
 T.R. 

VAN YUZUNCU YIL UNIVERSITY 

INSTITUTE OF NATURAL AND APPLIED SCIENCES 

DEPARTMENT OF STATISTICS 

 

   

 

 

 

ESTIMATING TIME SERIES DATA ON ENERGY PRODUCTION IN 

TÜRKİYE BY COMPARING BAYESIAN AND CLASSICAL MODELS 

 

 

  

Ph.D. THESIS 

 

 

 

 

 

Amir KHaleel HASSOO 

SUPERVISOR: Assoc.Prof. Dr. Şakir İŞLEYEN 

 

 

 

 

 

 VAN – 2023  

 



 

  

 

 

  



 

  

 

 

 

 

 

T.R. 

VAN YUZUNCU YIL UNIVERSITY 

INSTITUTE OF NATURAL AND APPLIED SCIENCES 

DEPARTMENT OF STATISTICS 

 

   

 

 

 

ESTIMATING TIME SERIES DATA ON ENERGY PRODUCTION IN 

TÜRKİYE BY COMPARING BAYESIAN AND CLASSICAL MODELS 

 

 

  

 

Ph.D. THESIS 

 

 

 

 

 

Amir KHaleel HASSOO 

 

 

 

 

 

 

 

  

 

 

VAN – 2023  

 

 



 

  

 

 

  



 

  

 

 

ACCEPTANCE AND APPROVAL PAGE 

 

This thesis entitled ―ESTIMATING TIME SERIES DATA ON ENERGY 

PRODUCTION IN TÜRKİYE BY COMPARING BAYESIAN AND CLASSICAL 

MODELS‖ presented by Amir KHaleel Hassoo under supervision of Assoc. Prof. Dr.  

Şakir İŞLEYEN in the Department of Statistics has been accepted as a Ph.D. thesis 

according to Legislations of Graduate Higher Education on  28/7/2023 with unanimity. 

 

Chair:  Prof. Dr. H. Eray ÇELİK Signature: 

Member: Prof. Dr. Meltem INCE YILMAZ Signature: 

Member: Assoc. Prof. Dr. Hakan EYGÜ Signature: 

Member: Assist. Prof. Dr.Onur SALDIR Signature: 

Member: Assoc. Prof. Dr. Şakir İŞLEYEN Signature: 

 

This thesis has been approved by the committee of The Institute of Natural and 

Applied Science on ........../.........../............ with decision number ........................... 

 

 

 

 

 

Signature 

……………………… 

 Director of Institute 

  



 

  

 

 

 

 

 

  



 

  

 

 

ETHICAL DECLARATION 

 

I declare that all the information in this thesis has been obtained and presented 

within the framework of ethical behavior and academic rules, and that in this thesis, 

which has been prepared in accordance with the thesis writing rules, all kinds of 

statements and information that do not belong to me have been fully cited. 

 

 

 Signature 

 Amir KHaleel HASSOO 

  

  



 

  

 

 

 

  

 



 

  

i 

 

ABSTRACT 

 

ESTIMATING TIME SERIES DATA ON ENERGY PRODUCTION IN 

TÜRKİYE BY COMPARING BAYESIAN AND CLASSICAL MODELS 

 

HASSOO, Amir Khaleel 

Ph.D Thesis, Department of Statistics 

Supervisor: Assoc. Prof. Dr. Şakir İşleyen 

July 2023, 154 pages 

 

In this study, two forecasting models, Bayesian structural time series (BSTS) 

and Autoregressive integrated moving average (ARIMA), were compared for predicting 

energy production data in Türkiye from 1971 to 2020. The models were applied to 

various energy sources such as coal, gas, hydraulic, and oil production, as well as GDP, 

using data obtained from the World Bank database. The primary aim was to assess the 

accuracy of these models in forecasting energy production trends. To ensure reliable 

and comprehensive results, the analysis and modeling processes were conducted using 

R and SPSS software. MAPE, MAE, RMSE, and R² were also used for this comparison. 

The BSTS models, which incorporate a Bayesian framework enabling the inclusion of 

prior information and uncertainty quantification, were contrasted with the conventional 

ARIMA models commonly used for time series forecasting. To evaluate the models' 

accuracy, the dataset was divided into training and testing subsets, allowing for the 

assessment of model errors. The findings indicated that the BSTS model performed 

better than the ARIMA model in estimating the time series data of energy production in 

Türkiye. The Bayesian approach employed by the BSTS model, which accounts for the 

inherent uncertainties and complexities in energy production dynamics, demonstrated 

greater reliability and accuracy compared to the Box-Jenkins approach of the ARIMA 

model. As a result, the BSTS model was selected to forecast energy production from 

2021 to 2028. Furthermore, this study contributes to the existing literature by utilizing 

multiple linear regression analysis to examine the factors influencing GDP in Türkiye. 

  

Keywords: Accuracy, ARIMA, BSTS, Energy production, Multiple linear 

regression, Türkiye. 
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ÖZET 

 

ENERJİ ÜRETİMİNE İLİŞKİN ZAMAN SERİSİ VERİLERİNİN BAYESİAN 

VE KLASİK MODELLERİ KARŞILAŞTIRARAK TÜRKİYE'DE TAHMİN 

EDİLMESİ 

 

HASSOO, Amir KHaleel 

Doktora Tezi, İstatistik Anabilim Dalı 

Danışman: Assoc. Prof. Dr.  Şakir İşleyen 

Temmuz 2023, 154 sayfa 

 

 Bu çalışmada, Bayesian yapısal zaman serisi (BSTS) ve Oto-regressif entegre 

hareketli ortalama (ARIMA) olmak üzere iki tahmin modeli, 1971-2020 yılları arasında 

Türkiye'nin enerji üretimi verilerini tahmin etmek amacıyla karşılaştırılmıştır. Modeller 

kömür, gaz, hidrolik ve petrol üretimi ile GSMH gibi çeşitli enerji kaynaklarına ve 

Dünya Bankası veritabanından elde edilen verilere uygulanmıştır. Temel amaç, bu 

modellerin enerji üretimi trendlerini tahmin etme doğruluğunu değerlendirmektir. 

Güvenilir ve kapsamlı sonuçlar elde etmek için analiz ve modelleme işlemleri R ve 

SPSS yazılımları kullanılarak gerçekleştirilmiştir. Bu karşılaştırmada MAPE, MAE, 

RMSE ve R² gibi değerlendirme metrikleri de kullanılmıştır. BSTS modelleri, önceki 

bilgilerin dahil edilmesine ve belirsizliklerin nicelendirilmesine imkan sağlayan 

Bayesian bir çerçeve içermektedir ve zaman serisi tahmininde yaygın olarak kullanılan 

geleneksel ARIMA modelleri ile karşılaştırılmıştır. Modellerin doğruluğunu 

değerlendirmek için veri seti eğitim ve test alt kümelerine ayrılmış ve böylece model 

hatalarının değerlendirilmesi mümkün olmuştur. Sonuçlar, BSTS modelinin Türkiye'nin 

enerji üretimi zaman serisi verilerini tahmin etmede ARIMA modelinden daha iyi 

performans gösterdiğini göstermiştir. BSTS modelinin benimsediği Bayesian yaklaşım, 

enerji üretimi dinamiklerindeki doğal belirsizlikler ve karmaşıklıkları dikkate alarak, 

ARIMA modelinin Box-Jenkins yaklaşımına kıyasla daha fazla güvenilirlik ve doğruluk 

sağlamıştır. Sonuç olarak, BSTS modeli 2021-2028 yılları için enerji üretimini tahmin 

etmek amacıyla seçilmiştir. Ayrıca, bu çalışma Türkiye'deki GSMH'yi etkileyen 

faktörleri incelemek için çoklu doğrusal regresyon analizinden yararlanarak mevcut 

literatüre katkı sağlamaktadır. 

 

 Anahtar kelimeler: ARIMA, BSTS, Çoklu doğrusal regresyon, Enerji üretimi, 

Kesinlik, Türkiye. 
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SYMBOLS AND ABBREVIATIONS 

 

Some symbols and abbreviations used in this study are presented below, along  

with their descriptions. 

 

Abbrevations   Description 

 

ACF Autocorrelation Function 

AR Autoregressive 

ARIMA Autoregressive Integrated Moving Average 

ARMA Autoregressive Moving Average 

BCM Billion Cubic Meters 

BSTS Bayesian Structural Time Series 

COVID Coronavirus 

GDP Gross Domestic Product 

GWH Gigawatt hours 

HELE High-Efficiency, Low-Emission 

LNG Liquefied Natural Gas 

MA Moving Average 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

MAX Maximum 

MCMC Markov Chain Monte Carlo 

MIN Minimum 

MLE Maximum Likelihood Estimation 

MM Million 

MSE Mean Square Error 

OLS Ordinary Least Squares 

PACF Partial Autocorrelation Function 

R
2
 Coefficient of Determination 

RMSE Root Mean Square Error 

SE Standard Error 
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SPSS Statistical Package for the Social Sciences 

SS State-Space 

TPAO Turkish Petroleum Corporation 

UAE United Arab Emirates 

UK United Kingdom 

UN United Nation 

USA United States of America 
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1. INTRODUCTION 

 

1.1 Background 

 

Türkiye has experienced substantial growth and development in its energy sector 

over the past five decades, with various energy sources such as coal, gas, hydraulic 

power, and oil playing a significant role (Kiliç and Kaya, 2007). Understanding the 

patterns and trends in energy production and its correlation with GDP is crucial for 

policymakers, energy planners, and researchers. This research study aims to estimate 

time series data on energy production and GDP in Türkiye from 1971 to 2020 by 

comparing Bayesian and classical models (Demirbaş, 2003). In this study, Bayesian 

models, specifically the Bayesian structural time series (BSTS), are compared with 

classical models, such as the Autoregressive integrated moving average (ARIMA), to 

estimate time series data on energy production and GDP in Türkiye (Hepbasli, 2004). 

Accurate estimation of energy production and its relationship with GDP is essential for 

effective planning and policy-making to ensure economic development and 

sustainability (Algül and Vedat, 2021). Time series analysis has proven to be an 

effective approach for studying and forecasting energy production and GDP data, 

enabling insights into the factors influencing energy production and its impact on the 

economy (Jonek-Kowalska, 2019). Bayesian models offer advantages such as 

incorporating prior information, quantifying uncertainty, and accommodating 

complexities and uncertainties in the data. The research objective is to assess the 

performance and accuracy of Bayesian and classical models in estimating time series 

data on energy production and GDP in Türkiye. The findings of this study will 

contribute to the existing literature on time series analysis in the energy sector, 

providing valuable insights for policymakers and researchers involved in energy 

planning and economic forecasting. This preface introduces the subsequent chapters, 

which will discuss the methodology, data analysis, modeling techniques, and 

interpretation of results (Kaplan et al., 2011). The study includes data collection, pre-

processing, and modeling, examining the performance of Bayesian and classical models 

in estimating energy production for each variable (Yılmaz and Uslu, 2007). 

Additionally, the implications of the findings, potential study limitations, and future 
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research directions in the field of time series analysis and energy production estimation 

are discussed (Yüksel, 2008). 

 

1.2 Research Problem 

 

Accurately estimating the time series data of energy production in Türkiye from 

1971 to 2020 presents significant research challenges that are crucial for gaining 

comprehensive insights into energy dynamics, understanding the factors influencing 

energy production, and improving the accuracy of predictions. The dataset contains 

complex patterns, such as long-term trends, seasonal variations, and irregular 

fluctuations, which must be effectively comprehended and modeled to accurately 

capture the underlying dynamics and make reliable predictions. 

 The energy production sector in Türkiye faces various challenges that impact its 

efficiency, sustainability, and reliability. One of the key challenges is Türkiye's heavy 

reliance on a diverse range of energy sources, including fossil fuels like coal, oil, and 

natural gas, as well as renewable energy sources such as solar, wind, hydro, and 

geothermal. Effectively managing and integrating these diverse sources to ensure a 

balanced and sustainable energy supply while reducing dependence on fossil fuels and 

promoting the adoption of renewable energy poses a significant challenge. 

 Another challenge is Türkiye's high dependency on energy imports, which adds 

to the complexity of ensuring a secure and reliable energy supply. Rising energy 

demand is also a challenge that needs to be addressed, as it requires robust planning and 

infrastructure development to meet the increasing energy needs of the country. 

Environmental impact is a critical concern, and finding ways to mitigate the 

environmental effects of energy production is crucial for sustainable development. 

Infrastructure development plays a vital role in the energy sector, and ensuring the 

availability of adequate infrastructure for energy production, transmission, and 

distribution is a challenge that needs to be addressed. The regulatory framework 

governing the energy sector requires careful consideration to promote competition, 

efficiency, and environmental sustainability (Toklu, 2017). 

Furthermore, securing financing and attracting investments for energy projects is 

a significant challenge that needs to be overcome. Adequate funding is essential for 
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developing new energy infrastructure, implementing renewable energy projects, and 

improving the overall efficiency and reliability of the energy sector. 

 

1.3 Research Objectives 

 

The primary aim of this study is to conduct a comparative analysis between 

Bayesian and classical models. To accomplish this objective, the research outlines the 

following specific goals: 

1. To compare the performance and effectiveness of Bayesian and classical 

models in estimating energy production in Türkiye. By assessing the strengths and 

weaknesses of each modeling approach, including their ability to capture complex 

patterns and handle uncertainties, the study aims to identify the most suitable technique 

for accurate energy production estimation. 

2. To investigate the relationship between gross domestic product (GDP) and 

energy production in Türkiye. This objective involves examining how changes in GDP 

influence energy demand and production levels. Understanding the implications of 

economic growth on energy sustainability and resource allocation is a crucial aspect of 

this objective. 

By addressing these research objectives, the study aims to contribute to the 

understanding of energy production estimation and its relationship with economic 

factors in Türkiye. This knowledge can guide decision-makers and stakeholders in 

formulating effective strategies for sustainable energy planning and resource allocation. 

 

1.4 Importance of the Research 

 

This research comprehensively addresses key aspects of energy production in 

Türkiye, with the objective of providing valuable insights for informed decision-making 

and promoting sustainable energy development. A primary focus is on accurately 

estimating time series data for energy production spanning five decades (Fidan, 2010). 

This entails capturing patterns, trends, and fluctuations across different energy sources. 

The accuracy of these estimates plays a vital role in energy planning, policy 

formulation, and decision-making processes. 



 

 

4 

 

Another crucial aspect of the research involves conducting a comparative 

analysis of Bayesian and classical models to estimate energy production. By 

understanding the strengths and weaknesses of each modeling approach, researchers and 

practitioners can identify the most appropriate method for accurate energy production 

estimation. This analysis contributes to the advancement of time series modeling 

techniques specifically within the context of energy production (Lise and Van Montfort, 

2007). 

Additionally, the research explores the relationship between gross domestic 

product GDP and energy production. By examining how changes in economic growth 

impact energy demand and production levels, policymakers and energy planners can 

make informed decisions. This analysis aids in formulating sustainable energy policies 

and gaining a deeper understanding of the energy requirements associated with a 

growing economy (Cevik et al., 2020). 

The findings of this research have significant practical implications for energy 

policy formulation and sustainability in Türkiye. By providing accurate estimates of 

energy production and analyzing the factors that influence it, policymakers and industry 

stakeholders can make informed decisions regarding energy planning, resource 

allocation, and environmental sustainability. Ultimately, this research contributes to the 

development of sustainable energy strategies and the promotion of a resilient energy 

sector (Bilen et al., 2008). 

 

1.5 Research Question 

 

How does the accuracy of Bayesian models compare to classical models in 

estimating the time series data on energy production in Türkiye from 1971 to 2020? 

Which modeling approach, Bayesian or classical, provides better predictions of 

future energy production in Türkiye based on the historical data from 1971 to 2020? 

How do Bayesian models and classical models differ in capturing the trends, 

seasonality, and other key components of the energy production time series in Türkiye 

from 1971 to 2020? 
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What are the strengths and limitations of Bayesian models compared to classical 

models in estimating time series data on energy production in Türkiye from 1971 to 

2020? 

 

1.6 Hypothesis 

 

The following hypothesis is put forth for this study based on the research 

problem and objectives stated previously: 

Null Hypothesis (H0): There is no statistically significant difference in the 

accuracy of energy production estimation between Bayesian and classical models when 

applied to time series data in Türkiye from 1971 to 2020. 

Alternative Hypothesis (Ha): There is a statistically significant difference in the 

accuracy of energy production estimation between Bayesian and classical models when 

applied to time series data in Türkiye from 1971 to 2020.  

Models when applied to time series data in Türkiye from 1971 to 2020. 
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2. LITERATURE REVIEW 

 

AL-Moders and Kadhim (2021) conducted a study focusing on the forecasting of 

oil prices using the Bayesian structural time series (BSTS) method. The research 

emphasized that BSTS is the most effective approach for predicting oil prices, as it has 

the capability to capture observed fluctuations over time and incorporate prior 

information. Accurate predictions of oil prices are particularly important for countries 

like Iraq, which heavily rely on oil revenues, as fluctuations in oil prices directly impact 

their overall economic well-being. Therefore, it is crucial to utilize models that can 

adapt to emerging events and provide reliable forecasts for future oil prices. Through 

their analysis, the researchers applied BSTS and projected that the price of oil is 

expected to reach $156.2 by 2035, indicating an upward trend in the future.  

Almarashi and Khan (2020) used the BSTS to evaluate a univariate dataset in 

their study. The study examined real-life secondary data on Flying Cement stock prices 

over a one-year period. To achieve statistical results, the study used simulation 

approaches such as the Kalman filter and MCMC. Although the focus of the 

investigation was on stock prices, the same BSTS technique may be used to 

complicated engineering processes with lead periods. The ARIMA approach was used 

in the study to compare BSTS to a conventional method. To obtain Bayesian posterior 

sampling distributions, the R software's BSTS package was utilized. Four BSTS models 

were applied to a real-world dataset to show how the BSTS approach works. Forecast 

plots and the MAPE were used to assess the prediction accuracy of various models. The 

study's goal was to develop a simple technique that could be easily duplicated by both 

researchers and practitioners. The results showed that for short-term forecasting, 

ARIMA and BSTS performed similarly. However, based on the results, BSTS with a 

local level was recognized as the best option for long-term forecasting. 

Sarpong (2013) employed the (ARIMA) model to anticipate demand in a food 

firm in their study. The study used a time series technique to help to demand modeling 

and forecasting. The study demonstrated how previous demand data may be used to 

forecast future demand, as well as the ramifications for the supply chain. Using 

historical demand data, the researchers created numerous ARIMA models using the 

Box-Jenkins time series process. The optimal model was chosen using four performance 
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criteria: the Akaike criterion, the Schwarz Bayesian criterion, maximum likelihood, and 

standard error. ARIMA (1, 0, 1), the selected model, was tested further using additional 

historical demand data under the same conditions. The study's findings confirmed the 

ARIMA (1, 0, 1) model's usefulness in predicting and forecasting future demand in a 

food manufacturing company. These findings provide trustworthy counsel to 

manufacturing firm executives in making educated decisions based on predicted 

demand. 

Ray et al. (2021) focused on short-term forecasting in the Indian airline industry, 

especially in the air passenger and air cargo sectors. The study's goal was to forecast 

demand for air passengers and cargo in India's aviation sector using two models: 

ARIMA and BSTS. The study made use of a dataset spanning a decade, from 2009 to 

2018, that includes air passenger and cargo statistics gathered from the website of the 

Directorate General of Civil Aviation. Both the ARIMA and BSTS models were 

assessed in dynamic circumstances, as well as their capacity to integrate uncertainty. 

According to the findings, both the ARIMA and BSTS models are suitable for short-

term forecasting in all four commercial aviation sectors: international passenger, 

domestic passenger, international air cargo, and domestic air cargo. The report also 

included recommendations for further research on medium- and long-term forecasting 

in the Indian aviation business. 

Pinilla et al. (2018) used a BSTS model to examine the causal impact of partial 

and entire bans on public smoking on cigarette sales in their study. This method, which 

combines a state-space model, provides a unique means of investigating the causal 

consequences of policy interventions. It applies the widely used difference-in-

differences technique to time series and enables the development of counterfactual 

scenarios using numerous control series. The report emphasizes the benefits of using 

this technique to evaluate the efficacy of a total ban on smoking in public places versus 

a partial ban. 

Mourtgos and Adams (2021) compared several time series forecasting 

approaches in their study of modeling and forecasting the number of confirmed and 

mortality cases of COVID-19 in Iran. The study's goal was to find the best model for 

estimating the number of confirmed and fatal cases in Iran. Three measures were used 

to assess the performance of these models: RMSE, MAE, and MAPE. The model with 
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the lowest performance metrics was deemed the best, and it was then used to anticipate 

the number of confirmed and fatal cases over the following 30 days. The study used 

data on the absolute number of confirmed and fatal cases in Iran from February 20 to 

August 15, 2020. Based on the available data in Iran, the results showed that the BSTS 

model performed the best for estimating the number of confirmed cases. The ARIMA 

model, on the other hand, was recognized as the best model for forecasting future 

mortality cases. According to these projections, there would be 2484 new confirmed 

cases and 114 new fatalities from COVID-19 on September 14, 2020. 

This study extends Brooks et al. (2003) work by adding adaptive proposal 

strategies for reversible jump MCMC in the context of ARMA models. Unlike previous 

techniques, the whole conditional distribution is not accessible for the new parameters, 

hence estimates are proposed. An adaptive updating system is presented to improve the 

efficiency of between-model movements by automatically selecting proposal parameter 

values. The suggested algorithms' performance is tested via simulated studies, and the 

approach is shown by applying it to a real dataset. 

Shrestha et al. (2021) examine difficulties originating from the growing usage of 

electronic power converter-based technologies in modern power systems, which can 

impair system dynamics and operational security. To maintain the safe functioning of 

electricity systems, transmission system operators must estimate system performance 

metrics. This study offers a Bayesian model that forecasts power system behavior using 

short-term kinetic energy time series data, giving vital support to transmission system 

operators in ensuring system security. For optimization, the sampler, an MCMC 

approach, is used in conjunction with Stan's limited-memory broyden-fletcher-goldfarb-

shanno algorithm. To investigate the seasonal properties of the datasets, the study used 

the notion of decomposable time series modeling. To verify the model, many 

performance assessment criteria are employed. In addition, an ARIMA model is used to 

compare with the suggested model. The ideal amount of the training dataset required for 

successfully projecting 30-minute kinetic energy values is determined. The researchers 

estimate short-term kinetic energy sequences using one year of univariate data with a 1-

minute precision from the integrated Nordic power system. The performance evaluation 

measures RMSE, MAE, MAPE, and MASE are computed. The suggested model has an 

RMSE of 4.67, MAE of 3.865, MAPE of 0.048, and MASE of 8.15. Increasing MCMC 
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sampling improves performance metrics by up to 3.28, 2.67, 0.034, and 5.62, 

respectively. Furthermore, the study indicates that for the example study, 180.5 hours of 

historical data is adequate to accomplish accurate short-term forecasting with an RMSE 

accuracy of 1.54504. 

Hooten and Hobbs (2015) Given that gold has several qualities and its price is 

controlled by a variety of market conditions, this study investigates the dynamic link 

between gold price returns and the different factors that impact it. The study then uses 

the (BSTS) and neural network to forecast gold price returns. These models' 

performance is compared against benchmark models. The findings imply that changes 

in crude oil returns have a positive impact on gold price returns, but shocks in the US 

dollar index have a negative impact. Furthermore, variations in gold price returns are 

heavily impacted by changes in crude oil price returns. The neural network model 

captures the volatility pattern of gold price returns well and improves forecast accuracy. 

Ticknor (2013) presents a unique strategy for anticipating financial market 

behavior that incorporates a Bayesian regularized artificial neural network. The study's 

goal is to forecast individual stock closing values in the future utilizing daily market 

prices and financial technical indicators as input variables. Forecasting stock price 

changes is a difficult problem in financial time series research, but successful forecasts 

may help investors improve their stock returns significantly. The study closes with the 

Bayesian regularized artificial neural network being highlighted as a viable tool for 

stock price prediction. The suggested model has the potential to improve the accuracy of 

stock price forecasts by combining a probabilistic approach and lowering model 

complexity. This, in turn, can help investors make more educated financial market 

judgments. 

 

 

 

 

 

 

 



11 

 

3. MATERIAL AND METHOD 

 

Energy production data for Türkiye, encompassing coal, gas, hydraulic, and oil, 

as well as GDP, covering the period from 1971 to 2020, was gathered from the World 

Bank website. The collected data underwent a thorough examination to identify and 

address missing values, outliers, and inconsistencies. Various data preprocessing 

techniques, such as imputation or removal of missing values, were employed as 

necessary. Two models, a Bayesian model and a classical model, were selected for 

comparison. The Bayesian model utilized the BSTS approach, while the classical model 

employed the ARIMA model based on the Box-Jenkins methodology. R and SPSS 

software were utilized for data analysis and modeling to ensure robust and 

comprehensive results. The BSTS model, which was implemented using Bayesian 

inference techniques, required the specification of appropriate prior distributions for the 

model parameters MCMC sampling methods were utilized to estimate the posterior 

distribution. The BSTS model incorporated the energy production time series data (coal, 

gas, hydraulic, oil) and GDP as inputs, capturing underlying trends, seasonality, and 

uncertainties related to energy production and GDP in Türkiye. The ARIMA model, 

following the Box-Jenkins approach, determined the appropriate order (p, d, q) for each 

energy production time series (coal, gas, hydraulic, oil) and GDP. Maximum likelihood 

estimation was used to estimate model parameters, and historical trends were used to 

anticipate future values. The accuracy and performance of the Bayesian and classical 

models were evaluated using evaluation metrics such as MAE, RMSE, MAPE and R² . 

The generated forecasts from each model were compared against the actual energy 

production and GDP values for respective years in the dataset. The findings were 

interpreted and analyzed to draw conclusions regarding the models' performance in 

estimating time series data on energy production and GDP in Türkiye. Factors 

contributing to the superior performance of one model over the other were identified 

and discussed. Limitations of the chosen models, data availability, and other influential 

factors were acknowledged and discussed. Based on the results and insights obtained, 

recommendations for future research, improvements in modeling techniques or policy 

implications may be provided. 
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3.1 Time Series Definition 

 

A time series refers to a dataset comprising data points collected and recorded 

over a specific time interval. It can be mathematically represented as a set of vectors, 

denoted as x(t), where t represents the time duration and x(t) represents a random 

variable. Scholars such as (Western and Kleykamp, 2004) have discussed the concept of 

time series. The data in a time series are arranged in chronological order, reflecting the 

sequence in which measurements were captured during an event or process. Time series 

can be categorized as either univariate, involving data for a single variable, or 

multivariate, which encompasses data from multiple variables. 

 

3.1.1 Components of Time Series  

 

Time series data consists of several essential components that help characterize 

and analyze the inherent patterns and attributes of the data. These components include: 

The trend component reflects the data's long-term movement or direction over 

time. It reflects if the data shows a steady growth, drop, or remains generally stable over 

a long period of time. Trends might be linear, nonlinear, or periodic in nature 

(Makridakis and Hibon, 1997). 

