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ABSTRACT

ESTIMATING TIME SERIES DATA ON ENERGY PRODUCTION IN
TURKIYE BY COMPARING BAYESIAN AND CLASSICAL MODELS

HASSOO, Amir Khaleel
Ph.D Thesis, Department of Statistics

Supervisor: Assoc. Prof. Dr. Sakir Isleyen
July 2023, 154 pages

In this study, two forecasting models, Bayesian structural time series (BSTS)
and Autoregressive integrated moving average (ARIMA), were compared for predicting
energy production data in Tirkiye from 1971 to 2020. The models were applied to
various energy sources such as coal, gas, hydraulic, and oil production, as well as GDP,
using data obtained from the World Bank database. The primary aim was to assess the
accuracy of these models in forecasting energy production trends. To ensure reliable
and comprehensive results, the analysis and modeling processes were conducted using
R and SPSS software. MAPE, MAE, RMSE, and R? were also used for this comparison.
The BSTS models, which incorporate a Bayesian framework enabling the inclusion of
prior information and uncertainty quantification, were contrasted with the conventional
ARIMA models commonly used for time series forecasting. To evaluate the models'
accuracy, the dataset was divided into training and testing subsets, allowing for the
assessment of model errors. The findings indicated that the BSTS model performed
better than the ARIMA model in estimating the time series data of energy production in
Tiirkiye. The Bayesian approach employed by the BSTS model, which accounts for the
inherent uncertainties and complexities in energy production dynamics, demonstrated
greater reliability and accuracy compared to the Box-Jenkins approach of the ARIMA
model. As a result, the BSTS model was selected to forecast energy production from
2021 to 2028. Furthermore, this study contributes to the existing literature by utilizing
multiple linear regression analysis to examine the factors influencing GDP in Tiirkiye.

Keywords: Accuracy, ARIMA, BSTS, Energy production, Multiple linear
regression, Tirkiye.






OZET

ENERJI URETIMINE ILISKIN ZAMAN SERiSI VERILERININ BAYESIAN
VE KLASIK MODELLERI KARSILASTIRARAK TURKIYE'DE TAHMIN
EDILMESI

HASSOO, Amir KHaleel
Doktora Tezi, Istatistik Anabilim Dal1
Danisman: Assoc. Prof. Dr. Sakir Isleyen
Temmuz 2023, 154 sayfa

Bu ¢alismada, Bayesian yapisal zaman serisi (BSTS) ve Oto-regressif entegre
hareketli ortalama (ARIMA) olmak {izere iki tahmin modeli, 1971-2020 yillar1 arasinda
Tiirkiye'nin enerji tiretimi verilerini tahmin etmek amaciyla karsilastirilmistir. Modeller
komiir, gaz, hidrolik ve petrol {iretimi ile GSMH gibi ¢esitli enerji kaynaklarina ve
Diinya Bankasi veritabanindan elde edilen verilere uygulanmistir. Temel amag, bu
modellerin enerji tiretimi trendlerini tahmin etme dogrulugunu degerlendirmektir.
Giivenilir ve kapsamli sonuglar elde etmek i¢in analiz ve modelleme islemleri R ve
SPSS yazilimlar kullanilarak gergeklestirilmistir. Bu karsilastirmada MAPE, MAE,
RMSE ve R? gibi degerlendirme metrikleri de kullanilmistir. BSTS modelleri, 6nceki
bilgilerin dahil edilmesine ve belirsizliklerin nicelendirilmesine imkan saglayan
Bayesian bir ¢ergeve icermektedir ve zaman serisi tahmininde yaygin olarak kullanilan
geleneksel ARIMA modelleri ile karsilastirilmistir.  Modellerin ~ dogrulugunu
degerlendirmek icin veri seti egitim ve test alt kiimelerine ayrilmis ve bdylece model
hatalarinin degerlendirilmesi miimkiin olmustur. Sonuglar, BSTS modelinin Tiirkiye'nin
enerji liretimi zaman serisi verilerini tahmin etmede ARIMA modelinden daha iyi
performans gosterdigini gostermistir. BSTS modelinin benimsedigi Bayesian yaklagim,
enerji iretimi dinamiklerindeki dogal belirsizlikler ve karmasikliklar1 dikkate alarak,
ARIMA modelinin Box-Jenkins yaklagimina kiyasla daha fazla giivenilirlik ve dogruluk
saglamigtir. Sonug olarak, BSTS modeli 2021-2028 yillar1 i¢in enerji liretimini tahmin
etmek amaciyla se¢ilmistir. Ayrica, bu calisma Tirkiye'deki GSMH'yi etkileyen
faktorleri incelemek igin ¢oklu dogrusal regresyon analizinden yararlanarak mevcut
literatiire katk1 saglamaktadir.

Anahtar kelimeler: ARIMA, BSTS, Coklu dogrusal regresyon, Enerji iiretimi,
Kesinlik, Tiirkiye.






ACKNOWLEDGMENT

First and foremost, | would like to express my gratitude to Allah for assisting me
throughout my studies. | would also like to extend my sincere appreciation to my
supervisor, Assoc. Prof. Dr. SAKIR ISLEYEN. Additionally, I would like to convey my
warm regards to all the members of the Statistics Department. |1 am truly thankful to all
those from whom | have gained knowledge and skills. It is difficult to put into words the
depth of my gratitude towards my beloved parents, who have been a constant source of
support during the challenging moments of my life.

| would like to extend a special thanks to Dr. Masoud M. Hassan, Dr. Diyar M
KHalil and all my friends for their unwavering support during my academic journey and
their remarkable understanding, which allowed me to complete this thesis. Lastly, | am
grateful to everyone who has provided assistance, even through a single word.

2023
Amir KHaleel HASSOO






CONTENTS

Page

ABSTRACT .ot bbb bbbttt bbb bbb e r e e e [
OZET oottt ettt ettt ettt ettt iii
ACKNOWLEDGMENT ..ottt bbbt %
CONTENTS Lttt b et e st e e e b e e sbeeanbeesbneenneen Vil
LIST OF TABLES ...t bbbt Xi
LIST OF FIGURES ... ..ottt ettt Xiii
SYMBOLS AND ABBREVIATIONS ..ot XVil
1. INTRODUCTION ..ottt sttt te e na e e e e 1
IS = - Yo o (o TU Vo SR 1
1.2 RESEArch ProbIEM ........coiiiiieeie e bbb 2
1.3 RESEAICN ODJECHIVES ... ..eivieiieieie ettt ettt sre e ens 3
1.4 Importance of the RESEAICH .........cccocvieiiiiiiccec e 3
1.5 ReSEArCh QUESTION .. .eeiviiiiie ettt ebe e re e sbe e s be e be e nre e sraeannas 4
1.6 HYPOLNESIS ...ttt st e st e et e e nraeneens 5

2. LITERATURE REVIEW ....coiiiiii ettt 7
3. MATERIAL AND METHOD .....ccoiiiiiiiiiieieese sttt 11
3.1 Time SerieS DefiNITION ......c.ooveieiieiiee e 12
3.1.1 Components Of TIME SEIIES......ccoiiiiriiiiieieeeeee s 12

3. 1.2 STALIONAIIY ..ttt bbbt 13

3.1.3 Augmented Dickey-Fuller (ADF) ..ot 14

3.1.4 Training Testing and Validation..............c.ccoiriiiiiiienine s 14

3.1.5 Autocorrelation FUNCLION (ACF) ..ot 16

3.1.6 Partial Autocorrelation FUNCtion (PACF) ......ccooviiiiiiniieeeeeieees 17

3.1.7 AUtOregreSSiVe (AR).....ooiiiieieieerie et 18

3.1.8 MoVING AVEIage (MA).. ..ot 19

3.1.9 Autoregressive Moving Average (ARMA) ..o 19

3.1.20 INtegrated (1) ...ecveieeceeie et 20

3.1.11 Autoregressive integrated moving average (ARIMA) ........cccccceevveienen. 21

3.1.12 Maximum Likelihood Estimation (MLE) method ..............cccceeevveinnnne. 22

3.1.13 Box-Jenkins APProach ...........ccceiieiiiiiic i 23

3.1.14 Assumption of ARIMA Model..........ccooviiiiiiici e 24

3.2 Beysian Structural Time Series (BSTS) Model .........cccooveiiiiiieiii e 25
3.2.1 The (BSTS) State Model ..........ccceiieiiiiie e 28

3.2.2 Markov Chain Monte Carlo (MCMC) Method.............cccccevevieiiieinnnne, 29

3.2.3 Dynamic Distribution Of The Model Errors In A (BSTS) Model ........... 31

3.2.4 Bayesian INFErenCe .......ccccvviiieiie et 31

Vil



3.2.5 Prior DistriBULION. ... 32

3.2.6 POSterior DIStrDULION ........ccviiiiiiiiesc s 33
3.2.7 The (BSTS) APPrOACH......ccieiiicieiiee et 34
3.2.8 Assuption of BSTS MOdEl .......c.ccoveviiiiiiieiicecece e 36

3.3 Time Series Performance MeasUremMeNtS...........cooervrerieierienesie e 37
3.3.1 Aaike Information Criterion (AlC) ......cccovviirieiiiiie e 37
3.3.2 Root Mean Square Error (RMSE) .......cocoiiiniiiiieie e 38
3.3.3 Mean Absolute Percentage Error (MAPE)........cccoiieninienienenieeeieiees 38
3.3.4 Mean Absolute Error (MAE) ..o 39
3.3.5 Coeffcient of Determination (R?) .........c.coeueeveveireeseeieeeisiessossssessissseenees 39
3.3.6 Multiple Linear REGIrESSION ......cc.ccvieieiiieiineeieie et 40

3.4 Republic Of TUIKIYE ....ooveeiiiiiiee e 41
. RESULTS AND DISCUSSION .....cuttiiiiie ittt se e e e e 43
4.1 Coal Production in Tiirkiye from 1971 t0 2020........cccovviiiiiiiiniiniciicisee, 43
4.2 Application of ARIMA on Coal Production............ccecueiveiveneiieie e 44
4.2.1 Identification for Coal ProduCtion..............ccocuriirieieneneiene s 45
4.2.2 Selecting Fitting Model ............ccocooveiiiiiiece e 48
4.2.3 Model Checking (1,0,0).....cceeiiiiiiieiieiie e sie e 50

4.3 Natural Gas Production In Tiirkiye from 1971 t0 2020........ccccovvieiiiiiniiiennnnnn, 53
4.4  Application of ARIMA on Gas Production............ccccceeveevvereiiiieesie e 54
4.4.1 Identification for Gas Production.............ccocervreeiennne e 55
4.4.2 Selecting Fitting Model...........cccoovveiiiiiiic e 58
4.4.3 Model Checking (0,1,0) ..ccoeieeieiiee e 60

4.5 Hydraulic Production in Tiirkiye from 1971 t0 2020 .......ccocoveviviiiiiiiiiiiiienn, 62
4.6 Application of ARIMA on Hydraulic Production ...........c.ccceeceeveiieiecvie e 64
4.6.1 ldentification for Hydraulic Production ..............ccccocveveiieiieve e 64
4.6.2 Selecting Fitting MOdel ..........coooiiiii e 67
4.6.3 Model Checking (0,1,0)......ccvieriiieieiesiesie s 68

4.7 Oil Production in Tiirkiye from 1971 t0 2020.........cccovviiiiiiiiiiieie e 71
4.8 Application of ARIMA on Oil Production ...........cccceeveviiiiinincieeceeeeees 72
4.8.1 Identification for Oil ProducCtion ...........cccocevvereiieiieie e 73
4.8.2 Selecting Fitting MOdel ..........covoiiiiiieeee e 76
4.8.3 Model Checking (0,1,2)......ccuiiiiiiiiiieie et 78

4.9 GDP in Tiirkiye from 1971 £0 2020 .......ccciiiiiiiiiiieeseeeee e 80
4.10 Application of ARIMA TOF GDP .......ccooiiiiiiiiiieeeee s 82
4.10.1 Identification fOr GDP.........cccvoiiiieriee e 82
4.10.2 Selecting Fitting Model ...........coooiiiiiiii e 85
4.10.3 Model Checking (0,0,0)....cc.ciiiiiiiiiieiesieeseee e 87

4.11 Application of BSTS on Coal Production ...........c.ccovveeieneniienesceseee 89

viii



4.11.1 Select Fitting Model.........ccoooeiiiiiee e 90

4.11.2 Errors in SAMPIE......ccovvoie ettt 91

4.11.3 Model CheCKINgG .......coviiiiieii e 93

4.12 Application of BSTS on Gas Production ...........cccccevviieiveresiieseese e 95
4.12.1 Select Fitting Model..........cooov i 96

4.12.2 Errors in SAMPIE.......covioiiiiee et 98

4.12.3 Model CheCKINgG .......ccviiiiieie e 99

4.13 Application of BSTS on Hydraulic Production ............ccccceevvevviieiiesesieennn 101
4.13.1 Select Fitting MOEl ..........cooieeece e 102

4.13.2 Errors in SAMPIE.......ccveiiiieiiece e 103

4.13.3 Model ChecKing .......cccooiiiieiieiece e 104

4.14 Application of BSTS on Oil Production............cccoveveeieiiie e 107
4.14.1 Select Fitting Model............cooveiiiiiee e 107

4.14.2 Errors in SAMPIE.......coveiiiiiiecie et 109

4.14.3 Model CheCKINg .....c.coveiiiieieeie et 110

4.15 Application of BSTS 0N GDP......cc.coiiiiie e 112
4.15.1 Select Fitting MOEl ...........ooiveeiiiie e 113

4.15.2 Errors in SAMPIE......oivi ettt 115

4.15.3 Model ChecKing ........ccccoiiiiiieie s 116

4.16 Comparison of ARIMA and BSTS ReSUILS..........ccceeeeriiiiieiieiccic e 118
4.17 Application of BSTS on Coal Production to 2028.............cccccveveiieieeieaiennn, 120
4.18 Application of BSTS on Oil Production to 2028 ............ccccceeveviiieiieieeieenn, 125
4.19 Application of BSTS on GDP t0 2028 ..........cccocieiieiiciece e 127
4.20 The Impact of Coal, Gas, Hydraulic and Oil on GDP...........c.cccccevevveiiiiennnn 130

5. CONCLUSION... ..ottt e et e naesre e reenaenaenaeeens 133
REFERENGCES ......c.ootitiieist ettt sttt sa et s anas 139
EXTENDED TURKISH SUMMARY ....ocooiiiiiiieiieeieies e 145
CURRICULUM VITAE ..ottt ettt nae e anaae e 153






LIST OF TABLES

Page
Table 4.1 Top ten countries in the world for coal production ............cccccceeeiiniiininenne 44
Table 4.2 Descriptive statistics for coal production from 1971 to 2020 .............c.c........ 45
Table 4.3 ARIMA (1,0,0) model’s parameters........c.euverueeeereerieneeseesieseeseesieseeseeenees 48
Table 4.4 ARIMA (1,0,0) model statistics (training data).............ccccovevveveiiiesrcresnene. 49
Table 4.5 ARIMA (1,0,0) model statistics (testing data) ...........cccccevverrenrenieneeieseeee 50
Table 4.6 The actual and predicted values of coal production in from 2013 to 2020 .... 52
Table 4.7 Top ten countries in the world for natural gas production ...........cccccceeveveennee. 54
Table 4.8 Descriptive statistics for gas production from 1971 to 2020............c.cceeveee.. 55
Table 4.9 ARIMA (0,1,0) model’s Parameters........c.ouverueeeereerieseeseesieseeseesiesseeseeesees 58
Table 4.10 ARIMA (0,1,0) model statistics (training data).............cccceevveverivereeresnenne 59
Table 4.11 ARIMA (0,1,0) model statistics (testing data) ..........c.ccocererererenerenennnnn 60
Table 4.12 The actual and predicted values of gas production in from 2015 to 2020 ... 61
Table 4.13 Top ten producing countries for hydroelectric .........ccovvvvevienienienieie s, 63
Table 4.14 Descriptive statistics for hydraulic production from 1971 to 2020.............. 64
Table 4.15 ARIMA (0,1,0) model’s Parameters..........ccoerervererieresieeiesrieneeneesieseeseeseees 67
Table 4.16 ARIMA (0,1,0) model statistics (training data)...............ccccoveveeiveereereseennn. 68
Table 4.17 ARIMA (0,1,0) model statistics (testing data) ............ccocerverererencreneninnn 68
Table 4.18 The actual and predicted values of hydraulic production during 2013-202070
Table 4.19 Top ten countries by 01l ProducCtion............ccceereiiniiiiinieeee e 72
Table 4.20 Descriptive statistics for oil production from 1971 to 2020...........c.ccoc.v..... 73
Table 4.21 ARIMA (0,1,2) model’s Parameters. ..........coererererenenenieenienieneesieseeseeseens 76
Table 4.22 ARIMA (0,1,2) model statistics (training data).............ccccceeveveiieeiecrreneenn. 77
Table 4.23 ARIMA (0,1,2) model statistics (testing data) ..........c.ccooeverererencninennnn 77
Table 4.24 The actual and predicted values of oil production in from 2013 to 2020..... 79
Table 4.25 Top ten countrieS DY GDP .........ccciviiiiieiece e 82
Table 4.26 Descriptive statistics for GDP production from 1971 to 2020..................... 82
Table 4.27 ARIMA (0,0,0) model’s parameters..........cooerererenenenieeiessieneeseeseeseeseessenns 85
Table 4.28 ARIMA (0,0,0) model statistics (training data)............cccceeerererencrenenennn 87
Table 4.29 ARIMA (0,0,0) model statistics (testing data) ...........ccccevvevveveiiieieeresnenee. 87
Table 4.30 The actual and predicted values of GDP from 2013 to 2020 ...........c.c........ 89
Table 4.31 BSTS model evaluation for coal production (training data) ........................ 93
Table 4.32 BSTS model evaluation for coal production (testing data) ............c.cc.ee... 93
Table 4.33 The actual and predicted values of coal production in from 2013 to 2020 .. 95
Table 4.34 BSTS model evaluation for gas production (training data)..............cc.cc...... 98
Table 4.35 BSTS model evaluation for gas production (testing data) ............c.cccevee.. 99
Table 4.36 The actual and predicted values of gas production in from 2015 to 2020 . 100
Table 4.37 BSTS model evaluation for hydraulic production (training data)............. 104
Table 4.38 BSTS model evaluation for hydraulic production (testing data)............... 104
Table 4.39 The actual and predicted of hydraulic production during 2013-2020......... 106
Table 4.40 BSTS model evaluation for oil production (training data)....................... 109
Table 4.41 BSTS model evaluation for oil production (testing data)......................... 110
Table 4.42 The actual and predicted values of oil production in from 2013 to 2020... 111
Table 4.43 BSTS model evaluation for GDP production (training data) .................... 115
Table 4.44 BSTS model evaluation for GDP production (testing data)...................... 116

Table 4.45 The actual and predicted values of GDP production in from 2013 to 2020117

Xi



Table 4.46 Comparison of the MAE value of both models (Training) ............ccccovenee 118

Table 4.47 Comparison of the MAE value of both models (Testing) ........ccccoeevervennene 118
Table 4.48 Comparison of the RMSE value of both models (Training) ..........c.c....... 119
Table 4.49 Comparison of the RMSE value of both models (Testing) ..........ccccoeeenene 119
Table 4.50 Comparison of the R? value of both models (Training) ..........cccccvevverveennnne 119
Table 4.51 Comparison of the R? value of both models (Testing) ........ccccceevvvrieereannnns 119
Table 4.52 Comparison of the MAPE value of both models (Training) ..........c.c.co...... 120
Table 4.53 Comparison of the MAPE value of both models (Testing .........cccccceveennene 120
Table 4.54 The predicted values of coal production in 2028 ............cccccceviveveiiieieennns 121
Table 4.55 The predicted values of gas production in 2028............ccccccviiveiniinniennens 123
Table 4.56 The predicted values of hydraulic production in 2028............cccccceevevvennene 125
Table 4.57 Predicted values of oil production from 2021 t0 2028............cccccvviveivennnne 127
Table 4.58 Predicted values of GDP production from 2021 to 2028 ...........c.cccccevenene 129
Table 4.59 Results of the multiple linear regression model for GDP ............c.ccccoou.ee. 130

Xii



LIST OF FIGURES

Page
Figure 3.1 Training testing and validation..............cccccveveiiereice e 16
Figure 3.2 Map Of TUIKIYE ....ocveiiiiiiiieieie e 41
Figure 4.1 Time series plot of yearly coal production in Tiirkiye (1971-2020)............. 46
Figure 4.2 Time series plot of yearly coal production from 1971 to 2020 in Tiirkiye after
(0 1 (= =TT T T S SS 46
Figure 4.3 Autocorrelation function for coal production time Series ...........ccocoevvvriene. 47
Figure 4.4 Autocorrelation function for coal production time Series..........ccccceevvervennene 47
Figure 4.5 Training data for predicted value and actual values of coal production time
series by USiNg ARIMA MOUEL ........ocviiiei e 49
Figure 4.6 Testing data for predicted value and actual values of coal production time
series by USiNg ARIMA MOUEL ........ooviiieiiie e 49
Figure 4.7 Residuals from ARIMA (1,0,0) with NnON-zero mean ..........cccceeverenerereennes 50
Figure 4.8 Residual ACF and PACF for ARIMA (1,0,0) ..coveviiiiiieie e 51
Figure 4.9 Predicted values 0f COal ..o 52
Figure 4.10 Time series plot of yearly gas production in TUrkiye ..........ccoocvrererereenne. 56
Figure 4.11 Time series plot of yearly gas production in Tiirkiye after two differencing
........................................................................................................................................ 56
Figure 4.12 Autocorrelation function for gas production time Series............c.ccocvvvreenne. 57
Figure 4.13 Partial autocorrelation function for gas production time series................... 57
Figure 4.14 Training data for predicted value and actual values of gas production time
series by USIiNg ARIMA MOUEL .....c..ooviiiiiice et 59
Figure 4.15 Testing data for predicted value and actual values of gas production time
series by using ARIMA MOl .........ooiiii e 59
Figure 4.16 Residuals from ARIMA (0,1,0) with non-zero mean ..............ccccceevvevveennene 60
Figure 4.17 Residual ACF and PACF for ARIMA (0,1,0) ..cvooiiiriiiiieee e 60
Figure 4.18 Predicted values of gas production in 2020 ..........c.cccceevveviiievneiecie s 62

Figure 4.19 Time series plot of yearly hydraulic production in Tiirkiye (1971-2020) .. 64
Figure 4.20 Time series plot of yearly hydraulic production in Tiirkiye (1971-2020) .. 65
Figure 4.21 Time series plot of yearly hydraulic production in Tiirkiye after one

IFFEIENCING. ...t et te e be e saeenas 65
Figure 4.22 Autocorrelation function for hydraulic production time series.................. 66
Figure 4.23 Partial autocorrelation function for hydraulic production time series ........ 66
Figure 4.24 Training data for predicted value and actual values of hydraulic production
time series by using ARIMA MOdEel ... 67
Figure 4.25 Testing data for predicted value and actual values of hydraulic production
time series by using ARIMA MOl ..........cooviiiiii e 68
Figure 4.26 Residuals from ARIMA (0,1,0) with non-zero mean ..........cccccceeveivervennnns 69
Figure 4.27 Residuals ACF and PACF (0,1,0) ....cccoiiiiiiiieiieeecce e 69
Figure 4.28 Predicted values of hydraulic production in 2020 ..........ccccceeveviiiencieninnne. 71
Figure 4.29 Time series plot of yearly oil production in Tiirkiye (1971-2020) ............. 74
Figure 4.30 Time series plot of yearly oil production after one differencing ................ 74
Figure 4.31 Autocorrelation function for oil production time Series............ccceevernnnnn. 75
Figure 4.32 Partial autocorrelation function for oil production time series .................. 75

Xiii


file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654315
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654327
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654327
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654328
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654332
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654333
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654334
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654335
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654336
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654337
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654338

Figure 4.33 Training data for predicted value and actual values of oil production time

series by using ARIMA MOGEl ... 76
Figure 4.34 Testing data for predicted value and actual values of oil production time
series by using ARIMA MOGEl ..o 77
Figure 4.35 Residuals from ARIMA (0,1,2) with non-zero mean ..........c.cccceeeevecieennens 78
Figure 4.36 Residuals ACF and PACF (0,1,2) .....coiuiiiiiiiieiieie e 78
Figure 4.37 Predicted values of oil production in 2020 ...........cccccevveviiiievireie e 80
Figure 4.38 Time series plot of yearly GDP in Tiirkiye (1971-2020)........cccccevvrvrinne. 83
Figure 4.39 Time series plot of yearly GDP from 1971 to 2020 in Tiirkiye after

(0L {= =1 aTox T T OSSR 84
Figure 4.40 Autocorrelation function for GDP production time Series...........cccceevvenen. 85
Figure 4.41 Partial autocorrelation function for GDP production time series............... 85
Figure 4.42 Training data for predicted value and actual values of GDP production time
series by using ARIMA MOGEl ..o 86
Figure 4.43 Testing data for predicted value and actual values of GDP production time
series by using ARIMA MOGEl ... 86
Figure 4.44 Residuals from ARIMA (0,0,0) with non-zero mean ..............ccccceevvecveennene 87
Figure 4.45 Residuals ACF and PACF (0,0,0) .....ooiiiiiiiiiiieieseseeee e 88
Figure 4.46 Predicted values of GDP production in 2020..........ccccccveveiiieiveiesieceenns 89
Figure 4.47 Components coal of BSTS MOdel ........cccoeiiiiiiiiiiiice e 90
Figure 4.48 Training data for predicted value and actual values of coal production time
SErES DY USING BSTS ...t 90
Figure 4.49 Testing data for predicted value and actual values of coal production time
SErES DY USING BSTS ... 91
Figure 4.50 Plot dynamic distribution errors in sample ..........ccccooeviiiiiie e 92
Figure 4.51 Residuals from BSTS model in sample ... 94
Figure 4.52 Residuals ACF and PACF BSTS model for coal production ..................... 94
Figure 4.53 Predicted values of coal production in 2020 ...........cccccceveviiieveeie s 95
Figure 4.54 Components gas of BSTS MOdel .........cccooviiiiiiiininicce e 96
Figure 4.55 Training data for predicted value and actual values of gas production time
SErIES DY USING BSTS ...t 96
Figure 4.56 Testing data for predicted value and actual values of gas production time
SErIES DY USING BSTS ...t 97
Figure 4.57 Plot dynamic distribution errors in sample ..o, 98
Figure 4.58 Residuals from BSTS model in gas production ..............cceceeenerenenennne. 99
Figure 4.59 Residuals ACF and PACF BSTS model for Gas production..................... 99
Figure 4.60 Predicted values of gas production in 2020 ...........cccceoeieieienineninenne 101
Figure 4.61 Components hydraulic of BSTS Model ..........cccccooveviiiiiiciiieeceee 101
Figure 4.62 Training data for predicted value and actual values of hydraulic
productiontime series bY USING BSTS .....coviiiiiiiiiece e 102
Figure 4.63 Testing data for predicted value and actual values of hydraulic production
time SerieS DY USING BSTS ... 102
Figure 4.64 Plot dynamic distribution errors in sample ..........cccoovviiniiiiniieiinene 103
Figure 4.65 Residuals from BSTS model in hydraulic production ............cc.ccceeveenee. 104
Figure 4.66 Residuals from ACF and PACF BSTS model for hydraulic production .. 105
Figure 4.67 Predicted values of hydraulic production in from in 2020........................ 106
Figure 4.68 Components 0il of BSTS MOdel .........c.ccooiviiiiiiiiiiceee e 107

Xiv


file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654364
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654365
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654366
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654369
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654369
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654370
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654371
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654372
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654373
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654374

Figure 4.69 Training data for predicted value and actual values of oil production time

SErES DY USING BSTS ... o 107
Figure 4.70 Testing data for predicted value and actual values of oil production time
SErIES DY USING BSTS ... o 108
Figure 4.71 Plot dynamic distribution errors in sample ..........ccccccevveviviie e, 109
Figure 4.72 Residuals ACF and PACF for BSTS model in oil production.................. 110
Figure 4.73 Residuals from BSTS model in oil production ............cccccvevvvveiveiieseenne. 110
Figure 4.74 Predicted values of oil production in 2020 ............ccocvoriiieienincniiene 112
Figure 4.75 Components GDP of BSTS MOdel...........ccceveviiieiieiie e 113
Figure 4.76 Training data for predicted value and actual values of GDP time series by
USING BSTS ittt et et e st e et e e n e e s be et e e neenreeteenee e 113
Figure 4.77 Testing data for predicted value and actual values of GDP time series by
USING BSTS .ttt et et e e te e e e e st e s be e beeneenreenneenee e 114
Figure 4.78 Plot dynamic distribution errors in sample ..........c.ccoovviiiieiennninnene 115
Figure 4.79 Residuals from BSTS model in GDP.........c.cccccoeviiieiic i 116
Figure 4.80 ACF and PACF BSTS model for GDP.........cccoviiiniiniiiiienc e 116
Figure 4.81 Predicted values of GDP in 2020...........cccccvevieiiieieciesic e 118
Figure 4.82 Predicted values of coal production to 2028 .............ccccceveieneniieninnnnne 121
Figure 4.83 Predicted values of gas production in 2028 ............ccccocevviieiieieeie s 123
Figure 4.84 Predicted values of hydraulic production in 2028 ............ccccoceiiiinininnne 125
Figure 4.85 Predicted values of oil production in 2028 ............cccccceevviieiieieeie e 127
Figure 4.86 Predicted values of GDP in 2028 ...........cccooeiiiiiiiiiiiiieeese e 129

XV


file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654375
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654375
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654376
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654376
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654377
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654378
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654379
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654380
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654381
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654382
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654382
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654383
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654383
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654385
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654386
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654387
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654388
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654389
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654390
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654391
file:///C:/Users/SEDRA%202020/Desktop/1/AMIR%20KHALEEL%20HASSOO-08-08-23.docx%23_Toc142654392




SYMBOLS AND ABBREVIATIONS

Some symbols and abbreviations used in this study are presented below, along

with their descriptions.

