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ÖZET 

 

 
Çoklu Bağıntı Probleminde Liu ve Ridge Regresyon 

Kestiricilerinin Karşılaştırması 

Semih GÖKÇE 

 

İstatistik Anabilim Dalı 

Yüksek Lisans Tezi 

 

Danışman: Doç.Dr.Atıf Evren 

Regresyon analizi değişkenler arasındaki ilişkiyi modellemek ve incelemek için 

kullanılan istatistiksel bir yöntemdir. Birçok uygulama alanları vardır ve bu 

uygulamalar mühendislik, fizik, sosyal bilimler gibi hemen hemen tüm alanlarda 

kullanılmaktadır. En küçük kareler metodu, günümüzde hemen hemen bütün 

bilim dallarında çokça kullanılır. En küçük kareler metodu, birbirine bağımlı 

olarak değişen iki büyüklük arasındaki matematiksel bağıntıyı olabildiğince 

gerçeğe uygun bir denklem  olarak yazmak için kullanılan regresyon metodudur. 

Çoklu regresyon analizinde ortaya çıkan sorunlardan birisi de çoklu bağıntı 

sorunudur. Çoklu doğrusallık, açıklayıcı değişkenler arasındaki güçlü bir ilişkinin 

varlığı olarak tanımlanabilir. Çoklu doğrusallık parametre tahminlerinin 

varyansını büyütür. Ayrıyeten kestirilen regresyon katsayıları işaretlerinde buna 

ilave olarak büyüklükleri dahi yanlış olabilir. Dolayısı ile açıklanan, açıklayıcı 

değişkenler arasındaki ilişkiyi yanlış tarif edilebilir. Bu çalışmada öncelikli çoklu 

doğrusallık teşhis yöntemleri anlatılıp, Türkiye’nin ihracat modelini Ridge, Liu 

kestiricisiyle ve zaman serisi modelleri bir uygulaması yapılmıştır. Açıklanan 

değişken ihracattır. Açıklayıcı değişkenler TÜFE, Yİ-ÜFE, TCMB pasif 

yükümlülükleridir. Veriler 2003-2020 yıllları arası çeyreklik verilerini 



xi 

kapsamaktadır. Veriler Zaman serisine uygun olduğu için otokorelasyon 

probleminden şüphelenmiştir. Durbin-Watson testine göre otokorelasyon sorunu 

gözlemlenmemiştir. AIC değerlerine göre kıyaslama yapıldığında Liu kestiricisi 

ile elde edilen modelin diğerlerine göre en iyi sonuçları verdiği gözlenmiştir. 

Anahtar Kelimeler: Çoklu Doğrusallık, Ridge, Liu Kestiricisi, Zaman Serisi, 

İhracat   

                                        

YILDIZ TEKNİK ÜNİVERSİTESİ  

FEN BİLİMLERİ ENSTİTÜSÜ 
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ABSTRACT 

 

Comparison of Liu and Ridge Regression 

in  Multiple Connection Problem 

Semih GÖKÇE 

 

Department of Statistic 

Master of Science Thesis 

 

Supervisor: Assoc.Prof.Dr.Atıf Evren 

 
Regression analysis is a statistical method used to model and examine the 

relationship between variables. There are many application areas and these 

applications are used in almost all fields such as engineering, physics, social 

sciences. The least squares method is widely used in almost all branches of 

science today. The least squares method is a standard regression method used to 

write down the mathematical relationship between two dependently varying 

quantities as an equation that is as realistic as possible. One of the problems 

encountered in the multi-regression analysis is multicollinearity case. 

Multicollinearity in regression models is a result of strong correlations among 

independent variables. The existence of multicollinearity inflates the variances of 

the parameter estimates. Multicollinearity may also result in wrong signs and 

magnitudes of regression coefficient estimates, and consequently in incorrect 

conclusions about relationships between independent and dependent variables. 

In this research, firstly, theoretical structure of collinearity diagnostics and Liu 

estimator is introduced. At the end an application of Ridge, Liu, time series 

estimator for the Turkey’s export model is done. The variable explained is 

exports. Explanatory variables are TUFE, Yİ-UFE and TCMB’s liabilities. The data 
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includes quarterly data for the years 2003-2020. Suspicious of autocorrelation 

problem as the data is suitable for Time series According to the Durbin-Watson 

test, no autocorrelation problem was observed. When compared according to the 

AIC values, it was observed that the model obtained with the Liu estimator gave 

the best results compared to the others. 

Keywords: Multicollinearity, Ridge Estimator, Liu Estimator, Time Series, Export 
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1 
GİRİŞ 

 

1.1  Literatür Özeti 

İhracat ya da dışsatım olarak da bilinen kavram bir malın veya hizmetin yabancı 

ülkelere yabancı para karşılığında satılması işlemine verilen kavramdır. Ülkeler 

veya şirketler tarafından gerçekleştirilebilir. İthalat ve ihracat bir ülkenin dış 

ticaret dengesini hesaplamımıza yarar. Ülkede döviz kurunun düşmesi, diğer 

taraftan yerli paranın yabancı para karşısında değer kazanması, ticarete konu 

edilen malın uluslararası pazarda daha pahalı konuma getireceğinden malın 

rekabet gücünü azaltır. Aksi durumda ise ülkede döviz kurunun yükselmesi, yerli 

parann değer kaybetmesine ve malın uluslararası piyasada ucuzlaması neden 

olup ülkenin rekabet gücünü artıracaktır. 

Üretici fiyat endeksi ya da kısaltması ÜFE olarak da bilinen kavram belirli bir 

referans yıl alınarak ülke ekonomisinde üretimi yapılan ve içeriye satışı konu 

olan malların, üretici fiyatlarını zaman içinde karşılaştırılmasıyla fiyat 

değişikliklerini ölçmeye yarayan fiyat endeksi olarak ifade edilir. Aylık ,üç 

aylık,yıllık enflasyon rakamının belirlenmesinde rol oynar. 

Tüketici fiyat endeksi ya da kısaca TÜFE olarak da bilinen kavram tipik bir 

tüketicinin satın aldığı seçili mal ve hizmet grubunun fiyatlarındaki ortalama 

değişimleri göstermeye yarayan fiyat endeksi olarak ifade edilir. Yıllık enflasyon 

değişimlerini ölçmeye yarayan bir endekstir. Belirli bir yıl seçilmeli ve bu yıl baz 

yıl olarak ele alınmalıdır. Endeks değeri olarak 100 olarak kabul edilir. Bundan 

sonraki yıllardaysa cari yıllar enflasyon değerleri karşılaştırarak  değişkenlik 

gösterecek ve baz alınan endeks için oynaklıklar oluşacaktır. 

Merkez bankası bilançosu olarak da bilinen kavram para politikası 

uygulamalarındaki ortaya çıkan gelişmenin izlenmesi açısından son derece önem 

arz etmektedir. Para politikası uygulamalarıyla merkez bankasının bilançosu 

etkilenmektedir; uygulamadaki değişiklikler merkez bankası bilançosuyla  
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gözetlenir. Pasif kalemler, merkez bankasının bankacılık ve banka dışı kesime 

olan yükümlülüklerini ifade eder. Pasif kalemlerde yapılan değişikliklerle 

ekonomideki likidite ayarlanabilirken, likiditenin hangi kalemlerden dolayı 

kaynaklandığının sağlaması aktif kalemler tarafından izlenebilir. 

En küçük kareler metodu ilk kez 1795 yılında Gauss tarafından ortaya 

konmuşur. Gauss 1801 yılındaki çalışmasında metodu ele alarak, bulunmasından 

az süre sonra kaybolan Ceres asteroidinin tekrardan gözleyeceği yeri hesaplamış, 

bunu başarmasıyla büyük bir şana ulaşmıştır. Gauss bu metodu ilk 1809 yılında 

yayınlamıştır.1806 yılındaki çalışmasında matematikçi Adrien-Marie 

Legendre’nin ile 1808’deki matematikçi Robert Adrian’ın çalışması, F.Gauss’dan 

ayrı olarak bu metıdu geliştirmiştirler ve kullanmıştırlar. En küçük kareler 

metodu, günümüzde neredeyse bütün bilim dallarında sık olarak tercih 

edilmektedir. 

Ridge Regresyon Metodu ilk kez 1970’de Teknometri dergisinde yayınlamış 

olduklaro iki makaleyle Hoerl ve Kennard ortaya atılmıştır. Hoerl ve Kennard 

makalelerinde "Ridge Regresyon: Ortogonal Olmayan Sorunlar İçin Sapmalı 

Tahmin" başlığıyla, tam ranklı genel lineer hipotez modelini içeren çoklu 

regresyonda yansız kestirici sorununu detaylıca açıklamıştır. Makaleyle, yanlı 

kestirici biçiminin seçenek bir karakterizasyonu çıkartmış ve buna dayalı yanlı 

kestiriciyi oldukça iyi duruma getirmiş k değerini ortaya koyan Banerjee ve Carr 

tarafından 1971’de kanıtlanmıştır. 

