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OZET

Bu tez calismasinin esas amaci, B-Lift egrileri yardimiyla slant helis (ya da Darboux helis)
ve genel helis arasindaki iligkileri ortaya koymaktir. Bu baglamda, ilk olarak, 3-boyutlu
Oklid uzayinda esas egrinin her noktasindaki binormal vektoriiniin ug¢ noktalarmin
birlestirilmesiyle elde edilen B-Lift egrileri tamimlanmustir ve Frenet operatorleri elde
edilmistir. ~ Ayrica, B-Lift egrisinin Frenet operatorleri ile tabii lift egrisinin Frenet
operatorleri arasindaki iligkiler elde edilmistir. Daha sonra, B-Lift egrisinin teget, normal ve
binormal yiizeyleri olarak adlandirilan regle yiizeylerin geometrik de8ismezleri ve
tekillikleri incelenmistir. Ardindan, 3- boyutlu Lorentz uzayinda B-Lift egrisi tanimlanarak,
Frenet vektorleri bulunmustur. Dahasi, esas e8rinin Bertrand egrisi ve involiit egrisinin
Frenet vektorleri ile esas egrinin B-Lift egrisinin Frenet vektorleri, egrilerin spacelike veya
timelike olma durumlarina gore karsilagtirillmigtir. Sonrasinda, B-Lift egrileri dual uzayda
tanimlanmugtir ve esas egrinin slant helis (ya da Darboux helis) olma durumuna gore B-Lift
egrisinin durumu incelenmistir.  Son olarak ise, uzaysal kuaterniyonik B-Lift egrisi
tamimlanarak, esas egrinin slant helis olmasi icin gerekli kosullar incelenmistir ve
kuaterniyonik slant helisler ve kuaterniyonik genel helisler arasindaki iligkiler B-Lift egrisi
yardimiyla kesfedilmistir.
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ABSTRACT

The main purpose of this thesis is to reveal the relationships between the slant helix (or
Darboux helix) and the general helix with the help of B-Lift curves. In this context, firstly,
B-Lift curves obtained by combining the endpoints of the binormal vector at each point of
the principal curve in 3-dimensional Euclidean space are defined and Frenet operators are
obtained. In addition, the relations between the Frenet operators of the B-Lift curve and the
Frenet operators of the natural lift curve are obtained. After that, geometric invariants and
singularities of ruled surfaces, which are called tangential, normal and binormal surfaces of
the B-Lift curve are investigated. Then, Frenet vectors are found by defining the B-Lift
curve in 3-dimensional Lorentz space. Moreover, the Bertrand curve and the involute curve
are compared with the B-Lift curve. Afterwards, B-Lift curves are defined in dual space and
the state of the B-Lift curve is examined according to whether the main curve is a slant
helix (or a Darboux helix). Finally, the spatial quaternionic B-Lift curve are defined, the
conditions necessary for the principal curve to be slant helix are investigated, and the
relationships between the quaternionic slant helices and the quaternionic general helices are
discovered with the help of the B-Lift curve.
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SIMGELER VE KISALTMALAR

Bu caligmada kullanilan simgeler ve kisaltmalar, agiklamalar1 ile birlikte asagida

sunulmustur.

Simgeler Aciklamalar

R Reel sayilar kiimesi
R3 Uc boyutlu reel uzay
R‘;’ Lorentz uzay

D Dual uzay

D3 D-Modiil

¥(s) Egrinin parametrik gosterimi
¥(s) Tabii lift egrisi

18(s) B-Lift egrisi

{,) R3 de i¢ carpim

I |l R3 de norm

kg Jeodezik egrilik

kn Normal egrilik

Tg Jeodezik burulma

X R3 de vektorel carpim
(L Lorenziyen i¢ ¢arpim
XL Lorenziyen vektorel carpim
H Kuaterniyonlar kiimesi
Kisaltmalar Aciklamalar

bkz. Bakiniz

ve ark. ve arkadaglari



1. GIRIS

Egriler teorisi diferensiyel geometri, kinematik, fizik, bilgisayar bilimi vb. alanlarda énemli
bir rol oynamaktadir. En cok bilinen egrilerden biri de tabii lift egrisidir. Tabii lift egrisinin
tanimina ilk olarak Thorpe’un “Elementary Topics in Differential Geometry” kitabinda
rastlanmistir, bkz. [1]. Tamima gore, bir egrinin birim teget vektorlerinin u¢ noktalari
birlestirilerek tabii lift egrisi olusturulmugtur. Tabii lift egrileri bircok matematik¢inin
dikkatini cekmistir. Bu ¢alismalardan bazilar1 [2-4]diir. [2]]’de arastirmacilar, ana egrinin
Frenet operatorleri cinsinden tabii lift egrisinin Frenet operatorlerini tamitmiglardir. Egriler
teorisine ek olarak, ylizey teorisi diferansiyel geometride biiyiik bir yere sahiptir. Bu
yiizeylerin en onemlilerinden biri de regle yiizeydir. Regle yiizey, bir dogrunun bir egri
boyunca hareketi ile olusan yiizeylerdir [5]. Geometrik degismezlerinin incelenmesi
sebebiyle, bu yiizeylerin yorumlanmasi bir¢ok yazarin ilgisini cezbetmistir [6-11]. E.
Ergiin ve M. Caligkan [11] bir egrinin tabii liftini dayanak egrisi olarak kabul ederek regle

yiizeyler olusturmus ve bu yiizeyleri karakterize etmislerdir.

3-boyutlu Oklid uzayinda tamimlanan bir egri egrilik ve burulmasinin durumuna gore
karakterize edilmektedir. Bu karakterizasyonu yapmak i¢in, iki Fransiz matematikei J. F.
Frenet (1847) ve J. A. Serret (1851) tarafindan bagimsiz olarak kesfedilen Frenet-Serret
formiilleri 6nemli bir rol oynamaktadir. Bu formiiller, uzay egrilerinin incelenmesi icin
Frenet cergevesini olusturan ii¢c vektor alaninin tiirevlerini {7,N,B} vektor alanlart
cinsinden ifade etmek igin egrilik ve burulma kullanan denklemlerdir. Ornegin bir
dogrunun egriligi yoktur (yani k=0) ve diizlemsel bir egrinin burulmasi yoktur (yani
7=0) [S]]. Bir egrinin teget vektorii sabit bir dogruyla sabit ac1 yapiyorsa bu egriye genel
helis denilmektedir [S]. 1802 yilinda M. A. Lancret, genel heliste egrilikler oraninin egri
boyunca sabit oldugunu kanitlamistir [12]]. Bircok yazar [6,/13-17] helisler ve farkl tipte
helisler hakkinda makaleler yazmistir. S. Izumiya ve N. Takeuchi [6] e8rinin normal
vektoriinii sabit bir dogruyla sabit ac1 yapiyorsa bu egriyi slant helis olarak adlandirmistir.
Sonrasinda L. Kula, N. Ekmekci, Y. Yayli, K. Ilarslan [16] slant helislerin bazi
karakterizasyonlarini verdi ve R*’de slant helislerin Frenet operatorlerini tanitmustir. E.

Ziplar, A. Senol ve Y. Yayl [[17] bir egrinin Darboux vektoriiniin sabit bir dogru ile sabit bir



ac1 yapryorsa Darboux helis adimi verdikleri egriyi tanimlamiglardir. Ayrica slant helisler ile

Darboux helisler arasindaki iligkileri de vermislerdir.

Riemann geometrisi teorik fizigin gelismesinde onemli bir rol oynamistir. Ancak 6zel ve
genel goreliligi agciklamada yetersiz kalmistir. Boylece diizgiin bir manifold {izerinde bir
metrik ile tanimlanan Lorenziyen geometri ortaya ¢ikmistir. Uzun yillar boyunca Riemann
geometrisi ve Lorenziyen geometri ayr1 ayr1 gelistirilmistir. Bu alan, 20. yiizyilda
Einstein’in 6zel ve genel gorelilik teorilerinde kullanilmasiyla popiilaritesini artirmis ve
dolayisiyla gelisme firsatt bulmustur. Daha yakin zamanlarda da fizikgilerin artan ilgisi ile
bu fark tersine donmiis ve ortak calismalar yapilmistir. Giiniimiizde ister teorik, ister
uygulamali olsun bilimin her alaninda kullanilan bir yap1 haline gelmistir. Lorenziyen uzay,
Oklid uzay1 ile farkliliklara ve benzerliklere sahipti. Bu uzaydaki egriler, uzaysal

(spacelike), zamansal (timelike) veya 1siksal (null) gibi Lorenziyen karakterlere sahiptir [5].

Bir uzay egrisi parametreye bagl olarak tanimlanabilir ve egrinin Frenet operatorleri
karakterize edilebilir. Uzayda iki egrinin karsilikli noktalarinda egrilerin Frenet vektorleri
arasinda iligkiler kurularak bazi 6zel egri tanimlari verilmigstir.  Bertrand egrileri ve
involiit-evoliit egrileri bu egrilerden bazilaridir. Bertrand egrisinin ortaya cikisi, 1845’te
Venant tarafindan ortaya atilan problemden kaynaklanmaktadir. Venant, bir egrinin asli
normalleri iizerinde iiretilen bir yiizey lizerinde normalleri lineer olarak bagimli olan bagka
bir egri olup olmadig1 sorununu ortaya koymustur. Bertrand bu problemi 1850 yilinda
cOzmiistiir. 2018’de N. Ekmekci ve K. Illarslan Bertrand egrileri iizerine temel bir ¢alisma
yapmistir. Bu calismada Lorentzian uzayinda Bertrand egrilerini karakterize
etmiglerdir [18]]. Bir egrinin involiitii, genellikle, birim hizli bir egrinin teget vektorlerinin
dik yoriingeleri olarak adlandirilir. 1668’de, involiit egriler fikri ilk olarak C. Huygens
tarafindan optik ¢aligsmalar: sirasinda kesfedildi. Daha sonra Millman ve Parker (1977) [19]
ve Hacisalihoglu (1983) [20] involiit egriler iizerine bazi temel teorem ve sonuglari
vermiglerdir. M. Caliskan ve M. Bilici tarafindan 2002 yilinda involiit-evoliit egrileri
iizerine temel bir calisma incelenmistir [21]. Bu ¢alismada, esas egrinin Frenet operatorleri
ile involiit egrisinin Frenet operatorleri arasindaki iliskiyi aragtirmiglardir. Ayrica 2009°da
yazarlar [22] involiit egriler i¢in, Lorentziyen uzayda null olmayan egrilerin Frenet

vektorleri, egrilik ve burulma ile ilgili baz1 6nemli sonuglar ortaya koymuslardir.