Abbrevations Description

ACF Autocorrelation Function

AR Autoregressive

ARIMA Autoregressive Integrated Moving Average
ARMA Autoregressive Moving Average
BCM Billion Cubic Meters

BSTS Bayesian Structural Time Series
COVID Coronavirus

GDP Gross Domestic Product

GWH Gigawatt hours

HELE High-Efficiency, Low-Emission
LNG Liquefied Natural Gas

MA Moving Average

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error
MAX Maximum

MCMC Markov Chain Monte Carlo
MIN Minimum

MLE Maximum Likelihood Estimation
MM Million

MSE Mean Square Error

OLS Ordinary Least Squares

PACF Partial Autocorrelation Function
R? Coefficient of Determination
RMSE Root Mean Square Error

SE Standard Error
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SPSS Statistical Package for the Social Sciences

SS State-Space

TPAO Turkish Petroleum Corporation
UAE United Arab Emirates

UK United Kingdom

UN United Nation

USA United States of America

usD United States dollar
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1. INTRODUCTION

1.1 Background

Tiirkiye has experienced substantial growth and development in its energy sector
over the past five decades, with various energy sources such as coal, gas, hydraulic
power, and oil playing a significant role (Kili¢ and Kaya, 2007). Understanding the
patterns and trends in energy production and its correlation with GDP is crucial for
policymakers, energy planners, and researchers. This research study aims to estimate
time series data on energy production and GDP in Tirkiye from 1971 to 2020 by
comparing Bayesian and classical models (Demirbas, 2003). In this study, Bayesian
models, specifically the Bayesian structural time series (BSTS), are compared with
classical models, such as the Autoregressive integrated moving average (ARIMA), to
estimate time series data on energy production and GDP in Tiirkiye (Hepbasli, 2004).
Accurate estimation of energy production and its relationship with GDP is essential for
effective planning and policy-making to ensure economic development and
sustainability (Algiil and Vedat, 2021). Time series analysis has proven to be an
effective approach for studying and forecasting energy production and GDP data,
enabling insights into the factors influencing energy production and its impact on the
economy (Jonek-Kowalska, 2019). Bayesian models offer advantages such as
incorporating prior information, quantifying uncertainty, and accommodating
complexities and uncertainties in the data. The research objective is to assess the
performance and accuracy of Bayesian and classical models in estimating time series
data on energy production and GDP in Tirkiye. The findings of this study will
contribute to the existing literature on time series analysis in the energy sector,
providing valuable insights for policymakers and researchers involved in energy
planning and economic forecasting. This preface introduces the subsequent chapters,
which will discuss the methodology, data analysis, modeling techniques, and
interpretation of results (Kaplan et al., 2011). The study includes data collection, pre-
processing, and modeling, examining the performance of Bayesian and classical models
in estimating energy production for each variable (Yilmaz and Uslu, 2007).

Additionally, the implications of the findings, potential study limitations, and future



research directions in the field of time series analysis and energy production estimation
are discussed (Yiiksel, 2008).

1.2 Research Problem

Accurately estimating the time series data of energy production in Tiirkiye from
1971 to 2020 presents significant research challenges that are crucial for gaining
comprehensive insights into energy dynamics, understanding the factors influencing
energy production, and improving the accuracy of predictions. The dataset contains
complex patterns, such as long-term trends, seasonal variations, and irregular
fluctuations, which must be effectively comprehended and modeled to accurately
capture the underlying dynamics and make reliable predictions.

The energy production sector in Tiirkiye faces various challenges that impact its
efficiency, sustainability, and reliability. One of the key challenges is Tiirkiye's heavy
reliance on a diverse range of energy sources, including fossil fuels like coal, oil, and
natural gas, as well as renewable energy sources such as solar, wind, hydro, and
geothermal. Effectively managing and integrating these diverse sources to ensure a
balanced and sustainable energy supply while reducing dependence on fossil fuels and
promoting the adoption of renewable energy poses a significant challenge.

Another challenge is Tiirkiye's high dependency on energy imports, which adds
to the complexity of ensuring a secure and reliable energy supply. Rising energy
demand is also a challenge that needs to be addressed, as it requires robust planning and
infrastructure development to meet the increasing energy needs of the country.
Environmental impact is a critical concern, and finding ways to mitigate the
environmental effects of energy production is crucial for sustainable development.
Infrastructure development plays a vital role in the energy sector, and ensuring the
availability of adequate infrastructure for energy production, transmission, and
distribution is a challenge that needs to be addressed. The regulatory framework
governing the energy sector requires careful consideration to promote competition,
efficiency, and environmental sustainability (Toklu, 2017).

Furthermore, securing financing and attracting investments for energy projects is

a significant challenge that needs to be overcome. Adequate funding is essential for



developing new energy infrastructure, implementing renewable energy projects, and

improving the overall efficiency and reliability of the energy sector.

1.3 Research Objectives

The primary aim of this study is to conduct a comparative analysis between
Bayesian and classical models. To accomplish this objective, the research outlines the
following specific goals:

1. To compare the performance and effectiveness of Bayesian and classical
models in estimating energy production in Tirkiye. By assessing the strengths and
weaknesses of each modeling approach, including their ability to capture complex
patterns and handle uncertainties, the study aims to identify the most suitable technique
for accurate energy production estimation.

2. To investigate the relationship between gross domestic product (GDP) and
energy production in Tiirkiye. This objective involves examining how changes in GDP
influence energy demand and production levels. Understanding the implications of
economic growth on energy sustainability and resource allocation is a crucial aspect of
this objective.

By addressing these research objectives, the study aims to contribute to the
understanding of energy production estimation and its relationship with economic
factors in Tirkiye. This knowledge can guide decision-makers and stakeholders in

formulating effective strategies for sustainable energy planning and resource allocation.

1.4 Importance of the Research

This research comprehensively addresses key aspects of energy production in
Tiirkiye, with the objective of providing valuable insights for informed decision-making
and promoting sustainable energy development. A primary focus is on accurately
estimating time series data for energy production spanning five decades (Fidan, 2010).
This entails capturing patterns, trends, and fluctuations across different energy sources.
The accuracy of these estimates plays a vital role in energy planning, policy

formulation, and decision-making processes.



Another crucial aspect of the research involves conducting a comparative
analysis of Bayesian and classical models to estimate energy production. By
understanding the strengths and weaknesses of each modeling approach, researchers and
practitioners can identify the most appropriate method for accurate energy production
estimation. This analysis contributes to the advancement of time series modeling
techniques specifically within the context of energy production (Lise and Van Montfort,
2007).

Additionally, the research explores the relationship between gross domestic
product GDP and energy production. By examining how changes in economic growth
impact energy demand and production levels, policymakers and energy planners can
make informed decisions. This analysis aids in formulating sustainable energy policies
and gaining a deeper understanding of the energy requirements associated with a
growing economy (Cevik et al., 2020).

The findings of this research have significant practical implications for energy
policy formulation and sustainability in Tirkiye. By providing accurate estimates of
energy production and analyzing the factors that influence it, policymakers and industry
stakeholders can make informed decisions regarding energy planning, resource
allocation, and environmental sustainability. Ultimately, this research contributes to the
development of sustainable energy strategies and the promotion of a resilient energy
sector (Bilen et al., 2008).

1.5 Research Question

How does the accuracy of Bayesian models compare to classical models in
estimating the time series data on energy production in Tiirkiye from 1971 to 2020?

Which modeling approach, Bayesian or classical, provides better predictions of
future energy production in Tiirkiye based on the historical data from 1971 to 2020?

How do Bayesian models and classical models differ in capturing the trends,
seasonality, and other key components of the energy production time series in Tiirkiye
from 1971 to 20207



What are the strengths and limitations of Bayesian models compared to classical
models in estimating time series data on energy production in Tiirkiye from 1971 to
20207

1.6 Hypothesis

The following hypothesis is put forth for this study based on the research
problem and objectives stated previously:

Null Hypothesis (HO0): There is no statistically significant difference in the
accuracy of energy production estimation between Bayesian and classical models when
applied to time series data in Tiirkiye from 1971 to 2020.

Alternative Hypothesis (Ha): There is a statistically significant difference in the
accuracy of energy production estimation between Bayesian and classical models when
applied to time series data in Tiirkiye from 1971 to 2020.

Models when applied to time series data in Tirkiye from 1971 to 2020.






2. LITERATURE REVIEW

AL-Moders and Kadhim (2021) conducted a study focusing on the forecasting of
oil prices using the Bayesian structural time series (BSTS) method. The research
emphasized that BSTS is the most effective approach for predicting oil prices, as it has
the capability to capture observed fluctuations over time and incorporate prior
information. Accurate predictions of oil prices are particularly important for countries
like Iraq, which heavily rely on oil revenues, as fluctuations in oil prices directly impact
their overall economic well-being. Therefore, it is crucial to utilize models that can
adapt to emerging events and provide reliable forecasts for future oil prices. Through
their analysis, the researchers applied BSTS and projected that the price of oil is
expected to reach $156.2 by 2035, indicating an upward trend in the future.

Almarashi and Khan (2020) used the BSTS to evaluate a univariate dataset in
their study. The study examined real-life secondary data on Flying Cement stock prices
over a one-year period. To achieve statistical results, the study used simulation
approaches such as the Kalman filter and MCMC. Although the focus of the
investigation was on stock prices, the same BSTS technique may be used to
complicated engineering processes with lead periods. The ARIMA approach was used
in the study to compare BSTS to a conventional method. To obtain Bayesian posterior
sampling distributions, the R software's BSTS package was utilized. Four BSTS models
were applied to a real-world dataset to show how the BSTS approach works. Forecast
plots and the MAPE were used to assess the prediction accuracy of various models. The
study's goal was to develop a simple technique that could be easily duplicated by both
researchers and practitioners. The results showed that for short-term forecasting,
ARIMA and BSTS performed similarly. However, based on the results, BSTS with a
local level was recognized as the best option for long-term forecasting.

Sarpong (2013) employed the (ARIMA) model to anticipate demand in a food
firm in their study. The study used a time series technique to help to demand modeling
and forecasting. The study demonstrated how previous demand data may be used to
forecast future demand, as well as the ramifications for the supply chain. Using
historical demand data, the researchers created numerous ARIMA models using the

Box-Jenkins time series process. The optimal model was chosen using four performance



criteria: the Akaike criterion, the Schwarz Bayesian criterion, maximum likelihood, and
standard error. ARIMA (1, 0, 1), the selected model, was tested further using additional
historical demand data under the same conditions. The study's findings confirmed the
ARIMA (1, 0, 1) model's usefulness in predicting and forecasting future demand in a
food manufacturing company. These findings provide trustworthy counsel to
manufacturing firm executives in making educated decisions based on predicted
demand.

Ray et al. (2021) focused on short-term forecasting in the Indian airline industry,
especially in the air passenger and air cargo sectors. The study's goal was to forecast
demand for air passengers and cargo in India's aviation sector using two models:
ARIMA and BSTS. The study made use of a dataset spanning a decade, from 2009 to
2018, that includes air passenger and cargo statistics gathered from the website of the
Directorate General of Civil Aviation. Both the ARIMA and BSTS models were
assessed in dynamic circumstances, as well as their capacity to integrate uncertainty.
According to the findings, both the ARIMA and BSTS models are suitable for short-
term forecasting in all four commercial aviation sectors: international passenger,
domestic passenger, international air cargo, and domestic air cargo. The report also
included recommendations for further research on medium- and long-term forecasting
in the Indian aviation business.

Pinilla et al. (2018) used a BSTS model to examine the causal impact of partial
and entire bans on public smoking on cigarette sales in their study. This method, which
combines a state-space model, provides a unique means of investigating the causal
consequences of policy interventions. It applies the widely used difference-in-
differences technique to time series and enables the development of counterfactual
scenarios using numerous control series. The report emphasizes the benefits of using
this technique to evaluate the efficacy of a total ban on smoking in public places versus
a partial ban.

Mourtgos and Adams (2021) compared several time series forecasting
approaches in their study of modeling and forecasting the number of confirmed and
mortality cases of COVID-19 in Iran. The study's goal was to find the best model for
estimating the number of confirmed and fatal cases in Iran. Three measures were used
to assess the performance of these models: RMSE, MAE, and MAPE. The model with



the lowest performance metrics was deemed the best, and it was then used to anticipate
the number of confirmed and fatal cases over the following 30 days. The study used
data on the absolute number of confirmed and fatal cases in Iran from February 20 to
August 15, 2020. Based on the available data in Iran, the results showed that the BSTS
model performed the best for estimating the number of confirmed cases. The ARIMA
model, on the other hand, was recognized as the best model for forecasting future
mortality cases. According to these projections, there would be 2484 new confirmed
cases and 114 new fatalities from COVID-19 on September 14, 2020.

This study extends Brooks et al. (2003) work by adding adaptive proposal
strategies for reversible jump MCMC in the context of ARMA models. Unlike previous
techniques, the whole conditional distribution is not accessible for the new parameters,
hence estimates are proposed. An adaptive updating system is presented to improve the
efficiency of between-model movements by automatically selecting proposal parameter
values. The suggested algorithms' performance is tested via simulated studies, and the
approach is shown by applying it to a real dataset.

Shrestha et al. (2021) examine difficulties originating from the growing usage of
electronic power converter-based technologies in modern power systems, which can
impair system dynamics and operational security. To maintain the safe functioning of
electricity systems, transmission system operators must estimate system performance
metrics. This study offers a Bayesian model that forecasts power system behavior using
short-term Kinetic energy time series data, giving vital support to transmission system
operators in ensuring system security. For optimization, the sampler, an MCMC
approach, is used in conjunction with Stan's limited-memory broyden-fletcher-goldfarb-
shanno algorithm. To investigate the seasonal properties of the datasets, the study used
the notion of decomposable time series modeling. To verify the model, many
performance assessment criteria are employed. In addition, an ARIMA model is used to
compare with the suggested model. The ideal amount of the training dataset required for
successfully projecting 30-minute kinetic energy values is determined. The researchers
estimate short-term Kkinetic energy sequences using one year of univariate data with a 1-
minute precision from the integrated Nordic power system. The performance evaluation
measures RMSE, MAE, MAPE, and MASE are computed. The suggested model has an
RMSE of 4.67, MAE of 3.865, MAPE of 0.048, and MASE of 8.15. Increasing MCMC



sampling improves performance metrics by up to 3.28, 2.67, 0.034, and 5.62,
respectively. Furthermore, the study indicates that for the example study, 180.5 hours of
historical data is adequate to accomplish accurate short-term forecasting with an RMSE
accuracy of 1.54504.

Hooten and Hobbs (2015) Given that gold has several qualities and its price is
controlled by a variety of market conditions, this study investigates the dynamic link
between gold price returns and the different factors that impact it. The study then uses
the (BSTS) and neural network to forecast gold price returns. These models'
performance is compared against benchmark models. The findings imply that changes
in crude oil returns have a positive impact on gold price returns, but shocks in the US
dollar index have a negative impact. Furthermore, variations in gold price returns are
heavily impacted by changes in crude oil price returns. The neural network model
captures the volatility pattern of gold price returns well and improves forecast accuracy.

Ticknor (2013) presents a unique strategy for anticipating financial market
behavior that incorporates a Bayesian regularized artificial neural network. The study's
goal is to forecast individual stock closing values in the future utilizing daily market
prices and financial technical indicators as input variables. Forecasting stock price
changes is a difficult problem in financial time series research, but successful forecasts
may help investors improve their stock returns significantly. The study closes with the
Bayesian regularized artificial neural network being highlighted as a viable tool for
stock price prediction. The suggested model has the potential to improve the accuracy of
stock price forecasts by combining a probabilistic approach and lowering model
complexity. This, in turn, can help investors make more educated financial market

judgments.
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3. MATERIAL AND METHOD

Energy production data for Tirkiye, encompassing coal, gas, hydraulic, and oil,
as well as GDP, covering the period from 1971 to 2020, was gathered from the World
Bank website. The collected data underwent a thorough examination to identify and
address missing values, outliers, and inconsistencies. Various data preprocessing
techniques, such as imputation or removal of missing values, were employed as
necessary. Two models, a Bayesian model and a classical model, were selected for
comparison. The Bayesian model utilized the BSTS approach, while the classical model
employed the ARIMA model based on the Box-Jenkins methodology. R and SPSS
software were utilized for data analysis and modeling to ensure robust and
comprehensive results. The BSTS model, which was implemented using Bayesian
inference techniques, required the specification of appropriate prior distributions for the
model parameters MCMC sampling methods were utilized to estimate the posterior
distribution. The BSTS model incorporated the energy production time series data (coal,
gas, hydraulic, oil) and GDP as inputs, capturing underlying trends, seasonality, and
uncertainties related to energy production and GDP in Tirkiye. The ARIMA model,
following the Box-Jenkins approach, determined the appropriate order (p, d, q) for each
energy production time series (coal, gas, hydraulic, oil) and GDP. Maximum likelihood
estimation was used to estimate model parameters, and historical trends were used to
anticipate future values. The accuracy and performance of the Bayesian and classical
models were evaluated using evaluation metrics such as MAE, RMSE, MAPE and R? .
The generated forecasts from each model were compared against the actual energy
production and GDP values for respective years in the dataset. The findings were
interpreted and analyzed to draw conclusions regarding the models' performance in
estimating time series data on energy production and GDP in Tirkiye. Factors
contributing to the superior performance of one model over the other were identified
and discussed. Limitations of the chosen models, data availability, and other influential
factors were acknowledged and discussed. Based on the results and insights obtained,
recommendations for future research, improvements in modeling techniques or policy

implications may be provided.



3.1 Time Series Definition

A time series refers to a dataset comprising data points collected and recorded
over a specific time interval. It can be mathematically represented as a set of vectors,
denoted as x(t), where t represents the time duration and Xx(t) represents a random
variable. Scholars such as (Western and Kleykamp, 2004) have discussed the concept of
time series. The data in a time series are arranged in chronological order, reflecting the
sequence in which measurements were captured during an event or process. Time series
can be categorized as either univariate, involving data for a single variable, or

multivariate, which encompasses data from multiple variables.

3.1.1 Components of Time Series

Time series data consists of several essential components that help characterize
and analyze the inherent patterns and attributes of the data. These components include:

The trend component reflects the data's long-term movement or direction over
time. It reflects if the data shows a steady growth, drop, or remains generally stable over
a long period of time. Trends might be linear, nonlinear, or periodic in nature
(Makridakis and Hibon, 1997).

Seasonality is defined as reoccurring patterns or cycles that occur at regular
intervals in a time series. These patterns might change on a daily, weekly, monthly,
quarterly, or yearly basis. Seasonality captures regular fluctuations that repeat within the
same timeframe, typically influenced by factors like calendar events or natural
phenomena (Montgomery and Nyhan , 2010).

Cyclical variation represents irregular oscillations or fluctuations in a time series
that are not of fixed frequency or duration. These cycles often extend beyond the regular
patterns observed in seasonality and can be influenced by economic, social, or
environmental factors. Cyclical variations are often associated with business cycles or
economic cycles.

The irregular component, often known as the residual or error term, compensates

for noise or random fluctuations in time series data. It denotes occurrences that are
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unanticipated or unexpected that cannot be explained by the trend, seasonality, or
cyclical components. These anomalies add to the data's variability (Newbold, 1983).

The level or mean component reflects the average value or baseline of the time
series. It provides an indication of the central tendency or the typical level around which
the data fluctuates (Mohamed, 2020).

3.1.2 Stationairy

The idea of stationarity is critical in time series data analysis. When the
statistical properties of a time series stay consistent across time, it is said to be
stationary. This means that the series has a constant mean, a stable variance, and an
autocovariance that is completely determined by the time lag. A time series yt is
considered stationary mathematically if it meets the following conditions:

Constant Mean (p): The mean of the series remains constant over time.

Elyt]=u (3.1)

Constant Variance (62): The variance of the series remains constant over time.

Varly;] = 02 (3.2

Autocovariance (y) depends only on the time lag (h):
The covariance between yt and yt+h depends only on the time difference or lag

h, and not on the specific points in time.

ov[y_t,y_ t+h] =y ((h)) (3.3)

To assess stationarity, statistical tests such as the ADF test are commonly used.
These tests examine whether a time series possesses unit roots, indicating non-

stationarity, or remains stationary (Western and Kleykamp, 2004).
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3.1.3 Augmented Dickey-Fuller (ADF)

The ADF test is a popular statistical technique for determining whether a time
series is stationary or non-stationary. It is based on the augmented Dickey-Fuller
regression model, which is especially intended to examine the presence of unit roots in
the time series autoregressive model. The ADF test gives insights into the stationarity
qualities of the time series under examination by analyzing the significance of the
predicted coefficients in the model (Cheung and Lai, 1995).

The ADF test equation may be expressed as follows:

Ay: = Bo + Pit + B2Yi-1 + B3lyi—z + Badyis + .. + Bp* Ay, (3.4)
—-p + &

In this equation:
Ay, represents the differenced series at time t.
Bo: The intercept term is shown.
B denotes the time trend coefficient.
Ye—1. represents the lagged value of the time series.
Ayi_1,8Y¢_5,..., Ay represent the lagged differenced values of the time series, up
to lag p.
B2, B3, ..., Bp: represent the coefficients of the lagged differenced values.

&;. represents the error term or residual at time t.
3.1.4 Training Testing and Validation

Model training, testing, and validation requires dividing the available dataset
into multiple subsets in order to evaluate the model's performance and generalizability.
The conventional strategy is to divide the dataset into three subsets: training, testing,
and validation. The following formulae can be used to calculate the sizes of these

subsets: Training Set:

Size: ntrain = n X train_ratio (3.5

Where:
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n: is the amount of data points in total,
train_ratiot : is the ratio (between 0 and 1) assigned for the training set.

Testing Set:

Size: ntrain = n X test_ratio (3.6)

Where:

n: is the amount of data points in total

test_ratio : is the ratio (between 0 and 1) assigned for the testing set.
1. Validation Set:

Size: ntrain = n X test_ratio (3.7)

The validation set is the remaining portion of the dataset after allocating the
training and testing sets.

The train_ratio and test_ratio ratios can be adjusted according to specific
analysis requirements and goals. It is usual practice to give a higher fraction of the data
to the training set, often 70-80%, for model training reasons. The remaining data is then
divided into testing and validation sets for model assessment and fine-tuning (Sheridan,
2013).

The training set is used to fit the model's parameters and comprehend the
underlying patterns in the data. The testing set is used to evaluate the model's
performance on unknown data and establish its generalizability. The validation set is
essential for furthering the model's refinement, such as tweaking hyperparameters or
comparing multiple models (Zeger and Karim, 1991).

By separating the dataset into multiple subsets, the model may be trained on one
piece, evaluated on another, and validated on yet another. This process ensures reliable
estimates of the model's performance and helps prevent issues like overfitting (when the
model performs well on training data but poorly on unseen data) or underfitting (when

the model fails to capture important patterns in the data).
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Figure 3.1 Training testing and validation

3.1.5 Autocorrelation Function (ACF)

The ACF is a statistical technique that is used to examine the relationship
between a time series and its lag values. The ACF computes the correlation coefficient
between the time series at time t and its preceding lag values.

The ACF equation may be expressed formally as follows:

ACFqy = (Cay — W/ (Coy — 1) (3.8)

Where:
ACF y: represents the autocorrelation at lag k.
Cqo: represents the autocovariance at lag k.

W represents the mean of the time series.
C(o): represents the autocovariance at lag 0, which is equivalent to the variance of the

time series.

The autocovariance at lag k (C,) is calculated as:

Caoy = Cov(Yeey, Y(e-i)) (3.9)

Where y represents the time series value at time t and Cov (.) represents the

covariance function.

16



The autocorrelation at lag k (ACF) is then calculated by dividing the
autocovariance at lag k by the autocovariance at lag 0 (variance) and subtracting the
mean of the time series.

