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ÖZET 

 

 
Bu çalışma, üst yüzeyinin sol tarafına yumuşak (Dirichlet) ve sağ tarafına sert 

(Neumann) sınır koşulları ve alt yüzeyinin tamamına yumuşak sınır koşulu uygulanan 

şeritten kırınan ikincil alanları araştırmaktadır. Bu çalışmada şeridin üst yüzeyindeki 

bağlantı noktasında ikincil kırınan alanları incelemek için Wiener-Hopf yöntemi ile 

Spektral İterasiyon Tekniği kullanılmıştır. Şeridin simetrik olmayan uç ayrıtın, şeridin 

üst yüzündeki ayrıtta (kavşak) kırınan ikincil alanlar üzerindeki etkisi, MATLAB 

programı kullanılarak nümerik olarak çözülmüş ve grafikler elde edilmiştir. Problemin 

parametrelerin kırınan alanlar üzerindeki etkilerini göstermek için bazı grafikler 

sunulmuştur. 
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SUMMARY 

 

 
This study investigates the doubly diffracted fields generated by the strip that 

has soft and hard boundary conditions on its upper face, and totally soft boundary 

condition on its lower face. The spectral iteration technique with the Wiener-Hopf 

method is employed in the study to examine the doubly diffracted fields at the junction 

on the upper face of the strip. The effect of the non-symmetrical end edges of the strip 

on the doubly diffracted field at the edge (junction) on the upper face of the strip is 

presented graphically for the various parameters of the problem. This system is solved 

numerically using MATLAB program and graphics were obtained. Some graphics are 

presented to show the effects of the problem parameters on the diffracted field. 

          This thesis is supported by TUBITAK ARDEB 1002, Research grant: 122F238. 
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1 GİRİŞ

Kırınım, dalgaların engellerle karşılaştığında yayılması olarak ortaya çıkan bir olaydır.

Bu olay, ışık gibi elektromanyetik dalgaların yanı sıra ses gibi mekanik dalgalar için

de geçerlidir. Bir dalga, bir engelle veya ayrıtla karşılaştığında kırınmaya uğrar. Kırınan

dalga, engelin ötesine çeşitli yönlere yayılır ve bu süreç parlak ve karanlık bölgelerin

sıralandığı bir desen oluşturur. Bu oluşuma ”kırınan alanı” adı verilir. Günlük yaşamda

sıkça karşılaşılan örnekler arasında arka planda duyulan fısıltı gibi seslerin, bir odadaki

ısı veya ışık düzeylerinin kırınma sonucu oluştuğu yer alır. Kırınma sürecini bir kez an-

ladığınızda, oldukça açık bir konsept olduğunu fark edersiniz. Elektromanyetik ve akustik

dalgaların düzlemsel yapılardan geçerken gösterdiği kırınma, hem kırınım teorisi hem de

mühendislik uygulamaları açısından büyük önem taşır, özellikle birden fazla ayrıt içeren

şerit gibi yapılar söz konusu olduğunda. Bu tür yapılarla ilgili çoklu kırınan alanlar da

son derece önemlidir. Şerit benzeri yapıların kırınma teorisine ilk klasik katkı Schwarzsc-

hild tarafından sunulmuş ve ardından 1956 yılında Karp ve Russeck tarafından daha fazla

çalışma yapılmıştır. Bu tarihten itibaren, karışık sınırlara sahip nesnelerden saçılma konu-

sunda literatürde birçok çalışma ortaya çıkmıştır.

Mükemmel yarım düzlemleri içeren bazı problemler Senior [14] tarafından ele alınmış-

tır. Bucci ve Franceschetti [8], yarı-düzlem problemi için tekillikten bağımsız düzgün

asimptotikleri geliştirdiler. Büyükaksoy ve Alkumru [20], Wiener-Hopf tekniği aracılığı

ila yumuşak sert şeritlerde çoklu kırınım üzerine çalışmışlardır. Rastgele yüzey empe-

danslarına sahip bir şeritteki kırınım, Veliev [21] tarafından sonsuz lineer denklem sistemi

kullanılarak incelenmiştir. İki ayrıtı olan bir şeridi ele alırsak, şeridin alt ve üst yüzeyleri

boyunca ilerleyen birinci ayrıttan kırınan dalganın bir kısmı diğer ayrıtta ikincil kırınan

bir alan oluşturur. Bu çalışmanın odak noktası, üst yüzeyde yarı yumuşak ve yarı sert sınır

koşullarına, alt yüzeyde ise tamamen yumuşak sınır koşuluna sahip bir şerit tarafından

kırınan birincil alanı hesaplamak ve simetrik olmayan üç ayrıtın, şeridin üst yüzeyinde

oluşturulan ikincil kırınan alanlar üzerindeki etkilerini açığa çıkarmaktır. Elektromanye-

.
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tik ve akustik dalgaların çeşitli sınır koşullarına sahip şeritlerden çoklu kırınımını ince-

leyen makalelerden bazıları [5, 10, 15, 16, 20]’de bulunabilir. Şerit tarafından kırınan

alanları bulmak için Spektral İterasyon Tekniği (SİT) Wiener-Hopf yöntemi ile birlikte

kullanılmıştır.

2.Bölümde, Wiener-Hopf tekniği uygulanarak sınır değer probleminin neden doğrudan

çözülemeyeceği açıklanmış ve şeridin ayrıtlarında birincil kırınan alanlar verilmiştir.

Ayrıca, şeridin üç ayrıtları tarafından uyarılan ikincil kırınan alanlar, spektral iterasyon

tekniği (SİT) kullanılarak çıkarılmıştır. Bu çalışmada elde edilecek MWH (Matris Wiener-

Hopf) denklemi, şeridin her iki yüzeyinin simetrik olup olmaması durumuna bağlı olarak

skaler veya matris denklemi şeklinde ifade edilir. Jones [5, böl. 9.12] tarafından göste-

rildiği gibi, MWH denkleminin çözümü her zaman, çekirdek 1
α+β

ile ifade edilebilen ikinci

türden iki ayrı Fredholm integral denkleminin çözümüne indirgenebilir. Jones daha sonra

[5, böl. 9.12] farklı türden malzeme şeritlerinin analizine uygulanan bir iteratif yaklaşım

sunarak, yaklaşık bir çözüm bulmak için temelde ayrıştırılabilen MWH denklemleriyle

sonuçlandırdı [15, 17]. Hurd [7] tarafından tanıtılan Wiener-Hopf Hilbert yöntemi, çalış-

mamızda çekirdek matrisi G(α) olarak adlandırılan durumda yalnızca dallanma noktası te-

killiklerine sahip olduğunda etkilidir. Bu yaklaşımın, Rawlins ve Williams [12] tarafından

ifade edilen durumu da içerdiği görülmektedir. Çekirdek matrisinin yalnızca kutuplara

veya kutuplara ve dallanma noktası tekilliklerine sahip olduğu genel durumlara uygula-

nabilen daha genel bir yöntem Khrapkov [6], Daniele [9], Rawlins [11] ve Jones [13]

tarafından açıklanmıştır. 3.bölüm, kırınan birincil ve ikincil alanların sayısal hesaplama-

larını içerir. Sonuç ve değerlendirme Bölüm 4’te verilmektedir.
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2 PROBLEMİNİN FORMÜLASYONU VE ÇÖZÜMÜ

Bu tez çalışmasında, geometrisi Şekil 1’de verilen S = {(x, y, z) : x ∈ (−l1, l2),

y = 0, z ∈ (−∞,∞)} şeridinden

ui(x, y) = e−ik(x cosφ0+y sinφ0) (2.1)

düzlemsel dalganın kırınımı incelenmiştir. Burada φ0 ∈ (0, π) geliş açısı ve c dalganın
hızı olmak üzere, k = ω

c
dalga sayısıdır. Analitik kolaylık sağlamak amacıyla k’nın küçük

bir sanal bileşene sahip olduğu varsayılmıştır. Dalganın zaman içindeki değişimi ω açısal
frekansıyla ifade edilir ve genel olarak e−iωt biçimindedir.

