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FONKSİYONLAR İÇİN OSTROWSKI
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Doç. Dr. Mehmet Eyüp KİRİŞ
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ÖZET

Yüksek Lisans Tezi

KOORDİNATLARDA s−KONVEKS FONKSİYONLAR İÇİN

OSTROWSKI TİPLİ İNTEGRAL EŞİTSİZLİKLERİ

Gözde BAYRAK

Afyon Kocatepe Üniversitesi

Fen Bilimleri Enstitüsü

Matematik Anabilim Dalı

Danışman : Doç. Dr. Mehmet Eyüp KİRİŞ

Bu tez çalışması beş bölümden oluşmaktadır.

Birinci bölüm giriş niteliğinde olup Eşitsizlik Teorisi ile Konveks Fonksiyonların

tarihi üzerine bilgiler sunulmuştur. İkinci bölümde konveks fonksiyonlar, koordi-

natlarda konveks fonksiyonlar ve ikinci anlamda s−konveks fonksiyonlar için temel

tanım ve kavramlara değinilmiştir. Üçüncü bölümde ise fonksiyonların koordinat-

larda konveksliğinden yararlanılarak elde edilmiş bazı ağırlıklı Ostrowski tipli eşitsizliklerle

ilgili literatürde yer alan lemma ve teoremler verilmiştir. Bu bölümde verilen lem-

malar kullanılarak elde edilen integral eşitsizlikleri tez çalışmasına temel oluşturmuştur.

Dördüncü bölümde ise, ağırlıklı Ostrowski tipli eşitsizlikler kullanılarak koordinat-

larda s−konveks fonksiyonların s−konvesliği ile ilgili bazı yeni integral eşitsizlikleri

elde edilmiştir.

Son bölüm olan beşinci bölümde çalışma süresince yararlanılan literatürdeki kay-

naklar listelenmiştir.

2022, v + 45 sayfa

Anahtar Kelimeler : Konveks fonksiyonlar, s−konveks fonksiyonlar, Koordinat-

larda konveks fonksiyonlar, İntegral eşitsizlikleri, Ostrowski tipli eşitsizlikler.
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ABSTRACT

M.Sc. Thesis

WEIGHTED OSTROWSKI TYPE INEQUALITIES

FOR CO-ORDINATED s−CONVEX FUNCTIONS

Gözde BAYRAK

Afyon Kocatepe University

Graduate School of Natural and Applied Sciences

Department of Mathematics

Supervisor : Assoc. Prof. Mehmet Eyüp KİRİŞ

This thesis study consists of five chapters.

The first chapter is an introduction and information on the Inequality Theory and

the history of Convex Functions is presented. In the second chapter, basic definitions

and concepts for convex functions, convex functions in co-ordinates and s−convex

functions in the second sense are discussed. In the third chapter, lemmas and the-

orems in the literature about some weighted Ostrowski type inequalities obtained

by using the convexity of functions in co-ordinates are given. The integral inequal-

ities obtained by using the lemmas given in this section formed the basis for the

thesis study. In the fourth chapter, by using weighted Ostrowski type inequalities,

some new integral inequalities related to s−convexity of s−convex functions in co-

ordinates are obtained.

In the fifth section, which is the last section, the sources in the literature used during

the study are listed.

2022, v + 45 pages

Keywords : Convex functions, s−convex functions, Convex functions in coordi-

nates, Integral inequalities, Ostrowski type inequalities.
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ÖZET i

ABSTRACT ii
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3 MATERYAL VE YÖNTEM 15
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sup supremum
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1. GİRİŞ

Matematik düşünmek için bir araçtır. Her şeyin birbiriyle iç içe ve ilişkili olduğu,

doğrusal olmayan bir dünyada oldukça gerekli bir araç olduğu aşikardır. Benzer

şekilde, matematiğin her alanı da diğer bilimler için bir araç görevi görür. Topoloji,

matematiksek fiziği; mantık, bilgisayar bilimini; ölçü teorisi, bölgesel ve teorik ik-

tisatı; cebirsel geometri, fiziği etkiler. Bunların yanında matematik her an günlük

hayatımızla etkileşim halindedir. Matematiğin modern kullanım alanları şu şekilde

örneklendirilebilir: Diferansiyel denklemler ve nümerik analiz teknikleri, uçak mod-

ellemede, uydu yapımında kullanılır. Soyut mantık, bilgisayar dizaynında; cebirsel

topolojinin alt alanlarından biri olan homoloji, uzak gezegenlerin fotoğraflarından

gezegen yüzeyinin coğrafyasını anlamada; Fourier analizi iletişim ağında ve aynı za-

manda resim, video ve müziğin dijital ortamda sıkıştırılmasında; fraktallar anten

yapımında; Graf teorisi, veri tabanının topolojik olarak incelenmesinde; Stein uzay-

ları tahminleme ve elektrik mühendisliğinde; Lie cebirleri filtreleme yöntemi olarak;

Minkovsky lemma kodlama teorisinde kullanılır.

Verilen örnekler matematiğin kullanım alanlarının yalnızca bir bölümü olsa da gösteriyor

ki matematiğin tamamen soyut olan, hayatın içinde uygulanmayan hiçbir parçası

yoktur. Bu durum da uygulamalı matematik alanında yapılan çalışmaların son

yıllarda fark edilir şekilde artmasına neden olmuştur. Uygulamalı matematik alanındaki

artan uzmanlaşma ve çeşitlilik, matematik biliminin ve alt dallarının büyümesini,

yeni dallar oluşmasını sağlarken aynı zamanda tamamen birbirinden farklı olduğu

düşünülen dalların birbiriyle ilişkili olduğunu göstermesi açısından önem arz et-

mektedir. Ayrıca matematik, ilk bakışta oldukça parçalanmış gibi görünse de bu

parçalar arasındaki daha derin ilişkileri bulmak, görmek ve kullanmak için üzerinde

daha fazla çalışılmasına ihtiyaç duyar. Bunun için ise uygulamalı matematik alanı

çalışanlarına oldukça iş düşmektedir.

Uygulamalı matematikte çalışmak için her türlü kombinasyona, cebire, olasılığa

ihtiyaç duyulmasının yanı sıra geleneksel çalışmaların, analiz ve sayısal bilginin

gerekliliği de yadsınamaz. Analiz çalışma alanı açısından çok kapsamlı olmakla
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birlikte önemli bir kısmını; diferansiyel, integral, diğer denklemlerde ortaya çıkan

fonksiyonlar hakkındaki tahminler ve eşitsizlikler oluşturur. Bunlar içerisinden ana-

litik eşitsizlikler, matematiğin çeşitli dallarının ve birçok uygulamalı bilim dalının

gelişimindeki önemli güçlerden biri olarak kabul edildiğinden bir adım öne çıkmıştır.

Günümüzde hala aktif ve çekici bir araştırma alanı olan matematiksel eşitsizlikler,

C. F. Gauss, A. L. Cauchy ve P. L. Cebysev’ in yaklaşım teorisi için önemli teorik

temelleri atmalarıyla birlikte gelişmeye başlamıştır. On dokuzuncu yüzyıl son-

ları ve yirminci yüzyıl başlarında, bazıları klasik haline gelen çok sayıda eşitsizlik

kanıtlanmıştır. Bu eşitsizliklerin sistemli bir disiplin haline dönüşmesi ise G. H.

Hardy, J. E. Littlewood ve G. Polya tarafından ortaya konulan “ Inequalities ” adlı

kitapla olmuştur. 1934 yılında yayımlanan bu kitapla birlikte Eşitsizlik Teorisi’ne

yönelik ilgi artmış ve bu alanda çok sayıda makale yazılmıştır. Bu makalelerle

birlikte yeni eşitsizlikler keşfedilmiş, klasik eşitsizlikler genişletilmiş, bazı eşitsizlik

çeşitleri birbirleriyle ilişkilendirilmiş ve bazı eşitsizlik çeşitlerinin uygulama alan-

larına yer verilmiştir. 1934-1960 döneminde elde edilen eşitsizlikler ve sonuçları

ise 1961 yılında E. F. Beckenbach ve R. Bellman tarafından “ Inequalities ” adlı

kitapta kayıt altına alınmıştır. Ardından Mitrinovic tarafından yazılan “ Analytic

Inequalities ” adlı kitap da klasik eşitsizliklerin yorumlanmasına sağladığı katkıyla

literatürdeki yerini almıştır. Bu üç büyük kitap, eşitsizlikler konusunda oldukça

önemli bir yere sahip olup hala son dönemdeki çalışmalara ışık olmaya devam etmek-

tedir. Eşitsizlikler konusunda yeni sonuçlar içeren “ Inequalities Involving Functions

and Their Integrals and Derivatives ” (Mitrinovic vd. 1991), “ Classical and New In-

equalities in Analysis ” (Mitrinovic vd. 1993), “ Mathematical Inequalities ” (Pach-

patte 2005), “ Convex Functions and Their Applications ” (Niculescu ve Perssons

2006) isimli çalışmalar da literatüre katkıda bulunan önemli eserler arasındadır.

Günümüzde ise eşitsizlik konusu ile ilgili, S. S. Dragomir, R. P. Agarwal, J. Pecaric,

M. Z. Sarıkaya, E. Set, M. E. Özdemir gibi araştırmacılar çok sayıda kitap, mono-

grafi ve makale yayımlamışlardır.

Diğer yandan tanımı eşitsizlik ile ifade edilen konveksliğin ve Konveks Fonksiyon-

lar Teorisi’nin eşitsizlikler içerisinde önemli bir yeri vardır. Konvekslik kavramının
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tanımı çok eskiye (M.Ö. 250 yılına) dayanmasına rağmen konveks fonksiyonlarla ilgili

sistematik araştırmalara 19. yüzyılın sonlarında başlanmıştır. Konveks fonksiyon-

lar ile ilgili yapılan en kapsamlı araştırma ise Roberts ve Varbeg (1973) tarafından

“ Convex Function ” adlı eserle ortaya konmuştur. Sadece konveks fonksiyonlar için

eşitsizliklerden bahseden ilk kaynak olma özelliğine sahip “ Convex Function: In-

equalities ” adlı kitap ise Pecaric (1992) tarafından yayımlanmıştır. Bunun yanında

klasik konvekslik tanımı yardımıyla daha genel olan konveks fonksiyon çeşitleri de

oluşturulmaktadır. Bunlardan biri Breckner (1978) tarafından “ Stetigkeitsaussagen

Für Eine Klasse Verallgemeinerter Konvexer Funktionen In Topologischen Linearen

Raumen ” adlı çalışma ile literatüre giren s−konveks fonksiyonlardır. Bu çalışma

geliştirilerek s−konvekslik ile ilgili özelliklere yer veren “ Some Remarks On s−Convex

Functions ” adlı makale Hudzig ve Maligranda (1994) tarafından yayımlanmıştır.

Son yıllarda eşitsizlik konusu üzerine yapılan araştırmalar, yayımlanan makaleler ve

monografiler bu alanda dikkate değer bir gelişme ve büyüme olduğunu göstermektedir.

Özellikle Cebysev, Grüss, Yamuk (Trapezoid), Ostrowski, Hermite-Hadamard ve

Jensen isimleriyle ilişkili eşitsizlikler çokça araştırmaya konu olmuştur.

Bu önemli eşitsizliklerden biri olan A. M. Ostrowski tarafından tanımlanan eşitsizlik

aşağıdaki gibidir:

a, b ∈ R ve a < b olmak üzere, f
′

: [a, b]→ R fonksiyonu [a, b] aralığında sürekli

ve f
′
: (a, b)→ R türev fonksiyonu üzerinde diferansiyellenebilir bir fonksiyon olsun.

Eğer f
′

: (a, b)→ R türev fonksiyonu ‖f ′‖∞ = sup
t∈(a,b)

|f ′(t)| < ∞ ise, yani (a, b)

aralığında sınırlı ise, bu durumda her x ∈ [a, b] için

∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤
[

1

4
+

(
x− a+b

2

)2

(b− a)2

]
(b− a) ‖f ′‖∞

eşitsizliği sağlanır. Buradaki 1
4

sabiti bu koşullar altındaki en iyi olasılıktır. Bu

eşitsizlik, x ∈ [a, b] noktasındaki f(x) değeri ile,
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b∫
a

f(t)dt

integral ortalaması arasındaki yaklaşım için bir üst sınır vermektedir.

Ostrowski eşitsizliği olarak bilinen bu eşitsizlik, 1938 yılında ortaya çıkmıştır. Matematiğin

tüm alanlarında; özellikle Yaklaşım Teorisi’nde, Riemann integrali ile birlikte hem

tek hem çok katlı integrallerin uygulamalarında, tek değişkenli ve çok değişkenli

fonksiyonların hata analizi uygulamalarında önemli bir rol oynamaktadır. Bir fonksiy-

onun değerine yaklaşmada fonksiyonun ortalama değerinin yardımı ile hata tah-

mini yapılmasını sağlamaktadır. Aynı zamanda Riemann integraline yaklaşmak için

oluşturulmuş birçok quadrik kuralın sınırlarını sağladığından hata sınırlarını elde

etmek için kullanılmaktadır. Bunun yanında Ostrowski tipli eşitsizlikler Nümerik

Analiz’de, Bilişim Kuramı’nda, Olasılık Teorisi ve İstatistik gibi alanlarda geniş bir

uygulama alanına sahiptir. Bu nedenle son yıllarda yapılan çalışmalarla sürekli ve

ayrık durumlarda, Ostrowski tipli eşitsizliklerin çok sayıda genellemeleri, genişlemeleri

ve varyantları yapılmıştır. Böylece, kökenleri Ostrowski eşitsizliğine dayanan eşitsizlikler

literatürde daha geniş bir yer edinmiştir. Ostrowski tipli eşitsizliklerle ilgili çalışmaların

büyük bir kısmı, Dragomir ve Rassias (2002) tarafından yazılmış olan “ Ostrowski

Type Inequalities and Applications in Numerical Integration ” adlı kitapta bir araya

getirilmiştir. Bu kitabın yanında, son yıllarda S. S. Dragomir, K. L. Tseng, N. S.

