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PREDICTION OF EARLY-AGE MECHANICAL PROPERTIES 

OF HIGH STRENGTH CONCRETE WITH POZZOLANS 

BY USING STATISTICAL METHODS 

 

SUMMARY 

The developments in concrete technology are becoming more important and effective 

with the help of innovative approaches on materials and computer sciences and their 

applications. With advanced calculation methods, computing programs/softwares and 

supercomputers, the mechanical behavior of concrete is better understood in many 

aspects, today. In addition, the materials used in concrete technology are now much 

more diverse, more useful, and much more effective than in the past by the 

opportunities provided from the industry. On the other hand, this level of development 

and effectiveness still depends on specific needs of concrete. However, this natural 

limitation does not prevent performance improvement, durability, sustainability, 

environmental and budget-friendly expectations of concrete in a planned service life. 

Accordingly, while cement types, aggregates, moisture contents of aggregates, and air 

contents in concrete mixtures maintain their importance, the concrete mixture designs 

can be rearranged by weight and/or concrete mixing ratios according to the relevant 

pioneer test results, and new concrete matrices can be obtained by using fly ash, micro 

silica, nano silica, ground blast furnace slag, fiber, glass, wood, etc. Moreover, 

recyclable materials such as water, aggregate, glass, fiber, wood, etc. and even living 

organic materials are the topics that the concrete industry has recently focused on. In 

this context, the idea of using new construction materials may arise depending on 

relevant test results of special concretes produced for special projects. However, 

willing to change the concrete mixture designs and/or building materials based on test 

results can be quite difficult, because of time and budget concerns. For this reason, the 

most used type of concrete in the ready mixed concrete world is normal weight 

concrete (NWC), which is adapted by the concrete industry. Considering this fact, 

despite all the possibilities, determining a right concrete mixture design still differs in 

many ways depending on time, material, and external factors. In this idea, in general, 

specimens of hardened concrete in the form of cubes, cylinders, and rectangular prisms 

are tested at an early age to obtain results of mechanical properties such as compressive 

strength, splitting tensile strength, and modulus of elasticity so that further 

investigations and predictions of the concrete can be made. According to these test 

results, statistical methods come to the fore in many cases in terms of time and cost 

efficiency, and deep analysis to predict results of concrete performance depending on 

time and material to decide whether these concrete mixture designs comply with 

standards and regulations. Because, in regression analysis, which is one of these 

statistical methods, it is possible to predict a mechanical property of concrete without 

using destructive or non-destructive methods with enough concrete samples. In this 

way, the gains are obtained in terms of space, time, and cost. As a further step from 

the regression analysis, the use of machine learning methods such as Neural Net Fitting 

(NNF) to predict a data has become quite common today in the concrete world. 

Before statistical estimation of a data set, the concrete mixture designs should be cared 

for their validations. Furthermore, the atmospheric conditions at work sites where the 

concrete is casted are very important to obtain realistic test results from the concrete 
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casting process. Therefore, the experiments such as slump, flow, unit weight, air 

content, ambient temperature, bleeding, adiabatic process, setting time etc. for fresh 

concrete samples can be carried out in the work fields. For this thesis, fresh concrete 

samples were taken for 33 different concrete mixture designs in 150X300 mm 

cylindrical sample containers in the numbers allowed by national standards and 

regulations. Besides, two distinct types of fine aggregates (FA) and three diverse types 

of coarse aggregates (CA) were used in these mixture designs with fly ash (FA) + 

micro silica (MS), ground granulated blast furnace slag (GGBS), and five different 

cement (C) types were used as binding material for these designs. The samples 

prepared within this framework were also kept in safe places in the worksites for the 

first setting process of the concrete, right after the sampling process was completed. 

Subsequently, the concrete samples, when the initial setting process were completed, 

were transferred to the laboratory environment for the hardened concrete tests in the 

international standards for 0.5, 1, 2, 3, 7, 14 and 28 days. And, the samples were 

prepared for the compressive strength, splitting tensile strength and modulus of 

elasticity tests for statistical analysis and estimations. 

In this thesis, as one of the statistical analysis models, regression analysis based on 

convergence of the obtained estimation results to real data (drawing curves) are used. 

The properties such as age of concrete samples (time), unit weights of mixture 

components, unit volumes of mixture components, mixing ratios and/or coefficients 

of an estimation methods etc. were analyzed individually and cumulatively. 

Accordingly, the relations of the predicted data with the concrete mixture designs are 

studied with linear or non-linear equations in univariate and multivariate regression 

models. In addition to the equations used for the estimation of the test results, other 

statistical results such as R (Correlation of Coefficient), R² (Coefficient of 

Determination), R²adj (Adjusted Correlation of Determination), Sum of Squared of 

Errors (SSE), Mean Square Error (MSE), and Root Mean Square Error (RMSE) were 

obtained. The relationships between the actual test results, and predicted results were 

examined at the end. 

Due to the nature of the models used in the univariate regression analysis, only one 

variable was considered, and the results were estimated accordingly. The number of 

variables taken into consideration was analyzed individually for each mixture design. 

Although such individual analyzes were possible, many sequential studies on the 

actual, and estimated results had been the cost of time. Therefore, predicting the actual 

results required more complex analyzes like the multivariate regression analysis in this 

study. Before the more complex analyses, the variables were studied one-by-one 

and/or in combinations for the multiple regression analyses. The substantial number 

of these combinations let the study to the machine learning process, and the effect of 

hidden layers between the input (mixture designs) values and the target (test) values 

four output values (algorithm results) were observed in the machine learning process. 

Although it was really complicated to detect these hidden layers by the individual 

calculations, only the input values, and target data values were chosen in the machine 

learning procedure without stepping directly into the hidden layers. On the other hand, 

it was understood that increasing the number of hidden layers deviated the estimation 

results from the target values. 

Therefore, to obtain more accurate results, the number of samples in the machine 

learning algorithms were changed as much as possible, while the number of hidden 

layers was increased. Yet, it was revealed that increasing the number of samples and/or 

hidden layers at the same time caused undesirable estimation results. It was also 
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determined that an infinite number of experiments could be made with the machine 

learning to predict the target values. But, since it was not possible to conduct an infinite 

number of trials one-by-one, all trials were recorded first, and then evaluated from the 

best to the worst and/or in the Levenberg-Marquardt (LM) algorithm form the NNF 

machine learning process. In addition to this, R and MSE values in the NNF machine 

learning process, training, validation, test, and all correlation results were displayed in 

the x - y planes. Finally, in this framework, the best results were shared in association 

with the statistical results with physical meanings specific to mixture designs. 
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İSTATİSTİK YÖNTEMLER KULLANILARAK PUZOLAN KATKILI 

YÜKSEK DAYANMLI BETONLARIN 

ERKEN YAŞ MEKANİK ÖZELLİKLERİNİN TAHMİNİ 

 

ÖZET 

Beton teknolojisindeki gelişmeler, malzeme ve bilgisayar bilimleri ile tüm bunların 

uygulamaları yardımıyla daha önemli ve etkin hale gelmektedir. Gelişmiş hesap 

yöntemleri, hesap programları ve süper bilgisayarlar ile de betonun mekanik 

davranışları bugün, birçok yönden çok daha iyi anlaşılmaktadır. Ayrıca beton 

teknolojisinde kullanılan malzemeler artık çok daha çeşitli, daha kullanışlı ve 

endüstrinin sağladığı imkanlarla geçmişe oranla çok daha etkilidir. Öte yandan bu 

gelişmişlik ve etkinlik seviyesi hala daha üretilmek istenen betonun özelindeki 

ihtiyaçlara bağlıdır. Fakat bu doğal sınırlama betonun planlanan hizmet ömründeki 

performans gelişiminin, dayanıklı oluşunun, sürdürülebilirliğinin, çevreci ve bütçe 

dostu oluşu beklentilerinin önüne geçmemektedir. Buna göre çimento türleri, agregalar 

ve agregaların nem içerikleri ile beton karışımlarındaki hava içerikleri ilk sıradaki 

önemini korumakla beraber beton karışım tasarımları, uçucu kül, mikro silika, nano 

silika, öğütülmüş yüksek fırın cürufu, elyaf, cam, ahşap vb. ilaveler ile de ağırlıkça 

ve/veya beton karışım oranlarınca ilgili öncü test sonuçlarına göre yeniden 

düzenlenebilmekte ve yeni beton matrisleri elde edilebilmektedir. İlaveten su, agrega, 

cam, fiber, ahşap vb. gibi geri dönüştürülebilir malzemeler ve hatta canlı organik 

malzemeler bile son zamanlarda beton endüstrisinin odaklandığı konulardandır. Bu 

çerçevede özel projeler için hazırlanan özel betonların ilgili test sonuçlarına bağlı 

olarak yeni yapı malzemelerinin kullanılması düşüncesi de ortaya çıkabilmektedir. 

Ancak, beton karışım tasarımlarını ve/veya yapı malzemelerini test sonuçlarına göre 

değiştirmek istemek, özellikle zaman ve bütçe dengesi açısından oldukça zor olabilir. 

Bu nedenle hazır beton dünyasında en çok kullanılan beton türü, hemen hemen tüm 

hazır beton endüstrisinin de uyum sağladığı Normal Ağırlıklı Beton’lardır (NAB). Bu 

gerçeği düşünerek, sahip olunan bunca imkâna rağmen, doğru beton karışım tasarımını 

belirlemek hala daha zamana, malzemeye ve dış etkenlere bağlı olarak pek çok konuda 

farklılık göstermektedir. Bu düşüncede, genel olarak, küp, silindir ve dikdörtgen 

prizma şeklindeki sertleşmiş beton numuneleri, betona dair ileri tetkikler ve tahminler 

yapılabilmesi adına basınç dayanımı, yarmada çekme dayanımı ve elastisite modülü 

gibi mekanik özelliklerin sonuçlarını elde etmek için erken yaşta teste tabi tutulur. Bu 

test sonuçlarına göreyse betonun zamana ve malzemeye bağlı performansları için 

sonuçları tahmin etmek ve bu beton karışım tasarımlarının standartlara ve 

yönetmeliklere uygun olup olmadığına karar vermek için istatistiksel yöntemler, 

zaman ve maliyet verimliliği ile derin çözümlemeler yapabilme açısından birçok 

yönden öne çıkmaktadır. Çünkü bu istatistiksel yöntemlerden biri olan regresyon 

analizinde yeterli sayıda beton numunesi ile tahribatlı veya tahribatsız yöntemler 

kullanmadan betonun mekanik bir özelliğini tahmin etmek mümkündür. Bu sayede 

yer, zaman ve maliyet açısından kazanç da elde edilir. Regresyon analizinden daha 

ileri bir adım olarak, bir veriyi tahmin etmek için Sinir Ağı Uyumu (SAU) gibi makine 

öğrenim yöntemlerinin kullanılması günümüzde iyice yaygınlaşmıştır. 

Verilerin istatistiksel tahmininden önce, beton karışım tasarımının güncel ve geçerli 

olmasına dikkat edilmelidir. Ayrıca beton döküm işleminden gerçeğe yakın test 

sonuçları elde edilebilmesi için betonun döküldüğü yerdeki atmosfer koşulları da çok 

önemlidir. Bu nedenle taze beton numuneleri için çökme, yayılma, birim ağırlık, hava 
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içeriği, ortam sıcaklığı, terleme, adyabatik süreç, priz süresi vb. konularda çalışma 

sahası içerisinde deneyler yapılır. Bu tez çalışması içinse 33 farklı beton karışım 

tasarımı kullanılmıştır. Bu karışım tasarımlarında iki farklı tipte ince agrega (İNA) ve 

üç farklı tipte iri agrega (İRA) kullanılmıştır. Hazırlanan bu tasarımlar için bağlayıcı 

malzeme olarak, uçucu kül (UK) + mikro silika (MS) ve öğütülmüş granüle yüksek 

fırın cürufu (ÖGYFC) ile beş ayrı çimento (Ç) türü bulunmaktadır. Bu çerçevede 

hazırlanan numuneler, numune alım işlemleri tamamlandıktan hemen sonra betonun 

ilk priz süreci için çalışma alanlarında güvenli yerlerde muhafaza edilmiştir. Akabinde 

ise ilk priz süreci tamamlanan beton numuneleri 0.5, 1, 2, 3, 7, 14 ve 28 günlük 

uluslararası standartlarda sertleşmiş beton testlerinin yapılması için laboratuvar 

ortamına aktarılmıştır. Basınç dayanımı, yarmada çekme dayanımı ve elastisite 

modülü testleri sonucu elde edilen numuneler istatistiksel olarak çözümlemeler ve 

tahminler için hazırlanmıştır. 

Bu tez çalışmasında istatistiksel çözümleme modellerinden biri olarak, elde edilen 

tahmin sonuçlarını gerçek verilere yakınsamaya (eğri çizme) dayanan regresyon 

analizi kullanılmıştır. Beton numunelerinin yaş (zaman), karışım bileşenlerinin birim 

ağırlıkları, karışım bileşenlerinin birim hacimleri, karışım oranları ve/veya tahmin 

yöntemlerinin katsayıları vb. özellikleri tek tek ve toplu olarak incelenmiştir. Buna 

bağlı olarak da tahmin edilen verilerin beton karışım tasarımlarıyla olan ilişkileri, 

doğrusal veya doğrusal olmayan denklemler ile hem tek hem de çok değişkenli 

regresyon modelleri ile çalışılmıştır. Sonuçların tahmini için kullanılan denklemlerin 

yanı sıra, R (Korelasyon Katsayısı), R² (Belirginlik Katsayısı), R²adj (Ayarlanmış 

Korelasyon Katsayısı), Hataların Kareler Toplamı (HKT), Ortalama Kök Hata (OKH), 

Hata Karelerin Ortalama Kökü (HKOK) gibi diğer istatistiksel sonuçlara ulaşılmış, bu 

sonuçlar bir silsile içerisinde derlenmiş ve test sonuçları ile tahmin edilen sonuçlar 

arasındaki ilişkiler irdelenmiştir.  

Tek değişkenli regresyon analizlerinde kullanılan modellerin doğası gereği tek bir 

değişken dikkate alınmış ve sonuçlar buna bağlı olarak tahmin edilmiştir. 

Değerlendirmeye alınan değişken sayısı kere her bir karışım tasarımı için tek tek analiz 

yapılmıştır. Bu gibi tek tek analizler mümkün olsa da gerçek ve tahmini sonuçlarda 

pek çok ardışık çalışma yapmak fazlaca zaman kaybına sebep olmuştur. Bu nedenle 

sonuçların öngörülmesi, bu çalışmada olduğu gibi çok değişkenli regresyon analizi ya 

da buna benzer şekilde daha karmaşık analizlere ihtiyaç duyulmuştur. Daha karmaşık 

analizlerden önce çoklu regresyon analizleri ile değişkenler toplu ve/veya 

kombinasyonlar halinde çalışılmıştır. Bu kombinasyonların sayıca çokluğu çalışmayı 

makine öğrenmesi sürecine yönlendirmiş ve makine öğrenmesi sürecinde girdi 

(karışım tasarımları) değerler ile hedef (gerçek) değerlerin sonuçlara (algoritma 

sonuçları) götüren gizli katmanlardaki etkisi görülmüştür. Bu gizli katmanların tek tek 

hesaplamalar ile tespit edilmesi çok karmaşık olmakla birlikte makine öğrenmesi 

sürecinde gizli katmanlara doğrudan adım atılmadan sadece girdi (karışım tasarımları) 

değerler ve hedef veriler (gerçek) değerler kullanılmıştır. Öte yandan, gizli 

katmanların sayısının arttırılmasının, tahmin sonuçlarının hedef değerlerden 

uzaklaştırdığı anlaşılmıştır. Bu nedenle, daha doğru sonuçlar elde etmek için 

algoritmalardaki örnek sayıları mümkün olduğunca değiştirilirken gizli katman 

sayıları da artırılmıştır. Ancak örneklerin ve/veya gizli katmanların sayılarının aynı 

anda arttırılmasının istenmeyen düşük tahmin sonuçlarına neden olduğu ortaya 

çıkmıştır. Hedef değerleri tahmin etmek adına makine öğrenmesi ile sonsuz sayıda 

deneme yapılabileceği de ayrıca saptanmıştır. Fakat sonsuz sayıda deneme yapılması 

mümkün olmayacağı için yapılan tüm denemeler önce kaydedilmiş ve daha sonra SAU 
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makine öğrenmesi sürecinde Levenberg-Marquardt algoritmasında en iyiden en 

kötüye ve/veya tam tersi şeklinde değerlendirilmiştir. İlave olarak SAU makine 

öğrenmesi sürecinde R ve OKH değerleri ile x – y düzlemi içerisinde deneme, 

doğrulama, test ve nihai korelasyon sonuçları alınmıştır. Son olaraksa bu çerçevede, 

istatistiksel sonuçların karışım tasarımlarına özgü fiziksel anlamlarla ilişkilendirilmesi 

için en iyi sonuçlar paylaşılmıştır. 
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1.  INTRODUCTION 

Concrete is a mass of medium of cementing in common sense. In general, this medium 

product is an exothermic chemical reaction of water with hydraulic cement (Neville 

and Brooks., 2010). This chemical reaction is also explained as binding fine and coarse 

aggregates, cement, and water together in a harmony (Akman, 1990). However, in 

previous types of concrete, fine aggregate was not a mixture element. Except absence 

of fine aggregate, for some special cases, concrete has also some cementitious 

supplements and/or chemical admixtures (Ghafoori and Dutta, 1995). In these 

previous and present types of concrete, the main binder material is cement. Contrast 

the past, recently, for compactness, sand as fine aggregate fills the gaps between coarse 

aggregates. Furthermore, the general frame of concrete is made of gravel or crushed 

stone to resist the external forces applied on concrete (Akman, 1990). 

In addition to the components and effects, producing concrete has undeniable effects 

in climate change crisis. Heat emission of cement manufacturing and groundwater 

recharging to use in concrete products are serious worries for environmental concerns 

(Ibrahim et al., 2014). To decrease the negative effects of concrete producing and for 

sustainable development in green concrete technology, the industry supplies 

opportunities such as cements in several types and aggregates in different sizes as 

products of construction materials (ACI Materials Journal., 2011; Bingol et al., 2013). 

Besides the conventional concrete materials, some of waste products from the heavy 

industry are now widely preferred in concrete technology. Especially slag and fly ash 

are almost used in every concrete production process, now. Why slag is preferred in 

concrete mixture designs as a pozzolan is its calcium oxide content which is 

considerably low. Also, it has perfect chemical and mechanical aspects which are 

determined as eco-friendly choice to be replaced with fine aggregates. Although fly 

ash is generally not a binder alone, it is another artificial pozzolan that hardens in water 

by a hydration reaction with slaked lime. In this perspective, fly ash can be used with 

cement or directly added to concrete instead of sand, which is also considered as 

environmental practice (Yilmaz, 2014). Because of these kinds of benefits, use of slag 
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and fly ash is now increased in normal weight and heavy weight concretes (Ambily et 

al., 2015 ; Gorai et al., 2003 ; Al-Jabri et al., 2009 ; Khanzadi and Behnood, 2008 ; 

Wei, 2009). 

In addition to the damages of concrete production process and use of groundwater, and 

even benefits of use of industrial wastes in concrete technology, there is another point 

of focus as a trend which is expedition of concrete works in construction fields. 

Because of this issue, fast concrete casting for again time and budget/cost limitations, 

there may be quite dangerous factors for construction and structure health. Because of 

the dispatch of construction works, it may not be possible to reverse or overly 

expensive to fix the works that have problems. For why until concrete samples are 

taken, and then tested, the construction works are not or cannot be stopped. 

Nevertheless, under standard methods, the concrete samples are needed to be cured, 

and then tested to get the results of early age strength developments of concrete. Until 

the time that the test results are released, at worksites, there can be some critical 

problems in concrete health based on human factors. Because of this, to take actions 

in advance for unexpected situations, to check the quality of concrete on time is 

necessary to estimate the strength of concrete at day-28. To make this estimation, 

again, it is also another necessity to apply accelerated curing methods. Yet, every 

construction site may not have an opportunity to apply standard curing methods for 

concrete samples previously taken. That is why, prediction methods such as regression 

analysis from statistics and machine learning process in computing sciences to 

illuminate the close future of concrete health come forward to save time, money, place 

and to eliminate human based risks in construction works (Arioglu et al., 1994). 

To extrapolate a mechanical property of an early age concrete needs conjectures by 

using either statistical models or machine learning algorithms. For this extrapolation, 

a premise data collection is required at laboratory conditions. Under standard curing 

methods, the samples in exact dimensions for an exact mechanical test are taken in-

situ conditions. And then they are tested by applying external forces until they are 

reached to the load bearing capacity (NT BUILD 200, 1984; NT BUILD 201, 1984; 

NT BUILD 202, 1984; NT BUILD 203, 1984; NT BUILD 204, 1984; NT BUILD 205, 

1984). 

For the compressive strength, splitting tensile strength and modulus of elasticity tests, 

cube and/or cylinder samples are molded in-situ conditions (NT BUILD 200, 1984; 
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NT BUILD 201, 1984; NT BUILD 202, 1984; NT BUILD 203, 1984; NT BUILD 204, 

1984; NT BUILD 205, 1984). After completing the tests, the results are revealed with 

the concrete specimen ages. By the help of statistical methods and/or machine learning 

potentialities, these data sets can be predicted and analyzed to express the strength 

developments of concrete at early ages for concrete mixture designs with 

optimizations. Because those optimizations may lead producing of concrete in less cost 

and environmentally friendly which are now highly recommended in modern concrete 

technology (Arioglu et al., 1994). 

On the other hand, there are many computational techniques in addition to the 

statistical model by using artificial intelligence as machine learning. (Bendapudi, 

2019) To elaborate the machine learning, artificial neural network (ANN), adaptive-

network-based fuzzy inference system (ANFIS), neural net fitting (NNF) and support 

vector machine (SVM) step forward as some of the mostly chosen software methods 

to predict a data set by using mechanical properties of concrete (Kockal and Aydogdu., 

2020). 

Presuming these mechanical properties of concrete is important for either modern 

construction works or structural members. Transporting those members from a place 

to another, mechanical loading, placing joints of precast members and removing 

formworks are the several topics of early age strength developments of concrete for 

the reasons of safety and economy. Especially in sub-zero air conditions, having pre-

knowledge of strength developments of concrete is very essential (Price et al., 1996). 

Although the strength gaining of concrete is externally complicated with many factors, 

statistical models are studied to predict early age strengths of concrete in the regression 

analysis. In the regression analysis, mixture designs of concrete have an opportunity 

to be optimized by using univariate and multivariate regression models. By these 

models, studied mechanical properties of concrete and their applications, are predicted 

to see linear and non-linear behaviors and their correlations for the strength 

developments of concrete based on concrete mixture designs (Zain et al., 2008). 

Herewith, both statistical models, and machine learning algorithms are decided as the 

main focuses to predict early age strength developments of concrete. To work in a plan 

with time, budget and place limitations, computing methods such as univariate and 

multivariate regression analysis, and machine learning algorithms are recently the 
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most preferred methods for engineering calculations to optimize the mixture designs 

of concrete for necessities of strength gaining and performance of concrete. 

1.1 Aims and Scope of Thesis 

The main objective of this study is to predict the mechanical properties which are the 

compressive strength, splitting tensile strength and modulus of elasticity by comparing 

with the strength development of concrete in computing models and tools to find the 

most suitable concrete mixture designs including fly ash (FA) + micro silica (MS) and 

ground granulated blast furnace slag (GGBS) ingredients for the strength gaining 

analysis. In this frame, the same size and shape hardened concrete samples were tested 

under perpendicular loads to the specimens located at testing plates with millimetric 

accuracies. For this study, these sample blocks were produced by following the 

concrete mixture designs which are composed of binder, water, aggregate and 

admixtures with a wide range. And the mechanical test results are obtained in a very 

wide range, as well. Because of this, with neural net fitting (NNF) algorithms as 

machine learning procedure, univariate and multivariate regression analysis models 

were applied. Firstly, the univariate regression analysis (URA) models were studied 

on each dependent variable by using the test results. Further, multivariate regression 

analysis (MRA) models were operated on the dependent variables at once by 

organizing the mechanical properties of hardened concrete specimens. And then, NNF 

algorithms were constructed with the help of the concrete mixture designs within the 

practices in the tests. Finally, the results of the prediction models were established with 

the linear correlations for the strength developments of concrete to build a bridge 

between physical and statistical meanings. 

The total number of models used for every mechanical property was eight in the URA. 

However, for the MRA, there were four models used for all the mechanical properties. 

In NNF algorithms for this study, there was only one basic algorithm used as machine 

learning route. The results of all estimation models and tools were represented in a 

logic manner to check against the test results by using statistical expressions to find a 

way for physical meaning either in the test results or in the concrete mixture designs 

for the strength gaining comments. In these kinds of investigations, the whole target 

was to state the most sense mixture designs for future suggestions in different cases 

and conditions in concrete works for the strength development concerns. Because 



 

5 

 

those concerns are the priorities for durable, sustainable, safe, green and cheap 

structures and/or construction efforts. 

1.2 Organization of Study 

The first chapter of this study explains widespread knowledge of models, methods and 

tools by using the actual test results to predict the compressive strength, splitting 

tensile strength and modulus of elasticity for the strength developments of concrete. 

The second chapter details an omnibus literature brief of the presuming regression 

analysis models and machine learning tools used in preferences of civil engineering 

profession to estimate a data set by using the real test results within the concrete 

mixture designs prepared. 

The third chapter shows the experiments done in this thesis. The concrete materials, 

concrete mixture designs, production procedure of concrete, fresh and hardened 

concrete tests in-situ and at laboratory conditions are represented. The regression 

analysis models, and machine learning tool are explicated in the part of hardened 

concrete specimen tests. 

The fourth chapter sums the results of hardened concrete sample tests. In-situ condition 

practices with their mechanical test results, the regression analysis methods and 

machine learning tools are exposed in divided sections. 

The fifth chapter spotlights the compressive strength, splitting tensile strength and 

modulus of elasticity predictions in univariate and multivariate regression analysis. 

Both linear and non-linear equations as regression analysis models are presented in a 

manner of discussion for the mechanical properties of concrete by age, amounts used 

in mixtures and proportions used in mixtures as independent variables to make a 

contact between the test results and statistical results. Followingly, the machine 

learning algorithms are also shown for a searching to understand how concrete mixture 

designs are effective on the test results by comparing with the estimated results. Even 

though the fifth chapter especially targets the strength developments of concrete, the 

last section of the chapter analyzes the linear correlations between the test and 

estimated results for all kind of models, methods and algorithms studied in this thesis. 

The sixth and the last chapter concludes all efforts and gives suggestions for upcoming 

research and studies. 
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2.  REVIEW OF LITERATURE  

In this part of the study, an inclusive brief of literature about data prediction which is 

based on regression analysis and machine learning algorithms from test results of the 

compressive strength, splitting tensile strength and modulus of elasticity is put forth in 

a chronology with subsections. 

2.1 Univariate Regression Analysis for Mechanical Properties of Concrete 

The univariate regression analysis (URA) methods have a potential to predict the 

mechanical properties of concrete by evaluating the actual test results. Without using 

any destructive and/or non-destructive methods on an existing concrete structure, it is 

possible to estimate a data set by deciding which independent variable for strength 

gaining is appropriate to be reclaimed. In this way, time, cost and place limitations are 

discarded to understand how concrete behaves at an early age period of concrete to 

gain its strength. Analyzing the test results of the compressive strength, splitting tensile 

strength and modulus of elasticity by data predictions with statistical results, the exact 

numbers of errors are also defined to see how close or far the estimated results are to 

the actual test results. 

A model; studied by Pleaces and Dimovic (2009), depending on a polynomial equation 

to search for a well leaching conduct of 137Cs from the formation of waste in 

radioactivity by using leach testing of immobilized radioactive waste as suggested in 

IAEA adopted (Plecas and Dimovic, 2009; Hespe, 1971). In this perspective, the 

authors prepare concrete samples with Portland cement PC-20-Z-45 MPa, 0-2 mm 

sand friction; 2-4, 4-8, and 8-15 granulation, bentonite clay, and water. 137Cs as an 

artificial radioactivity in the composition of CsNO3 is added to the cement by them. 

Further, they casted the samples in 50X50 mm cylindrical molds. Moreover, they  cast 

the samples in approximately ten minutes. And then, the specimens are sealed and 

cured by the authors for leaching tests at day-28. After the radioactive process, the 

leaching process is measured with ER&G-ORTEC spectrometry system and a one-

dimensional computing method (Plecas and Dimovic, 2009). They use more than 100 
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grout formulations to examine the suction and mechanical properties for optimizations 

of concrete mixtures. Moreover, they focus on four representative formulations and 

four 137Cs included samples. And then finally, they conclude the study in a result of 

mathematical analysis by a time dependent polynomial equation to see how the results 

are well fitted to the literature. They also prove that the one-dimensional model can be 

used to calculate the migration process parameters and the linear regression model 

pioneers the results with a minor effect of time variable. 

 

 

 

 

 

 

 

Figure 2.1 : f vs. t to leach 137Cs from the four specimens.                                   

(Plecas and Dimovic., 2009.) 

A direct model to guess compressive strength of concrete in different ages is feasible 

(Abd elaty, 2014). This direct model has two constants in a logarithmic equation to 

show the strength developments in different conditions of concrete at any age without 

getting any data at those same ages. He prepares five pastes made of C3S, C2S, C3A 

and C4AF. Also, the results are divided into normal and logarithmic scales for concrete 

mixtures. The author defines the constants used in the model as A and B. He explains 

the constant A as a denotation of the regression line slope which could be named as 

the rate of strength gaining constant representing the rate constant. For the constant B, 

the researcher explains that it is an intersection of strength axis by the line of 

regression. Because it differs from a mixture design to age of compressive strength 

values. He also adds that the constant B is also named as the grade constant. In his 

study, the results are shown that the logarithmic model with two constants is useful to 

predict the strength gaining of concrete mixtures that have Portland cement at an age 

with normal temperature. The model also shows that the strength developments for 

Portland cement and silica fume added mixtures of concrete at 20 ⁰C could be 
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observed. In addition to this, by curing the samples in water at normal temperature 20 

⁰C, the model is also beneficial to predict the compressive strength for concrete 

mixtures including nano silica fumes and Portland cement. The author also adds that 

the constants of the model are the characteristic properties of a mixture of concrete. 

 

 

 

 

 

 

 

Figure 2.2 : The age vs. compressive strength for mixtures. (a) Normal scale.      

(Abd elaty, 2014.) 

 

 

 

 

 

 

 

Figure 2.3 : The age vs. compressive strength for mixtures. (b) Log scale.            

(Abd elaty, 2014.) 

Besides, the construction pace has been quickened since the last decade. Because of 

this, the authors suggest use of 7-day and 28-day tests to make reasonable judgements 

on the controlling of concrete quality (Resheidat and Ghanma., 1997).  In this view, 

they prepare the concrete mixture designs composed of pozzolanic Portland cement, 

white cement, crushed aggregates out of limestone, medium and coarse aggregates, 

valley sand as fine aggregates, pumping facilitator as a superplasticizer admixture for 

good workability in concrete mixture designs. When the concrete mixture designs are 

ready, the researchers aim to have the nominal compressive strength of 28-day test 
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results based on standard cube shaped samples. In this perspective, the author studies 

the ratio, linear function, power function and exponential models. The results of the 

authors’ study give details about using the Boiling Water Method for accelerated 

strength tests for concrete in a reliable prediction of 28-day strength for the quality 

control of concrete. Beyond this method, the study shows enough that the Statistical 

Ratio Model is a quick way for a data estimation without using more complex 

solutions. On the other hand, the regression models as linear, power and exponential 

methods represent close value predictions to the test results. The researchers most 

importantly add that the test results are more accurate than the tests controlled in 

laboratory conditions. At the same time, the estimation models and/or methods are the 

reflections of the real extrapolations of 28-day strength of concrete. 

 

 

 

 

 

 

 

 

 

Figure 2.4 : The power function model with 95% confidence level on dashed lines. 

(Resheidat and Ghanma., 1997.) 

McKinney (2009) firstly describes what regression means for engineering 

applications. The author briefs that regression methods can be explained to construct 

functions to fit and draw curves for a data set on x-y planes. Without focusing an 

individual point of data sets, the regression methods trend to draw lines and/or curves 

to drive those same data sets by using the constructed functions. This procedure needs 

a criterion to measure goodness of a fit of lines and/or curves to the data. This 

technique is called as least-squares regression. In this approach, the author proposes 

linear least squares and polynomial regression models. At the same time, he claims 
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linearization of non-linear relationships to apply the models by searching for the 

approximated coefficients of the models as a must in linear behavior. The researcher 

exercises carbon absorption and population growth in suggested models. One of them 

has the constants a and b for growth rate in population with limiting conditions where 

y axis aligns saturations in populations with an increase in x axis. In this context, Hope 

et al. and ACI 209.2R-08 (2008) bring that function to the ground by defining the y 

axis as the compressive strength values against to developing concrete age in x axis 

again with the empirical constants a and b in terms of the cement and curing types for 

the normal weight, sand weight and light weight concretes. 

In the fib Model Code for Concrete Structures 2010 (2010), for the time effects on the 

developments of normal weight concrete strengths, it is functioned at an age which is 

in days for the mean values of compressive strength in MPa. To detail that equation as 

a function, the model code uses cement types depend on coefficient s with an adjusted 

age t in temperature conditions for curing periods. The research in the model shows 

that the compressive strengths at ages t are based on cement types and classes, 

admixtures amounts and types, water/cement ratios and external conditions such as 

humidity with temperature. The proposed model is also obtained from CEM I and 

CEM III type cements. Whether the other types of cements are decided to be used or 

pozzolans with excessive amounts are the replacements of CEMI type cement, there is 

a significant importance for the designs in the compressive strength developments for 

additional experimental processes. Moreover, using fly ash, natural pozzolans and/or 

ground granulated blast furnace slag cause decreasing in the compressive strength 

results at early ages and increasing strength gaining for upcoming ages. In the 

experimental progress, the model code uses 150 mm size cube molds for concrete 

casting. 

Parallel to the fib Model Code for Concrete Structures 2010 (2010), TS802 (2016) 

offers the similar procedure. With a nuance from fib Model Code for Concrete 

Structures 2010 (2010), British Standards Institution (2004) studies the characteristic 

compressive strength in a limitation of concrete age which is greater than day-3 and 

less than day-28. In this manner, the concrete age is still a determinant factor for the 

characteristic compressive strength.  
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Table 2.1: The coefficients depending on cement types for compressive strength.  

(fib Model Code for Concrete Structures 2010, 2010.) 

To find a conceivable solution, the code also uses the mean value of compressive 

strength at an age t with the coefficient s depends on the cement types. The code also 

additively suggests for the time early from day 3, more precise calculations ought to 

be examined. 

Table 2.2: The norm strengths depending on the cement types 

(fib Model Code for Concrete Structures 2010, 2010.) 

In addition to the univariate regression models to predict the compressive strength, 

McKinney (2009) indicates for the least square regression approach, the polynomial 

regression analysis such as a parabola or a cubic function come forward to estimate 

the splitting tensile strength. Because, in his study, a straight line is weak 

representation for data fitting rather than a curve fitting. By thinking this proof, a 

polynomial function in an mth degree with coefficients could be useful to estimate the 

mechanical properties of concrete. In this frame, whether x-y axis relationship is truly 

in mth degree polynomial, and there are not error values, the polynomial curve passes 

through all data points. In the basis of this sight, Ahmet et al. (2020) tries polynomial 

regression models due to the concerns of data forecasting in civil engineering. In their 

estimation models, they use experimental results of the compressive strength as x axis 

Table 5.1-9 : Coefficients to be used in Eq. (5.1-51) for different types of cement 

fcm [MPa] Strength class of cement s  

 

≤ 60 

 

32.5 N 

32.5 R, 42.5 N 

42.5 R, 52.5 N, 52.5 R 

0.38 

0.25 

0.20 

 

> 60 All classes 0.20  

Table 5.1-3 : Characteristic strength values of normal weight concrete [MPa] 

Concrete grade C12 C16 C20 C25 C30 C35 C40 C45 C50 

fck 12 16 20 25 30 35 40 45 50 

fck,cube 15 20 25 30 37 45 50 55 60 

Concrete grade C55 C60 C70 C80 C90 C100 C110 C120  

fck 12 16 20 25 30 35 40 45  

fck,cube 15 20 25 30 37 45 50 55  
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to fit the splitting tensile strength results as y axis. In the experimental timeline, the 

cubic and cylindrical samples are used to collect the data. At the end, it is an obvious 

result that the compressive strengths of cubic samples are higher than the cylindrical 

ones. Because of the differences in the results, they multiply the compressive strength 

results of cubic samples with the factor 0.8 to adjust all results in four different 

polynomial cases. 

 

 

 

 

 

 

 

 

Figure 2.5 : The comparison of different polynomial model ratios for the strengths.                

(Ahmed et al., 2020.) 

The authors also give details about the age of the samples tested. For both 7-day and 

28-day of specimen tests, having low water/binder ratio with high compressive 

strength condition, the splitting tensile strength of concrete and the compressive 

strength ratio is less than the high water/binder ratio with the low compressive strength 

condition for the lower strength of concrete. They also add that while the compressive 

strength increase, the splitting tensile strength and compressive strength proportion 

decrease. However, this non-linear result changes for all models as the authors’ 

practice. Kim et al. (2002) experiments for concrete 100X200 mm cylinder specimens 

to realize the effects of water/cement ratios, curing temperatures and cement types with 

pozzolans on the splitting tensile strength in developing concrete ages. In the study, 

for the non-linear regression analysis, the power function was chosen for a univariate 

model. The relationship between the compressive strength and splitting tensile strength 

is subjected to the elevated temperatures for cuing at early ages again with the high 

mechanical properties. But the low temperatures for cuing at later ages in lower 

mechanical properties are also the same. On the other hand, there is no large effects by 
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using different concrete ages, cement types and curing temperatures on the 

compressive strength and splitting tensile strength relationships. Finally, the authors 

conclude the study using power function for a proper estimation of the splitting tensile 

strength. 

 

 

 

 

 

 

Figure 2.6 : The strength development under different curing temperatures.                

(Kim et al., 2002.) 

 

 

 

 

 

 

 

 

Figure 2.7 : The strength development at different ages.                                               

(Kim et al., 2002.) 

AS3600 (2001), Shah et al. (1985), Parrott (1988), Crouch et al., Iravani (1996) and 

Raphael (1984) also promote the use of power function by testing again cylindrical 

concrete samples in different mixture designs and/or curing conditions with strength 

development limitations to estimate the splitting tensile strength. In AS3600 (2001), 

to use power function in 0.5th degree with an experimental coefficient, it is significant 

to have 28-day of compressive strength under standard curing procedure. Depending 

on the data set Shah et al. (1985) works, Parrott (1988) recommends the use of power 
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function up to 120 MPa cylindrical compressive strength. Crouch et al. designs 

previous gravel and limestone aggregate concretes and studies the splitting tensile 

strength developments in use of aggregate types. Additionally, Iravani (1996) operates 

the concrete samples at 56-day compressive strength from 65 MPa to 120 MPa with 

or without silica fume additions. He takes care the concrete age, cement types, drying 

effects, specimen size effects, Poisson’s Ratio, and the mechanical properties of 

concrete. For the estimation of splitting tensile strength, the power function is basis for 

extension of high-performance concretes with or without cementitious modifiers with 

28-day of compressive strength up to 120 MPa. In another research, Raphael (1984) 

examines thousands of samples in varied sizes and shapes produced between 1928 and 

1965 in different water/binder ratios and aggregate sizes. He results the top limit of the 

cylindrical compressive strength in use of power function analysis at 65 MPa. 

Externally, Arioglu and Arioglu (2005) estimate the splitting tensile strength by using 

logarithmic function which is propounded by Arioglu and Koyluoglu (1997) in 

regression analysis for univariate models. As independent variable, the compressive 

strength is used between 1 MPa and 122 MPa. To collect data, they use 150X300 mm 

cylinder shape concrete samples. They also execute by cross checking the literature 

suggestions that their studies to forecast the mechanical properties of concrete with 

different statistical relations end up with the comparable results. They also remind for 

the colleagues that engineers should be always aware of error margins. With laboratory 

tests, civil engineers need to search for the literature to analyze physical and 

mechanical properties of concrete by taking importance of engineering projects with 

time and cost limitations into account. 

In univariate regression analysis, the modulus of elasticity is also another topic of 

searching for data prediction in civil engineering. Even though this mechanical 

property is the least studied and the hardest to examine, the literature supports details 

about getting knowledge on the modulus of elasticity by using the compressive 

strength test results. As previously mentioned above, McKinney (2009) studies an 

overview of diverse functions and/or equations able to be used for data forecasting in 

civil engineering. Those models are adequate to calculate a data set based on 

independent variables such as the concrete age and compressive strength. Nonetheless, 

the literature gathers the studies at some basic points such as data analysis for the 

splitting tensile strength and modulus of elasticity based on compressive strength. 
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Except this, to predict the compressive strength, the early ages for concrete are another 

direct factor as independent variables. In ACI Committee 318 (2014), for ordinary 

Portland cement concrete, it is suggested to use of power function to presume the 

modulus of elasticity for the lightweight concrete specimens that has unit weights 

between 90 and 160 lb./ft3. For the NWC, in the function, there is only experimental 

coefficient. For a specific task, Diaz et al. (2011) studies class F fly ash based 

geopolymer concrete (CFGPC) to compare with ordinary Portland cement concrete 

(OPCC) which are correlated by using the compressive strength test results. Depending 

on this method, Cui et al. (2020) reveals that the mean elastic modulus of CFGPC is 

lower than OPCC mixtures. Although the aggregates and aggregate proportions used 

in the mixtures are the same to the total masses, the difference results observed in the 

mixtures are because of the attribution of ordinary Portland cement (OPC) and 

geopolymer binders. They find out that the power function driven in the study which 

is correlation of the compressive strength and modulus of elasticity is quite adequate 

in the light of the statistical results (R2) to estimate the modulus of elasticity.  

 

 

 

 

 

 

 

Figure 2.8 : The correlations of compressive strength and modulus of elasticity.                                               

(Cui et al., 2020.) 

Furthermore, Haque and Rasel-Ul-Alam (2018) refer to operate polynomial, 

logarithmic and exponential models for the modulus of elasticity calculations. 

According to the authors, under standard curing methods, the concrete age is the main 

idea to evaluate the results. The main goal of their study is to characterize the 

compressive strength with the pattern of diverse specified concrete designs in different 

strengths. Without additional experiments, by using only standard curing methods, the 

compressive strength is developed to predict the modulus of elasticity in short term. 
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For this prediction, the mentioned non-linear models are preferred with the statistical 

results (R2, RMSE, NSE) to see how the compressive strength is effective on the 

modulus of elasticity in an increasing concrete age. They last the results that the 

regression analyses as non-linear models are possible to illuminate the short-term 

behaviors of concrete strengths without necessity of more experiments. 

 

 

 

 

 

 

 

 

Figure 2.9 : The compressive strength profiles of specified design strengths. (Haque 

and Rasel-Ul-Alam., 2018.) 

Likewise, like the other studies referred above, ACI Committee 363 (2010), CEB – 

FIB 1990 (1993), and TS500 (2000) also mention the use of univariate regression 

models to conjecture the modulus of elasticity. The effects of crushed limestone, 

bauxite, crushed quartzite, crushed andesite, crushed basalt, crushed clay slate, crushed 

cobblestone aggregates and coarse aggregates are focuses. ACI Committee 363 (2010) 

derives a power function for the NWC. Beyond the aggregate effects, it studies silica 

fume, slag, cement and fly ash effects on the development of modulus of elasticity. 

Although the first impression of the model seems multivariate, the study simplifies the 

equations by the mathematical calculations to reach univariate effects on the 

mechanical properties. In CEB-FIP 1990 (1993), the modulus of elasticity for the 

NWC is calculated from the characteristic compressive strength of concrete at age 28-

day. In the calculation, the power function again is the choice of regression models. 
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Figure 2.10 : The modulus of elasticity vs. square root of compressive strength.       

(ACI Committee 363, 2010.) 

Though the mean strength of compressive strength is necessary, it is more complex to 

calculate the modulus of elasticity. Rather than the literature, the code prefers to get 

tangent moduli to make a comparison for the modulus of elasticity (reduced moduli of 

elasticity). In this perspective, the code draws a comparison table for different concrete 

grades. 

Table 2.3: The tangent moduli and moduli of elasticity for concrete grades.      

(CEB-FIP 1990, 1993.) 

TS500 (2000) examines the NWC at a jth days for the modulus of elasticity 

calculations.  For jth day, the characteristic compressive strength of cylinder is used. 

On the other hand, the characteristic compressive strength is multiplied by 0.4 for the 

stress level corresponding to conformity of secant modulus of elasticity. It also shares 

28-day concrete strengths which help to estimate the modulus of elasticity in the Figure 

2.13 for the cube and cylinder shape concrete sample values. The calculation function 

is also in the power form. 

Table 2.1.6. Tangent moduli and reduced moduli of elasticity 

Concrete grade C12 C20 C30 C40 C50 C60 C70 C80 

Eci (10³ MPa) 27 30 34 36 39 41 43 44 

Ec (10³ MPa) 23 26 29 31 33 35 36 38 
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Table 2.4: The concrete grades and strengths.                                                   

(TS500, 2000.) 

In British Standards Institution (2004), like in the data prediction of the compressive 

strength, there are three different coefficient values depending on different cement 

types [CEM 42.5R, CEM 52.5N, CEM 52.5R (class R), CEM 32.5R, CEM 42.5N 

(class N), CEM 32.N (class S)] driven in the time dependent mean compressive 

strength values which are calculated from an exponential function. In this frame, under 

standard curing methods, the concrete age and cement types are important factors to 

manipulate the regression analysis results of modulus of elasticity. However, from 

complex to simple form, it is also another factor to have the mean value of modulus of 

elasticity in the power function form to predict the results. At the end of this procedure, 

the compressive strength is again the prior independent factor for the correlation. In 

this manner, the characteristic compressive strength of concrete comes forth to 

construct a regression model to presume an early age concrete strength development 

for the modulus of elasticity. Besides, to understand the mechanism of elastic 

deformation of concrete, the code reviews that the mean compressive strength needs 

to be reduced due to use of distinct types of aggregates such as quartzite, limestone, 

sandstone and basalt for calculations. 

2.2 Multivariate Regression Analysis for Mechanical Properties of Concrete 

The univariate regression analysis is one of the mostly preferred methods to predict a 

data set especially in civil engineering. However, the mechanical properties of 

concrete are dependent on many factors because of the nature of mixture designs. Due 

ÇİZELGE 3.2 – Beton Sınıfları ve Dayanımları 

Beton 

Sınıfı 

Karakterististik 

Basınç Dayanımı, 

fck 

Eşdeğer Küp 

(200 mm) 

Basınç Dayanımı 

Karakteristik 

Eksenel Çekme 

Dayanımı, fctk 

28 Günlük 

Elastisite 

Modülü, Ec 

 MPa MPa MPa MPa 

C16 16 20 1.4 27000 

C18 18 22 1.5 27500 

C20 20 25 1.6 28000 

C25 25 30 1.8 30000 

C30 30 37 1.9 32000 

C35 35 45 2.1 33000 

C40 40 50 2.2 34000 

C45 45 55 2.3 36000 

C50 50 60 2.5 37000 
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to this, it is hard to analyze and understand the effects of mixture design materials on 

concrete strength just because using one independent variable in regression analysis. 

For instance, time as concrete age; amounts of binders, water, aggregates, admixtures; 

proportions of materials such as water/cement, water/binder, fine aggregate/aggregate, 

coarse aggregate/aggregate, and air content as independent variables are the tasks of 

univariate regression analysis for each. Moreover, univariate regression models can 

calculate the compressive strength. In this perspective, more complex data analysis is 

needed for further investigations. As a complicated method, the multivariate 

regression analysis is the other mostly preferred method for data analysis. In data 

predictions, the linear and non-linear regression analysis models/functions are 

operated. For the non-linear functions, there are power, exponential, and logarithmic 

models. In this view, Abrams (1919) pioneers the importance of use of water to cement 

ratio for the compressive strength of fully compacted with 1% of air voids concrete in 

the power function form. With this reference, Ozturan et al. studies the multiple 

regression analysis with two experimental coefficients and artificial neural network 

(ANN) approach for the prediction of compressive strength at day-28 with a wide 

range of concrete mixture properties. In the ANN approach, they examine accurate 

numbers of hidden neuron numbers and hidden layers. They find out that Abrams’ law 

results have lower correlation of determination than the ANN approach results. 

Because in the regression analysis water to cement ratio is the only independent 

variable. Nonetheless, the ANN approach uses all properties of mixture design 

properties in its hidden neurons and layers. The authors also indicate that the lower 

correlation of determination may be caused because of plasticizers effects on the 

concrete microstructures.  

Akhtar et al. (2014, 2015) gives details about the multiple regression analysis (MLR) 

by referring Chau et al. (2005) who identify that the MLR is a casual and time invariant 

representation of relationships between input and output values. On the other hand, 

Akhtar et al. (2014, 2015) signifies that the MLR can be studied with two or more 

dependent and independent variables with linear fitting regression functions for 

examined data. In this representation, the authors forecast the compressive strength of 

concrete by using amount of cement (C), fly ash (FA), ground granulated blast furnace 

slag (GGBS) and water/cement ratio (W/C) for 3-day, 7-day, 14-day, and 28-day age 

concrete in the MLR form. At the end, they result that use of different amount of FA 
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and GGBS in replacement of cement leads increase of the compressive strength for 

high strength concretes at different ages. 

 

 

 

 

 

 

 

 

Figure 2.11 : The actual data to predicted data of the compressive strength at day-28.                                                 

(Akhtar et al.; 2014, 2015.) 

As following method, Haranki (2009) refers another power function form for the 

multivariate regression analysis in volumetric proportions of cement, water, and air. 

He also uses the coefficient which is from the regression calculations. In the 

compressive strength equation, Ziolkowski et al. (2021) mentions the mean 

compressive strength. And the coefficient used in the function is for the aggregate type 

and cement strength class. Furthermore, Turkel (2002) and Bedirhanoglu (2011) cite 

that Feret’s formula is in second degree. Ziolkowski et al. (2021) also adds that 

according to the consistency equation Abdelgader et al. (2013), Rajamane et al. (2014) 

and Zhang et al.(2007) who study ingredient volumes for an analytical method with 

valid destructive laboratory tests, it is allowable to decide the amount of water, cement, 

and aggregate per unit volume by weight. In this perception, there are three different 

methods which are in linear forms. The one of them is incorporated with water demand 

for water-cement and water-aggregate indexes with cement and aggregate weights in 

1 m3 of concrete. The last method is Bolomey’s formula as Gołaszewski et al. (2016) 

and Abdelgader et al. (2013) put forth. It also seems like the second method based on 

Feret’s formula. For these two methods, the cement to water ratio is necessary with 

the air content in 1 m3 of concrete. In addition to this, there is another numerical value 

named as a for the types of aggregates and cements used in concrete. However, Feret’s 

formula is accurate when the strength of aggregate is lower than the strength of grout 
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and applies to concrete porous (Gołaszewski et al., 2016; Abdelgader et al., 2013). By 

using Bolomey’s formula, Ziolkowski et al. (2021) predict the test results in types of  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12 : For recipe number 1, fitting curves and gradings.                                                 

(Ziolkowski et al., 2021.) 

aggregates for data fitting with the aggregate sizes in mm to the aggregate passing in 

percentages from the sieve analysis. 

In Graf’s formula, there is a correlation in second degree between cement to water 

ratio and norm strength of cement. In the calculations, the standard values are 

considered for the norm strength of cement. For instance, the coefficient KG in the 

correlation changes between four and ten for CEMI 42.5 cement type (Akman, 1990). 

As a power function solution, Turkel (2002) also proposes to use the cylinder 

compressive strength as an output solved by using the cement to water ratio in a 

fraction value degree. As a result of the study, Turkel (2002) gets high correlation of 

determination results which are coherent with the test results. Like Abrams’ formula, 

Colak (2006, 2013) studies another non-linear regression model based on the water to 

cement ratio. At the same time, he finds out that there are two main paths for the 

compressive strength prediction. The first projection works when the water/cement 

ratio is known. In this way, the maximum compressive strength is essential to use any 

water/cement ratio in the equation of estimation. However, the second one is operated 
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when the maximum compressive strength is absent. For both situations, the Portland 

cement is also necessary. With Abrams’ formula and Colak’s correlation, Seitablaiev 

 

 

 

 

 

 

 

Figure 2.13 : Abrams’ and Colak’s models for the compressive strength at day 28. 

(Experimental values are from Neville’s book (1996).)                                                

(Seitablaiev, 2019.) 

(2019) examines 28-day compressive strength analysis for the water/cement ratio to 

the compressive strength with very high correlation of determinations. 

One of the further non-linear regression analysis models for the mechanical properties 

of concrete could be rearranged in the general linear regression model form. For this 

rearrangement, the logarithm of the response variable Y is needed to be taken. By this 

logarithmic calculation, the general form of the linear model turns out to be non-linear 

form of multiplication of every independent variable in the power form. Those 

independent variables are called covariate vectors such as concrete mixture design 

ingredients. At the same time, the exponential values X is called estimable parameter 

vectors from calculations. Briefly, the logarithmic transformation is operated for the 

non-linear behavior of mechanical properties of concrete. In this approach, Behnood 

et al. (2015) examines the splitting tensile strength prediction for the plain and steel 

fiber-reinforced concrete based on the compressive strength tests. 

