARTS

Figure 3.4 - The schema of the Graph Database.
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Table 3.5 - Properties of the Nodes of the Graph Database.

Node/Relationship Label Properties

SAMPLE Shal hash, File Name, Section Count,
Binary Type, Compilation Date, File
Size, Section Entry Point, Original File
Name, Entry Point Address.

FUNCTION In degree, Out degree, Number of API
calls, Function Size, Call Type, Function
Type.

API API name

CALLS Distance, Calling Instructions Address

IMPORTS Calling Instructions Address

STARTS <none>

Some of these properties play a significant role in the visualization process,
which is discussed in the Visualizations part of this Chapter. The distance in functions
is calculated as the absolute value difference in addresses between functions. The
addresses of calling instructions are the relative addresses of the instruction that made
the API or the function call and not presented as an offset notation. The function size
is the size of the function in the code segment, the entry point is the entry point
provided by the static analysis, and in many cases, it is an obfuscated value showing

some function other than actual main function of the malware.

The process of inserting static analysis results is quite straightforward. First, the
static analysis of the sample is done, and a SAMPLE node is created. All the functions
of the sample are extracted and inserted as FUNCTION nodes. Thereafter, all the
cross-references captured by the static analysis are iterated and matched with API
names and functions and inserted as API nodes. The flowchart of the construction of

the graph database is illustrated in Figure 3.5 below.
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Retrieve al the imports

start Greb a Sample for that function

l

Reversa all the Functions Addall API references
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Grab a Function and
> retrieve all
call references

Y

Add an edge between
the fimction and the call
reference

Figure 3.5- Insertion process of the Static Analysis Results.

3.5. Visualizations of Static Analysis

In this part of the thesis, the visualization methodology developed for static
analysis and for the aim of producing fingerprints is presented. This fingerprinting
technique is formed in the hope of being helpful to a malware analyst to provide a

general idea about the analyzed malicious sample rapidly.

In Figure 3.6, the round nodes represent functions, while the square nodes
present API calls or Imports. As can be seen in Figure 3.6, the node size of the function
nodes on visualizations varies according to their actual sizes. Moreover, the distances
between function nodes are scaled from the exact sizes the functions have from the
graph database. However, as many operating systems integrate memory address
randomization schemas such as Address Space Layout Randomization (ASLR), the
size of and the distances to API calls are ignored in this visualization as these measures

may provide inconsistent results due to this randomization process.
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@

Figure 3.6 - The visualization of the malware sample with Shal 33e8e894297e0f94c5df36ch4e5b3ee68662ceff (a) An overview of the malware
(b) Hovering on a function node (c) Hovering on an API node (d) Hovering on an edge between functions.
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For this research, a 3-dimensional visualization model is also presented.

The 3d visualization is analog to the 2d model and can be seen in Figure 3.7 below.

FUNCTION: 0x40522d| size:940],in:0.| out:8| apicalls:24

Figure 3.7 - 3d model of the same sample in Figure 6.

3.6. Limitations of Static Analysis

The limits to the static analysis and its results are given in the work of (Moser,
Kruegel, & Kirda, 2007) through a custom designed obfuscator that is available on the
binary without having the source code itself. In this work, the polymorphism,
metamorphism, and obfuscation properties of the malicious executables are discussed,
and a binary obfuscation approach is presented to show the insufficiency of the static
analysis alone in detection malware. The fundamental limits of obfuscation are also
provided in a trade-off with performance. In this part of Chapter 3, it is aimed to show
the limitations of the static analysis by examples from the designed and deployed graph

database.

The following Figure 3.8 presents four different types of anti-static-analysis
techniques. In Figure 3.8a, it is possible to see unreachable and dead functions that are
designed to evade signature level detection. Figure 3.8b contains API calls related to
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the cryptography scheme and virtual memory allocations; while Figure 3.8c has
randomly generated, same-sized functions in the numbers of the order of 10, therefore
showing the features of obfuscation. In Figure 3.8d, only the unpacking functions are

present since a kind of packing is applied.
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Figure 3.8 The visualization of the malware samples with Shal 0f241d84aa44034¢c924197d3bce94faa07811f35,
t53e68832af99cf553471cf87cc5da332c695659, ada9efdf8dee612599377f6ade3e78e06d4069f4, a9acccafe6ecd45b9a54c25a1447ed74¢cc61d5675
respectively, showing (a) dead code insertion (b) encryption engine (c) obfuscation (d) packing.
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3.7. Convolutional Neural Networks (CNN) on Static Images

CNN's, are a particular type of neural network for implementing a matrix or grid-
like data. It utilizes a specific operator, convolution operator, which is specialized kind
of a linear operator and a CNN is a neural network that uses at least one convolution

layer in its layers (Lecun & Bengio, 1995).

In this research, a CNN network with three times two convolutional ReLLU layers
plus a max-pooling layer, and a SoftMax layer as output have been tried. However,
because of the aforementioned limitations, no satisfying result could be achieved.
Although with a fine-tuned CNN approaches worked well on the examples and studies
in the literature, as the focal point of this thesis is to extract analysis data particularly
on memory, the continuation of Deep Learning approaches is left as future work. In
the following chapters, a successful training attempt on the memory patterns is

presented in both Machine Learning and Deep Learning methods.

3.8. Conclusion of Chapter 3

As shown in this chapter, static analysis has some serious drawbacks when
applied for detection. The evasion techniques mentioned in this chapter are commonly
used in contemporary malware, and therefore, in many cases, the methods based on
only static techniques seem to be failing. One useful methodology in this context
would be stripping malware from all the static evasion techniques, extracting the
executable from the memory address space and applying static analysis after the
extraction. However, this technique will also suffer from randomization techniques

employed by the malware authors.

