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KAPALI ORTAMLAR İÇİN DERİN PEKİŞTİRMELİ ÖĞRENME 

ALGORİTMALARI İLE MOBİL ROBOTLARIN NAVİGASYONU 

ÖZET 

Mevcut mobil robotik araştırmalarındaki en önemli konulardan biri otonom 

navigasyondur. Navigasyon; yol planlama ve hareket planlama olarak iki kısımdan 

oluşur. Bununla birlikte yol ve hareket planlama, haritası çıkarılmamış ortamlarda zorlu 

bir görevdir. Bu zorlukları aşmak için son yıllarda derin pekiştirmeli öğrenme (DPÖ) 

yöntemleri sıklıkla kullanılmaktadır. Bu çalışmanın amacı, haritası çıkarılmamış 

ortamlarda düşük maliyetli sensörler kullanarak bir mobil robotun navigasyonu için derin 

pekiştirmeli öğrenme yöntemlerinin kullanımını araştırmak, modellemek ve 

kıyaslamaktır. Belirtilen amaca ulaşmak için iki aşamalı bir yöntem belirlenmiştir. Birinci 

aşamada kapalı bir oda ortamı iki boyutlu grid olarak temsil edilmiştir. Bu ortam üzerinde 

A2C, DQN, TRPO, PPO gibi ayrık eylem uzayında çalışabilen farklı pekiştirmeli 

öğrenme algoritmalarının performansları kıyaslanmıştır. Bu karşılaştırmayı yaparken 

belirli bir öğrenme kriteri eklenmiştir ve ayrıca epsilon değeri, adım sayısı gibi 

parametreler değiştirilerek eğitim ve test aşamalarındaki değişiklikler analiz edilmiştir. 

Değerlendirme ölçütü olarak bölüm başına alınan ortalama ödül kullanılmıştır. Daha 

yüksek ödül, bir robotun çarpışmadan veya zaman adımı sınırını aşmadan daha fazla 

sayıda hedefe ulaşabildiği anlamına gelir. Bu ortamlarda PPO ajanının daha başarılı 

olduğu görülmüştür. İkinci aşamada Gazebo benzetim ortamında üç boyutlu hazır 

ortamlarda algoritmaların performansı değerlendirilmiştir. Sürekli eylem uzaylarında 

çalışan TD3, SAC, PPO algoritmaları Gazebo ortamında kıyaslandı. 2B ortamında başarı 

sağlayan hiperparametreler 3B ortamda da kullanıldı. Bu şekilde TD3 ajanı daha başarılı 

sonuçlar almıştır. Son olarak ise hem ayrık hem de sürekli eylem uzayında çalışabilen ve 

2B ortamda en başarılı olan PPO ajanı ile sadece sürekli eylem uzayında çalışan ve 3B 

ortamda başarısı görülen TD3 ajanı kıyaslandı ve gözlemler sonucunda TD3 ajanının 

daha başarılı olduğu görüldü. 
 

Anahtar Kelimeler: Derin Pekiştirmeli Öğrenme, Hareket Planlama, Mobil Robotlar, 

Otonom Navigasyon, Yol Planlama.  
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NAVIGATION OF MOBILE ROBOTS WITH DEEP REINFORCEMENT 

LEARNING ALGORITHMS FOR INDOOR ENVIRONMENTS 

ABSTRACT 

One of the most important topics in current mobile robotics research is autonomous 

navigation. Navigation consists of two parts: path planning and motion planning. 

However, path and motion planning is a challenging task in unmapped environments. To 

overcome these challenges, deep reinforcement learning (DRL) methods have been 

widely used in recent years. The aim of this work is to investigate, model and benchmark 

the use of deep reinforcement learning methods for navigation of a mobile robot using 

low-cost sensors in unmapped environments. In order to achieve the stated goal, a two-

stage methodology was defined. In the first stage, an indoor room environment is 

represented as a two-dimensional grid. The performances of different reinforcement 

learning algorithms such as A2C, DQN, TRPO, PPO which can operate in discrete action 

space are compared on this environment. While making this comparison, a specific 

learning criterion was added and also parameters such as epsilon value, number of steps 

were changed and the changes in the training and testing phases were analyzed. The 

average reward per episode was used as the evaluation criterion. Higher reward means 

that a robot is able to reach a greater number of targets without colliding or exceeding the 

time step limit. The PPO agent was found to be more effective in these environments. In 

the second phase, the performance of the algorithms was evaluated in three-dimensional 

ready-made environments in the Gazebo simulation environment. TD3, SAC, PPO 

algorithms operating in continuous action spaces were compared in Gazebo environment. 

Hyperparameters that were successful in 2D environment were also used in 3D 

environment. Finally, PPO agent, which can work in both discrete and continuous action 

space and is the most successful in 2D environment, and TD3 agent, which works only 

in continuous action space and is successful in 3D environment, were compared and TD3 

agent was more successful. 

 

Keywords: Deep Reinforcement Learning, Motion Planning, Mobile Robots, 

Autonomous Navigation, Path Planning.
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1. GİRİŞ 

Robot, elektronik bileşenler, mekanik aksam, sensör ve yazılımdan oluşan, otonom ya da 

insan destekli makinelerdir. Robotik ise robotlarla ilgilenen bilim dalıdır. Mobil robotlar, 

fiziksel olarak sabit olmayan tanımlanmış bir çevrede (karada, su altında ya da havada) 

hareket ederek istenilen görevleri yerine getirebilen robotlardır (Bölük, 2019).  Bu 

sebeple gezgin robot da denilmektedir. Mobil robotlar, birçok alanda giderek daha fazla 

kullanılmaktadır. Mobil robotların örnek uygulamaları, yaşlılar için hizmet robotları, bir 

fabrikada mal nakletmek için otomatik yönlendirmeli araçlar, insansız bomba imha 

robotları ve gezegen keşif robotları gibi geniş bir yelpazeyi içerir.  

Navigasyon, mobil robotik alanında temel bir görevdir ve küresel navigasyon ve yerel 

navigasyon olarak iki tür olarak sınıflandırılabilir. Küresel navigasyonda, çevre hakkında 

önceden bilgi mevcut olmalıdır. Küresel navigasyon için Voronoi Grafiği, Yapay 

Potansiyel Alan Yöntemi, Dijkstra algoritması, Görünürlük Grafiği, Gridlar, ve Hücre 

Ayrıştırma yöntemi vb. gibi birçok yöntem geliştirilmiştir. Yerel navigasyonda robot, 

ultrasonik sensörleri, keskin kızılötesi mesafe sensörleri ve görüş (kamera) sensörleri vb. 

gibi donanımlı sensörleri kullanarak hareketine ve yönüne otonom olarak karar verebilir. 

Yerel navigasyon problemini çözmek için Bulanık Mantık, Genetik Algoritma, Parçacık 

Sürüsü Optimizasyon algoritması, Karınca Kolonisi Optimizasyon Algoritması, vb. 

algoritmalar çeşitli araştırmacılar tarafından başarıyla kullanılmaktadır(Pandey, 2017). 

Mobil bir robotun navigasyonu için kullanılan çeşitli yöntemler genelde klasik ve reaktif 

(reactive) yaklaşımlar olarak iki kategoriye ayrılmaktadır. Küresel navigasyonda mobil 

robot, ortamın ön bilgilerine, engel pozisyonu ve hedef pozisyonu bilgisine ihtiyaç 

duyarken, yerel navigasyonda ortam hakkında önceden bilgi gerekmez. Küresel 

navigasyon stratejisi, tamamen bilinen bir ortamla ilgilenir. Yerel navigasyon stratejisi 

bilinmeyen ve kısmen bilinen ortamla ilgilidir. Bilinen bir ortam için yol planlama 

algoritması, klasik bir yaklaşıma dayanmaktadır. Bu algoritmalar gelenekseldir ve zekası 

sınırlıdır. Yerel navigasyon yaklaşımları, daha akıllı oldukları ve bir planı bağımsız 

olarak kontrol edebildiği ve uygulayabildiği için reaktif yaklaşımlar olarak bilinir. Şekil 

1.1’de bu yaklaşımlara ait algoritmalar gösterilmiştir. Başlangıçta, klasik yaklaşımlar 

robot navigasyon problemlerini çözmek için çok popülerdi, çünkü o günlerde yapay zeka 

(YZ) temelli teknikler geliştirilmiyordu. Bir görevi yerine getirmek için klasik 
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yaklaşımlar kullanılarak ya bir sonuç elde edileceği ya da bir sonucun mevcut olmadığı 

teyit edilir. Bu yaklaşımın en büyük dezavantajı yüksek hesaplama maliyeti ve çevrede 

mevcut olan belirsizliğe yanıt vermemesidir. Bu nedenle gerçek zamanlı uygulamalar için 

daha az tercih edilir. Son zamanlarda, Genetik Algoritma, Bulanık Mantık gibi reaktif 

yaklaşımlar Sinir Ağı, Ateşböceği Algoritması, Parçacık Sürüsü Optimizasyonu, Karınca 

Kolonisi Optimizasyonu, Bakteriyel Yemleme Optimizasyonu, Yapay Arı Kolonisi, 

Yarasa Algoritması ve daha fazlası mobil robot navigasyonu için en popüler araç olarak 

kabul edilmiştir. Çevrede mevcut olan belirsizlikle başa çıkma konusunda büyük 

yetenekleri vardır. Günümüzde reaktif yaklaşımlar, daha az hesaplama çabasıyla belirsiz 

bir ortamı hızlı bir şekilde ele alma yeteneğine sahip oldukları için daha popülerdir. Şekil 

1.2’de mobil robot navigasyon yaklaşımlarının yıllara göre kullanılma durumları 

gösterilmiştir(Patle ve diğ., 2019). 

 

Şekil 1.1. Mobil Robot Navigasyon Yaklaşımlarının Sınıflandırılması (Patle ve diğ., 2019) 

Yazılım alanındaki gelişmeler ve donanımın maliyetlerinin kademeli olarak düşürülmesi 

nedeniyle robotik sistemler, kapsamlarını giderek genişletiyor ve çok sayıda sektörün 

üretkenliğini, verimliliğini ve çalışma ortamı güvenliğini artırıyor. Robotik alanındaki 

ilerlemeye rağmen, mobil robotlar gündelik hayatta yeteri kadar yer almıyor. İnsanların 

yoğun olduğu alanlarda çalışacak robotların, farklı ve beklenmedik insan davranışlarını 
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modelleme ve buna göre çalışma yeteneğini sergilemeleri gerekir (Cheng ve diğ., 2018). 

Bu, robotik alanında çalışan araştırmacılar tarafından üzerine yoğun bir şekilde çalışılan 

zorlu bir özelliktir. 

 

Şekil 1.2. Mobil Robot Navigasyon Yaklaşımlarının Yıllara Göre Gelişimi(Patle ve diğ., 

2019). 

Mobil robotlarının geliştirilmesindeki ana zorluklardan biri, kusursuz ve robotun 

yürüteceği göreve uygun bir navigasyon yöntemi tasarlamaktır. Navigasyon yöntemleri, 

haritalama, yerelleştirme (robotun o anki konumunu bulma) ve yol planlama olarak üçe 

ayrılır (Ruan ve diğ., 2019).Yol planlama, engellerin olduğu bir ortamda, otonom mobil 

robotun bir başlangıç noktasından başka bir hedef noktasına gidebilmesi için engellere 

çarpmayacağı uygun bir yolu bulma işlemidir(Hu ve Yang, 2004). Daha az dönüş 

eyleminin yapıldığı, daha az fren yapılan, hedefe en kısa yoldan ulaşılan yol en uygun yol 

olarak ifade edilebilir. 

Geçtiğimiz yıllarda yol planlama problemini çözmek için çeşitli stratejiler formüle 

edilmiştir ve Makine Öğrenimi tabanlı yaklaşımlar en umut verici sonuçları sergileyen 

metodolojilerden bazılarıdır (Aradi, 2020). 

Makine Öğrenimi (ML) (Mitchell, 1997), deneyim yoluyla kendi kendini geliştiren 

algoritmalar üreten ve Denetimli Öğrenme (Nasteski, 2017), Denetimsiz Öğrenme 

(Celebi ve Aydin, 2016) ve Pekiştirmeli Öğrenme (PÖ) (Sutton ve Barto, 2018) şeklinde 

düzenlenen yapay zekanın bir alt kümesidir. Denetimli algoritmalarda öğrenme, veri 

kümeleri adı verilen önceden düzenlenmiş veri kümeleri aracılığıyla örüntü bulma 

modelleri oluşturmaktır. 
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Denetimsiz öğrenmede etiketsiz verilerden, bu verilere ait gizli özellikler ortaya çıkarılır.  

PÖ' de, ortamla etkileşim halinde olan akıllı bir ajan, önceden belirlenmiş bir hedefe 

ulaşmak için hangi eylemlerin benimsenmesi gerektiğini deneme yanılma yoluyla 

öğrenir. 

Pekiştirmeli öğrenmede amaç, zaman içinde ve eylemlerinin kalitesini değerlendiren bir 

ödül sistemi tarafından yönlendirilerek, beklenen ödül toplamını en üst düzeye çıkaran 

komutları seçmek için yeterli deneyimin toplamasıdır. 

Bina içi navigasyonla ilgili olarak, geleneksel yaklaşımlar, bir engel haritasına dayanarak 

bir eylem planı oluştururlar (Ruan ve diğ., 2019). Mobil robotların, dinamik alanlarda 

daha önce karşılaşmadığı senaryolara karşı esnek bir hareket planı kurgusu olmalıdır. 

Navigasyonun hareket planlama görevi için kullanılan PÖ algoritmaları ile ajan, çevresel 

uyaranları değerlendirmek için gelişmiş bir yetenek kazanır ve sonuç olarak bilinmeyen 

ortam navigasyonunda en ideal ideal eylemleri belirler(Chen ve diğ., 2017).  

Pekiştirmeli Öğrenme algoritmaları, örnek, bellek ve hesaplama karmaşıklığı ile ilgili 

bazı sınırlamalarla karşı karşıyadır (François-Lavet ve diğ., 2018). Ancak bu sorunlar, 

Derin Öğrenme (DÖ) (Goodfellow ve diğ., 2016) kullanılarak aşılabilir. Derin Öğrenme, 

üst düzey soyutlamalarda kompakt özellikleri tanımlayabilen hesaplama sistemleri 

oluşturmayı amaçlar. DÖ’de, Yapay Sinir Ağları (YSA) kullanılır. YSA’lar biyolojik 

sinir ağlarından esinlenen katmanlı yapılardır. PÖ ve DÖ’nün birleştirilmesinden 

meydana gelen uygulamalar, Derin Pekiştirmeli Öğrenme (DPÖ) (François-Lavet ve diğ., 

2018) olarak tanımlanır. 

Mnih ve arkadaşlarının yaptığı yayından(Mnih ve diğ., 2013) bu yana önemli miktarda 

araştırma bu alana odaklandı ve yeni kullanım durumları ve uzantılar geliştirildi.(Kempka 

ve diğ., 2016; Hasselt ve diğ., 2015; Mnih ve diğ., 2016; Silver ve diğ., 2016). 

DeepMind (URL-1), 2013 yılında, atari video oyunlarında uzman oyuncuları yenebilecek 

yöntemler geliştirmek için Derin Q-Öğrenme’yi kullanarak yapay zeka alanında devrim 

yarattı(Mnih ve diğ., 2013). Bundan hareketle, AlphaGo (Silver ve diğ., 2016), 

AlphaZero (Silver ve diğ., 2017) ve AlphaStar (Vinyals ve diğ., 2019) uygulamaları 

sırasıyla hayata geçirilmiştir. 2015 yılında AlphaGo, kendi kendini oyundan eğitmek için 
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evrişimsel sinir ağlarını (CNN) ve PÖ’yü birleştirerek Go oyununda olağanüstü 

performanslar elde etti. 2017 yılında, Go'nun yanı sıra Satranç ve Shogi oyunlarında 

ustalaşan AlphaZero adlı benzer bir AlphaGo yaklaşımı piyasaya sürüldü. 2019'da 

AlphaStar, DPÖ ‘yü kullanarak karmaşık StarCraft II oyununa hakim oldu ve gerçek 

zamanlı maçlarda dünyanın en iyi takımlarından bazılarını yendi. 

DPÖ, video oyun alanında ciddi başarılar elde etmiştir. Bunu sağlarken ham görüntüleri 

işlemiştir. Bu da mobil robot navigasyonuna ilham olmuştur. Otonom araçlar ve DPÖ ile 

ilgili araştırma makalelerinin sayısı son birkaç yılda artmıştır. Şekil 1.3’te bununla ilgili 

bir grafik verildi. 

 

Şekil 1.3. Otonom Araçlar İçin Derin Pekiştirmeli Öğrenme Araştırmaları (Aradi, 2020). 

Son yıllarda, mobil robotların yol planlaması için DPÖ uygulamaları artarak 

kullanılmaktadır ve bu konuda büyük başarılar elde edilmiştir. DPÖ haritasız ortamlarda 

güçlü öğrenme yeteneği ve düşük sensör doğruluğu bağımlılığı gibi avantajlara sahip olsa 

da, yol planlaması için uzun eğitim süresi, özellikle sınırlı hesaplama kaynakları durumu 

için mobil robotlara uygulama engeli oluşturmuştur. Çoğu durumda, robotların bir fizik 

motoruna sahip 3B simülasyon ortamında eğitilmesi gerekir. Bu senaryoda, robotun 

hareketi fiziksel kurallarla sınırlıdır. DPÖ, eğitim süresini önemli ölçüde artıran 
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etkileşimli deneme-yanılma yöntemine dayalı olarak uygulanır. Ortamlar veya görevler 

karmaşık olduğunda, algoritmanın rastgele başlatılan ağ parametreleri ile istenen 

hedeflere yakınsaması zordur.  

Bu tezin amacı, haritası çıkarılmamış ortamlarda düşük maliyetli sensörler kullanarak bir 

mobil robotun navigasyonu için derin pekiştirmeli öğrenme yöntemlerinin kullanımını 

araştırmak, modellemek ve doğrulamaktır. Belirtilen amaca ulaşmak için iki aşamalı bir 

yöntem belirlenmiştir. Birinci aşamada kapalı bir ortam iki boyutlu grid olarak temsil 

edilmiştir. Bu ortam üzerinde Q-Öğrenme, SARSA, A2C, DQN, PPO,TRPO gibi farklı 

pekiştirmeli öğrenme algoritmalarının karşılaştırmalı bir simülasyon çalışması 

sunulmaktadır. Bu karşılaştırmayı yaparken belirli bir öğrenme kriteri eklenmiştir ve 

ayrıca epsilon değeri, adım sayısı gibi parametreler değiştirilerek eğitim ve test 

aşamalarındaki değişiklikler analiz edilmiştir. Bu çalışma, simülatör programı tarafından 

sağlanan aktörler (ajan, sensör, engeller vb.) ile desteklenmiştir. İkinci aşamada ise 

Gazebo benzetim ortamında üç boyutlu hazır ortamlarda PPO, SAC, TD3 algoritmaların 

performansı değerlendirilmiştir.  

Bu tezde ilk olarak, ilgili PÖ algoritmalarını hafif bir 2 boyutlu ortamda değerlendirildi. 

Daha sonra, 3B ortam için zaman alıcı çalışmaları engellemek için 2B ortamda gözlem 

durumları, ödül fonksiyonu, ağ yapısı ve parametre optimizasyonu dahil olmak üzere 

DPÖ’ye dayalı algoritma tasarlandı. Tasarlanan algoritmayı, derin sinir ağının ağırlıkları 

ve önyargıları vb. dahil olmak üzere yakınsanmış ağ parametrelerini elde etmek için 

yeniden eğitim için basit bir 3B ortama aktarıldı. Bu parametreleri başlangıç değerleri 

olarak kullanarak, modeli karmaşık bir 3B ortamda eğitmeye devam edildi.  

Tezin literatüre katkısı aşağıdaki gibi listelenebilir; 

• Haritasız ve dinamik ortamlarda farklı DPÖ algoritması performansların 

karşılaştırıldı.  

• Ortam ve ağ parametrelerini içeren iki aşamalı bir yol tercih edildi. Böylece DPÖ 

tabanlı yol planlamasının geliştirme verimliliğini ve yakınsamasını iyileştirilmesine 

katkı sunudur. Ayrıca algoritmaların, ağ yapısının test edilmesine ve 

değerlendirilmesine katkıda bulunuldu. 
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• Grid dünya büyüdükçe Q öğrenme algoritmasının yetersiz kaldığı tespit edildi. Ayrık 

eylem uzayında kullanılabilecek DPÖ algoritmalarından PPO’nun daha başarılı 

olduğu görüldü. 

• Çalışmada kullanılan Gazebo ortamları sürekli eylem uzayına sahip ve dinamik 

engeller vardı. Bu ortamlarda TD3 algoritmasının daha başarılı olduğu tespit edildi.  

• Yapılan deneylerle geleneksel yol planlama algoritmalarının aksine pekiştirmeli 

öğrenme modellerinin haritasız bir şekilde yol planlama yapabildiği tespit edildi. 

Tezin kalan bölümlerin başlıkları şöyledir; İkinci bölümde genel bilgiler, üçüncü 

bölümde malzeme ve yöntem, dördüncü bölümde bulgular ve tartışma ve beşinci bölümde 

sonuçlar ve öneriler başlıkları işlenmiştir. Genel bilgiler bölümünde pekiştirmeli 

öğrenme, hareket planlama, benzetim ortamları konuları hakkında bilgiler verilmiştir. 

Literatürde pekiştirmeli öğrenme ile mobil robot navigayonu hakkında yapılan çalışmalar 

incelenmiştir. Malzeme ve yöntem bölümünde tezde kullanılan yazılım ve donanım 

hakkında bilgiler verilmiştir. Ayrıca kıyaslanan pekiştirmeli öğrenme algoritmaları 

hakkında, ödül-ceza, çevre tasarımı, fonksiyon yaklaştırıcılar vb. gibi konularda bilgi 

verilmiştir. Bulgular ve tartışma bölümünde pekiştirmeli öğrenme ajanlarının, ortamın iki 

boyutlu ve üç boyutlu olduğu durumlarda ve statik ya da dinamik olduğu durumlarda 

performans sonuçları ortaya koyulmuştur. Sonuçlar ve öneriler bölümünde ise 

algoritmalardan elde edilen veriler değerlendirilmiş ve gelecekte yapılması planlanan 

çalışmalardan bahsedilmiştir.
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2. GENEL BİLGİLER 

2.1. Hareket Planlama 

Hareket planlaması, bir robotik sistemin belirli bir başlangıç durumunu söz konusu sistem 

için belirli bir hedef bölgeye bağlayan sürekli bir yol bulma problemidir. Çarpışmadan 

kaçınma, sınırlı kuvvetler, sınırlı ivme gibi kısıtlamalara çözüm geliştirilir. (Şucan ve 

diğ., 2012). Hareket planlaması, önemli miktarda zaman kazandırabileceğinden ve bir 

mobil robotun yıpranmasını ve maliyetini azaltabileceğinden (Zhang ve diğ., 2018), 

kendisini ilkel bir navigasyon olarak sunar. 

