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OZET

Coklu Bagint1 Probleminde Liu ve Ridge Regresyon

Kestiricilerinin Kargilastirmasi

Semih GOKGE

Istatistik Anabilim Dali

Yiiksek Lisans Tezi

Danisman: Doc.Dr.Atif Evren

Regresyon analizi degiskenler arasindaki iliskiyi modellemek ve incelemek icin
kullanilan istatistiksel bir yontemdir. Bircok uygulama alanlar1 vardir ve bu
uygulamalar miihendislik, fizik, sosyal bilimler gibi hemen hemen tiim alanlarda
kullanilmaktadir. En kiiciik kareler metodu, giiniimiizde hemen hemen biitiin
bilim dallarinda ¢okc¢a kullanilir. En kiiciik kareler metodu, birbirine bagimh
olarak degisen iki biyiiklilk arasindaki matematiksel bagintiy1 olabildigince
gercege uygun bir denklem olarak yazmak icin kullanilan regresyon metodudur.
Coklu regresyon analizinde ortaya ¢ikan sorunlardan birisi de c¢oklu baginti
sorunudur. Coklu dogrusallik, aciklayici degiskenler arasindaki giiclii bir iliskinin
varligi olarak tanimlanabilir. Coklu dogrusallik parametre tahminlerinin
varyansini biiyiitiir. Ayriyeten kestirilen regresyon katsayilar isaretlerinde buna
ilave olarak biiyiikliikleri dahi yanlis olabilir. Dolayis: ile aciklanan, aciklayici
degiskenler arasindaki iliskiyi yanlis tarif edilebilir. Bu calismada oncelikli coklu
dogrusallik teshis yontemleri anlatilip, Tiirkiye'nin ihracat modelini Ridge, Liu
kestiricisiyle ve zaman serisi modelleri bir uygulamasi yapilmistir. Ac¢iklanan
degisken ihracattir. Aciklayici degiskenler TUFE, YI-UFE, TCMB pasif
ylkiimliliikleridir. Veriler 2003-2020 yilllar1 arasi ceyreklik verilerini



kapsamaktadir. Veriler Zaman serisine uygun oldugu icin otokorelasyon
probleminden siiphelenmistir. Durbin-Watson testine gore otokorelasyon sorunu
gozlemlenmemistir. AIC degerlerine gore kiyaslama yapildiginda Liu kestiricisi

ile elde edilen modelin digerlerine gore en iyi sonuglar1 verdigi gozlenmistir.

Anahtar Kelimeler: Coklu Dogrusallik, Ridge, Liu Kestiricisi, Zaman Serisi,

Thracat
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ABSTRACT

Comparison of Liu and Ridge Regression

in Multiple Connection Problem

Semih GOKCE

Department of Statistic

Master of Science Thesis

Supervisor: Assoc.Prof.Dr.Atif Evren

Regression analysis is a statistical method used to model and examine the
relationship between variables. There are many application areas and these
applications are used in almost all fields such as engineering, physics, social
sciences. The least squares method is widely used in almost all branches of
science today. The least squares method is a standard regression method used to
write down the mathematical relationship between two dependently varying
quantities as an equation that is as realistic as possible. One of the problems
encountered in the multi-regression analysis is multicollinearity case.
Multicollinearity in regression models is a result of strong correlations among
independent variables. The existence of multicollinearity inflates the variances of
the parameter estimates. Multicollinearity may also result in wrong signs and
magnitudes of regression coefficient estimates, and consequently in incorrect
conclusions about relationships between independent and dependent variables.
In this research, firstly, theoretical structure of collinearity diagnostics and Liu
estimator is introduced. At the end an application of Ridge, Liu, time series
estimator for the Turkey’s export model is done. The variable explained is

exports. Explanatory variables are TUFE, YI-UFE and TCMBs liabilities. The data

xii



includes quarterly data for the years 2003-2020. Suspicious of autocorrelation
problem as the data is suitable for Time series According to the Durbin-Watson
test, no autocorrelation problem was observed. When compared according to the
AIC values, it was observed that the model obtained with the Liu estimator gave

the best results compared to the others.

Keywords: Multicollinearity, Ridge Estimator, Liu Estimator, Time Series, Export
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1

GIRIS

1.1 Literatiir Ozeti

Ihracat ya da digsatim olarak da bilinen kavram bir malin veya hizmetin yabanci
iilkelere yabanci para karsihiginda satilmasi islemine verilen kavramdir. Ulkeler
veya sirketler tarafindan gerceklestirilebilir. Ithalat ve ihracat bir iilkenin dis
ticaret dengesini hesaplamimiza yarar. Ulkede doviz kurunun diismesi, diger
taraftan yerli paranin yabanci para karsisinda deger kazanmasi, ticarete konu
edilen malin uluslararasi pazarda daha pahali konuma getireceg§inden malin
rekabet gliciinii azaltir. Aksi durumda ise iilkede d6viz kurunun yiikselmesi, yerli
parann deger kaybetmesine ve malin uluslararasi piyasada ucuzlamasi neden

olup iilkenin rekabet giiciinii artiracaktir.

Uretici fiyat endeksi ya da kisaltmas1 UFE olarak da bilinen kavram belirli bir
referans yil alinarak iilke ekonomisinde iiretimi yapilan ve iceriye satis1 konu
olan mallarin, iretici fiyatlarim1 zaman i¢inde Kkarsilastirilmasiyla fiyat
degisikliklerini 6l¢meye yarayan fiyat endeksi olarak ifade edilir. Aylik ,iic

aylik,y1llik enflasyon rakaminin belirlenmesinde rol oynar.

Tiiketici fiyat endeksi ya da kisaca TUFE olarak da bilinen kavram tipik bir
tiiketicinin satin aldig1 secili mal ve hizmet grubunun fiyatlarindaki ortalama
degisimleri gostermeye yarayan fiyat endeksi olarak ifade edilir. Yillik enflasyon
degisimlerini 6lcmeye yarayan bir endekstir. Belirli bir yil secilmeli ve bu yil baz
yil olarak ele alinmalidir. Endeks degeri olarak 100 olarak kabul edilir. Bundan
sonraki yillardaysa cari yillar enflasyon degerleri karsilastirarak degiskenlik

gosterecek ve baz alinan endeks icin oynakliklar olusacaktir.

Merkez bankasi bilancosu olarak da bilinen kavram para politikasi
uygulamalarindaki ortaya ¢ikan gelismenin izlenmesi acisindan son derece 6nem
arz etmektedir. Para politikasi uygulamalariyla merkez bankasinin bilangosu

etkilenmektedir; uygulamadaki degisiklikler merkez bankas1 bilancosuyla



gozetlenir. Pasif kalemler, merkez bankasinin bankacilik ve banka disi1 kesime
olan yiikiimliiliiklerini ifade eder. Pasif kalemlerde yapilan degisikliklerle
ekonomideki likidite ayarlanabilirken, likiditenin hangi kalemlerden dolay1

kaynaklandiginin saglamasi aktif kalemler tarafindan izlenebilir.

En kiiciik kareler metodu ilk kez 1795 yilinda Gauss tarafindan ortaya
konmusur. Gauss 1801 yilindaki calismasinda metodu ele alarak, bulunmasindan
az siire sonra kaybolan Ceres asteroidinin tekrardan gozleyecegi yeri hesaplamuis,
bunu basarmasiyla biiyiik bir sana ulagsmistir. Gauss bu metodu ilk 1809 yilinda
yayinlamistir.1806 ~ yilindaki = calismasinda = matematik¢i ~ Adrien-Marie
Legendre’nin ile 1808’deki matematikci Robert Adrian’in ¢alismasi, F.Gauss’dan
ayr1 olarak bu metidu gelistirmistirler ve kullanmistirlar. En kiiciik kareler
metodu, giiniimiizde neredeyse biitiin bilim dallarinda sik olarak tercih

edilmektedir.

Ridge Regresyon Metodu ilk kez 1970’de Teknometri dergisinde yayinlamis
olduklaro iki makaleyle Hoerl ve Kennard ortaya atilmistir. Hoerl ve Kennard
makalelerinde "Ridge Regresyon: Ortogonal Olmayan Sorunlar Icin Sapmali
Tahmin" bashgiyla, tam rankli genel lineer hipotez modelini iceren c¢oklu
regresyonda yansiz kestirici sorununu detaylica aciklamistir. Makaleyle, yanh
kestirici bi¢ciminin secenek bir karakterizasyonu ¢ikartmis ve buna dayali yanlh
kestiriciyi oldukga iyi duruma getirmis k degerini ortaya koyan Banerjee ve Carr

tarafindan 1971’de kanitlanmistir.