Burnett, M. W. Alomari, G. S. Yang gibi araştırmacılar da yaptıkları çalışmalarla

yayımlanan makale ve monografilerle literatüre büyük katkı sağlamışlardır.

Konveks fonksiyonlar ve eşitsizlikler üzerine yazılmış olan temel kitaplar ve yapılan

çalışmalar haricinde literatürde birçok makale, yüksek lisans ve doktora tez çalışmaları

bulunmaktadır. Bunlardan öne çıkan bazı çalışmalar şu şekilde sıralanabilir:

Set (2010) tarafından yazılan “ Bazı Farklı Türden Konveks Fonksiyonlar İçin İntegral

Eşitsizlikleri ” başlıklı doktora tezinde E−konveks ve E–m konveks fonksiyonlar

ile birlikte farklı türden E−konveks ve E–m konveks fonksiyonlar için Hermite-

Hadamard tipli eşitsizlikler elde edilmiştir. Bunun yanında bu tez çalışmasında
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m−konveks, (α,m)−konveks, log−konveks, quasi-konveks, s−konveks, r−konveks

ve h−konveks fonksiyonlarla ilgili bazı yeni integral eşitsizliklerine ve genelleştirmelere

yer verilmiştir.

Tunç (2011) tarafından yazılan “ Bazı Konveks Fonksiyonlar İçin Hermite-Hadamard

Tipli Eşitsizlikler ve Uygulamaları ” başlıklı doktora tez çalışmasında farklı tip kon-

veks fonksiyon sınıfları için Hermite- Hadamard tipli eşitsizlikler elde edilmiştir.

Akdemir (2012)’in, “ Farklı Türden Konveks Fonksiyonlar İçin Koordinatlarda İntegral

Eşitsizlikler ” adlı doktora tezinde; bazı konveks fonksiyonlar dikdörtgensel bölge

üzerinde incelenerek bu fonksiyonlar için koordinatlarda çeşitli integral eşitsizlikleri

elde edilmiştir. Bununla birliktem−konveks, (α,m)−konveks, s−konveks, h−konveks,

p−konveks ve quasi-konveks fonksiyonlar gibi farklı türden konveks fonksiyonların

çarpımlarına dair koordinatlarda integral eşitsizlikleri oluşturulmuştur.

Kavurmacı (2012)’nın “ Bazı Farklı Türden Konveks Fonksiyonlar İçin Ostrowski ve

Hermite - Hadamard Tipli integral Eşitsizlikler ” başlıklı doktora tezinde, m−konveks,

(α,m)−konveks, s−konveks, r−konveks gibi farklı türden fonksiyon sınıfları kul-

lanılarak yeni tanımlamalar ve örneklendirmeler yapılmıştır. Ayrıca bu konveks

fonksiyon sınıfları kullanılarak yeni baskın konveks fonksiyon kavramları tanımlanmış

ve yeni Hermite - Hadamard tipli; s−konveks ve m−konveks fonksiyonlar içinse yeni

Ostrowski tipli integral eşitsizlikleri literatüre kazandırılmıştır.

Ardıç (2013) tarafından, “ Konveks Fonksiyonların Çeşitli Sınıfları İçin İntegral Eşitsizlikler ”

adlı doktora tezinde ϕh,m− konveks fonksiyon tanımı yapılarak bu konveks fonksiyon

sınıfı için eşitsizlikler elde edilmiştir. Ayrıca s−konveks fonksiyonlar için Hermite

- Hadamard, Ostrowski ve Simpson tipli eşitsizlikler ile konveks fonksiyonlar için

Ostrowski tipli eşitsizlikler de elde edilmiştir.

Budak (2017) tarafından, “ Sınırlı Varyasyonlu Fonksiyonlar İçin Ostrowski Tipli

İntegral Eşitsizlikleri ve Uygulamaları ” adlı doktora tez çalışması ile sınırlı varyasy-

ona sahip tek değişkenli fonksiyonlar için bazı genelleştirilmiş Ostrowski tipli inte-

gral eşitsizlikleri ispatlanmış ve özel durumları incelenmiştir. Bununla birlikte iki

5



değişkenli sınırlı varyasyonlu fonksiyonlar için bazı Ostrowski tipli eşitsizlikler de bu

çalışma ile elde edilmiştir.

Son yıllarda eşitsizlikler ve konveks fonksiyonlar üzerine çok sayıda makale ve mono-

grafi de yayımlanmıştır. Bunlardan bu tezde en çok yararlanılanlar şu şekilde

sıralanabilir:

“ Selected Topics on Hermite - Hadamard Inequalities and Applications ” (Dragomir

ve Pearce 2000).

“ On the Hermite - Hadamard’s and Ostrowski’s Inequalities for The Co-ordinated

Convex Functions ” (Erden ve Sarıkaya 2017).

“ Co-ordinated s−Convex Function in The First Sense with Some Hadamard - Type

Inequalities ” (Alomari ve Darus 2008).

“ Some New Hadamard Type Inequalities For Co-ordinatedm−Convex and (α,m)−Convex

Functions ” (Özdemir vd. 2010).

“ On Hadamard-type Inequalities for h−Convex Functions On The Co-ordinates ”

(Latif ve Alomari 2009).

“ New Integral Inequalities For Co-ordinated Convex Functions ” (Özdemir vd. 2011).

“ New Some Hadamard’s Type Inequalities For Co-ordinated Convex Functions ”

(Sarıkaya vd. 2010).

Bu teze referans olan esas çalışma ise koordinatlarda konveks fonksiyonlar için yeni

ağırlıklı Ostrowski tipli eşitsizliklerin elde edildiği “ Weighted Ostrowski type In-

equalities For Co-Ordinated Convex Functions ” (Budak 2022) isimli makaledir.

Bu tez çalışmasında ise koordinatlarda s−konveks fonksiyonlar yardımıyla bazı yeni

Ostrowski tipli eşitsizlikler elde edilmiştir.
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2. TEMEL KAVRAMLAR VE TEOREMLER

Bu bölüm tezde yer alan bazı temel tanım, teorem ve teoremlerin ispatından oluşmaktadır.

2.1 Konveks Fonksiyonlar ile İlgili Bazı Tanım ve Teoremler

Tanım 2.1 ∀x, y ∈ K ve t ∈ [0, 1] için;

(1− t)x+ ty ∈ K

oluyorsa, K ⊆ R kümesine klasik anlamda Konveks Küme denir (Dragomir ve

Pearce 2000).

Tanım 2.2 ∀x, y ∈ K ve t ∈ [0, 1] için;

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y)

oluyorsa, f : K ⊆ R → R fonksiyonuna Konveks Fonksiyon denir (Dragomir ve

Pearce 2000).

Tanım 2.3 f : [0,∞) → R fonksiyonu, 0 < s ≤ 1 şartı altında Birinci Anlamda

s−Konveks Fonksiyon ise; ∀x, y ≥ 0 ve αs + βs = 1 olmak üzere;

f(αx+ βy) ≤ αsf(x) + βsf(y)

eşitsizliği sağlanmaktadır. Bu s−konveks fonksiyon sınıfı genellikle K1
s şeklinde

gösterilmektedir (Matuszewska ve Orlicz 1961).

Tanım 2.4 f : [0,∞) → R fonksiyonu, 0 < s ≤ 1 şartı altında İkinci Anlamda

s−Konveks Fonksiyon ise; ∀x, y ≥ 0 ve α + β = 1 olmak üzere;

f(αx+ βy) ≤ αsf(x) + βsf(y)

eşitsizliği sağlanmaktadır. Bu s−konveks fonksiyon sınıfı genellikle K2
s şeklinde

gösterilmektedir (Breckner 1978).

Tanım 2.4 te, s = 1 için klasik konvekslik elde edilir (Maden vd. 2014).
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2.2 Konveks Fonksiyonlar ile İlgili Bazı Önemli İntegral Eşitsizlikleri

Teorem 2.5 I,R de bir aralık; a, b ∈ I ile a < b iken f : I ⊆ R→ R fonksiyonu

konveks bir fonksiyon ise,

f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f(x)dx ≤ f (a) + f (b)

2

eşitsizliği geçerlidir.

Literatürde Hermite-Hadamard Eşitsizliği olarak adlandırılan bu eşitsizlik; birçok

uygulama alanı ve geometrik yorumuyla konveks fonksiyonlar teorisinin en köklü

eşitsizliklerinden biridir. Hermite - Hadamard eşitsizliği konveks fonksiyonların

integralinin ortalama değeri için tahminler vermesi açısından önemlidir. Bunun

yanında son yıllarda yeniden ilgi görmüş ve dikkate değer şekilde çeşitli araştırmalar

ve genelleştirmelerde kullanılmıştır.

Bunlardan biri de s−konveks fonksiyonlar için Hermite-Hadamard eşitsizliğidir.

Teorem 2.6 I,R de bir aralık ve I ∈ [0, 1] koşuluyla f : I ⊆ R → R fonksiyonu

ikinci anlamda s−konveks bir fonksiyon ise;

2s−1 f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f(x)dx ≤ f (a) + f (b)

s+ 1

eşitsizliği sağlanır. Bu eşitsizlik literatürde ikinci anlamda s−Konveks Fonksiyonlar

için Hermite - Hadamard Eşitsizliği olarak adlandırılır (Dragomir ve Fitzpatrick

1999).

Teorem 2.7 f ve g, [a, b] aralığında tanımlı reel fonksiyonlar ve |f |q ile |g|q ,

[a, b] aralığında integrallenebilir fonksiyonlarken p > 1 ve 1
p

+ 1
q

= 1 koşulları altında;

b∫
a

|f(x)g(x)| dx ≤

 b∫
a

|f(x)|p dx


1
p
 b∫

a

|g(x)|q dx


1
q

8



eşitsizliği Hölder Eşitsizliği olarak adlandırılır (Mitrinovic vd. 1993).

Çift katlı integraller için Hölder eşitsizliği ise,

b∫
a

b∫
a

|f(x, y)g(x, y)| dxdy ≤

 b∫
a

b∫
a

|f(x, y)|p dxdy


1
p  b∫

a

b∫
a

|g(x, y)|q dxdy


1
q

şeklinde ifade edilebilir.

Teorem 2.8 f ve g, [a, b] aralığında tanımlı reel fonksiyonlar ve |f | ile |g|q ,

[a, b] üzerinde integrallenebilir fonksiyonlar olsun. q ≥ 1 olmak şartıyla;

b∫
a

|f(x)g(x)| dx ≤

 b∫
a

|f(x)| dx

1− 1
q
 b∫

a

|f(x)| |g(x)|q dx


1
q

eşitsizliği geçerlidir. Power-Mean Eşitsizliği olarak bilinen bu eşitsizlik; Hölder

Eşitsizliğinin doğal bir sonucudur.

Çift katlı integraller için Power- Mean eşitsizliği ise,

b∫
a

b∫
a

|f(x, y)g(x, y)| dxdy ≤

 b∫
a

b∫
a

|f(x, y)| dxdy

1− 1
q
 b∫

a

b∫
a

|f(x, y)| |g(x, y)|q dxdy


1
q

şeklinde ifade edilebilir.

Teorem 2.9 Herhangi x, y ∈ R için,

|x+ y| ≤ |x|+ |y| ,

||x| − |y|| ≤ |x− y| ,

||x| − |y|| ≤ |x+ y|

eşitsizlikleri geçerlidir. Üçgen Eşitsizliği olarak adlandırılan bu eşitsizlikte tümevarım

yöntemiyle,

|x1 + ...+ xn| ≤ |x1|+ ...+ |xn|

eşitsizliği de sağlanır (Mitrinovic vd. 1993).
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Teorem 2.10 f reel değerli ve [a, b] aralığında sürekli bir fonksiyon olmak üzere,

a < b iken; ∣∣∣∣∣∣
b∫

a

f(x)dx

∣∣∣∣∣∣ ≤
b∫

a

|f(x)| dx

sağlanan bu eşitsizlik İntegraller İçin Üçgen Eşitsizliği olarak adlandırılır.

Teorem 2.11 a, b ∈ R ve a < b iken, f : [a, b]→ R fonksiyonu [a, b] aralığında

sürekli ve (a, b) üzerinde diferansiyellenebilir bir fonksiyon olsun. Eğer, f ′ : (a, b)→ R

fonksiyonu (a, b) üzerinde sınırlı ise, yani ‖f ′‖∞ = sup
x∈(a,b)

|f ′(x)| <∞ ise, bu durumda

her x ∈ [a, b] için,∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤
[

1

4
+

(
x− a+b

2

)2

(b− a)2

]
(b− a) ‖f ′‖∞

eşitsizliği sağlanır. Buradaki 1
4

sabiti bu koşullar altındaki en iyi olasılıktır (Os-

trowski 1938).

Ostrowski Eşitsizliği, sınırlı ve diferansiyellenebilir fonksiyonlar için [a, b] aralığında

bulunan bir x noktası için f(x) değeri ile,

1

b− a

b∫
a

f(t)dt

integral ortalaması arasındaki yaklaşıma bir üst sınır vermesi açısından önemlidir.

