MACHINE LEARNING BASED TRUNCATION POINT ESTIMATION IN
STEADY-STATE SIMULATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

BURAK GIRIT

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
INDUSTRIAL ENGINEERING

SEPTEMBER 2023

Approval of the thesis:

MACHINE LEARNING BASED TRUNCATION POINT ESTIMATION IN
STEADY-STATE SIMULATION

submitted by BURAK GIRIT in partial fulfillment of the requirements for the de-
gree of Master of Science in Industrial Engineering Department, Middle East
Technical University by,

Prof. Dr. Halil Kalip¢ilar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Pelin Bayindir
Head of Department, Industrial Engineering

Prof. Dr. Nur Evin Ozdemirel
Supervisor, Industrial Engineering, METU

Prof. Dr. Pinar Karagoz
Co-supervisor, Computer Engineering, METU

Examining Committee Members:

Assoc. Prof. Dr. Mustafa Kemal Tural (Chair)
Industrial Engineering, METU

Prof. Dr. Nur Evin Ozdemirel
Industrial Engineering, METU

Prof. Dr. Pinar Karagoz
Computer Engineering, METU

Prof. Dr. Hakki Toroslu
Computer Engineering, METU

Assist. Prof. Dr. Derya Dinler
Industrial Engineering, Hacettepe University

Date:08.09.2023

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Burak Girit

Signature

v

ABSTRACT

MACHINE LEARNING BASED TRUNCATION POINT ESTIMATION IN
STEADY-STATE SIMULATION

Girit, Burak
M.S., Department of Industrial Engineering
Supervisor: Prof. Dr. Nur Evin Ozdemirel

Co-Supervisor: Prof. Dr. Pinar Karagoz

September 2023, [128| pages

In this study, we focus on estimating the truncation point for solving the initialization
bias problem encountered in output analysis for steady-state simulations by using

machine learning methods.

Since the initial conditions of simulation do not represent the steady-state, biased data
originating from the initial state must be eliminated in order to analyze the simulation
output properly. A truncation point in simulation output data has to be determined for
eliminating this initialization bias. In this study, the truncation point estimation capa-
bilities of multilayer perceptron regressor, long short-term memory, and conditional

recurrent neural networks are investigated.

In order to train these three neural networks and test their performances, the second
order autoregressive model and M/M/1 queueing system model are used to generate
data representative of the simulation output. Moreover, these three machine learning
methods are compared with the conventional truncation estimation methods MSER

and MSER-5.

Experimental results show that the multilayer perceptron regressor network has supe-
rior performance compared to other methods, in terms of truncation point estimation
error and coverage of the confidence intervals for steady-state expected values. How-
ever, the long short-term memory and conditional recurrent neural networks cannot

learn effective truncation point estimation with the network configurations used.

Keywords: initialization bias in steady-state simulation, truncation point estimation,
multilayer perceptron regressor (MLPR), long short-term memory (LSTM), condi-

tional recurrent neural network (CRNN), machine learning

vi

0z

KARARLI DURUM SIMULASYONUNDA MAKINE OGRENMESI
TABANLI KESME NOKTASI TAHMINLENMES]

Girit, Burak
Yiiksek Lisans, Endiistri Mithendisligi Bolimii
Tez Yoneticisi: Prof. Dr. Nur Evin Ozdemirel

Ortak Tez Yoneticisi: Prof. Dr. Pinar Karagoz

Eyliil 2023 , [128]sayfa

Bu ¢alismada, kararli durum simiilasulasyonunda karsilasilan baglangi¢ sapmasi prob-
lemini ¢ozebilmek amaciyla, makine 6grenmesi teknikleri kullanilarak kesme noktasi

tahminlemeye odaklanilmugtir.

Simiilasyonda baglangi¢ kosullar1 kararli durumu temsil etmediginden, simiilasyon
ciktilarinin saglikli bir sekilde analiz edilebilmesi icin, baslangic durumundan kay-
naklanan sapmali veriler elenmelidir. Bu baglangi¢ sapmasini elemek igin, simiilas-
yon ¢iktisinda bir kesme noktasi belirlenmesi gerekir. Bu calismada, ¢cok katmanli al-
gilayici regresor, uzun kisa donemli hafiza ve kosullu yinelenen sinir aglarinin kesme

noktas1 tahminleme yetenekleri aragtirilmistir.

Bu {i¢ tip sinir aginin egitilmesi ve performanslarinin test edilmesi amaciyla kulla-
nilmak iizere, simiilasyon ¢iktilarin1 temsil eden verileri tiretmek icin, ikinci derece
0zbaglanimli model ve M/M/1 kuyruk sistemi modeli kullanilmigtir. Ek olarak, bu

tic makina 68renmesi temelli yontem, bilinen kesme noktasi tahminleme yontemleri

vii

olan MSER ve MSER-5 ile karsilagtirilmistir.

Deneysel sonuglara gore, kesme noktasi tahminleme hatasi ve kararli durum beklen-
dik degerleri i¢in kurulan giiven araliklarinin bu beklendik degerleri kapsamas1 dik-
kate alindiginda, ¢cok katmanl algilayici regresor agi diger yontemlerden kayda deger
daha iyi performans gostermistir. Buna karsilik, uzun kisa donemli hafiza ve kosullu
yinelenen sinir aglari, belirlenen ag konfigiirasyonlari ile, etkin kesme noktasi tah-

minlemesi yapmay1 0grenememistir.

Anahtar Kelimeler: kararli durum simiilasyonunda baglangi¢ sapmasi, kesme noktasi
tahmini, cok katmanli algilayici regresor, uzun kisa donemli hafiza, kosullu yinelenen

sinir ag1, makina 6grenmesi

viii

To my beloved family

X

ACKNOWLEDGMENTS

First of all, I would like to thank Prof. Dr. Nur Evin Ozdemirel and Prof. Dr. Pinar
Karagoz for the time and guidance they devoted to this study for almost a year and a

half. This study could not have been completed without their contributions.

Additionally, I would like to express my gratitude to the members of the jury commit-
tee, Assoc Prof. Dr. Mustafa Kemal Tural, Prof. Dr. Hakki Toroslu and Assist. Prof.

Dr. Derya Dinler, for reviewing this study and contributing with their comments.

Finally, I am grateful to my family and all my loved ones for their support and moti-
vation. Feeling their positive attitude and trust in me gave me strength while carrying

out this study.

TABLE OF CONTENTS

ABSTRACTI. e e e v
OZ . . . vii
ACKNOWLEDGMENTSI. o o .. X
TABLE OF CONTENTS| xi
................................ xiv
................................ xvii

LIST OF ABBREVIATIONS

CHAPTERS

1 INTRODUCTION| oo e 1

R_LITERATUREREVIEW] 5
[2.1 Initialization Bias Problem 1n Steady-State Simulation| 5
2.2 Conventional Truncation Point Estimation Methods|. 7
2.3 Machine Learning and Simulation| 12

[2.4 Prediction Applications of the Machine Learning Methods Used| . . . 15

3 PROBLEM DEFINITION AND BACKGROUND 19
1 The Imtialization Bias Problem| 19

[3.2 Autoregressive (AR)Model| o 0o 0L 21
(3.3 M/M/I Queueing System Model| 25

xi

4 SOLUTION APPROACHES! 29

4.1 Multilayer Perceptron Regressor (MLPR)| 29
[.1 neral MLPR Definition| 29
4.1.2 Proposed MLPR Configuration| 33
4.2 Long Short-Term Memory Network (LSTM), 36
2.1 General LSTM Defimition| 36
4.2.2 Proposed LSTM Configuration| 39
4.3 Conditional Recurrent Neural Network (CRNN)[. 40
@4.3.1 CRNN Definition and Usagel 40
4.3.2 Proposed CRNN Configuration| 42

> EXPERIMENTS AND RESULTS| 43
5.1 Generationof Datasets| 43
[5.1.1 Autoregressive Model Datasets| 43
012 M/M/1 Model Datasets| 47
[5.2 Experimental Settings| 50
[5.2.1 Autoregressive Model Experimental Settings|. 51
[5.2.2 M/M/1 Model Experimental Settings| 54
5.3 Performance Measures| L 55

[5.4 Hyperparameter Tuning for Proposed Machine Learning Methods| . . 58

[5.5 Computational Results for Solution Approaches|. 63
[5.5.1 MLPR Experimental Results| 69
[5.5.2 LSTM Experimental Results| 87
[5.5.3 CRNN Experimental Results| 90

xii

[5.6 Comparison of MLPR Results with MSER and MSER-5|

1 MSER and MSER-5 Definition and Resul

[.6.2 Comparison of Truncation Point Estimation Results for MLPR,

MSER, and MSER-3|

[5.6.3 Comparison of Estimated Truncation Point Distributions for

[MLPR, , an .

6 CONCLUSIONS

xiil

LIST OF TABLES

TABLES

Table|5.1 Experimental Settings for the Autoregressive Model| 51
Table|5.2 Experimental Settings for the M/M/1 Model| 54
Table|5.3 Possible Hyperparameter Settings for MLPR|. 59
Tablel5.4 Results for Solver Function Selectionl 60
Table [5.5 Results for Activation Function Selection (with Solver Function |
.................................... 60
Table [5.6 Results for Hidden Layer Size Selection with One Hidden Layer [
| (with Solver Function Adam and Activation Function RelLU)| 61
Table [5.7 Results for Hidden Layer Size Selection with Two Hidden Layers [
| (with Solver Function Adam and Activation Function ReLLU)| 62
Table 5.8 Results for Hidden Layer Size Selection with Three Hidden Layers |
| (with Solver Function Adam and Activation Function RelLU)| 62
Table|5.9 TP Estimation Options and Sample Sizes for AR Model| 68
Table|5.10 MAPE Results for TPS in AR Model with MLLPR (Averages for the [
| Test Phase of Five-Fold Cross Validation)|. 70
Table|5.11 MAPE Results for TP9 in AR Model with MLPR (Averages for the [
| Test Phase of Five-Fold Cross Validation)|. 71
Table[5.12 TPS5 Estimation Results for AR Model with MLPR-TPS (Single Ex- |
| periment, 30 Replications)[. L. 76

X1V

Table [5.13 TP Estimation Results for AR Model with MLPR-TPS (100 Exper-

.................................... 77
Table|5.14 TP Estimation Results for AR Model with MLPR-TP9 (100 Exper- |
.................................... 78
Table |5.15 TP Estimation Results for Delay in Queue in M/M/1 with MLPR- |
| 'TP5 (Single Experiment, 30 Replications)| 80
Table [5.16 TP Estimation Results for Delay in Queue in M/M/1 Model with |
| MLPR-TPS (100 Experiments)| 82
Table |5.17 TP Estimation Results for Delay in Queue in M/M/1 Model with |
| MLPR-TPY (100 Experiments)| 83
Table |5.18 TP Estimation Results for Delay in Queue in M/M/1 Model with |
| MLPR-TPS (Batched Output, 100 Experiments)[. 84
Table |5.19 TP Estimation Results for Delay in Queue 1n M/M/1 Model with |
[MLPR-TP9 (Batched Output, 100 Experiments)| 85
Table|5.20 MAPE Results for TPS in AR Model with LSTM (Averages for the |
[Test Phase of Five-Fold Cross Validation)|. 88
Table|5.21 MAPE Results for TP9 in AR Model with LSTM (Averages for the |
[Test Phase of Five-Fold Cross Validation)|. 89
Table|5.22 MAPE Results for TPS in AR Model with CRNN (Averages for the |
[Test Phase of Five-Fold Cross Validation)|. 92
Table|5.23 MAPE Results for TP9 in AR Model with CRNN (Averages for the |
[Test Phase of Five-Fold Cross Validation)|. 93

Table |5.24 TP Estimation Results for AR Model with MSER (100 Experiments)| 96

Table|5.25 TP Estimation Results for AR Model with MSER-5 (100 Experiments) 97

Table |5.26 TP Estimation Results for Delay in Queue in M/M/1 Model with

| MSER (100 Experiments)|

XV

Table [5.27 TP Estimation Results for Delay in Queue in M/M/1 Model with [
| MSER-5 (100 Experiments)| 100

Table [5.28 TPS5 Estimation Results for Delay in Queue in M/M/1 Model with |
| MSER (Batched Output, 100 Expertments)[. 101

Table [5.29 TP5 Estimation Results for Delay in Queue in Batched M/M/1 |

| Model with MSER-5 (Batched Output, 100 Experiments)| 102
Table [5.30 Comparative Results for AR Model|. 104
Table|5.31 Comparative Results for M/M/1 Model When DS =0ff] 105
Table|5.32 Comparative Results for M/M/1 Model When DS=On| 106

Xvi

LIST OF FIGURES

FIGURES

Figure|2.1 Truncation Point Estimation Methods (Hoad et al. 2008)[. 9
Figure 3.1 Examples of Visualization for AR Model Datal 22
Figure [3.2 Examples of Visualization for AR Model Data with Different |
[Typesof Bias| 24
Figure (3.3 Graphical Representation of the M/M/1 Model| 26
Figure 4.1 Principle of Perceptron (Olmedo et al., 2018)[. 30
Figure 4.2 Graphical Representation of the XOR Problem|. 31
Figure 4.3 Example Solution for the XOR Problem| 31
Figure4.4 Layers of the Proposed MLPR network| 34
Figure 4.5 Graphical Representation of the ReLLU activation function| 35
Figure 4.6 Example Representation of LSTM Unigf. 37
Figure 4./ Graphical Representation of CRNN Network (Remy, 2020)(. . . 41
Figure[5.1 Example Visuals for the Behavior of Three Bias Functions| 45
Figure5.2 Generated Time Series Data for AR Model Testing with Random |
| Model Parameters (Averages of 100 Experiments x 30 Replications), . . 46
Figure 5.3 Generated Delay 1n Queue Data for M/M/1 Model Testing (Av- |
| erages of 100 Experiments x 30 Replications)| 49

Xvii

Figure 5.3 Continued, 50
Figure[5.4 Visualization of the Bias Effects for AR Model Data (AP = 0.6, [
| 03,BC=15TP=200). 65
Figure|5.5 Visualization of the Bias Effects for AR Model Data (AP =0.25, [
| 0.5,BC=15,TP=200). 66
Figure |5.6 Product of Weight Matrices of the MLLPR Network from Input [
| Nodes to Output Node| 74
Figure[5.7 Distribution of Estimated TP Values for AR Model (100 Exper- [
| mments X 30 Replications) 109
Figure|5.8 Distribution of Estimated TP Values for M/M/1 Model (100 Ex- [
| periments x 30 Replications) | oL 111
Figure|5.8 Continued, 112

xXviii

MLP
MLPR
LSTM
CRNN
MSER
AP
BT
BC

TP

DS

LIST OF ABBREVIATIONS

Multilayer Perceptron

Multilayer Perceptron Regressor

Long Short-Term Memory

Conditional Recurrent Neural Network
Marginal Standard Error Rules
Autoregressive Model Parameters

Bias Type

Bias Coefficient

Truncation Point

Data Smoothing

Xix

CHAPTER 1

INTRODUCTION

Steady-state simulation is a fundamental modeling tool used to analyze the behavior
of a simulated system when it reaches equilibrium. As a result of using simulation to
study the steady-state behavior of systems, more realistic and effective decisions can
be made since simulation facilitates prediction of the future as well as evaluation of
alternative strategies. Therefore, steady-state simulations are utilized for various pur-
poses, such as process optimization (Kim et al., 2009), queueing system improvement

(Glynn and Iglehart, 1988), and traffic management (Chinyere et al., 2011).

Steady-state simulations do not have known starting conditions and do not need a
natural event to end the simulation. However, some time is required for these simula-
tions to reach the steady-state. The states in which simulations are started generally
do not represent the steady-state of the system and therefore behave differently from
normal until the steady-state of the simulation model is reached (Banks et al., 2005).
The part of a simulation run that has not yet reached the steady-state because of the
arbitrary initial conditions is called the transient state (Law, 2015). In order to ana-
lyze the system behavior in steady-state, the simulation outputs obtained during the
transient state must be eliminated. Otherwise, the transient state creates a bias in the
final simulation outputs. This problem is called the initialization bias problem in the

literature.

In order to eliminate the initial bias for the steady-state analysis to be more accurate,
the output values that are obtained during the transient state and cause the initial bias
should be truncated from the output data to be used in the analysis. When the simula-
tion output is considered as a time series, the point in this time series after which the

initial bias becomes insignificant is called the truncation point. The rest of the time

series that come after the truncation point can be assumed to represent the steady-
state. Although there is no exact method of detecting the truncation point in every
simulation, there are many different studies in literature that propose approximate
truncation point detection methods and compare these methods. Hoad et al. (2008)
provide a review of 42 different truncation point estimation methods. Welch’s graph-
ical method (Welch, 1983), MSER and MSER-5 (White et al., 2000), batch means
test (Cash et al., 1992), and Schruben’s test for initial bias (Schruben, 1982) are some

of the well known conventional methods that are used for eliminating the initial bias.

Machine learning techniques, which have become more popular as the technology de-
veloped, are often used in many different areas, such as pattern recognition (Orriols-
Puig and Bernad6-Mansilla, 2008), product recommendation (Chen et al., 2017), dis-
ease diagnosis (Kourou et al., 2015), and stock market price prediction (Shen et al.,
2012). Moreover, Giabbanelli (2019) discusses several examples of how simulation
modeling and machine learning techniques can be used together to solve each other’s
known problems. Even though machine learning methods and simulation models
have recently been utilized together more frequently, estimating the truncation point
in steady-state simulations is an understudied topic in this area. To the best of our
knowledge, there exists only one study in the literature utilizing an artificial neural

network to estimate the truncation point (Lee and Kyung, 1997).

Inspired by these studies, this thesis focuses on estimating the truncation point to over-
come the initialization bias problem by means of machine learning methods. For this
purpose, studies were carried out with three types of neural networks, namely Mul-
tilayer Perceptron Regressor (MLPR), Long Short-Term Memory network (LSTM),
and Conditional Recurrent Neural Network (CRNN). In these studies, the second
order autoregressive (AR) model and the M/M/1 queueing system model are used as
representative simulation models. Various time series data generated from these mod-
els are given as input to the neural networks for training and testing purposes through
cross validation. In addition, separately generated test data are used to construct con-
fidence intervals for the known steady-state expected values of the AR and M/M/1
time series, by taking the portion of these time series that comes after the estimated
truncation point. The motivation behind this test is that, if the truncation point is es-

timated accurately, the confidence interval constructed using the data that come after

this truncation point should cover the steady-state expected value.

The results of the machine learning methods are compared with the conventional
MSER and MSER-5 methods of truncation point estimation, which are widely used
and known to be relatively more successful. We have shown that the MLPR network
can make more successful truncation point estimations than MSER and MSER-5
methods, with the network configuration we have determined. In some of the experi-
ments (in general with M/M/1 data), MSER and MSER-5 have difficulty in estimating
the truncation point accurately. The MLPR network, on the other hand, only under-
performed in high traffic intensity cases of the M/M/1 model. However, this problem
is eliminated by using a longer series of M/M/1 output and applying the batch means

method.

Although the MLPR network was found to be successful in estimating the truncation
point, successful results were not obtained in the experiments with the LSTM and

CRNN networks.

We aim to contribute to the literature as the subject of this thesis is an understudied
topic. Moreover, thanks to the machine learning methods used for truncation point
estimation, it is possible to get encouraging results from the proposed solution ap-
proaches, especially the MLPR network. So far in literature, simulation modeling
and machine learning techniques are used together mostly for the purposes of statis-
tical input or output analysis. This study demonstrates that using machine learning
techniques with simulation models can be beneficial for solving the initial bias prob-

lem as well.
The remainder of the thesis is organized as follows.

In the second chapter, studies in the literature about the four topics related to this
thesis are reviewed. First of all, the studies on the initialization bias problem in
steady-state simulation are discussed. Then, conventional truncation point estima-
tion methods to eliminate the initial bias problem are reviewed. Next, the cooperation
between machine learning and simulation, of which this study is a part, and studies
on how they are utilized together are described. Finally, prediction or estimation ap-

plications of machine learning methods used in solution approaches of this thesis are

overviewed.

In the third chapter, firstly, the initial bias problem, which we are trying to solve, is
defined. Then, the AR and M/M/1 queueing system models we use as representative
simulation models to generate our datasets, which are also used in other studies on

this problem, are described.

In Chapter 4, the machine learning methods we use in our solution approach are
briefly explained. Then, the network architectures and parameter configurations we
work with in adapting these methods for our problem are given. We first focus on the

MLPR network, then the LSTM network, and finally the CRNN.

In Chapter 5, the experiments and the results of these experiments will be discussed.
Firstly, generation of datasets is explained, followed by the experimental settings.
Afterwards, the performance measures used in evaluating results of the experiments
are defined. After explaining how the architecture and hyperparameters of the MLPR,
LSTM, and CRNN networks are are determined, the results of the experiments with
these networks are presented in terms of the performance measures. Finally, the test
results of the MLPR network experiments are compared with results of the MSER
and MSER-5 methods, which is often used in literature to overcome the initial bias

problem.

In the last chapter, a brief summary of the results and findings of this study are

given.

CHAPTER 2

LITERATURE REVIEW

In this chapter, the literature on topics related with this thesis study are reviewed. The
initialization bias problem in steady-state simulation is discussed, and some studies
dealing with this problem are reviewed in Section[2.1] Conventional truncation point
estimation heuristics available in literature are described in Section 2.2l Section
is allocated to studies on integration of machine learning methods with simulation
analysis. Finally, some prediction or estimation applications of machine learning

methods used in this study are overviewed in Section [2.4]

2.1 [Initialization Bias Problem in Steady-State Simulation

From the perspective of output analysis, Law (2015) classified simulation models as
terminating and non-terminating simulations. In his book, terminating simulations are
defined as: "A terminating simulation is one for which there is a "natural" event E that
specifies the length of each run (replication)." For example, in combat simulations,
the end condition of the simulation can be set to stop the simulation if one of the
two opposing units becomes inoperative. As soon as this condition is met in the
simulation model, the simulation stops and the results can be examined. While the
outputs of terminating simulations are analyzed, the initial state of the simulation has
a critical role in the analysis as it directly affects the results, and necessary studies are

carried out according to the different scenarios of the initial state.

In the same book, Law (2015) described non-terminating simulations as: "A non-
terminating simulation is one for which there is no natural event E to specify the

length of a run. This often occurs when we are designing a new system or changing

5

an existing system, and we are interested in the behavior of the system in the long run
when it is operating normally." Queueing model simulations are one of the most well-
known examples of these non-terminating simulation models. In non-terminating
simulation models, the simulation has to progress for a certain amount of time in order
for the simulation to reach the steady-state because, usually, the state from which the

simulation is started does not represent the characteristics of the steady-state.

Concerning this issue, Currie and Cheng (2016) state: "It is possible to observe an
initial period where the output is highly variable before the data series settles down
to what can be regarded as its steady-state behavior. This behavior at the start of
the simulation run is often termed the initial transient." The authors continue as: "The
most common way of dealing with the initial transient is to delete the output from this
period, which we define to be the warm up period." In order to analyze the steady-
state behavior, the effects of the initial state must be eliminated. This is called the

initialization bias problem in the simulation literature.

There are many studies in the literature about the effects of the initialization bias

problem, which is the subject of this thesis.

Kim et al. (2018) worked on hydrologic simulations with different initial values of
soil moisture conditions and rainfall amounts to analyze the duration of the initial
bias. Their research concluded that the time required for the model to reach its steady-

state depends on the initial state for the hydrologic simulation models.

Sandikc1 and Sabuncuoglu (2006) presented a similar perspective by analyzing the
behavior of the simulation model before reaching the steady-state. In their study, they
examined the factors affecting the duration of reaching steady-state in a simulation

model developed for a production system.

Grassman (2008) approached this problem from a different perspective than most
studies in the literature. In his work, he discusses how the initial state should be set to
avoid this problem rather than focusing on a method to eliminate the initiation bias:
"If one starts in a state with a high equilibrium probability, one should not use any
warm-up period." However, it is not easy to calculate these probabilities for complex

systems. For these cases, he proposes to run a pilot simulation and produce a solution

based on the results.

Kolahi (2011) constructed a queueing system simulation model to represent the cellu-
lar CDMA system. While explaining the details of the simulation model in his work,
he mentions that the initialization bias significantly affects the results. Therefore, this

subject must be studied in order to analyze the results of the simulation accurately.

Kelton and Law (1983) explain that the slope values of simulation outputs approaches
zero when the simulation model reaches steady-state. They propose that, by consider-
ing the slopes of simulation outputs, it is possible to find the point where a simulation
model reaches steady-state. After the determination of this point, previous observa-
tions can be deleted, and analyses can be made excluding the bias resulting from the

initial state.

Law (2015, Chapter 9) extensively discusses results of an experiment where initial
bias is not truncated in an attempt for estimating steady-state mean of an output per-
formance measure. According to results of the experiment, when a confidence inter-
val is constructed by ignoring the initial bias, the actual coverage of the confidence
interval for the steady-state mean performance can be much lower than the aimed
confidence level. This carries a much higher confidence perception in the estimation
than there actually is. For example, the analyst may think that the confidence interval
covers the true mean with a probability of 0.90 whereas this probability can actually
be as low as 0.50 or even lower. Hence, one may end up with extremely unreliable

estimations when the initial bias is not properly truncated.

2.2 Conventional Truncation Point Estimation Methods

The truncation point, which is an essential concept in the initiation bias problem, can
be defined as the observation value at which the transient phase of the simulation
model ends, and the model now reaches the steady-state. Swamidass (2000) gave the
definition of truncation point as the following: "The observation beyond which data
collection is started is called the truncation point. The objective is to allow the system
to ’warm up’ and to initiate data collection at the end of the warm-up period." In order

to make an accurate and healthy analysis of the simulation output, the truncation point

7

is determined, and the observation values before this point are not used in the analysis.
However, there exists a tradeoff when determining the truncation point. While one
should choose a later point in the observations so that there is almost no bias left in
the remaining data, it is also necessary to have sufficient data left for the analysis.
Because otherwise, the statistical estimates found using limited data would have a
large variance. Therefore, it is desirable to find the minimum truncation point that

will eliminate significant portion of the initial bias.

