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OZET
Yiiksek Lisans Tezi

KOORDINATLARDA s—KONVEKS FONKSIYONLAR ICIN
OSTROWSKI TIPLI INTEGRAL ESITSIZLIKLERI

Gozde BAYRAK
Afyon Kocatepe Universitesi
Fen Bilimleri Enstitiisii

Matematik Anabilim Dal

Damsman : Do¢. Dr. Mehmet Eyiip KIRIS
Bu tez caligmasi bes boliimden olugsmaktadir.

Birinci boliim girig niteliginde olup Esitsizlik Teorisi ile Konveks Fonksiyonlarin
tarihi {izerine bilgiler sunulmustur. Ikinci boliimde konveks fonksiyonlar, koordi-
natlarda konveks fonksiyonlar ve ikinci anlamda s—konveks fonksiyonlar icin temel
tamm ve kavramlara deginilmistir. Uciincil boliimde ise fonksiyonlarm koordinat-
larda konveksliginden yararlanilarak elde edilmig bazi agirlikli Ostrowski tipli esitsizliklerle
ilgili literatiirde yer alan lemma ve teoremler verilmistir. Bu boliimde verilen lem-
malar kullanilarak elde edilen integral esitsizlikleri tez ¢aligmasina temel olusturmustur.
Dordiincii boliimde ise, agirlikli Ostrowski tipli esitsizlikler kullanilarak koordinat-
larda s—konveks fonksiyonlarin s—konvesligi ile ilgili baz1 yeni integral esitsizlikleri

elde edilmigtir.

Son boliim olan beginci boliimde caligma stiresince yararlanilan literatiirdeki kay-

naklar listelenmistir.
2022, v + 45 sayfa

Anahtar Kelimeler : Konveks fonksiyonlar, s—konveks fonksiyonlar, Koordinat-

larda konveks fonksiyonlar, Integral esitsizlikleri, Ostrowski tipli esitsizlikler.



ABSTRACT
M.Sc. Thesis

WEIGHTED OSTROWSKI TYPE INEQUALITIES
FOR CO-ORDINATED s—CONVEX FUNCTIONS
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Supervisor : Assoc. Prof. Mehmet Eyiip KIRIS
This thesis study consists of five chapters.

The first chapter is an introduction and information on the Inequality Theory and
the history of Convex Functions is presented. In the second chapter, basic definitions
and concepts for convex functions, convex functions in co-ordinates and s—convex
functions in the second sense are discussed. In the third chapter, lemmas and the-
orems in the literature about some weighted Ostrowski type inequalities obtained
by using the convexity of functions in co-ordinates are given. The integral inequal-
ities obtained by using the lemmas given in this section formed the basis for the
thesis study. In the fourth chapter, by using weighted Ostrowski type inequalities,
some new integral inequalities related to s—convexity of s—convex functions in co-

ordinates are obtained.

In the fifth section, which is the last section, the sources in the literature used during

the study are listed.
2022, v + 45 pages

Keywords : Convex functions, s—convex functions, Convex functions in coordi-

nates, Integral inequalities, Ostrowski type inequalities.

i



TESEKKUR

Tez calismam icin konu belirlenmesi, ¢alismalarimin yonlendirilmesi ve tezimin ya-
zim1 agamasinda yapmis oldugu biiyiik katkilarindan dolay1r danigman hocam Sayin
Do¢. Dr. Mehmet Eyiip KIRIS%, arastirma ve yazim siiresince yardimlarimi ve

destegini hig esirgemeyen Hasan KARA’ya tegekkiirii bir borg bilirim.

Egitim-Ogretim hayatim boyunca iizerimde emegi olan ve her konuda oneri ve
elestirileriyle yardimlarii gordiigiim tiim hocalarima ve arkadaslarima tesekkiir

ederim.

Ayrica, hayatim boyunca her konuda maddi ve manevi destekleriyle hep yanimda

olan aileme tegekkiir ederim.

Gozde BAYRAK
Afyonkarahisar 2022

1l



ICINDEKILER DIZINi

OZET

ABSTRACT
TESEKKUR
ICINDEKILER DIZINI
SIMGELER DIZINI

1 GIRIS

2 TEMEL KAVRAMLAR VE TEOREMLER
2.1 Konveks Fonksiyonlar ile Ilgili Bazi Tanim ve Teoremler . . . . . . .
2.2 Konveks Fonksiyonlar ile Ilgili Bazi Onemli Integral Esitsizlikleri . .

2.3 Koordinatlarda Konveks Fonksiyonlar ile Ilgili Genel Kavramlar . .

3 MATERYAL VE YONTEM
3.1 Koordinatlarda Konveks Fonksiyonlar igin Baz1 Agirlikli Ostrowski
Tipli Esitsizlikler . . . . . . ... .. o

4 BULGULAR
4.1 Koordinatlarda s-konveks fonksiyonlara iliskin bazi yeni Ostrowski

esitsizlikleri . . . . . . ...
5 KAYNAKLAR

OZGECMIS

v

11

111

v

12

15

15

27

27

41

45



SIMGELER DIZINI

Simgeler

R Reel sayilar kiimesi

1 R’ de bir aralik

R, Porzitif reel sayilar kiimesi

R2 - Iki boyutlu Oklid uzay:

sup supremum

f’ f fonksiyonunun birinci mertebeden tiirevi
1" f fonksiyonunun ikinci mertebeden tiirevi
1 Nl f fonksiyonunun tiirevinin sonsuz normu
K! Birinci anlamda s—konveks fonksiyon simifi
K? Ikinci anlamda s—konveks fonksiyon smifi
[a,b] x [c,d] la, b] arahig ile [, d] araligimin kartezyen carpim

x7y
92 f
otds

12,
T,Y 1l oo

Cift kath integral
f fonksiyonunun x ve y’ye gore kismi tiirevi
f fonksiyonunun t ve s ye gore kismi tiirevi

f fonksiyonunun x ve y’ye gore kismi tiirevinin sonsuz normu




1. GIRIS

Matematik diigtinmek igin bir aractir. Her seyin birbiriyle i¢ ige ve iligkili oldugu,
dogrusal olmayan bir diinyada oldukg¢a gerekli bir arac oldugu asikardir. Benzer
sekilde, matematigin her alani da diger bilimler icin bir arag gorevi gortir. Topoloji,
matematiksek fizigi; mantik, bilgisayar bilimini; Ol¢ii teorisi, bolgesel ve teorik ik-
tisat; cebirsel geometri, fizigi etkiler. Bunlarin yaninda matematik her an giinliik
hayatimizla etkilegsim halindedir. Matematigin modern kullanim alanlar1 su sekilde
orneklendirilebilir: Diferansiyel denklemler ve niimerik analiz teknikleri, ucak mod-
ellemede, uydu yapiminda kullanilir. Soyut mantik, bilgisayar dizayninda; cebirsel
topolojinin alt alanlarindan biri olan homoloji, uzak gezegenlerin fotograflarindan
gezegen yiizeyinin cografyasini anlamada; Fourier analizi iletisim aginda ve ayni za-
manda resim, video ve miizigin dijital ortamda sikigtirilmasinda; fraktallar anten
yapiminda; Graf teorisi, veri tabaninin topolojik olarak incelenmesinde; Stein uzay-
lar1 tahminleme ve elektrik mithendisliginde; Lie cebirleri filtreleme yontemi olarak;

Minkovsky lemma kodlama teorisinde kullanilir.

Verilen ornekler matematigin kullanim alanlarinin yalnizca bir boliimi olsa da gosteriyor
ki matematigin tamamen soyut olan, hayatin i¢cinde uygulanmayan hicbir parcasi
yoktur. Bu durum da uygulamali matematik alaninda yapilan ¢aligmalarin son
yillarda fark edilir sekilde artmasina neden olmustur. Uygulamali matematik alanindaki
artan uzmanlagma ve ¢egitlilik, matematik biliminin ve alt dallarinin biiytimesini,
yeni dallar olugsmasini saglarken ayni zamanda tamamen birbirinden farkli oldugu
diigiiniilen dallarin birbiriyle iligkili oldugunu gostermesi acisindan onem arz et-
mektedir. Ayrica matematik, ilk bakista oldukca parcalanmig gibi gortinse de bu
parcalar arasindaki daha derin iligkileri bulmak, gormek ve kullanmak i¢in iizerinde
daha fazla caligilmasina ihtiyag duyar. Bunun igin ise uygulamali matematik alani

calisanlarina oldukca ig diigmektedir.

Uygulamali matematikte galigmak icin her tirli kombinasyona, cebire, olasiliga
ihtiyva¢ duyulmasinin yam sira geleneksel calismalarin, analiz ve sayisal bilginin

gerekliligi de yadsinamaz. Analiz caligma alani acisindan ¢ok kapsamli olmakla



birlikte 6énemli bir kismini; diferansiyel, integral, diger denklemlerde ortaya c¢ikan
fonksiyonlar hakkindaki tahminler ve egitsizlikler olugturur. Bunlar igerisinden ana-
litik egitsizlikler, matematigin cegitli dallarinin ve bircok uygulamali bilim dalinin

geligimindeki onemli giiglerden biri olarak kabul edildiginden bir adim 6ne ¢ikmistir.