Hoerl ve Kennard bu dergideki ikinci makalesinde "Ridge Regresyon: Ortogonal
Olmayan Sorunlara Uygulamalar", basligiyla onceki makalesinde Ridge
Regresyon yontemi uygulamalarini anlatmislardir. Bu makaleyle 6zellikle ¢ok
etmenli verilerde iligkiyi saptamak i¢in iki boyutlu uzayda bir grafik uygulamasi
olarak bilinen Ridge izine Onem verilmistir. Burada ayrica EKK yontemiyle
bulunan denklemlerden oldukca iyi regresyon denklemi aramak icin

yapilabilecek islemlerden s6z edilmistir.

Hoerl ve Kennardin Teknometri dergisindeki yayimlanan makalesiyle ilgili
200’den fazla makaleler kaleme alinmistir. Makalelerin cogu yine Hoerl ve

Kennard'in Amerikan Matematik ve Yonetim Bilimleri Dergisinde yayimlanan



makalesiyle birlikte gozden gecirilmistir. 1980 yilina kadar Ridge Regresyon

konusunu iceren calismalar gozden gecirilmistir.

Ridge regresyon yonteminde yanlihik parametresi Kkestiricinin dogrusal bir
fonksiyonu degildir, yanlilik parametresi secimi ¢cok zordur. Bu nedenle yanlilik
parametresinin secimiyle fazla ¢alisma yapilmistir. Yapilan calismalar sunlardir:
Theobald (1974), Lawless ve Wang (1976), Kibria (2003), Khalaf ve Shukur
(2005), Alkhamisi vd. (2006), Alkhamisi ve Shukur (2007), Muniz ve Kibria
(2009), Muniz vd. (2012), Dorugade ve Kashid (2012), Karaibrahimoglu vd.
(2016), Asar ve Geng (2017).

Theobald(1974), yaptig1 calismasiyla ridge regresyon kestiricisinin EKK
kestiricisinden daha az HKO’su olmasina yarayan gerekli ve gecerli kosulu elde

etmistir.

Kejian(1993), farkli tahmincilerin birlestirilmesi, avantajli olur diisiincesiyle bir
araya getirerek Stein'n 1956 yilinda onerdigi tahminciyle ridge regresyon
tahmincisini birlestirerek yeni bir yanhi tahminci tanimlamistir. Kejian(1993),
EKK tahminciyle one siirdiigli yeni tahmincinin hata kareler ortalamasi
degerlerini karsilastirdi. Elde edilen tahmincinin hata kareler ortalamasi

degerinin kiiclik oldugunu gormiisttir.

Liu(1993) yilinda onerilen kestirici, Akdeniz ve Kaciranlar tarafindan 1995
yilinda Lineer Unified kisaltmasi seklinde ifade edilen Liu tahminci (Liu
Estimator-LE) ifade edilerek tamimlanmistir.. Liu kesticisiyle ilgili yapilmis
calismalardan bazilariysa sunlardir: Akdeniz ve Kaciranlar(2001), Akdeniz
(2001) ve Sakallioglu vd. (2001) tarafindan yapilmis calismalardir. Kaciranlar ve
getirerek r-d simif kestiricisini ifade etmislerdir. Liu(2003), calismasinda ridge
kestiricisi, liu kestiricisine secenek olarak bu kestiricilerden olduk¢a uygun

sonuglar1 veren Liu tip kestiricileri 6nermistir.

Mahajan ve ark.(1977), calismalarinda veri seti icerisinde ¢coklu baginti problemi
olmasi durumunda, EKK yontemi ile tahmin edilen pazarlama modellerine ait

regresyon Kkatsayilarinin yiiksek varyansa sahip ve yanlis isaretli olduklarimi



gormiislerdir. Calismalarinda ridge regresyon analizini kullanarak pazarlama

verilerinde coklu baginti sorunu ile miicadele edilebilecegini gostermislerdir.

Kidwell ve Brown(1982), calismasinda coklu baginti tizerine odaklanmistir.
Sorunu gostermek icin Ridge regresyon teknigini yapay verilere uygulamistir.
Calismada kestiricilerin ortogonal olmadigi durumda Ridge regresyon

yonteminin en kii¢lik kareler yonteminden farkli sonuglar verdigini gostermistir.

Aktas ve Yilmaz(2003), coklu regresyon analizinde aciklayic1 degiskenler
arasinda coklu dogrusal baglanti1 olmas1 hakkinda EKK yontemi yerine modele
konulan bagimsiz degiskenleri atmak yerine yanli kestirimler yapmasina karsilik
bagimsiz degiskenlerin regresyon katsayilarinin standart hatalarini kiiciilten
Ridge regresyon metodunu kullanmislardir. Alternatif olarak Liu metodunun da

kullanilabilecegini soylemislerdir.

Topgubas1 ve Billor(2003), calismasinda bagimsiz degiskenler lineer bagiml
olmas1 halinde, en kiicilik kareler tahmincisine gesitli secenek iceren yanli tahmin
modellerin oldugunu, bu yanl tahmin modellerinin cok biiyiik bir boliimiinii
iciren bir sinifi olusturdugunu anlatmislardir. Arastiricilar yanl tahmincilerin bir

boliimiinii bu sinifa, Liu ve genellestirilmis Liu tahmincilerini dahi eklemislerdir.

Yolacan ve ark.(2005), yapmis olduklar1 ¢calismalarinda ¢oklu baginti sorununu
iceren ekonomik verilere ridge regresyon ve yapay sinir aglar1 algoritmalarini

uygularak sonuclar karsilastirarak yorumlamaistir.

Albayrak(2005), calismasinda En Kiigiik Kareler, Ridge ve Temel Bilesenler
Regresyon analizleriniyle ulasilan bulgular1 yorumlamistir. Kullanilmis veri
setindeki coklu baginti sorunu olmasi durumunda standart hatalarin yiiksek
cikabilecegini ve yanli kestirim metotlarinin en kiiciik kareler metoduna gore

daha tutarli, gecerli kestirimler oldugunu gostermistir.

Aktas(2007), calismasinda coklu regresyon analizinde karsilasilmis sorunlarin
bir tanesi olan coklu bagintiy1 saptama yontemlerini anlatmis, enflasyon modeli
icin Liu tahmincisiyle sinama yapmuistir. Calismasinda Liu tahmincisi ile ¢oklu
bagintidan arindirilmis model i¢in, ilgili donemdeki enflasyona para arzi ve USD

degiskenlerinin etki ettigini sOylemistir.



Karakas(2008), yapilan yiiksek lisans tez calismasindaki coklu lineer bagintinin
kaynaklari, saptama metotlarin1 ve istatistiksel etkilerini gozlemlemistir.
Calismasinda, Ridge ve Liu regresyon, sapmali regresyon kestiricilerini coklu
lineer baginti onarim metodu seklinde tanimlanmistir. Uygulamasinda Ridge ve
Liu tipi regresyon yaparak istihdam modelini kestirirmeyi amaclanmistir.
Sapmali regresyon Kestiricilerine ait standart errorlarin formiilii bulunmadigim

sOylemistir.

Tiiyliioglu ve Albayrak(2010), calismasinda, illerin genel fiyat diizeyleriyle diger
alt endeksler arasindaki iliskileri ridge yontemiyle inceleyerek illerin hayat
pahaliligin1 ortaya cikaran etkenlerden en etkili ilk ii¢ etkenin sirasiyla giyim,
mobilya ve ev esyasi, diger iiriin ve hizmetleriyle konut harcamalarinin oldugunu

gostermislerdir.

Regresyon analizinde hatalar birbiriyle bagimli olmamalidir. Bu sorunun testi
icin (n=15) olmasi durumunda Durbin-Watson test istatistigi ile karar verilir.
Karago6z(2016), bu deger (1,5-2,5) arasinda bulunursa otokorelasyon sorunun

olmadigini soylemistir.
1.2 Tezin Amaci

Tezin amaci, Tirkiye'nin ihracat modelini bir uygulama ile aciklamaya
calismaktir. Bu calismada en kiiciik kareler, ridge regresyon, liu regresyon,
zaman serisi yontemlerini hakkinda bilgi verilecektir. Coklu dogrusalligi
belirleme metotlar1 anlatilacaktir. Coklu dogrusal baginti durumunda en kii¢iik
kareler, ridge, liu, zaman serisi tahminleri incelemek, yontemleri karsilastirarak
en iyi yontemin hangisi olduguna karar vermektir. Ortaya ¢ikan modelin tahmin

sonuglarin1 yorumlamaya calismaktir.



