

İSTANBUL TEKNİK ÜNİVERSİTESİ  LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

DOKTORA TEZİ

SUNUCUSUZ YAZILIM MİMARİSİYLE COĞRAFİ BİLGİ SİSTEMİ

TASARIMI VE UYGULAMASI

Mete Ercan PAKDİL

Bilişim Uygulamaları Anabilim Dalı

Coğrafi Bilgi Teknolojileri Programı

HAZİRAN 2022

İSTANBUL TEKNİK ÜNİVERSİTESİ  LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

SUNUCUSUZ YAZILIM MİMARİSİYLE COĞRAFİ BİLGİ SİSTEMİ

TASARIMI VE UYGULAMASI

DOKTORA TEZİ

Mete Ercan PAKDİL

(706142003)

Bilişim Uygulamaları Anabilim Dalı

Coğrafi Bilgi Teknolojileri Programı

Tez Danışmanı: Prof. Dr. Rahmi Nurhan ÇELİK

HAZİRAN 2022

iii

Tez Danışmanı : Prof. Dr. Rahmi Nurhan ÇELİK

 İstanbul Teknik Üniversitesi

İTÜ, Lisansüstü Eğitim Enstitüsü’nün 706142003 numaralı Doktora Öğrencisi Mete

Ercan PAKDİL, ilgili yönetmeliklerin belirlediği gerekli tüm şartları yerine getirdikten

sonra hazırladığı “SUNUCUSUZ YAZILIM MİMARİSİYLE COĞRAFİ BİLGİ

SİSTEMİ TASARIMI VE UYGULAMASI” başlıklı tezini aşağıda imzaları olan jüri

önünde başarı ile sunmuştur.

Teslim Tarihi : 14 Mayıs 2022

Savunma Tarihi : 16 Haziran 2022

Jüri Üyeleri : Prof. Dr. Nesibe Necla ULUĞTEKİN

İstanbul Teknik Üniversitesi

Prof. Dr. Ali Melih BAŞARANER

Yıldız Teknik Üniversitesi

Doç. Dr. Caner GÜNEY

İstanbul Teknik Üniversitesi

Doç. Dr. Taylan ÖCALAN

Yıldız Teknik Üniversitesi

iv

v

Akıl, bilim ve vicdana,

vi

vii

ÖNSÖZ

Üniversiteye başladığım ilk yıldan bu zamana kadar bana yalnızca akademik

çalışmalarımda değil her konuda rehberlik eden ve desteğini hiç esirgemeyen Sayın

Prof. Dr. Rahmi Nurhan ÇELİK’e,

Ayrıca doktora sürecime yaptıkları katkılar ile doktora konusunun

olgunlaşmasını sağlayan Sayın Prof. Dr. Nesibe Necla ULUĞTEKİN’e, Sayın Prof.

Dr. A. Melih BAŞARANER’e ve Sayın Doç.Dr. Caner GÜNEY’e,

Doktora sürecimde desteklerini ve yardımlarını esirgemeyen Sayın Prof. Dr. Abdullah

FERİKOĞLU’na,

Tez çalışması boyunca bana her türlü teknik konuda katkı sağlayan ve tez çalışması

sürecinde beni sürekli cesaretlendiren başta Thomas JOSEPH ve tüm Mott MacDonald

çalışma arkadaşlarıma,

Beni yetiştiren ve daima yanımda olan Sevgili Annem’e, Babam’a, Kardeşim’e ve

tabii ki tüm bu zorlu süreçte bana her zaman destek olan Sevgili Eşim’e,

Saygı ve Teşekkürlerimle.

Mayıs 2022 Mete Ercan PAKDİL

 (Geomatik Yüksek Mühendisi)

viii

ix

İÇİNDEKİLER

Sayfa

ÖNSÖZ .. vii
İÇİNDEKİLER ... ix
KISALTMALAR .. xi

ÇİZELGE LİSTESİ .. xiii
ŞEKİL LİSTESİ ... xv

ÖZET .. xvii
SUMMARY ... xxi
1. GİRİŞ .. 1

1.1 Tezin Amacı ve Kapsamı ... 2

1.2 Tez İçeriği ve Kurgu .. 3
1.3 Literatür İncelemesi .. 5

2. SUNUCUSUZ KAVRAMI VE SUNUCUSUZ HİZMET TÜRLERİ 9
2.1 Veri Depolama Hizmetleri ... 11

2.1.1 Yapısal ve ilişkisel veri depolama hizmetleri ... 12

2.1.2 Yapısal olmayan veri depolama hizmetleri ... 14
2.2 Hesaplama Hizmetleri .. 17

2.2.1 Hizmet olarak fonksiyon ... 19
2.2.2 Hizmet olarak konteyner ... 21

3. BULUT BİLİŞİM SAĞLAYICILARININ SUNUCUSUZ HİZMETLERİ ... 25

3.1 Amazon Web Services (AWS) Tarafından Sunulan Sunucusuz Hizmetler ve

Mekânsal Bilişim Özellikleri ... 26
3.1.1 Sunucusuz veri depolama hizmetleri .. 26
3.1.2 Sunucusuz hesaplama hizmetleri .. 27

3.1.3 Ekonomik model ... 29
3.2 Microsoft Azure Tarafından Sunulan Sunucusuz Hizmetler ve Mekânsal

Bilişim Özellikleri .. 29

3.2.1 Sunucusuz veri depolama hizmetleri .. 29
3.2.2 Sunucusuz hesaplama hizmetleri .. 31
3.2.3 Ekonomik model ... 33

3.3 AWS ve Microsoft Azure Sunucusuz Hizmetlerinin Karşılaştırılması 34
4. SUNUCUSUZ COĞRAFİ BİLGİ SİSTEMİ YAZILIMI TASARIMLARI VE

UYGULAMALARI .. 37

4.1 Mimari Tasarımların Değerlendirmesinde Kullanılan Yöntemler 37

4.1.1 12 Faktör yöntemi ... 38
4.1.2 Bulut bilişim sağlayıcılarının mimari değerlendirme ölçütleri 45

4.2 Sunucusuz Vektör Karo Harita Servisi Tasarımı, Uygulaması ve

Değerlendirmesi ... 49
4.2.1 Tasarım .. 49
4.2.2 Uygulama .. 54
4.2.3 Değerlendirme ... 55

x

4.3 Sunucusuz Raster Karo Harita Servisi Tasarımı, Uygulaması ve

Değerlendirmesi ... 58

4.3.1 Tasarım .. 59
4.3.2 Uygulama .. 62
4.3.3 Değerlendirme ... 64

4.4 Sunucusuz Mekânsal Zekâ Sistemi Tasarımı, Uygulaması ve Değerlendirmesi

 .. 66

4.4.1 Tasarım .. 67
4.4.2 Uygulama .. 73
4.4.3 Değerlendirme ... 76

4.5 Sunucusuz Olay Güdümlü Mekânsal Veri İşleme Servisi Tasarımı, Uygulaması

ve Değerlendirmesi: Kandilli Deprem Habercisi Örneği 78

4.5.1 Tasarım .. 79
4.5.2 Uygulama .. 83
4.5.3 Değerlendirme ... 86

4.6 Sunucusuz Mekânsal Analiz İş Akışı Sistemi Tasarımı, Uygulaması ve

Değerlendirmesi ... 88
4.6.1 Tasarım .. 89
4.6.2 Uygulama .. 103

4.6.3 Değerlendirme ... 109
5. SONUÇ VE ÖNERİLER ... 113

KAYNAKLAR .. 119
ÖZGEÇMİŞ .. 127

xi

KISALTMALAR

ACI : Azure Container Instances (Azure Konteyner Örnekleri)

API : Application Programming Interface (Uygulama Geliştirme Arayüzü)

AWS : Amazon Web Services (Amazon Web Hizmetleri)

BLOB : Binary Long Objects (İkili Büyük Objeler)

CBS : Coğrafi Bilgi Sistemi (Geographic Information System)

CAD : Computer-aided Design (Bilgisayar Destekli Tasarım)

CSV : Comma-Separated Values (Virgülle Ayrılmış Değerler)

GB : Gigabyte

GeoAI : Geospatial Artificial Intelligence (Mekânsal Zekâ)

GPU : Graphical Processing Unit (Grafik İşlemci Birimi)

HoA : Hizmet olarak Altyapı (Infrastructure as a Service)

HoF : Hizmet olarak Fonksiyon (Function as a Service)

HoP : Hizmet olarak Platform (Platform as a Service)

HoK : Hizmet olarak Konteyner (Container as a Service)

HoY : Hizmet olarak Yazılım (Software as a Service)

HTML : HyperText Markup Language (Köprülü Metin Dili)

HTTP : Hypertext Transfer Protocol (Köprülü Metin Gönderme Protokolü)

HTTPS : Hypertext Transfer Protocol Secure (Güvenli Köprülü Metin

Gönderme Protokolü)

IoT : Internet of Things (Nesnelerin İnterneti)

JSON : JavaScript Object Notation (JavaScript Nesne Notasyonu)

MVT : Mapbox Vector Tiles (Mapbox Vektör Karoları)

OGC : Open Geospatial Consortium

PBF : Protocolbuffer Binary Format

REST : Representational State Transfer (Temsili Durum Transferi)

SDK : Software Development Kit (Uygulama Geliştirme Takımı)

SQL : Structured Query Language (Yapısal Sorgu Dili)

SYM : Sayısal Yükseklik Modeli

TCP : Transmission Control Protocol (Gönderim Kontrol Protokolü)

URL : Uniform Resource Locator (İnternet Kaynak Belirteci)

xii

VPN : Virtual Private Network (Sanal Gizli Ağ)

YAML : Yet Another Markup Language (Bir Başka İmleme Dili)

WMTS : Web Map Tile Service (Web Harita Karo Servisi)

WMS : Web Map Service (Web Harita Servisi)

WSGI : Web Server Gateway Interface (Web Sunucu Ağ-Geçidi Arayüzü)

WPS : Web Processing Service (Web Analiz Servisi)

xiii

ÇİZELGE LİSTESİ

Sayfa

Çizelge 2.1 : Sunucusuz hizmet türlerinin sınıflandırılması. 11

Çizelge 3.1 : AWS sunucusuz veri depolama hizmetleri. ... 26
Çizelge 3.2 : AWS sunucusuz hesaplama hizmetleri. ... 27

Çizelge 3.3 : Microsoft Azure sunucusuz veri depolama hizmetleri. 30
Çizelge 3.4 : Microsoft Azure sunucusuz hesaplama hizmetleri. 31
Çizelge 3.5 : Amazon DynamoDB ve Azure Cosmos DB karşılaştırması 34

Çizelge 3.6 : AWS Lambda ve Azure Functions karşılaştırması. 35
Çizelge 3.7 : AWS Fargate ve Azure Container Instances karşılaştırması................ 35

Çizelge 4.1 : 12 Faktör yönteminin HoK ve HoF modelleri ile uygulanabilirliği. 45

Çizelge 4.2 : Vektör karo harita servisinin 12 Faktör yöntemine göre

değerlendirilmesi .. 57

Çizelge 4.3 : Vektör karo harita servisinin bulut bilişim sağlayıcısı mimari

değerlendirme ölçütlerine göre değerlendirilmesi 58
Çizelge 4.4 : Raster karo harita servisi sisteminin 12 Faktör yöntemine göre

değerlendirilmesi .. 65
Çizelge 4.5 : Raster karo harita servisinin bulut bilişim sağlayıcısının mimari

değerlendirme ölçütlerine göre değerlendirilmesi 66
Çizelge 4.6 : Mekânsal zekâ sisteminin 12 Faktör yöntemine göre değerlendirilmesi

 .. 76

Çizelge 4.7 : Mekânsal zekâ sisteminin bulut bilişim sağlayıcısının mimari

değerlendirme ölçütlerine göre değerlendirilmesi 78
Çizelge 4.8 : Telegram deprem bildirim sohbet botunun komutları 84
Çizelge 4.9 : Deprem bildirim sisteminin 12 Faktör yöntemine göre

değerlendirilmesi .. 87
Çizelge 4.10 : Vektör karo harita servisinin bulut bilişim sağlayıcısı mimari

değerlendirme ölçütlerine göre değerlendirilmesi 88

Çizelge 4.11 : Sunucusuz API yönetimi servisinin adres tablosu ve karşılık gelen

bileşenler ... 97

Çizelge 4.12 : İş akışı görev tanımı doğrulama kuralları ... 98
Çizelge 4.13 : İş akışı tanımı doğrulama kuralları ... 100
Çizelge 4.14 : Mekânsal analiz iş akışı sisteminin 12 Faktör yöntemine göre

değerlendirilmesi .. 109
Çizelge 4.15 : Mekânsal zekâ sisteminin bulut bilişim sağlayıcısı mimari

değerlendirme ölçütlerine göre değerlendirilmesi 111

xiv

xv

ŞEKİL LİSTESİ

Sayfa

Şekil 1.1 : Tez kapsamında uygulanan araştırma metodolojisi. 4

Şekil 2.1 : Bulut bilişim hizmet türlerinin yönetimsel farklılıkları. 9
Şekil 2.2 : Sunucusuz hizmetlerin birbirlerini olay üzerinden tetiklemeleri. 10

Şekil 2.3 : Sunucusuz ilişkisel veri tabanı hizmetinin çalışma anında

ölçeklendirilmesi .. 13
Şekil 2.4 : Yapısal olmayan veri depolama hizmetinin veri saklama yapısı. 14

Şekil 2.5 : Yapısal olmayan depolamada kova yapısı. .. 15
Şekil 2.6 : Yapısal olmayan depolama hizmetindeki bir olayın hesaplama hizmetini

tetiklemesi örneği. .. 16

Şekil 2.7 : Yapısal olmayan depolama hizmetindeki statik bir CBS web

uygulamasının yayınlanması örneği. .. 17

Şekil 2.8 : Bir fonksiyona ait soğuk ve sıcak başlatma süreçleri............................... 19
Şekil 2.9 : Sunucusuz hizmetlerin olay güdümlü olarak birbirlerini çalıştırmaları. .. 20
Şekil 2.10 : HoF ve HoK modellerinde kullanıcı ve sağlayıcı sorumlulukları. 21

Şekil 2.11 : Bir Docker konteynerin oluşturulma süreci. .. 22
Şekil 2.12 : HoK servisi üzerinde otomatik ölçeklendirme. 23

Şekil 3.1 : AWS, Azure, Google ve IBM bulut bilişim sağlayıcılarının 2021 son

çeyreğindeki pazar payları ... 25
Şekil 3.2 : Google Trends’e göre AWS, Azure, Google ve IBM bulut bilişim

sağlayıcılarının sunucusuz konusunda son bir sene içindeki aranma

popülerliği. ... 25

Şekil 4.1 : Uygulama geliştirici, kod deposu ve uygulama çalışma ortamı ilişkisi. .. 39
Şekil 4.2 : Destek servislerinin doğru şekilde kullanımı ... 41

Şekil 4.3 : Konteyner üzerinde çalışan uygulamanın portlarını bağlama gösterimi .. 42
Şekil 4.4 : Vektör karo harita servisi kullanım senaryosu ... 50
Şekil 4.5 : Vektör karo harita servisi sistemi tasarımı ve bileşenleri 52

Şekil 4.6 : Vektör karo harita servisinin AWS bulut bilişim sağlayıcısı üzerindeki

sunucusuz hizmetlerle uygulaması ... 54

Şekil 4.7 : Raster karo harita servisinin kullanım senaryosu 59
Şekil 4.8 : Raster karo harita servisi sistemi tasarımı ve bileşenleri 61
Şekil 4.9 : Raster karo harita servisinin Microsoft Azure bulut bilişim sağlayıcısı

üzerindeki sunucusuz hizmetlerle uygulaması ... 62
Şekil 4.10 : Azure Blob Storage konteynerlerinin Azure Functions konteynerinin

dosya sistemine bağlanması ... 63
Şekil 4.11 : Mekânsal analiz servisi sisteminin kullanım senaryosu 67

Şekil 4.12 : Mekânsal zekâ sisteminin sunucusuz mimaride sistem tasarımı............ 70
Şekil 4.13 : Mekânsal zekâ sistemi yapısal veri tabanı tabloları 72
Şekil 4.14 : Mekânsal zekâ sisteminin Microsoft Azure bulut bilişim sağlayıcısı

üzerindeki sunucusuz hizmetlerle uygulaması ... 73
Şekil 4.15 : Deprem bildirim sisteminin kullanım senaryosu.................................... 79
Şekil 4.16 : Deprem bildirim sistemi tasarımı ve bileşenleri 81

xvi

Şekil 4.17 : Deprem bildirim sistemi tasarımının AWS bulut bilişim sağlayıcısına ait

sunucusuz hizmetlerle uygulaması ... 83

Şekil 4.18 : Aboneler tablosu şeması ... 85
Şekil 4.19 : Amazon CloudWatch servisinden gelen deprem bildirimi gönderici

bileşeni ile ilgili sorun olduğunu belirten alarm e-postası 86
Şekil 4.20 : Mekânsal analiz iş akışı sisteminin kullanım senaryosu 90
Şekil 4.21 : Mekânsal analiz iş akışı sisteminin tasarımı .. 92

Şekil 4.22 : İş akışı yönetim servisi bileşeninin diğer bileşenlere çalışması ve OGC

API Processes işlemlerinin kullanımı ... 94
Şekil 4.23 : Konteynerlerin yaşam döngüsünün iş akışının çalışması ile ilişkisi 96
Şekil 4.24 : İş akışı görev tanımı formatı ... 98
Şekil 4.25 : İş akışı tanımı formatı ... 99

Şekil 4.26 : İş akışı görevi konteyner imajı tanımı .. 102
Şekil 4.27 : Mekânsal analiz iş akışı sisteminin AWS bulut bilişim sağlayıcısı

üzerinde uygulaması ... 103

Şekil 4.28 : Mekânsal taşkın analizinin iş akış şeması .. 105
Şekil 4.29 : Taşkın analizinin iş akışı tanımına göre yazılımı 106
Şekil 4.30 : Paralel ve tekrarlı iş akışı görevlerinin raster analizi için iş akışı

içerisinde birlikte kullanımı .. 107

Şekil 4.31 : Sayısal yükseklik modellerinde eğim ve bakı analizi iş akışının

geliştirilen tanımlama modeline göre yazımı 108

xvii

SUNUCUSUZ YAZILIM MİMARİSİYLE COĞRAFİ BİLGİ SİSTEMİ

TASARIMI VE UYGULAMASI

ÖZET

Bulut bilişim teknolojileri her şeyin bir servis (Everything as a Service) olduğu bir

anlayışla birlikte gelişmektedir. Her geçen gün ortaya konan yeni bir altyapı yönetim

yaklaşımına da bu kapsamda isimler verilmiştir. Günümüzde bulut bilişim altyapısının

yönetiminde farklılıklar sunan üç farklı servis modeli bulunmaktadır. Bu servis

modelleri; Hizmet olarak Altyapı (HoA - Infrastructure as a Service), Hizmet olarak

Platform (HoP - Platform as a Service), Hizmet olarak Yazılım (HoY - Software as a

Service) şeklinde isimlendirilmektedir. Her bir servis modeli bir diğerine göre daha

fazla bulut bilişim altyapısının yönetimini soyutlaştırarak farklılaşmaktadır. Bu üç

modele ek olarak ortaya çıkan sunucusuz paradigması ise HoY ile HoP arasında

konumlandırılabilir. Bu paradigma içerisinde ortaya konan sistem mimarileri de

sunucusuz mimariler olarak adlandırılmaktadır.

Sunucusuz kavramı ismen yanıltıcı olabilmekte ve kullanıcıda fiziksel veya sanal bir

sunucu yok algısı oluşturmaktadır. Bu algının aksine uygulamalar ve hizmetler yine

sunucular üzerinde çalışmakta ancak sunucunun tüm yönetimi bulut bilişim sağlayıcısı

tarafından yapılmaktadır. Sunucusuz mimariler özellikle yüksek ölçeklenebilir

uygulamalarda bilişim altyapısının yönetimi giderek zorlaşması nedeniyle daha çok

tercih edilmektedir.

Konteyner teknolojisi sunucusuz paradigmasının gelişmesinde büyük rol oynamıştır.

Sanal makinelere göre uygulamaların başlama hızı, taşınabilirliği ve kullanılabilirliği

daha iyileştirmiş olması nedeniyle konteyner kullanımı giderek yaygınlaşmıştır. Bu

yeni akım farklı teknik zorlukları ve çözümlerini de beraberinde getirmiştir. Özellikle

birden çok konteyner uygulamasının birlikte çalışması ve yüksek ölçeklenebilirliğin

sağlanabilmesi problemi için konteyner orkestrasyon platformları çözüm olarak ortaya

çıkmıştır. Bunlardan en bilinen konteyner orkestrasyon platformu Kubernetes olarak

adlandırılmaktadır.

Bulut bilişim sağlayıcıları hızla konteyner orkestrasyon platformlarını kendilerine

dahil ederek hizmet olarak sunmaya başlamışlardır. Bu platformların getirdiği

kolaylıklar beraberinde yeni gereksinimler de doğurmuştur. Konteyner orkestrasyon

yazılımlarının doğru şekilde yapılandırılması ve sağlıklı çalışabilmesi için kullanıcıları

için ileri düzey bulut bilişim altyapısı bilgisine sahip olma ve eğitiminin alınmasını

gerektirmektedir. Sunucusuz hizmetler bu gereklilikleri ortadan kaldırarak

kullanıcıların ileri düzey altyapı bilgisi sahibi olmadan da yüksek ölçeklenebilir

uygulamaları bulut bilişim platformları üzerinde çalıştırabilmelerini sağlamaktadır.

Sunucusuz mimarilerin giderek yaygınlaşması ve bulut bilişim sağlayıcıları tarafından

benimsenmesi ile farklı bulut bilişim hizmet modelleri ortaya çıkmıştır. Herhangi bir

yazılım sistemi mimarisinin tasarımında iki temel bileşen türü sıklıkla

kullanılmaktadır. Bunlar hesaplama ve veri depolama bileşenleridir. Bu çalışmada da

xviii

sunucusuz hizmet modelleri veri depolama ve hesaplama olarak iki grupta

incelenmiştir. Böylece çalışmada sunulan sistem mimarilerindeki temel gereksinimler

bu gruplardan karşılanmıştır.

Çalışmada veri depolama hizmetleri de kendi içinde yapısal ve yapısal olmayan veriler

için iki gruba ayrılarak incelenmiştir. İlk grupta incelenen yapısal veri depolama

hizmetleri ise verilerin sorgulanma yeteneklerine göre iki alt grupta incelenmiştir.

Yapısal veri türleri; belge, sütun ailesi, anahtar-değer (key-value) ve çizge (graph)

türünde sınıflandırılarak incelenmiştir. Literatürde bu veri depolama türleri NoSQL

adı altında toplanmaktadır. Bunun sebebi ise veri sorgulamanın SQL dili dışında özel

geliştirilmiş diller veya API’larla sunulmasıdır.

Sistem mimarilerinde yapısal veri depolama hizmetlerinin seçimine kullanım şekline

bağlı olarak karar verilmelidir. Örneğin anahtar-değer veri tabanlarında anahtar alanı

dışında sorgulama yapılmak istendiğinde sorgulama hızı diğer depolama türlerine göre

oldukça yavaş ve verimsiz olacaktır. Çalışmada sunulan sistem tasarımlarında bu veri

depolama hizmetleri kullanılarak CBS uygulamalarında nasıl katkı verebilecekleri

gösterilmiştir.

Bir diğer yapısal veri depolama alt grubunda ise ilişkisel veri depolama hizmetleri

bulunmaktadır. Burada incelenen veri depolama hizmetleri ise verilerin SQL diliyle

sorgulanmasını sağlamaktadır. Bir diğer karakteristik özelliği ise verilerin tablolar

halinde saklanması ve tablolar arasında belirli anahtar değerler üzerinden ilişki

kurulabilmesidir. İlişkisel veri tabanları birçok mevcut CBS sunucusu yazılımı

tarafından desteklenmektedir. Bu nedenle bu hizmet türünün varlığı mevcut CBS

mimarilerinin sunucusuz mimarilere taşınmasını kolaylaştırmaktadır.

Yapısal olmayan veri depolama hizmetleri ise verilerin yapısından bağımsız olarak

onları ikili (binary) objeler olarak saklanmasını sağlamaktadır. Literatürde saklanan

bu verilere BLOB ismi verilmektedir. Ayrıca yapısal veri depolama hizmetlerinin

klasik dosya sistemlerinden nasıl ayrıldıkları da açıklanmıştır. Depolanan objelere

birer anahtar değer verilerek bu değerler üzerinden hızlı erişim sağlanmaktadır.

Yapısal olmayan veri depolama hizmetlerinin bir diğer özelliği ise yüklenen HTML

sayfalarını yardımcı dosyalarıyla birlikte web sitesi olarak sunabilmesidir. Çalışmada

bu özellikten faydalanılarak bir web CBS uygulamasının yapısal olmayan veri

depolama hizmeti üzerinde nasıl konumlandırılabileceği de açıklanmıştır.

Çalışmada sunucusuz hesaplama hizmetleri de kendi içinde fonksiyon ve konteyner

türünde iki gruba ayrılarak incelenmiştir. Çalışmada fonksiyon türündeki hizmetler

Hizmet olarak Fonksiyon (HoF) ve konteyner türündeki hizmetler ise Hizmet olarak

Konteyner (HoK) olarak isimlendirilmiştir. İki hizmet türü de temelde konteyner

teknolojisini kullanmaktadır. Konteyner ve fonksiyon hizmet türü arasındaki fark

kullanıcıların hangi seviyede geliştirme yapabilmesi üzerinden oluşmaktadır.

Konteyner hizmet türündeki sunucusuz hesaplama hizmetleri kullanıcılara

uygulamanın çalışacağı konteyneri özelleştirebilmesini de sağlar.

Fonksiyon türündeki sunucusuz hesaplama hizmetleri kullanıcıların yükledikleri

uygulama kodunu çalıştırırlar. Platforma bağlı olarak destek verilen programlama

dilleri de değişiklik göstermektedir. Uygulamalar olay güdümlü olarak çalışırlar.

Olayların kaynağı ise platform üzerindeki diğer bulut bilişim servisleri olabileceği gibi

internet istekleri de olabilir. Çalışmada akıllı şehir mimarilerinde sıkça kullanılan

nesnelerin interneti sensörlerinin olay kaynağı olarak fonksiyonları olay güdümlü

olarak nasıl çalıştırabildiği bir örnekle açıklanmıştır. Çalışmada yapısal olmayan veri

xix

depolama hizmetlerinin sunucusuz hesaplama hizmetleri ile olan ilişkisi de

incelenmiştir. Yapısal olmayan veri depolama hizmetleri üzerindeki objelere ait durum

değişimleri ve yeni objelerin eklenmesi sonucu üretilen olaylar sunucusuz hesapla

hizmetlerini tetikleyebilmektedir.

Konteyner türündeki sunucusuz hesaplama hizmetleri ise kullanıcıların hazırladıkları

konteyner imajlarını çalıştırırlar. Özellikle bir uygulamanın çalışması için işletim

sistemine kurulması gereken bağımlılıkları varsa HoF modelinde bu bağımlılıkların

kurulmasına izin verilmezken HoK bu konuda çözüm sunmaktadır. Mevcut CBS

sunucusu yazılımları sunucusuz mimariye taşınırken daha özgür bir çalışma ortamı

sunduğu için HoK modeli tercih edilmektedir. HoK modelinin bir diğer tercih nedeni

ise HoF modeline göre daha uzun sürelerde çalışmayı sağlamasıdır.

Her şeyin bir servis olduğu bulut bilişim dünyasında sunucusuz hizmetler sadece iki

grup üzerinden düşünülmemelidir. Bir sistem mimarisinin ihtiyaç duyabileceği hata

günlüklerinin tutulması, uygulama ayarlarının saklanması veya mesaj kuyrukları gibi

hizmetlerde sunucusuz hizmetler çatısı altında sunulmaya başlanmıştır. Literatürde bu

hizmetlere destek servisleri (back-end services) de denilmektedir. Çalışmada sunulan

sistem mimarilerinde bu servisler de açıklanarak kullanılmıştır.

Çalışmada en çok kullanılan iki bulut bilişim sağlayıcısının sunduğu sunucusuz

hizmetler veri depolama ve hesaplama türlerine göre ayrı ayrı incelenmiştir. Sunulan

hizmetlerin mekânsal bilişim özellikleri de kullanım şekilleriyle birlikte verilmiştir.

Her bir bulut bilişim sağlayıcısının sunucusuz hizmetlerde uyguladıkları ekonomik

model de açıklanmıştır. İki bulut bilişim sağlayıcısının sunucusuz hizmetleri

karşılaştırmalı olarak da incelenmiş ve farklar irdelenmiştir.

Sistem mimarilerinin değerlendirilmesi için kullanılan iki farklı değerlendirme

yöntemi açıklanmıştır. Bu değerlendirme yöntemlerinin sunucusuz mimarilere

uygulaması detaylı bir şekilde açıklanmıştır. Yöntemlere ait ölçüt ve prensiplerin

sunucusuz mimariler için uygulanabilirlikleri değerlendirilmiştir.

Çalışmada vektör karo harita servisi, raster karo harita servisi, mekânsal zekâ, olay

güdümlü deprem bildirim servisi ve mekânsal analiz iş akışı sistemlerinin sunucusuz

mimaride sistem tasarımları sunulmuştur. Her bir tasarım CBS kullanım senaryoları,

roller ve gereksinimler açıklanarak desteklenmiştir. Tasarımlar seçilen bir bulut

bilişim sağlayıcısı üzerinde uygulanarak açıklanmıştır. Tasarım ve uygulamalar

çalışmada açıklanan 12 Faktör yöntemi ve bulut bilişim sağlayıcılarının mimari

değerlendirme ölçütlerine göre değerlendirilmiştir.

Mekânsal analiz iş akışı sistemi tasarımında kullanılmak üzere iş akışlarının

tanımlanabilmesi için iş akışı ve iş akışı görev tanımları da geliştirilmiştir. Böylece

kullanıcıların kolaylıkla sunucusuz mimaride çalışmak üzere mekânsal iş analizlerini

tasarlamalarına imkân sunulmuştur.

