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ABSTRACT

DESIGN AND IMPLEMENTATION OF A MODEL
PREDICTIVE TRAJECTORY TRACKING CONTROLLER
FOR A QUADCOPTER

In this study, a trajectory tracking controller was designed for a quadcopter
unmanned aerial vehicle (UAV), and its performance was evaluated by performing
the necessary flight tests. As the controller approach, the model predictive controller
(MPC), a newly popular method in aviation, has been chosen. Firstly, nonlinear dy-
namic equations of quadcopter were derived by Newton-Euler approximation. Then, a
control algorithm was created, and a quadcopter system was produced, together with
the sensors and flight computers necessary for the algorithm to work. While creat-
ing the control algorithm, it was decided to control the angle of the quadcopter UAV
with the ArduPilot flight control algorithm, which is open-source software. ArduPi-
lot software is an algorithm consisting of cascaded PID controllers and runs on the
Pixhawk flight computer. The MPC algorithm was designed for trajectory tracking
by considering the derived linear equations of motion. With the simulation created in
the MATLAB environment, trials were made before the real flight tests and the design
parameters of the MPC were decided. The tested controller software was written in
Python and run on a Raspberry Pi computer. The communication between Raspberry
Pi and Pixhawk flight computers was ensured, the system was made ready for flight,

and trajectory tracking tests were carried out.



OZET

DORT PERVANELI INSANSIZ HAVA ARACI ICIN
YORUNGE TAKIP EDEN MODEL ONGORULU
KONTROLCU TASARIMI VE UYGULAMASI

Bu ¢aligmada, dort pervaneli bir insansiz hava araci (IHA) i¢in yoriinge takip kon-
trolciisii tasarlanmig ve gerekli ugus testleri yapilarak performansi degerlendirilmigtir.
Kontrolcii yaklasimi olarak, havacilikta yeni popiiler olan bir yontem olan model 6nsezili
kontrolcii (MPC) segilmistir. Ik olarak, Newton-Euler yaklagimi ile dort pervanelinin
dogrusal olmayan dinamik denklemleri tiiretilmistir. Daha sonra bir kontrol algoritmasi
olugturulmusg ve algoritmanin galigmas i¢in gerekli sensorler ve ugus bilgisayarlar ile
birlikte bir dért pervaneli IHA sistemi iiretilmistir. Kontrol algoritmasi olusturulurken,
acik kaynakli yazilim olan ArduPilot ucus kontrol algoritmast ile dort pervaneli IHA 'min
durus acilarmim kontrol edilmesine karar verilmistir. ArduPilot yazilimi, katmanh
PID kontrolciilerinden olusan ve Pixhawk ucug bilgisayar: iizerinde calisan bir algo-
ritmadir. MPC algoritmasi, tiiretilen dogrusal hareket denklemleri dikkate alinarak
yoriinge takibi i¢in tasarlanmigtir. MATLAB ortaminda olusturulan simiilasyon ile
gercek ucus testleri oncesi denemeler yapilmig ve MPC’nin tasarim parametrelerine
karar verilmistir. Test edilen denetleyici yazilimi Python’da yazilmis ve bir Rasp-
berry Pi bilgisayarinda g¢aligtirilmigtir. Raspberry Pi ve Pixhawk ucug bilgisayarlar:
arasindaki iletigim saglanmig, sistem ucusa hazir hale getirilmis ve yoriinge takip test-

leri yapilmistir.
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1. INTRODUCTION

Unmanned aerial vehicles (UAVs) are aerial vehicles that are remotely controlled.
Autonomously flying them has been the subject of many studies to date. The modern
UAVs are usually portable-sized small, and highly maneuverable electromechanical
systems. Therefore, controlling them requires high piloting skills. Studies on controllers
that will enable autonomous flight are critical as they eliminate piloting. In Figure 1.1,

the quadcopter system that is developed for this thesis is shown.

Figure 1.1. Quadcopter System Developed for This Thesis.

1.1. Motivation and Background

UAVs are generally divided into two categories depending on their wing type.
These are fixed-wing and rotary-wing types. Fixed-wing UAVs are more efficient in
energy consumption, but they have limited mobility. Rotary-wing UAVs can have
three, four, six, or eight propellers and are named tricopter, quadcopter, octocopter,
and hexacopter, respectively. In this thesis, a rotary-wing type quadcopter UAV with

high maneuverability is considered. Quadcopters are under-actuated systems because



they have four inputs but six degrees of freedom to control. The inputs of a quadcopter
system are its actuators. A quadcopter has four electric motors counted as actuators
and four connected propellers. Generally, a quadcopter’s control architecture is treated
under two subsystems, a high-level controller and a low-level controller. The high-level
controller uses position errors to generate attitude reference set points for the low-level
controller. The low-level controller acts on attitude errors to generate system inputs

as motor RPMs. In Figure 1.2 the control architecture of a quadrotor is shown.

Zrs%: % | High-Level | @0 % | Low-Level RFMs
Controller "1 Controller i Pisat
L ¥
¢;ﬂ,w?¢,ﬂ,1ﬁl
L% %1 sensors

Figure 1.2. High-Level and Low-Level Control Architecture.

The main goal of the thesis is to design a high-level controller for the trajectory
tracking stage. The controller is planned to work with the mathematically generated
reference trajectories. For this purpose, model predictive controller (MPC) is chosen
as the high-level controller while commercial flight controller ArduPilot is chosen as
the low-level controller. An MPC is a controller that has objectives to compute future
control sequences by considering the plant model. It solves an optimization problem to
select the best control action before sending each input to the system. It is preferred
due to its high preview capability in addition to its ability to handle multi-input-multi-

output (MIMO) systems and systems’ constraints.

1.2. Problem Statement and Objectives

This thesis aims to observe performance of the linear MPC as a high-level con-

troller named trajectory tracking controller. The trajectory tracking controller uses



trajectory errors to produce attitude references. Dynamic relations behind trajectory
tracking controller of quadcopter has highly nonlinear and coupled. Therefore, it aims
to use MPC’s advantage to solve trajectory tracking problems by considering the system
constraints and future predictions in optimization. On the other hand, the ArduPilot’s
attitude and angular rate controllers were selected as low-level controllers. It is aimed
to run MPC on the Raspberry Pi board, while the ArduPilot’s controllers will run on

the Pixhawk board. The objectives of the thesis are listed below.

e To design a linear model predictive controller in MATLARB as a trajectory tracking
controller for a quadcopter.

e To simulate the nonlinear plant model and linear MPC together in MATLAB
environment.

e To program the model predictive trajectory tracking controller in Python lan-
guage.

e To build a working quadcopter frame with required hardware components.

e To implement MPC on Raspberry Pi board as a high-level controller, while
ArduPilot on the Pixhawk board runs as the low-level controller.

e To do flight tests to assess the system’s feasibility and the controller’s perfor-

mance.

1.3. Outline of the Thesis

Outline of the thesis is summarized below.

e Chapter 2 presents a literature survey of usage areas of UAVs, other works on
the modeling and control of a quadcopter, and precisely MPC approach in any
other systems.

e Chapter 3 presents modeling the dynamics of quadcopter including translational
dynamics and rotational dynamics.

e Chapter 4 presents the algorithms of the Ardupilot used as the low-level controller

and designed MPC used as the high-level controller.



Chapter 5 presents MATLAB simulation results with the nonlinear model of the
quadcopter and designed MPC.

Chapter 6 presents the test results and discussion.

Chapter 7 presents the hardware design including hardware components and per-
formance calculations required component selection.

Chapter 8 presents the conclusion and planned future works.



2. LITERATURE SURVEY

The areas where unmanned aerial vehicles (UAV) have been used overgrew with
the increasing abilities of UAVs. Today, they are used in many applications such as
photography, mapping, search and rescue operations, wildfire surveillance, military,
agricultural and marine operations, etc. Moreover, developments in micro UAVs have
accelerated with significant progress in sensing technology, high-density power storage,
and data processing. A project initiated in the Autonomous Systems Laboratory in
EPFL, named OS4, has done significant research on the fully autonomous control of
the micro UAVs [1]. Due to the increasing demand for UAV applications, more effort
has been focused on their control. The controller design researches have focused on
linear control methods, including proportional-integral-derivative controller and linear
quadratic requlators, and nonlinear control methods, including backstepping approach,

feedback linearization, and model predictive control.

Proportional-integral-derivative (PID) controller is one of the widely employed
controllers because it is straightforward and effective. It can be used only for single-
input single-output (SISO) systems. A classical PID controller calculates the error
between the desired set point and the measured variable, then uses this error to produce
a corrective action depending on the proportional, integral, and derivative gains. With
the developments in the aviation industry, the PID controllers were starting to be used
in the position, attitude, and altitude control problems in the quadcopter’s control
applications [2-5]. Moreover, today’s most popular open-source flight controllers for
UAVs, ArduPilot, and PX4, are also based on variations of PID control strategies.
In the quadcopter control terminology, the position and velocity control processes are
named as the high-level task, while the attitude and angular rate control processes
are named as low-level tasks. In commercial flight controllers, high-level and low-level
controllers consist of cascaded PID algorithms because the cascaded PID algorithm
allows the pilot to fly the UAV in the desired mode. The researches validated with the

simulation and flight tests have shown that the cascaded PID controller is more stable



and has higher performance in attitude control tasks than the single loop PIDs [6-8].
Another way to implement variations of classical PID controller is to directly use the
desired or measured process value with some gains instead of using the error between
them to produce the controller’s input [9]. The feedforward term is an actual example of
this implementation. Because in the feedforward control, the desired set-point value is
directly used to produce the controller’s input, and it helps to reduce the error. There
are many methods to tune PID gains, such as Ziegler-Nicholes and Tyreus-Luyben
methods by considering the system response, but another popular way is to tune the
gains during the flight. For online tuning, fuzzy logic is the most popular method. The
simulation and actual flight tests results on the quadcopter system show that fuzzy

PID performs well than classical PID [10,11].

Linear quadratic regulator (LQR) is a popular linear control algorithm that pro-
vides a dynamic operating system at minimum cost. The cost of the system is defined
by the linear-quadratic functional derived from the linear differential equations of the
system. If the system is nonlinear, the nonlinear equations must be linearized around
an operating point to design an LQR controller. It is used for simulation and actual
flight tests for the quadcopter systems’ position, attitude, and altitude control [12-14].
Gain scheduling is sometimes used in LQR applications. Because the controller gains
are calculated before a flight, and their values depend on the linearized model around
an operating point, modifying gains during operation might be helpful. When the
gains are designed concerning the error between the desired set-point and measured
variable, LQR gains change depending on the magnitude of the error [15]. Because PID
and LQR are linear control strategies, many researchers compare their control perfor-
mance on quadrotors. PID controller gives better stability than the LQR controller
in the simulation environment prepared for a quadcopter system, but the system is
stabilized either using LQR or PID [16]. In the trajectory tracking application [17,18],
the LQR controller gives more smooth and less disturbance control actions than the
PID controllers. The performance of the PID and LQR controllers is validated with
experimental setup and actual flight tests. Sometimes, one can implement the PID

controller whose gain is obtained by an LQR loop instead of choosing one of them.



