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ederim.

Anıl ALTINKAYA

26/07/2023



iv
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ÖZET

Bu tez çalışmasının esas amacı, B-Lift eğrileri yardımıyla slant helis (ya da Darboux helis)
ve genel helis arasındaki ilişkileri ortaya koymaktır. Bu bağlamda, ilk olarak, 3-boyutlu
Öklid uzayında esas eğrinin her noktasındaki binormal vektörünün uç noktalarının
birleştirilmesiyle elde edilen B-Lift eğrileri tanımlanmıştır ve Frenet operatörleri elde
edilmiştir. Ayrıca, B-Lift eğrisinin Frenet operatörleri ile tabii lift eğrisinin Frenet
operatörleri arasındaki ilişkiler elde edilmiştir. Daha sonra, B-Lift eğrisinin teğet, normal ve
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tekillikleri incelenmiştir. Ardından, 3- boyutlu Lorentz uzayında B-Lift eğrisi tanımlanarak,
Frenet vektörleri bulunmuştur. Dahası, esas eğrinin Bertrand eğrisi ve involüt eğrisinin
Frenet vektörleri ile esas eğrinin B-Lift eğrisinin Frenet vektörleri, eğrilerin spacelike veya
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tanımlanarak, esas eğrinin slant helis olması için gerekli koşullar incelenmiştir ve
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yardımıyla keşfedilmiştir.
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Anahtar Kelimeler : B-lift eğrisi, kuaterniyon, dual uzay, lorentz uzay, Öklid uzay,

regle yüzey.
Sayfa Adedi : 77
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1. GİRİŞ

Eğriler teorisi diferensiyel geometri, kinematik, fizik, bilgisayar bilimi vb. alanlarda önemli

bir rol oynamaktadır. En çok bilinen eğrilerden biri de tabii lift eğrisidir. Tabii lift eğrisinin

tanımına ilk olarak Thorpe’un “Elementary Topics in Differential Geometry” kitabında

rastlanmıştır, bkz. [1]. Tanıma göre, bir eğrinin birim teğet vektörlerinin uç noktaları

birleştirilerek tabii lift eğrisi oluşturulmuştur. Tabii lift eğrileri birçok matematikçinin

dikkatini çekmiştir. Bu çalışmalardan bazıları [2–4]’dür. [2]’de araştırmacılar, ana eğrinin

Frenet operatörleri cinsinden tabii lift eğrisinin Frenet operatörlerini tanıtmışlardır. Eğriler

teorisine ek olarak, yüzey teorisi diferansiyel geometride büyük bir yere sahiptir. Bu

yüzeylerin en önemlilerinden biri de regle yüzeydir. Regle yüzey, bir doğrunun bir eğri

boyunca hareketi ile oluşan yüzeylerdir [5]. Geometrik değişmezlerinin incelenmesi

sebebiyle, bu yüzeylerin yorumlanması birçok yazarın ilgisini cezbetmiştir [6–11]. E.

Ergün ve M. Çalışkan [11] bir eğrinin tabii liftini dayanak eğrisi olarak kabul ederek regle

yüzeyler oluşturmuş ve bu yüzeyleri karakterize etmişlerdir.

3-boyutlu Öklid uzayında tanımlanan bir eğri eğrilik ve burulmasının durumuna göre

karakterize edilmektedir. Bu karakterizasyonu yapmak için, iki Fransız matematikçi J. F.

Frenet (1847) ve J. A. Serret (1851) tarafından bağımsız olarak keşfedilen Frenet-Serret

formülleri önemli bir rol oynamaktadır. Bu formüller, uzay eğrilerinin incelenmesi için

Frenet çerçevesini oluşturan üç vektör alanının türevlerini {T,N,B} vektör alanları

cinsinden ifade etmek için eğrilik ve burulma kullanan denklemlerdir. Örneğin bir

doğrunun eğriliği yoktur (yani κ=0) ve düzlemsel bir eğrinin burulması yoktur (yani

τ=0) [5]. Bir eğrinin teğet vektörü sabit bir doğruyla sabit açı yapıyorsa bu eğriye genel

helis denilmektedir [5]. 1802 yılında M. A. Lancret, genel heliste eğrilikler oranının eğri

boyunca sabit olduğunu kanıtlamıştır [12]. Birçok yazar [6, 13–17] helisler ve farklı tipte

helisler hakkında makaleler yazmıştır. S. Izumiya ve N. Takeuchi [6] eğrinin normal

vektörünü sabit bir doğruyla sabit açı yapıyorsa bu eğriyi slant helis olarak adlandırmıştır.

Sonrasında L. Kula, N. Ekmekci, Y. Yaylı, K. İlarslan [16] slant helislerin bazı

karakterizasyonlarını verdi ve R3’de slant helislerin Frenet operatörlerini tanıtmıştır. E.

Zıplar, A. Şenol ve Y. Yaylı [17] bir eğrinin Darboux vektörünün sabit bir doğru ile sabit bir
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açı yapıyorsa Darboux helis adını verdikleri eğriyi tanımlamışlardır. Ayrıca slant helisler ile

Darboux helisler arasındaki ilişkileri de vermişlerdir.

Riemann geometrisi teorik fiziğin gelişmesinde önemli bir rol oynamıştır. Ancak özel ve

genel göreliliği açıklamada yetersiz kalmıştır. Böylece düzgün bir manifold üzerinde bir

metrik ile tanımlanan Lorenziyen geometri ortaya çıkmıştır. Uzun yıllar boyunca Riemann

geometrisi ve Lorenziyen geometri ayrı ayrı geliştirilmiştir. Bu alan, 20. yüzyılda

Einstein’ın özel ve genel görelilik teorilerinde kullanılmasıyla popülaritesini artırmış ve

dolayısıyla gelişme fırsatı bulmuştur. Daha yakın zamanlarda da fizikçilerin artan ilgisi ile

bu fark tersine dönmüş ve ortak çalışmalar yapılmıştır. Günümüzde ister teorik, ister

uygulamalı olsun bilimin her alanında kullanılan bir yapı haline gelmiştir. Lorenziyen uzay,

Öklid uzayı ile farklılıklara ve benzerliklere sahiptir. Bu uzaydaki eğriler, uzaysal

(spacelike), zamansal (timelike) veya ışıksal (null) gibi Lorenziyen karakterlere sahiptir [5].

Bir uzay eğrisi parametreye bağlı olarak tanımlanabilir ve eğrinin Frenet operatörleri

karakterize edilebilir. Uzayda iki eğrinin karşılıklı noktalarında eğrilerin Frenet vektörleri

arasında ilişkiler kurularak bazı özel eğri tanımları verilmiştir. Bertrand eğrileri ve

involüt-evolüt eğrileri bu eğrilerden bazılarıdır. Bertrand eğrisinin ortaya çıkışı, 1845’te

Venant tarafından ortaya atılan problemden kaynaklanmaktadır. Venant, bir eğrinin asli

normalleri üzerinde üretilen bir yüzey üzerinde normalleri lineer olarak bağımlı olan başka

bir eğri olup olmadığı sorununu ortaya koymuştur. Bertrand bu problemi 1850 yılında

çözmüştür. 2018’de N. Ekmekci ve K. İllarslan Bertrand eğrileri üzerine temel bir çalışma

yapmıştır. Bu çalışmada Lorentzian uzayında Bertrand eğrilerini karakterize

etmişlerdir [18]. Bir eğrinin involütü, genellikle, birim hızlı bir eğrinin teğet vektörlerinin

dik yörüngeleri olarak adlandırılır. 1668’de, involüt eğriler fikri ilk olarak C. Huygens

tarafından optik çalışmaları sırasında keşfedildi. Daha sonra Millman ve Parker (1977) [19]

ve Hacısalihoğlu (1983) [20] involüt eğriler üzerine bazı temel teorem ve sonuçları

vermişlerdir. M. Çalışkan ve M. Bilici tarafından 2002 yılında involüt-evolüt eğrileri

üzerine temel bir çalışma incelenmiştir [21]. Bu çalışmada, esas eğrinin Frenet operatörleri

ile involüt eğrisinin Frenet operatörleri arasındaki ilişkiyi araştırmışlardır. Ayrıca 2009’da

yazarlar [22] involüt eğriler için, Lorentziyen uzayda null olmayan eğrilerin Frenet

vektörleri, eğrilik ve burulma ile ilgili bazı önemli sonuçlar ortaya koymuşlardır.
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Dual sayılar, W. K. Clifford (1843-1879) tarafından geometrik araştırmaları için bir araç

olarak ortaya atıldı. Sonrasında E. Study [23] dual sayı ve dual vektörü, çizgi geometrisi ve

kinematik çalışmalarında sistematik olarak uyguladı ve birim dual kürenin noktaları ile R3

deki yönlü doğruların arasında birebir eşleme olduğunu kanıtladı. Birçok matematikçi dual

uzayda eğriler üzerine çalışmalar yapmıştır. Dual uzayda involüt eğriler üzerine temel bir

çalışma S. Şenyurt, M. Bilici ve M. Çalışkan tarafından incelenmiştir [24]. Bu çalışmada esas

eğrinin Frenet operatörleri ile involüt eğrinin Frenet operatörleri arasındaki ilişkiyi ortaya

koymuşlardır. S. Özkaldı, K. İlarslan ve Y. Yaylı, bir eğrinin Mannheim çiftini D3 dual

uzayda tanımlamışlar ve aynı uzayda eğrinin Mannheim çifti için gerekli karakterizasyonları

elde etmişlerdir [25]. Sonrasında, M. A. Güngör ve M. Tosun dual uzayda esas eğri ve onun

Mannheim çiftinin eğrilik ve burulması arasındaki ilişkileri kanıtlamışlardır [26].

Literatürde, kuaterniyonlar ilk olarak İrlandalı matematikçi W. R. Hamilton [27] tarafından

karmaşık sayıları genelleştirmek için tanımlanmıştır. Cebirsel yapısına bakıldığında,

kuaterniyonlar, tanımlanan çarpma işlemine göre değişmeli olmamaları nedeniyle karmaşık

sayılardan farklıdır. Günümüz dünyasında kuaterniyonlar dönme hareketinin temsilinde çok

kullanışlıdır, bu nedenle robotik, DNA yapısının analizi, astrofizik, navigasyon sistemleri

vb. alanlarda uygulamalara sahiptir. 1985 yılında, K. Bharathi ve M. Nagaraj [28],

kuaterniyonik eğriyi 3-boyutlu ve 4-boyutlu uzaylarda tanıtmışlar ve bu eğrinin Frenet

aparatlarını vermişlerdir. Sonrasında kuaterniyonik eğrilerin diferensiyel geometrisi birçok

yazarın ilgisini çekmiştir. Bu çalışmalardan bazıları [29–37]’dur. [30]’da Kocayiğit ve

Pekacar, E3 ve E4 ’deki kuaterniyonik slant helislerin karakterizasyonlarını

incelemişlerdir. [31]’de Şahiner, uzaysal kuaterniyonik slant helislerin Frenet çerçevelerini

keşfetmiştir. [35]’de, Şenyurt ve ark., Smarandache eğrisinin birim Darboux vektörüne ve

normal vektörüne göre uzaysal kuaterniyonik involüt eğrisinin esas eğriliğini ve

burulmasını hesaplamışlardır.

Bu tez sekiz bölümden oluşmaktadır. İlk bölümde giriş kısmına yer verilmiştir.

İkinci bölümde, Öklid uzayında, Lorentz uzayında ve dual uzaydaki temel tanım ve

teoremlere yer verilmiştir.
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Üçüncü bölümde, 3-boyutlu Öklid uzayında B-Lift eğrileri tanımlanmıştır. Sonrasında, B-

Lift eğrisinin Frenet vektörleri bulunarak, B-Lift eğrisi ile tabii lift eğrisinin Frenet vektörleri

arasındaki eşitlikler elde edilmiştir. Ayrıca esas eğrinin slant helis (ya da Darboux helis) olma

durumuna göre, B-Lift eğrisi karakterize edilmiştir.

Dördüncü bölümde ise B-Lift eğrisinin teğet, normal ve binormal yüzeyi olarak adlandırılan

regle yüzeyler tanıtılmıştır. Ek olarak, bu regle yüzeylerin geometrik değişmezleri ve

tekillikleri incelenmiştir. Ayrıca, bu regle yüzeylerin Darboux alanı oluşturularak, B-Lift

eğrisinin jeodezik eğri, asimtotik eğri ve eğrilik çizgisi olma durumuna değinilmiştir.

Beşinci bölüm 3-boyutlu Lorentz uzayında B-Lift eğrilerinin incelenmesi için ayrılmıştır.

Bunun yanında, bir eğrinin Bertrand eğrisi ve B-Lift eğrisinin Frenet vektör alanları

arasındaki eşitlikler ile bir eğrinin involüt eğrisi ve B-Lift eğrisinin Frenet vektör alanları

arasındaki eşitlikler elde edilmiştir.