Sunucusuz mimariler CBS kullanım senaryoları üzerinden literatürde ilk kez bu kadar

kapsamlı incelenmiştir. Çalışma kapsamında incelenen sunucusuz hizmet türlerinin

mekânsal özellikleri literatürde ilk kez bir arada derlenerek incelenmiştir. Sunulan

mekânsal analiz iş akışı sistemi ve sistemin ortaya koyduğu iş akışı tanımlama

tasarımları da literatürde özgündür.

Bu tez çalışmasının hedeflerinden biri de sunucusuz mimarilerin mekânsal bilişim

sistemlerinde daha fazla kullanılmasına öncülük etmek ve mekânsal bilişim

kullanıcıları içinde farkındalığının artmasını sağlamaktır. Çalışmada sunulan öncül

tasarımların gelecekte yapılacak benzer çalışmalara kılavuz olması beklenmektedir.

xx

xxi

DESIGN AND APPLICATION OF SERVERLESS ARCHITECTURES IN

GEOGRAPHIC INFORMATION SYSTEM

SUMMARY

Cloud computing technologies have developed with “everything as a service”

approach. New infrastructure management service models have been introduced day

by day and have been named in accordance with this approach. Today, three different

service models differ in the level of cloud computing infrastructure management.

Current service models are Infrastructure as a Service (IaaS), Platform as a Service

(PaaS), and Software as a Service (SaaS). Each model differs from the other by

abstracting cloud infrastructure resources. A cloud computing system consists of three

fundamental layers that require management; operating system, data and application.

In the IaaS model, the user is expected to manage all these three components. Besides,

in the PaaS model, data and application layers are expected to be managed by the user.

Finally, in the SaaS model, all components are managed by the cloud computing

provider and the user is given access to use them via a provided application interface.

In addition to these three models, the serverless paradigm has emerged and is

positioned between SaaS and PaaS models. System architectures that leverage this

paradigm are also called serverless architectures.

The concept of serverless can be misleading for users and creates the perception that

there is no physical or virtual server. On the contrary, applications and services still

run on servers, but servers are abstracted from users and are fully managed by the

cloud computing provider. As the management of highly scalable infrastructure is

getting more difficult and complex, serverless architectures are more preferred

especially in such scenarios that require high scalability.

Needless to say, container technology has played a major role in the development of

the serverless paradigm. The use of containers has become increasingly popular, as it

has improved start-up speed, portability and disposability of applications compared to

virtual machines. Moreover, this new trend has brought different technical challenges

together with solutions. In particular, container orchestration platforms have emerged

as a solution to enable multiple container applications to work together for providing

high scalability. The most well-known orchestration platform is named Kubernetes.

Cloud computing providers have rapidly adapted to container orchestration platforms

and provide them as a service in their service portfolios. While these platforms bring

convenience to container management, they also introduced new requirements in

infrastructure management. Container orchestration platforms require advanced cloud

computing infrastructure knowledge and training for their users so that users can

properly configure them to make them work properly. Fortunately, serverless services

eliminate these requirements and enable users to run highly scalable applications on

cloud computing platforms without having advanced infrastructure knowledge.

With the increasing usage of serverless architectures and their adoption by cloud

computing providers, different cloud computing service models have emerged in cloud

computing platforms. Two essential component types are frequently used in the design

of any software system architecture. These component types are called, computation

xxii

and data storage. In this study, serverless service models are also grouped and

examined based on these component types. Thus, component requirements in the

system architectures presented in the study were fulfilled by these groups.

In the study, data storage services are also examined by dividing them into two groups

based on the stored data structure. Structural data storage services, which were

examined in the first group, are also studied in two subgroups based on data querying

capabilities.

It is observed that structured data storage services offer different solutions for data

querying. These solutions differ according to the structure type of the data. Data

structures are categorised as follows: document, column family, key-value, and graph.

In the literature, these data storage types are gathered under the name of NoSQL. The

reason is that the data is queried with specially developed languages or APIs other than

SQL language.

The structured data type should be selected depending on data requirements. For

example, the query performance is relatively slow when a field is used rather than the

key field in key-value data storage services. In the system designs proposed in the

study, it is shown how structured data storage services can contribute to GIS

applications with these data structure types.

Relational data storage services are the second subgroup under the structured data

storage services group. These data storage services provide SQL support for querying

data. Another characteristic feature is that the data is stored in tables and a relationship

can be established between the tables over certain key values. Relational databases are

supported by many existing mature GIS server applications. Therefore, migration of

existing GIS architectures relies on relational databases to serverless architectures can

be considered as possible with these services.

It is observed that serverless relational database services are built on existing well-

known database server applications that were not originally built for cloud

infrastructures. In this study, it is explained how serverless relational database services

are delivered in serverless architecture in a highly scalable manner while using existing

database server applications that are not could native.

Unstructured data storage services, on the other hand, allow data to be stored as binary

objects, regardless of their structure. These binary objects in the literature are called

BLOB. Unstructured data storage services have a different hierarchy compared to file

systems. In unstructured data storage services, objects are stored along with a key

value that is very similar to the key-value database concept. Assigning a key value to

the stored objects provides fast access to objects.

Another feature of unstructured data storage services is that they can serve a static

website from stored HTML pages and asset files such as images and JavaScript files.

In this study, it is also explained how a web GIS application can be served on the

unstructured data storage service by leveraging this feature.

Serverless computational services were also examined by dividing them into two

groups based on their deployment types; function and container. Serverless

computational services based on function deployment are called Function as a Service

(FaaS) and similarly, container deployments are called Container as a Service (CaaS).

Both types of services use container technology at the foundation. The difference

between container and function service type is based on what level users can deploy.

Serverless function services only allow deploying application code and abstract

container management from the user. Depending on the cloud provider, the supported

programming languages vary. Function applications run as event driven. The source

of the events can be either other cloud computing services on the platform or web

xxiii

requests. In this study, it is explained with an example that illustrates how the (Internet

of Things) IoT sensors, which are frequently used in smart city systems, can be

considered as event-source to trigger the functions as a part of event-driven

architecture. The relationship between unstructured data storage services and

serverless computing services is also examined. In addition, changes in the binary

objects and the new objects on the unstructured data storage services can produce

events that trigger serverless computational services.

Serverless container services, on the other hand, run custom-built container images

that are developed and deployed by the user. In particular, if an application has

dependencies that need to be installed on the operating system before running, they

can be installed on the CaaS model deployments. In contrast, these dependencies are

not allowed to install at the operating system level in FaaS model deployments. The

CaaS model can be preferred when an existing GIS system is migrated to serverless

architectures because it offers the freedom to customize the operating system and run

heavy computational applications. It is also preferred when the application requires

longer runtime that is limited in the FaaS service model.

In the cloud computing world, where everything offers as a service, serverless services

should not be considered only in two groups. Services such as keeping error logs,

storing application settings or message queues are also offered as part of the serverless

paradigm. These services play also important roles in serverless architectures. In the

literature, these supporting services are also called Back-end as a Service (BaaS)

services. In this study, proposed system architectures leverage these services to

demonstrate how they can be useful.

Serverless services offered by two mature and mostly used cloud computing providers

are reviewed from the geospatial point of view in accordance with the serverless

services categorisation presented in this study. Geospatial features offered by these

providers are given together with their usage patterns. The economic model that each

cloud computing provider implements in serverless services is also explained.

Furthermore, the serverless services of these providers are also analysed comparatively

and the differences are discussed.

Proposed system architectures are evaluated with two different evaluation methods

commonly used for cloud system architectures. These evaluation methods are

explained in detail with a serverless perspective. Each evaluation method defines

different evaluation criteria. Thus, each criteria's applicability for serverless

architectures is also discussed.

In this study, vector tile map service, raster tile map service, geospatial artificial

intelligence (GeoAI), event-driven earthquake notification service and geospatial

workflow systems are designed as serverless architectures and applied with a cloud

provider's serverless services. Each design is supported by real-world GIS scenarios,

role definitions and requirement lists. Each design is applied to a cloud provider's

infrastructure by using only serverless services. At the end of each system design

section, the proposed design and its application to a cloud provider are evaluated

according to the evaluation methods described in the study.

As a part of the last system design, workflow and workflow task definition formats are

also defined and explained with validation rules. These definitions are key elements to

define the workflows to be used in the proposed geospatial workflow system. Thus,

users can easily design and define geospatial analysis workflows to run on serverless

architectures.

One important contribution of this study is to provide well-defined and well-evaluated

serverless GIS architecture designs to solve various real-world scenarios. Serverless

xxiv

architectures can reduce resource utilization and the carbon footprint of the systems.

Another important contribution is to review serverless services from a geospatial point

of view with extensive examples over generic scenarios. Lastly, another remarkable

contribution is to present the geospatial analysis workflow system and design the

workflow definition models to run complex and long-running geospatial data analyses

on serverless architectures.

One of the goals of this thesis study to demonstrate the use of serverless architectures

in geospatial applications and to increase serverless technologies awareness in the

geospatial community. It is expected that the novel system designs presented in the

study will be a reference to similar studies in the future.

1

1. GİRİŞ

Günümüzde gelişen teknolojiyle birlikte büyük veri (big data), nesnelerin interneti

(IoT-Internet of Things), makine öğrenimi (machine learning) gibi yeni kavramlar

literatürde daha çok yer almaya başlamıştır. Mekânsal bilgi teknolojileri de bu

gelişmelerin içerisinde önemli bir konum kazanmıştır. Örneğin nesnelerin interneti

kavramı ile iç içe geçen akıllı şehirler konseptinin bir parçası olan akıllı sensörlerin

ürettiği büyük verinin analizi ve görselleştirilmesinde coğrafi bilgi sistemleri ana

oyuncu olarak karşımıza çıkmaktadır (Li ve diğ, 2016). Geomatik mühendisliği ile

makine öğreniminin etkileşimine örnek olarak da uzaktan algılama ve fotogrametri

alanında yapılan makine öğrenimi çalışmaları verilebilir (Döş ve Uysal, 2019; Atik ve

diğ, 2022). Bu çalışmalar mekânsal bilişim teknolojilerinin güncel teknolojilerle

birlikte gelişerek ilerlediğini gösteren örneklerden bir kaçıdır. Bu değişim aynı

zamanda üretilen ve işlenen veri miktarını da önemli ölçüde arttırmıştır. İletişim

teknolojilerinin ilerlemesi ve veri kaynaklarının çoğalması üretilen veri miktarının

radikal bir şekilde artışına neden olmuştur. Veri depolama maliyetlerinin azalmasıyla

birlikte üretilen ham veriler zamanla silinmesine de gerek olmadan

saklanabilmektedir. Bu nedenle veri sorgulama için kullanılan klasik yöntemler ile

ham ve yapısal olmayan verilerin sorgulanması mümkün olmadığından “büyük veri”

çatı kavramı altında yeni sorgulama ve analiz araçları geliştirilmiştir. Bu verilerin

içerdiği konum bilgisinin analizinin en optimum şekilde nasıl yapılacağı da mekânsal

bilişim topluluğu içinde çözülmesi gereken yeni problemler ortaya koymuştur.

Bulut bilişim teknolojileri yukarıda adı geçen teknolojilerin olgunlaşmasında ve

geliştirilmesinde önemli rol oynamıştır. Verinin depolanması, işlenmesi ve sunumu

konularında bulut bilişim teknolojileri ile farklı yaklaşımlar ve modeller ortaya

çıkmıştır. Veri işleme ve analizi için gereken büyük işlem gücüne büyük bilişim

altyapısı yatırımları yapmadan bulut bilişim ile çok kısa sürede ulaşmak mümkün hale

gelmiş ve bu da bu konuda çalışan farklı disiplinlerdeki uzmanların sayısını arttırmış

ve yeni akademik çalışmaların önünü açmıştır.

2

Günümüzde mekânsal bilişim teknolojilerinin bulut bilişim ile etkileşimi giderek

artmaktadır. Mekânsal bilişim üzerine çalışan birçok akademisyen ve uzman

çalışmalarını bulut bilişim altyapılarına taşıyarak bu konuda yeni algoritmalar ve

uygulamalar geliştirmektedirler. Bu çalışmalar bulut bilişimin sağladığı çeşitli hizmet

modelleri kullanılarak yapılmaktadır. Bulut bilişimin sağladığı hizmet modellerinden

biri de sunucusuz hizmet modelidir. Bu model ile bulut bilişim kaynaklarının en

verimli şekilde kullanılması mümkün olmaktadır. Bu modelle çalışan kaynaklar

kullanıcıdan sunucu yönetimini tamamen soyutlarlar.

Sunucusuz hizmetlerle geliştirilen sistem ve yazılım mimarilerine sunucusuz

mimariler denmektedir. Henüz coğrafi bilgi teknolojileri içerisinde sunucusuz

mimariler etkin şekilde kullanılmamaktadır (Baldini ve diğ, 2017). Bu çalışmada

mevcut coğrafi bilgi teknolojileri uygulamaları geliştirilen sunucusuz mimariye dayalı

sistem tasarımlarıyla incelenmiştir. Tez çalışmasında sunulan sistem tasarımları ile

coğrafi verilerin saklanması, sunumu ve analizi için hem bilişim altyapısının hem de

insan kaynağının kullanımının verimliliğinin arttırılması hedeflenmiştir.

1.1 Tezin Amacı ve Kapsamı

Bu tezin bir amacı sunucusuz mimarileri coğrafi bilgi teknolojileri özelinde incelemek

ve bu konuda yeni çözümler sunmaktır. Tez çalışmasında sunulan çözümlerin daha iyi

anlaşılabilmesi için sunucusuz kavramı ve sunucusuz mimarideki hizmet modelleri

sınıflandırılarak incelenmiştir. Açıklanan hizmet modelleri seçilen iki farklı bulut

bilişim sağlayıcısının sunucusuz hizmet modelleri üzerinden incelenmiştir. Bulut

bilişim sağlayıcılarının sundukları sunucusuz hizmetlerin mekânsal bilişim özellikleri

incelenmiştir.

Tez çalışmasında vektör karo harita servisi, raster karo harita servisi, mekânsal zekâ,

olay güdümlü deprem bildirim servisi ve mekânsal analiz iş akışı sistemlerinin

sunucusuz mimaride sistem tasarımları sunulmuştur. Her bir tasarım CBS kullanım

senaryoları, roller ve gereksinimler açıklanarak desteklenmiştir. Tasarımlar seçilen bir

bulut bilişim sağlayıcısı üzerinde uygulanarak açıklanmıştır. Tasarım ve uygulamalar

tezde açıklanan değerlendirme yöntemlerine göre değerlendirilmiştir.

Bu tez kapsamında aşağıdaki sorulara cevaplar aranmıştır.

• Sunucusuz kavramı nedir?

3

• Sunucusuz mimariye dayalı servisler nelerdir ve türleri nedir?

• Bulut bilişim sağlayıcılarının sunduğu sunucusuz hizmetler nelerdir ve hangi

mekânsal bilişim özelliklerini sunmaktadırlar?

• Sunucusuz mimariye dayalı sistemler nasıl değerlendirilmelidir?

• Bir raster karo harita servisi sistemi sunucusuz mimari ile nasıl tasarlanır?

Bulut bilişim sağlayıcısı üzerindeki sunucusuz servisler üzerinde nasıl

uygulanır? Bu tasarım üzerinde OGC (Open Geospatial Consortium) WMTS

(Web Map Tile Service) standardı nasıl uygulanır?

• Bir vektör karo harita servisi sistemi sunucusuz mimari ile nasıl tasarlanır?

Bulut bilişim sağlayıcısı üzerindeki sunucusuz servisler üzerinde nasıl

uygulanır? Bu tasarım üzerinde MVT (Mapbox Vector Tiles) standardı nasıl

uygulanır?

• Bir mekânsal zekâ sistemi sunucusuz mimari ile nasıl tasarlanır? Bulut bilişim

sağlayıcısı üzerindeki sunucusuz servisler üzerinde nasıl uygulanır? Bu tasarım

üzerinde OGC WPS (Web Processing Service) standardı nasıl uygulanır?

• Bir olay güdümlü mekânsal veri işleme servisi sistemi sunucusuz mimari ile

nasıl tasarlanır? Bulut bilişim sağlayıcısı üzerindeki sunucusuz servisler

üzerinde nasıl uygulanır? Bu tasarım üzerinde OGC API (Application

Programming Interface) – Processes (İş-süreçleri) standardı nasıl uygulanır?

• Bir mekânsal analiz iş akışı sistemi sunucusuz mimari ile nasıl tasarlanır? Bulut

bilişim sağlayıcısı üzerindeki sunucusuz servisler üzerinde nasıl uygulanır?

• Bir mekânsal analiz iş akışı sisteminde iş akışları ve görev tanımları nasıl

modellenmelidir?

1.2 Tez İçeriği ve Kurgu

Bu tez sunucusuz kavramının detaylı bir şekilde açıklanması ve çeşitli mekânsal

bilişim servislerinin tasarımlarının sunucusuz mimarilerle tasarlanarak uygulamalarla

incelenmesinden oluşmaktadır (Şekil 1.1).

4

Şekil 1.1 : Tez kapsamında uygulanan araştırma metodolojisi.

Birinci bölümde (Giriş) tez konusu, amacı ve içeriği hakkında ayrıntılı bilgi

verilmiştir. Ayrıca literatür incelemesi yapılarak benzer çalışmalar incelenmiş ve bu

çalışmalar değerlendirilmiştir.

İkinci bölümde (Sunucusuz Kavramı ve Sunucusuz Hizmet Türleri) sunucusuz

kavramı açıklanmıştır. Ardından sunucusuz mimarideki hizmet türleri sınıflandırılarak

incelenmiş ve açıklanmıştır. Bu bölümde bir sonraki bölümlerde kullanılan sunucusuz

hizmetler hakkında kavramların anlaşılmasını kolaylaştıran ayrıntılı bilgiler

verilmektedir.

5

Üçüncü bölümde (Bulut Bilişim Sağlayıcılarının Sunucusuz Hizmetleri) ikinci

bölümde açıklanan sunucusuz hizmet türlerinin seçilen iki farklı bulut bilişim

sağlayıcısı üzerindeki sunumları mekânsal bilişim özellikleriyle birlikte incelenmiştir.

Dördüncü bölümde (Sunucusuz Coğrafi Bilgi Sistemi Yazılımı Tasarımları ve

Uygulamaları) sunucusuz hizmet türleri ve çeşitli Coğrafi Bilgi Sistemi standartları

kullanılarak sunucusuz sistem mimarileri tasarlanarak uygulanmıştır. Sunucusuz

sistem tasarımları verilmeden önce tasarımların değerlendirmesinde kullanılan

yöntemler verilerek açıklanmıştır. Her tasarım bir CBS senaryosu, gereksinimler ve

kullanıcı rolleri verilerek desteklenmiştir. Bölümün son kısmında verilen tasarım

(Sunucusuz Mekânsal Analiz İş Akışı Sistemi Tasarımı, Uygulaması ve

Değerlendirmesi) ile yeni bir iş akışı ve iş akışı görevi tanımı modeli ortaya

konulmuştur. Geliştirilen bu tanımlara göre örnek mekânsal analiz iş akışları

tasarlanmıştır.

Beşinci bölümde (Sonuç ve Öneriler) tezde yer alan tüm bölümler bütünsel olarak ele

alınarak değerlendirilmiştir. Ayrıca sunucusuz yazılım mimarileri ile mekânsal bilişim

konusunda ileride yapılabilecek çalışmalara ilişkin yol haritası da geliştirilerek

sunulmuştur.

1.3 Literatür İncelemesi

Baldini ve diğ. (2017) yayınladıkları çalışmada sunucusuz kavramını tanımlamış ve

bu kavrama dayalı geliştirilen yazılım mimarileri ve bulut bilişim servislerinin

günümüzdeki kullanım alanlarını incelemişlerdir. Bununla birlikte bu sunucusuz

yazılım ve servislerin karakteristik özelliklerini tanımlamışlardır. Çalışmada ayrıca

sunucusuz mimarilerin avantajları ve dezavantajları da açıklanarak teknik zorluklar ve

halen çözülmeyi bekleyen problemlerden de bahsedilmiştir.

Bebortta ve diğ. (2020) yaptıkları çalışmada sunucusuz mimarilerle büyük mekânsal

verilerin analizini farklı ve iyi bilinen sunucusuz bilişim servis sağlayıcısı platformları

üzerinde incelemiştir. Sunucusuz mimariler performans, güvenilirlik,

ölçeklenebilirlik, güvenlik ve hız parametreleri ile ele alarak diğer mimarilerle

karşılaştırmışlardır. Çalışmada sundukları çerçeve yapı ile mekânsal verinin analizinin

sunucusuz hizmetlerle yaparak elde ettikleri sonuçları paylaşmışlardır. Sunucusuz

6

mimarilerin coğrafi bilgi teknolojilerinde daha baskın olarak kullanılacağını

değerlendirmiştirler.

Jain ve diğ. (2020) çalışmalarında, AWS (Amazon Web Services) bulut bilişim

sağlayıcısı üzerinde sunulan sunucusuz hesaplama hizmet modellerinden olan HoF

(Hizmet olarak Fonksiyon) ve HoK (Hizmet olarak Konteyner) modelleri ile HoP

(Hizmet olarak Platform) modelini karşılaştırmak için örnek bir uygulamayı üç

modeldeki servisle çalıştırarak performans analizleri yapmışlardır. Sonuç olarak bulut

bilişim kullanacak mühendislerin daha fazla bilgi işlem gücü ihtiyacı olduğunda ve

özelleştirilmiş bir ortamda uygulama çalıştırmaları gerektiğinde HoK modelinin bu

ihtiyaçları karşılayabileceği belirtilmiştir.

Anand ve diğ. (2019) yayınladıkları çalışmada geliştirdikleri gerçek zamanlı konum

takip sistemini sunucusuz mimari ile nasıl uyguladıklarını açıklamışlardır. Sundukları

sistem mimarisini geliştirdikleri bir takip cihazı donanımı ve yazılım ile bir bulut

bilişim sağlayıcısının sunucusuz hizmetleri üzerinde uygulayarak incelemişlerdir.

Uygulamada yaşadıkları teknik zorlukları paylaşarak bu zorlukların sunucusuz bulut

bilişim servisleri ile çözüldüğünü belirtmişlerdir.

Mete ve Yomralıoğlu (2021a) çalışmalarında bir arazi değerlemesi uygulamasını

sunucusuz mimaride farklı sunucusuz hizmet türlerini kullanarak sunmuşlardır. Bu

çalışma yazarların daha önce sundukları bulut bilişim tabanlı sistem mimarisinin

(Mete ve Yomralıoğlu, 2021b) sunucusuz mimaride yeniden tasarlanarak nasıl

oluşturulabileceğini de göstermektedir.

Pakdil ve Çelik (2021a) yayınladıkları çalışmada sunucusuz mimarilerle mekânsal veri

analizleri için iş akışları çalıştırabilecek bir sistem tasarımı sunmuşturlar. Bu tasarımda

veri işleme ve web servislerin yayını için HoF ve HoK modelindeki servisler birlikte

kullanılmıştır. Çalışmada OGC API Processes standardının sunucusuz mimarilerle

çalışabilirliği de literatürde ilk kez incelenmiştir.

Kim ve Lin (2018) çalışmalarında AWS bulut bilişim sağlayıcısının sunduğu HoF

modelindeki AWS Lambda isimli servisle geliştirdikleri Flint ismindeki sistemi

sunmuşlardır. Bu çalışmada Java ve Python programlama dillerinin AWS Lambda

üzerindeki soğuk başlatma sürelerinin farklılığı vurgulanarak Python dilinin daha hızlı

başladığı belirtilmiştir. Sonuç kısmında büyük veri analizlerinin ortaya koydukları

7

Flint gibi sistemlerin tasarımlarıyla sunucusuz mimarilerde mümkün olduğu

vurgulanmıştır.

Malawski ve diğ. (2017) çalışmalarında sunucusuz mimarileri bilimsel analiz

süreçlerine uygulamışlardır. Açık kaynak kodlu HyperFlow yazılımını HoF modelinde

sunucusuz hesaplama hizmeti olan AWS Lambda ve Google Cloud Functions

servisleri üzerinde çalıştırarak sonuçları incelemişlerdir. Sonuç olarak yüksek

hesaplama gücü gerektiren bilimsel hesaplamalar için HoF modelinin uygun olmadığı

ancak yüksek çıktılı bilimsel hesaplamalara daha uygun olduğu belirtilmiştir. Diğer

yandan bilimsel analiz uygulamalarının HoF modelinde maksimum çalışma süresi ve

sunulan geçici depolama alanının limitlerinin sorun olabileceği de vurgulanmıştır.

Lee ve diğ. (2018) çalışmalarında AWS, Microsoft Azure, Google Cloud ve IBM bulut

bilişim sağlayıcıları üzerinde HoF modelindeki sunucusuz hesaplama servislerini;

depolama alanı performansı, işlem gücü performansı, koşut zamanlılığı (concurrency),

ağ kullanımı, esneklik ve uygulama yayınlama (deployment) parametrelerine göre

incelemiştir. Sonuç olarak sunucusuz HoF modelinin yüksek hesaplama ve veri okuma

gücü isteyen uygulamalar için uygun olmadığı belirtilmiştir. Bununla birlikte

çalışmanın yapıldığı tarihlerde denenen servislerin henüz tam olarak olgunlaşmadığı

da vurgulanmıştır.

Ji ve diğ. (2012) çalışmalarında bulut bilişimi kullanarak mekânsal veri analizi iş

akışının çalıştırılması için sundukları sistem mimarisinin uygulanabilirliğini

değerlendirmiştirler. Çalışmanın sonuç kısmında ölçeklenebilirliğin bulut bilişim

üzerinde bir avantaj olduğu ve büyük iş akışlarının çalıştırılmasında katkı sağladığı

belirtilmiştir.

Krämer ve diğ. (2021) çalışmalarında mikro servis mimarisine uygun bir iş akış

yönetimi sistem tasarımı geliştirmişlerdir. Bu tasarımda iş akışlarını tanımlamak için

yeni bir iş akış tanımlama modeli de geliştirilmiştir. Böylece büyük veri analizi iş

akışlarının kolayca tasarlanabilir ve iş akışı tasarımlarının kolayca okunabilir olması

hedeflenmiştir.

Bu tez çalışmasında da sunulan mekânsal analiz iş akışı sisteminde de özgün iş akışı

tanımlama modelleri benzer kaygılarla bu tez çalışmasındaki sisteme özel olarak

geliştirilmiştir.

8

9

2. SUNUCUSUZ KAVRAMI VE SUNUCUSUZ HİZMET TÜRLERİ

Sunucusuz kavramı incelenmeden önce bulut bilişimdeki diğer hizmet modellerine

bakmak gerekmektedir. Böylece sunucusuz kavramı diğer hizmet türleri arasından

ayrıştırılarak konumlandırılabilir. Bulut bilişim teknolojileri ortaya çıktığı günden bu

yana farklı hizmet modelleri ile karşımıza çıkmıştır. Tüm bu modellerin ortaya

çıkmasındaki önemli motivasyon ise ölçeklenebilirliğin daha kolay bir şekilde

sağlanmasıdır. Ayrıca mikro servis mimarisi gibi yeni uygulama mimarilerinin de daha

yaygın kullanılması bulut bilişimdeki hizmet modellerinin farklılaşmasında

yönlendirici olmuştur. Her hizmet modelinin diğerine göre farklılaşmasının en temel

nedeni altyapı yönetiminin hangi derecede soyutlaştırıldığına dayandırılmaktadır

(Şekil 2.1). Bu yönden incelendiğinde bugüne kadar sunulan üç hizmet modeli

hakkında bilgi vermek sunucusuz hizmet modelinin anlaşılmasında katkı

sağlayacaktır.

Şekil 2.1 : Bulut bilişim hizmet türlerinin yönetimsel farklılıkları.

Hizmet olarak Altyapı (HoA, Infrastructure as a Service) modelinde kullanıcı fiziksel

altyapı üzerinde kurulu işletim sistemi, veri katmanı ve uygulama katmanını

yönetmekle sorumludur. Sağlayıcı ise tüm bunların çalışmasını sağlayacak fiziksel

sunucu bilgisayarı ve ağ donanımlarını yönetmekten sorumludur.

Hizmet olarak Platform (HoP, Platform as a Service) modelinde HoA’dan farklı olarak

işletim sisteminin yönetimi de hizmet sağlayıcı tarafından yapılır. Bu nedenle kullanıcı

sadece uygulama ve veri katmanlarını yönetir.

10

Son olarak Hizmet olarak Yazılım (HoY, Software as a Service) modelinde kullanıcı

sadece hizmet sağlayıcının sunduğu yazılımdan belirlenen yetkiler çerçevesinde

hizmet alır. Uygulamanın performansından, sağlığından, veri güvenliğinden ve

bakımından hizmet sağlayıcı sorumludur.

Sunucusuz kavramı ise bir sunucunun yönetilme ihtiyacı olmadan sunucu

uygulamalarının çalıştırılmasının sağlanması olarak açıklanabilir. Bu paradigmaya

verilen isim ortamda bir sunucu olmadığını düşündürse de aslında sunucu yönetimini

kullanıcıdan tamamen soyutlayarak bu operasyonun hizmet sağlayıcı tarafından

sağlanmasına karşılık gelmektedir.

Sunucusuz hizmetlerin farklı türleri olsa da paylaştıkları ortak özellikler

bulunmaktadır. Bu ortak özellikler şunlardır;

1. Olay güdümlü (event-driven) olmaları

2. Otomatik ölçeklenebilir (auto-scaleable) olmaları

3. Hata toleranslı (fault-tolerance) olmaları

Olay güdümlü olmaları sayesinde sunucusuz uygulamalar çalışmaya başlamak için bir

olayın tetiklemesine ihtiyaç duyarlar (Lee ve diğ, 2018). Örneğin veri depolama

alanına yeni kaydedilen bir dosyanın bilgisi hesaplama hizmetindeki bu olayı dinleyen

uygulamayı tetikleyebilir. Bu senaryo bir mekânsal veri dosyasının (Shapefıle,

GeoPackage, File Geodatabase vb.) sunucusuz veri depolama alanına yüklendiğinde

meta verisinin otomatik olarak okunarak veri tabanına yazılması istendiğinde

uygulanabilir (Şekil 2.2). Meta veriyi okuyacak ve veri tabanına yazacak yazılım her

yeni dosyada tetiklenerek çalıştırılır.

Şekil 2.2 : Sunucusuz hizmetlerin birbirlerini olay üzerinden tetiklemeleri.

