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Matematigin dnemli kavramlarindan olan tiirev ve integralin, bilinen tam say1
mertebelerinin yaninda kesirli mertebelerinin de hesaplanmasina olanak saglayan
kesirli tiirev ve integral operatdrlerin matematikciler tarafindan tanimlanmasi;
ozellikle esitsizlik teorisinde bir ¢ok yeni sonucun elde edilmesini saglamis ve elde
edilen bu sonuclarin kullanilmasiyla ¢ok sayida problem c¢oziilmiistiir. Dort ana
bolimden olusan bu tezde genel olarak, Atangana-Baleanu kesirli integral
operatorleri yardimiyla yeni sonuglarin elde edilmesi amaglanmistir. Bu tezin ilk
boliimii olan girig bolimiinde; matematik ile fonksiyon kavrami hakkinda kisa bir
aciklamaya ve matematigin alt alanlari olan esitsizlik teorisi ile kesirli analizin tarihi
geligsim siirecine yer verilmistir. Tezde yeni sonuglarin elde edilmesi i¢in bir materyal
ve literatiir taramasi gorevi tstlenen “Genel Bilgiler” baslikli ikinci béliimde ise,
“Baz1 Fonksiyonlar ve Fonksiyon Uzaylar1”, “Onemli Esitsizlikler”, “Kesirli Tiirev
ve Integral Operatorler” alt basliklariyla ilgili tamim, teorem, agiklamalar ve daha
once elde edilen sonuglar verilmistir. Aragtirma bulgularinin verildigi tiglincii bolim
dort alt bolimden olusmaktadir. Atangana-Baleanu kesirli integral operatorleri
yardimiyla bu alt boliimlerin birinci ve ikincisinde; fonksiyonlarin birinci ve ikinci
tirevleri i¢in,  Ugclinciisiinde; pre-inveks fonksiyonlar igin,  ddrdiinciisiinde;
senkronize fonksiyonlar i¢in yeni integral esitlikler ve esitsizlikler elde edilmistir.
Ayrica bu boliimde, elde edilen sonuglarin bazilarinin daha 6nce literatiirde var olan
sonuglara indirgendigi ve elde edilen sonuglardaki parametrelerin bazilarinin 6zel
degerleri icin yeni sonuglar elde edildigi gorilmistiir. Arastirma bulgularn
boliimiiniin birinci alt boliimde ayrica Riemann-Liouville kesirli integral operatorii
ile Atangana-Baleanu kesirli integral operatoriiniin; farkli fonksiyonlar ve
parametrelerin farkli degerlerine karsilik simiilasyonlar1 elde edilmis ve bu
simiilasyonlar yardimiyla bu iki operatoriin karsilastiriimas: yapilmistir. “Tartigma ve
Sonug” bu tezin dordiincii boliimiinii olusturmakta olup bu boliimde tezde elde edilen
arastirma bulgularindan bahsedilerek yeni oneriler sunulmustur.

Anahtar Kelimeler: Atangana-Baleanu Kesirli Tiirev ve Integral Operatorleri,
Hermite-Hadamard  Esitsizligi, Inveks Kiime, Konveks
Fonksiyon, Pre-inveks Fonksiyon, Riemann-Liouville Kesirli
Integral Operatérleri, Senkronize Fonksiyonlar.
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The definition of fractional derivative and integral operators by
mathematicians, which allow the calculation of fractional orders as well as known
integer orders of derivative and integral which are important concepts of
mathematics, provided to obtained many new results, especially in the theory of
inequality and many problems have been solved by using these results. In this thesis,
which consists of four main chapters, it is generally aimed to obtain new results with
the help of Atangana-Baleanu fractional integral operators. In the introduction which
is first chapter of this thesis, a brief explanation about mathematics and the concept
of function and the historical development process of inequality theory and fractional
analysis, which are subfields of mathematics, are given. In the second chapter titled
“General Information”, which serves as a material and literature review for obtaining
new results in the thesis, definitions, theorems, explanations and previous results
related to the subheadings “Some Functions and Function Spaces”, “Important
Inequalities”, “Fractional Derivative and Integral Operators” are given. The third
section, where the research findings are presented, consists of four subsections. With
the help of Atangana-Baleanu fractional integral operators, new integral equations
and inequalities are obtained for the first and second derivatives of functions in the
first and second of these subsections, for pre-invex functions in the third and for
synchronous functions in the fourth. In addition, in this section, it has been observed
that some of the results obtained have been reduced to the results already existing in
the literature and new results have been obtained for special values of some of the
parameters in the obtained results. In the first subsection of the research findings
section, also, simulations of the Riemann-Liouville fractional integral operator and
the Atangana-Baleanu fractional integral operator for different functions and
different values of the parameters are obtained and a comparison of these two
operators is made with the help of these simulations. “Discussion and Conclusion”
constitutes the fourth chapter of this thesis and in this chapter, the research findings
obtained in the thesis are mentioned and new suggestions are presented.

Keywords: Atangana-Baleanu Fractional Derivative and Integral Operators,
Hermite-Hadamard Inequality, Invex Set, Convex Function, Pre-invex
Function,  Riemann-Liouville  Fractional Integral  Operators,
Synchronous Functions.
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1. GIRIS

Gegmisten glintimiize, gelisimine bir ¢ok medeniyetle birlikte bireysel olarak ilgile-
nen bir ¢ok insanin katki sundugu matematik, dogay1 ve yagsami insan zihninin iirettigi
semboller ve kavramlarla anlama-anlatma ¢abasidir. Antik Yunanca’da; bilim, bilgi ve
ogrenme gibi anlamlara gelen “mathema” kelimesinden tiireyen ve Tiirkge’ye Fransizca

“mathématique” kelimesinden giren matematik bir cok alt alan ve kavramdan olugsmaktadir.

Bu kavramlarin en 6nemlilerinden biri fonksiyondur. Matematik diinyasinda fonksiyon
kavrami, klasik ve modern matematigi birbirinden ayiran olgulardan biri olarak goriilmekte-
dir. Matematikgiler tarafindan cesitli gekillerde tanimlanan ve gelistirilen fonksiyon kavra-
mi ilk olarak, matematigin temel nesnelerinin geometrik egriler olarak alindigi 17. ytizyilda
ortaya ¢ikmigtir. Fonksiyonlar; matematigin hemen hemen her alt alaninda yer aldig1 gibi
fizik, biyoloji, miithendislik gibi matematigin disindaki bilim dallarinda da kullanilmaktadir.
Bilim diinyasinda bu kadar oneme sahip olan fonksiyonlarin, konveks fonksiyon, Euler
gama fonksiyon, Euler beta fonksiyon, hypergeometrik fonksiyon, Mittag-Leffler fonksi-
yonu, P-fonksiyon, H-fonksiyon, Wright fonksiyonu, Bessel fonksiyonu, trigonometrik
fonksiyonlar, iistel fonksiyon gibi bir ¢ok cesiti vardir. Bu fonksiyonlarin en 6nemlilerinden
biri olan ve esitsizlik, kesirli analiz gibi matematigin bir cok alt alaninin geligimine de

biiyiik katk: sunan konveks fonksiyonlarin da kendi iginde bir ¢ok cesidi vardir.

Geligiminde konveks foksiyonlarin da onemli rol oynadigi ve matematigin en 6nemli
alt alanlarindan biri ise egitsizlik alamidir. “Esitsizlik alam” diger bir ifade ile “Esitsizlik
teorisi”, onde gelenleri C.F. Gauss, L. Cauchy ve P.I. Chebyshev gibi baz1 matematikgilerin
yaklagik yontemlerin teorik temelini atmasiyla gelismeye baglamigtir. 19. yiizyilin sonu
ve 20. yluzyilin baglarinda, bazilar1 klasik hale gelen ve bir ¢ogu izole ve ilgi gormeyen
sonuclar olarak kalan ¢ok sayida egitsizlik kanitlanmigtir. Esitsizlikler, matematigin hemen
hemen tium dallarinda oldugu gibi bilimin diger alanlarinda da onemli bir rol oyna-
maktadir. G.H. Hardy, J.E. Littlewood ve G. Pdlyanin klasik eseri “Inequalities” in
1934’te ¢ikmasi bu alanin izole edilmig formiiller koleksiyonundan sistematik bir disipline
doniigmesini saglamig ve matematikgiler igin temel bir referans kaynagi olmustur [36].
Bu kitap, yalmizca egitsizlikler konusuna ayrilmig ilk kitaptir ve bu heyecan verici alan
icin faydali bir rehberdir. Bu eser, yayimlandigi yiizyilin klasiklerinden biridir ve gesitli
analiz dallarindaki arastirmalar lizerinde biiyiik etkisi olmusgtur. Daha sonra bu alanda,
E.F. Beckenbach ve R. Bellman’in 1961 yilinda “Inequalities” adli kitab1 yayimlanmig
ve 1965 yilinda bu kitabin ikinci baskisi yapilnugtir [13]. Ayrica, D.S. Mitrinovié¢ 1970



yilinda “Analytic Inequalities” adli kitabini yayimlamgtir [59]. Beckenbach ve Bellman
ile Mitrinovi¢’in esitsizlikler alaninda yayimladiklar:1 bu kitaplar alana 6nemli katkilar,
motivasyonlar, fikirler, teknikler ve uygulamalar saglamigtir. Bu kitaplar, konuyu de-
rinlemesine aragtirmak isteyen okuyucu icin kullanigh referanslar saglamig ve esitsizlikler
teorisinin uygulanabilir bir aragtirma alami olarak kuruldugunu gostermistir. Esitsizlik
alanindaki bu kaynaklara ek olarak, “Convex Functions” [73], “Inequalities Involving
Functions and Their Integrals and Derivatives” [61], “Classical and New Inequalities in
Analysis” [62], “Mathematical Inequalities” [70], “Convex Functions and Their Applica-
tions. A Contemporary Approach” [65] gibi kaynaklarin yaninda bu alanda ¢aligma yapan
bir ¢ok aragtirmacinin yazdigi kitap, makale ve monografi vardir ve bunlar alana énemli
katkilar sunmuslardir. Yirminci yiizyill matematigi, ¢cok sayida yeni sonucun, problemin
ve matematigin yeni alanlarimin ortaya c¢ikmasimi saglayan matematiksel egitsizliklerin
glicinii fark etmistir. Bu gelismelerin ardindan sadece yeni bir matematik degil, taze bir
bakig agis1 ve bununla birlikte zor sonuglarin basit yeni ispatlar1 gelmistir. Esitsizlikler
teorisi, gegmisten gliniimiize kadar matematiksel analizin merkezi alanlarindan biri olarak
kabul edilmis ve bircok bilimsel alanda stirekli artan uygulamalar: ile hizla bliyliyen bir
disiplin olmugtur. Bu biiyiime, esitsizlikler teorisinin matematiksel analizin bagimsiz bir
alan1 olarak ortaya ¢ikmasina neden olmustur. Son yillarda esitsizlikler bircok matema-
tik¢inin ilgisini ¢ekmis ve literatiirde ¢ok sayida yeni sonug arasgtirilmigtir. Esitsizlikler
teorisi matematigin diginda, matematiksel ekonomi, oyun teorisi, matematiksel program-
lama, kontrol teorisi, varyasyonel yontemler, yoneylem arastirmasi, olasilik ve istatistik
gibi cesitli alanlarin da ilgi odagi olmugtur. Literatiirde, Holder Esitsizligi, Hermite-
Hadamard Esitsizligi, Minkowski Esitsizligi, Jensen Esitsizligi, Cauchy Esitsizligi, Young
Esitsizligi, Bernoulli Esitsizligi, Chebyshev Esitsizligi, Griiss Esitsizligi, Abel Esitsizligi,
Bessel Esitsizligi gibi bir ¢cok onemli esitsizlik vardir. Konveks fonksiyonun tanimi da bir
egitsizlik yardimiyla ifade edilmektedir ve Ozellikle konveks fonksiyonun literatiirde yer
almasindan sonra yeni bir ¢ok konvekslik tiirii tanimlanarak bir ¢ok yeni esitsizlik elde

edilmigtir.

Matematigin bir diger énemli alt alam kesirli analizdir. Kesirli analiz, bir dizi harfle

kavramsallagtirilan onemli bir matematik dahdir. Bu matematik dali ilk olarak 1695’te

1

5 olarak alimirsa ne olacak” sorusunu sor-

L’Hopital’in, Leibniz’e “Tiirevin mertebesi
masiyla baslar. Bu soru kargisinda Leibniz’in cevabi: “Bu paradokslardan bir giin faydah

sonuglar gikarilacak gibi goriiniiyor.” seklinde olmustur [53].

Kesirli tirevleme ve kesirli integralleme kavramlari 18. ve 19. yizyillar boyunca



daha ayrintih olarak incelenmigtir. Konu, Euler (1730), Lagrange (1772), Laplace (1812),
Lacroix (1819), Fourier (1822), Liouville (1832), Riemann (1847), Greer (1859), Holm-
gren (1865), Griinwald (1867), Letnikov (1868), Sonin (1869), Abel (1881), Laurent
(1884), Nekrassov (1888), Krug (1890), Weyl (1917) ve Hardy ve Littlewood (1928) gibi
matematikgilerin dikkatini gekmistir ([3],[34],[35],[52],[55],[72]). Kesirli analiz tarihiyle
ilgili ayrintih tartigmalar ([9], [28],[39],[57],[74])’de bulunabilir.

Bu alanda, Leibniz’'in tanimladigi “paradokslar” daha sonraki matematikgiler tarafin-
dan ¢oziildii, ancak bu, kesirli analiz alaninin artik tamamen acik problemlerden arinmais
oldugu anlamina gelmiyordu. Yiizyillar boyunca tekrar eden bu konuyla ilgili, birbiriyle
geligen birden ¢ok tanim ortaya ¢ikmigtir. Dolayisiyla 19. yiizyilin ortalarinda, kesirli ana-
lizin birkag farkli tanimi 6nerilmistir. Lacroix tiirevlenebilen kuvvet fonksiyonlarina dayal
farkli bir tamim olustururken, Liouville, iistel fonksiyonlarin tiirevlenmesine dayali bir
tanim ve ters kuvvet fonksiyonlari i¢in integral formiiliine dayali bir tanim olugturmustur.
Liouville ve Lacroix’in tamimlar1 egdeger degildir, bu da bazi matematik-cilerin birinin
“dogru” digerinin “yanlig” olmasi gerektigi sonucuna varmasina neden olmustur. An-
cak bu durum kargisinda De Morgan sunu yazmusgtir [23]: “O halde bu sistemlerin her
ikisi de daha genel bir sistemin parcalar1 olabilir.” De Morgan’in bu sozleri, Leibniz’in
yillar onceki sozleri gibi gelecegi goriir nitelikteydi. Hem Liouville’in formiilii hem de
Lacroix’in formiilii, aslinda simdi Riemann-Liouville kesirli analizin tanimi olarak ad-

landirilan kavramim 6zel durumlaridir ([10]).

20. yiizyihn sonlarinda; kesirli analiz, popiilerlik ve arastirma c¢iktisi bakimindan
biiytik bir artis gostermistir. Kesirli matematik iizerine ilk uluslararas: konferans 1974’te
Bertram Ross tarafindan ABD’deki “University of New Haven” de diizenlenmis ve ayni
yil bu alana adanmig ilk ders kitab1 yayimlanmigtir [67]. O zamandan beri, kesirli mate-
matik, konuyla ilgili bir ¢cok uzman dergi ile ¢cok aktif bir aragtirma alani haline gelmistir.
[11],[12],[38],[79] referanslarinda ozetlendigi gibi, birgok bilim alaninda uygulamalar kesfe-
dilmistir. Ozellikle, kesirli operatorlerin ara ozelligi, belirli ara fiziksel siireclerin model-
lenmesi i¢in hayati 6éneme sahiptir ve 6rnek olarak viskoelastiklik verilebilir ([15],[29]).
Kesirli hesap, ogrenciler ve gen¢ aragtirmacilar i¢in bir aragtirma alani ve alana girig
islevi gorebilecek birkag ders kitabiyla birlikte, baz1 iiniversitelerde lisansiistii matematik

miifredatinin standart bir parcas: haline gelmistir ([9],[49],[57],[67],[71],[74]).

Kesirli analiz alanindaki ¢aligmalar, son yillarda esitsizlik teorisine ek olarak uygula-

mali bilimlerin ve matematigin bir¢ok alanina yeni bir bakig acis1 ve yonelim getirmistir.



Kesirli analiz, yeni tanimlanan kesirli integral ve tiirev operatorlerinin uygulamalariyla
bircok probleme 11k tutmustur. Bu nedenle bazi arastirmacilar, farkl bilim ve miithendislik
alanlarindaki problemleri modellemek igin gerekli olan daha fazla yeterli alan saglamak
amaciyla mevcut olanlardan farkli, tekil veya tekil olmayan cekirdeklere sahip yeni kesirli
tirevler tanimlamanin gerekli oldugunu ortaya koymuslardir. Bu anlamda ortaya konulan
yeni operatorlerde bazi1 6nemli kriterler, onlar1 farklilagtirmig ve bazilarini digerlerine gore
uygulamalarda avantajli hale getirmigtir. Operatorlerin cekirdeginde kullanilan “iistel
fonksiyon veya kuvvet fonksiyon” ifadeleri kesirli operatorlerin yerellik (lokallik) ve tekil-
lik(singtilerlik) gibi 6zelliklerini ortaya ¢ikarmig ve tamimlamada kullanilan parametrelerin
ozel versiyonlari i¢in baglangic kogullarinin elde edilmesi énemli hale gelmigtir. Bir diger
onemli detay ise operatorlerin tamimlandigi uzaylari ortaya ¢ikarmak ve problemlere uy-
gunlugunu gostermektir. Ayrica, kesirli tiirevin kullanilmasi, matematik ve fizik diginda
bir ¢ok bilim dalina da yayilmigtir ve bunlar, biyoloji, ekonomi, demografi, jeofizik, tip,
biyomiihendislik seklinde siralanabilir. Kesirli analizde; bagta, Riemann-Liouville kesirli
tirev ve integral operatorleri olmak iizere, Caputo-Fabrizio kesirli tiirev ve integral ope-
ratorleri, Hadamard kesirli tiirev ve integral operatorleri, conformable kesirli tiirev ve in-
tegral operatorleri, Katugampola kesirli tiirev ve integral operatorleri, Atangana-Baleanu
kesirli tiirev ve integral operatorleri gibi bir cok farkli operator tanimlanmigtir. Bu ope-
ratorlerin tanimlanmasinin 6zellikle egitsizlik teorisinin geligsimine 6nemli katkisi olmugtur

ve matematikte bir ¢ok yeni sonucun elde edilmesini saglamigtir.



2. GENEL BILGILER

2.1 Baz Fonksiyonlar ve Fonksiyon Uzaylari

2.1.1 Konveks Kiime ve Konveks Fonksiyon

Esitsizlik teorisinin en 6nemli kavramlar: arasinda konvekslik kavramini soyleyebiliriz.
Konvekslik kavraminin tarihi gegmisi matematikci Euclid ve Archimedes’ e kadar dayansa
da matematik literatiirine girisi 19. ytizyilin sonlarinda olmustur. Konvekslik kavramini
ilk sistematik olarak 1905-1906 yillar1 arasinda J.L.W.V. Jensen incelemis olsa da on-
dan 6nce, Holder (1889), Stolz (1893) ve Hadamard (1893) konvekslik {izerine ¢aligmalar
yapnuglardir ([32],40],[45],[46],[78]). Konvekslikle ilgili literatiirdeki baz kaynaklar, E.F.
Beckenbach ve R. Bellman (1961), D.S. Mitrinovi¢ (1970), A.W. Roberts ve D.E. Var-
berg (1973), J.E. Pecari¢ ve ark. (1992), C.P. Niculescu ve L.E. Persson(2006) olarak
siralanabilir ([13],[59],(65],[68],[73]). Konvekslik, endiistri, ticaret, tip ve sanat alan-
larindaki ¢ok sayida uygulama araciligiyla giinlilk yagsamimiz iizerinde biiyiik bir etkiye

sahiptir. Konveksligin en 6nemli kavramlarindan biri konveks kiimedir ve tanimi agagidadir.

Tanim 2.1.1 L bir lineer uzay, A C L ve p,q € A olmak iizere
B={zeLl:z=ap+(1—-0a)q,0<a<1}CA

ise A kiimesine konveks kiime denir ([51]).

Geometrik olarak konveks kiime, “Herhangi iki noktasini birlegtiren dogru parcasini
kapsayan kiimeye konveks kiime denir” seklinde ifade edilir. Eger bir kiime konveks degilse

bu kiimeye konkav kiime denir.

Bir ¢ok fonksiyon tiirii vardir ve bu fonksiyon tiirlerinden biri de konveks fonksiyon-
lardir. Matematigin; egitsizlik teorisi, konveks programlama, istatistik, sayisal analiz gibi
bir¢ok alanindaki uygulamalar: ile diger fonksiyon siniflarindan ayrilan konveks fonksi-
yonun tanimi bir esitsizlik olarak ifade edilmektedir ve bu fonksiyonlar siireklilik ve limit
gibi ozellikleri saglamaktadir. Genis uygulama alani ve 6zellikleri bakimindan esitsizlik
teorisi i¢in 6nemli olan konveks fonksiyonlar bir cok uygulamali alanda aragtirmacilarin ilgi

odagi olmustur. Bu ilgi ¢ekici fonksiyonlar analitik olarak agagidaki gibi tanimlanmaktadir.
Tanim 2.1.2 [ C R olmak iizere, her x,y € I ve A € [0, 1] i¢in f : I — R fonksiyonu

FOw+ (1= N)y) < Af(@) + (1= V) f(y) (2.1.1)



esitsizligini saglarsa f’ye konveks fonksiyon denir. (—f) konveks fonksiyon ise f’ye konkav
fonksiyon denir. Eger (2.1.1) esitsizliginde z # y ve A € (0,1) ise f’ye kesin konveks
fonksiyon denir ([73]).

Aslinda konveks fonksiyon geometrik olarak, “Eger reel degerli bir fonksiyonun grafi-
ginin iizerindeki herhangi iki noktay1 birlegtiren dogru parcasi, fonksiyonun bu iki noktasi
arasinda yer alan grafigiyle cakigiyorsa veya grafiginin tistiinde kaliyorsa bu fonksiyona
konveks fonksiyon denir” geklinde ifade edilir. Bu geometrik ifadenin egdegeri, “Eger reel
degerli bir fonksiyonun grafiginin tlizerinde yer alan ve grafiginin iistiindeki noktalarim

kiimesi konveks ise bu fonksiyona konveks fonksiyon denir” seklindedir.

Basit konveks fonksiyonlara, 2 € (—00, 00) olmak iizere f(x) = 22, x € [—7,0] olmak

tizere g(z) = sinz, x € (—o0,00) olmak iizere (k(x) = |z| 6rnekleri verilebilir.

Konveks fonksiyonlarin kendi iginde bir ¢ok ¢esidi vardir ve bunlardan bazilari, h-
konveks fonksiyonlar, birinci ve ikinci anlamda s-konveks fonksiyonlar, logaritmik-konveks
fonksiyonlar, r-konveks fonksiyonlar, g-konveks fonksiyonlar, m-konveks fonksiyonlar,
(cr, m)-konveks fonksiyonlar, (k, h)-konveks fonksiyonlar, quasi-konveks fonksiyonlar, ola-
rak siralanabilir. Bu konveks fonksiyon simiflarindan bazilarimin tamimlar: asagida ve-

rilmigtir.

Tanim 2.1.3 0 < s < 1 olsun. Her z,y € [0,00), «a,f > 0, a® + 3° = 1 olmak {izere

f:]0,00) = R fonksiyonu

flaz + By) < a®f(z) + B°f(y) (2.1.2)

esitsizligini saghyorsa f fonksiyonuna birinci anlamda s-Orlicz konveks veya s-konveks

fonksiyon denir. Birinci anlamda s-konveks fonksiyonlar simifi K} ile gosterilir ([25],[69]).

Tanim 2.1.4 0 < s < 1 olsun. Her z,y € [0,00), a, 8 > 0, a + 8 = 1 olmak {izere
f:]0,00) = R fonksiyonu

flaz + By) < o’ f(z) + 5°f(y) (2.1.3)

esitsizligini sagliyorsa f fonksiyonuna ikinci anlamda s-Breckner konvex veya s-konveks

fonksiyon denir. Ikinci anlamda s-konveks fonksiyonlar smifi K2 ile gosterilir ([16],[41]).



Tanim 2.1.5 I, J R’de bir aralik, (0,1) C J, h: J — R negatif olmayan bir fonksiyon
ve h Z 0 olsun. Her z,y € I, t € (0,1) igin f : I — R negatif olmayan fonksiyonu

fltr+ (1 =t)y) < h(t)f(x) +h(1—1)f(y) (2.1.4)

esitsizligini sagliyorsa f fonksiyonuna h-konveks fonksiyon denir ([82]).

2.1.2 Inveks Kiime ve Pre-inveks Fonksiyon

Literatiirde onemli bir yere sahip ve agik bir geometrik yorumu olan inveks kiimenin

tanimi agagidadir.

Tamim 2.1.6 X #£ ) CR"” ve u: X x X — R" olsun. Her ky, ko € X ve t € [0, 1] olmak

tizere ki + tp (ko, k1) € X ise X kiimesine inveks kiime denir.

Inveks kiime konveks kiimeden daha genel bir kiimedir. Eger p(kay k1) = ko — ky ise
her konveks kiime bir inveks kiimedir fakat her inveks kiimenin bir konveks kiime olmas:

gerekmez ([7],[58],[63]).

1981 yilinda M.A. Hanson [33]’te diferansiyellenebilir f : S C R" — R fonksiyonlar

icin, her ky, ky € S ve p(ks, k1) n-boyutlu vektor fonksiyonu olmak iizere

fka) = f(kr) = ko, k)]'V f (K1) (2.1.5)

esitsizligini elde etmistir. Ardindan B.D. Craven [22]’de bu tiir fonksiyonlar: inveks fonksi-
yonlar olarak adlandirmigtir. Daha sonra A. Ben-Israel ve B. Mond [14]te, her ki, ks € S,
(ka, k1) n-boyutlu vektor fonksiyonu ve A € [0, 1] olmak iizere

fRr Aty (koy kr) ) < (1—1) f (k) +tf (ko) (2.1.6)

esitsizligini saglayan diferansiyellenebilir f : § C R® — R fonksiyonlarinin inveks fonksi-
yonlar oldugunu ortaya koymustur. 1988 yilinda ise T. Weir ve B. Mond [84]te inveks
fonksiyonlarin kisa bir tarihi siirecini ve (2.1.6) esitsizligini saglayan fonksiyonlarin pre-
inveks fonksiyonlar olarak adlandirilabilecegini ifade etmistir. X # () C R invex kiimesinde

tanimli pre-inveks fonksiyonun tanimi asagida verilmistir.

Tamim 2.1.7 X # () C R bir inveks kiime olmak tizere p1 : X x X # () — R reel degerli bir
fonksiyon olsun. Bu durumda, ¢ € [0, 1] ve Vkq, ks € X olmak iizere f : X — R fonksiyonu

fRr Aty (koy kr) ) < (1—1) f (k) + tf (ko) (2.1.7)

esitsizligini saglarsa f fonksiyonuna p fonksiyonuna gore pre-inveks fonksiyon denir ([84]).