The method is used to control the quadcopter’s altitude and compared with the clas-
sical PID controller. While the PID controller gives the fastest results, PID tuned by

the LQR controller shows robust performance [19].

Feedback linearization is a standard method used to control nonlinear systems
in which changing variable is performed to convert the nonlinear system into a linear
one. The feedback linearization has been performed to control the highly nonlinear
attitude dynamics of the quadcopter. The presented method’s successful trajectory
tracking performance is validated with simulation and experimental results [20]. Also,
it can be used in a cascade control algorithm that uses model predictive controller in
the high-level controller, and robust feedback linearization in the low-level. The results

show the feasibility of the algorithm [21].

The backstepping control approach is a recursive controller design method that
uses the Lyapunov stability theorems and feedback controller to guarantees the global
asympotic stability of the system [22]. For an attitude tracking of a quadcopter, back-
stepping control approach gives better control performance comparing with the classical
PID method in simulation environmenet [23]. For a trajectory tracking task of a quad-
copter, an integral backstepping controller was tested in simulation environment and
compared with simplified command filtered integral backstepping approach. The re-
sults show that proposed method provided robustness against the external disturbances

while reducing the control effort [24].

Model predictive controller (MPC) is a controller that has objectives to compute
future control sequence by considering the plant model and solving an optimization
problem to select the best control action. MPC can be linear and nonlinear depending
on the plant model used in optimization. The nonlinear MPC is not widely used as
linear MPC because it requires considering nonlinear constraints and systems, making
the controller appropriate for systems with slow dynamics. However, with the progress
in the optimal control algorithm, nonlinear MPC is getting popular in fast dynamical

systems [25]. For example, linear and nonlinear MPC controller in a trajectory tracking



task of a micro octocopter was compared, and results show that their performance is
comparable, while nonlinear MPC showed better disturbance rejection capacity [26].
The trajectory tracking MPC controller of the quadcopter system can be designed with
one loop or two loops, in other terms cascaded, including the low-level and the high-level
controllers as mentioned in the PID examples. Generally, controller designers prefer
to consider all the system dynamics together and prepare an MPC controller which
produces the electric motor inputs directly for the trajectory tracking task [27,28].
The simulation results show that MPC gives a smooth response due to its advantage
in considering constraints and system dynamics. Compared with the cascaded PID
controller, MPC shows better settling times and with no peak overshoot [29]. Also,
as done in the PID applications, the cascaded MPC and centralized MPC can be
compared. It is seen that cascaded MPC can apply more constraints on the whole
system [30]. Finally, as with the usage of this thesis, there is another study which
can combine designed MPC algorithm for the attitude control and open-source flight
controller for the angular rate control. The PX4 algorithm is preferred as an open-
source flight controller and the simulation and flight tests results show that MPC

angular rate controller is able to success close reference tracking performance [31].



3. MODELING THE DYNAMICS OF THE
QUADCOPTER

The dynamic model represents the behaviors of an object over time by describing
the relation between the forces and moments acting on the quadcopter’s body frame
and the resulting translational and rotational motions. It is essential to derive a re-
alistic dynamic model as it is used in the simulation of the system and also for the
design of the model predictive controller (MPC). In this chapter, the dynamic model
of the quadcopter is derived using the Newton-Euler formalism. First, reference frames
and the transformation matrix between those frames are introduced. Then, control
inputs of the system will be defined by considering the simplification of the dynamic
equations. Next, translational and rotational dynamics will be investigated by consid-
ering the forces and moments acting on the quadcopter’s body. Finally, a state-space
representation of the system will be derived. Before starting derivation of dynamic
equations with Newton-Fuler formalism, some assumptions are considered to simplify

modeling the dynamics. These assumptions are listed below.

e The mechanical structure of the quadcopter is rigid and symmetrical.

e The center of gravity of the quadcopter coincides with the origin of the body-fixed
frame.

e The propellers are rigid.

e Connections between propellers, motors, frame, and other hardware devices are
rigid.

e Thrust and moments generated by the propellers are proportional to the square
of the propeller’s speed.

e The gyroscopic effects due to the relative angular velocity of propellers to the
quadcopter’s body are neglected.

e The aerodynamic effects due to air friction except for the thrust generation are

neglected.
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3.1. Reference Frames and Transformation Matrices

There are two reference frames needed to define the motions of a quadcopter.
The first is the earth-fixed reference frame (EFF) represented with the [Xg,Yg, Zg]
axis system. EFF is taken as the North-East-Down (NED) reference frame in this
thesis, where the Xg represents the north, Yz represents the east, and Zg represents
the down. The second is the body-fixed reference frame (BFF) represented with the
[ X, Yn, Zp] axis system attached to the quadcopter’s CoG. In Figure 3.1, these two

reference coordinate frames are seen.

Xp[North]

/: Ye l_Eﬂ.St]

Zp|Doun)|

Figure 3.1. Reference Axis Systems.

The quadcopter moves in the EFF. The position and orientation of the quadcopter

can be defined with the following notations as

E=lryz"

n=1[p0y]"

(3.1)

where £ € R? represents the position and n € R? represents the orientation in the EFF.
The quadcopter’s orientation is defined using the Euler angles (¢,0,1)). Because the
BFF is attached to the quadcopter’s CoG, Euler angles are also used to define BFF’s
orientation with respect to the EFF.

By taking the derivative of the positions defined in (3.1), one can find the trans-

lational and rotational velocity in EFF. On the other hand, it is necessary to define
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the translational and rotational velocities of the quadcopter in the BFF as

Vi = [uvw”

w=[pqr]"

(3.2)

where Vp € R? represents the translational velocity and w € R?® represents the rota-
tional velocity. The definition made in the BFF makes the results of the acting forces

and moments more understandable.

A rotation matrix is required to express vectors in another axis system. In this
chapter, two axes systems, EFF and BFF, are used to model the dynamics of the
quadcopter. Although the dynamic equations will be set in the BFF, the quadcopter’s
motion in the EFF is considered for trajectory tracking. Therefore, a rotation matrix
(Rpg) that can change the definition of vectors from EFF to BFF is needed. The

rotation matrix should be formed in the order of ¢, #, and ¢ angle rotations as

Rpp = RyRyRy
1 0 0 c(0) 0 —s(0) c() s() 0 (3.3)
=10 clg) s@)| |0 1 0 —s(¥) c(¥) 0
0 —s(p) c(o)| |s(@) 0 ¢(0) 0 0 1

where the matrices Ry, Ry, and Iy, provide rotations in z, y, and z axis, respectively.
For notational simplicity, cosine and sine functions are denoted with ¢(.) and s(.)
symbols. After multiplication of rotation matrices Ry, Ry and Ry, the rotation matrix

Rgpp, from EFF to BFF, is derived [1] as

In addition to that, the translational velocity of the quadcopter in the BFF (V) can be

expressed by using the translational velocity in the EFF (Vg € R3) and rotation matrix
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(Rpg). Because the Vg is equal to the derivative of the position vector (€ = [&, 7, 2]7).

the expression of Vp can be written as

Vs = ResVEe = Rpxt. (3.5)

In order to find Vg, the inverse of the rotation matrix (Rgp) should be taken. Because
the rotation matrix is orthogonal, one can apply the transpose operation instead of

taking its inverse as

Rip = (Rge)™' = (Rgr)" (3.6)

where (.) ! represents the inverse operation and (.)? represents the transpose operation.
That is one of the useful properties of orthogonal matrices. Therefore, Rgp can be

written as

After defining the rotation matrix Rpp, translational velocity in the EFF (V) can also

be represented, in terms of Vg and Rgg, as

Vie = RupVi = £, (3.8)

The angular velocity in the BFF (w = [p ¢ r]?) can be related with Euler rates vector
([¢ 6 ¢]") as

P 0 0 ¢ ¢
ql = Rd)RQRw 0 + R¢R9 9 + Rtb 0] = Rr 9 (3 9)
r ¥ 0 0 )

where R, represents the transformation matrix [1]. Therefore, the angular velocity in
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the BFF (w = [p ¢ 7]") can be simplified and rewritten as

p I 0 —s(0) ¢
qal =10 c(o) s(o)e@)| |0 (3.10)
r 0 —s(¢) c(@)e()] |¢

in terms of the Euler rates and the transformation matrix. The close form of the

definition is written as
w= Rn. (3.11)

The R, can also be simplified further by using a small angle approximation. The
small-angle approximation assumes the angles are small and the cosine of the angle
approximates to 1, while the sine of the angle approximates to angle itself or nearly
0. Therefore, the approximation simplifies R, matrix into a I3,3 eye matrix, and the

angular velocity vector in the BFF and EFF can be assumed as equal.
3.2. Definition of Control Inputs

The quadcopter has four electric motors that are controlled to realize desired
moves. The system is under-actuated because it has six degrees of freedom to be
controlled, while it has four inputs. There are two possible control configurations
for quadcopters that differ regarding the orientation of propellers and rotors. They
are known as plus-orientation and cross-orientation. In Figure 3.2, plus and cross

orientations are presented.
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Figure 3.2. Plus (on the left) and Cross (on the right) Quadcopter Orientations.

Typically, electric motors of the quadcopter are selected as four inputs of the
system. On the other hand, desired moves to be controlled consist of roll, pitch and
yaw motions, and altitude change. Therefore, instead of choosing the control inputs as
four propeller speeds, choosing them from the mathematical combination of the four
propeller speeds is preferred to simplify the complexity of controller design. The four

control inputs (U; € R!) for the quadcopter system are selected as

U=F+FK+F+F
Uy=IU(—F — Fy, + F5+ Fy)

(3.12)
Us =1(F), — Fy — 5+ Fy)

U4=—M1—|—AC/[2—M3+M4

where F; represents the thrust, and M; represents the moment generated by each
propeller. Also, [ represents the moment arm of each rotor that is assumed as equal
for each rotor. Considering the control inputs’ equations, they are expressed as the

following definitions below.

e U;: Throttle input represents the summation of forces generated by propellers.
e U,: Roll input represents the moment generated by propellers around x-axis.
e U;: Pitch input represents the moment generated by propellers around y-axis.

e U,: Yaw input represents the moment generated by propellers around z-axis.
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3.3. Nonlinear Dynamic Model