Altıncı bölümde, ilk olarak, dual uzayda B-Lift eğrileri tanımlanmıştır. Ardından dual

uzayda verilen bir eğrinin B-Lift eğrisinin Frenet operatörleri bulunmuştur. Sonrasında,

eğrinin dual slant helis ya da dual Darboux helis olma durumuna göre esas eğrinin B-Lift

eğrisinin dual genel helis olmasının gerek ve yeter şart olduğu ispatlanmıştır.

Yedinci bölümde ise birim hızlı uzaysal kuaterniyonik bir eğrinin B-Lifti olarak adlandırılan

eğri tanımlanmıştır. Daha sonra, B-Lift eğrisinin Frenet operatörleri, esas eğrinin Frenet

operatörleri cinsinden ifade edilmiştir. Son olarak, birim hızlı uzaysal kuaterniyonik eğrinin

slant helis olması için uzaysal kuaterniyonik B-Lift eğrisinin genel helis olmasının gerek ve

yeter şart olduğu gösterilmiştir.

Son olarak, sekizinci bölümde sonuç ve önerilere yer verilmiştir.



5

2. TEMEL TANIM VE KAVRAMLAR

Bu bölümde, diferensiyel geometrideki bazı temel tanım ve teoremler verilmiştir. Ayrıca,

tabii lift eğrisi, genel helis, Darboux helis, involüt-evolüt eğriler, Bertrand eğrileri gibi temel

kavramlar tanıtılacaktır. İlk olarak, Öklid uzayında temel kavramları verelim.

2.1. Öklid Uzayında Temel Kavramlar

2.1.1. Tanım

R3 uzayında A⃗=(a1,a2,a3) vektörü verilsin. ∥A⃗∥=
√

a2
1 +a2

2 +a2
3 eşitliğiyle tanımlanan

fonksiyona norm fonksiyonu (A’ nın normu) denir. Eğer ∥A⃗∥= 1 ise A⃗ vektörüne R3 de

birim vektör denir [38].

2.1.2. Tanım

R3 uzayında A⃗ = (a1,a2,a3) ve B⃗ = (b1,b2,b3) vektörleri verilsin. < A⃗, B⃗ >= a1b1+a2b2+

a3b3 şeklinde tanımlanan fonksiyona R3 de iç çarpım fonksiyonu denir [38].

2.1.3. Tanım

γ : I →R3 parametre eğrisi verilsin. Eğer γ
′
(s) ̸=0, s ∈ I ise, γ eğrisine regüler eğri denir [38].

2.1.4. Tanım

R3 uzayındaki γ eğrisi için γ
′
(s) = 1 oluyorsa γ eğrisine birim hızlı eğri denir [38].

2.1.5. Tanım

R3 uzayında birim hızlı γ eğrisi verilsin. {T (s),N(s),B(s)}, γ eğrisinin Frenet-Serret alanları

olarak adlandırılır, burada T (s) = γ
′
(s), γ(s) eğrisinin birim tanjant vektörüdür, birim asli

normal ve binormal vektörleri de sırasıyla N(s) = γ
′′
(s)

∥γ
′′
(s)∥

ve B(s) = T (s)×N(s) şeklindedir

[38].
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2.1.6. Tanım

R3 uzayında birim hızlı γ eğrisinin Frenet-Serret formülleri aşağıdaki şekildedir:

T
′
(s) = κ(s)N(s),

N
′
(s) = −κ(s)T (s)+ τ(s)B(s),

B
′
(s) = −τ(s)N(s),

burada κ(s) = ∥γ
′′
(s)∥ ve τ(s) = −⟨B′

(s),N(s)⟩ sırasıyla γ(s) eğrisinin eğrilik ve

burulmasıdır [38].

2.1.7. Tanım

M ⊂ R3 bir hiperyüzey olmak üzere γ : I → M birim hızlı eğrisi verilsin. O halde γ eğrisinin

integral eğrisi

γ
′
(s) = X(γ(s))

olarak tanımlanır, burada X , M üzerinde diferensiyellenebilir bir vektör alanıdır [2].

2.1.8. Tanım

γ : I → M birim hızlı bir eğri olsun. O halde γ eğrisinin tabii lifti γ̄ : I → TM aşağıdaki

şekilde tanımlanır [2]:

γ̄(s) = (γ(s),γ
′
(s)) = γ

′
(s)|γ(s).

Bu nedenle,

dγ̄(s)
ds

=
d
ds

(γ
′
(s))|γ(s)= D

γ
′
(s)γ

′
(s)

yazabiliriz. Burada D, R3 uzayında Levi-Civita konneksiyonudur.
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2.1.9. Teorem

R3 uzayında γ(s) eğrisinin tabii lifti γ̄(s) olsun. O halde, γ(s) ve γ̄(s) eğrilerinin Frenet

vektör alanları arasında aşağıdaki eşitlikler vardır:

T̄ (s) = N(s),

N̄(s) =− κ(s)
∥W (s)∥

T (s)+
τ(s)

∥W (s)∥
B(s),

B̄(s) =
τ(s)

∥W (s)∥
T (s)+

κ(s)
∥W (s)∥

B(s),

burada {T (s),N(s),B(s)} ve {T̄ (s), N̄(s), B̄(s)} sırasıyla esas eğrinin ve tabii lift eğrisinin

Frenet vektör alanlarıdır. W Darboux vektörü W = τT + κB şeklindedir. Ayrıca,

κ = ∥W∥cosϕ ve τ = ∥W∥sinϕ , γ(s) eğrisinin eğrilik ve burulmasıdır. Son olarak ϕ , γ(s)

eğrisinin Darboux vektörü ve binormal vektörü arasındaki açıdır [2].

2.1.10. Tanım

γ regüler eğrisinin tabii lifti γ̄(s) olsun. O halde aşağıdaki eşitlikler sağlanır:

κ̄(s) =
κ2 + τ2

∥W∥
, τ̄(s) =

−κ
′
(s)τ(s)+κ(s)τ

′
(s)

∥W∥2

burada κ̄ ve τ̄ sırasıyla γ̄(s) eğrisinin eğrilik ve burulmasıdır [2].

2.1.11. Önerme

γ : I →R3 birim hızlı eğrisi κ eğriliği ve τ burulmasıyla verilsin. γ eğrisi genel helistir gerek

ve yeter şart τ

κ
oranı sabittir [6].

2.1.12. Önerme
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κ ̸= 0 ile birlikte γ : I → R3 birim hızlı eğrisi verilsin. γ , slant helistir gerek ve yeter şart

σ(s) =
κ2

(κ2 + τ2)
3
2
(

τ

κ
)
′
(s)

sabit bir fonksiyondur [6].

2.1.13. Teorem

γ : I → R3 eğrisi Darboux helistir gerek ve yeter şart

σ
∗(s) =

(κ2 + τ2)
3
2

κ2
1

( τ

κ
)
′
(s)

sabit bir fonksiyondur [17].

2.1.14. Teorem

τ

κ
oranı sabit olmama şartıyla, R3 uzayında γ eğrisi verilsin. O halde γ eğrisi slant helistir

gerek ve yeter şart γ eğrisi Darboux helistir [17].

2.1.15. Tanım

M ⊂ R3 yüzeyi verilsin. M yüzeyinin her noktasında, R3 uzayının M yüzeyinde kalan bir

doğrusu varsa M yüzeyine bir regle yüzey denir ve aşağıdaki parametrizasyonla verilir:

φ(s,v) = γ(s)+ vω(s),

burada γ(s) dayanak eğrisi, ω(s) de birim doğrultman vektörü ifade etmektedir [20].

2.1.16. Tanım

φ(s,v) regle yüzeyinin komşu iki doğrultmanının orta dikmesinin doğrultmanlar üzerindeki

ayaklarına striksiyon noktası denir [20].
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2.1.17. Tanım

φ(s,v) regle yüzeyinin ana doğrusu dayanak eğrisini oluştururken striksiyon noktalarının

geometrik yerine striksiyon eğrisi denir ve striksiyon eğrisinin yer vektörü aşağıdaki şekilde

tanımlanır [20]:

b(s) = γ(s)− < γ
′
(s),ω

′
(s)>

< ω
′
(s),ω ′

(s)>
ω(s).

2.1.18. Tanım

φ(s,v) regle yüzeyinin ana doğruları boyunca teğet düzlemleri aynı kalıyorsa regle yüzeye

açılabilirdir denir [20].

2.1.19. Tanım

Regle yüzeyin komşu iki ana doğrusu arasındaki en kısa uzaklığın ana doğrular arasındaki

açıya oranına regle yüzeyin dağılma parametresi (dral) denir ve aşağıdaki şekilde tanımlanır

[20]:

Pw =
det(γ

′
,ω,ω

′
)

||ω ′ ||2
.

2.1.20. Teorem

φ(s,v) regle yüzeyi açılabilirdir gerek ve yeter şart Pw = 0 dır [20].

2.1.21. Teorem

φ(s,v) bir regle yüzey olsun. O halde φ(s,v) regle yüzeyinin Gauss ve ortalama eğrilikleri

sırasıyla aşağıdaki şekildedir:

K(s,v) =−(det(γ
′
(s),ω(s),ω

′
(s)))2

(EG−F2)2 ,

H(s,v) =
−2 < γ

′
(s),ω(s)> det(γ

′
(s),ω(s),ω

′
(s))+det(γ

′′
(s)+ vω

′′
(s),γ

′
(s)+ vω

′
(s),ω(s))

2(EG−F2)3/2 ,
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burada E = E(s,v) = ||γ ′
(s)+ vω

′
(s)||2,F = F(s,v) =< γ

′
(s),ω(s) >,G = G(s,v) = 1 dir

[39].

2.1.22. Tanım

γ , R3 uzayında regüler bir eğri ve {T (s),N(s),B(s)} de γ eğrisinin Frenet vektörleri olsun.

O halde, γ eğrisinin teğet, normal ve binormal yüzeyleri aşağıdaki şekilde tanımlıdır [39]:

φT (s,v) = γ(s)+ vT (s)

φN(s,v) = γ(s)+ vN(s)

φB(s,v) = γ(s)+ vB(s)

ve φ regle yüzeyi için birim normal vektör
φs×φv

∥φs×φv∥ şeklindedir.

2.1.23. Tanım

M, R3 uzayında bir yüzey ve γ da M üzerinde bir eğri olsun. O halde, {T,V,U} Darboux

alanı olarak adlandırılır, burada T = γ
′
, U , M nin birim normal vektörü ve V = U ×T dir.

Darboux alanı için Frenet-Serret formülleri aşağıdaki şekildedir [38]:


T

′

V
′

U
′

 =


0 kg kn

−kg 0 τg

−kn −τg 0




T

V

U

,

burada kg = ⟨U ×T,T
′⟩, kn = ⟨γ ′′

,U⟩ ve τg = ⟨T,U ×U
′⟩ sırasıyla jeodezik eğrilik, normal

eğrilik ve jeodezik burulmadır.

2.1.24. Tanım

γ , M yüzeyi üzerinde yatan regüler bir eğri olsun. O halde, aşağıdaki eşitlikler sağlanır [38]:

i) γ jeodezik bir eğridir gerek ve yeter şart kg = 0 dır.
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ii) γ asimtotik bir eğridir gerek ve yeter şart kn = 0 dır.

iii) γ eğrisi bir eğrilik çizgisidir gerek ve yeter şart τg = 0 dır.

2.1.25. Tanım

Kuaterniyonların kümesi aşağıdaki şekilde temsil edilir [27]:

H= {q = a+bi+ c j+dk : a,b,c,d ∈ R},

bu küme R üzerinde 4-boyutlu bir vektör uzayıdır ve burada a,b,c,d reel sayılar, i, j ve k

birim vektörleri arasında da aşağıdaki eşitlikler vardır [40]:

i2 = j2 = k2 =−1, i j =− ji = k,

jk =−k j = i, i jk =−1,ki =−ik = j.

2.1.26. Tanım

Bir q = a+bi+ c j+dk kuaterniyonu aşağıdaki şekilde yazılabilir:

q = Sq +Vq,

burada Sq = a ∈ R skalar kısım, Vq = bi+ c j+dk ∈ R3 de vektörel kısımdır [40].

2.1.27. Tanım

Bir kuaterniyonun eşleniği aşağıdaki şekilde tanımlanır [40]:

q = Sq −Vq.

2.1.28. Tanım
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Kuaterniyonik iç çarpım aşağıdaki şekilde tanımlıdır [40]:

h : H×H→ R, h(q, p) =
1
2
(q× p+ p×q).

2.1.29. Tanım

Bir kuaterniyonun normu

∥q∥=
√

a2 +b2 + c2 +d2

şeklinde tanımlıdır [40].

2.1.30. Tanım

q+q = 0 eşitliğini sağlayan q kuaterniyonuna uzaysal kuaterniyon denir [41].