Eger (—f) fonksiyonu pre-inveks ise f’ye pre-incave denir. Ayrica (2.1.7) egitsizliginde
p (ko k1) = ko—ky olarak alinirsa pre-inveks fonksiyon klasik konveks fonksiyona doéntigiir.
Bu durumda her konveks fonksiyonun pre-inveks fonksiyon oldugu aciktir fakat her pre-
inveks fonksiyon konveks fonksiyon olmayabilir. Ornegin; f(z) = —|z| fonksiyonu konveks
fonksiyon degildir fakat asagidaki
ko —ki, k1 <0,k <0
ky—ki, Kki1>0,k>0
ki —ko, k1 >0,k <0
ki — ko, k1 <0, ky>0

p(ka, k) =

fonksiyonuna gore pre-inveks fonksiyondur.

Mohan and Neogy [63]'te agsagidaki 2.1.1 kogulunu tanimlamiglardir.

Kosul 2.1.1 A C R” inveks bir kiime olmak tizere p : A x A — R" reel degerli bir
fonksiyon olsun. Her z,y € A ve her ¢ € [0, 1] i¢in

w(y, y + tu(z,y)) = —tu(z,y) (2.1.8)
e,y +tp(z,y)) = (1 —tu(z,y)

esitlikleri varsa p fonksiyonu Kosul 2.1.1°1 saglar denir.

Her x,y € A ve her t1,t; € [0,1] igin Kosul 2.1.1’den

1wy + top(z,y),y + tip(z,y)) = (ta — t1)pu(z, y) (2.1.9)

esitligi yazilir ((2.1.9)’un ispat1 icin bakiniz [44]).

2.1.3 Baz Ozel Fonksiyonlar

Senkronize fonksiyonlarin tanimi asagida verilmistir.
Tanim 2.1.8 (Senkronize Fonksiyonlar) Her z,y € [a,b] C R ve f,g: [a,b] — R i¢in

(f(x) = f(y)(9(z) — g(y)) =0 (2.1.10)

esitsizligi gecerli ise f ve g fonksiyonlarina senkronize fonksiyonlar denir.

Kesirli analizde onemli bir yere sahip olan ve Leonhard Euler tarafindan 1729 yilinda

tanimlanan gama fonksiyonunun tanimi agsagida verilmigtir.



Tanim 2.1.9 (Gama Fonksiyonu) Re(z) > 0 olsun. Gama fonksiyonu I'(2)

[(z) = /OOO e 'ttt (2.1.11)
ifadesi ile tanimlanir ([49],[77]).
Gama fonksiyonu ile ilgili
I'(n+1)=n! neNy((Ny:=NU{0}) (2.1.12)
ve
I'(z+4+1) =2I'(2), Re(z) >0 (2.1.13)

esitlikleri yazilir.

Ayrica, z'nin baz 6zel degerleri i¢in (2.1.11) esitligi kullanilarak

(1) = / e tdt =1
0

()-

egitlikleri elde edilir. Bunun yaninda (2.1.13) esitligi kullamlarak

r(3)=r(341) =30 (3) =3 7

ve

egitligi elde edilir.

Beta fonksiyonun tanimi agagida verilmistir.

Tanim 2.1.10 (Beta Fonksiyonu) Re(n) > 0 ve Re(p) > 0 olsun. Beta fonksiyonu
B, p) X
B(n,p) =/ (1 =) dt
0

ifadesi ile tanimlanir [77].

Isvecli matematikci Gosta Mittag-Leffler tarafindan 1903 yilinda tanimlanan klasik

ve genellegtirilmis Mittag-LefHler fonksiyonunun tanimlar1 agsagida verilmistir.

Tanim 2.1.11 (Klasik Mittag-Leffler Fonksiyonu) a € C, Re(a) > 0 ve z € C
olmak {tizere klasik Mittag-Leffler fonksiyonu E,(2)

Eu(2) =) ——F—— (2.1.14)

ifadesi ile tanimlanir ([37],[49]).



Tanim 2.1.12 (Genellestirilmis Mittag-Leffler Fonksiyonu) «, 3 € C, Re(a) > 0,
Re(8) > 0 ve z € C olmak iizere genellestirilmig Mittag-Leffler fonksiyonu E, g(z)

00
Zk

ok F) (2.1.15)

Eop5(2) =

k=0
ifadesi ile tanimlanir ([37],[49]).

Klasik Mittag-Leffler fonksiyonu E, (z) nin, a’nin bazi 6zel degerleri i¢in esitleri agagida

verilmistir.

L Eo(z) =1, |7 <1
. Ey(z) =e”
iii. Es(z) = cosh(y/2),z € C
iv. Ey(—2%) =cos(z),z € C
v. B3(z) =3 [ezl/S + 2e~ (/277 g (%gzl/?’ﬂ ,z€C

v. Ey(z) = 1 [cos (21/*) 4 cosh (21/1)], 2 € C.

2.1.4 Sobolev Uzaylari

Tanim 2.1.13 (Sobolev Uzay1) 2, R"'nin acik bir alt kiimesi ve ¢oklu indeks « igin
la| < k olmak {izere u € LP(Q2) fonksiyonlarinin zayif tiirevi D®u var olsun. Bu durumda

WHP(Q) sobolev uzay
WkP(Q) = {u € LP(Q) : Du € LP(Q),|a| < k}
ifadesi ile tanimlanir ([4],[50]).

Tanim 2.1.14 (1. Mertebeden Sobolev Uzay1) (a,b), R'nin agik araligi olmak {izere

1. mertebeden Sobolev uzay1 agsagidaki
H'(a,b) = {u € Ly(a,b) : u' € Ly(a,b)}

ifadesi ile tanimlanir ([18],[81]).

WHP(2) sobolev uzaymda p = 2 alinrsa bu uzay Hilbert Uzayma esit yani W*?2(Q) =
H'(a,b) olur. Bir f fonksiyonu igin f € H'(a,b) olmasi o fonksiyonun (a,b) araligida

kendisinin ve tiirevinin integrallenebildigini garantiler.
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2.2 Bazi1 Onemli Esitsizlikler

Esitsizlik teorisindeki galigmalar bir ¢cok yeni esitsizligin ortaya ¢ikmasini saglamistir.
Bu esitsizliklerin en 6nemlilerinden ve literatiirde en ¢ok bilinenlerden biri Charles Hermite
ve Jacques Hadamard tarafindan konveks fonksiyonlar kullanilarak elde edilen Hermite-

Hadamard esitsizligidir ve agagidaki gibidir.

Teorem 2.2.1 (Hermite-Hadamard Esgitsizligi) I, R'nin bir arahg olsun. f: [ —

R konveks fonksiyon, a,b € I ve a < b olmak tizere

f (a;b) < bia/bf(:c)d:c SCAORFIO] (2.2.1)

2

esitsizligi gecerlidir.

Yukaridaki (2.2.1) esitsizliginin sol tarafini; konveks fonksiyonlar resmi olarak tanitil-
madan 6nce, |a, b] tizerinde artan f” ile birlikte f fonksiyonlari i¢in 1893 yilinda Hadamard
ispat etmistir ve dolayisiyla bu esitsizligin sol tarafi bazen Hadamard esitsizligi olarak
da ifade edilir. Fakat 1985 yilinda Mitrinovi¢ ve Lackovié¢ [60]'ta (2.2.1)’deki esitsizlikleri
Hadamard’dan on yil 6nce, 1883 yilinda elde edenin Charles Hermite oldugunu belirtmigler-
dir. Giintimiizde, Hermite-Hadamard esitsizligi olarak bilinen bu egitsizligin farkli fonksi-
yon siniflari ile birlikte farklh kesirli tiirev ve integral operatorleri yardimiyla cesitli fonksi-
yonlar i¢in bir ¢ok genellestirilmesi yapilarak yeni varyasyonlari elde edilmigtir. Dolayisiyla

bu anlamda bu esitsizligin esitsizlik teorisine katkisi biiyitk olmustur ([27],[70]).

Hermite-Hadamard egitsizliginin farkli fonksiyon siniflar icin elde edilen cesitli ver-

siyonlar1 agagida verilmistir.

Sarikaya ve arkadaglar1 [75]'te h-konveks fonksiyonlar i¢in asagidaki Hermite-Hada-

mard esitsizligini elde etmiglerdir.

Teorem 2.2.2 f € SX(h,I),a,be I, a<bve f € Li([a,b]) olsun. Bu durumda

1 a+b 1 b 1
2h(%)f( 5 ) < b—a/a f(z)dz < [f(a)‘i‘f(b)}/o h(o)do (2.2.2)

esitsizligi gecerlidir.

Dragomir ve Fitzpatrick [26]’da ikinci anlamda s-konveks fonksiyonlar: i¢in agagidaki

Hermite-Hadamard esitsizligini elde etmiglerdir.
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Teorem 2.2.3 f : [0,00) — R ikinci anlamda s-konveks fonksiyon, s € (0,1), a,b €

[0,00) ve a < b olsun. f € Li|a,b] olmak tizere

S SCR

a

esitsizligi gecerlidir.

Noor [66]’da pre-invex fonksiyonlar igin asagidaki Hermite-Hadamard esitsizligini elde

etmigtir.

Teorem 2.2.4 [° C R, ky,ky € I° ve ki < ki + p(ko,ky) olmak tlizere f : [ =
[k1, k1 + p (kay k1)) — (0, 00) fonksiyonu /°’'de pre-inveks fonksiyon olsun. Bu durumda

le + H (k27 kl) 1 k1+p(kz k1) f(kl) + f(kg)
f( 2 )SMthy/ fl)de < === (223)

esitsizligi gecerlidir.

Ayrica, C.P. Niculescu [64]'te logaritmik konveks fonksiyonlar igin, S.S. Dragomir
[24]'te m-konveks fonksiyonlar igin Hermite-Hadamard esitsizliklerini elde etmiglerdir. Ote
yandan literatiirde, yukarida verilen fonksiyonlarin diginda var olan diger bir ¢ok farkh

fonksiyon simiflar1 i¢cin Hermite-Hadamard esitsizligi mevcuttur.

Kavurmaci ve arkadaglar1 [48]'de konveks fonksiyonlar igin Hermite-Hadamard tipli

baz1 yeni egitsizlikler elde etmislerdir. Bu esitsizliklerin bazilar1 agagida verilmistir.

Teorem 2.2.5 a,b € [ ve a < b olmak tizere f : I C R — R fonksiyonu /°’de dife-
ransiyellenebilir bir fonksiyon ve f € Li[a,b] olsun. Eger her = € [a,b] igin |f’| konveks

fonksiyon ise

V%wﬁ%tf—a /f ) du
__(ii?QPf@M22u%M}+ %:Z P (Mz2v<ﬂ} (2.2.4)

esitsizligi elde edilir.

Teorem 2.2.6 a,b € [ ve a < b olmak tizere f : I C R — R fonksiyonu /°’de diferan-
siyellenebilir bir fonksiyon ve f € Li[a,b] olsun. Eger her x € [a,b], ¢ = ;25 ve baz1 sabit

¢ > 1icin |f'|71, [a,b] iizerinde konveks fonksiyon ise
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b—a
LV (1N [ = aP U@l + 1@ + (b= 2 (SO + 1)
< () (3)'|

p+1 2 b—a

'(b—x)f(b)—l—(x—a b_a/f du

(2.2.5)
esitsizligi elde edilir.

Teorem 2.2.7 a,b € [ ve a < b olmak tizere f : I C R — R fonksiyonu /°’de diferan-
siyellenebilir bir fonksiyon ve f € Lj[a,b] olsun. Eger her = € [a,b] ve baz1 sabit ¢ > 1

icin | f'|%, [a, b] tizerinde konveks fonksiyon ise

‘(b—x)f(b?)—i_—ix—a b_a/f \du

< ()6

esitsizligi elde edilir.

(& — @) 211" (@) + |F/(@)9 + (b= 2)* 21 (B) + | F'(x)]9)s
b—a

(2.2.6)

Teorem 2.2.8 a,b € [ ve a < b olmak tizere f : I C R — R fonksiyonu /°’de diferan-
siyellenebilir bir fonksiyon ve f € Ly[a,b] olsun. Eger baz sabit ¢ > 1 icin |f’|?, [a,b]
tizerinde konkav fonksiyon ise

b-2)f)+(z—a)f(a) 1 [

' b—a b—a f(u)du
[(x P S ()] + (- 2| S (%%M]

(2.2.7)

|
N —

b—a
esitsizligi elde edilir.

Teorem 2.2.9 a,b € [ ve a < b olmak iizere f : I C R — R fonksiyonu /°’de diferan-
siyellenebilir bir fonksiyon ve f € Lj[a,b] olsun. Eger her = € [a,b] ve baz sabit ¢ > 1
icin | f'|%, [a, b] tizerinde konkav fonksiyon ise

‘(b—x)f(b)biri%—a)f(a) _bia/a Fluw)du

. (q—l)qql[<w—a>2|f'<%»+<b—x>2\f'<%+b>\] (228

2q — 1 b—a

esitsizligi elde edilir.
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Teorem 2.2.10 (Hélder Esitsizligi) a = (a1, as, ..., a,) ve b = (by, ba, ..., b,) reel veya
kompleks sayilarin iki n—lisi olsun. Bu takdirde, ]% + % = 1 olmak tizere

(a) p > 1ise,
> fan < (Sl ) (L]
k=1 k=1 k=1
(b) p < 0 veya q < 0 ise,
> fon> (L) (Y]
k=1 k=1 k=1
esitsizlikleri gegerlidir ([59],[62]).

Teorem 2.2.11 (fntegraller icin Hélder Egitsizligi) p > 1 ve Z—H—% =1 olsun. f ve

g, [a, b] arahginda tanmiml iki reel fonksiyon ve | f|? ve |g|%, [a, b] araliginda integrallenebilir

/ | F@)g(a)lds < (/ b |f($)|pdx); (/ b 9(0) e

esitsizligi gecerlidir ([59],(62]).

fonksiyonlar ise

1
q

Holder esitsizliginin bir sonucu olan ve daha iyi sonuclar elde etmek i¢in kullanilan

power mean esitsizligi asagidaki gibidir.

Sonug 2.2.1 (Power Mean Egitsizligi) f ve g, a,b] arahginda taniml ve integral-

lenebilir iki fonksiyon olsun. ¢ > 1, |f| ve |g|?, [a,b] arahginda integrallenebilir fonksi-

[ 1w < ([ |f(fv>|d:r>1_; (f |f<:c>||g<sc>|wac)é

esitsizligi gecerlidir.

yonlar ise

Teorem 2.2.12 (Jensen Egitsizligi) [ fonksiyonu [a,b] araliginda konveks ve x; €

[a,b],i=1,2,...,n olsun. Bu durumda, a; > 0 ve Zai =1 ise
i=1

f(;ax) < gazf(xi)

esitsizligi gegerlidir ([70]).
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Teorem 2.2.13 ( Integraller icin Jensen Esgitsizligi ) f : [a,b] — R konveks fonksiyon,

h:la,b] — (0,00) ve u : [a,b] — R = (0,00) integrallenebilir fonksiyonlar olmak iizere

f Jo hyu(t)de\ _ J b u()dt
fabh(t)dt - fbh(t)dt

a

esitsizligi gecerlidir ([70]).

Teorem 2.2.14 (Young Esitsizligi) a,b> 0, p > 1 ve ]l) + % = 1 olmak fizere

1 1

—aP + -0 >ab (2.2.9)
p q

esitsizligi gecerlidir ve bu esitsizlige Young esitsizligi denir ([59]).

Teorem 2.2.15 ( Ucgen Esitsizligi ) Herhangi x, y reel sayilar igin,
|z +yl < fa] + Jyl,

||z = lyl| <l —yl,
2] =yl < |z + vl
ve timevarim yoluyla
|z1 + T+, | < x| + 22| + oo |24
esitsizlikleri gegerlidir ([62]).

Teorem 2.2.16 (fntegraller icin Ucggen Esitsizligi) a < b olmak iizere f, [a,b]

araliginda stirekli reel degerli bir fonksiyon olsun. Bu takdirde,

/a  Ha)ds

< [

esitsizligi gegerlidir ([62]).

Chebyshev’in literatiire kazandirdig1 6zgiin esitsizliklerden biri agagidaki gibidir.

Teorem 2.2.17 (Chebyshev Egitsizligi) f, g ve p fonksiyonlar [a,b] araliginda in-
tegrallenebilir, f ve g senkronize fonksiyonlar ve p pozitif degerli fonksiyon olsun. O

halde

b b b b
/ pla)da / p(2) f(2)g(x)de > / pla) f(z)dz / p)g@)dz  (2.2.10)

esitsizligi gecerlidir ([21], [62]).
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Yukaridaki (2.2.10) esitsizliginde p(x) = 1 almirsa, literatiirde Chebyshev esitsizligi

/af z)dz > _a/nf d{/)(Mx (2.2.11)

esitsizligi elde edilir ([21]). (2.2.11) esitsizliginin sol ve sag tarafindaki ifadeler kullamlarak

f.9 /f CM—Q_ /f m)ct—l @m)

egitligi yazilir. Literatiirde bu egitlige Chebyshev fonksiyoneli denir. Chebyshev bu

olarak bilinen

fonksiyonel yardimiyla agagidaki esitsizligi elde etmistir.

Teorem 2.2.18 f, g : [a,b] — R mutlak stirekli ve f’, ¢’ € L., olmak iizere

‘b_a/ rwatons — (1 [ o) (71 [ o) |

< _ . ! /

esitsizligi gegerlidir ([21]).

2.3 Kesirli Tiirev ve integral Operatorleri

L’Hopital’in, Leibniz’e 1695 yilinda sordugu “Tiirevin mertebesi % olarak alinirsa ne
olacak” sorusu ile tarihi siireci baglayan kesirli analiz, 300 yildan fazla ge¢mise sahip
klasik analizin bir genellemesidir. Kesirli tiirev ve integral kavrami; klasik tiirev ve integral
kavramlarindan farkl olarak, keyfi mertebeden tiirev ve integralin hesaplanmasina olanak
saglayan ve bu hasaplamalara bagl olarak yapilan uygulamalar: ve aragtirmalar1 iceren,

klasik tiirev ve integrale gore daha kapsaml olan matematigin bir alt alanidir.

Kesirli analiz kavrami, 18. ve 19. yiizyillar boyunca bir ¢ok matematik¢inin dikkatini
¢ekmis ve ayrintili olarak incelenmigtir. Euler (1730), J.L. Lagrange (1772), P.S. Laplace
(1812) kesirli analizden bahsetseler de yazili bir metinde ilk olarak Lacroix (1819) kesirli
analizi ayrintili olarak ele almigtir. Lacroix once, m pozitif tam say1 ve m > n olmak
lizere y = 2™ fonksiyonunun n. mertebeye kadar olan tiirevlerini sirasiyla

d d

Y = %xm = ma™ !
d? T "
pre il ot i m(m — 1)z™ >
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d? d?

T = e < mim 1) — 2
%y = %xm =m(m —1)(m = 2)...(m —n + 1)a™"
- o m e S it g (23.1)

m!
(m —mn)!

seklinde almigtir. Daha sonra (2.3.1) esitligini gama fonksiyonunun 6zelliklerini kullanarak

d" m! v
dan? T (m — n)!x
(2.3.2)
~ Im+1) .,
- T(m—n+1)

olarak yazmugtir. Lacroix (2.3.2) esitliginde, m = 1 ve n = % alarak

dz d2 Ta+1) .,
—y = ~—T= "%
dz” dx r1-1+1)
_ L
¢

hesaplamasini yapmig ve y = z fonksiyonunun %’mm mertebeden tiirevinin \%r:m 'ye esit

oldugunu bulmustur.

Lacroix’in tam say1 mertebeden tiirevi genelleyerek elde ettigi sonucun, kesirli tiirevin
glinlimiizdeki Riemann-Liouville tanimiyla elde edilen sonugla ayni olmasi ilgingti fakat
Lacroix’in elde ettigi bu sonug kesirli tiirevin tanimlanmasi i¢in yeterli ipucu sunmu-
yordu. Daha sonra kesirli tiirevden B. J. Fourier (1822) integrali kullanarak bahsetmigtir.
Leibniz, Euler, Lagrange, Laplace, Lacroix ve Fourier keyfi mertebeden tiirevlerden bah-
setmiglerdir, ancak kesirli iglemlerin ilk kullanimi N.H. Abel tarafindan 1823 yilinda
yapilmigtir. Abel ozellikle ilk miihendislik problemi olan “tautochrone” problemi iizerine

kesirli iglemler yapmigtir. Daha sonra J. Liouville 1832’de ii¢ uzun am kitabr yayimlamig
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ve hizli bir gekilde art arda bir kac yayim daha yapmistir. Liouville’in yaptigi bu caligmalar
kesirli analizin ilerlemesi agisindan ¢ok onemlidir. Kesirli analizin tarihi siirecine Liou-
ville’den sonra G. F. Bernhard Riemann da katilmig ve kesirli integral teorisini 6grencilik
yillarinda geligtirmesine ragmen yaptigi caligmalari yayimlamaktan kacinmisgtir. Daha
sonra yaptigi caligmalar 6liimiinden sonra 1892 yilinda “Gesammelte Werke” adli kitabinda
yayimlanmigtir. Bu siiregte hem diger matematikcilerin hem de Liouville ve Riemann’in
yaptigi kesirli tiirev tanimlamalar: arasinda bazi fonksiyonlar ve 6zel durumlar igin kisitla-
malar, tutarsizliklar vardi ve bazi 6zel durumlar i¢in farkli sonuglar elde edilmekteydi.
1869’da N. Ya. Sonin “On Differentation with arbitrary index” baglikli bir makale yayimla-
mig ki bu makale kesirli integrasyonun Riemann-Liouville taniminin ilk olarak hesaplarinin
yapildigi makaledir. Giiniimiize kadar bir cok matematikci, adina bu giin operator diyecegi-
miz hem kesirli tirev hem de kesirli integral tanimlarini yaparak alana katkilarini sunmuslar-

dir ([57)).

Kesirli analizin en ¢ok kullanildigi alanlardan biri esitsizlik teorisi olmugtur. Kesirli
analiz, esitsizlik teorisinin geligmesinde, tanimlanan kesirli tiirev ve integral operatorler
yardimiyla etkili rol oynamigtir. Kesirli analizi gelistiren bircok matematikg¢i, problem-
lere ¢oziim bulmak i¢in tam say1 mertebeli tiirev ve integral yerine daha iyi sonuglar
verecegi vurgulanan bir¢ok kesirli tiirev ve integral operator tanimlamigtir. Giiniimiiz
diinyasinda kesirli analizin uygulamalar:1 viskoelastisite, reoloji, akustik, optik, kimya ve
kontrol teorisi, istatistiksel fizik, robotik, elektrik ve makine miihendisligi, biyomiihendislik,
yeralt1 kaynaklari, hastalik modelleri vb. alanlarda ¢ok genistir. Giiniimiize kadar tanimla-
nan bir ¢ok kesirli tiirev ve integral operatorlerinin bazilar: olan Riemann-Liouville kesirli
tiirev ve integral operatorleri, Caputo-Fabrizio kesirli tiirev ve integral operatorleri ve
Atangana-Baleanu kesirli tiirev ve integral operatorleri hakkinda detayli bilgiye bu tezde

yer verilmistir.

2.3.1 Riemann-Liouville Kesirli Tiirev ve Integral Operatérleri

Rastgele bir fonksiyonun kesirli tiirevi ve kesirli integrali i¢in genel Riemann-Liouville
tanimi, 19. ytzyilin sonlarinda karmasik bir analiz yaklagimiyla ortaya ¢ikmigtir. Riemann-
Liouville formiilii simdi ¢ogunlukla reel analiz baglaminda kullanilmasina ragmen, orijinal
motivasyonu, karmagik bir analitik fonksiyonun tekrarlanan tiirevleri i¢in Cauchy integral
formiiliiniin genellestirilmesinden gelmistir. Bir f(x) fonksiyonunun Riemann-Liouville

kesirli integralleri agagidaki gibidir:
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Tanim 2.3.1 (Riemann-Liouville Kesirli Integral Operatorleri) f € Ly[a, b] olsun.
a > 0 ve [a,b] (—o00 < a < b < o0) reel eksen iizerinde sonlu bir aralik olmak {izere «.

mertebeden sol ve sag Riemann-Liouville kesirli integralleri sirasiyla,

JE5 f(z) = ﬁ /x(x — ) f(t)dt, > a

Je flx) = ﬁ/ (t— 2 f(@B)dt, = < b

dir. Ayrica a = 0 igin J%, f(z) = J) f(x) = f(x) olarak tanimlanir ([49]).
Ayrica, Riemann-Liouville kesirli tiirevleri, Riemann-Liouville kesirli integralleri yardi-
miyla agagidaki gibi tanimlanir.

Tanim 2.3.2 (Riemann-Liouville Kesirli Tiirev Operatorleri) a € C (Re(a) > 0)
olmak tizere [Re(«)], Re(«) nin tam degeri olsun. «. mertebeden Riemann-Liouville kesirli

tiirevinin sol ve sag tarafi sirasiyla,
o d 4 n—o
(Deef)x) = || (Jor"f)(z)

— ﬁ <%)n /az = tJ;it—)"“dt’ (n=[Re(a)] +1; > a)

ve

00w = () )

_ ﬁ <_%)/b — git_)nﬂdt, (n = [Re(a)] +1; = < b)

dir ([49]).

Bu tanim, hem Liouville’in hem de Lacroix’in formiillerini kapsayacak kadar geneldir.
Ancak yine de kesirli analizi tanimlamanin o6nerilen tek yolu bu degildir. Birden ¢ok
celigkili formiiliin giintimiize kadar varligini koruyarak gelmesi, birinci dereceden tiirevin
tek bir tanimi oldugunu bilen ve kesirli tiirevlerin de tek bir tanimini gormeyi bekleyen,
alana yeni gelmig bircok kisinin kafasini karigtirmaktadir. Riemann-Liouville modeli,
integral doniigimin tamimindaki kuvvet fonksiyonu iceren g¢ekirdegi nedeniyle, kuvvet
yasasl davranigina sahip stirecleri tanimlamak i¢in kullanilabilir ancak dogada meydana
gelen ve basit kuvvet fonksiyonlariyla tanimlanamayan bagka bircok davranig tiri vardir.

Riemann-Liouville kesirli tiirevleriyle baglangic-deger problemlerinin matematiksel olarak
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¢Ooziimi mumkiindiir fakat bu tiir problemlerin, Riemann-Liouville kesirli tiirevlerinin
limit degerleri biciminde tanimlanan baglangi¢ kosullarina yol agmasindan ve bu baglangic
kosullariin fiziksel yorumunun olmamasindan dolayi, bu tiirev operatoriiyle pratikte
¢oziilmesi kullanigsizdir. Ayrica Riemann-Liouville kesirli tiirev operatorlerinin olumsuz
bir diger yani ¢ekirdeginin singiiler olmasi1 ve bu durumun hesaplamalarda algoritma ku-
rarken zorluk gikarmasidir. Dolayisiyla, daha karmagik olan ve basit kuvvet fonksiyonlar:
ile tamimlanamayan siirecleri ve davranms tiirlerini tanimlamak icin farkh kesirli tanimlar

ortaya g¢ikarilmaya devam edilmigtir.

