
ANABİLİM DALI

BİLGİSAYAR MÜHENDİSLİĞİ

YÜKSEK LİSANS TEZİ

KAPALI ORTAMLAR İÇİN DERİN PEKİŞTİRMELİ

ÖĞRENME ALGORİTMALARI İLE MOBİL ROBOTLARIN

NAVİGASYONU

EMRE APAYDIN

KOCAELİ ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

KOCAELİ 2023

ANABİLİM DALI

BİLGİSAYARMÜHENDİSLİĞİBİLGİSAYARMÜHENDİSLİĞİ

YÜKSEK LİSANS TEZİYÜKSEK LİSANS TEZİ

KAPALI ORTAMLAR İÇİN DERİN PEKİŞTİRMELİ

ÖĞRENME ALGORİTMALARI İLE MOBİL ROBOTLARIN

NAVİGASYONU

Tezin Savunulduğu Tarih: 26.05.202326.05.2023

KOCAELİ ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

...........................

...........................

...........................

Dr. Öğr. Üyesi Alpaslan Burak İNNER

Kocaeli Üniv.Danışman,Danışman,

Prof. Dr. Hasan OCAK

Kocaeli Üniv.Jüri Üyesi,Jüri Üyesi,

Doç. Dr. Adem TUNCER

Yalova Üniv.Jüri Üyesi,Jüri Üyesi,

EMRE APAYDIN

i

ETİK BEYAN VE ARAŞTIRMA FONU DESTEĞİ

Kocaeli Üniversitesi Fen Bilimleri Enstitüsü tez yazım kurallarına uygun olarak

hazırladığım bu tez çalışmasında,

− Bu tezin bana ait, özgün bir çalışma olduğunu,

− Çalışmamın hazırlık, veri toplama, analiz ve bilgilerin sunumu olmak üzere tüm

aşamalarında bilimsel etik ilke ve kurallara uygun davrandığımı,

− Bu çalışma kapsamında elde edilen tüm veri ve bilgiler için kaynak gösterdiğimi ve bu

kaynaklara kaynakçada yer verdiğimi,

− Bu çalışmanın Kocaeli Üniversitesi’nin abone olduğu intihal yazılım programı

kullanılarak Fen Bilimleri Enstitüsü'nün belirlemiş olduğu ölçütlere uygun olduğunu,

− Kullanılan verilerde herhangi bir tahrifat yapmadığımı,

− Tezin herhangi bir bölümünü bu üniversite veya başka bir üniversitede başka bir tez

çalışması olarak sunmadığımı,

beyan ederim.

 Bu tez çalışmasının herhangi bir aşaması hiçbir kurum/kuruluş tarafından

maddi/alt yapı desteği ile desteklenmemiştir.

 Bu tez çalışması kapsamında üretilen veri ve bilgiler ..

tarafından ... no’lu proje kapsamında maddi/alt yapı desteği

alınarak gerçekleştirilmiştir.

Herhangi bir zamanda, çalışmamla ilgili yaptığım bu beyana aykırı bir durumun

saptanması durumunda, ortaya çıkacak tüm ahlaki ve hukuki sonuçları kabul ettiğimi

bildiririm.

Emre APAYDIN

ii

YAYIMLAMA VE FİKRİ MÜLKİYET HAKLARI

Fen Bilimleri Enstitüsü tarafından onaylanan lisansüstü tezimin tamamını veya herhangi

bir kısmını, basılı ve elektronik formatta arşivleme ve aşağıda belirtilen koşullarla

kullanıma açma izninin Kocaeli Üniversitesi’ne verdiğimi beyan ederim. Bu izinle

Üniversiteye verilen kullanım hakları dışındaki tüm fikri mülkiyet hakları bende kalacak,

tezimin tamamının ya da bir bölümünün gelecekteki makale, kitap, tebliğ, lisans, patent

gibi çalışmalarda kullanımı, danışmanımın isim hakkı saklı kalmak koşuluyla ve her iki

tarafın bilgisi dâhilinde bana ait olacaktır.

Tezin kendi özgün çalışmam olduğunu, başkalarının haklarını ihlal etmediğimi ve tezimin

tek yetkili sahibi olduğumu beyan ve taahhüt ederim. Tezimde yer alan telif hakkı

bulunan ve sahiplerinden yazılı izin alınarak kullanılması zorunlu metinlerin yazılı izin

alarak kullandığımı ve istenildiğinde suretlerini Üniversiteye teslim etmeyi taahhüt

ederim.

Yükseköğretim kurulu tarafından yayınlanan “Lisanüstü Tezlerin Elektronik Ortamda

Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” kapsamında tezim

aşağıda belirtilen koşullar haricinde YÖK Ulusal Tez Merkezi/ Kocaeli Üniversitesi

Kütüphaneleri Açık Erişim Sisteminde erişime açılır.

Enstitü yönetim kurulu kararı ile tezimin erişime açılması mezuniyet tarihinden

itibaren 2 yıl ertelenmiştir.

Enstitü yönetim kurulu gerekçeli kararı ile tezimin erişime açılması mezuniyet

tarihinden itibaren 6 ay ertelenmiştir.

Tezim ile ilgili gizlilik kararı verilmemiştir.

Emre APAYDIN

iii

ÖNSÖZ VE TEŞEKKÜR

Bu tez çalışması, mobil robot navigasyonunun harita olmadığı durumlarda pekiştirmeli

öğrenme algoritmaları ile gerçekleştirilmesi amacıyla hazırlanmıştır.

Tez çalışmamda desteğini esirgemeyen, çalışmalarıma yön veren, bana güvenen ve

yüreklendiren danışmanım Dr. Öğr. Üyesi Alpaslan Burak İNNER’e teşekkürlerimi

sunarım.

Sonsuz sabrı ve desteği ile bana her zaman destek olan sevgili eşime teşekkür ederim. Bu

çalışmayı kıymetli evlatlarım, Elif Ece’ye ve Ahmet Asaf’a ithaf ediyorum.

Mayıs – 2023 Emre APAYDIN

iv

İÇİNDEKİLER

ETİK BEYAN VE ARAŞTIRMA FONU DESTEĞİ ... i
YAYIMLAMA VE FİKRİ MÜLKİYET HAKLARI .. ii
ÖNSÖZ VE TEŞEKKÜR .. iii
İÇİNDEKİLER .. iv

ŞEKİLLER DİZİNİ ... vi
TABLOLAR DİZİNİ ... viii
SİMGELER VE KISALTMALAR DİZİNİ .. ix
ÖZET .. x
ABSTRACT .. xi

1. GİRİŞ ... 1

2. GENEL BİLGİLER ... 8
2.1. Hareket Planlama ... 8

2.1.1. Hareket Planlayıcıları.. 8
2.1.2. Çevre Gösterimleri .. 8
2.1.3. Küresel Yol Planlayıcıları ... 9
2.1.4. Yerel Yol Planlayıcıları .. 10

2.2. Makine Öğrenmesi ... 10
2.2.1. Denetimli-Gözetimli Öğrenme ... 11

2.2.2. Denetimsiz-Gözetimsiz Öğrenme ... 12
2.2.3. Pekiştirmeli Öğrenme ... 12

2.3. Derin Öğrenme .. 13
2.4. Pekiştirmeli Öğrenme .. 14

2.4.1. Tarihsel Bağlam .. 14

2.4.2. Pekiştirmeli Öğrenme ... 16
2.4.3. Markov Karar Süreçleri .. 18

2.4.4. Değer Fonksiyonları.. 20
2.4.6. Politika Belirleme ... 23

2.4.7. Dinamik Programlama .. 23
2.4.8. Monte Carlo .. 25
2.4.9. Zamansal Fark ... 26

2.4.10. Keşif ve Sömürü ... 27
2.4.11. Q Öğrenme ... 28
2.4.12. Sarsa ... 31

2.4.13. Sarsa ve Q Öğrenmenin Karşılaştırılması .. 32
2.4.14. Fonksiyon Yaklaşımı .. 33

2.5. Derin Pekiştirmeli Öğrenme .. 35
2.5.1. Derin Q Öğrenme .. 36

2.5.2. Deterministik Politika Gradyanı ... 39
2.5.3. DDPG .. 41
2.5.4. A2C ... 42

2.5.5. TRPO .. 43
2.5.6. PPO ... 44

2.5.7. TD3 ... 46
2.5.8. SAC ... 47

2.6. Benzetim Ortamları (Simülatörler) .. 49
2.6.1. Webots .. 50

v

2.6.2. Gazebo .. 50
2.6.3. V-rep (Copeliasim) ... 51
2.6.4. Microsoft Robotics Developer Studio .. 52
2.6.5. Robologix .. 53
2.6.6. AnyKode Marilou ... 53

2.6.7. Graspit! ... 53
2.6.8. MuJoCo ... 53
2.6.9. OpenAI-Gym .. 53

2.7. Literatür İncelemesi ... 54
3. MALZEME VE YÖNTEM ... 59

3.1. İşletim Sistemi ... 59
3.2. Robot İşletim Sistemi (ROS) ... 59

3.3. Gazebo ... 60

3.4. Turtlebot ... 60
3.5. Programlama Dili ... 61
3.6. Matlab Pekiştirmeli Öğrenme Araç Kutusu ... 62
3.7. OpenAI Gym ve Stable Baselines ... 62

3.8. Derin Pekiştirmeli Öğrenme Temsilcileri .. 63
3.9. Çevre-Ortam Temsilleri ... 63

3.10. Ödül Modelleri ... 64
3.11. Parametre Optimizasyonu .. 64

3.12. Donanım ... 64
4. BULGULAR VE TARTIŞMA ... 66

4.1. Grid Dünya .. 66

4.2. MiniGrid-FourRooms .. 70
4.4. Gazebo Empty World .. 73

4.5. Eğitim Süreleri ... 76
4.6. Test ... 76

5. SONUÇLAR VE ÖNERİLER .. 80
KAYNAKLAR ... 83
KİŞİSEL YAYIN VE ESERLER ... 93

ÖZGEÇMİŞ .. 94

vi

ŞEKİLLER DİZİNİ

Şekil 1.1. Mobil Robot Navigasyon Yaklaşımlarının Sınıflandırılması 2
Şekil 1.2. Mobil Robot Navigasyon Yaklaşımlarının Yıllara Göre Gelişimi………….3
Şekil 1.3. Otonom Araçlar İçin Derin Pekiştirmeli Öğrenme Araştırmaları. 5
Şekil 2.1. Çevrenin metrik, topolojik ve hibrit gösterimleri .. 8

Şekil 2.2. Yapay Zeka Hiyerarşisi ... 11
Şekil 2.3. Derin Yapay Sinir Ağlarının Mimarisi .. 14
Şekil 2.4. Thorndike yapboz kutusu .. 15
Şekil 2.5. Pekiştirmeli öğrenme yapısı .. 17
Şekil 2.6. Değer fonksiyonu diyagramı ... 21

Şekil 2.7. V* ve Q* yedek diyagramları ... 22

Şekil 2.8. Genelleştirilmiş politika yinelemesi .. 24
Şekil 2.9. PÖ algoritmalarının kategorileri .. 29

Şekil 2.10. Q-Öğrenme akış şeması... 30
Şekil 2.11. Q değeri tablosu .. 30
Şekil 2.12. Q-Öğrenme Algoritması .. 31
Şekil 2.13. Sarsa algoritması ... 32

Şekil 2.14. Uçurumda yürüme görevinin grid dünyası .. 32
Şekil 2.15. Uçurumda yürüme görevinin sonuçları ... 33

Şekil 2.16. Derin pekiştirmeli öğrenme modeli ... 36
Şekil 2.17. Değer tabanlı ve Politika tabanlı Derin Pekiştirmeli Öğrenme 36

Şekil 2.18. Derin Q-Öğrenme eğitim aşaması ... 37
Şekil 2.19. Derin Q-Öğrenme Akış Diyagramı ... 38
Şekil 2.20. Aktör-Kritik algoritmasının basit gösterimi .. 39

Şekil 2.21. DDPG algoritması ... 41
Şekil 2.22. A2C algoritması .. 43

Şekil 2.23. TRPO algoritması .. 44
Şekil 2.24. PPO algoritması ... 45

Şekil 2.25. TD3 algoritması ... 47
Şekil 2.26. SAC algoritması .. 48
Şekil 2.27. Simülatörlerin bilinirlik ve kullanılma durumları 49

Şekil 2.28. Örnek webots sahnesi .. 50
Şekil 2.29. Örnek Gazebo sahnesi ... 51
Şekil 2.30. Örnek Copeliasim sahnesi ... 52

Şekil 3.1. ROS yayıncı-abone iletişimi ... 60
Şekil 3.2. Turtlebot Burger .. 61

Şekil 3.3. Gazebo-Ros-OpenAI-Stable Baselines Mimarisi .. 63
Şekil 4.1. 5x5 grid dünya ... 66

Şekil 4.2. Q ajanın ödül performansı ... 67
Şekil 4.3. Sarsa ajanın ödül performansı ... 67
Şekil 4.4. 8x7 grid dünya ... 68

Şekil 4.5. Q ajanın 8x7 grid dünyada ödül performansı .. 69
Şekil 4.6. DQN ajanın 8x7 grid dünyada ödül performansı .. 69

Şekil 4.7. MiniGrid-FourRooms-v0 .. 70
Şekil 4.8. DPÖ Ajanlarının MiniGrid-FourRooms-v0 Ortamındaki

 Ödül Performansı ... 71
Şekil 4.9. MiniGrid- Dynamic-Obstacles-16x16-v0 ... 72

vii

Şekil 4.10. DPÖ Ajanlarının MiniGrid-Dynamic-Obstacles-16x16-v0

 Ortamındaki Ödül Performansı ... 73
Şekil 4.11. Gazebo Empty World .. 75
Şekil 4.12. TD3, PPO ve SAC ajanı için Gazebo Empty World

 ortamında ödül performansı... 75

Şekil 4.13. Gazebo Maze World .. 77
Şekil 4.14. TD3 ve PPO ajanı için Gazebo Maze World ortamında

 ödül performansı .. 78
Şekil 4.15. TD3 ajanı için Gazebo Maze World ortamında ödül performansı 78
Şekil 4.15. PPO ajanı için Gazebo Maze World ortamında ödül performansı 79

viii

TABLOLAR DİZİNİ

Tablo 2.1. Makine Öğrenmesi Yöntemlerinin Karşılaştırılması 13
Tablo 2.2. Pekiştirmeli öğrenmenin parametreleri ... 17
Tablo 3.1. Turtlebot donanım özellikleri .. 61
Tablo 3.2. Lazer Mesafe Sensörü LDS-01 ... 61

Tablo 4.1. Q ve Sarsa ajanları için kullanılan hiperparametreler ve
 eğitim seçenekleri .. 66
Tablo 4.2. Q ve DQN ajanları için kullanılan hiperparametreler

 ve eğitim seçenekleri .. 69
Tablo 4.3. A2C, DQN, PPO, TRPO ajanı için kullanılan hiperparametreler

 ve eğitim seçenekleri .. 71

Tablo 4.4. TD3, PPO ve SAC ajanı için Gazebo Empty World ortamında

 kullanılan hiperparametreler ... 74

Tablo 4.5. Ajanların eğitim ortamlarına göre eğitilme süreleri 76

ix

SİMGELER VE KISALTMALAR DİZİNİ

a :Eylem

A :Eylem uzayı

r :Ödül

R :Ödül uzayı

st :Mevcut durum

s’ :Bir sonraki durum

V :Değer fonksiyonu

ε :Epsilon

γ :İndirim faktörü

π :Politika

α :Öğrenme oranı

Kısaltmalar

A2C :Advantage Actor-Critic(Avantaj Aktör-Kritik)

D3QN :Duello Double Deep Q Network (Düello Çift Derin Q-Öğrenme)

DDPG :Deep Determintic Policy Gradient(Derin Deterministik Politika

 Gradyanı)

DÖ :Derin Öğrenme

DP :Dinamik Programlama

DPG :Determintic Policy Gradient(Deterministik Politika Gradyanı)

DPÖ :Derin Pekiştirmeli Öğrenme

DQN :Deep Q Network(Derin Q Ağı)

MC :Monte Carlo

MDP :Markov Desicion Process(Markov Karar Süreçleri)

MÖ :Makine Öğrenmesi

PÖ :Pekiştirmeli Öğrenme

PPO :Proximal Policy Gradient(Proksimal Politika Optimizasyonu)

ROS :Robot Operating System(Robot İşletim Sistemleri)

RRT :Random Rapid Tree (Rastgale Hızlı Ağaçlar)

SAC :Soft Actor-Critic(Soft Aktör-Kritik)

TD :Time Difference(Zamansal Fark)

TD3 :Twin Delayed DDPG(İkiz Gecikmeli Derin Deterministik Politika

 Gradyanı)

TRPO :Trust Region Policy Optimization(Güven Bölgesi Politikası

 Optimizasyonu)

YSA :Yapay Sinir Ağları

YZ :Yapay Zeka

x

KAPALI ORTAMLAR İÇİN DERİN PEKİŞTİRMELİ ÖĞRENME

ALGORİTMALARI İLE MOBİL ROBOTLARIN NAVİGASYONU

ÖZET

Mevcut mobil robotik araştırmalarındaki en önemli konulardan biri otonom

navigasyondur. Navigasyon; yol planlama ve hareket planlama olarak iki kısımdan

oluşur. Bununla birlikte yol ve hareket planlama, haritası çıkarılmamış ortamlarda zorlu

bir görevdir. Bu zorlukları aşmak için son yıllarda derin pekiştirmeli öğrenme (DPÖ)

yöntemleri sıklıkla kullanılmaktadır. Bu çalışmanın amacı, haritası çıkarılmamış

ortamlarda düşük maliyetli sensörler kullanarak bir mobil robotun navigasyonu için derin

pekiştirmeli öğrenme yöntemlerinin kullanımını araştırmak, modellemek ve

kıyaslamaktır. Belirtilen amaca ulaşmak için iki aşamalı bir yöntem belirlenmiştir. Birinci

aşamada kapalı bir oda ortamı iki boyutlu grid olarak temsil edilmiştir. Bu ortam üzerinde

A2C, DQN, TRPO, PPO gibi ayrık eylem uzayında çalışabilen farklı pekiştirmeli

öğrenme algoritmalarının performansları kıyaslanmıştır. Bu karşılaştırmayı yaparken

belirli bir öğrenme kriteri eklenmiştir ve ayrıca epsilon değeri, adım sayısı gibi

parametreler değiştirilerek eğitim ve test aşamalarındaki değişiklikler analiz edilmiştir.

Değerlendirme ölçütü olarak bölüm başına alınan ortalama ödül kullanılmıştır. Daha

yüksek ödül, bir robotun çarpışmadan veya zaman adımı sınırını aşmadan daha fazla

sayıda hedefe ulaşabildiği anlamına gelir. Bu ortamlarda PPO ajanının daha başarılı

olduğu görülmüştür. İkinci aşamada Gazebo benzetim ortamında üç boyutlu hazır

ortamlarda algoritmaların performansı değerlendirilmiştir. Sürekli eylem uzaylarında

çalışan TD3, SAC, PPO algoritmaları Gazebo ortamında kıyaslandı. 2B ortamında başarı

sağlayan hiperparametreler 3B ortamda da kullanıldı. Bu şekilde TD3 ajanı daha başarılı

sonuçlar almıştır. Son olarak ise hem ayrık hem de sürekli eylem uzayında çalışabilen ve

2B ortamda en başarılı olan PPO ajanı ile sadece sürekli eylem uzayında çalışan ve 3B

ortamda başarısı görülen TD3 ajanı kıyaslandı ve gözlemler sonucunda TD3 ajanının

daha başarılı olduğu görüldü.

Anahtar Kelimeler: Derin Pekiştirmeli Öğrenme, Hareket Planlama, Mobil Robotlar,

Otonom Navigasyon, Yol Planlama.

xi

NAVIGATION OF MOBILE ROBOTS WITH DEEP REINFORCEMENT

LEARNING ALGORITHMS FOR INDOOR ENVIRONMENTS

ABSTRACT

One of the most important topics in current mobile robotics research is autonomous

navigation. Navigation consists of two parts: path planning and motion planning.

However, path and motion planning is a challenging task in unmapped environments. To

overcome these challenges, deep reinforcement learning (DRL) methods have been

widely used in recent years. The aim of this work is to investigate, model and benchmark

the use of deep reinforcement learning methods for navigation of a mobile robot using

low-cost sensors in unmapped environments. In order to achieve the stated goal, a two-

stage methodology was defined. In the first stage, an indoor room environment is

represented as a two-dimensional grid. The performances of different reinforcement

learning algorithms such as A2C, DQN, TRPO, PPO which can operate in discrete action

space are compared on this environment. While making this comparison, a specific

learning criterion was added and also parameters such as epsilon value, number of steps

were changed and the changes in the training and testing phases were analyzed. The

average reward per episode was used as the evaluation criterion. Higher reward means

that a robot is able to reach a greater number of targets without colliding or exceeding the

time step limit. The PPO agent was found to be more effective in these environments. In

the second phase, the performance of the algorithms was evaluated in three-dimensional

ready-made environments in the Gazebo simulation environment. TD3, SAC, PPO

algorithms operating in continuous action spaces were compared in Gazebo environment.

Hyperparameters that were successful in 2D environment were also used in 3D

environment. Finally, PPO agent, which can work in both discrete and continuous action

space and is the most successful in 2D environment, and TD3 agent, which works only

in continuous action space and is successful in 3D environment, were compared and TD3

agent was more successful.

Keywords: Deep Reinforcement Learning, Motion Planning, Mobile Robots,

Autonomous Navigation, Path Planning.

1

1. GİRİŞ

Robot, elektronik bileşenler, mekanik aksam, sensör ve yazılımdan oluşan, otonom ya da

insan destekli makinelerdir. Robotik ise robotlarla ilgilenen bilim dalıdır. Mobil robotlar,

fiziksel olarak sabit olmayan tanımlanmış bir çevrede (karada, su altında ya da havada)

hareket ederek istenilen görevleri yerine getirebilen robotlardır (Bölük, 2019). Bu

sebeple gezgin robot da denilmektedir. Mobil robotlar, birçok alanda giderek daha fazla

kullanılmaktadır. Mobil robotların örnek uygulamaları, yaşlılar için hizmet robotları, bir

fabrikada mal nakletmek için otomatik yönlendirmeli araçlar, insansız bomba imha

robotları ve gezegen keşif robotları gibi geniş bir yelpazeyi içerir.

Navigasyon, mobil robotik alanında temel bir görevdir ve küresel navigasyon ve yerel

navigasyon olarak iki tür olarak sınıflandırılabilir. Küresel navigasyonda, çevre hakkında

önceden bilgi mevcut olmalıdır. Küresel navigasyon için Voronoi Grafiği, Yapay

Potansiyel Alan Yöntemi, Dijkstra algoritması, Görünürlük Grafiği, Gridlar, ve Hücre

Ayrıştırma yöntemi vb. gibi birçok yöntem geliştirilmiştir. Yerel navigasyonda robot,

ultrasonik sensörleri, keskin kızılötesi mesafe sensörleri ve görüş (kamera) sensörleri vb.

gibi donanımlı sensörleri kullanarak hareketine ve yönüne otonom olarak karar verebilir.

Yerel navigasyon problemini çözmek için Bulanık Mantık, Genetik Algoritma, Parçacık

Sürüsü Optimizasyon algoritması, Karınca Kolonisi Optimizasyon Algoritması, vb.

algoritmalar çeşitli araştırmacılar tarafından başarıyla kullanılmaktadır(Pandey, 2017).

Mobil bir robotun navigasyonu için kullanılan çeşitli yöntemler genelde klasik ve reaktif

(reactive) yaklaşımlar olarak iki kategoriye ayrılmaktadır. Küresel navigasyonda mobil

robot, ortamın ön bilgilerine, engel pozisyonu ve hedef pozisyonu bilgisine ihtiyaç

duyarken, yerel navigasyonda ortam hakkında önceden bilgi gerekmez. Küresel

navigasyon stratejisi, tamamen bilinen bir ortamla ilgilenir. Yerel navigasyon stratejisi

bilinmeyen ve kısmen bilinen ortamla ilgilidir. Bilinen bir ortam için yol planlama

algoritması, klasik bir yaklaşıma dayanmaktadır. Bu algoritmalar gelenekseldir ve zekası

sınırlıdır. Yerel navigasyon yaklaşımları, daha akıllı oldukları ve bir planı bağımsız

olarak kontrol edebildiği ve uygulayabildiği için reaktif yaklaşımlar olarak bilinir. Şekil

1.1’de bu yaklaşımlara ait algoritmalar gösterilmiştir. Başlangıçta, klasik yaklaşımlar

robot navigasyon problemlerini çözmek için çok popülerdi, çünkü o günlerde yapay zeka

(YZ) temelli teknikler geliştirilmiyordu. Bir görevi yerine getirmek için klasik

2

yaklaşımlar kullanılarak ya bir sonuç elde edileceği ya da bir sonucun mevcut olmadığı

teyit edilir. Bu yaklaşımın en büyük dezavantajı yüksek hesaplama maliyeti ve çevrede

mevcut olan belirsizliğe yanıt vermemesidir. Bu nedenle gerçek zamanlı uygulamalar için

daha az tercih edilir. Son zamanlarda, Genetik Algoritma, Bulanık Mantık gibi reaktif

yaklaşımlar Sinir Ağı, Ateşböceği Algoritması, Parçacık Sürüsü Optimizasyonu, Karınca

Kolonisi Optimizasyonu, Bakteriyel Yemleme Optimizasyonu, Yapay Arı Kolonisi,

Yarasa Algoritması ve daha fazlası mobil robot navigasyonu için en popüler araç olarak

kabul edilmiştir. Çevrede mevcut olan belirsizlikle başa çıkma konusunda büyük

yetenekleri vardır. Günümüzde reaktif yaklaşımlar, daha az hesaplama çabasıyla belirsiz

bir ortamı hızlı bir şekilde ele alma yeteneğine sahip oldukları için daha popülerdir. Şekil

1.2’de mobil robot navigasyon yaklaşımlarının yıllara göre kullanılma durumları

gösterilmiştir(Patle ve diğ., 2019).

Şekil 1.1. Mobil Robot Navigasyon Yaklaşımlarının Sınıflandırılması (Patle ve diğ., 2019)

Yazılım alanındaki gelişmeler ve donanımın maliyetlerinin kademeli olarak düşürülmesi

nedeniyle robotik sistemler, kapsamlarını giderek genişletiyor ve çok sayıda sektörün

üretkenliğini, verimliliğini ve çalışma ortamı güvenliğini artırıyor. Robotik alanındaki

ilerlemeye rağmen, mobil robotlar gündelik hayatta yeteri kadar yer almıyor. İnsanların

yoğun olduğu alanlarda çalışacak robotların, farklı ve beklenmedik insan davranışlarını

3

modelleme ve buna göre çalışma yeteneğini sergilemeleri gerekir (Cheng ve diğ., 2018).

Bu, robotik alanında çalışan araştırmacılar tarafından üzerine yoğun bir şekilde çalışılan

zorlu bir özelliktir.

Şekil 1.2. Mobil Robot Navigasyon Yaklaşımlarının Yıllara Göre Gelişimi(Patle ve diğ.,

2019).

Mobil robotlarının geliştirilmesindeki ana zorluklardan biri, kusursuz ve robotun

yürüteceği göreve uygun bir navigasyon yöntemi tasarlamaktır. Navigasyon yöntemleri,

haritalama, yerelleştirme (robotun o anki konumunu bulma) ve yol planlama olarak üçe

ayrılır (Ruan ve diğ., 2019).Yol planlama, engellerin olduğu bir ortamda, otonom mobil

robotun bir başlangıç noktasından başka bir hedef noktasına gidebilmesi için engellere

çarpmayacağı uygun bir yolu bulma işlemidir(Hu ve Yang, 2004). Daha az dönüş

eyleminin yapıldığı, daha az fren yapılan, hedefe en kısa yoldan ulaşılan yol en uygun yol

olarak ifade edilebilir.