2.1.31. Tanım

Herhangi q1 = a1 + b1i+ c1 j+ d1k, q2 = a2 + b2i+ c2 j+ d2k kuaterniyonları için toplama

ve çarpma işlemleri sırasıyla aşağıdaki şekilde tanımlıdır [41]:

q1 +q2 = Sq1+q2 +Vq1+q2,

q1 ×q2 = (a1 +b1i+ c1 j+d1k)× (a2 +b2i+ c2 j+d2k)

= (a1a2 −b1b2 − c1c2 −d1d2)+(c1d2 +b1a2 −d1c2 + c1d2)i

+(c1a2 +a1c2 −b1d2 +d1b2) j+(d1a2 +a1d2 − c1b2 +b1c2)k.

2.1.32. Tanım

3-boyutlu Öklid uzayında uzaysal kuaterniyonların kümesi QH = {q∈H : q+q= 0} şeklinde

bariz olarak tanımlanabilir. I = [0,1], R de açık bir aralık ve s ∈ I da eğri boyunca tanımlı bir

parametre olsun. O halde aşağıdaki şekilde tanımlanan γ eğrisine uzaysal kuaterniyonik eğri
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denir:

γ : [0,1]→QH, γ(s) =
3

∑
i=1

γi(s)ei (1 ≤ i ≤ 3),

burada γ
′
= t birim teğet vektör, yani her s ∈ I için ∥t∥= 1 dir [28].

2.1.33. Tanım

γ , s yay uzunluğu parametresi ile birlikte bir diferensiyellenebilir uzaysal kuaterniyonik eğri

olsun. O halde, γ(s) eğrisinin Frenet vektörleri ve eğrilikleri sırasıyla aşağıdaki şekilde

tanımlıdır [28]:

t(s) = γ
′
(s), n(s) =

γ
′′
(s)

∥γ
′′
(s)∥

, b(s) = t(s)×n(s)

ve

κ(s) = ∥γ
′
(s)× γ

′′
(s)∥, τ(s) =

h(γ
′
(s)× γ

′′
(s),γ

′′′
(s))

∥γ
′
(s)× γ

′′
(s)∥2

Ek olarak, aşağıdaki eşitlikler sağlanır [29]:

t(s)× t(s) = n(s)×n(s) = b(s)×b(s) =−1,

t(s)×n(s) = b(s) =−n(s)× t(s),

n(s)×b(s) = t(s) =−b(s)×n(s),

b(s)× t(s) = n(s) =−t(s)×b(s).

2.1.34. Tanım

γ , QH üzerinde tanımlı birim hızlı uzaysal kuaterniyonik eğri ve {t(s),n(s),b(s)}, γ eğrisinin
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Frenet alanları olsun. O halde γ eğrisinin Frenet formülleri aşağıdaki şekilde tanımlıdır [29]:

t
′
(s) = κ(s)n(s)

n
′
(s) = −κ(s)t(s)+ τ(s)b(s)

b
′
(s) = −τ(s)n(s)

burada κ ve τ sırasıyla γ eğrisinin eğrilik ve burulmasıdır.

2.1.35. Tanım

γ bir uzaysal kuaterniyonik eğri olsun. γ eğrisinin birim teğet vektörü t, sabit birim U

kuaterniyonuyla sabit bir açı yapıyorsa γ eğrisine uzaysal kuaterniyonik helis adı

verilir [29].

2.1.36. Teorem

κ ̸= 0 ile birlikte γ uzaysal kuaterniyonik eğrisi verilsin. γ uzaysal kuaterniyonik bir eğridir

gerek ve yeter şart aşağıdaki eşitlik sağlanır [29]:

τ

κ
= sabit.

2.1.37. Tanım

γ bir uzaysal kuaterniyonik eğri olsun. γ eğrisinin birim asli normal vektörü n, sabit birim

U kuaterniyonuyla sabit bir açı yapıyorsa γ eğrisine uzaysal kuaterniyonik slant helis adı

verilir [29].

2.1.38. Teorem

κ ̸= 0 ile birlikte γ uzaysal kuaterniyonik eğrisi verilsin. γ uzaysal kuaterniyonik slant helistir

gerek ve yeter şart aşağıdaki eşitlik sağlanır [29]:

κ2

(τ2 +κ2)3/2 (
τ

κ
)
′
= sabit.
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Şimdi Lorentz uzayında temel kavramları inceleyelim.

2.2. Lorentz Uzayında Temel Kavramlar

2.2.1. Tanım

R3 reel vektör uzayı üzerinde tanımlı aşağıdaki şekilde tanımlı fonksiyona Lorenziyen iç

çarpım denir ve Lorentz uzayı R3
1 ile gösterilir [42]:

< x,y >L=−x1y1 + x2y2 + x3y3

burada x = (x1,x2,x3) , y = (y1,y2,y3) ∈ R3 dir.

2.2.2. Tanım

x = (x1,x2,x3), R3
1 uzayında tanımlı bir vektör olsun. O halde, ⟨ x,x ⟩ > 0 ya da x = 0 ise x

vektörü spacelike, ⟨ x,x ⟩< 0 ise x vektörü timelike ve eğer ⟨ x,x ⟩ = 0 ve x ̸= 0 ise x vektörü

lightlike (null) olarak adlandırılır [42].

2.2.3. Tanım

γ : I ⊂ R → R3
1 eğrisi verilsin. Eğer γ

′
(s) herhangi bir s ∈ I noktasında spacelike, timelike

ya da lightlike ise γ eğrisi sırasıyla spacelike, timelike ya da lightlike dır denir [42].

2.2.4. Tanım

Lorenziyen iç çarpım kullanılarak x = (x1,x2,x3) vektörünün normu aşağıdaki şekilde

tanımlanır [42]:

∥x∥L=
√
|⟨x,x⟩|.

2.2.5. Tanım
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∥x∥=1 ise x vektörü birim vektör olarak adlandırılır [42].

2.2.6. Tanım

R3
1 de x ve y vektörleri verilsin. x ve y vektörlerinin vektörel çarpımı Lorenziyen vektörel

çarpım olarak adlandırılır ve aşağıdaki şekilde tanımlanır [43]:

x× y =

∣∣∣∣∣∣∣∣∣
e1 −e2 −e3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣∣∣ .

2.2.7. Tanım

γ eğrisi Lorentz uzayında tanımlı birim hızlı bir eğri olsun. {T (s),N(s),B(s)} kümesi γ

eğrisinin Frenet vektörlerinin kümesidir ve sırasıyla teğet, normal ve binormal vektör olarak

adlandırılır. γ eğrisinin Lorenziyen karakteri Frenet formüllerine göre aşağıdaki şekilde

karakterize edilir [44]:

i) γ eğrisi birim hızlı spacelike binormalli spacelike bir eğri olsun. O halde, T ve B spacelike

vektörler, N timelike bir vektördür. Bu şartlarda aşağıdakileri yazabiliriz:

N ×B =−T, T ×N =−B, B×T =−N.

Frenet formülleri de aşağıdaki şekildedir:

T
′

= κN,

N
′

= κT + τB,

B
′

= τN.

ii) γ eğrisi birim hızlı timelike binormalli spacelike bir eğri olsun. O halde, T ve N spacelike

vektörlerdir, B timelike bir vektördür. Bu şartlarda aşağıdakileri yazabiliriz:

N ×B =−T, T ×N = B, B×T =−N.
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Frenet formülleri de aşağıdaki şekildedir:

T
′

= κN,

N
′

= −κT + τB,

B
′

= τN.

iii) γ eğrisi birim hızlı timelike bir eğri olsun. O halde, N, B spacelike vektörlerdir ve T bir

timelike vektördür. Bu şartlarda, aşağıdakiler sağlanır:

N ×B = T, T ×N =−B B×T =−N.

Frenet formülleri de aşağıdaki şekildedir:

T
′

= κN,

N
′

= κT + τB,

B
′

= −τN.

2.2.8. Lemma

x ve y, R3
1 de bir spacelike alt vektör uzayı tarafından gerilen lineer bağımsız spacelike

vektörler olsun. Bu durumda aşağıdaki eşitsizlik sağlanır [45]:

|⟨x,y⟩|≤ ∥x∥.∥y∥.

Buradan aşağıdakiler yazılabilir:

⟨x,y⟩= ∥x∥.∥y∥cosϕ.

burada ϕ , x ve y arasındaki Lorenziyen spacelike açıdır.

2.2.9. Lemma

x ve y, R3
1 de bir timelike alt vektör uzayı tarafından gerilen lineer bağımsız spacelike
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vektörler olsun. Bu durumda aşağıdaki eşitsizlikler sağlanmış olur [45]:

|⟨x,y⟩|> ∥x∥.∥y∥.

Buradan da aşağıdakileri yazabiliriz:

⟨x,y⟩= ∥x∥.∥y∥cosϕ.

burada ϕ , x ve y arasındaki Lorenziyen spacelike açıdır.

2.2.10. Lemma

R3
1 de x spacelike vektörü ve y timelike vektörü verilsin. Bu durumda, aşağıdakiler sağlanır

[45]:

|⟨x,y⟩|= ∥x∥.∥y∥sinhϕ.

burada ϕ , x ve y arasındaki Lorenziyen timelike açıdır.

2.2.11. Lemma

R3
1 de x ve y timelike vektörleri verilsin. Bu durumda, aşağıdakiler sağlanır [45]:

⟨x,y⟩= ∥x∥.∥y∥coshϕ.

burada ϕ , x ve y arasındaki Lorenziyen timelike açıdır.

2.2.12. Tanım

γ= (γ(s); T (s), N(s), B(s)) ve γ̃= (γ̃(s̃); T̃ (s̃), Ñ(s̃), B̃(s̃)), R3
1 de tanımlı regüler eğriler

olsun. N(s) ve Ñ(s̃) vektörleri lineer bağımlı ise bu durumda (γ , γ̃) Bertrand çifti olarak

adlandırılır [18].
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2.2.13. Önerme

(γ , γ̃), timelike-spacelike Bertrand çifti olsun. γ eğrisinin Frenet vektör alanları {T , N, B}

ile γ̃ eğrisinin Frenet vektör alanları {T̃ , Ñ, B̃} arasında aşağıdaki eşitlikler vardır [46]:


T ∗

N∗

B∗

 =


sinhθ 0 coshθ

0 1 0

−coshθ 0 −sinhθ




T

N

B

.

burada θ , T ve T̃ arasındaki hiperbolik timelike açıdır.

2.2.14. Önerme

(γ , γ̃) timelike Bertrand çifti olsun. Aşağıdaki eşitlikler sağlanır [46]:


T̃

Ñ

B̃

 =


coshθ 0 sinhθ

0 1 0

−sinhθ 0 coshθ




T

N

B

.

burada θ , T ve T̃ arasındaki hiperbolik timelike açıdır.

2.2.15. Önerme

γ ve γ̃ spacelike binormalli spacelike eğriler olsun. O halde, γ eğrisinin Frenet vektör alanları

{T , N, B} ile γ̃ eğrisinin Frenet vektör alanları {T̃ , Ñ, B̃} arasında aşağıdaki eşitlikler vardır

[46]:


T̃

Ñ

B̃

 =


cosθ 0 sinθ

0 1 0

sinθ 0 −cosθ




T

N

B

,

burada, ⟨T, T̃ ⟩ = cosθ = sabit dir.

2.2.16. Önerme
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γ timelike binormalli spacelike eğri olsun. O halde, γ eğrisinin Bertrand eğrisi spacelike

eğridir ve B̃ timelike vektördür. γ eğrisinin Frenet vektör alanları {T , N, B} ile γ̃ eğrisinin

Frenet vektör alanları {T̃ , Ñ, B̃} arasında aşağıdaki eşitlikler sağlanır [46]:


T̃

Ñ

B̃

 =


coshθ 0 sinhθ

0 1 0

sinhθ 0 −coshθ




T

N

B

,

burada, ⟨T, T̃ ⟩ = coshθ = sabit dir.

2.2.17. Önerme

Timelike binormalli spacelike γ eğrisi verilsin. O halde, γ eğrisinin Bertrand eğrisi timelike

eğridir. γ eğrisinin Frenet vektör alanları {T , N, B} ile γ̃ eğrisinin Frenet vektör alanları {T̃ ,

Ñ, B̃} arasında aşağıdaki eşitlikler vardır [46]:


T̃

Ñ

B̃

 =


sinhθ 0 coshθ

0 1 0

coshθ 0 −sinhθ




T

N

B

.

burada, ⟨T, T̃ ⟩ = sinhθ = sabit dir.

2.2.18. Tanım

γ= (γ(s); T (s), N(s), B(s)) ve γ∗= (γ∗(s∗); T ∗(s∗), N∗(s∗), B∗(s∗)), R3
1 de tanımlı eğriler

olsun. Eğer, ⟨T (s),T ∗(s∗)⟩ = 0 oluyorsa γ∗(s∗) eğrisine γ(s) nin involütü γ(s) eğrisine de

γ∗(s∗) ın evolütü denir. Bu durumda, (γ , γ∗) involüt-evolüt eğri çifti olarak adlandırılır [47].