Literatiirde, Jensen, Holder, Minkovski, Wirtinger, Young ve bilinen bir ¢ok klasik
esitsizlik kullanarak kesirli operatorler yardimiyla elde edilmig bir ¢ok esitsizlik yer al-

maktadir.

Hermite-Hadamard esitsizliginin farkh kesirli integral operatorleri igin gesitli versi-
yonlar1 elde edilmistir. Bunlardan ilki Riemann-Liouville kesirli integral operatorleri igin
elde edilmigtir. Asagida Riemann-Liouville kesirli integral operatorleri yardimiyla elde

edilen Hermite-Hadamard egitsizlikleri ve elde edilen diger bazi sonuglar verilmistir.

Sarikaya ve arkadaglar [76]’da Riemann-Liouville kesirli integral operatorleri yardimuy-
la konveks fonksiyonlar icin Hermite-Hadamard esitsizligini elde etmigtir. Onlar bu calis-
mayla, Riemann-Liouville kesirli integral operatorlerini kullanarak Hermite-Hadamard in-
tegral egitsizligi icin farkli bir bakig acis1 gelistirmistir. Ayrica bu calisma, klasik integral
esitsizliklerinin genellegtirilmesi, geligtirilmesi ve elde edilmesinde anahtar rol oynamak-

tadir.

Teorem 2.3.1 0 < a < bve f € Ly]a,b] olmak tizere f : [a,b] — R pozitif fonksiyon ol-

sun. Eger f, [a, b] lizerinde konveks fonksiyon ve o > 0 ise kesirli integraller i¢in agagidaki

() = 7o s+ g sy < L 10

esitsizligi gecerlidir.

Ayrica, Sarikaya ve arkadaglar [76]’da Riemann-Liouville kesirli integral operatorleri

icin agagidaki integral egitligini elde etmiglerdir.

Lemma 2.3.1 a < bolmak tizere f : [a,b] — R, (a,b) aralig1 tizerinde diferansiyellenebilir

bir fonksiyon olsun. Eger f’ € Ly[a,b] ise kesirli integraller igin agagidaki

HOLIO) S e+ g s =25 [ 10 =07 =] o+ (1= g
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esitligi elde edilir.

Iscan [43)'te Riemann-Liouville kesirli integral operatorlerini kullanarak konveks fonksi-
yonlar i¢in Hermite-Hadamard-Fejer tipli ve [42]’de ise Riemann-Liouville kesirli integ-
ral operatorlerini kullanarak pre-inveks fonksiyonlar i¢in Hermite-Hadamard integral esit-

sizliklerini elde etmistir ve bu esitsizlikler sirasiyla agagida verilmigtir.

Teorem 2.3.2 a < bve f € Ly[a,b] olmak tizere f : [a,b] — R konveks fonksiyon olsun.
Eger g : [a,b] — R fonksiyonu negatif olmayan, integrallenebilir ve (a + b)/2 ye gore

simetrik ise a > 0 olmak tizere Riemann-Liouville kesirli integral operatorleri icin

(50 o+ Bat@] < [eto) + 5 fota) (233

2
fla) + f(b)

<
- 2

[ 9(8) + Ji-g(a)]

esitsizligi elde edilir.

Teorem 2.3.3 A C R agik inveks bir alt kiime olmak tizere 7 : A x A — R bir fonksiyon
ve a,b € Aigin a < a+n(b,a) olsun. Eger f : [a,a +n(b,a)] — (0,00) bir pre-inveks
fonksiyon, f € Ly [a,a+n(b,a)] ve n fonksiyonu Kogul 2.1.1'1 saghyorsa, « > 0 olmak

tizere Riemann-Liouville kesirli integral operatorleri igin

f (2“++(b“)) < % e f(atn (b)) + T8-S (@)
f(a)+f(a+77(b,a))
< 2
fla) + ()
2

IN

esitsizligi gecerlidir.

2.3.2 Caputo-Fabrizio Kesirli Tiirev ve integral Operatorleri

Yeni bir kesirli tiirev tanimi olarak zamansal temsili varsayan Caputo kesirli tiirev
tanimi verilmistir. Bu zamansal temsil, bilinen kesirli tiirevlerin ¢oziimlerinde ortaya
¢gikan formiillerde ve hesaplamalardaki reel kuvvetlerin bazi sadelegtirmelerle birlikte tam
say1 kuvvetlere doniigecegi zaman degiskenleri tizerinde caligir. Bu cercevede yapilacak

hesaplamalarda Laplace doniigiimii kullanmanin uygunlugu ortaya ¢ikmaktadir.

Bu yeni yaklagimin ilgi alani, klasik viskoelastik malzemelerin, termal ortamlarin,

elektromanyetik sistemlerin davraniglarim1 tanimlayan bir model kullanma gerekliligidir.
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Aslinda kesirli tiirevin orijinal tanimi, plastiklik, aginma, hasar ve elektromanyetik his-

terezis ile ilgili mekanik olaylar i¢in uygun goriilmektedir.

Zamansal temsili varsayan yeni kesirli tiirevin tanimi M. Caputo tarafindan agagida

yapilmigtir.

Tamim 2.3.3 (Caputo Kesirli Tiirev Operatoril) o € [0,1], a € (—o0o,t), [ €

H'(a,b) ve b > a olmak iizere o. mertebeden Caputo kesirli tiirevi

Cpap(t) — ﬁ / (t— 5)° f'(s)ds (2.3.4)

olarak verilir ([18]).

Burada, J. Losada ve J.J. Nieto [56]’da Caputo kesirli tiirevinin tanmmini, farkli bir

aralikta agagidaki gibi vermislerdir.

Tanim 2.3.4 « € (0,1), f € H*(0,b) ve b > 0 olmak tizere . mertebeden Caputo kesirli

turevi
CDof(t) = ﬁ/@ (t—s)"“f'(s)ds, t>0 (2.3.5)

olarak verilir.

Caputo kesirli tiirevinin temel avantaji, Caputo kesirli tiirev iceren diferansiyel denk-
lemler i¢in tamimlanan baslangi¢ kosullariyla tam sayr mertebeli diferansiyel denklem-
ler i¢in tamimlanan basglangi¢ kosullarinin ayni olmasidir. Giiniimiizde, kesirli mate-
matik ve ozellikle Caputo kesirli tiirevi, bilimin farkli alanlarinda sayisiz uygulama alam
bulmaktadir ve kesirli tiirevlerin bir ¢cok problemde basariyla kullanildigi bilinmektedir
([8],[17],]20],[38]). M. Caputo’nun Tanim 2.3.3 de verdigi tiirev operatorii taniminin eksik
yani t = s igin singiiler ¢ekirdege sahip olmasidir. Bu eksikligi gidermek i¢in M. Caputo
ve M. Fabrizio, (2.3.4) esitligindeki (¢ — s)~ ifadesinin yerine exp <—ﬁ(t — s)) tistel

M(o)

fonksiyonunu ve ﬁ ifadesi yerine 5——> ifadesini kullanarak

¢
CF Do f () = ]1”_(02 / exp <— : f‘a) (t s)) F/(s)ds (2.3.6)
yeni tiirev operatorii tanimi vermiglerdir. Buradaki M(«), M(0) = M(1) = 1 olmak
lizere a’ya bagh normalizasyon(normallegtirme) fonksiyonudur ([18]). Ayrica bu tirevin
anti-tirevini J. Losada ve J.J. Nieto [56]’da vermiglerdir ve bu anti tiirevin birinci mer-

tebeden integral ile verilen fonksiyon arasinda bir ortalama oldugunu ifade etmiglerdir.

Yeni tamimda, f sabit bir fonksiyon ise “4' D*f(t) = 0 oldugu agiktir.
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Bu tezin buradan sonraki kisminda M («) normalizasyon fonksiyonuyla ayni ézellige
sahip olan B(«), B(0) = B(1) = 1 olmak iizere a’ya bagh normalizasyon(normallestirme)

fonksiyonu olarak kullanilacaktir.

a. mertebeden kesirli tiirev kavramindan sonra, o. mertebeden kesirli integral dogal bir
gereklilik haline gelmigtir. Dolayisiyla Caputo-Fabrizio kesirli integrali, Caputo-Fabrizio

kesirli tiirevine gore agagidaki gibi tanimlanmigtir.

Tamm 2.3.5 (Caputo-Fabrizio Kesirli Integral Operatérii) f € H'(a,b), b > a,
€ [0,1] ve B(a) normalizasyon fonksiyonu olmak iizere Caputo-Fabrizio kesirli integ-

ralinin sol ve sag tarafi sirasiyla

11—« «Q
+

(TN O =F5 O+ 55 /. Wy,
(L) () = }[?f@) B ), [0
dir ([1]).

Agagida Caputo-Fabrizio kesirli integral operatorleri igin bazi sonuglar verilmigtir.

Giirbiiz ve arkadaglar [31]’de konveks fonksiyonlar i¢in Caputo-Fabrizio kesirli integ-
ral operatorleri yardimiyla Hermite-Hadamard integral esitsizligini asagidaki gibi elde

etmiglerdir.

Teorem 2.3.4 f:[a,b] CR — R, [a,b] iizerinde konveks fonksiyon ve f € Li[a, b] olsun.
Bu durumda a € [0, 1] ve k € [a, b] ise

+b (0% (6%
f(aQ ) = b—a [CFI (CF]"f)(k)_b—z
fla) + f(b)

<

esitsizligi gecerlidir ve B(a)) normalizasyon fonksiyonudur.

Ayrica [31)’de, Giirbiiz ve arkadaglar1 Caputo-Fabrizio kesirli integral operatorleri
yardimiyla agagidaki lemmayi elde etmislerdir.
Lemma 2.3.2 a,b € I ve a < b olmak tizere f : [ C R — R, I°’de diferansiyellenebilir

bir fonksiyon olsun. Eger f’ € Li[a,b], a € [0,1] ve k € [a, b] ise
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65“411_%M%m+41—wmﬁ—

f(a) : fb) ag@a) [(CF12F) (k) + (P I ) ()]

2(1 — «)
alb—a)

f (k)

esitligi gegerlidir ve B(«) normalizasyon fonksiyonudur.
Bunun yaninda Giirbiiz ve arkadaslar:1 Lemma 2.3.2’yi kullanarak konveks fonksiyonlar
icin Caputo-Fabrizio kesirli integrallari yardimiyla agagidaki esitsizligi elde etmislerdir.

Teorem 2.3.5 f: I CR — R, [°’de diferansiyellenebilir pozitif bir fonksiyon ve a,b €
ve a < b olmak tizere | f'| konveks fonksiyon olsun. Eger ' € L;a,b], a € [0,1] ve k € [a, b]

fla)+ /() 20— a) B(a) crpa oF o
7 ot el ® " ap o (TN R+ (L) ()
(b—a) (| (a)] + (b))
B 8

esitsizligi gegerlidir ve B(«a) normalizasyon fonksiyonudur ([31]).

Muhammad Tariq ve arkadaglar [80]’de Caputo-Fabrizio kesirli integral operatorleri
yardimiyla pre-inveks fonksiyonlar icin agagidaki Hermite-Hadamard esitsizligini ispat

etmisglerdir.

Teorem 2.3.6 f: 1 = [ky, ki + p(ka, k1)] — (0,00) foksiyonu I°’de pre-inveks fonksiyon
ve [ € Ly [k, k1 + p (ko, k1)) olsun. Bu durumda k € [ky, k1 + p (ka, k1)] igin

7 (2]€1 + l;(km kl))

—aua(fm ST )+ (T g ) (F) = %m]
fk) + £ (k)
N 2

esitsizligi gecerlidir.

Caputo-Fabrizio kesirli integral operatorleri yardimiyla elde edilen diger bir ¢cok integ-

ral egitsizliginden ikisi Teorem 2.3.7 ve Teorem 2.3.8’de verilmistir.
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Teorem 2.3.7 A > 0 ve f € Ly[a,b] olmak iizere f : I — R, kesin konveks fonksiyon
olsun. Bu durumda « € [0, 1] ve k € [0, 1] ise

f (;b) T % (CFI°f) (k) + (I f) (k) = HM
< [EI0 2o

esitsizlikleri gegerlidir ve B(«) > 0 normalizasyon fonksiyonudur ([54]).

Teorem 2.3.8 f:[a,b] — R, [a,b] iizerinde modifiye h-konveks fonksiyon ve f € Li[a, b]

olsun. Bu durumda a € [0, 1] ve k € [a, b] ise

H(*50) = ek errnms e m -2

< fla)+ ) - f(@)] / h(u)du

esitsizligi gecerlidir ve B(a)) > 0 normalizasyon fonksiyonudur ([83]).

2.3.3 Atangana-Baleanu Kesirli Tiirev ve Integral Operatérleri

Caputo-Fabrizio'nun tiirev operator tanimi sistemlerin dinamiklerini agiklamak icin
iyi bir arag olsa da tanimdaki temel problem a = 1 i¢in orijinal fonksiyona doniilememesi-
dir. Bu soruna Caputo ve Fabrizio [19]'da yaptiklar ¢aligmada ¢oziim iiretmiglerdir.
Caputo ve Fabrizio'nun [18]'de ortaya koydugu ana mesaj, “hafiza etkisiyle sistemin di-
namiklerini daha iyi tamimlamanim yolunu bulmak” ti1. Dolayisiyla, “sistemin dinamik-
lerini daha iyi tanimlayan en dogru cekirdek nedir?” sorusuna, A. Atangana ve D. Baleanu
bir lokal (yerel) cekirdege sahip olmayan kesirli tiirev operatorii tammlayarak cevap ver-

meye caligmiglardir.

Atangana-Baleanu [6]’da, Caputo-Fabrizio Tiirev Operatoriinti temel alarak ve Mittag-
Leffler fonksiyonu yardimiyla, problemlerin dinamiklerini daha da iyi bir sekilde tanimlaya-

cak olan, agagidaki tiirev operatoriinii tanimlamiglardir.

Tanim 2.3.6 (Caputo Anlaminda Atangana-Baleanu Kesirli Tiirev Operatorii)

f € H(a,b), b > a ve a € [0,1] olmak iizere

oD 0] = T2 [ ) {_a%—_ l’;)} " 23.7)

dir.
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Viskoelastik malzemelerin, termal ortamin ve diger bazi malzemelerin davranigim
tasvir eden daha iyi bir modelin kullanilmas1 gerekliliginden ortaya c¢ikan bu tanim,
baslangi¢ koguluyla birlikte baz fizik problemlerini ¢ézmek i¢in Laplace doniigiimiinii kul-
lanirken biiyiik avantaj saglamaktadir. Tanimlanan bu tiirev operatorii, farkl lgege sahip
malzemelerdeki ve ayrica heterojen ortamlara sahip malzemelerdeki 1s1 akigini model-
lemek icin kullanmilmaktadir. Fakat bu tanimda da olumsuz bir durum, o = 0 olarak
alindiginda, orijinal fonksiyona ulagilamamasidir. Bu sorunu ¢ézmek i¢in, Atangana ve

Baleanu asagidaki tanimi vermislerdir.

Tanim 2.3.7 (Riemann-Liouville Anlaminda Atangana-Baleanu Kesirli Tiirev

Operatoril) f € H'(a,b), b > a ve a € [0, 1] olmak {izere

APED [f(1)] 1_a y / fla { ((tl__az)] dz (2.3.8)

dir ([6)).

Esitlik (2.3.7) ve (2.3.8) lokal olmayan ¢ekirdege sahiptir ve bu lokal (yerel) olmayan
gekirdek, farkh olgeklere sahip yap1 ve ortamlar i¢cindeki bellegin daha iyi tanimlanmasina
olanak tamimaktadir. Ayrica (2.3.7) esitliginde fonksiyon sabit alindiginda sonug sifira

esit olur.

Hem Caputo-Fabrizio kesirli tiirev operatorii hem de Atangana-Baleanu kesirli tiirev
operatorii, 1s1 transferi sistemleri, kapali akifer i¢indeki yeralt1 suyu akisi, sig su yliziindeki
dalga hareketi, elektrik devreleri, dielektrik ortamda elektromanyetik dalgalar gibi prob-

lemlerde bagariyla kullanilmaktadir.

Atangana-Baleanu, Laplace doniigiimii ve Evrigim (Konvoliisyon) Teoremi yardimiyla

kesirli integral operatoriiniin énce sol tarafini agagidaki gibi tanimlamislardir.

Tanim 2.3.8 (Atangana-Baleanu Kesirli Integral Operatorii) f € H'(a,b) olsun.

b > a,a € [0,1], B(«) normalizasyon fonksiyonu ve I'(.) gama fonksiyonu olmak iizere

I = S0+ s [ -y

dir ([6]).

2]’de, Abdeljawad ve Baleanu, integral operatoriin sag tarafini agagidaki gibi ortaya

koymusglardir.
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Tamm 2.3.9 f € H'(a,b) olsun. b > a,a € [0,1], B(«) normalizasyon fonksiyonu ve

I'(.) gama fonksiyonu olmak iizere

1—a

B0} = 5o 0+ g [ S -0y

dir.
Atangana-Baleanu kesirli integral operatorlerinde o = 0 alinirsa

WY = {0} = (1)

esitligi yazilir. Gercekten, kismi integrasyon kullanarak

s [ s
- !0+ g fO ()

IO = a0 B

t

a

B0} - ;;Oﬁm s |f @ -+ [ - ar s
- 0+ @+ [ ]
-

VRO = a0+ g [ @0 @
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e [f(b)(b e /tb(x - t)o‘f’(x)dw]

esitligi yazilir ve bu esitlikte o = 0 yazilirsa
BRUO) = For O+ g [[00-0 - [ s @
= 0+ o= [ e
- )

esitligi elde edilir.

Ayrica, Atangana-Baleanu kesirli integral operatoriinde ov = 1 alinirsa operator klasik

integrale donitigtir.

Asagida Atangana-Baleanu kesirli integral operatorii yardimiyla elde edilen bazi sonug-

lar verilmigtir.

[30]’da Fernandez ve Mohammed Atangana-Baleanu kesirli integral operatorleri yardi-

miyla konveks fonksiyonlar i¢in Hermite-Hadamard esitsizligini agagidaki gibi elde etmisler-

dir.

Teorem 2.3.9 f: [a,b] — R konveks fonksiyon ve f € Ly[a,b] olsun. Eger a € (0,1) ise

Atangana-Baleanu kesirli integral operatorleri i¢cin Hermite-Hadamard esitsizligi

a+b B(a)I'(a) AB ra AB fa fla) + f(b)
1(*5) = s s ey [0 VO 2 4] < FE 2

gecerlidir.

Ayrica, [30]’da Fernandez ve Mohammed Atangana-Baleanu kesirli integral operatorleri

yardimiyla asagidaki esitligi elde etmislerdir.

Lemma 2.3.3 f: [a,b] = R ve f € Li[a,b] olsun. Eger a € (0, 1) ise Atangana-Baleanu
kesirli integral operatorleri icin

fla) £ /) _ B(a)l () AB o AB focg i,
Y e e [ O} @)

(b— a)>t!

~ 2(b—a) + (1 - a)(a)] /0 (1= 8)% = t°1f" (ta + (1 — )b) dt (2.3.9)

esitligi gecerlidir.
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Kavurmaci ve arkdaglar: [47]’de ikinci anlamda s-konveks fonksiyonlar i¢in Atangana-

Baleanu kesirli integral operatorleri yardimiyla agagidaki esitsizligi elde etmiglerdir.

Teorem 2.3.10 f: R, — R, ikinci anlamda s-konveks fonksiyon, s € (0, 1], a,b € R
ve a < bolsun. Eger f € Li[a,b] ise a € (0,1] olmak iizere Atangana-Baleanu kesirli

integral operatorleri i¢in

LAY 1—a [f()+F0)

? <>r<>+<b—a>[ B(a) }
< (_a A2 (f(0)} +72 12 {f(a)}]

f(a) + (1) o l—a  aBlas+1)
S[ B(a) Hn fats) (G-ar I

esitsizligi saglanir.
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3. ARASTIRMA BULGULARI

3.1 Atangana-Baleanu Kesirli integral Operatorleri Yardimiyla
Fonksiyonlarin Birinci Tiirevi Igin Integral Esitsizlikler

Bu boliimde, Atangana-Baleanu kesirli integral operatorleri yardimiyla fonksiyonlarin
birinci tiirevi i¢in elde edilmis integral esitlikleri ve bu egitlikler kullanilarak fonksiyon-
larin konveksligi ile konkavligi ve bilinen bazi klasik esitsizlikler kullanilarak elde edilen
integral egitsizlikleri verildi. Elde edilen sonuglarin bazilarinin daha once literatiirde var
olan sonuclara indirgendigi goriildii ve ayrica elde edilen sonuglardaki parametrelerin
bazilarimin 6zel degerleri igin yeni sonuglar bulundu. Ayrica bu boliimde, Riemann-
Liouville kesirli integral operatorii ile Atangana-Baleanu kesirli integral operatorlerinin,
farkli fonksiyonlar i¢in operatorlerdeki parametrelerin farkli degerlerine karsilik elde edilen

simiilasyonlar1 verilerek bu iki operatoriin kargilagtirilmas: yapildi.

Lemma 3.1.1 a < b olmak iizere f : [a,b] — R fonksiyonu (a,b) aralig) iizerinde dife-
ransiyellenebilir bir fonksiyon ve f’ € Ly[a, b] olsun. Eger o € (0,1], t € [a,b], A € [0, 1],
B(«a) normalizasyon fonksiyonu ve I'(.) gama fonksiyonu ise Atangana-Baleanu kesirli

integral operatorleri i¢in

(t—a)*fla)+ (b —0)*f(b) 201 —a)f(t)

Agla e o (AU B(a)T'(a) - B(a) (3.1.1)
=)™ e g G S S B
B(a)I' (o) /0 (T=XNf"(M+(1=Xa)dA B(OC)F(CY)/O AP (A + (1 — A)E) dA

esitligi elde edilir.

Ispat. Esitligin sag tarafindaki her bir integrale gerekli eklemeleri yapip kismi inte-

grasyon uygulandiginda once

(t—apt [P gy lman (-0 a)

—B(a)F(a)/O (1= 2 O+ (1= Na)dh + = 1(0) + S S
)t [N A N[t A O (L Aa)
- Bmﬂwn[ t—a) o =) ?

o, (t—a)f(a)

BT B

e f@)  (—at o .
B e B T, LT 0 e

l-—a (t —a)*f(a)
B’V Bar@

+
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—aff), alt—at
B(a)I'(«) +B(a)F(a)(t_a)a+1/a(t ) f(s)d

Lo, (- ()

B’ Bara)

_ _¢@ /t—s 1 (s) ds+2?—ao;f(t)
_ i

_|_

ifadesi elde edilir ve buradan

(t —a)*™! l-a (t —a)*f(a)

7 ' _ a gl _ a - - a — AB 7o
St L = e = N xS0+ TS = A ()

(3.1.2)

esitligi yazilir. Benzer sekilde

(b— o [ (b— 0o f®) (11— ()
B J, X7 G+ (== Crasr B(a)
=t A ( Ab+ 1— )t LEOD+(1 =N oy
- B<a>r<a>[ vy -t dA]
(bt fb) (1—a)f(t)
< @) Bl
oL [ f(b) b f(s
- @) [b / = - ds}
_<b )“f(b Z W >
Bla) () B(a)
CG-0tf®)  ald t)ﬂﬂ o f™1ds
= Bla)(a)  Bla)@)b_ / f(s)ls =ty
(-0 f(B) (- a)f()
Bla)l(a) ~ Bla)
G0 a oty = 0R0) (=)
B@)(a) Ba)l(a / Fe)s =0 ds = "5 F )~ Bla)
= AP ()

esitligi elde edilir ve buradan

(b_t)a+1 ! a gl . .
—B(a)r(a)/o A“F (b + (1 — \)t) dA Bl

b—t)*f) (A-a)f®t) _  apa
(Oé) B(a) - Ib {f(t)}
(3.1.3)

esitligi yazilir. (3.1.2) ve (3.1.3) esitlikleri toplanarak

(t—a)*t [ o g (b=t [ .,
B(a)r(a)/o(l NS (M + (1= Na) dA B(a)F(a)/O X F (b + (1 — A)t) dA
+(t —a)®fla) + (b—1)*f(b) n 2(1 —a)f(t)
B(a)I'(«) B(a)
= Aoy ()}
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esitligi elde edilir ve ispat tamamlanir.

Teorem 3.1.1 a < b olmak tizere f : [a,b] — R fonksiyonu (a,b) aralig1 iizerinde dife-
ransiyellenebilir ve f’ € Lja,b] olsun. Eger |f’| konveks fonksiyon, t € [a,b], a € (0, 1],
B(«) > 0 normalizasyon fonksiyonu ve I'(.) gama fonksiyonu ise Atangana-Baleanu kesirli

integral operatorleri i¢in

AIFOY P ()} - _
(t —a)>! £/ ()] 1f'(a)]
~ B(@)l'(a) [(a+1)(a+2) + (a+2)] (3.1.4)

(b—t) [ 1f'(b)] Lf'(t)]
"B (a) {(a—i—Q) + (a+1)(oz—|—2)}

esitsizligi elde edilir.

ispat. Lemma 3.1.1°deki esitligi kullanarak

WY {0} - -
_ ‘(t—a)o”rl
B@)(a)
-y
B)(@)
(t = )+ e (1
O [a—ne 17 e+ (- 2ol
(b—t)et!
B)r(@)

ifadesi yazilir. |f’| nin konveksligini kullanarak

/ (1= N (M + (1= \a) dA

/ A F (b + (1 — M\)t) dA

IN

+

/ £ (b + (1 — At dA

MO () - -

| Ba)T(a) Bla)
< %ﬂ T O+ (1= Aa)] dA

By J, W 0 0l
< Lo [ B o)+ (- @)

0 [ i+ - ol

esitsizligi elde edilir. Yukaridaki integraller hesaplandiginda
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(t—a)*fla) + (b=0)"f(b) 201 —a)f(t)
B(e)l(«) B(«)

O+ L)} -

< Lot [ a0+ (-3 )]
“(;)”T; [ e+ - 2o

- St [ n O g )
g(;)?z+; [(a—l—Q) PO+ e+ 'f/(t”]

esitsizligi elde edilir ve ispat tamamlanir.

Sonug 3.1.1 Teorem 3.1.1°de eger t = a+b olarak alinirsa

AEIQ <

#2137 (“57) - i @ + 10

2 B(a)(a)
2= a)f ()
B(a )
(b —a)**! 1F(5%)] /(@) + 1 (b)]
S BT |Tla+Da+2) T (at2) ]

esitsizligi elde edilir.
Uyar1 3.1.1 Teorem 3.1.1, o = 1 igin Teorem 2.2.5 ile ayni sonucu verir.

