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ETiK BEYAN VE ARASTIRMA FONU DESTEGI

Kocaeli Universitesi Fen Bilimleri Enstitiisii tez yazim kurallarma uygun olarak
hazirladigim bu tez ¢alismasinda,

— Bu tezin bana ait, 6zgiin bir ¢alisma oldugunu,

— Caligmamin hazirlik, veri toplama, analiz ve bilgilerin sunumu olmak {izere tim
asamalarinda bilimsel etik ilke ve kurallara uygun davrandigima,

— Bu ¢alisma kapsaminda elde edilen tiim veri ve bilgiler i¢in kaynak gosterdigimi ve bu
kaynaklara kaynakcada yer verdigimi,

— Bu ¢alismanin Kocaeli Universitesi’nin abone oldugu intihal yazilim programi
kullanilarak Fen Bilimleri Enstitiisii'niin belirlemis oldugu 6lciitlere uygun oldugunu,

— Kullanilan verilerde herhangi bir tahrifat yapmadigima,

— Tezin herhangi bir boliimiinii bu {liniversite veya baska bir liniversitede bagka bir tez
calismasi olarak sunmadigima,

beyan ederim.

Il Bu tez calismasinin herhangi bir asamasi higbir kurum/kurulus tarafindan
maddi/alt yap1 destegi ile desteklenmemistir.

[1 Bu tez ¢alismasi kapsaminda tiretilen veri ve bilgiler ............cceovevieviieciiiieieennnn,
tarafindan ..., no’lu proje kapsaminda maddi/alt yapr destegi
alinarak gerceklestirilmistir.

Herhangi bir zamanda, caligmamla ilgili yaptifim bu beyana aykiri bir durumun
saptanmast durumunda, ortaya ¢ikacak tiim ahlaki ve hukuki sonuglar1 kabul ettigimi
bildiririm.

Emre APAYDIN



YAYIMLAMA VE FiKRi MULKIYET HAKLARI

Fen Bilimleri Enstitiisii tarafindan onaylanan lisansiistii tezimin tamamin1 veya herhangi
bir kismini, basilt ve elektronik formatta arsivleme ve asagida belirtilen kosullarla
kullanima agma izninin Kocaeli Universitesi’'ne verdigimi beyan ederim. Bu izinle
Universiteye verilen kullanim haklar1 disindaki tiim fikri miilkiyet haklari bende kalacak,
tezimin tamaminin ya da bir bdliimiiniin gelecekteki makale, kitap, teblig, lisans, patent
gibi ¢alismalarda kullanimi, danismanimin isim hakk1 sakli kalmak kosuluyla ve her iki
tarafin bilgisi dahilinde bana ait olacaktir.

Tezin kendi 6zglin ¢calismam oldugunu, bagkalariin haklarini ihlal etmedigimi ve tezimin
tek yetkili sahibi oldugumu beyan ve taahhiit ederim. Tezimde yer alan telif hakki
bulunan ve sahiplerinden yazili izin alinarak kullanilmasi zorunlu metinlerin yazili izin
alarak kullandigimi ve istenildiginde suretlerini Universiteye teslim etmeyi taahhiit
ederim.

Yiiksekogretim kurulu tarafindan yaymnlanan “Lisaniistii Tezlerin Elektronik Ortamda
Toplanmasi, Diizenlenmesi ve Erisime A¢ilmasina Tliskin Yonerge” kapsaminda tezim
asagida belirtilen kosullar haricinde YOK Ulusal Tez Merkezi/ Kocaeli Universitesi
Kiitliphaneleri A¢ik Erigim Sisteminde erisime agilir.

Enstitli yonetim kurulu karari ile tezimin erisime agilmasi mezuniyet tarihinden
itibaren 2 yil ertelenmistir.

Enstitli yonetim kurulu gerekgeli karar1 ile tezimin erisime acilmasi mezuniyet
tarihinden itibaren 6 ay ertelenmistir.

i

Tezim ile ilgili gizlilik karar1 verilmemistir.

Emre APAYDIN



ONSOZ VE TESEKKUR

Bu tez ¢aligmasi, mobil robot navigasyonunun harita olmadig1 durumlarda pekistirmeli
O0grenme algoritmalari ile gergeklestirilmesi amaciyla hazirlanmistir.

Tez calismamda destegini esirgemeyen, c¢alismalarima yon veren, bana glivenen ve
yiireklendiren danismanim Dr. Ogr. Uyesi Alpaslan Burak INNER’e tesekkiirlerimi

sunarim.

Sonsuz sabr1 ve destegi ile bana her zaman destek olan sevgili esime tesekkiir ederim. Bu
calismay1 kiymetli evlatlarim, Elif Ece’ye ve Ahmet Asaf’a ithaf ediyorum.

Mayis — 2023 Emre APAYDIN
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KAPALI ORTAMLAR iCiN DERIN PEKIiSTIRMELI OGRENME
ALGORITMALARI iLE MOBIiL ROBOTLARIN NAVIGASYONU

OZET

Mevcut mobil robotik arastirmalarindaki en Onemli konulardan biri otonom
navigasyondur. Navigasyon; yol planlama ve hareket planlama olarak iki kisimdan
olusur. Bununla birlikte yol ve hareket planlama, haritasi ¢ikarilmamis ortamlarda zorlu
bir gérevdir. Bu zorluklar1 agmak igin son yillarda derin pekistirmeli grenme (DPO)
yontemleri siklikla kullanilmaktadir. Bu c¢alismanin amaci, haritas1 ¢ikarilmamis
ortamlarda diisiik maliyetli sensorler kullanarak bir mobil robotun navigasyonu i¢in derin
pekistirmeli 6grenme yontemlerinin  kullanimini  arastirmak, modellemek ve
kiyaslamaktir. Belirtilen amaca ulasmak i¢in iki asamali bir yontem belirlenmistir. Birinci
asamada kapali bir oda ortam1 iki boyutlu grid olarak temsil edilmistir. Bu ortam iizerinde
A2C, DQN, TRPO, PPO gibi ayrik eylem uzayinda c¢aligabilen farkli pekistirmeli
O0grenme algoritmalarinin performanslar1 kiyaslanmistir. Bu karsilagtirmay1 yaparken
belirli bir 6grenme kriteri eklenmistir ve ayrica epsilon degeri, adim sayis1 gibi
parametreler degistirilerek egitim ve test asamalarindaki degisiklikler analiz edilmistir.
Degerlendirme Olgiitii olarak boliim basina alinan ortalama o6diil kullanilmistir. Daha
yiiksek 6diil, bir robotun carpismadan veya zaman adimi sinirin1 asmadan daha fazla
sayida hedefe ulasabildigi anlamina gelir. Bu ortamlarda PPO ajaninin daha basaril
oldugu goriilmiistiir. Ikinci asamada Gazebo benzetim ortaminda ii¢ boyutlu hazir
ortamlarda algoritmalarin performansi degerlendirilmistir. Stirekli eylem uzaylarinda
calisan TD3, SAC, PPO algoritmalar1 Gazebo ortaminda kiyaslandi. 2B ortaminda basar1
saglayan hiperparametreler 3B ortamda da kullanildi. Bu sekilde TD3 ajani daha basarili
sonuclar almistir. Son olarak ise hem ayrik hem de siirekli eylem uzayinda ¢alisabilen ve
2B ortamda en basarili olan PPO ajani ile sadece siirekli eylem uzayinda calisan ve 3B
ortamda basaris1 goriilen TD3 ajami kiyasland1 ve gézlemler sonucunda TD3 ajaninin
daha basarili oldugu goriildii.

Anahtar Kelimeler: Derin Pekistirmeli Ogrenme, Hareket Planlama, Mobil Robotlar,
Otonom Navigasyon, Yol Planlama.



NAVIGATION OF MOBILE ROBOTS WITH DEEP REINFORCEMENT
LEARNING ALGORITHMS FOR INDOOR ENVIRONMENTS

ABSTRACT

One of the most important topics in current mobile robotics research is autonomous
navigation. Navigation consists of two parts: path planning and motion planning.
However, path and motion planning is a challenging task in unmapped environments. To
overcome these challenges, deep reinforcement learning (DRL) methods have been
widely used in recent years. The aim of this work is to investigate, model and benchmark
the use of deep reinforcement learning methods for navigation of a mobile robot using
low-cost sensors in unmapped environments. In order to achieve the stated goal, a two-
stage methodology was defined. In the first stage, an indoor room environment is
represented as a two-dimensional grid. The performances of different reinforcement
learning algorithms such as A2C, DQN, TRPO, PPO which can operate in discrete action
space are compared on this environment. While making this comparison, a specific
learning criterion was added and also parameters such as epsilon value, number of steps
were changed and the changes in the training and testing phases were analyzed. The
average reward per episode was used as the evaluation criterion. Higher reward means
that a robot is able to reach a greater number of targets without colliding or exceeding the
time step limit. The PPO agent was found to be more effective in these environments. In
the second phase, the performance of the algorithms was evaluated in three-dimensional
ready-made environments in the Gazebo simulation environment. TD3, SAC, PPO
algorithms operating in continuous action spaces were compared in Gazebo environment.
Hyperparameters that were successful in 2D environment were also used in 3D
environment. Finally, PPO agent, which can work in both discrete and continuous action
space and is the most successful in 2D environment, and TD3 agent, which works only
in continuous action space and is successful in 3D environment, were compared and TD3
agent was more successful.

Keywords: Deep Reinforcement Learning, Motion Planning, Mobile Robots,
Autonomous Navigation, Path Planning.
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1. GIRIS

Robot, elektronik bilesenler, mekanik aksam, sensor ve yazilimdan olusan, otonom ya da
insan destekli makinelerdir. Robotik ise robotlarla ilgilenen bilim dalidir. Mobil robotlar,
fiziksel olarak sabit olmayan tanimlanmis bir ¢evrede (karada, su altinda ya da havada)
hareket ederek istenilen gorevleri yerine getirebilen robotlardir (Boliik, 2019). Bu
sebeple gezgin robot da denilmektedir. Mobil robotlar, bir¢ok alanda giderek daha fazla
kullanilmaktadir. Mobil robotlarin 6rnek uygulamalari, yaslilar i¢cin hizmet robotlari, bir
fabrikada mal nakletmek icin otomatik yonlendirmeli araglar, insansiz bomba imha

robotlar1 ve gezegen kesif robotlar1 gibi genis bir yelpazeyi igerir.

Navigasyon, mobil robotik alaninda temel bir gorevdir ve kiiresel navigasyon ve yerel
navigasyon olarak iki tiir olarak siniflandirilabilir. Kiiresel navigasyonda, ¢evre hakkinda
onceden bilgi mevcut olmalidir. Kiiresel navigasyon i¢in Voronoi Grafigi, Yapay
Potansiyel Alan Yontemi, Dijkstra algoritmasi, Goriiniirliik Grafigi, Gridlar, ve Hiicre
Ayristirma yontemi vb. gibi bir¢ok yontem gelistirilmistir. Yerel navigasyonda robot,
ultrasonik sensorleri, keskin kizilotesi mesafe sensorleri ve goriis (kamera) sensorleri vb.
gibi donanimli sensorleri kullanarak hareketine ve yoniine otonom olarak karar verebilir.
Yerel navigasyon problemini ¢6zmek i¢in Bulanik Mantik, Genetik Algoritma, Parcacik
Siirlisii Optimizasyon algoritmasi, Karinca Kolonisi Optimizasyon Algoritmasi, vb.

algoritmalar cesitli aragtirmacilar tarafindan basariyla kullanilmaktadir(Pandey, 2017).

Mobil bir robotun navigasyonu i¢in kullanilan cesitli yontemler genelde klasik ve reaktif
(reactive) yaklagimlar olarak iki kategoriye ayrilmaktadir. Kiiresel navigasyonda mobil
robot, ortamin 6n bilgilerine, engel pozisyonu ve hedef pozisyonu bilgisine ihtiyag¢
duyarken, yerel navigasyonda ortam hakkinda Onceden bilgi gerekmez. Kiiresel
navigasyon stratejisi, tamamen bilinen bir ortamla ilgilenir. Yerel navigasyon stratejisi
bilinmeyen ve kismen bilinen ortamla ilgilidir. Bilinen bir ortam igin yol planlama
algoritmasi, klasik bir yaklasima dayanmaktadir. Bu algoritmalar gelenekseldir ve zekasi
smirlidir. Yerel navigasyon yaklasimlari, daha akilli olduklari ve bir plan1 bagimsiz
olarak kontrol edebildigi ve uygulayabildigi i¢in reaktif yaklasimlar olarak bilinir. Sekil
1.1°de bu yaklasimlara ait algoritmalar gdsterilmistir. Baslangicta, klasik yaklasimlar
robot navigasyon problemlerini ¢6zmek i¢in ¢ok popiilerdi, ¢linkii o giinlerde yapay zeka

(YZ) temelli teknikler gelistirilmiyordu. Bir gdrevi yerine getirmek ig¢in klasik



yaklagimlar kullanilarak ya bir sonug elde edilecegi ya da bir sonucun mevcut olmadigi
teyit edilir. Bu yaklasimin en biiyiik dezavantaji1 yiiksek hesaplama maliyeti ve ¢evrede
mevcut olan belirsizlige yanit vermemesidir. Bu nedenle ger¢ek zamanli uygulamalar igin
daha az tercih edilir. Son zamanlarda, Genetik Algoritma, Bulanik Mantik gibi reaktif
yaklasimlar Sinir Ag1, Atesbocegi Algoritmasi, Pargacik Siiriisii Optimizasyonu, Karinca
Kolonisi Optimizasyonu, Bakteriyel Yemleme Optimizasyonu, Yapay Art Kolonisi,
Yarasa Algoritmasi ve daha fazlas1 mobil robot navigasyonu i¢in en popiiler ara¢ olarak
kabul edilmistir. Cevrede mevcut olan belirsizlikle basa ¢ikma konusunda biiyiik
yetenekleri vardir. Giiniimiizde reaktif yaklagimlar, daha az hesaplama cabasiyla belirsiz
bir ortam1 hizl1 bir sekilde ele alma yetenegine sahip olduklar1 i¢in daha popiilerdir. Sekil
1.2’de mobil robot navigasyon yaklasimlarinin yillara gore kullanilma durumlar

gosterilmistir(Patle ve dig., 2019).
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Sekil 1.1. Mobil Robot Navigasyon Yaklagimlarinin Siniflandirilmasi (Patle ve dig., 2019)

Yazilim alanindaki gelismeler ve donanimin maliyetlerinin kademeli olarak diisiiriilmesi
nedeniyle robotik sistemler, kapsamlarin1 giderek genisletiyor ve ¢ok sayida sektoriin
tiretkenligini, verimliligini ve ¢alisma ortam1 giivenligini artiriyor. Robotik alanindaki
ilerlemeye ragmen, mobil robotlar giindelik hayatta yeteri kadar yer almiyor. Insanlarin

yogun oldugu alanlarda calisacak robotlarin, farkli ve beklenmedik insan davranislarini



modelleme ve buna gore ¢alisma yetenegini sergilemeleri gerekir (Cheng ve dig., 2018).
Bu, robotik alaninda ¢alisan arastirmacilar tarafindan iizerine yogun bir sekilde calisilan

zorlu bir ozelliktir.
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Sekil 1.2. Mobil Robot Navigasyon Yaklagimlarinin Yillara Gore Gelisimi(Patle ve dig.,
2019).

Mobil robotlarinin gelistirilmesindeki ana zorluklardan biri, kusursuz ve robotun
yiirlitecegi goreve uygun bir navigasyon yontemi tasarlamaktir. Navigasyon yontemleri,
haritalama, yerellestirme (robotun o anki konumunu bulma) ve yol planlama olarak iice
ayrilir (Ruan ve dig., 2019).Yol planlama, engellerin oldugu bir ortamda, otonom mobil
robotun bir baslangi¢ noktasindan bagka bir hedef noktasina gidebilmesi i¢in engellere
carpmayacagi uygun bir yolu bulma islemidir(Hu ve Yang, 2004). Daha az doniis
eyleminin yapildigi, daha az fren yapilan, hedefe en kisa yoldan ulasilan yol en uygun yol

olarak ifade edilebilir.

Gectigimiz yillarda yol planlama problemini ¢dzmek igin gesitli stratejiler formiile
edilmistir ve Makine Ogrenimi tabanli yaklasimlar en umut verici sonuglar1 sergileyen

metodolojilerden bazilaridir (Aradi, 2020).

Makine Ogrenimi (ML) (Mitchell, 1997), deneyim yoluyla kendi kendini gelistiren
algoritmalar iireten ve Denetimli Ogrenme (Nasteski, 2017), Denetimsiz Ogrenme
(Celebi ve Aydin, 2016) ve Pekistirmeli Ogrenme (PO) (Sutton ve Barto, 2018) seklinde
diizenlenen yapay zekanin bir alt kiimesidir. Denetimli algoritmalarda 6grenme, veri
kiimeleri adi verilen onceden diizenlenmis veri kiimeleri aracilifiyla oriintii bulma

modelleri olusturmaktir.



Denetimsiz 6grenmede etiketsiz verilerden, bu verilere ait gizli 6zellikler ortaya ¢ikarilir.
PO' de, ortamla etkilesim halinde olan akilli bir ajan, dnceden belirlenmis bir hedefe
ulagmak icin hangi eylemlerin benimsenmesi gerektigini deneme yanilma yoluyla

Ogrenir.

Pekistirmeli 6grenmede amag, zaman iginde ve eylemlerinin kalitesini degerlendiren bir
odil sistemi tarafindan yonlendirilerek, beklenen 6diil toplamini en iist diizeye ¢ikaran

komutlar1 se¢mek icin yeterli deneyimin toplamasidir.

Bina i¢i navigasyonla ilgili olarak, geleneksel yaklagimlar, bir engel haritasina dayanarak
bir eylem plant olustururlar (Ruan ve dig., 2019). Mobil robotlarin, dinamik alanlarda
daha once karsilagsmadig1 senaryolara karsi esnek bir hareket plan1 kurgusu olmalidir.
Navigasyonun hareket planlama gorevi igin kullanilan PO algoritmalari ile ajan, gevresel
uyaranlar1 degerlendirmek i¢in gelismis bir yetenek kazanir ve sonug olarak bilinmeyen

ortam navigasyonunda en ideal ideal eylemleri belirler(Chen ve dig., 2017).

Pekistirmeli Ogrenme algoritmalar1, drnek, bellek ve hesaplama karmasiklig ile ilgili
bazi smirlamalarla karsi karsiyadir (Frangois-Lavet ve dig., 2018). Ancak bu sorunlar,
Derin Ogrenme (DO) (Goodfellow ve dig., 2016) kullanilarak agilabilir. Derin Ogrenme,
ist diizey soyutlamalarda kompakt oOzellikleri tanimlayabilen hesaplama sistemleri
olusturmay1 amaglar. DO’de, Yapay Sinir Aglart (YSA) kullanilir. YSA’lar biyolojik
sinir aglarindan esinlenen katmanli yapilardir. PO ve DO’niin birlestirilmesinden
meydana gelen uygulamalar, Derin Pekistirmeli Ogrenme (DPO) (Frangois-Lavet ve dig.,

2018) olarak tanimlanir.

Mnih ve arkadaslarinin yaptigi yayindan(Mnih ve dig., 2013) bu yana 6nemli miktarda
arastirma bu alana odaklandi ve yeni kullanim durumlar ve uzantilar gelistirildi.(Kempka

ve dig., 2016; Hasselt ve dig., 2015; Mnih ve dig., 2016; Silver ve dig., 2016).

DeepMind (URL-1), 2013 yilinda, atari video oyunlarinda uzman oyunculari yenebilecek
yontemler gelistirmek icin Derin Q-Ogrenme’yi kullanarak yapay zeka alaninda devrim
yarattiMnih ve dig., 2013). Bundan hareketle, AlphaGo (Silver ve dig., 2016),
AlphaZero (Silver ve dig., 2017) ve AlphaStar (Vinyals ve dig., 2019) uygulamalari
sirasiyla hayata gecirilmistir. 2015 yilinda AlphaGo, kendi kendini oyundan egitmek icin



evrisimsel sinir aglarmi (CNN) ve PO’yii birlestirerek Go oyununda olaganiistii
performanslar elde etti. 2017 yilinda, Go'nun yani sira Satrang ve Shogi oyunlarinda
ustalasan AlphaZero adli benzer bir AlphaGo yaklagimi piyasaya siiriildii. 2019'da
AlphaStar, DPO ‘yii kullanarak karmasik StarCraft Il oyununa hakim oldu ve gergek

zamanli maglarda diinyanin en iyi takimlarindan bazilarini yendi.

DPO, video oyun alaninda ciddi basarilar elde etmistir. Bunu saglarken ham goriintiileri
islemistir. Bu da mobil robot navigasyonuna ilham olmustur. Otonom araglar ve DPO ile
ilgili aragtirma makalelerinin sayis1 son birkag yilda artmistir. Sekil 1.3’te bununla ilgili

bir grafik verildi.
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Sekil 1.3. Otonom Araglar I¢in Derin Pekistirmeli Ogrenme Arastirmalari (Aradi, 2020).

Son yillarda, mobil robotlarin yol planlamasi igin DPO uygulamalar1 artarak
kullanilmaktadir ve bu konuda biiyiik basarilar elde edilmistir. DPO haritasiz ortamlarda
giiclii 6grenme yetenegi ve diistik sensor dogrulugu bagimlilig: gibi avantajlara sahip olsa
da, yol planlamasi i¢in uzun egitim siiresi, 6zellikle sinirli hesaplama kaynaklari durumu
icin mobil robotlara uygulama engeli olusturmustur. Cogu durumda, robotlarin bir fizik
motoruna sahip 3B simiilasyon ortaminda egitilmesi gerekir. Bu senaryoda, robotun

hareketi fiziksel kurallarla simirlidir. DPO, egitim siiresini dnemli dlgiide artiran



etkilesimli deneme-yanilma yontemine dayali olarak uygulanir. Ortamlar veya gorevler
karmasik oldugunda, algoritmanin rastgele baslatilan ag parametreleri ile istenen

hedeflere yakinsamasi zordur.

Bu tezin amaci, haritasi ¢ikarilmamis ortamlarda diistik maliyetli sensorler kullanarak bir
mobil robotun navigasyonu i¢in derin pekistirmeli 6grenme yontemlerinin kullanimini
arastirmak, modellemek ve dogrulamaktir. Belirtilen amaca ulagmak i¢in iki agsamali bir
yontem belirlenmistir. Birinci asamada kapali bir ortam iki boyutlu grid olarak temsil
edilmistir. Bu ortam {izerinde Q-Ogrenme, SARSA, A2C, DQN, PPO,TRPO gibi farkli
pekistirmeli 6grenme algoritmalarinin  karsilastirmali  bir simiilasyon ¢alismasi
sunulmaktadir. Bu karsilastirmay1 yaparken belirli bir 6grenme kriteri eklenmistir ve
ayrica epsilon degeri, adim sayist gibi parametreler degistirilerek egitim ve test
asamalarindaki degisiklikler analiz edilmistir. Bu ¢alisma, simiilatér programi tarafindan
saglanan aktorler (ajan, sensor, engeller vb.) ile desteklenmistir. Ikinci asamada ise
Gazebo benzetim ortaminda {i¢ boyutlu hazir ortamlarda PPO, SAC, TD3 algoritmalarin

performansi degerlendirilmistir.