Sunucusuz hizmetlerin otomatik ölçeklenebilir olmaları sayesinde kaynak tüketim

optimizasyonu sağlanmaktadır. Kullanıcılar önceden bir kaynak provizyonu

11

yapmasına gerek kalmaz. Otomatik ölçeklendirme diğer bulut bilişim hizmet

türlerinde de sunulmaktadır fakat sunucusuz hizmet türlerinde otomatik ölçeklendirme

ile sıfır sunucu sayısından ihtiyaca göre artabilirken diğer hizmet türlerinde en az bir

çalışan sunucu her zaman bulunmaktadır (Castro ve diğ, 2019).

Sunucusuz hizmetlerde çalışma anında herhangi bir hata olması durumunda süreç

yeniden belirli sayıda başarılı olana kadar tekrar ettirilir (Jangda ve diğ, 2019). Bu

nedenle sunucusuz mimari için geliştirilen uygulamaların bu duruma uygun olarak

geliştirilmesi beklenmektedir. Örneğin daha önceki çalışmanın ortasında hata veren

işlemin o ana kadar veri tabanına yazdığı veriyi bir sonraki tekrar çalışmada tekrar

yazmaması için uygulama geliştirilirken bu senaryo dikkate alınmalıdır.

Sunucusuz hizmetler iki farklı türde sınıflandırılabilir. Bunlar veri depolama ve

hesaplama hizmetleri olarak sınıflandırılmaktadır.

Çizelge 2.1 : Sunucusuz hizmet türlerinin sınıflandırılması.

Veri Depolama

Yapısal (structured) ve ilişkisel

(relational) veri depolama

Yapısal olmayan (unstructured) veri

depolama

Hesaplama
Fonksiyon (Hizmet olarak Fonksiyon)

Konteyner (Hizmet olarak Konteyner)

Veri depolama türündeki hizmetler yapısal ve yapısal olmayan veri türlerine göre iki

alt grupta incelenmektedir (Ruparathna, 2019). Hesaplama türündeki hizmetler de

çalışma ortamlarına göre fonksiyon ve konteyner olarak iki alt grupta incelenmektedir

(Schachar, 2019; Chowhan, 2018).

2.1 Veri Depolama Hizmetleri

Bulut bilişimde HoP modelindeki veri depolama sistemleri en az bir tane aktif veri

depolama sunucusunu devamlı olarak çalıştıracak şekilde tasarlanmışlardır. Ayrıca bu

servislerin sağlıklı çalışabilmesi için doğru şekilde yapılandırılmaları da

gerekmektedir. Aksi halde yoğun istek altında istenen performansı veremeyebilir veya

tamamen durabilirler. Ek olarak bakım ve yedekleme takibinin de kullanıcı tarafından

yapılması gerekmektedir. Sunucusuz bir sistem tasarımı eğer HoP modelindeki veri

depolama hizmeti bileşenini kullanırsa bu sistemin zayıf noktası olarak karşımıza

12

çıkacaktır. Bu nedenle sunucusuz sistemlerde veri depolama bileşeninin de sunucusuz

hizmet modelinde olması tutarlılık sağlayacaktır.

Sunucusuz veri depolama hizmetleri yapısal ve yapısal olmayan verilere göre iki ana

grupta incelenmektedir.

2.1.1 Yapısal ve ilişkisel veri depolama hizmetleri

Yapısal ve ilişkisel veri depolama hizmetleri genel olarak belirli bir şemada ve kuralla

verileri saklayan ve SQL (Structured Query Language) veya diğer özel sorgulama

dilleri ile sorgulama desteği veren hizmetlerden oluşmaktadır. Yapısal ve ilişkisel veri

depolama servisleri halihazırdaki veri tabanı yazılımlarının bulut bilişim sağlayıcısı

tarafından özelleştirilmesi ya da bulut bilişim sağlayıcısının geliştirdiği özel veri

tabanı yazılımları üzerinden sunulmaktadır. Yaygın olarak kullanılan bir veri tabanı

sunucusu yazılımının sunucusuz hizmet modeli üzerinden sunulması kullanıcılar için

sunucusuz modele geçişte kolaylık sağlamaktadır. Örneğin geleneksel sistemlerde

çalışan bir CBS yazılımının kullandığı açık kaynak kodlu PostgreSQL veri tabanı

sunucusu yazılımını değiştirmeden sunucusuz hizmet modelinde kullanmaya devam

edebilmesi sunucusuz modele göçü kolaylaştıracaktır.

İlişkisel veri tabanı sunucularının sunucusuz hizmet modeli ile sunumu için bir istek

yönlendirici yazılımın veri tabanı istemcisi ile veri tabanı sunucusu arasındaki iletişimi

yönetmesi gerekir. Böylece gelen isteklerin çokluğuna göre yeni veri tabanı

sunucularını çalıştırabilir veya tam tersi durumda çalışan veri tabanı sunucusunu

yeniden kullanılmak üzere beklemeye alabilir (Solanki, 2021). Böyle bir durumda bu

hizmeti kullanan uygulamalar arasında veri tabanı sunucusu havuzunda hazırda

kullanılmayı bekleyen veri tabanı sunucuları paylaştırılır. Bu da veri tabanı sunucusu

kaynaklarının verimli şekilde kullanılması ile kaynak optimizasyonunu sağlar. Şekil

2.3’te gösterildiği gibi Uygulama A’dan gelen istekler arttığı için “İstek Yönlendirici”

yazılım hazırda bekleyen bir veri tabanı sunucusunu Uygulama A’nın verilerine

bağlayarak yükü iki sunucuya paylaştırarak otomatik ölçeklendirmeyi sağlamış olur.

Bununla birlikte Uygulama B ise veri tabanını kullanmadığı için “İstek Yönlendirici”

tarafından Uygulama B için bir veri tabanı sunucusu çalıştırılmaz. Ancak yine de

Uygulama B’nin verileri her an tekrar kullanılmak üzere saklanır.

13

Şekil 2.3 : Sunucusuz ilişkisel veri tabanı hizmetinin çalışma anında

ölçeklendirilmesi (Solanki, 2021).

Sunucusuz yapısal ve ilişkisel veri tabanlarının bir diğer özelliği ise bulut bilişim

sağlayıcısının hizmet verdiği birden fazla coğrafi bölgeye kopyalanıp çoğaltılarak tek

bir veri tabanı sunucusu gibi çalışabilmeleridir. Böylece birçok ülke veya kıtada

kullanılması beklenen bir CBS uygulamasına veri tabanı kaynaklı gecikme problemini

önleyeceğinden erişim daha hızlı olacaktır.

Sunucusuz yapısal veri tabanlarının verileri sorgulanırken kullanılan sorgulama dili

veri tabanı teknolojisine göre değişmektedir. Yapısal veri tabanına sorgulama

yapılırken HTTP (Hypertext Transfer Protocol) protokolü üzerinden sunulan web

servisleri kullanılmaktadır. Sorgulama yapılırken genel olarak SQL dilinin

kullanılmadığı bu türdeki veri tabanlarına literatürde “NoSQL” veri tabanı da

denilmektedir. Uygulama geliştiriciler yapısal veri tabanı ile olan sorgulama ve

yönetimsel işlemler için bulut bilişim sağlayıcısının veya veri tabanı yazılımının

kendisinin sunduğu özel yazılım kütüphanelerini kullanmaktadırlar.

Sunucusuz yapısal veri tabanları sakladıkları veri türlerine göre günümüzde dört ana

grupta incelenmektedir (Hecht ve Jablonski, 2011).

• Belge veri tabanları

• Sütun ailesi veri tabanları

• Anahtar-değer (key-value) veri tabanları

14

• Çizge (graph) veri tabanları

Her bir veri türü kullanım senaryosuna bağlı olarak bir diğerine göre avantajlar veya

dezavantajlar içermektedir. Eğer uygulama için doğru veri türü seçimi yapılmazsa hem

tüketilen veri tabanı kaynakları artacaktır hem de uygulama performansı düşük

olacaktır (Kleppmann, 2017).

Yapısal veri tabanı sunucusu yazılımı mimarileri bulut bilişim teknolojileri üzerinde

çalışmak üzere veya dağıtık sistemlerle çalışmak üzere tasarlandığından sunucusuz bir

hizmet olarak sunumu daha geleneksel yaklaşımla tasarlanan ilişkisel veri tabanı

sunucusu yazılımlarına göre daha kolay olmaktadır (Grolinger ve diğ, 2013). Baralis

ve diğ. (2017) yaptıkları çalışmada ilişkisel ve yapısal iki farklı veri tabanı hizmetinin

bir bulut bilişim sağlayıcısı üzerinde performanslarını karşılaştırmıştırlar. Elde

ettikleri sonuca göre coğrafi verilerin sorgulanmasında yapısal veri tabanı hizmetinin

bulut bilişim altyapısı üzerinde daha iyi sonuç vermekte olduğu belirtilmiştir.

Yapısal ve ilişkisel veri depolama hizmetlerinin birçoğu eklentiler veya dahili

mekânsal veri işlemcileriyle mekânsal sorgulara ve veri türlerine destek

vermektedirler.

2.1.2 Yapısal olmayan veri depolama hizmetleri

Yapısal olmayan veri depolama hizmetleri verileri obje olarak saklamaktadır. Bu

objelere BLOB (Binary Long Objects) da denmektedir. İkili (binary) biçemde

(formatta) olan her şey obje şeklinde saklanabilir (Amirian ve diğ, 2014). Bir yapısal

olmayana veri depolama hizmeti hesabına ait mantıksal organizasyon Şekil 2.4’te

gösterilmektedir.

Şekil 2.4 : Yapısal olmayan veri depolama hizmetinin veri saklama yapısı.

15

Objelerin bir arada gruplanarak depolandığı varlık kümeleri kova (bucket) veya

konteyner (container) terimi ile ifade edilmektedir (Şekil 2.5). Bu çalışmada varlık

kümeleri için ‘kova’ teriminin kullanımı, hesaplama teknolojileri için kullanılan

‘konteyner’ terimi ile kavramsal olarak karıştırılmaması için tercih edilmiştir. Bir kova

içerisindeki objelere erişim bir anahtar değer üzerinden olmaktadır. Bir hesap içindeki

kova isimleri ve bir kova içerisindeki anahtar değerler benzersiz olmaktadır.

Şekil 2.5 : Yapısal olmayan depolamada kova yapısı.

Yapısal olmayan verileri ortak özelliklerine göre bölümlendirerek çok sayıda obje

saklayan kova içerisindeki erişim kolaylaştırılabilir. Anahtar değerinde “/” sembolü

kullanılarak bölümlendirme yapılmaktadır (Kapadia ve diğ, 2015). Örneğin aynı gün

ve aya ait veriler saklanırken anahtar değerin başına “/05/21/” eklenirse Mayıs ayının

21. gününe ait veriler gruplandırılabilir. Bu sayede 21 Mayıs verilerine tüm verilerin

kontrol edilmesine gerek kalmadan hızlıca erişilmiş olur. Her ne kadar bir kovanın

alabileceği en fazla veri miktarı bulut sağlayıcının kurallarına göre değişebilir olsa da

veriye erişim hızı kovanın büyüklüğüne göre değişmemektedir

Kovalar için bulut sağlayıcıları tarafından koyulan limitler bulunabilmektedir. Örneğin

bir bulut bilişim kullanıcısı hesabında en fazla yüz adet kova oluşturabilmesine izin

verilebilir.

Saklanan objelere erişim yapısal olmayan veri depolama hizmeti üzerinden sunulan

REST (Representational State Transfer) API’lar aracılığı ile olmaktadır. Bununla

birlikte uygulama geliştiricilerin yazılım geliştirmesini kolaylaştırmak için farklı

programlama dilleri için SDK’ler (Software Development Kit) de sunulmaktadır.

Saklanan objelerin güvenliği ise dahili izin kontrol yapılarıyla sağlanmaktadır. Objeler

herkese erişime açık olarak saklanabilirken sadece bir kullanıcı, kullanıcı rolü veya

kullanıcı grubu için de erişim izni verilerek saklanabilmektedir. Güvenli erişim için

16

modern web teknolojilerinde yaygın olarak kullanılan jeton (token) tabanlı

yetkilendirme teknolojileri kullanılmaktadır. Bununla birlikte istenen geçici adresler

de üretilerek sistemin dışındaki istemcilere veya kullanıcılara belirli süreler için erişim

verilebilir.

Yapısal olmayan veri depolama hizmetlerinde saklanan veriler eğer kendi içinde tutarlı

bir şekilde belli bir şemaya sahipse sunucusuz veri analiz servisleri sorgulama ve

kümeleme (aggregation) işlemlerini bu veriler üzerinde yapabilmektedir. Bu servisler

ise Hizmet olarak Sorgu (HoS – Query as a Service) olarak adlandırılmaktadır

(Marroquín ve diğ, 2018). Öncelikle verilerin şeması kullanılan sunucusuz veri analiz

hizmetine tanıtılması gerekmektedir. Bu amaçla CSV (Comma-Separated Values),

JSON (JavaScript Object Notation) ve Apache Parquet gibi şema tutan biçemler

objeler saklanırken yaygın olarak tercih edilmektedir.

Mekânsal indeksleme (spatial indexing) yapısal olmayan verilerin uygulama

geliştirme ara yüzleri üzerinden hızlıca sorgulanmasını mümkün kılmaktadır (Moten,

2019). İndekslemenin tutulması ve sorgulanması için yapısal sunucusuz veri depolama

hizmetleri kullanılabilmektedir. Örneğin bu sayede büyük bir coğrafi alana ait raster

karo verileri içinden bir coğrafi alana düşen raster karolar kolayca bulunabilmekte ve

erişilebilmektedir.

Yapısal olmayan veriler üzerindeki veya depolama alanındaki değişiklikler birer olay

(event) üretmektedir. Bu üretilen olayları dinlemek ve buna göre işlem yapmak üzere

aynı bulut bilişim sağlayıcısı üzerinde başka diğer sunucusuz hizmetler kullanılabilir.

Böylece bir yapısal olmayan veri depolama hizmeti üzerinde bir obje değişikliği veya

yeni bir objenin eklenmesi halinde hangi işlemlerin yapılacağı ve hangi hizmetlerin bu

duruma karşı aksiyon alacağı bir iş akışı olarak tasarlanabilmektedir (Sampé ve diğ,

2017). Örneğin yeni yüklenen bir CAD (Computer-aided Design) dosyasının

oluşturacağı olay bir sunucusuz hesaplama hizmeti üstündeki uygulamayı

tetikleyebilir. Bu uygulama da yüklenen dosyayı CBS veri tabanına uygun bir şekilde

dönüştürerek kaydedebilir (Şekil 2.6).

Şekil 2.6 : Yapısal olmayan depolama hizmetindeki bir olayın hesaplama hizmetini

tetiklemesi örneği.

17

Son olarak sunucusuz yapısal olmayan veri depolama hizmeti eğer destekliyorsa statik

internet sayfaları için bir web sunucusu olarak kullanılabilir. Bunun için yüklenen

dosyaların “herkese erişime açık” olarak yüklenmesi ve hizmet üzerindeki ilgili

ayarların yapılması gerekmektedir (Nadon, 2017; Soueidi, 2015). Örneğin QGIS isimli

masaüstü CBS yazılımı ve QGIS2Web eklentisi kullanılarak oluşturulacak bir statik

web CBS uygulaması yapısal olmayan veri depolama hizmetleri üzerine yüklenerek

doğrudan yayınlanabilir. Böylece Şekil 2.7’de gösterildiği gibi bir CBS kullanıcısı

herhangi bir sunucu kurulumu yapmadan ve ileri bulut bilişim sistem yönetimi

konularını hâkim olmadan da yüksek ölçeklenebilir bir CBS web uygulamasını

kolaylıkla yayına alabilmektedir (Gandhi, 2021).

Şekil 2.7 : Yapısal olmayan depolama hizmetindeki statik bir CBS web

uygulamasının yayınlanması örneği.

2.2 Hesaplama Hizmetleri

Bulut bilişimin beraberinde getirdiği en büyük avantaj kullanıcılardan fiziksel altyapı

yönetimini soyutlamak olsa da yine de platform üzerindeki sanal kaynakların

yönetimini kullanıcılardan istemektedir (Jonas ve diğ, 2019). Bulut bilişim üzerinde

HoA (Hizmet olarak Altyapı) ve HoP (Hizmet olarak Platform) türündeki hizmet

modelleri sanal makinelerin, sanal ağ adaptörlerinin (virtual network adapter), sanal

sabit sürücülerin (virtual disk) veya sunucu yazılımlarının ayarlarını kullanıcılardan

yapmalarını isterler. Bununla birlikte bu sanal kaynakların yedeklenmesi ve bakımının

da kullanıcı tarafından takip edilmesi beklenmektedir. Bir uygulamanın bulut bilişim

altyapısı üzerinde sağlıklı ve ölçeklenebilir yayın yapması için gerekenler şöyle

sıralanabilir (Jonas ve diğ, 2019);

1. Fazladan hazır yedek sunucu bulundurmak. Bir sunucu çalışmadığında yedek

sunucu üzerinden uygulama hizmet vermeye devam edebilir.

2. Fazladan birkaç farklı coğrafi bölgede sunucu bulundurmak. Bir bölgedeki tüm

veri merkezleri hizmet dışı kaldığında uygulama başka bir coğrafi bölgeden

veri merkezinden hizmet vermeye devam edebilir.

18

3. Trafik yükü dağıtım sisteminin kurulması. Gelen istekler en az yük altındaki

sunucuya iletilir.

4. Otomatik ölçeklendirmenin kurulması. Uygulamaya gelen isteklerin çokluğu

veya azlığına göre gerektiğinde uygulama ek sunucular üzerinde birlikte

çalışarak performans kaybı olmadan çalışmaya devam edebilir. Tam tersi

durumda da sunucu eksiltilebilir.

5. İzleme (monitoring) sisteminin kurulması. Uygulama veya sistemin sağlığı

takip edilebilir.

6. Günlük\Kayıt (logging) sisteminin kurulması. Uygulama içerisindeki hatalar

ve performans sorunları takip edilebilir.

7. İşletim sistemlerinin ve destek yazılımlarının güncel tutulması. Böylece

güvenlik tehditlerine karşı uygulama ve sistem korunmuş olur.

8. Yeni sunuculara uygulamanın otomatik yüklenebilmesi: Otomatik

ölçeklendirme sırasında uygulama elle müdahale gerekmeden kendiliğinden

eklenen yeni sunucu üzerinde çalışmaya başlayabilir.

Tüm bu ayarlamalar ve kurulumların yapılması ve bakım prosedürlerinin

belirlenmesinden sonra bulut bilişim kullanıcısı geliştirdiği uygulamayı platforma

yükleyerek sağlıklı ve performanslı bir şekilde çalışmasını sağlayabilmektedir. Bu

sorumlulukların kullanıcı üzerine yüklenmesi nedeniyle bulut bilişim kullanıcılarının

çalışılan platform ve kullanılan teknolojiler hakkında ileri düzey bilgi sahibi olması

gerekmektedir.

Sunucusuz hesaplama hizmetleri fonksiyon ve konteyner tabanlı altyapı türüne göre

iki modelle “Hizmet olarak Fonksiyon” ve “Hizmet olarak Konteyner” olarak

incelenmektedir (Schachar, 2019; Chowhan, 2018). Her iki grubun da ortak özelliğin

yukarıda verilen sekiz maddenin yapılandırılmasını kullanıcıdan soyutlamasıdır.

Böylece kullanıcı sadece çalıştırmak istediği uygulama veya konteynere

odaklanabilmektedir. Geri kalan altyapı yönetiminin sorumluluğu bulut bilişim

sağlayıcı üzerinde olmaktadır.

HoK modeli HoF modeline göre uygulama geliştiriciler için daha fazla özgür bir ortam

sağlandığından HoF üzerindeki kısıtlamalarından etkilenen uygulamalar için HoK

modeli alternatif olmaktadır (Kiener ve diğ, 2021).

19

2.2.1 Hizmet olarak fonksiyon

Sunucusuz hesaplama modellerinden biri olan HoF modeli belli bir amaç için

geliştirilmiş uygulamayı çalıştırmak için kullanılmaktadırlar. Bazı durumlarda eğer

bulut bilişim sağlayıcı da izin veriyorsa daha karmaşık birden fazla amaç için

geliştirilmiş uygulamaları da -örneğin web API’ları gibi- çalıştırabilmektedirler.

Bulut bilişim sağlayıcısı HoF servisi üzerinde çalışabilen programlama dillerini ve o

dillerin hangi sürümlerinin desteklendiğini yayınladıkları dokümantasyonla

açıklamaktadır. Uygulama bu dillerden birini kullanarak geliştirilebilir. HoF servisinin

kullanıcısı uygulamasını bu kıstaslara göre hazırlaması gerekmektedir. Bununla

birlikte uygulama geliştiricinin uygulamada kullanılması gereken bir çatkı

(framework) kütüphanesi veya diğer kütüphaneler olabilir. Uygulama geliştiricinin bu

kütüphanelerin HoF servisleri ile uyumluğuna dikkat etmesi gerekmektedir ve

gerekiyorsa ek geliştirmelerle bunları uyumlu hale getirmelidir.

Temelde birer konteyner yönetimi olarak çalışan HoF mimarileri, özel olarak

geliştirilen konteynerlerin sisteme yüklenen kod parçalarını istek alındığı anda

olabilecek en hızlı şekilde çalıştırılması üzerine tasarlanmışlardır. İlk istek geldikten

sonra uygulamanın geliştirildiği programlama diline göre uygun konteyner seçilir. Bu

konteyner içine uygulama yüklenerek “soğuk başlatma” denen süreç başlatılmaktadır.

Süreç sonunda uygulama çalışmaya başlar ve gelen istek uygulamaya işlenmek üzere

iletilir. Uygulama gelen isteği işledikten sonra ürettiği sonucu geri döndürerek çalışma

süreci tamamlanır. Eğer bir sonraki istek platform tarafından belirlenen süre içerisinde

gelirse daha önceki istek için çalıştırılmış ve bekleyen konteyner yeniden kullanılarak

daha hızlı şekilde cevap üretilebilmektedir. Bu şekilde başlayan sürece de “sıcak

başlatma” adı verilmektedir. Eğer uzun süre istek gelmezse bekleyen konteyner

kapatılır. Bu nedenle uzun süre çalışmamış veya ilk kez çalışacak olan bir fonksiyonun

ilk cevap dönme süresi ardı sıra gelen isteklere cevap dönme sürelerine göre uzun

olmaktadır. Chowhan (2018) çalışmasından yararlanılarak fonksiyonların çalışma

döngüsünü açıklamak için Şekil 2.8 oluşturulmuştur.

Şekil 2.8 : Bir fonksiyona ait soğuk ve sıcak başlatma süreçleri.

20

Bir fonksiyon platformun belirlediği ölçütlerde ölçeklenebilir. Bir yük dağıtıcısı

bileşen gelen veya bekleyen isteklere göre fonksiyonun anlık olarak çalıştığı konteyner

sayısına karar verir. Bir fonksiyon çalıştığı konteynerlerin hesaplama kapasitesinin

idare edebileceğinden fazla istek almaya başlarsa yük dağıtıcısı bileşeni otomatik

olarak yeni bir konteyner daha çalıştırarak gelen istekleri dengeli olarak dağıtır ve

işlem yükünü paylaştırmış olur. Bunun sağlanabilmesi için fonksiyonlar için

geliştirilen kodların ek olarak elle bir müdahale gerekmeden çalışmaya başlaması

beklenmektedir. Aksi halde otomatik olarak başlatma ve buna dayalı olan

ölçeklenebilirlik sağlıklı olarak uygulanamayacaktır.

Fonksiyonların uzun sürelerle çalışma beklenmez. Bir olay kaynaklı olarak çalışmaya

başlarlar ve programlanan işlemleri başarılı veya başarısız olarak tamamlandıktan

sonra çalışmalarını sonlandırmaları beklenir. Bununla bağlantılı olarak fonksiyonların

çalıştıkları platform üzerindeki kaynak tüketimlerinin optimizasyonu sağlanır ve bu

sayede donanım kaynakları devamlı olarak tek bir fonksiyon için çalışmaz. Çalışması

sonlanan fonksiyondan boşalan donanım kaynağı bir başka çalışacak fonksiyon için

ayırılmış olur. (Adzic ve Chatley, 2017).

Fonksiyonlar olay güdümlü olarak çalışabildikleri gibi kendileri de çalışma sorununda

yeni olaylar üreterek başka bir sunucusuz hizmetin çalışmasına neden olabilirler. Bu

sayede fonksiyonlar ve diğer sunucusuz hizmetler sıralı veya eş zamanlı olarak

çalışarak bir akış halinde çalışabilirler. Barbieri ve Bonanni (2019) çalışmasından

yararlanılarak fonksiyonun diğer servislerle olan ilişkisini açıklamak üzere Şekil 2.9

oluşturulmuştur.

Şekil 2.9 : Sunucusuz hizmetlerin olay güdümlü olarak birbirlerini çalıştırmaları.

21

Fonksiyonların çalıştığı konteynerler üzerinde tutulan veriler çalışma süresi sonunda

silinirler, bu nedenle fonksiyonlar durum saklamazlar (Jonas ve diğ, 2019). Çalışma

zamanlarında kalıcı veri saklamak üzere bir sunucusuz veri depolama çözümü

kullanılabilir. Bu sayede ardışık olarak çalışan fonksiyonlar birbirlerine veri

aktarabilirler. Ayrıca bu saklanan veriler başka sistemler tarafından da kullanılmak

üzere de tutulabilir.

Çalışma zamanında fonksiyonların ürettikleri günlük kayıtları ve performans

metrikleri bir izleme aracı tarafından toplanarak saklanır (Lynn ve diğ, 2017). Böylece

platform kullanıcısının fonksiyonun ürettiği hata kayıtlarına, kaynak tüketim ve

yönetim metriklerine ulaşması ve izlemesi sağlanmış olmaktadır.

2.2.2 Hizmet olarak konteyner

Şekil 2.10 : HoF ve HoK modellerinde kullanıcı ve sağlayıcı sorumlulukları.

Sunucusuz hesaplama modellerinden bir diğeri olan HoK servisleri fonksiyon

servislerine göre daha özgür bir çalışma ortamı sunar. Bunun nedeni ise Şekil 2.10’da

gösterildiği gibi platformun kullanıcıya fonksiyonların aksine sadece uygulama

üzerinde değil uygulamanın çalıştığı konteynerin üzerinde de yetki alanı sunmasıdır

(Léger ve Broshar, 2021). Böylece bir uygulama geliştirici uygulamanın çalışacağı

konteynerde uygulamanın özel bağımlılıklarını da yükleyerek uygulamayı

çalıştırabilir.

Bu bağlamda, fonksiyon ortamlarında istenen bağımlılıkların veya ayarların eksik

olması nedeniyle çalışmayan mevcut CBS uygulamalarını çalıştırmak için de

konteyner teknolojisi kullanılabilir (Zaragozí ve diğ, 2020). Örneğin MapServer isimli

açık kaynak kodlu CBS sunucu uygulaması HoF servisleri üzerinde çalışamazken

22

uygulama geliştiriciler tarafından sunulan konteyner imajı sayesinde HoK servisleri

üzerinde çalışabilmektedir (MapServer, 2022).

Literatür incelemesi yapıldığında birçok farklı konteyner mimarisi olduğu

görülmektedir (Siddiqui ve diğ, 2019). Bu mimariler içerisinde Docker isimli

konteyner mimarisi birçok farklı bulut bilişim sağlayıcısı tarafından desteklendiği için

öne çıkmaktadır. Bu mimari incelendiğinde bir konteynerin hangi işletim sistemiyle,

hangi bağımlılıklarla çalışacağı ve hangi uygulamayı çalıştıracağı bir şablon olarak

hazırlanır. Hazırlanan şablon derlenerek imaja çevrilir. Hazırlanan şablon istenirse

başka bir kullanıcı ile paylaşılabilir ve bu kullanıcı da bu şablonu derlediğinde yine

aynı imaj üretilir. Bu nedenle Docker teknolojisi taşınabilirlik yönünden de

avantajlıdır. Kullanıcı isterse ürettiği imajı bir ortak imaj deposuna yükleyebilir

(Nickoloff ve Kuenzli, 2019; Poccia, 2020). İmaj konteyner olarak çalışacağı zaman

yeniden derlenmez ve doğrudan çalışmaya başlar. Eğer konteynerin çalışacağı sunucu

üzerinde yoksa imaj ortak depodan imajı çekilerek çalıştırılır (Şekil 2.11). Bu çalışma

prensipleri Docker teknolojisi kullanan bulut bilişim platformları üzerinde de bu

şekilde uygulanmaktadır.

Şekil 2.11 : Bir Docker konteynerin oluşturulma süreci.

Docker teknolojisini kullanan HoK servisleri ilgili konteynere ait imajı imaj

deposundan çekerek uygulamayı çalıştırırlar. HoF servisinden farklı olarak

konteynerin çalışması içindeki uygulamanın işini bitirmesi ile bitmeyebilir. Bu

durumda konteyner süresiz bir şekilde dışarıdan durdurma talebi gelene kadar

çalışmaya devam eder. Bu nedenle HoK servisleri konteynerlerin yaşam döngülerinin

kontrolü için araçlar sunarlar. Bunun yanında konteyner imajı içerisindeki

uygulamanın çalışmasını bitirdiğinde kendiliğinden kapanacak şekilde de

tasarlanabilir. Devamlı çalışan konteyner uygulamalarına örnek olarak CBS sunucusu

23

uygulamaları gösterilebilir. Bu uygulamalar bir internet iletişim protokolü üzerinden

gelecek olan isteği devamlı olarak beklerler. İstek geldiği anda ise işleyip cevap

dönerek bir sonraki istek için beklemeye devam ederler.

HoK servisi eğer aynı anda gelen istek veya bekleyen işlem sayısı artarsa gelen talebi

daha hızlı karşılamak üzere çalışan konteyner sayısını arttırabilir (Şekil 2.12). Bu

nedenle HoK servisi de HoF servisine benzer şekilde otomatik olarak ölçeklenebilir.

Otomatik ölçeklendirmenin doğru çalışabilmesi için konteyner imajları otomatik

olarak başlatılıp elle müdahale gerekmeden istek almaya hazır olacak şekilde

üretilmelidirler. Eğer sistem üzerindeki çalışma yükü azalırsa HoK servisi ihtiyaç

duymadığı konteynerleri otomatik olarak kapatır. Otomatik ölçeklendirmenin nasıl ve

hangi kurallarla çalışacağı HoK servisinde kullanıcı tarafından belirlenmektedir.