Teorem 3.1.2 a < b olmak tizere f : [a,b] — R fonksiyonu (a,b) aralig tizerinde dife-
ransiyellenebilir ve ' € Li[a,b] olsun. Eger |f’|? konveks fonksiyon, p~t + ¢~! = 1,
t € la,b], « € (0,1], ¢ > 1, B(a)) > 0 normalizasyon fonksiyonu ve I'(.) gama fonksiyonu

ise Atangana-Baleanu kesirli integral operatorleri icin

Afla {f(t)} +AB ng {f(t)} _ (t — a)afBg(zL;E[;)_ t)af(b) . 2(1 ;(Z))f(t)

bt (aps) (PO

+g(;)?fg; (L 1)i (!f’(b)\q—;\f’(t)!")é

esitsizligi elde edilir.

ispat. Lemma 3.1.1°den

33



(t—a)*fla) + (b=0)"f(b) 201 —a)f(t)

SR VIO R VIO BT S
=) [ ey o

B(Q)F(Q)A (L =N [f (At + (1 = A)a)| dA

(B R -

+B(a)r(a)/0 AT (A + (1= A)t) dA

esitsizligi elde edilir. Holder esitsizligi uygulanarak

AEIO& {f(t)} +AB Il;x {f(t)} . (t — a)afgcéi;i_‘gl;)_ t)af(b) _ 2(1 ;(Z))f(t) ‘

%K[u— apdA) (/ P+ (1— ))|qu>]
+% [(/01 ww)p (/01 I b+ (1 —A)chuﬂ

ifadesi elde edilir. |f’|9 nun konveksligini kullanarak

1 1
[1roesa-xora < [ AFOF+ -1
0 0
1 1
[iressa-xoran < [ preF s a-viror o
0 0
ifadeleri elde edilir. Yukaridaki integraller hesaplanarak istenilen sonuca ulasilir.

Sonug 3.1.2 Teorem 3.1.2°de eger t = “+b olarak alinirsa

(M) i (50) - s [F@ + S0

b—a) [ 1 N\ (IPED 1@\ (1O + e
S 21 B(a)T(a) (ap+1> < 2 ) +< >

esitsizligi elde edilir.
Uyar1 3.1.2 Teorem 3.1.2, o = 1 igin Teorem 2.2.6 ile ayni sonucu verir.

Teorem 3.1.3 a < b olmak tizere f : [a,b] — R fonksiyonu (a,b) aralig1 iizerinde dife-

ransiyellenebilir ve f' € L;[a,b] olsun. Eger |f’|? konveks fonksiyon, ¢t € [a,b], a € (0, 1],
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q > 1, B(a) > 0 normalizasyon fonksiyonu ve I'(.) gama fonksiyonu ise Atangana-Baleanu

kesirli integral operatorleri igin

Affa {f(t)} +AB Iba {f(t)} . (t — a)afBE(zL;EZ)_ t)af(b) . 2(1 ;(Z))f(t)

(t—a) (1 N0 [P O
= Bl <a+1) ((a+1)(a+2)+(a+2))

-t (1 N\ (| f ) O
"B ) (a+1> ((a—|—2)+(a+1)(a+2))

sonucu elde edilir.

ispat. Lemma 3.1.1’den

Afla {f(t)} +AB ng {f(t)} . (t — a)af(a) + (b — t)af(b) . 2(1 — a)f(t)

(t_a)aJrl ! e | g —Na

< Gy [ 0= O (1= M) ax
(b_t)a—H ' a gl il
+B(Q)F(a)/0 A |F (b + (1= A)E)| dA

ifadesi elde edilir. Power mean esitsizligini kullanarak

Algja {f(t)} +AB Iba {f(t)} r (t — a)af<a> + (b - t)af(b) . 2(1 — Oz)f(t)'

1 B(a)l(a) B(«) 1
< g(;)ar)?; [(/01(1 - A)“d)\) E (/01(1 — N M+ (1 — /\)a)|qd>\) ]
g’(;)??; [(/01 X"dA)l_q (/01 AL (A + (1 — A)t)]qd)\>q]
esitsizligi elde edilir. |f’|? nun konveksligini kullanarak

Affa {f(t)} +AB Iba {f(t)} _ (t - a)af(a) + (b — t)af(b) . 2(1 _ a)f(t) ’

B(@)T (@) Ba) |
b [( [a=xea) " ([a-vpiror-a-» \f’<a>rﬂdx)q]
IS [( [ A%A)lé ([ piror+a-miror]n) 3]

e ) (i ]

B(a)I(«) 1 )
(a : 1)1q Qi(f)% "o +‘fl><g+ 2>>q]

(b _ t)OH-I
ifadesi elde edilir ve ispat tamamlanir.

_|_

IN

a)a+1

"Bl
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a+b

Sonug 3.1.3 Teorem 3.1.3’de eger t = olarak alinirsa

ABI“f( : ) ABfaf(“;b)-ng(; o[+ s
2(1 - a)f (4)

B(«)

(b D @y’
= 2011 B« <oz+1> <a+1( )+(0z+2)>

S e
+<<a+2>+< T 1(at >)]

esitsizligi elde edilir.

Uyar: 3.1.3 Teorem 3.1.3, a = 1 i¢in Teorem 2.2.7 ile ayni sonucu verir.

Teorem 3.1.4 a < b olmak tizere f : [a,b] — R fonksiyonu (a,b) aralig1 iizerinde dife-
ransiyellenebilir ve f’ € Li[a,b] olsun. Eger |f’|? konveks fonksiyon, p~! + ¢7! = 1,
t € [a,b], @ € (0,1], ¢ > 1, B(aw) > 0 normalizasyon fonksiyonu ve I'(.) gama fonksiyonu

ise Atangana-Baleanu kesirli integral operatorleri igin

AB o AB 7o (t=a)*fla)+ (b=0)f() 2(1—a)f(t)
(t —a)**! 1 1f O +1f'(a)|*
~ B(o)'(a) (p(ap+1) " 2q )
(b—t)*+! 1 LF O+ 1)
B(@)(a) <p<ap+ T 2 )

esitsizligi elde edilir.

ispat. Lemma 3.1.1’den

Afla {f(t)} +AB Il? {f(t)} _ (t — a>aféc<tl)—;\§[;)_ t>af(b) _ 2(1 ;(Z))f(t)
(t —a)*tt B
< Lot [a=xeir o (- o)
o1

B(a)F(a)/O 2 (b + (1 — At dA

yazilir. Young esitsizligi kullanilarak

Afla {f(t)} +AB ng {f(t)} _ (t - CL) f(?;;gb) t) f(b) . 2(1 ;((;))f(t)‘
(t —a)>t! B .
= B<><>[/ ey /'“A” Do
(i B Y
+B(a)F(a) [P/o APAN + — / |f"(Ab+ (1 = M)t)| d)\]
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ifadesi elde edilir. Bu esitsizlikte | f’|9 nun konveksligini kullanarak ve basit bir hesaplama

yaparak istenilen sonug elde edilir.

Sonug 3.1.4 Teorem 3.1.4°de eger t = “+b olarak alinirsa

e (S50) 44 11 (50) - et (@) + 70

2 2 20B(a)T (@)
B 2(1 — «) (ib)
B(a)
B e S W1V C | R V0 PO
— 22t B(a)(a) \ p(ap+1) 2q

esitsizligi elde edilir.

Teorem 3.1.5 a < b olmak tizere f : [a,b] — R fonksiyonu (a,b) aralig: tizerinde dife-
ransiyellenebilir ve f € Lj|a,b] olsun. Eger |f’| konkav fonksiyon, ¢ € [a,b], a € (0, 1],
B(a) > 0 normalizasyon fonksiyonu ve I'(.) gama fonksiyonu ise Atangana-Baleanu kesirli

integral operatorleri i¢in

Af[a {f(t)} +AB [ba {f(t)} . (t F CL) f( L;(b — t) f(b) - 2(1 ;(Z))f(t)

o (0l o523
+§(;f12()(ail> (Zi; t)‘

esitsizligi elde edilir.

Ispat. Lemma 3.1.1i kullanarak ve |f'| konkav olmak iizere Jensen integral esitsiz-
liginden
t—a)*fla)+ (b—t)*f(b) 2(1—a)f()
a {f( )}+ b {f( )} B(O&)F(Oé) B(Oé)

(t—a) o
< Bla)T(a )/O( N M+ (1= Na)| dA

D=0

B(a)F(a)/O 2 (b + (1 — A8 dA

(t—ay ([ (1= N (M4 (1 A)a) dA

it (, - 97) |1 ( L= Ay )‘
Jo X (

/ Ab+ (1 — A)t) dA
[ AedA
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esitsizligi elde edilir. Yukaridaki integraller hesaplandiginda

(t—a)*fla) + (b=0)"f(b) 201 —a)f(t)

MY+ {0} - B(a)[(a) Bl

g( )r)::Zl(aL) f/(ai2t+31;a)’
+§(;)tr)( )(a—1|—1> /<Ziéb+ai2t)‘

esitsizligi elde edilir ve ispat tamamlanir.

Sonug 3.1.5 Teorem 3.1.5°de eger t = “*b olarak alinirsa

A];’ [oz <

2(1 —a)f (42)
B(a)

(b—a)>! 1 [ a+b a+1
= WHBmwm>Qm+1) f<%a+m+a+2@’

, oz+1b+ a+b
at+2  2(a+2)

esitsizligi elde edilir.

#8137 () - e [F@) + 10

Uyar: 3.1.4 Teorem 3.1.5, a = 1 i¢in Teorem 2.2.8 ile ayn1i sonucu verir.

Teorem 3.1.6 a < b olmak tizere f : [a,b] — R fonksiyonu (a,b) aralig tizerinde dife-
ransiyellenebilir ve f' € Li[a,b] olsun. Eger |f’|? konkav fonksiyon, p~' + ¢7! = 1,
t € la,b], « € (0,1], ¢ > 1, B(a) > 0 normalizasyon fonksiyonu ve I'(.) gama fonksiyonu

ise Atangana-Baleanu kesirli integral operatorleri icin

Afla {f(t)} +AB I;)y {f(t)} _ (t - a)af(a) + (b — t)af(b) . 2(1 - Oé)f(t) ‘

; B(a)[(w) ; B(a
st ) [ ()| St ()
esitsizligi elde edilir.

ispat. Lemma 3.1.1’i ve Holder integral esitsizligini kullanarak
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Affa {f( )} +AB Ib {f( )} (t — a)afécé) )—;‘El;)_ t>af(b) _ 2(1 ;(Z))f(t) ‘

< %(/01(1— aw) (/ F M+ (1= ))|qu>

+% (/01 wcu) : (/0 I Ob+ (1— )\)t)]qu>}1 (3.1.5)

ifadesi elde edilir. |f’|? nun konkavhigimi ve Jensen integral esitsizligini kullanarak

/O|f’(>\t+(1—)\)a)|qd>\ _ /0>\°|f'(>\t+(1—>\)a)|qd/\

(/01 A0d>\> I <f01 ;Od)\ /01 (M + (1= Na) dA)
,(a;tt) 1

/1 1 b+ (1= N)t)|"dx <

q

IN

(3.1.6)

esitsizligi elde edilir. Benzer sekilde

(3.1.7)

b+t\|"
! —_—
)
elde edilir. Buradan, (3.1.6) ve (3.1.7) esitsizlikleri (3.1.5)'de yerine yazildiginda istenilen
(t—a)*f(a) + (0 =1)*f(b) 2(1 = )f(1) ‘

SOy L)} - -

; B(a)I(a) ; B(a)
g(;)af)?; <Ozp1+1>p ! (a;t)’+ 1(32(;)?2) (ap1+1>
sonucu elde edilir,

Sonug 3.1.6 Teorem 3.1.6’de eger t = “*b olarak alinirsa

e (50) 7 5 (U50) - et @) + 70

21— a)f ib
,(3a+0b Y 3b+a
4 4

S

B(a )
(b—a)>! 1 P
S 3 B(a)T(a) (ap+1) [

esitsizligi elde edilir.

Uyar: 3.1.5 Teorem 3.1.6, a = 1 icin Teorem 2.2.9 ile ayn1 sonucu verir.
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3.1.1 Simiilasyonlar Yardimyla Kesirli Integral Operatérler I¢in Cesitli Karsi-
lagtirmalar

Kesirli analizin tarihi ¢ok eski olmasina ragmen son yirmi yilda literatiirde onemli bir
yer edinmistir. Bunun en 6nemli nedenlerinden biri tamimlarda kullanilan g¢ekirdegidir.
Caputo’nun tiirev taniminda kullanilan ¢ekirdek uzun yillardir kullanilsa da bir tekillik
sorununun oldugu da bir gercektir. Kesirli operator ¢ekirdeklerinin yapisi alana yenilik
katmigtir. Dogrusallik, genel yapi, tekillik ve yerellik gibi ozellikler operatoriin kullanim
alanlarin1 ve verimliligini 6n plana gikarmistir. Operatorlerin tutarh sonuglar tiretme,
hafiza etkisi ozelligine sahip olma, genelleme saglama ve bilinen operatorlerle uyumluluk
gibi ozellikleri, operatorde yer alan parametre ve fonksiyonlarin 6zel segimleri alinarak
yapilan simiilasyonlarda goriilebilir. Bu nedenle, Riemann-Liouville ile tekil ve yerel ol-

mayan Atangana-Baleanu kesirli integral operatorlerinin; —%f, 2% + z, (—;1:)% ve x

3
fonksiyonlar1 ve farkli o degerleri i¢in karsilagtirilma simiilasyonlar: Qekil 3.1 ile Sekil 3.12
arasindaki simiilasyonlarda goriillmektedir. Riemann-Liouville ve Atangana-Baleanu ke-
sirli integral operatorleri arasindaki uyum, bu simiilasyonlar analiz edildiginde acikca
goriilebilir. Daha sonra tezin arastirma bulgularindan olan Teorem 3.1.1°deki (3.1.4)
esitsizliginin sol ve sag taraflarinin karsilagtirilmasi; 0 < o <1 olmak iizere —%5, (—x)%
ve 73 fonksiyonlar icin yapilmistir ve bu karsilagtirmalar Sekil 3.13, Sekil 3.14 ve Sekil
3.15’deki simiilasyonlarda goriilmektedir. Teorem 3.1.1°deki (3.1.4) esitsizliginin sol ve sag
taraflarinin kargilagtirilmasi icin yapilan simiilasyonlarla bu esitsizligin Atangana-Baleanu

kesirli integral operatorii yardimiyla dogrulugu gosterilmistir.

2 4 6 8 10
5L
~10l — RL (Riemann - Lioville)
AB (Atangana - Baleanu)
150
_ooh

Sekil 3.1: a = 0.9 ve —%5 Fonksiyonu I¢in RL ve AB Kesirli Integral Operatorlerinin
Kargilagtirilmasi
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-10F

-12+F

14l

Sekil 3.2: a = 0.7 ve e Fonksiyonu I¢in RL ve AB Kesirli Integral Operatorlerinin
N

Karsilagtirilmasi

-10+

Sekil 3.3: a = 0.5 ve —%‘% Fonksiyonu I¢in RL ve AB Kesirli Integral Operatorlerinin
Kargilagtirilmasi
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350}
300
250 |
200} RL
150 — AB

100 ¢

50

2 4 6 8 10
Sekil 3.4: o = 0.9 ve 22 + = Fonksiyonu Icin RL ve AB Kesirli Integral Operatérlerinin
Karsilagtirilmasi

250
200}
150 - — RL
— AB
100}
50 |
2 4 6 8 10

Sekil 3.5: a = 0.7 ve 22 + x Fonksiyonu Icin RL ve AB Kesirli integral Operatorlerinin
Kargsilagtirilmasi
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200 |

150

— RL
100 — AB
50

2 4 6 8 10
Sekil 3.6: o = 0.5 ve 22 + = Fonksiyonu Icin RL ve AB Kesirli Integral Operatérlerinin
Karsilagtirilmasi

2 4 6 8 10
_57
— RL
-10+ — AB
_15,

Sekil 3.7: o = 0.9 ve (—a:)% Fonksiyonu I¢in RL ve AB Kesirli Integral Operatérlerinin
Karsilagtirilmasi
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-10+

-12 +

— RL
— AB

Sekil 3.8: a = 0.7 ve (—3:)% Fonksiyonu I¢in RL ve AB Kesirli Integral Operatérlerinin

Kargilagtirilmasi

Sekil 3.9: a = 0.5 ve (—x)% Fonksiyonu I¢in RL ve AB Kesirli Integral Operatérlerinin

Kargilagtirilmasi
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2000 -

1500 F

— RL

1000 — AB
500 -

2 4 6 8 10
Sekil 3.10: a = 0.9 ve z3 Fonksiyonu I¢in RL ve AB Kesirli Integral Operatérlerinin
Kargilagtirilmasi

2000 -
1500
— RL
1000
— AB
500 -
2 4 6 8 10

Sekil 3.11: a = 0.7 ve #* Fonksiyonu I¢in RL ve AB Kesirli Integral Operatérlerinin
Karsilagtirilmasi
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1500 -

1000 -
— RL

— AB

500 -

2 4 6 8 10
Sekil 3.12: o = 0.5 ve 2® Fonksiyonu Icin RL ve AB Kesirli integral Operatorlerinin
Kargilagtirilmasi

0.6

0.5

0.4}
— Sol
— Sag

0.3} 9

02f

1 ! f L | L L ! 1 L ! i | i L 1 1
F 02 0.4 0.6 08 1.0

Sekil 3.13: 0 < a < 1 Olmak Uzere —%5 Fonksiyonu igin Teorem 3.1.1°deki (3.1.4)
Esitsizliginin Sol ve Sag Taraflarinin Kargilagtirilmasi
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05

0.4F

i — Sol
0.3 r —-Sa§
0.2

0.2 0.4 0.6 0.8 1.0

Sekil 3.14: 0 < o < 1 Olmak Uzere (—z)2 Fonksiyonu I¢in Teorem 3.1.1'deki (3.1.4)
Esitsizliginin Sol ve Sag Taraflarinin Karsilagtirilmasi

701
60

50

40 — Sol

— Sag
30}

201

0.2 0.4 0.6 0.8 1.0

Sekil 3.15: 0 < a < 1 Olmak Uzere z® Fonksiyonu I¢in Teorem 3.1.1'deki (3.1.4)
Esitsizliginin Sol ve Sag Taraflarinin Karsilagtirilmasi
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a < bigin f : [a,b] — R fonksiyonu (a,b) araligr iizerinde diferansiyellenebilir
bir fonksiyon olmak iizere agagidaki (3.1.8) esitligi Teorem 3.1.7, Teorem 3.1.8, Teorem
3.1.9, Teorem 3.1.10, Teorem 3.1.11 ve Teorem 3.1.12'nin hipotezleri ve ispatlarinda kul-

lanilmigtar.

ABIL(t, a,a,b)

Sl e
i (5)

__(=a)” N Gl
2B(a)T (@) LF(8) + f(a)] 20B(a)T (@)

o () (7))

Lemma 3.1.2 a < b olmak iizere f : [a,b] — R fonksiyonu (a,b) aralig1 tizerinde dife-

[F(&) + F(b)]

ransiyellenebilir bir fonksiyon ve f' € Li[a,b] olsun. Eger a € (0,1], ¢t € [a,b], B(«)
normalizasyon fonksiyonu ve I'(.) gama fonksiyonu ise Atangana-Baleanu kesirli integral

operatorleri icin

5] (5]
() ()

_ (t=a)" " (b—1)"
2 B(a)(a) W /@)l - 2aB(a)r(a)

e
A G L
+2§)B_T%[/01§f’(1;kt+1;kb)dk—/ol%af’(1;kt+1;kb)dk]

esitligi elde edilir.

[f(t) + f(0)] (3.1.9)

Ispat. Esitligin sag tarafindaki her bir integrale gerekli eklemeleri yapip kismi integ-

rasyon uygulandiginda énce

l_af<a“>_ (t—a)*" /1@f/ 1+kt—|—1_ka)dk
) Jo

B(«) 2 20B(a)T(« 2 2 2
_l-a,fa+t) (zf—a)O‘Jrl ﬁQf(%t%—%a)l
~ B(a) / ( 2 ) 20 B(a)'(a) [ 2 t—a .
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_/1 of (L5t + k) ako‘_ldk]
0

t—a 2
_l-a fa+t\  (t—a)°
= B’ ( 2 ) 2 Blay(a)’ )

Sl (5 )
(t—a)

- @’ 5’ () * B L. (- awalf ()

(t— o)
> Blar(a)’ ¥

- ni(:3))-

esitligi elde edilir ve buradan

s’ ()
- ()}

esitligi yazilir. Benzer sekilde

(t—a)”

2 Bl

_ngtB_( a))‘“zl)/o1 k;f (1+k .

N S
= 46 &

BT () )P(a>f(a),

), 27z

14+ k&
++a)dk

2

o (5 o | 5 (55

+1_k0dk

2

- {0 (57)} - w0
o (5) e /5 (5"
- {1 (F)} - mamrm

esitlikleri elde edilir. Buradan (3.1.10), (3.1.11), (3.1.12) ve

toplanarak istenen sonug elde edilir.

Sonug 3.1.7 Lemma 3.1.2’de a = 1 alinirsa, (3.1.9) esitligi

D s+ @) - U ) + 1)
t—a) Yk, (1—-k 1+k Y£,(1+k, 11—k
_ T[/ﬂf( e [Ty (LR Aok,

(b—1t)° /%, 1+k 1—Fk /lk:,
= t b)dk— | =
L 0 T2 0 2/

esitligine dontisiir.
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+1+kb>dk

(3.1.10)

(3.1.11)

(3.1.12)

(3.1.13)

(3.1.13) esitlikleri taraf tarafa



Teorem 3.1.7 a < b olmak tizere f : [a,b] — R fonksiyonu (a,b) aralig1 iizerinde dife-
ransiyellenebilir ve f’ € Lia,b] olsun. Eger |f’| konveks fonksiyon, t € [a,b], a € (0, 1],
B(a) > 0 normalizasyon foksiyonu ve I'(.) gama fonksiyonu ise Atangana-Baleanu kesirli

integral operatorleri i¢in

‘ABIf(t,oz,a, b)|

(t—a)™" [rf'<t>|+|f'<a>\]+ (b—1)" [|f’(t)|+\f’(b)|

S %BTa)|  a+l 2Bl ()|  a+l

](3.1.14)

esitsizligi elde edilir.

Ispat. Lemma 3.1.2'de verilen esitlikten ve mutlak degerin 6zelleginden yararlanarak

4P 14 (t, v, a,b)|

(t —a)*™ Yk (1—Fk, 14k
2“B(a)1“(a)[/0 7f< 2 T a) dk
_/1_f (1+k +1_ka>dk]
0 2
(b—1)**! B (Ltk, 1=k
+2a3(a>r(a)/0 o (e )
Yk (1—k 14k
[ a
a-+1
(t (a - 1 f,(1;kt+1;ka>‘dk
Ve, 1—k
—l—/o — f( + 5 a>’dk]
(b—t)*! Vel (14+k  1—k
+2&B<oa>r<a>[/o (5w
Vel (1—k  1+k
+/07f( L b)‘dk]

esitsizligi yazilir. |f’| fonksiyonunun konveksligi kullamlarak

IN

) ke

22B(a)(a) | Jo 2
@ 1 kt
2 2

}ABIf(t,a,a,bﬂ

< %[/ S5 o (5 e a
[ 2 o+ () ol dk]

20



+%[/%KH‘“) ol (S5 ) 17wl
[R5 o (B iro]a ]
- 2&3‘( - ['f |/ — koY) dk+|f/ |/ B+ k) dk

|/ kS + ko) dk:+ ‘ — kot dk]

b—t ot 1 ' a a+1
+2£B( ))r( )[|f |/ ka+k°‘+)dk+|fi)|/o (k* — ko) dk
If’ ()|

I
— k) dk:+|f |/ k"‘+k““)dk]

(t - a)““ [If’(t)l + |f’(a)|] PO [|f’(t)| + |f’(b>|]
201 B(a)T(av) a+1 201 B ()T () a+1

ifadesi elde edilir ve ispat tamamlanir.

Sonug 3.1.8 Teorem 3.1.7°de eger a = 1 olarak alinirsa, (3.1.14) esitsizligi

)

0+ 51 = C32 100 + 0]

< o [\f( il + C52 1o+ o]

esitsizligine doniigtir.

Teorem 3.1.8 a < b olmak tizere f : [a,b] — R fonksiyonu (a,b) aralig tizerinde dife-
ransiyellenebilir ve f’ € Li[a,b] olsun. Eger |f’|? konveks fonksiyon, p~t + ¢7! = 1,
€ [a,b], @ € (0,1], ¢ > 1, B(a) > 0 normalizasyon foksiyonu ve I'(.) gama fonksiyonu

ise Atangana-Baleanu kesirli integral operatorleri icin

|51, (t, a,a,b)| (3.1.15)

[ |f’ IR IONk )i+ (3|f’<t>|q:|f'<a>|q)i]

[(3|f’ |qj £ (b)) )é N (!f'(g‘ng,f,(b)‘q);]

Sl

(t —a)*™ 1

= 2B(a)(a) <2p<ap+ 1>>
(b— )" 1

"% B (a) (2p<ap+ 1>)

esitsizligi gecerlidir.

ispat. Lemma 3.1.2°den
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|ABIf(t,04,a,b)’

< S| [l (et
+/01% f’(lgkwrl;ka)
+—2£l39_(0f));;> [/Olk—; 7 <1gkt+ 1;kb>'dk
+/01%a f’(lgktJrl;kb)‘dk

esitsizligi yazilir. Holder esitsizligi uygulanilarak,

dk

dk

(P11 (t 0, a,0)]

< dara (f (5)'#) ([ (5454
([ G ) ([ (55 )]
| O ()®) ([ (e 15)
(L)) ([l (5 ) )]

ifadesi elde edilir. |f’|? fonksiyonunun konveksligi kullanilarak

dk) '

3=

0\
dk)

4214t 00 )|
< s | (] <’f;>%k>; |

(L s (55 o] ) |
(L)) (L5 rors (5]
wwra | (] <’f—;>”dk>P |
(L e« (57 )wora) |
() (105 ror (55 )wor]a) |
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S =
Q

o (t- a)*™! 1
~ 22B(a)'(a) (2p(ap+ 1)) 4

G fcf;na) (s ) [(iﬂf’ iU} )i (o s

esitsizligi elde edilir ve ispat tamamlanir.

! |f’ )+ 317 @ )1+ (srf'<t>|q+|f'<a>|‘I)i

Q=]

|

Sonug 3.1.9 Teorem 3.1.8°de eger a = 1 olarak alinirsa, (3.1.15) esitsizligi

D50+ s - O ) + )

. t—2a> <2p(p1+1)) [(|f’<t>|Q+43|f'<a>|Q)3+(3|f’<t>|‘14+|f'<a>rQ)

ML) <2p(p1+ 1))i [ (3 0 + \f’(b)!q)3 s (\f’(t)!q "3 \f’(b)!")

esitsizligine doniigtir.

Q=

J

|

Teorem 3.1.9 a < b olmak tizere f : [a,b] — R fonksiyonu (a,b) aralig: tizerinde dife-
ransiyellenebilir ve f' € Li[a,b] olsun. Eger |f’|? konveks fonksiyon, p~' + ¢7! = 1,
t € la,b], @ € (0,1], ¢ > 1, B(a) > 0 normalizasyon foksiyonu ve I'(.) gama fonksiyonu

ise Atangana-Baleanu kesirli integral operatorleri icin

(4Pt a,b)]

(t—a)™ 1 PO+ |f(a)]?
20B(a)[ () [213—1 ploptrD T . ] (3.1.16)

(b— )" 1 SO+ PO
" Bla)a) [2p Tplap+1) q ]

esitsizligi elde edilir.

ispat. Lemma 3.1.2’den

[P (t, a,a,b)]

< | 5l ()
+/01% f’(l_gkt—i-l;ka)’dk]
s, 7 (T )
+/01% f’(lgkwlgkb)‘dk]

93

dk




esitsizligi yazilir. Young esitsizligi kullanilarak

4P (t, a,a,b)]

_ ot 1 a\ P 1
S B () e
2°B(a)l(a) [pJo \ 2 q.Jo

1/1<k“)” 1/1 ,<1+k 1—k>
+- — | dk+ - T+ a
)y 2 AN 2

_ a+1 1 o P 1
20B(a)I(@) |pJo \ 2 q.Jo 2 2

1 [ kNP 1 [t 1—k 1+k\/
+—/ (—) dk+—/ f’( b4 b> dk
P Jo 2 qJo 2

2
ifadesi elde elde edilir. |f’|? fonksiyonunun konveksliginden yararlanilarak ve basit hesapla-

dk

1-% 1+k 1
f’( 5 t+ ; a)

q
dk

1+k 1—k
f’< + t+ b)

q

dk

malar yapilarak istenilen sonug elde edilir.