There exist many truncation point estimation methods available in literature to over-
come the initialization bias problem. Hoad et al. (2008) presented a comprehensive
review of the truncation point methods and provided their references in their study.
In this work, 42 different methods found in literature are classified into five different

groups, as Robinson (2002) also suggested. These groups are:

Graphical methods

Heuristic approaches

Statistical methods

Initialization bias tests

Hybrid methods

Another representation of this classification together with specific methods available

in each group can be found in Figure[2.1]

In order to overcome the initialization bias problem with relative ease of implemen-
tation, Hoad et al. (2008) also studied an automated procedure to determine the trun-
cation point in the simulation output data. The graphical methods, and most of the
heuristic and statistical methods were not eligible for automation. Therefore, those
methods were not included in the preliminary testing process. Moreover, neither ini-
tialization bias tests nor hybrid methods were used. From the heuristic approaches,
Mean Squared Error Reduction with a batch size of five (MSER-5), Kimbler’s Dou-
ble Exponential Smoothing method, and Euclidean Distance Method (ED) were taken

into account for automation. From the statistical methods, the goodness of fit test, the

Graphical

Heuristic

Methods for determining
the truncation point

Statistical

Initialization Bias Test

Hybrid

Simple Time Series Inspection
Ensemble (Batch) Average Plots
Cumulative-Mean Rule
CUSUM Plots

Welch's Method

Relaxation Heuristics

Euclidean Distance (ED) Method
Neural Networks (NN) Method
Simple Time Series Inspection

Telephone Network Rule

Goodness-Of-Fit Test

Algorithm for a Dynamic Dataset (ADD)
Chaos Theory Methods

Kelton and Law Regression Method

Kalman Filter method

Schruben's Maximum Test (STS)
Schruben’s Modified Test

Rank Test

Max Test

Batch Means Test

Pawlikowski's Sequential Method

Scale Invariant Truncation Point Method (SIT)

‘Variance Plots (or Gordon Rule)
Statistical Process Control Method (SPC)
Deleting-The-Cumulative-Mean Rule

Exponentially Weighted Moving Average

Control Charts
Marginal Standard Error Rule m . Marginal Confidence Rule or Marginal
Standard Error Rules (MSER)
Simple Time Series Inspection
L] ‘Conway Rule or Forward Data-Interval
Rule

Beck's Approach for Cyclic output
] Kimbler's Double exponential

Tocher's Cycle Rule smoothing method

Beck's Approach for Cyclic output - Ensemble (Batch) Average Plots
with Schribner's Rule

Algorithm for a Static Dataset (ASD)

Glynn & Iglehart Bias Deletion Rule

Randomization Tests For Initialization Bias

Wavelet-based spectral method (WASSP)

Queueing approximations method (MSEASVT)

Area Test
‘Ockerman & Goldsman Students t-tests Method
Ockerman & Goldsman (t-test) Compound Tests

Optimal Test (Brownian bridge process)

Figure 2.1: Truncation Point Estimation Methods (Hoad et al. 2008)

algorithm for a static data set (ASD), and the algorithm for a dynamic data set (ADD)
were also included. However, after the preliminary testing, only the MSER-5 method

was selected to continue with further testing.

Welch (1983) proposes a graphical method with multiple simulation model replica-
tions to determine the truncation point. To briefly summarize this method, Welch’s
procedure includes taking the averages of individual observation values over replica-
tions and then applying moving averages centered at the observation numbers. After
plotting this averaged-process data, the truncation point can be determined as the

point at which initialization bias is no longer observed in the data.

In the study by White (1997), it is proposed to select a truncation point that minimizes
the width of the confidence interval about the truncated sample mean, as the earlier
observation values result in increasing the half-width value of the confidence interval
since their values are not sufficiently close to the steady-state mean. This method is
defined as the Marginal Confidence Rule (MCR) and constitutes the basis of MSER

rule.

Robinson (2002) proposed a new approach based on the statistical process control
method. The batch means method is employed in creating a control chart since out-
puts of a simulation model are usually highly autocorrelated and potentially non-
normal. The proposed method is tested on seven datasets generated by two different
data models (the first-order autoregressive model and the M/M/1 model) with differ-

ent parameter values.

Oh and Park (2015) suggested a new heuristic method (Exponential Variation Rate,
EVR) in order to overcome the initialization bias problem. They compared their
method with the MSER-5 method to evaluate their effectiveness, consistency, and
confidence. In this comparison, they used the M/M/1 model with four different traffic
intensities. Both methods showed successful performances in mean values estima-
tions after truncation point predictions. However, the sample variance values for EVR
were higher than the MSER-5 method because the truncation point estimation values

of the EVR method were lower than the MSER-5 method.

Most of the studies on the initial bias problem review and compare the methods pro-

10

posed to eliminate the initial bias and report their performances. For example, Linton
and Catherine (2002) compared Welch’s method (Welch 1983), the Relaxation Time
Heuristic (Roth 1994), Kelton and Law’s method (Kelton and Law 1983), and the
Marginal Confidence Rule (White 1997) by using two different 2-machine flow shop
models. They concluded that among the examined methods, Welch’s Method and
the Relaxation Time Heuristic appear to offer practical advantages. Welch’s Method,
in particular, is notable for its ability to address initialization bias without relying
on assumptions about the modeled system. This suggests that it could be a valuable

approach in elimination of initialization bias.

Mahajan and Ingalls (2004) compared the performances of six different methods that
can be used to determine the length of the warmup period on a simple job shop
model. Welch’s Method, Conway Rule, Statistical Process Control Method, Crossing
the Means Rule, MSER-5 Rule, Randomization Test are compared with three model
types considering sample mean and variance estimations. Based on the outcomes, it
is concluded that no single method demonstrates consistent effectiveness across all
model types. Certain methods prove effective for systems with low utilization rates,
while others exhibit performance gains for longer run lengths as opposed to shorter

ones.

Moreover, Robinson and Ioannou (2007) compared 24 truncation point estimation
methods and evaluated them by considering simplicity, ease of implementation, ac-
curacy, required assumptions, and the number of parameters need to be set by scoring
their performances from 1 to 5. The strengths and weaknesses of each method have

been examined. As a result, no method was identified as the optimal choice.

White et al. (2000), which is the most inspired study for this thesis work, compared
five different truncation point methods based on the estimated sample mean and es-
timated standard deviation, the difference between estimated mean and true mean,
the two-sample t-test for equality of means, computational time, and truncation point
estimates. MSER, MSER-5, and three different bias detection tests were compared,
and the MSER-5 method was the favorable method for discarding the effects of the

startup problem.

In another study using the MSER-5 method, Mokashi et al. (2010) compared N-skart

11

and MSER-5 methods. They concluded that although the N-skart method performs

better, it is a more complicated method in terms of implementation.

Sanchez and White (2011) state that "a consensus has emerged among researchers that
MSER has all of the properties most desired in a truncation criterion. It is effective
and efficient at mitigating bias, robust across alternate forms of biasing functions,
computationally trivial, easily understood, and does not require experimenter inter-
vention to establish parameters." Therefore, in this study, we intend to compare the

proposed machine learning based approaches with MSER and MSER-5.

2.3 Machine Learning and Simulation

Machine Learning is an application of artificial intelligence, which uses mathematical
models to learn without any instructions. Machine learning models are frequently
used to identify patterns, extract insights, and make predictions or take actions for a
given dataset. Image recognition, sentiment analysis, autonomous vehicles, product
recommendations in the online markets, credit risk analysis, and language translation
are just a few of the areas where machine learning methods are used. In order to
achieve this, a machine learning model is trained by giving historical (and, in case of
supervised learning, labeled) data to the model. Thus, the trained machine learning

model becomes able to make predictions on data it has not seen before.

Simulation, on the other hand, is a fundamental modeling tool that involves computer-
based models to simulate real-world events or processes. It is used to analyze and
understand complex systems, evaluate the performance of the modeled system, and
then design the system accordingly in a more efficient and effective way. Moreover,
simulation modeling allows us to experiment with different scenarios to observe how

the system behaves under changing conditions.

Machine learning and simulation, which are the most essential modeling tools in
their respective fields, have started to be used together, as combining them makes it

possible to solve some well-known problems.

Giabbanelli (2019) worked on machine learning and simulation integration to over-

12

come three different problems using machine learning, namely calibrating a simula-
tion model, managing the experimental design of simulation modeling, and visualiz-
ing the simulation model output. In his work, it is mentioned that these two tools can
be used together in the same research; however, their purposes are different. While
simulation models are used to analyze the ’what-if” conditions, machine learning
models are used to predict the future as the conditions stay unchanged. To express
the similarities between these two concepts, Giabbanelli (2019) also states: "At a
high level, these approaches proceed in very similar ways: they derive a model from
some of the evidence (the ’training set’ of machine learning or the ’calibration step’
of simulation model) and use the remainder to evaluate the model (the ’testing set” of

machine learning or the ’validation step’ of simulation model)."

Laidler et al. (2020) adopted a simulation analytics perspective to analyze the output
and utilized machine learning techniques to extract findings from the dynamic sample
path by suggesting a k-nearest neighbor (kNN) with metric learning combination-

based method.

In the research of Jain et al. (2018), two different machine learning methods, namely
neural networks and Gaussian Process Regression, were studied to predict delivery
dates for orders incoming to a manufacturing system. The manufacturing system
simulation model is run for different scenarios, and the results gathered in a dataset

are used as input to the machine learning methods.

Liu et al. (2020) stated that "The quality of large-scale logistics network simulation
highly depends on the estimation of its key input parameters, which are usually influ-
enced by various factors that are difficult to obtain." For this problem, they formulated
a supervised machine learning framework to establish a relationship between the in-
fluential factors and the data. Moreover, unsupervised machine learning techniques
are tested to uncover the data pattern of dynamic factors. Li et al. (2018) gathered the
necessary data for the deep reinforcement learning method they worked on to solve
the task selection problem of autonomous material handling vehicles by simulating

the system for different scenarios.

Sherzer et al. (2022) examined whether a machine learning model can help overcome

a general problem related to the queueing theory. To investigate this, they utilized

13

a deep learning approach to predict the steady-state queue-length distribution of an
M/G/1 queueing system. Hijry and Olawoyin (2022) also modeled a queueing system
and used a deep learning network to predict the waiting time in queue. Then, they
compared four different optimization algorithms for learning, which are SGD, Adam,

RMSprop, and AdaGrad in terms of the mean absolute error.

In the literature, there are also some studies on predicting simulation output by us-
ing machine learning methods. In order to estimate the outputs of the M/M/1 model,
Sundari and Palaniammal (2015) constructed an artificial neural network that predicts
the results using the parameters of the M/M/1 model without actually simulating the
queueing system. Arrival rate, service rate, the number of customers in the system
exceeding the queue capacity, time, and population size are used as features to pre-
dict 14 different general queueing system performance measures such as the average
number of customers in system, the average number of customers in queue, and the
average waiting time in system. In another similar study, Kyritsis and Deriaz (2019)
estimated the average waiting time in queue for a banking system using an artificial

neural network.

To the best of our knowledge, except for Lee and Kyung (1997), the machine learning
based methodology of this thesis is an understudied field for the truncation point
estimation problem. We could not find any other studies in the literature attempting
to use machine learning methods for estimating the truncation point. In the study of
Lee and Kyung (1997), the Euclidean distance method and the multilayer perceptron
model were compared using M/M/1 and M/M/2 data. The M/M/1 and M/M/2 model
data with different traffic intensities were given to the multilayer perceptron model
as ten data points at each iteration. The multilayer perceptron model classified these
data with values of 0 or 1. When a neural network categorizes data as 1, it signifies
that the training data’s steady-state data pattern aligns closely with the current input
pattern within a specific margin of error. When the value of 1 is obtained from the
multilayer perceptron network five iterations in a row, it is decided that the simulation

has reached its steady-state and the truncation point is decided.

14

2.4 Prediction Applications of the Machine Learning Methods Used

In order for steady-state simulations to be analyzed accurately, the transient phase
of the simulation, which represents the duration before it reaches the steady-state,
should not be included in the analysis. There are many methods to determine this
truncation point value, as mentioned in Section @ In this study, based on the in-
creasing use of simulation and machine learning concepts in a cooperative manner,
we intend to explore if some of the machine learning techniques can also be used in
estimating the truncation point. In this section, we discuss in which areas and for what
purposes the three candidate machine learning methods, namely Multilayer Percep-
tron (MLP), Long Short-Term Memory (LSTM), and Conditional Recurrent Neural
Network (CRNN) are used for prediction in the literature.

Deshpande (2012) introduced a MLP network as a solution option for forecasting
rainfall time series. The outcomes of the network demonstrate that the MLP net-
work performs favorably in predicting rainfall time series compared to another neural

network based on mean square error and normalized mean square error.

Kumar and Jha (2013) employed a MLP network to forecast two significant weather
parameters: maximum and minimum temperatures. The network was trained and
tested using actual historical data to predict these temperature values. They examined
the network’s performance according to the mean square error function and stated

that the MLP network holds promise for effective weather forecasting applications.

Derbentsev et al. (2020) addressed the challenges associated with short-term finan-
cial time series prediction through machine learning techniques such as support vec-
tor machine, MLP, random forests, and stochastic gradient boosting Machine. The
dataset consisted of daily closing prices from two stock indices, two well-known
cryptocurrencies, and an exchange rate. Among these machine learning approaches,
the MLP network stands out as one of the optimal choices based on its mean absolute

percentage error value obtained from historical price information.

Yulita et al. (2021) worked on forecasting the number of COVID-19 cases for the
next 30 days by utilizing multilayer perception and linear regression. The dataset

contains positive COVID-19 cases collected for five months. They concluded that the

15

MLP network’s performance is better than the linear regression with respect to the

root mean squared error values.

In the literature, there are some studies where both MLP and LSTM methods have

been used and compared for various purposes.

Nelson et al. (2017) aimed to forecast the forthcoming patterns in stock prices by
utilizing historical price data with technical analysis indicators. To accomplish that,
an LSTM network is constructed. With only minor exceptions, the LSTM network
exhibits superior performance, and the results of the LSTM network are highly en-
couraging, as the network’s prediction capabilities stand out in comparison to those

of the MLP, random forest, and pseudo-random model.

Predescu et al. (2019) stated that "Software effort estimation is the biggest challenge
for project managers is to meet their goals within the given time limit." As a result,
they focused on demonstrating feasibility of employing neural network algorithms
for this problem by working with MLP and LSTM. With 77 sample project data, the
MLP outperformed the LSTM in software effort estimation by resulting in a superior

determination coefficient.

When the studies with only LSTM are examined, they can be found in many different
domains. Some examples are as follows. Houdt et al. (2020) provided both insights
into the LSTM network and shared his findings from the literature concerning the
domains where the LSTM network finds application. As in Houdt et al. (2020),
the utilization of LSTM networks spans various domains and objectives. During our
literature review, our attention was directed toward research centered around time

series prediction, aligning with the scope of our study.

Fischer and Krauss (2018) employed LSTM network for the prediction of a financial
market index. Their analysis includes a comparison between LSTM, random forest,
conventional deep neural network, and basic logistic regression models. Remarkably,
LSTM, which aligns well with this specific field, exhibits a significant performance
advantage over both the standard deep neural network and logistic regression meth-

ods.

In the study by Sagheer and Kotb (2019), a version of the LSTM network, with mul-

16

tiple LSTM layers, is utilized to solve the time series forecasting problem of the
petroleum industry. They showed that when the data length increases, the LSTM net-
work performs better to understand the connections in the dataset than the artificial

neural network.

Xuan-Hien et al. (2019) worked on a flood prediction model utilizing a LSTM neural
network on daily discharge and rainfall data. The LSTM model effectively captures

relationships among data and shows accuracy with its predictions.

Nguyen et al. (2020) addressed two essential problems in supply chain management:
sales prediction and anomaly detection in sales. However, for our context, we will
only mention predicting retail sales. The LSTM network for multivariate time series
has been presented for this purpose, and the obtained LSTM results have shown that
the LSTM network worked well for the purpose of future sales predictions consider-

ing RMSE.

There are some additional studies involving use of the CRNN. Remy (2020) uti-
lized the CRNN network to predict the weather temperature of a particular city. The
weather behaves differently depending on the city, therefore it may be useful to con-
dition temperature prediction on the city. Kotsias et al. (2019) studied the CRNN and
molecule side information. Descriptor conditions representing molecules are also
given as input to the CRNN. By doing this, the CRNN used offered better results by
focusing on a specific protein target. Inspired by this work, Mohapatra and Gémez-
Bombarelli (2020) compared CRNN and a graph-based genetic algorithm in the do-
main of molecular optimization and concluded that the CRNN barely performed bet-

ter.

To summarize the review in this section, artificial neural networks such as MLP have
been used in different studies for estimating the outputs of queueing models, but it
has not been used for truncation point estimation. On the other hand, no study was
found making use of LSTM or CRNN in this field. However, these three machine
learning methods have been widely used in literature for time series prediction or
forecasting purposes. Hence, in this study, we intend to explore potential use of these
three machine learning methods for estimating the truncation point in steady-state

simulations.

17

CHAPTER 3

PROBLEM DEFINITION AND BACKGROUND

In this chapter, first, the simulation initial bias problem studied in this thesis will
be defined in Section Then, the autoregressive model and the M/M/1 model,
which are frequently used as representative models in studies on this problem, will be

explained in Sections [3.2]and [3.3] respectively.

3.1 The Initialization Bias Problem

Simulation modeling is an essential method used for solving real-life problems. Sim-
ulation models are used in many different areas, such as highway and street traffic
models, natural disaster models, cost models, combat models, and queueing system
models. Thanks to simulation models, it is possible to predict what may happen in
complex systems or to analyze the performance of a new system to be installed, and
the system can be made more efficient and effective in line with these results. How-
ever, there are various problems to be handled in conducting a simulation study, such
as model oversimplification problem, input data uncertainty problem, model calibra-
tion and validation problem, and statistical output analysis problems. In this study,
the main concern is the initialization bias problem, which is faced in analyzing the

output of stochastic steady-state simulations.

According to Banks et al. (2005), steady-state simulation is defined as "simulating the
system until it reaches a stable operating condition where the behavior of the system
variables exhibits no significant changes over time". Most simulation models start
with an initial state where the system is idle and empty, but the steady-state character-

istics to be examined are generally not similar to the initial state. According to Law

19

(2015), the transient state in a simulation is defined as "... the period of time from
the beginning of the simulation until the system variables reach a steady pattern of
behavior. During this time, the variables may exhibit erratic or inconsistent behavior,
making it difficult to draw meaningful conclusions about the system’s performance.".
Since the values in the transient phase are directly affected by the initial state and do
not represent the steady-state, the analysis to be made on the simulation model out-
puts will not be accurate and healthy. Therefore, the observations encountered in the
transient phase must be eliminated in order to analyze the simulation model output.

In the simulation literature, this problem is called the initialization bias problem.

To explain this problem more clearly, let us consider a queueing model simulation.
Assume that the expected time spent in the system in the steady-state of this queueing
model is equal to a relatively high but unknown value and that the simulation model
is initially idle and empty. As the simulation progresses, values of the individual
time in system observations will increase gradually because the simulation entities
(for example, customers) that will come at the very beginning will only spend a short
time in the system since the system is initially empty and idle. In order for simulation
entities to accumulate in the system, a specific time must pass, and after a certain time,
the simulation will reach its steady-state provided that the overall traffic intensity is
less than one. Including the initial observations in the analysis will artificially reduce
the average time spent in the system and cause misleading results by underestimating
the expected value. In the opposite scenario, the same problem applies to a simulation
model that starts with an overcrowded and busy system. The only difference is that,
in this case, there will be large initial observation values that will increase the steady-
state average and cause overestimation of the true mean. In order to overcome this
problem and to obtain more accurate results, the point before which the observations

are to be excluded from the analysis should be found as the truncation point.

In general, simulation modeling is used to study complex real-life systems for which
neither the true steady-state output value (expectation) nor the truncation point are
known. Therefore, in literature, studies dealing with the initial bias problem make
use of some typical stochastic systems for which the steady-state expected value of
the output is known. Output data generated from simulation models of such stochastic

systems are used as a proxy representing the output of simulations of real-life systems.

20

Output data obtained in this manner are then used in developing and testing methods
for detecting the truncation point. In testing the proposed method, the steady-state
expected value of the stochastic system output is estimated by using the data that
come after the detected truncation point. Then, this estimate is compared with the

known expectation to see if it is sufficiently close to the true value.

When the studies in literature on the initialization bias problem are examined, two
different proxy models become prominent. These are the autoregressive model and
the M/M/1 queueing system model. For this reason, the output data from these two
models were used as datasets in this thesis study as well. More detailed information

about these models are given in Sections [3.2]and [3.3]

3.2 Autoregressive (AR) Model

Autoregressive models are widely used in the analysis of natural phenomena, eco-
nomics, and other time-varying processes due to their ability to capture the influence
of past values on current values. In addition, they have recently been used for neural
network prediction models since the autoregressive models are incredibly flexible and
can model many different types of time series patterns. In different researches such as
Fishman (1978), Schriber and Andrews (1984), and Bischak et al. (1993), autoregres-
sive processes have been utilized in simulation research to capture the autocorrelation
characteristics of output processes. Wang and Wong (2002) propose a model-based
technique for detecting and diagnosing gear faults. The proposed technique estab-
lishes an autoregressive model on the vibration signal of the gear of interest in its
healthy state. The model is then used as a linear prediction error filter to process the

future-state signal from the gear.

Autoregressive models are briefly shown as AR(p) where the parameter p represents
the order of the model. For instance, the AR(1) autoregressive process is a process in
which the current value depends only on the previous value, whereas the AR(2) pro-
cess is the process in which the current value depends on the two previous values. In
the context of autoregressive modeling, time series are computed by considering the

correlation between preceding and subsequent data points. Therefore, this method-

21

ology can be regarded as a statistical technique. The mathematical representation of

the AR(p) model can be seen in Equation [3.1]

Xi= 01 Xia+ 0 Xi o+ 03 Xi 3+ ...+ 0, X, + & (3.1)

where X is the i'" observation in the time series, ¢; is the coefficient of respective

observation, and ¢; is the error term.

As can be seen from the equation, as the coefficients in an autoregressive model take
different values, it is possible to generate data that represent very different patterns,
and the error term represents the stochastic component. In this thesis study, typically
the 2"¢ order autoregressive model data are used. Generation of two different sample
datasets with a length of 360 are given in Equations [3.2] and [3.3] and generated time

series are visualized in Figure [3.1]

Xi = 0.5X¢,1 + 0.3X¢,2 + &; (33)

where ¢; is distributed as N (0, 1) for both equations.

Observation Value
=1
Observation Value

T T T T T T T T T T T T T T T T
o 50 100 150 200 250 300 350 o 50 100 150 200 250 300 350

Observation Number Observation Number
(a) 1%* Order AR Model Data (b) 2™ Order AR Model Data

Figure 3.1: Examples of Visualization for AR Model Data

Other datasets can be obtained by adding different bias types encountered in real life
to the autoregressive model data. Example time series with different types of bias,

which are used in this work (more detailed information will be given in Section @),

22

can be found in Equations [3.4]through 3.9]and Figure [3.2]

X; = 05X, 1 + &; + be 00001 (3.4)

X; =05X,_1 +0.3X,_5 +&; + He 0005~ (3.5)

X; =05X,_1 +e&+5/5 (3.6)

X; =05X;.1+03X;, o+ +5/5 (3.7)

X = 0.5X,_; + & + 5e0056-D) g (% + g) (3.8)

X; = 05X, 1 +0.3X;_5 + &; + 5e 000 Dgjp (% + g) (3.9)

where ¢; is distributed as N (0, 1) for the equations.

Due to this diversity advantage, the autoregressive model has been used in many stud-
ies in literature concerning simulation output analysis as mentioned above. It has also
been utilized in studies on truncation point estimation. Hoad et al. (2008) studied
warm-up length estimation with the autoregressive model. While doing this, they
used different coefficient values of the autoregressive model. They worked on first,
second, and fourth-order autoregressive models and used error values with varying
distributions for these models. White et al. (2000) compared five different trunca-
tion point heuristics using the autoregressive model. In making this comparison, the
study is conducted by using six different coefficient values for the AR model, and
three different bias functions are added to the AR model data. In addition, the ease
of implementation is another advantage of the autoregressive model. Due to these

advantages, a variety of autoregressive models are also used in this thesis.

23

12 4
10 4
% 5
5
5 61
s
E 41
5
21
0
-b 5:(1 160]_";0 260 25|D 3(50 35|0
Observation Number
(a) AR(1) with Exponential Bias
54
5 4
g 4]
o
T 3
2
e 27
2
o 19
0
_1 4
0 s 100 150 200 250 W0 30
Observation Nurmnber
(c) AR(1) with Mean Shift Bias
10.0 4
754
]
E 5.0
=
2 251
m
£
E 00
=]
-2.5
=5.0
) 5‘0 lC:O]_";D Z(IJO 25‘0 360 35‘0

Observation Number

(e) AR(1) with Oscillation Bias

Observation Value

Observation Value

Observation Yalue

254
20 4
15 4
10 4
5 4
04
0 S 100 150 200 250 300 350
Observation Number
(b) AR(2) with Exponential Bias
8
5
4
24
0 4
Clh EI(J 1(::0]5|ﬂ 260 JSID 360 35|0
Observation Number
(d) AR(2) with Mean Shift Bias
20
15
10 4
[y
0
-5
~10 4
6 5;3 160]_":ID 260 250 360 35|C|

Observation Number

(f) AR(2) with Oscillation Bias

Figure 3.2: Examples of Visualization for AR Model Data with Different Types of

Bias

24

3.3 M/M/1 Queueing System Model

The M/M/1 is a queueing system model used to understand and analyze the behavior
of waiting lines. It is an analytical model representing a single-server queue with
Poisson arrivals and exponential service times. The M/M/1 model is generally used
in various areas such as transportation, telecommunications, and manufacturing to
analyze the system in terms of selected criteria. The model helps to gain an under-
standing of different performance measures, such as the average number of customers
in queue or system, and the average waiting time in queue or system. According to

such M/M/1 model results, the system can be modified and optimized.

The M/M/1 model has been used in many different studies. In his well-known text-
book, Law (2015) extensively discussed results of various experiments with M/M/1
simulation concerning both elimination of initialization bias and statistical output
analysis for estimation of performance measures. Afolalu et al. (2019) worked with
many different models for the banking sector including the M/M/1 model and made
suggestions to improve productivity performance. Barroso (2018) worked on M/M/1
data to analyze the effectiveness of several methods in eliminating initial bias from
steady-state stochastic simulations. Modi et al. (2019) established a M/M/1 queueing
model and conducted a thorough analysis of the queueing theory to evaluate the traffic
intensity at the Palasia intersection in Indore city, India, to examine the optimal lane
configuration and signal timing parameters with a certain level of precision. Kesht-
gary et al. (2012) proposed an analytical model for estimating energy consumption in
cluster-based underwater wireless sensor networks using the M/M/1 queueing model.
This model is used to examine the network performance in terms of average energy
consumption. On the initialization bias problem, Law (2015) tested different bias
elimination techniques using M/M/1 data. Moreover, Hyung Sool Oh and Kyoung
Jong Park (2015) compared MSER-5 and exponential variation rate methods using
the M/M/1 model with four different traffic intensities in their study.