Seasonality is defined as reoccurring patterns or cycles that occur at regular 

intervals in a time series. These patterns might change on a daily, weekly, monthly, 

quarterly, or yearly basis. Seasonality captures regular fluctuations that repeat within the 

same timeframe, typically influenced by factors like calendar events or natural 

phenomena (Montgomery and Nyhan , 2010). 

Cyclical variation represents irregular oscillations or fluctuations in a time series 

that are not of fixed frequency or duration. These cycles often extend beyond the regular 

patterns observed in seasonality and can be influenced by economic, social, or 

environmental factors. Cyclical variations are often associated with business cycles or 

economic cycles. 

The irregular component, often known as the residual or error term, compensates 

for noise or random fluctuations in time series data. It denotes occurrences that are 
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unanticipated or unexpected that cannot be explained by the trend, seasonality, or 

cyclical components. These anomalies add to the data's variability (Newbold, 1983). 

The level or mean component reflects the average value or baseline of the time 

series. It provides an indication of the central tendency or the typical level around which 

the data fluctuates (Mohamed, 2020). 

 

3.1.2 Stationairy 

 

The idea of stationarity is critical in time series data analysis. When the 

statistical properties of a time series stay consistent across time, it is said to be 

stationary. This means that the series has a constant mean, a stable variance, and an 

autocovariance that is completely determined by the time lag. A time series yt is 

considered stationary mathematically if it meets the following conditions: 

Constant Mean (μ): The mean of the series remains constant over time.  

 

             (3.1) 

 

Constant Variance (σ2): The variance of the series remains constant over time.  

 

           (3.2) 

 

Autocovariance (γ) depends only on the time lag (h):  

The covariance between yt and yt+h depends only on the time difference or lag 

h, and not on the specific points in time.  

  

                       (3.3) 

 

To assess stationarity, statistical tests such as the ADF test are commonly used. 

These tests examine whether a time series possesses unit roots, indicating non-

stationarity, or remains stationary (Western and Kleykamp, 2004). 
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3.1.3 Augmented Dickey-Fuller (ADF) 

 

The ADF test is a popular statistical technique for determining whether a time 

series is stationary or non-stationary. It is based on the augmented Dickey-Fuller 

regression model, which is especially intended to examine the presence of unit roots in 

the time series autoregressive model. The ADF test gives insights into the stationarity 

qualities of the time series under examination by analyzing the significance of the 

predicted coefficients in the model (Cheung and Lai, 1995). 

The ADF test equation may be expressed as follows: 

                                                             

        
(3.4) 

  

In this equation: 

   : represents the differenced series at time t. 

   : The intercept term is shown. 

 : denotes the time trend coefficient. 

    : represents the lagged value of the time series. 

                     : represent the lagged differenced values of the time series, up 

to lag p. 

               : represent the coefficients of the lagged differenced values. 

   : represents the error term or residual at time  . 

 

3.1.4 Training Testing and Validation 

 

Model training, testing, and validation requires dividing the available dataset 

into multiple subsets in order to evaluate the model's performance and generalizability. 

The conventional strategy is to divide the dataset into three subsets: training, testing, 

and validation. The following formulae can be used to calculate the sizes of these 

subsets: Training Set: 

 

                           (3.5) 

 

Where: 
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 : is the amount of data points in total, 

             : is the ratio (between 0 and 1) assigned for the training set. 

Testing Set: 

 

                          (3.6) 

 

 

Where: 

  : is the amount of data points in total 

           : is the ratio (between 0 and 1) assigned for the testing set. 

1. Validation Set: 

                          (3.7) 

  

The validation set is the remaining portion of the dataset after allocating the 

training and testing sets. 

The             and            ratios can be adjusted according to specific 

analysis requirements and goals. It is usual practice to give a higher fraction of the data 

to the training set, often 70-80%, for model training reasons. The remaining data is then 

divided into testing and validation sets for model assessment and fine-tuning (Sheridan, 

2013). 

 The training set is used to fit the model's parameters and comprehend the 

underlying patterns in the data. The testing set is used to evaluate the model's 

performance on unknown data and establish its generalizability. The validation set is 

essential for furthering the model's refinement, such as tweaking hyperparameters or 

comparing multiple models (Zeger and Karim, 1991). 

By separating the dataset into multiple subsets, the model may be trained on one 

piece, evaluated on another, and validated on yet another. This process ensures reliable 

estimates of the model's performance and helps prevent issues like overfitting (when the 

model performs well on training data but poorly on unseen data) or underfitting (when 

the model fails to capture important patterns in the data). 
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Figure 3.1 Training testing and validation 

 

3.1.5 Autocorrelation Function (ACF) 

 

The ACF is a statistical technique that is used to examine the relationship 

between a time series and its lag values. The ACF computes the correlation coefficient 

between the time series at time t and its preceding lag values. 

The ACF equation may be expressed formally as follows: 

 

                                  (3.8) 

 

 

Where: 

        represents the autocorrelation at lag k. 

      represents the autocovariance at lag k. 

 : represents the mean of the time series. 

    : represents the autocovariance at lag 0, which is equivalent to the variance of the 

time series. 

The autocovariance at lag          is calculated as: 

 

                              (3.9) 

 

Where      represents the time series value at time t and Cov (.) represents the 

covariance function. 
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The autocorrelation at lag k          is then calculated by dividing the 

autocovariance at lag k by the autocovariance at lag 0 (variance) and subtracting the 

mean of the time series. 

The ACF is typically plotted as a function of lag, and it provides insights into the 

temporal dependencies and patterns in the time series. Positive autocorrelation at a 

specific lag indicates that the values at that lag are correlated and tend to have a similar 

pattern. Negative autocorrelation suggests an inverse relationship between the values at 

that lag. ACF values close to zero indicate little or no correlation. 

The ACF is a fundamental tool in time series analysis for understanding the 

correlation structure of the data, identifying seasonality or periodic patterns, and 

determining the appropriate lag orders for AR and MA components in models like 

ARIMA (Heilbronner, 1992). 

 

3.1.6 Partial Autocorrelation Function (PACF) 

 

The PACF is a statistical technique for analyzing the relationship between a time 

series and its lag values while accounting for intermediate delays. The PACF computes 

the correlation coefficient between the time series at time t and its values at earlier lags, 

while ignoring the effect of intermediate lags. 

The PACF equation can be expressed numerically as follows: 

 

                                                        

                                               
(3.10) 

 

In this equation: 

         represents the partial autocorrelation at lag k. 

       represents the covariance function. 

   :   represents the variance. 

     : represents the time series value at time t. 

The PACF at lag k           is calculated by taking the conditional covariance 

between the time series at time t and its lagged value at time    , given the values of 

the intermediate lags (                 ). It is then divided by the square root of 
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the conditional variance of the time series at time t, given the values of the intermediate 

lags. 

The PACF helps in identifying the direct influence or relationship between the 

time series values at different lags, after accounting for the intermediate lags. It is 

commonly used in time series analysis, particularly in determining the lag orders for 

autoregressive (AR) models. 

 

3.1.7 Autoregressive (AR) 

 

An (AR) model is generated when a value from a time series is regressed on past 

values from the same time series. Then, like follo, it can generate an auto-regression 

process    of order p, represented by the acronym AR (p). 

 

                                                           (3.11) 

 

Where: 

      indicates the time series′ value at time t. 

  : is a constant term, also known as an intercept. 

     : The autoregressive coefficients are denoted by, where i runs from 1 to p. 

        represents the lagged values of the time series, with i denoting the lag. The lag 

ranges from 1 to p. 

    : is the error term or residual at time t, expressing the random component that 

the autoregressive portion does not account for. 

This seems to be a multiple regression model, but instead of using external 

factors as predictors, it uses past values of the same series. Auto-regressive series refer 

to stationary processes where the variability of the terms is finite, which is determined 

by the values of the phi     coefficients. Auto-regressive processes are commonly 

employed to represent time series data, where the current value is influenced by the 

previous values in a linear manner, along with the addition of random error (Wang and 

Wong , 2002). 
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3.1.8 Moving Average (MA) 

 

The MA model is a time series analysis approach that investigates the link 

between a time series' present value and its previous error components or residuals. It is 

a statistical model that posits the present value of a series is driven by a linear 

combination of past time points' error terms.The Moving Average equation of order q, 

denoted as MA(q), can be written as: 

 

                                                      (3.12) 

 

 

Where: 

     : represents the value of the time series at time t. 

  : is a constant term. 

              : are the moving average (MA) coefficients, representing the influence of 

past error terms. 

                         : are the lagged error terms. 

     : is the error term (residual) at time t. 

According to the MA(q) equation, the current value of the time series is a linear 

combination of the error components at the current and previous time points, weighted 

by the moving average coefficients. The lagged error terms' impact on the current value 

is determined by the moving average coefficients (Biswas and Bhattacharyya, 2013). 

 

3.1.9 Autoregressive Moving Average (ARMA) 

 

The (AR) and (MA) models were combined to create the ARMA model. 

Because it incorporates both auto-regressive and moving-average elements, the ARMA 

model may describe complicated time series with fewer parameters than a comparable 

AR model (Makridakis and Hibon, 1997; Montgomery and Nyhan, 2010). An ARMA 

(p,q) model's general equation is: 
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(3.13) 

 

Where: 

     :  represents the value of the time series at time t. 

  : is a constant term. 

           ₚ : are the autoregressive (AR) coefficients, representing the influence of 

past values of the time series. 

                         : are the lagged values of the time series. 

              : are the moving average (MA) coefficients, representing the influence of 

past error terms. 

                         : are the lagged error terms. 

      : is the error term (residual) at time  . 

 

3.1.10 Integrated (I) 

 

The integrated component indicates the differencing procedure used to establish 

stationarity on the time series (yet). The integrated component eliminates any trend or 

seasonality in the data by measuring the difference between successive readings. The 

constant term reflects the mean shift induced by differencing, and the differenced error 

term is denoted by ′t' (Makridakis and Hibon, 1997). 

 

                        (3.14) 

 

Where: 

       At time t, represents the differenced series. 

     : signifies the first time series at t. 

    : The lagged value of the time series. 
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3.1.11 Autoregressive integrated moving average (ARIMA) 

 

ARIMA, which stands for Autoregressive Integrated Moving Average, is a 

prominent time series data analysis model that incorporates autoregressive (AR), 

differencing (I), and moving average (MA) components to capture the underlying 

patterns and dynamics of the series (Hossain and Abdulla, 2015). 

The ARIMA model is characterized by three key parameters: p, d, and q. 

The parameter p denotes the order of the autoregressive (AR) component, which 

represents the number of lagged observations of the dependent variable in the model. 

The AR component captures the link between the present value of the time series and its 

historical values by evaluating prior values (Pappas et al., 2010). The parameter d 

denotes the order of differencing, which entails transforming the time series to attain 

stationarity. Stationarity is the removal of trends and seasonality from data. The value of 

d denotes the number of times the series must be differenced before it reaches 

stationarity. The moving average (MA) component's order is represented by the 

parameter q. It represents the number of lag forecast mistakes, also known as residuals, 

that are included in the model. The MA component records the link between the error 

term and the lag errors, allowing future values to be modelled and predicted based on 

past mistakes. These three parameters, p, d, and q, establish the ARIMA model and 

enable for the study and prediction of time series data by taking autoregressive 

correlations into account, distinguishing for stationarity, and including the moving 

average effect (Jenkins, 2004). 

The ARMA model is the outcome of merging the Autoregressive (AR) and 

Moving Average (MA) models. Because it incorporates both auto-regressive and 

moving-average elements, the ARMA model may describe complicated time series with 

fewer parameters than a comparable AR model (Makridakis and Hibon, 1997; 

Montgomery and Nyhan, 2010). An ARMA (p, q) model is as follows: 

 

                                                          

                                            
(3.15) 

 

Where: 

     : represents the value of the time series at time t. 
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  : is a constant term. 

             : are the autoregressive (AR) coefficients, representing the 

influence of past differenced values of the time series. 

                               : are the differenced values of the time series, 

obtained by subtracting the previous values from the current values. 

              : are the moving average (MA) coefficients, representing the 

influence of past error terms. 

                         : are the lagged error terms. 

     : is the error term (residual) at time  . 

By estimating the coefficients and error term values, the ARIMA model may be 

used for forecasting, anomaly detection, and evaluating the dynamics of a time series. 

Model parameters can be estimated using a variety of methods, including maximum 

likelihood estimation (MLE). 

In the ARIMA model, MLE estimation entails determining the values of      and 

  that maximize the likelihood function given the observed data. This is usually 

accomplished through the use of numerical optimization techniques such as the 

Newton-Raphson method or the Fisher scoring system. By maximizing the likelihood 

function, we identify the parameter values that make the observed data most likely 

under the ARIMA model's assumptions. These parameter estimates can then be utilized 

to create predictions or evaluate the underlying time series data. 

 

3.1.12 Maximum Likelihood Estimation (MLE) method 

 

Maximum Likelihood Estimation (MLE) is a statistical approach for estimating 

statistical model parameters. It is based on the notion of determining model parameter 

values that optimize the possibility of witnessing the provided data. 

In MLE, we assume a specified parametric form for the data's probability 

distribution. The objective is to determine the parameter values that make the observed 

data most likely. The likelihood function is calculated by multiplying the individual 

probability of detecting each data point under the assumed distribution by the product 

(or total, in the case of continuous distributions). 
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Consider a collection of independent and identically distributed variables (i.i.d) 

random variables               with a joint probability density or mass function f(x; θ), 

where θ represents the unknown parameters of the distribution. The likelihood function 

L(θ) is defined as: 

 

                                           (3.16) 

 

The log-likelihood function, denoted by     , is often used instead of the 

likelihood function. It is defined as the natural logarithm of the likelihood function: 

 

                                                                      (3.17) 

 

The MLE calculates the parameters by determining which values of maximize 

the likelihood or log-likelihood function. This is often accomplished through the use of 

optimization techniques such as numerical optimization algorithms. We seek the 

parameter values that make the observed data most likely under the expected 

distribution by maximizing the likelihood (Closas et al., 2007). 

 

3.1.13 Box-Jenkins Approach 

 

George Box and Gwilym Jenkins established the Box-Jenkins Method, which is 

a commonly used methodology for evaluating and predicting time series. It is a 

methodical and iterative procedure that consists of three major stages.  

Model identification, parameter estimates, and model diagnostics (Suleman and 

Sarpong, 2012). 

The time series data is analyzed in the model identification step to see if it 

displays stationarity, which indicates that its statistical features stay consistent across 

time. To achieve stationarity if the data is non-stationary, differencing or transformation 

techniques may be used. Following that, the autocorrelation function (ACF) and partial 

autocorrelation function (PACF) are examined to determine probable orders of 

autoregressive (AR) and moving average (MA) components in the model. Based on the 

ACF and PACF plots, several AR, MA, and ARMA models are explored, and the best 

model is chosen using metrics such as the AIC (Gharbi et al., 2011). 
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Estimation of Parameters: After determining the model structure, the parameters 

of the chosen AR, MA, or ARMA model are estimated using techniques such as 

maximum likelihood estimation (MLE) or other estimation methods. To estimate the 

model coefficients, iterative approaches such as the Yule-Walker equations or method 

of moments are used. 

Model Diagnostics: The residuals of the calculated model are evaluated in this 

stage to find any lingering patterns or systematic behavior. To examine the 

unpredictability and independence of the residuals, diagnostic techniques such as the 

Ljung-Box test or portmanteau test are used. If significant patterns or correlations are 

discovered, the model may need to be adjusted or transformed. The method is repeated 

until the model diagnostics are adequate. 

After obtaining and validating a final model, it may be used to anticipate future 

values of the time series. The Box-Jenkins technique to time series analysis provides a 

structured and systematic framework for analysts to capture underlying patterns, 

dynamics, and connections within the data. It has been used in a variety of sectors, 

including economics, finance, engineering, and environmental sciences (Jahanshahi et 

al., 2019). 

 

3.1.14 Assumption of ARIMA Model 

 

To ensure its success in modeling time series data, the ARIMA (AutoRegressive 

Integrated Moving Average) model involves numerous assumptions. The following are 

the ARIMA model's ten essential assumptions: 

  Stationarity: The time series data should be stable, which means that statistical 

features like mean and variance should remain consistent throughout time. This 

assumption allows the model to include autoregressive and moving average 

components. 

 Linearity: It is assumed that the connection between the observations and their 

lag values is linear. The ARIMA model is based on the assumption that data may be 

adequately represented by linear combinations of previous observations and random 

mistakes. 
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 Independence: The time series observations should be independent of one 

another. This indicates that the value of a single observation is independent of the 

values of prior or subsequent observations. 

No perfect multicollinearity: The ARIMA model's independent variables should 

not have perfect linear connections with one another. Perfect multicollinearity can lead 

to estimation issues and inaccurate findings. 

No endogeneity: In the ARIMA model, the error term should be uncorrelated 

with the independent variables. Endogeneity occurs when the error term is 

systematically connected to the explanatory factors, causing the parameter estimates to 

be skewed. 

Homoscedasticity: The error term's variance should be consistent across time 

periods. This assumption assures that the model's performance is unaffected by changes 

in data variability. 

Normality of residuals: It is assumed that the error component has a normal 

distribution with a mean of zero. This assumption enables the model to do efficient 

estimates and hypothesis testing. 

No serial correlation: The error term should not show any patterns or connection 

over time. In other words, the residuals should not be linked with their own delayed 

values. 

No ARCH/GARCH effects: The error term should not show effects of 

autoregressive conditional heteroscedasticity (ARCH) or generalized autoregressive 

conditional heteroscedasticity (GARCH). These effects indicate time-varying volatility 

and, if not adequately accounted for, can lead to inefficient parameter estimations. 

No outliers: Outliers in the data might cause parameter estimations to be 

distorted and the model's performance to suffer. The ARIMA model presupposes that 

there are no severe or influential outliers in the data. 

 

3.2 Beysian Structural Time Series (BSTS) Model 

 

The Bayesian structural time series (BSTS) framework is used for modeling and 

predicting time series data. To capture the underlying patterns, trends, and correlations 

in the data, it blends Bayesian inference with structural time series modeling 

approaches. The time series is split into numerous components in BSTS, including 
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trend, seasonality, regression, and error. Each component is modeled independently and 

then integrated to provide a full time series representation. To estimate the posterior 

distribution of the components, the framework includes prior beliefs, data observations, 

and model parameters (Poyser, 2019). 

The equation for BSTS can be represented as follows: 

 

         ∑         

 

   

  (3.18) 

 

Where: 

    represents the time series' observed value at time  . 

   : indicates the trend component of the time series, reflecting long-term changes and 

trends. 

    represents the seasonality component, accounting for the periodic fluctuations 

occurring within a year or other relevant time periods. 

      : represents the regression component, where    denotes the regression coefficient 

and     represents the corresponding regressor variables. 

    indicates the trend component of the time series, reflecting long-term changes and 

trends. 

Given the observed data, the BSTS framework use Bayesian inference to 

determine the posterior distribution of the model parameters and latent components. 

This procedure involves updating prior beliefs using Bayes' theorem and generating 

samples from the posterior distribution using MCMC techniques. Analysts may use 

BSTS to model and forecast time series data while taking into account past knowledge, 

dealing with uncertainty, and capturing the structural aspects of the underlying process. 

The framework is scalable to a wide range of time series applications, making it an 

invaluable tool for data analysis and forecasting. 

The trend component captures the time series' long-term systematic changes or 

trends. It is represented by t, which may be modeled using a variety of approaches 

including local linear trend, random walk, and polynomial functions (Poyser, 2019). 

 

          (3.19) 
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Where: 

    represents the time series' observed value at time  . 

   : indicates the trend component of the time series, reflecting long-term changes and 

trends. 

    indicates the trend component of the time series, reflecting long-term changes and 

trends. 

The seasonality component accounts for repetitive patterns or seasonal 

fluctuations in the data. It is represented by ∑       
 
    where      is an indicator 

variable representing the presence or absence of season   at time    and    is the 

corresponding coefficient. 

 

      ∑       

 

   
    (3.20) 

 

Where: 

    represents the time series' observed value at time  . 

   : indicates the trend component of the time series, reflecting long-term changes and 

trends. 

    indicates the trend component of the time series, reflecting long-term changes and 

trends. 

The regression component incorporates the influence of external factors or 

covariates on the time series. It is represented by ∑    
 
            where      is the 

value of the covariate   at time  , and     is the corresponding coefficient (Kolarik and 

Rudorfer,1994). 

 

       ∑    

 

   
        (3.21) 

 

Where: 

    represents the time series' observed value at time  . 

   : indicates the trend component of the time series, reflecting long-term changes and 

trends. 
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    indicates the trend component of the time series, reflecting long-term changes and 

trends. 

The error component represents the random and unexplained variation in the 

time series. It is denoted by    and assumed to follow a certain probability distribution 

(e.g., Gaussian, Poisson) with mean zero and constant variance (Vermaak et al., 2002). 

 

      ∑       

 

   
 ∑    

 

   
        (3.22) 

 

These equations define the BSTS model's components, where    is the observed 

value of the time series at time  . The model represents the link between observable data 

and underlying components such as trend, seasonality, regression, and error. As 

previously stated, the coefficients (         ) are evaluated using Bayesian techniques 

to determine the posterior distribution of the parameters (Geweke, 2007). 

In the technique section, you may go through the BSTS model's precise 

implementation details, such as the prior distributions assigned to the parameters, 

covariate selection, and the estimate approach utilizing MCMC sampling (Klugkist et 

al., 2005). 

 

3.2.1 The (BSTS) State Model 

 

The (BSTS) state space model is a statistical framework widely used for 

evaluating time series data. It is made up of two main parts: the observation equation 

and the state equation (Derisavi et al., 2003). 

The observation equation links the observed data to the underlying latent 

(unobserved) state variables. It is typically represented as: 

 

               (3.23) 

 

Where: 

   : denotes the observed data at time t. 

  : represents the observation matrix that maps the state variables to the observed data. 

   : signifies the vector of state variables at time t. 
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     represents the observation error, assumed to follow a known distribution. 

The state equation describes the evolution of the latent state variables over time 

and is typically expressed as a recursive equation: 

 

                   (3.24) 

 

Where: 

  : denotes the vector of state variables at time t. 

  : represents the state transition matrix, which explains how the state changes over 

time. 

  : represents the state innovation matrix that captures the random shocks to the state 

variables. 

   : denotes the state error, assumed to follow a known distribution. 

The state space model permits the inclusion of diverse components to capture 

different aspects of the time series data, such as trends, seasonality, and regression 

effects. Each component is represented by suitable matrices in the observation and state 

equations. 

Bayesian inference is used inside the BSTS framework to estimate unknown 

parameters and create predictions for future time series values. Prior distributions for 

model parameters are defined, and posterior distributions are produced by integrating 

the prior knowledge with the observed data using (MCMC) techniques. The state space 

model provides a versatile and effective framework for modeling and predicting time 

series data, allowing for the inclusion of complex patterns and relationships (Karklin 

and Lewicki, 2005). 

 

3.2.2 Markov Chain Monte Carlo (MCMC) Method 

 

MCMC is a computing approach for obtaining samples from a target probability 

distribution. It is commonly used to estimate the posterior distribution of model 

parameters in Bayesian statistical inference. The basic idea underlying MCMC is to 

build a markov chain that explores the relevant parameter space and finally converges to 

the desired posterior distribution (Toivonen et al., 2001). This is accomplished by 
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repeatedly generating samples from a proposal distribution and accepting or rejecting 

them depending on a predefined criterion. The Markov chain samples offer an 

approximation of the posterior distribution. One of the most widely used MCMC 

algorithms for sampling is the Metropolis-Hastings algorithm (Gallagher et al., 2009).  

Its equation can be expressed as follows: 

 

     (  
        ∣    

        ∣   
 ) (3.25) 

 

Where: 

   : represents a proposed sample from the proposal distribution. 

  : represents the current state of the Markov chain. 

     : is the target probability distribution (e.g., the posterior distribution). 

    ∣     is the proposal distribution, which defines the transition probability from 

state   to      

Within the Metropolis-Hastings algorithm, the acceptance probability is critical 

in determining whether a proposed sample should be accepted or rejected. The 

suggested sample is always approved if it equal to or larger than 1. If, on the other hand, 

is smaller than 1, the suggested sample is accepted with a probability of and rejected 

with a probability of. The resultant Markov chain finally converges to a stationary 

distribution that closely approximates the desired posterior distribution after iteratively 

producing a sequence of samples using the Metropolis-Hastings method. The samples 

obtained from the chain may then be used to estimate other quantities of interest 

associated with the target distribution, such as means, variances, and quantiles. MCMC 

approaches provide a strong tool for Bayesian inference, allowing complicated model 

estimates and uncertainty quantification. Analysts can use MCMC approaches to draw 

trustworthy conclusions and gain useful insights in situations when direct analytical 

computations are not possible (Kass et al., 1998). 
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3.2.3 Dynamic Distribution Of The Model Errors In A (BSTS) Model 

 

The probability density function (PDF) or histogram of the errors at different 

time points may be used to depict the dynamic distribution of model errors in a (BSTS) 

model. This may be stated mathematically as: 

 

                      (3.26) 

 

Where:  

                       Given the observed data and the BSTS model, reflects the 

conditional probability distribution of the mistakes. 

      : error refers to the difference between the observed data and the model's 

predictions at each time point. 

The dynamic distribution of errors represents the model's uncertainty and 

unpredictability across time. It gives information on the errors' shape, spread, and 

trends, allowing for a thorough evaluation of the model's performance. The dynamic 

distribution of errors may be used to uncover any biases, outliers, or regular trends in 

the model's predictions. This data may be used to evaluate models, make decisions, and 

discover areas for model improvement (Chandra, 1993). 

 

3.2.4 Bayesian Inference 

 

Bayesian inference is a framework for updating our beliefs about the parameters 

of a statistical model based on observed data. Combining the prior distribution, which 

represents our starting views, with the likelihood function, which represents the data, 

yields the posterior distribution, which represents our updated beliefs (Geweke, 2007). 

Using Bayes' theorem, the equation for Bayesian inference is as follows: 

 

   ∣       
      ∣        

       
 (3.27) 

 

Where: 
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   ∣       : is the posterior distribution, representing our updated beliefs about the 

parameter(s)   given the observed data. 

      ∣    : is the likelihood function, representing the probability of observing the 

data given the parameter(s)  . 

     : is the prior distribution, representing our initial beliefs about the parameter(s)  . 

        is the marginal likelihood or evidence, representing the probability of 

observing the data regardless of the parameter(s)  . It serves as a normalization constant 

to ensure that the posterior distribution integrates to 1. 

The posterior distribution is proportional to the product of the likelihood 

function and the previous distribution divided by the evidence, according to the 

equation. Calculating the evidence can be difficult in practice, but it is not always 

essential because it works as a normalizing constant. Based on the observed data, 

Bayesian inference allows us to update our ideas about the parameters, taking into 

account both previous knowledge and the information included in the data. After 

evaluating the data, the posterior distribution gives a probabilistic representation of our 

uncertainty regarding the parameters (Von Toussaint, 2011). 

