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OZET

Bu caligma, {ist yiizeyinin sol tarafina yumusak (Dirichlet) ve sag tarafina sert
(Neumann) sinir kosullar1 ve alt yiizeyinin tamamina yumusak sinir kosulu uygulanan
seritten kirman ikincil alanlar1 arastirmaktadir. Bu ¢alismada seridin iist yiizeyindeki
baglant1 noktasinda ikincil kirian alanlar1 incelemek icin Wiener-Hopf ydntemi ile
Spektral iterasiyon Teknigi kullanilmistir. Seridin simetrik olmayan ug ayritin, seridin
Ust yuziindeki ayritta (kavsak) kirinan ikincil alanlar (zerindeki etkisi, MATLAB
programi kullanilarak niimerik olarak ¢oziilmiis ve grafikler elde edilmistir. Problemin
parametrelerin kirinan alanlar tizerindeki etkilerini gostermek igin bazi grafikler
sunulmustur.

Bu tez TUBITAK ARDEB 1002 tarafindan desteklenmektedir. , Proje No:
122F238

Anahtar Kelimeler: ikincil Kirman Alani, Dirichlet Sir Kosulu, Neumann

Siir Kosulu, Spektral iterasyon Teknigi (SIT), Wiener-Hopf Yontemi .



SUMMARY

This study investigates the doubly diffracted fields generated by the strip that
has soft and hard boundary conditions on its upper face, and totally soft boundary
condition on its lower face. The spectral iteration technique with the Wiener-Hopf
method is employed in the study to examine the doubly diffracted fields at the junction
on the upper face of the strip. The effect of the non-symmetrical end edges of the strip
on the doubly diffracted field at the edge (junction) on the upper face of the strip is
presented graphically for the various parameters of the problem. This system is solved
numerically using MATLAB program and graphics were obtained. Some graphics are
presented to show the effects of the problem parameters on the diffracted field.

This thesis is supported by TUBITAK ARDEB 1002, Research grant: 122F238.

Key Words: Doubly Diffracted Field, Dirichlet Boundary Condition, Neumann
Boundary Condition, Spectral Iteration Technique (SIT), Wiener— Hopf
Method.
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1. GIRIS

Kirinim, dalgalarin engellerle karsilastiginda yayilmasi olarak ortaya ¢ikan bir olaydir.
Bu olay, 1s1ik gibi elektromanyetik dalgalarin yani sira ses gibi mekanik dalgalar igin
de gecerlidir. Bir dalga, bir engelle veya ayritla karsilastiginda kirinmaya ugrar. Kirman
dalga, engelin Otesine cesitli yonlere yayilir ve bu siire¢ parlak ve karanlik bolgelerin
siralandig1 bir desen olugturur. Bu olusuma “kirinan alani” adi verilir. Giinliik yasamda
sikca karsilagilan ornekler arasinda arka planda duyulan fisilti gibi seslerin, bir odadaki
151 veya 1s1k diizeylerinin kirinma sonucu olustugu yer alir. Kirinma siirecini bir kez an-
ladiginizda, oldukga acik bir konsept oldugunu fark edersiniz. Elektromanyetik ve akustik
dalgalarin diizlemsel yapilardan gecerken gosterdigi kirtnma, hem kirinim teorisi hem de
miihendislik uygulamalar1 acisindan biiyiik 6nem tagir, 6zellikle birden fazla ayrit iceren
serit gibi yapilar soz konusu oldugunda. Bu tiir yapilarla ilgili ¢oklu kirinan alanlar da
son derece onemlidir. Serit benzeri yapilarin kirinma teorisine ilk klasik katki Schwarzsc-
hild tarafindan sunulmus ve ardindan 1956 yilinda Karp ve Russeck tarafindan daha fazla
calisma yapilmigtir. Bu tarihten itibaren, karigik sinirlara sahip nesnelerden sag¢ilma konu-
sunda literatiirde bir¢ok ¢alisma ortaya ¢cikmustir.

Miikemmel yarim diizlemleri iceren bazi problemler Senior [14] tarafindan ele alinmig-
tir. Bucci ve Franceschetti [8], yari-diizlem problemi i¢in tekillikten bagimsiz diizgiin
asimptotikleri gelistirdiler. Biiyiikaksoy ve Alkumru [20], Wiener-Hopf teknigi araciligi
ila yumusak sert seritlerde ¢oklu kirinim iizerine calismiglardir. Rastgele ylizey empe-
danslarina sahip bir seritteki kirinim, Veliev [21] tarafindan sonsuz lineer denklem sistemi
kullanilarak incelenmistir. Tki ayrit1 olan bir seridi ele alirsak, seridin alt ve iist yiizeyleri
boyunca ilerleyen birinci ayrittan kirinan dalganin bir kismi diger ayritta ikincil kirinan
bir alan olusturur. Bu ¢alismanin odak noktasi, iist yiizeyde yar1 yumusak ve yar1 sert sinir
kosullarina, alt yilizeyde ise tamamen yumusak sinir koguluna sahip bir serit tarafindan
kirinan birincil alam1 hesaplamak ve simetrik olmayan ii¢ ayritin, seridin iist ylizeyinde

olusturulan ikincil kirinan alanlar iizerindeki etkilerini aciga ¢ikarmaktir. Elektromanye-



tik ve akustik dalgalarin ¢esitli sinir kosullarina sahip seritlerden ¢oklu kirmnimini ince-
leyen makalelerden bazilart [5, 10, 15, 16, 20]’de bulunabilir. Serit tarafindan kirian
alanlar1 bulmak icin Spektral Iterasyon Teknigi (SIT) Wiener-Hopf yontemi ile birlikte
kullanilmagtir.

2.Boliimde, Wiener-Hopf teknigi uygulanarak sinir deger probleminin neden dogrudan
coziilemeyecegi aciklanmig ve seridin ayritlarinda birincil kirinan alanlar verilmisgtir.
Ayrica, seridin ii¢ ayritlart tarafindan uyarilan ikincil kirman alanlar, spektral iterasyon
teknigi (SIT) kullanilarak ¢ikarilmistir. Bu ¢alismada elde edilecek MWH (Matris Wiener-
Hopf) denklemi, seridin her iki yiizeyinin simetrik olup olmamasi durumuna bagh olarak
skaler veya matris denklemi seklinde ifade edilir. Jones [5, bol. 9.12] tarafindan goste-
rildigi gibi, MWH denkleminin ¢6ziimii her zaman, ¢cekirdek a+rﬁ ile ifade edilebilen ikinci
tiirden iki ayr1 Fredholm integral denkleminin ¢6ziimiine indirgenebilir. Jones daha sonra
[5, bol. 9.12] farkl tiirden malzeme seritlerinin analizine uygulanan bir iteratif yaklasim
sunarak, yaklagik bir ¢6ziim bulmak icin temelde ayristirilabilen MWH denklemleriyle
sonuglandirdi [15, 17]. Hurd [7] tarafindan tamtilan Wiener-Hopf Hilbert yontemi, calis-
mamizda ¢ekirdek matrisi G(«) olarak adlandirilan durumda yalmizca dallanma noktasi te-
killiklerine sahip oldugunda etkilidir. Bu yaklagimin, Rawlins ve Williams [12] tarafindan
ifade edilen durumu da icerdigi goriilmektedir. Cekirdek matrisinin yalnizca kutuplara
veya kutuplara ve dallanma noktas: tekilliklerine sahip oldugu genel durumlara uygula-
nabilen daha genel bir yontem Khrapkov [6], Daniele [9], Rawlins [11] ve Jones [13]

tarafindan aciklanmigtir. 3.boliim, kirinan birincil ve ikincil alanlarin sayisal hesaplama-

larm igerir. Sonug ve degerlendirme Boliim 4’°te verilmektedir.