2

REGRESYON VE MODEL KURMA

2.1 Regresyon ve Model Kurma

Regresyon analizi degiskenler arasindaki iligkiyi modellemek ve gbéz oOntinde
bulundurmak icin kullanilan istatistiksel bir yontemdir. Regresyonun degisik
sinama alanlar1 mevcuttur.Bu smnamalar mihendislik, fizik ve kimya gibi

alanlarda cokca kullanilmaktadir.
2.1.1 Goklu Dogrusal Regresyon

Kimyasal bir siirecteki doniisiimiin pound tiiriinden verimi, sicaklik ve katalizor
konsantrasyonu bagli olsun. Bu baginti ¢oklu regresyon modelinde asagidaki gibi

tanimlanabilir:

y=PBo+B1x1+ P2x; + € 2.1

Burada y verimi, x; sicakhigt ve x, de katalizor konsantrasyonunu

gostermektedir. Bu iki bagimsiz degiskenli coklu dogrusal modeldir.

Yy = Po+ Pix1 + Poxy + o+ Brxyg + € (2.2)

Modeli k tane aciklayici degiskenli coklu lineer regresyon modeli diye
adlandinihir. B; j=0,1,...k parametreleri regresyon katsayilar1 diye bilinir.
Modelde x; bagimsiz degiskenlerinin k boyutlu uzayinda bir hiper diizlemi ifade
eder. B; parametresi, x;(i# j) aciklayia degiskenleri sabit tutuldugu zaman x;
aciklayic1 degiskenindeki bir birimlik degisme karsilik gelen y degiskenindeki
beklenmekte olan degisimi gostermektedir. Bu nedenle, B; = j=1,2,...k

parametreleri, genellikle kismi regresyon katsayilar1 diye adlandirilir.

Coklu regresyon modelleriyle ilgilenirken onlari matris biciminde ifade etmek

daha uygundur.

y=xB+¢ (2.3)
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Burada matrisler denklem 2.4’deki gibidir.

¥, n x1 boyutlu gozlemler vektorii; X, n x p boyutlu agiklayic1 degiskenler
matrisi; f, p x1 boyutlu regresyon katsayilar1 vektorii ve € , n x1 boyutlu

rastgele hatalar vektorii olarak tanimlanir.

S(B) fonksiyonunu minimize ederek S en kiiciik kareler kestiriciler vektdriinii

elde ederiz.

S(B) = ¢'e = (y-XBY(y-XPp) (2.5)

= Vy-2B'X'y+B'X'XB (2.6)
B'X'y, 1x1’lik bir matris ya da skaler oldugundan tranpozu da ayni sekilde

skalerdir. En kiictik kareler kestiricileri,

g—;@:zxyu XXB =0 (2.7)

esitligini saglar. Basitlestirilse,

X'XB=Xy (2.8)



Denklem 2.8 en kiiciik kareler normal denklemleridir. Normal denklemleri
¢ozmek icin denklem 2.8'nin denklemin iki tarafin1 X’X'in tersiyle carpilirsa,

boylece B’nin en kiiciik kareler kestiricisi,
f=XX)"Xy 2.9

olur. Burada (X'’X)! ters matrisinin de mevcut olma kosulu saglanmalidir. Eger
bagimsiz degiskenler dogrusal bagimsiz ise X matrisinin hicbir stitununun diger

siitunlarla dogrusal bir birlesimi yoktur.

£ en kiiciik kareler kestiricilerinin istatistiksel 6zellikleri kolayca gosterilebilir.

Ilk 6nce yanlilig1 ele alalim.
E(f) = EL(XX)'Xy]=E[XX) ' XXB+2)] (2.10)
= E[(XX)'XXB+(XX)'Xe]= B (2.11)
Burada E(¢) = 0 ve (X’X)'X’X=I ‘dir. Bu nedenle B, eger model dogru ise pnin
yansiz bir kestiricisidir.
Cov(f) = E{[ B - E(B)IIA - E(B)]} (2.12)

Kovaryans matrisi p x p boyutlu simetrik bir matristir ve j. kosegen elemani ve
B nin varyansinn, 7j. kosegen dis1 elemani ise f3, ve [?j arasindaki kovaryansi

verir. § ¢ min kovaryans matrisi,
Cov(f ) =Var(B)=Var[(X’X)'X'y] (2.13)
ile bulunur. Burada, (X’X)'X sabitler matrisidir ve y’nin varyans ¢*I'dir.Boylece
Var(f ) =Var[(X’X)'X'y]=(X'X)X'Var(y) [(XX) X7 (2.14)
= ¢’ (XX)'XX(XX)'= a*(XX)"! (2.15)
elde edilir. Bundan dolayi, eger C= (X'X)"' alirsak, ,[?j ‘nin varyansi, ¢°C; ‘dir ve
ise B, ve B, arasindaki kovaryans ise 6°C; ‘dir.

En kiciik kareler kestiricilerinin kalitesine iliskin bir diger sonu¢ E(g)=0,
Var(g) = ¢ varsayimina ve iligkisiz hatalara sahip regresyon modeli i¢in en kiiciik
kareler kestiricisinin, y; nin dogrusal bilesimleri diger biitiin yansiz kestiricilerle
karsilastirildiginda yansiz olduklar1 ve minimum varyansa sahip olduklarini

belirten Gauss-Markov teoremidir. Genellikle en kiiclik kareler kestiricileri en iyi
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dogrusal yansiz kestiriciler oldugunu soyleriz. Burada en iyi demek en kii¢iik

varyansa sahip anlamina gelmektedir.
2.2 Zaman Serisi Verileri icin Regresyon Modellerine Girisi

Regresyon uygulamalarinin bir¢ogu hem yanit degiskenin hem de bagimsiz
degiskenlerin zaman odakli oldugu zaman serilerini icerir. Zaman serisi kullanan
regresyon modelleri iktisat, isletme ve bircok miihendislik alaninda cokca
goriilmektedir. Zaman serisi verilerinde hatalar genellikle bir cesit
otokorelasyonlu yapida olmaktadir. Otokorelasyon terimi ile hatalarin farkh

zaman araliklarinda birbirleri ile iligkili oldugunu soylenir.

Hatalarda otokorelasyonun varligi en kiiciik kareler yontemi {izerinde cesitli

etkilere sahiptir.
Bunlar asagidaki gibidir:

1) En kiiciik kareler regresyon katsayilar1 hala yansizdir ancak en kiiciik

varyansh kestiriciler degildirler.

2) Hatalar pozitif olarak otokorelasyonlu oldugunda artik kareler ortalamasi, o
hata varyansini onemli Ol¢lide daha kiiciik yapabilir. Bir ya da daha fazla
bagimsiz degiskenin gercekte 0yle olmadigini halde anlamli oldugunu gostererek

yanlis yonlendirebilir.

3) Giiven araliklari,6nkestirim araliklari t ve F dagilimlari dayali hipotez testleri,
kesin olarak soylenebilir ki,artik, artik uygun degildirler.Durbin Watson
istatistigi, regresyon modelini kestirdikten sojra artiklarin iliskili olmas1 halinde,
iliskili olup olmadigini ortaya c¢ikarmay:r hedefine koyan istatistiktir.Bu
istatistigin 2 yakinlarinda bulunmasi, “otokorelasyon sorunu vardir” null
hipotezini kabul edecegimizi belirtir. Bu aciklamaya gore e= hata terimini, t=

zamani ifade etmek tizere Durbin Watson test istatistigi:

d = e (e; “e) (2.16)

2
e
t=1 t




d degerinin aralign 0 ile 4 arasinda deger alabilir. Artiklarin o6rneklem
otokorelasyon degeri r olmak tizere d degeri yaklasik 2(1- 1)’ ye esit olacak
sekilde d=2 olmasi otokorelasyon probleminin olmadigi sonucunu verir. Genel
kabul goren kani, eger Durbin-Watson degeri 1’den azsa bir alarm durumu
ortaya cikacaktir. Kii¢iik olan d degeri, ortalamaya gore ardisik hata terimlerinin

pozitif bir iliskili icinde oldugunu gosterir.

Durbin Watson testi, seri iligkisinin varligini ortaya cikarmak icin gelistirilmis ilk
testlerden biri olmasi sebebiyle miihimdir ama test istatistiginin hesaplanmis
olan D dagilimi, kararsiz kalinan bazi bolgelere sahip oldugundan testin etkin bir
test olmadigi kanisina varilmistir. Ayriyeten regresyon modeli, aciklanan
degiskenin gecikmeli degerlerini iceren aciklayici degisken olarak yer veriliyorsa
test sapmali sonu¢ gostermektedir; bu durum icin secenek bir test olarak Durbin

h test istatistigi Onerilmistir. Durbin h testi asagidaki gibidir:

ho@-tq) T (2.17)

1-TVar (B)
Burada Var (f) zaman gecikmeli aciklanan  degiskenin  e§im
katsayisinin standart hatasinin karesi, T ise gozlem sayisni ifade etmektedir.

Fakat bu test istatistigi su kosulda gecerli olmaktadir.

T. Var"(B) <I matematiksel olarak paydasinin eksi isaretli olmas1 durumunda

karekok islemi yapilamaz.

