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    ÖZET 

 
Doktora Tezi 

 
AÇIKLANABİLİR YAPAY ZEKA MODELLERİ İLE İLAÇ YENİDEN 

KONUMLANDIRMASI İÇİN BENZETİM ORTAMLARI GELİŞTİRİLMESİ 
 

İlhan UYSAL 
 

Süleyman Demirel Üniversitesi 
Fen Bilimleri Enstitüsü 

Bilgisayar Mühendisliği Anabilim Dalı 
 

Danışman: Doç. Dr. Utku KÖSE 
 
 

Farmakoloji alanı, yapay zekânın yaygın olarak benimsenmesiyle birlikte önemli 
gelişmelere sahne olmuştur. Özellikle, ilaç keşfinde yapay zekâ kullanımı, 
geleneksel ilaç geliştirme süreçleriyle ilişkili maliyet ve zaman gibi büyük 
zorlukların üstesinden gelme konusunda umut vaat etmektedir. Yeni bir ilaç için 
geleneksel onay süreci sadece maliyetli değil, aynı zamanda zaman alıcıdır ve 
genellikle 12 ile 14 yıllık bir süreyi kapsamaktadır. Bu uzun keşif aşaması, ilaç 
geliştirmeyi hızlandırmak için alternatif yaklaşımların araştırılmasına yol 
açmıştır. Bu yaklaşımlardan biri, halihazırda onaylanmış ilaçların yeni 
endikasyonlar için kullanılmasını içeren ilaç yeniden konumlandırmadır. Çok 
sayıda ilaç şirketi, onaylanmış ve daha önce başarısız olmuş ilaç moleküllerini 
yeniden geliştirmek ve böylece çeşitli tıbbi durumlarda yeni tedavi seçenekleri 
sunmak için ilaç yeniden konumlandırmayı benimsemektedir.  
 
Bu tez çalışmasında çocukluk çağı akut lösemi tedavisinde kullanılan 
Mercaptopurine, Tioguanine, Prednisolone, Dexamethasone, Vincristine, 
Methotrexate, Daunorubicin, Cytarabine ilaçlarının diğer ilaçlarla olan 
etkileşimlerinin karmaşıklığına yönelik olarak ağ grafikleri oluşturulmuş ve bu 
ilaçlarla etkileşime giren ilaçların sahip olduğu moleküller araştırılmıştır. Histon 
deasetilaz (HDAC) genlerinin çocukluk çağı akut lösemisi ile ilişkisi üzerinden 
molekül hesaplamaları yapılmış ve yeniden kullanım sürecinde hangi moleküler 
parmak izlerinin ne oranda etki ettiği açıklanabilir yapay zekâ yöntemleri ile 
belirlenmiştir. HDAC genlerinde en fazla frekansa sahip olan IC50 ve inhibisyon 
standart türleri için ayrı ayrı değerlendirmeler yapılmıştır. Regresyon ve 
sınıflandırma algoritmaları ile model performansları karşılaştırılmış ve en 
başarılı algoritma Decision Tree olmuştur. Ayrıca elde edilen tüm bulgular için 
bir benzetim ortamı tasarlanmıştır. 
 
Çalışma, ilaçların yeniden konumlandırılmasında bir ortam sunduğu için 
literatür açısından önemli çıkarımlara sahiptir ve potansiyel olarak daha etkili 
terapötik stratejilerin belirlenmesine rehberlik etmektedir. Geliştirilen 
sistematik çerçeve, gelecekteki ilaç yeniden konumlandırma çalışmalarının 
tekrarlanabilirliğini ve ölçeklenebilirliğini artırmakta, sonuçta yeni terapötik 
seçenekler keşfetme potansiyeline sahip daha verimli ve hedefli ilaç yeniden 
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konumlandırma yaklaşımlarının ilerlemesine katkıda bulunmaktadır. Gelecek 
çalışmalarda veri setinin genişletilmesi ve iyileştirilmesi, topluluk yöntemleri ile 
algoritmaların birleştirilmesi yapılabilir. Ayrıca bulguların güvenirliği ve 
doğruluğu açısından klinik deneyler de önem arz etmektedir. 
 
Anahtar Kelimeler: Histon deasetilaz, çocukluk çağı akut lösemisi, açıklanabilir 
yapay zekâ, regresyon, sınıflandırma, ilaç-ilaç etkileşimi, ağ grafiği, benzetim. 
 
2023, 100 sayfa  
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DEVELOPING SIMULATION ENVIRONMENTS FOR DRUG REPURPOSING 

WITH EXPLAINABLE ARTIFICIAL INTELLIGENCE MODELS  
 

Ilhan UYSAL 
 

Suleyman Demirel University 
Graduate School of Natural and Applied Sciences 

Department of Computer Engineering 
 

Supervisor: Assoc. Prof. Dr. Utku KOSE 
 
 

The field of pharmacology has witnessed significant developments with the 
widespread adoption of artificial intelligence. In particular, the use of AI in drug 
discovery shows promise in overcoming the major challenges associated with 
traditional drug development processes, such as cost and time. The traditional 
approval process for a new drug is not only costly but also time-consuming, 
typically spanning 12 to 14 years. This long discovery phase has led to the 
exploration of alternative approaches to accelerate drug development. One such 
approach is drug repositioning, which involves using already approved drugs for 
new indications. Numerous pharmaceutical companies are adopting drug 
repositioning to redevelop approved and previously unsuccessful drug molecules 
and thus offer new treatment options for various medical conditions.  
 
In this thesis, network graphs were created for the complexity of the interactions 
of Mercaptopurine, Tioguanine, Prednisolone, Dexamethasone, Vincristine, 
Methotrexate, Daunorubicin, Cytarabine drugs used in the treatment of childhood 
acute leukaemia with other drugs and the molecules possessed by the drugs 
interacting with these drugs were investigated. Molecular calculations were 
made on the relationship between histone deacetylase (HDAC) genes and 
childhood acute leukaemia, and the molecular fingerprints that affect the reuse 
process were determined by explainable artificial intelligence methods. Separate 
evaluations were made for IC50 and inhibition standard types, which have the 
highest frequency in HDAC genes. Regression and classification algorithms and 
model performances were compared and the most successful algorithm was 
DecisionTreeRegressor. In addition, a simulation environment was designed for 
all the findings obtained. 
 
The study has important implications for the literature as it provides a setting for 
drug repositioning and potentially guides the identification of more effective 
therapeutic strategies. The systematic framework developed increases the 
reproducibility and scalability of future drug repositioning studies, ultimately 
contributing to the advancement of more efficient and targeted drug 
repositioning approaches with the potential to discover new therapeutic options. 
Future work could include expanding and improving the dataset and combining 
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ensemble methods and algorithms. Clinical trials are also important for the 
reliability and accuracy of the findings. 
 
Keywords: Histone deacetylase, childhood acute leukaemia, explainable artificial 
intelligence, regression, classification, drug-drug interaction, network graph, 
simulation.  
 
2023, 100 pages 
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1.  GİRİŞ 

 

İlaç keşfi, değerli ve etkili ilaç moleküllerinin keşfedilmesini ve geliştirilmesini 

gerektiren çok yönlü ve zorlu bir yolculuktur. Terapötik faydaları olan ticari 

olarak uygulanabilir bir ilacın oluşturulması veya yeniden kullanımı için çeşitli 

disiplinler arası iş birliğine dayalı bir yaklaşım gerektirmektedir. İlaç 

araştırmalarının amacı, hastalıkların tedavisine yönelik yeni perspektifler 

sunarak hastalık süreçlerine odaklanmak ve yeni ilaçlar keşfetmektir. İlaç keşfi 

ve geliştirme süreci, potansiyel ilaç adaylarının belirlenmesinden başlayarak 

hedef molekülün sentezi, karakterizasyonu, taranması ve terapötik özelliklerinin 

değerlendirilmesine kadar birçok aşamayı kapsamaktadır. Bu aşamalarda, 

binlerce bileşik içinden sadece bir molekül seçilmektedir. Seçilen molekül, 

etkinlik açısından tatmin edici sonuçlar veriyorsa, klinik deneylerle ilaç 

geliştirme süreci başlamaktadır. İlaç keşfi ve geliştirme süreci yüksek bütçeler ve 

ileri düzey teknolojiler gerektiren pre-klinik, klinik ve klinik sonrası araştırmaları 

içermektedir. Ortalama olarak, ilk ilaç keşfi aşamasından bir farmasötik ürünün 

nihai olarak piyasaya sürülmesine kadar geçen süre yaklaşık 12 ila 14 yıldır. İlaç 

keşif ve geliştirme sürecinde, hedef molekülün belirlenmesi için literatür 

araştırmaları yapılır. Klinik öncesi araştırma, hayvan modelleri üzerinde yapılan 

deneyler yoluyla ilacın farmakolojik ve toksikolojik yönlerinin 

değerlendirilmesini kapsamaktadır. Bunu takiben, ilacın etkilerini 

değerlendirmek ve uygun dozajları belirlemek için sağlıklı bireyler üzerinde Faz 

1 çalışmaları yürütülmektedir. Faz 2 çalışmalarına geçildiğinde, ilacın etkinliğini, 

dozaj ayarlamalarını ve güvenlik profilini daha fazla araştırmak için küçük bir 

hasta grubu incelenmektedir. Faz 3 çalışmaları ise ilacın daha geniş bir 

popülasyonda etkinliğini kanıtlamak ve yan etkilerini belirlemek için 

yapılmaktadır. İlaç keşif ve geliştirme süreci, hedef molekül seçimi, klinik öncesi 

çalışmalar ve klinik deneylerin sonraki aşamaları (Faz 1, Faz 2 ve Faz 3) dahil 

olmak üzere çeşitli aşamaları içermektedir. Her aşama, bir sonraki aşamaya 

geçmeden önce ilaç adayının güvenliğinin, etkinliğinin ve potansiyelinin 

değerlendirilmesinde çok önemli bir rol oynamaktadır (Kırboğa vd. 2022). 
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Yapay zekâ ve farmakoloji alanındaki gelişmeler son zamanlarda büyük bir ivme 

kazanmıştır. Yapay zekâ teknolojileri, ilaç keşfi çalışmalarında etkili bir şekilde 

kullanılmaktadır. İlaç keşfi sürecinde karşılaşılan maliyet ve zaman gibi sorunlar, 

yapay zekânın yardımıyla artık daha az sorun teşkil etmektedir. Bir ilacın 

onaylanması süreci oldukça pahalı ve uzun bir süre gerektirebilmektedir (Chan 

vd., 2019; Çelik vd., 2021). Araştırmalar, ilaç keşfi Ar-Ge harcamalarının ortalama 

2,8 milyar Amerikan dolarına kadar çıktığını ve bütün geliştirme sürecinin 

ortalama 12-14 yıl sürdüğünü göstermektedir (DiMasi vd., 2016; Lim, 2023; 

Sarkar vd., 2023; Wouters vd., 2020; Chang vd., 2023). Bu uzun süre, ilaç 

geliştirme sürecini kısaltmak için alternatif bir yaklaşım olan ilacın yeniden 

amaca uygun hale getirilmesi (yeniden konumlandırılması) fırsatlarını ortaya 

çıkarmaktadır. İlaç yeniden kullanımı, çeşitli düzenleyici kurumlar tarafından 

onaylanmış bir ilacın yeni bir endikasyon için kullanılması anlamına gelmektedir 

(Uysal ve Köse, 2022). Birçok ilaç şirketi, daha önce başarısız olan moleküllerini 

yeniden tasarlayarak çeşitli hastalık koşulları için yeni tedaviler geliştirmektedir. 

Yeni teknolojiler ve hesaplama araçları, ilaç keşfini daha uygun maliyetli hale 

getirmiştir. Bu yaklaşım, son zamanlarda FDA tarafından onaylanan ilaçların 

yaklaşık % 30'unu oluşturmaktadır (Parvathaneni vd., 2019). İlaçların yeniden 

kullanımı, özellikle nadir görülen bozukluklar gibi tıbbi ihtiyaçların 

karşılanmadığı durumlarda önemli bir potansiyele sahiptir. 

 

İlaç yeniden kullanım alanında yapılan çalışmalar her geçen gün daha çok önem 

kazanmaktadır. Ancak uygulama aşamasında ortaya çeşitli zorluklar çıkmaktadır. 

İlaç adaylarının yeniden kullanım amacına yönelik katı ve hızlı düzenleyici 

yönergeler olmadığından, düzenleyici kurumlara ilgili bilgileri sağlamak, yeni 

başlayanlar için aşılması zor bir engel olarak görülmektedir. Genel olarak, 

yeniden kullanım adayı olan ilaçlar, özellikle önceden amaçlanan bir endikasyon 

için başarısız olduysa, potansiyel bir zaman kaybı riski taşımaktadır. Bu 

durumda, aynı ilaç veya bileşiğin birden fazla endikasyon için değerlendirildiği 

bir geliştirme programının tasarlanması önerilmektedir. İlaçın yeniden kullanım 

amacı, ilacın biyolojik ve moleküler yöntemlerle etkileşimlerinin tam olarak 

anlaşılmasını gerektirmektedir. Kapsamlı bir bilgiyle, bu hipotez riski önemli 

ölçüde azaltılabilmekte ve ilacın başarılı bir şekilde yeniden kullanılmasına yol 
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açabilmektedir. İlaç firmaları, uygun maliyetli ve kazançlı keşif alanlarına 

odaklanmaktadır. Ancak, nadir görülen ve ihmal edilen hastalıklar için ilaçların 

yeniden kullanılması ekonomik getiri garantisi sunmamaktadır. Bu nedenle, bir 

firma uzmanlaşmış ve daha yerleşik bir araştırma yönergelerine odaklanmalıdır. 

Ayrıca, ilaç şirketlerinin karşılaştığı bir diğer engel de finansal teşvik ve araştırma 

fonlarının eksikliğidir. Örneğin, nadir görülen kanser vakalarında yatırım getirisi 

garantisi olmadan ilaçlarla ilgili araştırmalara yatırım yapılması için çok az teşvik 

bulunmaktadır. Tüm bu zorluklara rağmen, ilacın yeniden kullanımı yaratıcı 

stratejiler ve ilaç şirketlerinin isteği ve arzusuyla devam edeceği 

öngörülmektedir (Vaidya vd, 2019; Kulkarni vd, 2019; Pantziarka vd., 2019; 

Parvathaneni vd., 2019; Gard, 2019; Shineman vd., 2014; Croset, 2014; Padhy ve 

Gupta, 2011; Arrowsmith, 2011; Uysal ve Köse, 2022). Şekil 1.1’de geleneksel ilaç 

keşif yaklaşımları ve ilaç yeniden kullanım amaçlı yaklaşımların temel 

farklılıkları ve faydaları sunulmuştur. İlaç yeniden kullanım, eski-mevcut ilaçlara 

yeni tedavi edici kullanımlar bulma sürecidir. İlaş keşfi ise yeni moleküler 

hedefler keşfederek veya tasarlayarak yeni ilaç molekülleri geliştirme sürecidir. 

İlaç yeniden kullanım, ilaç keşfine göre daha etkili, zaman tasarruflu, düşük 

maliyetli ve başarısızlık riski daha az olan bir stratejidir. İlaç yeniden kullanım, 

ilacın terapötik değerini arttırmakta ve başarı oranını yükseltmektedir. Bu 

nedenle, İlaç yeniden kullanım, geleneksel ilaç keşfi sürecine alternatif bir 

yaklaşımdır. İlaç yeniden kullanım, ilacın güvenliği ve farmakokinetiği hakkında 

zaten bilgi sahibi olduğu için daha az test aşamasına ihtiyaç duyarken, ilaç keşfi 

yeni bir ilacın güvenliği ve farmakokinetiği hakkında bilgi edinmek için daha fazla 

test aşamasına ihtiyaç duymaktadır. İlaç yeniden kullanım, daha az zaman ve 

kaynak gerektirdiği için daha hızlı sonuç alabilirken, ilaç keşfi daha uzun zaman 

ve kaynak gerektirdiği için daha yavaş sonuç almaktadır. İlaç yeniden kullanım, 

daha az patent sorunu yaşadığı için daha az engelle karşılaşırken, ilaç keşfi daha 

fazla patent sorunu yaşadığı için daha fazla engelle karşılaşmaktadır (Rudrapal 

vd., 2020). Dolayısıyla ilaç yeniden kullanım ya da konumlandırma strateji 

belirlendikten sonra ilaç keşfine göre Faz1 aşamasını atlayarak Faz 2 aşamasına 

geçtiği için zaman ve maliyet yönünden daha avantajlıdır. 
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Şekil 1.1. Geleneksel ilaç keşif süreci ile ilacın yeniden kullanım amacının 
                     karşılaştırılması (Parvathaneni vd., 2019; Uysal ve Köse, 2022). 

 

Bilgisayar destekli ilaç tasarımı (CADD), ilaçlar ve reseptörler arasındaki 

moleküler etkileşimleri anlamaya odaklanmaktadır. Bu etkileşimler moleküler 

yüzey, elektrostatik kuvvet, hidrofobik etkileşim ve hidrojen bağı oluşumu gibi 

çeşitli faktörlerden etkilenmektedir. Amaç, ilaç-reseptör bağlanması hakkında 

bilgi edinmek için bu etkileşimleri tahmin ve analiz etmektir (Dhamal vd., 2022). 

CADD, hastalıkla ilişkili doğal veya sentetik proteinlerin, moleküllerin veya 

ürünlerin bilgisayar ortamında tasarlanması ve test edilmesi yoluyla üretim 

sürecine katkıda bulunmaktadır. İlaç keşfinde CADD gibi hesaplamalı yöntemler, 

bileşik sentezini hızlandırmak için yüksek verimli tarama tekniklerinden ve 

otomatik sistemlerden yararlanmaktadır (Tang vd., 2006). Bu teknolojileri 

kullanarak CADD, daha fazla değerlendirme ve optimizasyon için bileşiklerin hızlı 

bir şekilde üretilmesini sağlamaktadır. Seçilen öncü bileşiğin toksisite, 

kanserojenlik, sentezin karmaşıklığı ve verimlilik gibi faktörler test edildikten 

sonra kabul edilmekte veya reddedilmektedir. CADD süreci, hedef molekülün 

bağlanma bölgesini belirlemekle başlar ve aday molekülün hedef yapılarla 

etkileşiminden elde edilen biyolojik afinite skorlarıyla devam 

etmektedir(Vemula vd., 2022). Lipinski kuralları, uygun ilaç özelliklerine sahip 

olabilecek bileşiklerin seçilmesi için kriterler sağlamaktadır (Karami vd., 2022). 
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CADD, çeşitli veri tabanlarından yararlanarak ve Lipinski'nin kuralına bağlı 

kalarak ilaç keşfi ve geliştirme sürecini hızlandırmada önemli bir rol 

oynamaktadır (Katsila vd., 2016). CADD teknikleri, Kantitatif Yapı-Aktivite İlişkisi 

(QSAR), kombinatoryal kimya, sanal tarama ve yerleştirme gibi yazılım araçlarını 

kullanarak belirli hastalıklara özel ligandların, aktivatörlerin veya inhibitörlerin 

tasarlanmasına olanak tanımaktadır. Bu metodolojiler, ilaç keşfinde molekül 

keşfinin verimliliğini ve kapsamını artırmaktadır (Duarte vd., 2019). QSAR küçük 

moleküllerin deneysel olarak gözlemlenen bağlanma özelliklerini, kimyasal yapı 

ve fizikokimyasal özellikler gibi moleküler tanımlayıcıları ile ilişkilendiren bir 

yöntemdir. QSAR modelleri, bu ilişkileri analiz ederek küçük molekül adaylarının 

aktivitelerini tahmin edebilmekte ve isabet optimizasyonuna rehberlik 

etmektedir. Farmakofor modelleme ve homoloji modelleme, CADD’de önemli rol 

oynamakta, ilaç-reseptör etkileşimlerinin üç boyutlu yönlerine ilişkin içgörüler 

sunmakta ve yenilikçi terapötiklerin geliştirilmesine yardımcı olmaktadır. Bu 

teknikler, ilaçların hedefleriyle nasıl etkileşime girdiğine dair araştırmacıların 

idrakını geliştirmekte ve gelişmiş özelliklere sahip yeni bileşiklerin 

tasarlanmasına yardımcı olmaktadır. (Kırboğa vd., 2022). CADD, moleküler 

kimya açısından maliyeti ve işçiliği azaltarak birçok ilacın geliştirilmesini 

kolaylaştırırken yapay zekâ algoritmalarını kullanmaktadır. Ayrıca, ilaç keşfi ve 

kemoinformatik arasındaki sinerjiyi artıran moleküler tanımlayıcıları 

vurgulayan makine öğrenimi yaklaşımları da bulunmaktadır. 

 

İlaç yeniden kullanım çalışmaları lösemi gibi kanserlerde kritik bir önem arz 

etmektedir. Araştırmalar, yeni ilaç keşiflerindeki % 13.8’lik başarı içerisinde 

kanser ilaçlarının sadece % 3.4’lük bir oranda pay sahibi olduğunu 

göstermektedir (Lim, 2023). Ayrıca, son gelişmeler kanser ilaçlarında erişimde 

dünya çapında krizlerin olduğunu işaret etmektedir (Anadolu Agency, 2022; 

Cohen ve Musa, 2023; Das, 2022; Ellis-Petersen ve Senanayake, 2022; Nonzee ve 

Luu, 2019; Rees, 2023). Nature Reviews Clinical Oncology dergisi de bu durumu 

uzmanlar eşliğinde onaylamaktadır (Barrios vd., 2023). Çocukluk çağı akut 

lösemisi, çocuklarda kan ve kemik iliğini etkileyen bir kanser türünü ifade 

etmektedir. Bir kemiğin yapısı kompakt kemik, süngerimsi kemik ve kemik 

iliğinden oluşmaktadır. Kemiğin anatomisini gösteren görsel Şekil 1.2’de 
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verilmiştir. Kemiğin dış tabakası kompakt kemikten oluşmaktadır. Süngerimsi 

kemik ağırlıklı olarak kemiklerin uç kısımlarında bulunmaktadır ve kırmızı ilik 

içermektedir. Çoğu kemiğin merkezinde kan damarları açısından zengin olan 

kemik iliği bulunmaktadır. Kırmızı ve sarı olmak üzere iki tür kemik iliği vardır. 