Giintimiizde hala aktif ve cekici bir arastirma alani olan matematiksel esitsizlikler,
C. F. Gauss, A. L. Cauchy ve P. L. Cebysev’ in yaklagim teorisi i¢in énemli teorik
temelleri atmalariyla birlikte gelismeye baglamigtir. On dokuzuncu yiizyil son-
lar1 ve yirminci ylizyil baglarinda, bazilar1 klasik haline gelen ¢ok sayida esgitsizlik
kanitlanmigtir. Bu egitsizliklerin sistemli bir disiplin haline doniigmesi ise G. H.
Hardy, J. E. Littlewood ve G. Polya tarafindan ortaya konulan “Inequalities” adli
kitapla olmugtur. 1934 yilinda yayimlanan bu kitapla birlikte Esitsizlik Teorisi'ne
yonelik ilgi artmig ve bu alanda ¢ok sayida makale yazilmistir. Bu makalelerle
birlikte yeni esitsizlikler kesfedilmis, klasik esitsizlikler genisletilmis, baz esitsizlik
cegitleri birbirleriyle iligkilendirilmis ve bazi esitsizlik cesitlerinin uygulama alan-
larina yer verilmistir. 1934-1960 doneminde elde edilen esitsizlikler ve sonuglari
ise 1961 yilinda E. F. Beckenbach ve R. Bellman tarafindan “Inequalities” adl
kitapta kayit altina alimmigtir. Ardindan Mitrinovic tarafindan yazilan “Analytic
Inequalities” adli kitap da klasik esitsizliklerin yorumlanmasina sagladigi katkiyla
literatiirdeki yerini almigtir. Bu ti¢ biiyiik kitap, esitsizlikler konusunda oldukca
onemli bir yere sahip olup hala son donemdeki ¢aligmalara 11k olmaya devam etmek-
tedir. Esitsizlikler konusunda yeni sonuclar iceren “Inequalities Involving Functions
and Their Integrals and Derivatives” (Mitrinovic vd. 1991), “Classical and New In-
equalities in Analysis” (Mitrinovic vd. 1993), “ Mathematical Inequalities” (Pach-
patte 2005), “Convex Functions and Their Applications” (Niculescu ve Perssons
2006) isimli ¢ahigmalar da literatiire katkida bulunan 6nemli eserler arasmdadir.
Giintimiizde ise esitsizlik konusu ile ilgili, S. S. Dragomir, R. P. Agarwal, J. Pecaric,
M. Z. Sarikaya, E. Set, M. E. Ozdemir gibi aragtirmacilar ¢ok sayida kitap, mono-

grafi ve makale yayimlamiglardir.

Diger yandan tanimi esitsizlik ile ifade edilen konveksligin ve Konveks Fonksiyon-

lar Teorisi’'nin egitsizlikler igerisinde onemli bir yeri vardir. Konvekslik kavraminin



tanimi ¢ok eskiye (MO 250 yilina) dayanmasina ragmen konveks fonksiyonlarla ilgili
sistematik aragtirmalara 19. yiizyilin sonlarinda baglanmigtir. Konveks fonksiyon-
lar ile ilgili yapilan en kapsamli aragtirma ise Roberts ve Varbeg (1973) tarafindan
“Convex Function” adli eserle ortaya konmugtur. Sadece konveks fonksiyonlar icin
egitsizliklerden bahseden ilk kaynak olma ozelligine sahip “Convex Function: In-
equalities” adli kitap ise Pecaric (1992) tarafindan yayimlanmigtir. Bunun yaninda
klasik konvekslik tanimi yardimiyla daha genel olan konveks fonksiyon cegitleri de
olugturulmaktadir. Bunlardan biri Breckner (1978) tarafindan “Stetigkeitsaussagen
Fiir Eine Klasse Verallgemeinerter Konvexer Funktionen In Topologischen Linearen
Raumen” adl galigma ile literatiire giren s—konveks fonksiyonlardir. Bu caligma
geligtirilerek s—konvekslik ile ilgili 6zelliklere yer veren “Some Remarks On s—Convex

Functions” adli makale Hudzig ve Maligranda (1994) tarafindan yayimlanmigtir.

Son yillarda egitsizlik konusu tizerine yapilan arastirmalar, yayimlanan makaleler ve
monografiler bu alanda dikkate deger bir geligme ve biiytime oldugunu gostermektedir.
Ozellikle Cebysev, Griiss, Yamuk (Trapezoid), Ostrowski, Hermite-Hadamard ve

Jensen isimleriyle iligkili esitsizlikler ¢okca arastirmaya konu olmugtur.

Bu 6nemli egitsizliklerden biri olan A. M. Ostrowski tarafindan tanimlanan esitsizlik

asagidaki gibidir:

a,b € R ve a < b olmak iizere, f : [a,b]— R fonksiyonu [a,b] araliginda siirekli
ve (a,b)— R tiirev fonksiyonu iizerinde diferansiyellenebilir bir fonksiyon olsun.

Eger ' : (a,b)— R tiirev fonksiyonu ||f'||., = sup |f'(t)] < oo ise, yani (a,b)
te(a,b)
araliginda smirh ise, bu durumda her z € [a, b] i¢in

1

) - e [ < (L B

1t (b_—;)2] (b—a) [lf'l

esitsizligi saglanir. Buradaki % sabiti bu kogullar altindaki en iyi olasiliktir. Bu

esitsizlik, = € [a, b] noktasindaki f(z) degeri ile,



/b F(t)dt

integral ortalamasi arasindaki yaklagim i¢in bir iist sinir vermektedir.

Ostrowski esitsizligi olarak bilinen bu egitsizlik, 1938 yilinda ortaya ¢ikmigtir. Matematigin
tiim alanlarinda; ozellikle Yaklagim Teorisi'nde, Riemann integrali ile birlikte hem
tek hem cok katli integrallerin uygulamalarinda, tek degiskenli ve ¢ok degiskenli
fonksiyonlarin hata analizi uygulamalarinda 6nemli bir rol oynamaktadir. Bir fonksiy-
onun degerine yaklagsmada fonksiyonun ortalama degerinin yardimi ile hata tah-
mini yapilmasini saglamaktadir. Ayni zamanda Riemann integraline yaklagmak i¢in
olugturulmus bir¢cok quadrik kuralin sinirlarimi sagladigindan hata sinirlarini elde
etmek i¢in kullanilmaktadir. Bunun yaninda Ostrowski tipli esitsizlikler Niimerik
Analiz’de, Bilisgim Kurami'nda, Olasilik Teorisi ve Istatistik gibi alanlarda genig bir
uygulama alanina sahiptir. Bu nedenle son yillarda yapilan ¢aligmalarla siirekli ve
ayrik durumlarda, Ostrowski tipli esitsizliklerin ¢ok sayida genellemeleri, geniglemeleri
ve varyantlar: yapilmigtir. Boylece, kokenleri Ostrowski esitsizligine dayanan esitsizlikler
literatiirde daha genis bir yer edinmistir. Ostrowski tipli egitsizliklerle ilgili caligmalarin
bityiik bir kismi, Dragomir ve Rassias (2002) tarafindan yazilmig olan “Ostrowski
Type Inequalities and Applications in Numerical Integration” adl kitapta bir araya
getirilmistir. Bu kitabin yaninda, son yillarda S. S. Dragomir, K. L. Tseng, N. S.
Burnett, M. W. Alomari, G. S. Yang gibi arastirmacilar da yaptiklar: ¢aligmalarla

yayimlanan makale ve monografilerle literatiire biiyiik katki saglamiglardir.

Konveks fonksiyonlar ve esitsizlikler iizerine yazilmig olan temel kitaplar ve yapilan
calismalar haricinde literatiirde bircok makale, yiiksek lisans ve doktora tez caligmalar:

bulunmaktadir. Bunlardan one ¢ikan bazi ¢aligmalar su sekilde siralanabilir:

Set (2010) tarafindan yazilan “ Baz1 Farkli Ttirden Konveks Fonksiyonlar Icin Integral
Esitsizlikleri” baglikli doktora tezinde E—konveks ve E—m konveks fonksiyonlar
ile birlikte farkh tiirden F—konveks ve E—m konveks fonksiyonlar i¢in Hermite-

Hadamard tipli esitsizlikler elde edilmigtir. Bunun yaninda bu tez caligmasinda



m—konveks, (a, m) —konveks, log —konveks, quasi-konveks, s—konveks, r—konveks
ve h—konveks fonksiyonlarla ilgili baz1 yeni integral esitsizliklerine ve genellestirmelere

yer verilmigtir.

Tung (2011) tarafindan yazilan “Bazi Konveks Fonksiyonlar I¢in Hermite-Hadamard
Tipli Esitsizlikler ve Uygulamalar1” baglikli doktora tez caligmasinda farkli tip kon-

veks fonksiyon siniflari i¢in Hermite- Hadamard tipli esitsizlikler elde edilmistir.

Akdemir (2012)’in, ¢ Farkl Tiirden Konveks Fonksiyonlar Icin Koordinatlarda Integral
Esitsizlikler ” adli doktora tezinde; bazi konveks fonksiyonlar dikdortgensel bolge
tizerinde incelenerek bu fonksiyonlar igin koordinatlarda cgesitli integral esitsizlikleri
elde edilmigtir. Bununla birlikte m—konveks, («, m) —konveks, s—konveks, h—konveks,
p—konveks ve quasi-konveks fonksiyonlar gibi farkl tiirden konveks fonksiyonlarin

carpimlarina dair koordinatlarda integral esitsizlikleri olugturulmustur.