In order to derive the nonlinear dynamic model of the quadcopter, Newton-Euler
formalism is used. Newton’s second law of motion describes a simple relation between
the acceleration, mass, and total force acting on the body (£ = ma). Generally, the
equations of motions are written in the EFF. In this case, Newton’s law of motion will
be implemented on the BFF, so the additional terms coming from the rotation of the
BFF to the EFF have to be considered. The general form of the translational and

rotational equations of motions (EOMs) are expressed as

ZF=mVB—i—w><mVB
(3.13)
ZM:Jerwx Jw

where F' represents the total force acting on the body, M represents the total mo-
ment acting on the body, m represents the mass, and J represents the inertia of the

quadcopter.
3.3.1. Forces and Moments Acting on the Quadcopter

The forces and moments acting on the quadcopter generate its motion. These
forces and moments are represented in the BFF. Because the gyroscopic effects of
propellers and air friction due to air velocity are neglected, the total forces acting on
the quadcopter’s body consist of the aerodynamic force generated by the propellers
and the gravitational force. Also, the total moment acting on the quadcopter’s body
consists of aerodynamic moments generated by propellers. The propellers’ aerodynamic
forces and moments are proportional to the square of propellers’ speed. By specifying
each rotor with an index of 74", following force and moment equations can be written

as

E - leQ
. (3.14)
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where coefficients b and d represent the aerodynamic thrust and moment contributions.
These factors depend on the geometry of the propeller, air density, rotational speed of
the rotor, and experimentally found aerodynamic coefficients of propellers by consid-
ering the blade element theory. The blade element theory uses the lift and drag forces
on the propeller’s cross-sectional area, which has an airfoil shape. The theory explains
the generation of thrust and moment through lift and drag. The force coming from

propellers can be written, by substituting (3.14) in to (3.12), as

0 0 0
Eprop,B = 0 = 0 =1 o | (315
—b( % + Q% 4 Q3% + ) -F,—-F,—-F;—F, —U,

where U; represents the summation of forces generated by propellers. The moment
acting on the quadcopter due to its propellers can be written, by substituting (3.14)
into (3.12), as

bl(—02% — Q2 + Q5% + Q%) — )l — Fyl + Fsl + Fyl U,
Mprops = | BI(Q2% — Q0> — 2+ Q2 | = | Fll— Byl — Fl+Fyl | = |Us
d(— 0% + Q% — Q32+ Q%) — My + My — Mz + M, U,

(3.16)

where Us, Us, and U, represents the summation of moments generated by propellers

on each axis.

Gravitational force can also be expressed in BFF frame (Fj.4, 5) by using the
rotation matrix Rpp in (3.4). First of all, the gravitational force in EFF frame (Fj,q0 1)

is defined as

Fpravp =m |0 (3.17)

where m represents the mass of the quadcopter and g represents the gravitational
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acceleration. Then, the definition of gravitational force is transforming into BFF, by

using the (Rpg), as

0
Fgrav,B = RBEFg'rav,E = mRBE 0] - (318)

9

Finally, total forces acting on the quadcopter’s body can be obtained by using the
forces defined in (3.15) and (3.18) as

0 0
Z F = RBEFgramE + Fprop,B =mRpg |0| + 0 (319)
9 -U;

and the total moment acting on the quadcopter’s body can be obtained by using the

moment defined in (3.16) as

Us
> M= My = |Us| - (3.20)
Uy

3.3.2. Translational Equations of Motion

In this section translational EOMs will be reconstructed by substituting the total
force equation acting on the quadrotor’s body which is defined in (3.19) into the general

form of EOMs described in (3.13) as

ZF:mVB+w XmVB
(3.21)

RBEFgrav,E + Fprop,B = mVB +w X mVp.



18

Because the general form of the EOMs is constructed on the BFF, the term Vg requires
further simplification. Then, the translational position in EFF (§) derived in (3.5), and

the rotation matrix Rgp is used to define Vg as

Ve = RgpVp =¢. (3.22)
Then, the derivative of Vi is taken as

VE = REB(VB 4+ w X VB) (3 23)

£= Res(Vs +w x Vi)

to express the Vp as

Vg = Rpg€ —w x Va. (3.24)

If the expression of Vg is substituted in to the general form derived in (3.13), the

translational EOMs is rewritten as

RBEFgrav,E + Fprop,B = m(RBES —wX VB) +w X mVB (3 25)

RBEFgrav,E + Fprop,B - anBEf-

Multiplying both sides with Rgp and dividing them to m, the simplified form of the

translational EOMs is derived as

é = (1/m)(Eqrav7E + REBFp’r‘op7B)~ (326)
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Then, the final version of translational EOMs can be obtained by putting [z, 7, Z] into
€] as

i 0 0
i| = |0| + Res 0 : (3.27)
Z g -Ul/m

The translational equation of motion in (3.27) are going to be used to design MPC in

the following chapter.
3.3.3. Rotational Equation of Motion

After the derivation of translational EOMs, the rotational EOMs will be recon-
structed by substituting the total moment equation acting on the quadcopter’s body

defined in (3.20) into the general form of the EOMs described in (3.13) as

ZM:J@me Jw

(3.28)
Mpyop.p =Jw +w X Jw.
If the derivative of angular velocity is taken, w is written as
p
w= 4| (3.29)
,r',

Because the quadcopter’s frame is assumed as symmetric, an inertia matrix is obtained

diagonal whose off-diagonal elements are zero as

J=10 1, 0 (3.30)
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where I,, I, and I, symbols represent moments of inertia around the principle axes.
Next, the rotational EOMs can be rewritten by substituting (3.29) and (3.30) into
(3.13) as

U3 = 0 ]yy 0 q + q| X 0 Iyy 0 ql - (331)
U4 0 0 Izz 7 r 0 0 Izz r

Then, the expression of [p§r]” can be derived as
p (Iyy 4 Izz)qr/[:wc UQ/[:wc
q = (]zz 3 [:m)qr/]yy + Ui%/lyy . (332)
r ez — Iyy)qr/lzz Uy/ 1.

In order to represent rotational EOMs, [p, ¢, r| should have to be replaced with [qb, 0, w]
as shown in (3.11). By doing that final version of the rotational EOMs can be derived

successfully as

95 (Iyy - ]zz)‘gw/]xz UQ/]:M
é - (Izz - Ixa:)dw}r/lyy + U3/Iyy ) (3'33)
7/} (Ixm - [yy)(be/[zz U4/[zz

Although the rotational equations of motions in (3.33) are not going to be used to design
MPC directly, their derivation is important to understand the low-level behavior of the

quadcopter.

3.4. State Variables and Equations

The state-space form represents derived translational and rotational EOMs. The
EOMs derived in this chapter will be used in the model predictive controller design
process and as a plant in the simulation of the system. In the quadcopter system, there

are twelve states and four inputs. States are decided as the quadcopter’s positions and
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their derivatives because of the translational EOMs, and the Euler angles and their

derivatives because of the rotational EOMs. Thus, the states can be written as
. . . T
X=le dygzzo0d6bvil. (3.34)

Next, by using the control inputs of the system (U € R*) as defined in (3.12), the input

matrix can be written as

T
U= [Ul Uy, U, U4] . (3.35)
If the translational EOMs are separately written by using (3.7) and (3.27) as

i = —(Uy/m)(cos(¢)sin(0)cos(¢) + sin(¢)sin(v)))
i = —(U/m)(cos(¢)sin(0)sin(y) — sin(¢)cos())) (3.36)
= —(U;/m)(cos(p)cos(v)) + g

an explicit equations are created for the translational dynamics. If the rotational

equations are separately written by using (3.33) as

é = (Iyy - Izz)‘g’@b/lxx + UQ/Ixx
é = (Izz - [:wc)qbw/]yy + UB/[yy (337)
1/) = (I:mc - Iyy)¢6/Izz + U4/Izz

an explicit equations are created for the rotational dynamics.
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4. CONTROLLER DESIGN

In this section, the control architecture of the quadrotor will be explained. The
control architecture contains two control loops. They are low-level and high-level con-
trollers. The low-level controller consists of the attitude and angular rate controllers
from the ArduPilot open-source flight controller which are based on the variations of the
PID controllers. The high-level controller contains linear MPC, designed specifically
for the thesis application. In addition to the low-level and the high level controllers,
there is an altitude controller in the control architecture of the quadcopter. The alti-
tude control of the quadcopter is also a PID controller supplied by the Ardupilot. In
Figure 4.1 the entire control algorithm structure including MPC and PID controllers

are shown together.

MPC
{Cost Function  Constraints| Cascaded PID
Loy Ye g i,br G:
Optimizer L !
- > oo ] poog o T ;
" ||| atitude | 90,0, ) ARSLET U5 UG UL NLTE::‘; PV prant
) b Gomralior Controller Uy | Algorithm
1y —— >
Model !
& T TR 1.5 5 I N
h 4
b, 0,9
0. af
¢.0,¥ Sensors
:t,y
Z— z
Altitude
Controller
z >

Figure 4.1. Control Architecture of Quadcopter.

In the scope of this thesis the low-level PID controllers and altitude PID controller

will be run on the Pixhawk board with an open-source flight controller ArduPilot and
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the high-level MPC will be run on the Raspberry Pi board. PID controllers and MPC

will be further detailed in the following sections.

4.1. PID Controllers

PID controller is known also proportional-integral-derivative controller as it con-
tains three gains. The control input of the system is produced by using the error and
proportional, integrator, and derivative gains. PID controllers handle only single-input
single-output (SISO) systems. In this thesis, PID controllers are used as the low-level
controller of the quadcopter consisting of attitude and angular rate controllers, as seen
in Figure 4.1. Because the objective of the thesis is to design an MPC controller for
trajectory tracking processes, PID controllers from the ArduPilot open-source flight
controller are utilized. The following section briefly explains the open-source flight

controller’s attitude and angular rate controllers.

Cascaded PID

! ) . . . | Angular Input —
[T Uy, Uy, I, L 45
?—r{ﬁ” ”1’5', Citrtllt:'t::-?i\:r e 0rs¥e | " Rate 27974 5l Mixing hP »  Plant
i Controller U, | Algorithm | |
! — |
i.._E?_Q?_‘_*r"_‘_“:___________________':_‘?ziii_“____________________________________i
ST hd
$, 0,1
Sensors
9, 0,4

Figure 4.2. Cascaded PID Diagram.

4.1.1. Attitude Controller

The attitude controller uses the orientation errors in EFF to produce references

for the following controller. The orientation errors consists of the difference between
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the target angles (¢,,6,,1,) and the actual angles (¢,0,1). The actual angles are
estimated by the filters in ArduPilot because they are not measured directly. On
the other, hand the target angles are produced by the trajectory tracking MPC. The
attitude controller has only proportional (P) gain, and an additional feed forward (FF)

term as it is shown in Figure 4.3.

¢r‘rﬂ?'|1:£'.i‘ = F q‘ﬁr1{}r*+ﬁ1r

951":]1‘1#-

Figure 4.3. ArduPilot Attitude Controller Diagram.

The feed forward term reduces the errors faster or keeps the errors smaller than
relying on the PID algorithm alone. The inputs of the attitude controller are consists
of the angular rate references that are going to be used in the following angular rate

controller.

4.1.2. Angular Rate Controller

Angular rate controller uses angular rate errors in EFF to produce the low-level
control inputs. The angular rate errors consists of the difference between target angular
rates ((ﬁr, 0,, zpr) and actual rates (¢, 0, w) The actual angular rates are measured by
the gyroscope in the Pixhawk board, while the desired angular rates are produced by
the attitude controller. The angular rate controller has proportional (P), integral (I)

and derivative (D) gains. In Figure 4.4, angular rate controller diagram is represented.
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Figure 4.4. Ardupilot Angular Rate Controller Diagram.