In general, civil engineers studies the compressive strength for the strength 

development of concrete. Because it is the most efficient guide for further analysis in 

concrete behavior for both early and late date provisions of the strength development 

of concrete. One of the provisions is to presume the modulus of elasticity based on 

elastic behavior of concrete. For this forecasting, the mostly used prior data is the 

compressive strength. In another saying, the modulus of elasticity is driven from the 



 

24 

 

compressive strength. From the line of this sight, Iravani (1996) proposes use of 

cylinder compressive strength between 55 and 125 MPa which is in the power form 

model with the empirical coefficient based on stiffness tests for the high-performance 

concrete at day-56 with well fitted relationships. The literature also modifies the 

equation which has also the type of coarse aggregate coefficient Cca depending on 

empirical work (Razak and Wong.). For the relationships between the compressive 

strength and modulus of elasticity, Razak and Wong study the general form of power 

function model for the modulus of elasticity based on Iravani’s proposal (1996). They 

also see that the model has good correlation of determination which are above 080. At 

the end, in the cross checking of the model, the authors try ACI 318R-99 (1999) and 

ACI 363R-92 (1992) to suggest with the modifications based on their test results. 

 

Figure 2.14 : The best fitting curves for static modulus of elasticity.                                                 

(Razak and Wong.) 

Additionally, Turkel (2002) explains in his study that the higher water to cement ratio 

means the lower characteristic compressive strength. By drawing a curve, he proposes 

a logarithmic function of the modulus of elasticity with the very high R2 value for 

accuracy between the test and prediction results depending on the water/cement ratio. 

Differently, Noguchi and Tomosawa (1995) say that before analyzing any group of 

data, the creation of a basic form of equation for the modulus of elasticity is a need. In 

their regression analysis, the authors use the unit weight of concrete and compressive 

strength values in a non-linear equation form which is exponential. Addition to this, 

they evaluate correction factors of k in the multiplication form for the aggregate and 

admixture effects on the modulus of elasticity results. Blick (1973) and  ACI 

Committee 363 (2010) also indicate that previous examinations are the compositions 

of low water to cement ratio with high cementitious content, and the maximum coarse 
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aggregate size in 10-mm or 13-mm. However, Cook (1982) successfully proposes the 

maximum size of the coarse aggregate in 19-mm and 25-mm. 

 

 

 

 

 

 

Figure 2.15 : The relationship between w/c ratio and the modulus of elasticity.                                                 

(Turkel, 2002.) 

For fine aggregates, Wills et al. (1967) discuss that the rounded shape of particle and 

smoothness of texture are beneficial for less water in concrete mixtures for high 

strength concretes. In this perspective, the use of less water and greater area of smaller 

size of aggregate increase the strength of concrete due to the water to cement ratio and 

bond of cement and surface area of aggregate content.  

 

Figure 2.16 : The correlations of estimated and test data of the modulus of elasticity.                                                 

(Noguchi and Tomosawa, 1995.) 
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Regarding of this, Cook (1982) studies the modulus of elasticity based on the 

compressive strength less than 84 MPa and unit weight of concrete in the non-linear 

model form from an exponential equation. Onto these studies, CEB – FIB 1990 (1993) 

and ACI Committee 363 (2010) develop the same model by caring aggregate and 

admixtures effects on the modulus of elasticity like in Noguchi and Tomosawa (1995) 

study. It signifies that the coefficient k1 is for crushed limestone, calcined bauxite, 

crushed quartzite, crushed andesite, crushed basalt, crushed clay slate, crushed 

cobblestone aggregates, and the coefficient k2 is for silica fume, slag cement and fly 

ash fume. There are also other acceptances for the coefficients for limitations in 

aggregates and admixtures. 

2.3 Machine Learning Algorithms for Mechanical Properties of Concrete 

In model fitting, the multiple regression algorithms are applied in use of many 

statistical methods for assessments of performance. In the Figure 2.21, the metrics of 

potential statistical are displayed for the multiple regression model evaluations with 

the corresponding expressions of mathematics. These metrics also prove that how 

predicted data fits with real data (Chaabene et al., 2020). Further, the multivariate 

regression models which figure each input variable weight in estimation progress out 

could be computed in sensitive analysis (Xu et al., 2019; Van Dao et al., 2019). 

Intercalarily, the statistical metrics are for both performances assess of the multivariate 

regression techniques and reference of effectiveness comparisons of a lot of 

algorithms. 

Like human brain working framework, the artificial neural network (ANN) is an 

inspired non-linear model in machine learning (Reza et al., 2019; Pliego Marugán et 

al. 2019). In the ANN algorithms, the propagation of data is set throughout the 

connections having the information of element procedure called neuron to send them 

to the follow-up neurons. In this process, every bit of information is weighted by the 

importance of input variables to outputs in reflections (Derousseau et al., 2018). When 

a neuron is given an information, the neuron merges that information with the other 

following information coming from different neurons in a combination equation. After 

that, the combined data is sent to the coming nodes. This cycle continues until the 

algorithm fits the actual data. This process is indicated by the error rate convergence 

and/or when the maximum numbers of iterations are received (Bourdeau et al., 2019). 
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Statistical metric. 

Statistical parameter Formula 

Correlation coefficient (R) 
𝑅 =

n ∑ xy − (∑ x)(∑ y)

√[n ∑ x2 − (∑ x)
2

] [n ∑ y2 − (∑ y)
2

]

 

Coefficient of deermination (R²) 𝑅2 = 1 −
∑ (yi − ŷi)

2N
i=1

∑ (yi − y)2N
i=1

 

Mean square error (MSE) 𝑀𝑆𝐸 =
1

n
∑ (yi − ŷi)

2
n

i=1
 

Root mean square error (RMSE) 𝑅𝑀𝑆𝐸 = √
(yi − ŷi)

2

n − p

2

 

Mean absolute error (MAE) 𝑀𝐴𝐸 =
1

n
∑ |y′i − yi|

n

i=1
 

Mean absolute percentage error 

(MAPE) 
𝑀𝐴𝑃𝐸 (%)  =

1

n
∑ |

y′i − yi

yi

|
n

i=1
 

Mean (µ) µ =  
1

n
∑

yi

y′i

n

i=1
 

Standard deviation (σ) 

 

𝜎 = √
1

n
∑ (

yi

y′i

− µ)²
n

i=1
 

Coefficient of variation (COV) 𝐶𝑂𝑉 (%) =  
σ

µ
𝑥 100 

Table 2.5 : The correlations of estimated and test data of the modulus of elasticity. 

(Chaabene et al., 2020.) 

An input layer with hidden layers and output layers, there are three typical layer 

compositions (Fadaei et al., 2018). In the Figure 2.22, the general frame of the ANN 

is shared. In this structure, the parameters of input are conveyed to testing and training 

of a model. The relationships between the input and output layers are linked by hidden 

layers. For these relationships, a function of a model is necessary to produce neuron 

outputs and data transferring throughout the hidden and output layers (Reza et al., 

2019; Hemmat Esfe et al., 2015). In this concept, training of the ANN is bridged via 

algorithms of learning processes which lead solutions for the problems put forth. Thus, 

the general body structure of the ANN differs due to the types of algorithms used for 

learning. The mechanical properties of concrete can be forecasted by using machine 

learning algorithms. In the existence of concrete ingredients and proportions of 

mixture compositions, the input variables are used in the ANN models. For example, 

this approach is used by Ziółkowski and Niedostatkiewicz (2019) for four main 

components such as cement, fine and coarse aggregates, and water for the compressive 

strength estimation. They also use 28-day strength of concrete to define the prediction 

process in the ANN structure. In the structure, they divide their study into three subsets 
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which are the training data set, data set selection and data set tests. To create a neural 

network, the training data set is used. 

 

 

 

 

 

 

Figure 2.17 : The frame of ANN with m number of inputs and n number of outputs.                                                 

(Chaabene et al., 2020.) 

For the data set selection, the parameters are adjusted for the neural network. Lastly, 

for the evaluation of the network efficiency, the data set testing is used. In this path, 

they have many records for an exclusive result. Also, like in the following figure, they 

construct their ANN structure.  

At the end, they reach the result that the machine learning application could be a choice 

for an engineering practice in mixture designs of concrete. In the algorithms, they use 

fifteen equations and fourteen required auxiliary variables. However, even though they 

evaluate an equation to quickly check the concrete mixture designs in this condition 

out, the method they follow does not let to reflect all the relationships between the 

boundary conditions and inputs. Because they use only four components for their 

algorithms (Ziółkowski and Niedostatkiewicz., 2019). To train the ANN models, the 

backpropagation neural network (BPNN) is a local search method.  

 

 

 

 

 

 

Figure 2.18 : The ANN structure for the prediction of compressive strength.                                                 

(Ziółkowski and Niedostatkiewicz., 2019.) 
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For instance, the Levenberg-Marquardt (LM) algorithm is one of the BPNN method 

to upgrade the ANN biases and weights. The authors also refer that backpropagation 

(BP) is employed for the compressive strength of high-performance concretes. In this 

employment, the age of concrete and the components of concrete are essential as input 

parameters. Also, the authors indicated for the assessment of performance, BPNN 

would show good presuming in terms of the precision rather than the regression 

models (Ziółkowski and Niedostatkiewicz., 2019). Except the compressive strength of 

concrete, the splitting tensile strength is also applicable in the BPNN techniques. What 

Behnood et al. (2015) proposes to predict the splitting tensile strength is based on steel 

fiber-reinforced concrete. His model introduces the actual compressive strength results 

as input parameter. Parallel to him, Mohammadi et al. (2018) develops a comparison 

of the effectiveness of the radial basis function neural network (RBFNN) and BPNN 

for the modulus of elasticity. In the authors’ efforts, the LM algorithm is preferred in 

the BPNN. At the end, they report that the BPNN is more effective than the RBFNN 

to practice forecasting of the modulus of elasticity (Mohammadi et al., 2018). 

As another artificial intelligence tool, the Bayesian Regularization (BR) algorithm is 

one of the possible analysis methods. The use of BR in the ANN has more potential 

than the standard BP methods. Because the BR method increases or decreases 

extensively the cross-validation requirements (Burden and Winkler., 2009). Also, the 

BR conducts the non-linear regression models into a postured-well statistic manners 

like the non-linear regression models do (Kaur and Salaria., 2013). Additionally, the 

BR proposes better generalization when the data sets are hard to be analyzed (Burden 

and Winkler., 2008). By thinking of this, the BR training method displays better 

solutions than the LM method does may be because of the heterogeneity of the input 

variables which are justified by the diverse properties and/or amounts of ingredients 

of the concretes tested. Because the BR typically spends more time for a generalized 

solutions for the data sets which are noisy and small (Kaviya et al., 2019). 

Hadzima-Nyarko and Trinh (2022) construct nine variable input data base for an 

output through the hidden layers with ten variables to one output computing process. 

At the end, they report that for the age 28-day, the compressive strength is predicted 

by using the BR method at feverish temperatures. The wide range of experimental data 

were collected from the actual data sets to build a BR structure by using water, cement, 

fine and coarse aggregates, fly ash, nano silica, silica fume, super plasticizer and 
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temperature records as variables in the input database. Finally, the authors give advice 

to use the ANN models for saving budget and time to avoid setting more experiments 

for data collection and prediction. 

 

 

 

 

Figure 2.19 : The ANN structure for the prediction of compressive strength.                                                 

(Hadzima-Nyarko and Trinh., 2022.) 

Like in Hadzima-Nyarko and Trinh (2022) study, Suescum-Morales et al. (2021) puts 

eleven input variables which are also from the concrete mixture design water, cement, 

fine (natural) and coarse (natural and/or re-cycled) aggregates with the fineness 

modulus of sand, fly ash, superplasticizer, capacity of water absorption, dry density of 

saturated surface of the coarse aggregates and the maximum size of coarse aggregate 

particles. In their BR method, the authors construct twenty hidden layers for enough 

accuracy of the actual data set. They criticize the study that at the age 28-day, the 

compressive strength is hard to be estimated for producing new concrete because of 

the heterogeneity of the presence of the re-cycled coarse aggregate (RCA). 

In this light of modelling, Kaviya et al. (2019) also suggests using the BR structure to 

predict the compressive strength of concrete rather than using the multiple regression 

analysis models due to the marginal differences between the real and estimated values 

for the high-performance concrete including supplementary cementitious materials. In 

the Table 2.6, a wide range of prediction models for the mechanical properties of 

concrete is referred from the literature. 



 

31 

 

Table 2.6: The review of literature for concrete mechanical properties prediction. 

 

Reference Model Equation Parameter Source Data Set Model Evaluation 

Plecas and Dimovic 

(2009) 

Least Square 

Regression 
f = A0 + A1t

1/2 + A2t 

A0 for immediate dissolution, A1 for 

diffusion-controlled transporting, A2 for 

long-term kinetical dissolution, t for 

leeching duration, f for long-term leaching 

characteristics 

 

 

Laboratory 

 

 

4 

 

 

IAEA 

Abd elaty (2014) 

Univariate 

Regression 

Analysis 

ft = Aln(t) + B 

A for strength gain constant rate (regression 

line slope), B for strength constant level 

(grade constant), t for concrete age, ft for 

compressive strength 

 

 

Literature 

 

 

89 

 

 

R2 

Resheidat and Ghanma 

(1997) 

Univariate 

Regression 

Analysis 

Y = α + βX, 

Y = αXβ, 

Y = αβX 

α and β for regression constants, X for 

accelerated strength, Y for predicted 28-day 

concrete strength 

 

Laboratory 

 

4 

σ, 

R, 

95% Confidence 

Interval 

McKinney (2009) 
Least Square 

Regression 

y = aebx, 

y = axb, 

y = a0 + a1x + a2x
2 + … + amxm 

a and b for regression constants, m for 

equation degree, x for independent variable, 

y for predicted result 

 

Laboratory 

 

8 

 

- 

ACI 209.2R-08 (2008) 

Univariate 

Regression 

Analysis 

fcmt = [t / (a +bt)]fcm28, 
Ecmt = a + b√(fcmt) 

a and b for  regression constants, t for 

concrete age, fcm28 for mean compressive 

strength, fcmt for predicted compressive 

strength,  Ecmt for predicted modulus of 

elasticity 

 

 

Literature 

 

 

- 

 

 

- 
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Table 2.6 (continued): The review of literature for concrete mechanical properties prediction. 

 

Reference Model Equation Parameter Source Data Set Model Evaluation 

fib Model Code for 

Concrete Structures 

2010 (2010); TS802 

(2016) 

Univariate 

Regression 

Analysis 

fcm(t) =  βcc(t)fcm, 

βcc(t) = exp {s[1 – (28/t)0.5]} 

 

fctm = 0.3fck
2/3; 

fck < C50, 

fctm = 2.12ln(1 + 0.1(fck + f); 

fck ≥ C50 

 

Eci = Ec0αE[(fck + f)/10]1/3 

s for cement strength class, t for concrete 

age,  βcc(t) time dependent strength 

development, fcm for mean compressive 

strength at day-28,  fcm(t) for compressive 

strength at age t, fctm for splitting tensile 

strength, f for mean compressive strength 

as 8 MPa,  Ec0 for 21500 MPa,  αE  for 

aggregate coefficient,  Eci for 28-day 

modulus of elasticity 

 

 

 

 

Literature 

 

 

 

 

- 

 

 

 

 

- 

British Standards 

Institution (2004) 

Univariate 

Regression 

Analysis 

fcm(t) =  βcc(t)fcm, 

βcc(t) = exp {s[1 – (28/t)0.5]} 

 

fctm = 0.3fck
2/3; 

fck < C50, 

fctm = 2.12ln(1 + 0.1(fck + f); 

fck ≥ C50 

 

Ecm = 22[(fcm)/10]1/3; 

fcm = fck + f 

s for cement strength class, t for concrete 

age,  βcc(t) time dependent strength 

development, fcm for mean compressive 

strength at day-28,  fcm(t) for compressive 

strength at age t, fctm for splitting tensile 

strength, f for mean compressive strength 

as 8 MPa, Ecm in GPa for mean modulus of 

elasticity 

 

 

 

 

Literature 

 

 

 

 

- 

 

 

 

 

- 

AS3600 (2001) 

Univariate 

Regression 

Analysis 

Ecj = ρ1,5(0.043√f'c) 

ρ for concrete unit weight,  f'c for 

characteristic compressive strength,  Ecj for 

modulus of elasticity in an appropriate age 

 

Literature 

 

- 

 

- 
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Table 2.6 (continued): The review of literature for concrete mechanical properties prediction. 

 

 

Reference Model Equation Parameter Source Data Set Model Evaluation 

Ozturan et al. 

Multivariate 

Regression 

Analysis, 

Artificial Neural 

Netwrok 

fc28 = a0 + a1x1 + a2x2 + … + anxn 

a for regression constant, n for independent 

variable, x for independent variable, fc28 for 

predicted compressive strength 

 

Laboratory 

 

60 

 

R2 

Ozturan et al. 

Multivariate 

Regression 

Analysis 

fc28 = A/B(w/c) 

A and B for regression constants, w/c for 

water to cement ratio, fc28 for 28-day 

compressive strength 

 

Laboratory 

 

5 

 

R2 

Haranki 

(2009) 

Multivariate 

Regression 

Analysis 

fc = K(c/(c + w + a))2; 

fc = K(c/(c + w + a))n 

K for regression constant, c for cement [%], 

w for water [%], a for air [%], n for equation 

degree, fc for compressive strength 

 

Laboratory 

 

30 

 

R2 

SSE 

 

Behnood et al. 

(2015) 

Multivariate 

Regression 

Analysis 

Y = β0X1
β1 X2

β2 … Xn
βn, 

fspt = afc
b 

β for estimable parameter, n for number of 

independent variables, X for independent 

variable, Y for splitting tensile strength, a 

and b for regression coefficients, fc for 

compressive strength, fstp for splitting tensile 

strength 

 

 

Laboratory 

Literature 

 

 

6 

 

 

R2 

RMSE 

Turkel 

(2002) 

Multivariate 

Regression 

Analysis 

fc = (KB[(C/(E + h)) - k'] 

k' for secondary constant,  KB for concrete 

age, C for cement type and dosage, E for 

water content, h for air content,  fc for 

compressive strength 

 

Laboratory 

 

20 

 

R2 
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Table 2.6 (continued): The review of literature for concrete mechanical properties prediction.

Reference Model Equation Parameter Source Data Set Model Evaluation 

Turkel 

(2002) 

Multivariate 

Regression 

Analysis 

fc = (fcc/K0)(C/E)2 

fcc for cement norm strength, K0 for 

between 4 and 10, C for cement content, 

E for water content, fc for compressive 

strength 

 

Laboratory 

 

20 

 

R2 

Turkel 

(2002) 

Multivariate 

Regression 

Analysis 

Ed = K√Rs 

K for constant between 18000 and 23000, 

Rs for 150X300 mm cylinder compressive 

strength, Ed for modulus of elasticity 

 

Laboratory 

 

20 

 

R2 

Noguchi and 

Tomosawa (1995) 

Multivariate 

Regression 

Analysis 

E = (2.1X105)(γ/2.3)1,5(fc/200)1/2; 

E = k1k2(3.35X104)(γ/2.4)2(σB/60)1/3 

 

γ for concrete unit weight, k1 for 

aggregate coefficients, k2 for binder 

coefficients,  σB and fc for compressive 

strength, E for modulus of elasticity 

 

Literature 

Laboratory 

 

3000+ 

 

95% Confidence 

Interval 

Chaabene et al. (2020) 
Artificial Neural 

Network 

Backpropagation Neural Network 

(BPNN) 

Levenberg-Marquardt Algorithm 

(LM) 

 

Artificial neural network (ANN) 

structures by using concrete mixture 

design components as input variables in 

hidden layers through output layers,  test 

results as output variables for 

compressive strength 

 

 

Laboratory 

 

 

5000+ 

R 

R2 

MSE 

RMSE 

σ 

Hadzima-Nyarko and 

Trinh. (2022) 

Artificial Neural 

Network 

Bayesian Regularization Algorithm 

(BR) 

Artificial neural network (ANN) 

structures by using concrete mixture 

design components as input variables in 

hidden layers through output layers,  test 

results as output variables for 

compressive strength 

 

 

Laboratory 

 

 

9 

 

R2 

RMSE 

σ 
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3.  PROCEDURE OF EXPERIMENTS 

In this section, the school of thought and methodology of the thesis are expressed. The 

process of the experiments was studied at Construction Materials Laboratory of the 

Faculty of Civil Engineering in Istanbul Technical University (I.T.U.). 

Various variables effective on the regression analysis models/equations and machine 

learning algorithms/methods were computed in this thesis. The amount of concrete 

mixture design ingredients in 1 m3, the proportions of water to cement (W/C), water 

to binder (W/B), fine aggregate to aggregate (FA/A), coarse aggregate to aggregate 

(CA/A), and air (A [%]) were included as investigation tasks in this study for the data 

prediction. Hence, there were 33 concrete specimens in two main categories which 

were fly ash (FA) + micro silica (MS) and ground granulated blast furnace slag 

(GGBS) additions as pozzolans for the comparison purposes of material use effects in 

the study. At the same time, these specimens had two different concrete grades with 

five diverse cement types. All the concrete samples were produced in the shape of 

cylinder (150X300 mm) for the laboratory tests under the standard conditions which 

were carried out by the literature. With the light of the test results, the mechanical 

properties of the specimens were forecasted by using the mixture design properties in 

regression models and artificial intelligence algorithm. In these estimating 

calculations, the study was focused on which the mixture designs were accurate or not 

for the aspects of the concrete mixture designs. 

The prediction models/methods based on the test results were published with 

coefficient of correlation (R), determination of correlation (R2), adjusted determination 

of correlation (R2
adj), sum of squared errors (SSE), mean square error (MSE), and root 

mean square error (RMSE) to find out how the performance of the prediction 

models/methods were efficient. 

3.1 Preferences of Material 

For the study, as binder materials, cement (C), fly ash (FA) + micro silica (MS), ground 

granulated blast furnace slag (GGBS) was added to the mixtures. For the types of 
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cement, CEMI 42.5N, CEMI 52.5LA, CEMI 52.5N, CEMIII BS and CEMIII 32.5 

were preferred. The natural sand (NS) and crushed sand (CS) as fine aggregates, and 

NO:0, NO:1, and NO:2 as coarse aggregates were sieved. The sieve analysis was set 

by following TS802 (2016) to consider for using the appropriate amounts of aggregates 

in the mixtures. Moreover, water (W), and two types of superplasticizer admixtures 

(AD.1 and AD.2) were included for the concrete productions. 

3.2 Mixture Designs of Concrete 

The concrete mixture designs were prepared to compare the mechanical properties of 

concrete for presuming of the concrete strengths in the regression analysis, and 

machine learning algorithm for future strength development investigations. Thus, there 

were 33 different mixtures of concrete. In these designs, W/C, W/B, FA/A, CA/A, and 

A [%] ratios were studied for a consistent effort. In the univariate regression analysis 

(URA), all those specimens were analyzed one by one in the presences of concrete 

ages and strengths. However, except the four of the specimens, all the other 29 

specimens were conducted for the multivariate regression analysis (MRA). Like in the 

MRA, in the machine learning algorithm (MLA), the same 29 specimens were soft 

computed for the data estimations. In this perspective, the proportions of W/C were 

designed to reach the level of the aimed compressive strengths. So, the W/C ratios 

were differed from 0.35 to 1.11 for the verification of the concrete strengths. At the 

end, the compressive strength (CS) results ranged from 0.5 MPa to 86.00 MPa. For the 

splitting tensile strength (STS), the test results varied from 0.10 MPa to 6.55 MPa. 

And finally, the test results of the modulus of elasticity (ME) ranged from 10.50 GPa 

to 46.00 GPa. On the other hand, the following Table 3.1, Table 3.2, and Table 3.3 

show the amounts and proportions of concrete mixture design substances with the 

cement types, and concrete grades for the additive distinctions in FA + MS and GGBS. 

3.3 Producing of Concrete 

33 different mixture specimens including C, FA + MS, GGBS, NS, CS, NO:0, NO:1, 

NO:2, AD.1 and AD.2 were mixed and produced for the laboratory tests. At the same 

time, depending on the mixture component amounts, the ingredient proportions were 

also examined for the mixture design purposes. All the samples were made of the same 

incorporator materials for consistent research. After producing the concrete samples, 
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all the specimens were saved, and cured in the laboratory conditions for the hardened 

concrete tests. 

Table 3.1: The identifying properties of concrete mixture designs. 

3.4 Tests of Fresh Concrete 

The slump, unit weight and air content tests as fresh concrete tests were examined, 

when the concrete samples were produced. 

 

 

№ Mixing Codes Additives Concrete Grades Cement Types 

1 C45-III-B20 GGBS C45/55 CEMIII BS 

2 YM-SEG-03 FA + MS C40/50 CEMI 42.5N 

3 YM-SEG-03-FSTC FA + MS C40/50 CEMI 42.5N 

4 MIX-15A-04 FA + MS C40/50 CEMI 42.5N 

5 YM-SEG-05 FA + MS C40/50 CEMI 42.5N 

6 YM-SEG-08 FA + MS C40/50 CEMI 42.5N 

7 MIX-15E-03 FA + MS C40/50 CEMI 42.5N 

8 MIX-15AC-04 FA + MS C40/50 CEMI 42.5N 

9 YM-SEG-10 FA + MS C40/50 CEMI 42.5N 

10 DURABET-PLUS-AIR-AC-03 GGBS C40/50 CEMIII 32.5 

11 YM-SEG-10A FA + MS C40/50 CEMI 42.5N 

12 YM-SEG-10E FA + MS C40/50 CEMI 42.5N 

13 YM-DAP-AC-03 GGBS C40/50 CEMIII 32.5 

14 MIX-15-AC-03 FA + MS C40/50 CEMI 42.5N 

15 MIX-30 GGBS C40/50 CEMIII 32.5 

16 MIX-30-03 GGBS C40/50 CEMIII 32.5 

17 MIX-30-BRT GGBS C40/50 CEMIII 32.5 

18 MIX-30-07 GGBS C40/50 CEMIII 32.5 

19 MIX-34-BRT GGBS C40/50 CEMIII 32.5 

20 MIX-32-03 GGBS C40/50 CEMIII 32.5 

21 MIX-32-CEN GGBS C40/50 CEMIII 32.5 

22 MIX-32-CEN-OK GGBS C40/50 CEMIII 32.5 

23 B70-380 GGBS C45/55 CEMI 52.5N 

24 B70-420 GGBS C45/55 CEMI 52.5N 

25 B47-440 GGBS C45/55 CEMI 52.5N 

26 B67-440 GGBS C45/55 CEMI 52.5N 

27 B67-440-001 GGBS C45/55 CEMI 52.5LA 

28 C45-B25-425 FA + MS C45/55 - 

29 B67-440-BEY GGBS C45/55 CEMI 52.5LA 

30 C45-B26-475 FA + MS C45/55 - 

31 C45-B25-400 FA + MS C45/55 - 

32 C50-B22-460 FA + MS C50/60 - 

33 YM-SEG-11 FA + MS - - 
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3.4.1 Slump Tests of Concrete 

The slump test of concrete is also known as Abrams cone which scales the difference 

between the heights of fresh concrete when the fresh concrete is fully filled into to the 

slump mold, and the slump mold is removed. This test is preferred for the concerns of 

workable concrete mixtures because this test is very cheap and fast to be set for the 

data collection from the fresh concrete producing. In this assessment, the slump test 

was experimented in accordance with the standard of TS EN 12350-2 (2019). In the 

process, the fresh concrete samples were pressed down 25 times with the help of a 

metal bar and/or rod after each time the samples were poured into to the mold. The 

mold was filled up in three times of pouring. When the mold was removed the 

difference was measured for the slump. 

3.4.2 Unit Weight Tests of Concrete 

According to TS EN 12350-6 (2019), first, the fresh concrete was needed to be filled 

to a concrete container which had a precise volume. Secondly, after filling process was 

done, the filled fresh concrete weight was measured to be divided into the inner 

container volume for the unit weight. 

3.4.3 Air Content Tests of Concrete 

In TS802 (2016), to calculate the air content in percentage, firstly, the total weights of 

all materials were calculated by taking the difference between the material weights 

plus container weights and container weight. Then, the theoretical concrete weight on 

air-free basis was found by dividing the total weight of all materials to the total 

absolute subsequent volume. Finally, the air content [%] was found by multiplying the 

fraction of the difference between the theoretical concrete weight on air-free basis and 

the concrete unit weight to the theoretical concrete weight on air-free basis with 100. 

3.5 Tests of Hardened Concrete 

In this section of the thesis, the mechanical properties of hardened concretes which 

were cured under standard laboratory conditions were studied. The compressive 

strength, splitting tensile strength and modulus of elasticity tests were conducted for 

each 150X300 mm cylinder concrete samples. With subsections, these tests are 

expressed in this part of the study.
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Table 3.2: The concrete mixture designs. 

 

Ingredients of Concrete Mixtures 

 C FA MS GGBS W NS CS NO:0 NO:1 NO:2 AD.1 AD.2 

Mixing Codes [kg/m3] [kg/m3] [kg/m3] [kg/m3] [kg/m3] [kg/m3] [kg/m3] [kg/m3] [kg/m3] [kg/m3] [kg/m3] [kg/m3] 

C45-III-B20 380.00 - - - 141.00 426.00 474.00 - 495.00 495.00 5.32 - 

YM-SEG-03 360.00 60.00 20.00 - 142.00 297.00 534.00 - 516.00 479.00 3.74 - 

YM-SEG-03-FSTC - - - - - - - - - - - - 

MIX-15A-04 285.00 50.00 30.00 - 102.00 402.00 469.00 - 514.00 495.00 3.89 0.35 

YM-SEG-05 340.00 60.00 40.00 - 121.00 304.00 542.00 - 525.00 490.00 3.36 - 

YM-SEG-08 340.00 60.00 40.00 - 121.40 303.40 541.70 - 524.90 489.20 2.94 - 

MIX-15E-03 285.00 50.00 30.00 - 102.00 514.00 495.00 - 402.00 469.00 3.56 0.42 

MIX-15AC-04 285.00 50.00 30.00 - 102.00 514.00 495.00 - 402.00 469.00 3.89 0.55 

YM-SEG-10 320.00 60.00 50.00 - 112.50 356.20 372.70 - 561.20 563.30 2.00 - 

DURABET-PLUS-AIR-AC-03 - - - - - - - - - - - - 

YM-SEG-10A 320.00 60.00 50.00 - 112.20 367.10 372.60 - 561.00 563.10 2.60 - 

YM-SEG-10E 320.00 60.00 50.00 - 112.30 357.50 372.70 - 561.10 561.10 2.40 - 

YM-DAP-AC-03 380.00 - - - 140.00 462.00 415.00 - 471.00 452.00 4.94 0.68 

MIX-15-AC-03 285.00 50.00 30.00 - 102.00 402.00 469.00 - 514.00 495.00 3.56 0.28 

MIX-30 360.00 - - - 132.00 444.00 420.00 - 480.00 482.00 4.86 - 

MIX-30-03 380.00 - - - 132.00 444.00 420.00 - 480.00 482.00 5.70 0.40 

MIX-30-BRT 380.00 - - - 139.00 485.00 397.00 - 909.00 - 6.08 0.36 

MIX-30-07 390.00 - - - 137.00 510.00 414.00 - 475.00 404.00 6.63 0.55 
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Table 3.2 (continued): The concrete mixture designs. 

 

Ingredients of Concrete Mixtures 

 C FA MS GGBS W NS CS NO:0 NO:1 NO:2 AD.1 AD.2 

Mixing Codes [kg/m3] [kg/m3] [kg/m3] [kg/m3] [kg/m3] [kg/m3] [kg/m3] [kg/m3] [kg/m3] [kg/m3] [kg/m3] [kg/m3] 

MIX-34-BRT 380.00 - - - 149.00 479.00 392.00 - 898.00 - 6.65 0.33 

MIX-32-03 390.00 - - - 137.00 458.00 434.00 - 493.00 423.00 6.24 0.55 

MIX-32-CEN 390.00 - - - 142.00 540.00 414.00 - 440.00 380.00 7.00 0.60 

MIX-32-CEN-OK 390.00 - - - 137.00 540.00 415.00 - 450.00 385.00 6.20 0.60 

B70-380 114.00 - - 266.00 126.00 395.00 - 502.00 545.00 486.00 4.10 - 

B70-420 126.00 - - 294.00 140.00 417.00 - 428.00 543.00 468.00 3.90 - 

B47-440 146.00 - - 294.00 138.00 468.00 - 370.00 540.00 465.00 4.70 - 

B67-440 146.00 - - 294.00 138.00 468.00 - 370.00 540.00 465.00 4.70 - 

B67-440-001 146.00 - - 294.00 139.00 570.70 149.70 - 337.10 784.10 2.60 - 

C45-B25-425 300.00 105.00 50.00 - 125.00 455.00 360.00 - 524.00 452.00 5.87 1.62 

B67-440-BEY 146.00 - - 294.00 137.00 470.00 372.00 - 540.00 467.00 5.72 - 

C45-B26-475 - - - - - - - - - - - - 

C45-B25-400 280.00 100.00 50.00 - 115.00 554.00 437.00 - 609.00 286.00 6.61 0.72 

C50-B22-460 340.00 100.00 50.00 - 115.00 452.00 358.00 - 521.00 451.00 5.17 4.20 

YM-SEG-11 - - - - - - - - - - - - 
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Table 3.3: The concrete mixture design proportions. 

 

 Weight Unit  Con. Wt. Unit Con. Vol. W1 T Wconcrete Air W/B W/C FA/A CA/A 

Mixing Codes [kg] [kg] [dm3] [kg] [kg/m3] [kg/m3] [%]     

C45-III-B20 23900.00 4609.00 8001.00 19291.00 2411.07 2416.32 0.00 0.37 0.37 0.48 0.52 

YM-SEG-03 24164.00 4567.00 7890.00 19597.00 2483.78 2411.74 2.90 0.32 0.39 0.46 0.54 

YM-SEG-03-FSTC 19526.00 - - - - - - - - - - 

MIX1-5A-04 24050.00 4609.00 8001.00 19441.00 2429.82 2351.24 3.23 0.28 0.36 0.46 0.54 

YM-SEG-05 24290.00 4609.00 8001.00 19681.00 2459.82 2425.36 1.40 0.28 0.36 0.45 0.55 

YM-SEG-08 24091.00 - - - - 2423.54 - 0.28 0.36 0.45 0.55 

MIX-15E-03 23543.00 4609.00 8001.00 18934.00 2366.45 2350.98 0.65 0.28 0.36 0.54 0.46 

MIX-15AC-04 23516.00 4609.00 8001.00 18907.00 2363.08 2351.44 0.49 0.28 0.36 0.54 0.46 

YM-SEG-10 24233.00 4567.00 7890.00 19666.00 2492.52 2397.90 3.80 0.26 0.35 0.39 0.61 

DURABET-PLUS-AIR-AC-03 23703.00 4567.00 7890.00 19136.00 2425.35 - - - - - - 

YM-SEG-10A 24280.00 4567.00 7890.00 19713.00 2498.48 2408.60 3.60 0.26 0.35 0.40 0.60 

YM-SEG-10E 24190.00 - - - - 2397.10 - 0.26 0.35 0.39 0.61 

YM-DAP-AC-03 23487.00 4567.00 7890.00 18920.00 2397.97 2325.62 3.02 0.37 0.37 0.49 0.51 

MIX-15-AC-03 23614.00 4567.00 7890.00 19047.00 2414.07 2350.84 2.62 0.28 0.36 0.46 0.54 

MIX-30 23200.00 4567.00 7890.00 18633.00 2361.60 2322.86 1.64 0.37 0.37 0.47 0.53 

MIX-30-03 23546.00 4562.00 7890.00 18984.00 2406.08 2344.10 2.58 0.35 0.35 0.47 0.53 

MIX-30-BRT 23536.00 4567.00 7890.00 18969.00 2404.18 2316.44 3.65 0.37 0.37 0.49 0.51 

MIX-30-07 23336.00 4567.00 7890.00 18769.00 2378.83 2337.18 1.75 0.35 0.35 0.51 0.49 
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Table 3.3 (continued): The concrete mixture design proportions. 

 Weight Unit  Con. Wt. Unit Con. Vol. W1 T Wconcrete Air W/B W/C FA/A CA/A 

Mixing Codes [kg] [kg] [dm3] [kg] [kg/m3] [kg/m3] [%]     

MIX-34-BRT 23770.00 4567.00 7890.00 19203.00 2433.84 2304.98 5.29 0.39 0.39 0.49 0.51 

MIX-32-03 23671.00 4567.00 7890.00 19104.00 2421.29 2341.79 3.28 0.35 0.35 0.49 0.51 

MIX-32-CEN 22961.00 4567.00 7890.00 18394.00 2331.31 2313.60 0.76 0.36 0.36 0.54 0.46 

MIX-32-CEN-OK 23452.00 4567.00 7890.00 18885.00 2393.54 2323.80 2.91 0.35 0.35 0.53 0.47 

B70-380 24054.00 4567.00 7890.00 19487.00 2469.84 2438.10 1.28 0.33 1.11 0.20 0.80 

B70-420 23979.00 4567.00 7890.00 19412.00 2460.33 2419.90 1.64 0.33 1.11 0.22 0.78 

B47-440 24393.00 4567.00 7890.00 19826.00 2512.80 2425.70 3.47 0.31 0.95 0.25 0.75 

B67-440 24362.00 4567.00 7890.00 19795.00 2508.87 2425.70 3.32 0.31 0.95 0.25 0.75 

B67-440-001 24100.00 4657.00 7890.00 19443.00 2464.26 2423.20 1.67 0.32 0.95 0.39 0.61 

C45-B25-425 23554.00 4586.00 7954.00 18968.00 2384.71 2378.49 0.26 0.27 0.42 0.46 0.54 

B67-440-BEY 24127.00 4586.00 7951.00 19541.00 2457.68 2431.72 1.06 0.31 0.94 0.46 0.54 

C45-B26-475 24006.00 4588.00 7944.00 19418.00 2444.36 - - - - - - 

C45-B25-400 23390.00 4588.00 7944.00 18802.00 2366.82 2438.33 0.00 0.27 0.41 0.53 0.47 

C50-B22-460 23896.00 4588.00 7944.00 19308.00 2430.51 2396.37 1.40 0.23 0.34 0.45 0.55 

YM-SEG-11 - - - - - - - - - - - 
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3.5.1 Tests of Compressive Strength 

The concrete samples were produced for shape, dimension and flatness demands 

according to NT BUILD 200 (1984). For these samples, before the hardened concrete 

compressive strength tests, the specimens cured in the direction of NT BUILD 201 

(1984) were assessed for the medium values of compressive strengths under the 

rupture occurred in the test specimens, when the stresses were loaded. In accordance 

with NT BUILD 203 (1984), the tests were continued until the specimens reached the 

load bearing capacities which made the specimens broken. It was also important to 

place the samples in the test machine pressure platen with an accuracy of ± 1 mm 

before the tests. Moreover, the upper loading platen was paralleled to the contact/load 

bearing surfaces of samples. After those arrangements, the load was progressively 

increased at the rate of 0.8 ± 2 MPa/s. At the end, the maximum loads were noted as 

ultimate loads. By dividing the ultimate loads into the cross-section areas of the 

specimens, the compressive strengths of samples were calculated and enlisted in MPa 

(N/mm2). Before starting the tests, the concrete samples were removed from the water 

pool at the earliest 30 minutes in advance for testing and were dried to avoid free water 

on the surfaces of contact. In the Figure 3.1, Figure 3.2 and Figure 3.3, the test 

requirements in size, shape, and loading procedure are shared with in accordance with 

NT BUILD 200 (1984). 

3.5.2 Tests of Splitting Tensile Strength 

The concrete samples were prepared for curing process as suggested in NT BUILD 

201 (1984). For these specimens, it was concerned for the cross sections of the samples 

which were at least four times of the nominal particle size in the specimens. And the 

heights h of the specimens was equal to two times of diameter d in accordance with 

NT BUILD 201 (1984). In this light of information, the splitting tensile tests were 

applied by pulling the samples till the ultimate strengths were reached in the test 

machine. According to the NT BUILD 204 (1984), the load determinations were 

permitted in ± 3% accuracy, and the load adjusting was increased within 0-0.05 MPa/s. 

For the sample preparation process of the tests, the specimens were sawn in both ends 

after the shorn and grinned specimens were at least two times of square root of the 

cross-section area. While the samples were prepared, dry-against and water-storing 

effects were eliminated by wet towels. 
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Figure 3.1: The nominal measure indications of test specimens.                                        

(NT BUILD 200, 1984.) 

 

 

 

 

 

 

Figure 3.2: The measurement of dimensions of test specimens.                              

(NT BUILD 200, 1984.) 

 

 

 

 

 

 

 

Figure 3.3: The angle examinations. (NT BUILD 200, 1984.) 
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At the same time, before starting to assess the shape, dimension, and flatness demands 

according to NT BUILD 200 (1984), the last checks were fulfilled. After that, as given 

in NT BUILD 204 (1984), the specimens were placed in the center of the test machine 

within ± 1 mm precision. The load was continuously increased at the rate of 0.05 

MPa/s. At the end, the maximum loads were noted as ultimate loads, when the breaks 

occurred. Then, the splitting tensile strengths was calculated by dividing the ultimate 

loads into the specimen cross section areas. In the Figure 3.4, the sample attachments 

to the test machine are drawn by NT BUILD 204 (1984). 

 

 

 

 

 

 

Figure 3.4: The attachment of samples to test machine steel plate.                         

(NT BUILD 204, 1984.) 

3.5.3 Tests of Modulus of Elasticity 

The specimens were appropriate according to NT BUILD 200 (1984) for the shape, 

flatness and measure demands in the half height diameters. For these samples, it was 

necessary for the cross sections of the samples which were at least four times of the 

nominal particle size in the specimens. Before the hardened concrete tests were started, 

the specimens were up rightened. As NT BUILD 205 (1984) expressed that the 

modulus of elasticity was decided by the relations between the load and deformation. 

The deformation meter as an extensometer measured the changes in the specimen 

lengths under the load with the gauge length of l where it was between greater or equal 

than 3dmax, and less or equal than h minus d. dmax was used for the maximum nominal 

aggregate particle size. And then, the gauge length was centrically placed to the 

samples. And the differences were measured in two opposite sides of the samples. The 

accuracy of the measurements was within ± 25X10-6. Before starting the tests, the 

concrete samples were removed from the water pool at the earliest 30 minutes in 

advance for testing and were dried to avoid free water on the surfaces of contact for 



 

46 

 

loadings. After that, firstly, the compressive strengths were evaluated in accordance 

with NT BUILD 203 (1984) on three cylindrical specimens in the same sizes and 

shapes so that the mean compressive strength fcm was calculated in the direction of the 

compressive strength tests. Furthermore, the test samples with meter of deformation 

were centrically placed in the compressive strength test machine with ± 1 mm 

precision. After that, the load with the basic stress σ0 = 0.5 MPa was applied for 

readings and deformation savings. Then, the stress was progressively applied at the 

rate of 0.8 ± 0.2 MPa/s till σ1 = 0.45fcm MPa was found. This step took 60 seconds for 

the meter of deformation which was again observed for following 30 seconds. After 

that point, the strain ε01 from σ0, and σ1 was calculated. When the sufficient centering 

process was successfully accepted, the specimens were off-loaded at the same rate of 

σ01 = 0.5 MPa. After off-loading, the deformation meter was checked 60 seconds later. 

Followingly, the samples were again loaded until σ2 = fcm/3 was found. Then, the 

samples were off-loaded at the same rate which was found in advance till σ0 was 

reached, and when σ2 and σ0 were conserved constant for following 60 seconds. This 

process was cycled once, σ2 and σ02 were paused for 60 seconds in each one-by-one 

load. Finally, the strain ε02 was calculated from σ2 and σ02. In this frame, the modulus 

of elasticity E0 was found by dividing the difference between σ1 and σ01 into the strain 

ε01. Like in the calculation of E0, Ec was computed by dividing the difference between 

σ2 and σ02 into the strain ε02. In the results, the modulus of elasticity was defined in 

GPa (GN/mm2) and rounded up and down to the closest 0.5 MPa. (NT BUILD 205, 

1984.) In the Figure 3.5, the gauge length, and the maximum nominal aggregate 

particle size are pictured. And in the Figure 3.6, stress-strain diagram is curved. 

 

 

 

 

 

 

Figure 3.5: The test sample marks with gauge length l and dmax.                            

(NT BUILD 205, 1984.) 
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Figure 3.6: The used marks shown in stress and strain diagram.                             

(NT BUILD 205, 1984.) 
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4.  RESULTS OF TESTS 

The material properties used in the thesis were given in the anterior section. 

Additionally, the concrete specimens produced with these materials were also 

mentioned. Supplementary, the fresh and hardened concrete test samples were 

represented. In the fresh concrete tests, slump, unit weight and air content tests of 

concrete were included. Later, the mechanical properties of the concrete samples were 

examined. Finally, the compressive strength, splitting tensile strength and modulus of 

elasticity were calculated by following the test procedures. As a result of the tests, the 

fresh and the hardened concrete tests were enlisted in this section. 

4.1 Results of Fresh Concrete Tests 

The fresh concrete test results such as slump, unit weight, and air content are released 

in this section. All three tests were set to determine the fresh concrete features while 

the concrete samples were produced. 

4.1.1 Results of Slump Tests of Concrete 

Based on each compressive test result, the concrete slump test results were gathered 

like in the Figure 4.1. The FA + MS included samples’ slump results have a decreasing 

trend in high strength results. However, for the GGBS added samples’ slump test 

results, there was not a sign like in the FA + MS included results. 

4.1.2 Results of Unit Weight Tests of Concrete 

Based on each compressive test result, the unit weight test results are displayed in the 

Figure 4.2. The FA + MS included sample results have an increasing trend in high 

strength results. However, for the GGBS added samples’ results, there was not an open 

sign like in the FA + MS included results 

4.1.3 Results of Air Content Tests of Concrete 

Based on each compressive test result, the air content test results are shown in the 

Figure 4.3. It was understood that the air content was not eligible for an evaluation of 

the increased compressive strength results for both pozzolans.  
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Figure 4.1: The relationship between 28-day CS and slump test result. 

 

 

 

 

 

 

 

Figure 4.2: The relationship between 28-day CS and concrete unit weight. 

 

 

 

 

 

 

 

Figure 4.3: The relationship between 28-day CS and air content. 
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4.2 Actual Results of Mechanical Property Tests 

In this section, the Table 4.7, Table 4.8, and Table 4.9 publish the results of the actual 

laboratory tests. The tested concrete samples were cured under standard curing 

conditions in a water-filled-tab for 0.5-day, 1-day, 2-day, 3-day, 7-day, 14-day and 28-

day strength developments. Both FA + MS and GGBS content including samples are 

lined up without any additive distinctions.  

4.2.1 Actual Results of Compressive Strength Tests 

In this section, the compressive strength test results are issued. For both FA + MS and 

GGBS additives, the results are also ranged in the boxplot for a visual brief in the 

Figure 4.4; the Table 4.1 and Table 4.2. 

In the Figure 4.4, it is noticeably clear that the FA + MS substance included results 

have higher compressive strength results than the GGBS content leads. Except day-14 

and day-28, for all ages, the specimens strengths including the FA + MS substance are 

close and/or above the median strength values. Only for day-14 and day-28, the 

specimens strengths including the GGBS content are close and/or above median 

strength values. However, the whiskers (scores outside median values) of the 

specimens including GGBS are more evident than the specimens including FA + MS. 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: The relationship between age and compressive strength. 
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Table 4.1: The age dependent CS in FA + MS content. 

Table 4.2: The age dependent CS results in GGBS content. 

4.2.2 Results of Splitting Tensile Strength Tests 

In this section, the splitting tensile strength test results are represented. In the Figure 

4.5, for both FA + MS and GGBS contents, the results are boxploted for an explanatory 

brief. In the Figure 4.5, it is truly clear that the FA + MS ingredient results have higher 

splitting tensile strength results than the GGBS content makes. Except day-14 and day-

28, for all ages, the specimen strengths including the FA + MS ingredient are close 

and/or above the median strength values. Except day-3 and day-7, for all ages, the 

sample strengths including the GGBS subsequent are close and/or above the median 

strength values. To sum up, the specimens including the GGBS content are more 

accurate than the specimens including the FA + MS theme. 

4.2.3 Results of Modulus of Elasticity Tests 

In this section, the modulus of elasticity test results is exposed. For both FA + MS and 

GGBS pozzolans, the results are revealed in the boxplot for a viewing brief in the 

Figure 4.6. Moreover, in the Table 4.5, and in the Table 4.6, the numerical results of 

the tests are tallied for both FA + MS and GGBS contents. In the Figure 4.6, it is 

certainly open that the FA + MS including results have higher modulus of elasticity 

results than GGBS theme does. Except day-1, day-2, and day-28, for all ages, the 

modulus of elasticity developments including the FA + MS ingredient are close and/or 

Actual Data [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 1.00 13.00 25.00 31.00 41.00 50.00 54.00 

1st-Quartile-Value 5.75 23.50 31.00 36.75 36.75 52.75 60.13 

Median Value 11.50 27.00 36.50 41.25 41.25 60.00 69.00 

3rd-Quartile-Value 16.63 35.25 41.25 45.25 45.25 63.25 74.00 

Maximum Value 34.50 49.50 58.50 61.00 61.00 73.50 81.00 

Mean Value 13.00 28.60 37.25 41.91 41.91 59.37 67.34 

Range 33.50 36.50 33.50 30.00 20.00 23.50 27.00 

Actual Data [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 0.50 3.50 6.50 10.50 23.50 31.50 36.50 

1st-Quartile-Value 1.50 7.50 13.50 16.38 29.00 44.00 50.00 

Median Value 2.00 9.50 19.00 23.00 35.50 49.50 59.50 

3rd-Quartile-Value 3.50 16.50 24.50 28.25 40.00 59.00 70.00 

Maximum Value 7.50 25.50 33.00 38.50 51.00 74.50 86.00 

Mean Value 2.88 11.71 18.91 22.94 35.59 50.03 59.59 

Range 7.00 22.00 26.50 28.00 27.50 43.00 49.50 
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above median strength values. Except day-2 and day-28, for all ages, the modulus of 

elasticity developments including GGBS are close and/or above median strength 

values. The whiskers of the specimens having GGBS content are more dependable 

than the specimens including FA + MS.  

 

 

 

 

 

 

 

 

 

 

Figure 4.5: 

The relationship between age and splitting tensile strength. 

Table 4.3: The age dependent STS results in FA + MS content. 

Table 4.4: The age dependent STS results in GGBS content. 

 

Actual Data [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 0.20 1.50 2.20 3.05 3.55 4.05 4.75 

1st-Quartile-Value 1.10 2.38 3.20 3.49 3.95 4.28 5.23 

Median Value 1.30 2.60 3.60 3.80 4.25 5.05 5.55 

3rd-Quartile-Value 1.60 3.08 3.96 4.49 4.63 5.33 5.78 

Maximum Value 2.80 4.15 4.40 4.90 5.25 5.75 6.40 

Mean Value 1.36 2.75 3.54 3.97 4.35 4.87 5.50 

Range 2.60 2.65 2.20 1.85 1.70 1.70 1.65 

Actual Data [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 0.10 0.40 0.80 1.00 2.20 3.20 3.30 

1st-Quartile-Value 0.15 0.70 1.45 1.75 2.70 3.70 4.05 

Median Value 0.30 1.15 2.05 2.48 3.35 4.00 4.70 

3rd-Quartile-Value 0.55 1.90 2.60 2.94 3.70 4.55 5.40 

Maximum Value 1.10 2.85 3.25 3.90 4.95 5.45 6.55 

Mean Value 0.38 1.33 2.02 2.38 3.33 4.11 4.82 

Range 1.00 2.45 2.45 2.90 2.75 2.25 3.25 
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Figure 4.6: The relationship between age and modulus of elasticity. 

Table 4.5: The age dependent ME results in FA + MS content. 

Table 4.6: The age dependent ME results in GGBS content. 

 

 

 

 

 

 

Actual Data [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 12000 26000 29000 30500 34000 34500 38000 

1st-Quartile-Value 16000 29000 31500 32375 36625 37750 40375 

Median Value 19000 32000 33500 34000 38250 39750 41750 

3rd-Quartile-Value 24500 34500 35000 36500 39875 41875 43125 

Maximum Value 32500 38000 39000 40000 42000 44500 46000 

Mean Value 20593 31833 33615 34563 38188 39786 41844 

Range 20500 12000 10000 9500 8000 10000 8000 

Actual Data [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 12000 10500 14000 16000 26000 27000 25000 

1st-Quartile-Value 13500 15500 25750 27500 31500 36000 39000 

Median Value 14000 20000 28500 28750 33500 37000 40000 

3rd-Quartile-Value 17000 26500 30000 30875 36500 40500 42000 

Maximum Value 17500 31000 32500 35000 43500 46000 44500 

Mean Value 14800 20294 26813 28469 34529 37382 39294 

Range 5500 20500 18500 19000 17500 19000 19500 
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Table 4.7: The actual compressive strength (f'c) test results [MPa]. 