Kavurmaci (2012)'nin “Bazi Farkl Tiirden Konveks Fonksiyonlar I(;in Ostrowski ve
Hermite - Hadamard Tipli integral Esitsizlikler ” baglikli doktora tezinde, m—konveks,
(or, m) —konveks, s—konveks, r—konveks gibi farkh tiirden fonksiyon simiflar1 kul-
lanilarak yeni tamimlamalar ve orneklendirmeler yapilmigtir. Ayrica bu konveks
fonksiyon siniflar1 kullanilarak yeni baskin konveks fonksiyon kavramlar: tanimlanmig
ve yeni Hermite - Hadamard tipli; s—konveks ve m—konveks fonksiyonlar i¢inse yeni

Ostrowski tipli integral esitsizlikleri literatiire kazandirilmigtir.

Ardig (2013) tarafindan, “Konveks Fonksiyonlarin Cesitli Siniflar Icin Integral Esitsizlikler ”
adli doktora tezinde ¢y, ,, — konveks fonksiyon tanimi yapilarak bu konveks fonksiyon
siifi i¢in egitsizlikler elde edilmistir. Ayrica s—konveks fonksiyonlar icin Hermite
- Hadamard, Ostrowski ve Simpson tipli esitsizlikler ile konveks fonksiyonlar icin

Ostrowski tipli esitsizlikler de elde edilmistir.

Budak (2017) tarafindan, “Simirli Varyasyonlu Fonksiyonlar Icin Ostrowski Tipli
Integral Esitsizlikleri ve Uygulamalar1” adl doktora tez caligmasi ile siirh varyasy-
ona sahip tek degiskenli fonksiyonlar icin baz1 genellestirilmig Ostrowski tipli inte-

gral egitsizlikleri ispatlanmig ve 6zel durumlar1 incelenmistir. Bununla birlikte iki



degiskenli sinirli varyasyonlu fonksiyonlar i¢in bazi Ostrowski tipli esitsizlikler de bu

caligma ile elde edilmigtir.

Son yillarda egitsizlikler ve konveks fonksiyonlar {izerine ¢ok sayida makale ve mono-
grafi de yayimlanmigtir. Bunlardan bu tezde en cok yararlanilanlar su sekilde

siralanabilir:

“Selected Topics on Hermite - Hadamard Inequalities and Applications” (Dragomir

ve Pearce 2000).

“On the Hermite - Hadamard’s and Ostrowski’s Inequalities for The Co-ordinated

Convex Functions” (Erden ve Sarikaya 2017).

“Co-ordinated s—Convex Function in The First Sense with Some Hadamard - Type

Inequalities” (Alomari ve Darus 2008).

“Some New Hadamard Type Inequalities For Co-ordinated m—Convex and (o, m) —Convex

Functions” (Ozdemir vd. 2010).

“On Hadamard-type Inequalities for h—Convex Functions On The Co-ordinates”

(Latif ve Alomari 2009).
“New Integral Inequalities For Co-ordinated Convex Functions” (()zdemir vd. 2011).

“New Some Hadamard’s Type Inequalities For Co-ordinated Convex Functions”

(Sarikaya vd. 2010).

Bu teze referans olan esas ¢alisma ise koordinatlarda konveks fonksiyonlar i¢in yeni
agirlikli Ostrowski tipli esitsizliklerin elde edildigi “Weighted Ostrowski type In-
equalities For Co-Ordinated Convex Functions” (Budak 2022) isimli makaledir.

Bu tez caligmasinda ise koordinatlarda s—konveks fonksiyonlar yardimiyla bazi yeni

Ostrowski tipli egitsizlikler elde edilmistir.



2. TEMEL KAVRAMLAR VE TEOREMLER

Bu boliim tezde yer alan bazi temel tanim, teorem ve teoremlerin ispatindan olugsmaktadir.

2.1 Konveks Fonksiyonlar ile Ilgili Baz1 Tanim ve Teoremler
Tanim 2.1 Vz,y € K ve t € [0, 1] igin;
(1-thr+tye K

oluyorsa, K C R kiimesine klasik anlamda Konveks Kime denir (Dragomir ve

Pearce 2000).
Tanim 2.2 Vz,y € K ve t € [0, 1] igin;

F((L=t)z +ty) < (1 =1)f(x) +1f(y)

oluyorsa, f : K C R — R fonksiyonuna Konveks Fonksiyon denir (Dragomir ve

Pearce 2000).

Tanim 2.3 [ :[0,00) — R fonksiyonu, 0 < s < 1 sart1 altinda Birinci Anlamda

s—Konveks Fonksiyon ise; Vr,y > 0 ve a® + 5 = 1 olmak tizere;

flax+By) < o’ f(z) + 5°f(y)

esitsizligi saglanmaktadir. Bu s—konveks fonksiyon simfi genellikle K! seklinde

gosterilmektedir (Matuszewska ve Orlicz 1961).

Tanim 2.4 f :[0,00) — R fonksiyonu, 0 < s < 1 gart1 altinda Ikinci Anlamda

s—Konveks Fonksiyon ise; Vx,y > 0 ve a + = 1 olmak tizere;

flaz +By) < o’ f(z) + 5°f(y)

esitsizligi saglanmaktadir. Bu s—konveks fonksiyon simfi genellikle K? seklinde

gosterilmektedir (Breckner 1978).

Tanim 2.4 te, s = 1 igin klasik konvekslik elde edilir (Maden vd. 2014).



2.2 Konveks Fonksiyonlar ile ilgili Baz1 Onemli integral Esitsizlikleri

Teorem 2.5 [,R de bir aralik; a,b € [ ile a < b iken f: I C R — R fonksiyonu

konveks bir fonksiyon ise,

f(a;€>§bia/fmmx§f@w+f@

esitsizligi gecerlidir.

Literatiirde Hermite-Hadamard Esitsizligi olarak adlandirilan bu esitsizlik; bircok
uygulama alani ve geometrik yorumuyla konveks fonksiyonlar teorisinin en koklii
egitsizliklerinden biridir. Hermite - Hadamard esitsizligi konveks fonksiyonlarin
integralinin ortalama degeri icin tahminler vermesi acisindan onemlidir. Bunun
yaninda son yillarda yeniden ilgi gormiig ve dikkate deger sekilde cesitli aragtirmalar

ve genellestirmelerde kullanilmigtar.
Bunlardan biri de s—konveks fonksiyonlar i¢cin Hermite-Hadamard esitsizligidir.

Teorem 2.6 I,R de bir aralik ve I € [0, 1] kosuluyla f : I C R — R fonksiyonu

ikinci anlamda s—konveks bir fonksiyon ise;

b
. ({a+b 1 f(a)+ 1 (b)
251 < dr < —————~~
f( 2 )_b—a/f(m)x_ s+1
esitsizligi saglanir. Bu esitsizlik literatiirde ikinci anlamda s— Konveks Fonksiyonlar
icin Hermite - Hadamard Fsitsizligi olarak adlandirilir (Dragomir ve Fitzpatrick

1999).

Teorem 2.7 [ ve g, [a,b] arahgimda tammh reel fonksiyonlar ve |f|? ile |g|?,

[a, b] araliginda integrallenebilir fonksiyonlarken p > 1 ve %—i—% = 1 kogullar altinda;

tjng(xﬂqdﬁ

q

RS

b

[ 5@ ds < / @) ds

a



esitsizligi Holder Esitsizligi olarak adlandirilir (Mitrinovic vd. 1993).

C'ift katl integraller i¢in Holder esitsizligi ise,

a a

seklinde ifade edilebilir.

1

Bl=

/b/blf(x,y)g(x,y)ldxdys /b/b]f(x,yﬂpdxdy /b/b|g(x,y)|qudy

Teorem 2.8 [ ve g, [a,b] araliginda tammh reel fonksiyonlar ve |f]| ile |g|?,

[a, b] tizerinde integrallenebilir fonksiyonlar olsun. ¢ > 1 olmak sartiyla;

/|f 2| dz < /|f )| do

1 1
1=q b 7

[1r@llg@) iz

esitsizligi gecerlidir. Power-Mean FEsitsizligi olarak bilinen bu esitsizlik; Holder

Esitsizliginin dogal bir sonucudur.

Cift katl integraller i¢in Power- Mean esitsizligi ise,

1—1
q

/b/blf(x,mg(x,y)!dxdyg /b/b\f(x,y)ydxdy /b/byf (@, )| 19(x,y)|* dody

seklinde ifade edilebilir.

Teorem 2.9 Herhangi x,y € R icin,

v +yl <
x| = [y]] <
x| = [y]] <

x| + [y,
|ZL’ _y|7
|z +y|

esitsizlikleri gecerlidir. Uggen Esitsizligi olarak adlandirilan bu esitsizlikte tiimevarim

yontemiyle,

|z + .o+, <

esitsizligi de saglanir (Mitrinovic vd. 1993).

9
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Teorem 2.10 f reel degerli ve [a,b] araliginda siirekli bir fonksiyon olmak {izere,

/bf(iv)d:v S/blf(iv)ldx

saglanan bu esitsizlik Integraller I¢in Ucgen Esitsizligi olarak adlandirilir.

a < b iken;

Teorem 2.11 a,b € R ve a < b iken, f : [a,b]— R fonksiyonu [a,b] arahginda
stirekli ve (a, b) tizerinde diferansiyellenebilir bir fonksiyon olsun. Eger, f’: (a,b)— R

fonksiyonu (a, b) tizerinde sinirh ise, yani || f'|| , = sup |f'(z)| < oo ise, bu durumda

z€(a,b)
her x € [a,b] i¢in,
b
1 1 — atb)?
f(z) — b—a/ﬂt)dt < Z—I_(x(bf:)?] b—a) |l f'll

1

egitsizligi saglanir. Buradaki

trowski 1938).

sabiti bu kogullar altindaki en iyi olasiliktir (Os-

Ostrowski Fgitsizligi, sinirh ve diferansiyellenebilir fonksiyonlar igin [a, b] araliginda

bulunan bir x noktasi i¢gin f(x) degeri ile,

b
1
b_a/f@ﬁ

integral ortalamasi arasindaki yaklagima bir {ist sinir vermesi acisindan 6énemlidir.

a+b

Ayrica Ostrowski esitsizliginde, z = 3= yazildiginda, Hermite-Hadamard esitsizliginin

sol tarafl elde edilmektedir.