Dual sayilar, W. K. Clifford (1843-1879) tarafindan geometrik arastirmalari i¢in bir arac
olarak ortaya atildi. Sonrasinda E. Study [23]] dual say1 ve dual vektorii, ¢izgi geometrisi ve
kinematik ¢alismalarinda sistematik olarak uyguladi ve birim dual kiirenin noktalari ile R>
deki yonlii dogrularin arasinda birebir esleme oldugunu kanitladi. Bircok matematik¢i dual
uzayda egriler lizerine calismalar yapmistir. Dual uzayda involiit egriler iizerine temel bir
calisma S. Senyurt, M. Bilici ve M. Caliskan tarafindan incelenmistir [24]]. Bu calismada esas
egrinin Frenet operatorleri ile involiit egrinin Frenet operatorleri arasindaki iligkiyi ortaya
koymuslardir. S. Ozkaldi, K. Tlarslan ve Y. Yayli, bir egrinin Mannheim c¢iftini D? dual
uzayda tamimlamisglar ve ayni uzayda egrinin Mannheim ¢ifti i¢cin gerekli karakterizasyonlari
elde etmiglerdir [25]. Sonrasinda, M. A. Giingor ve M. Tosun dual uzayda esas egri ve onun

Mannheim ciftinin egrilik ve burulmasi arasindaki iligkileri kanitlamiglardir [26].

Literatiirde, kuaterniyonlar ilk olarak Irlandali matematik¢i W. R. Hamilton [27] tarafindan
karmasik sayilar1 genellestirmek icin tanimlanmustir.  Cebirsel yapisina bakildiginda,
kuaterniyonlar, tanimlanan ¢carpma islemine gore degismeli olmamalar1 nedeniyle karmagik
sayilardan farklidir. Giliniimiiz diinyasinda kuaterniyonlar donme hareketinin temsilinde ¢cok
kullanighdir, bu nedenle robotik, DNA yapisinin analizi, astrofizik, navigasyon sistemleri
vb. alanlarda uygulamalara sahiptir. 1985 yilinda, K. Bharathi ve M. Nagaraj [2§],
kuaterniyonik egriyi 3-boyutlu ve 4-boyutlu uzaylarda tanitmiglar ve bu egrinin Frenet
aparatlarini vermisglerdir. Sonrasinda kuaterniyonik egrilerin diferensiyel geometrisi bir¢ok
yazarin ilgisini ¢ekmistir. Bu c¢alismalardan bazilart [29-37]]’dur. [30]’da Kocayigit ve
Pekacar, E3> ve E* ‘’deki kuaterniyonik slant helislerin karakterizasyonlarini
incelemislerdir. [31]’de Sahiner, uzaysal kuaterniyonik slant helislerin Frenet cercevelerini
kesfetmistir. [35]’de, Senyurt ve ark., Smarandache egrisinin birim Darboux vektoriine ve
normal vektoriine gore uzaysal kuaterniyonik involiit egrisinin esas egriligini ve

burulmasini hesaplamislardir.

Bu tez sekiz boliimden olusmaktadir. Ik béliimde giris kismina yer verilmistir.

Ikinci boliimde, Oklid uzayinda, Lorentz uzaymnda ve dual uzaydaki temel tamm ve

teoremlere yer verilmistir.



Uciincii boliimde, 3-boyutlu Oklid uzayinda B-Lift egrileri tanimlanmistir. Sonrasinda, B-
Lift egrisinin Frenet vektorleri bulunarak, B-Lift egrisi ile tabii lift egrisinin Frenet vektorleri
arasindaki esitlikler elde edilmistir. Ayrica esas egrinin slant helis (ya da Darboux helis) olma

durumuna gore, B-Lift e8risi karakterize edilmistir.

Dordiincii boliimde ise B-Lift egrisinin teget, normal ve binormal yiizeyi olarak adlandirilan
regle yiizeyler tamtilmistir. Ek olarak, bu regle yiizeylerin geometrik de§ismezleri ve
tekillikleri incelenmistir. Ayrica, bu regle ylizeylerin Darboux alani olusturularak, B-Lift

egrisinin jeodezik egri, asimtotik egri ve egrilik ¢izgisi olma durumuna deginilmisgtir.

Besinci boliim 3-boyutlu Lorentz uzayinda B-Lift egrilerinin incelenmesi i¢in ayrilmigtir.
Bunun yaninda, bir egrinin Bertrand egrisi ve B-Lift egrisinin Frenet vektor alanlari
arasindaki esitlikler ile bir egrinin involiit egrisi ve B-Lift egrisinin Frenet vektor alanlari

arasindaki esitlikler elde edilmistir.

Altinc1 boliimde, ilk olarak, dual uzayda B-Lift egrileri tamimlanmistir. Ardindan dual
uzayda verilen bir egrinin B-Lift egrisinin Frenet operatorleri bulunmustur. Sonrasinda,
egrinin dual slant helis ya da dual Darboux helis olma durumuna goére esas egrinin B-Lift

egrisinin dual genel helis olmasinin gerek ve yeter sart oldugu ispatlanmisgtir.

Yedinci boliimde ise birim hizli uzaysal kuaterniyonik bir egrinin B-Lifti olarak adlandirilan
egri tammmlanmistir. Daha sonra, B-Lift egrisinin Frenet operatorleri, esas egrinin Frenet
operatorleri cinsinden ifade edilmistir. Son olarak, birim hizli uzaysal kuaterniyonik egrinin
slant helis olmasi i¢in uzaysal kuaterniyonik B-Lift egrisinin genel helis olmasinin gerek ve

yeter sart oldugu gosterilmistir.

Son olarak, sekizinci boliimde sonug ve Onerilere yer verilmistir.



2. TEMEL TANIM VE KAVRAMLAR

Bu boliimde, diferensiyel geometrideki bazi temel tanim ve teoremler verilmistir. Ayrica,
tabii lift egrisi, genel helis, Darboux helis, involiit-evoliit egriler, Bertrand egrileri gibi temel

kavramlar tanitilacaktir. 11k olarak, Oklid uzayinda temel kavramlar1 verelim.
2.1. Oklid Uzayinda Temel Kavramlar

2.1.1. Tamim

R3 uzayinda A=(aj,as,a3) vektorii verilsin. ||A||= y/a}+d}+a3 esitligiyle tamimlanan
fonksiyona norm fonksiyonu (A’ nin normu) denir. Eger ||A||= 1 ise A vektdriine R> de

birim vektor denir [38]].

2.1.2. Tamim

R3 uzaymdag = (a1,az,as3) ve B= (b1,by,b3) vektorleri verilsin. < A,B>=a1b; +ayby+

a3b3 seklinde tanimlanan fonksiyona R? de i¢ carpim fonksiyonu denir [38]).

2.1.3. Tanim

y: I —R3 parametre egrisi verilsin. Eger }// (s) #0, s € Lise, y egrisine regiiler egri denir [38].
2.1.4. Tamim

R? uzayindaki y egrisi icin y/ (s) = 1 oluyorsa y egrisine birim hizli egri denir [38]].

2.1.5. Tanim

R3 uzayinda birim hizl y egrisi verilsin. {T'(s),N(s),B(s)}, y egrisinin Frenet-Serret alanlar:

olarak adlandirilir, burada T'(s) = ¥ (s), ¥(s) egrisinin birim tanjant vektoriidiir, birim asli

normal ve binormal vektorleri de sirasiyla N(s) = H’;,, EgH ve B(s) = T (s) x N(s) seklindedir

[38].



2.1.6. Tanim

R? uzayinda birim hizl1 y egrisinin Frenet-Serret formiilleri asagidaki sekildedir:

(s) = —x(s)T(s)+7(s)B(s),
B(s) = —T(s)N(s),
burada x(s) = ||y (s)|| ve ©(s) = —(B(s),N(s)) swrasiyla y(s) egrisinin egrilik ve
burulmasidir [38]].
2.1.7. Tamim

M C R3 bir hiperyiizey olmak iizere y : T — M birim hizl1 egrisi verilsin. O halde y egrisinin

integral egrisi

olarak tanimlanir, burada X, M iizerinde diferensiyellenebilir bir vektor alanidir [2].

2.1.8. Tanmim

Y : I — M birim hizli bir egri olsun. O halde 7y egrisinin tabii lifti 7 : I — TM agsagidaki

sekilde tanimlanir [2]):

yazabiliriz. Burada D, R? uzayinda Levi-Civita konneksiyonudur.



2.1.9. Teorem

R3 uzayinda y(s) egrisinin tabii lifti 7(s) olsun. O halde, y(s) ve ¥(s) egrilerinin Frenet

vektor alanlar arasinda asagidaki esitlikler vardir:

oK) )
NO==Twen T we e

= T(s) S K(s) S
BO=wem Wt werte

burada {T(s),N(s),B(s)} ve {T(s),N(s),B(s)} sirasiyla esas egrinin ve tabii lift eZrisinin
Frenet vektor alanlaridir. W Darboux vektori W = 7T + kB seklindedir.  Ayrica,
K = ||W|cosp ve T = ||W|sing, y(s) egrisinin egrilik ve burulmasidir. Son olarak ¢, y(s)

egrisinin Darboux vektorii ve binormal vektorii arasindaki acidir [2].

2.1.10. Tanim

y regiiler erisinin tabii lifti ¥(s) olsun. O halde agagidaki esitlikler saglanir:

K24 12 _ —x (5)7(s) + K(s)T (s)

K = Ty ) = WP

burada ik ve T sirastyla ¥(s) egrisinin egrilik ve burulmasidir [2].

2.1.11. Onerme

y: 1 — R3 birim hizli egrisi k egriligi ve T burulmasiyla verilsin. y egrisi genel helistir gerek

T o
ve yeter sart - orani sabittir [6].

2.1.12. Onerme



k # 0 ile birlikte y : T — R birim hizl1 egrisi verilsin. 7, slant helistir gerek ve yeter sart

K2

T
(K2+12)3 K

) ()

o(s) =
sabit bir fonksiyondur [6].
2.1.13. Teorem

y: I — R3 egrisi Darboux helistir gerek ve yeter sart

(K2+12)2 1
K2 (%))

o' (s) =
sabit bir fonksiyondur [17]].
2.1.14. Teorem

% oran1 sabit olmama sartiyla, R3 uzayinda y egrisi verilsin. O halde ¥ egrisi slant helistir

gerek ve yeter sart y e8risi Darboux helistir [[17]].

2.1.15. Tanim

M C R? yiizeyi verilsin. M yiizeyinin her noktasinda, R® uzaymin M yiizeyinde kalan bir

dogrusu varsa M ylizeyine bir regle yiizey denir ve asagidaki parametrizasyonla verilir:
o (s,v) = ¥(s) +vo(s),

burada y(s) dayanak egrisi, ®(s) de birim dogrultman vektorii ifade etmektedir [20].
2.1.16. Tanim

¢ (s,v) regle yiizeyinin komsu iki dogrultmaninin orta dikmesinin dogrultmanlar iizerindeki

ayaklarina striksiyon noktasi denir [20].