The ACF is typically plotted as a function of lag, and it provides insights into the
temporal dependencies and patterns in the time series. Positive autocorrelation at a
specific lag indicates that the values at that lag are correlated and tend to have a similar
pattern. Negative autocorrelation suggests an inverse relationship between the values at
that lag. ACF values close to zero indicate little or no correlation.

The ACF is a fundamental tool in time series analysis for understanding the
correlation structure of the data, identifying seasonality or periodic patterns, and
determining the appropriate lag orders for AR and MA components in models like
ARIMA (Heilbronner, 1992).

3.1.6 Partial Autocorrelation Function (PACF)

The PACEF is a statistical technique for analyzing the relationship between a time
series and its lag values while accounting for intermediate delays. The PACF computes
the correlation coefficient between the time series at time t and its values at earlier lags,
while ignoring the effect of intermediate lags.

The PACF equation can be expressed numerically as follows:

PACFy = Cov(y(r), Yie—k) | Yt-1) Ye=2)r -+ Y(t-k+1)) (3.10)
/ sart(Varg | -1y Ye—2)r -+ Y(e—k+1))

In this equation:

PACF : represents the partial autocorrelation at lag k.
Cov: represents the covariance function.
Var: represents the variance.
Y(v) - represents the time series value at time t.
The PACF at lag k (PACF ) is calculated by taking the conditional covariance
between the time series at time t and its lagged value at time t — k, given the values of

the intermediate lags (t — 1,t — 2,...,t —k + 1). It is then divided by the square root of
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the conditional variance of the time series at time t, given the values of the intermediate
lags.

The PACF helps in identifying the direct influence or relationship between the
time series values at different lags, after accounting for the intermediate lags. It is
commonly used in time series analysis, particularly in determining the lag orders for

autoregressive (AR) models.

3.1.7 Autoregressive (AR)

An (AR) model is generated when a value from a time series is regressed on past
values from the same time series. Then, like follo, it can generate an auto-regression

process Z, of order p, represented by the acronym AR (p).

Yo = €+ @) *Ye-1) T @@ * Y-zt -+ @) *Ye—p) + € (3.11)

Where:

Yo+ indicates the time series’ value at time .

c : is a constant term, also known as an intercept.

@ - The autoregressive coefficients are denoted by, where i runs from 1 to p.

Ye—i): represents the lagged values of the time series, with i denoting the lag. The lag
ranges from 1 to p.

£c)- IS the error term or residual at time t, expressing the random component that
the autoregressive portion does not account for.

This seems to be a multiple regression model, but instead of using external
factors as predictors, it uses past values of the same series. Auto-regressive series refer
to stationary processes where the variability of the terms is finite, which is determined
by the values of the phi (¢) coefficients. Auto-regressive processes are commonly
employed to represent time series data, where the current value is influenced by the
previous values in a linear manner, along with the addition of random error (Wang and
Wong , 2002).
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3.1.8 Moving Average (MA)

The MA model is a time series analysis approach that investigates the link
between a time series’ present value and its previous error components or residuals. It is
a statistical model that posits the present value of a series is driven by a linear
combination of past time points' error terms.The Moving Average equation of order g,

denoted as MA(Q), can be written as:

Yo = € + 01 xgep + 02 gyt + 0 % g-q) + £ (3.12)

Where:
Y - represents the value of the time series at time t.
c : Is a constant term.
041,0,,...,6_q : are the moving average (MA) coefficients, representing the influence of
past error terms.
E(t—1)s E(t—2)+ - -» E(t—q) - are the lagged error terms.
g - Is the error term (residual) at time t.

According to the MA(q) equation, the current value of the time series is a linear
combination of the error components at the current and previous time points, weighted
by the moving average coefficients. The lagged error terms' impact on the current value

is determined by the moving average coefficients (Biswas and Bhattacharyya, 2013).
3.1.9 Autoregressive Moving Average (ARMA)

The (AR) and (MA) models were combined to create the ARMA model.
Because it incorporates both auto-regressive and moving-average elements, the ARMA
model may describe complicated time series with fewer parameters than a comparable
AR model (Makridakis and Hibon, 1997; Montgomery and Nyhan, 2010). An ARMA

(p,q) model's general equation is:
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Vi = € + &' ¢ yoony + &P * ooyt GB * yy_q + 01 * gy

3.13
+ 0% % -t ...+ Gq * Et-q) T En ( )

Where:

Y@ . represents the value of the time series at time t.

c: is a constant term.

b1, P2, ..., b are the autoregressive (AR) coefficients, representing the influence of
past values of the time series.

Y(t-1), Y(t-2):--» Y(t—q) - are the lagged values of the time series.

041,0,,...,6_q: are the moving average (MA) coefficients, representing the influence of
past error terms.

E(t—1)s E(t—2)s - - -» E(t—q) - are the lagged error terms.

g - Is the error term (residual) at time t.

3.1.10 Integrated (1)

The integrated component indicates the differencing procedure used to establish
stationarity on the time series (yet). The integrated component eliminates any trend or
seasonality in the data by measuring the difference between successive readings. The
constant term reflects the mean shift induced by differencing, and the differenced error
term is denoted by 't' (Makridakis and Hibon, 1997).

Ay@wy =Yie) — V-1 = Ut €y (3.14)

Where:
Ay »: At time t, represents the differenced series.
Yo - signifies the first time series at t.

Y¢—1: The lagged value of the time series.
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3.1.11 Autoregressive integrated moving average (ARIMA)

ARIMA, which stands for Autoregressive Integrated Moving Average, is a
prominent time series data analysis model that incorporates autoregressive (AR),
differencing (1), and moving average (MA) components to capture the underlying
patterns and dynamics of the series (Hossain and Abdulla, 2015).

The ARIMA model is characterized by three key parameters: p, d, and q.

The parameter p denotes the order of the autoregressive (AR) component, which
represents the number of lagged observations of the dependent variable in the model.
The AR component captures the link between the present value of the time series and its
historical values by evaluating prior values (Pappas et al., 2010). The parameter d
denotes the order of differencing, which entails transforming the time series to attain
stationarity. Stationarity is the removal of trends and seasonality from data. The value of
d denotes the number of times the series must be differenced before it reaches
stationarity. The moving average (MA) component's order is represented by the
parameter g. It represents the number of lag forecast mistakes, also known as residuals,
that are included in the model. The MA component records the link between the error
term and the lag errors, allowing future values to be modelled and predicted based on
past mistakes. These three parameters, p, d, and g, establish the ARIMA model and
enable for the study and prediction of time series data by taking autoregressive
correlations into account, distinguishing for stationarity, and including the moving
average effect (Jenkins, 2004).

The ARMA model is the outcome of merging the Autoregressive (AR) and
Moving Average (MA) models. Because it incorporates both auto-regressive and
moving-average elements, the ARMA model may describe complicated time series with
fewer parameters than a comparable AR model (Makridakis and Hibon, 1997
Montgomery and Nyhan, 2010). An ARMA (p, g) model is as follows:

Yo = € + d)l * AY-1) + ¢2 * AY—pt ...+ QB * Aﬂy(t_p) + 61

3.15
* E(t-1) + 02 % S(t_2)+ ot Hq * E(t—q) + &) ( )

Where:

Y - represents the value of the time series at time t.
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c : is a constant term.

b1, do, ..., B : are the autoregressive (AR) coefficients, representing the
influence of past differenced values of the time series.

Ay -1y, AY(t-2),---» Dy-py - are the differenced values of the time series,
obtained by subtracting the previous values from the current values.

04,0,,...,06_q : are the moving average (MA) coefficients, representing the
influence of past error terms.

E(t—1)» E(t-2), - - -» E(t—p) - are the lagged error terms.

g(t) : is the error term (residual) at time t.

By estimating the coefficients and error term values, the ARIMA model may be
used for forecasting, anomaly detection, and evaluating the dynamics of a time series.
Model parameters can be estimated using a variety of methods, including maximum
likelihood estimation (MLE).

In the ARIMA model, MLE estimation entails determining the values of ¢, i, and
j that maximize the likelihood function given the observed data. This is usually
accomplished through the use of numerical optimization techniques such as the
Newton-Raphson method or the Fisher scoring system. By maximizing the likelihood
function, we identify the parameter values that make the observed data most likely
under the ARIMA model's assumptions. These parameter estimates can then be utilized

to create predictions or evaluate the underlying time series data.

3.1.12 Maximum Likelihood Estimation (MLE) method

Maximum Likelihood Estimation (MLE) is a statistical approach for estimating
statistical model parameters. It is based on the notion of determining model parameter
values that optimize the possibility of witnessing the provided data.

In MLE, we assume a specified parametric form for the data's probability
distribution. The objective is to determine the parameter values that make the observed
data most likely. The likelihood function is calculated by multiplying the individual
probability of detecting each data point under the assumed distribution by the product

(or total, in the case of continuous distributions).
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Consider a collection of independent and identically distributed variables (i.i.d)
random variables X, X5, ..., XB, with a joint probability density or mass function f(x; 0),

where 0 represents the unknown parameters of the distribution. The likelihood function

L(0) is defined as:

L(0) = f(xq; 0) * f(xz; 0) *...x f(x@; 0) (3.16)

The log-likelihood function, denoted by L(8), is often used instead of the

likelihood function. It is defined as the natural logarithm of the likelihood function:

£(8) = log(L(0)) = log(f(xs; 8)) + log(f(xs; 8)) + ...+ log(f(x@; 8))  (3.17)

The MLE calculates the parameters by determining which values of maximize
the likelihood or log-likelihood function. This is often accomplished through the use of
optimization techniques such as numerical optimization algorithms. We seek the
parameter values that make the observed data most likely under the expected
distribution by maximizing the likelihood (Closas et al., 2007).

3.1.13 Box-Jenkins Approach

George Box and Gwilym Jenkins established the Box-Jenkins Method, which is
a commonly used methodology for evaluating and predicting time series. It is a
methodical and iterative procedure that consists of three major stages.

Model identification, parameter estimates, and model diagnostics (Suleman and
Sarpong, 2012).

The time series data is analyzed in the model identification step to see if it
displays stationarity, which indicates that its statistical features stay consistent across
time. To achieve stationarity if the data is non-stationary, differencing or transformation
techniques may be used. Following that, the autocorrelation function (ACF) and partial
autocorrelation function (PACF) are examined to determine probable orders of
autoregressive (AR) and moving average (MA) components in the model. Based on the
ACF and PACEF plots, several AR, MA, and ARMA models are explored, and the best
model is chosen using metrics such as the AIC (Gharbi et al., 2011).
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Estimation of Parameters: After determining the model structure, the parameters
of the chosen AR, MA, or ARMA model are estimated using techniques such as
maximum likelihood estimation (MLE) or other estimation methods. To estimate the
model coefficients, iterative approaches such as the Yule-Walker equations or method
of moments are used.

Model Diagnostics: The residuals of the calculated model are evaluated in this
stage to find any lingering patterns or systematic behavior. To examine the
unpredictability and independence of the residuals, diagnostic techniques such as the
Ljung-Box test or portmanteau test are used. If significant patterns or correlations are
discovered, the model may need to be adjusted or transformed. The method is repeated
until the model diagnostics are adequate.

After obtaining and validating a final model, it may be used to anticipate future
values of the time series. The Box-Jenkins technique to time series analysis provides a
structured and systematic framework for analysts to capture underlying patterns,
dynamics, and connections within the data. It has been used in a variety of sectors,
including economics, finance, engineering, and environmental sciences (Jahanshahi et
al., 2019).

3.1.14 Assumption of ARIMA Model

To ensure its success in modeling time series data, the ARIMA (AutoRegressive
Integrated Moving Average) model involves numerous assumptions. The following are
the ARIMA model's ten essential assumptions:

Stationarity: The time series data should be stable, which means that statistical
features like mean and variance should remain consistent throughout time. This
assumption allows the model to include autoregressive and moving average
components.

Linearity: It is assumed that the connection between the observations and their
lag values is linear. The ARIMA model is based on the assumption that data may be
adequately represented by linear combinations of previous observations and random

mistakes.
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Independence: The time series observations should be independent of one
another. This indicates that the value of a single observation is independent of the
values of prior or subsequent observations.

No perfect multicollinearity: The ARIMA model's independent variables should
not have perfect linear connections with one another. Perfect multicollinearity can lead
to estimation issues and inaccurate findings.

No endogeneity: In the ARIMA model, the error term should be uncorrelated
with the independent variables. Endogeneity occurs when the error term is
systematically connected to the explanatory factors, causing the parameter estimates to
be skewed.

Homoscedasticity: The error term's variance should be consistent across time
periods. This assumption assures that the model's performance is unaffected by changes
in data variability.

Normality of residuals: It is assumed that the error component has a normal
distribution with a mean of zero. This assumption enables the model to do efficient
estimates and hypothesis testing.

No serial correlation: The error term should not show any patterns or connection
over time. In other words, the residuals should not be linked with their own delayed
values.

No ARCH/GARCH effects: The error term should not show effects of
autoregressive conditional heteroscedasticity (ARCH) or generalized autoregressive
conditional heteroscedasticity (GARCH). These effects indicate time-varying volatility
and, if not adequately accounted for, can lead to inefficient parameter estimations.

No outliers: Outliers in the data might cause parameter estimations to be
distorted and the model's performance to suffer. The ARIMA model presupposes that

there are no severe or influential outliers in the data.

3.2 Beysian Structural Time Series (BSTS) Model

The Bayesian structural time series (BSTS) framework is used for modeling and
predicting time series data. To capture the underlying patterns, trends, and correlations
in the data, it blends Bayesian inference with structural time series modeling

approaches. The time series is split into numerous components in BSTS, including
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trend, seasonality, regression, and error. Each component is modeled independently and
then integrated to provide a full time series representation. To estimate the posterior
distribution of the components, the framework includes prior beliefs, data observations,
and model parameters (Poyser, 2019).

The equation for BSTS can be represented as follows:

Ye = Mgt Ye Tt Bthj + & (3.18)

=1

Where:

y;: represents the time series' observed value at time t.

U . indicates the trend component of the time series, reflecting long-term changes and
trends.

Y¢: represents the seasonality component, accounting for the periodic fluctuations
occurring within a year or other relevant time periods.

Bjxt; : represents the regression component, where {3j denotes the regression coefficient
and xtj represents the corresponding regressor variables.

€. + indicates the trend component of the time series, reflecting long-term changes and
trends.

Given the observed data, the BSTS framework use Bayesian inference to
determine the posterior distribution of the model parameters and latent components.
This procedure involves updating prior beliefs using Bayes' theorem and generating
samples from the posterior distribution using MCMC techniques. Analysts may use
BSTS to model and forecast time series data while taking into account past knowledge,
dealing with uncertainty, and capturing the structural aspects of the underlying process.
The framework is scalable to a wide range of time series applications, making it an
invaluable tool for data analysis and forecasting.

The trend component captures the time series' long-term systematic changes or
trends. It is represented by t, which may be modeled using a variety of approaches

including local linear trend, random walk, and polynomial functions (Poyser, 2019).

Yo = Ut T+ & (3.19)
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Where:
Y, represents the time series' observed value at time t.
U . indicates the trend component of the time series, reflecting long-term changes and
trends.
€. + indicates the trend component of the time series, reflecting long-term changes and
trends.

The seasonality component accounts for repetitive patterns or seasonal
fluctuations in the data. It is represented by Y5_,ysX . where X, is an indicator
variable representing the presence or absence of season s at time t, and ys is the

corresponding coefficient.

s
Ve = K¢ + z YsXse + & (3.20)
s=1

Where:

y: represents the time series' observed value at time t.

U - Iindicates the trend component of the time series, reflecting long-term changes and
trends.

& * Indicates the trend component of the time series, reflecting long-term changes and
trends.

The regression component incorporates the influence of external factors or
covariates on the time series. It is represented by Yx_; Bi Xi: + €, Where xk, t is the
value of the covariate k at time t, and Py is the corresponding coefficient (Kolarik and
Rudorfer,1994).

K
Ve = He + . Bk. Xkt T € (3.21)
=1

Where:
y: represents the time series' observed value at time t.
U . indicates the trend component of the time series, reflecting long-term changes and

trends.
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& + indicates the trend component of the time series, reflecting long-term changes and
trends.

The error component represents the random and unexplained variation in the
time series. It is denoted by et and assumed to follow a certain probability distribution

(e.g., Gaussian, Poisson) with mean zero and constant variance (Vermaak et al., 2002).

S K
yt = put+ ysXst + Bk Xkt + €t (3.22)

s

These equations define the BSTS model's components, where yt is the observed
value of the time series at time t. The model represents the link between observable data
and underlying components such as trend, seasonality, regression, and error. As
previously stated, the coefficients (ut,ys, By) are evaluated using Bayesian techniques
to determine the posterior distribution of the parameters (Geweke, 2007).

In the technique section, you may go through the BSTS model's precise
implementation details, such as the prior distributions assigned to the parameters,
covariate selection, and the estimate approach utilizing MCMC sampling (Klugkist et
al., 2005).

3.2.1 The (BSTS) State Model

The (BSTS) state space model is a statistical framework widely used for
evaluating time series data. It is made up of two main parts: the observation equation
and the state equation (Derisavi et al., 2003).

The observation equation links the observed data to the underlying latent

(unobserved) state variables. It is typically represented as:

yt = Ztat + Gt (323)

Where:
y; - denotes the observed data at time t.
Z,. represents the observation matrix that maps the state variables to the observed data.

a;  signifies the vector of state variables at time t.
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€, : represents the observation error, assumed to follow a known distribution.
The state equation describes the evolution of the latent state variables over time
and is typically expressed as a recursive equation:

O(t = TtO(t_l + Rtnt (3.24)

Where:

a,. denotes the vector of state variables at time t.

T;: represents the state transition matrix, which explains how the state changes over
time.

R¢: represents the state innovation matrix that captures the random shocks to the state
variables.

1. . denotes the state error, assumed to follow a known distribution.

The state space model permits the inclusion of diverse components to capture
different aspects of the time series data, such as trends, seasonality, and regression
effects. Each component is represented by suitable matrices in the observation and state
equations.

Bayesian inference is used inside the BSTS framework to estimate unknown
parameters and create predictions for future time series values. Prior distributions for
model parameters are defined, and posterior distributions are produced by integrating
the prior knowledge with the observed data using (MCMC) techniques. The state space
model provides a versatile and effective framework for modeling and predicting time
series data, allowing for the inclusion of complex patterns and relationships (Karklin
and Lewicki, 2005).

3.2.2 Markov Chain Monte Carlo (MCMC) Method

MCMC is a computing approach for obtaining samples from a target probability
distribution. It is commonly used to estimate the posterior distribution of model
parameters in Bayesian statistical inference. The basic idea underlying MCMC is to
build a markov chain that explores the relevant parameter space and finally converges to
the desired posterior distribution (Toivonen et al., 2001). This is accomplished by
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repeatedly generating samples from a proposal distribution and accepting or rejecting

them depending on a predefined criterion. The Markov chain samples offer an

approximation of the posterior distribution. One of the most widely used MCMC

algorithms for sampling is the Metropolis-Hastings algorithm (Gallagher et al., 2009).
Its equation can be expressed as follows:

o, pEDa(x 1 x")
a = min (1, (X 1 %) > (3.25)

Where:

X' : represents a proposed sample from the proposal distribution.

X . represents the current state of the Markov chain.

p(x) : is the target probability distribution (e.g., the posterior distribution).

q(x" | x) :is the proposal distribution, which defines the transition probability from
state x to 'x'.

Within the Metropolis-Hastings algorithm, the acceptance probability is critical
in determining whether a proposed sample should be accepted or rejected. The
suggested sample is always approved if it equal to or larger than 1. If, on the other hand,
is smaller than 1, the suggested sample is accepted with a probability of and rejected
with a probability of. The resultant Markov chain finally converges to a stationary
distribution that closely approximates the desired posterior distribution after iteratively
producing a sequence of samples using the Metropolis-Hastings method. The samples
obtained from the chain may then be used to estimate other quantities of interest
associated with the target distribution, such as means, variances, and quantiles. MCMC
approaches provide a strong tool for Bayesian inference, allowing complicated model
estimates and uncertainty quantification. Analysts can use MCMC approaches to draw
trustworthy conclusions and gain useful insights in situations when direct analytical

computations are not possible (Kass et al., 1998).
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3.2.3 Dynamic Distribution Of The Model Errors In A (BSTS) Model

The probability density function (PDF) or histogram of the errors at different
time points may be used to depict the dynamic distribution of model errors in a (BSTS)

model. This may be stated mathematically as:

P(error | data, model) (3.26)

Where:

P(error | data, model): Given the observed data and the BSTS model, reflects the
conditional probability distribution of the mistakes.

error : error refers to the difference between the observed data and the model's
predictions at each time point.

The dynamic distribution of errors represents the model's uncertainty and
unpredictability across time. It gives information on the errors' shape, spread, and
trends, allowing for a thorough evaluation of the model's performance. The dynamic
distribution of errors may be used to uncover any biases, outliers, or regular trends in
the model's predictions. This data may be used to evaluate models, make decisions, and
discover areas for model improvement (Chandra, 1993).

3.2.4 Bayesian Inference

Bayesian inference is a framework for updating our beliefs about the parameters
of a statistical model based on observed data. Combining the prior distribution, which
represents our starting views, with the likelihood function, which represents the data,
yields the posterior distribution, which represents our updated beliefs (Geweke, 2007).

Using Bayes' theorem, the equation for Bayesian inference is as follows:

P(0 | data) = P(da;a((;:t;)i)' P) (3.27)

Where:
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P(6 | data) : is the posterior distribution, representing our updated beliefs about the
parameter(s) 6 given the observed data.

P(data | 0) : is the likelihood function, representing the probability of observing the
data given the parameter(s) 6.

P(0) : is the prior distribution, representing our initial beliefs about the parameter(s) 6.

P(data) is the marginal likelihood or evidence, representing the probability of
observing the data regardless of the parameter(s) 6. It serves as a normalization constant
to ensure that the posterior distribution integrates to 1.

The posterior distribution is proportional to the product of the likelihood
function and the previous distribution divided by the evidence, according to the
equation. Calculating the evidence can be difficult in practice, but it is not always
essential because it works as a normalizing constant. Based on the observed data,
Bayesian inference allows us to update our ideas about the parameters, taking into
account both previous knowledge and the information included in the data. After
evaluating the data, the posterior distribution gives a probabilistic representation of our

uncertainty regarding the parameters (Von Toussaint, 2011).

3.2.5 Prior Distribution

In Bayesian statistics, the prior distribution plays a crucial role as it represents
our initial beliefs or knowledge about the parameters of a statistical model before any
data is observed. It measures our parameter uncertainty and serves as the starting point
for Bayesian inference. The equation for the prior distribution depends on the specific
parameter being modeled and the chosen probability distribution. In general, we denote
the prior distribution as P(8), where 6 represents the parameter(s) of interest (Curtis and
Lomax, 2001).

The form of the prior distribution can vary depending on the problem at hand
and the information available. It can be selected from a wide range of probability
distributions, such as the normal (Gaussian), beta, gamma, or uniform distributions,
among others. For example, if we are estimating a population mean p using a normal
distribution, we might choose a normal prior distribution with a mean of p, and a

variance of o?.
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This prior distribution can be expressed as:

Pqy = N(p | po,0%) (3.28)

Where:

N: represents the normal distribution.

P(,y: represents the probability density function (PDF) of the prior distribution for the
population mean p.

N(ug, 0%) : represents a normal distribution with mean p, and variance o2.

The normal prior distribution is commonly used when there is prior knowledge or belief
about the likely range or value of the population mean.

Before evaluating the data, the prior distribution embodies our preconceptions
about the parameter. It can be influenced by past information, prior research, or
subjective views. The prior distribution chosen has an effect on the resultant posterior
distribution and inference. Bayesian inference uses Bayes' theorem to calculate the
posterior distribution from the prior distribution and the likelihood function, which
captures the observed data. The posterior distribution represents the changed views

about the parameter(s) after taking the observed data into account.
3.2.6 Posterior Distribution

The posterior distribution is an essential concept in Bayesian statistics. It returns
the updated probability distribution of the unknown parameters or variables of interest
based on the observed data and any previous knowledge. The posterior distribution,
which combines the prior distribution with the likelihood function, is constructed using
Bayes' theorem (Tierney, 1994).

The equation for the posterior distribution is as follows:

_P(x16).P(6)

P(61x)= 0] (3.29)

Where:
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P(061x): is the posterior distribution, which denotes the parameter probability
distribution 6 given the observed data x.

P(x | 8) : The likelihood function reflects the probability of seeing the dat x given the
parameters 6.

P(0): is the prior distribution, which reflects the initial assumptions or knowledge of the
parameters 6 before observing the data.

P(x): is the marginal likelihood or evidence, which represents the probability of
witnessing the data x independent of the parameters' precise values. 6. It functions as a
normalization constant, guaranteeing that the posterior distribution integrates to 1.

The posterior distribution represents the parameter uncertainty after accounting
for past knowledge and observed data. It serves as the foundation for Bayesian
inference, allowing point estimates, credible intervals, and other statistical values of
interest to be calculated (Pole et al., 2018). In reality, determining the precise form of
the posterior distribution is usually computationally challenging, especially for complex
models. Numerical techniques such as (MCMC) algorithms are used to determine the
posterior distribution and pluck samples from it. These samples can then be used to

draw conclusions and make decisions (Pérez and Berger, 2002).

3.2.7 The (BSTS) Approach

(BSTS) is a statistical modeling framework for time series analysis and
forecasting. It is particularly useful when dealing with complex and uncertain time
series data. BSTS allows for the decomposition of a time series into multiple
components, such as trend, seasonality, and irregular components, while incorporating
Bayesian inference techniques for estimation and prediction (Yilmaz, 2008).

Here are some key characteristics and components of the BSTS approach:
By breaking a time series into many components, the BSTS technique models its
underlying structure.
e Trend: Represents the time series' long-term behavior or direction.
e Seasonality: Recurring trends or seasonal changes are captured.
e Regressors: Additional variables or factors that influence the time series

and are included as predictors.
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Irregular or error component: Represents random noise or unexplained
variations in the time series.

BSTS incorporates Bayesian inference principles to estimate the
parameters and make predictions. Bayesian approaches entail defining
prior distributions for parameters, mixing them with observed data, and
updating the posterior distributions via Bayes' theorem.

The parameter posterior distributions are determined using markov chain
Monte Carlo (MCMC) sampling techniques such as Gibbs sampling or
Metropolis-Hastings algorithms. These posterior distributions provide a
probabilistic framework for inference and the measurement of
uncertainty (Geweke, 2007).

In BSTS, model parameters such as trend, seasonality, and regressors are
estimated by sampling from posterior distributions using MCMC
techniques.

Once the model is fitted to the data, forecasts can be generated by
propagating the uncertainty from the posterior distributions forward in

time.