Ispat. : (a,b) arahgmnda diferansiyellenebilen f : [a, b]— R fonksiyonu 2 € (a,b)

i¢in;

tanimlansin.

Boylece;

10



bfa / wle,0f (it = [ / (t—a)f ()t + / (t—0)f '<t>dt]

a

— @) -5 [ s

olur. Bu esitlikte iki tarafin da mutlak degeri alinirsa;

gig{/@@fmmﬁ+/@bﬁxwﬁ]

a

fz) =

b
1
b_a/f@ﬁ

elde edilir. Integraller icin Ucgen Esitsizligi kullanilirsa;

) b 1 T / b /
o [0 < [/taf @lde+ [ - blls <t>dt]

olur. ||f'||., = sup |f'(z)| < oo oldugundan;

z€(a,b)
, [ b
L | fie-ae fo-ou

La x

1 [ =" (1) ]

fz) =

IN

b—a 2 u 2 -
1 [ = 0?4 (b=
b—a | 2

elde edilir. Burada;

a+b
Tz —

(x—a)+(b—1)* = 5 9 9 9

<
S e (5 ()
+(b;a> +j(b2a>(2;b%>+(a;bx>2
::2<x_a;b)+a(b;a)

11

b 2 2
Lot _a) +<b—a+b+a+b—x)




2
1 (x — otb
= 2(b—a)’ | 2
b= 11+ 5y ]
kullanilarak ispat tamamlanmig olur. O]
Teorem 2.12 f : A — R fonksiyonu A iizerinde siirekli olsun. f7 == ;%gy ,

(a,b) x (¢, d) iizerinde var ve smirh olsun. Oyle ki;

O f(x,y)
Lo ‘ < o,

feallog = S0P
H ,y”oo (z,y)€(a,b)x (c,d)

O halde, (z,y) € A i¢in;

FJ £t s)dsdt — (b= a) (d— <) Fla,y) - [(b —a) [ flas)ds+ (d— o) | fit M

<[to-o'+ ==y [Ha- o + - = Izl

esitsizligi saglanir. Bu esitsizlik, Cift Kath Integraller I¢in Ostrowski Esitsizligi

olarak bilinir.

2.3 Koordinatlarda Konveks Fonksiyonlar ile ilgili Genel Kavramlar

Tanim 2.13 V(z,y),(z,w) € A ve A € [0,1] i¢in, f : A — R fonksiyonu,

fOz+ (1 =Nz, dy+ (1= Nw) < Af(x,y) + (1= N)f(z,w)

egitsizligini saghyorsa; f fonksiyonu A tizerinde konveks bir fonksiyondur denir
(Dragomir 2001).
Eger Vz € [a,b] ve Vy € [c, d] i¢in;

kismi dontigiimleri de konveks oluyorsa, f : A — R fonksiyonu da Koordinatlarda

Konvekstir denir.

12



Lemma 2.14 f: A — R fonksiyonu konveks ise koordinatlada da konvekstir fakat
koordinatlarda konveks her fonksiyon konveks degildir (Dragomir 2001). Gergekten
de f(x,y) = zy seklinde tanmimlanan f : [0, 1] x [0, 1] — R fonksiyonu koordinatlarda

konveks olmasina ragmen [0, 1] x [0, 1] i¢in konveks degildir.

Tanim 2.15 V(z,u), (y,v) € Aigin f : A — R olmak iizere, V¢, s € [0, 1] sartlan

altinda;

fltx+ (1 —1t) y,su+ (1 —3s) v)
Sts flo,u) + (1 —s)f(z,0) +s(1 =) f(y,u) + (1 = 1)(1 = 5)f(y, v)

esitsizligi saglaniyorsa, f fonksiyonu A iizerinde Koordinatlarda Konvekstir denir

(Latif ve Alomari 2009).

Tanim 2.16 f : A — R fonksiyonu V(z,u),(y,v) € Aile o® + 3° = 1 ve
a, > 0,s € (0,1] kogullar altinda;

flax + Py, au+ pu) < o f(z,u) + 5°f(y, )

ise, f fonksiyonuna A itizerinde Koordinatlarda Birinci Anlamda s— Konvekstir

denir (Alamori ve Darus 2008).

Tanmim 2.17 f: A — R fonksiyonu V (z,u), (y,v) € A olmak tizere, s € (0, 1] ve
A € [0, 1] kosullar1 altinda;

fOx+ (1 =Ny, du+ (1= N)v) < N f(x,u)+ (1= N)°f(y,v)

esitsizligi saglaniyorsa, f fonksiyonuna A tizerinde Ikinci Anlamda s— Konveks Fonksiyon-

dur denir (Alamori ve Darus 2008).

Bu temel tammlarin yaninda R? uzayinda (dikdortgende) koordinatlarda konveks
fonksiyonlar igin, Dragomir (2001) tarafindan ispatlanan Hermite-Hadamard tipli

egitsizlikler agagidaki teoremle ifade edilmistir:

13



Teorem 2.18 f : A — R fonksiyonunun koordinatlarda konveks bir fonksiyon

olmak ftizere;

at+b ct+d 1 1 c+d 1 a+b
< Z -

VAN
-

- /f:ccdx—i——/fxd
/faydy+—/fby

f(a,C)Jrf(a,d) fb,e) + f(bd)
- 4

gegerli olan bu esitsizlik Koordinatlarda Konveks Fonksiyonlar icin Hermite- Hadamard

FEsitsizligi olarak adlandirihir (Dragomir 2001).
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3. MATERYAL VE YONTEM

3.1 Koordinatlarda Konveks Fonksiyonlar igin Bazi1 Agirlikli Ostrowski

Tipli Esitsizlikler

Lemma 3.1 w: A — [0,00) fonksiyonu A {izerinde integrallenebilir ve f[: A—R

9%f(t.5)

mutlak siirekli bir fonksiyon olmak iizere; her (¢,s) € A igin, =55

§ekhnde kismi

tiirevi var olsun. O halde asagidaki esitlik yazilabilir:

b od b d
//wuvdvdu flz,y) — //wuvf(uy)dvdu
b d

//wuv xvdvdu+// u, v) f(u, v)dvdu

Burada,
( T 7N
[ [w(u,v)dvdu, a<71<z, c<n<y
CLT (/1'7
[ Jw(u,v)dvdu, a<7<z, y<n<d
Pz, my,m) =9 %9
[ Jw(u,v)dvdu, =<7<b, c<n<y
b ¢
T
[ Jw(u,v)dvdu = <71<b, y<n<d.
\ b d
seklindedir.

Lemma 3.2 Lemma 3.1 in sartlar saglansin. Bu durumda;

O(a,b,c,d; f,w) (3.1)

= f(z,9) —m/b/dw(u,v)f(u,y)dvdu

b d
abcd//w f(z,v)dvdu

15



b d
abcd //wuv (u,v)dvdu
b d
m(a,b;c,d)://wuvdvdu

©(a,b,c,d; f,p) (3.2)

ve

olmak fizere,

11 1(t) Vi(s)

i [ o] s

1(t) VQ(S
0*f
/ w(u, v)dvdu (U1(t), Va(s)) dsdt
d

0t0s

+(bm_(;,)b(;yc,_d)0)// / /w(u,v)dvdu ;;fs (Ua(2), Vi(s)) dsdt

o*f
0tos

w(u,v)dvdu (Us(t), Va(s)) dsdt

N
&\};
<

esitligi elde edilir. Burada Uy (t) = tz + (1 — t)a, Us(t) = tx + (1 — t)b, Vi(s) =
sy + (1 — s)c ve Va(s) = sy + (1 — s)d seklindedir.

Teorem 3.3 w, Lemma 3.1 de tanmimlandig1 sartlarda olmak iizere A iizerinde

siirht bir fonksiyon olsun. |w| = sup |w(z,y)| seklinde ifade edilmek iizere;
(z,y)eA

92f

5i0; | ifadesi A {izerinde koordinatlarda konveks ise her (z,y) € A igin, asagidaki

esitsizlik elde edilir:

©(a,b,c,d; f,p)] (3.3)

]l
36 x m(a,b;c,d)

x{(z—a)’(y—¢)’

16



i an a2f an a2f

_4 Otds SEURE otos (z.0)| +2 ‘atﬁs (a,y)‘ i ‘37583 (@) ]
+(z—a)’ (d—y)’

4| 0 f O f *f
NEzy )+28w8@Jw+2b%‘mWﬂ+bmsm”ﬁ
+ (b — £L')2 (y — 0)2

I 82f 82f 82f an
4105 Y| T2 |r9s ()| T2 ‘3?&85 (o y)' - ‘W (b.¢)
+(b—2)*(d—y)*

Burada © fonksiyonu (3.1) gibi tanimlanir.