Bu tezde ilk olarak, ilgili PO algoritmalarmi hafif bir 2 boyutlu ortamda degerlendirildi.
Daha sonra, 3B ortam i¢in zaman alic1 ¢alismalar1 engellemek i¢in 2B ortamda gdzlem
durumlari, 6diil fonksiyonu, ag yapis1 ve parametre optimizasyonu dahil olmak iizere
DPQ’ye dayal algoritma tasarlandi. Tasarlanan algoritmay1, derin sinir agmin agirliklari
ve Onyargilar1 vb. dahil olmak iizere yakinsanmis ag parametrelerini elde etmek i¢in
yeniden egitim i¢in basit bir 3B ortama aktarildi. Bu parametreleri baslangi¢c degerleri

olarak kullanarak, modeli karmasik bir 3B ortamda egitmeye devam edildi.
Tezin literatiire katkis1 agagidaki gibi listelenebilir;

e Haritasiz ve dinamik ortamlarda farkli DPO algoritmasi performanslarin
karsilastirildi.

e Ortam ve ag parametrelerini iceren iki asamali bir yol tercih edildi. Béylece DPO
tabanli yol planlamasinin gelistirme verimliligini ve yakinsamasini iyilestirilmesine
katki sunudur. Ayrica algoritmalarin, ag yapisimin test edilmesine ve

degerlendirilmesine katkida bulunuldu.



¢ Grid diinya biiyiidiikge Q 6grenme algoritmasinin yetersiz kaldigi tespit edildi. Ayrik
eylem uzaymda kullanilabilecek DPO algoritmalarindan PPO’nun daha basarili
oldugu goriildii.

e (Caligmada kullanilan Gazebo ortamlar siirekli eylem uzayimna sahip ve dinamik
engeller vardi. Bu ortamlarda TD3 algoritmasinin daha basarili oldugu tespit edildi.

e Yapilan deneylerle geleneksel yol planlama algoritmalarinin aksine pekistirmeli

ogrenme modellerinin haritasiz bir sekilde yol planlama yapabildigi tespit edildi.

Tezin kalan béliimlerin basliklar1 sdyledir; lkinci béliimde genel bilgiler, iiciincii
boliimde malzeme ve yontem, dordiincii boliimde bulgular ve tartigsma ve besinci boliimde
sonuglar ve oOneriler basliklar1 iglenmistir. Genel bilgiler boliimiinde pekistirmeli
O0grenme, hareket planlama, benzetim ortamlar1 konulari hakkinda bilgiler verilmistir.
Literatiirde pekistirmeli 6grenme ile mobil robot navigayonu hakkinda yapilan calismalar
incelenmistir. Malzeme ve yontem bdlimiinde tezde kullanilan yazilim ve donanim
hakkinda bilgiler verilmistir. Ayrica kiyaslanan pekistirmeli 6grenme algoritmalari
hakkinda, 6diil-ceza, ¢evre tasarimi, fonksiyon yaklastiricilar vb. gibi konularda bilgi
verilmistir. Bulgular ve tartisma boliimiinde pekistirmeli 6grenme ajanlarinin, ortamin iki
boyutlu ve {i¢ boyutlu oldugu durumlarda ve statik ya da dinamik oldugu durumlarda
performans sonuglart ortaya koyulmustur. Sonuglar ve Oneriler boliimiinde ise
algoritmalardan elde edilen veriler degerlendirilmis ve gelecekte yapilmasi planlanan

caligmalardan bahsedilmistir.



2. GENEL BILGILER
2.1. Hareket Planlama

Hareket planlamasi, bir robotik sistemin belirli bir baglangi¢ durumunu séz konusu sistem
icin belirli bir hedef bolgeye baglayan siirekli bir yol bulma problemidir. Carpigsmadan
kaginma, smirli kuvvetler, sinirli ivme gibi kisitlamalara ¢6ziim gelistirilir. (Sucan ve
dig., 2012). Hareket planlamasi, 6nemli miktarda zaman kazandirabileceginden ve bir
mobil robotun yipranmasini ve maliyetini azaltabileceginden (Zhang ve dig., 2018),

kendisini ilkel bir navigasyon olarak sunar.

2.1.1. Hareket Planlayicilar:

Hareket planlamasinda, kiiresel ve yerel olarak iki tiir planlayici vardir. Burada ayrim
cevreden bilgilere erisim diizeyidir (Zhang ve dig., 2018). Kiiresel planlayicilar, tamamen
bilinen ortam altinda en uygun ya da en uyguna yakin yollar olustururlar. Genel haritanin
stirekli giincellenmesi gerekir. Diger taraftan yerel planlayicilarin ¢evre bilgilerine erisimi
kisithidir. Sensorlerden gelen verilere gore anlik olarak eylem segilir. Kisa vadeli yollar

olusturulur.

2.1.2.Cevre Gosterimleri

Hareket planlayicilarin ¢evre hakkinda 6n bilgiye ya da robotun hareketi boyunca veri
toplamasina ihtiyaci vardir. Toplanan veriler ile ise bir 6zellik haritas1 temsil edilir.

(Zhang ve dig., 2018). Harita gdsterimi iki seklide yapilabilir:

1) Metrik Gosterim: Sekil 2.1a’da ¢evrenin metrik gosterimi verildi. Bu gosterimde ¢evre
grid(1zgara) tabanl bir diizenleme ile boliiniir.

2) Topolojik Gosterim: Sekil 2.1b’de ¢evrenin topolojik temsili goriilmektedir.

.
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Sekil 2.1.Cevrenin metrik, topolojik ve hibrit gosterimleri



Topolojik gdsterimde, diigiim ve yay modeli ile temsil edilir. Diigiimler, birbirinden farkl
engelsiz konumlar1 ve sinirlari temsil eder. Yaylar, diigiimler arasindaki baglantilardir ve

konumlar arasindaki yollar1 temsil eder.

Grid tabanli yontemler, dogru Ol¢limler iiretirken, genellikle karmasikliklar1 biiyiik
6l¢ekli i¢ mekan ortamlarinda verimli planlamay1 engeller. Topolojik haritalar ise robot-
ajan tarafindan 6grenilmesi zor gosterim tiirtidiir (Thrun, 1998; Tomatis ve dig., 2001).
Bununla birlikte, her iki yontemi birlestirmek, her birinin olumsuz yanlarin1 agsmak ve
daha saglam bir ortam modeli olusturmak miimkiindiir. Sekil 2.1¢’de kiiresel topolojik
haritanin iistiinde yerel grid tabanli gosterimlerin kullanildig: (Thrun, 1998; Tomatis ve
dig., 2001) karma(hibrit) bir 6rnek sunulmaktadir.

2.1.3.Kiiresel Yol Planlayicilar

Ic mekan navigasyonundaki baskin kiiresel yol arama yontemleri, sezgisel-arama
algoritmalar1 olarak smniflandirilir (Zhang ve dig., 2018). Bu kategori altinda,
Dijkstra(Marin-Plaza ve dig., 2018; Risald ve dig., 2017), Floydwarshall (Marin-Plaza ve
dig., 2018), A * (Zhang ve dig., 2018; Liu ve Gong, 2011; Stentz, 1995) ve hizli bir
sekilde kesfedilen rastgele agaglar (RRT) gibi algoritmalardir(Garrote ve dig., 2014).

Dijkstra'da, yollar topolojik ¢evre temsillerinde komsu diiglimlerinin se¢imi yoluyla
yaratilir. Formiile edilmis her bir yol, rotanin diigiim baglantilarim1 belirleyen agirlikli
yaylardan kaynaklanan iligkili bir maliyete sahiptir. Minimum maliyetle olan yol secilir
ve boylece en kisa yol hesaplanir. Floyd-Warshall (Risald ve dig., 2017), tim diigiim
ciftleri arasindaki en kisa yolu belirler. Bu algoritmanin girdisi, agirlikli ve yonlendirilmis
bir grafiktir. Algoritma ayrica negatif agirlikl tarafi da hesaplar. A *, baslangi¢ digtimi
ve son diigiim arasindaki en kisa yolu bulmak i¢in sezgisel bir degerlendirme fonksiyonu

kullanir(Stentz, 1995). Denklem (2.1)’de sezgisel bir degerlendirme fonksiyonu

gosterilmistir;

f(i) = g(i) + h(i) (2.1)
. i: robotun mevcut konumu;

. g(1) : Baglangig diigiimiinden i i¢in ge¢gmis maliyet fonksiyonu,

. h(i) : i'den hedef diigiime Oklid uzaklig1.



RRT(Garrote ve dig., 2014), 6rnekleme tabanli bir yontemdir. Her tekrarda, rastgele bir
diigiim secilir ve en yakin diiglime baglanir. Diigiim secenekleri tamamen rasgele
oldugundan, birka¢ agac dali (yol gdsterimleri) olusturulur. Kavramsal olarak, en az bir

rota kademeli olarak hedef alana dogru birlesir.

2.1.4.Yerel Yol Planlayicilar:

Kiiresel yol planlamasinin yani sira, dinamik metrik 6zellik haritalar1 {izerinde yerel yol

arama algoritmalar1 kullanilarak saglam hareket planlama metodolojileri uygulanabilir.

Yapay potansiyeli alan (APF) (Zhu ve dig., 2006) stratejisi tarafindan indiiklenen bir
platform, bir yapay kuvvet alanmna tabidir. Bu alanda robot kendisini iten ve ¢eken
kuvvetlere maruz kalir. Sonucta robotu hareket ettiren bir kuvvet olusur. Dinamik
Pencere Yaklasimi (DWA) (Fox ve dig., 1997), bir mobil robotun mevcut hizlarindan
olusan pencere adi verilen bir yap1 sunar. Bu pencereden en uygun ¢oziimii seger. Robotu

bu sekilde hedefe ulastirir.

Zaman Elastik Bantlar1 (TEB) (Marin-Plaza ve dig., 2018; Keller ve dig., 2014) yaklagim1
da benzer bir calisma prensibine sahiptir: aracin geometrik, kinetik ve dinamik
kisitlamalarinin bilgisi ile bir robotun yerlesik ara yol noktalarinda gezinmesine izin

veren bir dizi hiz komutu olusturur.

2.2. Makine Ogrenmesi

Bilgisayarlar ilk icat edildiginden beri, bilim adamlar1 makineleri daha akilli hale
getirmeye calistilar. Ancak, zekanin tanimi bugiin hala devam eden bir tartisma
konusudur. Alan Turing, Turing Testini ilk olarak 1950'de Manchester Universitesi'nde
"Bilgisayar Makineleri ve Zeka" (Harnad, 2006) baslikli makalesinde tanitti. Turing testi,
bir makinenin insan davranigimi taklit etme yetenegini Olger. Spesifik olarak, bir
sorgulayicinin bagka bir odadaki bir adama ve bir bilgisayara bir dizi soru sordugu ve
diger iki oyuncudan hangisinin insan, hangisinin bilgisayar oldugunu belirlemek i¢in bir
"taklit oyunu" tanimlar. Bilgisayar sorgulayiciy1 andirabilirse test gegilir. Yapay Zeka,
1956 yazinda iinlii Dartmouth konferansinda John McCarthy tarafindan ortaya konuldu.

Bu konferans, YZ'nin bir bilgisayar bilimi alan1 olmasinin baslangi¢ noktasi olarak
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goriilmiistiir. YZ'nin ilk gilinlerinde, YZ algoritmalar1 esas olarak matematiksel kurallar

ve mantik kurallari ile formiile edilebilen problemleri ¢6zmek icin tasarlandi.

Makine 8grenmesi(MO), 1959'da Arthur Samuel (Bell Labs, IBM, Stanford) tarafindan
icat edildi. Bir YZ sistem, ham verilerden kendi bilgisini 6grenme yetenegine sahip
olmalidir. Bu kapasite MO olarak bilinir. Birgok yapay zeka sorunu, bu sorun igin ham
verilerden 6zellikler ¢ikarmak i¢in bir model tanima algoritmasi tasarlayarak ve ardindan
bu oOzellikleri MO algoritmasina saglayarak ¢oziilebilir. Sekil 2.2°de yapay zeka

hiyerarsisi gosterildi.

Yapay Zeka

Makine Ogrenmesi

Derin Ogrenme

Pekistirmeli Ogrenme

Sekil 2.2.Yapay Zeka Hiyerarsisi

Makine Ogrenimi ((Mitchell 1997), Denetimli Ogrenme (Nasteski 2017), Denetimsiz
Ogrenme(Celebi and Aydin 2016) ve Pekistirmeli Ogrenme (Sutton and Barto 2018)

seklinde diizenlenen yapay zekanin bir alt kiimesidir.

2.2.1. Denetimli-Gozetimli Ogrenme

Denetimli 6grenme, egitim verilerine dayali bir fonksiyon iireten makine 6grenimi
teknigidir. Bagka bir deyisle, bu 6grenme tekniginde girdiler (etiketli veriler) ile istenen
ciktilar1 eslestiren bir fonksiyon iiretilir. Egitim verileri hem girdilerden hem de
ciktilardan olusur. Fonksiyon, regresyon veya siniflandirma algoritmalar ile

belirlenebilir. Dogrusal regresyon, girdiler ve ciktilar arasinda dogrusal bir iligki olup
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olmadigini belirlemek i¢in siklikla kullanilan bir tekniktir. Genellikle tahmin ve tahmin
problemlerini ve diger birgok veri madenciligi problemini ¢6zmek igin kullanilabilir.
Siiflandirma teknikleri, kaliplar1 taniyarak ve verileri inceleyerek nitel bir yaniti tahmin
etmeye odaklanir. Yaygin olarak kullanilan bazi smiflandirma teknikleri vardir. Bu
teknikler lojistik regresyon, lineer diskriminant analizi, K-en yakin komsular, agaglar,

sinir aglari, destek vektor makinelerini igerir (Talabis ve dig., 2015).

2.2.2. Denetimsiz-Gozetimsiz Ogrenme

Denetimsiz 6grenmede girdi verilerinin hangi smifa ait oldugu net degildir. Bu MO
algoritmasi, etiketlenmemis veriler tizerinde bilinmeyen bir yapiy1 tahmin etmek i¢in bir
fonksiyon kullanir. Veri 6rneklerinin uzakliklarina, komsuluk iliskilerine ve yogunluguna
gore veriler hakkinda ¢ikarimlarda bulunur. Genel olarak tavsiye sistemleri, pazarlama
sistemleri, miisteri segmentasyonu ve boyut kiiciiltme gibi alanlarda kullanilmaktadir. En
cok kullanilan denetimsiz 6grenme algoritmalar1 kiimeleme, birliktelik kurallari, temel

bilesen analizidir.

2.2.3. Pekistirmeli Ogrenme

Pekistirmeli 6grenme, en uygun davranis veya eylemin olumlu bir ddiille pekistirildigi
kavramdir. Bir PO ajani/modeli, ortamiyla etkilesime girerek ve egitim veri kiimesinin
olmadan bu etkilesimlerin sonuglarin1 goézlemleyerek ogrenir. Ajan, bu O6grenmeyi

gerceklestirmek i¢in PO algoritmalarimi kullanir.

PO, gercek zamanli karar verme, tavsiye sistemleri, saglik, oyunlar i¢in yapay zeka,
robotik, otonom siiriis, bilgisayarla géorme (tanima, algilama, algilama) ve daha sonra
Ogrenebilme becerisi gibi beceri kazanim sistemleri gibi becerilere sahip sistemlerde
kullanilir. Pekistirmeli 6grenme ile ilgili detayli anlatim boliim 2.4 ve 2.5’te yapilmustir.

Daha once yapilan ¢aligmalar ise boliim 2.7’ te incelenmistir.

Tablo 2.1, makine Ogrenmesi kavramlar1 arasindaki avantaj ve dezavantajlar
gostermektedir.  Denetimli/denetimsiz ~ veya  denetimli/pekistirmeli ~ 6grenme
kombinasyonlar1 gibi karma 6grenme yaklasimlart genellikle iyi sonuglara yol agar.

Ornegin, denetimli/denetimsiz karma &grenme yaklasimi bankacilik sektoriinde hesap
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hareketlerindeki anormallikleri tespit etmek i¢in yaygin olarak kullanilmaktadir(Engin,
2019).

Tablo 2.1. Makine Ogrenmesi Y&ntemlerinin Karsilastirilmasi

Denetimli Ogrenme Denetimsiz Ogrenme Pekistirmeli Ogrenme
Referans cevaplarina Temel veri yapisini 6grenme Deneme yanilma yoluyla
yaklasmay1 6grenme O6grenme

Dogru cevaplara ihtiyaci var Geri bildirim gerekmez Ajan kendi eylemleri hakkinda

geri bildirime ihtiya¢ duyar

Model giris verilerini etkilemez = Model girig verilerini etkilemez = Ajan kendi gozlemlerini

etkileyebilir

2.3. Derin Ogrenme

Derin Ogrenme (Fadlullah ve dig., 2017; Schmidhuber, 2015) veri yapilarindan temel
ozellikleri ¢ikarmak i¢in Yapay Sinir Aglari’ni kullanan makine 6grenmesinin bir alt
kiimesidir (Alom ve dig., 2019). YSA’lar insan beyninde bulunan sinir baglantilarindan
esinlenmistir ve her bir temel unsuruna noron denir. Bir yapay noron, giris verilerini alan,
isleyen ve bir ¢ikis sinyali dondiiren bir fonksiyon olarak nitelendirilebilir. DO'de
noronlar katmanlara baglanir ve diizenlenir, katmanlar YSA mimarilerindeki

yerlesimlerine gore kategorize edilebilir:

e Giris katman1: YSA is akisinin baslangicidir. Dis DO sisteminden veriyi alir ve daha
fazla islem igin iletir;

e Cikt1 katmani: YSA is akisinin sonlandiran katmandir. Onceki katmanlar tarafindan
ele alan verileri DO sistemine geri déndiiriir;

e Gizli katmanlar: Giris ¢ikis katmanlar1 arasinda veri ozelliklerini tanimlamak ve
islemek icin tasarlanmig aradaki katmanlardir. Tek bir gizli katmanla sinirli YSA'lar
S1g Aglar olarak adlandirilir. Birden fazla gizli katmana sahip ag mimarilerine Derin

Aglar denir.

Sekil 2.3’te derin yapay sinir aglarinin mimarisi gosterilmistir. Buna gdére her néronun

cikis sinyali yi lineer olmayan bir aktivasyon fonksiyonu fx tarafindan gerceklestirilen,

13



onceki Xj katmanlarindaki aktif noronlarin sinyalleri ile kanallarla iliskili agirliklar

arasindaki ¢arpim ile bir sapma b toplaminin hesaplanmasindan kaynaklanir.

I

.
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Sekil 2.3.Derin Yapay Sinir Aglarinin Mimarisi
2.4. Pekistirmeli Ogrenme
2.4.1. Tarihsel Baglam

Pekistirmeli O0grenmenin temelleri egitim psikolojisine dayanmaktadir. Egitim
psikolojisinin babasi olarak bilinen Thorndike''ln hayvan zekasi iizerine yaptigi
tezin(Thorndike, 1911) yil1 olan 1898, davranisin deneysel analizi olarak bilinen alanin
baslangicini isaret eder. Tez, hayvan ve insan 6grenimi hakkinda diisiinmede biiyiik bir
degisim baglatti, onemli metodolojik yenilikler sagladi ve o6zellikle B. F. Skinner

tarafindan daha sonraki arastirma ve teorinin tohumlarini atti(Chance, 1999).

Thorndike temel davranissal stiregleri arastirmaya basladi ve bu siireglerin farkl tiirlerde
oldukca benzer goriindiigiinii fark etti. Civcivler, kopek ve kedilerden daha yavas
ogrendiler, ama farki yaratan bedensel organlarindaki ve iggiidiisel diirtiilerindeki
farkliliktir. Zekadaki herhangi bir farkliliga atifta bulunulamayacagini  G6ne

stirdii(Thorndike, 1911) .

Thorndike’in yapboz kutusu ad1 verilen meshur deneyinde yapboz kutusuna a¢ bir kedi
konuldu ve kutunun hemen digina bir parca balik yerlestirildi. Kedi, kutuyu kapali tutan
mandali serbest birakan bir pedala basarak kutudan kacabilirdi. Kedi ilk basta kutunun
citalar1 arasina sikistirmaya veya ¢italari 1sirmaya c¢alisti. Sonunda kedi yanliglikla kapiy1
acan pedala basti ve kedi kacip balig1 yedi. Bu, aym kedi ile birka¢ kez tekrarlandi.
Denemeler ilerledik¢e, kedinin kapiy1 agmasi daha az zaman aldi. Sonunda kedi kutuya
konur konmaz kagacakti. Thorndike, yapboz kutusundan kedilerin deneme yanilma

yoluyla 6grendigini buldu. insanlarm da aym sekilde 6grendigini diisiiniiyordu. Bu onun
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'damgalama’ teorisini olusturdu. Thorndike'a gore, bir kisi bir duruma bir dizi tepki
verecek ve bunlardan en az biri tatmin edici bir duruma - bu duruma bir ¢dziime - yol
acacaktir. Damgalama, o belirli yanitin baglantisinin bu durumda hos bir ¢6ziim sundugu
zamandir. Bu tiir 5grenmeye pekistirme denir. Ogrenme, davranisin sonuglar1 nedeniyle
gerceklesir, davranig, hos olmayan bir seyin ortadan kaldirilmasi veya her ikisi i¢in de

hos sonuglara yol agar (Lefrangois, 2000).

Thorndike, etkili tepkilerin “basar1 tarafindan segildigini” (Thorndike, 1911) fark etti ve
davranigin tanimlanmasi i¢in {i¢ unsurun gerekli oldugunu anladi. Bunlar durum, eylem
ve sonug 6geleridir (Chance, 1999). Sekil 2.4°de Thorndike’in yapboz kutusunun temsili

gosterilmistir.

lie-r';‘

Sekil 2.4.Thorndike yapboz kutusu

Thorndike’in teorisinin iki temel kavrami vardi. Bunlardan biri etki kanunu digeri ise
deneme yanilmayla o6grenmedir. Etki kanunu ile sonucundan memnun kalinan
davraniglarin artacagini, memnun kalinmayan davranislarin ise azalacagini sdyler. Bir
uyaran ile bir tepki arasindaki baglanti gii¢lendirilebilir veya zayiflatilabilir. Bu baglanti,
sik pratik yaparak gli¢lendirilebilir veya uygulamay1 birakarak zayiflayabilir. Deneme ve
yanilma yoluyla 6grenme ise, insan veya hayvan belli bir problemle karsilastiginda
problemin ¢oziimiine katkis1 olmayan basarisiz davraniglari eler, problemleri ¢6zen ya da
basariya gotiiren davranislari ise seger. Thorndike bu duruma se¢cme (eleme) ve baglama

admni1 verir.

Thorndike gibi Skinner de davranis ve sonug iligkisi {izerinde durmustur. Thorndike'in
calismalarindan hareket eden Skinner, organizmanin davranislarimi uyaricilara karsi

gosterilen otomatik bir tepki olmaktan ¢ok kasitl olarak yapilan hareketler olarak kabul
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etmektedir. insanlarin herhangi bir ihtiya¢ durumunda organizmanin kendiliginden ortaya
koydugu davraniglara “edim” admi veren Skinner, bu edimlerin, onlar1 izleyen
sonuglardan etkilendigini ileri siirmektedir. Skinner’in gelistirdigi edimsel kosullanmaya
gore edimsel davranis; bilinen bir uyarici tarafindan olusturulmaz; organizma tarafindan

ortaya konur ve sonuglari tarafindan kontrol edilir (Skinner, 1938).

Gereksinimleri organizmay1 eyleme iterken, davraniglarina yon veren kuvvetlerin de
giidiiler oldugu bilinmektedir. O anda i¢inde bulundugu sartlarla ilgili 6nceden 6grenmis
oldugu deneyimleri yoksa hedefe varmak icin ¢esitli tepki ve davranislarda bulunarak
denemeler yapacaktir. Duruma gore belli sayida deneme yanilmanin sonunda hedefe
ulasacaktir. Boylelikle organizma ya bir 6diil elde edecek ya da bir cezadan kurtulacaktir.
Siirec i¢inde yasanan tekrarlar sonucu hedefe ulastiric tepkilerin sayis1 artarken sonuca
gbtiirmeyen davranislar elenir ve hedefe ulastirici tepkiler giderek 6grenilmis davranis

durumuna gelir (Yesilyaprak, 2005).