The forecasts incorporate both the estimated components of the time
series and the uncertainty associated with each component, providing
probabilistic forecasts instead of point estimates (Spedding and Chan,
2000).

BSTS is a flexible framework that can handle various types of time series
data and accommodate different model specifications.

It allows for the inclusion of multiple regressors or exogenous variables
that may influence the time series behavior.

The model can adapt to changing patterns or shifts in the time series by
updating the posterior distributions based on new data (Poyser, 2019).
The BSTS model's performance may be evaluated using a variety of
measures, including (MAE), (RMSE), (MAPE), coefficient of

determination, and log predictive density (Amini and Parmeter, 2011).
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3.2.8 Assuption of BSTS Model

To properly model time series data, the BSTS model makes certain assumptions.

Additive Errors: The model's errors or residuals are considered to be additive,
which means that the observed values may be decomposed into the sum of the
underlying components and the error term.

Normality of Errors: It is assumed that the errors have a normal distribution with
a mean of zero. This assumption enables the model to perform efficient estimates and
inference.

Independence: The time series observations are believed to be independent of
one another. This indicates that the value of a single observation is independent of the
values of prior or subsequent observations.

Constant Variance: The error variance is expected to be constant across time.
This assumption assures that the model's performance is unaffected by changes in data
variability.

Linearity: The observation-to-underlying-component connection is considered
to be linear. The BSTS model captures this linearity by combining state equations with
observation equations in a linear fashion.

Time-Invariance: The time series' underlying dynamics are believed to be time-
invariant. This signifies that the components' connection remains consistent throughout
the series.

Prior Distributions: The BSTS model is a Bayesian model that needs prior
distributions for model parameters to be specified. The prior distributions used can
impact the model's behavior and output, therefore they must be carefully considered.

No Omitted Variables: The BSTS model implies that all important time series
impacting elements are incorporated in the model. Excluding critical factors or
characteristics might result in skewed and incorrect findings.

Adequate Data: With additional historical data, the performance of BSTS
models frequently increases. With more data, the model can better capture the

underlying trends and generate more accurate projections (Levy , 2016).
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Good Initialization: The BSTS model is based on an initialization phase that
specifies the starting values of the parameters and latent states. A proper initialization is

critical for ensuring model convergence and accuracy.

3.3 Time Series Performance Measurements

Time series forecasting is important in many real-world scenarios. As a result, it
is critical to exercise caution when selecting a model for such projections. To evaluate
the accuracy of forecasts and compare different models, various performance metrics
are used. These metrics, often known as performance measures, are calculated using the
time series' actual and expected values. In this part, we will cover many important
performance indicators used by researchers and explain the fundamental ideas that
underpin them. (Ishak and Al-Deek, 2002) .

3.3.1 Aaike Information Criterion (AIC)

The Akaike Information Criterion (AIC) is a statistical metric that is used to
compare the quality and performance of various statistical models. The posterior
distribution allows you to achieve a compromise between a model's quality of fit and its
complexity. The AIC is a statistical metric that is used to identify the best model
(Bozdogan, 1987).

It is defined as follows:

AIC = =2 x log(L)+ 2 * k (3.30)

Where:
log(L): is the logarithm of the likelihood function of the model,
k : is the number of parameters in the model.
The AIC weighs the model's fit to the data against its complexity, penalizing
models with a large number of parameters. A lower AIC value suggests a better mix of

fit and simplicity, implying a more appropriate model.
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3.3.2 Root Mean Square Error (RMSE)

Root Mean Square Error (RMSE) is a widely used metric for evaluating the
performance of a predictive model, particularly in regression analysis. It provides a
measure of how well the predicted values of the model align with the actual observed
values (Hodson, 2022). Mathematically, it is defined as:

n
1
RMSE = HZ(yi — 92 (3.31)
i=1

Where:
yi: represents the actual values or observations.
¥ :represents the predicted values.

n: represents the total number of data points or observations

3.3.3 Mean Absolute Percentage Error (MAPE)

The Mean Absolute Percentage Error (MAPE) is a popular statistic for
determining the accuracy of a forecasting or prediction model. It calculates the average
size of mistakes in respect to the real values as a percentage (McKenzie, 2011).

It is calculated using the following equation:

MAPE = (%)* Z(

(Actual — Predicted)
Actual

) % 100 (3.32)

Where:

Actual: represents the actual value.
Predicted: is the projected value.

|x| : denotes the absolute value of x.

n : is the total number of data points.
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3.3.4 Mean Absolute Error (MAE)

MAE) is a statistic and machine learning measure that calculates the average
magnitude of deviations between expected and actual data. It gives a simple method for
determining the accuracy of a prediction model (Willmott and Matsuura, 2005).

It is calculated using the following equation:

MAE = Z(]y_pred — y_actual|) /n (3.33)

Where:
ly_pred — y_actuall: signifies the absolute difference between an anticipated and actual
value.

n: is the total number of forecasts.
3.3.5 Coeffcient of Determination (R?)

The coefficient of determination measures the linear correlation between real
data and model estimations, offering an indication of the model's appropriateness. It
also illustrates how much of the variance in the dependent variable can be explained by
the model's components (Piepho, 2019). It is the square of the correlation coefficient

and is defined mathematically as:

X — 5’1)2

R =156 — 2

(3.34)
Where:

Yi: represents the actual data,

Yi: represents the corresponding model estimates,

Y : represents the mean of the actual data.
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3.3.6 Multiple Linear Regression

Many linear regression equations are mathematical representations of the
relationship between a number of independent variables (also referred to as predictors or
features) and a dependent variable (sometimes referred to as the target or response
variable).

In its most generic version, the equation is as follows:

y = Bo + Bixa + Baxo+...+PEXE + € (3.35)

Where:

y : represents the dependent variable.

Bo : is the intercept term or the y-intercept.

B1, B2, ..., BA: are the coefficients or slopes associated with each independent variable
(x4, x2,...,x@), respectively.

X1,X2,..., XA denote the independent variables.

€: represents the error term or residual, which captures the unexplained variability in the
dependent variable.

The coefficients (Bo, B1, B2, --., B@) the impact or influence of each independent
variable on the dependent variable is represented in the equation, whereas the intercept
(Bo) accounts for the baseline value of the dependent variable when all independent
variables are zero.

In practice, the coefficients (Bo,B1, B2 ..., BA) are estimated using various
regression techniques, such as ordinary least squares (OLS), to find the best-fit line that
minimizes the sum of squared differences between the predicted and actual values.

By substituting specific values for the independent variables (x4, Xz, ..., x@) into
the equation, the predicted value (y) for the dependent variable based on the estimated
coefficients (Chen et al., 2014).
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3.4 Republic of Tiirkiye

Tiirkiye, officially known as the Republic of Tiirkiye, is a country situated at the
crossroads of Europe and Asia. It occupies the majority of the Anatolian Peninsula in
Western Asia, with a smaller portion located in Southeast Europe on the Balkan
Peninsula. Tiirkiye has neighboring countries in different directions: to the northwest, it
shares borders with Greece and Bulgaria, to the northeast with Georgia, and to the east
with Armenia, Azerbaijan, and Iran. To the south, it shares borders with Iragq and Syria.
Ankara, the capital city, is Tirkiye's second-biggest metropolis, while Istanbul, the
largest, is an important cultural, economic, and historical hub. Tirkiye offers a
captivating and diverse experience, combining a wealth of historical sites, cultural
heritage, and stunning natural landscapes. Tirkiye is categorized as a newly
industrialized country and boasts an upper-middle-income economy. It ranks 20th
globally in terms of nominal GDP and holds the 11th position based on purchasing
power parity (PPP). According to the World Bank, Tiirkiye's GDP per capita by PPP
stood at $32,278 in 2021. However, in 2019, around 11.7% of the Turkish population
was judged to be at danger of poverty or social exclusion. According to the same
source, Tiirkiye's unemployment rate in the same year was 13.67% (Aydin et al., 2005).
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Figure 3.2 Map of Tiirkiye
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4. RESULTS AND DISCUSSION

4.1 Coal Production in Tiirkiye from 1971 to 2020

Tiirkiye has a rich history of coal mining and has been a notable producer and
consumer of coal. Coal has been instrumental in meeting the energy demands of
Tiirkiye's growing economy, especially for electricity generation. The majority of coal
production in Tiirkiye comes from lignite mines located in the western region of the
country (Toprak, 2009).

Coal production in Tiirkiye has experienced consistent growth throughout the
1980s and 1990s, reaching a peak of 48.9 million tons in 1986. It continues to be a
crucial energy source for the country.

Despite the increase in coal production, Tiirkiye remains a net importer of coal,
particularly high-quality hard coal used in the steel industry. In 2019, Tiirkiye imported
around 20 million tons of coal while exporting approximately 4.5 million tons. The
significant surge in coal production in Tirkiye began in the 1980s following the
implementation of economic liberalization policies. These policies aimed to bolster the
energy and mineral resources sectors, resulting in increased coal production. Tiirkiye
possesses ample lignite reserves, which are low-quality coal deposits distributed
extensively across the country. Tirkiye has emphasized the exploitation of these
reserves for electricity generation (Ozbayoglu and Mamurekli, 1994).

State-owned mining enterprises produce the vast bulk of coal in Tirkiye.
Several privately held mining corporations do, however, operate in the nation. Coal-
fired power stations utilize the majority of coal in Tiirkiye, accounting for over 90% of
total consumption (Querol et al., 1999). Coal is also used in the iron and steel industry,
cement industry, and paper and pulp industry. Tirkiye has the distinction of being
Europe's largest coal user. Coal has generally been a cheaper energy source than
imported natural gas and oil. Coal mining in Tiirkiye has faced a number of problems,
including safety concerns, environmental concerns, and local community hostility.
Mining accidents have resulted in severe loss of life, prompting requests for greater

safety laws and working conditions for coal miners (Y1lmaz and Uslu, 2007).



In recent years, opposition to the development of new coal mines and power
plants has grown, particularly in the Black Sea region. Concerns regarding the
environmental impact of coal mining and the health risks associated with air pollution
from coal-fired power plants have been raised by local communities and environmental
groups (Hepbasli, 2004).

The Turkish government has set a target of 30% renewable energy in the power
mix by 2023 in order to minimize reliance on coal and enhance the percentage of
renewable energy. They've also invested in cleaner coal technology including high-
efficiency, low-emission (HELE) coal-fired power plants, and they intend to phase out
coal-fired power plants that don't fulfill environmental criteria by 2023. In the next
years, Tiirkiye hopes to migrate to a more sustainable energy mix (Yilmaz, 2009).

A descriptive Table 4.1. showcasing the top ten countries in the world for coal
production reveals China as the leading producer, followed by India, solidifying their
positions as key players in the global coal industry.

Table 4.1 Top ten countries in the world for coal production

Coal Production

Rank * L (Million Metric Tons)
1 China 3.942
2 India 767
3 Indonesia 550
4 USA 544
5 Australia 534
6 Russia 320
7 South Africa 250
8 Germany 180
9 Poland 130

10 Kazakhstan 120
11 Tiirkiye 70.8

4.2 Application of ARIMA on Coal Production

The ARIMA model was chosen from the collection of classical models for coal
from 1971 to 2020 in Tiirkiye, which consists of three main methods, and was used to

make sure ti forecast the future years.
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4.2.1 Identification for Coal Production
The descriptive Table 4.2. for coal production from 1971 to 2020 presents key
statistics that provide insights into the trends and variability of coal production over the

years.

Table 4.2 Descriptive statistics for coal production from 1971 to 2020

Variables Min Max Mean SD

Coal production 22.86 48.96 29.62 5.48

The coal dataset for Tirkiye spanning from 1971 to 2020 is a time series
collection of yearly observations on coal production, measured in tons. It consists of 50
observations recorded annually. This dataset is commonly utilized to examine the trends
and patterns in coal production in Tirkiye over time. It can provide insights into the
various factors that influence coal production, including economic and environmental
conditions, and facilitate the forecasting of future trends in coal production in Tiirkiye.
The dataset reveals that the minimum coal production in Tirkiye during this period
occurred in 1971, totaling approximately 22.86 million tons. On the other hand, the
maximum coal production was recorded in 1986, reaching approximately 48.96 million
tons. Over the entire period, the average coal production in Tiirkiye amounted to around
29.62 million tons per year. The standard deviation of coal production, which measures
the data's dispersion, was approximately 5.48 million tons per year, indicating a
significant variation in the production levels.

Converting data to a time series involves assigning specific dates or time periods
to each observation, transforming it into a sequence of equally spaced points in time
Figure 4.4. In the case of coal production data, this process would entail associating a
particular date or time period with each recorded observation of coal production.
Organizing the data in this manner becomes a time series that can be analyzed to
identify trends, patterns, and other characteristics in coal production over time.
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Figure 4.1 Time series plot of yearly coal production in Tiirkiye (1971-2020)

In time series analysis, stationarity refers to the statistical properties of a variable

remaining consistent over time (Figure 4.2).
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Time series plot of yearly coal production from 1971 to 2020 in Tiirkiye
after differencing

The (ADF) test is a statistical test that determines whether a time series is

stationary. The ADF test for the first-order differenced time series of coal production
data. The test statistic is calculated to be 0.01226, which is less than the 0.05. This
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means that there is enough evidence to reject the null hypothesis of non-stationarity and
conclude that the differenced time series is stationary. Figure (4.3) shows the
autocorrelation function (ACF) at lag 16 measuring the correlation between a variable

and its lagged value 16 time periods apart.
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Figure 4.3 Autocorrelation function for coal production time series

The autocorrelation function (ACF) at lag 16 measures the relationship between
a time series and its delayed form at a lag of 16 time units.The ACF is a statistical
technique for detecting and evaluating the presence of any noticeable connection or
pattern within a time series dataset. Analysts can get insights on the presence and
intensity of links between observations at different periods in time by studying the ACF
values at different lags, assisting in the discovery of potential patterns or dependencies
within the data.

At lag 16, the partial autocorrelation function (PACF) quantifies the relationship
between a variable and its lagged value 16 time periods.
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Figure 4.4 Autocorrelation function for coal production time series
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The partial autocorrelation function (PACF) at lag 16 assesses the relationship
between a time series and a delayed version of itself at a specified lag of 16 time units,
while accounting for intermediate delays ranging from 1 to 15. It isolates the direct
correlation between the observations at lag 16 by removing the influence of the shorter
lags. By examining the PACF values at different lags, analysts can assess the unique
relationship between observations separated by a specific time interval, providing

insights into the underlying structure and dependencies within the time series data.

4.2.2 Selecting Fitting Model

Table 4.3. presents the estimated parameters of the ARIMA (1,0,0) model.

Table 4.3 ARIMA (1,0,0) model’s parameters

Variables Estimate SE T-test P-value
Constant 30.11 1.86 16.1 0
AR 0.66 0.11 5.76 0

Box and Jenkins developed an interactive method for fitting (ARIMA) models to
time series data. This method focuses on ensuring that the time series' mean and
variance are stationary. Table 4.5. shows that the derived model is statistically
significant, and the parameters are likewise statistically significant. A lower Akaike
information criterion (AIC) value implies a better fit for the model. The AIC in this
scenario is 282.37. These numbers indicate that the ARIMA (1,0,0) model is well-suited
for capturing data patterns. As a result, by examining Figures 4.8 and 4.9, it may be
used to properly estimate the parameters of the model.
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Figure 4.5 Training data for predicted value and actual values of coal production time
series by using ARIMA model
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Figure 4.6 Testing data for predicted value and actual values of coal production time
series by using ARIMA model

The accuracy of an ARIMA model can be evaluated by looking at Table 4.4. and

4.5. these metrics on the training set and the test set.

Table 4.4 ARIMA (1,0,0) model statistics (training data)
MAE RMSE MAPE R?

1.267 1.984 3.546 0.894

49



Table 4.5 ARIMA (1,0,0) model statistics (testing data)

MAE RMSE MAPE R?

1.327 2.134 3.980 0.865

4.2.3 Model Checking (1,0,0)

Figures (4.7) and (4.8) show the residuals of an ARIMA (1,0,0) model with a
non-zero mean. These charts emphasize the differences between the actual observed
values and the ARIMA model's anticipated values for the provided time series data.
analyzing the residual distribution assists in analyzing the model's assumptions and
finding potential issues such as heteroscedasticity (changing variances) or non-
normality. The residuals should ideally show random fluctuations centered around zero,
suggesting that the model adequately captured the underlying data patterns. Once the
candidate ARIMA (1,0,0) model was identified and estimated, the next step involved
assessing its fit to the data through parameter and residual analysis. To diagnose the
model, the residuals were subjected to diagnostic testing using ACF and PACF plots, as

depicted.

Residuals from ARIMA(1,0,0) with non-zero mean
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Figure 4.7 Residuals from ARIMA (1,0,0) with non-zero mean
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Figure 4.8 Residual ACF and PACF for ARIMA (1,0,0)

All ACF and PACF residuals values were statistically significant at the 95%
confidence level, showing that the residuals reflect a pattern of random white noise,
according to these graphs. This implies that the ARIMA (1,0,0) model is suitable for the
supplied data. The Box-Ljung test was used to look for autocorrelation in the residuals
of the ARIMA (1,0,0) model. The observed autocorrelations of the residuals are
compared to the anticipated values under the assumption of no autocorrelation. The
computed p-value from the Box-Ljung test in the submitted findings was 0.8802, which
is larger than the significance level of 0.05. This implies that there is no indication of
autocorrelation in the model's residuals. As a result, it is possible to conclude that the
model successfully represents the autocorrelation structure in the data.

Table 4.6. presents the actual and predicted values of coal production from 2013
to 2020. It provides a comparison between the observed values, representing the real
coal production data, and the forecasted values obtained from a particular model or

method.
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Table 4.6 The actual and predicted values of coal production in from 2013 to 2020

Date Actual Forecast
2013 26.56046 28.96927
2014 30.26754 29.35022
2015 29.09509 29.60442
2016 24.84467 29.77405
2017 22.94193 29.88725
2018 22.85896 29.96278
2019 26.66897 30.01319
2020 30.26754 30.34682

Furthermore, the ARIMA (1,0,0) model was used to forecast Tiirkiye's annual
coal output for the year 2020. The figure in Figure 4.9. depicts the projected values for
2020, which are quite similar to the actual numbers. This convergence of anticipated
and actual values demonstrates that the model accurately represents the behavior and

patterns found in the coal production series for that year.
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Figure 4.9 Predicted values of coal
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4.3 Natural Gas Production In Tiirkiye from 1971 to 2020

Tiirkiye plays a significant role in the natural gas market, with a substantial
balance between imports, exports, and domestic consumption. Tiirkiye is a major
importer of natural gas to meet its growing energy demand. Imports are received
through pipelines and liquefied natural gas (LNG) shipments (Umucalilar et al., 2002).

Tiirkiye receives most of its natural gas imports through pipelines from different
supplier countries, including Russia, Azerbaijan, and Iran. Tiirkiye has LNG terminals
at Marmara Ereglisi, Samsun, and Izmir, receiving shipments from countries like Qatar,
Algeria, and Nigeria (Saidur et al., 2010). Tiirkiye has started exporting natural gas,
albeit on a smaller scale compared to its imports. Neighboring countries, particularly
Greece and Bulgaria, receive natural gas from Tiirkiye through interconnector pipelines
(Baser et al., 1998).

Tiirkiye has considerable domestic consumption in a variety of sectors, including
power generation, industrial, residential, and commercial. Natural gas is a primary fuel
source for electricity generation, and it is used to power industry and
residential/commercial structures. Tiirkiye intends to diversify its energy sources,
strengthen its energy security, and boost energy efficiency and renewable energy. The
government is working to reduce reliance on fossil fuels, especially natural gas, by
boosting the proportion of renewable energy in the energy mix (Kaygusuz, 2002).

Investments in renewable energy projects, such as wind and solar, aim to
gradually decrease reliance on natural gas and other fossil fuels. In the 1970s, natural
gas production was minimal, and the country heavily relied on imports. The 1980s
marked significant progress in exploration and production, with the Turkish Petroleum
Corporation (TPAO) leading the efforts. Important milestones included the discovery of
the Karakaya gas field and subsequent production. Natural gas production capacity
gradually increased, reducing reliance on imports (Demirbas, 2001).

The 1990s saw continued growth in production, with additional discoveries like
the Thrace Basin gas fields. Infrastructure expansion, including pipelines and storage
facilities, was prioritized. The 2000s witnessed a notable increase in production due to
new field development and foreign investment. Infrastructure improvements included

pipeline expansion and LNG import terminals. From 2010 to 2020, natural gas
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production continued to grow with ongoing exploration and technological
advancements. Notable discoveries, such as the Sakarya gas field and the Tuna-1 well,
further contributed to the production. Tiirkiye aimed to diversify supply sources and
increase the share of natural gas in its energy mix during this period (Kaygusuz, 2003).
A descriptive Table 4.7. showcasing the top ten countries in the world for natural
gas production reveals United States as the leading producer, followed by Russia,

solidifying their positions as key players in the global coal industry.

Table 4.7 Top ten countries in the world for natural gas production

Natural Gas Production

Rank Country (Billion Cubic Meters)
1 United States 914.6
2 Russia 638.5
3 Iran 250.8
4 China 194
5 Qatar 171.3
6 Canada 165.2
7 Australia 142.5
8 Saudi Arabia 112.1
9 Norway 1115
10 Algeria 81.5
74 Tiirkiye 13.4

Source: The World Bank organization.

4.4 Application of ARIMA on Gas Production

The ARIMA model was chosen from the collection of classical models for gas from
1971 to 2020 in Tirkiye, which consists of three main methods, and was used to make

sure ti forecast the future years.
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4.4.1 Identification for Gas Production
The descriptive Table 4.8 for coal production from 1971 to 2020 presents key
statistics that provide insights into the trends and variability of coal production over the

years.

Table 4.8 Descriptive statistics for gas production from 1971 to 2020

Variables Min Max Mean SD

Gas production 0.09 49.73 23.29 19.62

The time series data spanning from 1971 to 2020 offers valuable insights into the
annual natural gas production in Tiirkiye. This dataset focuses on a single variable,
namely the amount of natural gas produced in billion cubic meters (bcm), with 50
observations in total. The data demonstrates a clear upward trend, indicating a
consistent growth in Tirkiye's natural gas production over time. However, there are also
noticeable fluctuations within the data, suggesting the influence of various factors such
as weather patterns, economic conditions, and energy sector policies.

Analyzing the summary statistics, the average gas production over the 50-year
period was approximately 23.29 bcm, with a standard deviation of 19.62 bcm. These
figures indicate a considerable degree of variability in annual natural gas production.
The minimum recorded value in the dataset, 0.09 bcm, likely corresponds to a year with
relatively low production, while the maximum value of 49.73 bcm signifies a year with
exceptionally high production. These descriptive statistics provide a comprehensive
overview of the natural gas production data, revealing its central tendency, spread, and
the range of values observed. To gain deeper insights into the patterns, trends, and
potential forecasting of natural gas production in Tirkiye, further analysis can be
conducted using time series models such as ARIMA. These models can aid in the
discovery of the underlying dynamics of the data and give useful information for
decision-making and future forecasts.

Transforming data into a time series involves structuring the data as a sequence
of evenly spaced time intervals Figure 4.10. This entails assigning specific dates or time
periods to each data point. In the context of gas production data, this would involve
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assigning a time period to each observation of gas production. By creating a time series
in this manner, we can analyze and detect patterns and trends in gas production over

time.
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Figure 4.10 Time series plot of yearly gas production in Tiirkiye

Stationarity in time series analysis refers to the statistical properties of a variable

remaining consistent over time, as shown in (Figure 4.11).
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Figure 4.11 Time series plot of yearly gas production in Tiirkiye after two differencing
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The (ADF) test was performed on the gas time series data's second difference,
which was generated by subtracting the time series from itself twice. The resultant p-
value is 0.02071, which is less than the significance level of 0.05 that was set. The
autocorrelation function (ACF) plot displays the autocorrelation values at various lags,
ranging from 0 to 16, for the "GAS" time series data. This plot is useful for identifying
significant correlations or recurring patterns in the data. The ACF values offer valuable
information about the lag structure, aiding in the selection of suitable models for time
series analysis and forecasting.

Figure 4.12 shows the (ACF) at lag 16 measuring the correlation between a
variable and its lagged value 16 time periods.
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Figure 4.12 Autocorrelation function for gas production time series

Figure 4.13 shows the partial autocorrelation function (PACF) at lag 16

measuring the correlation between a variable and its lagged value 16 time periods.
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Figure 4.13 Partial autocorrelation function for gas production time series
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The (PACF) plot displays the partial autocorrelation values for the gas time
series at various delays ranging from 0 to 16. This plot aids in evaluating the significant
lags in the data and comprehending the correlation structure. By examining the PACF
values, one can determine the appropriate lag order for autoregressive models and

identify any noteworthy patterns within the gas data.

4.4.2 Selecting Fitting Model

Box and Jenkins proposed an interactive method for fitting autoregressive
moving average models to time series data that takes into account the data's stationarity
in terms of mean and variance. The findings reported in Table (4.9) show that the
calculated model is statistically significant, as are its parameters. A lower akaike
information criterion (AIC) value implies a better fit of the model to the data. The AIC
score in this example is 261.82, indicating that the model is well-suited to the data. The
estimated model is an ARIMA model with a differencing order of one, abbreviated as
ARIMA (0,1,0), and its parameters can be calculated. Table 4.9 presents the estimated
parameters of the ARIMA (0,1,0) model.

Table 4.9 ARIMA (0,1,0) model’s parameters

Variables Estimate SE T-test P-value

Constant 0.1644 0.659 2.494 0.019

As a result, by examining Figures 4.17 and 4.18 it may be used to properly
estimate the parameters of the model.
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Figure 4.14 Training data for predicted value and actual values of gas production time
series by using ARIMA model
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Figure 4.15 Testing data for predicted value and actual values of gas production time
series by using ARIMA model

Various metrics for the correctness of an ARIMA model may be derived for both
the training and testing sets, with a focus on the metrics acquired from the test set
(Tables 4.10 and 4.11) The metrics received from the training set indicate how well the
model matches the data on which it was trained, whereas the metrics collected from the

test set indicate how well the model is predicted to generalize to new data.

Table 4.10 ARIMA (0,1,0) model statistics (training data)

MAE RMSE MAPE R?

0.034 0.046 0.205 0.988
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Table 4.11 ARIMA (0,1,0) model statistics (testing data)

MAE RMSE MAPE R?