Geçtiğimiz yıllarda yol planlama problemini çözmek için çeşitli stratejiler formüle

edilmiştir ve Makine Öğrenimi tabanlı yaklaşımlar en umut verici sonuçları sergileyen

metodolojilerden bazılarıdır (Aradi, 2020).

Makine Öğrenimi (ML) (Mitchell, 1997), deneyim yoluyla kendi kendini geliştiren

algoritmalar üreten ve Denetimli Öğrenme (Nasteski, 2017), Denetimsiz Öğrenme

(Celebi ve Aydin, 2016) ve Pekiştirmeli Öğrenme (PÖ) (Sutton ve Barto, 2018) şeklinde

düzenlenen yapay zekanın bir alt kümesidir. Denetimli algoritmalarda öğrenme, veri

kümeleri adı verilen önceden düzenlenmiş veri kümeleri aracılığıyla örüntü bulma

modelleri oluşturmaktır.

4

Denetimsiz öğrenmede etiketsiz verilerden, bu verilere ait gizli özellikler ortaya çıkarılır.

PÖ' de, ortamla etkileşim halinde olan akıllı bir ajan, önceden belirlenmiş bir hedefe

ulaşmak için hangi eylemlerin benimsenmesi gerektiğini deneme yanılma yoluyla

öğrenir.

Pekiştirmeli öğrenmede amaç, zaman içinde ve eylemlerinin kalitesini değerlendiren bir

ödül sistemi tarafından yönlendirilerek, beklenen ödül toplamını en üst düzeye çıkaran

komutları seçmek için yeterli deneyimin toplamasıdır.

Bina içi navigasyonla ilgili olarak, geleneksel yaklaşımlar, bir engel haritasına dayanarak

bir eylem planı oluştururlar (Ruan ve diğ., 2019). Mobil robotların, dinamik alanlarda

daha önce karşılaşmadığı senaryolara karşı esnek bir hareket planı kurgusu olmalıdır.

Navigasyonun hareket planlama görevi için kullanılan PÖ algoritmaları ile ajan, çevresel

uyaranları değerlendirmek için gelişmiş bir yetenek kazanır ve sonuç olarak bilinmeyen

ortam navigasyonunda en ideal ideal eylemleri belirler(Chen ve diğ., 2017).

Pekiştirmeli Öğrenme algoritmaları, örnek, bellek ve hesaplama karmaşıklığı ile ilgili

bazı sınırlamalarla karşı karşıyadır (François-Lavet ve diğ., 2018). Ancak bu sorunlar,

Derin Öğrenme (DÖ) (Goodfellow ve diğ., 2016) kullanılarak aşılabilir. Derin Öğrenme,

üst düzey soyutlamalarda kompakt özellikleri tanımlayabilen hesaplama sistemleri

oluşturmayı amaçlar. DÖ’de, Yapay Sinir Ağları (YSA) kullanılır. YSA’lar biyolojik

sinir ağlarından esinlenen katmanlı yapılardır. PÖ ve DÖ’nün birleştirilmesinden

meydana gelen uygulamalar, Derin Pekiştirmeli Öğrenme (DPÖ) (François-Lavet ve diğ.,

2018) olarak tanımlanır.

Mnih ve arkadaşlarının yaptığı yayından(Mnih ve diğ., 2013) bu yana önemli miktarda

araştırma bu alana odaklandı ve yeni kullanım durumları ve uzantılar geliştirildi.(Kempka

ve diğ., 2016; Hasselt ve diğ., 2015; Mnih ve diğ., 2016; Silver ve diğ., 2016).

DeepMind (URL-1), 2013 yılında, atari video oyunlarında uzman oyuncuları yenebilecek

yöntemler geliştirmek için Derin Q-Öğrenme’yi kullanarak yapay zeka alanında devrim

yarattı(Mnih ve diğ., 2013). Bundan hareketle, AlphaGo (Silver ve diğ., 2016),

AlphaZero (Silver ve diğ., 2017) ve AlphaStar (Vinyals ve diğ., 2019) uygulamaları

sırasıyla hayata geçirilmiştir. 2015 yılında AlphaGo, kendi kendini oyundan eğitmek için

5

evrişimsel sinir ağlarını (CNN) ve PÖ’yü birleştirerek Go oyununda olağanüstü

performanslar elde etti. 2017 yılında, Go'nun yanı sıra Satranç ve Shogi oyunlarında

ustalaşan AlphaZero adlı benzer bir AlphaGo yaklaşımı piyasaya sürüldü. 2019'da

AlphaStar, DPÖ ‘yü kullanarak karmaşık StarCraft II oyununa hakim oldu ve gerçek

zamanlı maçlarda dünyanın en iyi takımlarından bazılarını yendi.

DPÖ, video oyun alanında ciddi başarılar elde etmiştir. Bunu sağlarken ham görüntüleri

işlemiştir. Bu da mobil robot navigasyonuna ilham olmuştur. Otonom araçlar ve DPÖ ile

ilgili araştırma makalelerinin sayısı son birkaç yılda artmıştır. Şekil 1.3’te bununla ilgili

bir grafik verildi.

Şekil 1.3. Otonom Araçlar İçin Derin Pekiştirmeli Öğrenme Araştırmaları (Aradi, 2020).

Son yıllarda, mobil robotların yol planlaması için DPÖ uygulamaları artarak

kullanılmaktadır ve bu konuda büyük başarılar elde edilmiştir. DPÖ haritasız ortamlarda

güçlü öğrenme yeteneği ve düşük sensör doğruluğu bağımlılığı gibi avantajlara sahip olsa

da, yol planlaması için uzun eğitim süresi, özellikle sınırlı hesaplama kaynakları durumu

için mobil robotlara uygulama engeli oluşturmuştur. Çoğu durumda, robotların bir fizik

motoruna sahip 3B simülasyon ortamında eğitilmesi gerekir. Bu senaryoda, robotun

hareketi fiziksel kurallarla sınırlıdır. DPÖ, eğitim süresini önemli ölçüde artıran

6

etkileşimli deneme-yanılma yöntemine dayalı olarak uygulanır. Ortamlar veya görevler

karmaşık olduğunda, algoritmanın rastgele başlatılan ağ parametreleri ile istenen

hedeflere yakınsaması zordur.

Bu tezin amacı, haritası çıkarılmamış ortamlarda düşük maliyetli sensörler kullanarak bir

mobil robotun navigasyonu için derin pekiştirmeli öğrenme yöntemlerinin kullanımını

araştırmak, modellemek ve doğrulamaktır. Belirtilen amaca ulaşmak için iki aşamalı bir

yöntem belirlenmiştir. Birinci aşamada kapalı bir ortam iki boyutlu grid olarak temsil

edilmiştir. Bu ortam üzerinde Q-Öğrenme, SARSA, A2C, DQN, PPO,TRPO gibi farklı

pekiştirmeli öğrenme algoritmalarının karşılaştırmalı bir simülasyon çalışması

sunulmaktadır. Bu karşılaştırmayı yaparken belirli bir öğrenme kriteri eklenmiştir ve

ayrıca epsilon değeri, adım sayısı gibi parametreler değiştirilerek eğitim ve test

aşamalarındaki değişiklikler analiz edilmiştir. Bu çalışma, simülatör programı tarafından

sağlanan aktörler (ajan, sensör, engeller vb.) ile desteklenmiştir. İkinci aşamada ise

Gazebo benzetim ortamında üç boyutlu hazır ortamlarda PPO, SAC, TD3 algoritmaların

performansı değerlendirilmiştir.

Bu tezde ilk olarak, ilgili PÖ algoritmalarını hafif bir 2 boyutlu ortamda değerlendirildi.

Daha sonra, 3B ortam için zaman alıcı çalışmaları engellemek için 2B ortamda gözlem

durumları, ödül fonksiyonu, ağ yapısı ve parametre optimizasyonu dahil olmak üzere

DPÖ’ye dayalı algoritma tasarlandı. Tasarlanan algoritmayı, derin sinir ağının ağırlıkları

ve önyargıları vb. dahil olmak üzere yakınsanmış ağ parametrelerini elde etmek için

yeniden eğitim için basit bir 3B ortama aktarıldı. Bu parametreleri başlangıç değerleri

olarak kullanarak, modeli karmaşık bir 3B ortamda eğitmeye devam edildi.

Tezin literatüre katkısı aşağıdaki gibi listelenebilir;

• Haritasız ve dinamik ortamlarda farklı DPÖ algoritması performansların

karşılaştırıldı.

• Ortam ve ağ parametrelerini içeren iki aşamalı bir yol tercih edildi. Böylece DPÖ

tabanlı yol planlamasının geliştirme verimliliğini ve yakınsamasını iyileştirilmesine

katkı sunudur. Ayrıca algoritmaların, ağ yapısının test edilmesine ve

değerlendirilmesine katkıda bulunuldu.

7

• Grid dünya büyüdükçe Q öğrenme algoritmasının yetersiz kaldığı tespit edildi. Ayrık

eylem uzayında kullanılabilecek DPÖ algoritmalarından PPO’nun daha başarılı

olduğu görüldü.

• Çalışmada kullanılan Gazebo ortamları sürekli eylem uzayına sahip ve dinamik

engeller vardı. Bu ortamlarda TD3 algoritmasının daha başarılı olduğu tespit edildi.

• Yapılan deneylerle geleneksel yol planlama algoritmalarının aksine pekiştirmeli

öğrenme modellerinin haritasız bir şekilde yol planlama yapabildiği tespit edildi.

Tezin kalan bölümlerin başlıkları şöyledir; İkinci bölümde genel bilgiler, üçüncü

bölümde malzeme ve yöntem, dördüncü bölümde bulgular ve tartışma ve beşinci bölümde

sonuçlar ve öneriler başlıkları işlenmiştir. Genel bilgiler bölümünde pekiştirmeli

öğrenme, hareket planlama, benzetim ortamları konuları hakkında bilgiler verilmiştir.

Literatürde pekiştirmeli öğrenme ile mobil robot navigayonu hakkında yapılan çalışmalar

incelenmiştir. Malzeme ve yöntem bölümünde tezde kullanılan yazılım ve donanım

hakkında bilgiler verilmiştir. Ayrıca kıyaslanan pekiştirmeli öğrenme algoritmaları

hakkında, ödül-ceza, çevre tasarımı, fonksiyon yaklaştırıcılar vb. gibi konularda bilgi

verilmiştir. Bulgular ve tartışma bölümünde pekiştirmeli öğrenme ajanlarının, ortamın iki

boyutlu ve üç boyutlu olduğu durumlarda ve statik ya da dinamik olduğu durumlarda

performans sonuçları ortaya koyulmuştur. Sonuçlar ve öneriler bölümünde ise

algoritmalardan elde edilen veriler değerlendirilmiş ve gelecekte yapılması planlanan

çalışmalardan bahsedilmiştir.

8

2. GENEL BİLGİLER

2.1. Hareket Planlama

Hareket planlaması, bir robotik sistemin belirli bir başlangıç durumunu söz konusu sistem

için belirli bir hedef bölgeye bağlayan sürekli bir yol bulma problemidir. Çarpışmadan

kaçınma, sınırlı kuvvetler, sınırlı ivme gibi kısıtlamalara çözüm geliştirilir. (Şucan ve

diğ., 2012). Hareket planlaması, önemli miktarda zaman kazandırabileceğinden ve bir

mobil robotun yıpranmasını ve maliyetini azaltabileceğinden (Zhang ve diğ., 2018),

kendisini ilkel bir navigasyon olarak sunar.

2.1.1. Hareket Planlayıcıları

Hareket planlamasında, küresel ve yerel olarak iki tür planlayıcı vardır. Burada ayrım

çevreden bilgilere erişim düzeyidir (Zhang ve diğ., 2018). Küresel planlayıcılar, tamamen

bilinen ortam altında en uygun ya da en uyguna yakın yollar oluştururlar. Genel haritanın

sürekli güncellenmesi gerekir. Diğer taraftan yerel planlayıcıların çevre bilgilerine erişimi

kısıtlıdır. Sensörlerden gelen verilere göre anlık olarak eylem seçilir. Kısa vadeli yollar

oluşturulur.

2.1.2. Çevre Gösterimleri

Hareket planlayıcıların çevre hakkında ön bilgiye ya da robotun hareketi boyunca veri

toplamasına ihtiyacı vardır. Toplanan veriler ile ise bir özellik haritası temsil edilir.

(Zhang ve diğ., 2018). Harita gösterimi iki şeklide yapılabilir:

1) Metrik Gösterim: Şekil 2.1a’da çevrenin metrik gösterimi verildi. Bu gösterimde çevre

grid(ızgara) tabanlı bir düzenleme ile bölünür.

2) Topolojik Gösterim: Şekil 2.1b’de çevrenin topolojik temsili görülmektedir.

Şekil 2.1.Çevrenin metrik, topolojik ve hibrit gösterimleri

9

Topolojik gösterimde, düğüm ve yay modeli ile temsil edilir. Düğümler, birbirinden farklı

engelsiz konumları ve sınırları temsil eder. Yaylar, düğümler arasındaki bağlantılardır ve

konumlar arasındaki yolları temsil eder.

Grid tabanlı yöntemler, doğru ölçümler üretirken, genellikle karmaşıklıkları büyük

ölçekli iç mekan ortamlarında verimli planlamayı engeller. Topolojik haritalar ise robot-

ajan tarafından öğrenilmesi zor gösterim türüdür (Thrun, 1998; Tomatis ve diğ., 2001).

Bununla birlikte, her iki yöntemi birleştirmek, her birinin olumsuz yanlarını aşmak ve

daha sağlam bir ortam modeli oluşturmak mümkündür. Şekil 2.1c’de küresel topolojik

haritanın üstünde yerel grid tabanlı gösterimlerin kullanıldığı (Thrun, 1998; Tomatis ve

diğ., 2001) karma(hibrit) bir örnek sunulmaktadır.

2.1.3. Küresel Yol Planlayıcıları

İç mekan navigasyonundaki baskın küresel yol arama yöntemleri, sezgisel-arama

algoritmaları olarak sınıflandırılır (Zhang ve diğ., 2018). Bu kategori altında,

Dijkstra(Marin-Plaza ve diğ., 2018; Risald ve diğ., 2017), Floydwarshall (Marin-Plaza ve

diğ., 2018), A * (Zhang ve diğ., 2018; Liu ve Gong, 2011; Stentz, 1995) ve hızlı bir

şekilde keşfedilen rastgele ağaçlar (RRT) gibi algoritmalardır(Garrote ve diğ., 2014).

Dijkstra'da, yollar topolojik çevre temsillerinde komşu düğümlerinin seçimi yoluyla

yaratılır. Formüle edilmiş her bir yol, rotanın düğüm bağlantılarını belirleyen ağırlıklı

yaylardan kaynaklanan ilişkili bir maliyete sahiptir. Minimum maliyetle olan yol seçilir

ve böylece en kısa yol hesaplanır. Floyd-Warshall (Risald ve diğ., 2017), tüm düğüm

çiftleri arasındaki en kısa yolu belirler. Bu algoritmanın girdisi, ağırlıklı ve yönlendirilmiş

bir grafiktir. Algoritma ayrıca negatif ağırlıklı tarafı da hesaplar. A *, başlangıç düğümü

ve son düğüm arasındaki en kısa yolu bulmak için sezgisel bir değerlendirme fonksiyonu

kullanır(Stentz, 1995). Denklem (2.1)’de sezgisel bir değerlendirme fonksiyonu

gösterilmiştir;

f(i) = g(i) + h(i) (2.1)

• i: robotun mevcut konumu;

• g(i) : Başlangıç düğümünden i için geçmiş maliyet fonksiyonu;

• h(i) : i'den hedef düğüme Öklid uzaklığı.

10

RRT(Garrote ve diğ., 2014), örnekleme tabanlı bir yöntemdir. Her tekrarda, rastgele bir

düğüm seçilir ve en yakın düğüme bağlanır. Düğüm seçenekleri tamamen rasgele

olduğundan, birkaç ağaç dalı (yol gösterimleri) oluşturulur. Kavramsal olarak, en az bir

rota kademeli olarak hedef alana doğru birleşir.

2.1.4. Yerel Yol Planlayıcıları

Küresel yol planlamasının yanı sıra, dinamik metrik özellik haritaları üzerinde yerel yol

arama algoritmaları kullanılarak sağlam hareket planlama metodolojileri uygulanabilir.

Yapay potansiyeli alan (APF) (Zhu ve diğ., 2006) stratejisi tarafından indüklenen bir

platform, bir yapay kuvvet alanına tabidir. Bu alanda robot kendisini iten ve çeken

kuvvetlere maruz kalır. Sonuçta robotu hareket ettiren bir kuvvet oluşur. Dinamik

Pencere Yaklaşımı (DWA) (Fox ve diğ., 1997), bir mobil robotun mevcut hızlarından

oluşan pencere adı verilen bir yapı sunar. Bu pencereden en uygun çözümü seçer. Robotu

bu şekilde hedefe ulaştırır.

Zaman Elastik Bantları (TEB) (Marin-Plaza ve diğ., 2018; Keller ve diğ., 2014) yaklaşımı

da benzer bir çalışma prensibine sahiptir: aracın geometrik, kinetik ve dinamik

kısıtlamalarının bilgisi ile bir robotun yerleşik ara yol noktalarında gezinmesine izin

veren bir dizi hız komutu oluşturur.

2.2. Makine Öğrenmesi

Bilgisayarlar ilk icat edildiğinden beri, bilim adamları makineleri daha akıllı hale

getirmeye çalıştılar. Ancak, zekanın tanımı bugün hala devam eden bir tartışma

konusudur. Alan Turing, Turing Testini ilk olarak 1950'de Manchester Üniversitesi'nde

"Bilgisayar Makineleri ve Zeka" (Harnad, 2006) başlıklı makalesinde tanıttı. Turing testi,

bir makinenin insan davranışını taklit etme yeteneğini ölçer. Spesifik olarak, bir

sorgulayıcının başka bir odadaki bir adama ve bir bilgisayara bir dizi soru sorduğu ve

diğer iki oyuncudan hangisinin insan, hangisinin bilgisayar olduğunu belirlemek için bir

"taklit oyunu" tanımlar. Bilgisayar sorgulayıcıyı andırabilirse test geçilir. Yapay Zeka,

1956 yazında ünlü Dartmouth konferansında John McCarthy tarafından ortaya konuldu.

Bu konferans, YZ'nin bir bilgisayar bilimi alanı olmasının başlangıç noktası olarak

11

görülmüştür. YZ'nin ilk günlerinde, YZ algoritmaları esas olarak matematiksel kurallar

ve mantık kuralları ile formüle edilebilen problemleri çözmek için tasarlandı.

Makine öğrenmesi(MÖ), 1959'da Arthur Samuel (Bell Labs, IBM, Stanford) tarafından

icat edildi. Bir YZ sistem, ham verilerden kendi bilgisini öğrenme yeteneğine sahip

olmalıdır. Bu kapasite MÖ olarak bilinir. Birçok yapay zeka sorunu, bu sorun için ham

verilerden özellikler çıkarmak için bir model tanıma algoritması tasarlayarak ve ardından

bu özellikleri MÖ algoritmasına sağlayarak çözülebilir. Şekil 2.2’de yapay zeka

hiyerarşisi gösterildi.

Şekil 2.2.Yapay Zeka Hiyerarşisi

Makine Öğrenimi ((Mitchell 1997), Denetimli Öğrenme (Nasteski 2017), Denetimsiz

Öğrenme(Celebi and Aydin 2016) ve Pekiştirmeli Öğrenme (Sutton and Barto 2018)

şeklinde düzenlenen yapay zekanın bir alt kümesidir.

2.2.1. Denetimli-Gözetimli Öğrenme

Denetimli öğrenme, eğitim verilerine dayalı bir fonksiyon üreten makine öğrenimi

tekniğidir. Başka bir deyişle, bu öğrenme tekniğinde girdiler (etiketli veriler) ile istenen

çıktıları eşleştiren bir fonksiyon üretilir. Eğitim verileri hem girdilerden hem de

çıktılardan oluşur. Fonksiyon, regresyon veya sınıflandırma algoritmaları ile

belirlenebilir. Doğrusal regresyon, girdiler ve çıktılar arasında doğrusal bir ilişki olup

12

olmadığını belirlemek için sıklıkla kullanılan bir tekniktir. Genellikle tahmin ve tahmin

problemlerini ve diğer birçok veri madenciliği problemini çözmek için kullanılabilir.

Sınıflandırma teknikleri, kalıpları tanıyarak ve verileri inceleyerek nitel bir yanıtı tahmin

etmeye odaklanır. Yaygın olarak kullanılan bazı sınıflandırma teknikleri vardır. Bu

teknikler lojistik regresyon, lineer diskriminant analizi, K-en yakın komşular, ağaçlar,

sinir ağları, destek vektör makinelerini içerir (Talabis ve diğ., 2015).

2.2.2. Denetimsiz-Gözetimsiz Öğrenme

Denetimsiz öğrenmede girdi verilerinin hangi sınıfa ait olduğu net değildir. Bu MÖ

algoritması, etiketlenmemiş veriler üzerinde bilinmeyen bir yapıyı tahmin etmek için bir

fonksiyon kullanır. Veri örneklerinin uzaklıklarına, komşuluk ilişkilerine ve yoğunluğuna

göre veriler hakkında çıkarımlarda bulunur. Genel olarak tavsiye sistemleri, pazarlama

sistemleri, müşteri segmentasyonu ve boyut küçültme gibi alanlarda kullanılmaktadır. En

çok kullanılan denetimsiz öğrenme algoritmaları kümeleme, birliktelik kuralları, temel

bileşen analizidir.

2.2.3. Pekiştirmeli Öğrenme

Pekiştirmeli öğrenme, en uygun davranış veya eylemin olumlu bir ödülle pekiştirildiği

kavramdır. Bir PÖ ajanı/modeli, ortamıyla etkileşime girerek ve eğitim veri kümesinin

olmadan bu etkileşimlerin sonuçlarını gözlemleyerek öğrenir. Ajan, bu öğrenmeyi

gerçekleştirmek için PÖ algoritmalarını kullanır.

PÖ, gerçek zamanlı karar verme, tavsiye sistemleri, sağlık, oyunlar için yapay zeka,

robotik, otonom sürüş, bilgisayarla görme (tanıma, algılama, algılama) ve daha sonra

öğrenebilme becerisi gibi beceri kazanım sistemleri gibi becerilere sahip sistemlerde

kullanılır. Pekiştirmeli öğrenme ile ilgili detaylı anlatım bölüm 2.4 ve 2.5’te yapılmıştır.

Daha önce yapılan çalışmalar ise bölüm 2.7’ te incelenmiştir.

Tablo 2.1, makine öğrenmesi kavramları arasındaki avantaj ve dezavantajları

göstermektedir. Denetimli/denetimsiz veya denetimli/pekiştirmeli öğrenme

kombinasyonları gibi karma öğrenme yaklaşımları genellikle iyi sonuçlara yol açar.

Örneğin, denetimli/denetimsiz karma öğrenme yaklaşımı bankacılık sektöründe hesap

13

hareketlerindeki anormallikleri tespit etmek için yaygın olarak kullanılmaktadır(Engin,

2019).

Tablo 2.1. Makine Öğrenmesi Yöntemlerinin Karşılaştırılması

Denetimli Öğrenme Denetimsiz Öğrenme Pekiştirmeli Öğrenme

Referans cevaplarına

yaklaşmayı öğrenme

Temel veri yapısını öğrenme Deneme yanılma yoluyla

öğrenme

Doğru cevaplara ihtiyacı var Geri bildirim gerekmez Ajan kendi eylemleri hakkında

geri bildirime ihtiyaç duyar

Model giriş verilerini etkilemez Model giriş verilerini etkilemez Ajan kendi gözlemlerini

etkileyebilir

2.3. Derin Öğrenme

Derin Öğrenme (Fadlullah ve diğ., 2017; Schmidhuber, 2015) veri yapılarından temel

özellikleri çıkarmak için Yapay Sinir Ağları’nı kullanan makine öğrenmesinin bir alt

kümesidir (Alom ve diğ., 2019). YSA’lar insan beyninde bulunan sinir bağlantılarından

esinlenmiştir ve her bir temel unsuruna nörön denir. Bir yapay nöron, giriş verilerini alan,

işleyen ve bir çıkış sinyali döndüren bir fonksiyon olarak nitelendirilebilir. DÖ'de

nöronlar katmanlara bağlanır ve düzenlenir, katmanlar YSA mimarilerindeki

yerleşimlerine göre kategorize edilebilir:

• Giriş katmanı: YSA iş akışının başlangıcıdır. Dış DÖ sisteminden veriyi alır ve daha

fazla işlem için iletir;

• Çıktı katmanı: YSA iş akışının sonlandıran katmandır. Önceki katmanlar tarafından

ele alınan verileri DÖ sistemine geri döndürür;

• Gizli katmanlar: Giriş çıkış katmanları arasında veri özelliklerini tanımlamak ve

işlemek için tasarlanmış aradaki katmanlardır. Tek bir gizli katmanla sınırlı YSA'lar

Sığ Ağlar olarak adlandırılır. Birden fazla gizli katmana sahip ağ mimarilerine Derin

Ağlar denir.

Şekil 2.3’te derin yapay sinir ağlarının mimarisi gösterilmiştir. Buna göre her nöronun

çıkış sinyali ŷi ,lineer olmayan bir aktivasyon fonksiyonu fx tarafından gerçekleştirilen,

14

önceki xj katmanlarındaki aktif nöronların sinyalleri ile kanallarla ilişkili ağırlıklar

arasındaki çarpım ile bir sapma b toplamının hesaplanmasından kaynaklanır.

Şekil 2.3.Derin Yapay Sinir Ağlarının Mimarisi

2.4. Pekiştirmeli Öğrenme

2.4.1. Tarihsel Bağlam

Pekiştirmeli öğrenmenin temelleri eğitim psikolojisine dayanmaktadır. Eğitim

psikolojisinin babası olarak bilinen Thorndike'ın hayvan zekası üzerine yaptığı

tezin(Thorndike, 1911) yılı olan 1898, davranışın deneysel analizi olarak bilinen alanın

başlangıcını işaret eder. Tez, hayvan ve insan öğrenimi hakkında düşünmede büyük bir

değişim başlattı, önemli metodolojik yenilikler sağladı ve özellikle B. F. Skinner

tarafından daha sonraki araştırma ve teorinin tohumlarını attı(Chance, 1999).

Thorndike temel davranışsal süreçleri araştırmaya başladı ve bu süreçlerin farklı türlerde

oldukça benzer göründüğünü fark etti. Civcivler, köpek ve kedilerden daha yavaş

öğrendiler, ama farkı yaratan bedensel organlarındaki ve içgüdüsel dürtülerindeki

farklılıktır. Zekadaki herhangi bir farklılığa atıfta bulunulamayacağını öne

sürdü(Thorndike, 1911) .

Thorndike’ın yapboz kutusu adı verilen meşhur deneyinde yapboz kutusuna aç bir kedi

konuldu ve kutunun hemen dışına bir parça balık yerleştirildi. Kedi, kutuyu kapalı tutan

mandalı serbest bırakan bir pedala basarak kutudan kaçabilirdi. Kedi ilk başta kutunun

çıtaları arasına sıkıştırmaya veya çıtaları ısırmaya çalıştı. Sonunda kedi yanlışlıkla kapıyı

açan pedala bastı ve kedi kaçıp balığı yedi. Bu, aynı kedi ile birkaç kez tekrarlandı.

Denemeler ilerledikçe, kedinin kapıyı açması daha az zaman aldı. Sonunda kedi kutuya

konur konmaz kaçacaktı. Thorndike, yapboz kutusundan kedilerin deneme yanılma

yoluyla öğrendiğini buldu. İnsanların da aynı şekilde öğrendiğini düşünüyordu. Bu onun

15

'damgalama' teorisini oluşturdu. Thorndike'a göre, bir kişi bir duruma bir dizi tepki

verecek ve bunlardan en az biri tatmin edici bir duruma - bu duruma bir çözüme - yol

açacaktır. Damgalama, o belirli yanıtın bağlantısının bu durumda hoş bir çözüm sunduğu

zamandır. Bu tür öğrenmeye pekiştirme denir. Öğrenme, davranışın sonuçları nedeniyle

gerçekleşir, davranış, hoş olmayan bir şeyin ortadan kaldırılması veya her ikisi için de

hoş sonuçlara yol açar (Lefrançois, 2000).