 

3.2.5 Prior Distribution 

 

In Bayesian statistics, the prior distribution plays a crucial role as it represents 

our initial beliefs or knowledge about the parameters of a statistical model before any 

data is observed. It measures our parameter uncertainty and serves as the starting point 

for Bayesian inference. The equation for the prior distribution depends on the specific 

parameter being modeled and the chosen probability distribution. In general, we denote 

the prior distribution as P(θ), where θ represents the parameter(s) of interest (Curtis and 

Lomax, 2001). 

The form of the prior distribution can vary depending on the problem at hand 

and the information available. It can be selected from a wide range of probability 

distributions, such as the normal (Gaussian), beta, gamma, or uniform distributions, 

among others. For example, if we are estimating a population mean   using a normal 

distribution, we might choose a normal prior distribution with a mean of    and a 

variance of   .  
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This prior distribution can be expressed as: 

 

        ∣∣        (3.28) 

 

Where: 

    represents the normal distribution. 

    : represents the probability density function (PDF) of the prior distribution for the 

population mean    

         : represents a normal distribution with mean    and variance     

The normal prior distribution is commonly used when there is prior knowledge or belief 

about the likely range or value of the population mean. 

Before evaluating the data, the prior distribution embodies our preconceptions 

about the parameter. It can be influenced by past information, prior research, or 

subjective views. The prior distribution chosen has an effect on the resultant posterior 

distribution and inference. Bayesian inference uses Bayes' theorem to calculate the 

posterior distribution from the prior distribution and the likelihood function, which 

captures the observed data. The posterior distribution represents the changed views 

about the parameter(s) after taking the observed data into account. 

 

3.2.6 Posterior Distribution 

 

The posterior distribution is an essential concept in Bayesian statistics. It returns 

the updated probability distribution of the unknown parameters or variables of interest 

based on the observed data and any previous knowledge. The posterior distribution, 

which combines the prior distribution with the likelihood function, is constructed using 

Bayes' theorem (Tierney, 1994). 

The equation for the posterior distribution is as follows: 

 

   ∣    
   ∣        

    
 (3.29) 

 

Where: 
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   ∣     is the posterior distribution, which denotes the parameter probability 

distribution   given the observed data x. 

   ∣    : The likelihood function reflects the probability of seeing the dat x given the 

parameters  . 

      is the prior distribution, which reflects the initial assumptions or knowledge of the 

parameters   before observing the data. 

      is the marginal likelihood or evidence, which represents the probability of 

witnessing the data x independent of the parameters' precise values.    It functions as a 

normalization constant, guaranteeing that the posterior distribution integrates to 1. 

The posterior distribution represents the parameter uncertainty after accounting 

for past knowledge and observed data. It serves as the foundation for Bayesian 

inference, allowing point estimates, credible intervals, and other statistical values of 

interest to be calculated (Pole et al., 2018). In reality, determining the precise form of 

the posterior distribution is usually computationally challenging, especially for complex 

models. Numerical techniques such as (MCMC) algorithms are used to determine the 

posterior distribution and pluck samples from it. These samples can then be used to 

draw conclusions and make decisions (Pérez and Berger, 2002). 

 

3.2.7 The (BSTS) Approach 

 

(BSTS) is a statistical modeling framework for time series analysis and 

forecasting. It is particularly useful when dealing with complex and uncertain time 

series data. BSTS allows for the decomposition of a time series into multiple 

components, such as trend, seasonality, and irregular components, while incorporating 

Bayesian inference techniques for estimation and prediction (Yilmaz, 2008). 

Here are some key characteristics and components of the BSTS approach: 

By breaking a time series into many components, the BSTS technique models its 

underlying structure.  

 Trend: Represents the time series' long-term behavior or direction.  

 Seasonality: Recurring trends or seasonal changes are captured.  

 Regressors: Additional variables or factors that influence the time series 

and are included as predictors.  
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 Irregular or error component: Represents random noise or unexplained 

variations in the time series. 

 BSTS incorporates Bayesian inference principles to estimate the 

parameters and make predictions. Bayesian approaches entail defining 

prior distributions for parameters, mixing them with observed data, and 

updating the posterior distributions via Bayes' theorem.  

 The parameter posterior distributions are determined using markov chain 

Monte Carlo (MCMC) sampling techniques such as Gibbs sampling or 

Metropolis-Hastings algorithms. These posterior distributions provide a 

probabilistic framework for inference and the measurement of 

uncertainty (Geweke, 2007). 

 In BSTS, model parameters such as trend, seasonality, and regressors are 

estimated by sampling from posterior distributions using MCMC 

techniques. 

  Once the model is fitted to the data, forecasts can be generated by 

propagating the uncertainty from the posterior distributions forward in 

time. 

 The forecasts incorporate both the estimated components of the time 

series and the uncertainty associated with each component, providing 

probabilistic forecasts instead of point estimates (Spedding and Chan, 

2000). 

 BSTS is a flexible framework that can handle various types of time series 

data and accommodate different model specifications. 

 It allows for the inclusion of multiple regressors or exogenous variables 

that may influence the time series behavior. 

 The model can adapt to changing patterns or shifts in the time series by 

updating the posterior distributions based on new data (Poyser, 2019). 

 The BSTS model's performance may be evaluated using a variety of 

measures, including (MAE), (RMSE), (MAPE), coefficient of 

determination, and log predictive density (Amini and Parmeter, 2011). 
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3.2.8  Assuption of BSTS Model 

 

To properly model time series data, the BSTS model makes certain assumptions.  

Additive Errors: The model's errors or residuals are considered to be additive, 

which means that the observed values may be decomposed into the sum of the 

underlying components and the error term. 

Normality of Errors: It is assumed that the errors have a normal distribution with 

a mean of zero. This assumption enables the model to perform efficient estimates and 

inference. 

Independence: The time series observations are believed to be independent of 

one another. This indicates that the value of a single observation is independent of the 

values of prior or subsequent observations. 

Constant Variance: The error variance is expected to be constant across time. 

This assumption assures that the model's performance is unaffected by changes in data 

variability. 

 Linearity: The observation-to-underlying-component connection is considered 

to be linear. The BSTS model captures this linearity by combining state equations with 

observation equations in a linear fashion. 

Time-Invariance: The time series' underlying dynamics are believed to be time-

invariant. This signifies that the components' connection remains consistent throughout 

the series. 

Prior Distributions: The BSTS model is a Bayesian model that needs prior 

distributions for model parameters to be specified. The prior distributions used can 

impact the model's behavior and output, therefore they must be carefully considered. 

No Omitted Variables: The BSTS model implies that all important time series 

impacting elements are incorporated in the model. Excluding critical factors or 

characteristics might result in skewed and incorrect findings. 

Adequate Data: With additional historical data, the performance of BSTS 

models frequently increases. With more data, the model can better capture the 

underlying trends and generate more accurate projections (Levy , 2016). 
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 Good Initialization: The BSTS model is based on an initialization phase that 

specifies the starting values of the parameters and latent states. A proper initialization is 

critical for ensuring model convergence and accuracy. 

 

3.3 Time Series Performance Measurements 

 

Time series forecasting is important in many real-world scenarios. As a result, it 

is critical to exercise caution when selecting a model for such projections. To evaluate 

the accuracy of forecasts and compare different models, various performance metrics 

are used. These metrics, often known as performance measures, are calculated using the 

time series' actual and expected values. In this part, we will cover many important 

performance indicators used by researchers and explain the fundamental ideas that 

underpin them. (Ishak and Al-Deek, 2002) . 

 

3.3.1 Aaike Information Criterion (AIC) 

 

The Akaike Information Criterion (AIC) is a statistical metric that is used to 

compare the quality and performance of various statistical models. The posterior 

distribution allows you to achieve a compromise between a model's quality of fit and its 

complexity. The AIC is a statistical metric that is used to identify the best model 

(Bozdogan, 1987).  

It is defined as follows: 

 

                         (3.30) 

 

Where: 

      : is the logarithm of the likelihood function of the model, 

  : is the number of parameters in the model. 

The AIC weighs the model's fit to the data against its complexity, penalizing 

models with a large number of parameters. A lower AIC value suggests a better mix of 

fit and simplicity, implying a more appropriate model. 
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3.3.2 Root Mean Square Error (RMSE) 

 

Root Mean Square Error (RMSE) is a widely used metric for evaluating the 

performance of a predictive model, particularly in regression analysis. It provides a 

measure of how well the predicted values of the model align with the actual observed 

values (Hodson, 2022). Mathematically, it is defined as: 

 

       √
 

 
∑          

 

   

 (3.31) 

 

Where: 

  : represents the actual values or observations. 

   :represents the predicted values. 

 : represents the total number of data points or observations 

 

 

3.3.3 Mean Absolute Percentage Error (MAPE) 

 

The Mean Absolute Percentage Error (MAPE) is a popular statistic for 

determining the accuracy of a forecasting or prediction model. It calculates the average 

size of mistakes in respect to the real values as a percentage (McKenzie, 2011).  

It is calculated using the following equation: 

 

       (
 

 
)    (|

                    

      
|)       (3.32) 

 

Where: 

Actual: represents the actual value. 

Predicted: is the projected value. 

    : denotes the absolute value of x. 

n : is the total number of data points. 

 



 

 

39 

 

3.3.4 Mean Absolute Error (MAE) 

 

MAE) is a statistic and machine learning measure that calculates the average 

magnitude of deviations between expected and actual data. It gives a simple method for 

determining the accuracy of a prediction model (Willmott and Matsuura, 2005). 

It is calculated using the following equation: 

 

                                 (3.33) 

 

Where: 

|                 |: signifies the absolute difference between an anticipated and actual 

value. 

 : is the total number of forecasts. 

 

3.3.5 Coeffcient of Determination (R
2
) 

 

The coefficient of determination measures the linear correlation between real 

data and model estimations, offering an indication of the model's appropriateness. It 

also illustrates how much of the variance in the dependent variable can be explained by 

the model's components (Piepho, 2019). It is the square of the correlation coefficient 

and is defined mathematically as: 

 

     
∑          

∑       ̄   
 (3.34) 

 

Where: 

  : represents the actual data, 

  : represents the corresponding model estimates,  

   : represents the mean of the actual data. 

 

 

 



 

 

40 

 

3.3.6 Multiple Linear Regression 

 

Many linear regression equations are mathematical representations of the 

relationship between a number of independent variables (also referred to as predictors or 

features) and a dependent variable (sometimes referred to as the target or response 

variable).  

In its most generic version, the equation is as follows: 

 

                                     (3.35) 

 

Where: 

  : represents the dependent variable. 

   : is the intercept term or the y-intercept. 

              are the coefficients or slopes associated with each independent variable 

(            ), respectively. 

            : denote the independent variables. 

 : represents the error term or residual, which captures the unexplained variability in the 

dependent variable. 

The coefficients                   the impact or influence of each independent 

variable on the dependent variable is represented in the equation, whereas the intercept 

(  ) accounts for the baseline value of the dependent variable when all independent 

variables are zero. 

In practice, the coefficients (               ) are estimated using various 

regression techniques, such as ordinary least squares (OLS), to find the best-fit line that 

minimizes the sum of squared differences between the predicted and actual values. 

By substituting specific values for the independent variables (            ) into 

the equation, the predicted value ( ) for the dependent variable based on the estimated 

coefficients (Chen et al., 2014). 
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3.4 Republic of Türkiye 

 

Türkiye, officially known as the Republic of Türkiye, is a country situated at the 

crossroads of Europe and Asia. It occupies the majority of the Anatolian Peninsula in 

Western Asia, with a smaller portion located in Southeast Europe on the Balkan 

Peninsula. Türkiye has neighboring countries in different directions: to the northwest, it 

shares borders with Greece and Bulgaria, to the northeast with Georgia, and to the east 

with Armenia, Azerbaijan, and Iran. To the south, it shares borders with Iraq and Syria. 

Ankara, the capital city, is Türkiye's second-biggest metropolis, while Istanbul, the 

largest, is an important cultural, economic, and historical hub. Türkiye offers a 

captivating and diverse experience, combining a wealth of historical sites, cultural 

heritage, and stunning natural landscapes. Türkiye is categorized as a newly 

industrialized country and boasts an upper-middle-income economy. It ranks 20th 

globally in terms of nominal GDP and holds the 11th position based on purchasing 

power parity (PPP). According to the World Bank, Türkiye's GDP per capita by PPP 

stood at $32,278 in 2021. However, in 2019, around 11.7% of the Turkish population 

was judged to be at danger of poverty or social exclusion. According to the same 

source, Türkiye's unemployment rate in the same year was 13.67% (Aydın et al., 2005). 

 

 

Figure 3.2 Map of Türkiye 
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4. RESULTS AND DISCUSSION 

 

4.1 Coal Production in Türkiye from 1971 to 2020 

 

Türkiye has a rich history of coal mining and has been a notable producer and 

consumer of coal. Coal has been instrumental in meeting the energy demands of 

Türkiye's growing economy, especially for electricity generation. The majority of coal 

production in Türkiye comes from lignite mines located in the western region of the 

country (Toprak, 2009).  

 Coal production in Türkiye has experienced consistent growth throughout the 

1980s and 1990s, reaching a peak of 48.9 million tons in 1986. It continues to be a 

crucial energy source for the country. 

Despite the increase in coal production, Türkiye remains a net importer of coal, 

particularly high-quality hard coal used in the steel industry. In 2019, Türkiye imported 

around 20 million tons of coal while exporting approximately 4.5 million tons. The 

significant surge in coal production in Türkiye began in the 1980s following the 

implementation of economic liberalization policies. These policies aimed to bolster the 

energy and mineral resources sectors, resulting in increased coal production. Türkiye 

possesses ample lignite reserves, which are low-quality coal deposits distributed 

extensively across the country. Türkiye has emphasized the exploitation of these 

reserves for electricity generation (Özbayoǧlu and Mamurekli, 1994). 

 State-owned mining enterprises produce the vast bulk of coal in Türkiye. 

Several privately held mining corporations do, however, operate in the nation. Coal-

fired power stations utilize the majority of coal in Türkiye, accounting for over 90% of 

total consumption (Querol et al., 1999). Coal is also used in the iron and steel industry, 

cement industry, and paper and pulp industry. Türkiye has the distinction of being 

Europe's largest coal user. Coal has generally been a cheaper energy source than 

imported natural gas and oil. Coal mining in Türkiye has faced a number of problems, 

including safety concerns, environmental concerns, and local community hostility. 

Mining accidents have resulted in severe loss of life, prompting requests for greater 

safety laws and working conditions for coal miners (Yılmaz and Uslu, 2007). 
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 In recent years, opposition to the development of new coal mines and power 

plants has grown, particularly in the Black Sea region. Concerns regarding the 

environmental impact of coal mining and the health risks associated with air pollution 

from coal-fired power plants have been raised by local communities and environmental 

groups (Hepbasli, 2004). 

The Turkish government has set a target of 30% renewable energy in the power 

mix by 2023 in order to minimize reliance on coal and enhance the percentage of 

renewable energy. They've also invested in cleaner coal technology including high-

efficiency, low-emission (HELE) coal-fired power plants, and they intend to phase out 

coal-fired power plants that don't fulfill environmental criteria by 2023. In the next 

years, Türkiye hopes to migrate to a more sustainable energy mix (Yılmaz, 2009). 

A descriptive Table 4.1. showcasing the top ten countries in the world for coal 

production reveals China as the leading producer, followed by India, solidifying their 

positions as key players in the global coal industry. 

 

Table 4.1 Top ten countries in the world for coal production 

Rank Country 
Coal Production  

(Million Metric Tons) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

China 

India 

Indonesia 

USA 

Australia 

Russia 

South Africa 

Germany 

Poland 

Kazakhstan 

Türkiye 

3.942 

767 

550 

544 

534 

320 

250 

180 

130 

120 

70.8 

 

 4.2 Application of ARIMA on Coal Production 

 

The ARIMA model was chosen from the collection of classical models for coal 

from 1971 to 2020 in Türkiye, which consists of three main methods, and was used to 

make sure ti forecast the future years. 
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4.2.1 Identification for Coal Production 

 

The descriptive Table 4.2. for coal production from 1971 to 2020 presents key 

statistics that provide insights into the trends and variability of coal production over the 

years. 

 

Table 4.2 Descriptive statistics for coal production from 1971 to 2020 

Variables                                   Min        Max       Mean        SD 

Coal production   22.86       48.96 29.62        5.48 

 

The coal dataset for Türkiye spanning from 1971 to 2020 is a time series 

collection of yearly observations on coal production, measured in tons. It consists of 50 

observations recorded annually. This dataset is commonly utilized to examine the trends 

and patterns in coal production in Türkiye over time. It can provide insights into the 

various factors that influence coal production, including economic and environmental 

conditions, and facilitate the forecasting of future trends in coal production in Türkiye. 

The dataset reveals that the minimum coal production in Türkiye during this period 

occurred in 1971, totaling approximately 22.86 million tons. On the other hand, the 

maximum coal production was recorded in 1986, reaching approximately 48.96 million 

tons. Over the entire period, the average coal production in Türkiye amounted to around 

29.62 million tons per year. The standard deviation of coal production, which measures 

the data's dispersion, was approximately 5.48 million tons per year, indicating a 

significant variation in the production levels. 

Converting data to a time series involves assigning specific dates or time periods 

to each observation, transforming it into a sequence of equally spaced points in time 

Figure 4.4. In the case of coal production data, this process would entail associating a 

particular date or time period with each recorded observation of coal production. 

Organizing the data in this manner becomes a time series that can be analyzed to 

identify trends, patterns, and other characteristics in coal production over time.  
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Figure 4.1 Time series plot of yearly coal production in Türkiye (1971-2020) 

 

In time series analysis, stationarity refers to the statistical properties of a variable 

remaining consistent over time (Figure 4.2). 

 

Figure 4.2  Time series plot of yearly coal production from 1971 to 2020 in Türkiye 

after differencing 

 

The (ADF) test is a statistical test that determines whether a time series is 

stationary. The ADF test for the first-order differenced time series of coal production 

data. The test statistic is calculated to be 0.01226, which is less than the 0.05. This 



 

 

47 

 

means that there is enough evidence to reject the null hypothesis of non-stationarity and 

conclude that the differenced time series is stationary. Figure (4.3) shows the 

autocorrelation function (ACF) at lag 16 measuring the correlation between a variable 

and its lagged value 16 time periods apart. 

 

Figure 4.3 Autocorrelation function for coal production time series 

 

The autocorrelation function (ACF) at lag 16 measures the relationship between 

a time series and its delayed form at a lag of 16 time units.The ACF is a statistical 

technique for detecting and evaluating the presence of any noticeable connection or 

pattern within a time series dataset. Analysts can get insights on the presence and 

intensity of links between observations at different periods in time by studying the ACF 

values at different lags, assisting in the discovery of potential patterns or dependencies 

within the data. 

At lag 16, the partial autocorrelation function (PACF) quantifies the relationship 

between a variable and its lagged value 16 time periods. 

 

Figure 4.4 Autocorrelation function for coal production time series 
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The partial autocorrelation function (PACF) at lag 16 assesses the relationship 

between a time series and a delayed version of itself at a specified lag of 16 time units, 

while accounting for intermediate delays ranging from 1 to 15. It isolates the direct 

correlation between the observations at lag 16 by removing the influence of the shorter 

lags. By examining the PACF values at different lags, analysts can assess the unique 

relationship between observations separated by a specific time interval, providing 

insights into the underlying structure and dependencies within the time series data. 

 

4.2.2 Selecting Fitting Model 

 

Table 4.3. presents the estimated parameters of the ARIMA (1,0,0) model. 

 

Table 4.3 ARIMA (1,0,0) model’s parameters 

Variables Estimate SE T-test P-value 

Constant 30.11 1.86 16.1 0 

AR 0.66 0.11 5.76 0 

 

Box and Jenkins developed an interactive method for fitting (ARIMA) models to 

time series data. This method focuses on ensuring that the time series' mean and 

variance are stationary. Table 4.5. shows that the derived model is statistically 

significant, and the parameters are likewise statistically significant. A lower Akaike 

information criterion (AIC) value implies a better fit for the model. The AIC in this 

scenario is 282.37. These numbers indicate that the ARIMA (1,0,0) model is well-suited 

for capturing data patterns. As a result, by examining Figures 4.8 and 4.9, it may be 

used to properly estimate the parameters of the model. 
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Figure 4.5 Training data for predicted value and actual values of coal production time 

series by using ARIMA model 

 

 
Figure 4.6 Testing data for predicted value and actual values of coal production time 

series by using ARIMA model 

 

The accuracy of an ARIMA model can be evaluated by looking at Table 4.4. and 

4.5. these metrics on the training set and the test set. 

 

Table 4.4 ARIMA (1,0,0) model statistics (training data) 

MAE RMSE MAPE R² 

1.267 1.984 3.546 0.894 
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Table 4.5 ARIMA (1,0,0) model statistics (testing data) 

MAE RMSE MAPE R² 

1.327 2.134 3.980 0.865 

 

 

4.2.3 Model Checking (1,0,0)  

 

Figures (4.7) and (4.8) show the residuals of an ARIMA (1,0,0) model with a 

non-zero mean. These charts emphasize the differences between the actual observed 

values and the ARIMA model's anticipated values for the provided time series data. 

analyzing the residual distribution assists in analyzing the model's assumptions and 

finding potential issues such as heteroscedasticity (changing variances) or non-

normality. The residuals should ideally show random fluctuations centered around zero, 

suggesting that the model adequately captured the underlying data patterns. Once the 

candidate ARIMA (1,0,0) model was identified and estimated, the next step involved 

assessing its fit to the data through parameter and residual analysis. To diagnose the 

model, the residuals were subjected to diagnostic testing using ACF and PACF plots, as 

depicted.  

 

Figure 4.7 Residuals from ARIMA (1,0,0) with non-zero mean 
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Figure 4.8 Residual ACF and PACF for ARIMA (1,0,0) 

 

All ACF and PACF residuals values were statistically significant at the 95% 

confidence level, showing that the residuals reflect a pattern of random white noise, 

according to these graphs. This implies that the ARIMA (1,0,0) model is suitable for the 

supplied data. The Box-Ljung test was used to look for autocorrelation in the residuals 

of the ARIMA (1,0,0) model. The observed autocorrelations of the residuals are 

compared to the anticipated values under the assumption of no autocorrelation. The 

computed p-value from the Box-Ljung test in the submitted findings was 0.8802, which 

is larger than the significance level of 0.05. This implies that there is no indication of 

autocorrelation in the model's residuals. As a result, it is possible to conclude that the 

model successfully represents the autocorrelation structure in the data. 

Table 4.6. presents the actual and predicted values of coal production from 2013 

to 2020. It provides a comparison between the observed values, representing the real 

coal production data, and the forecasted values obtained from a particular model or 

method. 
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Figure 4.9 Predicted values of coal   

Table 4.6 The actual and predicted values of coal production in from 2013 to 2020 

Date Actual Forecast 

2013 26.56046 28.96927 

2014 30.26754 29.35022 

2015 29.09509 29.60442 

2016 24.84467 29.77405 

2017 22.94193 29.88725 

2018 22.85896 29.96278 

2019 26.66897 30.01319 

2020 30.26754 30.34682 

 

Furthermore, the ARIMA (1,0,0) model was used to forecast Türkiye's annual 

coal output for the year 2020. The figure in Figure 4.9. depicts the projected values for 

2020, which are quite similar to the actual numbers. This convergence of anticipated 

and actual values demonstrates that the model accurately represents the behavior and 

patterns found in the coal production series for that year. 
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4.3 Natural Gas Production In Türkiye from 1971 to 2020 

 

Türkiye plays a significant role in the natural gas market, with a substantial 

balance between imports, exports, and domestic consumption. Türkiye is a major 

importer of natural gas to meet its growing energy demand. Imports are received 

through pipelines and liquefied natural gas (LNG) shipments (Umucalilar et al., 2002).  

Türkiye receives most of its natural gas imports through pipelines from different 

supplier countries, including Russia, Azerbaijan, and Iran. Türkiye has LNG terminals 

at Marmara Ereğlisi, Samsun, and İzmir, receiving shipments from countries like Qatar, 

Algeria, and Nigeria (Saidur et al., 2010). Türkiye has started exporting natural gas, 

albeit on a smaller scale compared to its imports. Neighboring countries, particularly 

Greece and Bulgaria, receive natural gas from Türkiye through interconnector pipelines 

(Baser et al., 1998).  

Türkiye has considerable domestic consumption in a variety of sectors, including 

power generation, industrial, residential, and commercial. Natural gas is a primary fuel 

source for electricity generation, and it is used to power industry and 

residential/commercial structures. Türkiye intends to diversify its energy sources, 

strengthen its energy security, and boost energy efficiency and renewable energy. The 

government is working to reduce reliance on fossil fuels, especially natural gas, by 

boosting the proportion of renewable energy in the energy mix (Kaygusuz, 2002).  

Investments in renewable energy projects, such as wind and solar, aim to 

gradually decrease reliance on natural gas and other fossil fuels. In the 1970s, natural 

gas production was minimal, and the country heavily relied on imports. The 1980s 

marked significant progress in exploration and production, with the Turkish Petroleum 

Corporation (TPAO) leading the efforts. Important milestones included the discovery of 

the Karakaya gas field and subsequent production. Natural gas production capacity 

gradually increased, reducing reliance on imports (Demirbaş, 2001). 

The 1990s saw continued growth in production, with additional discoveries like 

the Thrace Basin gas fields. Infrastructure expansion, including pipelines and storage 

facilities, was prioritized. The 2000s witnessed a notable increase in production due to 

new field development and foreign investment. Infrastructure improvements included 

pipeline expansion and LNG import terminals. From 2010 to 2020, natural gas 
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production continued to grow with ongoing exploration and technological 

advancements. Notable discoveries, such as the Sakarya gas field and the Tuna-1 well, 

further contributed to the production. Türkiye aimed to diversify supply sources and 

increase the share of natural gas in its energy mix during this period (Kaygusuz, 2003). 

A descriptive Table 4.7. showcasing the top ten countries in the world for natural 

gas production reveals United States as the leading producer, followed by Russia, 

solidifying their positions as key players in the global coal industry. 

     

Table 4.7 Top ten countries in the world for natural gas production 

Rank   Country   
Natural Gas Production 

(Billion Cubic Meters) 
 

1 United States 914.6  

2 Russia 638.5  

3 Iran 250.8  

4 China 194  

5 Qatar 171.3  

6 Canada 165.2  

7 Australia 142.5  

8 Saudi Arabia 112.1  

9 Norway 111.5  

10 Algeria  81.5  

74 Türkiye 13.4  

Source: The World Bank organization. 

 

4.4 Application of ARIMA on Gas Production 

 

The ARIMA model was chosen from the collection of classical models for gas from 

1971 to 2020 in Türkiye, which consists of three main methods, and was used to make 

sure ti forecast the future years. 
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4.4.1 Identification for Gas Production 

 

The descriptive Table 4.8 for coal production from 1971 to 2020 presents key 

statistics that provide insights into the trends and variability of coal production over the 

years. 