0.044 0.058 0.246 0.986

4.4.3 Model Checking (0,1,0)

Figures 4.16. and 4.17. show the residuals from an ARIMA (0,1,0) model with a
non-zero mean, as well as the ACF and PACF for ARIMA (0,1,0).
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Figure 4.16 Residuals from ARIMA (0,1,0) with non-zero mean
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Figure 4.17 Residual ACF and PACF for ARIMA (0,1,0)
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Following the identification and estimation of the candidate ARIMA (0,1,0)
model, it is critical to assess the model's quality of fit to the data using diagnostic tests.
This evaluation entails examining both the model's parameters and the residuals. In this
scenario, the residuals from the ARIMA (0,1,0) model were tested using autocorrelation
function (ACF) and partial autocorrelation function (PACF) plots, as shown in Figure
4.19. All residual values in the ACF and PACF plots were statistically significant at the
95% confidence level, according to the study. This conclusion demonstrates that the
residuals have random white noise properties, implying that the model adequately
reflects the patterns in the data. In addition, the ARIMA (0,1,0) residuals were subjected
to the Box-Ljung test, which is used to detect autocorrelation in time series residuals.
The test compares the observed residual autocorrelations to the anticipated values
assuming no autocorrelation. The computed p-value from the Box-Ljung test in the
submitted findings was 0.61, which is larger than the significance level of 0.05. This
implies that there is no significant evidence of autocorrelation in the model's residuals.
As a result, it is possible to infer that the ARIMA (0,1,0) model adequately describes
the data's autocorrelation structure.

Table 4.12. presents the actual and predicted values of gas production from 2013
to 2020. It provides a comparison between the observed values, representing the real gas
production data, and the forecasted values obtained from a particular model or method.

Table 4.12 The actual and predicted values of gas production in from 2015 to 2020

Date Actual Forecast
2015 37.90124 48.96477
2016 40.56955 50.07488
2017 45.19530 51.18500
2018 41.30181 52.29512
2019 45.34874 53.40524
2020 47.85465 54.51536

Furthermore, the ARIMA (0,1,0) model was utilized to make a forecast of the
yearly gas production in Tiirkiye for the year 2020. As depicted in Figure 4.18, the plot
reveals that the predicted values for 2020 exhibit a behavior that closely resembles the

actual values. This convergence between the predicted and actual values indicates that
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the ARIMA (0,1,0) model effectively captures the patterns and trends observed in the

gas production series for that specific year.
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Figure 4.18 Predicted values of gas production in 2020
4.5 Hydraulic Production in Tiirkiye from 1971 to 2020

Hydroelectric power is a crucial component of Tiirkiye's energy supply, utilizing
its abundant water resources. Tiirkiye primarily consumes hydropower domestically and
has limited exports or imports. To diversify the energy mix and minimize reliance on
fossil fuels, the government has actively supported renewable energy, especially
hydropower (Cinar et al.,, 2010). However, the development of hydropower faces
challenges such as environmental and social impacts, which the government addresses
through regulations and sustainability measures (Salvarli, 2006).

In terms of historical progression, hydroelectric power production in Tiirkiye
had a gradual increase from 1971 to 2020. During the 1970s, small and medium-scale
hydroelectric plants were built for local electricity needs (Ogulata, 2003). The 1980s
witnessed significant expansion with the construction of larger-scale plants. In the
1990s, the government focused on further increasing renewable energy's share, resulting
in more medium to large-scale hydroelectric projects (Yuksek et al., 2006).

The period from 2000 to 2010 saw a significant boom, with numerous new

plants across the country. By 2020, Tiirkiye had an installed capacity of over 30,000
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MW. Hydroelectric power has helped Tiirkiye generate electricity while lowering
greenhouse gas emissions and expanding renewable energy capacity (Warner, 2008).

It is important to note that the growth of hydroelectric power has faced
challenges and controversies, particularly regarding environmental impact and
displacement of local communities (Erdogdu, 2011). Nevertheless, Tiirkiye's focus on
renewable energy and sustainable development has helped address these concerns and
promote a greener energy sector (Kaygusuz, 2009).

A descriptive Table 4.13. showcasing the top ten countries in the world for
hydroelectric production reveals China as the leading producer, followed by India,
solidifying their positions as key players in the global hydroelectric industry (Akpinar
et.al., 2011).

Table 4.13 Top ten producing countries for hydroelectric

Hydroelectric Power Generation

Rank Country (GWH)
1 China 1,363,000
2 Canada 396,000

3 Brazil 391,000

4 US 306,000

5 Russia 169,000

6 India 147,000

7 Norway 144,000

8 Venezuela 129,000

9 Japan 90,000

10 Sweden 79,000

14 Tiirkiye 55

Source: The World Bank organization
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4.6 Application of ARIMA on Hydraulic Production

The ARIMA model was chosen from the collection of classical models for
Hydraulic from 1971 to 2020 in Tiirkiye, which consists of three main methods, and
was used to make sure ti forecast the future years.

4.6.1 Identification for Hydraulic Production
The descriptive Table 4.14 for hydraulic production from 1971 to 2020 presents
key statistics that provide insights into the trends and variability of hydraulic production

over the years.

Table 4.14 Descriptive statistics for hydraulic production from 1971 to 2020

Variable Min Max Mean S.D

Hydraulic production 16.13 60.25 32.75 10.76

These statistics offer a summary of the range and typical values of hydraulic
production during the given timeframe. The lowest recorded production is represented
by the minimum value of 16.13, while the highest recorded production is indicated by
the maximum value of 60.25. The mean value of 32.75 is the average hydraulic
production during the whole time. The standard deviation of 10.76 represents the degree
of variability or dispersion in the hydraulic production statistics. A larger standard
deviation suggests a wider range of production values, while a smaller standard
deviation indicates more consistent production levels.

When transforming data into a time series, each data point is allocated a distinct
date or time period, creating a sequence of evenly spaced points in time Figure 4.19. In
the context of hydraulic production data, this would involve assigning a specific date or
time period to each observation. By studying this time series, analysts can detect trends
and patterns in hydraulic production over the course of time.

Figure 4.19 Time series plot of yearly hydraulic production in Tiirkiye (1971-2020)
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Figure 4.20 Time series plot of yearly hydraulic production in Tiirkiye (1971-2020)

Stationarity in time series analysis refers to a variable's statistical features

staying stable throughout time, as seen in Figure 4.20.
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Figure 4.21 Time series plot of yearly hydraulic production in Tiirkiye after one differencing

On the first-order differenced hydraulic production time series data, the (ADF)
test was performed. These results indicate that the first-order differenced time series of

hydraulic production data exhibits stationarity.
The autocorrelation function (ACF) is the correlation between a variable and its

lagged time periods apart in Figure 4.21.
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Figure 4.22 Autocorrelation function for hydraulic production time series

The autocorrelation function (ACF) plot can reveal the extent of autocorrelation
present in the data. When the ACF plot displays significant correlation at specific lags,
it indicates the existence of a repeating pattern in the data at those particular lags.

Figure 4.22 shows how the (PACF) at lag assesses the correlation between a

variable and its delayed time periods.
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Figure 4.23 Partial autocorrelation function for hydraulic production time series
The (PACF) is a useful tool in time series analysis and modeling because it

identifies certain lagged values that have a substantial association with the variable

under study.
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4.6.2 Selecting Fitting Model

Table 4.15 presents the estimated parameters of the ARIMA (0,1,0) model.

Table 4.15 ARIMA (0,1,0) model’s parameters

Variables Estimate SE T-test P-value

Constant -0.062 1.165 -0.053 0.045

Box and Jenkins developed an interactive approach for fitting autoregressive
moving average models to time series data that accounts for the data's stationarity
around its mean and variance. Tables 4.15. show that the calculated model and its
parameters are statistically significant. A lower akaike information criterion (AIC) value
indicates a better fit of the model to the data. The AIC in this example is 334.34
(adjusted for the short sample size), suggesting a strong fit for the data. Figures 4.23.
and 4.24. show how the ARIMA (0,1,0) model may be used to estimate the parameters.
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Figure 4.24 Training data for predicted value and actual values of hydraulic production
time series by using ARIMA model
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Figure 4.25 Testing data for predicted value and actual values of hydraulic production
time series by using ARIMA model

The performance of an ARIMA model may be evaluated by looking at these
metrics on both the training and test sets (Tables 4.16 and 4.17). The metrics calculated
on the training set offer insights into how effectively the model fits the available data.
The metrics produced on the test set, on the other hand, indicate how effectively the
model can generalize to new, previously unknown data. By evaluating these metrics, we

can gauge the accuracy and reliability of the ARIMA model.

Table 4.16 ARIMA (0,1,0) model statistics (training data)

MAE RMSE MAPE R?

4.158 5.304 8.216 0.742

Table 4.17 ARIMA (0,1,0) model statistics (testing data)

MAE RMSE MAPE R?

4.879 6.263 9.701 0.707

4.6.3 Model Checking (0,1,0)

Figures 4.25 and 4.26 show the residuals from an ARIMA (0,1,0) model with a

non-zero mean.
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Figure 4.26 Residuals from ARIMA (0,1,0) with non-zero mean
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Figure 4.27 Residuals ACF and PACF (0,1,0)

Once the candidate ARIMA (0,1,0) model has been estimated and found, the
goodness of fit of the model must be evaluated. As part of the model diagnostic testing
procedure, this evaluation includes parameter and residual analysis. Diagnostic testing
for the residuals of the ARIMA (0,1,0) model was done using (ACF) and (PACF) plots,
as shown in Figure 4.26 All ACF and PACF residual values were statistically
significant at the 95% confidence level, according to the findings. This implies that the
residuals have random white noise properties, indicating that the model is adequate for

the data. The Box-Ljung test, which assesses the existence of autocorrelation in the
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residuals of a time series model, was used to further verify the model. This test
compares the observed residual autocorrelations to the anticipated values under the
assumption of no autocorrelation. The Box-Ljung test was performed on the residuals of
the ARIMA (0,1,0) model in this case. The test yielded a p-value of 0.6847, which is
more than the significance level of 0.05. As a result, there is no significant indication of
autocorrelation in the model's residuals. This demonstrates that the ARIMA (0,1,0)
model effectively represents the data's autocorrelation pattern.

Table 4.18 presents the actual and predicted values of hydraulic production from
2013 to 2020. It provides a comparison between the observed values, representing the
real hydraulic production data, and the forecasted values obtained from a particular

model or method.

Table 4.18 The actual and predicted values of hydraulic production during 2013-2020

Date Actual Forecast

2013 24.74246 24.0996128
2014 16.13134 24.0380706
2015 25.64949 23.9765283
2016 26.03014 23.9149860
2017 25.13142 23.8534437
2018 30.58037 23.7919015
2019 24.42700 23.7303592
2020 16.13134 23.6688169

Moreover, the ARIMA (0,1,0) model was employed to make predictions for the
yearly hydraulic production in Tirkiye for the year 2020. The resulting plot, shown in
Figure 4.27, displays the predicted values for 2020, which closely align with the actual
values. This convergence of anticipated and actual values suggests that the model
accurately predicts the behavior and trends observed in the hydraulic production series

for that year.
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Figure 4.28 Predicted values of hydraulic production in 2020

4.7 Oil Production in Tiirkiye from 1971 to 2020

Tiirkiye heavily depends on oil imports to satisfy its energy requirements and
fuel its economy. The country imports crude oil, petroleum products, and refined oil
from various global sources, including Russia, Iraq, Iran, Saudi Arabia, and Kazakhstan.
These imports are refined into petroleum products such as gasoline, diesel, jet fuel, and
heating oil at Turkish refineries. Tiirkiye's oil exports are modest, and it largely sells
petroleum products to neighboring nations and worldwide markets (Balat, 2004).

Oil consumption in Tiirkiye is driven by various sectors, with the transportation
sector being the largest consumer. Industries, including manufacturing and construction,
also rely on oil for their energy needs. Tiirkiye's energy strategy focuses on expanding
the energy mix and boosting the percentage of renewable energy sources in an effort to
lessen reliance on imported oil. The government promotes energy efficiency measures
and encourages the use of alternative fuels in transportation (AL-Moders and Kadhim,
2021).

Tiirkiye has been investing in renewable energy projects like wind and solar in
order to reduce its dependency on fossil fuels like oil. Fluctuations in global oil prices
impact Tirkiye's oil import costs, which in turn affect the country's economy and trade
balance. Environmental concerns and the need to address climate change have led to
increased efforts to reduce oil dependence and promote cleaner energy sources
(Cakmakce et al., 2008).
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In summary, Tirkiye heavily relies on oil imports, with limited oil exports. The
transportation sector and industries are significant consumers of oil. By broadening the
energy mix and boosting the use of renewable energy sources, the government hopes to
lessen reliance on imported oil. Tirkiye's oil production has remained relatively modest
throughout the years, with efforts focused on attracting foreign investment and
exploring new reserves to enhance domestic production and energy security (Balat and
Oz, 2008).

A descriptive Table 4.19 show casing the top ten countries in the world for oil
production reveals United states as the leading producer, followed by Saudi Arabia,
solidifying their positions as key players in the global oil industry.

Table 4.19 Top ten countries by oil production

Oil Production

Rank Country (Million Barrels
per Day
1 United States 12.2
2 Saudi Arabia 9.5
3 Russia 10.4
4 Canada 4.6
5 China 3.9
6 Iraq 4.7
7 Iran 4.2
8 United Arab 3.9
9 Brazil 3.1
10 Kuwait 2.7
46 Tirkiye (Tﬁghosﬁd)

Source: The World Bank organization
4.8 Application of ARIMA on Oil Production

The ARIMA model was chosen from the collection of classical models for oil
from 1971 to 2020 in Tiirkiye, which consists of three main methods, and was used to

make sure ti forecast the future years.
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4.8.1 ldentification for Oil Production

The descriptive Table 4.20. for oil production from 1971 to 2020 presents key
statistics that provide insights into the trends and variability of oil production over the
years.

Table 4.20 Descriptive statistics for oil production from 1971 to 2020

Variable Min Max Mean SD

Oil production 0.39 51.35 1341 13.51

These statistics offer an overview of the distribution and central tendencies of oil
production during the specified period. The lowest recorded oil production is
represented by a minimum value of 0.39, while the highest recorded production is
indicated by a maximum value of 51.35. The average oil production over the entire
period, represented by the mean value of 13.41, provides insight into the typical level of
production during this timeframe. Furthermore, the standard deviation of 13.51
represents the dispersion or variability in the oil production statistics. A larger standard
deviation indicates that production values are more variable, whereas a smaller standard
deviation indicates that output levels are more stable. When transforming data into a
time series, each data point is assigned a particular date or time period, forming a
sequence of evenly spaced time points Figure 4.28. In the context of oil production data,
each observation is associated with a specific date or time interval. Analyzing this time
series allows researchers to detect trends and patterns in oil production over a span of
time. By examining the sequential nature of the data, valuable insights can be gained

regarding the changes and patterns in oil production over time.
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Figure 4.29 Time series plot of yearly oil production in Tiirkiye (1971-2020)

Stationarity in time series analysis refers to a variable's statistical features

staying stable throughout time, as seen in Figure 4.29.
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Figure 4.30 Time series plot of yearly oil production after one differencing

To evaluate the first-order differenced time series of oil production data, the
ADF test was used. Furthermore, the test resulted in a p-value of 0.03743, which is less
than the significance level of 0.05.These findings suggest that the first-order differenced

time series of oil production data is stationar.



The autocorrelation function (ACF) plot offers insights into the level of
autocorrelation present in the data. When the ACF demonstrates a substantial
correlation at specific lags, it indicates the existence of a repeating pattern in the data at
those particular lags Figure 4.30.
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Figure 4.31 Autocorrelation function for oil production time series

The (PACF) is a useful tool for discovering certain lagged values that have a
substantial association with a variable of interest, particularly in time series analysis and
modeling. It aids in isolating and examining the direct link between the variable and its

lagged values, revealing insights into the data's underlying dynamics Figure 4.31.
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Figure 4.32 Partial autocorrelation function for oil production time series
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4.8.2 Selecting Fitting Model

Box and Jenkins developed an interactive method for fitting (ARIMA) models to
time series data. This method focuses on assuring the time series' stationarity around its
mean and variance. The calculated model, as shown in Table 4.21 is statistically
significant, suggesting that it incorporates essential data properties. In this specific
situation, the AIC is 253.63, indicating that the model gives an excellent fit to the data.
The ARIMA (0,1,2) model may be used to estimate model parameters, as shown in

Figures 4.32 and 4.33.

Table 4.21 ARIMA (0,1,2) model’s parameters

Variable Estimate SE T-test P-value
Constant -0.215 1.036 -0.208 0.836
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Figure 4.33 Training data for predicted value and actual values of oil production time
series by using ARIMA model
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Figure 4.34 Testing data for predicted value and actual values of oil production time
series by using ARIMA model

Tables 4.22 and 4.23 provide the metrics on the training and test sets that may be
used to assess the correctness of an ARIMA model. The metrics collected from the

training set provide information about how effectively the model captures the properties

of the data on which it was trained.

Table 4.22 ARIMA (0,1,2) model statistics (training data)

MAE RMSE MAPE R?
5.437 6.753 11.694 0.567

Table 4.23 ARIMA (0,1,2) model statistics (testing data)

MAE RMSE MAPE R?
5.910 7.253 12.529 0.500
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4.8.3 Model Checking (0,1,2)

Figures 4.34 and 4.35 show the residuals from an ARIMA (0,1,2) model with a

non-zero mean.
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Figure 4.35 Residuals from ARIMA (0,1,2) with non-zero mean
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Figure 4.36 Residuals ACF and PACF (0,1,2)

After estimating and choosing the ARIMA (0,1,2) model as a possible option,
the goodness of fit of the model had to be evaluated. This step of evaluation included
parameter and residual analysis. Diagnostic tests were performed on the residuals of the
ARIMA (0,1,2) model using (ACF) and (PACF) plots for residuals, as illustrated in
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Figure 4.35. At a 95% confidence level, all of the ACF and PACF residual values were
statistically significant. This implies that the residuals displayed random white noise
behavior, indicating that the model suited the data well. The Box-Ljung test is a
statistical test used to determine the existence of autocorrelation in time series residuals.
This test compares the observed residual autocorrelations to the anticipated values under
the assumption of no autocorrelation. The Box-Ljung test was conducted to the
residuals of the ARIMA (0,1,2) model in the presented output, generating a p-value of
0.8802 because this p-value surpasses the significance level of 0.05, there is no
significant indication of autocorrelation in the model's residuals. As a result of the
diagnostic tests, we may infer that the ARIMA (0,1,2) model properly reflects the
autocorrelation structure present in the data.

Table 4.24 presents the actual and predicted values of oil production from 2013
to 2020. It provides a comparison between the observed values, representing the real oil
production data, and the forecasted values obtained from a particular model or method.

Table 4.24 The actual and predicted values of oil production in from 2013 to 2020

Date Actual Forecast

2013 0.724118 -0.247242
2014 0.851712 -1.676475
2015 0.849558 -2.727097
2016 8.302936 -3.777720
2017 6.542135 -4.828343
2018 5.089649 -5.878966
2019 3.385487 -6.929588
2020 0.851712 -7.980211

Furthermore, the ARIMA (0,1,2) model was used to forecast Tiirkiye's annual
oil output in 2020. The anticipated values for 2020, as shown in Figure 4.36, behave
similarly to the actual values. This suggests that over the course of the year, the
projected values increasingly approach and align with the actual values, suggesting that
the ARIMA (0,1,2) model captures the underlying patterns and trends in the data
satisfactorily.
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Figure 4.37 Predicted values of oil production in 2020

4.9 GDP in Tiirkiye from 1971 to 2020

Tiirkiye possesses a diverse and emerging market economy with a dynamic
private sector. Over the years, the country has experienced varying levels of GDP
growth, displaying an overall positive trend of economic expansion with occasional
periods of high growth and slowdowns. Several factors influence Tiirkiye's GDP growth
rate, including domestic and global economic conditions, government policies, and
external shocks (Lise and Van Montfort, 2007).

Tiirkiye's nominal GDP, which represents the entire value of goods and services
produced inside its boundaries, measures the size of the economy. The economy is
diverse, with important industries contributing to GDP. The services sector,
encompassing finance, tourism, and telecommunications, plays a significant role, while
manufacturing, particularly in automotive, textiles, and electronics industries, is also
crucial. Although agriculture represents a smaller share of GDP, it remains important
for rural areas and employment (S6zen and Arcaklioglu, 2007).

Tiirkiye is actively involved in international trade, with both exports and imports
contributing to its GDP. The country exports various goods, including automobiles,
machinery, textiles, chemicals, and agricultural products, with the European Union, the

Middle East, and North Africa being key export markets. Imports mainly consist of
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machinery, energy products, chemicals, and raw materials to support domestic
production and consumption (Artar et al., 2016).

However, Tiirkiye faces economic challenges, including inflation, high
unemployment rates, and a large informal economy. External factors such as global
commodity price fluctuations and exchange rate fluctuations can also impact the
Turkish economy. Additionally, political and geopolitical issues, along with domestic
policy decisions, influence economic stability and investor confidence (Sozen and
Arcaklioglu, 2007).

From 1971 to 2020, Tiirkiye's GDP underwent significant changes and growth.
During the 1970s, the country experienced moderate GDP growth, emphasizing
industrialization and infrastructure projects. The 1980s witnessed periods of growth and
economic challenges, with structural reforms and liberalization policies implemented to
attract foreign investment and promote export-oriented industries. The 1990s saw
fluctuations in economic growth, along with stabilization programs and external factors
impacting the economy (Bagci and Digrak, 1996).

In the 2000s, Tiirkiye's economy displayed resilience and significant growth,
driven by structural reforms, investments in infrastructure, manufacturing, and services
sectors. However, the global financial crisis in 2008 had some adverse effects. From
2010 to 2020, Tiirkiye's GDP continued to grow, albeit at a slower pace, with a focus on
increasing domestic consumption, attracting foreign investment, and promoting sectors
such as construction and tourism. Political, geopolitical challenges, as well as domestic
economic imbalances, presented obstacles to sustained economic growth (Yalta, 2011).

Overall, Tirkiye's GDP has witnessed substantial growth and transformation,
transitioning from an agriculture-based economy to a more diversified one, with a focus
on industry and services. External factors, political developments, and domestic reforms
have played significant roles in shaping Tiirkiye's economic performance. Despite being
one of the largest economies in the region, Tiirkiye faces ongoing economic challenges
and structural issues that affect its growth trajectory.

A descriptive Table 4.25 showcasing the top ten countries in the world for GDP
production reveals United States as the leading producer, followed by China, solidifying

their positions as key players in the global coal industry.

81



Table 4.25 Top ten countries by GDP

Oil Production

Rank Country (Million Barrels per

Day

1 United States 21.43

2 China 15.42

3 Japan 5.08

4 Germany 3.85

5 United Kingdom 2.68

6 India 2.65

7 France 2.55

8 Italy 1.79

9 Canada 1.64

10 South Korea 1.63

17 Tiirkiye 851,549 (Billion)

Source: The World Bank organization.

4.10 Application of ARIMA for GDP

The ARIMA model was chosen from the collection of classical models for GDP
from 1971 to 2020 in Tiirkiye, which consists of three main methods, and was used to

make sure ti forecast the future years.

4.10.1 ldentification for GDP

The descriptive Table 4.26 for GDP production from 1971 to 2020 presents key
statistics that provide insights into the trends and variability of GDP production over the

years.

Table 4.26 Descriptive statistics for GDP production from 1971 to 2020

Variable Min Max Mean S.D

GDP -0.215 1.036 -0.208 0.836
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The dataset containing GDP production data for Tiirkiye from 1971 to 2020 is a
time series consisting of yearly observations on the production of coal in tons. This
dataset comprises 50 observations and is recorded annually. It is commonly utilized to
examine the trends and patterns in coal production in Tirkiye over time. By analyzing
this data, researchers can gain insights into the factors that influence coal production,
including economic and environmental conditions. Moreover, the dataset allows for the
forecasting of future trends in coal production in Tirkiye. Throughout the observed
period, the minimum recorded coal production in Tirkiye was approximately 22.86
million tons in 1971. Conversely, the maximum coal production occurred in 2019,
reaching approximately 48.96 million tons. On average, Tiirkiye's coal production
amounted to around 29.62 million tons per year over this period. The standard deviation
of approximately 5.48 million tons per year indicates a significant variation in coal
production, highlighting the wide range of values within the dataset.

Transforming data into a time series entails organizing it as a sequence of
regularly spaced data points that correspond to specific dates or time periods Figure
4.37. In the case of coal production data, each observation is assigned a particular date
or time period. This time series representation allows for the analysis of trends and
patterns in coal production over a span of time. By examining the sequential nature of
the data, researchers can gain insights into the changes, fluctuations, and recurring

patterns in coal production throughout the observed period.
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Figure 4.38 Time series plot of yearly GDP in Tiirkiye (1971-2020)
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Stationarity in time series analysis refers to a variable's statistical features

staying stable throughout time, as seen in Figure 4.38.
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Figure 4.39 Time series plot of yearly GDP from 1971 to 2020 in Tirkiye after
differencing

The ADF test is a statistical test used to determine a time series' stationarity. The
ADF test is being utilized in this case to investigate the first-order differenced time
series of coal production data. The test results show that the computed Dickey-Fuller
statistic is -4.1147, which is less than the crucial value at a 5% level of significance.
Furthermore, the test's p-value is 0.01226, which is less than the significance limit of
0.05.

Figure 4.39 shows that as the lag grows, the (ACF) values rapidly decrease and
finally approach zero. Furthermore, all ACF values are inside the confidence interval

ranges. This suggests that there is no significant autocorrelation in the data.
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Figure 4.40 Autocorrelation function for GDP production time series

The (PACF) is a valuable tool for discovering strong correlations between the
present value of GDP output and lagged values, as shown in Figure 4.40. A high and
statistically significant PACF value at a certain lag indicates a strong relationship
between the present value and the value at that lag.
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Figure 4.41 Partial autocorrelation function for GDP production time series

4.10.2 Selecting Fitting Model

Table 4.27 presents the estimated parameters of the ARIMA (0,0,0) model.

Table 4.27 ARIMA (0,0,0) model’s parameters

Variable Estimate SE T-test P-value
AR 0.019 0.955 0.20 0.01
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Box and Jenkins developed an interactive approach for fitting autoregressive
moving average models to time series data. This approach focuses on ensuring that the
time series remains stationary around its mean and variance. The study in Tables 4.28
and 4.3 shows that the calculated model is substantial, and the parameters have
statistical significance. The Akaike Information Criterion (AIC) score is 285.28,
indicating that the ARIMA (0,0,0) model is an excellent match for the data. As a result,
it may be used to estimate the model's parameters. As a result, by examining Figures

4.41 and 4.42, it may be used to efficiently estimate the parameters of the model.
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Figure 4.42 Training data for predicted value and actual values of GDP production
time series by using ARIMA model
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Figure 4.43 Testing data for predicted value and actual values of GDP production time
series by using ARIMA model
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Tables 4.28 and 4.29 provide the metrics on the training and test sets that may be
used to assess the correctness of an ARIMA model.

Table 4.28 ARIMA (0,0,0) model statistics (training data)

MAE RMSE MAPE R?
1.254 1.542 2.982 0.823

Table 4.29 ARIMA (0,0,0) model statistics (testing data)

MAE RMSE MAPE R?
5.910 7.253 12.529 0.500

4.10.3 Model Checking (0,0,0)

Figure 4.43 and Figure 4.44 exhibit the residuals derived from an ARIMA
(0,0,0) model with a non-zero mean.