Sonug 3.1.10 Teorem 3.1.9’da eger av = 1 olarak almirsa, bu durumda (3.1.16) esitsizli-

e

g1

o+ 1) - C52 o + o)

(t —a) [ 1 _gfww+wwwl

oo

- 2 |27 lp(p+1) q

+w—w1 ! gfww+u%w]

2 |27 lp(p+1) q
esitsizligine doniigtr.
Teorem 3.1.10 a < b olmak iizere f : [a,b] — R fonksiyonu (a,b) aralig tizerinde
diferansiyellenebilir ve f' € Lj[a,b] olsun. Eger |f’|? konveks fonksiyon, t € [a,b], o €

(0,1], ¢ > 1, B(«) > 0 normalizasyon foksiyonu ve I'(.) gama fonksiyonu ise Atangana-

Baleanu kesirli integral operatorleri igin
|AB[f(t,a,a, b)‘
(t=a)™™ (1 NTE[FOF + 2o+ 3) [F(a)
20 B(a)I' (o) (a + 1)) [ ( 4o+ 1) (o +2) )
(20 + 3) | F/(8)|" + | £/ (a)|"\
+< 4(a+1)(a+2) ) ]

IN

(3.1.17)

_Fw—wwl [ 2a+3v W+U%W)i
QQB(Q)F(Q) dla+1)(a+2)
/O + (2a+3 £ (b)
* ( 4a+1)(a+2) ) ]

o4



esitsizligi elde edilir.

ispat. Lemma 3.1.2’den

|AB]f(t,oz,a,b)‘
t—a)* Lo 1—k 1+Fk
22B(a)(a) | Jo 2 2 2
1
k|, (1+k,  1—k
+/0?f(2t+ 2a>‘dk]
(b—1)**! /%a {14k 1k
T S - t b)|dk
2B | ), 2 | Tt
1
k|, (1—k 1+k
+/05f( L b)]dk]

esitsizligi yazilir. Power mean esitsizligi kullanilarak

dk

IN

|4P14(t, v, a,b)|

AN
dk)

(t — @)+ ke N/ ke 1k 14k
= 2@B<a>r<a>l(/o gu) ([l (5 )
+(/ fdk) 4 (/ o f’(lgktJrl;ka)qdk)q]

_ et e ke 14k 1—k
zaB [ (/07f<2t+2b)

Ko NTE ke 1k, 14k |\
5k i b)| dk
+(/02 ) (/ogf(g”z) )

esitsizligi elde edilir. |f’|? fonksiyonunun konveksligi kullanilarak ve basit hesaplamalar

¢ N7
dk)

-

yapilarak, istenilen sonug elde edilir.

Sonug 3.1.11 Teorem 3.1.10’da eger o = 1 olarak almursa, (3.1.17) esitsizligi

10+ st - C5 2 1) + 1)

< % (%) [<| )+ |f’(a)|q)3 N (5 LUl |f’<a>V)i]
+@ (;) [(5 o+ |f’<b>1q>3 . (If’(t)!q +245|f/(b)!q>3]

esitsizligine doniigtir.
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Teorem 3.1.11 a < b olmak iizere f : [a,b] — R fonksiyonu (a,b) araligr tizerinde
diferansiyellenebilir ve f" € Li[a, b] olsun. Eger |f’| konkav fonksiyon, ¢ € [a,b], a € (0, 1],
B(«) > 0 normalizasyon foksiyonu ve I'(.) gama fonksiyonu ise Atangana-Baleanu kesirli

integral operatorleri i¢in

[Pt a,b)] (3 1.18)

. 2((1753—(;));2;) (2@11)) [f/ (M)'+ P <(2a—|—3 t+a>‘

2(a+2) (a+2
N (b—t)** 1 ,((2a+3)t+b
29B(a)a) \2(a+ 1)
esitsizligi gecerlidir.

Y t+ (2a+3)b
2a+2

2(a+2)

Ispat. Lemma 3.1.2 ve Jensen integral esitsizligini kullanarak,

’ABIftaa,b)
a+1 1
ko 1—-k 1+k
< R
< ZCVB [0 5 5 L+ 5 a)‘dk
f’< ;k L )'dk]
)t /%a 1+k; 1—k;b 0
zaB 20B(a)l(a) | Jy 2 2
1
k|, (1—k 14k
— t b )| dk
s f<2 5 >\ |
_ (t . a)aJrl /1 _adk f/ 01 % (l_kt + 1+ka) dl{?
— 22B(a)l(a) 0o 2 g
4 L £ ) B (k4 Lha) dk
0 2 VR gk
0 2
o o 1 po _
20 B(a)T(a) | \ Sy Lk
1 ge 11—k 1+k
ke —( t 4 155b) dk
+ —dk) / 0 2
(/0 g ( 1kadk

esitsizligi elde edilir. Yukaridaki esitsizlikte yer alan integraller hesaplanarak istenilen

sonug¢ elde edilir.

Sonug 3.1.12 Teorem 3.1.11°de eger a = 1 olarak alimirsa, (3.1.18) esitsizligi

o6



0w+ 10

[ swar =S 1)+ s -

< @G)[f(w%w)h f,(5tf—3|—a>‘
)]

C(5t+b C(t+5b
f (—6 (2
esitsizligine doniigtir.

Teorem 3.1.12 a < b olmak tizere f : [a,b] — R fonksiyonu (a,b) araligi tizerinde

diferansiyellenebilir ve f’ € L;[a,b] olsun. Eger |f’|? konkav fonksiyon, p~' + ¢7! = 1,
t € la,b], @ € (0,1], ¢ > 1, B(ar) > 0 normalizasyon foksiyonu ve I'(.) gama fonksiyonu

ise Atangana-Baleanu kesirli integral operatorleri igin

b)) o
-

, (t+3b
ispat. Lemma 3.1.2 ve Holder integral esitsizligini kullanarak

‘ABIf(t,a,a,b)‘

SAL

QSB(;));:;) (21”(04; ¥ 1))

(b—1t)**™ 1
2B (a) <2p<ap+ 1))

esitsizligi elde edilir.

’ABIf(t,a,a,b)}
o+l 1 /pa\P 5 1
< = / LA /
22B(@)I'(a) | \Jo \ 2 0
1 ko p % 1 1—|—k‘ 1—k q %
— | dk ! t dk
LG o) (U (e 7))
1
(b—t)*™ /1 ke ? /1 C(1+E 1=Kk \|" \*
_— — | dk t b)| dk
e B@r@ |\, \ 2 L
VRN NT 1=k T4k N7 \e
— | dk ! t b)| dk 1.2
LG ) ([l () ) 120
ifadesi elde edilir. |f’|? fonksiyonunun konkavligi ve Jensen integral esitsizligi kullamlarak
! 1—k 1+4+k\/ ! 11—k 1+k
' t dk = K| f! t
[l (e i) o= el (e 55)
1
< ( / kodk>
0

f/ <f01 ko (%t + %a) dk)
57

2

¢ N\
dk)

1—k 1+ k
f'( 5 t+ + a)

=

q

dk

q

[ kOdk



fl

t+3a)|”
4
esitsizligi elde edilir. Benzer sekilde

/Of(1+k 1— k)qdk f,(?)tza)
/Olf(1+k: 1—k:b)qdk f,(3t+b)q
! 1—k 14k \/* t+3b\ |
! b )| dk " —=
[l (55t < | (57)

esitsizlikleri elde edilir. Dolayisiyla elde edilen esitsizliklerin sag taraflar1 (3.1.20) esitsizli-

IN

IN

ve

ginde yerine yazilarak ve gerekli hesaplamalar yapilarak

,(t+3a (3t+a
[ / ( 1 I\
1
» 3t+0b t+3b

! !/
()] ()]
Sonug 3.1.13 Teorem 3.1.12°de eger a = 1 alimursa, (3.1.19) esitsizligi

[ s =50 50+ san - C5 2 0 + s
. t—2a) (QP(;H)) [f(t—i—:)a) ,<3tia>’
b

‘+
L5 = 1>>; (ﬁ)”

|, (3t+
!
r())
esitsizligine doniigiir.

Lemma 3.1.3 a < b olmak iizere f : [a,b] — R fonksiyonu (a,b) aralig1 iizerinde dife-

‘ABIf(t,a,a, b)|

3 =

(t — a)"! |
= 2B()(a) (2p<ap+ 1>)

_|_

(b—t)** 1
T2 Bla)(a) <2p<ap+ 1>>

esitsizligi elde edilir ve ispat tamamlanir.

B =

ransiyellenebilir bir fonksiyon ve f' € Lj[a,b] olsun. Eger a € (0,1], ¢t € [0,1], B(«)
normalizasyon fonksiyonu ve I'(.) gama fonksiyonu ise Atangana-Baleanu kesirli integral

operatorleri i¢in

2= a)“(z—ila;acﬂ?“r(a) [f(a) + f(b) +2f (a ; b)]
EEOR ey (20 o rz s+ o)+ s ()]

— /01((1—t)"—ta)f’(1;ta+1;tb>dt
+/01(t"—(1—t)“)f(1+t ) a

o8




esitligi elde edilir.

ispat. Esitligin sag tarafinda kismi integrasyon uygulayarak

I = /1((1—75 — 1) f’(1+t _ b)dt
0

(L =t) —t) f (Ha+ Lb) at|'
a—b
2

(3.1.21)

0
200 (! 1+t 1—t
o 1 — a—1 a—1
b_a/o (A=) +t¢ )f< ot b)dt

2 2 a+b 2a [* w1 1+t 11—t
- e - St - [ 1f< oy L b)dt

20 1&1 1+t  1—t
S [ (e ) ar
a+b

- (0 - s [ e s

20+lg < fa+b > g
‘(T—a)aﬂ/a (2 “”) T

esitligi elde edilir. (3.1.21) esitliginin her iki tarafi % ifadesi ile carpilirsa
(b—a)>! (b —a)* a —l— b
i A
B ~ 2B VW5
2 B 1 f(x)d 3.1.22
_B(OJ)F(O(> . (l’—&) f(l’) & ( s )

a+b

sl (5 “’) (e

esitligi elde edilir. Benzer sekilde kismi integrasyon uygulayarak

12:/1( (1_t)a)f,(1+t 12t>dt
(0 (1—t) (12b+“)dt°

(l

(3.1.23)

1

_b20‘ / (ta1+(1—t)a1)f<1;tb+1_ta)dt
“a ),
2 a+b 20ty b a+b\*t
= m(f(b)va(T))—m/a;b(ﬁ— 5 > f(z)dz

2a+1a

b
B /M (b—x)*" f(x)dx

(b—a)t!

esitligi elde edilir. (3.1.23) esitliginin her iki tarafi W

ifadesi ile carpilirsa

29



(b —a)*tt  (b—a)” a+b
204+1B(a)1“(a) 2 = QO‘B(Oé)F(O{) (f(b)+f( 9 )) (3124)
¢ ’ a+b\*"!
Bl >/ (r-"57) s

B o}
C e s
—_— —x x)dx
B(a)I'(a) Jate
esitligi elde edilir. (3.1.22) esitligi ile (3.1.24) esitligi toplanirsa ve gerekli eklemeler ile

cikarmalar yapilirsa

(b— a)ot!
21 Bla)T() T
o (b—a)*+ (1 - a)2°T () a+b
- L O )+ 53]
l—-« o o a1
e O = g [ @ M@

22B(a)l(a)

it () o (= 5) o

egitligi elde edilir. Atangana-Baleanu kesirli integral operatorii kullanilarak
(b—a)>! /1 L1+t 11—t
1 _ [ Re
oA BT (@) |, (1=t)* =t f 5 a+ 5 b)dt

+/01 (t* = (1=t f (%H 1;ta> dt]
e oo (43

o a-+b N o N a+b
— [Aff f(T) + ABIGTM, (a) + A%I f(b) + ABI,,f( : )}

esitligi elde edilir ve ispat tamamlanir.

Teorem 3.1.13 a < b olmak iizere f : [a,b] — R fonksiyonu (a,b) araligr iizerinde
diferansiyellenebilir ve f’ € L;[a,b] olsun. Eger |f’| konveks fonksiyon, o € (0, 1], B(«)
normalizasyon fonksiyonu ve I'(.) gama fonksiyonu ise Atangana-Baleanu kesirli integral

operatorleri icin
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‘Q(b —a)*+ (1 — a)2°"T(a) [f(a) ) +2f (a+ b)]

(b —a)ott 2
20 B(a)T () wefa+b N N wefa+b
R s (S50 + s+ s+ iy (0|
< 2@+ 1O (3.1.25)
N a+1

esitsizligi elde edilir.

ispat. Lemma 3.1.3 ve mutlak degerin 6zelligi kullanilarak

‘Q(b—a)a—l—(l—oz)QaHF(oz) {f(a)Jrf() of (a+b)]

(b—ayert
ISR ey (D50 4 rasia) + ABres)+ s (50|
_ /01((1—t)0‘—ta)f’ (1‘2”@+ 1;%) dt
+ [ - r (S i) a
< /01(1—15)”‘ ’(1;ta+1;tb)‘dt+/olt“ f’(lgtcwl;tb ‘dt
+/01t°‘ f <1;Ltb 1;%) dt+/01(1—t)°‘ f (1"2”5 1;@) di
ifadesi yazr. |f/| fonksiyonunun konveksligi kullamlarak
e T s+ 0 +27 (450)]
IR ey (U5 rati@) + ABres)+ s (50|

< [a-or B Freas [ o o) a
[ ol ] a
+ [a-o S e ) a

ifadesi elde edilir. Yukaridaki integraller hesaplanarak

2(b—a)a(z£1a;ﬁzga+lr(a) {f(a)+f(b)+2f (a—;b)}
) g (U50) 4 a4 i)+ o5 (U5 ]
¢ AW IO]

esitsizligi elde edilir ve ispat tamamlanir.
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Sonug 3.1.14 Teorem 3.1.13’de o = 1 segildiginde, (3.1.25) esitsizligi

fla) + f(b) +2f (4*) 4 ' [/ (@) + /()]
b—a a b—aQ/af(x)dx‘S 2

esitsizligine doniigtir.

Teorem 3.1.14 a < b olmak iizere f : [a,b] — R fonksiyonu (a,b) araligr tizerinde
diferansiyellenebilir ve f’ € Li[a, b] olsun. Eger |f’|? konveks fonksiyon, a € (0,1], p~* +
¢ ' =1, ¢ > 1, B(a) normalizasyon fonksiyonu ve I'(.) gama fonksiyonu ise Atangana-

Baleanu kesirli integral operatorleri igin

‘Q(b —a)* + (1 - a)2°*' () {f@ . F)+2f (a;bﬂ

(b— a)ot!
o (2 (2]
ot (2l |f'<b>|q)i  (Blrors If’(a)lq)‘ll] (3.1.20)

esitsizligi elde edilir.

ispat. Lemma 3.1.3 kullanilarak

‘Q(b - a)a(;rfla;ﬁzgaﬂwa) {f(a) )+ 2f (a—;b)}
IR [azpe (50) + orza s+ s+ rps ()]
f! (1;_ta+ 1;tb)‘dt

! 1+t 1—t !
< /(1—15)“ f’( LA b)‘dt+/t°‘
0 2 2 0
Lty 1t

+/01ta f (th 1;@) dt+/01(1—t)°‘
‘Q(b—a)a—l—(l—a)%“ﬂf‘(a) :f(a)—i—f(b)—i—Zf (a—;b)}

ifadesi yazilir. Holder esitsizligi kullanilarak
(b — a)ot?

—2a(+b1 b (;‘;);(10‘) {ABI“ f (“;b> + P Ik fla) + AR If () + API S (a;b)} ‘
< ([amoma) ([l (s 50)[ w)’

([ o) ([ (e 50 )

—l—(/oltapdt); </O f! (1;% 1;%) th)é

c([omoma) ([ (5050 )
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dt
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ifadesi elde edilir. |f’|? fonksiyonunun konveksligi kullanilarak

‘2(5) - a)a(2£1a;ﬁ32a+1r(a) {ﬂa) s (a ; b)}

_2a+lB(a)F<&) |:A§]ocf (aT—i_b> + AB]aer (a)+ a+blaf(b) + ABIbaf (&+b):| ‘

b=yt | 2
([ [Hirar+ S ror]a)’

< (/01(1—t)apdt)
+(/01tapdt>< [1” %|f’(b)|q}dt);

(o) ([ Ptvon- mar]a)

+(/011—tapdt) (/ [ﬂu B+ ;t|f'<a>|ﬂdt);

esitsizligi elde edilir. Yukaridaki esitsizligin sag tarafindaki integraller hesaplanilarak is-

3 =

tenilen sonug elde edilir.

Sonug 3.1.15 Teorem 3.1.14’de o = 1 segildiginde, (3.1.26) esitsizligi

’f +fb)_4;2f(a7+b)_ _4 2/bf(:p)dx J (p:l);{(3|f’(a)|q4+|f/(b)|q);

\ (3 Ol !f’(a)\q) 3]

Teorem 3.1.15 a < b olmak iizere f : [a,b] — R fonksiyonu (a,b) araligr tizerinde

esitsizligine doniigtr.

diferansiyellenebilir ve f’ € Li[a,b] olsun. Eger |f’|? konveks fonksiyon, o € (0,1], ¢ >
1, B(a) normalizasyon foksiyonu ve I'(.) gama fonksiyonu ise Atangana-Baleanu kesirli

integral operatorleri i¢in

2o GW(ZF@;?WF(“) [f(a) ) +2f (“ . b)}
BN [angey (E0) 4 g+ areso) + s (0]
( ; 1)1; [ (2(a f&i s LAC Q(al—l— 2) 'fl(b”q) % (3.0.27)

S

20+ 3 . 1 -
TR T AN Py Ty |f<b)|>

“(a
(5o O +
(aa

(a+2)

a+3 o 1 DAY
I |f(a)|)]




esitsizligi elde edilir.

ispat. Lemma 3.1.3 kullanilarak

‘2(b — a)a(;rfla;afZQaHF(a) [f(a) )+ 2f (a —QF b)}

_2a+lB(Oé)F<Oé) |:AB[o¢f (G—;b) + ABI(;H (CL)+ A&Ioef( ) ABIaf (a+b>:| ‘

(b_a)aJrl

1 1+t 1—t L 1+t 1—t¢
< _ « ! « !
< /0(1 t) f( 5 a+ 5 b)‘dt—l—/ot f( 5 a+ 5 b)‘dt
1+t 1—1t
f(—2 b+ 5 a)

L 1+t 1-—t ! N
[ f( b )dt+/0(1—t)

ifadesi yazilir. Power mean esitsizligi uygulanarak

dt

e
)

1—

Q=

REDENERILE
bl (). s e s3]
(t5tas 59 a)
() (L
(55))
(o) (ool (e
2ot Qa2 (a4 g0+ 21 (1)
g 2 )
< (/Ola—t)adt) ([a-or [ﬂwn o )
+(/1tadt) ( [ P ] a
([amora) (/Oll—t {ﬂrm\ %\f’(aﬂdt)é

a+b
e fa+ w2 (U5
1 I— 1
< (/ (1—t)adt> (/ (1— 1)
0 0
A1+t 11—t ]| 0
( 5 a + 5 b) dt)
1 1-1 1
+ (/ tadt> (/ t*
0 0
ifadesi elde edilir. |f’|? fonksiyonunun konveksligi kullamlarak
a+1
IR ey (50 4 rzasi@) + ABres+ s (57|
1 1 %
+ (/ t“dt) ( t* {ﬂu t\ ’(b)|q] dt)
0 0
64



1

- (ail)l_; [(2@« e @+ g PO

20+ 3 q 1 L 1g
+<2(a+1)(0z+2)| W e DT |f(b)|)

2c0 + 3 LN 1g
<2(a+1)(a+2) FOF +

Q=

1
q

1 , q
2+ 1)(a+2) £ ()l )

a+3 11\ (4 1 A
+<2(a+1)(a+2) PO sy ‘f(“”) ]

esitsizligi elde edilir ve ispat tamamlanir.

Sonug 3.1.16 Teorem 3.1.15de eger o = 1 segilirse, (3.1.27) esitsizligi

‘2[f<a)+fb<b—):2f(a+b bj /f ,
< (%) <2lf' Q)" +1£(0) > <5|f’ |q12+|f'<>|>

T (5 SO + |f’(a)|q)31 . (2 |f'<b>|q6+ |f’(a)l") é]

esitsizligine doniigtr.

Teorem 3.1.16 a < b olmak iizere f : [a,b] — R fonksiyonu (a,b) araligy {izerinde
diferansiyellenebilir ve f’ € Li[a, b] olsun. Eger |f’|? konveks fonksiyon, a € (0,1], p~* +
¢ ' =1, ¢ > 1, B(a) normalizasyon fonksiyonu ve I'(.) gama fonksiyonu ise Atangana-

Baleanu kesirli integral operatorleri igin

e (23
s (13) o (53

4 2@+ 1O (3.1.28)
plap +1) q

sonucu elde edilir.

ispat. Lemma 3.1.3 kullanilarak

\ e e s+ 0y 21 (“5)]

—wlB(O;i(f‘) [ABfaf <a;b> + I fla) + AT O) + LS (“bﬂ ‘

(b—a 2
1 1— ! 1 1—
f’( ;tcw 2tb)‘dt+/ ¢ ’( ;tcw 2tb)‘dt
0

1
< [a-er
0
1
dt+/(1—t)a f’(%b—l—lgta)
0

1 1+t —t
| f b+
el (e )
65

dt




ifadesi yazilir. Young esitsizligi kullanilarak

‘2(19 —a)* + (1 - a)2°*' () {f@ . F)+2f (a—;b)}

(b —a)ott

2a+1B T b b
I e (M) st s - s (1)

1/1 1/1 (1+t 1—t)
= 1 —t)*Pdt + ~ I a+ b
p 0< ) q.Jo 2 2

1 /[t 1 [t 1+t 11—t \ /Y
+—/ ta”dt+—/ f’( i a+ b) dt
P Jo q.Jo 2 2

1 /[t 1 [t 1+t 1—t¢
+—/ ta”dt+—/ f (lb+ a)

P Jo qJo 2 2
1 ! 1 [t

+—/ (l—t)apdt+—/

P Jo q.Jo

1+¢ 1-¢
I (—+ b+ a>
ifadesi elde edilir. |f’|? fonksiyonunun konveksligi kullanilarak ve yukaridaki esitsizligin

q

dt

IN

q

dt

q
dt

2 2

sag tarafindaki integraller hesaplanarak istenilen sonuca ulagilir.

Sonug 3.1.17 Teorem 3.1.16’da a = 1 secildiginde, (3.1.28) esitsizligi

fl@+f)+2f (%) 4 ’ 2 (@) + [ (B)*
b—a (b—a)Q/af(:E)alx§p2—l—pjL q

esitsizligine doniigtr.

Teorem 3.1.17 a < b olmak tizere f : [a,b] — R fonksiyonu (a,b) araligi tizerinde
diferansiyellenebilir ve f’ € Li[a,b] olsun. Eger |f’| konkav fonksiyon, a € (0, 1], B(«)
normalizasyon foksiyonu ve I'(.) gama fonksiyonu ise Atangana-Baleanu kesirli integral

operatorleri icin

‘Q(b —a)® + (1 — @)2°"'T(a) {ﬂa) T FE) +2f (a+ b)}

(b _ a)aJrl 2
2a+1B(OéFOé) AB 1o a+b AB 10 AB 7o AB o a+b
e s (52) o (59
1 a(a+3)+bla+1) a(20+3) +b
< ' " 3.1.29
- (a—i—l) f( 2(a +2) | 2(a +2) ( )
e b2a+3) +a ny bla+3)+ala+1)
2(a+2) 2(a+2)
esitsizligi elde edilir.
Ispat. Lemma 3.1.3, |f'| fonksiyonunun konkavhigi ve Jensen integral esitsizligi kul-

lanilarak
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‘2@ - GW(ZF@;Q?FWF(“) [f(a) ) +2f (“ . b)]
2“+;B<a)£<lo«>1{w[af (“57) + s+ s+ 25 (50|
t 11—t ! 1+t 11—t

/ (1= 1) ( L . b)‘dtJr/oto‘f( ; at+— b)‘dt

+/ <1+t 2ta) dt(+/01(1t;°‘ P (1+tb 1;&@)

(/ - adt) fl( (1_2 11—+ttac:zt1 - dt)

( t%lt) f’(folta G - +g0) dt)

( t“dt) f,(folta iiljjt dt)
[ todt

+ (/01(1 - t)%lt)

fo (1+tb+ 1—t )dt
f (1 —t)edt

ifadesi yazilir. Yukaridaki ifadenin sag tarafindaki integraller hesaplanarak

‘2(b—a)o‘+(1—a)2a+1F(oz) [f(a)—l—f( )+ f(a+b)1

IN

dt

IN

(b— )t
IR ey (50 4 rati@) + ABres)+ s (57|
< (o) || () (ass)
/(b(QQOE;j)Q;L a) N ,<b(a +23()a++a2()a+1))‘

esitsizligi elde edilir ve ispat tamamlanir.

Sonug 3.1.18 Teorem 3.1.17°de o = 1 segilirse, (3.1.29) esitsizligi

fla) + £(b) +2f (“3°)

‘ b—a b—a /f

1 ,(2a+0 , (Da+0b

< (4) (3)\+ Sl

+f,<5b+a) N ,<Qb+a>
6 3

esitsizligine doniigtr.
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Teorem 3.1.18 a < b olmak iizere f : [a,b] — R fonksiyonu (a,b) araligr tizerinde
diferansiyellenebilir ve f' € Ly[a,b] olsun. Eger |f’|¢ konkav fonksiyon, p~! + ¢! = 1,
g > 1 a € (0,1], B(a) normalizasyon foksiyonu ve I'(.) gama fonksiyonu ise Atangana-

Baleanu kesirli integral operatorleri icin

‘2(19 —a)® + (1 — a)2°1T(a) {f@ .50 427 (a;b)]

s
IR [y (132) 4 o+ oo s (52
< e (<2552 o

sonucu elde edilir.