2.1.17. Tanim

¢ (s,v) regle yiizeyinin ana dogrusu dayanak egrisini olustururken striksiyon noktalarinin
geometrik yerine striksiyon egrisi denir ve striksiyon egrisinin yer vektorii agagidaki sekilde

tanimlanir [20]:

2.1.18. Tanim

¢ (s,v) regle yiizeyinin ana dogrulari boyunca teget diizlemleri ayni kaliyorsa regle yiizeye

acilabilirdir denir [20].
2.1.19. Tamim

Regle yiizeyin komsu iki ana dogrusu arasindaki en kisa uzakligin ana dogrular arasindaki

aclya oranina regle yiizeyin dagilma parametresi (dral) denir ve asagidaki sekilde tanimlanir

[20]:

det(y,0,0')
W:—Iz
|||

2.1.20. Teorem
o (s,v) regle yiizeyi acilabilirdir gerek ve yeter sart P, = 0 dir [20].
2.1.21. Teorem

¢ (s,v) bir regle yiizey olsun. O halde ¢ (s,v) regle yiizeyinin Gauss ve ortalama egrilikleri

sirastyla asagidaki sekildedir:

de /s, s), "(5)))?
K(s,v) = - t(Y((E)Gai(F)Z)a;( )
—2 <Y (s), 0(s) > det (¥ (), 0(s), @ (s)) +det (¥ (s) +v@ (5),7 (5) + v (s), 0(s))
2(EG — F2)3/2

H(s,v) =
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burada E = E(s,v) = ||y (s) +vo (s)||2, F = F(s,v) =< 7 (s), 0(s) >,G = G(s,v) = 1 dir
[39].

2.1.22. Tanim

v, R3 uzayinda regiiler bir egri ve {T(s),N(s),B(s)} de 7y egrisinin Frenet vektorleri olsun.

O halde, 7y egrisinin teget, normal ve binormal yiizeyleri asagidaki sekilde tanimlhidir [39]:

or(s,v) = v(s)+vT(s)
On(s,v) = ¥(s)+VN(s)
95(s,v) = ¥(s)+vB(s)

ve ¢ regle ylizeyi i¢in birim normal vektor % seklindedir.
S 1%
2.1.23. Tamim

M, R? uzayinda bir yiizey ve y da M iizerinde bir egri olsun. O halde, {T,V,U} Darboux
alan1 olarak adlandirilir, burada T = y/, U, M nin birim normal vektorii ve V = U x T dir.

Darboux alani i¢in Frenet-Serret formiilleri asagidaki sekildedir [38]]:

0 k¢ Ky T
=] ke 0 1 v |
U —ky —Tg O U

burada k, = (U x T, T, k= (7 ,U) ve T, =(T,UxU '} sirastyla jeodezik egrilik, normal

egrilik ve jeodezik burulmadir.

2.1.24. Tamim
¥, M yiizeyi lizerinde yatan regiiler bir egri olsun. O halde, asagidaki esitlikler saglanir [38]:

i) ¥ jeodezik bir egridir gerek ve yeter sart kg = 0 dur.
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i) v asimtotik bir egridir gerek ve yeter sart k;,, = O dir.

ii) y egrisi bir egrilik ¢izgisidir gerek ve yeter sart 7, = 0 dur.

2.1.25. Tanim

Kuaterniyonlarin kiimesi asagidaki sekilde temsil edilir [27]]:

H={g=a+bi+cj+dk:a,b,c,decR},

bu kiime R iizerinde 4-boyutlu bir vektor uzayidir ve burada a,b,c,d reel sayilar, i,j ve k

birim vektorleri arasinda da asagidaki esitlikler vardir [40]:

2= =kK=—1,ij=—ji=k,

jk=—kj=i,ijk=—1ki= —ik = j.

2.1.26. Tanim

Bir ¢ = a+ bi+ cj + dk kuaterniyonu asagidaki sekilde yazilabilir:

q:Sq+Vq7

burada S, = a € R skalar kisim, V, = bi + c¢j + dk € R? de vektorel kisimdir [40].

2.1.27. Tanim

Bir kuaterniyonun eslenigi asagidaki sekilde tanimlanir [40]:

2.1.28. Tanim
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Kuaterniyonik i¢ carpim asagidaki sekilde tanimhidir [40]:
1 _ _

h:HxH =R, h(g,p) = 5(gxp+pxq).

2.1.29. Tanim

Bir kuaterniyonun normu

lqll = Va2 +b2+ 2 +d?
seklinde tanimlidir [40]].
2.1.30. Tamim

q +q = 0 esitligini saglayan g kuaterniyonuna uzaysal kuaterniyon denir [41]].

2.1.31. Tanim

Herhangi g1 = a; + b1i+ c1j+ dik, g2 = ar + byi + c3j + drk kuaterniyonlari i¢in toplama

ve carpma islemleri sirasiyla asagidaki sekilde tanimlidir [41]]:

q1+92 = Sq1+9, + Vg1 +42>
q1 X q2 = (a1 +bii+c1j+dik) x (a2 + bai+ c2j+ dak)
= (a1a2 —bi1by —cicp— dldz) + (Cldz +brar —dicp —l—Cldz)i

+ (crap +ajcy —bydy +d1by) j+ (diaz +aydy, — c1by + bicy)k.
2.1.32. Tanim

3-boyutlu Oklid uzayinda uzaysal kuaterniyonlarim kiimesi Qg = {g € H: g+g = 0} seklinde
bariz olarak tanimlanabilir. 7 = [0,1], R de agik bir aralik ve s € I da egri boyunca tanimh bir

parametre olsun. O halde asagidaki sekilde tanimlanan y egrisine uzaysal kuaterniyonik egri



13
denir:
3
Y:10,1] = Qu, ¥(s) = ) %(s)e; (1<i<3),
i=1
burada y/ = ¢ birim teget vektor, yani her s € I i¢in ||¢]| = 1 dir [28]].
2.1.33. Tanim

Y, s yay uzunlugu parametresi ile birlikte bir diferensiyellenebilir uzaysal kuaterniyonik egri
olsun. O halde, y(s) egrisinin Frenet vektorleri ve egrilikleri sirasiyla agagidaki sekilde

tamimlidir [28]]:

veE

1(s) x 1(s) = n(s) x n(s) = b(s) x bls) = —1,
£(s) x n(s) = b(s) = —n(s) x (s),
n(s) x b(s) = 1(s) = ~b(s) x n(s),
b(s) x 1(s) = n(s) = —1(s) x b(s)

2.1.34. Tanim

¥, Qp tizerinde tanimli birim hizli uzaysal kuaterniyonik egri ve {¢(s),n(s),b(s)}, y egrisinin
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Frenet alanlar1 olsun. O halde y egrisinin Frenet formiilleri asagidaki sekilde tanimlidir [29]:

burada k ve 7 sirastyla y egrisinin egrilik ve burulmasidir.

2.1.35. Tanim

Y bir uzaysal kuaterniyonik egri olsun. 7Y egrisinin birim teget vektorii 7, sabit birim U
kuaterniyonuyla sabit bir ac1 yapiyorsa 7y egrisine uzaysal kuaterniyonik helis adi

verilir [29].
2.1.36. Teorem

k = 0 ile birlikte y uzaysal kuaterniyonik egrisi verilsin. ¥ uzaysal kuaterniyonik bir egridir

gerek ve yeter sart agagidaki esitlik saglanir [29]:
T sabit.

K

2.1.37. Tamim

Y bir uzaysal kuaterniyonik egri olsun. 7y egrisinin birim asli normal vektorii n, sabit birim
U kuaterniyonuyla sabit bir a¢1 yapiyorsa Y egrisine uzaysal kuaterniyonik slant helis ad1

verilir [29].

2.1.38. Teorem

K # 0 ile birlikte y uzaysal kuaterniyonik egrisi verilsin. y uzaysal kuaterniyonik slant helistir

gerek ve yeter sart asagidaki esitlik saglanir [29]:

K2

T .
—(72+K2)3/2(E) = sabit.
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Simdi Lorentz uzayinda temel kavramlar: inceleyelim.
2.2. Lorentz Uzayinda Temel Kavramlar

2.2.1. Tanim

R? reel vektor uzay iizerinde tammli asagidaki sekilde tanimli fonksiyona Lorenziyen ic

carpim denir ve Lorentz uzayi R? ile gosterilir [42]:
<X,y >L= —X1Y1 +X2y2 +X3)3

burada x = (x1,x2,%3) , ¥y = (y1,y2,y3) € R dir.
2.2.2. Tamim

x = (x1,X2,%3), R3 uzayinda tanimli bir vektor olsun. O halde, ( x,x ) >0 ya da x =0 ise x
vektorii spacelike, ( x,x ) < 0 ise x vektorii timelike ve eger ( x,x ) =0 ve x # 0 ise x vektorii

lightlike (null) olarak adlandirilir [42].

2.2.3. Tamim

Y:ICR— R? egrisi verilsin. Eger ¥ (s) herhangi bir s € I noktasinda spacelike, timelike

ya da lightlike ise y e8risi sirasiyla spacelike, timelike ya da lightlike dir denir [42].

2.2.4. Tanim

Lorenziyen i¢ c¢arpim kullanilarak x = (x7,xp,x3) vektoriiniin normu agagidaki sekilde

tanimlanir [42]]:
[xllL= /] (x,x)|.

2.2.5. Tanim
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||x||=1 ise x vektorii birim vektor olarak adlandirilir [42].

2.2.6. Tanim

R% de x ve y vektorleri verilsin. x ve y vektorlerinin vektorel ¢carpimi Lorenziyen vektorel

carpim olarak adlandirilir ve asagidaki sekilde tanimlanir [43]]:

ey —exy —es
XXYy=|x1 x2 X3

Y1 2 Y3
2.2.77. Tamim

y egrisi Lorentz uzayinda tanimli birim hizli bir egri olsun. {7'(s),N(s),B(s)} kiimesi y
egrisinin Frenet vektorlerinin kiimesidir ve sirasiyla teget, normal ve binormal vektor olarak
adlandirilir. 7y egrisinin Lorenziyen karakteri Frenet formiillerine gore asagidaki sekilde

karakterize edilir [[44]:

1) v egrisi birim hizli spacelike binormalli spacelike bir egri olsun. O halde, T ve B spacelike

vektorler, N timelike bir vektordiir. Bu sartlarda asagidakileri yazabiliriz:

NxB=-T, TxN=-B, BxT=-—N.

Frenet formiilleri de asagidaki sekildedir:

T = KN,
"= T+ TB,
B = 1N.

i1) ¥ egrisi birim hizl timelike binormalli spacelike bir egri olsun. O halde, T' ve N spacelike

vektorlerdir, B timelike bir vektordiir. Bu sartlarda asagidakileri yazabiliriz:

NxB=-T, TxN=B, BxT=-—N.



17

Frenet formiilleri de agagidaki sekildedir:

T = kN,
= T+ TB,
B = 1N.

ii1) y egrisi birim hizli timelike bir egri olsun. O halde, N, B spacelike vektorlerdir ve T bir

timelike vektordiir. Bu sartlarda, asagidakiler saglanir:

NxB=T, TxN=—-B BXT=-N.

Frenet formiilleri de asagidaki sekildedir:

T = kN,

C = KT + 1B,
B = —1N.
2.2.8. Lemma

X vey, ]R? de bir spacelike alt vektor uzay: tarafindan gerilen lineer bagimsiz spacelike

vektorler olsun. Bu durumda asagidaki esitsizlik saglanir [45]):

| Ge ) < -yl

Buradan asagidakiler yazilabilir:

6y) = lIxll-lIyllcose.

burada ¢, x ve y arasindaki Lorenziyen spacelike acidir.
2.2.9. Lemma

X ve 'y, R? de bir timelike alt vektor uzay: tarafindan gerilen lineer bagimsiz spacelike
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vektorler olsun. Bu durumda asagidaki esitsizlikler saglanmis olur [45]):

|6, [> x| [ [I-

Buradan da asagidakileri yazabiliriz:

6 y) = lIxll-lIyllcose.

burada ¢, x ve y arasindaki Lorenziyen spacelike acidir.
2.2.10. Lemma

R? de x spacelike vektorii ve y timelike vektorii verilsin. Bu durumda, asagidakiler saglanir

[45]:

|Ge,v) = [l llyllsinhe.

burada ¢, x ve y arasindaki Lorenziyen timelike acidir.