The angular rate controller produces some of the system inputs defined in (3.12).
Then the input mixing algorithm shown in Figure 4.1 convert them in to the angular

speed of electric motors (RPMs) and send to the quadcopter system.

4.2. Linear Model Predictive Controller

The model predictive controller is a multivariable control algorithm that uses
the internal dynamic model called the control-oriented model. MPC is based on the
iterative optimization of the control-oriented model’s output while also considering the
constraints. The model predictive controller can be linear and nonlinear depending
on the linearity of the control-oriented model. Both have some advantages and dis-
advantages regarding the controller’s speed and performance. Due to nonlinear MPC
considering the full system model requires more time to solve optimization problems but
find proper control inputs. In this case, linear MPC is preferred because the quadrotor

system requires to produce a fast dynamical response against the disturbances.

In the following figure, the diagram of MPC is presented. It is designed to reach
reference x, and y, positions, and to produce ¢, and 6, attitude references for the
low-level controller by considering the cost function and constraints as shown in Figure

4.5.
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Figure 4.5. MPC Diagram.

The model predictive controller has some design parameters that affect the con-
troller performance and also the optimization complexity. The design parameters con-
sist of sample time (7). prediction horizon (NN,), control horizon (N.), system’s con-
straints (Umaz, Umin, Atmae) and the input weight matrix (W). At each iteration, the
current plant state is sampled with the selected sample time, then until the prediction
horizon, a cost function of the optimization problem is created. The cost function (.J)
is a combination of the output errors and the input. It can be rearranged by changing
the input weight matrix. By doing that, one can determine the importance of tracking
error and controller performance. In each optimization problem, the optimum inputs
are produced as much as the number of the control horizon. However, only the first

input is sent to the system.

MPC solves an online optimization problem at the current time by considering
the actions over the prediction horizon. The prediction horizon keeps being shifted
forward, and for this reason, MPC is also called receding horizon control. In Figure
4.6, calculated optimum control inputs and the outputs due to application of first
control input at each instant time is shown. The dotted line presents the reference

trajectory.
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Figure 4.6. MPC Shifted Prediction Horizon Representation.

In this chapter, firstly, the control-oriented model is going to be derived and
linearized by using the translational equations of motion derived in Chapter 3. They
are going to be represented in the state-space form. Then, the linear control-oriented
model is going to be discretized. After discretization, the state-space representation of
the discrete control-oriented model will be represented in the augmented state-space
form. The new state variable will be introduced for the augmented representation.
Then, the visualization of the output predictions within one optimization window will
be done at the current time (k;). After all, the system’s constraints will be defined.
Finally, the quadratic programming (QP) solution for optimization process will be

explained [32].

4.2.1. Control-Oriented Model and State-Space Representation

The control-oriented model is the model on which the model predictive controller

is based. In this case, because the MPC is used to control position to complete the
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trajectory tracking task, the control-oriented model consists of the translational EOMs.

The translational EOMs were derived in (3.36) in Chapter 3 as

T = —(U;/m)(cos(¢)sin(0)cos(vp) + sin(¢p)sin(1)))
§ = —(Ur/m)(cos(¢)sin(0)sin(y) — sin(p)cos(y)) (4.1)
5 = —(Th/m)(cos(B)cos()) + .

They have highly nonlinear and coupled dynamics. Therefore, the translational equa-
tions of motion have to be linearized and simplified in order to design a linear MPC

with the assumptions listed below.

e Small-angle approximation can be used for the pitch and roll angles which is
valid when ¢,60 ~ 0. Therefore, trigonometric functions sine and cosine can be
simplified as cos(¢) = 1,sin(¢) ~ ¢.

e The yaw angle is assumed to be zero () = 0).

e The altitude change is assumed to be zero (2 = 0). Therefore, total thrust forces

acting on the quadcopter are assumed to equal its weight (U; = mg).

After the implementation of the assumptions, and substituting mg into Uy, the trans-

lational EOMs can be rewritten as

= —gb
(4.2)
Y= go.
Then, a control-oriented model is created to design a linear MPC as
(4.3)

Ym = UmTm
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by choosing the states as z,, = [z @ y 9|7, inputs as u,, = [¢ 6] and outputs as

ym = [z y]*. Also the state matrices are defined as
01 00 0 0
0000 0 —g 1 000
Am = bl Bm = bl Om = (4 4)
0001 0 O 0010
000 0 g 0

4.2.2. Discretization

Discretization is transferring continuous functions, models, or equations into dis-
crete form. Because while the continuous problems have infinite degrees of freedom
and discrete problems have finite, discretization is necessary due to the finite nature
of the subsequent calculation process. In this section, the state-space representation

derived from the control-oriented model will be discretized using Euler’s Method as

im(k) = Amxm(k) + Bty (k)
Tk + 1) =z, (k) (4.5)
T

xm(k) =

where T represents the sampling time, and k£ represents the instant time iteration. If

the first equation in (4.5) is substituted into the second as

T (b + 1) — 2 (K) = AT (k) + Brtm (k)
T (4.6)

Im(k + 1) - xm(k) - Ts(Amxm(k) + Bmum(k))

the discrete equations can be derived. The equation of x,,(k + 1) is written as

Tm(k+ 1) = (TsApm + Dy (k) + T By (k) (4.7)
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where [ represents the identity matrix. In order to simplify discrete representation, new
state matrices are defined. For the output equation, there is no need for a derivative

discretization. Therefore, the discrete state-space model is derived as

xm(k + 1) - Adl'm(k) + Brlum(k)
Ym (k) = Cazpm (k)

(4.8)

where the new state matrices are defined as Ay = T,A,,+1, By =1,B,, and Cy; = C,,.

4.2.3. Augmented State-Space Matrices

The linear and discrete state-space model is defined in the previous section. In
this section, augmented state-space model is derived to solve optimization problem
with matrix calculations including the constraints. For the augmented representation,

a new state variable vector which is related to Ax,,(k) and y,,(k) is chosen as

Za(k) = (AT (k) Y (k)] (4.9)

By considering the definition of x,,(k+1) in (4.8), the equation of x,,(k) can be written

as

Tk + 1) = Agep (k) + Byt (k)
T (k) = Agzy(k — 1) + Bauy, (k — 1).

(4.10)

By defining Ax,, (k) = (k) — 2 (k — 1) and Awugy, (k) = up (k) — upm(k — 1), equation
of Az,,(k+ 1) can be written as

Al‘m(k‘ + 1) = AdACEm(k) + BdAum(k) (411)
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In order to relate the output y,,(k) to the state variable Aw,,(k), the equation of
Ay, (k + 1) is defined as

Aym(k + 1) = ym(k + 1) o ym(k)
Aym(k+1) = Cyxp(k + 1) — Caxp (k) (4.12)
Ay (k+1) = CyAx,(k+1)

by using the y,,(k) definition in (4.8). Then, equation of Ax,,(k+ 1) is substituted

into the expression of Ay,,(k+ 1) as

Agm(k+1) = Cahap(k +1)
(4.13)
= CdAdAxm(k) + C’dBdAum(k).

By defining Ay, (k 4+ 1) = ym(k + 1) — ym(k), definition of y(k + 1) can be written as

in terms of Az,,(k) and y,,(k). Finally using the new state variable vector x,(k) =
[Az,, (k)" ym(k:)T]T, the augmented stat-space representation for a MIMO system is

written as
Aim(k + 1) Ad ONstOT Aﬂfm(k) Bd

zo(k+1) = = + Ay, (k)
ym(k +1) CaAa  In,xn, Ym (k) CaB4

Az, (k)

bolk) = [ym(h)] = [onxn, T un(B)

(4.15)
Also the input vector can be written as Au,(k) instead of Au,,(k), due to make last

state-space representation clear. Finally, by defining the new state matrices A, B and
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C, the close form of the augmented state-space representation is written as

ralk+1) = Azy(k) + BAu,(k) (4.16)
ya(k) = Ciﬁa(k)

where Iy, «n, represents the identity matrix with the dimension of number of outputs
times number of outputs (N, x N,), and oy, xy, represents a zero matrix with the

dimension of number of states times number of outputs (Ns x N,).

4.2.4. Output Predictions within One Optimization Windows

In this section, an optimization problem over a prediction horizon will be solved,
step by step. In order to find a solution for model predictive control of MIMO systems,
x4(k;) which represents predicted state variables, and Awu,(k;) which represents future
control movements, are defined as follows. Assuming that at the sampling instant k;
the state variable vector x,(k;) is available through measurement. The future control
movements are defined until the number of control horizons (N.), while the predicted

states are defined until the number of prediction horizons (NN,) as

Aua(ki), A'U,a(ki + ].), ceey Aua(ki + NC — ].)
(4.17)

fL’a(k’i +1 | kl), ZCa(ki + 2 | k’i), ZEa(k’Z' +3 | k,), PN $a(ki +Np | k’l)

Based on the state-space model derived in (4.16), the future state variables are calcu-
lated sequentially using the set of future control inputs in (4.17). Because the number
of control horizon (N.) can be equal or less than number of prediction horizon (NV,),

the missing terms of the Awu, are taken as zero. The predicted state variables in one
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optimization window are defined as

zo(ki + 1| ki) =Ax, (ki) + BAug(k;)

To(ki +2 | ki) =Azq(ki + 1 | k;) + BAug(k; + 1)
=A%, (k;) + ABAug (k) + BAug(k; + 1)

To(ki +3 | ki) =Ax, (ki + 2 | ki) + BAu, (ki +2)

(4.18)
=A2,(k;) + A2BAug(k;) + ABAug (ki + 1) + BAu,(k; + 2)

zo(ki + Ny | ki) =AYz, (k) + AN BAu. (ki) + AN 2 BAug (ki +1) + ... +
AN N BAu, (k; + N, — 1).

By using the predicted state variables, predicted output variables are derived as

ya(ki + 2 | kz) :CA2$a(ki) + CABAUa(k'l) + CBAUa(ki + 1)
Yo(ki +3 | ki) =CA32,(k;) + CA*BAuy(k;) + CABAug (ki + 1) + CBAug(k; + 2)

Yo(ki + N, | ki) =C AN 2o (ki) + CAN ' BAug (ki) + CAN 2 BAug (ki + 1) + ... +
CAN=Ne BAw, (ki + N, — 1).
(4.19)
After defining the predicted output variables for a given prediction horizon, the vectors

Y, and AU, are defined as

T
Y = lyaks + 1| ) yalki+2 | k)" yalki 48 | k)T o galki + N, | K7

, (4.20)

AU, = [Aua(ki)T Aug(k; + 1)T Aug(k; + Q)T o Aug (ks + N, — 1)T]

in order to represent one optimization window in the model predictive controller.
Where the dimension of Y is represented by N, times the number of outputs (IV,)
and the dimension of AU is represented by N. times the number of outputs (V).
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After all, the compact matrix form is written as

Y, = Pz.(k;) + HAU, (4.21)
where,
[ o4 ] [ B 0 0o .. 0o |
C A2 CAB CB 0 0
P=|cA®|, H=| CA’B CAB CB 0
C AN» CAN»—1B CAN»—2B CANM—3B ... CAN»—NcR
h ) ) T (4.22)

The compact matrix form derived in (4.21) will be used to set cost function (J) of the

optimization.