In the following chapters, the dynamic analysis and memory forensics
techniques are discussed and evaluated before presenting the novel methodology used

in this thesis.
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CHAPTER 4
DYNAMIC ANALYSIS OF MALWARE

Dynamic analysis techniques involve running the malware instance in an
isolated environment and extracting characteristics of the instance by monitoring it. In
the dynamical analysis, the malware is analyzed red-handed during the execution, and
the analysis system becomes robust to any obfuscation, encryption or alternation to the
original code. This is the main advantage of dynamic analysis compared to the static
analysis. However, every instance of the malware should be run separately which
would result in a computational overhead which is the main disadvantage (Shijo &

Salim, 2015; Yadegari, Stephens, & Debray, 2017).

In this chapter, the methods of Dynamic Analysis are presented, the methodologies are
exampled and visualized; it’s relevance and pitfalls are discussed. Moreover, a
dynamic analysis method, Dynamic Binary Instrumentation, which constructs one of

the building blocks of this thesis, is introduced in this Chapter.

4.1. Dynamic Analysis Techniques

A sandbox system is a secure dedicated or virtual system for running and testing
unknown executables. Sandbox systems employ a simulating environment similar to
or identical to the system that is to be protected. The idea is to detect and monitor the
effects of the unknown executable on the simulating system without compromising the

actual hosts and users.

The sandbox systems are based on the architecture of a client-server model
where the simulating system acts as a client, and analysis machine is the host. The
client’s APIs and kernel functions are hooked and monitored to collect relevant
information about the binary that runs on the client, and communication between
analysis machine and client is established either by virtual local networks or by the

API functions of the virtualization software.
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Most of the sandboxing solutions are closed-proprietary software as of today.
However, there are powerful open-source alternatives such as Cuckoo Sandbox
(Cuckoo Sandbox, 2019), Joe’s Sandbox (Joe Sandbox, 2019) and Zerowine
(Zerowine, 2019). These automated sandboxing solutions construct the basics of
dynamic binary analysis and provide a rapid and easy method to analyze various

features of the binary.

The dynamic analysis makes use of many changes and differentiation within the

system. In this part, these indicators are presented and explained.
Registry Snapshots

Registry analysis is a significant indicator for malware as malware needs
persistence in the infected system. The persistence of malware is the property that the
malware will stay dormant on the compromised computers until some triggering event
or some predefined time for the attack to start. In such cases, the malware needs to
hide in the system, should be restart resilient and should be reachable to the C&C.
Therefore, malware should place the necessary indicators in the auto-start locations of

the registry, scheduled tasks, and cronjob events.

Another significant contemporary threat is a new malware type file-less malware.
These types of malware reside as scheduled tasks in the registry, retrieves itself every
item an event is triggered and run on memory without any filesystem indicators.
Because of these reasons, the analysis of the registry holds paramount importance for

the dynamic analysis of the sandbox.
API Call Sequences

The API calls are the user-space requests of kernel operations of the operating
system. The execution of malware needs various types of API calls such as registry
operations, file operations, and virtual memory operations. In most cases, if not evaded,
these calls show the actual intention of the malware. However, as the malware authors
become aware of these analysis techniques, they are implementing evasion procedures
such as code injection, native DLL coding and target process obfuscation (Kawakoya,

Iwamura, Shioji, & Hariu, 2013).
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Memory Forensics

The dynamic binary analysis integrates the memory forensics procedures and

practices with its analysis methodologies. These details are discussed in Chapter 5.
Dynamic Taint Analysis

In dynamic taint analysis, the data originating from or arithmetically derived from
untrusted sources such as the network is referred to as tainted. These tainted resources
are followed during the execution to detect buffer overwrite attacks. The method is

first introduced in (Newsome & Song, 2005).

Dynamic taint analysis (DTA) is utilized for analyzing execution paths that an
attacker may use to exploit a system. DTA is studied extensively in the literature:
TaintCheck(Newsome and Song, 2005), Dytan (Clause, Li, and Orso, 2007), BitBlaze,
DTA++ (Gyung et al., 2011) and SworDTA (Cai et al., 2016).

Logging Network Attempts

Another result of the dynamic analysis of malware is its network connections. With
utilizing a network generator sandbox server and attaching the analysis machine as a
client, all the network traffic can be diverted over the sandbox server, and the network

dump data (such as TCPDUMP) can be collected.
Dynamic Binary Instrumentation (DBI)

DBI is a technique of Dynamic Binary Analysis. It requires an analysis program
working on the side with the actual process that is to be instrumented. The analysis
program is injected as a DLL or a kernel process to the analyzed system (Kawakoya et
al., 2013). With the analysis code inserted into the execution of the target program,
instruction level, API level, Stack and Heap level analysis can be done through DBI
systems. This thesis covers and utilizes DBI for capturing memory operations of a

binary. The methodology and used tools are being included in the next Chapter.

4.2. The literature of Dynamic Malware Analysis

The effectiveness of Dynamic Analysis has been tested rigorously in the malware
analysis literature. Machine Learning, Deep Learning, and Graph Matching methods

have been applied on API call sequences and graphs, hooking behaviors, kernel-level
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executions, memory usage, imported DLLs, and network communications. Table 1

below summarizes the building blocks of the malware analysis literature.

The first study on dynamic malware analysis is the study of (Yin, Song, Egele, Kruegel,
& Kirda, 2007). In this work, a particular dynamical analysis technique called taint
analysis is used. In dynamic taint analysis, the data originating from or arithmetically
derived from untrusted sources such as the network is referred to as tainted. These

tainted resources are followed during the execution to detect buffer overwrite attacks.