2.2.11. Lemma

R% de x ve y timelike vektorleri verilsin. Bu durumda, asagidakiler saglanir [45]:

() = |xll-[[yllcoshe.

burada @, x ve y arasindaki Lorenziyen timelike acidir.

2.2.12. Tamim

v= (¥(s); T(s), N(s), B(s)) ve 7= (7(3); T(5), N(5), B(5)), R} de tamml regiiler egriler
olsun. N(s) ve N(§) vektorleri lineer bagimli ise bu durumda (y, 7) Bertrand cifti olarak

adlandirilir [[18]].



2.2.13. Onerme
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(7, 7), timelike-spacelike Bertrand cifti olsun. 7y egrisinin Frenet vektor alanlar1 {7, N, B}

ile ¥ egrisinin Frenet vektor alanlar {T, N, B} arasinda asagidaki esitlikler vardir [46]:

T* sinh® 0 cosh6 T
N* | = 0 1 0 N
B* —cosh® 0 —sinh6 B

burada 0, T ve T arasindaki hiperbolik timelike agidir.

2.2.14. Onerme

(7, 7) timelike Bertrand cifti olsun. Asagidaki esitlikler saglanir [46]:

T cosh® 0 sinh0 T
N | = 0 1 0 N
B —sinh® 0 coshO B

burada 6, T ve T arasindaki hiperbolik timelike agidir.

2.2.15. Onerme

Y ve ¥ spacelike binormalli spacelike egriler olsun. O halde, y egrisinin Frenet vektor alanlari

{T, N, B} ile ¥ egrisinin Frenet vektor alanlar1 {7, N, B} arasinda asagidaki esitlikler vardir

[46]:
T cos@ 0 sin0 T
N | = 0 | 0 N |,
B sin@ 0 —cos0 B

burada, (T,T) = cos® = sabit dir.

2.2.16. Onerme
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Y timelike binormalli spacelike egri olsun. O halde, y egrisinin Bertrand egrisi spacelike
egridir ve B timelike vektordiir. y egrisinin Frenet vektor alanlart {T, N, B} ile ¥ egrisinin

Frenet vektor alanlar1 {T, N, B} arasinda asagidaki esitlikler saglanir [46]:

T cosh@ 0 sinhO T
N | = 0 1 0 N |,
B sinh® 0 —coshO B

burada, (T, T) = cosh® = sabit dir.

2.2.17. Onerme

Timelike binormalli spacelike y egrisi verilsin. O halde, y egrisinin Bertrand egrisi timelike
egridir. y egrisinin Frenet vektor alanlar1 {7, N, B} ile § egrisinin Frenet vektor alanlar1 {7,

V, B} arasinda asagidaki esitlikler vardir [46):

T sinh®@ 0 coshO T
N | = 0 1 0 N
B cosh® 0 —sinh0 B

burada, (T,T) = sinh@ = sabit dir.

2.2.18. Tanim
v=(y(s); T(s), N(s), B(s)) ve y*= (y*(s*); T*(s*), N*(s*), B*(s*)), R} de tamml egriler

olsun. Eger, (T (s),T*(s*)) = 0 oluyorsa y*(s*) e8risine y(s) nin involiitii y(s) egrisine de

Y*(s*) 1 evoliitii denir. Bu durumda, (7, y*) involiit-evoliit egri ¢ifti olarak adlandirilir [47]).

2.2.19. Onerme

Y timelike bir egri olsun. O halde, y* timelike ya da spacelike binormalli spacelike egridir.
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Y egrisinin Frenet vektor alanlar1 {7, N, B} ile y* egrisinin Frenet vektor alanlart {7T*, N*,
B*} arasinda asagidaki esitlikler vardir [47]):
i) 7* spacelike binormalli spacelike egri olsun.

a) Eger W Darboux vektorii timelike ise, agsagidakiler saglanir:

T* 0 1 0 T
N* | = sinh®@ 0 cosh6 N
B* —cosh® 0 —sinh6 B

b) Eger W Darboux vektorii spacelike ise, agsagidakiler saglanir:

T* 0 1 0 T
N* = cosh@ 0 sinhO N
B* —sinh® 0 —cosh6 B

i) y* timelike binormalli spacelike egri olsun.

a) W Darboux vektorii timelike ise asagidakiler saglanir:

T* 0 1 0 T
N* | = —sinh® 0 —coshO N
B* —cosh® 0 —sinh6 B

b) Eger W Darboux vektorii spacelike ise, agsagidakiler saglanir:

T* 0 1 0 T
N* | =| —cosh® 0 —sinh6 N
B* —sinh@® 0 —coshO B

2.2.20. Onerme

Y egrisi timelike veya spacelike binormalli spacelike egri olsun. O halde, y* egrisi spacelike
egridir. Bu durumda asagidaki esitlikler saglanir [47]:

i) 7" egrisi spacelike binormalli spacelike egri olsun.
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T* 0 1 0 T
N* =1 cos® 0 sin0 N |,
B* sin@ 0 —cos6 B

ii) 7* egrisi timelike binormalli spacelike egri olsun.

a) Eger W Darboux vektorii timelike ise asagidaki denklemler saglanir:

T* 0 1 0 T
N* | =| cosh® 0 —sinh6 N
B* sinh® 0 —cosh6 B

b) Eger W Darboux vektorii spacelike ise asagidaki denklemler saglanir:

T* 0 1 0 T
N* = sinh@ 0 —coshO N
B* cosh@® 0 —sinh6 B

2.2.21. Onerme

Y spacelike binormalli spacelike egri olsun. O halde, y* egrisi spacelike egridir. y egrisinin
Frenet vektor alanlart {T, N, B} ile y* egrisinin Frenet vektor alanlart {7*, N*, B*} arasinda
asagidaki esitlikler vardir [47]:

i) 7* spacelike binormalli spacelike egri olsun.

T* 0 1 0 T
N* = sin@ 0 —cos0 N
B* —cos@ 0 —sin6 B

i) 7* timelike binormalli spacelike egri olsun.

T* 0 1 0 T
N* | = sin@ 0 —cosB N
B* cos6@ 0 sin0 B
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2.2.22. Onerme

Y egrisi timelike binormalli spcalike egri olsun. O halde, y* spacelike bir egridir. Bu
durumda, y* egrisi spacelike egridir. 7y egrisinin Frenet vektor alanlart {7, N, B} ile y*

egrisinin Frenet vektor alanlan {7*, N*, B*} arasinda asagidaki esitlikler saglanir [47]):

i) 7" spacelike binormalli spacelike egri olsun.

a) Eger W Darboux vektorii spacelike ise o halde asagidakiler saglanir:

T* 0 1 0 T
N* | = | —sinh® 0 coshO N
B* cosh@ 0 —sinh6 B

b) Eger W Darboux vektorii timelike ise o halde asagidakiler saglanir:

T* 0 1 0 T
N* =] —cosh® 0 sinh6 N
B* sinh®@ 0 —coshO B

i) y* timelike binormalli spacelike egri olsun.

a) Eger W Darboux vektorii spacelike ise asagidakiler saglanir:

T* 0 1 0 T
N* | = sinh® 0 —cosh6 N
B* cosh® 0 —sinh6 B

b) Eger W Darboux vektorii timelike ise asagidakiler saglanir:

T* 0 1 0 T
N* | =1 cosh®@ 0 —sinh6 N
B* sinh@ 0 —coshO B
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Simdi de dual uzayda temel kavramlar1 verelim.
2.3. Dual Uzayda Temel Kavramlar
2.3.1. Tanim

Dual sayilar kiimesi D = {A = a + €a* : a,a* € R,&? = 0} seklinde tanimlanir. Bu kiime

iizerinde toplama ve ¢arpma islemleri sirasiyla asagidaki sekildedir [40]:

(a+ea*)+ (b+eb*) = (a+b)+e(a*+b*),
(a+e€a*).(b+eb*) = ab+e(ab*+a*b)

2.3.2. Tanim

D3 ={A ‘A=ad+ed .d,a* € R3} kiimesinin elemanlar1 dual vektorler olarak adlandirilir. Bu

kiime iizerinde toplama ve carpma operasyonlar: sirasiyla asagidaki sekilde tanimlidir [40]:

(@+b) + &(a* +b*),
Ad+e(Ad* +A1*a)

N
oo
Il

D
©

o
N
I

burada A = A +eA* € D.

2.3.3. Tanim

(D3, ®) kiimesi (D, ®,®) halkas1 iizerinde bir modiildiir ve D-Modiil olarak adlandirilir. D3

deki dual vektorlerin i¢ carpimi ve vektdrel carpimi sirasiyla asagidaki sekilde tanimlanir

[40]:
<AB> = <ab>-+e(<ab*>+<d"b>),
ANB = <d,b>+e(@Nb*+a* Ab).

2.3.4. Tanim
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Sifirdan farkli A icin A = @+ ed* dual vektSriiniin normu asagidaki sekilde tanimlidir [40]:
IAll= /< AA> = Jall+e =50~ H || ~Jlall 0.
2.3.5. Tamim
A ve B dual vektorleri arasindaki @ = O + €¢* dual acisi su sekilde tanimlanir [40]:
< A,B >=cos® = cosQ — £Q*sing.
2.3.6. Tanim

7:1CR— D3 §(s) = y(s) +&y*(s), D? de tanimli diferensiyellenebilir birim hizli dual egri
olsun. T'(s),N(s),B(s), ¥(s) egrisinin Frenet-Serret alanlar1 olarak adlandirilir. O halde, 7,
N ve B sirastyla dual teget, dual esas normal and dual binormal vektorlerdir. x(s) = kj + €kj

ve 7(s) = kp + k3 fonksiyonlar1 da sirastyla dual egrilik ve dual burulma olarak adlandirilir

[48].

2.3.7. Tamim

7(s), D? de tanimh diferensiyellenebilir birim hizli dual egri olsun. (s) egrisinin Frenet

formiilleri asagidaki sekildedir [48]]:

burada k(s) = /< T, T" > ve 7(s) = —(B (s),N(s)) sirasiyla 7(s) egrisinin dual egrilik ve

dual burulma fonksiyonlaridir.