VAR yontemi modellerinde degiskenlerin bir biitiin olarak ele alarak birbirleriyle
etkilesimlerini ortaya c¢ikarmasi agisindan ¢ok miihim bir tekniktir. VAR
analizinde elde edilen katsayilarin yorumlanabilmesi giic olmasina karsilik, F
testi sonuglar1 sag tarafta yer alan degiskenlerin beklenen etkileri konusunda
bilgi vermesi dolayisiyla ¢ok faydalidir. VAR analizinde bulunan degiskenlerin
duragan olmasi veya olmamasi biiyiik bir tenkit s6z konusudur. Fark alimindaki
tenkit, verilerle hareket bilgilerdeki kayba sebep olmaktadir. Bu konuyla ilgili
cokca ifade edilen goriisiin analizde yer alan degiskenlerin gercek veriden
yararlanilarak yapilmasi seklinde ifade edilmektedir. Giiniimiizdeki deneysel

calismalarda model kestiriminde veri setilerindeki ilk farklarinin alinmasinin
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daha uygun olup olmayacagini test etmeyi amaclamislardir. Duragan olmayan
serilerde yapilmis analizler, duragan seriler kullanarak yapilmis analizlerden
apayrt degerlendirilmistir. Duragan olmayan seriler kullanilarak yapilmis
analizler, istatistiksel acidan yanlis sonuclar ifade etmektedir. Birim koke sahip
olsalar dahi fark alimina karsit goriis vererek VAR analizinin hedefinin
parametre kestirimi olmadigi, ama degiskenler arasi iliskilerin belirlenmesinde

yardimc1 oldugu sonuca varilmistir.
2.2 Coklu Bagint1 Problemi

Coklu baginti denklemin bagimsiz degiskenleri arasindaki iliskinin ciddiyetiyle
alakali problemdir. Iki tiirlii olarak karsimiza cikar. Bagimsiz degiskenler
arasinda tam bir iliski varsa “tam coklu bagint1” problemi vardir. Bagimsiz
degiskenler tam olmasa dahi iliski icindeyse “tam olmayan coklu bagint1”

problemi ortaya cikar.

Denklem 2.4'deki X matrisinde X, ile X, arasinda tam bir lineer iliski varsa bu
degiskenler arasindaki korelasyonu 1 olarak bulunacaktir. Bu halde rank(X)=k
varsayimi saglanamayacak rank(X)<k sonucuna ulasilacaktir. Yine bu problem
|X|]=0 ve |XX|=0 sonucunu ortaya cikardigindan X' ve XX)'

bulunamayacaktir ve denklem tahmin edilemeyecektir.

Tam coklu baginti problemi su sekilde tespit edilebilir. Verilerin tiiretilisinde
ve/veya kullanilisinda farkinda olmayip yapilan bir yanlishktan kaynaklanabilir.
Denklemde bir sabit terim vardir ve bagimsiz degisken sabit kalabilir. Bir
bagimsiz degisken diger bagimsiz degiskenlerin lineer bilesimi olarak

tliretilmistir. Kukla degisken hilesine yakalanilmis olabilir.

Klasik modelin varsayimlar1 saglandiginda regresyon katsayilarinin en kiiciik
kareler tahmin edicileri DESTE(Dogrusal En iyi Sapmasiz Tahmin Edici)’dir.
Coklu bagint1 tama yakin ¢oklu bagintidaki gibi cok yiiksek olsa bile en kiiciik
kareler tahmin edicileri DESTE 6zelliklerini korumay: siirdiiriirler. Oyle ise
neden coklu baginti 6nem kazaniyor. Aslinda coklu baginti hicbir regresyon
kosulunun disina c¢ikmaz. Ayriyeten sapmasiz, tutarli kestirimler bulunur, bu

kestirimlerin standart hatalar1 dahi dogru hesaplanir. Coklu bagintinin tek etkisi
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kiiclik standart sapmali katsay1 kestirimleri elde etmeyi zorlastirir. Gozlem sayisi

tahmin edilecek katsay1 sayisinin iistiindeyse ¢coklu baginti sorunu ortaya ¢ikar.

Coklu bagint1 uygulamada dogurdugu sonuclar sunlardir. EKK tahmin edicilerin
DESTE olmalarina karsin varyanslari ve ortak varyanslar1 biiyiiktiir, bu da kesin
tahmini giiclestirir. Giiven araliklar1 ¢ok genis olma egilimindedir, bu da “sifir”
(vani ana kiitledeki gercek katsayisinin sifir oldugu ) yokluk hipotezi kolayca red
edilememesine yol acar. Bir ya da daha c¢ok katsaymnin t oranlar1 istatistik
bakimindan anlamsiz olmasina karsin, biitiiniin uyum iyiliginin olciisi ¢ok
yiiksek olabilir. EKK tahmin edicileriyle onlarin standart hatalari, verilerdeki

degisimlere kars1 duyarl olabilirler.

Bir ya da daha cok katsay1 yani t oranlari

5
t= 5. (2.18)
B

istatistik bakinindan anlamsiz olur.

Coklu bagint1 sorununu diizeltici énlemler sunlardir; Onsel bilgi, kesit verileriyle
zaman serisi verilerini bir araya toplama yani digsal ya da onsel bilgi tekniginin
bir bi¢cimi de karma veri yaratmak diye bilinen, kesit ile zaman serisi verilerini
bir araya toplamaktir. Degisken(ler)i atmak ve model kurma sapmasi yani ¢oklu
bagint1 sorununda en basit yol ortak dogrusal degiskenlerden birini modelden
cikarmaktir. Bir degiskeni modelden ¢ikarmak da model kurma hatasi (sapmasi)
nin biiyiimesine yol acar. Degiskenlerin doniistiiriilmesi, ek ya da yeni veri

alinabilir. Coklu regresyonlarda ortak dogrusallig1 azaltmak gerekir.

Coklu bagintiy1 diizeltmek icin onlemler sunlardir; Faktor analizi (etmen
¢oziimlemesi)yapmak, temel bilesenler analizi yapmak, ridge (sirt) regresyon

yapmak gerekebilir.

Son olarak bir c¢ati1 altinda derlemek istersek coklu baginti hakkinda 6zet ve

sonuglar sunlardir.

Klasik regresyon analizinde c¢oklu dogrusallik olmadigi varsayilsa da X

degiskenleri arasinda ya tam ya da tama yakin dogrusal iliskiler bulunabilir.
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Coklu bagintinin olmasi sonucu itibariyle regresyon katsayilar1 belirlenemez ve
standart hatalar1 tanimlanamaz. Ortak bagint1 tam degil ama yiiksekse regresyon
katsayilar1 tahmin edilebilir ama bunlarin standart hatalar1 yiiksektir.Amag
regresyon katsayilarinin dogrusal bilesiminin tahmin edilebilir fonksiyonlarini

tahmin etmekse, tam ¢oklu bagint1 varken bile bu yapilabilir.

Coklu bagintinin gostergesi R® ’nin yiiksek olmasi, regresyon katsayilarinin ¢
testine goére istatistik bakimindan anlamli olmamasidir. ki degisken arasinda
sifirinc1 dereceden korelasyon katsayisinin degeri yiiksek ise nedeni coklu
bagintidir. Ikiden fazla degisken icin bulunan sifirinci dereceden bulunan
korelasyon katsayisi yanilgiya sebep olabilir. Bu durumda kismi korelasyon
katsayilarina bagvurulabilir. R’ yiiksekken kismi korelasyonlar diisiikse coklu
baginti olasidir. Eger R’ yiiksekken kismi korelasyonlarda yiiksek ise coklu
dogrusalligin varlig1 hemen anlasilamayabilir. X; degiskeninin modeldeki diger X
degiskenleri tizerine bulunan regresyon modelinden bulunan belirlilik katsayilar
R7 bulunabilir. R?’ nin biiyilk olmasi X, ’ nin diger X ’ lerle yiiksek bir
korelasyonu oldugunu gosterir. Bu durumda X; model kurma hatasinda ciddi bir

biiyiimeye sebep olmayacaksa modelden cikarilir.

Coklu bagitinin saptanmasi mag¢i kazanmanin yarisi, diger yarisi ise nasil
giderilecegidir. Digsal ya da onsel bilgiden yararlanilabilir.Kesit ya da zaman
serisi verilerini bir araya getirilebilir. Yiiksek ortak dogrusallik gosteren degiskeni
dislanilabilir. Veriler doniistiiriilebilir. Ek ya da yeni veri derlenilebilir. Bu
kurallardan hangisinin uygulamada ise yarayacagi, kuskusuz verinin niteligine

ve ortak dogrusallik sorununun ciddiyetine baglidir.

Coklu bagintinin kestirimdeki roliine dikkat cektik ve ortak dogrusallik yapisi
gelecekteki orneklemelerde de varligini siirdiirmeyecekse, c¢oklu bagintiya
bulasmis regresyon tahminlerini gelecegin kestiriminde kullanmanin sakincali

olabilecegine soylemek gerekir.