4.2.5. Constraints

Before setting up the cost function used in the optimization problem, the final
step is to define the system constraints. All systems have operational constraints due to
their limited physical capacities. Constraints are separated as input constraints, output
constraints, or rate constraints. In the quadcopter systems, the thrust generated by
the propulsion system is one of the essential limited physical properties counted as
input constraints. This limitation also causes other restrictions in maneuverability. In
this case, constraints will be defined over these angles because the MPC is used as
a trajectory tracking controller, which produces pitch and roll angles as inputs. The
magnitude of the constraints were decided during simulation tests. Then, they were
tested in the real flight tests. The constraints on the control variable of the trajectory

tracking controller are expressed as

N

Uq,min g ua(k) X Ua,mazx

(4.23)
Aua,min < Aua(k) < Aua,mm
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where g min and Ugma, represents the input constraints, while Aug min and Aug maes
represents the input rate constraints. Because there are two control variables in the

MPC, each of them is subjected to distinct constraints as

N
N

ual,min X U(Ll(k) X ua,l,m(m:

(4.24)

ua2,min < ua2(k7) < ua,Q,ma:L’

where ug1 min and Ugy mer Tepresents the constraints on ¢ angle, while 142 min and
Ug2.maz TePresents the constraints on 6 angle. Then, the constraints on the inputs can

be grouped as

ual,min ual(k) ual,maz

Ua,mm = s Ua(k) — ) Ua,'mam = (425)

an,min Uq2 (k) ua?,ma:c

and represented with the inequality as

Ua,min < Ua(k) < Ua,maw- (426)

The same procedure is also applicable for the rates of input change. The rate of change

constraints are expressed as

Aual,min < Aula(k) < Aual,ma:/v
(4.27)

Aan,min < AuQa(k) < Aan,maw

where where Aty min and Aty mae represents the constraints on ¢ angle, while Atgo min,
and Ao mar represents the constraints on 6 angle. Then, the constraints on the input

rate of change can be grouped as

Aua,l,min Aual(k) Aual,mcwc
AU min = , AU, (k) = » AUgmaz = (4.28)
Auafz,mm Aua2 ( k) Aan,mum
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and represented with the inequality as
AU min < AUL(E) < AUs ma- (4.29)

These constraints can be represented into separate inequalities, and as it is shown in

(4.20), they can be defined through the one optimization window as

AUa(k) < AUa,ma:}c

AUa(k + 1) < AUa,max
AUa(k) < AUamzaaza . (430)

AUa(k + Nc - 1) < AUva,maa:

and

_AUa(k) < _AUa,mm

—AUa(k + 1) < _AUamn‘n
—AU, (k) < —AUq pmin, | . (4.31)

—AUa(k’ + Nc - 1) < _AUa,min

Suppose the inequalities are written into a vector representation. In that case, the

following equation is derived as

_AUa < _AUa min
’ (4.32)
<

AUa AUa,mcwc

where the AU,, AUy min. and AU, e, are vectors with their length equal to the size
of the control horizon (N,.) multiplied by the size of the number of inputs (V;). In

order to construct a relation between input constraints and the rate of input change
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constraints, the equation of u,(k) can be written as

Ug(k) = ug(k — 1) + Aug (k)
ug(k+ 1) = ug(k) + Aug(k+ 1)
Ug(k+1) = ug(k — 1) + Aug (k) + Aug(k+ 1) (4.33)

Ug(k+ No— 1) = ug(k — 1) + Aug (k) + Aug(k + 1) + ... + Aug(k+ N. — 1)

by using the definition of Awu,(k). Then, u,(k) is substituted in to the equation of

Au,(k + 1). This relation can be represented in the matrix form as

uq (k) I I 00 0 Aug (k)
uq(k+1 1 I I 0 .. 0 Aug(k+1
( _ ) = | |wk-1)+ | ( ) . (4.34)
uq(k+ N, — 1) I I T I ... I| |Au(k+N.—1)

Because the left side of the equation in (4.34) is the expression of U, from ky, variable

to (k4 Nu — 1)y, variable, same equation can be expressed compactly as

—(C’lua(k - 1) + CQAUa) < —Vamin

(4.35)
(Clua(k - 1) + CZAUa) < Ua,maa:
where
1 I 00 ... 0
I I I 0 ... 0
Gy = , Gy = (4.36)
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Then the control input and rates of input change can be grouped as

Cu, dy,
AU, < (4.37)
CAua dAua
where
_02 _Ua,min + Clua(k - 1) -1 _AUa.m'm
Cua - 7dua - aCA'u,a - adAua - /
CQ Ua,ma,x - Clua(k - 1) I A(]amuw:
(4.38)
Then the equation in (4.37) can be rewritten as
CAU, <d (4.39)
where
C u d Ug
co= | Ml a=|"0" (4.40)
Cua dua

The C'C and d parameters will be used in the quadratic programming solution.

4.2.6. Optimization

Assuming that r(k) is the set-point signal at the sample time k, in the given
prediction horizon, the objective of the predictive control system is to find predicted
output as close as possible to the given set-point signal. It might be assumed that the
set-points are constant during the prediction horizon. However, this assumption causes
a waypoint tracking MPC. In order to design a trajectory tracking MPC the set points
are taken same as the reference trajectory. Because there are two number of outputs in

the control-oriented model, there should be two references for each output. Therefore,
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r(k) can be defined as

r(k) = o (k) o ()] (4.41)

To design a model predictive trajectory tracking controller, the references over one
optimization window should be shifted in each time. Therefore, in each optimization
window, the vector includes references should be updated. The reference vector (R;)

is defined as

(ki + 1|k;)

r(k; ‘f’ 2|k:) (4.42)

_T’(ki + Nplkz)_

by considering the updated references in each optimization window. After the expres-
sion of Ry is defined, the cost function that reflects the control objective is written

as
J= (R, —Y,) (R, = Y,) + AU, WAU,. (4.43)

The W represents a diagonal matrix that includes tuning parameters in diagonal terms
for the desired closed-loop performance and it is named as weight matrix. If the

expression of Y, is substituted into the equation, the cost function can be rewritten as

J = (Ry — Pxo(k))" (Ry — Pxo(k))—2AUTHT (R, — Pxo(k))+AU,T (HTH+W)AU,.
(4.44)
By taking the derivative of J as

ai;f = —2H" (R — Px,(k)) + 2(H'H + W)AU, = 0 (4.45)
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the control inputs that minimize J are obtained. Finally, the optimal solution for the

control inputs is found as

AU, = (H"H + W) "H" (R, — Px,(k)). (4.46)

In order to simplify the solution, one can define the equations of F = 2(H"H + W)
and F = —2H" (R, — Pz,(k)). Inside the QP solution, calculations are done through
the variables E' and F, and the optimum solution is found as AU, = E~'F.
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5. SIMULATION RESULTS

In order to foresee the responses of the model predictive trajectory tracking con-
troller, a MATLAB simulation was prepared. In the simulation, the translational equa-
tions of motion in (3.36) were used to represent the nonlinear plant model. Although
the MPC is linear, using the nonlinear equations of motion as a plant model helps
to make simulation more realistic. Then, MPC algorithm was written in MATLAB
script as it is designed in Chapter 4. The controller’s design parameters were selected

depending on the simulation tests or physical limitations.

The sample time (75) is the time interval depending on which the control-oriented
model of the MPC is simulated. If the sample time is selected very small, the opti-
mization complexity will increase, and the solution will take more time. If it is selected
very large, the controller might not respond to instant disturbances in real-life appli-
cations. During the flight tests, it was determined that the GPS data came in 0.05
second intervals. Therefore, T is assumed as 0.05. Moreover, due to the small-angle
approximation is often made when creating the control-oriented model, the minimum
and maximum input constraints are selected as +10° to provide a safe flight and to re-
strict the altitude loss. The input rate constraint is selected as physically proper value
100, but there is no information about the quadcopter’s capacity to change thrust in a

distinct time interval.

The prediction horizon (N,) is the number of iterations MPC uses in one op-
timization window. If the prediction horizon is small, then the controller might not
produce an input against the disturbances, which are required more time than the
prediction horizon considers. A large prediction horizon also causes an increase in
optimization complexity. The control horizon (N.) is the number of optimal solutions
that the MPC can solve in one optimization window. Like the prediction horizon, large
control horizon also increases the complexity of the optimization problem. The input

weight matrix (W) is another design parameter of MPC. It is multiplied by the input
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terms and added to the error terms to produce the cost function. If the multiplication
parameter of the input is increased, then the optimization results give smaller inputs.
Since the quadcopter is assumed as symmetric in this application, the roll and pitch
inputs should have the same weight in the cost function. Regarding the simulation
results, [V, is selected as 40, N, is selected as 4, and W is selected as 1000 for the best
controller performance. However, other tests with different design parameters are also
tried in actual flight tests and will be represented in Chapter 6. In Table 5.1, selected

design parameters for MPC are listed.

Table 5.1. Design Parameters for MPC.

Parameter Value
Sample Time 0.05
Prediction Horizon 40
Control Horizon 4

Input Constraints +-10°

Input Rate Constraints | 100

Input Weights 1000

The low-level controller will run on the quadcopter in real-life applications, but
it is assumed that the low-level controller works without fault in the MATLAB sim-
ulation. It is assumed that it can follow the roll and pitch references without delay
and overshoot. In the following sections, four different reference trajectories and MPC
responses will be represented. The trajectory tracking performance will be investigated
by changing the prediction horizon (X,), and the control horizon (N.) of the MPC,
firstly. Then the input weight (W) will be increased while keeping the N, and N,

constant, and results will be compared.
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5.1. Reference Waypoint

First of all, simulation tests were carried out using the waypoint reference. The

waypoint reference was generated as

In Figure 5.1, the start point and the waypoint reference are shown on the EFF.

y [m]
%
#®

o 2 4 6 8 10 12
x [m]

Figure 5.1. Waypoint Reference.

The output results in Figure 5.2 show that higher N, values reduce the overshoot
around the reference. The input results in Figure 5.3 show that increasing N, and N,
result in smooth input generations. Moreover, additional Figures 5.4, and 5.5 show
that increasing W decreases the control effort and reduces the overshoot around the

reference.
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Figure 5.2. Simulation Output Results for the Waypoint Reference (W = 10).
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Figure 5.3. Simulation Input Results for the Waypoint Reference (/W = 10).
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Figure 5.5. Simulation Input Results for the Waypoint Reference (N, = 40, N, = 4).
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5.2. Longitudinal Reference Trajectory

Simulation tests were continued using a longitudinal reference trajectory. The

longitudinal reference trajectory was generated as

r(t) = =, (5.2)

It has a constant velocity of 1 m/s in the x-direction. In Figure 5.6, the reference

trajectory, including the start and end points, is shown on the EFF.

o 2 4 ] B 10 12 14 16 18 20
% [m]

Figure 5.6. Longitudinal Trajectory Reference.