2.1.1. Hareket Planlayıcıları 

Hareket planlamasında, küresel ve yerel olarak iki tür planlayıcı vardır. Burada ayrım 

çevreden bilgilere erişim düzeyidir (Zhang ve diğ., 2018). Küresel planlayıcılar, tamamen 

bilinen ortam altında en uygun ya da en uyguna yakın yollar oluştururlar. Genel haritanın 

sürekli güncellenmesi gerekir. Diğer taraftan yerel planlayıcıların çevre bilgilerine erişimi 

kısıtlıdır. Sensörlerden gelen verilere göre anlık olarak eylem seçilir. Kısa vadeli yollar 

oluşturulur. 

2.1.2. Çevre Gösterimleri 

Hareket planlayıcıların çevre hakkında ön bilgiye ya da robotun hareketi boyunca veri 

toplamasına ihtiyacı vardır. Toplanan veriler ile ise bir özellik haritası temsil edilir.          

(Zhang ve diğ., 2018). Harita gösterimi iki şeklide yapılabilir: 

1) Metrik Gösterim: Şekil 2.1a’da çevrenin metrik gösterimi verildi. Bu gösterimde çevre 

grid(ızgara) tabanlı bir düzenleme ile bölünür. 

2) Topolojik Gösterim: Şekil 2.1b’de çevrenin topolojik temsili görülmektedir.  

 

Şekil 2.1.Çevrenin metrik, topolojik ve hibrit gösterimleri 
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Topolojik gösterimde, düğüm ve yay modeli ile temsil edilir. Düğümler, birbirinden farklı 

engelsiz konumları ve sınırları temsil eder. Yaylar, düğümler arasındaki bağlantılardır ve 

konumlar arasındaki yolları temsil eder. 

Grid tabanlı yöntemler, doğru ölçümler üretirken, genellikle karmaşıklıkları büyük 

ölçekli iç mekan ortamlarında verimli planlamayı engeller. Topolojik haritalar ise robot-

ajan tarafından öğrenilmesi zor gösterim türüdür (Thrun, 1998; Tomatis ve diğ., 2001). 

Bununla birlikte, her iki yöntemi birleştirmek, her birinin olumsuz yanlarını aşmak ve 

daha sağlam bir ortam modeli oluşturmak mümkündür. Şekil 2.1c’de küresel topolojik 

haritanın üstünde yerel grid tabanlı gösterimlerin kullanıldığı (Thrun, 1998; Tomatis ve 

diğ., 2001) karma(hibrit) bir örnek sunulmaktadır. 

2.1.3. Küresel Yol Planlayıcıları 

İç mekan navigasyonundaki baskın küresel yol arama yöntemleri, sezgisel-arama 

algoritmaları olarak sınıflandırılır (Zhang ve diğ., 2018). Bu kategori altında, 

Dijkstra(Marin-Plaza ve diğ., 2018; Risald ve diğ., 2017), Floydwarshall (Marin-Plaza ve 

diğ., 2018), A * (Zhang ve diğ., 2018; Liu ve Gong, 2011; Stentz, 1995) ve hızlı bir 

şekilde keşfedilen rastgele ağaçlar (RRT) gibi algoritmalardır(Garrote ve diğ., 2014). 

Dijkstra'da, yollar topolojik çevre temsillerinde komşu düğümlerinin seçimi yoluyla 

yaratılır. Formüle edilmiş her bir yol, rotanın düğüm bağlantılarını belirleyen ağırlıklı 

yaylardan kaynaklanan ilişkili bir maliyete sahiptir. Minimum maliyetle olan yol seçilir 

ve böylece en kısa yol hesaplanır. Floyd-Warshall (Risald ve diğ., 2017), tüm düğüm 

çiftleri arasındaki en kısa yolu belirler. Bu algoritmanın girdisi, ağırlıklı ve yönlendirilmiş 

bir grafiktir. Algoritma ayrıca negatif ağırlıklı tarafı da hesaplar. A *, başlangıç düğümü 

ve son düğüm arasındaki en kısa yolu bulmak için sezgisel bir değerlendirme fonksiyonu 

kullanır(Stentz, 1995). Denklem (2.1)’de sezgisel bir değerlendirme fonksiyonu 

gösterilmiştir; 

f(i) = g(i) + h(i)                                                                                                            (2.1) 

• i: robotun mevcut konumu; 

• g(i) : Başlangıç düğümünden i için geçmiş maliyet fonksiyonu; 

• h(i) : i'den hedef düğüme Öklid uzaklığı. 
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RRT(Garrote ve diğ., 2014), örnekleme tabanlı bir yöntemdir. Her tekrarda, rastgele bir 

düğüm seçilir ve en yakın düğüme bağlanır. Düğüm seçenekleri tamamen rasgele 

olduğundan, birkaç ağaç dalı (yol gösterimleri) oluşturulur. Kavramsal olarak, en az bir 

rota kademeli olarak hedef alana doğru birleşir. 

2.1.4. Yerel Yol Planlayıcıları 

Küresel yol planlamasının yanı sıra, dinamik metrik özellik haritaları üzerinde yerel yol 

arama algoritmaları kullanılarak sağlam hareket planlama metodolojileri uygulanabilir. 

Yapay potansiyeli alan (APF) (Zhu ve diğ., 2006) stratejisi tarafından indüklenen bir 

platform, bir yapay kuvvet alanına tabidir. Bu alanda robot kendisini iten ve çeken 

kuvvetlere maruz kalır. Sonuçta robotu hareket ettiren bir kuvvet oluşur. Dinamik 

Pencere Yaklaşımı (DWA) (Fox ve diğ., 1997), bir mobil robotun mevcut hızlarından 

oluşan pencere adı verilen bir yapı sunar. Bu pencereden en uygun çözümü seçer. Robotu 

bu şekilde hedefe ulaştırır. 

Zaman Elastik Bantları (TEB) (Marin-Plaza ve diğ., 2018; Keller ve diğ., 2014) yaklaşımı 

da benzer bir çalışma prensibine sahiptir: aracın geometrik, kinetik ve dinamik 

kısıtlamalarının bilgisi ile bir robotun yerleşik ara yol noktalarında gezinmesine izin 

veren bir dizi hız komutu oluşturur. 

2.2. Makine Öğrenmesi 

Bilgisayarlar ilk icat edildiğinden beri, bilim adamları makineleri daha akıllı hale 

getirmeye çalıştılar. Ancak, zekanın tanımı bugün hala devam eden bir tartışma 

konusudur. Alan Turing, Turing Testini ilk olarak 1950'de Manchester Üniversitesi'nde 

"Bilgisayar Makineleri ve Zeka" (Harnad, 2006) başlıklı makalesinde tanıttı. Turing testi, 

bir makinenin insan davranışını taklit etme yeteneğini ölçer. Spesifik olarak, bir 

sorgulayıcının başka bir odadaki bir adama ve bir bilgisayara bir dizi soru sorduğu ve 

diğer iki oyuncudan hangisinin insan, hangisinin bilgisayar olduğunu belirlemek için bir 

"taklit oyunu" tanımlar. Bilgisayar sorgulayıcıyı andırabilirse test geçilir. Yapay Zeka, 

1956 yazında ünlü Dartmouth konferansında John McCarthy tarafından ortaya konuldu. 

Bu konferans, YZ'nin bir bilgisayar bilimi alanı olmasının başlangıç noktası olarak 
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görülmüştür. YZ'nin ilk günlerinde, YZ algoritmaları esas olarak matematiksel kurallar 

ve mantık kuralları ile formüle edilebilen problemleri çözmek için tasarlandı. 

Makine öğrenmesi(MÖ), 1959'da Arthur Samuel (Bell Labs, IBM, Stanford) tarafından 

icat edildi. Bir YZ sistem, ham verilerden kendi bilgisini öğrenme yeteneğine sahip 

olmalıdır. Bu kapasite MÖ olarak bilinir. Birçok yapay zeka sorunu, bu sorun için ham 

verilerden özellikler çıkarmak için bir model tanıma algoritması tasarlayarak ve ardından 

bu özellikleri MÖ algoritmasına sağlayarak çözülebilir. Şekil 2.2’de yapay zeka 

hiyerarşisi gösterildi. 

 

Şekil 2.2.Yapay Zeka Hiyerarşisi 

Makine Öğrenimi ((Mitchell 1997), Denetimli Öğrenme (Nasteski 2017), Denetimsiz 

Öğrenme(Celebi and Aydin 2016) ve Pekiştirmeli Öğrenme (Sutton and Barto 2018) 

şeklinde düzenlenen yapay zekanın bir alt kümesidir. 

2.2.1. Denetimli-Gözetimli Öğrenme 

Denetimli öğrenme, eğitim verilerine dayalı bir fonksiyon üreten makine öğrenimi 

tekniğidir. Başka bir deyişle, bu öğrenme tekniğinde girdiler (etiketli veriler) ile istenen 

çıktıları eşleştiren bir fonksiyon üretilir. Eğitim verileri hem girdilerden hem de 

çıktılardan oluşur. Fonksiyon, regresyon veya sınıflandırma algoritmaları ile 

belirlenebilir. Doğrusal regresyon, girdiler ve çıktılar arasında doğrusal bir ilişki olup 
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olmadığını belirlemek için sıklıkla kullanılan bir tekniktir. Genellikle tahmin ve tahmin 

problemlerini ve diğer birçok veri madenciliği problemini çözmek için kullanılabilir. 

Sınıflandırma teknikleri, kalıpları tanıyarak ve verileri inceleyerek nitel bir yanıtı tahmin 

etmeye odaklanır. Yaygın olarak kullanılan bazı sınıflandırma teknikleri vardır. Bu 

teknikler lojistik regresyon, lineer diskriminant analizi, K-en yakın komşular, ağaçlar, 

sinir ağları, destek vektör makinelerini içerir (Talabis ve diğ., 2015). 

2.2.2. Denetimsiz-Gözetimsiz Öğrenme 

Denetimsiz öğrenmede girdi verilerinin hangi sınıfa ait olduğu net değildir. Bu MÖ 

algoritması, etiketlenmemiş veriler üzerinde bilinmeyen bir yapıyı tahmin etmek için bir 

fonksiyon kullanır. Veri örneklerinin uzaklıklarına, komşuluk ilişkilerine ve yoğunluğuna 

göre veriler hakkında çıkarımlarda bulunur. Genel olarak tavsiye sistemleri, pazarlama 

sistemleri, müşteri segmentasyonu ve boyut küçültme gibi alanlarda kullanılmaktadır. En 

çok kullanılan denetimsiz öğrenme algoritmaları kümeleme, birliktelik kuralları, temel 

bileşen analizidir. 

2.2.3. Pekiştirmeli Öğrenme 

Pekiştirmeli öğrenme, en uygun davranış veya eylemin olumlu bir ödülle pekiştirildiği 

kavramdır. Bir PÖ ajanı/modeli, ortamıyla etkileşime girerek ve eğitim veri kümesinin 

olmadan bu etkileşimlerin sonuçlarını gözlemleyerek öğrenir. Ajan, bu öğrenmeyi 

gerçekleştirmek için PÖ algoritmalarını kullanır. 

PÖ, gerçek zamanlı karar verme, tavsiye sistemleri, sağlık, oyunlar için yapay zeka, 

robotik, otonom sürüş, bilgisayarla görme (tanıma, algılama, algılama) ve daha sonra 

öğrenebilme becerisi gibi beceri kazanım sistemleri gibi becerilere sahip sistemlerde 

kullanılır. Pekiştirmeli öğrenme ile ilgili detaylı anlatım bölüm 2.4 ve 2.5’te yapılmıştır. 

Daha önce yapılan çalışmalar ise bölüm 2.7’ te incelenmiştir. 

Tablo 2.1, makine öğrenmesi kavramları arasındaki avantaj ve dezavantajları 

göstermektedir. Denetimli/denetimsiz veya denetimli/pekiştirmeli öğrenme 

kombinasyonları gibi karma öğrenme yaklaşımları genellikle iyi sonuçlara yol açar. 

Örneğin, denetimli/denetimsiz karma öğrenme yaklaşımı bankacılık sektöründe hesap 
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hareketlerindeki anormallikleri tespit etmek için yaygın olarak kullanılmaktadır(Engin, 

2019). 

Tablo 2.1. Makine Öğrenmesi Yöntemlerinin Karşılaştırılması 

Denetimli Öğrenme Denetimsiz Öğrenme Pekiştirmeli Öğrenme 

Referans cevaplarına 

yaklaşmayı öğrenme 

Temel veri yapısını öğrenme Deneme yanılma yoluyla 

öğrenme 

Doğru cevaplara ihtiyacı var Geri bildirim gerekmez Ajan kendi eylemleri hakkında 

geri bildirime ihtiyaç duyar 

Model giriş verilerini etkilemez Model giriş verilerini etkilemez Ajan kendi gözlemlerini 

etkileyebilir 

 

2.3. Derin Öğrenme 

Derin Öğrenme (Fadlullah ve diğ., 2017; Schmidhuber, 2015) veri yapılarından temel 

özellikleri çıkarmak için Yapay Sinir Ağları’nı kullanan makine öğrenmesinin bir alt 

kümesidir (Alom ve diğ., 2019). YSA’lar insan beyninde bulunan sinir bağlantılarından 

esinlenmiştir ve her bir temel unsuruna nörön denir. Bir yapay nöron, giriş verilerini alan, 

işleyen ve bir çıkış sinyali döndüren bir fonksiyon olarak nitelendirilebilir. DÖ'de 

nöronlar katmanlara bağlanır ve düzenlenir, katmanlar YSA mimarilerindeki 

yerleşimlerine göre kategorize edilebilir: 

• Giriş katmanı: YSA iş akışının başlangıcıdır. Dış DÖ sisteminden veriyi alır ve daha 

fazla işlem için iletir; 

• Çıktı katmanı: YSA iş akışının sonlandıran katmandır. Önceki katmanlar tarafından 

ele alınan verileri DÖ sistemine geri döndürür; 

• Gizli katmanlar: Giriş çıkış katmanları arasında veri özelliklerini tanımlamak ve 

işlemek için tasarlanmış aradaki katmanlardır. Tek bir gizli katmanla sınırlı YSA'lar 

Sığ Ağlar olarak adlandırılır. Birden fazla gizli katmana sahip ağ mimarilerine Derin 

Ağlar denir. 

Şekil 2.3’te derin yapay sinir ağlarının mimarisi gösterilmiştir. Buna göre her nöronun 

çıkış sinyali ŷi ,lineer olmayan bir aktivasyon fonksiyonu fx tarafından gerçekleştirilen, 
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önceki xj katmanlarındaki aktif nöronların sinyalleri ile kanallarla ilişkili ağırlıklar 

arasındaki çarpım ile bir sapma b toplamının hesaplanmasından kaynaklanır. 

 

Şekil 2.3.Derin Yapay Sinir Ağlarının Mimarisi 

2.4. Pekiştirmeli Öğrenme 

2.4.1. Tarihsel Bağlam 

Pekiştirmeli öğrenmenin temelleri eğitim psikolojisine dayanmaktadır. Eğitim 

psikolojisinin babası olarak bilinen Thorndike'ın hayvan zekası üzerine yaptığı 

tezin(Thorndike, 1911) yılı olan 1898, davranışın deneysel analizi olarak bilinen alanın 

başlangıcını işaret eder. Tez, hayvan ve insan öğrenimi hakkında düşünmede büyük bir 

değişim başlattı, önemli metodolojik yenilikler sağladı ve özellikle B. F. Skinner 

tarafından daha sonraki araştırma ve teorinin tohumlarını attı(Chance, 1999).  

Thorndike temel davranışsal süreçleri araştırmaya başladı ve bu süreçlerin farklı türlerde 

oldukça benzer göründüğünü fark etti. Civcivler, köpek ve kedilerden daha yavaş 

öğrendiler, ama farkı yaratan bedensel organlarındaki ve içgüdüsel dürtülerindeki 

farklılıktır. Zekadaki herhangi bir farklılığa atıfta bulunulamayacağını öne 

sürdü(Thorndike, 1911) . 

Thorndike’ın yapboz kutusu adı verilen meşhur deneyinde yapboz kutusuna aç bir kedi 

konuldu ve kutunun hemen dışına bir parça balık yerleştirildi. Kedi, kutuyu kapalı tutan 

mandalı serbest bırakan bir pedala basarak kutudan kaçabilirdi. Kedi ilk başta kutunun 

çıtaları arasına sıkıştırmaya veya çıtaları ısırmaya çalıştı. Sonunda kedi yanlışlıkla kapıyı 

açan pedala bastı ve kedi kaçıp balığı yedi. Bu, aynı kedi ile birkaç kez tekrarlandı. 

Denemeler ilerledikçe, kedinin kapıyı açması daha az zaman aldı. Sonunda kedi kutuya 

konur konmaz kaçacaktı. Thorndike, yapboz kutusundan kedilerin deneme yanılma 

yoluyla öğrendiğini buldu. İnsanların da aynı şekilde öğrendiğini düşünüyordu. Bu onun 
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'damgalama' teorisini oluşturdu. Thorndike'a göre, bir kişi bir duruma bir dizi tepki 

verecek ve bunlardan en az biri tatmin edici bir duruma - bu duruma bir çözüme - yol 

açacaktır. Damgalama, o belirli yanıtın bağlantısının bu durumda hoş bir çözüm sunduğu 

zamandır. Bu tür öğrenmeye pekiştirme denir. Öğrenme, davranışın sonuçları nedeniyle 

gerçekleşir, davranış, hoş olmayan bir şeyin ortadan kaldırılması veya her ikisi için de 

hoş sonuçlara yol açar (Lefrançois, 2000).  

Thorndike, etkili tepkilerin “başarı tarafından seçildiğini” (Thorndike, 1911) fark etti ve 

davranışın tanımlanması için üç unsurun gerekli olduğunu anladı. Bunlar durum, eylem 

ve sonuç öğeleridir (Chance, 1999). Şekil 2.4’de Thorndike’ın yapboz kutusunun temsili 

gösterilmiştir. 

 

Şekil 2.4.Thorndike yapboz kutusu 

Thorndike’ın teorisinin iki temel kavramı vardı. Bunlardan biri etki kanunu diğeri ise 

deneme yanılmayla öğrenmedir. Etki kanunu ile sonucundan memnun kalınan 

davranışların artacağını, memnun kalınmayan davranışların ise azalacağını söyler. Bir 

uyaran ile bir tepki arasındaki bağlantı güçlendirilebilir veya zayıflatılabilir. Bu bağlantı, 

sık pratik yaparak güçlendirilebilir veya uygulamayı bırakarak zayıflayabilir. Deneme ve 

yanılma yoluyla öğrenme ise, insan veya hayvan belli bir problemle karşılaştığında 

problemin çözümüne katkısı olmayan başarısız davranışları eler, problemleri çözen ya da 

başarıya götüren davranışları ise seçer. Thorndike bu duruma seçme (eleme) ve bağlama 

adını verir. 

Thorndike gibi Skinner de davranış ve sonuç ilişkisi üzerinde durmuştur. Thorndike'ın 

çalışmalarından hareket eden Skinner, organizmanın davranışlarını uyarıcılara karşı 

gösterilen otomatik bir tepki olmaktan çok kasıtlı olarak yapılan hareketler olarak kabul 
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etmektedir. İnsanların herhangi bir ihtiyaç durumunda organizmanın kendiliğinden ortaya 

koyduğu davranışlara “edim” adını veren Skinner, bu edimlerin, onları izleyen 

sonuçlardan etkilendiğini ileri sürmektedir. Skinner’in geliştirdiği edimsel koşullanmaya 

göre edimsel davranış; bilinen bir uyarıcı tarafından oluşturulmaz; organizma tarafından 

ortaya konur ve sonuçları tarafından kontrol edilir (Skinner, 1938).  

Gereksinimleri organizmayı eyleme iterken, davranışlarına yön veren kuvvetlerin de 

güdüler olduğu bilinmektedir. O anda içinde bulunduğu şartlarla ilgili önceden öğrenmiş 

olduğu deneyimleri yoksa hedefe varmak için çeşitli tepki ve davranışlarda bulunarak 

denemeler yapacaktır. Duruma göre belli sayıda deneme yanılmanın sonunda hedefe 

ulaşacaktır. Böylelikle organizma ya bir ödül elde edecek ya da bir cezadan kurtulacaktır. 

Süreç içinde yaşanan tekrarlar sonucu hedefe ulaştırıcı tepkilerin sayısı artarken sonuca 

götürmeyen davranışlar elenir ve hedefe ulaştırıcı tepkiler giderek öğrenilmiş davranış 

durumuna gelir (Yeşilyaprak, 2005).  

Kısacası eğitim psikolojinde davranışçı kuramlar öğrenmenin ödül ceza sistemi üzerine 

kurulduğunu düşünmüştür. Eğer bir davranışın sonucu olumlu sonuçlar getiriyorsa o 

davranış devam ettirilir aksi durumda ise o davranıştan kaçınılır ve böylece öğrenme 

gerçekleşir. 

2.4.2. Pekiştirmeli Öğrenme 

Pekiştirmeli Öğrenme(Sutton and Barto 2018), optimizasyon problemlerini çözmek için 

kullanılan bir Makine Öğrenmesi tekniğidir. Yapısal olarak, PÖ modelleri bir ajan ve 

çevresinden oluşur. Her ikisi arasında (ajan-çevre), ajanın yürütülen eylemlerin 

sonuçlarından sayısal ödüller şeklinde geri bildirim alarak deneme yanılma yoluyla 

öğrenmesini sağlayan çift yönlü bir iletişim kurulur. Şekil 2.5’te PÖ’nün genel yapısının 

şeması verilmiştir. Geleneksel Pekiştirmeli Öğrenme metodolojilerinin unsurları Tablo 

2.2’de sunuldu. PÖ yapısının en önemli unsurları durumlar, eylemler ve ödüller olduğu 

söylenebilir. 

• Durumlar: Ajanın çevreden aldığı anlık bilgilerdir. Bir robot için kameradan aldığı bir 

görüntü ya da bir sensörden gelen sıcaklık verisi örnek olarak verilebilir. 

• Eylemler: Ajanın bir durum karşısında uyguladığı eylemdir. Örneğin; bir robot engele 

5 cm yaklaşırsa uyarı sesi çıkarması. 
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• Ödüller: Ajanın bir durum karşısında uyguladığı eylemin başarısın ölçen skaler 

değerdir. Örneğin; bir robotun bir hedefe ulaşınca 100 puan alması gibi.  

Tablo 2.2. Pekiştirmeli öğrenmenin parametreleri 

Parametre Adı Tanımı 

at Eylem 
Ajan tarafından yürütülen, bir dizi geçerli eylemden A seçilen 

komut  

st Durum Bir dizi ortam temsili olan S durum uzayının somutlaştırılması 

rt Ödül 
Yürütülen bir eylem at tarafından tetiklenen st → st+1 durum 

geçişine göre döndürülen sayısal ödül 

P(st+1| st, at) 
Durum Geçiş 

Modeli 
Ajanın eylemlerine yanıt olarak ortamın nasıl değiştiğinin temsili 

π(st) Politika 
Ajanın her durumda hangi eylemi benimsemesi gerektiğini 

belirten eşleme fonksiyonu 

γ İndirim Faktörü Anlık ve gelecekteki ödüller arasındaki dengeyi ayarlar.  