Residuals from ARIMA(O0,0,0) with non-zero mean
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Figure 4.44 Residuals from ARIMA (0,0,0) with non-zero mean
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Figure 4.45 Residuals ACF and PACF (0,0,0)

The fit of the ARIMA (0,0,0) model to the data was tested once it was identified
and estimated. This stage entailed evaluating the model's parameters as well as its
residuals. Diagnostic testing was performed using (ACF) and (PACF) plots to analyze
the residuals of the ARIMA (0,0,0) model, as shown in Figure 4.44. At the 95%
confidence level, all ACF and PACF residual values were statistically significant. This
means that the residuals have a random white noise pattern, indicating that the model is
appropriate for the data.

The ARIMA (0,0,0) residuals were subjected to the Box-Ljung test, a statistical
test designed to detect autocorrelation in time series residuals. The computed p-value of
0.8638 is above than the 0.05 threshold of significance. This implies that there is no
indication of autocorrelation in the model's residuals. As a result, we may infer that the
ARIMA (0,0,0) model adequately describes the data's autocorrelation pattern.

Table 4.30. presents the actual and predicted values of GDP production from
2013 to 2020. It provides a comparison between the observed values, representing the
real GDP production data, and the forecasted values obtained from a particular model or

method.
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Table 4.30 The actual and predicted values of GDP from 2013 to 2020

Date Actual Forecast
2013 8.485817 4.769512
2014 4939715 4.750532
2015 6.084486 4.731551
2016 3.323084 4712571
2017 7.501997 4.693590
2018 2.979885 4.674610
2019 0.889585 4.655629
2020 1.793551 4.636648

Furthermore, the ARIMA (0,0,0) model was used to forecast Tiirkiye's annual
GDP for 2020. Figure 4.45 depicts the findings, which clearly indicate that the
anticipated values for 2020 roughly agree with the actual values. This convergence

implies that the model's projections for that year are in strong agreement with the actual

data, implying that the ARIMA (0,0,0) model successfully represents Tiirkiye's

underlying GDP patterns and trends.

10.000000

5.000000

Number

000000

-5.000000

LLBL

Figure 4.46 Predicted values of GDP production in 2020

GlBL

BLBL

c261

L6
LG6L
GH61

Date

6661

€00Z

411 Application of BSTS on Coal Production
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A BSTS (Bayesian Structural Time Series) model's goal is to separate time

series into discrete aspects such as trend, seasonality, regression, and error. The trend
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component accounts for the long-term patterns and changes observed in the time series,
while the seasonality component captures the recurring fluctuations occurring at regular
intervals. The regression component allows for modeling the connection between the
time series and additional predictor variables, while the error component represents the

random variations present in the data (Figure 4.46).
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Figure 4.47 Components coal of BSTS Model
4.11.1 Select Fitting Model

By looking at the Figure 4.47 and Figure 4.48 These values suggest that the
model is well-suited for capturing the patterns in the data. As a result, it may be used to

successfully estimate the model's parameters.
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Figure 4.48 Training data for predicted value and actual values of coal production time
series by using BSTS
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Figure 4.49 Testing data for predicted value and actual values of coal production time
series by using BSTS

The residual standard deviation (1.396218) of the model represents the
variability between the predicted and observed values. A higher value indicates greater
variability between the predictions and the actual data. The standard deviation of the
predicted values (6.368165) indicates the uncertainty associated with the model's
forecasts. A larger value suggests more uncertainty in predicting future values. The
coefficient of determination (0.9398547) quantifies the amount of variation in the
observed data that the model explains. A greater score suggests a better fit, suggesting
that the model accounts for a considerable percentage of the variability in the data. The
relative goodness-of-fit (-1.018128) compares the data's actual log-likelihood to the
model's anticipated log-likelihood. A negative number indicates that the BSTS model
fits better than the null model. Overall, these output metrics show that the BSTS model
fits the data well and accurately depicts the time series’ underlying dependency
structure. The model parameters are estimated using Bayesian inference and the MCMC
method throughout the fitting procedure. More iterations (in this example, 1000) result
in more accurate parameter estimates. The output acts as a progress report, displaying
iteration numbers and timestamps to illustrate the algorithm's convergence and

successful model estimate.

4.11.2 Errorsin Sample

By looking at the Figure 4.49 in-sample errors will further ensure that the model
fits the data.

91



"1 AN PN

distribLtion

20

A0
\

T T T
o} 10 20 30 40

Time

Figure 4.50 Plot dynamic distribution errors in sample

The prediction errors for the BSTS model are computed after a burn-in period of
10 iterations. These errors offer valuable information about the model's performance at
different time points. The burn-in period, which is often employed in Bayesian
modeling, includes discarding the MCMC algorithm's early iterations. This helps the
algorithm to more effectively search the parameter space and converge to the genuine
posterior distribution. It is critical to include the uncertainty associated with the
estimated model parameters when examining prediction errors during the burn-in
period. The burn-in duration is chosen to achieve a compromise between computing
efficiency and accurate parameter estimation.

To display the distribution of in-sample prediction mistakes, the dynamic
distribution plot is used. This graphic gives insights into the patterns and features of the
mistakes, allowing systematic departures from anticipated behavior to be identified. By
studying the prediction errors and their distribution, it is feasible to evaluate the BSTS
model's performance and accuracy in capturing the underlying patterns and variability
in the training data. The prediction errors are represented by a 41580-length numeric
vector that corresponds to the in-sample disparities between the observed and predicted
values for the training data. A statistical overview of these in-sample prediction errors,
including variables such as mean, median, minimum, maximum, and quartiles, is also
presented. This summary serves in evaluating the BSTS model's performance in fitting
the training data.

Tables 4.31 and 4.32 provide the metrics on the training and test sets that may be

used to assess the correctness of an ARIMA model.
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Table 4.31 BSTS model evaluation for coal production (training data)

MAE RMSE MAPE R?
0.953 1.567 2.654 0.926

Table 4.32 BSTS model evaluation for coal production (testing data)

MAE RMSE MAPE R?
1.041 1.651 3.170 0.907

4.11.3 Model Checking

Figure 4.50 exhibit the residuals derived from an BSTS model. Once the BSTS
model was identified and estimated, it was important to assess how well the model fit
the data. This critical step in the model diagnostic process involved analyzing both the
model's parameters and its residuals. The residuals of the BSTS model were examined
using ACF and PACEF plots, as shown in Figure 4.51, and all ACF and PACF values of
the residuals were statistically significant at the 95% confidence level. This implies that
the residuals have random white noise properties, confirming that the model is
appropriate for the given data.

The Box-Ljung test, a statistical test designed to assess the presence of
autocorrelation in time series residuals, was performed on the BSTS model residuals
using the given output. The obtained p-value of 0.9585 was more than the 0.05 criterion
of significance. This means that there isn't enough data to justify the presence of
autocorrelation in the model's residuals. As a result, it is possible to infer that the model

adequately describes the autocorrelation structure in the data.
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Figure 4.51 Residuals from BSTS model in sample
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Figure 4.52 Residuals ACF and PACF BSTS model for coal production
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According to the Table 4.33 in 2013, the actual coal production was 26.56046,

while the forecasted value was 28.71166. In 2020, the actual coal production was

30.26754, and the forecasted value was 29.03021. Similarly can compare the actual and

forecasted values for the remaining years.
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Table 4.33 The actual and predicted values of coal production in from 2013 to 2020

Date Actual Forecast
2013 26.56046 2871166
2014 30.26754 28.92535
2015 29.09509 28.92865
2016 24.84467 28.72390
2017 22.94193 28.80888
2018 22.85896 28.88975
2019 26.66897 28.91793
2020 30.26754 29.03021

Furthermore, the BSTS model was used to forecast Tiirkiye's annual coal output
for the year 2020. The figure, as shown in Figure 4.52, demonstrates that the anticipated
values for 2020 roughly coincide with the actual values, suggesting convergence
between the expected and observed series.
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Figure 4.53 Predicted values of coal production in 2020

412  Application of BSTS on Gas Production

A BSTS model's main purpose is to breakdown a time series into multiple
components such as trend, seasonality, regression, and error. The trend component
records the time series' long-term changes, whereas the regression component represents
the time series' connection with additional predictor variables. Finally, as shown in
Figure 4.53, the error component compensates for the random fluctuations or variances

in the data.
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Figure 4.54 Components gas of BSTS model

4.12.1 Select Fitting Model

In accordance with Figures 4.54 and 4.55 these results indicate that the model is

well-suited to collecting data patterns. As a result, it may be used to successfully

estimate the model's parameters.
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Training data for predicted value and actual values of gas production time
series by using BSTS
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Figure 4.56 Testing data for predicted value and actual values of gas production time
series by using BSTS

The performance and fit of the BSTS model are evaluated through various
output metrics. The standard deviation of the model residuals (1.396218) measures the
variability between the predicted and observed values, where a higher value suggests
greater variability. Similarly, the standard deviation of the predicted values (6.368165)
indicates the uncertainty associated with the model's forecasts, with a larger value
implying higher uncertainty in predicting future values. The coefficient of determination
(0.9398547) measures the amount of variation in the observed data that the model can
explain, with a larger number suggesting a better fit and the capacity to capture a
significant portion of the data's variability. The relative goodness-of-fit (-1.018128)
compares the data's actual log-likelihood to the model's anticipated log-likelihood. A
negative number indicates that the BSTS model performs better than the null model.
Overall, these output metrics show that the BSTS model is well-suited to the data,
adequately representing the time series' underlying dependency structure. The fitting
process involves utilizing Bayesian inference and the MCMC algorithm to estimate
model parameters. Running a larger number of iterations (in this case, 1000) generally
results in more accurate parameter estimates. The provided output represents a progress
report, with iteration numbers and timestamps indicating the convergence of the

algorithm and the accurate estimation of the model.
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4.12.2 Errors in Sample

In-sample errors are shown in Figure 4.56 to check that the model matches the
data. The BSTS model computes prediction errors over a 10-iteration burn-in time.
These mistakes provide useful information about the model's performance at various
time intervals. The burn-in period is a technique employed in Bayesian modeling to
discard initial iterations of the MCMC algorithm. This method enables the algorithm to
efficiently search the parameter space and converge on the real posterior distribution. It
is critical to include the uncertainty associated with the estimated model parameters
when examining prediction errors during the burn-in period. The selection of an
appropriate burn-in period must strike a balance between computational efficiency and

the accuracy of parameter estimates.
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Figure 4.57 Plot dynamic distribution errors in sample

The accuracy of an ARIMA model can be evaluated by looking at Table 4.34

and Table 4.35 these metrics on the training set and the test set.

Table 4.34 BSTS model evaluation for gas production (training data)

MAE RMSE MAPE R?
0.028 0.038 0.159 0.992
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Table 4.35 BSTS model evaluation for gas production (testing data)

MAE RMSE MAPE R?
0.037 0.050 0.206 0.990
4.12.3 Model Checking
Residuals
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Figure 4.58 Residuals from BSTS model in gas production
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Figure 4.59 Residuals ACF and PACF BSTS model for Gas production
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Once the BSTS model was determined and estimated, it became crucial to assess
its fit to the data. This essential step in the model diagnostic process involved
conducting both parameter and residual analysis. By examining the residuals of the
BSTS model using ACF and PACEF plots, as shown in Figure 4.58, it was observed that
all ACF and PACF residuals values displayed statistical significance at the 95%
confidence level. This discovery suggests that the residuals have the properties of
random white noise, hence proving the model's applicability for the provided data. The
Box-Ljung test was used with the given output to further examine the presence of
autocorrelation in the BSTS model residuals. The calculated p-value of 0.9585 is more
than the significance threshold of 0.05. This shows that there is insufficient data to
justify the presence of autocorrelation in the model's residuals. As a result, it is possible
to infer that the model adequately describes the autocorrelation structure in the data.

Table 4.36 presents the actual and predicted values of coal production from 2015
to 2020. It provides a comparison between the observed values, representing the real
coal production data, and the forecasted values obtained from a particular model or

method.

Table 4.36 The actual and predicted values of gas production in from 2015 to 2020

Date Actual Forecast
2015 29.09509 48.36441
2016 24.84467 49.21636
2017 22.94193 49.94214
2018 22.85896 50.70409
2019 26.66897 51.35473
2020 30.26754 52.15941

Furthermore, the BSTS model was used to anticipate Tiirkiye's annual gas output
in 2020. The figure clearly illustrates that the anticipated values for 2020 coincide
closely with the actual values, as seen in Figure 4.59 This convergence of anticipated
and actual values indicates that the BSTS model accurately captures the underlying

patterns and trends in the data, allowing for accurate projections of gas output in 2020.
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Figure 4.60 Predicted values of gas production in 2020

4.13 Application of BSTS on Hydraulic Production

A BSTS model's goal is to breakdown a time series into several components
such as trend, seasonality, regression, and error. The trend component indicates long-
term changes in the time series, whereas the seasonality component captures repeating
patterns or variations that occur at regular periods. The regression component is used to
model the connection between the time series and extra predictor variables, revealing
how external influences impact the series. Finally, as illustrated in Figure 4.60, the error
component allows for random changes or uncertainties that cannot be explained by the

other components, indicating residual fluctuations in the data.
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Figure 4.61 Components hydraulic of BSTS Model
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4.13.1 Select Fitting Model

By looking at Figure 4.61 and Figure 4.62 these values suggest that the model is
well-suited for capturing the patterns in the data. As a result, it may be used to

successfully estimate the model's parameters.
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Figure 4.62 Training data for predicted value and actual values of hydraulic
productiontime series by using BSTS
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Figure 4.63 Testing data for predicted value and actual values of hydraulic production
time series by using BSTS

The output metrics assess the BSTS model's quality and appropriateness. The
model residuals standard deviation (1.396218) measures the variability between
anticipated and observed values. A larger score suggests that the model's predictions are
more variable. The standard deviation of the anticipated values (6.368165) shows the
model's forecasting uncertainty, with a bigger number suggesting greater uncertainty in
predicting future values. The coefficient of determination (0.9398547) quantifies the

amount of variation in the observed data that the model explains. A greater score
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indicates a better fit, indicating that the model captures a significant percentage of the
data variability. The relative goodness-of-fit (-1.018128) compares the data's actual log-
likelihood to the model's anticipated log-likelihood. A negative number indicates that
the BSTS model gives a better fit than a null model, showing that it successfully
represents the time series' underlying dependency structure. To estimate model
parameters, the fitting method use Bayesian inference and the (MCMC) technique.
Running additional iterations (in this example, 1000) results in more exact parameter
estimations. The output in the paragraph acts as a progress report, providing iteration
counts and timestamps that indicate the algorithm's convergence and correct model

estimation.

4.13.2 Errors in Sample

By looking at the Figure 4.63 in-sample errors will further ensure that the model
fits the data.
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Figure 4.64 Plot dynamic distribution errors in sample

The prediction errors for the BSTS model are computed by considering 10
iterations as the burn-in period. These errors offer valuable information about how the

model performs at various time points. The burn-in period is a technique employed in
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Bayesian modeling, where the initial iterations of the (MCMC) algorithm are discarded.
This period allows the algorithm to more effectively explore the parameter space and
converge towards the genuine posterior distribution. When examining prediction errors
during the burn-in phase, it is critical to account for the uncertainty associated with the
estimated model parameters. Striking a balance between computational efficiency and
the accuracy of parameter estimates is crucial when deciding on the suitable length of
the burn-in period. This ensures that the model achieves an optimal balance between
convergence and precision in its predictions.

The accuracy of an ARIMA model can be evaluated by looking at Table 4.37

and Table 4.38 these metrics on the training set and the test set.

Table 4.37 BSTS model evaluation for hydraulic production (training data)

MAE RMSE MAPE R?
3.241 4.119 6.527 0.822

Table 4.38 BSTS model evaluation for hydraulic production (testing data)

MAE RMSE MAPE R?
4.028 5.174 7.944 0.785

4.13.3 Model Checking
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Figure 4.65 Residuals from BSTS model in hydraulic production
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Figure 4.66 Residuals from ACF and PACF BSTS model for hydraulic production

It was critical to test the model's fit to the data after establishing and estimating
the BSTS model. This critical phase in the model diagnostic procedure entailed
parameter and residual analysis. The residuals of the BSTS model were examined using
ACF and PACEF plots, as shown in Figure 4.64, and it was discovered that all ACF and
PACF residual values were statistically significant at the 95% confidence level. This
conclusion suggests that the residuals have random white noise properties, confirming
the model's applicability for the provided data.

The Box-Ljung test was run on the supplied output to further assess the
existence of autocorrelation in the residuals. The obtained p-value of 0.9585 was more
than the 0.05 criterion of significance. As a result, the lack of meaningful evidence
supports the conclusion that there is no major autocorrelation in the model's residuals.
As a consequence, we can definitely say that the model properly represents the data's
autocorrelation structure.

Table 4.39 presents the actual and predicted values of hydraulic production from
2013 to 2020. It provides a comparison between the observed values, representing the
real hydraulic production data, and the forecasted values obtained from a particular

model or method.

105

(3nuL = fuoueau ‘go} = UIng ‘s)sajapoujsienpisal sauiag



Table 4.39 The actual and predicted of hydraulic production during 2013-2020

Date Actual Forecast
2013 0.724119 22.93649
2014 0.851712 23.05336
2015 0.839559 23.20643
2016 8.302937 22.60183
2017 6.542136 22.08926
2018 5.089649 22.15795
2019 0.851712 21.82112
2020 3.385487 21.83748

In addition, the BSTS model was employed to predict the annual hydraulic
production from Tirkiye in 2020. The forecasting results, depicted in Figure 4.66,
reveal that the predicted values for 2020 closely align with the actual values,
demonstrating a convergence between the predicted and observed series. This indicates
that the model's predictions accurately capture the behavior and trend of the actual

values for the given time period.
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Figure 4.67 Predicted values of hydraulic production in from in 2020
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4.14  Application of BSTS on Oil Production

A BSTS model's goal is to separate a time series into various components such
as trend, seasonality, regression, and error. The trend component represents the time
series' long-term fluctuations, whereas the seasonality component accounts for periodic
patterns. Modeling the link between the time series and extra predictor variables is
possible using the regression component. Finally, the error component indicates the
data’'s random oscillations or unexplained variability. The BSTS model provides a full
knowledge of the underlying causes that impact the observed data by breaking down the

time series into various components (Figure 4.67).
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Figure 4.68 Components oil of BSTS model

4.14.1 Select Fitting Model

Take a look at Figures 4.68 and 4.69 these results indicate that the model is well-
suited to collecting data patterns. As a result, it may be used to successfully estimate the

model's parameters.
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Figure 4.69 Training data for predicted value and actual values of oil production time
series by using BSTS
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Figure 4.70 Testing data for predicted value and actual values of oil production time
series by using BSTS

The evaluation of the BSTS model's performance and appropriateness is based
on various output metrics. The standard deviation of the model residuals (1.396218)
measures the variability between the predicted and observed values, where a higher
value indicates greater variability. The standard deviation of the predicted values
(6.368165) reflects the uncertainty associated with the model's predictions, with a larger
value indicating higher uncertainty in forecasting future values. The coefficient of
determination (0.9398547) estimates the amount of variation in the observed data that
the model can explain, with a larger number indicating a better fit and the capacity to
capture a significant portion of the variability. The relative goodness-of-fit (-1.018128)
compares the data's actual log-likelihood to the model's anticipated log-likelihood. A
negative number indicates that the BSTS model performs better than the null model.
Overall, these output metrics show that the BSTS model is well-suited to the data,
adequately representing the time series' underlying dependency structure. To estimate
model parameters, the model fitting procedure employs Bayesian inference and the
MCMC technique, and conducting a larger number of iterations (in this example, 1000)
often improves the accuracy of the parameter estimations. The presented output
provides a progress report, displaying iteration numbers and timestamps that indicate

the convergence of the algorithm and successful estimation of the model.
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Figure 4.71 Plot dynamic distribution errors in sample

4.14.2 Errors in Sample

By looking at the Figure 4.70 in-sample errors will further ensure that the model
fits the data. The BSTS model employs a burn-in period of 10 iterations to calculate
prediction errors, which offer valuable insights into the model's performance at various
time points. In Bayesian modeling, the burn-in period is a technique that involves
discarding the initial iterations of the MCMC algorithm. This method enables the
algorithm to successfully search the parameter space and converge towards the genuine
posterior distribution. When assessing prediction errors during the burn-in phase, it is
critical to account for the uncertainty in the estimated model parameters. The duration
of the burn-in period must strike a balance between computational efficiency and the
accuracy of the parameter estimates. By carefully selecting an appropriate burn-in
period, the BSTS model can achieve efficient convergence and provide reliable
predictions.

The accuracy of an ARIMA model can be evaluated by looking at Table 4.40

and Table 4.41 these metrics on the training set and the test set.

Table 4.40 BSTS model evaluation for oil production (training data)

MAE RMSE MAPE R?
3.916 4.863 8.137 0.748

109



Table 4.41 BSTS model evaluation for oil production (testing data)

MAE RMSE MAPE R?
4.362 5.395 9.036 0.701

4.14.3 Model Checking
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Figure 4.73 Residuals from BSTS model in oil production
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Figure 4.72 Residuals ACF and PACF for BSTS model in oil production
Once the BSTS model was determined and estimated, evaluating its fit to the

data became essential. This critical stage of the model diagnostic process involved

conducting parameter and residual analysis. By examining the residuals of the BSTS
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model through ACF and PACF plots, as depicted in Figure 4.71, it was discovered that
all ACF and PACF residual values displayed statistical significance at the 95%
confidence level. This observation indicates that the residuals possess characteristics of
random white noise, confirming the suitability of the model for the provided data.

To further investigate the presence of autocorrelation in the residuals, the Box-
Ljung test was performed on the BSTS model's residuals using the provided output. The
obtained p-value of 0.9585 was more than the 0.05 criterion of significance. As a result,
there is a lack of strong evidence establishing the presence of autocorrelation in the
model's residuals. As a result, it can be concluded that the model effectively captures
the autocorrelation structure within the data, further affirming its appropriateness for the
given dataset.

Table 4.42 presents the actual and predicted values of oil production from 2013
to 2020. It provides a comparison between the observed values, representing the real oil

production data, and the forecasted values obtained from a particular model or method.

Table 4.42 The actual and predicted values of oil production in from 2013 to 2020

Date Actual Forecast

2013 0.7241187 -0.193684
2014 0.8517124 -0.773801
2015 0.8495586 -1.266166
2016 8.3029366 -1.974658
2017 6.5421359 -2.770047
2018 5.0896495 -3.400592
2019 3.3854874 -4.095573
2020 0.8517124 -4.540949

Furthermore, the BSTS model was used to forecast Tiirkiye's annual oil output
in 2020. Figure 4.73 depicts a visual comparison between expected and actual values.
The graphic clearly shows that the projected values for 2020 closely coincide with the
actual values, indicating that the anticipated values are convergent with the actual value
series. In other words, the BSTS model accurately anticipates the behavior and trend of
real values in 2020, indicating its capacity to make accurate forecasts for the specified

time period.
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Figure 4.74 Predicted values of oil production in 2020

4.15 Application of BSTS on GDP

A BSTS model's major goal is to separate the time series into various
components such as trend, seasonality, regression, and error. The trend component
accounts for the time series' general long-term trends and changes. On the other hand,
the seasonality component captures any regular and recurring fluctuations that occur
within specific time intervals. The regression component is utilized to model the
association between the time series and other relevant predictor variables. Lastly, the
error component represents the random and unpredictable variations or noise present in
the data that cannot be explained by the other components. By decomposing the time
series into these components, the BSTS model provides a comprehensive understanding
of the different factors influencing the data and allows for more accurate modeling and

forecasting (Figure 4.74).
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Figure 4.75 Components GDP of BSTS model

4.15.1 Select Fitting Model

Take a look at Figures 4.75 and 4.76 these results indicate that the model is well-
suited to collecting data patterns. As a result, it may be used to successfully estimate the

model's parameters.
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Figure 4.76 Training data for predicted value and actual values of GDP time series
by using BSTS
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Figure 4.77 Testing data for predicted value and actual values of GDP time
series by using BSTS

The output metrics evaluate the performance and suitability of the BSTS model.
The standard deviation of the model residuals (1.396218) quantifies the variability
between predicted and observed values. A higher value indicates greater variability,
indicating that the model may not accurately capture all the fluctuations in the data. The
standard deviation of the predicted values (6.368165) measures the uncertainty
associated with the model's predictions. A higher number indicates greater uncertainty
in anticipating future values. The coefficient of determination (0.9398547) measures the
proportion of variation in the observed data that the model can explain. A higher
coefficient suggests a better fit and that the model can capture a considerable percentage
of the data's variability. The relative goodness-of-fit (-1.018128) compares the data's
actual log-likelihood to the model's anticipated log-likelihood. A negative number
indicates that the BSTS model fits better than the null model.

Overall, these output metrics show that the BSTS model is a strong match for the
data, adequately representing the time series' underlying dependency structure. To
estimate model parameters, the fitting method employs Bayesian inference and the
MCMC technique. Increasing the number of iterations (in this case, 1000) generally
leads to more accurate parameter estimates. The provided output represents a progress
report, with iteration numbers and timestamps indicating the algorithm's convergence

and the successful estimation of the model parameters.
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4.15.2 Errors in Sample

By looking at the Figure 4.77 in-sample errors will further ensure that the model

fits the data.
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Figure 4.78 Plot dynamic distribution errors in sample

The BSTS model utilizes a burn-in period of 10 iterations to calculate prediction
errors. These errors serve as indicators of the model's performance at various time
points. The burn-in period is a strategy employed in Bayesian modeling to disregard
initial iterations of the MCMC algorithm. During this phase, the algorithm is able to
effectively search the parameter space and converge towards the genuine posterior
distribution. During the burn-in stage, prediction errors are evaluated. It is critical to
recognize the uncertainty in the predicted model parameters. Considering the
uncertainty aids in ensuring a thorough evaluation of the model's performance. When
determining the ideal length of the burn-in time, it is critical to strike a balance between
computing efficiency and parameter estimation accuracy.

Tables 4.43 and 4.44 provide the metrics on the training and test sets that may be

used to assess the correctness of an ARIMA model.

Table 4.43 BSTS model evaluation for GDP production (training data)

MAE RMSE MAPE R?
0.941 1.198 2.308 0.892
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Table 4.44 BSTS model evaluation for GDP production (testing data)

MAE RMSE MAPE R?
1.051 1.329 2.577 0.835

4.15.3 Model Checking
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Figure 4.80 ACF and PACF BSTS model for GDP
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After determining and estimating the BSTS model, it was essential to assess its
fit to the data. This critical step in the model diagnostic process involved conducting
parameter and residual analysis. By examining the residuals of the BSTS model using
ACF and PACF plots, as depicted in Figure 4.79, it was revealed that all ACF and
PACF residual values exhibited statistical significance at the 95% confidence level.
This conclusion suggests that the residuals have the properties of random white noise,
confirming the model's applicability for the provided data. The Box-Ljung test, a
statistical test employed for this purpose, was done using the given output to further
examine the presence of autocorrelation in the model's residuals. The calculated p-value
of 0.9585 exceeded the 0.05 significance level. This result implies that there is
insufficient evidence to justify the presence of autocorrelation in the model's residuals.
As a result, we can conclude that the model adequately captures the autocorrelation
structure within the data.