Kisacasi egitim psikolojinde davranis¢1 kuramlar 6grenmenin 0diil ceza sistemi lizerine
kuruldugunu diisiinmiistiir. Eger bir davranisin sonucu olumlu sonuglar getiriyorsa o
davranig devam ettirilir aksi durumda ise o davranistan kacinilir ve boylece 6grenme

gerceklesir.

2.4.2. Pekistirmeli Ogrenme

Pekistirmeli Ogrenme(Sutton and Barto 2018), optimizasyon problemlerini ¢ézmek igin
kullanilan bir Makine Ogrenmesi teknigidir. Yapisal olarak, PO modelleri bir ajan ve
cevresinden olusur. Her ikisi arasinda (ajan-cevre), ajanin ylriitilen eylemlerin
sonuclarindan sayisal Odiiller seklinde geri bildirim alarak deneme yanilma yoluyla
dgrenmesini saglayan ¢ift yonlii bir iletisim kurulur. Sekil 2.5’te PO’niin genel yapisinin
semas! verilmistir. Geleneksel Pekistirmeli Ogrenme metodolojilerinin unsurlar1 Tablo
2.2°de sunuldu. PO yapisinin en énemli unsurlar1 durumlar, eylemler ve ddiiller oldugu

sOylenebilir.

e Durumlar: Ajanin ¢cevreden aldig1 anlik bilgilerdir. Bir robot i¢in kameradan aldig: bir
goriintili ya da bir sensorden gelen sicaklik verisi 6rnek olarak verilebilir.
e Eylemler: Ajanin bir durum karsisinda uyguladigi eylemdir. Ornegin; bir robot engele

5 cm yaklasirsa uyari sesi ¢ikarmasi.
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e (Odiiller: Ajanin bir durum karsisinda uyguladigi eylemin basarisin dlgen skaler

degerdir. Ornegin; bir robotun bir hedefe ulasinca 100 puan almasi gibi.

Tablo 2.2. Pekistirmeli 6grenmenin parametreleri

Parametre  Adi Tanimi
a Eylem Ajan tarafindan yiiriitiilen, bir dizi gecerli eylemden A secilen
komut
St Durum Bir dizi ortam temsili olan S durum uzaymin somutlagtirilmasi
- Yirtitiilen bir eylem a; tarafindan tetiklenen si — sw1 durum
It Odiil A T 1o
gecisine gore dondiiriilen sayisal 6diil
P(St+1] St, ) :\)/I%r(ljlerﬁ Geels Ajanin eylemlerine yanit olarak ortamin nasil degistiginin temsili
n(s) Politika Aj anin her durumda} hangi eylemi benimsemesi gerektigini
belirten esleme fonksiyonu
Y Indirim Faktérii Anlik ve gelecekteki odiiller arasindaki dengeyi ayarlar.
V(st) Deger Fonksiyonu  Bir ajanin durumdan s; alabilecegi, beklenen toplam getiri
Eylem-Deger ; . . -
Q(st, &) Fonksiyonu s; durumundaki eylemi a; segmek i¢in beklenen toplam getiri
a Ogrenme Orani Ogrenme siirecinde gecmis deneyimlerin etkisini belirler

[ a0

Politika >

Gizlem-Durum
0

-
r

Evlem

Politilka
Gincallems

Iﬁekigﬁrmel.i
Ogrenme
Algoritmasy
A

- /

Odiil
Ry

( Cevre - Ortam 1|:

Sekil 2.5.Pekistirmeli 6grenme yapisi

Pekistirme Ogrenme algoritmalarinda ajan, her t adimda, gevreyi gozler, gdzlemlerini bir

St durumu olarak belirler ve son olarak duruma gore uygulayacagi eylemi a; seger. Ajan

daha sonra yeni durumu algilar St+1 ve ortamdan bir 6diil r¢ alir. Ajan bu islemi hedef

duruma ulasincaya kadar ya da adim sinir1 T'ye ulasana kadar tekrarlar. Daha sonra ¢evre

ilk halinde dondiiriiliir (reset fonksiyonu) ve yeni bir boliim bagslar. Her boliimiin e
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sonunda, indirim faktorii y tarafindan indirimli olarak birikmis toplam adim ddiilleri elde
edilir. Ogrenmenin amaci, akilli ajanin, deneyimini kullanarak, birikmis ddiilleri R'yi en
iist diizeye cikarmak igin karar verme yetenegini gelistirmesidir. Odiil Denklem

(2.2)’deki formiile edilir;

T
Re= Z Y'regi (22)
i=0

2.4.3. Markov Karar Siirecleri

Pekistirmeli O0grenme sistemlerinde ajan c¢evredeki her sey hakkinda bilgi sahibi
olamayabilir. Onemli olan ajanin 6grendigi bilgileri unutmamasidir. Bu nedenle ideal bir
sistemde, ilgili tiim bilgiler korunurken, gecmis bilgileri biitiinciil bir sekilde 6zetleyen
bir durum sinyali istenir. Bilgiyi koruyan bu durum sinyalinin Markov 6zelligi oldugu
sOylenir(James, 2016). Ardistk durumlarin yalnizca mevcut duruma bagli oldugu
durumlarda, durumlarin Markov &zelligini yerine getirmesi gerekir. Ornegin, bir satrang
oyunundaki piyonlarin mevcut konumu, oyunun sonraki siireci i¢in dnemli olan tek sey
oldugundan, Markov durumu olarak hizmet edecektir. Ayrica Markov 6zelligiyle mevcut
duruma sahip olmak, mevcut zaman adimina kadar tam ge¢mise sahip olmakla esittir

(6rnegin, piyon konumlari tiim oyunu bu ana kadar 6zetler) (Roy, 2018).

Markov 6zelligini siirekli bir durumda ve eylem alaninda karsilayan bir pekistirmeli
o0grenme gorevinin Markov Karar Siireci (MDP) oldugu sdylenirken, sinirl1 bir durumda

ve eylem alaninda olan gorevin, sinirlt bir Markov Karar Siireci oldugu sdylenir(James,

2016).

MDP, bir modelle ilgili karar vermemiz i¢in bize matematiksel bir ¢ergeve saglar. Bir PO
ajanmin calisti§1 ortam, ortamin tamamen gozlemlenebilir oldugu bir MDP olarak
tanimlanabilir. Bu durum, gelecegin simdiki zamanda verilen ge¢misten bagimsiz bir

karar oldugunu belirten Markov 6zelligi olarak bilinir(Kardell ve Kuosku, 2017)

Hesaplamali PO'de, ilgili ortam uzayi, ayrik zamanli MDP (Puterman, 2005) olarak
modellenebilenlerdir. Yiiksek diizeyde, MDP'lerin alani, bir sonraki 6diiliin ve diinyanin

bir sonraki durumuna ulagma olasiliginin mevcut diinya durumu (ve belki de bir ajanin
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eylem sec¢imi) tarafindan tam olarak tahmin edilebilecegi diinyalar1 tanimlar. Bir MDP

asagidaki gibi tanimlanir.

* S: Diinyanin olasi durumlarin tanimlayan bir durum kiimesi

* A: Bir ajana sunulan olas1 se¢enekleri tanimlayan bir eylem kiimesi.

* R:SxA xS — [RMin, RMax]: Bir 6diil iglevi.

e T:S x A — A(S): Mevcut durumda bir eylem yiiriitiildiikten sonra diinyanin bir
sonraki durumuna gelme olasiligin1 gosteren bir gegis fonksiyonu.

+ y €0, 1): Bir ajanin kisa vadeli ve uzun vadeli ddiiller arasindaki tercihini gésteren
bir indirim faktorii.

*  po EA(S): Her durumda baslama olasiligi.

MDP'deki "Markov", gegis islevi T ve odiil islevi R'nin her ikisinin de tam durum
geemisine degil, yalnizca diinyanin mevcut durumuna ve eyleme bagli oldugunu gosterir.
Denklem (2.3) ve Denklem (2.4), bir sonraki durum dagilimini ve mevcut durumdan

sonraki 0diilii ve yalnizca eylemi tam olarak karakterize eden islevlerin mevcut oldugunu

belirtir;
p(s’,rls,a) =Pr{S;y1 =5, Riy1 =7|S; =5,4; = a} (2.3)
p(s'ls,a) = Pr{S¢y1 = §'|S; = 5,4, = a} = z p(s’,rls,a) (2.4)

TER

Bu varsayim, uygun genelligi korurken, analizi basitlestirmek i¢in oldukg¢a faydalidir.
Ayrica, herhangi bir ortam Markov degilse, diinyanin son k €N adimlar1 bellek agisindan
zengin, yeni bir durum temsili seklinde gosterilebilir, boylece bir Markov modeli elde
edilir. Bu sekilde, MDP'ler, bir ajanin 7(s’ /s, @) ve 6diil R(s, a, s') durum dagilimin
etkilemesine izin vererek Markov zincirlerini (Bremaud, 2000)ve Markov 4diil

stireglerini (Reibman ve dig., 1989) genellestirir.
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2.4.4.Deger Fonksiyonlar:

Bir ajan yeni bir duruma girdiginde t adiminda hangi eylemin yapilacagina karar vermesi
icin bu durumda olmanin ne kadar degerli oldugunu bilmelidir. Bir durumun iyiliginin
Ol¢iisti deger fonksiyonudur. Bir durumun degeri durum degeri fonksiyonu ve eylem
degeri fonksiyonu olarak iki sekilde 6l¢iilebilir. Ajanin gelecekte almay1 bekleyebilecegi
odiiller, yaptig1 eyleme bagli oldugundan deger fonksiyonu politikaya gore tanimlanir.
Bir politika 7 i¢in durum-deger fonksiyonu, bir S durumundan baslarken ve sonrasinda
7'yi takip ederken beklenen getiridir ve sonlu MDP'ler i¢in, V*(S) her s durumu igin bir
tabloda giris olarak saklanir ve Denklem (2.5)’de gosterildigi sekilde tanimlanir;

VT(s) = Ex(R¢ls; = s) = E"(Z Y Terksalse = ). (2.5)

Burada E;, politikanin 7 beklenen degeri olarak tanimlanir. Bir politika 7 igin eylem-
deger fonksiyonu, s durumunda baslayip a eylemini gergeklestirirken ve ardindan z'yi

takip ederken beklenen getiridir ve Denklem (2.6)’da gosterildigi sekilde tanimlanir;

Q"(s,a) = Ex(R¢|sy = s,a;, = a) = E”(Z ykrt+k+1 S¢ = S,a; = a). (2.6)
k=0

Deger fonksiyonlarmin temel bir 6zelligi, Bellman denklemi(Bellman, 1957a) olarak
adlandirilan bir dizi 6zyinelemeli tutarlilik denklemini saglama yetenegidir. Denklem

(2.7)°de gosterildigi sekilde tanimlanir;

V*(s) = Ex(R¢lse = s)

= 11'(2)/ Tesk+1lSe = S).

z (s, a) Z
_ z (s, a) z P&, [RL, +yV™(s")].

ot YER(Z ykrt+k+2 St+1 = 5,)-] (2.7)
k=0
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Yukaridaki son denklem, bir durumun degeri ile ardil durumun degeri arasindaki iligkiyi
ifade eder. Her birini ger¢eklesme olasiligina gore agirliklandirarak tiim olasiliklarin
ortalamasini almamizi saglar. Baslangic durumunun degerinin, beklenen sonraki
durumun (indirimli) degeri ile Odiile esit olmasi gerektigini 6zetler. Bu durum, Sekil
2.6'da her bir acik dairenin bir durumu temsil ettigi, her bir kat1 dairenin bir durum-eylem

ciftini ve odiilii temsil ettigi, V* ve Q" i¢in yedek diyagramlar seklinde gosterilmektedir.

(v,) g (qx)
A/ﬁA\ a

OO0 OO0 O Os .

Sekil 2.6. Deger fonksiyonu diyagrami (Kersandt, 2018)
2.4.5.Optimal Deger Fonksiyonlari

Politika 7, durum-eylem eslemesidir ve ajanlarin beklenen geri doniislerini en iist diizeye
cikarmaya caligir. Pekistirmeli 6grenme gorevinde amag, uzun vadede en fazla 6diilii elde
eden politikay1 bulmaktir. Bu nedenle, tiim durumlar i¢in bu politikanin beklenen getirisi
mr'ye esit veya bundan biiyiikse, 7 politikasinin bir 7’ politikasina esit veya daha iyi oldugu

kabul edilir. Denklem (2.8) bunu ifade eder;
V() = V™ (s) > =n',Vs €S. (2.8)

Optimal politikalar1 z*, diger tiim politikalardan daha 1yi veya bunlara esit politikalar
olarak tanimlariz. Sonlu MDP'ler i¢in, diger tiim politikalara karsi Denkelem(2.8)’1 her
zaman yerine getiren ve optimal politika olarak adlandirilan ve ¥, ile gosterilen en az bir
politika vardir. Bu bize, her duruma veya durum-eylem giftine, herhangi bir politika
tarafindan elde edilebilecek en biiylik getiriyi atayan optimal deger fonksiyonlarim
tanimlama yetenegi verir. Optimal durum-deger fonksiyonu V* ile gosterilir ve Denklem

(2.9)’da gosterildigi sekilde tanimlanir;

V*(s) = max,V™(s),Vs €S, (2.9)
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Optimal politikalar ayn1 zamanda Q* ile gosterilen ve Denklem (2.10)’daki gibi

tanimlanan ayn1 optimal eylem-deger fonksiyonunu paylasir;
Q*(s,a) = max,Q™(s,a),Vs € S,a € A. (2.10)

Sekil 2.7°de, Bellman denklemi altinda v ve g+ i¢in yedek diyagramlar1 géstermektedir.
Bu, grafiksel olarak, ajanin se¢im noktalarinda, bazi politikalara verilen beklenen deger
yerine maksimumun secildigini gosterir. Bu anlamda tek adimli bir arama yapilir ve
optimal deger fonksiyonlar1 i¢in bu tek adimli aramadan sonra en iyi goriinen eylemler
optimal eylemler olacaktir. Bu nedenle, v = dikkate alindiginda a¢gdzlii davranan herhangi
bir politika optimal bir politikadir. Ozellikle, v+ gelecekteki olasi tiim davranislarin &diil
sonuglarini zaten hesaba kattigindan, kisa vadeli sonuclarin bu degerlendirmesi uzun
vadede de optimaldir. Boylece, uzun vadeli optimal eylemler, tek adimli bir ileriye doniik
bakis acisina indirgenir. Bu nedenle, V optimal deger fonksiyonuna gore acgdzlii olan

herhangi bir politika, aslinda bir optimal politikadir.

{_“* } 5 (qv,] 5.1

max /\
i} g
N R R
f
* ® ® o

OO OO O Of

Sekil 2.7. V* ve Q* yedek diyagramlar

Denklem (2.8)'deki Bellman denklemi ve V'nin bir politika icin basitce bir deger
fonksiyonu oldugu goz oniine alindiginda, V" sabitlik kosulunun herhangi bir &zel
politikaya basvurmadan 6zel bir bigimde yazilabilecegini gosterebiliriz. Bu, V" igin
Bellman optimallik denklemine yol agar ve Denklem (2.11)’deki gibi gosterilir;

V™(s) = max,Q™ (s, a)

= max,E,-(R¢|s; = s,a; = a)

= maxaEn*(Z Y Terksalse = s,a, = ). (2.11)

k=0
oo
— k — —
= maxgEp [1p41 + VEn(Z Y TeskrzlSe = s,a = a)
k=0
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= maxgE[res1 + YV (Ser1lse = s,a: = a)]
=max, Z P;sl [Rgsl + ]/VE(S’)]
S

Benzer sekilde, Q* igin Bellman optimallik denklemi Denklem (2.12)’deki gibi
tanimlanir;

Q™ (s,a) = Z P&/ [RE) + ymax, Q™ (s',a")]. (2.12)

N durumlari ve bilinen dinamikleri olan bir ortam gz 6niine alindiginda, her durum igin

V* degerini ¢dzmek igin Bellman optimalite denklemleri kullanilabilir.

Sonlu Markov karar problemleri, model tabanli ve modelden bagimsiz ortamlar olarak
ayirt edilir. Model tabanli ortamlar igin, tiim olas1 durumlar S, eylemler A, durum gegcis
olasiliklar1 p(s'|s,a) ve anlik odiiller r(s,a,s’) hakkinda tam bilgi mevcuttur. Burada,
¢Oziim uygulamadan Once bulunup degerlendirilebildiginden, problem algoritmik
planlamanin bir parcasi haline gelir. Modelsiz ortamlar i¢in, ortam hakkinda higbir bilgi

yoktur ve bu nedenle ajan, drnekler seklinde deneyimler toplamak zorundadir.

2.4.6.Politika Belirleme

Daha &nce belirtildigi gibi, Pekistirmeli Ogrenme, beklenen toplam &diilleri en iist diizeye
cikarmay1 amaclar. Politika 7, durumlarla eylemleri esleyerek, ona gore bir deger
fonksiyonu ¢ikarmay1 ifade eder. En iyi politika olusturmaya ve uygulanma durumuna
gore, PO ydntemleri Modelden Bagimsiz ve Model tabanli olarak kategorize edilebilir.
Modelden bagimsiz yontemlerde ajan, dogrudan deneyerek bir deger fonksiyonu

olusturur. Modele bagli yontemlerde ise ajana ¢evre hakkinda bilgi verilir.

PO, bir politikay1 degerlendirmek ve gelistirmek icin Politika Degerlendirme teknikleri
olarak adlandirilan ¢esitli algoritmalara basvurur(Sutton ve Barto, 2018).Bunlar;
Dinamik Programlama (DP), Monte Carlo (MC) ve Zamansal Fark (TD)

metodolojileridir.

2.4.7.Dinamik Programlama

Tam bilgiye sahip sonlu MDP'ler i¢in, optimal politika, gercek bir ajan-ortam etkilesimi

olmaksizin tamamen hesaplamali yinelemeli bir yolla bulunabilir. Bu yaklasima sahip
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algoritmalar, dinamik programlama terimi altinda siniflandirilir. DP i¢inde kullanilan iki
yontem vardir. Bunlar politika yinelemesi ve deger yinelemesidir. Politika yinelemesi 2

adimdan olusur. Bunlar, politika degerlendirmesi ve politika iyilestirme adimlaridir.

Bu iki yontem, optimal politikalar1 ve deger fonksiyonlarini giivenilir bir sekilde
hesaplamak ic¢in kullanilabilir ve her ikisi de politika degerlendirmesi ve politika

gelistirmenin iki hesaplamasi arasinda doniigiimlii olarak elde edilir.

Ilk olarak, mevcut politika i¢in deger fonksiyonunun yinelemeli hesaplamasini belirleyen
bir dizi politika degerlendirmesi uygulanir. Ardindan, deger fonksiyonuna goére en iyi
eylemi aggozliliikkle secilerek iyilestirilmis bir politikanin hesaplanmasini belirleyen bir
dizi politika iyilestirmesine gecer. Yukaridaki siireg, politika artik degismeyene kadar

tekrarlanir.

Politika yinelemesinde, politika iyilestirmesi yalnizca politika degerlendirme adiminda
calistirilir. Buna karsilik, deger yinelemesi, her bir politika iyilestirme adimi arasinda

yalnizca tek bir politika degerlendirme yinelemesini ¢alistirir.

Genel politika yinelemesini, Sekil 2.8'teki gibi 6zetlenebilir.

evaluation

V—V"

T |74

m — greedy (V)

--..;'/j;r

improvement initial .
P V m T
°
®

L]

" V*

feedYCm
=9

Sekil 2.8. Genellestirilmis politika yinelemesi (James, 2016)

Model tabanli yontemler, politika/deger islevini gelistirmek i¢in agirlikli olarak DP
(Sutton and Barto 2018) kullanir. Gegis ve 0diil modelleri, gelecekteki durumlar
tizerinden beklenen 6diil toplaminin dogru bir sekilde hesaplanmasini saglar. Deger

fonksiyonu V(st) asagidaki Denklem (2.13)’e gore giincellenir;
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V(s)er +y. z P(Ser1ls,ar) . V(See1) (2.13)

St+1€S

Denklem (2.13)"lin son terimi, indirimli toplam gelecek odiilleridir. Her olasi St+1 durumu
icin, P gecis modelinin tahmini getirileri V(St+1) ile toplamindan elde edilir. DP,
onyiikleme(bootstrapping) ad1 verilen bir teknige izin verir. Onyiikleme, ardil durumlarin
tahminlerine dayali olarak her bir durum igin degerlerin V(st) tahminlerini

giincellememizi saglar.

2.4.8.Monte Carlo

Bilinmeyen bir ortama sahip sonlu bir MDP i¢in, Monte Carlo(Rothman 1984)
yontemleri, 6rnek boliimler bicimindeki deneyimlerden deger fonksiyonlarini ve optimal
politikalart 6grenebilir. MC yontemleri, g¢evreden Ornek durum, eylem ve odiil
dizilerinden Ogrenmemizi saglayan modelden bagimsiz bir yontemdir. Cevrenin
dinamikleri hakkinda O6nceden tam bilgi sahibi olmay1 gerektirmez. Monte Carlo
yontemleri, her olasi durumun degerini hesaplamak i¢in bir model kullanmak yerine, V*

ve Q" deger fonksiyonlarini deneyimden tahmin edebilir(Aghaei, 2019).

MC kontrol yontemlerinde ajan, ddiiller ve ¢evre hakkinda bilgi edinmek icin kesif-
somiirli  ddiinlesmesini  goz Onilinde bulundurmalidir. Ajanin hem daha Once
kullanilmayan eylemleri hem de olumsuz ddiillere yol agabilecek belirsiz eylemleri géz
oniinde bulundurarak kesfetmesi gerekir. Giivenli bir sekilde hareket etmeli ve iyi bilinen
odiillere bagl kalmali veya daha yiiksek odiiller kesfetmek icin yeni seyler deneme

riskine girmelidir.

MC kontrol yontemlerinde yeterli kesif yapildiktan sonra bunun siirdiiriiliiyor olmasi bir
sorundur. Genel olarak, bunu ¢6zmek icin kullanilabilecek iki yaklasim, politika ici
yontemler ve politika dis1 yontemlerdir. Politikaya dayali yontemler, bir yandan aragtirma
yaparken bir yandan da karar vermek i¢in kullanilan politikay1 degerlendirmeye veya
tyilestirmeye caligir. Politika dis1 yontemler ise, karar vermek icin kullanilan politika ile

ilgisiz olabilecek deterministik bir politika 6§renmeye caligir.
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Monte Carlo yontemleri, DP'den farkli olarak 6nyiikleme yapmaz. Bunun yerine, deger
fonksiyonu gilincellemeleri, 6rneklenmis bir ortamdan durum-eylem-yeni durum-o6diil (st,

at, St+1, I't) seklinde Denklem (2.14)’deki gibi hesaplanir.

7 politikasini izleyerek ve karsilasilan her durum igin, o belirli durumu takip eden gergek
ry getirilerinin bir ortalamasini koruyarak elde edilir. Daha sonra, belirli bir durumla
karsilagilma sayisi sonsuza yaklagtikca ortalama, durumun degerine, V7(S)
yakinsayacaktir. Benzer sekilde, belirli bir durumda gergeklestirilen her eylem i¢in ayr1
ortalamalar tutulursa, bu ortalamalar eylem degerlerine, Q"(S,a) yakinsayacaktir. Buna
gore, durum-deger fonksiyonu V (St), durumla her karsilagildiginda, ger¢ek doniis rt 'ye

dogru giincellenebilir;
V(se) <V(sp) + a.[r; = V(s)] (2.14)

a, 0grenme oranini etkileyen adim boyutu parametresi olarak adlandirilan kii¢iik bir
pozitif kesirdir. Deger islevleri, deger islevlerinin artik hesaplanmadigini, ancak

orneklenmis getiriler temelinde tahmin edildigini vurgulamak icin biiyiik harfle gosterilir.