Thorndike, etkili tepkilerin “başarı tarafından seçildiğini” (Thorndike, 1911) fark etti ve

davranışın tanımlanması için üç unsurun gerekli olduğunu anladı. Bunlar durum, eylem

ve sonuç öğeleridir (Chance, 1999). Şekil 2.4’de Thorndike’ın yapboz kutusunun temsili

gösterilmiştir.

Şekil 2.4.Thorndike yapboz kutusu

Thorndike’ın teorisinin iki temel kavramı vardı. Bunlardan biri etki kanunu diğeri ise

deneme yanılmayla öğrenmedir. Etki kanunu ile sonucundan memnun kalınan

davranışların artacağını, memnun kalınmayan davranışların ise azalacağını söyler. Bir

uyaran ile bir tepki arasındaki bağlantı güçlendirilebilir veya zayıflatılabilir. Bu bağlantı,

sık pratik yaparak güçlendirilebilir veya uygulamayı bırakarak zayıflayabilir. Deneme ve

yanılma yoluyla öğrenme ise, insan veya hayvan belli bir problemle karşılaştığında

problemin çözümüne katkısı olmayan başarısız davranışları eler, problemleri çözen ya da

başarıya götüren davranışları ise seçer. Thorndike bu duruma seçme (eleme) ve bağlama

adını verir.

Thorndike gibi Skinner de davranış ve sonuç ilişkisi üzerinde durmuştur. Thorndike'ın

çalışmalarından hareket eden Skinner, organizmanın davranışlarını uyarıcılara karşı

gösterilen otomatik bir tepki olmaktan çok kasıtlı olarak yapılan hareketler olarak kabul

16

etmektedir. İnsanların herhangi bir ihtiyaç durumunda organizmanın kendiliğinden ortaya

koyduğu davranışlara “edim” adını veren Skinner, bu edimlerin, onları izleyen

sonuçlardan etkilendiğini ileri sürmektedir. Skinner’in geliştirdiği edimsel koşullanmaya

göre edimsel davranış; bilinen bir uyarıcı tarafından oluşturulmaz; organizma tarafından

ortaya konur ve sonuçları tarafından kontrol edilir (Skinner, 1938).

Gereksinimleri organizmayı eyleme iterken, davranışlarına yön veren kuvvetlerin de

güdüler olduğu bilinmektedir. O anda içinde bulunduğu şartlarla ilgili önceden öğrenmiş

olduğu deneyimleri yoksa hedefe varmak için çeşitli tepki ve davranışlarda bulunarak

denemeler yapacaktır. Duruma göre belli sayıda deneme yanılmanın sonunda hedefe

ulaşacaktır. Böylelikle organizma ya bir ödül elde edecek ya da bir cezadan kurtulacaktır.

Süreç içinde yaşanan tekrarlar sonucu hedefe ulaştırıcı tepkilerin sayısı artarken sonuca

götürmeyen davranışlar elenir ve hedefe ulaştırıcı tepkiler giderek öğrenilmiş davranış

durumuna gelir (Yeşilyaprak, 2005).

Kısacası eğitim psikolojinde davranışçı kuramlar öğrenmenin ödül ceza sistemi üzerine

kurulduğunu düşünmüştür. Eğer bir davranışın sonucu olumlu sonuçlar getiriyorsa o

davranış devam ettirilir aksi durumda ise o davranıştan kaçınılır ve böylece öğrenme

gerçekleşir.

2.4.2. Pekiştirmeli Öğrenme

Pekiştirmeli Öğrenme(Sutton and Barto 2018), optimizasyon problemlerini çözmek için

kullanılan bir Makine Öğrenmesi tekniğidir. Yapısal olarak, PÖ modelleri bir ajan ve

çevresinden oluşur. Her ikisi arasında (ajan-çevre), ajanın yürütülen eylemlerin

sonuçlarından sayısal ödüller şeklinde geri bildirim alarak deneme yanılma yoluyla

öğrenmesini sağlayan çift yönlü bir iletişim kurulur. Şekil 2.5’te PÖ’nün genel yapısının

şeması verilmiştir. Geleneksel Pekiştirmeli Öğrenme metodolojilerinin unsurları Tablo

2.2’de sunuldu. PÖ yapısının en önemli unsurları durumlar, eylemler ve ödüller olduğu

söylenebilir.

• Durumlar: Ajanın çevreden aldığı anlık bilgilerdir. Bir robot için kameradan aldığı bir

görüntü ya da bir sensörden gelen sıcaklık verisi örnek olarak verilebilir.

• Eylemler: Ajanın bir durum karşısında uyguladığı eylemdir. Örneğin; bir robot engele

5 cm yaklaşırsa uyarı sesi çıkarması.

17

• Ödüller: Ajanın bir durum karşısında uyguladığı eylemin başarısın ölçen skaler

değerdir. Örneğin; bir robotun bir hedefe ulaşınca 100 puan alması gibi.

Tablo 2.2. Pekiştirmeli öğrenmenin parametreleri

Parametre Adı Tanımı

at Eylem
Ajan tarafından yürütülen, bir dizi geçerli eylemden A seçilen

komut

st Durum Bir dizi ortam temsili olan S durum uzayının somutlaştırılması

rt Ödül
Yürütülen bir eylem at tarafından tetiklenen st → st+1 durum

geçişine göre döndürülen sayısal ödül

P(st+1| st, at)
Durum Geçiş

Modeli
Ajanın eylemlerine yanıt olarak ortamın nasıl değiştiğinin temsili

π(st) Politika
Ajanın her durumda hangi eylemi benimsemesi gerektiğini

belirten eşleme fonksiyonu

γ İndirim Faktörü Anlık ve gelecekteki ödüller arasındaki dengeyi ayarlar.

V(st) Değer Fonksiyonu Bir ajanın durumdan st alabileceği, beklenen toplam getiri

Q(st, at)
Eylem-Değer

Fonksiyonu
st durumundaki eylemi at seçmek için beklenen toplam getiri

α Öğrenme Oranı Öğrenme sürecinde geçmiş deneyimlerin etkisini belirler

Şekil 2.5.Pekiştirmeli öğrenme yapısı

Pekiştirme Öğrenme algoritmalarında ajan, her t adımda, çevreyi gözler, gözlemlerini bir

st durumu olarak belirler ve son olarak duruma göre uygulayacağı eylemi at seçer. Ajan

daha sonra yeni durumu algılar st+1 ve ortamdan bir ödül rt alır. Ajan bu işlemi hedef

duruma ulaşıncaya kadar ya da adım sınırı T'ye ulaşana kadar tekrarlar. Daha sonra çevre

ilk halinde döndürülür (reset fonksiyonu) ve yeni bir bölüm başlar. Her bölümün e

18

sonunda, indirim faktörü γ tarafından indirimli olarak birikmiş toplam adım ödülleri elde

edilir. Öğrenmenin amacı, akıllı ajanın, deneyimini kullanarak, birikmiş ödülleri R'yi en

üst düzeye çıkarmak için karar verme yeteneğini geliştirmesidir. Ödül Denklem

(2.2)’deki formüle edilir;

Re= ∑ γi.rt+i

T

i=0

2.4.3. Markov Karar Süreçleri

Pekiştirmeli öğrenme sistemlerinde ajan çevredeki her şey hakkında bilgi sahibi

olamayabilir. Önemli olan ajanın öğrendiği bilgileri unutmamasıdır. Bu nedenle ideal bir

sistemde, ilgili tüm bilgiler korunurken, geçmiş bilgileri bütüncül bir şekilde özetleyen

bir durum sinyali istenir. Bilgiyi koruyan bu durum sinyalinin Markov özelliği olduğu

söylenir(James, 2016). Ardışık durumların yalnızca mevcut duruma bağlı olduğu

durumlarda, durumların Markov özelliğini yerine getirmesi gerekir. Örneğin, bir satranç

oyunundaki piyonların mevcut konumu, oyunun sonraki süreci için önemli olan tek şey

olduğundan, Markov durumu olarak hizmet edecektir. Ayrıca Markov özelliğiyle mevcut

duruma sahip olmak, mevcut zaman adımına kadar tam geçmişe sahip olmakla eşittir

(örneğin, piyon konumları tüm oyunu bu ana kadar özetler) (Roy, 2018).

Markov özelliğini sürekli bir durumda ve eylem alanında karşılayan bir pekiştirmeli

öğrenme görevinin Markov Karar Süreci (MDP) olduğu söylenirken, sınırlı bir durumda

ve eylem alanında olan görevin, sınırlı bir Markov Karar Süreci olduğu söylenir(James,

2016).

MDP, bir modelle ilgili karar vermemiz için bize matematiksel bir çerçeve sağlar. Bir PÖ

ajanının çalıştığı ortam, ortamın tamamen gözlemlenebilir olduğu bir MDP olarak

tanımlanabilir. Bu durum, geleceğin şimdiki zamanda verilen geçmişten bağımsız bir

karar olduğunu belirten Markov özelliği olarak bilinir(Kardell ve Kuosku, 2017)

Hesaplamalı PÖ'de, ilgili ortam uzayı, ayrık zamanlı MDP (Puterman, 2005) olarak

modellenebilenlerdir. Yüksek düzeyde, MDP'lerin alanı, bir sonraki ödülün ve dünyanın

bir sonraki durumuna ulaşma olasılığının mevcut dünya durumu (ve belki de bir ajanın

(2.2)

19

eylem seçimi) tarafından tam olarak tahmin edilebileceği dünyaları tanımlar. Bir MDP

aşağıdaki gibi tanımlanır.

• S: Dünyanın olası durumların tanımlayan bir durum kümesi

• A: Bir ajana sunulan olası seçenekleri tanımlayan bir eylem kümesi.

• R ∶ S × A × S → [RMin, RMax]: Bir ödül işlevi.

• T ∶ S × A → ∆(S): Mevcut durumda bir eylem yürütüldükten sonra dünyanın bir

sonraki durumuna gelme olasılığını gösteren bir geçiş fonksiyonu.

• γ ∈ [0, 1): Bir ajanın kısa vadeli ve uzun vadeli ödüller arasındaki tercihini gösteren

bir indirim faktörü.

• p0 ∈ ∆(S): Her durumda başlama olasılığı.

MDP'deki "Markov", geçiş işlevi T ve ödül işlevi R'nin her ikisinin de tam durum

geçmişine değil, yalnızca dünyanın mevcut durumuna ve eyleme bağlı olduğunu gösterir.

Denklem (2.3) ve Denklem (2.4), bir sonraki durum dağılımını ve mevcut durumdan

sonraki ödülü ve yalnızca eylemi tam olarak karakterize eden işlevlerin mevcut olduğunu

belirtir;

𝑝(𝑠′, 𝑟|𝑠, 𝑎) = Pr {𝑆𝑡+1 = 𝑠′, 𝑅𝑡+1 = 𝑟|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎}

𝑝(𝑠′|𝑠, 𝑎) = Pr{𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎} = ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)

𝑟∈𝑅

Bu varsayım, uygun genelliği korurken, analizi basitleştirmek için oldukça faydalıdır.

Ayrıca, herhangi bir ortam Markov değilse, dünyanın son k ∈ N adımları bellek açısından

zengin, yeni bir durum temsili şeklinde gösterilebilir, böylece bir Markov modeli elde

edilir. Bu şekilde, MDP'ler, bir ajanın T(s′ ∣ s, a) ve ödül R(s, a, s′) durum dağılımını

etkilemesine izin vererek Markov zincirlerini (Bremaud, 2000)ve Markov ödül

süreçlerini (Reibman ve diğ., 1989) genelleştirir.

(2.3)

(2.4)

20

2.4.4. Değer Fonksiyonları

Bir ajan yeni bir duruma girdiğinde t adımında hangi eylemin yapılacağına karar vermesi

için bu durumda olmanın ne kadar değerli olduğunu bilmelidir. Bir durumun iyiliğinin

ölçüsü değer fonksiyonudur. Bir durumun değeri durum değeri fonksiyonu ve eylem

değeri fonksiyonu olarak iki şekilde ölçülebilir. Ajanın gelecekte almayı bekleyebileceği

ödüller, yaptığı eyleme bağlı olduğundan değer fonksiyonu politikaya göre tanımlanır.

Bir politika π için durum-değer fonksiyonu, bir s durumundan başlarken ve sonrasında

π'yi takip ederken beklenen getiridir ve sonlu MDP'ler için, Vπ(s) her s durumu için bir

tabloda giriş olarak saklanır ve Denklem (2.5)’de gösterildiği şekilde tanımlanır;

𝑉𝜋(𝑠) = 𝐸𝜋(𝑅𝑡|𝑠𝑡 = 𝑠) = 𝐸𝜋(∑ 𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠).

∞

𝑘=0

Burada Eπ, politikanın π beklenen değeri olarak tanımlanır. Bir politika π için eylem-

değer fonksiyonu, s durumunda başlayıp a eylemini gerçekleştirirken ve ardından π'yi

takip ederken beklenen getiridir ve Denklem (2.6)’da gösterildiği şekilde tanımlanır;

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋(𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) = 𝐸𝜋(∑ 𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎).

∞

𝑘=0

Değer fonksiyonlarının temel bir özelliği, Bellman denklemi(Bellman, 1957a) olarak

adlandırılan bir dizi özyinelemeli tutarlılık denklemini sağlama yeteneğidir. Denklem

(2.7)’de gösterildiği şekilde tanımlanır;

𝑉𝜋(𝑠) = 𝐸𝜋(𝑅𝑡|𝑠𝑡 = 𝑠)

 = 𝐸𝜋(∑ 𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠).

∞

𝑘=0

 = ∑ 𝜋(𝑠, 𝑎) ∑ 𝑃𝑠𝑠′
𝑎

𝑠′𝑎

[𝑅𝑠𝑠′
𝑎 + 𝛾𝐸𝜋(∑ 𝛾𝑘𝑟𝑡+𝑘+2|𝑠𝑡+1 = 𝑠′).

∞

𝑘=0

]

 = ∑ 𝜋(𝑠, 𝑎) ∑ 𝑃𝑠𝑠′
𝑎

𝑠′𝑎

[𝑅𝑠𝑠′
𝑎 + 𝛾𝑉𝜋(𝑠′)].

(2.5)

(2.7)

(2.6)

21

Yukarıdaki son denklem, bir durumun değeri ile ardıl durumun değeri arasındaki ilişkiyi

ifade eder. Her birini gerçekleşme olasılığına göre ağırlıklandırarak tüm olasılıkların

ortalamasını almamızı sağlar. Başlangıç durumunun değerinin, beklenen sonraki

durumun (indirimli) değeri ile ödüle eşit olması gerektiğini özetler. Bu durum, Şekil

2.6'da her bir açık dairenin bir durumu temsil ettiği, her bir katı dairenin bir durum-eylem

çiftini ve ödülü temsil ettiği, Vπ ve Qπ için yedek diyagramlar şeklinde gösterilmektedir.

Şekil 2.6. Değer fonksiyonu diyagramı (Kersandt, 2018)

2.4.5. Optimal Değer Fonksiyonları

Politika π, durum-eylem eşlemesidir ve ajanların beklenen geri dönüşlerini en üst düzeye

çıkarmaya çalışır. Pekiştirmeli öğrenme görevinde amaç, uzun vadede en fazla ödülü elde

eden politikayı bulmaktır. Bu nedenle, tüm durumlar için bu politikanın beklenen getirisi

π′ye eşit veya bundan büyükse, π politikasının bir π′ politikasına eşit veya daha iyi olduğu

kabul edilir. Denklem (2.8) bunu ifade eder;

𝑉𝜋(𝑠) ≥ 𝑉𝜋′
(𝑠) → 𝜋 ≥ 𝜋′, ∀𝑠 ∈ 𝑆.

Optimal politikaları π∗, diğer tüm politikalardan daha iyi veya bunlara eşit politikalar

olarak tanımlarız. Sonlu MDP'ler için, diğer tüm politikalara karşı Denkelem(2.8)’i her

zaman yerine getiren ve optimal politika olarak adlandırılan ve π∗, ile gösterilen en az bir

politika vardır. Bu bize, her duruma veya durum-eylem çiftine, herhangi bir politika

tarafından elde edilebilecek en büyük getiriyi atayan optimal değer fonksiyonlarını

tanımlama yeteneği verir. Optimal durum-değer fonksiyonu V∗ ile gösterilir ve Denklem

(2.9)’da gösterildiği şekilde tanımlanır;

𝑉∗(𝑠) ≥ 𝑚𝑎𝑥𝜋𝑉𝜋(𝑠), ∀𝑠 ∈ 𝑆,

(2.8)

(2.9)

22

Optimal politikalar aynı zamanda Q∗ ile gösterilen ve Denklem (2.10)’daki gibi

tanımlanan aynı optimal eylem-değer fonksiyonunu paylaşır;

𝑄∗(𝑠, 𝑎) ≥ 𝑚𝑎𝑥𝜋𝑄𝜋(𝑠, 𝑎), ∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴.

Şekil 2.7’de, Bellman denklemi altında v∗ ve q∗ için yedek diyagramları göstermektedir.

Bu, grafiksel olarak, ajanın seçim noktalarında, bazı politikalara verilen beklenen değer

yerine maksimumun seçildiğini gösterir. Bu anlamda tek adımlı bir arama yapılır ve

optimal değer fonksiyonları için bu tek adımlı aramadan sonra en iyi görünen eylemler

optimal eylemler olacaktır. Bu nedenle, v∗ dikkate alındığında açgözlü davranan herhangi

bir politika optimal bir politikadır. Özellikle, v∗ gelecekteki olası tüm davranışların ödül

sonuçlarını zaten hesaba kattığından, kısa vadeli sonuçların bu değerlendirmesi uzun

vadede de optimaldir. Böylece, uzun vadeli optimal eylemler, tek adımlı bir ileriye dönük

bakış açısına indirgenir. Bu nedenle, V*optimal değer fonksiyonuna göre açgözlü olan

herhangi bir politika, aslında bir optimal politikadır.

Şekil 2.7. V* ve Q* yedek diyagramları

Denklem (2.8)'deki Bellman denklemi ve V*'nin bir politika için basitçe bir değer

fonksiyonu olduğu göz önüne alındığında, V* sabitlik koşulunun herhangi bir özel

politikaya başvurmadan özel bir biçimde yazılabileceğini gösterebiliriz. Bu, V* için

Bellman optimallik denklemine yol açar ve Denklem (2.11)’deki gibi gösterilir;

𝑉𝜋(𝑠) = 𝑚𝑎𝑥𝑎𝑄𝜋∗
(𝑠, 𝑎)

 = 𝑚𝑎𝑥𝑎𝐸𝜋∗(𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎)

 = 𝑚𝑎𝑥𝑎𝐸𝜋∗(∑ 𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎).

∞

𝑘=0

 = 𝑚𝑎𝑥𝑎𝐸𝜋∗ [𝑟𝑡+1 + 𝛾𝐸𝜋(∑ 𝛾𝑘𝑟𝑡+𝑘+2|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎)

∞

𝑘=0

]

(2.10)

(2.11)

23

 = 𝑚𝑎𝑥𝑎𝐸[𝑟𝑡+1 + 𝛾𝑉𝜋(𝑠𝑡+1|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎)]

 = 𝑚𝑎𝑥𝑎 ∑ 𝑃𝑠𝑠′
𝑎

′

𝑠

[𝑅𝑠𝑠′
𝑎 + 𝛾𝑉𝜋(𝑠′)]

Benzer şekilde, Q∗ için Bellman optimallik denklemi Denklem (2.12)’deki gibi

tanımlanır;

𝑄𝜋(𝑠, 𝑎) = ∑ 𝑃𝑠𝑠′
𝑎

′

𝑠

[𝑅𝑠𝑠′
𝑎 + 𝛾𝑚𝑎𝑥𝑎′𝑄𝜋(𝑠′, 𝑎′)].

N durumları ve bilinen dinamikleri olan bir ortam göz önüne alındığında, her durum için

V* değerini çözmek için Bellman optimalite denklemleri kullanılabilir.

Sonlu Markov karar problemleri, model tabanlı ve modelden bağımsız ortamlar olarak

ayırt edilir. Model tabanlı ortamlar için, tüm olası durumlar S, eylemler A, durum geçiş

olasılıkları p(s′|s,a) ve anlık ödüller r(s,a,s′) hakkında tam bilgi mevcuttur. Burada,

çözüm uygulamadan önce bulunup değerlendirilebildiğinden, problem algoritmik

planlamanın bir parçası haline gelir. Modelsiz ortamlar için, ortam hakkında hiçbir bilgi

yoktur ve bu nedenle ajan, örnekler şeklinde deneyimler toplamak zorundadır.

2.4.6. Politika Belirleme

Daha önce belirtildiği gibi, Pekiştirmeli Öğrenme, beklenen toplam ödülleri en üst düzeye

çıkarmayı amaçlar. Politika π, durumlarla eylemleri eşleyerek, ona göre bir değer

fonksiyonu çıkarmayı ifade eder. En iyi politika oluşturmaya ve uygulanma durumuna

göre, PÖ yöntemleri Modelden Bağımsız ve Model tabanlı olarak kategorize edilebilir.

Modelden bağımsız yöntemlerde ajan, doğrudan deneyerek bir değer fonksiyonu

oluşturur. Modele bağlı yöntemlerde ise ajana çevre hakkında bilgi verilir.

PÖ, bir politikayı değerlendirmek ve geliştirmek için Politika Değerlendirme teknikleri

olarak adlandırılan çeşitli algoritmalara başvurur(Sutton ve Barto, 2018).Bunlar;

Dinamik Programlama (DP), Monte Carlo (MC) ve Zamansal Fark (TD)

metodolojileridir.

2.4.7. Dinamik Programlama

Tam bilgiye sahip sonlu MDP'ler için, optimal politika, gerçek bir ajan-ortam etkileşimi

olmaksızın tamamen hesaplamalı yinelemeli bir yolla bulunabilir. Bu yaklaşıma sahip

(2.12)

24

algoritmalar, dinamik programlama terimi altında sınıflandırılır. DP içinde kullanılan iki

yöntem vardır. Bunlar politika yinelemesi ve değer yinelemesidir. Politika yinelemesi 2

adımdan oluşur. Bunlar, politika değerlendirmesi ve politika iyileştirme adımlarıdır.

Bu iki yöntem, optimal politikaları ve değer fonksiyonlarını güvenilir bir şekilde

hesaplamak için kullanılabilir ve her ikisi de politika değerlendirmesi ve politika

geliştirmenin iki hesaplaması arasında dönüşümlü olarak elde edilir.

İlk olarak, mevcut politika için değer fonksiyonunun yinelemeli hesaplamasını belirleyen

bir dizi politika değerlendirmesi uygulanır. Ardından, değer fonksiyonuna göre en iyi

eylemi açgözlülükle seçilerek iyileştirilmiş bir politikanın hesaplanmasını belirleyen bir

dizi politika iyileştirmesine geçer. Yukarıdaki süreç, politika artık değişmeyene kadar

tekrarlanır.

Politika yinelemesinde, politika iyileştirmesi yalnızca politika değerlendirme adımında

çalıştırılır. Buna karşılık, değer yinelemesi, her bir politika iyileştirme adımı arasında

yalnızca tek bir politika değerlendirme yinelemesini çalıştırır.

Genel politika yinelemesini, Şekil 2.8'teki gibi özetlenebilir.

Şekil 2.8. Genelleştirilmiş politika yinelemesi (James, 2016)

Model tabanlı yöntemler, politika/değer işlevini geliştirmek için ağırlıklı olarak DP

(Sutton and Barto 2018) kullanır. Geçiş ve ödül modelleri, gelecekteki durumlar

üzerinden beklenen ödül toplamının doğru bir şekilde hesaplanmasını sağlar. Değer

fonksiyonu V(st) aşağıdaki Denklem (2.13)’e göre güncellenir;

25

𝑉(𝑠𝑡)⃪𝑟𝑡 + 𝛾. ∑ 𝑃(𝑠𝑡+1|𝑠, 𝑎𝑡)

𝑠𝑡+1∈𝑆

. 𝑉(𝑠𝑡+1)

Denklem (2.13)'ün son terimi, indirimli toplam gelecek ödülleridir. Her olası st+1 durumu

için, P geçiş modelinin tahmini getirileri V(st+1) ile toplamından elde edilir. DP,

önyükleme(bootstrapping) adı verilen bir tekniğe izin verir. Önyükleme, ardıl durumların

tahminlerine dayalı olarak her bir durum için değerlerin V(st) tahminlerini

güncellememizi sağlar.

2.4.8. Monte Carlo

Bilinmeyen bir ortama sahip sonlu bir MDP için, Monte Carlo(Rothman 1984)

yöntemleri, örnek bölümler biçimindeki deneyimlerden değer fonksiyonlarını ve optimal

politikaları öğrenebilir. MC yöntemleri, çevreden örnek durum, eylem ve ödül

dizilerinden öğrenmemizi sağlayan modelden bağımsız bir yöntemdir. Çevrenin

dinamikleri hakkında önceden tam bilgi sahibi olmayı gerektirmez. Monte Carlo

yöntemleri, her olası durumun değerini hesaplamak için bir model kullanmak yerine, Vπ

ve Qπ değer fonksiyonlarını deneyimden tahmin edebilir(Aghaei, 2019).

MC kontrol yöntemlerinde ajan, ödüller ve çevre hakkında bilgi edinmek için keşif-

sömürü ödünleşmesini göz önünde bulundurmalıdır. Ajanın hem daha önce

kullanılmayan eylemleri hem de olumsuz ödüllere yol açabilecek belirsiz eylemleri göz

önünde bulundurarak keşfetmesi gerekir. Güvenli bir şekilde hareket etmeli ve iyi bilinen

ödüllere bağlı kalmalı veya daha yüksek ödüller keşfetmek için yeni şeyler deneme

riskine girmelidir.

MC kontrol yöntemlerinde yeterli keşif yapıldıktan sonra bunun sürdürülüyor olması bir

sorundur. Genel olarak, bunu çözmek için kullanılabilecek iki yaklaşım, politika içi

yöntemler ve politika dışı yöntemlerdir. Politikaya dayalı yöntemler, bir yandan araştırma

yaparken bir yandan da karar vermek için kullanılan politikayı değerlendirmeye veya

iyileştirmeye çalışır. Politika dışı yöntemler ise, karar vermek için kullanılan politika ile

ilgisiz olabilecek deterministik bir politika öğrenmeye çalışır.

(2.13)

26

Monte Carlo yöntemleri, DP'den farklı olarak önyükleme yapmaz. Bunun yerine, değer

fonksiyonu güncellemeleri, örneklenmiş bir ortamdan durum-eylem-yeni durum-ödül (st,

at, st+1, rt) şeklinde Denklem (2.14)’deki gibi hesaplanır.

π politikasını izleyerek ve karşılaşılan her durum için, o belirli durumu takip eden gerçek

rt getirilerinin bir ortalamasını koruyarak elde edilir. Daha sonra, belirli bir durumla

karşılaşılma sayısı sonsuza yaklaştıkça ortalama, durumun değerine, Vπ(s)

yakınsayacaktır. Benzer şekilde, belirli bir durumda gerçekleştirilen her eylem için ayrı

ortalamalar tutulursa, bu ortalamalar eylem değerlerine, Qπ(s,a) yakınsayacaktır. Buna

göre, durum-değer fonksiyonu V (st), durumla her karşılaşıldığında, gerçek dönüş rt 'ye

doğru güncellenebilir;

𝑉(𝑠𝑡) ⃪𝑉(𝑠𝑡) + 𝛼. [𝑟𝑡 − 𝑉(𝑠𝑡)]

α, öğrenme oranını etkileyen adım boyutu parametresi olarak adlandırılan küçük bir

pozitif kesirdir. Değer işlevleri, değer işlevlerinin artık hesaplanmadığını, ancak

örneklenmiş getiriler temelinde tahmin edildiğini vurgulamak için büyük harfle gösterilir.