Her ne kadar coklu baginti sorunsa da, kii¢iik 6rneklemde en az onun kadar

sorundur.
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2.2.1 Coklu Bagintinin Saptanmasi

Coklu bagintiy1 saptamak ve ciddiyetini 6lcmek icin oldukca fazla metot ileri
siirtilmiistiir. Baz1 metotlarin bir béliimii ¢coklu bagintinin varligi i¢in bir gosterge
olarak onerilmisken bazi metotlar kati kurallar icermektedir. Tiim metotlarin

ortak ozelligi coklu bagintinin ciddiyeti hakkinda bilgi vermesidir.

Aciklayict degiskenlerin iliski katsayilar1 yiiksek olmasi durumunda coklu
bagintinin kamit1 goriiliir. Bu metotta iliski matrisinin XX  kosegenleri
haricindeki birimleri, degiskenler arasindaki iligki katsayisini gosterir. X; , X;

degiskenleri arasinda tama yakin bagint1 var ise, |r;/ bire yakinlasir.

Kurali ifade etmek gerekirse sadece iki aciklayici degisken arasindaki lineer ya da
lineere yakin bagintiy1 ortaliga cikarir. Degiskenler arasi iliski katsayilari
zayifken de ciddi coklu baginti ile karsilasmak olasi oldugu icin, ikiden cok
acgiklayic1 degisken arasindaki iliskiyi iliski katsayilari ile agiklamak zayif kalir.
Aciklanan degiskenle aciklayici degiskenlerin tiim bilesimleri arasindaki kismi

iliski katsayilar1 hesaplanarak coklu baginti sorunu oldugu ortaya konabilir.

Coklu baginti sorununun teshisinde ¢okca kullanilan metotlardan biri Varyans
Biiylitme Faktorii (VBF)¢ diir. (XX)” matrisini aciklamak gerekirse asal kosegeni

VBF degerini ifade etmektedir

Hoerl ve Kennard(1970), coklu bagintinin teshisinde VBF degerleri gosterge
oldugu soylemistir. Fakat VBF degeriyle coklu bagintinin ciddiyetine karar
vermek icin kaynaklarda ortak bir say1 sOoylenememistir. Bazi kisiler VBF
degerinin 5’ten biiyliik olmasi durumunda c¢oklu bagintinin ciddi olacagini
belirtirken, bazi kisiler coklu bagintinin ciddiyetinin VBF degerinin 10’dan biiyiik
olmasit durumunda arastirlmasi gerektigini soylemistir. Bazi kisiler, 4'lin

tizerindeki bir VBF daha fazla arastirmanin gerekli oldugunu séylemislerdir.

Ozdegerlerin sifira yakin olmasi coklu bagint1 belirti gosterse de ciddiyetini bize
sunmaz. Bundan otiirii 6zdegerlere tek tek bakilmasi yerine birbirleriyle
kiyaslanmasini iceren bir metot Onerilmistir. En biiyilk 6zdegerin en kiiciik
0zdegere orani seklinde ifade edilmistir. Kosul sayist 100 ile 1000 arasinda ise

coklu bagint1 orta derece, 1000’den biiyiikse yiiksek derecede sorun vardir.
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XX iliski matrisinin determinanti1 ¢oklu bagintinin ciddiyetini ortaya cikarmak
icin bir gostergedir. Matrisin determinanti O ile 1 arasinda deger alacaktir. Sifir
olmasi durumu, tam coklu bagintiy1 ifade ederken, 1’e esit olmasi coklu
bagintinin olmadig1 soyleyecektir. Determinanti sifira yaklasan deger olmasi
tama yakin c¢oklu bagintinin varligini gosterir ve bu durum en c¢ok karsimiza
¢ikan bir durumdur. Ancak bu gosterge coklu bagintinin ciddiyeti hakkinda
goriis vermekte ve hangisinden kaynakli bu sorunun ortaya ¢iktig1 hakkinda bilgi

vermez.

Yardimcr regresyon, modeldeki aciklayici degiskenlerin sirasi ile aciklanan
degisken olarak ifade etmekte, kalanlariysa acgiklayici degiskenler ile olusturulan
bir regresyon modelinin kestirimine dayanan metottur. Bu modellere ait R* "ler
ile hesaplanacak F oraninin anlamlilig coklu bagintinin varliginin

saptanmasinda yardimci olacaktir..

Aciklayic1 degiskenler arasi iliski katsayilari, modelin R¥sinden yiiksekse, coklu

bagint1 sorunu ciddidir.

Theil-M oOlciitiinde, 6teki metotlardan farkliligi, aciklayici degiskenlerin kendi
aralarindaki iliskiyi degil aciklanan degisken ile olan iliskilerini one siirerek
coklu baginti olup olmadiginin arastirmasina dayanir. Bu metotta, modelden
sirast ile aciklayan degiskenler cikartilip kestirilen modellerin coklu iliski
katsayilariylada ilk kestirilen modelin R?si arasindaki iliskiyi ortaya koyan bir

olctidiir.

Bu yontemin diger yontemlere gore zayifligi, coklu bagintinin miktar1 hakkinda
bilgi vermez. Varyans biiylitme faktorii ¢coklu baginti1 hakkinda daha fazla bilgi

veren ¢ok kullanilan yontemdir.

Orneklemdeki coklu bagintinin sebebi, diklikten sapma olarak ortaya cikabilir.
Diklikten sapma arttikca X'X iliski matrisinin determinantinin sifira yaklasmasi ve
coklu bagintiya sebebi bulgusunu izleyerek bu metot, aciklayici degiskenlerin
dikligini ortaya c¢ikarmayi konu eder. Farrar ve Glauber(1967), normal dagilima
uydugunu gosterdikleri p tane aciklayici degisken arasinda ¢oklu bagintiy1 ortaya
cikarmak icin, X'X iliski matrisinin determinantina dikkat ¢eken y ? test istatistigi

gelistirmistir.
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Curto ve Pinto(2007), coklu bagintinin EKK kestiricileri iizerindeki etkilerinden
bahsederken ayrica temel bilesenler ve etmen analizi gibi cok degiskenli
istatistiksel yontemlerdeki kotii etkilerini ortaya c¢ikaran bir yeni metot ortaya

koymustur.
2.3 Ridge Regresyon

Dik olmayan verilere en kiiciik kareler yontemi uygulandiginda regresyon
katsayilarinin cok zayif kestirimleri elde edilir. En kiiclik kareler yonteminde
sorun, f’nin f yansiz bir kestirici olma zorunlugudur. Gauss-Markov 6zelligi
en kiiciik kareler kestiricisinin yansiz lineer kestiriciler sinifindaki en kiiciik
varyansa sahip oldugundan emin olmamizi saglamaktadir ancak bu varyansin
yansiz olmasi zorunlulugundan vazge¢mektir. Regresyon katsayilarinin yanl
kestiricilerini elde etmek icin farkli yontemker gelistirilmistir. Bunlardan biri
ridge regresyondur. Ilk olarak Hoerl ve Kennard tarafindan énerilmistir.

[ = (X' X+k) X"y (2.19)
Denklem 2.19'da ridge regresyon Kkestiricisi gosterilmektedir.Denklem 2.9'da EKK
tahmin edicisine goz oniinde bulunduruldugunda yanli olmasina ayriyeten
varyansi kiiciiltmesi sebebiyle tercih edilebilecek bir metot olan ridge regresyon

metodunun baglica kullanim amaclarini su sekilde ifade etmek gerekir:

e Coklu regresyon modelinde aciklayici degiskenler birbirleriyle ilintili
olduklarinda, en kii¢iik kareler tahmin edicisinden daha kiiciik varyansh

tahmin edici elde edilmesi icin,

* Gilcli coklu lineer baglanti etkisiyle regresyon katsayilarinda olusmus

kararsizliklarin grafik ortaminda gosterilmesi icin,
* Modeldeki gereksiz degiskenlerin cikarilmasi icin,

* Ridge regresyon metodunun en kiiciik karelerden bir diger farkliligiysa, k
Ridge yanlilik parametresinin olmasidir. O ile 1 arasinda deger alan her k
icin hesaplanan parametre tahminleri arasindan uygun kriterlere sahip

olanlar1 se¢mek icin kullanilir.
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N

E(B.) = B—K(X'X +KI) '3 (2.20)

., denklem 2.19daki Ridge regresyon kestiricisini ifade etmektedir. Denklem

2.20’deki Ridge regresyon beklenen degeri gosterilmektedir.

yan(B,) = E(8,)~ 2.21)

Denklem 2.21'de yami bulabilmek icin denklem 2.20'deki ifadeyi yerine
koydugumuzdaki denklem 2.22'deki ifadeye ulasiriz.