2.4.9. Zamansal Fark

Zamansal fark 6grenme (Sutton, 1988), DP'nin (6nyiikleme yoluyla 6grenme yetenegi)
ve MC'nin MDP'ye erismeden dogrudan ortamdan alinan Orneklerden Ogrenme

yeteneginin bir birlesimidir.

MC yontemlerinden farkli olarak, TD'nin deger islevini giincellemek i¢in boliimiin
sonuna kadar beklemesi gerekmez. Bunun yerine, TD yontemleri, yeni degerin eski
tahminden ne kadar farkli oldugunu bize bildirmek i¢in zamansal hatalar kullanarak

yalnizca bir sonraki zaman adimina kadar bekler.
Bu giincellestirme genel olarak su sekildedir:
YeniTahmin < EskiTahmin + AdimSayisi[Hedef — EskiTahmin]

TD yontemleri, modelden bagimsiz olduklari i¢in, DP ydntemlerine gore biiyiik bir

avantaj sunarken, ¢evrimici, tamamen artiml giincellemeleri MC ydntemlerini gelistirir.
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Bu, 6zellikle uzun, muhtemelen sonsuz boliimlerle ugrasirken 6nemlidir, bu nedenle

giincellemeleri bir boliimiin sonuna kadar ertelemek ideal degildir.

TD, ortamin érneklemini MC'den yaklagik bir beklenti durumu (sonraki durum dagilimzi)
ve DP'den gelecekteki odiillerin indirimli toplamini tahmin etmek i¢in Onyilikleme

kavramiyla birlestirerek deger islevini Denklem (2.15)’te gosterildigi gibi gilincellestirir;
V(st) <V(sp) + a.[r: +v.V(ses1) — V(sp] (2.15)

2.4.10. Kesif ve Somiirii

Pekistirmeli 6grenmede kesif, ajanin ¢evre hakkindaki bilgisini gelistirmek i¢in eylemde
bulunmasini sémiirii ise mevcut bilgisine gore odiilleri en iist diizeye ¢ikarmak igin
eylemde bulunmasin ifade eder. Bir ajanin amaci, bilinmeyen bir ortamla etkilesimler
yoluyla elde edilen gelecekteki odiillerin toplamini en {ist diizeye ¢ikarmaktir. Bunu
yaparken, ajan kesif ve somiiriiyii dengelemelidir. (Taiga ve dig., 2018).Pekistirmeli
O6grenmede ortaya ¢ikan zorluklardan biri, kesif ve somiirii arasindaki dengedir. Ajan, cok
fazla 6diil elde etmek i¢in daha yiiksek oOdiiller liretmede etkili olan deneyimlerine ve
eylemlerine giivenmelidir. Ote yandan, bu iyi eylemler ilk etapta daha 6nce se¢medigi
eylemleri deneyerek kesfedilmelidir. Baska bir deyisle, ajan 6diil almak icin zaten
bildiklerinden yararlanmak zorundadir, ancak ayni zamanda gelecek icin olas1 daha iyi

bir eylem bulmak i¢in arastirmak zorundadir.

PO ajanlar1 en uygun politika hakkinda bilgi edinmek isterler, ancak ilk bdliimde
karsilagtiklar1 "iyi" eylemleri asla arastirmazlarsa ve yalnizca gii¢lendirirlerse, en uygun
politikanin neye benzedigini bilemezler. Politika i¢i yontemlerde, ajan her zaman
kesfeden bir yapidadir ve bu nedenle hala kesif yapan en 1yi politikay1 bulmaya calisir.
Buna karsilik, politika dis1 yontemler iki ilke kullanarak bu uzlasmay1 6nler. Hakkinda
bilgi edinilen politikaya hedef politika 7 ad1 verilir. Davranis olusturmak igin kullanilan

politikaya davranis politikas1 , ad1 verilir ((Roy, 2018).

Modelden Bagimsiz PO algoritmalarinda kesif ve somiirii arasindaki gegis acgdzlii(e-
acgozlii) stratejilerle kurulur. A¢gozlii stratejilerde, ajan uygulayacagi eylemi epsilon-¢

olasilikla rastgele seger. Buna karsilik somiiriide ise, en yiiksek tahmini degere sahip
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eylemler olan Q*(s,a) tamamlayici olasilikla segilir. Zaman iginde € degeri azaltilarak,

ajan kesiften somiiriiye dogru ilerler (Arulkumaran ve dig., 2017).

Bir davranis politikasinin ¢ok basit ama etkili bir versiyonu epsilon-a¢gdzliiliik
politikasidir. Bu yontemle kesif miktar1, eylem se¢imlerinde rastgeleligi belirleyen bir
parametre olan ¢ ile global olarak kontrol edilir. Digerlerinin aksine, e-aggozliiligiin bir
avantaji, kesfe 6zel verilerin ezberlenmesine gerek olmamasidir, bu da yontemi ¢ok
bliyiik ve hatta siirekli durum uzaylari i¢in 6zellikle avantajli kilmaktadir. Diger karmasik
yontemlerle karsilastirildiginda, e-aggozliliigi (Vermorel ve Mohri, 2005) genellikle ilk
tercih edilen yontem oldugu bildirilmistir (Sutton ve dig., 2018).Denklem (2.16)’da e-

acgozlli yontem formiile edilmistir;

_ fargmax,Q(s;, a) 1 — e olastilikla 21
Hist) { random A ¢ olastlikla (2.16)

2.4.11. Q Ogrenme

PO algoritmalar politika tabanli, modelden bagimsiz ve model tabanli olarak ii¢
kategoriye ayrilabilir. Her kategori su sorunun cevabim arar: "Ogrenme sirasinda hangi
fonksiyonlar tahmin ediliyor?". Bir PO algoritmas1 gegis ve odiil fonksiyonlarinin
tahminlerini tutarsa (T ve R), o zaman model tabanli oldugu sdylenir. Odiil ve gegis
fonksiyonlart tahmin edilmiyorsa, sadece eylem-deger fonksiyonu Q tutuluyorsa
algoritma modelden bagimsizdir. Son olarak, tahmin edilen tek sey dogrudan politika ise
o zaman politika tabanlidir. Bununla birlikte, bunlar ¢okta net olmayan sinirlardir ¢linkii
bircok algoritma genellikle farkli islevlere kismi ¢oziimler hesaplar veya bu islevlerden
birinin insasina benzeyen ortiik hesaplama ¢aligsmalari yiiriitiir (Seijen ve Sutton, 2015).

Bu ii¢ yaklagim arasindaki ayrim kabaca Sekil 2.9'daki sema ile gosterilmistir.

Model tabanli PO'de, gecis ve 6diil islevleri genellikle agik¢a tahmin edilir. Daha sonra,
bu tahminleri kullanarak T ve R, ajan genellikle iyi davranis i¢in arama yapmak veya
farkli politikalar1 degerlendirmek icin kullanilabilecek simiile edilmis bir MDP, M~
olusturur. Diger bir deyisle, ¢cevresel MDP M'ye yeterince benzeyen bir MDP M"ye
simiilasyon erisimi verildiginde, ajan 7 veya belki de Q olusturmak igin M~ lizerinde
hesaplamalar yapabilir ve bu da en yiiksek degere sahip eylemi secerek bir politikay1

indiikleyebilir.
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Modelsiz ve politika tabanli PO'de, ajan genellikle eylem-deger fonksiyonu (Q)’ nun veya
bir politika (z) nin tahminini dogrudan tutar. Bu islevleri daha verimli bir sekilde
atayarak, daha saglam bir sekilde genellestirerek veya daha hassas bir sekilde kesfederek

daha hizl1 6grenmek i¢in ¢esitli mekanizmalar ayarlanir.

hodel-tabanlh —*

— Modalden =™

—

Sekil 2.9. PO algoritmalarinin kategorileri(Abel, 2020)

Sf=1 Fi=1 =1

-

Baglama bagli olarak her bir algoritma tiirlinii kullanmak i¢in iyi argimanlar vardir.
Ozellikle, modelsiz ve politika tabanli ydntemler, derin sinir aglari ile birlestirildiginde
biiyiik bir basari elde etti ve Atari'den (Mnih ve dig., 2015) robotige kadar ¢esitli zorlu
alanlarda etkili bir sekilde 6grenen DPO ydntemlerine yol acti(Levine ve dig., 2016).

En bilinen PO algoritmasi, ilk olarak Watkins ve Dayan (Watkins ve Dayan,
1992)tarafindan tanitilan Q-6grenme olarak adlandirilir. Optimal kontrol teorisi
baglaminda, Q-0grenme, tamamen bilinmeyen sistemler i¢in en uygun kontrol ¢oziimiine
cevrimi¢i olarak yakinsayan, uyarlanabilir, bir kontrol algoritmas1 olarak

siiflandirilabilir(Lewis ve dig., 2012).

Q-6grenme, her durum-eylem ¢ifti igin Q fonksiyonunun bir tahminini korur ve son
deneyime (St.1, a1, I-1) ve bir 6grenme oranina a € [0, 1] dayali olarak bu Q fonksiyonu
tahminine basit bir giincelleme yapilmasi temelinde ilerler. Yani, ilk 6nce Q degerlerini
[QMin,QMax] araligindan rastgele se¢mek gibi bazi protokollere gore bir Q fonksiyonu
uygulanir veya daha yaygin olarak, ilk Q fonksiyonu sifir olarak ayarlanir veya tiim s, a
i¢in Qo(s, a) = QMax oldugunda iyimser olarak ayarlanir. Ardindan, Denklem (2.17)’deki

gibi tanimlanan a¢gdzliiliik politikasina gore eylemler secilir;
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1-—¢ a = argmax, Q(ssa’),

Moe(als) =7 __ €
1Al -1

(2.17)
diger durumlarda.

Q-Ogrenme (Watkins, 1989), takip edilen politikadan bagimsiz olarak dogrudan Q*‘ya
yaklasan bir politika dis1 TD kontrol algoritmasidir. Bir deneyim, (S, a, r ,s') olarak
tanimlanir, burada ajan s durumunda baslar, a eylemini gergeklestirir, bir r 6diili alir ve
s' durumuna geger. Q(s,a) giincellemesi daha sonra s' ‘dan bir eylem igin miimkiin olan
maksimum 6dili alarak ve Denklem(2.18)’deki gilincellemeyi uygulayarak

gerceklestirilir;
Q(sp ar) «<Q(sp ap) + a.[r +y.max,Q(se41,a) — Q(sg, ap)]. (2.18)

Q-Ogrenme, Sekil 2.10'da gosterildigi gibi bir Q-Tablosunu yiikleyerek baslar, her satir

bir duruma, s € S'ye ve her siitun bir eyleme, a € A'ya karsilik gelir.

Q tablosunu

Qtablosunu yikle == Gevreyi gozlemle ===  Eylemseg === Odili Hesapla = qtncelle

T

Sekil 2.10. Q-Ogrenme akis semast

Eylem; |[... Eylemy
Durum,; (Q(1,1) Q(1,N)
Durum,, (Q(M,1) [... Q(M,N)

Sekil 2.11. Q degeri tablosu

[k asamada ajan, e-acgdzlii kesif yontemini kullanarak yeni durumlari ve eylemleri
kesfederek cevre ile etkilesime girer. Q degerleri Q(S, @), ajanin s durumunda a eylemini
gerceklestirmesinden beklenen toplam Odiillerini temsil eder. Sekil 2.19 da verilen Q-
tablosu yapisina benzer bir seklide, her bir durum-eylem eslesmesi icin tablo Q degeri ile
doldurulur. Her Q degeri, Bellman denkleminin hesaplanmasindan kaynaklanir ve

Denklem (2.19)’daki gibi ifade edilir;
Qs a0) <Q(st,a) + @.[r (50, @) +7.MmaxXgQ(541,@) = Q(st, a)l- (2.19)
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e r(st, a): mevcut stdurumundan bir sonraki duruma st+1 gegis igin verilen 6diil;

o maxaQ(St+1, a): Ardisik durum sw+1'in optimal Q degeri bigiminde, dizinin birkag adim
daha derininde dondiiriilebilen odiiller;

e Q(st, a): Zamansal Fark olarak Q degeri gosterimi;

o (St a)t+ vy - maxaQ(St+1, a): Zamansal Fark ile hedeflenen deger;

o (S, ar)t+ vy - maxaQ(St+1, @)- Q(St, a): Zamansal Fark hatasi (dt).

Ajan kesif yaparken ¢esitli ¢cevre durumlari ile karsilasir. Yeni durumlarla karsilastikca
Q-Tablosu dolmaya baslar. Ajan, yeni durumlar kesfettik¢e tablo biiylir. Ajan kesiften
sOmiiriiye ilerlediginde, Q-Tablosundaki degerlere bakar ve toplam birikmis ddiilleri en

iist diizeye ¢ikaran eylemleri Q*(s, @) Denklem(2.20)’de gosterilen formiil ile seger;

Ar <argmaxXaeq(s,:) (Q(sp,a)) = Q7 (s, a) (2.20)

Q-6grenmenin algoritmasi Sekil 2.12°de gosterilmistir.

Q-Ogrenme Algoritmasi

Q(s,a)'y1 rastgele baslatin
iskonto faktdrii y belirleyin
Adim boyutu parametre a belirleyin
tekrarla(her bollim icin):
Baslangic durumu S,'i gozlemleyin
tekrarla (bolimiin her adimi icin):
Eylemi secin A, Q'dan tiiretilen politikayr kullanirken (6rn. s-acgozlii)
Eylemi uygula
Odiil Ris1 ve yeni durum S..1'i gozlemleyin
Q(Se, ar) <Q(Sr. ar) + a. [r(se, ar) +v.MaxaQ(Ses1, @) — QS ar)]
S: & Sea
S, son durum olana kadar devam et

6grenmenin sonuna kadar devam et

Sekil 2.12. Q-Ogrenme Algoritmasi
2.4.12. Sarsa

Sarsa, State-Action-Reward-State-Action anlamina gelen, politikaya bagli bir TD kontrol

algoritmasidir. Bu ad, ajanin S durumunda basladigi, a eylemini gergeklestirdigi, r
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odiiliind aldigi, s’ durumuna gectigi ve ardindan a’ eylemini yapmaya karar verdigi bir
deneyimden (s; a; r; s’; a’) tiretilir. Bu deneyim, Denklem (2.21)’deki denklemi

kullanarak Q(s; a)'y1 glincellemek igin kullanilir;

Q(spar) <Q(spar) + a.[r + ¥Q(Se41, arr1) — Q(se, ap)]. (2.21)

Algoritmanin genel formu asagida Sekil 2.13’de verilmistir.

Q(s.a)'y1 rastgele degerlerle baslat.
tekrarla(her bdliim i¢in):
s'yi baslat
Boliimiin her adimu igin:
Q'dan ftiiretilen politikay1 kullanarak bir s durumda bir eylem a secin. (6rn. e-aggdzlii)
a eylemini gerceklestirin, r, s'yi gézlemleyin.
Q(se, ar) <Q(s,ar) + a. [r(se, @) +y.Mmax,Q(Se41, @) — Q(Se, ap)]

5: & St

Sekil 2.13. Sarsa algoritmast
2.4.13. Sarsa ve Q Ogrenmenin Karsilastirilmasi

Sarsa ve Q-6grenme algoritmalari arasindaki farklar oldukg¢a incedir. Sarsa politika i¢i bir
yontem oldugundan, Q degerlerini gilincellemek i¢in kullanilacak hamleleri yaparken bir
kontrol politikast izler. Ote yandan Q-6grenme, en uygun politikanin izlendigini varsayan
ve bu nedenle her zaman en iyi eylemi gergeklestiren politika dig1 bir yontemdir.

Ozetlemek gerekirse, temel fark gelecekteki ddiillerin bulunma seklidir.

Bu iki yontem arasindaki fark, Sutton ve Barto'nun (Sutton ve Barto, 1998) kitabindan

alinan ornekte (Sekil 2.14) iyi bir sekilde gosterilmistir.

r==l | \—T—T—1T—T—"T"—"T"—""T"—"T—1"1 safe path
11 e optimal path
S 5 o i1 G

J'M

Sekil 2.14. Ugurumda yiiriime gorevinin grid diinyas (Sutton ve Barto, 1998)
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Sekil 2.14'te gosterilen grid diinyasi, indirim faktorii uygulanmamis (y = 1), epizodik bir
gorevin parcasidir. Gorevin amaci, ucurumdan diismeden yukari, asagi, sag ve sol

hareketlerini kullanarak baslangi¢ durumundan (S) hedef duruma (G) gitmektir.

Ajan, "Ugurum" olarak isaretlenmis bolgeye girmesi disinda her durum gegisinde -1 6diil
alir, uguruma diiserse -100 6diil alir ve ardindan baslangi¢ durumuna geri gonderilir. Ajan
gorevini yerine getirirken, sabit bir epsilon &= 0.1'e ayarl olarak g-a¢gdzlii bir eylem

secimini izler.

Sarsa
Reward _so{ [+ /W WAl
P Q-learning
epsiode
-754
-100 ; . : 1 .
0 100 200 300 400 o0

Episodes
Sekil 2.15. Ugurumda yiiriime gérevinin sonuglar1 (Sutton ve Barto, 1998)

Sekil 2.15’te bir Q-6grenme kontrol yontemi ve bir Sarsa kontrol yontemi izlendiginde

her boliim i¢in toplam 6diilii gostermektedir.

Q-Ogrenme bazen g-acgdzlii eylem secimini izleyerek ajan1 ugurumdan itecek rastgele
bir eyleme yol agmasina ragmen kisa bir siire sonra ugurumun kenari boyunca seyahat
etmeyi igeren en uygun politikay1 6grenmeyi basarir. Tersine, Sarsa bunu dikkate alarak
eylem se¢im yontemi ugurumdan uzakta, daha uzun ama daha giivenli bir yol izleyen bir
politika ile sonuglamir. Q-Ogrenme’nin en uygun politikayr bulmasina ragmen,
performansi Sarsa'dan daha kotiidiir, ancak her ikisi yontemde de kademeli olarak epsilon

degeri 0'a diisiiriiliirse optimal politikaya yaklasacaktir.

2.4.14. Fonksiyon Yaklasimi

Pekistirmeli 0grenmenin zorluklarinin ¢ogu, robotige uygulandiginda ortaya c¢ikar.

Bunun nedeni ¢ogu robotun dogasi geregi siirekli durumlar ve eylemler ile hareket
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etmesidir. Bunun gibi gérevlerle ugrasirken, boyutsalligin laneti (curse of dimensionality)
ile (Bellman, 1957b) karsi karsiya kalinir. Bu bize durum sayisinin, durum

degiskenlerinin sayisiyla katlanarak arttigini soyler.

Simdiye kadar tartisilan yontemlerin tiimii, her durum i¢in bir giris i¢eren tablo olarak
temsil edilen deger fonksiyonlarina sahiptir. TD yontemleri ve Q-6grenme, her durumun
bir V(s) girisine sahip oldugu veya her durum-eylem c¢iftinin bir Q(s,a) girisine sahip
oldugu tablo halinde tartigildi. Tiim durumlar i¢in tiim deger fonksiyonlar1 bir arama
tablosuna kaydedilir. Bu prosediir, dama veya tic-tac-toe oyunu gibi sinirli sayida durum
ve eylem igeren ortamlar i¢in uygundur. Ancak, problemin durum uzayi biiyiikse, bu tablo
bicimi pratikte miimkiin olmaz. Soru sudur: Mobil robotlarda oldugu gibi biiyiik, hatta
stirekli bir durum alani verildiginde-6rnegin bir hastane ortami- ne olur? Otonom bir arag
baglaminda, kamera goriintiilerinin olas1 piksel diizenlemelerinin sayist sonsuzdur. Her
bir goriintii bir durumu temsil ettiginden, durum uzay: siirekli veya sonsuz olarak
ayarlanir. Stirekli durum alani ile biiyiik miktarda zaman ve veri gerektiren biiyiik, bellek
tilkketen tablolar gelir. Belirli bir durum i¢in bir deger aramaya calisirken, dnce bu degerin
tabloda bulunmasi gerekir, bu da gevrimigi giincellemeleri zorlastirir. Ogrenme siireci
cok sayida durum tarafindan yavaslatilir, ¢linkii her bir durumun degeri ayr1 ayri
ogrenilmelidir. Bu nedenle, bu gibi durumlarda O6grenmenin tek yolu, Onceki
durumlardan daha 6nce gormedigimiz durumlara genelleme yapmaktir. Bu sorunu biiyiik
veya sonsuz MDP'ler i¢in ¢6zmek i¢in, mevcut olana benzeyen farkli durumlarla 6nceki

karsilagmalardan genelleme yapmak gerekir.

Pekistirmeli 6grenme baglamindaki bu genellemeye fonksiyon yaklasimi denir, ¢iinkii
Q(s,a) gibi istenen fonksiyondan veri drnekleri alir ve tiim fonksiyonun bir yaklagimini
tiretmek i¢in onlardan genellemeye calisir. Bunu yaparken parametre vektori 6

kullanilarak fonksiyon Denklem (2.22)’deki gibi temsil edilir.

V(s;0) = V(s)
(2.22)

Q(s,a;0) = Qz(s,a)

Makine 6greniminde incelenen birincil konu olan denetimli 6grenmenin bir 6rnegi olarak

fonksiyon yaklasimi, halihazirda kapsamli bir sekilde incelenmistir. Teoride, bu alanda
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caligilan yoOntemlerden herhangi biri, fonksiyon tahmincisi roliinde kullanilacak

pekistirmeli 6grenme ile birlestirilebilir. (Schmidhuber, 2015).

2.5. Derin Pekistirmeli Ogrenme

Pekistirmeli G6grenmenin fonksiyon yakinlastiricisi olarak derin sinir aglart ile
kombinasyonuna Derin Pekistirmeli Ogrenme denir. Degerlerin tablo gdsterimlerinin
sinir ag1 gibi bir fonksiyon yaklasimiyla degistirilmesi, yliksek boyutlu sensor girdilere

sahip gorevleri basarmak i¢in gereklidir.

Pekistirmeli Ogrenme, temel gergege atifta bulunmadan kontrol modellerini §grenmenin
etkili bir yoludur(Tai ve Liu, 2016). Bununla birlikte PO algoritmalari, tablo gergeveleri
nedeniyle kapsamli ve dinamik ortamlarda hesaplama acisindan maliyetli olma
egilimindedir. Bunu ¢ézmek icin derin 6grenme ve pekistirmeli 6grenme algoritmalari
birlikte kullanilabilir. Bu tiir yapilart iceren ydntemler, bilimin tiim yelpazesinde

uygulamalar iireten yenilik¢i bir alan olan DPO kapsamindadir (Li, 2018).

Pekistirmeli Ogrenme ile ilgili sorunlardan biri, durum sayis1 arttik¢a verileri depolamak
i¢in gereken bellek miktarinin hizla artmasidir. Derin Pekistirmeli Ogrenme, durum uzay1
bliyiik veya siirekli oldugunda, goériinenden goriinmeyen durumlara genelleme yaparak,
fonksiyon tahmin edicileri (Li, 2018) olarak Yapay Sinir Aglari’'n1 kullanarak bu
problemin {istesinden gelmeye ¢aligir. Sekil 2.16°da DPO modeli gdsterilmistir.