 

 

 

 

 

 

 

 

Mixing Codes 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

C45-III-B20 2.00 9.50 24.00 30.50 51.00 74.50 86.00 

YM-SEG-03 20.00 36.50 43.00 49.50 59.00 62.50 71.50 

YM-SEG-03-FSTC 22.00 36.00 41.00 43.50 53.00 60.00 68.50 

MIX-15A-04 11.50 27.00 38.50 42.50 51.00 - 64.00 

YM-SEG-05 9.50 31.00 42.00 42.00 56.50 66.50 73.50 

YM-SEG-08 15.50 34.50 40.00 47.50 59.50 64.00 75.50 

MIX-15E-03 6.00 23.50 31.50 36.00 45.00 52.00 59.00 

MIX-15-AC-04 11.50 27.50 40.00 44.50 54.00 60.00 69.50 

YM-SEG-10 - 23.50 33.50 39.00 50.00 60.50 69.50 

DURABET PLUS AIR-AC-03 7.50 18.50 22.50 26.50 37.50 55.50 63.50 

YM-SEG-10A 15.50 - 33.00 38.50 49.50 58.50 66.50 

YM-SEG-10E - 23.50 29.00 31.00 44.00 53.50 60.50 

YM-DAP-AC-03 3.00 13.00 21.50 25.00 37.50 50.00 59.50 

MIX-15-AC-03 4.00 22.50 29.50 35.50 45.00 51.50 54.00 

MIX-30 1.50 5.50 12.50 16.00 29.00 36.50 46.50 

MIX-30-03 7.50 19.50 24.50 27.50 35.50 44.00 50.00 

MIX-30-BRT 3.50 16.50 25.50 31.50 46.00 60.50 70.00 

MIX-30-07 3.00 12.50 19.00 23.00 32.50 44.00 50.50 

MIX-34-BRT 4.00 18.50 26.00 - 37.00 49.00 59.00 

MIX-32-03 6.00 25.50 33.00 38.50 47.50 59.00 71.00 

MIX-32-CEN 2.00 9.00 14.00 16.00 24.00 31.50 36.50 

MIX-32-CEN-OK 2.50 15.50 27.50 31.50 40.00 50.50 60.00 

B70-380 1.50 4.00 8.50 12.00 25.00 39.00 50.00 

B70-420 1.00 3.50 6.50 10.50 23.50 41.00 48.00 

B47-440 1.50 7.50 16.50 23.00 41.50 61.50 72.50 

B67-440 1.00 5.50 13.50 20.00 35.00 60.00 72.50 

B67-440-001 0.50 7.50 11.00 16.50 27.00 44.50 55.50 

C45-B25-425 - 13.00 25.00 37.00 46.50 52.00 57.50 

B67-440-BEY 1.00 7.50 15.50 19.00 35.50 49.50 62.00 

C45-B26-475 5.00 38.50 49.50 51.00 63.50 68.00 76.50 

C45-B25-400 1.00 24.00 34.50 40.50 48.00 58.00 76.00 

C50-B22-460 34.50 49.50 58.50 61.00 67.50 73.50 81.00 

YM-SEG-11 - 18.50 27.50 31.50 41.00 50.00 54.50 
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Table 4.8: The actual splitting tensile strength (f't) test results [MPa]. 

 

 

 

 

 

 

 

 

Mixing Codes 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

C45-III-B20 0.25 1.20 2.70 3.25 4.95 4.20 6.55 

YM-SEG-03 1.65 3.85 4.40 4.40 5.25 5.55 5.85 

YM-SEG-03-FSTC  - 4.15 4.30 4.60 4.55 5.75 5.65 

MIX-15A-04 1.35 2.85 3.55 3.80 4.25  - 4.80 

YM-SEG-05 1.25 2.50 3.85 4.30  - 5.05 4.95 

YM-SEG-08 2.05 2.80 3.90 4.60 4.70 4.80 6.40 

MIX-15E-03 0.95 2.40 3.25 3.65 4.25 4.30 5.25 

MIX-15-AC-04 1.30 2.60 4.20 4.45 3.55 5.05 5.90 

YM-SEG-10 -  2.60 3.00 3.80 4.05 5.30 5.30 

DURABET PLUS AIR-AC-03 0.90 2.15 2.55 2.85 3.45 4.55 5.40 

YM-SEG-10A 1.55  - 3.20 3.15 4.60 5.35 5.55 

YM-SEG-10E  - 2.35 3.20 3.45 4.65 5.20 5.30 

YM-DAP-AC-03 0.55 1.15 2.30 2.75 3.70 4.05 5.15 

MIX-15-AC-03 0.55 2.05 3.30 3.75 3.95 4.05 5.15 

MIX-30 0.20 0.70 1.35 1.75 2.70 3.80 4.05 

MIX-30-03 1.10 2.55 2.75 3.25 3.80 3.90 4.00 

MIX-30-BRT 0.40 1.70 2.50 2.65 3.90 5.00 6.05 

MIX-30-07 0.40 1.25 2.05 2.60 3.40 4.00 4.35 

MIX-34-BRT 0.65 2.05 2.60  - 3.30 4.15 5.25 

MIX-32-03 0.70 2.85 3.25 3.90 4.70 5.45 5.90 

MIX-32-CEN 0.30 0.95 1.65 1.95 2.70 3.20 3.30 

MIX-32-CEN-OK 0.30 1.90 2.95 3.20 3.30 4.90 5.50 

B70-380 0.15 0.45 0.80 1.00 2.30 3.20 4.00 

B70-420 0.15 0.40 0.85 1.45 2.20 3.55 4.25 

B47-440 0.10 1.00 1.85 2.35 3.40 4.90 5.10 

B67-440 0.10 0.70 1.70 1.90 3.35 4.00 3.75 

B67-440-001 0.10 0.70 1.00 1.55 2.55 3.35 4.70 

C45-B25-425 -  1.50 2.20 3.05 3.95 4.15 4.75 

B67-440-BEY 0.15 0.95 1.45 1.75 2.90 3.70 4.65 

C45-B26-475 1.30 3.30 4.00 4.85 4.55 4.70 6.30 

C45-B25-400 0.20 2.65 3.65 3.50 3.70 4.25 5.75 

C50-B22-460 2.80 3.70 3.95 4.90 5.25 5.35 5.55 

YM-SEG-11  - 2.00 2.65 3.20 3.95 4.25 5.60 
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Table 4.9: The actual modulus of elasticity (E'c) test results [MPa]. 

 

 

 

 

 

 

 

 

Mixing Codes 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

C45-III-B20 - 22381 30704 35048 41808 45068 46897 

YM-SEG-03 26105 32752 37530 39448 41895 42893 43410 

YM-SEG-03-FSTC - 31502 35946 37720 39974 40891 41365 

MIX-15A-04 26209 32758 37435 39306 41686 - 43157 

YM-SEG-05 17323 24756 - 34674 39156 41151 42227 

YM-SEG-08 - 33644 - 38715 40457 41151 41508 

MIX-15E-03 20606 27008 31975 34063 36810 37958 38559 

MIX-15-AC-04 22371 29806 35745 38288 41677 43108 43860 

YM-SEG-10 - 28432 33228 35208 37780 38844 39399 

DURABET PLUS AIR-AC-03 17250 24089 30044 32742 36487 38122 38995 

YM-SEG-10A 24673 - 34808 36472 38581 39436 39878 

YM-SEG-10E - 25302 30633 32947 36060 37384 38084 

YM-DAP-AC-03 - 22478 28449 31213 35111 36836 37764 

MIX-15-AC-03 17586 24438 30352 33015 36694 38294 39147 

MIX-30 - 19927 25759 28545 32569 34387 35374 

MIX-30-03 - 28193 - 33352 35191 35935 36318 

MIX-30-BRT 16333 23810 30877 34267 39184 41413 42625 

MIX-30-07 15039 21681 27825 30728 34888 36753 37763 

MIX-34-BRT 17356 24509 30870 - 37895 39702 40672 

MIX-32-03 20003 27164 33086 35679 39188 40689 41484 

MIX-32-CEN - 16999 20946 22703 25110 26150 26703 

MIX-32-CEN-OK - 22805 27022 28796 31133 32110 32622 

B70-380 - 11503 18199 22579 31148 36316 39601 

B70-420 - 8783 14834 19256 29206 36227 41175 

B47-440 - 17658 25601 30117 37720 41664 43963 

B67-440 - 16432 24303 28921 36944 41234 43775 

B67-440-001 - 14915 21911 25972 32952 36645 38820 

C45-B25-425 - 25856 30842 32960 35769 36949 37569 

B67-440-BEY - 16299 23402 27380 33980 37357 39311 

C45-B26-475 21348 28266 - 36057 39139 40435 41116 

C45-B25-400 - 27398 32250 34273 36920 - 38597 

C50-B22-460 32209 37092 40134 41262 42632 43169 43443 

YM-SEG-11 - 25667 30892 33142 36150 37423 38094 
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5.  DISCUSSION ON CONCRETE STRENGRH PREDICTION 

In the previous section, the mechanical properties of concrete were performed on the 

cylindrical samples. After the tests, the results were conducted on the regression 

analysis models. These regression analyses were divided into two main methods which 

were the univariate regression and multivariate regression analysis. For both methods, 

linear and non-linear models were studied in this thesis. As independent variables, 

concrete age, amounts of concrete materials and proportions of concrete materials were 

related. There were also many regression models used in the study to investigate any 

relationship between the variables and results through the actual behavior of concrete. 

However, the range of the study was limited for a better comparison in terms of the 

test results. In addition to this, one main machine learning algorithm was computed by 

using again the concrete mixture design properties. The fraction (Equ. 5.1), 

logarithmic (Equ. 5.2), power logarithmic (Equ. 5.3), and power (Equ. 5.4) forms with 

their combinations of the univariate regression models were studied for the best data 

fitting purposes of the test results. 

𝑦 =
𝑎 ∗ 𝑥

𝑏 + 𝑥
 (5.1) 

𝑦 = 𝑎 ln(𝑥)𝑏 (5.2) 

𝑦 = 𝑎 + 𝑏 ∗ ln(𝑥) (5.3) 

𝑦 = 𝑎 ∗ 𝑥𝑏  (5.4) 

In these univariate equations, y represents the predicted compressive strength (PCS) 

(f'c), predicted splitting tensile strength (PSTS) (f't), and predicted modulus of elasticity 

(PME) (E'c). The coefficients a and b are from the regression calculations. For the 

multivariate regression analysis, as general forms, the linear (Equ. 5.5), fraction (Equ. 

5.6), logarithmic (Equ. 5.7), and power (Equ. 5.8, Equ. 5.9, and Equ. 5.10), were 

examined for the best goodness-of-fitting purposes of the test results. 

𝑦 = 𝑎 + 𝑏1 ∗ 𝑥1 + 𝑏2 ∗ 𝑥2 + 𝑏3 ∗ 𝑥3 + 𝑏𝑛 ∗ 𝑥𝑛 (5.5) 
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𝑦 = 𝑎 ∗ (
𝑥1

𝑥2 + 𝑥𝑛
+ 𝑏) (5.6) 

𝑦 = 𝑎 + 𝑏 ∗ ln (
𝑥1

𝑥2
) (5.7) 

𝑦 = 𝑎 ∗ 𝑥1
𝑏1 ∗ 𝑥2

𝑏2 ∗ 𝑥𝑛
𝑏𝑛 (5.8) 

𝑦 = 𝑎 ∗ (
𝑥1

𝑥2 + 𝑥𝑛
)𝑏 (5.9) 

𝑦 =
𝑎

𝑏
𝑥1
𝑥2

 
(5.10) 

In the multivariate regression equations, y represents the predicted the compressive 

strength (PCS) (f'c), predicted splitting tensile strength (PSTS) (f't), and predicted 

modulus of elasticity (PME) (E'c). The coefficients a and b are from again regression 

calculations. In this logic, the regression analysis results may be not always enough 

for relating variables each other. That is why determination coefficient (R2) (Equ. 5.11) 

of a regression analysis model is an incredibly significant parameter without doubt to 

understand that model like in Chithra et al. (2016) study. R2 also differs from zero to 

one for showing how well estimated results fit onto the actual data sets. R2 additionally 

represents change percentages in dependent variables which are meant by independent 

variables. Hence, it is called statistically goodness-of-fit in the regression model 

calculations. Even though R2 results are exceedingly high, it is not possible to say that 

regression model analyzed is always meaningful. In this manner, adjusted coefficient 

of determination (R2
adj) (Equ 5.12) explains cases which are effective on chosen 

model. Because of that, there are many academic studies which include R2
adj results 

like Wilson et al. study. Like R2, R2
adj is also another goodness-of-fit parameter in this 

thesis. 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑁
𝑖=1

∑ (𝑦𝑖 − 𝑦)2𝑁
𝑖=1

 (5.11) 

𝑅2
𝑎𝑑𝑗 = 1 −

𝑛 − 1

𝑛 − 𝑝
(1 − 𝑅2) (5.12) 
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To calculate R2, actual mean value (𝑦), and predicted value (𝑦̂) of data sets are 

necessary. And N shows the total specimen number in the actual data collection. For 

R2
adj, n explains the observation number, and p describes the parameter number used 

in the regression models. As mentioned above, R2 may not be accurate because of its 

sensitivity for data scattering and/or fitting. Because of this issue, use of root means 

square error (RMSE) (Equ. 5.13) comes forward for implying much better model fitting 

to the actual data sets by using small values as mentioned in Sutherland et al. study. 

By this thinking, RMSE was also used in this study for prediction comparisons as 

regards R2
adj. 

𝑅𝑀𝑆𝐸 = √
(𝑦𝑖 − 𝑦̂𝑖)2

𝑛 − 𝑝

2

 (5.13) 

In RMSE, 𝑦 indicates the actual data value, and 𝑦̂ is for the predicted data value. n 

represents the observation number, and p corresponds the parameter number used in 

the regression model. Moreover, sum of squares error (SSE) (Equ. 5.14) shows 

differences between the actual data set and its mean of the group. It is a use of variation 

measure in a cluster. Whether all the situations are as same as like in the actual data 

sets, SSE would be equal to zero. Khademi et al. (2016) also experiments SSE in their 

study for artificial neural network (ANN), adaptive neuro-fuzzy inference system 

(ANFIS), and multiple regression analysis (MRA) in the strength prediction of re-

cycled aggregate used concrete. 

𝑆𝑆𝐸 = ∑ (𝑥𝑖 − 𝑥̅𝑖)2
𝑁

𝑖=1
 (5.14) 

In SSE, N explicates the total specimen number in the actual data sets, and 𝑥 is for the 

actual data values, and 𝑥̅ is for the estimated data results. Additionally, for a better 

fitting trial, mean squared error (MSE) (Equ. 5.15) uses normalization method for the 

observed data. It depends on the predicted variable units, and changes in an interval 

between 0.00 and ∞. And it results the differences of average squares between the 

predicted and the real data values. Gupta et al. (2009) also uses MSE criterion in their 

study for the data calibration.  Here, it is used in this study for normalizing of machine 

learning algorithm results that leads the quality of algorithm chosen. 
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𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2
𝑁

𝑖=1
 (5.15) 

In MSE, n explains the observation number, and N shows the total specimen number 

in the actual data sets. On the other hand, 𝑦 represents the real data, and 𝑦̂ shows the 

estimated data. Furthermore, in again machine learning algorithm, correlation 

coefficient (R) (Equ. 5.16) measures how various variables are different in their 

correlations, and how strong relationship is conducted between variables as Sam 

(2020) uses in his green technology concrete study. 

𝑅 =
𝑛 ∑ 𝑥𝑦 − (∑ 𝑥)(∑ 𝑦)

√[𝑛 ∑ 𝑥2 − (∑ 𝑥)
2

] [𝑛 ∑ 𝑦2 − (∑ 𝑦)
2

]

 
(5.16) 

In R calculations, 𝑥 means the independent variables, and 𝑦 means the dependent 

variables. n also indicates the observation number. R changes from zero to one to 

express how the estimated results are close to the actual data values. 

Finally, among all the proposed models, the best trials were published in this thesis to 

narrow the wide range of the model preferences down for the best estimation purposes. 

5.1 Univariate Regression Analysis for Compressive Strength 

In this section of the thesis, the Table 5.3, Table 5.7, and Table 5.11 publish the 

regression models with their statistical results come out in the study. 

5.1.1 Fraction Power Regression (Model-1) 

The fraction power regression model (the Model-1) is one of the univariate regression 

analysis models depending on concrete age. In this model, for 0.5-day, 1-day, 2-day, 

3-day, 7-day, 14-day, and 28-day compressive strength estimations were carried out. 

Even though the R2 (btw 0.9427 & 0.9999), and R2
adj results are remarkably high; the 

SSE, and RMSE results are very low, and the character of the fraction power equation 

does not fit well to some of the actual data sets. The curve fittings of the specimens in 

YM-SEG-03, YM-SEG-05, YM-SEG-08, MIX-15E-03, MIX-15-AC-04, MIX-15-

AC-03, MIX-34-BRT, MIX-32-03, MIX-32-CEN-OK, C45-B25-425, C45-B26-475, 

C45-B25-400, and C50-B22-460 mixing codes are especially not accurate between 

day-7 and day-14. In this bunch of samples, only the samples in MIX-34-BRT, MIX-
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32-03, and MIX-32-CEN-OK mixing codes have GGBS substance. The other ones 

include FA + MS content. In this light of knowledge, the use of FA + MS may lead 

unexpected strength developments between day-7 and day-14 as shown in the Table 

5.4 for the compressive strength. Because it is expected that the concrete should gain 

it is strength by its age under standard curing methods. Nevertheless, at day-7 and day-

14, the compressive strength decreases which is an unwilling situation in this 

regression model.  

In the Figure 5.1, the correlations of the actual data sets and predicted results are given. 

The correlations clearly describe that the results of the Model-1 are numerically so 

much satisfying. However, as mentioned above, due to the negative deflections for the 

strength development in the curve fitting for each specimen test result, the model may 

not be safe to predict the compressive strength depending on the concrete age. 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: The correlations of the compressive strength for the Model-1. 

In the Figure 5.2, for the samples including FA + MS ingredient, the Model-1 shows 

that [(W/C) - (W/B)] result for the maximum R² result is greater than for the minimum 

R² value. It is seen that the W/C ratio is more effective than the W/B ratio for data 

prediction. Also, while [(CA/A) - (FA/A)] result gets smaller, the R² result also 

decreases which means the CA/A ratio is more effective on the data prediction with 

respect to the FA/A ratio. The figure also indicates that the most powerful data 

prediction in the R² results corresponds to the sample in YM-SEG-10A mixing code. 
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Besides, the least powerful data prediction corresponds to the sample in YM-SEG-05 

mixing code. However, this comparison could not be widened for all the specimens in 

the compressive strength estimation of the model. 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: The correlations of the mixing ratios of the Model-1 in FA + MS. 

In the Figure 5.3, for the samples including FA + MS ingredient, the Model-1 shows 

that the amounts of CS and NS are very close to each other for the maximum R² result. 

This result teaches that the amounts of fine aggregates may not have any effects on the 

maximum R² value. Oppositely, for the minimum R² result, the difference between NS 

and CS is higher with respect to the maximum R² has. Namely, it is understood that 

the higher [(CS) - (NS)] results decrease the prediction potential of the compressive 

strength. Moreover, the amounts of NO:1 Agg., and NO:2 Agg. are awfully close to 

each other for the maximum R² result in [(CS) - (NS)] case, too. On the other hand, for 

the minimum R² value, the difference between NO:1 Agg. and NO:2 Agg. is higher as 

regards the maximum R² has. As when the difference between NO:1 Agg., and NO:2 

Agg. gets smaller, the R² result decreases in the data estimation for the compressive 

strength. Furthermore, [(FA) - (MS)] of the minimum R² result is greater than [(FA) - 

(MS)] of the maximum R² result. As additive, FA + MS existence decreases the data 

prediction in this model. In addition to this, the maximum amount of MS is 50.00 

kg/m3 for the highest-level R² result. However, this is a partial case in the results of 

the model. Like the high amount of fly ash, the high amount of cement decreases the 
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potential of the data forecasting which limits the cement use for the strength gaining. 

Diametrically, the type of cement could not be evaluated, because it is CEMI 42.5 for 

both. Lastly, there is no direct water and admixtures effects in use for strength gaining. 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: The correlation of the mixing amounts of the Model-1 in FA + MS. 

In the Figure 5.4, for the samples including GGBS substance, the Model-1 shows that 

the W/C ratio equals to the W/B ratio for the minimum R² result which is the sign of 

no GGBS effects in the worst strength prediction by the model. Followingly, the 

minimum W/C ratio is found 0.31 for the maximum R² result, and the minimum W/B 

ratio is spotted 0.35 for the maximum R² result. This result takes the model to the use 

of GGBS which has negative effects for the most well-fitting estimation in strength 

gaining. It is also figured out that [(W/C) - (W/B)] result of the maximum R² result is 

greater than the minimum R² result has. This case could be evaluated as the least GGBS 

ingredient, the most well-predicted compressive strength. And, while [(CA/A) - 

(FA/A)] result gets higher, the R² result also increases that which means the CA/A 

ratio is more effective on the data prediction with respect to the FA/A ratio. The figure 

also clears for the maximum R² result that the CA/A ratio is 0.80, and FA/A is 0.20. 

However, there is no strong sign that the model could be applied on all the specimens 

except the ones which have the minimum, and the maximum R² results. For why, the 

rest of the results of the samples are not able to be compared. 
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In the Figure 5.5, for the samples including GGBS substance, the Model-1 also 

identifies that the amounts of CS and NS are very close to each other for the maximum 

R² value. This result proves that the amounts of fine aggregates may not be effective 

on the maximum R² result. 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: The correlation of the mixing ratios of the Model-1 in GGBS. 

Differently, [(NS) - (CS)] of the maximum R² result is greater than the minimum R² 

result corresponds. This case tells that the NS amount influences the strength 

prediction in a polite manner. At the maximum R² result, the NO:0 Agg., NO:1 Agg., 

and NO:2 Agg. amounts are the nearest which clarifies that there is no significance 

sign of coarse aggregate effects on the maximum R² result. However, for some 

specimens, the higher amounts of NO:0 Agg., NO:1 Agg., and NO:2 Agg. get the 

higher R² values. Intercalarily, there is no sign that any amount of water and 

admixtures affect the results. But again, for some specimens, while the GGBS content 

is weighted, the cement amount decreases in increasing of the R² result. Because 

GGBS was used as a binder material in the concrete samples and affected the strength 

gaining and strength estimating in a positive way. In total, for the maximum R² result, 

the amount of cement [114.00 kg/m3], NO:0 Agg. [486.00 kg/m3], CS [0.00 kg/m3], 

and NS [395.00 kg/m3], used in the mixture designs are the minimum. For the best 

data presuming, the amount of GGBS is measured 266.00 kg/m3. For the highest R² 

value, CEMI 52.5N type cement, and for the lowest R² value, CEMIII 32.5 type cement 
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are stood out. Thus, there is no pointer of the model computation for all the specimens 

except the ones having the minimum and maximum R² results. Because the rest of the 

sample results are not suitable for different comparisons. In the Model-1, for both 

contents, the results are shown in the boxplot for an imaginary brief in the Figure 5.6. 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: The correlation of the mixing amounts of the Model-1 in GGBS. 

Moreover, in the Table 5.1, and the Table 5.2, the numerical results of the model are 

shown for both FA + MS and GGBS contents. In the Figure 5.6, it is certain that the 

FA + MS ingredient causes higher compressive strength prediction results than the 

GGBS presence does. Except day-7, day-14, and day-28, for all ages, the strengths of 

the specimens including FA + MS are close and/or above the median strength values. 

Except day-28, for all ages, the strengths of the specimens including GGBS ingredient 

are close and/or above the median strength values. It is proved that the strength 

estimations for the specimens including FA + MS are kindly incoherent. Hence, the 

whiskers of the specimens including GGBS subsequent are more dependable than the 

specimens including FA + MS substance. In the Table 5.4, for the concrete specimens, 

the regression model shows the strength developments. 
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Figure 5.6: The age and the compressive strength relationship for the Model-1.  

Table 5.1: The age dependent CS results in FA + MS content for the Model-1. 

Table 5.2: The age dependent CS results in GGBS content for the Model-1. 

 

Model-1 [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 0.28 12.81 26.50 31.36 41.97 48.17 54.15 

1st-Quartile-Value 11.33 19.30 30.34 36.82 47.58 51.30 60.16 

Median Value 13.62 24.60 35.55 42.61 51.50 58.36 69.12 

3rd-Quartile-Value 18.72 29.05 40.61 47.35 59.53 62.37 74.42 

Maximum Value 37.15 46.53 56.58 62.10 70.05 71.77 81.31 

Mean Value 15.11 25.29 36.54 42.98 53.53 57.61 67.58 

Range 36.86 33.73 30.08 30.74 28.09 23.60 27.16 

Model-1 [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 0.97 2.90 6.52 10.31 24.10 30.87 36.57 

1st-Quartile-Value 1.53 5.98 12.66 16.88 28.92 42.75 50.20 

Median Value 3.14 10.46 18.20 23.18 37.55 48.65 59.65 

3rd-Quartile-Value 5.36 14.18 23.74 30.25 42.04 56.80 70.18 

Maximum Value 10.28 20.43 32.21 39.05 52.79 73.52 86.16 

Mean Value 4.20 10.25 18.11 23.61 37.07 49.07 59.75 

Range 9.31 17.53 25.69 28.74 28.69 42.65 49.59 
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Table 5.3: The results of the regression Model-1. 

 Model-1     

Mixing Codes Fraction Power Regression R2 R2
adj SSE RMSE 

C45-III-B20 f'c = -18.17 + 28.76t
0.5

 + 0.243t
1
 - 0.3689t

1.5
 0.9985 0.9969 9.375 1.768 

YM-SEG-03 f'c = -12.73 + 60.47t
0.5

 - 16.65t
1
 + 1.556t

1.5
 0.9881 0.9761 21.738 2.692 

YM-SEG-03-FSTC f'c = 1.233 + 39.76t
0.5

 - 9.862t
1
 + 0.899t

1.5
 0.9803 0.9607 28.666 3.091 

MIX-15A-04 f'c = -32.65 + 80.72t
0.5

 - 25.45t
1
 + 2.579t

1.5
 0.9952 0.9881 7.999 2.000 

YM-SEG-05 f'c = -25.95 + 67.77t
0.5

 - 17.54t
1
 + 1.569t

1.5
 0.9744 0.9487 73.389 4.946 

YM-SEG-08 f'c = -18.72 + 63.59t
0.5

 - 17.06t
1
 + 1.59t

1.5
 0.9847 0.9694 37.391 3.530 

MIX-15E-03 f'c = -25.04 + 58.56t
0.5

 - 15.58t
1
 + 1.422t

1.5
 0.9816 0.9633 35.657 3.448 

MIX-15-AC-04 f'c = -26.73 + 69.58t
0.5

 - 19.25t
1
 + 1.804t

1.5
 0.9923 0.9845 18.202 2.463 

YM-SEG-10 f'c = -5.051 + 35.15t
0.5

 - 6.602t
1
 + 0.4958t

1.5
 0.9987 0.9968 1.894 0.973 

DURABET PLUS AIR-AC-03 f'c = -0.9999 + 15.64t
0.5

 + 0.6141t
1
 - 0.2373t

1.5
 0.9872 0.9743 31.717 3.252 

YM-SEG-10A f'c= -7.646 + 38.26t
0.5

 - 7.818t
1
 + 0.6118t

1.5
 0.9995 0.9987 0.894 0.668 

YM-SEG-10E f'c = 12.57 + 9.602t
0.5

 + 1.567t
1
 - 0.3159t

1.5
 0.9973 0.9933 2.943 1.213 

YM-DAP-AC-03 f'c = -15.94 + 32.52t
0.5

 - 5.498t
1
 + 0.3878t

1.5
 0.9961 0.9921 9.615 1.790 

MIX-15-AC-03 f'c = -27.22 + 58.67t
0.5

 - 14.96t
1
 + 1.281t

1.5
 0.9789 0.9577 39.730 3.639 

MIX-30 f'c = -12.78 + 21.22t
0.5

 - 2.593t
1
 + 0.1314t

1.5
 0.9978 0.9957 3.623 1.099 

MIX-30-03 f'c = -10.06 + 33.19t
0.5

 - 7.46t
1
 + 0.6312t

1.5
 0.9829 0.9659 21.830 2.698 

MIX-30-BRT f'c = -20.10 + 40.69t
0.5

 - 6.957t
1
 + 0.4709t

1.5
 0.9961 0.9921 13.509 2.122 
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Table 5.3 (continued): The results of the regression Model-1. 

 

 Model-1     

Mixing Codes Fraction Power Regression R2 R2
adj SSE RMSE 

MIX-30-07 f'c = -13.02 + 28.05t
0.5

 - 4.664t
1
 + 0.3095t

1.5
 0.9936 0.9873 11.052 1.919 

MIX-34-BRT f'c = -19.82 + 45.21t
0.5

 - 11.21t
1
 + 1.039t

1.5
 0.9810 0.9526 38.767 4.403 

MIX-32-03 f'c = -24.90 + 59.32t
0.5

 - 15.44t
1
 + 1.449t

1.5
 0.9795 0.9590 57.254 4.369 

MIX3-2-CEN f'c = -9.926 + 20.90t
0.5

 - 3.595t
1
 + 0.2468t

1.5
 0.9939 0.9879 5.530 1.358 

MIX-32-CEN-OK f'c = -27.82 + 54.6t
0.5

 - 13.86t
1
 + 1.264t

1.5
 0.9903 0.9806 22.790 2.756 

B70-380 f'c = -2.177 + 2.205t
0.5

 + 4.571t
1
 - 0.5906t

1.5
 0.9999 0.9998 0.190 0.251 

B70-420 f'c = 3.015 - 7.936t
0.5

 + 8.914t
1
 - 1.097t

1.5
 0.9995 0.9990 1.110 0.608 

B47-440 f'c = -10.91 + 15.86t
0.5

 + 3.155t
1
 - 0.5993t

1.5
 0.9999 0.9998 0.547 0.427 

B67-440 f'c = -4.937 + 4.956t
0.5

 + 6.557t
1
 - 0.8921t

1.5
 0.9976 0.9951 11.070 1.921 

B67-440-001 f'c = -5.674 + 9.219t
0.5

 + 2.467t
1
 - 0.3814t

1.5
 0.9954 0.9909 11.228 1.935 

C45-B25-425 f'c = -40.67 + 69.73t
0.5

 - 17.79t
1
 + 1.535t

1.5
 0.9932 0.9829 9.846 2.219 

B67-440-BEY f'c = -12.60 + 20.21t
0.5

 - 0.494t
1
 - 0.1251t

1.5
 0.9990 0.9981 2.946 0.991 

C45-B26-475 f'c = -46.59 + 103.00t
0.5

 - 30.38t
1
 + 2.90t

1.5
 0.9427 0.8854 192.824 8.017 

C45-B25-400 f'c = -41.73 + 82.07t
0.5

 - 23.95t
1
 + 2.394t

1.5
 0.9799 0.9598 70.224 4.838 

C50-B22-460 f'c = 5.246 + 55.42t0.5 - 15.62t1 + 1.486t1.5 0.9789 0.9579 30.315 3.179 

YM-SEG-11 f'c = -4.204 + 27.64t0.5 - 4.58t1 + 0.2754t1.5 0.9973 0.9932 2.584 1.137 
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Table 5.4: The compressive strength developments of the samples for the Model-1. 

 

 

 

 

 

 

Model-1 Strength Development of Actual Data [Day/Day] Strength Development of Predicted Data [Day/Day]  

Mixing Codes 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 

C45-III-B20 0.0233 0.1105 0.2791 0.3547 0.5930 0.8663 1.0000 0.0250 0.1214 0.2547 0.3535 0.6127 0.8533 1.0000 
YM-SEG-03 0.2797 0.5105 0.6014 0.6923 0.8252 0.8741 1.0000 0.2583 0.3789 0.5094 0.5820 0.6909 0.7188 0.8309 

YM-SEG-03-FSTC 0.3212 0.5255 0.5985 0.6350 0.7737 0.8759 1.0000 0.2871 0.3717 0.4675 0.5244 0.6272 0.6851 0.7972 

MIX-15A-04 0.1797 0.4219 0.6016 0.6641 0.7969 - 1.0000 0.1464 0.2925 0.4399 0.5131 0.5864 0.5591 0.7427 

YM-SEG-05 0.1293 0.4218 0.5714 0.5714 0.7687 0.9048 1.0000 0.1596 0.3000 0.4555 0.5451 0.6921 0.7457 0.8589 

YM-SEG-08 0.2053 0.4570 0.5298 0.6291 0.7881 0.8477 1.0000 0.2121 0.3412 0.4827 0.5629 0.6912 0.7389 0.8782 

MIX-15E-03 0.1017 0.3983 0.5339 0.6102 0.7627 0.8814 1.0000 0.1054 0.2247 0.3556 0.4299 0.5475 0.5854 0.6880 

MIX-15-AC-04 0.1655 0.3957 0.5755 0.6403 0.7770 0.8633 1.0000 0.1565 0.2948 0.4442 0.5270 0.6502 0.6803 0.8094 

YM-SEG-10 - 0.3381 0.4820 0.5612 0.7194 0.8705 1.0000 0.1936 0.2785 0.3813 0.4480 0.5909 0.6965 0.8072 

DURABET PLUS AIR-AC-03 0.1181 0.2913 0.3543 0.4173 0.5906 0.8740 1.0000 0.1193 0.1743 0.2516 0.3099 0.4675 0.6231 0.7404 

YM-SEG-10A 0.2331 - 0.4962 0.5789 0.7444 0.8797 1.0000 0.1824 0.2717 0.3779 0.4451 0.5825 0.6744 0.7724 

YM-SEG-10E - 0.3884 0.4793 0.5124 0.7273 0.8843 1.0000 0.2325 0.2719 0.3295 0.3744 0.5001 0.6254 0.7016 

YM-DAP-AC-03 0.0504 0.2185 0.3613 0.4202 0.6303 0.8403 1.0000 0.0516 0.1331 0.2339 0.3007 0.4503 0.5696 0.6923 

MIX-15-AC-03 0.0741 0.4167 0.5463 0.6574 0.8333 0.9537 1.0000 0.0840 0.2063 0.3419 0.4199 0.5456 0.5799 0.6285 

MIX-30 0.0323 0.1183 0.2688 0.3441 0.6237 0.7849 1.0000 0.0113 0.0694 0.1441 0.1959 0.3209 0.4317 0.5382 

MIX-30-03 0.1500 0.3900 0.4900 0.5500 0.7100 0.8800 1.0000 0.1149 0.1892 0.2756 0.3288 0.4320 0.4962 0.5827 

MIX-30-BRT 0.0500 0.2357 0.3643 0.4500 0.6571 0.8643 1.0000 0.0622 0.1637 0.2886 0.3709 0.5522 0.6896 0.8146 
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Table 5.4 (continued): The compressive strength developments of the samples for the Model-1. 

 

 

 

 

 

Model-1 Strength Development of Actual Data [Day/Day] Strength Development of Predicted Data [Day/Day] 

Mixing Codes 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 

MIX-30-07 0.0594 0.2475 0.3762 0.4554 0.6436 0.8713 1.0000 0.0533 0.1239 0.2112 0.2690 0.3978 0.4973 0.5881 

MIX-34-BRT 0.0678 0.3136 0.4407 - 0.6271 0.8305 1.0000 0.0802 0.1766 0.2859 0.3511 0.4708 0.5435 0.6902 

MIX-32-03 0.0845 0.3592 0.4648 0.5423 0.6690 0.8310 1.0000 0.1142 0.2371 0.3738 0.4533 0.5896 0.6592 0.8282 

MIX-32-CEN 0.0548 0.2466 0.3836 0.4384 0.6575 0.8630 1.0000 0.0365 0.0885 0.1525 0.1947 0.2876 0.3583 0.4245 

MIX-32-CEN-OK 0.0417 0.2583 0.4583 0.5250 0.6667 0.8417 1.0000 0.0500 0.1646 0.2931 0.3684 0.4994 0.5646 0.6998 

B70-380 0.0300 0.0800 0.1700 0.2400 0.5000 0.7800 1.0000 0.0169 0.0465 0.0976 0.1426 0.2869 0.4541 0.5800 

B70-420 0.0208 0.0729 0.1354 0.2188 0.4896 0.8542 1.0000 0.0171 0.0336 0.0756 0.1197 0.2797 0.4718 0.5580 

B47-440 0.0207 0.1034 0.2276 0.3172 0.5724 0.8483 1.0000 0.0194 0.0871 0.1873 0.2659 0.4879 0.7104 0.8421 

B67-440 0.0138 0.0759 0.1862 0.2759 0.4828 0.8276 1.0000 0.0178 0.0660 0.1470 0.2168 0.4358 0.6810 0.8439 

B67-440-001 0.0090 0.1351 0.1982 0.2973 0.4865 0.8018 1.0000 0.0226 0.0654 0.1302 0.1824 0.3357 0.5035 0.6462 

C45-B25-425 - 0.2261 0.4348 0.6435 0.8087 0.9043 1.0000 0.0033 0.1486 0.3099 0.4029 0.5538 0.5987 0.6687 

B67-440-BEY 0.0161 0.1210 0.2500 0.3065 0.5726 0.7984 1.0000 0.0162 0.0811 0.1699 0.2353 0.4073 0.5751 0.7193 

C45-B26-475 0.0654 0.5033 0.6471 0.6667 0.8301 0.8889 1.0000 0.1402 0.3358 0.5399 0.6469 0.7773 0.7590 0.8991 

C45-B25-400 0.0132 0.3158 0.4539 0.5329 0.6316 0.7632 1.0000 0.0600 0.2180 0.3854 0.4760 0.6046 0.6436 0.8895 

C50-B22-460 0.4259 0.6111 0.7222 0.7531 0.8333 0.9074 1.0000 0.4312 0.5401 0.6567 0.7207 0.8131 0.8330 0.9437 

YM-SEG-11 - 0.3394 0.5046 0.5780 0.7523 0.9174 1.0000 0.1526 0.2220 0.3076 0.3640 0.4871 0.5748 0.6339 
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5.1.2 Logarithmic Regression (Model-2) 

The logarithmic regression model (the Model-2) is one of the univariate regression 

analysis models depending on concrete age like in the Model-1. In this model, for 0.5-

day, 1-day, 2-day, 3-day, 7-day, 14-day, and 28-day compressive strength forecasting 

were examined. At the end, the R2 (btw 0.8772 & 0.9996), and R2
adj results are very 

high; the SSE, and RMSE results are very low as much as in the Model-1. However, 

unlike the Model-1, the logarithmic equation character fits well to all the actual data 

sets. In this light of the results, the strength development of the compressive strength 

is enlisted in the Table 5.8. In the strength development, and the strength estimation 

calculations, there is no very big difference between the actual, and predicted data sets. 

In the Figure 5.7, the correlations of the actual, and the predicted data sets are drawn. 

The correlation no doubtly pictures that the results of the Model-2 is numerically 

satisfying as much as the Model-1 computes. However, in contrast with the Model-1, 

the Model-2 could be safe to predict the compressive strength of the concrete because 

of no negative deflection effects in the data fitting planar except day-0.5. Because the 

strength results of the samples in C45-III-B20, MIX-30, B70-380, B70-420, B47-440, 

B67-440, B67-440-001, and B67-440-BEY mixing codes are below zero which is 

impossible for the strength development of the concrete. 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: The correlations of the compressive strength of the Model-2. 
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In the Figure 5.8, for the samples including FA + MS substance, the Model-2 describes 

that [(W/C) - (W/B)] of the maximum R² result is greater than [(W/C) - (W/B)] of the 

minimum R² result. It is accounted for that the W/C ratio is more accurate than the 

W/B ratio for data prediction. Also, while [(CA/A) - (FA/A)] result gets higher, the R² 

result increases which means that the CA/A ratio impacts the data prediction with 

respect to the FA/A ratio. The figure also adds that the most powerful data prediction 

projection within the R² result answers to the sample in YM-SEG-10A mixing code 

like in the Model-1. And the weakest data prediction is for the sample in MIX-15-AC-

03 mixing code. But this comparison could not be widened on all the specimens in the 

compressive strength estimations of the model because of the characters of the results. 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: The correlations of the mixing ratios of the Model-2 in FA + MS. 

In the Figure 5.9, for the samples including FA + MS content, the Model-2 also shows 

that [(CS) - (NS)] of the minimum R2 is greater than [(CS) - (NS)] of the maximum 

R2. And [(NO:1 Agg.) - (NO:2 Agg.)] of the minimum R2 is greater than [(NO:1 Agg.) 

- (NO:2 Agg.)] of the maximum R2 result. Additionally, for the maximum R2, NO:1 

Agg., and NO:2 Agg. are almost equal which means there are no respectable effects 

on the maximum R2. Moreover, the gap between FA and MS decreases the R2 result. 

Further, if the amounts of cement increase, the R2 result increases as well. On the other 

hand, for the minimum R² value, the difference between NO:1 Agg. and NO:2 Agg. is 

higher with respect to the maximum R² cares. In addition to this, the maximum amount 
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of MS is 50.00 kg/m3 for the highest-level R² result. At the same time, the minimum 

FA content is 30.00 kg/m3, and the minimum water theme is 102.00 kg/m3 for the 

lowest-level R² result. Nonetheless, this is a rare case in the results of the model. The 

higher amount of cement increases the potential of the data forecasting that which 

works for the use of cement is at the upper limit for the strength gaining. Thus, there 

is no evidence for the effects of admixture use in the compressive strength 

development. Finally, the highest and lowest R² values have an impact of CEMI 42.5 

type of cement use. Because of that, the type of cement is not the topic of the 

comparison.  

 

 

 

 

 

 

 

 

Figure 5.9: The correlations of the mixing amounts of the Model-2 in FA + MS. 

In the Figure 5.10, for the samples including GGBS subsequent, the Model-2 estimates 

that [(W/C) – (W/B)] of the minimum R² is greater than [(W/C) – (W/B)] of the 

maximum R². Continuously, the maximum W/C ratio is found 1.11 for the minimum 

R² result, and there is no evidence of GGBS effects on the compressive strength 

estimation. And, while [(CA/A) - (FA/A)] result gets higher, the R² result decreases 

which means the CA/A ratio is more effective on the data prediction with respect to 

the FA/A ratio. The figure also ripostes that the FA/A ratio is almost equal to the CA/A 

ratio in maximum R² result. 
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Figure 5.10: The correlations of the mixing ratios of the Model-2 in GGBS. 

In the Figure 5.11, for the samples including GGBS content, the Model-2 also clarifies 

that [(NS) - (CS)] of the maximum R² result is less than [(NS) - (CS)] of the minimum 

R² result. 

This result proves that the amounts of natural sand may be effective on the strength 

prediction. For some specimens, NO:0 Agg., NO:1 Agg., and NO:2 Agg. amounts 

dramatically increase the R² result. At the maximum R² value, the NO:0 Agg., NO:1 

Agg., and NO:2 Agg. amounts are the highest. But, for the minimum R² result, the 

amount of crushed sand needs to be minimum. Moreover, the amount of water is the 

same for the maximum R². Also, there are again some specimens including the GGBS 

content for decreasing the strength prediction values of the concrete. Because GGBS 

was used as a combining material of the concrete matrix. In total, there is not a proof 

of admixture effects on the strength gaining. For the maximum R² result, the use of 

cement has positive impacts on the strength development. For the maximum R², NO:0 

Agg. is 0.00 kg/m3. NO:1 Agg. is 909.00 kg/m3, and NO:2 Agg. is also 0.00 kg/m3. At 

the minimum R², the GGBS subsequent is 294.00 kg/m3. For the highest R² result, 

CEMIII 32.5 type cement; for the lowest R² result, CEMI 52.5N type cement are come 

out. Except these, there is not enough clue for the model computation in encountering 

purposes. As the remaining results are improper for any confrontation.  
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In the Model-2, for both contents, the results are shown in the boxplot which is in the 

Figure 5.12. It is for sure clear that FA + MS subsequent support the higher 

compressive strength prediction results than GGBS existence does. Except day-14, and 

day-28, for all ages, the specimen strengths including FA + MS are close and/or above 

the median strength values. Except day-14, and day-28, for all ages, the specimen 

strengths including GGBS theme are close and/or above the median strength values. 

And the strength estimations for the specimens including FA + MS are not that much 

coherent. To sum up, the whiskers of the specimens including GGBS content are 

reliable than the specimens including FA + MS substance. In the Table 5.5 and the 

Table 5.6, the numerical results of the boxplots are also shown. Also, in the Table 5.8, 

the model reveals the strength developments of the concrete samples. 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: The correlations of  the mixing amounts of the Model-2 in GGBS. 
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Figure 5.12: The age and the compressive strength relationship for the Model-2.  

Table 5.5: The age dependent CS results in FA + MS content for the Model-2. 

Table 5.6: The age dependent CS results in GGBS content for the Model-2. 

Model-2 [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 7.68 17.11 26.27 31.44 40.77 48.39 56.01 

1st-Quartile-Value 11.75 20.06 29.27 34.08 44.21 52.64 61.27 

Median Value 16.10 25.09 33.85 39.18 50.82 60.44 68.95 

3rd-Quartile-Value 19.95 30.27 39.84 44.55 56.20 65.30 74.55 

Maximum Value 39.90 47.21 54.52 58.79 67.72 75.03 82.33 

Mean Value 17.13 26.09 35.04 40.28 51.23 60.18 69.14 

Range 32.22 30.10 28.24 27.34 26.95 26.64 26.32 

Model-2 [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 2.07 2.89 11.63 16.75 24.62 30.54 36.47 

1st-Quartile-Value 3.00 6.24 15.02 20.60 32.28 41.83 50.41 

Median Value 5.36 11.17 20.94 27.28 39.13 48.83 58.53 

3rd-Quartile-Value 6.57 14.86 24.36 29.91 42.21 54.84 67.77 

Maximum Value 10.63 20.93 31.23 37.26 54.16 69.45 84.74 

Mean Value 5.40 10.56 20.41 26.17 38.21 48.06 57.91 

Range 8.56 18.04 19.60 20.50 29.53 38.90 48.27 
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Table 5.7: The results of the regression Model-2. 

 

 

 

 Model-2     

Mixing Codes Logarithmic Regression R2 R2
adj SSE RMSE 

C45-III-B20 f'c = 11.23 + 22.06ln(t) 0.9825 0.9790 107.820 4.644 

YM-SEG-03 f'c = 33.51 + 11.91ln(t) 0.9667 0.9600 60.711 3.485 

YM-SEG-03-FSTC f'c = 32.44 + 10.75ln(t) 0.9834 0.9800 24.239 2.202 

MIX-15A-04 f'c = 25.78 + 12.52ln(t) 0.9578 0.9472 70.977 4.212 

YM-SEG-05 f'c = 27 + 14.92ln(t) 0.9648 0.9578 100.749 4.489 

YM-SEG-08 f'c = 30.22 + 13.86ln(t) 0.9744 0.9693 62.684 3.541 

MIX-15E-03 f'c = 20.29 + 12.31ln(t) 0.9681 0.9618 61.907 3.519 

MIX-15-AC-04 f'c = 26.4 + 13.56ln(t) 0.9702 0.9643 69.971 3.741 

YM-SEG-10 f'c = 23.68 + 13.79ln(t) 0.9996 0.9995 0.594 0.385 

DURABET PLUS AIR-AC-03 f'c = 15.18 + 13.89ln(t) 0.9695 0.9634 75.401 3.883 

YM-SEG-10A f'c = 24.39 + 12.77ln(t) 0.9997 0.9996 0.497 0.353 

YM-SEG-10E f'c = 21.29 + 11.72ln(t) 0.9847 0.9808 16.750 2.046 

YM-DAP-AC-03 f'c = 11.91 + 13.99ln(t) 0.9951 0.9941 11.997 1.549 

MIX-15-AC-03 f'c = 19.17 + 11.96ln(t) 0.9441 0.9329 105.122 4.585 

MIX-30 f'c = 6.238 + 11.52ln(t) 0.9844 0.9813 26.087 2.284 

MIX-30-03 f'c = 16.79 + 10.09ln(t) 0.9886 0.9863 14.632 1.711 

MIX-30-BRT f'c = 14.86 + 16.58ln(t) 0.9969 0.9962 10.739 1.466 
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Table 5.7 (continued): The results of the regression Model-2. 

 

 

 

 

 

 

 Model-2     

Mixing Codes Logarithmic Regression R2 R2
adj SSE RMSE 

MIX-30-07 f'c = 11.17 + 11.79ln(t) 0.9950 0.9940 8.691 1.318 

MIX-34-BRT f'c = 15.41 + 12.76ln(t) 0.9849 0.9834 30.827 2.776 

MIX-32-03 f'c = 20.93 + 14.86ln(t) 0.9806 0.9768 54.127 3.290 

MIX-32-CEN f'c = 7.994 + 8.545ln(t) 0.9954 0.9944 4.233 0.920 

MIX32-CEN-OK f'c = 14.86 + 13.7ln(t) 0.9899 0.9878 23.854 2.184 

B70-380 f'c = 3.821 + 12.56ln(t) 0.9413 0.9296 122.083 4.941 

B70-420 f'c = 2.887 + 12.62ln(t) 0.9247 0.9097 160.930 5.673 

B47-440 f'c = 7.994 + 18.68ln(t) 0.9724 0.9669 122.963 4.959 

B67-440 f'c = 5.626 + 18.65ln(t) 0.9497 0.9396 228.641 6.762 

B67-440-001 f'c = 5.465 + 13.78ln(t) 0.9554 0.9464 110.101 4.693 

C45-B25-425 f'c = 17.11 + 13.22ln(t) 0.9486 0.9357 74.152 4.306 

B67-440-BEY f'c = 7.163 + 15.51ln(t) 0.9773 0.9728 69.379 3.725 

C45-B26-475 f'c = 30.42 + 15.43ln(t) 0.8772 0.8527 413.240 9.091 

C45-B25-400 f'c = 19.09 + 16.46ln(t) 0.9627 0.9552 130.310 5.105 

C50-B22-460 f'c = 47.21 + 10.54ln(t) 0.9587 0.9505 59.359 3.446 

YM-SEG-11 f'c = 19.36 + 11ln(t) 0.9938 0.9922 5.950 1.220 
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Table 5.8: The compressive strength developments of samples for the Model-2. 

 

 

  

 

 

 

Model-2 Strength Development of Actual Data [Day/Day] Strength Development of Predicted Data [Day/Day]  

Mixing Codes 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 

C45-III-B20 0.0233 0.1105 0.2791 0.3547 0.5930 0.8663 1.0000 -0.0479 0.1325 0.3130 0.4185 0.6391 0.8196 1.0000 

YM-SEG-03 0.2797 0.5105 0.6014 0.6923 0.8252 0.8741 1.0000 0.3450 0.4578 0.5706 0.6366 0.7744 0.8872 1.0000 

YM-SEG-03-FSTC 0.3212 0.5255 0.5985 0.6350 0.7737 0.8759 1.0000 0.3661 0.4752 0.5844 0.6482 0.7817 0.8908 1.0000 

MIX-15A-04 0.1797 0.4219 0.6016 0.6641 0.7969 - 1.0000 0.2534 0.3819 0.5105 0.5857 0.7429 0.8714 1.0000 

YM-SEG-05 0.1293 0.4218 0.5714 0.5714 0.7687 0.9048 1.0000 0.2171 0.3519 0.4868 0.5656 0.7304 0.8652 1.0000 

YM-SEG-08 0.2053 0.4570 0.5298 0.6291 0.7881 0.8477 1.0000 0.2698 0.3955 0.5213 0.5948 0.7485 0.8743 1.0000 

MIX-15E-03 0.1017 0.3983 0.5339 0.6102 0.7627 0.8814 1.0000 0.1918 0.3309 0.4701 0.5515 0.7217 0.8608 1.0000 

MIX-15-AC-04 0.1655 0.3957 0.5755 0.6403 0.7770 0.8633 1.0000 0.2375 0.3688 0.5001 0.5769 0.7374 0.8687 1.0000 

YM-SEG-10 - 0.3381 0.4820 0.5612 0.7194 0.8705 1.0000 0.2028 0.3401 0.4774 0.5577 0.7255 0.8627 1.0000 

DURABET PLUS AIR-AC-03 0.1181 0.2913 0.3543 0.4173 0.5906 0.8740 1.0000 0.0903 0.2470 0.4036 0.4952 0.6867 0.8434 1.0000 

YM-SEG-10A 0.2331 - 0.4962 0.5789 0.7444 0.8797 1.0000 0.2321 0.3643 0.4966 0.5739 0.7355 0.8678 1.0000 

YM-SEG-10E - 0.3884 0.4793 0.5124 0.7273 0.8843 1.0000 0.2182 0.3528 0.4874 0.5662 0.7308 0.8654 1.0000 

YM-DAP-AC-03 0.0504 0.2185 0.3613 0.4202 0.6303 0.8403 1.0000 0.0378 0.2035 0.3692 0.4661 0.6686 0.8343 1.0000 

MIX-15-AC-03 0.0741 0.4167 0.5463 0.6574 0.8333 0.9537 1.0000 0.1843 0.3248 0.4652 0.5474 0.7191 0.8595 1.0000 

MIX-30 0.0323 0.1183 0.2688 0.3441 0.6237 0.7849 1.0000 -0.0391 0.1398 0.3187 0.4234 0.6421 0.8211 1.0000 

MIX-30-03 0.1500 0.3900 0.4900 0.5500 0.7100 0.8800 1.0000 0.1943 0.3331 0.4718 0.5529 0.7225 0.8613 1.0000 

MIX-30-BRT 0.0500 0.2357 0.3643 0.4500 0.6571 0.8643 1.0000 0.0480 0.2120 0.3759 0.4718 0.6722 0.8361 1.0000 
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Table 5.8 (continued): The compressive strength developments of samples for the Model-2.