2.3.8. Tanim
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B ve W dual vektorleri arasindaki dual ac1 & olsun. O halde asagidaki esitlikler saglanir [48]]:

T

sin® = ————
K2+ 12’

K
cosP=——>,
K-+ 7T

burada

cos® = cos(Q+ Q) = cosQ — @ sin@, sin® = sin(Q + £Q) = sin@ + €Q*cosQ

seklindedir. cos® = —*— reel ve dual kisimlarina ayrilirsa
K“+T
ky
cosQp = ———
T
mw:2ﬁ+q+%wﬁyw%pw%;

@ (ki +4k3)>

elde edilir. Eger sin® = # reel ve dual kisimlarina ayrilirsa

. k>
SinQ = —————
¢ ki +K3
k3 4+ k% — 2k kot — 2k3k
cosg = ) u 2212 2%
(P(k1+k2)
elde edilir.
2.3.9. Tanim

y: 1 — D3 egrisinin dual teget vektorii sabit bir birim dual vektorle sabit bir dual ac

yapiyorsa Yy egrisi dual genel helis olarak adlandirilir [49].

2.3.10. Tanim

y: 1 — D3 egrisinin dual Darboux vektorii ile sabit bir birim dual vektorle sabit ac1 yapiyorsa

Y egrisi dual Darboux helis olarak adlandirilir [S0].

2.3.11. Tanim



27

y: I — D3 egrisinin dual normal vektérii ile sabit bir birim dual vektdr sabit ac1 yapiyorsa y

egrisi dual slant helis olarak adlandirilir [49].

2.3.12. Onerme

y: 1 — D3 egrisi, k ve T dual egrilikleri ile birlikte birim hizli bir dual egri olsun. O halde,

Y egrisi dual genel helistir gerek ve yeter sart % orani dual bir sabittir [49]].

2.3.13. Onerme
y: I — D3 egrisi, x ve 7 dual egrilikleri ile birlikte birim hizli bir dual egri olsun. y egrisi
dual slant helistir gerek ve yeter sart

K2 T
o(s) = m(;) (s)

orani dual sabit fonksiyondur [49].

2.3.14. Onerme

y: 1 — D egrisi dual Darboux helistir gerek ve yeter sart

(24122 1

2 (R))

c*(s) =

orani dual sabit bir fonksiyondur [50].
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3. 3-BOYUTLU OKLID UZAYINDA B-LIiFT EGRILERI

Bu béliimde, esas egrinin binormal vektorlerinin u¢ noktalarinin birlestirilmesiyle elde
edilen B-Lift egrisini tamimliyoruz. Ayrica B-Lift egrilerinin Frenet operatdrlerini elde edip,
B-Lift egrilerinin Frenet operatorlerini tabii lift egrilerinin Frenet operatorleri ile
karsilastirtyoruz. Ayrica esas egrinin slant helis ya da Darboux helix mi olma durumuna

gore B-Lift egrisinin durumunu inceliyoruz ve bu durumlarla ilgili 6rnek veriyoruz.
3.1. R3 Uzayinda B-Lift Egrileri Icin Karakterizasyonlar

3.1.1. Tanmim

Herhangi bir birim hizli y: I — M egrisinin B-Lifti ¥ : | = TM su sekilde tanimlanir:

¥8(s) = (¥(s),B(s)) = B(5)ly(s) 3.1

burada B, y egrisinin binormal vektoriidiir.

3.1.2. Teorem

Y8 egrisi regiiler bir y egrisinin B-Lifti olsun. O halde asagidaki esitlikler saglanir:

Tg(s) = —N(s),
No(s) = T (s) = mgrB(s),
Bo(s) = o)+ wBe)

burada {7'(s),N(s),B(s)} ve {Tg(s),Np(s),Bp(s)} swasiyla y ve yp egrilerinin Frenet
vektorleridir. Ek olarak, kK ve 7, y egrisinin egrilikleri W = 77 + kB da 7 egrisinin Darboux

vektoridiir. (Ozel olarak, burulma pozitif kabul edilmistir.)

Ispat
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¥s egrisi ¥ egrisinin B-Lifti olsun, o halde asagidakileri yazabiliriz:

Y8 = B , yl; = —1TN
_ M N
) = g~ -V (>0,
Vs = —tN-—1(—«xT+B), (3.2)
Y = xtT —TN—1?B,
YeX¥s = TT+KTB,
17> 75l = VK72
Bg(s) = H?Xl’;’n ve (3.2) esitligi kullanilirsa
B /B
T K
Bp(s) = ——T+—B. (3.3)
Wi~ lwll
elde edilir. (3.2) ve (3.3) esitlikleri kullanilarak asagidakilere sahip oluruz:
K T
NB(S) = BB(S) X TB(S) =—7T———B. (34)
Wi~ vl

(3.2), (3.3) ve (3.4) denklemleriyle ispat tamamlanr.

3.1.3. Teorem

R? de verilen regiiler bir y egrisinin B-Lifti 13 olsun. O halde, asagidaki formiiller saglanir:

VK2 + 12 KT—KT
B =T B = ey

burada kp ve 7Tp sirasiyla yp egrisinin egrilik ve burulmasidir.
Ispat

(3.2) esitliginden biliyoruz ki

17 % vll=tVK2 472, |nl=T. (3.5)



! "
_ el
i !

ALK

VK24 12

T

esitliginden asagidaki denklem saglanir:

KB(S) =

¥s nin burulmasi agagidaki sekilde bulunur:

!/ " n
_<VBXYYs >
- ! 1

|vp < ?’BH2

(3.2) kullanilarak asagidaki esitlige sahip oluruz:
Vs = (K T4+2k7 )T+ (kK*1— 7 +17°)N —377 B.

(3.2) ve (3.8) esitliklerinden asagidaki esitlige sahip oluruz:

/ /
KT—KT

78(s) = 2T )
3.1.4. Teorem

y: I — R3 egrisi slant helistir gerek ve yeter sart ¥z egrisi genel helistir.
Ispat

Kabul edelim ki y egrisi slant helis olsun. Onerme 2.1.12 den asagidakiler saglanir:

K2

T

/

o(s) = ) (s) = sabit,

burada k ve 7, ¥ egrisinin egrilik ve burulmasidir. (3.11) ve (3.14) denklemlerinden

31

(3.6)

3.7

(3.8)

3.9

(3.10)
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elde edilir. O halde, yp egrisinin egrilikleri oran1 sabit oldugundan genel helistir. Tersine, Y3

egrisi genel helis olsun. Bu durumda

T
2= —0o(s) = sabit
KB

bulunur. Buradan

K'2 N .
G(S) = m(;) (S) = sabit

denklemi elde edilir. O halde, y egrisi slant helistir.
3.1.5. Sonug

y: I — R3 egrisi Darboux helistir gerek ve yeter sart Y egrisi genel helistir.

3.1.6. Teorem

y: I — R3 erisi genel helistir gerek ve yeter sart yg egrisi diizlemsel bir egridir.

Ispat

Al

/
Y egrisi genel helis olsun. O halde % orani sabittir. Buradan (—) =0 olarak bulunur ve

sonug olarak

2

K T
i g0

olarak bulunur. ;—i=0 oldugundan 7p=0 elde edilir. O halde yp egrisi diizlemsel bir egridir.

Tersine Y egrisi diizlemsel bir egri olsun. Bu durumda 73=0 dir ve (3.16) esitliginden

() (5)=0
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elde edilir. Buradan % orani sabit olarak bulunur. % orani sabit oldugundan Y egrisi bir genel

helistir.

3.1.7. Ornek

Birim hizli slant helis asagidaki sekilde tanimlansin:

42
Y(s) = (gsins + —sin2s, —coss + —cos2s, —\/_cosf).

6 3 6 3 2

Sekil 3.1. Slant helis egrisi y(s)

O halde, 7y egrisinin Frenet vektorleri asagidaki sekildedir:

1 2 1 22 s

T(s) = (zcoss+ =cos2s,—=sins — = sin2s, — Sin—

3 3 3 3 3 2)’
N(s) = (—isinﬁ —icos§ —1)
- 3\/§ 27 3\/§ 27 3 9

2 1 2 1 4
B(s) = (= sins — =sin2s, =coss — = cos2s, ——cosi).

3 3 3 3 3vV2 2

¥s(s) = B(s) oldugundan asagidaki esitliklere sahip oluruz:

" 2\/5_23-3s2\/§_2s 3s 8 .,

}/é(s) X Yg(s) = (Tszn R8I, —5—sin" Scos—, —sin 5),
! " 1
K(S):H’}/Bi(’};BH: —
Al siny
< ! « //, " > 1 1
T5(s) = XYV > _

I xwll> 2v2sing
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Sekil 3.2. B-Lift egrisi y5(s)
Buradan da
TB o 1

——— = sabit

Kp 242

olarak elde edilir. Egrilikler oran1 sabit oldugundan g egrisi bir genel helistir.

3.2. B-Lift Egrileri ve Tabii Lift Egrileri Arasindaki Iliskiler

3.2.1. Sonug

Ys ve ¥ sirasiyla y egrisinin B-Lifti ve tabii lifti olsunlar. O halde, asagidaki esitlikler

saglanir:

Tp(s) = —T(s),
NB(S) = —N(S),
Bs(s) = B(s),

burada {7p(s),Np(s),Bg(s)} ve {T(s),N(s),B(s)} swrasiyla Yy ve ¥ egrilerinin Frenet

vektorleridir.

3.2.2. Sonug

Y8 ve 7 egrileri sirastyla y regiiler egrisinin B-Lifti ve tabii lifti olsun. O halde, B-Lift egrisi



ve tabii lift egrisinin Frenet vektorleri arasinda agagidaki esitlik mevcuttur:

TB o T
Kp K

35

(3.11)
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4. B-LIFT EGRILERI VE URETTIKLERI REGLE YUZEYLER

Bu kisimda, B-Lift e8risinin teget, normal ve binormal yiizeyleri olarak adlandirilan regle
yiizeyler tanimlanacaktir. Ardindan bu yiizeylerin geometrik degismezleri ve tekillikleri
incelenecektir. Son olarak da bu yiizeylerin Darboux alani olusturulacak ve esas egrinin
durumuna gore B-Lift egrisinin jeodezik egri, asimtotik egri ve egrilik ¢izgisi olma durumu

aragtirilacaktir.

4.1. B-Lift Egrisinin Urettigi Teget Yiizey

¥ egrisi y regiiler egrisinin B-Lifti olsun. O halde, yp egrisinin teget yiizeyi agagidaki sekilde

tanimlanir:

¢1;(5,v) = ¥B(s) +vTp(s). 4.1

(3.1) ve (3.3) esitliklerinden ¢7;, regle yiizeyi asagidaki sekilde yazilabilir:

07, (s,v) = B(s) +v(—N(s)). 4.2)

Simdi ¢7, regle yiizeyinin singiiler noktasini inceleyelim.