2.4.9. Zamansal Fark

Zamansal fark öğrenme (Sutton, 1988), DP'nin (önyükleme yoluyla öğrenme yeteneği)

ve MC'nin MDP'ye erişmeden doğrudan ortamdan alınan örneklerden öğrenme

yeteneğinin bir birleşimidir.

MC yöntemlerinden farklı olarak, TD'nin değer işlevini güncellemek için bölümün

sonuna kadar beklemesi gerekmez. Bunun yerine, TD yöntemleri, yeni değerin eski

tahminden ne kadar farklı olduğunu bize bildirmek için zamansal hatalar kullanarak

yalnızca bir sonraki zaman adımına kadar bekler.

Bu güncelleştirme genel olarak şu şekildedir:

𝑌𝑒𝑛𝑖𝑇𝑎ℎ𝑚𝑖𝑛 ← 𝐸𝑠𝑘𝑖𝑇𝑎ℎ𝑚𝑖𝑛 + 𝐴𝑑𝚤𝑚𝑆𝑎𝑦𝚤𝑠𝚤[𝐻𝑒𝑑𝑒𝑓 − 𝐸𝑠𝑘𝑖𝑇𝑎ℎ𝑚𝑖𝑛]

TD yöntemleri, modelden bağımsız oldukları için, DP yöntemlerine göre büyük bir

avantaj sunarken, çevrimiçi, tamamen artımlı güncellemeleri MC yöntemlerini geliştirir.

(2.14)

27

Bu, özellikle uzun, muhtemelen sonsuz bölümlerle uğraşırken önemlidir, bu nedenle

güncellemeleri bir bölümün sonuna kadar ertelemek ideal değildir.

TD, ortamın örneklemini MC'den yaklaşık bir beklenti durumu (sonraki durum dağılımı)

ve DP'den gelecekteki ödüllerin indirimli toplamını tahmin etmek için önyükleme

kavramıyla birleştirerek değer işlevini Denklem (2.15)’te gösterildiği gibi güncelleştirir;

𝑉(𝑠𝑡) ⃪𝑉(𝑠𝑡) + 𝛼. [𝑟𝑡 + 𝛾. 𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡)]

2.4.10. Keşif ve Sömürü

Pekiştirmeli öğrenmede keşif, ajanın çevre hakkındaki bilgisini geliştirmek için eylemde

bulunmasını sömürü ise mevcut bilgisine göre ödülleri en üst düzeye çıkarmak için

eylemde bulunmasını ifade eder. Bir ajanın amacı, bilinmeyen bir ortamla etkileşimler

yoluyla elde edilen gelecekteki ödüllerin toplamını en üst düzeye çıkarmaktır. Bunu

yaparken, ajan keşif ve sömürüyü dengelemelidir. (Taïga ve diğ., 2018).Pekiştirmeli

öğrenmede ortaya çıkan zorluklardan biri, keşif ve sömürü arasındaki dengedir. Ajan, çok

fazla ödül elde etmek için daha yüksek ödüller üretmede etkili olan deneyimlerine ve

eylemlerine güvenmelidir. Öte yandan, bu iyi eylemler ilk etapta daha önce seçmediği

eylemleri deneyerek keşfedilmelidir. Başka bir deyişle, ajan ödül almak için zaten

bildiklerinden yararlanmak zorundadır, ancak aynı zamanda gelecek için olası daha iyi

bir eylem bulmak için araştırmak zorundadır.

PÖ ajanları en uygun politika hakkında bilgi edinmek isterler, ancak ilk bölümde

karşılaştıkları "iyi" eylemleri asla araştırmazlarsa ve yalnızca güçlendirirlerse, en uygun

politikanın neye benzediğini bilemezler. Politika içi yöntemlerde, ajan her zaman

keşfeden bir yapıdadır ve bu nedenle hala keşif yapan en iyi politikayı bulmaya çalışır.

Buna karşılık, politika dışı yöntemler iki ilke kullanarak bu uzlaşmayı önler. Hakkında

bilgi edinilen politikaya hedef politika π adı verilir. Davranış oluşturmak için kullanılan

politikaya davranış politikası μ adı verilir ((Roy, 2018).

Modelden Bağımsız PÖ algoritmalarında keşif ve sömürü arasındaki geçiş açgözlü(ε-

açgözlü) stratejilerle kurulur. Açgözlü stratejilerde, ajan uygulayacağı eylemi epsilon-ε

olasılıkla rastgele seçer. Buna karşılık sömürüde ise, en yüksek tahmini değere sahip

(2.15)

28

eylemler olan Q*(s,a) tamamlayıcı olasılıkla seçilir. Zaman içinde ε değeri azaltılarak,

ajan keşiften sömürüye doğru ilerler (Arulkumaran ve diğ., 2017).

Bir davranış politikasının çok basit ama etkili bir versiyonu epsilon-açgözlülük

politikasıdır. Bu yöntemle keşif miktarı, eylem seçimlerinde rastgeleliği belirleyen bir

parametre olan ε ile global olarak kontrol edilir. Diğerlerinin aksine, ε-açgözlülüğün bir

avantajı, keşfe özel verilerin ezberlenmesine gerek olmamasıdır, bu da yöntemi çok

büyük ve hatta sürekli durum uzayları için özellikle avantajlı kılmaktadır. Diğer karmaşık

yöntemlerle karşılaştırıldığında, ε-açgözlülüğü (Vermorel ve Mohri, 2005) genellikle ilk

tercih edilen yöntem olduğu bildirilmiştir (Sutton ve diğ., 2018).Denklem (2.16)’da ε-

açgözlü yöntem formüle edilmiştir;

𝜇(𝑠𝑡) = {
𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠𝑡, 𝑎) 1 − 𝜀 𝑜𝑙𝑎𝑠𝚤𝑙𝚤𝑘𝑙𝑎

𝑟𝑎𝑛𝑑𝑜𝑚 𝐴 𝜀 𝑜𝑙𝑎𝑠𝚤𝑙𝚤𝑘𝑙𝑎

2.4.11. Q Öğrenme

PÖ algoritmaları politika tabanlı, modelden bağımsız ve model tabanlı olarak üç

kategoriye ayrılabilir. Her kategori şu sorunun cevabını arar: "Öğrenme sırasında hangi

fonksiyonlar tahmin ediliyor?". Bir PÖ algoritması geçiş ve ödül fonksiyonlarının

tahminlerini tutarsa (T ve R), o zaman model tabanlı olduğu söylenir. Ödül ve geçiş

fonksiyonları tahmin edilmiyorsa, sadece eylem-değer fonksiyonu Q tutuluyorsa

algoritma modelden bağımsızdır. Son olarak, tahmin edilen tek şey doğrudan politika ise

o zaman politika tabanlıdır. Bununla birlikte, bunlar çokta net olmayan sınırlardır çünkü

birçok algoritma genellikle farklı işlevlere kısmi çözümler hesaplar veya bu işlevlerden

birinin inşasına benzeyen örtük hesaplama çalışmaları yürütür (Seijen ve Sutton, 2015).

Bu üç yaklaşım arasındaki ayrım kabaca Şekil 2.9'daki şema ile gösterilmiştir.

Model tabanlı PÖ'de, geçiş ve ödül işlevleri genellikle açıkça tahmin edilir. Daha sonra,

bu tahminleri kullanarak T ve R, ajan genellikle iyi davranış için arama yapmak veya

farklı politikaları değerlendirmek için kullanılabilecek simüle edilmiş bir MDP, Mˆ

oluşturur. Diğer bir deyişle, çevresel MDP M'ye yeterince benzeyen bir MDP Mˆ'ye

simülasyon erişimi verildiğinde, ajan π veya belki de Q oluşturmak için Mˆ üzerinde

hesaplamalar yapabilir ve bu da en yüksek değere sahip eylemi seçerek bir politikayı

indükleyebilir.

(2.16)

29

Modelsiz ve politika tabanlı PÖ'de, ajan genellikle eylem-değer fonksiyonu (Q)’ nun veya

bir politika (π) nın tahminini doğrudan tutar. Bu işlevleri daha verimli bir şekilde

atayarak, daha sağlam bir şekilde genelleştirerek veya daha hassas bir şekilde keşfederek

daha hızlı öğrenmek için çeşitli mekanizmalar ayarlanır.

Şekil 2.9. PÖ algoritmalarının kategorileri(Abel, 2020)

Bağlama bağlı olarak her bir algoritma türünü kullanmak için iyi argümanlar vardır.

Özellikle, modelsiz ve politika tabanlı yöntemler, derin sinir ağları ile birleştirildiğinde

büyük bir başarı elde etti ve Atari'den (Mnih ve diğ., 2015) robotiğe kadar çeşitli zorlu

alanlarda etkili bir şekilde öğrenen DPÖ yöntemlerine yol açtı(Levine ve diğ., 2016).

En bilinen PÖ algoritması, ilk olarak Watkins ve Dayan (Watkins ve Dayan,

1992)tarafından tanıtılan Q-öğrenme olarak adlandırılır. Optimal kontrol teorisi

bağlamında, Q-öğrenme, tamamen bilinmeyen sistemler için en uygun kontrol çözümüne

çevrimiçi olarak yakınsayan, uyarlanabilir, bir kontrol algoritması olarak

sınıflandırılabilir(Lewis ve diğ., 2012).

 Q-öğrenme, her durum-eylem çifti için Q fonksiyonunun bir tahminini korur ve son

deneyime (st-1, at-1, rt-1) ve bir öğrenme oranına α ∈ [0, 1] dayalı olarak bu Q fonksiyonu

tahminine basit bir güncelleme yapılması temelinde ilerler. Yani, ilk önce Q değerlerini

[QMin,QMax] aralığından rastgele seçmek gibi bazı protokollere göre bir Q fonksiyonu

uygulanır veya daha yaygın olarak, ilk Q fonksiyonu sıfır olarak ayarlanır veya tüm s, a

için Q0(s, a) = QMax olduğunda iyimser olarak ayarlanır. Ardından, Denklem (2.17)’deki

gibi tanımlanan açgözlülük politikasına göre eylemler seçilir;

30

𝜋𝑄,𝜀(𝑎|𝑠) = {
1 − 𝜀 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎′𝑄(𝑠𝑡, 𝑎′),

𝜖

|𝐴| − 1
 𝑑𝑖ğ𝑒𝑟 𝑑𝑢𝑟𝑢𝑚𝑙𝑎𝑟𝑑𝑎.

Q-Öğrenme (Watkins, 1989), takip edilen politikadan bağımsız olarak doğrudan Q∗ ‘ya

yaklaşan bir politika dışı TD kontrol algoritmasıdır. Bir deneyim, (s, a, r ,s') olarak

tanımlanır, burada ajan s durumunda başlar, a eylemini gerçekleştirir, bir r ödülü alır ve

s' durumuna geçer. Q(s,a) güncellemesi daha sonra s' ‘dan bir eylem için mümkün olan

maksimum ödülü alarak ve Denklem(2.18)’deki güncellemeyi uygulayarak

gerçekleştirilir;

𝑄(𝑠𝑡, 𝑎𝑡) ⃪𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼. [𝑟 + 𝛾. 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)].

Q-Öğrenme, Şekil 2.10'da gösterildiği gibi bir Q-Tablosunu yükleyerek başlar, her satır

bir duruma, s ∈ S'ye ve her sütun bir eyleme, a ∈ A'ya karşılık gelir.

Şekil 2.10. Q-Öğrenme akış şeması

Şekil 2.11. Q değeri tablosu

İlk aşamada ajan, ε-açgözlü keşif yöntemini kullanarak yeni durumları ve eylemleri

keşfederek çevre ile etkileşime girer. Q değerleri Q(s, a), ajanın s durumunda a eylemini

gerçekleştirmesinden beklenen toplam ödüllerini temsil eder. Şekil 2.19 da verilen Q-

tablosu yapısına benzer bir şeklide, her bir durum-eylem eşleşmesi için tablo Q değeri ile

doldurulur. Her Q değeri, Bellman denkleminin hesaplanmasından kaynaklanır ve

Denklem (2.19)’daki gibi ifade edilir;

𝑄(𝑠𝑡, 𝑎𝑡) ⃪𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼. [𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾. 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)].

Eylem1 … … EylemN

Durum1 Q(1,1) … … Q(1,N)

… … … … …

… … … … …

DurumM Q(M,1) … … Q(M,N)

(2.17)

(2.19)

(2.18)

31

• r(st, at): mevcut st durumundan bir sonraki duruma st+1 geçiş için verilen ödül;

• maxaQ(st+1, a): Ardışık durum st+1'in optimal Q değeri biçiminde, dizinin birkaç adım

daha derininde döndürülebilen ödüller;

• Q(st, at): Zamansal Fark olarak Q değeri gösterimi;

• r(st, at)+ γ · maxaQ(st+1, a): Zamansal Fark ile hedeflenen değer;

• r(st, at)+ γ · maxaQ(st+1, a)- Q(st, at): Zamansal Fark hatası (δt).

Ajan keşif yaparken çeşitli çevre durumları ile karşılaşır. Yeni durumlarla karşılaştıkça

Q-Tablosu dolmaya başlar. Ajan, yeni durumlar keşfettikçe tablo büyür. Ajan keşiften

sömürüye ilerlediğinde, Q-Tablosundaki değerlere bakar ve toplam birikmiş ödülleri en

üst düzeye çıkaran eylemleri Q∗(s, a) Denklem(2.20)’de gösterilen formül ile seçer;

 𝑎𝑡 ⃪𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝑄(𝑠,:)(𝑄(𝑠𝑡, 𝑎)) ≡ 𝑄∗(𝑠𝑡, 𝑎)

Q-öğrenmenin algoritması Şekil 2.12’de gösterilmiştir.

Şekil 2.12. Q-Öğrenme Algoritması

2.4.12. Sarsa

Sarsa, State-Action-Reward-State-Action anlamına gelen, politikaya bağlı bir TD kontrol

algoritmasıdır. Bu ad, ajanın s durumunda başladığı, a eylemini gerçekleştirdiği, r

(2.20)

32

ödülünü aldığı, s’ durumuna geçtiği ve ardından a’ eylemini yapmaya karar verdiği bir

deneyimden (s; a; r; s’; a’) türetilir. Bu deneyim, Denklem (2.21)’deki denklemi

kullanarak Q(s; a)'yı güncellemek için kullanılır;

𝑄(𝑠𝑡, 𝑎𝑡) ⃪𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼. [𝑟 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡, 𝑎𝑡)].

Algoritmanın genel formu aşağıda Şekil 2.13’de verilmiştir.

Şekil 2.13. Sarsa algoritması

2.4.13. Sarsa ve Q Öğrenmenin Karşılaştırılması

Sarsa ve Q-öğrenme algoritmaları arasındaki farklar oldukça incedir. Sarsa politika içi bir

yöntem olduğundan, Q değerlerini güncellemek için kullanılacak hamleleri yaparken bir

kontrol politikası izler. Öte yandan Q-öğrenme, en uygun politikanın izlendiğini varsayan

ve bu nedenle her zaman en iyi eylemi gerçekleştiren politika dışı bir yöntemdir.

Özetlemek gerekirse, temel fark gelecekteki ödüllerin bulunma şeklidir.

Bu iki yöntem arasındaki fark, Sutton ve Barto'nun (Sutton ve Barto, 1998) kitabından

alınan örnekte (Şekil 2.14) iyi bir şekilde gösterilmiştir.

Şekil 2.14. Uçurumda yürüme görevinin grid dünyası (Sutton ve Barto, 1998)

(2.21)

33

Şekil 2.14'te gösterilen grid dünyası, indirim faktörü uygulanmamış (γ = 1), epizodik bir

görevin parçasıdır. Görevin amacı, uçurumdan düşmeden yukarı, aşağı, sağ ve sol

hareketlerini kullanarak başlangıç durumundan (S) hedef duruma (G) gitmektir.

Ajan, "Uçurum" olarak işaretlenmiş bölgeye girmesi dışında her durum geçişinde -1 ödül

alır, uçuruma düşerse -100 ödül alır ve ardından başlangıç durumuna geri gönderilir. Ajan

görevini yerine getirirken, sabit bir epsilon ε= 0.1'e ayarlı olarak ε-açgözlü bir eylem

seçimini izler.

Şekil 2.15. Uçurumda yürüme görevinin sonuçları (Sutton ve Barto, 1998)

Şekil 2.15’te bir Q-öğrenme kontrol yöntemi ve bir Sarsa kontrol yöntemi izlendiğinde

her bölüm için toplam ödülü göstermektedir.

Q-Öğrenme bazen ε-açgözlü eylem seçimini izleyerek ajanı uçurumdan itecek rastgele

bir eyleme yol açmasına rağmen kısa bir süre sonra uçurumun kenarı boyunca seyahat

etmeyi içeren en uygun politikayı öğrenmeyi başarır. Tersine, Sarsa bunu dikkate alarak

eylem seçim yöntemi uçurumdan uzakta, daha uzun ama daha güvenli bir yol izleyen bir

politika ile sonuçlanır. Q-Öğrenme’nin en uygun politikayı bulmasına rağmen,

performansı Sarsa'dan daha kötüdür, ancak her ikisi yöntemde de kademeli olarak epsilon

değeri 0'a düşürülürse optimal politikaya yaklaşacaktır.

2.4.14. Fonksiyon Yaklaşımı

Pekiştirmeli öğrenmenin zorluklarının çoğu, robotiğe uygulandığında ortaya çıkar.

Bunun nedeni çoğu robotun doğası gereği sürekli durumlar ve eylemler ile hareket

34

etmesidir. Bunun gibi görevlerle uğraşırken, boyutsallığın laneti (curse of dimensionality)

ile (Bellman, 1957b) karşı karşıya kalınır. Bu bize durum sayısının, durum

değişkenlerinin sayısıyla katlanarak arttığını söyler.

Şimdiye kadar tartışılan yöntemlerin tümü, her durum için bir giriş içeren tablo olarak

temsil edilen değer fonksiyonlarına sahiptir. TD yöntemleri ve Q-öğrenme, her durumun

bir V(s) girişine sahip olduğu veya her durum-eylem çiftinin bir Q(s,a) girişine sahip

olduğu tablo halinde tartışıldı. Tüm durumlar için tüm değer fonksiyonları bir arama

tablosuna kaydedilir. Bu prosedür, dama veya tic-tac-toe oyunu gibi sınırlı sayıda durum

ve eylem içeren ortamlar için uygundur. Ancak, problemin durum uzayı büyükse, bu tablo

biçimi pratikte mümkün olmaz. Soru şudur: Mobil robotlarda olduğu gibi büyük, hatta

sürekli bir durum alanı verildiğinde-örneğin bir hastane ortamı- ne olur? Otonom bir araç

bağlamında, kamera görüntülerinin olası piksel düzenlemelerinin sayısı sonsuzdur. Her

bir görüntü bir durumu temsil ettiğinden, durum uzayı sürekli veya sonsuz olarak

ayarlanır. Sürekli durum alanı ile büyük miktarda zaman ve veri gerektiren büyük, bellek

tüketen tablolar gelir. Belirli bir durum için bir değer aramaya çalışırken, önce bu değerin

tabloda bulunması gerekir, bu da çevrimiçi güncellemeleri zorlaştırır. Öğrenme süreci

çok sayıda durum tarafından yavaşlatılır, çünkü her bir durumun değeri ayrı ayrı

öğrenilmelidir. Bu nedenle, bu gibi durumlarda öğrenmenin tek yolu, önceki

durumlardan daha önce görmediğimiz durumlara genelleme yapmaktır. Bu sorunu büyük

veya sonsuz MDP'ler için çözmek için, mevcut olana benzeyen farklı durumlarla önceki

karşılaşmalardan genelleme yapmak gerekir.

Pekiştirmeli öğrenme bağlamındaki bu genellemeye fonksiyon yaklaşımı denir, çünkü

Q(s,a) gibi istenen fonksiyondan veri örnekleri alır ve tüm fonksiyonun bir yaklaşımını

üretmek için onlardan genellemeye çalışır. Bunu yaparken parametre vektörü θ

kullanılarak fonksiyon Denklem (2.22)’deki gibi temsil edilir.

𝑉̂(𝑠; 𝜃) ≈ 𝑉𝜋(𝑠)

𝑄̂(𝑠, 𝑎; 𝜃) ≈ 𝑄𝜋(𝑠, 𝑎)

Makine öğreniminde incelenen birincil konu olan denetimli öğrenmenin bir örneği olarak

fonksiyon yaklaşımı, halihazırda kapsamlı bir şekilde incelenmiştir. Teoride, bu alanda

(2.22)

35

çalışılan yöntemlerden herhangi biri, fonksiyon tahmincisi rolünde kullanılacak

pekiştirmeli öğrenme ile birleştirilebilir. (Schmidhuber, 2015).

2.5. Derin Pekiştirmeli Öğrenme

Pekiştirmeli öğrenmenin fonksiyon yakınlaştırıcısı olarak derin sinir ağları ile

kombinasyonuna Derin Pekiştirmeli Öğrenme denir. Değerlerin tablo gösterimlerinin

sinir ağı gibi bir fonksiyon yaklaşımıyla değiştirilmesi, yüksek boyutlu sensör girdilere

sahip görevleri başarmak için gereklidir.

Pekiştirmeli Öğrenme, temel gerçeğe atıfta bulunmadan kontrol modellerini öğrenmenin

etkili bir yoludur(Tai ve Liu, 2016). Bununla birlikte PÖ algoritmaları, tablo çerçeveleri

nedeniyle kapsamlı ve dinamik ortamlarda hesaplama açısından maliyetli olma

eğilimindedir. Bunu çözmek için derin öğrenme ve pekiştirmeli öğrenme algoritmaları

birlikte kullanılabilir. Bu tür yapıları içeren yöntemler, bilimin tüm yelpazesinde

uygulamalar üreten yenilikçi bir alan olan DPÖ kapsamındadır (Li, 2018).

Pekiştirmeli Öğrenme ile ilgili sorunlardan biri, durum sayısı arttıkça verileri depolamak

için gereken bellek miktarının hızla artmasıdır. Derin Pekiştirmeli Öğrenme, durum uzayı

büyük veya sürekli olduğunda, görünenden görünmeyen durumlara genelleme yaparak,

fonksiyon tahmin edicileri (Li, 2018) olarak Yapay Sinir Ağları’nı kullanarak bu

problemin üstesinden gelmeye çalışır. Şekil 2.16’da DPÖ modeli gösterilmiştir.

Pekiştirmeli öğrenme için fonksiyon yaklaşımı olarak sinir ağları yeni bir fikir değildir

ve 1989'a kadar uzanmaktadır (Werbos, 1989).Burada yazar, TD benzeri algoritmaları

kullanarak politikaları ve değer fonksiyonlarını öğrenmek için hata geri yayılımı ile

eğitilmiş sinir ağlarını kullanan bir yaklaşım geliştirdi. Öte yandan erken araştırmalar,

politika dışı, doğrusal olmayan fonksiyon yaklaşımı ve önyükleme işleminin

birleştirilmesinin kararsızlığa ve ayrışmaya neden olabileceğini göstermiştir(Tsitsiklis ve

Roy, 1997), bu da ölümcül üçlü sorunu (Sutton ve Barto, 1998)olarak adlandırılır.

Sorunun arkasındaki sebep hala bir araştırma konusu olsa da 2015 yılında Google

DeepMind'dan bir ekip, derin sinir ağlarını kullanan Q-öğrenmenin bir uyarlaması olan

Derin Q-Öğrenme algoritmasını(Mnih ve diğ., 2015) sundu.

36

Şekil 2.16. Derin pekiştirmeli öğrenme modeli

Şekil 2.17. Değer tabanlı ve Politika tabanlı Derin Pekiştirmeli Öğrenme

DPÖ’de, değere dayalı veya politikaya dayalı yöntemler kullanılır. Şekil 2.17’de bu

yöntemlere ait modeller gösterildi. Değer tabanlı öğrenmede, YSA'lar eylem-değer

fonksiyonları, Q(s, a; θ) olarak hareket eder. İnce ayar yapıldıktan sonra, durum-eylem

Q değerlerini tahmin ederler ve mevcut durum göz önüne alındığında hangi eylemin

gerçekleştirileceğine dair deterministik bir sinyal çıkarırlar (Ejaz ve diğ., 2019).Aksine,

politika tabanlı yaklaşımlar, politika π(s, a; θ) parametresini ayarlamak ve Politika

Gradyan tekniklerini kullanarak eylem alanını optimize etmek için YSA'ları kullanır

(Wang ve diğ., 2019; Mnih ve diğ., 2016)

2.5.1. Derin Q Öğrenme

Derin Q-Öğrenme (Mnih ve diğ., 2015), Q-Öğrenme algoritması üzerine tasarlanmış

değer tabanlı bir öğrenme yöntemidir. Yapısında bulunan YSA mimarisi nedeniyle Derin

Q-Ağı olarak da adlandırılır. Her iki yaklaşım da durum-eylem Q değerlerini hesaplamak

için aynı prensibi paylaşır, ancak işleyiş tarzında farklılık gösterir. Q-Öğrenme, eğitim

37

sürecini ve bunun sonucunda ajanın karar vermesini yönlendirmek için bir Q-Tablosuna

başvururken, DQN'de bu tür görevler YSA’lar tarafından yürütülür.

Şekil 2.18. Derin Q-Öğrenme eğitim aşaması

Şekil 2.18'de gösterildiği gibi, DQN modeli, tekrar arabelleği, hedef ağ ve politika ağı,

olarak üç ana bileşenden oluşur. Politika ağı (θ), mevcut durum geçişi için Q değerlerini

tahmin etmekten sorumluyken, hedef ağ (θ-) ardıl durumun optimal Q değerini hesaplar.

DQN'de her bir Q değeri, Bellman denklemi (α = 1) kullanılarak Denklem (2.23)’de

gösterilen formül ile hesaplanır;

𝑄(𝑠𝑡, 𝑎𝑡) ⃪𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾. 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎)

Tekrar arabelleği (S. Zhang and Sutton 2018), sırasıyla, her eğitim adımı t'de tanık olunan

geçiş demetlerini (st, at, st+1, rt) tablo şeklinde depolar.

DQN’de ajan, çevre ile etkileşime girerek yeni durumları keşfeder. Keşif yöntemi olarak

ε-açgözlü stratejisini kullanır. Tekrar arabelleğinde, yeni durumlar keşfedildikçe, geçiş

demetleri depolanır. Hedef ve politika ağlarına iletilmek üzere, rastgele bir demet grubu

(sj, aj, sj+1, rj) örneklenir. Ayrıca bir kayıp değeri ağların çıktı Q değerlerine göre Denklem

(2.24)’deki gibi hesaplanır;

𝐿(𝜃) = ‖𝑦𝑡(𝑎) − 𝑄(𝑠𝑗 , 𝑎𝑗 ; 𝜃)‖
2

≡ ‖𝑟𝑗 + 𝛾. 𝑚𝑎𝑥𝑎𝑄(𝑠𝑗+1, 𝑎; 𝜃− − 𝑄(𝑠𝑗 , 𝑎𝑗; 𝜃)‖
2
 (2.24)

(2.23)

38

 Denklem(2.23)’teki hedefler yt(a) ile Q(sj, aj; θ) tahminleri arasındaki hata daha sonra

politika ağı parametreleri θ'yı ayarlamak için Denklem(2.25)’deki formül ile geri yayılır;

∆𝜃= 𝛼. 𝐿(𝜃). ∇𝜃𝑄(𝑠𝑗 , 𝑎𝑗; 𝜃)

Tekrar arabelleğinin kullanılması sayesinde, politika ağı güncellemelerinin ayarlamak

için rastgele durum geçiş demetleri (sj, aj, sj+1, rj) kullanılır. Yani politika ağı (θ), yalnızca

ortamın son gözlenen durumuna bağlı değildir. Bu durum ajanın uyguladığı yeni eylemler

için eğitilmesini sağlar.

Her eğitim adımında ayarlanan θ politika ağı parametrelerinden farklı olarak, hedefin

ağırlıkları ve önyargıları, 𝜃−politika ağı parametre değerlerini devralarak 𝜃− ← 𝜃

periyodik olarak güncellenir. Bu işlem, hedef fonksiyonun hızla değişmesini önleyerek

eğitim sürecinin sağlamlığını artırır.