V(st) Değer Fonksiyonu Bir ajanın durumdan st alabileceği, beklenen toplam getiri 

Q(st, at) 
Eylem-Değer 

Fonksiyonu 
st durumundaki eylemi at seçmek için beklenen toplam getiri 

α Öğrenme Oranı Öğrenme sürecinde geçmiş deneyimlerin etkisini belirler 

 

 

Şekil 2.5.Pekiştirmeli öğrenme yapısı 

Pekiştirme Öğrenme algoritmalarında ajan, her t adımda, çevreyi gözler, gözlemlerini bir 

st durumu olarak belirler ve son olarak duruma göre uygulayacağı eylemi at seçer. Ajan 

daha sonra yeni durumu algılar st+1 ve ortamdan bir ödül rt  alır. Ajan bu işlemi hedef 

duruma ulaşıncaya kadar ya da adım sınırı T'ye ulaşana kadar tekrarlar.  Daha sonra çevre 

ilk halinde döndürülür (reset fonksiyonu) ve yeni bir bölüm başlar. Her bölümün e 
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sonunda, indirim faktörü γ tarafından indirimli olarak birikmiş toplam adım ödülleri elde 

edilir. Öğrenmenin amacı, akıllı ajanın, deneyimini kullanarak, birikmiş ödülleri R'yi en 

üst düzeye çıkarmak için karar verme yeteneğini geliştirmesidir. Ödül Denklem 

(2.2)’deki formüle edilir; 

Re= ∑ γi.rt+i  

T

i=0

 

2.4.3. Markov Karar Süreçleri 

Pekiştirmeli öğrenme sistemlerinde ajan çevredeki her şey hakkında bilgi sahibi 

olamayabilir. Önemli olan ajanın öğrendiği bilgileri unutmamasıdır. Bu nedenle ideal bir 

sistemde, ilgili tüm bilgiler korunurken, geçmiş bilgileri bütüncül bir şekilde özetleyen 

bir durum sinyali istenir. Bilgiyi koruyan bu durum sinyalinin Markov özelliği olduğu 

söylenir(James, 2016). Ardışık durumların yalnızca mevcut duruma bağlı olduğu 

durumlarda, durumların Markov özelliğini yerine getirmesi gerekir. Örneğin, bir satranç 

oyunundaki piyonların mevcut konumu, oyunun sonraki süreci için önemli olan tek şey 

olduğundan, Markov durumu olarak hizmet edecektir. Ayrıca Markov özelliğiyle mevcut 

duruma sahip olmak, mevcut zaman adımına kadar tam geçmişe sahip olmakla eşittir 

(örneğin, piyon konumları tüm oyunu bu ana kadar özetler) (Roy, 2018). 

Markov özelliğini sürekli bir durumda ve eylem alanında karşılayan bir pekiştirmeli 

öğrenme görevinin Markov Karar Süreci (MDP) olduğu söylenirken, sınırlı bir durumda 

ve eylem alanında olan görevin, sınırlı bir Markov Karar Süreci olduğu söylenir(James, 

2016). 

MDP, bir modelle ilgili karar vermemiz için bize matematiksel bir çerçeve sağlar. Bir PÖ 

ajanının çalıştığı ortam, ortamın tamamen gözlemlenebilir olduğu bir MDP olarak 

tanımlanabilir. Bu durum, geleceğin şimdiki zamanda verilen geçmişten bağımsız bir 

karar olduğunu belirten Markov özelliği olarak bilinir(Kardell ve Kuosku, 2017) 

Hesaplamalı PÖ'de, ilgili ortam uzayı, ayrık zamanlı MDP (Puterman, 2005) olarak 

modellenebilenlerdir. Yüksek düzeyde, MDP'lerin alanı, bir sonraki ödülün ve dünyanın 

bir sonraki durumuna ulaşma olasılığının mevcut dünya durumu (ve belki de bir ajanın 

(2.2) 
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eylem seçimi) tarafından tam olarak tahmin edilebileceği dünyaları tanımlar. Bir MDP 

aşağıdaki gibi tanımlanır. 

• S: Dünyanın olası durumların tanımlayan bir durum kümesi 

• A: Bir ajana sunulan olası seçenekleri tanımlayan bir eylem kümesi. 

• R ∶ S × A × S → [RMin, RMax]: Bir ödül işlevi. 

• T ∶ S × A → ∆(S): Mevcut durumda bir eylem yürütüldükten sonra dünyanın bir 

sonraki durumuna gelme olasılığını gösteren bir geçiş fonksiyonu. 

• γ ∈ [0, 1): Bir ajanın kısa vadeli ve uzun vadeli ödüller arasındaki tercihini gösteren 

bir indirim faktörü. 

• p0 ∈ ∆(S): Her durumda başlama olasılığı. 

MDP'deki "Markov", geçiş işlevi T ve ödül işlevi R'nin her ikisinin de tam durum 

geçmişine değil, yalnızca dünyanın mevcut durumuna ve eyleme bağlı olduğunu gösterir. 

Denklem (2.3) ve Denklem (2.4), bir sonraki durum dağılımını ve mevcut durumdan 

sonraki ödülü ve yalnızca eylemi tam olarak karakterize eden işlevlerin mevcut olduğunu 

belirtir;  

𝑝(𝑠′, 𝑟|𝑠, 𝑎) = Pr {𝑆𝑡+1 = 𝑠′, 𝑅𝑡+1 = 𝑟|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎}  

 

𝑝(𝑠′|𝑠, 𝑎) = Pr{𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎} = ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)

𝑟∈𝑅

 

Bu varsayım, uygun genelliği korurken, analizi basitleştirmek için oldukça faydalıdır. 

Ayrıca, herhangi bir ortam Markov değilse, dünyanın son k ∈ N adımları bellek açısından 

zengin, yeni bir durum temsili şeklinde gösterilebilir, böylece bir Markov modeli elde 

edilir. Bu şekilde, MDP'ler, bir ajanın T(s′ ∣ s, a) ve ödül R(s, a, s′) durum dağılımını 

etkilemesine izin vererek Markov zincirlerini (Bremaud, 2000)ve Markov ödül 

süreçlerini (Reibman ve diğ., 1989) genelleştirir. 

(2.3) 

(2.4) 
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2.4.4. Değer Fonksiyonları 

Bir ajan yeni bir duruma girdiğinde t adımında hangi eylemin yapılacağına karar vermesi 

için bu durumda olmanın ne kadar değerli olduğunu bilmelidir. Bir durumun iyiliğinin 

ölçüsü değer fonksiyonudur. Bir durumun değeri durum değeri fonksiyonu ve eylem 

değeri fonksiyonu olarak iki şekilde ölçülebilir. Ajanın gelecekte almayı bekleyebileceği 

ödüller, yaptığı eyleme bağlı olduğundan değer fonksiyonu politikaya göre tanımlanır. 

Bir politika π için durum-değer fonksiyonu, bir s durumundan başlarken ve sonrasında 

π'yi takip ederken beklenen getiridir ve sonlu MDP'ler için, Vπ(s) her s durumu için bir 

tabloda giriş olarak saklanır ve Denklem (2.5)’de gösterildiği şekilde tanımlanır; 

𝑉𝜋(𝑠) = 𝐸𝜋(𝑅𝑡|𝑠𝑡 = 𝑠) = 𝐸𝜋(∑ 𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠).

∞

𝑘=0

 

Burada Eπ, politikanın π beklenen değeri olarak tanımlanır. Bir politika π için eylem-

değer fonksiyonu, s durumunda başlayıp a eylemini gerçekleştirirken ve ardından π'yi 

takip ederken beklenen getiridir ve Denklem (2.6)’da gösterildiği şekilde tanımlanır; 

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋(𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) = 𝐸𝜋(∑ 𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎).

∞

𝑘=0

 

Değer fonksiyonlarının temel bir özelliği, Bellman denklemi(Bellman, 1957a) olarak 

adlandırılan bir dizi özyinelemeli tutarlılık denklemini sağlama yeteneğidir. Denklem 

(2.7)’de gösterildiği şekilde tanımlanır; 

𝑉𝜋(𝑠) = 𝐸𝜋(𝑅𝑡|𝑠𝑡 = 𝑠) 

             = 𝐸𝜋(∑ 𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠).

∞

𝑘=0

 

             = ∑ 𝜋(𝑠, 𝑎) ∑ 𝑃𝑠𝑠′
𝑎

𝑠′𝑎

[𝑅𝑠𝑠′
𝑎 + 𝛾𝐸𝜋(∑ 𝛾𝑘𝑟𝑡+𝑘+2|𝑠𝑡+1 = 𝑠′).

∞

𝑘=0

] 

             = ∑ 𝜋(𝑠, 𝑎) ∑ 𝑃𝑠𝑠′
𝑎

𝑠′𝑎

[𝑅𝑠𝑠′
𝑎 + 𝛾𝑉𝜋(𝑠′)]. 

(2.5) 

(2.7) 

(2.6) 
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Yukarıdaki son denklem, bir durumun değeri ile ardıl durumun değeri arasındaki ilişkiyi 

ifade eder. Her birini gerçekleşme olasılığına göre ağırlıklandırarak tüm olasılıkların 

ortalamasını almamızı sağlar. Başlangıç durumunun değerinin, beklenen sonraki 

durumun (indirimli) değeri ile ödüle eşit olması gerektiğini özetler. Bu durum, Şekil 

2.6'da her bir açık dairenin bir durumu temsil ettiği, her bir katı dairenin bir durum-eylem 

çiftini ve ödülü temsil ettiği, Vπ ve Qπ için yedek diyagramlar şeklinde gösterilmektedir. 

 

Şekil 2.6. Değer fonksiyonu diyagramı (Kersandt, 2018) 

2.4.5. Optimal Değer Fonksiyonları 

Politika π, durum-eylem eşlemesidir ve ajanların beklenen geri dönüşlerini en üst düzeye 

çıkarmaya çalışır. Pekiştirmeli öğrenme görevinde amaç, uzun vadede en fazla ödülü elde 

eden politikayı bulmaktır. Bu nedenle, tüm durumlar için bu politikanın beklenen getirisi 

π′ye eşit veya bundan büyükse, π politikasının bir π′ politikasına eşit veya daha iyi olduğu 

kabul edilir. Denklem (2.8) bunu ifade eder; 

𝑉𝜋(𝑠) ≥ 𝑉𝜋′
(𝑠) → 𝜋 ≥ 𝜋′, ∀𝑠 ∈ 𝑆. 

Optimal politikaları π∗, diğer tüm politikalardan daha iyi veya bunlara eşit politikalar 

olarak tanımlarız. Sonlu MDP'ler için, diğer tüm politikalara karşı Denkelem(2.8)’i her 

zaman yerine getiren ve optimal politika olarak adlandırılan ve π∗, ile gösterilen en az bir 

politika vardır.  Bu bize, her duruma veya durum-eylem çiftine, herhangi bir politika 

tarafından elde edilebilecek en büyük getiriyi atayan optimal değer fonksiyonlarını 

tanımlama yeteneği verir. Optimal durum-değer fonksiyonu V∗ ile gösterilir ve Denklem 

(2.9)’da gösterildiği şekilde tanımlanır; 

𝑉∗(𝑠) ≥ 𝑚𝑎𝑥𝜋𝑉𝜋(𝑠), ∀𝑠 ∈ 𝑆,  

(2.8) 

(2.9) 
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Optimal politikalar aynı zamanda Q∗ ile gösterilen ve Denklem (2.10)’daki gibi 

tanımlanan aynı optimal eylem-değer fonksiyonunu paylaşır; 

𝑄∗(𝑠, 𝑎) ≥ 𝑚𝑎𝑥𝜋𝑄𝜋(𝑠, 𝑎), ∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴. 

Şekil 2.7’de, Bellman denklemi altında v∗ ve q∗ için yedek diyagramları göstermektedir. 

Bu, grafiksel olarak, ajanın seçim noktalarında, bazı politikalara verilen beklenen değer 

yerine maksimumun seçildiğini gösterir. Bu anlamda tek adımlı bir arama yapılır ve 

optimal değer fonksiyonları için bu tek adımlı aramadan sonra en iyi görünen eylemler 

optimal eylemler olacaktır. Bu nedenle, v∗ dikkate alındığında açgözlü davranan herhangi 

bir politika optimal bir politikadır. Özellikle, v∗ gelecekteki olası tüm davranışların ödül 

sonuçlarını zaten hesaba kattığından, kısa vadeli sonuçların bu değerlendirmesi uzun 

vadede de optimaldir. Böylece, uzun vadeli optimal eylemler, tek adımlı bir ileriye dönük 

bakış açısına indirgenir. Bu nedenle, V*optimal değer fonksiyonuna göre açgözlü olan 

herhangi bir politika, aslında bir optimal politikadır. 

 

Şekil 2.7. V* ve Q* yedek diyagramları 

Denklem (2.8)'deki Bellman denklemi ve V*'nin bir politika için basitçe bir değer 

fonksiyonu olduğu göz önüne alındığında, V* sabitlik koşulunun herhangi bir özel 

politikaya başvurmadan özel bir biçimde yazılabileceğini gösterebiliriz. Bu, V* için 

Bellman optimallik denklemine yol açar ve Denklem (2.11)’deki gibi gösterilir; 

𝑉𝜋(𝑠) = 𝑚𝑎𝑥𝑎𝑄𝜋∗
(𝑠, 𝑎) 

             = 𝑚𝑎𝑥𝑎𝐸𝜋∗(𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) 

             = 𝑚𝑎𝑥𝑎𝐸𝜋∗(∑ 𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎).

∞

𝑘=0

 

             = 𝑚𝑎𝑥𝑎𝐸𝜋∗ [𝑟𝑡+1 + 𝛾𝐸𝜋(∑ 𝛾𝑘𝑟𝑡+𝑘+2|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎)

∞

𝑘=0

] 

(2.10) 

(2.11) 
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             = 𝑚𝑎𝑥𝑎𝐸[𝑟𝑡+1 + 𝛾𝑉𝜋(𝑠𝑡+1|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎)] 

             = 𝑚𝑎𝑥𝑎 ∑ 𝑃𝑠𝑠′
𝑎

′

𝑠

[𝑅𝑠𝑠′
𝑎 + 𝛾𝑉𝜋(𝑠′)] 

Benzer şekilde, Q∗ için Bellman optimallik denklemi Denklem (2.12)’deki gibi 

tanımlanır;  

𝑄𝜋(𝑠, 𝑎) = ∑ 𝑃𝑠𝑠′
𝑎

′

𝑠

[𝑅𝑠𝑠′
𝑎 + 𝛾𝑚𝑎𝑥𝑎′𝑄𝜋(𝑠′, 𝑎′)]. 

N durumları ve bilinen dinamikleri olan bir ortam göz önüne alındığında, her durum için 

V* değerini çözmek için Bellman optimalite denklemleri kullanılabilir.  

Sonlu Markov karar problemleri, model tabanlı ve modelden bağımsız ortamlar olarak 

ayırt edilir. Model tabanlı ortamlar için, tüm olası durumlar S, eylemler A, durum geçiş 

olasılıkları p(s′|s,a) ve anlık ödüller r(s,a,s′) hakkında tam bilgi mevcuttur. Burada, 

çözüm uygulamadan önce bulunup değerlendirilebildiğinden, problem algoritmik 

planlamanın bir parçası haline gelir. Modelsiz ortamlar için, ortam hakkında hiçbir bilgi 

yoktur ve bu nedenle ajan, örnekler şeklinde deneyimler toplamak zorundadır. 

2.4.6. Politika Belirleme 

Daha önce belirtildiği gibi, Pekiştirmeli Öğrenme, beklenen toplam ödülleri en üst düzeye 

çıkarmayı amaçlar. Politika π, durumlarla eylemleri eşleyerek, ona göre bir değer 

fonksiyonu çıkarmayı ifade eder. En iyi politika oluşturmaya ve uygulanma durumuna 

göre, PÖ yöntemleri Modelden Bağımsız ve Model tabanlı olarak kategorize edilebilir. 

Modelden bağımsız yöntemlerde ajan, doğrudan deneyerek bir değer fonksiyonu 

oluşturur. Modele bağlı yöntemlerde ise ajana çevre hakkında bilgi verilir. 

PÖ, bir politikayı değerlendirmek ve geliştirmek için Politika Değerlendirme teknikleri 

olarak adlandırılan çeşitli algoritmalara başvurur(Sutton ve Barto, 2018).Bunlar; 

Dinamik Programlama (DP), Monte Carlo (MC) ve Zamansal Fark (TD) 

metodolojileridir. 

2.4.7. Dinamik Programlama 

Tam bilgiye sahip sonlu MDP'ler için, optimal politika, gerçek bir ajan-ortam etkileşimi 

olmaksızın tamamen hesaplamalı yinelemeli bir yolla bulunabilir. Bu yaklaşıma sahip 

(2.12) 
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algoritmalar, dinamik programlama terimi altında sınıflandırılır. DP içinde kullanılan iki 

yöntem vardır. Bunlar politika yinelemesi ve değer yinelemesidir. Politika yinelemesi 2 

adımdan oluşur. Bunlar, politika değerlendirmesi ve politika iyileştirme adımlarıdır. 

Bu iki yöntem, optimal politikaları ve değer fonksiyonlarını güvenilir bir şekilde 

hesaplamak için kullanılabilir ve her ikisi de politika değerlendirmesi ve politika 

geliştirmenin iki hesaplaması arasında dönüşümlü olarak elde edilir. 

İlk olarak, mevcut politika için değer fonksiyonunun yinelemeli hesaplamasını belirleyen 

bir dizi politika değerlendirmesi uygulanır. Ardından, değer fonksiyonuna göre en iyi 

eylemi açgözlülükle seçilerek iyileştirilmiş bir politikanın hesaplanmasını belirleyen bir 

dizi politika iyileştirmesine geçer. Yukarıdaki süreç, politika artık değişmeyene kadar 

tekrarlanır. 

Politika yinelemesinde, politika iyileştirmesi yalnızca politika değerlendirme adımında 

çalıştırılır. Buna karşılık, değer yinelemesi, her bir politika iyileştirme adımı arasında 

yalnızca tek bir politika değerlendirme yinelemesini çalıştırır. 

Genel politika yinelemesini, Şekil 2.8'teki gibi özetlenebilir.  

 

Şekil 2.8. Genelleştirilmiş politika yinelemesi (James, 2016) 

Model tabanlı yöntemler, politika/değer işlevini geliştirmek için ağırlıklı olarak DP 

(Sutton and Barto 2018) kullanır. Geçiş ve ödül modelleri, gelecekteki durumlar 

üzerinden beklenen ödül toplamının doğru bir şekilde hesaplanmasını sağlar. Değer 

fonksiyonu V(st) aşağıdaki Denklem (2.13)’e göre güncellenir;  
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𝑉(𝑠𝑡)⃪𝑟𝑡 + 𝛾. ∑ 𝑃(𝑠𝑡+1|𝑠, 𝑎𝑡)

𝑠𝑡+1∈𝑆

. 𝑉(𝑠𝑡+1) 

Denklem (2.13)'ün son terimi, indirimli toplam gelecek ödülleridir. Her olası st+1 durumu 

için, P geçiş modelinin tahmini getirileri V(st+1) ile toplamından elde edilir. DP, 

önyükleme(bootstrapping) adı verilen bir tekniğe izin verir. Önyükleme, ardıl durumların 

tahminlerine dayalı olarak her bir durum için değerlerin V(st) tahminlerini 

güncellememizi sağlar. 

2.4.8. Monte Carlo 

Bilinmeyen bir ortama sahip sonlu bir MDP için, Monte Carlo(Rothman 1984) 

yöntemleri, örnek bölümler biçimindeki deneyimlerden değer fonksiyonlarını ve optimal 

politikaları öğrenebilir. MC yöntemleri, çevreden örnek durum, eylem ve ödül 

dizilerinden öğrenmemizi sağlayan modelden bağımsız bir yöntemdir. Çevrenin 

dinamikleri hakkında önceden tam bilgi sahibi olmayı gerektirmez. Monte Carlo 

yöntemleri, her olası durumun değerini hesaplamak için bir model kullanmak yerine, Vπ 

ve Qπ değer fonksiyonlarını deneyimden tahmin edebilir(Aghaei, 2019). 

MC kontrol yöntemlerinde ajan, ödüller ve çevre hakkında bilgi edinmek için keşif-

sömürü ödünleşmesini göz önünde bulundurmalıdır. Ajanın hem daha önce 

kullanılmayan eylemleri hem de olumsuz ödüllere yol açabilecek belirsiz eylemleri göz 

önünde bulundurarak keşfetmesi gerekir. Güvenli bir şekilde hareket etmeli ve iyi bilinen 

ödüllere bağlı kalmalı veya daha yüksek ödüller keşfetmek için yeni şeyler deneme 

riskine girmelidir. 

MC kontrol yöntemlerinde yeterli keşif yapıldıktan sonra bunun sürdürülüyor olması bir 

sorundur. Genel olarak, bunu çözmek için kullanılabilecek iki yaklaşım, politika içi 

yöntemler ve politika dışı yöntemlerdir. Politikaya dayalı yöntemler, bir yandan araştırma 

yaparken bir yandan da karar vermek için kullanılan politikayı değerlendirmeye veya 

iyileştirmeye çalışır. Politika dışı yöntemler ise, karar vermek için kullanılan politika ile 

ilgisiz olabilecek deterministik bir politika öğrenmeye çalışır. 

(2.13) 
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Monte Carlo yöntemleri, DP'den farklı olarak önyükleme yapmaz. Bunun yerine, değer 

fonksiyonu güncellemeleri, örneklenmiş bir ortamdan durum-eylem-yeni durum-ödül (st, 

at, st+1, rt) şeklinde Denklem (2.14)’deki gibi hesaplanır. 

π politikasını izleyerek ve karşılaşılan her durum için, o belirli durumu takip eden gerçek 

rt getirilerinin bir ortalamasını koruyarak elde edilir. Daha sonra, belirli bir durumla 

karşılaşılma sayısı sonsuza yaklaştıkça ortalama, durumun değerine, Vπ(s) 

yakınsayacaktır. Benzer şekilde, belirli bir durumda gerçekleştirilen her eylem için ayrı 

ortalamalar tutulursa, bu ortalamalar eylem değerlerine, Qπ(s,a) yakınsayacaktır. Buna 

göre, durum-değer fonksiyonu V (st), durumla her karşılaşıldığında, gerçek dönüş rt 'ye 

doğru güncellenebilir; 

𝑉(𝑠𝑡) ⃪𝑉(𝑠𝑡) + 𝛼. [𝑟𝑡 − 𝑉(𝑠𝑡)] 

α, öğrenme oranını etkileyen adım boyutu parametresi olarak adlandırılan küçük bir 

pozitif kesirdir. Değer işlevleri, değer işlevlerinin artık hesaplanmadığını, ancak 

örneklenmiş getiriler temelinde tahmin edildiğini vurgulamak için büyük harfle gösterilir. 