2.2.19. Önerme

γ timelike bir eğri olsun. O halde, γ∗ timelike ya da spacelike binormalli spacelike eğridir.
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γ eğrisinin Frenet vektör alanları {T , N, B} ile γ∗ eğrisinin Frenet vektör alanları {T ∗, N∗,

B∗} arasında aşağıdaki eşitlikler vardır [47]:

i) γ∗ spacelike binormalli spacelike eğri olsun.

a) Eğer W Darboux vektörü timelike ise, aşağıdakiler sağlanır:


T ∗

N∗

B∗

 =


0 1 0

sinhθ 0 coshθ

−coshθ 0 −sinhθ




T

N

B

.

b) Eğer W Darboux vektörü spacelike ise, aşağıdakiler sağlanır:


T ∗

N∗

B∗

 =


0 1 0

coshθ 0 sinhθ

−sinhθ 0 −coshθ




T

N

B

.

ii) γ∗ timelike binormalli spacelike eğri olsun.

a) W Darboux vektörü timelike ise aşağıdakiler sağlanır:


T ∗

N∗

B∗

 =


0 1 0

−sinhθ 0 −coshθ

−coshθ 0 −sinhθ




T

N

B

.

b) Eğer W Darboux vektörü spacelike ise, aşağıdakiler sağlanır:


T ∗

N∗

B∗

 =


0 1 0

−coshθ 0 −sinhθ

−sinhθ 0 −coshθ




T

N

B

.

2.2.20. Önerme

γ eğrisi timelike veya spacelike binormalli spacelike eğri olsun. O halde, γ∗ eğrisi spacelike

eğridir. Bu durumda aşağıdaki eşitlikler sağlanır [47]:

i) γ∗ eğrisi spacelike binormalli spacelike eğri olsun.
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
T ∗

N∗

B∗

 =


0 1 0

cosθ 0 sinθ

sinθ 0 −cosθ




T

N

B

,

ii) γ∗ eğrisi timelike binormalli spacelike eğri olsun.

a) Eğer W Darboux vektörü timelike ise aşağıdaki denklemler sağlanır:


T ∗

N∗

B∗

 =


0 1 0

coshθ 0 −sinhθ

sinhθ 0 −coshθ




T

N

B

.

b) Eğer W Darboux vektörü spacelike ise aşağıdaki denklemler sağlanır:


T ∗

N∗

B∗

 =


0 1 0

sinhθ 0 −coshθ

coshθ 0 −sinhθ




T

N

B

.

2.2.21. Önerme

γ spacelike binormalli spacelike eğri olsun. O halde, γ∗ eğrisi spacelike eğridir. γ eğrisinin

Frenet vektör alanları {T , N, B} ile γ∗ eğrisinin Frenet vektör alanları {T ∗, N∗, B∗} arasında

aşağıdaki eşitlikler vardır [47]:

i) γ∗ spacelike binormalli spacelike eğri olsun.


T ∗

N∗

B∗

 =


0 1 0

sinθ 0 −cosθ

−cosθ 0 −sinθ




T

N

B

.

ii) γ∗ timelike binormalli spacelike eğri olsun.


T ∗

N∗

B∗

 =


0 1 0

sinθ 0 −cosθ

cosθ 0 sinθ




T

N

B

.
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2.2.22. Önerme

γ eğrisi timelike binormalli spcalike eğri olsun. O halde, γ∗ spacelike bir eğridir. Bu

durumda, γ∗ eğrisi spacelike eğridir. γ eğrisinin Frenet vektör alanları {T , N, B} ile γ∗

eğrisinin Frenet vektör alanları {T ∗, N∗, B∗} arasında aşağıdaki eşitlikler sağlanır [47]:

i) γ∗ spacelike binormalli spacelike eğri olsun.

a) Eğer W Darboux vektörü spacelike ise o halde aşağıdakiler sağlanır:


T ∗

N∗

B∗

 =


0 1 0

−sinhθ 0 coshθ

coshθ 0 −sinhθ




T

N

B

.

b) Eğer W Darboux vektörü timelike ise o halde aşağıdakiler sağlanır:


T ∗

N∗

B∗

 =


0 1 0

−coshθ 0 sinhθ

sinhθ 0 −coshθ




T

N

B

.

ii) γ∗ timelike binormalli spacelike eğri olsun.

a) Eğer W Darboux vektörü spacelike ise aşağıdakiler sağlanır:


T ∗

N∗

B∗

 =


0 1 0

sinhθ 0 −coshθ

coshθ 0 −sinhθ




T

N

B

.

b) Eğer W Darboux vektörü timelike ise aşağıdakiler sağlanır:


T ∗

N∗

B∗

 =


0 1 0

coshθ 0 −sinhθ

sinhθ 0 −coshθ




T

N

B

.
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Şimdi de dual uzayda temel kavramları verelim.

2.3. Dual Uzayda Temel Kavramlar

2.3.1. Tanım

Dual sayılar kümesi D = {A = a+ εa∗ : a,a∗ ∈ R,ε2 = 0} şeklinde tanımlanır. Bu küme

üzerinde toplama ve çarpma işlemleri sırasıyla aşağıdaki şekildedir [40]:

(a+ εa∗)+(b+ εb∗) = (a+b)+ ε(a∗+b∗),

(a+ εa∗).(b+ εb∗) = ab+ ε(ab∗+a∗b)

2.3.2. Tanım

D3={A⃗ : A⃗ = a⃗+ε a⃗∗, a⃗, a⃗∗ ∈R3} kümesinin elemanları dual vektörler olarak adlandırılır. Bu

küme üzerinde toplama ve çarpma operasyonları sırasıyla aşağıdaki şekilde tanımlıdır [40]:

A⃗⊕ B⃗ = (⃗a+ b⃗)+ ε(a⃗∗+ b⃗∗),

λ̃ ⊙ A⃗ = λ a⃗+ ε(λ a⃗∗+λ ∗⃗a)

burada λ̃ = λ + ελ ∗ ∈ D.

2.3.3. Tanım

(D3,⊕) kümesi (D,⊕,⊙) halkası üzerinde bir modüldür ve D-Modül olarak adlandırılır. D3

deki dual vektörlerin iç çarpımı ve vektörel çarpımı sırasıyla aşağıdaki şekilde tanımlanır

[40]:

< A⃗, B⃗ > = < a⃗,⃗b >+ε(< a⃗,⃗b∗ >+< a⃗∗ ,⃗b >),

A⃗∧ B⃗ = < a⃗,⃗b >+ε (⃗a∧ b⃗∗+ a⃗∗∧ b⃗).

2.3.4. Tanım
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Sıfırdan farklı A⃗ için A⃗ = a⃗+ ε a⃗∗ dual vektörünün normu aşağıdaki şekilde tanımlıdır [40]:

∥A⃗∥=
√

< A⃗, A⃗ >= ∥⃗a∥+ε
< a⃗, a⃗∗ >

∥⃗a∥
, ∥⃗a∦= 0.

2.3.5. Tanım

A⃗ ve B⃗ dual vektörleri arasındaki Φ = ϕ + εϕ∗ dual açısı şu şekilde tanımlanır [40]:

< A⃗, B⃗ >= cosΦ = cosϕ − εϕ
∗sinϕ.

2.3.6. Tanım

γ̃ : I ⊂R→D3, γ̃(s) = γ(s)+εγ∗(s), D3 de tanımlı diferensiyellenebilir birim hızlı dual eğri

olsun. T (s),N(s),B(s), γ̃(s) eğrisinin Frenet-Serret alanları olarak adlandırılır. O halde, T ,

N ve B sırasıyla dual teğet, dual esas normal and dual binormal vektörlerdir. κ(s) = k1+εk∗1

ve τ(s) = k2 + εk∗2 fonksiyonları da sırasıyla dual eğrilik ve dual burulma olarak adlandırılır

[48].

2.3.7. Tanım

γ̃(s), D3 de tanımlı diferensiyellenebilir birim hızlı dual eğri olsun. γ̃(s) eğrisinin Frenet

formülleri aşağıdaki şekildedir [48]:

T
′
(s) = κ(s)N(s),

N
′
(s) = −κ(s)T (s)+ τ(s)B(s),

B
′
(s) = −τ(s)N(s),

burada κ(s) =
√
< T ′

,T ′
> ve τ(s) =−⟨B′

(s),N(s)⟩ sırasıyla γ̃(s) eğrisinin dual eğrilik ve

dual burulma fonksiyonlarıdır.

2.3.8. Tanım
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B ve W dual vektörleri arasındaki dual açı Φ olsun. O halde aşağıdaki eşitlikler sağlanır [48]:

cosΦ =
κ

κ2 + τ2 , sinΦ =
τ

κ2 + τ2 ,

burada

cosΦ = cos(ϕ + εϕ) = cosϕ − εϕ
∗sinϕ, sinΦ = sin(ϕ + εϕ) = sinϕ + εϕ

∗cosϕ

şeklindedir. cosΦ = κ

κ2+τ2 reel ve dual kısımlarına ayrılırsa

cosϕ =
k1

k2
1 + k2

2

sinϕ =
2k2

1 + k∗1 +2k1k2k∗2 − k2
1k∗1 − k2

2k∗1
ϕ(k2

1 + k2
2)

2 .

elde edilir. Eğer sinΦ = τ

κ2+τ2 reel ve dual kısımlarına ayrılırsa

sinϕ =
k2

k2
1 + k2

2

cosϕ =
k2

1 + k∗2 −2k1k2k∗1 −2k2
2k∗2

ϕ(k2
1 + k2

2)
2 .

elde edilir.

2.3.9. Tanım

γ : I → D3 eğrisinin dual teğet vektörü sabit bir birim dual vektörle sabit bir dual açı

yapıyorsa γ eğrisi dual genel helis olarak adlandırılır [49].

2.3.10. Tanım

γ : I →D3 eğrisinin dual Darboux vektörü ile sabit bir birim dual vektörle sabit açı yapıyorsa

γ eğrisi dual Darboux helis olarak adlandırılır [50].

2.3.11. Tanım
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γ : I → D3 eğrisinin dual normal vektörü ile sabit bir birim dual vektör sabit açı yapıyorsa γ

eğrisi dual slant helis olarak adlandırılır [49].

2.3.12. Önerme

γ : I → D3 eğrisi, κ ve τ dual eğrilikleri ile birlikte birim hızlı bir dual eğri olsun. O halde,

γ eğrisi dual genel helistir gerek ve yeter şart τ

κ
oranı dual bir sabittir [49].

2.3.13. Önerme

γ : I → D3 eğrisi, κ ve τ dual eğrilikleri ile birlikte birim hızlı bir dual eğri olsun. γ eğrisi

dual slant helistir gerek ve yeter şart

σ(s) =
κ2

(κ2 + τ2)
3
2
(

τ

κ
)
′
(s)

oranı dual sabit fonksiyondur [49].

2.3.14. Önerme

γ : I → D3 eğrisi dual Darboux helistir gerek ve yeter şart

σ
∗(s) =

(κ2 + τ2)
3
2

κ2
1

( τ

κ
)
′
(s)

oranı dual sabit bir fonksiyondur [50].
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3. 3-BOYUTLU ÖKLİD UZAYINDA B-LİFT EĞRİLERİ

Bu bölümde, esas eğrinin binormal vektörlerinin uç noktalarının birleştirilmesiyle elde

edilen B-Lift eğrisini tanımlıyoruz. Ayrıca B-Lift eğrilerinin Frenet operatörlerini elde edip,

B-Lift eğrilerinin Frenet operatörlerini tabii lift eğrilerinin Frenet operatörleri ile

karşılaştırıyoruz. Ayrıca esas eğrinin slant helis ya da Darboux helix mi olma durumuna

göre B-Lift eğrisinin durumunu inceliyoruz ve bu durumlarla ilgili örnek veriyoruz.

3.1. R3 Uzayında B-Lift Eğrileri İçin Karakterizasyonlar

3.1.1. Tanım

Herhangi bir birim hızlı γ : I → M eğrisinin B-Lifti γB : I → TM şu şekilde tanımlanır:

γB(s) = (γ(s),B(s)) = B(s)|γ(s) (3.1)

burada B, γ eğrisinin binormal vektörüdür.

3.1.2. Teorem

γB eğrisi regüler bir γ eğrisinin B-Lifti olsun. O halde aşağıdaki eşitlikler sağlanır:

TB(s) = −N(s),

NB(s) = κ(s)
∥W (s)∥T (s)− τ(s)

∥W (s)∥B(s),

BB(s) = τ(s)
∥W (s)∥T (s)+ κ(s)

∥W (s)∥B(s)

burada {T (s),N(s),B(s)} ve {TB(s),NB(s),BB(s)} sırasıyla γ ve γB eğrilerinin Frenet

vektörleridir. Ek olarak, κ ve τ , γ eğrisinin eğrilikleri W = τT +κB da γ eğrisinin Darboux

vektörüdür. (Özel olarak, burulma pozitif kabul edilmiştir.)