Ayrıca Ostrowski eşitsizliğinde, x = a+b
2

yazıldığında, Hermite-Hadamard eşitsizliğinin

sol tarafı elde edilmektedir.

İspat. : (a, b) aralığında diferansiyellenebilen f : [a, b]→ R fonksiyonu x ∈ (a, b)

için;

w(x, t) =

 t− a , a ≤ t ≤ x

t− b , x ≤ t ≤ b

tanımlansın.

Böylece;
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1

b− a

b∫
a

w(x, t)f ′(t)dt =
1

b− a

 x∫
a

(t− a)f ′(t)dt+

b∫
x

(t− b)f ′(t)dt


= f(x)− 1

b− a

b∫
a

f(t)dt

olur. Bu eşitlikte iki tarafın da mutlak değeri alınırsa;

∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

b− a

 x∫
a

(t− a)f ′(t)dt+

b∫
x

(t− b)f ′(t)dt

∣∣∣∣∣∣
elde edilir. İntegraller için Üçgen Eşitsizliği kullanılırsa;

∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤ 1

b− a

 x∫
a

|t− a| |f ′(t)| dt+

b∫
x

|t− b| |f ′(t)| dt


olur. ‖f ′‖∞ = sup

x∈(a,b)

|f ′(x)| <∞ olduğundan;

∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤ ‖f ′‖∞
b− a

 x∫
a

(t− a)dt+

b∫
x

(b− t)dt


=
‖f ′‖∞
b− a

[
(t− a)2

2

∣∣∣∣x
a

− (b− t)2

2

∣∣∣∣b
x

]

=
‖f ′‖∞
b− a

[
(x− a)2 + (b− x)2

2

]
elde edilir. Burada;

(x− a)2 + (b− x)2 =

(
x− a+ b

2
+
a+ b

2
− a
)2

+

(
b− a+ b

2
+
a+ b

2
− x
)2

=

(
x− a+ b

2

)2

+ 2

(
x− a+ b

2

)(
b− a

2

)
+

(
b− a

2

)2

+

(
b− a

2

)2

+ 2

(
b− a

2

)(
a+ b

2
− x
)

+

(
a+ b

2
− x
)2

= 2

(
x− a+ b

2

)2

+ 2

(
b− a

2

)2
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= 2 (b− a)2

[
1

4
+

(
x− a+b

2

)2

(b− a)2

]

kullanılarak ispat tamamlanmış olur.

Teorem 2.12 f : ∆ → R fonksiyonu ∆ üzerinde sürekli olsun. f ′′x,y = ∂2f
∂x∂y

,

(a, b)× (c, d) üzerinde var ve sınırlı olsun. Öyle ki;

∥∥f ′′x,y∥∥∞ = sup
(x,y)∈(a,b)×(c,d)

∣∣∣∣∂2f(x, y)

∂x∂y

∣∣∣∣ <∞.
O halde, (x, y) ∈ ∆ için;∣∣∣∣ b∫

a

d∫
c

f(t, s)dsdt− (b− a) (d− c) f(x, y)−
[
(b− a)

d∫
c

f(x, s)ds+ (d− c)
b∫
a

f(t, y)dt

]∣∣∣∣
≤
[

1
4

(b− a)2 +
(
x− a+b

2

)2
] [

1
4

(d− c)2 +
(
y − c+d

2

)2
] ∥∥f ′′x,y∥∥∞

eşitsizliği sağlanır. Bu eşitsizlik, Çift Katlı İntegraller İçin Ostrowski Eşitsizliği

olarak bilinir.

2.3 Koordinatlarda Konveks Fonksiyonlar ile İlgili Genel Kavramlar

Tanım 2.13 ∀ (x, y) , (z, w) ∈ ∆ ve λ ∈ [0, 1] için, f : ∆→ R fonksiyonu,

f(λx+ (1− λ)z, λy + (1− λ)w) ≤ λf(x, y) + (1− λ)f(z, w)

eşitsizliğini sağlıyorsa; f fonksiyonu ∆ üzerinde konveks bir fonksiyondur denir

(Dragomir 2001).

Eğer ∀x ∈ [a, b] ve ∀y ∈ [c, d] için;

fy : [a, b]→ R , fy(u) = f(u, y)

fx : [c, d]→ R , fx(v) = f(x, v)

kısmi dönüşümleri de konveks oluyorsa, f : ∆ → R fonksiyonu da Koordinatlarda

Konvekstir denir.
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Lemma 2.14 f : ∆→ R fonksiyonu konveks ise koordinatlada da konvekstir fakat

koordinatlarda konveks her fonksiyon konveks değildir (Dragomir 2001). Gerçekten

de f(x, y) = xy şeklinde tanımlanan f : [0, 1]×[0, 1]→ R fonksiyonu koordinatlarda

konveks olmasına rağmen [0, 1]× [0, 1] için konveks değildir.

Tanım 2.15 ∀ (x, u) , (y, v) ∈ ∆ için f : ∆ → R olmak üzere, ∀t, s ∈ [0, 1] şartları

altında;

f(tx+ (1− t) y, su+ (1− s) v)

≤ ts f(x, u) + t(1− s)f(x, v) + s(1− t)f(y, u) + (1− t)(1− s)f(y, v)

eşitsizliği sağlanıyorsa, f fonksiyonu ∆ üzerinde Koordinatlarda Konvekstir denir

(Latif ve Alomari 2009).

Tanım 2.16 f : ∆ → R fonksiyonu ∀ (x, u) , (y, v) ∈ ∆ ile αs + βs = 1 ve

α, β ≥ 0, s ∈ (0, 1] koşulları altında;

f(αx+ βy, αu+ βv) ≤ αsf(x, u) + βsf(y, v)

ise, f fonksiyonuna ∆ üzerinde Koordinatlarda Birinci Anlamda s−Konvekstir

denir (Alamori ve Darus 2008).

Tanım 2.17 f : ∆ → R fonksiyonu ∀ (x, u) , (y, v) ∈ ∆ olmak üzere, s ∈ (0, 1] ve

λ ∈ [0, 1] koşulları altında;

f(λx+ (1− λ)y, λu+ (1− λ)v) ≤ λsf(x, u) + (1− λ)sf(y, v)

eşitsizliği sağlanıyorsa, f fonksiyonuna ∆ üzerinde İkinci Anlamda s−Konveks Fonksiyon-

dur denir (Alamori ve Darus 2008).

Bu temel tanımların yanında R2 uzayında (dikdörtgende) koordinatlarda konveks

fonksiyonlar için, Dragomir (2001) tarafından ispatlanan Hermite-Hadamard tipli

eşitsizlikler aşağıdaki teoremle ifade edilmiştir:
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Teorem 2.18 f : ∆ → R fonksiyonunun koordinatlarda konveks bir fonksiyon

olmak üzere;

f

(
a+ b

2
,
c+ d

2

)
≤ 1

2

 1

b− a

b∫
a

f

(
x,
c+ d

2

)
dx+

1

d− c

d∫
c

f

(
a+ b

2
, y

)
dy


≤ 1

(b− a)(d− c)

b∫
a

d∫
c

f(x, y)dydx

≤ 1

4

 1

b− a

b∫
a

f(x, c)dx+
1

b− a

b∫
a

f(x, d)dx

+
1

d− c

d∫
c

f(a, y)dy +
1

d− c

d∫
c

f(b, y)dy


≤ f(a, c) + f(a, d) + f(b, c) + f(b, d)

4

geçerli olan bu eşitsizlik Koordinatlarda Konveks Fonksiyonlar için Hermite- Hadamard

Eşitsizliği olarak adlandırılır (Dragomir 2001).
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3. MATERYAL VE YÖNTEM

3.1 Koordinatlarda Konveks Fonksiyonlar İçin Bazı Ağırlıklı Ostrowski

Tipli Eşitsizlikler

Lemma 3.1 w : ∆→ [0,∞) fonksiyonu ∆ üzerinde integrallenebilir ve f : ∆→ R

mutlak sürekli bir fonksiyon olmak üzere; her (t, s) ∈ ∆ için, ∂2f(t,s)
∂t∂s

şeklinde kısmi

türevi var olsun. O halde aşağıdaki eşitlik yazılabilir:

 b∫
a

d∫
c

w(u, v)dvdu

 f(x, y)−
b∫

a

d∫
c

w(u, v)f(u, y)dvdu

−
b∫

a

d∫
c

w(u, v)f(x, v)dvdu+

b∫
a

d∫
c

w(u, v)f(u, v)dvdu

=

b∫
a

d∫
c

P (x, τ ; y, η)
∂2f(τ, η)

∂t∂s
dηdτ

Burada,

P (x, τ ; y, η) =



τ∫
a

η∫
c

w(u, v)dvdu, a ≤ τ < x, c ≤ η < y

τ∫
a

η∫
d

w(u, v)dvdu, a ≤ τ < x, y ≤ η ≤ d

τ∫
b

η∫
c

w(u, v)dvdu, x ≤ τ ≤ b, c ≤ η < y

τ∫
b

η∫
d

w(u, v)dvdu x ≤ τ ≤ b, y ≤ η ≤ d.

şeklindedir.

Lemma 3.2 Lemma 3.1 in şartları sağlansın. Bu durumda;

Θ(a, b, c, d; f, w) (3.1)

= f(x, y)− 1

m(a, b; c, d)

b∫
a

d∫
c

w(u, v)f(u, y)dvdu

− 1

m(a, b; c, d)

b∫
a

d∫
c

w(u, v)f(x, v)dvdu
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+
1

m(a, b; c, d)

b∫
a

d∫
c

w(u, v)f(u, v)dvdu

ve

m(a, b; c, d) =

b∫
a

d∫
c

w(u, v)dvdu.

olmak üzere,

Θ(a, b, c, d; f, p) (3.2)

=
(x− a) (y − c)
m(a, b; c, d)

1∫
0

1∫
0

 U1(t)∫
a

V1(s)∫
c

w(u, v)dvdu

 ∂2f

∂t∂s
(U1(t), V1(s)) dsdt

+
(x− a) (d− y)

m(a, b; c, d)

1∫
0

1∫
0

 U1(t)∫
a

V2(s)∫
d

w(u, v)dvdu

 ∂2f

∂t∂s
(U1(t), V2(s)) dsdt

+
(b− x) (y − c)
m(a, b; c, d)

1∫
0

1∫
0

 U2(t)∫
b

V1(s)∫
c

w(u, v)dvdu

 ∂2f

∂t∂s
(U2(t), V1(s)) dsdt

+
(b− x) (d− y)

m(a, b; c, d)

1∫
0

1∫
0

 U2(t)∫
b

V2(s)∫
d

w(u, v)dvdu

 ∂2f

∂t∂s
(U2(t), V2(s)) dsdt

eşitliği elde edilir. Burada U1(t) = tx + (1 − t)a, U2(t) = tx + (1 − t)b, V1(s) =

sy + (1− s)c ve V2(s) = sy + (1− s)d şeklindedir.

Teorem 3.3 w, Lemma 3.1 de tanımlandığı şartlarda olmak üzere ∆ üzerinde

sınırlı bir fonksiyon olsun. ‖w‖∞ := sup
(x,y)∈∆

|w(x, y)| şeklinde ifade edilmek üzere;∣∣∣ ∂2f∂t∂s

∣∣∣ ifadesi ∆ üzerinde koordinatlarda konveks ise her (x, y) ∈ ∆ için, aşağıdaki

eşitsizlik elde edilir:

|Θ(a, b, c, d; f, p)| (3.3)

≤ ‖w‖∞
36×m(a, b; c, d)

×
{

(x− a)2 (y − c)2
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[
4

∣∣∣∣ ∂2f

∂t∂s
(x, y)

∣∣∣∣+ 2

∣∣∣∣ ∂2f

∂t∂s
(x, c)

∣∣∣∣+ 2

∣∣∣∣ ∂2f

∂t∂s
(a, y)

∣∣∣∣+

∣∣∣∣ ∂2f

∂t∂s
(a, c)

∣∣∣∣]
+ (x− a)2 (d− y)2[
4

∣∣∣∣ ∂2f

∂t∂s
(x, y)

∣∣∣∣+ 2

∣∣∣∣ ∂2f

∂t∂s
(x, d)

∣∣∣∣+ 2

∣∣∣∣ ∂2f

∂t∂s
(a, y)

∣∣∣∣+

∣∣∣∣ ∂2f

∂t∂s
(a, d)

∣∣∣∣]
+ (b− x)2 (y − c)2[
4

∣∣∣∣ ∂2f

∂t∂s
(x, y)

∣∣∣∣+ 2

∣∣∣∣ ∂2f

∂t∂s
(x, c)

∣∣∣∣+ 2

∣∣∣∣ ∂2f

∂t∂s
(b, y)

∣∣∣∣+

∣∣∣∣ ∂2f

∂t∂s
(b, c)

∣∣∣∣]
+ (b− x)2 (d− y)2[

4

∣∣∣∣ ∂2f

∂t∂s
(x, y)

∣∣∣∣+ 2

∣∣∣∣ ∂2f

∂t∂s
(x, d)

∣∣∣∣+ 2

∣∣∣∣ ∂2f

∂t∂s
(b, y)

∣∣∣∣+

∣∣∣∣ ∂2f

∂t∂s
(b, d)

∣∣∣∣]}

Burada Θ fonksiyonu (3.1) gibi tanımlanır.