In the study of (Bailey et al., 2007), dynamic analysis results are collected as
event logs and converted into non-transient state changes. These state changes are
converted into trees, and the distances between samples are researched. Similarly, in
the work of Kolbitsch et al., taint analysis results are converted into behavioral graphs,
and a similar rate of success has been achieved with subgraph matching (Kolbitsch et
al., 2009). An extension to Kolbitsch et al. is the dependency graph study of (Park,
Reeves, & Stamp, 2013), where dynamic system calls are converted into graphs and
tested similarly. The results of this work showed a 100 percent success rate for some

of the malware families.

Code slicing methodologies are integrated with the extraction of API call sequences in
the work of (Lanzi, Sharif, & Lee, 2009), The aim is to extract and use kernel-level
operations within the malicious executable, and the data access patterns and data
modifications using these calls are comprehended. A similar idea is presented in the
work of (Park et al., 2013) where the behavioral indicators are constructed as a graph,
and instead of slicing the code and analyzing the flow, the graph data is clustered. The

results of this work showed zero false positives.

The tests on API call data is also extended on the machine learning and deep
learning subjects. N-gram technique is used in two significant studies in the literature;
Uppal et al. utilize Naive Bayes, Random Forests, SVM and Decision Tree Classifiers
on the call sequence n-grams; Kolosnjaji et al. use the same feature on a Deep Learning
approach with Convolutional Neural Networks. The results of these two studies are

shown in Table 1.

Another study on API calls converted into matrices, utilizes Random Forests on the

matrix data by (Pirscoveanu et al., 2015) and a similar research with unsupervised
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learning methods presented in the same year, (Fujino, Murakami, & Mori, 2015)

utilizing Term Frequency- Inverse Document Frequency (TF-IDF) matrices.

Finally, a research paper on Android operating systems malware is presented to
extract TCP/IP features for testing in various machine learning algorithms is presented

in Table 1 (Narudin, Feizollah, Anuar, & Gani, 2016).
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Table 4.1. Comparison of Researches that utilizes Dynamic Analysis Techniques.

Reference Work Dataset Features Used Technique Success Rate /Classification
Accuracy
Panorama (Yin et al., 2007) 42 malware and 56 benign | Taint Graphs Policy generation based on | Around 3% FP rate.

samples

Taint Graphs

(Bailey et al., 2007)

3698 Samples

Non-transient State Changes

Normalized
Distances

Fingerprint

91.6% detection rate

(Kolbitsch et al., 2009)

Six malware families with 50

Behavior graphs extracted from

Subgraph matching

90%at maximum for known

samples each taint analysis and program malware, 23% for an unknown
slicing malware
K-Tracer(Lanzi et al., 2009) 8 Rootkits Data Access, Triggers, | Dynamic Slicing Detects all the rootkits that have
Hardware Events been tested with it.
(Park, Reeves, Mulukutla, & | Six malware families with 50 | Dynamic system Call | Graph Similarity Measurement | Some of the families showed

Sundaravel, 2010)

samples each

Dependence Graphs

100% accuracy, while some
have poorer results.

(Park et al., 2013)

563 and 520 samples in two
datasets

HotPath (constructed by kernel
objects and system call traces)
extraction

Graph Clustering and Matching

No false positives.

(Uppal, Sinha, Mehra, & Jain,
2014)

120 malicious and 150 benign
software

Call-grams generated from call
sequences

Naive Bayes, Random Forests,
SVM and Decision Tree
Classifiers

Accuracy of 98.5%

(Pirscoveanu et al., 2015)

42,000 malware samples

API Call Matrices

Random Forests

89.6% TP and 0.049 FP rates.

(Narudin et al., 2016)

Android Malgenome
Malicious apps)

(1260

TCP/IP packages

RF, J48, MLP, Bayesian Net,
KNN

99,97% Accuracy with BN and
RF

(Kolosnjaji, Zarras, Webster, &
Eckert, 2016)

4753 malware samples

Malware Call

Sequences

System

feed-
and

Sequence-grams  on
forward, convolutional
hybrid neural networks

85.6% on precision and 89.4%
on recall

(Pektas & Acarman, 2017)

17,900 recent malign codes

API-call sequences

N-grams

Training and Testing Accuracy
of 94% and 92.5%
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4.3. Tool support for Dynamic Malware Analysis.

The dynamic binary instrumentation system is provided by the Intel PIN Tool
version 3.7. Intel pin tool is a dynamic binary instrumentation framework where a
process state containing registers, memory, heaps, stacks, memory access, and the
execution flow can be traced and analyzed (Luk et al., 2005). In this API, the
instrumentation is accomplished by the just-in-time (JIT) compiler. Just-in-time
compiler in this API, as distinct from its Java version de facto standard, takes in a
native opcode instead of bytecode and observes and generates the native opcode for
the executable (Luk et al., 2005). The architectural structure of the Pin Tool is

illustrated in Figure 1.

Application Pin Tool

l X

Just-intime Compiler - ny
¥

Code

Di spatcher P! acte [P Pin APT

2

Emulation

Same Address Space

Operating System

Figure 4.1 Architecture of Pin Tool

As can be seen from Figure 4.1, the application to be instrumented, and
the pin tool shares the same address space. The instrumentation application is written
as a DLL for this library using the Pin API. The instrumented and traced opcodes are
cached in the Code Cache as the execution flows through the Just-in-time compiler
and the emulated native opcodes are then forwarded to the Operating System
underneath.
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4.4. A Showcase of Dynamic Analysis with Intel PIN Tool.

For the demonstration purposes, dynamic traces and indicators are extracted

from two malware samples. These samples are selected from the family of

Worm.Ramnit malware family and hash values are given in the following Table 4.2.