İspat
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γB eğrisi γ eğrisinin B-Lifti olsun, o halde aşağıdakileri yazabiliriz:

γB = B , γ
′
B =−τN

TB(s) =
γ
′
B

∥γ
′
B∥

= −τN
|τ| =−N (τ > 0),

γ
′′
B = −τ

′
N − τ(−κT + τB),

γ
′′
B = κτT − τ

′
N − τ2B,

γ
′
B × γ

′′
B = τ3T +κτ2B,

∥γ
′
B × γ

′′
B∥ = τ2

√
κ2 + τ2.

(3.2)

BB(s) =
γ
′
B×γ

′′
B

∥γ
′
B×γ

′′
B∥

ve (3.2) eşitliği kullanılırsa

BB(s) =
τ

∥W∥
T +

κ

∥W∥
B. (3.3)

elde edilir. (3.2) ve (3.3) eşitlikleri kullanılarak aşağıdakilere sahip oluruz:

NB(s) = BB(s)×TB(s) =
κ

∥W∥
T − τ

∥W∥
B. (3.4)

(3.2), (3.3) ve (3.4) denklemleriyle ispat tamamlanır.

3.1.3. Teorem

R3 de verilen regüler bir γ eğrisinin B-Lifti γB olsun. O halde, aşağıdaki formüller sağlanır:

κB(s) =

√
κ2 + τ2

τ
, τB(s) =

κ
′
τ −κτ

′

τ(κ2 + τ2)
,

burada κB ve τB sırasıyla γB eğrisinin eğrilik ve burulmasıdır.

İspat

(3.2) eşitliğinden biliyoruz ki

∥γ
′
B × γ

′′
B∥= τ

√
κ2 + τ2 , ∥γ

′
B∥= τ. (3.5)
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κB =
||γ ′B×γ

′′
B ||

||γ ′B||3
eşitliğinden aşağıdaki denklem sağlanır:

κB(s) =

√
κ2 + τ2

τ
. (3.6)

γB nin burulması aşağıdaki şekilde bulunur:

τB =
< γ

′
B × γ

′′
B,γ

′′′
B >

∥γ
′
B × γ

′′
B∥2

. (3.7)

(3.2) kullanılarak aşağıdaki eşitliğe sahip oluruz:

γ
′′′
B = (κ

′
τ +2κτ

′
)T +(κ2

τ − τ
′′
+ τ

3)N −3ττ
′
B. (3.8)

(3.2) ve (3.8) eşitliklerinden aşağıdaki eşitliğe sahip oluruz:

τB(s) =
κ

′
τ −κτ

′

τ(κ2 + τ2)
. (3.9)

3.1.4. Teorem

γ : I → R3 eğrisi slant helistir gerek ve yeter şart γB eğrisi genel helistir.

İspat

Kabul edelim ki γ eğrisi slant helis olsun. Önerme 2.1.12 den aşağıdakiler sağlanır:

σ(s) =
κ2

(κ2 + τ2)
3
2
(

τ

κ
)
′
(s) = sabit,

burada κ ve τ , γ eğrisinin eğrilik ve burulmasıdır. (3.11) ve (3.14) denklemlerinden

τB

κB
=− κ2

(κ2 + τ2)
3
2
(

τ

κ
)
′
(s) =−σ(s) = sabit. (3.10)
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elde edilir. O halde, γB eğrisinin eğrilikleri oranı sabit olduğundan genel helistir. Tersine, γB

eğrisi genel helis olsun. Bu durumda

τB

κB
=−σ(s) = sabit

bulunur. Buradan

σ(s) =
κ2

(κ2 + τ2)
3
2
(

τ

κ
)
′
(s) = sabit

denklemi elde edilir. O halde, γ eğrisi slant helistir.

3.1.5. Sonuç

γ : I → R3 eğrisi Darboux helistir gerek ve yeter şart γB eğrisi genel helistir.

3.1.6. Teorem

γ : I → R3 eğrisi genel helistir gerek ve yeter şart γB eğrisi düzlemsel bir eğridir.

İspat

γ eğrisi genel helis olsun. O halde τ

κ
oranı sabittir. Buradan ( τ

κ
)
′
=0 olarak bulunur ve

sonuç olarak

− κ2

(κ2 + τ2)
3
2
(

τ

κ
)
′
(s) =

τB

κB
= 0

olarak bulunur.
τB
κB

=0 olduğundan τB=0 elde edilir. O halde γB eğrisi düzlemsel bir eğridir.

Tersine γB eğrisi düzlemsel bir eğri olsun. Bu durumda τB=0 dır ve (3.16) eşitliğinden

(
τ

κ
)
′
(s) = 0
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elde edilir. Buradan τ

κ
oranı sabit olarak bulunur. τ

κ
oranı sabit olduğundan γ eğrisi bir genel

helistir.

3.1.7. Örnek

Birim hızlı slant helis aşağıdaki şekilde tanımlansın:

γ(s) = (
2
3

sins+
1
6

sin2s,
2
3

coss+
1
6

cos2s,
4
√

2
3

cos
s
2
).

Şekil 3.1. Slant helis eğrisi γ(s)

O halde, γ eğrisinin Frenet vektörleri aşağıdaki şekildedir:

T (s) = (
2
3

coss+
1
3

cos2s,−2
3

sins− 1
3

sin2s,−2
√

2
3

sin
s
2
),

N(s) = (− 4
3
√

2
sin

3s
2
,− 4

3
√

2
cos

3s
2
,−1

3
),

B(s) = (
2
3

sins− 1
3

sin2s,
2
3

coss− 1
3

cos2s,− 4
3
√

2
cos

s
2
).

γB(s) = B(s) olduğundan aşağıdaki eşitliklere sahip oluruz:

γ
′
B(s)× γ

′′
B(s) = (

2
√

2
3

sin2 s
2

sin
3s
2
,
2
√

2
3

sin2 s
2

cos
3s
2
,−8

3
sin2 s

2
),

κB(s) =
||γ ′

B × γ
′′
B||

||γ ′
B||3

=
1

sin s
2
,

τB(s) =
< γ

′
B × γ

′′
B,γ

′′′
B >

||γ ′
B × γ

′′
B||2

=− 1
2
√

2
1

sin s
2
.



34

Şekil 3.2. B-Lift eğrisi γB(s)

Buradan da

τB

κB
=− 1

2
√

2
= sabit

olarak elde edilir. Eğrilikler oranı sabit olduğundan γB eğrisi bir genel helistir.

3.2. B-Lift Eğrileri ve Tabii Lift Eğrileri Arasındaki İlişkiler

3.2.1. Sonuç

γB ve γ̄ sırasıyla γ eğrisinin B-Lifti ve tabii lifti olsunlar. O halde, aşağıdaki eşitlikler

sağlanır:

TB(s) = −T̄ (s),

NB(s) = −N̄(s),

BB(s) = B̄(s),

burada {TB(s),NB(s),BB(s)} ve {T̄ (s), N̄(s), B̄(s)} sırasıyla γB ve γ̄ eğrilerinin Frenet

vektörleridir.

3.2.2. Sonuç

γB ve γ̄ eğrileri sırasıyla γ regüler eğrisinin B-Lifti ve tabii lifti olsun. O halde, B-Lift eğrisi
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ve tabii lift eğrisinin Frenet vektörleri arasında aşağıdaki eşitlik mevcuttur:

τB

κB
=− τ̄

κ̄
. (3.11)
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4. B-LİFT EĞRİLERİ VE ÜRETTİKLERİ REGLE YÜZEYLER

Bu kısımda, B-Lift eğrisinin teğet, normal ve binormal yüzeyleri olarak adlandırılan regle

yüzeyler tanımlanacaktır. Ardından bu yüzeylerin geometrik değişmezleri ve tekillikleri

incelenecektir. Son olarak da bu yüzeylerin Darboux alanı oluşturulacak ve esas eğrinin

durumuna göre B-Lift eğrisinin jeodezik eğri, asimtotik eğri ve eğrilik çizgisi olma durumu

araştırılacaktır.

4.1. B-Lift Eğrisinin Ürettiği Teğet Yüzey

γB eğrisi γ regüler eğrisinin B-Lifti olsun. O halde, γB eğrisinin teğet yüzeyi aşağıdaki şekilde

tanımlanır:

φTB(s,v) = γB(s)+ vTB(s). (4.1)

(3.1) ve (3.3) eşitliklerinden φTB regle yüzeyi aşağıdaki şekilde yazılabilir:

φTB(s,v) = B(s)+ v(−N(s)). (4.2)

Şimdi φTB regle yüzeyinin singüler noktasını inceleyelim.

(φTB)s × (φTB)v = B
′
(s)× (−N(s))+ v(κ(s)T (s)− τ(s)N(s))×−N(s)

=−vκ(s)B(s)

şeklindedir. Her (s0,v0) ∈ I × (R− {0}) için (φTB)s0 ×(φTB)v0 = −v0κ(s0)B(s0) ̸= 0

olduğundan φTB regle yüzeyi singüler noktaya sahip değildir. Her (s0,v0) ∈ I × (R−{0})

için ω
′
(s0)×ω(s0) = κ(s0)B(s0) ̸= 0 olduğundan φTB silindirik olmayan bir yüzeydir. φTB

teğet yüzeyinin dağılma parametresi

PTB =
det(B

′
,−N,−N

′
)

||−N ′||2
= 0

şeklindedir. φTB yüzeyinin striksiyon eğrisi

bTB(s) = γB(s)−
< γ

′
B(s),T

′
B(s)>

< T ′
B(s),T

′
B(s)>

TB(s)
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= B(s)− <−τN,κT − τB >

< κT − τB,κT − τB >
(κT − τB)

= B(s)

dir. φTB regle yüzeyinin Gauss eğriliği

KTB(s,v) =−(det(−τN,−N,κT − τB))2

(EG−F2)2 = 0.

şeklindedir. φTB teğet yüzeyinin esas eğriliği

HTB(s,v) =
det(κτT − τ

′
N − τ2B+ v(κ

′
T +(κ2 + τ2)N − τ

′
B,−τN + v(κT − τB),−N)

2(EG−F2)3/2

=
v2( τ

κ
)
′
κ2

2(EG−F2)3/2 .

olarak elde edilir. φTB regle yüzeyinin birim normali aşağıdaki şekildedir:

UTB =
(φTB)s×(φTB)v

∥(φTB)s×(φTB)v∥ =
(−vτ, 0, −vκ)√

v2κ2+v2τ2
.

φTB regle yüzeyi için jeodezik eğrilik, normal eğrilik ve jeodezik burulmalar sırasıyla

kg = ⟨UTB ×TB,T
′

B⟩ = −v(κ2 + τ2),

kn = ⟨γ ′′
B,UTB⟩ = −v(κκ

′
+ ττ

′
),

τg = ⟨TB,UTB ×U
′
TB
⟩ = v2( τ

κ
)
′
κ2

şeklindedir.

4.1.1. Sonuç

φTB regle yüzeyi açılabilirdir.

4.1.2. Sonuç
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γ : I →R3 eğrisi bir genel helis olsun. O halde, φTB regle yüzeyi minimal bir yüzeydir.

4.1.3. Sonuç

γ regüler eğrisi için κκ
′
+ττ

′
=0 dır gerek ve yeter şart γB eğrisi φTB regle yüzeyinin asimtotik

eğrisidir.

4.1.4. Sonuç

γ eğrisi genel helistir gerek ve yeter şart γB eğrisi φTB regle yüzeyinin eğrilik çizgisidir.

4.2. B-Lift Eğrisinin Ürettiği Normal Yüzey

γ regüler eğrisinin B-Lifti γB olsun. O halde, B-Lift eğrisinin esas normal yüzeyi aşağıdaki

şekilde tanımlıdır:

φNB(s,v) = γB(s)+ vNB(s). (4.3)

(3.1) ve (3.3) eşitliklerinden aşağıdaki sonucu yazabiliriz:

φNB(s,v) = B(s)+ v(
κ(s)

||W (s)||
T (s)− τ(s)

||W (s)||
B(s)). (4.4)

Buradan,

(φNB)s × (φNB)v = (−τ +
τ2

||W ||
,v(

κ
′
τ −κτ

′

||W ||2
),−κ +

κτ

||W ||
) (4.5)

olarak bulunur. γB eğrisinin esas normal eğrisinin dağılma parametresi

PNB =
det(B

′
,NB,N

′
B)

||N ′
B||2

=
τ(− κτ

′

||W ||2 +
κ
′
τ

||W ||2 )

( κ
′

||W ||)
2 +(κ2+τ2

||W || )
2 +( τ

′

||W ||)
2
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şeklindedir. φNB regle yüzeyinin striksiyon eğrisi

bNB(s) = γB(s)−
< γ

′
B(s),N

′
B(s)>

< N ′
B(s),N

′
B(s)>

NB(s)

= B(s)−
<−τN, κ

′

||W ||T + κ2+τ2

||W || N − τ
′

||W ||B >

< κ
′

||W ||T + κ2+τ2

||W || N − τ
′

||W ||B,
κ
′

||W ||T + κ2+τ2

||W || N − τ
′

||W ||B >
(

κ

||W ||
T − τ

||W ||
B)

olarak bulunur. φNB regle yüzeyinin Gauss eğriliği

KNB(s,v) =−(det(γ
′
B,NB,N

′
B))

2

(EG−F2)2

=
τ(− κτ

′

||W ||2 +
κ
′
τ

||W ||2 )

(EG−F2)2

dir. φNB regle yüzeyinin esas eğriliği

HNB(s,v) =
det(γ

′′
B + vN

′′
B,γ

′
B + vN

′
B,NB)

2(EG−F2)3/2

=
v2(3κκ

′
+3ττ

′

||W ||3 )(κ
′
τ −κτ

′
)+ v2(κ2+τ2

||W ||3 )(κτ
′′ −κ

′′
τ)+ vτ

′
(κτ

′−τκ
′

||W ||2 )+ vτ(κ
′′

τ−τ
′′

κ

||W ||2 )

2(EG−F2)3/2

olarak elde edilir. φNB regle yüzeyinin birim normali aşağıdaki şekildedir:

UNB =
(φNB)s×(φNB)v

∥(φNB)s×(φNB)v∥ .