In order to better understand the M/M/1 model, it is helpful to examine what these
abbreviations mean. Kendall (1953) included basic definitions in his work, and the

essential notation for this queueing model are given below.

25

Generally, a queueing model is represented by A/ S/ c/ k/n/d where

e A: Inter-arrival time distribution

S: Service time distribution

c¢: Number of servers available

k: Waiting line capacity (default = co)

n: Customer population size (default = co)

d: Scheduling discipline (default = First-In-First-Out or FIFO).

There are three different options representing the interarrival and service time distri-

butions. These are:

e D: Deterministic (constant)
e M: Markovian/Memoryless (exponential distribution)

e G: General/arbitrary distribution (possibly with known mean and variance).

To summarize, based on Kendall’s notation, the M/M/1 model has exponential inter-
arrival and service time distributions, a single server, unlimited capacity for entities
waiting in queue, and it works with the FIFO discipline. A graphical representation

is given in Figure [3.3

Queue Server

Entities Arrive Entities Depart

Figure 3.3: Graphical Representation of the M/M/1 Model

In queueing theory, arrival and service rates are two fundamental parameters that are
vital in determining the system’s behavior. The arrival rate (\) is defined as the av-

erage number of arrivals per unit time, while the service rate (i) is defined as the

26

average number of customers served per unit time. Poisson process and the expo-
nential distribution are used to model the arrival rate and service rate to predict the
behavior of the model and optimize the system’s performance. In order for the M/M/1
model to reach steady-state, the ratio of the arrival rate to service rate, which is the
traffic intensity (p), must be less than one.

p=—-—<1 (3.10)

L

If the condition in Equation @ is not met, the M/M/1 model cannot reach steady-
state because incoming entities start to accumulate in queue and, since the queue
capacity is infinite in the M/M/1 model, the number of entities approaches infinity.
The traffic intensity in queueing theory is often referred to as the utilization of a server
in simulation. A high traffic intensity means that the system is heavily utilized, while
a low traffic intensity indicates that the system is underutilized. Moreover, as the
utilization increases, the time for the simulation model to reach the steady-state also

increases. This makes the truncation point estimation more difficult.

The Little’s Law is a well-known concept in queueing theory that enables finding
theoretical values of performance measures such as expected values of the number of
entities in queue and in system, and the time spent in queue and in system. Therefore,
it is widely used for analyzing the performance of various queueing models. Little
(1961) states that the average number of entities in a system can be found by Equation

L=\ (3.11)

where L is the average number of entities in a queueing system, A is the average
number of entities arriving at the system per unit time and W is the average waiting
time an entity spends in system. Kleinrock (1975) states the mean waiting time in
system as in Equation (3.12
W = b (3.12)
= A
Expected waiting time in queue can be calculated by subtracting the mean service

time as in Equation[3.13]

Wy=————-=—"— (3.13)

Expected values of the number of entities in queue and in system can also be derived
from these equations. In testing our truncation point estimation method, steady-state
output estimates found using the data that comes after the detected truncation point

of the M/M/1 simulation model can be compared with these theoretical values.

In implementing the M/M/1 simulation model, the recursive relation given in Equa-

tion[3.14] can be used to calculate the waiting time (or delay) of entities in queue.

X,L' = Imax {O, 01;1 — tz} (314)
where

Aj; is the interarrival time between entities i and i — 1

t; = t;_1+A; is the arrival time of entity i (#; = 0),

S; is the service time of entity i,

X is the delay in queue of entity i (X; = 0), and

C; =t; + X; + S is the service completion time for entity i

We implement the M/M/1 simulation model in this study using Equation v

28

CHAPTER 4

SOLUTION APPROACHES

In this chapter, we describe the machine learning based solution approaches we pro-
pose in order to estimate the truncation point in an attempt to solve the initialization
bias problem in steady-state simulations. We employ three different types of artificial
neural networks, namely Multilayer Perceptron Regressor (MLPR), Long Short-Term
Memory (LSTM), and Conditional Recurrent Neural Network (CRNN). In the three
sections below, first a general definition (structure and working principles) of each

network type is provided, and then how the network is used in this study is explained.

4.1 Multilayer Perceptron Regressor (MLPR)

4.1.1 General MLPR Definition

The MLPR network is a version of Multilayer Perceptron (MLP) constructed by mod-
ifying the output layer so that the network can predict continuous target variables by
performing regression tasks. Therefore, to explain the MLPR network, we focus on

the MLP network.

In order to better understand the MLP network, it is necessary to start with the percep-
tron first. The perceptron is the part of the MLP network that represents the learning
capability. The perceptron transmits the output according to an activation function
after multiplying the input values transmitted to it by their weights. The working
principle of Perceptron is shown in Figure [4.1] as also schematized by Olmedo et al.

(2018).

29

Figure 4.1: Principle of Perceptron (Olmedo et al., 2018)

In Figure[d.1] X, ..., X, represent the input, which are values of features of a sample
to be used in training the network. wy, ..., w, represent the respective weights for the

feature values, f is the activation function of the perceptron, and y is the output.

Perceptron can solve linearly separable functions, as can be seen from the weighted
sum formula. However, the perceptron cannot be successful when faced with scenar-

ios such as the exclusive or (XOR)problem.

As displayed in Figure[4.2] the XOR problem is a non-linear problem. In other words,
one cannot divide the 1’s and 0’s with a line. Singh and Pandey (2016) state that "It
is not possible to solve the XOR problem using the single layer network because of
presence of nonlinearity in the problem exhibited by XOR logic." As a result, multiple
layers are required to solve the XOR problem. For example, two perceptrons that
have learned the not and and or operators in the first layer and a neural network with
the "and" operator in the other layer have the ability to solve the XOR problem. A

visualization of this example can be seen in Figure d.3]

Therefore, the multilayer perceptron network can be considered to solve non-linear

problems.

30

0,0 o

Figure 4.2: Graphical Representation of the XOR Problem

Input Layer Hidden Layers Output Layer

Figure 4.3: Example Solution for the XOR Problem

31

The MLP is a well known and frequently used neural network type. It has multiple
layers of interconnected nodes, with each node being a simple processing unit that re-
ceives input from other nodes and produces output. In the MLP network, information
flows in only one direction, that is, from input to output without any loops. In other
words, MLP is a fully connected feed-forward neural network. It is widely used in
machine learning applications, particularly for supervised learning tasks such as clas-
sification and regression. An MLP network possesses at least three layers, namely an
input layer, a hidden layer, and an output layer. MLP earns its capabilities by incor-
porating multiple hidden layers having numerous nodes. Each node within a hidden
layer receives its input from the previous layer and generates its output value using an
activation function. The output from a hidden layer is propagated to the subsequent
layer until it reaches the output layer, where the final output is obtained. The learning

process of the MLP involves the following steps:

Forward propagate data through the network from the input layer to the output

layer.

e Compute the error, which is the difference between the predicted output and

the actual output.

e In order to minimize the error calculated in the earlier step, backpropagate the
error while taking its derivative with respect to each weight in the network, and

then update the weights accordingly.

e Iterate through the first three steps to learn the optimal weights for the MLP.

Detailed explanation of the above steps can be found in Noriega (2005).

MLPR refers explicitly to an MLP network designed for regression tasks, where the
output to be predicted is continuous rather than categorical. Both MLP and MLPR
networks are based on the same network architecture. In other words, MLPR can be
considered as a subset of MLP as the output layer of a MLPR has an activation func-
tion such that the network can produce continuous numeric values for predictions,
while the activation function used in the MLP can be chosen according to the task,

which is typically classification.

32

4.1.2 Proposed MLPR Configuration

Artificial neural networks have some essential properties and hyperparameters that
determine the neural network’s architecture. Changing these properties and parameter
values may significantly affect the performance of the network in solving a particular

problem. Therefore, their selection is as critical as the selection of the network type.

In case of MLPR, the number of hidden layers, the number of nodes in each hidden
layer, the activation, loss and solver functions to be used, and the maximum number
of training iterations need to be selected to come up with the proper network config-

uration to be able to effectively and efficiently solve the problem at hand.

A comprehensive hyperparameter tuning experiment has been carried out for the
methods proposed as a solution approach in this study. Details of this experiment
and performance of the network with a variety of configurations tried are given in
Section The configuration of the MLPR network used for estimating the trun-
cation point is determined based on the results of this experiment and summarized

below.

As shown in Figure 4. 1], a node found in the hidden layer transmits the result obtained
from the activation function, together with the incoming values and the weights of
these values, to the next node. Therefore, the number of hidden layers and the number
of nodes in each layer directly affect the performance of the MLPR network, as they
represent the way to predict the input values given to the network. In this study,
we propose that the MLPR network should have three hidden layers, and have 200,
150, and 100 nodes in these hidden layers, respectively, in order to make truncation
point estimation more successful. Graphical representation of the proposed network

architecture is given in Figure

Note that nodes in the input layer represent the observation values (a time series)
obtained from a simulation replication, and the single output node represents the es-
timated truncation point. The reason why the input layer has 1000 nodes in Figure
M4.4]is that the length of the time series data in the experiments (simulation replication

length), to be explained in Chapter[5] is equal to 1000.

33

Input Layer Hidden Layers Output Layer

1000 Nodes 200 Nodes 150 Nodes 100 Nodes 1 Node

Figure 4.4: Layers of the Proposed MLPR network

As the activation function, we used the ReLLU function. In a neural network, the
activation function is crucial in transforming the weighted sum of the input values of
a node into its output. The rectified linear activation function, known as ReL.U, is a
piecewise linear function that directly outputs the input with a basic algorithm. If the
input of ReL U is negative or zero, the function returns the value of zero. Otherwise,
the function gives the input value as the output (Agarap, 2018). ReLU has gained
popularity as the default activation function in many neural networks, including MLP,
due to its ease of use in training and ability to achieve improved performance (Zeiler
et al., 2013). The formulation and a graphical representation of ReLLU activation

function is given in Equationd.1]and Figure

y = max (0, z) 4.1)

where x represents the input value (that is, weighted sum of the input values of a node)

and y represents the output of the node.

34

Qutput

Input

Figure 4.5: Graphical Representation of the ReLU activation function

The loss function in machine learning represents closeness of the machine learning
network’s predictions to the actual target values. The primary purpose of training a
machine learning network is to update the weights and bias values so that the loss
function value is minimized. Neural network estimations become more successful
as the loss function value decreases. Since we are working with the MLPR network
and actually working on a regression task, we set the loss function as mean squared
error (MSE). MSE is a loss function that is used in regression tasks to calculate the
average squared difference between the predicted target variable values and the actual
target variable values. Formulation of MSE can be found in Equation 4.2] (James et

al., 2013).

n

1 5
M E:—E —7 4.2
S P (y; — 95) 4.2)

where n represents the sample size (number of samples in the training dataset), y; is

the actual target value and g; is the predicted target value for the ;' sample.

In our work, Adam was selected as the solver function. Adam is an alternative op-
timization algorithm that replaces the conventional stochastic gradient descent tech-
nique to update network weights while training the network iteratively. Adaptive
Moment Estimation, known as Adam, is a highly efficient optimization algorithm for

gradient descent. Adam distinguishes itself when handling large-scale problems in-

35

volving extensive amounts of data or parameters, and it consumes less memory while
maintaining effectiveness. Essentially, Adam combines the principles of the gradient
descent with momentum algorithm and the Root Mean Square Propagation (RMSP)

algorithm. (Kingma and Ba, 2014)

Lastly, the maximum number of iterations represents the stopping condition for the
solver. The solver will continue iterating until either convergence or the specified
number of iterations is reached. When Adam is used as the solver, the maximum
number of iterations determines how many times each data point can be used during
the training process, rather than the number of individual gradient steps. After trying
some larger values, we set the maximum number of iterations to 200 for the MLPR

network, as the network stabilized at this point.

To summarize, the MLPR architecture and parameter values are selected as listed

below.

Hidden layer sizes: 200, 150, 100

Activation function: ReLU

Loss function: MSE

Solver function: Adam

Maximum number of iterations: 200

4.2 Long Short-Term Memory Network (LSTM)

4.2.1 General LSTM Definition

LSTM is a special case of the recurrent neural networks. Hochreiter et al. (1997) state
that "Recurrent networks can use their feedback connections to store representations
of recent input events in the form of activations. The most widely used algorithms
for learning what to put in short-term memory, however, take too much time to be
feasible or do not work well at all, especially when minimal time lags between in-

puts and corresponding teacher signals are long. Although theoretically fascinating,

36

they do not provide clear practical advantages over backpropagating in feed forward
networks with limited time windows." LSTM is introduced to overcome this problem

(Hochreiter et al., 1997).

A LSTM unit consists of four components: a cell, an input gate, an output gate, and
a forget gate. The input gate is responsible for updating the cell state considering the
previous hidden state and the current input. The output gate controls the information
that will be passed through as the output with respect to the previous hidden state and
current input. Initially, the forget gate was not included in the LSTM network; how-
ever, Gers et al. (2000) proposed its addition to enable the network to reset its state.
The cell retains information over flexible time intervals, while the three gates con-
trol the information flow within the cell. The forget gate is responsible for selecting
whether information is retained or forgotten according to the output of an activation

function. A typical LSTM unit can be shown as in Figure {.6]

an A
Ce1 X "+ > G
et
h 4
f tanh
i gr
a g tanh
A A A
he—y Ot
g X —
Xy

Figure 4.6: Example Representation of LSTM Unit

Figure [4.6] also provides information on how an LSTM unit works as we follow the
directions. This is explained below, following the notation.
e X,: Input at time step ¢

e h,;: Hidden state at time step ¢

37

Cy: Cell state at time step ¢

by, by, bi, b,: Bias vectors

Wi Wozo Wigy Wo oo Wen, Wy, Wi, W, 0 Weight matrices

ft» 1ty i, 042 Activation function value vectors

o and tanh: Sigmoid and hyperbolic tangent activation functions

According to Figure [4.6] the calculations within a LSTM unit are given in Equations

4.2] through

Ji=0 W Xe + Wiphiq + by) 4.3)
gr = tanh (W, . Xy + Wyphi—1 + by) (4.4)
iv =0 (Wi Xy + Wi phiy + b;) 4.5)
0p = 0 (WouXi + Wonhi—1 + bo) (4.6)
Cr=fixCii+1 X g 4.7)

hy = oy X tanh (Cy) (4.8)

where X is the dot product.

A LSTM unit generates its output C; and h; according to these calculations. The

weights in the equations are updated by backpropagation.

LSTMs have complex recurrent connections that allow information to flow from one
time step to the next within a sequence. The connections in MLPs are feed-forward
between the layers in a straightforward manner, where there are no loops or recur-
rent connections. On the other hand, each gate in a LSTM network has its own set
of weights as explained, which determine how the data are processed and can be re-
membered over time. Therefore, the LSTM network has more sophisticated weight
structures than the MLP network, which allows LSTMs to capture long-term depen-

dencies and patterns in sequential data.

38

4.2.2 Proposed LSTM Configuration

We experimented with different architectures of the LSTM network. In these experi-
ments, the main parameters changed was the number of LSTM units in hidden layers
of the network. We first started our studies on the LSTM network by examining how
the architecture of the MLPR network, which we had successful results with, would
perform with the LSTM network. When hidden layers in LSTM were set up as in
MLPR, we faced both memory and computing time problems. To deal with these
problems, the time series obtained from a simulation replication was shortened by
batching the observations and using the batch means. Length of the time series given
as input to LSTM was first reduced from 1000 to 200 by taking the average of ev-
ery 5 consecutive simulation observations, and then to 100 by averaging every 10

consecutive observations, as in Equations 4.8 and 1.9] respectively.

5
1

2y = 5 ;X5(t—1)+i for t=1,..,200 (*9)
L

2y = 10 ;Xlo(t—l)ﬂ’ for t=1,..,100 (4.10)

where X, is the t'* observation obtained in a simulation replication and Z, is the input

given to the neural network at time step ¢.

When LSTM experiments were performed with an input of length 200 time steps, the
hidden layer sizes were chosen as 40, 30, and 20 to be proportional with the length of
the time series. Similarly, for a time series of length 100, the LSTM network had 20,

15, and 10 nodes in the three hidden layers, respectively.

In addition to the hidden layer sizes, the number of training epochs needs to be de-
termined for the LSTM. For this, initially the maximum number of iterations used
for the MLPR was considered. However, training the LSTM network for 200 epochs
was not possible due to the memory and computing time problems mentioned earlier.
Therefore, experiments had to be performed with a lower number of epochs. In our
study, different values were tested for the number of epochs. However, increasing this

value did not change the model’s performance, therefore the number of epochs was

39

determined as 20.

Even though the hidden layer sizes in LSTM differ for different input lengths, other
parameter values remain the same as in the MLPR configuration. To summarize, the

selected parameter values for the LSTM network are listed below.

e Hidden layer sizes:

— 200, 150, 100 for input length = 1000
— 40, 30, 20 for input length = 200
- 20, 15, 10 for input length = 100

Activation function: ReLU

e [oss function: MSE

Solver function: Adam

Number of epochs: 20

4.3 Conditional Recurrent Neural Network (CRNN)

4.3.1 CRNN Definition and Usage

In this study, the last machine learning network used for truncation point estimation
is the CRNN. Remy (2020) states that "The conditional recurrent layer is useful if
you have time series data with external inputs that do not depend on time." From
this statement, we understand that if a neural network is also given an auxiliary time-
invariant sample feature, the CRNN architecture can be used to analyze whether its
performance will improve. In our case, the type of initial bias in simulation outputs
that are frequently studied in real life can be known. For example, for the queueing
system simulations that start empty and idle, the delay in queue starts at zero and
approaches the steady-state value in an exponential manner. Therefore, in addition to
the input data, the bias type can also be given to the neural network. For this, studies
were carried out on the CRNN network with the AR model with three different bias

types (exponential, mean shift, and oscillation) described in Section [3.2]

40

For recurrent neural networks (RNNs), the input is a sequence of time steps, with each
time step containing a tensor of features. Therefore, it is possible to have multiple
features at each time step. However, if one of these feature is not time series-based,
it might not be suitable to directly pass it through the RNN since the auxiliary input,
in our case the bias type, is not dependent on time. The RNN may still work but it
may lead to higher loss or lower accuracy while training the network. An alternative
approach is to incorporate this additional information into the RNN network by using
extra layers. Then, CRNN combines the auxiliary inputs with the initial RNN outputs
and continues to train the network, effectively making it a multi-input network (time
series data and auxiliary inputs). To initialize the RNN states, a learned representation

of the conditions can be used as a starting point. Remy (2020) visualizes this method

as in Figure

Categorical Variables =2

lor0

Weights and Bias
lor0 >

lor0

Output

Time Series Input

Figure 4.7: Graphical Representation of CRNN Network (Remy, 2020)

As an example, Remy (2020) utilized the CRNN network to predict the weather tem-
perature of a particular city. The weather behaves differently depending on the city,
therefore it may be useful to condition temperature prediction on the city. For this
estimation, the 30 cities whose temperatures are highly correlated with temperature
of the selected city are determined. As exogenous component (or auxiliary feature)
Remy (2020) gave as input to the network the last day’s temperature of the corre-

lated cities. In the example, the performance has improved with respect to the mean

41

absolute error metric when compared to the LSTM network’s performance.

4.3.2 Proposed CRNN Configuration

Discovering the common aspects of truncation point estimation with the findings of
Remy (2020), we decided to adapt his solution approach for our problem. In our
study, in addition to our time series data, there are bias types of the AR model that
are not dependent on time. The exponential, mean shift, and oscillation bias types of
the AR model should be considered as auxiliary inputs for this method. Therefore, in
order to work with the CRNN, they are represented with Os and 1s by the One Hot
Encoding method.

e Exponential Bias =[1, 0, 0]
e Mean Shift Bias =[O0, 1, 0]

e Oscillation Bias = [0, 0, 1]

In order to conduct experiments with the CRNN method, the bias type, as described
above, is given as a categorical input to the time series data network. The network is
expected to learn and estimate the target truncation point values better by considering

this input in addition to the time series.

The architecture of the CRNN network with which experiments were carried out were
taken as the same as the architecture of the LSTM network. The only difference was
that the conditional recurrent layer was used as the first layer in the CRNN network.
The same memory and computing time problems reported for the LSTM network
in the previous section were also experienced for the CRNN network. Therefore,
time series data with different lengths of 1000, 200 and 100 were also tried when
working with the CRNN. Remaining configuration parameters of this network were

also selected as the same as for the LSTM network.

42

CHAPTER 5

EXPERIMENTS AND RESULTS

In this chapter, firstly generation of datasets from the AR and M/M/1 simulation mod-
els, which will be used in training and testing the neural networks, is explained in
Section 5.1, followed by the experimental settings for the two models in Section 5.2.
The performance measures used in the study are defined in Section 5.3. Section 5.4 is
allocated to hyperparameter tuning for the proposed machine learning methods. The
experimental results for the three types of neural networks proposed for truncation
point estimation are summarized in Section 5.5. Finally, the MLPR network, which
is found to be successful in estimation, is compared with a conventional truncation

point estimation method in Section 5.6.

5.1 Generation of Datasets

Two different models are used to generate datasets to represent the simulation output.
The first is the AR model and the second is the M/M/1 model as described in Sections
and respectively. This section will explain how we generated the datasets

from these two models.

5.1.1 Autoregressive Model Datasets

In this work, zero-mean second order AR model datasets were used as suggested by
White et al. (2000). The formulation of the zero-mean second-order AR model is as

follows.

43

Xi= 01 Xi1 + P2 X0+ ¢ (5.1)

where X is the AR model output, ¢; and ¢, are model coefficients and ¢; is the error,
which is generated as a normally distributed random value with mean O and standard
deviation 1. To represent the initial transient phase in steady-state simulations, three
different types of bias are introduced to the AR model. These bias functions, which

are also used by White et al. (2000), are given in Equations [5.2] through[5.4]

e Exponential Bias

B; = Cle~0:005(-1) (5.2)
e Mean Shift Bias
B;=C/5 (5.3)
e Oscillation Bias .
B, = Ce—0:005(i-1) o) (% + g) (5.4)

where ¢ is the observation number in the AR time series, B; is the bias value for
observation ¢ and C' is the bias coefficient. In order for the AR model to represent
both the transient and the steady-state phases, B; values of a certain type are added
to the model as in Equation [5.5] during the transient phase. However, in the steady-
state portion of the time series, B; values are taken as zero so that there is no bias in
the data. To illustrate the behavior of three bias functions, some sample time series
are plotted in Figure [5.T| where the bias coefficient C' is taken as 10 and the transient

phase ends at observation number 200, which should be the truncation point.
Xi=01Xi1+ X2+ Bite (5.5)
where B; = 0 for ¢ > truncation point.

Samples used for training, cross validation, and testing of the neural network with the
AR model are generated using Equation [5.5] In general, each sample of time series
has a length of 1000 observations. As will be explained in Section [5.2] a total of
3000 samples are used for testing the AR model in 100 experiments each with 30

replications. Generated samples are used both as raw time series and after applying

44

Bias Value

10 A

200
175 A
150
w 1251
&
> 100
%
o 075 4
0.50
0.25
0.00 -
200 400 600 BOO 1000] 200 400 600 BOO 1000
Observation Number Observation Number
(a) Exponential Bias Function (b) Mean Shift Bias Function
10
B
6
I
L
8 2
o
0
-2
=i}
0 200 400 600 BOO 1000

Observation Number

(c) Oscillation Bias Function

Figure 5.1: Example Visuals for the Behavior of Three Bias Functions

45

data smoothing (DS) by taking moving averages of observations, as will be detailed
in Section[5.2] In order to visualize the time series with three different types of bias,
averages of 3000 test samples are plotted in Figure [5.2] for the raw time series (DS =

Off) and moving averaged time series (DS = On).

40 40
30 30
ERFl) Y
£ £
(=] (=
2 1 2 10
m m
c £
2 B
8§ o g 0
10 =10
—20 T T T T T T —20 +— T T T T T
o 200 400 600 800 1000] 200 400 /00 800 1000
Observation Number Observation Number

(a) AR with Exponential Bias with DS = Off (b) AR with Exponential Bias with DS = On

0 40
0 20
ER ER
5 =
[=
2 W g 1
o m
Pl [P |/
5 " g8 0
—-10 =10
—20 T T T T T T =20 T T T T T T
0 200 400 600 800 1000 0 200 400 £00 800 1000
Observation Number Observation Number
(c) AR with Mean Shift Bias with DS = Off (d) AR with Mean Shift Bias with DS = On
a0 40
EN) 0
5 Y
z 3
c
2 1w -é 10
] o
: :
8§ " g o
—-10 =10
=20 T T T T T T —20 T T T T T T
0 200 400 600 800 1000 0 200 400 800 800 1000
‘Observation Number Observation Number
(e) AR with Oscillation Bias with DS = Off (f) AR with Oscillation Bias with DS = On

Figure 5.2: Generated Time Series Data for AR Model Testing with Random Model

Parameters (Averages of 100 Experiments x 30 Replications)

46

5.1.2 M/M/1 Model Datasets

The M/M/1 model described in Section [3.3]is also used, as representative of queue-
ing system models, for testing the proposed truncation point estimation methods and
comparing them with a well known method in the literature. The main reason for
selecting the M/M/1 model, on which many similar studies have been carried out in
the field of simulation, is the ease of analysis of the results because the steady-state
expected delay in queue, W, can be found as in Equation [5.6] given the arrival and

service rates.

A
Wo =

— 5.6
(1= A) 60

where) is the arrival rate and p is the service rate.

In order to generate the delay in queue observations for M/M/1 datasets, instead of

developing an actual simulation model, the well known recursive relation given in

Equation [5.7]is used.