Eğitim sürecinin ardından hedef ve politika ağı güncellenir. Böylece eğitilmiş bir ağ

modeli (θ∗) ortaya çıkar. Bu ağ modeli ile ajan, karar verme süreçlerini kendi kendine

öğrenmeye başlar. Bu nedenle, DQN ajan artık tekrar arabelleğine veya hedef ağa ihtiyaç

duymaz, önemli bir hesaplama maliyeti düşüşü sağlar. Bu test aşamasında, sistemin

işleyişi Şekil 2.19’da gösterildiği gibi oldukça basittir. Kullanılan ağ (θ∗), her t adımında,

girdi durumunu st işler ve buna göre Q değerlerini Q(st, a; θ∗) hesaplar. Ajan, en yüksek

ödülü getirecek bir eylem seçer. Denklem (2.26)’da gösterildiği gibi formüle edilir;

𝑎𝑡 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝑄(𝑠,:;𝜃∗)(𝑄(𝑠𝑡, 𝑎; 𝜃∗)) ≡ 𝑄∗(𝑠𝑡, 𝑎; 𝜃∗)

Şekil 2.19. Derin Q-Öğrenme Akış Diyagramı

(2.25)

(2.26)

39

2.5.2. Deterministik Politika Gradyanı

Deterministik Politika Gradyanı'nın (DPG) birçok çeşidi vardır. Bu tezde, β'nın

indirgenmiş durum dağılımı olduğu ve β mevcut politika π ayrı bir politikayı temsil ettiği

politika dışı deterministik Aktör-Kritik dikkate alınacaktır. Konun detayı için David

Silver ve arkadaşlarının (Silver ve diğ., 2014) çalışmasına bakılabilir. Algoritmanın

çalışma yapısı basitçe Şekil 2.20'de gösterilmektedir.

Şekil 2.20. Aktör-Kritik algoritmasının basit gösterimi

Aktör-Kritik mimarisi, beklenen getiriyi optimize etmek için iki yapı kullanır. Aktör ve

Kritik birlikte çalışır ve algoritmalarda amaçlarına göre ayrı ayrı eğitilirler. Aktör, mevcut

politikayı tanımlar ve bu nedenle mevcut politikaya göre eylemler üretmesi amaçlanır.

Kritiğin görevi, problemin değer fonksiyonunu tahmin etmektir. Öğrenme genellikle

politika üzerinedir ve Kritik, Aktör tarafından tanımlanan mevcut politikadan yürütülen

beklenen eylem değerinin ne olduğunu öğrenmelidir. Kritik daha sonra politika tarafından

gerçekleştirilen eylemi bir Zamansal Fark-Hatası (TD-Hatası) olarak eleştirebilir. TD-

Hatası, iki farklı durumun değer fonksiyonu tahminleri arasındaki zamansal farktır.

Değerlendirme matematiksel olarak Denklem (2.27)’deki gösterilen şekilde tanımlanır;

𝛿𝑡 = 𝑟𝑡+1 + 𝛾𝑉(𝑠𝑡) − 𝑉(𝑠𝑡+1). (2.27)

40

TD hatası daha sonra Aktör ve Kritik modelindeki parametreleri optimize etmek için

kullanılır. 𝛿𝑡 > 0 ise, mevcut eylemin sonucu at beklenenden daha iyidir ve bu nedenle

π(at|st) olasılığını artırmak arzu edilir.

DPG’ye geri dönersek performans hedefi, değer fonksiyonundan veya eylem değer

fonksiyonundan Denklem (2.28)’deki gibi ifade edilebilir;

𝐽𝛽(𝜇𝜃) = ∫ 𝑝𝛽(𝑠)𝑉𝜇(𝑠)𝑑𝑠
𝑠

= ∫ 𝑝𝛽(𝑠)𝑄𝜃
𝜇

(𝑠))𝑑𝑠.
𝑠

Aktörler modelinin parametreleri için gradyanlar daha sonra Denklem (2.29)’da

gösterilen şekilde tahmin edilebilir;

∇𝜃𝐽𝛽(𝜇) ≈ ∫ 𝑝𝛽(𝑠)
𝑆

∇𝜃𝜇𝜃(𝑎|𝑠)𝑄𝜇(𝑠, 𝑎)𝑑𝑠

= 𝔼𝑠~𝑝𝛽[∇𝜃𝜇𝜃(𝑠)∇𝑎𝑄𝜇(𝑠, 𝑎)|𝑎=𝜇𝜃(𝑠)].

Gerçek eylem değeri fonksiyonu, bir genel fonksiyon yaklaştırıcı Qw ≈ Qµ ile değiştirilir

ve gerçek eylem-değer fonksiyonunu en aza indirmek için eğitilir. Ayrıca, algoritmanın

temel adımlarında kullanılan denklemler (Denklem (2.30), Denklem (2.31), Denklem

(2.32)) şunlardır;

TD hatasını hesaplamak için:

𝛿𝑡 = 𝑟𝑡 + 𝛾𝑄𝜔(𝑠𝑡+1, 𝜇𝜃(𝑠𝑡+1)) − 𝑄𝜔(𝑠𝑡, 𝑎𝑡),

Kritik ağırlığını hesaplamak için:

𝜔𝑡+1 = 𝜔𝑡 + 𝛼𝜔𝛿𝑡∇𝜔𝑄𝜔(𝑠𝑡, 𝑎𝑡),

Aktör ağırlığını hesaplamak için:

𝑄𝑡+1 = 𝑄𝑡 + 𝛼𝜃∇𝜃𝜇𝜃(𝑠𝑡)∇𝑎𝑄𝜔(𝑠𝑡, 𝑎𝑡)|𝑎=𝜇𝜃(𝑠).

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

41

2.5.3. DDPG

Derin Deterministik Politika Gradyanı(DDPG) (Lillicrap ve diğ., 2016), sinir ağlarını

genel fonksiyon yaklaştırıcı olarak kullanarak DPG algoritmasını uygular. Şekil 2.21’de

DDPG algoritması verildi.

Şekil 2.21.DDPG algoritması

Sinir Ağlarını sürekli eylem alanlarıyla PÖ’de uygulamak üç ana soruna yol açar. Bunlar;

ilişkili veriler, istikrarsızlık ve yetersiz keşif sorunlarıdır. Bu kısımda, bu sorunları çözen

üç yöntem açıklanacaktır. Eğitim Sinir Ağları, eğitim verilerinin bağımsız ve aynı şekilde

dağıtılmasını gerektirir (Goodfellow ve diğ., 2016), ancak ortamda sıralı olarak örnekler

üretilirken durum böyle değildir. DDPG algoritması, önceki deneyimi depolamak için

tekrar arabelleğini kullanır. Yeterli miktarda veri toplandığında tekrar arabelleği

kullanılabilir. Amaç, “ilişkili verilerin lanetine” karşı koymaktır. Aktör-Kritik için kayıp

işlevi daha sonraki örneklerden alınan kare kaybı olarak Denklem (2.33) ve (2.34)’deki

gibi formüle edilebilir;

𝐿(𝜃𝑄) = 𝔼𝑠~𝑝𝛽,𝑎𝑡~𝛽,𝑟𝑡~𝛦[(𝑄(𝑠𝑡, 𝑎𝑡|𝜃𝑄) − 𝑦𝑡)2]

Buradan;

𝑦𝑡 = 𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝑄(𝑠𝑡+1, 𝜇(𝑠𝑡+1)|𝜃𝑄).

(2.33)

(2.34)

42

Kritik için Sinir Ağı, optimize ettiğimiz ağ ile aynı ağ ile hesaplandığından, sapmaya

eğilimlidir. Bu sorunun çözümü, ağların kopyalarını oluşturmak ve daha sonra

güncellemektir. Bu, istikrar sağlamak için hem Aktör hem de Kritik kopyalarını almanın

en verimli yöntemdir. Kopyalar Denklem (2.35)’deki gibi gösterilir;

𝑄′(𝑠, 𝑎|𝜃𝑄′
)

𝜇′(𝑠|𝜃𝜇′
)

ve güncellemeler matematiksel olarak Denklem(2.36)’de gösterilen şekilde formüle

edilebilir;

𝜃𝑄′
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

𝜃𝜇′
← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′

𝜏 ≪ 1’dir.

Sürekli eylem alanlarının araştırılması, var olan sonsuz sayıda permütasyon nedeniyle

zordur. Politika dışı algoritmalarda, keşif öğrenme algoritmasından bağımsız olarak

oluşturulabilir. Keşifçi bir Aktör oluşturmanın en basit yolu, Aktörler eylemine bir keşif

gürültüsü eklemektir. Denklem (2.37);

𝜐𝑒𝑥𝑝(𝑠𝑡) = 𝜇(𝑠𝑡|𝜃𝑡
𝜇

) + 𝒩

Burada N, çevreye uyacak şekilde seçilebilir.

2.5.4. A2C

A2C ve A3C gibi aktör-eleştiri algoritmaları, model içermeyen, çevrimiçi, politika

üzerinde pekiştirmeli öğrenme yöntemini kullanan aktör-kritik (AC) ajanlardır. Bu ajanın

amacı, politikayı (aktörü) doğrudan optimize etmek ve getiriyi veya gelecekteki ödülleri

tahmin etmek için bir eleştirmeni(kritik) eğitmektir (Mnih ve diğ., 2016).

A2C Asynchronous Advantage Actor Critic'in (A3C) senkronize, deterministik bir

çeşididir. Yeniden oynatma tamponunun kullanılmasını önlemek için birden fazla işçi

kullanır.

(2.35)

(2.36)

(2.37)

43

Şekil 2.22’de, A2C algoritmasının temel adımları gösterilmektedir.

Şekil 2.22.A2C algoritması

İlk olarak, ortam başlatılır ve aktör ve eleştirmen ağları başlatılır. Ardından, belirli bir

sayıda iterasyon yapılır. Her bir iterasyonda, aktör adımları gerçekleştirilir. Aktör, bir

durum alır, bir eylem seçer, bu eylemi ortamda uygular ve yeni durumu ve ödülü alır. Bu

bilgiler belleğe kaydedilir ve durum güncellenir. Daha sonra, avantajlar ve indirgenmiş

ödüller hesaplanır. Eleştirmen ağı bu hesaplamaları kullanarak güncellenir. Aktör ağı da

aynı hesaplamaları kullanarak güncellenir. Bu adımlar hem eleştirmen ağının hem de

aktör ağının öğrenmesini sağlar. Son olarak, belirli bir sayıda iterasyon

gerçekleştirildikten sonra işlem tamamlanır ve ortam kapatılır.

2.5.5. TRPO

Güven Bölgesi Politika Optimizasyonu (TRPO), model içermeyen, çevrimiçi, politika

üzerinde, politika gradyan pekiştirmeli öğrenme algoritmasıdır. TRPO, çevresel etkileşim

yoluyla veri örnekleme ve kısıtlı bir optimizasyon problemini çözerek politika

parametrelerini güncelleme arasında geçiş yapar. Eski politika ile yeni politika arasındaki

KL sapması, optimizasyon sırasında bir kısıtlama olarak kullanılır. Sonuç olarak bu

algoritma, güncellenen politikayı mevcut politikaya yakın bir güven bölgesi içinde

tutarak standart politika gradyan yöntemlerine kıyasla önemli performans düşüşlerini

önler (Schulman ve diğ., 2015).

44

Şekil 2.23’de gösterilen sözde koda göre, başlangıçta bir politika fonksiyonu parametresi

(θ) başlatılır. Daha sonra, döngü, yakınsamaya ulaşıldığında duracak şekilde devam eder.

Her döngü adımında, mevcut politika kullanılarak veri (D) toplanır ve bu veriye

dayanarak avantajlar (A) hesaplanır. Daha sonra, politika gradyanı (g) ve bir güven

bölgesi alt-problemini çözmek için bir adım yönü (d) hesaplanır. Son olarak, bir adım

büyüklüğü (α) belirlenerek politika parametreleri güncellenir.

Şekil 2.23.TRPO algoritması

2.5.6. PPO

Proksimal Politika Optimizasyonu (PPO), politika iyileştirmesini garanti altına almak

için, TRPO(Schulman ve diğ., 2015), yeni politikanın bir optimizasyon kısıtlaması olarak

eski politikanın ortalama performansından daha iyi olup olmadığını ölçmek için KL

farklılığını getirmiştir. KL ayrışma kısıtlaması ile politikanın monoton olarak

iyileştirilmesi garanti edilir. Ancak, TRPO'nun uygulanması zordur ve yürütülmesi için

daha fazla hesaplama gerektirir.

PPO(Schulman ve diğ., 2017), sınırlı optimizasyondan hesaplamayı azaltan kırpılmış bir

vekil amaç işlevi önerdi. TRPO'daki kayıp fonksiyonu Denklem 2.37’deki gibi verilir;

𝐿(𝜃) = 𝔼̂𝑡[𝑟𝑡(𝜃)𝐴̂𝑡] (2.37)

45

Burada 𝔼̂𝑡[…]sonlu bir örnek grubu üzerindeki ampirik ortalamayı gösterir, 𝐴̂𝑡 avantaj

fonksiyonu tahmincisidir 𝐴̂𝑡 ≔ −𝑉(𝑠𝑡 + 𝑟𝑡 + 𝛾𝑟𝑡+1 + ⋯ + 𝛾𝑇−𝑟𝑉(𝑠𝑇) ve rt(θ), geçerli

politikası ile eski politika𝑟𝑡(𝜃) =
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)
 arasındaki olasılık oranını gösterir.

KL ayrışma kısıtlaması, eski politikadan yeni politikaya ciddi bir güncelleme yapılmasını

yasaklar, PPO böyle büyük bir değişiklikten kaçınmak için bir ceza uygular. Kırpılmış

vekil amaç fonksiyonu Denklem 2.38’deki gibi verilir;

𝐿𝐶𝐿𝐼𝑃(𝜃) = 𝔼̂𝑡[min (𝑟𝑡(𝜃)𝐴̂𝑡, 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜀, 1 + 𝜀)𝐴̂𝑡]

TRPO ile karşılaştırıldığında, olasılık oranı 𝑟𝑡(𝜃) ,[1 - ε, 1 + ε] arasında kırpılır, pratikte

epsilon ε= 0.2 olarak seçilir, yani yeni politika ne kadar iyi olursa olsun, 𝑟𝑡(𝜃)en fazla

%20 artar.

𝐴̂𝑡≥ 0, geçerli eylemin belirli bir durumda diğerlerinden daha iyi performans gösterdiği

anlamına gelir. Yeni politika eskisinden daha iyiyse, daha iyi olanın seçilme olasılığı daha

yüksek olacak şekilde 𝑟𝑡(𝜃)artırılmalıdır. Buna karşılık, 𝐴̂𝑡 ≤ 0 için, eylem caydırılmalı

ve 𝑟𝑡(𝜃)azaltılmalıdır.

PPO algoritması, Şekil 2.24’de özetlenmiştir.

 Şekil 2.24.PPO algoritması

(2.38)

46

2.5.7. TD3

İkiz Gecikmeli Derin Deterministik Politika Gradyanı (Twin Delayed Deep Deterministic

Policy Gradient) algoritması (TD3), hem aktörün hem de eleştirmenin fonksiyon

yaklaşımcıları olarak kullanılan derin sinir ağlarından oluştuğu Aktör-Kritik mimarisine

dayanmaktadır (Fujimoto ve diğ., 2018). TD3, DDPG algoritmasının üzerine inşa

edilmiştir(Lillicrap ve diğ., 2016b). DDPG, robotik gibi sürekli kontrol problemleri için

mükemmel sonuçlarla yaygın olarak kullanılmasına rağmen bazı sınırlamaları vardır.

DDPG, diğer politika dışı algoritmalar gibi kararsız olma eğilimindedir ve Kritik Ağ'da

Q değerinin aşırı tahmin edilmesine neden olan hiperparametrelere duyarlıdır. Bu hatalar

zaman içinde biriktikçe, ajan yerel optimale düşebilir ve bu da optimal olmayan

performansla sonuçlanabilir. TD3, aşağıdaki 3 optimizasyon görevini yerine getirerek

aşırı tahmin sorununu ele almaktadır.

Kırpılmış Çift Q-öğrenme: TD3, Q değerlerini tahmin etmek için bir yerine iki (ikiz)

kritik ağı kullanır ve hedefi oluşturmak için ikisinden daha küçük olanı kullanır. Bu

nedenle kırpılmış Çift Q-öğrenme olarak da adlandırılan bu yaklaşım, Q değerlerinin

düşük tahmin edilmesine neden olur ve bu da kararlı bir yaklaşım sağlar. Q değerlerinin

aşırı tahmin edilmesinin aksine, düşük değerler yayılmadığından düşük tahmin daha az

sorun teşkil eder.

Gecikmeli Politika Güncellemesi: Aktör-Kritik yöntemlerinde politika (aktör) ve kritik

(değer) ağları birbirine sıkı sıkıya bağlıdır. Politika aşırı tahmin nedeniyle zayıf

olduğunda eğitim ajanının değer tahmini sapar ve dolayısıyla politika yanlış değer

tahmini nedeniyle daha da kötüleşmeye devam eder. Bu sorunu çözmek ve iki ağ

arasındaki bağlantıyı azaltmak için, politika ağı değer ağından daha az sıklıkta

güncellenir. Bu, politika ağının yalnızca birkaç yinelemeden sonra değer hatası azaldıktan

sonra güncellenmesi nedeniyle algoritmanın genel kararlılığını artırır.

Hedef Politika Düzgünleştirme: TD3 gibi deterministik politika yöntemleri değer

fonksiyonundaki ani artışlara aşırı uyum sağlayabilir. Bu, eleştirmen güncellenirken

yüksek varyanslı hedeflerle sonuçlanır. Bu sorunu çözmek için hedefe az miktarda

kırpılmış rastgele gürültü eklenerek ve mini gruplar üzerinde ortalama alınarak

47

düzenlileştirme veya yumuşatma kullanılır. Gürültü kırpma işlemi, hedef değerin orijinal

eyleme yakın olmasını sağlamak için yapılır.

Şekil 2.25’de TD3 algoritmasının sözde kodu verilmiştir.

Şekil 2.25.TD3 algoritması

2.5.8. SAC

Soft Aktör Kritik-Soft Actor Critic (SAC)(Haarnoja ve diğ., 2018), stokastik bir politikayı

politika dışı bir şekilde optimize eden ve stokastik politika optimizasyonu ile DDPG tarzı

yaklaşımlar arasında bir köprü oluşturan bir algoritmadır. TD3'ün doğrudan halefi

değildir, ancak kırpılmış çift-Q hilesini içerir ve SAC'deki politikanın doğal stokastikliği

nedeniyle, hedef politika yumuşatmadan yararlanır. Şekil 2.26’da SAC algoritmasının

sözde kodu verilmiştir.

SAC'nin merkezi bir özelliği entropi düzenlemesidir. Politika, beklenen getiri ile

politikadaki rastgeleliğin bir ölçüsü olan entropi arasındaki dengeyi maksimize edecek

şekilde eğitilir. Bunun keşif-kullanım değiş tokuşu ile yakın bir bağlantısı vardır: artan

entropi daha fazla keşifle sonuçlanır ve bu da daha sonra öğrenmeyi hızlandırabilir.

48

Ayrıca politikanın zamanından önce kötü bir yerel optimuma yakınsamasını da

önleyebilir.

Şekil 2.26.SAC algoritması

TD3'te olduğu gibi, her iki Q fonksiyonuda tek bir ortak hedefe geriletilerek

öğrenilir.TD3'te olduğu gibi, paylaşılan hedef, hedef Q-ağları kullanılarak hesaplanır ve

hedef Q-ağları, eğitim süresince Q-ağ parametrelerinin çoklu ortalaması alınarak elde

edilir.TD3'te olduğu gibi, paylaşılan hedef kırpılmış çift-Q hilesini kullanır.

TD3'ten farklı olarak hedef, SAC'nin entropi düzenlemesi kullanımından gelen bir terim

de içerir.TD3'ten farklı olarak, hedefte kullanılan bir sonraki durum eylemleri hedef

politika yerine mevcut politikadan gelir.TD3'ün aksine, açık bir hedef politika

yumuşatması yoktur. TD3 deterministik bir politika eğitir ve bu nedenle sonraki durum

eylemlerine rastgele gürültü ekleyerek yumuşatmayı gerçekleştirir. SAC stokastik bir

politika eğitir ve bu nedenle bu stokastiklikten kaynaklanan gürültü benzer bir etki elde

etmek için yeterlidir (URL-2).

49

2.6. Benzetim Ortamları (Simülatörler)

Robotikte simülatörler, oluşturulan prototipleri kolayca ve ekonomik bir şeklide test

etmek için kullanılır. (De Melo ve diğ., 2019). Simülatörler ile fizik motorları kullanılarak

gerçek dünyaya benzer ortamlar oluşturulur. Robot deneylerinde en büyük risk meydana

gelecek kazalardır. Simülatörler kullanılarak hem kazaların önüne geçilir hem de ciddi

bir maliyet düşüşü sağlanır.

Şekil 2.27. Simülatörlerin bilinirlik ve kullanılma durumları (Ivaldi ve diğ., 2014)

Çağdaş robotik simülatörleri, çeşitli fizik motorları, geniş bir robot, sensör ve aktüatör

kütüphanesi, gelişmiş programlama ve grafiksel arayüzler, robot hareketi ve sensör

okumalarının simülasyonlarını sağlayan çoklu eklentiler sunar (Ivaldi ve diğ., 2014).

Simülatörler, kullanıcının robotlarla ve diğer bileşenlerle fiziksel olarak etkileşime

girmek zorunda kalmadan test etmesine ve davranışlar oluşturmasına olanak tanıyan

programlardır. Yazılıma ve robota bağlı olarak, simülatörde oluşturulan uygulamaların,

örneğin Robot İşletim Sistemi (ROS) (Quigley ve diğ., 2009) aracılığıyla fiziksel robota

aktarılmasına izin verebilir.

Bir simülatör kullanmanın faydaları, maliyetleri düşürmesi, zamandan ve paradan

tasarruf etmesi, çeşitli alternatiflerin hiçbir maliyet veya risk ve arıza süresi olmadan test

50

edilmesine izin vermesi bakımından çok büyüktür. Şekil 2.27’de simülatörlerin bilinip

bilinmediği ile ilgili yapılan bir anketin sonuçları verilmiştir.

2.6.1. Webots

Webots (Michel, 2004) yazılımı 1998 yılında Dr. Olivier Michael tarafından

oluşturulmuştur ve çoğunlukla eğitim amaçlı kullanılmaktadır. Programa robotlar,

sensörler ve aktüatörlerden oluşan geniş bir koleksiyon dahildir. Bir Webots sahnesi

örneği, Şekil 2.28'de görülebilir.

Şekil 2.28. Örnek webots sahnesi

Robot hareket hızı üzerine yapılan araştırmalardan uyarlanabilir davranışların

simülasyonundan öğretim ve robot programlama yarışmalarına kadar birçok alanda en sık

kullanılan simülasyon yazılımlarından biridir.

Webots çapraz platformdur ve C/C++, Java, Python ve Matlab gibi dilleri destekler.

Oluşturma, OGRE motoru kullanılarak yapılır ve fizik motoru olarak ODE'nin özel bir

sürümünü kullanır. Ayrıca, ROS'u desteklemenin yanı sıra dahili bir 3B modelleyici içerir

(URL-3).

2.6.2. Gazebo

Gazebo (Koenig ve Howard, 2004), Open Source Robotics Foundation tarafından

geliştirilen, 2002 yılında piyasaya sürülen bir robotik simülatördür. Karmaşık ortamlarda

birden fazla robotu, nesneyi ve sensörü simüle etme yeteneğine sahip, dinamikleri olan

çok robotlu bir simülatördür. Ayrıca, katı cisim fiziğini simüle etmenin yanı sıra nesneler

arasında gerçekçi sensör geri bildirimi ve etkileşimler üretebilir.

51

Grafikler OGRE motoru kullanılarak oluşturulur. Dinamik simülasyonlar, dahil edilen

dört fizik motorundan biri kullanılarak yapılabilir; ODE, Bullet, Simbody ve DART. Ana

programlama dili C++'dır ve eklentiler kendi API'si kullanılarak geliştirilebilir.

Simülasyonlar, TCP/IP kullanan uzak sunucularda veya bir bulut üzerinde

çalıştırılabilir(Gong ve diğ., 2011).

Gazebo açık kaynak kodludur, tüm platformlar için mevcuttur ve çevrimiçi simülasyon

modeli deposu, forum, wiki ve robot uygulamaları için kitaplık içeren çok aktif bir

topluluğa sahiptir. Aynı şirket, robot yazılımı yazmak için bir çerçeve olan ROS'u da

geliştirdi. Gazebo'daki bir mobil robot örneği, Şekil 2.29'da görülebilir.

 Şekil 2.29. Örnek Gazebo sahnesi

2.6.3. V-rep (Copeliasim)

V-REP (Sanal Robot Deney Platformu), Marc Freese tarafından oluşturuldu ve ilk olarak

2010'da piyasaya sürüldü ve onu mevcut en modern simülatörlerden biri haline getirdi

(URL-4). Hızlı prototipleme, otomasyon sistemlerinin simülasyonu ve öğretimi gibi

birçok uygulama için kullanılabilir.

V-REP, Coppelia Robotics tarafından sağlanan genel amaçlı bir robot simülasyon

çerçevesidir. Birçok özelliğinden bazıları şunlardır:

• Platformlar arası içerik (Linux, Mac ve Windows).

52

• Çerçeve ile çeşitli iletişim araçları (gömülü Lua komut dosyaları, C++ eklentileri, 6

dilde uzak API'ler, ROS vb.).

• Bir motordan diğerine hızlı bir şekilde geçiş yapabilme özelliğine sahip 4 fizik motoru

(Bullet, ODE, Newton ve Vortex) desteği.

• Ters ve ileri kinematik.

• Hareket planlaması.

• Gömülü Lua komut dosyalarına dayalı dağıtılmış kontrol mimarisi.

Programa dahil edilen, piyasada bulunan robotların ve sensörlerin yanı sıra yeni modelleri

içe aktarma veya entegre modelleme yeteneklerini kullanarak oluşturma yeteneğine

sahiptir. ROS kullanarak gerçek robotlara da bağlanabilir.

Mobil robotların yer aldığı bir sahne Şekil 2.30'da görülebilir.

Şekil 2.30. Örnek Copeliasim sahnesi

2.6.4. Microsoft Robotics Developer Studio

Microsoft Robotics Developer Studio(Kang ve diğ., 2011) robot kontrolü için 3B simüle

edilmiş ortam, sensör ve aktüatör verilerine kolay erişim, görsel bir programlama aracı

ve web tabanlı arayüzler içerir. Araç, bir apartman, fabrika, ev ve dış mekan sahneleri

dahil olmak üzere çeşitli simüle edilmiş ortamlarla birlikte gelir. Bir Microsoft aracı olan

programlama, Python ve R ile karşılaştırıldığında genellikle makine öğrenimi ve

pekiştirmeli öğrenme için popüler olmayan C# ile yapılır. Eylül 2014 itibariyle,

Microsoft'un yeniden yapılandırma planının ardından araca verilen destek askıya alındı.

53

2.6.5. Robologix

Öncelikle öğretim için kullanılan Robologix (URL-5), programcıların kendi hareket

dizilerini yazmalarını, ortamı değiştirmelerini ve mevcut sensörleri beş eksenli bir

endüstriyel robotta kullanmalarını sağlar.

2.6.6. AnyKode Marilou

AnyKode Marilou (URL-6) mobil robotlar, insansı robotlar, eklemli kollar ve gerçek

dünya koşullarında çalışan paralel robotlar için ortamları simüle eder. Sensörlerin ve

aktüatörlerin fiziksel ortamdaki gerçek özelliklere göre davranışlarını son derece yüksek

bir gerçeklik seviyesiyle yeniden üreten bir motor sunar. C/C++, VB, J# ve C# eklentileri

sunar.