(91)s X (B1)y = B (s) X (=N(5)) +v(k ()T (5) = 2(s)N(s)) x =N(s)

= —vK(s)B(s)

seklindedir. Her (so,v0) € I x (R —{0}) i¢in (¢7;)5, X(915)v, = —Vvok(s0)B(s0) # O
oldugundan ¢r, regle yiizeyi singiiler noktaya sahip degildir. Her (so,vo) € I x (R —{0})
icin @ (s9) x @(s9) = K(s0)B(s0) # 0 oldugundan ¢r, silindirik olmayan bir yiizeydir. ¢r,
teget yiizeyinin dagilma parametresi

b det(B',—N,—N')
TN T

seklindedir. @7, yiizeyinin striksiyon egrisi

b1y () = a(s) ~ — 1 = Ty(s)
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< —1TN,xT — 1B >
< KT —1tB,xT — 1B >

(xT —1B)

dir. @7, regle yiizeyinin Gauss egriligi

(det(—tN,—N,kT —1B))* _

K, (s,v) = — (EG—F?) =0.

seklindedir. @7, teget ylizeyinin esas egriligi

det(ktT — TN — 1B+ v(x T 4 (k2 +12)N — T B,—tN +v(kT — tB),—N)

HTB(Suv) = 2(EG-F2)3/2

V2 (5) k2

2(EG —F2)3/2°

olarak elde edilir. ¢, regle yiizeyinin birim normali asagidaki sekildedir:

(915)s<(915)v  (=v7, 0, —vK)

Yt = 07, )< (@rll ~ /2222

@r, regle yiizeyi i¢in jeodezik egrilik, normal egrilik ve jeodezik burulmalar sirasiyla

ke = (Ury x Tg, T) = —v(x2 +12),
kn = (g, Ury) = —v(KK +77),

Ty = (Tp, U, x Up,) = V(3) K2
seklindedir.

4.1.1. Sonug

or, regle yiizeyi agilabilirdir.

4.1.2. Sonug
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y: I —R3 egrisi bir genel helis olsun. O halde, ¢r, regle yiizeyi minimal bir yiizeydir.

4.1.3. Sonug

Y regiiler egrisi icin KKk +77 =0 dir gerek ve yeter sart yp egrisi ¢, regle yilizeyinin asimtotik

egrisidir.

4.1.4. Sonug

v egrisi genel helistir gerek ve yeter sart yg egrisi ¢, regle yiizeyinin egrilik ¢izgisidir.

4.2. B-Lift Egrisinin Urettigi Normal Yiizey

Y regiiler egrisinin B-Lifti ¥z olsun. O halde, B-Lift egrisinin esas normal yiizeyi asagidaki

sekilde tanimlidir:

Ong (s,v) = ¥8(s) + vNp(s). 4.3)

(3.1) ve (3.3) esitliklerinden asagidaki sonucu yazabiliriz:

s,v) =B(s)+v K(s) s)— ©(s) s
¢NB( ’ ) B( )+ (||W(S)||T( ) ||W(S)||B( )) (44)
Buradan,
2 KT—«kT KT
(¢NB)S X (¢NB)V = (_T+ ||WH 7V( ||W||2 )7 —K+ W) 4.5)

olarak bulunur. Y egrisinin esas normal egrisinin dagilma parametresi

. _ det(B,Ng,Np)
? |INg|[2
N KT KT
T~ wiE i)

()2 + e + (e ?
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seklindedir. @y, regle yiizeyinin striksiyon egrisi

< ¥y(s),Ny(s) >
<Ny Ny >

by (s) = 18(s) —

_ K24 12
_B(s)— < ‘L'N»IIWHT-l- ||W|\ N— ||WH ( K oo 7 5)
K212 K212 W

olarak bulunur. ¢y, regle yiizeyinin Gauss egriligi

(det (5, N, N))>
(EG—F2)2

Ky, (s,v) = —

kT KT
i t wp)
(EG—F2)?

dir. @y, regle yiizeyinin esas egriligi

det (Y +vNp, Y+ vNp, Np)
2(EG — F?2)3/2

4 / / / 2,22 I I / - _
VSRS ) 2 () (e 1) 0 (S5 an(at)

Hy,(s,v) =

2(EG—F?)3/2

olarak elde edilir. ¢y, regle yiizeyinin birim normali asagidaki sekildedir:

On, regle yiizeyi igin jeodezik egrilik, normal egrilik ve jeodezik burulmalar sirastyla

(k*+7%)(r—1)
wi

ke = (Uny X T, T) =
’L'/(K'/’L'—K’L'/)

kn = (Yg,Ung) = —v W

Tg:<TB’UNBXU],VB>=(T/K_K/T)_[1—|— Tzz—ﬁ]_

seklindedir.

4.2.1. Sonug
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y: I —R3 egrisi genel helis olsun. O halde, O, regle yiizeyi agilabilir bir yiizeydir.

4.2.2. Sonug

y: 1 —R3 egrisi genel helis olsun. O halde, ¢y, regle yiizeyi minimal bir yiizeydir.

4.2.3. Sonug

Yy regiiler bir egri olsun. 7 = 1 dir gerek ve yeter sart yp egrisi ¢y, regle yiizeyinin jeodezik

egrisidir.

4.2.4. Sonug

Y genel helistir gerek ve yeter sart Yz egrisi @y, regle yiizeyinin asimtotik egrisidir.

4.2.5. Sonug

Y genel helistir gerek ve yeter sart yp egrisi @, regle yiizeyinin egrilik ¢izgisidir.

4.3. B-Lift Egrisinin Urettigi Binormal Yiizey

Ys egrisi y regiiler egrisinin B-Lifti olsun. O halde, B-Lift egrisinin binormal yiizeyi

asagidaki gibi tanimhidir:

OB, (s,v) = va(s) +vBp(s). (4.6)

(3.1) ve (3.3) esitliklerinden

08, (5,v) = B(s) + v(%ﬂs) i %B@)) 4.7)
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olarak yazilabilir. Buradan,

/ / 2
KT KT—KT T

- ,V( )7
(Wil Wiz 7wl

(¢BB)S X (¢BB)V = ( ) (4.8)

olarak bulunur. (4.8) esitliginden (¢p,)s X (¥p,)y 7 O oldugundan ¢@p, regle yiizeyinin
singiiler noktas1 yoktur ve ¢p, silindirik olmayan bir ylizeydir. ¢p, regle ylizeyinin dagilma
parametresi
det(B',Bp,Bp)
Bs = 7
’ [1BglI?
_ KT KT
_ et o)
()2 + (k)2

seklindedir. @p, regle yiizeyinin striksiyon egrisi

B < 7(s), Bp(s) >
bpy(s) = a(s) = — BZ o). Bl,; o) ~Bs(s)

= B(s)

olarak elde edilir. ¢p, binormal yiizeyinin Gauss egriligi

(det(}/;,BB,B;;))z
(EG—F2)?

Kp,(s,v) = —

kT KT
)
(EG— F2)?

olarak bulunur. ¢, regle yiizeyinin esas egriligi

‘L'v_’ ! //_//_1_22 2_v2/_/2
IIWIP( KT+TK+K T—KT ) HWH(K‘ + 1) HWH3<TK KT)

2(EG — F?2)3/2

HBB (S,V) =

seklindedir. @p, regle yiizeyinin birim normali agagidaki sekildedir:

U = ($B5)s < (PBg)v
By = H((bBB)sX(q)BB)vH'

@B, regle yiizeyi icin jeodezik egrilik, normal egrilik ve jeodezik burulmalar sirasiyla



ke = (Up, x T, Ty) = 0,

) /

ky = <Y;;UBB> = —H;;CV—”(KZ—{—TZ) —VW(K’/T— m'/) ,
' rz(ml—K/r)

7 = (T Ut > Uy ) =

seklindedir.

4.3.1. Sonug

y: T =3 egrisi bir genel helis olsun. O halde, @p, regle yiizeyi agilabilir bir ylizeydir.
4.3.2. Sonug

Y egrisi ¢, regle ylizeyinin jeodezik bir egrisidir.

4.3.3. Sonug

Y genel helistir gerek ve yeter sart Y egrisi ¢p, regle yiizeyinin egrilik ¢izgisidir.
4.3.4. Ornek

Birim hizl1 bir genel helis asagidaki denklem ile verilsin:

V3 3/2 V3 3/2 8
TS ,T<1—S) 75)

¥(s) = (
O halde, yp egrisi asagidaki sekildedir:

1 1

V3
(s) = (—5s 2,5 (1 =)/ 2

).
¥s egrisinin Frenet vektorleri hesaplandiginda asagidaki sekilde bulunur:

Ts(s) = (—(1—s)"/2,=sY2,0),  Ng(s) = (s"?,—(1—5)/2,0),  Bg(s) = (0,0,1).

43
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Buradan hareketle, yp egrisinin teget, normal ve binormal ylizeyleri asagidaki sekilde

hesaplanir:

¢, (s,v) = ¥8(s)+vIp(s)

= (3125192 2) (= (1-9) 12, =51/2,0)
Ong(s,v) = ¥B(s)+vNa(s)

= (352501 =9)1208) (512 ~(1-5)1/2,0)
PBs(s,v) = 18(s)+vBs(s)

= (35250912 8) +9(0,0.1).

2
15 15
1
1 14 °
0s 05+ 2
2
o oy e
< - 3 iy S >~
. -~ 2RSS - 04 >N et 0
2 4 P - % 03 -
Sy 2 ST o 2 02 N
o 0 0o - 01

02
- e 5

Sekil 4.1. Soldan saga sirasiyla @r,, ¢n, ve @p, regle yiizeyleri

015, Ong VE Pp, regle yiizeylerinin dagilma parametresi

_ det(B,Tp,Ty)

= e -

det(B Np.Ng)
AL

 — det(B/,/BB,B}}) _
AR

seklindedir. Pr; = Py, = Pp, = 0 oldugundan ¢7,, ¢n, ve ¢p, regle yiizeyleri acilabilirdir.

015, Ny VE Pp, yiizeylerinin striksiyon ¢izgisi

bTB(S):yB(S)_< 7 7 TB(S)

— B(s)
- (—%slﬂ, %(1 _g)2, ?).
by (s) = pa(s) — ~DBLL B > g
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50y
= (22 L2 )

olarak elde edilir. ¢7;, ¢y, ve ¢p, yiizeylerinin Gauss egrilikleri

(det (¥, T3, Tp))*

KTB (S,V) = —

(EG — F2)2
=0
i =~
=0
Kpy(s,v) = — (det (Y, B, By))?

(EG—F2)?
=0.

olarak bulunur. ¢7;, @y, ve ¢p, regle yiizeylerinin esas egrilikleri

!/

—2 < y(s),Tp(s) > det (¥ (s), Tg(s), Ty(s))
2(EG — F2)3/2

N det(y (s) 4Ty (s),7 (s) + vTy(s), Ts(s))

2(EG — F?2)3/2

Hr,(s,v) =

=0
—2 <7 (s),Np(s) > det (¥ (s),Np(s), Ny(s))
2(EG—F?2)3/2
 det(y'(s) +¥Np(5), ¥ (5) + vNp(s), Ns(5))
2(EG — F2)3/2

Hy,(s,v) =

=0
—2 <y (s),Bs(s) > det(y (5),Ba(s), By(s))
2(EG — F?2)3/2

| det(y'(s) +vBy(s). ¥ (5) + vBy(s). By (s))
2(EG — F2)3/2

HBB(S,V) =
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=0.

seklindedir. Hry, (s,v) = Hy,(s,v) = Hp,(s,v) = 0 oldugundan ¢z, @, ve @p, regle yiizeyleri
acilabilirdir.
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5. 3-BOYUTLU LORENTZ UZAYINDA B-LiFT EGRILERI

Bu kisimda, oncelikle B-Lift egrisinin Frenet vektorleri 3-boyutlu Lorentz uzayinda
hesaplanacaktir. Ardindan, Bertrand egrisi ve involiit egrisinin Frenet vektorleri, B-Lift

egrisinin Frenet vektorleri cinsinden incelenecektir.
S.1. R? Uzayinda B-Lift Egrileri I¢in Karakterizasyonlar

5.1.1. Tamim

Y : I — P birim hizli bir egri olsun. O halde, yp : I — TP egrisi Y egrisinin B-Lifti olarak

adlandirlir ve asagidaki sekilde tanimlanir:

burada B, Y egrisinin binormal vektoriidiir.