φNB regle yüzeyi için jeodezik eğrilik, normal eğrilik ve jeodezik burulmalar sırasıyla

kg = ⟨UNB ×TB,T
′

B⟩ =
(κ2+τ2)(τ−1)

∥W∥ ,

kn = ⟨γ ′′
B,UNB⟩ = −v

τ
′
(κ

′
τ−κτ

′
)

∥W∥2 ,

τg = ⟨TB,UNB ×U
′
NB
⟩ = (τ

′
κ −κ

′
τ).[1+ τ2

∥W∥2 − 2τ

∥W∥ ].

şeklindedir.

4.2.1. Sonuç
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γ : I →R3 eğrisi genel helis olsun. O halde, φNB regle yüzeyi açılabilir bir yüzeydir.

4.2.2. Sonuç

γ : I →R3 eğrisi genel helis olsun. O halde, φNB regle yüzeyi minimal bir yüzeydir.

4.2.3. Sonuç

γ regüler bir eğri olsun. τ = 1 dir gerek ve yeter şart γB eğrisi φNB regle yüzeyinin jeodezik

eğrisidir.

4.2.4. Sonuç

γ genel helistir gerek ve yeter şart γB eğrisi φNB regle yüzeyinin asimtotik eğrisidir.

4.2.5. Sonuç

γ genel helistir gerek ve yeter şart γB eğrisi φNB regle yüzeyinin eğrilik çizgisidir.

4.3. B-Lift Eğrisinin Ürettiği Binormal Yüzey

γB eğrisi γ regüler eğrisinin B-Lifti olsun. O halde, B-Lift eğrisinin binormal yüzeyi

aşağıdaki gibi tanımlıdır:

φBB(s,v) = γB(s)+ vBB(s). (4.6)

(3.1) ve (3.3) eşitliklerinden

φBB(s,v) = B(s)+ v(
τ(s)

||W (s)||
T (s)+

κ(s)
||W (s)||

B(s)) (4.7)
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olarak yazılabilir. Buradan,

(φBB)s × (φBB)v = (− κτ

||W ||
,v(

κ
′
τ −κτ

′

||W ||2
),

τ2

||W ||
) (4.8)

olarak bulunur. (4.8) eşitliğinden (φBB)s × (φBB)v ̸= 0 olduğundan φBB regle yüzeyinin

singüler noktası yoktur ve φBB silindirik olmayan bir yüzeydir. φBB regle yüzeyinin dağılma

parametresi

PBB =
det(B

′
,BB,B

′
B)

||B′
B||2

=
τ(− κτ

′

||W ||2 +
κ
′
τ

||W ||2 )

(τ
′
)2 +(κ

′
)2

şeklindedir. φBB regle yüzeyinin striksiyon eğrisi

bBB(s) = γB(s)−
< γ

′
B(s),B

′
B(s)>

< B′
B(s),B

′
B(s)>

BB(s)

= B(s)

olarak elde edilir. φBB binormal yüzeyinin Gauss eğriliği

KBB(s,v) =−(det(γ
′
B,BB,B

′
B))

2

(EG−F2)2

=
τ(− κτ

′

||W ||2 +
κ
′
τ

||W ||2 )

(EG−F2)2

olarak bulunur. φBB regle yüzeyinin esas eğriliği

HBB(s,v) =
τv

||W ||2 (−κ
′
τ + τ

′
κ +κ

′′
τ −κτ

′′
)− τ2

||W ||(κ
2 + τ2)− v2

||W ||3 (τ
′
κ −κ

′
τ)2

2(EG−F2)3/2

şeklindedir. φBB regle yüzeyinin birim normali aşağıdaki şekildedir:

UBB =
(φBB)s×(φBB)v

∥(φBB)s×(φBB)v∥ .

φBB regle yüzeyi için jeodezik eğrilik, normal eğrilik ve jeodezik burulmalar sırasıyla
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kg = ⟨UBB ×TB,T
′

B⟩ = 0,

kn = ⟨γ ′′
B,UBB⟩ = − τ2

∥W∥(κ
2 + τ2)− v τ

′

∥W∥2 (κ
′
τ −κτ

′
) ,

τg = ⟨TB,UBB ×U
′
BB
⟩ =

τ2(κτ
′−κ

′
τ)

∥W∥2

şeklindedir.

4.3.1. Sonuç

γ : I →R3 eğrisi bir genel helis olsun. O halde, φBB regle yüzeyi açılabilir bir yüzeydir.

4.3.2. Sonuç

γ eğrisi φBB regle yüzeyinin jeodezik bir eğrisidir.

4.3.3. Sonuç

γ genel helistir gerek ve yeter şart γB eğrisi φBB regle yüzeyinin eğrilik çizgisidir.

4.3.4. Örnek

Birim hızlı bir genel helis aşağıdaki denklem ile verilsin:

γ(s) = (

√
3

3
s3/2,

√
3

3
(1− s)3/2,

s
2
).

O halde, γB eğrisi aşağıdaki şekildedir:

γB(s) = (−1
2

s1/2,
1
2
(1− s)1/2,

√
3

2
).

γB eğrisinin Frenet vektörleri hesaplandığında aşağıdaki şekilde bulunur:

TB(s) = (−(1− s)1/2,−s1/2,0), NB(s) = (s1/2,−(1− s)1/2,0), BB(s) = (0,0,1).
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Buradan hareketle, γB eğrisinin teğet, normal ve binormal yüzeyleri aşağıdaki şekilde

hesaplanır:

φTB(s,v) = γB(s)+ vTB(s)

= (−1
2s1/2, 1

2(1− s)1/2,
√

3
2 )+ v(−(1− s)1/2,−s1/2,0)

φNB(s,v) = γB(s)+ vNB(s)

= (−1
2s1/2, 1

2(1− s)1/2,
√

3
2 )+ v(s1/2,−(1− s)1/2,0)

φBB(s,v) = γB(s)+ vBB(s)

= (−1
2s1/2, 1

2(1− s)1/2,
√

3
2 )+ v(0,0,1).

Şekil 4.1. Soldan sağa sırasıyla φTB , φNB ve φBB regle yüzeyleri

φTB , φNB ve φBB regle yüzeylerinin dağılma parametresi

PTB =
det(B

′
,TB,T

′
B)

||T ′
B||2

= 0,

PNB =
det(B

′
,NB,N

′
B)

||N ′
B||2

= 0,

PBB =
det(B

′
,BB,B

′
B)

||B′
B||2

= 0.

şeklindedir. PTB = PNB = PBB = 0 olduğundan φTB , φNB ve φBB regle yüzeyleri açılabilirdir.

φTB , φNB ve φBB yüzeylerinin striksiyon çizgisi

bTB(s) = γB(s)−
< γ

′
B(s),T

′
B(s)>

< T ′
B(s),T

′
B(s)>

TB(s)

= B(s)

= (−1
2

s1/2,
1
2
(1− s)1/2,

√
3

2
).

bNB(s) = γB(s)−
< γ

′
B(s),N

′
B(s)>

< N ′
B(s),N

′
B(s)>

NB(s)
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= (−1
2

s1/2,
1
2
(1− s)1/2,

√
3

2
)+

1
2
(s1/2,−(1− s)1/2,0)

= (0,0,

√
3

2
).

bBB(s) = γB(s)−
< γ

′
B(s),B

′
B(s)>

< B′
B(s),B

′
B(s)>

BB(s)

= B(s)

= (−1
2

s1/2,
1
2
(1− s)1/2,

√
3

2
).

olarak elde edilir. φTB , φNB ve φBB yüzeylerinin Gauss eğrilikleri

KTB(s,v) =−(det(γ
′
B,TB,T

′
B))

2

(EG−F2)2

= 0

KNB(s,v) =−(det(γ
′
B,NB,N

′
B))

2

(EG−F2)2

= 0

KBB(s,v) =−(det(γ
′
B,BB,B

′
B))

2

(EG−F2)2

= 0.

olarak bulunur. φTB , φNB ve φBB regle yüzeylerinin esas eğrilikleri

HTB(s,v) =
−2 < γ

′
(s),TB(s)> det(γ

′
(s),TB(s),T

′
B(s))

2(EG−F2)3/2

+
det(γ

′′
(s)+ vT

′′
B (s),γ

′
(s)+ vT

′
B(s),TB(s))

2(EG−F2)3/2

= 0

HNB(s,v) =
−2 < γ

′
(s),NB(s)> det(γ

′
(s),NB(s),N

′
B(s))

2(EG−F2)3/2

+
det(γ

′′
(s)+ vN

′′
B(s),γ

′
(s)+ vN

′
B(s),NB(s))

2(EG−F2)3/2

= 0

HBB(s,v) =
−2 < γ

′
(s),BB(s)> det(γ

′
(s),BB(s),B

′
B(s))

2(EG−F2)3/2

+
det(γ

′′
(s)+ vB

′′
B(s),γ

′
(s)+ vB

′
B(s),BB(s))

2(EG−F2)3/2



46

= 0.

şeklindedir. HTB(s,v) =HNB(s,v) =HBB(s,v) = 0 olduğundan φTB , φNB ve φBB regle yüzeyleri

açılabilirdir.
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5. 3-BOYUTLU LORENTZ UZAYINDA B-LİFT EĞRİLERİ

Bu kısımda, öncelikle B-Lift eğrisinin Frenet vektörleri 3-boyutlu Lorentz uzayında

hesaplanacaktır. Ardından, Bertrand eğrisi ve involüt eğrisinin Frenet vektörleri, B-Lift

eğrisinin Frenet vektörleri cinsinden incelenecektir.

5.1. R3
1 Uzayında B-Lift Eğrileri İçin Karakterizasyonlar

5.1.1. Tanım

γ : I → P birim hızlı bir eğri olsun. O halde, γB : I → T P eğrisi γ eğrisinin B-Lifti olarak

adlandırılır ve aşağıdaki şekilde tanımlanır:

γB(s) = (γ(s),B(s)) = B(s)|γ(s),

burada B, γ eğrisinin binormal vektörüdür.

5.1.2. Önerme

γ eğrisi timelike eğri olsun. O halde, γB timelike ya da spacelike binormalli spacelike eğridir.

i) Kabul edelim ki γB eğrisi timelike binormalli spacelike eğri olsun. γB eğrisinin Frenet

vektörleri {TB, NB, BB} ve γ eğrisinin Frenet vektörleri {T , N, B} arasında aşağıdaki eşitlikler

vardır:

a) Eğer W spacelike vektör ise,


TB

NB

BB

 =


0 −1 0

−coshϕ 0 −sinhϕ

sinhϕ 0 −coshϕ




T

N

B

.

b) Eğer W timelike vektör ise,
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
TB

NB

BB

 =


0 −1 0

−sinhϕ 0 −coshϕ

coshϕ 0 sinhϕ




T

N

B

.

ii) Kabul edelim ki γB spacelike binormalli spacelike eğri olsun. γB eğrisinin Frenet vektörleri

{TB, NB, BB} ve γ eğrisinin Frenet vektörleri {T , N, B} arasında aşağıdaki eşitlikler vardır:

a) Eğer W spacelike vektör ise,


TB

NB

BB

 =


0 −1 0

coshϕ 0 sinhϕ

sinhϕ 0 −coshϕ




T

N

B

.

b) Eğer W timelike vektör ise,


TB

NB

BB

 =


0 −1 0

sinhϕ 0 coshϕ

coshϕ 0 sinhϕ




T

N

B

.

5.1.3. Önerme

γ eğrisi spacelike binormalli spacelike eğri olsun. O halde, γB timelike bir eğridir. γB

eğrisinin Frenet vektörleri {TB, NB, BB} ve γ eğrisinin Frenet vektörleri {T , N, B} arasında

aşağıdaki eşitlikler vardır:


TB

NB

BB

 =


0 −1 0

cosϕ 0 sinϕ

sinϕ 0 −cosϕ




T

N

B

.