2. PROBLEMININ FORMULASYONU VE COZUMU

Bu tez ¢aligmasinda, geometrisi Sekil 1’de verilen S = {(z,y, 2) : x € (=13, 15),

y =0,z € (—o00,00)} seridinden
/U/i (:L', y) = e*ik(x cos po+ysin o) (2.1)

diizlemsel dalganin kirmimi incelenmistir. Burada ¢y € (0, 7) gelis agis1 ve ¢ dalganin
hiz1 olmak iizere, k = % dalga sayisidir. Analitik kolaylik sa§lamak amaciyla £’ min kiigiik
bir sanal bilesene sahip oldugu varsayilmistir. Dalganin zaman i¢indeki degisimi w acisal
frekansiyla ifade edilir ve genel olarak e~** bicimindedir.

S seridinin 1 = (z,y,2) :x € (—1,0),y =07,z € (—o0, 00) yiizeyine Neumann
Sinir kogulu (Hard - Sert), Ss = (2,9, 2) : @ € (0,12),y =07, z € (—o0, 00) yiizeyine Di-
richlet Sinir kogulu (Soft - Yumusak) ve S = (z,y,2) : € (—=l1,l2),y =07,z € (—00,0)
alt yiizeyine ise Dirichlet Sinir kosulu uygulanmustir.

Bu diizenleme, problemin farkli yiizeylerinde farkli sinir davraniglarim yansitmaktadir.

y

Sekil 1: Problemin Geometrisi.

Sekil 1’de goriillen A = {x = —l;,y = 0,2 € (—00,0)}, 0 = {x =0,y =0,z €
(—o0,00)} ve B = {z = ly,y = 0,z € (—00,00)} noktalari, S seridindeki ayritlart
temsil etmektedir. (2.1)’deki gelen dalganin S seridi ile etkilesimi sonucu olugan toplam
alan agagidaki gibi ifade edilir:

u'(z,y) = u'(2,y) + u(z,y) (2.2)



Burada u(z,y), sacilan dalganin alanini temsil eder ve S yiizeyinin digsinda asagidaki

Helmholtz denklemini saglar:

0? 0?
<8_+W+k2> u(@,y) =0 y#0. (2.3)

Serit yiizeyinde saglanan sinir kosullar1:

0 A
a—u(x, 07) = iksingge **es?0 ] <z <0 (2.4a)
Y
u(z,07) = —ehrcosvo 0 < g <y (2.4b)
u(z,07) = —ehTeosvo [ <<y (2.4¢)

olup, seridin disinda saglanan siireklilik kosullari:

w(z,07) =u(z,07) ,(z < =) U (x> L) (2.5a)

uw(z,07) = —u(z,07) ,(x < —l) U (x> 1) (2.5b)

dy dy

seklindedir. Burada sacilan alan

Oé zK(ay oz o ’ y>0
u(@,y) = JuP . (2.6)
[, Q(a)eE@v=iarge 1y <0

seklinde aranacaktir. Bu ifade, (2.3) denkleminin Fourier doniisiimii uygulanmasiyla elde
edilen denklemin genel ifadesidir. Burada P(a) ve @(«), belirlenmesi gereken spektral
katsayilardir. (2.4a-c) ve (2.5a-b) kosullari, (2.6) ifadesiyle birlikte kullanildiginda elde
edilen modifiye matris Wiener-Hopf denklemi asagidaki gibidir:

k sin ©o 1 — efi(afkcos wo)l1

G(a)P(a) = e*1d™ (o) + 20T (o) + Q(a) + F (2.7)

2m a — k cos pg
—Im(k) < Im(a) < Im(k)

Burada P(a), Q(a) ve ®*(«) belirlenmesi gereken (2x1) boyutlu vektorler olup

1 0 1
Gla) = [K(a) 1]’F: [—ksimpo] (2-8)



seklindedir. Buradaki K («) ifadesi

seklinde bir karekok fonksiyonudur ve bu fonksiyon Sekil 2’deki gibi kesilmis kompleks
a-diizleminde K (0) = k olacak sekilde tanimlidur.

Ima

.................. P B

Sekil 2: Kompleks o Diizlemi.

(2.7) denklemi —I'm(k) < Im(a) < I'm(k) bandinda gecerlidir. P(a) ve Q(«) bu bandin
icinde yer alirken, ®* () iist yari-diizlemde (Im(c) > —Im(k) diizleminde) ve &~ («)
alt yari-diizlemde (/m(«) < Im(k) diizleminde) analitik fonksiyonlardr.

Bu denklemin ¢oziilebilmesi i¢in oncelikle ¢ekirdek matris G/(«v)’nin faktorize edilebil-

mesi (carpanlara ayrilmasi) gerekmektedir. Yani,
G(a) =G (a).G™(a)

seklinde yazilabilir olmalidir. G* (o) nin ist yari-diizlemde (alt yari-diizlemde) tekil ol-
mayan analitik matrisler olmalar1 gerekmektedir. Ancak bu faktorizasyon islemi her mat-
ris icin miimkiin degildir (Lawrie ve Abrahams [23]). Baz1 6zel yapidaki matrisler icin
geligtirilmis Daniele-Khrapkov yontemi (Khrapkov [6], Daniele [9]) ve Wiener-Hopt-
Hilbert yontemi (Bucci ve Franceschetti [8]) gibi 6zel faktorizasyon yontemleri bulun-
maktadir. Bu alandaki ¢alismalar halen devam etmektedir (Kisil [28]; Rougerie, Kisil [29];
Kisil [30]; Priddin [31]). Eger bu faktorizasyon islemi gergeklestirilebiliyorsa, (2.7) denk-
leminin her iki yan1 G () matrisinin tersi, [GT(a)] ™! ile ¢arpilir ve agagidaki denklem

elde edilir:



G () P(a) = e M [GT ()] T @7 (a) + € [GT ()] 0T () + [GT ()] ' Q(e)+

L sin ©o 1 — e—i(a—kcosgoo)ll

270 a — k cos g GT ()7 29)
(2.9) denklemi, bir tarafinda iist yari-diizlemde, diger tarafinda ise alt yari-diizlemde ana-
litik fonksiyonlar olacak sekilde diizenlenir. Analitik devam ilkesi ve Liouville teoremi
kullanilarak son durumdaki denklemin her iki yaninin neye esit oldugu belirlenir. Bu so-
nucu kullanarak sacilan alanin elde edilmesi icin bulunmasi gereken (2.6)’daki spektral
katsayilar, (2.9) denklemindeki P(«) kullanilarak bulunur. Ancak P(«)’nin bulunabil-
mesi icin (2.9)’un sag tarafindaki ilk terimin ayristirilmasindan (dekompoze islemi: s6z
konusu terimin iist yari-diizlemde analitik bir fonksiyon ile alt yari-diizlemde analitik olan
bir fonksiyonun toplami seklinde yazilmasi i§1emidir.) gelen terimin icinde bilinmeyen
&~ (a) oldugu igin P(a)’nin bulunmasi miimkiin olmayacaktir. Bu ayristirma islemi i¢in
Cauchy integral formiilii kullanilir. Sonug olarak, hem (2.8)’de verilen ¢ekirdek matris fak-
torize edilemedigi, hem de elde edilen Wiener-Hopf denklemi ¢oziilebilir olmadigi i¢in bu
problemin asimptotik ¢oziimiinde Wiener-Hopf yontemi dogrudan kullanilamamaktadir.
Yiiksek frekanslarda, birden fazla ayrit iceren yapilar tarafindan kirinan dalga, bir veya
daha fazla kez kirinan alanlarin toplami olarak ifade edilir. Bu tez ¢alismasinda, ikin-
cil alanlar elde edilirken Spektral Iterasyon Teknigi (SIT) kullanilabilmektedir. SIT, ilk
defa 1989°da Biiyiikaksoy tarafindan [16]’da ele alinmis ve seritler, yarik gibi birden fazla
ayrit iceren yapilardan kirinan ¢oklu alanlarin elde edilmesinde kullanilan asimptotik bir
yontemdir. Bu yaklagimda, bir ayrittan kirinan birincil alan, diger ayrita ait yarim diizlem
problemine ait gelen alan olarak kabul edilir ve olusan problem Wiener-Hopf yontemi
ile ¢oziiliir. Bu nedenle, tez calismasinin konusu olan O ayritindan kirinan ikincil alan-
lar1 bulabilmek i¢in oncelikle A, O ve B ayritlarindan kirinan birincil alanlarin bilinmesi

gerekmektedir.

2.1. Birincil Kirinan Alanlar

Bu boliimde A, O ve B ayritlarindan kirinan birincil alanlar incelenecektir. Bunun
icin, Keller tarafindan ortaya atilan yerellik 6zelligi kullanilacaktir [4], yani A, O ve B
ayritlarindan kirinan birincil alanlar sanki bu ayritlar, sirasiyla Sekil 3’teki geometrilerin

ayritlartymis gibi diisiinerek elde edilecektir.
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Sekil 3: Birincil Kirinan Alanlarin Geometrileri

2.1.1. ’A’ Ayritindan Kirman Birincil Alan

Gelen dalganin A ayritinda kirinmasi sonucu olusan birincil kirinan alani bulmak igin,
diger iki aynt (O ve B ayritlar1) sonsuza gonderilir. Bu sekilde, iist ylizeyine Neumann
siir kosulu, alt yiizeyine ise Dirichlet sinir kosulu uygulanmis olan Sekil 3a’daki yarim
diizlemden sac¢ilma problemi incelenerek A’dan kirman birincil alan w4 (x, y) elde edilir.

Analiz i¢in toplam alani:
u (2,y) = u'(2,y) + ua(z,y) (2.10)
seklinde ifade edelim, (2.3) Helmholtz denklemini saglayan u.(x,y) alanmnn integral

gosterilimi

2.11)

(.1) [, Pa(a)elX@v=iorde, >0
ua(z,y) = . .
A Yy fL QA(a)elK(a)yfzawda Ly < 0

seklinde yazilabilir. Buradaki P4 («) ve @ 4(«) spektral katsayilart (2.12a-d) sinir kogullari
ve siireklilik bagintilar ile belirlenecektir.

0 )
a—uA(a:,O+) = iksingpge FTCOSP0 > [, (2.12a)
Y
up(z,07) = —e hreoseo s ] (2.12b)
ug(z,07) = uy(z,07) o < -1 (2.12¢)
0 0

— 0") = =— 0~ -1 2.12d
ayuA(xa ) ayuA<x7 ) , T < 1 ( )



Problemin ¢oziimiiniin tekligini saglamak icin [22]’den

{ up(r,0) = e Kicoseo L O((x + 1)V o — -1 2.13)
a%uA(:v, 0) = O((z + 1;)~%/%) LT — =l .
ayrit kosullar1 ve
du ~1/2
(a——zku) =O0(r °), r=ya?+y?— oo (2.14)
,
radyasyon kosulu da dikkate alinacaktir.
(2.11)’1 (2.12a-d)’de kullanilmasi ile asagidaki denklemler elde edilir:
. B k sin ©o e—i(a—k cos o)1
K(a)P — il _ 2.15
(a)Pa(a) = e 1(@) 2mi o — kcospy (2.152)
i i 1 e—i(a—kcosg@g)ll 5 15
Qale) = e o) e Teos o (2130)
Pa(@) = Qaa) = =271 ® () (2.15¢)
e—iah
Pi(a) + Qa(a) =2 o5 () (2.15d)

K ()

Burada ®7,, Im(a) > Im(kcos ) iist yar-diizlemde, @7, ise Im(a) < Im(k) alt

yari-diizlemde analitik fonksiyonlar olmak tizere

1 —h 8uA(x O+) :
o - TRAN Y ) a(x+]) 2.1
(@) 5 /_OO o e dx (2.16a)
1 [h .
O, (o) = 2—/ wa(z,07)e ) g (2.16b)
™ —0oQ
1 [~ :
o (a) = o / l {uA(yc,Oﬂ —uA(x,O)l elabtl) gy (2.16¢)
-1
1 [ [0ua(x,07)  Oua(z,0M)] ;
dF (o) = — 7 ’ ot g 2.16d
(@) 2m /11 [ Ay dy ‘ ! ( )

seklindedir. (2.13)’teki ayrit kosullart kullanilarak,

al = oo iken

(2.17)

Y (a) = O(a™"), @5 (a) = O(a /) }
@y (a) = O(a™1), @y (a) = —5/; + O(a™/1)

2mia

olur. Py(a) ve Qa(c)’nin (2.15a-d) denklemlerinde yok edilmesi ile, asagidaki matris



Wiener-Hopf denklemi elde edilir:

G(Ol)q)+(a) — (I)_(Oé) + 1 eikll oS o [ 1

Q_Ma—kcosgoo

Im(kcosgo) < Im(a) < Im(k)

—k sin g

(2.18)

Bu problemde bahsedilen matris Wiener-Hopf yontemi SIT kullanilarak ¢oziilecektir.

Burada, G(«) ve ®* () agagidaki gibidir.