Pekistirmeli 6grenme icin fonksiyon yaklagimi olarak sinir aglar1 yeni bir fikir degildir
ve 1989'a kadar uzanmaktadir (Werbos, 1989).Burada yazar, TD benzeri algoritmalari
kullanarak politikalart ve deger fonksiyonlarini 6grenmek igin hata geri yayilimi ile
egitilmis sinir aglarin1 kullanan bir yaklasim gelistirdi. Ote yandan erken arastirmalar,
politika disi, dogrusal olmayan fonksiyon yaklasimi ve Onyiikleme isleminin
birlestirilmesinin kararsizliga ve ayrismaya neden olabilecegini gostermistir(Tsitsiklis ve

Roy, 1997), bu da 6liimciil ti¢lii sorunu (Sutton ve Barto, 1998)olarak adlandirilir.

Sorunun arkasindaki sebep hala bir arastirma konusu olsa da 2015 yilinda Google
DeepMind'dan bir ekip, derin sinir aglarin1 kullanan Q-6grenmenin bir uyarlamasi olan

Derin Q-Ogrenme algoritmasimi(Mnih ve dig., 2015) sundu.
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Sekil 2.17. Deger tabanli ve Politika tabanli Derin Pekistirmeli Ogrenme

DPO’de, degere dayali veya politikaya dayali yontemler kullanilir. Sekil 2.17°de bu
yontemlere ait modeller gosterildi. Deger tabanli 6grenmede, YSA'lar eylem-deger
fonksiyonlari, O(s, a,; 0) olarak hareket eder. Ince ayar yapildiktan sonra, durum-eylem
Q degerlerini tahmin ederler ve mevcut durum goz Oniine alindiginda hangi eylemin
gerceklestirilecegine dair deterministik bir sinyal ¢ikarirlar (Ejaz ve dig., 2019).Aksine,
politika tabanli yaklasimlar, politika z(s, a; 6) parametresini ayarlamak ve Politika
Gradyan tekniklerini kullanarak eylem alanini optimize etmek i¢in YSA'lar1 kullanir

(Wang ve dig., 2019; Mnih ve dig., 2016)

2.5.1.Derin Q Ogrenme

Derin Q-Ogrenme (Mnih ve dig., 2015), Q-Ogrenme algoritmasi iizerine tasarlanmis
deger tabanli bir 6grenme yontemidir. Yapisinda bulunan YSA mimarisi nedeniyle Derin
Q-Ag1 olarak da adlandirilir. Her iki yaklagim da durum-eylem Q degerlerini hesaplamak

i¢in ayn1 prensibi paylasir, ancak isleyis tarzinda farklilik gosterir. Q-Ogrenme, egitim
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slirecini ve bunun sonucunda ajanin karar vermesini yonlendirmek i¢in bir Q-Tablosuna

basvururken, DQN'de bu tiir gérevler YSA’lar tarafindan yiiritiiliir.

Politika Ag
Rastgele Yigin j

Tekrar Arabellegi Q(sj.a;:8)
Durum Sp fee |5k
1 1 ' i
Eylem a | |aw ] } ~ Kayip hesaplamass
- Sj+l -
Yenidurum |s;  [.. [Spe -

by 2
odal N |- e coneelle A llye(@) — @(s;. a8

vi(a)

N=Tekrar arabelleginin boyutu

]

Gincelle 8 < 6

. Q(sj“‘n:a'j vomaxgQ(sj.g.a;87) 1
- .max; O
I 1 ' [ ¥ : W\t )
y N

Hedef Ag

Sekil 2.18. Derin Q-Ogrenme egitim asamasi

Sekil 2.18'de gosterildigi gibi, DQN modeli, tekrar arabellegi, hedef ag ve politika ag1,
olarak ii¢ ana bilesenden olusur. Politika ag1 (¢), mevcut durum gegcisi icin Q degerlerini
tahmin etmekten sorumluyken, hedef ag (¢") ardil durumun optimal Q degerini hesaplar.
DQN'de her bir Q degeri, Bellman denklemi (o = 1) kullanilarak Denklem (2.23)’de

gosterilen formiil ile hesaplanir;

Q(se ar) «r(se, ar) +yv.max,Q(setq1, a) (2.23)

Tekrar arabellegi (S. Zhang and Sutton 2018), sirasiyla, her egitim adimi t'de tanik olunan

gecis demetlerini (S, a, St+1, It) tablo seklinde depolar.

DQN’de ajan, cevre ile etkilesime girerek yeni durumlar1 kesfeder. Kesif yontemi olarak
g-acg0zIlu stratejisini kullanir. Tekrar arabelleginde, yeni durumlar kesfedildikge, gecis
demetleri depolanir. Hedef ve politika aglarina iletilmek {izere, rastgele bir demet grubu
(Sj, &, Sj+1, j) orneklenir. Ayrica bir kayip degeri aglarin ¢ikt1 Q degerlerine goére Denklem
(2.24)’deki gibi hesaplanir;

L(©®) = ||ly:(a) - Q(sj, aj; 9)"2 = || + v.max,Q(sj+1, 4,0~ — Q(sj, a;; 9)”2 (2.24)
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Denklem(2.23)’teki hedefler yi(a) ile Q(Sj, aj; 6) tahminleri arasindaki hata daha sonra
politika ag1 parametreleri #'y1 ayarlamak i¢cin Denklem(2.25)’deki formiil ile geri yayilir;

Agz (Z.L(@).VQQ(S}-,(Z}.;H) (225)

Tekrar arabelleginin kullanilmasi sayesinde, politika ag1 giincellemelerinin ayarlamak
icin rastgele durum gegis demetleri (Sj, @j, Sj+1, Ij) kullanilir. Yani politika agi (6), yalnizca
ortamin son gozlenen durumuna bagli degildir. Bu durum ajanin uyguladigi yeni eylemler

i¢in egitilmesini saglar.

Her egitim adiminda ayarlanan € politika ag1 parametrelerinden farkli olarak, hedefin
agirliklart ve oOnyargilari, 6 politika ag1 parametre degerlerini devralarak 6~ < 6
periyodik olarak giincellenir. Bu islem, hedef fonksiyonun hizla degismesini dnleyerek

egitim siirecinin saglamligin artirir.

Egitim siirecinin ardindan hedef ve politika ag1 giincellenir. Boylece egitilmis bir ag
modeli (6%) ortaya ¢ikar. Bu ag modeli ile ajan, karar verme siireglerini kendi kendine
ogrenmeye baglar. Bu nedenle, DQN ajan artik tekrar arabellegine veya hedef aga ihtiyag
duymaz, onemli bir hesaplama maliyeti diisiisii saglar. Bu test asamasinda, sistemin
isleyisi Sekil 2.19°da gosterildigi gibi oldukga basittir. Kullanilan ag (6~), her t adiminda,
girdi durumunu st isler ve buna gore Q degerlerini Q(St, @, 6*) hesaplar. Ajan, en yiiksek

odiili getirecek bir eylem seger. Denklem (2.26)’da gosterildigi gibi formiile edilir;

a; < argmaxgeq(s,;01)(Q(Se, a;0%)) = Q7 (s¢, a; 07) (2.26)
Egitim . Test

:

g

E""
i

Sekil 2.19. Derin Q-Ogrenme Akis Diyagrami



2.5.2. Deterministik Politika Gradyam

Deterministik Politika Gradyani'nin (DPG) bir¢ok ¢esidi vardir. Bu tezde, B'nin
indirgenmis durum dagilimi oldugu ve  mevcut politika © ayr1 bir politikay1 temsil ettigi
politika dis1 deterministik Aktor-Kritik dikkate alinacaktir. Konun detayi i¢in David
Silver ve arkadaslarmin (Silver ve dig., 2014) calismasina bakilabilir. Algoritmanin

calisma yapisi basitce Sekil 2.20'de gosterilmektedir.

Drsrvm Evlam

Entil:

Deger
fonksiyonu

4

Ol

Cevre

Sekil 2.20. Aktor-Kritik algoritmasinin basit gosterimi

Aktor-Kritik mimarisi, beklenen getiriyi optimize etmek igin iki yap1 kullanir. Aktor ve
Kritik birlikte ¢alisir ve algoritmalarda amaglarina gore ayri ayr egitilirler. Aktor, mevcut
politikay1 tanimlar ve bu nedenle mevcut politikaya gore eylemler iiretmesi amaclanir.
Kritigin gorevi, problemin deger fonksiyonunu tahmin etmektir. Ogrenme genellikle
politika tizerinedir ve Kritik, Aktor tarafindan tanimlanan mevcut politikadan yiiriitiilen
beklenen eylem degerinin ne oldugunu 6grenmelidir. Kritik daha sonra politika tarafindan
gerceklestirilen eylemi bir Zamansal Fark-Hatas1 (TD-Hatasi) olarak elestirebilir. TD-
Hatasi, iki farkli durumun deger fonksiyonu tahminleri arasindaki zamansal farktir.

Degerlendirme matematiksel olarak Denklem (2.27)’deki gosterilen sekilde tanimlanir;

8t = Teg1 YV () — V(Ses)- (2.27)
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TD hatast daha sonra Aktor ve Kritik modelindeki parametreleri optimize etmek icin
kullanilir. §; > 0 ise, mevcut eylemin sonucu a: beklenenden daha iyidir ve bu nedenle

m(ar|St) olasiligini artirmak arzu edilir.

DPG’ye geri donersek performans hedefi, deger fonksiyonundan veya eylem deger

fonksiyonundan Denklem (2.28)’deki gibi ifade edilebilir;

Js (o) = f PP (s)VH(s)ds
s (2.28)

- [ P

Aktorler modelinin parametreleri i¢in gradyanlar daha sonra Denklem (2.29)’da

gosterilen sekilde tahmin edilebilir;

Volp (o) ~ f PP () Voo (als)Q (s, a)ds
S
(2.29)

= [E5~pﬁ [Veue (s)V,Q*(s,a) |a=y9(s)]'

Gergek eylem degeri fonksiyonu, bir genel fonksiyon yaklastirict Q% =~ Q* ile degistirilir
ve gercek eylem-deger fonksiyonunu en aza indirmek icin egitilir. Ayrica, algoritmanin
temel adimlarinda kullanilan denklemler (Denklem (2.30), Denklem (2.31), Denklem
(2.32)) sunlardir;

TD hatasin1 hesaplamak i¢in:

Oy =1 + VQw(5t+1'.Ue (5t+1)) — Q% (¢, ab), (2.30)
Kritik agirligint hesaplamak i¢in:

Wepq = Wp + @, 6:V,0Q%(se, at), (2.31)
Aktor agirligini hesaplamak igin:

Qt+1 = Qt + aGVG,uB (St)anw(St' at)lazyg(s). (232)
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2.5.3.DDPG

Derin Deterministik Politika Gradyani(DDPG) (Lillicrap ve dig., 2016), sinir aglarini
genel fonksiyon yaklastirict olarak kullanarak DPG algoritmasini uygular. Sekil 2.21°de
DDPG algoritmasi verildi.

DDPG ALGORITMASI

Baslatma: Kritik ag Q'yu ve aktdr ag1 u rastgele baslatin.
Baslatma: Hedef agi baslat Q" ve u".
Baslatma: Tekrar arabellefini B ylikle.
forepisode=0,1,...do
Baglatma: Eylem kesfi icin rastgele bir islem baslatma.
5, durumunu gézle.
foriteration=1,...,Tdo
Mevcut politikaya gore eylemi a: secin, hem &diil r.hem de s.. sdurumunu
uygulayin ve gbzlemleyin.
B arabelleginde saklayin (s, o, r,, 5.-1);
B'den bir mini parti N numunesi drnekleyin;
Kritik agimi glincelle;
Aktdr agini glincellg;
Hedef aglan glincelle;
end for
end for

Sekil 2.21.DDPG algoritmasi

Sinir Aglarm siirekli eylem alanlartyla PO’de uygulamak ii¢ ana soruna yol agar. Bunlar;
iliskili veriler, istikrarsizlik ve yetersiz kesif sorunlaridir. Bu kisimda, bu sorunlar1 ¢ozen
iic yontem agiklanacaktir. Egitim Sinir Aglari, egitim verilerinin bagimsiz ve ayni sekilde
dagitilmasini gerektirir (Goodfellow ve dig., 2016), ancak ortamda sirali olarak 6rnekler
tiretilirken durum bdoyle degildir. DDPG algoritmasi, dnceki deneyimi depolamak igin
tekrar arabellegini kullanir. Yeterli miktarda veri toplandiginda tekrar arabellegi
kullanilabilir. Amag, “iliskili verilerin lanetine” kars1 koymaktir. Aktor-Kritik i¢in kayip
islevi daha sonraki 6rneklerden alinan kare kaybi olarak Denklem (2.33) ve (2.34)’deki

gibi formiile edilebilir;

L(09) =E,_pp g pr,-5[(Q(st 2:09) — y)?] (2.33)
Buradan;
Ve =1(56, ar) + ¥Q(Se1, 1(5e41)169). (2.34)
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Kritik igin Sinir Ag1, optimize ettifimiz ag ile ayn1 ag ile hesaplandigindan, sapmaya
egilimlidir. Bu sorunun ¢oziimii, aglarin kopyalarmmi olusturmak ve daha sonra
glincellemektir. Bu, istikrar saglamak i¢in hem Aktor hem de Kritik kopyalarini almanin

en verimli yontemdir. Kopyalar Denklem (2.35)’deki gibi gosterilir;
Q'(s,al6)

(2.35)
' (s]6*')

ve gilincellemeler matematiksel olarak Denklem(2.36)’de gosterilen sekilde formiile

edilebilir;

0% « 709 + (1 —1)6¢
(2.36)
o+ « O + 1- 1)9“'

T K 1’dir.

Siirekli eylem alanlarinin arastirilmasi, var olan sonsuz sayida permiitasyon nedeniyle
zordur. Politika dis1 algoritmalarda, kesif 6grenme algoritmasindan bagimsiz olarak
olusturulabilir. Kesif¢i bir Aktor olusturmanin en basit yolu, Aktorler eylemine bir kesif

giiriiltiisti eklemektir. Denklem (2.37);

Uexp(st) = ,u(st|9t#) +N (2.37)
Burada N, ¢evreye uyacak sekilde segilebilir.

2.5.4.A2C

A2C ve A3C gibi aktor-elestiri algoritmalari, model icermeyen, ¢evrimici, politika
tizerinde pekistirmeli 6grenme yontemini kullanan aktdr-kritik (AC) ajanlardir. Bu ajanin
amaci, politikay1 (aktorii) dogrudan optimize etmek ve getiriyi veya gelecekteki odiilleri

tahmin etmek i¢in bir elestirmeni(kritik) egitmektir (Mnih ve dig., 2016).

A2C Asynchronous Advantage Actor Critic'in (A3C) senkronize, deterministik bir
¢esididir. Yeniden oynatma tamponunun kullanilmasini énlemek i¢in birden fazla is¢i

kullanir.
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Sekil 2.22°de, A2C algoritmasinin temel adimlar1 gosterilmektedir.

A2C ALGORITMASI

1. Ortam1 baglat
2. Altér ve elestirmen aglanm baslat
3. Iterasyonlan baslat
4. Altdr adimlarim baglat
3. Durumu baslat ve evlem seg
6. Ortamda evlemi uygula ve veni durumu ve &dili al
7. Bellege durumu, eylemi ve &diild kaydet
& Durumu veni durumla giincelle
9. Akiér adimlarim sonlandir
10. Avantajlan ve indirgenmis ddilleri hesapla
11. Elestirmen agim gincelle
12 Altér agini giincelle
13. fterasyonlan kontrol et
14. Ortami kapat

Sekil 2.22.A2C algoritmasi

[k olarak, ortam baslatilir ve aktdr ve elestirmen aglar1 baslatilir. Ardindan, belirli bir
sayida iterasyon yapilir. Her bir iterasyonda, aktor adimlart gerceklestirilir. Aktor, bir
durum alir, bir eylem secer, bu eylemi ortamda uygular ve yeni durumu ve 6diilii alir. Bu
bilgiler bellege kaydedilir ve durum giincellenir. Daha sonra, avantajlar ve indirgenmis
odiiller hesaplanir. Elestirmen ag1 bu hesaplamalar1 kullanarak gilincellenir. Aktor ag1 da
ayni hesaplamalar1 kullanarak gilincellenir. Bu adimlar hem elestirmen aginin hem de
aktor agmin Ogrenmesini saglar. Son olarak, belirli bir sayida iterasyon

gerceklestirildikten sonra islem tamamlanir ve ortam kapatilir.

2.5.5.TRPO

Giiven Bolgesi Politika Optimizasyonu (TRPO), model i¢cermeyen, ¢evrimici, politika
tizerinde, politika gradyan pekistirmeli 6grenme algoritmasidir. TRPO, ¢evresel etkilesim
yoluyla veri Ornekleme ve kisitli bir optimizasyon problemini ¢dzerek politika
parametrelerini glincelleme arasinda gecis yapar. Eski politika ile yeni politika arasindaki
KL sapmasi, optimizasyon sirasinda bir kisitlama olarak kullanilir. Sonug olarak bu
algoritma, giincellenen politikayr mevcut politikaya yakin bir gliven bolgesi icinde
tutarak standart politika gradyan yontemlerine kiyasla onemli performans diisiislerini

onler (Schulman ve dig., 2015).
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Sekil 2.23’de gosterilen s6zde koda gore, baglangicta bir politika fonksiyonu parametresi
(0) baslatilir. Daha sonra, dongii, yakinsamaya ulasildiginda duracak sekilde devam eder.
Her dongli adiminda, mevcut politika kullanilarak veri (D) toplanir ve bu veriye
dayanarak avantajlar (A) hesaplanir. Daha sonra, politika gradyani (g) ve bir giliven
bolgesi alt-problemini ¢ézmek i¢in bir adim yonii (d) hesaplanir. Son olarak, bir adim

biyiikligii (o) belirlenerek politika parametreleri giincellenir.

TRPO ALGORITMASI

Politika 8'v1 baslat

Yakinsamaya ulasilincava kadar:
Mevcut palitika kullanarak veri D topla

Her bir durum-aksivon gifti icin avantajlann A hesapla

O'va gire beldenen déniisiim gradvanim g hesapla

Bir giiven bilgesi alt-problemini ¢ézmek icin acim véniini d hesapla

Bir cizgi aramas: veya baska bir yéntem kullanarak adim bitviikligiini o«  hesapla

Politika parametrel erini giincelle: 8=8+a* d

Sekil 2.23. TRPO algoritmasi
2.5.6.PPO

Proksimal Politika Optimizasyonu (PPO), politika iyilestirmesini garanti altina almak
icin, TRPO(Schulman ve dig., 2015), yeni politikanin bir optimizasyon kisitlamasi olarak
eski politikanin ortalama performansindan daha iyi olup olmadigimi 6lgmek i¢in KL
farkliligmi  getirmistir. KL ayrisma kisitlamast ile politikanin monoton olarak
tyilestirilmesi garanti edilir. Ancak, TRPO'nun uygulanmasi zordur ve yiiriitiilmesi i¢in

daha fazla hesaplama gerektirir.

PPO(Schulman ve dig., 2017), smirli optimizasyondan hesaplamay1 azaltan kirpilmis bir
vekil amag islevi onerdi. TRPO'daki kay1ip fonksiyonu Denklem 2.37deki gibi verilir;

L(0) = E.[r.(0)4,] (2.37)
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Burada E,[...]sonlu bir rnek grubu iizerindeki ampirik ortalamay1 gosterir, 4, avantaj
fonksiyonu tahmincisidir A, == —V(s; + 1 + ¥1esq + -+ ¥ TV (sy) Ve (), gegerli

g (at|St)
Told(aclse)

politikasi ile eski politikar, (8) = arasindaki olasilik oranin1 gosterir.

KL ayrigsma kisitlamasi, eski politikadan yeni politikaya ciddi bir giincelleme yapilmasini
yasaklar, PPO bdyle biiyiik bir degisiklikten kaginmak i¢in bir ceza uygular. Kirpilmis

vekil amag fonksiyonu Denklem 2.38°deki gibi verilir;
LELP(9) = E;[min (1. (8) A, clip(r:(0),1 — &, 1 + &) A, ] (2.38)

TRPO ile karsilastirildiginda, olasilik orani 1:(6) ,[1 - €, 1 + €] arasinda kirpilir, pratikte
epsilon &= 0.2 olarak segilir, yani yeni politika ne kadar iyi olursa olsun, r.(8)en fazla
%20 artar.

A> 0, gecerli eylemin belirli bir durumda digerlerinden daha iyi performans gosterdigi
anlamina gelir. Yeni politika eskisinden daha iyiyse, daha iyi olanin secilme olasiligi1 daha
yiiksek olacak sekilde 7 (8)artirilmalidir. Buna karsilik, A, < 0 igin, eylem caydirilmali

ve 1;(0)azaltilmalidir.

PPO algoritmasi, Sekil 2.24’de 6zetlenmistir.

PPO ALGORITMASI

for episode=10,1, ... do
for iteration=1, ... ,Ndo
T zaman adimi igin ortamda 4 politikasin calistinn;
Awvantaj tahminlerini hesapla ﬁi, e JAHT

end for

LEYF (g) B'ya gore, K dénemlerive mini parti boyutu M = NTile
optimize edin.

Update 8., <0
end for

Sekil 2.24.PPO algoritmasi
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2.5.7.TD3

Ikiz Gecikmeli Derin Deterministik Politika Gradyan1 (Twin Delayed Deep Deterministic
Policy Gradient) algoritmasi (TD3), hem aktoriin hem de elestirmenin fonksiyon
yaklagimcilari olarak kullanilan derin sinir aglarindan olustugu Aktor-Kritik mimarisine
dayanmaktadir (Fujimoto ve dig., 2018). TD3, DDPG algoritmasinin {izerine insa
edilmistir(Lillicrap ve dig., 2016b). DDPG, robotik gibi siirekli kontrol problemleri i¢in
miikemmel sonuglarla yaygin olarak kullanilmasina ragmen bazi sinirlamalar1 vardir.
DDPG, diger politika dis1 algoritmalar gibi kararsiz olma egilimindedir ve Kritik Ag'da
Q degerinin asir1 tahmin edilmesine neden olan hiperparametrelere duyarlidir. Bu hatalar
zaman i¢inde biriktik¢e, ajan yerel optimale diisebilir ve bu da optimal olmayan
performansla sonuglanabilir. TD3, asagidaki 3 optimizasyon gorevini yerine getirerek

asir1 tahmin sorununu ele almaktadir.

Kirpilmis Cift Q-6grenme: TD3, Q degerlerini tahmin etmek i¢in bir yerine iki (ikiz)
kritik ag1 kullanir ve hedefi olusturmak i¢in ikisinden daha kiigiik olani kullanir. Bu
nedenle kirpilmis Cift Q-6grenme olarak da adlandirilan bu yaklasim, Q degerlerinin
diisiik tahmin edilmesine neden olur ve bu da kararl bir yaklagim saglar. Q degerlerinin
asir1 tahmin edilmesinin aksine, diisiik degerler yayilmadigindan diisiik tahmin daha az

sorun teskil eder.

Gecikmeli Politika Giincellemesi: Aktor-Kritik yontemlerinde politika (aktor) ve kritik
(deger) aglar1 birbirine siki sikiya baglhidir. Politika agir1 tahmin nedeniyle zayif
oldugunda egitim ajanmnin deger tahmini sapar ve dolayisiyla politika yanls deger
tahmini nedeniyle daha da kotiilesmeye devam eder. Bu sorunu ¢ozmek ve iki ag
arasindaki baglantiy1 azaltmak ig¢in, politika ag1 deger agindan daha az siklikta
giincellenir. Bu, politika aginin yalnizca birkag yinelemeden sonra deger hatas1 azaldiktan

sonra gilincellenmesi nedeniyle algoritmanin genel kararliligini artirir.

Hedef Politika Diizgiinlestirme: TD3 gibi deterministik politika yontemleri deger
fonksiyonundaki ani artiglara asir1 uyum saglayabilir. Bu, elestirmen glincellenirken
yiiksek varyansh hedeflerle sonuglanir. Bu sorunu ¢ézmek icin hedefe az miktarda

kirpilmis rastgele giiriiltii eklenerek ve mini gruplar iizerinde ortalama alinarak
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diizenlilestirme veya yumusatma kullanilir. Giiriiltii kirpma islemi, hedef degerin orijinal

eyleme yakin olmasini saglamak i¢in yapilir.