Table 4.2. Shal hashes and compilation information of the malware

samples

Malware Information

Ramnit Worm vl

{
"shal": "33e8e894297e0194c5df36cb4e5b3ee68662ceft”,

"fname":
"Worm.ramnit.9a08d9b7853a65fb52f119806b2{3aae.cxe",

"sectionCount": 5,

"binType": "PE32 executable (GUI) Intel 80386, for MS
Windows, Nullsoft Installer self-extracting archive",

"compilation": "2009-06-18 21:33:23",
"fileSize": 18430835,
"sectionEp": ".text|0",

"originalFilename": "",

"addressEp": 12577
h

Ramnit Worm v2

{
"shal": "8293f7ddbb7a6163aafed7ebeaca9bc5d607161b",

"fhame":
"Worm.ramnit.9ad7b41a1f0Obee2112c1b497094aa085.exe",

"sectionCount": 5,

"binType": "PE32 executable (GUI) Intel 80386, for MS
Windows, InstallShield self-extracting archive",

"compilation": "2009-12-05 22:50:46",
"fileSize": 3363317,
"sectionEp": ".text|0",

"originalFilename": "",

"addressEp": 12860
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The execution flow and its indications on the memory address space is the main
interest of this research, and the samples are analyzed and dissected according to their
instruction flow. As a result, three indicators are extracted for the two samples:
Function Hit Trace, Function Trace, and Instruction Trace. For the demonstration, the
static analysis features of Function and API relationship graphs are extracted and

presented in Figure 4.2, as shown in Chapter 3.

" .
° o T
Y % * “A %
. ..'. S
: . . * [ .. ."
] 4 3L °
Worm.Ramnit v1 Worm.Ramnit v2

Figure 4.2. Static Analysis Graphs of the samples.

Function Hit Trace and Function Trace

The function hit trace and function trace are the features of the execution flow.
These properties are extracted by following the instruction pointer and recording the
functions that the instruction belongs as the execution continues. The recordings are
then converted to 2d images where the x-axis shows the sequence of the instruction

and the y-axis shows the memory address of the function.

e Function Hit Trace is the analysis where a function is recorded only the first
time that the instruction pointer is inside the memory space of that function

(Luk et al., 2005).

e Function Trace is the analysis where a function is recorded every time the

instruction pointer enters the address space of the function (Luk et al., 2005).

For the two samples, the function trace and the function hit trace graphs are given

in the following Figure 4.3.
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Figure 4.3. Function Hit Traces(a), (b) and Function Traces (c), (d) of Ramnit v1 and v2 respectively.
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Function and Function Hit Traces are beneficial when debugging a known
function for bug fixing. Moreover, these measures can be used to un-obfuscate
function obfuscation and sieve the functions that are used and unused in the code space.
For unpacked malware, this measure can be advantageous when used with static
analysis. Execution flow can be understood and taken into malware analysis with the
identification of all the functions. Function Hit Traces can replace Function Trace
when the analyzed malware contains recursive functions which can obfuscate the

analysis.
API Call Sequences

Following a similar idea, memory address space access of the imported functions
can also be traced using dynamic instrumentation. This feature is the memory
representations of the API call sequence property that is being utilized in several works

in the literature. The following Figure 4.4 illustrates this feature.

(2)

0x77afa600 -

077912180

07772900

0x77541880

dl addresses

ox77170f80

0x76623b00

Dx76da0680

076608200

sequence
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(b)

0x77afa600 | -

ox77912180

0x77720400 4

dil addresses

Figure 4.4. DLL Addresses and Sequence graphs of the Samples. (a) Ramnit v1 (b)
Ramnit v2.

DLL Addresses and APl imports have already been explored in the literature
excessively. However, an address-wise representation of imported functions is
provided in Figures 4.4 (a) -(b), and executed addresses of the imported calls and
functions are shown similarities for this two malware. It is crucial to turn off the ASLR

for this measure to have an implementable metric.
Instruction Address Trace

Instruction level tracing shows the traversal of the address space by the
instruction pointer. For the vast amount of the processes that have been tested, this
trace results in gigabytes of trace data thus become infeasible to graph and analyze.
However, for the demonstration purpose, two graphs are generated for the first one

thousand entry of these two sample traces.

As can be seen in Figure 4.5, the first 1000 instruction trace of the two malware
can result in similarities when the two malware are stripped from any obfuscation.
However, the resulting data of such trace for a malware reaches the order of 10

gigabytes thus become unfeasible quickly.
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Figure 4.5. Instruction Pointer Traces of the Samples. (a) Ramnit v1 (b) Ramnit v2.

4.5. Conclusion and Discussion of Chapter 4.

The dynamic analysis techniques, the binary instrumentation, and the
demonstration of these techniques are presented in Chapter 4. For the following
chapters, the utilization of this binary instrumentation on extracting the memory access
patterns and the generation of a graph database from this information and the results

for this dissertation is provided.

59






CHAPTER 5
MALWARE MEMORY FORENSICS

As previously mentioned in Chapter 1, this dissertation aims to shed light on
the memory access patterns of malware, to visualize these patterns and to compare and
contrast the access patterns to identify similar characteristics on memory. For this aim,
Chapter 5 identifies the contemporary memory operations of malware. These
operations include packing, code injection, DLL injection, and process hollowing

methods which malware integrates into their code to avoid being detected.

5.1. Memory Forensics

Memory Forensics is the process of acquiring, dissecting, and analyzing the
volatile memory data for suspicious events and operations. The process of memory
forensics provides a detailed description of the state of the computation for the time
that the memory image is captured. Every operation on a computer either done by an
operating system or a user application allocates itself on the memory. These operations
are grouped by the data structures of the operating system as processes, and every
process has its threads (at least one, the main thread) which are the smallest chunks of
executable memory contents. The structure of a process is discussed in Chapter 2 for
the Microsoft Windows operating system for which the majority of malware is

designed for.