Kırmızı ilik kırmızı kan hücrelerine, beyaz kan hücrelerine veya trombositlere 

dönüşme yeteneğine sahip kan kök hücrelerini barındırmaktadır. Öte yandan, 

sarı ilik esas olarak yağdan oluşmaktadır (Ulusal Kanser Enstitüsü, 2022). Bu 

kanser türü çocuklar arasında yaygındır ve bu yaş grubundaki tüm kanser 

vakalarının yaklaşık % 30'unu oluşturmaktadır. Çocukluk çağı akut lösemisinin 

iki ana türü vardır: Akut Lenfoblastik Lösemi (ALL) ve Akut Miyeloid Lösemi 

(AML). Çocukluk çağı akut lösemisinin belirtileri değişkenlik gösterebilir ancak 

yorgunluk, soluk cilt, sık enfeksiyonlar, kolay morarma veya kanama, kemik veya 

eklem ağrısı, şişmiş lenf düğümleri ve karın rahatsızlığı olabilmektedir. Çocukluk 

çağı akut lösemisi için tedavi seçenekleri mevcuttur. ALL ve AML için tedavinin 

temel dayanağı, kanser hücrelerini öldürmek için ilaçların kullanılmasını içeren 

kemoterapiyi içermektedir. Kemoterapi rejimlerinde kullanılan spesifik ilaçlar, 

löseminin türüne, evresine ve ayrıca bireysel hasta faktörlerine bağlı olarak 

değişebilmektedir. Çocukluk çağı akut lösemisi için yaygın olarak kullanılan 

kemoterapi ilaçları arasında metotreksat, vinkristin, daunorubisin, sitarabin ve 

prednizon bulunmaktadır. Bazı durumlarda, löseminin spesifik özelliklerine ve 

hastanın durumuna bağlı olarak radyasyon tedavisi, kök hücre nakli veya hedefe 

yönelik tedavi gibi ek tedaviler önerilmektedir. Çocukluk çağı akut lösemisi için 

tedavi planlarının bireyselleştirilmesi, çocuğun yaşı, genel sağlık durumu ve 

löseminin spesifik özellikleri de dahil olmak üzere çeşitli faktörlere dayalı olarak 

sağlık uzmanlarından oluşan multidisipliner bir ekip tarafından belirlenmesi 

gerekmektedir. ALL tedavisinde ilaç firmalarının, tedavide kullanılabilecek 

ilaçlar için hangi aşamada olduklarını gösteren rapordan bir kesit Çizelge 1.1’de 

verilmiştir 
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Şekil 1.2. Kemiğin anatomisi 

 

Çizelge 1.1. ALL Tedavisi için İlaçlar ve Faz Aşamaları (DelveInsight, 2023) 

 

İlaçlar Şirket Faz 

Inaticabtagene autoleucel  Juventas Cell Therapy/CASI 
Pharmaceuticals 

Kayıtlı 

Venetoclax AbbVie Faz III 

CPX-351 Jazz Pharmaceuticals Faz II 

Obecabtagene autoleucel  Autolus Faz I/II 

Navitoclax AbbVie Faz I/II 

UCART22 Cellectis Faz I 

 

AML ve ALL’de tedavide Faz 3 aşamasına geçilemediği, ilaç firmalarının da ilaç 

üretme çabasında da Faz 3 aşamasından ileriye henüz geçemediği DelveInsight’ın 

Nisan 2023 araştırmasından anlaşılmaktadır. Bu durum çalışmanın 

motivasyonunu oluşturan en önemli unsurlardan biridir. Bu bağlamda tezin 

kapsamı, histon deasetilaz genleri çerçevesinde çizilmiş ve bu genlerle ilişkili 

olduğu bilinen çocukluk çağı akut lösemisinde ağ grafiklerinden yararlanarak 

moleküler hesaplamaların açıklanabilir yapay zekâ ile desteklenmesi ve tedavide 

kullanılan ilaçların etkileşimindeki karmaşıklığı gidermeyi içermektedir. Çalışma 

kapsamında, Chembl veritabanı üzerinden çocukluk çağı akut lösemisi ile ilişkili 

olduğu bilinen histon deasetilaz genleri seçilmiştir. Lipinski'nin kurallarına bağlı 

kalınarak moleküller seçildikten sonra en uygun adayları belirlemek için çeşitli 
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yapay zekâ algoritmaları kullanılmıştır. Açıklanabilir yapay zekâ (Explainable 

Artificial Intelligence – XAI)  teknolojisinin kullanılması ve moleküler özelliklerin 

ilgili modeller ile değerlendirilmesi yoluyla, modellerin moleküler parmak izleri 

üzerindeki performans metrikleri hesaplanmıştır. Tez çalışmasını diğer 

araştırmalardan farklı ve özgün kılan yönü, moleküller üzerinde hem regresyon 

hem de sınıflandırma yapılarak XAI ile elde edilen sonuçların bir dayanağı olması 

ve ilaç ilaç etkileşimlerinde karmaşıklığın ağ grafikleri ile analiz edilerek 

kullanılmasıdır. Literatüre, moleküler özelliklerin incelenmesi, ilaç 

etkileşimlerinin ağ grafikleri ile analiz edilerek karmaşıklığın giderilmesi ve 

XAI’nın başta kanser olmak üzere ilaç yeniden kullanım çalışmalarında etkin 

olarak kullanılabilmesi konusunda önemli bir katkı sağlamaktadır. 
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2.  KAYNAK ÖZETLERİ 

 

Bu tez konu kapsamı dikkate alınarak gerçekleştirilen literatür taramasında; 

histon deasetilaz (HDAC), çocukluk çağı akut lösemisi, kimyasal yapı ve 

biyoaktivite ile ilaç yeniden kullanım (drug repurposing) başlıkları altındaki 

farklı yayınlar incelenmiştir. Literatürde yer alan çalışmalarda HDAC'lerin, 

kanser tedavisinde ilgi çekici bir hedef olduğu ve hematolojik kanserler dahil 

olmak üzere birçok kanserde farklı karakteristikte bir ekspresyon gösterdiği, 

bazı HDAC genlerinin, ALL gibi kanserlerde yüksek düzeyde ifade edildiği, HDAC 

inhibitörlerinin, kanser tedavisinde umut verici ilaçlar olarak ortaya çıktığını, 

ancak toksisiteleri nedeniyle kullanımlarının sınırlı olduğu, HDAC 

inhibitörlerinin yeniden tasarlanmasının, yeni tedavi seçenekleri keşfetme 

potansiyeline sahip olduğunu, moleküler yerleştirme ve QSAR gibi hesaplama 

yöntemleriyle keşfedilebileceği ve mevcut ilaçların yeniden tasarlanmasının yeni 

inhibitörlerin keşfedilmesi için etkili bir yol olabileceği ifade edilmiştir. Bu 

bağlamda, mevcut tez çalışmasının kuruluş ve karşılaştırmalı analiz aşamalarını 

önemli ölçüde etkilemiş olan dikkate değer araştırmalar önem taşımaktadır. 

Aşağıdaki temel çalışmalar, bu araştırmanın temel unsurlarının 

şekillendirilmesinde ve karşılaştırma sürecinin kolaylaştırılmasında önemli bir 

rol oynamıştır : 

 

HDAC’ler, kanser tedavisinde ilgi çekici bir hedeftir ve hematolojik kanserler de 

dahil olmak üzere birçok kanserde değişmiş bir ekspresyon göstermektedir. 

Moreno vd. (2010), yaptıkları çalışmada, 94 çocukluk çağı ALL örneği üzerinde 

HDAC genlerinin mRNA ekspresyon profili incelenmiştir. ALL örneklerinde, 

normal kemik iliği örneklerine göre bazı HDAC genleri (HDAC2, HDAC3, HDAC8, 

HDAC6 ve HDAC7) daha yüksek düzeyde ifade edilmiştir. Bazı HDAC genleri ise 

T-ALL veya B-hücreli ALL gibi alt tiplerde daha yüksek ekspresyon göstermiştir. 

Örneğin, HDAC3'ün yüksek ekspresyonu genel hasta grubunda ve T-ALL 

hastalarında daha düşük sağkalım ile ilişkilendirilmiştir. Benzer şekilde, HDAC7 

ve HDAC9'un yüksek ekspresyonu da düşük sağkalım ile ilişkilendirilmiştir. Bu 

bulgular, HDAC7 ve HDAC9'un çocukluk çağı ALL'sinde kötü prognozla ilişkili 

olduğunu ve yeni tedavi hedefleri olabileceğini göstermektedir. 
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Vega‐García vd. (2018), histone deasetilaz inhibitörlerinin lösemide umut verici 

ilaçlar olarak ortaya çıktığını, ancak, özgünlük eksikliğinden kaynaklanan 

toksisiteleri nedeniyle kullanımlarının sınırlı olduğunu ve bu nedenle, 

HDAC'lerin belirli durumlardaki rolünün aydınlatılması gerektiğini ifade 

etmişlerdir. Çocukluk çağı lösemisinde HDAC ifadesinin incelenmesi, 

kişiselleştirilmiş bir yaklaşımda seçilmiş adaylar için daha spesifik HDAC 

inhibitörleri seçmeye yardımcı olduğunu belirtmişlerdir. Vega‐García vd., akut 

lösemi tanısı konmuş 211 pediyatrik hastada HDAC inhibitörlerini analiz 

etmişlerdir ve sonuçta çocukluk çağı lösemisinde HDAC ifadesinin karmaşık 

resmi hakkında faydalı bilgiler sunulduğunu ve akut lösemi olan seçilmiş 

pediyatrik hastalarda spesifik HDAC inhibitörlerinin yönlendirilmiş kullanımını 

desteklediğini ifade etmişlerdir. 

 

Liu vd. (2020), yeni HDAC inhibitörlerini tanımlamak için ilaç yeniden kullanım, 

farmakofor modelleme, 3D-QSAR ve docking çalışmalarının kullanımını 

araştırmışlardır. Kanser ve diğer hastalıkları tedavi etmek için kullanılabilecek 

yeni inhibitörler keşfetmeyi hedeflemişler ve araştırmaları sayesinde daha önce 

çalışılmamış birkaç potansiyel HDAC inhibitörü tanımlamışlardır. Ayrıca, 

güvenlik ve etkinlik açısından zaten test edilmiş olan mevcut ilaçların 

kullanılmasına izin verdiği için, ilacın yeniden tasarlanmasının yeni inhibitörler 

keşfetmenin etkili bir yolu olabileceğini de belirtmişlerdir. Dolayısyla yeni HDAC 

inhibitörlerini tanımlamak için hesaplama yöntemleri ve ilacın yeniden 

tasarlanmasının bir kombinasyonunu kullanma potansiyelini belirtmektedir; bu 

da sonuçta kanser ve diğer hastalıklar için yeni tedavilerin geliştirilmesine imkân 

verebilmektedir. 

 

Zhao vd. (2015), hepatit C virüsü (HCV) enfeksiyonunun tedavisi için HDAC 

inhibitörlerinin yeniden tasarlanma potansiyelini araştırmışlardır. HDAC 

inhibitörlerinin HCV'ye karşı doğrudan etkili antiviral ilaçlar olarak etkinliğini ve 

anti-HCV ilaç keşfi için mevcut ilaçların yeniden tasarlanmasının avantajlarını 

tartışmışlardır. HDAC inhibitörlerine ve HCV'ye karşı etki mekanizmalarına genel 

bir bakış sunduktan sonra, HDAC inhibitörlerinin HCV replikasyonunu inhibe 
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etme ve konakçı immün yanıtlarını modüle etme potansiyelini tartışarak, onları 

anti-HCV tedavisi için umut verici adaylar olduğunu belirlemişlerdir. 

 

Sarı vd. (2021), çalışmalarında FDA onaylı ilaçları moleküler yerleştirme 

kullanarak pan-HDAC ve pan-SIRT inhibitörleri olarak yeniden tasarlamak için 

potansiyel adayları belirlemeyi amaçlamışlardır. FRED, Glide ve AutoDock Vina 

kullanarak mevcut kristal yapılara sahip bir dizi klasik HDAC ve SIRT'ye karşı 

1502 FDA onaylı ilacı taradıktan sonra, pan-HDAC ve pan-SIRT inhibitör 

aktivitesine sahip umut verici ilaçları ortaya çıktığını ve kanser de dahil olmak 

üzere çeşitli durumların tedavisi için yeni olanaklar sağladığını belirtmişlerdir. 

 

Gruhn vd. (2013), çalışmalarında ALL’de HDAC4 ekspresyonunu ve bunun klinik 

ve biyolojik özelliklerle potansiyel ilişkisini araştırmış ve çocukluk çağı ALL'si 

için ilgili HDAC izoformlarını tanımlamayı ve bunların tedaviye yanıt ve prognoz 

üzerindeki etkilerini belirlemeyi amaçlamışlardır. Çalışmada HDAC1, HDAC2 ve 

HDAC8'in ALL örneklerinde önemli ölçüde daha yüksek ekspresyon gösterdiği 

belirtilmiştir. Ayrıca, yüksek HDAC4 seviyeleri olumsuz prognostik faktörlerle 

ilişkilendirilmiş ve HDAC4'ün çocukluk çağı ALL'sinde prednizona kötü yanıtta 

rol oynayabileceğini ifade etmişlerdir.  

 

Pacaud vd. (2023), yaptıkları çalışmada HDAC inhibitörlerinin klinik 

uygulamalarından bahsetmişlerdir. Kanser hücrelerindeki anormal epigenetik 

değişiklikleri tersine çevirmek için yapısal ve işlevsel olarak farklı birkaç HDAC 

inhibitörü (HDACi) geliştirildiğini ifade etmişlerdir.  Giderek artan bir literatürle 

birlikte, bu ilaçları kanserin çeşitli aşamalarında ve ortamlarında, tek ajan olarak 

veya hematolojik hem de solid tümör malignitelerinde terapötik bir strateji 

olarak rasyonel olarak tasarlanmış kombinasyonlarda test etmek için yeterli 

klinik öncesi gerekçe bulunduğunu ve ilk HDACi vorinostat (Zolinza) kutanöz T-

hücreli lenfoma hastalarının tedavisi için onaylandığını ayrıca epilepsi, kistik 

fibroz, spinal musküler atrofi ve insan immün yetmezlik virüsü enfeksiyonu gibi 

çeşitli kanser dışı hastalıkların tedavisinde de HDACi'lerin büyük umut vaat 

ettiğini belirtmişlerdir. 
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Fernández-de Gortari vd. (2017), çalışmalarında moleküler veritabanlarını 

temsil etmek için Veritabanı Parmak İzi (DFP) adı verilen yeni bir yaklaşım 

önermişlerdir. DFP, tüm bir bileşik kütüphanesinin tek bir ikili parmak izi ile 

temsil edilmesine olanak tanıyarak depolama alanı ve gereksiz hesaplamalar 

sorunlarını ele almaktadır. Çalışma, çeşitli parmak izi türleri ve veri setleri 

kullanarak DFP'nin geliştirilmesini ve uygulanmasını göstermekte ve bileşik 

koleksiyonlarının temel bilgilerini yakalamadaki performansını ortaya 

koymaktadır. Ayrıca DFP'nin performansını diferansiyel Shannon entropi, k-

ortalama kümeleme ve DFP/Tanimoto benzerlik analizlerini kullanarak 

değerlendirmişlerdir.  

 

Cortés-Ciriano vd. (2020), çalışmalarında potens tahmini için QSAR türevi afinite 

parmak izlerinin (QAFFP) modelleme performansını araştırmışlar ve QAFFP'nin 

hesaplanması için, bileşiklerin biyoaktivite alanındaki benzerliklerine göre 

kodlanmasına ve karşılaştırılmasına olanak tanıyan bir çerçeve önermişlerdir. 

QAFFP'nin tahmin gücü, çeşitli kanser hücre hatları ve protein hedef veri setleri 

için ChEMBL veritabanından IC50 verileri kullanılarak kıyaslamışlardır. 

Çalışmada QAFFP'nin, Morgan2 parmak izleri ve fizikokimyasal tanımlayıcılar 

kullanılarak elde edilen tahmin gücünün yanı sıra ChEMBL'deki heterojen IC50 

verilerinin belirsizliği ile karşılaştırılabilir olan ~ 0.6-0.9 pIC50 birimleri 

aralığında RMSE değerleri ile oldukça öngörücü modellerin oluşturulmasını 

sağladığını ifadet etmişlerdir. Bu performans seviyesi, benzerlik arama, bileşik 

sınıflandırma ve iskele atlama görevlerinde QAFFP ile elde edilen yüksek tahmin 

gücü ile uyumlu olduğunu belirtmişlerdir. 

 

Scalfani vd. (2022), Python RDKit ve NetworkX iş akışı kullanılarak Kimyasal 

Uzay Ağlarının (CSN'ler) nasıl oluşturulacağından bahsetmişlerdir. Biri RDKit 2D 

parmak izi Tanimoto benzerlik değerlerine, diğeri ise maksimum ortak alt yapı 

benzerlik değerlerine dayanan iki farklı CSN oluşturmak için adım adım bir 

yaklaşım sunmuşlardır. Biyoaktivite öznitelik değerine dayalı olarak düğümleri 

renkle temsil etme yöntemleri, benzerlik değerine dayalı olarak farklı çizgi 

stillerine sahip kenarlar ve daire düğümlerini 2D yapı tasvirleriyle değiştirme 

gibi çeşitli farklı CSN görselleştirme özellikleri belirtilmiş ve son olarak 
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kümeleme katsayısı, derece çeşitliliği ve modülerlik dahil olmak üzere bazı 

yaygın ağ özellikleri ve analiz hesaplamaları verilmiştir. 

 

Sada Del Real ve Rubio (2023), yaptıkları çalışmada kanser ilaçlarının etkinliğini 

tahmin etmek için kullanılan Derin Sinir Ağlarındaki (DNN'ler) açıklanabilirlik 

eksikliğini gidermeyi amaçlayan SparseGO adlı yeni bir sinir ağını tanıtmışlardır. 

SparseGO, seyrek ve açıklanabilir bir sinir ağı mimarisi uygulayarak bu 

sınırlamaların üstesinden geldiğini ifade etmişlerdir. İlaçların Etki 

Mekanizmasını (MoA) hesaplamalı olarak keşfetmek için Destek Vektör 

Makineleri (SVM'ler) ile DeepLIFT adı verilen bir Açıklanabilir Yapay Zeka (XAI) 

tekniğini entegre etmişlerdir. Odak noktası, kanser hücre hatlarında ilaç 

etkinliğini tahmin etmek ve tahminlerin altında yatan nedenleri anlamak olan 

çalışmada, SparseGO'nun seyrek uygulaması, önceki yöntemlere kıyasla GPU 

bellek kullanımını ve eğitim hızını önemli ölçüde azalttığını, gen ifadesi 

verilerinin 200 ilaçtan oluşan bir eğitim seti kullanılarak MoA'nın tahmin 

edilmesine olanak sağladığını vurgulamışlardır. SparseGO, parbendazol, 6-bio ve 

elesclomol gibi az çalışılmış ilaçlar üzerinde doğrulanmış ve iyi çalışılmış 

bileşiklerin ötesinde ilaç yanıtını anlamadaki etkinliğini gösterdiğini 

belirtmişlerdir. 

 

Kırboğa vd. (2022), kalıtsal Friedreich Ataksisi (FA) için potansiyel terapötik 

seçenekleri araştırmak üzere yapay zekâ tekniklerinin uygulanmasına 

odaklanmışlardır. Çalışmada özellikle demir şelasyon moleküllerini ve HDAC 

inhibitörlerini FA için potansiyel tedaviler olarak araştırılmıştır. Chembl veri 

tabanındaki bileşikleri kullanarak bir kantitatif yapı-aktivite ilişkisi (QSAR) 

analizi yapılmıştır. Fe şelasyonu için 436 bileşik ve HDAC inhibisyonu için 1.163 

bileşiğin biyoaktivitesi IC50 birimi kullanılarak ölçülmüştür. Model oluşturmak 

için Rastgele Orman tekniğini kullanılmıştır. PubChem parmak izi kullanılarak 

oluşturulan modeller diğerlerinden daha iyi performans göstererek yorumlama 

için uygunluğunu göstermiştir. Çalışmada, XAI ile analiz edilen bileşiklerdeki azot 

içeren fonksiyonel grupların ve aromatik halkaların önemi vurgulanmıştır. 
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Li vd. (2023), çalışmalarında onaylı ilaçlar, klinik çalışmalarda test edilen ilaçlar, 

patentli/klinik öncesi ilaçlar ve araştırma ajanlarına ilişkin kapsamlı bir literatür 

taraması yapmışlardır. Bu ilaçlarla etkileşime giren farmakolojik öneme sahip 

moleküller toplanmış ve 32.487 ilaç/ilaç adayı ile etkileşime giren toplam 5067 

farmakolojik öneme sahip molekül tespit etmişlerdir. 21.781 hastanın 108 

hastalık bölgesi arasında 1539 molekülün, 236 sağlıklı bireyin ADME ile ilgili dört 

tipik organı arasında 1323 molekülün ve 32 fizyolojik/yaşam için gerekli 

bölge/organ arasında 1286 molekülün ifade kalıplarını toplamışlardır. Son 

olarak, 50.180 ilaç-molekül etkileşimi içeren kapsamlı ve hassas bir 'ağ' 

oluşturmuşlardır. Her ilaç için alt ağa ve tüm ilaçlar için tüm ağa DrugMAP'te 

ücretsiz olarak erişilebildiğini belirtmişlerdir. 