2.4.9. Zamansal Fark 

Zamansal fark öğrenme (Sutton, 1988), DP'nin (önyükleme yoluyla öğrenme yeteneği) 

ve MC'nin MDP'ye erişmeden doğrudan ortamdan alınan örneklerden öğrenme 

yeteneğinin bir birleşimidir. 

MC yöntemlerinden farklı olarak, TD'nin değer işlevini güncellemek için bölümün 

sonuna kadar beklemesi gerekmez. Bunun yerine, TD yöntemleri, yeni değerin eski 

tahminden ne kadar farklı olduğunu bize bildirmek için zamansal hatalar kullanarak 

yalnızca bir sonraki zaman adımına kadar bekler. 

Bu güncelleştirme genel olarak şu şekildedir: 

𝑌𝑒𝑛𝑖𝑇𝑎ℎ𝑚𝑖𝑛 ← 𝐸𝑠𝑘𝑖𝑇𝑎ℎ𝑚𝑖𝑛 + 𝐴𝑑𝚤𝑚𝑆𝑎𝑦𝚤𝑠𝚤[𝐻𝑒𝑑𝑒𝑓 − 𝐸𝑠𝑘𝑖𝑇𝑎ℎ𝑚𝑖𝑛] 

TD yöntemleri, modelden bağımsız oldukları için, DP yöntemlerine göre büyük bir 

avantaj sunarken, çevrimiçi, tamamen artımlı güncellemeleri MC yöntemlerini geliştirir. 

(2.14) 
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Bu, özellikle uzun, muhtemelen sonsuz bölümlerle uğraşırken önemlidir, bu nedenle 

güncellemeleri bir bölümün sonuna kadar ertelemek ideal değildir. 

TD, ortamın örneklemini MC'den yaklaşık bir beklenti durumu (sonraki durum dağılımı) 

ve DP'den gelecekteki ödüllerin indirimli toplamını tahmin etmek için önyükleme 

kavramıyla birleştirerek değer işlevini Denklem (2.15)’te gösterildiği gibi güncelleştirir; 

𝑉(𝑠𝑡) ⃪𝑉(𝑠𝑡) + 𝛼. [𝑟𝑡 + 𝛾. 𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡)] 

2.4.10. Keşif ve Sömürü 

Pekiştirmeli öğrenmede keşif, ajanın çevre hakkındaki bilgisini geliştirmek için eylemde 

bulunmasını sömürü ise mevcut bilgisine göre ödülleri en üst düzeye çıkarmak için 

eylemde bulunmasını ifade eder. Bir ajanın amacı, bilinmeyen bir ortamla etkileşimler 

yoluyla elde edilen gelecekteki ödüllerin toplamını en üst düzeye çıkarmaktır. Bunu 

yaparken, ajan keşif ve sömürüyü dengelemelidir. (Taïga ve diğ., 2018).Pekiştirmeli 

öğrenmede ortaya çıkan zorluklardan biri, keşif ve sömürü arasındaki dengedir. Ajan, çok 

fazla ödül elde etmek için daha yüksek ödüller üretmede etkili olan deneyimlerine ve 

eylemlerine güvenmelidir. Öte yandan, bu iyi eylemler ilk etapta daha önce seçmediği 

eylemleri deneyerek keşfedilmelidir. Başka bir deyişle, ajan ödül almak için zaten 

bildiklerinden yararlanmak zorundadır, ancak aynı zamanda gelecek için olası daha iyi 

bir eylem bulmak için araştırmak zorundadır. 

PÖ ajanları en uygun politika hakkında bilgi edinmek isterler, ancak ilk bölümde 

karşılaştıkları "iyi" eylemleri asla araştırmazlarsa ve yalnızca güçlendirirlerse, en uygun 

politikanın neye benzediğini bilemezler. Politika içi yöntemlerde, ajan her zaman 

keşfeden bir yapıdadır ve bu nedenle hala keşif yapan en iyi politikayı bulmaya çalışır. 

Buna karşılık, politika dışı yöntemler iki ilke kullanarak bu uzlaşmayı önler. Hakkında 

bilgi edinilen politikaya hedef politika π adı verilir. Davranış oluşturmak için kullanılan 

politikaya davranış politikası μ adı verilir ((Roy, 2018). 

Modelden Bağımsız PÖ algoritmalarında keşif ve sömürü arasındaki geçiş açgözlü(ε-

açgözlü) stratejilerle kurulur. Açgözlü stratejilerde, ajan uygulayacağı eylemi epsilon-ε 

olasılıkla rastgele seçer. Buna karşılık sömürüde ise, en yüksek tahmini değere sahip 

(2.15) 
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eylemler olan Q*(s,a) tamamlayıcı olasılıkla seçilir. Zaman içinde ε değeri azaltılarak, 

ajan keşiften sömürüye doğru ilerler (Arulkumaran ve diğ., 2017). 

Bir davranış politikasının çok basit ama etkili bir versiyonu epsilon-açgözlülük 

politikasıdır. Bu yöntemle keşif miktarı, eylem seçimlerinde rastgeleliği belirleyen bir 

parametre olan ε ile global olarak kontrol edilir. Diğerlerinin aksine, ε-açgözlülüğün bir 

avantajı, keşfe özel verilerin ezberlenmesine gerek olmamasıdır, bu da yöntemi çok 

büyük ve hatta sürekli durum uzayları için özellikle avantajlı kılmaktadır. Diğer karmaşık 

yöntemlerle karşılaştırıldığında, ε-açgözlülüğü (Vermorel ve Mohri, 2005)  genellikle ilk 

tercih edilen yöntem olduğu bildirilmiştir (Sutton ve diğ., 2018).Denklem (2.16)’da ε-

açgözlü yöntem formüle edilmiştir;  

𝜇(𝑠𝑡) = {
𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠𝑡, 𝑎)                1 − 𝜀 𝑜𝑙𝑎𝑠𝚤𝑙𝚤𝑘𝑙𝑎

𝑟𝑎𝑛𝑑𝑜𝑚 𝐴                      𝜀 𝑜𝑙𝑎𝑠𝚤𝑙𝚤𝑘𝑙𝑎
 

2.4.11. Q Öğrenme 

PÖ algoritmaları politika tabanlı, modelden bağımsız ve model tabanlı olarak üç 

kategoriye ayrılabilir. Her kategori şu sorunun cevabını arar: "Öğrenme sırasında hangi 

fonksiyonlar tahmin ediliyor?". Bir PÖ algoritması geçiş ve ödül fonksiyonlarının 

tahminlerini tutarsa (T ve R), o zaman model tabanlı olduğu söylenir. Ödül ve geçiş 

fonksiyonları tahmin edilmiyorsa, sadece eylem-değer fonksiyonu Q tutuluyorsa 

algoritma modelden bağımsızdır. Son olarak, tahmin edilen tek şey doğrudan politika ise 

o zaman politika tabanlıdır. Bununla birlikte, bunlar çokta net olmayan sınırlardır çünkü 

birçok algoritma genellikle farklı işlevlere kısmi çözümler hesaplar veya bu işlevlerden 

birinin inşasına benzeyen örtük hesaplama çalışmaları yürütür (Seijen ve Sutton, 2015). 

Bu üç yaklaşım arasındaki ayrım kabaca Şekil 2.9'daki şema ile gösterilmiştir. 

Model tabanlı PÖ'de, geçiş ve ödül işlevleri genellikle açıkça tahmin edilir. Daha sonra, 

bu tahminleri kullanarak T ve R, ajan genellikle iyi davranış için arama yapmak veya 

farklı politikaları değerlendirmek için kullanılabilecek simüle edilmiş bir MDP, Mˆ 

oluşturur. Diğer bir deyişle, çevresel MDP M'ye yeterince benzeyen bir MDP Mˆ'ye 

simülasyon erişimi verildiğinde, ajan π veya belki de Q oluşturmak için Mˆ üzerinde 

hesaplamalar yapabilir ve bu da en yüksek değere sahip eylemi seçerek bir politikayı 

indükleyebilir. 

(2.16) 
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Modelsiz ve politika tabanlı PÖ'de, ajan genellikle eylem-değer fonksiyonu (Q)’ nun veya 

bir politika (π) nın tahminini doğrudan tutar. Bu işlevleri daha verimli bir şekilde 

atayarak, daha sağlam bir şekilde genelleştirerek veya daha hassas bir şekilde keşfederek 

daha hızlı öğrenmek için çeşitli mekanizmalar ayarlanır. 

 

Şekil 2.9. PÖ algoritmalarının kategorileri(Abel, 2020) 

Bağlama bağlı olarak her bir algoritma türünü kullanmak için iyi argümanlar vardır. 

Özellikle, modelsiz ve politika tabanlı yöntemler, derin sinir ağları ile birleştirildiğinde 

büyük bir başarı elde etti ve Atari'den (Mnih ve diğ., 2015) robotiğe kadar çeşitli zorlu 

alanlarda etkili bir şekilde öğrenen DPÖ yöntemlerine yol açtı(Levine ve diğ., 2016). 

En bilinen PÖ algoritması, ilk olarak Watkins ve Dayan (Watkins ve Dayan, 

1992)tarafından tanıtılan Q-öğrenme olarak adlandırılır. Optimal kontrol teorisi 

bağlamında, Q-öğrenme, tamamen bilinmeyen sistemler için en uygun kontrol çözümüne 

çevrimiçi olarak yakınsayan, uyarlanabilir, bir kontrol algoritması olarak 

sınıflandırılabilir(Lewis ve diğ., 2012). 

 Q-öğrenme, her durum-eylem çifti için Q fonksiyonunun bir tahminini korur ve son 

deneyime (st-1, at-1, rt-1) ve bir öğrenme oranına α ∈ [0, 1] dayalı olarak bu Q fonksiyonu 

tahminine basit bir güncelleme yapılması temelinde ilerler. Yani, ilk önce Q değerlerini 

[QMin,QMax] aralığından rastgele seçmek gibi bazı protokollere göre bir Q fonksiyonu 

uygulanır veya daha yaygın olarak, ilk Q fonksiyonu sıfır olarak ayarlanır veya tüm s, a 

için Q0(s, a) = QMax olduğunda iyimser olarak ayarlanır. Ardından, Denklem (2.17)’deki 

gibi tanımlanan açgözlülük politikasına göre eylemler seçilir;  
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𝜋𝑄,𝜀(𝑎|𝑠) = {
1 − 𝜀                   𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎′𝑄(𝑠𝑡, 𝑎′),

𝜖

|𝐴| − 1
                        𝑑𝑖ğ𝑒𝑟 𝑑𝑢𝑟𝑢𝑚𝑙𝑎𝑟𝑑𝑎.

 

Q-Öğrenme (Watkins, 1989), takip edilen politikadan bağımsız olarak doğrudan Q∗ ‘ya 

yaklaşan bir politika dışı TD kontrol algoritmasıdır. Bir deneyim, (s, a, r ,s') olarak 

tanımlanır, burada ajan s durumunda başlar, a eylemini gerçekleştirir, bir r ödülü alır ve 

s' durumuna geçer. Q(s,a) güncellemesi daha sonra s' ‘dan bir eylem için mümkün olan 

maksimum ödülü alarak ve Denklem(2.18)’deki güncellemeyi uygulayarak 

gerçekleştirilir; 

𝑄(𝑠𝑡, 𝑎𝑡) ⃪𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼. [𝑟 + 𝛾. 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)]. 

Q-Öğrenme, Şekil 2.10'da gösterildiği gibi bir Q-Tablosunu yükleyerek başlar, her satır 

bir duruma, s ∈ S'ye ve her sütun bir eyleme, a ∈ A'ya karşılık gelir. 

 

Şekil 2.10. Q-Öğrenme akış şeması 

 

Şekil 2.11. Q değeri tablosu 

İlk aşamada ajan, ε-açgözlü keşif yöntemini kullanarak yeni durumları ve eylemleri 

keşfederek çevre ile etkileşime girer. Q değerleri Q(s, a), ajanın s durumunda a eylemini 

gerçekleştirmesinden beklenen toplam ödüllerini temsil eder. Şekil 2.19 da verilen Q-

tablosu yapısına benzer bir şeklide, her bir durum-eylem eşleşmesi için tablo Q değeri ile 

doldurulur. Her Q değeri, Bellman denkleminin hesaplanmasından kaynaklanır ve 

Denklem (2.19)’daki gibi ifade edilir;  

𝑄(𝑠𝑡, 𝑎𝑡) ⃪𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼. [𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾. 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)]. 

Eylem1 … … EylemN

Durum1 Q(1,1) … … Q(1,N)

… … … … …

… … … … …

DurumM Q(M,1) … … Q(M,N)

(2.17) 

(2.19) 

(2.18) 
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• r(st, at): mevcut st durumundan bir sonraki duruma st+1  geçiş için verilen ödül; 

• maxaQ(st+1, a): Ardışık durum st+1'in optimal Q değeri biçiminde, dizinin birkaç adım 

daha derininde döndürülebilen ödüller; 

• Q(st, at): Zamansal Fark olarak Q değeri gösterimi; 

• r(st, at)+ γ · maxaQ(st+1, a): Zamansal Fark ile hedeflenen değer; 

• r(st, at)+ γ · maxaQ(st+1, a)- Q(st, at): Zamansal Fark hatası (δt). 

Ajan keşif yaparken çeşitli çevre durumları ile karşılaşır. Yeni durumlarla karşılaştıkça 

Q-Tablosu dolmaya başlar. Ajan, yeni durumlar keşfettikçe tablo büyür. Ajan keşiften 

sömürüye ilerlediğinde, Q-Tablosundaki değerlere bakar ve toplam birikmiş ödülleri en 

üst düzeye çıkaran eylemleri Q∗(s, a) Denklem(2.20)’de gösterilen formül ile seçer;  

 𝑎𝑡 ⃪𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝑄(𝑠,:)(𝑄(𝑠𝑡, 𝑎)) ≡ 𝑄∗(𝑠𝑡, 𝑎) 

Q-öğrenmenin algoritması Şekil 2.12’de gösterilmiştir. 

 

Şekil 2.12. Q-Öğrenme Algoritması 

2.4.12. Sarsa 

Sarsa, State-Action-Reward-State-Action anlamına gelen, politikaya bağlı bir TD kontrol 

algoritmasıdır. Bu ad, ajanın s durumunda başladığı, a eylemini gerçekleştirdiği, r 

(2.20) 
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ödülünü aldığı, s’ durumuna geçtiği ve ardından a’ eylemini yapmaya karar verdiği bir 

deneyimden (s; a; r; s’; a’) türetilir. Bu deneyim, Denklem (2.21)’deki denklemi 

kullanarak Q(s; a)'yı güncellemek için kullanılır;  

𝑄(𝑠𝑡, 𝑎𝑡) ⃪𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼. [𝑟 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡, 𝑎𝑡)]. 

Algoritmanın genel formu aşağıda Şekil 2.13’de verilmiştir. 

 

Şekil 2.13. Sarsa algoritması 

2.4.13. Sarsa ve Q Öğrenmenin Karşılaştırılması 

Sarsa ve Q-öğrenme algoritmaları arasındaki farklar oldukça incedir. Sarsa politika içi bir 

yöntem olduğundan, Q değerlerini güncellemek için kullanılacak hamleleri yaparken bir 

kontrol politikası izler. Öte yandan Q-öğrenme, en uygun politikanın izlendiğini varsayan 

ve bu nedenle her zaman en iyi eylemi gerçekleştiren politika dışı bir yöntemdir. 

Özetlemek gerekirse, temel fark gelecekteki ödüllerin bulunma şeklidir. 

Bu iki yöntem arasındaki fark, Sutton ve Barto'nun (Sutton ve Barto, 1998) kitabından 

alınan örnekte (Şekil 2.14) iyi bir şekilde gösterilmiştir. 

 

Şekil 2.14. Uçurumda yürüme görevinin grid dünyası (Sutton ve Barto, 1998) 

(2.21) 



33 

 

Şekil 2.14'te gösterilen grid dünyası, indirim faktörü uygulanmamış (γ = 1), epizodik bir 

görevin parçasıdır. Görevin amacı, uçurumdan düşmeden yukarı, aşağı, sağ ve sol 

hareketlerini kullanarak başlangıç durumundan (S) hedef duruma (G) gitmektir. 

Ajan, "Uçurum" olarak işaretlenmiş bölgeye girmesi dışında her durum geçişinde -1 ödül 

alır, uçuruma düşerse -100 ödül alır ve ardından başlangıç durumuna geri gönderilir. Ajan 

görevini yerine getirirken, sabit bir epsilon ε= 0.1'e ayarlı olarak ε-açgözlü bir eylem 

seçimini izler. 

 

Şekil 2.15. Uçurumda yürüme görevinin sonuçları (Sutton ve Barto, 1998) 

Şekil 2.15’te bir Q-öğrenme kontrol yöntemi ve bir Sarsa kontrol yöntemi izlendiğinde 

her bölüm için toplam ödülü göstermektedir. 

Q-Öğrenme bazen ε-açgözlü eylem seçimini izleyerek ajanı uçurumdan itecek rastgele 

bir eyleme yol açmasına rağmen kısa bir süre sonra uçurumun kenarı boyunca seyahat 

etmeyi içeren en uygun politikayı öğrenmeyi başarır. Tersine, Sarsa bunu dikkate alarak 

eylem seçim yöntemi uçurumdan uzakta, daha uzun ama daha güvenli bir yol izleyen bir 

politika ile sonuçlanır. Q-Öğrenme’nin en uygun politikayı bulmasına rağmen, 

performansı Sarsa'dan daha kötüdür, ancak her ikisi yöntemde de kademeli olarak epsilon 

değeri 0'a düşürülürse optimal politikaya yaklaşacaktır. 

2.4.14. Fonksiyon Yaklaşımı 

Pekiştirmeli öğrenmenin zorluklarının çoğu, robotiğe uygulandığında ortaya çıkar. 

Bunun nedeni çoğu robotun doğası gereği sürekli durumlar ve eylemler ile hareket 
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etmesidir. Bunun gibi görevlerle uğraşırken, boyutsallığın laneti (curse of dimensionality) 

ile (Bellman, 1957b) karşı karşıya kalınır. Bu bize durum sayısının, durum 

değişkenlerinin sayısıyla katlanarak arttığını söyler. 

Şimdiye kadar tartışılan yöntemlerin tümü, her durum için bir giriş içeren tablo olarak 

temsil edilen değer fonksiyonlarına sahiptir. TD yöntemleri ve Q-öğrenme, her durumun 

bir V(s) girişine sahip olduğu veya her durum-eylem çiftinin bir Q(s,a) girişine sahip 

olduğu tablo halinde tartışıldı. Tüm durumlar için tüm değer fonksiyonları bir arama 

tablosuna kaydedilir. Bu prosedür, dama veya tic-tac-toe oyunu gibi sınırlı sayıda durum 

ve eylem içeren ortamlar için uygundur. Ancak, problemin durum uzayı büyükse, bu tablo 

biçimi pratikte mümkün olmaz. Soru şudur: Mobil robotlarda olduğu gibi büyük, hatta 

sürekli bir durum alanı verildiğinde-örneğin bir hastane ortamı- ne olur? Otonom bir araç 

bağlamında, kamera görüntülerinin olası piksel düzenlemelerinin sayısı sonsuzdur. Her 

bir görüntü bir durumu temsil ettiğinden, durum uzayı sürekli veya sonsuz olarak 

ayarlanır. Sürekli durum alanı ile büyük miktarda zaman ve veri gerektiren büyük, bellek 

tüketen tablolar gelir. Belirli bir durum için bir değer aramaya çalışırken, önce bu değerin 

tabloda bulunması gerekir, bu da çevrimiçi güncellemeleri zorlaştırır. Öğrenme süreci 

çok sayıda durum tarafından yavaşlatılır, çünkü her bir durumun değeri ayrı ayrı 

öğrenilmelidir.  Bu nedenle, bu gibi durumlarda öğrenmenin tek yolu, önceki 

durumlardan daha önce görmediğimiz durumlara genelleme yapmaktır. Bu sorunu büyük 

veya sonsuz MDP'ler için çözmek için, mevcut olana benzeyen farklı durumlarla önceki 

karşılaşmalardan genelleme yapmak gerekir. 

Pekiştirmeli öğrenme bağlamındaki bu genellemeye fonksiyon yaklaşımı denir, çünkü 

Q(s,a) gibi istenen fonksiyondan veri örnekleri alır ve tüm fonksiyonun bir yaklaşımını 

üretmek için onlardan genellemeye çalışır. Bunu yaparken parametre vektörü θ 

kullanılarak fonksiyon Denklem (2.22)’deki gibi temsil edilir.  

𝑉̂(𝑠; 𝜃) ≈ 𝑉𝜋(𝑠) 

𝑄̂(𝑠, 𝑎; 𝜃) ≈ 𝑄𝜋(𝑠, 𝑎) 

Makine öğreniminde incelenen birincil konu olan denetimli öğrenmenin bir örneği olarak 

fonksiyon yaklaşımı, halihazırda kapsamlı bir şekilde incelenmiştir. Teoride, bu alanda 

(2.22) 
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çalışılan yöntemlerden herhangi biri, fonksiyon tahmincisi rolünde kullanılacak 

pekiştirmeli öğrenme ile birleştirilebilir. (Schmidhuber, 2015).  

2.5. Derin Pekiştirmeli Öğrenme 

Pekiştirmeli öğrenmenin fonksiyon yakınlaştırıcısı olarak derin sinir ağları ile 

kombinasyonuna Derin Pekiştirmeli Öğrenme denir. Değerlerin tablo gösterimlerinin 

sinir ağı gibi bir fonksiyon yaklaşımıyla değiştirilmesi, yüksek boyutlu sensör girdilere 

sahip görevleri başarmak için gereklidir. 

Pekiştirmeli Öğrenme, temel gerçeğe atıfta bulunmadan kontrol modellerini öğrenmenin 

etkili bir yoludur(Tai ve Liu, 2016). Bununla birlikte PÖ algoritmaları, tablo çerçeveleri 

nedeniyle kapsamlı ve dinamik ortamlarda hesaplama açısından maliyetli olma 

eğilimindedir. Bunu çözmek için derin öğrenme ve pekiştirmeli öğrenme algoritmaları 

birlikte kullanılabilir. Bu tür yapıları içeren yöntemler, bilimin tüm yelpazesinde 

uygulamalar üreten yenilikçi bir alan olan DPÖ kapsamındadır (Li, 2018). 

Pekiştirmeli Öğrenme ile ilgili sorunlardan biri, durum sayısı arttıkça verileri depolamak 

için gereken bellek miktarının hızla artmasıdır. Derin Pekiştirmeli Öğrenme, durum uzayı 

büyük veya sürekli olduğunda, görünenden görünmeyen durumlara genelleme yaparak, 

fonksiyon tahmin edicileri (Li, 2018) olarak Yapay Sinir Ağları’nı kullanarak bu 

problemin üstesinden gelmeye çalışır. Şekil 2.16’da DPÖ modeli gösterilmiştir. 