Looking at Figures 5.7, and 5.8, it is observed that accepting N, as 10 and N, as
4 is sufficient for a good controller performance. However, disturbances such as windy
weather conditions were not included when preparing the simulation. Therefore, N,
and N, parameters can be chosen as high as possible to achieve good performance with
less control effort, despite disturbances. Also Figure 5.10 shows how the control effort

decreases with increasing W value.
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Figure 5.7. Simulation Output Results for the Longitudinal Trajectory Reference

(W = 10).
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Figure 5.9. Simulation Output Results for the Longitudinal Trajectory Reference
(N, =40, N, = 4).
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Figure 5.10. Simulation Input Results for the Longitudinal Trajectory Reference
(N, =40, N, = 4).
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5.3. Sinusoidal Reference Trajectory

The simulation tests were continued using a sinusoidal reference trajectory. The

sinusoidal reference trajectory was generated as

z,(t) t
yr(t) 3sin(0.4t)

It has a constant velocity of 1 m/s in the x-direction and a variable velocity in the
y-direction. In Figure 5.11, the reference trajectory, including the start and end points,

is shown on the EFF.
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Figure 5.11. Sinusoidal Trajectory Reference.

Looking at Figures 5.12, and 5.13, it is observed that accepting N, as 10 and
N, as 4 is sufficient for a good controller performance. However, as stated in the test
using longitudinal reference, disturbances were neglected in the simulation. Therefore,
N, and N, parameters can be chosen as high as possible to achieve good performance
with less control effort, despite disturbances. Also Figure 5.15 shows how the control

effort decreases with increasing W value.
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Figure 5.12. Simulation Output Results for the Sinusoidal Trajectory Reference
(W = 10).
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Figure 5.13. Simulation Input Results for the Sinusoidal Trajectory Reference
(W = 10).
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Figure 5.14. Simulation Output Results for the Sinusoidal Trajectory Reference
(Np, =40, N, = 4).
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Figure 5.15. Simulation Input Results for the Sinusoidal Trajectory Reference

(N, = 40, N, = 4).
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5.4. Circular Reference Trajectory

The simulation tests were continued using a circular reference trajectory. The

circular reference trajectory was generated by using the sine and cosine functions as

H(t) = z,(t) _ 3—?.>cos(0.4t) ‘ (5.4)
yr(t) 3sin(0.4t)

In Figure 5.16, the reference trajectory, including start and end points, is shown on

the EFF.
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Figure 5.16. Circular Trajectory Reference.

As can be seen from the results in Figures 5.17 and 5.18, the system is not stable
in the test where IV, is 5 and N, is 2. Desired control performance was achieved only
by increasing the N, value. However, as stated in the test using longitudinal reference,
disturbances were neglected in the simulation. For this reason, choosing high N, and
N, parameters may be preferable in real flight tests as it will reduce control effort.
Furthermore, the results in which the W parameter is changed and the N, and N,
parameters are kept constant are shown in Figures 5.19 and 5.20. It is observed that

there is a delay in trajectory tracking in the y-direction with increasing W parameter.
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Figure 5.17. Simulation Output Results for the Circular Trajectory Reference
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Figure 5.19. Simulation Output Results for the Circular Trajectory Reference
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6. FLIGHT TEST RESULTS AND DISCUSSION

The flight test results consist of the data logged by the Raspberry Pi. The flight
data includes the reference trajectories, current position, and the system inputs gen-
erated by the MPC. The reference trajectories are generated from equations in the
Raspberry Pi board, while the current position is taken from the estimator of the
ArduPilot in the Pixhawk board. The position estimator highly depends on the GPS
data connected to the Pixhawk board. The serial connection provides the communica-
tion between the Raspberry Pi and Pixhawk boards. Finally, the inputs are created by
considering each iteration’s reference trajectories and actual outputs. They are sent to
the Pixhawk’s low-level controller with the help of the DroneKit library. DroneKit li-
brary consists of functions that contain commands that Pixhawk can understand. The
takeoff, attitude send, and landing functions are used from the DroneKit library. The
takeoff and landing functions provide the quadcopter’s desired altitude while maintain-
ing its x and y positions constant. On the other hand, the attitude send function does
not deal with the position of the quadcopter. It sends the roll and pitch commands
produced in the high-level controller to the low-level controller in each optimization

cycle.

Finally, the reference, output, and input data were recorded in each flight test.
The flight tests were started by using the design parameters tested in the simulation
environment, in Chapter 5. The reference trajectories used in the flight tests were
also the same as those used in the simulation tests. Therefore, flight data for four
different trajectories will be presented in this chapter. First of all, the case named
Test-1 with the design parameters N, = 40, N, = 4, and W = 10 will be investigated
for all trajectories. Then, the case named Test-2 with the design parameters N, = 40,
N, =4, and W = 1000 will be investigated to see the effect of input weights on control
performance. After all, the case named Test-3 with the design parameters N, = 40,
N. = 6, and W = 1000 will be investigated to see the control horizon’s effect on the

controller performance.
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6.1. Reference Waypoint

The reference waypoint, which was used in simulation tests, was also used in

flight tests. The equation is rewritten as

r(t) = - . (6.1)

6.1.1. Test-1 with the Design Parameters N, =40, N, =4, and W = 10

Test-1 was conducted to examine the controller performance when the design

parameter W is low. In Figure 6.1, the resultant trajectory of the quadcopter on the

EFF is shown.

— — — - reference trajectory
Np=40, N_=4, W=10

y [m]

0 5 10 15 20 25
x [m]

Figure 6.1. Test-1 Results for the Reference Waypoint.

In the simulation tests, it was observed that low W caused an overshoot. In
Figure 6.2, the quadcopter approaches the reference waypoint in the x-direction. In
Figure 6.3, it is observed that as the trajectory error in the x-direction decreases, the
input # changes to slow down the movement. However, the input cannot prevent the

overshoot. In the y-direction, a negative input ¢ is produced because the starting point
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is at positive y. After the quadcopter came to 0, the positive input ¢ started to be

produced, but the quadcopter could stop.

al
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B [7]

o
T

= = = -reference trajectory
N'p—'--'-iD, NC=4, W=10

= = = reference trajectory
N =40, N _=4, W=10

Time [s)

Figure 6.2. Test-1 Output Results for the Reference Waypoint.
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Figure 6.3. Test-1 Input Results for the Reference Waypoint.
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6.1.2. Test-2 with the Design Parameters N, = 40, N, = 4, and W = 1000

After Test-1 was performed, Test-2 was performed to see the effect of high W on
the controller performance, while N, and N, kept constant. In Figure 6.4, the resultant

trajectory of the quadcopter on the EFF is shown.

4+ — — — - reference trajectory
NP:AD,NC:!J', W=1000

y [m]
o

0 2 4 6 8 10 12
x [m]

Figure 6.4. Test-2 Results for the Reference Waypoint.

In simulation results, it was observed that high W causes reduced control effort
and prevents overshoot. In Figure 6.5, it is observed that the quadcopter maintains its
position without overshooting after reaching the reference waypoint in the x-direction.
Also, in the y-direction, it holds its position. In Figure 6.6, it is observed that the
generated inputs are softer. Therefore, the control effort is reduced as is expected.
It has been concluded that the trajectory tracking controller gives satisfactory results
with the determined coeflicients. However, the chattering problem in the produced

inputs still persists.
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Figure 6.5. Test-2 Output Results for the Reference Waypoint.
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Figure 6.6. Test-2 Input Results for the Reference Waypoint.
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6.1.3. Test-3 with the Design Parameters N, = 40, N, = 6, and W = 1000

After Test-2 was performed, Test-3 was conducted to decrease chattering observed
in the inputs. Therefore, the N, value was increased, and the reference waypoint test
was repeated. In Figure 6.7, the resultant trajectory of the quadcopter on the EFF is

shown.

= = = - reference trajectory
ND=40, N_=6, W=1000

y [m]

x [m]

Figure 6.7. Test-3 Results for the Reference Waypoint.

In Figure 6.8, it is observed that the rise time of the controller increases by
increasing N., and it was also observed that the time required for the optimization
solution increased approximately 1.5 times. In Figure 6.9, it is observed that the
chattering in 6 does not change as it was expected. At t = 7, one can see that the
actual position of the quadcopter was misestimated. This problem can be explained

by the fact that the GPS used in the quadcopter is not of sufficient quality.
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Figure 6.9. Test-3 Input Results for the Reference Waypoint.
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6.2. Longitudinal Reference Trajectory

The longitudinal reference trajectory, which was used in simulations tests, was

also used in flight tests. The equation is rewritten as

r(t) = =, (6.2)

6.2.1. Test-1 with the Design Parameters N, =40, N, =4, and W = 10

Test-1 was conducted to examine the controller performance when the design
parameter W is low. In Figure 6.10, the resultant trajectory of the quadcopter on the

EFF is shown.

= = = reference trajectory
ND=4D, N =4, W=10

y [m]

-2 0 2 4 6 8 10
x [m]

Figure 6.10. Test-1 Results for the Longitudinal Reference Trajectory.

In Figure, 6.11, it is observed that the quadcopter starts to move in the positive
y-direction. In Figure 6.12, it is observed that the controller produces negative ¢ input
for this reason. As the quadcopter approaches the 0 positions, the generated inputs

increase. However, since the design parameter W is low, overshoot is observed in the
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movement in the y-direction. The overshoot in the x-direction is lower than in the

y-direction. The reason may be that the wind is often effective in the y-direction.

= = = rreference trajectory
N =40, N =4, W=10

0 2 4 3] 8 10 12 14

= = = rreference trajectory
————————————————————— N =40, N =4, W=10

Time [s]

Figure 6.11. Test-1 Output Results for the Longitudinal Reference Trajectory.
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Figure 6.12. Test-1 Input Results for the Longitudinal Reference Trajectory.
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6.2.2. Test-2 with the Design Parameters N, = 40, N, = 4, and W = 1000

After Test-1 was performed, Test-2 was performed to see the effect of high W
on the controller performance, while N, and NN, kept constant. In Figure 6.13, the

resultant trajectory of the quadcopter on the EFF is shown.

= = = - reference trajectory
Np:40, N_=4, W=1000

x [m]

Figure 6.13. Test-2 Results for the Longitudinal Reference Trajectory.