Hoerl ve Kennard bu dergideki ikinci makalesinde  "Ridge Regresyon: Ortogonal 

Olmayan Sorunlara Uygulamalar", başlığıyla önceki makalesinde Ridge 

Regresyon yöntemi uygulamalarını anlatmışlardır. Bu makaleyle özellikle çok 

etmenli verilerde ilişkiyi saptamak için iki boyutlu uzayda bir grafik uygulaması 

olarak bilinen Ridge izine önem verilmiştir. Burada ayrıca EKK yöntemiyle 

bulunan denklemlerden oldukça iyi regresyon denklemi aramak için 

yapılabilecek işlemlerden söz edilmiştir. 

Hoerl ve Kennard'ın Teknometri dergisindeki yayımlanan makalesiyle ilgili 

200’den fazla makaleler kaleme alınmıştır. Makalelerin çoğu yine Hoerl ve 

Kennard'ın Amerikan Matematik ve Yönetim Bilimleri Dergisinde yayımlanan 
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makalesiyle birlikte gözden geçirilmiştir. 1980 yılına kadar Ridge Regresyon 

konusunu içeren çalışmalar gözden geçirilmiştir. 

Ridge regresyon yönteminde yanlılık parametresi kestiricinin doğrusal bir 

fonksiyonu değildir, yanlılık parametresi seçimi çok zordur. Bu nedenle yanlılık 

parametresinin seçimiyle fazla çalışma yapılmıştır. Yapılan çalışmalar şunlardır: 

Theobald (1974), Lawless ve Wang (1976), Kibria (2003), Khalaf ve Shukur 

(2005), Alkhamisi vd. (2006), Alkhamisi ve Shukur (2007), Muniz ve Kibria 

(2009), Muniz vd. (2012), Dorugade ve Kashid (2012), Karaibrahimoğlu vd. 

(2016),  Asar ve Genç (2017).  

Theobald(1974), yaptığı çalışmasıyla ridge regresyon kestiricisinin EKK 

kestiricisinden daha az HKO’su olmasına yarayan gerekli ve geçerli koşulu elde 

etmiştir. 

Kejian(1993), farklı tahmincilerin birleştirilmesi,  avantajlı olur düşüncesiyle bir 

araya getirerek Stein'ın 1956 yılında önerdiği tahminciyle ridge regresyon 

tahmincisini birleştirerek yeni bir yanlı tahminci tanımlamıştır. Kejian(1993), 

EKK tahminciyle öne sürdüğü yeni tahmincinin hata kareler ortalaması 

değerlerini karşılaştırdı. Elde edilen tahmincinin hata kareler ortalaması 

değerinin küçük olduğunu görmüştür. 

Liu(1993) yılında  önerilen  kestirici, Akdeniz ve Kaçıranlar  tarafından 1995 

yılında Lineer Unified kısaltması şeklinde ifade edilen Liu tahminci (Liu 

Estimator-LE) ifade edilerek tanımlanmıştır.. Liu kesticisiyle ilgili yapılmış 

çalışmalardan bazılarıysa şunlardır: Akdeniz ve Kaçıranlar(2001), Akdeniz 

(2001) ve Sakallioğlu vd. (2001) tarafından yapılmış çalışmalardır. Kaçıranlar ve 

Sakallıoğlu(2001), ridge kestiricisi, liu kestiricisinin avantajlarını biraraya 

getirerek r-d sınıf kestiricisini ifade etmişlerdir. Liu(2003), çalışmasında  ridge 

kestiricisi, liu kestiricisine seçenek olarak bu kestiricilerden oldukça uygun 

sonuçları veren Liu tip kestiricileri önermiştir. 

Mahajan ve ark.(1977), çalışmalarında veri seti içerisinde çoklu bağıntı problemi 

olması durumunda, EKK yöntemi ile tahmin edilen pazarlama modellerine ait 

regresyon katsayılarının yüksek varyansa sahip ve yanlış işaretli olduklarını 
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görmüşlerdir. Çalışmalarında ridge regresyon analizini kullanarak pazarlama 

verilerinde çoklu bağıntı sorunu ile mücadele edilebileceğini göstermişlerdir. 

Kidwell ve Brown(1982), çalışmasında çoklu bağıntı üzerine odaklanmıştır. 

Sorunu göstermek için Ridge regresyon tekniğini yapay verilere uygulamıştır. 

Çalışmada kestiricilerin ortogonal olmadığı durumda Ridge regresyon 

yönteminin en küçük kareler yönteminden farklı sonuçlar verdiğini göstermiştir. 

Aktaş ve Yılmaz(2003), çoklu regresyon analizinde açıklayıcı değişkenler 

arasında çoklu  doğrusal bağlantı olması hakkında EKK yöntemi yerine modele 

konulan bağımsız değişkenleri atmak yerine yanlı kestirimler yapmasına karşılık 

bağımsız değişkenlerin regresyon katsayılarının standart hatalarını  küçülten 

Ridge regresyon metodunu kullanmışlardır. Alternatif olarak Liu metodunun da 

kullanılabileceğini söylemişlerdir. 

Topçubaşı ve Billor(2003), çalışmasında bağımsız değişkenler lineer bağımlı 

olması halinde, en küçük kareler tahmincisine çeşitli seçenek içeren yanlı tahmin 

modellerin olduğunu, bu yanlı tahmin modellerinin çok büyük bir bölümünü 

içiren  bir sınıfı oluşturduğunu anlatmışlardır. Araştırıcılar yanlı tahmincilerin bir 

bölümünü bu sınıfa, Liu ve genelleştirilmiş Liu tahmincilerini dahi eklemişlerdir.  

Yolacan ve ark.(2005),  yapmış oldukları çalışmalarında çoklu bağıntı sorununu 

içeren ekonomik verilere ridge regresyon ve yapay sinir ağları algoritmalarını 

uygularak sonuçları karşılaştırarak  yorumlamıştır. 

Albayrak(2005), çalışmasında En Küçük Kareler, Ridge ve Temel Bileşenler 

Regresyon analizleriniyle  ulaşılan bulguları yorumlamıştır. Kullanılmış veri 

setindeki çoklu bağıntı sorunu olması durumunda standart hataların yüksek 

çıkabileceğini ve yanlı kestirim metotlarının en küçük kareler metoduna göre 

daha tutarlı, geçerli kestirimler olduğunu göstermiştir. 

Aktaş(2007), çalışmasında çoklu regresyon analizinde karşılaşılmış sorunların 

bir tanesi olan çoklu bağıntıyı saptama yöntemlerini anlatmış, enflasyon modeli 

için Liu tahmincisiyle  sınama yapmıştır. Çalışmasında Liu tahmincisi ile çoklu 

bağıntıdan arındırılmış model için, ilgili dönemdeki enflasyona para arzı ve USD 

değişkenlerinin etki ettiğini söylemiştir. 
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Karakaş(2008),  yapılan yüksek lisans tez çalışmasındaki çoklu lineer bağıntının 

kaynakları, saptama metotlarını ve istatistiksel etkilerini gözlemlemiştir. 

Çalışmasında, Ridge ve Liu regresyon, sapmalı regresyon kestiricilerini  çoklu 

lineer bağıntı onarım metodu şeklinde tanımlanmıştır. Uygulamasında Ridge ve 

Liu tipi regresyon yaparak istihdam modelini kestirirmeyi amaçlanmıştır. 

Sapmalı regresyon kestiricilerine ait standart errorların formülü bulunmadığını 

söylemiştir.   

Tüylüoğlu ve Albayrak(2010), çalışmasında, illerin genel fiyat düzeyleriyle diğer 

alt endeksler arasındaki ilişkileri ridge yöntemiyle inceleyerek illerin hayat 

pahalılığını ortaya çıkaran etkenlerden en etkili ilk üç etkenin sırasıyla giyim, 

mobilya ve ev eşyası, diğer ürün ve hizmetleriyle konut harcamalarının olduğunu 

göstermişlerdir. 

Regresyon analizinde hatalar birbiriyle bağımlı olmamalıdır. Bu sorunun testi 

için (n≥15) olması durumunda Durbin-Watson test istatistiği ile karar verilir. 

Karagöz(2016), bu değer (1,5-2,5) arasında bulunursa otokorelasyon sorunun 

olmadığını söylemiştir. 

1.2 Tezin Amacı 

Tezin amacı, Türkiye’nin ihracat modelini bir uygulama ile açıklamaya 

çalışmaktır. Bu çalışmada en küçük kareler, ridge regresyon, liu regresyon, 

zaman serisi yöntemlerini hakkında bilgi verilecektir. Çoklu doğrusallığı 

belirleme metotları anlatılacaktır. Çoklu doğrusal bağıntı durumunda en küçük 

kareler, ridge, liu, zaman serisi tahminleri incelemek, yöntemleri karşılaştırarak 

en iyi yöntemin hangisi olduğuna karar vermektir. Ortaya çıkan  modelin tahmin 

sonuçlarını yorumlamaya çalışmaktır. 
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2 
REGRESYON VE MODEL KURMA 

 

2.1 Regresyon ve Model  Kurma 

Regresyon analizi değişkenler arasındaki ilişkiyi modellemek ve göz önünde 

bulundurmak için kullanılan istatistiksel bir yöntemdir. Regresyonun değişik 

sınama alanları mevcuttur.Bu sınamalar mühendislik, fizik ve kimya gibi 

alanlarda  çokça kullanılmaktadır.  