 

Wang vd. (2019), çalışmalarında ilaçların mevcut kullanımlarının dışında farklı 

hastalıklar için kullanılabilme potansiyelini araştırmak amacıyla bir konsensüs 

ters yerleştirme stratejisi geliştirme ve değerlendirme üzerine odaklanmışlardır. 

Doğrulanmış ilaç hedefleri ve ilaç bileşiklerinden oluşan bir veri tabanı 

oluşturduktan sonra, bu hedefler üzerinde bir tarama yapmak için konsensüs ters 

yerleştirme protokolünü kullanmışlardır. Protokolün performansını 

değerlendirmek için, belirli kriterlere göre seçilen 51 ticari ilaçtan oluşan bir test 

seti kullanılmıştır. Tahmin performansı, ROC analizi ile incelenmiştir. Çalışmanın 

sonucunda, kullanılan konsensüs stratejisinin ilaç yeniden kullanım 

çalışmalarının başarı oranını artırma potansiyeline sahip olduğu sonucuna 

varmışlardır. 

 

Literatür araştırmalarında HDAC inhibitörlerinin kanser hücrelerinin 

büyümesini ve yayılmasını engellemek gibi mekanizmalar üzerindeki etkileri 

incelenmiştir. Bu çalışmalar, çocukluk çağı akut lenfoblastik lösemi (ALL) gibi 

özel kanser türlerinde de HDAC genlerinin ifade değişikliklerinin hastalık 

prognozu ve tedavisi üzerindeki potansiyel etkilerini araştırmıştır. Dolayısıyla 

modellerin elde ettiği çıktıları neye göre belirlediğinin bilinmemesi, HDAC 

genlerinden genelde IC50 standart türünün kullanılması, ilaç etkileşimleri ile 

ilgili karmaşıklığın bulunması ve etkileşimli bir simülasyon ortamının olmaması 

literatürdeki bazı boşluklar olarak değerlendirilmektedir. Bu tez çalışması, HDAC 
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genlerinden IC50 ve Inhibisyon standart türlerinin aynı anda değerlendirilmesi, 

modellerin açıklanabilir olması, ilaçların karmaşık ilişkilerinin ağ grafiği ile 

temsil edilmesi ve elde edilen çıktıların bir benzetim ortamına taşınması ile 

literatürdeki bu boşluğun doldurulması amaçlanmıştır. 
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3. MATERYAL VE YÖNTEM 

 

Tezin bu bölümü, çalışma içerisinde kullanılan yöntem ve metotların detaylı bir 

açıklamasını içermektedir. Artan kanser vakalarının olumsuz yönleri ve etkili 

tedavi seçeneklerinin kısıtlılığı göz önünde bulundurulduğunda, yapılan 

araştırma ilaç yeniden kullanım stratejilerinin kanser tedavisinde ne denli etkili 

olabileceğini araştırmaya odaklanmaktadır. Bölümün içerisinde sırası ile 

çocukluk çağı akut lösemisi, ilaç etkileşimleri, histon deasetilaz genleri, 

Lipinski'nin beş kuralı, açıklanabilir yapay zekâ, Chembl veri tabanı, Python 

programlama kütüphaneleri ve yapay zekâ modelleri ele alınmaktadır. 

 

3.1. Çocukluk Çağı Akut Lösemisi 

 

Lösemi, kanser tiplerinden biri olup, hücrelerin anormal bir şekilde çoğalması 

sonucunda ortaya çıkmaktadır. Genetik yatkınlıklar, kalıtsal hastalıklar ve 

çevresel faktörler lösemiye neden olabilen çeşitli etkenler arasındadır. Özellikle 

çocukluk çağında sık görülen lösemi, çocuk kanser vakalarının % 30'unu 

oluşturmakta ve en yaygın malignite (kötü huylu tümör) türü olarak 

bilinmektedir. Akut lösemiler, çocukluk çağı lösemilerinin % 98'ini oluştururken, 

köken aldığı hücreye bağlı olarak ALL ve AML olarak sınıflandırılmaktadır. ALL, 

en sık görülen lösemi şeklidir. Kemik iliği, periferik kan ve diğer organlarda 

olgunlaşmamış lenfoid hücrelerin aşırı çoğalmasıyla karakterize edilen heterojen 

bir hematolojik (kan hastalıkları) malignitedir. Kemik iliği, yeterli ve olgun 

alyuvar, trombosit ve nötrofil üretme kapasitesini kaybeder. Löseminin belirtileri 

arasında yorgunluk, ateş, gece terlemeleri, kilo kaybı, nefes darlığı, baş dönmesi, 

enfeksiyon riskinin artması, siyanoz olarak adlandırılan ciltte mavimsi-mor renk 

değişiklikleri ve kanama bulguları yer almaktadır. Çocuklarda, kol veya 

bacakların uç kısımlarında veya eklemlerde ağrı tek başına bazen tek belirti 

olarak ortaya çıkabilmektedir (Akalın ve Yumuşak, 2023; Bordbar vd., 2023; 

Carroll ve Bhatla, 2016; Demir, 2023). 
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3.2. İlaç Etkileşimleri 

 

Çocukluk Çağı Akut Lösemisi tedavisinde kullanılan ilaçların diğer ilaçlarla olan 

ilişkilerini görmek amacıyla ağ analizi ve görselleştirme üzerinden ilaç-ilaç 

etkileşimlerinin karmaşıklığı incelenmiştir. İlaç-ilaç etkileşimleri, iki veya daha 

fazla ilacın birbiriyle reaksiyona girerek beklenmeyen zararlı reaksiyonlarla 

sonuçlanmasıyla ortaya çıkmaktadır. İlaç-ilaç etkileşimleri, çoklu varlıklar 

arasındaki bağlantıları içerdiği için, bu ilaç etkileşimlerini ağlarla analiz etmenin 

uygun olacağı değerlendirilmektedir.  

 

3.3. Histon Deasetilaz (HDAC) 

 

Kanser, küresel ölçekte önemli bir ölüm sebebidir ve Dünya Sağlık Örgütü'ne göre 

her yıl yaklaşık 8,2 milyon insan kanser nedeniyle yaşamını yitirmektedir. Kanser 

araştırmaları alanında, kanser ve epigenetik modifikasyonlar arasındaki 

korelasyon nedeniyle yeni anti-kanser ilaçları arayışında bir artış olmuştur. 

Epigenetik ilaçların dikkate değer bir kategorisi, gen ifadesini değiştirme 

yeteneğine sahip olan ve sonuçta tümörler içinde programlanmış hücre ölümünü 

indükleyen HDAC inhibitörleridir. Bu gelişmekte olan alan son yıllarda önemli 

ilerlemelere tanık olmuştur (Thotala vd., 2015). HDAC inhibitörleri, gen 

ekspresyonunu modüle ederek ve özellikle tümör hücrelerinde hücre ölümünü 

indükleyerek etkilerini gösteren önemli bir anti-kanser ilaç kategorisi olarak 

kabul edilmektedir (Eyal vd., 2005). 

 

HDAC enzimleri, hücresel olayları etkileyebilmeleri nedeniyle potansiyel ilaç 

hedefleri haline gelmiş ve bu enzimleri inhibe edebilen bileşikler olarak 

tanımlanmıştır. HDAC inhibitörleri olarak adlandırılan bu bileşikler, söz konusu 

enzimlerin aktif bölgelerine bağlanarak histonları asetil formunda tutmakta ve 

gen ifadelerini değiştirmektedir. HDAC inhibitörleri, hücre bölünmesi, apoptozis 

ve farklılaşma gibi temel hücresel süreçler üzerinde etki göstermekte ve çeşitli 

hastalıkların tedavisinde kullanılmak üzere araştırılmaktadır. HDAC 

inhibitörleri, başta kanser olmak üzere spinal musküler atrofi, Alzheimer 

hastalığı, diyabet, psikiyatrik hastalıklar ve paraziter enfeksiyonlar gibi çeşitli 
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hastalık gruplarının tedavilerinde önemli bir potansiyele sahiptir (Küçükoğlu, 

2013). 

 

HDAC inhibitörleri, relaps/refrakter ALL durumlarında kullanılan tedavi ajanları 

olarak yer almaktadır. HDAC inhibitörleri, histon deasetilaz enzimlerini hedef 

alarak tümör hücrelerinde gen ifadesinde değişikliklere neden olurlar. 

Vorinostat, relaps/refrakter ALL tedavisinde kullanılan bir HDAC inhibitörüdür 

(Jeha ve Pui, 2009; Pieter ve Carroll, 2008; Lee‐Sherick vd. ,2010). HDAC 

inhibitörleri, gen ekspresyonunu değiştirerek hücre bölünmesi, apoptozis 

(hücrenin ölmesi beklenen bir zamanda kontrollü olarak ölmesi) ve farklılaşma 

gibi hücresel süreçleri etkileyerek tedavi potansiyeline sahip olabilir. HDAC gen 

ailesi, HDAC1'den HDAC11'e kadar farklı üyelerden oluşmaktadır. Mutasyonlar 

ve ifade seviyeleri de dahil olmak üzere HDAC genlerindeki değişiklikler, hücre 

döngüsü düzenlemesi, farklılaşma, programlanmış hücre ölümü (apoptoz), hücre 

yapışması, göç ve yeni kan damarlarının oluşumu (anjiyogenez) gibi çeşitli 

hücresel süreçlerde değişikliklere yol açmaktadır. Bu değişiklikler tümörlerin 

gelişimi ve ilerlemesiyle yakından ilişkilidir. Araştırmalar, HDAC 

mutasyonlarının ve anormal gen ifadelerinin çeşitli kanser tiplerinde ve 

hematolojik malignitelerde sıkça gözlendiğini göstermektedir. Çalışmalar, 

sağlıklı çocuklardan alınan kemik iliği örnekleriyle karşılaştırıldığında ALL'li 

çocukların kemik iliği örneklerinde HDAC2, HDAC3, HDAC4, HDAC6, HDAC7 ve 

HDAC8 gen ekspresyonlarında kayda değer bir artış olduğunu göstermiştir 

(Klimek et al., 2008; Cress ve Seto, 2000; Balı et al., 2018). Bu tez çalışması 

kapsamında da HDAC1'den HDAC11'e kadar olan genler veritabanından alınarak 

listelenmiş, fakat çocukluk çağı akut lösemisi ile ilgili olduğu bilinen HDAC1, 

HDAC2, HDAC3, HDAC4, HDAC5, HDAC6, HDAC7 ve HDAC8 genleri kullanılmış ve 

Şekil 3.1’de görseli verilmiştir. Bu listede, organizma, molekül ve hedef 

moleküllere ilişkin detaylı bilgiler bulunmaktadır. 
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Şekil 3.1. HDAC Genleri 

 

3.4. Lipinski Kuralları (Lipinski’nin 5 Kuralı) 

 

Lipinski kuralı, Veber kuralı ve Ghose kuralı, biyolojik aktivite gösterme 

potansiyeline sahip ligandların ilaç benzerliğini değerlendirmede kullanılan 

kurallardan bazılarıdır. Bu kurallar, lipofiliklik ve suda çözünürlük gibi önemli 

fizikokimyasal özelliklere dayanarak ilaç adayı moleküllerin özelliklerini 

değerlendirmeye yardımcı olmaktadır. Lipinski kuralı, ilaç benzerliğini 

değerlendirmede sıklıkla tercih edilen bir kural olarak öne çıkmaktadır. Bunun 

birkaç nedeni bulunmaktadır (Lipinski, 2000):  

 

 İyi tanınmış bir kural: Lipinski kuralı, ilaç tasarımı alanında yaygın 

olarak kabul gören ve uzun süredir kullanılan bir kuraldır. Bu nedenle, ilaç 

adayı moleküllerin değerlendirilmesinde güvenilir bir referans noktası 

olarak kabul edilmektedir. 

 İlaç benzerliği için sağlam bir temel: Lipinski kuralı, bir molekülün ilaç 

benzerliği potansiyelini değerlendirmek için moleküler özelliklerin bir 

kombinasyonunu dikkate alır. Bu özellikler, lipofiliklik, suda çözünürlük, 

hidrojen bağı verme ve alım gibi önemli fizikokimyasal özelliklerdir. Bu 

kural, molekülün hücresel geçirgenlik, dağılım ve farmakokinetik 

özellikleri üzerinde etkili olabilecek temel faktörleri ele almaktadır. 

 Genel geçerlilik: Lipinski kuralı, genellikle bir molekülün ilaç benzerliği 

ve oral biyoyararlanım potansiyelini tahmin etmek için kullanılmaktadır. 
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Bu kuralın temel prensipleri, birçok ilaç molekülünde gözlenen ortak 

özelliklere dayanmaktadır. Bu nedenle, geniş bir molekül yelpazesinde 

etkili bir şekilde uygulanabilmektedir. 

 

Lipinski'nin beş kuralına göre, bir molekülün ilaç adayı olarak kabul edilmesi için 

aşağıdaki özellikleri taşıması gerekmektedir (Lipinski, 2004; Lipinski vd., 2012):  

 moleküler ağırlık (MW) ≤500 g/mol,  

 lipofilite katsayısı LogP≤5,  

 hidrojen bağı vericisi sayısı ≤5,  

 hidrojen bağı alıcısı sayısı ≤10 ve  

 molar kırılma değerleri 4-130 arasında olmalıdır. 

 

Moleküler ağırlığın, ilaç moleküllerinin bağırsak ve merkezi sinir sistemi boyunca 

geçirgenliğini belirlemede önemli bir rolü vardır (Pardridge, 1995; Navia ve 

Chaturvedi, 1996). Molekül ağırlığı ile ilaç geçirgenlik oranı arasında ters bir ilişki 

bulunmaktadır ve yüksek molekül ağırlıklı bileşikler daha düşük geçirgenlik 

oranları göstermektedir. Daha düşük moleküler ağırlığa sahip bileşiklerin oral 

olarak aktif olma olasılığı daha yüksektir. Bu nedenle, ilaç keşif sürecinde 

moleküler ağırlığın önemi belirlenmiştir. 

 

Bir ilaç molekülünün lipofiliklik seviyesi, emilim oranını belirleyen önemli bir 

faktördür. Bu fizikokimyasal özellik genellikle ilacın sulu ortamdaki oranının 

logaritmasını temsil eden LogP kullanılarak ölçülmektedir. 

 

Bir bileşikte çok sayıda hidrojen bağı donör grubunun bulunması, hücre zarı çift 

katmanını geçme kabiliyetini engelleyebilir (Paterson, 1994). Bu tür bileşikler, 

lipofilik ortamlardan ziyade su gibi güçlü hidrojen bağı çözücülerine daha yüksek 

bir afiniteye sahip olma eğilimindedir. Tarama amacıyla kullanılan ilaç 

kütüphanelerinin yaklaşık % 92'si beş veya daha az hidrojen bağı donörüne sahip 

bileşiklerden oluşmaktadır. Bu özellikler ilaç keşfi alanında büyük önem 

taşımaktadır (Pollastri, 2010). 
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Bir bileşik su gibi hidrojen bağı oluşturan bir çözücü ile temas ettiğinde, hidrojen 

bağı alıcılarının varlığı etkileşimlerde çok önemli bir rol oynamaktadır ve sonuçta 

geçirgenliği etkilemektedir. Bir bileşikteki azot ve oksijen atomlarının sayısının 

toplanması, hidrojen bağı alıcılarının sayısını tahmin etmek için güvenilir bir 

yaklaşım sunmaktadır ve bu da oral biyoyararlanımı değerlendirmek için bir 

gösterge olarak kullanılabilmektedir (Pollastri, 2010). 

 

Bu kurallar, ilaç keşfi ve geliştirme sürecinde potansiyel ilaç adaylarının 

özelliklerini değerlendirmek için kullanılan önemli araçlardır. Moleküler tasarım 

ve ilaç optimizasyonunda bu kuralların göz önünde bulundurulması, ilaç 

moleküllerinin biyolojik aktivitelerini artırma ve farmakokinetik özelliklerini 

optimize etme açısından büyük önem taşımaktadır. 

 

3.5. Açıklanabilir Yapay Zekâ (Explainable Artificial Intelligence – XAI) 

 

İlaç keşfi alanında, gelişmiş görüntü analizi teknikleri ve moleküler yapı ve işlevin 

öngörücü modelleri çok önemli araçlar olarak ortaya çıkmıştır. Bu sebeple, 

bilgisayar destekli ilaç keşfini kolaylaştırmak ve genel süreci geliştirmek için 

çeşitli yapay zekâ yöntemleri benimsenmiştir (Gawehn, 2016; Zhang, 2017; Chen, 

2018; Tang, 2018; Yang, 2019; Muratov, 2020; Hummerich, 2020). İlaç keşfi 

alanında, sürecin verimliliğini ve etkinliğini artırmak için derin öğrenme 

algoritmaları, sinir ağları ve modelleme teknikleri yaygın olarak 

kullanılmaktadır. Bu gelişmiş teknolojiler, modern ilaç keşfi çabalarında çok 

önemli bir rol oynamaktadır (LeCun vd., 2015; Schmidhuber, 2015; Lenselink, 

2017). Girdi verileri ile çıktı ilişkileri arasındaki korelasyonların araştırılması ve 

nicel yapı-etkinlik ilişkilerinin kurulması, ilaç keşfi alanında kullanılan teknikler 

arasındadır. Bu yöntemler, verilerin özelliklerini ve bunların potansiyel ilaç 

adaylarının etkinliği ile nasıl ilişkili olduğunu anlamaya yardımcı olmaktadır 

(Goh, 2017; Unterthiner, 2014; Wallach, 2015). Bilgisayar destekli ilaç keşfi alanı, 

moleküler de novo tasarım teknikleri, kimyasal sentezin stratejik planlaması, 

makromoleküllerin tanımlanması ve protein hedeflerinin tahmini dahil olmak 

üzere çeşitli alanların ilerlemesinde çok önemli bir rol oynamıştır. Bu alanlarda 

devrim yaratma konusunda önemli adımlar atmış ve ilaç keşfinin ilerlemesine 



22 
 

büyük katkı sağlamıştır (Mendez, 2020; Merk, 2018; Zhavoronkov, 2019; 

Schwaller, 2018; Senior, 2020; Yang, 2020; Öztürk, 2018). 

 

Yapay zekâ yöntemlerinin daha doğru bir şekilde yorumlanması için XAI önemli 

bir rol oynamaktadır. XAI, modellerin açıklanabilirliğini sağlayarak temel karar 

verme süreçlerini şeffaflaştırmak ve doğru tahminleri belirlemek için 

kullanılmaktadır (Lapuschkin, 2019; Murdoch, 2019; Miller, 2019; Doshi-Velez, 

2017). 

 

Tıbbi kimya, ilaç keşfi ve yeniden kullanım sürecini kapsamaktadır ve 

açıklanabilir yapay zekâ, ilaç etkilerinin yorumlanmasını ve güvenilirliğini 

artırmada çok önemli bir rol oynamaktadır. XAI sayesinde, biyolojik ve 

fizikokimyasal etkiler arasında bağlantı kurulmasını sağlayarak ve bu 

korelasyona dayalı kesin ve uygun modellerin geliştirilmesini kolaylaştırarak, 

kurulan modellerin güvenilirliği artırılmıştır. Dolayısıyla, XAI'nın amacı ilaç keşfi 

sürecinde yapılan işlemleri, nasıl yapıldıklarını ve bunlarla ilgili bilgileri açığa 

çıkarmaktır (Christoph, 2020). Bu tez çalışması kapsamında modellerden elde 

edilen sonuçların anlaşılabilmesi ve açıklanabilmesi için Python’da Shapley 

modülü kullanılmıştır. 

 

Shapley değerleri, oyun teorisi ve tahminsel analizlerde önemli bir rol oynayan 

bir kavramdır. Bu değerler, oyuncuların birlikte çalıştığı bir oyun veya problemde 

her bir oyuncunun katkısını ölçmek için kullanılmaktadır (Sellereite ve Jullum, 

2019). Shapley değerleri, her bir oyuncunun diğer oyuncularla olan etkileşimini 

ve katkısını dikkate alarak adil bir şekilde dağılım yapmayı sağlar. Shapley 

değerleri, Lloyd Shapley tarafından 1953 yılında tanıtılmıştır ve başlangıçta 

oyuncuların kazançlarının nasıl paylaşılacağına ilişkin bir çözüm kavramı olarak 

ortaya çıkmıştır (Aas vd., 2021). Ancak son yıllarda makine öğrenmesi ve yapay 

zekâ alanında model açıklanabilirliği ve özellik önem derecelendirmesi gibi 

birçok uygulama alanında kullanılmaktadır (Lundberg vd., 2020). Shapley 

değerleri, bir oyuncunun bir oyunda diğer oyuncularla iş birliği yaparak elde 

ettiği katkıyı ölçmektedir (Shapley, 1953). Shapley değeri, oyuncunun herhangi 

bir sıralama veya belirli bir pozisyonla bağlantılı olmadan, oyunun tüm olası 
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koalisyonları üzerinden hesaplanır ve oyuncunun her bir koalisyon içerisindeki 

ortalama katkısıdır. Shapley değerleri, oyuncuların katılımlarının birbirinden 

bağımsız olmadığı durumlarda özellikle etkilidir, yani oyuncuların katkıları 

arasında bağımlılıklar veya etkileşimler bulunmaktadır. Shapley değerleri, 

oyuncuların katkılarının belirlenmesinde aşağıdaki temel prensiplere 

dayanmaktadır (Aas vd., 2021; Song vd., 2016; Fryer v., 2020; Covert vd., 2020; 

Chalkiadakis vd., 2011; Kóczy, 2018; Frye vd., 2020; Merrick ve Taly, 2019; 

Grömping, 2012): 

 

 Katılımcı Adililiği: Her oyuncu, diğer oyuncularla olan etkileşimine 

dayalı olarak kazanca adil bir şekilde katkıda bulunmaktadır. 