 

Table 4.8 Descriptive statistics for gas production from 1971 to 2020 

Variables Min  Max Mean S.D 

Gas production 0.09 49.73 23.29 19.62 

 

The time series data spanning from 1971 to 2020 offers valuable insights into the 

annual natural gas production in Türkiye. This dataset focuses on a single variable, 

namely the amount of natural gas produced in billion cubic meters (bcm), with 50 

observations in total. The data demonstrates a clear upward trend, indicating a 

consistent growth in Türkiye's natural gas production over time. However, there are also 

noticeable fluctuations within the data, suggesting the influence of various factors such 

as weather patterns, economic conditions, and energy sector policies. 

Analyzing the summary statistics, the average gas production over the 50-year 

period was approximately 23.29 bcm, with a standard deviation of 19.62 bcm. These 

figures indicate a considerable degree of variability in annual natural gas production. 

The minimum recorded value in the dataset, 0.09 bcm, likely corresponds to a year with 

relatively low production, while the maximum value of 49.73 bcm signifies a year with 

exceptionally high production. These descriptive statistics provide a comprehensive 

overview of the natural gas production data, revealing its central tendency, spread, and 

the range of values observed. To gain deeper insights into the patterns, trends, and 

potential forecasting of natural gas production in Türkiye, further analysis can be 

conducted using time series models such as ARIMA. These models can aid in the 

discovery of the underlying dynamics of the data and give useful information for 

decision-making and future forecasts. 

Transforming data into a time series involves structuring the data as a sequence 

of evenly spaced time intervals Figure 4.10. This entails assigning specific dates or time 

periods to each data point. In the context of gas production data, this would involve 
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assigning a time period to each observation of gas production. By creating a time series 

in this manner, we can analyze and detect patterns and trends in gas production over 

time. 

 

Figure 4.10 Time series plot of yearly gas production in Türkiye 

 

Stationarity in time series analysis refers to the statistical properties of a variable 

remaining consistent over time, as shown in (Figure 4.11). 

 

Figure 4.11 Time series plot of yearly gas production in Türkiye after two differencing 
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The (ADF) test was performed on the gas time series data's second difference, 

which was generated by subtracting the time series from itself twice. The resultant p-

value is 0.02071, which is less than the significance level of 0.05 that was set. The 

autocorrelation function (ACF) plot displays the autocorrelation values at various lags, 

ranging from 0 to 16, for the "GAS" time series data. This plot is useful for identifying 

significant correlations or recurring patterns in the data. The ACF values offer valuable 

information about the lag structure, aiding in the selection of suitable models for time 

series analysis and forecasting. 

Figure 4.12 shows the (ACF) at lag 16 measuring the correlation between a 

variable and its lagged value 16 time periods. 

Figure 4.12 Autocorrelation function for gas production time series 

 

Figure 4.13 shows the partial autocorrelation function (PACF) at lag 16 

measuring the correlation between a variable and its lagged value 16 time periods. 

 

Figure 4.13 Partial autocorrelation function for gas production time series 
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The (PACF) plot displays the partial autocorrelation values for the gas time 

series at various delays ranging from 0 to 16. This plot aids in evaluating the significant 

lags in the data and comprehending the correlation structure. By examining the PACF 

values, one can determine the appropriate lag order for autoregressive models and 

identify any noteworthy patterns within the gas data. 

 

4.4.2 Selecting Fitting Model 

 

Box and Jenkins proposed an interactive method for fitting autoregressive 

moving average models to time series data that takes into account the data's stationarity 

in terms of mean and variance. The findings reported in Table (4.9) show that the 

calculated model is statistically significant, as are its parameters. A lower akaike 

information criterion (AIC) value implies a better fit of the model to the data. The AIC 

score in this example is 261.82, indicating that the model is well-suited to the data. The 

estimated model is an ARIMA model with a differencing order of one, abbreviated as 

ARIMA (0,1,0), and its parameters can be calculated. Table 4.9 presents the estimated 

parameters of the ARIMA (0,1,0) model. 

 

Table 4.9 ARIMA (0,1,0) model’s parameters 

Variables Estimate  SE T-test P-value 

Constant 0.1644 0.659 2.494 0.019 

 

As a result, by examining Figures 4.17 and 4.18 it may be used to properly 

estimate the parameters of the model.  
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Figure 4.14 Training data for predicted value and actual values of gas production time 

series by using ARIMA model 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 Testing data for predicted value and actual values of gas production time 

series by using ARIMA model 

 

Various metrics for the correctness of an ARIMA model may be derived for both 

the training and testing sets, with a focus on the metrics acquired from the test set 

(Tables 4.10 and 4.11) The metrics received from the training set indicate how well the 

model matches the data on which it was trained, whereas the metrics collected from the 

test set indicate how well the model is predicted to generalize to new data. 

 

Table 4.10 ARIMA (0,1,0) model statistics (training data) 

MAE  RMSE   MAPE      R²      

0.034  0.046   0.205   0.988 
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Table 4.11 ARIMA (0,1,0) model statistics (testing data) 

 

4.4.3 Model Checking (0,1,0) 

 

Figures 4.16. and 4.17. show the residuals from an ARIMA (0,1,0) model with a 

non-zero mean, as well as the ACF and PACF for ARIMA (0,1,0).  

 

Figure 4.16 Residuals from ARIMA (0,1,0) with non-zero mean 

Figure 4.17 Residual ACF and PACF for ARIMA (0,1,0) 

MAE  RMSE   MAPE   R²      

0.044  0.058   0.246   0.986 
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Following the identification and estimation of the candidate ARIMA (0,1,0) 

model, it is critical to assess the model's quality of fit to the data using diagnostic tests. 

This evaluation entails examining both the model's parameters and the residuals. In this 

scenario, the residuals from the ARIMA (0,1,0) model were tested using autocorrelation 

function (ACF) and partial autocorrelation function (PACF) plots, as shown in Figure 

4.19. All residual values in the ACF and PACF plots were statistically significant at the 

95% confidence level, according to the study. This conclusion demonstrates that the 

residuals have random white noise properties, implying that the model adequately 

reflects the patterns in the data. In addition, the ARIMA (0,1,0) residuals were subjected 

to the Box-Ljung test, which is used to detect autocorrelation in time series residuals. 

The test compares the observed residual autocorrelations to the anticipated values 

assuming no autocorrelation. The computed p-value from the Box-Ljung test in the 

submitted findings was 0.61, which is larger than the significance level of 0.05. This 

implies that there is no significant evidence of autocorrelation in the model's residuals. 

As a result, it is possible to infer that the ARIMA (0,1,0) model adequately describes 

the data's autocorrelation structure. 

Table 4.12. presents the actual and predicted values of gas production from 2013 

to 2020. It provides a comparison between the observed values, representing the real gas 

production data, and the forecasted values obtained from a particular model or method. 

 

Table 4.12 The actual and predicted values of gas production in from 2015 to 2020 

Date  Actual Forecast 

2015 37.90124 48.96477 

2016 40.56955 50.07488 

2017 45.19530 51.18500 

2018 41.30181 52.29512 

2019 45.34874 53.40524 

2020 47.85465 54.51536 

 

Furthermore, the ARIMA (0,1,0) model was utilized to make a forecast of the 

yearly gas production in Türkiye for the year 2020. As depicted in Figure 4.18, the plot 

reveals that the predicted values for 2020 exhibit a behavior that closely resembles the 

actual values. This convergence between the predicted and actual values indicates that 
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the ARIMA (0,1,0) model effectively captures the patterns and trends observed in the 

gas production series for that specific year. 

 

Figure 4.18 Predicted values of gas production in 2020 

 

4.5 Hydraulic Production in Türkiye from 1971 to 2020 

 

Hydroelectric power is a crucial component of Türkiye's energy supply, utilizing 

its abundant water resources. Türkiye primarily consumes hydropower domestically and 

has limited exports or imports. To diversify the energy mix and minimize reliance on 

fossil fuels, the government has actively supported renewable energy, especially 

hydropower (Cinar et al., 2010). However, the development of hydropower faces 

challenges such as environmental and social impacts, which the government addresses 

through regulations and sustainability measures (Salvarli, 2006). 

In terms of historical progression, hydroelectric power production in Türkiye 

had a gradual increase from 1971 to 2020. During the 1970s, small and medium-scale 

hydroelectric plants were built for local electricity needs (Oğulata, 2003). The 1980s 

witnessed significant expansion with the construction of larger-scale plants. In the 

1990s, the government focused on further increasing renewable energy's share, resulting 

in more medium to large-scale hydroelectric projects (Yuksek et al., 2006).  

The period from 2000 to 2010 saw a significant boom, with numerous new 

plants across the country. By 2020, Türkiye had an installed capacity of over 30,000 
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MW. Hydroelectric power has helped Türkiye generate electricity while lowering 

greenhouse gas emissions and expanding renewable energy capacity (Warner, 2008). 

It is important to note that the growth of hydroelectric power has faced 

challenges and controversies, particularly regarding environmental impact and 

displacement of local communities (Erdogdu, 2011). Nevertheless, Türkiye's focus on 

renewable energy and sustainable development has helped address these concerns and 

promote a greener energy sector (Kaygusuz, 2009). 

A descriptive Table 4.13. showcasing the top ten countries in the world for 

hydroelectric production reveals China as the leading producer, followed by India, 

solidifying their positions as key players in the global hydroelectric industry (Akpınar 

et.al., 2011). 

 

              Table 4.13 Top ten producing countries for hydroelectric 

Rank  Country 
Hydroelectric Power Generation  

                (GWH) 

1 China 1,363,000 

2 Canada 396,000 

3 Brazil 391,000 

4 US 306,000 

5 Russia 169,000 

6 India 147,000 

7 Norway 144,000 

8 Venezuela 129,000 

9 Japan 90,000 

10 Sweden 79,000 

14 Türkiye   55 

              Source: The World Bank organization 
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4.6 Application of ARIMA on Hydraulic Production 

 

The ARIMA model was chosen from the collection of classical models for 

Hydraulic from 1971 to 2020 in Türkiye, which consists of three main methods, and 

was used to make sure ti forecast the future years. 

 

4.6.1 Identification for Hydraulic Production 

 

The descriptive Table 4.14 for hydraulic production from 1971 to 2020 presents 

key statistics that provide insights into the trends and variability of hydraulic production 

over the years. 

 

Table 4.14 Descriptive statistics for hydraulic production from 1971 to 2020 

 

 

 

 

These statistics offer a summary of the range and typical values of hydraulic 

production during the given timeframe. The lowest recorded production is represented 

by the minimum value of 16.13, while the highest recorded production is indicated by 

the maximum value of 60.25. The mean value of 32.75 is the average hydraulic 

production during the whole time. The standard deviation of 10.76 represents the degree 

of variability or dispersion in the hydraulic production statistics. A larger standard 

deviation suggests a wider range of production values, while a smaller standard 

deviation indicates more consistent production levels.   

When transforming data into a time series, each data point is allocated a distinct 

date or time period, creating a sequence of evenly spaced points in time Figure 4.19. In 

the context of hydraulic production data, this would involve assigning a specific date or 

time period to each observation. By studying this time series, analysts can detect trends 

and patterns in hydraulic production over the course of time. 

Figure 4.19 Time series plot of yearly hydraulic production in Türkiye (1971-2020) 

 

Variable                              Min       Max         Mean        S.D 

Hydraulic production         16.13      60.25       32.75      10.76 
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Figure 4.21 Time series plot of yearly hydraulic production in Türkiye after one differencing 

 

Figure 4.20 Time series plot of yearly hydraulic production in Türkiye (1971-2020) 

 

Stationarity in time series analysis refers to a variable's statistical features 

staying stable throughout time, as seen in Figure 4.20. 

 

On the first-order differenced hydraulic production time series data, the (ADF) 

test was performed. These results indicate that the first-order differenced time series of 

hydraulic production data exhibits stationarity. 

The autocorrelation function (ACF) is the correlation between a variable and its 

lagged time periods apart in Figure 4.21. 
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Figure 4.22 Autocorrelation function for hydraulic production time series 

 

 

 

 

 

 

 

 

 

 

 

The autocorrelation function (ACF) plot can reveal the extent of autocorrelation 

present in the data. When the ACF plot displays significant correlation at specific lags, 

it indicates the existence of a repeating pattern in the data at those particular lags. 

Figure 4.22 shows how the (PACF) at lag assesses the correlation between a 

variable and its delayed time periods. 

 

 

 

 

 

 

 

 

 

Figure 4.23 Partial autocorrelation function for hydraulic production time series 

 

The (PACF) is a useful tool in time series analysis and modeling because it 

identifies certain lagged values that have a substantial association with the variable 

under study. 
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4.6.2 Selecting Fitting Model  

 

Table 4.15 presents the estimated parameters of the ARIMA (0,1,0) model.  

 

Table 4.15 ARIMA (0,1,0) model’s parameters 

 

Box and Jenkins developed an interactive approach for fitting autoregressive 

moving average models to time series data that accounts for the data's stationarity 

around its mean and variance. Tables 4.15. show that the calculated model and its 

parameters are statistically significant. A lower akaike information criterion (AIC) value 

indicates a better fit of the model to the data. The AIC in this example is 334.34 

(adjusted for the short sample size), suggesting a strong fit for the data. Figures 4.23. 

and 4.24. show how the ARIMA (0,1,0) model may be used to estimate the parameters. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24 Training data for predicted value and actual values of hydraulic production 

time series by using ARIMA model 

 

 

 

Variables                Estimate           SE         T-test        P-value 

Constant                   -0.062           1.165     -0.053        0.045 
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Figure 4.25 Testing data for predicted value and actual values of hydraulic production 

time series by using ARIMA model 

 

The performance of an ARIMA model may be evaluated by looking at these 

metrics on both the training and test sets (Tables 4.16 and 4.17). The metrics calculated 

on the training set offer insights into how effectively the model fits the available data. 

The metrics produced on the test set, on the other hand, indicate how effectively the 

model can generalize to new, previously unknown data. By evaluating these metrics, we 

can gauge the accuracy and reliability of the ARIMA model. 

 

Table 4.16 ARIMA (0,1,0) model statistics (training data) 

MAE RMSE MAPE R
2
 

4.158 5.304 8.216 0.742 

 

Table 4.17 ARIMA (0,1,0) model statistics (testing data) 

MAE RMSE MAPE R
2
 

4.879 6.263 9.701 0.707 

 

4.6.3 Model Checking (0,1,0) 

 

Figures 4.25 and 4.26 show the residuals from an ARIMA (0,1,0) model with a 

non-zero mean. 
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Figure 4.26 Residuals from ARIMA (0,1,0) with non-zero mean 

 

Figure 4.27 Residuals ACF and PACF (0,1,0) 

 

 

 

 

 

 

 

 

 

 

 

 

Once the candidate ARIMA (0,1,0) model has been estimated and found, the 

goodness of fit of the model must be evaluated. As part of the model diagnostic testing 

procedure, this evaluation includes parameter and residual analysis. Diagnostic testing 

for the residuals of the ARIMA (0,1,0) model was done using (ACF) and (PACF) plots, 

as shown in Figure 4.26 All ACF and PACF residual values were statistically 

significant at the 95% confidence level, according to the findings. This implies that the 

residuals have random white noise properties, indicating that the model is adequate for 

the data. The Box-Ljung test, which assesses the existence of autocorrelation in the 
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residuals of a time series model, was used to further verify the model. This test 

compares the observed residual autocorrelations to the anticipated values under the 

assumption of no autocorrelation. The Box-Ljung test was performed on the residuals of 

the ARIMA (0,1,0) model in this case. The test yielded a p-value of 0.6847, which is 

more than the significance level of 0.05. As a result, there is no significant indication of 

autocorrelation in the model's residuals. This demonstrates that the ARIMA (0,1,0) 

model effectively represents the data's autocorrelation pattern.  

Table 4.18 presents the actual and predicted values of hydraulic production from 

2013 to 2020. It provides a comparison between the observed values, representing the 

real hydraulic production data, and the forecasted values obtained from a particular 

model or method. 

 

Table 4.18 The actual and predicted values of hydraulic production during 2013-2020 

Date  Actual Forecast 

2013 24.74246 24.0996128 

2014 16.13134 24.0380706 

2015 25.64949 23.9765283 

2016 26.03014 23.9149860 

2017 25.13142 23.8534437 

2018 30.58037 23.7919015 

2019 24.42700 23.7303592 

2020 16.13134 23.6688169 

 

Moreover, the ARIMA (0,1,0) model was employed to make predictions for the 

yearly hydraulic production in Türkiye for the year 2020. The resulting plot, shown in 

Figure 4.27, displays the predicted values for 2020, which closely align with the actual 

values. This convergence of anticipated and actual values suggests that the model 

accurately predicts the behavior and trends observed in the hydraulic production series 

for that year. 
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Figure 4.28 Predicted values of hydraulic production in 2020 

 

 
 

 

 

 

 

 

 

 

 

4.7 Oil Production in Türkiye from 1971 to 2020 

 

Türkiye heavily depends on oil imports to satisfy its energy requirements and 

fuel its economy. The country imports crude oil, petroleum products, and refined oil 

from various global sources, including Russia, Iraq, Iran, Saudi Arabia, and Kazakhstan. 

These imports are refined into petroleum products such as gasoline, diesel, jet fuel, and 

heating oil at Turkish refineries. Türkiye's oil exports are modest, and it largely sells 

petroleum products to neighboring nations and worldwide markets (Balat, 2004). 

Oil consumption in Türkiye is driven by various sectors, with the transportation 

sector being the largest consumer. Industries, including manufacturing and construction, 

also rely on oil for their energy needs. Türkiye's energy strategy focuses on expanding 

the energy mix and boosting the percentage of renewable energy sources in an effort to 

lessen reliance on imported oil. The government promotes energy efficiency measures 

and encourages the use of alternative fuels in transportation (AL-Moders and Kadhim, 

2021). 

Türkiye has been investing in renewable energy projects like wind and solar in 

order to reduce its dependency on fossil fuels like oil. Fluctuations in global oil prices 

impact Türkiye's oil import costs, which in turn affect the country's economy and trade 

balance. Environmental concerns and the need to address climate change have led to 

increased efforts to reduce oil dependence and promote cleaner energy sources 

(Çakmakce et al., 2008). 
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In summary, Türkiye heavily relies on oil imports, with limited oil exports. The 

transportation sector and industries are significant consumers of oil. By broadening the 

energy mix and boosting the use of renewable energy sources, the government hopes to 

lessen reliance on imported oil. Türkiye's oil production has remained relatively modest 

throughout the years, with efforts focused on attracting foreign investment and 

exploring new reserves to enhance domestic production and energy security (Balat and 

Öz, 2008). 

A descriptive Table 4.19 show casing the top ten countries in the world for oil 

production reveals United states as the leading producer, followed by Saudi Arabia, 

solidifying their positions as key players in the global oil industry. 

 

                            Table 4.19 Top ten countries by oil production 

Rank  Country 

Oil Production 

(Million Barrels 

per Day 

1 United States 12.2 

2 Saudi Arabia 9.5 

3 Russia 10.4 

4 Canada 4.6 

5 China 3.9 

6 Iraq 4.7 

7 Iran 4.2 

8 United Arab 3.9 

9 Brazil 3.1 

10 Kuwait 2.7 

46 Türkiye 
69,012 

(Thousand) 

                         Source: The World Bank organization 

 

4.8 Application of ARIMA on Oil Production 

 

The ARIMA model was chosen from the collection of classical models for oil 

from 1971 to 2020 in Türkiye, which consists of three main methods, and was used to 

make sure ti forecast the future years. 
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4.8.1 Identification for Oil Production 

 

The descriptive Table 4.20. for oil production from 1971 to 2020 presents key 

statistics that provide insights into the trends and variability of oil production over the 

years. 

 

Table 4.20 Descriptive statistics for oil production from 1971 to 2020 

Variable Min Max Mean S.D 

Oil production 0.39 51.35 13.41 13.51 

 

These statistics offer an overview of the distribution and central tendencies of oil 

production during the specified period. The lowest recorded oil production is 

represented by a minimum value of 0.39, while the highest recorded production is 

indicated by a maximum value of 51.35. The average oil production over the entire 

period, represented by the mean value of 13.41, provides insight into the typical level of 

production during this timeframe. Furthermore, the standard deviation of 13.51 

represents the dispersion or variability in the oil production statistics. A larger standard 

deviation indicates that production values are more variable, whereas a smaller standard 

deviation indicates that output levels are more stable. When transforming data into a 

time series, each data point is assigned a particular date or time period, forming a 

sequence of evenly spaced time points Figure 4.28. In the context of oil production data, 

each observation is associated with a specific date or time interval. Analyzing this time 

series allows researchers to detect trends and patterns in oil production over a span of 

time. By examining the sequential nature of the data, valuable insights can be gained 

regarding the changes and patterns in oil production over time. 
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Figure 4.30 Time series plot of yearly oil production after one differencing 

 

 

Stationarity in time series analysis refers to a variable's statistical features 

staying stable throughout time, as seen in Figure 4.29. 

 

 

 

 

 

 

 

 

 

 

 

 

To evaluate the first-order differenced time series of oil production data, the 

ADF test was used. Furthermore, the test resulted in a p-value of 0.03743, which is less 

than the significance level of 0.05.These findings suggest that the first-order differenced 

time series of oil production data is stationar. 

Figure 4.29 Time series plot of yearly oil production in Türkiye (1971-2020) 
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Figure 4.31 Autocorrelation function for oil production time series 

 

Figure 4.32 Partial autocorrelation function for oil production time series 

 

The autocorrelation function (ACF) plot offers insights into the level of 

autocorrelation present in the data. When the ACF demonstrates a substantial 

correlation at specific lags, it indicates the existence of a repeating pattern in the data at 

those particular lags Figure 4.30. 

 

 

 

 

 

 

 

 

 

 

 

 

The (PACF) is a useful tool for discovering certain lagged values that have a 

substantial association with a variable of interest, particularly in time series analysis and 

modeling. It aids in isolating and examining the direct link between the variable and its 

lagged values, revealing insights into the data's underlying dynamics Figure 4.31. 
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4.8.2 Selecting Fitting Model  

 

Box and Jenkins developed an interactive method for fitting (ARIMA) models to 

time series data. This method focuses on assuring the time series' stationarity around its 

mean and variance. The calculated model, as shown in Table 4.21 is statistically 

significant, suggesting that it incorporates essential data properties. In this specific 

situation, the AIC is 253.63, indicating that the model gives an excellent fit to the data. 

The ARIMA (0,1,2) model may be used to estimate model parameters, as shown in 

Figures 4.32 and 4.33. 

 

Table 4.21 ARIMA (0,1,2) model’s parameters 

Variable Estimate SE T-test P-value 

Constant -0.215 1.036 -0.208 0.836 

 

 

Figure 4.33 Training data for predicted value and actual values of oil production time 

series by using ARIMA model 
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Figure 4.34 Testing data for predicted value and actual values of oil production time 

series by using ARIMA model 

 

Tables 4.22 and 4.23 provide the metrics on the training and test sets that may be 

used to assess the correctness of an ARIMA model. The metrics collected from the 

training set provide information about how effectively the model captures the properties 

of the data on which it was trained. 

 

             Table 4.22 ARIMA (0,1,2) model statistics (training data) 

MAE RMSE MAPE R
2
 

5.437 6.753 11.694 0.567 

 

             Table 4.23 ARIMA (0,1,2) model statistics (testing data) 

MAE RMSE MAPE R
2
 

5.910 7.253 12.529 0.500 
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4.8.3 Model Checking (0,1,2) 

 

Figures 4.34 and 4.35 show the residuals from an ARIMA (0,1,2) model with a 

non-zero mean. 

 

Figure 4.35 Residuals from ARIMA (0,1,2) with non-zero mean 

 

Figure 4.36 Residuals ACF and PACF (0,1,2) 

 

After estimating and choosing the ARIMA (0,1,2) model as a possible option, 

the goodness of fit of the model had to be evaluated. This step of evaluation included 

parameter and residual analysis. Diagnostic tests were performed on the residuals of the 

ARIMA (0,1,2) model using (ACF) and (PACF) plots for residuals, as illustrated in 
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Figure 4.35. At a 95% confidence level, all of the ACF and PACF residual values were 

statistically significant. This implies that the residuals displayed random white noise 

behavior, indicating that the model suited the data well. The Box-Ljung test is a 

statistical test used to determine the existence of autocorrelation in time series residuals. 

This test compares the observed residual autocorrelations to the anticipated values under 

the assumption of no autocorrelation. The Box-Ljung test was conducted to the 

residuals of the ARIMA (0,1,2) model in the presented output, generating a p-value of 

0.8802 because this p-value surpasses the significance level of 0.05, there is no 

significant indication of autocorrelation in the model's residuals. As a result of the 

diagnostic tests, we may infer that the ARIMA (0,1,2) model properly reflects the 

autocorrelation structure present in the data. 

Table 4.24 presents the actual and predicted values of oil production from 2013 

to 2020. It provides a comparison between the observed values, representing the real oil 

production data, and the forecasted values obtained from a particular model or method. 

 

Table 4.24 The actual and predicted values of oil production in from 2013 to 2020 

Date  Actual Forecast 

2013 0.724118 -0.247242 

2014 0.851712 -1.676475 

2015 0.849558 -2.727097 

2016 8.302936 -3.777720 

2017 6.542135 -4.828343 

2018 5.089649 -5.878966 

2019 3.385487 -6.929588 

2020 0.851712 -7.980211 

 

Furthermore, the ARIMA (0,1,2) model was used to forecast Türkiye's annual 

oil output in 2020. The anticipated values for 2020, as shown in Figure 4.36, behave 

similarly to the actual values. This suggests that over the course of the year, the 

projected values increasingly approach and align with the actual values, suggesting that 

the ARIMA (0,1,2) model captures the underlying patterns and trends in the data 

satisfactorily. 
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Figure 4.37 Predicted values of oil production in 2020 

 

4.9 GDP in Türkiye from 1971 to 2020 

 

Türkiye possesses a diverse and emerging market economy with a dynamic 

private sector. Over the years, the country has experienced varying levels of GDP 

growth, displaying an overall positive trend of economic expansion with occasional 

periods of high growth and slowdowns. Several factors influence Türkiye's GDP growth 

rate, including domestic and global economic conditions, government policies, and 

external shocks (Lise and Van Montfort, 2007).  

Türkiye's nominal GDP, which represents the entire value of goods and services 

produced inside its boundaries, measures the size of the economy. The economy is 

diverse, with important industries contributing to GDP. The services sector, 

encompassing finance, tourism, and telecommunications, plays a significant role, while 

manufacturing, particularly in automotive, textiles, and electronics industries, is also 

crucial. Although agriculture represents a smaller share of GDP, it remains important 

for rural areas and employment (Sözen and Arcaklioglu, 2007). 

Türkiye is actively involved in international trade, with both exports and imports 

contributing to its GDP. The country exports various goods, including automobiles, 

machinery, textiles, chemicals, and agricultural products, with the European Union, the 

Middle East, and North Africa being key export markets. Imports mainly consist of 
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machinery, energy products, chemicals, and raw materials to support domestic 

production and consumption (Artar et al., 2016). 

However, Türkiye faces economic challenges, including inflation, high 

unemployment rates, and a large informal economy. External factors such as global 

commodity price fluctuations and exchange rate fluctuations can also impact the 

Turkish economy. Additionally, political and geopolitical issues, along with domestic 

policy decisions, influence economic stability and investor confidence (Sözen and 

Arcaklioglu, 2007). 