Şekil 2.12 : HoK servisi üzerinde otomatik ölçeklendirme.

Konteynerler üzerinde çalışan uygulamaların kalıcı veri depolama ihtiyaçları platform

üzerindeki bir veri depolama biriminin konteynere dosya sistemi üzerinden

bağlanması (mount) ile karşılanabilmektedir. Konteyner çalışmasını tamamladığında

veri depolama birimi serbest bırakılarak yeniden başka bir konteynere bağlanmak

üzere bekleyebilir. Kullanıcıdan veri depolama alanını seçerken ve kullanırken bazı

konulara dikkat etmesi beklenir. Örneğin birden fazla konteyner aynı veri üzerine aynı

anda yazmak isterse veri bir konteyner için ulaşılamaz olabilir ve yazılmak istenen veri

de kaybedilebilir. Bu nedenle veri depolama çözümü dikkatli seçilmelidir. Örneğin

HoK üzerinde çalışan CBS sunucusunda kalıcı veri depolamada raster veriler için

24

dosya sistemi çözümü kullanılabilir. Buna karşın kalıcı depolama olarak veri tabanı

sunucusunda ise eşzamanlı okuma ve yazma yeteneği ile vektör veriler saklanabilir.

25

3. BULUT BİLİŞİM SAĞLAYICILARININ SUNUCUSUZ HİZMETLERİ

Baldini ve diğ. (2017) yaptıkları çalışmada AWS, Azure, Google ve IBM bulut bilişim

sağlayıcısı firmanın sunucusuz hizmetler verdiğinden bahsetmiştirler. Şekil 3.1’de bu

dört bulut bilişim firmasının pazar payları verilmiştir.

Şekil 3.1 : AWS, Azure, Google ve IBM bulut bilişim sağlayıcılarının 2021 son

çeyreğindeki pazar payları (Richter, 2022).

Şekil 3.2’de ise yine aynı dört bulut bilişim firmasının adı ile “serverless” kelimesinin

son bir yıl içinde ne kadar çok arandığı analizi Google Trends aracı yapılarak

gösterilmiştir (Google Trends, 2022).

Şekil 3.2 : Google Trends’e göre AWS, Azure, Google ve IBM bulut bilişim

sağlayıcılarının sunucusuz konusunda son bir sene içindeki aranma popülerliği.

26

Bu iki grafiğe göre AWS ve Azure bulut bilişim sağlayıcılarının diğerlerine göre daha

fazla tercih edildiği ve aynı şekilde sunucusuz mimariler için de daha fazla arandığı

görülmektedir.

Bu bölümde AWS ve Microsoft Azure bulut bilişim sağlayıcılarının sunduğu

sunucusuz hizmetler 2. Bölüm’de verilen sınıflandırmayı takip ederek depolama ve

hesaplama türünde ele alınmıştır. Bu hizmetlerin ayrıca sunduğu mekânsal bilişim

özellikleri de incelenmiştir.

3.1 Amazon Web Services (AWS) Tarafından Sunulan Sunucusuz Hizmetler ve

Mekânsal Bilişim Özellikleri

3.1.1 Sunucusuz veri depolama hizmetleri

AWS bulut bilişim sağlayıcısının yapısal ve ilişkisel veri depolama hizmetleriyle

birlikte yapısal olmayan veri depolama hizmetlerini de sunmaktadır (Çizelge 3.1).

Çizelge 3.1 : AWS sunucusuz veri depolama hizmetleri.

Yapısal ve ilişkisel veri depolama
Amazon DynamoDB

Amazon Aurora Serverless

Yapısal olmayan veri depolama Amazon S3

AWS bulut bilişim sağlayıcısının yapısal olmayan veri depolama için sunduğu

sunucusuz hizmeti Amazon S3 olarak isimlendirilmektedir. Amazon S3 hizmeti

verileri BLOB türünde saklamaktadır (Gulabani, 2015). Amazon S3 üzerinde saklanan

objelerin içerdiği coğrafi verilerin sorgulanması için platform üzerindeki bir başka

sunucusuz sorgulama servisi Amazon Athena kullanılabilmektedir. Bununla birlikte

bu servis üzerinde açık olarak sunulan raster ve vektör veriler platform üzerinde

geliştirilecek sunucusuz uygulamalar için hızlı ulaşılabilir birer coğrafi veri deposu

olarak da kullanılabilir (URL-1).

Yapısal ve ilişkisel verilerin saklanması için Amazon Aurora Serverless ve Amazon

DynamoDB servisleri sunulmaktadır. Amazon Aurora Serverless servisi açık kaynak

kodlu PostgreSQL ve MySQL veri tabanı sunucusu yazılımlarının AWS tarafından

özelleştirilmiş sürümleri üzerinden sunulmaktadır (Zois, 2021). PostgreSQL eklenti

ekosisteminde mekânsal verinin saklanması ve analizi için geliştirilmiş olan PostGIS

eklentisi Amazon Aurora Serverless ile çalışabilmektedir. PostGIS eklentisi ile birçok

27

farklı türden mekânsal veri saklanabilmektedir ve SQL sorguları ile gelişmiş mekânsal

analizler yapılabilmektedir. Bu sayede mekânsal verilerin saklanması ve ileri düzeyde

sorgulanması mümkün olmaktadır (Mete ve Yomralıoğlu, 2021a).

Amazon DynamoDB anahtar-değer belge türü verilerin saklanmasını sağlayan

servistir (Kalid ve diğ, 2017). Amazon DynamoDB veri sorgulama işlemlerini SQL

dili desteğini kısıtlı bir şekilde vererek ve sağladığı API üzerinden sunmaktadır. Bu

hizmet coğrafi verilerin saklanmasına ve sorgulanmasına kısıtlı olarak destek

vermektedir. Sadece nokta türündeki coğrafi verilerin GeoHash kodlaması ile

saklanarak sorgulanması mümkün olmaktadır. Bu amaçla geliştirilen Amazon

DynamoDB GeoHash kütüphaneleri ile uygulama geliştirici geliştirdiği uygulama

üzerinden kolayca mekânsal analizler yapabilmektedir (Beswick, 2020).

3.1.2 Sunucusuz hesaplama hizmetleri

AWS bulut bilişim sağlayıcısının sunduğu sunucusuz hesaplama hizmetleri Çizelge

3.2’de de gösterildiği gibi fonksiyon ve konteyner türünde ikiye ayrılmaktadır.

Çizelge 3.2 : AWS sunucusuz hesaplama hizmetleri.

Fonksiyon – HoF AWS Lambda

Konteyner – HoK AWS Fargate

HoF modelindeki servisin adı AWS Lambda olarak adlandırılmaktadır (Chapin ve

Roberts, 2020). AWS Lambda fonksiyonlarının kullanabilecekleri maksimum bellek

kapasitesi kullanıcı tarafından belirlenir. Bu nedenle uygulamanın ihtiyacı olan bellek

miktarının önceden doğru tespitini yaparak yapılandırmak önem arz etmektedir.

Verilebilecek maksimum bellek miktarı ise konteyner başına 10GB’dır.

AWS Lambda fonksiyonları olay güdümlü olarak çalışmaktadırlar. Olayların kaynağı

diğer AWS servislerindeki durum ve veri değişimleri ile HTTP üzerinden gelen

istekler olabilir. Fonksiyonlar olay güdümlü olmaları sayesinde diğer AWS

servisleriyle birlikte çalışabilirler. Örneğin, Amazon DynamoDB’de meydana gelen

veri değişimleri AWS Lambda üzerindeki uygulamayı tetikleyerek çalıştırabilir.

AWS Lambda servisinin çalışma süresi 15 dakika ile limitli olduğundan, çalışması

uzun süren mekânsal büyük veri analizi veya mekânsal zekâ uygulamaları için uygun

olmayabilir. Bununla birlikte bir fonksiyonun aynı anda en fazla bin isteğe cevap

28

verebilme limiti bulunmaktadır. Özellikle herkese açık ve çok sayıda kullanıcıya

hizmet vermesi beklenen internet servisi mimarileri için bu limit bir engel olabilir.

İstenirse AWS destek hattından bu limitin arttırılması talep edilebilir. AWS Lambda

uygulamasının çalıştığı geçici her bir konteyner başına verilen depolama alanı ise

maksimum 10GB’dır.

AWS Lambda servisi başlıca Java Script, Python, Ruby, Java, Go ve C# programlama

dillerini desteklemektedir, ancak, servis ayrıca konteyner imajı çalıştırma desteği de

sunduğu için uygulamada konteyner üzerinde çalışabilen her dille çalışma imkânı da

sunmaktadır. Her ne kadar bu yaklaşım HoK modeline benzetilse de AWS Lambda

üzerinde her konteyner imajına izin verilmez. İzin verilen konteyner imajlarının AWS

tarafından hazırlanmış baz (base) imajlardan veya Lambda Runtime API’nın kurulu

olduğu özel imajlardan üretilmesi gerekmektedir (Poccia, 2020). HoF modeli ile

çalışamaya uygun olmayan bir CBS sunucusu yazılımı konteyner olarak hazırlanarak

çalıştırılabilir. Bu imkan ile ayrıca halihazırdaki bir uygulamanın da sunucusuz mimari

servislerinden faydalanması sağlanmış olmaktadır.

HoK modelindeki servis AWS Fargate olarak adlandırılmaktadır (Vohra, 2018). AWS

Fargate, Docker teknolojisi ile konteyner yönetimini sunucusuz olarak sağlamaktadır.

Bu servis üzerinde çalıştırılmak istenen konteyner imajları bir konteyner imaj

deposunda çekilir. Bu imaj deposuna AWS Fargate erişim için yetkilendirilir.

AWS Fargate üzerindeki her bir Windows işletim sistemi tabanlı konteyner 20GB,

Linux işletim sistemi tabanlı konteyner ise 200 GB (gigabyte) geçici depolama alanı

üzerinde çalışmaktadır. Eğer kalıcı bir depolama ihtiyacı varsa bunun için platform

üzerinde sunulan sunucusuz veri depolama hizmetleri kullanılabileceği gibi sanal disk

servisinden de faydalanılabilir. Servis aynı anda bin adet konteyner çalıştırabilir.

İstenirse AWS destek hattından bu limitin arttırılması talep edilebilir. Bir diğer limit

ise AWS Fargate servisinin grafik işlem birimi (GPU – Graphical Processing Unit)

desteği sunmamasıdır. Bu nedenle grafik işlem birimine ihtiyaç duyan mekânsal zekâ

uygulamaları AWS Fargate üzerinde çalışamamaktadır (URL-2).

Platform üzerinde servisler arasındaki etkileşimin güvenliği için AWS üzerine kimlik

ve yetki erişim sistemi (IAM-Identity Access Management) bulunmaktadır. Bu servis

üzerinde AWS Lambda veya AWS Fargate uygulamasına rol ataması yapılarak

29

platform üzerindeki diğer kaynaklara hangi yetkilerle erişebileceği belirlenir ve

denetlenir (Pothecary, 2021).

3.1.3 Ekonomik model

Amazon S3 hizmeti saklanan verinin ve depolama alanına yapılan veri trafiğinin

büyüklüğüne bağlı olarak ücretlendirme politikası izlemektedir (Hashimoto, 2015).

Amazon Aurora Serverless servisinin ücretlendirilmesi saatlik aktif olan veri tabanı

sunucusunun sayısı, saklanan veri miktarı ve yapılan sorgulama sayısı üzerinden

yapılmaktadır (Weaver, 2021). Örneğin, saklanan veriler hiçbir zaman sorgulanmazsa

sadece depolama ücreti ödenmektedir. Bir diğer örnek ise; veri tabanında verilerin

ayda bir kez bir saat boyunca sorgulanması durumunda, yapılan sorgunun kullandığı

sunucuların bir saatlik kullanım ücreti ve saklanan veri miktarı ve süresi üzerinden

ücretlendirilir. Amazon DynamoDB’nin ücretlendirilmesi ise veri okuma ve yazma

üzerinden kullanım miktarına göre yapılmaktadır (Astrova ve diğ, 2017).

AWS Lambda fonksiyonları çalışma süresi boyunca atanan bellek miktarına ve toplam

çalışma süresine göre ücretlendirilirler (Sbarski, 2022). AWS Fargate servisinin

ücretlendirilmesi de benzer şekilde atanan işlemci sayısı ve bellek miktarının kullanım

sürelerine göre hesaplanmaktadır (Vohra, 2018). Konteyner için sunulan geçici veri

depolama alanından daha büyük bir depolama alanına ihtiyaç duyulduğunda Amazon

Elastic File System (Amazon EFS) adlı sunucusuz disk hizmeti kullanılabilir. Bu

hizmet ise kullanılacak diskin kapasitesi ve yapılan yazma ve okuma sayısına göre

ücretlendirilmektedir (Wittig ve diğ, 2018).

3.2 Microsoft Azure Tarafından Sunulan Sunucusuz Hizmetler ve Mekânsal

Bilişim Özellikleri

3.2.1 Sunucusuz veri depolama hizmetleri

Microsoft Azure üzerinde sunucusuz veri depolama hizmetleri yapısal ve ilişkisel veri

depolama ile yapısal olmayan veri depolama şeklinde iki grupta incelenmiştir.

(Çizelge 3.3).

30

Çizelge 3.3 : Microsoft Azure sunucusuz veri depolama hizmetleri.

Yapısal ve ilişkisel veri depolama
Azure Cosmos DB

Azure SQL Database Serverless

Yapısal olmayan veri depolama Azure Blob Storage

Microsoft Azure bulut bilişim sağlayıcısının yapısal olmayan veri depolama için

sunduğu sunucusuz hizmeti Azure Blob Storage olarak isimlendirilmektedir. Bu servis

üzerinde istenen herhangi bir dosya ikili biçemde obje olarak saklanabilmektedir

(Ahmed ve diğ, 2018). Saklanan veriler üzerinde doğrudan mekânsal analizler yapmak

için bir hazır çözüm bulunmamaktadır. Tomey (2017) yaptığı çalışmada sunucusuz

Azure Data Lake Analytics hizmetinin sorgulama yeteneklerini genişleterek Azure

Blob Storage üzerinde bulunan yapısal olmayan verileri sorgulamıştır.

Yapısal ve ilişkisel veri depolama hizmeti olan Azure Cosmos DB üzerinde yapısal

anahtar-değer, belge, sütun ailesi ve çizge veri türlerine destek verilmektedir (Paz,

2018). Microsoft Cosmos DB üzerinde saklanabilen her veri tipine göre bir API ismi

verilmiştir (Vemula, 2019).

Anahtar-değer türündeki verileri tutmak için Table API servisi kullanılmaktadır. Bu

servis mekânsal verilerin sorgulanmasına destek vermemektedir.

Belge türündeki verilerin saklanması için SQL API hizmeti kullanılmaktadır. Bu

hizmet mekânsal sorguları desteklemektedir. Bununla birlikte mekânsal verileri

adresleyerek (geospatial indexing) daha hızlı sorgulanması da desteklenmektedir

(Microsoft, 2022a). Her ne kadar NoSQL tabanlı bir veri tabanı hizmeti olsa da SQL

API adından da anlaşılacağı gibi SQL dilindeki sorgulara da destek vermektedir. OGC

Simple Features standartlarına uygun şekilde bazı mekânsal sorgu metotlarını da

desteklemektedir (Microsoft, 2022b).

Sütun ailesi tipindeki verilerin saklanması ve sorgulanması için Azure Cosmos DB

Cassandra API sunulmaktadır (Paz, 2018). Bu isim arka planda kullandığı açık kaynak

kodlu veri tabanı yazılımı olan Apache Cassandra’dan gelmektedir. Bu servis

mekânsal verilerin sorgulanması için bir destek sağlamamaktadır.

Son olarak çizge verileri saklamak ve sorgulamak için sunulan servisin adı Gremlin

API olarak geçmektedir. Bu servis de Cassandra API gibi kullandığı açık kaynak kodlu

Apache TinkerPop yazılımının Microsoft Azure tarafından özelleştirilmiş bir

sürümünün sunumudur. Yapılan sorgulama diline Gremlin dendiği için adını buradan

31

almıştır. Bu servis üzerinde doğrudan mekânsal sorgulama yapılamamaktadır. Ancak

mekânsal bilişimde en çok kullanılan rota analizleri için tercih edilmektedir. Ferreira

(2014) yaptığı çalışmada çizge veri tabanı üzerinde mekânsal bilişim uygulaması

geliştirmiştir. Bu çalışmada ayrıca bir ilişkisel veri tabanı ve çizge veri tabanının en

kısa yol analizi karşılaştırması da yapılmıştır. Bu karşılaştırmaya göre çizge veri tabanı

en kısa yol analizi için ilişkisel veri tabanına göre daha hızlı sonuç vermektedir.

Microsoft Azure üzerinde ilişkisel sunucusuz veri tabanı hizmeti için Azure SQL

Database Serverless isimli servisi sunmaktadır. Bu servis Microsoft tarafından

geliştirilen SQL Server veri tabanı sunucusu teknolojisinin bulut bilişim için

özelleştirilmiş bir sürümüne dayanmaktadır. Bu servis üzerinde OGC’nin Simple

Feature Access standardına göre mekânsal veri sorgulama ve saklamaya destek

verilmektedir (Microsoft, 2022c).

3.2.2 Sunucusuz hesaplama hizmetleri

Microsoft Azure firmasının sunduğu sunucusuz hesaplama hizmetleri Çizelge 3.4’te

de gösterildiği gibi fonksiyon ve konteyner türünde ikiye ayrılmaktadır (Yusuf, 2021).

Çizelge 3.4 : Microsoft Azure sunucusuz hesaplama hizmetleri.

Fonksiyon – HoF Azure Functions

Konteyner – HoK Azure Container Instances

Platformda HoF modelinde sunulan servisin adı Azure Functions olarak geçmektedir

(Satapathi ve Mishra, 2021). Bu servis C#, JavaScript, F#, Java, Python gibi

programlama dillerinde yazılmış uygulamaları çalıştırabilmektedir. Azure Functions

sunucusuz çalışma planı üzerinden konteyner çalıştırma desteği sunmamaktadır.

Azure Functions birden fazla çalışma planı sunmaktadır. Bu çalışma planlarına göre

ücretlendirme ve sunulan özellikler değişmektedir. Bu tez kapsamında bu çalışmalar

planlarından sunucusuz çalışma planı (Consumption Plan) üzerinden Azure Functions

incelenmiştir.

Bu servise ait fonksiyonlar platformdaki diğer kaynaklardaki durum değişiklikleri ve

HTTP istekleri kaynaklı olaylarla olay güdümlü olarak çalışabilmektedirler. Örneğin

aynı platform üzerinde bulanan Azure Maps isimli servis ve IoT çözümleri

kullanılarak takip edilen bir cihazın belirlenmiş coğrafi alanlara (geofence) girmesinin

32

analizini yaparak bunların kayıtlarını tutan bir uygulama geliştirilebilir (Microsoft,

2022d).

Azure Functions çalışan fonksiyonlara 5 TB geçici veri depolama alanı sunmaktadır

(Maslov ve Petrashenko, 2021). Her çalışma sonunda konteynerler birlikte bu geçici

depolama alanı da yok edildiğinden kalıcı veriler için platformdaki sunucusuz

depolama alanı hizmetleri kullanılabilir. Azure Blob Storage üzerindeki bir saklama

alanı fonksiyonun konteynerindeki dosya sistemi üzerine bağlanabilmektedir. Bu

sayede bulut tabanlı veri depolama hizmetlerini desteklemeyen bir uygulamayı dosya

sistemi kullanarak yine sunucusuz mimari ile kullanmak mümkün olmaktadır. Örneğin

bir raster karo harita servisi uygulaması hiyerarşik bir şekilde üretilmiş ve Azure Blob

Storage üzerinde saklanmış karoları dosya sisteminden okuyarak servis edebilir.

Azure Functions üzerindeki fonksiyonlar Azure Application Insight servisi ile ortak

çalışarak fonksiyonlarda üretilen hata günlükleri ve performans metriklerini tutarak

kullanıcının analiz edebilmesi sağlanır. Bununla birlikte kullanıcı tanımlayabileceği

alarmlar ile koşulların sağlanması durumunda e-posta ve kısa mesaj gibi yollarla uyarı

alabilir.

Sunucusuz çalışma planındaki fonksiyonlar maksimum 10 dakika çalışma süresine

sahiptirler. Ayrıca sunucusuz plan üzerindeki bir fonksiyon aynı anda Windows

işletim sistemi tabanlı ise 200 konteynere kadar veya Linux işletim sistemi tabanlı ise

100 konteynere kadar ölçeklenebilir (Microsoft, 2022e). Her bir konteyner için

maksimum ayrılan bellek miktarı ise 1.5 GB’dır (Maslov ve Petrashenko, 2021).

Microsoft Azure, HoK modelindeki konteyner çalıştırma servisini Azure Container

Instances (ACI) adıyla sunmaktadır (Satapathi ve Mishra, 2021). Bu servis üzerinde

kullanıcı hazırladığı Windows veya Linux işletim sistemi tabanlı konteyner imajını

sunucusuz mimariyle çalıştırabilir.

ACI üzerinde çalışan konteynerlerin kalıcı depolama alanı olarak sunucusuz dosya

saklama hizmeti Azure Files kullanılabilir. Konteynerdeki bir dosya sistemi yolu bu

hizmete bağlanarak (mount) uygulamanın bu alanda saklanan dosyalara erişimi

sağlanır.

Bir ACI hesabında biri ana olmak üzere maksimum 60 tane farklı Linux işletim sistemi

tabanlı konteyner aynı anda birlikte çalışabilmektedir. Ana konteyner dışındakiler

yardımcı olmak amacıyla çalıştırılır. Windows işletim sistemi tabanlı ACI hesabı ise

33

maksimum bir tane konteyner çalıştırabilmektedir. Ayrıca maksimum bir hesaptan beş

tane port haberleşmeye açılabilir.

ACI servisi kullanılan grafik işlemcisi desteği de verebilmektedir. Makine öğrenimi,

yapay zekâ, mekânsal zekâ (GeoAI) gibi uygulamalar bu özellikten faydalanarak daha

hızlı sonuç üretebilirler. Bir ACI hesabı maksimum 16 GB bellek ve 4 çekirdekli

işlemciye sahip olabilir (Ifrah, 2020). Aynı hesap içinde çalışan konteynerler bu

kaynakları paylaşımlı olarak kullanırlar. Kaynak paylaşımı servis tarafından otomatik

olarak yapılmaktadır.

ACI konteynerleri istenirse Azure Functions ile entegre edilerek konteyneri başlatma,

durdurma ve kapatma gibi yaşam döngüleri kontrol edilebilir. Böylece dolaylı yoldan

konteynerler olay güdümlü olarak çalıştırılabilirler. Bu senaryo Azure Functions

hizmetinin çalışma sürelerinin veya işlem gücünün uygulama için yeterli olmadığı

durumda da tercih edilebilir. Bu entegrasyonun bir diğer faydası da ölçeklenebilirliğin

bu yolla sağlanmasıdır. ACI hizmeti otomatik ölçeklendirme sistemi sunmamaktadır

ancak Azure Functions kullanılarak bu sağlanabilmektedir (Kerkhove, 2021).

3.2.3 Ekonomik model

Azure Blob Storage hizmeti saklanan verinin ve depolama alanıyla yapılan veri

trafiğinin büyüklüğüne bağlı olarak ücretlendirme politikası izlemektedir (Daher ve

Hajjdiab, 2018). Azure Cosmos DB servisinin ücretlendirilmesi servise yapılan her bir

milyon sorgu isteği başına ve saklanan veri miktarına göre ücretlendirilmektedir

(Piancazzo, 2022). Azure SQL Database Serverless ise seçilen veri tabanı işlem gücü

kaynağına ve kaynakların saniye zaman birimindeki kullanımına göre

ücretlendirilmektedir. Ayrıca Azure SQL Database Serverless için kullanılan veri

miktarı da aylık olarak veri miktarı başına göre ücretlendirilmektedir.

Azure Functions fonksiyonları çalışma süresi boyunca atanan bellek miktarına ve

toplam çalışma süresine göre ücretlendirilirler. ACI servisinin ücretlendirilmesi de

benzer şekilde atanan işlemci sayısı ve bellek miktarının kullanım sürelerine göre

hesaplanmaktadır Her iki hizmet için de kullanılacak kalıcı depolama alanlarının

ücretlendirilmesi ayrıca yapılmaktadır. ACI hizmetinde grafik işlemcisi

kullanıldığında ayrıca onun da kullanım süresi ve işlemci türüne göre ücretlendirme

yapılmaktadır.

34

3.3 AWS ve Microsoft Azure Sunucusuz Hizmetlerinin Karşılaştırılması

AWS ve Microsoft Azure bulut bilişim sağlayıcılarının bir önceki bölümde sunucusuz

hizmetleri incelenmiştir. Bu bölümde ise bu iki sağlayıcı tarafından sunulan sunucusuz

veri depolama ve hesaplama servisleri karşılaştırılacaktır.

Sunucusuz yapısal olmayan veri depolama hizmetleri Amazon S3 ve Azure Blob

Storage için karşılaştırıldığında gözle görülür bir fark görülmemektedir. İki servis

arasında terminoloji farkı bulunmaktadır. Amazon S3’te veri objelerinin varlık

kümesine kova (bucket) adı verilirken Azure Blob Storage hizmetinde konteyner

(container) adı verilmektedir. Amazon S3 üzerinde hali hazırda bulunan açık mekânsal

veriler ise bu verilerin kullanılacağı bir uygulama senaryosu için avantajlı olmaktadır.

Sunucusuz yapısal ve ilişkisel veri tabanı hizmetleri NoSQL çözümleri üzerinden

karşılaştırıldığında Azure Cosmos DB’nin hem destek verdiği veri tipleri hem de

mekânsal yetenekleri açısından Amazon DynamoDB’den avantajlı olduğu

görülmektedir (Çizelge 3.5).

Çizelge 3.5 : Amazon DynamoDB ve Azure Cosmos DB karşılaştırması.

Özellik Adı Amazon DynamoDB Azure Cosmos DB

Veri Tipleri Anahtar-Değer
Anahtar-Değer, Belge,

Çizge, Sütun Ailesi

Mekânsal Veri Saklama Var (Sadece Nokta) Var

Mekânsal Sorgulama Var Var

Sunucusuz yapısal ve ilişkisel veri tabanı hizmetleri ilişkisel ve SQL dilini destekleyen

çözümler üzerinden karşılaştırıldığında ise Azure SQL Database Serverless servisi ile

Amazon Aurora Serverless servisinin farklı iki veri tabanı sunucusu teknolojisi

kullandığı görülmektedir. Amazon Aurora Serverless çözümü PostgreSQL ve PostGIS

desteği ile Azure SQL Database Serverless çözümüne göre daha fazla mekânsal

sorgulama yetenekleri sunduğu görülmektedir.

Çizelge 3.6’te sunucusuz HoF modeli ile hesaplama hizmetlerinin karşılaştırılması

yapılmıştır. AWS Lambda üzerinde Windows işletim sistemi tabanlı konteynerler

çalıştırılamamaktadır. Bu nedenle karşılaştırma tablosu her iki servisinde Linux

işletim sistemi tabanlı konteyner çalıştıracağı senaryosu üzerinden yapılmıştır.

35

Çizelge 3.6 : AWS Lambda ve Azure Functions karşılaştırması.

Özellik Adı AWS Lambda Azure Functions

Programlama Dilleri

C#, JavaScript, Java,

Python, PowerShell

Core, Go, Ruby

C#, JavaScript, Java,

Python, PowerShell

Core, TypeScript

Konteyner Çalıştırma Desteği Var Yok

Maksimum Çalışma Süresi 15 dakika 10 dakika

Ölçeklenebilirlik 1000 100

Maksimum Bellek Miktarı 10 GB 1.5 GB

Geçici Veri Depolama Alanı 10 GB 5 TB

AWS Lambda ve Azure Functions arasında geçici veri depolama alanı, maksimum

çalışma süresi, maksimum bellek miktarı ve geçici depolama alanında belirgin

farklılıklar olduğu görülmektedir. Desteklenen dillere bakıldığında AWS Lambda’nın

farklı olarak Go ve Ruby dillerine destek verdiği görülürken Azure Functions’ın da

farklı olarak TypeScript diline destek verdiği görülmektedir.

HoK modelindeki servislerin AWS ve Microsoft Azure bulut sağlayıcıları üzerindeki

karşılaştırılmasında AWS Fargate ve Azure Container Instances servisleri

kullanılmıştır (Çizelge 3.7).

Çizelge 3.7 : AWS Fargate ve Azure Container Instances karşılaştırması.

Özellik Adı AWS Fargate Azure Container

Instances

İşletim Sistemi Desteği Windows ve Linux Windows ve Linux

Grafik İşlemcisi Desteği - GPU Yok Var

Otomatik Ölçeklendirme Var Yok

Aynı Anda Çalışan Konteyner 1000 60

Maksimum Bellek Miktarı 30 GB 16 GB

Maksimum İşlemci Çekirdeği 4 4

Geçici Veri Depolama Alanı
Windows: 100 GB

Linux: 200 GB
50 GB

Azure Container Instances servisinin GPU desteği sunması AWS Fargate servisine

göre grafik işlemciyi kullanan yapay zekâ ve makine öğrenimi uygulamalarında

avantaj sağlamaktadır. AWS Fargate ile gelen dahili otomatik ölçeklendirme hizmeti

ve bin konteynere kadar ölçeklenebilme Azure Container Instances karşısında avantaj

olarak görülmektedir.

36

37

4. SUNUCUSUZ COĞRAFİ BİLGİ SİSTEMİ YAZILIMI TASARIMLARI VE

UYGULAMALARI

Günümüzde birçok web CBS uygulaması raster karo veya vektör karo harita

servislerini altlık olarak kullanmaktadırlar (Netek ve diğ, 2020). Bu servisler üretilmiş

statik karo verilerinin belirli ayrıntı seviyelerine göre bir şema doğrultusunda

sunulmasını sağlamaktadır. Bu bölümde bu iki harita servisi türü sunucusuz mimari

ile tasarlanarak her biri seçilen bir bulut bilişim sağlayıcısı üzerinde uygulanmıştır.

Akıllı şehir, nesnelerin interneti, büyük veri gibi uygulamalar ve paradigmalar üretilen

ve saklanan veri miktarını büyük ölçüde arttırmıştır. Bu verilerin içerdiği mekânsal

bilgi ile geliştirilen mekânsal zekâ uygulamalarının da günümüzde giderek önemi

artmaktadır (Kamel Boulos ve diğ, 2019). Bu bölümde bir mekânsal zekâ sistemin

sunucusuz mimariye uygun olarak tasarımı, bir bulut sağlayıcı üzerindeki uygulaması

ve değerlendirmesi de paylaşılmıştır.