 Marginallik: Her oyuncunun katkısı, diğer oyuncuların oyuna 

katılmasından kaynaklanan marginallik etkilerini yansıtmaktadır. 

 

Shapley değerleri, matematiksel olarak oyun teorisi çerçevesinde 

hesaplanmaktadır. Bir oyunda N oyuncu olduğunda, Shapley değeri her bir 

oyuncu için şu şekilde belirlenmektedir (Algaba vd., 2019): 

 

𝐒𝐡𝐚𝐩𝐥𝐞𝐲 =  ∑ [ (𝐍 − 𝟏)! / (𝐬! (𝐍 − 𝐬 − 𝟏)!) ]  ∗  [ 𝐕(𝐒 ∪ {𝐢})  −  𝐕(𝐒) ]                 3.4 

 

Burada, S diğer oyuncuların bir kombinasyonunu, s kombinasyondaki oyuncu 

sayısını, V(S) oyuncuların S kombinasyonunda elde ettiği kazancı ve V(S ∪ {i}) 

oyuncunun S kombinasyonuna kendisi eklenerek elde ettiği kazancı temsil 

etmektedir (Shapley, 1953). 

 

Shapley değerleri, tahminsel modellerde özelliklerin önem sıralamasını 

belirlemek, özellik etkileşimlerini anlamak ve model tahminlerini açıklamak için 

kullanılmaktadır. Bu değerler, model çıktılarındaki değişikliklerin hangi 

özelliklere bağlı olduğunu belirlemek için önemli bir araçtır. Ayrıca Shapley 

değerleri, modelin adaletini değerlendirmek ve öznitelik tabanlı haksızlık veya 

ayrımcılık tespiti gibi uygulamalarda da kullanılabilir (Lundberg ve Lee, 2017; 

Lundberg v., 2020; Kumar vd., 2020). 
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3.6. Chembl (Chemical Biology Information Resource) Veritabanı 

 

Chembl, biyoaktivite, kimyasal yapı, ilaç hedefleri, ilaç keşfi projeleri ve ilaç 

moleküllerinin farmakolojik profilleri gibi çeşitli kimyasal ve biyolojik verileri 

içeren bir veritabanıdır. Bu verilerde, biyolojik testlerdeki bileşiklerin 

aktiviteleri, hedef molekülleriyle olan etkileşimleri ve bu etkileşimlerin niceliksel 

değerlendirmeleri bulunmaktadır. Chembl aynı zamanda kimyasal bileşiklerin 

yapısal bilgilerini, moleküler hedeflerin tanımlamalarını ve ilaç keşfi projeleriyle 

ilgili verileri de barındırmaktadır (Gaulton vd., 2017).  

 

Çizelge 3.1. Kimyasal veritabanlarının karşılaştırılması 
 

Özellik CHEMBL PubChem DrugBank 

Bileşik sayısı 252.396 (v29) 194.333.804 
(v2022.01.10) 

44.224 (v5.1.8) 

Protein 
hedeflerinin sayısı 

23.547 (v29) 161.323 6.081 

Etkileşim sayısı 12.265.411 
(v29) 

1.613.819.088 1.700.579 

Yayın kapsamı 70% 40% 70% 

Veri kalitesi Yüksek İyi İyi 

Lisans CC BY-NC-SA 
4.0 

CC0 CC BY-NC-SA 
4.0 

Versiyon v29 (2022-05-
26) 

v2022.01.10 v5.1.8 (2022-
01-20) 

 

Chembl, verileri farklı formatlarda sunma yeteneğine sahiptir ve hedef molekül 

sayısı açısından en büyük veritabanıdır. Ayrıca aşağıda verilen özelliklerden 

dolayı da Chembl veritabanı tercih edilmiştir: 

 

 Kapsamlı veri kaynağı : Chembl, büyük bir ilaç keşfi ve kimyasal biyoloji 

veritabanıdır. Biyoaktivite, kimyasal yapı, ilaç hedefleri, ilaç keşfi projeleri 

ve ilaç moleküllerinin farmakolojik profilleri gibi geniş bir veri yelpazesini 

içermektedir. Chembl, çeşitli kaynaklardan toplanan ve birleştirilen 

verileri barındırmaktadır. Bu nedenle, ilaç keşfi ve kimyasal biyoloji 

alanında kapsamlı bir veri tabanına erişmek isteyenler için Chembl tercih 

edilen bir veritabanıdır. 
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 Açık erişim ve kullanıcı dostu arayüz : Chembl, açık erişimli bir 

veritabanıdır ve kullanıcıların kolayca erişim sağlamasını sağlayan bir 

web tabanlı arayüz sunmaktadır. Verileri arama, filtreleme ve 

görselleştirme yetenekleriyle birlikte kullanıcı dostu bir deneyim 

sağlamaktadır. Bu da araştırmacıların ve ilaç geliştirme 

profesyonellerinin hızlı bir şekilde ilgili bilgilere erişebilmelerine imkân 

tanımaktadır. 

 İlaç keşif projeleri için değerli kaynak : Chembl, ilaç keşif sürecindeki 

araştırmacılar ve ilaç geliştirme şirketleri için değerli bir kaynak 

sağlamaktadır. Veritabanı, ilaç etkinliği, hedefler, bileşikler ve ilaç keşfi 

projeleriyle ilgili kapsamlı bilgiler içermektedir. Bu bilgiler, ilaç keşifinde 

strateji geliştirmek, ilaç tasarımı yapmak ve ilaçların farmakolojik 

profillerini anlamak için kullanılmaktadır. 

 Bilimsel literatüre dayalı veriler : Chembl veritabanı, bilimsel 

literatürden elde edilen verileri bulundurmaktadır. Bu, güvenilir ve 

doğrulanabilir bilgilerin kaynağı olarak Chembl'ı tercih edilmesini 

sağlamaktadır. Ayrıca, yayınlarla ilişkilendirilmiş ilaç etkinlik verilerini 

sunduğu için de verilerin güvenilirliğini arttırmaktadır. 

 

3.7. Python Kütüphaneleri 

 

Python, geniş bir kullanıcı topluluğu tarafından desteklenen ve popülerliği hızla 

artan bir programlama dilidir. Birçok amaç için kullanılan Python, zengin bir 

kütüphane ekosistemiyle birlikte gelmektedir. Python kütüphaneleri, açık 

kaynaklı olarak geliştirilmektedir ve genellikle topluluk tarafından 

desteklenmektedir. Bu, kullanıcıların kütüphaneleri kolayca kullanabilmesi, 

geliştirebilmesi ve özelleştirebilmesi anlamına gelmektedir. Python 

kütüphaneleri, programlamayı daha kolay ve verimli hale getiren güçlü 

araçlardır. Kullanıcı dostu yapıları ve zengin özellikleri sayesinde, Python ile 

farklı projelerde hızlı ve etkili çözümler üretilebilmektedir. Bu tez kapsamında 

moleküler özellikleri ve SMILES gösterimlerini analiz etmek için kullanılan bazı 

kütüphaneler şunlardır (Pypi, 2023): 
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 Pandas: Veri analizi için kullanılan güçlü bir kütüphanedir. Veri setlerini 

okuma, filtreleme, dönüştürme ve birleştirme gibi işlemleri kolaylıkla 

gerçekleştirmeyi sağlamaktadır (Pandas, 2023). 

 RDKit: Kimyasal bilim ve moleküler modelleme alanında kullanılan bir 

kütüphanedir. Moleküler yapıları temsil etmek, kimyasal özellikleri 

hesaplamak, ilaç keşfi çalışmalarında kullanılan çeşitli araçlar 

sunmaktadır (Landrum, 2019). 

 Seaborn: Görselleştirme için kullanılan bir kütüphanedir. Matplotlib 

üzerine inşa edilmiş ve daha estetik ve bilgilendirici grafikler oluşturmaya 

imkân tanımaktadır (Melitoshevich ve Alikulovich, 2023).  

 NumPy: Bilimsel hesaplamalar için kullanılan temel bir kütüphanedir. N-

boyutlu dizileri ve matematiksel işlemleri etkili bir şekilde yönetmek için 

kullanılmaktadır (Harris vd., 2020).  

 Matplotlib: Veri görselleştirme için kullanılan bir kütüphanedir. Grafikler, 

çizimler, histogramlar ve daha fazlasını oluşturmayı sağlamaktadır 

(Matplotlib, 2023).  

 Lazypredict: Makine öğrenmesi modellerini hızlı bir şekilde 

değerlendirmek için kullanılan bir kütüphanedir. Birçok farklı modeli 

otomatik olarak uygulayarak başarı metriklerini göstermektedir 

(Lazypredict Documentation, 2023).  

 Glob : Python'da dosya adlarını veya dizinleri belirli bir kalıba göre 

eşleştirmek ve bu eşleşen dosya veya dizinler üzerinde işlemler yapmak 

için kullanılan bir modüldür. Özellikle dosya adlarının belirli bir örüntüye 

göre eşleştirilmesi için sıklıkla kullanılmaktadır. Örneğin, belirli bir 

dizindeki tüm .csv dosyalarını veya belirli bir örüntüye sahip dosyaları 

bulmak için tercih edilmektedir (Şirin, 2019). 

 NetworkX: Karmaşık ağların yapısı, dinamikleri ve işlevlerinin 

oluşturulması, manipülasyonu ve incelenmesi için kullanılan bir Python 

kütüphanesidir. Ağ oluşturma, düğüm ve kenar manipülasyonu, ağ 

görselleştirme ve ağ analizi için algoritmalar dahil olmak üzere ağları veya 

grafikleri analiz etmek ve modellemek için araçlar sağlamaktadır. 

NetworkX, sosyal ağ analizi, ulaşım ağları, biyolojik ağlar ve daha fazlası 

gibi çeşitli alanlarda yaygın olarak kullanılmaktadır (Hagberg vd., 2008). 
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 Pyvis: Etkileşimli ağ görselleştirmelerinin oluşturulmasına ve 

görselleştirilmesine olanak tanıyan bir Python kütüphanesidir. 

NetworkX'in üzerine inşa edilmiştir ve dinamik ve etkileşimli ağ 

görselleştirmeleri oluşturmak için üst düzey bir arayüz sağlamaktadır. 

Pyvis, özelleştirilebilir düğüm ve kenar nitelikleri, farklı düzen 

algoritmaları, yakınlaştırma ve kaydırma gibi etkileşim seçenekleri ve 

HTML veya JavaScript formatlarına aktarma yetenekleri dahil olmak üzere 

çeşitli görselleştirme özelliklerini desteklemektedir. Karmaşık ağları 

görselleştirmek ve keşfetmek için kullanışlı bir araçtır (Pyvis, 2018). 

 Streamlit: Veri bilimi ve makine öğrenimi görevleri için etkileşimli web 

uygulamaları oluşturmayı kolaylaştıran bir Python kütüphanesidir. 

Etkileşimli kullanıcı arayüzleri oluşturmak için üst düzey bir API 

sağlayarak veri odaklı uygulamalar oluşturma ve dağıtma sürecini 

basitleştirir. Streamlit ile Python kodunu kullanarak web tabanlı gösterge 

tablolarını, görselleştirmeler ve etkileşimli formlar hızlı bir şekilde 

oluşturabilir ve özelleştirilebilir. Pandas ve Matplotlib gibi popüler veri 

işleme ve analiz kütüphaneleri ile iyi entegre olmakta ve web uygulaması 

için de veri işleme ve görselleştirmenin sorunsuz entegrasyonuna olanak 

tanımaktadır (Streamlit, 2023). 

 

3.8. Yapay Zekâ Modelleri 

 

Yapay zekâ modelleri, açıklanabilir yapay zekâ modelleri ile ilaç yeniden kullanım 

çalışmalarının temelini oluşturan önemli bir bileşendir. Yapay zekâ alanında 

yaygın olarak kullanılan ve ilaç yeniden kullanımı çalışmalarında etkili olan çeşitli 

algoritmalar bulunmaktadır. Bu algoritmaları, büyük veri setleri üzerinde analiz 

yaparak ilaçların yeniden kullanım potansiyelini ve yan etkileri değerlendirmek, 

ilaç etkileşimlerini incelemek,  yeni tedavi stratejileri geliştirmek ve ilaç keşfi 

süreçlerini optimize etmek gibi önemli görevleri yerine getirmektedir. Bu tez 

kapsamında, aşağıda verilen lazypredict paketindeki lazyregressor ve 

lazyclassifier kütüphanelerindeki temel yapay zekâ yaklaşımları kullanılmıştır: 
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 Lazy Regressor : Çoklu regresyon modellerinin performansını 

değerlendirmek için hızlı ve kullanışlı bir yol sağlayan bir Python 

kütüphanesidir. Varsayılan hiperparametrelerle çeşitli regresyon 

modellerini eğitme ve test etme sürecini otomatikleştirir ve her model için 

performans ölçümleri sağlamaktadır. Kütüphane scikit-learn üzerine inşa 

edilmiştir ve regresyon modellerini değerlendirmek için kullanımı kolay 

bir arayüz imkânı vermektedir. Doğrusal regresyon, karar ağacı 

regresyonu, rastgele orman regresyonu, destek vektör regresyonu ve 

daha fazlası dahil olmak üzere çok çeşitli regresyon algoritmalarını 

desteklemektedir. LazyRegressor, her model için R-kare (belirleme 

katsayısı), düzeltilmiş R-kare, ortalama kare hata (MSE), ortalama mutlak 

hata (MAE) gibi çeşitli performans ölçümlerini hesaplamaktadır. Bu 

ölçütler, regresyon modellerinin uyum iyiliği (modeldeki bağımsız 

değişkenlerin bağımlı değişkendeki varyasyonu açıklama kabiliyeti) ve 

tahmin doğruluğu hakkında bilgi vermektedir (Priyadharsini vd., 2022 ; 

Velmurugan ve Ida, 2023; Bundela ve Rahul, 2022; Pedregosa vd., 2011; 

Pandala, 2020; LazyPredict Documentation, 2022 ). 

 Lazy Classifier : Lazy Classifier, Lazypredict paketi içinde yer alan ve belirli 

bir veri kümesi üzerinde birden fazla sınıflandırma modelinin 

performansını değerlendirmek için hızlı ve kolay bir yol sağlayan bir 

modüldür. Varsayılan ayarları kullanarak çeşitli sınıflandırma modellerini 

otomatik olarak oluşturmakta ve eğitmekte, ardından her model için 

performans ölçümlerini hesaplamakta ve görüntülemektedir. 

LazyClassifier, Logistic Regression, K-Nearest Neighbors (KNN), Support 

Vector Machines (SVM), Gaussian Naive Bayes, Decision Trees, Random 

Forest, Gradient Boosting, AdaBoost, Extreme Gradient Boosting 

(XGBoost), Light Gradient Boosting Machine (LGBM), CatBoost gibi 

popüler algoritmalar da dahil olmak üzere çok çeşitli sınıflandırma 

modellerini desteklemektedir. Doğruluk, F1-skoru, Kesinlik, Geri Çağırma, 

Alıcı İşletim Karakteristik Eğrisi Altındaki Alan (ROC-AUC), Kesinlik-Geri 

Çağırma Eğrisi Altındaki Alan (PR-AUC), Matthew'un Korelasyon Katsayısı 

(MCC), Dengeli Doğruluk, Log Kaybı gibi birçok performans metriği 

kullanmaktadır. LazyClassifier varsayılan olarak her model için doğruluk 
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metriğini hesaplamaktadır, ancak metrikleri parametre olarak belirtip 

özelleştirilebilmektedir (Pandala, 2020; LazyPredict Documentation, 

2022). 
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4. ARAŞTIRMA BULGULARI 

 

Bu tez çalışması kapsamında, çocukluk çağı akut lösemi tedavisinde kullanılan 

onaylı ilaçların diğer ilaçlarla olan etkileşimleri incelenmiş ve histon deasetilaz 

genlerindeki moleküllerin moleküler hesaplamaları açıklanabilir yapay zekâ 

modelleri ile değerlendirilerek ilaç yeniden kullanım çalışmaları için bir 

benzetim ortamı geliştirilmiştir. Bu hedef doğrultusunda öncelikle ‘Mendeley 

Data’ web sitesindeki çoklu tip ilaç-ilaç etkileşimlerinin verileri çocukluk çağı 

akut lösemi tedavisinde kullanılan ilaçlar için filtrelenerek kullanılmıştır (Hui, 

2020). Ham veriler, her satırın belirli bir ilaç çifti arasındaki etkileşimi ifade ettiği 

1609 satır ve 3 sütundan oluşmaktadır. Bu veri kümesinin bazı satırları Şekil 

4.1’de verilmiştir (Uysal ve Köse, 2023).  

 

 

 

Şekil 4.1. İlaç etkileşimleri veri seti 

 

Çalışmada kullanılan veri setinde, ilaç etkileşimlerinin öneminin sağlanamaması 

bir dezavantaj olarak düşünülmektedir. Bu sebeple, tüm etkileşimler için "eşit" 

önem derecesini belirtmek üzere 1 (bir)' lerle doldurulmuş özel bir sütun 

(ağırlık) eklenmiştir (Uysal ve Köse, 2023). İlaçlar arasında bir dizi 
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yönlendirilmemiş bağlantı olduğu dikkate alındığında, ağların oluşturulması, 

yönlendirilmesi ve analiz edilmesi için Python paketlerinden NetworkX paketi 

kullanılmıştır. NetworkX ile ağlar standart ve standart olmayan veri 

formatlarında yüklenebilir ve depolanabilir, birçok rastgele ve klasik ağ türü 

oluşturulabilir, ağ yapısı analiz edilebilir, ağ modelleri oluşturulabilir, yeni ağ 

algoritmaları tasarlanabilir, ağlar çizilebilir ve çok daha fazlası yapılabilir 

(Hagberg vd., 2008).  

 

Bir düğümün sahip olduğu bağlantı sayısı düğüm derecesi ile ifade edilmektedir. 

Bir düğümün merkezi derecesi, sahip olduğu kenar sayısıdır. Bu, 100 etkileşime 

sahip bir ilaç düğümünün merkezi derecesinin 100 olacağını ifade etmektedir. 

Her bir düğümün derece merkeziliği hesaplanarak, ilaç etkileşimlerinde en sık 

yer alan ilk 5 ilaç Şekil 4.2’de verilmiştir. Buna göre çocukluk çağı akut lösemisi 

tedavisinde kullanılan ilaçlardan Dexamethasone, 389 düğüm derecesi ile en 

fazla etkileşime giren ilaç olduğu belirlenmiştir. Lenfoma ve lösemi gibi bazı 

kanser türlerinin tedavisinde kullanılsa da en yaygın kullanımı, inflamasyonu ve 

bağışıklık sistemi reaksiyonlarını kontrol etmek için çeşitli alerjik reaksiyonları, 

astımı, romatoid artriti ve diğer otoimmün hastalıkları tedavi etmektir.  

 

 

 

Şekil 4.2. En çok etkileşime giren ilk 5 ilaç ve karşılık gelen düğüm derecesi 

 

Ağ görselleştirmesinin görünümünü yapılandırmak veya değiştirmek için 

ForceAtlas2Based, Hrepulsion, Repulsion, Barnes Hut gibi pek çok özelleştirme 

bulunmaktadır. Bu çalışmada The Popular Repulsion Solver ve Barnes Hut 

Physics modelleri, hiyerarşik olmayan düzenler için en hızlı, varsayılan ve 

önerilen çözücü oldukları için tercih edilmiştir (Uysal ve Köse, 2023). Çocukluk 

çağı akut lösemi tedavisinde kullanılan ve en çok etkileşime giren 8 ilacın 
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(mercaptopurine, tioguanine, prednisolone, dexamethasone, vincristine, 

methotrexate, daunorubicin, cytarabine) Pyvis Barnes Hut grafiği ile çizdirildiği 

zaman ortaya çıkan görüntü Şekil 4.3’de verilmiştir. 

 

 

 

Şekil 4.3. En çok etkileşime giren ilk 8 ilacın ağ görselleştirmesi (Soldaki grafik 
                   genel görünüm, sağdaki grafik yakından görünüm) 

 

Ağ grafiğinde, ilaçlar noktalar veya düğümler olarak temsil edilmektedir. İki ilaç 

arasındaki etkileşim ise çizgiler veya kenarlar olarak gösterilmektedir. 