Xz' = Imax {0, Cz'—l - tz} (57)
where

e A, is the interarrival time between entities i and i — 1

e t; =t; 1+A; is the arrival time of entity i (t, = 0),

S, is the service time of entity i,

X 1s the delay in queue of entity i1 (X; = 0), and

C; =t; + X; + S; is the service completion time for entity i

Unlike the AR model where the bias term is set to zero and this determines the trun-
cation point, the truncation point in the M/M/1 model output is unknown and varies
depending on the traffic intensity. Therefore, the M/M/1 datasets cannot be used for

training and cross validation of the neural network; they are usable only for testing

47

purposes. As for the AR model, 3000 samples each of length 1000 observations are
generated for the M/M/1 model for testing the neural network with different levels of

traffic intensity. The M/M/1 model datasets used in this study can be visualized in

Figure[5.3]

48

9 9-
B]
7 7
g0 3 6]
& 51 & 51
£ E
4 74
8 34 a3/
2 2
14 1
o L . : . : ; oL . . . : !
o 200 400 600 800 1000 o 200 400 600 800 1000
Observation Number ‘Observation Number
(a) p=0.5 and DS = Off (b) p=0.5and DS = On
9 9
8 8
7 7
@ B @ B
= =
u o
& 51 S 51
E E
= 4 = 4
n L)
' L
o 3 o 3
2 2
1 r—.—- 14 r,——‘_—_.——————————
0-— T T T T T 00— T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Observation Number Observation Number
(c) p=0.6 and DS = Off (d) p=0.6 and DS = On
9 9
8 8
71 7
B w B
& 51 & 51
& E
E 4 E- 44
a 3 a 31
2 21
14 f 11 f
o T T T T T T o T T T T T T
o 200 400 600 800 1000 0 200 400 £00 800 1000
Observation Number ‘Observation Number
(e) p=0.7 and DS = Off (f) p=0.7 and DS = On

Figure 5.3: Generated Delay in Queue Data for M/M/1 Model Testing (Averages of
100 Experiments x 30 Replications)

49

9 9
8 &
7 7
5 [F)
&5 a5
= =
51 % 4
= =
o 3 a 3
2 2
1 1
o ; ; : ; ; ot i . i . .
o 200 400 600 800 1000 o 200 a00 B00 800 1000
Observation Number Observation Number
(g) p=0.8 and DS = Off (h) p=0.8 and DS = On
9 9
8 8
T 7
&
&5 a5
£ E
gt A
a 3 & 3
2 2
1 1
04— r , T T T p L ,
o 200 400 600 800 1000 o 200 400 BO0 800 1000
Observation Number Observation Number
(i) p = 0.9 and DS = Off (G) p=0.9 and DS = On

Figure 5.3: Continued

5.2 Experimental Settings

For both AR and M/M/1 models, there exist various parameters that affect the ob-
servation values in the generated datasets. In studying the performance of proposed
solution methods, different parameter values are used for generating data from these
two models. Firstly, the AR model parameter settings will be discussed within the

framework of experimental design, followed by the M/M/1 model parameter settings.

50

5.2.1 Autoregressive Model Experimental Settings
The experimental settings for the AR model are summarized in Table where

model parameters are taken as factors in a designed experiment and selected values

of parameters correspond to factor levels.

Table 5.1: Experimental Settings for the Autoregressive Model

Number of
Factor Factor Levels
Factor Levels
(0.6, 0.3)
(0.9, 0.0)
] (-0.9, 0)
AP: Autoregressive
7 (0.25,0.5)
Model Parameters
(-0.25, 0.5)
(0.75, -0.5)
(-0.75, -0.5)
Exponential
BT: Bias Type 3 Mean Shift
Oscillation
BC: Bias Coefficient 3 5,10, 15
TP5: Truncation Points 5 200, 250, 300, 350, 400
TP9: Truncation Points 9 200, 225, 250, 275, 300, 325, 350, 375, 400
. Off (individual observations)
DS: Data Smoothing 2
On (moving averages of 10 observations)

Seven different sets of model coefficients (AP) were used in generating the AR model
data. While six of them were the values suggested by White et al. (2000), the first
one was selected additionally to represent the positive autocorrelation pattern often
encountered in queueing system outputs. Using many different sets of coefficients
would be beneficial for the neural network to learn different data patterns and make
better estimations in the training phase. In addition, training the neural network with
a larger dataset containing all these different patterns would also help in the future

when predicting data that the model never encountered before.

51

Simulation output encountered in real life have different types of initial bias (BT).
For instance, the M/M/1 model exhibits an exponential bias before reaching to its
steady-state. Therefore, introducing different bias types while training the neural
network would improve its prediction performance. Three different types of bias
functions were used in this study including exponential, mean shift, and oscillation
bias functions. These bias types are described in Section[5.1.1|and Equations [5.2][5.3]
5.4

The bias coefficient (BC) is used as a multiplier to the bias value as seen in Equations
5.2l 531 [5.4] As can be seen from these equations, as the bias coefficient value in-
creases, the bias value added to the data increases. Three different values were used

as the bias coefficient (5, 10 and 15) to determine the magnitude of the bias values.

Truncation point (TP) determines up to which observation the bias values described in
Section will be added to the AR model data. Two different truncation point sets
with five (TP5) and nine (TP9) discrete points were selected for the experiments. The
range of the truncation point (200-400) was kept constant in order to make a better
performance comparison, but TP9 provided a ’less discrete’ set of truncation points
compared to TP5. The purpose of keeping the truncation point range constant but
increasing the number of points in TP9 is to explore the effect of the target variable

values being closer to a continuous scale on the performance of the neural network.

Finally, instead of changing the value of a model parameter while generating the data,
the moving average method was applied to the generated data in order to reduce the
variance of the data. This created two different data types where data smoothing
(DS) was off and on. DS = Off in Table [5.1] means that the raw data or individual
observations were used as they are generated, while DS = On means that the moving
averaged data were given as input to the neural network. The sample size for the

moving averages was determined as 10 and they were calculated as in Equation [5.8]
_ 1
Xi=—> X, (5.8)

fori = 1,2,...,991 where X, fori = 1,2,...,1000 is the 5" observation generated
using the AR model and X is the respective moving average. For i = 992, ..., 1000,

X; is calculated only by using the available observations left.

52

As can be understood from Equation [5.8] length of the time series was set as 1000
observations for each replication. This means that, when the range of the truncation
point (200-400) was considered, at least 600 steady-state observations were available
in each sample given as input to the neural network. The replication length could
have been much larger than 1000 for a simulation model, but this would significantly
increase the memory and computing time required for training the neural network.
Therefore, it was kept at a minimum level as long as the steady-state was reached
long before the time series ended. Also, being able to determine the truncation point
using a relatively short replication length was advantageous to spend less computing

time for simulation replications as well.

The number of replications (R) to be used for training the neural network was selected
such that the sample sizes for TP5 and TP9 were equilized. The number of combina-
tions for the first three factor levels in the experimental designis 7 AP x 3 BT x 3 BC
= 63. In case of TP9, when R was taken as 100 for each of the 63 x 9 TP9 = 567 factor
combinations, a total training sample size of 56,700 was reached. To obtain the same
sample size for TPS with 63 x 5 TP5 = 315 combinations, the number of replications

was determined as R = 56,700 /315 = 180.

The two datasets for TP5 and TP9 each with a sample size of 56,700 were mainly used
to evaluate the training performance of the neural network. For this purpose, five-
fold cross validation was carried out. A dataset was divided into five equally sized
folds by selecting samples randomly such that all factor combinations were equally
represented in each fold having 11,340 samples. For each of the cross validation
steps, one of these five folds was left out for validation and the remaining four folds

were used for training the neural network.

In order to move one step forward and test the performance of the proposed machine
learning methods, we generated a separate dataset which the neural network did not
see before. For this purpose, for each BT, AP and BC values were chosen randomly
from the discrete levels listed in Table [5.1] whereas the TP values were generated
randomly between 200 and 400 in a continuous manner. The random selections were
made with equal probability. In a single experiment, 30 replications were made each

with a length of 1000 observations, and 100 different experiments were carried out

53

for each BT and data smoothing combination. In other words, 100 experiments x
30 replications = 3000 samples were generated for each BT for the AR model test
dataset. For each test experiment, 30 replications were given as input to the neural

network trained once by using all 56,700 samples.

5.2.2 M/M/1 Model Experimental Settings

The experimental settings for the M/M/1 model are summarized in Table [5.2] There

are two factors in experiments using the M/M/1 data.

Table 5.2: Experimental Settings for the M/M/1 Model

Number of
Factor Factor Levels
Factor Levels
0.5
0.6
Traffic Intensity 5 0.7
0.8
0.9

) Off (individual observations)
DS: Data Smoothing 2

On (moving averages of 10 observations)

Five different values, 0.5, 0.6, 0.7, 0.8 and 0.9, were used for traffic intensity, defined
as the mean arrival rate divided by the mean service rate. Queueing systems are
known to reach steady-state in longer times as the traffic intensity increases, and it
is needed to evaluate the performance of the proposed truncation point estimation

methods under different intensity levels.

The moving averaging method for data smoothing mentioned in the experimental
settings for the AR model data was also used in the M/M/1 experiments. Moving

averages were calculated as in Equation [5.§]

In one test experiment of the M/M/1 model, 30 replications were made each with a

length of 1000 observations, and 100 different experiments were carried out for each

54

traffic intensity and data smoothing combination. In other words, 100 experiments
x 30 replications = 3000 samples were generated for each traffic intensity level for
the M/M/1 model test dataset. For each test experiment, 30 replications were given
as input to the neural network trained once by using all 56,700 samples of the AR

model.

5.3 Performance Measures

We use the following measures in evaluating performance of the proposed truncation

point estimation methods.

Mean absolute percentage error (MAPE)

Computing time for training

e Confidence interval for the steady-state expected value (CI-M) and bias

Confidence interval for the coverage of CI-M (CI-C)

Truncation point estimations

These performance measures are described and formulated below using the following

notation.

e N : Number of replications (or samples given as input to the neural network in

testing phase of the five-fold cross validation), N = 11, 340.

e ¢ : Experiment number, e = 1, ...,k where £ = 100 in testing by using newly

generated data not used in training.

7 : Replication number, 7 = 1, ...,n where n = 30 in a single test experiment.

e 7 : Observation number in a replication (or a sample given as input to the neural

network in testing), i = 1, ..., m where m = 1000.

e ip; : The actual truncation point for replication j.

T'P; : The estimated truncation point for replication j.

55

o Xije: i" observation generated in replication j of experiment e using the sim-

ulation model.

e ;. : Steady-state expected value (of AR time series or delay in queue in M/M/1).

Mean absolute percentage error (MAPE)

MAPE is used to measure how well the machine learning methods can learn from the
AR model data used for training. We use MAPE with the AR model data of 56,700
samples while cross validating the machine learning method using five folds where
each fold contains N = 11, 340 samples. The lower the MAPE value is, the closer
the method’s truncation point estimates are to the actual target values of the testing
data during the five-fold cross validation. MAPE value for a single fold is calculated

as
N

100 o |tp; — TP;|
MAPE = — =y 5.9

Computing time for training

In addition to the MAPE value, we also examine the training time of the machine

learning method used.
Confidence interval for the steady-state expected value (CI-M) and bias

CI-M is used for both the AR and M/M/1 models in testing the neural network by
using newly generated data not used in training. In order to understand whether or
not a time series still has significant initialization bias left after the estimated trunca-
tion point, the observations before the estimated truncation point are deleted in each
replication and a confidence interval for the steady-state expected value is constructed
using the remaining observations. In addition, the bias between the expected value
and the sample mean is also examined. CI-M and bias are computed for each exper-
iment, using replications of that experiment. In constructing CI-M, the significance

level is taken as o = 0.05

Truncated average for replication j of experiment e is found as

_ 1 T
Xje=—5— D i (5.10)

J€ =T Pje+1

56

Sample mean for experiment e based on truncated replication averages is

- 1
X.=-Y X. 5.11
n?; ; (5.11)

Sample variance for experiment e is
n
2 _ 1

€

S (X, —Xo) (5.12)

n—14%

Jj=1

(1 —)% confidence interval for the steady-state expected value (of AR time series

or delay in queue in M/M/1) for experiment e is constructed as

= s2
Xe :i:tn—l, 1-a/2 — (513)
n

Bias for replication j of experiment e is

Biasje = | — Xj| (5.14)
Bias for experiment e is
1 n
Bi e:—E Biasje 5.15
1as - 2. 1a8; ()

Confidence interval for the coverage of CI-M (CI-C)

CI-C is also used for both the AR and M/M/1 models in testing the neural network by
using newly generated data not used in training. Analyzing the coverage probability is
crucial for evaluating the accuracy and reliability of statistical estimation methods. In
this study, coverage is concerned with the number (or fraction) of experiments where
CI-M covers the steady-state expected value (or population mean) of the time series.
In addition to finding the coverage value, a CI-C is constructed again at a significance
level of a = 0.05 for the true probability that a CI-M covers its respective steady-state

expected value.

(1 — a)% confidence interval for the coverage probability is constructed as

p(1 —p)
k
where p is the fraction of k experiments in which the steady-state mean is covered in

CI-M.

Pt 210 (5.16)

57

Truncation point estimations

Finally, we examine the estimated truncation points for the AR and M/M/1 model data
newly generated for testing. In order to understand the spread of the estimations made
by the method used for these two data types, we analyzed the average, minimum, and

maximum values of the truncation point estimations.

In addition, the total number of replications in 100 experiments is counted where the
estimated truncation point is greater than the run length. The truncated replication
average should be based on a sufficiently large number of observations to satisfy
the normality assumption of confidence interval construction. Assuming this number
should be at least 30, a truncation point as large as 970 can be allowed in a time series
of length 1000. Hence, if the estimated truncation point is larger than 970, we assume
that this estimate exeeds the replication length. Such cases are excluded from our

statistical calculations.

Moreover, distribution of the estimated truncation points are examined and compared

for competing methods by means of histograms.

5.4 Hyperparameter Tuning for Proposed Machine Learning Methods

Machine learning methods involve various parameter settings. These parameter set-
tings directly influence the performance of the neural network. In this case, the num-
ber of hidden layers, the number of nodes in hidden layers (hidden layer sizes), the
activation function to be used in hidden layers, the solver for optimizing weight pa-
rameter values, and the maximum number of training iterations are the main param-
eters that need to be determined for setting up the neural network. These parameters

must be manually set before training the network.

In order to maximize the network performance, all of those parameters must be con-
figurated, which is called hyperparameter tuning. In this study, we performed hyper-
parameter tuning only for the MLPR network. The configuration determined here was
also used for the other two networks. The first step of setting the parameter values is

to determine the candidate values, which can be seen in Table

58

Table 5.3: Possible Hyperparameter Settings for MLPR

Number of
Parameter Possible Parameter | Possible Parameter Values
Values
Solver function 2 Adam, Sgd
Activation function 2 ReLU, Identity
Hidden layer sizes 3 100, 200, 400
Maximum number of iterations 2 200, 300

Then, combinations of the possible parameter values are to be tried in training the
network to see which one performs better. The 24 possible combinations of these
parameters are to be evaluated using four different datasets, involving two different
truncation point values (TPS and TP9) and two different data smoothing options (DS
= off and on). Hence, there exist 96 possible combinations for hyperparameter tuning
experiments. Since this number is too large, we decided to start the experiment with
one parameter in mind while including all combinations of the remaining parame-
ters. Results of this first step are used to fix the value of the first parameter under

consideration. Then, the next parameter is experimented with in a similar manner.

In order to select the MLPR network parameters, 56,700 AR model samples generated
based on the experimental settings given in Section[5.2]are used. In these experiments,
the truncation points are given as the points at which the bias is set to zero. The results
presented in this section are five-fold cross validated for each of the combinations
tried for possible configurations. The MAPE values and training computing times

reported in this section are the averages over five folds.

Firstly, the maximum number of iterations is analyzed. In the experiments conducted
with all parameter combinations, the average and maximum number of iterations dur-
ing the training are examined. The actual number of iterations for training the MLPR
network did not exceed 200 even for a single fold. Therefore, the maximum number
of iterations 1s fixed at 200 since it does not create any restrictions, and the second

value of 300 is discarded. However, the number of iterations for the final MLPR

59

network configuration will be checked again.

Next, the solver function selection is investigated. As seen in Table we have two
candidate functions for the solver. We experimented with Adam and Sgd functions
including all remaining network configurations. Since no significant interactions are
observed among the parameters, the average MAPE values for Adam and Sgd func-
tions are tried to be found over all other configurations to select one of the two func-
tions. The average MAPE values for Adam and Sgd functions calculated over 24
combinations (2 activation functions x 3 hidden layer sizes x 2 TP values x 2 DS

options) are given in Table[5.4]together with the average computing times.

Table 5.4: Results for Solver Function Selection

Solver Function | Average MAPE | Average Computing Time
Adam 13.07 133.38
Segd NA NA

When the average MAPE values in Table[5.5|are examined, we can conclude that only
the Adam function gives valid results. The Sgd solver cannot converge and produce
predictions even when the maximum number of iterations is set to 5000. Hence, the

Adam function is chosen as the solver for the MLPR network.

As seen in Table [5.3] there are two candidates, Relu and Identity, for the activation
function. Once the solver function is fixed, the MAPE values found are averaged over
12 parameter combinations (3 hidden layer sizes x 2 TP values x 2 DS options). The

performance of the solver functions is summarized in Table[5.5]

Table 5.5: Results for Activation Function Selection (with Solver Function Adam)

Activation Function | Average MAPE | Average Computing Time
ReLU 9.01 177.24
Identity 17.13 70.02

According to Table [5.5] when ReLU activation function is used, the average MAPE

60

is significantly lower than that of Identity function. Although the average computing
time with ReLLU is about double of that with Identity, it is still reasonable. Therefore,
considering the significant MAPE improvement, ReLLU is selected as the activation
function and Identity is discarded. For all results to be reported hereafter, the activa-

tion function is set as ReLLU.

Lastly, the hidden layer architecture is studied. Since all remaining parameter settings
are fixed, hidden layer selections are made using only the four datasets (2 TP values as
TP5 and TP9 x 2 DS options as off and on). Considering the input layer size of 1000,
which is defined by the length of the time series, three candidates are determined for
the hidden layer size as 100, 200, and 400. The results obtained with a single hidden

layer of these size candidates are given in Table[5.6

Table 5.6: Results for Hidden Layer Size Selection with One Hidden Layer (with

Solver Function Adam and Activation Function ReLLU)

Hidden Layer Size | Average MAPE | Average Computing Time
100 9.33 88.90
200 8.95 133.09
400 8.76 309.72

According to Table [5.6] performances of three settings are similar. However, the
hidden layer size of 100 is eliminated since this setting has the worst performance
in terms of MAPE. Considering the tradeoff between MAPE and computing time,
200 nodes is selected as the size of the first hidden layer, and 400 nodes setting is
also eliminated. Additional hidden layers with different sizes are considered to see
whether or not increasing complexity of the MLPR network improves the perfor-

mance.

61

Table 5.7: Results for Hidden Layer Size Selection with Two Hidden Layers (with

Solver Function Adam and Activation Function ReLLU)

Hidden Layer Sizes | Average MAPE | Average Computing Time
200, 50 6.82 131.33
200, 100 6.40 146.57
200, 150 6.35 162.66

When a second hidden layer is added to the MLPR network, performance of the net-
work is improved as can be seen in Table In order to enhance this performance
improvement, we added a third hidden layer as well. After the trials given in Ta-
ble we determined the number of nodes in three hidden layers as 200, 150, and
100. We also tried two extreme configurations obtained by halving and doubling the
number of nodels in all three layers to see if the network performance would change
significantly. Even though hidden layer sizes of 400, 300, 200 result in a lower aver-
age MAPE, this architecture takes too much computing time for training the MLPR

network.

Table 5.8: Results for Hidden Layer Size Selection with Three Hidden Layers (with

Solver Function Adam and Activation Function ReLLU)

Hidden Layer Sizes | Average MAPE | Average Computing Time
100, 75, 50 3.01 159.99
200, 150, 100 2.15 235.07
400, 300, 200 2.10 415.92

The performance of the network is improved with addition of the second and the third
hidden layers. However, in order not to complicate the network anymore and because
the MAPE values in Table [5.8]are satisfactory, the experiments are not continued
by adding more hidden layers. Therefore, the MLPR network architecture is deter-
mined as three hidden layers with 200, 150, 100 nodes, considering the MAPE and

computing time tradeoff.

62

As mentioned earlier, the maximum number of iterations for the selected configura-
tion is checked, and all actual number of iterations are found to be below 200. The

final MLPR network configuration is summarized below.

Maximum number of iterations = 200

Activation function = ReLU

Solver function = Adam

Hidden layer sizes = 200, 150, 100

In comparing performances of the MLPR network and the other two proposed net-
works, the same configuration was used for the LSTM and CRNN networks for the
parameters common to all three networks. The experimental results given in the next

section were obtained based on this configuration.

5.5 Computational Results for Solution Approaches

In this section, the performances of the three machine learning methods proposed are

analyzed.

Based on the experimental settings described in Section [5.2] for the AR model, the
dataset with 7 AP x 3 BT x 3 BC x 5 TP = 315 factor combinations each with 180
replications for TPS, and the dataset 7 AP x 3 BT x 3 BC x 9 TP = 567 factor combina-
tions each with 100 replications for TP9 are used in the cross validation experiments,
carried out separately for DS = off and on options. The number of replications are
chosen considering the number of TP levels so that both datasets have the same size

of 56,700 samples.

A dataset is divided into five equally sized subsets for five-fold cross-validation. For
each subset, an equal number of samples (for example, 180/5 = 36 samples for TP5)
are selected from each factor combination (for example, 7AP x 3BT x 3BC x 5TP =
315 combinations for TP5). Each one of these subsets is set apart for testing in a fold,

and the remaining four subsets are used for training.

63

However, while generating the data in the AR model used, the effects of the added
bias values do not end as sharply as in Figure [5.1] since each X; is defined in terms
of X;_; and X,;_» values. In order to understand this better, plots of the time series
were examined by focusing on the range in which the bias is present in the AR model
data. As there are too many experimental combinations, here we present examples
of these plots obtained by fixing some experimental factor levels. The highest bias
coefficient cases (BC = 15) in the experimental settings are selected for this analysis.
The motivation behind this choice is that, as the bias coefficient increases, the magni-
tude of the bias also increases, and the effect of the bias values added to the AR data
can be seen more clearly. Also, the first AR model coefficient set (AP = 0.6, 0.3) is
selected, and the last point where the bias values are not equal to zero is determined
as 200. Plots of the AR time series for the range of 180" through 280" observations

are given in Figure [5.4] for these settings. A second example with AP = 0.25, 0.5 is
also given in[5.3]

64

5 8 8 8

Observation Value

T T T
220 240 260 280
Observation Number

T T
180 200

(a) BT = Exponential Bias with DS = Off

B 8 8 8

O_V\\’W

Observation Value

220 240 260 280
Observation Number

180 200

(c) BT = Mean Shift Bias with DS = Off

5y & B8 B8

Observation Value
=

T T T T
20 240 260 280
Observation Number

T T
180 200

(e) BT = Oscillation Bias with DS = Off

Observation Value

Observation Value

Observation Value

¥ & 2 @

=]

20 240 260 280
Observation Number

180 200

(b) BT = Exponential Bias with DS = On

0 M

20 240 260 280
Observation Number

180 200

(d) BT = Mean Shift Bias with DS = On

¥ & 8 8

T T T T
220 240 260 280
Observation Number

T T
180 200

(f) BT = Oscillation Bias with DS = On

Figure 5.4: Visualization of the Bias Effects for AR Model Data (AP = 0.6, 0.3, BC

=15, TP = 200)

65

30 30
20 20
5 101 ERT
5 E
c [
2 o £ 09
o o
& I
3 2
6 =10 8 =10
-20 4 -20
=30 T T T T T T =30 T T T T T T
180 200 20 240 260 280 180 200 220 240 260 280
Observation Number Observation Number
(a) BT = Exponential Bias with DS = Off (b) BT = Exponential Bias with DS = On
30 30
20 20
3 M : ") N\/_’,
£ £
[c
5 07 2 o
m [
8 =10 3 ~10 4
-20 —20
=30 T T T T T T =30 T T T T T T
180 200 220 240 260 280 180 200 220 240 260 280
Observation Number Observation Number
(c) BT = Mean Shift Bias with DS = Off (d) BT = Mean Shift Bias with DS = On
301 30
20 20
£ w0 S 10
2 3
5) c
£ 0 % 0
s ¢
3 %
8 101 g -10
-20 =20
=30 — T T T T T -30 T T T T T
180 200 220 240 260 280 180 200 220 240 260 280
Observation Number Observation Number
(e) BT = Oscillation Bias with DS = Off (f) BT = Oscillation Bias with DS = On

Figure 5.5: Visualization of the Bias Effects for AR Model Data (AP = 0.25, 0.5, BC
=15, TP =200)

As can be seen in Figures[5.4Jand[5.5] although we reduce the bias values to zero after
the 200" observation, the effect of bias term in the model continues for a while. Since

our purpose is to estimate the truncation point where steady-state is reached, we need

66

to determine the target value as the point at which the effect of the bias ends. There-
fore, a modification must be made to the target variables given as input in training
the neural network. After examining various plots similar to those given in Figures
[5.4]and [5.5] it is observed that in general the AR time series reaches steady-state 50
observations later than the observation at which the bias is reduced to zero. There-
fore, while training the neural networks in cross validation, target variable values for
TPS are given as 250, 300, 350, 400, and 450 instead of 200, 250, 300, 350, and 400,
respectively. The same modification is also applied in training the networks using the

TPO dataset.

A summary of cross validation experiments conducted in this section is given in Ta-
ble[5.9] In the "Estimation Option" column of the table, the machine learning method
used is explained, including the neural network type and the content of the dataset.
Note that the experiment is always repeated for DS = off and on options. "Trunca-
tion Point" values show how many different truncation point values are available in
the dataset. The "Number of Models" column represents how many different neural
networks are trained for each combination of estimation and truncation point options.
For example, six different networks are trained for the combination of MLPR-S esti-
mation option and TPS5. For each bias type (exponential, mean shift, and oscillation),
two different networks are trained with DS = off and on options, resulting in six dif-
ferent trained networks. While "Sample Size for Each Model" gives the dataset size
according to our experimental settings, "Training Sample Size" and "Testing Sample
Size" show the respective number of samples used in training and testing phases of

five-fold cross validation.