CBS uygulamalarının verilerinin bulut bilişim üzerine taşınması ile mekânsal veri

işleme ve analizi iş akışları da bulut bilişim sistemleri üzerinde yapılabilmektedir. Bu

bölümde sunucusuz bir akış bazlı mekânsal veri işleme sistemi tasarımı geliştirilmiştir.

CBS kullanıcılarının bulut bilişim hakkında ileri düzey teknik bilgi gerektirmeden bu

sistemi kullanabilmeleri için de iş akışı tanımlama modelleri de geliştirilerek

sunulmuştur. Geliştirilen iş akışı tanımlarının daha iyi anlaşılabilmesi için de örnek

mekânsal iş analizi senaryoları verilerek tasarım desteklenmiştir.

Sunulan her sunucusuz sistem mimarisinin tasarım ve uygulaması 12 Faktör

yöntemine ve bulut bilişim sağlayıcılarının geliştirdiği bulut bilişim mimarisi

değerlendirme ölçütlerine göre değerlendirilmiştir.

4.1 Mimari Tasarımların Değerlendirmesinde Kullanılan Yöntemler

Sunucusuz bulut bilişim üzerindeki sistem mimarilerinin değerlendirilmesinde iki

farklı yöntem kullanılmıştır. Bu yöntemler sadece sunucusuz mimariler için değil aynı

zamanda diğer tüm bulut bilişim altyapısı kullanan mimariler için

38

uygulanabilmektedir. Bu tez kapsamında bu yöntemler sunucusuz mimariler özelinde

incelenmiş ve uygulanabilirlikleri değerlendirilmiştir.

Kullanılan yöntemlerdeki prensipler haricinde tez kapsamında sunulan sunucusuz

mimari tasarımlar aşağıdaki hususlar da dikkate alınarak geliştirilmiştir.

• Sistem tasarımlarındaki tüm uygulamalar HoK ve HoF modelleri üzerinde

çalışacak şekilde tasarlanmalı ve geliştirilmelidir.

• Uygulamaların ihtiyacı olan tüm destek servisleri yine sunucusuz hizmetlerle

karşılanmalıdır.

• Sistem tasarımı ve uygulamalar otomatik ölçeklendirmeye uygun olmalıdır.

• Uygulamalar asenkron çalışmalıdır. Böylece sistem kaynakları tek bir işlem

için bekletilmeden diğer işlemler için de kullanılabilir kılınmalıdır.

• Uygulamalar hatalara dayanıklı olmalıdır. Herhangi bir hata oluşması

durumunda yarım kalan süreç yeniden denenmelidir. Belli bir sayıdan sonra

süreç yeniden deneyerek devam edemiyorsa süreç ile ilgili durum bilgileri hata

oluşturan kök neden çözüldükten sonra yeniden işleme devam edebilmek için

kaydedilmelidir.

• Veri depolama kaynakları hariç hiçbir uygulama veya veri tabanı sunucusu için

donanım kaynağı boşta bekletilmemelidir. HoK ve HoF modelindeki

uygulamalar görevlerini tamamladıktan sonra kapanarak çalışma süreleri

sonunda kullanılan kaynakları tekrar serbest bırakabilmelidir.

4.1.1 12 Faktör yöntemi

Günümüzde uygulama geliştiriciler uygulamalarını bulut bilişim altyapılarına taşımak

için çalışmaktadır. Bu gelişim içerisinde yeni yaklaşımlar ve prensipler de beraberinde

geliştirilmektedir. 2012 yılında Heroku bulut bilişim sağlayıcısında çalışan bir grup

mühendis 12 Faktör isimli bir manifesto yayınlamıştırlar (Wiggins, 2012). Bu

manifestoda bir bulut bilişim uygulamasının en doğru şekilde yapılandırılması için

kılavuz olacak on iki temel madde geliştirmiştirler. Bu maddelere dayanarak

geliştirilecek uygulamaların klasik yerinde (on-premise) bilişim altyapılarında çalışan

uygulamalara göre daha taşınabilir ve hatalara dayanıklı olması hedeflenmiştir.

39

Bu tez çalışmasında 12 Faktör yöntemindeki on iki maddenin sunucusuz bulut bilişim

uygulamaları üzerinde uygulanabilirliği incelenmiştir. Daha sonra sunucusuz bulut

bilişim için uygun bulunan maddeler ile tezde sunulan sistem tasarımları

değerlendirilmiştir.

Kod deposu (Codebase)

Uygulama geliştirme süreçlerinde üretilen kodlar bir revizyon sistemi üzerinde

tutularak arşivlenmektedir. Bu arşivlerin her birine kod deposu denir. Kod depoları

sayesinde birden fazla uygulama geliştirici aynı uygulama üzerinde ortak çalışarak

çalışmalarını birleştirebilirler. Bu yöntem her bir kod deposu bir uygulamanın kaynak

kodunu tutacağını belirtmektedir. Bu kod deposu uygulamanın test ve yayın

ortamlarına yapılan güncellemeler için tek kaynaktır (Şekil 4.1).

Sunucusuz mimariyle uygulama geliştirilirken de bu yöntem kullanılabilir. HoF ve

HoK hizmet modellerine göre geliştirilecek uygulamaların kaynak kodları her bir

konteyner veya fonksiyon uygulaması için ayrı bir kod deposunda olacak şekilde

tutulmalıdır.

Şekil 4.1 : Uygulama geliştirici, kod deposu ve uygulama çalışma ortamı ilişkisi.

Bağımlılıklar (Dependencies)

Bağımlılıklar prensibine göre bulut bilişim uygulaması hiçbir zaman bir bağımlılığın

ortam tarafından sunulacağına güvenmez ve kendisi bağımlılıklarını çalışmadan önce

yüklenmesini sağlar.

40

Bu prensip HoK modeli için tamamen uygulanabilir olsa da HoF modeli için her

platform üzerinde uygulanamayabilir. Örneğin raster verilerin işlemesi için gereken

bir uygulama kütüphanesinin kurulabilmesi için işletim sisteminde kurulması gereken

başka bir yardımcı uygulama HoF modelinde konteyner platform tarafından

yönetildiği için kurulamamaktadır. Bu nedenle bu prensip HoF modeline dayalı

sunucusuz mimariler için uygulanabilir olmamaktadır.

Ayarlar (Config)

Bu prensip uygulamaya ait yapılandırma ayarlarının nasıl saklanması gerektiğini

belirtmektedir. Bir bulut bilişim uygulaması ihtiyacı olan yapılandırma parametrelerini

uygulamanın kodları içerisinde tutmamalıdır. Bu parametrelerin değerleri uygulama

yeniden yayınlanmadan değiştirilebilmelidir.

Sunucusuz hesaplama servislerinde uygulamanın ihtiyaç duyabileceği değişkenlerinin

tutulması için çözümler bulunmaktadır. Bir çözüm olarak çalışan konteynerin işletim

sisteminin ortam değişkenleri düzenlenerek bu parametreler sağlanmaktadır. Bununla

birlikte bulut bilişim sağlayıcıları veri tabanı şifresi gibi gizli bilgilerin şifrelenerek

daha güvenli bir şekilde saklanabileceği ve uygulamaların kullanabileceği hizmetler

sunmaktadırlar. AWS bulut bilişim sağlayıcısı gizli uygulama yapılandırma

parametreleri için Key Management Service (KMS) sunucusuz hizmetini sunmaktadır.

Benzer şekilde Microsoft Azure ise Key Vault sunucusuz hizmeti ile bu özelliği

sunmaktadır.

Destek servisleri (Backing services)

Destek servisleri uygulamanın ihtiyaç duyabileceği veri tabanı, mesaj kuyruğu veya

önbellek yazılımları gibi ağ üzerinden ulaşılan servisleri kapsamaktadır. Bu prensibe

göre bu servisler uygulama ile aynı ortamda çalışmamalıdır. Tüm destek servislerine

ağ üzerinden erişilmeli ve destek servisi başka bir sunucu üzerinde olmalıdırlar.

Örneğin bir CBS sunucusu uygulaması ile CBS veri tabanı sunucusu aynı konteyner

üzerinde çalışmamalıdır (Şekil 4.2).

41

Şekil 4.2 : Destek servislerinin doğru şekilde kullanımı.

HoF modeline dayalı sunucusuz hesaplama hizmetlerinde konteyner bulut bilişim

sağlayıcısı tarafından yönetildiği için çalışacak uygulama dışında başka bir

uygulamanın birlikte çalıştırılmasına izin verilmez bu nedenle HoF modeli bu prensibi

doğal olarak karşılamaktadır. HoK modelinde ise konteyneri kullanıcı kontrol

edebileceğinden konteynerde birden fazla uygulama çalıştırılabilir. Bu nedenle bu

prensip HoK modelinde ihlal edilebileceğinden dikkat edilmelidir.

Derle, yayınla ve çalıştır (Build, release, run)

Bu prensibe göre derleme, yayınlama ve çalıştırma süreçleri birbirlerinden ayrı

fazlarda olmalıdır. Her bir yayın bir sürüm numarası almalıdır ve istenirse bir hata

durumunda bir önceki sürüme dönülebilmelidir. Bunun için üretilen önceki sürümler

yeniden yayınlanabilecek şekilde saklanmalıdır. Derleme fazı uygulama geliştirici

tarafından istendiği zaman çalıştırabilmelidir.

Sunucusuz hizmetler bu prensibe uygun olarak sürekli entegrasyon (continuous

integration) ve sürekli dağıtım (continuous deployment) araçlarıyla birlikte çalışarak

uygulamaları yayına alabilirler. Bu araçlar kod deposundan uygulamanın son halini

çekerek derler, testlerini çalıştırır ve testlerde hata yoksa yeni sürümü yayınlarlar.

Ayrıca eski sürümleri de olası bir durumda geri dönülmek üzere arşivlemektedirler.

Süreçler (Processes)

Süreçler prensibine göre bir uygulama durumsuz (stateless) olmalıdır ve böylece

çalışan birden çok süreç birbirleriyle durumlarını paylaşmadan çalışabilmelidir.

Örneğin bir uygulama ürettiği verileri dosya sistemine veya hafızaya kaydederek bir

sonraki çalışacak süreç tarafından kullanılmasını beklememelidir. Böyle bir ihtiyaç

için veri tabanı sunucusu, dağıtık önbellek (distributed cache) sunucusu gibi destek

servisleri kullanılarak veriler saklanmalı ve süreçler arasında paylaşılmalıdır.

42

Sunucusuz HoF modelindeki uygulamalar olay güdümlü olarak durumsuz çalışırlar ve

kalıcı depolama ihtiyaçları için destek servislerine ihtiyaç duyarlar. Bu nedenle

uygulamanın durumsuz olması uygulama geliştiricinin kontrolünde değildir.

Sunucusuz HoK modelindeki uygulamalar ise uygulama geliştirici tarafından istenirse

durum tutabilirler ve bu prensibe aykırı davranabilirler. Bu neden bu prensibin HoK

modelindeki uygulamalar tarafından uygulanması uygulama geliştiricinin

kararındadır.

Port bağlama (Port binding)

Bu prensibe göre konteyner içerisinde çalışan uygulamaların ihtiyaç duyduğu iletişim

portlarının bağlanması (binding) gerekir. Böylece bir uygulama konteyner içindeki

iken çalıştığı port üzerinden iletişim kurabilir ve sağlıklı olarak çalışabilir. Örneğin bir

CBS sunucusu uygulaması TCP (Transmission Control Protocol) 8080 portu

üzerinden HTTP ve TCP 8043 üzerinden HTTPS (Hypertext Transfer Protocol

Secure) isteklerine cevap veriyorsa bu uygulama HTTP'nin rezerve edilen TCP 80

portu ile HTTPS’in rezerve edilen TCP 443 portlarına bağlanmalıdır (Şekil 4.3). Bu

sayede uygulamanın istemcilerle iletişimi doğru şekilde kurulabilmektedir.

Şekil 4.3 : Konteyner üzerinde çalışan uygulamanın portlarını bağlama gösterimi.

Bu prensip HoF modelinde çalışan sunucusuz uygulamalar için uygulanamamaktadır

çünkü HoF uygulamaları olay güdümlü olarak çalışmakta ve platform tarafından

belirlenen portlar üzerinden bağlanarak iletişim kurmaktadırlar. HoK modelinde ise

port bağlama ayarları kullanıcı sorumluluğunda olduğu için bu prensip

uygulanabilmektedir.

Eş zamanlılık (Concurrency)

Uygulamalar gerektiğinde birden fazla süreçte çalışarak aynı anda birçok bekleyen

işlemi tamamlayabilmelidirler. Örneğin bir uygulama raster verisi üzerinde filtre

43

uygulamak üzere geliştirilmişse, gerektiğinde platformun izin verdiği ölçüde eş

zamanlı olarak çalışarak bekleyen on farklı raster verisini on ayrı süreçle işleyerek

filtreyi uygulamalıdır. Süreçler prensibinde de belirtildiği gibi eş zamanlı çalışan

süreçler birbirleriyle veri paylaşımını doğrudan değil destek servisleri üzerinden

yapmalıdırlar.

Sunucusuz mimariye dayalı tüm uygulamalar bu prensibe uymaktadırlar. Her

uygulama ayrı bir süreç olarak sürece ait konteyner içinde çalışarak yaşam döngüsünü

tamamlar. Birden fazla süreç gerektiğinde birden fazla konteyner ile uygulama

platformun izin verdiği limitler içerisinde ölçeklenerek eş zamanlı olarak çalışabilir.

Kullanılabilirlik (Disposability)

Uygulamalar çok kısa sürede çalışmaya başlamalı ve kapanabilmelidirler. Eğer işletim

sisteminin süreç yöneticisi tarafından uygulamaya sonlandırma sinyali gönderilirse

uygulama en zararsız şekilde ve kısa sürede kapanmalıdır. Bununla birlikte

uygulamalar ani kapanmalara hazır olmalıdır. Herhangi bir donanım veya konteyner

sistemi hatası durumunda uygulamalar ani şekilde kapanabilirler. Bu nedenle

uygulama geliştirici sürecin tekrar kaldığı yerden devam edebilmesini sağlayacak

geliştirmeleri de yapmalıdır.

Sunucusuz mimariler kaynakların ideal kullanılmasını hedeflediği için uygulamaların

hızlı başlaması önemlidir. Ayrıca bulut bilişim sağlayıcılarının sunucusuz hizmetleri

çalışma süresine bağlı ekonomik model geliştirmiştirler. Uygulamaların çalışmalarını

kısa sürede tamamlaması sunucusuz mimariler için ekonomik olarak da verimlilik

sağlar.

Geliştirme, test ve yayın ortamlarının benzerliği (Dev/prod parity)

Uygulamaların geliştirilme, test ve yayın ortamlarının birbirlerine olan benzerliğinin

en yüksek seviyede olması önemlidir. Bu sayede ortam kaynaklı bir sorun yayın

aşamasına gelmeden önce görülerek henüz test yayınındayken çözülebilir. Ayrıca bu

benzerlik sayesinde yeni eklenen bir özellik daha hızlı ve güvenilir bir şekilde yayına

gidebilir.

Sunucusuz hesaplama sistemleri konteyner tabanlı oldukları için bu teknolojinin

getirdiği en büyük avantaj; konteyner içerisindeki çalışma ortamının üzerinde çalıştığı

donanımdan bağımsız her ortamda aynı çalışabilme yeteneğidir. Bu nedenle bu prensip

sunucusuz mimariler için kolayca karşılanabilmektedir.

44

Günlük tutma (Logs)

Uygulamalar günlük kayıtlarını dosya sistemi üzerinde tutmayarak bir günlük toplama

sisteminde biriktirmelidirler. Merkezi bir yerde toplanan günlük kayıtları zamana ve

türüne göre gruplandırılarak analiz edilebilir. Uygulamalar günlüklerin nasıl ve nerede

tutulacağı ile ilgilenmezler ve günlük kayıtlarını standart yollarla oluşturmaya devam

ederler. Uygulamanın çalışacağı platform bu günlük kayıtlarını toplayarak

biriktirmekle sorumludur.

Sunucusuz mimarilerde günlük kayıtlarının konteynerlerden toplanarak biriktirilmesi

platform araçlarına bağlıdır. Günlük kayıtlarının tutulacağı, takip ve analiz edileceği

servisin sunucusuz mimariyle uyumlu olması gerekmektedir.

Yönetim süreçleri (Admin processes)

Yönetimsel tek seferlik görevlerin çalışmasına destek verilmelidir. Örneğin

uygulamanın ihtiyaç duyacağı kütüphanelerin yüklenmesi için ilgili bir komutun

çalıştırılması gerekebilir. Bu durumla uygulama geliştiricinin sitem üzerinde tek

seferlik bu görevi çalıştırabilmesi gerekmektedir.

Uygulama geliştirici yapılması gereken yönetimsel görevleri platformun desteklediği

dil ve formatta deklare ederek yayın sırasında çalıştırılmasını sağlayabilir. Bunun için

sürekli dağıtım sistemi kullanılabilir.

Yönetimsel sorumluluklar sunucusuz mimariyle çalışan sistemlerde soyutlanarak

platform tarafından yönetilmektedir. Bu nedenle bu prensip sunucusuz mimarilerde

uygulanabilir değildir.

12 Faktör yönteminin sunucusuz sistem mimarilerine uygulanabilirliğinin

değerlendirilmesi

Çizelge 4.1’de 12 Faktör’ün sunucusuz hesaplama hizmetlerine uygulanabilirlik

matrisi verilmiştir. Bu matrise göre HoK ve HoF modelindeki sunucusuz hizmetlerde

ortak olarak “Yönetim Süreçleri” prensibinin uygulama geliştirici tarafından doğrudan

uygulanamadığı görülmektedir. Sunucusuz sistemlerde yönetimsel süreçler

platformun tarafından kontrol edilmektedir. Bu prensip dışındaki diğer prensiplerin

HoK modeli ile uygulanabilir olduğu görülmektedir. HoF modelinde ise

“Bağımlılıklar”, “Süreçler”, “Port Bağlama” prensipleri kullanıcı kontrolünde

olmadığı için uygulanabilir değildirler.

45

Uygulanabilir olmayan prensipler aslında ihlal edilmemektedir. Bu prensipler

kullanıcının sorumluluk alanında olmadığı ve platform tarafından doğrudan

uygulandığı için sunucusuz mimarilerde doğrudan uygulanabilir olmayan olarak

değerlendirilmiştir. Bu tez çalışmasında verilen sistem tasarımları kullanılan

sunucusuz hesaplama hizmet modeline göre uygulanabilir prensipler üzerinden

değerlendirilecektir.

Çizelge 4.1 : 12 Faktör yönteminin HoK ve HoF modelleri ile uygulanabilirliği.

Prensip Adı HoK HoF

Kod Deposu ✓ ✓

Bağımlılıklar ✓ ✕

Ayarlar ✓ ✓

Destek Servisleri ✓ ✓

Derle, Yayınla ve Çalıştır ✓ ✓

Süreçler ✓ ✕

Port Bağlama ✓ ✕

Eş Zamanlılık ✓ ✓

Kullanılabilirlik ✓ ✓

Geliştirme, Test ve Yayın

Ortamlarının Benzerliği
✓ ✓

Günlük Tutma ✓ ✓

Yönetim Süreçleri ✕ ✕

4.1.2 Bulut bilişim sağlayıcılarının mimari değerlendirme ölçütleri

Bulut bilişim sağlayıcıları kullanıcıların oluşturdukları sistem mimarilerini belli

kıstaslar üzerinden değerlendirmek ve onlara tavsiyeler sunmak amacıyla kılavuz

uygulamalar geliştirmiştirler. 3. Bölüm’de incelenen bulut bilişim sağlayıcıları ayrıca

tezde sunulan sistem tasarımlarının uygulanmasında da kullanılan platformlar

oldukları için sundukları mimari değerlendirme ölçütleri bu bölümde açıklanmıştır.

Açıklanan bu ölçütler her bir sunulan sistem tasarımının ve uygulamasının

değerlendirilmesinde kullanılacaktır.

AWS bulut bilişim sağlayıcısının sunduğu mimari değerlendirme kılavuzunun adı

AWS Well-Architected olarak geçmektedir. Bu kılavuzda sunulan değerlendirme

ölçütleri altı ana başlık altında toplanmaktadır;

1. Maliyet Optimizasyonu

2. Operasyonel Mükemmellik

3. Performans Verimliliği

46

4. Güvenilirlik

5. Güvenlik

6. Sürdürülebilirlik

Microsoft Azure bulut bilişim sağlayıcısının sunduğu değerlendirme kılavuzunun da

adı çok benzer şekilde Azure Well-Architected olarak geçmektedir. Bu aracın sunduğu

değerlendirme ölçütleri beş ana başlık altında toplanmaktadır (Sahay, 2020);

1. Maliyet Optimizasyonu

2. Operasyonel Mükemmellik

3. Performans Verimliliği

4. Güvenilirlik

5. Güvenlik

İki aracın da başlıkları karşılaştırıldığında AWS mimari değerlendirme aracının ek

olarak sürdürülebilirlik başlığını da değerlendirmeye aldığı görülmektedir.

Maliyet optimizasyonu

Maliyet optimizasyonu sunucusuz mimarilerde en önemli konu başlığıdır. Kaynaklar

sadece olay güdümlü olarak çalıştırıldıkları için çalışma süresi boyunca harcanan

kaynak üzerinden ücretlendirilmektedirler. Maliyet optimizasyonunu arttırmak için

servis için atanan bellek ve işlemci miktarının doğru seçilmesi önemlidir. Ayrıca eğer

izin veriliyorsa maksimum eş zamanlı çalışabilecek konteyner veya fonksiyon

sayısının da sınırlandırılması otomatik ölçeklendirme ile oluşabilecek beklenmedik

maliyetlerin önlenmesini sağlamış olmaktadır.

Sistem tasarımlarında kullanılabilecek gereksiz bileşenler de maliyetleri arttıracaktır.

Bu nedenle sunucusuz mimarilerde bileşenlerin birbirleriyle doğrudan iletişim kurma

yetenekleri değerlendirilmelidir. Eğer iki bileşen birbirleri ile doğrudan iletişim

kurabiliyorsa araya fazladan bileşen sokulmamalıdır.

Operasyonel mükemmellik

Operasyonel mükemmelliğin sağlanabilmesi için sunucusuz bir mimari içerisindeki

tüm bileşenlerin takip edilmesi ve günlük kayıtlarının tek bir yerden izlenmesi önem

taşımaktadır (Obey, 2022). Uygulamaların yeni sürümlerinin yayınlanmasının

otomasyonunun sağlanmalıdır. Bir diğer önemli nokta ise sistem üzerindeki

47

kullanıcıların rolleri doğru şekilde tanımlanmalı ve sorumlulukları açıkça

belirtilmelidir.

Performans verimliliği

Sunucusuz mimarilerde performansa etki eden en önemli faktör uygulamanın

çalışmaya başlaması için geçen süredir. Eğer uygulama geç tepki veriyorsa HoF ve

HoK modellerine göre çalışan altyapılarda konteyner hazır durumda dahi olsa

uygulamanın çalışmaya başlaması beklenecektir.

Eğer uygulama aynı istekleri çok sık alıyor ve bu isteklere aynı cevapları dönüyorsa

önbellek servisleri kullanılarak cevap verme süresi düşürülerek çalışma performansı

arttırılabilmektedir.

Güvenilirlik

Sunucusuz mimariye dayalı bir sistem eğer bulut bilişim sağlayıcısı üzerinde

konuşlandırılacaksa güvenirliğin arttırılması için tek bir bölgedeki veri merkezi

üzerinde değil birçok bölgeye yayılarak konuşlandırılabilir. Bu sayede bir bölgede

meydana gelebilecek olası kesintilerde etkilenilmemiş olunur. Sunucusuz mimariye

uygun geliştirilen uygulamalar oluşan hatalara karşı süreci yeniden tekrar edebilir

olarak tasarlanmalıdırlar. Sunucusuz mimariye uygun olarak tasarlanan sistemin doğru

şekilde yapılandırılarak örneğin eğer gerekiyorsa eş zamanlı çalışma limitleri de

arttırılmalıdır.

Güvenlik

Sunucusuz mimarilerde kullanılan her bir sistem bileşeni bir rol ve buna bağlı olarak

yetkiler içerisinde görevini yerine getirmektedir. Bu nedenle sistem bileşenlerine

verilecek yetkiler ihtiyacından fazlası olmamalıdır. Eğer sistem bileşenlerine geniş

yetkiler verilirse herhangi bir sistem bileşeninin güvenlik zafiyeti tüm sistemi

tehlikeye atabilir. Bir diğer güvenlik zafiyeti ise uygulamaların çalışırken diğer destek

servislerine bağlantıda ihtiyaç duyacağı kimlik bilgileri gibi bilgilerin güvenli bir

şekilde saklanması gerekmektedir.

Sürdürülebilirlik

Sunucusuz mimariye dayalı sistemlerdeki bileşenlerin kullandıkları donanım

kaynakları sadece çalışma süresinde enerji tüketirler ve daha sonra bu kaynağı serbest

bırakarak diğer sistemlerdeki bileşenler için kullanılabilir hale getirirler. Bu yaklaşım

48

fiziksel donanım kaynaklarından elde edilen verimliliği en iyi hale getirirken bir diğer

yandan da oluşan karbon ayak izini azaltarak sürdürülebilir bir altyapının

oluşturulmasını sağlar. Bulut bilişim sağlayıcıları veri merkezlerinin enerji ihtiyaçları

için doğa dostu teknolojiler kullanabilmektedirler. Örneğin AWS bulut bilişim

sağlayıcısı bu konuda yaptığı yatırımları ve güncel durumunu devamlı olarak

paylaşmaktadır (Amazon, 2022a).

Sürüm yayınlama otomasyonu ile sistemlerdeki bileşenlerin nasıl yayınlanacağı

tanımlanır. Ayrıca kodlar kod deposunda arşivlenmektedir. Bu iki husus uygulama

geliştiricinin değişmesi durumunda yeni gelen uygulama geliştiricin sistemi daha

kolay öğrenmesini sağlayarak sistemin sürdürülebilirliğine katkı sağlar (Sanchez ve

diğ, 2020).

Bulut bilişim sağlayıcılarının mimari değerlendirme ölçütlerinin sunucusuz

sistem mimarilerine uygulanabilirliğinin değerlendirilmesi

Bu tez çalışmasında sürdürülebilirlik prensibi sunulan tüm sunucusuz sistem

mimarilerinde kaynak optimizasyonu, sürüm otomasyonu ve kod deposu ile aynı

şekilde uygulanmıştır ve ayrıca sistem mimarisi özelinde değerlendirilmemiştir.

Tez çalışmasında maliyet optimizasyonu prensibi de sunulan tüm sistem

mimarilerinde aynı şekilde uygulanmış ve ayrıca sistem mimarisi özelinde

değerlendirilmemiştir. Sunulan sistemler sadece sunucusuz bileşenlerle tasarlanmış ve

uygulanmıştır. Sistem tasarımlarında gereğinden fazla bileşen kullanılmamıştır.

Ayrıca her sistem tasarımında günlük tutma servisi ile hataların takibi yapılarak

kaynakların hata nedeniyle boşuna çalışmasının önüne geçilmiştir.

Tezde sunulan tüm sistemler için operasyonel mükemmellik prensibi aynı şekilde

uygulanmış ve ayrıca sistem mimarisi özelinde değerlendirilmemiştir. Bu prensip

kapsamında tüm sistemlerde sürüm otomasyonu kullanılmıştır. Ayrıca her sistemdeki

kullanıcıların rolleri de detaylı şekilde açıklanmıştır.

Sonuç olarak “Performans Verimliliği”, “Güvenilirlik”, ve “Güvenlik” prensipleri

üzerinden tüm sunucusuz sistem mimarisi tasarımları ve uygulamaları özel olarak

değerlendirilmiştir.

49

4.2 Sunucusuz Vektör Karo Harita Servisi Tasarımı, Uygulaması ve

Değerlendirmesi

Coğrafi verilerin vektör formatında web CBS uygulamaları için web servisleri

üzerinden sunulması raster verilerin sunumu kadar kolay olmamaktadır (Antoniou ve

diğ, 2009). Bu nedenle raster veriler harita web servisleri için daha çok tercih

edilmektedir ancak raster verilerin de vektör verilere göre dezavantajları vardır

(Bertolotto ve Egenhofer, 2001). Örneğin raster veri üzerinde web CBS uygulaması

ile kullanıcı tarafından değişiklik yapılmak istendiğinde mümkün olmamaktadır.

Gelişen teknoloji ile vektör verilerin web haritaları üzerinde görselleştirilmesi için

çeşitli yöntemler geliştirilmiştir (De Beukelaar, 2018). Vektör karo, harita üzerindeki

bir küçük bölgenin verisinin vektör olarak paketlenmesi ile oluşturulmaktadır.

Oluşturulan karolar bir arada görselleştirildiğinde bir bütün haritayı oluştururlar

(Lopez ve diğ, 2017).

OGC’nin “Vector Tiles Engineering Report” isimli raporunda mevcut vektör karo

formatları incelenmiştir (OGC, 2018). Bu rapora göre vektör karolar üç farklı formatta

sunulabilmektedir. Bunlardan MapBox Vector Tile (MVT) formatı ikili (binary)

formatta saklanmakta ve geniş uygulama desteği sunmaktadır. MVT formatı

Google’un geliştirdiği Protocol Buffer Format (PBF) kodlamasını kullanmaktadır. Bu

kodlama ile verilerin boyutu küçültülerek daha kolay taşınabilmektedir (Li ve diğ,

2017).

Bu tez çalışmasında vektör karo harita servisinin sunucusuz hesaplama ve veri

depolama hizmetleri kullanılarak oluşturulan sistem tasarımı sunulmuştur. Bu tasarım

da vektör karo formatı olarak MVT kullanılmıştır.

4.2.1 Tasarım

Senaryo

Sistem mimarisi tasarımında kullanılan senaryo bir CBS web uygulaması

kullanıcılarının bir veri tabanındaki coğrafi vektör verilere ve özniteliklerine vektör

karo harita servisi ile güvenli bir şekilde ulaşabilmeleri üzerinde kurgulanmıştır (Şekil

4.4).