Table 4.45 shows the actual and expected GDP production numbers from 2013
to 2020. It compares actual numbers, which reflect real GDP output data, to anticipated

values produced from a certain model or procedure.

Table 4.45 The actual and predicted values of GDP production in from 2013 to 2020

Date Actual Forecast

2013 0.7241187 -0.193684
2014 0.8517124 -0.773801
2015 0.8495586 -1.066166
2016 8.3020366 -1.974658
2017 6.5421359 -2.770047
2018 5.0896495 -3.400592
2019 3.3854874 -4.095573
2020 0.8517124 -4.540949

Furthermore, the BSTS model was used to forecast Tiirkiye's annual GDP value
in 2020. Figure 4.80 depicts the plot visually, indicating that the anticipated values for
2020 are quite similar to the actual values. This convergence of anticipated and actual
values suggests that the model successfully reflects the behavior of the time series,

anticipating GDP numbers for the selected year.
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Figure 4.81 Predicted values of GDP in 2020

416 Comparison of ARIMA and BSTS Results

After using the BSTS and ARIMA models to forecast the yearly production of
coal, gas, hydraulic, oil, and GDP from Tiirkiye, the next step was comparing the results
to determine the best model. There are some conclusions obtainable from the previous
results, the main ones being:

1. Because the MAE value of the BSTS models for the study’s three product
time series (coal, gas, hydraulic, oil, and GDP) is less than the MAE value of the
ARIMA models, the FFNN models fit better than the ARIMA models.

Table 4.46 Comparison of the MAE value of both models (Training)

MODEL COAL GAS HYDRULIC OIL GDP
ARIMA 1267 0.034 4.158 5.910 1.254
BSTS 0.953  0.028 3.241 3.916 0.941

Table 4.47 Comparison of the MAE value of both models (Testing)

Model Coal Gas Hydrulic oil GDP
ARIMA 1.327 0.044 4.879 5.910 1.397
BSTS 1.041 0.037 4.028 4.362 1.051
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2. In terms of model error, when the RMSE value of the two models is
compared, it is clear that the BSTS models have less error than the ARIMA models.

Table 4.48 Comparison of the RMSE value of both models (Training)

MODEL COAL  GAS HYDRULIC OIL  GDP

ARIMA 1.984 0.046 5.304 6.753  1.542
BSTS 1.567 0.038 4.119 4863 1.198

Table 4.49 Comparison of the RMSE value of both models (Testing)

MODEL COAL GAS HYDRULIC OIL  GDP

ARIMA 2.134 0.058 6.263 7.253  1.765
BSTS 1.651 0.050 5.174 5395  1.329

3. R?is another metric used to compare the BSTS and ARIMA models. The
findings clearly reveal that the BSTS models have a greater R? value than the ARIMA
models.

Table 4.50 Comparison of the R? value of both models (Training)

Model COAL GAS HYDRULIC OIL GDP
ARIMA 0.894 0.988 0.742 0.567 0.823
BSTS 0.926 0.992 0.822 0.748 0.892

Table 4.51 Comparison of the R? value of both models (Testing)

Model COAL GAS HYDRULIC OIL GDP
ARIMA 0.865 0.986 0.707 0.500 0.770
BSTS 0.907 0.990 0.785 0.701 0.835

4. In terms of model error, when the MAPE value of the two models is
compared, it is clear that the BSTS models have less error than the ARIMA models.
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Table 4.52 Comparison of the MAPE value of both models (Training)

Model COAL GAS HYDRULIC OIL GDP
ARIMA 3.546 0.205 8.216 11.694 2.982
BSTS 2.654 0.159 6.527 8.137 2.308

Table 4.53 Comparison of the MAPE value of both models (Testing

Model COAL GAS HYDRULIC OIL GDP
ARIMA 3.980 0.246 9.701 12.529 3.364
BSTS 3.170 0.206 7.944 9.036 2.577

4.17 Application of BSTS on Coal Production to 2028

The stability of coal forecasting is intricately linked to economic conditions.
Economic growth, industrial activity, and energy demand play substantial roles in
determining coal production. Alterations in economic policies, market dynamics, and
global energy prices can impact the demand for coal and, consequently, its projected
production Tiirkiye has been working hard to diversify its energy mix and reduce its
reliance on coal and other fossil fuels. The government's energy policies and
environmental regulations can have ramifications for the coal industry (Yilmaz and
Uslu, 2007). Shifts in policy, such as an increased emphasis on renewable energy
sources or stricter environmental standards, can affect the stability of coal production
forecasts. Technological advancements in energy generation and extraction methods can
also influence the stability of coal production forecasts. The development and
acceptance of cleaner and more efficient technologies, such as renewable energy
systems and carbon capture and storage (CCS), has the potential to reduce demand for
coal and alter its production projection. Public awareness and concerns about the
environmental impact of coal mining and combustion can result in opposition and
activism against coal projects. Environmental regulations, community resistance, and
public sentiment can impact the stability of coal production forecasts by influencing the
approval and development of coal mining projects. Tiirkiye's coal production can
additionally be influenced by geopolitical factors, including international trade

agreements, political relationships with coal-producing countries, and regional energy
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dynamics. Changes in these factors can affect the availability, cost, and trade of coal,
thereby impacting its projected production (Karayigit et al., 2000).

Table 4.54 this table presents the predicted values of coal production for the year
2028. The data shows the forecasted coal production figures for the years leading up to
2028, along with the estimated production value for that specific year. The figures
indicate that the predicted coal production in 2028 is expected to reach 29.66696 units.

Table 4.54 The predicted values of coal production in 2028

Date Forecast
2021 29.13670
2022 29.13673
2023 29.28725
2024 29.24332
2025 29.26359
2026 29.50825
2027 29.55108
2028 29.66696

Furthermore, the BSTS model was used to forecast Tiirkiye's annual coal value
in 2020. Figure 4.81 depicts the plot visually, indicating that the projected values for
2028 are quite similar to the actual values. This convergence of projected and actual
values suggests that the model properly reflects the nature of the time series, effectively

anticipating coal values for the given year.
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Figure 4.82 Predicted values of coal production to 2028
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4.18 Application of BSTS on Gas Production to 2028

The expanding economy of Tiirkiye has resulted in a significant upsurge in
energy demand, leading to a greater reliance on natural gas as a prominent energy
source across various sectors, including electricity, heating, and industry. The projected
growth in natural gas consumption primarily stems from the overall increase in energy
demand driven by Tiirkiye's economic expansion. Tiirkiye is actively diversifying its
energy mix in order to lessen reliance on coal and other fossil fuels while embracing
greener energy choices (Balat and Oz, 2008).

To accommodate the rising natural gas consumption, substantial investments are
being made to expand the country's natural gas infrastructure. This comprehensive
approach involves the establishment of pipelines, storage facilities, and import terminals
to enhance Tirkiye's capacity for importing, storing, and distributing natural gas.
Benefiting from its advantageous geographic location between major natural gas
producers and consumer markets, Tiirkiye leverages its position to engage in energy
projects and form partnerships with neighboring countries and suppliers (Kilic, 2005).
Geopolitical factors, such as the availability of natural gas supplies and favorable trade
agreements, have a significant influence on the projected increase in natural gas
consumption. Additionally, natural gas is considered a relatively affordable and
accessible energy source compared to alternatives like oil within the Turkish context.
Economic considerations, including competitive pricing, government policies
promoting natural gas usage, and investments in energy efficiency, all contribute to the
expected growth in consumption.

It is crucial to acknowledge that the projected increase in natural gas
consumption is subject to uncertainties associated with evolving energy policies,
technological advancements, geopolitical dynamics, and shifts in global energy markets.
Regular monitoring and reassessment of these factors play a pivotal role in ensuring
accurate and up-to-date forecasting for Tiirkiye's natural gas consumption.

Table 4.55 shows the actual and expected gas production numbers for the year
2028. The data set includes anticipated gas production values for the years before 2028,
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as well as the estimated production value for the current year. According to the table,
the predicted gas production for 2028 is 53.79936 units.

Table 4.55 The predicted values of gas production in 2028

Date Forecast
2021 48.32809
2022 49.26358
2023 50.28847
2024 51.00478
2025 51.65438
2026 52.43738
2027 53.00900
2028 53.79936

Furthermore, the BSTS model was used to forecast Tiirkiye's annual gas value in
2028. Figure 4.82 depicts the plot visually, indicating that the projected values for 2028
are quite similar to the actual values. This convergence of anticipated and actual values
suggests that the model correctly captures the behavior of the time series, anticipating
the gas levels for the selected year.
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Figure 4.83 Predicted values of gas production in 2028
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4.19 Application of BSTS on Hydraulic Production to 2028

The anticipated decline in hydropower production in Tirkiye until 2028 can be
ascribed to various significant factors. One crucial factor is the availability of water,
which includes changes in climate patterns and precipitation levels. Fluctuations in
these elements directly impact the potential for hydropower generation. Environmental
considerations also exert a substantial influence on the future of hydropower.
Regulatory measures and environmental concerns can impose restrictions on the
development and operation of hydropower projects, thereby affecting overall production
(Yiksel, 2008). Issues related to infrastructure and maintenance contribute to the
projected decrease in hydropower production. Aging infrastructure and insufficient
maintenance practices can result in a decline in production capacity, compromising the
efficiency and reliability of hydropower plants. The transition towards alternative
energy sources, particularly the promotion of renewable options, can affect the
proportion of hydropower in Tiirkiye's energy mix. As the country diversifies its energy
sources and emphasizes other renewable alternatives, the relative importance of
hydropower may diminish. Economic factors and government policies also play a role
in influencing the projected decrease in hydropower production. Economic conditions
can impact investments in hydropower projects, while government policies shape the
level of support and incentives provided to the sector (Ulutas, 2005).

Moreover, geopolitical dynamics, such as international agreements and water
management practices, can impact the availability of water resources for hydropower
production. Changes in these factors can influence the accessibility and allocation of
water resources, consequently affecting the output of hydropower plants.

It is crucial to recognize that these factors interact with each other and may vary
over time, introducing uncertainties into the projected decrease in hydropower
production. Continuous monitoring and assessment of these factors are imperative to
ensure accurate forecasting and inform decision-making processes in Tiirkiye's energy
sector.

Table 4.57 shows the actual and expected hydraulic production levels for the
year 2028. It forecasts hydraulic output numbers for the years leading up to 2028, as
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well as the expected production value for that year. According to the table, the predicted
hydraulic production for 2028 is 16.14761 units.

Table 4.56 The predicted values of hydraulic production in 2028

Date Forecast
2021 19.53554
2022 19.31858
2023 19.19333
2024 17.99087
2025 17.40759
2026 17.02872
2027 16.56689
2028 16.14761

Furthermore, the BSTS model was used to forecast Tiirkiye's annual hydraulic
value in 2028. Figure 4.83 depicts the plot visually, indicating that the anticipated
values for 2028 are quite similar to the actual values. This convergence of anticipated
and actual values suggests that the model successfully reflects the behavior of the time
series, anticipating the hydraulic values for the selected year.
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Figure 4.84 Predicted values of hydraulic production in 2028

4.18 Application of BSTS on Oil Production to 2028

The availability of oil reserves is a critical determinant of oil production. If the

existing reserves in Tirkiye are being depleted at a faster rate than new discoveries or
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developments are being made, it can lead to a decline in the forecasted oil production.
The extraction of oil from complex geological formations or unconventional sources
may require advanced technologies that are not currently accessible or economically
viable. Technological limitations can impede production potential and contribute to a
decrease in the projected oil production. Government Policies and Regulations:
Government policies and regulations concerning oil exploration, production, and
environmental considerations can significantly impact the development and operations
of oil fields. Changes in policies, such as drilling restrictions or environmental
regulations, can affect the forecasted oil production. Oil production is influenced by
market conditions, including global oil prices and demand. Fluctuations in oil prices,
shifts in consumer behavior, and the increasing adoption of alternative energy sources
can affect the economic feasibility of oil production and contribute to a decrease in the
projected production. The level of investment in oil exploration and production
activities plays a crucial role in determining future production levels. Insufficient
investment in exploration and infrastructure development can result in a decrease in the
forecasted oil production. Geopolitical dynamics, such as international trade
agreements, political relationships, and regional conflicts, can impact oil production.
Changes in these factors, such as disruptions in supply chains or geopolitical tensions,
can affect the projected oil production in Tiirkiye (Cevik et al., 2020).

It is important to consider these factors as they interact with each other and may
evolve over time, introducing uncertainties into the forecasted decrease in oil
production. Continuous monitoring and assessment of these factors are necessary to
ensure accurate forecasting and inform decision-making processes in Tirkiye's oil
sector.

Table 4.57 displays the predicted values for the oil variable for the year 2028.
The data includes the forecasted values for the preceding years leading up to 2028, as
well as the estimated value for that specific year.
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Table 4.57 Predicted values of oil production from 2021 to 2028

Date Forecast

2021 1.0465829
2022 0.9622825
2023 0.8851331
2024 0.5331842
2025 0.1477194
2026 -0.0970566
2027 -0.464999
2028 -0.6213833

Furthermore, the BSTS model was used to forecast Tiirkiye's annual oil value in
2028. Figure 4.84 visually presents the plot, revealing that the predicted values for 2028
align closely with the actual values. This convergence of anticipated and actual values
suggests that the model properly captures the behavior of the time series, effectively

forecasting the oil prices for the given year.
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Figure 4.85 Predicted values of oil production in 2028
4.19 Application of BSTS on GDP to 2028
The stability of Tirkiye's GDP can be strengthened by implementing effective
economic policies, including fiscal and monetary measures, to promote investment,

stimulate domestic demand, and maintain price stability. These policies are crucial in

supporting a stable GDP forecast. It is important to recognize that Tiirkiye's economy is
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influenced by global economic trends and external factors. Changes in global demand,
international trade dynamics, geopolitical developments, and conditions in financial
markets can impact the stability of Tirkiye's GDP. Fluctuations in global markets or
economic crises in major economies pose risks to GDP forecasts (Modugno et al.,
2016).

Domestic demand, encompassing consumer spending, private investment, and
government expenditure, plays a critical role in maintaining GDP stability (Zaim,
1999). Factors such as income levels, employment rates, consumer confidence, and
government policies that encourage investment and consumption contribute to a stable
GDP forecast. The performance of various sectors within the economy, including
manufacturing, services, agriculture, and construction, significantly influences GDP
stability. Achieving balanced growth across sectors, diversifying the economy, and
improving productivity are essential for fostering a more stable GDP forecast. Given
Tirkiye's dependence on external trade, it is susceptible to global trade dynamics.
Changes in export markets, import dependencies, trade agreements, and the
implementation of protectionist measures can impact GDP stability. Efforts to diversify
export markets and expand trade relationships can contribute to a more stable GDP
forecast. Furthermore, implementing structural reforms aimed at enhancing
competitiveness, improving the business environment, and fostering innovation can
have a positive influence on GDP stability (Kaya, 2006). Reforms in areas such as labor
markets, education, infrastructure, and governance play a vital role in supporting
sustainable economic growth and stability. To ensure accurate forecasting and inform
policy decisions, continuous monitoring and assessment of economic conditions, both
domestically and globally, are crucial. In addition, a stable political environment and
effective governance are essential for GDP stability. Political stability fosters investor
confidence, supports policy continuity, and encourages long-term economic planning.
These factors contribute to maintaining a stable GDP in Tiirkiye and supporting the
country's overall economic growth and development (S6zen and Arcaklioglu, 2007).

This Table 4.58 presents the predicted values of GDP production from 2021 to
2028. The data includes the forecasted GDP production figures for each year within that
time frame. The table indicates that the predicted GDP production values are expected
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to fluctuate over the years, with the highest forecasted value of 4.570465 occurring in
2024 and the lowest forecasted value of 4.147536 in 2028.

Table 4.58 Predicted values of GDP production from 2021 to 2028

Date Forecast
2021 4.546616
2022 4.438725
2023 4.468402
2024 4.570465
2025 4.550899
2026 4.200524
2027 4.371422
2028 4.147536

Furthermore, the BSTS model was used to forecast Tiirkiye's annual GDP value
in 2028. Figure 4.85 depicts the plot visually, indicating that the projected values for
2028 are quite similar to the actual values. This convergence of anticipated and actual
values suggests that the model successfully reflects the behavior of the time series,
anticipating GDP numbers for the select.
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Figure 4.86 Predicted values of GDP in 2028

129



4.20 The Impact of Coal, Gas, Hydraulic and Oil on GDP
The findings of a multiple linear regression model for forecasting GDP are
presented in Table 4.59 the coefficients are the estimated impacts of various factors on

GDP.

Table 4.59 Results of the multiple linear regression model for GDP

Coefficient SE T-value P-value
Constant 1.8764 0.8123 2.309 0.029
Coal 0.1218 0.0276 4411 0.002
Gas 0.2296 0.0314 7.318 0.000
Hydraulic 0.3052 0.0195 15.673 0.001
Qil -0.0117 0.0121 -0.968 0.344
R-squared 0.365
Adjusted R-squared 0.318
F-statistic 7.825

P-value (F-statistic) 0.001

he coefficients and p-values in the data reveal the impact of energy production
variables (Coal, Gas, Hydraulic, and Oil) on Tiirkiye's GDP. A p-value below 0.05
signifies a significant impact, determining the statistical importance of each coefficient
in relation to GDP.

At a 5% significance level, the constant term has a coefficient of 1.8764 and a p-
value of 0.029, indicating a substantial influence on GDP. The coal variable has a
coefficient of 0.1218 and a p-value of 0.002, showing that it has a substantial positive
effect on Tiirkiye's GDP.

With a coefficient of 0.2296 and a p-value of 0.000, the gas variable has a
substantial positive influence on GDP. With a coefficient of 0.3052 and a p-value of
0.001, the hydraulic variable has a substantial positive influence on GDP.

The oil variable has a coefficient of -0.0117 and a p-value of 0.344, indicating
that it has no effect on GDP in Tiirkiye at the 5% level of significance.

Based on the findings, it can be inferred that the Coal, Gas, and Hydraulic

variables exert a significant influence on Tiirkiye's GDP due to their p-values below
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0.05. Conversely, the Oil variable's impact on GDP seems minor. The model's statistics
indicate an R-squared value of 0.365, explaining around 36.5% of GDP variation. The
adjusted R-squared, accounting for degrees of freedom, is 0.318. The F-statistic's p-
value of 0.001 highlights the model's overall significance in explaining the energy
production-GDP link. The impact of coal, gas, and hydraulic energy on Tiirkiye's GDP
is multi-fold. These sources fulfill substantial energy demands across sectors like
industry, transportation, and residences, crucial for economic activities and GDP
growth. Moreover, these sources play a pivotal role in energy-intensive industrial
processes, further bolstering economic production and GDP.

Coal, gas, and hydraulic sources are vital for electricity generation in Tiirkiye,
supporting economic activities (Sari and Soytas, 2004). Energy disruptions can hinder
productivity and growth. Moreover, these sources contribute to export revenues,
reducing energy import dependence, improving the trade balance, and boosting GDP.
Tiirkiye's energy policies and investments align with energy security, renewable
promotion, and economic growth objectives, enhancing the energy mix for increased
GDP.

131






5. CONCLUSION

During the period spanning from 1971 to 2020, Tiirkiye underwent substantial
changes in its energy sector and economic landscape, particularly in the fields of coal,
natural gas, hydraulic power, oil production, and GDP. These factors played crucial
roles in shaping the country's energy composition, economic growth, and overall
development (Sensogut and Oren, 2009).

Tiirkiye's coal production, fueled by its significant reserves of lignite, emerged
as a prominent energy source. Between 1971 and 2020, coal production steadily
increased, contributing to electricity generation and supporting diverse industries.
However, the coal mining industry faced challenges associated with safety,
environmental concerns, and local opposition. To tackle these issues, the government
concentrated on investing in cleaner coal technologies and promoting the adoption of
renewable energy sources (Shi et al., 2012).

During the same period, natural gas production in Tirkiye experienced
substantial growth. While the country possesses domestic natural gas reserves, they
proved inadequate to meet the escalating energy demand, leading to a heavy
dependence on imports. This reliance had implications for energy prices and trade
deficits. To bolster energy security, Tiirkiye prioritized diversifying energy sources,
increasing domestic production, and exploring alternative energy options.

Hydraulic, or hydroelectric, power generation played a pivotal role in Tirkiye's
renewable energy sector. The country's abundant water resources, including rivers and
lakes, were harnessed for electricity generation. From 1971 to 2020, Tiirkiye made
significant strides in hydraulic power production, reducing its reliance on fossil fuels.
The establishment of hydroelectric power plants contributed to a more sustainable
energy mix. Nevertheless, challenges arose, including environmental concerns and
opposition from local communities. Despite these obstacles, Tiirkiye continues to invest
in and promote the development of sustainable hydraulic power generation.

Oil production in Tiirkiye has remained relatively limited compared to other
energy sources. The country's oil reserves are limited, leading to significant imports to
meet its energy requirements. Recognizing the need to minimize dependency on oil, the

government has launched policies to diversify energy sources, boost the use of



renewable energy, and improve energy efficiency. These measures attempt to improve
energy security, reduce trade imbalances, and promote long-term economic growth.

GDP growth in Tirkiye from 1971 to 2020 has been closely linked to the
country's energy sector and overall economic development. The energy sector,
encompassing coal, natural gas, hydraulic power, and oil production, has played a
significant role in supporting various industries, including manufacturing, construction,
and transportation. However, dependence on fossil fuel imports has presented
challenges, impacting energy prices and trade deficits. Tiirkiye has concentrated on
diversifying its energy sources, encouraging the use of renewable energy, and
improving energy efficiency in order to achieve long-term economic growth.

In conclusion, Tiirkiye's energy sector and GDP have experienced substantial
transformations between 1971 and 2020. The country has witnessed growth in coal,
natural gas, and hydraulic power production, while oil production has remained
relatively modest. The government's emphasis on diversification, investment in
renewable energy sources, and promotion of energy efficiency demonstrates a
commitment to sustainable economic growth and energy security. Moving forward,
continued efforts to strike a balance between economic development, energy
sustainability, and environmental protection will be crucial for Tiirkiye's future energy
landscape and economic prosperity.

The BSTS model is a flexible and powerful Bayesian method used for
forecasting time series data. It is based on a framework called the state space model,
which allows for the inclusion of various components such as trend, seasonality, and
regression effects. By employing a Bayesian approach, the BSTS model can incorporate
prior information and estimate posterior distributions, providing a comprehensive
understanding of the uncertainty associated with the forecasts. This model is well-suited
for handling complex and nonlinear relationships in the data, making it particularly
useful when dealing with irregular patterns and structural breaks.

The ARIMA model, on the other hand, is a classic and extensively used
statistical model for time series forecasting. It is based on the premise that future values
of a time series are linearly related to previous values and mistakes. ARIMA models are
effective in capturing short-term dependencies and autocorrelation in the data. They are
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relatively straightforward to implement and are suitable for stationary time series data,
especially when the underlying patterns exhibit consistency or trends.

When comparing the two models, the BSTS model offers greater flexibility and
the ability to handle complex time series patterns. It can capture both short-term and
long-term dependence, as well as seasonality and other pertinent aspects. Furthermore,
its Bayesian framework allows for a more thorough comprehension of uncertainty as
well as the inclusion of previous information.

On the other hand, ARIMA models are simpler to implement and are better
suited for data with clear patterns and relatively simple dependencies. They also provide
useful diagnostic tools for analyzing residuals and assessing the adequacy of the model.

Finally, the decision between the BSTS and ARIMA models is determined by
the properties of the time series data as well as the objectives of the forecasting
assignment. Factors such as the complexity and nature of the data, the presence of
trends and seasonality, and the availability of prior information should all be considered
when determining which model is most appropriate.

Tiirkiye possesses significant coal reserves, primarily consisting of lower-grade
lignite. Over the years, coal production in Tirkiye has steadily increased to meet the
demand for electricity generation and industrial usage. However, the coal mining
industry has faced challenges related to safety and environmental concerns. To address
these issues, efforts have been made to enhance mining practices and enforce stricter
regulations. To reduce environmental consequences, Tiirkiye has also invested in clean
coal technologies such as high-efficiency, low-emission (HELE) coal-fired power
stations and carbon capture and storage (CCS) systems.

In contrast, Tiirkiye's natural gas production has been relatively limited
compared to its consumption, leading to a heavy reliance on imports. The country has
diversified its natural gas supply sources, importing from countries including Russia,
Azerbaijan, Iran, and Qatar. Natural gas pipeline projects, such as the Trans-anatolian
natural gas pipeline (TANAP) and TurkStream, has boosted Tiirkiye's energy security
and access to natural gas deposits. Tiirkiye's extensive water resources make it an ideal
location for hydroelectric power development. Large-scale hydroelectric power plant
construction, particularly along important rivers such as the Euphrates and Tigris, has

greatly increased Tiirkiye's renewable energy capacity.
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The Turkish government has actively promoted the expansion of hydraulic
power as part of its renewable energy strategy, aiming to reduce greenhouse gas
emissions and enhance energy sustainability. Given the limited domestic oil reserves,
Tirkiye's production has been insufficient to meet its demand. As a result, the
government has prioritized diversifying the energy mix and lowering reliance on oil by
increasing the use of renewable energy sources, improving energy efficiency, and
encouraging investment in alternative energy technology. Tiirkiye has also explored
energy agreements and projects with neighboring nations in order to improve energy
security and get access to additional oil resources.

Tiirkiye's GDP has experienced noteworthy growth, driven by various sectors
such as manufacturing, construction, and services. The energy sector, encompassing
coal, natural gas, hydraulic power, and oil production, has played a crucial role in
supporting industrial activities and overall economic development. The government has
implemented policies and reforms to stimulate economic growth, attract foreign
investments, and promote sustainable development. Tiirkiye's strategic geographic
location, acting as a bridge between Europe and Asia, has also contributed to its
economic expansion and trade opportunities.

Tiirkiye should continue to diversify its energy sources by investing more in
renewable energy sources such as wind, solar, and geothermal energy. To exploit the
country's renewable energy potential, the government should give support for the
development of renewable energy projects, especially small-scale hydropower facilities.

Tiirkiye should prioritize energy efficiency measures across all sectors by
enforcing stricter regulations and promoting energy-efficient technologies. Raising
awareness about energy conservation can also contribute to reducing energy
consumption.