2.6.7. Graspit!

Graspit! (Miller ve Allen, 2004) kavramayı araştırmak için tasarlanmış bir araçtır. Bir dizi

analiz ve geliştirme aracı eşliğinde robotik kavrama görevlerini simüle etmek için sanal

bir ortamdır. Adından da anlaşılacağı gibi, bir uç manipülasyon görevinden ziyade

kavramaya daha fazla önem verir ve mevcut modellerin seçimi Mico Arm gibi belirli

robotlara odaklanır.

2.6.8. MuJoCo

MuJoCo (Todorov ve diğ., 2012) , hızlı ve doğru simülasyona ihtiyaç duyulan alanlarda

araştırma ve geliştirmeyi kolaylaştırmayı amaçlayan bir fizik motorudur. Model tabanlı

optimizasyon ve bağlantılar aracılığıyla optimizasyon için tasarlanmıştır.

2.6.9. OpenAI-Gym

OpenAI Gym (Brockman ve diğ., 2016), Makine Öğrenimi metodolojilerini doğrulamak

için PÖ’ nün epizodik tasarımına uygun olarak formüle edilen kıyaslama sorunlarının bir

düzenlemesidir. OpenAI Gym platformu, araştırmacılara hazır ortamlar ve ajanlar

sunarak PÖ algoritmları ile ilgili denemeler yapma imkanı sunar. Aşağıda kıyaslama

ortamları hakkında bilgi verildi.

• PÖ literatüründe geçen küçük ölçekli görevler için ortamlar;

• Klasik Atari oyunlarda PÖ uygulamaları için ortamlar;

54

• Sürekli kontrol görevleri Box2D (URL-7) ortamı;

• MuJoCo fizik motoru kullanarak 2B ve 3B robot kontrolü(Todorov ve diğ., 2012) .

Bunları dışında daha birçok benzetim ortamı vardır. Otonom sürüş uygulamalarını test

etmek için Carla ve Torcs, oyun geliştirme ortamı olan Unity, Python temelli robotik

uygulamalar için Pybullet, insansız hava araçları için Airsim vb. gibi ortamlar mevcuttur.

Bu tezde, mevcut donanım kaynakları da göz önünde bulundurularak öncelikle iki

boyutlu ortamda çalışmanın daha verimli olacağına karar verildi. Bundan dolayı ortam

iki boyutlu bir grid dünya olarak matlab programında ve python minigrid kütüphanesinde

ayrı ayrı tasarlanmıştır. Mobil robot ve ortam değişkenleri (engel, hedef, ödül, vs.) grid

dünya üzerinde hücre olarak temsil edilmiştir. Pekiştirmeli öğrenme algoritmaları bu

ortamda çalıştırılırmıştır. Böylece belli bir robot markasına bağlı kalmadan algoritmalara

yoğunlaşıldı. Grid dünyada elde edilen tecrübeler (model, hiperparamtreler,vb.) 3 boyutlu

dünyada kullanıldı.3 boyutlu robotik simülatörü olarak Gazebo platformu kullanıldı.

Turtlebot3 robotu gazebo ortamlarında SAC, TD3, PPO algoritmaları ile çalıştırıldı.

2.7. Literatür İncelemesi

Pekiştirmeli öğrenme birçok farklı alana uygulanmaktadır. Türkiye’de son 10 yılda bu

alanda yazılan tezler incelendiğinde finans, ulaşım ağları, trafik kontrolü, ağ saldırıları

tespiti, enerji optimizasyonu, otonom araçlar, insansız hava araçları vb. gibi farklı

alanlarda uygulamaları görülmüştür. Bu çalışmalardan yapılan çıkarımda bir ajanın

etkileşimde bulunduğu çevrede dinamik, büyük, sürekli ve değişken veri akışı varsa

pekiştirmeli öğrenme ile eğitilen ajanlar yeni durumlara kolayca uyum sağlayabilmekte

ve en iyi kararı verebilmektedir. Bu tezde mobil robot navigasyonu için pekiştirmeli

öğrenme çalışmaları incelenmiştir.

Khan, yaptığı çalışmada, mobil robot navigasyonu için TOSL informed-biased softmax

regression (TOSL-iBSR) olarak adlandırılan yeni ve geliştirilmiş bir öğrenme süreci

sunmuştur. Eylem seçimi rastgele bir süreç olarak değil, bunun yerine softmax

regresyonu kullanılarak hesaplanan maksimum olasılık fonksiyonuna göre belirlenmiştir.

Sunulan yaklaşımı kullanarak, robotun daha yüksek bir pozitif ödül ve daha az hesaplama

maliyeti elde ederken navigasyon görevini tamamladığı gözlenmiştir. Simülasyon

kullanılarak önerilen yaklaşımın Q-learning with softmax regression (Q-SR) ve true

55

online SARSA Q-biased softmax regression (TOSL-QBIASSR)'den daha iyi performans

gösterdiği gösterilmiştir. Ajan olarak Pionner robot platformu kullanılmıştır. Python ve

V-REP arasında çerçeve oluşturularak tüm fiziksel parametrelerle gerçek bir robot

kullanılmıştır. Öğrenme sürecini daha bilinçli bir eylem seçme tekniğiyle birleştirerek

bilinmeyen bir ortamda iki boyutlu gezinme gerçekleştirilmiştir(Khan, 2019).

Zhang ve diğerleri, kentsel arama ve kurtarma görevlerinde, mobil kurtarma robotlarının

yürüteceği bir dizi yerel gezinme eylemini belirlemek için robotun yerleşik

sensörlerinden gelen ham duyusal verileri kullanan bir DPÖ ağı geliştirmişlerdir.

Optimum robot navigasyon eylemlerini belirlemek için girdi olarak derinlik görüntüleri,

yükseklik haritaları ve 3B yönlendirmeyi kullanan Asynchronous Advantage Actor-Critic

(A3C) mimarisine dayalı bir ağ eğitmişlerdir. Engebeli arazi bilinmediğinde DPÖ

yaklaşımının bir ortamdaki bir robotu hedef konumuna başarılı bir şekilde

yönlendirebileceğini göstermiştir(Zhang ve diğ., 2018).

Sung ve diğerleri, mobil robot navigasyonu için modelden bağımsız PÖ yaklaşımlarını

tartışmışlardır. Ajan olarak Turtlebot3 robotu, fiziksel ortamı simule etmek için ise

Gazebo ortamı kullanılmıştır. DQN algoritmasını farklı boyutlardaki gözlem uzaylarında

denemişlerdir. Ayrık gözlem alanlarının sayısı artınca genelleme yeteneğinin kaybettiğini

gözlemlemişlerdir. Öte yandan, ayrık gözlem alanları sayısını düşünce performansta

yüksek varyanslara neden olunduğunu gözlemlemişlerdir. PÖ algoritmalarını

ölçeklendirebilmek için birden fazla robotu simule etmişlerdir (Sung ve diğ., 2018).

Çetin, robot navigasyonu için Q-öğrenme algoritmalarının uygunluğunu incelemişlerdir.

Bunun için 3 farklı labirent ortamında simülasyonlar yapmışlardır. Robotun labirentte

hedefe gitmesini sağlayan algoritmanın başarısını; iterasyon sayısı, öğrenme katsayısı ve

Q tablosunun matris boyutunun belirlediğini gözlemlemişlerdir. Q matrisinin kararlı bir

yapıya erişmesini beklemeden iterasyon miktarı küçük tutularak doğru sonuçlar elde

edebilmişlerdir(Çetin, 2014).

Muhammad ve Bucak, mobil robot navigasyonu için geleneksel Q-öğrenme algoritması

yerine yeni bir algoritma önermişlerdir. Önerdikleri algoritmada gezinme sırasında, tüm

durum-eylem çiftlerinin yörüngesi saklanır ve rafine edilmiş Q değerlerini herhangi bir

durumdan bir hedef durumuna yaymak için geriye doğru bir yönde yeniden oynatılır.

56

Simülasyonlardan elde ettikleri sonuçlar ile geleneksel Q-Öğrenmeye kıyasla çok daha

iyi bir performans gözlemlemişlerdir. Q-tablosunun yakınsama oranını büyük ölçüde

azaltılmışlardır(Muhammad ve Bucak, 2013).

Güçkıran ve Bolat, yaptığı çalışmada TORCS ortamı için Soft Actor-Critic-LSTM (SAC-

LSTM) ve Rainbow DQN algoritmalarını, keşif ve genelleme tekniklerini kullanarak en

uygun DPÖ ajanlarını araştırmıştır. TORCS ortamında SAC-LSTM ve Rainbow

algoritmalarını yarış araçlarına uygulamıştır. Otonom yarışlar simule edildikten sonra

SAC-LSTM algoritmasının daha başarılı olduğunu gözlemlemiştir. Bunun sebebi olarak

keşif yöntemleri ve sürekli eylem alanı nedeniyle olduğunu iddia etmiştir. SAC, entropiyi

maksimize etmeye çalışır ve bu ajanın eylem alanının belirsiz bölgelerini keşfetmesine

izin verir. Ek olarak, SAC’ın politika ağı sürekli eylemler içerdiğinden, Rainbow

DQN’nin gizli 27 eyleminden farklı olarak frenleme, hızlanma ve yönlendirme sürekli

eylemlerle kontrol edilebilir(Guckiran ve Bolat, 2019).

Altuntaş, popüler PÖ algoritmalarından Sarsa(λ) ve Q(λ) algoritmalarını seçerek mobil

robot navigasyonu probleminin çözümü için bir sistem önermiştir. MATLAB ile

geliştirilen sistem, hem simülasyon hem gerçek ortamda, yüksek bir başarı oranıyla

gezgin robotu engellerden kaçırarak istenen hedefe yönlendirebilmiştir. Robot platformu

olarak Robotino kullanılmıştır. Ayrıca, sistem sayesinde PÖ metotlarında kullanılan

başlangıç parametrelerinin, örneğin λ, öğrenmeye olan etkisini gözlemlemiş ve Sarsa(λ)

ve Q(λ) algoritmalarının performanslarında karşılaştırmalar yapmıştır. Sonuç olarak,

SARSA'nın% 90 ila% 70 öğrenme oranıyla Q-öğrenmeden daha hızlı optimal değerlere

yakınlaştığını bulmuştur. (Altuntaş, 2013).

Engin, Q-öğrenme, SARSA, DQN ve Bulanık Kural Interpolasyonu Temelli Q tipi

öğrenme (FRIQ) gibi farklı pekiştirmeli öğrenme algoritmalarının, bir robot modelinin

iki boyutlu bir labirent ortamında başlangıç noktasından hedefe ulaşana kadar geçen

toplam zaman ve adım sayısına bağlı olarak performans kıyasını içeren bir çalışma

yapmıştır. DQN ve FRIQ öğrenmenin, daha az sayıda bölümle hedefe ulaşmak için en

kısa yol anlamına gelen optimal politikayı bulma açısından Q-öğrenme ve SARSA'ya

üstün olduğu görülmüştür.

57

FRIQ-Öğrenmeye göre, DQN, daha az sayıda bölümle en uygun politikayı bulma

açısından biraz daha iyi bir performansa sergilemiştir. Öte yandan, FRIQ öğrenme,

labirentin duvarlarıyla çevrili köşelerde ve dar bölgelerde daha iyi bir performansa sahip

olduğu görülmüştür.(Engin, 2019) .

Demir, otonom forkliftler gibi değişken yükler altında çalışacak olan robotların hareket

planlama ve kontrolü problemlerine farklı bir çözüm önermiştir. Önerilen yöntem ile

robotların üzerlerindeki yükler altında nasıl hareket edebildiklerini derin pekiştirmeli

öğrenme yöntemi ile öğrenmeleri sağlanmıştır. Ardından robotlar daha önceden

kendilerine öğretilmiş olan görevi, öğretim zamanı kendilerine verilmemiş yük

miktarlarında da tekrarlamış ve başarılı olmuşlardır. Ajanlar DDPG algoritması

kullanılarak eğitilmiştir(Demir, 2019).

Lei Tai ve Ming Liu tarafından yapılan çalışmada(Tai ve Liu, 2016), Kinect RGB-D

kamerasından elde edilen ham derinlik görüntülerini işleyen bir CNN ile işletilen mobil

platform, farklı senaryolarda çarpışmasız bir şekilde ortamı keşfetmeyi başarı ile

öğrenmiştir. Aynı araştırmacılar bir başka çalışmada (Tai ve diğ., 2017) bir robot üzerine

monte edilmiş tek bir SICK TiM570 lazer kullanarak haritasız bir hareket planlayıcı

yaklaşımı önerdiler. On adet seyrek lazer bulgusu ve göreli hedef konumundan oluşan bir

durum modeli ile mobil platform, herhangi bir engele çarpmadan istenilen hedeflere

ulaşmayı başardı. Eğitim rutinini sürdürmek için kullanılan DPÖ yöntemi, eşzamansız

DDPG tabanlı bir algoritmaydı(Lillicrap ve diğ., 2016).

Liang ve ark. yaptıkları çalışmada (Liang ve diğ., 2020), bir mobil robotun yoğun ve

kalabalık ortamlarda gerçek zamanlı çarpışma önleme işlemini gerçekleştirmesini

sağlayan bir uygulama sunmaktadır. Ajan, PPO (Schulman ve diğ., 2017) adlı politika

tabanlı bir DPÖ algoritması kullanarak dinamik ve statik engellerle girdiği farklı

etkileşim türlerinden dolaylı olarak öğrenir.

Xie ve ark. (Xie ve diğ., 2017) ve Ruan ve ark. (Ruan ve diğ., 2019), dinamik engellerden

kaçınma ile uçtan uca bir mobil robot navigasyonu oluşturmak için son teknoloji D3QN

mimarisini kullanarak karşılaştırılabilir çalışmalar önermektedir. Ruan ve ark., ilgili

doğrulamaları gerçekleştirmek için hem simüle edilmiş hem de gerçek alanlarda Kinect

58

RGB-D kamera ile donatılmış bir platform kullanırken, Xie ve ark. bu tür sensörleri

yalnızca sanal ortamlarda kullanmaktadır.

Chen ve ark. (Chen ve diğ., 2017) , sırayla, DPÖ değer tabanlı bir yaklaşım olan

V-Öğrenme’yi kullanarak tamamen özerk bir robotik navigasyon sağlayan yöntem

önermektedir. Kalabalık bir ortamda insan yürüme hızında hareket eden platform, sosyal

olarak bilinçli bir hareket planlaması yürütürken diğer üç ajanı tespit etmeyi ve izlemeyi

başarıyor. Yöntemin ödül modelini ayarlayarak, robot sağ veya sol sosyal normları

benimseyebildiğini kanıtlıyor.

Yukarıda belirtilen ajanın tespit ve takip numarası sınırlamasıyla yüzleşmek için, Everett

ve arkadaları (Everett ve diğ., 2018) rasgele sayıda ajanı gözlemlemek için yinelenen sinir

ağları (RNN) mimarisine sahip bir çözüm önermiştir. Karar verme ajanları arasında

sunulan DPÖ tabanlı hareket planlaması, politika tabanlı bir GPU / CPU Asenkron

Advantage ActorCritic (GA3C) (Babaeizadeh ve diğ., 2017) öğrenme yaklaşımı, bir

kuyruk sistemi kullanan bir strateji ve Derin Yapay Sinir Ağlarını eğitmek için dinamik

bir zamanlama tekniği kullanmaktadır.

Bu tez çalışmasının amacı, mobil robotların pekiştirmeli öğrenme algoritmalarını

kullanarak dinamik iç ortamlarda yörünge planlamasını yapmasını sağlamaktır. Mobil

robotik araştırmalarındaki otonom navigasyon konusuna yıllar içerisinde pek çok çözüm

bulunmuş ve geliştirilmiştir. Bu çalışmada bu zamana kadar mobil robotların otonom

navigasyon probleminin çözümüne nasıl yaklaşıldığına ve pekiştirmeli öğrenme

yönteminin seçilmesinin sebebine odaklanılacaktır. Pekiştirmeli öğrenme

algoritmalarının değişen çevre şartlarına göre performans testleri yapılacaktır. Ayrıca

öğrenme sürelerine göre de testler yapılıp algoritmalar kıyaslanacaktır.

59

3. MALZEME VE YÖNTEM

3.1. İşletim Sistemi

Ubuntu(Sobell, 2015), ücretsiz, açık kaynak kodlu, güvenlikli, geliştiricilere imkan

sağlayan bir işletim sistemdir. Çoğu donanım ve yazılım sürümüyle uyumlu olması ve

robot çerçeveleri, simülatörler ve Entegre Geliştirme Ortamları (IDE'ler) gibi çeşitli

modülleri kolayca birleştirmek için gerekli araçları sunması nedeniyle robotik

uygulamaları ve simülasyonu yapmak için geleneksel işletim sistemi haline gelmiştir.

Bu çalışmada, Gazebo platformunu ROS Noetic ile kullanmak için Ubuntu 20.04, sürümü

kullanıldı.

3.2. Robot İşletim Sistemi (ROS)

Robot İşletim Sistemi (Quigley et al. 2009), robotların ortak platformda çalışabilmesi için

çeşitli protokoller, kütüphaneler ve araçlar sunan açık kaynak kodlu bir meta işletim

sistemdir. C++, Python gibi çeşitli yazılım dillerini destekler. ROS yapısı dört ana

etmenden meydana gelir. Bunlar; konular, hizmetler, düğümler ve mesajlardır. Düğümler

ana yazılım birimleridir. Aralarında mesajları gönderir ve alırlar. ROS’da yayıncı-abone

mantığı vardır. Bir düğüm bir konuya kaynağa olur, başka bir düğümde aboneye yayın

yapar. Örneğin; Anlık nem bilgisini yayınlayan ve ona abone olan düğümler gibi.

• Düğümler arasındaki iletişimi konular ya da hizmetler üzerinden sağlanır.

• Konular: Yayıncı-Abone protokolüne göre çalışır. Mesajı yayınlayan bir düğüm

vardır. Başka bir düğümde ona abone olur. Hizmetler: İstemci-Sunucu mantığı ile

çalışır. Bir düğüm istek yapar diğer düğüm isteğe cevap vererek hizmet sunar.

Şekil 3.1'de ROS ‘un çalışma yapısını gösterilmektedir. Her konunun yayıncılarını ve

abonelerini, konu adreslerini, hizmetleri ve yayınlanan mesajları izleyen bir ana sunucu

(Master) vardır. Kayıt ve iletişim işlemleri sırasıyla aşağıdaki adımlara uyar:

1. Abone düğümler Master’a bir konuya abone olmak isteklerini bildirir.

2. Yayıncı düğümler, Master'a aynı konuda yayın yaptığını bildirir;

3. Abone düğümler, Master düğüm tarafından geri bildirim alır;

4. Abone düğümler yayıncı düğümle iletişime geçer ve mesajı alırlar.

60

Şekil 3.1.ROS yayıncı-abone iletişimi

3.3. Gazebo

Robotik simülatörler, fizik motorları, sensör ve aktuatör destekleri ve çeşitli yazılım dili

destekleri araştırmacılara güzel imkanlar sunar(Ivaldi ve diğ., 2014). Birkaç seçeneği

(Gong ve diğ., 2011) analiz ettikten sonra, Gazebo (Zamora ve diğ., 2016), geliştirilen

navigasyon çerçevesi deneylerine temel olarak gerçekleştirmek üzere seçilen robot

simülatörüydü. Gazebo, mobil, insansı ve hizmet robotu araştırma alanlarında (Ivaldi ve

diğ., 2014) en yaygın yazılımdır.Bu tezde üç boyutlu ortamlarda PPO,SAC,TD3

algoritmalarının eğitimi Gazebo’nun sunduğu hazır ortamlar ile yapıldı.

3.4. Turtlebot

Şimdiye kadar DPÖ tabanlı algoritmayı geliştirmek için, robot çerçeveleri, ortam

görselleştirme araçları ve navigasyon simülatörleri açıklandı. Bununla birlikte, her türlü

veriyi toplayan ve yazılım kontrol modüllerine ileten, tüm navigasyon akışının uyum

içinde çalışmasını sağlayan sistemin merkezi unsuru, mobil robottur. Bu tezde Gazebo

ortamında yapılan deneylerde Turtlebot kullanıldı. Şekil 3.2‘de Turtlebot Burger

gösterildi.

Turtlebot, kullanıcıların robotlar veya sanal ortamlar oluşturmaya ihtiyaç duymadan

robotik uygulamaları hızlı bir şekilde geliştirmelerini sağlayan bir paket olan ROS ‘da

mevcuttur. Turtlebot'un ana donanım özellikleri (URL-8) Tablo 3.1'de sunulmaktadır ve

yerleşik lazer özellikleri Tablo 3.2'de listelenmiştir.

61

Şekil 3.2. Turtlebot Burger

Tablo 3.1. Turtlebot donanım özellikleri

Maksimum hız 0.22 m/s

Maksimum dönüş hızı 2.84 rad/sn(167.72 derece/sn)

Maksimum hız 15 kg

Boyut(Uzunluk x Genişlik x Yükseklik) 138mm x 178mm x 192 mm

Lazer Mesafe Sensörü 360 Lazer Mesafe Sensörü LDS-01

Tablo 3.2.Lazer Mesafe Sensörü LDS-01

Mesafe Aralığı 120-3500mm

Mesafe doğruluğu(120mm-499mm) ±15mm

Mesafe doğruluğu(500mm-3500mm) ±5.0%

Mesafe hassasiyeti(120mm-499mm) ±15mm

Mesafe hassasiyeti (500mm-3500mm) ±3.5%

Tarama hızı 300±10 rpm

Açısal aralık 360○

Açısal çözünürlük 1○

3.5. Programlama Dili

Bu çalışmada ROS’da Gazebo ortamında çalışacak yazılım modüllerini geliştirmek için

Python (URL-9) programlama dili seçildi. Sürüm olarak da Python 3.8 kullanıldı. Python,

makine öğrenimi uygulamaları oluşturmak için tercih edilen bir programlama dilidir,

geliştiricilere yardımcı olmak için çeşitli araçlara ve kapsamlı bir paket kitaplığına

sahiptir. Bu tezde makine öğrenme kütüphanesi olarak PyTorch(Paszke ve diğ., 2019) ve

TensorFlow (Abadi ve diğ., 2016) kullanıldı. Veri görselleştirme için TensorBoard, ROS

bağlantısını kurmak için RosPy kullanıldı. Grid dünya oluşturmak için Minigrid

kütüphanesi (URL-10) kullanıldı.

62

3.6. Matlab Pekiştirmeli Öğrenme Araç Kutusu

Pekiştirmeli Öğrenme Araç Kutusu (URL-11), DQN, PPO, SAC ve DDPG dahil olmak

üzere pekiştirmeli öğrenme algoritmalarını kullanarak eğitim politikaları için bir

uygulama, işlevler ve bir Simulink bloğu sağlar. Bu politikaları, kaynak tahsisi, robotik

ve otonom sistemler gibi karmaşık uygulamalar için denetleyiciler ve karar verme

algoritmaları uygulamak üzere kullanabilirsiniz.

Pekiştirmeli Öğrenme Araç Kutusu, derin sinir ağları veya arama tabloları kullanarak

politikları ve değer işlevlerini temsil etmenize ve bunları MATLAB veya Simulink'te

modellenen ortamlarla etkileşimler yoluyla eğitmenize olanak tanır. Araç kutusunda

sağlanan tek veya çok ajanlı pekiştirmeli öğrenme algoritmalarını değerlendirebilir veya

kendinizinkini geliştirebilirsiniz. Hiper parametre ayarlarıyla denemeler yapabilir, eğitim

ilerlemesini izleyebilir ve eğitilmiş ajanları uygulama aracılığıyla etkileşimli olarak veya

programlı olarak simüle edebilirsiniz. Eğitim performansını artırmak için simülasyonlar

birden fazla CPU, GPU, bilgisayar kümesi ve bulutta (Paralel Bilgi İşlem Araç Kutusu

ve MATLAB Paralel Sunucu ile) paralel olarak çalıştırılabilir.

3.7. OpenAI Gym ve Stable Baselines

OpenAI gym(Brockman ve diğ., 2016b), pekiştirmeli öğrenme ortamlarının ve

algoritmalarının geliştirilmesi ve kıyaslanması için yaygın olarak kullanılan bir python

kütüphanesidir. Kullanım kolaylığı nedeniyle, PÖ öğrenmek için bir başlangıç noktası

haline gelmiştir. Atari video oyunlarından, robotik hareket kontrolüne kadar çeşitli

kullanıcılara sunar. Bu tezde kullandığımız özel ortamın oluşturulmasını destekler.

OpenAI gym, çevre ve öğrenme algoritmaları arasındaki iletişim için standart API'ler

sağlar. DPÖ algoritmalarını kullanarak mobil robotu eğitmek için OpenAI gym ile birlikte

stable baselines3 (SB3) kütüphanesini kullanıldı. SB3, PyTorch kullanarak son teknoloji

DPÖ algoritmalarının yüksek kalitede uygulanmasını sağlayan açık kaynak kodlu bir

çerçevedir (Raffin ve diğ., 2021).

Derin pekiştirmeli öğrenme kullanan mobil robot haritasız navigasyon sisteminin genel

mimarisi, Şekil 3.3’de gösterilmektedir. Bu sistemin üç temel bileşeni vardır:

Simülasyon, OpenAI Gym ortamı ve Stable Baselines temelli DPÖ algoritmalarının

63

uygulanması. Modüllerde kullanılan tüm araçlar, kütüphaneler ve çerçeveler açık

kaynaklıdır.

Şekil 3.3. Gazebo-Ros-OpenAI-Stable Baselines Mimarisi

3.8. Derin Pekiştirmeli Öğrenme Temsilcileri

Bu tezde son teknoloji DPÖ algoritmaları olan DQN, SAC, A2C, TRPO, TD3, PPO

karşılaştırıldı. Bu algoritmalar, DPÖ araştırma topluluğundaki mevcut literatüre ve

popülerliğe göre seçilmiştir (Fujimoto ve diğ., 2018; Raffin ve diğ., 2021). A2C, DQN,

TRPO, PPO gibi ayrık eylem uzayında çalışabilen farklı pekiştirmeli öğrenme

algoritmalarının performansları grid dünya ortamında kıyaslanmıştır. Sürekli eylem

uzaylarında çalışan TD3, SAC, PPO algoritmaları Gazebo ortamında kıyaslandı. DPÖ

ajanlarına ait hiperparemetreler Bölüm 4’de verilmiştir.

3.9. Çevre-Ortam Temsilleri

Pekiştirmeli öğrenmede çevre, girdi/çıktı veri reaksiyonlarının, model görselleştirmesinin

ve ödül işlevinin açıklamasıdır. Yani bir PÖ ajanı çevre ile etkileşime girerek çevreden

ödül, durum, yeni durum bilgilerini alır.

Araştırmacılar, yol planlama problemini çözmek için kullanılan çeşitli yöntemleri çevre

tipi ve yol planlama algoritmaları olarak iki faktöre göre ayırmaktadırlar. Çevre tipi, statik

ve dinamik olmak üzere ikiye ayrılır. Statik ortam, robottan başka hareketli nesneler

içermeyen ortam olarak tanımlanır; dinamik ortam ise dinamik hareketli nesnelere (yani

64

insanlar, hareketli makineler ve hareketli robotlar) sahip olan ortamdır(Al-Taharwa ve

diğ., 2008).

Bu tezde, pekiştirmeli öğrenme ajanları önce 2 boyutlu ortamlarda daha sonra 3 boyutlu

ortamlarda eğitildi. 3 boyutlu ortamda eğitim, donanım kaynaklarını fazlasıyla

zorlamıştır. Bu nedenle kapalı bir oda ortamı öncelikle grid dünya temsil edildi. Böylece

mevcut kaynaklar daha verimli kullanılmıştır. Eğitim süreleri arasındaki fark Bölüm 4’te

verildi. 3 boyutlu ortamda algoritmaları eğitmek için Gazebo Empty World ve Gazebo

Maze World ortamları kullanıldı. 2 boyutta ise Matlab’ta dinamik ve statik grid dünya,

MiniGrid kütüphanesinde ise MiniGrid-FourRooms ve MiniGrid-Dynamic-Obstacles

ortamları kullanıldı.