S şeridinin S1 = (x, y, z) : x ∈ (−l1, 0), y = 0+, z ∈ (−∞,∞) yüzeyine Neumann
Sınır koşulu (Hard - Sert), S2 = (x, y, z) : x ∈ (0, l2), y = 0+, z ∈ (−∞,∞) yüzeyine Di-
richlet Sınır koşulu (Soft - Yumuşak) ve S3 = (x, y, z) : x ∈ (−l1, l2), y = 0−, z ∈ (−∞,∞)

alt yüzeyine ise Dirichlet Sınır koşulu uygulanmıştır.
Bu düzenleme, problemin farklı yüzeylerinde farklı sınır davranışlarını yansıtmaktadır.

Şekil 1: Problemin Geometrisi.

Şekil 1’de görülen A = {x = −l1, y = 0, z ∈ (−∞,∞)}, O = {x = 0, y = 0, z ∈
(−∞,∞)} ve B = {x = l2, y = 0, z ∈ (−∞,∞)} noktaları, S şeridindeki ayrıtları
temsil etmektedir. (2.1)’deki gelen dalganın S şeridi ile etkileşimi sonucu oluşan toplam
alan aşağıdaki gibi ifade edilir:

uT (x, y) = ui(x, y) + u(x, y) (2.2)

.
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Burada u(x, y), saçılan dalganın alanını temsil eder ve S yüzeyinin dışında aşağıdaki
Helmholtz denklemini sağlar:(

∂2

∂x2
+

∂2

∂y2
+ k2

)
u(x, y) = 0 y ̸= 0. (2.3)

Şerit yüzeyinde sağlanan sınır koşulları:

∂

∂y
u(x, 0+) = iksinφ0e

−ikx cosφ0 ,−l1 < x < 0 (2.4a)

u(x, 0+) = −e−ikx cosφ0 , 0 < x < l2 (2.4b)

u(x, 0−) = −e−ikx cosφ0 ,−l1 < x < l2 (2.4c)

olup, şeridin dışında sağlanan süreklilik koşulları:

u(x, 0+) = u(x, 0−) , (x < −l1) ∪ (x > l2) (2.5a)
∂

∂y
u(x, 0+) =

∂

∂y
u(x, 0−) , (x < −l1) ∪ (x > l2) (2.5b)

şeklindedir. Burada saçılan alan

u(x, y) =

{ ∫
L
P (α)eiK(α)y−iαxdα , y > 0∫

L
Q(α)eiK(α)y−iαxdα , y < 0

(2.6)

şeklinde aranacaktır. Bu ifade, (2.3) denkleminin Fourier dönüşümü uygulanmasıyla elde
edilen denklemin genel ifadesidir. Burada P (α) ve Q(α), belirlenmesi gereken spektral
katsayılardır. (2.4a-c) ve (2.5a-b) koşulları, (2.6) ifadesiyle birlikte kullanıldığında elde
edilen modifiye matris Wiener-Hopf denklemi aşağıdaki gibidir:

G(α)P (α) = e−iαl1Φ−(α) + eiαl2Φ+(α) +Q(α) +
k sinφ0

2πi

1− e−i(α−k cosφ0)l1

α− k cosφ0

F (2.7)

−Im(k) < Im(α) < Im(k)

Burada P (α), Q(α) ve Φ±(α) belirlenmesi gereken (2×1) boyutlu vektörler olup

G(α) =

[
1 0

K(α) 1

]
, F =

[
1

−k sinφ0

]
(2.8)

4



şeklindedir. Buradaki K(α) ifadesi

K(α) =
√
k2 − α2

şeklinde bir karekök fonksiyonudur ve bu fonksiyon Şekil 2’deki gibi kesilmiş kompleks
α-düzleminde K(0) = k olacak şekilde tanımlıdır.

Şekil 2: Kompleks α Düzlemi.

(2.7) denklemi −Im(k) < Im(α) < Im(k) bandında geçerlidir. P (α) ve Q(α) bu bandın
içinde yer alırken, Φ+(α) üst yarı-düzlemde

(
Im(α) > −Im(k) düzleminde

)
ve Φ−(α)

alt yarı-düzlemde
(
Im(α) < Im(k) düzleminde

)
analitik fonksiyonlardır.

Bu denklemin çözülebilmesi için öncelikle çekirdek matris G(α)’nın faktorize edilebil-
mesi (çarpanlara ayrılması) gerekmektedir. Yani,

G(α) = G+(α).G−(α)

şeklinde yazılabilir olmalıdır. G±(α)’nın üst yarı-düzlemde (alt yarı-düzlemde) tekil ol-
mayan analitik matrisler olmaları gerekmektedir. Ancak bu faktorizasyon işlemi her mat-
ris için mümkün değildir (Lawrie ve Abrahams [23]). Bazı özel yapıdaki matrisler için
geliştirilmiş Daniele-Khrapkov yöntemi (Khrapkov [6], Daniele [9]) ve Wiener-Hopf-
Hilbert yöntemi (Bucci ve Franceschetti [8]) gibi özel faktorizasyon yöntemleri bulun-
maktadır. Bu alandaki çalışmalar halen devam etmektedir (Kisil [28]; Rougerie, Kisil [29];
Kisil [30]; Priddin [31]). Eğer bu faktorizasyon işlemi gerçekleştirilebiliyorsa, (2.7) denk-
leminin her iki yanı G+(α) matrisinin tersi, [G+(α)]−1 ile çarpılır ve aşağıdaki denklem
elde edilir:
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G−(α)P (α) = e−iαl1 [G+(α)]−1Φ−(α) + eiαl2 [G+(α)]−1Φ+(α) + [G+(α)]−1Q(α)+

k sinφ0

2πi

1− e−i(α−k cosφ0)l1

α− k cosφ0

[G+(α)]−1F (2.9)

(2.9) denklemi, bir tarafında üst yarı-düzlemde, diğer tarafında ise alt yarı-düzlemde ana-
litik fonksiyonlar olacak şekilde düzenlenir. Analitik devam ilkesi ve Liouville teoremi
kullanılarak son durumdaki denklemin her iki yanının neye eşit olduğu belirlenir. Bu so-
nucu kullanarak saçılan alanın elde edilmesi için bulunması gereken (2.6)’daki spektral
katsayılar, (2.9) denklemindeki P (α) kullanılarak bulunur. Ancak P (α)’nın bulunabil-
mesi için (2.9)’un sağ tarafındaki ilk terimin ayrıştırılmasından

(
dekompoze işlemi: söz

konusu terimin üst yarı-düzlemde analitik bir fonksiyon ile alt yarı-düzlemde analitik olan
bir fonksiyonun toplamı şeklinde yazılması işlemidir.

)
gelen terimin içinde bilinmeyen

Φ−(α) olduğu için P (α)’nın bulunması mümkün olmayacaktır. Bu ayrıştırma işlemi için
Cauchy integral formülü kullanılır. Sonuç olarak, hem (2.8)’de verilen çekirdek matris fak-
torize edilemediği, hem de elde edilen Wiener-Hopf denklemi çözülebilir olmadığı için bu
problemin asimptotik çözümünde Wiener-Hopf yöntemi doğrudan kullanılamamaktadır.