1 ]
Gl = [ K@ 1 _
of (a _ o5 () |
ol Pt R b

G(«v) matris ¢ekirdigi [19]°daki gibi:

cosh x () Ta)

Y («).sinh x(«) cosh x(«)
G (o) =G (—a)

Gt (a) = ol

sinh x(a) ]

|a] — o0 i¢in asimptotik davraniglari bu sekildedir:

G*(a) ~ (4k) 7/

(£a)V/* (fa)=3/4
(£a)’*  (a)/t

\

x(a) = —iarccos(%) , X(—a) = —i{w — arccos(%)}

(2.19a)

(2.19b)

(2.20a)

(2.20b)

(2.21)

(2.22a)
(2.22b)

T(a) =vVa?—k?
olmak iizere G(a) = G~ (a).G™ () seklinde faktorize edilip klasik WH adimlar1 uygu-
landiginda
1 eik11 COS o 1 1
- S N P= _
G (a)®" () SE——— [G (k cos gpo)] ksings ]

1 eikh Cos o

(G ()] 71@_(04) +

271 v — €OS g

[G_(a)]il . [G—(kcoswo)]ll [ —k sin g ]

(2.23)



elde edilir. Burada, (2.23)’iin sol tarafi iist yari-diizlem (Im(«) > Im(k cos ¢g))’de analitik iken,
sag tarafi alt yari-diizlem (Im(a) < I'm(k))’de analitiktir. Bu nedenle, analitik devam ilkesine

gore (2.23), matris degerli bir tam P(«) fonksiyonunu tanimlar. (2.17) ve (2.21)’i dikkate alinarak
0
Liouville Teoremi kullanilirsa P(a)’nin P(a) = p ) seklinde sabit matris oldugu sonucuna

varilir. Boylece, (2.18) denkleminin ¢oziimii agsagidaki gibi ifade edilebilir:

1 eikh €os @0
G (@) = 5 e

1

+p
—k sin g

(G~ (K cos ¢o)] -t [

0
2.24
) ] (2.24)

(2.15a-d) ve (2.24)’iin kullanilmas: ile spektral katsayilar asagidaki gibi elde edilir:

T(a) sinh x(—a) T a—kcospg

Pa() ] gy P

—icosh y(—a) ] o—ioli 4 @ 1

[ — cos B2 sinh x(—«) + ksin ¢03in%,%§a)

wo sinhx(—a)

.efi(afk cos )1y (2.25)
—icos 2. cosh x(—a) + ik sin pgsin%g o)

(2.15a-b)’dan, Pa(c) ve Qa(c) nin, o] — oo igin O(a~>/*) olmasi gerektigi goriiliir. (2.25)te

|a] — oo i¢in spektral katsayilarin asimptotik davraniglari incelendiginde asagidaki gibi olur:

+i
1

Py(a)

—a) A O(a~T/A '
Qala) (—a) O( ) (2.26)

] ~ (Sk)_1/4 |:23/4p+\/§ cos %elkll COSs (p0:|
T

Bu durumda, kabul edilebilir ayrit davranigini elde edebilmek ic¢in p’nin asagidaki gibi olmasi

gerektigi bulunur:

271 .
p=— 1COS %elkll cos¥o (2.27)

(2.27)’nin (2.25)’te kullanilmas ile P4 («) ve Q 4(«) tamamen belirlenmis olur.

Py(a) ] _ ﬂ(cosﬂ“

cosh x(—a) ] N 1

Qala) ™ \ T(@) | isinhx(—a) a—kcospp
. . . hy(—
oS % sinh X(_a) + ksin 90082”%'%‘5‘)0[) e*i(afk cos )1y (2.28)
—icos £, cosh x(—a) + ik sin SDOSZ'TL%-%(SQ)
(2.28)’in (2.11)’de kullanip En dik inis ¢izgisi yontemi uygulanmasi ile u 4 kirinan alani:
cos £ + cos &2 — 1] k=17 |
ua(r, @) ~ 4icos #0 cos hd [1 — 2 2 ] € 4 oikl1 cos o
4774 cosp+ cospo | Nkt
O<p<m (2.29)

10



. s
cos & —cos B + 1] 14

eikh Cos g
COS p + COS o Tkr

ua(r, ) ~ 4icos % sin% 1

T < <2m (2.30)

seklinde elde edilir.

2.1.2, ’O’ Ayritindan Kirinan Birincil Alan

O ayritindan kirman birincil alan1 bulmak igin, seridin A ayrit1 negatif sonsuza, B ayrit1 ise
pozitif sonsuza gonderilir. Bu durumda problem, sol yarisina Neumann sinir kogulu, sag yarisina
ise Dirichlet sinir kosulu uygulanmus iki pargali diizlemden sacilma problemine doniisiir.

Bu problemin ¢6ziimii [26]’de ele alinmis olup alanin asimptotik ifadesi agagidaki gibidir:
sin £sin 22 lkr

: ~V2(1 4 2 2
uo(r ('0) \[( Z)cos<,0+coscpo kr

2.31)

2.1.3. ’B’ Ayritindan Kirman Birincil Alan

Gelen dalganin B ayritinda kirinmasi sonucu olusan birincil alan1 bulmak i¢in, diger iki ayrit (O
ve A ayritlar) eksi sonsuza gonderilir. Boylece, iist yiizeyine ve alt yiizeyine Dirichlet sinir kogulu
uygulanmig olan Sekil 3c’daki yarim diizlemden sacilma problemi incelenerek 5B’dan kirinan bi-
rincil alan up(z,y) elde edilir.

(2.3) Helmholtz denklemini saglayan up(x, y) alaninin integral gosterilimi agagidaki gibi olur:

[, Pp(a)etl@y=iazgq 1y >

. 4 2.32
fL QB(a)ezK(a)yfzamda Ly <0 ( )

up(z,y) = {

Pp(a) ve Qp(«) spektral katsayilart sinir kogullart ve siireklilik bagintilart ile belirlenecektir.

up(z,0") = —eTthTeospo 0, (2.33a)
up(z,07) = —etkzcoseo 4 ], (2.33b)
ug(z,07) =up(z,07) ;2> Is (2.33¢)
aayuB(:U,Oﬂ = aayuB(x,O_) x> 1y (2.33d)

Problemin ¢6zlimiiniin tekligini saglamak icin

U SC,O =0(1 y L —> =1
{ ) B(x,0) = 0(1) » 2 (2.34)
gyun(@,0)=0((z = 1)™"?) o= -l
ayrit kosullar ve
(% —iku) =0(r™'?), r=y/a? g2 oo (239)

11



radyasyon kosulu da dikkate alinacaktir. (2.32)’yi (2.33a-d)’de kullanilmasi ile asagidaki denklem-

ler elde edilir:

1 ella—kcospo)la

ials
Pg(a) = 3 () ]e{ ) (2.36b)

Burada ®* (), iist yari-diizlemde (Im(«) > —Im(k)), ®~ («) ise alt yari-diizlemde (Im (o) <

Im(k cos pp)) analitik fonksiyonlar olmak iizere

1 [ - 1 [ -
+ - = +\ la(x—12) - —\ Jla(x—12)
" () 5 /l2 up(z,0")e dx o7 ), up(z,07)e dx (2.37a)
1 la .
O (a) = 47”/ [;yuB(x,OJr) - ;yuB(a:,O_)} lex=12) gy (2.37b)

seklindedir. (2.34)’teki ayrit kosullarini kullanilarak, |o| — oo iken

dt(a) = O(a™V), } (2.38)

¢~ (a) = O(a'/?)

olur. Pg(«) 'nin (2.36a-b) denklemlerinden yok edilmesiyle, asagidaki Wiener-Hopf denklemi

elde edilir:
K ()& () — —e-ikacospo__K(0)

St S A 2.
2mi o — k cos ¢p (@) 2.39)

—Im(k) < Im(a) < Im(k cos @)

Bu denklemin ¢oziilebilmesi igin oncelikle karekok faktor K («)’nin faktorize edilebilmeli, yani
K (o) iist yari-diizlemde (Im(a)) > —I'm(k)) analitik, alt yari-diizlemde (Im (o)) < Im(k cos o))

analitik olacak sekilde iki fonksiyonun carpimi olarak yazilmasi gerekmektedir:
Kla)=vVEk -a2=Vk+avk—a=K"(a)K (a) (2.40)