50

Şekil 4.4 : Vektör karo harita servisi kullanım senaryosu.

Veri tabanındaki coğrafi veriler masaüstü CBS kullanıcıları tarafında da sürekli

güncellenmektedir. Vektör karo servisi her zaman veri tabanındaki güncellenen yeni

verileri servis etmektedir.

Gereksinimler

Senaryoda verilen kurgunun sunucusuz bir sistem mimarisi tarafından

gerçekleştirilebilmesi için gereksinimler belirlenmiştir. Vektör karo harita servisi

tasarımı aşağıdaki gereksinimlere göre geliştirilmiştir.

1. Vektör karo formatı MVT olmalı ve PBF ile kodlanmalıdır.

2. Vektör karo sunucusu:

a. Vektör karo sunucusu uygulaması sunucusuz hesaplama hizmetleri

üzerinde çalışabilmelidir.

b. Vektör karo sunucusu MVT formatında harita yayını yapabilmelidir.

c. Üretilen vektör karolar ön belleğe alınarak bir sonraki istekte daha hızlı

sunulabilmelidir.

3. Veri depolama:

a. Vektör karolara kaynak olan coğrafi veriler sunucusuz veri depolama

hizmetleri üzerinde saklanabilmeli, sorgulanabilmeli ve

düzenlenebilmelidir.

b. Coğrafi verileri depolayan sunucusuz veri depolama hizmeti ilişkisel

veri tabanı olmalıdır.

c. Coğrafi verileri depolayan sunucusuz veri depolama hizmeti yaygın

olarak kullanılan ArcGIS Pro veya QGIS masaüstü uygulamaları

tarafından veri düzenleme ve sorgulama için doğrudan bağlantıyı

desteklemelidir.

51

4. Güvenlik:

a. Masaüstü CBS uygulaması sunucusuz ilişkisel veri tabanı hizmetine

güvenli ağ üzerinden erişmelidir.

b. Vektör karo sunucusuna HTTPS protokolü üzerinden yetkili kullanıcılar

erişebilmelidir.

5. Sistemdeki uygulamaların sürümleri önce test sonra yayın ortamına alınmalıdır.

Test ortamında hata görülen yeni sürüm yayınlanmamalıdır.

6. Geliştirilen kodlar kod deposunda saklanmalı ve sürüm yayınlama otomasyonu

kurulmalıdır.

Roller

Geliştirilen sistem mimarisinde iki kullanıcı rolü bulunmaktadır. CBS kullanıcısı rolü

sistem üzerinde CBS web ve masaüstü uygulamalarının kullanıcısıdır. Bu roldeki

kullanıcı web veya masaüstü uygulamalarından sadece birinin de kullanıcısı olabilir.

Masaüstü CBS kullanıcısı ilişkisel veri tabanına güvenli şekilde bağlanmak için VPN

(Virtual Private Network) aracının da kullanıcısıdır. Aynı şekilde masaüstü CBS

kullanıcısı ilişkisel coğrafi veri tabanı üzerinde doğrudan sorgulama, ekleme ve

güncelleme işlemlerini yapabilmek için gerekli yetkilere sahiptir.

Uygulama geliştiricisi rolü ise vektör karo servisi tasarımındaki uygulama

bileşenlerini geliştirir. Sistem sunucusuz hizmetlerle çalışacağından bu roldeki

kullanıcının ileri düzey bulut bilişim altyapı yönetimi bilmesi gerekmemektedir.

Uygulamalar seçilen sunucusuz hesaplama hizmetinin destek verdiği tüm dillerde

geliştirilebilir. Uygulama geliştirici kod geliştirmelerini kod deposu üzerinde arşivler.

Uygulama geliştiricinin kod depolarına erişim yetkisi bulunmaktadır. Kod deposundan

yayın platformuna kadar olan süreci kurgulayarak derleme, test ve yayın

otomasyonlarını sağlamalıdır. Uygulama geliştirici sistemi test ve yayın ortamı olmak

üzere iki farklı ortamda yayınlar. Uygulama geliştirici sistemdeki performans

metrikleri ve günlük kayıtlarının tutulduğu bileşenin de kullanıcısıdır. Bu bileşen

üzerinden sistemin performansını ve sağlığını takip eder.

Sistem tasarımı ve bileşenleri

Sistem tasarımı verilen senaryo, kullanıcı rolleri ve gereksinimlere göre Şekil 4.5’te

gösterilen şekilde tasarlanmıştır.

52

Şekil 4.5 : Vektör karo harita servisi sistemi tasarımı ve bileşenleri.

Vektör karo harita servisi bileşeni ilişkisel coğrafi veri tabanı ve ön bellek bileşenleri

ile çalışarak harita yayını yapmaktadır. Web CBS uygulamasından HTTPS protokolü

üzerinden gelen vektör karo isteklerini ilişkisel coğrafi veri tabanı sunucunun

anlayacağı mekânsal SQL sorgularına dönüştürerek istenen bölgeye ait coğrafi verileri

sorgulamaktadır. Sorgulama sonucu tabanı sunucusu cevabını MVT formatına

dönüştürür ve PBF olarak kodlayarak bir vektör karoyu oluşturur.

Oluşturulan vektör karo verisi ön bellek depolama alanında saklanır. Bir sonraki istek

yine aynı bölgeye aitse bu sefer veri tabanı sunucu sorgulanmadan veri önbellek

üzerinden getirilir. Böylece daha hızlı bir şekilde cevap üretilmiş olur.

Ön bellek bakım fonksiyonu veri tabanı üzerindeki değişikliklere bağlı şekilde olay

güdümlü olarak çalışmaktadır. Veri tabanında yapılan değişikliklerin ön bellekteki

hangi vektör karolara karşılık geldiğini hesaplayarak o vektör karo verilerini siler.

Böylece vektör karo harita servisi sunucusu bir sonraki aynı bölgeye ait vektör karo

isteğinde ön bellekte bulamadığı vektör karoyu yeniden güncel veriyle üretir. Ön

bellek temizleme sürecinde meydana gelebilecek bir hata durumunda veri tabanı

sunucusunda ek bir tabloda hatalı işlemler kaydedilerek saklanmaktadır. Uygulama

geliştirici hatanın düzeltilmesinden sonra bu tablodaki işlemleri ön bellek temizleyici

fonksiyona tekrarlattırarak veri kaybı yaşanmamasını sağlamaktadır.

Web CBS uygulaması mimari tasarımda vektör karo harita servisi istemcisi olarak

konumlandırılmıştır. Bu uygulama MVT formatını ve vektör karo servislerini

desteklemektedir. Böylece CBS kullanıcısı coğrafi veriye vektör karo servisi

üzerinden ulaşarak uygulama tarafından ekrana çizilen haritayı kullanabilmektedir.

53

Web CBS uygulaması vektör karo harita servisinden gelen coğrafi objelerin

kartografik görselleştirilmesini de yapmaktadır. Bunun için kartografik görselleştirme

kuralları önceden Web CBS uygulamasına kullanılan istemci teknolojisine uygun

olarak kodlanmalıdır.

Masaüstü CBS uygulaması ilişkisel coğrafi veri tabanına bağlanabilmektedir. Bu

uygulama ile CBS kullanıcısı coğrafi verileri görüntüleyebilir, sorgulayabilir, yeni

coğrafi objeler ekleyebilir ve mevcut coğrafi objelerin geometri ile özniteliklerini

güncelleyebilir.

CBS istemci uygulamalarından gelen isteklere CBS kullanıcısının yetkilerine göre

erişim izini verilir. Kullanıcının yetkisi olmadığı istekler reddedilir. Bu amaçla hangi

vektör karo harita servisine hangi kullanıcı veya kullanıcı grupları için erişim yetkisi

verileceği bilgisi başka bir servis veya sunucusuz yapısal veri tabanı üzerinde

saklanabilir. Bu tasarımda yetkilendirme sisteminin detayları tasarımı yalın ve anlaşılır

tutmak için verilmemiştir. Literatürdeki herhangi bir yetkilendirme sistemi bu mimari

üzerinde uygulanabilir.

Uygulama geliştiricinin vektör karo harita servisi ve ön bellek bakım fonksiyonunu

geliştirmesi ve yayınlaması beklenmektedir. Bununla birlikte ilişkisel veri tabanı

üzerindeki değişikliklerin ön bellek bakım fonksiyonunu tetiklemesi için ilgili

geliştirmeleri de veri tabanı sunucusu üzerinde yapmalıdır.

Günlük tutma servisi sistem tasarımındaki bileşenlerde meydana gelen hata ve diğer

günlük kayıtlarını tutar. Uygulama geliştirici hata kayıtlarını okuyarak

uygulamalardaki hataların kök nedenlerini bularak çözebilmektedir. Bu servis ayrıca

sistem bileşenlerine ait metrikleri de tutarak performans analizlerinin yapılmasını

sağlamaktadır. Uygulama geliştirici bu bilgileri değerlendirerek uygulamaların

iyileştirilmesi için kararlar almaktadır.

Ayar saklama servisi uygulamaların veri tabanı ve ön bellek destek servislerine

bağlanama bilmesi için bağlantı adreslerini ve kimlik bilgilerini güvenli bir şekilde

saklamaktadır. Ayar saklama servisi uygulama geliştiricinin sürüm yayın otomasyonu

üzerinden gerektiğinde yeni bağlantı parametreleri ile güncellenebilir.

54

4.2.2 Uygulama

Sunulan sistem tasarımı Şekil 4.6’te gösterildiği şekilde AWS bulut bilişim

sağlayıcısına ait sunucusuz hizmetlerle uygulanmıştır.

Bu uygulamada kullanılan bulut sağlayıcısı platformunun seçiminde karar verici

olarak AWS ve Microsoft Azure tarafından sunulan sunucusuz ilişkisel veri tabanı

teknolojileri rol oynamıştır.

Mimari tasarımın gereksinimlerine uygun olarak seçilen Tegola isimli vektör karo

harita servisi uygulaması sadece ilişkisel veri tabanı olarak sadece PostgreSQL

yazılımını desteklemektedir (URL-3). Bu veri tabanı teknolojisi AWS üzerinde

Amazon Aurora Serverless isimli servis ile sunucusuz olarak sunulmaktadır. Bu

servisin platform seçiminde karar vermede rol oynayan bir diğer özelliği de veri

değişikliklerinde ürettiği olaylarla AWS Lambda sunucusuz hesaplama servisini

çalıştırmak üzere tetikleyebilmesidir (Amazon, 2022b). Bu özellikler Microsoft

Azure’da bulunmamaktadır.

Şekil 4.6 : Vektör karo harita servisinin AWS bulut bilişim sağlayıcısı üzerindeki

sunucusuz hizmetlerle uygulaması.

Açık kaynak kodlu Tegola vektör karo sunucusu yazılımı tezde vektör karo sunucusu

olarak kullanılmak üzere seçilmiştir. Tegola, Go programlama dilinde geliştirilmiştir.

Vektör karolarını MVT tanımlamasına göre PBF ile kodlayarak oluşturmaktadır.

Tegola yazılımı vektör karolar için veri kaynağı olarak PostgreSQL ilişkisel veri

tabanına ve GeoPackage mekânsal dosya tabanlı veri tabanı formatına destek

55

vermektedir. Yazılımın ayrıca ön bellekleme yeteneği de bulunmaktadır. Ön belleğe

alınan verilerin saklanması için Amazon S3 sunucusuz veri depolama hizmetini ve

Redis ön bellek sunucusu yazılımını kullanabilmektedir. Bu yazılım HoF modelinde

çalışan AWS Lambda üzerinde çalışabilmektedir (Fitzsimmons, 2017). İstemcilerden

gelen HTTPS isteklerini alarak AWS Lambda servisine ileten Amazon API Gateway

isimli internet trafiği kontrol ve yönlendiricisi olarak görev yapan sunucusuz destek

servisine de ihtiyaç duyulmuştur. Bu servis gelen HTTPS isteklerinin birer tetikleyici

olaya dönüştürülerek AWS Lambda fonksiyonuna iletilmesinde ve fonksiyon ile

istemciler arasındaki trafiğin sağlıklı bir şekilde yönetilmesinde kullanılmaktadır

(Patterson, 2019). CBS kullanıcılarının vektör karo harita servisine yetkilendirilmiş

bir şekilde ulaşabilmesi için Amazon Cognito sunucusuz kimlik yönetim sistemi

kullanılmıştır.

Ön bellek verilerini saklamak için AWS üzerinde sunulan sunucusuz veri depolama

hizmeti Amazon S3 kullanılmıştır. Ön bellek üzerindeki güncelliğini yitiren vektör

karo verilerinin tespiti ve silinmesi için bir başka AWS Lambda üzerinde çalışan

uygulama konumlandırılmıştır. Bu uygulama veri tabanından gelen veri

değişikliklerini dinleyerek Amazon S3’ün sunduğu API üzerinden eski vektör karo

verilerini silmektedir. Böylece kaynak veride yapılan değişiklikler gerçek zamana

yakın bir şekilde anında ön bellekten silinmektedir.

Sistemdeki bileşenler arasında iletişim için yetkilendirmeler AWS Identity and Access

Management (IAM) hizmeti üzerinden bileşenlere rol ataması yapılarak sağlanmıştır.

Örneğin ilişkisel coğrafi veri tabanı bileşeni ön bellek temizleyicisi fonksiyonuna

erişerek onu tetikleyebilmektedir ancak ön bellek temizleyicisi fonksiyon ilişkisel

coğrafi veri tabanı bileşenine erişememektedir. AWS KMS hizmeti uygulamaların veri

tabanına erişim için kullandıkları kimlik bilgilerini güvenli bir şekilde saklamak için

ayar saklama servisi olarak kullanılmıştır. Günlük tutma servisi olarak ise Amazon

CloudWatch hizmeti ile tüm bileşenler takip edilerek ve hata günlükleri tutularak

izlenmektedir.

4.2.3 Değerlendirme

Uygulanan sistem tasarımı ve uygulaması Çizelge 4.2’de gösterildiği gibi 12 Faktör

yöntemine göre değerlendirilmiştir. Sunulan sistemde sadece HoF modelindeki

sunucusuz hesaplama servisleri kullanılmıştır. Bu nedenle 12 Faktör yöntemindeki

56

“Bağımlılıklar”, “Süreçler”, “Port Bağlama” ve “Yönetim Süreçleri” prensipleri

doğrudan uygulanamadığı için değerlendirilmemiştir.

57

Çizelge 4.2 : Vektör karo harita servisinin 12 Faktör yöntemine göre

değerlendirilmesi.

Prensip Adı Değerlendirme

Kod Deposu
Uygulama geliştirici geliştirdiği uygulamaları kod deposu

üzerinde arşivlemektedir.

Ayarlar

Sistem tasarımındaki uygulamaların gizli ayarları ayar

saklama servisi üzerinde saklanmıştır. Gizli olmayan ayarlar

ise uygulamaların çalıştığı konteynerlerin ortam değişkenleri

üzerinde tutulmuştur. Sistem tasarımının uygulamasında ise

AWS KMS servisi gizli ayarların güvenli bir şekilde

saklanması için kullanılmıştır.

Destek Servisleri
Uygulamalar veri tabanı ve yapısal olmayan veri deposu

hizmetlerine ağ üzerinden bağlanarak ulaşmıştırlar.

Derle, Yayınla ve

Çalıştır

Uygulama geliştirici sürüm yayınlama süreçlerinin

otomasyonunu kurgulamaktan sorumludur. Sistem

tasarımındaki uygulamaların bu otomasyonla yeni sürümleri

yayınlanmaktadır.

Eş Zamanlılık

Uygulamalar HoF modelinde çalıştırılmak üzere

geliştirildiği için eş zamanlı çalışabilirler. Eş zamanlı

çalışmanın yönetimi bulut bilişim sağlayıcısı tarafından

yapılmaktadır.

Kullanılabilirlik

Sistem herhangi bir süreçte hata olması durumunda yeniden

süreci tekrar edecek şekilde tasarlanmıştır. Ayrıca

uygulamalar hızlı başlayacak ve kapanacak şekilde

tasarlanmıştır. Uygulamada vektör karo servisi için seçilen

Tegola yazılımı Go programlama dili ile geliştirilmiştir ve bu

dil AWS Lambda üzerinde en hızlı çalışan dillerden biridir

(Jackson ve Clynch, 2018).

Geliştirme, Test ve

Yayın Ortamlarının

Benzerliği

Uygulama geliştirici sistem tasarımını test ve yayın

ortamlarında birbirlerine benzeyecek şekilde yayınlar.

Geliştirmeler uygulama geliştiricinin bilgisayarında

yapılmaktadır.

Günlük Tutma

Sistem bileşenleri tarafından üretilen günlük kayıtları için

günlük tutma servisi bileşeni kullanılmıştır. Uygulamada ise

Amazon CloudWatch sunucusuz günlük tutma servisi

kullanılmıştır.

58

Sistem tasarımı ayrıca mimari değerlendirme ölçütlerine göre Çizelge 4.3’de

değerlendirilmiştir.

Çizelge 4.3 : Vektör karo harita servisinin bulut bilişim sağlayıcısı mimari

değerlendirme ölçütlerine göre değerlendirilmesi.

Ölçüt Adı Değerlendirme

Performans

Verimliliği

12 Faktör yönteminin “Kullanılabilirlik” prensibine uygun olarak

uygulamalar en kısa sürede işlemleri tamamlamak üzere

tasarlanmıştır.

Güvenilirlik

Sistem bileşenleri günlük tutma servisi ile izlenerek hatalar takip

edilmektedir. Bununla birlikte hatalara karşı süreçlerin

kaybolmaması için ek önemler tasarlanmıştır.

Güvenlik

Sistemde kullanıcı ve bileşenlerin yetkileri detaylı bir şekilde

tanımlanmıştır. Veri tabanı sunucusunun masaüstü CBS

uygulaması ile iletişimi güvenli ağ üzerinden yapılmaktadır. Web

CBS uygulaması vektör karo servisi ile yetkilendirilmiş HTTPS

istekleriyle iletişim kurmaktadır.

4.3 Sunucusuz Raster Karo Harita Servisi Tasarımı, Uygulaması ve

Değerlendirmesi

Her ne kadar günümüz web CBS uygulamaları ve web haritaları vektör harita

servislerini daha çok tercih etseler de raster veri formatı CBS uygulamalarında halen

en çok kullanılan veri formatlarından biridir (Netek ve diğ, 2020). CBS sunucusu

yazılımlar raster karo harita servisi sunabilirler. OGC raster harita servisleri için

WMTS ve WMS (Web Map Service) standartlarını tanımlamıştır (OGC, 2010; OGC,

2006). WMS standardına dayanan harita servisleri güncel coğrafi veriyi kullanarak

raster haritayı dinamik olarak üretip sunabilmektedirler (Souissi ve Mainguenaud,

2014). Kaynak veri vektör ise CBS sunucusu tarafından kartografik görselleştirme

kuralları ile harita üretilerek raster formatta servis edilmektedir. WMTS ile çalışan

raster harita servisleri ise raster karolar halinde önceden üretilmiş haritaları servis

etmek için kullanılmaktadırlar. Bu nedenle WMS raster harita servisleri güncel

verilerin gösterimine ihtiyaç olan senaryolarda tercih edilmektedir. WMS raster harita

servislerinin dezavantajı ise CBS sunucusu üstünde kartografik üretimi her istekte

yaparak sunucuya ek iş yükü oluşturmasıdır (Blower, 2010). Bu nedenle çok sık

değişmeyen coğrafi verilerin raster olarak servis edilmesinde WMTS raster karo harita

servisleri tercih edilmektedir.

59

Bu tez çalışmasında sunucusuz hesaplama ve veri depolama hizmetleri kullanılarak

raster karo harita servisinin sistem tasarımı geliştirilmiş ve sunulmuştur. Bu tasarım da

raster karo harita servisi standardı olarak WMTS kullanılmıştır.

4.3.1 Tasarım

Senaryo

Sistem mimarisi tasarımında kullanılan senaryo CBS web ve masaüstü uygulaması

kullanıcılarının harita altlığı olarak bir raster karo harita servisini güvenli bir şekilde

kullanabilmeleri üzerinde kurgulanmıştır (Şekil 4.7). Aynı zamanda masaüstü CBS

kullanıcıları yeni raster karo setlerini üretip raster veri deposuna yükleyerek yeni harita

servisleri oluşturabilirler.

Şekil 4.7 : Raster karo harita servisinin kullanım senaryosu.

Gereksinimler

Senaryoda verilen kurgunun sunucusuz bir sistem mimarisi tarafından

gerçekleştirilebilmesi için gereksinimler belirlenmiştir. Raster karo harita servisi

tasarımı aşağıdaki gereksinimlere göre geliştirilmiştir.

1. Raster karo harita servisi sunucusu yazılımı sunucusuz hesaplama hizmetleri

üzerinde çalışmalıdır.

2. Raster karo harita servisi sunucusu yazılımı OGC WMTS standartlarında harita

yayını yapabilmelidir.

3. Raster karo dosyalar sunucusuz depolama alanında depolanabilmelidir.

4. Raster karo harita servisine HTTPS protokolü üzerinden yetkili kullanıcılar

erişebilmelidir.

60

5. CBS kullanıcıları ürettikleri raster karo veri setlerini depolama alanına

yükleyebilmelidir.

6. CBS kullanıcıları yüklenen yeni raster karo veri seti ile yeni WMTS harita

servisi yayını yapabilmelidirler.

7. Sistemdeki uygulamaların sürümleri önce test sonra yayın ortamına alınmalıdır.

Test ortamında hata görülen yeni bir sürüm yayınlanmamalıdır.

8. Geliştirilen kodlar kod deposunda saklanmalı ve sürüm yayınlama otomasyonu

kurulmalıdır.

Roller

Geliştirilen sistem mimarisinde iki kullanıcı rolü bulunmaktadır. CBS kullanıcısı rolü

sistem üzerinde CBS web ve masaüstü uygulamalarının kullanıcısıdır. Bu roldeki

kullanıcı web veya masaüstü uygulamalarından sadece birinin de kullanıcısı olabilir.

Masaüstü CBS kullanıcısın ayrıca raster veri deposuna da erişimi bulunmaktadır.

Masaüstü CBS kullanıcısı kullandığı CBS araçları ile ürettiği raster karo veri setini

raster karo veri deposuna yükleyebilmelidir.

Uygulama geliştiricisi rolü ise raster karo servisi tasarımındaki uygulama bileşenlerini

geliştirir. Sistem sunucusuz hizmetlerle çalışacağından bu roldeki kullanıcının ileri

düzey bulut bilişim altyapı yönetimi bilmesi gerekmemektedir. Uygulamalar, seçilen

sunucusuz hesaplama hizmetinin destek verdiği tüm dillerde geliştirilebilir. Uygulama

geliştirici yaptığı geliştirme çalışmalarını kod deposu üzerinde arşivlemelidir ve bu

kod deposuna erişebilmelidir. Kod deposundan yayına kadar olan sürüm yayınlama

süreçlerini kurgulayarak otomasyonu uygulama geliştirici sağlar. Uygulama geliştirici

sistemi test ve yayın ortamı olmak üzere iki farklı şekilde yayınlar. Uygulama

geliştirici ayrıca CBS kullanıcısının yeni bir WMTS servisini nasıl yayına alacağını

adım adım açıklayan bir dokümantasyonunu da oluşturmalı ve paylaşmalıdır.

Uygulama geliştirici isterse WMTS servisinin kolayca yayınlanabilmesi için yardımcı

bir araç da CBS kullanıcıları için geliştirebilir. Böylece CBS kullanıcısının teknik

detaylara hâkim olması gerekmeden kolayca yeni harita servisi yayınlayabilir.

Uygulama geliştirici sistemdeki performans metrikleri ve günlük kayıtlarının

tutulduğu bileşenin de kullanıcısıdır. Bu bileşen üzerinden sistemin performansını ve

sağlığını takip eder.

61

Sistem tasarımı ve bileşenleri

Sistem tasarımı verilen senaryo, kullanıcı rolleri ve gereksinimlere göre Şekil 4.8’te

gösterilen şekilde tasarlanmıştır.

Raster karo harita servisi bileşeni raster veri deposu bileşeninde bulunan verileri

kullanarak harita yayını yapmaktadır. Raster karo harita servisi uygulaması Web CBS

uygulamasından HTTPS protokolü üzerinden gelen WMTS standardındaki raster karo

istekleri işleyerek raster karo veri deposundan istenen coğrafi alana düşen verileri

çekerek cevap oluşturur. Eğer gelen isteği yapan CBS kullanıcısının talep edilen harita

servisine yetkisi yoksa istek reddedilir. Bu amaçla hangi harita servisinin hangi

kullanıcı veya kullanıcı grupları için erişim yetkisi verileceği bilgisi başka bir servis

veya sunucusuz yapısal veri tabanı üzerinde saklanabilir. Bu tasarımda yetkilendirme

sisteminin detayları tasarımı yalın ve anlaşılır tutmak için verilmemiştir. Literatürdeki

herhangi bir yetkilendirme sistemi bu mimari üzerinde uygulanabilir.

Şekil 4.8 : Raster karo harita servisi sistemi tasarımı ve bileşenleri.

Web CBS ve masaüstü CBS uygulamaları mimari tasarımda raster karo harita servisi

istemcisi olarak konumlandırılmıştır. Bu uygulamalar WMTS standardındaki harita

servislerini desteklemektedir. Böylece CBS kullanıcısı raster karo servisi üzerinden

harita verilerine ulaşarak servis edilen haritayı kullanabilmektedir.

Masaüstü CBS uygulaması kullandığı CBS araçları ile ürettiği raster karo veri setini

raster karo veri deposuna doğrudan veya yardımcı araçlarla yükleyebilmektedir. Yeni

raster veri seti yüklendikten sonra CBS kullanıcısı ilgili ayarları yaparak bu verileri

yeni bir WMTS servisi olarak yayınlamaktadır.

62

Uygulama geliştiriciden raster karo harita servisi fonksiyonunu geliştirmesi ve yeni

sürümlerini gerektiğinde yayınlaması beklenmektedir. Bununla birlikte uygulama

geliştirici diğer sistem bileşenlerinin yapılandırmalarının da doğru şekilde

yapıldığından emin olmak için çeşitli testler yürütebilir. Bu testlerin sonuçlarını

değerlendirmede günlük tutma servisinden faydalanabilir.

Günlük tutma servisi sistem tasarımındaki bileşenlerde meydana gelen hata ve diğer

günlük kayıtlarını tutar. Uygulama geliştirici bu hata günlük kayıtlarını okuyarak

uygulamalardaki hataların kök nedenlerini bularak çözebilmektedir. Bu servis ayrıca

sistem bileşenlerine ait metrikleri de tutarak performans analizlerinin yapılmasını

sağlamaktadır. Uygulama geliştirici bu bilgileri değerlendirerek uygulamaların

iyileştirilmesi için kararlar almaktadır. Uygulama geliştirici ayrıca ayar saklama

servisinde saklanan ayarların gizliliğinden ve güvenliğinden de sorumludur.

Ayar saklama servisi raster karo harita servisinin, raster karo veri deposu ve diğer

destek servislerine bağlanabilmesi için bağlantı adreslerini ve kimlik bilgilerini

güvenli bir şekilde saklamaktadır. Ayar saklama servisindeki bilgiler sürüm yayın

otomasyonu üzerinden gerektiğinde yeni bağlantı parametreleri ile güncellenebilir.

4.3.2 Uygulama

Raster karo harita servisi sistem tasarımı Şekil 4.9’da gösterildiği şekilde Microsoft

Azure bulut bilişim sağlayıcısına ait sunucusuz hizmetlerle uygulanmıştır.

Şekil 4.9 : Raster karo harita servisinin Microsoft Azure bulut bilişim sağlayıcısı

üzerindeki sunucusuz hizmetlerle uygulaması.

Raster karo harita servisi sunucusu yazılımı için açık kaynak kodlu MapProxy yazılımı

kullanılmıştır (URL-4). Bu yazılım Python programlama dilinde geliştirilmiştir ve bu

63

dil Azure Functions tarafından desteklenmektedir. MapProxy yazılımının sunucusuz

mimaride çalıştırılması için Azure Functions sunucusuz hesaplama hizmeti

kullanılmıştır. Bu hizmet için Linux işletim sistemi seçilmiştir. Python web sunucusu

uygulamaları için geliştirilen WSGI (Web Server Gateway Interface) standardı

MapProxy tarafından da kullanılmaktadır. Azure Functions’a gelen HTTPS

isteklerinin WSGI standardına dönüştürülebilmesi için yardımcı kütüphaneler

kullanılarak MapProxy HoF modeli üzerinde çalıştırılabilmektedir (Bitner, 2019).

Raster karo veri deposu olarak Azure Blob Storage yapısal olmayan sunucusuz veri

depolama hizmeti kullanılmıştır. Raster karo harita servislerinin MapProxy’nin

tanımladığı formatta saklanabilmesi için Azure Blob Storage üzerinde “servisler”

isimli konteyner açılmıştır. Üretilen raster karo setlerinin saklanabilmesi için de

“karolar” isimli konteyner açılmıştır. Bu iki Azure Blob Storage konteyneri Azure

Functions üzerinde çalışan Linux işletim sistemine dosya sistemindeki iki klasörle ayrı

ayrı bağlanmıştır (Şekil 4.10). Bu sayede MapProxy yazılımı Azure Blob Storage

desteği olmadan da sunucusuz veri depolama hizmetini dosya sistemi üzerinden

kullanabilmektedir. Microsoft Azure bulut bilişim sağlayıcısının bu sistem tasarımı

için seçilmesinde bu özellik karar verici olmuştur.

Şekil 4.10 : Azure Blob Storage konteynerlerinin Azure Functions konteynerinin

dosya sistemine bağlanması.

Web CBS ve masaüstü CBS uygulamaları raster karo harita servisine güvenli ve

yetkilendirilmiş bir şekilde ulaşabilmektedir. Bunun sağlanabilmesi için raster karo

harita servisi sunucusu ile istemci uygulama arasında sunucusuz API yönetimi servisi

kullanılmıştır. Microsoft Azure bulut bilişim sağlayıcısında sunucusuz API yönetim

servisinin adı Azure API Management olarak geçmektedir. Bu servis gelen HTTPS

isteklerini Azure Functions olaylarına dönüştürerek fonksiyonunun HTTP olaylarına

güdümlü olarak çalışmasını sağlar.