Model-2 Strength Development of Actual Data [Day/Day] Strength Development of Predicted Data [Day/Day] 

Mixing Codes 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 

MIX-30-07 0.0594 0.2475 0.3762 0.4554 0.6436 0.8713 1.0000 0.0594 0.2214 0.3833 0.4781 0.6761 0.8380 1.0000 

MIX-34-BRT 0.0678 0.3136 0.4407 - 0.6271 0.8305 1.0000 0.1133 0.2660 0.4187 0.5080 0.6946 0.8473 1.0000 

MIX-32-03 0.0845 0.3592 0.4648 0.5423 0.6690 0.8310 1.0000 0.1509 0.2971 0.4433 0.5288 0.7076 0.8538 1.0000 

MIX-32-CEN 0.0548 0.2466 0.3836 0.4384 0.6575 0.8630 1.0000 0.0568 0.2192 0.3816 0.4766 0.6752 0.8376 1.0000 

MIX-32-CEN-OK 0.0417 0.2583 0.4583 0.5250 0.6667 0.8417 1.0000 0.0886 0.2456 0.4025 0.4943 0.6861 0.8431 1.0000 

B70-380 0.0300 0.0800 0.1700 0.2400 0.5000 0.7800 1.0000 -0.1070 0.0837 0.2743 0.3858 0.6188 0.8094 1.0000 

B70-420 0.0208 0.0729 0.1354 0.2188 0.4896 0.8542 1.0000 -0.1304 0.0642 0.2589 0.3728 0.6107 0.8053 1.0000 

B47-440 0.0207 0.1034 0.2276 0.3172 0.5724 0.8483 1.0000 -0.0705 0.1138 0.2982 0.4060 0.6313 0.8157 1.0000 

B67-440 0.0138 0.0759 0.1862 0.2759 0.4828 0.8276 1.0000 -0.1077 0.0830 0.2738 0.3853 0.6185 0.8093 1.0000 

B67-440-001 0.0090 0.1351 0.1982 0.2973 0.4865 0.8018 1.0000 -0.0795 0.1064 0.2922 0.4010 0.6282 0.8141 1.0000 

C45-B25-425 - 0.2261 0.4348 0.6435 0.8087 0.9043 1.0000 0.1299 0.2798 0.4296 0.5172 0.7004 0.8502 1.0000 

B67-440-BEY 0.0161 0.1210 0.2500 0.3065 0.5726 0.7984 1.0000 -0.0610 0.1217 0.3044 0.4113 0.6346 0.8173 1.0000 

C45-B26-475 0.0654 0.5033 0.6471 0.6667 0.8301 0.8889 1.0000 0.2410 0.3717 0.5024 0.5789 0.7386 0.8693 1.0000 

C45-B25-400 0.0132 0.3158 0.4539 0.5329 0.6316 0.7632 1.0000 0.1039 0.2582 0.4125 0.5028 0.6914 0.8457 1.0000 

C50-B22-460 0.4259 0.6111 0.7222 0.7531 0.8333 0.9074 1.0000 0.4847 0.5734 0.6622 0.7141 0.8225 0.9113 1.0000 

YM-SEG-11 - 0.3394 0.5046 0.5780 0.7523 0.9174 1.0000 0.2095 0.3456 0.4817 0.5614 0.7278 0.8639 1.0000 
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5.1.3 Power Regression (Model-3) 

The power regression model (the Model-3) is one of the other univariate regression 

analysis models depending on concrete age like in the Model-1 and Model-2. In this 

model, for 0.5-day, 1-day, 2-day, 3-day, 7-day, 14-day, and 28-day compressive 

strength predictions were studied. At the end, the R2 (btw 0.7700 & 0.9850), and R2
adj 

results are high; the SSE, and RMSE results are very low as much as in the Model-1 

and in Model-2. However, in the Model-3, the R2 and R2
adj results are notionally less 

than the first two models. And the SSE and RMSE results are also higher than the first 

two models’ results. This simple comparison says that in the Model-3, the estimation 

of the compressive strength has more errors from the actual data sets on the fitting 

planar. In this way of thinking, the strength development of the compressive strength 

is ranged in the Table 5.12. 

In the Figure 5.13, the correlations of the actual data sets and predicted data sets are 

executed. The correlation no doubtly describes that the results of the Model-3 are less 

satisfying than the Model-1 and Model-2 set forth. In contrast with the Model-1, the 

Model-3 seems safe to presume the compressive strength of the concrete because of 

no deflection effects in the data fittings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13: The correlations of the compressive strength of the Model-3. 
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In the Figure 5.14, for the samples that have FA + MS substance, the Model-3 accounts 

that [(W/C) - (W/B)] of the maximum R² result is equal to [(W/C) - (W/B)] of the 

minimum R² result. Besides, while [(CA/A) - (FA/A)] result gets higher, the R² result 

also comes close to 1.00 which means that the CA/A ratio impacts the data prediction 

with respect to the FA/A ratio. In this manner, the CA/A ratio is 0.61, and the FA/A 

ratio is 0.39 for the maximum R² value. But this comparison could not be accurate for 

all the specimens in the compressive strength estimations of the model because of the 

biases of the prediction results. For instance, it is not followed that when the R² result 

increases, the W/C and W/B ratios go in a straight line, or the FA/A and CA/A ratios 

decrease. That is why a direct relationship cannot be conducted except the ones which 

have the minimum and maximum R² values like what happens in the previous models. 

 

 

 

 

 

 

 

 

 

 

Figure 5.14: The correlations of the mixing ratios of the Model-3 in FA + MS. 

In the Figure 5.15, for the samples including FA + MS content, the Model-3 predicts 

that [(CS) - (NS)] of the minimum R2 is greater than [(CS) - (NS)] of the maximum 

R2. And the amount of NO:1 Agg., and NO:2 Agg. are almost equal for the maximum 

R2 which means there is no major effects on the maximum R2. Also [(NO:1 Agg.) - 

(NO:2 Agg.)] of the minimum R2 is greater than [(NO:1 Agg.) - (NO:2 Agg.)] of the 

maximum R2 result. Moreover, the gap between FA and MS decreases the R2 result 

like in the Model-2. Further, if the amounts of cement increase, the R2 result increases 
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as well in this model. In addition to this, the maximum amount of MS is 50.00 kg/m3 

for the highest-level R² result. In contrast with the maximized amount of MS, the 

minimum FA ingredient is 30.00 kg/m3, and the minimum water existence is 102.00 

kg/m3 for the lowest-level R² result likewise in the Model-2. Nonetheless, this is an 

infrequent situation in the results of the model. There is no confirmation for the effects 

of admixture use in the compressive strength development. At the end, the highest and 

the lowest R² results have an impact of CEMI 42.5 type of cement use. Because of the 

identical type of cement use, the cement effect is out of the comparison. 

 

 

 

 

 

 

 

 

 

 

Figure 5.15: The correlations of the mixing amounts of the Model-3 in FA + MS. 

In the Figure 5.16, for the samples including GGBS substance, the Model-3 forecasts 

that [(W/C) – (W/B)] of the minimum R² is less than [(W/C) – (W/B)] of the maximum 

R². Onto this, the W/C ratio is equal to the W/B ratio for only the minimum R² result. 

Because the GGBS substance could not be accepted as an influencer on the 

compressive strength development, even though it is a binding material. Moreover, 

while [(CA/A) - (FA/A)] result gets higher, the R² result decreases which means the 

CA/A ratio is more operative on the data prediction with respect to the FA/A ratio. The 

figure also points that the FA/A ratio is 0.80 for the maximum R² result, and the CA/A 

ratio is 0.20 for the maximum R² result. 
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Figure 5.16: The correlations of the mixing ratios of the Model-3 in GGBS. 

In the Figure 5.17, for the samples that have GGBS content, the Model-3 clearly 

estimates that [(NS) - (CS)] of the maximum R² result is greater than [(NS) - (CS)] of 

the minimum R² value. This result proves that the amounts of natural sand may be 

penetrating on the strength estimation. At the maximum R² value, NO:0 Agg., NO:1 

Agg., and NO:2 Agg. amounts are the nearest.  

 

 

 

 

 

 

 

 

 

 

Figure 5.17: The correlations of the mixing amounts of the Model-3 in GGBS. 
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On the other hand, for some specimen R² values, NO:0 Agg., NO:1 Agg., and NO:2 

Agg. amounts get much more. Yet, for the minimum R² result, the crushed sand needs 

to be minimum (0.00 kg/m3). Besides, the amount of water for the maximum R² result 

is greater than for the minimum R² result. This case is the same for the cement contents. 

Additionally, there are anew some specimens including the GGBS content in decrease 

of the strength prediction values of the concrete. Again, there is not a demonstration 

of the admixture effects on the strength development like in the previous models. For 

the maximum R², NS is also 0.00 kg/m3, cement is 114.00 kg/m3. NO:0 Agg. is 

maximized as 486.00 kg/m3 for the maximum R² value. At the maximum R² result, the 

GGBS content is measured 266.00 kg/m3. For the lowest R² result (MIX-32-CEN-

OK), CEMIII 32.5 type cement, and for the highest R² result (B370-80), CEMI 52.5N 

type cement are put forth. Except these, there is not enough indicator for the model 

computation to class with. Inasmuch as the other results are indecent to set against. 

For the Model-3, for both subsequent, the results are shown in the boxplot which is in 

the Figure 5.18.  

In the Table 5.9 and Table 5.10, the numerical results of the tests are shared with both 

FA + MS and GGBS contents. In the Figure 5.18, it is expressly clear that FA + MS 

ingredient support the higher compressive strength prediction results than GGBS 

ingredient exposes. 

 

 

 

 

 

 

 

 

 

 

Figure 5.18: The age and the compressive strength relationship for the Model-3.  
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Table 5.9: The age dependent CS results in FA + MS content for the Model-3. 

Table 5.10: The age dependent CS results in GGBS content for the Model-3. 

Except day-14, for all ages, the strengths of the specimens including FA + MS are 

close and/or above the median strength values. Except day-0.5, and day-28, for all 

ages, the specimen strengths including GGBS substance are close and/or above the 

median strength values. It is described that the strength predictions for the specimens 

including FA + MS theme are not consistent. Hence, the whiskers of the specimens 

including GGBS ingredient are more reasonable than the specimens including FA + 

MS content. In the Table 5.12, the strength developments by the regression model for 

the concrete specimens are exposed. 

5.2 Univariate Regression Analysis for Splitting Tensile Strength 

In this section of the thesis, the Table 5.15, the Table 5.19, and the Table 5.23 publish 

the regression models with their statistical results in the study. 

5.2.1 Power Regression (Model-1) 

The power regression model (the Model-1) is one of the other univariate regression 

analysis models depending on compressive strength of concrete. In this model, for 0.5-

day, 1-day, 2-day, 3-day, 7-day, 14-day, and 28-day splitting tensile strength 

predictions were exposed. At the end, R2 (btw 0.8345 & 0.9977), and R2
adj results are 

very high; SSE, and RMSE results are very low. This basic comparison shows that 

presuming of the splitting tensile strength has less errors from the actual data sets on  

Model-3 [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 17.16 21.84 26.94 30.47 38.81 47.19 57.39 

1st-Quartile-Value 18.38 22.54 28.63 32.59 41.74 51.11 62.84 

Median Value 22.69 27.54 33.41 37.42 47.41 59.26 70.93 

3rd-Quartile-Value 26.92 32.33 38.66 42.64 52.82 63.83 77.87 

Maximum Value 42.78 47.98 53.82 57.55 66.22 74.28 83.31 

Mean Value 23.69 28.53 34.40 38.40 48.37 58.49 70.80 

Range 25.62 26.14 26.87 27.09 27.41 27.08 25.92 

Model-3 [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 3.96 6.17 9.62 12.47 21.45 29.16 38.96 

1st-Quartile-Value 6.69 9.67 12.92 15.96 26.15 39.15 52.91 

Median Value 10.07 13.44 18.39 22.97 33.83 46.53 63.05 

3rd-Quartile-Value 12.83 16.88 22.69 26.57 37.34 50.92 73.81 

Maximum Value 18.37 23.34 29.66 34.12 45.72 65.12 93.13 

Mean Value 9.89 13.49 18.45 22.21 32.88 45.53 63.33 

Range 14.41 17.17 20.03 21.64 24.26 35.96 54.17 
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Table 5.11: The results of the regression Model-3. 

 

 Model-3     

Mixing Codes Power Regression R2 R2
adj SSE RMSE 

C45-III-B20 f'c = 16.67t
0.5163

 0.9488 0.9385 314.795 7.935 

YM-SEG-03 f'c = 34.9t
0.228

 0.9137 0.8965 157.208 5.607 

YM-SEG-03-FSTC f'c = 33.22t
0.2243

 0.9587 0.9504 60.230 3.471 

MIX-15A-04 f'c = 27.79t
0.2684

 0.8694 0.8368 219.615 7.410 

YM-SEG-05 f'c = 29.59t
0.2936

 0.8911 0.8693 311.743 7.896 

YM-SEG-08 f'c = 32.03t
0.2694

 0.9221 0.9066 190.575 6.174 

MIX-15E-03 f'c = 22.58t
0.3078

 0.8896 0.8676 214.365 6.548 

MIX-15-AC-04 f'c = 28.62t
0.2824

 0.8991 0.8789 237.253 6.888 

YM-SEG-10 f'c = 27.28t
0.2901

 0.9806 0.9757 28.940 2.690 

DURABET PLUS AIR-AC-03 f'c = 16.88t
0.4128

 0.9722 0.9666 68.714 3.707 

YM-SEG-10A f'c = 26.28t
0.2923

 0.9630 0.9537 63.255 3.977 

YM-SEG-10E f'c = 24t
0.287

 0.9842 0.9802 17.284 2.079 

YM-DAP-AC-03 f'c = 14.63t
0.4384

 0.9580 0.9495 102.655 4.531 

MIX-15-AC-03 f'c = 21.84t
0.303

 0.8428 0.8114 295.416 7.687 

MIX-30 f'c = 8.886t
0.5135

 0.9587 0.9505 69.014 3.715 

MIX-30-03 f'c = 18.19t
0.3188

 0.9445 0.9334 70.964 3.767 

MIX-30-BRT f'c = 18.24t
0.4241

 0.9483 0.9379 177.006 5.950 
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Table 5.11 (continued): The results of the regression Model-3. 

 

 

 

 Model-3     

Mixing Codes Power Regression R2 R2
adj SSE RMSE 

MIX-30-07 f'c = 13.44t
0.4171

 0.9511 0.9413 84.815 4.119 

MIX-34-BRT f'c = 16.8t
0.3888

 0.9469 0.9334 108.496 5.208 

MIX-32-03 f'c = 23.34t
0.3455

 0.9285 0.9142 199.965 6.324 

MIX-32-CEN f'c = 9.667t
0.4183

 0.9497 0.9396 45.812 3.027 

MIX32-CEN-OK f'c = 17.73t
0.3828

 0.9192 0.9030 190.087 6.166 

B70-380 f'c = 6.67t
0.6215

 0.9729 0.9675 56.429 3.359 

B70-420 f'c = 6.173t
0.6402

 0.9496 0.9395 107.836 4.644 

B47-440 f'c = 12.57t
0.5488

 0.9548 0.9458 201.098 6.342 

B67-440 f'c = 10.21t
0.6089

 0.9625 0.9550 170.549 5.840 

B67-440-001 f'c = 8.419t
0.5824

 0.9720 0.9664 69.036 3.716 

C45-B25-425 f'c = 22.05
t0.31

 0.8713 0.8391 185.646 6.813 

B67-440-BEY f'c = 10.74t
0.5437

 0.9655 0.9586 105.516 4.594 

C45-B26-475 f'c = 33.68t
0.2687

 0.7792 0.7350 743.397 12.193 

C45-B25-400 f'c = 22.25t
0.375

 0.8988 0.8786 353.187 8.405 

C50-B22-460 f'c = 47.98t
0.1656

 0.9220 0.9064 112.220 4.738 

YM-SEG-11 f'c = 22.41t
0.2822

 0.9609 0.9512 37.270 3.052 
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Table 5.12: The compressive strength developments of samples for the Model-3. 

 

 

  

 

 

 

Model-3 Strength Development of Actual Data [Day/Day] Strength Development of Predicted Data [Day/Day]  

Mixing Codes 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 

C45-III-B20 0.0233 0.1105 0.2791 0.3547 0.5930 0.8663 1.0000 0.1251 0.1790 0.2560 0.3156 0.4888 0.6992 1.0000 

YM-SEG-03 0.2797 0.5105 0.6014 0.6923 0.8252 0.8741 1.0000 0.3994 0.4678 0.5479 0.6009 0.7290 0.8538 1.0000 

YM-SEG-03-FSTC 0.3212 0.5255 0.5985 0.6350 0.7737 0.8759 1.0000 0.4054 0.4736 0.5533 0.6059 0.7328 0.8560 1.0000 

MIX-15A-04 0.1797 0.4219 0.6016 0.6641 0.7969 - 1.0000 0.3395 0.4089 0.4925 0.5491 0.6893 0.8302 1.0000 

YM-SEG-05 0.1293 0.4218 0.5714 0.5714 0.7687 0.9048 1.0000 0.3067 0.3759 0.4608 0.5190 0.6656 0.8159 1.0000 

YM-SEG-08 0.2053 0.4570 0.5298 0.6291 0.7881 0.8477 1.0000 0.3381 0.4075 0.4912 0.5479 0.6883 0.8297 1.0000 

MIX-15E-03 0.1017 0.3983 0.5339 0.6102 0.7627 0.8814 1.0000 0.2897 0.3586 0.4438 0.5028 0.6527 0.8079 1.0000 

MIX-15-AC-04 0.1655 0.3957 0.5755 0.6403 0.7770 0.8633 1.0000 0.3209 0.3902 0.4746 0.5322 0.6760 0.8222 1.0000 

YM-SEG-10 - 0.3381 0.4820 0.5612 0.7194 0.8705 1.0000 0.3111 0.3803 0.4651 0.5231 0.6689 0.8178 1.0000 

DURABET PLUS AIR-AC-03 0.1181 0.2913 0.3543 0.4173 0.5906 0.8740 1.0000 0.1898 0.2527 0.3364 0.3977 0.5642 0.7512 1.0000 

YM-SEG-10A 0.2331 - 0.4962 0.5789 0.7444 0.8797 1.0000 0.3083 0.3776 0.4624 0.5205 0.6668 0.8166 1.0000 

YM-SEG-10E - 0.3884 0.4793 0.5124 0.7273 0.8843 1.0000 0.3150 0.3843 0.4689 0.5267 0.6718 0.8196 1.0000 

YM-DAP-AC-03 0.0504 0.2185 0.3613 0.4202 0.6303 0.8403 1.0000 0.1712 0.2320 0.3144 0.3756 0.5446 0.7380 1.0000 

MIX-15-AC-03 0.0741 0.4167 0.5463 0.6574 0.8333 0.9537 1.0000 0.2953 0.3643 0.4495 0.5083 0.6570 0.8106 1.0000 

MIX-30 0.0323 0.1183 0.2688 0.3441 0.6237 0.7849 1.0000 0.1266 0.1807 0.2579 0.3176 0.4907 0.7005 1.0000 

MIX-30-03 0.1500 0.3900 0.4900 0.5500 0.7100 0.8800 1.0000 0.2771 0.3457 0.4311 0.4906 0.6428 0.8017 1.0000 

MIX-30-BRT 0.0500 0.2357 0.3643 0.4500 0.6571 0.8643 1.0000 0.1814 0.2434 0.3265 0.3878 0.5555 0.7453 1.0000 
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Table 5.12 (continued): The compressive strength developments of samples for the Model-3. 

 

Model-3 Strength Development of Actual Data [Day/Day] Strength Development of Predicted Data [Day/Day] 

Mixing Codes 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 

MIX-30-07 0.0594 0.2475 0.3762 0.4554 0.6436 0.8713 1.0000 0.1866 0.2491 0.3326 0.3939 0.5609 0.7489 1.0000 

MIX-34-BRT 0.0678 0.3136 0.4407 - 0.6271 0.8305 1.0000 0.2091 0.2737 0.3584 0.4196 0.5833 0.7638 1.0000 

MIX-32-03 0.0845 0.3592 0.4648 0.5423 0.6690 0.8310 1.0000 0.2489 0.3162 0.4018 0.4622 0.6194 0.7870 1.0000 

MIX-32-CEN 0.0548 0.2466 0.3836 0.4384 0.6575 0.8630 1.0000 0.1857 0.2481 0.3316 0.3929 0.5600 0.7483 1.0000 

MIX-32-CEN-OK 0.0417 0.2583 0.4583 0.5250 0.6667 0.8417 1.0000 0.2142 0.2793 0.3641 0.4253 0.5882 0.7669 1.0000 

B70-380 0.0300 0.0800 0.1700 0.2400 0.5000 0.7800 1.0000 0.0819 0.1261 0.1939 0.2495 0.4225 0.6500 1.0000 

B70-420 0.0208 0.0729 0.1354 0.2188 0.4896 0.8542 1.0000 0.0760 0.1184 0.1846 0.2393 0.4117 0.6416 1.0000 

B47-440 0.0207 0.1034 0.2276 0.3172 0.5724 0.8483 1.0000 0.1098 0.1606 0.2350 0.2935 0.4673 0.6836 1.0000 

B67-440 0.0138 0.0759 0.1862 0.2759 0.4828 0.8276 1.0000 0.0862 0.1315 0.2005 0.2567 0.4299 0.6557 1.0000 

B67-440-001 0.0090 0.1351 0.1982 0.2973 0.4865 0.8018 1.0000 0.0959 0.1436 0.2150 0.2723 0.4460 0.6679 1.0000 

C45-B25-425 - 0.2261 0.4348 0.6435 0.8087 0.9043 1.0000 0.2871 0.3559 0.4413 0.5004 0.6507 0.8066 1.0000 

B67-440-BEY 0.0161 0.1210 0.2500 0.3065 0.5726 0.7984 1.0000 0.1121 0.1634 0.2381 0.2969 0.4706 0.6860 1.0000 

C45-B26-475 0.0654 0.5033 0.6471 0.6667 0.8301 0.8889 1.0000 0.3390 0.4085 0.4921 0.5487 0.6890 0.8301 1.0000 

C45-B25-400 0.0132 0.3158 0.4539 0.5329 0.6316 0.7632 1.0000 0.2210 0.2866 0.3717 0.4327 0.5946 0.7711 1.0000 

C50-B22-460 0.4259 0.6111 0.7222 0.7531 0.8333 0.9074 1.0000 0.5135 0.5759 0.6460 0.6908 0.7949 0.8916 1.0000 

YM-SEG-11 - 0.3394 0.5046 0.5780 0.7523 0.9174 1.0000 0.3211 0.3905 0.4749 0.5324 0.6762 0.8223 1.0000 
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the fitting planar. In this way of the results, the strength development of the splitting 

tensile strength is settled in the Table 5.16.  

In the Figure 5.19, the correlations of the actual data sets, and the predicted data sets 

are exhibited. The correlation plainly demonstrates that the results of the model are 

satisfying, and the model outwards safe to predict the splitting tensile strength of the 

concrete because of no negative deflection effects in the data fittings. 

In the Figure 5.20, for the samples that have FA + MS content, the Model-1 shows up 

that [(W/C) - (W/B)] of the maximum R² result is equal to [(W/C) - (W/B)] of the 

minimum R² result. On the side, while [(CA/A) - (FA/A)] result gets higher, the R² 

result also increases which means that the CA/A ratio has potency on the data 

estimation according to the FA/A ratio. 

 

 

 

 

 

 

 

 

 

 

Figure 5.19: The correlations of the splitting tensile strength of the Model-1. 

In the Figure 5.21, for the samples including FA + MS material, the Model-1 represents 

that [(NS) - (CS)] of the minimum R2 is less than [(NS) - (CS)] of the maximum R2. 

Also, [(NO:1 Agg.) - (NO:2 Agg.)] of the minimum R2 result is less than [(NO:1 Agg.) 

- (NO:2 Agg.)] of the maximum R2 result, too. In addition to this, [(FA) - (MS)] result 

of the minimum and maximum R2 values are the same. At that time, the amount of 

cement and water are also the same for both, as well.  
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Figure 5.20: The correlations of the mixing ratios of the Model-1 in FA + MS. 

Moreover, there is no proof for the effects of admixture use in the splitting tensile 

strength development. To sum up, the highest and the lowest R² values have an effect 

of CEMI 42.5 type of cement use. That is why, the type of cement could not be 

evaluated in this manner. 

 

 

 

 

 

 

 

 

 

 

Figure 5.21: The correlations of the mixing amounts of the Model-1 in FA + MS. 
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In the Figure 5.22 for the samples including GGBS content, the Model-1 presumes that 

[(W/C) – (W/B)] of the minimum R² is less than [(W/C) – (W/B)] of the maximum R². 

Continuously, the maximum W/B ratio is found 0.31 for the maximum R² result, and 

there is no evidence of GGBS effects on the splitting tensile strength estimation. Also, 

while [(CA/A) - (FA/A)] result gets higher, the R² result increases which means the 

CA/A ratio is accurate on the data prediction due to the FA/A ratio.  

 

 

 

 

 

 

 

 

 

 

Figure 5.22: The correlations of the mixing ratios of the Model-1 in GGBS. 

In the Figure 5.23, for the samples including GGBS content, the Model-1 also explains 

that [(NS) - (CS)] of the maximum R² result is greater than [(NS) - (CS)] of the 

minimum R² value. This result proves that the amounts of natural sand force the 

strength prediction. For some specimens, NO:0 Agg., NO:1 Agg., and NO:2 Agg. 

amounts continuously increase the R² result. Further, the amount of water and cement 

of the minimum R² are greater than the maximum R² has. Onto this, there are again 

some specimens including the GGBS content for decreasing the strength prediction 

values of the concrete. For the highest R² value, CEMI 52.5N type cement, and for the 

lowest R² result, CEMIII BS type cement are come out. Except these, there are not 

enough satisfying results for the model calculation in comparing purposes. Because 

the rest of the results are not suitable for any confrontation. In the Model-1, for both 

contents, the results are shown in the boxplot which is in the Figure 5.24.  
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Followingly, in the Table 5.13 and the Table 5.14, the numerical results of the tests are 

listed for both FA + MS and GGBS materials. In the Figure 5.24, it is exactly clear 

that FA + MS material leads the higher splitting tensile strength prediction results than 

GGBS content has. Except day-1, and day-2, for all ages, the strengths of the 

specimens including FA + MS are close and/or above the median strength values. 

Except day-1, day-2, and day-7, for all ages, the specimen strengths having GGBS 

theme are close and/or above the median strength values. It is studied that the strength 

estimations for the specimens including FA + MS are less coherent. Hence, the 

whiskers of the specimens including GGBS substance are more regular than the 

specimens including FA + MS ingredient. In Table 5.16, the strength developments by 

the model of the concrete specimens are enlisted. 

 

 

 

 

 

 

 

 

 

 

Figure 5.23: The correlations of the mixing amounts of the Model-1 in GGBS. 
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Figure 5.24: The age and the splitting tensile strength relationship for the Model-1.  

Table 5.13: The CS dependent STS results in FA + MS content for the Model-1. 

Table 5.14: The CS dependent STS results in GGBS content for the Model-1. 

Model-1 [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 0.31 1.32 2.29 3.10 3.87 4.25 4.63 

1st-Quartile-Value 0.95 2.52 3.13 3.49 3.49 4.70 5.15 

Median Value 1.47 2.74 3.36 3.62 3.62 5.01 5.52 

3rd-Quartile-Value 1.88 3.41 3.77 4.23 4.23 5.23 5.74 

Maximum Value 3.13 4.07 4.37 4.53 4.53 5.47 6.10 

Mean Value 1.54 2.84 3.46 3.79 3.79 4.96 5.43 

Range 2.82 2.75 2.08 1.43 0.66 1.22 1.48 

Model-1 [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 0.06 0.42 0.82 1.12 2.16 3.11 3.49 

1st-Quartile-Value 0.24 0.83 1.49 1.75 2.79 3.70 4.23 

Median Value 0.38 1.45 2.08 2.35 3.45 4.03 4.56 

3rd-Quartile-Value 0.54 1.73 2.58 2.88 3.55 4.70 5.26 

Maximum Value 1.41 2.79 3.40 3.83 4.50 5.43 6.13 

Mean Value 0.47 1.38 2.00 2.32 3.25 4.20 4.82 

Range 1.35 2.37 2.58 2.71 2.34 2.32 2.64 
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 Table 5.15: The results of the regression Model-1. 

 

 Model-1     

Mixing Codes Power Regression R2 R2
adj SSE RMSE 

C45-III-B20 f't = 0.3438 fc

 0.6403
 0.9102 0.8922 2.530 0.711 

YM-SEG-03 f't = 0.1876 fc

 0.8156
 0.9512 0.9414 0.586 0.342 

YM-SEG-03-FSTC f't = 0.6025 fc

 0.5329
 0.8345 0.7931 0.396 0.315 

MIX-15A-04 f't = 0.294 fc

 0.6776
 0.9903 0.9879 0.071 0.134 

YM-SEG-05 f't = 0.3003 fc

 0.6672
 0.9398 0.9248 0.657 0.405 

YM-SEG-08 f't = 0.2233 fc

 0.76
 0.9187 0.9025 0.998 0.447 

MIX-15E-03 f't = 0.2388 fc

 0.7504
 0.9841 0.9809 0.191 0.196 

MIX-15-AC-04 f't = 0.2152 fc

 0.769
 0.8762 0.8515 1.767 0.595 

YM-SEG-10 f't = 0.2595 fc

 0.7181
 0.9496 0.9370 0.322 0.284 

DURABET PLUS AIR-AC-03 f't = 0.2394 fc

 0.744
 0.9904 0.9884 0.131 0.162 

YM-SEG-10A f't = 0.1312 fc

 0.9006
 0.9763 0.9704 0.281 0.265 

YM-SEG-10E f't = 0.2339 fc

 0.7731
 0.9575 0.9469 0.307 0.277 

YM-DAP-AC-03 f't = 0.1956 fc

 0.7951
 0.9778 0.9733 0.354 0.266 

MIX-15-AC-03 f't = 0.2089 fc

 0.7834
 0.9407 0.9288 0.814 0.403 

MIX-30 f't = 0.1689 fc

 0.8386
 0.9865 0.9838 0.180 0.190 

MIX-30-03 f't = 0.436 fc

 0.5831
 0.9476 0.9371 0.334 0.258 

MIX-30-BRT f't = 0.1221fc

0.9116
 0.9939 0.9926 0.139 0.167 
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Table 5.15 (continued): The results of the regression Model-1.

 Model-1      

Mixing Codes Power Regression R2 R2
adj SSE RMSE 

MIX-30-07 f't = 0.2028 fc

 0.7898
 0.9862 0.9835 0.174 0.186 

MIX-34-BRT f't = 0.1803 fc

 0.8171
 0.9912 0.9890 0.115 0.169 

MIX-32-03 f't = 0.2296 fc

 0.7706
 0.9899 0.9879 0.189 0.194 

MIX-32-CEN f't = 0.2085 fc

 0.7836
 0.9814 0.9777 0.144 0.170 

MIX32-CEN-OK f't = 0.1718 fc

 0.8435
 0.9776 0.9731 0.411 0.287 

B70-380 f't = 0.1199 fc

 0.8981
 0.9972 0.9967 0.036 0.085 

B70-420 f't = 0.1855 fc

 0.8023
 0.9930 0.9916 0.104 0.144 

B47-440 f't = 0.2336 fc

 0.7272
 0.9933 0.9920 0.145 0.170 

B67-440 f't = 0.3755 fc

 0.5637
 0.9464 0.9356 0.749 0.387 

B67-440-001 f't = 0.1197 fc

 0.9038
 0.9874 0.9849 0.200 0.200 

C45-B25-425 f't = 0.1514 fc

 0.8441
 0.9881 0.9851 0.092 0.152 

B67-440-BEY f't = 0.1632 fc

 0.807
 0.9977 0.9973 0.035 0.084 

C45-B26-475 f't = 0.3423 fc

 0.6442
 0.8998 0.8798 1.447 0.538 

C45-B25-400 f't = 0.3086 fc

 0.6636
 0.9713 0.9655 0.495 0.315 

C50-B22-460 f't = 0.1393 fc

 0.8471
 0.9265 0.9118 0.469 0.306 

YM-SEG-11 f't = 0.1256 fc

 0.9296
 0.9406 0.9257 0.485 0.348 
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Table 5.16: The splitting tensile strength developments of samples for the Model-1. 

 

 

 

 

 

 

Model-1 Strength Development of Actual Data [Day/Day] Strength Development of Predicted Data [Day/Day]  

Mixing Codes 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 

C45-III-B20 0.0382 0.1832 0.4122 0.4962 0.7557 0.6412 1.0000 0.0900 0.2440 0.4417 0.5149 0.7156 0.9122 1.0000 

YM-SEG-03 0.2821 0.6581 0.7521 0.7521 0.8974 0.9487 1.0000 0.3538 0.5779 0.6605 0.7409 0.8549 0.8961 1.0000 

YM-SEG-03-FSTC - 0.7345 0.7611 0.8142 0.8053 1.0177 1.0000 0.5459 0.7098 0.7607 0.7851 0.8722 0.9318 1.0000 

MIX-15A-04 0.2813 0.5938 0.7396 0.7917 0.8854 - 1.0000 0.3125 0.5572 0.7087 0.7578 0.8574 - 1.0000 

YM-SEG-05 0.2525 0.5051 0.7778 0.8687 - 1.0202 1.0000 0.2554 0.5621 0.6884 0.6884 0.8390 0.9354 1.0000 

YM-SEG-08 0.3203 0.4375 0.6094 0.7188 0.7344 0.7500 1.0000 0.3002 0.5514 0.6171 0.7031 0.8344 0.8820 1.0000 

MIX-15E-03 0.1810 0.4571 0.6190 0.6952 0.8095 0.8190 1.0000 0.1799 0.5012 0.6244 0.6902 0.8161 0.9096 1.0000 

MIX-15-AC-04 0.2203 0.4407 0.7119 0.7542 0.6017 0.8559 1.0000 0.2507 0.4902 0.6539 0.7097 0.8236 0.8931 1.0000 

YM-SEG-10 - 0.4906 0.5660 0.7170 0.7642 1.0000 1.0000 - 0.4590 0.5921 0.6604 0.7894 0.9052 1.0000 

DURABET PLUS AIR-AC-03 0.1667 0.3981 0.4722 0.5278 0.6389 0.8426 1.0000 0.2041 0.3995 0.4621 0.5220 0.6758 0.9047 1.0000 

YM-SEG-10A 0.2793 - 0.5766 0.5676 0.8288 0.9640 1.0000 0.2694 - 0.5320 0.6113 0.7665 0.8910 1.0000 

YM-SEG-10E - 0.4434 0.6038 0.6509 0.8774 0.9811 1.0000 - 0.4814 0.5664 0.5963 0.7818 0.9093 1.0000 

YM-DAP-AC-03 0.1068 0.2233 0.4466 0.5340 0.7184 0.7864 1.0000 0.0930 0.2984 0.4451 0.5019 0.6928 0.8708 1.0000 

MIX-15-AC-03 0.1068 0.3981 0.6408 0.7282 0.7670 0.7864 1.0000 0.1302 0.5037 0.6227 0.7199 0.8669 0.9635 1.0000 

MIX-30 0.0494 0.1728 0.3333 0.4321 0.6667 0.9383 1.0000 0.0561 0.1669 0.3323 0.4087 0.6730 0.8162 1.0000 

MIX-30-03 0.2750 0.6375 0.6875 0.8125 0.9500 0.9750 1.0000 0.3308 0.5775 0.6597 0.7057 0.8190 0.9282 1.0000 

MIX-30-BRT 0.0661 0.2810 0.4132 0.4380 0.6446 0.8264 1.0000 0.0652 0.2678 0.3983 0.4829 0.6820 0.8755 1.0000 
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Table 5.16 (continued): The splitting tensile strength developments of samples for the Model-1.

Model-1 Strength Development of Actual Data [Day/Day] Strength Development of Predicted Data [Day/Day] 

Mixing Codes 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 

MIX-30-07 0.0920 0.2874 0.4713 0.5977 0.7816 0.9195 1.0000 0.1075 0.3320 0.4621 0.5373 0.7060 0.8969 1.0000 

MIX-34-BRT 0.1238 0.3905 0.4952 - 0.6286 0.7905 1.0000 0.1109 0.3877 0.5119 - 0.6830 0.8592 1.0000 

MIX-32-03 0.1186 0.4831 0.5508 0.6610 0.7966 0.9237 1.0000 0.1490 0.4543 0.5541 0.6240 0.7336 0.8670 1.0000 

MIX-32-CEN 0.0909 0.2879 0.5000 0.5909 0.8182 0.9697 1.0000 0.1027 0.3338 0.4719 0.5240 0.7200 0.8910 1.0000 

MIX-32-CEN-OK 0.0545 0.3455 0.5364 0.5818 0.6000 0.8909 1.0000 0.0685 0.3193 0.5179 0.5807 0.7103 0.8647 1.0000 

B70-380 0.0375 0.1125 0.2000 0.2500 0.5750 0.8000 1.0000 0.0429 0.1035 0.2036 0.2776 0.5366 0.8000 1.0000 

B70-420 0.0353 0.0941 0.2000 0.3412 0.5176 0.8353 1.0000 0.0448 0.1224 0.2011 0.2954 0.5638 0.8812 1.0000 

B47-440 0.0196 0.1961 0.3627 0.4608 0.6667 0.9608 1.0000 0.0596 0.1921 0.3408 0.4339 0.6665 0.8872 1.0000 

B67-440 0.0267 0.1867 0.4533 0.5067 0.8933 1.0667 1.0000 0.0894 0.2337 0.3877 0.4839 0.6633 0.8988 1.0000 

B67-440-001 0.0213 0.1489 0.2128 0.3298 0.5426 0.7128 1.0000 0.0142 0.1638 0.2316 0.3341 0.5214 0.8190 1.0000 

C45-B25-425 - 0.3158 0.4632 0.6421 0.8316 0.8737 1.0000 - 0.2851 0.4951 0.6893 0.8359 0.9186 1.0000 

B67-440-BEY 0.0323 0.2043 0.3118 0.3763 0.6237 0.7957 1.0000 0.0358 0.1819 0.3267 0.3850 0.6376 0.8338 1.0000 

C45-B26-475 0.2063 0.5238 0.6349 0.7698 0.7222 0.7460 1.0000 0.1725 0.6425 0.7555 0.7701 0.8869 0.9269 1.0000 

C45-B25-400 0.0348 0.4609 0.6348 0.6087 0.6435 0.7391 1.0000 0.0565 0.4654 0.5921 0.6586 0.7372 0.8358 1.0000 

C50-B22-460 0.5045 0.6667 0.7117 0.8829 0.9459 0.9640 1.0000 0.4853 0.6589 0.7591 0.7865 0.8569 0.9210 1.0000 

YM-SEG-11 - 0.3571 0.4732 0.5714 0.7054 0.7589 1.0000 - 0.3663 0.5295 0.6007 0.7675 0.9230 1.0000 
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5.2.2 Logarithmic Regression (Model-2) 

The logarithmic regression model (the Model-2) is one of the other univariate 

regression analysis models depending on compressive strength of concrete like in the 

Model-1. In this model, for 0.5-day, 1-day, 2-day, 3-day, 7-day, 14-day, and 28-day 

splitting tensile strength predictions were exposed. At the end, R2 (btw 0.8309 & 

0.9993), and R2
adj results are very high; SSE, and RMSE results are very low. This 

principal comparison indicates that forecasting of the splitting tensile strength has less 

errors from the actual data sets on the fitting planar. In this way of the results, the 

strength development of the splitting tensile strength is settled in the Table 5.20.  

In the Figure 5.25, the correlations of the actual and predicted data sets are revealed. 

The correlation precisely shows that the results of the model are satisfying, and the 

model comes out safe to predict the splitting tensile strength of the concrete because 

of no negative deflection effects in the data fittings. 

 

 

 

 

 

 

 

 

 

 

Figure 5.25: The correlations of the splitting tensile strength of the Model-2. 

In the Figure 5.26, for the samples including FA + MS theme, the Model-2 comes 

forward that [(W/C) - (W/B)] of the maximum R² result is equal to [(W/C) - (W/B)] of 

the minimum R² result as well in the Model-1. Moreover, while [(CA/A) - (FA/A)] 

result gets higher, the R² result also increases which means that the CA/A ratio is more 

efficient on the data prediction with respect to the FA/A ratio. 
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Figure 5.26: The correlations of the mixing ratios of the Model-2 in FA + MS. 

In the Figure 5.27, for the samples including FA + MS material, the Model-2 explains 

that [(NS) - (CS)] of the minimum R2 is greater than [(NS) - (CS)] of the maximum 

R2. And [(NO:1 Agg.) - (NO:2 Agg.)] of the minimum R2 is less than [(NO:1 Agg.) - 

(NO:2 Agg.)] of the maximum R2 result, too. Additionally, [(FA) - (MS)] result and 

the amount of cement and water of the minimum and maximum R2 are the same.  

 

 

 

 

 

 

 

 

 

 

Figure 5.27: The correlations of the mixing amount of the Model-2 in FA + MS. 



 

104 

 

The minimum amount of NO:1 Agg. is 402.00 kg/m3 for the minimum R2 result. 

Except this, there is no sign of use of an exact amount of GGBS for low and/or high 

prediction on the splitting tensile strength. And there is no effect of admixture use in 

the model. Besides, the cement types are CEMI 42.5N for both lowest and highest R2 

values which means that the cement type is not a concern for the strength prediction 

in this model. 

In the Figure 5.28, for the samples composed of GGBS content, the Model-2 also 

describes that [(W/C) – (W/B)] of the minimum R² is less than [(W/C) – (W/B)] of the 

maximum R². Followingly, there is no open sign of GGBS effects on the splitting 

tensile strength prediction. And, while [(CA/A) - (FA/A)] result gets higher, the R² 

result decreases which means that the CA/A ratio is accurate on the data forecasting 

because of the FA/A ratio. 

 

 

 

 

 

 

 

 

 

 

Figure 5.28: The correlations of the mixing ratios of the Model-2 in GGBS. 

In the Figure 5.29, for the samples made of GGBS substance that [(NS) - (CS)] of the 

maximum R² result is greater than [(NS) - (CS)] of the minimum R² value. This result 

shows that the amounts of natural sand imply the strength prediction. For some 

specimens, NO:0 Agg., NO:1 Agg., and NO:2 Agg. amounts effectively increase the 

R² value. Furthermore, the amount of water and cement of the minimum R² are 

opposite to each other. When the amount of cement is increased, the prediction is 

resulted well. However, the amount of water in increasing causes worse predictions. 
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Addition to this, there are again some specimens compounded of the GGBS substance 

for decreasing the strength estimation results of the concrete. For the highest R² result, 

CEMIII 32.5 type cement, and for the lowest R² value, CEMIII BS type cement are 

figured out. Except these, there are no satisfying results for the model calculation in 

further comparing purposes. Because the remain results are not appropriate for any 

complex competition. In the Model-2, for both contents, the results are shown in the 

boxplot which is in the Figure 5.30.  

 

 

 

 

 

 

 

 

 

 

Figure 5.29: The correlations of the mixing amounts of the Model-2 in GGBS. 

In the Figure 5.30, it is certain that FA + MS substance affects the higher splitting 

tensile strength prediction results than GGBS theme has. Except day-14, and day-28, 

for all ages, the strengths of the specimens including FA + MS are close and/or above 

the median strength values. Except day-1, day-7, and day-28, for all ages, the specimen 

strengths having GGBS theme are close and/or above the median strength values. It is 

understood that the strength predictions for the specimens including FA + MS are less 

logical. Thus, the whiskers of the specimens including GGBS substance are more 

consistent than the specimens including FA + MS ingredient. In the Table 5.17 and the 

Table 5.18, the numerical results of the boxplots are also given. 
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Figure 5.30: The age and the splitting tensile strength relationship for the Model-2.   

Table 5.17: The CS dependent STS results in FA + MS content for the Model-2. 

Table 5.18: The CS dependent STS results in GGBS content for the Model-2. 

 

Model-2 [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 0.30 1.22 2.34 3.15 3.90 4.24 4.56 

1st-Quartile-Value 0.91 2.48 3.15 3.57 4.18 4.68 5.08 

Median Value 1.39 2.81 3.42 3.69 4.44 5.00 5.41 

3rd-Quartile-Value 1.84 3.46 3.85 4.31 4.94 5.19 5.68 

Maximum Value 2.98 4.05 4.40 4.58 5.24 5.47 6.04 

Mean Value 1.47 2.86 3.51 3.85 4.50 4.95 5.35 

Range 2.68 2.84 2.06 1.43 1.34 1.23 1.48 

Model-2 [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 0.01 0.23 0.75 1.13 2.29 3.12 3.43 

1st-Quartile-Value 0.07 0.79 1.49 1.87 2.94 3.66 4.09 

Median Value 0.11 1.29 2.12 2.45 3.53 4.03 4.46 

3rd-Quartile-Value 0.23 1.65 2.66 2.95 3.66 4.69 5.15 

Maximum Value 1.23 2.83 3.49 3.93 4.58 5.40 6.00 

Mean Value 0.26 1.30 2.06 2.42 3.37 4.20 4.69 

Range 1.22 2.60 2.74 2.80 2.28 2.28 2.57 
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Table 5.19: The results of the regression Model-2. 

 

 Model-2     

Mixing Codes Logarithmic Regression R2 R2
adj SSE RMSE 

C45-III-B20 f't = 0.2139ln( f'c)
2.21

 0.9175 0.9010 2.324 0.682 

YM-SEG-03 f't = 0.06975ln( f'c)
3.073

 0.9670 0.9604 0.396 0.282 

YM-SEG-03-FSTC f't = 0.2838ln( f'c)
2.083

 0.8309 0.7886 0.405 0.318 

MIX-15A-04 f't = 0.1733ln( f'c)
2.335

 0.9993 0.9991 0.005 0.036 

YM-SEG-05 f't = 0.1641ln( f'c)
2.369

 0.9468 0.9335 0.581 0.381 

YM-SEG-08 f't = 0.09805ln( f'c)
2.794

 0.9027 0.8833 1.194 0.489 

MIX-15E-03 f't = 0.1481ln( f'c)
2.50

 0.9734 0.9681 0.320 0.253 

MIX-15-AC-04 f't = 0.1078ln( f'c)
2.722

 0.8759 0.8510 1.772 0.595 

YM-SEG-10 f't = 0.1093ln( f'c)
2.701

 0.9467 0.9333 0.340 0.292 

DURABET PLUS AIR-AC-03 f't = 0.1404ln( f'c)
2.531

 0.9890 0.9868 0.150 0.173 

YM-SEG-10A f't = 0.05118ln( f'c)
3.282

 0.9742 0.9678 0.306 0.277 

YM-SEG-10E f't = 0.0992ln( f'c)
2.851

 0.9688 0.9611 0.225 0.237 

YM-DAP-AC-03 f't = 0.1099ln( f'c)
2.705

 0.9728 0.9674 0.433 0.294 

MIX-15-AC-03 f't = 0.1263ln( f'c)
2.611

 0.9384 0.9261 0.845 0.411 

MIX-30 f't = 0.1312ln( f'c)
2.563

 0.9822 0.9786 0.237 0.218 

MIX-30-03 f't = 0.3368ln( f'c)
1.848

 0.9731 0.9678 0.171 0.185 

MIX-30-BRT f't = 0.0494ln( f'c)
3.291

 0.9840 0.9807 0.365 0.270 
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Table 5.19 (continued): The results of the regression Model-2.

 Model-2     

Mixing Codes Logarithmic Regression R2 R2
adj SSE RMSE 

MIX-30-07 f't = 0.1356ln( f'c)
2.548

 0.9898 0.9877 0.129 0.161 

MIX-34-BRT f't = 0.1004ln( f'c)
2.773

 0.9726 0.9658 0.358 0.299 

MIX-32-03 f't = 0.1136ln( f'c)
2.736

 0.9935 0.9922 0.122 0.156 

MIX-32-CEN f't = 0.1827ln( f'c)
2.291

 0.9849 0.9819 0.117 0.153 

MIX32-CEN-OK f't = 0.08785ln( f'c)
2.911

 0.9679 0.9614 0.589 0.343 

B70-380 f't = 0.09205ln( f'c)
2.751

 0.9924 0.9908 0.101 0.142 

B70-420 f't = 0.1827ln( f'c)
2.284

 0.9843 0.9812 0.234 0.216 

B47-440 f't = 0.149ln( f'c)
2.434

 0.9924 0.9909 0.164 0.181 

B67-440 f't = 0.3068ln( f'c)
1.781

 0.9694 0.9633 0.427 0.292 

B67-440-001 f't = 0.25ln( f'c)
2.00

 0.9373 0.9247 0.999 0.447 

C45-B25-425 f't = 0.07993ln( f'c)
2.89

 0.9748 0.9684 0.196 0.221 

B67-440-BEY f't = 0.09983ln( f'c)
2.68

 0.9879 0.9854 0.185 0.193 

C45-B26-475 f't = 0.2597ln( f'c)
2.068

 0.8598 0.8318 2.024 0.636 

C45-B25-400 f't = 0.146ln( f'c)
2.459

 0.9639 0.9567 0.621 0.352 

C50-B22-460 f't = 0.0368ln( f'c)
3.409

 0.9281 0.9138 0.458 0.303 

YM-SEG-11 f't = 0.05387ln( f'c)
3.285

 0.9327 0.9159 0.549 0.371 
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Table 5.20: The splitting tensile strength developments of samples for the Model-2. 

 

 

  

 

 

 

Model-2 Strength Development of Actual Data [Day/Day] Strength Development of Predicted Data [Day/Day]  

Mixing Codes 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 

C45-III-B20 0.0382 0.1832 0.4122 0.4962 0.7557 0.6412 1.0000 0.0164 0.2213 0.4742 0.5569 0.7590 0.9302 1.0000 

YM-SEG-03 0.2821 0.6581 0.7521 0.7521 0.8974 0.9487 1.0000 0.3366 0.5906 0.6773 0.7582 0.8680 0.9063 1.0000 

YM-SEG-03-FSTC - 0.7345 0.7611 0.8142 0.8053 1.0177 1.0000 0.5211 0.7090 0.7636 0.7892 0.8777 0.9358 1.0000 

MIX-15A-04 0.2813 0.5938 0.7396 0.7917 0.8854 - 1.0000 0.2885 0.5810 0.7376 0.7851 0.8771 - 1.0000 

YM-SEG-05 0.2525 0.5051 0.7778 0.8687 - 1.0202 1.0000 0.2162 0.5879 0.7185 0.7185 0.8610 0.9457 1.0000 

YM-SEG-08 0.3203 0.4375 0.6094 0.7188 0.7344 0.7500 1.0000 0.2797 0.5722 0.6415 0.7285 0.8536 0.8968 1.0000 

MIX-15E-03 0.1810 0.4571 0.6190 0.6952 0.8095 0.8190 1.0000 0.1280 0.5275 0.6585 0.7241 0.8421 0.9244 1.0000 

MIX-15-AC-04 0.2203 0.4407 0.7119 0.7542 0.6017 0.8559 1.0000 0.2226 0.5110 0.6840 0.7391 0.8462 0.9085 1.0000 

YM-SEG-10 - 0.4906 0.5660 0.7170 0.7642 1.0000 1.0000 - 0.4505 0.6005 0.6733 0.8039 0.9141 1.0000 

DURABET PLUS AIR-AC-03 0.1667 0.3981 0.4722 0.5278 0.6389 0.8426 1.0000 0.1605 0.4097 0.4829 0.5497 0.7093 0.9199 1.0000 

YM-SEG-10A 0.2793 - 0.5766 0.5676 0.8288 0.9640 1.0000 0.2469 - 0.5491 0.6326 0.7871 0.9032 1.0000 

YM-SEG-10E - 0.4434 0.6038 0.6509 0.8774 0.9811 1.0000 - 0.4738 0.5694 0.6022 0.7942 0.9169 1.0000 

YM-DAP-AC-03 0.1068 0.2233 0.4466 0.5340 0.7184 0.7864 1.0000 0.0286 0.2838 0.4607 0.5245 0.7230 0.8890 1.0000 

MIX-15-AC-03 0.1068 0.3981 0.6408 0.7282 0.7670 0.7864 1.0000 0.0633 0.5236 0.6511 0.7482 0.8850 0.9693 1.0000 

MIX-30 0.0494 0.1728 0.3333 0.4321 0.6667 0.9383 1.0000 0.0031 0.1248 0.3418 0.4341 0.7144 0.8462 1.0000 

MIX-30-03 0.2750 0.6375 0.6875 0.8125 0.9500 0.9750 1.0000 0.2934 0.6012 0.6893 0.7360 0.8442 0.9405 1.0000 

MIX-30-BRT 0.0661 0.2810 0.4132 0.4380 0.6446 0.8264 1.0000 0.0180 0.2546 0.4094 0.5040 0.7100 0.8914 1.0000 
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Table 5.20 (continued): The splitting tensile strength developments of samples for the Model-2. 