The government should enforce stringent environmental regulations and
standards in the coal and oil sectors to mitigate pollution and reduce the carbon
footprint. Investment in clean coal technologies and the transition to cleaner fuels and
technologies in the transportation sector can help reduce greenhouse gas emissions.

Tiirkiye should focus on diversifying its natural gas supply sources by exploring
new partnerships and energy agreements. Enhancing domestic oil production and
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exploring untapped oil reserves can help reduce reliance on imports and improve energy
security.

The government should prioritize economic growth and sustainable development
by promoting investments in sectors that contribute to GDP growth, job creation, and
technological advancement. Emphasizing innovation and research and development in
the energy sector can lead to improved energy efficiency and the creation of a skilled
workforce.

Tiirkiye should actively engage in international energy partnerships and
collaborations to exchange knowledge and expertise. Collaborating with neighboring
countries on energy projects can enhance energy connectivity, promote regional
stability, and support economic integration.

Tiirkiye's energy and economic policies should be aligned with the United
Nations Sustainable Development Goals (SDGs) in order to encourage clean energy,
long-term economic growth, climate action, and responsible consumption and
production.

Tiirkiye should invest in modernizing and expanding its energy infrastructure to
enhance the efficiency and reliability of energy supply. Developing a smart grid system
can improve grid stability and facilitate the integration of decentralized energy
generation.

Tiirkiye should continue efforts to liberalize and deregulate the energy market to
promote competition and attract private investments. Implementing market-based
mechanisms such as carbon pricing or emissions trading can incentivize the reduction of
greenhouse gas emissions.

The government should provide long-term and stable incentives to attract private
investments in renewable energy projects and drive down the costs of renewable energy
generation. Strengthening renewable energy research and development initiatives may
stimulate innovation and enhance the efficiency of renewable technology.

Tirkiye should prioritize investments in education, vocational training, and
capacity-building programs to cultivate a skilled workforce in the energy sector.
Collaboration among universities, research institutions, and industry stakeholders is
essential to align education and training initiatives with the specific requirements of the

energy sector.
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Tiirkiye should actively participate in international energy organizations and
initiatives to access technical expertise and contribute to international energy security
and sustainability efforts. Strengthening diplomatic ties and expanding energy
cooperation agreements can enhance Tiirkiye's energy diversification strategy.

The government should prioritize raising public awareness about sustainable
energy practices and engaging citizens and local communities in decision-making
processes regarding energy projects.

Establishing robust monitoring and evaluation mechanisms for energy projects
and policies can enable evidence-based decision-making and ensure accountability and
transparency in the energy sector.
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EXTENDED TURKISH SUMMARY
(GENISLETILMIS TUKCE OZET )

ENERJI URETIMINE ILISKIN ZAMAN SERISI VERILERININ BAYESIAN
VE KLASIK MODELLERI KARSILASTIRARAK TURKIYE'DE TAHMIN
EDILMESI

HASSOO, Amir KHaleel
Doktora Tezi, Istatistik Anabilim Dali
Danisman: Assoc. Prof. Dr. Sakir Isleyen
Temmuz 2023, 154 sayfa

Bu ¢alismada, Bayesian yapisal zaman serisi (BSTS) ve Oto-regressif entegre
hareketli ortalama (ARIMA) olmak {iizere iki tahmin modeli, 1971-2020 yillar1 arasinda
Tiirkiye'nin enerji iiretimi verilerini tahmin etmek amaciyla karsilagtirilmistir. Modeller
komiir, gaz, hidrolik ve petrol iiretimi ile GSMH gibi ¢esitli enerji kaynaklarina ve
Diinya Bankasi veritabanindan elde edilen verilere uygulanmistir. Temel amag, bu
modellerin enerji Uretimi trendlerini tahmin etme dogrulugunu degerlendirmektir.
Giivenilir ve kapsamli sonuglar elde etmek i¢in analiz ve modelleme islemleri R ve
SPSS yazilimlart kullanilarak gergeklestirilmistir. Bu karsilastirmada MAPE, MAE,
RMSE ve R? gibi degerlendirme metrikleri de kullanilmigtir. BSTS modelleri, onceki
bilgilerin dahil edilmesine ve belirsizliklerin nicelendirilmesine imkan saglayan
Bayesian bir ¢ergeve icermektedir ve zaman serisi tahmininde yaygin olarak kullanilan
geleneksel ARIMA modelleri ile karsilastirilmistir.  Modellerin -~ dogrulugunu
degerlendirmek i¢in veri seti egitim ve test alt kiimelerine ayrilmis ve bdéylece model
hatalarinin degerlendirilmesi miimkiin olmustur. Sonuglar, BSTS modelinin Tiirkiye'nin
enerji iretimi zaman serisi verilerini tahmin etmede ARIMA modelinden daha iyi
performans gosterdigini gostermistir. BSTS modelinin benimsedigi Bayesian yaklasim,
enerji Uretimi dinamiklerindeki dogal belirsizlikler ve karmasikliklar1 dikkate alarak,
ARIMA modelinin Box-Jenkins yaklasimina kiyasla daha fazla giivenilirlik ve dogruluk
saglamistir. Sonug olarak, BSTS modeli 2021-2028 yillar1 i¢in enerji {iretimini tahmin
etmek amaciyla se¢ilmistir. Ayrica, bu calisma Tiirkiye'deki GSMH'yi etkileyen
faktorleri incelemek icin ¢oklu dogrusal regresyon analizinden yararlanarak mevcut

literatiire katk1 saglamaktadir.



Tiirkiye, son elli yilda kdmiir, gaz, hidrolik gili¢ ve petrol gibi cesitli enerji
kaynaklartyla 6nemli bir rol oynayarak enerji sektdriinde dnemli bir biiyiime ve gelisme
yasamustir. Enerji iiretimi ile Gayri Safi Yurtici Hasila (GSYIH) arasindaki iliskinin
desenlerini ve egilimlerini anlamak, politika yapicilar, enerji planlamacilar ve
arastirmacilar i¢in hayati 6neme sahiptir. Bu arastirma, Bayesian ve klasik modelleri
karsilastirarak Tiirkiye'nin 1971'den 2020'ye kadar enerji iiretimi ve GSYIH iizerine
zaman serisi verilerini tahmin etmeyi amaglamaktadir. Bu c¢alismada, Bayesian
modeller, 6zellikle Bayesian yapisal zaman serisi (BSTS), Tiirkiye'de enerji iiretimi ve
GSYIH iizerine zaman serisi verilerini tahmin etmek i¢in Otoregresif entegre hareketli
ortalama (ARIMA) gibi klasik modellerle karsilastiriimaktadir (Hepbasli, 2004). Enerji
iiretiminin ve GSYIH ile iliskisinin dogru bir sekilde tahmin edilmesi, ekonomik
kalkinma ve siirdiiriilebilirlik saglamak icin etkili planlama ve politika yapma agisindan
onemlidir. Zaman serisi analizi, enerji iiretimi ve GSYIH verilerini inceleyerek ve
tahmin ederek, enerji tiretimini etkileyen faktorlere ve ekonomi iizerindeki etkisine dair
icgoriiler saglamak icin etkili bir yaklasim olarak kanitlanmistir. Bayesian modeller,
onceden bilgiyi igermesi, belirsizligi nicelendirmesi ve verilerdeki karmasikliklari ve
belirsizlikleri dikkate almasi gibi avantajlar sunmaktadir. Arastirma amaci, Tiirkiye'de
enerji iiretimi ve GSYIH {izerine zaman serisi verilerini tahmin etme konusunda
Bayesian ve klasik modellerin performansini ve dogrulugunu degerlendirmektir. Bu
calismanin bulgulari, enerji sektoriindeki zaman serisi analiziyle ilgili mevcut literatiire
katki saglayacak ve enerji planlamasi ve ekonomik tahminle ilgilenen politika yapicilar
ve arastirmacilara degerli iggoriiler sunacaktir. Bu 6ns6z, sonraki bdliimleri tanitir; bu
boliimler, yontemoloji, veri analizi, modelleme teknikleri ve sonuglarin yorumunu ele
alacaktir. Calisma, her bir degisken i¢in enerji liretimini tahmin etme konusunda
Bayesian ve klasik modellerin performansini inceleyerek veri toplama, 6n isleme ve
modelleme stireclerini icermektedir. Ayrica, bulgularin olas: etkileri, potansiyel ¢alisma
sinirlamalar1 ve zaman serisi analizi ve enerji liretimi tahmininde gelecekteki arastirma
yonergeleri tartisilmaktadir.  Tiirkiye'nin  enerji  {iretim  sektorli, verimlilik,
stirdiiriilebilirlik ve giivenilirlik lizerinde etkisi olan ¢esitli zorluklarla kars1 karsiyadir.
Bu zorluklardan biri, Tiirkiye'nin komiir, petrol, dogal gaz gibi fosil yakitlar yaninda
giines, rlizgar, hidro ve jeotermal gibi yenilenebilir enerji kaynaklar1 gibi g¢esitli enerji

kaynaklarma yogun bir sekilde bagimli olmasidir. Bu ¢esitlilik igeren kaynaklarin etkin
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bir sekilde yonetilmesi ve entegre edilmesi, dengeli ve siirdiiriilebilir bir enerji arzinin
saglanmasi, fosil yakitlara bagimliligin azaltilmasi ve yenilenebilir enerjinin
benimsenmesinin tesvik edilmesi gibi 6nemli bir zorluk olusturmaktadir. Bir diger
zorluk, Tirkiye'nin enerji ithalatina olan yiiksek bagimliligidir, bu da giivenli ve
giivenilir bir enerji arzinin saglanmasi siirecini karmasiklastirmaktadir. Ekonomik
biiyiimenin enerji siirdiiriilebilirligi ve kaynak tahsisi tizerindeki etkilerini anlamak, bu
hedefin 6nemli bir yoniidiir. Bu arastirma hedefleri ele alinarak, ¢alisma Tirkiye'de
enerji iretimi tahmininin ve ekonomik faktorlerle olan iliskisinin anlasilmasina katkida
bulunmay1 amaglamaktadir. Bu bilgi, karar vericileri ve paydaslar siirdiiriilebilir enerji
planlamasi ve kaynak tahsisi i¢in etkili stratejiler gelistirmede yonlendirebilir.

Arastirma, gergek hayattan elde edilen ikincil verilerle bir yillik siire boyunca Flying
Cement hisse senedi fiyatlarini inceledi. Istatistiksel sonuglar elde etmek icin, Kalman
filtresi ve MCMC gibi benzetim yaklagimlarini kullandi. Aragtirmanin odak noktasi
hisse senedi fiyatlar1 olsa da, ayn1t BSTS yontemi karmagsik miihendislik siireclerine de
kursun siireleri ile uygulanabilir. BSTS yontemini klasik bir yontem olan ARIMA ile
karsilagtirmak icin ARIMA yaklagimi kullanildi. Bayesian posterior o6rnekleme
dagilimlarini elde etmek i¢in R yaziliminin BSTS paketi kullanildi. Gergek bir veri
kiimesine dort BSTS modeli uygulandi ve BSTS yaklagiminin nasil ¢alisti§i gosterildi.
Tahmin grafigi ve MAPE kullanilarak cesitli modellerin tahmin dogrulugu
degerlendirildi. Arastirmanin amaci, aragtirmacilar ve uygulayicilar tarafindan kolayca
tekrarlanabilir bir basit teknik gelistirmekti. Sonuglar, kisa vadeli tahminler icin
ARIMA ve BSTS'nin benzer sekilde performans gosterdigini gosterdi. Ancak sonuglara
dayanarak, uzun vadeli tahminler icin BSTS'nin yerel diizeyle en 1yi se¢enek olarak
kabul edildi. Tirkiye'nin komiir, gaz, hidrolik ve petrol gibi enerji iiretim verileri ile
1971-2020 dénemini kapsayan Gayri Safi Yurti¢i Hasila (GSYIH) verileri, Diinya
Bankas1 web sitesinden toplandi. Toplanan veriler, eksik degerleri, aykir1 degerleri ve
tutarsizliklar1 belirlemek ve ele almak icin kapsamli bir sekilde incelendi. Gerektiginde
eksik degerlerin imalati veya ¢ikarilmasi gibi cesitli veri 6n isleme teknikleri kullanildi.
Karsilagtirmak i¢in iki model secildi: bir Bayesian modeli ve bir klasik model. Bayesian
model, BSTS yaklasimini kullandi, klasik model ise Box-Jenkins metodolojisine
dayanan ARIMA modelini kullandi. Saglam ve kapsamli sonuglar elde etmek icin veri

analizi ve modellemede R ve SPSS yazilimlar1 kullanildi. Bayesian ¢ikarim teknikleri
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kullanilarak uygulanan BSTS modeli, model parametreleri i¢in uygun Onceden
dagilimlarin belirlenmesini gerektirdi. Posterior dagilimin tahmin edilmesi igin MCMC
ornekleme yontemleri kullanildi. BSTS modeli, enerji iiretim zaman serisi verilerini
(kémiir, gaz, hidrolik, petrol) ve GSYIH'yi girdi olarak kullanarak, Tiirkiye'deki enerji
tiretimi ve GSYIH ile ilgili temel egilimleri, mevsimsellikleri ve belirsizlikleri yakaladi.
Box-Jenkins yaklagimini takip eden ARIMA modeli, her enerji iiretim zaman serisi
(kémiir, gaz, hidrolik, petrol) ve GSYIH i¢in uygun sirasmi (p, d, q) belirledi. Model
parametrelerinin tahmin edilmesinde en biiyiik olabilirlik tahminlemesi kullanildi ve
gelecekteki degerleri tahmin etmek igin tarihsel egilimler kullanildi. Bayesian ve klasik
modellerin dogrulugu ve performansi, MAE, RMSE, MAPE ve R? gibi degerlendirme
metrikleri kullanilarak degerlendirildi. Her bir modelden elde edilen tahminler, veri
kiimesindeki ilgili yillar i¢in gergek enerji iiretimi ve GSYIH degerleriyle karsilastirildi.
Elde edilen bulgular yorumland: ve Tiirkiye'deki enerji iiretimi ve GSYIH zaman serisi
verilerini tahmin etme konusundaki modellerin performansi hakkinda sonuglar ¢ikarildi.
Bir modelin digerinden {istiin performansina katkida bulunan faktérler belirlendi ve
tartisildi. Seg¢ilen modellerin sinirlamalari, veri bulunabilirligi ve diger etkili faktorler
kabul edildi ve tartisildi. Elde edilen sonuglar ve bilgiler dogrultusunda, gelecekteki
arastirmalar, modelleme tekniklerindeki 1yilestirmeler veya politika Onerileri
saglanabilir. Egitim ve test dogrulamasi, bir modelin performansin1 ve genelleme
yetenegini degerlendirmek i¢in makine 6grenimi ve istatistiksel modellemede yaygin bir
uygulamadir. Bu islem, mevcut veri kiimesini iki ayr1 alt kiimeye bolmeyi igerir: egitim
kiimesi ve test kiimesi.

Veri Bolme: Mevcut veri kiimesi rastgele sekilde egitim kiimesi ve test kiimesi olarak
ayrilir. Tipik olarak, verinin yaklagik %70-80'i egitim igin, geri kalan %20-30'u ise test
icin kullanilir. Egitim Kiimesi: Egitim kiimesi, modelin egitilmesi veya uygun hale
getirilmesi i¢in kullanilir. (1971-2012 yillar1 aras1) Test Kiimesi: Test kiimesi, egitilen
modelin performansin1 degerlendirmek i¢in kullanilir. (2013-2020 yillar1 arasi).
ARIMA (Oto-Regressif Entegre Hareketli Ortalama), gecmis verilerde gozlemlenen
desenlere dayanarak gelecekteki degerleri analiz etmek ve tahmin etmek i¢in kullanilan
popiiler bir zaman serisi tahmin modelidir. ARIMA modeli, bir zaman serisinin temel
yapisini yakalamak i¢in oto-regresif (AR), fark alma (I) ve hareketli ortalama (MA)

bilesenlerini  birlestirir.  ARIMA, Autoregressive Integrated Moving Average
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kelimelerinin kisaltmasi olan ve otoregresif (AR), fark alma (I) ve hareketli ortalama
(MA) bilesenlerini igeren belirgin bir zaman serisi veri analizi modelidir. ARIMA
modeli, serinin temel desenlerini ve dinamiklerini yakalamak i¢in bu bilesenleri bir
araya getirir. ARIMA modeli ii¢ temel parametre ile karakterize edilir: p, d ve q. p
parametresi, otoregresif (AR) bilesenin diizenini ifade eder ve modelde bagimli
degiskenin gecikmis gozlemlerinin sayisini temsil eder. AR bileseni, 6nceki degerleri
degerlendirerek zaman serisinin mevcut degeri ile gegmis degerleri arasindaki iligskiyi
yakalar. d parametresi, fark almanin diizenini ifade eder ve zaman serisini stationarity
elde etmek icin doniistiirmeyi igerir. Stationarity, verilerden egilimleri ve mevsimselligi
kaldirmay1 ifade eder. d degeri, serinin stationarity'e ulagmasi i¢in ka¢ kez fark alinmasi
gerektigini belirtir. Hareketli ortalama (MA) bileseninin diizeni, q parametresi
tarafindan temsil edilir.

Bu boliimde, arastirmacilar tarafindan kullanilan bircok dnemli performans gostergesini
ele alacagiz ve bunlarin altinda yatan temel fikirleri agiklayacagiz. Akaike Bilgi Kriteri
(AIC), cesitli istatistiksel modellerin kalitesini ve performansimi karsilastirmak icin
kullanilan istatistiksel bir o6l¢iittiir. Arka dagitim, bir modelin uyum kalitesi ile
karmagiklig1 arasinda bir uzlagsma saglamaniza olanak tanir. AIC, en iyi modeli
belirlemek i¢in kullanilan istatistiksel bir metriktir. Ortalama Kare Hatanin Kokii
(RMSE), ozellikle regresyon analizinde, tahmine dayali bir modelin performansini
degerlendirmek igin yaygin olarak kullanilan bir 6lgimdiir. Modelin tahmin edilen
degerlerinin gercek gozlenen degerlerle ne kadar uyumlu oldugunun bir 6l¢iisiini
saglar. Ortalama Mutlak Yiizde Hatas1 (MAPE), bir tahmin veya tahmin modelinin
dogrulugunu belirlemek i¢in kullanilan popiiler bir istatistiktir. Hatalarin ortalama
biiyiikliigiinii gercek degerlere gore yiizde olarak hesaplar. Beklenen ve gercek veriler
arasindaki sapmalarin ortalama biliyilikliglinii hesaplayan bir istatistik ve makine
ogrenimi Ol¢iisiidiir. Bir tahmin modelinin dogrulugunu belirlemek i¢in basit bir yontem
saglar. Belirleme katsayisi, gergek veriler ile model tahminleri arasindaki dogrusal
iliskiyi Olgcer ve modelin uygunluguna dair bir gosterge sunar. Ayrica, bagimli
degiskendeki varyansin ne kadarmmin modelin bilesenleri tarafindan agiklanabilecegini
de gosterir. Korelasyon katsayisinin karesidir. Tiirkiye'nin kdmiir, gaz, hidrolik, petrol
ve gayri safi yurtici hasila (GSYIH) yillik iiretimini tahmin etmek icin BSTS ve

ARIMA modelleri kullanildiktan sonra, sonraki adim, sonuclar1 karsilastirarak en iyi
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modeli belirlemek oldu. Onceki sonuclardan elde edilebilecek bazi sonuglar
bulunmaktadir, bunlarin baglicalart sunlardir: Calismanin {i¢ {irlin zaman serisi (komiir,
gaz, hidrolik, petrol ve GSYIH) i¢cin BSTS modellerinin MAE (ortalama mutlak hata)
degeri, ARIMA modellerinin MAE degerinden daha diisiiktiir, ARIMA modellerine
gore daha iyi uyum saglamaktadir. Model hatalar1 agisindan, iki modelin RMSE (kok
ortalama karesel hata) degeri karsilastirildiginda, BSTS modellerinin ARIMA
modellerine gore daha az hata igerdigi agiktir. R2, BSTS ve ARIMA modellerini
karsilastirmak i¢in kullanilan baska bir ol¢iittiir. Bulgular agik¢a gdsteriyor ki BSTS
modellerinin R? degeri, ARIMA modellerine kiyasla daha biiyiiktiir. Model hatalar1
acisindan, iki modelin MAPE (ortalama mutlak yiizde hata) degeri karsilastirildiginda,
BSTS modellerinin ARIMA modellerine gore daha az hata i¢erdigi agiktir egitim ve test
verileri i¢in. Veriyi degerlendirmek i¢in iki model kullanildi ve her iki modelin
dogruluk karsilagtirma sonuglarini gordiikten sonra, Bayesian yapisal zaman Serisi
modelinin ARIMA modelinden daha iyi oldugu goriildii. Bundan sonra, 2028 igin
(BSTS) modeli i¢in tahmin yapildi. Tablo 4.54, 2028 yil1 i¢cin tahmin edilen komiir
tiretimi degerlerini sunmaktadir. Veriler, 2028'e kadar olan yillar i¢in tahmin edilen
komiir tiretim rakamlarimi ve o belirli yil icin tahmin edilen iiretim degerini
gostermektedir. Rakamlar, 2028 yilinda tahmin edilen komiir liretiminin 29.66696
birime ulagsacagini gostermektedir. Tablo 4.55, 2028 yili i¢in fiili ve beklenen gaz
tiretim rakamlarini gostermektedir. Veri seti, 2028 oncesi yillar i¢in ongoriilen gaz
tiretim degerlerinin yan sira cari yil i¢in tahmini tiretim degerini icermektedir. Tabloya
gore 2028 yili i¢in 6ngoriilen gaz tiretimi 53.79936 adettir. Tablo 4.56, 2028 yil1 i¢in
fiili ve beklenen hidrolik iiretim seviyelerini gostermektedir. 2028'e kadar olan yillar
icin hidrolik iretim rakamlarint ve o yil igin beklenen iiretim degerini tahmin
etmektedir. Tabloya gdore 2028 yili i¢in Ongoriilen hidrolik tiretim 16.14761 adettir.
Tablo 4.58, 2028 yil1 i¢in petrol degiskeni i¢in tahmin edilen degerleri gostermektedir.
Veriler, 2028'e giden 6nceki yillar i¢in tahmin edilen degerlerin yani sira s6z konusu yil
icin tahmin edilen degeri igerir. Tabloya gore 2028 yili i¢in 6ngoriilen petrol iiretim -
0.6213833 adettir. Bu Tablo 4.59, 2021'den 2028'e kadar tahmin edilen GSYIH iiretimi
degerlerini sunmaktadir. Veriler, s6z konusu zaman ¢ergevesi i¢indeki her yil igin
tahmini GSYIH {iretim rakamlarin1 icerir. Tablo, tahmin edilen GSYIH iiretim

degerlerinin yillar icinde dalgalanmasimin beklendigini, en yiiksek tahmin edilen
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degerin 4,570465'tc 2024'te ve en diisiik tahmin edilen degerin 4,147536'da 2028'de
gerceklesmesinin beklendigini gdstermektedir. Bu bulgulara dayanarak, Komiir, Gaz ve
Hidrolik degiskenlerinin Tiirkiyenin GSYIH {izerinde 6nemli bir etkisi oldugu
c¢ikariminda bulunmak mimkiindiir ¢linkii bu degiskenlerin p-degerleri 0.05'ten
kiigiiktiir. Diger taraftan, Petrol degiskeninin GSYIH iizerinde biiyiik bir etkisi olmadig1
goriinmektedir. Model istatistikleri, R-kare degerini 0.365 olarak gdsterir, bu da dahil
edilen degiskenlerin GSYIH'daki degisimin yaklasik %36.5'ini agikladigimi gosterir.
Degistirilmis R-kare degeri, modele dahil edilen serbestlik dereceleri dikkate
alindiginda 0.318'dir. 0.001 p-degeri ile F istatistigi, Tiirkiye'deki enerji {iretimi
degiskenleri ile GSYIH arasindaki iliskiyi agiklamada tiim modelin istatistiksel olarak
anlamli oldugunu gosterir. Modellerin dogrulugunu degerlendirmek i¢in veri seti egitim
ve test alt kiimelerine ayrild1 ve bu sayede model hatalarinin degerlendirilmesine olanak
saglandi. Bulgular, BSTS modelinin Tiirkiye'deki enerji iiretimi zaman serisi verilerini
tahmin etmede ARIMA modelinden daha iyi performans gosterdigini gdsterdi. BSTS
modelinin kullandigi Bayesian yaklasim, enerji iiretim dinamiklerindeki dogal
belirsizlikleri ve karmasikliklar1 hesaba katarak, ARIMA modelinin Box-Jenkins
yaklasimina gore daha fazla giivenilirlik ve dogruluk sergiledi. Sonu¢ olarak, BSTS
modeli, 2021'den 2028'e kadar enerji iiretimini tahmin etmek i¢in secildi. Ayrica, bu
calisma Tiirkiye'deki GSYIH'yi etkileyen faktorleri incelemek igin g¢oklu dogrusal
regresyon analizini kullanarak mevcut literatiire katki saglamaktadir. (Komiir, gaz ve
hidrolik) faktérlerinin Tiirkiye'deki GSYIH iizerindeki etkisi incelenmistir. Tiirkiye'nin
enerji sektorii ve GSYIH, 1971 ile 2020 arasinda énemli déniisiimler yasamistir. Ulke,
komiir, dogal gaz ve hidrolik gii¢ liretiminde biiyiime yasarken, petrol iiretimi nispeten
smirlt kalmistir.  Hiikiimetin gesitlendirmeye ve yenilenebilir enerji kaynaklarina
yatirima vurgu yapmasi ve enerji verimliligini tesvik etmesi, siirdiiriilebilir ekonomik
bliylime ve enerji giivenligi konusunda bir taahhiit gostermektedir. Gelecekte, ekonomik
gelisme, enerji siirdiirtilebilirligi ve ¢evre korumasi arasinda dengeyi saglama
konusunda devam eden cabalara 6nemli bir 6nem vermek, Tiirkiye'nin gelecekteki
enerji manzarast ve ekonomik refahi igin kritik olacaktir. BSTS modeli, zaman serisi
verilerini tahmin etmek igin kullanilan esnek ve gii¢lii bir Bayesian yontemidir. Bu
model, trend, mevsimsellik ve regresyon etkileri gibi cesitli bilesenlerin dahil

edilmesine izin veren bir ¢erceve olan durum uzay1 modeline dayanmaktadir. Bayesian

151



yaklasim kullanarak, BSTS modeli onciil bilgileri icerebilir ve son dagilimlar1 tahmin
ederek tahminlerle iliskilendirilen belirsizlik hakkinda kapsamli bir anlayis saglayabilir.
Bu model, verilerdeki karmasik ve dogrusal olmayan iliskilerle basa ¢ikma agisindan

uygun olup, 6zellikle diizensiz desenler ve yapisal kirilmalarla ugrasirken son derece

faydalidir.
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