Microsoft Azure bulut bilişim sağlayıcısındaki sunucusuz kullanıcı ve rol yönetimi

servisi Azure Active Directory olarak adlandırılmaktadır. Kullanıcı oturum açma,

64

yetkilendirme ve rol yönetimi işlemleri Azure Active Directory üzerinden

yönetilebilmektedir. Azure API Management ile Azure Active Directory hizmeti

birlikte kullanılmıştır. İstemci uygulamalardan gelen HTTPS istekleri Azure Active

Directory yardımı ile kontrol edilerek yetkilendirilmektedir.

Sistemdeki bileşenler arasında iletişim için yetkilendirmeler Azure Managed Identities

adlı kimlik sistemi ile sağlanmıştır. Raster karo harita servisinin üzerinde çalıştığı

Azure Functions’a atanan kimlik bilgisi raster karo veri deposu bileşenine erişim için

yetkilendirilmiştir. Bu özellik sayesinde sistem tasarımında sunulan ayar servisi

bileşeni için ek bir servisin kullanılmasına gerek kalmamıştır.

Günlük tutma servisi olarak Azure Application Insight servisi kullanılmıştır. Bu servis

merkezi bir şekilde günlük kayıtlarını ve performans metriklerini tüm sistem

bileşenlerinden toplayabilmektedir. Sistem bileşenlerinin ve uygulamaların günlük ve

metrik toplama ayarları uygula geliştirici tarafından yapılarak günlük tutma servisinin

çalışması sağlanmaktadır. Uygulama geliştirici bu servis üzerinden sistemi takip

ederek hata düzeltme ve iyileştirmeler için gerekli aksiyonları alabilmektedir.

4.3.3 Değerlendirme

Sunulan sistem tasarımı ve uygulaması Çizelge 4.4’te gösterildiği gibi 12 Faktör

yöntemine göre değerlendirilmiştir. Geliştirilen sistemde sadece HoF modelindeki

sunucusuz hesaplama servisleri kullanılmıştır. Bu nedenle 12 Faktör yöntemindeki

“Bağımlılıklar”, “Süreçler”, “Port Bağlama” ve “Yönetim Süreçleri” prensipleri

doğrudan uygulanamadığı için değerlendirilmemiştir.

65

Çizelge 4.4 : Raster karo harita servisi sisteminin 12 Faktör yöntemine göre

değerlendirilmesi.

Prensip Adı Değerlendirme

Kod Deposu
Uygulama geliştirici geliştirdiği uygulamaları kod deposu

üzerinde arşivlemektedir.

Ayarlar

Sistem tasarımında ayarların saklanması için ayar saklama

servisi bileşeni kullanılmıştır. Uygulamada ise ayarların

saklanması için ek bir servis kullanımına ihtiyaç olmamıştır.

Microsoft Azure bulut bilişim sağlayıcısının sunduğu

Managed Identities ile destek hizmetlerine güvenli bağlantı

ek parametrelerin bir servis üzerinde saklanmasına ihtiyaç

olmadan sağlanmıştır.

Destek Servisleri

Sistem tasarımında raster karo servisi yapısal olmayan veri

deposuna ağ üzerinden ulaşmaktadır. Uygulamada ise

yapısal olmayan veri deposu hizmetine Azure Functions

tarafından sunulan dosya sistemi bağlama üzerinden

ulaşılmıştır. Böylece bu bağlantının da platform sağlayıcı

tarafından yönetilmesi sağlanarak prensip ihlal edilmemiştir.

Derle, Yayınla ve

Çalıştır

Uygulama geliştirici sürüm yayınlama süreçlerinin

otomasyonunu sistem bileşenlerinin yeni sürümlerini veya

yeni yapılandırma ayarlarını yüklemek için kullanır.

Eş Zamanlılık

Uygulama için HoF modelindeki sunucusuz hesaplama

hizmeti seçilmiştir. HoF modelinde çalışan uygulamalar eş

zamanlı olacak şekilde platform tarafından

çalıştırılmaktadır.

Kullanılabilirlik

Raster karo servisi senkron istek-cevap (request-reply)

modeline göre HTTPS protokolü üzerinden çalışmaktadır.

İstemciden gelen bir isteğe zaman aşımına uğramadan hızlı

şekilde cevap verebilmesi için hızlı başlamalı ve

kapanmalıdır. Seçilen MapProxy uygulaması Python ile

geliştirilmiştir. Python, Linux tabanlı Azure Functions

üzerinde en hızlı tepki veren dillerden biridir (Maissen ve

diğ, 2020).

Geliştirme, Test ve

Yayın Ortamlarının

Benzerliği

Uygulama geliştirici sistem tasarımını test ve yayın olacak

şekilde iki farklı ortamda ve bu ortamlar birbirlerine

benzeyecek şekilde yayınlar. Geliştirmeler uygulama

geliştiricinin bilgisayarında yapılmaktadır.

Günlük Tutma

Sistem bileşenleri tarafından üretilen günlük kayıtları için

günlük tutma servisi bileşeni eklenmiştir. Uygulamada ise

Azure Application Insight günlük tutma servisi

kullanılmıştır.

66

Sistem tasarımı ayrıca mimari değerlendirme ölçütlerine göre Çizelge 4.5’de

değerlendirilmiştir.

Çizelge 4.5 : Raster karo harita servisinin bulut bilişim sağlayıcısının mimari

değerlendirme ölçütlerine göre değerlendirilmesi.

Ölçüt Adı Değerlendirme

Performans

Verimliliği

12 Faktör yönteminin “Kullanılabilirlik” prensibine uygun olarak

raster karo servisi için seçilen açık kaynak uygulama sistem

mimarisi üzerinde en kısa sürede ve hızlı çalışacak şekilde

seçilmiştir.

Güvenilirlik
Sistem bileşenleri günlük tutma servisi ile izlenerek hatalar takip

edilmektedir.

Güvenlik

Sistemde kullanıcı ve bileşenlerin yetkileri detaylı bir şekilde

tanımlanmıştır. CBS kullanıcısının raster karo veri deposu ile

iletişimi yetkilendirilmiştir. CBS istemci uygulamaları ile raster

karo servisi ile yine yetkilendirilmiş HTTPS istekleriyle iletişim

kurmaktadır.

4.4 Sunucusuz Mekânsal Zekâ Sistemi Tasarımı, Uygulaması ve

Değerlendirmesi

Bulut bilişim teknolojilerinin gelişmesi yüksek hesaplama gücü gerektiren yapay zekâ

uygulamalarının daha ulaşılabilir olmasını, kolay geliştirilmesini ve

çalıştırılabilmesini sağlamaktadır. Bu gelişme farklı disiplinlerin konuya olan ilgisini

de arttırmıştır. Yapay zekâ uygulamaları derin öğrenme ve makine öğrenmesi gibi alt

kollara ayrılmaktadır. Bu alt uygulama alanları verinin bilgisayarlar tarafından analiz

edilerek veri motiflerinin çıkarılmasını ve uygulamaların davranışlarının bu motiflere

göre belirlenmesini sağlamaktadır. Merkezinde veri olan bir teknoloji ise mekânsal

veriler olmadan düşünülemez.

Mekânsal bilişim teknolojileri çeşitli disiplinler arasında önemli gerçek dünya

problemlerini analiz etmek, görselleştirmek ve anlamlandırmak amacıyla

kullanılmaktadır (VoPham ve diğ, 2018). Mekânsal bilişim teknolojileri ve yapay zekâ

uygulamalarının birlikte kullanıldığı uygulamalar mekânsal zekâ (GeoAI)

uygulamaları olarak literatüre geçmiştir. Güney ve Çelik’e (2020) göre mekânsal zekâ

şu şekilde tanımlanmıştır:

67

“Dünya üzerinde açık alanda ve/veya kapalı alanda gerçekleşen mekânsal veriyle

ilişkili olguların ve insan faaliyetlerinin mekânsal modellemesinde, analizinde,

görselleştirilmesinde, mekânsal problemlerin çözümünde ve mekânsal karar vermede

yapay zekâ yöntemlerinin yukarıda ifade edilen ileri teknolojilerle birlikte toplum

yararına kullanımı mekânsal zekâ olarak tanımlanabilir”.

Mekânsal zekâ teknolojileri CBS uygulamaları içerisinde de kullanılmaktadır. Örneğin

2007 yılından beri CBS alanında yapılan SIGSPATAL konferansı 2017 yılından bu

yana son beş yıldır da mekânsal zekâ üzerine sunulan bildirileri ayrı olarak

yayınlamaktadır (URL-5).

Bu tez çalışmasında örnek bir mekânsal zekâ uygulamasının sistem tasarımı sunucusuz

mimariye uygun şekilde tasarlanmıştır. Daha sonra bu tasarım bir bulut bilişim

sağlayıcısı üzerinde uygulanarak değerlendirilmiştir.

4.4.1 Tasarım

Senaryo

Sistem mimarisi tasarımında kullanılan senaryoda CBS web kullanıcıları mekânsal

analizler yapabilmek üzere makine öğrenmesi teknolojilerinden faydalanan bir

mekânsal zekâ analiz sistemi kullanmaktadırlar (Şekil 4.11). Sistem servislerini OGC

WPS üzerinden sunmaktadır. Böylece bu standardı destekleyen farklı CBS

uygulamaları ile de kullanılabilmektedir. Bu senaryoda ayrıca veri bilimci makine

öğrenmesine dayalı analizlerde kullanılan modelleri geliştirerek yeni verilerle devamlı

olarak eğiterek sistemin güncelliğini ve devamlılığını sağlamaktadır.

Şekil 4.11 : Mekânsal analiz servisi sisteminin kullanım senaryosu.

68

Gereksinimler

Senaryoda belirtilen sistemin gereksinimleri belirlenmiştir ve bu gereksinimler

sunucusuz mimari ile geliştirilen mekânsal analiz servisi tasarlanırken dikkate

alınmıştır.

1. Mekânsal analiz servisi sistemi kapsamında geliştirilen uygulamalar sunucusuz

hesaplama servisleri üzerinde çalışmalıdır.

2. Mekânsal analiz servisi birlikte çalışabilirliği artırabilmek için OGC’nin WPS

standartlarında yayın yapabilmelidir.

3. Mekânsal analiz sonuçları kalıcı bir sunucusuz depolama alanı üzerinde geçici

bir süre tutularak CBS kullanıcısı tarafından indirilebilmesi için hazır

bekletilmelidir.

4. Eğitilmiş modeller ve örnek veriler bir sunucusuz depolama alanında tutulmalı

ve mekânsal analiz servisi ve veri bilimci tarafından ulaşılabilir olmalıdır.

5. Veri bilimci yeni eğitilmiş modelleri sisteme yükleyebilmelidir.

6. Mekânsal analiz servisi HTTPS protokolü üzerinden yetkili kullanıcılar

tarafından erişilebilmelidir.

7. Sistemdeki uygulamaların ve eğitilmiş modellerin sürümleri önce test sonra

yayın ortamına alınmalıdır. Test ortamında hatası bulunan model veya

uygulamanın yeni sürümü yayınlanmamalıdır.

8. Sistemdeki uygulamalar için geliştirilen kodlar kod deposunda saklanmalı ve

sürüm yayınlama otomasyonu üzerinden yayınlanmalıdır.

Roller

Geliştirilen sistem mimarisinde CBS kullanıcısı, veri bilimci ve uygulama geliştirici

olmak üzere üç kullanıcı rolü bulunmaktadır.

CBS kullanıcısı rolü sistem üzerinde CBS web uygulamasının kullanıcısıdır. Bu

roldeki kullanıcı web CBS uygulaması üzerinden sistemde veri bilimci ve uygulama

geliştirici tarafından hazırlanmış mekânsal analizleri çalıştırabilir. CBS kullanıcısı

sadece kendisine yetki verilmiş mekânsal analizleri görebilir ve çalıştırabilir. CBS

kullanıcısı OGC WPS standardında sunulan mekânsal analizi servisini dilerse bir

başka masaüstü veya web CBS uygulamasında da kullanabilir. CBS kullanıcısı analiz

sonucu ortaya çıkan vektör veya raster formattaki coğrafi veriyi indirebilir.

69

Uygulama geliştiricisi rolü mekânsal analiz servisinin geliştirilmesi ve devamlılığını

sağlamakla sorumludur. Bu roldeki kullanıcı sunucusuz mimariye uygun uygulama

geliştirir ve yayına alır. Sunucusuz mimarilerde altyapı yönetimi platform sağlayıcısı

tarafından yapılmakta olduğu için uygulama geliştiricinin ileri düzey bulut bilişim

altyapı yönetimi hakkında bilgi sahibi olması gerekmemektedir. Uygulama geliştirici

platform üzerinde sağlanan sunucusuz hesaplama hizmetlerinin destek verdiği

programlama dillerinden birini seçerek uygulamalarını geliştirebilir. Geliştirmeler

sonucu üretilen kodlar kod deposu üzerinde arşivlenmelidir bu nedenle uygulama

geliştiricin kod deposuna erişimi bulunmaktadır. Uygulama geliştirici arşivlenen

kodların kod deposundan yayına kadar olan sürüm yayınlama süreçlerini kurgulayarak

yayın otomasyonunu sağlar. Uygulama geliştirici sistemi test ve yayın ortamı olmak

üzere iki farklı ortamda yayınlar. Uygulama geliştirici sistemdeki performans

metrikleri ve günlük kayıtlarının tutulduğu bileşenin de kullanıcısıdır. Bu bileşen

üzerinden sistemin performansını ve sağlığını takip eder.

Veri bilimci rolündeki kullanıcı sistemdeki mekânsal analizlerin güncel ve yüksek

doğrulukla çalışması için devamlı olarak güncellenen örnek verilerle modelleri

geliştirir. Veri bilimci tarafından geliştirilen yeni modeller ve kodlar da kod deposu

üzerinde arşivlenir. Veri bilimci ayrıca geliştirdiği modellerin doğruluğunun testi için

ayrıca sürüm otomasyonu sistemine ek geliştirmeleri uygulama geliştirici ile yapabilir.

Böylece doğruluk testleri de otomasyonunun bir parçası olarak yeni geliştirilen

modeller yayın öncesi belirlenen ölçütlere göre otomatik olarak test edilmiş olur. Veri

bilimci geliştirdiği yeni mekânsal veri analizlerini sisteme ekleyerek CBS kullanıcısı

tarafından kullanılabilmesini sağlar. Bu amaçla yeni analizlere ilişkin dokümantasyon

çalışmasını da yaparak CBS kullanıcıları ile paylaşır.

Sistem tasarımı ve bileşenleri

Sistem, verilen senaryo, kullanıcı rolleri ve gereksinimlere göre Şekil 4.12’de

gösterilen şekilde tasarlanmıştır. Sistem tasarımı sunucusuz mimaride çalışacak

şekilde geliştirilmiş ve bileşenleri açıklanmıştır.

Sistem tasarımında CBS kullanıcısının web CBS uygulaması üzerinden çalıştıracağı

mekânsal veri analizleri mekânsal zekâ sistemine OGC WPS standardına uygun yayın

yapan OGC WPS servisi bileşeni üzerinden iletilmektedir. Bu servis standartlara

uygun bir şekilde istekleri alarak cevaplar üretir. Sistem mekânsal zekâ analizlerini

asenkron olarak çalıştırmaktadır. Bu nedenle OGC WPS’in sunduğu senkron çalışma

70

modeline bu servis üzerinden destek verilmez. OGC WPS servisi aldığı analiz

isteklerini sıraya koymak üzere sunucusuz mesaj kuyruğu servisine gönderir. Ayrıca

servis aldığı isteğe ait bilgileri sunucusuz yapısal veri depolama alanına da görevlerin

kaydedildiği tabloya görev takibi için kaydeder. Sunucusuz yapısal veri depolama

alanındaki görevler tablosuna yapılan her kayıt için verilen görev numarası mekânsal

veri analizi servisine iletilmek üzere mesaj kuyruğuna eklenen mesajların içine de

eklenir. Sistemde üretilen analiz sonuçları bu görev numarası ile ilişkilendirilerek

saklanır. Ayrıca bu görev numarası kullanıcı ile paylaşılarak kullanıcının analizi takip

edebilmesi sağlanır.

Şekil 4.12 : Mekânsal zekâ sisteminin sunucusuz mimaride sistem tasarımı.

Sunucusuz mesaj kuyruğu servisi OGC WPS servisinden aldığı analiz görevlerini

sırası önemli olmayacak bir şekilde toplayarak sunucusuz mekânsal analizi servisi

tarafından çalıştırılmak üzere saklar. Bu mesaj kuyruğu gelen isteklerin mekânsal

analiz servisinde meydana gelebilecek bir hata karşısında kaybolmasını da önler. Eğer

bir görev çalıştırılırken hata oluşursa yeniden denenmek üzere bu mesaj kuyruğuna

geri gönderilir. Mesaj kuyruğunun bir diğer önemli rolü ise mekânsal analiz servisinin

71

kuyrukta bekleyen görevlerin sayısına göre otomatik olarak ölçeklenebilmesini

sağlamaktır. Mesaj kuyruğunun uzunluğu otomatik ölçeklendirme için ölçek katsayısı

olarak kullanılabilir.

Sunucusuz mekânsal veri analizi servisinin görevi gelen analiz isteklerini mesaj

kuyruğundan alıp çalıştırarak sonuç üretmektedir. Sunucusuz mekânsal veri analizi

servisi birden fazla istek aynı anda geldiğinde analizleri paralel olarak çalıştırır. Grafik

işlemcisinden faydalanmak ve uzun çalışma sürelerini yönetebilmek için servisin HoK

modelindeki sunucusuz hesaplama hizmetleri ile çalışması gerekmektedir. Analizleri

yapabilmek için önceden eğitilmiş modeller sunucusuz yapısal olmayan veri depolama

alanından çekilerek kullanılır. Mekânsal veri analizi servisi işleme aldığı analizlerle

ilgili durum bildirimlerini sunucusuz yapısal veri tabanındaki görev tablosunda

kaydeder. Böylece CBS kullanıcısı OGC WPS servisine çalıştırdığı analiz hakkında

durum bilgisi sorduğunda cevap alabilir. Mekânsal veri analizi servisi, analiz görevini

başarı ile tamamladığında üretilen sonucu yapısal olmayan veri depolama servisi

üzerinde kaydeder. Bununla birlikte analizin tamamlandığı bilgisi ve üretilen verinin

sunucusuz depolama alanındaki kayıt konumu sunucusuz yapısal veri tabanındaki

görev tablosunda ilgili kayda yazılır. Bu bilgi ile OGC WPS servisi, analiz sonucuna

ulaşarak CBS kullanıcısına servis edebilir.

Sunucusuz yapısal veri tabanı sistemdeki mekânsal zekâ analizlerini ve CBS

kullanıcısını tarafından çalıştırılan analiz görevlerine ait bilgileri saklamak için

kullanılmıştır (Şekil 4.13).

Mekânsal zekâ analizleri tablosu sistem üzerindeki çalıştırılabilecek analizlerin

tanımlandığı tablodur. Analiz görevleri tablosu ise çalışan analiz görevlerinin takibi

için kullanılmaktadır. Mekânsal zekâ analizleri tablosu OGC WPS standardını

gözetecek şekilde tasarlanmıştır. Bu veritabanına OGC WPS servisi, mekânsal analiz

servisi ve veri bilimci ulaşabilir. Veri bilimci veri tabanına mekânsal zekâ analizlerini

eklemek, çıkarmak ve güncellemek üzere bağlanır.

72

Şekil 4.13 : Mekânsal zekâ sistemi yapısal veri tabanı tabloları (Pakdil ve Çelik,

2021a).

Web CBS uygulaması bu mimari tasarımda OGC WPS istemcisi olarak

konumlandırılmıştır. Ancak herhangi bir istemci uygulamasından HTTPS protokolü

üzerinden gelen OGC WPS standardındaki istekler de yetkilendirme kontrolünde

geçerek servise iletilebilir. Eğer gelen isteği yapan kullanıcının talep edilen mekânsal

zekâ analizine erişim yetkisi yoksa istek reddedilir. Bu amaçla hangi mekânsal zekâ

analizine hangi kullanıcı veya kullanıcı grupları için erişim yetkisi verileceği bilgisi

başka bir yetkilendirme servisi veya bir veri tabanı üzerinde saklanabilir.

OGC WPS servisi ve sunucusuz mekânsal analiz servisinin geliştirilmesi ve bakımı

uygulama geliştiricinin sorumluluğundadır. Bunun yanında sistemdeki bileşenlerin

ayarlarının doğru şekilde yapılandırılması da uygulama geliştiricinin

sorumluluğundadır. Bu amaçla uygulama geliştirici sistemde çeşitli testler yürüterek

bu yapılandırmaların doğruluğunu test edebilir.

Günlük tutma servisi sistem tasarımındaki bileşenlerde meydana gelen hata ve diğer

günlük kayıtlarını tutar. Bu hata kayıtları uygulama geliştiricinin uygulamalardaki

hataların kök nedenlerini bularak çözmesine yardımcı olmaktadır. Bu servis ayrıca

sistem bileşenlerine ait metrikleri de tutarak performans analizlerinin yapılmasını

sağlamaktadır. Uygulama geliştirici bu bilgileri değerlendirerek uygulamaların

iyileştirilmesi için kararlar alabilir. HoK modelinde çalışan mekânsal zekâ

uygulamalarının günlük tutma servisi ile bağlantısı uygulama geliştirici tarafından

kurulmalıdır.

Ayar saklama servisi, OGC WPS servisi ve mekânsal veri analizi servisinin diğer

sistem bileşenleri ile olan iletişimi için gerekli bağlantı bilgilerini tutar. Sürüm

73

yayınlama otomasyonu ayar saklama servisi ile entegre edilerek sistem bileşenleri

arasındaki bağlantı parametreleri otomatik olarak güncellenebilir.

4.4.2 Uygulama

Mekânsal zekâ sistemi tasarımı Şekil 4.14’da gösterildiği şekilde Microsoft Azure

bulut bilişim sağlayıcısına ait sunucusuz hizmetlerle uygulanmıştır. OGC WPS servisi

için açık kaynak kodlu PyWPS yazılımı kullanılmıştır (De Sousa ve diğ, 2019; Pakdil

ve Çelik, 2021a). Bu yazılım Python programlama dilinde geliştirilmiştir. PyWPS

yazılımın sunucusuz mimaride çalıştırmak için Azure Functions sunucusuz hesaplama

hizmeti Linux işletim sistemi tabanlı olarak kullanılmıştır. Bu konfigürasyonda Python

uygulamaları Azure Functions tarafından çalıştırılabilmektedir. PyWPS yazılımı HoF

modeli üzerinde olay güdümlü olarak çalıştırılabilmektedir (Pakdil ve Çelik, 2021a).

Şekil 4.14 : Mekânsal zekâ sisteminin Microsoft Azure bulut bilişim sağlayıcısı

üzerindeki sunucusuz hizmetlerle uygulaması.

Web CBS ve masaüstü CBS istemcilerinden gelen OGC WPS standardındaki istekler

sunucusuz API yönetimi servisi üzerinden geçerek OGC WPS servisi uygulamasına

ulaşır. Microsoft Azure bulut bilişim sağlayıcısında sunucusuz API yönetim servisinin

74

adı Azure API Management olarak geçmektedir. Bu servis gelen HTTPS isteklerini

Azure Functions olaylarına dönüştürerek fonksiyonunun olay güdümlü olarak

çalışmasını sağlar. Ayrıca bu servis Azure Active Directory sunucusuz kimlik yönetim

servisiyle birlikte çalışarak kullanıcı yetkilendirilmesinde de görev yapmaktadır.

Microsoft Azure bulut bilişim sağlayıcısındaki sunucusuz kullanıcı ve rol yönetimi

servisi Azure Active Directory olarak adlandırılmaktadır. Kullanıcıların oturum açma,

yetkilendirme ve rol yönetimi işlemleri Azure Active Directory üzerinden

yönetilebilmektedir.

Sunucusuz mesaj kuyruğu servisi olarak Azure Storage Queue hizmeti kullanılmıştır.

Bu servis Azure Functions servisi ile çalışabilmektedir ve yeni bir mesaj geldiğinde

Azure Functions hizmetini olay güdümlü olarak tetikleyebilir. OGC WPS servisi gelen

analiz isteklerini görev tanımına dönüştürerek mesaj kuyruğuna kaydeder. Kaydedilen

her yeni mesaj Azure Functions üzerinde çalışan konteyner çalıştırıcı uygulamayı

tetikler.

Konteyner çalıştırıcı uygulama mesaj kuyruğuna gelen mesajlarla olay güdümlü olarak

çalışmaktadır. Bu uygulamanın görevi HoK modelinde hizmet veren Azure Container

Instances servisi üzerinde mekânsal analizi görevini yeni bir konteyner başlatarak

çalışmasını sağlamaktadır. Köprü görevi gören bu uygulama, normalde olay güdümlü

olarak çalışamayan Azure Container Instances servisini dolaylı yoldan hem olay

güdümlü hem de otomatik ölçeklenebilir şekilde çalıştırır. Sunucusuz mesaj

kuyruğuna gelen her yeni mesaj konteyner çalıştırıcı uygulamayı tetiklemektedir. Bu

sayede platform tarafından izin verilen eş zamanlı çalışabilen konteyner sayısı kadar

mekânsal zekâ analizi görevi paralel olarak çalışabilir. Bu uygulamanın diğer görevi

de çalışması sonlanan konteyneri kapatmaktır. Bunun için konteyner uygulaması

tarafından işlem sonunda konteyner çalıştırıcı fonksiyondan kendisini kapatması için

istek gönderilir. Bu istek konteyner çalıştırıcı fonksiyonun dahili HTTPS adresi

üzerinden gönderilir. Bu nedenle bu fonksiyonun yalnız mesaj kuyruğu mesajlarına

değil ayrıca HTTPS isteklerine olay güdümlü olarak çalışması gerekmektedir.

Konteyner çalıştırıcı uygulama aynı zamanda her yeni gelen analiz isteğinde aktif

çalışan analizlerin çalışma sürelerini kontrol eder. Eğer beklenenden daha uzun süre

çalışır durumda kalmış bir analiz görevi varsa buna bağlı olan konteyneri de

kapatabilir. Bunun için uygulama geliştirici veri bilimciyle birlikte zaman aşımı

süresine birlikte karar verilir.

75

Mekânsal zekâ analizlerinin çalıştırılması için HoK modelinde hizmet veren Azure

Container Insantances servisi seçilmiştir. Bu servis gelen her bir analiz görevini yeni

bir konteyner üzerinde çalıştırmaktadır. Konteynerlerin imajları uygulama geliştirici

tarafından veri bilimcinin yardımı ile hazırlanarak sunucusuz konteyner imaj deposu

olan Azure Container Registry üzerinde depolanır. Hangi konteyner imajının hangi

mekânsal zekâ analizini çalıştıracağı bilgisi sunucusuz yapısal veri tabanındaki

mekânsal veri analizleri tablosunda belirtilir. Konteyner çalıştırıcı gelen analiz

görevinde hangi imajın çalıştırılacağı bilgisini bu tablodan okur. Azure Container

Instances hizmeti grafik işlemcisi desteği de sağladığından grafik işlemcisini yoğun

kullanan yapay zekâ uygulamalarının daha hızlı çalışmasını sağlayabilmektedir.

Veri bilimci tarafından eğitilmiş modeller sunucusuz yapısal olamayan veri depolama

servisi Azure Blob Storage üzerinde saklanmaktadır. Eğitilmiş veri setleri çalışmaya

başlayan konteynerler tarafından çekilerek kullanılabilmektedir. Ayrıca bu depolama

servisinde mekânsal zekâ analizleri sonucu üretilen ikili formattaki veriler de

saklanmaktadır. CBS kullanıcısı analiz sonucunu indirmek istediğinde OGC WPS

servisi bu depolama alanından analiz sonucunu çekerek istemciye gönderir.

Sunucusuz yapısal veri tabanı hizmeti olarak Azure Cosmos DB servisi kullanılmıştır.

Bu serviste veriler belge tipinde kaydedilmiştir. Bu nedenle SQL API hizmeti tercih

edilmiştir. Mekânsal veri analizleri ve analiz görevleri tablosu için iki farklı belge

koleksiyonu oluşturulmuştur. Veri bilimci bu servise uygun istemci bir uygulama ile

ulaşarak yeni mekânsal zekâ analizlerini ekleyebilir.

Günlük tutma servisi olarak Azure Application Insight servisi kullanılmıştır. Bu servis

merkezi bir şekilde günlük kayıtlarını ve performans metriklerini tüm sistem

bileşenlerinden toplayabilmektedir. Sistem bileşenlerinin ve uygulamaların günlük ve

metrik toplama ayarları yapılarak günlük tutma servisinin çalışması sağlanmaktadır.

Uygulama geliştirici bu servis üzerinden sistemi takip ederek hata düzeltme ve

iyileştirme için gerekli aksiyonları alabilmektedir.

Ayar saklama servisi olarak Azure Key Vault servisi kullanılmıştır. Bu servis

sistemdeki uygulamalar tarafından erişilerek sunucusuz yapısal veri depolama ve

sunucusuz yapısal olmayan veri depolama alanlarına erişim için gerekli bağlantı

parametrelerine ulaşmaktadırlar. Azure Key Vault için birçok programlama dilinde

kütüphane bulunmaktadır.

76

4.4.3 Değerlendirme

Sunulan sistem tasarımı ve uygulama Çizelge 4.6’da gösterildiği gibi 12 Faktör

yöntemine göre değerlendirilmiştir. Geliştirilen sistemde HoF ve HoK modelindeki

sunucusuz hesaplama servisleri kullanılmıştır. Bu nedenle 12 Faktör yöntemindeki

“Yönetim Süreçleri” hariç diğer prensipler uygulanabilmektedir ve bu prensipler

üzerinden değerlendirilmiştir.

Çizelge 4.6 : Mekânsal zekâ sisteminin 12 Faktör yöntemine göre değerlendirilmesi.

Prensip Adı Değerlendirme

Kod Deposu
Uygulama geliştirici ve veri bilimci geliştirdiği uygulamaları ve

model algoritmalarını kod deposu üzerinde arşivlemektedir.

Bağımlılıklar

Bağımlılıklar HoK modeline çalışan mekânsal zekâ analizi

servisi için değerlendirilmiştir. Sistemde bu servis üzerinde

çalışacak konteyner imajları oluşturulurken çalışacak kodun

ihtiyaç duyacağı kütüphanelerin yüklenmesi imaj dosyası

tanımlanırken belirtilir. Örneğin uygulamada GeoPandas,

TensorFlow gibi konteynerlerde doğrudan gelmeyebilen

kütüphaneler yüklenmelidir.