Compared with the low W parameter, it is observed that the high W parameter
has better trajectory tracking result. In Figure 6.14, the x and y positions of the
quadcopter are shown. Even if the quadcopter started its movement in a positive y
position, it was able to follow the trajectory without an overshoot. In Figure 6.15, the
generated inputs ¢ and 6 angles are shown. The control effort is sufficiently low with
respect to the previous results. Also, as it is observed in the simulation results, the

high W parameter causes some delay in the generation of the inputs.
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Figure 6.14. Test-2 Output Results for the Longitudinal Reference Trajectory.
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Figure 6.15. Test-2 Input Results for the Longitudinal Reference Trajectory.
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6.2.3. Test-3 with the Design Parameters N, = 40, N, = 6, and W = 1000

After Test-2 was performed, Test-3 was conducted to observe the effect of high N,
on the controller performance. In Figure 6.7, the resultant trajectory of the quadcopter

on the EFF is shown.

= — — - reference trajeclory
ND=40, NC=6, W=1000

y [m]

x [m]

Figure 6.16. Test-3 Results for the Longitudinal Reference Trajectory.

In Figure 6.17, the output results are shown. When compared with the results
with the low N, parameter, it is seen that trajectory errors are higher in this test.
However, since the day of this test was very windy, it should be considered that the
results were affected by the weather conditions. Increasing the N, value was tried to
reduce the noise in the inputs. In the results in Figure 6.18, it is observed that it does

not reduce but decreases the wavelength.
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Figure 6.17. Test-3 Output Results for the Longitudinal Reference Trajectory.
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Figure 6.18. Test-3 Input Results for the Longitudinal Reference Trajectory.
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6.3. Sinusoidal Reference Trajectory

The sinusoidal reference trajectory, which is used in the simulation tests, was also

used in the flight tests. The equation from which the sinusoidal reference trajectory is
created as shown below.

(6.3)
yr(t) 3sin(0.4t)

6.3.1. Test-1 with the Design Parameters N, = 40, N, = 4, and W = 10

Test-1 was conducted to examine the controller performance when the design

parameter W is low. In Figure 6.19, the resultant trajectory of the quadcopter on the
EFF is shown.

— — = - reference trajectory
Np:40, N =4, W=10

y [m]

x [m]

Figure 6.19. Test-1 Results for the Sinusoidal Reference Trajectory.

In Figure 6.20, it is observed that the aircraft started to follow the trajectory
with a delay, even the maximum control inputs were produced. The control inputs are

shown in Figure 6.21. As in the previous tests with the low W parameter, the control



effort is quite high.
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Figure 6.20. Test-1 Output Results for the Sinusoidal Reference Trajectory.
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Figure 6.21. Test-1 Input Results for the Sinusoidal Reference Trajectory.
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6.3.2. Test-2 with the Design Parameters N, = 40, N, = 4, and W = 1000

After Test-1 was performed, Test-2 was performed to see the effect of high W

on the controller performance, while N, and N, kept constant. In Figure 6.22, the
resultant trajectory of the

— — — ‘reference trajectory
ND=40‘ N =4, W=1000

10 12 14 16
x [m]

Figure 6.22. Test-2 Results for the Sinusoidal Reference Trajectory.

As it is shown in Figure 6.23, trajectory tracking result in the x-direction is

sufficient. However, in the y-direction, a delay caused by the higher W is observed. In

Figure 6.24, compared to the results with the low W parameters, it is observed that
the control effort is reduced.
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Figure 6.23. Test-2 Output Results for the Sinusoidal Reference Trajectory.
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Figure 6.24. Test-2 Input Results for the Sinusoidal Reference Trajectory.
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6.3.3. Test-3 with the Design Parameters N, = 40, N, = 6, and W = 1000

After Test-2 was performed, Test-3 was conducted to observe the effect of high
N, on the controller performance. In Figure 6.25, the resultant trajectory of the quad-

copter on the EFF is shown.

— — — - reference trajectory
NP:AD,NC:B, W=1000

x [m]

Figure 6.25. Test-3 Results for the Sinusoidal Reference Trajectory.

As observed from the results in Figure 6.26, there was a GPS interruption during
the flight. Also in the y-direction, high trajectory error is observed. When the inputs
in Figure 6.27 are evaluated, it is observed that although the quadcopter produces the

highest 6 angle it can produce, the y-direction reference cannot be followed.
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Figure 6.26. Test-3 Output Results for the Sinusoidal Reference Trajectory.
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Figure 6.27. Test-3 Input Results for the Sinusoidal Reference Trajectory.
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6.4. Circular Reference Trajectory

The circular reference trajectory, which is used in the simulation tests, was also

used in the flight tests. The equation is rewritten as

H(t) = z,(t) _ 3—?7003(0.4t) ‘ (6.4)
yr(t) 3sin(0.4t)

6.4.1. Test-1 with the Design Parameters N, =40, N, =4, and W = 10

Test-1 was conducted to examine the controller performance when the design
parameter W is low. In Figure 6.28, the resultant trajectory of the quadcopter on the

EFF is shown.

= = = reference trajectory
ND=4D, N =4, W=10

x [m]

Figure 6.28. Test-1 Results for the Circular Reference Trajectory.

Looking at the position results in Figure 6.29, it is observed that there is a GPS
interruption at the time t = 7.5. In addition, it is observed that although the controller
produces maximum input value for ¢, it cannot follow the trajectory in the y-direction.

The reason for this is estimated to be windy weather, as in the previous tests. In Figure
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6.30, the control inputs are shown. It is observed that, due to the low W parameter,

the control effort is high.
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Figure 6.29. Test-1 Output Results for the Circular Reference Trajectory.
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Figure 6.30. Test-1 Input Results for the Circular Reference Trajectory.
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6.4.2. Test-2 with the Design Parameters N, = 40, N, = 4, and W = 1000

After Test-1 was performed, Test-2 was performed to see the effect of high W
on the controller performance, while N, and NN, kept constant. In Figure 6.28, the

resultant trajectory of the quadcopter on the EFF is shown.

y [m]

— — = rreference frajectory
Np=40, N_=4. W=1000

44 . . i i i i . i |
3 2 414 0o 1 2 3 4 5 6 7 8
x [m]

Figure 6.31. Test-2 Results for the Circular Reference Trajectory.

In Figure 6.32, the trajectory results are shown. It is observed that, the position
errors are very low. In Figure 6.33, the inputs generated by the controller are shown.
It is observed that, the increased W parameter reduces the control effort and causes
smoother inputs to be produced. However, the chattering problem in the inputs still

persists.
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Figure 6.32. Test-2 Output Results for the Circular Reference Trajectory.
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Figure 6.33. Test-2 Input Results for the Circular Reference Trajectory.
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6.4.3. Test-3 with the Design Parameters N, = 40, N, = 6, and W = 1000

After Test-2 was performed, Test-3 was conducted to observe the effect of high
N, on the controller performance. In Figure 6.34, the resultant trajectory of the quad-

copter on the EFF is shown.

6l N
— — — - reference trajectory
Np=40, N_=6. W=1000

y [m]

x [m]

Figure 6.34. Test-3 Results for the Circular Reference Trajectory.

In Figure 6.29, the position results are shown. Compare to the results obtained
with the low N, parameter, increasing the N, parameter provided trajectory tracking
with less errors in the first 10 seconds. The reason for the position errors observed after
the 10th second can be interpreted as a disturbance caused by the weather conditions.

In Figure 6.36, the inputs produced by the MPC are shown.
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Figure 6.35. Test-3 Output Results for the Circular Reference Trajectory.
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Figure 6.36. Test-3 Input Results for the Circular Reference Trajectory.
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6.5. Discussion

As a result, the flight tests were conducted for four different reference trajectories,
from simple to complex. They are reference waypoint, longitudinal reference trajectory,
sinusoidal reference trajectory, and circular reference trajectory. Three different tests
were repeated to see the effect of a different MPC design parameters on the controller
performance for each reference trajectory. They are Test-1 with the design parameters
N, as 40, N, as 4, and W as 10, Test-2 with the design parameters N, as 40, N, as
4, and W as 1000, and Test-3 with the design parameters N, as 40, N, as 6, and W
as 1000. The test results were evaluated by considering GPS interruptions and windy

weather conditions.

As observed in the simulation results, it was observed in the test results Test-1 and
Test-2 that increasing the input weight (1) reduces the overshoot in the output results
and better trajectory tracking performance. The value of the W is directly related to
the units of the terms used in the cost function. In this study, trajectory errors with
units of meters and the inputs with radians are used in the cost function. For this
reason, when the W value was 10, the controller applied a very high control effort to
follow the reference trajectory. When the W value was increased to 1000, softer control
inputs were sent to the system slightly. In the flight tests, smooth control inputs gave

better trajectory tracking performance.

Increasing the number of control horizon (IV,) caused similar results regarding the
controller performance in the simulation tests. N, value was increased in Test-3, con-
sidering that it might reduced chattering in the input results observed in the flight tests
Test-1 and Test-2. Increasing N, increased the optimization solution time. Although
it did not solve the chattering problem, it has been observed that the wavelength of

the noise was reduced.
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7. HARDWARE DESIGN

The quadcopter is a mechatronic system in which multiple electronic devices work
together. The quadcopter consists of sensors, actuators, and physical components,
also called hardware components. In this chapter, the hardware components of the
quadcopter platform and quadcopter’s performance calculations required to reach the
flight objective of the thesis are presented. First, a component list and major systems
with related components will be presented. Then, performance calculations performed

for component selection will be explained.

7.1. Hardware Implementation

The quadcopter was created by considering the requirements of this study. The
components which are used in the quadcopter system are listed in Table 7.1. In this
section, hardware components are going to be explained as components and systems
that include more than one component such as propulsion system, power supply system
and avionics. A diagram shown in Figure 7.1 created to represent hardware components

and their connection.

7.1.1. Quadcopter Frame

Quadcopter frames are generally made by plastic or carbon fiber materials. While
selecting the frame, first of all the dimensions of the frame should be decided by
considering the hardware components to be transported on quadcopter. Especially,
it is important to locate selected propellers on the quadcopter without hitting any
other components. Therefore, by taking into account the performance calculations
causes selection of propeller dimension, a frame which has distance of 450 mm between
the mutually positioned electric motor was selected. The calculations cause propeller

selection will be explained in the following sections.
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Table 7.1. Hardware Component List.

Hardware Components

1 Quadcopter Frame
2 Propulsion System
2.1 Propellers

2.2 Electric Motors
2.3 ESCs

3 Pixhawk

4 Raspberry Pi

5 Power Supply System

5.1 Battery

5.2 Voltage Regulators
6 GPS
7 Avionics

7.1 Telemetry

7.2 | RC Receiver and Transmitter

7.3 Buzzer and Safety Switch

7.1.2. Propulsion System

The propulsion system consists of propellers, electric motors, and electric speed
controllers (ESC). The propulsion system must produce thrust and provide motion
in quadcopter systems. Because the only inputs of the quadcopter dynamic systems
are thrusts, selecting the propulsion system components is important. During the
selection, the total weight of the quadcopter and the propulsion system’s capacity

must be compatible.