Bu durumda denklemin her iki yan1 K~ («)’ya boliiniir ve agagidaki denklem elde edilir:

1 K*(a) 1
KT ()T (a) — s—e kheosvo_— 2 — ¢~ 241
()27 (a) o’ a — k cos po (Q)K_(a) (241)
Oncelikle islemlerde kolaylik saglamast icin
Kt
H(a) = () (2.42)

a — kcos g

seklinde tanimlanir. Bu ifade dekompoze edilerek iist ve alt diizlemlerde regiiler olan fonksiyon-
larin toplam seklinde yazilacakur. Tlk olarak H (o) = H" () + H ™ () olacak seklinde yazilabilir

12



ve
Hy(a) = :l:L Md? (2.43)

2mi Jp, T —«

elde edilir.Burada L iist ve alt yar diizlemde yer alan entegre edilme yolunu ifade eder. ifadenin
icerisine H (7) yerine yerlestirerek
1 K™ (1)

H*(a) = +— d 2.44
() 270 Jp+ (T — kcosgo)(T — ) T 244)

elde edilir. 7 = k cos g ve T = a noktalarinin kutuplar1 g6z 6niinde bulunduruldugunda,

1

H (a) = ———M—
(@) a — kcos g

(K" (a) = KT (k cos ¢o] (2.45)

ve
1

H (o) = ——
(@) a — kcos g

K™ (K cos o) (2.46)

bulunur. Ayrica, |a| — oo i¢in asimptotik davraniglari:

Ht(a) = O(a1/?), } (2.47)

H=(a) =0(a™t)
seklindedir. lde edilen bu regiiler fonksiyonlar (2.41)’de yerine yazildiginda,

1 1

i.e—iklzCowwaﬁ(oo:<1>—(oz)F O
« ™

21

Kt (a)®t(a) — e~ik2cosvo fr=()  (2.48)
elde edilir. Sonrasinda (2.38) ve (2.47) denklemleri dikkate alinarak Liouville Teoremi uygu-
landiginda

sonucuna varilir. Bdylece, (2.48) denkleminin ¢oziimii asagidaki sekilde ifade edilir:

1 _. 1
e ikla cos ¢o

K™ (a)27(a) = 2mi a — k cos ¢g

(K" (a) — K (k cos ¢o] (2.49)
seklinde yazilabilir. (2.36a-b) ve (2.49)’un kullanilmasi ile spektral katsayilar asagidaki gibi elde
edilir:

1 K+(]€ COS S00) ei(oszcos o)1z

Pp(a) = Qp(a) = T omi K+(a) a — kcos g

(2.50)

(2.50)’nin (2.32)’de kullanilmas1 ve En dik inis ¢izgisi yontemi uygulanmasi ile up kirinan alan

asagidaki gibi elde edilir:

13



O<p<m
up(r, ) ~ cos * cos £ oilkr—7) ikl cos 0 2510)
cos po + cos /mkr
T<p<2T

(2.28) ve (2.50)deki spektral katsayilari, O ayrit1 tarafindan ikincil kirinan alanlar1 elde etmekte

kullanilacaktir.

2.2. Ikincil Kirinan Alanlar

Gelen dalganin A ve B ayritlarinda kirinmasi sonucu olugan birincil alanlar, seridin iist yiize-

yindeki O ayritinda ikincil kirinmalara neden olur. Sekil 4 goriilmektedir.

y () (b) y

Soft X Hard

Sekil 4: iki parcali yari-diizlem tarafindan kirman ikincil alanlar.

2.2.1. ’O’ Ayritindan Kirinan ikincil Alan: u 4o

Gelen dalganin O ayritinda kirinmasi sonucu olusan ikincil alan1 bulmak igin, A ayrit1 negatif
sonsuza, BB ayrit1 pozitif sonsuza gonderilir. Boylece, z < 0 list sol yilizeyine Neumann sinir kosulu,
x > 0 iist sag yiizeyine ise Dirichlet sinir kosulu uygulanmis olan Sekil 4’teki iki parcali yarim
diizlemden sag¢ilma problemi incelenerek O ayritinda kirinan ikincil alan u 40 (x, y) elde edilir.

(2.3) Helmholtz denklemini saglayan u 40 (x, y) alaninin integral gosterilimi

wso(z,y) = / Pao(a)e(@v=iezge 1y >0 (2.52)
L

14



seklinde yazilabilir. Buradaki P4 («) spektral katsayisi (2.53) sinir kosullari ile belirlenecektir:

(,fyqu(a:, 07)=0,2<0 (2.53a)

ua(z,0) +uso(z,07) =0 ,2 >0 (2.53b)
Problemin ¢6zlimiiniin tekligini saglamak icin

0
a—uAO(:E, 0)=0(z"Y?) ;2 =0 (2.54a)
Yy
upo(z,0) = O(z?) |z =0 (2.54b)
ayrit kosullar1 da dikkate alinacaktir.
u(z,0") alaninin yalmzca z > 0 i¢in sinir kogulunda goriinmektedir. Bu w4 (z,0") alaninin,

sonsuza uzanan Dirichlet sinir kogsulunu halihazirda saglamasindan kaynaklanmaktadir. (2.11) ve
(2.53a-b)’nin (2.52)’de kullanilmasi ile asagidaki denklemler elde edilir:

K(a).Pyo(a) =V () (2.55a)
Pao(a) =¥ (a) — Pa(a) (2.55b)

Burada U (a), Im(a) > Im(—k) iist yari-diizlemde ve U~ (a), Im(a) < Im(k) alt yar-

diizlemde analitik fonksiyonlar olmak iizere

1 < 9 .
UH(a) = — — el 2.
(c) omi /) 8yu,40(m, 0")e'“*dx (2.56a)
I .
U~ (a) = 27r/ [qu(:n, 0") + ua(z, 0+)} e'dx (2.56b)

seklindedir. |a| — oo iken asimptotik davraniglart

gt — O(a=3/2
(@) = O(a™3), } 2.57)
U (a) = O(a™),
seklindedir.
Pyo(a)’y1 (2.55a-b) denklemlerinden yok edilmesi ile agagidaki denklem elde edilir:
v (o)
U (a)— P = 2.58

Elde edilen denkleme (2.28)’deki P4 () yazilarak Wiener-Hopf denklemi elde edilir:

15



Im(a)

/’,k
4
,
e
,® k cos ¢, L_
7
7/
,” Re(a)
7
7
’f
7
"y L

Sekil 5: Dal kesimleri ve integrasyon cizgileri olan karmasik diizlem.

i(a—kcos po)li

U (a) o coshx(=a) _; V2 poe”
— U /9 U ikl cos g ZEP AN TR —ialy V£ R
(@) — V2 cos 1 ° K@) © 7 P4 o~ kcospo

i(a—kcos po)li

. . o e cosh x(—a)
sin g sin —

4 a—kcosyg K(a)

.sinh x(—a) — (2.59)