5.1.4. Önerme

γ timelike binormalli spacelike eğri olsun. O halde, γB timelike ya da spacelike binormalli

spacelike eğridir.
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i) γB timelike binormalli spacelike eğri olsun. γB eğrisinin Frenet vektörleri {TB, NB, BB} ve

γ eğrisinin Frenet vektörleri {T , N, B} arasında aşağıdaki eşitlikler vardır:

a) Eğer W Darboux vektörü spacelike vektör ise,


TB

NB

BB

 =


0 −1 0

−sinhϕ 0 coshϕ

coshϕ 0 −sinhϕ




T

N

B

.

b) Eğer W timelike vektör ise,


TB

NB

BB

 =


0 −1 0

−coshϕ 0 sinhϕ

sinhϕ 0 −coshϕ




T

N

B

.

ii) γB spacelike binormalli spacelike eğri olsun. γB eğrisinin Frenet vektörleri {TB, NB, BB}

ve γ eğrisinin Frenet vektörleri {T , N, B} arasında aşağıdaki eşitlikler vardır:

a) Eğer W Darboux vektörü spacelike vektör ise,


TB

NB

BB

 =


0 −1 0

sinhϕ 0 −coshϕ

coshϕ 0 −sinhϕ




T

N

B

.

b) Eğer W timelike vektör ise,


TB

NB

BB

 =


0 −1 0

coshϕ 0 sinhϕ

sinhϕ 0 −coshϕ




T

N

B

.
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5.2. Bertrand Eğrileri ve B-Lift Eğrileri Arasındaki İlişkiler

5.2.1. Önerme

γ eğrisi spacelike binormalli spacelike eğri olsun. Bu durumda, γB eğrisi timelike eğri, γ̃

eğrisi de spacelike binormalli spacelike eğridir. O halde, aşağıdaki eşitlikler sağlanır:

T̃ = cos(θ −ϕ)NB − sin(θ −ϕ)BB,

Ñ = TB,

B̃ = sin(θ +ϕ)NB − cos(θ +ϕ)BB.

5.2.2. Önerme

γ eğrisi timelike binormalli spacelike eğri olsun. O halde γB ve γ̃ timelike binormalli

spacelike eğrilerdir. Bu durumda, aşağıdaki eşitlikler sağlanır:

a) Eğer W Darboux vektörü spacelike ise,

T̃ = sinh(θ +ϕ)NB + cosh(θ +ϕ)BB,

Ñ = TB,

B̃ = cosh(θ +ϕ)NB + sinh(θ +ϕ)BB.

b) Eğer W Darboux vektörü timelike ise,

T̃ =−cosh(θ +ϕ)NB − sinh(θ +ϕ)BB,

Ñ = TB,

B̃ =−sinh(θ +ϕ)NB − cosh(θ +ϕ)BB.

5.2.3. Önerme

γ eğrisi timelike binormalli spacelike eğri olsun. Bu durumda, γB timelike binormalli
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spacelike eğri ve γ̃ eğrisi de spacelike binormalli spacelike eğridir. O halde, aşağıdaki

eşitlikler sağlanır:

a) W Darboux vektörü spacelike olsun. O halde,

T̃ = sinh(θ +ϕ)NB − cosh(θ +ϕ)BB,

Ñ = TB,

B̃ = cosh(θ +ϕ)NB − sinh(θ +ϕ)BB.

b) W Darboux vektörü timelike olsun. O halde,

T̃ =−cosh(θ +ϕ)NB + sinh(θ +ϕ)BB,

Ñ = TB,

B̃ =−sinh(θ +ϕ)NB + cosh(θ +ϕ)BB.

5.2.4. Önerme

γ eğrisi timelike binormalli spacelike eğri olsun. O halde, γB eğrisi timelike binormalli

spacelike eğri, γ̃ eğrisi de timelike eğridir. Bu durumda, aşağıdaki eşitlikler vardır:

a) Eğer W Darboux vektörü spacelike ise,

T̃ = cosh(θ +ϕ)NB + sinh(θ +ϕ)BB,

Ñ = TB,

B̃ = sinh(θ +ϕ)NB + cosh(θ +ϕ)BB.

b) Eğer W Darboux vektörü timelike ise,

T̃ =−sinh(θ +ϕ)NB − cosh(θ +ϕ)BB,

Ñ = TB,

B̃ =−cosh(θ +ϕ)NB − sinh(θ +ϕ)BB.
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5.2.5. Önerme

γ eğrisi timelike binormalli spacelike bir eğri olsun. O halde, γB spacelike binormalli

spacelike eğridir ve γ̃ timelike eğridir. Bu durumda, aşağıdaki eşitlikler sağlanır:

a) W Darboux vektörü spacelike olsun. O halde,

T̃ =−cosh(θ +ϕ)NB + sinh(θ +ϕ)BB,

Ñ = TB,

B̃ =−sinh(θ +ϕ)NB + cosh(θ +ϕ)BB.

b) W Darboux vektörü timelike olsun. O halde,

T̃ = sinh(θ +ϕ)NB − cosh(θ +ϕ)BB,

Ñ = TB,

B̃ = cosh(θ +ϕ)NB − sinh(θ +ϕ)BB.

5.2.6. Önerme

γ eğrisi timelike bir eğri olsun. O halde, γB timelike binormalli spacelike bir eğri ve γ̃ bir

timelike eğridir. Bu durumda, aşağıdaki eşitlikler sağlanır:

a) W Darboux vektörü spacelike olsun. O halde,

T̃ =−cosh(θ −ϕ)NB + sinh(θ −ϕ)BB,

Ñ =−TB,

B̃ =−sinh(θ −ϕ)NB + cosh(θ −ϕ)BB.

b) W Darboux vektörü timelike olsun. O halde,

T̃ =−sinh(θ −ϕ)NB + cosh(θ −ϕ)BB,

Ñ =−TB,
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B̃ =−cosh(θ −ϕ)NB + sinh(θ −ϕ)BB.

5.2.7. Önerme

γ eğrisi timelike bir eğri olsun. O halde, γB eğrisi spacelike binormalli spacelike eğri ve γ̃

timelike eğridir. Bu durumda, aşağıdaki eşitlikler sağlanır:

a) W Darboux vektörü spacelike olsun. O halde,

T̃ = cosh(θ −ϕ)NB + sinh(θ −ϕ)BB,

Ñ =−TB,

B̃ = sinh(θ −ϕ)NB + cosh(θ −ϕ)BB.

b) W Darboux vektörü timelike olsun. O halde,

T̃ = sinh(θ −ϕ)NB + cosh(θ −ϕ)BB,

Ñ =−TB,

B̃ = cosh(θ −ϕ)NB + sinh(θ −ϕ)BB.

5.2.8. Önerme

γ eğrisi timelike bir eğri olsun. O halde, γB eğrisi timelike binormalli spacelike eğri ve γ̃

spacelike eğridir. Bu durumda aşağıdaki eşitlikler sağlanır:

a) W Darboux vektörü spacelike olsun. O halde,

T̃ =−sinh(θ −ϕ)NB + cosh(θ −ϕ)BB,

Ñ =−TB,

B̃ =−cosh(θ −ϕ)NB + sinh(θ −ϕ)BB.
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b) W Darboux vektörü timelike olsun. O halde,

T̃ =−cosh(θ −ϕ)NB + sinh(θ −ϕ)BB,

Ñ =−TB,

B̃ =−sinh(θ −ϕ)NB + cosh(θ −ϕ)BB.

5.2.9. Önerme

γ eğrisi timelike bir eğri olsun. O halde, γB eğrisi spacelike binormalli spacelike bir eğri ve

γ̃ spacelike bir eğridir. Bu durumda, aşağıdaki eşitlikler sağlanır:

a) W Darboux vektörü spacelike olsun. O halde,

T̃ = sinh(θ −ϕ)NB + cosh(θ −ϕ)BB,

Ñ =−TB,

B̃ = cosh(θ −ϕ)NB + sinh(θ −ϕ)BB.

b) W Darboux vektörü timelike olsun. O halde,

T̃ = cosh(θ −ϕ)NB + sinh(θ −ϕ)BB,

Ñ =−TB,

B̃ = sinh(θ −ϕ)NB + cosh(θ −ϕ)BB.

5.2.10. Sonuç

γB eğrisi γ eğrisinin B-Lifti, γ̃ da γ eğrisinin Bertrand çifti olsun. O halde, {TB, Ñ} kümesi

lineer bağımlıdır.
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5.3. İnvolüt Eğrileri ve B-Lift Eğrileri Arasındaki İlişkiler

5.3.1. Sonuç

γ eğrisi timelike eğri olsun. O halde, γ∗ eğrisi spacelike binormalli spacelike eğridir.

i) Eğer W Darboux vektörü spacelike ise,

T ∗ =−TB,

N∗ = NB,

B∗ = BB.

ii) Eğer W Darboux vektörü timelike ise,

T ∗ =−TB,

N∗ = BB,

B∗ = NB.

şeklindedir. Burada, {TB, NB, BB},γB eğrisinin Frenet alanıdır.

5.3.2. Sonuç

γ eğrisi timelike eğri olsun. O halde, γ∗ timelike binormalli spacelike eğridir.

i) Eğer W Darboux vektörü spacelike ise,

T ∗ =−TB,

N∗ =−BB,

B∗ = NB.
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ii) Eğer W Darboux vektörü timelike ise,

T ∗ =−TB,

N∗ = NB,

B∗ =−BB,

şeklindedir. Burada {TB, NB, BB}, γB eğrisinin Frenet alanıdır.

5.3.3. Sonuç

γ spacelike binormalli spacelike eğri olsun. O halde, γ∗ timelike eğridir.

i) Eğer W Darboux vektörü spacelike ise,

T ∗ =−TB,

N∗ =−BB,

B∗ = NB.

ii) Eğer W Darboux vektörü timelike ise,

T ∗ =−TB,

N∗ = NB,

B∗ =−BB,

şeklindedir. Burada {TB, NB, BB}, γB nin Frenet alanıdır.

5.3.4. Sonuç

γ eğrisi timelike binormalli spacelike eğri olsun. O halde, γ∗ timelike eğridir. Bu durumda

aşağıdaki eşitlikler vardır:

T ∗ =−TB,
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N∗ = NB,

B∗ =−BB,

burada {TB, NB, BB}, γB eğrisinin Frenet alanıdır.

5.3.5. Sonuç

γ eğrisi spacelike binormalli spacelike eğri olsun. Bu durumda aşağıdaki eşitlikler vardır:

i) γ∗ eğrisi spacelike binormalli spacelike eğridir. Bu durumda,

T ∗ = TB,

N∗ = NB,

B∗ = BB,

ii) γ∗ eğrisi spacelike binormalli timelike eğridir. Bu durumda,

T ∗ = TB,

N∗ =−NB,

B∗ = BB,

burada {TB, NB, BB}, γB eğrisinin Frenet alanıdır.

5.3.6. Sonuç

γ eğrisi timelike binormalli spacelike eğri olsun. Bu durumda aşağıdaki eşitlikler sağlanır:

i) γ∗ eğrisi timelike binormalli spacelike eğri olsun. O halde,

T ∗ = TB,

N∗ =−NB,

B∗ =−BB.
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ii) γ∗ eğrisi spacelike binormalli spacelike eğri olsun. O halde,

T ∗ = TB,

N∗ = NB,

B∗ = BB,

burada {TB, NB, BB}, γB eğrisinin Frenet alanıdır.
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6. DUAL UZAYDA B-LİFT EĞRİLERİ

Bu kısımda, ilk olarak dual uzayda B-Lift eğrileri tanımlanmıştır. Sonrasında B-Lift

eğrilerinin Frenet operatörleri elde edilip esas eğrinin slant helis ya da Darboux helis olma

durumuna göre B-Lift eğrisinin karakterizasyonu incelenecektir.

6.1. D3 Uzayında B-Lift Eğrileri İçin Karakterizasyonlar

6.1.1. Tanım

Birim hızlı γ̃ : I → D3 eğrisi için γ̃B : I → D3 eğrisi D3 de γ̃ eğrisinin B-Lifti olarak

adlandırılır ve aşağıdaki şekilde tanımlanır:

γ̃B(s) = γB(s)+ εγ
∗
B(s) (6.1)

burada γB = B ve γ∗B = B∗ sırasıyla γ ve γ∗ eğrilerinin binormal vektörleridir.

6.1.2. Teorem

γ̃B eğrisi birim dual γ̃ eğrisinin B-Lifti olsun. O halde aşağıdaki eşitlikler sağlanır:


T̃B

ÑB

B̃B

 =


0 −1 0

−cosΦ 0 sinΦ

sinΦ 0 cosΦ




T̃

Ñ

B̃

,

burada {T̃ , Ñ, B̃} ve {T̃B, ÑB sırasıyla B̃B}, γ̃ ve γ̃B eğrilerinin Frenet vektörleridir. (Φ açısı B̃

ve W̃ arasındaki dual açıdır.)