Yüksek frekanslarda, birden fazla ayrıt içeren yapılar tarafından kırınan dalga, bir veya
daha fazla kez kırınan alanların toplamı olarak ifade edilir. Bu tez çalışmasında, ikin-
cil alanlar elde edilirken Spektral İterasyon Tekniği (SİT) kullanılabilmektedir. SİT, ilk
defa 1989’da Büyükaksoy tarafından [16]’da ele alınmış ve şeritler, yarık gibi birden fazla
ayrıt içeren yapılardan kırınan çoklu alanların elde edilmesinde kullanılan asimptotik bir
yöntemdir. Bu yaklaşımda, bir ayrıttan kırınan birincil alan, diğer ayrıta ait yarım düzlem
problemine ait gelen alan olarak kabul edilir ve oluşan problem Wiener-Hopf yöntemi
ile çözülür. Bu nedenle, tez çalışmasının konusu olan O ayrıtından kırınan ikincil alan-
ları bulabilmek için öncelikle A, O ve B ayrıtlarından kırınan birincil alanların bilinmesi
gerekmektedir.

2.1 Birincil Kırınan Alanlar

Bu bölümde A, O ve B ayrıtlarından kırınan birincil alanlar incelenecektir. Bunun
için, Keller tarafından ortaya atılan yerellik özelliği kullanılacaktır [4], yani A, O ve B

ayrıtlarından kırınan birincil alanlar sanki bu ayrıtlar, sırasıyla Şekil 3’teki geometrilerin
ayrıtlarıymış gibi düşünerek elde edilecektir.

.
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Şekil 3: Birincil Kırınan Alanların Geometrileri

2.1.1 ’A’ Ayrıtından Kırınan Birincil Alan

Gelen dalganın A ayrıtında kırınması sonucu oluşan birincil kırınan alanı bulmak için,
diğer iki ayrıt (O ve B ayrıtları) sonsuza gönderilir. Bu şekilde, üst yüzeyine Neumann
sınır koşulu, alt yüzeyine ise Dirichlet sınır koşulu uygulanmış olan Şekil 3a’daki yarım
düzlemden saçılma problemi incelenerek A’dan kırınan birincil alan uA(x, y) elde edilir.
Analiz için toplam alanı:

uT (x, y) = ui(x, y) + uA(x, y) (2.10)

şeklinde ifade edelim, (2.3) Helmholtz denklemini sağlayan uA(x, y) alanının integral
gösterilimi

uA(x, y) =

{ ∫
L
PA(α)e

iK(α)y−iαxdα , y > 0∫
L
QA(α)e

iK(α)y−iαxdα , y < 0
(2.11)

şeklinde yazılabilir. Buradaki PA(α) ve QA(α) spektral katsayıları (2.12a-d) sınır koşulları
ve süreklilik bağıntıları ile belirlenecektir.

∂

∂y
uA(x, 0

+) = iksinφ0e
−ikx cosφ0 , x > −l1 (2.12a)

uA(x, 0
−) = −e−ikx cosφ0 , x > −l1 (2.12b)

uA(x, 0
+) = uA(x, 0

−) , x < −l1 (2.12c)
∂

∂y
uA(x, 0

+) =
∂

∂y
uA(x, 0

−) , x < −l1 (2.12d)

.
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Problemin çözümünün tekliğini sağlamak için [22]’den

{
uA(x, 0) = e−ikl1 cosφ0 +O((x+ l1)

1/4) , x → −l1
∂
∂y
uA(x, 0) = O((x+ l1)

−3/4) , x → −l1
(2.13)

ayrıt koşulları ve

(
∂u

∂r
− iku) = O(r−1/2), r =

√
x2 + y2 → ∞ (2.14)

radyasyon koşulu da dikkate alınacaktır.
(2.11)’i (2.12a-d)’de kullanılması ile aşağıdaki denklemler elde edilir:

K(α)PA(α) = e−i(α)l1Φ−
1 (α)−

k sinφ0

2πi

e−i(α−k cosφ0)l1

α− k cosφ0

(2.15a)

QA(α) = e−iαl1Φ−
2 (α) +

1

2πi

e−i(α−k cosφ0)l1

α− k cosφ0

(2.15b)

PA(α)−QA(α) = −2e−iαl1Φ+
1 (α) (2.15c)

PA(α) +QA(α) = 2
e−iαl1

K(α)
Φ+

2 (α) (2.15d)

Burada Φ+
1,2, Im(α) > Im(k cosφ0) üst yarı-düzlemde, Φ−

1,2 ise Im(α) < Im(k) alt
yarı-düzlemde analitik fonksiyonlar olmak üzere

Φ−
1 (α) =

1

2πi

∫ −l1

−∞

∂uA(x, 0
+)

∂y
eiα(x+l1)dx (2.16a)

Φ−
2 (α) =

1

2π

∫ −l1

−∞
uA(x, 0

+)eiα(x+l1)dx (2.16b)

Φ+
1 (α) =

1

2π

∫ ∞

−l1

[
uA(x, 0

+)− uA(x, 0
−)

]
eiα(x+l1)dx (2.16c)

Φ+
2 (α) =

1

2π

∫ ∞

−l1

[
∂uA(x, 0

+)

∂y
− ∂uA(x, 0

+)

∂y

]
eiα(x+l1)dx (2.16d)

şeklindedir. (2.13)’teki ayrıt koşulları kullanılarak, |α| → ∞ iken

Φ+
1 (α) = O(α−5/4), Φ+

2 (α) = O(α−1/4)

Φ−
1 (α) = O(α−1/4), Φ−

2 (α) = − 1
2πiα

+O(α−5/4)

}
. (2.17)

olur. PA(α) ve QA(α)’nın (2.15a-d) denklemlerinde yok edilmesi ile, aşağıdaki matris
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Wiener-Hopf denklemi elde edilir:

G(α)Φ+(α) = Φ−(α) +
1

2πi

eikl1 cosφ0

α− k cosφ0

[
1

−k sinφ0

]
(2.18)

Im(k cosφ0) < Im(α) < Im(k)

Bu problemde bahsedilen matris Wiener-Hopf yöntemi SİT kullanılarak çözülecektir.
Burada, G(α) ve Φ±(α) aşağıdaki gibidir.

G(α) =

[
1 1

K(α)

−K(α) 1

]
(2.19a)

Φ+(α) =

[
Φ+

1 (α)

Φ+
2 (α)

]
,Φ−(α) =

[
Φ−

2 (α)

Φ−
1 (α)

]
(2.19b)

G(α) matris çekirdiği [19]’daki gibi:

G+(α) = 21/4

[
coshχ(α) sinhχ(α)

Υα)

Υ(α). sinhχ(α) coshχ(α)

]
(2.20a)

G−(α) = G+(−α) (2.20b)

|α| → ∞ için asimptotik davranışları bu şekildedir:

G±(α) ∼ (4k)−1/4

[
(±α)1/4 (±α)−3/4

(±α)5/4 (±α)1/4

]
(2.21)

ve

χ(α) = − i

4
arccos(

α

k
) , χ(−α) = − i

4
{π − arccos(

α

k
)} (2.22a)

Υ(α) =
√
α2 − k2 (2.22b)

olmak üzere G(α) = G−(α).G+(α) şeklinde faktorize edilip klasik WH adımları uygu-
landığında

G+(α)Φ+(α)− 1

2πi

eikl1 cosφ0

α− cosφ0

[
G−(k cosφ0)

]−1

[
1

−k sinφ0

]
=

[
G−(α)

]−1
Φ−(α) +

1

2πi

eikl1 cosφ0

α− cosφ0

[[
G−(α)

]−1 −
[
G−(k cosφ0)

]−1

][
1

−k sinφ0

]
(2.23)
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elde edilir. Burada, (2.23)’ün sol tarafı üst yarı-düzlem (Im(α) > Im(k cosφ0))’de analitik iken,

sağ tarafı alt yarı-düzlem (Im(α) < Im(k))’de analitiktir. Bu nedenle, analitik devam ilkesine

göre (2.23), matris değerli bir tam P (α) fonksiyonunu tanımlar. (2.17) ve (2.21)’i dikkate alınarak

Liouville Teoremi kullanılırsa P (α)’nin P (α) = p

[
0

1

]
şeklinde sabit matris olduğu sonucuna

varılır. Böylece, (2.18) denkleminin çözümü aşağıdaki gibi ifade edilebilir:

G+(α)Φ+(α) =
1

2πi

eikl1 cosφ0

α− cosφ0

[
G−(k cosφ0)

]−1

[
1

−k sinφ0

]
+ p

[
0

1

]
(2.24)

(2.15a-d) ve (2.24)’ün kullanılması ile spektral katsayılar aşağıdaki gibi elde edilir:

[
PA(α)

QA(α)

]
= 23/4.

p

Υ(α)

[
−i coshχ(−α)

sinhχ(−α)

]
e−iαl1 +

√
2

π
.