From 1971 to 2020, Türkiye's GDP underwent significant changes and growth. 

During the 1970s, the country experienced moderate GDP growth, emphasizing 

industrialization and infrastructure projects. The 1980s witnessed periods of growth and 

economic challenges, with structural reforms and liberalization policies implemented to 

attract foreign investment and promote export-oriented industries. The 1990s saw 

fluctuations in economic growth, along with stabilization programs and external factors 

impacting the economy (Bağci and Diğrak, 1996). 

In the 2000s, Türkiye's economy displayed resilience and significant growth, 

driven by structural reforms, investments in infrastructure, manufacturing, and services 

sectors. However, the global financial crisis in 2008 had some adverse effects. From 

2010 to 2020, Türkiye's GDP continued to grow, albeit at a slower pace, with a focus on 

increasing domestic consumption, attracting foreign investment, and promoting sectors 

such as construction and tourism. Political, geopolitical challenges, as well as domestic 

economic imbalances, presented obstacles to sustained economic growth (Yalta, 2011). 

Overall, Türkiye's GDP has witnessed substantial growth and transformation, 

transitioning from an agriculture-based economy to a more diversified one, with a focus 

on industry and services. External factors, political developments, and domestic reforms 

have played significant roles in shaping Türkiye's economic performance. Despite being 

one of the largest economies in the region, Türkiye faces ongoing economic challenges 

and structural issues that affect its growth trajectory. 

A descriptive Table 4.25 showcasing the top ten countries in the world for GDP 

production reveals United States as the leading producer, followed by China, solidifying 

their positions as key players in the global coal industry. 
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Table 4.25 Top ten countries by GDP 

Rank  Country 

Oil Production 

(Million Barrels per 

Day 

1 United States 21.43 

2 China 15.42 

3 Japan 5.08 

4 Germany 3.85 

5 United Kingdom 2.68 

6 India 2.65 

7 France 2.55 

8 Italy 1.79 

9 Canada 1.64 

10 South Korea 1.63 

17 Türkiye 851,549 (Billion) 

Source: The World Bank organization. 

 

4.10 Application of ARIMA for GDP 

 

The ARIMA model was chosen from the collection of classical models for GDP 

from 1971 to 2020 in Türkiye, which consists of three main methods, and was used to 

make sure ti forecast the future years. 

 

4.10.1 Identification for GDP 

 

The descriptive Table 4.26 for GDP production from 1971 to 2020 presents key 

statistics that provide insights into the trends and variability of GDP production over the 

years. 

 

Table 4.26 Descriptive statistics for GDP production from 1971 to 2020 

Variable Min Max Mean S.D 

GDP -0.215 1.036 -0.208 0.836 
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The dataset containing GDP production data for Türkiye from 1971 to 2020 is a 

time series consisting of yearly observations on the production of coal in tons. This 

dataset comprises 50 observations and is recorded annually. It is commonly utilized to 

examine the trends and patterns in coal production in Türkiye over time. By analyzing 

this data, researchers can gain insights into the factors that influence coal production, 

including economic and environmental conditions. Moreover, the dataset allows for the 

forecasting of future trends in coal production in Türkiye. Throughout the observed 

period, the minimum recorded coal production in Türkiye was approximately 22.86 

million tons in 1971. Conversely, the maximum coal production occurred in 2019, 

reaching approximately 48.96 million tons. On average, Türkiye's coal production 

amounted to around 29.62 million tons per year over this period. The standard deviation 

of approximately 5.48 million tons per year indicates a significant variation in coal 

production, highlighting the wide range of values within the dataset. 

Transforming data into a time series entails organizing it as a sequence of 

regularly spaced data points that correspond to specific dates or time periods Figure 

4.37. In the case of coal production data, each observation is assigned a particular date 

or time period. This time series representation allows for the analysis of trends and 

patterns in coal production over a span of time. By examining the sequential nature of 

the data, researchers can gain insights into the changes, fluctuations, and recurring 

patterns in coal production throughout the observed period. 

Figure 4.38 Time series plot of yearly GDP in Türkiye (1971-2020) 
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Stationarity in time series analysis refers to a variable's statistical features 

staying stable throughout time, as seen in Figure 4.38. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.39 Time series plot of yearly GDP from 1971 to 2020 in Türkiye after 

differencing 

 

The ADF test is a statistical test used to determine a time series' stationarity. The 

ADF test is being utilized in this case to investigate the first-order differenced time 

series of coal production data. The test results show that the computed Dickey-Fuller 

statistic is -4.1147, which is less than the crucial value at a 5% level of significance. 

Furthermore, the test's p-value is 0.01226, which is less than the significance limit of 

0.05.  

Figure 4.39 shows that as the lag grows, the (ACF) values rapidly decrease and 

finally approach zero. Furthermore, all ACF values are inside the confidence interval 

ranges. This suggests that there is no significant autocorrelation in the data. 
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Figure 4.40 Autocorrelation function for GDP production time series 

 

The (PACF) is a valuable tool for discovering strong correlations between the 

present value of GDP output and lagged values, as shown in Figure 4.40. A high and 

statistically significant PACF value at a certain lag indicates a strong relationship 

between the present value and the value at that lag. 

 

Figure 4.41 Partial autocorrelation function for GDP  production time series 

 

4.10.2 Selecting Fitting Model 

 

Table 4.27 presents the estimated parameters of the ARIMA (0,0,0) model. 

 

Table 4.27 ARIMA (0,0,0) model’s parameters 

Variable Estimate SE T-test P-value 

AR 0.019 0.955 0.20 0.01 
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Box and Jenkins developed an interactive approach for fitting autoregressive 

moving average models to time series data. This approach focuses on ensuring that the 

time series remains stationary around its mean and variance. The study in Tables 4.28 

and 4.3 shows that the calculated model is substantial, and the parameters have 

statistical significance. The Akaike Information Criterion (AIC) score is 285.28, 

indicating that the ARIMA (0,0,0) model is an excellent match for the data. As a result, 

it may be used to estimate the model's parameters. As a result, by examining Figures 

4.41 and 4.42, it may be used to efficiently estimate the parameters of the model. 

 

Figure 4.42  Training data for predicted value and actual values of GDP production 

time series by using ARIMA model 

 

Figure 4.43  Testing data for predicted value and actual values of GDP production time 

series by using ARIMA model 
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Tables 4.28 and 4.29 provide the metrics on the training and test sets that may be 

used to assess the correctness of an ARIMA model. 

 

Table 4.28 ARIMA (0,0,0) model statistics (training data) 

MAE RMSE MAPE R
2
 

1.254 1.542 2.982 0.823 

 

Table 4.29 ARIMA (0,0,0) model statistics (testing data) 

MAE RMSE MAPE R
2
 

5.910 7.253 12.529 0.500 

 

4.10.3 Model Checking (0,0,0) 

 

Figure 4.43 and Figure 4.44 exhibit the residuals derived from an ARIMA 

(0,0,0) model with a non-zero mean. 

 

Figure 4.44 Residuals from ARIMA (0,0,0) with non-zero mean 
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Figure 4.45 Residuals ACF and PACF (0,0,0) 

 

The fit of the ARIMA (0,0,0) model to the data was tested once it was identified 

and estimated. This stage entailed evaluating the model's parameters as well as its 

residuals. Diagnostic testing was performed using (ACF) and (PACF) plots to analyze 

the residuals of the ARIMA (0,0,0) model, as shown in Figure 4.44. At the 95% 

confidence level, all ACF and PACF residual values were statistically significant. This 

means that the residuals have a random white noise pattern, indicating that the model is 

appropriate for the data. 

The ARIMA (0,0,0) residuals were subjected to the Box-Ljung test, a statistical 

test designed to detect autocorrelation in time series residuals. The computed p-value of 

0.8638 is above than the 0.05 threshold of significance. This implies that there is no 

indication of autocorrelation in the model's residuals. As a result, we may infer that the 

ARIMA (0,0,0) model adequately describes the data's autocorrelation pattern. 

Table 4.30. presents the actual and predicted values of GDP production from 

2013 to 2020. It provides a comparison between the observed values, representing the 

real GDP production data, and the forecasted values obtained from a particular model or 

method. 
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Table 4.30 The actual and predicted values of GDP  from 2013 to 2020 

Date  Actual Forecast 

2013 8.485817 4.769512 

2014 4.939715 4.750532 

2015 6.084486 4.731551 

2016 3.323084 4.712571 

2017 7.501997 4.693590 

2018 2.979885 4.674610 

2019 0.889585 4.655629 

2020 1.793551 4.636648 

 

Furthermore, the ARIMA (0,0,0) model was used to forecast Türkiye's annual 

GDP for 2020. Figure 4.45 depicts the findings, which clearly indicate that the 

anticipated values for 2020 roughly agree with the actual values.  This convergence 

implies that the model's projections for that year are in strong agreement with the actual 

data, implying that the ARIMA (0,0,0) model successfully represents Türkiye's 

underlying GDP patterns and trends. 

 

 

 

 

 

 

 

 

 

Figure 4.46 Predicted values of GDP production in 2020 

 

4.11 Application of BSTS on Coal Production 

 

A BSTS (Bayesian Structural Time Series) model's goal is to separate time 

series into discrete aspects such as trend, seasonality, regression, and error. The trend 
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component accounts for the long-term patterns and changes observed in the time series, 

while the seasonality component captures the recurring fluctuations occurring at regular 

intervals. The regression component allows for modeling the connection between the 

time series and additional predictor variables, while the error component represents the 

random variations present in the data (Figure 4.46). 

 

Figure 4.47 Components coal of BSTS Model 

 

4.11.1 Select Fitting Model 

 

By looking at the Figure 4.47 and Figure 4.48 These values suggest that the 

model is well-suited for capturing the patterns in the data. As a result, it may be used to 

successfully estimate the model's parameters. 

Figure 4.48  Training data for predicted value and actual values of coal production time 

series by using BSTS 
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Figure 4.49 Testing data for predicted value and actual values of coal production time 

series by using BSTS 

 

The residual standard deviation (1.396218) of the model represents the 

variability between the predicted and observed values. A higher value indicates greater 

variability between the predictions and the actual data. The standard deviation of the 

predicted values (6.368165) indicates the uncertainty associated with the model's 

forecasts. A larger value suggests more uncertainty in predicting future values. The 

coefficient of determination (0.9398547) quantifies the amount of variation in the 

observed data that the model explains. A greater score suggests a better fit, suggesting 

that the model accounts for a considerable percentage of the variability in the data. The 

relative goodness-of-fit (-1.018128) compares the data's actual log-likelihood to the 

model's anticipated log-likelihood. A negative number indicates that the BSTS model 

fits better than the null model. Overall, these output metrics show that the BSTS model 

fits the data well and accurately depicts the time series' underlying dependency 

structure. The model parameters are estimated using Bayesian inference and the MCMC 

method throughout the fitting procedure. More iterations (in this example, 1000) result 

in more accurate parameter estimates. The output acts as a progress report, displaying 

iteration numbers and timestamps to illustrate the algorithm's convergence and 

successful model estimate. 

 

4.11.2 Errors in Sample 

 

By looking at the Figure 4.49 in-sample errors will further ensure that the model 

fits the data. 
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Figure 4.50 Plot dynamic distribution errors in sample 

 

The prediction errors for the BSTS model are computed after a burn-in period of 

10 iterations. These errors offer valuable information about the model's performance at 

different time points. The burn-in period, which is often employed in Bayesian 

modeling, includes discarding the MCMC algorithm's early iterations. This helps the 

algorithm to more effectively search the parameter space and converge to the genuine 

posterior distribution. It is critical to include the uncertainty associated with the 

estimated model parameters when examining prediction errors during the burn-in 

period. The burn-in duration is chosen to achieve a compromise between computing 

efficiency and accurate parameter estimation. 

To display the distribution of in-sample prediction mistakes, the dynamic 

distribution plot is used. This graphic gives insights into the patterns and features of the 

mistakes, allowing systematic departures from anticipated behavior to be identified. By 

studying the prediction errors and their distribution, it is feasible to evaluate the BSTS 

model's performance and accuracy in capturing the underlying patterns and variability 

in the training data. The prediction errors are represented by a 41580-length numeric 

vector that corresponds to the in-sample disparities between the observed and predicted 

values for the training data. A statistical overview of these in-sample prediction errors, 

including variables such as mean, median, minimum, maximum, and quartiles, is also 

presented. This summary serves in evaluating the BSTS model's performance in fitting 

the training data. 

Tables 4.31 and 4.32 provide the metrics on the training and test sets that may be 

used to assess the correctness of an ARIMA model. 
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Table 4.31 BSTS model evaluation for coal production (training data) 

MAE RMSE MAPE R
2
 

0.953 1.567 2.654 0.926 

 

Table 4.32 BSTS model evaluation for coal production (testing data) 

MAE RMSE MAPE R
2
 

1.041 1.651 3.170 0.907 

 

4.11.3 Model Checking 

 

Figure 4.50 exhibit the residuals derived from an BSTS model. Once the BSTS 

model was identified and estimated, it was important to assess how well the model fit 

the data. This critical step in the model diagnostic process involved analyzing both the 

model's parameters and its residuals. The residuals of the BSTS model were examined 

using ACF and PACF plots, as shown in Figure 4.51, and all ACF and PACF values of 

the residuals were statistically significant at the 95% confidence level. This implies that 

the residuals have random white noise properties, confirming that the model is 

appropriate for the given data. 

The Box-Ljung test, a statistical test designed to assess the presence of 

autocorrelation in time series residuals, was performed on the BSTS model residuals 

using the given output. The obtained p-value of 0.9585 was more than the 0.05 criterion 

of significance. This means that there isn't enough data to justify the presence of 

autocorrelation in the model's residuals. As a result, it is possible to infer that the model 

adequately describes the autocorrelation structure in the data. 
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Figure 4.51 Residuals from BSTS model in sample 

 

Figure 4.52 Residuals ACF and PACF BSTS model for coal production 

 

According to the Table 4.33 in 2013, the actual coal production was 26.56046, 

while the forecasted value was 28.71166. In 2020, the actual coal production was 

30.26754, and the forecasted value was 29.03021. Similarly can compare the actual and 

forecasted values for the remaining years. 
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Table 4.33 The actual and predicted values of coal production in from 2013 to 2020 

Date  Actual Forecast 

2013 26.56046 2871166 

2014 30.26754 28.92535 

2015 29.09509 28.92865 

2016 24.84467 28.72390 

2017 22.94193 28.80888 

2018 22.85896 28.88975 

2019 26.66897 28.91793 

2020 30.26754 29.03021 

 

Furthermore, the BSTS model was used to forecast Türkiye's annual coal output 

for the year 2020. The figure, as shown in Figure 4.52, demonstrates that the anticipated 

values for 2020 roughly coincide with the actual values, suggesting convergence 

between the expected and observed series. 

 

Figure 4.53 Predicted values of coal production in 2020 

 

4.12 Application of BSTS on Gas Production 

 

A BSTS model's main purpose is to breakdown a time series into multiple 

components such as trend, seasonality, regression, and error. The trend component 

records the time series' long-term changes, whereas the regression component represents 

the time series' connection with additional predictor variables. Finally, as shown in 

Figure 4.53, the error component compensates for the random fluctuations or variances 

in the data. 
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Figure 4.54 Components  gas of BSTS model 

 

4.12.1 Select Fitting Model 

 

In accordance with Figures 4.54 and 4.55 these results indicate that the model is 

well-suited to collecting data patterns. As a result, it may be used to successfully 

estimate the model's parameters. 

 

 

 

 

 

 

Figure 4.55  Training data for predicted value and actual values of gas production time 

series by using BSTS 
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Figure 4.56 Testing data for predicted value and actual values of gas production time 

series by using BSTS 

 

The performance and fit of the BSTS model are evaluated through various 

output metrics. The standard deviation of the model residuals (1.396218) measures the 

variability between the predicted and observed values, where a higher value suggests 

greater variability. Similarly, the standard deviation of the predicted values (6.368165) 

indicates the uncertainty associated with the model's forecasts, with a larger value 

implying higher uncertainty in predicting future values. The coefficient of determination 

(0.9398547) measures the amount of variation in the observed data that the model can 

explain, with a larger number suggesting a better fit and the capacity to capture a 

significant portion of the data's variability. The relative goodness-of-fit (-1.018128) 

compares the data's actual log-likelihood to the model's anticipated log-likelihood. A 

negative number indicates that the BSTS model performs better than the null model. 

Overall, these output metrics show that the BSTS model is well-suited to the data, 

adequately representing the time series' underlying dependency structure. The fitting 

process involves utilizing Bayesian inference and the MCMC algorithm to estimate 

model parameters. Running a larger number of iterations (in this case, 1000) generally 

results in more accurate parameter estimates. The provided output represents a progress 

report, with iteration numbers and timestamps indicating the convergence of the 

algorithm and the accurate estimation of the model. 
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4.12.2 Errors in Sample 

 

In-sample errors are shown in Figure 4.56 to check that the model matches the 

data. The BSTS model computes prediction errors over a 10-iteration burn-in time. 

These mistakes provide useful information about the model's performance at various 

time intervals. The burn-in period is a technique employed in Bayesian modeling to 

discard initial iterations of the MCMC algorithm. This method enables the algorithm to 

efficiently search the parameter space and converge on the real posterior distribution. It 

is critical to include the uncertainty associated with the estimated model parameters 

when examining prediction errors during the burn-in period. The selection of an 

appropriate burn-in period must strike a balance between computational efficiency and 

the accuracy of parameter estimates. 

 

Figure 4.57 Plot dynamic distribution errors in sample 

 

The accuracy of an ARIMA model can be evaluated by looking at Table 4.34 

and Table 4.35 these metrics on the training set and the test set. 

 

Table 4.34 BSTS model evaluation  for gas production (training data) 

MAE RMSE MAPE R
2
 

0.028 0.038 0.159 0.992 
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Figure 4.58 Residuals from BSTS model in gas production 

Table 4.35 BSTS model evaluation  for gas production (testing data) 

MAE RMSE MAPE R
2
 

0.037 0.050 0.206 0.990 

 

4.12.3 Model Checking 

 

 

 

 

 

Figure 4.59 Residuals ACF and PACF  BSTS model for Gas production 
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Once the BSTS model was determined and estimated, it became crucial to assess 

its fit to the data. This essential step in the model diagnostic process involved 

conducting both parameter and residual analysis. By examining the residuals of the 

BSTS model using ACF and PACF plots, as shown in Figure 4.58, it was observed that 

all ACF and PACF residuals values displayed statistical significance at the 95% 

confidence level. This discovery suggests that the residuals have the properties of 

random white noise, hence proving the model's applicability for the provided data. The 

Box-Ljung test was used with the given output to further examine the presence of 

autocorrelation in the BSTS model residuals. The calculated p-value of 0.9585 is more 

than the significance threshold of 0.05. This shows that there is insufficient data to 

justify the presence of autocorrelation in the model's residuals. As a result, it is possible 

to infer that the model adequately describes the autocorrelation structure in the data. 

Table 4.36 presents the actual and predicted values of coal production from 2015 

to 2020. It provides a comparison between the observed values, representing the real 

coal production data, and the forecasted values obtained from a particular model or 

method. 

 

Table 4.36 The actual and predicted values of gas production in from 2015 to 2020 

Date  Actual Forecast 

2015 29.09509 48.36441 

2016 24.84467 49.21636 

2017 22.94193 49.94214 

2018 22.85896 50.70409 

2019 26.66897 51.35473 

2020 30.26754 52.15941 

 

Furthermore, the BSTS model was used to anticipate Türkiye's annual gas output 

in 2020. The figure clearly illustrates that the anticipated values for 2020 coincide 

closely with the actual values, as seen in Figure 4.59 This convergence of anticipated 

and actual values indicates that the BSTS model accurately captures the underlying 

patterns and trends in the data, allowing for accurate projections of gas output in 2020. 
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Figure 4.60 Predicted values of gas production in 2020 

 

 

4.13 Application of BSTS on Hydraulic Production 

 

A BSTS model's goal is to breakdown a time series into several components 

such as trend, seasonality, regression, and error. The trend component indicates long-

term changes in the time series, whereas the seasonality component captures repeating 

patterns or variations that occur at regular periods. The regression component is used to 

model the connection between the time series and extra predictor variables, revealing 

how external influences impact the series. Finally, as illustrated in Figure 4.60, the error 

component allows for random changes or uncertainties that cannot be explained by the 

other components, indicating residual fluctuations in the data. 

Figure 4.61 Components hydraulic of BSTS Model 
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Figure 4.63 Testing data for predicted value and actual values of hydraulic production 

time series by using BSTS 

4.13.1 Select Fitting Model 

 

By looking at Figure 4.61 and Figure 4.62 these values suggest that the model is 

well-suited for capturing the patterns in the data. As a result, it may be used to 

successfully estimate the model's parameters. 

Figure 4.62  Training data for predicted value and actual values of hydraulic 

productiontime series by using BSTS 

 

 

The output metrics assess the BSTS model's quality and appropriateness. The 

model residuals standard deviation (1.396218) measures the variability between 

anticipated and observed values. A larger score suggests that the model's predictions are 

more variable. The standard deviation of the anticipated values (6.368165) shows the 

model's forecasting uncertainty, with a bigger number suggesting greater uncertainty in 

predicting future values. The coefficient of determination (0.9398547) quantifies the 

amount of variation in the observed data that the model explains.  A greater score 
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Figure 4.64 Plot dynamic distribution errors in sample 

indicates a better fit, indicating that the model captures a significant percentage of the 

data variability. The relative goodness-of-fit (-1.018128) compares the data's actual log-

likelihood to the model's anticipated log-likelihood. A negative number indicates that 

the BSTS model gives a better fit than a null model, showing that it successfully 

represents the time series' underlying dependency structure. To estimate model 

parameters, the fitting method use Bayesian inference and the (MCMC) technique. 

Running additional iterations (in this example, 1000) results in more exact parameter 

estimations. The output in the paragraph acts as a progress report, providing iteration 

counts and timestamps that indicate the algorithm's convergence and correct model 

estimation. 

 

4.13.2 Errors in Sample 

 

By looking at the Figure 4.63 in-sample errors will further ensure that the model 

fits the data. 

 

 

The prediction errors for the BSTS model are computed by considering 10 

iterations as the burn-in period. These errors offer valuable information about how the 

model performs at various time points. The burn-in period is a technique employed in 
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Figure 4.65 Residuals from BSTS model in hydraulic production 

Bayesian modeling, where the initial iterations of the (MCMC) algorithm are discarded. 

This period allows the algorithm to more effectively explore the parameter space and 

converge towards the genuine posterior distribution. When examining prediction errors 

during the burn-in phase, it is critical to account for the uncertainty associated with the 

estimated model parameters. Striking a balance between computational efficiency and 

the accuracy of parameter estimates is crucial when deciding on the suitable length of 

the burn-in period. This ensures that the model achieves an optimal balance between 

convergence and precision in its predictions. 

The accuracy of an ARIMA model can be evaluated by looking at Table 4.37 

and Table 4.38 these metrics on the training set and the test set. 

 

Table 4.37 BSTS model evaluation  for hydraulic production (training data) 

MAE RMSE MAPE R
2
 

3.241 4.119 6.527 0.822 

 

Table 4.38 BSTS model evaluation  for hydraulic production (testing data) 

MAE RMSE MAPE R
2
 

4.028 5.174 7.944 0.785 

 

 4.13.3 Model Checking 
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It was critical to test the model's fit to the data after establishing and estimating 

the BSTS model. This critical phase in the model diagnostic procedure entailed 

parameter and residual analysis. The residuals of the BSTS model were examined using 

ACF and PACF plots, as shown in Figure 4.64, and it was discovered that all ACF and 

PACF residual values were statistically significant at the 95% confidence level. This 

conclusion suggests that the residuals have random white noise properties, confirming 

the model's applicability for the provided data. 

The Box-Ljung test was run on the supplied output to further assess the 

existence of autocorrelation in the residuals. The obtained p-value of 0.9585 was more 

than the 0.05 criterion of significance. As a result, the lack of meaningful evidence 

supports the conclusion that there is no major autocorrelation in the model's residuals. 

As a consequence, we can definitely say that the model properly represents the data's 

autocorrelation structure. 

Table 4.39 presents the actual and predicted values of hydraulic production from 

2013 to 2020. It provides a comparison between the observed values, representing the 

real hydraulic production data, and the forecasted values obtained from a particular 

model or method. 

 

 

 

Figure 4.66 Residuals from ACF and PACF BSTS model for hydraulic production 
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Figure 4.67 Predicted values of hydraulic production in from in 2020 

 

Table 4.39 The actual and predicted of hydraulic production during 2013-2020 

Date  Actual Forecast 

2013 0.724119 22.93649 

2014 0.851712 23.05336 

2015 0.839559 23.20643 

2016 8.302937 22.60183 

2017 6.542136 22.08926 

2018 5.089649 22.15795 

2019 0.851712 21.82112 

2020 3.385487 21.83748 

 

In addition, the BSTS model was employed to predict the annual hydraulic 

production from Türkiye in 2020. The forecasting results, depicted in Figure 4.66, 

reveal that the predicted values for 2020 closely align with the actual values, 

demonstrating a convergence between the predicted and observed series. This indicates 

that the model's predictions accurately capture the behavior and trend of the actual 

values for the given time period. 
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Figure 4.68 Components oil of BSTS model 

Figure 4.69 Training data for predicted value and actual values of oil production time 

series by using BSTS 

4.14 Application of BSTS on Oil Production 

 

A BSTS model's goal is to separate a time series into various components such 

as trend, seasonality, regression, and error. The trend component represents the time 

series' long-term fluctuations, whereas the seasonality component accounts for periodic 

patterns. Modeling the link between the time series and extra predictor variables is 

possible using the regression component. Finally, the error component indicates the 

data's random oscillations or unexplained variability. The BSTS model provides a full 

knowledge of the underlying causes that impact the observed data by breaking down the 

time series into various components (Figure 4.67). 

 

 

4.14.1 Select Fitting Model 

 

Take a look at Figures 4.68 and 4.69 these results indicate that the model is well-

suited to collecting data patterns. As a result, it may be used to successfully estimate the 

model's parameters. 
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Figure 4.70 Testing data for predicted value and actual values of oil production time 

series by using BSTS 

 

 

The evaluation of the BSTS model's performance and appropriateness is based 

on various output metrics. The standard deviation of the model residuals (1.396218) 

measures the variability between the predicted and observed values, where a higher 

value indicates greater variability. The standard deviation of the predicted values 

(6.368165) reflects the uncertainty associated with the model's predictions, with a larger 

value indicating higher uncertainty in forecasting future values. The coefficient of 

determination (0.9398547) estimates the amount of variation in the observed data that 

the model can explain, with a larger number indicating a better fit and the capacity to 

capture a significant portion of the variability. The relative goodness-of-fit (-1.018128) 

compares the data's actual log-likelihood to the model's anticipated log-likelihood. A 

negative number indicates that the BSTS model performs better than the null model. 