Ispat. Lemma 3.1.3 ve Holder esitsizligi kullamlarak
2(b—a)®+ (1 — )2« a+b
2o U2 O s+ s +2r (50

' dt) q (3.1.31)

3 =

lanarak

I

dt

(b—a)ot!
1
< (/ (1-— t)apdt)
0
T+t 1t \[" \*
' b)| dt
r(See ) )
1 1
¥ ( / to‘pdt) ( /
0 0
ifadesi yazilir. |f’|? fonksiyonunun konkavligindan ve Jensen integral esitsizliginden yarar-
,(3a+Db\|*
4
ifadesi elde edilir. Benzer sekilde

_2a+1B(a)F(a) [ABIaf (a;—b) . ABIa+b (a) + a+blaf(b)+ AB o s (a+b>} ‘
1 5 1
op g
([ ) (]
146 1—t \|? \@
TSI
1+t 11—t 0\ Lol T+t 11—t \|*
f( 50+ — b) dt::(A 0 ( 5ot — b)
1+t 1—t | ,(3b+a\|?
[ (ot < | (%)

(b — a)tl 9
; 1+t 1—t
!/
(b (5re7)
! » Lot 1t \|7 \*
+(/(1—t)apdt> (/ f( Ty a) dt)
0 0 2 2
_ q
- (/1t0dt) Jo 1° (ta + 150) dt
0 Qf tOdt
ifadesi elde edilir. Elde edilen bu ifadelerin sag taraflar1 (3.1.31) esitsizliginde yerlerine

dt <

yazilirsa
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‘2@ - GW(ZF@;Q?FWF(“) [f(a) ) +2f (“ . b)}

20T B(a)T(«) N +b N N +b
IR ey (U0) gt + s+ s (10|

R e |

esitsizligi elde edilir ve ispat tamamlanir.

= (ozpil)zl’ [

Sonug 3.1.19 Teorem 3.1.18’de o = 1 segilirse, (3.1.30) esitsizligi

2f (45 4 ’
‘f SR f(g)_ b_az/f(x)dx

b—a

esitsizligine dontsiir.

3.2 Atangana—Baleanu Kesirli Integral Operatorleri Yardimiyla
Fonksiyonlarin Ikinci Tiirevi I¢in Integral Esitsizlikler

Bu boliimde, Atangana-Baleanu kesirli integral operatorleri yardimiyla fonksiyonlarin
ikinci tirevi icin integral egitlikleri elde edildi. Daha sonra bu egitlikler kullanilarak
fonksiyonlarin konveksliginden, konkavligindan ve literatiirde iyi bilinen Holder, power
mean, Young ve Jensen esitsizliklerinden yararlanilarak yeni integral esitsizlikleri ispat
edildi. Ayrica, ispat edilen sonuclardaki parametrelerin bazilariin 6zel degerleri i¢in yeni

sonuclar bulundu.

Lemma 3.2.1 a < b olmak tizere f : [a,b] — R fonksiyonu (a,b) araligi tizerinde iki
kez diferansiyellenebilir bir fonksiyon ve f” € Lia,b] olsun. Eger o € (0,1],t € [a,b],
k € [0,1], B(«) normalizasyon fonksiyonu ve I'(.) gama fonksiyonu ise Atangana-Baleanu
kesirli integral operatorleri igin

(t—a)*fla) + (0 —1)*f(b) 2(1—a)f(t)

AB ra AB 7o . _
SO BT (@ Bla)
(t — a)ot? - (t — a)o+? 1 ot L
(a+1)Bla >r<a>f @ e DB / (L= k)" (kt + (1= k)a) dk
(b—1)*" : (b—t)*+? S B
"B’ P G DB@W) / KLY (kb + (1= K)t) dk

esitligi elde edilir.
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ispat. (3.1.1) esitliginin sag tarafindaki her bir integralde kismi integrasyon uygu-

landiginda
(e R
B(a)F(a)/O (1= k) f (kt + (1= k)a) dk (3.2.1)
B e B P |
= B(a)F(a)[ ar1 ) WHI=ka)

it — a)/o C ;f)fﬂf” (kt + (1 — k)a) dk]

(t —a)*t?
B(a)l'(«)

1, (t—a)
PO EAC Ry

/1(1 — k)T (kt + (1 — k)a) dk]

esitligi ve benzer sekilde

(b—t)aH 1 o -
B /O K f (kb + (1 — k)t) dk (3.2.2)

% (b — t)ot! [ potl
= TB@r@ |asr) WO

V) S R (b—1t)
~ B(a)T(a) _a+1f(b>_

)
a-+1

0

/ R b+ (1— ) dk]

ol /0 K (kb + (1 — k)) dk

esitligi elde edilir. Burada, (3.2.1) ve (3.2.2) esitlikleri taraf tarafa toplanirsa,

AaB]a {f(t)} +AB ]I;X {f(t)} _ (t o a)afBECEZy;;EZ)_ t)af(b) - 2(1 ;(Z))f(t)

_ (t_a)aﬂ 'y (If—a)‘)”“2 1 et g o
B (a—l—l)B(a)F(a)f( )+(a+1)3(a)r(a)/0 (1= k)" f" (kt 4 (1 — k)a) dk

=t / (b — t)o+? S )
(a+ 1)B(a)F(a)f () + (a + 1)B(a)[(a) /0 KO (kb + (1 = K)t) dk

esitligi elde edilir. Dolayisiyla ispat tamamlanmig olur.

Teorem 3.2.1 a < b olmak iizere f : [a,b] — R fonksiyonu (a,b) aralig) tizerinde iki
kez diferansiyellenebilir ve f” € Li[a,b] olsun. Eger |f”| konveks fonksiyon, t € [a,b],
€ (0,1], B(a) > 0 normalizasyon fonksiyonu ve I'(.) gama fonksiyonu ise Atangana-

Baleanu kesirli integral operatorleri igin

(t —a)*fla) + (b—1)"f(b)

Agla {f(t)} +AB ]l? {f(t)} - B(CY)F( )
C(t—a)* " f'(a) = (0—t)*F ) 2(1—a)f (t)’
(a+1)B(a)I'(e) B(a)

(t —a)**? [ |f"(t)] N \f”(&)q
S @+ DB@I(@ @t 2(@+3)  (@a+3)
(b—t)**+ |f"(b)] |f"(t)]
T+ DB () {( 13 T a2+t 3)}
esitsizligi elde edilir.

70



Ispat. Lemma 3.2.1°deki esitligi kullanarak

AB o AB 7o (t — a’)af(a’) + (b — t)af(b)
a[ {f(t)} + [b {f(t)} - B(Q)F(Ck)
(=) f(a) = (b)) 201 a)f(t) ‘
(a+1)B(a)I'(«) B(«a)
(t —a)* ! a1 ogn — a
TESY: i /0 (1= k) 7 (kt + (1 — k)a) dk
(b—t)r?

(a+1)B(a)I‘(a)/0 kT (kb + (1 — k)t) dk

(t—a)* ! at1| g — a
< (a+1)B(a)r(a)/0(1_k) | /" (kt + (1 — k)a) |dk

(b_t)a+2 ' a+1| pn _
(a + 1)B(a)I(a) /O REEHS" (kb + (1= K)t) |dk

esitsizligi elde edilir. Burada |f”| fonksiyonunun konveksligini kullanarak
AB 7o AB o (t —a)*fla) + (b—1)*f(b)
EI {f(t)} + b ]b {f(t)} - B(a)F(a)
(t—a)*f'(a) = (0—t)*1f'(b)  2(1—a)f(t)
(a+1)B(a)I'(«) B(a)

(t_a)a+2 : ot en — Ka
< (a+1)B(a)F(a)/O(1 k)T (Kt + (1 — k)a) |dk

(b _ t)a+2 ; a+1| ¢en B
(a+ 1)B(a)F(a)/0 R 7 (kb + (1= k)t) |dk
(t— )™ 1 a+1 1" B "
< (a—i—l)B(a)F(a)/O (1—k) [k|f ()] + (1 — k) | f( )|]d/{;
(b — t)a+2 ' a+1 " _ "
+(a+1)B(oé)r(a)/0 K/ (0) 4+ (1= k) | ()] ] dk

_ (t —a)**? [ OF If"(a)q
(a+1)B(a)'(a) [(a+2)(a+3)  (a+3)
(b— )+ [ O )] }
(a+1)B(a)l(a) | (a+3)  (a+2)(a+3)

esitsizligi elde edilir ve ispat tamamlanmig olur.

a+b
2

%wa%i)ywwfﬁj”)—wgég;[ﬂ@+ﬂd

)
(b—a)t! , , 2(1 - a)f (%3°)
ey CREAC] Ry

Sonug 3.2.1 Teorem 3.2.1°de eger t = olarak alinirsa

(b—a)**?
— 20P2(a+ 1)B(a)'(«a)

ifadesi elde edilir.

FEDL L 1@, 1)
(a+2)(a+3) (a+3) (a+3)
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Teorem 3.2.2 a < b olmak iizere f : [a,b] — R fonksiyonu (a,b) aralig: {izerinde iki kez
diferansiyellenebilir ve f” € Li|a,b] olsun. Eger |f”|? konveks fonksiyon, p™' + ¢! =1,
t € [a,b], @ € (0,1], ¢ > 1, B(aw) > 0 normalizasyon fonksiyonu ve I'(.) gama fonksiyonu

ise Atangana-Baleanu kesirli integral operatorleri icin

R A B
t

(t=a)*"f'(a) = (b=1)*"1f'(b) 201 a)f()'

(@ + 1) B(e)l(e) B(a)

(« iﬁ;g();;(a) (ap +1p - 1)117 (\f"(t)\q J; \f”(a)\q)fl

@ +(‘71>_§2;;<a) (ap +1p . 1) > <|f”(b)|q ; |f~(t)|q) !

esitsizligi elde edilir.

ispat. Lemma 3.2.171 kullanarak
(t —a)*f(a) + (b —1)*f(b)

Afja {f(t)} +AB II? {f(t)} - B(CM)F(O&)
(t—a)**f'(a) = (b—1)T1f' ()  2(1—a)f(t)
(a+1)B()l(a) B(e)

(t — a)a—ﬂ ' r a+1]| gy N o

(a+1)3<&)r(a)/o (1= B)**H f" (Kt + (1 = k)a) |dk
(b B t)a+2 ! a+1| gy i
+(a+1)B(a)F(a)/0 R 7 (kb + (1 — k)t) |dk
esitsizligi elde edilir. Bu esitsizligin sag tarafinda Holder esitsizligini kullanarak
e B

(t—a) ' f"(a) = (b= f'(b)  2(1— a)f(ﬂ‘
(4 1) B(e)l(e) B(Oé)

(t - a)o+? (/01(1_k)(a+1pdk) (/ |f" (kt + (1= k)a )quk)ll

(a4 1)B(a)'(a)

o +(b1>_f§ 2;;(@) [(/01 k(a+1)pdk> | (/01 /" (kb + (1= k)t)|* dk) ;]

esitsizligi elde edilir. |f”|? fonksiyonunun konveksligini kullanarak

[t a-nara < [ feroro-niar e
[ wsa—worae < [ rrorsa-pirors

esitsizlikleri yazilir. Yukaridaki esitsizliklerde yer alan integraller hesaplandiginda istenen

sonug elde edilir.
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a+b

Sonug 3.2.2 Teorem 3.2.2°de eger t = olarak alinirsa

s (S50) + 51 (57) - et (@) + 70
)

j
Gt [ r 21— a)f (5
i T DB @~ O Bla)

(- ay LV [ (e s
S F B () [( 2 )

|f// |q+‘f// a+b }‘1 q
( |

esitsizligi elde edilir.

Teorem 3.2.3 a < b olmak iizere f : [a,b] — R fonksiyonu (a,b) arahig: lizerinde iki kez
diferansiyellenebilir ve f” € Li[a,b] olsun. Eger |f”|? konveks fonksiyon, p~* + ¢! = 1,
t € la,b], « € (0,1], ¢ > 1, B(a)) > 0 normalizasyon fonksiyonu ve I'(.) gama fonksiyonu

ise Atangana-Baleanu kesirli integral operatorleri icin

R R L e

(t—a)**f'(a) = (b =) f'(b) 201 —a)f(t) ’

(a4 1)B(a)T'(a) B(a)
(t —a)**? ( 1 \f”( )|+ \f”(a)|q)
B (a+1)B( )T (a pap+p+1) 2q
t)er? \f”(b)\q + | f"(1)]*
+ (p (ap+p+1) 2q )

esitsizligi elde edilir.

ispat. Lemma 3.2.1°den

B (1) +47 1y {payy - LT L DD

(t—a)**f'(a) = (b= 1) f'(b)  2(1— a) (t)
(v + 1) B(e)l(e) B()

< s [ G - R0

(b_t)a+2 ' a+1| pn _
(a+1)B(a)F(a)/0 KO (kb + (1 = k)t) |dk

esitsizligi elde edilir. Young esitsizligini kullanarak
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Bra B ra (t—a)*fla) + (b—1)*f(b)
AaI {f(t)} +A Ib {f(t)}_ B(O[)F(Oé)
(t=a)** (@) = (b=t)*" (D) 2(1—a)f(t) ‘
(a+1)B(a)T' () B(«)

(t —a)**? 1! i) 1t ,
s [ [amweast [ o - nara

(b_t)a+2 1 ' (a+1)p 1 ' " i q
+(a+1)B(a)T(a) [p/o k dk+q/0 | (kb+ (1 = Ek)t)| dk}

esitsizligi elde edilir. |f”|? fonksiyonunun konveksligini kullanarak ve basit hesaplamalar

yaparak istenilen sonug elde edilir.

Sonug 3.2.3 Teorem 3.2.3’de eger t = “T“’ olarak alinirsa
1 f<—2 >+ be( 5 ) S Bt @)+ 0]
)

)
. (b_a)a+1 "(a) — f . (1_a)f(
DR @ 0 - 5

(b — a)*+? 2 o (D] + 1 (@ + £ 0)°
2012(a 4+ 1) B(a)'(a) \ plap+p+1) 2q

esitsizligi elde edilir.

Teorem 3.2.4 a < b olmak iizere f : [a,b] — R fonksiyonu (a,b) aralig) tizerinde iki
kez diferansiyellenebilir ve f” € Li[a,b] olsun. Eger |f”|? konveks fonksiyon, ¢ € [a,b],
a € (0,1], ¢ > 1, B(a) > 0 normalizasyon fonksiyonu ve I'(.) gama fonksiyonu ise

Atangana-Baleanu kesirli integral operatorleri icin

R e
t

(t—a)**'f'(a) = (=)' f'(b) 201 —a)f(t) '
(a+1)B(a)'(«) B(a)

(t — )2 LT el @l
(@+ )B(a)l(a) (a+2> ((a—|—2)(a+3) * (a+3)) ]
(b— t)o+?

_|_

(a+1)B(a)I'(«)

) ()|

esitsizligi elde edilir.

ispat. Lemma 3.2.1°den
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B0} 47 1y (i) - L 2O

B(a)I'(a)
C(t—a) (@) = (b= )T f(b) 201 —a)f(t)
(a+1)B(a)I'() B(a)
(t _ CL)OH_Z ' R AYER A — Ka
< (a—i—l)B(a)F(a)/O (1= k)" (kt + (1 = k)a) |dk

(b_t>a+2 ' a+1]| ¢en _
+(a+1)B(a)F(a)/0 B F (kb + (1= k)t) | dk

ifadesi elde edilir. Bu ifadede power mean esitsizligini uygulayarak

Afla {f( )} +AB [b {f(t)} (t — a>af(a’) + (b — t)af(b)

B(a)I'(a)
_(t=a)*"f'(a) = (b =) f'(b) _ 2(1—a)f(t) ‘
(o + 1) B(e)(e) B(a)

(t —a)>?

< e | (0w
« (/01(1 )| £ (et 4 (1 — k)a)|qdk> ‘1’]

a J£b1)_Bt2::r(a) [(/01 k““dkz) o (/01 kL £ (kb + (1 — k)t)|? dk;) ;]

esitsizligi elde edilir. Bu egitsizlikte | f”|? fonksiyonunun konveksligini kullanarak

Afla {f(t)} +AB [I? {f(t)} _ (t — a)af<a> + (b — t)af<b>

B(a)I'()
C(t=a)* (@) = (b =) (D) 2(1 =) f(t) '
(a+1)B(a)'() B(a)
(t— a)o+? 1=

(/01(1 - k)aﬂdk)
x (/01(1 — k) [k £+ (1 — k) ‘f”(a)\q]dk)é]
+(oz Jfbl)_BtzZ)r;(a) [ (/01 ka+1dk) o

X </ E O+ = RO ) ;]

S @+ )BT(a)

o (t—a)P? 1L\ @) f" (@) 7
= (a+ DB (a+2> ((a+2)(a+3) * (a+3)) ]
(b —t)at+?

() (20

esitsizligi elde edilir. Dolayisiyla ispat tamamlanmig olur.

TaF B ()
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Sonug 3.2.4 Teorem3.2.4’de eger t = %’ olarak alinirsa
ABra a+b AB @ a+b (b_a)a
o I -
f( 2) bf(Q ) 3Bt @+ 0]

)
/ ! ( Oé)f
[7/(@) - 1) - B(f

B (b—a)*t!
20t (v + 1) B(a)T' ()

1

el @
<m+m< 3 (@a+d)

(b — ) L\

— 29P2(a+ 1)B(a)'(«a) (oz+2>
ror . resr )
+<(Oz+3)+(a+2)( )) ]

esitsizligi elde edilir.

Teorem 3.2.5 a < b olmak iizere f : [a,b] — R fonksiyonu (a,b) aralig: {izerinde iki
kez diferansiyellenebilir ve f” € Li[a,b] olsun. Eger ¢ > 1 i¢in |f”| konkav fonksiyon,
€ la,b], @ € (0,1], B(a) > 0 normalizasyon fonksiyonu ve I'(.) gama fonksiyonu ise

Atangana-Baleanu kesirli integral operatorleri igin

AB ra AB ra (t —a)*fla) + (b—1)*f(b)
a[ {f(t)}_'_ Ib {f(t)}_ B(a)F( )
_(t=a)*f'(a) = (b =) f'(b) ﬂl—a)t‘
(a+1)B(a)l'() B(a)
(t —a)**? 1 p o+ 2
S @+ DBT(@) (a+2> / ( a3 >
(b— )2 1 a2 1
ot DB@(a) (a+2> / (a+3b+a+3t ’

esitsizligi gecerlidir.

Ispat. Lemma 3.2.1'i ve | f”| konkav olmak iizere Jensen integral egitsizligini kullanarak

Agla {f(t)} +AB ];)x {f(t)} o (t — a)af(&) + (b — t)af(b)

B(a)l(a)
_(t=a)*"f'(a) = (b=1)*" f'(b) ﬂl—aﬁ@w
(a—i— 1) B( () B(a)

k) 7 (kt + (1 — k)a)| dk
0

(b—t)a+2 / koL £ (kb + (1 — k)t)| dk

+m+w3mwm>o
(t — a)+2 L N0 = ) (et + (1 — k)a) dk
< ot Dt (00| ( )

fo (1— k)o+idk
(b — )0+ . JEREH (kb + (1 — k)E) dk
e L, ) | ( TR )
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esitsizligi elde edilir. Yukaridaki egitsizlikte yer alan integraller hesaplandiginda

R B
t)

(t—a)* ' f'(a) = (b= )" f'(b) 1—04 f( ’
(a+1)B(a)I'(«)
1" a+2
/ (a+3 a+3 >

(b —t)>t? 1
e+ DB@T() (a n 2>

(@ +(t1)B()Z;(a) (a —1F 2>

esitsizligi elde edilir ve ispat tamamlanir.

Sonug 3.2.5 Teorem 3.2.5’te eger t = ““’ olarak alinirsa

s (52) 011 (452) - S0

2 29B(a)l'(a)
(b - a)oc—H / / 2(1 B a)f (%)
g vE@r@ @~ 0] 50

< s () [ (s 2530)

y 04—|—2b+ a+b
a+3  2a+3)

esitsizligi elde edilir.

Teorem 3.2.6 a < b olmak iizere f : [a,b] — R fonksiyonu (a, b) araligi iizerinde iki kez
diferansiyellenebilir ve f” € L[a,b] olsun. Eger |f”|? konkav fonksiyon, p~! + ¢~ = 1,
t € la,b], « € (0,1], ¢ > 1, B(a) > 0 normalizasyon fonksiyonu ve I'(.) gama fonksiyonu

ise Atangana-Baleanu kesirli integral operatorleri icin

Afla {f(t)} +AB ]gy {f(t)} _ (t — )af(a) + (b — ) ( )

(t—a)*'f'(a) = (b—t)*"f'(b) 2(1- Oé)f(
(a4 1)B(a)I'(a) B(a)

(t — a)o+? 1
(a+1)B(a)T'(«) (ap +p+ 1)

(b—t)>*2 ( 1 )
(a+1)B(a)'(a) \ap+p+1

esitsizligi elde edilir.
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Ispat. Lemma 3.2.1’i ve Holder integral esitsizligini kullanarak

R e

_(t=a)* (@) = (b= D)) 2(1—a)f(t) ‘
(a+1)B(a)I'(a) B

(@)
@ fﬁ;@; o ( /0 1(1 — k)(a“)pdk;) ’ ( /D 1 |f" (kt+ (1 — k)a)|® dk) ’

s ([ ) ([ wso-onra) - was

esitsizligi yazilir. Bu esitsizligin sag tarafinda |f”|? fonksiyonunun konkavligini ve Jensen

integral esitsizligini kullanarak

/1 (k4 (1= R)a) [T dk = /1 ko7 (kt + (1 — k)a)|" dk
0 0

- ([eaplr (B

[ Kok
g (a+t\|*
2

/1]f”(kb+(1—k)t)]qdk <
0

esitsizligi elde edilir. Benzer sekilde

S (b+t\ |7
/ (T>

esitsizligi elde edilir. Dolayisiyla elde edilen bu esitsizliklerin sag taraflarin (3.2.3)’de

yerine yazarak ve gerekli hesaplamalar1 yaparak

(t —a)*fa) + (b—1)"f(b)

IO+ I ()} -

(t—a)*'f'(a) = (b—1)*Tf"(b) 2(1— Oé)
(a4 1)B(a)'(a) B(a)

(t — a)o+? 1
(a+1)B(a)T'(«) (ap +p+ 1)

(b — t)xt2 ( 1 )
(a+1)B(a)'(a) \ap+p+1

esitsizligi elde edilir ve ispat tamamlanir.

Sonug 3.2.6 Teorem 3.2.6'da eger t = “H’ olarak alinirsa

e (SF) 0 gy (U0 - 20w + )

2 29B(a)l'(«)
(b - a)a+1 / / (1 B a)f ( )
ey CREAC] Ry
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, (3a+0b
)l

g [ 3b+a
(55

(b — a)>? 1
S e B@E (e r7) [

esitsizligi yazilir.

Eger Lemma 3.2.1 de t = “TH’ olarak alinirsa yeni sonuclar elde edilir.

Lemma 3.2.2 a < b olmak tizere f : [a,b] — R fonksiyonu (a,b) aralig: iizerinde iki kez
diferansiyellenebilir ve f” € Li[a,b] olsun. Eger a € (0,1], t € [a,b], k € [0,1], B(a) > 0
normalizasyon fonksiyonu ve I'(.) gama fonksiyonu ise Atangana-Baleanu kesirli integral
operatorleri icin

w0y (50) 40 7 (U5 - et [t 4 s] - 2 )

_ a)a-i—?

_ 2a+2(0(éb+ 1)B(a)l(a) [/01 (1 =k =1) f" (k
+/01 (ko =1) f" <I~cb+ (1- k)“‘;b> dk]

esitligi gecerlidir.

a+b

+(1- k)a) dk

aTH’ olarak alinirsa

Ispat. Lemma 3.2.1’de eger t =

g (57) +11 (57) - gty [0+ 10] -
(b—a)>tt

(
/ / (b — a)a+2
21 (o + 1) B(a)T(a) @ = re)] + 272(a + 1) B(a)T(a)

[/01(1 — k)L <k“T+b +(1- k;)a) dk + /01 ket fr <k;b +(1- k)aT“)> dk:]

ifadesi elde edilir. Ayrica asagidaki

7@ -1 ) =~ [ e = - [b S [ () a

b—a [ b
42— / 7 (kb -k ) dk] (3.2.5)
2/, 2
esitlik yazilabilir. Eger (3.2.5) esitligi, (3.2.4) esitliginde yerine yazilirsa

oy (50) 4 a5 (50 - e [+ g)] - 2

b _ a)a+2

= %0 F DB [/01 (1= k)= —1) f” (ka ;— b +(1— k)a) dk
+/01 (ko — 1) 1" <kb+ (1- k)“;b> dk]
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esitligi elde edilir.

Teorem 3.2.7 a < b olmak iizere f : [a,b] — R fonksiyonu (a,b) araligi lizerinde iki

kez diferansiyellenebilir ve f” € Ly[a,b] olsun. Eger |f”| konveks fonksiyon, o € (0, 1],

B(«) > 0 normalizasyon fonksiyonu ve I'(.) gama fonksiyonu ise Atangana-Baleanu kesirli

integral operatorleri i¢in

v (5 b) #7151 (“52) - S @+ 10)]

2a+2<ab+ e )[(If”( 1) (5- 753)

a;b)‘<__(a+2)l<oe+3>)

esitsizligi elde edilir.
ispat. Lemma 3.2.27yi kullanarak

e (50) #0751 (550) - e @) + 70

(b—a)>*?

1 b T
+/0 (k@“—l)f”<k:b+(1—k)a;r )dk: ‘

IN

2a+2((i n 1))z;(+;)r(a) [ /01
+/01 Iz kb+(1—k)a;b)‘dk]
~ e DB [/ @ (552 4 0 )
+/01 (1= ko1 |p (kb+ (1 —k)a;b)’dk]

esitsizligi yazilir. Bu egitsizlikte | f”| fonksiyonunun konveksligini kullanarak

ot —1
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AB o s a+b> LAB o g (a+b) B QQ(B?(;)QIZ?O[) [f(a) +f(b)}
b

2a+2(ozb+_ 1a§(+:)r(a) [/01 (1= =) (k
w [ amwen (ko a-nle (S5 o

- 2a+2(c(yb+ 1)3;( () [( F (@)l + |f"(b)|> (% N aig)

2 (437)| (2~ wrman)

esitsizligi elde edilir ve ispat tamamlanir.