1

α− k cosφ0
.[

− cos φ0

4 . sinhχ(−α) + k sinφ0sin
φ0

4 . coshχ(−α)
Υ(α)

−i cos φ0

4 . coshχ(−α) + ik sinφ0sin
φ0

4 . sinhχ(−α)
Υ(α)

]
.e−i(α−k cosφ)l1 (2.25)

(2.15a-b)’dan, PA(α) ve QA(α)’nın, |α| → ∞ için O(α−5/4) olması gerektiği görülür. (2.25)’te

|α| → ∞ için spektral katsayıların asimptotik davranışları incelendiğinde aşağıdaki gibi olur:

[
PA(α)

QA(α)

]
∼ (8k)−1/4

[
23/4p+

√
2

πi
cos

φ0

4
eikl1 cosφ0

][
±i

1

]
(−α)−3/4−O(α−7/4) (2.26)

Bu durumda, kabul edilebilir ayrıt davranışını elde edebilmek için p’nin aşağıdaki gibi olması

gerektiği bulunur:

p =
2−

1
4

π
i cos

φ0

4
eikl1 cosφ0 (2.27)

(2.27)’nin (2.25)’te kullanılması ile PA(α) ve QA(α) tamamen belirlenmiş olur.

[
PA(α)

QA(α)

]
=

√
2

π

(
cos φ0

4

Υ(α)

[
coshχ(−α)

i sinhχ(−α)

]
+

1

α− k cosφ0
.[

− cos φ0

4 . sinhχ(−α) + k sinφ0sin
φ0

4 . coshχ(−α)
Υ(α)

−i cos φ0

4 . coshχ(−α) + ik sinφ0sin
φ0

4 . sinhχ(−α)
Υ(α)

])
e−i(α−k cosφ)l1 (2.28)

(2.28)’in (2.11)’de kullanıp En dik iniş çizgisi yöntemi uygulanması ile uA kırınan alanı:

uA(r, φ) ∼ 4i cos
φ0

4
cos

φ

4

[
1−

cos φ
2 + cos φ0

2 − 1

cosφ+ cosφ0

]
eikr−iπ

4

√
πkr

eikl1 cosφ0

0 < φ < π (2.29)
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uA(r, φ) ∼ 4i cos
φ0

4
sin

φ

4

[
1 +

cos φ
2 − cos φ0

2 + 1

cosφ+ cosφ0

]
eikr−iπ

4

√
πkr

eikl1 cosφ0

π < φ < 2π (2.30)

şeklinde elde edilir.

2.1.2 ’O’ Ayrıtından Kırınan Birincil Alan

O ayrıtından kırınan birincil alanı bulmak için, şeridin A ayrıtı negatif sonsuza, B ayrıtı ise

pozitif sonsuza gönderilir. Bu durumda problem, sol yarısına Neumann sınır koşulu, sağ yarısına

ise Dirichlet sınır koşulu uygulanmış iki parçalı düzlemden saçılma problemine dönüşür.

Bu problemin çözümü [26]’de ele alınmış olup alanın asimptotik ifadesi aşağıdaki gibidir:

uO(r, φ) ∼
√
2(1 + i)

sin φ
2 sin φ0

2

cosφ+ cosφ0

eikr√
πkr

(2.31)

2.1.3 ’B’ Ayrıtından Kırınan Birincil Alan

Gelen dalganın B ayrıtında kırınması sonucu oluşan birincil alanı bulmak için, diğer iki ayrıt (O

ve A ayrıtları) eksi sonsuza gönderilir. Böylece, üst yüzeyine ve alt yüzeyine Dirichlet sınır koşulu

uygulanmış olan Şekil 3c’daki yarım düzlemden saçılma problemi incelenerek B’dan kırınan bi-

rincil alan uB(x, y) elde edilir.

(2.3) Helmholtz denklemini sağlayan uB(x, y) alanının integral gösterilimi aşağıdaki gibi olur:

uB(x, y) =

{ ∫
L PB(α)e

iK(α)y−iαxdα , y > 0∫
LQB(α)e

iK(α)y−iαxdα , y < 0
(2.32)

PB(α) ve QB(α) spektral katsayıları sınır koşulları ve süreklilik bağıntıları ile belirlenecektir.

uB(x, 0
+) = −e−ikx cosφ0 , x < l2 (2.33a)

uB(x, 0
−) = −e−ikx cosφ0 , x < l2 (2.33b)

uB(x, 0
+) = uB(x, 0

−) , x > l2 (2.33c)

∂

∂y
uB(x, 0

+) =
∂

∂y
uB(x, 0

−) , x > l2 (2.33d)

Problemin çözümünün tekliğini sağlamak için

{
uB(x, 0) = O(1) , x → −l2

∂
∂yuB(x, 0) = O((x− l2)

−1/2) , x → −l2
(2.34)

ayrıt koşulları ve

(
∂u

∂r
− iku) = O(r−1/2), r =

√
x2 + y2 → ∞ (2.35)

.

.
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radyasyon koşulu da dikkate alınacaktır. (2.32)’yi (2.33a-d)’de kullanılması ile aşağıdaki denklem-

ler elde edilir:

PB(α) = QB(α) = eiαl2Φ+(α)− 1

2πi

ei(α−k cosφ0)l2

α− k cosφ0
(2.36a)

PB(α) = Φ−(α)
eiαl2

K(α)
(2.36b)

Burada Φ+(α), üst yarı-düzlemde (Im(α) > −Im(k)), Φ−(α) ise alt yarı-düzlemde (Im(α) <

Im(k cosφ0)) analitik fonksiyonlar olmak üzere

Φ+(α) =
1

2π

∫ ∞

l2

uB(x, 0
+)eiα(x−l2)dx =

1

2π

∫ ∞

l2

uB(x, 0
−)eiα(x−l2)dx (2.37a)

Φ−(α) =
1

4πi

∫ l2

−∞

[
∂

∂y
uB(x, 0

+)− ∂

∂y
uB(x, 0

−)

]
eiα(x−l2)dx (2.37b)

şeklindedir. (2.34)’teki ayrıt koşullarını kullanılarak, |α| → ∞ iken

Φ+(α) = O(α−1),

Φ−(α) = O(α−1/2)

}
(2.38)

olur. PB(α) ’nın (2.36a-b) denklemlerinden yok edilmesiyle, aşağıdaki Wiener-Hopf denklemi

elde edilir:

K(α)Φ+(α)− 1

2πi
e−ikl2 cosφ0

K(α)

α− k cosφ0
= Φ−(α) (2.39)

−Im(k) < Im(α) < Im(k cosφ0)

Bu denklemin çözülebilmesi için öncelikle karekök faktör K(α)’nın faktorize edilebilmeli, yani

K(α) üst yarı-düzlemde (Im(α) > −Im(k)) analitik, alt yarı-düzlemde (Im(α) < Im(k cosφ0))

analitik olacak şekilde iki fonksiyonun çarpımı olarak yazılması gerekmektedir:

K(α) =
√

k2 − α2 =
√
k + α.