2.1.1 Çoklu Doğrusal Regresyon 

Kimyasal bir süreçteki dönüşümün pound türünden verimi, sıcaklık ve katalizör 

konsantrasyonu bağlı olsun. Bu bağıntı çoklu regresyon modelinde aşağıdaki gibi 

tanımlanabilir: 

                                        𝒚 = 𝜷𝟎 + 𝜷𝟏𝒙𝟏 + 𝜷𝟐𝒙𝟐 + 𝜺                                      (2.1) 

Burada y verimi, x1 sıcaklığı ve x2 de katalizör konsantrasyonunu 

göstermektedir. Bu iki bağımsız değişkenli çoklu doğrusal modeldir.  

                               𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯+ 𝛽𝑘𝑥𝑘 + 𝜀                            (2.2) 

Modeli k tane açıklayıcı değişkenli çoklu lineer regresyon modeli diye 

adlandırılır. β j j=0,1,…,k parametreleri regresyon katsayıları diye bilinir. 

Modelde xj  bağımsız değişkenlerinin k  boyutlu uzayında bir hiper düzlemi ifade 

eder. β j parametresi, xi(i≠ 𝑗) açıklayıcı değişkenleri sabit tutulduğu zaman xj  

açıklayıcı değişkenindeki bir birimlik değişme karşılık gelen y  değişkenindeki 

beklenmekte olan değişimi göstermektedir. Bu nedenle, β j , j=1,2,…,k 

parametreleri, genellikle kısmi regresyon katsayıları diye adlandırılır. 

Çoklu regresyon modelleriyle ilgilenirken onları matris biçiminde ifade etmek 

daha uygundur. 

                                                       𝑦 = 𝑥𝛽 + 𝜀                                                  (2.3) 
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Burada matrisler denklem 2.4’deki gibidir. 

y, n x1 boyutlu gözlemler vektörü;  X ,  n x p boyutlu açıklayıcı değişkenler 

matrisi;  𝛽,  p x1 boyutlu regresyon katsayıları vektörü ve 𝜀 ,  n x1  boyutlu 

rastgele hatalar vektörü olarak tanımlanır.  

S(𝛽) fonksiyonunu minimize ederek 𝛽̂ en küçük kareler kestiriciler vektörünü 

elde ederiz. 

                                               𝑆(𝛽) = 𝜀′𝜀 = (𝑦-X 𝛽)’(y-X 𝛽)                                     (2.5)                                    

                                                 

                                    =  y’y - 2 𝛽′𝑋′𝑦 + 𝛽′𝑋′𝑋𝛽                                                    (2.6) 

𝛽′𝑋′𝑦, 1x1’lik bir matris ya da  skaler olduğundan tranpozu da aynı şekilde 

skalerdir. En küçük kareler kestiricileri,                                         

                                          𝜕𝑆
𝜕𝛽

𝛽=𝛽�
�⎯�=-2X’y+2 X’X𝛽̂ = 0                                    (2.7)                                                                             

eşitliğini sağlar. Basitleştirilse, 

                                                              𝑋′𝑋𝛽̂ = 𝑋′𝑦                                                   (2.8)                                                                                                                      
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Denklem 2.8 en küçük kareler normal denklemleridir. Normal denklemleri 

çözmek için denklem 2.8’nin denklemin iki tarafını X’X’in tersiyle çarpılırsa, 

böylece 𝛽’nin en küçük kareler kestiricisi, 

                                             𝛽̂ = (𝑋′𝑋)−1𝑋′𝑦                                                 (2.9)         

olur. Burada (X’X)-1 ters matrisinin de mevcut olma koşulu sağlanmalıdır. Eğer 

bağımsız değişkenler doğrusal bağımsız ise X matrisinin hiçbir sütununun diğer 

sütunlarla doğrusal bir birleşimi yoktur. 

𝛽̂  en küçük kareler kestiricilerinin istatistiksel özellikleri kolayca gösterilebilir. 

İlk önce yanlılığı ele alalım. 

                                E( 𝛽̂ ) =  E[( X’X)-1X’y]=E[(X’X)-1X(Xβ+𝜀)]                 (2.10) 

                                           =  E[(X’X)-1X’Xβ+(X’X)-1X’𝜀]= β                          (2.11) 

Burada E(𝜀) = 0 ve (X’X)-1X’X=I ‘dir. Bu nedenle 𝛽̂, eğer model doğru ise β’nın 

yansız bir kestiricisidir. 

                                 Cov( 𝛽̂) = 𝐸{� 𝛽̂ − 𝐸�𝛽̂���𝛽̂ − 𝐸�𝛽̂��
′
}                         (2.12) 

Kovaryans matrisi p x p  boyutlu simetrik bir matristir ve j. köşegen elemanı ve 

𝛽̂ Ri‘ nin  varyansının, ij. köşegen dışı elemanı ise 𝛽̂ Ri ve 𝛽̂ Rj arasındaki kovaryansı 

verir. 𝛽̂ R ‘ nın kovaryans matrisi, 

                                        Cov(𝛽̂ R )=Var(𝛽̂)=Var[(X’X)-1X’y]                      (2.13) 

ile bulunur. Burada, (X’X)-1X’ sabitler matrisidir ve y’nin varyans 𝜎𝜎P

2I’dır.Böylece 

                Var(𝛽̂ R ) =Var[(X’X)-1X’y]=(X’X)-1X’Var(y)[(X’X)-1X’]’             (2.14) 

                                          = 𝜎𝜎P

2 (X’X)-1X’X(X’X)-1= 𝜎𝜎P

2(X’X)-1                      (2.15) 

elde edilir. Bundan dolayı, eğer C= (X’X)-1 alırsak, 𝛽̂ Rj ‘nin varyansı, 𝜎𝜎P

2C jj ‘dir ve 

ise 𝛽̂ Ri  ve 𝛽̂ Rj arasındaki kovaryans ise 𝜎𝜎P

2C ij ‘dir. 

En küçük kareler kestiricilerinin kalitesine ilişkin bir diğer sonuç E(ε)=0, 

Var(ε)= 𝜎𝜎P

2 varsayımına ve ilişkisiz hatalara sahip regresyon modeli için en küçük 

kareler kestiricisinin, yi’ nin doğrusal bileşimleri diğer bütün yansız kestiricilerle 

karşılaştırıldığında yansız oldukları ve minimum varyansa sahip olduklarını 

belirten Gauss-Markov teoremidir. Genellikle en küçük kareler kestiricileri en iyi 
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doğrusal yansız kestiriciler olduğunu söyleriz. Burada en iyi demek en küçük 

varyansa sahip anlamına gelmektedir. 

2.2 Zaman Serisi Verileri İçin Regresyon Modellerine Girişi 

Regresyon uygulamalarının birçoğu hem yanıt değişkenin hem de bağımsız 

değişkenlerin zaman odaklı olduğu zaman serilerini içerir. Zaman serisi kullanan 

regresyon modelleri iktisat, işletme ve birçok mühendislik alanında çokça 

görülmektedir. Zaman serisi verilerinde hatalar genellikle bir çeşit 

otokorelasyonlu yapıda olmaktadır. Otokorelasyon terimi ile hataların farklı 

zaman aralıklarında birbirleri ile ilişkili olduğunu söylenir. 

Hatalarda otokorelasyonun varlığı en küçük kareler yöntemi üzerinde çeşitli 

etkilere sahiptir. 

Bunlar aşağıdaki gibidir: 

1) En küçük kareler regresyon katsayıları hala yansızdır ancak en küçük 

varyanslı kestiriciler değildirler. 

2)  Hatalar pozitif olarak otokorelasyonlu olduğunda artık kareler ortalaması, 𝜎𝜎P

2  

hata varyansını önemli ölçüde daha küçük yapabilir. Bir ya da daha fazla 

bağımsız değişkenin gerçekte öyle olmadığını halde anlamlı olduğunu göstererek 

yanlış yönlendirebilir. 