Memory Forensics provides significant data about the processes on the memory

such as;
e How many processes are running on the system?
e What is the current state of the processes on the system?
e Which executable files are associated with the processes on the system?

e Which files are open currently? By whom they are opened?
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e Which DLLs are loaded and by which processes?

e How many active network connections are there? Which processes are ported to

network and at which ports?

Memory Forensics can answer all of these questions and many similar to them.
It is the closest analysis method to in-vivo analysis while hard drive forensics is the

post-mortem analysis for a system.

As mentioned in Chapter 3 and 4, contemporary malware utilize many
techniques to evade from detection. Malware, when running on the memory, is in its
exact form, stripped out of all obfuscations, packing and encryption. Therefore
capturing the characteristics from memory is one of the best options for automated

search mechanisms.

A recent, on-the-rise malware type is file-less malware. This type of malware
works only on the memory, leaving no traces on the storage spaces and steals other
process's address space to do their malicious work. This type of malware is impossible
to analyze without taking memory images and investigating them. This type of

malware and their techniques are discussed later on in this Chapter.

Another reason the memory is the actual key to understand malware is that the
authors are now aware of malware analysis techniques, and they incorporate this
knowledge into their works. The signature detection mechanisms depended on
cryptographic hash algorithms to identify malware. However, polymorphic malware
with mutation engines is capable of attacking this system stealthily. For that reason,
current hash-based detection techniques involve a method called Fuzzy Hashing,
which involves hashing of the parts of the malicious executable on memory and
comparing/detecting partially (Li et al., 2015; Sarantinos, Benzaid, Arabiat, & Al-
Nemrat, 2016).

Moreover, contemporary malware exploits vulnerabilities in the user
applications to rewrite the application code, reuse existing code in a way that is not
intended to be used by changing the execution flow with Return Oriented
Programming and Jump Oriented Programming methods (Korczynski & Yin, 2017).
To detect the aforementioned on-memory strategies of malware leads to on-memory
malware detection techniques to be developed, which are based on memory forensics.

In the following section, these techniques are detailed.
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5.2. Malware Operations on Memory

5.2.1. Packing and Compression

Packing is the method of compressing and/or encrypting the malicious
components before infection. The sections of the executable are compressed into a data
section, and an unpacking stub of code is inserted into the PE file. For some standard
packers such as UPX, the section names can reveal if the binary is packer or not.
Otherwise, the section name can be anything as it does not result in any changes in the

execution of the program.

After the packed program runs on the memory of the target computer, it unpacks
itself by allocating space from its or other processes address space. The DLL functions

used for such operations are as follows:
¢ VirtualAlloc,
e VirtualAllocEx,
e VirtualFree,
e VirtualLock,
e VirtualProtect,
e VirtualQuery.

The function that is used for accessing DLLs and imports from within an address space

are also listed below.
e LoadLibraryA
e LoadLibraryW
e LoadLibraryExA
e LoadLibraryExW
e FreeLibrary

e GetProcAddress
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Extracting DLL functions of a binary and observing that the above functions are
called in a library, does not necessarily specify the maliciousness of a program.
However, in most of the studies mentioned in Chapter 4 — Dynamic Analysis of
Malware extracts the data into their machine learning-deep learning approaches. In the
learning approaches, if a value of a feature does not yield into differences in
classification, then their weights become smaller, and their importance in the process
of classification degrades. Our research which will be detailed in the next chapter

considers these functions and features as it is for that matter.

The operation of packing is illustrated in Figure 5.1. below. The address space
illustrated on the left is the version of the executable before it is packed. Moving to the
right, the second image shows a packed version of the same executable and the image
on the rightmost of the illustration shows the unpacked executable. The unpacked
version of the executable is accessible from the moment the executable finishes

unpacking itself to the end of the execution(Ligh, Case, Levy, & Walters, 2014).

Although it has been stressed in this dissertation, the unpacking operation can
include modules that obfuscate the executable code which will produce different

signatures for the leftmost and rightmost images of the executable (Ligh et al., 2014).
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Figure 5.1. lllustration of packing of an executable.

5.2.2. Code Injection

Code injection is the process of copying malicious executable code payloads or
malicious pe executables into another process address space and running the code from
there. It requires the malware to have the debugging permissions to access another

process address space.
The procedure of code injection is as follows and ill (Ligh et al., 2014):

1. Malware process acquires debugging privileges (SE_ DEBUG PRIVILAGE)

that enables read and write access to another process address space.

2. Malware process opens the target process and receives its handle through

OpenProcess() function.

3. Malware process allocates memory space using virtual memory functions with

the PAGE EXECUTE READWRITE permission.
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4. Malware transfers payload, shellcode, or a complete PE executable to the

allocated address space using WriteProcessMemory().

5. The malware calls a CreateRemoteThread() and gives the address of the injected

code to the thread.

L I
. e
. e

Target Process Target Process Target Process
Virtual
Memory Executable Code
PAGE EXECUTE READWRITE Allocation (from process Malware) 1. WriteProcesshemory()
2. CreateRemoteThread())
Malware Malware Malware

L I I
LI I ]
LI I ]

Figure 5.2. lllustration of Code Injection.

5.2.3. DLL Injection and Reflective DLL Injection

DLL injection is a similar approach to the Code Injection with some minor
differences that effects the detection of malicious acts. In DLL Injection, the malicious
code is loaded from disk to the target process address space using the LoadLibrary()
method.