√
k − α = K+(α).K−(α) (2.40)

Bu durumda denklemin her iki yanı K−(α)’ya bölünür ve aşağıdaki denklem elde edilir:

K+(α)Φ+(α)− 1

2πi
e−ikl2 cosφ0

K+(α)

α− k cosφ0
= Φ−(α)

1

K−(α)
(2.41)

Öncelikle işlemlerde kolaylık sağlaması için

H(α) =
K+(α)

α− k cosφ0
(2.42)

şeklinde tanımlanır. Bu ifade dekompoze edilerek üst ve alt düzlemlerde regüler olan fonksiyon-

ların toplam şeklinde yazılacaktır. İlk olarak H(α) = H+(α)+H−(α) olacak şeklinde yazılabilir
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ve

H±(α) = ± 1

2πi

∫
L±

H(τ)

τ − α
dτ (2.43)

elde edilir.Burada L± üst ve alt yarı düzlemde yer alan entegre edilme yolunu ifade eder. İfadenin

içerisine H(τ) yerine yerleştirerek

H±(α) = ± 1

2πi

∫
L±

K+(τ)

(τ − k cosφ0)(τ − α)
dτ (2.44)

elde edilir. τ = k cosφ0 ve τ = α noktalarının kutupları göz önünde bulundurulduğunda,

H+(α) =
1

α− k cosφ0

[
K+(α)−K+(k cosφ0

]
(2.45)

ve

H−(α) =
1

α− k cosφ0
K+(k cosφ0) (2.46)

bulunur. Ayrıca, |α| → ∞ için asimptotik davranışları:

H+(α) = O(α−1/2),

H−(α) = O(α−1)

}
(2.47)

şeklindedir. lde edilen bu regüler fonksiyonlar (2.41)’de yerine yazıldığında,

K+(α)Φ+(α)− 1

2πi
e−ikl2 cosφ0H+(α) = Φ−(α)

1

K−(α)
+

1

2πi
e−ikl2 cosφ0H−(α) (2.48)

elde edilir. Sonrasında (2.38) ve (2.47) denklemleri dikkate alınarak Liouville Teoremi uygu-

landığında

P (α) ∼= 0

sonucuna varılır. Böylece, (2.48) denkleminin çözümü aşağıdaki şekilde ifade edilir:

K+(α)Φ+(α) =
1

2πi
e−ikl2 cosφ0

1

α− k cosφ0

[
K+(α)−K+(k cosφ0

]
(2.49)

şeklinde yazılabilir. (2.36a-b) ve (2.49)’un kullanılması ile spektral katsayılar aşağıdaki gibi elde

edilir:

PB(α) = QB(α) = − 1

2πi

K+(k cosφ0)

K+(α)

ei(α−k cosφ0).l2

α− k cosφ0
(2.50)

(2.50)’nin (2.32)’de kullanılması ve En dik iniş çizgisi yöntemi uygulanması ile uB kırınan alanı

aşağıdaki gibi elde edilir:
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uB(r, φ) ∼ −
√
2

cos φ0

2 cos φ
2

cosφ0 + cosφ

ei(kr−
π
4
)

√
πkr

e−ikl2 cosφ0 (2.51a)

0 < φ < π

uB(r, φ) ∼
√
2

cos φ0

2 cos φ
2

cosφ0 + cosφ

ei(kr−
π
4
)

√
πkr

e−ikl2 cosφ0 (2.51b)

π < φ < 2π

(2.28) ve (2.50)’deki spektral katsayıları, O ayrıtı tarafından ikincil kırınan alanları elde etmekte

kullanılacaktır.

2.2 İkincil Kırınan Alanlar

Gelen dalganın A ve B ayrıtlarında kırınması sonucu oluşan birincil alanlar, şeridin üst yüze-

yindeki O ayrıtında ikincil kırınmalara neden olur. Şekil 4 görülmektedir.

Şekil 4: İki parçalı yarı-düzlem tarafından kırınan ikincil alanlar.

2.2.1 ’O’ Ayrıtından Kırınan İkincil Alan: uAO

Gelen dalganın O ayrıtında kırınması sonucu oluşan ikincil alanı bulmak için,A ayrıtı negatif

sonsuza, B ayrıtı pozitif sonsuza gönderilir. Böylece, x < 0 üst sol yüzeyine Neumann sınır koşulu,

x > 0 üst sağ yüzeyine ise Dirichlet sınır koşulu uygulanmış olan Şekil 4’teki iki parçalı yarım

düzlemden saçılma problemi incelenerek O ayrıtında kırınan ikincil alan uAO(x, y) elde edilir.

(2.3) Helmholtz denklemini sağlayan uAO(x, y) alanının integral gösterilimi

uAO(x, y) =

∫
L
PAO(α)e

iK(α)y−iαxdα , y > 0 (2.52)

.

.
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şeklinde yazılabilir. Buradaki PAO(α) spektral katsayısı (2.53) sınır koşulları ile belirlenecektir:

∂

∂y
uAO(x, 0

+) = 0 , x < 0 (2.53a)

uA(x, 0
+) + uAO(x, 0

+) = 0 , x > 0 (2.53b)

Problemin çözümünün tekliğini sağlamak için

∂

∂y
uAO(x, 0) = O(x−1/2) , x → 0 (2.54a)

uAO(x, 0) = O(x1/2) , x → 0 (2.54b)

ayrıt koşulları da dikkate alınacaktır.

uA(x, 0
+) alanının yalnızca x > 0 için sınır koşulunda görünmektedir. Bu uA(x, 0

+) alanının,

sonsuza uzanan Dirichlet sınır koşulunu halihazırda sağlamasından kaynaklanmaktadır. (2.11) ve

(2.53a-b)’nin (2.52)’de kullanılması ile aşağıdaki denklemler elde edilir:

K(α).PAO(α) = Ψ+(α) (2.55a)

PAO(α) = Ψ−(α)− PA(α) (2.55b)

Burada Ψ+(α), Im(α) > Im(−k) üst yarı-düzlemde ve Ψ−(α), Im(α) < Im(k) alt yarı-

düzlemde analitik fonksiyonlar olmak üzere

Ψ+(α) =
1

2πi

∫ ∞

0

∂

∂y
uAO(x, 0

+)eiαxdx (2.56a)

Ψ−(α) =
1

2π

∫ 0

−∞

[
uAO(x, 0

+) + uA(x, 0
+)

]
eiαxdx (2.56b)

şeklindedir. |α| → ∞ iken asimptotik davranışları

Ψ+(α) = O(α−3/2),

Ψ−(α) = O(α−1),

}
. (2.57)

şeklindedir.

PAO(α)’yı (2.55a-b) denklemlerinden yok edilmesi ile aşağıdaki denklem elde edilir:

Ψ−(α)− PA(α) =
Ψ+(α)

K(α)
(2.58)

Elde edilen denkleme (2.28)’deki PA(α) yazılarak Wiener-Hopf denklemi elde edilir:
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Şekil 5: Dal kesimleri ve integrasyon çizgileri olan karmaşık düzlem.

Ψ+(α)

K(α)
= Ψ−(α)−

√
2 cos

φ0

4
eikl1 cosφ0

coshχ(−α)

K(α)
e−iαl1 −

√
2

π
cos

φ0

4

e−i(α−k cosφ0)l1

α− k cosφ0

. sinhχ(−α)−
√
2k

πi
sinφ0 sin

φ0

4

e−i(α−k cosφ0)l1

α− k cosφ0

coshχ(−α)

K(α)
(2.59)

WH denklemin regülerlik bandı her ne kadar −Im(k) < Im(α) < Im(k) olsa da, bundan sonraki

analiz bakımından söz konusu band

−Im(k) < Im(α) < Im(k cosφ0)

bandına kısıtlanacaktır. (2.40)’taki çarpıma istinaden denklemin her iki yanı K−(α) ile çarpılır ve

aşağıdaki denklemi elde edilir:

Ψ+(α)

K+(α)
= K−(α)Ψ−(α)−H(α) (2.60)

İşlemlerde kolaylık sağlanması için

H(α) =
√
2 cos

φ0

4
eikl1 cosφ0

coshχ(−α)

K+(α)
e−iαl1

−
√
2

π
cos

φ0

4

e−i(α−k cosφ0)l1

α− k cosφ0
K−(α) sinhχ(−α)

−
√
2k

πi
sinφ0 sin

φ0

4

e−i(α−k cosφ0)l1

α− k cosφ0

coshχ(−α)

K+(α)
(2.61)

ile tanımlanır.
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Şekil 6: L+ integrasyon eğrisi alttan kapatmak.