Model-2 Strength Development of Actual Data [Day/Day] Strength Development of Predicted Data [Day/Day] 

Mixing Codes 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 

MIX-30-07 0.0920 0.2874 0.4713 0.5977 0.7816 0.9195 1.0000 0.0391 0.3259 0.4817 0.5654 0.7381 0.9129 1.0000 

MIX-34-BRT 0.1238 0.3905 0.4952 - 0.6286 0.7905 1.0000 0.0502 0.3953 0.5368 - 0.7139 0.8787 1.0000 

MIX-32-03 0.1186 0.4831 0.5508 0.6610 0.7966 0.9237 1.0000 0.0934 0.4716 0.5815 0.6544 0.7626 0.8856 1.0000 

MIX-32-CEN 0.0909 0.2879 0.5000 0.5909 0.8182 0.9697 1.0000 0.0230 0.3232 0.4918 0.5507 0.7528 0.9086 1.0000 

MIX-32-CEN-OK 0.0545 0.3455 0.5364 0.5818 0.6000 0.8909 1.0000 0.0128 0.3109 0.5404 0.6075 0.7382 0.8823 1.0000 

B70-380 0.0375 0.1125 0.2000 0.2500 0.5750 0.8000 1.0000 0.0020 0.0576 0.1902 0.2869 0.5848 0.8348 1.0000 

B70-420 0.0353 0.0941 0.2000 0.3412 0.5176 0.8353 1.0000 0.0000 0.0760 0.1902 0.3202 0.6276 0.9094 1.0000 

B47-440 0.0196 0.1961 0.3627 0.4608 0.6667 0.9608 1.0000 0.0032 0.1595 0.3563 0.4679 0.7120 0.9091 1.0000 

B67-440 0.0267 0.1867 0.4533 0.5067 0.8933 1.0667 1.0000 0.0000 0.1938 0.4117 0.5289 0.7176 0.9227 1.0000 

B67-440-001 0.0213 0.1489 0.2128 0.3298 0.5426 0.7128 1.0000 0.0298 0.2517 0.3564 0.4872 0.6734 0.8930 1.0000 

C45-B25-425 - 0.3158 0.4632 0.6421 0.8316 0.8737 1.0000 - 0.2668 0.5142 0.7168 0.8559 0.9300 1.0000 

B67-440-BEY 0.0323 0.2043 0.3118 0.3763 0.6237 0.7957 1.0000 0.0000 0.1464 0.3339 0.4046 0.6777 0.8604 1.0000 

C45-B26-475 0.2063 0.5238 0.6349 0.7698 0.7222 0.7460 1.0000 0.1287 0.7002 0.8035 0.8163 0.9132 0.9447 1.0000 

C45-B25-400 0.0348 0.4609 0.6348 0.6087 0.6435 0.7391 1.0000 0.0000 0.4672 0.6095 0.6796 0.7589 0.8534 1.0000 

C50-B22-460 0.5045 0.6667 0.7117 0.8829 0.9459 0.9640 1.0000 0.4790 0.6668 0.7693 0.7966 0.8655 0.9266 1.0000 

YM-SEG-11 - 0.3571 0.4732 0.5714 0.7054 0.7589 1.0000 - 0.3553 0.5399 0.6160 0.7846 0.9309 1.0000 
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5.2.3 Fraction Regression (Model-3) 

The fraction regression model (the Model-3) is one of the other univariate regression 

analysis models depending on compressive strength of concrete like in the Model-1 

and Model-2. In this model, for 0.5-day, 1-day, 2-day, 3-day, 7-day, 14-day, and 28-

day splitting tensile strength predictions were revealed. At the end, R2 (btw 0.8276 & 

0.9990), and R2
adj results are very high; SSE, and RMSE results are very low. This 

elementary comparison focuses that the presuming of the splitting tensile strength has 

less errors from the actual data sets on the fitting planar. In this thinking, the strength 

development of the splitting tensile strength is shown in the Table 5.24.  

In the Figure 5.31, the correlations of the actual data sets and the estimated data sets 

are shared. The correlation exactly shows that the results of the model are satisfying, 

and the model sets forth safe to predict the splitting tensile strength of the concrete 

because of the absences of negative deflection effects in the data fittings. 

 

 

 

 

 

 

 

 

 

 

Figure 5.31: The correlations of the splitting tensile strength of the Model-3. 

In the Figure 5.32, for the samples including FA + MS substance, the Model-3 evinces 

that [(W/C) - (W/B)] of the maximum R² result is equal to [(W/C) - (W/B)] of the 

minimum R² result as well in the Model-1 and the Model-2. Moreover, while [(CA/A) 

- (FA/A)] result gets higher, the R² result also increases that the CA/A ratio is effective 
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on the data estimation with respect to the FA/A ratio. Also, the minimum CA/A ratio 

is 0.46, and the maximum FAA ratio is 0.54 for the minimum R² value. 

 

 

 

 

 

 

 

 

 

 

Figure 5.32: The correlations of the mixing ratios of the Model-3 in FA + MS. 

In the Figure 5.33, for the samples including FA + MS content, the Model-3 argues 

that [(NS) - (CS)] of the minimum R2 is greater than [(NS) - (CS)] of the maximum 

R2.  

 

 

 

 

 

 

 

 

 

 

Figure 5.33: The correlations of the mixing amounts of the Model-3 in FA + MS. 
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And [(NO:1 Agg.) - (NO:2 Agg.)] of the minimum R2 is less than [(NO:1 Agg.) - 

(NO:2 Agg.)] of the maximum R2 result, as well in the previous models. 

Further, [(FA) - (MS)] result, and the amount of cement and water of the minimum R2 

is less than the maximum R2 has. Yet, the use of admixtures and water seem like 

inefficient on the data forecasting. The minimum amount of NO:1 Agg. is 402.00 

kg/m3 for the minimum R2 result. Onto this, there is no sign of use of specific amount 

of FA + MS for low and/or high prediction on the splitting tensile strength. Also, there 

is no efficient way of admixture use in this model, as well. Moreover, the cement types 

are CEMI 42.5N for both the lowest and highest R2 results which means that the 

cement type is out of any comparison for the strength prediction in this model. 

In the Figure 5.34, for the samples in form of GGBS theme, the Model-3 also discloses 

that [(W/C) – (W/B)] of the minimum R² is less than [(W/C) – (W/B)] of the maximum 

R², as well in the last models. Continuously, there is no overt sign of GGBS effects on 

the splitting tensile strength prediction, even though it is a binder substance like the 

cement. While [(CA/A) - (FA/A)] result gets higher, the R² result is increased which 

means that the CA/A ratio effect is acceptable on the data presuming in use of the 

FA/A ratio. The minimum FA/A ratio (0.20), and the maximum CA/A ratio (0.80) are 

found out for the highest R² results. The cement types attract the attention for in B70-

380 (CEMI 52.5N), and C45-III-B20 (CEMIII BS) mixing codes. 

 

 

 

 

 

 

 

 

 

 

Figure 5.34: The correlations of the mixing ratios of the Model-3 in GGBS. 
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Figure 5.35: The correlations of the mixing amounts of the Model-3 in GGBS. 

In the Figure 5.36, for the samples GGBS resultants, [(NS) - (CS)] of the maximum 

R² result is greater than [(NS) - (CS)] of the minimum R² result like in the previous 

models. This result shows that the amounts of natural sand impose the strength 

prediction. For some specimens, NO:0 Agg., NO:1 Agg., and NO:2 Agg. amounts 

effectively increase the R² value. The amounts of water and cement of the minimum 

R² result are greater than the maximum R² result owns. When the amount of cement is 

increased, the prediction is worsened. Like the amount of cement, the amount of water 

in increasing results worse predictions. Else, there are some specimens compounded 

of the GGBS substance for decreasing the strength results of the concrete in 

forecasting. For the maximum R² result, the minimum cement content is 114.00 kg/m3, 

and the maximum amount of NO:0 Agg. is 486.00 kg/m3. Meanwhile, the minimum 

amount of CS content is 0.00 kg/m3, and the minimum amount of NS content is 395.00 

kg/m3. Beyond these, there are no satisfying results for the model calculation in 

comparing purposes. As the remaining results are not liable for any cross check. In the 

Model-3, for both contents, the results are exposed by the boxplot in the Figure 5.36.  

In the Figure 5.36, it is certain that FA + MS material is more impactful on the higher 

splitting tensile strength prediction results than GGBS material is. Except day-0.5, day-

14, and day-28, for all ages, the strengths of the specimens made of FA + MS are close 

and/or above the median strength values. Except day-2, day-3, and day-7, for all ages, 
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the specimen strengths having GGBS content are close and/or above the median 

strength values. It is seen that the strength estimations for the specimens including FA 

+ MS are less appreciated. That is why, the whiskers of the specimens including GGBS 

subsequent are more dependable than the specimens including FA + MS ingredient. In 

the Table 5.21 and the Table 5.22, the numerical results of the boxplots are also given. 

 

 

 

 

 

 

 

 

 

 

Figure 5.36: The age and the splitting tensile strength relationship for the Model-3.    

Table 5.21: The CS dependent STS results in FA + MS content for the Model-3. 

Table 5.22: The CS dependent STS results in GGBS content for the Model-3. 

 

Model-3 [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 0.13 1.24 2.27 3.10 3.89 4.26 4.62 

1st-Quartile-Value 0.70 2.45 3.15 3.52 3.52 4.71 5.14 

Median Value 1.35 2.77 3.41 3.69 3.69 5.02 5.47 

3rd-Quartile-Value 1.75 3.39 3.82 4.25 4.25 5.26 5.71 

Maximum Value 2.90 4.03 4.39 4.58 4.58 5.46 6.02 

Mean Value 1.39 2.83 3.48 3.83 3.83 4.97 5.39 

Range 2.77 2.79 2.12 1.48 0.69 1.20 1.40 

Model-3 [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 0.05 0.39 0.77 1.12 2.20 3.12 3.44 

1st-Quartile-Value 0.17 0.74 1.45 1.74 2.90 3.72 4.15 

Median Value 0.28 1.28 2.11 2.40 3.47 4.03 4.53 

3rd-Quartile-Value 0.39 1.66 2.57 2.89 3.64 4.72 5.18 

Maximum Value 1.24 2.79 3.45 3.89 4.56 5.42 6.03 

Mean Value 0.37 1.32 2.01 2.36 3.32 4.22 4.75 

Range 1.20 2.41 2.68 2.78 2.36 2.30 2.59 

. 
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 Table 5.23: The results of the regression Model-3. 

 

 

 Model-3     

Mixing Codes Fraction Regression R2 R2
adj SSE RMSE 

C45-III-B20 f't = 10.22 f'c / (66.07 +  f'c) 0.9172 0.9007 2.332 0.683 

YM-SEG-03 f't = 20.67 f'c  / (174.10 +  f'c) 0.9615 0.9537 0.463 0.304 

YM-SEG-03-FSTC f't = 10.53 f'c  / (57.96 +  f'c) 0.8276 0.7844 0.413 0.321 

MIX-15A-04 f't = 10.21 f'c  / (71.77 +  f'c) 0.9990 0.9987 0.008 0.043 

YM-SEG-05 f't = 10.84 f'c / (80.04 +  f'c) 0.9504 0.9380 0.541 0.368 

YM-SEG-08 f't = 18.77 f'c / (163.10 +  f'c) 0.9077 0.8893 1.133 0.476 

MIX-15E-03 f't = 14.35 f'c / (109.10 +  f'c) 0.9809 0.9771 0.230 0.214 

MIX-15-AC-04 f't = 16.09 f'c / (132.50 +  f'c) 0.8757 0.8509 1.775 0.596 

YM-SEG-10 f't = 14.51 f'c  / (116.70 +  f'c) 0.9474 0.9342 0.336 0.259 

DURABET PLUS AIR-AC-03 f't = 13.44 f'c / (101.20 +  f'c) 0.9892 0.9871 0.146 0.171 

YM-SEG-10A f't = 38.37 f'c  / (379.30 +  f'c) 0.9768 0.9710 0.276 0.263 

YM-SEG-10E f't = 7.44 f'c / (130.30 +  f'c) 0.9669 0.9586 0.239 0.244 

YM-DAP-AC-03 f't = 15.57 f'c  / (126.70 +  f'c) 0.9787 0.9745 0.339 0.260 

MIX-15-AC-03 f't = 14.69 f'c  / (114.60 +  f'c) 0.9428 0.9314 0.784 0.396 

MIX-30 f't = 15.42 f'c  / (125.03 +  f'c) 0.9877 0.9853 0.163 0.181 

MIX-30-03 f't = 7.078 f'c  / (35.20 +  f'c) 0.9762 0.9715 0.152 0.174 

MIX-30-BRT f't = 51.77 f'c / (546.70 +  f'c) 0.9923 0.9908 0.174 0.187 
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Table 5.23 (continued): The results of the regression Model-3. 

 

 

 

 

 Model-3     

Mixing Codes Fraction Regression R2 R2
adj SSE RMSE 

MIX-30-07 f't = 13.02 f'c  / (98.25 +  f'c) 0.9920 0.9904 0.101 0.142 

MIX-34-BRT f't = 20.93 f'c  / (186.00 +  f'c) 0.9855 0.9819 0.189 0.217 

MIX-32-03 f't = 17.17 f'c  / (131.30 +  f'c) 0.9949 0.9938 0.097 0.139 

MIX-32-CEN f't = 9.823 f'c  / (67.83 +  f'c) 0.9883 0.9859 0.091 0.135 

MIX32-CEN-OK f't = 25.49 f'c  / (222.50 +  f'c) 0.9747 0.9697 0.464 0.304 

B70-380 f't = 21.50 f'c  / (219.30 +  f'c) 0.9977 0.9973 0.030 0.077 

B70-420 f't = 12.65 f'c / (100.10 +  f'c) 0.9899 0.9879 0.150 0.173 

B47-440 f't = 11.78 f'c  / (92.78 +  f'c) 0.9939 0.9927 0.131 0.162 

B67-440 f't = 6.023 f'c  / (35.35 +  f'c) 0.9747 0.9697 0.353 0.266 

B67-440-001 f't = 29.62 f'c  / (309.70 +  f'c) 0.9866 0.9839 0.214 0.207 

C45-B25-425 f't = 22.74 f'c  / (225.40 +  f'c) 0.9833 0.9791 0.130 0.180 

B67-440-BEY f't = 15.50 f'c  / (150.20 +  f'c) 0.9943 0.9932 0.086 0.132 

C45-B26-475 f't = 14.73 f'c  / (123.60 +  f'c) 0.8726 0.8471 1.840 0.607 

C45-B25-400 f't = 11.98 f'c  / (92.79 +  f'c) 0.9637 0.9564 0.625 0.354 

C50-B22-460 f't = 27.79 f'c  / (311.60 +  f'c) 0.9281 0.9138 0.459 0.303 

YM-SEG-11 f't = 64.00 f'c  / (619.70 +  f'c) 0.9390 0.9238 0.498 0.353 
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Table 5.24: The splitting tensile strength developments of samples for the Model-3. 

 

 

  

 

 

 

Model-3 Strength Development of Actual Data [Day/Day] Strength Development of Predicted Data [Day/Day]  

Mixing Codes 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 

C45-III-B20 0.0382 0.1832 0.4122 0.4962 0.7557 0.6412 1.0000 0.0520 0.2223 0.4712 0.5585 0.7703 0.9371 1.0000 

YM-SEG-03 0.2821 0.6581 0.7521 0.7521 0.8974 0.9487 1.0000 0.3539 0.5953 0.6803 0.7604 0.8694 0.9074 1.0000 

YM-SEG-03-FSTC - 0.7345 0.7611 0.8142 0.8053 1.0177 1.0000 0.5079 0.7073 0.7649 0.7915 0.8818 0.9390 1.0000 

MIX-15A-04 0.2813 0.5938 0.7396 0.7917 0.8854 - 1.0000 0.2930 0.5799 0.7407 0.7890 0.8813 - 1.0000 

YM-SEG-05 0.2525 0.5051 0.7778 0.8687 - 1.0202 1.0000 0.2216 0.5832 0.7189 0.7189 0.8644 0.9480 1.0000 

YM-SEG-08 0.3203 0.4375 0.6094 0.7188 0.7344 0.7500 1.0000 0.2743 0.5518 0.6224 0.7128 0.8447 0.8906 1.0000 

MIX-15E-03 0.1810 0.4571 0.6190 0.6952 0.8095 0.8190 1.0000 0.1485 0.5049 0.6383 0.7069 0.8320 0.9197 1.0000 

MIX-15-AC-04 0.2203 0.4407 0.7119 0.7542 0.6017 0.8559 1.0000 0.2321 0.4996 0.6740 0.7307 0.8416 0.9059 1.0000 

YM-SEG-10 - 0.4906 0.5660 0.7170 0.7642 1.0000 1.0000 - 0.4491 0.5975 0.6711 0.8036 0.9147 1.0000 

DURABET PLUS AIR-AC-03 0.1667 0.3981 0.4722 0.5278 0.6389 0.8426 1.0000 0.1790 0.4009 0.4718 0.5382 0.7013 0.9186 1.0000 

YM-SEG-10A 0.2793 - 0.5766 0.5676 0.8288 0.9640 1.0000 0.2632 - 0.5366 0.6177 0.7739 0.8958 1.0000 

YM-SEG-10E - 0.4434 0.6038 0.6509 0.8774 0.9811 1.0000 - 0.4819 0.5741 0.6061 0.7961 0.9180 1.0000 

YM-DAP-AC-03 0.1068 0.2233 0.4466 0.5340 0.7184 0.7864 1.0000 0.0724 0.2912 0.4540 0.5157 0.7147 0.8855 1.0000 

MIX-15-AC-03 0.1068 0.3981 0.6408 0.7282 0.7670 0.7864 1.0000 0.1053 0.5124 0.6392 0.7384 0.8803 0.9681 1.0000 

MIX-30 0.0494 0.1728 0.3333 0.4321 0.6667 0.9383 1.0000 0.0437 0.1554 0.3351 0.4184 0.6944 0.8335 1.0000 

MIX-30-03 0.2750 0.6375 0.6875 0.8125 0.9500 0.9750 1.0000 0.2993 0.6075 0.6993 0.7474 0.8556 0.9467 1.0000 

MIX-30-BRT 0.0661 0.2810 0.4132 0.4380 0.6446 0.8264 1.0000 0.0560 0.2581 0.3926 0.4800 0.6838 0.8778 1.0000 
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Table 5.24 (continued): The splitting tensile strength developments of samples for the Model-3.

Model-3 Strength Development of Actual Data [Day/Day] Strength Development of Predicted Data [Day/Day] 

Mixing Codes 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 

MIX-30-07 0.0920 0.2874 0.4713 0.5977 0.7816 0.9195 1.0000 0.0873 0.3325 0.4773 0.5587 0.7322 0.9111 1.0000 

MIX-34-BRT 0.1238 0.3905 0.4952 - 0.6286 0.7905 1.0000 0.0874 0.3757 0.5093 - 0.6890 0.8658 1.0000 

MIX-32-03 0.1186 0.4831 0.5508 0.6610 0.7966 0.9237 1.0000 0.1245 0.4634 0.5723 0.6460 0.7569 0.8834 1.0000 

MIX-32-CEN 0.0909 0.2879 0.5000 0.5909 0.8182 0.9697 1.0000 0.0819 0.3348 0.4890 0.5456 0.7470 0.9065 1.0000 

MIX-32-CEN-OK 0.0545 0.3455 0.5364 0.5818 0.6000 0.8909 1.0000 0.0523 0.3066 0.5179 0.5839 0.7175 0.8710 1.0000 

B70-380 0.0375 0.1125 0.2000 0.2500 0.5750 0.8000 1.0000 0.0366 0.0965 0.2010 0.2794 0.5512 0.8132 1.0000 

B70-420 0.0353 0.0941 0.2000 0.3412 0.5176 0.8353 1.0000 0.0305 0.1042 0.1881 0.2929 0.5866 0.8965 1.0000 

B47-440 0.0196 0.1961 0.3627 0.4608 0.6667 0.9608 1.0000 0.0363 0.1705 0.3442 0.4529 0.7046 0.9088 1.0000 

B67-440 0.0267 0.1867 0.4533 0.5067 0.8933 1.0667 1.0000 0.0409 0.2003 0.4111 0.5375 0.7401 0.9361 1.0000 

B67-440-001 0.0213 0.1489 0.2128 0.3298 0.5426 0.7128 1.0000 0.0106 0.1556 0.2257 0.3328 0.5277 0.8267 1.0000 

C45-B25-425 - 0.3158 0.4632 0.6421 0.8316 0.8737 1.0000 - 0.2683 0.4912 0.6938 0.8414 0.9223 1.0000 

B67-440-BEY 0.0323 0.2043 0.3118 0.3763 0.6237 0.7957 1.0000 0.0226 0.1628 0.3202 0.3843 0.6543 0.8484 1.0000 

C45-B26-475 0.2063 0.5238 0.6349 0.7698 0.7222 0.7460 1.0000 0.1017 0.6212 0.7480 0.7640 0.8877 0.9283 1.0000 

C45-B25-400 0.0348 0.4609 0.6348 0.6087 0.6435 0.7391 1.0000 0.0237 0.4564 0.6019 0.6748 0.7572 0.8543 1.0000 

C50-B22-460 0.5045 0.6667 0.7117 0.8829 0.9459 0.9640 1.0000 0.4832 0.6644 0.7661 0.7935 0.8630 0.9251 1.0000 

YM-SEG-11 - 0.3571 0.4732 0.5714 0.7054 0.7589 1.0000 - 0.3586 0.5256 0.5984 0.7677 0.9236 1.0000 
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5.3 Univariate Regression Analysis for Modulus of Elasticity 

In this section of the thesis, the Table 5.27, and the Table 5.31 share the regression 

models with their statistical results in the study. 

5.3.1 Power Regression (Model-1) 

The power regression model (the Model-1) is one of the other univariate regression 

analysis models depending on compressive strength of concrete like the splitting 

tensile strength. In this model, for 0.5-day, 1-day, 2-day, 3-day, 7-day, 14-day, and 28-

day modulus of elasticity estimations were represented. At the end, although R2 (btw 

0.7209 & 0.9921), and R2
adj results are very high; SSE, and RMSE results are very 

high, as well. However, it does not mean that very high results are very off the data 

estimation. Because the elastic modulus test results that are used in the regression 

model are in four and five digits. This principal comparison indicates that presuming 

the modulus of elasticity has less errors from the actual data sets on the fitting planar. 

In this way of thinking, the development of the modulus of elasticity is settled in the 

Table 5.28.  

In the Figure 5.37, the correlations of the actual data sets, and the predicted data sets 

are drawn. The correlation absolutely shows that the results of the model are satisfying. 

Nevertheless, FA + MS included sample results are respectively less than GGBS 

included sample results. Yet the model comes out safe to predict the modulus of 

elasticity of the concrete because of no negative deflection effects in the data fittings. 

In the Figure 5.38, for the samples made of FA + MS material, the Model-1 sets forth 

that [(W/C) - (W/B)] of the maximum R² result is equal to [(W/C) - (W/B)] of the 

minimum R² result as well in the splitting tensile strength predictions.  While [(CA/A) 

- (FA/A)] result gets higher, the R² result decreases which means that the FA/A ratio 

is more efficient on the data prediction with respect to the CA/A ratio. 

In the Figure 5.39, for the samples composed of FA + MS material, the Model-1 shows 

that [(NS) - (CS)] of the minimum R2 is less than [(NS) - (CS)] of the maximum R2. 

Also, [(NO:1 Agg.) - (NO:2 Agg.)] of the minimum R2 result is greater than [(NO:1 

Agg.) - (NO:2 Agg.)] of the maximum R2 result. Furthermore, [(FA) - (MS)] result of 

the minimum R2 result is less than the maximum R2 result.  
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Figure 5.37: The correlations of the modulus of elasticity of the Model-1. 

 

 

 

 

 

 

 

 

 

 

Figure 5.38: The correlations of the mixing ratios of the Model-1 in FA + MS. 

Besides, the amount of water and cement for the minimum R² result are greater than 

the maximum R² owns. When the amount of cement is in increasing, the prediction is 

in decreasing. And it is inactive to use admixture in this model. On the other side, the 

cement types are CEMI 42.5N for both the lowest and highest R2 results which means 

that the cement type is not a choice for the elastic modulus development in this model. 
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Figure 5.39: The correlations of the mixing amounts of the Model-1 in FA + MS. 

In the Figure 5.40, for the samples composed of GGBS additive, the Model-1 portraits 

that [(W/C) – (W/B)] of the minimum R² is equal to [(W/C) – (W/B)] of the maximum 

R². There is also inexactness for GGBS use on the elastic modulus presuming. And 

while [(FA/A) - (CA/A)] result gets higher, the R² result increases that the FA/A ratio 

is more raid on the data forecasting because of the CA/A ratio.  

  

 

 

 

 

 

 

 

 

 

Figure 5.40: The correlations of the mixing ratios of the Model-1 in GGBS. 
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For the minimum R² result, the minimum FA/A ratio is 0.54, and the minimum CA/A 

ratio is 0.46. In the Figure 5.41, for the samples made of GGBS material that [(NS) - 

(CS)] of the maximum R² result is less than [(NS) - (CS)] of the minimum R² result. 

This result imposes that the amounts of natural sand imply the elastic modulus 

prediction. For some specimens, NO:0 Agg., NO:1 Agg., and NO:2 Agg. amounts 

dramatically increase the R² result as in the previous mechanical property models.  

 

 

 

 

 

 

 

 

 

 

Figure 5.41: The correlations of the mixing amounts of the Model-1 in GGBS. 

At the same time, the amount of water in increasing leads well predictions. Moreover, 

there are again some specimens composed of the GGBS theme for decreasing the 

elastic modulus prediction results of the concrete. For the highest R² result, CEMIII 

BS type cement is for both lowest and highest R² results. Out of these, there are no 

well represented results for the model calculation in comparing goals. Because the 

other results are unsuitable for any further complex comparison. In the Model-1, for 

both materials, the results are dictated in the boxplot which is in the Figure 5.42.  

In the Figure 5.42, it is certain that FA + MS substance affects the higher modulus of 

elasticity estimation results than GGBS theme does. Except, day-1, day-14, and day-

28, for all ages, the elastic modulus of the specimens composed of FA + MS are close 

and/or above the median values. Except day-14, and day-28, for all ages, the specimen 

elastic modulus made of GGBS subsequent is close and/or above the median values. 

It is seen that the elastic modulus forecasting for the specimens including FA + MS 
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are less appropriate. Hence, the whiskers of the specimens including GGBS substance 

are more descent than the specimens including FA + MS content. In the Table 5.25 

and the Table 5.26, the numerical results of the boxplots are also given. 

 

 

 

 

 

 

 

 

 

 

Figure 5.42: The age and the modulus of elasticity relationship for the Model-1. 

Table 5.25: The CS dependent ME results in FA + MS content for the Model-1. 

Table 5.26: The CS dependent ME results in GGBS content for the Model-1. 

 

 

Model-1 [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 3920 20505 27171 27171 33288 35938 37514 

1st-Quartile-Value 12274 26286 30428 31855 31855 37960 39700 

Median Value 23091 29001 32359 33933 33933 39813 42596 

3rd-Quartile-Value 25875 32868 35117 37016 37016 41437 44387 

Maximum Value 32505 37278 39717 40353 40353 43311 45640 

Mean Value 19371 29122 32812 34319 34319 39736 42144 

Range 28584 16772 12547 13182 7066 7373 8127 

Model-1 [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 5358 10345 14320 18422 24263 26225 27354 

1st-Quartile-Value 9547 18086 23606 25386 30271 36380 39035 

Median Value 14275 23081 27219 28612 33827 37244 40687 

3rd-Quartile-Value 14955 26042 29832 30178 35475 40362 43035 

Maximum Value 19973 30187 33006 34816 40188 45542 47751 

Mean Value 12833 21534 25919 27901 33187 37781 40301 

Range 14615 19841 18686 16394 15925 19317 20397 
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Table 5.27: The results of the regression Model-1. 

 

 Model-1     

Mixing Codes Power Regression R2 R2
adj SSE RMSE 

C45-III-B20 E'c = 10980f'c
0.33

 0.9315 0.9143 33762304 2905.267 

YM-SEG-03 E'c = 6909 f'c
 0.4406

 0.8939 0.8727 31016962 2490.661 

YM-SEG-03-FSTC E'c = 6623 f'c
 0.4469

 0.9466 0.9332 4870934 1103.510 

MIX-15A-04 E'c = 11920 f'c
 0.3141

 0.9470 0.9338 12138774 1742.037 

YM-SEG-05 E'c = 850.5 f'c
 0.9268

 0.7914 0.7393 133442880 5775.874 

YM-SEG-08 E'c = 9452 f'c
 0.3521

 0.9650 0.9534 1703889 753.633 

MIX-15E-03 E'c = 9864 f'c
 0.3416

 0.9175 0.9010 29761364 2439.728 

MIX-15-AC-04 E'c = 7688 f'c
 0.4186

 0.9484 0.9381 22541233 2123.263 

YM-SEG-10 E'c = 11220 f'c
 0.3043

 0.9371 0.9214 6004683 1225.223 

DURABET PLUS AIR-AC-03 E'c = 8491 f'c
 0.3841

 0.9849 0.9819 6194402 1113.050 

YM-SEG-10A E'c = 10510 f'c
 0.3293

 0.9678 0.9598 5464025 1168.763 

YM-SEG-10E E'c = 8147 f'c
 0.3857

 0.8443 0.8054 21598383 2323.703 

YM-DAP-AC-03 E'c = 10180 f'c
 0.3314

 0.9717 0.9646 5039702 1122.464 

MIX-15-AC-03 E'c = 8159 f'c
 0.3921

 0.9872 0.9846 5865875 1083.132 

MIX-30 E'c = 13210 f'c
 0.2641

 0.8736 0.8420 26198341 2559.216 

MIX-30-03 E'c = 10090 f'c
 0.3389

 0.9527 0.9369 2379055 890.516 

MIX-30-BRT E'c = 9526 f'c
 0.36

 0.9651 0.9581 23146583 2151.585 
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Table 5.27 (continued): The results of the regression Model-1. 

 

 

 Model-1     

Mixing Codes Power Regression R2 R2
adj SSE RMSE 

MIX-30-07 E'c = 9651 f'c
 0.3563

 0.9921 0.9905 3521552 839.232 

MIX-34-BRT E'c = 8863 f'c
 0.3841

 0.9892 0.9864 5492279 1171.781 

MIX-32-03 E'c = 9834 f'c
 0.3463

 0.9785 0.9741 8937454 1336.971 

MIX-32-CEN E'c = 9777 f'c
 0.286

 0.7209 0.6512 24475018 2473.612 

MIX32-CEN-OK E'c = 11220 f'c
 0.2674

 0.8359 0.7949 13245223 1819.699 

B70-380 E'c = 7025 f'c
 0.4484

 0.9753 0.9691 15291880 1955.242 

B70-420 E'c = 5358 f'c
 0.5252

 0.9739 0.9673 21773412 2333.099 

B47-440 E'c = 8817 f'c
 0.3797

 0.9533 0.9417 25562988 2527.993 

B67-440 E'c = 9547fc

0.3612
 0.9482 0.9353 31731996 2816.558 

B67-440-001 E'c = 8044 f'c
 0.4021

 0.9465 0.9332 23081486 2402.160 

C45-B25-425 E'c = 13840 f'c
 0.2461

 0.9382 0.9228 6138540 1238.804 

B67-440-BEY E'c = 8046 f'c
 0.3927

 0.8775 0.8469 57766035 3800.199 

C45-B26-475 E'c = 938.8 f'c
 0.8881

 0.8002 0.7503 74273902 4309.115 

C45-B25-400 E'c = 6943 f'c
 0.4049

 0.9722 0.9630 2130363 842.687 

C50-B22-460 E'c = 8479 f'c
 0.3795

 0.9682 0.9618 3373835 821.442 

YM-SEG-11 E'c = 9362 f'c
 0.3573

 0.9544 0.9430 5279843 1148.895 
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Table 5.28: The elastic modulus developments of samples for the Model-1. 

 

 

 

 

 

Model-1 Elastic Modulus Development of Actual Data [Day/Day] Elastic Modulus Development of Predicted Data [Day/Day]  

Mixing Codes 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 

C45-III-B20 - 0.4772 0.6547 0.7473 0.8915 0.9610 1.0000 0.3657 0.6081 0.7059 0.7556 0.8547 0.9521 1.0000 

YM-SEG-03 0.6014 0.7545 0.8645 0.9087 0.9651 0.9881 1.0000 0.3557 0.6405 0.7300 - 0.8359 0.9312 1.0000 

YM-SEG-03-FSTC - 0.7616 0.8690 0.9119 0.9664 0.9885 1.0000 0.4250 0.7014 0.7670 0.8090 0.8701 0.9379 1.0000 

MIX-15A-04 0.6073 0.7591 0.8674 0.9108 0.9659 - 1.0000 - 0.6700 0.7603 0.7899 0.8870 0.9587 1.0000 

YM-SEG-05 0.4102 0.5863 - 0.8211 0.9273 0.9745 1.0000 - 0.6963 0.8117 0.8417 0.8972 0.9550 1.0000 

YM-SEG-08 - 0.8106 - 0.9327 0.9747 0.9914 1.0000 - 0.3222 0.4518 0.5273 0.7329 0.8946 1.0000 

MIX-15E-03 0.5344 0.7004 0.8292 0.8834 0.9546 0.9844 1.0000 - 0.2528 0.3499 0.4501 0.6872 0.9205 1.0000 

MIX-15-AC-04 0.5101 0.6796 0.8150 0.8730 0.9502 0.9828 1.0000 - 0.4226 0.5700 0.6467 0.8091 0.9394 1.0000 

YM-SEG-10 - 0.7216 0.8434 0.8936 0.9589 0.9859 1.0000 - 0.3940 0.5449 0.6280 0.7687 0.9339 1.0000 

DURABET PLUS AIR-AC-03 0.4424 0.6177 0.7704 0.8396 0.9357 0.9776 1.0000 - 0.4472 0.5216 0.6140 0.7485 0.9150 1.0000 

YM-SEG-10A 0.6187 - 0.8729 0.9146 0.9675 0.9889 1.0000 - 0.6936 0.8147 0.8972 0.9491 0.9756 1.0000 

YM-SEG-10E - 0.6644 0.8043 0.8651 0.9469 0.9816 1.0000 - 0.4363 0.5802 0.6285 0.8033 0.9154 1.0000 

YM-DAP-AC-03 - 0.5952 0.7533 0.8265 0.9297 0.9754 1.0000 0.5435 0.6794 - 0.6976 0.8475 0.9007 1.0000 

MIX-15-AC-03 0.4492 0.6243 0.7753 0.8433 0.9373 0.9782 1.0000 - 0.7263 0.7750 0.8302 0.8963 - 1.0000 

MIX-30 - 0.5633 0.7282 0.8069 0.9207 0.9721 1.0000 0.9257 0.7505 0.8607 0.9170 0.9317 0.9682 1.0000 

MIX-30-03 - 0.7763 - 0.9183 0.9690 0.9894 1.0000 - 0.6797 0.7832 0.8221 0.9033 0.9697 1.0000 

MIX-30-BRT 0.3832 0.5586 0.7244 0.8039 0.9193 0.9716 1.0000 0.3657 0.6081 0.7059 0.7556 0.8547 0.9521 1.0000 
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Table 5.28 (continued): The elastic modulus developments of samples for the Model-1. 

 

 

 

 

Model-1 Elastic Modulus Development of Actual Data [Day/Day] Elastic Modulus Development of Predicted Data [Day/Day] 

Mixing Codes 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 

MIX-30-07 0.3982 0.5741 0.7368 0.8137 0.9239 0.9733 1.0000 - 0.4834 0.6563 0.7103 0.8416 0.9537 1.0000 

MIX-34-BRT 0.4267 0.6026 0.7590 - 0.9317 0.9762 1.0000 0.5705 0.7436 0.7993 0.8504 0.9188 0.9424 1.0000 

MIX-32-03 0.4822 0.6548 0.7976 0.8601 0.9447 0.9808 1.0000 - 0.7501 0.7950 0.8163 0.8917 0.9425 1.0000 

MIX-32-CEN - 0.6366 0.7844 0.8502 0.9404 0.9793 1.0000 0.5832 0.7626 0.8525 0.8793 0.9312 - 1.0000 

MIX-32-CEN-OK - 0.6991 0.8283 0.8827 0.9544 0.9843 1.0000 0.5953 0.4493 - 0.6281 0.7837 0.9114 1.0000 

B70-380 - 0.2905 0.4595 0.5702 0.7865 0.9170 1.0000 - 0.7996 - 0.8495 0.9196 0.9435 1.0000 

B70-420 - 0.2133 0.3603 0.4677 0.7093 0.8798 1.0000 0.4580 0.7302 0.8070 0.8447 0.9116 0.9578 1.0000 

B47-440 - 0.4017 0.5823 0.6850 0.8580 0.9477 1.0000 0.4709 0.6783 0.7935 0.8298 0.8998 0.9403 1.0000 

B67-440 - 0.3754 0.5552 0.6607 0.8440 0.9419 1.0000 - 0.7190 0.8009 0.8388 0.9047 0.9587 1.0000 

B67-440-001 - 0.3842 0.5644 0.6690 0.8488 0.9440 1.0000 0.4402 0.6227 0.6713 0.7149 0.8168 0.9496 1.0000 

C45-B25-425 - 0.6882 0.8209 0.8773 0.9521 0.9835 1.0000 0.6190 - 0.7939 0.8353 0.9074 0.9587 1.0000 

B67-440-BEY - 0.4146 0.5953 0.6965 0.8644 0.9503 1.0000 - 0.6944 0.7531 0.7727 0.8844 0.9537 1.0000 

C45-B26-475 0.5192 0.6875 - 0.8770 0.9519 0.9834 1.0000 - 0.6041 0.7137 0.7502 0.8581 0.9440 1.0000 

C45-B25-400 - 0.7099 0.8356 0.8880 0.9566 - 1.0000 0.3604 0.7094 0.7889 0.8483 0.9310 0.9816 1.0000 

C50-B22-460 0.7414 0.8538 0.9238 0.9498 0.9813 0.9937 1.0000 - 0.5691 0.7068 0.7545 0.8828 0.9381 1.0000 

YM-SEG-11 - 0.6738 0.8109 0.8700 0.9489 0.9824 1.0000 - 0.7852 - 0.8166 0.8904 0.9576 1.0000 
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5.3.2 Fraction Power Regression (Model-2) 

The power regression model (the Model-2) is the other univariate regression analysis 

model depending on compressive strength of concrete like the Model-1. In this model, 

for 0.5-day, 1-day, 2-day, 3-day, 7-day, 14-day, and 28-day modulus of elasticity 

presuming was studied. At the end, R2 (btw 0.3942 & 0.9955), and R2
adj results are 

high, and seen for some specimens, the results are under the expectations. Why SSE 

and RMSE results are very high is because of the elastic modulus test results used in 

the regression model in four, and five digits. This indicates that presuming of the 

modulus of elasticity has less errors from the actual data sets on the fitting planar. By 

this way, the modulus of elasticity development is shown in the Table 5.32.  

In the Figure 5.43, the correlations of the actual data sets and predicted data sets are 

showed off. The correlation shows that the results of the model are satisfying, and safe 

for data presuming without negative deflections in data fitting planar, though FA + MS 

contented sample results are respectively lower in contrast with the first model. 

 

 

 

 

 

 

 

 

 

 

Figure 5.43: The correlations of the modulus of elasticity of the Model-2. 

In the Figure 5.44, for the samples made of FA + MS material, the Model-2 is showed 

up that [(W/C) - (W/B)] of the maximum R² result is equal to [(W/C) - (W/B)] of the 

minimum R² result. While [(CA/A) - (FA/A)] result gets higher, the R² result also 

decreases which means that the CA/A ratio is operative on the data prediction than the 

FA/A ratio. 
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Figure 5.44: The correlations of the mixing ratios of the Model-2 in FA + MS. 

In the Figure 5.45, the amounts of water and cement for the minimum R² result are 

greater than the maximum R² water and cement contents. When the amount of cement 

is in increasing, the prediction is in decreasing. And it is impression for using 

admixture in this model. On the side, the cement types are CEMI 42.5N for both the 

lowest and highest R2 results which means that the cement type could not be 

interpreted for the elastic modulus development in this model. Moreover, [(NS) - (CS)] 

of the maximum R² result is greater than [(NS) - (CS)] of the minimum R² result. In 

an opposite case, [(NO:1 Agg.) - (NO:2 Agg.)] of the maximum R² result is less than 

[(NO:1 Agg.) - (NO:2 Agg.)] of the minimum R² result. The minimum NS is 304.00 

kg/m3, and the maximum CS material is 542.00 kg/m3 for the minimum R² result. The 

minimum water content is 102.00 kg/m3, the minimum FA substance is 50.00 kg/m3, 

and the minimum MS ingredient is 30.00 kg/m3 for the maximum R² result in this 

model results. 

In the Figure 5.46, for the samples made of GGBS material, the Model-2 describes that 

[(W/C) – (W/B)] of the minimum R² result is less than [(W/C) – (W/B)] of the 

maximum R² result. And there are no effects of GGBS use on the modulus of elasticity 

estimation, even though GGBS is a combining material. While [(CA/A) - (FA/A)] 
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result gets higher, the R² result also increases which means that the CA/A ratio is more 

incursive on the data prediction because of the FA/A ratio. 

 

 

 

 

 

 

 

 

 

 

Figure 5.45: The correlations of the mixing amounts of the Model-2 in FA + MS. 

For the minimum R² result, the maximum FA/A ratio is 0.54, and the minimum CA/A 

ratio is 0.46. For the maximum R² result FA/A ratio is 0.20, and the minimum CA/A 

ratio is 0.80. 

 

 

 

 

 

 

 

 

 

 

Figure 5.46: The correlations of the mixing ratios of the Model-2 in GGBS. 
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In the Figure 5.47, for the samples compound of GGBS content that [(NS) - (CS)] of 

the maximum R² result is greater than [(NS) - (CS)] of the minimum R² result. This 

describes that the amounts of natural sand impose the elastic modulus prediction. For 

some specimens, NO:0 Agg., NO:1 Agg., and NO:2 Agg. amounts dramatically 

increase the R² result. Meanwhile, the amount of water in increasing causes worse 

results. Also, there are some specimens composed of the GGBS substance for 

decreasing the elastic modulus estimation results of the concrete. For the highest R² 

result, CEMI 52.5N type cement, and for the lowest R² result, CEMIII 32.5 type 

cement are decisive. Onto these results, the maximum R² result has the minimum 

cement (114.00 kg/m3), minimum CS (0.00 kg/m3), minimum NS (395.00 kg/m3), 

maximum NO:0 Agg. (486.00 kg/m3) contents with GGBS (266.00 kg/m3) substance. 

There are no other well-presented results for the model calculation for any other 

comparative issues. As the other results are inappropriate for any comparison. In the 

Model-2, for both materials, the results are followed in the boxplot which is in the 

Figure 5.48.  

 

 

 

 

 

 

 

 

 

 

Figure 5.47: The correlations of the mixing amounts of the Model-2 in GGBS. 

In the Figure 5.48, it is certain that FA + MS content influences the higher modulus of 

elasticity prediction results than GGBS content does. Except, day-0.5, day-1, and day-

28, for all ages, the elastic modulus of the specimens composed of FA + MS content 

are close and/or above the median values. Except day-0.5, day-2, and day-3, for all 
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ages, the specimen elastic modulus composed of GGBS content are close and/or above 

the median values. It is understood that the elastic modulus presuming for the 

specimens including FA + MS are less suitable. That is why, the whiskers of the 

specimens including GGBS content are more ascendent than the specimens including 

FA + MS content as shown in the Table 5.29 and the Table 5.30. 

 

 

 

 

 

 

 

 

 

 

Figure 5.48: The age and the modulus of elasticity relationship for the Model-2. 

Table 5.29: The CS dependent ME results in FA + MS content for the Model-2. 

Table 5.30: The CS dependent ME results in GGBS content for the Model-2. 

Model-1 [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 13636 10173 24061 24061 33232 36596 38253 

1st-Quartile-Value 18327 26397 29650 31273 36069 38023 40277 

Median Value 22572 29602 32517 33885 37930 40152 43065 

3rd-Quartile-Value 26077 32260 35212 36655 40283 42666 44868 

Maximum Value 32606 37206 39642 40286 41902 45737 50566 

Mean Value 22483 27624 32260 33872 38033 40322 43017 

Range 18970 27033 15581 16225 8670 9141 12313 

Model-1 [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 2552 9417 14238 18845 25352 28533 30260 

1st-Quartile-Value 8591 13961 23215 25823 31344 36977 38887 

Median Value 12979 18949 27140 29217 33860 37660 40541 

3rd-Quartile-Value 15776 25349 28550 30245 35807 40138 42497 

Maximum Value 17425 30749 33492 35191 41802 47016 48996 

Mean Value 11951 19879 25904 28302 33964 38272 40485 

Range 14873 21333 19254 16346 16450 18483 18736 
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Table 5.31: The results of the regression Model-2. 

 

 Model-2     

Mixing Codes Fraction Power Regression R2 R2
adj SSE RMSE 

C45-III-B20 E'c = 1175000 f'c
 0.01118

 - 1186000 0.9466 0.9111 26287816 2960.170 

YM-SEG-03 E'c = 80820 f'c
 0.1236

 - 92070 0.8985 0.8478 29679019 2723.923 

YM-SEG-03-FSTC E'c = 64.52 f'c
 1.343

 + 25300 0.9539 0.9232 4200531 1183.291 

MIX-15A-04 E'c = 582500 f'c
 0.02061

 - 590000 0.9472 0.9119 12110048 2009.150 

YM-SEG-05 E'c = 421300 f'c
 0.08114

 - 546500 0.6420 0.2840 198568796 9964.156 

YM-SEG-08 E'c = 84450 f'c
 0.1246

 - 100500 0.8991 0.7981 4915156 1567.666 

MIX-15E-03 E'c = 476400 f'c
 0.02022

 - 478200 0.9417 0.8834 21038506 2648.176 

MIX-15-AC-04 E'c = 304500 f'c
 0.04114

 - 317700 0.9660 0.9490 14860082 1927.439 

YM-SEG-10 E'c = 229 f'c
 1.016

 + 24300 0.9517 0.9195 4611561 1239.833 

DURABET PLUS AIR-AC-03 E'c = 39100 f'c
 0.1694

 - 37710 0.9902 0.9854 4000113 1000.014 

YM-SEG-10A E'c = 5441 f'c
 0.4357

 + 8117 0.9684 0.9473 5367424 1337.588 

YM-SEG-10E E'c = 174500 f'c
 0.06871

 - 190800 0.8211 0.7018 24820154 2876.349 

YM-DAP-AC-03 E'c = 5049 f'c
 0.4478

 + 8103 0.9722 0.9537 4946689 1284.094 

MIX-15-AC-03 E'c = 13650 f'c
 0.304

 - 7169 0.9882 0.9823 5399619 1161.854 

MIX-30 E'c = 1108000 f'c
 0.008112

 - 1105000 0.8704 0.7840 26855239 2991.947 

MIX-30-03 E'c = 163300 f'c
 0.06934

 - 175300 0.8900 0.7800 5533560 1663.364 

MIX-30-BRT E'c = 415500 f'c
 0.02326

 - 416100 0.9941 0.9911 3922215 990.229 
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Table 5.31 (continued): The results of the regression Model-2. 

 

 Model-2     

Mixing Codes Fraction Power Regression R2 R2
adj SSE RMSE 

MIX-30-07 E'c = 20430 f'c
 0.2365

 - 13020 0.9951 0.9926 2196318 740.999 

MIX-34-BRT E'c = 28100 f'c
 0.2063

 - 23380 0.9945 0.9908 2808252 967.514 

MIX-32-03 E'c = 34620 f'c
 0.1721

 - 29700 0.9832 0.9748 6957106 1318.816 

MIX-32-CEN E'c = 988900 f'c
 0.01139

 - 1000000 0.3942 -0.0097 53135832 4208.556 

MIX32-CEN-OK E'c = 290600 f'c
 0.02656

 - 290200 0.8324 0.7206 13528744 2123.577 

B70-380 E'c = 239100 f'c
 0.04288

 - 243300 0.9955 0.9924 2818646 969.303 

B70-420 E'c = 11130 f'c
 0.3835

 - 8578 0.9762 0.9603 19845420 2571.991 

B47-440 E'c = 537500 f'c
 0.02155

 - 545100 0.9727 0.9545 14956485 2232.822 

B67-440 E'c = 975100 f'c
 0.012

 - 981800 0.9824 0.9706 10804253 1897.740 

B67-440-001 E'c = 594200 f'c
 0.01974

 - 602800 0.9627 0.9378 16119846 2318.034 

C45-B25-425 E'c = 208.2 f'c
 1.047

 + 23770 0.9597 0.9328 4003876 1155.260 

B67-440-BEY E'c = 1142000 f'c
 0.0117

 - 1156000 0.9034 0.8389 45570109 3897.440 

C45-B26-475 E'c = 253800 f'c
 0.1192

 - 376700 0.6067 0.3446 146223833 6981.495 

C45-B25-400 E'c = 307700 f'c
 0.04779

 - 337000 0.9119 0.8238 6757250 1838.104 

C50-B22-460 E'c = 3656 f'c
 0.514

 + 10040 0.9685 0.9528 3338754 913.613 

YM-SEG-11 E'c = 291.7 f'c
 1.035

 + 21250 0.9654 0.9424 4000384 1154.756 
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Table 5.32: The elastic modulus developments of samples for the Model-2. 

 

 

 

 

 

Model-2 Elastic Modulus Development of Actual Data [Day/Day] Elastic Modulus Development of Predicted Data [Day/Day]  

Mixing Codes 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 

C45-III-B20 - 0.4772 0.6547 0.7473 0.8915 0.9610 1.0000 - 0.3868 0.6429 0.7096 0.8532 0.9596 1.0000 

YM-SEG-03 0.6014 0.7545 0.8645 0.9087 0.9651 0.9881 1.0000 0.5557 0.7568 0.8142 0.8645 0.9284 0.9497 1.0000 

YM-SEG-03-FSTC - 0.7616 0.8690 0.9119 0.9664 0.9885 1.0000 - 0.7531 0.7874 0.8051 0.8756 0.9304 1.0000 

MIX-15A-04 0.6073 0.7591 0.8674 0.9108 0.9659 - 1.0000 0.5057 0.7493 0.8518 0.8805 0.9336 - 1.0000 

YM-SEG-05 0.4102 0.5863 - 0.8211 0.9273 0.9745 1.0000 - - - - - - - 

YM-SEG-08 - 0.8106 - 0.9327 0.9747 0.9914 1.0000 - 0.7510 - 0.8164 0.9043 0.9333 1.0000 

MIX-15E-03 0.5344 0.7004 0.8292 0.8834 0.9546 0.9844 1.0000 0.4030 0.7563 0.8334 0.8686 0.9278 0.9663 1.0000 

MIX-15-AC-04 0.5101 0.6796 0.8150 0.8730 0.9502 0.9828 1.0000 0.4233 0.6975 0.8183 0.8531 0.9165 0.9513 1.0000 

YM-SEG-10 - 0.7216 0.8434 0.8936 0.9589 0.9859 1.0000 - 0.7249 0.7842 0.8170 0.8828 0.9458 1.0000 

DURABET PLUS AIR-AC-03 0.4424 0.6177 0.7704 0.8396 0.9357 0.9776 1.0000 0.4190 0.6392 0.6916 0.7367 0.8367 0.9568 1.0000 

YM-SEG-10A 0.6187 - 0.8729 0.9146 0.9675 0.9889 1.0000 0.6210 - 0.7878 0.8291 0.9026 0.9562 1.0000 

YM-SEG-10E - 0.6644 0.8043 0.8651 0.9469 0.9816 1.0000 - 0.6409 0.7187 0.7437 0.8765 0.9520 1.0000 

YM-DAP-AC-03 - 0.5952 0.7533 0.8265 0.9297 0.9754 1.0000 - 0.6072 0.7089 0.7441 0.8515 0.9404 1.0000 

MIX-15-AC-03 0.4492 0.6243 0.7753 0.8433 0.9373 0.9782 1.0000 0.3521 0.7231 0.8010 0.8581 0.9361 0.9830 1.0000 

MIX-30 - 0.5633 0.7282 0.8069 0.9207 0.9721 1.0000 - 0.4843 0.6816 0.7412 0.8852 0.9411 1.0000 

MIX-30-03 - 0.7763 - 0.9183 0.9690 0.9894 1.0000 - 0.7342 - 0.7763 0.8707 0.9514 1.0000 

MIX-30-BRT 0.3832 0.5586 0.7244 0.8039 0.9193 0.9716 1.0000 0.2746 0.6437 0.7498 0.8017 0.8953 0.9635 1.0000 
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Table 5.32 (continued): The elastic modulus developments of samples for the Model-2. 