The allocated address space is not required to be executable in this method;
instead, PAGE_ READWRITE permissions are sufficient enough to insert a DLL to
the target process. CreateRemoteThread() method is used again for running the

DLLmain.This schema is illustrated in Figure 5.3.
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(from Disk) (from Disk) CreateRemoteThread()
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Figure 5.3. Remote DLL Injection using LoadLibrary method.

Reflective DLL Injection is the hybrid process of Code Injection and DLL
Injection. This method involves loading a DLL to the target address space from
memory and in which the loading process is done by native DLL coding instead of
using LoadLibrary() method. This property of a DLL loading itself is making this
procedure stealthier as it leaves no mark on the Disk. The loaded DLL can also be
downloaded from a URL of the malicious actors, which makes this method a file-less

malware.

5.2.4. Process Hollowing

This method is one of the stealthiest methods of hiding a process. This method
has been used in highly effective APTs such as Stuxnet, Duqu, and Patchwork
(Bencsath et al., 2012; Cymmetria Reseach, 2016; Falliere et al., 2011).

The process of hollowing a process is illustrated in Figure 4, and it is as follows:
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. The malware starts a new instance of a legit system process such as Isass.exe.
This process starts in the suspended state by providing the parameter of the

creation flag to CREATE _SUSPENDED.
. The malicious code is fetched from memory, disk, or over the network.

. The code section of the target process is unmapped, and the process becomes a
hollow process. The commands used here can be ZwUnmapViewOfSection or

NtUnmapViewOfSection.

. A new memory segment with PAGE EXECUTE_READWRITE permission is
allocated from the memory space of this hollow process using the virtual

memory allocation calls.
. PE Header of the malicious process is copied into the hollow process.

. Each segment of the malicious code is transferred to the proper virtual address

space of the hollow process.
. The start address is set so that the malicious code starts from its entry point.

. Suspended thread is resumed.
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Figure 5.4. lllustration of Process Hollowing.

5.3. Manual Analysis Detection of Memory Operations

A rule of thumb approach for understanding memory operations is to check the
Process Environment Block (PEB) structure and cross-reference with the Virtual

Address Description (VAD) structure of the Kernel Space of the memory.

PEB structure is a data structure that exists for every process, and it contains the
full path of the executable, the full command line that starts the process, pointers to
heaps, standard I/O handles and data structure for holding the loaded DLLs and
Modules. PEB structure is accessible within the process itself, and malware authors
most commonly play with these structures to hide their intentions. However, the VAD
structure is in the kernel space of the memory, and under normal circumstances, the
information in the VAD and different PEBs should be aligned. Therefore, cross-
referencing these two structures would identify most of the malicious code and DLL
injection attacks. For example, in DLL Injection, if the injected DLL and its loading
place from the disk are not consistent in these two structures, or the DLL has no record
in the PEB but exists in the VAD, it means the DLL forced into the process address
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space. However, in Process Hollowing and its variants, as the process is a legit process,
and only the contents of the sections are modified, it is harder to detect with cross-

referencing.

5.4. The literature on Automated Malware Detection with Memory

Analysis

While the vast amount of the literature uses API call sequences and call traces
for the behavioral graph, there is a relatively short list that uses memory access for the
detection for the malware. By utilizing the memory forensics techniques, operating
systems resources and their handles, registry keys (Zhu, Gladyshev, & James, 2009),
running processes and threads, network connections, loaded DLL files and even
commands that had been previously given can be retrieved (Stevens & Casey, 2010).
In the study by (Kolbitsch et al., 2009), the memory access of malware families had
also been integrated into the behavior graph of the sample. Moreover, in the work of
Duan et al., the tool Detective, extracts DLL imports from the memory snapshots and

applies HNB classifier to this data (Duan et al., 2015).

In the work of Korczynski and Yin, a tool named Tartarus, a solution to the
aforementioned injection techniques and code propagation approaches is given by
generating and combining taint analysis with the tracing of the memory writes through

execution tracing (Korczynski & Yin, 2017).

Another line of work incorporates memory differences; snapshots of the memory
image are taken several times, and the differences are identified. One of the work in
this line is (Zaki & Humphrey, 2014); This research has identified the modifications
(file system changes, newly loaded driver or a newly loaded image) that are done in

kernel space by a rootkit and generates signatures using this information.

A similar memory differencing approach attacking this problem is given by
(Teller & Hayon, 2014). A Cuckoo Sandbox plugin is described in their paper, and the
applied idea was to take snapshots of the memory whenever something important
(defined by API call triggers) comes up such as loading some image into memory or
generating a call to a registry call. With a similar approach, the studies (Mosli, Li,
Yuan, & Pan, 2016, 2017a) and (Aghaeikheirabady, Farshchi, & Shirazi, 2015) extract
DLL, API calls and registry activities using the memory analysis program volatility to

generate features to be fed into a machine learning tool.
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Observations

Our approach differentiates from the above by binary instrumentation of the
memory access instructions and logging every memory access in different regions of
the process memory separately. A similar approach is taken in the work of (Banin,
Shalaginov, & Franke, 2016). In this study, their memory accesses are reduced to read
and write operations regardless of the region and section information of the memory.
The order n-grams are then fed into a learning network to identify maliciousness.
However, our work differentiates from this one by taking into spatial properties of the
memory access in addition to just using the order of the memory access types. In the
referenced work, only the order of operation, and the type R/W is taken into

consideration.

Taking the snapshots of memory regions within an interval and comparing them
through the kernel objects identifies a lot about the malware however in most cases
the malware creates several other processes, injects itself to another process or service
as explained in the previous section of this Chapter. This contagious behavior of the
malware results in a vast region of memory space to be snapshot within the interval,

and therefore the method becomes infeasible (Bletsch, Jiang, Freeh, & Liang, 2011).