H1(α) =
coshχ(−α)

K+(α)
e−iαl1 (2.62a)

H2(α) =
e−i(α−k cosφ0)l1

α− k cosφ0
K−(α) sinhχ(−α) (2.62b)

H3(α) =
e−i(α−k cosφ0)l1

α− k cosφ0

coshχ(−α)

K+(α)
(2.62c)

Buradaki H(α), terimleri dekompoze edilerek Im(α) > −Im(k) üst yarı-düzlemde ve Im(α) <

Im(k cosφ0) alt yarı-düzlemde regüler olan fonksiyonların toplam şeklinde yazılacaktır. Burada

L± integral çizgileri Şekil 5’te gösterilmektedir. H1(α) = H+
1 (α) +H−

1 (α) şeklinde dekompoze

edilir. Burada

H±
1 (α) = ± 1

2πi

∫
L±

H1(τ)

τ − α
dτ (2.63)

şeklindedir.

(2.62a)’da l1 > 0 olduğu için L+ eğrisi alttan kapatılır ve Cauchy teoremi uyarınca

0 = −
∫
L+

H1(τ)

τ − α
dτ −

∫
CR

H1(τ)

τ − α
dτ +

∫
C+

1

H1(τ)

τ − α
dτ −

∫
Cε

H1(τ)

τ − α
dτ +

∫
C−

1

H1(τ)

τ − α
dτ

olur. R → ∞ ve ε → ∞ için CR ve Cε üzerindeki integraller, l1 > 0 olduğu için, Jordan Lemması

uyarınca, sıfıra gider. Böylece,∫
L+

H1(τ)

τ − α
dτ =

∫
C+

1

H1(τ)

τ − α
dτ +

∫
C−

1

H1(τ)

τ − α
dτ (2.64)

olur. Yani L+ üzerindeki integral, kesim çizgisi üzerindeki integrallere indirgenmiş oldu.

H+
1 (α) =

1

2πi

∫
C+

1 +C−
1

coshχ(−τ)

K+(τ)

e−iτ l1

τ − α
dτ (2.65)
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Kesim çizgisinin her iki tarafında, C+
1 ∪ C−

1 üzerinde yazılmış integral,

κ+ τ =

{
te−iπ

2 , t > 0 , C+
1 de

tei3
π
2 , t < 0 , C−

1 de
(2.66)

dönüşümleri aracılığı ile, pozitif reel doğru üzerinde yazılmış (2.67) integraline dönüşür.

H+
1 (α) =

ei(kl1+
π
4
)

π

∫ ∞

0

coshχ(it+ k)√
t

e−tl1

it+ k + α
dt (2.67)

l1 yeterince büyükse, (2.67)’deki integralin ana katkısı t’nin yaklaşık olarak sıfır olduğu bölge-

den gelir. Bu durumda coshχ(it+ k) fonksiyonu, t = 0 değeri ile yaklaşık olarak hesaplanabilir

ve integralden dışarı çıkarılabilir. Bu şekilde,∫ ∞

0
e−tl1

√
t

t+ z
dt =

√
π

l1
[1− F (il1z)] (2.68)

modifiye Fresnel integrali olmak üzere,

F (z) = 2i
√
zeiz

∫ ∞

√
z
e−it2dt (2.69)

bağıntısından yararlanarak,

H+
1 (α) =

ei(kl1+
π
4 )√

πl1

F (kl1[1 +
α
k ])

k + α
(2.70)

elde edilir. Benzer şekilde H−
1 (α) integrali hesaplanırken, L− integrasyon eğrisi alttan kapatılıp

Cauchy Teoremi ve Jordan Lemması uygulanarak elde edilir:

H−
1 (α) =

coshχ(−α)

K+(α)
e−iαl1 − ei(kl1+

π
4
)

√
πl1

F (kl1[1 +
α
k ])

k + α
(2.71)

Benzer şekilde, H+
2 (α) ve H+

3 (α) dekompoze edilirse üst yarı-düzlemde analitik olan H+(α) bu

şekilde elde edilir:

H+(α) =

√
2

π
i cos

φ0

4

F (kl1[1 +
α
k ])

k + α

eik(1+cosφ0)l1
√
πl1

ei
π
4 +

√
2k

π
i sinφ0 sin

φ0

4

1

α− k cosφ0[
F (kl1[1 +

α
k ])

k + α
− F (kl1[1 + cosφ0])

k(1 + cosφ0)

]
eik(1+cosφ0)l1

√
πl1

ei
π
4 (2.72)

olur. (2.60) denkleme yazılınca WH denklimin çözümü bu şekilde elde edilmiş olur:

Ψ+(α)

K+(α)
+H+(α) = K−(α)Ψ−(α)−H−(α) (2.73)
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Analitik devam ilkesine kullanılarak, regüler fonksiyonlar (2.73) denkleminde yerine ko-

nur ve (2.73) denklemi tam bir P (α) fonksiyonunu tanımlar, |α| → ∞ durumunda asimptotik

davranışlarını dikkate alınarak Liouville Teoremi uygulandığında, P (α) ∼= 0 sonucuna varılır ve

aşağıdaki denklem elde edilir:

Ψ+(α) =

√
2

πi
K+(α)

[
cos

φ0

4

F (kl1[1 +
α
k ])

k + α
− k sinφ0 sin

φ0

4

1

α− k cosφ0[F (kl1[1 +
α
k ])

k + α
− F (kl1[1 + cosφ0])

k(1 + cosφ0)

]]eik(1+cosφ0)l1
√
πl1

ei
π
4 (2.74)

Burada, (2.55a) ve (2.74) denklemleri kullanılarak spektral katsayısı aşağıdaki gibi ifade edilir:

PAO(α) =

√
2

πi

1

K−(α)

[
cos

φ0

4

F (kl1[1 +
α
k ])

k + α
− k sinφ0 sin

φ0

4

1

α− k cosφ0[F (kl1[1 +
α
k ])

k + α
− F (kl1[1 + cosφ0])

k(1 + cosφ0)

]]eik(1+cosφ0)l1
√
πl1

ei
π
4 (2.75)

Kırınan alanı uAO’yu bulmak için (2.52) integral ile (2.75)’e aşağıdaki dönüşümü uygulanarak

asimptotik olarak değerlendirilecektir:

α = −k cos t, x = r cosφ, y = r sinφ

ve (2.52)’de L doğrusu boyunca olan integral, Γ doğrusu boyunca olan integrale dönüşür:

uAO(r, φ) =

∫
Γ
PAO(−k cos t)eikr cos(φ−t)k sin tdt (2.76)

(2.76)’da elde edilen integrali En dik iniş çizgisi yöntemi kullanılarak değerlendirmek için uygun-

dur.