İspat. (3.2) deki eşitliğin mutlak değeri (modülü) alınırsa;

Θ(a, b, c, d; f, p) (3.4)

=
(x− a) (y − c)
m(a, b; c, d)

1∫
0

1∫
0

∣∣∣∣∣∣
U1(t)∫
a

V1(s)∫
c

w(u, v)dvdu

∣∣∣∣∣∣
∣∣∣∣ ∂2f

∂t∂s
(U1(t), V1(s))

∣∣∣∣ dsdt
+

(x− a) (d− y)

m(a, b; c, d)

1∫
0

1∫
0

∣∣∣∣∣∣
U1(t)∫
a

V2(s)∫
d

w(u, v)dvdu

∣∣∣∣∣∣
∣∣∣∣ ∂2f

∂t∂s
(U1(t), V2(s))

∣∣∣∣ dsdt
+

(b− x) (y − c)
m(a, b; c, d)

1∫
0

1∫
0

∣∣∣∣∣∣
U2(t)∫
b

V1(s)∫
c

w(u, v)dvdu

∣∣∣∣∣∣
∣∣∣∣ ∂2f

∂t∂s
(U2(t), V1(s))

∣∣∣∣ dsdt
+

(b− x) (d− y)

m(a, b; c, d)

1∫
0

1∫
0

∣∣∣∣∣∣
U2(t)∫
b

V2(s)∫
d

w(u, v)dvdu

∣∣∣∣∣∣
∣∣∣∣ ∂2f

∂t∂s
(U2(t), V2(s))

∣∣∣∣ dsdt
w(x, y) fonksiyonu ∆ üzerinde sınırlı olduğundan ve

∣∣∣ ∂2f∂t∂s

∣∣∣nin ∆ üzerinde koordinat-

larda konveksliğinden,

1∫
0

1∫
0

∣∣∣∣∣∣
U1(t)∫
a

V1(s)∫
c

w(u, v)dvdu

∣∣∣∣∣∣
∣∣∣∣ ∂2f

∂t∂s
(U1(t), V1(s))

∣∣∣∣ dsdt (3.5)

≤ ‖w‖∞

1∫
0

1∫
0

∣∣∣∣∣∣
U1(t)∫
a

V1(s)∫
c

dvdu

∣∣∣∣∣∣
∣∣∣∣ ∂2f

∂t∂s
(U1(t), V1(s))

∣∣∣∣ dsdt
17



≤ (x− a) (y − c) ‖w‖∞
1∫

0

1∫
0

ts

[
ts

∣∣∣∣ ∂2f

∂t∂s
(x, y)

∣∣∣∣+ t (1− s)
∣∣∣∣ ∂2f

∂t∂s
(x, c)

∣∣∣∣
+ (1− t) s

∣∣∣∣ ∂2f

∂t∂s
(a, y)

∣∣∣∣+ (1− t) (1− s)
∣∣∣∣ ∂2f

∂t∂s
(a, c)

∣∣∣∣] dsdt
= (x− a) (y − c) ‖w‖∞[

1

9

∣∣∣∣ ∂2f

∂t∂s
(x, y)

∣∣∣∣+
1

18

∣∣∣∣ ∂2f

∂t∂s
(x, c)

∣∣∣∣+
1

18

∣∣∣∣ ∂2f

∂t∂s
(a, y)

∣∣∣∣+
1

36

∣∣∣∣ ∂2f

∂t∂s
(a, c)

∣∣∣∣] .
Benzer şekilde,

1∫
0

1∫
0

∣∣∣∣∣∣
U1(t)∫
a

V2(s)∫
d

w(u, v)dvdu

∣∣∣∣∣∣
∣∣∣∣ ∂2f

∂t∂s
(U1(t), V2(s))

∣∣∣∣ dsdt (3.6)

≤ (x− a) (d− y) ‖w‖∞[
1

9

∣∣∣∣ ∂2f

∂t∂s
(x, y)

∣∣∣∣+
1

18

∣∣∣∣ ∂2f

∂t∂s
(x, d)

∣∣∣∣+
1

18

∣∣∣∣ ∂2f

∂t∂s
(a, y)

∣∣∣∣+
1

36

∣∣∣∣ ∂2f

∂t∂s
(a, d)

∣∣∣∣]
1∫

0

1∫
0

∣∣∣∣∣∣
U2(t)∫
b

V1(s)∫
c

w(u, v)dvdu

∣∣∣∣∣∣
∣∣∣∣ ∂2f

∂t∂s
(U2(t), V1(s))

∣∣∣∣ dsdt (3.7)

≤ (b− x) (y − c) ‖w‖∞[
1

9

∣∣∣∣ ∂2f

∂t∂s
(x, y)

∣∣∣∣+
1

18

∣∣∣∣ ∂2f

∂t∂s
(x, c)

∣∣∣∣+
1

18

∣∣∣∣ ∂2f

∂t∂s
(b, y)

∣∣∣∣+ +
1

36

∣∣∣∣ ∂2f

∂t∂s
(b, c)

∣∣∣∣]
ve

1∫
0

1∫
0

∣∣∣∣∣∣
U2(t)∫
b

V2(s)∫
d

w(u, v)dvdu

∣∣∣∣∣∣
∣∣∣∣ ∂2f

∂t∂s
(U2(t), V2(s))

∣∣∣∣ dsdt (3.8)

≤ (b− x) (d− y) ‖w‖∞[
1

9

∣∣∣∣ ∂2f

∂t∂s
(x, y)

∣∣∣∣+
1

18

∣∣∣∣ ∂2f

∂t∂s
(x, d)

∣∣∣∣+
1

18

∣∣∣∣ ∂2f

∂t∂s
(b, y)

∣∣∣∣+
1

36

∣∣∣∣ ∂2f

∂t∂s
(b, d)

∣∣∣∣] .
(3.5)-(3.8) ifadelerini (3.4) de yerine yazarsak (3.3) Teorem ifadesini elde ederiz ve

ispat tamamlanmış olur.

Sonuc. 3.1.1 Teorem 3.3 koşulları ile
∣∣∣ ∂2f∂t∂s

(x, y)
∣∣∣ ≤M ve (x, y) ∈ ∆ olmak üzere,

aşağıdaki ağırlıklı Ostrowski tipli eşitsizlik elde edilir:

|Θ(a, b, c, d; f, p)| ≤ M (b− a)2 (d− c)2

m(a, b; c, d)

[
1

4
+

(
x− a+b

2

)2

(b− a)2

][
1

4
+

(
y − c+d

2

)2

(d− c)2

]
‖w‖∞ .
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Uyarı 3.1.2 Sonuç 3.1.1 de w(x, y) = 1 seçilirse, Latif vd. (2012) tarafından verilen

eşitsizlik sağlanır.

Sonuc. 3.1.3 Teorem 3.3 ön koşulları altında, x = a+b
2

ve y = c+d
2

olarak seçilirse,

aşağıdaki Hermite-Hadamard tipli eşitsizlik elde edilir:∣∣∣∣∣∣f
(
a+ b

2
,
c+ d

2

)
+

1

m(a, b; c, d)

b∫
a

d∫
c

w(u, v)f(u, v)dvdu

− 1

m(a, b; c, d)

b∫
a

d∫
c

w(u, v)f

(
u,
c+ d

2

)
dvdu

− 1

m(a, b; c, d)

b∫
a

d∫
c

w(u, v)f

(
a+ b

2
, v

)
dvdu


≤ (b− a)2 (d− c)2

576

‖w‖∞
m(a, b; c, d)

×
{

16

∣∣∣∣ ∂2f

∂t∂s

(
a+ b

2
,
c+ d

2

)∣∣∣∣+ 4

∣∣∣∣ ∂2f

∂t∂s

(
a+ b

2
, c

)∣∣∣∣
+4

∣∣∣∣ ∂2f

∂t∂s

(
a,
c+ d

2

)∣∣∣∣+ 4

∣∣∣∣ ∂2f

∂t∂s

(
a+ b

2
, d

)∣∣∣∣
+4

∣∣∣∣ ∂2f

∂t∂s

(
b,
c+ d

2

)∣∣∣∣+

∣∣∣∣ ∂2f

∂t∂s
(a, c)

∣∣∣∣
+

∣∣∣∣ ∂2f

∂t∂s
(a, d)

∣∣∣∣+

∣∣∣∣ ∂2f

∂t∂s
(b, c)

∣∣∣∣+

∣∣∣∣ ∂2f

∂t∂s
(b, d)

∣∣∣∣}

≤ (b− a)2 (d− c)2

64

‖w‖∞
m(a, b; c, d)

[∣∣∣∣ ∂2f

∂t∂s
(a, c)

∣∣∣∣+

∣∣∣∣ ∂2f

∂t∂s
(a, d)

∣∣∣∣
+

∣∣∣∣ ∂2f

∂t∂s
(b, c)

∣∣∣∣+

∣∣∣∣ ∂2f

∂t∂s
(b, d)

∣∣∣∣] .
Teorem 3.4 w fonksiyonu Lemma 3.1 deki şartlarla tanımlansın. Eğer

∣∣∣ ∂2f∂t∂s

∣∣∣q
∆ üzerinde koordinatlarda konveks ise her (x, y) ∈ ∆ için, aşağıdaki eşitsizlik elde

edilir:

|Θ(a, b, c, d; f, p)| (3.9)

≤ ‖w‖∞
m(a, b; c, d)(p+ 1)

2
p
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×
{

(x− a)2 (y − c)2

(
1

4

[∣∣∣∣ ∂2f

∂t∂s
(x, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s
(x, c)

∣∣∣∣q
+

∣∣∣∣ ∂2f

∂t∂s
(a, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s
(a, c)

∣∣∣∣q]) 1
q

+ (x− a)2 (d− y)2

(
1

4

[∣∣∣∣ ∂2f

∂t∂s
(x, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s
(x, d)

∣∣∣∣q
+

∣∣∣∣ ∂2f

∂t∂s
(a, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s
(a, d)

∣∣∣∣q]) 1
q

+ (b− x)2 (y − c)2

(
1

4

[∣∣∣∣ ∂2f

∂t∂s
(x, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s
(x, c)

∣∣∣∣q
+

∣∣∣∣ ∂2f

∂t∂s
(b, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s
(b, c)

∣∣∣∣q]) 1
q

+ (b− x)2 (d− y)2

(
1

4

[∣∣∣∣ ∂2f

∂t∂s
(x, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s
(x, d)

∣∣∣∣q
+

∣∣∣∣ ∂2f

∂t∂s
(b, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s
(b, d)

∣∣∣∣q]) 1
q

}
.

Burada Θ fonksiyonu (3.1) deki gibi tanımlanır ve 1
p

+ 1
q

= 1 dir.

İspat. (3.4) de iyi bilinen Hölder eşitsizliği kullanılırsa;

|Θ(a, b, c, d; f, p)| (3.10)

≤ (x− a) (y − c)
m(a, b; c, d)

 1∫
0

1∫
0

∣∣∣∣∣∣
U1(t)∫
a

V1(s)∫
c

w(u, v)dvdu

∣∣∣∣∣∣
p

dsdt


1
p

 1∫
0

1∫
0

∣∣∣∣ ∂2f

∂t∂s
(U1(t), V1(s))

∣∣∣∣q dsdt


1
q

+
(x− a) (d− y)

m(a, b; c, d)

 1∫
0

1∫
0

∣∣∣∣∣∣
U1(t)∫
a

V2(s)∫
d

w(u, v)dvdu

∣∣∣∣∣∣
p

dsdt


1
p

 1∫
0

1∫
0

∣∣∣∣ ∂2f

∂t∂s
(U1(t), V2(s))

∣∣∣∣q dsdt


1
q

+
(b− x) (y − c)
m(a, b; c, d)

 1∫
0

1∫
0

∣∣∣∣∣∣
U2(t)∫
b

V1(s)∫
c

w(u, v)dvdu

∣∣∣∣∣∣
p

dsdt


1
p
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 1∫
0

1∫
0

∣∣∣∣ ∂2f

∂t∂s
(U2(t), V1(s))

∣∣∣∣q dsdt


1
q

+
(b− x) (d− y)

m(a, b; c, d)

 1∫
0

1∫
0

∣∣∣∣∣∣
U2(t)∫
b

V2(s)∫
d

w(u, v)dvdu

∣∣∣∣∣∣
p

dsdt


1
p

 1∫
0

1∫
0

∣∣∣∣ ∂2f

∂t∂s
(U2(t), V2(s))

∣∣∣∣q dsdt


1
q

.

w fonksiyonu ∆ üzerinde sınırlı olduğundan,

1∫
0

1∫
0

∣∣∣∣∣∣
U1(t)∫
a

V1(s)∫
c

w(u, v)dvdu

∣∣∣∣∣∣
p

dsdt ≤ ‖w‖p∞

1∫
0

1∫
0

∣∣∣∣∣∣
U1(t)∫
a

V1(s)∫
c

dvdu

∣∣∣∣∣∣
p

dsdt (3.11)

= ‖w‖p∞ (x− a)p (y − c)p
1∫

0

1∫
0

sptpdsdt

=
(x− a)p (y − c)p

(p+ 1)2
‖w‖p∞ .