Pekiştirmeli öğrenme için fonksiyon yaklaşımı olarak sinir ağları yeni bir fikir değildir 

ve 1989'a kadar uzanmaktadır (Werbos, 1989).Burada yazar, TD benzeri algoritmaları 

kullanarak politikaları ve değer fonksiyonlarını öğrenmek için hata geri yayılımı ile 

eğitilmiş sinir ağlarını kullanan bir yaklaşım geliştirdi. Öte yandan erken araştırmalar, 

politika dışı, doğrusal olmayan fonksiyon yaklaşımı ve önyükleme işleminin 

birleştirilmesinin kararsızlığa ve ayrışmaya neden olabileceğini göstermiştir(Tsitsiklis ve 

Roy, 1997), bu da ölümcül üçlü sorunu (Sutton ve Barto, 1998)olarak adlandırılır. 

Sorunun arkasındaki sebep hala bir araştırma konusu olsa da 2015 yılında Google 

DeepMind'dan bir ekip, derin sinir ağlarını kullanan Q-öğrenmenin bir uyarlaması olan 

Derin Q-Öğrenme algoritmasını(Mnih ve diğ., 2015) sundu.  
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Şekil 2.16. Derin pekiştirmeli öğrenme modeli 

 

Şekil 2.17. Değer tabanlı ve Politika tabanlı Derin Pekiştirmeli Öğrenme 

DPÖ’de, değere dayalı veya politikaya dayalı yöntemler kullanılır. Şekil 2.17’de bu 

yöntemlere ait modeller gösterildi. Değer tabanlı öğrenmede, YSA'lar eylem-değer 

fonksiyonları, Q(s, a; θ) olarak hareket eder. İnce ayar yapıldıktan sonra, durum-eylem 

Q değerlerini tahmin ederler ve mevcut durum göz önüne alındığında hangi eylemin 

gerçekleştirileceğine dair deterministik bir sinyal çıkarırlar (Ejaz ve diğ., 2019).Aksine, 

politika tabanlı yaklaşımlar, politika π(s, a; θ) parametresini ayarlamak ve Politika 

Gradyan tekniklerini kullanarak eylem alanını optimize etmek için YSA'ları kullanır 

(Wang ve diğ., 2019; Mnih ve diğ., 2016) 

2.5.1. Derin Q Öğrenme  

Derin Q-Öğrenme (Mnih ve diğ., 2015), Q-Öğrenme algoritması üzerine tasarlanmış 

değer tabanlı bir öğrenme yöntemidir. Yapısında bulunan YSA mimarisi nedeniyle Derin 

Q-Ağı olarak da adlandırılır. Her iki yaklaşım da durum-eylem Q değerlerini hesaplamak 

için aynı prensibi paylaşır, ancak işleyiş tarzında farklılık gösterir. Q-Öğrenme, eğitim 
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sürecini ve bunun sonucunda ajanın karar vermesini yönlendirmek için bir Q-Tablosuna 

başvururken, DQN'de bu tür görevler YSA’lar tarafından yürütülür. 

 

Şekil 2.18. Derin Q-Öğrenme eğitim aşaması 

Şekil 2.18'de gösterildiği gibi, DQN modeli, tekrar arabelleği, hedef ağ ve politika ağı, 

olarak üç ana bileşenden oluşur. Politika ağı (θ), mevcut durum geçişi için Q değerlerini 

tahmin etmekten sorumluyken, hedef ağ (θ-) ardıl durumun optimal Q değerini hesaplar. 

DQN'de her bir Q değeri, Bellman denklemi (α = 1) kullanılarak Denklem (2.23)’de 

gösterilen formül ile hesaplanır; 

𝑄(𝑠𝑡, 𝑎𝑡) ⃪𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾. 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) 

Tekrar arabelleği (S. Zhang and Sutton 2018), sırasıyla, her eğitim adımı t'de tanık olunan 

geçiş demetlerini (st, at, st+1, rt) tablo şeklinde depolar.  

DQN’de ajan, çevre ile etkileşime girerek yeni durumları keşfeder. Keşif yöntemi olarak 

ε-açgözlü stratejisini kullanır. Tekrar arabelleğinde, yeni durumlar keşfedildikçe, geçiş 

demetleri depolanır. Hedef ve politika ağlarına iletilmek üzere, rastgele bir demet grubu 

(sj, aj, sj+1, rj) örneklenir. Ayrıca bir kayıp değeri ağların çıktı Q değerlerine göre Denklem 

(2.24)’deki gibi hesaplanır; 

𝐿(𝜃) = ‖𝑦𝑡(𝑎) − 𝑄(𝑠𝑗 , 𝑎𝑗 ; 𝜃)‖
2

≡ ‖𝑟𝑗 + 𝛾. 𝑚𝑎𝑥𝑎𝑄(𝑠𝑗+1, 𝑎; 𝜃− − 𝑄(𝑠𝑗 , 𝑎𝑗; 𝜃)‖
2
  (2.24) 

(2.23) 
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 Denklem(2.23)’teki hedefler yt(a) ile Q(sj, aj; θ) tahminleri arasındaki hata daha sonra 

politika ağı parametreleri θ'yı ayarlamak için Denklem(2.25)’deki formül ile geri yayılır; 

∆𝜃= 𝛼. 𝐿(𝜃). ∇𝜃𝑄(𝑠𝑗 , 𝑎𝑗; 𝜃)               

Tekrar arabelleğinin kullanılması sayesinde, politika ağı güncellemelerinin ayarlamak 

için rastgele durum geçiş demetleri (sj, aj, sj+1, rj) kullanılır. Yani politika ağı (θ),  yalnızca 

ortamın son gözlenen durumuna bağlı değildir. Bu durum ajanın uyguladığı yeni eylemler 

için eğitilmesini sağlar. 

Her eğitim adımında ayarlanan θ politika ağı parametrelerinden farklı olarak, hedefin 

ağırlıkları ve önyargıları, 𝜃−politika ağı parametre değerlerini devralarak 𝜃− ← 𝜃 

periyodik olarak güncellenir. Bu işlem, hedef fonksiyonun hızla değişmesini önleyerek 

eğitim sürecinin sağlamlığını artırır. 

Eğitim sürecinin ardından hedef ve politika ağı güncellenir. Böylece eğitilmiş bir ağ 

modeli (θ∗) ortaya çıkar. Bu ağ modeli ile ajan, karar verme süreçlerini kendi kendine 

öğrenmeye başlar. Bu nedenle, DQN ajan artık tekrar arabelleğine veya hedef ağa ihtiyaç 

duymaz, önemli bir hesaplama maliyeti düşüşü sağlar. Bu test aşamasında, sistemin 

işleyişi Şekil 2.19’da gösterildiği gibi oldukça basittir. Kullanılan ağ (θ∗), her t adımında, 

girdi durumunu st işler ve buna göre Q değerlerini Q(st, a; θ∗) hesaplar. Ajan, en yüksek 

ödülü getirecek bir eylem seçer. Denklem (2.26)’da gösterildiği gibi formüle edilir;  

𝑎𝑡 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝑄(𝑠,:;𝜃∗)(𝑄(𝑠𝑡, 𝑎; 𝜃∗)) ≡ 𝑄∗(𝑠𝑡, 𝑎; 𝜃∗) 

Şekil 2.19. Derin Q-Öğrenme Akış Diyagramı 

(2.25) 

(2.26) 
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2.5.2. Deterministik Politika Gradyanı 

Deterministik Politika Gradyanı'nın (DPG) birçok çeşidi vardır. Bu tezde, β'nın 

indirgenmiş durum dağılımı olduğu ve β mevcut politika π ayrı bir politikayı temsil ettiği 

politika dışı deterministik Aktör-Kritik dikkate alınacaktır. Konun detayı için David 

Silver ve arkadaşlarının (Silver ve diğ., 2014) çalışmasına bakılabilir. Algoritmanın 

çalışma yapısı basitçe Şekil 2.20'de gösterilmektedir. 

 

Şekil 2.20. Aktör-Kritik algoritmasının basit gösterimi 

Aktör-Kritik mimarisi, beklenen getiriyi optimize etmek için iki yapı kullanır. Aktör ve 

Kritik birlikte çalışır ve algoritmalarda amaçlarına göre ayrı ayrı eğitilirler. Aktör, mevcut 

politikayı tanımlar ve bu nedenle mevcut politikaya göre eylemler üretmesi amaçlanır. 

Kritiğin görevi, problemin değer fonksiyonunu tahmin etmektir. Öğrenme genellikle 

politika üzerinedir ve Kritik, Aktör tarafından tanımlanan mevcut politikadan yürütülen 

beklenen eylem değerinin ne olduğunu öğrenmelidir. Kritik daha sonra politika tarafından 

gerçekleştirilen eylemi bir Zamansal Fark-Hatası (TD-Hatası) olarak eleştirebilir. TD-

Hatası, iki farklı durumun değer fonksiyonu tahminleri arasındaki zamansal farktır. 

Değerlendirme matematiksel olarak Denklem (2.27)’deki gösterilen şekilde tanımlanır;  

𝛿𝑡 = 𝑟𝑡+1 + 𝛾𝑉(𝑠𝑡) − 𝑉(𝑠𝑡+1). (2.27) 
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TD hatası daha sonra Aktör ve Kritik modelindeki parametreleri optimize etmek için 

kullanılır. 𝛿𝑡 > 0 ise, mevcut eylemin sonucu at beklenenden daha iyidir ve bu nedenle 

π(at|st) olasılığını artırmak arzu edilir.  

DPG’ye geri dönersek performans hedefi, değer fonksiyonundan veya eylem değer 

fonksiyonundan Denklem (2.28)’deki gibi ifade edilebilir;  

𝐽𝛽(𝜇𝜃) = ∫ 𝑝𝛽(𝑠)𝑉𝜇(𝑠)𝑑𝑠 
𝑠

 

= ∫ 𝑝𝛽(𝑠)𝑄𝜃
𝜇

(𝑠))𝑑𝑠.
𝑠

 

Aktörler modelinin parametreleri için gradyanlar daha sonra Denklem (2.29)’da 

gösterilen şekilde tahmin edilebilir;  

∇𝜃𝐽𝛽(𝜇) ≈ ∫ 𝑝𝛽(𝑠)
𝑆

∇𝜃𝜇𝜃(𝑎|𝑠)𝑄𝜇(𝑠, 𝑎)𝑑𝑠 

= 𝔼𝑠~𝑝𝛽[∇𝜃𝜇𝜃(𝑠)∇𝑎𝑄𝜇(𝑠, 𝑎)|𝑎=𝜇𝜃(𝑠)]. 

Gerçek eylem değeri fonksiyonu, bir genel fonksiyon yaklaştırıcı Qw ≈ Qµ ile değiştirilir 

ve gerçek eylem-değer fonksiyonunu en aza indirmek için eğitilir. Ayrıca, algoritmanın 

temel adımlarında kullanılan denklemler (Denklem (2.30), Denklem (2.31), Denklem 

(2.32)) şunlardır; 

TD hatasını hesaplamak için:  

𝛿𝑡 = 𝑟𝑡 + 𝛾𝑄𝜔(𝑠𝑡+1, 𝜇𝜃(𝑠𝑡+1)) − 𝑄𝜔(𝑠𝑡, 𝑎𝑡), 

Kritik ağırlığını hesaplamak için: 

𝜔𝑡+1 = 𝜔𝑡 + 𝛼𝜔𝛿𝑡∇𝜔𝑄𝜔(𝑠𝑡, 𝑎𝑡), 

Aktör ağırlığını hesaplamak için: 

𝑄𝑡+1 = 𝑄𝑡 + 𝛼𝜃∇𝜃𝜇𝜃(𝑠𝑡)∇𝑎𝑄𝜔(𝑠𝑡, 𝑎𝑡)|𝑎=𝜇𝜃(𝑠). 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 
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2.5.3. DDPG 

Derin Deterministik Politika Gradyanı(DDPG) (Lillicrap ve diğ., 2016), sinir ağlarını 

genel fonksiyon yaklaştırıcı olarak kullanarak DPG algoritmasını uygular. Şekil 2.21’de 

DDPG algoritması verildi. 

 

Şekil 2.21.DDPG algoritması 

Sinir Ağlarını sürekli eylem alanlarıyla PÖ’de uygulamak üç ana soruna yol açar. Bunlar; 

ilişkili veriler, istikrarsızlık ve yetersiz keşif sorunlarıdır. Bu kısımda, bu sorunları çözen 

üç yöntem açıklanacaktır. Eğitim Sinir Ağları, eğitim verilerinin bağımsız ve aynı şekilde 

dağıtılmasını gerektirir (Goodfellow ve diğ., 2016), ancak ortamda sıralı olarak örnekler 

üretilirken durum böyle değildir. DDPG algoritması, önceki deneyimi depolamak için 

tekrar arabelleğini kullanır. Yeterli miktarda veri toplandığında tekrar arabelleği 

kullanılabilir. Amaç, “ilişkili verilerin lanetine” karşı koymaktır. Aktör-Kritik için kayıp 

işlevi daha sonraki örneklerden alınan kare kaybı olarak Denklem (2.33) ve (2.34)’deki 

gibi formüle edilebilir;  

𝐿(𝜃𝑄) = 𝔼𝑠~𝑝𝛽,𝑎𝑡~𝛽,𝑟𝑡~𝛦[(𝑄(𝑠𝑡, 𝑎𝑡|𝜃𝑄) − 𝑦𝑡)2] 

Buradan; 

𝑦𝑡 = 𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝑄(𝑠𝑡+1, 𝜇(𝑠𝑡+1)|𝜃𝑄). 

(2.33) 

(2.34) 
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Kritik için Sinir Ağı, optimize ettiğimiz ağ ile aynı ağ ile hesaplandığından, sapmaya 

eğilimlidir. Bu sorunun çözümü, ağların kopyalarını oluşturmak ve daha sonra 

güncellemektir. Bu, istikrar sağlamak için hem Aktör hem de Kritik kopyalarını almanın 

en verimli yöntemdir. Kopyalar Denklem (2.35)’deki gibi gösterilir;  

𝑄′(𝑠, 𝑎|𝜃𝑄′
) 

𝜇′(𝑠|𝜃𝜇′
) 

ve güncellemeler matematiksel olarak Denklem(2.36)’de gösterilen şekilde formüle 

edilebilir; 

𝜃𝑄′
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

 

𝜃𝜇′
← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′

 

𝜏 ≪ 1’dir. 

Sürekli eylem alanlarının araştırılması, var olan sonsuz sayıda permütasyon nedeniyle 

zordur. Politika dışı algoritmalarda, keşif öğrenme algoritmasından bağımsız olarak 

oluşturulabilir. Keşifçi bir Aktör oluşturmanın en basit yolu, Aktörler eylemine bir keşif 

gürültüsü eklemektir. Denklem (2.37); 

𝜐𝑒𝑥𝑝(𝑠𝑡) = 𝜇(𝑠𝑡|𝜃𝑡
𝜇

) + 𝒩 

Burada N, çevreye uyacak şekilde seçilebilir.  

2.5.4. A2C  

A2C ve A3C gibi aktör-eleştiri algoritmaları, model içermeyen, çevrimiçi, politika 

üzerinde pekiştirmeli öğrenme yöntemini kullanan aktör-kritik (AC) ajanlardır. Bu ajanın 

amacı, politikayı (aktörü) doğrudan optimize etmek ve getiriyi veya gelecekteki ödülleri 

tahmin etmek için bir eleştirmeni(kritik) eğitmektir (Mnih ve diğ., 2016). 

A2C Asynchronous Advantage Actor Critic'in (A3C) senkronize, deterministik bir 

çeşididir. Yeniden oynatma tamponunun kullanılmasını önlemek için birden fazla işçi 

kullanır. 

(2.35) 

(2.36) 

(2.37) 



43 

 

Şekil 2.22’de, A2C algoritmasının temel adımları gösterilmektedir.  

 

Şekil 2.22.A2C algoritması 

İlk olarak, ortam başlatılır ve aktör ve eleştirmen ağları başlatılır. Ardından, belirli bir 

sayıda iterasyon yapılır. Her bir iterasyonda, aktör adımları gerçekleştirilir. Aktör, bir 

durum alır, bir eylem seçer, bu eylemi ortamda uygular ve yeni durumu ve ödülü alır. Bu 

bilgiler belleğe kaydedilir ve durum güncellenir. Daha sonra, avantajlar ve indirgenmiş 

ödüller hesaplanır. Eleştirmen ağı bu hesaplamaları kullanarak güncellenir. Aktör ağı da 

aynı hesaplamaları kullanarak güncellenir. Bu adımlar hem eleştirmen ağının hem de 

aktör ağının öğrenmesini sağlar. Son olarak, belirli bir sayıda iterasyon 

gerçekleştirildikten sonra işlem tamamlanır ve ortam kapatılır. 

2.5.5. TRPO 

Güven Bölgesi Politika Optimizasyonu (TRPO), model içermeyen, çevrimiçi, politika 

üzerinde, politika gradyan pekiştirmeli öğrenme algoritmasıdır. TRPO, çevresel etkileşim 

yoluyla veri örnekleme ve kısıtlı bir optimizasyon problemini çözerek politika 

parametrelerini güncelleme arasında geçiş yapar. Eski politika ile yeni politika arasındaki 

KL sapması, optimizasyon sırasında bir kısıtlama olarak kullanılır. Sonuç olarak bu 

algoritma, güncellenen politikayı mevcut politikaya yakın bir güven bölgesi içinde 

tutarak standart politika gradyan yöntemlerine kıyasla önemli performans düşüşlerini 

önler (Schulman ve diğ., 2015).  
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Şekil 2.23’de gösterilen sözde koda göre, başlangıçta bir politika fonksiyonu parametresi 

(θ) başlatılır. Daha sonra, döngü, yakınsamaya ulaşıldığında duracak şekilde devam eder. 

Her döngü adımında, mevcut politika kullanılarak veri (D) toplanır ve bu veriye 

dayanarak avantajlar (A) hesaplanır. Daha sonra, politika gradyanı (g) ve bir güven 

bölgesi alt-problemini çözmek için bir adım yönü (d) hesaplanır. Son olarak, bir adım 

büyüklüğü (α) belirlenerek politika parametreleri güncellenir. 

 

Şekil 2.23.TRPO algoritması 

2.5.6. PPO 

Proksimal Politika Optimizasyonu (PPO), politika iyileştirmesini garanti altına almak 

için, TRPO(Schulman ve diğ., 2015), yeni politikanın bir optimizasyon kısıtlaması olarak 

eski politikanın ortalama performansından daha iyi olup olmadığını ölçmek için KL 

farklılığını getirmiştir. KL ayrışma kısıtlaması ile politikanın monoton olarak 

iyileştirilmesi garanti edilir. Ancak, TRPO'nun uygulanması zordur ve yürütülmesi için 

daha fazla hesaplama gerektirir. 

PPO(Schulman ve diğ., 2017), sınırlı optimizasyondan hesaplamayı azaltan kırpılmış bir 

vekil amaç işlevi önerdi. TRPO'daki kayıp fonksiyonu Denklem 2.37’deki gibi verilir;  

𝐿(𝜃) = 𝔼̂𝑡[𝑟𝑡(𝜃)𝐴̂𝑡] (2.37) 
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Burada 𝔼̂𝑡[… ]sonlu bir örnek grubu üzerindeki ampirik ortalamayı gösterir, 𝐴̂𝑡 avantaj 

fonksiyonu tahmincisidir 𝐴̂𝑡 ≔ −𝑉(𝑠𝑡 +  𝑟𝑡 + 𝛾𝑟𝑡+1 + ⋯ + 𝛾𝑇−𝑟𝑉(𝑠𝑇) ve rt(θ), geçerli 

politikası ile eski politika𝑟𝑡(𝜃) =
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)
 arasındaki olasılık oranını gösterir. 

KL ayrışma kısıtlaması, eski politikadan yeni politikaya ciddi bir güncelleme yapılmasını 

yasaklar, PPO böyle büyük bir değişiklikten kaçınmak için bir ceza uygular. Kırpılmış 

vekil amaç fonksiyonu Denklem 2.38’deki gibi verilir;  

𝐿𝐶𝐿𝐼𝑃(𝜃) = 𝔼̂𝑡[min (𝑟𝑡(𝜃)𝐴̂𝑡, 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜀, 1 + 𝜀)𝐴̂𝑡] 

TRPO ile karşılaştırıldığında, olasılık oranı 𝑟𝑡(𝜃) ,[1 - ε, 1 + ε] arasında kırpılır, pratikte 

epsilon ε= 0.2 olarak seçilir, yani yeni politika ne kadar iyi olursa olsun, 𝑟𝑡(𝜃)en fazla 

%20 artar.  

𝐴̂𝑡≥ 0, geçerli eylemin belirli bir durumda diğerlerinden daha iyi performans gösterdiği 

anlamına gelir. Yeni politika eskisinden daha iyiyse, daha iyi olanın seçilme olasılığı daha 

yüksek olacak şekilde 𝑟𝑡(𝜃)artırılmalıdır. Buna karşılık, 𝐴̂𝑡 ≤ 0 için, eylem caydırılmalı 

ve 𝑟𝑡(𝜃)azaltılmalıdır. 

PPO algoritması, Şekil 2.24’de özetlenmiştir. 

 

 Şekil 2.24.PPO algoritması 

(2.38) 
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2.5.7. TD3 

İkiz Gecikmeli Derin Deterministik Politika Gradyanı (Twin Delayed Deep Deterministic 

Policy Gradient) algoritması (TD3), hem aktörün hem de eleştirmenin fonksiyon 

yaklaşımcıları olarak kullanılan derin sinir ağlarından oluştuğu Aktör-Kritik mimarisine 

dayanmaktadır (Fujimoto ve diğ., 2018). TD3, DDPG algoritmasının üzerine inşa 

edilmiştir(Lillicrap ve diğ., 2016b). DDPG, robotik gibi sürekli kontrol problemleri için 

mükemmel sonuçlarla yaygın olarak kullanılmasına rağmen bazı sınırlamaları vardır. 

DDPG, diğer politika dışı algoritmalar gibi kararsız olma eğilimindedir ve Kritik Ağ'da 

Q değerinin aşırı tahmin edilmesine neden olan hiperparametrelere duyarlıdır. Bu hatalar 

zaman içinde biriktikçe, ajan yerel optimale düşebilir ve bu da optimal olmayan 

performansla sonuçlanabilir. TD3, aşağıdaki 3 optimizasyon görevini yerine getirerek 

aşırı tahmin sorununu ele almaktadır. 

Kırpılmış Çift Q-öğrenme: TD3, Q değerlerini tahmin etmek için bir yerine iki (ikiz) 

kritik ağı kullanır ve hedefi oluşturmak için ikisinden daha küçük olanı kullanır. Bu 

nedenle kırpılmış Çift Q-öğrenme olarak da adlandırılan bu yaklaşım, Q değerlerinin 

düşük tahmin edilmesine neden olur ve bu da kararlı bir yaklaşım sağlar. Q değerlerinin 

aşırı tahmin edilmesinin aksine, düşük değerler yayılmadığından düşük tahmin daha az 

sorun teşkil eder. 