Kenarların kalınlığı veya rengi, etkileşimin şiddetini veya tipini 

belirtebilmektedir. En çok etkileşime giren Dexamethasone, Prednisolone, 

Vincristine, Methotrexate ve Daunorubicin ilaçları, çoğunlukla akut lenfoblastik 

lösemi (ALL) gibi kanser türlerinin tedavisinde kullanılmaktadır. Bu ilaçların 

birlikte kullanılması, tedavinin etkinliğini artırabilir, ancak aynı zamanda yan 

etkileri de artırabilmektedir. İlaç etkileşimlerini ağ grafikleriyle göstermenin 

karmaşıklığı gidermesi son derece etkili bir yöntemdir. Ağ grafiğinde sekiz ilacın 

hepsiyle etkileşime giren paclitaxel, ouabain, docetaxel, roflumilast, 

pimecrolimus, deslanoside, digoxin, cabazitaxel, tofacitinib, digitoxin, 

acetyldigitoxin, leflunomide, tacrolimus, fingolimod, cyclophosphamide ilaçları 

keşfedilmiştir. Paclitaxel, docetaxel ve cabazitaxel, mikrotübül montaj 

dinamiklerini bozarak ve hücre döngüsünü G2/M fazında durdurarak apoptozu 

tetikleyen terpen alkaloidleri sınıfına ait antikanser ilaçlardır. Ouabain, 

deslanoside, digoxin, digitoxin ve acetyldigitoxin, kardiyak glikozitler sınıfına ait 
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ilaçlardır. Roflumilast, pimecrolimus, tofacitinib, leflunomide, tacrolimus ve 

fingolimod, immünomodülatör ilaçlardır. Bu ilaçlar, bağışıklık sisteminin 

aktivitesini değiştirerek çeşitli inflamatuar ve otoimmün hastalıkların 

tedavisinde kullanılmaktadır. Cyclophosphamide, alkilleyici ajanlar sınıfına ait 

bir antikanser ilaçtır. Bu ilaç, DNA ile çapraz bağlar oluşturarak hücre 

bölünmesini engellemektedir. Bu ilaçların moleküler yapı bakımından ortak 

özellikleri vardır. Paclitaxel, docetaxel ve cabazitaxel, aromatik halkalar içeren 

karmaşık terpen yapılarına sahiptir. Ouabain, deslanoside, digoxin, digitoxin ve 

acetyldigitoxinde, steroid çekirdeği ile lakton halkası içeren kardiyak glikozit 

yapıları bulunmaktadır. Roflumilast, pimecrolimus ve tacrolimus, makrolid 

halkası içeren makrosiklik lakton yapılarına sahiptir. Tofacitinib ve leflunomide, 

aromatik halkalar ile amid bağı içeren heterosiklik bileşiklerdir. Fingolimod, 

siklofosfamid ve ouabain, hidrojen bağı oluşturabilecek hidroksil grupları 

içermektedir (Sousa-Pimenta vd., 2023; Rocha vd., 2023). Bu ilaçların molekül 

yapıları göz önüne alınarak veritabanından seçilen uygun hedeflerin ilaç 

potansiyelleri açıklanabilir yapay zekâ modelleri ile değerlendirilmiştir. 

 

Çocukluk çağı akut lösemisi için halihazırda kimyasal yapıların ve aktivitelerin 

olduğu veritabanından uygun hedefler seçilerek ilaç olabilme durumu 

araştırılmıştır. Moleküler yapının temel alındığı değerlendirme ile hedefin ilaç 

potansiyeli belirlenmiştir. Bu kriterlerden biri olan Canonical Smiles (Simplified 

Molecular Input Line Entry System), molekül verilerinin paylaşılması, arama 

yapılması ve işlenmesi için yaygın olarak tercih edilen ve bir molekülün kimyasal 

yapısını ifade etmek için kullanılan standartlaştırılmış bir gösterimdir. Şekil 

4.4’de ChEMBL veri tabanından elde edilen histon deasetilaz moleküllerinin 

SMILES gösterimleri verilmiştir. 
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Şekil 4.4. Bazı HDAC moleküllerinin SMILES Formatları 

 

SMILES (Simplified Molecular Input Line Entry System), bir molekülün kimyasal 

yapısını temsil etmek için kullanılan bir metin formatıdır. SMILES formatı, 

molekülün topolojisini ve bağlanabilirlik bilgisini içermektedir. Atomlar, 

sembollerle temsil edilirken bağlar, atom sembollerinin ardından kullanılan 

sayılarla gösterilmektedir. Moleküldeki halka yapıları, parantez içindeki 

numaralarla belirtilmektedir. Bu format, bileşiklerin benimseyebileceği yapısal 

konfigürasyonları gözlemlemek, ilaç benzerliğini değerlendirmek için Lipinski 

kurallarını uygulamak ve moleküler yapıdan türetilen aktivite özelliklerini analiz 

etmek için değerlidir. 

 

Hedef veriler, Chembl veritabanından manuel olarak csv formatında indirilebilir 

ya da Python ile chembl-webresource-client kütüphanesi kullanılarak otomatik 

olarak alınabilmektedir. Chembl çevrimiçi platform üzerinden “histon deasetilaz”  

ile arama yapılmış ve sonuçta 319 tanesi “Targets” olmak üzere 4964 adet bileşik 

listelenmiştir. Targets sekmesinden yalnızca insanlarda görülen bir hastalık 

üzerinde çalışılacağı için sadece “Homo Sapiens” filtrelemesi ve protein 

komplekslerinde birçok molekülün hem kendi aktiviteleri hem de kompleksin 

aktivitesi bulunduğundan dolayı, hedef molekülün aktivite verileri tam olarak 
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doğrulanamadığı için "Single Protein" filtrelemesi yapılmıştır. Chembl veri 

tabanından alınan moleküller, tekrarlayan yapıları olan ve eksik bilgileri bulunan 

moleküller elenerek seçilmiştir. SMILES formatındaki moleküllerin standart 

değerleri yine Chembl veri tabanından alınmıştır. Moleküllerin standart değeri, 

farklı koşullardaki özelliklerini hesaplamak için bir referans noktası olarak 

kullanılmaktadır (Kırboğa vd., 2022). 

 

HDAC genlerinin (HDAC2 - HDAC3 - HDAC4 - HDAC5 - HDAC6 - HDAC7 - HDAC8 

- HDAC9) Çocukluk Çağı Akut Lösemisi ile ilişkisi değerlendirileceği için bu 

veriler csv formatında indirildikten sonra Python’da Glob kütüphanesi ile tek bir 

dosya haline getirilmiştir. Google Colab’da Google Drive’a bağlanarak glob 

kütüphanesi ile bu işlem gerçekleştirilmiş ve Şekil 4.5’de kodları verilmiştir. 

 

 

 

Şekil 4.5. Google Drive’a bağlanma ve Glob ile dosyaları birleştirme 

 

Biyoaktivite çalışmalarında, bileşiklerin aktivitesini veya gücünü ölçmek için 

IC50, Inhibition, Ki, Kd gibi çeşitli standart türler kullanılmaktadır. IC50 (Yarı 

Maksimal İnhibitör Konsantrasyon), biyolojik bir süreci veya aktiviteyi % 50 

oranında engellemek için gereken bileşik konsantrasyonu olarak bilinmektedir. 

Genellikle enzim inhibisyon deneylerinde kullanılmaktadır ve bileşiğin hedefi 

inhibe etme gücünü temsil etmektedir. Inhibition (inhibisyon) ise genellikle bir 

bileşiğin bir enzim veya reseptör gibi belirli bir hedefin işlevini engelleme veya 

inhibe etme yeteneğini ölçmek için kullanılmaktadır. Biyoaktivite çalışmalarında, 

inhibisyon çeşitli tahliller veya testler kullanılarak kantitatif olarak 

ölçülebilmektedir. İnhibisyon derecesi tipik olarak bir kontrol veya referans 
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numuneye kıyasla inhibisyonun derecesini gösteren bir yüzde veya değer olarak 

ifade edilmektedir. Örneğin, bir inhibitör % 50 inhibisyon gösterebilir, bu da 

hedefin aktivitesini yarı yarıya azalttığını göstermektedir. Tek bir dosya haline 

getirilen HDAC genleri veri kümesindeki "Standard Type" sütununda bulunan 

biyoaktivite birimlerinin frekansını hesaplanmış ve en çok kullanılan 10 birimi 

bir çubuk grafik olarak görselleştirilerek Şekil 4.6’de verilmiştir. 

 

 

 

Şekil 4.6. Standart Türlerin Frekans Değerleri 

 

Literatürdeki çalışmalar incelendiğinde genellikle standart türlerden hedefe 

uygun olarak bir tanesi seçilip kimyasal yapı biyoktivite değerlerinin 

hesaplandığı görülmektedir. Bu tez çalışmasında frekans değerleri dikkate 

alınarak hem ic50 hem de inhibisyon standart türleri için moleküler veri analizi 

yapılmıştır. İlaç tasarımı ve yeniden kullanımı sürecinde, moleküllerin aktiflik 

durumu değerlendirilerek, etkili ve güvenli ilaç adaylarının seçilmesi 

hedeflenmektedir. Moleküllerin ilaç olarak kullanılabilirlik potansiyellerini 

anlamak için aktiflik durumları (aktif, inaktif ve orta değer) hesaplanmış ve 
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SMILES, pIC50 (IC50 verilerinin daha düzgün bir şekilde dağılmasını sağlamak 

için negatif logaritmik ölçeğe dönüştürülmüş hali) ve Lipinski özelliklerini 

(moleküler ağırlık – MW, oktanol ile su arasındaki değişim katsayısı olan lipofilik 

– LogP, hidrojen bağı donörlerin sayısı – NumHDonors, hidrojen bağı alıcılarının 

sayısı – NumHAcceptors) gösteren görseller IC50 için Şekil 4.7’ de, inhibisyon için 

ise Şekil 4.8’de verilmiştir. 

 

 

 

Şekil 4.7. IC50 için Moleküllerin SMILES, pIC50 ve Lipinksi Değerleri 

 

 

 

Şekil 4.8. Inhibisyon için Moleküllerin SMILES, pIC50 ve Lipinksi Değerleri 

 

HDAC genlerinin PIC50 değerlerinin standart sapması, veri noktalarının 

ortalamadan ne kadar uzaklaştığını göstermek için kullanılmıştır. Standart 

sapma büyük olduğunda, veri noktalarının daha geniş bir aralığa yayıldığını 

göstermektedir. Tersine, küçük bir standart sapma, veri noktalarının birbirine 

sıkıca kümelendiğini ve aralarında daha az değişkenlik olduğunu ifade 
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etmektedir. Standart sapmanın büyük olması, testin daha ayırt edici olduğunu ve 

değerler arasındaki farkın yüksek olduğunu ifade etmektedir. Bu durum, ilaç 

komplekslerinde inaktif bileşenlerin de bulunduğunu belirtmektedir. Yardımcı 

maddeler olarak da bilinen inaktif bileşenler, tipik olarak aktif bileşenin terapötik 

etkinliği üzerinde doğrudan bir etkisi olmayan maddelerdir. Standart sapmanın 

küçük olması ise, testin daha az ayırt edici olduğunu ve değerler arasındaki farkın 

düşük olduğunu göstermektedir. Bu durum, aktif bileşenlerin olduğunu ve 

grupların homojen olduğunu belirtmektedir. Ayrıca, reseptör ve ligand 

arasındaki afinite (bağlanma gücü) hakkında bilgi edinmek için bu istatistiksel 

yöntemlerin kullanılabileceği ve afinite ne kadar yüksekse, IC50 değerinin o 

kadar düşük olduğu da değerlendirilebilir. Hedef molekülün farmakolojik 

kullanımına geçişi değerlendirmek için kemoinformatik yöntemler kullanılmıştır. 

Python da Rdkit kütüphanesi ile kullanılan bileşiklerin yapı ve özellikleri analiz 

edilmiştir. İlacın vücuda alınmasından başlayarak etkisini göstermesine kadar 

olan süreçler ADME olarak ifade edilen Absorpsiyon (emilim), Distribution 

(dağılım), Metabolizma (metabolizasyon) ve Eliminasyon (atılım)’dur. İlaçların 

vücutta hareketi ve etkileşimi açısından önemlidir ve ilacın etkili ve güvenli bir 

şekilde kullanılabilmesi için dikkate alınması gereken faktörlerdir. ADME 

özellikleri, vücudun ilaçtan ne kadar faydalandığını ölçen bir parametre olan 

biyoyararlanım değerlerini ölçmek için hesaplanmıştır. Bu özellikler, moleküler 

esneklik ve hidrojen bağı sayısı gibi faktörlerin biyoyararlanımın temel 

belirleyicileri olduğunu göstermektedir (Veber, 2002). 

 

Kemoinformatik, kimyasal bileşiklerin moleküler yapılarından yola çıkarak ilaç 

potansiyelleri ve metabolizma üzerindeki etkileri hakkında önemli bilgiler 

sağlayabilmektedir (Ferreira, 2019; Özkan, 2019). Bu yöntemler, binlerce 

molekül arasından potansiyel ilaç adaylarını belirlemek için kullanılmaktadır. 

ADME özellikleri, ilaç olabilme potansiyeli açısından değerlendirilirken 

Lipinski'nin 5 kuralı bu değerlendirmede önemli bir rol oynamaktadır (Lipinski, 

2004; Oprea, 2001; Leeson, 2007). Bu kurallara uygun moleküller, klinik 

denemeler sırasında daha iyi performans gösterme eğilimindedir ve klinik 

denemede düşük yıpranma ile pazarlama şansları artmaktadır (Kırboğa vd., 

2022). Moleküllerin biyolojik etkinliklerinin daha net bir şekilde belirlenebilmesi 
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ve bu moleküllerin ilaç potansiyellerinin daha doğru bir şekilde 

yorumlanabilmesi için orta seviyedeki aktiflik gösteren moleküller çıkarılmıştır. 

Sonuçta ortaya çıkan aktiflik durumu IC50 ve İnhibisyon standart türleri için 

görselleştirilerek Şekil 4.9’da verilmiştir. Buna göre IC50 standart türü için 

aktiflik gösteren moleküllerin sayısı 5042, inaktiflik gösteren moleküllerin sayısı 

1190 iken inhibisyon standart türü için inaktiflik gösteren molekül bulunmazken 

aktiflik gösteren molekül sayısı 1031 olarak tespit edilmiştir. 

 

 

 

Şekil 4.9. HDAC genleri aday moleküllerinin ic50 ve inhibisyon standart türleri  
                   için aktiflik durumları 

 

MW değeri ile LogP değeri arasındaki ilişkileri incelemek amacıyla hem IC50 hem 

de inhibisyon standart türleri için Şekil 4.10'da gösterilen şekilde bir görsel 

oluşturulmuştur. Grafiğin amacı, ilaç keşfi çalışmasında hangi moleküllerin daha 

iyi performans gösterdiğini ve hangilerinin elenmesi gerektiğini belirlemeye 

yardımcı olmaktır. Grafiğin x-ekseni molekül ağırlığını (MW), y-ekseni ise 

lipofilikliği (LogP) göstermektedir. Noktaların rengi moleküllerin aktivitesini, 

büyüklüğü ise pIC50 değerini belirtmektedir. pIC50 değeri, bir molekülün hedef 

enzimi inhibe etmek için gerekli konsantrasyonun negatif logaritmasıdır. Yani 

pIC50 değeri ne kadar yüksekse, molekül o kadar güçlü bir inhibitördür. Görselde 

soldaki grafik için (ic50), aktif moleküllerin çoğu düşük MW ve LogP değerlerine 

sahip olduğu tespit edilmiştir. Bu, onların daha küçük ve daha hidrofilik (bir 

molekülün hidrojen bağları kurarak suya bağlanabilme özelliği) olduğunu 
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göstermektedir. Bu özellikler genellikle ilaç olarak kullanılmaya uygun 

moleküller için arzu edilmektedir. Aktif moleküller arasında pIC50 değeri yüksek 

olanlar da bulunmaktadır. Bu moleküller hedef enzimi çok iyi inhibe 

etmektedirler ve potansiyel ilaç adayları olarak görülmektedir. İnaktif 

moleküllerin çoğunun yüksek MW ve LogP değerlerine sahip olduğu 

belirlenmiştir. Dolayısıyla onların daha büyük ve daha hidrofobik (bir molekülün 

sudan kaçınma özelliği) olduğunu göstermektedir. Bu özellikler genellikle ilaç 

olarak kullanılmaya uygun olmayan moleküllerde görülmektedir. İnaktif 

moleküller arasında pIC50 değeri yüksek olanlar da vardır. Bu moleküllerin hedef 

enzimi inhibe etmelerine rağmen, başka faktörlerden dolayı ilaç olarak 

kullanılamadıklarını göstermektedir. Bu faktörler toksisite, metabolizma veya 

farmakokinetik olabilmektedir. Görseldeki sağdaki inhibisyon grafiğinde ise 

noktaların çoğu sol alttan sağ üste doğru bir çizgi oluşturmuştur. Bu durum, MW 

ve LogP arasında pozitif bir korelasyon olduğunu göstermektedir. Yani molekül 

ağırlığı arttıkça, lipofiliklik de artmaktadır. Noktaların rengi ise aktif molekülleri 

belirtmektedir. Grafiğin sol alt köşesindeki noktaların en koyu renge sahip 

olduğu görülmektedir. Bu durum, bu moleküllerin en yüksek aktiviteye sahip 

olduğunu ifade etmektedir. Bu moleküller potansiyel ilaç adayları olarak 

görülmektedir. Grafiğin sağ üst köşesindeki noktalar en açık renk olduğu için, bu 

moleküllerin en düşük aktiviteye sahip olduğunu göstermektedir. Dolayısıyla bu 

moleküller ilaç olarak kullanılmaya uygun değildir. 

 

 

 

Şekil 4.10. Moleküllerin LogP ve MW değerleri 
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Biyoaktivite özellikleri ile PIC50 değerleri arasındaki ilişkilerin değerlendirilmesi 

için Şekil 4.11'deki gibi görselleştirilmiştir.  Görseldeki ic50 (soldaki) grafiğinde 

iki kutu grafiği bulunmakta ve biri inaktif diğeri aktif biyoaktivite sınıfıdır. Kutu 

grafiği, verilerin dağılımını gösteren bir grafik türüdür. Kutu grafiğinin alt ve üst 

kenarları, verilerin % 25 ve % 75’lik yüzdeliklerini göstermektedir. Kutu 

grafiğinin içindeki çizgi ise verilerin ortanca değerini belirtmektedir. Kutu 

grafiğinin dışında kalan noktalar ise aykırı değerlerdir. Aktif biyoaktivite sınıfının 

kutu grafiği mavi renkte ve inaktif biyoaktivite sınıfının kutu grafiği kırmızı 

renkte gösterilmiştir. Aktif biyoaktivite sınıfının ortanca pIC50 değeri yaklaşık 7 

iken, inaktif biyoaktivite sınıfının ortanca pIC50 değeri yaklaşık 4.5’tir. Bu durum, 

aktif moleküllerin inaktif moleküllere göre çok daha güçlü inhibitörler olduğunu 

ifade etmektedir. Her iki kutu grafiğinde de aykırı değerler bulunmaktadır. Yani 

bazı moleküllerin biyoaktivite sınıflarına göre beklenenden çok farklı pIC50 

değerlerine sahip olduğunu belirtmektedir. Sağdaki inhibisyon görseli için ise 

grafiğin sadece aktif biyoaktivite sınıfı için bir kutu grafiği vardır. Aktif 

biyoaktivite sınıfının kutu grafiği mavi renkte ve ortanca pIC50 değeri yaklaşık 

7.5.’tir Kutu grafiğinin bıyıkları yaklaşık 7 ile 8.5 arasında uzanmaktadır. Bu, aktif 

moleküllerin çoğunun bu aralıkta pIC50 değerine sahip olduğunu 

göstermektedir. Kutu grafiğinin üzerinde birkaç aykırı değer bulunmaktadır. En 

yüksek değer yaklaşık 10’dur. Bu durum, bu moleküllerin çok daha güçlü 

inhibitörler olduğunu ifade etmektedir.  
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Şekil 4.11. Moleküller arasındaki PIC50 ve biyoaktivite ilişkisi 

 

Moleküler ağırlık ile biyoaktivite arasındaki ilişkiyi görselleştirmek için Şekil 

4.12'de bir grafik oluşturulmuştur. Grafiğin amacı, ilaç keşfi çalışmasında hangi 

moleküllerin daha küçük veya daha büyük olduğunu ve bunun biyoaktivite 

üzerindeki etkisini göstermektir. Grafiğin x-ekseni biyoaktivite sınıfını, y-ekseni 

ise molekül ağırlığını (MW) ifade etmektedir. Molekül ağırlığı, bir moleküldeki 

atomların toplam kütlesidir ve bir molekülün fiziksel ve kimyasal özelliklerini 

etkileyebilmektedir. Görselde ic50 (soldaki) için grafiğin iki kutu grafiği 

bulunmakta ve biri inaktif diğeri aktif biyoaktivite sınıfına aittir. İnaktif 

biyoaktivite sınıfının kutu grafiği kırmızı renkte ve aktif biyoaktivite sınıfının 

kutu grafiği mavi renktedir. İnaktif biyoaktivite sınıfının ortanca molekül ağırlığı 

aktif biyoaktivite sınıfından daha yüksektir dolayısyla inaktif moleküller daha 

büyüktür. Her iki kutu grafiğinde de siyah elmaslarla gösterilen aykırı değerler 

vardır. Bu durum, bazı moleküllerin biyoaktivite sınıflarına göre beklenenden 

çok farklı molekül ağırlıklarına sahip olduğunu göstermektedir. Sağdaki 

inhibisyon biyoaktivite sınıfının kutu grafiği mavi renkte ve ortanca molekül 

ağırlığı yaklaşık 400’dür. Kutu grafiğinin bıyıkları yaklaşık 200 ile 700 

arasındadır ve inhibisyon moleküllerinin çoğunun bu aralıkta molekül ağırlığına 

sahiptir. Kutu grafiğinin üzerinde ve altında ikişer tane aykırı değer 

bulunmaktadır. Dolayısyla bazı moleküllerin çok daha küçük veya çok daha 

büyük olduğunu ifade etmektedir. 
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Şekil 4.12. Moleküllerin moleküler ağırlık ve biyoaktivite ilişkisi 

 

Özellikle ilaç tasarımında, moleküler tanımlayıcılar, ilaç moleküllerinin hedef 

proteine olan etkileşimlerini ve biyoyararlanımlarını tahmin etmek için 

kullanılabilen Padel-Descriptor yazılımı aynı zamanda moleküler özelliklerin 

hesaplanması ve karşılaştırılması, bileşiklerin benzerlik ve farklılık derecelerinin 

belirlenmesinde yardımcı olmaktadır. Moleküllerin inhibisyonu, bir kimyasal 

bileşiğin belirli bir biyolojik hedef üzerindeki etkisini engelleme veya azaltma 

sürecidir ve özellikle ilaç geliştirme sürecinde, hastalıkların tedavisinde hedef 

molekülleri hedefleyen ilaçların etkinliğini artırmak veya istenmeyen biyolojik 

süreçleri durdurmak için önemlidir. İnhibisyon sürecinde yer alan moleküllerin 

moleküler parmak izleri, PubChem veri tabanından elde edilen 881 farklı 

moleküler parmak izi sağlayan PaDeL-Descriptor yazılımı kullanılarak 

hesaplanmıştır. Bu parmak izleri, bileşiklerin moleküler özelliklerini analiz 

etmek ve değerlendirmek için kullanılmıştır. ChEMBL veri tabanından histon 

deasetilaz için 4695 adet IC50 molekülü ve 1012 adet Inhibisyon molekülü 

getirilmiştir. İlaç olabilecek moleküller içerisinde bu moleküler parmak izlerinin 

varlığını tespit edebilmek amacıyla binary matriks oluşturulmuştur. Modellerin 

değerlendirilmesi için oluşturulan matriks üzerinden R2, Düzeltilmiş R2 

(Adjusted R2) ve Kök Ortalama Kare Hata (Root Mean Squared Error-RMSE) 

metrikleri hesaplanmıştır.  R2, bağımsız değişkenlerin bağımlı değişkendeki 
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değişikliği açıklama gücünü temsil etmektedir. Ancak, R2 tek başına 

kullanıldığında modelin karmaşıklığından kaynaklanan yanıltıcı sonuçlar 

verebilmektedir. Düzeltilmiş R2, R2 değerini düzeltmek için kullanılmaktadır. Bu 

değer, modelin açıklama gücünü, bağımsız değişken sayısı ve örneklem 

büyüklüğü gibi faktörlerin etkisinden arındırmaktadır. Düzeltilmiş R2, daha fazla 

bağımsız değişkenin modele eklenmesi durumunda artış veya azalışın ne 

kadarının modelin performansını gerçekten iyileştirdiğini göstermektedir. 