WH denklemin regiilerlik band1 her ne kadar —I'm(k) < Im(«) < Im(k) olsa da, bundan sonraki

analiz bakimindan s6z konusu band
—Im(k) < Im(a) < Im(kcosg)

bandina kisitlanacaktir. (2.40)’taki carpima istinaden denklemin her iki yan1 K~ («) ile ¢arpilir ve
asagidaki denklemi elde edilir:

=K (o) (a) — H(a) (2.60)
Islemlerde kolaylik saglanmasi igin

H(a) = v2cos 22l cos oo COSBX (=) _ia,
4

K*(a)
\/i ©o efi(osz cos o)1
_ 0wE K- inh v(—
—cos Py —— () sinh x(—a)
2k —i(a—kcos po)l1 hyv(—
_ V2 sin g sin 222 cosh (=) 2.61)

i 4 a—kcospy KT(a)

ile tanimlanir.
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Im(a) -

4
#

-
K cos b L-

i

7’

Sekil 6: L integrasyon egrisi alttan kapatmak.

cosh x(—a)

Hy (o) = Y 2.62
1(a) K+a) e (2.62a)
e—i(a—kcoscpo)h
H =—— K inh x(— 2.62b
2() i . (a) sinh x(—a) ( )
—i(a—kcos o)l hv(—
Hs(a) = 2 coshx(~a) (2.62¢)

a—kcospy Kt(a)

Buradaki H (), terimleri dekompoze edilerek Im (o)) > —Im/(k) st yari-diizlemde ve Im(a) <
Im(k cos pg) alt yari-diizlemde regiiler olan fonksiyonlarin toplam geklinde yazilacaktir. Burada
L integral cizgileri Sekil 5’te gosterilmektedir. Hy (o) = H; (a) + H; () seklinde dekompoze
edilir. Burada

Hi(a) = ii Lde (2.63)

2mi Jp, T —«

seklindedir.
(2.62a)’da l; > 0 oldugu i¢in L egrisi alttan kapatilir ve Cauchy teoremi uyarinca

Hl(T)

M(r) dr — dr + H(7) dr — H(r) (7) dr + M(7)

L+’7'—Oé CRT— Ci"T—Oé ce T — @« Cl—T—Oé

0=- dr

olur. R — oo ve ¢ — oo icin C'F ve C* iizerindeki integraller, I; > 0 oldugu icin, Jordan Lemmas1
uyarinca, sifira gider. Boylece,

H H H

@)y [ B0, [ 0O, (2.64)

L+T—C¥ ctT—« C;T—OZ

olur. Yani L lizerindeki integral, kesim ¢izgisi izerindeki integrallere indirgenmis oldu.

Hi () = = / cosh x(—7) e~
! 2mi Jorpom Kt (r) T7-a

dr (2.65)
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Kesim ¢izgisinin her iki tarafinda, C’f U (7 lizerinde yazilmus integral,

te”'z  ,t>0 ,Cfd
kbT=4 ", L (2.66)
te2 ,t<0 ,C| de
doniistimleri aracilig1 ile, pozitif reel dogru iizerinde yazilmis (2.67) integraline doniigiir.
i(kll-i—l) o0 h it k —tly
Hf(a) = / coshx(it + ) e dt (2.67)
T 0 \/E 1t + k + «

I yeterince biiyiikse, (2.67)’deki integralin ana katkisi ¢’nin yaklasik olarak sifir oldugu bolge-
den gelir. Bu durumda cosh x (it + k) fonksiyonu, t = 0 degeri ile yaklagik olarak hesaplanabilir

ve integralden digar ¢ikarilabilir. Bu sekilde,

& _ \ﬁf 7 ’
tly _ o
/0 ot St = / 7 [1— F(ily2)] (2.68)

modifiye Fresnel integrali olmak iizere,

[e.9]

F(2) = 2iy/ze™ / e 1 gt (2.69)
Vz

bagintisindan yararlanarak,

eIFT) F(ki[1 + )

2.70
iy kE+a 2.70)

H (o) =

elde edilir. Benzer sekilde H; («) integrali hesaplanirken, L_ integrasyon egrisi alttan kapatilip

Cauchy Teoremi ve Jordan Lemmas1 uygulanarak elde edilir:

—ialy ei(kh""%) F(kll[l + %])

B coshx(—a)e
K+ (a) iy kE+a

Hy () =

2.71)

Benzer sekilde, Hy (o) ve Hy (o) dekompoze edilirse iist yari-diizlemde analitik olan H T (c) bu
sekilde elde edilir:

2 F(kly[1 + ¢]) elk(Fcoseols (/9K 1
H+(Oé)=£icosﬂ (k| e elz%—f isin@osinﬂi
T 4 k+ o wly 7r 4 o — kcos g
a ik(1+cospo)li
F(klhi[1+ %)) B F(kl[1 + cos o) | e 0 le‘Z 2.72)
k+ « k(1 + cos¢p) il
olur. (2.60) denkleme yazilinca WH denklimin ¢6ziimii bu sekilde elde edilmis olur:
\I/Jr(a) + - - -

K+ (a) +H (a) =K (0)V (o) — H () (2.73)
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Analitik devam ilkesine kullanilarak, regiiler fonksiyonlar (2.73) denkleminde yerine ko-

nur ve (2.73) denklemi tam bir P(«) fonksiyonunu tanimlar,

davraniglarini dikkate alinarak Liouville Teoremi uygulandidinda, P(«) 2 0 sonucuna varilir ve

asagidaki denklem elde edilir:

o F(EIL[1+ %) ) ©0 1
_— — SlngD[) sm—
k+ a

4 a—kcospg
[F(kll[l + %D _ F(Kkl1[1 + cos gOQ])}] eik(1+cos o)l o

T (274
k+ a k(1 + cos ) mly er @1

Burada, (2.55a) ve (2.74) denklemleri kullanilarak spektral katsayis1 agsagidaki gibi ifade edilir:

Pao(a) =

— —k:sm<posm(’0—
i K= () E+a

V2 1 wo F'(kli[1+ %]) 0 1
cos — ——— = _—
4 4 o — kcospg

[F(k:ll[l + %) F(kl[l + cos @0])} el eos gl el (2.75)
k+ o k(1 + cos ¢p) mh '

Kirman alani v 40’yu bulmak i¢in (2.52) integral ile (2.75)’e asagidaki doniisiimii uygulanarak
asimptotik olarak degerlendirilecektir:
o= —kcost, z =rcosp, y =rsinp

ve (2.52)’de L dogrusu boyunca olan integral, I' dogrusu boyunca olan integrale doniisiir:

uao(r, p) = /F Pao(—k cost)e™*r ose=D L gin ¢t (2.76)

(2.76)’da elde edilen integrali En dik inis ¢izgisi yontemi kullanilarak degerlendirmek i¢in uygun-

dur.

27 . .
B = [ 100~ [ fe)eE )z @)

Dolayistyla, ikincil kirian w40 (7, ) alan asimptotik ifadesi asagidaki gibi elde edilir.

2cos 22 — -1 .F(kl1[1 -
ua0(r, @) ~ 2v/2ie' % sin 2 cos 20 e Bk & [ (kla[1 = cos o))
2 4 COs  + €OS g 1 —cosyp

F(kl;[1 + cos 4,00])] F(kl1[1 — cos ¢)) eikli(1+cospo)  ikr 2.78)

1+ cos g 1—-cosp vrkly N wkr '

kly >> 1 icin Fresnel integralin asimptotik ifadesi kullanilabilir:

F(z)~1+ = — (2.79)

z) ~ —, , 2= 00 .