Another problem of taking a snapshot of the memory is that deciding the
frequency of snapshots. If there are too many snapshots, there will be gigabytes of data
to be analyzed for just malware, and if the interval is set long enough, there might be
a chance that the malicious activity can slip from the memory before getting in one of

those memory images snapshots.

5.5. Conclusion

This chapter identifies the memory operations of malware, the tricks, and
workarounds that are being used by contemporary malware. The literature of the filed
in the intersection of malware detection and memory forensics also provided in this
Chapter. In the following Chapter 6, the dissertations main work, the general idea, and

the graph database for created for memory access is described and detailed.
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CHAPTER 6
MALWARE MEMORY IMAGING AND EVALUATION

This Chapter presents and defines the main aims and contributions of this
dissertation, along with the problems and contributions to solutions to these problems.
A malware memory image is a 3-dimensional representation of the memory access
patterns of malware. The methodology presented in this chapter is a method of
identifying these access patterns through binary instrumentation.

As presented in Chapter 5, different malware has different methods of doing
malicious work on memory, which results in distinctive behavioral characteristics for
malware families as malware adopt code from its predecessors. In this dissertation, it
is aimed to show and compare these characteristics by the memory images between

several types of different malware families and types.

6.1. Motivation

The vast amount of work is relying on the dynamic API calls and DLLs as
discussed in Chapter 4 — Dynamic Analysis of Malware, and it is so far one of the most
promising methods in the literature. However, as malware authors become aware of
this detection technique, they start to implement a workaround with Native DLL
coding. Native DLL is the dynamic library written directly in the machine language,
and malware authors prefer to include binary formatted DLLs instead of calling them
from Windows libraries. Native DLL coding provides a level of stealthiness against

behavioral detection mechanisms.

Another reason the detection mechanisms fail is the general assumption that a
malware process should be executed/started from a hidden file somewhere on the disk
and it needs to spread to other files. On the contrary, new types of malware are
designed to work, spread, and complete their lifecycles only on memory. They are
downloaded from network to memory via exploiting vulnerabilities in operating
system tools and programs. For this reason, signature-based detection, static analysis,

and sandboxing effectiveness are significantly decreased for such malware.
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As discussed in the previous chapter, incorporating memory forensics into
dynamic analysis and detection provides promising results on these types of malware
(Mosli et al., 2016; Mosli, Li, Yuan, & Pan, 2017b; Rughani & Rughani, 2017; Teller
& Hayon, 2014). However, the approaches for taking memory dumps and snapshots
of process address space suffers from two problems. Firstly, it is vital to decide how
often the memory dumps are going to be taken. When it is too frequent, there will be
tens of gigabytes data for just one malware, and when the interval between dumps are
long, it is possible that the malware execution can slip away between dumps without
detection. The second problem is when taking memory dumps of a process; it is
possible that the malware injects itself to another process and continue its execution
from another address space. In this case, complete memory dumps have to be taken,
but unfortunately, this approach also leads to the analysis of gigabytes of data for

malware again.

In this dissertation, the developed solution to this problem is to instrument
memory access operations. Instead of taking memory dumps, every operation of a
process is traced, and the memory usage patterns are observed. This way, the memory
operations are captured as the process is still running on the memory, and taking
memory dumps becomes unnecessary. Our method is also promising for file-less

malware as the instrumentation is done on a memory level.

The memory access operations are converted to 3-dimensional patterns to
capture significant characteristics of malware. These 3-dimensional patterns are
constructed from a type of access (Read/Write), access sequence, instruction address,
and access address. Since the patterns are built from the physical operations to memory,
natively coded DLLs are recorded as well as operating systems API calls, functions,
DLL calls, and several other procedures that affect memory. It is shown in this research
that similar malware samples coming from the same families show similar memory
access patterns in 3- dimensional space constructed by the sequence of the access
relative to the computation instruction sequence, the instructions address and the
memory address that is being accessed. Also, in the defined 3-dimensional space,
process injection, packing, and malicious acts affecting other processes address space

can be identified by our methodology.
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6.2. Instrumenting the Memory Operations

The dynamic binary instrumentation system presented in this research is
provided by the Intel PIN Tool version 3.7 (Luk et al., 2005). The executable samples
to be imaged are executed by the Intel PIN Tool and our memory tracer DLL is inserted
into the executions address space to instrument every single memory operation. The

details on Intel PIN Tool is given in Chapter 4.

6.2.1. Memory Layout

The memory layout for all the Win32 applications, which is called Portable
Executable (PE) format consists of several images that are dynamically loaded into
memory during the execution.

Majority of the malicious files intend to work Win32 based systems and to develop
our methodology; selected samples are executables in the PE format. The Structure of
Portable Executable format is given in Chapter 2. The standard layout of the
executables on the memory is given in Figure 6.1. Two main sections: the header and
the sections are present in the PE format (Pietrek, 2011). The execution of an
executable starts from the loader of the operating system. The loader first reads the
header page of the PE file and retrieves the image base. The process memory space is
allocated and divided by sections according to the image base. The import tables are
read for loading all the DLLs which are set to be loaded at the initialization of the
program. After loading the DLLs, the real addresses of the functions is resolved and
stored in the import address table. Afterward, the main thread is created; the instruction
pointer is set to the entry point of the main thread and execution starts.

The images of the DLLs and Libraries are also in the format of a PE layout. During
an execution when a function is referenced inside an image, the instruction pointer
jumps to that specific location of the instruction and the memory accesses occur from

these addresses.
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Figure 6.1. Memory Layout of a PE Format.