3)  Güven aralıkları,önkestirim aralıkları t ve F dağılımları dayalı hipotez testleri, 

kesin olarak söylenebilir ki,artık, artık uygun değildirler.Durbin Watson 

istatistiği, regresyon modelini kestirdikten sojra artıkların ilişkili olması halinde, 

ilişkili olup olmadığını ortaya çıkarmayı hedefine koyan istatistiktir.Bu 

istatistiğin 2 yakınlarında bulunması, “otokorelasyon sorunu vardır” null 

hipotezini kabul edeceğimizi belirtir. Bu açıklamaya göre e= hata terimini, t= 

zamanı ifade etmek üzere Durbin Watson test istatistiği: 

                                               
2

12
2

1

( )T
t tt
T

tt

e e
d

e
−=

=

−
= ∑

∑
                                        (2.16) 
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d  değerinin aralığı 0 ile 4 arasında değer alabilir. Artıkların örneklem 

otokorelasyon değeri r  olmak üzere d  değeri yaklaşık 2(1- r)’ ye eşit olacak 

şekilde  d=2 olması otokorelasyon probleminin olmadığı sonucunu verir. Genel 

kabul gören kanı, eğer Durbin-Watson değeri 1’den azsa bir alarm durumu 

ortaya çıkacaktır. Küçük olan d değeri, ortalamaya göre ardışık hata terimlerinin 

pozitif bir ilişkili içinde olduğunu gösterir. 

Durbin Watson testi, seri ilişkisinin varlığını ortaya çıkarmak için geliştirilmiş ilk 

testlerden biri olması sebebiyle mühimdir ama test istatistiğinin hesaplanmış 

olan D dağılımı, kararsız kalınan bazı bölgelere sahip olduğundan testin etkin bir 

test olmadığı kanısına varılmıştır. Ayrıyeten regresyon modeli, açıklanan 

değişkenin gecikmeli değerlerini içeren açıklayıcı değişken olarak yer veriliyorsa 

test sapmalı sonuç göstermektedir; bu durum için seçenek bir test olarak Durbin 

h test istatistiği önerilmiştir.  Durbin h testi aşağıdaki gibidir: 

                                        ^
^

1

1(1 )
2 1 . ( )

Th d
T Var β

= −
−

                                    (2.17) 

Burada Var^(𝛽 � ) zaman gecikmeli açıklanan değişkenin eğim 

katsayısının standart hatasının karesi, T  ise gözlem sayısnı ifade etmektedir. 

Fakat bu test istatistiği şu koşulda geçerli olmaktadır. 

T. Var^(𝛽 � ) <1  matematiksel olarak paydasının eksi işaretli olması durumunda 

karekök işlemi yapılamaz. 

VAR yöntemi modellerinde değişkenlerin bir bütün olarak ele alarak birbirleriyle 

etkileşimlerini ortaya çıkarması açısından çok mühim bir tekniktir. VAR 

analizinde elde edilen katsayıların yorumlanabilmesi güç olmasına karşılık, F 

testi sonuçları sağ tarafta yer alan değişkenlerin beklenen etkileri konusunda 

bilgi vermesi dolayısıyla çok faydalıdır. VAR analizinde bulunan değişkenlerin 

durağan olması veya olmaması büyük bir tenkit söz konusudur. Fark alımındaki 

tenkit, verilerle hareket bilgilerdeki kayba sebep olmaktadır. Bu konuyla ilgili 

çokça ifade edilen görüşün analizde yer alan değişkenlerin gerçek veriden 

yararlanılarak yapılması şeklinde ifade edilmektedir. Günümüzdeki deneysel 

çalışmalarda model kestiriminde veri setilerindeki ilk farklarının alınmasının 
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daha uygun olup olmayacağını test etmeyi amaçlamışlardır. Durağan olmayan 

serilerde yapılmış analizler, durağan seriler kullanarak yapılmış analizlerden 

apayrı değerlendirilmiştir. Durağan olmayan seriler kullanılarak yapılmış 

analizler, istatistiksel açıdan yanlış sonuçları ifade etmektedir. Birim köke sahip 

olsalar dahi fark alımına karşıt görüş vererek VAR analizinin hedefinin 

parametre kestirimi olmadığı, ama değişkenler arası ilişkilerin belirlenmesinde 

yardımcı olduğu sonuca varılmıştır. 

2.2 Çoklu Bağıntı Problemi 

Çoklu bağıntı denklemin bağımsız değişkenleri arasındaki ilişkinin ciddiyetiyle 

alakalı problemdir. İki türlü olarak karşımıza çıkar. Bağımsız değişkenler 

arasında tam bir ilişki varsa “tam çoklu bağıntı” problemi vardır. Bağımsız 

değişkenler tam olmasa dahi ilişki içindeyse “tam olmayan çoklu bağıntı” 

problemi ortaya çıkar.  

Denklem 2.4'deki  X matrisinde X2 ile X3 arasında tam bir lineer ilişki varsa bu 

değişkenler arasındaki korelasyonu 1 olarak bulunacaktır. Bu halde rank(X)=k 

varsayımı sağlanamayacak rank(X)<k sonucuna ulaşılacaktır. Yine bu problem 

|X|=0 ve |X'X|=0 sonucunu ortaya çıkardığından X-1 ve (X'X)-1 

bulunamayacaktır ve denklem tahmin edilemeyecektir. 

Tam çoklu bağıntı problemi şu şekilde tespit edilebilir. Verilerin türetilişinde 

ve/veya kullanılışında farkında olmayıp yapılan bir yanlışlıktan kaynaklanabilir. 

Denklemde bir sabit terim vardır ve bağımsız değişken sabit kalabilir. Bir 

bağımsız değişken diğer bağımsız değişkenlerin lineer bileşimi olarak 

türetilmiştir.  Kukla değişken hilesine yakalanılmış olabilir. 

Klasik modelin varsayımları sağlandığında regresyon katsayılarının en küçük 

kareler tahmin edicileri DESTE(Doğrusal En iyi Sapmasız Tahmin Edici)’dir. 

Çoklu bağıntı tama yakın çoklu bağıntıdaki gibi çok yüksek olsa bile en küçük 

kareler tahmin edicileri DESTE özelliklerini korumayı sürdürürler. Öyle ise 

neden çoklu bağıntı önem kazanıyor. Aslında çoklu bağıntı hiçbir regresyon 

koşulunun dışına çıkmaz. Ayrıyeten sapmasız, tutarlı kestirimler bulunur, bu 

kestirimlerin standart hataları dahi doğru hesaplanır. Çoklu bağıntının tek etkisi 
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küçük standart sapmalı katsayı kestirimleri elde etmeyi zorlaştırır. Gözlem sayısı 

tahmin edilecek katsayı sayısının üstündeyse çoklu bağıntı sorunu ortaya çıkar.  

Çoklu bağıntı uygulamada doğurduğu sonuçlar şunlardır. EKK tahmin edicilerin 

DESTE olmalarına karşın varyansları ve ortak varyansları büyüktür, bu da kesin 

tahmini güçleştirir. Güven aralıkları çok geniş olma eğilimindedir, bu da “sıfır” 

(yani ana kütledeki gerçek katsayısının sıfır olduğu ) yokluk hipotezi kolayca red 

edilememesine yol açar. Bir ya da daha çok katsayının t oranları istatistik 

bakımından anlamsız olmasına karşın, bütünün uyum iyiliğinin ölçüsü çok 

yüksek olabilir. EKK tahmin edicileriyle onların standart hataları, verilerdeki 

değişimlere karşı duyarlı olabilirler. 

Bir ya da daha çok katsayı yani t oranları 

                                               
^

^

t
S
β

β
=                                                  (2.18)                 

istatistik bakınından anlamsız olur. 

Çoklu bağıntı sorununu düzeltici önlemler şunlardır; Önsel bilgi, kesit verileriyle 

zaman serisi verilerini bir araya toplama yani dışsal ya da önsel bilgi tekniğinin 

bir biçimi de karma veri yaratmak diye bilinen, kesit ile zaman serisi verilerini 

bir araya toplamaktır. Değişken(ler)i atmak ve model kurma sapması yani çoklu 

bağıntı sorununda en basit yol ortak doğrusal değişkenlerden birini modelden 

çıkarmaktır. Bir değişkeni modelden çıkarmak da model kurma hatası (sapması) 

nın büyümesine yol açar. Değişkenlerin dönüştürülmesi, ek ya da yeni veri 

alınabilir. Çoklu regresyonlarda ortak doğrusallığı azaltmak gerekir.  

Çoklu bağıntıyı düzeltmek için önlemler şunlardır; Faktör analizi (etmen 

çözümlemesi)yapmak, temel bileşenler analizi yapmak, ridge (sırt) regresyon 

yapmak gerekebilir. 

Son olarak bir çatı altında derlemek istersek çoklu bağıntı hakkında özet ve 

sonuçlar şunlardır. 

Klasik regresyon analizinde çoklu doğrusallık olmadığı varsayılsa da X 

değişkenleri arasında ya tam ya da tama yakın doğrusal ilişkiler bulunabilir. 
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Çoklu bağıntının olması sonucu itibariyle regresyon katsayıları belirlenemez ve 

standart hataları tanımlanamaz. Ortak bağıntı tam değil ama yüksekse regresyon 

katsayıları tahmin edilebilir ama bunların standart hataları yüksektir.Amaç 

regresyon katsayılarının doğrusal bileşiminin tahmin edilebilir fonksiyonlarını 

tahmin etmekse, tam çoklu bağıntı varken bile bu yapılabilir. 