Gecikmeli Politika Güncellemesi: Aktör-Kritik yöntemlerinde politika (aktör) ve kritik 

(değer) ağları birbirine sıkı sıkıya bağlıdır. Politika aşırı tahmin nedeniyle zayıf 

olduğunda eğitim ajanının değer tahmini sapar ve dolayısıyla politika yanlış değer 

tahmini nedeniyle daha da kötüleşmeye devam eder. Bu sorunu çözmek ve iki ağ 

arasındaki bağlantıyı azaltmak için, politika ağı değer ağından daha az sıklıkta 

güncellenir. Bu, politika ağının yalnızca birkaç yinelemeden sonra değer hatası azaldıktan 

sonra güncellenmesi nedeniyle algoritmanın genel kararlılığını artırır. 

Hedef Politika Düzgünleştirme: TD3 gibi deterministik politika yöntemleri değer 

fonksiyonundaki ani artışlara aşırı uyum sağlayabilir. Bu, eleştirmen güncellenirken 

yüksek varyanslı hedeflerle sonuçlanır. Bu sorunu çözmek için hedefe az miktarda 

kırpılmış rastgele gürültü eklenerek ve mini gruplar üzerinde ortalama alınarak 
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düzenlileştirme veya yumuşatma kullanılır. Gürültü kırpma işlemi, hedef değerin orijinal 

eyleme yakın olmasını sağlamak için yapılır. 

Şekil 2.25’de TD3 algoritmasının sözde kodu verilmiştir. 

 

Şekil 2.25.TD3 algoritması 

2.5.8. SAC 

Soft Aktör Kritik-Soft Actor Critic (SAC)(Haarnoja ve diğ., 2018), stokastik bir politikayı 

politika dışı bir şekilde optimize eden ve stokastik politika optimizasyonu ile DDPG tarzı 

yaklaşımlar arasında bir köprü oluşturan bir algoritmadır. TD3'ün doğrudan halefi 

değildir, ancak kırpılmış çift-Q hilesini içerir ve SAC'deki politikanın doğal stokastikliği 

nedeniyle, hedef politika yumuşatmadan yararlanır. Şekil 2.26’da SAC algoritmasının 

sözde kodu verilmiştir. 

SAC'nin merkezi bir özelliği entropi düzenlemesidir. Politika, beklenen getiri ile 

politikadaki rastgeleliğin bir ölçüsü olan entropi arasındaki dengeyi maksimize edecek 

şekilde eğitilir. Bunun keşif-kullanım değiş tokuşu ile yakın bir bağlantısı vardır: artan 

entropi daha fazla keşifle sonuçlanır ve bu da daha sonra öğrenmeyi hızlandırabilir. 
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Ayrıca politikanın zamanından önce kötü bir yerel optimuma yakınsamasını da 

önleyebilir. 

 

Şekil 2.26.SAC algoritması 

TD3'te olduğu gibi, her iki Q fonksiyonuda tek bir ortak hedefe geriletilerek 

öğrenilir.TD3'te olduğu gibi, paylaşılan hedef, hedef Q-ağları kullanılarak hesaplanır ve 

hedef Q-ağları, eğitim süresince Q-ağ parametrelerinin çoklu ortalaması alınarak elde 

edilir.TD3'te olduğu gibi, paylaşılan hedef kırpılmış çift-Q hilesini kullanır. 

TD3'ten farklı olarak hedef, SAC'nin entropi düzenlemesi kullanımından gelen bir terim 

de içerir.TD3'ten farklı olarak, hedefte kullanılan bir sonraki durum eylemleri hedef 

politika yerine mevcut politikadan gelir.TD3'ün aksine, açık bir hedef politika 

yumuşatması yoktur. TD3 deterministik bir politika eğitir ve bu nedenle sonraki durum 

eylemlerine rastgele gürültü ekleyerek yumuşatmayı gerçekleştirir. SAC stokastik bir 

politika eğitir ve bu nedenle bu stokastiklikten kaynaklanan gürültü benzer bir etki elde 

etmek için yeterlidir (URL-2). 
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2.6. Benzetim Ortamları (Simülatörler) 

Robotikte simülatörler, oluşturulan prototipleri kolayca ve ekonomik bir şeklide test 

etmek için kullanılır. (De Melo ve diğ., 2019). Simülatörler ile fizik motorları kullanılarak 

gerçek dünyaya benzer ortamlar oluşturulur. Robot deneylerinde en büyük risk meydana 

gelecek kazalardır. Simülatörler kullanılarak hem kazaların önüne geçilir hem de ciddi 

bir maliyet düşüşü sağlanır. 

 

Şekil 2.27. Simülatörlerin bilinirlik ve kullanılma durumları (Ivaldi ve diğ., 2014) 

Çağdaş robotik simülatörleri, çeşitli fizik motorları, geniş bir robot, sensör ve aktüatör 

kütüphanesi, gelişmiş programlama ve grafiksel arayüzler, robot hareketi ve sensör 

okumalarının simülasyonlarını sağlayan çoklu eklentiler sunar (Ivaldi ve diğ., 2014). 

Simülatörler, kullanıcının robotlarla ve diğer bileşenlerle fiziksel olarak etkileşime 

girmek zorunda kalmadan test etmesine ve davranışlar oluşturmasına olanak tanıyan 

programlardır. Yazılıma ve robota bağlı olarak, simülatörde oluşturulan uygulamaların, 

örneğin Robot İşletim Sistemi (ROS) (Quigley ve diğ., 2009) aracılığıyla fiziksel robota 

aktarılmasına izin verebilir. 

Bir simülatör kullanmanın faydaları, maliyetleri düşürmesi, zamandan ve paradan 

tasarruf etmesi, çeşitli alternatiflerin hiçbir maliyet veya risk ve arıza süresi olmadan test 
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edilmesine izin vermesi bakımından çok büyüktür. Şekil 2.27’de simülatörlerin bilinip 

bilinmediği ile ilgili yapılan bir anketin sonuçları verilmiştir. 

2.6.1. Webots 

Webots (Michel, 2004) yazılımı 1998 yılında Dr. Olivier Michael tarafından 

oluşturulmuştur ve çoğunlukla eğitim amaçlı kullanılmaktadır. Programa robotlar, 

sensörler ve aktüatörlerden oluşan geniş bir koleksiyon dahildir. Bir Webots sahnesi 

örneği, Şekil 2.28'de görülebilir. 

 

Şekil 2.28. Örnek webots sahnesi 

Robot hareket hızı üzerine yapılan araştırmalardan uyarlanabilir davranışların 

simülasyonundan öğretim ve robot programlama yarışmalarına kadar birçok alanda en sık 

kullanılan simülasyon yazılımlarından biridir. 

Webots çapraz platformdur ve C/C++, Java, Python ve Matlab gibi dilleri destekler. 

Oluşturma, OGRE motoru kullanılarak yapılır ve fizik motoru olarak ODE'nin özel bir 

sürümünü kullanır. Ayrıca, ROS'u desteklemenin yanı sıra dahili bir 3B modelleyici içerir 

(URL-3). 

2.6.2. Gazebo 

Gazebo (Koenig ve Howard, 2004), Open Source Robotics Foundation tarafından 

geliştirilen, 2002 yılında piyasaya sürülen bir robotik simülatördür. Karmaşık ortamlarda 

birden fazla robotu, nesneyi ve sensörü simüle etme yeteneğine sahip, dinamikleri olan 

çok robotlu bir simülatördür. Ayrıca, katı cisim fiziğini simüle etmenin yanı sıra nesneler 

arasında gerçekçi sensör geri bildirimi ve etkileşimler üretebilir. 
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Grafikler OGRE motoru kullanılarak oluşturulur. Dinamik simülasyonlar, dahil edilen 

dört fizik motorundan biri kullanılarak yapılabilir; ODE, Bullet, Simbody ve DART. Ana 

programlama dili C++'dır ve eklentiler kendi API'si kullanılarak geliştirilebilir. 

Simülasyonlar, TCP/IP kullanan uzak sunucularda veya bir bulut üzerinde 

çalıştırılabilir(Gong ve diğ., 2011). 

Gazebo açık kaynak kodludur, tüm platformlar için mevcuttur ve çevrimiçi simülasyon 

modeli deposu, forum, wiki ve robot uygulamaları için kitaplık içeren çok aktif bir 

topluluğa sahiptir. Aynı şirket, robot yazılımı yazmak için bir çerçeve olan ROS'u da 

geliştirdi. Gazebo'daki bir mobil robot örneği, Şekil 2.29'da görülebilir. 

 

 Şekil 2.29. Örnek Gazebo sahnesi 

 

2.6.3. V-rep (Copeliasim) 

V-REP (Sanal Robot Deney Platformu), Marc Freese tarafından oluşturuldu ve ilk olarak 

2010'da piyasaya sürüldü ve onu mevcut en modern simülatörlerden biri haline getirdi 

(URL-4). Hızlı prototipleme, otomasyon sistemlerinin simülasyonu ve öğretimi gibi 

birçok uygulama için kullanılabilir. 

V-REP, Coppelia Robotics tarafından sağlanan genel amaçlı bir robot simülasyon 

çerçevesidir. Birçok özelliğinden bazıları şunlardır: 

• Platformlar arası içerik (Linux, Mac ve Windows). 
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• Çerçeve ile çeşitli iletişim araçları (gömülü Lua komut dosyaları, C++ eklentileri, 6 

dilde uzak API'ler, ROS vb.). 

• Bir motordan diğerine hızlı bir şekilde geçiş yapabilme özelliğine sahip 4 fizik motoru 

(Bullet, ODE, Newton ve Vortex) desteği. 

• Ters ve ileri kinematik.  

• Hareket planlaması.  

• Gömülü Lua komut dosyalarına dayalı dağıtılmış kontrol mimarisi.  

Programa dahil edilen, piyasada bulunan robotların ve sensörlerin yanı sıra yeni modelleri 

içe aktarma veya entegre modelleme yeteneklerini kullanarak oluşturma yeteneğine 

sahiptir. ROS kullanarak gerçek robotlara da bağlanabilir. 

Mobil robotların yer aldığı bir sahne Şekil 2.30'da görülebilir. 

 

Şekil 2.30. Örnek Copeliasim sahnesi 

2.6.4. Microsoft Robotics Developer Studio 

Microsoft Robotics Developer Studio(Kang ve diğ., 2011) robot kontrolü için 3B simüle 

edilmiş ortam, sensör ve aktüatör verilerine kolay erişim, görsel bir programlama aracı 

ve web tabanlı arayüzler içerir. Araç, bir apartman, fabrika, ev ve dış mekan sahneleri 

dahil olmak üzere çeşitli simüle edilmiş ortamlarla birlikte gelir. Bir Microsoft aracı olan 

programlama, Python ve R ile karşılaştırıldığında genellikle makine öğrenimi ve 

pekiştirmeli öğrenme için popüler olmayan C# ile yapılır. Eylül 2014 itibariyle, 

Microsoft'un yeniden yapılandırma planının ardından araca verilen destek askıya alındı. 
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2.6.5. Robologix 

Öncelikle öğretim için kullanılan Robologix (URL-5), programcıların kendi hareket 

dizilerini yazmalarını, ortamı değiştirmelerini ve mevcut sensörleri beş eksenli bir 

endüstriyel robotta kullanmalarını sağlar.  

2.6.6. AnyKode Marilou 

AnyKode Marilou (URL-6) mobil robotlar, insansı robotlar, eklemli kollar ve gerçek 

dünya koşullarında çalışan paralel robotlar için ortamları simüle eder. Sensörlerin ve 

aktüatörlerin fiziksel ortamdaki gerçek özelliklere göre davranışlarını son derece yüksek 

bir gerçeklik seviyesiyle yeniden üreten bir motor sunar. C/C++, VB, J# ve C# eklentileri 

sunar. 

2.6.7. Graspit! 

Graspit! (Miller ve Allen, 2004) kavramayı araştırmak için tasarlanmış bir araçtır. Bir dizi 

analiz ve geliştirme aracı eşliğinde robotik kavrama görevlerini simüle etmek için sanal 

bir ortamdır. Adından da anlaşılacağı gibi, bir uç manipülasyon görevinden ziyade 

kavramaya daha fazla önem verir ve mevcut modellerin seçimi Mico Arm gibi belirli 

robotlara odaklanır. 

2.6.8. MuJoCo 

MuJoCo (Todorov ve diğ., 2012) , hızlı ve doğru simülasyona ihtiyaç duyulan alanlarda 

araştırma ve geliştirmeyi kolaylaştırmayı amaçlayan bir fizik motorudur. Model tabanlı 

optimizasyon ve bağlantılar aracılığıyla optimizasyon için tasarlanmıştır. 

2.6.9. OpenAI-Gym 

OpenAI Gym (Brockman ve diğ., 2016), Makine Öğrenimi metodolojilerini doğrulamak 

için PÖ’ nün epizodik tasarımına uygun olarak formüle edilen kıyaslama sorunlarının bir 

düzenlemesidir. OpenAI Gym platformu, araştırmacılara hazır ortamlar ve ajanlar 

sunarak PÖ algoritmları ile ilgili denemeler yapma imkanı sunar. Aşağıda kıyaslama 

ortamları hakkında bilgi verildi. 

• PÖ literatüründe geçen küçük ölçekli görevler için ortamlar; 

• Klasik Atari oyunlarda PÖ uygulamaları için ortamlar; 
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• Sürekli kontrol görevleri Box2D (URL-7) ortamı; 

• MuJoCo fizik motoru kullanarak 2B ve 3B robot kontrolü(Todorov ve diğ., 2012) . 

Bunları dışında daha birçok benzetim ortamı vardır. Otonom sürüş uygulamalarını test 

etmek için Carla ve Torcs, oyun geliştirme ortamı olan Unity, Python temelli robotik 

uygulamalar için Pybullet, insansız hava araçları için Airsim vb. gibi ortamlar mevcuttur. 

Bu tezde, mevcut donanım kaynakları da göz önünde bulundurularak öncelikle iki 

boyutlu ortamda çalışmanın daha verimli olacağına karar verildi. Bundan dolayı ortam 

iki boyutlu bir grid dünya olarak matlab programında ve python minigrid kütüphanesinde 

ayrı ayrı tasarlanmıştır. Mobil robot ve ortam değişkenleri (engel, hedef, ödül, vs.) grid 

dünya üzerinde hücre olarak temsil edilmiştir. Pekiştirmeli öğrenme algoritmaları bu 

ortamda çalıştırılırmıştır. Böylece belli bir robot markasına bağlı kalmadan algoritmalara 

yoğunlaşıldı. Grid dünyada elde edilen tecrübeler (model, hiperparamtreler,vb.) 3 boyutlu 

dünyada kullanıldı.3 boyutlu robotik simülatörü olarak Gazebo platformu kullanıldı. 

Turtlebot3 robotu gazebo ortamlarında SAC, TD3, PPO algoritmaları ile çalıştırıldı. 

2.7. Literatür İncelemesi 

Pekiştirmeli öğrenme birçok farklı alana uygulanmaktadır. Türkiye’de son 10 yılda bu 

alanda yazılan tezler incelendiğinde finans, ulaşım ağları, trafik kontrolü, ağ saldırıları 

tespiti, enerji optimizasyonu, otonom araçlar, insansız hava araçları vb. gibi farklı 

alanlarda uygulamaları görülmüştür. Bu çalışmalardan yapılan çıkarımda bir ajanın 

etkileşimde bulunduğu çevrede dinamik, büyük, sürekli ve değişken veri akışı varsa 

pekiştirmeli öğrenme ile eğitilen ajanlar yeni durumlara kolayca uyum sağlayabilmekte 

ve en iyi kararı verebilmektedir. Bu tezde mobil robot navigasyonu için pekiştirmeli 

öğrenme çalışmaları incelenmiştir. 

Khan, yaptığı çalışmada, mobil robot navigasyonu için TOSL informed-biased softmax 

regression (TOSL-iBSR) olarak adlandırılan yeni ve geliştirilmiş bir öğrenme süreci 

sunmuştur. Eylem seçimi rastgele bir süreç olarak değil, bunun yerine softmax 

regresyonu kullanılarak hesaplanan maksimum olasılık fonksiyonuna göre belirlenmiştir. 

Sunulan yaklaşımı kullanarak, robotun daha yüksek bir pozitif ödül ve daha az hesaplama 

maliyeti elde ederken navigasyon görevini tamamladığı gözlenmiştir. Simülasyon 

kullanılarak önerilen yaklaşımın Q-learning with softmax regression (Q-SR) ve true 
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online SARSA Q-biased softmax regression (TOSL-QBIASSR)'den daha iyi performans 

gösterdiği gösterilmiştir. Ajan olarak Pionner robot platformu kullanılmıştır. Python ve 

V-REP arasında çerçeve oluşturularak tüm fiziksel parametrelerle gerçek bir robot 

kullanılmıştır. Öğrenme sürecini daha bilinçli bir eylem seçme tekniğiyle birleştirerek 

bilinmeyen bir ortamda iki boyutlu gezinme gerçekleştirilmiştir(Khan, 2019).  

Zhang ve diğerleri, kentsel arama ve kurtarma görevlerinde, mobil kurtarma robotlarının 

yürüteceği bir dizi yerel gezinme eylemini belirlemek için robotun yerleşik 

sensörlerinden gelen ham duyusal verileri kullanan bir DPÖ ağı geliştirmişlerdir. 

Optimum robot navigasyon eylemlerini belirlemek için girdi olarak derinlik görüntüleri, 

yükseklik haritaları ve 3B yönlendirmeyi kullanan Asynchronous Advantage Actor-Critic 

(A3C) mimarisine dayalı bir ağ eğitmişlerdir. Engebeli arazi bilinmediğinde DPÖ 

yaklaşımının bir ortamdaki bir robotu hedef konumuna başarılı bir şekilde 

yönlendirebileceğini göstermiştir(Zhang ve diğ., 2018). 

Sung ve diğerleri, mobil robot navigasyonu için modelden bağımsız PÖ yaklaşımlarını 

tartışmışlardır. Ajan olarak Turtlebot3 robotu, fiziksel ortamı simule etmek için ise 

Gazebo ortamı kullanılmıştır. DQN algoritmasını farklı boyutlardaki gözlem uzaylarında 

denemişlerdir. Ayrık gözlem alanlarının sayısı artınca genelleme yeteneğinin kaybettiğini 

gözlemlemişlerdir. Öte yandan, ayrık gözlem alanları sayısını düşünce performansta 

yüksek varyanslara neden olunduğunu gözlemlemişlerdir. PÖ algoritmalarını 

ölçeklendirebilmek için birden fazla robotu simule etmişlerdir (Sung ve diğ., 2018). 

Çetin, robot navigasyonu için Q-öğrenme algoritmalarının uygunluğunu incelemişlerdir. 

Bunun için 3 farklı labirent ortamında simülasyonlar yapmışlardır. Robotun labirentte 

hedefe gitmesini sağlayan algoritmanın başarısını; iterasyon sayısı, öğrenme katsayısı ve 

Q tablosunun matris boyutunun belirlediğini gözlemlemişlerdir. Q matrisinin kararlı bir 

yapıya erişmesini beklemeden iterasyon miktarı küçük tutularak doğru sonuçlar elde 

edebilmişlerdir(Çetin, 2014). 

Muhammad ve Bucak, mobil robot navigasyonu için geleneksel Q-öğrenme algoritması 

yerine yeni bir algoritma önermişlerdir. Önerdikleri algoritmada gezinme sırasında, tüm 

durum-eylem çiftlerinin yörüngesi saklanır ve rafine edilmiş Q değerlerini herhangi bir 

durumdan bir hedef durumuna yaymak için geriye doğru bir yönde yeniden oynatılır. 
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Simülasyonlardan elde ettikleri sonuçlar ile geleneksel Q-Öğrenmeye kıyasla çok daha 

iyi bir performans gözlemlemişlerdir. Q-tablosunun yakınsama oranını büyük ölçüde 

azaltılmışlardır(Muhammad ve Bucak, 2013). 

Güçkıran ve Bolat, yaptığı çalışmada TORCS ortamı için Soft Actor-Critic-LSTM (SAC-

LSTM) ve Rainbow DQN algoritmalarını, keşif ve genelleme tekniklerini kullanarak en 

uygun DPÖ ajanlarını araştırmıştır. TORCS ortamında SAC-LSTM ve Rainbow 

algoritmalarını yarış araçlarına uygulamıştır. Otonom yarışlar simule edildikten sonra 

SAC-LSTM algoritmasının daha başarılı olduğunu gözlemlemiştir. Bunun sebebi olarak 

keşif yöntemleri ve sürekli eylem alanı nedeniyle olduğunu iddia etmiştir. SAC, entropiyi 

maksimize etmeye çalışır ve bu ajanın eylem alanının belirsiz bölgelerini keşfetmesine 

izin verir. Ek olarak, SAC’ın politika ağı sürekli eylemler içerdiğinden, Rainbow 

DQN’nin gizli 27 eyleminden farklı olarak frenleme, hızlanma ve yönlendirme sürekli 

eylemlerle kontrol edilebilir(Guckiran ve Bolat, 2019). 

Altuntaş, popüler PÖ algoritmalarından Sarsa(λ) ve Q(λ) algoritmalarını seçerek mobil 

robot navigasyonu probleminin çözümü için bir sistem önermiştir. MATLAB ile 

geliştirilen sistem, hem simülasyon hem gerçek ortamda, yüksek bir başarı oranıyla 

gezgin robotu engellerden kaçırarak istenen hedefe yönlendirebilmiştir. Robot platformu 

olarak Robotino kullanılmıştır. Ayrıca, sistem sayesinde PÖ metotlarında kullanılan 

başlangıç parametrelerinin, örneğin λ, öğrenmeye olan etkisini gözlemlemiş ve Sarsa(λ) 

ve Q(λ) algoritmalarının performanslarında karşılaştırmalar yapmıştır. Sonuç olarak, 

SARSA'nın% 90 ila% 70 öğrenme oranıyla Q-öğrenmeden daha hızlı optimal değerlere 

yakınlaştığını bulmuştur. (Altuntaş, 2013). 

Engin, Q-öğrenme, SARSA, DQN ve Bulanık Kural Interpolasyonu Temelli Q tipi 

öğrenme (FRIQ) gibi farklı pekiştirmeli öğrenme algoritmalarının, bir robot modelinin 

iki boyutlu bir labirent ortamında başlangıç noktasından hedefe ulaşana kadar geçen 

toplam zaman ve adım sayısına bağlı olarak performans kıyasını içeren bir çalışma 

yapmıştır. DQN ve FRIQ öğrenmenin, daha az sayıda bölümle hedefe ulaşmak için en 

kısa yol anlamına gelen optimal politikayı bulma açısından Q-öğrenme ve SARSA'ya 

üstün olduğu görülmüştür. 
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FRIQ-Öğrenmeye göre, DQN, daha az sayıda bölümle en uygun politikayı bulma 

açısından biraz daha iyi bir performansa sergilemiştir. Öte yandan, FRIQ öğrenme, 

labirentin duvarlarıyla çevrili köşelerde ve dar bölgelerde daha iyi bir performansa sahip 

olduğu görülmüştür.(Engin, 2019) . 