 

 

 

 

Model-2 Elastic Modulus Development of Actual Data [Day/Day] Elastic Modulus Development of Predicted Data [Day/Day] 

Mixing Codes 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 

MIX-30-07 0.3982 0.5741 0.7368 0.8137 0.9239 0.9733 1.0000 0.3487 0.6240 0.7240 0.7731 0.8677 0.9571 1.0000 

MIX-34-BRT 0.4267 0.6026 0.7590 - 0.9317 0.9762 1.0000 0.3356 0.6682 0.7574 - 0.8569 0.9414 1.0000 

MIX-32-03 0.4822 0.6548 0.7976 0.8601 0.9447 0.9808 1.0000 0.4110 0.7252 0.7899 0.8300 0.8863 0.9467 1.0000 

MIX-32-CEN - 0.6366 0.7844 0.8502 0.9404 0.9793 1.0000 - 0.4614 0.6304 0.6817 0.8378 0.9429 1.0000 

MIX-32-CEN-OK - 0.6991 0.8283 0.8827 0.9544 0.9843 1.0000 - 0.6614 0.8033 0.8373 0.8973 0.9562 1.0000 

B70-380 - 0.2905 0.4595 0.5702 0.7865 0.9170 1.0000 - 0.2646 0.4758 0.5747 0.7902 0.9241 1.0000 

B70-420 - 0.2133 0.3603 0.4677 0.7093 0.8798 1.0000 - 0.2323 0.3512 0.4648 0.7097 0.9289 1.0000 

B47-440 - 0.4017 0.5823 0.6850 0.8580 0.9477 1.0000 - 0.3662 0.5830 0.6754 0.8413 0.9530 1.0000 

B67-440 - 0.3754 0.5552 0.6607 0.8440 0.9419 1.0000 - 0.3007 0.5418 0.6481 0.8003 0.9479 1.0000 

B67-440-001 - 0.3842 0.5644 0.6690 0.8488 0.9440 1.0000 - 0.3836 0.4997 0.6235 0.7753 0.9308 1.0000 

C45-B25-425 - 0.6882 0.8209 0.8773 0.9521 0.9835 1.0000 - 0.7012 0.7797 0.8600 0.9245 0.9622 1.0000 

B67-440-BEY - 0.4146 0.5953 0.6965 0.8644 0.9503 1.0000 - 0.3116 0.5463 0.6124 0.8166 0.9258 1.0000 

C45-B26-475 0.5192 0.6875 - 0.8770 0.9519 0.9834 1.0000 0.3163 0.5601 - 0.5895 0.8090 0.8787 1.0000 

C45-B25-400 - 0.7099 0.8356 0.8880 0.9566 - 1.0000 - 0.6618 0.7295 0.8017 0.8828 - 1.0000 

C50-B22-460 0.7414 0.8538 0.9238 0.9498 0.9813 0.9937 1.0000 0.9567 0.7525 0.8587 0.9149 0.9298 0.9671 1.0000 

YM-SEG-11 - 0.6738 0.8109 0.8700 0.9489 0.9824 1.0000 - 0.6887 0.7653 0.7997 0.8820 0.9605 1.0000 
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5.4 Multivariate Regression Analysis for Compressive Strength 

In this section of the thesis, the Table 5.33, the Table 5.34, the Table 5.35, the Table 

5.39, the Table 5.40, and the Table 5.41 publish the regression models with their 

statistical results. 

5.4.1 Linear Regression (Model-1) 

The linear regression model (the Model-1) is one of the multivariate regression 

analysis models depending on many variables such as W/C ratio, fly ash, coarse 

aggregate, and cement contents of concrete mixture design. In this model, for 0.5-day, 

1-day, 2-day, 3-day, 7-day, 14-day, and 28-day compressive strength predictions were 

showed off. At the end, for the FA + MS content included samples, R2 (btw 0.4471 & 

0.9145), and R2
adj results are scattered in the concrete ages; SSE, and RMSE results 

are also diverted at each concrete ages. For the GGBS included samples, R2 (btw 

0.1498 & 0.5590), and R2
adj results are come out in the concrete ages; SSE, and RMSE 

results are varied in a large numeric scale for each concrete age. On the side, all data 

predictions are applied on these solutions, and the results are come out well in the 

results of R2 except the samples in MIX-30 (R2 = 0.1888), and MIX-CEN-32 (R2 = 

0.1693) mixing codes, which are under the expectations with respect to the other 

sample results. In this way of the results, the strength development of the compressive 

strength is settled in the Table 5.38.  

In the Figure 5.49, the correlations of the actual data sets and the estimated data sets 

are trendlined. The correlations easily demonstrate that the results of the model are 

satisfying, and the model steps forward safe to predict the compressive strength of the 

concrete because of no negative deflection effects in the data fittings. 

In the Figure 5.50, there is another correlation for material effect in the compressive 

strength prediction in terms of FA + MS material by using the coefficients of the model 

equation. In this way, it is seen that the more R2 result is decreased, the more equation 

coefficient that intersects the y axis (the predicted data axis) is decreased for all ages, 

except the day-1, and day-2. For the day-1, day-2, day-14, and day-28, the W/C ratio 

coefficient operates the model opposite to the R2 value which means that higher effects 

of the W/C ratio decrease the data prediction potential. For the FA, CA, and C content, 

the results of the models seem parallel to the each. And the effects of these contents 
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are antipoles of R2 values at days 0.5, 14, and 28 which means that for day-0.5, day-

14, and day-28, the compressive strength estimation get worse results. 

 

 

 

 

 

 

 

 

 

 

Figure 5.49: The correlations of the compressive strength of the Model-1. 

Table 5.33: The MRA results for CS in FA + MS content for the Model-1. 

Table 5.34: The MRA results for CS in GGBS content for the Model-1. 

 

 

 

Age Linear Regression R2 R2
adj SSE RMSE 

0.5-Day f'c = 520.6498 - 85.0946(w/c) - 0.2586FA - 0.2532CA - 0.0039C 0.9145 0.8461 69.6246 3.7316 

1-Day f'c = 135.4715 - 186.8535(w/c) - 0.0287FA - 0.0895CA + 0.2388C 0.7629 0.6274 217.9290 6.6020 

2-Day f'c = 199.8592 - 181.0989(w/c) - 0.0496FA - 0.1145CA + 0.1992C 0.6997 0.5496 261.7889 7.2359 

3-Day f'c = 229.4816 - 105.5039(w/c) - 0.0757FA - 0.1336CA + 0.1573C 0.6656 0.4985 234.5830 6.8496 

7-Day f'c =  149.4673 - 98.8345(w/c) - 0.0409FA - 0.0883CA + 0.1982C 0.7590 0.6385 142.0112 5.3294 

14-Day f'c = 113.7616 - 94.5868(w/c) - 0.0237FA - 0.0593CA + 0.1896C 0.6820 0.5003 156.1472 5.5883 

28-Day f'c = -10.4308 - 33.4529(w/c) - 0.0328FA - 0.0118CA + 0.2372C 0.4471 0.1707 439.6684 9.3773 

Age Linear Regression R2 R2
adj SSE RMSE 

0.5-Day f'c = 4.7885 - 2.5613(w/c) - 0.0041FA - 0.0002CA + 0.0089C 0.4399 0.2363 30.8652 2.4846 

1-Day f'c = 57.2416 - 5.4939(w/c) - 0.0341FA - 0.0338CA + 0.0436C 0.5225 0.3489 287.9023 7.5882 

2-Day f'c = 41.0881 - 19.1937(w/c) - 0.0052FA - 0.0051CA - 0.0053C 0.5590 0.3986 381.8806 8.7393 

3-Day f'c = 47.6756 - 42.7535(w/c) + 0.0081FA + 0.0119CA - 0.0618C 0.4527 0.2338 496.0881 9.9608 

7-Day f'c = 29.2402 - 76.7295(w/c) + 0.0478FA + 0.0553CA - 0.1475C 0.3042 0.0512 742.5425 12.1864 

14-Day f'c = 31.2864 - 101.9699(w/c) + 0.0671FA + 0.0855CA - 0.2145C 0.1498 -0.1593 1574.8985 17.7477 

28-Day f'c = 46.8856 - 129.5414(w/c) + 0.0859FA + 0.1031CA - 0.2918C 0.1679 -0.1347 1994.5251 19.9726 
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Figure 5.50: The relations of the compressive strength of the Model-1 in FA + MS. 

In the Figure 5.51, there is the correlation for material effect in the compressive 

strength prediction for the existence of GGBS substance by using the coefficients of 

the model equation. In this way, it is drawn that the equation coefficient does not 

behave how the R2 value behaves. Between the day-1, and day-3; day-7, and day-14, 

the health of the compressive strength estimation is not good. Moreover, except the 

day-2, and day-28, the W/C impacts are parallel to the prediction results that the W/C 

ratio works well for less amount of cement content. For the FA, and CA contents, 

except day-2, and day-28, the data forecasting is resulted in decreasing. But for the 

day-28, the result could be ignored because of the very high expectations. In the binder 

content, the cement material affects the results. The more it is used, the more the results 

get better. In the Table 5.35, for both substances, the R2 values are shared with the 

mixing codes together.  

In addition, in the Figure 5.52, it is absolute that FA + MS content influences the higher 

compressive strength prediction results than GGBS content does. For all ages, the 

compressive strength specimens made of FA + MS content are close and/or above the 

median values. Only for day-7, day-14, and day-28, the compressive strength of the 

specimens composed of GGBS content are close and/or above the median values. It is 

appeared that the compressive strength estimation for the specimens including FA + 

MS are proper. However, the whiskers of the specimens including FA + MS content 
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are not eligible than the specimens including GGBS content. In the Table 5.36 and the 

Table 5.37, the numerical results of the boxplots are also shared. 

 

 

 

 

 

 

 

 

 

 

Figure 5.51: The relations of the compressive strength of the Model-1 in GGBS. 

Table 5.35: The MRA results of CS in FA + MS & GGBS contents in the Model-1. 

 

 

 

Mixing Codes (FA + MS) R2 Mixing Codes (GGBS) R2 

YM-SEG-03 0.9720 C45-III-B20 0.8769 

MIX-15A-04 0.8985 YM-DAP-AC-03 0.9966 

YM-SEG-05 0.9818 MIX-30 0.1888 

YM-SEG-08 0.9922 MIX-30-03 0.6919 

MIX-15E-03 0.8180 MIX-30-BRT 0.8903 

MIX-15AC-04 0.9883 MIX-30-07 0.9234 

YM-SEG-10 0.9714 MIX-34-BRT 0.9588 

YM-SEG-10A 0.9929 MIX-32-03 0.7547 

YM-SEG-10E 0.8886 MIX-32-CEN 0.1693 

MIX-15-AC-03 0.9524 MIX-32-CEN-OK 0.9618 

C45-B25-425 0.9337 B70-380 0.8276 

C45-B25-400 0.9106 B70-420 0.9859 

C50-B22-460 0.8790 B47-440 0.9418 

- - B67-440 0.9690 

- - B67-440-001 0.9860 

- - B67-440-BEY 0.9850 
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Figure 5.52: The age and the compressive strength relationship for the Model-1. 

Table 5.36: The CS results from the MRA in FA + MS content for the Model-1. 

Table 5.37: The CS results from the MRA in GGBS content for the Model-1. 

 

Model-1 [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 1.82 17.11 27.65 35.68 44.77 51.54 61.79 

1st-Quartile-Value 7.90 21.41 31.08 36.75 48.20 56.41 64.11 

Median Value 10.91 27.39 33.08 40.71 49.22 57.98 64.69 

3rd-Quartile-Value 13.75 34.91 42.45 45.86 57.42 64.39 73.93 

Maximum Value 35.05 43.27 52.46 56.18 64.43 69.48 77.21 

Mean Value 12.90 28.00 36.77 41.88 51.96 59.38 67.54 

Range 33.23 26.17 24.81 20.50 19.66 17.95 15.42 

Model-1 [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 1.82 17.11 27.65 35.68 44.77 51.54 61.79 

1st-Quartile-Value 7.90 21.41 31.08 36.75 48.20 56.41 64.11 

Median Value 10.91 27.39 33.08 40.71 49.22 57.98 64.69 

3rd-Quartile-Value 13.75 34.91 42.45 45.86 57.42 64.39 73.93 

Maximum Value 35.05 43.27 52.46 56.18 64.43 69.48 77.21 

Mean Value 12.90 28.00 36.77 41.88 51.96 59.38 67.54 

Range 33.23 26.17 24.81 20.50 19.66 17.95 15.42 
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Table 5.38: The compressive strength developments of samples for the Model-1. 

 
 

 

 

 

 

 

 

 

Model-1 Strength Development of Actual Data [Day/Day] Strength Development of Predicted Data [Day/Day]  

Mixing Codes 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 

YM-SEG-03 0.2797 0.5105 0.6014 0.6923 0.8252 0.8741 1.0000 0.2453 0.4518 0.5498 0.6312 0.7764 0.8560 1.0000 

MIX-15A-04 0.1797 0.4219 0.6016 0.6641 0.7969 - 1.0000 0.1370 0.3465 0.5029 0.5810 0.7416 - 1.0000 

YM-SEG-05 0.1293 0.4218 0.5714 0.5714 0.7687 0.9048 1.0000 0.1805 0.4742 0.5750 0.6196 0.7758 0.8703 1.0000 

YM-SEG-08 0.2053 0.4570 0.5298 0.6291 0.7881 0.8477 1.0000 0.1855 0.4730 0.5746 0.6209 0.7764 0.8705 1.0000 

MIX-15E-03 0.1017 0.3983 0.5339 0.6102 0.7627 0.8814 1.0000 0.1136 0.4387 0.5893 0.6460 0.7708 0.8608 1.0000 

MIX-15AC-04 0.1655 0.3957 0.5755 0.6403 0.7770 0.8633 1.0000 0.1136 0.4387 0.5893 0.6460 0.7708 0.8608 1.0000 

YM-SEG-10 - 0.3381 0.4820 0.5612 0.7194 0.8705 1.0000 - 0.3840 0.5096 0.5818 0.7622 0.8913 1.0000 

YM-SEG-10A 0.2331 - 0.4962 0.5789 0.7444 0.8797 1.0000 0.2126 - 0.5016 0.5681 0.7528 0.8838 1.0000 

YM-SEG-10E - 0.3884 0.4793 0.5124 0.7273 0.8843 1.0000 - 0.3879 0.5138 0.5853 0.7644 0.8926 1.0000 

MIX-15-AC-03 0.0741 0.4167 0.5463 0.6574 0.8333 0.9537 1.0000 0.1370 0.3465 0.5029 0.5810 0.7416 0.8668 1.0000 

C45-B25-425 - 0.2261 0.4348 0.6435 0.8087 0.9043 1.0000 - 0.2997 0.4822 0.6572 0.7781 0.8738 1.0000 

C45-B25-400 0.0132 0.3158 0.4539 0.5329 0.6316 0.7632 1.0000 0.0284 0.2668 0.4313 0.5566 0.6984 0.8039 1.0000 

C50-B22-460 0.4259 0.6111 0.7222 0.7531 0.8333 0.9074 1.0000 0.4741 0.5853 0.7096 0.7599 0.8715 0.9398 1.0000 
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Table 5.38 (continued): The compressive strength developments of samples for the Model-1. 

Model-1 Strength Development of Actual Data [Day/Day] Strength Development of Predicted Data [Day/Day] 

Mixing Codes 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 

C45-III-B20 0.0233 0.1105 0.2791 0.3547 0.5930 0.8663 1.0000 0.0514 0.1750 0.3320 0.4076 0.6308 0.8461 1.0000 

YM-DAP-AC-03 0.0504 0.2185 0.3613 0.4202 0.6303 0.8403 1.0000 0.0607 0.2520 0.3890 0.4520 0.6442 0.8500 1.0000 

MIX-30 0.0323 0.1183 0.2688 0.3441 0.6237 0.7849 1.0000 0.0508 0.1927 0.3375 0.4169 0.6271 0.8398 1.0000 

MIX-30-03 0.1500 0.3900 0.4900 0.5500 0.7100 0.8800 1.0000 0.0570 0.2146 0.3592 0.4321 0.6368 0.8472 1.0000 

MIX-30-BRT 0.0500 0.2357 0.3643 0.4500 0.6571 0.8643 1.0000 0.0612 0.2599 0.3951 0.4570 0.6459 0.8496 1.0000 

MIX-30-07 0.0594 0.2475 0.3762 0.4554 0.6436 0.8713 1.0000 0.0611 0.2611 0.4016 0.4609 0.6516 0.8502 1.0000 

MIX-34-BRT 0.0678 0.3136 0.4407 - 0.6271 0.8305 1.0000 0.0672 0.3040 0.4289 - 0.6534 0.8553 1.0000 

MIX-32-03 0.0845 0.3592 0.4648 0.5423 0.6690 0.8310 1.0000 0.0621 0.2537 0.3939 0.4556 0.6485 0.8521 1.0000 

MIX-32-CEN 0.0548 0.2466 0.3836 0.4384 0.6575 0.8630 1.0000 0.0643 0.3067 0.4393 0.4870 0.6622 0.8512 1.0000 

MIX-32-CEN-OK 0.0417 0.2583 0.4583 0.5250 0.6667 0.8417 1.0000 0.0610 0.2776 0.4163 0.4714 0.6565 0.8485 1.0000 

B70-380 0.0300 0.0800 0.1700 0.2400 0.5000 0.7800 1.0000 0.0191 0.0500 0.1516 0.2387 0.5002 0.8283 1.0000 

B70-420 0.0208 0.0729 0.1354 0.2188 0.4896 0.8542 1.0000 0.0240 0.1212 0.1917 0.2574 0.4936 0.8334 1.0000 

B47-440 0.0207 0.1034 0.2276 0.3172 0.5724 0.8483 1.0000 0.0253 0.1016 0.2006 0.2895 0.5257 0.8236 1.0000 

B67-440 0.0138 0.0759 0.1862 0.2759 0.4828 0.8276 1.0000 0.0253 0.1016 0.2006 0.2895 0.5257 0.8236 1.0000 

B67-440-001 0.0090 0.1351 0.1982 0.2973 0.4865 0.8018 1.0000 0.0103 0.1108 0.2169 0.2939 0.5315 0.8057 1.0000 

B67-440-BEY 0.0161 0.1210 0.2500 0.3065 0.5726 0.7984 1.0000 0.0028 0.1036 0.2191 0.2951 0.5369 0.7960 1.0000 
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5.4.2 Power Regression (Model-2) 

The power regression model (the Model-2) is one of the multivariate regression 

analysis models depending on various variables such as amount of cement and water, 

and air content of concrete mixture design. In this model, for 0.5-day, 1-day, 2-day, 3-

day, 7-day, 14-day, and 28-day compressive strength predictions were showed off. 

For the FA + MS content included samples, R2 (btw 0.0035 & 0.0342), and R2
adj results 

are plotted onto the concrete age; SSE, and RMSE results also diverse in each concrete 

age. Like these sample results, for the GGBS included samples, R2 (btw 0.0557 & 

0.3509), and R2
adj results are come out at the concrete age, as well; SSE, and RMSE 

results are varied in a numeric scale for each concrete age, too. All the data estimations 

are applied on these solutions, and the results are shared with high R2 results except 

the samples in C50-B22-460 (R2 = -0.4505), and MIX-32-CEN (-0.0021) mixing 

codes which are resulted negative. In this way of the results, even though the strength 

development of the compressive strength is listed in the Table 5.44 in a courteous 

manner, the way that model working brings the question marks to the mind for the use 

of the model due to the very low results of the concrete age dependent analysis.  

In the Figure 5.53, the correlations of the actual data sets, and the predicted data sets 

are trendlined. The correlation shows that the model results are satisfying, and there 

are no negative deflections in the data fitting planar which means the model is safe to 

be used. 

In the Table 5.39 and the Table 5.40, with the statistical results for each concrete age 

regression analysis, the general forms of the multivariate linear regression analysis 

equations are enlisted for both FA + MS and GGBS materials. 

In the Figure 5.54, there is another correlation for material effects in the compressive 

strength prediction for FA + MS material by using the coefficients of the model 

equation. In this way, it is presented that there is no direct correlation between the 

coefficient K, and n with the R2 value (K and n are from the Table 2.6). Because the 

empirical coefficient K seems opposite to the R2 result in the days between 0.5, and 1; 

and 3, and 14. Hereupon, the other empirical coefficient n has no effect on the data 

prediction. That is why another correlation is set in the Figure 5.55 to search for the 

material effects on the compressive strength estimation. 
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Figure 5.53: The correlations of the compressive strength of the Model-2. 

Table 5.39: The MRA results for CS in FA + MS content for the Model-2. 

Table 5.40: The MRA results for CS in GGBS content for the Model-2. 

 

 

Age Power Regression R2 R2
adj SSE RMSE 

0.5-Day f'c = 18.913[c/(c + w + a)]
0.7198

 0.0047 -0.3934 652.1313 18.0573 

1-Day f'c = 32.2963[c/(c + w + a)]
0.3307

 0.0035 -0.3287 837.1370 20.4589 

2-Day f'c = 49.9449[c/(c + w + a)]
0.6945

 0.0326 -0.2438 765.4425 19.5633 

3-Day f'c = 52.797[c/(c + w + a)]
0.5201

 0.0342 -0.2418 526.5933 16.2264 

7-Day f'c = 60.6492[c/(c + w + a)]
0.3521

 0.0287 -0.2488 438.4391 14.8061 

14-Day f'c =  63.2347[c/(c + w + a)]
0.1424

 0.0054 -0.3261 430.1576 14.6656 

28-Day f'c =  71.9393[c/(c + w + a)]
0.1856

 0.0095 -0.2734 596.1556 17.2649 

Age Power Regression R2 R2
adj SSE RMSE 

0.5-Day f'c = 7.8972[c/(c + w + a)]
1.9658

 0.3196 0.2062 37.2390 0.3196 

1-Day f'c = 26.9362[c/(c + w + a)]
1.5153

 0.3509 0.2427 389.2221 0.3509 

2-Day f'c = 34.4782[c/(c + w + a)]
1.1004

 0.3434 0.2339 548.8259 0.3434 

3-Day f'c = 34.7089[c/(c + w + a)]
0.771

 0.2443 0.1069 635.6830 0.2443 

7-Day f'c = 39.404[c/(c + w + a)]
0.2278

 0.0557 -0.1017 764.8583 0.0557 

14-Day f'c = 42.4802[c/(c + w + a)]
-0.2041

 0.0602 -0.0965 1123.7703 0.0602 

28-Day f'c = 49.278[c/(c + w + a)]
-0.2577

 0.1015 -0.0483 1472.6305 0.1015 
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Figure 5.54: The correlations of the compressive strength of the Model-2. 

 

 

 

 

 

 

 

 

 

 

Figure 5.55: The correlations of the compressive strength of the Model-2. 

In the Figure 5.55, it is exactly seen that the lowest amount of air content (0.26 %) 

causes the lowest well-fitting predictions (R2 = 0.5227) on the real data set in C45-

B25-425 mixing code. However, for the highest amount of air content (3.80%) does 

not mean the highest well-fitting estimation on the actual data values. Moreover, the 

minimum amount of cement content (0.12%) means the maximum R2 (0.9927) result 
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for the sample in MIX-15AC-04 mixing code. Followingly, the minimum water 

content (0.04%) leads the highest well-fitting forecasting (R2 = 0.9927) for the sample 

in MIX-15AC-04 mixing code. Like the cement content, the highest amount of water 

does not mean the best goodness-of-fit. 

In the Figure 5.56, there is another correlation for the material effects in the 

compressive strength prediction for the GGBS content by using the coefficients of the 

model equation. In this way, it is accepted that there is no direct relation between the 

coefficient K and n with the R2 value (K and n are from the Table 2.6). Because the 

empirical coefficient K seems opposite to the R2 value at the ages between day-2, and 

day-7. Incidentally, the other empirical coefficient n seems opposite to the R2 value at 

the ages between day-0.5, and day-1; and day-7, and day-28 on the data prediction. 

That is why another correlation is set in the Figure 5.58 to search for the material 

effects on the compressive strength estimation. 

 

 

 

 

 

 

 

 

 

 

Figure 5.56: The correlations of the compressive strength of the Model-2. 

In the Figure 5.57, it is unveiled that the lowest amount of air content (1.06 %) causes 

the best goodness-of-fit (R2 = 0.9959) on the real data set in B67-440-BEY mixing 

code. Albeit, for the highest amount of air content (5.29%) does not mean the worst 

well-fitting presuming on the actual data values. Together with, the maximum amount 

of cement content (0.17%) means the minimum R2 (0.6367) value for the sample in 

MIX-CEN-03 mixing code. Forbye, the use of water effect could not be understood in 
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this model because of it is linear behavior on the results. Followingly, in the Table 

5.41, for both substances, the R2 results are shared with the mixing codes together.  

 

 

 

 

 

 

 

 

 

 

Figure 5.57: The correlations of the compressive strength of the Model-2. 

Table 5.41: The MRA results of CS in FA + MS & GGBS contents in the Model-2. 

Also. in the Figure 5.58, the FA + MS content shows the higher compressive strength 

prediction results than the GGBS content does. For all ages, the compressive strength 

specimens made of FA + MS content are close and/or above the median values. Only 

for day-14, day-14, and day-28, the compressive strength of the specimens made of 

GGBS content are close and/or above the median values. It is ended that the 

Mixing Codes (FA + MS) R2 Mixing Codes (GGBS) R2 

YM-SEG-03 0.8213 YM-DAP-AC-03 0.9855 

MIX-15A-04 0.9899 MIX-30 0.7050 

YM-SEG-05 0.9512 MIX-30-03 0.9376 

MIX-15E-03 0.9359 MIX-30-BRT 0.8258 

MIX-15AC-04 0.9927 MIX-30-07 0.9638 

YM-SEG-10 0.9724 MIX-34-BRT 0.9482 

YM-SEG-10A 0.9871 MIX-32-03 0.6367 

MIX-15AC-03 0.7551 MIX-32-CEN -0.0021 

C45-B25-425 0.5227 MIX-32-CEN-OK 0.9410 

C50-B22-460 -0.4505 B70-380 0.8113 

- - B70-420 0.7793 

- - B47-440 0.9218 

- - B67-440 0.9561 

- - B67-440-001 0.9564 

- - B67-440-BEY 0.9959 
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compressive strength prediction for the specimens including GGBS are less proper. 

That is why, the whiskers of the specimens including FA + MS content are more 

eligible than the specimens including GGBS content. In the Table 5.42 and the Table 

5.43, the numerical results of the boxplots are also shared. 

 

 

 

 

 

 

 

 

 

 

Figure 5.58: The age and the compressive strength relationship for the Model-2. 

Table 5.42: The CS results from MRA in FA + MS content for the Model-2. 

Table 5.43: The CS results from MRA in GGBS content for the Model-2. 

Model-1 [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 13.34 27.45 35.48 40.87 51.00 58.95 65.66 

1st-Quartile-Value 13.50 27.71 35.83 41.17 51.25 59.20 65.83 

Median Value 14.04 28.52 37.46 42.57 52.42 59.94 66.61 

3rd-Quartile-Value 14.61 28.65 38.82 43.72 53.38 60.05 67.26 

Maximum Value 14.86 28.91 39.57 44.35 53.89 60.29 67.60 

Mean Value 14.06 28.22 37.45 42.55 52.40 59.67 66.60 

Range 1.52 1.46 4.08 3.47 2.90 1.33 1.94 

Model-1 [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 1.28 6.63 12.46 17.02 31.92 45.56 53.83 

1st-Quartile-Value 1.54 7.62 13.78 18.02 32.59 46.24 54.85 

Median Value 3.18 13.36 20.72 24.51 35.46 46.69 55.52 

3rd-Quartile-Value 3.49 14.35 21.82 25.25 35.84 50.36 61.10 

Maximum Value 4.02 16.02 23.64 26.64 36.44 51.30 62.54 

Mean Value 2.66 11.48 18.38 22.16 34.43 48.03 57.57 

Range 2.74 9.38 11.18 9.63 4.52 5.74 8.70 
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Table 5.44: The compressive strength developments of samples for the Model-2. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Model-1 Strength Development of Actual Data [Day/Day] Strength Development of Predicted Data [Day/Day]  

Mixing Codes 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 

YM-SEG-03 0.2797 0.5105 0.6014 0.6923 0.8252 0.8741 1.0000 0.2053 0.4198 0.5486 0.6286 0.7805 0.8968 1.0000 

MIX15A-04 0.1797 0.4219 0.6016 0.6641 0.7969 - 1.0000 0.2029 0.4184 0.5423 0.6239 0.7776 - 1.0000 

YM-SEG-05 0.1293 0.4218 0.5714 0.5714 0.7687 0.9048 1.0000 0.2151 0.4251 0.5735 0.6473 0.7920 0.8934 1.0000 

MIX-15E-03 0.2053 0.4570 0.5298 0.6291 0.7881 0.8477 1.0000 0.2187 0.4270 0.5825 0.6540 0.7960 0.8922 1.0000 

MIX-15AC-04 0.1655 0.3957 0.5755 0.6403 0.7770 0.8633 1.0000 0.2198 0.4276 0.5853 0.6560 0.7973 0.8918 1.0000 

YM-SEG-10 - 0.3381 0.4820 0.5612 0.7194 0.8705 1.0000 - 0.4180 0.5404 0.6225 0.7767 0.8979 1.0000 

YM-SEG-10A 0.2331 - 0.4962 0.5789 0.7444 0.8797 1.0000 0.2031 - 0.5429 0.6244 0.7779 0.8975 1.0000 

MIX15-AC-03 0.0741 0.4167 0.5463 0.6574 0.8333 0.9537 1.0000 0.2063 0.4204 0.5512 0.6306 0.7817 0.8964 1.0000 

C45-B25-425 - 0.2261 0.4348 0.6435 0.8087 0.9043 1.0000 - 0.4259 0.5772 0.6500 0.7936 0.8929 1.0000 

C50-B22-460 0.4259 0.6111 0.7222 0.7531 0.8333 0.9074 1.0000 0.2166 0.4259 0.5773 0.6501 0.7937 0.8929 1.0000 
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Table 5.44 (continued): The compressive strength developments of samples for the Model-2. 

Model-1 Strength Development of Actual Data [Day/Day] Strength Development of Predicted Data [Day/Day] 

Mixing Codes 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 

YM-DAP-AC-03 0.0504 0.2185 0.3613 0.4202 0.6303 0.8403 1.0000 0.0602 0.2504 0.3848 0.4479 0.6458 0.8419 1.0000 

MIX-30 0.0323 0.1183 0.2688 0.3441 0.6237 0.7849 1.0000 0.0678 0.2753 0.4137 0.4731 0.6627 0.8443 1.0000 

MIX-30-03 0.1500 0.3900 0.4900 0.5500 0.7100 0.8800 1.0000 0.0645 0.2644 0.4011 0.4622 0.6554 0.8433 1.0000 

MIX-30-BRT 0.0500 0.2357 0.3643 0.4500 0.6571 0.8643 1.0000 0.0573 0.2407 0.3733 0.4377 0.6388 0.8409 1.0000 

MIX-30-07 0.0594 0.2475 0.3762 0.4554 0.6436 0.8713 1.0000 0.0695 0.2807 0.4200 0.4785 0.6663 0.8449 1.0000 

MIX-34-BRT 0.0678 0.3136 0.4407 - 0.6271 0.8305 1.0000 0.0484 0.2104 0.3368 - 0.6157 0.8375 1.0000 

MIX-32-03 0.0845 0.3592 0.4648 0.5423 0.6690 0.8310 1.0000 0.0606 0.2518 0.3864 0.4492 0.6467 0.8421 1.0000 

MIX-32-CEN 0.0548 0.2466 0.3836 0.4384 0.6575 0.8630 1.0000 0.0748 0.2976 0.4391 0.4950 0.6770 0.8463 1.0000 

MIX-32-CEN-OK 0.0417 0.2583 0.4583 0.5250 0.6667 0.8417 1.0000 0.0627 0.2587 0.3945 0.4564 0.6515 0.8428 1.0000 

B70-380 0.0300 0.0800 0.1700 0.2400 0.5000 0.7800 1.0000 0.0233 0.1175 0.2155 0.2887 0.5249 0.8229 1.0000 

B70-420 0.0208 0.0729 0.1354 0.2188 0.4896 0.8542 1.0000 0.0223 0.1135 0.2099 0.2830 0.5200 0.8220 1.0000 

B47-440 0.0207 0.1034 0.2276 0.3172 0.5724 0.8483 1.0000 0.0205 0.1061 0.1993 0.2721 0.5104 0.8204 1.0000 

B67-440 0.0138 0.0759 0.1862 0.2759 0.4828 0.8276 1.0000 0.0210 0.1080 0.2020 0.2749 0.5129 0.8208 1.0000 

B67-440-001 0.0090 0.1351 0.1982 0.2973 0.4865 0.8018 1.0000 0.0270 0.1320 0.2357 0.3089 0.5419 0.8258 1.0000 

B67-440-BEY 0.0161 0.1210 0.2500 0.3065 0.5726 0.7984 1.0000 0.0303 0.1449 0.2531 0.3261 0.5560 0.8281 1.0000 
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5.5 Multivariate Regression Analysis for Splitting Tensile Strength 

In his section of the thesis, the Table 5.45, the Table 5.46, and the Table 5.47 present 

the regression models with their statistical results. 

5.5.1 Antilogarithmic Linear Regression (Model-1) 

The antilogarithmic linear regression model (the Model-1) is one of the multivariate 

regression analysis models depending on multitudinous variables such as water, 

cement, and air content of concrete mixture design. In this model, for 0.5-day, 1-day, 

2-day, 3-day, 7-day, 14-day, and 28-day splitting tensile strength predictions were 

featured. At the end, for the FA + MS content included samples, R2 (btw 0.1827 & 

0.8828), and R2
adj results are scattered on the concrete age; SSE, and RMSE results are 

also diverted at each concrete age. For the GGBS added samples, R2 (btw 0.4457 & 

0.8150), and R2
adj results are come out on the concrete age; SSE, and RMSE results 

are varied in a small numeric scale for each concrete age, as well. In other respects, all 

the data predictions are applied on these solutions, and the results are come out in 

expectations. In this way of the results, the strength development of the splitting tensile 

strength is settled in the Table 5.50.  

In the Figure 5.59, the correlations of the actual data sets and predicted data sets are 

trendlined. The correlation shows that the model results are satisfying, and there are 

no negative deflections in the data fitting planar which means the model is safe to be 

used. 

In the Table 5.45 and the Table 5.46, with the statistical results for each concrete age 

regression analysis, the general forms of the multivariate antilogarithmic linear 

regression analysis equations are shared with both FA + MS and GGBS materials. 

In the Figure 5.60, there is another correlation for material effects in the splitting 

tensile strength prediction for the FA + MS substance by using the coefficients of the 

model equation. In this way, it is discovered that the equation coefficient is appropriate 

except the ages between 0.5-day, and 1-day; and 2-day, and 3-day. Moreover, the 

amount of water in proportion is effective at the ages between day-0.5, and day-1; and 

day-7 and day-28. The cement proportion increases the R2 value for all ages, even 

though for some ages, the R2 value decreases at the same time.  
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Figure 5.59: The correlations of the splitting tensile strength of the Model-1. 

Table 5.45: The MRA results for STS in FA + MS content for the Model-1. 

Table 5.46: The MRA results for STS in GGBS content for the Model-1. 

 

Age Power Regression R2 R2
adj SSE RMSE 

0.5-Day f'
t
 = 29.8652(C

9.201
)(W

-5.0715
)(A

-0.0228
) 0.6950 0.2883 0.9151 0.4783 

1-Day f'
t
 = 104.3518(C

3.1811
)(W-

1.0107
)(A

0.0659
) 0.6201 0.2402 1.6529 0.6428 

2-Day f'
t
 = 9.9646(C

2.089
)(W

-1.0319
)(A

-0.0126
) 0.2876 -0.2823 2.6779 0.8182 

3-Day f'
t
 = 8.191(C

2.5842
)(W

-1.3935
)(A

-0.0647
) 0.4869 0.0764 1.5887 0.6302 

7-Day f'
t
 = 61.2896(C

1.7853
)(W

-0.326
)(A

-0.0006
) 0.8828 0.7655 0.6548 0.4046 

14-Day f'
t
 = 26.7237(C

1.6027
)(W

-0.5263
)(A

0.0117
) 0.6835 0.3671 0.8473 0.4602 

28-Day f'
t
 = 7.4947(C

0.7115
)(W

-0.3468
)(A

-0.0105
) 0.1827 -0.4711 1.2155 0.5512 

Age Power Regression R2 R2
adj SSE RMSE 

0.5-Day f'
t
 = 0.0001(C

1.5952
)(W

-5.0321
)(A

0.6727
) 0.6260 0.4764 0.4317 0.3285 

1-Day f'
t
 = 0.0004(C

1.0034
)(W

-4.6289
)(A

0.7769
) 0.7315 0.6242 2.1523 0.7335 

2-Day f'
t
 = 0.273(C

0.5883
)(W

-1.7093
)(A

0.4356
) 0.8150 0.7410 1.5526 0.6230 

3-Day f'
t
 = 1.7166(C

0.4704
)(W

-0.9819
)(A

0.3861
) 0.7762 0.6767 1.9136 0.6917 

7-Day f'
t
 = 0.5725(C

0.2247
)(W

-1.1074
)(A

0.2465
) 0.6571 0.5199 2.1579 0.7345 

14-Day f'
t
 = 1.3486(C

0.1019
)(W

-0.7839
)(A

0.2376
) 0.5941 0.4317 2.7214 0.8248 

28-Day f'
t
 = 4.4046(C

0.0688
)(W

-0.3532
)(A

0.2097
) 0.4457 0.2240 5.0679 1.1256 
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That is why the cement effect could not be expressed well in this model. For the air 

content, the model seems parallel to the ages between the day 0.5, and 3; and 7, and 

28. So, the model puts forth the air effect in the analysis. Because while the air content 

decreases, the model prediction also decreases. For the minimum R2 value, the cement 

proportion is also minimum, the water proportion is maximum. However, for the 

maximum R2 value, the air content is neither maximum nor minimum. In this model, 

there is no other correlation for the maximum R2 value. 

 

 

 

 

 

 

 

 

 

Figure 5.60: The correlations of the splitting tensile strength of the Model-1. 

In the Figure 5.61, the splitting tensile strength prediction for the GGBS material by 

using the coefficients of the model equation is given. The equation correlation is 

opposite for the model results between the day 2, and 3; and 7, and 28. The water 

proportion results seem parallel to the equation coefficient which means that the more 

water the worse model results. So, the high proportion of water content is not beneficial 

for the concrete strength gaining. Except the age between day-1 and day-2, the air 

content works with the model. So, for the GGBS included concrete samples, the air 

proportion is effective on the data prediction. Because the less proportion of the air 

causes worse result of strength gaining process. Nevertheless, it is not clear that the 

high proportion of air leads well results of the model. In the Table 5.47, for both 

additive materials, the R2 values are given with the mixing codes together.  
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Figure 5.61: The correlations of the splitting tensile strength of the Model-1. 

Table 5.47: The MRA results of STS in FA + MS & GGBS contents in the Model-1. 

 

Also, in the Figure 5.62, the FA + MS subsequent shows the higher splitting tensile 

strength prediction results than the GGBS content does. Except the day-3, day-14, and 

day-28, for all ages, the splitting tensile strength of the specimens made of FA + MS 

content are close and/or above the median values. Except the day-0.5 day-14, and day-

28, the splitting tensile strength of the specimens made of GGBS content are close 

and/or above the median values. Whiskers of the specimens including FA + MS 

Mixing Codes (FA + MS) R2 Mixing Codes (GGBS) R2 

YM-SEG-03 0.8896 YM-DAP-AC-03 0.9620 

MIX-15A-04 0.8977 MIX-30 0.8502 

YM-SEG-05 0.8990 MIX-30-03 0.7124 

MIX-15E-03 0.9822 MIX-30-BRT 0.9406 

MIX-15AC-04 0.8360 MIX-30-07 0.9945 

YM-SEG-10 0.8526 MIX-34-BRT 0.9354 

YM-SEG-10A 0.9202 MIX-32-03 0.8307 

MIX-15-AC-03 0.9572 MIX-32-CEN 0.9315 

C45-B25-425 0.8643 MIX-32-CEN-OK 0.9576 

C50-B22-460 0.9600 B70-380 0.9635 

- - B70-420 0.9897 

- - B47-440 0.9744 

- - B67-440 0.8931 

- - B67-440-001 0.9774 

- - B67-440-BEY 0.8835 
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content is unleashed that the splitting tensile strength prediction for the specimens 

including GGBS are more appropriate. That is why, they are not proper than the 

specimens including GGBS content. In the Table 5.48, and the Table 5.49, the 

numerical results of the boxplots are also shared. 

 

 

 

 

 

 

 

 

 

 

 Figure 5.62: The age and the splitting tensile strength relationship for the Model-1. 

 Table 5.48: The STS results from MRA in FA + MS content for the Model-1. 

Table 5.49: The STS results from MRA in GGBS content for the Model-1. 

 

Model-1 [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 0.97 1.91 2.97 3.46 3.95 4.26 5.08 

1st-Quartile-Value 1.00 2.17 3.25 3.60 3.95 4.47 5.17 

Median Value 1.21 2.41 3.47 3.91 3.99 5.08 5.29 

3rd-Quartile-Value 1.64 3.15 3.64 3.95 4.57 5.28 5.36 

Maximum Value 2.53 3.41 4.08 4.78 5.18 5.50 5.60 

Mean Value 1.42 2.67 3.48 3.92 4.35 4.90 5.30 

Range 1.56 1.50 1.11 1.32 1.24 1.24 0.52 

Model-1 [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 0.07 0.38 0.98 1.33 2.40 3.14 3.75 

1st-Quartile-Value 0.12 0.54 1.26 1.61 2.62 3.59 4.19 

Median Value 0.42 1.32 2.05 2.26 3.27 4.26 4.89 

3rd-Quartile-Value 0.56 1.94 2.59 2.99 3.71 4.47 5.04 

Maximum Value 0.65 2.17 2.84 3.24 3.84 4.78 5.53 

Mean Value 0.34 1.25 1.93 2.29 3.20 4.07 4.67 

Range 0.58 1.78 1.86 1.91 1.45 1.63 1.78 
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Table 5.50: The splitting tensile strength developments of samples for the Model-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model-1 Strength Development of Actual Data [Day/Day] Strength Development of Predicted Data [Day/Day]  

Mixing Codes 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 

YM-SEG-03 0.2821 0.6581 0.7521 0.7521 0.8974 0.9487 1.0000 0.2620 0.6356 0.6789 0.7288 0.9658 1.0066 1.0000 

MIX15A-04 0.2813 0.5938 0.7396 0.7917 0.8854 - 1.0000 0.1892 0.4694 0.6281 0.6754 0.7683 - 1.0000 

YM-SEG-05 0.2525 0.5051 0.7778 0.8687 - 1.0202 1.0000 0.3394 0.5747 0.6985 0.8017 - 0.9649 1.0000 

MIX-15E-03 0.1810 0.4571 0.6190 0.6952 0.8095 0.8190 1.0000 0.1930 0.4156 0.6303 0.7366 0.7563 0.8547 1.0000 

MIX-15AC-04 0.2203 0.4407 0.7119 0.7542 0.6017 0.8559 1.0000 0.1936 0.4066 0.6306 0.7479 0.7541 0.8493 1.0000 

YM-SEG-10 - 0.4906 0.5660 0.7170 0.7642 1.0000 1.0000 - 0.5720 0.6794 0.7386 0.8546 0.9545 1.0000 

YM-SEG-10A 0.2793 - 0.5766 0.5676 0.8288 0.9640 1.0000 0.2940 - 0.6786 0.7401 0.8499 0.9508 1.0000 

MIX-15-AC-03 0.1068 0.3981 0.6408 0.7282 0.7670 0.7864 1.0000 0.1898 0.4620 0.6284 0.6832 0.7668 0.8814 1.0000 

C45-B25-425 - 0.3158 0.4632 0.6421 0.8316 0.8737 1.0000 - 0.3763 0.5849 0.6824 0.7853 0.8384 1.0000 

C50-B22-460 0.5045 0.6667 0.7117 0.8829 0.9459 0.9640 1.0000 0.4515 0.6077 0.7294 0.8538 0.9042 0.9822 1.0000 
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Table 5.50 (continued): The splitting tensile strength developments of samples for the Model-1.

Model-1 Strength Development of Actual Data [Day/Day] Strength Development of Predicted Data [Day/Day] 

Mixing Codes 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 

YM-DAP-AC-03 0.1068 0.2233 0.4466 0.5340 0.7184 0.7864 1.0000 0.1019 0.3460 0.4954 0.5940 0.7169 0.8770 1.0000 

MIX-30 0.0494 0.1728 0.3333 0.4321 0.6667 0.9383 1.0000 0.0928 0.2983 0.4542 0.5415 0.7261 0.8823 1.0000 

MIX-30-03 0.2750 0.6375 0.6875 0.8125 0.9500 0.9750 1.0000 0.1279 0.4178 0.5212 0.6005 0.7486 0.8984 1.0000 

MIX-30-BRT 0.0661 0.2810 0.4132 0.4380 0.6446 0.8264 1.0000 0.1137 0.3923 0.5205 0.6165 0.7242 0.8830 1.0000 

MIX-30-07 0.0920 0.2874 0.4713 0.5977 0.7816 0.9195 1.0000 0.0926 0.2904 0.4592 0.5534 0.7193 0.8744 1.0000 

MIX-34-BRT 0.1238 0.3905 0.4952 - 0.6286 0.7905 1.0000 0.0960 0.3540 0.5131 - 0.6946 0.8642 1.0000 

MIX-32-03 0.1186 0.4831 0.5508 0.6610 0.7966 0.9237 1.0000 0.1247 0.4176 0.5302 0.6186 0.7370 0.8905 1.0000 

MIX-32-CEN 0.0909 0.2879 0.5000 0.5909 0.8182 0.9697 1.0000 0.0515 0.1500 0.3592 0.4659 0.6748 0.8377 1.0000 

MIX-32-CEN-OK 0.0545 0.3455 0.5364 0.5818 0.6000 0.8909 1.0000 0.1152 0.3803 0.5127 0.6046 0.7304 0.8848 1.0000 

B70-380 0.0375 0.1125 0.2000 0.2500 0.5750 0.8000 1.0000 0.0208 0.1272 0.2623 0.3402 0.6412 0.8774 1.0000 

B70-420 0.0353 0.0941 0.2000 0.3412 0.5176 0.8353 1.0000 0.0162 0.0998 0.2516 0.3456 0.6044 0.8445 1.0000 

B47-440 0.0196 0.1961 0.3627 0.4608 0.6667 0.9608 1.0000 0.0308 0.1874 0.3285 0.4223 0.6435 0.8727 1.0000 

B67-440 0.0267 0.1867 0.4533 0.5067 0.8933 1.0667 1.0000 0.0302 0.1828 0.3252 0.4190 0.6424 0.8717 1.0000 

B67-440-001 0.0213 0.1489 0.2128 0.3298 0.5426 0.7128 1.0000 0.0212 0.1195 0.2754 0.3694 0.6226 0.8521 1.0000 

B67-440-BEY 0.0323 0.2043 0.3118 0.3763 0.6237 0.7957 1.0000 0.0185 0.0994 0.2542 0.3442 0.6202 0.8477 1.0000 
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5.6 Multivariate Regression Analysis for Modulus of Elasticity 

In this section of the thesis, the Table 5.51, the Table 5.52, and the Table 5.53 share 

the regression models with their statistical results. 

5.6.1 Logarithmic Regression (Model-1) 

The logarithmic regression model (the Model-1) is one of the multivariate regression 

analysis models depending on the water to cement ratio of concrete mixture design. In 

this model, for 0.5-day, 1-day, 2-day, 3-day, 7-day, 14-day, and 28-day, the modulus 

of elasticity predictions was presented. At the end, for the FA + MS content included 

samples R2 (btw -0.1102 & 0.1561), and R2
adj results are scattered on the concrete age; 

SSE, and RMSE results are also differentiated at each concrete age for very huge 

numeric scales. For the GGBS included samples R2 (btw 0.0788 & 0.6413), and R2
adj 

results are come out at the concrete age; SSE, and RMSE results are varied in huge 

numeric scales for each concrete age, as well in FA + MS content included sample 

analysis. On the side, all data predictions are applied on these solutions, and the results 

are come out in expectations. In this way of the results, the elastic modulus 

development is enlisted in the Table 5.56.  

In the Figure 5.63, the correlations of the actual data sets, and the predicted data sets 

are trendlined. The correlation shows that the model results are partially satisfying, 

and there are no negative deflections in the data fitting planar which means the model 

is safe to be used. In the Table 5.51, and the Table 5.52, with the statistical results for 

each concrete age regression analysis, the general forms of the multivariate logarithmic 

regression analysis equations are shared with both FA + MS and GGBS materials. 

In the Figure 5.64, there is another correlation for the material effects in elastic 

modulus prediction for the FA + MS content by using the coefficients of the model 

equation. In this way, it is understood that the equation coefficient is not compatible 

except the age between 0.5-day, and 1-day.  

Furthermore, the coefficient of the W/C ratio is also not coherent at the ages between 

the day-1, and day-3; and day-7 and day-14, either. That is why, just because using the 

coefficients of the equation is not beneficial for understanding of this model, another 

correlation is investigated in the Figure 5.65. 
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Figure 5.63: The correlations of the modulus of elasticity of the Model-1. 

Table 5.51: The MRA results for ME in FA + MS content for the Model-1. 

Table 5.52: The MRA results for ME in GGBS content for the Model-1. 

 

 

 

 

 

Age Logarithmic Regression R2 R2
adj SSE RMSE 

0.5-Day E'c = 10189.9202 - 10471.6522ln(w/c) 0.0178 -0.3751 337617307.0311 12992.6384 

1-Day E'c = 15903.9507 - 16004.0346ln(w/c) 0.1184 -0.0775 149634582.1434 8649.6989 

2-Day E'c = 16912.8034 - 16988.6726ln(w/c) 0.1009 -0.1239 83820082.1366 6473.7965 

3-Day E'c = 17168.3024 - 17313.764ln(w/c) 0.0576 -0.1309 113158379.5726 7521.9140 

7-Day E'c = 19037.639 - 19202.8744ln(w/c) 0.1561 -0.0126 66308751.8124 5757.9837 

14-Day E'c = 19578.5593 - 19892.1432ln(w/c) -0.1102 -0.3877 118385194.5663 7693.6725 

28-Day E'c = 20754.3645 - 20925.1799ln(w/c) 0.0635 -0.1238 61054049.9543 5525.1267 

Age Logarithmic Regression R2 R2
adj SSE RMSE 

0.5-Day E'c = 7061.7024 - 7134.843ln(w/c) 0.0788 -1.7636 14969472.5720 2735.8246 

1-Day E'c = 13389.2285 - 10235.4957ln(w/c) 0.6413 0.5862 243475525.0649 11033.4837 

2-Day E'c = 21897.7311 - 7912.3393ln(w/c) 0.5119 0.4306 220073658.4568 10489.8441 

3-Day E'c = 25459.6284 - 4672.6015ln(w/c) 0.2241 0.0948 285793460.8959 11953.9420 

7-Day E'c = 33816.0983 - 1273.6693ln(w/c) 0.0230 -0.1273 266960662.1811 11553.3688 

14-Day E'c = 37934.2893 - 1126.7044ln(w/c) 0.0179 -0.1332 269561837.0324 11609.5184 

28-Day E'c = 41067.1937 + 3008.9793ln(w/c) 0.0945 -0.0448 336253286.5035 12966.3658 



 

162 

 

 

 

 

 

 

 

 

Figure 5.64: The correlations of the modulus of elasticity of the Model-1. 

In the Figure 5.65, for both the minimum and maximum R2 values of the model, the 

W/C ratio is neither the maximum nor the minimum. Especially for some specimens, 

the W/C ratio is seen almost ineffective. That is why this model is accepted as 

inappropriate to estimate the modulus of elasticity for the FA + MS content included 

concrete samples, even though the linear correlation of the model between the actual , 

and predicted data sets are coherent. 

In the Figure 5.66, the correlation for material effects in elastic modulus prediction for 

GGBS content by using the coefficients of the model equation is given. In this way, it 

is enlightened that the equation coefficient is not compatible except the ages between 

0.5-day, and 3-day; and day-14, and day-28. In addition, the coefficient of the W/C 

ratio is also not coherent at the ages between the day-1, and day-3; and day-14 and 

day-28, either. That is why, only using the coefficients of the equation is not beneficial 

for understanding of this model, another correlation is investigated in the Figure 5.66. 

In the Figure 5.67, for the minimum R2 value of the model, the W/C ratio is also the 

minimum (0.34). Especially for some specimens, the W/C ratio is seen almost 

ineffective. That is why this model is accepted as inappropriate to estimate the modulus 

of elasticity for the GGBS content included concrete samples, as well in FA + MS 

content included modulus of elasticity analysis. 
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Figure 5.65: The relations of the modulus of elasticity of the Model-1 in FA + MS. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.66: The relations of the modulus of elasticity of the Model-1 in GGBS. 
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Figure 5.67: The correlations of the modulus of elasticity of the Model-1. 