Sekil 2.25°de TD3 algoritmasinin s6zde kodu verilmistir.

TD3 ALGORITMASI

1. Baslangicta, gézlem ve evlem boyutlanni ve hiperparametrel eri ayarlavin.
2. Rastgele baslangic degerlerivle eleman tablolanm (Q, Q target, policy) ve giiniltii tablolarini
(noise, noise_target) baslatin.
3. Hedef af glincelleme siklifini ve hedef ag1 giincelleme agirlifing (tau) belirlevin.
4. Deneyim tamponunu (replay buffer) basglatin.
5. Epizod dongiisii baslatin:
6. Baglangi¢ durumunu alin ve baslangic durumu isleyicisini sifirlayin.
7. Zaman adimlar déngiisi baslatin:
8. Hareketi ajanin politikasmna (policy) gére secin ve cevreyle etldlesime girin.
9. Gézlem, odiil, sonraki durum ve terminal durumu kayvdedin ve denevim tamponuna eklevin.
10. Deneyim tamponunda veterli sayida drnekleme varsa:
11. Rastgele bir denevim émegi segin.
12. Q agim giincellemekigin evlem degerini hesaplayin ve gradient inisini gerceklestirin.
13. Hedef Q ag: giincellemek icin gradient inisini gerceld estirin.
14. Politika agimi1 giincellemek icin gradient inisini gercekdestirin.
15 Hedef agi giincellemek icin yumusak hedef agh giincellemesini gerceldestirin.
16. Durumunu giincelleyin.
17. Epizodu tam amlami ssaniz déngivii sonlandinn.
18. Egitimi tamamladiktan sonra, ajanin politikasini kullanarak cevreyle etkilesime girebilirsiniz.

Sekil 2.25.TD3 algoritmasi
2.5.8.SAC

Soft Aktor Kritik-Soft Actor Critic (SAC)(Haarnoja ve dig., 2018), stokastik bir politikay1
politika dis1 bir sekilde optimize eden ve stokastik politika optimizasyonu ile DDPG tarzi
yaklasimlar arasinda bir koprii olusturan bir algoritmadir. TD3'lin dogrudan halefi
degildir, ancak kirpilmis ¢ift-Q hilesini igerir ve SAC'deki politikanin dogal stokastikligi
nedeniyle, hedef politika yumusatmadan yararlanir. Sekil 2.26’da SAC algoritmasinin

sozde kodu verilmistir.

SAC'min merkezi bir 6zelligi entropi diizenlemesidir. Politika, beklenen getiri ile
politikadaki rastgeleligin bir 6lgiisii olan entropi arasindaki dengeyi maksimize edecek
sekilde egitilir. Bunun kesif-kullanim degis tokusu ile yakin bir baglantis1 vardir: artan

entropi daha fazla kesifle sonuglanir ve bu da daha sonra 6grenmeyi hizlandirabilir.
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Ayrica politikanin zamanindan once kotii bir yerel optimuma yakinsamasini da

Onleyebilir.

SAC ALGORITMASI

1. Baslangicta, gézlem ve eylem boyvutlanm ve hiperparam etreleri avarlayin.
2. Rastgele baslangic degerlerivle politika agim (policy network), deger aglanm (value networks)
ve hedef deger aglarini baslatin
3. Deneyim tamponunu (replay buffer) baslatin.
4 Hedef agi giincelleme sikligini (target update frequency) ve giincelleme agirligim (target update
weight) belirlevin.
3. Entropi katsayisim (entropy coefficient) avarlayin.
6. Epizod dongiisii baglatin:
7. Baslangi¢c dorumunu alin ve baslangic durumu igleyicisini sifirlayin.
8. Zaman adimlar: déngiisii baglatin:
8 Eylemi politika agindan secin ve cevreyle etldlesime girin_
10. Goézlemi, édili, sonrakd durumuve terminal durumunu kaydedin ve deneyim tamponuna
ekdeyin.
11. Deneyim tamponunda veterli sayvida érneldeme varsa:
12. Rastgele bir deneyim &rnedi secin.
13. Hedef deger aglanm kull anarak hedef degeri hesaplayin.
14 Deger aglarm giincellemek icin defer kaybimi hesaplayin ve gradient inisini
gerceld estirin.
15, Politika agmm gincellemek icin politika kaybini hesaplavin ve gradient inisini
gerceld estirin.
16. Hedef aglan giincellemek icin yvumusak hedef ag: gincellemesini gerceklegtirin.
17. Durumunu giincellevin.
18. Epizodu tamamladiysaniz déngiivi sonlandinn.
19. Egitimi tamamladikian sonra, politika agini kullanarak ¢evreyle etkilesime gegebilirsiniz.

Sekil 2.26.SAC algoritmasi

TD3'te oldugu gibi, her iki Q fonksiyonuda tek bir ortak hedefe geriletilerek
ogrenilir.TD3'te oldugu gibi, paylasilan hedef, hedef Q-aglar1 kullanilarak hesaplanir ve
hedef Q-aglari, egitim siiresince Q-ag parametrelerinin ¢oklu ortalamasi alinarak elde

edilir. TD3'te oldugu gibi, paylasilan hedef kirpilmis ¢ift-Q hilesini kullanir.

TD3'ten farkli olarak hedef, SAC'nin entropi diizenlemesi kullanimindan gelen bir terim
de igerir.TD3'ten farkli olarak, hedefte kullanilan bir sonraki durum eylemleri hedef
politika yerine mevcut politikadan gelir. TD3"in aksine, ac¢ik bir hedef politika
yumusatmasi yoktur. TD3 deterministik bir politika egitir ve bu nedenle sonraki durum
eylemlerine rastgele giiriiltii ekleyerek yumusatmay1 gergeklestirir. SAC stokastik bir
politika egitir ve bu nedenle bu stokastiklikten kaynaklanan giiriiltii benzer bir etki elde

etmek igin yeterlidir (URL-2).
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2.6. Benzetim Ortamlar: (Simiilatorler)

Robotikte simiilatorler, olusturulan prototipleri kolayca ve ekonomik bir seklide test
etmek i¢in kullanilir. (De Melo ve dig., 2019). Simiilatorler ile fizik motorlar1 kullanilarak
gercek diinyaya benzer ortamlar olusturulur. Robot deneylerinde en biiyiik risk meydana
gelecek kazalardir. Simiilatorler kullanilarak hem kazalarin 6niine gegilir hem de ciddi

bir maliyet diisiisii saglanir.

Tool Currently  Currently Currently  Used Used Known, Never
used, used, used, once, then but heard of
and its but not just to jJust to  aban- never
the main  the main  test it test it doned used
tool tool

Gazebo 13% T% 3% 18% 10% 34% 15%

ODE 11% 12% 5% 18% 22% 22% 10%

Bullet 5% 13% 7% 12% 10% 29% 24%

V-Rep 5% 3% 3% 18% 3% 29% 39%

Webots 45 7% 19 16% 13% 32% 27%

OpenRave | 5% 3% 2% T% 5% 29% 49%

Raobotran 4% 0% 1% 4% 2% 13% T6%

XDE 5% 3% 0% 3% 1% 145 745

Blender 5% 17% 7% 22% 0% 28% 15%

MuloCo 2% 0% 0% 4% 2% 21% T1%

iCub_SIM | 4% 4% 2% 3% 3% 29% 55%

Nvidia 1% 19 49 12% T% 43% 32%

PhysX

OpenSIM | 3% 4% 3% 8% 1% 41% 40%

HumanS 0% 0% 0% 1% 1% 10% 88%

Moby 2% 1% 0% 0% 2% 14% 81%

Vortex 3% 2% 0% 5% 5% 17% 68%

RoboRobo | 3% 15 0% 0% 1% 4% 91 %

Sekil 2.27. Simiilatorlerin bilinirlik ve kullanilma durumlart (Ivaldi ve dig., 2014)

Cagdas robotik simiilatorleri, ¢esitli fizik motorlari, genis bir robot, sensor ve aktiiator
kiitiiphanesi, gelismis programlama ve grafiksel arayiizler, robot hareketi ve sensor

okumalarinin simiilasyonlarini saglayan ¢oklu eklentiler sunar (Ivaldi ve dig., 2014).

Simiilatorler, kullanicinin robotlarla ve diger bilesenlerle fiziksel olarak etkilesime
girmek zorunda kalmadan test etmesine ve davraniglar olusturmasina olanak taniyan
programlardir. Yazilima ve robota bagl olarak, simiilatérde olusturulan uygulamalarin,
ornegin Robot Isletim Sistemi (ROS) (Quigley ve dig., 2009) araciligiyla fiziksel robota

aktarilmasina izin verebilir.

Bir simiilator kullanmanin faydalari, maliyetleri diislirmesi, zamandan ve paradan

tasarruf etmesi, ¢esitli alternatiflerin hi¢bir maliyet veya risk ve ariza siiresi olmadan test
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edilmesine izin vermesi bakimindan ¢ok biiyiiktiir. Sekil 2.27°de simiilatorlerin bilinip

bilinmedigi ile ilgili yapilan bir anketin sonuglari verilmistir.

2.6.1.Webots

Webots (Michel, 2004) yazilimi 1998 yilinda Dr. Olivier Michael tarafindan
olusturulmustur ve c¢ogunlukla egitim amagli kullanilmaktadir. Programa robotlar,
sensorler ve aktliatérlerden olusan genis bir koleksiyon dahildir. Bir Webots sahnesi

ornegi, Sekil 2.28'de goriilebilir.

Sekil 2.28. Ornek webots sahnesi

Robot hareket hizi iizerine yapilan arastirmalardan uyarlanabilir davranislarin
simiilasyonundan 6gretim ve robot programlama yarismalarina kadar bir¢ok alanda en sik

kullanilan simiilasyon yazilimlarindan biridir.

Webots capraz platformdur ve C/C++, Java, Python ve Matlab gibi dilleri destekler.
Olusturma, OGRE motoru kullanilarak yapilir ve fizik motoru olarak ODE'nin 6zel bir

stirimiinii kullanir. Ayrica, ROS'u desteklemenin yani sira dahili bir 3B modelleyici icerir
(URL-3).

2.6.2.Gazebo

Gazebo (Koenig ve Howard, 2004), Open Source Robotics Foundation tarafindan
gelistirilen, 2002 yilinda piyasaya siiriilen bir robotik simiilatordiir. Karmasik ortamlarda
birden fazla robotu, nesneyi ve sensorii simiile etme yetenegine sahip, dinamikleri olan
cok robotlu bir simiilatordiir. Ayrica, kati cisim fizigini simiile etmenin yani sira nesneler

arasinda gercekei sensor geri bildirimi ve etkilesimler {iretebilir.
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Grafikler OGRE motoru kullanilarak olusturulur. Dinamik simiilasyonlar, dahil edilen
dort fizik motorundan biri kullanilarak yapilabilir; ODE, Bullet, Simbody ve DART. Ana
programlama dili C++'dir ve eklentiler kendi API'si kullanilarak gelistirilebilir.
Simiilasyonlar, TCP/IP kullanan uzak sunucularda veya bir bulut iizerinde

calistirllabilir(Gong ve dig., 2011).

Gazebo agik kaynak kodludur, tiim platformlar i¢in mevcuttur ve ¢evrimigi simiilasyon
modeli deposu, forum, wiki ve robot uygulamalar1 i¢in kitaplik igceren c¢ok aktif bir
topluluga sahiptir. Ayn1 sirket, robot yazilimi yazmak icin bir ¢erceve olan ROS'u da
gelistirdi. Gazebo'daki bir mobil robot 6rnegi, Sekil 2.29'da goriilebilir.

Sekil 2.29. Ornek Gazebo sahnesi

2.6.3.V-rep (Copeliasim)

V-REP (Sanal Robot Deney Platformu), Marc Freese tarafindan olusturuldu ve ilk olarak
2010'da piyasaya siiriildii ve onu mevcut en modern simiilatorlerden biri haline getirdi
(URL-4). Hizli prototipleme, otomasyon sistemlerinin simiilasyonu ve 6gretimi gibi

bir¢ok uygulama i¢in kullanilabilir.

V-REP, Coppelia Robotics tarafindan saglanan genel amagli bir robot simiilasyon

cercevesidir. Bircok 6zelliginden bazilar1 sunlardir:

+ Platformlar arasi igerik (Linux, Mac ve Windows).
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* Cerceve ile ¢esitli iletisim araglar1 (gomiili Lua komut dosyalari, C++ eklentileri, 6
dilde uzak API'ler, ROS vb.).

* Bir motordan digerine hizli bir sekilde ge¢is yapabilme 6zelligine sahip 4 fizik motoru
(Bullet, ODE, Newton ve Vortex) destegi.

+ Ters ve ileri kinematik.

* Hareket planlamasi.

* GOmiili Lua komut dosyalarina dayali dagitilmis kontrol mimarisi.

Programa dahil edilen, piyasada bulunan robotlarin ve sensorlerin yani sira yeni modelleri
ice aktarma veya entegre modelleme yeteneklerini kullanarak olusturma yetenegine

sahiptir. ROS kullanarak gergek robotlara da baglanabilir.

Mobil robotlarin yer aldigi bir sahne Sekil 2.30'da goriilebilir.

Sekil 2.30. Ornek Copeliasim sahnesi
2.6.4. Microsoft Robotics Developer Studio

Microsoft Robotics Developer Studio(Kang ve dig., 2011) robot kontrolii igin 3B simiile
edilmis ortam, sensor ve aktiiator verilerine kolay erisim, gorsel bir programlama araci
ve web tabanli arayiizler icerir. Arag, bir apartman, fabrika, ev ve dis mekan sahneleri
dahil olmak tizere gesitli simiile edilmis ortamlarla birlikte gelir. Bir Microsoft araci olan
programlama, Python ve R ile karsilastinnldiginda genellikle makine 6grenimi ve
pekistirmeli 6grenme icin popiiler olmayan C# ile yapilir. Eylil 2014 itibariyle,

Microsoft'un yeniden yapilandirma planinin ardindan araca verilen destek askiya alindi.

52



2.6.5.Robologix

Oncelikle dgretim icin kullanilan Robologix (URL-5), programcilarin kendi hareket
dizilerini yazmalarini, ortami degistirmelerini ve mevcut sensorleri bes eksenli bir

endiistriyel robotta kullanmalarini saglar.

2.6.6. AnyKode Marilou

AnyKode Marilou (URL-6) mobil robotlar, insansi robotlar, eklemli kollar ve ger¢ek
diinya kosullarinda calisan paralel robotlar i¢in ortamlar1 simiile eder. Sensorlerin ve
aktiiatorlerin fiziksel ortamdaki gergek 6zelliklere gore davraniglarini son derece yiiksek
bir gerceklik seviyesiyle yeniden iireten bir motor sunar. C/C++, VB, J# ve C# eklentileri

sunar.

2.6.7.Graspit!

Graspit! (Miller ve Allen, 2004) kavramay1 arastirmak igin tasarlanmis bir aragtir. Bir dizi
analiz ve gelistirme araci esliginde robotik kavrama gorevlerini simiile etmek icin sanal
bir ortamdir. Adindan da anlasilacagi gibi, bir u¢ manipiilasyon gorevinden ziyade
kavramaya daha fazla 6nem verir ve mevcut modellerin se¢imi Mico Arm gibi belirli

robotlara odaklanir.

2.6.8.MuJoCo

MuJoCo (Todorov ve dig., 2012) , hizli ve dogru simiilasyona ihtiyag duyulan alanlarda
aragtirma ve gelistirmeyi kolaylastirmay1 amaglayan bir fizik motorudur. Model tabanli

optimizasyon ve baglantilar araciliiyla optimizasyon i¢in tasarlanmigtir.

2.6.9.0penAl-Gym

OpenAl Gym (Brockman ve dig., 2016), Makine Ogrenimi metodolojilerini dogrulamak
i¢in PO’ niin epizodik tasarimima uygun olarak formiile edilen kiyaslama sorunlarinin bir
diizenlemesidir. OpenAl Gym platformu, arastirmacilara hazir ortamlar ve ajanlar
sunarak PO algoritmlar ile ilgili denemeler yapma imkani sunar. Asagida kiyaslama

ortamlar1 hakkinda bilgi verildi.

+ PO literatiiriinde gecen kiiciik dlgekli gdrevler icin ortamlar;

+ Klasik Atari oyunlarda PO uygulamalari i¢in ortamlar;
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+ Siirekli kontrol gorevleri Box2D (URL-7) ortami;
*  MuJoCo fizik motoru kullanarak 2B ve 3B robot kontrolii(Todorov ve dig., 2012) .

Bunlar1 disinda daha birgok benzetim ortami vardir. Otonom siiriis uygulamalarini test
etmek i¢in Carla ve Torcs, oyun gelistirme ortami olan Unity, Python temelli robotik

uygulamalar i¢in Pybullet, insansiz hava araglari i¢in Airsim vb. gibi ortamlar mevcuttur.

Bu tezde, mevcut donanim kaynaklari da goz Oniinde bulundurularak oncelikle iki
boyutlu ortamda ¢alismanin daha verimli olacagina karar verildi. Bundan dolay1 ortam
iki boyutlu bir grid diinya olarak matlab programinda ve python minigrid kiitiiphanesinde
ayr1 ayri tasarlanmistir. Mobil robot ve ortam degiskenleri (engel, hedef, 6diil, vs.) grid
diinya iizerinde hiicre olarak temsil edilmistir. Pekistirmeli 6grenme algoritmalar1 bu
ortamda calistirilirmistir. Boylece belli bir robot markasina bagli kalmadan algoritmalara
yogunlasildi. Grid diinyada elde edilen tecriibeler (model, hiperparamtreler,vb.) 3 boyutlu
diinyada kullanildi.3 boyutlu robotik simiilatorii olarak Gazebo platformu kullanildi.
Turtlebot3 robotu gazebo ortamlarinda SAC, TD3, PPO algoritmalari ile ¢alistirildi.

2.7. Literatiir incelemesi

Pekistirmeli 6grenme birgok farkli alana uygulanmaktadir. Tiirkiye’de son 10 yilda bu
alanda yazilan tezler incelendiginde finans, ulagim aglari, trafik kontrolii, ag saldirilar
tespiti, enerji optimizasyonu, otonom araglar, insansiz hava araglar1 vb. gibi farkh
alanlarda uygulamalar1 goriilmiistiir. Bu caligmalardan yapilan ¢ikarimda bir ajanin
etkilesimde bulundugu cevrede dinamik, biiyiik, siirekli ve degisken veri akis1 varsa
pekistirmeli 6grenme ile egitilen ajanlar yeni durumlara kolayca uyum saglayabilmekte
ve en 1yi karar1 verebilmektedir. Bu tezde mobil robot navigasyonu i¢in pekistirmeli

O6grenme ¢alismalar1 incelenmistir.

Khan, yaptig1 ¢alismada, mobil robot navigasyonu i¢in TOSL informed-biased softmax
regression (TOSL-iBSR) olarak adlandirilan yeni ve gelistirilmis bir 6grenme siireci
sunmustur. Eylem se¢imi rastgele bir silire¢ olarak degil, bunun yerine softmax
regresyonu kullanilarak hesaplanan maksimum olasilik fonksiyonuna gore belirlenmistir.
Sunulan yaklagimi kullanarak, robotun daha yiiksek bir pozitif 6diil ve daha az hesaplama
maliyeti elde ederken navigasyon gorevini tamamladigl goézlenmistir. Simiilasyon

kullanilarak oOnerilen yaklasimin Q-learning with softmax regression (Q-SR) ve true
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online SARSA Q-biased softmax regression (TOSL-QBIASSR)'den daha iyi performans
gosterdigi gosterilmistir. Ajan olarak Pionner robot platformu kullanilmistir. Python ve
V-REP arasinda g¢ergeve olusturularak tiim fiziksel parametrelerle gercek bir robot
kullanilmistir. Ogrenme siirecini daha bilingli bir eylem se¢me teknigiyle birlestirerek

bilinmeyen bir ortamda iki boyutlu gezinme gergeklestirilmistir(Khan, 2019).

Zhang ve digerleri, kentsel arama ve kurtarma gorevlerinde, mobil kurtarma robotlarinin
yluriitecegi bir dizi yerel gezinme eylemini belirlemek igin robotun yerlesik
sensorlerinden gelen ham duyusal verileri kullanan bir DPO ag1 gelistirmislerdir.
Optimum robot navigasyon eylemlerini belirlemek i¢in girdi olarak derinlik goriintiileri,
yiikseklik haritalar1 ve 3B yonlendirmeyi kullanan Asynchronous Advantage Actor-Critic
(A3C) mimarisine dayali bir ag egitmislerdir. Engebeli arazi bilinmediginde DPO
yaklagiminin bir ortamdaki bir robotu hedef konumuna basarili bir sekilde

yonlendirebilecegini gostermistir(Zhang ve dig., 2018).

Sung ve digerleri, mobil robot navigasyonu i¢in modelden bagimsiz PO yaklasimlarini
tartismiglardir. Ajan olarak Turtlebot3 robotu, fiziksel ortami simule etmek icin ise
Gazebo ortami kullanilmigtir. DQN algoritmasin farkli boyutlardaki gézlem uzaylarinda
denemislerdir. Ayrik gozlem alanlarinin sayisi artinca genelleme yeteneginin kaybettigini
gozlemlemislerdir. Ote yandan, ayrik gdzlem alanlar1 sayisini diisiince performansta
yiiksek varyanslara neden olundugunu gdzlemlemislerdir. PO algoritmalarini

Olgeklendirebilmek igin birden fazla robotu simule etmislerdir (Sung ve dig., 2018).

Cetin, robot navigasyonu i¢in Q-6grenme algoritmalariin uygunlugunu incelemislerdir.
Bunun icin 3 farkli labirent ortaminda simiilasyonlar yapmislardir. Robotun labirentte
hedefe gitmesini saglayan algoritmanin basarisini; iterasyon sayisi, 0grenme katsayisi ve
Q tablosunun matris boyutunun belirledigini gézlemlemislerdir. Q matrisinin kararl bir
yapiya erigsmesini beklemeden iterasyon miktar1 kiiciik tutularak dogru sonuglar elde

edebilmislerdir(Cetin, 2014).

Muhammad ve Bucak, mobil robot navigasyonu i¢in geleneksel Q-6§renme algoritmast
yerine yeni bir algoritma &nermislerdir. Onerdikleri algoritmada gezinme sirasinda, tiim
durum-eylem ciftlerinin yoriingesi saklanir ve rafine edilmis Q degerlerini herhangi bir

durumdan bir hedef durumuna yaymak i¢in geriye dogru bir yonde yeniden oynatilir.
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Simiilasyonlardan elde ettikleri sonuglar ile geleneksel Q-Ogrenmeye kiyasla ¢cok daha
iyi bir performans gozlemlemislerdir. Q-tablosunun yakinsama oranini biiylik 6l¢iide

azaltilmislardir(Muhammad ve Bucak, 2013).

Giigkiran ve Bolat, yaptigi ¢calismada TORCS ortami i¢in Soft Actor-Critic-LSTM (SAC-
LSTM) ve Rainbow DQN algoritmalarini, kesif ve genelleme tekniklerini kullanarak en
uygun DPO ajanlarmi arastirmistir. TORCS ortaminda SAC-LSTM ve Rainbow
algoritmalarini yaris araglara uygulamistir. Otonom yariglar simule edildikten sonra
SAC-LSTM algoritmasinin daha basarili oldugunu gézlemlemistir. Bunun sebebi olarak
kesif yontemleri ve siirekli eylem alani nedeniyle oldugunu iddia etmistir. SAC, entropiyi
maksimize etmeye caligir ve bu ajanin eylem alaninin belirsiz bolgelerini kesfetmesine
izin verir. Ek olarak, SAC’in politika ag1 siirekli eylemler igerdiginden, Rainbow
DQN’nin gizli 27 eyleminden farkli olarak frenleme, hizlanma ve yonlendirme siirekli

eylemlerle kontrol edilebilir(Guckiran ve Bolat, 2019).