2iz’
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Bu durumda kirinan alan asagidaki gibi elde edilir:

(r, o) V2 elklicosgo 30 N 1 [COS {% sin £ sin 5 ikl glikr
uao(r,p) ~ —————————| cos —— , , —
7 sin . cos 4 4ikly " sin? s cos? £ VEL Vkr
(2.80)

2.2.2. ’0O’ Ayritindan Kirman Ikincil Alan: upo

B aynitinda kirinan dalganin O ayritinda meydana getirdigi ikincil kirinan alani bulmak igin,
A ayrit1 negatif sonsuza, B ayriti pozitif sonsuza gonderilir. Boylece, x < 0 iist sol yiizeyine
Neumann sinir kosulu, z > 0 list sag yiizeyine ise Dirichlet sinir kosulu uygulanmis olan Sekil
4’teki iki pargal1 yarim diizlemden sacilma problemi incelenerek O aynitinda kirinan ikincil alan
upo(x,y) elde edilir.

(2.3) Helmholtz denklemini saglayan upo(z, y) alaninin integral gosterilimi:
upo(z,y) = / Ppo(a)e™®v=io%da 4 >0 (2.81)
L

seklinde yazilabilir. Buradaki Ppo () spektral katsayisi (2.82) sinir kosullart ile belirlenecektir:

upo(r,07) =0 ,2 >0 (2.82a)
;UUBO(:U, 0") + guB(a:, 07)=0,2<0 (2.82b)
Problemin ¢6ziimiin tekligini saglamak icin
9 1)
ayuBo(a:, 0)=0(z""%) ,2—0 (2.83a)
upo(z,0) = O(z'/?) ;2 =0 (2.83b)

ayrit kosullar1 da dikkate alinacaktir. (2.32) ve (2.82a-b)’nin (2.81)’de kullanilmasi ile asagidaki

denklemler elde edilir:

Ut (a) = K(a).Ppo(a) + K(a).Pg(a) (2.84a)
\Il_(a) = PBo(a) (2.84b)

Burada U (a), Im(a) > Im(—k) iist yar-diizlemde ve U~ (a), Im(a) < Im(k) alt yari-

diizlemde analitik fonksiyonlar olmak {izere

1 [ .
\IJJF(a):% i gy(uBo(x,oﬂ+uB(a;,o+))elaXda; (2.85a)
_ 1 0 —\ lax

U (a) = 27r/ upo(z,0”)e'dx (2.85b)
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seklindedir. |a| — oo iken asimptotik davraniglari bu sekildedir:

Ut (a) =0(a™t), }
¥ (a) = 0(a??),

Ppo(a)’y1 (2.84a-b) denklemlerinden yok edilmesi ile agsagidaki denklem elde edilir:

=V (a) + Pp(a)

Elde edilen denkleme (2.50)’deki Pp(«) yazilarak Wiener-Hopf denklemi elde edilir:

(o)
K(a)

'eflkll 08 o

K™ (k cos ¢p) 1 elol

=0 ;
() + 27 K(a) a— kcospg

(2.86)

(2.87)

(2.88)

WH denklemin regiilerlik band1 her ne kadar —I'm(k) < I'm(«) < Im(k) olsa da, bundan sonraki

analiz bakimindan s6z konusu band

Im(kcospg) < Im(a) < Im(k)

bandina kisitlanacaktir. (2.40)’taki karekok faktor esitligine gore (2.88) denklemin her iki yam

K~ () ile carpilir ve agagidaki denklemi elde edilir:

Kt (k
n (k cos o)

e—ikh Cos o
2mi K*(a) a—kcosgg

AImi(a)

Sekil 7: L_ integrasyon egrisi uistten kapatmak.

(2.89)
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Islemlerde kolaylik saglamasi icin

K~ () elolz
K*(a) a— kcos gy

Fla)=

ile tamimlanir. Buradaki F'(«)’y1 dekompoze edilerek Im(a) > Im(k cos ¢p) iist yari-diizlemde
ve Im(a) < Im(k) alt yari-diizlemde regiiler olan fonksiyonlarin toplam seklinde yazilacaktir.
Ayrica, bu dekompozisyonu yaparken L. integral cizgilerini kullanilacaktir, Sekil 7°de gosteril-
mektedir.

F(a) = F*(a) + F~(«) seklinde dekompoze edilir. Burada

1 F(71)

2mi Jp, T -«

FE(a)=+ dr (2.90)

seklindedir. Burada, F'(«) fonksiyonu i¢in 2 < 0 oldugu goz Oniine alindiinda, integrali ince-

leyerek, L_ egrisinin iistten kapandigini ve Cauchy teoremi ile Jordan lemmasina gore asagidaki

/L_ fET(ldT——/C;fETZ[dT—/C ffldf

2

sekilde yazabiliriz:

olur. Yani L _ iizerindeki integral, kesim ¢izgisi iizerindeki integrallere indirgenmis oldu. Boylece,

1 K= (1) 1 elTl2
27 cHicy K* (1) 7 —kcospy T —

F~(a) dr 2.91)

olur. Kesim ¢izgisinin her iki tarafinda, C;' U C, ilizerinde yazilmis integral,

ez ,t>0 ,C’2Jr de
K—T= . 2.92)
te 2 ,t<0 ,C5 de
doniigtimler aracilig ile, pozitif reel dogru iizerinde yazilmig
i(kla— T - ~
F(a) = iu K (k+l't) 1 L 1 o ith gy
mia—kcospy Jo KT(k+idt)|t—i(k—a) t—ik(1l—cospp)
(2.93)

integraline doniisiir. /2 yeterince biiyiik degerleri i¢in, (2.93)’teki integrale ana katki ¢ = 0 ci-
varidan gelir. Bu durumda K~ (k + it) fonksiyonu, ¢ = 0 *daki degerleri konularak integral digina
cikartilabilir.

F (o) =

1 ei(klg—g) 1 [ee] |: \/z \/i
t—1

L — “ithgr (2,94
i o — kcos o 2k Jo (k — ) t—ik(l—cosgpo)]e 2.94)
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elde edilir. Boylece, (2.68) ile (2.69)’deki Fresnel integrali ve bagintisindan yararlanarak

(klz—gﬂ)

a — k cos ¢g \/2k:7rl2

F~(a) = [ [kla(1 = cos )| — F[la(k — a)]] (2.95)

elde edilir. Benzer sekilde F'*(«) integraline bakilirsa L integrasyon egrisi iistten kapatilip Ca-

uchy Teoremi ve Jordan Lemmasi uygulanarak elde edilir:

Fra) = K (o) e o) kla(1 Flla(k
(@) = K+(a) a—kcosgpy o — kcos g \/2k7rl2 [ [kl (1=cos )] —F [la( —a)]]
(2.96)
olur. o] — oo iken asimptotik davraniglart
Ft(a) = O(a??
(@) = O(a™") } (2.97)
F~(a) = O(a™)

olur. F'*’yi (2.89) denkleme yazilinca:

\I’+(a) K+(kCOSSO0) —iklp cos g 1+ _ _ K+(l€COS<’00) ikly cos gy p—
K+(a)  2m F (@) = K™ ()P (a)+——— == F(a)