Even though the memory layout is a one-dimensional address space, there are more
dimensions to consider when it is a memory operation. Three compounds are defined
in our methodology for a memory operation: the sequence of the operation, the
instruction addresses, and the address that is being accessed. The sequence defines the
order of the access, which creates an ordered set from these operations. Another
valuable property is the mode of the accesses of which can be a read or a write

operation.

6.2.2. Flowchart of the Methodology

Figure 6.2 below is the flowchart of our methodology. The process starts with
creating a Windows 7 SP2 virtual machine with Intel PIN Tool installed on it. The
virtual machine is hardened for the virtual machine detection modules of the malware

with the analysis program Paranoid Fish — Pafish (Ortega, 2016). The virtual machine
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(VM)’s snapshot is taken with the clean state before any infection, and every new

sample is analyzed on this clean state of the VM.
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Figure 6.2. Flowchart of the Proposed Methodology.

After the new sample is loaded into the VM, the process is started with the PIN
Tool with our memory tracer DLL utilized. During the execution, when an image is
loaded, an entry table for images in our module keeps their traces to bin the memory
accesses according to their module address spaces. There is a time limit of three
minutes for the execution to finish, or the process is ended automatically.

The automation approach taken in this methodology is similar to the one in the
work of (Banin et al., 2016) although it differentiates from it by the custom pin tool
that is developed specifically for this research. Distinguishing from the work of Banin
et al., the developed pin tool captures the memory layout of the process by continually
monitoring the image loading and unloading operations. While doing so, the memory
access operations are also logged and classified by the memory images inside the
process memory. The accesses to stack, heap, and memory images are logged
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separately for each image in the process memory layout.

As explained in the previous Chapter 5, most of the malware memory operations
are done from the code section. The binary should execute a series of memory writes
to unpack itself or to copy and inject its malicious components to other memory spaces.
Therefore in our methodology, the memory accesses of the code section are traced and
imaged to generate these characteristics.

6.2.3. Algorithm for the PIN Tool

In the algorithm below, the work of our tracer is described. The instrumentation
is done one instruction level; every instruction is checked for stack access and memory
access. Stack operations can lead to compiler characteristics results as the optimization
levels, and stack operations are most likely to be arranged by the compilers. Memory

reads and writes are tracked for the cases as described in the algorithm.

Algorithm: Pin Memory Tracer
Input: A program for tracing, An image linked list - imgs,

Output: A trace file - trace.out, sequence, containing instruction pointer, accessed memory
location, mode of the operation, the base of the image that has done the access.

0: seq =0

—_—

for each instruction ins:

2: if new _image loaded is true:

3: Get the base address and highest address of the image and insert it in imgs.

4: if ins has stack read:

5: Write it in output buffer as stack read.

6: else if ins has stack write:

7: Write it in output buffer as stack write.

8: else:

9: if ins is a memory read:

10: Look up ins address in the imgs, write it in outbut buffer as
<seq, instruction address, accessed memory location, ‘R’>

11: else if ins has memory read: //such as in adding a value from memory

// to a register

12: Look up ins address in the imgs, write it in outbut buffer as
<seq, instruction address, accessed memory location, ‘R’>

13: if ins is a memory write:

14: Look up ins address in the imgs, write it in outbut buffer as
<seq, instruction address, accessed memory location, ‘“W’>

15: Increment seq by 1
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INS InsertPredicatedCall API Function

An instruction is traced in the PIN tool by the JIT compiler, the dynamic
compilation process, by the function INS_InsertPredicatedCall. This call inserts our
recording function if the next instruction has stack or memory operation in its byte
code. Therefore the runtime is affected by the number of memory operations and added
overhead for the dynamic compilation. The detailed runtime analysis for PIN tool can

be found in (Luk et al., 2005).

6.2.4. A Memory Image Extraction Example

In the example below, a malware from the Keygen Trojan family with the md5:
S5fe2aebb2fedabe503d297c318a37a62 is exampled. By observing the traces of the
memory operations and image loadings of this malware, a linked list with images is
constructed. The table of the linked list entries is given in Table 6.1 for this particular
malware. The table is snipped as there are 42 images in the address space of this

malware.
Table 6.1. Linked list of memory images of the malware Keygen

with md5: 5fe2aebb2fed4abe503d297¢318a37a62.

Memory Image Image Name Size in bytes
1 ADVAPI32.dll 1241704
2 CFGMGR32.dll 246345

3 COMCTL32.d1l 624878

4 CRYPTBASE.dII 157748

5 DEVOBJ.dll 242715

6 devrtl.dll 243177

7 dwmapi.dll 167310

8 GDI32.d1l 1192927
9 heap.csv 67104884
10 imm32.dll 524073

11 kernel32.dll 6307693
12 KERNELBASE.dlI 2341679
13 LPK.dll 148552
14 Keygen.exe 24399092
15 mfc42.dll 1947667
16 MSCTF.dll 567270

After the extraction of the memory images, the memory access from malware’s

code section is converted into 3d data patterns where the dimensions are the sequence,
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instruction pointer, and access pointers. The data is visualized through plotting the 3d

data, and the points in the patterns are given colors regarding whether it is a read or

write operation. Following Figure 6.3. is the extracted image of the example malware.

0x4c4b40

0x493e00

0x4630c0

0x432380

memory address

0x401640
0x77359400

0x59682f00

instruction pointer

0x3b9acal0

0x1dcd6500

Figure 6.3. The Extracted image of one of the images from the Keygen Trojan
family. The md5 of the malware is 5fe2aebb2fe4abe503d297¢318a37a62.

6.3. Graph Database Model for Memory Access and a Showcase

In our methodology, the extracted data is saved on a graph database provided by

Neo4j. Every memory access is saved as a node in this database for further analysis.

The reason for utilizing such data tool is to increase the efficiency of pattern

recognition algorithms for future studies. An example analysis of a