Çoklu bağıntının göstergesi R2 ’nin yüksek olması, regresyon katsayılarının t 

testine göre istatistik bakımından anlamlı olmamasıdır. İki değişken arasında 

sıfırıncı dereceden korelasyon katsayısının değeri yüksek ise nedeni çoklu 

bağıntıdır. İkiden fazla değişken için bulunan sıfırıncı dereceden bulunan 

korelasyon katsayısı yanılgıya sebep olabilir. Bu durumda kısmi korelasyon 

katsayılarına başvurulabilir. R2 yüksekken kısmi korelasyonlar düşükse çoklu 

bağıntı olasıdır. Eğer  R2 yüksekken kısmi korelasyonlarda yüksek ise çoklu 

doğrusallığın varlığı hemen anlaşılamayabilir. X i değişkeninin modeldeki diğer X 

değişkenleri üzerine bulunan regresyon modelinden bulunan belirlilik katsayıları 

Ri
2 bulunabilir. Ri

2 ’ nin büyük olması X i ’ nin diğer X ’ lerle yüksek bir 

korelasyonu olduğunu gösterir. Bu durumda X i model kurma hatasında ciddi bir 

büyümeye sebep olmayacaksa modelden çıkarılır. 

Çoklu bağıtının saptanması maçı kazanmanın yarısı, diğer yarısı ise nasıl 

giderileceğidir. Dışsal ya da önsel bilgiden yararlanılabilir.Kesit ya da zaman 

serisi verilerini bir araya getirilebilir. Yüksek ortak doğrusallık gösteren değişkeni 

dışlanılabilir. Veriler dönüştürülebilir. Ek ya da yeni veri derlenilebilir. Bu 

kurallardan hangisinin uygulamada işe yarayacağı, kuşkusuz verinin niteliğine 

ve ortak doğrusallık sorununun ciddiyetine bağlıdır. 

Çoklu bağıntının kestirimdeki rolüne dikkat çektik ve ortak doğrusallık yapısı 

gelecekteki örneklemelerde de varlığını sürdürmeyecekse, çoklu bağıntıya 

bulaşmış regresyon tahminlerini geleceğin kestiriminde kullanmanın sakıncalı 

olabileceğine söylemek gerekir.  

Her ne kadar çoklu bağıntı sorunsa da, küçük örneklemde en az onun kadar 

sorundur. 
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2.2.1  Çoklu Bağıntının Saptanması 

Çoklu bağıntıyı saptamak ve ciddiyetini ölçmek için oldukça fazla metot ileri 

sürülmüştür. Bazı metotların bir bölümü çoklu bağıntının varlığı için bir gösterge 

olarak önerilmişken bazı metotlar katı kurallar içermektedir. Tüm metotların 

ortak özelliği çoklu bağıntının ciddiyeti hakkında bilgi vermesidir. 

Açıklayıcı değişkenlerin ilişki katsayıları yüksek olması durumunda çoklu 

bağıntının kanıtı görülür. Bu metotta ilişki matrisinin X'X  köşegenleri 

haricindeki birimleri, değişkenler arasındaki ilişki katsayısını gösterir. X i , X j 

değişkenleri arasında tama yakın bağıntı var ise, |rij| bire yakınlaşır. 

Kuralı ifade etmek gerekirse sadece iki açıklayıcı değişken arasındaki lineer ya da 

lineere yakın bağıntıyı ortalığa çıkarır. Değişkenler arası ilişki katsayıları 

zayıfken de ciddi çoklu bağıntı ile karşılaşmak olası olduğu için, ikiden çok 

açıklayıcı değişken arasındaki ilişkiyi ilişki katsayıları ile açıklamak zayıf kalır. 

Açıklanan değişkenle açıklayıcı değişkenlerin tüm bileşimleri arasındaki kısmi 

ilişki katsayıları hesaplanarak çoklu bağıntı sorunu olduğu ortaya konabilir. 

Çoklu bağıntı sorununun teşhisinde çokça kullanılan metotlardan biri Varyans 

Büyütme Faktörü (VBF)‘ dür. (X'X)-1 matrisini açıklamak gerekirse asal köşegeni 

VBF değerini ifade etmektedir 

Hoerl ve Kennard(1970), çoklu bağıntının teşhisinde VBF değerleri  gösterge 

olduğu söylemiştir. Fakat VBF değeriyle çoklu bağıntının ciddiyetine karar 

vermek için kaynaklarda ortak bir sayı söylenememiştir. Bazı kişiler VBF 

değerinin 5’ten büyük olması durumunda çoklu bağıntının ciddi olacağını 

belirtirken, bazı kişiler çoklu bağıntının ciddiyetinin VBF değerinin 10’dan büyük 

olması durumunda araştırlması gerektiğini söylemiştir. Bazı kişiler, 4'ün 

üzerindeki bir VBF daha fazla araştırmanın gerekli olduğunu söylemişlerdir.  

Özdeğerlerin sıfıra yakın olması çoklu bağıntı belirti gösterse de ciddiyetini bize 

sunmaz. Bundan ötürü özdeğerlere tek tek bakılması yerine birbirleriyle 

kıyaslanmasını içeren bir metot önerilmiştir. En büyük özdeğerin en küçük 

özdeğere oranı şeklinde ifade edilmiştir. Koşul sayısı 100 ile 1000 arasında ise 

çoklu bağıntı orta derece, 1000’den büyükse yüksek derecede sorun vardır. 
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X'X ilişki matrisinin determinantı çoklu bağıntının ciddiyetini ortaya çıkarmak 

için bir göstergedir. Matrisin determinantı 0 ile 1 arasında değer alacaktır. Sıfır 

olması durumu, tam çoklu bağıntıyı ifade ederken, 1’e eşit olması çoklu 

bağıntının olmadığı söyleyecektir.  Determinantı sıfıra yaklaşan değer olması 

tama yakın çoklu bağıntının varlığını gösterir ve bu durum en çok karşımıza 

çıkan bir durumdur. Ancak bu gösterge çoklu bağıntının ciddiyeti hakkında 

görüş vermekte ve hangisinden kaynaklı bu sorunun ortaya çıktığı hakkında bilgi 

vermez. 

Yardımcı regresyon, modeldeki açıklayıcı değişkenlerin sırası ile açıklanan 

değişken olarak ifade etmekte, kalanlarıysa açıklayıcı değişkenler ile oluşturulan 

bir regresyon modelinin kestirimine dayanan metottur. Bu modellere ait R2 ’ler  

ile hesaplanacak F oranının anlamlılığı  çoklu  bağıntının varlığının 

saptanmasında yardımcı olacaktır.. 

Açıklayıcı değişkenler arası ilişki katsayıları, modelin R2’sinden yüksekse, çoklu 

bağıntı sorunu ciddidir. 

Theil-M ölçütünde, öteki metotlardan farklılığı, açıklayıcı değişkenlerin kendi 

aralarındaki ilişkiyi değil açıklanan değişken ile olan ilişkilerini öne sürerek 

çoklu bağıntı olup olmadığının araştırmasına dayanır. Bu metotta, modelden 

sırası ile açıklayan değişkenler çıkartılıp kestirilen modellerin çoklu ilişki 

katsayılarıylada ilk kestirilen modelin R2’si arasındaki ilişkiyi ortaya koyan bir 

ölçüdür.  

Bu yöntemin diğer yöntemlere göre zayıflığı, çoklu bağıntının miktarı hakkında 

bilgi vermez. Varyans büyütme faktörü çoklu bağıntı hakkında daha fazla bilgi 

veren çok kullanılan yöntemdir. 

Örneklemdeki çoklu bağıntının sebebi, diklikten sapma olarak ortaya çıkabilir. 

Diklikten sapma arttıkça X'X ilişki matrisinin determinantının sıfıra yaklaşması ve 

çoklu bağıntıya sebebi bulgusunu izleyerek bu metot, açıklayıcı değişkenlerin 

dikliğini ortaya çıkarmayı konu eder. Farrar ve Glauber(1967), normal dağılıma 

uyduğunu gösterdikleri p tane açıklayıcı değişken arasında çoklu bağıntıyı ortaya 

çıkarmak için, X'X ilişki matrisinin determinantına dikkat çeken χ 2 test istatistiği 

geliştirmiştir. 
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Curto ve Pinto(2007), çoklu bağıntının EKK kestiricileri üzerindeki etkilerinden 

bahsederken ayrıca temel bileşenler ve etmen analizi gibi çok değişkenli 

istatistiksel yöntemlerdeki kötü etkilerini ortaya çıkaran bir yeni metot ortaya 

koymuştur. 