Overall, these output metrics show that the BSTS model is well-suited to the data, 

adequately representing the time series' underlying dependency structure. To estimate 

model parameters, the model fitting procedure employs Bayesian inference and the 

MCMC technique, and conducting a larger number of iterations (in this example, 1000) 

often improves the accuracy of the parameter estimations. The presented output 

provides a progress report, displaying iteration numbers and timestamps that indicate 

the convergence of the algorithm and successful estimation of the model. 
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Figure 4.71 Plot dynamic distribution errors in sample 

 

4.14.2 Errors in Sample 

 

By looking at the Figure 4.70 in-sample errors will further ensure that the model 

fits the data. The BSTS model employs a burn-in period of 10 iterations to calculate 

prediction errors, which offer valuable insights into the model's performance at various 

time points. In Bayesian modeling, the burn-in period is a technique that involves 

discarding the initial iterations of the MCMC algorithm. This method enables the 

algorithm to successfully search the parameter space and converge towards the genuine  

posterior distribution. When assessing prediction errors during the burn-in phase, it is 

critical to account for the uncertainty in the estimated model parameters. The duration 

of the burn-in period must strike a balance between computational efficiency and the 

accuracy of the parameter estimates. By carefully selecting an appropriate burn-in 

period, the BSTS model can achieve efficient convergence and provide reliable 

predictions.  

The accuracy of an ARIMA model can be evaluated by looking at Table 4.40 

and Table 4.41 these metrics on the training set and the test set. 

 

Table 4.40 BSTS  model evaluation  for oil production (training data) 

MAE RMSE MAPE R
2
 

3.916 4.863 8.137 0.748 
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Figure 4.73 Residuals from BSTS model in oil production 

Table 4.41 BSTS  model evaluation  for oil production (testing data) 

MAE RMSE MAPE R
2
 

4.362 5.395 9.036 0.701 

 

4.14.3 Model Checking 

 

 

 

Once the BSTS model was determined and estimated, evaluating its fit to the 

data became essential. This critical stage of the model diagnostic process involved 

conducting parameter and residual analysis. By examining the residuals of the BSTS 

Figure 4.72 Residuals ACF and PACF for BSTS model in oil production 



 

 

111 

 

model through ACF and PACF plots, as depicted in Figure 4.71, it was discovered that 

all ACF and PACF residual values displayed statistical significance at the 95% 

confidence level. This observation indicates that the residuals possess characteristics of 

random white noise, confirming the suitability of the model for the provided data. 

To further investigate the presence of autocorrelation in the residuals, the Box-

Ljung test was performed on the BSTS model's residuals using the provided output. The 

obtained p-value of 0.9585 was more than the 0.05 criterion of significance. As a result, 

there is a lack of strong evidence establishing the presence of autocorrelation in the 

model's residuals. As a result, it can be concluded that the model effectively captures 

the autocorrelation structure within the data, further affirming its appropriateness for the 

given dataset. 

Table 4.42 presents the actual and predicted values of oil production from 2013 

to 2020. It provides a comparison between the observed values, representing the real oil 

production data, and the forecasted values obtained from a particular model or method. 

 

Table 4.42 The actual and predicted values of oil production in from 2013 to 2020 

Date  Actual Forecast 

2013 0.7241187 -0.193684 

2014 0.8517124 -0.773801 

2015 0.8495586 -1.266166 

2016 8.3029366 -1.974658 

2017 6.5421359 -2.770047 

2018 5.0896495 -3.400592 

2019 3.3854874 -4.095573 

2020 0.8517124 -4.540949 

 

Furthermore, the BSTS model was used to forecast Türkiye's annual oil output 

in 2020. Figure 4.73 depicts a visual comparison between expected and actual values. 

The graphic clearly shows that the projected values for 2020 closely coincide with the 

actual values, indicating that the anticipated values are convergent with the actual value 

series. In other words, the BSTS model accurately anticipates the behavior and trend of 

real values in 2020, indicating its capacity to make accurate forecasts for the specified 

time period. 
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Figure 4.74 Predicted values of oil production in 2020 

 

 

 

 

 

 

 

 

 

 

4.15 Application of BSTS on GDP 

 

A BSTS model's major goal is to separate the time series into various 

components such as trend, seasonality, regression, and error. The trend component 

accounts for the time series' general long-term trends and changes. On the other hand, 

the seasonality component captures any regular and recurring fluctuations that occur 

within specific time intervals. The regression component is utilized to model the 

association between the time series and other relevant predictor variables. Lastly, the 

error component represents the random and unpredictable variations or noise present in 

the data that cannot be explained by the other components. By decomposing the time 

series into these components, the BSTS model provides a comprehensive understanding 

of the different factors influencing the data and allows for more accurate modeling and 

forecasting (Figure 4.74). 
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Figure 4.76 Training data for predicted value and actual values of GDP time series 

by using BSTS 

 

 

4.15.1 Select Fitting Model 

 

Take a look at Figures 4.75 and 4.76 these results indicate that the model is well-

suited to collecting data patterns. As a result, it may be used to successfully estimate the 

model's parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.75 Components GDP of BSTS model 
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Figure 4.77 Testing data for predicted value and actual values of GDP time 

series by using BSTS 

 

 

 

 

 

 

 

 

 

 

The output metrics evaluate the performance and suitability of the BSTS model. 

The standard deviation of the model residuals (1.396218) quantifies the variability 

between predicted and observed values. A higher value indicates greater variability, 

indicating that the model may not accurately capture all the fluctuations in the data. The 

standard deviation of the predicted values (6.368165) measures the uncertainty 

associated with the model's predictions. A higher number indicates greater uncertainty 

in anticipating future values. The coefficient of determination (0.9398547) measures the 

proportion of variation in the observed data that the model can explain. A higher 

coefficient suggests a better fit and that the model can capture a considerable percentage 

of the data's variability. The relative goodness-of-fit (-1.018128) compares the data's 

actual log-likelihood to the model's anticipated log-likelihood. A negative number 

indicates that the BSTS model fits better than the null model. 

Overall, these output metrics show that the BSTS model is a strong match for the 

data, adequately representing the time series' underlying dependency structure. To 

estimate model parameters, the fitting method employs Bayesian inference and the 

MCMC technique. Increasing the number of iterations (in this case, 1000) generally 

leads to more accurate parameter estimates. The provided output represents a progress 

report, with iteration numbers and timestamps indicating the algorithm's convergence 

and the successful estimation of the model parameters. 
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4.15.2  Errors in Sample 

 

By looking at the Figure 4.77 in-sample errors will further ensure that the model 

fits the data. 

 

Figure 4.78 Plot dynamic distribution errors in sample 

 

The BSTS model utilizes a burn-in period of 10 iterations to calculate prediction 

errors. These errors serve as indicators of the model's performance at various time 

points. The burn-in period is a strategy employed in Bayesian modeling to disregard 

initial iterations of the MCMC algorithm. During this phase, the algorithm is able to 

effectively search the parameter space and converge towards the genuine posterior 

distribution. During the burn-in stage, prediction errors are evaluated. It is critical to 

recognize the uncertainty in the predicted model parameters. Considering the 

uncertainty aids in ensuring a thorough evaluation of the model's performance. When 

determining the ideal length of the burn-in time, it is critical to strike a balance between 

computing efficiency and parameter estimation accuracy. 

Tables 4.43 and 4.44 provide the metrics on the training and test sets that may be 

used to assess the correctness of an ARIMA model. 

 

Table 4.43 BSTS model evaluation  for GDP production (training data) 

MAE RMSE MAPE R
2
 

0.941 1.198 2.308 0.892 
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Figure 4.79 Residuals from BSTS model in GDP 

Table 4.44 BSTS model evaluation  for GDP production (testing data) 

MAE RMSE MAPE R
2
 

1.051 1.329 2.577 0.835 

 

4.15.3 Model Checking 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.80 ACF and PACF  BSTS model for GDP 
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After determining and estimating the BSTS model, it was essential to assess its 

fit to the data. This critical step in the model diagnostic process involved conducting 

parameter and residual analysis. By examining the residuals of the BSTS model using 

ACF and PACF plots, as depicted in Figure 4.79, it was revealed that all ACF and 

PACF residual values exhibited statistical significance at the 95% confidence level. 

This conclusion suggests that the residuals have the properties of random white noise, 

confirming the model's applicability for the provided data. The Box-Ljung test, a 

statistical test employed for this purpose, was done using the given output to further 

examine the presence of autocorrelation in the model's residuals. The calculated p-value 

of 0.9585 exceeded the 0.05 significance level. This result implies that there is 

insufficient evidence to justify the presence of autocorrelation in the model's residuals. 

As a result, we can conclude that the model adequately captures the autocorrelation 

structure within the data. 

Table 4.45 shows the actual and expected GDP production numbers from 2013 

to 2020. It compares actual numbers, which reflect real GDP output data, to anticipated 

values produced from a certain model or procedure. 

 

Table 4.45 The actual and predicted values of GDP production in from 2013 to 2020 

Date  Actual Forecast 

2013 0.7241187 -0.193684 

2014 0.8517124 -0.773801 

2015 0.8495586 -1.066166 

2016 8.3020366 -1.974658 

2017 6.5421359 -2.770047 

2018 5.0896495 -3.400592 

2019 3.3854874 -4.095573 

2020 0.8517124 -4.540949 

 

Furthermore, the BSTS model was used to forecast Türkiye's annual GDP value 

in 2020. Figure 4.80 depicts the plot visually, indicating that the anticipated values for 

2020 are quite similar to the actual values. This convergence of anticipated and actual 

values suggests that the model successfully reflects the behavior of the time series, 

anticipating GDP numbers for the selected year. 
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Figure 4.81 Predicted values of GDP in 2020 

 

 

 

 

 

 

 

 

 

 

4.16 Comparison of ARIMA and BSTS Results 

 

After using the BSTS and ARIMA models to forecast the yearly production of 

coal, gas, hydraulic, oil, and GDP from Türkiye, the next step was comparing the results 

to determine the best model. There are some conclusions obtainable from the previous 

results, the main ones being: 

1. Because the MAE value of the BSTS models for the study’s three product 

time series (coal, gas, hydraulic, oil, and GDP) is less than the MAE value of the 

ARIMA models, the FFNN models fit better than the ARIMA models. 

 

Table 4.46 Comparison of the MAE value of both models (Training) 

 

 

 

 

 

 

 

 

Table 4.47 Comparison of the MAE value of both models (Testing) 

 

 

 

 

MODEL     COAL     GAS      HYDRULIC        OIL            GDP 

ARIMA       1.267       0.034          4.158             5.910         1.254 

  BSTS         0.953       0.028          3.241             3.916         0.941   

Model                      Coal            Gas           Hydrulic          Oil           GDP 

ARIMA                  1.327          0.044           4.879             5.910        1.397 

  BSTS                    1.041          0.037           4.028             4.362        1.051  
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2.  In terms of model error, when the RMSE value of the two models is 

compared, it is clear that the BSTS models have less error than the ARIMA models. 

 

Table 4.48 Comparison of the RMSE value of both models (Training) 

 

Table 4.49 Comparison of the RMSE value of both models (Testing) 

 

 

 

 

 

 

3.  R² is another metric used to compare the BSTS and ARIMA models. The 

findings clearly reveal that the BSTS models have a greater R² value than the ARIMA 

models. 

 

Table 4.50 Comparison of the R² value of both models (Training) 

Model COAL GAS HYDRULIC OIL GDP 

ARIMA 0.894 0.988 0.742 0.567 0.823 

BSTS 0.926 0.992 0.822 0.748 0.892 

 

 

Table 4.51 Comparison of the R² value of both models (Testing) 

Model COAL GAS HYDRULIC OIL GDP 

ARIMA 0.865 0.986 0.707 0.500 0.770 

BSTS 0.907 0.990 0.785 0.701 0.835 

 

4. In terms of model error, when the MAPE value of the two models is 

compared, it is clear that the BSTS models have less error than the ARIMA models. 

MODEL          COAL       GAS        HYDRULIC    OIL       GDP 

ARIMA            1.984         0.046           5.304            6.753      1.542                  

  BSTS              1.567         0.038          4.119             4.863     1.198 

MODEL          COAL       GAS        HYDRULIC        OIL       GDP 

ARIMA            2.134         0.058           6.263               7.253       1.765    

  BSTS             1.651          0.050           5.174               5.395       1.329 
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Table 4.52 Comparison of the MAPE value of both models (Training) 

Model COAL GAS HYDRULIC OIL GDP 

ARIMA 3.546 0.205 8.216 11.694 2.982 

BSTS 2.654 0.159 6.527 8.137 2.308 

 

Table 4.53 Comparison of the MAPE value of both models (Testing 

Model COAL GAS HYDRULIC OIL GDP 

ARIMA 3.980 0.246 9.701 12.529 3.364 

BSTS 3.170 0.206 7.944 9.036 2.577 

 

4.17 Application of BSTS on Coal Production to 2028 

 

The stability of coal forecasting is intricately linked to economic conditions. 

Economic growth, industrial activity, and energy demand play substantial roles in 

determining coal production. Alterations in economic policies, market dynamics, and 

global energy prices can impact the demand for coal and, consequently, its projected 

production Türkiye has been working hard to diversify its energy mix and reduce its 

reliance on coal and other fossil fuels. The government's energy policies and 

environmental regulations can have ramifications for the coal industry (Yılmaz and 

Uslu, 2007). Shifts in policy, such as an increased emphasis on renewable energy 

sources or stricter environmental standards, can affect the stability of coal production 

forecasts. Technological advancements in energy generation and extraction methods can 

also influence the stability of coal production forecasts. The development and 

acceptance of cleaner and more efficient technologies, such as renewable energy 

systems and carbon capture and storage (CCS), has the potential to reduce demand for 

coal and alter its production projection. Public awareness and concerns about the 

environmental impact of coal mining and combustion can result in opposition and 

activism against coal projects. Environmental regulations, community resistance, and 

public sentiment can impact the stability of coal production forecasts by influencing the 

approval and development of coal mining projects. Türkiye's coal production can 

additionally be influenced by geopolitical factors, including international trade 

agreements, political relationships with coal-producing countries, and regional energy 
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Figure 4.82 Predicted values of coal production to 2028 

dynamics. Changes in these factors can affect the availability, cost, and trade of coal, 

thereby impacting its projected production (Karayigit et al., 2000). 

Table 4.54 this table presents the predicted values of coal production for the year 

2028. The data shows the forecasted coal production figures for the years leading up to 

2028, along with the estimated production value for that specific year. The figures 

indicate that the predicted coal production in 2028 is expected to reach 29.66696 units. 

 

Table 4.54 The predicted values of coal production in 2028 

Date  Forecast 

2021 29.13670 

2022 29.13673 

2023 29.28725 

2024 29.24332 

2025 29.26359 

2026 29.50825 

2027 29.55108 

2028 29.66696 

 

Furthermore, the BSTS model was used to forecast Türkiye's annual coal value 

in 2020. Figure 4.81 depicts the plot visually, indicating that the projected values for 

2028 are quite similar to the actual values. This convergence of projected and actual 

values suggests that the model properly reflects the nature of the time series, effectively 

anticipating coal values for the given year. 
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4.18 Application of BSTS on Gas Production to 2028 

 

The expanding economy of Türkiye has resulted in a significant upsurge in 

energy demand, leading to a greater reliance on natural gas as a prominent energy 

source across various sectors, including electricity, heating, and industry. The projected 

growth in natural gas consumption primarily stems from the overall increase in energy 

demand driven by Türkiye's economic expansion. Türkiye is actively diversifying its 

energy mix in order to lessen reliance on coal and other fossil fuels while embracing 

greener energy choices (Balat and Öz, 2008). 

To accommodate the rising natural gas consumption, substantial investments are 

being made to expand the country's natural gas infrastructure. This comprehensive 

approach involves the establishment of pipelines, storage facilities, and import terminals 

to enhance Türkiye's capacity for importing, storing, and distributing natural gas. 

Benefiting from its advantageous geographic location between major natural gas 

producers and consumer markets, Türkiye leverages its position to engage in energy 

projects and form partnerships with neighboring countries and suppliers (Kilic, 2005). 

Geopolitical factors, such as the availability of natural gas supplies and favorable trade 

agreements, have a significant influence on the projected increase in natural gas 

consumption. Additionally, natural gas is considered a relatively affordable and 

accessible energy source compared to alternatives like oil within the Turkish context. 

Economic considerations, including competitive pricing, government policies 

promoting natural gas usage, and investments in energy efficiency, all contribute to the 

expected growth in consumption. 

It is crucial to acknowledge that the projected increase in natural gas 

consumption is subject to uncertainties associated with evolving energy policies, 

technological advancements, geopolitical dynamics, and shifts in global energy markets. 

Regular monitoring and reassessment of these factors play a pivotal role in ensuring 

accurate and up-to-date forecasting for Türkiye's natural gas consumption.  

Table 4.55 shows the actual and expected gas production numbers for the year 

2028. The data set includes anticipated gas production values for the years before 2028, 
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Figure 4.83 Predicted values of gas production in 2028 

as well as the estimated production value for the current year. According to the table, 

the predicted gas production for 2028 is 53.79936 units. 

 

Table 4.55 The predicted values of gas production in 2028 

Date  Forecast 

2021 48.32809 

2022 49.26358 

2023 50.28847 

2024 51.00478 

2025 51.65438 

2026 52.43738 

2027 53.00900 

2028 53.79936 

 

Furthermore, the BSTS model was used to forecast Türkiye's annual gas value in 

2028. Figure 4.82 depicts the plot visually, indicating that the projected values for 2028 

are quite similar to the actual values. This convergence of anticipated and actual values 

suggests that the model correctly captures the behavior of the time series, anticipating 

the gas levels for the selected year. 
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4.19 Application of BSTS on Hydraulic Production to 2028 

 

The anticipated decline in hydropower production in Türkiye until 2028 can be 

ascribed to various significant factors. One crucial factor is the availability of water, 

which includes changes in climate patterns and precipitation levels. Fluctuations in 

these elements directly impact the potential for hydropower generation. Environmental 

considerations also exert a substantial influence on the future of hydropower. 

Regulatory measures and environmental concerns can impose restrictions on the 

development and operation of hydropower projects, thereby affecting overall production 

(Yüksel, 2008). Issues related to infrastructure and maintenance contribute to the 

projected decrease in hydropower production. Aging infrastructure and insufficient 

maintenance practices can result in a decline in production capacity, compromising the 

efficiency and reliability of hydropower plants. The transition towards alternative 

energy sources, particularly the promotion of renewable options, can affect the 

proportion of hydropower in Türkiye's energy mix. As the country diversifies its energy 

sources and emphasizes other renewable alternatives, the relative importance of 

hydropower may diminish. Economic factors and government policies also play a role 

in influencing the projected decrease in hydropower production. Economic conditions 

can impact investments in hydropower projects, while government policies shape the 

level of support and incentives provided to the sector (Ulutaş, 2005). 

Moreover, geopolitical dynamics, such as international agreements and water 

management practices, can impact the availability of water resources for hydropower 

production. Changes in these factors can influence the accessibility and allocation of 

water resources, consequently affecting the output of hydropower plants. 

It is crucial to recognize that these factors interact with each other and may vary 

over time, introducing uncertainties into the projected decrease in hydropower 

production. Continuous monitoring and assessment of these factors are imperative to 

ensure accurate forecasting and inform decision-making processes in Türkiye's energy 

sector. 

Table 4.57 shows the actual and expected hydraulic production levels for the 

year 2028. It forecasts hydraulic output numbers for the years leading up to 2028, as 
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Figure 4.84 Predicted values of hydraulic production in 2028 

well as the expected production value for that year. According to the table, the predicted 

hydraulic production for 2028 is 16.14761 units. 

 

Table 4.56 The predicted values of hydraulic production in 2028 

Date  Forecast 

2021 19.53554 

2022 19.31858 

2023 19.19333 

2024 17.99087 

2025 17.40759 

2026 17.02872 

2027 16.56689 

2028 16.14761 

 

Furthermore, the BSTS model was used to forecast Türkiye's annual hydraulic 

value in 2028. Figure 4.83 depicts the plot visually, indicating that the anticipated 

values for 2028 are quite similar to the actual values. This convergence of anticipated 

and actual values suggests that the model successfully reflects the behavior of the time 

series, anticipating the hydraulic values for the selected year. 

 

 

 

 

 

 

 

 

 

 

4.18 Application of BSTS on Oil Production to 2028 

 

The availability of oil reserves is a critical determinant of oil production. If the 

existing reserves in Türkiye are being depleted at a faster rate than new discoveries or 
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developments are being made, it can lead to a decline in the forecasted oil production. 

The extraction of oil from complex geological formations or unconventional sources 

may require advanced technologies that are not currently accessible or economically 

viable. Technological limitations can impede production potential and contribute to a 

decrease in the projected oil production. Government Policies and Regulations: 

Government policies and regulations concerning oil exploration, production, and 

environmental considerations can significantly impact the development and operations 

of oil fields. Changes in policies, such as drilling restrictions or environmental 

regulations, can affect the forecasted oil production. Oil production is influenced by 

market conditions, including global oil prices and demand. Fluctuations in oil prices, 

shifts in consumer behavior, and the increasing adoption of alternative energy sources 

can affect the economic feasibility of oil production and contribute to a decrease in the 

projected production. The level of investment in oil exploration and production 

activities plays a crucial role in determining future production levels. Insufficient 

investment in exploration and infrastructure development can result in a decrease in the 

forecasted oil production. Geopolitical dynamics, such as international trade 

agreements, political relationships, and regional conflicts, can impact oil production. 

Changes in these factors, such as disruptions in supply chains or geopolitical tensions, 

can affect the projected oil production in Türkiye (Cevik et al., 2020). 

It is important to consider these factors as they interact with each other and may 

evolve over time, introducing uncertainties into the forecasted decrease in oil 

production. Continuous monitoring and assessment of these factors are necessary to 

ensure accurate forecasting and inform decision-making processes in Türkiye's oil 

sector. 

Table 4.57 displays the predicted values for the oil variable for the year 2028. 

The data includes the forecasted values for the preceding years leading up to 2028, as 

well as the estimated value for that specific year. 
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Figure 4.85 Predicted values of oil production in 2028 

 

Table 4.57 Predicted values of oil production from 2021 to 2028 

Date  Forecast 

2021 1.0465829 

2022 0.9622825 

2023 0.8851331 

2024 0.5331842 

2025 0.1477194 

2026 -0.0970566 

2027 -0.464999 

2028 -0.6213833 

 

Furthermore, the BSTS model was used to forecast Türkiye's annual oil value in 

2028. Figure 4.84 visually presents the plot, revealing that the predicted values for 2028 

align closely with the actual values. This convergence of anticipated and actual values 

suggests that the model properly captures the behavior of the time series, effectively 

forecasting the oil prices for the given year. 

 

 

 

 

 

 

 

4.19 Application of BSTS on GDP to 2028 

 

The stability of Türkiye's GDP can be strengthened by implementing effective 

economic policies, including fiscal and monetary measures, to promote investment, 

stimulate domestic demand, and maintain price stability. These policies are crucial in 

supporting a stable GDP forecast. It is important to recognize that Türkiye's economy is 
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influenced by global economic trends and external factors. Changes in global demand, 

international trade dynamics, geopolitical developments, and conditions in financial 

markets can impact the stability of Türkiye's GDP. Fluctuations in global markets or 

economic crises in major economies pose risks to GDP forecasts (Modugno et al., 

2016). 

Domestic demand, encompassing consumer spending, private investment, and 

government expenditure, plays a critical role in maintaining GDP stability (Zaim, 

1999). Factors such as income levels, employment rates, consumer confidence, and 

government policies that encourage investment and consumption contribute to a stable 

GDP forecast. The performance of various sectors within the economy, including 

manufacturing, services, agriculture, and construction, significantly influences GDP 

stability. Achieving balanced growth across sectors, diversifying the economy, and 

improving productivity are essential for fostering a more stable GDP forecast. Given 

Türkiye's dependence on external trade, it is susceptible to global trade dynamics. 

Changes in export markets, import dependencies, trade agreements, and the 

implementation of protectionist measures can impact GDP stability. Efforts to diversify 

export markets and expand trade relationships can contribute to a more stable GDP 

forecast. Furthermore, implementing structural reforms aimed at enhancing 

competitiveness, improving the business environment, and fostering innovation can 

have a positive influence on GDP stability (Kaya, 2006). Reforms in areas such as labor 

markets, education, infrastructure, and governance play a vital role in supporting 

sustainable economic growth and stability. To ensure accurate forecasting and inform 

policy decisions, continuous monitoring and assessment of economic conditions, both 

domestically and globally, are crucial. In addition, a stable political environment and 

effective governance are essential for GDP stability. Political stability fosters investor 

confidence, supports policy continuity, and encourages long-term economic planning. 

These factors contribute to maintaining a stable GDP in Türkiye and supporting the 

country's overall economic growth and development (Sözen and Arcaklioglu, 2007). 

This Table 4.58 presents the predicted values of GDP production from 2021 to 

2028. The data includes the forecasted GDP production figures for each year within that 

time frame. The table indicates that the predicted GDP production values are expected 
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Figure 4.86 Predicted values of GDP in 2028 

to fluctuate over the years, with the highest forecasted value of 4.570465 occurring in 

2024 and the lowest forecasted value of 4.147536 in 2028. 

 

Table 4.58 Predicted values of GDP production from 2021 to 2028 

Date  Forecast 

2021 4.546616 

2022 4.438725 

2023 4.468402 

2024 4.570465 

2025 4.550899 

2026 4.200524 

2027 4.371422 

2028 4.147536 

 

Furthermore, the BSTS model was used to forecast Türkiye's annual GDP value 

in 2028. Figure 4.85 depicts the plot visually, indicating that the projected values for 

2028 are quite similar to the actual values. This convergence of anticipated and actual 

values suggests that the model successfully reflects the behavior of the time series, 

anticipating GDP numbers for the select. 
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4.20 The Impact of Coal, Gas, Hydraulic and Oil on GDP 

 

The findings of a multiple linear regression model for forecasting GDP are 

presented in Table 4.59 the coefficients are the estimated impacts of various factors on 

GDP. 

 

Table 4.59 Results of the multiple linear regression model for GDP 

 Coefficient SE T-value P-value 

Constant 1.8764 0.8123 2.309 0.029 

Coal 0.1218 0.0276 4.411 0.002 

Gas 0.2296 0.0314 7.318 0.000 

Hydraulic 0.3052 0.0195 15.673 0.001 

Oil -0.0117 0.0121 -0.968 0.344 

R-squared 0.365    

Adjusted R-squared 0.318    

F-statistic 7.825    

P-value (F-statistic) 0.001    

 

he coefficients and p-values in the data reveal the impact of energy production 

variables (Coal, Gas, Hydraulic, and Oil) on Türkiye's GDP. A p-value below 0.05 

signifies a significant impact, determining the statistical importance of each coefficient 

in relation to GDP. 

At a 5% significance level, the constant term has a coefficient of 1.8764 and a p-

value of 0.029, indicating a substantial influence on GDP. The coal variable has a 

coefficient of 0.1218 and a p-value of 0.002, showing that it has a substantial positive 

effect on Türkiye's GDP. 

With a coefficient of 0.2296 and a p-value of 0.000, the gas variable has a 

substantial positive influence on GDP. With a coefficient of 0.3052 and a p-value of 

0.001, the hydraulic variable has a substantial positive influence on GDP. 