Demir, otonom forkliftler gibi değişken yükler altında çalışacak olan robotların hareket 

planlama ve kontrolü problemlerine farklı bir çözüm önermiştir. Önerilen yöntem ile 

robotların üzerlerindeki yükler altında nasıl hareket edebildiklerini derin pekiştirmeli 

öğrenme yöntemi ile öğrenmeleri sağlanmıştır. Ardından robotlar daha önceden 

kendilerine öğretilmiş olan görevi, öğretim zamanı kendilerine verilmemiş yük 

miktarlarında da tekrarlamış ve başarılı olmuşlardır. Ajanlar DDPG algoritması 

kullanılarak eğitilmiştir(Demir, 2019). 

Lei Tai ve Ming Liu tarafından yapılan çalışmada(Tai ve Liu, 2016), Kinect RGB-D 

kamerasından elde edilen ham derinlik görüntülerini işleyen bir CNN ile işletilen mobil 

platform, farklı senaryolarda çarpışmasız bir şekilde ortamı keşfetmeyi başarı ile 

öğrenmiştir. Aynı araştırmacılar bir başka çalışmada (Tai ve diğ., 2017) bir robot üzerine 

monte edilmiş tek bir SICK TiM570 lazer kullanarak haritasız bir hareket planlayıcı 

yaklaşımı önerdiler. On adet seyrek lazer bulgusu ve göreli hedef konumundan oluşan bir 

durum modeli ile mobil platform, herhangi bir engele çarpmadan istenilen hedeflere 

ulaşmayı başardı. Eğitim rutinini sürdürmek için kullanılan DPÖ yöntemi, eşzamansız 

DDPG tabanlı bir algoritmaydı(Lillicrap ve diğ., 2016).  

Liang ve ark. yaptıkları çalışmada (Liang ve diğ., 2020), bir mobil robotun yoğun ve 

kalabalık ortamlarda gerçek zamanlı çarpışma önleme işlemini gerçekleştirmesini 

sağlayan bir uygulama sunmaktadır. Ajan, PPO (Schulman ve diğ., 2017) adlı politika 

tabanlı bir DPÖ algoritması kullanarak dinamik ve statik engellerle girdiği farklı 

etkileşim türlerinden dolaylı olarak öğrenir.  

Xie ve ark. (Xie ve diğ., 2017) ve Ruan ve ark. (Ruan ve diğ., 2019), dinamik engellerden 

kaçınma ile uçtan uca bir mobil robot navigasyonu oluşturmak için son teknoloji D3QN 

mimarisini kullanarak karşılaştırılabilir çalışmalar önermektedir. Ruan ve ark., ilgili 

doğrulamaları gerçekleştirmek için hem simüle edilmiş hem de gerçek alanlarda Kinect 
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RGB-D kamera ile donatılmış bir platform kullanırken, Xie ve ark. bu tür sensörleri 

yalnızca sanal ortamlarda kullanmaktadır.  

Chen ve ark. (Chen ve diğ., 2017) , sırayla, DPÖ değer tabanlı bir yaklaşım olan                            

V-Öğrenme’yi kullanarak tamamen özerk bir robotik navigasyon sağlayan yöntem 

önermektedir. Kalabalık bir ortamda insan yürüme hızında hareket eden platform, sosyal 

olarak bilinçli bir hareket planlaması yürütürken diğer üç ajanı tespit etmeyi ve izlemeyi 

başarıyor. Yöntemin ödül modelini ayarlayarak, robot sağ veya sol sosyal normları 

benimseyebildiğini kanıtlıyor.  

Yukarıda belirtilen ajanın tespit ve takip numarası sınırlamasıyla yüzleşmek için, Everett 

ve arkadaları (Everett ve diğ., 2018) rasgele sayıda ajanı gözlemlemek için yinelenen sinir 

ağları (RNN) mimarisine sahip bir çözüm önermiştir. Karar verme ajanları arasında 

sunulan DPÖ tabanlı hareket planlaması, politika tabanlı bir GPU / CPU Asenkron 

Advantage ActorCritic (GA3C) (Babaeizadeh ve diğ., 2017) öğrenme yaklaşımı, bir 

kuyruk sistemi kullanan bir strateji ve Derin Yapay Sinir Ağlarını eğitmek için dinamik 

bir zamanlama tekniği kullanmaktadır.  

Bu tez çalışmasının amacı, mobil robotların pekiştirmeli öğrenme algoritmalarını 

kullanarak dinamik iç ortamlarda yörünge planlamasını yapmasını sağlamaktır. Mobil 

robotik araştırmalarındaki otonom navigasyon konusuna yıllar içerisinde pek çok çözüm 

bulunmuş ve geliştirilmiştir. Bu çalışmada bu zamana kadar mobil robotların otonom 

navigasyon probleminin çözümüne nasıl yaklaşıldığına ve pekiştirmeli öğrenme 

yönteminin seçilmesinin sebebine odaklanılacaktır. Pekiştirmeli öğrenme 

algoritmalarının değişen çevre şartlarına göre performans testleri yapılacaktır. Ayrıca 

öğrenme sürelerine göre de testler yapılıp algoritmalar kıyaslanacaktır. 
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3. MALZEME VE YÖNTEM 

3.1. İşletim Sistemi 

Ubuntu(Sobell, 2015), ücretsiz, açık kaynak kodlu, güvenlikli, geliştiricilere imkan 

sağlayan bir işletim sistemdir. Çoğu donanım ve yazılım sürümüyle uyumlu olması ve 

robot çerçeveleri, simülatörler ve Entegre Geliştirme Ortamları (IDE'ler) gibi çeşitli 

modülleri kolayca birleştirmek için gerekli araçları sunması nedeniyle robotik 

uygulamaları ve simülasyonu yapmak için geleneksel işletim sistemi haline gelmiştir. 

Bu çalışmada, Gazebo platformunu ROS Noetic ile kullanmak için Ubuntu 20.04, sürümü 

kullanıldı. 

3.2. Robot İşletim Sistemi (ROS) 

Robot İşletim Sistemi (Quigley et al. 2009), robotların ortak platformda çalışabilmesi için 

çeşitli protokoller, kütüphaneler ve araçlar sunan açık kaynak kodlu bir meta işletim 

sistemdir. C++, Python gibi çeşitli yazılım dillerini destekler. ROS yapısı dört ana 

etmenden meydana gelir. Bunlar; konular, hizmetler, düğümler ve mesajlardır. Düğümler 

ana yazılım birimleridir. Aralarında mesajları gönderir ve alırlar. ROS’da yayıncı-abone 

mantığı vardır. Bir düğüm bir konuya kaynağa olur, başka bir düğümde aboneye yayın 

yapar. Örneğin; Anlık nem bilgisini yayınlayan ve ona abone olan düğümler gibi.  

• Düğümler arasındaki iletişimi konular ya da hizmetler üzerinden sağlanır. 

• Konular: Yayıncı-Abone protokolüne göre çalışır. Mesajı yayınlayan bir düğüm 

vardır. Başka bir düğümde ona abone olur. Hizmetler: İstemci-Sunucu mantığı ile 

çalışır. Bir düğüm istek yapar diğer düğüm isteğe cevap vererek hizmet sunar. 

Şekil 3.1'de ROS ‘un çalışma yapısını gösterilmektedir. Her konunun yayıncılarını ve 

abonelerini, konu adreslerini, hizmetleri ve yayınlanan mesajları izleyen bir ana sunucu 

(Master) vardır. Kayıt ve iletişim işlemleri sırasıyla aşağıdaki adımlara uyar: 

1. Abone düğümler Master’a bir konuya abone olmak isteklerini bildirir. 

2. Yayıncı düğümler, Master'a aynı konuda yayın yaptığını bildirir;  

3. Abone düğümler, Master düğüm tarafından geri bildirim alır;  

4. Abone düğümler yayıncı düğümle iletişime geçer ve mesajı alırlar. 
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Şekil 3.1.ROS yayıncı-abone iletişimi 

3.3. Gazebo 

Robotik simülatörler, fizik motorları, sensör ve aktuatör destekleri ve çeşitli yazılım dili 

destekleri araştırmacılara güzel imkanlar sunar(Ivaldi ve diğ., 2014). Birkaç seçeneği 

(Gong ve diğ., 2011) analiz ettikten sonra, Gazebo (Zamora ve diğ., 2016), geliştirilen 

navigasyon çerçevesi deneylerine temel olarak gerçekleştirmek üzere seçilen robot 

simülatörüydü. Gazebo, mobil, insansı ve hizmet robotu araştırma alanlarında  (Ivaldi ve 

diğ., 2014) en yaygın yazılımdır.Bu tezde üç boyutlu ortamlarda PPO,SAC,TD3 

algoritmalarının eğitimi Gazebo’nun sunduğu hazır ortamlar ile yapıldı.  

3.4. Turtlebot 

Şimdiye kadar DPÖ tabanlı algoritmayı geliştirmek için, robot çerçeveleri, ortam 

görselleştirme araçları ve navigasyon simülatörleri açıklandı. Bununla birlikte, her türlü 

veriyi toplayan ve yazılım kontrol modüllerine ileten, tüm navigasyon akışının uyum 

içinde çalışmasını sağlayan sistemin merkezi unsuru, mobil robottur. Bu tezde Gazebo 

ortamında yapılan deneylerde Turtlebot kullanıldı. Şekil 3.2‘de Turtlebot Burger 

gösterildi.  

Turtlebot, kullanıcıların robotlar veya sanal ortamlar oluşturmaya ihtiyaç duymadan 

robotik uygulamaları hızlı bir şekilde geliştirmelerini sağlayan bir paket olan ROS ‘da 

mevcuttur. Turtlebot'un ana donanım özellikleri (URL-8) Tablo 3.1'de sunulmaktadır ve 

yerleşik lazer özellikleri Tablo 3.2'de listelenmiştir. 
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Şekil 3.2. Turtlebot Burger 

Tablo 3.1. Turtlebot donanım özellikleri 

Maksimum hız 0.22 m/s 

Maksimum dönüş hızı 2.84 rad/sn(167.72 derece/sn) 

Maksimum hız 15 kg 

Boyut(Uzunluk x Genişlik x Yükseklik) 138mm x 178mm x 192 mm 

Lazer Mesafe Sensörü 360 Lazer Mesafe Sensörü LDS-01 

 

Tablo 3.2.Lazer Mesafe Sensörü LDS-01 

Mesafe Aralığı 120-3500mm 

Mesafe doğruluğu(120mm-499mm) ±15mm 

Mesafe doğruluğu(500mm-3500mm) ±5.0% 

Mesafe hassasiyeti(120mm-499mm) ±15mm 

Mesafe hassasiyeti (500mm-3500mm) ±3.5% 

Tarama hızı 300±10 rpm 

Açısal aralık 360○ 

Açısal çözünürlük 1○ 

 

3.5. Programlama Dili 

Bu çalışmada ROS’da Gazebo ortamında çalışacak yazılım modüllerini geliştirmek için 

Python (URL-9) programlama dili seçildi. Sürüm olarak da Python 3.8 kullanıldı. Python, 

makine öğrenimi uygulamaları oluşturmak için tercih edilen bir programlama dilidir, 

geliştiricilere yardımcı olmak için çeşitli araçlara ve kapsamlı bir paket kitaplığına 

sahiptir. Bu tezde makine öğrenme kütüphanesi olarak PyTorch(Paszke ve diğ., 2019) ve 

TensorFlow (Abadi ve diğ., 2016) kullanıldı. Veri görselleştirme için TensorBoard, ROS 

bağlantısını kurmak için RosPy kullanıldı. Grid dünya oluşturmak için Minigrid 

kütüphanesi (URL-10) kullanıldı.  
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3.6. Matlab Pekiştirmeli Öğrenme Araç Kutusu 

Pekiştirmeli Öğrenme Araç Kutusu (URL-11), DQN, PPO, SAC ve DDPG dahil olmak 

üzere pekiştirmeli öğrenme algoritmalarını kullanarak eğitim politikaları için bir 

uygulama, işlevler ve bir Simulink bloğu sağlar. Bu politikaları, kaynak tahsisi, robotik 

ve otonom sistemler gibi karmaşık uygulamalar için denetleyiciler ve karar verme 

algoritmaları uygulamak üzere kullanabilirsiniz. 

Pekiştirmeli Öğrenme Araç Kutusu, derin sinir ağları veya arama tabloları kullanarak 

politikları ve değer işlevlerini temsil etmenize ve bunları MATLAB veya Simulink'te 

modellenen ortamlarla etkileşimler yoluyla eğitmenize olanak tanır. Araç kutusunda 

sağlanan tek veya çok ajanlı pekiştirmeli öğrenme algoritmalarını değerlendirebilir veya 

kendinizinkini geliştirebilirsiniz. Hiper parametre ayarlarıyla denemeler yapabilir, eğitim 

ilerlemesini izleyebilir ve eğitilmiş ajanları uygulama aracılığıyla etkileşimli olarak veya 

programlı olarak simüle edebilirsiniz. Eğitim performansını artırmak için simülasyonlar 

birden fazla CPU, GPU, bilgisayar kümesi ve bulutta (Paralel Bilgi İşlem Araç Kutusu 

ve MATLAB Paralel Sunucu ile) paralel olarak çalıştırılabilir. 

3.7. OpenAI Gym ve Stable Baselines 

OpenAI gym(Brockman ve diğ., 2016b), pekiştirmeli öğrenme ortamlarının ve 

algoritmalarının geliştirilmesi ve kıyaslanması için yaygın olarak kullanılan bir python 

kütüphanesidir. Kullanım kolaylığı nedeniyle, PÖ öğrenmek için bir başlangıç noktası 

haline gelmiştir. Atari video oyunlarından, robotik hareket kontrolüne kadar çeşitli 

kullanıcılara sunar. Bu tezde kullandığımız özel ortamın oluşturulmasını destekler.  

OpenAI gym, çevre ve öğrenme algoritmaları arasındaki iletişim için standart API'ler 

sağlar. DPÖ algoritmalarını kullanarak mobil robotu eğitmek için OpenAI gym ile birlikte 

stable baselines3 (SB3) kütüphanesini kullanıldı. SB3, PyTorch kullanarak son teknoloji 

DPÖ algoritmalarının yüksek kalitede uygulanmasını sağlayan açık kaynak kodlu bir 

çerçevedir (Raffin ve diğ., 2021). 

Derin pekiştirmeli öğrenme kullanan mobil robot haritasız navigasyon sisteminin genel 

mimarisi, Şekil 3.3’de gösterilmektedir. Bu sistemin üç temel bileşeni vardır: 

Simülasyon, OpenAI Gym ortamı ve Stable Baselines temelli DPÖ algoritmalarının 
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uygulanması. Modüllerde kullanılan tüm araçlar, kütüphaneler ve çerçeveler açık 

kaynaklıdır. 

  

Şekil 3.3. Gazebo-Ros-OpenAI-Stable Baselines Mimarisi 

3.8. Derin Pekiştirmeli Öğrenme Temsilcileri 

Bu tezde son teknoloji DPÖ algoritmaları olan DQN, SAC, A2C, TRPO, TD3, PPO 

karşılaştırıldı. Bu algoritmalar, DPÖ araştırma topluluğundaki mevcut literatüre ve 

popülerliğe göre seçilmiştir (Fujimoto ve diğ., 2018; Raffin ve diğ., 2021). A2C, DQN, 

TRPO, PPO gibi ayrık eylem uzayında çalışabilen farklı pekiştirmeli öğrenme 

algoritmalarının performansları grid dünya ortamında kıyaslanmıştır. Sürekli eylem 

uzaylarında çalışan TD3, SAC, PPO algoritmaları Gazebo ortamında kıyaslandı. DPÖ 

ajanlarına ait hiperparemetreler Bölüm 4’de verilmiştir. 

3.9. Çevre-Ortam Temsilleri 

Pekiştirmeli öğrenmede çevre, girdi/çıktı veri reaksiyonlarının, model görselleştirmesinin 

ve ödül işlevinin açıklamasıdır. Yani bir PÖ ajanı çevre ile etkileşime girerek çevreden 

ödül, durum, yeni durum bilgilerini alır. 

Araştırmacılar, yol planlama problemini çözmek için kullanılan çeşitli yöntemleri çevre 

tipi ve yol planlama algoritmaları olarak iki faktöre göre ayırmaktadırlar. Çevre tipi, statik 

ve dinamik olmak üzere ikiye ayrılır. Statik ortam, robottan başka hareketli nesneler 

içermeyen ortam olarak tanımlanır; dinamik ortam ise dinamik hareketli nesnelere (yani 
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insanlar, hareketli makineler ve hareketli robotlar) sahip olan ortamdır(Al-Taharwa ve 

diğ., 2008).  

Bu tezde, pekiştirmeli öğrenme ajanları önce 2 boyutlu ortamlarda daha sonra 3 boyutlu 

ortamlarda eğitildi. 3 boyutlu ortamda eğitim, donanım kaynaklarını fazlasıyla 

zorlamıştır. Bu nedenle kapalı bir oda ortamı öncelikle grid dünya temsil edildi. Böylece 

mevcut kaynaklar daha verimli kullanılmıştır. Eğitim süreleri arasındaki fark Bölüm 4’te 

verildi. 3 boyutlu ortamda algoritmaları eğitmek için Gazebo Empty World ve Gazebo 

Maze World ortamları kullanıldı. 2 boyutta ise Matlab’ta dinamik ve statik grid dünya, 

MiniGrid kütüphanesinde ise MiniGrid-FourRooms ve MiniGrid-Dynamic-Obstacles 

ortamları kullanıldı. 

3.10. Ödül Modelleri 

Ödül fonksiyonları veya ödül şekillendirme, geçerli politikayı ve optimizasyon hedefini 

dolaylı olarak belirlediğinden, geçerli bir politikanın başarılı bir şekilde öğrenilmesinde 

kritik bir rol oynar. Optimal bir ödül işlevi tasarlamak zorlu bir iştir (Abbeel ve Ng, 2004). 

Bir ödül fonksiyonu, her t adımında ödülü hesaplar. Bir ajana, istenen şekilde eylem 

oluşturma için pozitif bir ödül verilirken, aksi halde cezalandırılır. Bu nedenle, ödül işlevi, 

ajana navigasyon politikasını / eğitim modelini öğrenirken veya model devreye 

alındığında performansının iyileşip iyileşmediğini bildiren bir geri bildirim sinyali sağlar. 

Bu çalışma için farklı ödül fonksiyonlarını ve parametrelerini araştırıldı ve denendi. 

Bölüm 4’te her ortamda kullanılan ödül yaklaşımlarına yer verilmiştir. 

3.11. Parametre Optimizasyonu 

Bu tezde iki aşamalı bir yöntem izlenmiştir.2 boyutlu dünyada elde edilen 

tecrübeler(hiperparamterler,modeller,vb.) 3 boyutlu ortamlara aktarıldı. Parametre 

optimizasyonu için RL Baselines 3 Zoo (URL-12) kütüphanesinden yararlanıldı. RL 

Baselines3 Zoo, PyTorch'taki pekiştirmeli öğrenme algoritmalarının güvenilir 

uygulamaları olan Stable Baselines3'ü kullanan PÖ için bir eğitim çerçevesidir. 

3.12. Donanım 

Bu tezde çalışmalar, işlemci  olarak, Intel(R) Core(TM)2 Duo CPU P8400  @ 2.26GHz, 

2267 Mhz, 2 Çekirdek, 2 Mantıksal İşlemci, Yüklü Fiziksel Bellek (RAM) 4.00 GB bir 
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bilgisayarda yapılmıştır. Mevcut donanım kaynakları ile 3 boyutlu render işlemi çok uzun 

süre almıştır ve kaynakları ciddi anlamda zorlamıştır.  
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4. BULGULAR VE TARTIŞMA 

4.1. Grid Dünya 

 

Şekil 4.1. 5x5 grid dünya 

Şekil 4.1’de kapalı bir oda ortamının grid dünya temsili gösterilmektedir. 5x5 matris 

yapısındadır. Her hücre bir metrekare olarak varsayılmıştır. Böylece 25 metrekarelik bir 

oda oluşturuldu. [[3,3],[3,4],[3,5],[5,3]] noktaları duvar olarak tasarlandı. [5,5] noktası 

varılacak hedef nokta olarak tasarlandı. [1,1] noktası robotun başlangıç noktasıdır. Durum 

uzayı 25x1, eylem uzayı 4x1 vektörlerden oluşur. Yukarı, aşağı, sağa ve sola olmak üzere 

4 eylem vardır. Ödül modeli olarak ise robotun hedefe ulaşamadığı her an -1 ödül puanı 

alır. Hedefe ulaşınca ise 10 puan alır. Q ajanı ve Sarsa ajanı bu ortamda eğitildi. 

Kullanılan hiperparametreler ve eğitim seçenekleri Tablo 4.1 ‘de verilmiştir. 

Tablo 4.1.Q ve Sarsa ajanları için kullanılan hiperparametreler ve eğitim seçenekleri 

Öğrenme Oranı-α 0.99 

İndirim Faktörü-γ 0.95 

Epsilon-ε 0.4 

Bölüm Sayısı 200 

Bölüm Başına Adım Sayısı 50 

Durdurma Kriteri Ortalama Ödül 

Durdurma Değeri 11 

Pencere Uzunluğu 30 

 

Şekil 4.2 ve 4.3’te sırasıyla Q ajanının ve Sarsa ajanın bölüm başına aldığı ödül 

miktarlarının grafiği verilmiştir. Q ajanı öğrenmeyi daha hızlı gerçekleştirmiştir. Her iki 

ajanda hedefe başarıyla ulaşmıştır. 
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Şekil 4.2. Q ajanın ödül performansı 

 

Şekil 4.3. Sarsa ajanın ödül performansı 

Şekil 4.4’te hastane odasının grid dünyada temsili verilmiştir. Bu sefer oda daha büyük 

ve stokastik bir şekilde tasarlanmıştır. [4,5] noktasındaki hücre insan olarak düşünülebilir. 

Ortamın diğer özellikleri ise şöyledir; 
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Şekil 4.4. 8x7 grid dünya 

• Hedef: Mümkün olan en kısa sürede en yakın pozitif terminal durumlarına ulaşmaktır. 

• Eylemler: Temsilci 4 olası yönde hareket edebilir. Sağ, sol, yukarı, aşağı 

• Durumlar: 7 Pozitif Terminal (8. Sıra) ve 1 Negatif Terminal durumu (4,5) ile 56 

durum vardır. 

• Ödül: Tüm terminal olmayan durumların küçük bir negatif ödülü (-1) ve terminal 

durumlarının büyük bir pozitif ödülü (10) vardır. 