The experimental results reported in the following subsections are produced by using

the estimation options and sample sizes given in Table[5.9

67

00L°9S =001 X dL6 X

uo = §d pue Jo = Sd
1.9 11e 1o} 103930,

0vET1 09¢°SY C 6d.L
Od¢ X LdE X dVL ndur Krerrxne
se uoAI3 osfe st 1.9
. . 00L°9S =081 X dLS X
ove 11 09¢ S C SdL NND
ode X Lde XdVL
) . 00L°9S =001 X dL6 X uo = §d pue JJjo = Sd
ove 11 09¢ S 4 6dL
ode X 1Lde XxdVL 1Ld [[e 10J 10y1930],
. . 00L°9S =081 X dLS X
ove 11 09¢ Sy C SdL INLST
ode X 1Lde XdVL
. . 00L°9S =001 X dL6 X uo = §d pue JJjo = Sd
ove 11 09¢ Sy 4 6d.L
ode X 1Lde XdVL Ld [[e 10J 10419307,
. . 00L°9S =081 X dLS X
ove 11 09¢ Sy C ¢dL V-d4d1N
ode X Lde XdVL
. . 006°8T =J00T X dL6 X uo = §d pue JJjo = Sd
08L'¢ 0CcI Sl 9 6d.L
09gs X dvVL 1.9 yoes 10J A[areredag
. . 006°8T = Y081 X dLS X
08L'¢ 0CI Gl 9 SdL SHUd TN
0dE XdvL
IZIS 9ZIS [PPOIN S[PPOIA jurod
uond(uonewWnSH
dpduwreg Sunsay, Jrdwreg Surureay, yoey 10j 3z1S djdweg Jo _quInN uoneduNnIy,

[OPOIA YV 10] saz1§ o[dureg pue suondQ uonewnsyg dL :6°S 2[qel,

68

5.5.1 MLPR Experimental Results

The MLPR experiments described in this subsection are carried out on a computer
with 32GB RAM, RTX 2080 Super 8GB as the GPU, and 17-8§700K CPU @ 3.70GHz
as CPU. Python Version 3.9 is used in implementing the MLPR network for training

and testing purposes.
MLPR Cross Validation Test Results

With the predetermined MLPR configuration, we first conducted experiments to see
whether or not the MLPR network could learn to estimate the truncation point from
the AR model data. The motivation for training the neural network with the AR
model data is that we can control up to which observation number in the time series
the bias takes effect, when the bias term is set to zero, and then when the steady-
state is reached, which gives us the TP estimate. Then, we can find the difference
between this estimated TP value and the target TP value given to the network, and
calculate the MAPE as a performance measure. Five-fold cross validation results of
the MLPR-S and MPLR-A estimation options for the AR model, which are defined
in Table [5.9] are given in Table [5.10] for TP5 and Table [5.11] for TP9. In order to
analyze the MLPR network performance in more detail, we report the MAPE values
separately for different target TP values as well as the overall MAPE. However, in

terms of evaluating the performance, our main focus is the overall MAPE value.

When we examine the MAPE values for TP5 and TP9 in Tables [5.10] and 5.11] we

make the following observations.

e Effect of data smoothing: For both TP5 and TP9, MAPE values for DS = on are
significantly lower compared to those for DS = off. For the MLPR-S estimation
options, the overall MAPE values range from about 4.5% to 6% when DS = on,
whereas they remain consistently above 10% when DS = off. For TP9, they are
over 20% for BT = mean shift or oscillation. MAPE values are almost halved
for the MLPR-A estimation option as well. This is expected since data smooth-
ing (taking moving averages of successive observations) reduces the variability

in the time series and makes TP estimation easier.

69

6L1L°0 81670 L2080 16580 ¥S8L°0 LOS9°0 uo L4 [V-4dTIN
eIvel CLT80 ELLTT eyl TeLe'l SYec'l 3o L 1’ V-4d' TN
0989°¢ 80ILS LTI8S LY98°S Cl108°S LSETS uo UOLB[[IdSO S-Ad TN
L9TT 01 9t0¢°01 VIIL'6 1€6C°6 eLr0 0T CLLTTI o UonerosO S-dd' TN
o'y €So1°S LT68Y ILS8Y c196'v 0r08v uo HIYS UesN S-dd'TIN
LOYS 01 8¢S9°01 91086 [4554¢ ¥680°01 9CILTI 3o WIS UedN S-dd' TN
[48°h 7% 8LE8Y €869V 6609y 1€0S¥ L8LEY uo [enuouodxy S-¥d TN
So6lv' 11 Ly90C1 €801°T1 [TSL01 6101°TT YILOTI 3o [enusuodxy S-Yd TN
[[B12A0 1114 0s€ 00€ 0S¢ 00¢ Sa uondQ uonewysy
dL

(UOTBPITEA $S01D) PIOJ-OAL] JO 9SBYJ ISAL AU} 10] SATLIOAY) YdTIN WM [9POIN YV Ul Gd.L 10§ SIS AdVIA :01°S 2Iq®L

70

989¢°[SvL9°0 08860 LSET'T 8Y16°1 1S9l 8CCO'1 86611 evLE' T SoCTI'l uo L4 1t V-IddTIN
LESY'C oo’ [[SSR'T (44014 1484954 009¢C 78C6'C 8L99°C 8%99°C 6960°¢ JJo L4 1Tt V-IdTIN
€Cr9 LIVT9 91¢CC9 9LIT9 19L8°9 69619 81TT9 L666°S {49 966S°S uo uoneqrosQ S-Ad TN
6£1¢£°0¢C 69S6'CC L69L61 9L68°91 29¢0°¢l 149494! 68L°¢l 99¢¢61 LT€6'9C LIVS LE Jo Uone[rosQ S-AdTIN
(475 A% €L00°S L68S Y IR1474% 909¢Yv 1459 % 618SY SLSLY 9C8LY 8¢8TS uo WIYS UBIN S-AdTIN
129C'1¢C STreTe CLES 8T CE08°CI 8VLY'CI ce6LTl [4ia4Y! LT€0'TT £788°6¢C €LY9 0 JJo WIS Ued]N S-AdTIN
[enusuodxyg
96LY [L6Y'S LOYO'S 9898t L6981 Y29y 11S9'% ey SLO6S Y 8C6S' T uo
SUd TN
[enuauodxyg
99¢C1°CI 0T el 68CC'Cl £€820°¢Cl CCSO'T1 8I€9°T1 LIVLTI 1€€9°T1 8LCI'CI C091°¢l 3o
SUd TN
[[BI2A0 (1114 SLE 0S¢ 149 00¢€ SLT 0S¢ 544 00¢C Sa uondQ uonewnsy
dL

(UOTIEPI[RA SSOTD) PIOJ-9AL] JO seY ISIL, oY) 10§ $953e10AY) Yd'TI WM [9POIN YV UI 6dL 10§ SHNSY AAVIA *1T°S A1qBL

71

e Effect of the estimation option: The MLPR-A estimation option shows a supe-
rior performance than all MLPR-S options. For TPS, the overall MAPE value
stood at 1.24% when DS = off and is reduced to 0.72% when DS = on. The
respective MAPE values for TP9 are 2.48% and 1.36%. These are much lower
than MLPR-S MAPE values, which are over 4.5% even when DS = on. We
can conclude that the MLPR-A network is more capable of deriving insights
from the provided data and generating TP estimates that demonstrate a notable
degree of proximity to target TP values. MLPR-S networks have to deal with a
single bias pattern at a time, which should make TP estimation easier. However,
the MLPR-S dataset size is one third of the entire dataset. We believe that the
reason why the MLPR-A network shows much better performance is because
it is trained using the entire dataset having three times as many samples as a

MLPR-S dataset.

e Effect of the truncation point: When different TP target values are considered,
the only pattern seen for the MLPR-S networks is that MAPE values are higher
for the extreme TP targets (200 and 400) than those for the central TP values
(closer to 300). On the other hand, the MLPR-A network results have the oppo-
site pattern compared to MLPR-S. The MAPE values of the extreme TP values
are lower than those of the central ones. The performance difference between
MLPR-S and MLPR-A may again be due to the dataset size used in training the
MLPR network.

e Effect of the bias type: For the case of TPS5, there is not a significant differ-
ence in MAPE values among MLPR-S networks trained with exponential, mean
shift, or oscillation bias types. For TP9, however, MLPR-S networks with expo-
nential and oscillation bias types show mush poorer performance with MAPE

values as high as 40% when the TP target is 200 and DS = off.

For the MLPR-S experiments, the computing time per fold of cross validation is in the
range of 29-90 seconds, and the average computing time per fold is 46 seconds. For
the MLPR-A experiments, the computing time per fold of cross validation is in the

range of 142-398 seconds, and the average computing time per fold is 235 seconds.

Because significantly lower MAPE values were obtained from all four different net-

72

works of the MLPR-A estimation option, we decided to continue our work with this
option. Furthermore, the outcomes were encouraging about the the network’s ability
to make predictions for previously unseen data. For examining the network weights
and testing the selected estimation option based on previously unseen data, we came
up with two versions of the MLPR-A option by re-training the network using all
56,700 samples. MLPR-TPS version was obtained by training the network using
the entire dataset of size 56,700 where generated samples had 5 discrete truncation
points. Similarly, MLPR-TP9 version was obtained by training the network using the
dataset of all samples involving 9 truncation points. Then, the network weights were
analyzed in more detail and the networks were tested for truncation point estimation

in the AR and M/M/1 models.
Examination of the MLPR Network Weights

Before moving on to the testing phase, we examined the weights of the MLPR net-
work trained using 56,700 samples of data. From these weights, we can understand
which input node the MLPR network considers the most likely when estimating the
TP. There are 1000 nodes in the input layer, 200, 150, and 100 nodes in the three hid-
den layers, and 1 node in the output layer of the MLPR network. When we examined
the weights, four different weight matrices were obtained of dimensions 1000x200,
200x150, 150x100, 100x1. Each weight matrix represents the transition from one
layer to the next. By performing matrix multiplication on these matrices, we gener-
ated a weight matrix of dimensions 1000x1 (or a weight array of size 1000), which
shows the effect of input data (time series) on the output (TP estimate). Such weight
arrays of the MLPR-TP5 and MLPR-TP9 networks used in the testing phase are plot-
ted in Figure [5.6]

73

Weight Value
°
Weight Value

[200 400 600 800 1000 1} %0 b0 &o a0 1000
Input Node Number Input Node Number

(a) MLPR-TPS Weights, DS = Off (b) MLPR-TP5 Weights, DS = On

<

! mind

-20 -20

Weight Value
Weight Value

40 -0

0 200 400 600 800 1000 [200 400 600 800 1000
Input Node Number Input Node Number

(¢) MLPR-TP9 Weights, DS = Off (d) MLPR-TP9 Weights, DS = On

Figure 5.6: Product of Weight Matrices of the MLPR Network from Input Nodes to
Output Node

As seen in Figure [5.6] the weights of the input values that are closer to the target
TP values are larger and have more effect on TP estimation. The range of weights
corresponding to the target TP values has an increasing pattern compared to weights
corresponding to the remaining observation values, which is expected. This pattern is
more pronounced in the case of TPS. Furthermore, the weights tend to hover around
zero for the shared values that are prevalent in the steady-state condition across all

the AR model data used in the MLPR network training.
MLPR Truncation Point Estimation Test Results for the AR Model

For testing the MPR-TPS and MLPR-TP9 networks trained with the AR model data,
a new dataset not used in training was generated as described in Section [5.2] For this
purpose, for each BT, AP and BC values were chosen randomly from the discrete

levels listed in Table [5.1] whereas the TP values were generated randomly between

74

200 and 400 in a continuous manner. The test dataset contains 30 replications (each
of length 1000 observations) for a single experiment, and 3000 replications for 100
experiments for each BT. In order to better understand the testing process, the results

obtained in a single experiment with MLPR-TP5 are given in Table

For evaluating the results of a single experiment, performance measures used by
White et al. (2000) were taken into account. The sample mean and standard devi-
ation in Table [5.12] were found based on truncated averages of 30 replications using
the TP estimate found for each replication. In addition, a confidence interval for the
steady-state expected value (CI-M) was constructed, and the bias was calculated. A
hypothesis test was also conducted on the equality of the sample mean and the ex-
pected value (or true mean). We fail to reject the H that they are equal since p-values
are above 0.05. This implies that the confidence interval constructed is likely to cover

the true mean.

The results in Table [5.12]indicate that, for each bias type and DS option, the MLPR-
TP5 network produces successful TP estimates. When the bias column is examined,
the difference between the sample mean and the true mean is 0.0291 at the most.
Hence, it can be said that TP estimates can eliminate the initialization bias in the time

series. Also, the p-values of the hypothesis test are larger than the significance level

of 0.05.

Although the MLPR-TPS5 network performed well in a single experiment, more com-
prehensive analyses should be carried out for both MLPR-TP5 and MLPR-TP9 net-
works based on multiple experiments. Hence, 100 experiments were performed for
the AR model each with 30 replications. The test results of these 100 experiments
are summarized in Tables and for the two networks. After the statistics
for each experiment are computed using truncated averages of 30 replications, aver-
ages are found over 100 experiments under the "AR Time Series" heading. Under
the "Coverage" heading, the number of CI-M confidence intervals that cover the true
mean is counted out of the 100 experiments. Then, a confidence interval for the cov-
erage probability (CI-C) is constructed. Finally, the TP estimate statistics are given

under the "TP Estimation" heading.

No weakness is observed for either network when the test results for the AR model

75

19¢ LOE v6¢ 6161°0 1620°0 09100 rLO0- 8811°0 1620°0- uo 0=1
1594 86¢ €8¢ 162€°0 §ca00 €00 €690°0- 1€21°0 Gca00- B3O UORE[[ISO
ey 80¢ c6¢ 9TC9°0 29100 €800 8050°0- YOL10 29100 uo 0=1
[45% S6¢C L8E L95S0 L8100 Ge80°0 1910°0- 90LT°0 L8100 BO HIYS UesN
(217 (1183 88¢ 9060 67000 ¢6L0°0 68800~ €1cco 6¥00°0- uo 0=1
[45% 66¢ 08¢ €980 0,000 €9L0°0 €060°0- €61C°0 L00°0- B3O [enuouodxg
jry 'y
dL dL dL 15917} drdureg auQ uonerA(q UBIA (1) uedA I,
serqg xddn JIMOT Sa
XBJAI UIAL ‘SAY Joanpea-4 piepuels) (111N adAT, serq

ID %S6 ID %S6

(suoneorday ¢ uowiadxg o[SuIS) SAL-Yd TN WM [PPOIN YV 10J SHNSIY UOHRWNSH SdL TT'S SIqeL

76

"PA1ONNSUOD

st A[1qeqoid 93eI0A00 9y} 10J [BAIIUL QOUSPYUOD B ‘USY], ‘PAJUNOD SI UBIW NI} AY) SULISA0D S[BAIDIUI QOUIPYUOD JO IdquInu dy) ‘sjuswiiddxa 0] 104 ,

‘syuawiIadxa ()() | J9A0 PUNOJ a1k sa3eIoA® Uy], ‘suonedrdal ()¢ Jo saderoae pajeouns) Sursn paindwod a1e JuawIddxa yora 10§ SO1SNelS d.L palewnsa ay) 19)je

SUONEAISSQO uIsn PANdWOd ST AFLIdALR PIJROUNI) AY) “UONEIIdAI YOBS IO OPBU dIB SUONRAIISQO ()0 | PSUI[JO Yord suonedrdar ()¢ ‘yuawadxa yoes 104 |

0 Ly (44 19¢ 78660 S12c6'0 96 ¢c00'0 SI1900 +0SO'0- ¥LYI'O SS000 | UO 0=

0 6SY 6¢¢ 8¥¢ 8660 S1c6°0 96 €000 68500 12s0°0- 09v1'0 $€000 | HO UORBI[IdSO

0 YLy 8¢C¢C 09¢ 0000°T §Cs6'0 86 60000 SLSO'0 98S0°0- 6¢SI'0 S0000- | UO 0=

0 1414 (444 (43> 0000°T ¥0L6'0 66 ¢0000 SLSO0 6LS00- 0CSI'O 20000- | HO YIS uesN

0 LY LST 09¢ 0000°T §9¢6°0 L6 ¢0000 vCSO00 8CSO0- SBET'0 <C0000- | YO 0o="1

0 Ly 1€¢ 1232 8660 S1c6°0 96 90000 91S00 8CSO0- ¥LET'O 90000- | HO [enuouodxy

)sud|
juary Jjury 71 19A0D jary jury uonerasq
unx dL dL dL UBIA (1) uedAl anu,

Jddn JIMO] ey} serq Jddn JIMO piep Sa

< XBJA CUIAl “SAV I dwreg adAT, serg
ID %S6 IO %S6 SID Jo # ID %S6 1ID %S6 -uelS

Sd.L 30 #
(suonednday (00¢) (syudwLrddxy (001) (syuowLIddxy (T JO d3eIAY)
uonewnsy 4.1 28e1340) [SOLIdS duIL], YV

(siuawtadxg 001) Sd.L-Ud TN WA [PPOIAL V 10§ SHNsaY uonewnsy d.L :€1°S SIqeL

77

PaAydNISUOD

st A1[iqeqoid 93eIOA0D SY) I0J [BAIDIUL SOUSPYUOD B ‘UIYJ, "PAIUNOD SI UBIW NI} Y} SULIDA0D S[BAIUI SOUIPYUOD JO Jdqunu 3y ‘spuswtiddxs [104

‘sjuowiIodxa ()T I9A0 punoj are sageraae ‘uay], ‘suonesrdar (¢ Jo sageIoae pajeouns) ursn poyndwod a1e JUSWILIAd X9 Yora I0J SONSNEIS d. I, PAILWIS? A} 10)j8

SUOTIBAISSqO uIsn pajnduwrod ST ATeIdAr pajesun) 3y ‘UonedI[dar yoes 10,] “opeulr a1e SUONEAIasqo ()01 YISUS] Jo yoea suonedrdar (¢ ‘yuswadxa yoes 10 ;

0 9Ly ¥6¢ 0oy 78660 91760 96 9L000 6£900 98¥0°0- I8Y1°'0 9L00°0 uo 0="11

0 (2174 £6¢C [6¢ L2660 €L06°0 S6 76000 95900 89%¥0°0- 08710 ¥6000 | HO Uone[[IdsO

0 YLy 18¢ 0¥ 00001 99¢6°0 L6 9¢000 1€900 6SS0°0- L9ST'0 9€00°0 uo o="1

0 6SY L9T 96¢ 0000°T 92%6°0 86 19000 LS90°0 geco’0- 6951°0 19000 | BO YIS uesN

0 €9 96¢ 0oy 0000°T 99¢6°0 L6 91000 0SSO0 6IS0°0- LOYI'O 91000 uo 0="11

0 1394 €6¢C L6t 0000°T 99¢6°0 L6 ¢c000 SSS0°0 I1€0°0- ¥0vI'0 <C000 | HO [enuouodxg

P3ud]
'y jury 1 13400 jury jury uonersaq
unJ dL dL dL UBIA (1) uedA ANy,

Jddn JIMO] 114} serq Jddn JIMOT piep Sa

< XBJAl CUI]A *SAY Jdweg adL, serg

ID %S6 1D %S6 SID JO # ID %S6 ID %S6 -uejs
Sd.L 3O #
(suonyedrday (00¢) (syudwi_dxy (001) (syuourradxy (T JO d8eIAY)
uonewnsy 4.1 31340 [SOLIdS WL, YV

(siuawtadxg 001) 6d.L-Ud TN WM [PPOIAL AV 10§ SHNSaY uonewnsy d.L ‘+1°S SIqeL

78

data are examined. Both MLPR-TP5 and MLPR-TP9 networks show great success in
truncation point estimation for the AR model data. Under the "Coverage" heading, the
number of Cls that cover p is always over 95%. Under the "TP Estimation" heading,
the numbers of TPs that are greater than the run length are all zero, which shows
that the replication length of 1000 is sufficient. We can see that the most significant
difference between the two networks is in the distribution of TP estimates. While the
average of the TP estimates found by the MLPR-TPS5 network is approximately 355,
the estimates of the MLPR-TP9 network correspond to the 400" observation on the
average. Although both networks were trained with TP targets from the same range,
the MLPR-TP9 network finds TP estimates at later observations than the MLPR-TPS
network. However, this difference does not adversely affect the performances of the

networks for the AR model data.
MLPR Truncation Point Estimation Test Results for the M/M/1 Model

The M/M/1 model is used to test the MLPR networks to see if they are capable of
estimating the TP for a different simulation model. Test data for delay in queue in
the M/M/1 model are generated for five different traffic intensity values. DS = off
and on options are also used in M/M/1 test experiments. The results of a single
experiment are given in Table [5.15] where the MLPR-TP5 network is used for TP
estimation. The table format is the same as of Table for the AR model. These
results are promising since the true mean values fall between lower and upper limits
of the confidence intervals for all traffic intensity levels, and all p-values have values
greater than 0.05. In addition, TP estimates become larger as the traffic intensity
increases, especially when DS = off. This is expected because it is known that, as
the traffic intensity increases, the variability in the system increases as shown by the

standard deviation values, and the steady-state is reached at later times.

For the M/M/1 model, again 100 experiments were conducted with both MLPR-TP5
and MLPR-TP9 networks. The results are summarized in Tables and[3.17l There
are similarities in the results of the two networks. Bias values are small and cover-
age values are large enough for both networks when the traffic intensity is relatively
lower. The confidence interval constructed for the coverage probability covers 95%.

However, starting with the case where the traffic intensity is 0.8 and DS = On, the

79

968 eCl 89¢ 806¢°0 29¢0°1 0196 eLISY 681779 8€90°L uo g =11
80L 661 Yov 8LE0 61,680 €66 celo’s SIey'S 8C0T'L BO 60=1d
06L ovl [4%3 VILTO 666010 1S9¢v 8V68'C £886°1 19°¢ uo ge=1
96¢ 661 L9¢ 8CL90 61901°0 8LI8'E 96LC Lye'l 290¢°¢c HO g0=1J
06¢ 871 88¢ 16160 668000 617081 [evy'1 €9LY 0 ¥Z9'l uo €91 =1
8SY 861 6v¢ 10L9°0 6L£0°0 COLL'T 6C1y'l LLYO 1S6S°1 3O Lo=1d
6Cv 681 L0€ go¢0 008920°0 cee6'0 ¢eI80 8S1°0 ceL80 uo 60="1
13017 661 (433 ¢SIT0 617600 66’0 656L°0 LT°0 S098°0 B3O 90=1d
L6E 10¢ €0¢ I16t°0 29100 Y960 ¥891°0 8SCI0 29160 uo Go=1
0oy 661 6£¢ 6950 €100 71950 Ssor'0 9¢1'o Yerso 3O Go=14d
1S9} jry Jjury
dL dL dL uonesq UeI\ (17) weag an,
Jdweg uQ serq Jddn IdMOT Sa
XBIA UIAl I\ piepuels dpdureg (d) Kysudyuy dyjeay,
JoonpeA-d D %s6 ID %S6

(suoneor[day 0¢ uowLadxy A[3UIS) SAL-Yd TN WM [/I/IN Ul 9nanQ) Ut Ae[a 10§ sy uonewmsy d1 :$1°S A1quL

80

coverage performance decreases for both networks. For the traffic intensity level of
0.9, the number of CI-M confidence intervals that cover i decreases to 69 and 75 for

MLPR-TP5 for DS = off and on. The same values are 64 and 25 for MLPR-TPO.

In parallel to coverage values decreasing with high traffic intensity, the number of TPs
that are greater than the run length increases, which shows that the replication length
of 1000 may be insufficient in these cases. This number should be zero or at least
close to zero. When the traffic intensity is 0.9, MLPR-TP5 cannot find a TP estimate
in 120 replications for DS = off and 89 replications for DS = on. However, these
values go up to 667 and 1180 for MLPR-TP9. MLPR-TP9 starts experiencing this
issue at traffic intensity level of 0.8. For MLPR-TP5, in the worst case, unpredicted
replications only account for 4% of all 3000 replications. However, this value is about

39% for MLPR-TP9, which is unacceptable.

Although both networks show similar patterns of performance change, the numerical
results indicate that the MLPR-TP5 network in general outperforms the MLPR-TP9
network. In addition to the coverage values and unpredicted replications discussed
above, lower average bias values at high traffic intensity also indicate that the MLPR-

TP5 network is more successful than the MLPR-TP9 network in TP estimation.

Since the performance of the MLPR networks was not at the desired level at high
traffic intensity levels, we continued our work in this area. As the presence of un-
predicted replications might be an indication of insufficient replication length, we
decided to increase it from 1000 to 5000 observations. However, since both MLPR-
TP5 and MLPR-TP9 networks were trained with 1000 observations, the length of the
test data should also be 1000. Therefore, we reduced the simulation output of 5000
observations to the test data of length 1000 by batching the M/M/1 model observa-
tions. The batch size was taken as 5 and 1000 batch means were obtained to be used
as the test data. Batching observations also resulted in reducing the variability in the

simulation output.