Ispat. (3.2) deki esitligin mutlak degeri (modiilii) alimirsa;

©(a,b,c,d; f,p) (3.4)

11| Ui(t) Va(s)
N (xm_(aof)bfi,;)@ / / / w(u, v)dvdu a;é]; (UL (1), Vi (s))| dsdt
@—aﬂd—; b o 5
m(a, b; e, d) / / / / w(u, v)dvdul | == (U1(1), Va(s)) | dsdt
(b—2)(y— o) L 00 vcll(s) )
m(a,b;c,d) // /w(“’v)d“d“ 510, (U2(t), Vi(s))| dsdt
(b—x)(d—y)0101 0 5
miabic.d) //'/l/wwwwm/m%ammw@»@ﬁ
00 |b 4

w(z,y) fonksiyonu A {izerinde sinirhi oldugundan ve nin A tizerinde koordinat-

8t8
larda konveksliginden,

1 1| Uit

// / / () dvdu 88 (UL(t), Vi(s))| dsdt (3.5)
< wll /1/1 U] /dvdu o= (U1(0), Va(s) | st

17



< (z—a)(y—o)lwl
1 1
82 62
//t [ts ataj;(x,y)‘—l—t(l—s) 81&8f (2,0)
0 O
2 82
+(1—1)s atgs(a’y)‘_l—(l_t)(l_s) 815(:;( )]dsdt
= (z—a)(y—o)|wl
1| o Lo 2 Lo
{'&a( yﬂ*"_‘ma( C>+1§L%&ﬁ“y4+§ékﬁ%<%@}'
Benzer sekilde,
11| Ui(t) Va(s) 92
/ / / (o, v)dvdu| | S8 (U,(1), Vals) | s (3.6)
0 0 a d
< (z—a)(d—y) v,
HE YL/ o f
9

/1/1 U]“)V]‘S)w(u,wdvd“ ggg (Us(t), Vi(s))| dsdt (3.7)
A&

IN
=

5313 0]+ 5 [ 9| 5 e 09| + #5509
" 1 1] Ua(t) Va(s)
// / /wuvdvdu ata{ (U8, Va(s))| dsdt (3.9)
< Ebi ) (d dy) 1wl oo
5 77 9]+ 55 e 0] + s 0]+ 35 e 09

(3.5)-(3.8) ifadelerini (3.4) de yerine yazarsak (3.3) Teorem ifadesini elde ederiz ve

ispat tamamlanmig olur. O

Sonuc 3.1.1 Teorem 3.3 kosullar ile

8t8 (:E y)’ <M ve (z,y) € A olmak iizere,
agagidaki agirlikli Ostrowski tipli esitsizlik elde edilir:

M(b—a)(d—c) |1

(z =3
m(a,b;c,d) TR

O(a,b,c,d; f,p)| <
©(a.b,c.d: 1.p) TR

4 (d—¢)?

+@] ..

18



Uyar: 3.1.2 Sonug 3.1.1 de w(z,y) = 1 segilirse, Latif vd. (2012) tarafindan verilen

esitsizlik saglanir.

Sonuc 3.1.3 Teorem 3.3 on kosullar altinda, z = “—“’ ve y = C+d olarak secilirse,

agagidaki Hermite-Hadamard tipli esitsizlik elde edilir:

f(a;—b’c—;—d> —i—m(ajll);qd)/b/dw(u,v)f(u,v)dvdu
b d
abcd //w(u,v)f(u,c—gd
b od
abcd//w <a+b )dvdu

(b-a)(d—0o° |lwly

dvdu

N———

IN

576 m(a, b;c,d)
Pf (a+b c+d Pf (a+Db
X{m atas< 2 2 )‘+4‘8t&9< > ’C)

2 2
+4’8f (a7c+d)‘+4’8f (aer,d)‘

otos 2 Otos 2
f [ c+d o2 f
+4‘8t83 (b’ 2 ) +‘ﬂ<“’0)

O’ f >’f >’ f
+‘8t83(a’d)‘+'6t@s(b’0)‘+‘0t8 (b, d)‘}

(b—a)*(d—0o* |lw|y Hﬁzf
64 m(a,b;c,d) || 0t0s

IN

(a,c)| +

92 f
‘375(95 (a, d>‘

0*f °f
b b,d
+‘8t85(’c)’ ‘ata (b, ﬁ
Teorem 3.4 w fonksiyonu Lemma 3.1 deki sartlarla tanimlansin. Eger g:aj; !

A tizerinde koordinatlarda konveks ise her (z,y) € A i¢in, agagidaki esitsizlik elde

edilir:

©(a,b,c,d; f,p)| (3.9)

RSAIN

m(a,b;c,d)(p+1)
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1 82 q 82
X {<“’ —a) (y—e) <1 Hatafs (@y)| + ’8758
82]0 q an q %
+'8t85 (a,9) +'6t6’5 (a.¢) D
1[] o s
ta=at@-* (5| g )| + |
92 q 82 f N 5
+'6t8 (a9) +'3t6’5 (a,d) D
1 82 q (92
#0220 (1 || )| +| 52
82]0 q azf q é
+'6t8 (b:) +‘8t85 (b,c) D
1 82 q 82
#0200 (3 || o )| + |5
a2f q a2f q %
+'8t35(b’y) +‘8t85(b’d) D }

Burada © fonksiyonu (3.1) deki gibi tanimlanir ve % Sk % =1 dir.

Ispat. (3.4) de iyi bilinen Holder esitsizligi kullanilirsa;

1©(a,b,c,d; f,p)]

(x—a dvd
a b; c, d u U vau

(/ / ‘82563 ):Vils) det)

1 1| U(t) Va(s)

J”‘jbcd // / / (u, v)dvdu
( / / \ oL ((0),14(5) qudt) |
/ / w(u, v)dvdu

20

p

dsdt

D=

3=

3=

(3.10)



q q
dsdt

(//‘(%88 0, Vi(s))

3=

1 Us(t) Va(
+<b—§bcd // / / (u,v)dvdu| dsdt
0o lbv d
L N
(// ‘6%83 (Us(t), Va(s)) dsdt)
0 0
w fonksiyonu A iizerinde siirl oldugundan,
1 Ui(t) Vi(s) Ur(t) Va(s) P

1 1
dsdt < ||w||§o// dsdt  (3.11)

0 0

1 1
= JwlP, (& — o) (y = ) / / PP dsdt
0 0

— (.CU — a)p (y - c)p Hw”p
(p+1)? X

/ dvdu

//// (u, v)dvdu

Benzer sekilde,

P

1 1| Ui(t) Va(s) »
// / w(u, v)dvdu dsdt<( _(Z)+(f) v |wl? (3.12)
00
; b " P p
// / / (u,v)dvdu| dsdt < (b —(2)+(1y>2— ) l|lwl? (3.13)
0 0 b c
ve
! Ualt) Va(s) g P P
/ / / / (u, v)dvdu| dsdt < (b_é)+(f);y) w]?. . (3.14)
00 lb 4
Diger taraftan, % ifadesinin A iizerinde koordinatlarda konveksliginden,
q
//’87583 t),Vi(s))| dsdt (3.15)
f q azf q an q an q
< -
= {E%(?s( D F ams @ | ams @Y T ams @] |
q
/ / ‘ S U(0) Vals) | dsa (3.16)
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1 62 q 82f q a2f q 82 q
< - —_—
< 1|mm | + | | + | )| +| 5 wal ],
11 o .
//'atas (Ua(t), Va(s))| dsdt (3.17)
00
1 an q a?f q 82 q 82f q
< Z
= { dis &Y) ‘8758 () + ’81&8 (b)) + ’(’%85 (b,¢) ] ’
11
i Us(t), V: qd dt 3.18
| [ @t vacon)| (3.9
00
1 a2f q a2f q a2f q 82](' q
< - .
= { aios Y| * ‘ﬁtas (@,d) + ‘8t83 (b)) + ‘87583 (b,d) ]
Eger (3.11)-(3.18) esitsizlikleri (3.10) da yerine yazilirsa, (3.9) elde edilir. O

Sonuc 3.1.4 Teorem 3.4 6n kosullar: altinda,

o L (x y)‘ < M almrsa, her (z,y) €
A igin agagidaki agirlikhi Ostrowski tipli esitsizlik elde edilir:

1 (v’
4 (b—a)2

AM (b—a)* (d — ¢)?

9(a,b,¢,d; f,p)| < 3
m(a,b;c,d)(p+1)»

1 Q:i%ﬁbmw
4 (d_c)Z o)

Uyar1 3.1.5 Eger Sonug 3.1.4 de w(x,y) = 1 segilirse, Latif vd. (2012) tarafindan

verilen esitsizlik saglanir.