In the Table 5.53, for both pozzolans, the R2 values are given with the mixing codes 

together. Also, in the Figure 5.68, the FA + MS content shows the higher elastic 

modulus prediction results than GGBS content does. Except the day-0.5, day-14, and 

day-28, for all ages, the modulus of elasticity for the specimens made of FA + MS 

content are close and/or above the median values. Except the day-3, day-7, and day-

28, the elastic modulus of the specimens made of the GGBS content are close and/or 

above the median values. It is expresses that the modulus of elasticity prediction for 

the specimens including GGBS are more appropriate. However, the whiskers of the 

specimens including FA + MS content are more proper than the specimens including 

GGBS content. In the Table 5.54 and the Table 5.55, the numerical results of the 

boxplots are also shared.  
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Table 5.53: The MRA results of ME in FA + MS & GGBS contents in the Model-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.68: The age and the modulus of elasticity relationship for the Model-1. 

 

 

 

 

 

Mixing Codes (FA + MS) R2 Mixing Codes (GGBS) R2 

YM-SEG-03 0.4348 C45-III-B20 0.5117 

MIX-15A-04 0.7256 YM-DAP-AC-03 0.9411 

YM-SEG-05 0.8499 MIX-30 0.6777 

YM-SEG-08 0.7500 MIX-30-03 0.4341 

MIX-15E-03 0.8051 MIX-30-BRT 0.8681 

MIX-15AC-04 0.9193 MIX-30-07 0.9805 

YM-SEG-10 0.7212 MIX-34-BRT 0.8979 

YM-SEG-10A 0.8276 MIX-32-03 0.6933 

YM-SEG-10E 0.1352 MIX-32-CEN -5.0710 

MIX-15-AC-03 0.7643 MIX-32-CEN-OK -0.0143 

C45-B25-425 0.8541 B70-380 0.9513 

C45-B25-400 0.9485 B70-420 0.8268 

C50-B22-460 -0.7530 B47-440 0.8296 

- - B67-440 0.9035 

- - B67-440-001 0.9177 

- - B67-440-BEY 0.9176 
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Table 5.54: The ME results from MRA in FA + MS content for the Model-1. 

Table 5.55: The ME results from MRA in GGBS content for the Model-1. 

 

 

 

Model-1 [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 11770 21444 28214 29652 35046 37057 37340 

1st-Quartile-Value 14416 28832 31415 32719 36316 37770 40087 

Median Value 19958 31047 32902 34514 37731 39999 42362 

3rd-Quartile-Value 23170 35498 35799 36115 40148 41310 43858 

Maximum Value 34567 41845 43160 41594 43407 44270 45732 

Mean Value 20162 31843 33845 34641 38311 40004 41897 

Range 22797 20401 14945 11943 8361 7213 8392 

Model-1 [MPa] 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

Minimum Value 11782 11618 16088 19430 28197 29791 30884 

1st-Quartile-Value 12726 17007 22967 24263 31324 35209 36147 

Median Value 13605 19141 26569 28756 34657 37345 39431 

3rd-Quartile-Value 16662 25226 31152 31861 36788 40771 42769 

Maximum Value 18629 31360 36250 37205 41539 45815 47406 

Mean Value 14681 20482 26625 28307 34480 37337 39261 

Range 6847 19742 20162 17775 13342 16024 16522 
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Table 5.56: The modulus of elasticity developments of samples for the Model-1. 

 

 

 

 

 

 

 

 

Model-1 Strength Development of Actual Data [Day/Day] Strength Development of Predicted Data [Day/Day]  

Mixing Codes 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 

YM-SEG-03 0.5326 0.8043 0.8043 0.7935 0.8370 0.9674 1.0000 0.4956 0.7656 0.8134 0.8273 0.9175 0.9469 1.0000 

MIX15A-04 0.5675 0.8333 0.9167 0.9524 0.9762 - 1.0000 0.4958 0.7655 0.8134 0.8273 0.9175 - 1.0000 

YM-SEG-05 0.2892 0.7590 - 0.7711 0.9518 1.0120 1.0000 0.4958 0.7655 - 0.8273 0.9175 0.9471 1.0000 

YM-SEG-08 - 0.8023 - 0.8488 0.9535 0.9419 1.0000 - 0.7655 - 0.8273 0.9175 0.9471 1.0000 

MIX-15E-03 0.3902 0.7805 0.8171 0.8415 0.8293 0.8659 1.0000 0.4958 0.7655 0.8134 0.8273 0.9175 0.9471 1.0000 

MIX-15AC-04 0.4222 0.7667 0.7778 0.8444 0.9222 0.9222 1.0000 0.4958 0.7655 0.8134 0.8273 0.9175 0.9471 1.0000 

YM-SEG-10 - 0.7531 0.7901 0.8025 0.9259 0.9877 1.0000 - 0.7655 0.8134 0.8273 0.9175 0.9471 1.0000 

YM-SEG-10A 0.6118 - 0.8000 0.7882 0.9176 0.9176 1.0000 0.4958 - 0.8133 0.8273 0.9175 0.9471 1.0000 

YM-SEG-10E - 0.6341 0.7683 0.7439 0.9024 0.8415 1.0000 - 0.7655 0.8133 0.8273 0.9175 0.9471 1.0000 

MIX-15-AC-03 0.3418 0.7468 0.7722 0.8101 0.8987 0.9747 1.0000 0.4958 0.7655 0.8134 0.8273 0.9175 0.9471 1.0000 

C45-B25-425 - 0.6974 0.8158 0.8289 0.9342 0.9868 1.0000 - 0.7656 0.8135 0.8273 0.9175 0.9468 1.0000 

C45-B25-400 - 0.7215 0.7975 0.8354 0.9367 - 1.0000 - 0.7656 0.8135 0.8273 0.9175 - 1.0000 

C50-B22-460 0.7303 0.8539 0.8764 0.8876 0.9438 1.0000 1.0000 0.4959 0.7655 0.8133 0.8273 0.9175 0.9472 1.0000 

YM-SEG-03 0.5326 0.8043 0.8043 0.7935 0.8370 0.9674 1.0000 0.4956 0.7656 0.8134 0.8273 0.9175 0.9469 1.0000 
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Table 5.56 (continued): The modulus of elasticity developments of samples for the Model-1.

Model-1 Modulus of Elasticity Development of Actual Data [Day/Day] Modulus of Elasticity Development of Predicted Data [Day/Day] 

Mixing Codes 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 0.5/28 1/28 2/28 3/28 7/28 14/28 28/28 

C45-III-B20 - 0.4494 0.7303 0.7865 0.9775 1.0337 1.0000 - 0.6180 0.7810 0.7901 0.9211 0.9667 1.0000 

YM-DAP-AC-03 - 0.5802 0.7284 0.7160 0.8272 0.8889 1.0000 - 0.6203 0.7829 0.7915 0.9218 0.9671 1.0000 

MIX-30 - 0.4930 0.8310 0.7887 0.9155 0.9437 1.0000 - 0.6218 0.7842 0.7924 0.9224 0.9673 1.0000 

MIX-30-03 - 0.7733 - 0.8533 0.8933 0.9867 1.0000 - 0.6391 - 0.8024 0.9281 0.9698 1.0000 

MIX-30-BRT 0.2857 0.6310 0.7738 0.8214 0.9405 0.9643 1.0000 0.3743 0.6226 0.7848 0.7928 0.9226 0.9674 1.0000 

MIX-30-07 0.3462 0.6154 0.7179 0.7564 0.8846 0.9231 1.0000 0.3831 0.6355 0.7958 0.8003 0.9269 0.9693 1.0000 

MIX-34-BRT 0.3294 0.6588 0.7412 - 0.8588 0.8941 1.0000 0.3593 0.6006 0.7662 - 0.9153 0.9642 1.0000 

MIX-32-03 0.4217 0.7470 0.7711 0.8434 0.9518 0.9759 1.0000 0.3831 0.6355 0.7958 0.8003 0.9269 0.9693 1.0000 

MIX-32-CEN - 0.6200 0.9400 0.8600 1.0400 1.0800 1.0000 - 0.6240 0.7861 0.7937 0.9231 0.9676 1.0000 

MIX-32-CEN-OK - 0.7188 0.8906 0.8125 0.9844 1.0469 1.0000 - 0.6355 0.7958 0.8003 0.9269 0.9693 1.0000 

B70-380 - 0.2658 0.4557 0.6076 0.7722 0.9241 1.0000 - 0.2989 0.5102 0.6041 0.8144 0.9197 1.0000 

B70-420 - 0.2692 0.3590 0.4103 0.8077 0.9872 1.0000 - 0.2975 0.5090 0.6033 0.8139 0.9195 1.0000 

B47-440 - 0.3636 0.6591 0.6364 0.8636 0.9432 1.0000 - 0.3415 0.5463 0.6290 0.8286 0.9260 1.0000 

B67-440 - 0.3068 0.6023 0.6818 0.8295 0.9205 1.0000 - 0.3415 0.5463 0.6290 0.8286 0.9260 1.0000 

B67-440-001 - 0.4125 0.4750 0.7125 0.7875 0.9000 1.0000 - 0.3395 0.5446 0.6278 0.8279 0.9257 1.0000 

B67-440-BEY - 0.3125 0.6625 0.7000 0.8875 0.8625 1.0000 - 0.3435 0.5480 0.6301 0.8293 0.9263 1.0000 
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5.7 Machine Learning Algorithm for Mechanical Properties of Concrete 

In this section, Levenberg-Marquardt algorithm is studied for the compressive 

strength, splitting tensile strength and modulus of elasticity. In the input data sets, with 

all variables given in the Table 3.2 for the concrete mixture designs, the air content is 

either included or not included for the algorithm computations. Because it is aimed to 

see how the algorithm is accurate in unreal-like and real-like conditions. 

5.7.1 Levenberg-Marquardt (LM) Algorithm 

In the Table 5.57, for both FA + MS and GGBS contents, the algorithm is shared with 

the matrix designs and statistical results. The term of the target represents the actual 

test result. The training, validation, test, and all mean the algorithm results revealed by 

the software for the algorithm trials. In the Table 5.58, the Table 5.59, the Table 5.60, 

and the Table 5.61 with the actual data set, the predicted results are also enlisted for 

the compressive strength with the R2 values for the accuracy checks.  

Table 5.57: The LM Algorithm for the compressive strength prediction. 

 

In the Table 5.57, by comparing with the R values, the predictions were revealed by 

the software. For the FA + MS content included samples with the air content, the 

Content Input Target Output Air [%] ≈ Output Linear Model R MSE 

FA + MS 

[   ]13 X 10 [   ]13 X 7 [   ]13 X 7 0.00 

Training 1 X Target + 0.33 0.993 6.82664 

Validation 0.98 X Target - 0.49 0.92518 66.22872 

Test 0.24 X Target + 39 0.095505 3127.51988 

All 0.86 X Target + 7.8 0.62771 - 

[   ]13 X 10 [   ]13 X 7 [   ]13 X 7 > 0.00 

Training 0.95 X Target + 3.3 0.95211 41.76505 

Validation 1.3 X Target - 20 0.85387 239.54692 

Test 0.87 X Target + 11 0.96703 63.08069 

All 0.94 X Target + 3.6 0.9156 - 

GGBS 

[   ]16 X 10 [   ]13 X 7 [   ]13 X 7 0.00 

Training 1 X Target + 0.84 0.99232 9.77084 

Validation 1 X Target - 0.78 0.97444 29.87086 

Test 1.3 X Target + 2.7 0.98349 177.29129 

All 1 X Target + 1.5 0.97383 - 

[   ]16 X 10 [   ]13 X 7 [   ]13 X 7 > 0.00 

Training 0.98 X Target + 2.3 0.98433 18.67574 

Validation 0.89 X Target + 3.8 0.93338 66.64377 

Test 1.7 X Target - 5.4 0.98141 283.09677 

All 0.93 X Target + 2.9 0.93468 - 
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results are very appropriate. Moreover, for the MSE results, the predictions without 

the air content, the estimations are worse than the air content included predictions 

except the training results of the algorithm. In contrast with the FA + MS included 

results, statistically, the GGBS content included sample prediction results are better 

with no air content.  

Due to the algorithm working manner, without the air content in the FA + MS 

existence, the samples in C45-B25-425, and C45-B25-400 mixing codes are resulted 

negative in the R2 values. That is why, the LM algorithm does not work for these 

concrete samples. However, with the air content in the FA + MS existence, only the 

sample in C50-B22-460 mixing code R2 value is not acceptable. So, in general, the 

LM algorithm works for all scenarios in the content of FA + MS. The same method is 

also followed for the GGBS existence in the concrete samples. Without the air content, 

only the sample MIX-30-03 seems unsuitable in the result of R2. For the air effect, the 

samples MIX-30, and MIX-30-03 are not convenient for the R2 results. 

In this light of the results, in the Figure 5.69, the Figure 5.70, the Figure 5.71, and the 

Figure 5.72, the neural network (NN) frames are given constructed on the mixture 

design variables. In the Figure 5.73,  the Figure 5.74, the Figure 5.75, and the Figure 

5.76, the linear correlations from the software are also shown. Onto this, in the Figure 

5.77, and the Figure 5.78, the actual and predicted results are trendlined. In these 

correlations, each concrete specimen strength behavior was checked for the accuracy 

of the algorithm in the data fitting planar to see if there was a negative deflection or 

not. At the end, it was seen that there was no negative deflection for both FA + MS 

and GGBS content included sample results. That is why the algorithm is said to be safe 

for the compressive strength prediction, even though for the FA + MS including 

without air content results are statistically under the expectations. 
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 Table 5.58: The LM Algorithm for the compressive strength prediction in FA + MS content without air. 

 

 

 

 

 

 

 

 

 

 

 

LM Algorithm Actual Data [MPa] Predicted Data [MPa]  
R2 

Mixing Codes 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

YM-SEG-03 20.00 36.50 43.00 49.50 59.00 62.50 71.50 18.81 38.19 43.24 52.46 61.69 67.67 74.21 0.9702 

MIX-15A-04 11.50 27.00 38.50 42.50 51.00  - 64.00 8.94 31.95 38.38 43.49 51.83   - 66.18 0.9777 

YM-SEG-05 9.50 31.00 42.00 - 56.50 66.50 73.50 10.45 29.33 42.86  - 56.88 69.46 73.78 0.9953 

YM-SEG-08 15.50 34.50 40.00 - 59.50 64.00  - 7.70 21.93 37.76  - 52.01 72.62   - 0.7716 

MIX-15E-03 6.00 23.50 31.50 36.00 45.00 52.00 59.00 5.30 21.70 32.77 37.19 47.21 53.54 59.37 0.9927 

MIX-15AC-04 11.50 27.50 40.00 44.50 54.00 60.00 69.50 11.09 25.43 41.21 44.99 55.58 61.49 69.40 0.9954 

YM-SEG-10  - 23.50 33.50 39.00 50.00 60.50 69.50  - 23.83 33.61 39.02 50.07 58.72 69.74 0.9978 

YM-SEG-10A 15.50  - 33.00 38.50 49.50 58.50 66.50 15.89   - 33.29 38.44 49.46 56.49 66.57 0.9975 

YM-SEG-10E - 23.50 29.00 31.00 44.00 53.50 60.50  - 12.30 33.39 38.68 49.41 54.74 67.78 0.7370 

MIX-15-AC-03 - 22.50  - 35.50 45.00 51.50 54.00  - 32.39   36.76 45.99 56.23 57.95 0.7921 

C45-B25-425 - - 25.00  - 46.50  -  -  -  - 66.72   - 91.99  -   - -15.4833 

C45-B25-400 1.00 - 34.50 40.50 48.00  - 76.00 40.10  - 79.12 70.66 97.15  - 100.93 -1.2520 

C50-B22-460 34.50 49.50 58.50  - 67.50 73.50 81.00 37.48 56.45 63.99   - 64.98 73.99 79.43 0.9087 
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Table 5.59: The LM Algorithm for the compressive strength prediction in FA + MS content with air. 

 

 

 

 

 

 

 

 

 

 

  

LM Algorithm Actual Data [MPa] Predicted Data [MPa]  
R2 

Mixing Codes 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

YM-SEG-03 20.00 36.50 43.00 49.50 59.00 62.50 71.50 18.66 40.25 45.05 47.88 63.46 64.70 73.98 0.9706 

MIX-15A-04 11.50 27.00 38.50 42.50 51.00   - 64.00 9.08 26.16 38.24 41.94 46.80   - 63.81 0.9853 

YM-SEG-05 9.50 31.00 42.00  - 56.50 66.50 73.50 10.98 40.58 46.44  - 60.12 72.12 74.18 0.9445 

YM-SEG-08 15.50 34.50 40.00  - 59.50 64.00   - 10.91 35.00 36.63  - 60.39 95.34  - 0.3447 

MIX-15E-03 6.00 23.50 31.50 36.00 45.00 52.00 59.00 12.58 29.32 41.50 42.29 51.41 56.89 67.97 0.8135 

MIX-15AC-04 11.50 27.50 40.00 44.50 54.00 60.00 69.50 12.40 29.92 43.29 44.04 51.62 54.43 69.45 0.9769 

YM-SEG-10  - 23.50 33.50 39.00 50.00 60.50 69.50   - 32.41 35.41 35.56 49.82 62.61 66.25 0.9263 

YM-SEG-10A 15.50  -  33.00 38.50 49.50 58.50 66.50 4.41   - 35.66 35.69 49.85 61.70 66.37 0.9132 

YM-SEG-10E   - 23.50 29.00   - 44.00 53.50   -  -  30.98 34.18   47.69 66.96   - 0.5098 

MIX-15-AC-03 4.00 22.50 29.50 35.50 45.00   - 54.00 3.55 28.68 32.96 36.33 42.90  -  53.66 0.9640 

C45-B25-425  - 13.00 25.00 37.00 46.50 52.00 57.50  - 29.80 37.64 37.75 44.41 56.31 57.18 0.6771 

C45-B25-400  - 24.00 34.50 40.50 48.00   - 76.00  - 35.35 36.89 41.76 52.32  -  77.22 0.8985 

C50-B22-460 34.50 49.50 58.50  -  67.50 73.50 81.00 13.62 28.17 38.00   66.51 72.59 95.09 -0.0506 
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 Table 5.60:  The LM Algorithm for the compressive strength prediction in GGBS content without air. 

 

 

 

 

 

 

 

LM Algorithm Actual Data [MPa] Predicted Data [MPa]  
R2 

Mixing Codes 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

C45-III-B20 2.00 9.50 24.00 30.50 51.00 74.50 86.00 1.43 9.13 24.31 30.19 51.60 69.92 83.31 0.9953 

YM-DAP-AC-03 3.00 13.00 21.50 25.00 37.50 50.00 59.50 2.19 15.72 22.84 22.99 45.90 60.76 62.98 0.9131 

MIX-30 1.50 5.50 12.50  - 29.00 36.50 46.50 1.80 4.41 17.19  - 31.82 41.82 48.69 0.9608 

MIX-30-03 7.50 19.50 24.50 27.50 35.50 44.00 50.00 4.77 25.42 34.57 37.98 54.93 61.21 72.86 -0.1337 

MIX-30-BRT 3.50 16.50 25.50 31.50 46.00 60.50 70.00 3.24 18.03 28.18 31.12 48.49 64.06 78.64 0.9698 

MIX-30-07 3.00 12.50 19.00 - 32.50 44.00 50.50 2.58 14.76 26.27 - 36.71 54.40 56.04 0.8754 

MIX-34-BRT 4.00 18.50 26.00 - 37.00 49.00 59.00 3.95 20.20 28.87 - 39.87 52.29 62.28 0.9800 

MIX-32-03 6.00 25.50 33.00 38.50 47.50 59.00 71.00 5.11 24.61 33.38 36.39 48.18 55.96 66.99 0.9886 

MIX-32-CEN 2.00 9.00 14.00  - 24.00 31.50 36.50 2.75 10.34 17.48  - 26.90 39.14 43.34 0.8577 

MIX-32-CEN-OK 2.50 15.50 27.50 31.50 40.00 50.50 60.00 3.58 17.48 29.96 32.18 42.66 58.64 69.14 0.9284 

B70-380 1.50 4.00 8.50 12.00 25.00 39.00 50.00 1.58 9.84 19.49 26.56 38.29 52.93 67.17 0.5039 

B70-420 1.00 3.50 6.50 10.50 23.50 41.00 48.00 0.72 3.13 6.66 11.58 24.99 42.53 49.02 0.9967 

B47-440 1.50  - 16.50 23.00 41.50 61.50 72.50 1.22 -  15.39 27.16 34.89 52.50 76.44 0.9538 

B67-440 1.00 5.50 13.50 20.00 35.00 60.00 72.50 0.29 5.43 13.83 20.46 35.07 60.32 70.79 0.9991 

B67-440-001 0.50 7.50 11.00 16.50 27.00 44.50 55.50 0.77 4.83 12.34 18.26 27.02 46.51 57.16 0.9923 

B67-440-BEY 1.00 7.50 15.50 19.00 35.50 49.50 62.00 1.27 7.42 16.74 19.74 35.84 51.28 63.99 0.9969 
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 Table 5.61: The LM Algorithm for the compressive strength prediction in GGBS content with air. 

LM Algorithm Actual Data [MPa] Predicted Data [MPa]  
R2 

Mixing Codes 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

C45-III-B20 2.00 9.50 24.00 30.50 51.00 74.50 86.00 2.44 11.74 24.85 33.64 48.21 63.84 77.45 0.9658 

YM-DAP-AC-

03 
3.00 13.00 21.50 25.00 37.50 50.00 59.50 3.01 14.03 24.66 25.87 35.75 38.17 45.55 0.8569 

MIX-30 1.50 5.50 12.50 16.00 29.00 36.50 46.50 1.91 8.05 17.01 20.60 38.13 68.05 80.51 -0.3658 

MIX-30-03 7.50 19.50 24.50 27.50 35.50 44.00 50.00 4.62 24.00 31.58 38.39 50.29 64.33 79.16 -0.3132 

MIX-30-BRT 3.50 16.50 25.50 31.50 46.00 60.50 70.00 2.59 16.54 24.56 25.76 41.87 52.34 60.81 0.9408 

MIX-30-07 3.00 12.50 19.00 23.00 32.50 44.00 50.50 2.87 14.08 19.87 24.18 32.69 44.51 53.91 0.9904 

MIX-34-BRT 4.00 18.50 26.00  - 37.00 49.00 59.00 4.33 18.67 24.44  - 34.32 44.29 55.23 0.9774 

MIX-32-03 6.00 25.50 33.00 38.50 47.50 59.00 71.00 5.14 26.31 35.38 41.61 47.27 50.17 63.22 0.9444 

MIX-32-CEN 2.00 9.00 14.00 16.00 24.00 31.50 36.50 1.46 12.19 14.16 18.31 26.86 36.31 46.14 0.8460 

MIX-32-CEN-

OK 
2.50 15.50 27.50 31.50 40.00 50.50 60.00 2.54 15.98 26.30 34.87 37.33 46.66 59.52 0.9851 

B70-380 1.50 4.00 8.50 12.00 25.00 39.00 50.00 1.79 3.76 9.65 12.03 24.27 39.65 48.44 0.9977 

B70-420 1.00 3.50 6.50 10.50 23.50 41.00 48.00 0.95 2.39 6.95 12.01 24.04 40.85 47.99 0.9981 

B47-440 1.50 7.50  - 23.00 41.50 61.50 72.50 3.06 20.35  - 23.60 42.33 54.35 54.97 0.8737 

B67-440 1.00 5.50 13.50 20.00 35.00 60.00 72.50 1.01 7.34 13.94 20.23 33.30 61.35 72.12 0.9981 

B67-440-001  -  - 11.00 -  27.00 44.50 55.50  - -  20.68  - 34.17 49.55 66.26 0.7508 

B67-440-BEY 1.00 7.50 15.50 19.00 35.50 49.50 62.00 2.35 11.59 16.01 17.48 29.90 37.34 48.42 0.8741 
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Figure 5.69: Without air content, FA + MS added NN in LM for CS. 

 

 

Figure 5.70: With air content, FA + MS added NN in LM for CS. 
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Figure 5.71: Without air content, GGBS added NN in LM for CS. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.72: With air content, GGBS added NN in LM for CS. 
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Figure 5.73: Without air content, FA + MS added results in LM for CS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.74: With air content, FA + MS added results in LM for CS. 
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Figure 5.75: Without air content, GGBS added results in LM for CS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.76: With air content, GGBS added results in LM for CS. 
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Figure 5.77: For air effect, FA + MS added results in LM for CS. 

 

 

Figure 5.78: For air effect, GGBS added results in LM for CS. 
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In the Table 5.62, for the splitting tensile strength, in both FA + MS and GGBS 

contents, the algorithm is shared with the matrix designs and statistical results. The 

term of the target represents the actual test result as well in the compressive strength 

results of the LM algorithm. The training, validation, test, and all mean the algorithm 

results revealed by the software for the model trials. In the Table 5.63, the Table 5.64, 

the Table 5.65, and the Table 5.66, with the actual data set, the predicted results are 

also enlisted for the splitting tensile strength with the R2 values for the accuracy. 

 Table 5.62: The LM Algorithm for the splitting tensile strength prediction. 

 

In the Table 5.62, by comparing with the R values revealed by the software, for the 

FA + MS content included samples with and without the air content, the results are 

very appropriate. Moreover, for the MSE results, the predictions with and without the 

air content, are also in the expectations. On the contrary, the GGBS content included 

sample prediction results are worse than the FA + MS content included results, even 

though the results are not deniable. 

Due to the algorithm forecasting, without the air content in the FA + MS existence, the 

sample in YM-SEG-10A mixing code is lower resulted among the other R2 values. 

With the air content in the FA + MS existence, the same sample is lower among the 

Content Input Target Output Air [%] ≈ Output Linear Model R MSE 

FA + MS 

[   ]13 X 10 [   ]13 X 7 [   ]13 X 7 0.00 

Training 1 X Target - 0.11 0.98656 0.0791627 

Validation 0.7 X Target + 0.69 0.82299 1.24976 

Test 0.87 X Target - 0.054 0.93592 0.574912 

All 0.96 X Target - 0.01 0.96401 - 

[   ]13 X 10 [   ]13 X 7 [   ]13 X 7 > 0.00 

Training 0.98 X Target + 0.0076 0.99399 0.0320651 

Validation 0.76 X Target + 1.1 0.84768 1.11238 

Test 0.97 X Target + 0.3 0.97957 0.164248 

All 0.96 X Target + 0.15 0.97547 - 

GGBS 

[   ]16 X 10 [   ]13 X 7 [   ]13 X 7 0.00 

Training 0.92 X Target + 0.019 0.96562 0.221248 

Validation 1.3 X Target - 0.36 0.90111 0.7912 

Test 0.9 X Target - 0.08 0.94213 0.522575 

All 0.93 X Target + 0.013 0.94247 - 

[   ]16 X 10 [   ]13 X 7 [   ]13 X 7 > 0.00 

Training 0.96 X Target + 0.19 0.97286 0.16207 

Validation 1.1 X Target - 0.2 0.93022 0.316239 

Test 1.2 X Target + 0.15 0.9206 1.35463 

All 1 X Target + 0.17 0.94707 - 
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R2 values, as well. However, this time, it is better resulted. So, in general, the LM 

algorithm works for all scenarios in the FA + MS content for the splitting tensile 

strength predictions. The same method is also followed for the GGBS existence in the 

concrete samples. Without the air content, the samples C45-III-B20, and MIX-30-03 

seem inappropriate in the results of R2. For the air effect, the samples in MIX-30, MIX-

30-03, MIX-32-03, MIX-32-CEN, and B67-440 mixing codes are inconvenient for the 

R2 values. Especially the sample MIX-32-CEN is almost zero which is inacceptable 

for the algorithm accuracy. In the air content included results, the sample in YM-DAP-

AC-03 is under zero for the R2 value. This shows that the algorithm does not work for 

this sample. At the same time, again, the samples in MIX-30-03, and MIX-32-CEN 

mixing codes are lower among the other R2 results. But this time, these sample results 

are higher than the not air content included analysis results. 

In this light of the results, in the Figure 5.79, the Figure 5.80, the Figure 5.81, and the 

Figure 5.82, the NN frames are given constructed on the mixture design variables. The 

Figure 5.83, the Figure 5.84, the Figure 5.85, and the Figure 5.86 are the linear 

correlations from the software. Onto this, in the Figure 5.87, and the Figure 5.88, the 

actual, and predicted results are trendlined. In this correlation, each concrete specimen 

strength behavior was checked for the accuracy of the algorithm in the data fitting 

planar to see if there was a negative deflection or not. At the end, without air content 

in the FA + MS existence, the samples in YM-SEG-10, C45-B25-425, and C45-B25-

400 mixing codes were seen in negative deflections in the fitting planar. With the air 

content, the samples in YM-SEG-10E, MIX-15-AC-03, YM-SEG-08, and C45-B25-

400 mixing codes were seen in negative deflections in the FA + MS content. For the 

GGBS content with the absence of the air, only the sample in MIX-30-03 mixing code 

was deflected in the fitting planar in negative way, which was not expected. With the 

air content in the GGBS existence, the samples in MIX-30-03, MIX-34-BRT, MIX-

32-03, and B67-440 mixing codes were deflected in negative way, as well. That is why 

the algorithm is said to be less safe for the splitting tensile strength prediction in the 

GGBS content with air. Because of that the FA + MS content included algorithm 

results were more valid.
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Table 5.63: The LM Algorithm for the splitting tensile strength prediction in FA + MS content without air. 

 

 

 

 

 

 

 

 

 

 

 

LM Algorithm Actual Data [MPa] Predicted Data [MPa]  
R2 

Mixing Codes 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

YM-SEG-03 1.65 3.85 4.40 4.40 5.25 5.55 5.85 1.70 3.64 4.32 4.40 5.22 5.35 6.00 0.9905 

MIX15A-04 1.35 2.85 3.55 3.80 4.25  - 4.80 1.19 2.35 3.38 3.68 4.10 - 4.82 0.9543 

YM-SEG-05 1.25 2.50 3.85 4.30 -  5.05 4.95 1.22 2.05 3.75 4.19 -  4.60 5.17 0.9571 

YM-SEG-08 2.05 2.80 3.90 4.60 4.70 - 6.40 1.72 2.65 3.87 4.37 4.80  - 6.32 0.9829 

MIX-15E-03 0.95 2.40 3.25 3.65 4.25 - 5.25 0.88 2.07 3.15 3.58 3.96  - 5.23 0.9813 

MIX-15AC-04 1.30 2.60 4.20 4.45 3.55 - 5.90 0.90 2.11 3.14 3.61 4.06  - 5.27 0.7722 

YM-SEG-10 - 2.60 3.00 3.80 4.05 5.30 5.30  - 2.02 3.01 3.63 4.52 4.57 5.64 0.8045 

YM-SEG-10A 1.55  - 3.20 3.15  - 5.35 5.55 0.02  - 2.88 3.61 - 4.42 5.31 0.6848 

YM-SEG-10E  - 2.35 3.20 3.45 4.65 5.20 5.30  - 1.75 3.00 3.45 4.77 4.96 5.69 0.9147 

MIX15-AC-03 0.55 2.05 3.30 3.75 3.95  - 5.15 0.59 1.60 3.15 3.70 4.03  - 5.04 0.9808 

C45-B25-425  - 1.50 2.20 3.05 3.95 4.15 4.75  - 1.77 2.74 3.08 3.70 3.90 5.21 0.9089 

C45-B25-400 0.20 2.65 3.65 3.50 3.70 4.25 5.75 0.34 2.16 2.99 3.34 4.09 4.10 5.25 0.9337 

C50-B22-460 2.80 3.70 3.95 4.90 5.25 5.35 5.55 2.95 3.97 4.09 5.00 5.08 5.26 5.58 0.9749 
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Table 5.64: The LM Algorithm for the splitting tensile strength prediction in FA + MS content with air. 

 

 

 

 

 

 

 

 

 

  

LM Algorithm Actual Data [MPa] Predicted Data [MPa]  
R2 

Mixing Codes 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

YM-SEG-03 1.65 3.85 4.40 4.40 5.25 5.55 5.85 1.79 3.17 4.32 4.35 4.58 5.39 5.72 0.9188 

MIX15A-04 1.35 2.85 3.55 3.80 4.25  - 4.80 1.32 2.85 3.58 3.75 4.24 -  4.79 0.9995 

YM-SEG-05 1.25 2.50 3.85 4.30 -  5.05 4.95 1.32 2.13 3.82 4.29  - 5.11  - 0.9730 

YM-SEG-08 2.05 2.80 3.90 4.60 4.70 - 6.40 2.19 2.44 3.97 4.56 4.67 4.97 6.07 0.9658 

MIX-15E-03 0.95 2.40 3.25 3.65 4.25 - 5.25 0.90 2.47 3.19 3.78 4.32  - 5.41 0.9946 

MIX-15AC-04 1.30 2.60 4.20 4.45 3.55 - 5.90 1.32 2.68 4.22 4.40  - 4.91 5.91 0.9767 

YM-SEG-10 - 2.60 3.00 3.80 4.05 5.30 5.30  - 2.58 3.02 3.80 4.07 5.30 -  0.9617 

YM-SEG-10A 1.55  - 3.20 3.15  - 5.35 5.55 0.45  - 3.40 4.06 4.12 5.61 5.65 0.7998 

YM-SEG-10E  - 2.35 3.20 3.45 4.65 5.20 5.30  - 2.38 3.38 4.05 4.11 5.68  - 0.8273 

MIX15-AC-03 0.55 2.05 3.30 3.75 3.95  - 5.15 0.57 2.06 3.21 3.75 3.83 4.00 5.32 0.9636 

C45-B25-425  - 1.50 2.20 3.05 3.95 4.15 4.75  - 1.86 2.29 2.95 3.38 3.87 4.54 0.8859 

C45-B25-400 0.20 2.65 3.65 3.50 3.70 4.25 5.75 0.13 2.90 3.62 -   - 4.09 5.73 0.9946 

C50-B22-460 2.80 3.70 3.95 4.90 5.25 5.35 5.55 2.81 3.53 3.90 4.91 5.07 5.32 5.56 0.9897 
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Table 5.65: The LM Algorithm for the splitting tensile strength prediction in GGBS content without air. 

 

 

 

 

 

 

 

LM Algorithm Actual Data [MPa] Predicted Data [MPa]  
R2 

Mixing Codes 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

C45-III-B20 0.25 1.20 2.70 3.25 4.95 4.20 6.55 0.48 0.77 2.00 2.73 3.43 4.43 4.97 0.7924 

YM-DAP-AC-03 0.55 1.15 2.30 2.75 3.70 4.05 5.15 0.55 0.90 2.15 2.32 3.31 4.31 4.92 0.9662 

MIX-30 0.20 0.70 1.35 1.75 2.70 3.80 4.05 0.39 0.93 1.51 1.92 2.86 3.84 4.15 0.9864 

MIX-30-03 1.10 2.55 2.75 3.25 3.80 3.90 4.00 0.66 1.42 2.10 2.24 3.33 4.37 4.40 0.4469 

MIX-30-BRT 0.40 1.70 2.50  - 3.90 5.00 6.05 0.59 1.41 2.43  - 3.56 5.01 5.64 0.9819 

MIX-30-07 0.40 1.25 2.05 2.60 3.40 4.00 4.35 0.33 1.14 1.75 2.09 3.01 3.95 4.17 0.9558 

MIX-34-BRT 0.65 2.05 2.60  - 3.30 4.15 5.25 0.46 1.79 2.11  - 3.14 3.87 5.07 0.9633 

MIX-32-03 0.70 2.85 3.25 3.90 4.70 5.45 5.90 0.56 1.41 2.09 2.61 3.54 4.58 4.99 0.5707 

MIX-32-CEN 0.30 0.95 1.65  - 2.70 3.20 3.30 0.37 0.79 2.25  - 3.07 4.71 5.47 0.0294 

MIX-32-CEN-OK 0.30 1.90 2.95  - 3.30 4.90 5.50 0.43 0.99 2.19  - 3.13 4.56 4.96 0.8993 

B70-380 0.15 0.45 0.80 1.00 2.30 3.20 4.00 0.21 0.67 1.27 1.53 2.23 3.47 4.06 0.9515 

B70-420 0.15 0.40 0.85 1.45 2.20 3.55 4.25 0.22 0.50 1.28 1.63 2.64 3.63 4.43 0.9688 

B47-440 0.10 1.00 1.85 2.35 3.40 4.90 -  0.18 0.72 1.42 2.21 2.96 4.96 -  0.9673 

B67-440  - 0.70  - 1.90 3.35 4.00 3.75 - 0.90  - 1.24 2.73 3.99 5.09 0.6632 

B67-440-001  -  - 1.00 1.55 2.55 3.35 4.70 -  - 1.01 1.34 2.36 3.57 5.48 0.9144 

B67-440-BEY  - 0.95 1.45 1.75 2.90 3.70 4.65 - 0.90 1.47 1.68 2.92 3.70 4.59 0.9988 
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Table 5.66: The LM Algorithm for the splitting tensile strength prediction in GGBS content with air. 

 

 

 

 

 

 

 

LM Algorithm Actual Data [MPa] Predicted Data [MPa]  
R2 

Mixing Codes 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

C45-III-B20 0.25 1.20 2.70  - 4.95 -  6.55 0.46 1.78 2.70  - 5.10 -  6.78 0.9833 

YM-DAP-AC-03 0.55 1.15 2.30  - 3.70 4.05 5.15 0.73 3.63 4.18  - 5.45 5.78 6.34 -0.0780 

MIX-30 0.20 0.70 1.35  - 2.70 3.80 -  0.03 1.00 1.89  - 2.17 3.91  - 0.9198 

MIX-30-03 1.10 2.55 2.75 3.25 3.80 3.90  - 0.20 2.04 2.68 3.51 3.52 5.14  - 0.4798 

MIX-30-BRT 0.40 1.70 2.50 2.65 3.90 5.00 6.05 0.49 2.04 2.66 3.13 3.59 4.86 5.67 0.9720 

MIX-30-07 0.40 1.25 2.05 2.60 3.40 4.00 4.35 0.47 1.16 1.82 2.12 2.44 3.97 4.30 0.9032 

MIX-34-BRT 0.65 2.05 2.60  - -  4.15 5.25 0.69 3.07 3.07  - -  4.21 5.41 0.8995 

MIX-32-03 0.70 2.85 3.25  - 4.70 5.45 5.90 0.63 2.96 3.59  - 4.79 5.58 5.64 0.9882 

MIX-32-CEN 0.30 0.95 1.65 1.95 2.70 3.20  - 0.45 1.58 2.20 2.35 3.67 4.19 - 0.5144 

MIX-32-CEN-OK 0.30 1.90 2.95  - 3.30 4.90  - 0.47 2.30 3.27   -  4.37 5.37 - 0.8586 

B70-380 0.15 0.45 0.80 1.00 2.30 3.20 4.00 0.25 0.47 0.72 0.83 2.37 3.22 3.74 0.9909 

B70-420 0.15  - 0.85 1.45 2.20 3.55 4.25 0.01  - 0.69 0.98 3.11 3.74 4.70 0.8942 

B47-440 0.10 1.00 1.85 2.35 3.40 4.90  - 0.26 1.15 1.73 2.32 4.38 5.12 -  0.9273 

B67-440 0.10 0.70 1.70 1.90 3.35 4.00 3.75 0.52 1.13 1.15 1.89 3.09 4.27 4.60 0.8913 

B67-440-001 0.10 0.70 1.00 1.55 2.55 3.35 4.70 0.19 0.63 1.11 1.15 2.77 3.33 4.73 0.9854 

B67-440-BEY 0.15 0.95 1.45 1.75 2.90 3.70 4.65 0.16 0.79 1.41 1.86 2.61 3.65 4.65 0.9918 
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Figure 5.79: Without air content, FA + MS added NN in LM for STS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.80: With air content, FA + MS added NN in LM for STS. 
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Figure 5.81: Without air content, GGBS added NN in LM for STS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.82: With air content, GGBS added NN in LM for STS. 



 

188 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.83: Without air content, FA + MS added results in LM for STS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.84: With air content, FA + MS added results in LM for STS. 
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Figure 5.85: Without air content, GGBS added results in LM for STS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.86: With air content, GGBS added results in LM for STS. 
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Figure 5.87: For air effect. FA + MS added results in LM for STS. 

 

 

Figure 5.88: For air effect. GGBS added results in LM for STS. 
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In the Table 5.67, for the modulus of elasticity, in both FA + MS and GGBS contents, 

the algorithm is constructed with the matrix designs, and statistical results. The term 

of the target represents the actual test result as well in other mechanical properties of 

the LM algorithm. The training, validation, test, and all mean the algorithm results 

revealed by the software for the model trials. In the Table 5.68, the Table 5.69, the 

Table 5.70, and the Table 5.71, with the actual data set, the predicted results are also 

enlisted for the modulus of elasticity with the R2 values for the accuracy checks.  

 Table 5.67: The LM Algorithm for the modulus of elasticity prediction. 

 

In the Table 5.67, by comparing with the R values revealed by the software, for the 

FA + MS content included samples with and without the air content, the results are 

said to be very appropriate. Moreover, for the MSE results, the predictions with and 

without the air content are comparable to each other. On the contrary, the GGBS 

content included sample prediction results are better than the FA + MS content 

included results, except the outputs in all class for without air content. 

Due to the algorithm for the estimation, without the air content in the FA + MS 

existence, the sample in MIX-15E-03 mixing code is lower resulted among the other 

R2 values. With the air content in the FA + MS existence, the same sample is lower 

among the R2 values, as well. However, this time, the same sample is better estimated. 

Content Input Target Output Air [%] ≈ Output Linear Model R MSE 

FA + MS 

[   ]13 X 10 [   ]13 X 7 [   ]13 X 7 0.00 

Training 1 X Target - 2.1e+02 0.98783 10729719.65782 

Validation 0.86 X Target + 7.8e+03 0.92356 71376391.11623 

Test 0.94 X Target + 2.8e+03 0.86432 106008730.36134 

All 0.97 X Target + 1.5e+03 0.95937 - 

[   ]13 X 10 [   ]13 X 7 [   ]13 X 7 > 0.00 

Training 1 X Target + 93 0.99514 4103059.75881 

Validation 0.95 X Target + 3.5e+03 0.92568 59510828.96048 

Test 0.97 X Target + 1.5e+03 0.91156 88512358.26314 

All 0.98 X Target + 9.1e+02 0.97026 - 

GGBS 

[   ]16 X 10 [   ]13 X 7 [   ]13 X 7 0.00 

Training 1 X Target + 9.8e+02 0.97721 26852298.36036 

Validation 1.2 X Target - 9.7e+02 0.9696 50059972.24791 

Test 1.6 X Target - 1.4e+03 0.97797 274018353.28903 

All 1.1 X Target + 1e+03 0.95587 - 

[   ]16 X 10 [   ]13 X 7 [   ]13 X 7 > 0.00 

Training 1.1 X Target + 4.8e+02 0.99413 10063692.39800 

Validation 0.95 X Target + 4.5e+03 0.97414 34672376.40111 

Test 1 X Target - 1.2e+03 0.91405 96826778.80878 

All 1 X Target + 8.7e+02 0.97808 - 
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So, in general, the LM algorithm works for all scenarios in the FA + MS content for 

the modulus of elasticity predictions. The same method is also followed for the GGBS 

existence in the concrete samples. Without the air content, the samples MIX32-CEN, 

B70-420, and B67-440-001 seem not to be operable in the results of R2. For the air 

effect, the sample in MIX30-03 mixing code is inconvenient for the R2 value. 

Especially the samples MIX32-CEN, B70-420, and B67-440-001 are in very high R2 

results currently. This shows that the algorithm may do not work for air absence model.  

In this light of the results, in the Figure 5.89, the Figure 5.90, the Figure 5.91, and the 

Figure 5.92, the NN frames are given constructed on the mixture design variables. The 

Figure 5.93, the Figure 5.94, the Figure 5.95, and the Figure 5.96, the linear 

correlations from the software are also revealed. Onto this, in the Figure 5.97, and the 

Figure 5.98, the actual and predicted results are trendlined. In this correlation, each 

concrete specimen modulus of elasticity behavior was checked for the accuracy of the 

algorithm in the data fitting planar to see if there was a negative deflection or not. At 

the end, without the air content in the GGBS existence, the samples in MIX-30-BRT, 

and MIX-32-CEN-OK mixing codes were seen in negative deflections in the fitting 

planar. With the air content, only the sample in MIX-32-03 mixing code was seen in 

negative deflection in the GGBS content. For the FA + MS content, in both air content 

cases, the results were not deflected in negative directions. That is why the algorithm 

is said to be safe for the modulus of elasticity prediction in the FA + MS content with 

and without air content. Rather than the FA + MS content, the GGBS content included 

algorithm results were less valid in all types of result classes given by the software. 
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Table 5.68: The LM Algorithm for the modulus of elasticity prediction in FA + MS content without air. 

 

 

 

 

 

 

 

 

 

 

 

LM Algorithm Actual Data [MPa] Predicted Data [MPa]  
R2 

Mixing Codes 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

YM-SEG-03 20000 36500 43000 49500 59000 62500 71500 19537 35824 42960 49762 59018 62555 71636 0.9996 

MIX15A-04 11500 27000 38500 42500 51000 -  64000 8221 21696 33872 42859 50040 - 69043 0.9484 

YM-SEG-05 9500 31000 42000 42000 56500 66500  - 19396 24772 35558 53100 61516 65214  - 0.8346 

YM-SEG-08 15500 34500 40000 47500 59500 64000  - 8626 27763 36387 47109 58216 74716  - 0.8583 

MIX-15E-03 6000 23500 31500  - 45000 52000  - 4094 25349 41672 - 54625 69074  - 0.6243 

MIX-15AC-04 11500 27500 40000  - 54000 60000 69500 9504 25957 42221 - 55709 57624 67089 0.9891 

YM-SEG-10  - 23500 33500 39000 50000 60500 69500  - 18634 31059 33088 51213 66307 69711 0.9330 

YM-SEG-10A 15500   33000 38500 49500 58500 66500 9696  - 32087 37059 52996 54940 77670 0.8910 

YM-SEG-10E  - 23500 29000  - 44000 53500 60500  - 23258 29936  - 43007 49648 61480 0.9821 

MIX15-AC-03 4000 22500 29500 35500 45000 51500  - 1680 22196 30543 36101 45339 60671 -  0.9367 

C45-B25-425  - 13000 25000 37000 46500 -  57500 -  11034 24055 36336 47180 -  57868 0.9953 

C45-B25-400 1000 24000 34500 40500 48000 58000 76000 4318 25224 33250 40876 47452 51505 73896 0.9825 

C50-B22-460 34500 49500 58500 61000 67500 73500 81000 34484 49297 58632 61385 68036 73641 80821 0.9996 
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Table 5.69: The LM Algorithm for the modulus of elasticity prediction in FA + MS content with air. 

 

 

 

 

 

 

 

 

 

 

  

LM Algorithm Actual Data [MPa] Predicted Data [MPa]  
R2 

Mixing Codes 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

YM-SEG-03 20000 36500 43000 49500 59000 62500 71500 19720 36652 42962 49481 59637 62181 72013 0.9995 

MIX15A-04 11500 27000 38500 42500 51000 -  64000 10979 27197 37301 40940 50123  - 61923 0.9945 

YM-SEG-05 9500 31000 42000 42000 56500 66500 73500 18608 27077 41771 48908 61138 63055 77863 0.9310 

YM-SEG-08 15500 34500 40000 47500 59500 64000 75500 15073 34511 39628 47234 58671 65932 74542 0.9977 

MIX-15E-03 6000 23500 31500 36000 45000 52000 59000 7712 32832 38110 43218 51644 64011 67806 0.7674 

MIX-15AC-04 11500 27500 40000 44500 54000 60000 69500 11531 26917 39902 44629 53724 61385 69785 0.9990 

YM-SEG-10  - 23500 33500 39000 50000 60500  - - 24590 26435 29609 41571 63859 - 0.7321 

YM-SEG-10A 15500  - 33000 38500 49500 58500 66500 10696  - 30635 33967 48234 62291 63726 0.9574 

YM-SEG-10E  - 23500 29000 31000 44000 53500 60500 - 15116 28715 32007 44925 59447 59933 0.9012 

MIX15-AC-03 4000 22500 29500 35500 45000 51500 54000 3826 22124 29927 36202 45306 51571 55234 0.9987 

C45-B25-425  - 13000 25000 37000 46500 52000 57500 - 11843 25385 37259 47134 52197 58050 0.9984 

C45-B25-400 1000 - 34500 40500 48000 -  76000 10146  - 34074 44321 57971 -  77195 0.9316 

C50-B22-460 34500 49500 58500 61000 67500 73500 81000 34497 49400 58337 60825 67518 73841 80773 0.9998 
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Table 5.70: The LM Algorithm for the modulus of elasticity prediction in GGBS content without air. 

 

 

 

 

 

LM Algorithm Actual Data [MPa] Predicted Data [MPa]  
R2 

Mixing Codes 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

C45-III-B20 2000 9500 24000 30500 51000 74500 86000 5378 14388 23287 27136 49733 78156 81430 0.9865 

YM-DAP-AC-

03 
3000 13000 21500 25000 37500 50000 -  3284 12040 15128 26752 40668 57313 -  0.9239 

MIX-30 1500 5500 12500 -  29000 36500 46500 1370 11341 19264 - 32667 37300 52029 0.9242 

MIX-30-03 7500 19500 24500 27500 35500 44000 50000 4536 18106 21289 27025 40690 50840 52220 0.9219 

MIX-30-BRT 3500 16500 25500 31500 46000 60500 70000 6059 18895 25893 38450 49628 78325 79088 0.8615 

MIX-30-07 3000 12500 19000 23000 32500 44000 50500 1273 14973 20948 24948 33358 49571 54478 0.9629 

MIX-34-BRT 4000 18500 26000  - 37000 49000 59000 5829 18398 25980 -  41432 61123 65498 0.8962 

MIX-32-03 6000 25500 33000 38500 47500 59000  - 4665 18670 24322 34105 44178 70246  - 0.8330 

MIX-32-CEN 2000 9000 14000 16000 24000 31500  - 2736 14812 17837 25053 34050 48413  - 0.0635 

MIX-32-CEN-

OK 
2500 15500 27500 31500 40000 50500  - 3147 16792 20312 34520 38062 60153  - 0.8912 

B70-380 1500 4000 8500 12000 25000 39000 50000 1569 6206 9803 11215 27095 41956 56792 0.9681 

B70-420 1000 3500 6500 10500 23500 41000 48000 2013 3389 12862 22859 38687 70330 80170 -0.0852 

B47-440 1500 7500 16500 23000 41500 61500 72500 2649 7362 16260 23637 41486 60634 73736 0.9991 

B67-440 1000 5500 13500 20000 35000 60000 72500 1127 4298 14554 19934 34315 59685 72072 0.9993 

B67-440-001  -  - 11000 16500 27000 44500 55500  -  - 15640 25983 44451 59414 82152 0.0426 

B67-440-BEY 1000 7500 15500 19000 35500 49500 62000 2204 4767 15500 17167 39956 46037 85060 0.8115 
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Table 5.71: The LM Algorithm for the modulus of elasticity prediction in GGBS content with air. 

LM Algorithm Actual Data [MPa] Predicted Data [MPa]  
R2 

Mixing Codes 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 0.5-Day 1-Day 2-Day 3-Day 7-Day 14-Day 28-Day 

C45-III-B20 2000 9500 24000 30500 51000 74500 86000 2326 11396 23976 33556 50357 76137 87252 0.9971 

YM-DAP-AC-03 3000 13000 21500 25000 37500 50000 59500 918 18435 26268 35881 38904 50344 70067 0.8817 

MIX-30 1500 5500 12500 16000 29000 36500 46500 1778 7354 13425 19746 28400 40027 50929 0.9696 

MIX-30-03 7500 19500 24500 27500  - 44000 50000 7878 21803 27172 36493 - 52653 59435 0.7926 

MIX-30-BRT 3500 16500 25500 - 46000 60500 70000 2826 16709 30836 -  41502 61466 71828 0.9843 

MIX-30-07 3000 12500 19000 23000 32500 44000 50500 3221 13549 19346 25323 32316 46177 52599 0.9909 

MIX-34-BRT 4000 18500 26000 -  37000 49000 59000 4100 18146 26254 -  36804 49494 58892 0.9998 

MIX-32-03 6000 25500 33000 38500 47500 59000 71000 6503 27185 34060 45591 46647 64981 77278 0.9534 

MIX-32-CEN 2000 9000 14000 16000 24000 31500 36500 2205 9898 14274 17656 24393 33661 38577 0.9859 

MIX-32-CEN-OK 2500 15500 27500 31500  - 50500 60000 2542 16826 28438 41674  - 57612 68545 0.8995 

B70-380 1500 4000 8500 12000 25000 39000 50000 1466 4909 6137 14877 25481 40373 53187 0.9870 

B70-420 1000 3500 6500 10500 23500 41000 48000 969 3742 6087 11554 23444 43246 48885 0.9966 

B47-440 1500 7500 16500 23000 41500 61500 72500 1669 9974 14491 27672 42807 62464 75573 0.9901 

B67-440 1000 5500 13500 20000 35000 60000 72500 2684 7650 16949 31226 34247 60496 65396 0.9567 

B67-440-001 500 7500 11000 16500 27000 44500 55500 564 7830 12141 20416 27980 48728 59424 0.9793 

B67-440-BEY 1000 7500  -  - 35500 -  62000 1464 19036  -  - 45179 -  67113 0.8924 
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Figure 5.89: Without air content, FA + MS added NN in LM for ME. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.90: With air content, FA + MS added NN in LM for ME. 
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Figure 5.91: Without air content, GGBS added NN in LM for ME. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.92 With air content, GGBS added NN in LM for ME. 
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Figure 5.93: Without air content, FA + MS added results in LM for ME. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.94: With air content, FA + MS added results in LM for ME. 
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Figure 5.95: Without air content, GGBS added results in LM for ME. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.96: With air content, GGBS added results in LM for ME. 
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Figure 5.97: For air effect, FA + MS added results in LM for ME. 