RMSE, tahminlerin gerçek değerlerden ne kadar uzak olduğunu ölçmektedir ve 

bu hataları kare alarak hesaplamaktadır. Aynı zamanda hataların büyüklüğünü 

ve yayılmasını yansıtmaktadır. Aykırı değerlerin büyük bir etkisi vardır ve daha 

büyük hataların ağırlıklı olarak dikkate alınmasını sağlamaktadır. Python ile 

hesaplanan modellerin performans metriklerinin karşılaştırması IC50 için 

Çizelge 4.1 ‘de verilmiştir. Buna göre en yüksek Düzeltilmiş R-Kare ve R-Kare 

değerine sahip olan modeller DecisionTreeRegressor, ExtraTreeRegressor ve 

GaussianProcessRegressor’dır. Bu modeller % 85 oranında bağımlı değişkenin 

varyansını açıklamışlardır. En düşük Düzeltilmiş R-Kare ve R-Kare değerine sahip 

olan modeller ise PassiveAggressiveRegressor’dır. Bu model %-80 oranında 

bağımlı değişkenin varyansını açıklamıştır. En düşük RMSE değerine sahip olan 

modeller de DecisionTreeRegressor, ExtraTreeRegressor ve 

GaussianProcessRegressor’dır. Bu modeller 0.42 oranında ortalama hata 

yapmışlardır. En yüksek RMSE değerine sahip olan model ise 

PassiveAggressiveRegressor’dır. Bu model 1.47 oranında ortalama hata 

yapmıştır. En kısa sürede eğitilen model Ridge’dir. Bu model 0.06 saniyede 

eğitilmiştir. En uzun sürede eğitilen ve test edilen model ise 

QuantileRegressor’dır. Bu model 2205.80 saniyede eğitilmiştir. 
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Çizelge 4.1. IC50 için Regresyon performans metriklerinin karşılaştırılması 

 

Model 
Adjusted 
R-Squared 

R-
Squared RMSE 

Time 
Taken 

DecisionTreeRegressor 0.85 0.85 0.42 0.20 

ExtraTreeRegressor 0.85 0.85 0.42 0.18 

ExtraTreesRegressor 0.85 0.85 0.42 12.69 

GaussianProcessRegressor 0.85 0.85 0.42 18.48 

RandomForestRegressor 0.78 0.79 0.51 4.13 

MLPRegressor 0.75 0.76 0.54 9.33 

BaggingRegressor 0.75 0.76 0.54 1.02 

XGBRegressor 0.70 0.71 0.59 2.99 

HistGradientBoostingRegressor 0.48 0.50 0.78 7.65 

LGBMRegressor 0.48 0.49 0.78 0.26 

SVR 0.47 0.49 0.79 4.76 

KNeighborsRegressor 0.46 0.48 0.79 0.39 

NuSVR 0.46 0.48 0.79 2.78 

GradientBoostingRegressor 0.22 0.24 0.96 2.23 

TransformedTargetRegressor 0.11 0.13 1.02 0.13 

LinearRegression 0.11 0.13 1.02 0.13 

Ridge 0.11 0.13 1.02 0.06 

RidgeCV 0.11 0.13 1.02 0.14 

Lars 0.10 0.13 1.03 0.08 

LassoLarsIC 0.10 0.12 1.03 0.13 

PoissonRegressor 0.10 0.12 1.03 0.34 

BayesianRidge 0.10 0.12 1.03 0.30 

HuberRegressor 0.10 0.12 1.03 0.54 

SGDRegressor 0.08 0.11 1.04 0.13 

LinearSVR 0.08 0.10 1.04 0.79 

TweedieRegressor 0.06 0.09 1.05 0.27 

GammaRegressor 0.06 0.09 1.05 0.31 

AdaBoostRegressor 0.04 0.06 1.06 0.99 

OrthogonalMatchingPursuit 0.04 0.06 1.06 0.04 

OrthogonalMatchingPursuitCV -0.01 0.01 1.09 0.08 

LarsCV -0.03 0.00 1.10 0.25 

LassoLarsCV -0.03 0.00 1.10 0.27 

LassoLars -0.03 0.00 1.10 0.04 

LassoCV -0.03 0.00 1.10 1.87 

Lasso -0.03 0.00 1.10 0.07 

ElasticNet -0.03 0.00 1.10 0.06 

QuantileRegressor -0.03 -0.00 1.10 2205.80 

PassiveAggressiveRegressor -0.85 -0.80 1.47 0.07 
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Inhibition için oluşturulan regresyon performans metriklerinin karşılaştırması 

Çizelge 4.2’de verilmiştir. Buna göre en yüksek Düzeltilmiş R-Kare ve R-Kare 

değerine sahip olan modeller GaussianProcessRegressor, DecisionTreeRegressor 

ve ExtraTreeRegressor’dır. Bu modeller % 79 oranında bağımlı değişkenin 

varyansını açıklamışlardır. En düşük Düzeltilmiş R-Kare ve R-Kare değerine sahip 

olan modeller ise PassiveAggressiveRegressor’dır. Bu model % -14 oranında 

bağımlı değişkenin varyansını açıklamıştır. En düşük RMSE değerine sahip olan 

modeller de DecisionTreeRegressor ve ExtraTreeRegressor’dır. Bu modeller 0.17 

oranında ortalama hata yapmışlardır. En yüksek RMSE değerine sahip olan model 

ise PassiveAggressiveRegressor’dır. Bu model 0.43 oranında ortalama hata 

yapmıştır. En kısa sürede eğitilen model Ridge’dir. Bu model 0.03 saniyede 

eğitilmiştir. En uzun sürede eğitilen ve test edilen model ise 

QuantileRegressor’dır. Bu model 26.54 saniyede eğitilmiştir. 
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Çizelge 4.2. Inhibisyon için Regresyon performans metriklerinin karşılaştırılması 

 

Model Adjusted 
R-Squared 

R-
Squared 

RMSE Time 
Taken 

DecisionTreeRegressor 0.79 0.82 0.17 0.09 
ExtraTreeRegressor 0.79 0.82 0.17 0.11 
ExtraTreesRegressor 0.79 0.82 0.17 3.68 
XGBRegressor 0.74 0.77 0.19 1.40 
RandomForestRegressor 0.69 0.72 0.21 1.23 
BaggingRegressor 0.65 0.69 0.22 0.14 
MLPRegressor 0.56 0.61 0.25 4.30 
HistGradientBoostingRegressor 0.49 0.55 0.27 3.20 
LGBMRegressor 0.48 0.54 0.27 0.08 
SVR 0.45 0.51 0.28 0.28 
NuSVR 0.44 0.50 0.28 0.32 
GradientBoostingRegressor 0.32 0.39 0.31 0.55 
KNeighborsRegressor 0.27 0.35 0.32 0.22 
TransformedTargetRegressor 0.18 0.26 0.34 0.05 
LinearRegression 0.18 0.26 0.34 0.09 
Ridge 0.18 0.26 0.34 0.03 
RidgeCV 0.17 0.26 0.34 0.08 
LassoLarsIC 0.15 0.24 0.35 0.21 
SGDRegressor 0.14 0.23 0.35 0.07 
PoissonRegressor 0.13 0.22 0.35 0.54 
HuberRegressor 0.13 0.22 0.35 0.16 
BayesianRidge 0.09 0.19 0.36 0.05 
Lars 0.05 0.15 0.37 0.10 
TweedieRegressor 0.05 0.15 0.37 0.29 
LinearSVR 0.05 0.15 0.37 0.48 
GammaRegressor 0.05 0.15 0.37 0.31 
OrthogonalMatchingPursuit -0.01 0.10 0.38 0.03 
OrthogonalMatchingPursuitCV -0.10 0.02 0.40 0.06 
LassoLarsCV -0.12 0.00 0.40 0.37 
LassoLars -0.12 0.00 0.40 0.06 
LassoCV -0.12 0.00 0.40 1.33 
Lasso -0.12 0.00 0.40 0.03 
LarsCV -0.12 0.00 0.40 0.24 
ElasticNetCV -0.12 0.00 0.40 1.63 
ElasticNet -0.12 0.00 0.40 0.04 
DummyRegressor -0.12 0.00 0.40 0.04 
AdaBoostRegressor -0.15 -0.02 0.41 0.13 
QuantileRegressor -0.23 -0.10 0.42 26.54 
PassiveAggressiveRegressor -0.27 -0.14 0.43 0.05 
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DecisionTreeRegressor modelinin seçilmesiyle IC50 molekülü için Şekil 4.13’deki 

gibi, Inhibition molekülü için Şekil 4.14’daki gibi bir eğitim seti regresyon görseli 

oluşturulmuştur. Şekil 4.13’deki grafiğin x-ekseni ve y-ekseni 2 ile 12 arasında 

değişmektedir. Veri noktaları mavi daireler olarak gösterilmiştir. Lineer 

regresyon çizgisi, veri noktalarının arasından geçen en iyi uyumlu çizgiyi ifade 

etmektedir. Veri noktaları lineer regresyon çizgisi ile pozitif bir ilişki 

göstermiştir. Yani, x-eksenindeki değer arttıkça, y-eksenindeki değer de 

artmıştır. Ayrıca veri noktaları lineer regresyon çizgisine oldukça yakındır ve bu 

da lineer regresyon modelinin veriyi iyi açıkladığını ifade etmektedir. 

 

 

 

Şekil 4.13. DecisionTreeRegressor modelinin IC50 için regresyon grafiği 

 

Şekil 4.14’daki grafiğin x-ekseni ve y-ekseni 7.0 ile 10.0 arasında değişmektedir. 

Veri noktaları regresyon çizgisi ile pozitif bir ilişki içerisindedir. Yani, x-

eksenindeki değer arttıkça, y-eksenindeki değer de artmıştır. Veri noktaları 

regresyon çizgisine yakındır, bu da regresyon modelinin veriyi iyi açıkladığını 

ifade etmektedir. 
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Şekil 4.14. DecisionTreeRegressor modelinin Inhibition için regresyon grafiği 

 

Smiles sütunundaki değerler, rdkit.Chem ve rdkit.Chem.Draw modülleri ve 

Chem.MolFromSmiles fonksiyonu kullanılarak molekül objelerine 

dönüştürülmüştür. MolsToGridImage fonksiyonu ile ilk 10 molekül yapısı 

görselleştirilmiş ve Şekil 4.15’de verilmiştir. Daha sonra moleküllerin hesaplanan 

morgan fingerprints değerleri ile label sütunundaki aktiflik durumuna göre 1 ve 

0 şeklinde etiketlenen değerler birleştirilerek elde edilen veri seti, eğitim ve test 

kümelerine bölünmüştür. RandomForestClassifier ile eğitim seti üzerinde bir 

model oluşturularak test verileri ile modelin tahminleri hesaplanmıştır. 

Sınıflandırma modelinin performansı ROC eğrisi ile hesaplanmış ve 0.9725 değeri 

ile yüksek bir başarı elde edilmiştir.  
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Şekil 4.15. Smiles molekül yapılarının görseli 

 

Veri setindeki bileşikler "active" ve "inactive" olarak etiketlenmiştir. Daha sonra, 

bu bileşikler etiket değerlerine göre sınıflandırılmıştır. Smiles formatındaki 

kimyasal yapılar, kimyasal parmak izi olarak bilinen Morgan Fingerprints 
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kullanılarak temsil edilmiştir. Kimyasal parmak izi, kimyasal bileşiklerin 

özelliklerini temsil etmek için kullanılan sayısal bir vektördür. Bu sayede, makine 

öğrenimi algoritmaları tarafından işlenebilecek bir forma dönüştürülmüşlerdir. 

Modelin gerçek ve tahmin edilen sınıflarını değerlendirmek için pycm 

kütüphanesinden ConfusionMatrix sınıfı kullanılarak gerçek etiketlerle tahmin 

edilen etiketler arasındaki karmaşıklık matrisi hesaplanmış ve ısı haritası 

(heatmap) ile görselleştirilerek Şekil 4.16’de verilmiştir. Buna göre gerçek pozitif 

sınıfı doğru bir şekilde pozitif olarak tahmin edilen örnek sayısı 3196, gerçek 

negatif sınıfı yanlış bir şekilde pozitif olarak tahmin edilen örnek sayısı 32, gerçek 

pozitif sınıfı yanlış bir şekilde negatif olarak tahmin edilen örnek sayısı 14 ve 

gerçek negatif sınıfı doğru bir şekilde negatif olarak tahmin edilen örnek sayısı 

600 olarak elde edilmiştir. 

 

 

 

Şekil 4.16. ConfusionMatrix (Karmaşıklık Matrisi) 

 

Yapılan sınıflandırma sonucunda modelin performansını daha net görebilmek 

için bazı metrikler ile değerlendirme yapılmıştır. Ek-1 ve Ek-2’de bu metriklerin 

değerleri verilmiştir. Buna göre ACC Macro, tüm sınıfların doğru sınıflandırma 

oranlarının ortalamasıdır ve 0.98803 olarak hesaplanmıştır. ARI - Ayarlanmış 
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Rand Endeksi, kümeleme algoritmasının gerçek sınıflandırmaya ne kadar yakın 

olduğunu gösteren bir ölçüttür. Değer ne kadar yüksekse, modelin daha iyi bir 

kümeleme performansı olduğunu göstermektedir ve 0.94022 olarak 

hesaplanmıştır. AUNP, pozitif sınıfın altında kalan alanın normalleştirilmiş 

versiyonudur. Değer ne kadar yüksekse, modelin pozitif sınıfı iyi bir şekilde 

sınıflandırdığını göstermektedir ve bu değer 0.9725 olarak hesaplanmıştır. 

AUNU, negatif sınıfın altında kalan alanın normalleştirilmiş versiyonudur. Değer 

ne kadar yüksekse, modelin negatif sınıfı iyi bir şekilde sınıflandırdığını 

göstermektedir ve 0.9725 olarak hesaplanmıştır. F1 Macro - Makro F1 skoru, tüm 

sınıfların F1 skorlarının ortalamasıdır. F1 skoru, hassasiyet (precision) ve 

duyarlılık (recall) metriklerinin harmonik ortalaması olarak ifade edilmektedir 

ve 0.97797 olarak hesaplanmıştır.  Mikro F1 skoru, tüm sınıfların TP, FP ve FN 

değerlerinin toplamı üzerinden hesaplanan bir F1 skorudur ve 0.98803 olarak 

hesaplanmıştır. Hamming Loss - Hamming kaybı, doğru sınıflandırılmayan 

etiketlerin toplam sayısının, toplam etiket sayısına oranıdır ve 0.01197 olarak 

hesaplanmıştır. Kappa, modelin gerçek sınıfları rastgele tahmin etme olasılığına 

karşı düzeltilmiş bir sınıflandırma doğruluğu ölçüsüdür. Değer 1'e ne kadar 

yakınsa, modelin daha iyi bir sınıflandırma performansı olduğunu 

göstermektedir ve 0.95594 olarak bulunmuştur. Matthews korelasyonu, doğru ve 

yanlış pozitif/negatif sınıflandırmalar arasındaki dengeli bir ölçüdür. Değer ne 

kadar yüksekse, modelin daha iyi bir sınıflandırma performansı olduğunu 

göstermektedir ve 0.95608 olarak elde edilmiştir. A1 (Landis & Koch), Landis ve 

Koch tarafından önerilen ölçüte göre, modelin sınıfları neredeyse mükemmel bir 

şekilde sınıflandırdığını göstermektedir. 

 

Ek 2’de elde edilen sonuçlara göre, her iki sınıf (0 ve 1) için de yüksek performans 

elde edildiği görülmektedir. ACC (Accuracy) değeri hem sınıf 0 hem de sınıf 1 için 

yaklaşık olarak % 98.8 olarak hesaplanmıştır, yani doğru sınıflandırılan 

örneklerin oranı oldukça yüksektir. AUC (Area under the ROC curve) ve AUPR 

(Area under the PR curve) değerleri de her iki sınıf için yaklaşık olarak 0.97 

olarak hesaplanmıştır. Bu da modelin sınıflandırma yeteneğinin yüksek olduğunu 

göstermektedir. Precision (kesinlik) ve recall (hatırlama) ölçümlerinin harmonik 

ortalaması olan F1 skoru, her iki sınıf için yüksek değerlerde bulunmaktadır. Sınıf 
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0 için F1 skoru 0.96, sınıf 1 için ise 0.99 olarak hesaplanmıştır. Yanlış pozitif oranı 

(FPR) ve yanlış negatif oranı (FNR) da her iki sınıf için düşük değerlerde 

bulunmaktadır. Bu da modelin hem yanlış pozitif sınıflandırmaları hem de yanlış 

negatif sınıflandırmaları minimize ettiğini göstermektedir. Genel olarak, verilen 

metrikler sonucunda modelin yüksek doğruluk, hassasiyet ve özgünlük 

değerlerine sahip olduğu görülmektedir. 

 

Diğer modellerin sınıflandırma performanslarını görmek için hazırlanan Çizelge 

4.3’de accuracy, balanced accuracy, ROC-AUC, F1 Score ve Time Taken değerleri 

karşılaştırılmıştır. Bu metrikler, bir sınıflandırma modelinin ne kadar iyi 

çalıştığını değerlendirmek için kullanılan ölçülerdir. Doğruluk (Accuracy), 

modelin doğru tahmin ettiği örneklerin toplam örnek sayısına oranıdır. Doğruluk 

değeri ne kadar yüksekse, model o kadar iyidir. Dengeli Doğruluk (Balanced 

Accuracy), modelin her bir sınıf için doğru tahmin ettiği örneklerin oranının 

ortalamasıdır. Dengeli doğruluk değeri ne kadar yüksekse, model o kadar 

dengelidir. ROC AUC, modelin gerçek pozitif oranı ile yanlış pozitif oranı 

arasındaki ilişkiyi gösteren bir eğrinin altında kalan alanın büyüklüğüdür. ROC 

AUC değeri ne kadar yüksekse, model o kadar iyidir. F1 Skoru, modelin 

hassasiyeti ve duyarlılığı arasındaki dengeyi gösteren bir skordur. Hassasiyet, 

modelin pozitif olarak tahmin ettiği örneklerden kaç tanesinin gerçekten pozitif 

olduğunu gösterir. Duyarlılık, modelin gerçekten pozitif olan örneklerden kaç 

tanesini doğru tahmin ettiğini gösterir. F1 skoru ne kadar yüksekse, model o 

kadar dengelidir. Harcanan Süre (Time Taken), modelin eğitilmesi ve test 

edilmesi için harcadığı süredir. Süre ne kadar düşükse, model o kadar hızlıdır. 

Performans metriklerinin karşılaştırılmasına göre, en yüksek doğruluk değerine 

sahip olan modeller LabelPropagation, ExtraTreeClassifier ve 

RandomForestClassifier’dır. Bu modeller % 100 oranında doğru tahmin 

yapmışlardır. En düşük doğruluk değerine sahip olan model ise GaussianNB’dir. 

Bu model % 71 oranında doğru tahmin yapmıştır. En yüksek dengeli doğruluk 

değerine sahip olan modeller de LabelPropagation, ExtraTreeClassifier ve 

RandomForestClassifier’dır. Bu modeller % 100 oranında dengeli doğruluk 

değerine sahiptirler. En düşük dengeli doğruluk değerine sahip olan model ise 

GaussianNB’dir. Bu model % 70 oranında dengeli doğruluk değerine sahiptir. En 
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yüksek ROC AUC değerine sahip olan modeller de LabelPropagation, 

ExtraTreeClassifier ve RandomForestClassifier’dır. Bu modeller % 100 oranında 

ROC AUC değerine sahiptirler. En düşük ROC AUC değerine sahip olan model ise 

GaussianNB’dir. Bu model % 77 oranında ROC AUC değerine sahiptir. En yüksek 

F1 skoruna sahip olan modeller de LabelPropagation, ExtraTreeClassifier ve 

RandomForestClassifier’dır. Bu modeller % 100 oranında F1 skoruna sahiptirler. 