yan(8.) = —k(X'X +kI)™3 (2.22)
Ridge Ortalama Kare Hata Ridge Yanhlik (bias) Miktars
En Kiigiik Kareler Ortalama
Kare Hata

Ridge Varyans:

K
Sekil 2.1 K sabiti

Varyans, sapma kare ve k arasindaki iliskiyi sekilde gostermeye calisilmistir.
Sekil 2.1'deki en kiiciik kareler varyansi hata kareler ortalamasina esittir ve k’dan
etkilenmedigi icin yatay dogruyla ifade edilmistir. Sekil 2.1'de goriilecegi lizere,
k artarken ridge’in varyansi azalmakta, sapma kare artmaktadir. Sekil 2.1'de
tizerinde Kkesikli cizgiyle gosterilen ridge kestirici metodunun hata kareler
ortalamasi, uygun bir kda minimum degeri almakta ve daha sonra tekrar
beklenecegi gibi en kiiciik karelerin hata kareler ortalamasini gececektir.
Boylelikle, kiiclik bir sapmaya goze alarak, kestirimin artik kareler ortalamasinda
meydana gelecek az bir artisa karsilik varyansta kayda deger bir azalma

saglayacagindan dolay1 k degerinin secilmesine yardimci olacaktir.
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Coklu lineer regresyon probleminde coklu baglanti oldugu durumda katsayi
kestirimleri hassas olur. Yani veri kiimesine birka¢ gozlemin ilave edilmesi ile bu
kestiricilerde degisikliklerin olabilecegi gozlenmektedir. Bu sebeple duyarlilik
analizi Ridge regresyonun temel amaci olarak karsimiza cikar. Ridge
regresyonun en biiylik avantajlarindan birisi calisilan veri icin duyarli olan
katsayilar1 gérmemize yardimci olabilir. Ridge izi (Ridge Trace) olarak ifade
edilen bu grafik gosterim duyarli katsayilar1 gormemizi saglar. Ridge izi
arastirmacitya hangi katsayilarin verilere hassas oldugu konusunda bilgi verir.
Ridge izi grafiklerinde yanli regresyon katsayilari, k’'nin bir fonksiyonu olarak ele
alinmaktadir. Ridge izi, her bir katsay1 degerinin grafiksel gosterilmesidir. Her
bir katsayi i¢in iz olusturur. Ridge izinde amac¢ EKK'dan daha kiiciik HKO'suna
sahip k degerini elde etmektir. Ridge izinde bir diger amac kararli katsayilar
kiimesini olusturmaktir. Kararlh katsayilar kiimesinin anlamiysa verideki kiiciik
degisikliklere kars1 katsayilarin hassas olmamasidir. Eger aciklayici degiskenler
arasinda yiiksek bir iliskili iseler k'nin kiiclik degerleri i¢in katsayilar cok hizli
degisir ve k'nin daha biiyiik degerlerinde derece derece kararli olur. Katsayilarin
kararli oldugu k degeri katsayilarin istenen veri kiimesinin elde edilmesinde

yardimci olur.
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Ridge Trace for y
1,0

0,5

Variables

® xi
® x2
@ x3

Standardized Betas

0,0 ¢

Sekil 2.2 Ridge izi

Burada x1’e dikkat edelim. Ridge izinde en cok hassasiyet x1’dir. Bu aralikta bir
k degeri secilmelidir. Coklu dogrusal baginti durumunda Ridge regresyon
metoduyla yapilacak tahminlerin kararlili§i, ridge yanlilik parametresi k icin
uygun degerin bulunmasina baghdir. Optimum k degerinin bulunmas: halinde
ridge tahmincilerinin HKO’s1 EKK tahmincisinin HKO’dan daha az olur. Fakat en
optimal k degeri, knin bilinmeyen B parametre vektoriine ve varyansa ¢ bagl

olmasina karsin kesin bir bi¢cimde belirlenmis olmaz.

Yapilan calismalarda ridge parametresi Anin belirlenmesi icin kesin bir kural
konulmamasina karsin Knin tahmini icin bir oldukca fazla Oneri ortaya
konulmustur. Hoerl ve Kennard, 1970 yilinda kmin secimi icin Ridge Izini
(Ridge Trace) onermistir. Marquardt ve Snee, Varyanas Biiyiitme FaktOori’niin
1 ile 10 degerleri arasindaki Anin segilebilmesini 6nermislerdir. Anderson,
1998 yilinda aciklayici degiskenler icin birlikte 1’e yaklasan VBF degerlerine

karsilik gelen k sabitinin alinmasini ifade etmislerdir.
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Hoerl, Kennard ve Baldwin 1975 yilinda,

N

_kO'2

k* ==
BB

(2.23)

onermistir. Buradaki k aciklayici degisken sayisini gostermesi sebebiyle ridge

yanlilik parametresi k* ifade edilmistir.

McDonald ve Galarneau 1975 yilinda,

pe = B - AT (2.24)

Denklem 2.24'i saglayacak k degerinin varliginin uygun olacabilecegi
belirtmislerdir. Bunlarin disinda coklu baginti ¢ok ciddi olmasi durumda EKK

kestirimleri dogru sonuclar vermeyecegi icin denklem 2.24’deki formiilasyona

yazilirsa,
A2
=Ko (2.25)
k
i=1a
onerilmistir. Burada @ temel bilegenler kestiricisidir.
Lawless ve Wang’in 1976 yilinda 6nerdigi bir formiildiir.
A2
k,=—P% (2.26)

: ~
Zj:lij o)’
Anderson(1998), 1’e yaklasan VBF degerlerine karsilik gelen k sabitinin

alinabilecegini belirtmistir. Albayrak(2005), bu yaklasimin kullanabilecegini

belirtmistir

Kibria(2003), yilinda k yanlhlik parametresi icin o©nerdigi formiiller asagidaki
gibidir.

liye (2.27)
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A2

d (2.28)
(J J(a:))@l p)
median(Z) (2.29)
aj

Muniz ve Kibria(2009), k yanlilik parametresi icin oOnerdigi formiiller asagidaki

gibidir.

(2.30)

(2.31)

(2.32)

Up

(2.33)

median( (2.34)

Muniz vd.(2012), k yanlilik parametresi icin onerdigi formiiller asagidaki

gibidir.
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max( ) (2.35)

A2

Ao

max
A2 A2

(n_ p)O' +/1max aj

A2

max Aimax O (2.36)

A2 A2
(n-p)o + 4@

A2

/1max o "
max| |CmZ g a (2.37)
(n-p)o
= lUp
1 L — (2.38)
A O
n A2
(n - p) O-2+ﬂ’max aj

r qJl/p
A2
I1 P @ (2.39)
N A2
L (n_ p) 02+/1max aj ]
. 1
median( = ) (2.40)
Avax O
A2

(n - p) O-2+ /1max aj

Dorugade ve Kashid(2012), k yanlilik parametresi icin onerdigi formdiiller
asagidaki gibidir.

po’ B 1

max(0,——
da N(VBF;) x

) (2.41)

HarmonicMean j—pZ( (2.42)

2
O
N

2
&,
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Karaibrahimoglu, Asar ve Genc¢(2014), Hacettepe Matematik ve Istatistik

dergisinde onerdikleri tahmin ediciler asagidaki gibidir.

A2
p° o
PREIE. (2.43)
max ai
N 2
PP o
max ai
A2
p o
max i
i=1
A2
2p o
max ai
2
A2
P o (2.47)

1/3 A2

p p
Qa2
i=1 i=
Hacettepe Matematik ve Istatistik Dergisinde denklem 2.43 ve denklem 2.44’

deki kestiriciler en iyi performansi gosterdiginden bahsedilmistir.

Goktas ve Seving(2016), tiirli tirli simiilasyon calismas: tiirli tirli p ve n

degerleri icin yeni iki k yanlilik parametresi ifade etmislerdir.
2.4 Liu Regresyon

Coklu baginti durumunda alternatif olarak 6nerilen yanl kestiricilerden birisi Liu
kestiricisidir. Liu(1993), Ridge regresyonun farkli bir kombinasyonu ile Stein tipi
kestiricisinin bir kombinasyon olusturmustur, bu kestiricilerin avantajlarini da
biraraya toplayarak yeni bir yanli kestirici tanimlamistir. Liu tanimladigi bu
kestiriciyle EKK’y1 karsilastirmistir, onerdigi kestircinin EKK kesticisinden az hata

kareler ortalamasi oldugunu ortaya ¢ikarmaistir.
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By =(X'X+1) (X y+d p) (2.48)

Denklem 2.48'deki esitlikte Liu kestiricisi gosterilmektedir. B, ile gdsterilmistir.
d, yanlilik parametresinin degerleri 0<d<1 arasinda deger almaktadir. Liu
kestiricisi d yanlilik parametresinin lineer bir fonksiyonunu ifade etmesi
itibariyle, d’'nin secilmesi k'nin secilmesine nazaran kolaydir. Bunu gostermesi

itibariyle bahsedilen 6zellik Liu kestiricisini daha 6nemli yapan bir husustur.