İspat



60

γ̃B eğrisi γ̃ eğrisinin B-Lifti olsun. O halde,

γ̃B = B̃ , γ
′
B =−τ̃Ñ

T̃B =
γ̃
′
B

||γ̃ ′B||
= −τ̃Ñ

|τ̃| =−Ñ,

γ̃
′′
B = −τ̃

′
Ñ − τ̃(−κ̃T̃ + τ̃B̃),

γ̃
′′
B = κ̃ τ̃T̃ − τ̃

′
Ñ − τ̃2B̃,

γ̃
′
B × γ̃

′′
B = τ̃3T̃ + κ̃ τ̃2B̃,

||γ̃ ′
B × γ̃

′′
B|| = τ̃2

√
κ̃2 + τ̃2.

(6.2)

eşitlikleri vardır. B̃B(s) =
γ̃
′
B×γ̃

′′
B

||γ̃ ′B×γ̃
′′
B ||

olduğundan

B̃B(s) =
τ̃

||W̃ ||
T̃ +

κ̃

||W̃ ||
B̃. (6.3)

elde edilir. (6.2) ve (6.3) eşitliklerinden

ÑB(s) = B̃B(s)× T̃B(s) =
κ̃

||W̃ ||
T̃ − τ̃

||W̃ ||
B̃. (6.4)

elde edilir. (6.2), (6.3) ve (6.4) eşitliklerinden ispat tamamlanır.

6.1.3. Önerme

Φ = ϕ + εϕ∗ açısı γ̃ nın dual Darboux vektörü W̃ ve dual binormal vektörü B̃ arasındaki

dual açı olsun. Bu durumda γ̃ eğrisinin Frenet vektörlerinin reel ve dual kısımları arasında

aşağıdaki eşitlikler vardır:

tB = −n,

nB = cosϕt − sinϕb,

bB = sinϕt + cosϕb,
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ve

t∗B = −n∗,

n∗B = cosϕt∗− sinϕb∗+ϕ∗(−sinϕt − cosϕb),

b∗B = sinϕt∗− cosϕb∗+ϕ∗(cosϕt − sinϕb).

burada T̃ = t + ε t∗, Ñ = n + ε n∗, B̃ = b + ε b∗; T̃B = tB + ε t∗B, ÑB = nB + ε n∗B, B̃B = bB + ε

b∗B.

6.1.4. Teorem

γ̃B eğrisi γ̃ birim dual eğrisinin B-Lifti olsun. O halde, aşağıdaki eşitlikler sağlanır:

κ̃B =

√
κ̃2 + τ̃2

τ̃
, τ̃B =

κ̃
′
τ̃ − κ̃ τ̃

′

τ̃(κ̃2 + τ̃2)
,

burada κ̃B ve τ̃B sırasıyla γ̃B nin eğrilik ve burulmasıdır.

İspat

(6.2) eşitliğinden biliyoruz ki

||γ̃B
′
× γ̃B

′′
||= τ̃

√
κ̃2 + τ̃2 , ||γ̃B

′
||= τ̃. (6.5)

şeklindedir. κ̃B = ||γ̃B
′×γ̃B

′′ ||
||γ̃B

′ ||3
olduğundan aşağıdaki eşitlikler sağlanır:

κ̃B(s) =

√
κ̃2 + τ̃2

τ̃
. (6.6)

γ̃B nin burulması

τ̃B =
< γ̃B

′ × γ̃B
′′
, γ̃B

′′′
>

||γ̃B
′ × γ̃B

′′ ||2
(6.7)
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şeklindedir. (6.2) eşitliğinden biliyoruz ki

γ̃B
′′′
= (κ̃

′
τ̃ +2κ̃ τ̃

′
)T̃ +(κ̃2

τ̃ − τ̃
′′
+ τ̃

3)Ñ −3τ̃ τ̃
′
B̃ (6.8)

dir. (6.2) ve (6.8) eşitliklerinden

τ̃B(s) =
κ̃

′
τ̃ − κ̃ τ̃

′

τ̃(κ̃2 + τ̃2)
. (6.9)

olarak elde edilir.

6.1.5. Teorem

γ̃ : I → D3 eğrisi dual slant helistir gerek ve yeter şart γ̃B eğrisi dual genel helistir.

İspat

Kabul edelim ki γ̃B eğrisi dual genel helis olsun. 6.1.4 Teoreminden biliyoruz ki

τ̃B

κ̃B
=− κ̃2

(κ̃2 + τ̃2)
3
2
(

τ̃

κ̃
)
′
(s) =−σ(s) = sabit. (6.10)

şeklindedir. Burada κ ve τ , γ eğrisinin dual eğriliği ve dual burulmasıdır. σ (s)=sabit

olduğundan γ eğrisi dual genel helistir. Tersine, γ eğrisi dual slant helis olsun. 2.3.13

Önermesinden biliyoruz ki

κ̃2

(κ̃2 + τ̃2)
3
2
(

τ̃

κ̃
)
′
(s) = σ(s) = sabit,

şeklindedir. 6.1.4 Teoreminden

τ̃B

κ̃B
=−σ(s) = sabit.

şeklindedir. O halde, γ̃B eğrisi dual genel helistir.

6.1.6. Sonuç
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γ̃ : I → D3 eğrisi dual Darboux helistir gerek ve yeter şart γ̃B eğrisi dual genel helistir.
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7. KUATERNİYONİK B-LİFT EĞRİLERİ

Bu bölümde, uzaysal kuaterniyonik b-lift eğrisini tanımlıyoruz ve ayrıca bu eğrilerin Frenet

operatörlerini elde ediyoruz. Ayrıca uzaysal kuaterniyonik b-lift eğrisinin ana eğrisinin slant

helis olup olmama durumunu inceliyoruz ve kuaterniyonik slant helisler ile kuaterniyonik

genel helisler arasındaki ilişkileri keşfediyoruz.

7.1. Kuaterniyonik B-Lift Eğrileri İçin Karakterizasyonlar

7.1.1. Tanım

γ : I ⊂ R → R3 birim hızlı uzaysal kuaterniyonik bir eğri olsun. O halde, aşağıdaki şekilde

tanımlanan γb : I ⊂ R → R3 eğrisi γ eğrisinin b-lifti olarak adlandırılır:

γb(s) = (γ(s),b(s)) = b(s)|γ(s) (7.1)

burada b, γ eğrisinin binormal vektörüdür.

7.1.2. Teorem

γb eğrisi uzaysal kuaterniyonik γ eğrisinin b-lifti olsun. Bu durumda aşağıdaki eşitlikler

sağlanır:

tb(s) =−n(s),

nb(s) =
κ(s)√
κ2 + τ2

t(s)− τ(s)√
κ2 + τ2

b(s),

bb(s) =
τ(s)√

κ2 + τ2
t(s)+

κ(s)√
κ2 + τ2

b(s)

burada {t(s),n(s),b(s)} ve {tb(s),nb(s),bb(s)} sırasıyla γ ve γb eğrilerinin Frenet

vektörleridir. Ek olarak, κ eğrilik fonksiyonu, τ da burulma fonksiyonudur. (Burulma özel

olarak sıfırdan büyük alınacaktır.)

İspat
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γb eğrisi γ eğrisinin uzaysal kuaterniyonik b-lift eğrisi olsun. O halde,

γb = b , γ
′
b =−τn (7.2)

tb(s) =
γ
′
b

∥γ
′
b∥

=
−τn
|τ|

=−n (τ > 0), (7.3)

γ
′′
b =−τ

′
n− τ(−κt + τb), (7.4)

γ
′′
b = κτt − τ

′
n− τ

2b, (7.5)

γ
′
b × γ

′′
b = τ

3t +κτ
2b, (7.6)

∥γ
′
b × γ

′′
b∥= τ

2
√

κ2 + τ2. (7.7)

eşitlikleri sağlanır. bb(s) =
γ
′
b×γ

′′
b

∥γ
′
b×γ

′′
b ∥

eşitliği ve (7.2) eşitliğindeki ifadelerden

bb(s) =
τ√

κ2 + τ2
t +

κ√
κ2 + τ2

b. (7.8)

olarak bulunur. (7.2) ve (7.3) kullanılarak

nb(s) = bb(s)× tb(s) =
κ√

κ2 + τ2
t − τ√

κ2 + τ2
b. (7.9)

eşitliği elde edilir. (7.2), (7.3) ve (7.4) eşitlikleriyle ispat tamamlanır.

7.1.3. Teorem

γb eğrisi uzaysal kuaterniyonik γ eğrisinin b-lifti olsun. O halde, aşağıdaki eşitlikler sağlanır:

κb(s) =

√
κ2 + τ2

τ
, τb(s) =

κ
′
τ −κτ

′

τ(κ2 + τ2)
,

burada κb ve τb sırasıyla γb eğrisinin eğrilik ve burulmasıdır.

İspat

(7.2) eşitliğinden biliniyor ki,

∥γ
′
b × γ

′′
b∥= τ

√
κ2 + τ2 , ∥γ

′
b∥= τ (7.10)
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şeklindedir. κb =
||γ ′b×γ

′′
b ||

||γ ′b||3
olduğundan

κb(s) =

√
κ2 + τ2

τ
(7.11)

eşitliği sağlanır. γb eğrisinin burulması

τb =
h(γ

′
b × γ

′′
b ,γ

′′′
b )

∥γ
′
b × γ

′′
b∥2

(7.12)

şeklindedir. (7.2) eşitliğinden

γ
′′′
b = (κ

′
τ +2κτ

′
)t +(κ2

τ − τ
′′
+ τ

3)n−3ττ
′
b (7.13)

eşitliğine sahibiz. O halde, (7.2), (7.7) ve (7.8) eşitliklerinden

τb(s) =
κ

′
τ −κτ

′

τ(κ2 + τ2)
(7.14)

eşitliği de sağlanmış olur.

7.1.4. Teorem

γ : I → R3 eğrisi kuaterniyonik slant helistir gerek ve yeter şart γb eğrisi kuaterniyonik genel

helistir.

İspat

γ eğrisi slant helis olsun. O halde,

σ(s) =
κ2

(κ2 + τ2)
3
2
(

τ

κ
)
′
(s) = sabit,

burada κ ve τ , γ eğrisinin eğrilik ve burulmasıdır. 7.1.3 Teoreminden

τb

κb
=− κ2

(κ2 + τ2)
3
2
(

τ

κ
)
′
(s) =−σ(s) = sabit (7.15)
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elde edilir. O halde, γb eğrisi genel helistir. Tersine, γb eğrisi genel helis olsun. Bu durumda,

τb

κb
=−σ(s) = sabit

şeklindedir. σ(s) = sabit olduğundan γ bir slant helistir.
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8. SONUÇ VE ÖNERİLER

Bu tez çalışmasında, ilk olarak, 3-boyutlu Öklid uzayında verilen bir eğrinin her

noktasındaki binormal vektörünün uç noktalarının birleştirilmesiyle oluşan B-Lift eğrisi

tanımlanmıştır ve bu eğriyle ilgili karakterizasyonlar verilmiştir. Daha sonra, dayanak

eğrisini B-Lift eğrisi alarak oluşturduğumuz, teğet, normal ve binormal yüzeylerinin

geometrik değişmezleri ve tekillikleri incelenmiştir. Sonrasında, 3-boyutlu Lorentz

uzayında B-Lift eğrileri tanımlanarak, Bertrand eğrisi ve involüt eğrisinin Frenet

vektörleriyle, B-Lift eğrisinin Frenet vektörleri arasındaki eşitlikler elde edilmiştir.

Çalışmanın devamında, dual uzayda B-Lift eğrileri tanımlanarak, esas eğrinin dual slant

helis olması için gerek ve yeter şartın B-Lift eğrisinin genel helis olması şartı ispatlanmıştır.

Son olarak da, uzaysal kuaterniyonik b-lift eğrileri tanımlanarak, bu eğri yardımıyla

kuaterniyonik genel helisler ve kuaterniyonik slant helisler arasındaki ilişkiler ortaya

konmuştur.

Tezde bulunan sonuçlar, helisler, slant helisler, özel eğriler ve regle yüzeylerle ilgilenen

araştırmacılar için bir kaynak niteliğindedir. B-Lift eğrilerle yapılan temel tanım ve

teoremler 3 boyutlu dual Lorentz uzayına da taşınabilir.
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10. Şentürk, G. Y. and Yüce, S. (2017). Bertrand Offsets of Ruled Surfaces with Darboux
Frame, Results in Mathematics, 72, 1151–1159.
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40. Hacısalihoğlu, H. H. (1983). Hareket Geometrisi ve Kuaterniyonlar Teorisi.
Ankara:Gazi Üniversitesi Fen-Edebiyat Fakültesi Yayınları.

41. Ward J. P. (1997). Quaternions and Cayley Numbers, New York: Kluwer Academic
Publishers.

42. O’Neill, B. (1983). Semi Riemann Geometry. New York: Academic Press, 42–187.
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46. Öztekin, H. B. and Bektaş, M. (2010). On Representation formulae for Bertrand curves
in the Minkowski 3-space, Scientia Magna, 6 (11), 89–96.



74
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