2.3 Ridge Regresyon 

Dik olmayan verilere en küçük kareler yöntemi uygulandığında regresyon 

katsayılarının çok zayıf kestirimleri elde edilir. En küçük kareler yönteminde 

sorun,  𝛽̂’ nın   𝛽   yansız bir kestirici olma zorunluğudur. Gauss-Markov özelliği 

en küçük kareler kestiricisinin yansız lineer kestiriciler sınıfındaki en küçük 

varyansa sahip olduğundan emin olmamızı sağlamaktadır ancak bu varyansın 

küçük olacağını garantisi yoktur. Sorunu hafifletmenin yolu, 𝛽 ‘ nın kestiricisinin 

yansız olması zorunluluğundan vazgeçmektir. Regresyon katsayılarının yanlı 

kestiricilerini elde etmek için farklı yöntemker geliştirilmiştir. Bunlardan biri 

ridge regresyondur. İlk olarak Hoerl ve Kennard tarafından önerilmiştir.  

                                                    
^

1( ' ) '
r

X X kI X yβ −= +                                   (2.19) 

Denklem 2.19'da ridge regresyon kestiricisi gösterilmektedir.Denklem 2.9'da EKK 

tahmin edicisine göz önünde bulundurulduğunda yanlı olmasına ayrıyeten 

varyansı küçültmesi sebebiyle tercih edilebilecek bir metot olan ridge regresyon 

metodunun başlıca kullanım amaçlarını şu şekilde ifade etmek gerekir: 

• Çoklu regresyon modelinde açıklayıcı değişkenler birbirleriyle ilintili 

olduklarında, en küçük kareler tahmin edicisinden daha küçük varyanslı  

tahmin edici elde edilmesi için, 

• Güçlü çoklu lineer bağlantı etkisiyle regresyon katsayılarında oluşmuş 

kararsızlıkların grafik ortamında gösterilmesi için, 

• Modeldeki gereksiz değişkenlerin çıkarılması için, 

• Ridge regresyon metodunun en küçük karelerden bir diğer farklılığıysa, k  

Ridge yanlılık parametresinin olmasıdır. 0 ile 1 arasında değer alan her k 

için hesaplanan parametre tahminleri arasından uygun kriterlere sahip 

olanları seçmek için kullanılır.  
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^

^
1( ) ( ' )rE k X X kIβ β β−= − +                              (2.20)                                                                                                                 

 𝛽̂ Rr, denklem 2.19’daki Ridge regresyon kestiricisini ifade etmektedir. Denklem 

2.20’deki Ridge regresyon beklenen değeri gösterilmektedir.  

                                                
^ ^

( ) ( )rryan Eβ β β= −                                       (2.21)                                                                                                                           

Denklem 2.21'de yanı bulabilmek için denklem 2.20'deki ifadeyi yerine 

koyduğumuzdaki denklem 2.22'deki ifadeye ulaşırız. 

                                       
^

1( ) ( ' )ryan k X X kIβ β−= − +                                    (2.22) 

 

Şekil 2.1 K sabiti 

Varyans, sapma kare ve k arasındaki ilişkiyi şekilde göstermeye çalışılmıştır. 
Şekil 2.1'deki en küçük kareler varyansı hata kareler ortalamasına eşittir ve k’dan 

etkilenmediği için yatay doğruyla ifade edilmiştir. Şekil 2.1'de görüleceği üzere, 

k artarken ridge’in varyansı azalmakta, sapma kare artmaktadır. Şekil 2.1'de 

üzerinde kesikli çizgiyle gösterilen ridge kestirici metodunun hata kareler 

ortalaması, uygun bir k’da minimum değeri almakta ve daha sonra tekrar 

bekleneceği gibi en küçük karelerin hata kareler ortalamasını geçecektir. 

Böylelikle, küçük bir sapmaya göze alarak, kestirimin artık kareler ortalamasında 

meydana gelecek az bir artışa karşılık varyansta kayda değer bir azalma 

sağlayacağından dolayı k değerinin seçilmesine yardımcı olacaktır. 
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Çoklu lineer regresyon probleminde çoklu bağlantı olduğu durumda katsayı 

kestirimleri hassas olur. Yani veri kümesine birkaç gözlemin ilave edilmesi ile bu 

kestiricilerde değişikliklerin olabileceği gözlenmektedir. Bu sebeple duyarlılık 

analizi Ridge regresyonun temel amacı olarak karşımıza çıkar. Ridge 

regresyonun en büyük avantajlarından birisi çalışılan veri için duyarlı olan 

katsayıları görmemize yardımcı olabilir. Ridge izi (Ridge Trace) olarak ifade 

edilen bu grafik gösterim duyarlı katsayıları görmemizi sağlar. Ridge izi 

araştırmacıya hangi katsayıların verilere hassas olduğu konusunda bilgi verir. 

Ridge izi grafiklerinde yanlı regresyon katsayıları, k’nın bir fonksiyonu olarak ele 

alınmaktadır. Ridge izi, her bir katsayı değerinin grafiksel gösterilmesidir. Her 

bir katsayı için iz oluşturur. Ridge izinde amaç EKK'dan daha küçük HKO'suna 

sahip k değerini elde etmektir. Ridge izinde bir diğer amaç kararlı katsayılar 

kümesini oluşturmaktır. Kararlı katsayılar kümesinin anlamıysa verideki küçük 

değişikliklere karşı katsayıların hassas olmamasıdır. Eğer açıklayıcı değişkenler 

arasında yüksek bir ilişkili iseler k'nın küçük değerleri için katsayılar çok hızlı 

değişir ve k'nın daha büyük değerlerinde derece derece kararlı olur. Katsayıların 

kararlı olduğu k değeri katsayıların istenen veri kümesinin elde edilmesinde 

yardımcı olur. 
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Şekil 2.2 Ridge izi 

Burada x1’e dikkat edelim. Ridge izinde en çok  hassasiyet x1’dir. Bu aralıkta bir 

k değeri seçilmelidir. Çoklu doğrusal bağıntı durumunda Ridge regresyon 

metoduyla yapılacak tahminlerin kararlılığı, ridge yanlılık parametresi k için 

uygun değerin bulunmasına bağlıdır. Optimum k değerinin bulunması halinde 

ridge tahmincilerinin HKO’sı EKK tahmincisinin HKO’dan daha az olur. Fakat en 

optimal k değeri, k’nın bilinmeyen β parametre vektörüne ve varyansa 𝜎𝜎2 bağlı 

olmasına karşın kesin bir biçimde belirlenmiş olmaz. 

Yapılan çalışmalarda ridge parametresi k’nın belirlenmesi için kesin bir kural 

konulmamasına karşın k’nın tahmini için bir oldukça fazla öneri ortaya 

konulmuştur. Hoerl ve Kennard, 1970 yılında k’nın seçimi için Ridge İzini 

(Ridge Trace) önermiştir. Marquardt ve Snee, Varyanas Büyütme Faktörü’nün   

1 ile  10  değerleri  arasındaki  k’nın seçilebilmesini önermişlerdir. Anderson, 

1998 yılında açıklayıcı değişkenler için birlikte 1’e yaklaşan VBF değerlerine 

karşılık gelen k  sabitinin alınmasını ifade etmişlerdir. 
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Hoerl, Kennard ve Baldwin 1975 yılında, 

                                                 

^
2

^ ^*
'

kk σ

β β
=                                                   (2.23) 

önermiştir. Buradaki k açıklayıcı değişken sayısını göstermesi sebebiyle ridge 

yanlılık parametresi k*  ifade edilmiştir. 

McDonald ve Galarneau 1975 yılında, 

                                       
^^ ^ ^ ^

2 1
1

* ' * ' k
jj

β β β β σ λ −
=

= − ∑                                    (2.24) 

Denklem 2.24’i sağlayacak k değerinin varlığının uygun olacabileceği 

belirtmişlerdir. Bunların dışında çoklu bağıntı çok ciddi olması durumda EKK 

kestirimleri doğru sonuçlar vermeyeceği için denklem 2.24’deki formülasyona 

yazılırsa,                         

                                                      

2^

2^

1

*
k

i

kk σ

α
=

=

∑
                                           (2.25) 

önerilmiştir. Burada  𝛼� temel bileşenler kestiricisidir. 

Lawless ve Wang’ın 1976 yılında önerdiği bir formüldür.  

                                                   

2^

^
2

1

lw
p

j jj

pk σ

λ α
=

=

∑
                                        (2.26)       

Anderson(1998), 1’e yaklaşan VBF değerlerine karşılık gelen k sabitinin 

alınabileceğini belirtmiştir. Albayrak(2005), bu yaklaşımın kullanabileceğini 

belirtmiştir 

Kibria(2003), yılında k yanlılık parametresi  için  önerdiği formüller aşağıdaki 

gibidir. 

                                                          

^
2

^
2

1 *
j

p
σ

β
∑                                            (2.27)         
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2^

2^
( ( ))(1/ )j p

σ

α∏
                                     (2.28)                                         

                                                           

2^

2^
( )

j

median σ

α
                                       (2.29)                         

Muniz ve Kibria(2009), k yanlılık parametresi  için  önerdiği formüller aşağıdaki 

gibidir. 