3.10. Ödül Modelleri

Ödül fonksiyonları veya ödül şekillendirme, geçerli politikayı ve optimizasyon hedefini

dolaylı olarak belirlediğinden, geçerli bir politikanın başarılı bir şekilde öğrenilmesinde

kritik bir rol oynar. Optimal bir ödül işlevi tasarlamak zorlu bir iştir (Abbeel ve Ng, 2004).

Bir ödül fonksiyonu, her t adımında ödülü hesaplar. Bir ajana, istenen şekilde eylem

oluşturma için pozitif bir ödül verilirken, aksi halde cezalandırılır. Bu nedenle, ödül işlevi,

ajana navigasyon politikasını / eğitim modelini öğrenirken veya model devreye

alındığında performansının iyileşip iyileşmediğini bildiren bir geri bildirim sinyali sağlar.

Bu çalışma için farklı ödül fonksiyonlarını ve parametrelerini araştırıldı ve denendi.

Bölüm 4’te her ortamda kullanılan ödül yaklaşımlarına yer verilmiştir.

3.11. Parametre Optimizasyonu

Bu tezde iki aşamalı bir yöntem izlenmiştir.2 boyutlu dünyada elde edilen

tecrübeler(hiperparamterler,modeller,vb.) 3 boyutlu ortamlara aktarıldı. Parametre

optimizasyonu için RL Baselines 3 Zoo (URL-12) kütüphanesinden yararlanıldı. RL

Baselines3 Zoo, PyTorch'taki pekiştirmeli öğrenme algoritmalarının güvenilir

uygulamaları olan Stable Baselines3'ü kullanan PÖ için bir eğitim çerçevesidir.

3.12. Donanım

Bu tezde çalışmalar, işlemci olarak, Intel(R) Core(TM)2 Duo CPU P8400 @ 2.26GHz,

2267 Mhz, 2 Çekirdek, 2 Mantıksal İşlemci, Yüklü Fiziksel Bellek (RAM) 4.00 GB bir

65

bilgisayarda yapılmıştır. Mevcut donanım kaynakları ile 3 boyutlu render işlemi çok uzun

süre almıştır ve kaynakları ciddi anlamda zorlamıştır.

66

4. BULGULAR VE TARTIŞMA

4.1. Grid Dünya

Şekil 4.1. 5x5 grid dünya

Şekil 4.1’de kapalı bir oda ortamının grid dünya temsili gösterilmektedir. 5x5 matris

yapısındadır. Her hücre bir metrekare olarak varsayılmıştır. Böylece 25 metrekarelik bir

oda oluşturuldu. [[3,3],[3,4],[3,5],[5,3]] noktaları duvar olarak tasarlandı. [5,5] noktası

varılacak hedef nokta olarak tasarlandı. [1,1] noktası robotun başlangıç noktasıdır. Durum

uzayı 25x1, eylem uzayı 4x1 vektörlerden oluşur. Yukarı, aşağı, sağa ve sola olmak üzere

4 eylem vardır. Ödül modeli olarak ise robotun hedefe ulaşamadığı her an -1 ödül puanı

alır. Hedefe ulaşınca ise 10 puan alır. Q ajanı ve Sarsa ajanı bu ortamda eğitildi.

Kullanılan hiperparametreler ve eğitim seçenekleri Tablo 4.1 ‘de verilmiştir.

Tablo 4.1.Q ve Sarsa ajanları için kullanılan hiperparametreler ve eğitim seçenekleri

Öğrenme Oranı-α 0.99

İndirim Faktörü-γ 0.95

Epsilon-ε 0.4

Bölüm Sayısı 200

Bölüm Başına Adım Sayısı 50

Durdurma Kriteri Ortalama Ödül

Durdurma Değeri 11

Pencere Uzunluğu 30

Şekil 4.2 ve 4.3’te sırasıyla Q ajanının ve Sarsa ajanın bölüm başına aldığı ödül

miktarlarının grafiği verilmiştir. Q ajanı öğrenmeyi daha hızlı gerçekleştirmiştir. Her iki

ajanda hedefe başarıyla ulaşmıştır.

67

Şekil 4.2. Q ajanın ödül performansı

Şekil 4.3. Sarsa ajanın ödül performansı

Şekil 4.4’te hastane odasının grid dünyada temsili verilmiştir. Bu sefer oda daha büyük

ve stokastik bir şekilde tasarlanmıştır. [4,5] noktasındaki hücre insan olarak düşünülebilir.

Ortamın diğer özellikleri ise şöyledir;

68

Şekil 4.4. 8x7 grid dünya

• Hedef: Mümkün olan en kısa sürede en yakın pozitif terminal durumlarına ulaşmaktır.

• Eylemler: Temsilci 4 olası yönde hareket edebilir. Sağ, sol, yukarı, aşağı

• Durumlar: 7 Pozitif Terminal (8. Sıra) ve 1 Negatif Terminal durumu (4,5) ile 56

durum vardır.

• Ödül: Tüm terminal olmayan durumların küçük bir negatif ödülü (-1) ve terminal

durumlarının büyük bir pozitif ödülü (10) vardır.

Ajan hareket etmek zorundadır, bir yerde duramaz. Ortamdaki stokastiklik ajanların

hareketini etkiler. Ortam, ajanı belirli bir yoğunlukta grid’in altına doğru iter. Eğer ajan

[4,2] durumundan yukarı çıkarsa, [6,2] durumuna inecektir.

Bu ortamda, Q ajanı ve DQN ajanı eğitilmiştir. Şekil 4.5 ve 4.6’da sırasıyla Q ajanının ve

DQN ajanın bölüm başına aldığı ödül miktarlarının grafiği verilmiştir. DQN ajanı

öğrenmeyi daha hızlı gerçekleştirmiştir. Bunun sebebi olarak fonksiyon yaklaştırıcı

olarak YSA’nın kullanılması söylenebilir. Kullanılan hiperparametreler ve eğitim

seçenekleri Tablo 4.2 ‘de verilmiştir.

Tablo 4.2.Q ve DQN ajanları için kullanılan hiperparametreler ve eğitim seçenekleri

Öğrenme Oranı-α 1

İndirim Faktörü-γ 0.95

Epsilon-ε 0.4

Bölüm Sayısı 700

Bölüm Başına Adım Sayısı 700

Durdurma Kriteri Bölüm Sayısı

Durdurma Değeri 700

Pencere Uzunluğu 5

69

Şekil 4.5. Q ajanın 8x7 grid dünyada ödül performansı

Şekil 4.6. DQN ajanın 8x7 grid dünyada ödül performansı

70

4.2. MiniGrid-FourRooms

Şekil 4.7. MiniGrid-FourRooms-v0

MiniGrid-FourRooms-v0 ortamı dört odalı bir grid ortamını temsil eder. Şekil 4.7’de

ortamın örnek bir temsili verilmiştir. Ajan, duvarlardaki 4 boşlukla birbirine bağlanan

dört odadan oluşan bir labirentte gezinmelidir. Ajan, bir ödül elde etmek için yeşil hedef

karesine ulaşmalıdır. Hem ajan hem de hedef kare dört odadan herhangi birine rastgele

yerleştirilir. Durum uzayı 8x8x4, eylem uzayı 4x1 vektörlerden oluşur. Yukarı, aşağı,

sağa ve sola olmak üzere 4 eylem vardır. Ödül modeli olarak ise başarı için '1- 0,9 * (adım

sayısı / toplam adım)' ve başarısızlık için '0' ödülü verilir. Ajan hedefe ulaştığında yada

maksimum adım sayısına ulaşıldığında bölüm sona erer.

Şekil 4.8’de DPÖ Ajanlarının bölüm başına aldığı ödül miktarlarının grafiği verilmiştir.

Algoritmalar eylem ve durum uzayına göre belirlenmiştir. MiniGrid-FourRooms-v0

ortamındaki eylem ve durum uzayı ayrıktır. Buna göre A2C, DQN, PPO, TRPO

algoritmaları ayrık eylem uzaylarına uygun olduğu için seçilmiştir. Ajanlar 2 milyon

bölüm eğitilmiştir. DQN ajanı ödül alamamıştır. A2C, PPO, TRPO ajanlarından ise PPO

daha kararlı görülmektedir ve doğru eylem seçimlerini kararlı bir şekilde yapmıştır.

Kullanılan hiperparametreler ve eğitim seçenekleri Tablo 4.3 ‘de verilmiştir.

71

Şekil 4.8. DPÖ Ajanlarının MiniGrid-FourRooms-v0 Ortamındaki Ödül Performansı

Tablo 4.3. A2C, DQN, PPO, TRPO ajanı için kullanılan hiperparametreler ve eğitim

seçenekleri

 A2C DQN PPO TRPO

normalize true true true true

n_envs 8 8 8 8

n_timesteps 4000000 4000000 4000000 4000000

policy 'MLP' 'MLP' 'MLP’ 'MLP'

n_steps 512 - 512 512

gae_lambda 0.95 - 0.95 0.95

gamma 0.99 0.99 0.99 0.99

ent_coef 0.0 - 0.0 0.0

learning_rate 2.5e-4 2.5e-4 2.5e-4 0.001

batch size

64 64 64

clip_range - - 0.2 -

n_epochs - - 10 -

72

4.3. MiniGrid-Dynamic-Obstacles

Şekil 4.9. MiniGrid- Dynamic-Obstacles-16x16-v0

MiniGrid-Dynamic-Obstacles-16x16-v0 ortamı, hareketli engellerin bulunduğu boş bir

odadır. Şekil 4.9’da ortamın örnek bir temsili verilmiştir. Ajanın amacı herhangi bir

engele çarpmadan yeşil hedef karesine ulaşmaktır. Ajan bir engelle çarpışırsa büyük bir

ceza kesilir ve bölüm sona erer. Bu ortam, Kısmi Gözlenebilirlikte Takviyeli Öğrenme

ile mobil robotlar için Dinamik Engelden Kaçınma'yı test etmek için kullanışlıdır. Durum

uzayı 16x16, eylem uzayı 4x1 vektörlerden oluşur. Yukarı, aşağı, sağa ve sola olmak

üzere 4 eylem vardır. Ödül modeli olarak ise başarı için '1- 0,9 * (adım sayısı / toplam

adım)' ve başarısızlık için '0' ödülü verilir. Ajan bir engelle çarpışırsa '-1' cezası verilir.

Ajan hedefe ulaştığında, bir engele çarptığında ya da maksimum adım sayısına

ulaşıldığında bölüm sona erer.

Şekil 4.10’da DPÖ Ajanlarının bölüm başına aldığı ödül miktarlarının grafiği verilmiştir.

Algoritmalar eylem ve durum uzayına göre belirlenmiştir. MiniGrid-Dynamic-Obstacles-

16x16-v0 ortamındaki eylem ve durum uzayı ayrıktır. Buna göre A2C, DQN, PPO, TRPO

algoritmaları ayrık eylem uzaylarına uygun olduğu için seçilmiştir. Ajanlar 2 milyon

bölüm eğitilmiştir. Tablo 4.3’teki hiperparametreler kullanılmıştır. A2C, DQN PPO,

TRPO ajanlarından ise PPO daha kararlı görülmektedir ve doğru eylem seçimlerini

kararlı bir şekilde yapmıştır.

73

Şekil 4.10. DPÖ Ajanlarının MiniGrid-Dynamic-Obstacles-16x16-v0 Ortamındaki Ödül

Performansı

4.4. Gazebo Empty World

Gazebo’da boş dünya içinde hiçbir engel bulunmayan boş bir alana sahiptir. Gözlemlerin

sadece uzaklık ve açı olduğu robotu hedefe götürür. Uygulanan tüm ortamlarda, ajan

eylemleri doğrusal ve açısal hızlardır. Durum uzayının boyutu 38’dir. Durum uzayı, lidar

sensöründen gereken 36 değerine (örnekleme miktarı), hedefe uzaklığa ve hedefe açıya

sahiptir. Ajan hem açısal hem de doğrusal hızlar için normalleştirilmiş girişler kullanır,

yani ajanın eylemleri -1 ile 1 arasında skalerdir. Bu dünyada sürekli eylem alanında

çalışabilen TD3, PPO ve SAC algoritmaları denenmiştir. Şekil 4.11’de ortamın örnek bir

temsili verilmiştir.

Ödül, robotun bir bölüm sırasındaki performansının ve yörüngesinin nicel bir ölçüsünü

sağlar. Ajanın amacı bunu maksimize etmektir. Gazebo ortamında yapılan eğitimlerde

bir bölüm yalnızca bir çarpışma veya zaman aşımı olduğunda sonlanır, aksi takdirde bir

hedefe ulaşıldığında, robota mevcut konumundan ulaşması gereken yeni bir hedef

konumu verilir. Dolayısıyla, daha yüksek kümülatif ödül, bir robotun çarpışmadan veya

zaman adımı sınırını aşmadan daha fazla sayıda hedefe ulaşabildiği anlamına gelir. Ödül

74

modeli olarak; hedefe varınca 100 puan, çarpışma olursa -120 puan, zaman sınırı aşılınca

0 puan belirlenmiştir. Zaman sınırı 200 zaman adımından sonra aşılır. Bu yalnızca robot

hedefe ulaşamadığında veya çarpıştığında gerçekleşir. Bu, dairesel davranışı önlemek

veya robotun bir yere takılıp kalmasını önlemek içindir. Kullanılan hiperparametreler ve

eğitim seçenekleri Tablo 4.4 ‘de verilmiştir.

Tablo 4.4. TD3, PPO ve SAC ajanı için Gazebo Empty World ortamında kullanılan

hiperparametreler

 PPO SAC TD3

training_timesteps 2000000 2000000 2000000

policy MLP MLP MLP

activation_fn relu relu relu

optimizer Adam Adam Adam

n_steps 100 - -

gae_lambda 0.95 - -

gamma 0.99 0.99 0.99

ent_coef 0.0 auto

tau - 0.005 0.005

learning_rate 0.0003 0.0003 0.001

batch size 100 256 15000

clip_range 0.2 - -

n_epochs 5 - -

vf_coef 0.5 - -

max_grad_norm 0.5 - -

buffer_size - 1000000 2000000

learning_starts - 100 25000

gradient_steps - -1 -1

target_update_interval - 1 -

target_entropy - auto -

policy_delay - - 2

target_policy_noise - - 0.2

 target_noise_clip - - 0.5

75

 Şekil 4.11. Gazebo Empty World

Şekil 4.12. TD3, PPO ve SAC ajanı için Gazebo Empty World ortamında ödül

performansı

TD3, PPO ve SAC ajanıları için Gazebo Empty World ortamında ödül performansı Şekil

4.12’de verildi. TD3 ajanının diğerlerinden daha başarılı olduğu görüldü. Turtlebot3

robotu çarpışmasız bir şeklide hedefe ulaşmayı başardı.

76

4.5. Eğitim Süreleri

Tablo 4.5’de ajanların eğitim ortamlarına göre eğitilme süreleri verildi. Basit ortam

tasarımlarında eğitim süresi kısa iken tasarım karmaşıklaştıkça eğitim süresi artmaktadır.

Gazebo ortamlarında eğitim sürelerinin uzunluğu dikkat çekicidir. Bu tezde,2 boyutlu

ortam kullanılmasının ana sebeplerinden biri, eğitim ortamının karmaşıklığını azarlatarak

donanım kaynaklarını verimli bir şeklide kullanama ve algoritmalara yoğunlaşmaktı.

Tablo 4.5. Ajanların eğitim ortamlarına göre eğitilme süreleri

Ortam - Çevre Ajan Eğitim Süresi

Grid Dünya (5x5) Q-öğrenme 55 dakika

Grid Dünya (5x5) Sarsa 58 dakika

Dinamik Grid Dünya (8x7) Q-öğrenme 2 saat 10 dakika

Dinamik Grid Dünya (8x7) DQN 2 saat 30dakika

MiniGrid-FourRooms A2C 6 saat

MiniGrid-FourRooms DQN 4 saat

MiniGrid-FourRooms PPO 6 saat

MiniGrid-FourRooms TRPO 6 saat

MiniGrid-Dynamic-Obstacles A2C 7 saat

MiniGrid-Dynamic-Obstacles DQN 5 saat

MiniGrid-Dynamic-Obstacles PPO 7 saat

MiniGrid-Dynamic-Obstacles TRPO 7 saat

Gazebo Empty World PPO 72

Gazebo Empty World SAC 74

Gazebo Empty World TD3 80

4.6. Test

Robotik haritalama, gerçek bir ortamın bir robot veya bir grup robot tarafından dijital bir

modele dönüştürüldüğü bir süreçtir. Robot nesnesinin bir sensörü, konumu ve hız

parametreleri vardır. Robot ilk konumundan koşmaya başlar. Simülasyonu çalıştırırken,

bu konum haritadaki boş alanın herhangi bir x-y koordinatı olabilir. Gerçek dünya

deneyinde, robot o anda odanın neresinde olursa olsun, başlangıç konumunun harita

üzerinde sıfır değeri vardır. Lazer sensörü okumaları, ajan tarafından yapılan gözlemler

olarak kabul edilir. Uygulamada lazer sensörü okumalarının açısal konumlarını,

maksimum aralığı ve gürültü parametreleri tanımlandı. Ajanın eylemi, robotun doğrusal

ve açısal hızlarının bulunduğu ve olduğu iki boyutlu bir vektördür. Ajan, hem açısal hem

de doğrusal hızlar için normalleştirilmiş girişler kullanır, Yani ajanın eylemleri -1 ile 1

arasında skalerdir. Ajan, en kötü durum senaryosunu en aza indiren, en yakın engelden

77

kaçınması için ödüllendirilir. Ek olarak, ajana daha yüksek doğrusal hızlar için pozitif bir

ödül verilir ve daha yüksek açısal hızlar için negatif bir ödül verilir. Bu ödüllendirici

strateji, ajanın daireler çizme davranışını caydırır. Şekil 4.13’de gösterilen Gazebo

ortamı, iki dinamik engelin bulunduğu bir labirenttir. Bu ortamda, haritasız navigasyon

mobil robotikte kullanılan yerel bir planlayıcı, önceden planlanmış bazı yörüngeler robota

sağlanır. PÖ haritasız navigasyon algoritması önceden planlanmış noktalardan beslenir

yörünge istenen hedefler olarak; robot bir hedefe ulaştığında noktasından sonra,

yörüngedeki bir sonraki nokta son noktaya kadar gönderilir yörünge tespit edilir. Ortam

gözlemleri, robottan hedefe olan mesafe ve açı ile LIDAR ölçümlerinden oluşmaktadır.

Uygulanan tüm ortamlarda, ajan eylemleri doğrusal ve açısal hızlardır. Ödül modeli

Gazebo Empty World ile aynıdır. Tek fark çarpışma durumunda verilen cezadır. Hedefe

varınca 100 puan, çarpışma olursa -200 puan, zaman sınırı aşılınca 0 puan belirlenmiştir.

Zaman sınırı 100 zaman adımından sonra aşılır.

Şekil 4.13. Gazebo Maze World

Daha önceki deneylerde PPO ve TD3 algoritmasının başarısı ön plana çıkmıştır. PPO

hem ayrık hem de sürekli eylem uzaylarında çalışabilirken TD3 sadece sürekli eylem

uzaylarında çalışabilir. PPO algoritması TRPO algoritmasının geliştirilmiş hali iken TD3

algoritması DDPG algoritmasının geliştirilmiş halidir. Bundan dolayı test ortamında PPO

ve TD3 algoritmaları karşılaştırıldı.

78

Şekil 4.14. TD3 ve PPO ajanı için Gazebo Maze World ortamında ödül performansı

Şekil 4.14’de TD3 ve PPO ajanı için Gazebo Maze World ortamında ödül performansı

verilmiştir. Her iki ajanda 2 milyon bölüm eğitilmiştir. Hiperparametre olarak Gazebo

Empty ortamı ve grid dünyalarda kullanılan parametreler kullanıldı.TD3 ajanını daha

yüksek ödüllere daha hızlı ulaştığı görüldü. Robotun başarılı bir şekilde hedefe ulaştığı

görüldü.

Şekil 4.15. TD3 ajanı için Gazebo Maze World ortamında ödül performansı

79

Şekil 4.16. PPO ajanı için Gazebo Maze World ortamında ödül performansı

80

5. SONUÇLAR VE ÖNERİLER

Bu tezde, bilinmeyen ortamlarda otonom, haritasız mobil robot navigasyonu için Derin

Pekiştirmeli Öğrenme yaklaşımı incelenmiştir. Yol planlama ve otonom navigasyon

problemlerine çözüm olarak son yıllarda üzerine oldukça araştırma yapılan pekiştirmeli

öğrenme algoritmaları incelendi. Farklı DPÖ algoritmaları farklı ortamlarda çalıştırıldı

ve performansları bölüm başına ödül miktarı olarak ölçüldü. Önerilen ödül modeli

robotun dairesel davranış yapmasını ve bir yere takılıp kalmasın engellemek için ve

hedefe çarpışma olmadan varmasını sağlamak için tasarlandı.

Son teknoloji DPÖ algoritmaları olan DQN, DDPG, A2C, TRPO, TD3, PPO

karşılaştırıldı. Bu algoritmalar, DPÖ araştırma topluluğundaki mevcut literatüre ve

popülerliğe göre seçilmiştir(Fujimoto ve diğ., 2018; Raffin ve diğ., 2021)

Ortam tasarımı olarak mevcut donanım kaynaklarını verimli kullanmak adına öncelikle 2

boyutlu ortam tasarımında deneyimler elde edildi.2 boyutlu ortam olarak Matlab’ta grid

dünya ve ayrıca Minigrid kütüphanesinden 2 adet ortam kullanıldı.3 boyutu ortam için

ise Gazebo benzetim ortamı kullanıldı.

Parametre optimizasyon yöntem olarak 2 boyutlu ortamda denemeler yapıldı. Elde edilen

tecrübeler 3 boyutlu dünyaya aktarıldı. Hiperparamtere optimizasyonu için RL Baselines

3 Zoo kütüphanesinde yararlanıldı.

Grid dünyası, çalışma ortamını görsellerden kolayca tanımlayabilmesi ve pekiştirmeli

öğrenme girdisine giren durumun ve bu durumdaki davranışın basit olması

avantajlarından dolayı yol arama probleminde sıklıkla kullanılan ortamı ifade eden bir

tekniktir. Ancak, çalışma ortamını ifade etme işi sadece görüntüyü grid bir dünyaya

dönüştürmekle bitmiyor. Uygun bir ödül fonksiyonu kurma, pekiştirmeli öğrenme ile

çözülecek bir problem oluşturma, bir pekiştirmeli öğrenme algoritması seçme ve son

olarak pekiştirmeli öğrenme algoritmasının öğrenme parametrelerine değer atama süreci

tasarımcının sorumluluğundadır. Bu tezde, problemi çözmek için kullanılan derin

pekiştirmeli öğrenme algoritmasının model mimarisi ve parametreleri ve grid dünyasında

yol arama probleminde grid dünyası çevre tasarımı örneği sunuldu. Ardından, çeşitli derin

takviyeli öğrenmenin öğrenme algoritmaları farklı ortamlarda çalıştırıldı ve

performansları gözlemlendi.

81

Basit ortamlarda Q-öğrenme yaklaşmışının başarılı olduğu gözlendi. Durum uzayı

büyüdükçe Q tablolarının yetersiz kaldığı tespit edildi. Bu noktada fonksiyon

yaklaştırıcısı yöntemi incelendi. Yapay sinir ağı modelleri incelendi. DQN ajanının

getirdiği yaklaşımın Q-öğrenmeden daha başarılı olduğu görüldü. Grid dünyada hastane

modellemesinin stokastik versiyonunda DQN ajanının Q-öğrenme ajanından daha

başarılı olduğu tespit edildi.

MiniGrid ortamlarında A2C, DQN, TRPO, PPO ajanları eğitildi. PPO ajanının daha

başarılı olduğu görüldü. Bunun sebebi olarak politika tabanlı bir yaklaşım kullanılması

söylenebilir.

Sürekli eylem uzaylarında çalışan TD3, SAC, PPO algoritmaları Gazebo Empty

ortamında kıyaslandı.TD3 ajanı daha başarılı sonuçlar aldı.

Test ortamı olarak Gazebo Maze World kullanıldı. Bu ortamda Turtlebot robotu

kullanıldı. PÖ modelleri, lazer sensör gözlemleri kullanılarak eğitildi. Lazer sensör

gözlemleri, daha az işlem gerektirdiği için kamera gözlemlerine kıyasla modelleri

eğitmek daha hızlı olduğu için kullanıldı. Sürekli eylem uzaylarında çalışabilen ve daha

önceki deneylerde başarıları ile ön plana çıkan TD3, PPO algoritmaları kıyaslandı. TD3

ajanı daha başarılı sonuçlar aldı.

Sonuç olarak; sonsuz olası durumlara sahip birçok durumda, doğrusal yaklaşım ve Q

tablosu kullanmanın doğru yaklaşım olmadığı görüldü. DQN algoritmasının sürekli

durumlar ve ayrık eylemler üzerinde başarılı olduğu ve sinir ağı kullanan doğrusal

olmayan fonksiyon yaklaşımının çok güçlü bir yaklaşım olduğu sonucuna varıldı. Sürekli

eyleme ve sürekli durum uzayında sahip ortamlarda ise PPO, TD3 algoritmalarını

kullanılabileceği ve başarılı olunabileceği görüldü. Bunun sebebi olarak fonksiyon

yaklaştırıcısı olarak aktör-kritik ağ modelinin kullanılması söylenebilir.

Bu tezde, bir mobil robotun 2 boyutlu grid ortamda ve 3 boyutlu bir oda ortamında yol

planlaması yapması için çeşitli DPÖ algoritmaları çalıştırıldı. Kullanılan algoritmaların

yol planlama problemini çözebileceği görüldü.

Gelecekte ise bu çalışmada kullanılan ve başarıları gözlenen PPO, TD3 gibi

algoritmaların ağ ve ödül modeli üzerine çalışarak bunların öğrenmeye olan etkisinin

82

tespit edilmesi planlandı. Reward Shaping(Ödül fonksiyonu modelleme) pekiştirmeli

öğrenme konusunun en zorlu araştırma konularından biridir. Bu konu üzerine özellikle

çalışılarak algoritmalar toplam ödül, başarı oranı, en kısa yolu bulma gibi ölçütler

üzerinden kıyaslanacaktır. Ayrıca geleneksel yol planlama algoritmaları (A*,RRT, vb.)

ile DPÖ algoritmaları hibrit bir şekilde kullanılarak yol planlama problemlerine çözüm

aranacaktır. Bu anlamda global bir yol planı klasik algoritmalar ile oluşturulup hareket

planlaması DPÖ ajanları ile yapılabilir, kapalı ortamlar segmentlere ayrılıp her segmentte

DPÖ ajanı çalışabilir ve segmentler arası bağlantı A*, RRT gibi algoritmalarla

sağlanabilir ya da bir mobil robotun bir hedefe tam anlamıyla varması için belirli bir

güvenli mesafeye (çarpışma olamayacak mesafe) kadar DPÖ ajanı o noktadan sonra

geleneksel yol planlama algoritmaları kullanılabilir. Nihai hedef ise en iyi performans

veren algoritmanın, simülasyon ortamından gerçek robota aktarılmasıdır.

83

KAYNAKLAR

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,

Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G.,

Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., ... Zheng, X. (2016).

TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed

Systems. IEEE Symposium on Security and Privacy, 265-283.

https://doi.org/10.1109/SP.2016.29.

Abbeel, P., & Ng, A. Y. (2004). Apprenticeship Learning via Inverse Reinforcement

Learning. Proceedings of the Twenty-First International Conference on Machine

Learning (ICML 2004), 1–8. https://doi.org/10.1145/1015330.1015430

Abel, D. (2020). A Theory of Abstraction in Reinforcement Learning. Phd Thesis,

Department of Computer Science at Brown University.

Aghaei, V., Onat, A., & Yıldırım, S. (2018). A Markov Chain Monte Carlo Algorithm

For Bayesian Policy Search. Systems Science & Control Engineering, 6(1), 438-

455. Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M.