The results obtained with batched test data for the traffic intensity levels of 0.8 and

0.9 are given in Tables and

The positive effect of increasing the simulation replication length and batching is

81

"pa1ONNSU0d ST A[Iqeqoid 95.I0A00 J0J [BAISIUL SOUIPLYUOD B ‘UAY], "PAIUNOD ST UBIW NI} AY)

SULISA0D S[BAIDIUI QOUSPYUOD JO I9qUINU 3} ‘SIUSWLIAAXS ()] 104 , “SIQWLIAXS () J9A0 PUNOJ oIe $IFRISAR ‘U, "suonedi[dar

0€ JO sageraae pajeounn 3ursn pandwod are juswradxa Yoed I10J sonsNelS d.I PAIeWIs? 9y} e suoneardsqo sursn payndwod

SI 98eI0AR pajROUNI) Y} ‘UoNedI[dar Yo 10 "OpRW dIe SUONRAIISAO ()00] YISUS[JO yora suonedrdar)¢ Juawadxs yoes 1oy |

68 696 8¢ 69¢ | 8¥E80 15990 SL 69CL'0 809I'6 TS8S'S L9y 0€LEL | UO rg=1
0cl 896 OLI 6CF | 908L0 €6650 69 91980 LSI106 609%°'S VLISV £€8¢TL | HO 60=1d
€ 1250 8L PIE | 9€06'0 €9SL°0 €8 ISIT'0 ¥2sse GLIOT 66CC’1 6¥80°¢ | UO ce=1
4 ¢s6 191 6S¢ | L8S6'0 CIV8O0 06 61600 Pv€09'¢ 8CTI9T 0€0¢’1 1801°¢ | HO g0=1d
0 089 ve ¥0g€ | 65€6'0 0080 L8 GS10°0 906L°1 vhP'l LSSYO GLI9'T | UO €91 =1
0 99L S61 SPE | €1S6'0 98T80 68 88100 <CE6L'T £Sev’l CILY0 wri9’l | HO Lo=4d
0 LYS I8 66C | L8S6'0 CIV80 06 CLOO'0 SL96'0 8IS0 8961°0 8¢68°0 | UO 60="1
0 86S L8I LvE | 1€L6'0 89980 6 ¢CI00 99960 L6080 600 LL8YO | BO 90=14d
0 €0$ 8y ¥0t | LC66'0 CTLO6'0 S6 LEO00 9¢€S0 065¥0 2860°0 £96v'0 | UO go="1
0 [16 16l 8ve | 00860 66L8°0 €6 96000 CeeS0 SESY0 010 vvor'0 | HO ¢o=14d
)3ud| jry ywry 7 19400 jury jrury
dL dL dL uonerad(q uBdN (17) wespy anaf,
una nddn 1mog jey) sergq nddny 1mog Sa
XBJA| CUI]A “SAY piepue)s Jpdwesg (d) Kysuauy dyjeay,
<SdLJo# D %S6 ID %S6 SIDI0# ID %S6 ID %S6
(suonednday (000¢) (syudwirrddxy (O1) (syudwiLrddxy (O] JO 98eIIAY)
uonewnsy d.L A8eI3A0D) Pnan) ur Aepq
(syuowradxyq 001) SAL-IdTIN WM [9POIA T/IN/IN UT @nonQ) Ut Ae[o(J 10§ SINsay uonewnsy d.L :91°S d[qeL

82

‘pa1onnIsuod st A1j1qeqoid 93eI9A00 J0J [RAIIUL OUIPYUOD B ‘U], "PAIUNOD SI UBIW NI})

SUIIOA0D STRAIIUT QOUIPLUOI JO JAqUINU Y] ‘Syudwurrodxd (e} ‘syuawITIadxo JOAO PUNOJ I8 SAFRIJAR ‘U ‘suoneorydar
I [I Py Jo Iq q I 001 I0d , I 001 punoj 4L nesrt|

0¢ Jo soSe1oae pajeounn Juisn pandwiod are JuswWIddxa oes I0J SonsnelS ‘dl, parewinss ay) IdJe suonearssqo suisn painduwod

S1 93eI0AR PatROUNI 9Y) ‘UoNLII[dal YoBd 104 "9peu dIe SUONBAISSqO)00 YISUS[Jo yoea suoneodrjdar o¢ Juowiadxa yoea 104

O8II 6S6 €0¢ 9¢¢ 6¥€€0 [S91°0 Y4 CoSv'c LSOT'L €I180'v ereo’e Sev9c uo rg=1
L99 0L6 161 29¢ 0¥EL 0 65vS°0 79 7Ice'l 09198 CIve'v ¥SOI'y 98LL9 | BO 60=17
9LT 0L6 LLT L6Y 686L°0 01290 IL 99T 0 LY8¥'¢E 998¢°C 6L9¢'1 9C€6°C uo ge=1
638 796 881 0S¥y LEVE'0 €918°0 88 €LLO0 S689°¢ 866¢C°C 6S97°1 Lecere | 3o g0=14d
%3 796 €61 oy 88S6°0 [4872:0) 06 9¢€0'0 LOOS'I I186¢€°1 0LCS0 16651 uo ee9 1T =1
]! 668 061 98¢ CEL60 8998°0 6 LOTO'0 8€C8'I LOTY'1 L6CS0 €CC9'l | HO Lo=4d
0 716 861 9¢ €1S6°0 L8TY0 68 0L000 €6L6°0 8908°0 [LTT0 0£68°0 uo 60="1
0 098 961 9¢¢ L8S60 CIy80 06 SITO0 88960 28080 PIICT0 68880 | HO 90= ¢
0 6L9 r4\ré 1459 00860 66L8°0 €6 9L00°0 LOESO 825 40) 6001°0 vC6¥°0 uo go=1
0 10L 061 5149 88S6°0 CIy80 06 96000 €LTS0 1235940 €L60'0 v06v'0 | HO ¢co=d
y)3ud|
jruary jury 71 13402 jruary Ny uonelay(q UedJp
un.a dL dL dL (1) weay anuay,
Jddn ReYNilg | 1) serq Jaddn JdMOTT piep ad Sa
< XBJAl Ul “SAY (d) Aysudyuy dyjeaf,
ID %Ss6 IO %S6 STD JO # ID %S6 IO %S6 -uej§ -ueg
SA.L JO #
(suonednday 000¢€) (syudwrradxy 001) (syudwrradxyy (T JO 93eIAY)
uonewnsy d.L N@wﬁ?oo onanQ ur fepq

(syuawtiadxg 001) 6dL-Ad TN WM [9POIAT T/IA/IAL Ul 9nanQ) Ut Aefa 10§ s)Nsay uopewnsg dL :L1°S SIqvL

83

09 896 0 6LE £568°0 LYYL 0 8 €61€0 GLLS'S 8¢89°9 9%$8°C LOSL'L uo 1g=1
6¢ 796 1C1 oy 69880 1€€L0 18 08LT0 6££6'8 10IL9 SY06°'C ¢C8’L Jo 60=17
0 1€6 0 8I¢ 88660 CIy80 06 0LEO'0 986€°¢ CLT6'T €029°0 €er'¢ uo ce=1
0 888 681 0LE €eL6’0 8998°0 6 9¢€0'0 Sh6EE 78€6°'C 009°0 ¥991°¢ 3o g0 =1d
)3ud|
una Jjury Jjury 71 1940 Jjury Jwry uoneiad(q
dL dL dL UBIJAI () weapq Ay,
< Jddn JdMO] eyl serq xddn JdMOT] piep Sa
XBJAl CUIAl “SAY Jrdureg adLy, serg
Sd.L ID %s6 1D %S6 SID JO # ID %s6 ID %S6 -uej§
Jog
(suonednday 000€) (syuowrradxy 001) (syuowrradxy (T JO d8eaAY)
uonewnsy dlL Noms._?ov %:o:@ uIfepq

(syuawtiadxg 001 “MdINQ payored) SdL-Yd T WM [SPOIN T/IN/IA UT 9nand) UI Av[d(10§ NSy uonewnsy 4L :81°S AqeL

84

€8 0L6 16 €LS 6,650 0200 0s av0'l 97TE'8 688L'S LELLT 8SSO'L uo rg="1
0S¥y 696 01¢ 965 908L0 16650 69 87990 SSIL'8 6519 9860t CTLeVL | HO 60="0d
0¢ 0L6 SLI Yov ceL6’0 89980 6 L8000 T1¢8v'c ¥006°C I19L°0 ¢le6l'c uo ce=1
9 656 61¢ Ley €Is6'0 L8C80 68 02200 6Sev'E 10C6'C 6LL90 8LI'E 3o g0=1d
LIELT|
jury yury 11 19403 juary jlury uonead(q
una dL dL dL UBIIA (1) wedA N,
Jaddn JIMO jey) serq xddn JIMO] piep Sa
<SdL CXeJN CUIN ‘SAY Jrdureg adLy, seig
jou ID %S6 ID %S6 SID Jo # ID %S6 1D %S6 -uel§
(suonednday (00¢) (syudwrradxy (001) (syudwLrddxy (O] Jo AeaaAy)
uonewnsy 4.1 2881340) PnanQ) uikepq

(syuowtradxg 001 “MdInQ payoted) 6d.L-Id TN WM [SPOIN T/IN/IA UT onand) Ur Ae[d(10§ SYNsayY uonewnsy 4L :61°S AqeL

85

clearly seen in Tables [5.18| and With the batched simulation output, the per-
formances of both MLPR-TP5 and MLPR-TP9 networks are increased at high traffic
intensity levels. An increase is observed in the number of Cls that cover . We can
conclude that the MLPR networks can find TP estimates such that truncated sample
means obtained are closer to true means. The number of TPs greater than the run
length also show a significant decrease when the batched output is used. Although
the MLPR-TP9 network still has poor performance when the traffic intensity is 0.9,
the MLPR-TP5 network seems to eliminate the deficiency in TP estimation with the

help of increased replication length and batched M/M/1 data.

To summarize, the performances of both MLPR networks in experiments on the AR
model data are promising. When we compare the two networks in the AR model
experiments, there is not much difference between them. However, performances of
the two networks differ when they are used on the M/M/1 model data. The MLPR-
TPS5 network is superior to the MLPR-TP9 network for the M/M/1 model. This may
be because the TP5 version uses 'more discrete’ TP target values than the TP9 version
in training, and this may result in the MLPR-TP5 network learning better with more

clear cut TP target values.

86

5.5.2 LSTM Experimental Results

The LSTM experiments described in this subsection are carried out on the same com-

puter using the same Python version as the MLPR experiments.
LSTM Cross Validation Test Results

As with the MLPR network, the LSTM network was first cross validated using only
the AR model data. The performance of the LSTM network was analyzed again by

using five-fold cross validation.

In investigating whether or not the LSTM network can learn the given target variables
with the AR model data, the LSTM network was first used with the same configura-
tion as that of the MLPR network. However, as mentioned in Section 4.2.2] memory
and computing time problems occurred since the LSTM network has a more complex
structure than the MLPR network. For both DS = off and DS = on options, the LSTM
network gave an out-of-memory error before completing 20 epochs. Therefore, in
order to solve these problems, modifying the input data was unavoidable. The AR

model time series was batched to generate new input data of lengths 200 and 100 as

given in Equations .9 and .10

The results obtained with the three different data lengths and respective hidden layer
sizes with the configuration given in Section [4.2.2] are summarized in Table [5.20] for
TP5 and Table for TP9.

As can be seen in Tables [5.20] and [5.21] the overall MAPE values for LSTM exhibit
unacceptably high levels. In both tables, when the MAPE values are examined sepa-
rately for individual target TP values, we observe that the MAPE values are lower for
the central target variable values. They are much higher for the extreme TP targets.
Based on this observation, the TP estimations of the LSTM network were examined
more closely, and it was discovered that the LSTM network found very similar TP
estimates around the central target value for all samples in the dataset. Therefore, we
concluded that the LSTM network could not learn the target variable values from the

data, with our selected configurations.

The averages of the training times per fold for the LSTM network are approximately

87

26T 81 ¥898°CC 0LCTEl 60¢8°0 €L69°C1 89¢8'8¢ uo 01 ST 0T 00T
€67 81 Y061°CC evorCl 6010°0 evILIT LSOOV 3o 01 ‘ST 0T 001
€L0E 81 LSGS¢€T 1000°v1 247! 999 v1 866S5°LE uo 0T ‘0¢ ‘0¥ 00¢
L18C81 rlcee 0re6vCl €010°0 L8LI9T ¥r10°0v 3o 0T ‘0€ ‘Ov 00¢

VN VN VN VN VN VN uo 001 “0ST ‘00T 0001

VN VN VN VN VN VN 3o 00T “0ST ‘00T 0001
[[8.1RAQ 0oy 0se 00€ 0s¢ 00¢ Sa S9ZIS Ja4e] USPPIH sua ynduy

dL

(UOTIBPI[RA $SOT) PIOJ-OAL] JO 5By ISIL 9Y) 10J $93819AY) N.LST UM [9POIN JV UI G L 10F $INSY AdVIN “0T'S 1qeL

88

88LLOT €9ITCC 6veSLT 608CTI 96€S9 I19€1°'0 68¢8L SGC89I 09v¥'LC 90610y UO 01 “S1°0C 001
€I9L91 TE91'CC L98S'LT 6Sev Tl €86S°9 €€L00 CTILLL TTSL9T 099¢'Lc 97010y PO 01 ‘ST ‘0T 001
65991 89pc'cC 8LE®8I IS9L €l 19108 6SY¥P'I CSEI'9 86LO6WI STEV'ST 8SLO'LE uo 0T ‘0¢ ‘ov 00¢
0LSLOT TLLTCC €66S°LT covy'Cl SCI99 08500 8YSL'L epel 9T SOpe'LC CI800F HO 0T ‘0¢ ‘oY 00¢
VN VN VN VN VN VN VN VN VN VN uo 00T ‘0ST ‘00T 0001
VN VN VN VN VN VN VN VN VN VN 3o 001 ‘0ST ‘00T 0001

SIZIS PSud

[B1RAQ ooy SLE 0se 14 00¢ SLT 0S¢ 44 00¢ Sa Y S — ynduy

dL

(UOTIBPI[RA SSOT) PIOJ-OAL] JO 5By ISIL oY) 10J $95019AY) IN.LST UM [9POIA IV UI 6d.L 10F $INSSY AdVIN “1T°S 1qeL

89

2840 and 1460 seconds for the hidden layer size 40, 30, 20 and 20, 15, 10, respec-
tively. Computing times for 200, 150, 100 are not given since 20 epochs are not
completed. Compared to MLPR, the computing time performance also lags behind

for the LSTM network.

To summarize, the LSTM network did not perform well with the specified config-
urations. The average MAPE values of five folds could not drop below 16% with
different input data lengths. As these results were not at the desired level, test ex-
periments were not conducted with the LSTM network on the complete sets of AR
model data and M/M/1 model data. However, considering the possibility that the test
performance could be better than the training performance, some limited test runs
were made on the M/M/1 model data. When the LSTM network is tested on M/M/1
model data with traffic intensities of 0.5 and 0.9, LSTM estimated all the truncation
points as the average of the target values as in cross validation tests of the AR model
data. This supported our conclusion that the LSTM network could not learn how to

estimate the truncation point.

5.5.3 CRNN Experimental Results

The CRNN experiments described in this subsection are carried out on the same com-

puter using the same Python version as the MLPR experiments.
CRNN Cross Validation Test Results

The CRNN network is studied in a framework similar to the LSTM network. The
only difference from the LSTM network is that the first layer of the hidden layers
is the conditional recurrent layer, and the input data has been made suitable for this
network. As mentioned before, this change in the input was made to analyze whether
the performance of the neural network can be improved by giving the bias types in

the AR model as an auxiliary input to the network.

However, the memory and computing time problems experienced in the LSTM net-
work were also faced in the CRNN network. When a time series of length 1000
and its bias type were given as input to the CRNN network, 20 epochs could not be

completed while training the network. The solution for the LSTM network was also

90

applied to the CRNN network. The data length was reduced from 1000 to 200 and

100, and the hidden layer sizes were also decreased accordingly.

The results of five fold cross validation with different input data lengths and different

hidden layer sizes are given in Table[5.22]for TP5 and [5.23| for TP9.

As seen in Tables[5.22]and[5.23] the performance of the CRNN network is not encour-
aging. Results are similar to those obtained with the LSTM network. Average MAPE
values calculated for five folds always stay above 16%. When the TP estimations
made by CRNN on the AR model data are examined in detail, all of the estimates are
almost the same around the central target value. It seems that, like LSTM, CRNN also
estimates the TP as the average of the given TP target values for all samples in the
dataset. The network could not effectively learn truncation point estimation for the
AR model data under investigation. Consequently, no further tests were conducted

with the CRNN network using the AR and M/M/1 data.

The averages of the training times per fold for the CRNN network are approximately
2890 and 1440 seconds for the hidden layer size 40, 30, 20 and 20, 15, 10, respec-
tively. Computing times for 200, 150, 100 are not given since 20 epochs are not
completed. Compared to MLPR, the computing time performance also lags behind

for the CRNN network.

5.6 Comparison of MLPR Results with MSER and MSER-5

5.6.1 MSER and MSER-5 Definition and Results

Definition and Formulation of MSER and MSER-5

MSER and MSER-5 are two methods widely used in literature to estimate the trun-
cation point. They are also included in many studies that compare the performance
of existing truncation point heuristics or proposed new methods. White et al. (2000)
compared MSER and MSER-5 with three different truncation point heuristics. Hoad
et al. (2008) examined the truncation point heuristics with the purpose of automating

them and concluded that MSER-5 is the best method to accomplish that. Mokashi et

91

¥00¢ 81 CILTCC e8ryCl 1650°0 LSELOT 8¢80°0Y uo 01 ST 0T 00T
1€8C81 YITCCC 8L8YCI 6£10°0 6C89°91 S610°0¥ 3o 01 ‘ST 0T 001
0v0r 81 8596°1¢C SIIcel L6TE0 cIso’Ll 919¥°0v uo 0T ‘0¢ ‘0¥ 00¢
816C°81 £668°CC eCIcel ovig80 OLTL'ST ¥098°8¢ 3o 0T ‘0€ ‘Ov 00¢

VN VN VN VN VN VN uo 001 “0ST ‘00T 0001

VN VN VN VN VN VN 3o 00T “0ST ‘00T 0001
[[8.1RAQ 0oy 0se 00€ 0s¢ 00¢ Sa S9ZIS Ja4e] USPPIH sua ynduy

dL

(UOIEPI[EA $501D) PIOJ-9AL] JO SBY ISAL AU} 10§ $958IAY) NNUD WM [9POIN YV W Sd.L 10§ SINsay AdVIN :TT'S 2198L

92

LECSOL 0TCTSC €€C80C LvL8'ST ¥99C01 8968°€ 88eS€ [L9I'CT I¥P9ECC SO09vE UO 01 “ST ‘0T 001
8CrL 9l L9ITCC CIV9'LL Le6y'Cl 00999 CTLOOO 000L°L 0SL99T 8I8CTLT 00I00OF HO 01 ‘ST ‘02 001
SIvLOT €0CCCC OSYO'LT 6L6VCI ¥¥99°9 2000 0S69L S69991 6SLCLC +E000F - Uo 0T ‘0¢ ‘oY 00¢
CEVLOL T9ITTC 96£9°LT ToV'CI 8599 160000 TCOL'L €LL991 €¥8TLCT LTIOOF HO 0T ‘0€ ‘o 00¢
VN VN VN VN VN VN VN VN VN VN uo 001 “0ST ‘00T 0001
VN VN VN VN VN VN VN VN VN VN Ho 001 ‘0ST ‘00T 0001

SIZIS Isud

[[e1RAQ 00¥ SLE 0S¢ STE 00€ SLT 0T §TC 00T sa B — Jndu

dL

(UOTEPI[EA $SOID) PIOJ-OAL] JO SR ISAL Y3 10§ $33810AY) NNYD UM [OPOIN YV Ul 6d.L 10§ SISy HIVIN :€7°S 1quL

93

al. (2010) compared N-skart and MSER-5 methods. Oh and Park (2015) compared
their proposed solution method (exponential variation rate) with MSER-5 consid-
ering their effectiveness, consistency, and confidence. Similarly, we compared our

proposed solution methods withnd MSER-5.

White (1997) introduced the MSER method to the literature with the name Marginal
Confidence Rule (MCR). Then, by modifying this method, Spratt (1998) conducted
studies for the MSER-5 method. White et al. (2000) mentions that "The MSER and
MSER-5 determine the truncation point as the point that best balances the tradeoff
between improved accuracy (elimination of bias) and decreased precision (reduction
in the sample size) for the reserved series." Here, the reserved series means the data
remained after deleting the portion from the first observation to the truncation point
estimate. With this approach MSER and MSER-5 aim at minimizing the width of
the confidence interval constructed for the true steady-state mean. However, White et
al. (2000) also state that "as the series of reserved observations is sequentially corre-
lated, the marginal confidence interval is not a valid estimator of the truncated mean.
The marginal confidence interval is a measure of the homogeneity of the truncated
series reserved for analysis." However, we compare our methods with MSER based
on independent replications, hence the confidence intervals constructed for the true

steady-state mean are valid.

Given a series X;,7 = 1, ..., m, White et al. (2000) formulates the MSER method as
in Equation

1

(m_d)Qi

ST (Xi— Xina)® (5.17)

=d+1

d* = argmin

where d* is the optimal truncation point, m is the replication length, X, 4 is the trun-
cated sample mean found using the truncation point candidate d. Calculation of X, 4
can be found in Equation m For the selection of d*, we tested as d the first 800
observations (0.8 times the replication length of 1000) so that d* will not be close to

the last observations in every trial.

. 1
Xona = > X (5.18)

While MSER deals with individual observations, MSER-5 works with non-overlapping
batch means of size 5, calculated from the individual observations for determining the

truncation point. The formulation of the batching process is given in Equation [5.19]

5
1
Zi= 2 XsG-n+i (5.19)
=1

For the MSER-5 method, X; in Equation must be replaced with Z;.
MSER and MSER-5 Truncation Point Estimation Results

In order to better understand the relative performance of the methods we proposed as
a solution to the initial bias problem, we examined the performances of MSER and
MSER-5 methods on the same test data and within the same experimental framework.
In making a comparison, the performance measures described in Section [5.3]are also
used for the MSER and MSER-5 methods. Firstly, TP estimation results of MSER
and MSER-5 methods for the AR model data are given in Table and Table

respectively.

As with the results of the MLPR network, the main performance measure we consider
in Tables and is whether or not the confidence intervals constructed for
the steady-state mean in 100 experiments cover the true mean. MSER and MSER-5
methods perform well in estimating the truncation point of data with DS = on option.
Almost all of the confidence intervals constructed for the coverage probability cover
0.95 for both methods. Only the MSER-5 result with Exponential Bias and DS = on
does not cover this value, but the upper limit of the coverage confidence interval is
close enough. However, the results of the DS = off lines in Tables @] and @] are
not at the desired level. When DS = off, both MSER and MSER-5 methods generally
perform better for the oscillation bias compared to other bias types. The MSER-5

coverage values for this case rises to 92, which is satisfactory.

Another vital performance measure is whether or not the truncation point value es-
timated by the method is greater than the run length. However, this metric is not
applicable for the MSER and MSER-5 methods since we restrict the candidate trun-

cation points up to the 800" observation in the time series.

95

PaAydNISUOD

st A1qeqoid 95eI0A00 10§ [BAISIUL QOUSPYUOD B ‘UYL, "PAJUNOD SI UBSW dNnI} Y} SULIDAOD S[BAIAIUI QOUIPYUOD JO IdqUINU Y} ‘syudwadxa 00 1o

‘sjuewradxa ()T I9A0 pUNOj 1€ sageIoAe Uy, "suoneordaI (¢ Jo saderoae pajeouns) Jursn poynduwios are Juewradxa Yore 10§ SONSTIRIS ‘d.I, PAIBWIISO o) Ia)je

SUOTIBAISSqO uIsn pajnduwrod ST aTeIdAr pajesuny 3y ‘UonedI[dar yoes 10, "opeul aIe SUONBAIISqo ()01 YISUS] JO yoea suonedrdar (¢ ‘yuswiiadxa yoes 10 ;

- 06L c0c 91¢ 0000°T §9¢6°0 L6 €000 ¥S90°0 80S00- 6CSI'0 €L00°0 uo 0="1

- 8¢9 0 0r¢ 129L°0 8LLSO L9 LT200 16£0°0 67800 LE9T0 LTCO0O- | HO UOREIIdSO

- 96L 861 43 0000°T ¥0L6°0 66 09000 LS900 L£SOO- €LST'O 09000 uo 0="1

- 9L9 0 L6l 09690 6€0S°0 09 9¢I'0 8681°0 92900 vLOT'0 ¢9CI'0 | HO HIYS U\

- Y6L S0¢C 9ce L2660 ¢L06'0 S6 19000 ¥090°0 €8¥0°0- Ie¥I'0 19000 uo 0="1

- 9¢9 0 ¢9¢ 09690 6¢05°0 09 LLLOO 8CrI0 ¢CI00 9ILT'0 LLLOO | HO [enusuodxy

LIELE]|
'y 'y 71 J9A0D Jjrury jury uoned(q
unI dL dL dL UBIA (1) uedA] Ina],

Jaddn JdMOT 1ey) serq Jddn JIMO] piep Sa

< XBJAl UL “SAY Jrdureg adLy, seig

ID %S6 IO %S6 SIO JO # ID %S6 1D %S6 -uel§
Sd.L JO #
(suonedniday 000€) (syuowrradxy 001) (syuowrradxy (0T JO d3ea9AY)
uonewnsy d.L 28e13A0) [SALIdS dwIL], YV

(syuowtradxg 001) YASIN WM [SPOIN YV 10F SINSY uonewnsy d1. 'S AqeL

96

PaAydNISUOI

st A1qeqoid 95eI0A00 10§ [BAISIUL QOUSPYUOD B ‘UYL, "PIAJUNOD SI UBSW NI} Y} SULIDAOD S[BAISIUI QOUIPYUOD JO JqUINU Y} ‘syudwddxa 00 1o

‘syuowizadxa ()() | J9A0 PUNOJ a1k sa3eIoAr ‘Uay], "suonedrdal ()¢ Jo segeroae pajeouns) Suisn payndwod a1e JuawLIddxa yora 10§ SO1SNelS d.L palewnso ay) 19yje

SuoneAIasqoO 3ulsn pajndwod ST aTeIdAr pajesundy Ay ‘UonedI[dar yoes 10, "opeul aIe SUONBAIISqo ()01 YISUS Jo yoea suonedrdar (¢ ‘yuswitiadxa yoes 104 ;

- SoL 00¢ 8I¢ 0000°T §CS6°0 86 96000 L£900 SCSO0- 0€ST'0 9S00°0 uo 0=1

- 08L SL L6T 1€L6°0 8998°0 6 67000 <7C900 ¥¢S0'0- 60SI'0 6¥000 | HO UOLBI[IOSO

- S6L g6l LTE 0000°T G260 86 0€10'0 0€L00 69¥Y0°0- 6LST'0 0€I00 uo 0="1

- 0LL 0 96¢ 65780 0rs90 VL 99¢00 LL80O0 SvE0'0- 60910 99200 | HO YIS uesN

- 06L 00¢ 8C¢ 9ev6°'0 €918°0 88 ¢er10’0 88900 8IV0'0- 9S¥PI'0 SEI00 uo 0="1

- G8L 06l ere 0L180 6¢v9°0 €L ¢6100 €€L00 ¥Pe00- 6IVI'0 S6I00 | HO [enuauodxy

LEELE]
'y yury 11 19402 jury jury uonerss(q
una dL dL dL UBIIA (1) uedA an,

Jddn JIMO] 1Y) serq Jddn JIMOT piep Sa

< XBJAl CUI]A *SAY Jdwreg adL, serg

ID %S6 1D %S6 SID Jo # ID %S6 ID »S6 -u®l§
Sd.LJO #
(suonednday (00€) (syudurddxy (01) (syudwLIddxy (0T JO FeIIAY)
uonewnsy 4L 28e13A0) [SOLIdG ALY, YV

(syuawtadxg 001) S-YASIN WA [9POIA YV 10§ SISy uonewnsy dL :$T°S AIqBL

97

Performance of MSER and MSER-5 methods for the M/M/1 data are given in Tables
[5.26]and[5.27] respectively. Truncation point estimations made by MSER and MSER-
5 methods for the M/M/1 data do not yield encouraging results. When the values
under the "Coverage" heading are examined, no coverage value is as high as desired.
The maximum number of Cls that cover p are are 51 and 52, far from the target of
a 95% CI. We can understand the reason why the coverage values are so low from
the metrics under the "Delay in Queue" heading. We can see that the bias values
are large, which means that there is significant difference between the true mean
and the sample mean obtained by discarding the data before the estimated truncation
point. As a result, the confidence intervals do not cover the true mean delay in queue.
To summarize, these two methods could not show a successful performance for the

M/M/1 model data with low coverage values.

The increased replication length and batching improved the performance of the MLPR
network in the M/M/1 model tests with higher traffic intensity levels. We investigated
whether or not the same situation was valid for the MSER and MSER-5 methods.
Data with a length of 5000 observations were produced from the M/M/1 model, and
the data length was reduced to 1000 by batching. When these new data were given as
input to MSER and MSER-5, results in Tables and were obtained. Although
the replication length was five times as long as the original, this did not improve the
coverage performances of MSER and MSER-5 when the traffic intensity was 0.9 and

contributed only a little when the traffic intensity was 0.8.