5.1.2. Onerme

Y egrisi timelike egri olsun. O halde, yp timelike ya da spacelike binormalli spacelike egridir.

1) Kabul edelim ki yp egrisi timelike binormalli spacelike egri olsun. g egrisinin Frenet
vektorleri {7, Np, Bp} ve y egrisinin Frenet vektorleri {7, N, B} arasinda agagidaki esitlikler

vardir:

a) Eger W spacelike vektor ise,

Tp 0 —1 0 T
Ng | = | —coshgo O —sinhe
Bp sinhp 0 —cosho B

b) Eger W timelike vektor ise,
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Tp 0 —1 0 T
Np | = —sinhgp 0 —cosh@ N
Bp cosho 0  sinh B

i1) Kabul edelim ki Y5 spacelike binormalli spacelike egri olsun. yp egrisinin Frenet vektorleri

{Tp, Np, B} ve y egrisinin Frenet vektorleri {7, N, B} arasinda asagidaki esitlikler vardir:

a) Eger W spacelike vektor ise,

Tp 0 —1 0 T
Ng | = | coshp O  sinhe N
Bp sinho 0 —cosh@ B

b) Eger W timelike vektor ise,

Tp 0 —1 0 T

Np | =| sinho O cosho N

Bp cosho 0  sinh@ B
5.1.3. Onerme

Y egrisi spacelike binormalli spacelike egri olsun. O halde, Yy timelike bir egridir. 3
egrisinin Frenet vektorleri {7p, Np, Bp} ve 7y egrisinin Frenet vektorleri {7, N, B} arasinda

asagidaki esitlikler vardir:

Tp 0 -1 0 T

Ng | =| coso O  sing N

Bp sing 0 —cos@ B
5.1.4. Onerme

Y timelike binormalli spacelike egri olsun. O halde, yp timelike ya da spacelike binormalli

spacelike egridir.
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1) yp timelike binormalli spacelike egri olsun. yp egrisinin Frenet vektorleri {7, Np, Bp} ve

Y egrisinin Frenet vektorleri {7, N, B} arasinda asagidaki esitlikler vardir:

a) Eger W Darboux vektorii spacelike vektor ise,

Tp 0 —1 0 T
Np | = | —sinhgo O cosho N
Bp cosho 0 —sinho B

b) Eger W timelike vektor ise,

Tp 0 —1 0 T
Ng | =| —coshgo 0  sinho N
Bp sinhop 0 —coshe B

i) yp spacelike binormalli spacelike egri olsun. 7yp egrisinin Frenet vektorleri {7z, Np, Bp}

ve Y egrisinin Frenet vektorleri {7, N, B} arasinda asagidaki esitlikler vardir:

a) Eger W Darboux vektorii spacelike vektor ise,

Tp 0 —1 0 T
Np | =| sinho O —cosho
Bp cosho 0 —sinh@ B

b) Eger W timelike vektor ise,

Tp 0 —1 0 T
Np | = | cosho O  sinhe
Bp sinhgp 0 —coshe B
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5.2. Bertrand Egrileri ve B-Lift Egrileri Arasindaki Tliskiler
5.2.1. Onerme

Y egrisi spacelike binormalli spacelike egri olsun. Bu durumda, yp egrisi timelike egri, ¥

egrisi de spacelike binormalli spacelike egridir. O halde, asagidaki esitlikler saglanir:

~
Il

cos(0 — @)Np — sin(6 — ¢)Bg,

=
I

T37
B = sin(6+¢@)Ng—cos(6+ @)Bg.

5.2.2. Onerme

Y egrisi timelike binormalli spacelike egri olsun. O halde Y3 ve ¥ timelike binormalli

spacelike egrilerdir. Bu durumda, asagidaki esitlikler saglanir:

a) Eger W Darboux vektorii spacelike ise,

T = sinh(6 + @)Ng + cosh(6 + ¢)Bg,

=

:TB7

B = cosh(0 + @)Np + sinh(6 + ¢)Bg.

b) Eger W Darboux vektorii timelike ise,

T = —cosh(8 + @)Np — sinh(0 + ¢)Bg,

=
I

TB7

B = —sinh(0 + @)Np — cosh(0 + @)Bp.

5.2.3. Onerme

Y egrisi timelike binormalli spacelike egri olsun. Bu durumda, yp timelike binormalli



51

spacelike egri ve ¥ egrisi de spacelike binormalli spacelike egridir. O halde, asagidaki
esitlikler saglanir:
a) W Darboux vektorii spacelike olsun. O halde,

T = sinh(0 + @)Ng — cosh(6 + ¢)Bg,

:TB7

=

B = cosh(0 + @)Np — sinh(6 + ¢)Bg.
b) W Darboux vektorii timelike olsun. O halde,

T = —cosh(8 + @)Ng + sinh(0 + ¢)Bg,

TB7
B = —sinh(0 + @)Ng + cosh(0 + @)Bp.

=
I

5.2.4. Onerme
Y egrisi timelike binormalli spacelike egri olsun. O halde, yp egrisi timelike binormalli

spacelike egri, ¥ egrisi de timelike egridir. Bu durumda, asagidaki esitlikler vardir:

a) Eger W Darboux vektorii spacelike ise,

T = cosh(0 + @)Np + sinh(6 + ¢)Bg,

N =Tp,
B = sinh(0 + @)Ng + cosh(0 + ¢)Bg.

b) Eger W Darboux vektorii timelike ise,

T = —sinh(0 + @)Np — cosh(0 + ¢)Bp,

TB7
B = —cosh(8 + @)Np — sinh(0 + ¢)Bp.

=
Il
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5.2.5. Onerme
O halde, yp spacelike binormalli

Y egrisi timelike binormalli spacelike bir egri olsun.
spacelike egridir ve ¥ timelike egridir. Bu durumda, asagidaki esitlikler saglanir

a) W Darboux vektorii spacelike olsun. O halde,

T = —cosh(6 + @)Ng + sinh(6 + ¢)Bp,

TB?
B = —sinh(0 + @)Ng + cosh(6 + ¢)Bg.

=
I

b) W Darboux vektorii timelike olsun. O halde,

T = sinh(6 + @)Ng — cosh(6 + ¢)Bg,

= Tp,
B = cosh(0 + @)Np — sinh(6 + ¢)Bg.

=z

5.2.6. Onerme

Y egrisi timelike bir egri olsun. O halde, ¥ timelike binormalli spacelike bir egri ve ¥ bir

timelike egridir. Bu durumda, asagidaki esitlikler saglanir:

a) W Darboux vektorii spacelike olsun. O halde,

T =
N: _TB7
B = —sinh(6 — @)Ng + cosh(6 — @)Bp.

b) W Darboux vektorii timelike olsun. O halde,

T = —sinh(6 — @)Np + cosh(6 — ¢)Bp,

_TB7

=
I
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B = —cosh(8 — @)Ng + sinh(6 — ¢)Bg.

5.2.7. Onerme

Y egrisi timelike bir egri olsun. O halde, yp egrisi spacelike binormalli spacelike egri ve ¥

timelike egridir. Bu durumda, asagidaki esitlikler saglanir:
a) W Darboux vektorii spacelike olsun. O halde,

T = cosh(0 — @)Np + sinh(6 — ¢)Bg,

N = _T37
B = sinh(6 — @)Ng + cosh(6 — ¢)Bg.

b) W Darboux vektorii timelike olsun. O halde,

T = sinh(6 — @)Np + cosh(6 — ¢)Bg,
N: _T37
B

= cosh(6 — ¢)Np + sinh(6 — ¢)Bp.

5.2.8. Onerme

Y egrisi timelike bir egri olsun. O halde, yp egrisi timelike binormalli spacelike egri ve ¥

spacelike egridir. Bu durumda asagidaki esitlikler saglanir:

a) W Darboux vektorii spacelike olsun. O halde,
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b) W Darboux vektorii timelike olsun. O halde,

5.2.9. Onerme

Y egrisi timelike bir egri olsun. O halde, yp egrisi spacelike binormalli spacelike bir egri ve

¥ spacelike bir egridir. Bu durumda, asagidaki esitlikler saglanir:
a) W Darboux vektorii spacelike olsun. O halde,

T = sinh(6 — @)Np + cosh(6 — ¢)Bg,
N = —Tp,
B

= cosh(6 — @)Np + sinh(6 — ¢)Bp.
b) W Darboux vektorii timelike olsun. O halde,

T = cosh(0 — @)Np + sinh(6 — ¢)Bg,
N: _T37
B

= sinh(0 — Q)N + cosh(6 — ¢)Bg.
5.2.10. Sonug

yp egrisi y egrisinin B-Lifti, ¥ da y egrisinin Bertrand cifti olsun. O halde, {7, N} kiimesi

lineer bagimlhidir.



5.3. Involiit Egrileri ve B-Lift Egrileri Arasindaki Iligkiler

5.3.1. Sonug

Y egrisi timelike egri olsun. O halde, y* egrisi spacelike binormalli spacelike egridir.

1) Eger W Darboux vektorii spacelike ise,

T = _TBa
N* = Np,
B* = Bp.

T* = —Tp,
N* = Bg,
B* = Ng.

seklindedir. Burada, {7p, Np, Bp},yp egrisinin Frenet alanidir.

5.3.2. Sonug

Y egrisi timelike egri olsun. O halde, y* timelike binormalli spacelike egridir.

i) Eger W Darboux vektorii spacelike ise,
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i1) Eger W Darboux vektorii timelike ise,

T* = —Tg,
N* = N,
B* = —Bj,

seklindedir. Burada {7p, Np, Bg}, Y¥p egrisinin Frenet alanidir.

5.3.3. Sonug

¥ spacelike binormalli spacelike egri olsun. O halde, y* timelike egridir.

1) Eger W Darboux vektorii spacelike ise,

T* — _Ty,
N* = —Bs,
B* = Np.

i1) Eger W Darboux vektorii timelike ise,

T = —Tp,
N* = N,
B* :_B37

seklindedir. Burada {7p, Ng, Bg}, ¥p nin Frenet alanidir.

5.3.4. Sonug

Y egrisi timelike binormalli spacelike egri olsun. O halde, y* timelike egridir. Bu durumda

asagidaki esitlikler vardir:

T = _T37
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N* = Np,

B* = _BB7

burada {7p, Np, Bp}, ¥p egrisinin Frenet alamdir.

5.3.5. Sonug

Y egrisi spacelike binormalli spacelike egri olsun. Bu durumda agagidaki esitlikler vardir:

i) 7" egrisi spacelike binormalli spacelike egridir. Bu durumda,

T* = Tg,
N* = N,
B* = Bg,

ii) 7* egrisi spacelike binormalli timelike egridir. Bu durumda,

T" = Tp,
N* = —Np,
B* = Bp,

burada {7p, Np, Bp}, ¥p egrisinin Frenet alanmdir.