I(k) =

∫
C
f(t)eiq(t)dt ∼

√
2π

k|q”(z)|
f(ts)e

iq(ts)±iπ
4 q”(ts) ≷ 0 (2.77)

Dolayısıyla, ikincil kırıan uAO(r, φ) alanı asimptotik ifadesi aşağıdaki gibi elde edilir.

uAO(r, φ) ∼ 2
√
2iei

π
2 sin

φ

2
cos

φ0

4

[
2 cos φ0

2 − cosφ0 − 1

cosφ+ cosφ0

[F (kl1[1− cosφ])

1− cosφ

− F (kl1[1 + cosφ0])

1 + cosφ0

]
− F (kl1[1− cosφ])

1− cosφ

]
eikl1(1+cosφ0)

√
πkl1

eikr√
πkr

(2.78)

kl1 >> 1 için Fresnel integralin asimptotik ifadesi kullanılabilir:

F (z) ∼ 1 +
1

2iz
, , z → ∞ (2.79)
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Bu durumda kırınan alan aşağıdaki gibi elde edilir:

uAO(r, φ) ∼ −
√
2

π

eikl1 cosφ0

sin φ
2 . cos

φ0

2

[
cos

3φ0

4
+

1

4ikl1

[cos 3φ0

4

sin2 φ
2

−
sin φ0

2 sin φ0

4

cos2 φ0

2

]] eikl1√
kl1

eikr√
kr

(2.80)

2.2.2 ’O’ Ayrıtından Kırınan İkincil Alan: uBO

B ayrıtında kırınan dalganın O ayrıtında meydana getirdiği ikincil kırınan alanı bulmak için,

A ayrıtı negatif sonsuza, B ayrıtı pozitif sonsuza gönderilir. Böylece, x < 0 üst sol yüzeyine

Neumann sınır koşulu, x > 0 üst sağ yüzeyine ise Dirichlet sınır koşulu uygulanmış olan Şekil

4’teki iki parçalı yarım düzlemden saçılma problemi incelenerek O ayrıtında kırınan ikincil alan

uBO(x, y) elde edilir.

(2.3) Helmholtz denklemini sağlayan uBO(x, y) alanının integral gösterilimi:

uBO(x, y) =

∫
L
PBO(α)e

iK(α)y−iαxdα , y > 0 (2.81)

şeklinde yazılabilir. Buradaki PBO(α) spektral katsayısı (2.82) sınır koşulları ile belirlenecektir:

uBO(x, 0
+) = 0 , x > 0 (2.82a)

∂

∂y
uBO(x, 0

+) +
∂

∂
uB(x, 0

+) = 0 , x < 0 (2.82b)

Problemin çözümün tekliğini sağlamak için

∂

∂y
uBO(x, 0) = O(x−1/2) , x → 0 (2.83a)

uBO(x, 0) = O(x1/2) , x → 0 (2.83b)

ayrıt koşulları da dikkate alınacaktır. (2.32) ve (2.82a-b)’nin (2.81)’de kullanılması ile aşağıdaki

denklemler elde edilir:

Ψ+(α) = K(α).PBO(α) +K(α).PB(α) (2.84a)

Ψ−(α) = PBO(α) (2.84b)

Burada Ψ+(α), Im(α) > Im(−k) üst yarı-düzlemde ve Ψ−(α), Im(α) < Im(k) alt yarı-

düzlemde analitik fonksiyonlar olmak üzere

Ψ+(α) =
1

2iπ

∫ ∞

0

∂

∂y

(
uBO(x, 0

+) + uB(x, 0
+)
)
eiαxdx (2.85a)

Ψ−(α) =
1

2π

∫ 0

−∞
uBO(x, 0

−)eiαxdx (2.85b)

.
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şeklindedir. |α| → ∞ iken asimptotik davranışları bu şekildedir:

Ψ+(α) = O(α−1),

Ψ−(α) = O(α−3/2),

}
. (2.86)

PBO(α)’yı (2.84a-b) denklemlerinden yok edilmesi ile aşağıdaki denklem elde edilir:

Ψ+(α)

K(α)
= Ψ−(α) + PB(α) (2.87)

Elde edilen denkleme (2.50)’deki PB(α) yazılarak Wiener-Hopf denklemi elde edilir:

Ψ+(α)

K(α)
= Ψ−(α) +

K+(k cosφ0)

2πi
.e−ikl1 cosφ0 .

1

K(α)
.

eiαl2

α− k cosφ0
(2.88)

WH denklemin regülerlik bandı her ne kadar −Im(k) < Im(α) < Im(k) olsa da, bundan sonraki

analiz bakımından söz konusu band

Im(k cosφ0) < Im(α) < Im(k)

bandına kısıtlanacaktır. (2.40)’taki karekök faktör eşitliğine göre (2.88) denklemin her iki yanı

K−(α) ile çarpılır ve aşağıdaki denklemi elde edilir:

Ψ+(α)

K+(α)
= K−(α)Ψ−(α) +

K+(k cosφ0)

2πi
.e−ikl1 cosφ0 .

K−(α)

K+(α)
.

eiαl2

α− k cosφ0
(2.89)

Şekil 7: L− integrasyon eğrisi üstten kapatmak.
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İşlemlerde kolaylık sağlaması için

F (α) =
K−(α)

K+(α)
.

eiαl2

α− k cosφ0

ile tanımlanır. Buradaki F (α)’yı dekompoze edilerek Im(α) > Im(k cosφ0) üst yarı-düzlemde

ve Im(α) < Im(k) alt yarı-düzlemde regüler olan fonksiyonların toplam şeklinde yazılacaktır.

Ayrıca, bu dekompozisyonu yaparken L± integral çizgilerini kullanılacaktır, Şekil 7’de gösteril-

mektedir.

F (α) = F+(α) + F−(α) şeklinde dekompoze edilir. Burada

F±(α) = ± 1

2πi

∫
L±

F (τ)

τ − α
dτ (2.90)

şeklindedir. Burada, F (α) fonksiyonu için l2 < 0 olduğu göz önüne alındığında, integrali ince-

leyerek, L− eğrisinin üstten kapandığını ve Cauchy teoremi ile Jordan lemmasına göre aşağıdaki

şekilde yazabiliriz: ∫
L−

F (τ)

τ − α
dτ = −

∫
C+

2

F (τ)

τ − α
dτ −

∫
C−

2

F (τ)

τ − α
dτ

olur. Yani L− üzerindeki integral, kesim çizgisi üzerindeki integrallere indirgenmiş oldu. Böylece,

F−(α) =
1

2πi

∫
C+

2 +C−
2

K−(τ)

K+(τ)
.

1

τ − k cosφ0

eiτ l2

τ − α
dτ (2.91)

olur. Kesim çizgisinin her iki tarafında, C+
2 ∪ C−

2 üzerinde yazılmış integral,

κ− τ =

{
tei3

π
2 , t > 0 , C+

2 de

te−iπ
2 , t < 0 , C−

2 de
(2.92)

dönüşümler aracılığı ile, pozitif reel doğru üzerinde yazılmış

F−(α) =
1

πi

ei(kl2−
π
4
)

α− k cosφ0
.

∫ ∞

0

K−(k + it)

K+(k + it)

[
1

t− i(k − α)
− 1

t− ik(1− cosφ0)

]
e−itl2dt

(2.93)

integraline dönüşür. l2 yeterince büyük değerleri için, (2.93)’teki integrale ana katkı t = 0 ci-

varıdan gelir. Bu durumda K−(k + it) fonksiyonu, t = 0 ’daki değerleri konularak integral dışına

çıkartılabilir.