S., Hasan, M., Van Essen, B. C., Awwal, A. A. S., & Asari, V. K. (2019). A State-

of-the-Art Survey on Deep Learning Theory and Architectures. Electronics

(Switzerland), 8(3), 1–67. https://doi.org/10.3390/electronics8030292

Al-Taharwa, I., Sheta, A., & Al-Weshah, M. (2008). A Mobile Robot Path Planning

Using Genetic Algorithm in Static Environment. Journal of Computer Science,

4(4), 341–344. https://doi.org/10.3844/jcssp.2008.341.344

Altunaş, N., Imal, E., Emanet, N., Öztürk, C. N. (2016). Reinforcement Learning-Based

Mobile Robot Navigation. Turkish Journal of Electrical Engineering and Computer

Sciences, 24(3), 1747-1767.

Aradi, S. (2020). Survey of Deep Reinforcement Learning for Motion Planning of

Autonomous Vehicles. IEEE Transactions on Intelligent Transportation Systems,

23(2), 740–759. https://doi.org/10.1109/TITS.2020.3024655

Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). Deep

Reinforcement Learning: A Brief Survey. IEEE Signal Processing Magazine,

34(6), 26-38. https://doi.org/10.1109/MSP.2017.2743240

Babaeizadeh, M., Frosio, I., Tyree, S., Clemons, J., & Kautz, J. (2017). Reinforcement

Learning Through Asynchronous Advantage Actor-Aritic on a GPU. In

Proceedings of the 5th International Conference on Learning Representations

(ICLR 2017), Toulon, France, April 24-27, 2017.

Bellman, R. (1957a). A Markovian Decision Process. Indiana University Mathematics

Journal, 6(4), 679–684. https://doi.org/10.1512/iumj.1957.6.56038

Bellman, R. (1957b). Dynamic Programming (6th ed.). Princeton, NJ: Princeton

University Press.

https://doi.org/10.1109/SP.2016.29
https://doi.org/10.1145/1015330.1015430
https://doi.org/10.3390/electronics8030292
https://doi.org/10.3844/jcssp.2008.341.344
https://doi.org/10.1109/TITS.2020.3024655
https://doi.org/10.1109/MSP.2017.2743240

84

Bölük, N., Ucar, O., Inner, A.B. (2019). Mobil Robotlarda Navigasyon Problemi için

Pekiştirmeli Öğrenme. Türkiye Robotbilim Konferansı, İstanbul, Türkiye,26-28

Haziran 2019.

Brémaud, P. (1999). Markov chains: Gibbs fields, Monte Carlo simulation, and queues.

New York: Springer-Verlag.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., &

Zaremba, W. (2016). OpenAI Gym. arxiv preprint arXiv:1606.01540.

Celebi, M.E., Aydin, K. (2016). Unsupervised Learning Algorithms. Switzerland :

Springer International Publishing.

Çetin, H., Durdu, A. (2014). Path Planning of Mobile Robots with Q-learning. 22nd

Signal Processing and Communications Applications Conference (SIU), Trabzon,

Turkey, 2162-2165. https://doi.org/10.1109/SIU.2014.6830691

Chance P. (1999). Thorndike's Puzzle Boxes And The Origins Of The Experimental

Analysis Of Behavior. Journal of Experimental Analysis of Behavior, 72(3), 433-

440. https://doi.org/10.1901/jeab.1999.72-433

Chen, Y. F., Everett, M., Liu, M., How, J. P. (2017). Socially Aware Motion Planning

With Deep Reinforcement Learning. In 2017 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS) (pp. 1343-1350). Vancouver, Canada,

doi:10.1109/IROS.2017.820231

Cheng, J., Cheng, H., Meng, M. Q. H., & Zhang, H. (2018, December). Autonomous

navigation by mobile robots in human environments: A survey. IEEE Transactions

on Robotics, 34(6), 1309-1332. doi:10.1109/TRO.2018.2867592

Cheng, J., Cheng, H., Meng, M. Q.-H. ve Zhang, H. (2018). Autonomous Navigation by

Mobile Robots in Human Environments: A Survey. 2018 IEEE International

Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia, 12-

15 December 2018 https://doi.org/10.1109/ROBIO.2018.8665075

Demir, A. (2019). Derin Pekiştirmeli Öğrenme Kullanarak Rastgele Yükler ile Hareket

Planlama ve Kontrol. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen

Bilimleri Enstitüsü, İstanbul, 550541

Ejaz, M. M., Tang, T. B. ve Lu, C. -K. (2019). Autonomous Visual Navigation using

Deep Reinforcement Learning: An Overview. 2019 IEEE Student Conference on

Research and Development (SCOReD), Bandar Seri Iskandar, Malaysia, 294-299.

https://doi.org/10.1109/SCORED.2019.8896352

Engin, C. D. (2019). Otonom Mobil Robotların Pekiştirmeli Öğrenme ile Kontrolü.

Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul,

604642

https://doi.org/10.1109/SIU.2014.6830691
https://doi.org/10.1901/jeab.1999.72-433
https://doi.org/10.1109/ROBIO.2018.8665075

85

Everett, M., Chen, Y. F. ve How, J. P. (2018). Motion Planning Among Dynamic,

Decision-Making Agents with Deep Reinforcement Learning. 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), 3052-3059.

https://doi.org/10.1109/IROS.2018.8593871

Everett, M., Chen, Y. F. ve How, J. P. (2018). Motion Planning Among Dynamic,

Decision-Making Agents with Deep Reinforcement Learning. 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain,

3052-3059. https://doi.org/10.1109/IROS.2018.8593871

Fadlullah, Z. M., Tang, F., Mao, B., Kato, N., Akashi, O., Inoue, T., & Mizutani, K.

(2017). State-of-the-Art Deep Learning: Evolving Machine Intelligence Toward

Tomorrow's Intelligent Network Traffic Control Systems. IEEE Communications

Surveys and Tutorials, 19(4), 2432-2455. [7932863].

https://doi.org/10.1109/COMST.2017.2707140

Fox, D., Burgard, W., Thrun, S. (1997). Collision Avoidance For Mobile Robots: A

Dynamic Window Approach. IEEE Robotics & Automation Magazine, 4(1), 23-33.

doi:10.1109/100.580977

François-Lavet, V., Henderson, P., Islam, R., Bellemare, M. G. ve Pineau, J. (2018). An

Introduction to Deep Reinforcement Learning. Foundations and Trends in Machine

Learning, 11(3-4), 219-354. https://doi.org/10.1561/2200000

Fujimoto, S., van Hoof, H. ve Meger, D. (2018). Addressing Function Approximation

Error in Actor-Critic Methods. Proceedings of the 35th International Conference

on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, 1582-

1591. Proceedings of Machine Learning Research (PMLR), 80, 2018

Garrote, L., Premebida, C., Silva, M., & Nunes, U. (2014). An RRT-based navigation

approach for mobile robots and automated vehicles. Robotics and Autonomous

Systems, 62(11), 1506-1517. doi:10.1016/j.robot.2014.07.003

Gong, Z., Liang, P., Feng, L., Cai, T., Xu, W. (2011). Comparative Analysis Between

Gazebo And V-REP Robotic Simulators. Robotics and Computer-Integrated

Manufacturing, 27(6), 957-966. doi: 10.1016/j.rcim.2011.07.005

Güçkıran, K. ve Bolat, B. (2019). Autonomous Car Racing in Simulation Environment

Using Deep Reinforcement Learning. 2019 Innovations in Intelligent Systems and

Applications Conference (ASYU), pp. 1-6, İzmir, Turkey, 31 October 2019- 02

November 2019

Haarnoja, T., Zhou, A., Abbeel, P., Levine, S. (2018). Soft Actor-Critic: Off-Policy

Maximum Entropy Deep Reinforcement Learning With A Stochastic Actor. In

Proceedings of the 35th International Conference on Machine Learning (ICML)

(pp. 1861-1870). PMLR. doi:10.1561/2200000071

https://doi.org/10.1109/IROS.2018.8593871
https://doi.org/10.1109/IROS.2018.8593871
https://doi.org/10.1109/COMST.2017.2707140
https://doi.org/10.1561/2200000

86

Harnad, S. (2006). The Annotation Game: On Turing (1950) on Computing, Machinery,

and Intelligence. In Epstein, R. ve Peters, G. (Eds.), [Book Chapter] (in Press).

Kluwer Academic Publishers.

Hu, Y., Yang, S. X. (2004). A Knowledge Based Genetic Algorithm For Path Planning

Of A Mobile Robot. IEEE Transactions on Robotics and Automation, 20(6), 1059-

1068. doi:10.1109/TRO.2004.836473

Goodfellow, I., Bengio, Y., Courville, A. C. (2016). Deep Learning. Massachusetts: MIT

Press.

Ivaldi, S., Padois, V., Nori, F. (2014). Tools For Dynamics Simulation Of Robots: A

Survey Based On User Feedback. ArXiv, abs/1402.7050.

James, S. (2016). 3D Simulated Robot Manipulation Using Deep Reinforcement

Learning. Phd Thesis, Imperial College London.

Kang, S.-C., Chang, W.-T., Gu, K.-Y., Chi, H.-L. (2011). Robot Development Using

Microsoft Robotics Developer Studio. New York: Chapman and Hall/CRC.

Kardell, S., Kuosku, M. (2017). Autonomous Vehicle Control Via Deep Reinforcement

Learning. Master's thesis, Department of Electrical Engineering, Chalmers

University of Technology, Gothenburg, Sweden.

Keller, M., Hoffmann, F., Bertram, T., Hass, C., Seewald, A. (2014). Planning Of Optimal

Collision Avoidance Trajectories With Timed Elastic Bands. IFAC Proceedings

Volumes, 47(3), 9822-9827. doi:10.3182/20140824-6-ZA-1003.01143

Kempka, M., Wydmuch, M., Runc, G., Toczek, J., & Jaśkowski, W. (2016, June).

Vizdoom: A Doom-Based AI Research Platform For Visual Reinforcement

Learning. In 2016 IEEE Conference on Computational Intelligence and Games

(CIG) (pp. 1-8). Santorini, Greece, 20-23 September 2016.

doi:10.1109/CIG.2016.7860433

Kersandt, K. (2018). Deep Reinforcement Learning As Control Method For Autonomous

Uavs. Master's thesis, Universitat Politècnica de Catalunya, Barcelona, Spain.

Khan, M. U. (2019). Mobile Robot Navigation Using Reinforcement Learning in

Unknown Environments. Balkan Journal of Electrical and Computer Engineering,

7(3), 235–244. https://doi.org/10.17694/bajece.532746

Koenig, N., Howard, A. (2004, October). Design And Use Paradigms For Gazebo, An

Open-Source Multi-Robot Simulator. In 2004 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566) (pp. 2149-

2154 vol.3). Sendai, Japan, 28 September 2004- 02 October 2004

doi:10.1109/IROS.2004.1389727

Lefrançois, G. R. (2000). Theories of human learning : What The Old Man said (4th ed.).

Wadsworth: Thomson Learning.

https://doi.org/10.17694/bajece.532746

87

Levine, S., Finn, C., Darrell, T., Abbeel, P. (2016). End-To-End Training Of Deep

Visuomotor Policies. The Journal of Machine Learning Research, 17(39), 1-40.

Lewis, F. L., Vrabie, D., Vamvoudakis, K. G. (2012). Reinforcement Learning And

Feedback Control: Using Natural Decision Methods To Design Optimal Adaptive

Controllers. IEEE Control Systems Magazine, 32(6), 76-105.

doi:10.1109/MCS.2012.2214134.

Li, Y. (2018). Deep Reinforcement Learning: An Overview. arXiv preprint

arXiv:1801.07240.

Liang, D., Patel, A. K., Siegwart, R. (2020). Real-Time Collision Avoidance For Mobile

Robots İn Dense Crowds Using İmplicit Multi-Sensor Fusion And Deep

Reinforcement Learning. In Proceedings of the 19th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2020) (pp. 1087-1094),
Auckland, New Zealand, May 2020.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra,

D. (2016). Continuous Control With Deep Reinforcement Learning. 4th

International Conference on Learning Representations, ICLR 2016, San Juan,

Puerto Rico, May 2-4, 2016.

Liu, X., Gong, D. (2011). A Comparative Study Of A-Star Algorithms For Search And

Rescue İn Perfect Maze. 2011 International Conference on Electric Information

and Control Engineering, Wuhan, 15-17 April 2011.doi:

10.1109/ICEICE.2011.5777723.

Marin-Plaza, P., Hussein, A., Martin, D., Escalera, A. (2018). Global And Local Path

Planning Study İn A ROS-Based Research Platform For Autonomous Vehicles.

Journal of Advanced Transportation, February 22,

2018,.https://doi.org/10.1155/2018/6392697

Puterman, M. L. (2005). Markov Decision Processes: Discrete Stochastic Dynamic

Programming. Hoboken, NJ: John Wiley & Sons.

Michel, O. (2004). Cyberbotics Ltd. Webots™: Professional Mobile Robot Simulation.

International Journal of Advanced Robotic Systems, 1(1), 5-20. doi:10.5772/5618

Miller, A. T., Allen, P. K. (2004). Graspit: A Versatile Simulator For Robotic Grasping.

IEEE Robotics & Automation Magazine, 11(4), 110-122.

doi:10.1109/MRA.2004.1371616

Mitchell, T. M. (1997). Machine Learning. New York, NY: McGraw-Hill.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Petersen, S. (2013). Playing Atari With Deep Reinforcement Learning. Nature,

518(7540), 529-533. doi:10.1038/nature12271

88

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Petersen, S. (2015). Human-Level Control Through Deep Reinforcement Learning.

Nature, 518(7540), 529-533. doi:10.1038/nature14236

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D.,

Kavukcuoglu, K. (2016). Asynchronous Methods For Deep Reinforcement

Learning. In Proceedings of the 33rd International Conference on Machine

Learning (pp. 1928-1937), San Francisco, California, USA. June 21-26 2016

Muhammad, J., & Bucak, I. O. (2013). An İmproved Q-Learning Algorithm For An

Autonomous Mobile Robot Navigation Problem. In 2013 The International

Conference on Technological Advances in Electrical, Electronics and Computer

Engineering (TAEECE) (pp. 239-243), Konya, Turkey. June 14-16 2013.

doi:10.1109/TAEECE.2013.6557278

Nasteski, V. (2017). An Overview Of The Supervised Machine Learning Methods.

Journal of Strategic Innovation and Sustainability, 4(1), 1-17.

doi:10.2139/ssrn.32814611

Pandey, A. (2017). Mobile Robot Navigation And Obstacle Avoidance Techniques: A

Review. International Robotics & Automation Journal, 2(2), 96-108.

doi:10.15406/iratj.2017.02.00023

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., ... & Chintala, S.

(2019). Pytorch: An İmperative Style, High-Performance Deep Learning Library.

In Advances in Neural Information Processing Systems (NIPS) 2019 (pp. 8024-

8035). Montreal, Quebec, Canada , 6-12 December, 2019.

Patle, B. K., Babu L, G., Pandey, A., Parhi, D. R. K., Jagadeesh, A. (2019). A Review:

On Path Planning Strategies For Navigation Of Mobile Robot. Defence Technology,

15(4), 582-606. doi: 10.1016/j.dt.2019.04.011.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler,

R., Ng, A. (2009). ROS: An Open-Source Robot Operating System. In Proceedings

of the ICRA workshop on open source software (Vol. 3, No. 3.2, p. 5). Kobe,

Japan,May 2019.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., & Dormann, N. (2021).

Stable-Baselines3: Reliable Reinforcement Learning İmplementations. Journal of

Machine Learning Research, 22(268), 1-8.

Reibman, A., Smith, R., & Trivedi, K. (1989). Markov And Markov Reward Model

Transient Analysis: An Overview Of Numerical Approaches. European Journal of

Operational Research, 40(2), 257-267. doi: 10.1016/0377-2217(89)90052-5

Risald, A. E., Mirino, A. E., & Suyoto. (2017). Best Routes Selection Using Dijkstra And

Floyd-Warshall Algorithm. In 2017 11th International Conference on Information

& Communication Technology and System (ICTS) (pp. 155-158). IEEE, June

2-4 2017. doi: 10.1109/ICTS.2017.822647365

89

Rothman, D. (1984). Monte Carlo Techniques: An Overview. Statistical Science, 1(3),

235-247. doi: 10.1214/ss/1177692200

Ruan, X., Ren, D., Zhu, X., Huang, J. (2019). Mobile Robot Navigation based on Deep

Reinforcement Learning. 2019 Chinese Control And Decision Conference (CCDC),

Nanchang, China, 3-5 June 2019. DOI: 10.1109/CCDC.2019.8832393

Santos Pessoa de Melo, M., Gomes da Silva Neto, J., Jorge Lima da Silva, P., Natario

Teixeira, J. M. X. ve Teichrieb, V. (2019). Analysis and Comparison of Robotics

3D Simulators. 2019 21st Symposium on Virtual and Augmented Reality (SVR), Rio

de Janeiro, Brazil, 242-251. https://doi.org/10.1109/SVR.2019.00049

Schmidhuber, J. (2015). Deep Learning İn Neural Networks: An Overview. Neural

Networks, 61, 85-117. doi: 10.1016/j.neunet.2014.09.003

Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015). Trust Region Policy

Optimization. In International Conference on Machine Learning (pp. 1889-1897).

PMLR. San Francisco, CA., 22-26 June 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O. (2017). Proximal Policy

Optimization Algorithms. arXiv preprint arXiv:1707.06347.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Driessche, G. V. D., ... &

Dieleman, S. (2016). Mastering The Game Of Go With Deep Neural Networks And

Tree Search. Nature, 529(7587), 484-489. doi:10.1038/nature16961

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., ... & Hassabis,

D. (2017). Mastering Chess and Shogi by Self-Play with a General Reinforcement

Learning Algorithm. arXiv preprint arXiv:1712.01815.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., ... & Hassabis,

D. (2017). Mastering Chess and Shogi by Self-Play with a General Reinforcement

Learning Algorithm. arXiv preprint arXiv:1712.01815.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., ... &

Dieleman, S. (2016). Mastering The Game Of Go Without Human Knowledge.

Nature, 529(7587), 484-489. doi:10.1038/nature16961

Skinner, B. F. (1938). The Behavior of Organisms: An Experimental Analysis. New York,

NY: Appleton-Century-Crofts.

Sobell, M. G. (2015). A Practical Guide to Ubuntu Linux (5th ed.). Sebastopol, CA:

O'Reilly Media.

Stentz, A., Hebert, M. (1995). The Focussed D* Algorithm for Real-Time Replanning. In

Proceedings of the 14th International Joint Conference on Artificial Intelligence

(pp. 1652-1658). San Francisco, CA, 18-22 March 1995.

Șucan, I. A., Moll, M., Kavraki, L. E. (2012). The Open Motion Planning Library. IEEE

Robotics & Automation Magazine, 19(4), 72-82. doi:10.1109/MRA.2012.2205651.

https://doi.org/10.1109/SVR.2019.00049

90

Sung, T. T., Kim, C., Lee, K., Sohn, C. B. (2018). Exploring Navigation using Deep

Reinforcement Learning. International Journal of Applied Engineering Research,

13(19), 14447-14450.

SunWoo, Y., Lee, W. (2021). Comparison Of Deep Reinforcement Learning Algorithms:

Path Search İn Grid World. In 2021 International Conference on Electronics,

Information, and Communication (ICEIC) (pp. 1-3), Jeju, Korea(South), 31 Jan.-3

Feb. 2021. doi: 10.1109/ICEIC51217.2021.9369800.

Sutton, R. S. (1988). Learning To Predict By The Methods Of Temporal Differences.

Machine Learning, 3(1), 9-44. doi:10.1007/BF00115009

Sutton, R. S., Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge:

MIT press.

Sutton, R. S., Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.).

Cambridge: MIT Press.

Tai, L., Liu, M. (2016). Towards Cognitive Exploration Through Deep Reinforcement

Learning For Mobile Robots. Autonomous Robots, 38(3), 405-420.

doi:10.1007/s10514-016-9496-8

Tai, L., Paolo, G., & Liu, M. (2017). Virtual-To-Real Deep Reinforcement Learning:

Continuous Control Of Mobile Robots For Mapless Navigation. In 2017 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS) (p. 31-36).

Vancouver, BC, Canada, Semptember 2017. doi:10.1109/IROS.2017.8202134

Taïga, A. A., Courville, A., Bellemare, M. G. (2018). Approximate Exploration Through

State Abstraction. arXiv preprint arXiv:1808.09819.

Talabis, M. R. M., McPherson, R., Miyamoto, I., Martin, J. L., Kaye, D. (2015). Chapter

1 - Analytics Defined. In M. R. M. Talabis, R. McPherson, I. Miyamoto, J. L.

Martin, & D. Kaye (Eds.), Information Security Analytics (pp. 1-12). Syngress.

Boston. DOI: 10.1016/B978-0-12-800207-0.00001-0.

Thorndike, E. L. (1898). Animal İntelligence: An Experimental Study Of The Associative

Processes İn Animals. The Psychological Review: Monograph Supplements, 2(4),

i–109. https://doi.org/10.1037/h0092987

Thrun, S. (1998). Learning Metric-Topological Maps For İndoor Mobile Robot

Navigation. Artificial Intelligence, 99(1), 21-71.

Todorov, E., Erez, T., & Tassa, Y. (2012). Mujoco: A Physics Engine For Model-Based

Control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS) (pp. 5026-5033). Seville, Spain, September 13-17, 2012.

doi:10.1109/IROS.2012.6224805

https://doi.org/10.1037/h0092987

91

Tomatis, N., Nourbakhsh, I., Siegwart, R. (2001). Combining Topological And Metric:

A Natural İntegration For Simultaneous Localization And Map Building.

Proceedings of the Fourth European Workshop on Advanced Mobile Robots

(EUROBOT), 207-214.

Tsitsiklis, J. N., Van Roy, B. (1997). An Analysis Of Temporal-Difference Learning With

Function Approximation. IEEE Transactions on Automatic Control, 42(5), 674-

690.

URL-1:https://www.deepmind.com/, (Ziyaret Tarihi:10 Nisan 2022).

URL-2: https://spinningup.openai.com/en/latest/algorithms/sac.html/, (Ziyaret tarihi:23

Mart 2022).

URL-3:http://www.cyberbotics.com/, (Ziyaret tarihi:23 Mart 2022).

URL-4:https://coppeliarobotics.com/, (Ziyaret tarihi:30 Mart 2022).

URL-5:https://www.robologix.com/, (Ziyaret tarihi:30 Nisan 2022).

URL-6:http://www.anykode.com/index.php, (Ziyaret tarihi:2 Mayıs 2022).

URL-7:https://box2d.org/documentation/, (Ziyaret tarihi:23 Mart 2022)

URL-8:https://emanual.robotis.com/ Turtlebot3features, (Ziyaret tarihi:10 Temmuz

2022)

URL-9:https://www.python.org/, (Ziyaret tarihi:10 Eylül 2022).

URL-10: https://minigrid.farama.org/ (Ziyaret tarihi:12 Mart 2023).

URL-11:https://www.mathworks.com/help/reinforcementlearning/,(Ziyaret tarihi:15

Eylül 2022).

URL-12: https://github.com/DLR-RM/rl-baselines3-zoo / (Ziyaret tarihi:22 Şubat 2023).

Van Hasselt, H., Guez, A., Silver, D. (2016). Deep Reinforcement Learning With Double

Q-Learning. In Proceedings of the AAAI conference on artificial intelligence (Vol.

30, No. 1). Palo Alto, CA: AAAI Press, March 2016.

Van Seijen, H., & Sutton, R. S. (2015). A Deeper Look At Planning As Learning From

Replay. Proceedings of the 32nd International Conference on Machine Learning

(ICML), Lille, France, 2015.

Vermorel, J., Mohri, M. (2005). Multi-armed Bandit Algorithms and Empirical

Evaluation. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds)

Machine Learning: ECML 2005. ECML 2005. Lecture Notes in Computer

Science(), vol 3720. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/11564096_42

https://doi.org/10.1007/11564096_42

92

Vinyals, O., Babuschkin, I., Czarnecki, W.M., et al. (2019). Grandmaster Level İn

Starcraft II Using Multi-Agent Reinforcement Learning. Nature, 575, 350–354.

https://doi.org/10.1038/s41586-019-1724-z

Wang, L., Cai, Q., Yang, Z., & Wang, Z. (2020). Neural Policy Gradient Methods: Global

Optimality And Rates Of Convergence. In International Conference on Learning

Representations (ICLR), Montreal, Canada, May 31-June 5 2020.

Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., De Frcitas, N. (2016).

Dueling Network Architectures for Deep Reinforcement Learning. 33rd

International Conference on Machine Learning, ICML 2016, 4(9), 2939–2947.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. Phd Thesis, King's College,

Cambridge, UK. Erişim adresi: http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf

Watkins, C. J. C. H., Dayan, P. (1992). Q-Learning. Machine Learning, 8(3), 279-292.

doi:10.1007/BF00992698

Werbos, P.J. (1989). Neural Networks For Control And System İdentification.

Proceedings of the 28th IEEE Conference on Decision and Control, Tampa, FL,

USA, December 13-15 1989, doi: 10.1109/CDC.1989.70114.

Xie, L., Wang, S., Markham, A., & Trigoni, N. (2017). Towards Monocular Vision Based

Obstacle Avoidance Through Deep Reinforcement Learning. arXiv preprint

arXiv:1706.09829.

Zamora, I., Lopez, N. G., Vilches, V. M., Cordero, A. H. (2016). Extending The Openai

Gym For Robotics: A Toolkit For Reinforcement Learning Using Ros And Gazebo.

arXiv preprint arXiv:1608.05742.

Zhang, H.-y., Lin, W.-m., & Chen, A.-x. (2018). Path Planning for the Mobile Robot: A

Review. Symmetry, 10(10), 450. https://doi.org/10.3390/sym10100450

Zhang, K., Niroui, F., Ficocelli, M., Nejat, G.. (2018). Robot Navigation of Environments

with Unknown Rough Terrain Using deep Reinforcement Learning. In 2018 IEEE

International Symposium on Safety, Security, and Rescue Robotics (SSRR) (pp. 1-

7). Philadelphia, PA, USA,06-08 August 2018

https://doi.org/10.1109/SSRR.2018.8468643.

Zhang, S., Sutton, R. S. (2017). A Deeper Look At Experience Replay. arXiv preprint

arXiv:1712.01275.

Zhu, Q., Yan, Y., Xing, Z. (2006). Robot Path Planning Based on Artificial Potential

Field Approach with Simulated Annealing. Sixth International Conference on

Intelligent Systems Design and Applications (pp. 622-627), Jian, China, 16-18

October 2006. https://doi.org/10.1109/ISDA.2006.253908.

https://doi.org/10.1038/s41586-019-1724-z
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
https://doi.org/10.1109/SSRR.2018.8468643

93

KİŞİSEL YAYIN VE ESERLER

Apaydın E., İnner A.B. (2022). Hastane Ortamında Bir Mobil Robotun Navigasyonu

İçin Derin Pekiştirmeli Öğrenme Algoritmalarının Karşılaştırılması, IMASCON

Uluslararası Marmara Fen Bilimleri Kongresi, Kocaeli, Türkiye,13-14 Mayıs

2022.

94

ÖZGEÇMİŞ

İlkokul, ortaokul ve lise öğrenimini Giresun’da tamamladı. 2011 yılında Kocaeli

Üniversitesi Teknik Eğitim Fakültesi Bilgisayar Öğretmenliği bölümünden mezun oldu.

2018 yılında Sakarya Üniversitesi Bilgisayar ve Bilişim Bilimleri Fakültesi Bilgisayar

Mühendisliği bölümünden mühendislik tamamlama programı ile mezun oldu.2012

yılından beri Milli Eğitim Bakanlığı’nda Bilişim Teknolojileri Öğretmeni olarak görev

yapmaktadır.

	a4f0943d85961144c4606d794f6491a82e4c5371c47c9968e5613b56c453dd6b.pdf
	a4f0943d85961144c4606d794f6491a82e4c5371c47c9968e5613b56c453dd6b.pdf