Sonuc 3.1.6 Teorem 3.4. kosullan altinda, x = “T*b ve y = %l olarak secilirse,

agsagidaki Hermite-Hadamard tipli esitsizlik elde edilir:

b d

a+b c+d
f(2, 2) abcd// w(u,v) f(u, v)dvdu

b d ;
c+

abcd //w(u,v)f(u, )dvdu

1 a+b
_—m(a,b;c,d)//w(u’v)‘f( ,v) dvdu

1] (b= @) (@ = )
s ((579))

hSAINS

16 x m(a,b;c,d)(p+ 1)

{Claee s

OtOs 2 7 2
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Q|

)
¢ Pf (a+b

+‘8tas( 2 ’d>
1)

q+ Pf (a+b
Ot0s 5 ¢

q

1 Pf (a+b c+d

A

P ([ etd\[" |
otos \ U2 otos

1 Pf (a+b c+d

4 ||atos \ 2 2

2f [ c+ad\[" | . |T\"

Ji0s (b’ 2 ) *“atas(b’c) ])
Pf (a+b c+d q+ 0 f a+bd

Ot0s 2

2 q q
f c+d

+bﬁs@’2 ) ])

Otds 2 72
Teorem 3.5 w fonksiyonu Teorem 3.3 deki sartlarla tanimlansin. Eger

(a,d)

q

Q=

0 f
otos

(b, d)

g

a2f |4
otos

q > 1 sartiyla, A tizerinde koordinatlarda konveks ve her (x,y) € A igin, agagidaki

esitsizlik elde edilir:

O(a, b, e, d; f,p)] (3.19)

(z—a)’ (y — ) |lwll,

IN

4 x m(a,b;c,d)

4 62]0 q 2 82]0 q 2 62]0 q 1 82]0 !1%
(§awﬁﬂw +§bmJL@ +§%wﬁ”w +§wam@)
(z —a)* (d = y)* |wll

4 x m(a,b;c,d)

4 82f q a2f q 2 an q 1 @2f q é
X(@%wﬁaw +§bwﬂL@ +_bwﬁ%” +_wa“® )
(b2 (= o

4 x m(a,b;c,d)

4 a2f q 2 82]0 q 2 a2f q 1 82f q %
x(§bw$“” +§%w¢“® +_waaw +§%wJa@>
+(b—x)2(d—y)2||w“oo

4 x m(a,b;e,d)

4 aZf q 2 azf q 2 82f q 1 an q %
X(@bwﬁaw §bmﬁaw §wa@w +§bws&® )'

Burada © fonksiyonu (3.1) deki sartlarda tanimlanir.
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ispat. 3.4 te Power Mean esitsizligi kullanilirsa;

O(a, b, ¢, d; f,p)] (3.20)

dsdt)

/
S U0, Vi(s)

1—1
q

q
dsdt
17
dsdt)
q
dsdt
1—1

dsdt)
q
dsdt

U1 t) V1

EE RV
Ui
(/]
( j ; 7”7“
e 0/77
<[] [ ewrma

- ade (/1/1 Ua(t) Va (s det)lé
e

(u,v)dvdu

Q=

Ui (t) Vi(s)

/ / w(u, v)dvdu

U1(t

2

1
q

w(u, v)dvdu

u <
\%

a

Q=

2

/
o= (U(1), Vas)

w(u, v)dvdu

Q=

KENURORAE)

QI

(Ua(t), Va(s))

/ / (u, v)dvdu
/ / (u, v)dvdu ggg qudt)
<3i;M£U/bm oo )
e et

(b—2)" (y = &) [[wlly 2 f ’
T S masbie d) (0/0/’%93 (U(t), Vi(5)) dsdt)

IN

Q=
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et (] [ oo

q
o1 |" A iizerinde koordinatlarda konveks oldugundan;

1
q q
dsdt) )
OtOs

( / / s g;’; (UL (), Vi(s)) dsdt) (3.21)

0
1| 82f T 1| 0%f q 2 q 92 f a 7
< (= i il it
= (9‘&533( ) +18‘8t83(x’c) T ‘(%8 ()| +3 61&8( ©) ) ’
11 7
a2f q
( [/ \ T (0, va(9)) dsdt) (3.2
0 0
1] 8%f q 82 f q 92 q 82 f a\ ¢
= (5'&05( ) +E’atas( )|+ 15 |eps (@Y +%’atas(“’d) ) ’
11 %
aZf q
( / / ' & HAORAC) dsdt) (3.23)
0 0
1] 0%f T 1| 9%f a o2 f a\ g
= (5’87583( ) _S‘Gtﬁs(x’c) +_‘8t83 (b.) +_’8t83(b’0) )
ve
q q
//‘Btas t), Va(s))| dsdt (3.24)
82f an q 1 82f 2f 3
< (= = il Bl it
= (9‘81&85 )| 8‘81585 (z,d) 8‘82&85 | +36 aios 9 )
Boylece (3.19) ifadesi bulunmug ve ispat tamamlanmig olur. O

Sonuc 3.1.7 Teorem 3.5 kosullar altinda,

ata (x y)‘ < M ve (z,y) € A olmak
tizere, agagidaki agirlikli Ostrowski tipli esitsizlik elde edilir:

| Mb—a?@d—c’[1 (@-4"][1 -5
0@ byed: fp) < = - L+—<b_a>2”4+—(d_c)2]nwnoo

Uyar1 3.1.8 Sonug 3.1.7 de w(z, y) = 1 secilirse, Latif vd. (2012) tarafindan verilen

esitsizlik saglanir.
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Sonuc 3.1.9 Teorem 3.5 kosullar altinda, z = “T*b ve y = %l olarak secilirse,

agsagidaki Hermite-Hadamard tipli esitsizlik elde edilir:

b d
a+b c+d
'f(272) abcd// u,v) f(u,v)dvdu
b od ;
abcd //w(u,v)f(u,c+
1 b
_m(a,b;c,d)//ww’v)f <a+

(z—a)* (y — o) [lwl,
- 4 x m(a,b;c,d)

y (% 0% f (a—irb c~|—d) 1
9

) dvdu

,v) dvdu

OtOs 2 7 2

2| *f c+d\|?

9|otos \" 2

(¢ =)’ (d = )" [Jw]|
4 x m(a,b;c,d)

" é@Qf a+b c+d\|*
9 |0tos 2 72

2| *f c+d\|*
9 |atos \ V2

(b—2)°(y — ) llw]ly,

1‘82f

* 4><m(abcd
(4 41 02%f a+b c+d a+b 1
9 |0t0s \ 2 8t85 2 °

+

f
‘8158 (b,)

2| *f b c+d

9 |0tos 2

(b= )" (d = y)* |wll.
4 x m(a,b;c,d)

y 41Pf (a+b c+d
9 |0tds 2 7 2

2| O*f c+d\|?
+§‘8t(’93 (b’ > )

T 210%f (a+b 1
+§'8t6’3< 2 ’d>
1)

0*f

9 ‘at(?s (b,d)
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4. BULGULAR

4.1 Koordinatlarda s-konveks fonksiyonlara iligkin baz1 yeni Ostrowski

esitsizlikleri

Teorem 4.1 w fonksiyonu Lemma 3.1 deki sartlarda tanimlansin ve A tizerinde

siirh olsun. ||w|| = sup |w(z,y)| seklinde ifade edilmek tizere; eger % ifadesi
(z,y)eA

A tizerinde koordinatlarda s-konveks ise her (z,y) € A i¢in, agagidaki esitsizlik elde

edilir:
©(a,b, ¢, d; f,w)] (4.1)

ol !

92 f 1| &2f
H (z )' 32+1’8ta>\ (‘”’C)‘
1| f 1 92 f
31+1'8t8)\ <“’y>‘+(31+1) (s2+ 1) ’(‘%8/\ (a,c)
+(z—a)’ (d—y)*

o2 f 1| orf
H@ta)\ (x’y)' Tl ’(%8)\ (WD‘

|

1| o2f 1 92 f

si+1 ‘6t8)\ <“’y)‘ T e ) m ) ‘8158)\ (a, d)H
+(b—2)(y—c)’

02 f 1| o
H oiox y>' A ’81&6’)\ (,¢)

1| o2 1 92 f

S1 + 1 (‘%8)\ <b7 y)' + (81 + 1) (82 + 1) ‘8756/\ (b’ C) 1
+(b—=)*(d—y)*

02 f 1| o2
Hatm (x’y)' Tl ’6158)\ (”“"’CD‘

1| ey 1 o2 f
o rl ’8158)\ (b’y)' TE DD ‘atm (b’d)H }

Burada © fonksiyonu Lemma 3.1 deki gibi tanimlanir.
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Ispat. (3.2) deki esitligin mutlak degeri (modiilil) ahmrsa;

1O(a, b, ¢, d; f,w)] (4.2)
1 U1 2f
.T — a
m(a, b ¢, d) // w(u, v)dvdu ETE)Y (Ul(t)»vl()\))‘d)\dt
0 a c
( ) 1 1] Ui(t) Va(A) 2f
xr—a
0 0 a d
(b—2)(y— o 11| Uz(t) Vi(\) y
— —ec
e / [1 ] wlertean] |55 w0 v | axe
0 0 b c
11| Ua(t) Va(N)
/ / / yavda| [ 2L 1), Vo)) anar
CL b C, d u U)Gugs 8758)\ 2 y V2
b

esitligi elde edilir. Burada, w(z,y) fonksiyonu A iizerinde simirh oldugundan ve

g:af; nin A {izerinde koordinatlarda s—konveksliginden,
11| Ui(t) Vi(\)
// / w(u, v)dvdu OF (U1(t), Vi(X))| dAdt (4.3)
’ atox -
0 0 c
Ui (t) V()
O f

(U1 (1), Vl(A))' d\dt

/ / dvdu

o f
DLON
92 f
R
= (z—a)(y—o)|wl,
1 02 f
(50 + 2) ‘87&8)\ (z.9)

OtoX

A

B

8
— s
o _

2

/
dio (©:¢)

<x,y>\ Fn (A

2

+ (1= 1) A

TN (a,c) ] d\dt

(a’y)' + (1 - t)s1 (1 . )\)82

{(31 +2)

+(31+2) (82+1 (s2+2) ‘8758/\

+(81+1>(sl+2 ) (s2+2) ‘6%8/\ ’

f
HEES ) (82 +1) (s2 4 2) ‘8258)\ (a,¢) } '
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Benzer sekilde;