                                                         
2^

2^

1max

j

σ

α

 
 
 
 
 
 
 
 
 

                                         (2.30)                                

                                                          

2^

2^
max( )

j

σ

α
                                          (2.31)                  

                                                         
1/

2^

2^

1( )
p

j

σ

α

∏                                          (2.32)                  

                                                          

1/
2^

2^

p

j

σ

α

 
 
 
 
 

∏                                        (2.33)                  

                                                      
2^

2^

1( )

j

median
σ

α

                                        (2.34)                     

Muniz vd.(2012), k yanlılık parametresi  için  önerdiği formüller aşağıdaki 

gibidir. 
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2^

max
2 2^ ^

max

1max( )

( ) jn p

λ σ

σ λ α− +

                               (2.35)                    

                                         

2^

max
2 2^ ^
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max
( ) jn p

λ σ

σ λ α

 
 
 
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                                (2.36)                  
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σ

 
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                                (2.37)                  

                                        

1/
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2^ ^
2
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1

( )

p
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λ σ
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  
  
  
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  
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  − +   

∏                           (2.38)                

                                       

1/
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max
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2
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p
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λ σ

σ λ α

  
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  
  
   − +   

∏                             (2.39)                

                                       
2^
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2^ ^
2

max

1( )

( ) j
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n p

λ σ

σ λ α− +

                            (2.40)               

Dorugade ve Kashid(2012), k yanlılık parametresi  için  önerdiği formüller 

aşağıdaki gibidir. 

                                              

^
2

^ ^
max

1max(0, )
( )' j

p
n VBF

σ

α α
−                               (2.41)               

                                           

^
2

^
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2 (
j
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∑                             (2.42)               
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Karaibrahimoğlu, Asar ve Genç(2014), Hacettepe Matematik ve İstatistik 

dergisinde önerdikleri tahmin ediciler aşağıdaki gibidir. 
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                                            (2.43)             
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ii
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p σ
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==
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                                         (2.47)                                    

Hacettepe Matematik ve İstatistik Dergisinde denklem 2.43 ve denklem 2.44’ 

deki kestiriciler en iyi performansı gösterdiğinden bahsedilmiştir. 

Göktaş ve Sevinç(2016), türlü türlü simülasyon çalışması türlü türlü p ve n 

değerleri için yeni iki k yanlılık parametresi ifade etmişlerdir. 

2.4 Liu Regresyon 

Çoklu bağıntı durumunda alternatif olarak önerilen yanlı kestiricilerden birisi Liu 

kestiricisidir. Liu(1993), Ridge regresyonun farklı bir kombinasyonu ile Stein tipi 

kestiricisinin bir kombinasyon oluşturmuştur, bu kestiricilerin avantajlarını da 

biraraya toplayarak yeni bir yanlı kestirici tanımlamıştır. Liu tanımladığı bu 

kestiriciyle EKK’yı karşılaştırmıştır, önerdiği kestircinin EKK kesticisinden az hata 

kareler ortalaması olduğunu ortaya çıkarmıştır. 
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^ ^

1( ' ) ( ' )d X X I X y dβ β−= + +                             (2.48)            

Denklem 2.48'deki eşitlikte Liu kestiricisi gösterilmektedir.  β� Rd ile gösterilmiştir. 

d, yanlılık parametresinin değerleri 0<d<1 arasında değer almaktadır. Liu 

kestiricisi d yanlılık parametresinin lineer bir fonksiyonunu ifade etmesi 

itibariyle, d’nin seçilmesi k’nın seçilmesine nazaran kolaydır. Bunu göstermesi 

itibariyle bahsedilen özellik Liu kestiricisini daha önemli yapan bir husustur.  

                                                    
^

' ( ' )X y X X β=                                        (2.49) 

                                              1( ' ) ( ' )A X X I X X dI−= + +                              (2.50)                                       

                                             
^ ^ ^

( ) ( ) ( )dE E A AE Aβ β β β= = =                          (2.51)                          

Denklem 2.51'deki eşitlikte Liu tahmin edicisinin beklenen değeri ifade edilmeye 

çalışılmıştır. Denklem 2.48'deki ifadeye 2.49'deki eşitlikte yazılmıştır.  𝛽̂ 

parantezine alınmıştır. Ortaya çıkan denklem 2.50'deki ifadeye A denmiştir. Liu 

tahmin edicisinin beklenen değeri hesaplanmıştır.                                                                                                                                                                                                                                                                                                                                                     

                                                    
^ ^

( ) ( )d dyan Eβ β β= −                                   (2.52)                                                                                                                                         

                                     
^

1( ) ( ' ) ( ' )dyan X X I X X dIβ β β−= + + −                      (2.53)                                                                                

                                   
^

1( ) ( ' ) ( ' )dyan X X I X X dI Iβ β− = + + −                      (2.54) 

Denklem 2.52'deki yan denklemine Liu kestiricisi yazılmıştır. Denklem 2.53’deki 

eşitliklikte açık hali gösterilmeye çalışılmıştır. Denklem 2.54'de  𝛽 parantezine 

almıştır ve yan hesaplanmıştır.  

Liu kestiricisinde hedef diğer yanlı kestiricilerdeki gibi olması beklenen az yan 

karşılığında parametre kestiricilerinin varyansını azaltmaktır. Liu kestiricisini 

varyansını;  

                                                   Var((X'X+I)-1(X'X+dI)𝛽)                           (2.55)                     

Denklem 2.55’deki eşitlikteki gibi varyansı bulmak için Liu kestiricisi yazılmıştır. 
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                              ((X'X+I)-1(X'X+dI))Var(𝛽)((X'X+I)-1(X'X+dI))'              (2.56)                                        

Denklem 2.56'daki eşitlikte varyans kuralı uygulamıştır.  

              
^

2 1 1 1( ) ( ' ) ( ' )( ' ) ( ' )( ' )dVar X X I X X dI X X X X dI X X Iβ σ − − −= + + + +   (2.57) 

Liu tahmin edicisinin varyansı elde edilmiştir. 

Liu(1993), EKK kestiricisinden daha küçük HKO sahip 0<d<1 arasında bir d 

sabiti elde edilebileceğini göstermiştir.  

Akdeniz vd.(2006), optimal d parametresi ifade etmişlerdir. X'X= I olması 

haliyle denklem 2.48’den elde edilmiş Liu kestiricisi, 

                                                      
^ 1 (1 ) '

2d d X yβ = +                                 (2.58)                       

biçiminde elde edilmiştir ve burada d yanlılık parametresi, 

                                                   
2

2

21
'opt

pd
p

σ
σ β β

= −
+

                              (2.59)                  

ifade edilmiş olur.  

Bilinmeyen parametre kestirimleri yerine yazılırsa d yanlılık parametresi, 

                                                     

2^
^

1 2
'

optd p σ
β β

= −                                   (2.60)                 

şeklinde yazılmıştır. 𝑑𝑑𝑜𝑜𝑝𝑝𝑡𝑡 parametresi için önerilen bir üst sınır ifade edilmek 

istenirse, 

                                                  

2^

2min
^ ^

max

* 1 ( )
'

d pλ σ
λ β β

= −                              (2.61)                  

olmak üzere, 

                                                

2^
^

2min
^ ^

max

1 ( ) *
'

optd p dλ σ
λ β β

< − =                       (2.62)              

 

 

biçimde elde edilmiştir. 
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Denklem 2.62’deki eşitsizlik, p > 2 olması durumunda, 

                                           
^

2min

max

( ) ( *) 1 ( )
2

opt
pE d E d

p
λ
λ

< = −
−

                    (2.63)          

biçiminde bulunmuştur. 

                                           

2 2

21

2 2

21

( 1)

( 1)

p j
j

j
opt

p j j
j

j j

d

α σ
λ

σ λ α
λ λ

=

=

 −
 +  =
 +
 +  

∑

∑
                                  (2.64)          

Denklem 2.64’deki eşitliği Liu tarafından 1993 yılında önerdiği bir eşitliktir.  

 

Şekil 2.3 Ortak k ve d 

Optimal k değerinin sıfıra yakın seçilmesi ridge regresyonu konu alan 

kaynaklarda çokça olarak uygun görülmüştür. Fakat şekil 2.3’de görüleceği gibi 

ridge kestiricisi ile liu kestiricisinin eşitliğini ortaya koyacak ortak bir k ve d 

yanlılık parametresi değeri saptandığı görülmüştür.     
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                                      3 
                                                        UYGULAMA 

3.1 Model ve Veri Seti 

Veriler TCMB sitesinden alınmıştır. 2003-2020 yıllarına ait çeyreklik verileri 

kullanılmıştır. Modelde açıklanan değişkenler ise ihracat, açıklayıcı TÜFE, pasif 

toplamı, birikimli Yİ-ÜFE endeksi kullanılmıştır 

logihr: Logaritma ihracat 

yiüfe: Yurtiçi üretim endeksi 

tüfe: Tüketici fiyat endeksi 

pasif: TCMB pasif yükümlülükleri 

Standartlaştırılarak elde edilen model: 

logihr= 𝜷R0+ 𝜷R1 tüfe+ 𝜷R2yiüfe+ 𝜷R3pasif  

3.2 Ampirik Bulgular 

Tablo 3.1 Normal dağılıma uyma tablosu 
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Regresyon modeli Minitab 18 programında kurulmuştur. Residuals’lerin 

Anderson-Darling testine göre tablodaki p değeri göz önünde 

bulundurulduğunda normal dağılımına uyduğu görülmüştür. 