X'y:(X'X),b (2.49)
A=(X"X + )X "X +dI) (2.50)
E(B,) = E(AB) = AE(f) = AB 2.51)

Denklem 2.51'deki esitlikte Liu tahmin edicisinin beklenen degeri ifade edilmeye
cahisilmistir. Denklem 2.48'deki ifadeye 2.49'deki esitlikte yazilmistir. 8
parantezine alinmistir. Ortaya cikan denklem 2.50'deki ifadeye A denmistir. Liu

tahmin edicisinin beklenen degeri hesaplanmistir.

yan(g,) = E(8,)- (2.52)
yan(4,) = (XX + 1y (XX +d)g— 3 (2.53)
yan(ﬁAd):[(X X+D)HX X +dl)-1]p (2.54)

Denklem 2.52'deki yan denklemine Liu kestiricisi yazilmistir. Denklem 2.53’deki
esitliklikte acik hali gosterilmeye calisilmistir. Denklem 2.54'de f parantezine

almistir ve yan hesaplanmuistir.

Liu kestiricisinde hedef diger yanlh Kkestiricilerdeki gibi olmasi beklenen az yan
karsiliginda parametre kestiricilerinin varyansini azaltmaktir. Liu kestiricisini

varyansini;
Var((XX+1)"' (XX+dDB) (2.55)

Denklem 2.55’deki esitlikteki gibi varyansi bulmak icin Liu kestiricisi yazilmistir.
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(XX+D"(XX+dD)Var(B)((XX+D" (XX+dD) (2.56)

Denklem 2.56'daki esitlikte varyans kurali uygulamistir.

Var(B,) =c*(X' X + ) (X' X +dI)(X "' X) (X' X +d)(X' X +1)*" (2.57)
Liu tahmin edicisinin varyansi elde edilmistir.

Liu(1993), EKK kestiricisinden daha kiiciik HKO sahip 0<d<1 arasinda bir d

sabiti elde edilebilecegini gostermistir.

Akdeniz vd.(2006), optimal d parametresi ifade etmislerdir. XX= 1 olmasi

haliyle denklem 2.48’den elde edilmis Liu kestiricisi,

B, =%(1+d)X'y (2.58)
biciminde elde edilmistir ve burada d yan/ilik parametresi,
2 2
opt — =+ zpo- ; (259)
po”+p'p
ifade edilmis olur.
Bilinmeyen parametre kestirimleri yerine yazilirsa d yanlilik parametresi,
A2
dopt =1—2p—— (2.60)

BB
seklinde yazilmistir. dopt parametresi icin Onerilen bir {ist sinir ifade edilmek

istenirse,

A2

d*=1-(Znny2p (2.61)
fx BB
olmak iizere,
A2
oo <1—(jj'1—m)2 0-Z__d* (2.62)
mx BB

bicimde elde edilmistir.
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Denklem 2.62’deki esitsizlik, p > 2 olmasi durumunda,
E(dop) < E(d%) =1 (Zmnye _P_ (2.63)
ﬂ’max p- 2

biciminde bulunmustur.

ZP ajz g

= (4, +1)?

Aope = 2 2
zp o+ A4,

= 2, (4 +1)

(2.64)

Denklem 2.64’deki esitligi Liu tarafindan 1993 yilinda 6nerdigi bir esitliktir.

= « . (K) qﬁdl(dlj
a5
-
3= <
o .
O 5 N 3

Sekil 2.3 Ortak k ve d

Optimal k degerinin sifira yakin secilmesi ridge regresyonu konu alan

kaynaklarda ¢okca olarak uygun goriilmistiir. Fakat sekil 2.3’de goriilecegi gibi

yanlilik parametresi degeri saptandig1 goriilmiistiir.
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UYGULAMA

3.1 Model ve Veri Seti

Veriler TCMB sitesinden alinmistir. 2003-2020 yillarina ait ceyreklik verileri
kullanilmistir. Modelde aciklanan degiskenler ise ihracat, aciklayic: TUFE, pasif

toplamy, birikimli YI-UFE endeksi kullamilmstir
logihr: Logaritma ihracat

yitife: Yurtici iretim endeksi

tiife: Tiiketici fiyat endeksi

pasif: TCMB pasif yiikiimliiliikleri
Standartlastirilarak elde edilen model:

logihr= B,+ B, tife+ B,yiiife+ B,pasif

3.2 Ampirik Bulgular

Tablo 3.1 Normal dagilima uyma tablosu

Probability Plot of RESI

MNormal

99,9

Mean 1788693E-16

StDev 0.2016

= N 72

AD 0.205

e P-Value 0,869
30
80
-El 70
S
g 40
a3
20
10
5

.
1 - L
01
40,50 0,25 0,00 0,25 0,50 0,75

RESI
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Regresyon modeli Minitab 18 programinda kurulmustur. Residuals’lerin

Anderson-Darling  testine gore tablodaki p degeri g6z Oniinde

bulunduruldugunda normal dagilimina uydugu gortlmiistiir.

Tablo 3.2 Model anlamlilig1 ve vif

ANOVA®
Sum of
Model Squares of Mean Square F Sia.
1 Regression 62115 3 22,705 535138 ooof
Residual 2,885 68 042
Total 71,000 71
a. DependentWariable: logihr
b. Predictors: (Constant), yitfe, tife, pasif
Coefficients™
Standardized
Unstandardized Coefficients Coefficients Cuollinearity Statistics
Model B Std. Error Beta t Sig. Tolerance WIF
1 (Constant) | -2 656E-007 024 000 1,000
tufe -,050 051 -,050 982 330 234 42748
pasif -.837 143 -.837 -5,852 ,000 028 34232
yilfe 1,749 137 1,749 12,809 ,000 032 31,214

a. DependentVariable: logihr

SPSS 21 programinin ciktisinda modelin anlamli oldugu goriilmiistiir. Bazi
katsayilarin anlamsiz oldugu bazi katsayilarin anlamli oldugu goriilmistiir.
Coklu dogrusal baglanti probleminden siiphelenmistir. VIF bu sonucu dogrular
niteliktedir.

A2

k,=—P% (3.1)

lw o
2
it @

Denklem 3.1’deki esitlikte Lawless ve Wangin 1976 yilinda k yanlilik
parametresi icin Onerdigi bir esitliktir.R 4.1.1 stiriimiinde tablo 3.3’deki deger

hesaplanmistir.

Tablo 3.3 R Ridge k ciktis1

IW (1lm.ridge) 0.04420
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) aﬁ__az

d,, = (3.2)
pt Zp {Gz+/1jajz}
=4 (4, +1)°

Denklem 3.2’deki esitlikte Liu 1993 yilinda d yanlilik parametresi icin

onerdigi bir esitliktir. R 4.1.1 siiriimiinde tablo 3.4’deki deger hesaplanmustir.
Tablo 3.4 R Liu d ciktis

dopt 0.97582

Tablo 3.5 R Ridge k degerlerine gore cikt1

=]

J ks N

K=0 K=0.05 K=0.1 K=0.15 K=0.2 K=0.

tife -0.04964905 -0.0477060 -0.04602021 -0.04456005 -0.04329869 -0.04221
pasif -0.83696447 -0.7814974 -0.73063243 -0.68382494 -0.64061306 -0.60060
3

32
237
Jyitfe 1.74940920 1.6953197 1.64560601 1.59975164 1.55731832 1.5179318

3
Ridge regresyon yanlilik parametresi k degerlerine gore regresyon katsayilari R
4.1.1 siirimiinde tablo 3.5’deki degerler hesaplanmistir. Lawless ve Wang’in
1976 yilinda onerdigi esitlikle hesaplanan k yanlilik parametresi k=0.04420

olarak hesaplanmistir. Yaklasik olarak k yanlilik parametresi 0.05 alinmuistir.