1 1 U1 t) VQ()\

]

a

Pf
DtON

(u,v)dvdu

(UL (1), VQ(A))‘ d\dt

< (@—a)(d=y)ful
1 o2 f
{(51 +2) (s2 +2) | OtOA ()
1 a2f
T+ 2) (52 1) (2 4 2) | 210X (9”0”‘
1 an
Tl ) (511 2) (2 +2) |00 (a, y>‘
1 P f
+(31 +1) (514 2) (s + 1) (52 +2) | OtON (a,d)‘_ :
1 1| Ua2(t) Vi(N) 2f
// / / (u, v)dvdu| | =5 (Ua(t), Va(A)) | dAdt
< (b-2) -0 vl
1 o2 f
(G
1 a2f
+(31 +2) (524 1) (52 + 2) |OtON (2,c¢)
1 an
+(31 + 1) (51 —+ 2) (32 + 2) OO (b7 y)
1 P f
+(81 +1)(s1+2)(s2+ 1) (s2+2) [OtOA (b, c) }
1| Ua(t) Va(N) 2f
// / / (u, v)dvdu | 5 (Ua(?), VQ(A»‘ ddt
< b-2)(d-y) vl
1 o2 f
[ e
1 an
T+ 2) (52 1) (2 4 2) | 910X ("’“"’C“‘
1 82]0
Tl 1) (1 +2) (52 + 2) | Ot (b, y)‘
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1 o*f
+(31 +1)(s1+2)(s2+ 1) (s2+2) ‘81&8)\ (b, d>H

elde edilir. Eger (4.3)-(4.6) ifadeleri (4.2) de yerine yazilirsa (4.1) Teorem ifadesi

elde edilir ve ispat tamamlanmaig olur. O

Uyar1 4.1.1 Eger Teorem 4.1 de s; = s = 1 olarak secilirse, asagidaki esitsizlik
elde edilir:

36 x m(a,b;c,d)
< {(z =) (y — o

an 82]" a2f 92
4|5 Y| T2 |5 (9 +2‘8t8)\ (“’y)‘ d latau (“’@}
+(x—a)’(d—y)
[,|.2%f 0 f 0*f 02 f
e A (x’d)‘ﬂ'atm (a’y>‘+’0t6>\ (a’d)l
+(b—:L‘)2 (y—c)2
i 82f 82f 82]6 azf
Hamon @)+ 2155 @) +2’3t8/\ (b:9) ’+‘8tm (b, <)

4w2m%d—w2 2 2 2
{4‘&0&( y)‘”mé};( d)‘”'gaﬂ(b’y)‘ ‘aiafx(b d)H}'

Bulunan bu esitsizlik Budak (2022) tarafindan verilmistir.

Sonuc 4.1.2 Teorem 4.1 in sartlarn altinda,

8t8)\ Lz, y)‘ < M, (z,y) € A olarak

belirlenirse, agagidaki agirlikli Ostrowski tipli esitsizlik elde edilir:

AM (b—a) (d — ¢)?
~— m(a,b;c,d)(s1+1)(se+ 1)

1+<@f;>]L+Wi %Q]nmu

Uyar1 4.1.3 Eger w(z,y) = 1 ve s; = so = s segilirse; Latif vd.(2012) tarafindan

|O(a,b,c,d; f,w)]

verilen egitsizlik saglanir.
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Sonuc 4.1.4 Teorem 4.1 de z = “TH’ ve y = C+d yvazilirsa; asagidaki agirlikli orta

nokta tipli esgitsizlik elde edilir:

b d
a+b c+d
f( 5 2) abcd// u,v) f(u, v)dvdu
b d

1 c+d
“labied) //w(u,v)f (u, 5 )dvdu

1 ab Cd b
_m//w(u,v)f (a;— ,U) d/Udu

1(<)‘b(s_1 CJLr)Qgis_z—ci—)Q) m(!zt,ullio;, d) { Pt 59 + 1} [ o 51 :— 1}

o0 f o0 f o0 f o0 f
g H@t@)\ (a’c)' * ‘8158)\ (a, d)‘ 4 '8156)\ (b)) + ’(‘%6)\ (b d>H '
Ispat. z = “tb, ] = C+d secilir ve % in s— konveksligi kullanilirsa istenen sonug
elde edilir. 0

Uyar:1 4.1.5 w(z,y) = 1 ve s; = sy = 1 yazilirsa; Latif vd. (2012) deki esitsizlik

saglanir.

Teorem 4.2 w, Teorem 4.1 deki sartlarda verilsin. © fonksiyonu Lemma 3.1

q
de tamimlandigi gibi kabul edilsin. % , A iizerinde koordinatlarda s—konveks

fonksiyon ve her (z,y) € A igin; %—l—é = 1 olmak iizere, agagidaki agirlikli Ostrowski
tipli egitsizlik elde edilir:

Q=

[[]] 4
: m(a,b;c,d)(p+ 1)% <(51 +1) (524 1>>
x{z—a) (y—o)

r an q an q 82f q an q %
|aox @ Y| | aan ¢ +‘8t8)\ (ay) +’atm (“’C)]
+(z—a)’ (d—y)*

i an q 82]0 q 82f q a2f q %
|3 &9)| | g @ +‘8t8/\ (,9) +’8t8)\ (a,d) }




+(b—2)(y—c)
s =] + |3

i DY) T 5ian (@:0)
+(b—2)*(d—y)?
Jaias |

q

9% f
DO

s @) (2. d)

* o
ispat. (4.2) de Holder esitsizligi kullanihirsa;

(z—a)(y—c
m(a,b;c,d)
1 1| 01@®)Va(n) p % 11 a2f , %
w(u, v)dvdu| dAdt ’ (Uy(t), Vi(N) d)\dt)
(1 e o] (12
(x—a)(d—y)
m(a,b;c,d)
11| UL Va(N) P - 9 ) !
X w(u,v)dvdu| d\dt (//8t(‘9f)\ (U1(2), V(X)) d)\dt)
(b—=)(y—c
m(a, b;c,d)
1 1] U2 Vi(x p % 11 @2f , %
w(u, v)dvdu| dAdt ‘ (Us(t), Vi(N)) d)\dt)
INE (/[
(b—x)(d—y)
m(a,b;c,d)
1 1| Ua(t) Va(A 1 q %
// / /wuv)dvdu d\dt ( 88158)\ ,Va(N) d)\dt)

elde edilir. Eger w fonksiyonu A iizerinde siirlandirilirsa;

1 1] Ut) Vi(N) p

1]/

0 0 a c

1 1| Ut

At <l // / /dvdu
1 1

= I, (= — a) (y — o) / / N
0 0
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p
w(u, v)dvdu dAdt (4.10)




. L3

(p+1)?

bulunur. Benzer gekilde;

1 1] Ui(t) Va(\) P v g )
// / /w(u,v)dvdu drdt < (I_(Z)+<1)2_y) lw]. , (4.11)
0 0 a d
11| Ua(t) Vi() b ; » )
/ / / w(u, v)dvdu| drdt < _(?+(f); ) [ (4.12)
00 b e
1 1] Ua(t) Va(N) p ; b g )
// / /w(u,v)dvdu it < ¢ _(?Jr(l);y) w]”. . (4.13)
00 b d
Diger taraftan; gtg; q, A 1tizerinde koordinatlarda s-konveks fonksiyon oldugundan,
11
' Up(t), Vi(\ qd)\dt 4.14
| [ o @) (1.14)
0 0
1
T (s1+1)(s2+ 1)
62f q a2f q a2f q 82]0 q
H(%@A () +‘8t8/\ (,¢) +‘8t8)\ (@y) +‘8t8)\ (a,) ]
11
'f Uq(t), Vo(A qd)\dt 4.15
| [ |3 0. v:0) (4.15)
0 0
1
- (81+1)(82+1>
a2f q 82f q 82](' q 82f q
Hatm () +‘6t6)\ (z,d) +‘8t8)\ (ay) +‘8t8)\ (a,4) }
11
O°f Us(t), Vi(A qd/\dt 4.16
[ 5iax @0 (4.16)
0 0
1
(s1+1)(s2+1)
a?f q a2f q 82f q a2f q
XHataA () +’8t8/\ (,¢) +’8t8>\ () +‘8t8)\ (b,¢) }
ve
11
O°f Us(t), Vo(A qd)\dt 4.17
[ |52 W va0) (117)
0 0

33



1
(s1+1)(s2+1)

82f q
8 Hata/\ (@y) } '

esitsizlikleri elde edilir. Eger (4.10)-(4.17) esitsizlikleri (4.9) da yerine yazilirsa, (4.8)

q q q

9% f

02 f
o \0ov)

OtoX

*f
OO

(, d)

(b, d)

i

.

i

bulunur. n

Uyar1 4.1.6 Teorem 4.1 de s; = so = 1 yazilirsa, Budak (2022) tarafindan verilen

asagidaki esitsizlik elde edilir:
|O(a,b,c,d; fw)]
[0]] oo

2§m(a, b;c,d)(p+ 1)%
A= (y- 0

IN

2 q 2 q 2 q 2 a\ 3
(o7 )] + | 0| + | @] + |y @] )
+(x—a)*(d-y)’

82 f q 92 f q 82 f q 92 f a\ o
(ataA @9 + |5m5 @9 +‘8ta)\ (,9) +’8t8)\ (a,d) >
+(b—2)"(y—c)

o2 f q o2 f q o2 f q 82 f ay :
(0158)\ (@9)] + | gax (©:¢) +‘8t8)\ (5,9) +‘8t6)\ (b’c))
+(b—2)*(d—y)’

82 f q 9% f q 82 f q 0% f a\ g
(‘m(x,y) +’m(x,d) +‘m(b,y) +’8tm(b,d) ) }

Sonucg 4.1.7 Teorem 4.2 kogullarinda, |55

g AM(b— 0 (@d=o) 4 g
Olab e d < et 1) (o)

1T e | |3 @

2 (x,y)’ < M, (x,y) € A, olmak tizere,

agirliklh Ostrowski tipli esitsizlik bulunur.