Altuntas, popiiler PO algoritmalarindan Sarsa(A) ve Q()) algoritmalarimi secerek mobil
robot navigasyonu probleminin ¢0ziimii i¢in bir sistem Onermisti. MATLAB ile
gelistirilen sistem, hem simiilasyon hem gercek ortamda, yiiksek bir basari oraniyla
gezgin robotu engellerden kagirarak istenen hedefe yonlendirebilmistir. Robot platformu
olarak Robotino kullanilmistir. Ayrica, sistem sayesinde PO metotlarinda kullanilan
baslangi¢ parametrelerinin, 6rnegin A, 6grenmeye olan etkisini gdzlemlemis ve Sarsa()L)
ve Q(A) algoritmalarinin performanslarinda karsilastirmalar yapmistir. Sonug olarak,
SARSAMin% 90 ila% 70 6grenme oraniyla Q-6grenmeden daha hizli optimal degerlere
yakinlagtigin1 bulmustur. (Altuntas, 2013).

Engin, Q-6grenme, SARSA, DQN ve Bulanik Kural Interpolasyonu Temelli Q tipi
ogrenme (FRIQ) gibi farkli pekistirmeli 6grenme algoritmalarinin, bir robot modelinin
iki boyutlu bir labirent ortaminda baslangi¢c noktasindan hedefe ulasana kadar gecen
toplam zaman ve adim sayisina bagli olarak performans kiyasini igeren bir ¢aligma
yapmistir. DQN ve FRIQ 6grenmenin, daha az sayida boliimle hedefe ulagsmak i¢in en
kisa yol anlamina gelen optimal politikay1 bulma agisindan Q-6grenme ve SARSA'ya

iistiin oldugu goriilmiistiir.
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FRIQ-Ogrenmeye gore, DQN, daha az sayida béliimle en uygun politikayr bulma
acisindan biraz daha iyi bir performansa sergilemistir. Ote yandan, FRIQ 6grenme,
labirentin duvarlariyla ¢evrili koselerde ve dar bolgelerde daha iyi bir performansa sahip

oldugu goriilmiistiir.(Engin, 2019) .

Demir, otonom forkliftler gibi degisken yiikler altinda ¢alisacak olan robotlarin hareket
planlama ve kontrolii problemlerine farkli bir ¢dziim &nermistir. Onerilen yontem ile
robotlarin tizerlerindeki yiikler altinda nasil hareket edebildiklerini derin pekistirmeli
O0grenme yontemi ile 6grenmeleri saglanmistir. Ardindan robotlar daha o6nceden
kendilerine Ogretilmis olan gdrevi, Ogretim zamani kendilerine verilmemis yiik
miktarlarinda da tekrarlamis ve basarili olmuslardir. Ajanlar DDPG algoritmasi

kullanilarak egitilmistir(Demir, 2019).

Lei Tai ve Ming Liu tarafindan yapilan ¢alismada(Tai ve Liu, 2016), Kinect RGB-D
kamerasindan elde edilen ham derinlik goriintiilerini isleyen bir CNN ile isletilen mobil
platform, farkli senaryolarda c¢arpigsmasiz bir sekilde ortami kesfetmeyi basari ile
Ogrenmistir. Ayn1 aragtirmacilar bir bagka calismada (Tai ve dig., 2017) bir robot {izerine
monte edilmis tek bir SICK TiM570 lazer kullanarak haritasiz bir hareket planlayici
yaklasimi onerdiler. On adet seyrek lazer bulgusu ve goreli hedef konumundan olusan bir
durum modeli ile mobil platform, herhangi bir engele ¢arpmadan istenilen hedeflere
ulagmay1 basardi. Egitim rutinini siirdiirmek icin kullanilan DPO y&ntemi, eszamansiz

DDPG tabanli bir algoritmaydi(Lillicrap ve dig., 2016).

Liang ve ark. yaptiklar1 ¢alismada (Liang ve dig., 2020), bir mobil robotun yogun ve
kalabalik ortamlarda gercek zamanli carpisma oOnleme islemini gerceklestirmesini
saglayan bir uygulama sunmaktadir. Ajan, PPO (Schulman ve dig., 2017) adli politika
tabanli bir DPO algoritmas1 kullanarak dinamik ve statik engellerle girdigi farkli

etkilesim tiirlerinden dolayli olarak 6grenir.

Xie ve ark. (Xie ve dig., 2017) ve Ruan ve ark. (Ruan ve dig., 2019), dinamik engellerden
kaginma ile uctan uca bir mobil robot navigasyonu olusturmak i¢in son teknoloji D3QN
mimarisini kullanarak karsilastirilabilir ¢alismalar 6nermektedir. Ruan ve ark., ilgili

dogrulamalar1 gerceklestirmek icin hem simiile edilmis hem de gergek alanlarda Kinect
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RGB-D kamera ile donatilmis bir platform kullanirken, Xie ve ark. bu tiir sensorleri

yalnizca sanal ortamlarda kullanmaktadir.

Chen ve ark. (Chen ve dig., 2017) , sirayla, DPO deger tabanli bir yaklasim olan
V-Ogrenme’yi kullanarak tamamen o6zerk bir robotik navigasyon saglayan ydntem
onermektedir. Kalabalik bir ortamda insan yiirtime hizinda hareket eden platform, sosyal
olarak bilingli bir hareket planlamasi yliriitiirken diger ii¢ ajani tespit etmeyi ve izlemeyi
basartyor. Yontemin 6diill modelini ayarlayarak, robot sag veya sol sosyal normlari

benimseyebildigini kanithyor.

Yukarida belirtilen ajanin tespit ve takip numarasi sinirlamasiyla yiizlesmek i¢in, Everett
ve arkadalar1 (Everett ve dig., 2018) rasgele sayida ajan1 gézlemlemek i¢in yinelenen sinir
aglart (RNN) mimarisine sahip bir ¢6ziim Onermistir. Karar verme ajanlar1 arasinda
sunulan DPO tabanli hareket planlamasi, politika tabanli bir GPU / CPU Asenkron
Advantage ActorCritic (GA3C) (Babaeizadeh ve dig., 2017) 6grenme yaklasimi, bir
kuyruk sistemi kullanan bir strateji ve Derin Yapay Sinir Aglarini egitmek i¢in dinamik

bir zamanlama teknigi kullanmaktadir.

Bu tez caligmasinin amaci, mobil robotlarin pekistirmeli 6grenme algoritmalarini
kullanarak dinamik i¢ ortamlarda yoriinge planlamasini yapmasini saglamaktir. Mobil
robotik arastirmalarindaki otonom navigasyon konusuna yillar igerisinde pek ¢ok ¢6ziim
bulunmus ve gelistirilmistir. Bu ¢alismada bu zamana kadar mobil robotlarin otonom
navigasyon probleminin ¢6ziimiine nasil yaklasildigina ve pekistirmeli O6grenme
yonteminin  sec¢ilmesinin  sebebine  odaklanilacaktir.  Pekistirmeli ~ 6grenme
algoritmalarinin degisen cevre sartlarina gore performans testleri yapilacaktir. Ayrica

o0grenme siirelerine gore de testler yapilip algoritmalar kiyaslanacaktir.
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3. MALZEME VE YONTEM
3.1. Isletim Sistemi

Ubuntu(Sobell, 2015), iicretsiz, agik kaynak kodlu, gilivenlikli, gelistiricilere imkan
saglayan bir isletim sistemdir. Cogu donanim ve yazilim siirlimiiyle uyumlu olmast ve
robot gergeveleri, simiilatorler ve Entegre Gelistirme Ortamlar1 (IDE'ler) gibi gesitli
modiilleri kolayca birlestirmek icin gerekli araclari sunmasi nedeniyle robotik

uygulamalari ve simiilasyonu yapmak icin geleneksel isletim sistemi haline gelmistir.

Bu ¢alismada, Gazebo platformunu ROS Noetic ile kullanmak i¢in Ubuntu 20.04, stirtimii
kullanildi.

3.2. Robot Isletim Sistemi (ROS)

Robot Isletim Sistemi (Quigley et al. 2009), robotlarin ortak platformda ¢alisabilmesi igin
cesitli protokoller, kiitliphaneler ve araclar sunan agik kaynak kodlu bir meta isletim
sistemdir. C++, Python gibi ¢esitli yazilim dillerini destekler. ROS yapisi dort ana
etmenden meydana gelir. Bunlar; konular, hizmetler, diigtimler ve mesajlardir. Diiglimler
ana yazilim birimleridir. Aralarinda mesajlar1 gonderir ve alirlar. ROS’da yayinci-abone
manti81 vardir. Bir diiglim bir konuya kaynaga olur, baska bir diiglimde aboneye yayin

yapar. Ornegin; Anlik nem bilgisini yayinlayan ve ona abone olan diigiimler gibi.

e Diiglimler arasindaki iletisimi konular ya da hizmetler iizerinden saglanir.
e Konular: Yayinci-Abone protokoliine gore ¢alisir. Mesaji yaymlayan bir diigiim
vardir. Baska bir diigiimde ona abone olur. Hizmetler: Istemci-Sunucu mantig1 ile

caligir. Bir diiglim istek yapar diger diigiim istege cevap vererek hizmet sunar.

Sekil 3.1'de ROS ‘un calisma yapisin1 gosterilmektedir. Her konunun yayincilarini ve
abonelerini, konu adreslerini, hizmetleri ve yayinlanan mesajlar1 izleyen bir ana sunucu

(Master) vardir. Kayit ve iletisim islemleri sirastyla asagidaki adimlara uyar:

1. Abone diiglimler Master’a bir konuya abone olmak isteklerini bildirir.
2. Yayinc diiglimler, Master'a ayni1 konuda yayin yaptigini bildirir;
3. Abone diiglimler, Master diigiim tarafindan geri bildirim alir;

4. Abone diigiimler yayinci diigiimle iletisime gecer ve mesaji alirlar.
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Master

1. Abone olma bldirim

2. ¥awn bildirim

3 Faribildirim

R Vawnla ) Koms ¢ Abone ol Abone

Sekil 3.1.ROS yayinci-abone iletigimi
3.3. Gazebo

Robotik simiilatorler, fizik motorlari, sensor ve aktuator destekleri ve cesitli yazilim dili
destekleri arastirmacilara giizel imkanlar sunar(lvaldi ve dig., 2014). Birka¢ segenegi
(Gong ve dig., 2011) analiz ettikten sonra, Gazebo (Zamora ve dig., 2016), gelistirilen
navigasyon cergevesi deneylerine temel olarak gerceklestirmek iizere secilen robot
simiilatoritydii. Gazebo, mobil, insans1 ve hizmet robotu arastirma alanlarinda (Ivaldi ve
dig., 2014) en yaygin yazilimdir.Bu tezde ii¢ boyutlu ortamlarda PPO,SAC,TD3

algoritmalarinin egitimi Gazebo’nun sundugu hazir ortamlar ile yapildu.

3.4. Turtlebot

Simdiye kadar DPO tabanl algoritmay1 gelistirmek icin, robot g¢ergeveleri, ortam
gorsellestirme araglar1 ve navigasyon simiilatorleri agiklandi. Bununla birlikte, her tiirli
veriyi toplayan ve yazilim kontrol modiillerine ileten, tiim navigasyon akisinin uyum
icinde calismasini saglayan sistemin merkezi unsuru, mobil robottur. Bu tezde Gazebo
ortaminda yapilan deneylerde Turtlebot kullanildi. Sekil 3.2°de Turtlebot Burger

gosterildi.

Turtlebot, kullanicilarin robotlar veya sanal ortamlar olusturmaya ihtiya¢ duymadan
robotik uygulamalar1 hizli bir sekilde gelistirmelerini saglayan bir paket olan ROS ‘da
mevcuttur. Turtlebot'un ana donanim 6zellikleri (URL-8) Tablo 3.1'de sunulmaktadir ve

yerlesik lazer 6zellikleri Tablo 3.2'de listelenmistir.
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Sekil 3.2. Turtlebot Burger

Tablo 3.1. Turtlebot donanim 6zellikleri

Maksimum hiz 0.22 m/s

Maksimum doniis hizi 2.84 rad/sn(167.72 derece/sn)
Maksimum hiz 15 kg

Boyut(Uzunluk x Genislik x Yiikseklik)  138mm x 178mm x 192 mm

Lazer Mesafe Sensorii 360 Lazer Mesafe Sensorii LDS-01

Tablo 3.2.Lazer Mesafe Sensori LDS-01

Mesafe Araligi 120-3500mm
Mesafe dogrulugu(120mm-499mm) +15mm
Mesafe dogrulugu(500mm-3500mm) +5.0%
Mesafe hassasiyeti(120mm-499mm) +15mm
Mesafe hassasiyeti (500mm-3500mm) +3.5%
Tarama hiz1 300+10 rpm
Acisal aralik 360°

Acisal ¢Oziintirlik 1°

3.5. Programlama Dili

Bu ¢alismada ROS’da Gazebo ortaminda ¢alisacak yazilim modiillerini gelistirmek i¢in
Python (URL-9) programlama dili segildi. Stirlim olarak da Python 3.8 kullanildi. Python,
makine 6grenimi uygulamalari olusturmak igin tercih edilen bir programlama dilidir,
gelistiricilere yardime1r olmak ic¢in ¢esitli araclara ve kapsamli bir paket kitapligina
sahiptir. Bu tezde makine 6grenme kiitliphanesi olarak PyTorch(Paszke ve dig., 2019) ve
TensorFlow (Abadi ve dig., 2016) kullanildi. Veri gorsellestirme igin TensorBoard, ROS
baglantisint kurmak igin RosPy kullanildi. Grid diinya olusturmak i¢in Minigrid
kiitiiphanesi (URL-10) kullanildi.
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3.6. Matlab Pekistirmeli Ogrenme Ara¢ Kutusu

Pekistirmeli Ogrenme Arag Kutusu (URL-11), DQN, PPO, SAC ve DDPG dahil olmak
lizere pekistirmeli 6grenme algoritmalarini kullanarak egitim politikalar1 i¢in bir
uygulama, iglevler ve bir Simulink blogu saglar. Bu politikalari, kaynak tahsisi, robotik
ve otonom sistemler gibi karmasik uygulamalar i¢in denetleyiciler ve karar verme

algoritmalar1 uygulamak tizere kullanabilirsiniz.

Pekistirmeli Ogrenme Ara¢ Kutusu, derin sinir aglar1 veya arama tablolar1 kullanarak
politiklar1 ve deger islevlerini temsil etmenize ve bunlart MATLAB veya Simulink'te
modellenen ortamlarla etkilesimler yoluyla egitmenize olanak tanir. Ara¢ kutusunda
saglanan tek veya cok ajanli pekistirmeli 6grenme algoritmalarin1 degerlendirebilir veya
kendinizinkini gelistirebilirsiniz. Hiper parametre ayarlariyla denemeler yapabilir, egitim
ilerlemesini izleyebilir ve egitilmis ajanlar1 uygulama araciligiyla etkilesimli olarak veya
programli olarak simiile edebilirsiniz. Egitim performansini artirmak i¢in simiilasyonlar
birden fazla CPU, GPU, bilgisayar kiimesi ve bulutta (Paralel Bilgi islem Arag Kutusu
ve MATLARB Paralel Sunucu ile) paralel olarak ¢alistirilabilir.

3.7. OpenAl Gym ve Stable Baselines

OpenAl gym(Brockman ve dig., 2016b), pekistirmeli 6grenme ortamlarinin ve
algoritmalarinin gelistirilmesi ve kiyaslanmasi i¢in yaygin olarak kullanilan bir python
kiitiiphanesidir. Kullanim kolaylig1 nedeniyle, PO 6grenmek igin bir baslangic noktasi
haline gelmistir. Atari video oyunlarindan, robotik hareket kontroliine kadar ¢esitli

kullanicilara sunar. Bu tezde kullandigimiz 6zel ortamin olusturulmasini destekler.

OpenAl gym, cevre ve 6grenme algoritmalar1 arasindaki iletisim icin standart API'ler
saglar. DPO algoritmalarimi kullanarak mobil robotu egitmek igin OpenAl gym ile birlikte
stable baselines3 (SB3) kiitiiphanesini kullanildi. SB3, PyTorch kullanarak son teknoloji
DPO algoritmalarinin yiiksek kalitede uygulanmasini saglayan agik kaynak kodlu bir
cergevedir (Raffin ve dig., 2021).

Derin pekistirmeli 6grenme kullanan mobil robot haritasiz navigasyon sisteminin genel
mimarisi, Sekil 3.3’de gosterilmektedir. Bu sistemin ii¢ temel bileseni vardir:

Simiilasyon, OpenAl Gym ortam1 ve Stable Baselines temelli DPO algoritmalarmin
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uygulanmasi. Modiillerde kullanilan tiim araglar, kiitiiphaneler ve cergeveler agik

kaynaklidir.

siMmULASYON @GAZEBOH EEE ROS

| Hiz | |I<Dﬂuml Sensor bilgisi | Goreceli Mesafe |

ORTAM

ALGORITMA

b ( ) Ajan

Stable Baselines

Sekil 3.3. Gazebo-Ros-OpenAl-Stable Baselines Mimarisi
3.8. Derin Pekistirmeli Ogrenme Temsilcileri

Bu tezde son teknoloji DPO algoritmalari olan DQN, SAC, A2C, TRPO, TD3, PPO
karsilastirildi. Bu algoritmalar, DPO arastirma toplulugundaki mevcut literatiire ve
popiilerlige gore secilmistir (Fujimoto ve dig., 2018; Raffin ve dig., 2021). A2C, DQN,
TRPO, PPO gibi ayrik eylem uzayinda caligabilen farkli pekistirmeli 6grenme
algoritmalarinin performanslart grid diinya ortaminda kiyaslanmistir. Siirekli eylem
uzaylarinda calisan TD3, SAC, PPO algoritmalar1 Gazebo ortaminda kiyaslandi. DPO

ajanlarina ait hiperparemetreler Boliim 4’de verilmistir.

3.9. Cevre-Ortam Temsilleri

Pekistirmeli 6grenmede cevre, girdi/cikt1 veri reaksiyonlarinin, model gorsellestirmesinin
ve 6diil islevinin aciklamasidir. Yani bir PO ajani cevre ile etkilesime girerek ¢evreden

6diil, durum, yeni durum bilgilerini alir.

Arastirmacilar, yol planlama problemini ¢6zmek i¢in kullanilan gesitli yontemleri ¢evre
tipi ve yol planlama algoritmalar1 olarak iki faktore gore ayirmaktadirlar. Cevre tipi, statik
ve dinamik olmak {izere ikiye ayrilir. Statik ortam, robottan baska hareketli nesneler

icermeyen ortam olarak tanimlanir; dinamik ortam ise dinamik hareketli nesnelere (yani

63



insanlar, hareketli makineler ve hareketli robotlar) sahip olan ortamdir(Al-Taharwa ve
dig., 2008).

Bu tezde, pekistirmeli 6grenme ajanlar1 6nce 2 boyutlu ortamlarda daha sonra 3 boyutlu
ortamlarda egitildi. 3 boyutlu ortamda egitim, donanim kaynaklarmi fazlasiyla
zorlamistir. Bu nedenle kapali bir oda ortam1 6ncelikle grid diinya temsil edildi. Boylece
mevcut kaynaklar daha verimli kullanilmigtir. Egitim siireleri arasindaki fark Boliim 4’te
verildi. 3 boyutlu ortamda algoritmalar1 egitmek i¢in Gazebo Empty World ve Gazebo
Maze World ortamlar1 kullanildi. 2 boyutta ise Matlab’ta dinamik ve statik grid diinya,
MiniGrid kiitiiphanesinde ise MiniGrid-FourRooms ve MiniGrid-Dynamic-Obstacles

ortamlari kullanildi.

3.10. Odiil Modelleri

Odiil fonksiyonlar1 veya 6diil sekillendirme, gecerli politikay1 ve optimizasyon hedefini
dolayl olarak belirlediginden, gecerli bir politikanin basarili bir sekilde 6grenilmesinde
kritik bir rol oynar. Optimal bir 6diil islevi tasarlamak zorlu bir istir (Abbeel ve Ng, 2004).
Bir 6diil fonksiyonu, her t adiminda 6diilii hesaplar. Bir ajana, istenen sekilde eylem
olusturma i¢in pozitif bir 6diil verilirken, aksi halde cezalandirilir. Bu nedenle, 6diil islevi,
ajana navigasyon politikasin1 / egitim modelini 6grenirken veya model devreye
alindiginda performansinin iyilesip iyilesmedigini bildiren bir geri bildirim sinyali saglar.
Bu caligma i¢in farkli 6diil fonksiyonlarini ve parametrelerini arastirildi ve denendi.

Boliim 4°te her ortamda kullanilan 6diil yaklagimlarina yer verilmistir.

3.11. Parametre Optimizasyonu

Bu tezde iki asamali bir yontem izlenmistir.2 boyutlu diinyada elde edilen
tecriibeler(hiperparamterler,modeller,vb.) 3 boyutlu ortamlara aktarildi. Parametre
optimizasyonu i¢in RL Baselines 3 Zoo (URL-12) kiitiiphanesinden yararlanildi. RL
Baselines3 Zoo, PyTorch'taki pekistirmeli 6grenme algoritmalarinin  giivenilir

uygulamalari olan Stable Baselines3'ii kullanan PO igin bir egitim cercevesidir.

3.12. Donanim

Bu tezde ¢alismalar, islemci olarak, Intel(R) Core(TM)2 Duo CPU P8400 @ 2.26GHz,
2267 Mhz, 2 Cekirdek, 2 Mantiksal Islemci, Yiiklii Fiziksel Bellek (RAM) 4.00 GB bir
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bilgisayarda yapilmistir. Mevcut donanim kaynaklari ile 3 boyutlu render islemi ¢ok uzun

stire almistir ve kaynaklari ciddi anlamda zorlamistir.
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4. BULGULAR VE TARTISMA

4.1. Grid Diinya

Sekil 4.1. 5x5 grid diinya

Sekil 4.1°’de kapali bir oda ortaminin grid diinya temsili gosterilmektedir. 5x5 matris
yapisindadir. Her hiicre bir metrekare olarak varsayilmistir. Boylece 25 metrekarelik bir
oda olusturuldu. [[3,3],[3,4],[3,5].[5,3]] noktalar1 duvar olarak tasarlandi. [5,5] noktas1
varilacak hedef nokta olarak tasarlandi. [1,1] noktasi robotun baslangic noktasidir. Durum
uzay1 25x1, eylem uzay1 4x1 vektorlerden olusur. Yukari, asagi, saga ve sola olmak iizere
4 eylem vardir. Odiil modeli olarak ise robotun hedefe ulasamadig: her an -1 6diil puan
alir. Hedefe ulaginca ise 10 puan alir. Q ajan1 ve Sarsa ajani bu ortamda egitildi.

Kullanilan hiperparametreler ve egitim secenekleri Tablo 4.1 ‘de verilmistir.

Tablo 4.1.Q ve Sarsa ajanlar1 i¢in kullanilan hiperparametreler ve egitim segenekleri

Ogrenme Orani-o 0.99

Indirim Faktorii-y 0.95

Epsilon-¢ 0.4

Boliim Sayist 200

Boliim Basina Adim Sayisi 50

Durdurma Kriteri Ortalama Odiil
Durdurma Degeri 11

Pencere Uzunlugu 30

Sekil 4.2 ve 4.3’te swrasiyla Q ajaninin ve Sarsa ajanin bdliim basma aldigr 6diil
miktarlarinin grafigi verilmistir. Q ajan1 6grenmeyi daha hizli gergeklestirmistir. Her iki

ajanda hedefe basariyla ulagmistir.
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Sekil 4.2. Q ajanin 6diil performansi
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Sekil 4.3. Sarsa ajanin 6diil performansi

Sekil 4.4’te hastane odasinin grid diinyada temsili verilmistir. Bu sefer oda daha biiyiik

ve stokastik bir sekilde tasarlanmustir. [4,5] noktasindaki hiicre insan olarak diisiiniilebilir.