(2.98)
olup asagidaki sekilde de yazilabilir:
* F(kcos e~ iklz cos
Pla) = I‘I;+(( )) K (Zm 20) oiklacoso [t () Im(a) > Im(k cos ¢y)
K~ () (a) 4 Keono) o-iklzcoseo (o) Im(a) < Im(k)
(2.99)
(2.86) ve (2.97)’daki asimptotik davraniglar: kullanilarak Liouville Teoremine gore
pla) =0
oldugu sonucuna varilir. Boylece,
_ F(a)
U (a) = — K (k Tiklzcospo =~ 2.100
(0) = =5 K" (Jrcos po)e e (2100

elde edilir. (2.84b) ve (2.100)’lin kullanilmasi ile spektral katsayist agsagidaki gibi elde

edilir:
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1 e_igg eiklg(l—cos <po) K+<k CcOoS SOO)
2mia —kcospy A/ 2mkly E~(a)

F[kla(1 = cospo)] = Flka(1 = )] | 2.101)

PBo(Oé) =

Kirinan alani bulmak icin (2.81) integrale ile (2.101)’e agagidaki doniisiimii uygulanarak

asimptotik olarak degerlendirilecektir.
o= —kcost, x =rcosp, y=rsinp
(2.80)’daki L dogrusu boyunca olan integral, ' dogrusu boyunca olan integrale doniisiir:
upo(r, @) = / Ppo(—kcost)e ¢~ Lsintdt (2.102)
r

(2.102)’de elde edilen integral (2.77) En dik inis ¢izgisi yontemi uygulanarak degerlen-
dirmek i¢in uygundur. Dolayisiyla, upo(r, @) kirman ikincil alaninin asimptotik ifadesi

asagidaki gibi elde edilir:

isin £. cos &2

UBO(T, QO) ~ m |:F |:le<1 — COS (po)] - F[le(l ~+ cos 80)]

eikr ei“klg(l—cos ©0)
Vrkr  VTkls

kly >> 1 icin (2.79) Fresnel integralin asimptotik ifadesi kullanilabilir. Bu durumda

(2.103)

kirinan alan asagidaki gibidir:

e—ik’lg Cos o sin % oS % eikr eik12

21kly (14 cos)(1 — coso) VEr VEls

upo(r,p) ~ (2.104)
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3, SAYISAL SONUCLAR

Bu bolimde, 2.boliimde analitik olarak elde edilen birincil ve ikincil kirinan alan-
larin problemin parametrelerine gore davranislart MATLAB kullanilarak grafiksel olarak
sunulmustur. Bu grafiklerde kl; = kly = 67 (I; = Iy = 2)) alinmustur.

60

—— Ly
40 = =Ug

wenn U
— uB‘””C" |

o
S
T

IS
=1 =)
T T

Birincil Kirinan Alan (dB)

golt 1 L 1 I 1 1 1 1
0 20 40 60 80 100 120 140 160 180

Acl (derece)

Sekil 8: Birincil Kirinan Alanlar ve Acilar1 (Monostatik durumu) Grafigi.

Sekil 8,9,10°da monostatik durumda, yani dalganin gelis agis1 ile gézlem agisinin bir-
birine esit oldugu durumda kirinan alanlarin aciya gore davraniglar1 goriilmektedir.

Sekil 8’de A, O, B aynitlarindan kirinan birincil alanlar ve toplam birincil alan goriil-
mektedir. Dalganin yiizeye dik gelmesi durumunda (o = 90°) her bir alanin geri yansima-
sinin maksimum seviyede oldugu ve toplam birincil alanin, her bir ayrittaki birincil alan-

dan farkli olarak salinim yaptig1 goriilmektedir.
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Sekil 9: Ikincil Kirman Alanlar ve Agilar1 (Monostatik durumu) Grafigi.

Sekil 9°da, O ayritindan kunan w40, u o ikincil alanlart agiya gore davraniglar goriil-

mektedir. Dalganin yiizeye ¢y = 120° agisiyla gelmesi durumda w 40 ikincil kirman alanin
geri yansimasinin minimiim seviyede oldugu goriilmektedir.
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Sekil 10: Birincil Alanlar ve Ikincil Alanlarin Toplam Grafigi.

Sekil 10°da ise toplam birincil alan (u?7"<l) toplam ikincil alan (u**") ve bunlarin
ikisinin toplami (u?P!@™) grsellestirilmistir. Toplam alanin [80°, 140°] civarinda birincil

alan gibi davrandigini, ikincil alanin etkisinin 20° ve 170° civarinda oldugu goriilmektedir.
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Sekil 11: 5’ ye gore Toplam Birincil Kirinan Alan Davranis Grafigi.

Sekil 11,12°de ¢y = 30° ve Neumann sinir kosulunun uygulandig: yiizeyin uzunlugu
[y = 2\ olmak iizere, Sekil 11°de toplam birincil alaninin, Sekil 12’de ise toplam ikincil
alanin /5 ye yani Dirichlet sinir kosulunun uygulandigi yiizeyin uzunluguna gore davranis-
lar1 yer almaktadir.

Gozlem acist degistiginde toplam birincil alanin davraniginda [, arttikca bir degisim

10

— (=3
— =50
- =00

o

ikincil Kirinan Alan (dB)
T '-'rﬁ--l —_— =

— e S e

20k

-25

1 1 1 1 1
2 4 6 8 10 12 14 16 18 20

lo (x4)

Sekil 12: I;’ye gore Toplam Ikincil Kirinan Alan Davrams Grafigi.

gozlenmezken, ikincil alan gézlem agis1 degistiginde [; = 2\ ’den Once farkli davranislar

gostermekte ama /; = 2 ’den sonra degisim gozlenmemektedir.
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Sekil 13: 11 = Iy, p = o = 120° iken Ikincil Kirman Alanlar davrams Grafigi.

Sekil 13’te ise ¢ = g = 120° i¢in O’dan kirnan ikincil alanlarin [; = /5 uzunluk-
larina gore davranislart goriilmektedir. Beklendigi gibi, Seridin yiizey uzunlugu arttikca

ikincil alanlarin etkisi azalmaktadir.



4. SONUC VE DEGERLENDIRME

Bu caligmada, diizlemsel dalgalarin, {ist yiizeyinin sol tarafnda Neumann, sag tarafinda
Dirichlet sinir kogullar1 ve alt yiizeyinde tamamen Dirichlet sinir kosulu olan bir serit
tarafindan kirinimi, Fourier doniisiimii uygulanarak sinir ve siireklilik kosullar1 altinda
Spektral Iterasyon teknigi Wiener-Hopf yontemi kullanilarak tartisgtimistir. Seridin iist
yiizeyindeki baglanti1 noktasinda meydana gelen ikincil kirinan alanlara odaklanilmistir.

Sayisal sonuclar boliimiinde ise belirli grafikler cizilerek simetrik olmayan ii¢ ayritlarin
birlesme noktasindaki ikincil kirinan alan {izerindeki etkilerini ortaya ¢ikarmak i¢in bazi
grafiksel sonuclar sunulmustur ve serit genisligi arttik¢a cift kirtnimli alanlarin etkilerinin

azaldig1 goriilmektedir.
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