Benzer şekilde,

1∫
0

1∫
0

∣∣∣∣∣∣
U1(t)∫
a

V2(s)∫
d

w(u, v)dvdu

∣∣∣∣∣∣
p

dsdt ≤ (x− a)p (d− y)p

(p+ 1)2
‖w‖p∞ , (3.12)

1∫
0

1∫
0

∣∣∣∣∣∣
U2(t)∫
b

V1(s)∫
c

w(u, v)dvdu

∣∣∣∣∣∣
p

dsdt ≤ (b− x)p (y − c)p

(p+ 1)2
‖w‖p∞ (3.13)

ve
1∫

0

1∫
0

∣∣∣∣∣∣
U2(t)∫
b

V2(s)∫
d

w(u, v)dvdu

∣∣∣∣∣∣
p

dsdt ≤ (b− x)p (d− y)p

(p+ 1)2
‖w‖p∞ . (3.14)

Diğer taraftan,
∣∣∣ ∂2f∂t∂s

∣∣∣q ifadesinin ∆ üzerinde koordinatlarda konveksliğinden,

1∫
0

1∫
0

∣∣∣∣ ∂2f

∂t∂s
(U1(t), V1(s))

∣∣∣∣q dsdt (3.15)

≤ 1

4

[∣∣∣∣ ∂2f

∂t∂s
(x, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s
(x, c)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s
(a, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s
(a, c)

∣∣∣∣q] ,
1∫

0

1∫
0

∣∣∣∣ ∂2f

∂t∂s
(U1(t), V2(s))

∣∣∣∣q dsdt (3.16)
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≤ 1

4

[∣∣∣∣ ∂2f

∂t∂s
(x, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s
(x, d)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s
(a, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s
(a, d)

∣∣∣∣q] ,
1∫

0

1∫
0

∣∣∣∣ ∂2f

∂t∂s
(U2(t), V1(s))

∣∣∣∣q dsdt (3.17)

≤ 1

4

[∣∣∣∣ ∂2f

∂t∂s
(x, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s
(x, c)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s
(b, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s
(b, c)

∣∣∣∣q] ,
1∫

0

1∫
0

∣∣∣∣ ∂2f

∂t∂s
(U2(t), V2(s))

∣∣∣∣q dsdt (3.18)

≤ 1

4

[∣∣∣∣ ∂2f

∂t∂s
(x, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s
(x, d)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s
(b, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s
(b, d)

∣∣∣∣q] .
Eğer (3.11)-(3.18) eşitsizlikleri (3.10) da yerine yazılırsa, (3.9) elde edilir.

Sonuc. 3.1.4 Teorem 3.4 ön koşulları altında,
∣∣∣ ∂2f∂t∂s

(x, y)
∣∣∣ ≤M alınırsa, her (x, y) ∈

∆ için aşağıdaki ağırlıklı Ostrowski tipli eşitsizlik elde edilir:

|Θ(a, b, c, d; f, p)| ≤ 4M (b− a)2 (d− c)2

m(a, b; c, d)(p+ 1)
2
p

[
1

4
+

(
x− a+b

2

)2

(b− a)2

][
1

4
+

(
y − c+d

2

)2

(d− c)2

]
‖w‖∞ .

Uyarı 3.1.5 Eğer Sonuç 3.1.4 de w(x, y) = 1 seçilirse, Latif vd. (2012) tarafından

verilen eşitsizlik sağlanır.

Sonuc. 3.1.6 Teorem 3.4. koşulları altında, x = a+b
2

ve y = c+d
2

olarak seçilirse,

aşağıdaki Hermite-Hadamard tipli eşitsizlik elde edilir:∣∣∣∣∣∣f
(
a+ b

2
,
c+ d

2

)
+

1

m(a, b; c, d)

b∫
a

d∫
c

w(u, v)f(u, v)dvdu

− 1

m(a, b; c, d)

b∫
a

d∫
c

w(u, v)f

(
u,
c+ d

2

)
dvdu

− 1

m(a, b; c, d)

b∫
a

d∫
c

w(u, v)f

(
a+ b

2
, v

)
dvdu

∣∣∣∣∣∣
=

‖w‖∞ (b− a)2 (d− c)2

16×m(a, b; c, d)(p+ 1)
2
p

×
{(

1

4

[∣∣∣∣ ∂2f

∂t∂s

(
a+ b

2
,
c+ d

2

)∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s

((
a+ b

2
, c

))∣∣∣∣q
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+

∣∣∣∣ ∂2f

∂t∂s

(
a,
c+ d

2

)∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s
(a, c)

∣∣∣∣q]) 1
q

+

(
1

4

[∣∣∣∣ ∂2f

∂t∂s

(
a+ b

2
,
c+ d

2

)∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s

(
a+ b

2
, d

)∣∣∣∣q
+

∣∣∣∣ ∂2f

∂t∂s

(
a,
c+ d

2

)∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s
(a, d)

∣∣∣∣q]) 1
q

+

(
1

4

[∣∣∣∣ ∂2f

∂t∂s

(
a+ b

2
,
c+ d

2

)∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s

(
a+ b

2
, c

)∣∣∣∣q
+

∣∣∣∣ ∂2f

∂t∂s

(
b,
c+ d

2

)∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s
(b, c)

∣∣∣∣q]) 1
q

+

(
1

4

[∣∣∣∣ ∂2f

∂t∂s

(
a+ b

2
,
c+ d

2

)∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s

(
a+ b

2
, d

)∣∣∣∣q
+

∣∣∣∣ ∂2f

∂t∂s

(
b,
c+ d

2

)∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s
(b, d)

∣∣∣∣q]) 1
q

.

Teorem 3.5 w fonksiyonu Teorem 3.3 deki şartlarla tanımlansın. Eğer
∣∣∣ ∂2f∂t∂s

∣∣∣q
q ≥ 1 şartıyla, ∆ üzerinde koordinatlarda konveks ve her (x, y) ∈ ∆ için, aşağıdaki

eşitsizlik elde edilir:

|Θ(a, b, c, d; f, p)| (3.19)

≤ (x− a)2 (y − c)2 ‖w‖∞
4×m(a, b; c, d)(

4

9

∣∣∣∣ ∂2f

∂t∂s
(x, y)

∣∣∣∣q +
2

9

∣∣∣∣ ∂2f

∂t∂s
(x, c)

∣∣∣∣q +
2

9

∣∣∣∣ ∂2f

∂t∂s
(a, y)

∣∣∣∣q +
1

9

∣∣∣∣ ∂2f

∂t∂s
(a, c)

∣∣∣∣q) 1
q

+
(x− a)2 (d− y)2 ‖w‖∞

4×m(a, b; c, d)

×
(

4

9

∣∣∣∣ ∂2f

∂t∂s
(x, y)

∣∣∣∣q +
2

9

∣∣∣∣ ∂2f

∂t∂s
(x, d)

∣∣∣∣q +
2

9

∣∣∣∣ ∂2f

∂t∂s
(a, y)

∣∣∣∣q +
1

9

∣∣∣∣ ∂2f

∂t∂s
(a, d)

∣∣∣∣q) 1
q

+
(b− x)2 (y − c)2 ‖w‖∞

4×m(a, b; c, d)

×
(

4

9

∣∣∣∣ ∂2f

∂t∂s
(x, y)

∣∣∣∣q +
2

9

∣∣∣∣ ∂2f

∂t∂s
(x, c)

∣∣∣∣q +
2

9

∣∣∣∣ ∂2f

∂t∂s
(b, y)

∣∣∣∣q +
1

9

∣∣∣∣ ∂2f

∂t∂s
(b, c)

∣∣∣∣q) 1
q

+
(b− x)2 (d− y)2 ‖w‖∞

4×m(a, b; c, d)

×
(

4

9

∣∣∣∣ ∂2f

∂t∂s
(x, y)

∣∣∣∣q +
2

9

∣∣∣∣ ∂2f

∂t∂s
(x, d)

∣∣∣∣q +
2

9

∣∣∣∣ ∂2f

∂t∂s
(b, y)

∣∣∣∣q +
1

9

∣∣∣∣ ∂2f

∂t∂s
(b, d)

∣∣∣∣q) 1
q

.

Burada Θ fonksiyonu (3.1) deki şartlarda tanımlanır.
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İspat. 3.4 te Power Mean eşitsizliği kullanılırsa;

|Θ(a, b, c, d; f, p)| (3.20)

≤ (x− a) (y − c)
m(a, b; c, d)

 1∫
0

1∫
0

∣∣∣∣∣∣
U1(t)∫
a

V1(s)∫
c

w(u, v)dvdu

∣∣∣∣∣∣ dsdt
1− 1

q

×

 1∫
0

1∫
0

∣∣∣∣∣∣
U1(t)∫
a

V1(s)∫
c

w(u, v)dvdu

∣∣∣∣∣∣
∣∣∣∣ ∂2f

∂t∂s
(U1(t), V1(s))

∣∣∣∣q dsdt


1
q

+
(x− a) (d− y)

m(a, b; c, d)

 1∫
0

1∫
0

∣∣∣∣∣∣
U1(t)∫
a

V2(s)∫
d

w(u, v)dvdu

∣∣∣∣∣∣ dsdt
1− 1

q

×

 1∫
0

1∫
0

∣∣∣∣∣∣
U1(t)∫
a

V2(s)∫
d

w(u, v)dvdu

∣∣∣∣∣∣
∣∣∣∣ ∂2f

∂t∂s
(U1(t), V2(s))

∣∣∣∣q dsdt


1
q

+
(b− x) (y − c)
m(a, b; c, d)

 1∫
0

1∫
0

∣∣∣∣∣∣
U2(t)∫
b

V1(s)∫
c

w(u, v)dvdu

∣∣∣∣∣∣ dsdt
1− 1

q

×

 1∫
0

1∫
0

∣∣∣∣∣∣
U2(t)∫
b

V1(s)∫
c

w(u, v)dvdu

∣∣∣∣∣∣
∣∣∣∣ ∂2f

∂t∂s
(U2(t), V1(s))

∣∣∣∣q dsdt


1
q

+
(b− x) (d− y)

m(a, b; c, d)

 1∫
0

1∫
0

∣∣∣∣∣∣
U2(t)∫
b

V2(s)∫
d

w(u, v)dvdu

∣∣∣∣∣∣ dsdt
1− 1

q

×

 1∫
0

1∫
0

∣∣∣∣∣∣
U2(t)∫
b

V2(s)∫
d

w(u, v)dvdu

∣∣∣∣∣∣
∣∣∣∣ ∂2f

∂t∂s
(U2(t), V2(s))

∣∣∣∣q dsdt


1
q

≤ (x− a)2 (y − c)2 ‖w‖∞
41− 1

q ×m(a, b; c, d)

 1∫
0

1∫
0

ts

∣∣∣∣ ∂2f

∂t∂s
(U1(t), V1(s))

∣∣∣∣q dsdt


1
q

+
(x− a)2 (d− y)2 ‖w‖∞

41− 1
q ×m(a, b; c, d)

 1∫
0

1∫
0

∣∣∣∣ ∂2f

∂t∂s
(U1(t), V2(s))

∣∣∣∣q dsdt


1
q

+
(b− x)2 (y − c)2 ‖w‖∞

41− 1
q ×m(a, b; c, d)

 1∫
0

1∫
0

∣∣∣∣ ∂2f

∂t∂s
(U2(t), V1(s))

∣∣∣∣q dsdt


1
q
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+
(b− x)2 (d− y)2 ‖w‖∞

41− 1
q ×m(a, b; c, d)

 1∫
0

1∫
0

∣∣∣∣ ∂2f

∂t∂s
(U2(t), V2(s))

∣∣∣∣q dsdt


1
q

.

∣∣∣ ∂2f∂t∂s

∣∣∣q ∆ üzerinde koordinatlarda konveks olduğundan;

 1∫
0

1∫
0

ts

∣∣∣∣ ∂2f

∂t∂s
(U1(t), V1(s))

∣∣∣∣q dsdt


1
q

(3.21)

≤
(

1

9

∣∣∣∣ ∂2f

∂t∂s
(x, y)

∣∣∣∣q +
1

18

∣∣∣∣ ∂2f

∂t∂s
(x, c)

∣∣∣∣q +
1

18

∣∣∣∣ ∂2f

∂t∂s
(a, y)

∣∣∣∣q +
1

36

∣∣∣∣ ∂2f

∂t∂s
(a, c)

∣∣∣∣q) 1
q

,

 1∫
0

1∫
0

∣∣∣∣ ∂2f

∂t∂s
(U1(t), V2(s))

∣∣∣∣q dsdt


1
q

(3.22)

≤
(

1

9

∣∣∣∣ ∂2f

∂t∂s
(x, y)

∣∣∣∣q +
1

18

∣∣∣∣ ∂2f

∂t∂s
(x, d)

∣∣∣∣q +
1

18

∣∣∣∣ ∂2f

∂t∂s
(a, y)

∣∣∣∣q +
1

36

∣∣∣∣ ∂2f

∂t∂s
(a, d)

∣∣∣∣q) 1
q

,

 1∫
0

1∫
0

∣∣∣∣ ∂2f

∂t∂s
(U2(t), V1(s))

∣∣∣∣q dsdt


1
q

(3.23)

≤
(

1

9

∣∣∣∣ ∂2f

∂t∂s
(x, y)

∣∣∣∣q +
1

18

∣∣∣∣ ∂2f

∂t∂s
(x, c)

∣∣∣∣q +
1

18

∣∣∣∣ ∂2f

∂t∂s
(b, y)

∣∣∣∣q +
1

36

∣∣∣∣ ∂2f

∂t∂s
(b, c)

∣∣∣∣q) 1
q

ve  1∫
0

1∫
0

∣∣∣∣ ∂2f

∂t∂s
(U2(t), V2(s))

∣∣∣∣q dsdt


1
q

(3.24)

≤
(

1

9

∣∣∣∣ ∂2f

∂t∂s
(x, y)

∣∣∣∣q +
1

18

∣∣∣∣ ∂2f

∂t∂s
(x, d)

∣∣∣∣q +
1

18

∣∣∣∣ ∂2f

∂t∂s
(b, y)

∣∣∣∣q +
1

36

∣∣∣∣ ∂2f

∂t∂s
(b, d)

∣∣∣∣q) 1
q

.