Once the neural networks are trained, the TP estimation computing time for a test
sample is negligible for both AR and M/M/1 data. With MSER, the computing time
for an AR sample is in the range of 0.0952-0.3024 seconds, and the average com-
puting time per sample is 0.1028 seconds. The same figures are 0.0045-0.0265 and
0.0048 seconds with MSER-5. For M/M/1 samples, MSER estimation times are in
the range of 0.1026-0.5097 seconds, and the average computing time per sample is
0.1138 seconds. The same values are 0.0048-0.0268 and 0.0049 seconds with MSER-
5. It should be noted that no extra effort was spent to optimize the codes for MSER
and MSER-5 computations.

98

PAydNISUOD

st A1qeqoid 95vI0A00 10) [BAISIUL QOUSPYUOD B ‘UYL, "PIAJUNOD SI UBSW NI} Y} SULIDAOD S[BAIAIUI QOUIPYUOD JO Jdquinu Y} ‘syudwadxa 0] 1o

‘sjuewIodxa ()] I9A0 punoj are sagerae ‘uay], ‘suonedrdar (¢ Jo saSeraae pajeouns) Sursn poyndwod axe JUSWILIAd X9 Yora I0J SONSNEIS d.[, PAIRWIS? 3y} 10)j8

SUOTIBAISSQO uIsn pajndurod ST 9FeIdAL pajesun 9y ‘UonedI[dar yoes 10,] “opeul d1e SUONEAIISqo (00T YISUS JO yora suonedrdar ()¢ ‘yuswradxa yoes 104 ;

- 66L 0 9¢¢ 6,650 020¥0 0s 0L8Y'T 05€9'8 8065y €vee’s 6C199 | uo rg="n
- 66L 0 00¢ 6L190 0Ty 0 (43 VeSy'lT TLE9'8 08S9v L8ET'S 9LY99 | HO 60 =0y
- 66L 0 0¢ L8ST0 CIY00 (011 68¢9°0 0CC6C 100cc $0S6'0 119¢C | uo ce=1
- 66L 0 871 66170 00800 Gl 60960 6586C €88CC ¥8160 IL£9C | HO 80 =0y
- 66L 0 681 9¢81'0 €9¢0°0 4! 8ISTO L6CS'T 8CEC'T 806€°0 CI8C'I uo gegr =1
- 66L 0 148! 6sve’0 OvLI0 9¢ GZ61'0 0v8S'I 1L6C'1 OLLEOD SOvV'T | HO L0 =0y
- 66L 0 81 L8ST0 CIY00 or1 PIT'0 96680 LSILO Cv8I'0 9S68L0 | Uo 60="11
- 66L 0 68 yevy'o S9ST0 ge G9L00 L8880 €86L°0 LILT'O G£T80 | HO 9°0 =0oYy4
- 66L 0 So1 81€C0 1880°0 91 ¥rS0'0 CI8Y0 I0I¥'0 S€600 9Sy¥'0 | Uo co=1
- 86L 0 89 9LSS0 €29¢°0 14 8¢e00 T100S°0 Trey’0 L9800 CLOYO | HO G0 =o0y4
Y)Sud|
jrury jry 71 I9A0D jrry jury uonerad(q UBdA
una < dL dL dL (1) uvapy anay
Jddn JIMOT 1eyY) serq Jddn JIMO] piep 9id Sa
sdL XBJAl CUIJN “SAY ($) Lysudjuy dyjeay,
jou ID %S6 ID %S6 SID Jo # ID %S6 ID %»S6 -uel§ -ueg
(suonednday 000€) (syudwr_dxy (01) (syudwIL_dXT (] JO d3BIAAY)
uonewnsy dlL Ade1910) PnanQ ur Lepq

(syuawtiadxg 001) JASIA WM [SPOI T/IN/IAL UT nanQ) UI Av[d(10§ SNSIY Uonewnsy d.L :97'S d1qeL

99

"PaIoNIISU0D

st A)1[1qeqoid 93810400 10J [BAIDIUL QOUSPYUOD B ‘UYL, "PAIUNOD SI UBIUW 9N} Y} SULIDAOD S[BAIDIUI OUSPYUOD JO IdqUnNU 3y} ‘sjuswiadxa (0] 1o ,

‘syuawiIadxa ()() [J9A0 PUNOj a1k sa3eloAr ‘uay], ‘suonedrdal (¢ Jo segeioae pajeouns) Sursn payndwod a1 JuawLIddxa yora 10§ SO1SNeIS d.IL palewnsa ay) 19)je

SUONBAISSqO SuIsn paynduwiod ST oFeIdAr pajedunt) ay) ‘uonedr[dor yoes 10 "apeul dIe SUONBAIISqO)00] YISUI[Jo yord suonedrdar o¢ yudwitiadxa yoes 104 ;

- So6L 0 €ec 6,090 0CI¥O IS 8E9V' I 1€L9°8 €665y TEL9E’S 79¢99 | Uo rg=1
- SoL 0 ¥1¢ 6L85°0 0CT6£0 6% 6CSY'l 6LV9'8 TOY9Y €89T°S IL¥99 60=1d
- SoL 0 80¢ €ILT'0 98100 I1 €8C9°0 LSE6'C LLOTT €8S6'0 LILST | UO ge="1
- So6L 0 181 9¢81'0 €950°0 4! 01960 vIL6CT SOYTT €vS6'0 0609°C g0=1d
- So6L 0 L61 81€T0 18800 91 eLYT0 SIEST 66¢£C’1 680 LSBE'] uo ee9T =1
- SoL 0 LSI €8LT0 9ITI0 0¢ €91T0 €I19S°1 61LT1 018€0 991¥'1 Lo=1d
- SoL 0 €61 9¢81'0 €950°0 4! CIIT0 GLS80 10CL'0 60810 888L0 | UO 60="1
- SoL 0 Lyl LETED T9ST0 104 1€60°'0 OPL8O0 L6ELO0 89LT'0 69080 90=1d
- So6L 0 €Ll 899C°0 1€11°0 61 orIiv’'0o 8€8%¥'0 OVIF0 61600 68¥F0 | UO co=1
- SoL 0 yel 8Cer0 ILYT0 143 120’0 8I6¥'0 OVey'0 €6800 6LSV°0 ¢o=1d
P3ud]
jury jury 11 1940 'y JW] uonelAd([UBIA
unJa < dL dL dL (1) ueaqAr oy,
Jddn JIMOT 1Y} serq Jddn JOMO| piep aid Sa
SdL ~ Xe[N CUIN SAy (0) Kysudyuy dygeuy,
04 ID %S6 ID %S6 SID Jo # ID %S6 1D %S6 -uelS -ueg
(suonednday 000€) (syuowrradxy (00T) (syuowrradxy (T JO d8eaAY)
uonewnsy 4L 881940 nan) ur kepq

(syuawrradxg 001) S-IASIA WM [SPOIN T/IN/IA UI 2nang) UT Kv[d(10§ SINSIY uonewnsy d.L :LT'S S19BL

100

- 66L 0 149! ¢TIe0 SLYT°0 €C ICLT'T 8800°L 0LY89 1484 %4 6LC69 uo rg=1
- 66L 0 144! 65170 OrLT 0 9T 8CCI'T 89¥0°L LS88'9 IveET'C 29969 Jo 60=17
- 66L 0 66 8CETr0 cLYT0 143 86TC'0 9T66'C 86C6'C 0or61°0 rL6'C uo ce=1
- 66L 0 8 90S°0 9¢1¢€0 I 800C°0 O0LIO¢ 7186°C [€81°0 2666°C o g0 =1d
)3ud[
un.a juary jury 71 1340 jary jlwry uoneiad(q
dL dL dL UBIA (1) ueadA anu,
< Jddn JOMO 1y} serq Jddn JIMOT] piep Sa
XBJAl UL “8AY Jjdureg adLy, seig
Sd.L ID %S6 IO %S6 SID JO # ID %S6 IO %S6 -ue)§
Jo#
(suonednday 000€) (syuourradxy 001) (syuowrradxy (T JO d8eaAY)
uonewnsy dL 288I9A0) PmanQ) uifepq

(syuawtiadxg 001 ‘MdinQ payored) YASIN WM [9POIAT T/IA/IAL U 9nonQ) ur Ae[a 10§ SHNSIY UONRWNST S L :8T°S SIqvL

101

- S6L 0 SLI 868C°0 COEl0 Ic CIITT 10L6°9 GLO89 v9El'C 88889 uo rg="1

- S6L 0 VLI 868C°0 COLl0 IC €L0TT 8¥L69 LOI89 €LCI'C LC689 | HO 60="0

- S6L 0 9¢l 089¢'0 0¢6I°0 8¢ €60 9696'C 81¢€6°C GI0S0 LOS6'C uo ge=11

- S6L 0 eel 900¥'0 ¥6ICT0 Ie LOYT0 YCL6'C TPE6'T 966%'0 ££S6°C | HO g0=1d

I3ud]
'y juary 11 19403 'y jlury uoneaq
una dL dL dL UBIIAl (1) ueadA an,

Jaddn JIMO] 1eY) serq Jddn JIMOT] piep Sa

< XBJA UL AV Jpdureg adL, serg
ID %S6 1D %S6 SID Jo # ID %S6 1D %S6 -uels

Sd.L 3O #
(suonedriday 000€) (syuawrrddxy 001) (syuourrddxy (T JO 98eI9AY)
uonewnsy 4L 8eI1910) PnanQ urkepq

(sywswiadxg 001 ‘mdinQ payoreq) S-YASIN UM [9POIN /IN/IN PYIRg Ul ananQ) ut Ae[a 10§ SYNSY uonewnsy dL :67°S AIqeL

102

5.6.2 Comparison of Truncation Point Estimation Results for MLPR, MSER,
and MSER-5

In this section, a comparison of the MLPR, MSER, and MSER-5 solutions reported
in the previous sections will be made. Only a few of the performance measures are
selected in making these comparisons. In the previous sections where the results
of each solution approach were shared in detail, the number of Cls that cover p,
the number of TPs that are greater than run length, and occasionally the bias were
discussed for each method, as they are found more important than the other metrics.
Comparisons in this section will be made by taking the same performance measures

into account.

Comparison of the test results for the AR model are summarized in Table [5.30|for the

MLPR-TPS5, MLPR-TP9, MSER, and MSER-5 methods.

The performances of all four solution methods, regardless of the bias type, were close
to each other, and successful results were obtained when DS = on. The two MLPR
networks outperform the MSER and MSER-5 methods in terms of the bias and the
number of Cls covering y in scenarios where DS = off. Both MLPR-TP5 and MLPR-
TP9 networks achieve very satisfactory results in terms of the coverage regardless
of the DS option. However, MSER and MSER-5 results when DS = off go down to
65-70% from approximately 95% achieved when DS = on. It seems that the MSER
and MSER-5 methods benefit more from data smoothing, and MSER-5 is in general
better than MSER. No problems were observed for any of the solution methods in

terms of the number of TPs greater than run length.

Based on these results, we can see from Table @ that MLPR networks outperform
MSER and MSER-5 methods, although the latter methods show satisfactory perfor-
mance as well when DS = on. As for the two MLPR networks, there is no evidence
in their performances to decide one network is better than the other as far as TP es-
timation for the AR model is concerned. We can state that both MLPR-TPS5 and
MLPR-TP9 networks passed this test with the AR model successfully.

Results of the four solution methods for the M/M/1 model are given in Table [5.31]
when DS = off and Table when DS = on.

103

Table 5.30: Comparative Results for AR Model

Bias Type & DS | Solution Method | Bias | Number of Cls that cover p | # of TPs >run length

MLPR-TP5 0.0006 96 0
Exponential MLPR-TP9 0.0022 97 0
DS = Off MSER 0.0777 60 -
MSER-5 0.0195 73 -

MLPR-TP5 0.0002 97

Exponential MLPR-TP9 0.0016 97
DS =0On MSER 0.0061 95 -
MSER-5 0.0135 88 -

MLPR-TP5 0.0002 99

Mean Shift MLPR-TP9 0.0061 98
DS = Off MSER 0.1262 60 -
MSER-5 0.0266 74 -

MLPR-TP5 0.0005 98

Mean Shift MLPR-TP9 0.0036 97
DS =0On MSER 0.0060 99 -
MSER-5 0.0130 98 -

MLPR-TP5 0.0034 96

Oscillation MLPR-TP9 0.0094 95
DS = Off MSER 0.0227 67 -
MSER-5 0.0049 92 -

MLPR-TP5 0.0055 96

Oscillation MLPR-TP9 0.0076 96
DS =0On MSER 0.0073 97 -
MSER-5 0.0056 98 -

104

Table 5.31: Comparative Results for M/M/1 Model When DS = Off

Traffic Intensity | Solution Method | Bias | Number of CIs that cover p | # of TPs >run length
MLPR-TP5 0.0056 93 0
0.5 MLPR-TP9 0.0096 90 0
MSER 0.0328 46 -
MSER-5 0.0421 34 -
MLPR-TP5 0.0122 92
0.6 MLPR-TP9 0.0115 90
MSER 0.0765 35 -
MSER-5 0.0931 24 -
MLPR-TP5 0.0188 89 0
0.7 MLPR-TP9 0.0107 92 10
MSER 0.1925 26 -
MSER-5 0.2163 20 -
MLPR-TP5 0.0919 90 4
0.8 MLPR-TP9 0.0773 88 89
MSER 0.5629 15 -
MSER-5 0.5610 12 -
MLPR-TP5 0.0336 92 0
0.8 MLPR-TP9 0.0220 89
Batched MSER 0.2008 41 -
MSER-5 0.2467 31 -
MLPR-TP5 0.8616 69 120
0.9 MLPR-TP9 1.3214 64 667
MSER 1.4524 52 -
MSER-5 1.4529 49 -
MLPR-TP5 0.2780 81 39
0.9 MLPR-TP9 0.6628 69 450
Batched MSER 1.1338 26 -
MSER-5 1.2073 21 -

105

Table 5.32: Comparative Results for M/M/1 Model When DS = On

Traffic Intensity | Solution Technique | Bias | Number of CIs that cover i | # of TPs run length
MLPR-TP5 0.0037 95 0
0.5 MLPR-TP9 0.0076 93 0
MSER 0.0544 16 -
MSER-5 0.0414 19 -
MLPR-TP5 0.0072 90
0.6 MLPR-TP9 0.0070 89
MSER 0.1144 10 -
MSER-5 0.1112 12 -
MLPR-TPS 0.0155 87 0
0.7 MLPR-TP9 0.0336 90 33
MSER 0.2518 12 -
MSER-5 0.2473 16 -
MLPR-TP5 0.1151 83 3
0.8 MLPR-TP9 0.2644 71 276
MSER 0.6389 10 -
MSER-5 0.6283 11 -
MLPR-TP5 0.0370 90 0
0.8 MLPR-TP9 0.0087 92 30
Batched MSER 0.2258 34 -
MSER-5 0.2493 28 -
MLPR-TP5 0.7269 75 89
0.9 MLPR-TP9 2.4565 25 1180
MSER 1.4870 50 -
MSER-5 1.4638 51 -
MLPR-TP5 0.3193 69 60
0.9 MLPR-TP9 1.0442 50 823
Batched MSER 1.1721 23 -
MSER-5 1.2112 21 -

106

According to Tables [5.3T]and [5.32] for the M/M/1 model, MLPR-TPS5 network is the
solution method that gives the most successful results among the four methods. For
each traffic intensity level, the MLPR-TPS network yielded the best performance in
almost all cases, both in terms of the bias and the number of Cls that cover pu. It
performed either the best or near the best in terms of all three metrics shown in the

tables.

Interestingly enough, the coverage results of the MLPR-TPS network is not worse
when DS = off compared to the case when DS = on, in particular for the high traffic
intensity levels. When the M/M/1 model data with increased replication length and
batching is used for the traffic intensity level of 0.8, the number of CIs that cover u
is 92 with DS = off option and 90 with DS = on option. The same numbers for the
traffic intensity level of 0.9 are 81 and 69. We can conclude that data smoothing is

not absolutely necessary for the MLPR-TPS network to succeed.

The MLPR-TPS network is not comparable with MSER and MSER-5 in terms of the
number of TP estimations greater than run length, as this metric is not applicable for
MSER and MSER-5. However, we can ignore this metric in this comparison, as the
MLPR-TPS network gives significantly better results in other performance measures.
Indeed, for the MLPR-TP5 network with DS = off, this value is at most 4% (120
out of 3000 replications), which is observed for the traffic intensity level of 0.9. In-
creasing the replication length and batching reduced this value to 1% (39 out of 3000

replications).

The MLPR-TP9 network is dominated by the MLPR-TP5 network in terms of the
M/M/1 model test performance. However, it still achieves more successful results
than the MSER and MSER-5 methods. In general, we can conclude that the MLPR

networks give more successful results for a queueing system such as M/M/1.

In summary, both MLPR-TP5 and MLPR-TP9 networks performed better in TP es-
timation than MSER and MSER-5 methods, particularly in the M/M/1 model tests.
MSER and MSER-5 could not outperform the MLPR networks for almost any test
data. Although MLPR-TP5 and MLPR-TP9 networks could not outperform each
other in the AR model tests, the MLPR-TP5 network dominated the MLPR-TP9 net-

work in the M/M/1 model tests with or without data smoothing.

107

5.6.3 Comparison of Estimated Truncation Point Distributions for MLPR, MSER,
and MSER-5

So far, we analyzed and compared the TP estimation performances of the three ma-
chine learning methods we proposed as well as the two conventional methods from
the literature. This was done by using MAPE for cross validation and coverage of the
confidence intervals constructed for the true steady-state means after the estimated
TP values were used to discard the initialization bias. Although some statistics such
as the average, minimum and maximum values were also reported for the TP esti-
mates, we need to examine their distributions to better understand the performance

differences of the competing methods.

To examine the distributions of the TP estimates from which the results in Tables[5.30]
and[5.32) are obtained, histograms of these estimates are plotted. Histograms of
the TP estimates for the AR model are given in Figure|5.7|for the three bias types and
two DS settings.

In the histograms for the AR model, the horizontal axis represents the bins of ob-
servation numbers in a replication. The vertical axis represents the frequency of TP
estimates found by the solution methods. Since no TP estimate for the AR model
exceeds 800 observations, the scale of the horizontal axis is narrowed to 0-800 range
instead of the replication length of 1000 so that the histograms can be seen more

clearly.

According to Figure TP estimates found by all four methods when DS = on are
distributed closer together (have a lower variability or spread) compared to the DS
= off case where TP estimates have a higher variability or spread. Regardless of the
bias type, all four solution techniques seem to find similar TP estimates with DS = on
option with the exception of MLPR-TP9. TP estimates of the MLPR-TP9 network
in general tend to be larger than those of the other methods. This is also seen in the
average TP estimates of the MLPR-5 and MLPR-TP9 networks, which are 355 and
400, respectively.

When DS = off, while MLPR-TP9 overestimates the TP values, MSER and MSER-5

methods come up with some very early TP estimates. This is the reason why the

108

1400

1400

MLPR-TPS

MSER-5

m MLPR-TPS m MSER

MLPR-TPS

MSER-5

HMLPR-TPS EMSER

1200

1200

1000

1000

008052
0G£-00£

i D0£-089

i DS9-009

» 009-058

= 055005

= 00505t
s 0SY-00F

OSE-D0E
00€-0ST
06Z-00T
00zZ-0ST
OST-00T

00T-08
0s-0
o o

U
=1 =1 =]
5] =} =+

200
0

Asuznbaiq

008-0SL
0S£-00£
| 00£-059
089-009
i 009-0SS
i 0SG-00S
= 00S-0Sv

—= 0SF00F
—— 00t-0SE
0SE-00E
00€-05T
== 0S7-00C
- 00T-0ST

= 0OST-00T
— 00T-05

— OG-0
o o o o
o o o o
@ © T o

0

fouanbaiq

Estimated TP Range

Estimated TP Range

=0On

Exponential and DS

Exponential and DS = Off (b) BT

(a) BT =

1400

1400

MLPR-TPS

MSER-5

EMLPR-TPS5 ®MSER

MLPR-TPS

MSER-5

mMLPR-TPS = MSER

1200

1200

1000

=] [=]
=] =
=] =]

Asuanbalq

400

200

008-06L
06£-00L
004059
059-009
009-055
065-00S
00s-0St
0St-00t
00t-0SE
0SE-00E
00g-0SE
08Z-002
002051
0ST1-00T
001-08
050

0

008-05L
06£-00L
00£-059
059-009
009-0sS
055-00S
006-05t
0St-00t
00-0S€E
0SE-00€
00€-05T
08Z-00T
00Z-0ST
0ST-00T
001-08

1000

[=] [=]
=1 =
=] [r=]

Asuanbasq

400

200

050

0

Estimated TP Range

Estimated TP Range

=0On

Mean Shift and DS

(d) BT =

= Off

Mean Shift and DS

(c)BT =

MLPR-TPS

MSER-5

m MLPR-TP5 m MSER

1400

1400

MLPR-TPS

MSER-5

EMLPR-TPS ®mMSER

1200

1200

008-05L

06£-00L

00£-059

059-009

i 009-055

7 085-005

= 005-0S¥
0St-00t
e (01-0SE

— USE-OCE
00€-05T
05Z-00¢
00Z-0sT
0ST-00T
00T-08
050

o =] [=1 o
=1 =1 =] =1
@ =] =+ ~

o

1000

Aousnbayq

008-0S

05£-00L

00£-059

i 059009

i 009-0SS

1 0S5-00S

§ 00S-0S¥

== 0St-00r

E— 00V-0SE

=——— 0SE-00E

00€-05Z

= 0ST002

4 002-0ST

+ 0sT-00T

00T-05
—_— 050

=] =] =] =]
=1 =] =] =1
& =) =+ =

o

1000

Aouanbauy

Estimated TP Range

Estimated TP Range

=On

Oscillation and DS

(H)BT =

Off

Oscillation and DS =

(e) BT =

Distribution of Estimated TP Values for AR Model (100 Experiments x

Figure 5.7

30 Replications)

109

coverage performance of these two methods is relatively lower in some scenarios

where DS = off.

The MLPR-TP5 network, on the other hand, produce TP estimates in accordance with
the TP range used in generating the AR model data, regardless of the DS setting. This

explains the superior coverage performance of the MLPR-TPS network.

Histograms of the TP estimates for the M/M/1 model are given in Figure [5.§] for the

five traffic intensity levels and two DS options.

110

0007-056
056-006
006-058
058-008
008-05L
05£-00L
00£-059
059-009
009-055
055-005
005-05¢
05400
00%-05¢
0SE-00E
00€-05T
05Z-00T
00Z-05T
05T-00T
00T-05

050

2200

@
a
v
-3
&
=
=
u
&
& -
=
u
o L}
i
2 [
= L}
ﬁ &
& '
& L
5
= =
= —
Uumﬂmommmmﬂ
§EEE5E883=
Aausnbayg
@
a
=
-
&
5
=
n
& -
i {
=
u
o
- "
G
@ -
g d
u £
i
2 H
= [
& =
e 5
|
= L
a _
—_
-
=
—
=
—
-
-
-
p—.
[—
Ooﬂﬂﬂommmmﬂ
S 99990
28 B3 &8 &
RAA3"A

fauanbaiy

000T-056
056-006
006-058
058-008
008-05L
05.L-00L
00.L-059
059-009
009-055
05%5-005
005-05F
05-00%
00%-05€
05€-00€
00€-05T
057-002
007-051
057-00T
00T-05
050

Estimated TP Range

Estimated TP Range

=0On

0.5 and DS

®) p

Off

0.5 and DS

(@ p

MLPR-TPS

WMLPR-TP5 mMSER mMSER-5

2200
2000

2200
2000
1800
1600

MLPR-TPS

mMLPR-TPS mMSER mMSER-5

1800

1600

[=RE-2-1
[==N=]
@ B F

1400
1200
1000

-

suanbaly

=
=1
=

ricbbbbls ———

0

LE-B-

Aausnbayy

1200
1000

=)
=1
I
-

200

0

000T-056
056-006
006-058
058-008
008-05L
05 £-00L
00£-059
059-009
009-055
055-008
005-05%
05+-00F
00+-0S€
0S€-00E
00g-052
05Z-002
002-05T
0ST-00T
00T-05
050

000T-056
056-006
006-058
0s8-008
008-05L
05 £-00L
00£-059
059009
00%-055
085-005
005-05%
05 +-00t
00%-05¢
05€-00€
00€-05T
0SZ-00T
002-05T
0ST-00T
001-05
050

Estimated TP Range

Estimated TP Range

=0On

0.6 and DS

dp

Off

0.6 and DS

©p

2200
2000
1800
1600

:

MLPR-TPS

EMLPR-TPS mMSER m MSER-5

MLPR-TPS

W MLPR-TPS mMSER mMSER-S

g

1800

=]
g

1000
800

oo
38
A
Aousnbaiy

1000

(=)
§58¢8
HKauanbaiy

600
400
200

g

g

g

000T-056
056-006
006-058
058-008
008-05L
05.L-00L
00,059
059-009
009-055
05%5-005
005-05F
05+-00F
00+-0S€
05E-00E
00€-0S2
057-00T
007-05T
057-00T
007-08
050

0

0001-056
056006
006-058
058-008
008-05L
054004
00£-059
059-009
009-035
055-005
00505k
05+-00F
00t-05E
05€-00€
00€-052
052-002
00E-05T
05T-00T
00T-05
050

Q

Estimated TP Range

Estimated TP Range

=On

0.7 and DS

®p

Off

0.7 and DS

() p

Figure 5.8: Distribution of Estimated TP Values for M/M/1 Model (100 Experiments

x 30 Replications)

111

WMLPR-TPS m MSER MSER-5 MLPR-TPS ;ggg W MLPR-TPS B MSER MSER-5 MLPR-TPS
1800
1600
1400
1200

-

n
-
=
s
o

& @

L

Estimated TP Range . Estimated TP Range
(g) p=0.8 and DS = Off (h) p=0.8 and DS =On

WMLPRTPS MMSER MMSER-S = MLPRTPS ;égg WMLPRTPS MMSER W MSER-5 © MLPR-TPS
1800
1600
Z 1400
g 1200
g 1000
& BOD
600

400

| | l 200

: '"LI' . 'I' b o wrm A 0 w I|L|\ IIlII II b o A
= o o = >
= 8 2 2 1

m F o ;o B B~ F

Estimated TP Range Estimated TP Range

(i) p = 0.9 and DS = Off () p=0.9 and DS = On

Figure 5.8: Continued

Compared to Figure [5.7) for the AR model, histograms in Figure [5.8] for the M/M/1
model exhibit a much higher spread. The most striking issue is that the TP estimates
of the MSER and MSER-5 methods are mostly at the beginning of the data sequence.
Underestimation of TP values is also observed in the AR model histograms, but it is
more pronounced in the M/M/1 model. The poor performance of these two methods
for the M/M/1 model can be attributed to this behavior. For all traffic intensity levels
and both data smoothing options, the MSER and MSER-5 methods come up with

premature TP estimates in the vast majority of cases.