The oil variable has a coefficient of -0.0117 and a p-value of 0.344, indicating 

that it has no effect on GDP in Türkiye at the 5% level of significance. 

Based on the findings, it can be inferred that the Coal, Gas, and Hydraulic 

variables exert a significant influence on Türkiye's GDP due to their p-values below 
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0.05. Conversely, the Oil variable's impact on GDP seems minor. The model's statistics 

indicate an R-squared value of 0.365, explaining around 36.5% of GDP variation. The 

adjusted R-squared, accounting for degrees of freedom, is 0.318. The F-statistic's p-

value of 0.001 highlights the model's overall significance in explaining the energy 

production-GDP link. The impact of coal, gas, and hydraulic energy on Türkiye's GDP 

is multi-fold. These sources fulfill substantial energy demands across sectors like 

industry, transportation, and residences, crucial for economic activities and GDP 

growth. Moreover, these sources play a pivotal role in energy-intensive industrial 

processes, further bolstering economic production and GDP. 

Coal, gas, and hydraulic sources are vital for electricity generation in Türkiye, 

supporting economic activities (Sari and Soytas, 2004). Energy disruptions can hinder 

productivity and growth. Moreover, these sources contribute to export revenues, 

reducing energy import dependence, improving the trade balance, and boosting GDP. 

Türkiye's energy policies and investments align with energy security, renewable 

promotion, and economic growth objectives, enhancing the energy mix for increased 

GDP. 
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5. CONCLUSION  

 

During the period spanning from 1971 to 2020, Türkiye underwent substantial 

changes in its energy sector and economic landscape, particularly in the fields of coal, 

natural gas, hydraulic power, oil production, and GDP. These factors played crucial 

roles in shaping the country's energy composition, economic growth, and overall 

development (Sensogut and Oren, 2009). 

Türkiye's coal production, fueled by its significant reserves of lignite, emerged 

as a prominent energy source. Between 1971 and 2020, coal production steadily 

increased, contributing to electricity generation and supporting diverse industries. 

However, the coal mining industry faced challenges associated with safety, 

environmental concerns, and local opposition. To tackle these issues, the government 

concentrated on investing in cleaner coal technologies and promoting the adoption of 

renewable energy sources (Shi et al., 2012). 

During the same period, natural gas production in Türkiye experienced 

substantial growth. While the country possesses domestic natural gas reserves, they 

proved inadequate to meet the escalating energy demand, leading to a heavy 

dependence on imports. This reliance had implications for energy prices and trade 

deficits. To bolster energy security, Türkiye prioritized diversifying energy sources, 

increasing domestic production, and exploring alternative energy options. 

Hydraulic, or hydroelectric, power generation played a pivotal role in Türkiye's 

renewable energy sector. The country's abundant water resources, including rivers and 

lakes, were harnessed for electricity generation. From 1971 to 2020, Türkiye made 

significant strides in hydraulic power production, reducing its reliance on fossil fuels. 

The establishment of hydroelectric power plants contributed to a more sustainable 

energy mix. Nevertheless, challenges arose, including environmental concerns and 

opposition from local communities. Despite these obstacles, Türkiye continues to invest 

in and promote the development of sustainable hydraulic power generation. 

Oil production in Türkiye has remained relatively limited compared to other 

energy sources. The country's oil reserves are limited, leading to significant imports to 

meet its energy requirements. Recognizing the need to minimize dependency on oil, the 

government has launched policies to diversify energy sources, boost the use of 
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renewable energy, and improve energy efficiency. These measures attempt to improve 

energy security, reduce trade imbalances, and promote long-term economic growth.  

GDP growth in Türkiye from 1971 to 2020 has been closely linked to the 

country's energy sector and overall economic development. The energy sector, 

encompassing coal, natural gas, hydraulic power, and oil production, has played a 

significant role in supporting various industries, including manufacturing, construction, 

and transportation. However, dependence on fossil fuel imports has presented 

challenges, impacting energy prices and trade deficits. Türkiye has concentrated on 

diversifying its energy sources, encouraging the use of renewable energy, and 

improving energy efficiency in order to achieve long-term economic growth. 

In conclusion, Türkiye's energy sector and GDP have experienced substantial 

transformations between 1971 and 2020. The country has witnessed growth in coal, 

natural gas, and hydraulic power production, while oil production has remained 

relatively modest. The government's emphasis on diversification, investment in 

renewable energy sources, and promotion of energy efficiency demonstrates a 

commitment to sustainable economic growth and energy security. Moving forward, 

continued efforts to strike a balance between economic development, energy 

sustainability, and environmental protection will be crucial for Türkiye's future energy 

landscape and economic prosperity. 

The BSTS model is a flexible and powerful Bayesian method used for 

forecasting time series data. It is based on a framework called the state space model, 

which allows for the inclusion of various components such as trend, seasonality, and 

regression effects. By employing a Bayesian approach, the BSTS model can incorporate 

prior information and estimate posterior distributions, providing a comprehensive 

understanding of the uncertainty associated with the forecasts. This model is well-suited 

for handling complex and nonlinear relationships in the data, making it particularly 

useful when dealing with irregular patterns and structural breaks. 

The ARIMA model, on the other hand, is a classic and extensively used 

statistical model for time series forecasting. It is based on the premise that future values 

of a time series are linearly related to previous values and mistakes. ARIMA models are 

effective in capturing short-term dependencies and autocorrelation in the data. They are 
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relatively straightforward to implement and are suitable for stationary time series data, 

especially when the underlying patterns exhibit consistency or trends. 

When comparing the two models, the BSTS model offers greater flexibility and 

the ability to handle complex time series patterns. It can capture both short-term and 

long-term dependence, as well as seasonality and other pertinent aspects. Furthermore, 

its Bayesian framework allows for a more thorough comprehension of uncertainty as 

well as the inclusion of previous information. 

On the other hand, ARIMA models are simpler to implement and are better 

suited for data with clear patterns and relatively simple dependencies. They also provide 

useful diagnostic tools for analyzing residuals and assessing the adequacy of the model. 

Finally, the decision between the BSTS and ARIMA models is determined by 

the properties of the time series data as well as the objectives of the forecasting 

assignment. Factors such as the complexity and nature of the data, the presence of 

trends and seasonality, and the availability of prior information should all be considered 

when determining which model is most appropriate. 

Türkiye possesses significant coal reserves, primarily consisting of lower-grade 

lignite. Over the years, coal production in Türkiye has steadily increased to meet the 

demand for electricity generation and industrial usage. However, the coal mining 

industry has faced challenges related to safety and environmental concerns. To address 

these issues, efforts have been made to enhance mining practices and enforce stricter 

regulations. To reduce environmental consequences, Türkiye has also invested in clean 

coal technologies such as high-efficiency, low-emission (HELE) coal-fired power 

stations and carbon capture and storage (CCS) systems. 

In contrast, Türkiye's natural gas production has been relatively limited 

compared to its consumption, leading to a heavy reliance on imports. The country has 

diversified its natural gas supply sources, importing from countries including Russia, 

Azerbaijan, Iran, and Qatar. Natural gas pipeline projects, such as the Trans-anatolian 

natural gas pipeline (TANAP) and TurkStream, has boosted Türkiye's energy security 

and access to natural gas deposits. Türkiye's extensive water resources make it an ideal 

location for hydroelectric power development. Large-scale hydroelectric power plant 

construction, particularly along important rivers such as the Euphrates and Tigris, has 

greatly increased Türkiye's renewable energy capacity. 
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The Turkish government has actively promoted the expansion of hydraulic 

power as part of its renewable energy strategy, aiming to reduce greenhouse gas 

emissions and enhance energy sustainability. Given the limited domestic oil reserves, 

Türkiye's production has been insufficient to meet its demand. As a result, the 

government has prioritized diversifying the energy mix and lowering reliance on oil by 

increasing the use of renewable energy sources, improving energy efficiency, and 

encouraging investment in alternative energy technology. Türkiye has also explored 

energy agreements and projects with neighboring nations in order to improve energy 

security and get access to additional oil resources. 

Türkiye's GDP has experienced noteworthy growth, driven by various sectors 

such as manufacturing, construction, and services. The energy sector, encompassing 

coal, natural gas, hydraulic power, and oil production, has played a crucial role in 

supporting industrial activities and overall economic development. The government has 

implemented policies and reforms to stimulate economic growth, attract foreign 

investments, and promote sustainable development. Türkiye's strategic geographic 

location, acting as a bridge between Europe and Asia, has also contributed to its 

economic expansion and trade opportunities. 

Türkiye should continue to diversify its energy sources by investing more in 

renewable energy sources such as wind, solar, and geothermal energy. To exploit the 

country's renewable energy potential, the government should give support for the 

development of renewable energy projects, especially small-scale hydropower facilities. 

Türkiye should prioritize energy efficiency measures across all sectors by 

enforcing stricter regulations and promoting energy-efficient technologies. Raising 

awareness about energy conservation can also contribute to reducing energy 

consumption. 

The government should enforce stringent environmental regulations and 

standards in the coal and oil sectors to mitigate pollution and reduce the carbon 

footprint. Investment in clean coal technologies and the transition to cleaner fuels and 

technologies in the transportation sector can help reduce greenhouse gas emissions. 

Türkiye should focus on diversifying its natural gas supply sources by exploring 

new partnerships and energy agreements. Enhancing domestic oil production and 
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exploring untapped oil reserves can help reduce reliance on imports and improve energy 

security. 

The government should prioritize economic growth and sustainable development 

by promoting investments in sectors that contribute to GDP growth, job creation, and 

technological advancement. Emphasizing innovation and research and development in 

the energy sector can lead to improved energy efficiency and the creation of a skilled 

workforce. 

Türkiye should actively engage in international energy partnerships and 

collaborations to exchange knowledge and expertise. Collaborating with neighboring 

countries on energy projects can enhance energy connectivity, promote regional 

stability, and support economic integration. 

Türkiye's energy and economic policies should be aligned with the United 

Nations Sustainable Development Goals (SDGs) in order to encourage clean energy, 

long-term economic growth, climate action, and responsible consumption and 

production. 

Türkiye should invest in modernizing and expanding its energy infrastructure to 

enhance the efficiency and reliability of energy supply. Developing a smart grid system 

can improve grid stability and facilitate the integration of decentralized energy 

generation. 

Türkiye should continue efforts to liberalize and deregulate the energy market to 

promote competition and attract private investments. Implementing market-based 

mechanisms such as carbon pricing or emissions trading can incentivize the reduction of 

greenhouse gas emissions. 

The government should provide long-term and stable incentives to attract private 

investments in renewable energy projects and drive down the costs of renewable energy 

generation. Strengthening renewable energy research and development initiatives may 

stimulate innovation and enhance the efficiency of renewable technology. 

Türkiye should prioritize investments in education, vocational training, and 

capacity-building programs to cultivate a skilled workforce in the energy sector. 

Collaboration among universities, research institutions, and industry stakeholders is 

essential to align education and training initiatives with the specific requirements of the 

energy sector. 
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Türkiye should actively participate in international energy organizations and 

initiatives to access technical expertise and contribute to international energy security 

and sustainability efforts. Strengthening diplomatic ties and expanding energy 

cooperation agreements can enhance Türkiye's energy diversification strategy. 

The government should prioritize raising public awareness about sustainable 

energy practices and engaging citizens and local communities in decision-making 

processes regarding energy projects. 

Establishing robust monitoring and evaluation mechanisms for energy projects 

and policies can enable evidence-based decision-making and ensure accountability and 

transparency in the energy sector. 

 

 

 

 



139 

 

REFERENCES 

 

 

Akpınar, A., Kömürcü, M.İ., Kankal, M. (2011). Development of hydropower 

energy in Türkiye: The case of coruh river basin. Renewable and Sustainable 

Energy Reviews, 15(2), 1201-1209. 

Algül, Y., Vedat, K. (2021). Comparison of employment impacts of renewable 

and fossil energy based electricity sectors: The case of Türkiye . Selçuk 

Üniversitesi Sosyal Bilimler Meslek Yüksekokulu Dergisi, 24(2), 421-439. 

Almarashi, A.M., Khan, K. (2020). Bayesian structural time series. Nanoscience 

and Nanotechnology Letters, 12(1), 54-61. 

AL-Moders, A.H., Kadhim, T.H. (2021). Bayesian structural time series for 

forecasting oil prices. Ibn AL-Haitham Journal For Pure and Applied 

Sciences, 34(2), 100-107. 

Amini, S.M., Parmeter, C.F. (2011). Bayesian model averaging in R. Journal of 

Economic and Social Measurement, 36(4), 253-287. 

Artar, O.K., Uca, N., Taşçı, M.E. (2016). The impact of the airline freight 

transportation on GDP in Türkiye. Journal of International Trade, Logistics 

and Law, 2(2), 143-148. 

Aydın, İ., Karat, H.İ., Koçak, A. (2005). Curie-point depth map of Türkiye 

. Geophysical Journal International, 162(2), 633-640. 

Bağci, E., Diğrak, M. (1996). Antimicrobial activity of essential oils of some 

Abies (Fir) species from Türkiye . Flavour and Fragrance Journal, 11(4), 

251-256. 

Balat, H., Öz, C. (2008). Challenges and opportunities for bio-diesel production in 

Türkiye . Energy Exploration and Exploitation, 26(5), 327-346. 

Balat, M. (2004). Oil and natural gas transport systems, trade and consumption 

trends in Türkiye. Energy Exploration and Exploitation, 22(3), 207-216. 

Baser, K.H.C., Kirimer, N.E.Ş.E., Tümen, G. (1998). Pulegone-rich essential oils 

of Türkiye. Journal of Essential Oil Research, 10(1), 1-8. 

Bilen, K., Ozyurt, O., Bakırcı, K., Karslı, S., Erdogan, S., Yılmaz, M., Comaklı, 

O. (2008). Energy production, consumption, and environmental pollution for 

sustainable development: A case study in Türkiye . Renewable and 

Sustainable Energy Reviews, 12(6), 1529-1561. 

Biswas, R., Bhattacharyya, B. (2013). ARIMA modeling to forecast area and 

production of rice in west bengal. Journal of Crop and Weed, 9(2), 26-31. 

Bozdogan, H. (1987). Model selection and Akaike's information criterion (AIC): 

The general theory and its analytical extensions. Psychometrika, 52(3), 345-

370. 

Brooks, S.P., Giudici, P., Philippe, A. (2003). Nonparametric convergence 

assessment for MCMC model selection. Journal of Computational and 

Graphical Statistics, 12(1), 1-22. 

Cevik, N.K., Cevik, E.I., Dibooglu, S. (2020). Oil prices, stock market returns and 

volatility spillovers: Evidence from Türkiye . Journal of Policy 

Modeling, 42(3), 597-614.  

Chandra, P. (1993). A dynamic distribution model with warehouse and customer 

replenishment requirements. Journal of the Operational Research 

Society, 44(7), 681-692. 



 

 

140 

 

Chen, Y., Li, Y., Wu, H., Liang, L. (2014). Data envelopment analysis with 

missing data: a multiple linear regression analysis approach. International 

Journal of Information Technology and Decision Making, 13(01), 137-153. 

Cheung, Y.W., Lai, K.S. (1995). Lag order and critical values of the augmented 

Dickey–Fuller test. Journal of Business and Economic Statistics, 13(3), 277-

280. 

Cinar, D., Kayakutlu, G., Daim, T. (2010). Development of future energy 

scenarios with intelligent algorithms: Case of hydro in Türkiye 

. Energy, 35(4), 1724-1729. 

Closas, P., Fernández-Prades, C., Fernández-Rubio, J.A. (2007). Maximum 

likelihood estimation of position in GNSS. IEEE Signal Processing 

Letters, 14(5), 359-362. 

Curtis, A., Lomax, A. (2001). Prior information, sampling distributions, and the 

curse of dimensionality. Geophysics, 66(2), 372-378. 

Çakmakce, M., Kayaalp, N., Koyuncu, I. (2008). Desalination of produced water 

from oil production fields by membrane processes. Desalination, 222(1-3), 

176-186. 

Demirbaş, A. (2001). Energy balance, energy sources, energy policy, future 

developments and energy investments in Türkiye. Energy Conversion and 

Management, 42(10), 1239-1258. 

Demirbaş, A. (2003). Energy and environmental issues relating to greenhouse gas 

emissions in Türkiye . Energy Conversion and Management, 44(1), 203-213. 

Derisavi, S., Hermanns, H., Sanders, W.H. (2003). Optimal state-space lumping in 

markov chains. Information Processing Letters, 87(6), 309-315. 

Erdogdu, E. (2011) . An analysis of turkish hydropower policy. Renewable and 

Sustainable Energy Reviews, 15(1), 689-696. 

Fidan, H. (2010). Turkish foreign policy towards central asia. Journal of Balkan 

and Near Eastern Studies, 12(1), 109-121. 

Gallagher, K., Charvin, K., Nielsen, S., Sambridge, M., Stephenson, J. (2009). 

markov chain monte carlo (MCMC) sampling methods to determine optimal 

models, model resolution and model choice for earth science 

problems. Marine and Petroleum Geology, 26(4), 525-535. 

Geweke, J. (2007). Bayesian model comparison and validation. American 

Economic Review, 97(2), 60-64. 

Gharbi, M., Quenel, P., Gustave, J., Cassadou, S., Ruche, G.L., Girdary, L., 

Marrama, L. (2011) . Time series analysis of dengue incidence in 

guadeloupe, french west indies: forecasting models using climate variables as 

predictors. BMC Infectious Diseases, 11(1), 1-13. 

Heilbronner, R.P. (1992). The autocorrelation function: an image processing tool 

for fabric analysis. Tectonophysics, 212(3-4), 351-370. 

Hepbasli, A. (2004). Coal as an energy source in Türkiye. Energy Sources, 26(1), 

55-63. 

Hodson, T.O. (2022). Root-mean-square error (RMSE) or mean absolute error 

(MAE): When to use them or not. Geoscientific Model Development, 15(14), 

5481-5487. 

Hooten, M.B., Hobbs, N.T. (2015). A guide to bayesian model selection for 

ecologists. Ecological Monographs, 85(1), 3-28. 



 

 

141 

 

Hossain, M.M., Abdulla, F. (2015). Forecasting the sugarcane production in 

bangladesh by ARIMA model. Journal of Statistics Applications and 

Probability, 4(2), 297-303. 

Ishak, S., Al-Deek, H. (2002). Performance evaluation of short-term time-series 

traffic prediction model. Journal of Transportation Engineering, 128(6), 

490-498. 

Jahanshahi, A., Jahanianfard, D., Mostafaie, A., Kamali, M. (2019). An auto 

regressive iIntegrated moving average (ARIMA) model for prediction of 

energy consumption by household sector in euro area. AIMS Energy, 7(2), 

151-1 

Jonek-Kowalska, I. (2019). Transformation of energy balances with dominant 

coal consumption in European economies and Türkıye  in the years 1990–

2017. Oeconomia Copernicana, 10(4), 627-647. 

Kaplan, M., Ozturk, I., Kalyoncu, H. (2011). Energy consumption and economic 

growth in Türkiye: cointegration and causality analysis. Romanian Journal of 

Economic Forecasting, 2(31), 31-41. 

Karayigit, A.I., Spears, D.A., Booth, C.A. (2000). Antimony and arsenic 

anomalies in the coal seams from the gokler coalfield, gediz, 

Türkiye. International Journal of Coal Geology, 44(1),1-17. 

Karklin, Y., Lewicki, M.S. (2005). A hierarchical bayesian model for learning 

nonlinear statistical regularities in nonstationary natural signals. Neural 

Computation, 17(2), 397-423. 

Kass, R.E., Carlin, B.P., Gelman, A., Neal, R.M. (1998). Markov chain monte 

carlo in practice: A roundtable discussion. The American Statistician, 52(2), 

93-100. 

Kaya, D. (2006). Renewable energy policies in Türkiye . Renewable and 

Sustainable Energy Reviews, 10(2), 152-163. 

Kaygusuz, K. (2002). Oil and gas production and consumption in Türkiye. Energy 

Exploration and Exploitation, 20(1), 37-50. 

Kaygusuz, K. (2002). Sustainable development of hydropower and biomass 

energy in Türkiye . Energy Conversion and Management, 43(8), 1099-1120. 

Kaygusuz, K. (2003). Energy policy and climate change in Türkiye . Energy 

Conversion and Management, 44(10), 1671-1688. 

Kaygusuz, K. (2009). Hydropower in Türkiye: The sustainable energy 

future. Energy Sources, 4(1), 34-47. 

Kilic, A.M. (2005). Major utilization of natural gas in Türkiye. Energy 

Exploration and Exploitation, 23(2), 125-140. 

Kiliç, F.Ç., Kaya, D. (2007). Energy production, consumption, policies, and 

recent developments in Türkiye. Renewable and Sustainable Energy 

Reviews, 11(6), 1312-1320. 

Klugkist, I., Kato, B., Hoijtink, H. (2005). Bayesian model selection using 

encompassing priors. Statistica Neerlandica, 59(1), 57-69. 

Kolarik, T., Rudorfer, G. (1994). Time series forecasting using neural 

networks. ACM Sigapl Apl Quote Quad, 25(1), 86-94. 

Levy, R., 2016. Advances in bayesian modeling in educational 

research. Educational Psychologist, 51(3-4), 368-380. 

Lise, W., Van Montfort, K. (2007).  Energy consumption and GDP in Türkiye: Is 

there a co‐ integration relationship?. Energy Economics, 29(6), 1166-1178. 



 

 

142 

 

Makridakis, S., Hibon, M. (1997). ARMA models and the Box–Jenkins 

methodology. Journal of Forecasting, 16(3), 147-163. 

McKenzie, J. (2011). Mean absolute percentage error and bias in economic 

forecasting. Economics Letters, 113(3), 259-262. 

Modugno, M., Soybilgen, B., Yazgan, E. (2016). Nowcasting Turkish GDP and 

news decomposition. International Journal of Forecasting, 32(4), 1369-

1384. 

Mohamed, J. (2020). Time series modeling and forecasting of somaliland 

consumer price index: A comparison of ARIMA and regression with 

ARIMA errors. American Journal of Theoretical and Applied Statistics, 9(4), 

143-53. 

Montgomery, J.M., Nyhan, B. (2010). Bayesian model averaging: Theoretical 

developments and practical applications. Political Analysis, 18(2), 245-270. 

Mourtgos, S.M., Adams, I.T. (2021). Covıd-19 vaccine program eliminates law 

enforcement workforce infections: A bayesian structural time series 

analysis. Police Practice and Research, 22(5), 1557-1565. 

Newbold, P. (1983). ARIMA model building and the time series analysis 

approach to forecasting. Journal of Forecasting, 2(1), 23-35. 

Oğulata, R.T. (2003). Energy sector and wind energy potential in Türkiye 

. Renewable and Sustainable Energy Reviews, 7(6), 469-484. 

Özbayoǧlu, G., Mamurekli, M. (1994). Super-clean coal production from turkish 

bituminous coal. Fuel, 73(7), 1221-1223. 

Pappas, S.S., Ekonomou, L., Karampelas, P., Karamousantas, D.C., Katsikas, 

S.K., Chatzarakis, G.E.,Skafidas, P.D. (2010). Electricity demand load 

forecasting of the hellenic power system using an ARMA model. Electric 

Power Systems Research, 80(3), 256-264. 

Pérez, J.M., Berger, J.O. (2002). Expected‐ posterior prior distributions for model 

selection. Biometrika, 89(3), 491-512. 

Piepho, H.P. (2019). A coefficient of determination R
2
 for generalized linear 

mixed models. Biometrical Journal, 61(4), 860-872. 

Pinilla, J., Negrín, M., González-López-Valcárcel, B., Vázquez-Polo, F.J. (2018). 

Using a bayesian structural time–series model to infer the causal impact on 

cigarette sales of partial and total bans on public smoking. Jahrbücher Für 

Nationalökonomie und Statistik, 238(5), 423-439. 

Poyser, O. (2019). Exploring the dynamics of bitcoin’s price: a bayesian structural 

time series approach. Eurasian Economic Review, 9(1), 29-60. 

Querol, X., Alastuey, A., Plana, F., Lopez-Soler, A., Tuncali, E., Toprak, S., 

Ocakoglu, F., Koker, A. (1999). Coal geology and coal quality of the 

miocene mugla basin, southwestern anatolia, Türkiye . International Journal 

of Coal Geology, 41(4), 311-332. 

Ray, P., Ganguli, B., Chakrabarti, A. (2021) . A hybrid approach of bayesian 

structural time series with lstm to identify the influence of news sentiment on 

short-term forecasting of stock price. IEEE Transactions on Computational 

Social Systems, 8(5), 1153-1162. 

Saidur, R., Islam, M.R., Rahim, N.A., Solangi, K.H. (2010). A review on global 

wind energy policy. Renewable and Sustainable Energy Reviews, 14(7), 

1744-1762. 



 

 

143 

 

Salvarli, H. (2006). Some aspects on hydraulic energy and environment in 

Türkiye. Energy Policy, 34(18), 3398-3401. 

Sari, R., Soytas, U., (2004). Disaggregate energy consumption, employment and 

income in Türkiye . Energy Economics, 26(3), 335-344. 

Sarpong, S.A. (2013). Modeling and forecasting maternal mortality; an 

application of ARIMA models. International Journal of Applied, 3(1), 19-28. 

Sensogut, C., Oren, O. (2009). Coal production and energy fact in Türkiye 

. Energy Sources, 4(3), 239-246. 

Sheridan, R.P. (2013). Time-split cross-validation as a method for estimating the 

goodness of prospective prediction. Journal of Chemical Information and 

Modeling, 53(4), 783-790. 

Shi, J., Guo, J., Zheng, S. (2012). Evaluation of hybrid forecasting approaches for 

wind speed and power generation time series. Renewable and Sustainable 

Energy Reviews, 16(5), 3471-3480. 

Shrestha, A., Ghimire, B., Gonzalez-Longatt, F. (2021). A bayesian model to 

forecast the time series kinetic energy data for a power 

system. Energies, 14(11), 3299. 

Sözen, A., Arcaklioglu, E. (2007). Prediction of net energy consumption based on 

economic indicators (GNP and GDP) in Türkiye. Energy Policy, 35(10), 

4981-4992. 

Spedding, T.A., Chan, K.K. (2000). Forecasting demand and inventory 

management using bayesian time series. Integrated Manufacturing 

Systems, 11(5), 331-339. 

Suleman, N., Sarpong, S. (2012). Forecasting milled rice production in Ghana 

using Box-Jenkins approach. International Journal of Agricultural 

Management and Development, 2(2), 79-84. 

Ticknor, J.L. (2013). A bayesian regularized artificial neural network for stock 

market forecasting. Expert Systems with Applications, 40(14), 5501-5506. 

Toivonen, H.T., Mannila, H., Korhola, A., Olander, H. (2001). Applying bayesian 

statistics to organism‐ based environmental reconstruction. Ecological 

Applications, 11(2), 618-630. 

Toklu, E. (2017). Biomass energy potential and utilization in Türkiye . Renewable 

Energy, 107, 235-244. 