Böylece (3.19) ifadesi bulunmuş ve ispat tamamlanmış olur.

Sonuc. 3.1.7 Teorem 3.5 koşulları altında,
∣∣∣ ∂2f∂t∂s

(x, y)
∣∣∣ ≤ M ve (x, y) ∈ ∆ olmak

üzere, aşağıdaki ağırlıklı Ostrowski tipli eşitsizlik elde edilir:

|Θ(a, b, c, d; f, p)| ≤ M (b− a)2 (d− c)2

m(a, b; c, d)

[
1

4
+

(
x− a+b

2

)2

(b− a)2

][
1

4
+

(
y − c+d

2

)2

(d− c)2

]
‖w‖∞ .

Uyarı 3.1.8 Sonuç 3.1.7 de w(x, y) = 1 seçilirse, Latif vd. (2012) tarafından verilen

eşitsizlik sağlanır.
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Sonuc. 3.1.9 Teorem 3.5 koşulları altında, x = a+b
2

ve y = c+d
2

olarak seçilirse,

aşağıdaki Hermite-Hadamard tipli eşitsizlik elde edilir:∣∣∣∣∣∣f
(
a+ b

2
,
c+ d

2

)
+

1

m(a, b; c, d)

b∫
a

d∫
c

w(u, v)f(u, v)dvdu

− 1

m(a, b; c, d)

b∫
a

d∫
c

w(u, v)f

(
u,
c+ d

2

)
dvdu

− 1

m(a, b; c, d)

b∫
a

d∫
c

w(u, v)f

(
a+ b

2
, v

)
dvdu

∣∣∣∣∣∣
≤ (x− a)2 (y − c)2 ‖w‖∞

4×m(a, b; c, d)

×
(

4

9

∣∣∣∣ ∂2f

∂t∂s

(
a+ b

2
,
c+ d

2

)∣∣∣∣q +
2

9

∣∣∣∣ ∂2f

∂t∂s

(
a+ b

2
, c

)∣∣∣∣q
+

2

9

∣∣∣∣ ∂2f

∂t∂s

(
a,
c+ d

2

)∣∣∣∣q +
1

9

∣∣∣∣ ∂2f

∂t∂s
(a, c)

∣∣∣∣q]) 1
q

+
(x− a)2 (d− y)2 ‖w‖∞

4×m(a, b; c, d)

×
(

4

9

∣∣∣∣ ∂2f

∂t∂s

(
a+ b

2
,
c+ d

2

)∣∣∣∣q +
2

9

∣∣∣∣ ∂2f

∂t∂s

(
a+ b

2
, d

)∣∣∣∣q
+

2

9

∣∣∣∣ ∂2f

∂t∂s

(
a,
c+ d

2

)∣∣∣∣q +
1

9

∣∣∣∣ ∂2f

∂t∂s
(a, d)

∣∣∣∣q]) 1
q

+
(b− x)2 (y − c)2 ‖w‖∞

4×m(a, b; c, d)

×
(

4

9

∣∣∣∣ ∂2f

∂t∂s

(
a+ b

2
,
c+ d

2

)∣∣∣∣q +
2

9

∣∣∣∣ ∂2f

∂t∂s

(
a+ b

2
, c

)∣∣∣∣q
+

2

9

∣∣∣∣ ∂2f

∂t∂s

(
b,
c+ d

2

)∣∣∣∣q +
1

9

∣∣∣∣ ∂2f

∂t∂s
(b, c)

∣∣∣∣q]) 1
q

+
(b− x)2 (d− y)2 ‖w‖∞

4×m(a, b; c, d)

×
(

4

9

∣∣∣∣ ∂2f

∂t∂s

(
a+ b

2
,
c+ d

2

)∣∣∣∣q +
2

9

∣∣∣∣ ∂2f

∂t∂s

(
a+ b

2
, d

)∣∣∣∣q
+

2

9

∣∣∣∣ ∂2f

∂t∂s

(
b,
c+ d

2

)∣∣∣∣q +
1

9

∣∣∣∣ ∂2f

∂t∂s
(b, d)

∣∣∣∣q]) 1
q

.
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4. BULGULAR

4.1 Koordinatlarda s-konveks fonksiyonlara ilişkin bazı yeni Ostrowski

eşitsizlikleri

Teorem 4.1 w fonksiyonu Lemma 3.1 deki şartlarda tanımlansın ve ∆ üzerinde

sınırlı olsun. ‖w‖∞ := sup
(x,y)∈∆

|w(x, y)| şeklinde ifade edilmek üzere; eğer
∣∣∣ ∂2f∂t∂s

∣∣∣ ifadesi

∆ üzerinde koordinatlarda s-konveks ise her (x, y) ∈ ∆ için, aşağıdaki eşitsizlik elde

edilir:

|Θ(a, b, c, d; f, w)| (4.1)

≤ ‖w‖∞
m(a, b; c, d)

1

(s1 + 2) (s2 + 2)

×
{

(x− a)2 (y − c)2[∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣+
1

s2 + 1

∣∣∣∣ ∂2f

∂t∂λ
(x, c)

∣∣∣∣
+

1

s1 + 1

∣∣∣∣ ∂2f

∂t∂λ
(a, y)

∣∣∣∣+
1

(s1 + 1) (s2 + 1)

∣∣∣∣ ∂2f

∂t∂λ
(a, c)

∣∣∣∣]
+ (x− a)2 (d− y)2[∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣+
1

s2 + 1

∣∣∣∣ ∂2f

∂t∂λ
(x, d)

∣∣∣∣
+

1

s1 + 1

∣∣∣∣ ∂2f

∂t∂λ
(a, y)

∣∣∣∣+
1

(s1 + 1) (s2 + 1)

∣∣∣∣ ∂2f

∂t∂λ
(a, d)

∣∣∣∣]
+ (b− x)2 (y − c)2[∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣+
1

s2 + 1

∣∣∣∣ ∂2f

∂t∂λ
(x, c)

∣∣∣∣
+

1

s1 + 1

∣∣∣∣ ∂2f

∂t∂λ
(b, y)

∣∣∣∣+
1

(s1 + 1) (s2 + 1)

∣∣∣∣ ∂2f

∂t∂λ
(b, c)

∣∣∣∣]
+ (b− x)2 (d− y)2[∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣+
1

s2 + 1

∣∣∣∣ ∂2f

∂t∂λ
(x, d)

∣∣∣∣
+

1

s1 + 1

∣∣∣∣ ∂2f

∂t∂λ
(b, y)

∣∣∣∣+
1

(s1 + 1) (s2 + 1)

∣∣∣∣ ∂2f

∂t∂λ
(b, d)

∣∣∣∣]} .
Burada Θ fonksiyonu Lemma 3.1 deki gibi tanımlanır.
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İspat. (3.2) deki eşitliğin mutlak değeri (modülü) alınırsa;

|Θ(a, b, c, d; f, w)| (4.2)

=
(x− a) (y − c)
m(a, b; c, d)

1∫
0

1∫
0

∣∣∣∣∣∣
U1(t)∫
a

V1(λ)∫
c

w(u, v)dvdu

∣∣∣∣∣∣
∣∣∣∣ ∂2f

∂t∂λ
(U1(t), V1(λ))

∣∣∣∣ dλdt
+

(x− a) (d− y)

m(a, b; c, d)

1∫
0

1∫
0

∣∣∣∣∣∣
U1(t)∫
a

V2(λ)∫
d

w(u, v)dvdu

∣∣∣∣∣∣
∣∣∣∣ ∂2f

∂t∂λ
(U1(t), V2(λ))

∣∣∣∣ dλdt
+

(b− x) (y − c)
m(a, b; c, d)

1∫
0

1∫
0

∣∣∣∣∣∣
U2(t)∫
b

V1(λ)∫
c

w(u, v)dvdu

∣∣∣∣∣∣
∣∣∣∣ ∂2f

∂t∂λ
(U2(t), V1(λ))

∣∣∣∣ dλdt
+

(b− x) (d− y)

m(a, b; c, d)

1∫
0

1∫
0

∣∣∣∣∣∣
U2(t)∫
b

V2(λ)∫
d

w(u, v)dvdu

∣∣∣∣∣∣
∣∣∣∣ ∂2f

∂t∂λ
(U2(t), V2(λ))

∣∣∣∣ dλdt
eşitliği elde edilir. Burada, w(x, y) fonksiyonu ∆ üzerinde sınırlı olduğundan ve∣∣∣ ∂2f∂t∂s

∣∣∣nin ∆ üzerinde koordinatlarda s−konveksliğinden,

1∫
0

1∫
0

∣∣∣∣∣∣
U1(t)∫
a

V1(λ)∫
c

w(u, v)dvdu

∣∣∣∣∣∣
∣∣∣∣ ∂2f

∂t∂λ
(U1(t), V1(λ))

∣∣∣∣ dλdt (4.3)

≤ ‖w‖∞

1∫
0

1∫
0

∣∣∣∣∣∣
U1(t)∫
a

V1(λ)∫
c

dvdu

∣∣∣∣∣∣
∣∣∣∣ ∂2f

∂t∂λ
(U1(t), V1(λ))

∣∣∣∣ dλdt
≤ (x− a) (y − c) ‖w‖∞

1∫
0

1∫
0

tλ

[
ts1λs2

∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣+ ts1 (1− λ)s2
∣∣∣∣ ∂2f

∂t∂λ
(x, c)

∣∣∣∣
+ (1− t)s1 λs2

∣∣∣∣ ∂2f

∂t∂λ
(a, y)

∣∣∣∣+ (1− t)s1 (1− λ)s2
∣∣∣∣ ∂2f

∂t∂λ
(a, c)

∣∣∣∣] dλdt
= (x− a) (y − c) ‖w‖∞[

1

(s1 + 2) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣
+

1

(s1 + 2) (s2 + 1) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(x, c)

∣∣∣∣
+

1

(s1 + 1) (s1 + 2) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(a, y)

∣∣∣∣
+

1

(s1 + 1) (s1 + 2) (s2 + 1) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(a, c)

∣∣∣∣] .
28



Benzer şekilde;

1∫
0

1∫
0

∣∣∣∣∣∣
U1(t)∫
a

V2(λ)∫
d

w(u, v)dvdu

∣∣∣∣∣∣
∣∣∣∣ ∂2f

∂t∂λ
(U1(t), V2(λ))

∣∣∣∣ dλdt (4.4)

≤ (x− a) (d− y) ‖w‖∞[
1

(s1 + 2) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣
+

1

(s1 + 2) (s2 + 1) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(x, d)

∣∣∣∣
+

1

(s1 + 1) (s1 + 2) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(a, y)

∣∣∣∣
+

1

(s1 + 1) (s1 + 2) (s2 + 1) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(a, d)

∣∣∣∣] ,
1∫

0

1∫
0

∣∣∣∣∣∣
U2(t)∫
b

V1(λ)∫
c

w(u, v)dvdu

∣∣∣∣∣∣
∣∣∣∣ ∂2f

∂t∂λ
(U2(t), V1(λ))

∣∣∣∣ dλdt (4.5)

≤ (b− x) (y − c) ‖w‖∞[
1

(s1 + 2) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣
+

1

(s1 + 2) (s2 + 1) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(x, c)

∣∣∣∣
+

1

(s1 + 1) (s1 + 2) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(b, y)

∣∣∣∣
+

1

(s1 + 1) (s1 + 2) (s2 + 1) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(b, c)

∣∣∣∣]
ve

1∫
0

1∫
0

∣∣∣∣∣∣
U2(t)∫
b

V2(λ)∫
d

w(u, v)dvdu

∣∣∣∣∣∣
∣∣∣∣ ∂2f

∂t∂λ
(U2(t), V2(λ))

∣∣∣∣ dλdt (4.6)

≤ (b− x) (d− y) ‖w‖∞[
1

(s1 + 2) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣
+

1

(s1 + 2) (s2 + 1) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(x, d)

∣∣∣∣
+

1

(s1 + 1) (s1 + 2) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(b, y)

∣∣∣∣
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+
1

(s1 + 1) (s1 + 2) (s2 + 1) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(b, d)

∣∣∣∣]
elde edilir. Eğer (4.3)-(4.6) ifadeleri (4.2) de yerine yazılırsa (4.1) Teorem ifadesi

elde edilir ve ispat tamamlanmış olur.

Uyarı 4.1.1 Eğer Teorem 4.1 de s1 = s2 = 1 olarak seçilirse, aşağıdaki eşitsizlik

elde edilir:

|Θ(a, b, c, d; f, w)| (4.7)

≤ ‖w‖∞
36×m(a, b; c, d)

×
{

(x− a)2 (y − c)2[
4

∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣+ 2

∣∣∣∣ ∂2f

∂t∂λ
(x, c)

∣∣∣∣+ 2

∣∣∣∣ ∂2f

∂t∂λ
(a, y)

∣∣∣∣+

∣∣∣∣ ∂2f

∂t∂λ
(a, c)

∣∣∣∣]
+ (x− a)2 (d− y)2[
4

∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣+ 2

∣∣∣∣ ∂2f

∂t∂λ
(x, d)

∣∣∣∣+ 2

∣∣∣∣ ∂2f

∂t∂λ
(a, y)

∣∣∣∣+

∣∣∣∣ ∂2f

∂t∂λ
(a, d)

∣∣∣∣]
+ (b− x)2 (y − c)2[
4

∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣+ 2

∣∣∣∣ ∂2f

∂t∂λ
(x, c)

∣∣∣∣+ 2

∣∣∣∣ ∂2f

∂t∂λ
(b, y)

∣∣∣∣+

∣∣∣∣ ∂2f

∂t∂λ
(b, c)

∣∣∣∣]
+ (b− x)2 (d− y)2[

4

∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣+ 2

∣∣∣∣ ∂2f

∂t∂λ
(x, d)

∣∣∣∣+ 2

∣∣∣∣ ∂2f

∂t∂λ
(b, y)

∣∣∣∣+

∣∣∣∣ ∂2f

∂t∂λ
(b, d)

∣∣∣∣]} .
Bulunan bu eşitsizlik Budak (2022) tarafından verilmiştir.