The TP estimate distributions of MLPR-TP5 and MLPR-TP9 networks are in gen-
eral similar for the M/M/1 model with low traffic intensity (especially 0.5, 0.6, and
0.7) and DS = off. These two networks seem to produce similar TP estimates. How-
ever, when the traffic intensity is 0.7 and higher and DS = on, the TP estimates of

the MLPR-TP9 network have a more widespread distribution. When we compare

112

them with the estimates of the MLPR-TP5 network, we see that MLPR-TP9 esti-
mates larger TP values closer to the end of the data sequence. This behavior of the
MLPR-TP9 network is also supported by the larger number of TPs that are greater
than run length compared to that of MLPR-TPS. The reason for this may be because
the MLPR-TP9 network is trained with ’less discrete’ target values, its TP estimates

have higher spread, and it estimates that the steady-state is reached at a later point.

As the traffic intensity increases, the M/M/1 model is known to reach steady-state
later. Both networks exhibit a similar behavior as the traffic intensity increases. Con-
sidering the maximum estimated TP values, the unpredicted TP values for low traffic
intensity levels in the histograms began to be estimated for the traffic intensity level
of 0.9. Similar results can be observed for the MSER and MSER-5 methods. For
these two methods, the frequency of TP estimates in the range 750-800 increases for

the traffic intensity level of 0.9.

The histograms of TP estimates support the inferences made from the numerical re-
sults given in the previous section. To summarize, when the histograms of the TP
estimates are examined, no negative inferences are made regarding the estimates of
the MLPR-TP5 network. However, problems are encountered with specific data types
for the other methods. Therefore, we can conclude that the MLPR-TPS5 network can

be selected as the best solution approach in this study.

113

CHAPTER 6

CONCLUSIONS

Summary of the Work Done

This study addresses the initialization bias problem, which is encountered when an-
alyzing outputs of steady-state simulations. Three different machine learning tech-
niques, namely Multilayer Perceptron Regressor (MLPR), Long Short-Term Memory
(LSTM), and Conditional Recurrent Neural Network (CRNN), were used to develop
a solution approach for the initialization bias problem by estimating the truncation

point in simulation output sequence.

In steady-state simulations, the output sequence obtained from the model is usually
divided into two phases. The transient phase is the portion of the output data that
contains the effects due to arbitrary initial conditions of the simulation. The transient
phase is often followed by the steady-state phase where the system modeled reaches
an equilibrium, and the output sequence and statistics stabilize. The output data col-
lected during the transient phase are not representative of the system’s steady-state,
and cause bias in output statistics if included in the analysis. This is known as the
initialization bias problem in steady-state simulations. In order to analyze the sim-
ulation output accurately, the transient phase must be eliminated from the data. To
accomplish this, a truncation point must be determined, and the data before the trun-
cation point should not be used in the output analysis. In this study, we employed
three machine learning techniques for estimating the truncation point in steady-state

simulation in an attempt to eliminate the initialization bias.

The autoregressive (AR) and M/M/1 queueing system models were used to generate

the simulation output data. The original AR model generates a time series in steady-

115

state. For studying the transient phase and estimating the truncation point, some
bias must also be included in the initial portion of the time series. Therefore, three
different bias types were introduced to the AR model. Exponential, mean shift, and
oscillation bias functions were added up to a certain point in the AR model time series.
Through this approach, we could acquire the essential target truncation point values
necessary for training the neural networks. The M/M/1 model data, on the other hand,

do not have known truncation points but could be used in testing the neural networks.

The MLPR network is a special case of the multilayer perceptron, designed with ad-
justments to the output layer to enable regression tasks to predict or estimate continu-
ous target variables. The LSTM is an advanced form of the recurrent neural networks
(RNN) and employs specialized memory cells to capture short and long-term depen-
dencies in sequences. The CRNN differs from conventional RNN networks by includ-
ing a conditional layer. This unique layer enables the utilization of time-independent
data as auxiliary input to the neural network. We could train these machine learn-
ing techniques with the AR model data as we knew the truncation point values. Our
aim in this study was to analyze whether or not these neural networks could learn to
estimate the truncation point and explore if we could eliminate the initialization bias

problem with the help of these methods.

Performances of the three machine learning based solution approaches were exam-
ined by considering five different performance measures. The networks were five-
fold cross validated using the AR model data. For the performance of each fold,
mean absolute percentage error (MAPE) and computing time were taken into ac-
count. In the tests involving 100 experiments each with 30 replications, evaluations
were made based on the confidence intervals for the steady-state expected values and
bias, the coverage of these confidence intervals, and truncation point estimations.
The confidence intervals were constructed after eliminating data before the estimated

truncation point, to see if they cover the steady-state expected values.
Main Conclusions

Experiments were performed with similar configurations for all three neural net-
works. In the MLPR network cross validation, the MAPE values for truncation point

estimates were found to be 0.7-2.5% depending on the experimental settings. How-

116

ever, similar performances could not be obtained for the LSTM and CRNN networks.
The MAPE values for these two networks were approximately 17% and 18%. LSTM
and CRNN estimated all truncation points as the average of the target truncation point
values given to the network. Based on these results, we concluded that these two
networks could not learn from the AR model data with the specified network con-
figurations. Therefore, we continued to work only with the MLPR network in more

detailed tests.

In order to analyze the performance of the MLPR network in more detail, it was com-
pared with the conventional MSER and MSER-5 methods, which are well-known in
the literature. MSER and MSER-5 aim to identify the truncation point as the opti-
mal point considering the trade-off between enhanced accuracy (reducing the bias)
and increased precision (reducing the variance) where the fixed sample size is most
effectively balanced for the dataset at hand. Performances of the three methods were

compared in terms of the previously mentioned performance measures.

While comparing these three methods, 100 experiments were conducted for each of
the various experimental settings, using both AR and M/M/1 model test data. In the
truncation point estimations made for the AR model, the performances of the MLPR,
MSER and MSER-5 methods were similar in some scenarios, MLPR performed bet-
ter in some other scenarios, but all three methods achieved successful results in gen-
eral. The coverage of the confidence intervals for the steady-state expected values was
in the ranges 96-99%, 60-99%, 73-98% for the MLPR, MSER and MSER-5 methods,

respectively.

In the M/M/1 model tests, however, the MLPR network dominated the MSER and
MSER-5 methods in terms of performance. At the low traffic intensity levels (0.5-
0.7) in M/M/1, MSER and MSER-5 could not achieve the desired performance, with
respective confidence interval coverages of 10-46% and 12-34%. The MLPR network
(MLPR-TPS version), on the other hand, produced coverages in the range 87-95%.
Estimating the truncation point was more difficult for the MLPR network at the high
traffic intensity levels (0.8-0.9) in M/M/1, hence the replication length was increased
and batching was applied to the observations. In this case, MLPR achieved confi-

dence interval coverages in the range 69-92%. With or without batching, the coverage

117

ranges for MSER and MSER-5 were 10-52% and 11-51%, respectively, where upper

bounds of the ranges were obtained without batching.

To conclude, among the machine learning based methods we studied, the MLPR-
TP5 network, built upon the multilayer perceptron regressor and trained with the AR
model data having five discrete target values for the truncation point, was the most
successful solution approach with satisfactory coverage results. This network clearly
outperformed the conventional MSER and MSER-5 methods used for estimating the

truncation point.

The main advantage of using MLPR for truncation point estimation is that, although
human intervention would still be needed for confirmation or adjustment of the trun-
cation point, this need would be minimal compared to MSER or the graphical method

proposed by Welch (1983).
Future Research Suggestions

Studies that use simulation models and machine learning techniques together and seek
solutions to the problems in the literature have increased recently. These two valuable
and vital tools have successfully solved each other’s problems when used together.
This study contributes to the literature by successfully estimating the truncation point
to eliminate the initialization bias in steady-state simulation, by means of machine
learning techniques. To the best of our knowledge, although there are many studies in
the literature dealing with the initialization bias problem, the number of studies using
machine learning techniques for this purpose is very limited. The MLPR network
has shown that it can be effective for eliminating the initialization bias by means of
successful truncation point estimations. However, the LSTM and CRNN networks
need to be explored further to understand the reason why they are not successful
in truncation point estimation and to improve their performance in this area. The
performance of these networks can be tested with different network architectures and

configurations in the future.

MLPR and the other neural networks can be tested with some other more complex
simulation models, particularly models of real world systems. Although the true trun-

cation points and steady-state expected values would be unknown for those models,

118

expert opinion can bu used to evaluate the performance of the networks.

This study is limited to three distinct network types. Other types of neural networks
with alternative network structures and configurations can be considered for solving
the truncation point estimation problem. Another candidate method in this domain
can be MARS (Multivariate Adaptive Regression Splines). Conceptually, the trun-
cation point can be determined as the point in the time series at which the linear

regression models fitted by MARS start having a slope of zero consistently.

Furthermore, the MLPR framework we proposed in this study can be applied to other
estimation problems in stochastic simulation, such as determination of input proba-

bility distributions and statistical output analysis.

119

(1]

(2]

(3]

[4]

[5]

[6]

[7]

REFERENCES

Afolalu, S. A., Babaremu, K. O., Ongbali, S. O., Abioye, A. A., Abdulkareem,
A., Adejuyigbe, S. B. (2019, December). Overview impact of application of
queuing theory model on productivity performance in a banking sector. In Journal

of Physics: Conference Series (Vol. 1378, No. 3, p. 032033). IOP Publishing.

Agarap, A. F. (2018). Deep learning using rectified linear units (relu). arXiv
preprint arXiv:1803.08375.

Banks, J., Carson, J. S., Nelson, B. L., Nicol, D. M. (2005). Discrete-event

system simulation. Pearson Prentice Hall

Bischak, D.P., Kelton, W.D., Pollock, S.M., 1993. Weighted batch means
for confidence intervals in steady-state simulations. Management Science 39,

1002-1019.

Cash, C.R., D.G. Dippold, J.M. Long, B.L. Nelson, and W.P. Pollard. 1992. Eval-
uation of tests for initial conditions bias. In Proceedings of the 1992 Winter Sim-
ulation Conference, ed., J.J. Swain, D. Goldsman, R.C. Crain, and J.R. Wilson,

577-585 Institute of Electrical and Electronics Engineers, Piscataway, NJ

Chen, L., Li, R., Liu, Y., Zhang, R., Woodbridge, D. M. K. (2017, Au-
gust). Machine learning-based product recommendation using Apache Spark.
In 2017 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced
Trusted Computed, Scalable Computing Communications, Cloud Big Data
Computing, Internet of People and Smart City Innovation (SmartWorld/SCAL-
COM/UIC/ATC/CBDCom/IOP/SCI)(pp. 1-6). IEEE.

Chinyere, O. U., Francisca, O. O., Amano, O. E. (2011). Design and simula-
tion of an intelligent traffic control system. International journal of advances in

engineering technology, 1(5), 47.

121

[8] Currie, C. S., Cheng, R. C. (2016, December). A practical introduction to analy-
sis of simulation output data. In 2016 Winter Simulation Conference (WSC) (pp.
118-132). IEEE.

[9] Derbentsev, V., Matviychuk, A., Datsenko, N., Bezkorovainyi, V., Azaryan, A.
(2020, October). Machine learning approaches for financial time series forecast-

ing. CEUR Workshop Proceedings.

[10] Deshpande, R. R. (2012). On the rainfall time series prediction using multilayer
perceptron artificial neural network. Int. J. Emerg. Technol. Adv. Eng, 2(1), 2250-
24509.

[11] Fishman, G.S., 1978. Principles of Discrete Event Simulation. John Wiley, New
York.

[12] Fischer, T., Krauss, C. (2018). Deep learning with long short-term memory net-
works for financial market predictions. European journal of operational research,

270(2), 654-669.

[13] Gardner, M. W., Dorling, S. R. (1998). Artificial neural networks (the multilayer
perceptron)—a review of applications in the atmospheric sciences. Atmospheric
environment, 32(14-15), 2627-2636.

[14] Gers, F. A., Schmidhuber, J., Cummins, F. (2000). Learning to forget:
Continual prediction with LSTM. Neural Computation, 12(10), 2451-2471.
https://doi.org/10.1162/089976600300015015

[15] Giabbanelli, P. J. (2019). Solving challenges at the interface of simulation and
Big Data Using Machine Learning. 2019 Winter Simulation Conference (WSC).
https://doi.org/10.1109/wsc40007.2019.9004755

[16] Glynn, P. W., Iglehart, D. L. (1988). Simulation methods for queues: An

overview. Queueing systems, 3, 221-255.

[17] Grassmann, W. K. (2008). Warm-up periods in simulation can be detrimental.

Probability in the Engineering and Informational Sciences, 22(3), 415-429.

[18] Hijry, H., Olawoyin, R. (2021). Predicting patient waiting time in the queue

system using deep learning algorithms in the emergency room. International

122

Journal of Industrial Engineering and Operations Management, 03(01), 33—45.
https://doi.org/10.46254/j.ieom.20210103

[19] Hoad, K., Robinson, S., Davies, R. (2008). Automating
warm-up length estimation. 2008 Winter Simulation Conference.

https://doi.org/10.1109/wsc.2008.4736110

[20] Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in re-
current nets: the difficulty of learning long-term dependencies. In: S.C. Kremer,
J.F. Kolen (eds.) A Field Guide to Dynamical Recurrent Neural Networks. IEEE
Press (2001)

[21] Hochreiter, S. Schmidhuber, J. (1997). Long Short-term Memory. Neural com-
putation. 9. 1735-80. 10.1162/neco0.1997.9.8.1735.

[22] Jain, S., Narayanan, A., Lee, Y.-T. T. (2018). Comparison of data analyt-
ics approaches using simulation. 2018 Winter Simulation Conference (WSC).

https://doi.org/10.1109/wsc.2018.8632330

[23] James, G., Witten, D., Hastie, T., Tibshirani, R. (2013). An introduction to
statistical learning (Vol. 112, p. 18). New York: springer.

[24] Kelton, W. D., and A. M. Law. 1983. A new approach for dealing with the
startup problem in discrete event simulation. Naval Research Logistics Quarterly

30 641-658.

[25] Kendall, D. G. (1953). "Stochastic Processes Occurring in the Theory of Queues
and their Analysis by the Method of the Imbedded Markov Chain". The Annals
of Mathematical Statistics. 24 (3): 338-354.

[26] Keshtgary, M., Mohammadi, R., Mahmoudi, M., Mansouri, M. R. (2012). En-
ergy consumption estimation in cluster based underwater wireless sensor net-

works using m/m/1 queuing model. International Journal of Computer Applica-

tions, 43(24), 6-10.

[27] Khalid, A., Sundararajan, A., Acharya, I., Sarwat, A. 1. (2019). Prediction
of li-ion battery state of charge using multilayer perceptron and long short-term
memory models. 2019 IEEE Transportation Electrification Conference and Expo

(ITEC). https://doi.org/10.1109/itec.2019.8790533

123

[28] Kim, Y. H., Jun, K. W,, Joo, H., Han, C., Song, I. K. (2009). A simulation
study on gas-to-liquid (natural gas to Fischer—Tropsch synthetic fuel) process

optimization. Chemical Engineering Journal, 155(1-2), 427-432.

[29] Kim, K. B., Kwon, H. H., Han, D. (2018). Exploration of warm-up period in
conceptual hydrological modelling. Journal of Hydrology, 556, 194-210.

[30] Kingma, D. P,, Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

[31] Kolahi, S. S. (2011). Simulation model, warm-up period, and simulation length
of Cellular Systems. 2011 Second International Conference on Intelligent Sys-

tems, Modelling and Simulation. https://doi.org/10.1109/isms.2011.63

[32] Kotsias, P. C., Arus-Pous, J., Chen, H., Engkvist, O., Tyrchan, C., Bjerrum,
E. J. (2019). Direct steering of de novo molecular generation using descriptor

conditional recurrent neural networks (cCRNNSs).

[33] Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V., Fotiadis,
D. I. (2015). Machine learning applications in cancer prognosis and prediction.

Computational and structural biotechnology journal, 13, 8-17.

[34] Kumar, N., Jha, G. K. (2013). A time series ann approach for weather forecast-
ing. Int J Control Theory Comput Model IJCTCM), 3(1), 19-25.

[35] Kyritsis, A. 1, Deriaz, M. (2019). A machine learning approach
to waiting time prediction in queueing scenarios. 2019 Second Inter-
national Conference on Artificial Intelligence for Industries (AI4I).

https://doi.org/10.1109/ai4146381.2019.00013

[36] Laidler, G., Morgan, L. E., Nelson, B. L., Pavlidis, N. G. (2020). Metric
Learning for Simulation Analytics. 2020 Winter Simulation Conference (WSC).
https://doi.org/10.1109/wsc48552.2020.9383904

[37] Law, A. M. (2015). Simulation modeling and analysis (5th ed.). McGraw-Hill

Education.

[38] Linton, J. R., Catherine. (n.d.). A comparison of selective initialization

124

bias elimination methods. Proceedings of the Winter Simulation Conference.

https://doi.org/10.1109/wsc.2002.1166495

[39] Li, M. P, Sankaran, P., Kuhl, M. E., Ganguly, A., Kwasinski, A., Ptucha,
R. (2018, December). Simulation analysis of a deep reinforcement learning ap-
proach for task selection by autonomous material handling vehicles. In 2018 Win-

ter simulation conference (WSC) (pp. 1073-1083). 1EEE.

[40] Le, X. H., Ho, H. V., Lee, G., Jung, S. (2019). Application of long short-
term memory (LSTM) neural network for flood forecasting. Water, 11(7), 1387.
https://doi.org/10.3390/w11071387

[41] Lee, Y. H., Kyung, K. H., Jung, C. S. (1997). On-line determination of steady

state in simulation outputs. Computers industrial engineering, 33(3-4), 805-808.

[42] Little, J. D. (1961). A proof for the queuing formula: 1 = w. Operations Research,
9(3), 383-387. https://doi.org/10.1287/opre.9.3.383

[43] Liu, Y., Yan, L., Liu, S., Jiang, T., Zhang, F., Wang, Y., Wu, S. (2020, De-
cember). Enhancing input parameter estimation by machine learning for the sim-

ulation of large-scale logistics networks. In 2020 Winter Simulation Conference

(WSC) (pp. 608-619). IEEE.

[44] Mahajan, P. S., Ingalls, R. G. (2004, December). Evaluation of methods used
to detect warm-up period in steady state simulation. In Proceedings of the 2004

Winter Simulation Conference, 2004. (Vol. 1). IEEE.

[45] Modi, M., Agarwal, G., Patil, V., Khare, A., Shukla, S., Sankhala, A. (2019).
Minimization of traffic congestion by using queuing theory. International Journal

Of Scientific and Technology Research, 8(10).

[46] Mohapatra, S., Yang, T., Gémez-Bombarelli, R. (2020). Reusability report: De-
signing organic photoelectronic molecules with descriptor conditional recurrent

neural networks. Nature Machine Intelligence, 2(12), 749-752.

[47] Mokashi, A. C., Tejada, J. J., Yousefi, S., Tafazzoli, A., Xu, T., Wilson, J. R,,
Steiger, N. M. (2010, December). Performance comparison of MSER-5 and N-
Skart on the simulation start-up problem. In Proceedings of the 2010 Winter Sim-

ulation Conference (pp. 971-982). IEEE.

125

[48] Nelson, D. M., Pereira, A. C., de Oliveira, R. A. (2017). Stock
market’s price movement prediction with LSTM neural networks.
2017 International Joint Conference on Neural Networks (IJCNN).
https://doi.org/10.1109/ijcnn.2017.7966019

[49] Nguyen, H. D., Tran, K. P., Thomassey, S., Hamad, M. (2021). Forecasting
and Anomaly Detection approaches using LSTM and LSTM Autoencoder tech-
niques with the applications in supply chain management. International Journal

of Information Management, 57, 102282.

[50] Noriega, L. (2005). Multilayer perceptron tutorial. School of Computing.
Staffordshire University, 4(5), 444.

[51] Oh, H. S., and Park, K. J. (2015). An effective heuristic for initial bias reduction
in simulation output. ASIA LIFE SCIENCES, 12, 265-275.

[52] Orriols-Puig, A., Casillas, J., Bernad6-Mansilla, E. (2008). Genetic-based ma-
chine learning systems are competitive for pattern recognition. Evolutionary In-

telligence, 1, 209-232.

[53] Predescu, E. F., Tefan, A., Zaharia, A. V. (2019). Software effort estimation
using multilayer perceptron and long short term memory. Informatica Economica,

23(2), 76-87.

[54] Remy, P. (2020). Conditional RNN for Keras. GitHub repository. Retrieved from
https://github.com/philipperemy/condrnn

[55] Robinson, S. (2002, December). A statistical process control approach for esti-
mating the warm-up period. In Proceedings of the Winter Simulation Conference

(Vol. 1, pp. 439-446). IEEE.

[56] Robinson, S., Ioannou, A. (2007). The problem of the initial transient: Tech-
niques for estimating the warm-up period for discrete-event simulation models.

Warwick Business School, University of Warwick, Coventry, UK, 1-30.

[57] Roth, E., 1994. The relaxation time heuristic for the initial transient problem
in M/M/k queueing systems. European Journal of Operational Research 72:376-
386.

126

[58] Sagheer, A., Kotb, M. (2019). Time series forecasting of petroleum production
using deep LSTM recurrent networks. Neurocomputing, 323, 203-213.

[59] Sanchez, P.J., White, K. P. (2011). Interval estimation using replication/dele-
tion and MSER truncation. Proceedings of the 2011 Winter Simulation Confer-
ence (WSC). https://doi.org/10.1109/wsc.2011.6147778

[60] Sandikci, B., Sabuncuoglu, I. (2006). Analysis of the behavior of the tran-
sient period in non-terminating simulations. European Journal of Operational Re-

search, 173(1), 252-267.

[61] Schriber, T.J., Andrews, R.W., 1984. ARMA-based confidence intervals for sim-
ulation output analysis. American Journal of Mathematical and Management Sci-

ences 4, 345-373.

[62] Schruben, L.W. 1982. Detecting initialization bias in simulation output. Opera-
tions Research, 30(3):151-153.

[63] Sherzer, E., Senderovich, A., Baron, O., Krass, D. (2022). Can machines solve
general queueing systems?. arXiv preprint arXiv:2202.01729.

[64] Shen, S., Jiang, H., Zhang, T. (2012). Stock market forecasting using machine
learning algorithms. Department of Electrical Engineering, Stanford University,

Stanford, CA, 1-5.

[65] Singh, V. K., Pandey, S. (2016, March). Minimum configuration MLP for solv-
ing XOR problem. In 2016 3rd International Conference on Computing for Sus-
tainable Global Development (INDIACom) (pp. 174-179). IEEE.

[66] Soutner, D., Miiller, L. (2013). Application of LSTM neural networks in lan-
guage modelling. In Text, Speech, and Dialogue: 16th International Conference,
TSD 2013, Pilsen, Czech Republic, September 1-5, 2013. Proceedings 16 (pp.
105-112). Springer Berlin Heidelberg.

[67] Spratt, S. C. (1998). Heuristics for the startup problem. Department of Systems

Engineering, University of Virginia.

[68] Sundari, M.S., Palaniammal, S. (2015). Simulation of M / M / 1 Queuing Sys-
tem Using ANN.

127

[69] Teresa, C. O. M., Paegelow, M., Mas, J.-F., Escobar, F. (2018). Geomatic ap-

proaches for modeling land change scenarios. Springer International Publishing.

[70] Van Houdt, G., Mosquera, C., Néapoles, G. (2020). A review on the long short-
term memory model. Artificial Intelligence Review, 53, 5929-5955.

[71] Wang, W., Wong, A.K. (2002). Autoregressive Model-Based Gear Fault Diag-
nosis. Journal of Vibration and Acoustics, 124, 172-179

[72] Welch, P. D. 1983. The statistical analysis of simulation results. In Computer
Performance Modeling Handbook, ed. Lavenberg, 267-329.

[73] Welch, P.D. 1983. The statistical analysis of simulation results. In The computer
performance modeling handbook, ed. S.S. Lavenberg, pp. 268-328. New York:

Academic Press.

[74] White, K. P., Jr.. 1997. An effective truncation heuristic for bias reduction in

simulation output. Simulation,

[75] White, K. P, Cobb, M. J., Spratt, S. C. (n.d.). A comparison of five steady-
state truncation heuristics for Simulation. 2000 Winter Simulation Conference

Proceedings (Cat. No.OOCH37165). https://doi.org/10.1109/wsc.2000.899843

[76] Yulita, I. N., Abdullah, A. S., Helen, A., Hadi, S., Sholahuddin, A., Rejito, J.
(2021). Comparison multi-layer perceptron and linear regression for time series
prediction of novel coronavirus covid-19 data in West Java. In Journal of Physics:

Conference Series (Vol. 1722, No. 1, p. 012021). IOP Publishing.

[77] Zeiler, M. D., Ranzato, M., Monga, R., Mao, M., Yang, K., Le, Q. V., ... Hinton,
G. E. (2013, May). On rectified linear units for speech processing. In 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing (pp. 3517-

3521). IEEE.

128

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Literature Review
	Initialization Bias Problem in Steady-State Simulation
	Conventional Truncation Point Estimation Methods
	Machine Learning and Simulation
	Prediction Applications of the Machine Learning Methods Used

	Problem Definition and Background
	The Initialization Bias Problem
	Autoregressive (AR) Model
	M/M/1 Queueing System Model

	Solution Approaches
	Multilayer Perceptron Regressor (MLPR)
	General MLPR Definition
	Proposed MLPR Configuration

	Long Short-Term Memory Network (LSTM)
	General LSTM Definition
	Proposed LSTM Configuration

	Conditional Recurrent Neural Network (CRNN)
	CRNN Definition and Usage
	Proposed CRNN Configuration

	Experiments and Results
	Generation of Datasets
	Autoregressive Model Datasets
	M/M/1 Model Datasets

	Experimental Settings
	Autoregressive Model Experimental Settings
	M/M/1 Model Experimental Settings

	Performance Measures
	Hyperparameter Tuning for Proposed Machine Learning Methods
	Computational Results for Solution Approaches
	MLPR Experimental Results
	LSTM Experimental Results
	CRNN Experimental Results

	Comparison of MLPR Results with MSER and MSER-5
	MSER and MSER-5 Definition and Results
	Comparison of Truncation Point Estimation Results for MLPR, MSER, and MSER-5
	Comparison of Estimated Truncation Point Distributions for MLPR, MSER, and MSER-5

	Conclusions
	REFERENCES