Teorem 3.2.8 a < b olmak iizere f : [a,b] — R fonksiyonu (a,b) arahg: izerinde iki kez
diferansiyellenebilir ve f” € Li[a,b] olsun. Eger |f”|? konveks fonksiyon, p~* + ¢~ =
a € (0,1], ¢ > 1, B(a) > 0 normalizasyon fonksiyonu ve I'(.) gama fonksiyonu ise

Atangana-Baleanu kesirli integral operatorleri igin

s (7)1 (7)) - grgrarag (@) + )

2(1—a)f (42)
B(a)

1

( — a+2 p+1’a+1 ’
2“*2(04—1—1 a+1

’f” |q+‘fﬂ% ’f” |q+‘fﬁ%| %
2 2

esitsizligi elde edilir.

ispat. Lemma 3.2.2’den

s (U50) + 51 (50) - et (@) + 70

2(1—a)f (42)
B(a)

(1—Fk)*™* -1 dk

" (ka;b +(1 —k:)a)

( a)a+2 1
2082(a + 1) B(e)l(«) [/0
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ka+1 -1

+/Ol f”(kb+(1—k)a;b)‘dk]
= 20+2((ib+_16)bg(+;)r(a) [/01 (1= 1=k (ka —; b + (1 - k)a>
+/01 (1— kett) |7 (kb+ (1 —k)a;b)‘dk]

esitsizligi yazilir. Bu esitsizlikte Holder integral esitsizligini uygulayarak ve | f”|? fonksi-

dk

yonunun konveksligini kullanarak

e (50) 7 1 (U] - gt @) + 70

2(1—a)f (42)
B(a)

1

= 2a+2<(§b£ 1C;Z(+;>r(a) [ (/01 e g k)aﬂ)pdk) p
x (/01 & (k“;b +(1—kr)a) qdk);
+ (/01 (1 —kC“*l)pdk); (/01 f (kb+(1 —k)aTer)
BT [ (] e-a-srmya)
([t

+=B ] dk);

+(/01(1—k;a+1)1”dk)11’(/0 {k:|f”()|q +(1—k) //(aTva) q}dk);]

esitsizligi elde edilir. Yukaridaki egitsizlikte yer alan integraller hesaplandiginda ve

(/01 (1~ k‘““)pdk:)’l’ _ <5(p;—ila$1)>;

olmak ftizere istenilen sonug elde edilir.

qdk:)é]

3=

IN

Teorem 3.2.9 a < b olmak iizere f : [a,b] — R fonksiyonu (a,b) arahig: {izerinde iki kez
diferansiyellenebilir ve f” € Li[a, b] olsun. Eger | f”|? konveks fonksiyon, o € (0, 1], ¢ > 1,
B(«) > 0 normalizasyon fonksiyonu ve I'(.) gama fonksiyonu ise Atangana-Baleanu kesirli

integral operatorleri i¢in
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s (S50) 4 521 (50) - gt (@) + 70

_2(1 —a)f ()
B(a)

(b —a)*t 1
S %R0+ BN (@) [ (1 - a—+2)

(@r e e e
2 (a+2)(a+3) (a+3)

Lol el rer el )
+(1_a—+2> ( 2 T (a+3) (@t2)(at3 ))]

esitsizligi gecerlidir.

ispat. Lemma 3.2.27yi kullanarak

Ao g (“;b> 4B o g (“‘2”’) - e @)+ f0)]
2= a)f (4°)

B(a)

<( (5@ a)[/o ot (B o)
+ et - 1'f kb + (1 ”b) ]

dk

(k;a;b +a —k)a)

N 2+((ib+_1c;)z;( )F(a)[/o (1= =k
+/01 (1— ket [ (l{:b+(1—k)a;b)’dk]

esitsizligi elde edilir. Bu esitsizlikte power mean esitsizligini uygulayarak

e (50) 7 151 (U5) - gt @ + 70

2(1—a)f (42)
B(a)

< T BT [ ([ 0-a-wra)

. (/01 (=@ =R)*T) | (ka ; . k)a) 'qdk:);
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+ </01 (1— ko) dk)l_; (/01 (1 kot | g (kb+(1_k)a;b) qdk)é]

esitsizligi elde edilir. Burada |f”|? fonksiyonunun konveksligini kullanarak ve gerekli

hesaplamalar1 yaparak

e (50) 7 5 (U5) - gt @ + 70

2(1—a)f (42)
B(a)

1

e+ DT [ ([ 0-u-wrmam)
(ol (3]
+ (/01 (1— k> dk)l_é

()

([ a=w o+ a-p

=B ar)

Js)"

_ (b—a)*+? L \"
~ 2022(a+ 1)B(a)T(a) [ (1 o+ 2)

(r@elrenl el e
2 (a+2)(a+3) (a+3)

LS Or el e e )
+(1_0‘—+2> ( 2 C(a+3) (at2)(a+3)

esitsizligi elde edilir ve ispat tamamlanir.

Teorem 3.2.10 a < b olmak tizere f : [a,b] — R fonksiyonu (a, b) aralig1 iizerinde iki kez
diferansiyellenebilir ve f” € Li[a,b] olsun. Eger |f”|? konveks fonksiyon, p~t 4 ¢~ =

a € (0,1], ¢ > 1, B(a) > 0 normalizasyon fonksiyonu ve I'(.) gama fonksiyonu ise
Atangana-Baleanu kesirli integral operatorleri igin

e (‘%b) 7 1y (““’) - 2(2(; )“F)za) f@)+ 1))

B(a)
b—a)™*? 26k +1an) | @I+ 17O + 2]/
2012(a 4+ 1) B(a)T () pla+1) 2q

esitsizligi gecerlidir.
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Ispat. Lemma 3.2.27yi kullanarak

e (50) 4 521 (“57) - gt (@ + 70

dk

(1 . k_)a+1 -1

" (/@“;b +(1 —k;)a>

= 2a+2<c(vb+ ?)af)r(a) [/
+/01 /" kb+(1—k)a;b)‘dk]

- 2a+2(éb+—lc;g(+;r(a) [/01 (1—(1—k)>+) | (ka ; b + (1 - k)a)
+/01 (1= k1) |7 (kb+(1—k) ‘;b)’dk]

esitsizligi elde edilir. Young esitsizligi ile | f”|? fonksiyonunun konveksligini kullanip ardin-

ka—i—l -1

dk

dan gerekli hesaplamalar1 yaparak

s (S50) 44 51 (50) - gt (@) + 700

21— a)f (CLTH’)
B(a)

b-a 1

= 20t2(a + 1) B(a)T’ ( )L_?/o1 (1= (=R
é/ < 1—k)a> '

dk
/ /{:O"H dk—%—;/; f// <kb+(1—/€)aT+b)
SR | . (0B

AL )

1
q
eyt [ ko a-nlr (45

2
(b — a)o+? lﬁ(p+1,a$1)+|f” a)| + | ()|
2902(a+ 1) B(a)['(«) | p a+1 2q

B+l 1O+ \f”(%*”)lq]

q
dk

IN

-k |f"<a>|"] n

_|_

Jo

P a+1 2q

85



esitsizligi elde edilir ve ispat tamamlanir.

Teorem 3.2.11 a < b olmak iizere f : [a,b] — R fonksiyonu (a,b) araligr iizerinde
iki kez diferansiyellenebilir ve f” € L;[a,b] olsun. Eger |f”| konkav fonksiyon, a € (0, 1],
B(a) > 0 normalizasyon fonksiyonu ve I'(.) gama fonksiyonu ise Atangana-Baleanu kesirli

integral operatorleri i¢in

s (50) 51 () - gt @ + 10
2(1—a)f (4£2)

B(a)
e ]
(2 | (e Berars )]

esitsizligi elde edilir.

Ispat. Lemma 3.2.2'yive | f”| konkav olmak {izere Jensen integral esitsizligini kullanarak

e (50) + 52 (50) - g (@) + 50

2°B(a)T (@)
2(1—a)f (4£2)
B(a)

(1— k)t — dk

<kib+(1—k) )

< 2a+2((i + 16;3;(?)”0‘) [/01
of % kb+<l—k>a§b)‘dk]

= FERTTBET (a)[/( S (K52 - )
+/1 ) f”(kb+ (1—k “+b)’dk]

- ((ber 1ag+2) - [(/0 (1= (1= k) dk)

o S(1-(1- a+1) (k% + (1 — k)a) dk
— (1 — k)o+1) dk

(fo — ko) (kb + (1 — k)52 dk:)

(1 = k1) dk

kOH—l -1

IN

X

+(/0( ko‘“)dk:)

|
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esitsizligi elde edilir. Elde edilen ifadede yer alan integraller hesaplandiginda

e (50) 7 1 (U5) - et @) + 70

B(w)
2a+2(;b+_16;g:;)r(a) (Z i ;) ’ <<a Z(i)fi; - 2((25?;)5221?))'
(gl erars |

esitsizligi elde edilir ve ispat tamamlanir.

Teorem 3.2.12 a < b olmak iizere f : [a,b] — R fonksiyonu (a,b) araligr {izerinde
iki kez diferansiyellenebilir ve f” € L;[a,b] olsun. Eger ¢ > 1, |f”|? konkav fonksiyon,
pt+q¢t=1 a€(01], Bla) > 0 normalizasyon fonksiyonu ve I'(.) gama fonksiyonu
ise Atangana-Baleanu kesirli integral operatorleri icin

e (50) 2 5 (U5) - gt @ + 70

2(1—a)f (42)
B(a)

(b — a)+2 (5(p+ L, ))

20t2(a + 1) B(a)'(«) a+1

()

esitsizligi elde edilir.

=

=
VN

s [3a+Db
4

Ispat. Lemma 3.2.27yi ve Holder integral esitsizligini kullanarak

AB o s (a—l—b) LAB o g (a+b) B 20[(}(;(—@)@3?@) [f(a) N f(b)}
20— a)f ()
B(«)
2a+2(o(4 . 1‘;?:;”&) [/01 (1— k)t — 1| (ka -5 b (1— k)a) ‘ dk
+/01 ket 1| (kb+(1—k>a;b)‘dk] (3.2.6)
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(b — a)>"?

202(a + 1) B(a)T(a) [/01 (1= (1= k)t | (k“ ’2“ b k)a) ‘ dk
+/01 (=& (kb+(1—k)a;b>’dk]

(b= a)*™ 1 — (1 — E)e+1P z
20+2(q + 1) B(a)T () [(/0 (1— 1=k dk)
x (/01 f <ka;b+(1—k)a> qdk>é
+(/01 (1—’fa+1)pdk>; (/01 r (k:bJr(l—k)a;b) qdk;);]

esitsizligi elde edilir. |f”|? fonksiyonunun konkavhigini ve Jensen integral esitsizligini kul-

lanarak

q

dk

f// <ka—2|—b 4 (1 B k;)a)
1" (fol (kaTer +(0- k‘)a) dk)

[y kOdk

q 1
dk = / k°
0

" (ka ;b b | ¥ k:)a)

/

q

esitsizligi elde edilir. Benzer sekilde

' " a+b , 30+ a
/0 f (k}b—i—(l—k) 5 ) f( 1 )

esitsizligi elde edilir. Dolayisiyla elde edilen bu esitsizliklerin sag taraflarini (3.2.6)’da

q q

dk

yerine yazarak ve gerekli hesaplamalar1 yaparak

I (C‘T“’) I (“ - b) - 2(;(; )‘})?a) @)+ F )

2(1—a)f (42)
B(a)

(b — a)*+? [<5O“%Lah)>p

20t2(a 4+ 1) B(a)'(«) a+1

Br+1,=)\" |, (3b+a
+( a+1 f( 4 )‘

esitsizligi elde edilir ve ispat tamamlanir.

()
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3.3 Atangana-Baleanu Kesirli integral Operatorleri Yardimiyla
Pre-inveks Fonksiyonlar Icin Integral Esitsizlikler

Bu bolimde; o6nce, Atangana-Baleanu kesirli integral operatorleri yardimiyla pre-
inveks fonksiyonlar i¢in Hermite-Hadamard esitsizligi ve ayrica Atangana-Baleanu ke-
sirli integral operatorleri yardimiyla pre-inveks fonksiyonlar igcin bir integral esitsizligi
elde edildi. Elde edilen Hermite-Hadamard esitsizliginin, egitsizlikteki parametrelerin
ozel degerleri icin daha once literatiirde var olan sonuclara indirgendigi goriilldi. Bunun
yaninda Atangana-Baleanu kesirli integral operatorleri yardimiyla pre-inveks fonksiyonlar
icin daha once elde edilmig olan 6zdeglikten yararlanilarak fonksiyonlarin pre-inveksligi
ve literatiirde iyi bilinen Holder, power mean, Young esitsizlikleri kullamlarak integral
esitsizlikler ispat edildi ve ispat edilen bu sonuclardaki parametrelerin bazilarimin ozel

degerleri icin yeni sonuclar elde edildi.

Teorem 3.3.1 I C R acik inveks bir alt kiime, p : I x I # 0 — R, ki, ky € I,
ki < ki + p(ke, k1) olsun. Eger f : [ki, ki + p(ko,k1)] — R pre-inveks fonksiyon,
f € Ly [ki, k1 + p(ko, k1)) ve p fonksiyonu Kogul 2.1.1°1 saghyorsa, a € (0, 1], B(a) > 0
normalizasyon fonksiyonu ve I'(.) gama fonksiyonu olmak iizere Atangana-Baleanu kesirli
integral operatorleri igin

f (2/€1 + Mz(k2, kl))

kg,kl ]a [ ABTOLf ey + g (o k) )b+ APIE iy U (k’l)}]
(% _(l:;) ki;?”‘ [f (k1) + f (R A+ g1 (R ) )] (3.3.1)
k) + S10)
- 2

esitsizligi elde edilir.

Ispat. [ fonksiyonu [ki, k1 + 1t (ko, k1)) arahig tizerinde pre-inveks fonksiyon oldugun-

dan asagidaki

2f (2]{71 + 1% (k2,k1>

5 ) < Sk 4t (ko b)) + f(ki4+ (1 —t) p(ke kr))  (3.3.2)

esitsizligi yazilir (bakimz [42], [44]).

tal

(3.3.2) esitsizliginin her iki tarafi ﬁ ifadesi ile carpilir ve elde edilen sonucun

[0, 1] aralig: tizerinde t’ye gore integrali alimip ve ardindan degisken degigimi yapilirsa
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f <2k1 + M2(]f2, kl))

IN

1
/ ta_lf(k'l + tu (lfg, k‘l) )dt
0

Q

(&)F(a) / ta—lf(/ﬂ + (1 - t) I (]{27 kl) )dt

o k1+p(ka,k1) ol
- B T L (= k)™ flayde

B(a)l(e) [

k1+u(ka,k1) )
+ - ki + p (ko ky) —y)™ d
Toa )] / (ky 4 (ko, k1) — )™ f(y)dy

ifadesi elde edilir. Ardindan

2 (a)f (2k1 +u(k2,k1)>

B(a)l 2
1 o k1+p(kz k1) B . (1 . a)
\ 1t (K2, k)]™ | B(a)T(c) /kl (@ — k)" fla)dz + Ba) f(ky)

_ (-a

B(a) [u (%Jﬁ)]af(kl)

: Y e RN R

+[M(k2’k1>]a B(a)I'(a) /k1 (k1 + g (ko b)) =y y)ay

(1-a) B (1—a)
+ B(a) f(’ﬁ"‘ﬂ(’@,’ﬁ)) B(Oé) [,Lb(kg,kl)]af(kl+’u(k2’k1))

yazilir. Buradan, Atangana-Baleanu integral operatorleri kullanilarak

2 : )f(2k1+u(k2,k1))

B(a)l'(« 2
1 B (6% B a
SITEEW[%[U%+ub%ﬁ}+A%Wth@m
(1-a)

[F(kr) + £ (k1 + g (kay 1) )]

Bl [ (b, k)]
ifadesi elde edilir ve (3.3.1) esitsizliginin sol tarafi ispat edilmig olur. (3.3.1) esitsizliginin

sag tarafinin ispati i¢in, f fonksiyonu pre-inveks oldugundan

flh (ko ke) ) < (1= 8) f (k) + 2 (ko)

ve

i+ (U= t)p (ka, kr) ) <tf (k) + (1 —t) f (ko)

egitsizlikleri yazilir. Bu esitsizlikler taraf tarafa toplanirsa
Sk +tp (ko kr) ) + f(kr+ (1 —t)p (ko k1) ) < f(k) + f(k2) (3.3.3)
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esitsizligi elde edilir. (3.3.3) esitsizliginin her iki tarafi a—()to‘ Uifadesi ile carpilir ve

elde edilen sonucun [0, 1] aralig: iizerinde t’ye gore integrali alimirsa

7 f (ke + (1=t (o, k) ) dt

) )+ )] [+t

= B(a)T'(«) 0

esitsizligi elde edilir. Ardindan degisken degigimi yapilip Atangana-Baleanu kesirli integral

operatorleri kullamlarak asagidaki

—1 AB o AB 7o

[M(kz,/ﬁ)]a[ e LS (R g (R k) )} P0G (S (R

. (1—a)
B(a) [p (K, k)]

S (k1) + f (ko)
B(a)l'(«)

(k) + £ (k1 + g (o, K1) )]

esitsizligi yazilir ve ispat tamamlanir.

Uyar1 3.3.1 Teorem 3.3.1°de p (ky, k1) = ko — ki olarak almirsa [30]’da Onerme 2.1’in
ispatindaki esitsizlik (13) elde edilir.

Uyar1 3.3.2 Teorem 3.3.1’de o = 1 olarak alinirsa Teorem 2.2.4’deki (2.2.3) esitsizligi
elde edilir.

Teorem 3.3.2 I C R acik inveks bir alt kiime, p : I X [ # 0 — R, ki,ky € I, ky <
ki1 + p (ko kq) olsun. Eger f, g : [k1, k1 + p (k2, k1)] — Ry pre-inveks fonksiyonlar, f, g €
Ly [k1, k1 + p (ko k)] ise @ € (0,1], B(a) > 0 normalizasyon fonksiyonu ve I'(.) gama

fonksiyonu olmak tizere Atangana-Baleanu kesirli integral operatorleri i¢in

1
(10 (K, )]

« 2 1
o | P+ 10 (5o o)

[ﬂhm%ﬁ+ﬂbw%M] (3.3.4)

[ Alfla {fg(k1 +u(k2,k1))} + ABII?;—&-M(kg,kl){fg (k‘1)}]

+2

(a+1)(a+2)
. (-a
B() [ (ko )

esitsizligi elde edilir.

[f(k1)g(ky) + f (k1 + g (ks kr) ) g (ky + e (ko k) )]
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Ispat. [ ve g fonksiyonlari [k1, k1 + 1 (ko, k1)] araligr iizerinde pre-inveks fonksiyonlar
oldugundan

F kot (ka, k) ) < (1= ) f (k) + £ (k2)

ve

gk +tu (ke k1) ) < (1 —1t)g(kr) +tg(ks)

esitsizlikleri yazilir. Bu egitsizlikler taraf tarafa carpilirsa

J(ky +tp (ko  kx) ) g (ky + tp (ko k) ) (3.3.5)
< (L=t f(k1)g(kr) + £ f (k2)g(k2) + t(1 — 1) [f (k1) g(ka) + f(K2)g(k1)]

esitsizligi elde edilir. (3.3.5) esitsizliginin her iki tarafi (1 — t)*" " ifadesi ile carpilir ve elde

edilen sonucun [0, 1] aralig: iizerinde t’ye gore integrali alinirsa

/01 (1 — t)a_l f(k?l + t/L (l{?Q, ]{31) )g(lfl + t,LL (l{fg, kl) )dt

< / Q=0 [ =1 F(R)glha) + £ F(Ro)g(ke) (3.3.6)

FH1 = O [F(ka)g(ka) + F(k)g (k)] |at

f(k1)g(k1) ) f(k2)g(k2) i [f(k1)g(k2) + f(k2)g(k1)]
a+2 ala+1)(a+2) (a+1)(a+2)

esitsizligi elde edilir. Yukaridaki (3.3.6) esitsizliginde ki +tu (ko, k1) = @ degisken degigimi
yapildiginda

1 k1+u(ka,k1) a—1
m/k (s + 1 (g, by) — )" f(2)g(2)dae

fk)g(ky) o f(R2)g(ky)  [f(k1)g(ka) + F(k2)g (k)]
- a+ 2 ala+1)(a+2) (a4 1)(a+2)

(3.3.7)

esitsizligi elde edilir. (3.3.7) esitsizliginin her iki tarafi ) ifadesi ile carpilir ve

B(a)I'(«

ardindan bu esitsizligin her iki tarafina % F(Er + g (kay k1) ) g (kr + g (kay i)

ifadesi eklenir ve son olarak Atangana-Baleanu kesirli integral operatorleri kullanilirsa

m[ oI {fg(/f1+u(/f27k1))}] (3.3.8)
a [f(/ﬁ)g(lﬁ) 19 f(k2)g(k2) n [f(k1)g(ka) + f(k2)g(ky1)]

B(a)T'(«@) a+2 ala+1)(a+2) (a+1)(a+2)

(1-a)

B [ (ks kl)]af(kl + g1 (k2 kr) ) g (ky + g (Ko, K )

esitsizligi elde edilir. Benzer sekilde, (3.3.5) esitsizliginin her iki tarafi

te—1 ifadesi ile

carpilir ve elde edilen sonucun [0, 1] arahig1 tizerinde t’ye gore integrali alinirsa
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1

ta_lf(k’l + t,u (k’g, ]{?1) )g(/ﬁ + tu (k’g, k‘l) )dt

1

J
J

< [ e[ (=0 g (k) + 2 (kg(ks) + 81— 1) [F(k)g(ka) + F(k2)g (k)] | de
f(k1)g(k1) f(k2)g(ka) | [f(k1)g(k2) + f(k2)g (k)]
Yot Dotz T a2 (a+D)(a+2) (3:3.9)

esitsizligi elde edilir. (3.3.8) esitsizliginin ispatinindaki hesaplamalara benzer hesapla-

malar yapilarak

g L e {9 ()} (33.10)
a [2 f(k1)g (k1) n 2f(k2)9(k?2) n [f(k1)g(k2) + f(k2)g(F1)]
B(a)l'(a) | ala+1)(a+2) a+2 (a+1)(a+2)
(1-a)

5@ i (e e

esitsizligi elde edilir.

Ardindan, (3.3.8) ve (3.3.10) esitsizlikleri taraf tarafa toplanarak

v
(11 (K, Ky

B(a) ()
[f (v )g(ks) + f(k‘z)g(kl)]]
(a4 1)(a+2)
L (-a)
B(a) [p (Ko, k1)]”

esitsizligi elde edilir ve ispat tamamlanir.

[ Alfja {fg(lﬁ +M<k2,k1))} + AB[I(:1+;¢(k2,k1) {fg (kl)}]

[f(k1)g(k1) + f(k2)g(k2)] (a(a T 12)(a +2) T o le 2)

+2

[f(k1)g(ky) + f (k1 + g (ks kr) ) g (ky + g (ko k) )]

Lemma 3.3.1 I C R ack inveks bir alt kime, g : I X I # 0 — R, ki, ky € I,
ki < ki + p(ko, k1) olsun. Eger f : I — R diferansiyellenebilir bir fonksiyon ve f’ €
Ly ki, ky + p (ko k)] ise a € (0,1], t € [0,1], B(a) normalizasyon fonksiyonu ve I'(.)
gama fonksiyonu olmak iizere Atangana-Baleanu kesirli integral operatorleri icin
B(a)T'(«)

(11 (k)]

(e <k2’[]{;)(],:2;1<)1];+?)r(&>) [F (k) + f (ko + g1 (k) )] (3.3.11)

— /1(1—t)af’(lirt,u(kz,kl))dt—/1t“f’(k1+tu(k2,k1))dt
0 0

[ AZE L (o g o k) )} + AP IRy £F O} ]

esitligi gegerlidir ([5]).
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Ispat. Kismi integrasyon uygulayarak

/01(1 — ) f" (k1 + tp (ko k) )dt (3.3.12)
_ <1_t)af§’z;:£5<k2’kl)) 1 u(k‘j’kl) /Olf(kl+tu(k:2,k:1))(1—t)°“1dt

i L0

_N{k(il;l)ﬂ (k%‘;‘ﬁ”aﬂ /k fﬁm (k4 (o ky) — 2)™ ()

esitligi elde edilir. (3.3.12) esitliginin her iki tarafi 4 ) ifadesi ile carpilirsa

BT
1 ' o pl
Wf(a)/o (1-1) f(’ﬁﬂu(kg,kl))dt
_ f (k1)
B(a)T(a) e (ko, k1)

k1+p(ke,k1) o1
/ (k1 + g (ko k1) — 2)" f(z)dz

+ «
B(a)T (@) [pt (K2, k1)]" ™ iy
esitligi elde edilir ve ardindan gerekli ekleme, ¢ikarma ve diizenlemeler yapilarak
1 1
————— | (L=0)"f (k1 +tp (ko ky) )dt
B(O./)F(Oé)/o< )f(1+ M( 2 1))
y f (k1)
(@) (ka, k)

B(a)T
.
[t (K, Ky )]

(1-a)
B(a)

a k1+p(k2 k1) -
B(a)T(a) /k (k1 + g (kz, k) — )™ f()d

— (1—) by + 1 (ko oy
B(a) 1 gyt ot (e

egitligi elde edilir. Atangana-Baleanu kesirli integral operatorleri kullanilarak

1 ! o g/
S /0 (1= 0% (ks + ta (b, Koy )t (3:3.13)
3 S (k1) . 1
Bla)l (o) (kay k1) [ (Ko, k)]
B (1—-a)
B(a) [ (k. k)] J il )

esitligi elde edilir. Benzer sekilde, kismi integrasyon uygulayarak

+

Sk + (ko kr))

| T (kb g (R )}

/oltaf’(/fﬁtu (ks ) )i (331
T o i, 1 k)

N f(kluinglz’)kl)) - M(k?, k1) /olta_lf(k1 il b))t

- f(kluizif;:’)kl) - O / T e s
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esitligi elde edilir. Eger (3.3.14) esitliginin her iki tarafi —m ifadesi ile garpilirsa

_m /0 taf,(kh + tp (Ko, k1) )dt
o flitpke k) o buliad)
B(a)l () (ka, k1) - B(a)T(a) [ (ko ky)]* /kl (u— k)™ flu)du

esitligi ve ardindan

—m/o tf (k1 + tp (ko ky) ) dt
_ _f(k1+ﬂ(k27k1)) 1 a k1+p(kz k1) U,
B(a)T (o) (ka, k1) [ (s, k1)]°T | B(@)I'(a) /kl (u— k)™ flu)d
(1-a) B (1—-a)
B f (k) Bla) [N(k%kl)]aﬂf(kl)

esitligi elde edilir. Atangana-Baleanu kesirli integral operatorleri kullanilarak

—m/o £ f (k1 + tp (ka, k) )dt (3.3.15)
_ F(ky+ (ko k) 1 B o
= BT @ (b k) | (11 (K, K )] [A kr+utka) 1 (R1)}
(1-a)

_ ky
Bla) i (o k)l

esitligi elde edilir. (3.3.13) ve (3.3.15) esitlikleri taraf taraf toplanip, gerekli iglemler

yapilarak istenilen sonug elde edilir ve ispat tamamlanir.

Uyar1 3.3.3 Lemma 3.3.1°de p (ko, k1) = ko — ky olarak alimirsa, Lemma 2.3.3’deki esitlik
(2.3.9) elde edilir.