Sonuc. 4.1.2 Teorem 4.1 in şartları altında,
∣∣∣ ∂2f∂t∂λ

(x, y)
∣∣∣ ≤ M , (x, y) ∈ ∆ olarak

belirlenirse, aşağıdaki ağırlıklı Ostrowski tipli eşitsizlik elde edilir:

|Θ(a, b, c, d; f, w)| ≤ 4M (b− a)2 (d− c)2

m(a, b; c, d) (s1 + 1) (s2 + 1)

×

[
1

4
+

(
x− a+b

2

)2

(b− a)2

][
1

4
+

(
y − c+d

2

)2

(d− c)2

]
‖w‖∞ .

Uyarı 4.1.3 Eğer w (x, y) = 1 ve s1 = s2 = s seçilirse; Latif vd.(2012) tarafından

verilen eşitsizlik sağlanır.
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Sonuc. 4.1.4 Teorem 4.1 de x = a+b
2

ve y = c+d
2

yazılırsa; aşağıdaki ağırlıklı orta

nokta tipli eşitsizlik elde edilir:∣∣∣∣∣∣f
(
a+ b

2
,
c+ d

2

)
+

1

m(a, b; c, d)

b∫
a

d∫
c

w(u, v)f(u, v)dvdu

− 1

m(a, b; c, d)

b∫
a

d∫
c

w(u, v)f

(
u,
c+ d

2

)
dvdu

∣∣∣∣∣∣
− 1

m(a, b; c, d)

b∫
a

d∫
c

w(u, v)f

(
a+ b

2
, v

)
dvdu

∣∣∣∣∣∣
≤ (b− a)2 (d− c)2

16 (s1 + 2) (s2 + 2)

‖w‖∞
m(a, b; c, d)

[
21−s2 +

1

s2 + 1

] [
21−s1 +

1

s1 + 1

]
×
[∣∣∣∣ ∂2f

∂t∂λ
(a, c)

∣∣∣∣+

∣∣∣∣ ∂2f

∂t∂λ
(a, d)

∣∣∣∣+

∣∣∣∣ ∂2f

∂t∂λ
(b, c)

∣∣∣∣+

∣∣∣∣ ∂2f

∂t∂λ
(b, d)

∣∣∣∣] .
İspat. x = a+b

2
, y = c+d

2
seçilir ve

∣∣∣ ∂2f∂t∂λ

∣∣∣ in s− konveksliği kullanılırsa istenen sonuç

elde edilir.

Uyarı 4.1.5 w (x, y) = 1 ve s1 = s2 = 1 yazılırsa; Latif vd. (2012) deki eşitsizlik

sağlanır.

Teorem 4.2 w, Teorem 4.1 deki şartlarda verilsin. Θ fonksiyonu Lemma 3.1

de tanımlandığı gibi kabul edilsin.
∣∣∣ ∂2f∂t∂λ

∣∣∣q, ∆ üzerinde koordinatlarda s−konveks

fonksiyon ve her (x, y) ∈ ∆ için; 1
p

+ 1
q

= 1 olmak üzere, aşağıdaki ağırlıklı Ostrowski

tipli eşitsizlik elde edilir:

|Θ(a, b, c, d; f, w)| (4.8)

≤ ‖w‖∞
m(a, b; c, d)(p+ 1)

2
p

(
4

(s1 + 1) (s2 + 1)

) 1
q

×
{

(x− a)2 (y − c)2[∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(x, c)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(a, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(a, c)

∣∣∣∣q] 1
q

+ (x− a)2 (d− y)2[∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(x, d)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(a, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(a, d)

∣∣∣∣q] 1
q
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+ (b− x)2 (y − c)2[∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(x, c)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(b, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(b, c)

∣∣∣∣q] 1
q

+ (b− x)2 (d− y)2[∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(x, d)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(b, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(b, d)

∣∣∣∣q] 1
q

}
.

İspat. (4.2) de Hölder eşitsizliği kullanılırsa;

|Θ(a, b, c, d; f, w)| (4.9)

≤ (x− a) (y − c)
m(a, b; c, d)

×

 1∫
0

1∫
0

∣∣∣∣∣∣
U1(t)∫
a

V1(λ)∫
c

w(u, v)dvdu

∣∣∣∣∣∣
p

dλdt


1
p  1∫

0

1∫
0

∣∣∣∣ ∂2f

∂t∂λ
(U1(t), V1(λ))

∣∣∣∣q dλdt


1
q

+
(x− a) (d− y)

m(a, b; c, d)

×

 1∫
0

1∫
0

∣∣∣∣∣∣
U1(t)∫
a

V2(λ)∫
d

w(u, v)dvdu

∣∣∣∣∣∣
p

dλdt


1
p  1∫

0

1∫
0

∣∣∣∣ ∂2f

∂t∂λ
(U1(t), V2(λ))

∣∣∣∣q dλdt


1
q

+
(b− x) (y − c)
m(a, b; c, d)

×

 1∫
0

1∫
0

∣∣∣∣∣∣
U2(t)∫
b

V1(λ)∫
c

w(u, v)dvdu

∣∣∣∣∣∣
p

dλdt


1
p  1∫

0

1∫
0

∣∣∣∣ ∂2f

∂t∂λ
(U2(t), V1(λ))

∣∣∣∣q dλdt


1
q

+
(b− x) (d− y)

m(a, b; c, d)

×

 1∫
0

1∫
0

∣∣∣∣∣∣
U2(t)∫
b

V2(λ)∫
d

w(u, v)dvdu

∣∣∣∣∣∣
p

dλdt


1
p  1∫

0

1∫
0

∣∣∣∣ ∂2f

∂t∂λ
(U2(t), V2(λ))

∣∣∣∣q dλdt


1
q

elde edilir. Eğer w fonksiyonu ∆ üzerinde sınırlandırılırsa;

1∫
0

1∫
0

∣∣∣∣∣∣
U1(t)∫
a

V1(λ)∫
c

w(u, v)dvdu

∣∣∣∣∣∣
p

dλdt ≤ ‖w‖p∞

1∫
0

1∫
0

∣∣∣∣∣∣
U1(t)∫
a

V1(λ)∫
c

dvdu

∣∣∣∣∣∣
p

dλdt (4.10)

= ‖w‖p∞ (x− a)p (y − c)p
1∫

0

1∫
0

λptpdλdt
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=
(x− a)p (y − c)p

(p+ 1)2
‖w‖p∞

bulunur. Benzer şekilde;

1∫
0

1∫
0

∣∣∣∣∣∣
U1(t)∫
a

V2(λ)∫
d

w(u, v)dvdu

∣∣∣∣∣∣
p

dλdt ≤ (x− a)p (d− y)p

(p+ 1)2
‖w‖p∞ , (4.11)

1∫
0

1∫
0

∣∣∣∣∣∣
U2(t)∫
b

V1(λ)∫
c

w(u, v)dvdu

∣∣∣∣∣∣
p

dλdt ≤ (b− x)p (y − c)p

(p+ 1)2
‖w‖p∞ , (4.12)

1∫
0

1∫
0

∣∣∣∣∣∣
U2(t)∫
b

V2(λ)∫
d

w(u, v)dvdu

∣∣∣∣∣∣
p

dλdt ≤ (b− x)p (d− y)p

(p+ 1)2
‖w‖p∞ . (4.13)

Diğer taraftan;
∣∣∣ ∂2f∂t∂λ

∣∣∣q, ∆ üzerinde koordinatlarda s-konveks fonksiyon olduğundan,

1∫
0

1∫
0

∣∣∣∣ ∂2f

∂t∂λ
(U1(t), V1(λ))

∣∣∣∣q dλdt (4.14)

≤ 1

(s1 + 1) (s2 + 1)

×
[∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(x, c)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(a, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(a, c)

∣∣∣∣q] ,
1∫

0

1∫
0

∣∣∣∣ ∂2f

∂t∂λ
(U1(t), V2(λ))

∣∣∣∣q dλdt (4.15)

≤ 1

(s1 + 1) (s2 + 1)

×
[∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(x, d)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(a, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(a, d)

∣∣∣∣q] ,
1∫

0

1∫
0

∣∣∣∣ ∂2f

∂t∂λ
(U2(t), V1(λ))

∣∣∣∣q dλdt (4.16)

≤ 1

(s1 + 1) (s2 + 1)

×
[∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(x, c)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(b, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(b, c)

∣∣∣∣q] ,
ve

1∫
0

1∫
0

∣∣∣∣ ∂2f

∂t∂λ
(U2(t), V2(λ))

∣∣∣∣q dλdt (4.17)
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≤ 1

(s1 + 1) (s2 + 1)

×
[∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(x, d)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(b, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(b, d)

∣∣∣∣q] .
eşitsizlikleri elde edilir. Eğer (4.10)-(4.17) eşitsizlikleri (4.9) da yerine yazılırsa, (4.8)

bulunur.

Uyarı 4.1.6 Teorem 4.1 de s1 = s2 = 1 yazılırsa, Budak (2022) tarafından verilen

aşağıdaki eşitsizlik elde edilir:

|Θ(a, b, c, d; f, w)|

≤ ‖w‖∞
2

2
qm(a, b; c, d)(p+ 1)

2
p

×
{

(x− a)2 (y − c)2(∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(x, c)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(a, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(a, c)

∣∣∣∣q) 1
q

+ (x− a)2 (d− y)2(∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(x, d)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(a, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(a, d)

∣∣∣∣q) 1
q

+ (b− x)2 (y − c)2(∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(x, c)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(b, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(b, c)

∣∣∣∣q) 1
q

+ (b− x)2 (d− y)2(∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(x, d)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(b, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(b, d)

∣∣∣∣q) 1
q

}
.

Sonuc. 4.1.7 Teorem 4.2 koşullarında,
∣∣∣ ∂2f∂t∂λ

(x, y)
∣∣∣ ≤M, (x, y) ∈ ∆, olmak üzere,

|Θ(a, b, c, d; f, w)| ≤ 4M (b− a)2 (d− c)2

m(a, b; c, d)(p+ 1)
2
p

(
4

(s1 + 1) (s2 + 1)

) 1
q

×

[
1

4
+

(
x− a+b

2

)2

(b− a)2

][
1

4
+

(
y − c+d

2

)2

(d− c)2

]
‖w‖∞ .

ağırlıklı Ostrowski tipli eşitsizlik bulunur.

Uyarı 4.1.8 Eğer, Sonuç 4.1.7 de, w(x, y) = 1 ve s1 = s2 = s yazılırsa, Latif vd.

(2012) tarafından verilen eşitsizlik sağlanır.
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Sonuc. 4.1.9 Teorem 4.2 ön koşulları altında, x = a+b
2

ve y = c+d
2

yazılırsa,∣∣∣∣∣∣f
(
a+ b

2
,
c+ d

2

)
+

1

m(a, b; c, d)

b∫
a

d∫
c

w(u, v)f(u, v)dvdu

− 1

m(a, b; c, d)

b∫
a

d∫
c

w(u, v)f

(
u,
c+ d

2

)
dvdu

∣∣∣∣∣∣
− 1

m(a, b; c, d)

b∫
a

d∫
c

w(u, v)f

(
a+ b

2
, v

)
dvdu

∣∣∣∣∣∣
≤ ‖w‖∞ (b− a)2 (d− c)2

16m(a, b; c, d)(p+ 1)
2
p

(
1

(s1 + 1) (s2 + 1)

) 1
q

×
{[∣∣∣∣ ∂2f

∂t∂λ

(
a+ b

2
,
c+ d

2

)∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ

(
a+ b

2
, c

)∣∣∣∣q
+

∣∣∣∣ ∂2f

∂t∂λ

(
a,
c+ d

2

)∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(a, c)

∣∣∣∣q] 1
q

+

[∣∣∣∣ ∂2f

∂t∂λ

(
a+ b

2
,
c+ d

2

)∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ

(
a+ b

2
, d

)∣∣∣∣q
+

∣∣∣∣ ∂2f

∂t∂λ

(
a,
c+ d

2

)∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(a, d)

∣∣∣∣q] 1
q

+

[∣∣∣∣ ∂2f

∂t∂λ

(
a+ b

2
,
c+ d

2

)∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ

(
a+ b

2
, c

)∣∣∣∣q
+

∣∣∣∣ ∂2f

∂t∂λ

(
b,
c+ d

2

)∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(b, c)

∣∣∣∣q] 1
q

+

[∣∣∣∣ ∂2f

∂t∂λ

(
a+ b

2
,
c+ d

2

)∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ

(
a+ b

2
, d

)∣∣∣∣q
+

∣∣∣∣ ∂2f

∂t∂λ

(
b,
c+ d

2

)∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(b, d)

∣∣∣∣q] 1
q

}

ağırlıklı orta nokta tip eşitsizlik bulunur.