Electric motors are brushless, and they generally have specifications provided by
the producers, including appropriate battery and propeller choices for the engine type.
In this case, T-motor U3 electric motor was selected due to its enough thrust generation

capability for light quadcopters. It can be used with both 4S and 3S batteries and
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propeller pairs with different sizes.

Propellers are made of carbon fiber or plastic materials and are generally pre-
ferred with two blades in quadcopter applications. Propellers are designed with an
airfoil cross-section to generate aerodynamic lift and drag forces with the airflow. The
aerodynamic lift and drag forces cause a thrust and moment in the propeller’s axis.
The T-motor carbon fiber propellers with the dimension of 12x4 inches was chosen for
this application. The reason behind that selection will be explained in detail in the

performance calculations section.

An electric speed controller (ESC) is a circuit that controls and regulates the
speed of the electric motor. ESCs are generally rated according to the maximum
current that they allow. T-motor AIR 40A ESC which can withstand 40A continuously
was preferred in this case due to its high maximum current capacity, 60A. In order to
understand whether the maximum current capacity of ESC is enough for the selected

electric motor and propeller pairs, specifications of the electric motor are used.

7.1.3. Pixhawk

Pixhawk is a board that is commonly used to run open-source flight controllers:
Ardupilot and PX4. Pixhawk has the advantage of its straightforward design to con-
nect avionic devices such as GPS, telemetry, radio receiver, buzzer, and safety switch.
This thesis, it is aimed to run ArduPilot open-source flight controller code as a low-
level controller on the Pixhawk board. Pixhawk board has its inertial measurement
unit (IMU) with an accelerometer, gyroscope, and magnetometer for the yaw angle.
Pixhawk board can be used for different UAVs, such as fixed wings or rotary wings
including tricopter, hexacopter and octocopter designs in addition to quadcopter. In
the trajectory tracking application, actual position references are estimated by using

the GPS connected on the Pixhawk.
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7.1.4. Raspberry Pi

A Raspberry Pi is a small computer that can be used as flight controllers of
UAVs. This thesis aims to run a high-level controller on the Raspberry Pi board and
construct the serial communication between Raspberry Pi and Pixhawk boards. The
communication is supplied with USB to micro USB cable. Because the high-level flight
controller requires position information to produce attitude angles as control inputs,
Raspberry Pi has to read data from sensors connected on Pixhawk and send produced
control inputs to the Pixhawk. In this application, the code generated for MPC was

written in Python language and run in the Raspberry Pi.

7.1.5. Power Supply System

Lithium-polymer (LiPo) batteries provide the power supply of the quadcopter
system. They are rechargeable batteries of lithium-ion technology using a polymer
electrolyte instead of a liquid electrolyte. They separated according to the number of
parallel and serial cells. A single cell voltage varies between 4.2 V means fully charged,
and 2.7 V means fully discharged. Due to electric motor voltage requirements, 3S1P
(11.1V) and 4S1P (14.8V) types are usually preferred for quadcopter applications.
In this case 3S1P (11.1V) Leopard LiPo battery was sclected. The boards on the
quadcopter, such as Pixhawk and Raspberry Pi, require a 5V power supply to operate.
For this reason, voltage regulators which convert high voltage to the desired voltage

level are required to use in power supply systems.

7.1.6. Global Positioning System (GPS)

A global positioning system (GPS) detects the position in latitude-longitude-
altitude positioning format. GPS’s working principle is based on a worldwide network
of satellites that transmit radio signals from medium earth orbit. In this case, a
RadioLink GPS with about 50 centimeters positioning accuracy and can be searched

20 satellites within a few seconds is used. Due to the RadioLink GPS being compatible
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with the Pixhawk board and powered by Pixhawk, it is easy to use.

7.1.7. Avionics

Telemetry is a device that provides a two-way data stream. It can supply the
communication between a ground station and a UAV. In this case, QGround Control
is used as a ground station. QQGround Control is flight support for the vehicles running

with PX4 or ArduPilot autopilots via MAVLink protocol.

Remote control (RC) receiver and transmitter are used to control UAV remotely.
The receiver is connected to the UAV while the transmitter is held in the pilot’s hands.
RC is important even in autonomous flight because if something goes wrong, it is

necessary to take the UAV as one of the manual modes in ArduPilot algorithm.

Buzzer and safety switch are compatible with the Pixhawk board, and they are
used to make Pixhawk’s responses understandable. The buzzer receives audible warn-

ings, while the safety switch allows electric motor operations. Both of them are powered

by the Pixhawk board.

7.2. Component Sizing

Performance calculations are done to design a quadcopter that meets the flight
requirements to reach the objective of the thesis. This section consists of the weight
calculation directly related to the battery-propeller pair selection and flight time cal-

culations related to the battery capacity selection.
7.2.1. Weight Calculation and Battery-Propeller Selection
During the design process, it is expected from the quadcopter to hover around

50% of the maximum throttle so it can still have extra throttle for maneuverability.

Because the battery and propeller pairs determine the ultimate thrust that the quad-
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copter can have and the total weight that it can be, weight calculation is vital during
the design of the quadcopter. With the components mentioned in Table 7.1, the quad-
copter is expected to weigh nearly 1.650 kg. In Table 7.2, many propellers and battery
pairs are investigated in terms of the thrust that they can generate with a 50% throttle
level. Propeller dimensions, battery types, and thrust values are taken from electric

motor T-Motor U3 specifications.

Table 7.2. Battery-Propeller Selection.

Propeller Type | Battery Type | Thrust (%50 Throttle) [g] | Total Weight [kg]
12x4 CF 3S LiPo 350 1.4
13x4.4 CF 3S LiPo 400 1.6
14x4.8 CF 3S LiPo 550 2.2
11x3.7 CF 4S LiPo 460 1.84
12x4 CF 4S LiPo 580 2.32
13x4.4 CF 4S LiPo 730 2.92

As it can be seen from Table 7.2, it is proper to use 12x4 CF and 13x4.4 propellers
with a 3S1P battery and 11x3.7 CF propellers with 4S1P battery. In this thesis, 3S1P
battery and 12x4 CF propeller pairs were selected. After the propeller pairs and the
battery type is decided, the flight time of the quadcopter can be calculated.

7.2.2. Flight Time Calculations

Flight time calculation depends on the total current used by the hardware com-
ponents and the battery’s capacity. Therefore, one should estimate the total required
current to calculate flight time. Electric motor specifications can be used to estimate
the required current. The flight time of the quadcopter is calculated as

Ca x 60

-~ 7.1
! 1000 x Cu (7.1)
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where t represents the flight time in [m], C'a represents the battery capacity in [mAh]

and C'u represents the total current used by quadcopter in [A]. The previous section

selected proper battery-propeller pairs for the design weight. With the knowledge of

this selection, the required current estimation can be done using the electric motor

specifications. On the other hand, battery capacity is added to the table to show the

effect of battery capacity on flight time.

Table 7.3. Flight Time Calculations.

Propeller | Battery Current [A] Total Current [A] | Capacity | Flight Time
Type Type | (%50 Throttle) (with +2A) [mAh] [min)]
3000 15
12x4 CF | 3S LiPo 2.5 12 5000 25
7000 35

Finally, it can be observed from the Table 7.3 that choosing the highest capacity

causes the highest flight time.
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8. CONCLUSION

The quadcopter UAVs are prevalent electromechanical systems due to their ad-
vantages in implementing and testing different controller algorithms. This thesis ob-
tains trajectory tracking of a quadcopter by using a linear model predictive controller.
MPC is a newly popular method in aviation. It has a preview capacity because it

solves an online optimization problem depending on the plant model.

Throughout the thesis, the first nonlinear dynamic model of the quadcopter was
derived using Newton-Euler’s formalism. Then, the model predictive algorithm was
formulated and designed for the trajectory tracking dynamics. From simple to complex,
four different reference trajectories were generated to use in simulation tests and actual
flight tests. After the controller design, the system was simulated in the MATLAB
environment. Some of the design parameters of MPC were determined depending on
the physical limitations of the system or calculations. In contrast, the others were
selected depending on the simulation tests. The quadcopter system, including the
Pixhawk flight computer for the low-level controller and Raspberry Pi flight computer
for the designed MPC, was created to validate the simulation results with the actual
flight tests. In order to build a working system, required calculations, including the
flight time calculations and thrust calculations needed for hover depending on the

electric motor and propeller pairs, were done.

The results show that linear MPC can be used in trajectory tracking applications
by selecting the proper design parameters. However, due to the model of the linear
MPC being highly linearized and decoupled, linear MPC lost some of its preview
capacity. For that reason, nonlinear MPC might be considered and tested in future
works. Also, while designing the MPC for this thesis, the low-level dynamics of the
system were not considered. It is known that ArduPilot’s low-level algorithm consists
of PID controllers which have their delay problems. Therefore, it might be beneficial

to model the low-level dynamics and use them in the control-oriented model while
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designing the linear MPC controller. Considering the parts used for hardware, it is
obvious that selected GPS is quite inadequate for this application. Real-time kinematic
GPS (RTK) system, that provide reliable positioning, can be used to do longer tests
by eliminating the GPS drift problem.
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APPENDIX A: PYTHON CODE

Algorithm 1 MPC Algorithm.

Call the required libraries.

Connect to the vehicle with DroneKit library.

Define the number of states, inputs and outputs:

Ny =4 N, =2, N, = 2.

Define MPC design parameters:

N, =40, N, = 4, W = 1000, Ti = 0.05, Uz = +10, tUpin = -10, Atlyq, = 100.

function CONTINUOUS TO DISCRETE (A, Bim, Cin, T5)
Use Euler’s Method for discretization.
return Ay, By, Cy

end function

function CREATE AUGMENTED MATRICES(Ay, By, Cq, Ns, N,)
Create augmented matrices considering the new state vector x, = [AzL yI']7.
return A,, B,,C,

end function

function CALCULATE PREDICTION OUTPUTS(A,, By, Co, Ny, N, Ny, N,)
Calculate the P and H matrices used to describe predicted outputs, Y.
Y = Pz, + HAu,
return Y

end function

function DEFINE CONSTRAINT VECTORS(Umaz, Umin, Atmazs Nu, Ne)
return CC,d

end function

E=—2(H'H+W)
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function DEFINE REFERENCE TRAJECTORY

The reference trajectory is predefined until the Ng,,.

fort=0: N, do

(T

R(t) = (t)
Y, (t)

end for

return R

end function

Autonomous takeoff with the DroneKit library.
Start the trajectory tracking with MPC.

fort =0: N, do
for k=1:n, do
Create the reference trajectory vector for current shifted optimization window.
Ry(:) = R(1 : ny)

end for

F = —-2H'(Rs; — Px,(t))
Update C'C and d by using Au,(t).

function QP SorLver(E,F,CC,d)
return Au,(t)

end function

Update u,(t + 0t) = ua(t) + Aug(t)

Send attitude commands to the Pixhawk with DroneKit library.
Take local position and velocity information from GPS in EFF.
Use the past and current GPS data to update x,(t).

end for

Autonomous landing with the DroneKit library.

Close the vehicle with Dronekit Library.