5.3.6. Sonug

Y egrisi timelike binormalli spacelike egri olsun. Bu durumda asagidaki esitlikler saglanir:

i) 7* egrisi timelike binormalli spacelike egri olsun. O halde,

T* :T37
N* = —Np,

B* = —Bp.
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ii) 7* egrisi spacelike binormalli spacelike egri olsun. O halde,

T" = Tp,
N* = N,
B* = Bp,

burada {7p, Np, Bp}, ¥s egrisinin Frenet alamdir.
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6. DUAL UZAYDA B-LIFT EGRILERI

Bu kisimda, ilk olarak dual uzayda B-Lift egrileri tanimlanmistir. Sonrasinda B-Lift
egrilerinin Frenet operatorleri elde edilip esas egrinin slant helis ya da Darboux helis olma

durumuna gore B-Lift egrisinin karakterizasyonu incelenecektir.

6.1. D? Uzayinda B-Lift Egrileri Icin Karakterizasyonlar

6.1.1. Tamim

Birim hizli 7 : 1T — D3 egrisi icin 73 : I — D3 egrisi D* de ¥ egrisinin B-Lifti olarak

adlandirlir ve asagidaki sekilde tanimlanir:

Y8(s) = v8(s) +evz(s) 6.1)

burada yg = B ve ¥ = B” sirasiyla y ve y* egrilerinin binormal vektorleridir.

6.1.2. Teorem

¥s egrisi birim dual ¥ egrisinin B-Lifti olsun. O halde asagidaki esitlikler saglanir:

Ts 0 —1 0 T
Ng | =| —cos® 0 sind N |.
Bp sin® 0 cosd B

burada {T,N,B} ve {Tp,Np sirasiyla B}, 7 ve ¥ egrilerinin Frenet vektorleridir. (P acis1 B

ve W arasindaki dual acidur.)

Ispat
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¥p egrisi ¥ egrisinin B-Lifti olsun. O halde,

T - B _-N_ _§

g Il — T

Vs = —¥N—%#(—&kT +1B),
Vs = kil -¥N -8B,
XV = PT+KPB,

17> 75l = 2VRE+2.

Wi /i
YBxVB

esitlikleri vardir. Bp(s) = —~8_ oldugundan
175> P3|
- 7 K -
Bg(s)= —T+—B.
Wil [[w]]

elde edilir. (6.2), (6.3) ve (6.4) esitliklerinden ispat tamamlanr.

6.1.3. Onerme

(6.2)

(6.3)

6.4)

® = ¢ + £¢* agis1 7 nin dual Darboux vektérii W ve dual binormal vektorii B arasindaki

dual ac1 olsun. Bu durumda ¥ egrisinin Frenet vektorlerinin reel ve dual kisimlar1 arasinda

asagidaki esitlikler vardir:

tp = -—n,
ng = cosQt—sinQb,

bp = sin@t—+coseb,
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ve

tg = —nv,

*

ng = cosQt* —sin@b* + @*(—sin@t — cos@b),
by = sin@t* —coseb* + @*(cosQt — singb).

burada T =t+et*, N=n+en*, B=b+eb*;Tg=tg+€et}, Ng=ngp+€nj, Bp=bp+¢

b

6.1.4. Teorem

burada Kp ve Tp sirasiyla ¥ nin egrilik ve burulmasidir.
Ispat

(6.2) esitliginden biliyoruz ki

17 x| =tVR+ 2, 1%l =T (6.5)
seklindedir. K = % oldugundan asagidaki esitlikler saglanir:
B
. VK + 72
Kp(s) = — (6.6)

Y8 nin burulmasi

A Rl (RN R (6.7)
178 < 7 ||
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seklindedir. (6.2) esitliginden biliyoruz ki

n !

s = (RT+2R0)T+(RP%—1 +2)N—3%1 B (6.8)

dir. (6.2) ve (6.8) esitliklerinden

Ty(s) = % (6.9)

(S|
(S

[\

olarak elde edilir.

6.1.5. Teorem

7 : T — D3 egrisi dual slant helistir gerek ve yeter sart 7 egrisi dual genel helistir.

fspat

Kabul edelim ki ¥p egrisi dual genel helis olsun. 6.1.4 Teoreminden biliyoruz ki

~ ~2 ~
B _ —K—(%)/(s) = —0(s) = sabit. (6.10)

Kp (%2 + %2)%
seklindedir. Burada x ve 7, Y egrisinin dual egriligi ve dual burulmasidir. o©(s)=sabit

oldugundan Y egrisi dual genel helistir. Tersine, y egrisi dual slant helis olsun. 2.3.13

Onermesinden biliyoruz ki

12.2

(R2+20)3

/

(%) (s) = 6 (s) = sabit,
seklindedir. 6.1.4 Teoreminden
— = —o(s) = sabit.

seklindedir. O halde, ¥ egrisi dual genel helistir.

6.1.6. Sonug



7 : T — D3 egrisi dual Darboux helistir gerek ve yeter sart ¥ egrisi dual genel helistir.
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7. KUATERNIYONIK B-LiFT EGRILERI

Bu boliimde, uzaysal kuaterniyonik b-lift egrisini tanimliyoruz ve ayrica bu egrilerin Frenet
operatorlerini elde ediyoruz. Ayrica uzaysal kuaterniyonik b-lift egrisinin ana egrisinin slant
helis olup olmama durumunu inceliyoruz ve kuaterniyonik slant helisler ile kuaterniyonik

genel helisler arasindaki iligkileri kesfediyoruz.

7.1. Kuaterniyonik B-Lift Egrileri Icin Karakterizasyonlar

7.1.1. Tamim

y: I C R — R birim hizli uzaysal kuaterniyonik bir egri olsun. O halde, asagidaki sekilde

tanimlanan 9, : I C R — R3 egrisi y egrisinin b-lifti olarak adlandirilir:

¥o(s) = (¥(s),b(s)) = b(s)lys) (7.1)
burada b, y egrisinin binormal vektoriidiir.
7.1.2. Teorem

Y, egrisi uzaysal kuaterniyonik 7y egrisinin b-lifti olsun. Bu durumda asagidaki esitlikler

saglanir:

KB ey T
W)= Ty )T pag )
bp(s) = — (54— K64

1/K2_}_T2t( ) 1/KZ_|_,«L-2

burada {t(s),n(s),b(s)} ve {tp(s),np(s),bp(s)} swrastyla y ve 7, egrilerinin Frenet
vektorleridir. Ek olarak, k egrilik fonksiyonu, 7 da burulma fonksiyonudur. (Burulma 6zel

olarak sifirdan biiyiik alinacaktir.)

Ispat
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Y» egrisi ¥ egrisinin uzaysal kuaterniyonik b-lift egrisi olsun. O halde,

'}/b:b y Wp=—Tn

}/1; —1Tn
p(s)=——=—=—n (1>0),
(/AN

yg = —Tn— T(—Kt + 1)),

/
Y, = KTt — Tn— 1°b,

! " 3 2
Yy XY, =Tt+KTD,

! "
1% X Wl = TV K2+ 12,

esitlikleri saglanir. by (s) = H?Xl”’n esitligi ve (7.2) esitligindeki ifadelerden
b b
T K
by(s) = t+ b.
b() 1/K2+T2 1/,(2_’_12

olarak bulunur. (7.2) ve (7.3) kullanilarak

—b r K T b
I’lb(S) - b(s) th(s) - \/mt_ \/m .

esitligi elde edilir. (7.2), (7.3) ve (7.4) esitlikleriyle ispat tamamlanir.

7.1.3. Teorem

(7.2)

(7.3)

(7.4)
(7.5)
(7.6)

7.7

(7.8)

(7.9)

Y» egrisi uzaysal kuaterniyonik 7y egrisinin b-lifti olsun. O halde, agsagidaki esitlikler saglanir:

VK2 + 12 KT—KT
W= el =y

burada K}, ve T, sirasiyla 7y, egrisinin egrilik ve burulmasidir.
Ispat

(7.2) esitliginden biliniyor ki,

! " !/
% xpll=tvVKr+12 , yl=7

(7.10)



! "
_ nxwll

seklindedir. x;, = =~
VALS

oldugundan

VK24 12
Kp(s) = ———
T
esitligi saglanir. 7, egrisinin burulmasi

h(Y, X 1,7, )
FASAR

seklindedir. (7.2) esitliginden

!

% = (K T+2k7)i+ (K2t —7 +7°)n—317 b

esitlifine sahibiz. O halde, (7.2), (7.7) ve (7.8) esitliklerinden

K'/T— K'T/
Tb(s) = T(K‘z—i—fz)

esitligi de saglanmis olur.

7.1.4. Teorem
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(7.11)

(7.12)

(7.13)

(7.14)

y: 1 — R3 egrisi kuaterniyonik slant helistir gerek ve yeter sart y, egrisi kuaterniyonik genel

helistir.
fspat

Y egrisi slant helis olsun. O halde,

K2 N ,
G(S) = m(;) (S) = Sélblt,

burada k ve 7, ¥ egrisinin egrilik ve burulmasidir. 7.1.3 Teoreminden

2
Tp K
P _—§<
2

%)/(s) — —0(s) = sabit

(7.15)
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elde edilir. O halde, 7, egrisi genel helistir. Tersine, ¥, egrisi genel helis olsun. Bu durumda,

Tb_

—0(s) = sabit
o (s) = sabi

seklindedir. o(s) = sabit oldugundan ¥ bir slant helistir.
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8. SONUC VE ONERILER

Bu tez calismasinda, ilk olarak, 3-boyutlu Oklid uzaymnda verilen bir egrinin her
noktasindaki binormal vektoriiniin u¢ noktalarinin birlegtirilmesiyle olusan B-Lift egrisi
tanimlanmistir ve bu egriyle ilgili karakterizasyonlar verilmistir. Daha sonra, dayanak
egrisini B-Lift egrisi alarak olusturdu§umuz, teget, normal ve binormal yiizeylerinin
geometrik degismezleri ve tekillikleri incelenmistir.  Sonrasinda, 3-boyutlu Lorentz
uzaymda B-Lift egrileri tanimlanarak, Bertrand egrisi ve involiit egrisinin Frenet
vektorleriyle, B-Lift egrisinin Frenet vektorleri arasindaki esitlikler elde edilmistir.
Calismanin devaminda, dual uzayda B-Lift egrileri tanimlanarak, esas egrinin dual slant
helis olmasi i¢in gerek ve yeter sartin B-Lift egrisinin genel helis olmasi sart1 ispatlanmugtir.
Son olarak da, uzaysal kuaterniyonik b-lift egrileri tanimlanarak, bu egri yardimiyla
kuaterniyonik genel helisler ve kuaterniyonik slant helisler arasindaki iligkiler ortaya

konmustur.

Tezde bulunan sonuglar, helisler, slant helisler, 6zel egriler ve regle yiizeylerle ilgilenen
aragstirmacilar i¢in bir kaynak niteligindedir. B-Lift egrilerle yapilan temel tanim ve

teoremler 3 boyutlu dual Lorentz uzaymna da tasinabilir.
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