Ajan hareket etmek zorundadır, bir yerde duramaz. Ortamdaki stokastiklik ajanların 

hareketini etkiler. Ortam, ajanı belirli bir yoğunlukta grid’in altına doğru iter. Eğer ajan 

[4,2] durumundan yukarı çıkarsa, [6,2] durumuna inecektir. 

Bu ortamda, Q ajanı ve DQN ajanı eğitilmiştir. Şekil 4.5 ve 4.6’da sırasıyla Q ajanının ve 

DQN ajanın bölüm başına aldığı ödül miktarlarının grafiği verilmiştir. DQN ajanı 

öğrenmeyi daha hızlı gerçekleştirmiştir. Bunun sebebi olarak fonksiyon yaklaştırıcı 

olarak YSA’nın kullanılması söylenebilir. Kullanılan hiperparametreler ve eğitim 

seçenekleri Tablo 4.2 ‘de verilmiştir. 

Tablo 4.2.Q ve DQN ajanları için kullanılan hiperparametreler ve eğitim seçenekleri 

Öğrenme Oranı-α 1 

İndirim Faktörü-γ 0.95 

Epsilon-ε 0.4 

Bölüm Sayısı 700 

Bölüm Başına Adım Sayısı 700 

Durdurma Kriteri Bölüm Sayısı 

Durdurma Değeri 700 

Pencere Uzunluğu 5 
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Şekil 4.5. Q ajanın 8x7 grid dünyada ödül performansı 

 

 

Şekil 4.6. DQN ajanın 8x7 grid dünyada ödül performansı 
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4.2. MiniGrid-FourRooms 

 

Şekil 4.7. MiniGrid-FourRooms-v0 

MiniGrid-FourRooms-v0 ortamı dört odalı bir grid ortamını temsil eder. Şekil 4.7’de 

ortamın örnek bir temsili verilmiştir. Ajan, duvarlardaki 4 boşlukla birbirine bağlanan 

dört odadan oluşan bir labirentte gezinmelidir. Ajan, bir ödül elde etmek için yeşil hedef 

karesine ulaşmalıdır. Hem ajan hem de hedef kare dört odadan herhangi birine rastgele 

yerleştirilir. Durum uzayı 8x8x4, eylem uzayı 4x1 vektörlerden oluşur. Yukarı, aşağı, 

sağa ve sola olmak üzere 4 eylem vardır. Ödül modeli olarak ise başarı için '1- 0,9 * (adım 

sayısı / toplam adım)' ve başarısızlık için '0' ödülü verilir. Ajan hedefe ulaştığında yada 

maksimum adım sayısına ulaşıldığında bölüm sona erer.  

Şekil 4.8’de DPÖ Ajanlarının bölüm başına aldığı ödül miktarlarının grafiği verilmiştir. 

Algoritmalar eylem ve durum uzayına göre belirlenmiştir. MiniGrid-FourRooms-v0 

ortamındaki eylem ve durum uzayı ayrıktır. Buna göre A2C, DQN, PPO, TRPO 

algoritmaları ayrık eylem uzaylarına uygun olduğu için seçilmiştir.  Ajanlar 2 milyon 

bölüm eğitilmiştir. DQN ajanı ödül alamamıştır. A2C, PPO, TRPO ajanlarından ise PPO 

daha kararlı görülmektedir ve doğru eylem seçimlerini kararlı bir şekilde yapmıştır.  

Kullanılan hiperparametreler ve eğitim seçenekleri Tablo 4.3 ‘de verilmiştir. 
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Şekil 4.8. DPÖ Ajanlarının MiniGrid-FourRooms-v0 Ortamındaki Ödül Performansı 

 

Tablo 4.3. A2C, DQN, PPO, TRPO ajanı için kullanılan hiperparametreler ve eğitim 

seçenekleri 

  A2C DQN PPO TRPO 

normalize true  true  true  true 

n_envs 8 8 8 8 

n_timesteps 4000000 4000000 4000000 4000000 

policy  'MLP'  'MLP'  'MLP’  'MLP' 

n_steps 512 - 512 512 

gae_lambda 0.95 - 0.95 0.95 

gamma 0.99 0.99 0.99 0.99 

ent_coef 0.0 - 0.0 0.0 

learning_rate 2.5e-4 2.5e-4 2.5e-4 0.001 

batch size 
 

64 64 64 

clip_range - - 0.2 - 

n_epochs - - 10 - 
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4.3. MiniGrid-Dynamic-Obstacles 

 

Şekil 4.9. MiniGrid- Dynamic-Obstacles-16x16-v0 

MiniGrid-Dynamic-Obstacles-16x16-v0 ortamı, hareketli engellerin bulunduğu boş bir 

odadır. Şekil 4.9’da ortamın örnek bir temsili verilmiştir. Ajanın amacı herhangi bir 

engele çarpmadan yeşil hedef karesine ulaşmaktır. Ajan bir engelle çarpışırsa büyük bir 

ceza kesilir ve bölüm sona erer. Bu ortam, Kısmi Gözlenebilirlikte Takviyeli Öğrenme 

ile mobil robotlar için Dinamik Engelden Kaçınma'yı test etmek için kullanışlıdır. Durum 

uzayı 16x16, eylem uzayı 4x1 vektörlerden oluşur. Yukarı, aşağı, sağa ve sola olmak 

üzere 4 eylem vardır. Ödül modeli olarak ise başarı için '1- 0,9 * (adım sayısı / toplam 

adım)' ve başarısızlık için '0' ödülü verilir. Ajan bir engelle çarpışırsa '-1' cezası verilir. 

Ajan hedefe ulaştığında, bir engele çarptığında ya da maksimum adım sayısına 

ulaşıldığında bölüm sona erer. 

Şekil 4.10’da DPÖ Ajanlarının bölüm başına aldığı ödül miktarlarının grafiği verilmiştir. 

Algoritmalar eylem ve durum uzayına göre belirlenmiştir. MiniGrid-Dynamic-Obstacles-

16x16-v0 ortamındaki eylem ve durum uzayı ayrıktır. Buna göre A2C, DQN, PPO, TRPO 

algoritmaları ayrık eylem uzaylarına uygun olduğu için seçilmiştir.  Ajanlar 2 milyon 

bölüm eğitilmiştir. Tablo 4.3’teki hiperparametreler kullanılmıştır. A2C, DQN PPO, 

TRPO ajanlarından ise PPO daha kararlı görülmektedir ve doğru eylem seçimlerini 

kararlı bir şekilde yapmıştır.  
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Şekil 4.10. DPÖ Ajanlarının MiniGrid-Dynamic-Obstacles-16x16-v0 Ortamındaki Ödül 

Performansı 

4.4. Gazebo Empty World 

Gazebo’da boş dünya içinde hiçbir engel bulunmayan boş bir alana sahiptir. Gözlemlerin 

sadece uzaklık ve açı olduğu robotu hedefe götürür. Uygulanan tüm ortamlarda, ajan 

eylemleri doğrusal ve açısal hızlardır. Durum uzayının boyutu 38’dir. Durum uzayı, lidar 

sensöründen gereken 36 değerine (örnekleme miktarı), hedefe uzaklığa ve hedefe açıya 

sahiptir. Ajan hem açısal hem de doğrusal hızlar için normalleştirilmiş girişler kullanır, 

yani ajanın eylemleri -1 ile 1 arasında skalerdir. Bu dünyada sürekli eylem alanında 

çalışabilen TD3, PPO ve SAC algoritmaları denenmiştir. Şekil 4.11’de ortamın örnek bir 

temsili verilmiştir. 

Ödül, robotun bir bölüm sırasındaki performansının ve yörüngesinin nicel bir ölçüsünü 

sağlar. Ajanın amacı bunu maksimize etmektir.  Gazebo ortamında yapılan eğitimlerde 

bir bölüm yalnızca bir çarpışma veya zaman aşımı olduğunda sonlanır, aksi takdirde bir 

hedefe ulaşıldığında, robota mevcut konumundan ulaşması gereken yeni bir hedef 

konumu verilir. Dolayısıyla, daha yüksek kümülatif ödül, bir robotun çarpışmadan veya 

zaman adımı sınırını aşmadan daha fazla sayıda hedefe ulaşabildiği anlamına gelir. Ödül 
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modeli olarak; hedefe varınca 100 puan, çarpışma olursa -120 puan, zaman sınırı aşılınca 

0 puan belirlenmiştir.  Zaman sınırı 200 zaman adımından sonra aşılır. Bu yalnızca robot 

hedefe ulaşamadığında veya çarpıştığında gerçekleşir. Bu, dairesel davranışı önlemek 

veya robotun bir yere takılıp kalmasını önlemek içindir. Kullanılan hiperparametreler ve 

eğitim seçenekleri Tablo 4.4 ‘de verilmiştir. 

Tablo 4.4. TD3, PPO ve SAC ajanı için Gazebo Empty World ortamında kullanılan 

hiperparametreler 

  PPO SAC TD3 

training_timesteps 2000000 2000000 2000000 

policy MLP MLP MLP 

activation_fn relu relu relu 

optimizer Adam Adam Adam 

n_steps 100 - - 

gae_lambda  0.95 - - 

gamma  0.99  0.99  0.99 

ent_coef  0.0  auto  
 

tau -  0.005  0.005 

learning_rate  0.0003  0.0003  0.001 

batch size 100 256 15000 

clip_range  0.2 - - 

n_epochs 5 - - 

vf_coef  0.5 - - 

max_grad_norm  0.5 - - 

buffer_size - 1000000 2000000 

learning_starts - 100 25000 

gradient_steps - -1 -1 

target_update_interval - 1 - 

target_entropy -  auto - 

policy_delay - - 2 

target_policy_noise - -  0.2 

 target_noise_clip - -  0.5 
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 Şekil 4.11. Gazebo Empty World 

 

 

Şekil 4.12. TD3, PPO ve SAC ajanı için Gazebo Empty World ortamında ödül 

performansı 

TD3, PPO ve SAC ajanıları için Gazebo Empty World ortamında ödül performansı Şekil 

4.12’de verildi. TD3 ajanının diğerlerinden daha başarılı olduğu görüldü. Turtlebot3 

robotu çarpışmasız bir şeklide hedefe ulaşmayı başardı. 
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4.5. Eğitim Süreleri 

Tablo 4.5’de ajanların eğitim ortamlarına göre eğitilme süreleri verildi. Basit ortam 

tasarımlarında eğitim süresi kısa iken tasarım karmaşıklaştıkça eğitim süresi artmaktadır. 

Gazebo ortamlarında eğitim sürelerinin uzunluğu dikkat çekicidir. Bu tezde,2 boyutlu 

ortam kullanılmasının ana sebeplerinden biri, eğitim ortamının karmaşıklığını azarlatarak 

donanım kaynaklarını verimli bir şeklide kullanama ve algoritmalara yoğunlaşmaktı. 

Tablo 4.5. Ajanların eğitim ortamlarına göre eğitilme süreleri 

Ortam - Çevre Ajan Eğitim Süresi 

Grid Dünya (5x5) Q-öğrenme 55 dakika 

Grid Dünya (5x5) Sarsa 58 dakika 

Dinamik Grid Dünya (8x7) Q-öğrenme 2 saat 10 dakika 

Dinamik Grid Dünya (8x7) DQN 2 saat 30dakika 

MiniGrid-FourRooms A2C 6 saat 

MiniGrid-FourRooms DQN 4 saat 

MiniGrid-FourRooms PPO 6 saat 

MiniGrid-FourRooms TRPO 6 saat 

MiniGrid-Dynamic-Obstacles A2C 7 saat 

MiniGrid-Dynamic-Obstacles DQN 5 saat 

MiniGrid-Dynamic-Obstacles PPO 7 saat 

MiniGrid-Dynamic-Obstacles TRPO 7 saat 

Gazebo Empty World PPO 72 

Gazebo Empty World SAC 74 

Gazebo Empty World TD3 80 

 

4.6. Test 

Robotik haritalama, gerçek bir ortamın bir robot veya bir grup robot tarafından dijital bir 

modele dönüştürüldüğü bir süreçtir. Robot nesnesinin bir sensörü, konumu ve hız 

parametreleri vardır. Robot ilk konumundan koşmaya başlar. Simülasyonu çalıştırırken, 

bu konum haritadaki boş alanın herhangi bir x-y koordinatı olabilir. Gerçek dünya 

deneyinde, robot o anda odanın neresinde olursa olsun, başlangıç konumunun harita 

üzerinde sıfır değeri vardır. Lazer sensörü okumaları, ajan tarafından yapılan gözlemler 

olarak kabul edilir. Uygulamada lazer sensörü okumalarının açısal konumlarını, 

maksimum aralığı ve gürültü parametreleri tanımlandı. Ajanın eylemi, robotun doğrusal 

ve açısal hızlarının bulunduğu ve olduğu iki boyutlu bir vektördür. Ajan, hem açısal hem 

de doğrusal hızlar için normalleştirilmiş girişler kullanır, Yani ajanın eylemleri -1 ile 1 

arasında skalerdir. Ajan, en kötü durum senaryosunu en aza indiren, en yakın engelden 
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kaçınması için ödüllendirilir. Ek olarak, ajana daha yüksek doğrusal hızlar için pozitif bir 

ödül verilir ve daha yüksek açısal hızlar için negatif bir ödül verilir. Bu ödüllendirici 

strateji, ajanın daireler çizme davranışını caydırır. Şekil 4.13’de gösterilen Gazebo 

ortamı, iki dinamik engelin bulunduğu bir labirenttir. Bu ortamda, haritasız navigasyon 

mobil robotikte kullanılan yerel bir planlayıcı, önceden planlanmış bazı yörüngeler robota 

sağlanır. PÖ haritasız navigasyon algoritması önceden planlanmış noktalardan beslenir 

yörünge istenen hedefler olarak; robot bir hedefe ulaştığında noktasından sonra, 

yörüngedeki bir sonraki nokta son noktaya kadar gönderilir yörünge tespit edilir. Ortam 

gözlemleri, robottan hedefe olan mesafe ve açı ile LIDAR ölçümlerinden oluşmaktadır. 

Uygulanan tüm ortamlarda, ajan eylemleri doğrusal ve açısal hızlardır. Ödül modeli 

Gazebo Empty World ile aynıdır. Tek fark çarpışma durumunda verilen cezadır. Hedefe 

varınca 100 puan, çarpışma olursa -200 puan, zaman sınırı aşılınca 0 puan belirlenmiştir.  

Zaman sınırı 100 zaman adımından sonra aşılır. 

 

Şekil 4.13. Gazebo Maze World 

Daha önceki deneylerde PPO ve TD3 algoritmasının başarısı ön plana çıkmıştır. PPO 

hem ayrık hem de sürekli eylem uzaylarında çalışabilirken TD3 sadece sürekli eylem 

uzaylarında çalışabilir. PPO algoritması TRPO algoritmasının geliştirilmiş hali iken TD3 

algoritması DDPG algoritmasının geliştirilmiş halidir. Bundan dolayı test ortamında PPO 

ve TD3 algoritmaları karşılaştırıldı. 
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Şekil 4.14. TD3 ve PPO ajanı için Gazebo Maze World ortamında ödül performansı 

Şekil 4.14’de TD3 ve PPO ajanı için Gazebo Maze World ortamında ödül performansı 

verilmiştir. Her iki ajanda 2 milyon bölüm eğitilmiştir. Hiperparametre olarak Gazebo 

Empty ortamı ve grid dünyalarda kullanılan parametreler kullanıldı.TD3 ajanını daha 

yüksek ödüllere daha hızlı ulaştığı görüldü. Robotun başarılı bir şekilde hedefe ulaştığı 

görüldü.  

 

Şekil 4.15. TD3 ajanı için Gazebo Maze World ortamında ödül performansı 
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Şekil 4.16. PPO ajanı için Gazebo Maze World ortamında ödül performansı 
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5. SONUÇLAR VE ÖNERİLER 

Bu tezde, bilinmeyen ortamlarda otonom, haritasız mobil robot navigasyonu için Derin 

Pekiştirmeli Öğrenme yaklaşımı incelenmiştir. Yol planlama ve otonom navigasyon 

problemlerine çözüm olarak son yıllarda üzerine oldukça araştırma yapılan pekiştirmeli 

öğrenme algoritmaları incelendi. Farklı DPÖ algoritmaları farklı ortamlarda çalıştırıldı 

ve performansları bölüm başına ödül miktarı olarak ölçüldü. Önerilen ödül modeli 

robotun dairesel davranış yapmasını ve bir yere takılıp kalmasın engellemek için ve 

hedefe çarpışma olmadan varmasını sağlamak için tasarlandı. 

Son teknoloji DPÖ algoritmaları olan DQN, DDPG, A2C, TRPO, TD3, PPO 

karşılaştırıldı. Bu algoritmalar, DPÖ araştırma topluluğundaki mevcut literatüre ve 

popülerliğe göre seçilmiştir(Fujimoto ve diğ., 2018; Raffin ve diğ., 2021)  

Ortam tasarımı olarak mevcut donanım kaynaklarını verimli kullanmak adına öncelikle 2 

boyutlu ortam tasarımında deneyimler elde edildi.2 boyutlu ortam olarak Matlab’ta grid 

dünya ve ayrıca Minigrid kütüphanesinden 2 adet ortam kullanıldı.3 boyutu ortam için 

ise Gazebo benzetim ortamı kullanıldı. 

Parametre optimizasyon yöntem olarak 2 boyutlu ortamda denemeler yapıldı. Elde edilen 

tecrübeler 3 boyutlu dünyaya aktarıldı. Hiperparamtere optimizasyonu için RL Baselines 

3 Zoo kütüphanesinde yararlanıldı. 

Grid dünyası, çalışma ortamını görsellerden kolayca tanımlayabilmesi ve pekiştirmeli 

öğrenme girdisine giren durumun ve bu durumdaki davranışın basit olması 

avantajlarından dolayı yol arama probleminde sıklıkla kullanılan ortamı ifade eden bir 

tekniktir. Ancak, çalışma ortamını ifade etme işi sadece görüntüyü grid bir dünyaya 

dönüştürmekle bitmiyor. Uygun bir ödül fonksiyonu kurma, pekiştirmeli öğrenme ile 

çözülecek bir problem oluşturma, bir pekiştirmeli öğrenme algoritması seçme ve son 

olarak pekiştirmeli öğrenme algoritmasının öğrenme parametrelerine değer atama süreci 

tasarımcının sorumluluğundadır. Bu tezde, problemi çözmek için kullanılan derin 

pekiştirmeli öğrenme algoritmasının model mimarisi ve parametreleri ve grid dünyasında 

yol arama probleminde grid dünyası çevre tasarımı örneği sunuldu. Ardından, çeşitli derin 

takviyeli öğrenmenin öğrenme algoritmaları farklı ortamlarda çalıştırıldı ve 

performansları gözlemlendi.  
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Basit ortamlarda Q-öğrenme yaklaşmışının başarılı olduğu gözlendi. Durum uzayı 

büyüdükçe Q tablolarının yetersiz kaldığı tespit edildi. Bu noktada fonksiyon 

yaklaştırıcısı yöntemi incelendi. Yapay sinir ağı modelleri incelendi. DQN ajanının 

getirdiği yaklaşımın Q-öğrenmeden daha başarılı olduğu görüldü. Grid dünyada hastane 

modellemesinin stokastik versiyonunda DQN ajanının Q-öğrenme ajanından daha 

başarılı olduğu tespit edildi. 

MiniGrid ortamlarında A2C, DQN, TRPO, PPO ajanları eğitildi. PPO ajanının daha 

başarılı olduğu görüldü. Bunun sebebi olarak politika tabanlı bir yaklaşım kullanılması 

söylenebilir. 

Sürekli eylem uzaylarında çalışan TD3, SAC, PPO algoritmaları Gazebo Empty 

ortamında kıyaslandı.TD3 ajanı daha başarılı sonuçlar aldı. 

Test ortamı olarak Gazebo Maze World kullanıldı. Bu ortamda Turtlebot robotu 

kullanıldı. PÖ modelleri, lazer sensör gözlemleri kullanılarak eğitildi. Lazer sensör 

gözlemleri, daha az işlem gerektirdiği için kamera gözlemlerine kıyasla modelleri 

eğitmek daha hızlı olduğu için kullanıldı. Sürekli eylem uzaylarında çalışabilen ve daha 

önceki deneylerde başarıları ile ön plana çıkan TD3, PPO algoritmaları kıyaslandı. TD3 

ajanı daha başarılı sonuçlar aldı. 

Sonuç olarak; sonsuz olası durumlara sahip birçok durumda, doğrusal yaklaşım ve Q 

tablosu kullanmanın doğru yaklaşım olmadığı görüldü. DQN algoritmasının sürekli 

durumlar ve ayrık eylemler üzerinde başarılı olduğu ve sinir ağı kullanan doğrusal 

olmayan fonksiyon yaklaşımının çok güçlü bir yaklaşım olduğu sonucuna varıldı. Sürekli 

eyleme ve sürekli durum uzayında sahip ortamlarda ise PPO, TD3 algoritmalarını 

kullanılabileceği ve başarılı olunabileceği görüldü. Bunun sebebi olarak fonksiyon 

yaklaştırıcısı olarak aktör-kritik ağ modelinin kullanılması söylenebilir.  

Bu tezde, bir mobil robotun 2 boyutlu grid ortamda ve 3 boyutlu bir oda ortamında yol 

planlaması yapması için çeşitli DPÖ algoritmaları çalıştırıldı. Kullanılan algoritmaların 

yol planlama problemini çözebileceği görüldü. 

Gelecekte ise bu çalışmada kullanılan ve başarıları gözlenen PPO, TD3 gibi 

algoritmaların ağ ve ödül modeli üzerine çalışarak bunların öğrenmeye olan etkisinin 
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tespit edilmesi planlandı. Reward Shaping(Ödül fonksiyonu modelleme) pekiştirmeli 

öğrenme konusunun en zorlu  araştırma konularından biridir. Bu konu üzerine özellikle 

çalışılarak algoritmalar toplam ödül, başarı oranı, en kısa yolu bulma gibi ölçütler 

üzerinden kıyaslanacaktır. Ayrıca geleneksel yol planlama algoritmaları (A*,RRT, vb.) 

ile DPÖ algoritmaları hibrit bir şekilde kullanılarak yol planlama problemlerine çözüm 

aranacaktır. Bu anlamda global bir yol planı klasik algoritmalar ile oluşturulup hareket 

planlaması DPÖ ajanları ile yapılabilir, kapalı ortamlar segmentlere ayrılıp her segmentte 

DPÖ ajanı çalışabilir ve segmentler arası bağlantı A*, RRT gibi algoritmalarla 

sağlanabilir ya da bir mobil robotun bir hedefe tam anlamıyla varması için belirli bir 

güvenli mesafeye (çarpışma olamayacak mesafe) kadar DPÖ ajanı o noktadan sonra 

geleneksel yol planlama algoritmaları kullanılabilir. Nihai hedef ise en iyi performans 

veren algoritmanın, simülasyon ortamından gerçek robota aktarılmasıdır. 
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