Teorem 3.3.3 I C R acgik inveks bir alt kiime, g : I x I # 0 — R, ki, ky € I, k1 <
ki1 + p(kaoy k1), f: I — R diferansiyellenebilir bir fonksiyon ve f’ € Ly [k, k1 + p (k2, k1)]
olsun. Eger |f’| pre-inveks fonksiyon ise o € (0,1], B(«) normalizasyon fonksiyonu ve
['(.) gama fonksiyonu olmak iizere Atangana-Baleanu kesirli integral operatorleri i¢in

B(a>F(a)
1 (Ko, k)] 2t

( 1 (Ko, k1 +(1— a)l(a)
G

[ I f (kv 4 (k2 k1) ) b+ APIE iy U (h)]’}

k27 kl)]aJrl

|+\f’(k2)’
- a+1

) [f(kr) + f (ky + o (ko K1) )] ‘

esitsizligi gecerlidir.
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Ispat. Lemma 3.3.1’i ve mutlak degerin ozelligini kullanarak
B(a)l(e)
[ (K2, /ﬁ)]aH
. ([M (Ko, k)]” + (1 — a)l'(a)

[ (o, /ﬁ)]aH

1 1
/(1—t)“f’(k1+m(k2,k1))dt—/ taf’(k:1+tu(k2,k1))dt‘
0 0

[ IL}C?[OC {f(kl + H (k2’ kl) )} + ABII?1+u(k2,k:1) {f (kl)}}

) [f(Ra) + f (R + e (Fo, k1)) ] ‘

< / (L= |f"(ky + tp (ks k) )| dH‘/ t* |f/<k1 +tu (k2>k51))| dt
0 0
esitsizligi yazilir. |f’| pre-inveks fonksiyon oldugundan
B(a)l'(a)
(1t (o, k)]
RECETERLC
[t (ko k)]
< [a=or@-nlrel+ el Galide+ [ 10 =617 + 17 )] d
0 0

L (k)| + |f (k2)]
a+1

[ DT (ky+ p (ko k) )+ ABII?hLu(kg,kl) {f (/ﬁ)}]

) [F (k) + f(ky+ o (Ko, 1) )] ‘

esitsizligi elde edilir ve ispat tamamlanir.

Sonug 3.3.1 Teorem 3.3.3’te eger p (ka, k1) = ko — ky olarak segilirse

B(a)T'(«@) B ra Bra
o A )+ 7 4 )
(k2 — k)" + (1 — )I'(e)
- (L )vwn+ﬂ@ﬂ
[f" (kI + 1S (ko)
- a+1

esitsizligi elde edilir.

Teorem 3.3.4 I C R acik inveks bir alt kiime, g : I x I # 0 — R, ki, ky € I, ky <
ki1 + p(ko, k1), f: I — R diferansiyellenebilir bir fonksiyon ve f' € Ly [k1, k1 + u (k2, k1))
olsun. Eger |f’|? pre-inveks fonksiyon ise p~' + ¢ ' =1, ¢ > 1, a € (0,1], B(a) normali-
zasyon fonksiyonu ve I'(.) gama fonksiyonu olmak tizere Atangana-Baleanu kesirli integral

operatorleri i¢in
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B(a)l'(a)
(1t (K, Ky )]

B <[/~L (b2, k)" + (1 = a)T(a)
[t (Fz, k1))

_ (ﬁ) (s \f'<k2>\q)3

esitsizligi elde edilir.

[ BT f (R + (ko k) )} + ABII?1+u(k2,k1) if (kl)}}

) (£ (k) + f(ky+ g1 (Ray 1) )] ‘

ispat. Lemma 3.3.171 kullanarak
B(a)l'(«)
[ (g, o))
B ([u (k2, k)" + (1 — a)l'(a)
(1t (Ko, k)

1 1
< / (1—t)a‘f’(k1+tu(k2,k1))‘dt+/ ta|f/(k1+tﬂ(k27k1))|dt
0 0

[ AZE L f (g o, ) )} o+ AP IR iy £F O}

> [f (K1) + f (k1 + g (o, r) )] ‘

egitsizligi elde edilir. Ardindan Holder esitsizligi uygulanarak
B(a)I'(a)
[ (K, kl)]aH

B ([M (2, k)" + (1 = a)T'(a)
ACRD

< (/01(1 —t)apdt); (/01 | f/ (k1 + tp (k2,k:1))|th)q
+</01tapdt); (/01\f’(lirtu(kQ,kl))\th)é

esitsizligi elde edilir. |f’|? fonksiyonunun pre-inveksliginden

[ T f (R + (ko k) ) b+ AB[Igyl—i—u(kg,kl) if (/ﬁ)}}

) [f(kl) + f(kl + 1 (ka, k1) )} ‘

B(a)I'(a)
(1t (o, Koy )]

B ([M (2, k)" + (1 — a)T(a)
[ (Ko, 1))

< ([a- t>apdt)’l’ ([ [a-owor +t|f’(k‘z)|q]dt);
+ </01tapdt); (/01 (=017 Gl +t|f’(k2)|q}dt>é

[ DT f (R + p(ka k) ) )+ ABII?1+u(k2,k1) if (kl)}}

) (£ (k) + f(ky+ o (Ko, 1) )] ‘

esitsizligi elde edilir ve bu egitsizlikteki integraller hesaplanarak istenilen sonug bulunur.
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Sonug 3.3.2 Teorem 3.3.4°te eger u (ko, ki) = ko — ky olarak segilirse

B()l(@)
(k,2 _ k,l)OtJrl

(ko — k1) + (1 — a)l(«)
- (e o) (k) + ) ‘

) <ap1+ l)é <|f’(k1)|q ' |f'<k2>|q>i

| API{F (k) + AP0, {F (k)

esitsizligi elde edilir.

Teorem 3.3.5 I C R acik inveks bir alt kiime, g : I x I # 0 — R, ki, ky € I, ky <
ki1 + p(koy k1), f : I — R diferansiyellenebilir bir fonksiyon ve [’ € Ly [kq, k1 + p (K2, k1)]
E

olsun. Eger |f’|? pre-inveks fonksiyon ise ¢ > 1, a € (0, 1], B(«) normalizasyon fonksiyonu

ve I'(.) gama fonksiyonu olmak iizere Atangana-Baleanu kesirli integral operatorleri igin

B(a)l'(a)
[t (ka, B )]
_ ([N (ko k1)]" + (1 — o) ()

[/f(kz,kll)]aﬂq | | l | | | N
(%H) : (If(kl)\ £(ko)| >+< (k)| Lf (ko) )]

a+2 (a+1)(a+2) (a+1)(a+2) a+2
esitsizligi saglanir.

[ BT f (K + (ko k) )} + ABII?1+u(k27k1) {f (lﬁ)}]

) [f(Rx) + f (ka4 g (o, r) )]

ispat. Lemma 3.3.1'i ve power mean egitsizligini kullanarak

B(a)I'(e)
(11 (K, k)]

B ([M (2, k)" + (1 = a)T'(a)
(11 (g, k1))

1 1
< /(1—t)a\f’(k1+tu(k2,k1))\dt+/ | f (k4 t (o, ky) )| di
0 0

(/01 (1—t)adt>1_l

[ T f (R + (ko k) ) b+ ABII?1+u(k2,k1) if (/ﬁ)}}

) [f(Rx) + f (R + e (Fo, k1)) ‘

IN

' (/01 (1 =) | f (ks +tu(k2,k1))|th)é

1 -2 1 o
+</O t“dt) (/O ta\f'(k1+tu(k2,k1))\th>

ifadesi elde edilir. |f’|? fonksiyonunun pre-inveksliginden yararlanarak
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B(a)T'(a)
RN

B ([M (2, k)" + (1 = a)T'(a)
(11 (e, k)]

(/01 (1—t)°‘dt)1
+ (/Oltadt)l_é (/Olt"[(l =) [f' (k)| +t|f/(k2)!q}dt);
- (o) [ ) (i )

ifadesi elde edilir ve ispat tamamlanir.

[ WL et g o k) )} AP I g U (kfl)}]

) [f(ky) + f (Fr+ o (Fo, 1) )] ‘

1

Q=

IN

(/01(1 - t)a{(l — 1) |f' (k) [T+t |f’(k;2)|q}dt)

Sonug 3.3.3 Teorem 3.3.5'te eger p (ka, k1) = ko — ky olarak segilirse
B(a)I'(a)

(ko — k)" + (1 — o) ()
- ( (ks — ky) ™! > 5 A

( g ) (|f’<k1>\q £ (k)| >é+(( £ (k) If’(kz)!q>3]

a+2 (a4 1)(a+2) a+1)(a+2) a+2
esitsizligi elde edilir.

L AEI (S (k) + AP S ()}

Teorem 3.3.6 I C R acgik inveks bir alt kiime, p : I x I # 0 — R, ki, ky € I, k1 <
ki1 4+ p(koy k1), f : I — R diferansiyellenebilir bir fonksiyon ve f’ € Ly [kq, k1 + p (Ko, k1)]
olsun. Eger |f’|? pre-inveks fonksiyon ise p~! + ¢ ' =1, ¢ > 1, a € (0,1], B(«) normali-
zasyon fonksiyonu ve I'(.) gama fonksiyonu olmak tizere Atangana-Baleanu kesirli integral

operatorleri i¢in
B(a)I'(a)
[ (K, /ﬁ)]aH

(I kg, k) + (1 = )T ()
( [0 (g, kp))* ) Lf (k) + f(F1 4+ g (kay ) )] ‘

2 | (k)| + |f' (k)|
plap+1) q

[ AZ1 (g (Rakn) )} + Iy (F (R0

esitsizligi gecerlidir.

ispat. Lemma 3.3.1'i ve Young esitsizligini kullanarak
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B(a)l'(«)
(1t (z, )]

([ (B, k)] + (1 — )D()
< (1t (Ko, )] ) [f(k0) + f (By+ g (Ko, ) )] ‘

L AZE L (g o ) )} o+ AP IR i £F O]

1 1
/(1—t)a\f’(k1+w(k2,k1))\dt+/ | f (k4 tp (ko, k) )| dt.
0 0

IN

1 1
1/ (1—t)“pdt+1/ |/ (Fy 4t (Ko, ky) ) | dt
P Jo qJo

1 /! 1!
+_/ t“pdt+—/ |f' (k1 + tp (ko k) ) | at
P Jo q.Jo

esitsizligi elde edilir. |f’|? fonksiyonunun pre-inveksliginden yararlanarak ve yukaridaki

IN

esitsizlikte yer alan integraller hesaplanarak istenilen sonug elde edilir. Dolayisiyla ispat

tamamlanir.

Sonug 3.3.4 Teorem 3.3.6’da eger u (ka, k1) = ko — ky olarak segilirse

Bla)(a)

(kg r kl)a—l-l
(ko — k1) + (1 — ) ()

- (L= Eo ) k) + (k) ‘

2 |f (k)" + | f (k)|
plap+1) q

| AE1° ()} + API5 {F ()} ]

esitsizligi gecerlidir.

3.4 Atangana-Baleanu Kesirli Integral Operatorleri Yardimiyla
Senkronize Fonksiyonlar Igln Integral Esitsizlikler

Bu boliimde; Atangana-Baleanu kesirli integral operatorleri yardimiyla senkronize

fonksiyonlar i¢cin Chebyshev tipli integral esitsizlikleri elde edildi.

Teorem 3.4.1 f,g:[0,00) — R integrallenebilir ve [0, c0) tizerinde senkronize iki fonksi-
yon olsun. Bu durumda a,b € [0,00), a < b, @ € (0,1], B(«r) > 0 normalizasyon fonksi-

yonu ve I'(.) gama fonksiyonu olmak iizere Atangana-Baleanu kesirli integral operatorleri

(b—a)* |apa _(l—a)
B(a)l(a) { S O} =5y (F9) (b)] (3.4.1)
> [ - O o] [t - G o)
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esitsizligi gecerlidir.

Ispat. f ve g fonksiyonlari [0,00) aralig1 tizerinde senkronize fonksiyonlar oldugundan

(f(x) = f()(g(x) —g(y)) >0, x,y€[0,00)

esitsizligi veya egdegeri olarak

f@)g(x) + f(y)g(y) = f(x)g(y) + f(y)g() (3.4.2)
esitsizligi yazihr. Eger (3.4.2) esitsizliginin her iki tarafi Bla)a) (b—x)*" ifadesi ile
carpilirsa

Bla)T(a) (b— )" f(z)g(x) + Bla)T () (b—2)""" f(y)g(y) (3.4.3)
> BT (b—2)"" f(2)g(y) + B@)Ta) (b—2)"" f(y)g(z)

esitsizligi elde edilir. (3.4.3) esitsizliginin her iki tarafinin z’e gore [a, b] araliginda integrali
alinirsa

a b ol o b .
e L 0o @ + 1090 s [ 0= 0 e

(07 (0%

b b
> g(y)m /a (b—2)*" f(z)dz + f(y)m /a (b— )" g(z)dz

esitsizligi elde edilir. Buradan

(1—a) a et g (1-a)
Bla) f(b)g( HB@)P(@/& (b—2)*" f(x)g(x)d Ba) F(b)g(b)
+f(y)g(y)3(&(;}(a)/ (b—x)* ' da
(1-o) « ’ a-1 (1—a)
> () G )+ 00 sy [ =) s o) G50

-« a b 1 -«
10 G 90+ ) s [ 0= 0 atode - 1) S S

ifadesi yazilir. Atangana-Baleanu kesirli integral operatorlerini kullanarak

w0 0} - S (6) 0+ Fato) (3.4.4)

> g 20}~ o) G50+ F) a0} - 1) 5 a)

esitsizligi elde edilir. Benzer yontemle devam edildiginde, (3.4.4) esitsizliginin her iki tarafi

m (b— y)a*1 ifadesi ile ¢arpilir ve y’ye gore [a, b] araliginda integrali alinirsa
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Q b
AP (f9) (b)}m/a (b—y)* " dy

_(1 —CY) a ’ a1
S e g [ 0wy

(b—a)* a b a1
+B(O¢)F(Ox) B(& F(O{) /a (b - y) f(y)g(y)dy

Affa{f@}m/a (b—y)*"" g(y)dy

(1-a) « b a1
e O g [ =0 st

+A51a{g(b)}m/a (b—y)* fly)dy

(1-0a) o ’ a—1
e s [ o=

v

ifadesi elde edilir. Buradan
AB ja (b—a)* (A-a)(b—a)
aI {(fg) (b)}B(Oz)F(Oz) - [B(a>]21—\(a
(b—a)* (1—a)(b—a)

+ a[a{<fg) (b)}B(a)F(a) - [ (Oé)]QF(Oé )(fg) (b)
> (o) 2 (on) - 5w
C(1=0) . [asres g (1—a)
Lo f(b)[ 2190} - s g(bﬂ
(g} [ (o) - 5]
oo [ - G5k
ifadesi elde edilir. Ardindan
(b—a)* [apre (-
s [ o) - S g 0)

> o) - G| Pt - o)

esitsizligi elde edilir ve ispat tamamlanir.

Uyar: 3.4.1 (3.4.1) esitsizliginde a = 1 segilirse (2.2.11)’deki Chebyshev esitsizligi elde

edilir.

Sonug 3.4.1 f,g:[0,00) — Rintegrallenebilir ve [0, 00) lizerinde senkronize iki fonksiyon

olsun. Teorem 3.4.1’in ispatindaki hesaplamalara benzer hesaplamalar yapilarak, a,b €
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[0,00), a < b, @ € (0,1], B(a) > 0 normalizasyon fonksiyonu ve I'(.) gama fonksiyonu

olmak tizere Atangana-Baleanu kesirli integral operatorleri igin
(b—a)" [aBa _(1_a) a
st [Pt o @) - G5 o) @)
> i) - G| Py - Gt

esitsizligi elde edilir.

Teorem 3.4.2 f, g :[0,00) — R integrallenebilir ve [0, co) iizerinde senkronize iki fonksi-
yon olsun. Bu durumda a,b € [0,00), a < b, o, 5 € (0,1], B(a), B(3) > 0 normalizasyon
fonksiyonlar1 ve I'(.) gama fonksiyonu olmak tizere Atangana-Baleanu kesirli integral ope-

ratorleri i¢in

AV _
s e o o3 - S v o)

S ertsa oy - Gt va o)
(1-a

> i) - G| [ty - Gt

wrrgom) - G| [2r oy - o)

esitsizligi elde edilir.

Ispat. Eger (3.4.4) esitsizliginin her iki tarah W (b— )" " ifadesi ile carpilir ve

y’ye gore [a,b] araliginda integrali alinirsa

{0 0} g [ 00

_(1_04) B ’ _\B-1
o) U0 g | 00

b—a)* B e
+B(a)r(a)3(5)p(5)/a (b=9)"" f(y)g(y)dy

> 4B a{f(b)}B(ﬁ)ﬁP(ﬁ)/a (b—y)" " g(y)dy
(1—-a) B ’ _o\B-1
T O | -0 sty
+A51a{g(b)}m [ o= sway
(1-a) 8

_ ' _ )P
B0 e | =0
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esitsizligi elde edilir. Bu esitsizlige gerekli ekleme ve ¢ikarmalar yapilip, Atangana-Baleanu

kesirli integral operatori kullanlarak

. b-0) (-0)(-a
LI pEE  Bwsere 00
b

AB 18 B (1-2)
e )[ 519 (fg) () (f9) <b>]
(

59)

AB 10 AB 18 B 1-7)
s} |2} - G

_A—9) {Afzﬂ{ga))} _a- mg(b)]

v

B() B(5)
AB ra AB 18 (-5

e} 2w} - G

e o) - G )

esitsizligi elde edilir ve buradan

_ )8 L
Ul {ABrawg)(b)}—“ )<fg><b>]

BT (B) B
e | 4 U9 0) = T )

> o) - s [ty - o)

w2 gomy - Do) 12 pwy - S D g

esitsizligi yazilarak ispat tamamlanir.

Sonug 3.4.2 f,g:[0,00) — R integrallenebilir ve [0, 00) lizerinde senkronize iki fonksiyon
olsun. Teorem 3.4.2’nin ispatindaki hesaplamalara benzer hesaplamalar yapilarak, a,b €
[0,00), a < b, o, B € (0,1], B(a), B() > 0 normalizasyon fonksiyonlar1 ve I'(.) gama
fonksiyonu olmak tizere Atangana-Baleanu kesirli integral operatorleri igin

(b—a)’ [apa (1—-0a)

6= Tampag poy o A=8)
+—B(Q>F(a)[ o @} - St <fg><>}

> |- G| o ey - G ata)

[t = S [t} - G )

esitsizligi gecerlidir.
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Teorem 3.4.3 ¢ = 1,2,....,n i¢in f; : [0,00) — R fonksiyonlar1 [0, c0) iizerinde integral-
lenebilir pozitif artan fonksiyon, a,b € [0,00) ve a < b olsun. Bu durumda a € (0, 1],

B(a) > 0 normalizasyon fonksiyon ve I'(.) gama fonksiyonu olmak iizere Atangana-

) <H ﬁ(b))] (3.4.5)

Baleanu kesirli integral operatorleri igin

D:JA

esitsizligi gecerlidir.

ispat. Bu teoremin ispatinda, n € N igin tiimevarim yontemi kullanilacaktir. n = 1

icin (3.4.5) esitsizliginden

oy - She = e} - ae. ac o

esitsizliginin elde edilecegi agiktir. Tiimevarim yonteminin hipotezi kullamldiginda, (3.4.5)

esitsizligi n — 1 i¢in dogru olacagindan
Affa{ﬁﬁ-(b)}— - (ﬁﬁ(@) (340
(b=a)* 17" 77 (aBrar e L—a),
Een [H< SO ) (”))]

i=1

esitsizligi gegerlidir ve ¢ = 1,2,...,n i¢in f; : [0,00) — R fonksiyorllu [0,00) tizerinde

integrallenebilir ve pozitif artan bir fonksiyon olsun. Bu durumda <ﬁ fz(b)> fonksiyonu
n—1 =

da artan fonksiyon olur. Bu nedenle H fi=g, fn=fig¢in (3.4.1) egitsizligi uygulanirsa

ve (3.4.6) esitsizliginden yararlanlhrsai:l

e {H fi(b)} -5 (H ﬁ»(b))

:Agfa{<ﬂ £ ) a } Ej((ﬁf@-(b)) (fn)>

=2 1 {ah 0} - G N

P B oo} - Gew| [y - G
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_ (= 1 e [ L =) (7
= st [a[ {E”b)} B(o) @“b))]

)

<ereino - 5She)
- [t o] [ (o= i)
< [ernon -G, <b>:_

- [t [H (20 - Gy “’))]

ifadesi elde edilir. Boylece (3.4.5) esitsizliginin n igin dogrulugu gosterilmis olur ve bu-

radan ispat tamamlanir.

Teorem 3.4.4 f,g:[0,00) — R fonksiyonlar1 [0, co) tizerinde integrallenebilir iki fonksi-
yon, a,b € [0,00) ve a < b olsun. Ayrica, f artan fonksiyon ve m := inf,cp o) ¢'(2)
ile birlikte g diferansiyellenebilir fonksiyon olsun. Bu durumda, t(z) = z, a € (0,1],
B(a) > 0 normalizasyon fonksiyonu ve I'(.) gama fonksiyonu olmak iizere Atangana-
Baleanu kesirli integral operatorleri igin

B0 (f9) 1)} - &

—a)

IO (347
B(OIT() [ pag ppyy . L= T Taspag, gy _ (=)

> B a0 - Goo)] [ty - G
m(b+ a «)

~mlrae) lanreg sy - ] s m peren o) - G en o)

esitsizligi gecerlidir.

Ispat. p(z) := mt(z) = ma ve h(z) := g(x) — p(z) oldugu kabul edilsin. Bu durumda,

h diferansiyellenebilirdir ve [0, c0) tizerinde artandir. Buradan Teorem 3.4.1°i kullanarak

B (FR) ()} — (;{j) (fh) (b)
=27 - m) 0} - G (1 gm0
N %oz_)l;(;z) {Agla{f@} _ (gz(j)f(b)} (3.4.8)
X [Affa{ (g —mt) (D)} — (;za?) (g — mt) (b)}
_ %0‘_)2()2‘) {A’fla{ F(b)) — %{a‘;)ﬂb)}

x [ (4o} - Gstom) = m (2o} - o) ]
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2 -
S v [AB e } i e >)f<bﬁ e 3 5231?5?

= SR e - ] ey - Sl
_m(Z:cia |:AB {5 } (1 (f;z) ()}

ifadesi yazilir. Ardindan, (3.4.8)’in sag tarafini kullanarak

(1-a)

ABraf (fg) (b)} — () (fg) (b)
= {7 )0~ B )

= [rtm @ - S m o] < [ en o) - S

B(OIT() s jag ppyy - L= 0T Taspag, gy (L=0)
> B gy - G| [orefomy - Gl
(

-2t Pt o] e 0 - G

1) )]

ifadesi bulunur. Dolayisiyla ispat tamamlanir.

Sonug 3.4.3 f,g:[0,00) — R fonksiyonlari [0, 0o) lizerinde integrallenebilir iki fonksiyon,
a,b € [0,00) ve a < b olsun. Ayrica, f azalan foksiyon ve w := sup,¢p ) ¢'(7) ile birlikte
g diferansiyellenebilir fonksiyon olsun. Bu durumda, t(z) = z, a € (0,1], B(a) > 0
normalizasyon fonksiyonu ve I'(.) gama fonksiyonu olmak tizere Atangana-Baleanu kesirli

integral operatorleri i¢in

(1-a)

Agla{ (fg) (b)} - B(O_/) (fg) (b)

BOT@) [apgag sy~ 0=0) p ] [agag gy =)

) Ly - G [ty - S
w(b+aa) ) a)

e g gy - G| v e en ) - G an o)

a—+1

esitsizligi gecerlidir.

Ispat. wu(z) := wt(z) = wr ve k(z) := g(x) — u(z) oldugu kabul edilsin. Bu durumda
k diferansiyellenebilir ve [0, 00) iizerinde azalan olur. Buradan, Teorem 3.4.1’i kullanarak
ve (3.4.7)'nmm ispatindaki hesaplamalara benzer hesaplamalar yaparak istenilen sonuca

ulagilir.
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4. TARTISMA VE SONUC

Bu tezde elde edilen sonuclar; tezin ti¢iincii boliimi olan ve dort alt boliimden olusan
aragtirma bulgulart bolimiinde verilmigtir. Bu alt boliimlerin birincisinde; Atangana-
Baleanu kesirli integral operatorleri yardimiyla fonksiyonlarin birinci tiirevleri i¢in farkh
parametreler kullanilarak yeni egitlikler ispatlanmistir. Daha sonra, bu esitlikler yardimiy-
la fonksiyonlarin konveksligi, konkavligi ve literatiirde iyi bilinen Holder, power mean,
Young ve Jensen esitsizlikleri kullanilarak yeni integral esitsizlikleri elde edilmistir. Elde
edilen sonuclarin bazilarinin daha once literatiirde var olan sonuclara indirgendigi goriil-
miis ve ayrica elde edilen sonuclardaki parametrelerin bazilarinin 6zel degerleri igin yeni
sonuclar bulunmusgtur. Ardindan bu birinci alt béliimde, Riemann-Liouville kesirli integral
operatorii ile Atangana-Baleanu kesirli integral operatoriiniin, farkh fonksiyonlar i¢in ope-
ratorlerdeki parametrelerin farkli degerlerine karsilik elde edilen simiilasyonlar1 verilerek
bu iki operatériin karsilastirilmast yapilmistir. Ikinei alt boliimde; onceki calismalara ben-
zer sekilde, Atangana-Baleanu kesirli integral operatorleri yardimiyla fonksiyonlarin ikinci
tirevleri icin farkli parametreler kullanilarak yeni esitlikler ve daha sonra bu esitlikler
yardimiyla fonksiyonlarin konveksligi, konkavhigi ve iyi bilinen klasik esitsizlikler kul-
lanilarak yeni integral esitsizlikleri elde edilmistir. Uctineii alt boliimde, Atangana-Baleanu
kesirli integral operatorleri yardimiyla pre-inveks fonksiyonlar i¢in Hermite-Hadamard
esitsizligi ve bir integral esitsizligi elde edilmistir. Elde edilen Hermite-Hadamard esitsizli-
ginin, egitsizlikteki parametrelerin 6zel degerleri icin, daha once literatiirde var olan
sonuclara indirgendigi gortlmistiir. Ayrica bu boliimde, daha once elde edilmig olan
bir esitlik kullanilarak benzer yontemlerle integral esitsizlikleri elde edilmistir. Son alt
boliimde ise Atangana-Baleanu kesirli integral operatorleri yardimiyla senkronize fonksi-
yonlar i¢gin Chebyshev tipli esitsizlikler elde edilmistir. Son ¢ alt boliimde elde edilen
baz1 sonuclardaki parametrelerin bazilarinin 6zel degerleri i¢in yeni sonuglara ulagilmigtir.
Konuyla ilgilenen arastirmacilar da, farkli fonksiyon siiflar1 ve farkl kesirli operatorler
i¢cin benzer yontemlerle yeni sonuclar elde edebilir. Bu tezin bulgular kisminda elde edilen
sonuclar makale formatina doniigtiiriillmiig, bunlarin bazilar: ¢esitli dergilerde yayimlanmis-
tir. Birinci alt boliimde elde edilen sonuclar; “New integral inequalities for Atangana-
Baleanu fractional integral operators and various comparisons via simulations” makale
bashgiyla “Filomat” adli dergide, “On new generalizations of Hermite-Hadamard type
inequalities via Atangana-Baleanu fractional integral operators” makale baglhgiyla “Ax-
ioms” adli dergide, “Fractional integral inequalities via Atangana-Baleanu operators for

convex and concave functions” makale baghgiyla “Journal of Function Spaces” adli dergide
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yayimlanmigtir. Ikinci alt boliimde elde edilen sonuclar; “New integral inequalities for dif-
ferentiable convex functions via Atangana-Baleanu fractional integral operators” makale
baghgiyla “Chaos, Solitons and Fractals” adli dergide, ti¢lincii alt boliimde elde edilen
sonuclar; “Fractional integral inequalities for preinvex functions via Atangana-Baleanu
integral operators” makale baghgiyla “Miskolc Mathematical Notes” adli makalede yayim-

lanmak i¢in kabiil edilmis ve yayimlanma agamasindadir.
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