Tablo 3.2 Model anlamlılığı ve vif 

 
SPSS 21 programının çıktısında modelin anlamlı olduğu görülmüştür. Bazı 

katsayıların anlamsız olduğu bazı katsayıların anlamlı olduğu görülmüştür. 

Çoklu doğrusal bağlantı probleminden şüphelenmiştir. VİF bu sonucu doğrular 

niteliktedir.                                                    

                                                
2^

^
2

1

lw
p

j jj

pk σ

λ α
=

=

∑
                                      (3.1)       

Denklem 3.1’deki eşitlikte Lawless ve Wang’ın 1976 yılında k yanlılık 

parametresi için önerdiği bir eşitliktir.R 4.1.1 sürümünde tablo 3.3’deki değer 

hesaplanmıştır. 

 Tablo 3.3 R Ridge k çıktısı  
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2 2

21

2 2

21

( 1)

( 1)

p j
j

j
opt

p j j
j

j j

d

α σ
λ

σ λ α
λ λ

=

=

 −
 +  =
 +
 +  

∑

∑
                                  (3.2)                                     

      Denklem 3.2’deki eşitlikte Liu 1993 yılında d yanlılık parametresi için 

önerdiği bir eşitliktir. R 4.1.1 sürümünde tablo 3.4’deki değer hesaplanmıştır.  

Tablo 3.4 R Liu  d çıktısı 

 

Tablo 3.5 R Ridge k değerlerine göre çıktı 

 

Ridge regresyon yanlılık parametresi k değerlerine göre regresyon katsayıları R 

4.1.1 sürümünde tablo 3.5’deki değerler hesaplanmıştır. Lawless ve Wang’ın 

1976 yılında önerdiği eşitlikle hesaplanan k yanlılık parametresi k=0.04420 

olarak hesaplanmıştır. Yaklaşık olarak k yanlılık parametresi 0.05 alınmıştır. 

 Tablo 3.6 R Liu d değerline göre çıktı  

 

Liu regresyon yanlılık parametresi d değerlerine göre regresyon katsayıları R 

4.1.1 sürümünde tablo 3.6’daki değerler hesaplanmıştır. Liu’nun 1993 yılında 

önerdiği eşitlikle hesaplanan d yanlılık parametresi dopt=0.97582 olarak 

hesaplanmıştır. Yaklaşık olarak d yanlılık parametresi 0.975 alınmıştır. Ancak bu 

tablolar incelendiğinde ridge kestiricisi ile  liu kestiricisinin eşitliğini ortaya 

koyacak sağlayacak ortak bir k ve d değeri saptanabileceği görülmüştür. 
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Tablo 3.7 R Ridge k değerlerine göre R2 çıktısı 

 

Ridge regresyon yanlılık parametresi k değerlerine göre düzeltilmiş R2 değerleri 

4.1.1 sürümünde tablo 3.7’deki değerler hesaplanmıştır. Lawless ve Wang’ın 

1976 yılında önerdiği eşitlikle hesaplanan k=0.0442 olarak hesaplanmıştı. 

Yaklaşık olarak k yanlılık parametresi 0.045 alınmıştır.Ridge regresyon  k=0.045 

yanlılık parametresi için düzeltilmiş R2=0.9535 değeri bulunmuştur. 

Tablo 3.8 R Liu d değerlerine göre R2 çıktısı 

     

Liu regresyon yanlılık parametresi d değerlerine göre düzeltilmiş R2 değerleri 

4.1.1 sürümünde tablo 3.8’deki değerler hesaplanmıştır. Liu’nun 1993 yılında 

önerdiği eşitlikte hesaplanan d yanlılık parametresi dopt=0.97582 olarak 

hesaplanmıştı. Yaklaşık olarak d yanlılık parametresi 0.975 alınmıştır.Liu 

regresyon  d=0.975 yanlılık parametresi için düzeltilmiş R2=0.9576 değeri 

bulunmuştur. Bu sonuç itibariyle Liu tahmincisini üstün kılan bir sonuçtur.Çünkü 

Liu tahmincisinin düzeltilmiş R2 değeri Ridge tahmincisinin düzeltilmiş R2 

değerinden büyüktür. 

                           Tablo 3.9 R Ridge k değerlerine göre vif çıktı 

 

      

Marquardt ve Snee, 1975 yılında ridge yanlılık parametresinin k’nın saptanması 

için VBF değerlerinin kullanılmasını söylemişlerdir. VBF değeri k değerine 1 ile 
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10 arasında karşılık gelecek şekilde, uygun k değeri olarak saptanabileceğini 

belirtmiştir. Genel olarak, 4'ün üzerindeki bir VBF çoklu doğrusallığın var 

olabileceğini ve daha fazla araştırmanın daha iyi olduğunu göstermiştir. 

Yukarıdaki k yanlılık parametresine göre hesaplanmış VBF değerleri göz önünde 

bulunduğunda buradan da elde edeceğimiz sonuç k=0.045 bulunmuştur. 

Tablo 3.10  R  EKK AIC, BIC çıktı 

                                                 

Tablo 3.10’daki çıktı EKK yönteminin AIC,  BIC değerine aittir. 

                           Tablo 3.11 EViews AIC,Durbin-Watson çıktı 

 

Tablo 3.11’deki çıktı zaman serisi modeline aittir. Var analizi göz önünde 

bulundurularak fark alma işlemleriyle otokorelasyon problem ortadan 

kaldırılmıştır. AIC değerinin küçük olması istenir. Yukarıdaki AIC değerleri göz 

önünde bulunduğunda buradan da elde edeceğimiz sonuç zaman serisi  modeli 

EKK  yöntemi daha kötü olduğu görülmüştür. 
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Tablo 3.12  R Ridge AIC, BIC çıktı 

 

Tablo 3.12’deki çıktı AIC değeri Ridge regresyon yöntemine aittir. AIC değerinin 

küçük olması istenir. Yukarıdaki k yanlılık parametresine göre hesaplanmış AIC  

değerleri göz önünde bulunduğunda buradan da elde edeceğimiz sonuç Ridge 

yönteminden EKK  yöntemi daha iyi olduğu görülmüştür. 

Tablo 3.13  R Liu AIC, BIC çıktı 

 

Tablo 3.13’deki çıktı AIC değeri Liu regresyon yöntemine aittir. AIC değerinin 

küçük olması istenir. Yukarıdaki d yanlılık parametresine göre hesaplanmış AIC  

değerleri göz önünde bulunduğunda buradan da elde edeceğimiz sonuç Ridge 

yönteminden Liu regresyon yöntemi daha iyi olduğu görülmüştür.     
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4 
SONUÇ VE ÖNERİLER 

  

Anlatıdan da görüleceği gibi d yanlılık parametresinin seçimi k yanlılık 

parametresine  göre daha kolaydır..Liu kesticisini öne çıkaran  özelliklerden 

biridir. 

Teorik olarak yerine yazıldığında k ve d yanlılık parametresi k=0, d=1 değerleri   

EKK kestircisine eşittirler. 

Uygulama sonuçları da göz önünde bulundurulduğunda ortak bir d ve k yanlılık 

parametresi kestirici değeri elde edilebilir. 

Ridge kestiricisinin EKK metoduna göre üstünlüğü daha az standart hatalı 

kestirimler ortaya çıkarmasıdır. Ridge kestiricisinin standart hatalarının 

hesaplanması için kaynaklarda yer alan formülasyon yoktur. 

Seçilecek k yanlılık parametresi değeri yanlılığın artan bir fonksiyonu olması 

sebebiyle, k değeri büyüdükçe parametreler daha fazla yanlı kestirilecektir. 

Ridge kestiricisin EKK kestiricisine, liu kestiricisiyse hem EKK hem de ridge 

kestiricisine göre etkileyici sonuçlar vereceği ortaya konmuştur.   

Tablo 4.1  R Liu  katsayı çıktı 

 

Liu regresyon kestirimleri tablo 4.1’deki gibidir. Açıklanan değişken ihracattır. 

TÜFE artarsa, iç talebin artmış olduğu dolayısıyla ihracattın azalacağı sonucuna 

varılmıştır. ÜFE  artarsa, devalüasyon etkisi ile dış talep artmış olduğu dolayısıyla 

ihracattın artacağı sonucuna varılmıştır. TCMB pasif yükümlülükleri azalırsa, 

döviz yükümlülükleri azalmış olduğu dolasıyla ihracattın artacağı sonucuna 

varılmıştır. 
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