 

Figure 5.98: For air effect, GGBS added results in LM for ME. 
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6.  CONCLUSIONS AND RECOMMENDATIONS 

The main goal of this study is forecasting the mechanical properties of high strength 

concrete. Depending on the regression analysis models and machine learning 

algorithm, the laboratory test results were predicted and analyzed based on the 

concrete mixture designs. With the statistical parameters, all the estimated and 

analyzed results were also compared with the strength development results, the 

amounts of concrete mixture ingredients, and the proportions of the concrete mixture 

design materials for safe prediction purposes. 

In this thesis, there were three main methods used for presuming the mechanical 

properties of the concrete such as the univariate regression analysis, the multivariate 

regression analysis, and the machine learning algorithm. For each method, several 

types of regression equations, and an algorithm were conducted with the actual test 

results from the laboratory tests. In the univariate regression analysis, three types of 

regression models were studied for the compressive and splitting tensile strengths. For 

the modulus of elasticity, two different regression models were computed in the 

univariate regression analysis. Moreover, in the multivariate regression models, for the 

compressive strength, two diverse models were studied. For both splitting tensile 

strength, and modulus of elasticity, only one model in each property was used. In the 

machine learning process, just only the Levenberg-Marquardt algorithm was 

computed for all the mechanical properties.  

Besides, in the URA of the CS of the Model-1 depending on the concrete age, the 

regression model was spotted inappropriate for the negative deflections in the fitting 

planar of the actual data sets, even though the R2 results were in between 0.9427, and 

0.9999. At the same time, the strength development was also decreased between the 

day-7, and day-14 for the FA + MS added samples, although the GGBS included 

specimen estimations were suitable.  

Followingly, in the URA of the CS of the Model-2 (R2 between 0.8772 and 0.9996), 

and the Model-3 (R2 between 0.7700 and 0.9850), there was not any negative 

deflection on the curve fitting lines. That is why these models were accepted suitable 

for the strength estimation, though the Model-3 was respectively less coherent. 

Moreover, in the URA of the STS of the Model-1, the Model-2, and the Model-3, the 

data predictions were convenient depending on the concrete age without any pozzolan 



 

204 

classification. The R2 results of the Model-1 were in between 0.8345 and 0.9977, the 

R2 results of the Model-2 were resulted from 0.8309 to 0.9993, and lastly the R2 results 

of the Model-3 were calculated in between 0.8276 and 0.9990. Because of the absence 

of the negative deflections for all the estimated data sets, all the three models were 

come out safe for prediction methods. 

In addition to this, in the URA of the ME of the Model-1 and Model-2, the estimated 

results were satisfactory for goodness-of-fit purposes with respect to the concrete age. 

Because the ME results were in four and/or five digits, the errors (SSE and RMSE) 

also seemed in four and/or five digits, as well. Yet, this is not enough to say that 

predicted results are off the expectations. Differently, the second model was 

respectively detected incoherent for the FA + MS existence in the samples. To sum 

up, the first model of the ME prediction by the URA was safer than the second model. 

Onto the univariate regression analysis depending on the concrete age, the multivariate 

regression analysis was another method for the estimation of the mechanical properties 

of concrete. This time, according to the model proposed, the components of the 

concrete mixture designs were used for advanced analyses. In this light of way, for the 

MRA of the CS of the Model-1 was dependent on the W/C ratio, the amounts of fine 

and coarse aggregates, and the cement content. Even though the model was conducted 

for each concrete specimen’s actual test results, the model was also cumulatively 

investigated for the concrete ages with the pozzolan distinctions such as FA + MS, and 

GGBS. In this model, for the FA + MS content, the R2 results were in between 0.4471 

and 0.9145. For the GGBS substance, the R2 results were from 0.1498 to 0.5590, which 

were respectively lower than the results of FA + MS content added specimens for each 

concrete strength calculations. Rather than the URA models, in this model, the SSE 

and RMSE results were largened. And, with the generalized model equations for each 

concrete age, for the identical concrete samples, the R2 values were tested to find which 

strength development was out of the expectations. By this way, the samples in MIX-

30 (R2 = 0.1888), and MIX-32-CEN (R2 = 0.1693) mixing codes were very under the 

expectations for the safe model concept. 

For the MRA of the CS of the Model-2, the R2 results of the FA + MS included 

specimens were from 0.0035 to 0.0342, and the R2 results of the GGBS content 

included samples were in between 0.0557 and 0.3509 for each day computations. The 

general equations were put forth the model by using the actual data sets that each 
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concrete specimen was studied for an identical behavior analysis in the curve fitting 

planar. With respect to the Model-1, the Model-2 based on the cement, water, and air 

proportions was worse resulted in the data estimation. For the samples in C50-B22-

460 (FA + MS added), and MIX-32-CEN (GGBS added) mixing codes were even in 

negative R2 results, which were deniable. That is why, in general, although the curve 

fittings were seemed appropriate for the negative deflection concerns in the fitting 

planar, the Model-2 was enlightened inconvenient as regards the first model. 

For the MRA of the STS of the Model-1, the cement, water, and air content directed 

the analysis. For the FA + MS content addition, the R2 results were from 0.1827 to 

0.8828, and the GGBS added specimen R2 results were from 0.4457 and 0.8150 in 

each day calculations. By looking at each specimen’s data estimation curves, the 

GGBS added samples were also appropriate for this model. 

For the MRA of the ME of the Model-1, the R2 results of the FA + MS subsequent 

included specimens were in between -0.1102 and 0.1561, and the GGBS additive 

included samples were from 0.0788 to 0.6413 for each age of the concrete. 

Furthermore, SSE and RMSE results were in large scale numbers. With these results, 

it was understood that the model was not working on the samples that have the FA + 

MS material rather than the GGBS addition in generalized model equations. Besides, 

by using these equations, even though there was not any negative deflection in the 

fitting planar, the model was seemed off the expectations. 

Furthermore, the machine learning algorithm from Levenberg-Marquardt, the CS, 

STS, and ME properties were evaluated with the R values and MSE results by the 

software. For the correlations of the results, the training, validation, test, and all results 

were also revealed for further comments by the software.  

By using all types of materials from the concrete mixture designs, the air content was 

spotted effective on the CS predictions for the FA + MS content. Also, without the air 

content, the estimations were worsened except the training results of the algorithm. On 

the contrary, statistically, the FA + MS included prediction results were also worse 

than the GGBS content included sample prediction results without the air content.  

Following the same estimation steps, the STS predictions were revealed by using the 

LA algorithm R and MSE results from the software. For the FA + MS content included 

samples with and without the air content, the results were reached as appropriate. In 
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the MSE results, without thinking the air content effect in the FA + MS content 

included prediction results, the results were also very coherent for the expectations. 

The GGBS content included sample prediction results were represented worse than the 

FA + MS content included results, even though the results were undeniable in the 

fitting planar of each specimen result. 

Last of all, by comparing with the R and MSE results enlisted by the LA algorithm for 

the ME predictions, in the FA + MS content included specimens with and without the 

air content, the results were understood very suitable. Addition to this, for the MSE 

results, presuming the results with and without the air content were comparable to each 

other. However, the GGBS content included sample estimation results were better than 

the FA + MS content included results, except the outputs in all classes without the air 

content. 

Depending on these statistical results in this thesis, for any future investigation and/or 

analysis, the conclusions can followingly be illustrated: 

1) By using the concrete age, the fraction power regression (Model-1) for the 

URA, the estimated results of the CS are not appropriate in contrast with the 

logarithmic regression (Model-2), and power regression (Model-3) results. 

Because, in each curve fitting planar for each concrete specimen, the Model-1 

deflects in negative ways especially between the day-7 and day-14. And the 

strength development results are decreased for the same ages. Even though the 

SSE and RMSE results from the calculations are highly limited, and not 

exceeding the expectations, according to the natural behavior of the concrete 

for the strength development process, the compressive strength is wished to be 

increased as the time goes by. However, in the Model-1, this is an opposite 

case in between the day-7 and day-14, especially for the FA + MS content 

included specimens. That is why, the Model-1 is not suggested to be use for 

data prediction in the NWC made of FA + MS additives. 

2) In the Model-1 for the URA of the CS estimations in the FA + MS existence, 

the W/C ratio is detected more effective than the W/B ratio. Moreover, the 

CA/A ratio is published very effective on data prediction than the FA/A ratio. 

So, for choosing an appropriate binder, the use of cement comes forward rather 

than the use of FA + MS ingredient. Also, the amount of fine aggregate is more 
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convenient than the amount of coarse aggregate. The best data prediction with 

respect to the R² results corresponds to the sample in YM-SEG-10A mixing 

code. The estimated result of this sample is also highly dependable for the 

curve fitting. That is why, depending on the concrete age, its mixture design is 

perfectly fine to use in real construction works. On the contrary, for the same 

model conditions, the worst data prediction corresponds to the sample that has 

FA + MS material in YM-SEG-05 mixing code. Although the estimated result 

of this sample is numerically suitable, in the fitting planar, it negatively deflects 

in between the day-7 and day-14. That is why, depending on the concrete age, 

the model is not safe for further investigations. For the maximum R2 result, the 

amount of CS and NS are very close to each other. In this light of result, there 

is not exact evidence for the CS and NS use effects for the data presuming. 

Besides, the fine aggregate has no power on the maximum R2 result. In 

following, [(CS) - (NS)] results decrease the data estimation potential for the 

compressive strength. Besides, when the difference in between NO:1 Agg., and 

NO:2 Agg. gets smaller, the R² result decreases in the data prediction for the 

compressive strength. Also, for the maximum R2 result, the maximum amount 

of MS is 50.00 kg/m3. But for only the fly ash content, there is no sign of an 

exact amount and/or proportion use in the mixture designs. Further, like the 

high amount of fly ash, the high amount of cement decreases the data 

forecasting success which limits the cement use for the strength gaining. And, 

for both minimum and maximum R2 values, the cement type is CEMI 42.5. 

That is why, the cement type cannot be evaluated in these results. 

3) In the Model-1 for the URA of the CS estimations in the GGBS addition, the 

minimum W/C ratio is 0.31 and the minimum W/B ratio is 0.35 for the 

maximum R² result. Intercalarily, [(W/C) - (W/B)] result of the maximum R² 

result is greater than the minimum R² result. Also, while [(CA/A) - (FA/A)] 

result gets higher, the R² result increases which means the CA/A ratio is 

convenient on the data prediction with respect to the FA/A ratio. Addition to 

this, the CA/A ratio is 0.80, and the FA/A is 0.20. Moreover, the amounts of 

fine aggregates seem ineffective on the maximum R² value. And the NS 

amount affects the strength prediction in a good manner. The higher amounts 

of NO:0 Agg., NO:1 Agg., and NO:2 Agg. make the R² results higher. 
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Especially for the NO:0 Agg., it is necessary for a well data forecasting. For 

the maximum R² value, the amount of cement [114.00 kg/m3], No:0 Agg. 

[486.00 kg/m3], CS [0.00 kg/m3], and NS [395.00 kg/m3], used in the mixture 

designs are the minimum. For the best data presuming, the amount of GGBS 

is measured 266.00 kg/m3. In the highest R² result, CEMI 52.5N type cement, 

and in the lowest R² result, CEMIII 32.5 type cement are clearly represented. 

That is why the cement type is important for the strength development in this 

model. In general aspect of the Model-1 in the URA of the CS estimations, the 

FA + MS ingredient causes higher compressive strength prediction results than 

the GGBS presence actions with respect to the concrete age. And there is no 

strong sign of use of water and superplasticizer effects on the strength 

predictions. By following the same logic, in the Model-2 for the URA of the 

CS estimations, the logarithmic regression is relatively fine and safe for 

predicting the compressive strength except the day-0.5 for the samples that 

have FA + MS content in C45-III-B20, MIX-30, B70-380, B70-420, B47-440, 

B67-440, B67-440-001, and B67-440-BEY mixing codes. 

4) In the Model-2 for the URA of the CS estimations for the FA + MS ingredient, 

the W/C ratio is accurate than the W/B ratio for data prediction like in the first 

model. Also, the CA/A ratio influences the data prediction in a satisfactory 

manner with respect to the FA/A ratio as in the Model-1. The best predicted 

result is from the same concrete sample. However, for the worst estimated 

results is for the specimen in MIX-15-AC-03 code. That is why MIX-15-AC-

03 is to be thought to be not used in construction works depending on this 

model for its mixture design. Also, [(CS) - (NS)] of the minimum R2 result is 

greater than [(CS) - (NS)] of the maximum R2 result. [(NO:1 Agg.) - (NO:2 

Agg.)] of the minimum R2 is also greater than [(NO:1 Agg.) - (NO:2 Agg.)] of 

the maximum R2 result. Furthermore, the gap between the FA and MS causes 

decreasing the R2 value. That is why the use of the FA and MS may be close 

to each other in terms of the unit weight. Moreover, whether the amounts of 

the cement increase, the R2 results increase as well. For the minimum R² result, 

the difference between NO:1 Agg., and NO:2 Agg. is higher when the 

maximum R² is resulted. The maximum amount of MS is 50.00 kg/m3 for the 

best R² result. The minimum FA theme is 30.00 kg/m3, and the minimum water 
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existence is 102,00 kg/m3 for the worst R² result. Besides, the higher amount 

of cement causes increasing in the data forecasting potential that works for the 

cement use at the upper limit for the strength gaining. Like in the first model, 

the type of cement is CEMI 42.5 for both the minimum and maximum R² 

results. That is why the cement type is out of the concerns for this model. 

5) In the Model-2 for the URA of the CS estimations for the GGBS ingredient, 

[(W/C) – (W/B)] of the minimum R² is higher than [(W/C) – (W/B)] of the 

maximum R² result. The maximum W/C ratio is figured 1.11 out for the 

minimum R² result. As a binder material, there is no evidence of the GGBS 

effects on the compressive strength estimation. The CA/A ratio is dominant on 

the data prediction rather than the FA/A ratio. The model also signifies that 

[(NS) - (CS)] of the maximum R² result is less than [(NS) - (CS)] of the 

minimum R² result. Additionally, the amounts of natural sand may be effective 

on the strength prediction. For some specimens, NO:0 Agg., NO:1 Agg., and 

NO:2 Agg. amounts dramatically increase the R² results. At the maximum R² 

result, the NO:0 Agg., NO:1 Agg., and NO:2 Agg. amounts are the highest. 

For the minimum R² value, the amount of crushed sand is the minimum. 

Moreover, at the maximum R² result, NO:0 Agg. is zero. NO:1 Agg. is 909.00 

kg/m3, and NO:2 Agg. is also zero. That is why, as coarse aggregate, only NO:1 

Agg. comes forward for the best data fitting in this model. In addition to this, 

the GGBS content decreases the strength prediction values of the concrete for 

some specimens. That is why, the effects of GGBS content are not to be said 

exact in this model and these mixture designs. Continuously, for the maximum 

R² result, the use of cement has positive effects on the strength developments. 

On the other hand, at the minimum R² result, the GGBS is 294.00 kg/m3. In 

this model, for the highest R² result, CEMIII 32.5 type cement, and for the 

lowest R² result, CEMI 52.5N type cement are come out. That is why type of 

cement is important for best data fitting purposes. Like in the first model, the 

FA + MS ingredient support the higher compressive strength prediction results 

than the GGBS content does with respect to the concrete age. 

6) In the Model-3 for the URA of the CS estimations, the same methods are 

followed for the results from the regression analysis. In the existence of the FA 

+ MS content of the model, the prediction of the compressive strength has more 
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errors from the actual data sets on the fitting planar. Besides, the results of the 

Model-3 are less satisfying than the Model-1 and Model-2 set forth in the FA 

+ MS content. On the contrary, the Model-3 seems safe to predict the 

compressive strength of the concrete because of absence of negative 

deflections effects in the data fittings.  

7) In the Model-3 for the URA of the CS estimations for the FA + MS ingredient, 

[(W/C) - (W/B)] of the maximum R² result is equal to [(W/C) - (W/B)] of the 

minimum R² result. Moreover, the CA/A ratio impacts the data estimation with 

respect to the FA/A ratio. Furthermore, the CA/A ratio is 0.61, and the FA/A 

ratio is 0.39 for the maximum R² result. Especially, when the R² result is in 

increasing, the W/C and W/B ratios do not dramatically change or neither the 

FA/A nor CA/A ratios are in increasing. Also, [(CS) - (NS)] of the minimum 

R2 result is greater than [(CS) - (NS)] of the maximum R2 result. And the 

amount of NO:1 Agg., and NO:2 Agg. are the same for the maximum R2 result 

which means there is no major impacts on the maximum R2 result. Addition to 

this, [(NO:1 Agg.) - (NO:2 Agg.)] of the minimum R2 result is greater than 

[(NO:1 Agg.) - (NO:2 Agg.)] of the maximum R2 result. The gap between the 

FA and MS materials decreases the R2 result. Whether the amounts of cement 

are in increasing, the R2 result increases as well in this model. And the 

maximum amount of MS is 50.00 kg/m3 for the highest-level R² result. In 

contrast with the maximized amount of MS, the minimum FA content is 30,00 

kg/m3, and the minimum water content is 102.00 kg/m3 for the lowest-level R² 

result. At the end, the highest, and the lowest R² results are included CEMI 

42.5 type of cement use. Because of the identical type of cement use, the 

cement effect is out of the comparison. 

8) In the Model-3 for the URA of the CS estimations for the GGBS ingredient, 

[(W/C) – (W/B)] of the minimum R² result is less than [(W/C) – (W/B)] of the 

maximum R² result. Also, the W/C ratio is equal to the W/B ratio in only the 

minimum R² result. Because of use of the GGBS substance, it cannot be 

accepted as an influencer on the compressive strength development, even 

though the GGBS is a binder material. While [(CA/A) - (FA/A)] result gets 

higher, the R² result decreases which means the CA/A ratio is more operative 

on the data estimation as regards the FA/A ratio. Also, the FA/A ratio is 0.80 
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and the CA/A ratio is 0.20 for the maximum R² result. And [(NS) - (CS)] of 

the maximum R² result is greater than [(NS) - (CS)] of the minimum R² result. 

On the other hand, the amounts of natural sand may be penetrating on the 

strength prediction. The crushed sand is zero for the minimum R². At the 

maximum R² result, NO:0 Agg., NO:1 Agg., and NO:2 Agg. amounts are the 

nearest. For some specimens’ R² results, NO:0 Agg., NO:1 Agg., and NO:2 

Agg. amounts get much more. However, this does not help for a general 

understanding of the use of the GGBS content. Also, there is not strong sign of 

the effects of the water and admixtures as superplasticizers. Additionally, for 

the maximum R² result, NS is 0.00 kg/m3, cement is 114.00 kg/m3. NO:0 Agg. 

is maximized with 486.00 kg/m3. At the maximum R² result, the GGBS content 

is 266.00 kg/m3. For the lowest R² result (MIX-32-CEN-OK), CEMIII 32.5 

type cement, and for the highest R² result (B370-80), CEMI 52.5N type cement 

are put forth. Lastly the strength estimations for the samples including the FA 

+ MS theme are not consistent rather than the GGBS addition. 

9) In the URA of the STS estimations, the power regression (Model-1), 

logarithmic regression (Model-2), and fraction regression (Model-3) were 

studied based on the concrete age. For the FA + MS ingredient in the Model-

1, predicting the splitting tensile strength has less errors from the actual data 

sets on the curve fittings. The model also comes out safe to predict the splitting 

tensile strength of the concrete because of no negative deflection effects in the 

strength developments. 

10) In the Model-1 for the URA of the STS estimations for the FA + MS ingredient, 

[(W/C) - (W/B)] of the maximum R² result is equal to [(W/C) - (W/B)] of the 

minimum R² result. While [(CA/A) - (FA/A)] result gets higher, the R² result 

also increases that the CA/A ratio has more potential on the data prediction in 

contrast with the FA/A ratio. Also, [(NS) - (CS)] of the minimum R2 result is 

less than [(NS) - (CS)] of the maximum R2 result. And [(NO:1 Agg.) - (NO:2 

Agg.)] of the minimum R2 result is less than [(NO:1 Agg.) - (NO:2 Agg.)] of 

the maximum R2 result, as well. Besides, [(FA) - (MS)] result of the minimum 

R2 result, and [(FA) - (MS)]  of the maximum R2  result are the same. At that 

time, the amounts of cement and water are also the same for both. The highest 

and lowest R² values have an effect of CEMI 42.5 type of cement use. Because 
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of that, the type of cement cannot be evaluated for the strength prediction 

purposes. Moreover, the Model-1 estimates that [(W/C) – (W/B)] of the 

minimum R² result is less than [(W/C) – (W/B)] of the maximum R² result. 

Followingly, the maximum W/B ratio is found 0.31 for the maximum R² value, 

and there is not enough proof of the GGBS effects on the splitting tensile 

strength estimation. While [(CA/A) - (FA/A)] result gets higher, the R² result 

increases which means the CA/A ratio is dependable on the data prediction due 

to the FA/A ratio. Furthermore, the water and admixture contents are 

ineffective on the strength prediction in terms of R². 

11) In the Model-1 for the URA of the STS estimations for the GGBS ingredient, 

the Model-1 expresses that [(NS) - (CS)] of the maximum R² result is greater 

than [(NS) - (CS)] of the minimum R² result. The results also prove that the 

amounts of natural sand force the prediction in the positive way of the strength 

development. Even though for some specimens, NO:0 Agg., NO:1 Agg., and 

NO:2 Agg. amounts continuously increase the R² results, there is mistakable 

evidence of the coarse aggregate use effects in the model. The amount of water, 

and cement of the minimum R² result are greater than the maximum R² has. In 

addition to this, for the highest R² result, CEMI 52.5N type cement, and for the 

lowest R² result, CEMIII BS type cement are figured out. In general, it is 

exactly clear that the FA + MS material heads the higher splitting tensile 

strength prediction results than the GGBS content does. 

12) In the Model-2 for the URA of the STS estimations for the FA + MS ingredient, 

predicting the splitting tensile strength has less SSE and RMSE results from 

the actual data sets on the fitting planar. Also, the model results are satisfying, 

and the model occurs safe to predict the splitting tensile strength of the concrete 

because of no negative deflection effects in the strength development. 

Moreover, the Model-2 offers that [(W/C) - (W/B)] of the maximum R² result 

is equal to [(W/C) - (W/B)] of the minimum R² result as well in the Model-1. 

While [(CA/A) - (FA/A)] result gets higher, the R² result also increases which 

means the CA/A ratio is more accurate on the data prediction with respect to 

the FA/A ratio. The model also explains that [(NS) - (CS)] of the minimum R2 

result is greater than [(NS) - (CS)] of the maximum R2 result. [(NO:1 Agg.) - 

(NO:2 Agg.)] of the minimum R2 result is less than [(NO:1 Agg.) - (NO:2 
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Agg.)] of the maximum R2 result. The amounts of cement and water of the 

minimum and maximum R2 are the same. The minimized amount of NO:1 Agg. 

is 402.00 kg/m3 for the minimum R2 result. Besides the cement types are CEMI 

42.5N for both the lowest, and the highest R2 result which means that the 

cement type is not a focus for the strength prediction in this model. 

13) In the Model-2 for the URA of the STS estimations for the GGBS ingredient, 

the Model-2 pictures that [(W/C) – (W/B)] of the minimum R² result is less 

than [(W/C) – (W/B)] of the maximum R² result. On the other hand, there is no 

open clue of the GGBS effects on the splitting tensile strength estimation. 

While [(CA/A) - (FA/A)] result gets higher, the R² result decreases which 

means that the CA/A ratio is impactful on the data fitting rather than the FA/A 

ratio. Further, [(NS) - (CS)] of the maximum R² result is greater than [(NS) - 

(CS)] of the minimum R² result. This inference shows that the amounts of 

natural sand imply the strength prediction. For some specimens, NO:0 Agg., 

NO:1 Agg., and NO:2 Agg. amounts highly increase the R² results. Moreover, 

the amount of water and cement of the minimum R² result are opposite. When 

the amount of cement is increased, the prediction is resulted well-predicted. 

Yet the amount of water in increasing causes worse estimation results. For the 

highest R² result, CEMIII 32.5 type cement, and for the lowest R² result, 

CEMIII BS type cement are figured out. That is why the cement type is 

important for the data estimation in this model. Finally, the GGBS substance 

affects the splitting tensile strength prediction results in a decreasing manner 

rather than the FA + MS theme does. 

14) In the Model-3 for the URA of the STS estimations for the FA + MS ingredient, 

the errors occurred by the calculations are in the expectations. With no negative 

deflections in the strength development curves, the model sets forth safe to 

predict the splitting tensile strength of the concrete. The model also evinces 

that [(W/C) - (W/B)] of the maximum R² result is equal to [(W/C) - (W/B)] of 

the minimum R² result like in the Model-1 and Model-2. Onto this, while 

[(CA/A) - (FA/A)] result gets higher, the R² result increases that the CA/A ratio 

is effective on the data estimation rather than the FA/A ratio. The minimum 

CA/A ratio is 0.46, and the maximum FAA ratio is 0.54 for the minimum R² 

value. And the model argues that [(NS) - (CS)] of the minimum R2 is greater 
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than [(NS) - (CS)] of the maximum R2. [(NO:1 Agg.) - (NO:2 Agg.)] of the 

minimum R2 result is less than [(NO:1 Agg.) - (NO:2 Agg.)] of the maximum 

R2 result as well in the previous models. Besides, [(FA) - (MS)] result and the 

amounts of cement and water of the minimum R2 are less than the maximum 

R2 occurred. However, the use of admixtures and water seem like not 

influencing the data forecasting. Moreover, the minimum amount of NO:1 

Agg. is 402.00 kg/m3 for the minimum R2 result like in the second model. 

There is also not the sign of use of specific amount of FA + MS for the low 

and/or high prediction results on the splitting tensile strength. Additionally, the 

cement types are CEMI 42.5N for both the lowest and highest R2 values which 

means the cement type is out of any comparison for the strength prediction in 

this model. 

15) In the Model-3 for the URA of the STS estimations for the GGBS ingredient,  

[(W/C) – (W/B)] of the minimum R² result is less than [(W/C) – (W/B)] of the 

maximum R² result, as well in the last models. Addition to this, there is no 

overt sign of the GGBS effects on the splitting tensile strength prediction, even 

though it is a binder substance like the cement. While [(CA/A) - (FA/A)] result 

gets higher, the R² result is increased which means that the CA/A ratio effect 

is acceptable on the data estimation in use of the FA/A ratio. Also, the 

minimum FA/A ratio (0.20), and the maximum CA/A ratio (0.80) are figured 

out for the highest R² value. The cement types attract the attention for in B70-

380 (CEMI 52.5N), and C45-III-B20 (CEMIII BS) mixing codes. For the 

samples GGBS resultants, [(NS) - (CS)] of the maximum R² result is greater 

than [(NS) - (CS)] of the minimum R² result like in the previous models. 

Besides, the amounts of natural sand impose the strength prediction. For some 

specimens, NO:0 Agg., NO:1 Agg., and NO:2 Agg. amounts effectively 

increase the R² value. On the other side, the amounts of water and cement of 

the minimum R² result are greater than the maximum R² result has. When the 

amount of cement is increased, the prediction is worsened. Like the amount of 

cement, the amount of water in increasing results worse predictions. Else, there 

are some samples made of the GGBS subsequent for decreasing the strength 

results of the concrete in forecasting. For the maximum R² result, the minimum 

cement content is 114.00 kg/m3, and the maximum amount of NO:0 Agg. is 
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486.00 kg/m3. Meanwhile, the minimum amount of CS material is zero, and 

the minimum amount of NS content is 395.00 kg/m3. At the end, the FA + MS 

addition is more effective on the higher splitting tensile strength estimation 

results than the GGBS material is. The model also comes out safe to predict 

the splitting tensile strength of the concrete because of no negative deflection 

effects in the strength developments. 

16) In the Model-1 for the URA of the ME estimations, the power regression 

(Model-1) and fraction power regression (Model-2) were computed depending 

on the concrete age. For the FA + MS substance in the Model-1, predicting the 

modulus of elasticity occurs four-digit or five-digit in SSE and RMSE results, 

which do not mean the result are not suitable. Also, the correlation results 

absolutely show that the results of the model are satisfying. On the other hand, 

the FA + MS included sample results are respectively less than GGBS included 

sample results. The model also computes that [(W/C) - (W/B)] of the maximum 

R² result is equal to [(W/C) - (W/B)] of the minimum R² result as well in the 

splitting tensile strength predictions. Besides, while [(CA/A) - (FA/A)] result 

gets higher, the R² result decreases that the FA/A ratio is more efficient on the 

data prediction with respect to the CA/A ratio. The model additionally shows 

that [(NS) - (CS)] of the minimum R2 result is less than [(NS) - (CS)] of the 

maximum R2 result. Also [(NO:1 Agg.) - (NO:2 Agg.)] of the minimum R2 

result is greater than [(NO:1 Agg.) - (NO:2 Agg.)] of the maximum R2 result. 

Further, [(FA) - (MS)] result of the minimum R2 is less than the maximum R2 

result. The amounts of water and cement for the minimum R² result are greater 

than the maximum R² has. When the amount of cement is in increasing, the 

prediction is in decreasing. Also, it is ineffective to use admixtures in this 

model for the elastic modulus development. Furthermore, the cement types are 

CEMI 42,5N for both the lowest and highest R2 values that the cement type is 

not a preference for the elastic modulus development in this model. 

Followingly, the model portraits that [(W/C) – (W/B)] of the minimum R² 

result is equal to [(W/C) – (W/B)] of the maximum R² result. Nevertheless, 

there is an inexactness of the GGBS effects on the modulus of elasticity 

prediction. And while [(FA/A) - (CA/A)] result gets higher, the R² result 

increases that the FA/A ratio is more raid on the data predicting because of the 



 

216 

CA/A ratio. For the minimum R² result, the minimum FA/A ratio is 0.54, and 

the minimum CA/A ratio is 0.46. 

17) In the Model-1 for the URA of the ME estimations for the GGBS ingredient, 

[(NS) - (CS)] of the maximum R² result is less than [(NS) - (CS)] of the 

minimum R² result. This leads that the amounts of natural sand imply the 

elastic modulus calculations. For some specimens, NO:0 Agg., NO:1 Agg., and 

NO:2 Agg. amounts remarkably increase the R² result as in the previous 

mechanical property models and increase the elastic modulus prediction results 

of the concrete. Else, the amount of water in increasing causes well predictions. 

For the highest R² result, CEMIII BS type cement is for both lowest and highest 

R² result. According to the correlations, the MS material affects the higher 

modulus of elasticity estimation results than GGBS content does 

18) In the Model-2 for the URA of the ME estimations for the FA + MS ingredient, 

although the SSE and RMSE results are very high, it does not mean that very 

high results are very off the data predictions. As the elastic modulus test results 

that are used in the regression model are in four and five digits. The correlation 

shows that the results of the model are satisfying, and safe for data forecasting 

without negative deflections in data fitting planar, even though the FA + MS 

contented sample results are respectively lower in contrast with the first model. 

The Model-2 displays that [(W/C) - (W/B)] of the maximum R² result is equal 

to [(W/C) - (W/B)] of the minimum R² result. While [(CA/A) - (FA/A)] result 

gets higher, the R² result also decreases which means the CA/A ratio is 

operative on the data prediction than the FA/A ratio. The amounts of water and 

cement for the minimum R² result are greater than the maximum R² water and 

cement contents. When the amount of cement is in increasing, the prediction is 

in decreasing. It is also an impression that using admixtures in this model does 

not dramatically change the prediction results. On the side, the cement types 

are CEMI 42.5N for both the lowest and highest R2 values that the cement type 

could not be interpreted for the elastic modulus development in this model. 

Further, [(NS) - (CS)] of the maximum R² result is greater than [(NS) - (CS)] 

of the minimum R² result. Else, [(NO:1 Agg.) - (NO:2 Agg.)] of the maximum 

R² result is less than [(NO:1 Agg.) - (NO:2 Agg.)] of the minimum R² value. 

Moreover, the minimum NS content is 304.00 kg/m3, and the maximum CS 
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material is 542.00 kg/m3 for the minimum R² result. The minimum water 

content is 102.00 kg/m3, the minimum FA substance is 50.00 kg/m3, and the 

minimum MS ingredient is 30.00 kg/m3 for the maximum R² result in this 

model.  

19) In the Model-2 for the URA of the ME estimations for the GGBS ingredient, 

the model describes that [(W/C) – (W/B)] of the minimum R² is less than 

[(W/C) – (W/B)] of the maximum R² result. There are also no effects of the 

GGBS use on the modulus of elasticity estimation in this model, even though 

GGBS is a combining material. While [(CA/A) - (FA/A)] result gets higher, 

the R² result increases which means that the CA/A ratio is more incursive on 

the data prediction because of the FA/A ratio. Onto this, for the minimum R² 

result, the maximum FA/A ratio is 0.54, and the minimum CA/A ratio is 0.46. 

For the maximum R² result, the FA/A ratio is 0.20, and the minimum CA/A 

ratio is 0.80. Addition to this, [(NS) - (CS)] of the maximum R² result is greater 

than [(NS) - (CS)] of the minimum R² result. The amounts of natural sand 

impose the elastic modulus prediction. Also, for some specimens, NO:0 Agg., 

NO:1 Agg., and NO:2 Agg. amounts increase the R² result pretty much. At the 

same time, the amount of water in increasing causes worse results. However, 

for some specimens composed of the GGBS substance decrease the elastic 

modulus estimation potential of the concrete. For the highest R² result, CEMI 

52.5N type cement, and for the lowest R² value, CEMIII 32.5 type cement are 

decisive. That is why the cement type is decisive. Followingly, the maximum 

R² result has the minimum cement (114.00 kg/m3), minimum CS (0.00 kg/m3), 

minimum NS (395.00 kg/m3) and maximum NO:0 Agg. (486.00 kg/m3) 

contents with the GGBS 266.00 kg/m3 substance. As well in the previous 

models, the FA + MS content influences the higher modulus of elasticity 

prediction results than GGBS content affects. 

20) In a different manner, rather than the concrete age dependent models, the 

multivariate regression analysis was chosen for detailed analysis to understand 

how the concrete mixture ingredients were effective on the strength prediction 

in this study. For the compressive strength predictions, linear regression 

(Model-1) and power regression (Model-2) were studied depending on the 

amounts and proportions of the contents from the concrete mixture designs. In 
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this perspective, the MRA of the CS predictions for the FA + MS ingredient, 

the correlations clearly demonstrate that the results of the model are satisfying, 

and the model comes forward safe to presume the compressive strength of the 

concrete because of no negative deflection effects in the data fittings. The 

equation coefficients were also studied. In these studies, the more R2 result is 

decreased, the more equation coefficient that intersects the predicted strengths 

is decreased for all ages, except the day-1, and day-2. Also, for the FA, CA and 

C contents, the results of the models seem parallel to the each. And the effects 

of these contents are antipoles of R2 results at days 0.5, 14, and 28 which means 

the compressive strength estimation gets worsen in the results. In the day-1, 

day-2, day-14, and day-28, the W/C ratio coefficient also operates the model 

in the opposite way to the R2 value which means higher effects of the W/C ratio 

decrease the data prediction potential. 

21) In the Model-1 for the MRA of the CS estimations for the GGBS ingredient, 

the equation coefficient does not behave how the R2 result shows. Between the 

day-1 and day-3; day-7,and day-14, the strength development of the 

compressive strength not well-estimated. Out of the day-2 and day-28, the W/C 

ratio impacts are parallel to the predicted results that the W/C ratio works well 

for the less amounts of cement content. For the FA and CA contents, except 

the day-2 and day-28, the predicted results are decreased. Yet for the day-28, 

the result can be ignored because of the very high expectations. In the binder 

content, the cement influences the results. The more it is used, the more the 

results get better. Finally, the FA + MS content heads the higher compressive 

strength prediction results than GGBS content does. 

22) In the Model-2 for the MRA of the CS estimations for the FA + MS ingredient, 

the model brings the question marks to the mind for the use of itself due to the 

very low results of the concrete age dependent analysis in terms of R2, R2adj, 

SSE, and RMSE results. However, the linear correlation of the predicted results 

shows that the model results are satisfying, and there are no negative 

deflections in the strength development which means the model is safe to be 

used. Because of this contradiction, another correlation for the material impacts 

in the compressive strength prediction for the FA + MS content by using the 

coefficients of the model equation was studied. Currently, yet, no direct 



 

219 

correlation between the coefficient K, and n with the R2 result is subjected (K 

and n are from the Table 2.6). As the empirical coefficient K seems reverse to 

the R2 result in the days between 0.5 and 1; and 3 and 14. Hereupon, the other 

empirical coefficient n has no effect on the data prediction. The lowest amount 

of air content (0.26%) causes the lowest well-fitting predictions on the real data 

set in C45-B25-425 mixing code. For the highest amount of air content (3.80%) 

does not mean the highest well-fitting estimation on the actual data values, 

either. Also, the minimum amount of cement content (0.12%) means the 

maximum R2 result for the sample in MIX-15AC-04 mixing code. And the 

minimum water content (0.04%) leads the highest well-fitting forecasting for 

the sample in MIX-15AC-04 mixing code. 

23) In the Model-2 for the MRA of the CS estimations for the GGBS ingredient, 

the empirical coefficient K seems opposite to the R2 results between the day-2 

and day-7. The other empirical coefficient n seems opposite to the R2 value at 

the ages between the day-0.5 and day-1; and day-7 and day-28 on the data 

estimation. The lowest amount of air content (1.06%) causes the best goodness-

of-fit on the real data set in B67-440-BEY mixing code. Albeit, for the highest 

amount of air content (5.29%) does not mean the worst well-fitting predicted 

on the actual data values. Together with, the maximum amount of cement 

content (0.17%) means the minimum R2 value for the sample in MIX-CEN-03 

mixing code. The use of the water effect cannot be understood in this model 

because of it is linear behavior on the results. The higher compressive strength 

prediction results are from the FA + MS content. 

24) For the splitting tensile strength predictions, antilogarithmic linear regression 

(Model-1) was studied depending on the amounts and proportions of the 

contents from the concrete mixture designs. In this perspective, in the Model-

1, the MRA of the STS predictions for the FA + MS ingredient, all the data 

estimations are come out in the expectations. The linear correlation imposes 

that the model results are satisfactory, and there are no negative deflections in 

the strength development which means the model is safe to be used. And it is 

discovered that the equation coefficient is appropriate except the ages between 

the 0.5-day and 1-day; and 2-day and 3-day. Moreover, the amount of water in 

the proportion is effective in between day-0.5 and day-1; and day-7 and day-
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28. The cement proportion increases the R2 result for all ages, even though the 

R2 result decreases at the same time for some ages. That is why the cement 

effect cannot be expressed well in this model. For the air content, the model 

seems parallel to the ages between the day 0.5 and 3; and 7 and 28. The model 

also puts forth the air effect in the analysis. Because while the air content 

decreases, the model estimation also decreases. Furthermore, for the minimum 

R2 result, the cement proportion is also minimum, the water proportion is 

maximum. Besides, for the maximum R2 value, the air content is neither 

maximum nor minimum. In this model, there is no other correlation for the 

maximum R2 result. 

25) In the Model-1, the MRA of the STS predictions for the GGBS ingredient, the 

splitting tensile strength prediction, the equation correlation is reverse for the 

model results between the day 2 and 3; and 7 and 28. Besides, the water 

proportion results seem parallel to the equation coefficient which means that 

the more water content the worse estimated model results. Moreover, the air 

proportion is effective on the data prediction in positive way. Because the less 

proportion of the air leads worse results of the strength gaining process. 

Nonetheless, it is not clear that the high proportion of air leads well results of 

the model. Finally, the best results in terms of strength gaining are from the FA 

+ MS added sample results. 

26) For the modulus of elasticity estimations, logarithmic regression (Model-1) 

was calculated depending on the amounts and proportions of the contents from 

the concrete mixture designs. According to this, for the Model-1, the MRA of 

the ME predictions for the FA + MS ingredient, the results are exposed in the 

expectations. Else, the linear correlation explicates that the model results are 

partially satisfying, and there are no negative deflections in the data fitting 

planar which means the model is safe to be used. For the material effects in the 

elastic modulus forecasting, the FA + MS content is analyzed by using the 

coefficients of the model equation. In this way, it is seen that the equation 

coefficient is not compatible except the ages in between 0.5 and 1. 

Continuously, the coefficient of the W/C ratio is also incoherent between the 

days 1 and 3; 7 and 14, either. That is why, just because using the coefficients 

of the equation is not beneficial for expressing this model. Both the minimum 
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and maximum R2 values of the model, the W/C ratio is neither the maximum 

nor the minimum. For some specimens, the W/C ratio is displayed almost 

ineffective. That is why this model is accepted unsuitable to predict the 

modulus of elasticity for the FA + MS content included concrete samples, even 

though the linear correlation of the model between the actual and predicted 

data sets are coherent.  

27) In the Model-1, the MRA of the ME predictions for the GGBS ingredient, it is 

enlightened that the equation coefficient is not compatible except the ages 

between 0.5-day and 3-day; day-14 and day-28. In addition to this, the 

coefficient of the W/C ratio is almost deniable due to the elastic modulus 

development between the day-1 and day-3; day-14 and day-28, either. Because 

of this, only using the coefficients of the equation is not useful for 

understanding of this model. At the end, for the minimum R2 result of the 

model, the W/C ratio is also the minimum (0.34). Especially for some 

specimens, the W/C ratio is seen almost ineffective. That is why, this model is 

accepted unreliable to estimate the modulus of elasticity for the GGBS content 

included concrete samples, as well in FA + MS content included modulus of 

elasticity analysis. To sum up, in general, the FA + MS content puts forth the 

higher elastic modulus prediction results than GGBS content reveals. 

28) As a predicting method, the Levenberg-Marquardt algorithm from the machine 

learning was another sub-content of this thesis. Like in the URA and MRA, 

LM algorithm was studied for the mechanical properties of the concrete by 

using the amount of the concrete mixture design ingredients with the actual test 

results. In the algorithm, the training, validation, test, and all are resulted by 

the software for the algorithm trials. Also, the R and MSE results were revealed 

for the error check of the forecasted results. 

29) In the FA + MS content included samples computed by the LM algorithm with 

the air content of the CS estimations, the results are very appropriate. For the 

MSE results, without the air content, the predictions are worse than the air 

content included estimations except the training results of the algorithm. On 

the contrary, the, the GGBS content included sample prediction results are 

better with no air content. the air content in FA + MS existence, the samples in 

C45-B25-425, and C45-B25-400 mixing codes are resulted negative in the R2 
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values. Moreover, the air content in the FA + MS ingredient, the samples in 

C45-B25-425 and C45-B25-400 mixing codes are negative in the R2 results 

which are out of the expectations. Onto this, the air content in the FA + MS 

ingredient, only the sample in C50-B22-460 mixing code R2 result is not 

suitable. Even though the R2 results are not acceptable for some specimens 

mentioned above, in general, the LM algorithm works for all scenarios in the 

FA + MS content. The same method is also followed for the GGBS addition in 

the concrete samples. Without the air content, only the sample MIX-30-03 

seems unsuitable in the result of R2. For the air effect, the samples in MIX-30, 

and MIX-30-03 mixing codes are inconvenient for the R2 results. In this light 

of the way, the neural network (NN) frames are given constructed on the 

mixture design variables. Additionally, the linear correlations from the 

software are also clear for understanding the results. Farther, the actual and 

estimated results are trendlined. In these correlations, each concrete specimen 

strength behavior was checked for the algorithm accuracy in the data fitting 

planar to see whether there was a negative deflection or not. In this perspective, 

it was seen that there was no negative deflection for both FA + MS and GGBS 

content included sample results. To sum up, why the algorithm is said to be 

safe for the compressive strength prediction, even though for the FA + MS 

including without air content results are statistically under the expectations. 

30) In the FA + MS content included samples computed by the LM algorithm with 

the air content of the STS estimations, with and without the air content, the 

results are very acceptable. Furthermore, for the MSE results, the predictions 

with and without the air content, are also in the expectations. The GGBS 

content added sample estimation results are worse than the FA + MS content 

included results, even though the results are undeniable. Because of the 

algorithm predicting, without the air content in the FA + MS existence, the 

sample in YM-SEG-10A mixing code is lower resulted in the other R2 results. 

Nonetheless, with the air content in the FA + MS existence, the same sample 

is lower among the R2 results, too. Yet, this time, it is better resulted. So, the 

LM algorithm works for all scenarios in the FA + MS ingredient for the 

splitting tensile strength estimations. The same procedure was also followed 

for the GGBS material in the concrete samples. Without the air content, the 
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samples C45-III-B20 and MIX-30-03 seem unsuitable in the result of R2. For 

the air effect, the samples in MIX-30, MIX-30-03, MIX-32-03, MIX-32-CEN 

and B67-440 mixing codes are inconvenient for the R2 results. Especially the 

sample MIX-32-CEN is almost zero which is inappropriate for the algorithm 

accuracy check. Furthermore, in the air content included results, the sample in 

YM-DAP-AC-03 is at sub-zero for the R2 result which shows that the algorithm 

does not work for this sample. At the same time, again, the samples in MIX-

30-03 and MIX-32-CEN mixing codes are lower among the other R2 results. 

But this time, these sample results are higher than the analysis results without 

the air content. Addition to this, the NN frames are given constructed on the 

mixture design variables. The actual and estimated results are trendlined, as 

well. In this correlation, each concrete specimen strength behavior was 

checked for the accuracy of the algorithm in the data fitting planar to see if 

there was a negative deflection or not. Without the air content in the FA + MS 

existence, the samples in YM-SEG-10, C45-B25-425 and C45-B25-400 

mixing codes were seen in the negative deflections in the fitting planar. 

Besides, the air content, the samples in YM-SEG-10E, MIX-15-AC-03, YM-

SEG-08 and C45-B25-400 mixing codes were seen in the negative deflections 

in the FA + MS content. For the GGBS content with the absence of the air, 

only the sample in MIX-30-03 mixing code was negatively deflected in the 

fitting planar, which was not expected. With the air content in the GGBS 

ingredient, the samples in MIX-30-03, MIX-34-BRT, MIX-32-03 and B67-440 

mixing codes were also negatively deflected. Therefore, the algorithm is said 

to be less safe for the splitting tensile strength prediction in the GGBS content 

with the air. Lastly, the FA + MS content included algorithm results come 

forward more valid. 

31) In the FA + MS content included samples computed by the LM algorithm with 

the air content of the ME estimations, by comparing with the R values revealed 

by the software, with and without the air content, the results are said to be 

highly accurate. Else, in the MSE results, the estimations with and without the 

air content are comparable to each other. In contrast with the GGBS content 

included sample prediction results are better than the FA + MS content 

included results, except the outputs in all class for without the air content. Due 
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to the algorithm for the forecasting, without the air content in the FA + MS 

existence, the sample in MIX-15E-03 mixing code is lower resulted in the R2 

results. Also, the air content in the FA + MS material, the same sample is lower 

among the R2 results, as well. But in this time, it is better resulted. As a result 

of the LM algorithm, all the scenarios in the FA + MS content for the modulus 

of elasticity predictions work well. Moreover, the NN frames are constructed 

on the mixture design components. Onto this, in the actual and predicted results 

are trendlined. In this correlation, each concrete sample modulus of elasticity 

behavior was checked for the accuracy of the algorithm in the data fitting 

planar to see if there was a negative deflection or not. Without the air content 

in the GGBS content, the samples in MIX-30-BRT and MIX-32-CEN-OK 

mixing codes were seen in negative deflections in the fitting planar. Without 

the air content, only the sample in MIX-32-03 mixing code was seen in 

negative deflection in the GGBS material. The FA + MS substance, in both air 

content cases, the results were not deflected in negative directions. That is why 

the algorithm is said to be safe for the modulus of elasticity prediction in the 

FA + MS content with and without the air content. Rather than the FA + MS 

content, the GGBS content included algorithm results were less valid in all 

types of the result classes given by the software. 

This thesis was designed to search for the mechanical properties of high strength 

concrete. Based on the regression analysis models and machine learning algorithm 

with the statistical results, the actual test results were estimated and investigated based 

on the concrete mixture design properties. Besides, all the predicted and analyzed 

results were also compared with the results of the mechanical property developments 

by the concrete age. Moreover, in the concrete age, the amounts of concrete mixture 

contents and the proportions of the concrete mixture design materials were also studied 

for the safe prediction goals. At the end, to success this, the URA, MRA and LM 

algorithm were computed in many equations for the diversities of the predicted results 

in the purpose of the cross checks. 

Followingly, in the entire process of the analysis, it is understood that the URA is cost 

of time to predict the mechanical properties of concrete. Because only one independent 

variable was used for an estimated result. And this was either concrete age or the 

compressive strength from the actual laboratory tests. Besides, for all the specimens, 
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each model equation and statistical parameter were conducted by hand on Microsoft 

Office Excel 2019. And each result was graphed by hand, as well. That is why the way 

followed for the estimation caused so much time. However, when this was understood, 

MATLAB R2021a was another choice for data prediction on the curve fitting tools. 

And at the end, it was seen that MATLAB R2021a was easy and fast to use and 

estimate a data set, although a data set was huge and complicated. Besides, its results 

were also more convenient than Microsoft Office Excel 2019 offered, especially in the 

curve fitting results. That is why MATLAB R2021a came forward for a safe estimation 

of the mechanical properties of concrete. Moreover, even though there were 

unexpected results of the property developments in the estimations, the URA seemed 

working to predict a mechanical property. In addition to this, the URA method does 

not use the concrete mixture elements and/or proportions. It only uses the real test 

results. Because of that, deeper analysis cannot be constructed for future estimations. 

Further, in the real life, there may be not a wide range of time to estimate and analyze 

the properties of concrete due to the pace of the construction works. Even, there may 

be not enough number concrete sampling and/or partially or fully lack of concrete 

mixture design receipt due to the human based risks and problems at worksites. That 

is why the URA seems not flexible to be adjusted for very large-scale real life works. 

But it should be said that for a specific case and a narrowed range data set from the 

laboratory, the URA is a perfect method to see the close future of the property 

development of the concrete samples one-by-one. 

Intercalarily, the MRA method was studied in many equations. Rather than the 

concrete age and the compressive strength proposed to be used in the URA, the 

components of the mixture designs were additionally used for the advanced analyses. 

The amounts and proportions of the concrete mixture designs were chosen in this 

direction as the models proposed. Differently, all the concrete ages were investigated 

from 0.5-day to 28-day. The general forms of each concrete age equations were 

released for goodness-of-fir purposes. In this path, dividing the data set to the concrete 

ages were resulted as not expected. Because of that, again for each concrete age, by 

using the laboratory test results and concrete mixture designs, new data sets were 

created to compile the estimated results. By this way, the predicted results were again 

conducted from 0.5-day to 28-day in the fitting planar for each concrete sample to also 

check whether there was any negative deflection or not for the property development. 
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With the new data sets created depending on each concrete age MRA analysis, the 

results were highly recovered with respect to the initial data set estimation results. That 

is why from specific age to all ages, the MRA method worked very well with these 

resettled data by using the laboratory test results and concrete mixture designs. 

Nonetheless,  Microsoft Office Excel 2019 had limited tools for detailed analysis like 

in the URA method. It simply had only “Solver” and “Regression Analysis” tools for 

data prediction subjected to this thesis. The Solver tool depends on the errors occur in 

the calculations (SSE) and construct estimated results. And Regression Analysis tool 

can only solve the linear regression analysis. It is not able to solve non-linear models. 

That is why more complex analysis is not possible with these methods. Because of 

this, MATLAB R2021a comes forward rather than Microsoft Excel 2019. As it has 

many types of regression tools and estimating parameters. Also, it offers more reliable 

results in terms of R2, R2
adj, SSE, and RMSE. So, for upcoming projects and/or studied, 

within a big scale data set, MATLAB R2021a is better to be preferred for prediciting 

the mechanical properties of concrete samples for deep understanding of mechanical 

behavior of concrete. But it is important to point that the MRA was also cost of time 

like the URA. 

Except the URA and MRA, as a recent trend in engineering, artificial intelligence was 

applied on the estimation calculations of the concrete samples. In this perspective, 

from MATLAB R2021a, machine learning was used for the data estimations. The LM 

algorithm as machine learning method was used for the deepest analysis concerns. As 

shown in the figures of this thesis, the results were lasted very quickly which was 

opposite to the time cost of the URA and MRA. Besides, the results were so rarely 

deflected in negative ways for the mechanical property development issues. That is 

why the LM algorithm proved itself for a safe use of data prediction in concrete. 

Moreover, the predicted results were also statistically undeniable for the consistency 

checks. In addition to this, the software also automatically offered prediction results 

either in the text or on the graphics and figures. Because of that, the method was 

understood noticeably clear and fast. In this frame, for civil engineers, the time can be 

saved, and the investigations can lead the most real-like solutions for the engineering 

purposes. 
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