Ortamin diger 6zellikleri ise soyledir;
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Sekil 4.4. 8x7 grid diinya

e Hedef: Miimkiin olan en kisa siirede en yakin pozitif terminal durumlarina ulagmaktir.

e Eylemler: Temsilci 4 olas1 yonde hareket edebilir. Sag, sol, yukari, asag:

e Durumlar: 7 Pozitif Terminal (8. Sira) ve 1 Negatif Terminal durumu (4,5) ile 56
durum vardir.

e (Odiil: Tiim terminal olmayan durumlarin kiigiik bir negatif 6diilii (-1) ve terminal

durumlarinin biiytik bir pozitif 6diilii (10) vardir.

Ajan hareket etmek zorundadir, bir yerde duramaz. Ortamdaki stokastiklik ajanlarin
hareketini etkiler. Ortam, ajan1 belirli bir yogunlukta grid’in altina dogru iter. Eger ajan

[4,2] durumundan yukari ¢ikarsa, [6,2] durumuna inecektir.

Bu ortamda, Q ajan1 ve DQN ajan1 egitilmistir. Sekil 4.5 ve 4.6’da sirasiyla Q ajaninin ve
DQN ajanin boélim basina aldigi 6diill miktarlarinin grafigi verilmistir. DQN ajani
O0grenmeyi daha hizli gergeklestirmistir. Bunun sebebi olarak fonksiyon yaklastirict
olarak YSA’nmin kullanilmasi sodylenebilir. Kullanilan hiperparametreler ve egitim

secenekleri Tablo 4.2 ‘de verilmistir.

Tablo 4.2.Q ve DQN ajanlart i¢in kullanilan hiperparametreler ve egitim segenekleri

Ogrenme Orani-o 1

Indirim Faktorii-y 0.95
Epsilon-¢ 0.4

Boliim Sayist 700

Boliim Bagina Adim Sayisi 700
Durdurma Kriteri Boliim Sayisi
Durdurma Degeri 700

Pencere Uzunlugu 5
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Sekil 4.5. Q ajanin 8x7 grid diinyada 6diil performansi
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Sekil 4.6. DQN ajanin 8x7 grid diinyada 6diil performansi
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4.2. MiniGrid-FourRooms

Sekil 4.7. MiniGrid-FourRooms-v0

MiniGrid-FourRooms-v0O ortami dort odali bir grid ortamini temsil eder. Sekil 4.7’de
ortamin 6rnek bir temsili verilmistir. Ajan, duvarlardaki 4 boslukla birbirine baglanan
dort odadan olusan bir labirentte gezinmelidir. Ajan, bir 6diil elde etmek icin yesil hedef
karesine ulagmalidir. Hem ajan hem de hedef kare dort odadan herhangi birine rastgele
yerlestirilir. Durum uzay1 8x8x4, eylem uzay1 4x1 vektorlerden olusur. Yukari, asagi,
saga ve sola olmak iizere 4 eylem vardir. Odiil modeli olarak ise basari i¢in '1- 0,9 * (adim
sayis1 / toplam adim)' ve basarisizlik i¢in '0' 6dili verilir. Ajan hedefe ulasti§inda yada

maksimum adim sayisina ulasildiginda boliim sona erer.

Sekil 4.8°de DPO Ajanlarmin boliim basina aldig1 6diil miktarlarmin grafigi verilmistir.
Algoritmalar eylem ve durum uzayma gore belirlenmistir. MiniGrid-FourRooms-v0
ortamindaki eylem ve durum uzayr ayriktir. Buna goére A2C, DQN, PPO, TRPO
algoritmalar1 ayrik eylem uzaylarina uygun oldugu i¢in secilmistir. Ajanlar 2 milyon
boliim egitilmistir. DQN ajan1 6diil alamamistir. A2C, PPO, TRPO ajanlarindan ise PPO

daha kararli goriilmektedir ve dogru eylem secimlerini kararli bir sekilde yapmuistir.

Kullanilan hiperparametreler ve egitim segcenekleri Tablo 4.3 ‘de verilmistir.
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Sekil 4.8. DPO Ajanlarinin MiniGrid-FourRooms-v0 Ortamindaki Odiil Performansi

Tablo 4.3. A2C, DQN, PPO, TRPO ajan i¢in kullanilan hiperparametreler ve egitim
se¢enekleri

A2C DQN PPO TRPO
normalize true true true true
n_envs 8 8 8 8
n_timesteps 4000000 4000000 4000000 4000000
policy 'MLP' 'MLP' 'MLP’ 'MLP'
n_steps 512 - 512 512
gae_lambda 0.95 - 0.95 0.95
gamma 0.99 0.99 0.99 0.99
ent_coef 0.0 - 0.0 0.0
learning_rate 2.5e-4 2.5e-4 2.5e-4 0.001
batch size 64 64 64
clip_range - - 0.2 -
n_epochs - - 10 -
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4.3. MiniGrid-Dynamic-Obstacles

Sekil 4.9. MiniGrid- Dynamic-Obstacles-16x16-v0

MiniGrid-Dynamic-Obstacles-16x16-v0 ortami, hareketli engellerin bulundugu bos bir
odadir. Sekil 4.9°da ortamin 6rnek bir temsili verilmistir. Ajanin amaci herhangi bir
engele ¢carpmadan yesil hedef karesine ulagmaktir. Ajan bir engelle carpisirsa biiyiik bir
ceza kesilir ve bdliim sona erer. Bu ortam, Kismi Gozlenebilirlikte Takviyeli Ogrenme
ile mobil robotlar i¢in Dinamik Engelden Kacinma'y1 test etmek i¢in kullanighidir. Durum
uzay1 16x16, eylem uzay1 4x1 vektorlerden olusur. Yukari, asagi, saga ve sola olmak
lizere 4 eylem vardir. Odiil modeli olarak ise basar i¢in '1- 0,9 * (adim say1s1 / toplam
adim)' ve basarisizlik igin '0' 6diilii verilir. Ajan bir engelle ¢arpisirsa '-1' cezasi verilir.
Ajan hedefe ulastiginda, bir engele ¢arptiginda ya da maksimum adim sayisina

ulagildiginda boliim sona erer.

Sekil 4.10°da DPO Ajanlarinin boliim basina aldig1 6diil miktarlarmin grafigi verilmistir.
Algoritmalar eylem ve durum uzayina gore belirlenmistir. MiniGrid-Dynamic-Obstacles-
16x16-v0 ortamindaki eylem ve durum uzay1 ayriktir. Buna gére A2C, DQN, PPO, TRPO
algoritmalar1 ayrik eylem uzaylarina uygun oldugu i¢in secilmistir. Ajanlar 2 milyon
boliim egitilmistir. Tablo 4.3’teki hiperparametreler kullanmilmistir. A2C, DQN PPO,
TRPO ajanlarindan ise PPO daha kararli goriilmektedir ve dogru eylem seg¢imlerini

kararl bir sekilde yapmustir.
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Sekil 4.10. DPO Ajanlarinin MiniGrid-Dynamic-Obstacles-16x16-v0 Ortamindaki Odiil
Performansi

4.4. Gazebo Empty World

Gazebo’da bos diinya i¢inde higbir engel bulunmayan bos bir alana sahiptir. Gozlemlerin
sadece uzaklik ve ac1 oldugu robotu hedefe gotiiriir. Uygulanan tiim ortamlarda, ajan
eylemleri dogrusal ve agisal hizlardir. Durum uzayimnin boyutu 38’dir. Durum uzayi, lidar
sensoriinden gereken 36 degerine (6rnekleme miktari), hedefe uzakliga ve hedefe agiya
sahiptir. Ajan hem agisal hem de dogrusal hizlar igin normallestirilmis girisler kullanir,
yani ajanin eylemleri -1 ile 1 arasinda skalerdir. Bu diinyada siirekli eylem alaninda
calisabilen TD3, PPO ve SAC algoritmalar1 denenmistir. Sekil 4.11°de ortamin 6rnek bir

temsili verilmistir.

Odiil, robotun bir boliim sirasindaki performansinin ve yoriingesinin nicel bir dl¢iisiinii
saglar. Ajanin amaci bunu maksimize etmektir. Gazebo ortaminda yapilan egitimlerde
bir boliim yalnizca bir ¢arpisma veya zaman agimi oldugunda sonlanir, aksi takdirde bir
hedefe ulasildiginda, robota mevcut konumundan ulasmasi gereken yeni bir hedef
konumu verilir. Dolayisiyla, daha yiiksek kiimiilatif 6diil, bir robotun ¢arpismadan veya

zaman adimi sinirini asmadan daha fazla sayida hedefe ulasabildigi anlamina gelir. Odiil
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modeli olarak; hedefe varinca 100 puan, ¢carpisma olursa -120 puan, zaman sinir1 asilinca
0 puan belirlenmistir. Zaman sinir1 200 zaman adimindan sonra asilir. Bu yalnizca robot
hedefe ulasamadiginda veya carpistiginda gerceklesir. Bu, dairesel davranisi dnlemek
veya robotun bir yere takilip kalmasin1 6nlemek i¢indir. Kullanilan hiperparametreler ve

egitim segenekleri Tablo 4.4 ‘de verilmistir.

Tablo 4.4. TD3, PPO ve SAC ajani i¢in Gazebo Empty World ortaminda kullanilan
hiperparametreler

PPO SAC TD3
training_timesteps 2000000 2000000 2000000
policy MLP MLP MLP
activation_fn relu relu relu
optimizer Adam Adam Adam
n_steps 100 - -
gae_lambda 0.95 - -
gamma 0.99 0.99 0.99
ent_coef 0.0 auto
tau - 0.005 0.005
learning_rate 0.0003 0.0003 0.001
batch size 100 256 15000
clip_range 0.2 - -
n_epochs 5 - -
vf_coef 0.5 - -
max_grad_norm 0.5 - -
buffer_size - 1000000 2000000
learning_starts - 100 25000
gradient_steps - -1 -1
target_update_interval - 1 -
target_entropy - auto -
policy_delay - - 2
target_policy_noise - - 0.2
target_noise_clip - - 0.5
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Sekil 4.11. Gazebo Empty World
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Sekil 4.12. TD3, PPO ve SAC ajani i¢in Gazebo Empty World ortaminda &diil
performansi

TD3, PPO ve SAC ajanilar i¢in Gazebo Empty World ortaminda 6diil performansi Sekil
4.12°de verildi. TD3 ajanimin digerlerinden daha basarili oldugu goriildi. Turtlebot3
robotu carpigmasiz bir seklide hedefe ulagsmay1 basardi.
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4.5. Egitim Siireleri

Tablo 4.5’de ajanlarin egitim ortamlarina gore egitilme siireleri verildi. Basit ortam
tasarimlarinda egitim siiresi kisa iken tasarim karmasiklastik¢a egitim siiresi artmaktadir.
Gazebo ortamlarinda egitim siirelerinin uzunlugu dikkat ¢ekicidir. Bu tezde,2 boyutlu
ortam kullanilmasinin ana sebeplerinden biri, egitim ortaminin karmasikligini azarlatarak

donanim kaynaklarini verimli bir seklide kullanama ve algoritmalara yogunlasmakti.

Tablo 4.5. Ajanlarin egitim ortamlarina gore egitilme stireleri

Ortam - Cevre Ajan Egitim Siiresi
Grid Diinya (5x5) Q-0grenme 55 dakika

Grid Diinya (5x5) Sarsa 58 dakika
Dinamik Grid Diinya (8x7) Q-06grenme 2 saat 10 dakika
Dinamik Grid Diinya (8x7) DQON 2 saat 30dakika
MiniGrid-FourRooms A2C 6 saat
MiniGrid-FourRooms DON 4 saat
MiniGrid-FourRooms PPO 6 saat
MiniGrid-FourRooms TRPO 6 saat
MiniGrid-Dynamic-Obstacles A2C 7 saat
MiniGrid-Dynamic-Obstacles DQN 5 saat
MiniGrid-Dynamic-Obstacles PPO 7 saat
MiniGrid-Dynamic-Obstacles TRPO 7 saat

Gazebo Empty World PPO 72

Gazebo Empty World SAC 74

Gazebo Empty World TD3 80

4.6. Test

Robotik haritalama, gergek bir ortamin bir robot veya bir grup robot tarafindan dijital bir
modele doniistiiriildiigi bir siirectir. Robot nesnesinin bir sensorii, konumu ve hiz
parametreleri vardir. Robot ilk konumundan kosmaya baslar. Simiilasyonu calistirirken,
bu konum haritadaki bos alanin herhangi bir x-y koordinati olabilir. Gergek diinya
deneyinde, robot o anda odanin neresinde olursa olsun, basglangi¢ konumunun harita
tizerinde sifir degeri vardir. Lazer sensorii okumalari, ajan tarafindan yapilan gézlemler
olarak kabul edilir. Uygulamada lazer sensorii okumalarinin agisal konumlarini,
maksimum aralig1 ve giiriiltii parametreleri tanimlandi. Ajanin eylemi, robotun dogrusal
ve acisal hizlarinin bulundugu ve oldugu iki boyutlu bir vektordiir. Ajan, hem agisal hem
de dogrusal hizlar i¢in normallestirilmis girisler kullanir, Yani ajanin eylemleri -1 ile 1

arasinda skalerdir. Ajan, en kotli durum senaryosunu en aza indiren, en yakin engelden
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kaginmasi i¢in ddiillendirilir. Ek olarak, ajana daha yiiksek dogrusal hizlar i¢in pozitif bir
odiil verilir ve daha yiiksek agisal hizlar i¢in negatif bir 6dil verilir. Bu 6diillendirici
strateji, ajanin daireler ¢izme davramigini caydirir. Sekil 4.13’de gosterilen Gazebo
ortami, iki dinamik engelin bulundugu bir labirenttir. Bu ortamda, haritasiz navigasyon
mobil robotikte kullanilan yerel bir planlayici, dnceden planlanmis bazi yoriingeler robota
saglanir. PO haritasiz navigasyon algoritmasi dnceden planlanmis noktalardan beslenir
yoriinge istenen hedefler olarak; robot bir hedefe ulastiginda noktasindan sonra,
yoriingedeki bir sonraki nokta son noktaya kadar gonderilir yoriinge tespit edilir. Ortam
gbzlemleri, robottan hedefe olan mesafe ve ag1 ile LIDAR 0l¢limlerinden olusmaktadir.
Uygulanan tiim ortamlarda, ajan eylemleri dogrusal ve agisal hizlardir. Odiil modeli
Gazebo Empty World ile aynidir. Tek fark ¢arpisma durumunda verilen cezadir. Hedefe
varmca 100 puan, ¢arpigma olursa -200 puan, zaman sinir1 asilinca 0 puan belirlenmistir.

Zaman siir1 100 zaman adimindan sonra asilir.

Sekil 4.13. Gazebo Maze World

Daha onceki deneylerde PPO ve TD3 algoritmasinin basarist 6n plana ¢ikmistir. PPO
hem ayrik hem de siirekli eylem uzaylarinda caligsabilirken TD3 sadece siirekli eylem
uzaylarinda ¢aligabilir. PPO algoritmasi TRPO algoritmasinin gelistirilmis hali iken TD3
algoritmas1 DDPG algoritmasinin gelistirilmis halidir. Bundan dolay1 test ortaminda PPO
ve TD3 algoritmalari karsilastirildi.
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Sekil 4.14. TD3 ve PPO ajani igin Gazebo Maze World ortaminda 6diil performansi

Sekil 4.14’de TD3 ve PPO ajani igin Gazebo Maze World ortaminda 6diil performansi
verilmistir. Her iki ajanda 2 milyon boliim egitilmistir. Hiperparametre olarak Gazebo
Empty ortam1 ve grid diinyalarda kullanilan parametreler kullanildi. TD3 ajanin1 daha
yiiksek Odiillere daha hizli ulagtigi goriildii. Robotun basarili bir sekilde hedefe ulastigi

goriildil.

ep_rew_mean
tag: rollout/ep_rew_mean
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Sekil 4.15. TD3 ajani i¢in Gazebo Maze World ortaminda 6diil performansi
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Sekil 4.16. PPO ajani igin Gazebo Maze World ortaminda 6diil performansi
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5. SONUCLAR VE ONERILER

Bu tezde, bilinmeyen ortamlarda otonom, haritasiz mobil robot navigasyonu i¢in Derin
Pekistirmeli Ogrenme yaklasimi incelenmistir. Yol planlama ve otonom navigasyon
problemlerine ¢oziim olarak son yillarda iizerine oldukga arastirma yapilan pekistirmeli
ogrenme algoritmalari incelendi. Farkli DPO algoritmalar1 farkli ortamlarda ¢alistirild:
ve performanslar1 bdliim basma 6diil miktar1 olarak &lciildii. Onerilen 6diil modeli
robotun dairesel davranis yapmasini ve bir yere takilip kalmasin engellemek icin ve

hedefe ¢arpisma olmadan varmasini saglamak igin tasarlandi.

Son teknoloji DPQO algoritmalar1 olan DQN, DDPG, A2C, TRPO, TD3, PPO
karsilastirildi. Bu algoritmalar, DPO arastirma toplulugundaki mevcut literatiire ve

popiilerlige gore secilmistir(Fujimoto ve dig., 2018; Raffin ve dig., 2021)

Ortam tasarimi olarak mevcut donanim kaynaklarini verimli kullanmak adina dncelikle 2
boyutlu ortam tasariminda deneyimler elde edildi.2 boyutlu ortam olarak Matlab’ta grid
diinya ve ayrica Minigrid kiitiiphanesinden 2 adet ortam kullanildi.3 boyutu ortam igin

ise Gazebo benzetim ortami kullanildi.

Parametre optimizasyon yontem olarak 2 boyutlu ortamda denemeler yapildi. Elde edilen
tecriibeler 3 boyutlu diinyaya aktarildi. Hiperparamtere optimizasyonu i¢in RL Baselines

3 Zoo kiitiiphanesinde yararlanildi.

Grid diinyasi, ¢alisma ortamini gorsellerden kolayca tanimlayabilmesi ve pekistirmeli
O0grenme girdisine giren durumun ve bu durumdaki davranisin basit olmasi
avantajlarindan dolay1 yol arama probleminde siklikla kullanilan ortami ifade eden bir
tekniktir. Ancak, ¢alisma ortamini ifade etme isi sadece goriintiiyli grid bir diinyaya
doniistiirmekle bitmiyor. Uygun bir 6diil fonksiyonu kurma, pekistirmeli 6grenme ile
coziilecek bir problem olusturma, bir pekistirmeli 6grenme algoritmasi segme ve son
olarak pekistirmeli 6grenme algoritmasinin 6grenme parametrelerine deger atama siireci
tasarimcinin  sorumlulugundadir. Bu tezde, problemi ¢6zmek i¢in kullanilan derin
pekistirmeli 6grenme algoritmasinin model mimarisi ve parametreleri ve grid diinyasinda
yol arama probleminde grid diinyasi ¢evre tasarimi 6rnegi sunuldu. Ardindan, gesitli derin
takviyeli Ogrenmenin Ogrenme algoritmalar1 farkli ortamlarda ¢alistirildi  ve

performanslar1 gézlemlendi.
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Basit ortamlarda Q-6grenme yaklasmiginin basarili oldugu goézlendi. Durum uzayi
biiylidikge Q tablolarinin yetersiz kaldigi tespit edildi. Bu noktada fonksiyon
yaklastiricis1 yontemi incelendi. Yapay sinir ag1 modelleri incelendi. DQN ajaninin
getirdigi yaklasimin Q-6grenmeden daha basarili oldugu goriildii. Grid diinyada hastane
modellemesinin stokastik versiyonunda DQN ajaninin Q-0grenme ajanindan daha

basarili oldugu tespit edildi.

MiniGrid ortamlarinda A2C, DQN, TRPO, PPO ajanlar1 egitildi. PPO ajaninin daha
basarili oldugu goriildii. Bunun sebebi olarak politika tabanli bir yaklasim kullanilmasi

sOylenebilir.

Siirekli eylem uzaylarinda calisan TD3, SAC, PPO algoritmalar1 Gazebo Empty

ortaminda kiyaslandi1.TD3 ajani1 daha basarili sonuglar ald1.

Test ortami olarak Gazebo Maze World kullanildi. Bu ortamda Turtlebot robotu
kullanildi. PO modelleri, lazer sensdr gozlemleri kullanilarak egitildi. Lazer sensor
gozlemleri, daha az islem gerektirdigi icin kamera gozlemlerine kiyasla modelleri
egitmek daha hizli oldugu i¢in kullanildi. Siirekli eylem uzaylarinda ¢alisabilen ve daha
onceki deneylerde basarilari ile 6n plana ¢ikan TD3, PPO algoritmalar kiyaslandi. TD3

ajan1 daha basarili sonuglar aldi.

Sonug olarak; sonsuz olasi durumlara sahip bircok durumda, dogrusal yaklasim ve Q
tablosu kullanmanin dogru yaklasim olmadigi goriildii. DQN algoritmasmin stirekli
durumlar ve ayrik eylemler iizerinde basarili oldugu ve sinir agi kullanan dogrusal
olmayan fonksiyon yaklasiminin ¢ok giiclii bir yaklasim oldugu sonucuna varildi. Siirekli
eyleme ve siirekli durum uzayinda sahip ortamlarda ise PPO, TD3 algoritmalarini
kullanilabilecegi ve basarili olunabilecegi goriildii. Bunun sebebi olarak fonksiyon

yaklastiricisi olarak aktor-kritik ag modelinin kullanilmasi sdylenebilir.

Bu tezde, bir mobil robotun 2 boyutlu grid ortamda ve 3 boyutlu bir oda ortaminda yol
planlamas1 yapmast icin cesitli DPO algoritmalar1 ¢alistirildi. Kullanilan algoritmalarin

yol planlama problemini ¢6zebilecegi goriildii.

Gelecekte ise bu calismada kullanilan ve basarilart gozlenen PPO, TD3 gibi

algoritmalarin ag ve 6diil modeli iizerine ¢aligarak bunlarin 6grenmeye olan etkisinin
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tespit edilmesi planlandi. Reward Shaping(Odiil fonksiyonu modelleme) pekistirmeli
O6grenme konusunun en zorlu arastirma konularindan biridir. Bu konu iizerine 6zellikle
caligilarak algoritmalar toplam 0Odiil, basar1 orani, en kisa yolu bulma gibi OSlgiitler
tizerinden kiyaslanacaktir. Ayrica geleneksel yol planlama algoritmalar1 (A*,RRT, vb.)
ile DPO algoritmalar: hibrit bir sekilde kullanilarak yol planlama problemlerine ¢dziim
aranacaktir. Bu anlamda global bir yol plan1 klasik algoritmalar ile olusturulup hareket
planlamas1 DPO ajanlari ile yapilabilir, kapali ortamlar segmentlere ayrilip her segmentte
DPO ajami calisabilir ve segmentler arasi baglanti A*, RRT gibi algoritmalarla
saglanabilir ya da bir mobil robotun bir hedefe tam anlamiyla varmasi i¢in belirli bir
giivenli mesafeye (carpisma olamayacak mesafe) kadar DPO ajan1 o noktadan sonra
geleneksel yol planlama algoritmalar1 kullanilabilir. Nihai hedef ise en iyi performans

veren algoritmanin, simiilasyon ortamindan gercek robota aktarilmasidir.
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