Uyar: 4.1.8 Eger, Sonug 4.1.7 de, w(z,y) = 1 ve s = s9 = s yazilirsa, Latif vd.

(2012) tarafindan verilen esitsizlik saglanir.
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a+b

Sonuc 4.1.9 Teorem 4.2 6n kosullar altinda, z = ve y = C+d yazilirsa,

b d
b d
f(a;—,c—;) abcd//wuv (u,v)dvdu
b d ;
abcd //w(u,v)f( —g ) dvdu
1 b
_m//w(u,v)f (CH_ )dvdu

[l (b= a)* (d = ¢)* ( )
16m(a, b;c,d)(p + 1)% (s1+1)(s24+1)

x{[ o0 f (a—l—b c+d>q+‘82f (a bc)
OtoA 2 72 OtoA 2 7
+‘82f (a c+d)q 02 f ‘T

OtoN ' 2 OtoA
+H o0 f (a+b c—i—d)q
OtoA 2 72
0% f c+d\|*
FT)Y (“’ > )
[ 02f (a+b c+d\|*
EACEES
0% f c+d\|
ME) (b’ > >
[ 02f (a+b c+d\|*
EACEES

0% f c+d\|
+‘8t6>\ (b’ > >

agirlikli orta nokta tip esitsizlik bulunur.

@)

[\]

1

IA

q

_|_

(a,¢)

I

Teorem 4.3 w, Teorem 4.1 deki sartlarda verilsin. © fonksiyonu Lemma 3.1

q
2f , A ftizerinde koordinatlarda s—konveks

de tammlandigr gibi kabul edilsin. |Z=5

fonksiyon ve her (z,y) € A igin; ¢ > 1 olmak iizere, agsagidaki agirhkl Ostrowski

tipli esitsizlik elde edilir:

©(a,b, ¢, d; f,w)] (4.18)
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Q=

1(32 + 2))

X{(m_@f(y_c) (‘atQafA( y)q+5211‘8;fA< )
1
\

81—|—1

) ol

B 22_% x m(a,b;c,d) <(31 +2)

q

1
Q)q

q

’87<m@
$1+ )( +1) |9tox

1 2

T 5 ir1 '8618]; (@, d)

2

(s1+ 1)1(32 1) ’;af)\ (a,d)

1 2

- So :— 1 ‘;af)\ (z,c)

ol

)q

q

0 (a,y)

+ (z — a)® ‘

1
81—|—1

0f
OtoA (a. )

q

o2 f

2 2

#0080 0 | i (o
L |2 1 92 f

si+1|0tox Y] T (514 1) (55 + 1) | OtON

q 1 82f

4 sy + 1 lﬁtm (@,d)

q 1 ‘82]0 Q)}Z}

" (s1+1)(s2+1) |0toA
6(a, b, ¢, d; f,w)] (4.19)

<x_aabcd (0/10/1 ab\dt)
1| UiV

(//‘/t/ (. vydvdnl | 6. v ()

+<x—;bcd (/1 dAdt)

Ul(t V2 )\
Ui(t) Va(X)

(b;¢)

2

+0 -0 0= (| (o0
1 ‘82f

s 01 |aton (b,y) (b,d)

Ispat. (4.2) de Power Mean esitsizligi kullamlrsa;

1—

Q=

1

/ / w(u, v)dvdu

a C

IN

Q=

d)\dt)

1
1 =3

/

0

/ / w(u, v)dvdu

Q=

x (/1/1 / /w(u,v)dvdu ;;J; (Ul(t),Vg()\))qudt)
0 0 a d e 1_%
+<b_jbcd (// / / (u, v)dvdu| ddt
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Q=

1 1] U2(t) Vai(N)
0% f q
x(// / / (,0)dvdul | S5 (U3(8), V() dAdt)
0 0 b c
( 1 1 U2 Vz)\ 1—%
b—ux)(
" abcd (// / /wuv)dvdud)\dt>
Uz (t) Va(A) %
52f

(Ua(1), Va(N))

/ / w(u, v)dvdu

DtON

q
d\dt
1
q q
dAdt
q
dAdt
1
q q
dAdt
1
q q
dAdt

A tizerinde koordinatlarda s-konveks fonksiyon oldugundan,

(//w |

{(51 1 2) (52 + 2) ‘am

(i ]

0 0

(), i(N))

(VAN
b
“H s
>< /\
3
@
<
O |=
&_5

~

O\H

O\H
~

>~

Q=

t), Va(N))

) 11
+(f€—a)( ) Jwll..
4= ;Xmabcd
0 0
1
(b—2)*(y — ) Jwll. /
+ 1 tA (), Vi(A
4= a x m(a,b;c,d) y 8158)\ 1)
1
[ol

o= (= y)* Jull, ( g

4= ;Xmabcd

(1), Va())

8758/\

elde edilir. | 2"

t), Vi(\))

575 d)\dt) (4.20)

q

(z,9)

+

(81 + 2) (82 —I— 82 + 2 ‘62&6)\

+(sl—|—1)(31+2 ) (52 +2) ‘8756)\

+ s
(s14+1)(s1+2) (32 + 1) (s2+2) |0toA

( [ [0 |5 0. v:0)

37

(a,¢)

1
M q
} Y

q q
d)\dt) (4.21)




q

(z,9)

1 02 f
(51 +2) (52 + 2) '6756)\

M) (32+1 (52 +2) ’6t8>\

+(Sl —+ 1) (81 +2 82+2 ’815(9)\
o
(s14+1)(s1+ 2) (524 1) (sg +2) |OtOA

[/l
< |;
:

(a,d)

+

Q=

(Ua(1), Vi(A))

q dkdt) (4.22)

q

(z,9)

51+2 52—1—2 ’8t&\

(81+2)(82+1 (sg +2) ‘3753)\

_|_

(51+1)(31—1—2 ) (s2+2) ‘8t(‘9)\
o*f

Dt 2) (s2+ 1) (s2 +2) 'ataA (b,)

1
Q:|q

ve

Q=

(//t)\ ;8"; (Us(t), Va(N)) d)\dt) (4.23)
02 f
(52 + 2) ‘(‘%0)\

q

1

(z,9)

IN

{(31 +2)

+(81+2) (52+ 82+2 ‘81&8)\

MO (31+2 (52 +2) ’(‘%8)\
2 f

(514 1) (51 + 2) (52 1) (527 2) ‘8158)\ (b.4)

+

qr,

Boylece ispat tamamlanmig olur. O]

Uyar1 4.1.10 Teorem 4.1 de s; = sy = 1 yazilirsa, Budak (2022) tarafindan verilen
agsagidaki egitsizlik elde edilir:
|©(a, b, c,d; f,w)]
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IN

0% f q O%f q O f q 2 f ay\ :
(4 m( Y|+ 2 Ta/\(l‘,c) +2‘m(a,y) —i—‘ata)\ (a,c) )
+(z—a)’(d—y)°

a2f q 82](' q an q agf q %
(4 M( Y)| +2 N (x,d) +2'0t@)\ (a,y) +‘6t8)\ (a,d) >
+(b—I)2(y—c)2

0% f q O f q O f q 82 f 2
(4 m( Y)| +2 BITY (x,c) +2‘(‘3t@/\ (b,y) +2‘8t0)\ (b, c) )
+(b—a)’ (d—y)°

0% f q O%f q 0% f q 02 f a :
( ‘atax(“”y) *'Z‘ataA (z.d) +_2’8t6A (b.y) +—‘8taA(b,d) ) }.

Sonuc 4.1.11 Teorem 4.3 te

Bta)\ L (¢ ,y)‘ < M, (z,y) € A olmak iizere; agagidaki
agirlikli Ostrowski tipli esitsizlik bulunur:

| Mp-afd=c’ (4 )
|©(a,b,c.d; f,w)] < m(a, b; c, d) (($1+1)(82+1))
1 (-] 1 (-0
v G i G

Uyar1 4.1.12 Sonug 4.1.11 de w(z,y) = 1 ve s; = so = s segilirse; Latif vd. (2012)

tarafindan ispatlanan asagidaki esitsizlik elde edilir:

f(a;b,cgd) abcd /b/d w(u,v) f(u,v)dvdu

abcd /b/dw(u,v)f( )dvdu

_m(—a,zla;c,d)a/c/w(u’v)f( )dvdu
1

(b—a)*(d—c)* lwl
(52 + 2))

B 41_%><m(a,b;c,d) ((51+2)
y Pf (a+b c+d q+ 1 OPf (a+b
oox\"2 2 sat1|oton 2 °
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1 an c+d q 1 an q %
a, + (a,c)
51+1 Oto 2 (51—|—1) <82+1) Oto
o0 f a+b c+d 1 f (a+b !
+<8t8)\( 2 ) +52+1‘8t8)\( > ’d)

1 | 8f [ c+d 1 9 f %
81+1‘8ta)\ <(Z 2 ) +(81+1) (524—1)‘&8)\ (a’d> )
Pf (a+b c+d\]| 1 Pf (a+b I

+ ; + ;€
OtoA 2 2 so + 1 [O0tOA 2
1 2 q 1 2 a\ 7
o°f b)c—l—d n af(b,c)
81+1 Oto 2 (81+1) (82+1) Oto
Pf (a+b c+d\| 1 Pf (a+b ¢
+<'8t8)\( > 2 ) Tt 82&8)\( 2 ’d)
1 2 q 1 2 a\ 3
0°f b)c—l—d . af(b,d) .
81+1 Oto 2 (81+1) (82+1) Oto
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