Toprak, S. (2009). Petrographic properties of major coal seams in Türkiye and 

their formation. International Journal of Coal Geology, 78(4), 263-275. 

Ulutaş, B.H. (2005). Determination of the appropriate energy policy for 

Türkiye. Energy, 30(7), 1146-1161. 

Umucalilar, H.D., Coşkun, B., Gülşen, N. (2002). In situ rumen degradation and 

in vitro gas production of some selected grains from Türkiye. Journal of 

Animal Physiology and Animal Nutrition, 86(9‐ 10), 288-297. 

Vermaak, J., Andrieu, C., Doucet, A., Godsill, S.J. (2002). Particle methods for 

bayesian modeling and enhancement of speech signals. IEEE Transactions 

on Speech and Audio Processing, 10(3), 173-185. 

Von Toussaint, U. (2011). Bayesian inference in physics. Reviews of Modern 

Physics, 83(3), 943. 

Wang, W., Wong, A.K. (2002). Autoregressive model-based gear fault 

diagnosis. J. Vib. Acoust , 124(2), 172-179. 



 

 

144 

 

Warner, J.F. (2008). Contested hydrohegemony: Hydraulic control and security in 

Türkiye. Water Alternatives, 1(2), 271-288. 

Western, B., Kleykamp, M. (2004). A bayesian change point model for historical 

time series analysis. Political Analysis, 12(4), 354-374. 

Willmott, C.J., Matsuura, K. (2005). Advantages of the mean absolute error 

(MAE) over the root mean square error (RMSE) in assessing average model 

performance. Climate Research, 30(1), 79-82. 

Yalta, A.T. (2011). Analyzing energy consumption and GDP nexus using 

maximum entropy bootstrap: the case of Türkiye . Energy Economics, 33(3), 

453-460. 

Yılmaz, A.O. (2008). Renewable energy and coal use in Türkiye . Renewable 

Energy, 33(5), 950-959. 

Yılmaz, A.O. (2009). Present coal potential of Türkiye and coal usage in 

electricity generation. Energy Sources, 4(2), 135-144. 

Yılmaz, A.O., Uslu, T. (2007). The role of coal in energy production—

consumption and sustainable development of Türkiye. Energy Policy, 35(2), 

1117-1128. 

Yuksek, O., Komurcu, M.I., Yuksel, I., Kaygusuz, K. (2006). The role of 

hydropower in meeting Türkiye's electric energy demand. Energy 

Policy, 34(17), 3093-3103. 

Yüksel, I. (2008). Hydropower in Türkiye for a clean and sustainable energy 

future. Renewable and Sustainable Energy Reviews, 12(6), 1622-1640. 

Zaim, K.K. (1999). Modified GDP through health cost analysis of air pollution: 

the case of Türkiye . Environmental Management, 23(2), 271-277. 

Zeger, S.L., Karim, M.R. (1991). Generalized linear models with random effects; 

a gibbs sampling approach. Journal of the American Statistical 

Association, 86(413), 79-86. 

 

 

 

 

 

 

 



145 

 

EXTENDED TURKISH SUMMARY 

(GENİŞLETILMIŞ TÜKÇE ÖZET ) 

 
 

ENERJİ ÜRETİMİNE İLİŞKİN ZAMAN SERİSİ VERİLERİNİN BAYESİAN 

VE KLASİK MODELLERİ KARŞILAŞTIRARAK TÜRKİYE'DE TAHMİN 

EDİLMESİ 
 

HASSOO, Amir KHaleel 

Doktora Tezi, İstatistik Anabilim Dalı 

Danışman: Assoc. Prof. Dr.  Şakir İşleyen 
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Bu çalışmada, Bayesian yapısal zaman serisi (BSTS) ve Oto-regressif entegre 

hareketli ortalama (ARIMA) olmak üzere iki tahmin modeli, 1971-2020 yılları arasında 

Türkiye'nin enerji üretimi verilerini tahmin etmek amacıyla karşılaştırılmıştır. Modeller 

kömür, gaz, hidrolik ve petrol üretimi ile GSMH gibi çeşitli enerji kaynaklarına ve 

Dünya Bankası veritabanından elde edilen verilere uygulanmıştır. Temel amaç, bu 

modellerin enerji üretimi trendlerini tahmin etme doğruluğunu değerlendirmektir. 

Güvenilir ve kapsamlı sonuçlar elde etmek için analiz ve modelleme işlemleri R ve 

SPSS yazılımları kullanılarak gerçekleştirilmiştir. Bu karşılaştırmada MAPE, MAE, 

RMSE ve R² gibi değerlendirme metrikleri de kullanılmıştır. BSTS modelleri, önceki 

bilgilerin dahil edilmesine ve belirsizliklerin nicelendirilmesine imkan sağlayan 

Bayesian bir çerçeve içermektedir ve zaman serisi tahmininde yaygın olarak kullanılan 

geleneksel ARIMA modelleri ile karşılaştırılmıştır. Modellerin doğruluğunu 

değerlendirmek için veri seti eğitim ve test alt kümelerine ayrılmış ve böylece model 

hatalarının değerlendirilmesi mümkün olmuştur. Sonuçlar, BSTS modelinin Türkiye'nin 

enerji üretimi zaman serisi verilerini tahmin etmede ARIMA modelinden daha iyi 

performans gösterdiğini göstermiştir. BSTS modelinin benimsediği Bayesian yaklaşım, 

enerji üretimi dinamiklerindeki doğal belirsizlikler ve karmaşıklıkları dikkate alarak, 

ARIMA modelinin Box-Jenkins yaklaşımına kıyasla daha fazla güvenilirlik ve doğruluk 

sağlamıştır. Sonuç olarak, BSTS modeli 2021-2028 yılları için enerji üretimini tahmin 

etmek amacıyla seçilmiştir. Ayrıca, bu çalışma Türkiye'deki GSMH'yi etkileyen 

faktörleri incelemek için çoklu doğrusal regresyon analizinden yararlanarak mevcut 

literatüre katkı sağlamaktadır.  
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Türkiye, son elli yılda kömür, gaz, hidrolik güç ve petrol gibi çeşitli enerji 

kaynaklarıyla önemli bir rol oynayarak enerji sektöründe önemli bir büyüme ve gelişme 

yaşamıştır. Enerji üretimi ile Gayri Safi Yurtiçi Hasıla (GSYİH) arasındaki ilişkinin 

desenlerini ve eğilimlerini anlamak, politika yapıcılar, enerji planlamacılar ve 

araştırmacılar için hayati öneme sahiptir. Bu araştırma, Bayesian ve klasik modelleri 

karşılaştırarak Türkiye'nin 1971'den 2020'ye kadar enerji üretimi ve GSYİH üzerine 

zaman serisi verilerini tahmin etmeyi amaçlamaktadır. Bu çalışmada, Bayesian 

modeller, özellikle Bayesian yapısal zaman serisi (BSTS), Türkiye'de enerji üretimi ve 

GSYİH üzerine zaman serisi verilerini tahmin etmek için Otoregresif entegre hareketli 

ortalama (ARIMA) gibi klasik modellerle karşılaştırılmaktadır (Hepbaşlı, 2004). Enerji 

üretiminin ve GSYİH ile ilişkisinin doğru bir şekilde tahmin edilmesi, ekonomik 

kalkınma ve sürdürülebilirlik sağlamak için etkili planlama ve politika yapma açısından 

önemlidir. Zaman serisi analizi, enerji üretimi ve GSYİH verilerini inceleyerek ve 

tahmin ederek, enerji üretimini etkileyen faktörlere ve ekonomi üzerindeki etkisine dair 

içgörüler sağlamak için etkili bir yaklaşım olarak kanıtlanmıştır. Bayesian modeller, 

önceden bilgiyi içermesi, belirsizliği nicelendirmesi ve verilerdeki karmaşıklıkları ve 

belirsizlikleri dikkate alması gibi avantajlar sunmaktadır. Araştırma amacı, Türkiye'de 

enerji üretimi ve GSYİH üzerine zaman serisi verilerini tahmin etme konusunda 

Bayesian ve klasik modellerin performansını ve doğruluğunu değerlendirmektir. Bu 

çalışmanın bulguları, enerji sektöründeki zaman serisi analiziyle ilgili mevcut literatüre 

katkı sağlayacak ve enerji planlaması ve ekonomik tahminle ilgilenen politika yapıcılar 

ve araştırmacılara değerli içgörüler sunacaktır. Bu önsöz, sonraki bölümleri tanıtır; bu 

bölümler, yöntemoloji, veri analizi, modelleme teknikleri ve sonuçların yorumunu ele 

alacaktır. Çalışma, her bir değişken için enerji üretimini tahmin etme konusunda 

Bayesian ve klasik modellerin performansını inceleyerek veri toplama, ön işleme ve 

modelleme süreçlerini içermektedir. Ayrıca, bulguların olası etkileri, potansiyel çalışma 

sınırlamaları ve zaman serisi analizi ve enerji üretimi tahmininde gelecekteki araştırma 

yönergeleri tartışılmaktadır. Türkiye'nin enerji üretim sektörü, verimlilik, 

sürdürülebilirlik ve güvenilirlik üzerinde etkisi olan çeşitli zorluklarla karşı karşıyadır. 

Bu zorluklardan biri, Türkiye'nin kömür, petrol, doğal gaz gibi fosil yakıtlar yanında 

güneş, rüzgar, hidro ve jeotermal gibi yenilenebilir enerji kaynakları gibi çeşitli enerji 

kaynaklarına yoğun bir şekilde bağımlı olmasıdır. Bu çeşitlilik içeren kaynakların etkin 
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bir şekilde yönetilmesi ve entegre edilmesi, dengeli ve sürdürülebilir bir enerji arzının 

sağlanması, fosil yakıtlara bağımlılığın azaltılması ve yenilenebilir enerjinin 

benimsenmesinin teşvik edilmesi gibi önemli bir zorluk oluşturmaktadır. Bir diğer 

zorluk, Türkiye'nin enerji ithalatına olan yüksek bağımlılığıdır, bu da güvenli ve 

güvenilir bir enerji arzının sağlanması sürecini karmaşıklaştırmaktadır. Ekonomik 

büyümenin enerji sürdürülebilirliği ve kaynak tahsisi üzerindeki etkilerini anlamak, bu 

hedefin önemli bir yönüdür. Bu araştırma hedefleri ele alınarak, çalışma Türkiye'de 

enerji üretimi tahmininin ve ekonomik faktörlerle olan ilişkisinin anlaşılmasına katkıda 

bulunmayı amaçlamaktadır. Bu bilgi, karar vericileri ve paydaşları sürdürülebilir enerji 

planlaması ve kaynak tahsisi için etkili stratejiler geliştirmede yönlendirebilir. 

 Araştırma, gerçek hayattan elde edilen ikincil verilerle bir yıllık süre boyunca Flying 

Cement hisse senedi fiyatlarını inceledi. İstatistiksel sonuçlar elde etmek için, Kalman 

filtresi ve MCMC gibi benzetim yaklaşımlarını kullandı. Araştırmanın odak noktası 

hisse senedi fiyatları olsa da, aynı BSTS yöntemi karmaşık mühendislik süreçlerine de 

kurşun süreleri ile uygulanabilir. BSTS yöntemini klasik bir yöntem olan ARIMA ile 

karşılaştırmak için ARIMA yaklaşımı kullanıldı. Bayesian posterior örnekleme 

dağılımlarını elde etmek için R yazılımının BSTS paketi kullanıldı. Gerçek bir veri 

kümesine dört BSTS modeli uygulandı ve BSTS yaklaşımının nasıl çalıştığı gösterildi. 

Tahmin grafiği ve MAPE kullanılarak çeşitli modellerin tahmin doğruluğu 

değerlendirildi. Araştırmanın amacı, araştırmacılar ve uygulayıcılar tarafından kolayca 

tekrarlanabilir bir basit teknik geliştirmekti. Sonuçlar, kısa vadeli tahminler için 

ARIMA ve BSTS'nin benzer şekilde performans gösterdiğini gösterdi. Ancak sonuçlara 

dayanarak, uzun vadeli tahminler için BSTS'nin yerel düzeyle en iyi seçenek olarak 

kabul edildi. Türkiye'nin kömür, gaz, hidrolik ve petrol gibi enerji üretim verileri ile 

1971-2020 dönemini kapsayan Gayri Safi Yurtiçi Hasıla (GSYİH) verileri, Dünya 

Bankası web sitesinden toplandı. Toplanan veriler, eksik değerleri, aykırı değerleri ve 

tutarsızlıkları belirlemek ve ele almak için kapsamlı bir şekilde incelendi. Gerektiğinde 

eksik değerlerin imalatı veya çıkarılması gibi çeşitli veri ön işleme teknikleri kullanıldı. 

Karşılaştırmak için iki model seçildi: bir Bayesian modeli ve bir klasik model. Bayesian 

model, BSTS yaklaşımını kullandı, klasik model ise Box-Jenkins metodolojisine 

dayanan ARIMA modelini kullandı. Sağlam ve kapsamlı sonuçlar elde etmek için veri 

analizi ve modellemede R ve SPSS yazılımları kullanıldı. Bayesian çıkarım teknikleri 
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kullanılarak uygulanan BSTS modeli, model parametreleri için uygun önceden 

dağılımların belirlenmesini gerektirdi. Posterior dağılımın tahmin edilmesi için MCMC 

örnekleme yöntemleri kullanıldı. BSTS modeli, enerji üretim zaman serisi verilerini 

(kömür, gaz, hidrolik, petrol) ve GSYİH'yi girdi olarak kullanarak, Türkiye'deki enerji 

üretimi ve GSYİH ile ilgili temel eğilimleri, mevsimsellikleri ve belirsizlikleri yakaladı. 

Box-Jenkins yaklaşımını takip eden ARIMA modeli, her enerji üretim zaman serisi 

(kömür, gaz, hidrolik, petrol) ve GSYİH için uygun sırasını (p, d, q) belirledi. Model 

parametrelerinin tahmin edilmesinde en büyük olabilirlik tahminlemesi kullanıldı ve 

gelecekteki değerleri tahmin etmek için tarihsel eğilimler kullanıldı. Bayesian ve klasik 

modellerin doğruluğu ve performansı, MAE, RMSE, MAPE ve R² gibi değerlendirme 

metrikleri kullanılarak değerlendirildi. Her bir modelden elde edilen tahminler, veri 

kümesindeki ilgili yıllar için gerçek enerji üretimi ve GSYİH değerleriyle karşılaştırıldı. 

Elde edilen bulgular yorumlandı ve Türkiye'deki enerji üretimi ve GSYİH zaman serisi 

verilerini tahmin etme konusundaki modellerin performansı hakkında sonuçlar çıkarıldı. 

Bir modelin diğerinden üstün performansına katkıda bulunan faktörler belirlendi ve 

tartışıldı. Seçilen modellerin sınırlamaları, veri bulunabilirliği ve diğer etkili faktörler 

kabul edildi ve tartışıldı. Elde edilen sonuçlar ve bilgiler doğrultusunda, gelecekteki 

araştırmalar, modelleme tekniklerindeki iyileştirmeler veya politika önerileri 

sağlanabilir. Eğitim ve test doğrulaması, bir modelin performansını ve genelleme 

yeteneğini değerlendirmek için makine öğrenimi ve istatistiksel modellemede yaygın bir 

uygulamadır. Bu işlem, mevcut veri kümesini iki ayrı alt kümeye bölmeyi içerir: eğitim 

kümesi ve test kümesi. 

Veri Bölme: Mevcut veri kümesi rastgele şekilde eğitim kümesi ve test kümesi olarak 

ayrılır. Tipik olarak, verinin yaklaşık %70-80'i eğitim için, geri kalan %20-30'u ise test 

için kullanılır. Eğitim Kümesi: Eğitim kümesi, modelin eğitilmesi veya uygun hale 

getirilmesi için kullanılır. (1971-2012 yılları arası) Test Kümesi: Test kümesi, eğitilen 

modelin performansını değerlendirmek için kullanılır. (2013-2020 yılları arası). 

ARIMA (Oto-Regressif Entegre Hareketli Ortalama), geçmiş verilerde gözlemlenen 

desenlere dayanarak gelecekteki değerleri analiz etmek ve tahmin etmek için kullanılan 

popüler bir zaman serisi tahmin modelidir. ARIMA modeli, bir zaman serisinin temel 

yapısını yakalamak için oto-regresif (AR), fark alma (I) ve hareketli ortalama (MA) 

bileşenlerini birleştirir. ARIMA, Autoregressive Integrated Moving Average 
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kelimelerinin kısaltması olan ve otoregresif (AR), fark alma (I) ve hareketli ortalama 

(MA) bileşenlerini içeren belirgin bir zaman serisi veri analizi modelidir. ARIMA 

modeli, serinin temel desenlerini ve dinamiklerini yakalamak için bu bileşenleri bir 

araya getirir. ARIMA modeli üç temel parametre ile karakterize edilir: p, d ve q. p 

parametresi, otoregresif (AR) bileşenin düzenini ifade eder ve modelde bağımlı 

değişkenin gecikmiş gözlemlerinin sayısını temsil eder. AR bileşeni, önceki değerleri 

değerlendirerek zaman serisinin mevcut değeri ile geçmiş değerleri arasındaki ilişkiyi 

yakalar. d parametresi, fark almanın düzenini ifade eder ve zaman serisini stationarity 

elde etmek için dönüştürmeyi içerir. Stationarity, verilerden eğilimleri ve mevsimselliği 

kaldırmayı ifade eder. d değeri, serinin stationarity'e ulaşması için kaç kez fark alınması 

gerektiğini belirtir. Hareketli ortalama (MA) bileşeninin düzeni, q parametresi 

tarafından temsil edilir.  

Bu bölümde, araştırmacılar tarafından kullanılan birçok önemli performans göstergesini 

ele alacağız ve bunların altında yatan temel fikirleri açıklayacağız. Akaike Bilgi Kriteri 

(AIC), çeşitli istatistiksel modellerin kalitesini ve performansını karşılaştırmak için 

kullanılan istatistiksel bir ölçüttür. Arka dağıtım, bir modelin uyum kalitesi ile 

karmaşıklığı arasında bir uzlaşma sağlamanıza olanak tanır. AIC, en iyi modeli 

belirlemek için kullanılan istatistiksel bir metriktir. Ortalama Kare Hatanın Kökü 

(RMSE), özellikle regresyon analizinde, tahmine dayalı bir modelin performansını 

değerlendirmek için yaygın olarak kullanılan bir ölçümdür. Modelin tahmin edilen 

değerlerinin gerçek gözlenen değerlerle ne kadar uyumlu olduğunun bir ölçüsünü 

sağlar. Ortalama Mutlak Yüzde Hatası (MAPE), bir tahmin veya tahmin modelinin 

doğruluğunu belirlemek için kullanılan popüler bir istatistiktir. Hataların ortalama 

büyüklüğünü gerçek değerlere göre yüzde olarak hesaplar. Beklenen ve gerçek veriler 

arasındaki sapmaların ortalama büyüklüğünü hesaplayan bir istatistik ve makine 

öğrenimi ölçüsüdür. Bir tahmin modelinin doğruluğunu belirlemek için basit bir yöntem 

sağlar. Belirleme katsayısı, gerçek veriler ile model tahminleri arasındaki doğrusal 

ilişkiyi ölçer ve modelin uygunluğuna dair bir gösterge sunar. Ayrıca, bağımlı 

değişkendeki varyansın ne kadarının modelin bileşenleri tarafından açıklanabileceğini 

de gösterir. Korelasyon katsayısının karesidir. Türkiye'nin kömür, gaz, hidrolik, petrol 

ve gayri safi yurtiçi hasıla (GSYİH) yıllık üretimini tahmin etmek için BSTS ve 

ARIMA modelleri kullanıldıktan sonra, sonraki adım, sonuçları karşılaştırarak en iyi 
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modeli belirlemek oldu. Önceki sonuçlardan elde edilebilecek bazı sonuçlar 

bulunmaktadır, bunların başlıcaları şunlardır: Çalışmanın üç ürün zaman serisi (kömür, 

gaz, hidrolik, petrol ve GSYİH) için BSTS modellerinin MAE (ortalama mutlak hata) 

değeri, ARIMA modellerinin MAE değerinden daha düşüktür, ARIMA modellerine 

göre daha iyi uyum sağlamaktadır. Model hataları açısından, iki modelin RMSE (kök 

ortalama karesel hata) değeri karşılaştırıldığında, BSTS modellerinin ARIMA 

modellerine göre daha az hata içerdiği açıktır. R², BSTS ve ARIMA modellerini 

karşılaştırmak için kullanılan başka bir ölçüttür. Bulgular açıkça gösteriyor ki BSTS 

modellerinin R² değeri, ARIMA modellerine kıyasla daha büyüktür. Model hataları 

açısından, iki modelin MAPE (ortalama mutlak yüzde hata) değeri karşılaştırıldığında, 

BSTS modellerinin ARIMA modellerine göre daha az hata içerdiği açıktır eğitim ve test 

verileri için. Veriyi değerlendirmek için iki model kullanıldı ve her iki modelin 

doğruluk karşılaştırma sonuçlarını gördükten sonra, Bayesian yapısal zaman serisi 

modelinin ARIMA modelinden daha iyi olduğu görüldü. Bundan sonra, 2028 için 

(BSTS) modeli için tahmin yapıldı. Tablo 4.54, 2028 yılı için tahmin edilen kömür 

üretimi değerlerini sunmaktadır. Veriler, 2028'e kadar olan yıllar için tahmin edilen 

kömür üretim rakamlarını ve o belirli yıl için tahmin edilen üretim değerini 

göstermektedir. Rakamlar, 2028 yılında tahmin edilen kömür üretiminin 29.66696 

birime ulaşacağını göstermektedir. Tablo 4.55, 2028 yılı için fiili ve beklenen gaz 

üretim rakamlarını göstermektedir. Veri seti, 2028 öncesi yıllar için öngörülen gaz 

üretim değerlerinin yanı sıra cari yıl için tahmini üretim değerini içermektedir. Tabloya 

göre 2028 yılı için öngörülen gaz üretimi 53.79936 adettir. Tablo 4.56, 2028 yılı için 

fiili ve beklenen hidrolik üretim seviyelerini göstermektedir. 2028'e kadar olan yıllar 

için hidrolik üretim rakamlarını ve o yıl için beklenen üretim değerini tahmin 

etmektedir. Tabloya göre 2028 yılı için öngörülen hidrolik üretim 16.14761 adettir. 

Tablo 4.58, 2028 yılı için petrol değişkeni için tahmin edilen değerleri göstermektedir. 

Veriler, 2028'e giden önceki yıllar için tahmin edilen değerlerin yanı sıra söz konusu yıl 

için tahmin edilen değeri içerir. Tabloya göre 2028 yılı için öngörülen petrol üretim -

0.6213833 adettir. Bu Tablo 4.59, 2021'den 2028'e kadar tahmin edilen GSYİH üretimi 

değerlerini sunmaktadır. Veriler, söz konusu zaman çerçevesi içindeki her yıl için 

tahmini GSYİH üretim rakamlarını içerir. Tablo, tahmin edilen GSYİH üretim 

değerlerinin yıllar içinde dalgalanmasının beklendiğini, en yüksek tahmin edilen 
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değerin 4,570465'te 2024'te ve en düşük tahmin edilen değerin 4,147536'da 2028'de 

gerçekleşmesinin beklendiğini göstermektedir. Bu bulgulara dayanarak, Kömür, Gaz ve 

Hidrolik değişkenlerinin Türkiye'nin GSYİH üzerinde önemli bir etkisi olduğu 

çıkarımında bulunmak mümkündür çünkü bu değişkenlerin p-değerleri 0.05'ten 

küçüktür. Diğer taraftan, Petrol değişkeninin GSYİH üzerinde büyük bir etkisi olmadığı 

görünmektedir. Model istatistikleri, R-kare değerini 0.365 olarak gösterir, bu da dahil 

edilen değişkenlerin GSYİH'daki değişimin yaklaşık %36.5'ini açıkladığını gösterir. 

Değiştirilmiş R-kare değeri, modele dahil edilen serbestlik dereceleri dikkate 

alındığında 0.318'dir. 0.001 p-değeri ile F istatistiği, Türkiye'deki enerji üretimi 

değişkenleri ile GSYİH arasındaki ilişkiyi açıklamada tüm modelin istatistiksel olarak 

anlamlı olduğunu gösterir. Modellerin doğruluğunu değerlendirmek için veri seti eğitim 

ve test alt kümelerine ayrıldı ve bu sayede model hatalarının değerlendirilmesine olanak 

sağlandı. Bulgular, BSTS modelinin Türkiye'deki enerji üretimi zaman serisi verilerini 

tahmin etmede ARIMA modelinden daha iyi performans gösterdiğini gösterdi. BSTS 

modelinin kullandığı Bayesian yaklaşım, enerji üretim dinamiklerindeki doğal 

belirsizlikleri ve karmaşıklıkları hesaba katarak, ARIMA modelinin Box-Jenkins 

yaklaşımına göre daha fazla güvenilirlik ve doğruluk sergiledi. Sonuç olarak, BSTS 

modeli, 2021'den 2028'e kadar enerji üretimini tahmin etmek için seçildi. Ayrıca, bu 

çalışma Türkiye'deki GSYİH'yi etkileyen faktörleri incelemek için çoklu doğrusal 

regresyon analizini kullanarak mevcut literatüre katkı sağlamaktadır. (Kömür, gaz ve 

hidrolik) faktörlerinin Türkiye'deki GSYİH üzerindeki etkisi incelenmiştir. Türkiye'nin 

enerji sektörü ve GSYİH, 1971 ile 2020 arasında önemli dönüşümler yaşamıştır. Ülke, 

kömür, doğal gaz ve hidrolik güç üretiminde büyüme yaşarken, petrol üretimi nispeten 

sınırlı kalmıştır. Hükümetin çeşitlendirmeye ve yenilenebilir enerji kaynaklarına 

yatırıma vurgu yapması ve enerji verimliliğini teşvik etmesi, sürdürülebilir ekonomik 

büyüme ve enerji güvenliği konusunda bir taahhüt göstermektedir. Gelecekte, ekonomik 

gelişme, enerji sürdürülebilirliği ve çevre koruması arasında dengeyi sağlama 

konusunda devam eden çabalara önemli bir önem vermek, Türkiye'nin gelecekteki 

enerji manzarası ve ekonomik refahı için kritik olacaktır. BSTS modeli, zaman serisi 

verilerini tahmin etmek için kullanılan esnek ve güçlü bir Bayesian yöntemidir. Bu 

model, trend, mevsimsellik ve regresyon etkileri gibi çeşitli bileşenlerin dahil 

edilmesine izin veren bir çerçeve olan durum uzayı modeline dayanmaktadır. Bayesian 
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yaklaşım kullanarak, BSTS modeli öncül bilgileri içerebilir ve son dağılımları tahmin 

ederek tahminlerle ilişkilendirilen belirsizlik hakkında kapsamlı bir anlayış sağlayabilir. 

Bu model, verilerdeki karmaşık ve doğrusal olmayan ilişkilerle başa çıkma açısından 

uygun olup, özellikle düzensiz desenler ve yapısal kırılmalarla uğraşırken son derece 

faydalıdır. 
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