En düşük F1 skoruna sahip olan model ise GaussianNB’dir. Bu model % 71 

oranında F1 skoruna sahiptir. En kısa sürede eğitilen ve test edilen model 

LogisticRegression’dur. Bu model 0.02 saniyede eğitilmiş ve test edilmiştir. En 

uzun sürede eğitilen ve test edilen model ise MLPClassifier’dır. Bu model 2.29 

saniyede eğitilmiş ve test edilmiştir. 
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Çizelge 4.3. Sınıflandırma modellerinin performans metrikleri 

 

Model Accuracy 
Balanced 
Accuracy 

ROC 
AUC 

F1 
Score 

Time 
Taken 

LabelPropagation 1.00 1.00 1.00 1.00 30.86 

DecisionTreeClassifier 1.00 1.00 1.00 1.00 9.87 

ExtraTreeClassifier 1.00 1.00 1.00 1.00 1.53 

ExtraTreesClassifier 1.00 1.00 1.00 1.00 16.50 

LabelSpreading 1.00 1.00 1.00 1.00 35.40 

RandomForestClassifier 1.00 1.00 1.00 1.00 10.25 

BaggingClassifier 1.00 1.00 1.00 1.00 50.34 

LogisticRegression 0.99 0.99 0.99 0.99 4.33 

LGBMClassifier 0.99 0.98 0.98 0.99 4.30 

LinearSVC 0.99 0.98 0.98 0.99 26.22 

Perceptron 0.98 0.98 0.98 0.98 2.26 

PassiveAggressiveClassifier 0.99 0.98 0.98 0.99 3.89 

XGBClassifier 0.99 0.97 0.97 0.99 82.86 

LinearDiscriminantAnalysis 0.98 0.97 0.97 0.98 22.70 

RidgeClassifier 0.98 0.97 0.97 0.98 3.92 

RidgeClassifierCV 0.98 0.97 0.97 0.98 17.91 

SGDClassifier 0.98 0.96 0.96 0.98 9.55 

SVC 0.98 0.96 0.96 0.98 122.85 

KNeighborsClassifier 0.97 0.95 0.95 0.97 18.96 

CalibratedClassifierCV 0.98 0.94 0.94 0.98 107.79 

QuadraticDiscriminantAnalysis 0.95 0.88 0.88 0.95 29.52 

BernoulliNB 0.91 0.86 0.86 0.91 2.19 

NearestCentroid 0.91 0.84 0.84 0.91 1.51 

AdaBoostClassifier 0.92 0.84 0.84 0.92 37.52 

GaussianNB 0.71 0.82 0.82 0.74 2.27 

DummyClassifier 0.82 0.50 0.50 0.74 1.34 
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5. TARTIŞMA VE SONUÇLAR  

 

Bu araştırma, çocukluk çağı akut lösemisi için potansiyel adayları belirlemek 

üzere histon deasetilaz genlerinin sanal taramasına odaklanmıştır. Çalışmada 

moleküler parmak izleri kullanılmış ve bu parmak izleri ile ilişkili histon 

deasetilaz genlerinin keşfedilmesinde IC50 ve İnhibisyon standart tiplerinin 

katkısı değerlendirilmiştir. Ayrıca, çocukluk çağı akut lösemisinin tedavisinde 

kullanılan ilaçların ilaç etkileşimlerini görselleştirmek için ağ grafikleri 

kullanılmıştır. Bu yaklaşımlar kullanılarak çocukluk çağı akut lösemisi ile ilgili 

potansiyel hedefler ve ilaç etkileşimleri hakkında bilgi edinme amaçlanmıştır. 

Moleküler parmak izleri belirlendikten sonra, moleküler özelliklerin önemini 

değerlendirmek için açıklanabilir yapay zekâ yaklaşımı kullanılmıştır. Aday 

bileşiklerin moleküler özellikleri üzerinde sanal tarama gerçekleştirilerek, 

Decision Tree Regressor ve Gradient Boosted Trees modellerinin en uygun 

seçenekler olduğu belirlenmiştir. Moleküler parmak izi verilerini içeren ikili 

matris, bu modelleri uygulamak için kullanılmış ve moleküler özelliklerin 

kapsamlı bir şekilde incelenmesini kolaylaştırmıştır. Açıklanabilir yapay zekâ 

tekniklerinin uygulanabilmesi için her bir moleküler parmak izinin modeller 

üzerindeki etkisi Shap değerleri üzerinden hesaplanmış ve gözlemlenmiştir. 

Moleküler özelliklerin modeller üzerindeki etkilerini görselleştirmek için çeşitli 

grafik türleri kullanılmış ve kapsamlı bir analize olanak sağlanmıştır. 

 

Waterfall grafikleri, bir başlangıç değeri (genellikle bir temel tahmin değeri veya 

ortalama değer) üzerindeki değişimleri adım adım göstermektedir. Her adımda, 

bir özellik katkısı toplam değere eklenmekte veya çıkarılmaktadır. Bu şekilde, 

özelliklerin toplam katkısı belirlenmektedir. Şekil 5.1, IC50 için tasarlanan 

grafiğin görsel temsilini sunarak her bir moleküler parmak izinin tahminler 

üzerindeki etkisininin analizini sağlamaktadır. Benzer şekilde, Şekil 5.2 

inhibisyon için görselleştirmeyi sunarak her bir moleküler parmak izinin 

tahminler üzerindeki etkisinin değerlendirilmesine yardımcı olmaktadır. 
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Şekil 5.1. IC50 için SHAP değerlerine göre waterfall grafiği 

 

 

 

Şekil 5.2. İnhibisyon için SHAP değerlerine göre waterfall grafiği 
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Waterfall grafiğinin alt kısmı, modelin beklenen çıktı değeri olan E[f(X)] ile 

başlamaktadır. Her satırda, her bir özelliğin pozitif (kırmızı) veya negatif (mavi) 

katkısının, beklenen çıktı değerinden modelin çıktı değerine nasıl taşıdığı 

gösterilmektedir. Sonuçlara göre, IC50 için beklenen model çıktı değeri 6.129 

iken mevcut modelin çıktı değeri 4, inhibisyon için beklenen model çıktı değeri 

7.465 iken mevcut modelin çıktı değeri 7.301 olarak bulunmuştur. Özellik 

adlarının önündeki gri sayılar, bu örnekte her bir özelliğin değerini temsil 

etmektedir. Özelliklerin 1 değerine sahip olduğu durumlar var olarak, 0 değerine 

sahip olduğu durumlar yok olarak ifade edilmektedir. Şekil 5.1’de verilen ic50 

için waterfall grafiğinde modele etki eden moleküllerin etkisi, modele katkısı ve 

bit alt yapısı Çizelge 5.1’de verilmiştir. 

 

Çizelge 5.1. FP moleküllerinin modele etkisi ve bit altyapısı(Şekil 5.1 için) 

 

FP Modele 

Katkısı 

Bit Altyapısı 

PubChemFP392 -0.62 N(~C)(~C)(~H) 

PubChemFP374 -0.23 C(~H)(~H)(~H) 

PubChemFP19 -0.22 >= 2 O 

PubChemFP698 -0.19 O-C-C-C-C-C-C-C 

PubChemFP193 -0.16 >= 3 saturated or aromatic carbon-only ring 

size 6 

PubChemFP569 -0.15 N-C-C-N 

PubChemFP666 +0.13 C=C-C-O-C 

PubChemFP391 -0,13 N(~C)(~C)(~C) 

PubChemFP335 +0,13 C(~C)(~C)(~C)(~H) 

 

Şekil 5.1’de PubchemFP335 ve PubchemFP666’nın modele pozitif yönde etki 

ettiği görülmektedir. Her iki molekül de 5.5’den 5.63’e kadar 0.13 oranında model 

çıktısına pozitif katkı sağlamıştır. PubChem substructure fingerprint(FP) 

listesine göre, PubchemFP335, "C(~C)(~C)(~C)(~H)" alt yapısını temsil 

etmektedir. Bu alt yapı, karbon atomunun üç farklı karbon atomu ve bir hidrojen 
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atomu ile bağlandığını ifade etmektedir. Bu alt yapı, karbon atomunun çevresinde 

üç adet karbon atomu ve bir hidrojen atomu bulunduğunu göstermektedir. IC50 

değerleri için taranan histon deasetilaz gen inhibitörlerinin analizi, aromatik 

bağları çevreleyen atomların nispeten daha düşük bir öneme sahip olduğunu 

ortaya koymuştur. Bu aromatik bağlardaki komşu atomların varlığının, +0,13'lük 

bir etki oranı ile pozitif bir etkiye sahip olduğu bulunmuştur. Bu durum, aromatik 

bağların kendisinden ziyade komşu atomların spesifik özelliklerinin, 

moleküllerin histon deasetilaz genlerine karşı aktivitesinde önemli bir rol 

oynadığını göstermektedir. FP’ye göre, aromatik bağların sayısı dikkate 

alınmaksızın, diğer moleküllerle olan tekli ve çiftli bağlarına odaklanılmalıdır. 

Aromatik halkaların tekli ve çiftli bağları, histon deasetilaz genlerinin potansiyel 

ilaç özellikleri açısından önemli bir rol oynamaktadır.  PubChemFP392, 

(N(~C)(~C)(~H))’yi temsil ederken, modelin tahminine -0.62 katkıda 

bulunmuştur. Bu durum çocukluk çağı akut lösemisi için bir ilaç adayı olarak pek 

uygun olmadığını göstermektedir. Diğer moleküller de farklı derecelerde katkıda 

bulunmuştur. Bazıları modelin tahminine pozitif katkıda bulunurken diğerleri 

negatif katkı vermiştir. PubChemFP19 (>= 2 O), modelin tahminine -0.22 katkı 

verirken, PubChemFP666 (C=C-C-O-C) ise +0.13 katkı vermiştir. Bu durum, 

oksijen atomlarının varlığının modelin tahminini olumsuz etkilediğini, ancak 

belirli bir karbon-oksijen bağının varlığının ise tahmini olumlu yönde etkilediğini 

ifade etmektedir. 

 

Şekil 5.2’de verilen inhibisyon için waterfall grafiğinde modele etki eden 

moleküllerin etkisi, modele katkısı ve bit alt yapısı Çizelge 5.2’de verilmiştir. 

PubchemFP385, 7.651’den 7.301’e kadar model çıktısına 0.35 oranında negatif 

katkı sağlamıştır. PubChemFP385 (C(:C)(:C)(:C)) ile bir karbon atomunun üç 

bağlantısı olan bir yapıyı temsil etmektedir. Modele -0.35 katkı verirken negatif 

bir katkı değeri olduğu için, bu molekülün varlığı ilaç potansiyelini azaltabilir 

veya hedef molekül üzerinde olumsuz bir etkiye sahip olabilir. PubChemFP185, 

(>= 2 any ring size 6), en az iki adet 6 halkalı bir yapıyı temsil ederken modele -

0.15 katkıda bulunmuştur. Yine negatif bir katkı değeri olduğu için, bu molekülün 

varlığı ilaç potansiyelini azaltabilir veya hedef molekül üzerinde olumsuz bir 

etkiye sahip olabilir. PubChemFP517, (N-N-C-N) ile azot atomlarıyla bağlı bir 
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karbon atomunu ifade etmektedir ve modele +0.11 katkı vermiştir. Pozitif bir 

katkı değeri olduğu için, bu altyapının varlığı ilaç potansiyelini artırabilir veya 

hedef molekül üzerinde olumlu bir etki yaratabilmektedir. PubChemFP717, 

(Cc1ccc(Cl)cc1) ile bir klor atomu içeren bir benzen halkasını temsil etmekte ve 

modele +0.08 katkıda bulunmaktadır. Pozitif bir katkı değeri olduğu için, bu 

altyapının varlığı ilaç potansiyelini artırabilir veya hedef molekül üzerinde 

olumlu bir etki verebilmektedir. PubChemFP403, (N(:C)(:C)) ile bir azot 

atomunun iki bağlantısı olan bir yapıyı ifade ederken modele -0.06 katkıda 

bulunmuştur. Negatif bir katkı değeri olduğu için, bu bit altyapısının varlığı ilaç 

potansiyelini azaltabilir veya hedef molekül üzerinde olumsuz bir etkiye sahip 

olabilir. PubChemFP37, (>= 1 Cl) ile en az bir klor atomunu temsil etmekte ve 

modele +0.06 katkıda bulunmaktadır. Pozitif bir katkı değeri olduğu için, bu 

molekülün varlığı ilaç potansiyelini artırabilir veya hedef molekül üzerinde 

olumlu bir etki verebilir. PubChemFP115, (>= 1 any ring size 3) ile en az bir adet 

3 halkalı bir yapıyı temsil etmekte ve modele +0.04 katkı vermektedir. Pozitif bir 

katkı değeri olduğu için, bu molekülün varlığı ilaç potansiyelini artırabilir veya 

hedef molekül üzerinde olumlu bir etkiye sahip olabilir. PubChemFP181, (>= 1 

saturated or aromatic heteroatom-containing ring size 6) ile en az bir doymuş 

veya aromatik bir heteroatom içeren 6 halkalı bir yapıyı temsil etmekte ve 

modele -0.04 katkıda bulunmaktadır Negatif bir katkı değeri olduğu için, bu 

molekülün varlığı ilaç potansiyelini azaltabilir veya hedef molekül üzerinde 

olumsuz bir etkiye yaratabilir. PubChemFP684, (O=C-C-C-C-C) ile bir karbonil 

grubu (O=C) ile bağlı bir seri karbon atomunu temsil ederken modele +0.03 katkı 

vermiştir. Pozitif bir katkı değeri olduğu için, bu altyapının varlığı ilaç 

potansiyelini artırabilir veya hedef moleküle olumlu bir etki verebilir. 
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Çizelge 5.2. FP moleküllerinin modele etkisi ve bit alt yapısı (Şekil 5.2 için) 

 

FP Modele 

Katkısı 

Bit Altyapısı 

PubChemFP385 -0.35 C(:C)(:C)(:C) 

PubChemFP185 -0.15 >= 2 any ring size 6 

PubChemFP517 +0.11 N-N-C-N 

PubChemFP717 +0.08 Cc1ccc(Cl)cc1 

PubChemFP403 -0.06 N(:C)(:C) 

PubChemFP37 +0.06 >= 1 Cl 

PubChemFP115 +0.04 >= 1 any ring size 3 

PubChemFP181 -0.04 >= 1 saturated or aromatic heteroatom-

containing ring size 6 

PubChemFP684 +0.03 O=C-C-C-C-C 

 

Force grafiği, waterfall grafiğiyle birlikte kullanılan bir görselleştirme 

yöntemidir. Force grafiğinde, kırmızı oklar pozitif etkileri temsil ederken mavi 

oklar negatif etkileri göstermektedir. Okların boyutu, özelliğin etkisinin 

büyüklüğünü ifade etmektedir. Gri renkli "temel değer", modelin eğitim seti 

üzerindeki ortalama tahmin değerini belirtmektedir. "Çıkış değeri" ise modelin 

tahmini sonucudur. Force grafiği, tahmin için etkili bir özet sunarak, özelliklerin 

etkilerini anlamayı kolaylaştırmaktadır. Özellik değerleri grafiğin alt kısmında 

görüntülenmiştir. IC50 için tasarlanan force grafiği Şekil 5.3’de verilmiştir. Buna 

göre PubchemFP392, PubchemFP374, PubchemFP19, PubchemFP698 ve 

PubchemFP193’ün model çıktısına negatif yönde katkı verdiği görülmektedir. 
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Şekil 5.3. IC50 için SHAP değerleri force grafiği 

 

İnhibisyon molekülleri için oluşturulan force grafiği Şekil 5.4’de verilmiştir. 

PubchemFP37, PubchemFP517 ve PubchemFP717’nin model çıktısına pozitif 

yönde katkı sağlarken tahmin değerini yükselttiği, PubchemFP185, 

PubchemFP385 ve PubchemFP403’ün ise negatif yönde katkı sağlarken tahmin 

değerini düşürdüğü görülmektedir.  

 

 

 

Şekil 5.4. İnhibisyon için SHPA değerleri force grafiği 

 

IC50 için oluşturulan decision grafiklerinden ilki Şekil 5.5’de verilmiştir. Decision 

grafiği, force grafiğinin aksine, düz bir dikey çizgi aracılığıyla modelin temel 

değeri hakkında fikir vermektedir. Çizimdeki renkli çizgiler, özelliklerle ilişkili 

tahmin edilen değerleri temsil etmektedir. SHAP değerlerini (özellik etkileri) 

görselleştiren decision grafiği, temel değerden modelin nihai puanına giden yolu 

göstermektedir. Her bir özelliğin genel tahmine nasıl katkıda bulunduğuna dair 

kapsamlı bir anlayış sunmaktadır. 
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Şekil 5.5. IC50 için decision grafiği-1 

 

Decision ve force grafikleri birbirini desteklemektedir ve benzerlikler ifade 

etmektedir. Özelliklerin SHAP değerlerine göre her iki grafikte de pozitif veya 

negatif etkiler görülebilmektedir. Örneğin, PubchemFP392, PubchemFP374, 

PubchemFP19, PubchemFP698, PubchemFP193 ve PubchemFP568 molekülleri, 

model çıktısını negatif yönde etkilemiştir. Decision ve force grafiklerinde 

gözlemlenen değerler, diğer grafiksel gösterimlerle pozitif bir korelasyon 

göstermektedir. Bu grafikler modelin tahmin sürecine ilişkin kayda değer veriler 

sunarak ana etkilerin büyüklüğü ve yönünün daha iyi anlaşılmasını 

sağlamaktadır. IC50 için bir diğer decision görseli Şekil 5.6’da verilmiştir. 
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Şekil 5.6. IC50 için decision grafiği-2 

 

Şekil 5.6'da verilen farklı bir decision grafiği türü, aykırı özelliklerin 

belirlenmesine olanak sağlamakla beraber birçok örnekte hangi özelliklerin ne 

kadar etkili olduğunu açıklamaktadır. Bu grafik türü, veri setindeki aykırı 

değerleri tespit etmek için sıkça kullanılmaktadır ve özellikle veri boyutu büyük 

olduğunda daha da etkilidir. Görselde PubchemFP818 özelliğinin aykırı değerleri 

olduğu anlaşılmaktadır. Tutarlı özellik sırası ve x ekseni ölçeği ile birden fazla 

karar grafiği oluşturmak, doğrudan karşılaştırmaları basitleştirmekte ve 

yorumlama sürecini geliştirmektedir. Bu yaklaşım, çizilen verilerin daha kolay 

analiz edilmesini ve anlaşılmasını sağlamaktadır. 
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İnhibisyon için tasarlanan ilk decision görseli Şekil 5.7’de verilmiştir. Buna göre 

grafiğin düz dikey çizgisi, modelin temel değerini (7.446) göstermektedir. 

PubchemFP385 yani C(:C)(:C)(:C) özelliği model çıktısını yaklaşık 7.651’den 

7.301’e kadar model çıktısına 0.35 oranında negatif yönde katkı sağlamıştır. 

PubchemFP517 ve PubchemFP717 ise model çıktısına pozitif yönde katkı verdiği 

görülmektedir. 

 

 

 

Şekil 5.7. İnhibisiyon için decision grafiği-1 
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İnhibisyon için tasarlanan bir diğer decision görseli Şekil 5.8’de verilmiştir. Bu 

görsel, aykırı değerleri belirlemek için kullanılabilecek bir araçtır. Aykırı 

değerler, veri setinde genel eğilimden önemli ölçüde farklı olan veya diğer 

örneklerden büyük ölçüde sapmış olan veri noktaları olarak ifade edilmektedir. 

Bu tür değerler, modelin tahminini ve tahminin doğruluğunu etkilemektedir. 

İnhibisyon için oluşturulan görselde PubchemFP630 ve PubchemFP812’nin 

aykırı değerler bulundurduğu görülmektedir. 

 

 

 

Şekil 5.8. İnhibisyon için decision grafiği-2 
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Bir veri kümesi içindeki kayda değer özelliklerin modelin çıktısı üzerindeki 

etkisinin kısa bir özetini sağlayan görselleştirme Beeswarm grafiği ile elde 

edilmektedir. Grafiğin amacı, her bir özellik için SHAP değerlerini görselleştirmek 

ve bu değerlerin dağılımını göstermektir. Grafiğin her bir satırı, bir özelliği temsil 

etmektedir. Her satırda, özelliğin farklı değerlerine sahip olan noktalar yer 

almaktadır. Noktaların yatay konumu, özelliğin SHAP değeriyle belirlenmektedir. 

Yani, bir özelliğin çıktıdaki etkisini göstermektedir. Noktaların yoğunluğu, her bir 

özellik satırında artmakta ve bu, özelliğin çıktı üzerindeki etkisinin gücünü 

göstermektedir. Ayrıca, her noktanın renk kullanılarak orijinal değeri de 

gösterilmektedir. Renk, özelliğin orijinal değerini görselleştirmek için 

kullanılmaktadır. Bu, orijinal veri setindeki farklı özellik değerlerini görmeye 

yardımcı olmaktadır. 