Teorem 4.3 w, Teorem 4.1 deki şartlarda verilsin. Θ fonksiyonu Lemma 3.1

de tanımlandığı gibi kabul edilsin.
∣∣∣ ∂2f∂t∂λ

∣∣∣q, ∆ üzerinde koordinatlarda s−konveks

fonksiyon ve her (x, y) ∈ ∆ için; q ≥ 1 olmak üzere, aşağıdaki ağırlıklı Ostrowski

tipli eşitsizlik elde edilir:

|Θ(a, b, c, d; f, w)| (4.18)
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≤ ‖w‖∞
2
2− 2

q ×m(a, b; c, d)

(
1

(s1 + 2) (s2 + 2)

) 1
q

×
{

(x− a)2 (y − c)2

(∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣q +
1

s2 + 1

∣∣∣∣ ∂2f

∂t∂λ
(x, c)

∣∣∣∣q
+

1

s1 + 1

∣∣∣∣ ∂2f

∂t∂λ
(a, y)

∣∣∣∣q +
1

(s1 + 1) (s2 + 1)

∣∣∣∣ ∂2f

∂t∂λ
(a, c)

∣∣∣∣q) 1
q

+ (x− a)2 (d− y)2

(∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣q +
1

s2 + 1

∣∣∣∣ ∂2f

∂t∂λ
(x, d)

∣∣∣∣q
+

1

s1 + 1

∣∣∣∣ ∂2f

∂t∂λ
(a, y)

∣∣∣∣q +
1

(s1 + 1) (s2 + 1)

∣∣∣∣ ∂2f

∂t∂λ
(a, d)

∣∣∣∣q) 1
q

+ (b− x)2 (y − c)2

(∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣q +
1

s2 + 1

∣∣∣∣ ∂2f

∂t∂λ
(x, c)

∣∣∣∣q
+

1

s1 + 1

∣∣∣∣ ∂2f

∂t∂λ
(b, y)

∣∣∣∣q +
1

(s1 + 1) (s2 + 1)

∣∣∣∣ ∂2f

∂t∂λ
(b, c)

∣∣∣∣q) 1
q

+ (b− x)2 (d− y)2

(∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣q +
1

s2 + 1

∣∣∣∣ ∂2f

∂t∂λ
(x, d)

∣∣∣∣q
+

1

s1 + 1

∣∣∣∣ ∂2f

∂t∂λ
(b, y)

∣∣∣∣q +
1

(s1 + 1) (s2 + 1)

∣∣∣∣ ∂2f

∂t∂λ
(b, d)

∣∣∣∣q) 1
q

}
.

İspat. (4.2) de Power Mean eşitsizliği kullanılırsa;

|Θ(a, b, c, d; f, w)| (4.19)

≤ (x− a) (y − c)
m(a, b; c, d)

 1∫
0

1∫
0

∣∣∣∣∣∣
U1(t)∫
a

V1(λ)∫
c

w(u, v)dvdu

∣∣∣∣∣∣ dλdt
1− 1

q

×

 1∫
0

1∫
0

∣∣∣∣∣∣
U1(t)∫
a

V1(λ)∫
c

w(u, v)dvdu

∣∣∣∣∣∣
∣∣∣∣ ∂2f

∂t∂λ
(U1(t), V1(λ))

∣∣∣∣q dλdt


1
q

+
(x− a) (d− y)

m(a, b; c, d)

 1∫
0

1∫
0

∣∣∣∣∣∣
U1(t)∫
a

V2(λ)∫
d

w(u, v)dvdu

∣∣∣∣∣∣ dλdt
1− 1

q

×

 1∫
0

1∫
0

∣∣∣∣∣∣
U1(t)∫
a

V2(λ)∫
d

w(u, v)dvdu

∣∣∣∣∣∣
∣∣∣∣ ∂2f

∂t∂λ
(U1(t), V2(λ))

∣∣∣∣q dλdt


1
q

+
(b− x) (y − c)
m(a, b; c, d)

 1∫
0

1∫
0

∣∣∣∣∣∣
U2(t)∫
b

V1(λ)∫
c

w(u, v)dvdu

∣∣∣∣∣∣ dλdt
1− 1

q
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×

 1∫
0

1∫
0

∣∣∣∣∣∣
U2(t)∫
b

V1(λ)∫
c

w(u, v)dvdu

∣∣∣∣∣∣
∣∣∣∣ ∂2f

∂t∂λ
(U2(t), V1(λ))

∣∣∣∣q dλdt


1
q

+
(b− x) (d− y)

m(a, b; c, d)

 1∫
0

1∫
0

∣∣∣∣∣∣
U2(t)∫
b

V2(λ)∫
d

w(u, v)dvdu

∣∣∣∣∣∣ dλdt
1− 1

q

×

 1∫
0

1∫
0

∣∣∣∣∣∣
U2(t)∫
b

V2(λ)∫
d

w(u, v)dvdu

∣∣∣∣∣∣
∣∣∣∣ ∂2f

∂t∂λ
(U2(t), V2(λ))

∣∣∣∣q dλdt


1
q

≤ (x− a)2 (y − c)2 ‖w‖∞
41− 1

q ×m(a, b; c, d)

 1∫
0

1∫
0

tλ

∣∣∣∣ ∂2f

∂t∂λ
(U1(t), V1(λ))

∣∣∣∣q dλdt


1
q

+
(x− a)2 (d− y)2 ‖w‖∞

41− 1
q ×m(a, b; c, d)

 1∫
0

1∫
0

tλ

∣∣∣∣ ∂2f

∂t∂λ
(U1(t), V2(λ))

∣∣∣∣q dλdt


1
q

+
(b− x)2 (y − c)2 ‖w‖∞

41− 1
q ×m(a, b; c, d)

 1∫
0

1∫
0

tλ

∣∣∣∣ ∂2f

∂t∂λ
(U2(t), V1(λ))

∣∣∣∣q dλdt


1
q

+
(b− x)2 (d− y)2 ‖w‖∞

41− 1
q ×m(a, b; c, d)

 1∫
0

1∫
0

tλ

∣∣∣∣ ∂2f

∂t∂λ
(U2(t), V2(λ))

∣∣∣∣q dλdt


1
q

elde edilir.
∣∣∣ ∂2f∂t∂λ

∣∣∣q, ∆ üzerinde koordinatlarda s-konveks fonksiyon olduğundan,

 1∫
0

1∫
0

tλ

∣∣∣∣ ∂2f

∂t∂λ
(U1(t), V1(λ))

∣∣∣∣q dλdt


1
q

(4.20)

≤
[

1

(s1 + 2) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣q
+

1

(s1 + 2) (s2 + 1) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(x, c)

∣∣∣∣q
+

1

(s1 + 1) (s1 + 2) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(a, y)

∣∣∣∣q
+

1

(s1 + 1) (s1 + 2) (s2 + 1) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(a, c)

∣∣∣∣q] 1
q

,

 1∫
0

1∫
0

tλ

∣∣∣∣ ∂2f

∂t∂λ
(U1(t), V2(λ))

∣∣∣∣q dλdt


1
q

(4.21)
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≤
[

1

(s1 + 2) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣q
+

1

(s1 + 2) (s2 + 1) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(x, d)

∣∣∣∣q
+

1

(s1 + 1) (s1 + 2) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(a, y)

∣∣∣∣q
+

1

(s1 + 1) (s1 + 2) (s2 + 1) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(a, d)

∣∣∣∣q] 1
q

,

 1∫
0

1∫
0

ts1λs2
∣∣∣∣ ∂2f

∂t∂λ
(U2(t), V1(λ))

∣∣∣∣q dλdt


1
q

(4.22)

≤
[

1

(s1 + 2) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣q
+

1

(s1 + 2) (s2 + 1) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(x, c)

∣∣∣∣q
+

1

(s1 + 1) (s1 + 2) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(b, y)

∣∣∣∣q
+

1

(s1 + 1) (s1 + 2) (s2 + 1) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(b, c)

∣∣∣∣q] 1
q

ve  1∫
0

1∫
0

tλ

∣∣∣∣ ∂2f

∂t∂λ
(U2(t), V2(λ))

∣∣∣∣q dλdt


1
q

(4.23)

≤
[

1

(s1 + 2) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣q
+

1

(s1 + 2) (s2 + 1) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(x, d)

∣∣∣∣q
+

1

(s1 + 1) (s1 + 2) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(b, y)

∣∣∣∣q
+

1

(s1 + 1) (s1 + 2) (s2 + 1) (s2 + 2)

∣∣∣∣ ∂2f

∂t∂λ
(b, d)

∣∣∣∣q] 1
q

.

Böylece ispat tamamlanmış olur.

Uyarı 4.1.10 Teorem 4.1 de s1 = s2 = 1 yazılırsa, Budak (2022) tarafından verilen

aşağıdaki eşitsizlik elde edilir:

|Θ(a, b, c, d; f, w)|
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≤ ‖w‖∞
4 · 3

2
q ·m(a, b; c, d){

(x− a)2 (y − c)2(
4

∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣q + 2

∣∣∣∣ ∂2f

∂t∂λ
(x, c)

∣∣∣∣q + 2

∣∣∣∣ ∂2f

∂t∂λ
(a, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(a, c)

∣∣∣∣q) 1
q

+ (x− a)2 (d− y)2(
4

∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣q + 2

∣∣∣∣ ∂2f

∂t∂λ
(x, d)

∣∣∣∣q + 2

∣∣∣∣ ∂2f

∂t∂λ
(a, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(a, d)

∣∣∣∣q) 1
q

+ (b− x)2 (y − c)2(
4

∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣q + 2

∣∣∣∣ ∂2f

∂t∂λ
(x, c)

∣∣∣∣q + 2

∣∣∣∣ ∂2f

∂t∂λ
(b, y)

∣∣∣∣q + 2

∣∣∣∣ ∂2f

∂t∂λ
(b, c)

∣∣∣∣q) 1
q

+ (b− x)2 (d− y)2(
4

∣∣∣∣ ∂2f

∂t∂λ
(x, y)

∣∣∣∣q + 2

∣∣∣∣ ∂2f

∂t∂λ
(x, d)

∣∣∣∣q + 2

∣∣∣∣ ∂2f

∂t∂λ
(b, y)

∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂λ
(b, d)

∣∣∣∣q) 1
q

}
.

Sonuc. 4.1.11 Teorem 4.3 te
∣∣∣ ∂2f∂t∂λ

(x, y)
∣∣∣ ≤ M, (x, y) ∈ ∆ olmak üzere; aşağıdaki

ağırlıklı Ostrowski tipli eşitsizlik bulunur:

|Θ(a, b, c, d; f, w)| ≤ M (b− a)2 (d− c)2

m(a, b; c, d)

(
4

(s1 + 1) (s2 + 1)

) 1
q

×

[
1

4
+

(
x− a+b

2

)2

(b− a)2

][
1

4
+

(
y − c+d

2

)2

(d− c)2

]
‖w‖∞ .

Uyarı 4.1.12 Sonuç 4.1.11 de w(x, y) = 1 ve s1 = s2 = s seçilirse; Latif vd. (2012)

tarafından ispatlanan aşağıdaki eşitsizlik elde edilir:∣∣∣∣∣∣f
(
a+ b

2
,
c+ d

2

)
+

1

m(a, b; c, d)

b∫
a

d∫
c

w(u, v)f(u, v)dvdu

− 1

m(a, b; c, d)

b∫
a

d∫
c

w(u, v)f

(
u,
c+ d

2

)
dvdu

− 1

m(a, b; c, d)

b∫
a

d∫
c

w(u, v)f

(
a+ b

2
, v

)
dvdu

∣∣∣∣∣∣
≤ (b− a)2 (d− c)2 ‖w‖∞

4
1− 1

q ×m(a, b; c, d)

(
1

(s1 + 2) (s2 + 2)

) 1
q

×
{(∣∣∣∣ ∂2f

∂t∂λ

(
a+ b

2
,
c+ d

2

)∣∣∣∣q +
1

s2 + 1

∣∣∣∣ ∂2f

∂t∂λ

(
a+ b

2
, c

)∣∣∣∣q
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+
1

s1 + 1

∣∣∣∣ ∂2f

∂t∂λ

(
a,
c+ d

2

)∣∣∣∣q +
1

(s1 + 1) (s2 + 1)

∣∣∣∣ ∂2f

∂t∂λ
(a, c)

∣∣∣∣q) 1
q

+

(∣∣∣∣ ∂2f

∂t∂λ

(
a+ b

2
,
c+ d

2

)∣∣∣∣q +
1

s2 + 1

∣∣∣∣ ∂2f

∂t∂λ

(
a+ b

2
, d

)∣∣∣∣q
+

1

s1 + 1

∣∣∣∣ ∂2f

∂t∂λ

(
a,
c+ d

2

)∣∣∣∣q +
1

(s1 + 1) (s2 + 1)

∣∣∣∣ ∂2f

∂t∂λ
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∣∣∣∣q) 1
q

+

(∣∣∣∣ ∂2f

∂t∂λ
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a+ b

2
,
c+ d

2

)∣∣∣∣q +
1
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∂t∂λ

(
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2
, c
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+

1
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∣∣∣∣ ∂2f

∂t∂λ

(
b,
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2
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1

(s1 + 1) (s2 + 1)
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∂t∂λ
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∣∣∣∣q) 1
q

+

(∣∣∣∣ ∂2f

∂t∂λ

(
a+ b

2
,
c+ d

2

)∣∣∣∣q +
1
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∣∣∣∣ ∂2f

∂t∂λ

(
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2
, d

)∣∣∣∣q
+

1
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∂t∂λ

(
b,
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1

(s1 + 1) (s2 + 1)
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∣∣∣∣q) 1
q
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