F−(α) =
1

πi

ei(kl2−
π
4
)

α− k cosφ0

1√
2k

∫ ∞

0

[ √
t

t− i(k − α)
−

√
t

t− ik(1− cosφ0)

]
e−itl2dt (2.94)
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elde edilir. Böylece, (2.68) ile (2.69)’deki Fresnel integrali ve bağıntısından yararlanarak

F−(α) =
ei(kl2−

3π
4
)

α− k cosφ0

1√
2kπl2

[
F
[
kl2(1− cosφ0)

]
− F

[
l2(k − α)

]]
(2.95)

elde edilir. Benzer şekilde F+(α) integraline bakılırsa L+ integrasyon eğrisi üstten kapatılıp Ca-

uchy Teoremi ve Jordan Lemması uygulanarak elde edilir:

F+(α) =
K−(α)

K+(α)
.

eiαl2

α− k cosφ0
− ei(kl2−

3π
4
)

α− k cosφ0

1√
2kπl2

[
F
[
kl2(1−cosφ0)

]
−F

[
l2(k−α)

]]
(2.96)

olur. |α| → ∞ iken asimptotik davranışları

F+(α) = O(α−3/2)

F−(α) = O(α−1)

}
. (2.97)

olur. F±’yi (2.89) denkleme yazılınca:

Ψ+(α)

K+(α)
−K+(k cosφ0)

2πi
.e−ikl2 cosφ0 .F+(α) = K−(α)Ψ−(α)+

K+(k cosφ0)

2πi
.e−ikl2 cosφ0 .F−(α)

(2.98)

olup aşağıdaki şekilde de yazılabilir:

P (α) =

{
Ψ+(α)
K+(α)

− K+(k cosφ0)
2πi

.e−ikl2 cosφ0 .F+(α) Im(α) > Im(k cosφ0)

K−(α)Ψ−(α) + K+(k cosφ0)
2πi

.e−ikl2 cosφ0 .F−(α) Im(α) < Im(k)
(2.99)

(2.86) ve (2.97)’daki asimptotik davranışları kullanılarak Liouville Teoremine göre

p(α) ∼= 0

olduğu sonucuna varılır. Böylece,

Ψ−(α) = − 1

2πi
K+(k cosφ0)e

−ikl2 cosφ0 .
F−(α)

K−(α)
(2.100)

elde edilir. (2.84b) ve (2.100)’ün kullanılması ile spektral katsayısı aşağıdaki gibi elde
edilir:
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PBO(α) = − 1

2πi

e−i3π
4

α− k cosφ0

eikl2(1−cosφ0)

√
2πkl2

K+(k cosφ0)

K−(α)[
F
[
kl2(1− cosφ0)

]
− F

[
kl2(1−

α

k
)
]]

(2.101)

Kırınan alanı bulmak için (2.81) integrale ile (2.101)’e aşağıdaki dönüşümü uygulanarak
asimptotik olarak değerlendirilecektir.

α = −k cos t, x = r cosφ, y = r sinφ

(2.80)’daki L doğrusu boyunca olan integral, Γ doğrusu boyunca olan integrale dönüşür:

uBO(r, φ) =

∫
Γ

PBO(−k cos t)eikr cosφ−t.k sin tdt (2.102)

(2.102)’de elde edilen integral (2.77) En dik iniş çizgisi yöntemi uygulanarak değerlen-
dirmek için uygundur. Dolayısıyla, uBO(r, φ) kırınan ikincil alanının asimptotik ifadesi
aşağıdaki gibi elde edilir:

uBO(r, φ) ∼
i sin φ

2
. cos φ0

2

cosφ+ cosφ0

[
F
[
kl2(1− cosφ0)

]
− F

[
kl2(1 + cosφ)

]]
eikr√
πkr

eikl2(1−cosφ0)

√
πkl2

(2.103)

kl2 >> 1 için (2.79) Fresnel integralin asimptotik ifadesi kullanılabilir. Bu durumda
kırınan alan aşağıdaki gibidir:

uBO(r, φ) ∼
e−ikl2 cosφ0

2πkl2

sin φ
2
. cos φ0

2

(1 + cosφ)(1− cosφ0)

eikr√
kr

eikl2√
kl2

(2.104)
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3 SAYISAL SONUÇLAR

Bu bölümde, 2.bölümde analitik olarak elde edilen birincil ve ikincil kırınan alan-
ların problemin parametrelerine göre davranışları MATLAB kullanılarak grafiksel olarak
sunulmuştur. Bu grafiklerde kl1 = kl2 = 6π (l1 = l2 = 2λ) alınmıştır.

Şekil 8: Birincil Kırınan Alanlar ve Açıları (Monostatik durumu) Grafiği.

Şekil 8,9,10’da monostatik durumda, yani dalganın geliş açısı ile gözlem açısının bir-
birine eşit olduğu durumda kırınan alanların açıya göre davranışları görülmektedir.

Şekil 8’de A,O,B ayrıtlarından kırınan birincil alanlar ve toplam birincil alan görül-
mektedir. Dalganın yüzeye dik gelmesi durumunda (φ0 = 90◦) her bir alanın geri yansıma-
sının maksimum seviyede olduğu ve toplam birincil alanın, her bir ayrıttaki birincil alan-
dan farklı olarak salınım yaptığı görülmektedir.

.
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Şekil 9: İkincil Kırınan Alanlar ve Açıları (Monostatik durumu) Grafiği.

Şekil 9’da, O ayrıtından kıınan uAO, uBO ikincil alanları açıya göre davranışları görül-
mektedir. Dalganın yüzeye φ0 = 120◦ açısıyla gelmesi durumda uAO ikincil kırınan alanın
geri yansımasının minimüm seviyede olduğu görülmektedir.

Şekil 10: Birincil Alanlar ve İkincil Alanların Toplam Grafiği.

Şekil 10’da ise toplam birincil alan (uBirincil), toplam ikincil alan (uikincil) ve bunların
ikisinin toplamı (uToplam) görselleştirilmiştir. Toplam alanın [80◦, 140◦] civarında birincil
alan gibi davrandığını, ikincil alanın etkisinin 20◦ ve 170◦ civarında olduğu görülmektedir.
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Şekil 11: l2’ye göre Toplam Birincil Kırınan Alan Davranış Grafiği.

Şekil 11,12’de φ0 = 30◦ ve Neumann sınır koşulunun uygulandığı yüzeyin uzunluğu
l1 = 2λ olmak üzere, Şekil 11’de toplam birincil alanının, Şekil 12’de ise toplam ikincil
alanın l2’ye yani Dirichlet sınır koşulunun uygulandığı yüzeyin uzunluğuna göre davranış-
ları yer almaktadır.
Gözlem açısı değiştiğinde toplam birincil alanın davranışında l2 arttıkça bir değişim

Şekil 12: l2’ye göre Toplam İkincil Kırınan Alan Davranış Grafiği.

gözlenmezken, ikincil alan gözlem açısı değiştiğinde l1 = 2λ ’den önce farklı davranışlar
göstermekte ama l1 = 2λ ’den sonra değişim gözlenmemektedir.
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Şekil 13: l1 = l2, φ = φ0 = 120◦ iken İkincil Kırınan Alanlar davranış Grafiği.

Şekil 13’te ise φ = φ0 = 120◦ için O’dan kırınan ikincil alanların l1 = l2 uzunluk-
larına göre davranışları görülmektedir. Beklendiği gibi, Şeridin yüzey uzunluğu arttıkça
ikincil alanların etkisi azalmaktadır.
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4 SONUÇ VE DEĞERLENDİRME

Bu çalışmada, düzlemsel dalgaların, üst yüzeyinin sol tarafnda Neumann, sağ tarafında
Dirichlet sınır koşulları ve alt yüzeyinde tamamen Dirichlet sınır koşulu olan bir şerit
tarafından kırınımı, Fourier dönüşümü uygulanarak sınır ve süreklilik koşulları altında
Spektral İterasyon tekniği Wiener-Hopf yöntemi kullanılarak tartışılmıştır. Şeridin üst
yüzeyindeki bağlantı noktasında meydana gelen ikincil kırınan alanlara odaklanılmıştır.

Sayısal sonuçlar bölümünde ise belirli grafikler çizilerek simetrik olmayan üç ayrıtların
birleşme noktasındaki ikincil kırınan alan üzerindeki etkilerini ortaya çıkarmak için bazı
grafiksel sonuçlar sunulmuştur ve şerit genişliği arttıkça çift kırınımlı alanların etkilerinin
azaldığı görülmektedir.

.
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