 

Beeswarm grafiği, özelliklerin çıktı üzerindeki etkisini anlamak ve farklı değerler 

arasındaki ilişkiyi görselleştirmek için kullanışlı bir araçtır. Yoğunluğu, dağılımı 

ve orijinal değerleri bir araya getirerek, bir veri kümesinin önemli özelliklerini 

anlamak için kapsamlı bir bilgi sunmaktadır. IC50 için oluşturulan beeswarm 

grafiği Şekil 5.9’da verilmiştir. 
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Şekil 5.9. IC50 için BeeSwarm Grafiği 
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PubchemFP666'nın model çıktısı üzerindeki etkisi, olumsuz bir etkiye işaret eden 

mavi noktaların varlığıyla görsel olarak temsil edilmektedir. Tersine, 

Pubchem392'nin yüksek değeri görsel olarak kırmızı noktaların birikmesiyle 

temsil edilir ve model çıktısı üzerinde önemli bir etkiye işaret etmektedir. 

PubchemFP494 yüksek SHAP değerleri sergilemesine rağmen, noktaların dağınık 

dağılımı, etkisinin birkaç örnekle sınırlı olduğunu ve genel model çıktısına 

nispeten düşük bir katkı sağladığını göstermektedir. 

 

İnhibisyon için oluşturulan BeeSwarm görseli Şekil 5.10’da verilmiştir. Buna göre 

PubchemFP755’in negatif yönde, PubchemFP12’nin pozitif yönde model çıktısına 

katkıda bulunduğu görselden tespit edilebilmektedir. Dolayısyla beeswarm 

grafiği ile her bir özelliğin modelin tahminlerini etkilemede sahip olduğu değişen 

önem derecelerini görsel olarak temsil edilmiştir. Grafikteki veri noktalarının 

dağılımını ve konumu gözlemlenerek, hangi özelliklerin modelin çıktısı üzerinde 

daha önemli bir etkiye sahip olduğu ve genel performansa önemli ölçüde katkıda 

bulunduğunu belirlenmiştir. 
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Şekil 5.10. İnhibisyon için BeeSwarm Grafiği 
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Violin grafiği, özelliklerin çıktı üzerindeki etkisini karşılaştırmak ve farklı özellik 

değerleri arasındaki varyasyonu görmek için kullanışlı bir araçtır. Her bir 

özelliğin SHAP değerlerini göstermek için bir veya daha fazla yan yana duran 

keman şekline benzeyen bölgelerden oluşmaktadır. Her bir bölgenin genişliği, 

SHAP değerlerinin yoğunluğunu temsil etmektedir. Yani, daha geniş bir bölge, 

daha yoğun bir SHAP değeri dağılımını ifade etmektedir. Grafiğin orta çizgisi, 

özelliğin ortalama SHAP değerini göstermektedir. Sol ve sağ taraftaki genişliğe 

yayılan şekiller, SHAP değerlerinin dağılımını belirtmektedir. Daha geniş bir şekil, 

SHAP değerlerinin daha yaygın bir dağılıma sahip olduğunu gösterirken, daha dar 

bir şekil daha odaklanmış bir dağılımı temsil etmektedir. Şekil 5.11’de IC50 için 

oluşturulan violin görseli verilmiştir. Buna göre beeswarm grafiğini 

destekleyecek şekilde model çıktısını, PubchemFP693’ün azaltan, 

PubchmeFP666’nın ise arttıran bir özellik olduğu görülmektedir. 
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Şekil 5.11. IC50 için Violin Grafiği 

 

İnhibisyon için oluşturulan violin görseli Şekil 5.12’de verilmiştir. Buna göre 

beeswarm grafiğini destekleyen bir şekilde PubchemFP755’nin model çıktısına 

negatif katkı, PubchemFP12’nin pozitif katkı verdiği görülmektedir. 

PubchemFP185 özelliği, model çıktısını arttıran bir özellik olarak görünmektedir. 

Yani iki veya daha fazla altı üyeli halka içeren moleküllerin aktivitesi daha yüksek 

olma eğilimindedir. PubchemFP671 özelliği ise model çıktısını azaltan bir özellik 
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olarak görünmektedir. Yani bir aromatik halkalı nitro grubu içeren moleküllerin 

aktivitesi daha düşük olma eğilimindedir. 

 

 

Şekil 5.12. İnhibisyon için Violin grafiği 

 

Bar grafiği, bir özelliğin çıktı üzerindeki etkisini görselleştirmek için kullanılan 

bir grafik türüdür. Bu grafik, her bir özelliğin SHAP değerini bir çubuk şeklinde 

temsil etmektedir. IC50 için oluşturulan görsel Şekil 5.13’de verilmiştir. 

Görselden anlaşılacağı üzere diğer grafik türlerini destekleyen sonuçlar ortaya 
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çıkmıştır.  PubchemFP666, molekülün aromatik halka sayısı ile ilgilidir ve 

aromatik halkalar, karbon atomlarından oluşan ve elektronların paylaşıldığı 

dairesel yapılar olan kimyasal bileşenlerdir. Aromatik halkalar, ilaçların etkinliği 

ve toksisitesi üzerinde önemli bir rol oynamaktadır. PubchemFP693, molekülün 

hidrojen bağı vericisi sayısı ile ilgilidir. Hidrojen bağı vericileri, hidrojen 

atomlarına bağlı olan elektronegatif atomlar (genellikle oksijen veya azot) olan 

kimyasal gruplardır. Hidrojen bağı vericileri, ilaçların biyolojik aktivitesi ve 

çözünürlüğü üzerinde etkilidir. Literatürde, aromatik halkaların ve hidrojen bağı 

vericilerinin kanser hücrelerinin büyümesini ve çoğalmasını engelleyebileceği ile 

ilgili çalışmalar bulunmaktadır (Yalçın vd., 2017; Liu vd., 2013; Norman vd., 

2012). Bu nedenle, PubchemFP666 ve PubchemFP693’ün lösemi ilaçlarının 

etkinliği ile ilişkili olabileceği öngörülmektedir. 

 

 

Şekil 5.13. IC50 için Bar grafiği 

 

İnhibisyon için oluşturulan bar grafiği Şekil 5.14’de verilmiştir. Yine IC50’de 

olduğu gibi diğer grafik türlerini destekler şekilde sonuçlar ortaya çıkmıştır. 

PubchemFP185, molekülün içerisinde en az iki tane altı atomlu veya daha büyük 

halka yapısı olduğunu göstermektedir ve modelin çıktısını pozitif yönde 0.06 

birim arttırmıştır. PubchemFP671 ise molekülde bir oksijen (O) atomunun bir 
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karbon (C) atomuna bağlı olduğu ve ardışık olarak üç karbon atomunun (C=C=C) 

bulunduğu bir yapıyı ifade etmektedir ve modelin sonucunu 0.06 birim pozitif 

yönde arttırmıştır. Grafikte diğer 85 özellik değerinin toplamının model çıktısına 

en büyük katkıyı sağladığı görülmektedir.  

 

 

 

Şekil 5.14. İnhibisyon için Bar grafiği 

 

Scatter grafikleri, özelliklerin çıktı üzerindeki etkisini analiz etmek ve özellik 

değerlerini karşılaştırmak için kullanılmaktadır. Ayrıca, aykırı değerleri veya 

belirli bir deseni gözlemlemek için de uygundur. Modelin davranışını anlamak, 

önemli özellikleri belirlemek ve veri setindeki ilişkileri görselleştirmek için 

kullanılan etkili bir araçtır. Grafikte her bir nokta, bir veri örneğini temsil etmekte 

ve x-ekseni üzerinde özelliğin değerini, y-ekseni üzerinde ise çıktı değerini 

göstermektedir. Renk veya boyut gibi ekstra görsel özellikler, başka bir özelliğin 

değerini veya etkisini gösterebilmektedir. IC50 için oluşturulan Scatter 

grafiklerinden bazıları Şekil 5.15’de verilmiştir. 
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Şekil 5.15. IC50 için Scatter grafikleri 

 

Şekil 5.15’deki grafikler incelendiğinde, moleküllerin örnekler üzerindeki SHAP 

değerleri Y ekseninde, model tahminine olan etkileri X ekseni üzerinde 

görselleştirilmiştir. X eksenindeki değerler 0 ve 1 etrafında toplanmıştır. 

PubChem693, model çıktısına pozitif oranda etki etmiştir. 1 konumunda bulunan 

ve model çıktısına etki eden özelliklerin değerleri artmıştır. 693 numaralı 

SMARTS deseni "O=C-C-C-C-C-O" olarak ifade edilmektedir. Bu desen, karbon 

atomları arasında sırasıyla çift bağ, tek bağ, tek bağ, tek bağ, tek bağ ve son olarak 

tekrar çift bağ bulunan bir yapıyı temsil etmektedir. Ayrıca bu yapıda başlangıçta 

bir oksijen atomu (O) ve sonunda da bir oksijen atomu (O) bulunmaktadır. Bu 

desen, moleküllerin bu yapıya sahip olup olmadığını test etmek için 

kullanılmaktadır. PubChemFP666 ise model çıktısına negatif oranda etki etmiştir 

ve 1 konumundaki değerler 0 konumuna göre daha düşüktür. 666 numaralı 

SMARTS deseni "C=C-C-O-C" olarak ifade edilmektedir. Bu desen, bir çift bağ 

içeren karbon atomu (C), ardından tek bağlı bir karbon atomu (C), oksijen atomu 

(O) ve tekrar tek bağlı bir karbon atomu (C) içeren bir yapıyı temsil etmektedir. 
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Şekil 5.16. İnhibisyon için Scatter grafikleri 

 

Şekil 5.16’da verilen inhibisyon için scatter grafkleri incelendiğinde 

PubchemFP671 ve PubchmeFP335’in model çıktısına pozitif oranda etki 

etmişlerdir ve 1 konumunda bulunan, model çıktısına etki eden özelliklerin 

değerleri artmış durumdadır. PubchemFP671, bir karbonil grubunu (O=C), 

ardından çift bağlı bir karbon atomunu (C=C), tekrar tek bağlı bir karbon 

atomunu (C) ve son olarak yine çift bağlı bir karbon atomunu (C) içeren bir yapı 

iken PubchemFP335, dört adet hidrojen bağlı karbon atomunu (C) ve bir adet tek 

bağlı karbon atomunu (~C) içeren bir yapıdır. PubchemFP12 ve PubchemFP697 

ise model çıktısına negatif etki ettiği belirlenmiştir. PubchemFP12, en az 16 adet 

karbon atomu içeren bir yapı ile temsil edilirken, PubchemFP697 ise bir karbon 

zincirini temsil etmektedir. Bu desende C sembolü, karbon atomlarını temsil 

ederken, - sembolü ise karbon atomları arasındaki bağları ifade etmektedir. 

 

Heatmap grafiği, her bir özelliğin hedef değişken üzerindeki etkisini net bir 

şekilde gösteren bir grafik türüdür. Özelliklerin yüksek etkiye sahip olduğu 

bölgeler daha koyu renkte ve yoğunlukta gösterilirken, düşük etkiye sahip olan 

bölgeler daha açık renkte ve yoğunlukta gösterilmektedir. Bu grafik, veri 
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kümesinin özelliklerini daha iyi anlamak, önemli etkilere sahip olan özellikleri 

belirlemek ve modelin yorumlanabilirliğini artırmak için kullanışlı bir araç olarak 

ifade edilmektedir. IC50 için oluşturulan heatmap grafiği Şekil 5.17’de verilmiştir. 

Diğer SHAP grafiklerini destekleyecek şekilde sonuçlar ortaya çıkmıştır. 

 

 

 

Şekil 5.17. IC50 için Heatmap grafiği 

 

İnhibisyon için oluşturulan heatmap görseli Şekil 5.18’de verilmiştir. f(x)’deki 

yüksek değerler, moleküller ile ilgili yüksek tahmin değerlerini göstermektedir. 

Örnek sayısı arttıkça tahmindeki değerlerin de arttığı görülmektedir. Yine diğer 

SHAP görselleri ile benzer sonuçlar verdiği tespit edilmiştir. 

 

 

 

Şekil 5.18. İnhibisyon için Heatmap grafiği 
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Çocukluk Çağı Akut Lösemisi tedavisinde kullanılan Mercaptopurine, Tioguanine, 

Prednisolone, Dexamethasone, Vincristine, Methotrexate, Daunorubicin, 

Cytarabine ilaçlarının diğer ilaçlarla olan ilişkilerine yönelik oluşturulan ağ 

grafikleri için bir benzetim ortamı tasarlanmış ve görseli Şekil 5.19’da verilmiştir. 

Streamlit kütüphanesi ile etkileşimli bir arayüz tasarlanarak listeden seçilen 

ilaçların ağ grafikleri görselleştirilebilmektedir.  

 

 

 

Şekil 5.19. Çocukluk çağı akut lösemisi tedavisinde kullanılan ilaçların etkileşimi  
                     için oluşturulan benzetim ortamı 

 

Etkileşimli veri görselleştirilmesi ile en az bir ilaç seçilerek de ağ grafiği 

oluşturulabilmektedir. Bu ilaçların kimyasal yapılarında bazı ortak veya benzer 

özellikler bulunmaktadır (PubMed; MedlinePlus; RxList): 

 

 Halkalı yapılar: Bu ilaçların çoğunda aromatik halkalı yapılar 

bulunmaktadır. Bu halkalar, molekülün stabilitesine katkıda 

bulunmaktadır ve ilacın etkisini artırmaktadır. 

 

 Hidrokarbon zincirleri: Her bir ilaç, farklı uzunluklarda ve farklı yapısal 

özelliklere sahip hidrokarbon zincirlerine sahiptir. Bu zincirler, ilacın 

lipofilik özelliklerini ve biyolojik etkileşimlerini etkilemektedir. 
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 Fonksiyonel gruplar: Bu ilaçların çoğunda farklı fonksiyonel gruplar 

bulunur. Örneğin, Mercaptopurine ve Tioguanine'de tiyol (-SH) grubu 

bulunurken, Prednisolone ve Dexamethasone'da keton (C=O) ve hidroksil 

(-OH) grupları bulunmaktadır. 

 

 Heterosiklik halkalar: Birkaç ilaçta heterosiklik halkalar bulunmaktadır. 

Örneğin, Mercaptopurine ve Tioguanine'de purin halkası bulunurken, 

Methotrexate'te folat antagonist olarak etki eden pteridin halkası vardır. 

 

 İyonizasyon: Bu ilaçların birçoğu asidik veya bazik özelliklere sahiptir ve 

çözeltide iyonize olabilmektedir. Bu, ilacın çözünürlüğünü, stabilitesini ve 

etki mekanizmasını etkileyebilmektedir. 

 

Açıklanabilir yapay zekâ modelleri ile elde edilen bulgular ile etkileşimli ağ 

grafikleri sonucunda elde edilen sonuçların birbirini destekler nitelikte olması bu 

tez çalışması kapsamında önemli bir sonuçtur. Yapay zekâ modellerinin SHAP 

grafiklerinden elde edilen moleküler parmak izlerinin sahip olduğu molekül 

yapısının, ilaç etkileşimlerinin karmaşıklığının giderilmesi ile ortaya çıkan 

ilaçlardaki molekül yapıları ile benzerlik göstermesi yapılan analizin 

doğruluğunu göstermektedir. Dolayısıyla ilaç yeniden kullanım çalışmalarında, 

ilaç keşfindeki Faz 1 (güvenlik) aşamasının atlanarak Faz 2 (etkililik) aşamasına 

geçilmesinin zaman ve maliyet yönünden fayda sağlamasında yapay zekanın rolü 

kritik bir önem arz etmektedir. 

 

Gelecek çalışmalarda yapılabilecek birkaç potansiyel bulunmaktadır. Analiz için 

kullanılan veri setinin genişletilmesi ve iyileştirilmesi sonuçların doğruluğunu ve 

sağlamlığını artırabilir. Genomik, proteomik ve klinik veriler gibi çeşitli veri 

kaynaklarının birleştirilmesi, ilaç etkileşimlerinin ve yeniden konumlandırma 

fırsatlarının daha kapsamlı bir şekilde anlaşılmasını sağlayabilir. Ek moleküler 

özelliklerin ve tanımlayıcıların keşfedilmesi ve dahil edilmesi daha iyi tahminlere 

ve daha bilgilendirici farkındalıklar ortaya çıkarabilir. Yapısal bilgilerin 

kodlanması veya 3D moleküler temsillerin dahil edilmesi gibi özellik 

mühendisliği teknikleri, makine öğrenimi modelleri için daha zengin temsiller 
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sağlayabilir. Sonuçların harici veri setleri veya gerçek dünya deneyleri 

kullanılarak doğrulanması, bulguların genellenebilirliğini değerlendirmek için 

gereklidir. Tahmin edilen etkileşimleri ve yeniden konumlandırılan ilaçları 

doğrulamak için in vitro veya in vivo deneyler yapmak, hesaplamalı tahminlerin 

güvenilirliğini artırabilir. Başarılı bir ilaç yeniden konumlandırması için, 

belirlenen ilaç adaylarının güvenliğini ve etkinliğini doğrulamak üzere klinik 

deneyler yapmak gerekmektedir. Tıp uzmanlarıyla iş birliği yapmak ve iyi 

tasarlanmış klinik çalışmalar yürütmek, yeniden konumlandırılan ilaçların 

pratikte uygulanabilirliğini sağlamalıdır. Araştırmanın potansiyel yan etkilerin ve 

ilaç-ilaç etkileşimlerinin tahminini içerecek şekilde genişletilmesi, çocukluk çağı 

akut lösemi tedavisi için daha güvenli ve daha etkili ilaç kombinasyonlarının 

belirlenmesine yardımcı olabileceği öngörülmektedir. 
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EK A. Diğer Performans Metrikleri – 1 

 

Metric Value 

95% CI (0.98459,0.99147) 

ACC Macro 98.803 

ARI 94.022 

AUNP 9.725 

AUNU 9.725 

Bangdiwala B 98.367 

Bennett S 97.605 

CBA 96.973 

CSI 95.615 

Chi-Squared 351.193.482 

Chi-Squared DF 1 

Conditional Entropy 8.137 

Cramer V 95.608 

Cross Entropy 64.508 

F1 Macro 97.797 

F1 Micro 98.803 

FNR Macro 275 

FNR Micro 1.197 

FPR Macro 275 

FPR Micro 1.197 

Gwet AC1 98.356 

Hamming Loss 1.197 

Joint Entropy 72.633 

KL Divergence 12 

Kappa 95.594 

Kappa 95% CI (0.94328,0.9686) 

Kappa No Prevalence 97.605 

Kappa Standard Error 646 

Kappa Unbiased 95.594 

Krippendorff Alpha 95.594 

Lambda A 92.722 

Lambda B 92.508 

Mutual Information 55.249 

NIR 8.355 

NPV Macro 98.364 

NPV Micro 98.803 

Overall ACC 98.803 

Overall CEN 8.178 

Overall J (1.9146,0.9573) 
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Overall MCC 95.608 

Overall MCEN 7.019 

Overall RACC 72.827 

Overall RACCU 72.828 

P-Value None 

PPV Macro 98.364 

PPV Micro 98.803 

Pearson C 69.106 

Phi-Squared 91.409 

RCI 85.663 

RR 1921.0 

Reference Entropy 64.496 

Response Entropy 63.386 

SOA1(Landis & Koch) Almost Perfect 

SOA2(Fleiss) Excellent 

SOA3(Altman) Very Good 

SOA4(Cicchetti) Excellent 

SOA5(Cramer) Very Strong 

SOA6(Matthews) Very Strong 

SOA7(Lambda A) Very Strong 

SOA8(Lambda B) Very Strong 

SOA9(Krippendorff Alpha) High 

SOA10(Pearson C) Strong 

Scott PI 95.594 

Standard Error 175 

TNR Macro 9.725 

TNR Micro 98.803 

TPR Macro 9.725 

TPR Micro 98.803 

Zero-one Loss 46 
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EK A. Diğer Performans Metrikleri – 2 

 

Metric Class 0 Class 1 

ACC(Accuracy) 98.803 98.803 

AGF(Adjusted F-score) 97.283 98.295 

AGM(Adjusted geometric mean) 98.288 969 

AM(Difference between automatic and manual 
classification) 

-18 18 

AUC(Area under the ROC curve) 9.725 9.725 

AUCI(AUC value interpretation) Excellent Excellent 

AUPR(Area under the PR curve) 96.328 99.286 

BB(Braun-Blanquet similarity) 94.937 99.009 

BCD(Bray-Curtis dissimilarity) 234 234 

BM(Informedness or bookmaker informedness) 94.501 94.501 

CEN(Confusion entropy) 20.844 5.727 

DOR(Diagnostic odds ratio) 428.035.714 428.035.714 

DP(Discriminant power) 200.214 200.214 

DPI(Discriminant power interpretation) Fair Fair 

ERR(Error rate) 1.197 1.197 

F0.5(F0.5 score) 9.715 99.119 

F1(F1 score - harmonic mean of precision and 
sensitivity) 

96.308 99.285 

F2(F2 score) 95.481 99.452 

FDR(False discovery rate) 228 991 

FN(False negative/miss/type 2 error) 32 14 

FNR(Miss rate or false negative rate) 5.063 436 

FOR(False omission rate) 991 228 

FP(False positive/type 1 error/false alarm) 14 32 

FPR(Fall-out or false positive rate) 436 5.063 

G(G-measure geometric mean of precision and 
sensitivity) 

96.318 99.286 

GI(Gini index) 94.501 94.501 

GM(G-mean geometric mean of specificity and 
sensitivity) 

97.223 97.223 

HD(Hamming distance) 46 46 

IBA(Index of balanced accuracy) 90.149 98.896 

ICSI(Individual classification success index) 92.657 98.573 

IS(Information score) 257.058 24.491 

J(Jaccard index) 92.879 98.581 

LS(Lift score) 5.9405 118.502 

MCC(Matthews correlation coefficient) 95.608 95.608 

MCCI(Matthews correlation coefficient 
interpretation) 

Very Strong Very Strong 
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MCEN(Modified confusion entropy) 33.456 9.969 

MK(Markedness) 96.729 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