Tablo 3.6 R Liu d degerline gore cikt1

d=0.9 d=0.925 d=0.95 d=0.975 d=1
tife -0.0484963 -0.04878449 -0.04907267 -0.04936086 -0.04964905
pasif -0.7762979 -0.79146457 -0.80663120 -0.82179784 -0.83696447
yitife 1.6891020 1.70417877 1.71925558 1.73433239 1.74940920
Liu regresyon yanlilik parametresi d degerlerine gore regresyon katsayilart R
4.1.1 stirtimiinde tablo 3.6’daki degerler hesaplanmistir. Liv'nun 1993 yilinda
onerdigi esitlikle hesaplanan d yanlilik parametresi dopt=0.97582 olarak
hesaplanmistir. Yaklasik olarak d yanlilik parametresi 0.975 alinmistir. Ancak bu

tablolar incelendiginde ridge kestiricisi ile liu kestiricisinin esitligini ortaya

koyacak saglayacak ortak bir k ve d degeri saptanabilecegi goriilmiistiir.
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Tablo 3.7 R Ridge k degerlerine gore R ciktisi

Variance Bias"2 MSE rsigma?Z F RZ2 adj-R2 CN
K=0 0.0411 0.0000 0.0411 0.0418 543.0078 0.9594 0.9582 178.6255
K=0.0225 0.0396 0.0013 0.0409 0.0418 542.7420 0.9570 0.9558 175.1246
K=0.045 0.0383 0.004%9 0.0432 0.0419 541.9830 0.9548 0.9535 171.7591

Ridge regresyon yanlilik parametresi k degerlerine gore diizeltilmis R* degerleri
4.1.1 stirimiinde tablo 3.7’deki degerler hesaplanmistir. Lawless ve Wang'in
1976 yilinda onerdigi esitlikle hesaplanan k=0.0442 olarak hesaplanmisti.
Yaklasik olarak k yanlilik parametresi 0.045 alinmistir.Ridge regresyon k=0.045

yanllik parametresi icin diizeltilmis R*=0.9535 degeri bulunmustur.

Tablo 3.8 R Liu d degerlerine gore R* ¢iktis

EDF SigmaZ2 CL VAR Bias"2 MSE F R2 adj-R2
d=0.9 69.0023 0.0419 4.891S5 0.0377 0.0073 0.0450 541.4658 0.9592 0.9574
d=0.925 69.0013 0.0419 4.9182 0.0385 0.0041 0.0426 542.1396 0.9593 0.9575
d=0.95 69.0006 0.0418 4.9452 0.0393 0.0018 0.0412 542.6219 0.9593 0.9575
d=0.975 69.0001 0.0418 4.9724 0.0402 0.0005 0.0406 542.9117 0.9594 0.9576

Liu regresyon yanlihik parametresi d degerlerine gore diizeltilmis R* degerleri
4.1.1 stirtimiinde tablo 3.8’deki degerler hesaplanmistir. Liu'nun 1993 yilinda
onerdigi esitlikte hesaplanan d yanlilik parametresi dopt=0.97582 olarak
hesaplanmisti. Yaklasik olarak d yanliik parametresi 0.975 alinmistir.Liu
regresyon d=0.975 yanlilk parametresi icin diizeltilmis R*=0.9576 degeri
bulunmustur. Bu sonug itibariyle Liu tahmincisini tstiin kilan bir sonuctur.Ciinki
Liu tahmincisinin diizeltilmis R* degeri Ridge tahmincisinin diizeltilmis R*

degerinden biiyiiktiir.

Tablo 3.9 R Ridge k degerlerine gore vif cikti

tife pasift vitife
k=0 4.27852 34.23230 31.21403
k=0.0225 3.28486 6.37817 6.06647
k=0.045 2.64213 2.84232 2.82215

Marquardt ve Snee, 1975 yilinda ridge yanlilik parametresinin k’'nin saptanmasi

icin VBF degerlerinin kullanilmasini soylemislerdir. VBF degeri k degerine 1 ile
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10 arasinda karsilik gelecek sekilde, uygun k degeri olarak saptanabilecegini
belirtmistir. Genel olarak, 4'ln tizerindeki bir VBF coklu dogrusalligin var
olabilecegini ve daha fazla arastirmanin daha iyi oldugunu gostermistir.
Yukaridaki k yanlilik parametresine gore hesaplanmis VBF degerleri g6z oniinde

bulundugunda buradan da elde edecegimiz sonu¢ k=0.045 bulunmustur.

Tablo 3.10 R EKK AIC, BIC ¢ikt1

-

> AIC (mod)
[1] -17.30403
> BIC (mod)
[1} -5.982069¢

Tablo 3.10’daki ¢ikt1 EKK yonteminin AIC, BIC degerine aittir.

Tablo 3.11 EViews AIC,Durbin-Watson cikt1

Variable Coefficient Std. Error t-Statistic Prab.
c 0056952 0.037523 1517776 0.1344
SERIESD(-1) 0898634 0119768  7.503108 0.0000
SERIES01(-2) 0671113 0153011 -4.336043  0.0000
SERIESD(-3) 0715039 0138144 2176037 0.0000
SERIESDZ(-2) -0,048474 0.043509 -1,114094 0.2694
SERIESD2(-1) -0,017932 0.046159  -0.380558 0.5083
SERIES03(-1) 0.326850 0.236226 1383634 01717
SERIESN3(-2) 0457115 0220285 -2075106 0.0423
SERIESD4(-1) 0221716 0.539723 0.410797 0.6827
SERIES04(-2) -0,118880 0.595175 -0.199721 0.8424
R-squared 0.984843 Mean dependent var 0058761
Adjustad R-zquared 0882531 S.D. dependentvar 0.963601
SE. ofregression 0127358 Akaike info criterion -1.150331
Sum squared resid 0956996 Schwarz criterion -0.B26547
Log likelihood 4968642 Hannan-Quinn criter. -1.02187¢
F-statistic 4259616 Durbin-Watson siat 2072187
Prob{F-statistic) 0.000000

Tablo 3.11’deki cikti zaman serisi modeline aittir. Var analizi géz Oniinde
bulundurularak fark alma islemleriyle otokorelasyon problem ortadan
kaldirilmistir. AIC degerinin kiiclik olmasi istenir. Yukaridaki AIC degerleri goz
ontinde bulundugunda buradan da elde edecegimiz sonuc¢ zaman serisi modeli

EKK yontemi daha kotii oldugu goriilmiistiir.
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Tablo 3.12 R Ridge AIC, BIC cikt1

AIC BIC
K=0 -225.6311 89.11891
K=0.0225 -200.2411 112.8841%
K=0.045 -187.9036 124.64517

™
Il
"o

Tablo 3.12’deki cikt1 AIC degeri Ridge regresyon yontemine aittir. AIC degerinin
kiiclik olmasi istenir. Yukaridaki k yanlilik parametresine gore hesaplanmis AIC
degerleri goz oniinde bulundugunda buradan da elde edecegimiz sonug¢ Ridge

yonteminden EKK yontemi daha iyi oldugu goriilmiistiir.

Tablo 3.13 R Liu AIC, BIC cikt1

4AIC BIC
d=0.9 -225.5348 895.08910
d=0.925 -225.5976 89.05774
d=0.95 -225.6347 89.05220
d=0.975 -225.6459 89.07253
d=1 -225.6312 89.11878

Tablo 3.13’deki cikt1 AIC degeri Liu regresyon yontemine aittir. AIC degerinin
kiiclik olmasi istenir. Yukaridaki d yanlilik parametresine gore hesaplanmis AIC
degerleri goz oniinde bulundugunda buradan da elde edecegimiz sonug¢ Ridge

yonteminden Liu regresyon yontemi daha iyi oldugu goriilmiistiir.
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4

SONUC VE ONERILER

Anlatidan da goriilecegi gibi d yanlilik parametresinin sec¢imi k yanlilik
parametresine gore daha kolaydir..Liu kesticisini 6ne cikaran 6zelliklerden
biridir.

Teorik olarak yerine yazildiginda k ve d yanlilik parametresi k=0, d=1 degerleri

EKK kestircisine esittirler.

Uygulama sonuglar1 da goz ontinde bulunduruldugunda ortak bir d ve k yanhlik

parametresi kestirici degeri elde edilebilir.

kestirimler ortaya cikarmasidir. Ridge kestiricisinin standart hatalarinin

hesaplanmasi icin kaynaklarda yer alan formiilasyon yoktur.

Secilecek k yanlilik parametresi degeri yanliligin artan bir fonksiyonu olmasi

sebebiyle, k degeri biiylidiikce parametreler daha fazla yanl kestirilecektir.

Ridge kestiricisin EKK kestiricisine, liu kestiricisiyse hem EKK hem de ridge

kestiricisine gore etkileyici sonuglar verecegi ortaya konmustur.

Tablo 4.1 R Liu katsayi cikt1

d=0.975
tife _o 04936086
pasif _o.82179784
yilife 1.73433239

Liu regresyon kestirimleri tablo 4.1’deki gibidir. Ac¢iklanan degisken ihracattir.
TUFE artarsa, ic talebin artmis oldugu dolayisiyla ihracattin azalacagi sonucuna
varilmustir. UFE artarsa, devaliiasyon etkisi ile dis talep artmis oldugu dolayisiyla
ihracattin artacagi sonucuna varilmistir. TCMB pasif yiiktimliiliikleri azalirsa,
doviz yiikiimliliikleri azalmis oldugu dolasiyla ihracattin artacagi sonucuna

varilmistir.
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