Ayarlar

Bu sistemde uygulamaların diğer destek servislerine

bağlanabilmesi için gereken parametrelerin saklanması için ayar

servisi kullanılmıştır. Uygulamada ise Azure Key Vault servisi

ile ayarlar saklanmıştır.

Destek

Servisleri

Mekânsal zekâ analizi servisi ve OGC WPS servisi kapsamında

geliştirilen uygulamalar destek servislerine ağ üzerinden

bağlanmışlardır.

Derle, Yayınla

ve Çalıştır

Uygulama geliştirici sürüm yayınlama süreçlerinin

otomasyonundan sorumludur. Bununla birlikte bu otomasyonu

veri bilimcide kullanarak geliştirdiği modelleri test ederek

sisteme yüklemektedir.

Süreçler

Sistem tasarımı uygulanırken HoK modelinde çalışacak

konteynerlerin durumsuz çalışması gerekmektedir. Bir analiz

işlemi bir sonraki analiz işlemine durum aktarmamaktadır. Bu

amaçla Bölüm 4.6’da geliştirilen mekânsal analiz iş akışı sistemi

tasarımı kullanılabilir.

Port Bağlama

Sistem tasarımında HoK modeli üzerinde çalışan konteynerlere

dışardan erişim olmadığı için port bağlama prensibi

uygulanmamıştır.

77

Çizelge 4.6 (devam) : Mekânsal zekâ sisteminin 12 Faktör yöntemine göre

değerlendirilmesi.

Prensip Adı Değerlendirme

Eş Zamanlılık

Sistem tasarımındaki HoF modelinde çalışan bileşenlerin eş

zamanlı çalışması platform tarafından yönetilmektedir.

Sistemdeki HoK modelinde çalışan mekânsal zekâ servisi ise eş

zamanlı olarak sunucusuz mesaj kuyruğu servisi yardımıyla eş

zamanlı olarak çalıştırılabilir. Uygulamada mesaj kuyruğunu

dinlemek için aracı başka bir fonksiyon kullanılarak mekânsal

zekâ analizlerinin eş zamanlı çalışması sağlanmıştır.

Kullanılabilirlik

Uygulamada mekânsal zekâ analizleri uzun sürülebileceğinden

asenkron çalışma modeli seçilmiştir. Bu sayede kullanıcıdan

gelen bir istek mesaj kuyruğu üzerinde sıraya konduktan sonra

görev numarası ile isteğe hemen cevap verilir. Ayrıca mekânsal

zekâ analizlerini yapmak üzere geliştirilen konteyner imajları da

çalışma zamanında işi tamamladıktan sonra kapatılmaları için

konteyner çalıştırıcı fonksiyona istek yapmaktadırlar.

Geliştirme, Test

ve Yayın

Ortamlarının

Benzerliği

Uygulama geliştirici sistem tasarımının uygulamasını test ve

yayın ortamlarında birbirlerine benzeyecek şekilde yayınlar.

Geliştirmeler uygulama geliştiricinin bilgisayarında

yapılmaktadır. Benzer şekilde veri bilimci de model

geliştirmelerini kendi bilgisayarında veya başka bir bulut bilişim

servisi yardımıyla yapabilir. Yaptığı model çalışmalarını yine

test ve yayın ortamlarına yükler.

Günlük Tutma

Sistem bileşenleri tarafından üretilen günlük kayıtları için

günlük tutma servisi bileşeni eklenmiştir. Uygulamada ise Azure

Application Insight günlük tutma servisi kullanılmıştır.

Sistem tasarımı ayrıca mimari değerlendirme ölçütlerine göre Çizelge 4.7’de

değerlendirilmiştir.

78

Çizelge 4.7 : Mekânsal zekâ sisteminin bulut bilişim sağlayıcısının mimari

değerlendirme ölçütlerine göre değerlendirilmesi.

Ölçüt Adı Değerlendirme

Performans

Verimliliği

Sistemdeki bileşenlerin performans verimlilikleri uygulama

geliştiricinin sorumluluğundadır. Sistem bileşenleri için seçilen

algoritma ve teknolojiler performans için belirleyici olmaktadır.

Sistem tasarımında mekânsal zekâ analizlerinin hızlı şekilde

çalışabilmesi için HoK modeli tercih edilmiştir. Ayrıca birden fazla

isteği eş zamanlı çalıştırarak hızlı cevap verebilmek için de mesaj

kuyruğu bileşeni kullanılmıştır.

Güvenilirlik

Sistem bileşenleri günlük tutma servisi ile izlenerek hatalar takip

edilmektedir. Hata durumunda sistemin çalışmaya devam edebilmesi

için HoF modelindeki uygulamalar istekleri yeniden çalıştırmaktadır.

HoK modelinde çalışan uygulamalarda bir hata oluşması durumunda

uygulamaların günlük tutma servisine hata kayıtlarını göndermesinin

yapılandırılması uygulama geliştiricinin sorumluluğundadır.

Güvenlik

Sistemde kullanıcı ve bileşenlerin yetkileri detaylı bir şekilde

tanımlanmıştır. CBS kullanıcısı bir istemci uygulama ile

yetkilendirme servisinden geçerek analizleri çalıştırabilir. Veri

bilimci ise platform üzerinde bulunan dahili yetkilendirme sistemi ile

yapısal olmayan veri depolama alanı ve yapısal veri depolama

alanına ulaşarak mekânsal zekâ analizlerini yönetebilir.

4.5 Sunucusuz Olay Güdümlü Mekânsal Veri İşleme Servisi Tasarımı,

Uygulaması ve Değerlendirmesi: Kandilli Deprem Habercisi Örneği

Sunucusuz mimaride çalışan HoF modelindeki hesaplama hizmetleri olay güdümlü

olarak çalışmaktadırlar. Genellikle diğer platforma servisleri veya HTTP/HTTPS

üzerinden gelen isteklerle olayların kaynağı olmaktadır. Bu sistem tasarımında ise ani

gelişen bir doğal afet olan depremlerin sunucusuz mimarideki sistemde olay kaynağı

olarak kullanımı incelenmiştir.

Türkiye’de deprem olaylarını Afet ve Acil Durum Yönetimi Başkanlığı’na (AFAD)

ve Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü ülkede çeşitli yerlere

kurdukları sismograf cihazları ile takip etmektedirler. Yaptıkları bu izleme

çalışmalarının çıktılarını anlık olarak internet sitelerinden konum bilgisiyle birlikte

yayınlamaktadırlar. Ancak depremlerin aniden meydana gelmesiyle birlikte depremi

hisseden kişiler deprem büyüklüğü ve konumu hakkında bilgi almak için kurumların

internet sitelerine hep birlikte girerek yüksek miktarda trafik oluşturmaktadırlar. Bu

79

nedenle kurumların internet siteleri cevap veremez duruma gelmekte ve bu durum

basında yer almaktadır (Top ve diğ, 2011; “4.2'lik deprem yetti: Kandilli'nin sitesi

çöktü”, 2015).

Bu tez çalışmasında sunucusuz mimari kullanılarak meydana gelen depremleri

kullanıcıların cep telefonlarına bildiren bir sistem tasarımı sunulmuştur. Bu sistem

tasarımı ile deprem anında kurumların internet sitelerinin üzerindeki trafik yükü

azaltılarak operasyonel kalmaları sağlanabilir. Bu amaçla sistem deprem bilgisi

yayınlayan Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü internet sitesini sık

ve düzenli aralıklarla kontrol ederek yeni depremleri kullanıcılara iletmektedir. Bu

tasarımın uygulaması açık kaynak kodlu olarak 2019 yılında yayınlanmıştır.

4.5.1 Tasarım

Senaryo

Sistem mimarisi tasarımında kullanılan senaryoda mobil kullanıcılar deprem bildirim

servisine abone olarak Kandilli Rasathanesi tarafından yayınlanan son depremlerden

anlık olarak haberdar olurlar. Bu senaryoda kullanıcılar bildirimleri alabilmek için

sisteme özel ek bir mobil uygulama yüklemeden mobil uygulama mağazalarında

mevcut olan popüler bir anlık mesajlaşma uygulamasını kullanarak bildirimleri alırlar.

Şekil 4.15 : Deprem bildirim sisteminin kullanım senaryosu.

Gereksinimler

Senaryoda belirtilen sistemin gereksinimleri belirlenmiştir ve bu gereksinimler

sunucusuz mimari ile geliştirilen deprem bildirim servisi sistemi tasarlanırken dikkate

alınmıştır.

1. Kullanıcılar sisteme abone olurken anlık mesajlaşma uygulamasını

kullanmalıdırlar.

2. Anlık mesajlaşma uygulaması üzerinde sohbet botu özelliği bulunmalıdır.

Kullanıcılar geliştirilecek bit sohbet botu ile deprem bildiri servisi ile etkileşim

kurabilirler.

80

3. Anlık mesajlaşma uygulaması deprem bildirim servisi ile güvenli bir şekilde

iletişim kurabilmelidir.

4. Deprem bildirim servisi de anlık mesajlaşma uygulamasının sunduğu web

servisleri ile iletişim kurarak abone olan kullanıcılara deprem bildirimlerini

gönderebilir.

5. Kullanıcılar isterlerse deprem büyüklüğüne veya konumuna göre koşul koyarak

bu koşullara uyan depremlerin bildirimlerini alabilirler.

6. Kullanıcılara ait kişisel bilgiler sistem üzerinde tutulmamalıdır.

7. Sistemdeki uygulamaların sürümleri önce test sonra yayın ortamına alınmalıdır.

Test ortamında hatası bulunan uygulamanın yeni sürümü yayınlanmamalıdır.

Testler için anlık mesajlaşma uygulamasında test amaçlı sohbet botu ve

aboneler oluşturulmalıdır.

8. Sistemdeki uygulamalar için geliştirilen kodlar kod deposunda saklanmalı ve

sürüm yayınlama otomasyonu üzerinden yayınlanmalıdır.

Roller

Geliştirilen sistem mimarisinde depremlerin takipçisi olan abone ve uygulama

geliştirici olmak üzere iki kullanıcı rolü bulunmaktadır. Abone rolü sistem üzerinde

cep telefonundaki anlık mesajlaşma uygulamasının kullanıcısıdır. Bu roldeki kullanıcı

sistemle etkileşimini sohbet botu aracılığı ile yazılı mesajlaşarak veya konum bilgisi

göndererek yapar. Kullanıcı sistemdeki aboneliğini istediği zaman sonlandırabilir.

Kullanıcı istediği zaman sistemdeki deprem bildirim koşullarını güncelleyebilir, yeni

koşul ekleyebilir veya koşul kaldırabilir. Hiçbir koşul koymayan aboneler kurum

tarafından yayınlanan tüm deprem bilgilerini bildirim olarak alırlar.

Uygulama geliştiricisi rolü sistemdeki uygulamaların geliştirilmesi ve devamlılığını

sağlamakla sorumludur. Bu roldeki kullanıcı sunucusuz mimariye uygun uygulama

geliştirir ve yayına alır. Sunucusuz mimarilerde altyapı yönetimi platform sağlayıcısı

tarafından yapılmakta olduğu için uygulama geliştiricinin ileri düzey bulut bilişim

altyapı yönetimi bilmesi gerekmemektedir. Uygulama geliştirici platform üzerinde

sağlanan sunucusuz hesaplama hizmetlerinin destek verdiği programlama dillerinden

birini seçerek uygulamalarını geliştirebilir. Geliştirmeler sonucu üretilen kodlar kod

deposu üzerinde arşivlenmelidir bu nedenle uygulama geliştiricin kod deposuna

erişimi bulunmalıdır. Uygulama geliştirici arşivlenen kodların kod deposundan yayına

kadar olan sürüm yayınlama süreçlerini kurgulayarak yayın otomasyonunu sağlar. Bu

81

kapsamda uygulama geliştirici sistem uygulamasını test ve yayın ortamı olmak üzere

iki farklı şekilde yayınlar. Uygulama geliştirici sistemdeki performans metrikleri ve

günlük kayıtlarının tutulduğu bileşenin de kullanıcısıdır. Bu bileşen üzerinden

sistemin performansını ve sağlığını takip ederek uygulamalarda iyileştirmeler

yapabilir.

Sistem tasarımı ve bileşenleri

Açıklanan senaryo, kullanıcı rolleri ve gereksinimlere göre Şekil 4.16’da gösterilen

şekilde sistem tasarlanmıştır. Sistem tasarımı sunucusuz mimaride çalışacak şekilde

geliştirilmiş ve bileşenleri açıklanmıştır.

Şekil 4.16 : Deprem bildirim sistemi tasarımı ve bileşenleri.

Sistem tasarımında deprem bildirimlerini alan abone ile anlık mesajlaşma

uygulamasının sohbet botu etkileşim kurmaktadır. Anlık mesajlaşma uygulamasının

sohbet botu uygulama geliştirici tarafından yapılandırılarak, kullanıcı etkileşimleri

tanımlanır.

Sohbet botuna iletilen istekler anlık mesajlaşma uygulamasının arka plan servisleri

üzerinden sistem mimarisindeki sohbet botu servisine gönderilir. Sohbet botu servisi

gelen isteklere göre abone veri tabanıyla birlikte çalışarak abone bilgilerini günceller,

yeni abone kaydeder, abone siler veya aboneye ait koşulları veri tabanı üzerinde

günceller. Kullanıcının isteklerine göre yeni sorular sorulması gerektiğinde sohbet

82

botu servisi anlık mesajlaşma uygulamasının web servislerini çağırarak kullanıcı ile

yazılı iletişim kurulmasını sağlar. Sohbet botu servisi anlık yükselen trafikleri

kaldırabilmek için otomatik olarak ölçeklenebilir olmalıdır.

Abone veri tabanı sunucusuz yapısal veri depolama hizmeti üzerinde

konumlandırılmaktadır. Bu servisin indeksleme ve nokta türündeki coğrafi konum

bilgisi saklama ve sorgulama özellikleri sunar. Abone veri tabanı üzerinde aboneye ait

sohbet kanalı bilgisi ve abonenin belirlediği deprem bilgisini alma koşulları tutulur.

Abone hakkında kişisel veriler veri tabanında tutulmaz. Deprem büyüklüğü koşulu ve

konum koşulu aboneler tablosunda tutulur. Deprem büyüklüğü koşulu sayı veri

türünde olarak saklanır. Konum koşulu ise coğrafi nokta türünde saklanır. Veri tabanı

olarak kullanılan sunucusuz yapısal veri depolama hizmeti eğer coğrafi veri tiplerini

destekliyorsa konum alanı için nokta coğrafi verisi tutan veri tipi seçilir. Abone veri

tabanı bildirim koşullarına ve abonenin sohbet kanalı bilgisine göre hız erişim için

indekslenir. Böylece diğer bileşenlerin abone verisine erişimleri hızlı olması sağlanır.

Deprem bilgisi okuyucu bileşen belirlenen kısa aralıklarla Kandilli Rasathanesi’nin

internet sitesinde yayınlanan son deprem bilgilerini okuyarak yeni deprem bilgisini

kontrol eder. Eğer yeni deprem bilgisi eklenmişse bu yeni deprem bilgisine ait

özniteliklerle abone veri tabanındaki koşullar karşılaştırarak hangi abonelere deprem

bildirimi gideceği belirlenir. Yeni deprem bilgisini ve bu bilgiyi alacak abone

bilgilerini sunucusuz mesaj kuyruğu servisine her abone için ayrı ayrı mesaj olarak

gönderir.

Sunucusuz mesaj kuyruğu servisinde bildirim gönderilecek abone ve deprem bilgileri

her bir bildirim başına bir mesaj olacak şekilde kaydedilir. Örneğin bir deprem bilgisi

yüz aboneye gönderilecekse yüz ayrı mesaj kuyruğa yazılır. Bu mesaj kuyruğunun

amacı deprem bildirim gönderici uygulamanın ölçeklenerek bildirimleri eş zamanlı

olarak hızlı bir şekilde gönderilmesini sağlamaktır. Bu nedenle bildirim sayısı deprem

bildirimi göndericinin otomatik ölçeklendirme katsayısı olarak kullanılmıştır.

Günlük tutma servisi sistem tasarımındaki bileşenlerde meydana gelen hata ve diğer

günlük kayıtlarını tutar. Uygulama geliştirici bu hata kayıtlarını okuyarak

uygulamalardaki hataların kök nedenlerini bularak çözebilmektedir. Bu servis ayrıca

sistem bileşenlerine ait metrikleri de tutarak performans analizlerinin yapılmasını

83

sağlamaktadır. Uygulama geliştirici bu performans bilgilerini değerlendirerek

uygulamaların iyileştirilmesi için kararlar alabilmektedir.

Ayar saklama servisi, sohbet botu servisinin anlık mesajlaşma uygulaması ile olan

iletişimi için gereken parametreleri ve abone veri tabanına bağlantı bilgilerini saklar.

Deprem bilgisi okuyucu servisi için de benzer şekilde abone veri tabanına bağlantı

parametrelerini, sunucusuz mesaj kuyruğu servisine bağlantı parametrelerini ve

Kandilli Rasathanesi’ne ait internet sitesinin adresini saklar.

4.5.2 Uygulama

Deprem bildirim sistemi tasarımı Şekil 4.17’de gösterildiği şekilde AWS bulut bilişim

sağlayıcısına ait sunucusuz hizmetlerle uygulanmıştır.

Şekil 4.17 : Deprem bildirim sistemi tasarımının AWS bulut bilişim sağlayıcısına ait

sunucusuz hizmetlerle uygulaması (Pakdil ve Çelik, 2023, baskıda).

Anlık mesajlaşma uygulaması olarak Telegram uygulaması kullanılmıştır. Telegram

uygulaması sunduğu API’larla sohbet botu geliştirilmesine destek vermektedir.

Telegram üzerinde test ve yayın ortamları için iki farklı sohbeti botu oluşturulmuştur.

Sohbet botu kullanıcıdan komutları “/” sembolü ile başlayan kelimelerle almaktadır.

Çizelge 4.8’te verilen komutlar Türkçe karakter kullanmadan sohbet botuna

tanımlanmıştır.

84

Çizelge 4.8 : Telegram deprem bildirim sohbet botunun komutları

Komut Adı Açıklama

/basla Deprem bildirimlerine aboneliği başlatır.

/siddet Deprem bildirimlerine şiddet filtresi uygulanması için kullanılır.

/konumekle Deprem bildirimlerine konum filtresinin nasıl uygulanacağını açıklar.

/konumsil Deprem bildirimlerinde konum filtresini kaldırır.

/bitir Deprem bildirimlerine aboneliği bitirir.

Sistem tasarımındaki tüm uygulamalar HoF modelindeki sunucusuz hesaplama servisi

olan AWS Lambda üzerinde çalışacak şekilde geliştirilmiştir. Uygulamaların

programlama dili olarak C# programlama dili ve .Net Core çatkısının 3.1 sürümü

seçilmiştir.

Sohbet botu servisi iki bileşenden oluşmaktadır. İstemcilerden gelen istekleri alarak

AWS Lambda servisine HTTP olayı olarak ileten Amazon API Gateway isimli

sunucusuz hizmet modeli ile çalışan internet trafiği kontrol ve yönlendiricisi

kullanılmıştır. Amazon API Gateway, Telegram sohbet botundan gönderilen

komutları sohbet botu uygulamasının çalıştığı AWS Lambda servisine olay olarak

göndermektedir. Sohbet botu servisi gelen isteklerdeki komutları çalıştırarak

kullanıcılara ek sorular sorabilmektedir. Bunun için Telegram uygulaması ile çift

yönlü iletişim kurmaktadır. Sohbet botu servisinin sağladığı internet servisleri açık

olarak yayınlandığı için güvenlik nedeniyle abone verileri listeme ve sorgulama

servisleri bu bileşende sunulmamalıdır.

Abone veri tabanı olarak Amazon DynamoDB sunucusuz yapısal veri depolama

hizmeti kullanılmıştır. Bu veri tabanı anahtar-değer veri tabanı olarak çalışmaktadır.

Aboneler tablosu şeması üç alandan oluşturulmuştur (Şekil 4.18). Burada “chatid”

alanı Telegram üzerinde sohbet botu ile başlatılan sohbet oturumu için atanan

benzersiz sayısal değerdir ve anahtar olarak kullanılmıştır. Bu değer ile Telegram

üzerinden aynı kullanıcıyla yeniden iletişim kurulabilmektedir. Konum filtresine ait

nokta bilgisi Amazon DynamoDB tarafından destek verilen GeoHash formatında

“location” alanında saklanmıştır. Deprem şiddeti koşuluna ait şiddet bilgisi de

“magnitude” alanında sayısal olarak saklanmıştır.

85

Şekil 4.18 : Aboneler tablosu şeması.

Deprem bilgisi okuyucu servis Kandilli Rasathanesi’nin internet sitesinden son

deprem bilgilerini HTML (HyperText Markup Language) formatında okur. Bu

uygulamayı çalıştıran AWS Lambda servisi Amazon EventBridge üzerinde

oluşturulan zamanlayıcı tarafından her dakika çalışacak şekilde ayarlanmıştır. Amazon

EventBridge, her dakika AWS Lambda servisindeki deprem bilgisi okuyucu

uygulamayı çalıştıran tetikleyici olayları üretmektedir. Deprem bilgisi okuyucu servisi

abone veri tabanına Amazon DynamoDB’ye bağlanarak yeni deprem bilgisini alması

gereken aboneleri sorgular. Tespit edilen abonelerin her biri için bildirim gönderim

parametreleri oluşturularak sunucusuz mesaj kuyruğu servisine JSON formatında

mesaj olarak eklenir.

Sunucusuz mesaj kuyruğu servisi olarak Amazon SQS adlı servis kullanılmıştır.

Amazon SQS servisi AWS Lambda servisi ile çalışabilmektedir. Bekleyen mesajlar

işlenebilmek için deprem bildirimi gönderici servisini eş zamanlı çalışmak üzere

tetiklemektedir.

Deprem bildirimi gönderici servisi AWS Lambda sunucusuz hesaplama servisi

üzerinde çalışmaktadır. Sunucusuz mesaj kuyruğundan gelen her bir abonenin bildirim

mesaj parametrelerini okuyarak Telegram mesajlaşma uygulamasına mesaj olarak

iletir. Böylece abone olan kullanıcıların deprem hakkında en kısa sürede

bilgilendirilmesi sağlanır.

Sistemdeki bileşenlerin birbirleri arasındaki iletişimi için yetkilendirmeler AWS IAM

hizmeti üzerinden bileşenlere rol ataması yapılarak sağlanmıştır. Bunun yanında AWS

KMS hizmeti ile Telegram uygulamasına bağlantı parametreleri uygulamalara güvenli

bir şekilde servis edilmek için ayar saklama servisi olarak kullanılmıştır.

Amazon CloudWatch hizmeti ile tüm bileşenler takip edilerek ve hata günlükleri

tutularak izlenmektedir. Sistemdeki uygulamalara ait metrikler sınır değerler

belirlenerek alarmlar oluşturulmuştur. Sınır değerler aşıldığında uygulama geliştirici

e-posta ile bilgilendirilerek sistemdeki sorunlardan anlık olarak haberdar

olabilmektedir (Şekil 4.19).

86

Uygulamada kod deposu olarak GitHub kod paylaşım sitesi kullanılmıştır. Kodlar açık

kaynak kodlu olarak paylaşılmıştır. Sürüm yayınlama otomasyonu için de Github

Actions servisi kullanılmıştır (URL-6).

Şekil 4.19 : Amazon CloudWatch servisinden gelen deprem bildirimi gönderici

bileşeni ile ilgili sorun olduğunu belirten alarm e-postası.

4.5.3 Değerlendirme

Uygulanan sistem tasarımı Çizelge 4.9’da gösterildiği gibi 12 Faktör yöntemine göre

değerlendirilmiştir. Sunulan sistemde sadece HoF modelindeki sunucusuz hesaplama

servisleri kullanılmıştır. Bu nedenle 12 Faktör yöntemindeki “Bağımlılıklar”,

“Süreçler”, “Port Bağlama” ve “Yönetim Süreçleri” prensipleri doğrudan

uygulanamadığı için değerlendirilmemiştir.

87

Çizelge 4.9 : Deprem bildirim sisteminin 12 Faktör yöntemine göre

değerlendirilmesi.

Prensip Adı Değerlendirme

Kod Deposu

Uygulama geliştirici geliştirdiği uygulamaları kod deposu

üzerinde arşivlemekte ve açık kaynak kodlu olarak

yayınlamaktadır.

Ayarlar

Sistem tasarımındaki uygulamaların gizli ayarları ayar

saklama servisi üzerinde saklanmıştır. Gizli olmayan ayarlar

ise uygulamaların çalıştığı konteynerlerin ortam değişkenleri

üzerinde tutulmuştur. Sistem tasarımının uygulamasında ise

AWS KMS servisi gizli ayarların güvenli bir şekilde

saklanması için kullanılmıştır. Kandilli Rasathanesi’nin son

depremler internet sitesi ise ortam değişkenlerinde

saklanmıştır.

Destek Servisleri
Uygulamalar abone veri tabanına ağ üzerinden bağlanarak

ulaşmıştırlar.

Derle, Yayınla ve

Çalıştır

Sürüm yayınlama süreçlerinin otomasyonu uygulama

geliştirici tarafından kurulmuştur. Sistem tasarımındaki

uygulamaların bu otomasyonla yeni sürümleri

yayınlanmaktadır.

Eş Zamanlılık

Uygulamalar HoF modelinde çalıştırılmak üzere geliştirildiği

için eş zamanlı çalışma yönetimi bulut bilişim sağlayıcısı

tarafından yapılmaktadır. Abonelere bildirim gönderiminin eş

zamanlılığını sağlamak için bildirim mesajları sunucusuz

mesaj kuyruğu üzerinden bildirim gönderici fonksiyona

iletilmiştir.

Kullanılabilirlik

Sistem herhangi bir süreçte hata olması durumunda yeniden

süreci tekrar edecek şekilde tasarlanmıştır. Deprem bilgisi

okuyucu kurum sitesine ulaşamaması durumunda yeniden

denemektedir. Deprem bildirimi gönderici hata durumunda

gönderimi tekrarlamaktadır. Sistemdeki uygulamalar

durumsuz çalışacak şekilde tasarlanmıştır. Kalıcı veriler

abone veri tabanında tutulan verilerdir.

Geliştirme, Test ve

Yayın Ortamlarının

Benzerliği

Uygulama geliştirici sistem tasarımını test ve yayın

ortamlarında birbirlerine benzeyecek şekilde yayınlar.

Geliştirmeler uygulama geliştiricinin bilgisayarında

yapılmaktadır.

Günlük Tutma

Sistem bileşenleri tarafından üretilen günlük kayıtları için

günlük tutma servisi kullanılmıştır. Uygulamada ise Amazon

CloudWatch sunucusuz günlük tutma servisi kullanılmıştır.

88

Sistem tasarımı ayrıca mimari değerlendirme ölçütlerine göre Çizelge 4.10’da

değerlendirilmiştir.

Çizelge 4.10 : Vektör karo harita servisinin bulut bilişim sağlayıcısı mimari

değerlendirme ölçütlerine göre değerlendirilmesi.

Ölçüt Adı Değerlendirme

Performans

Verimliliği

Sistemdeki uygulamalar yeni deprem bilgisi okunduktan sonra hızlı

şekilde abonelere iletecek şekilde tasarlanmıştır. Bunu sağlamak

için sistem tek amaca hizmet eden küçük bileşenlere bölünmüştür.

Böylece HoF modelindeki sunucusuz hesaplama bileşenlerinin

çalışmalarını hızlıca tamamlamaları beklenmektedir.

Güvenilirlik

Sistem bileşenleri günlük tutma servisi ile izlenerek hatalar takip

edilmektedir. Bununla birlikte hatalara karşı süreçlerin

kaybolmaması için ek önemler tasarlanmıştır.

Güvenlik

Sistemdeki servisler doğrudan kullanılamamaktadır. Kullanıcılar

anlık mesajlaşma uygulaması üzerinden sistemle iletişim

kurmaktadır. Sistemin dışarıyla iletişimi sohbet botuna ait arka plan

servisleri üzerinden makine-makine iletişimi şeklindedir. Abone

veri tabanı üzerinde kişisel veriler tutulmamaktadır.

Sistem AWS bulut bilişim sağlayıcısı üzerinde 29 Ekim 2019 tarihinden bu yana

çalışmaktadır. Sistemde bu süre yapılan kod iyileştirmeleri dışında bulut bilişim

altyapısının yönetilmesi gerekmemiştir. Güncel abone kullanıcı sayısı 8 Mayıs 2022

tarihi itibari ile 3025’dir. AWS bulut bilişim sağlayıcısı HoF modelindeki sunucusuz

hesaplama hizmeti AWS Lambda için aylık bir milyonuncu çalışmasından sonra

ücretlendirmeye başlamaktadır. Sistem bugüne kadar bu kullanım miktarına

erişmediği için herhangi bir ekonomik maliyet oluşturmamıştır.

4.6 Sunucusuz Mekânsal Analiz İş Akışı Sistemi Tasarımı, Uygulaması ve

Değerlendirmesi

Mekânsal bilgi teknolojileri büyük veri analizi projelerinin giderek önemli bir parçası

hatta ana konusu olmaya başlamıştır. Sunucusuz mimarilerin bu kapsamda

değerlendirilmesi ise teknik zorlukları nedeniyle henüz yeterince ilgi görememektedir

(Baldini ve diğ, 2017). Her ne kadar sunucusuz mimarilerin mekânsal veri

analizlerinde kullanılması literatürde çok fazla yer almasa da bu konu mekânsal

olmayan veri analizi çalışmaları içerisinde giderek artan bir ilgi görmektedir.

89

Günümüzde halen klasik CBS araçlarıyla mekânsal veri analizi iş akışları

tasarlanmakta ve bu iş akışları genelde kullanıcının kişisel bilgisayarı üzerinde

çalıştırılmaktadır. Coğrafi veri kaynaklarının çoğalması ve üretilen veri miktarının

büyümesi ile bu klasik yaklaşımlarla veri analizinin yapılması verinin büyüklüğü

nedeniyle zorlaşmaktadır. Klasik yaklaşımlara alışmış bir kullanıcının doğrudan bulut

bilişim teknolojileri üzerinde çalışan dağıtık karmaşık veri analizi sistemlerine geçişi

de ileri düzey bulut bilişim eğitimi gerektirmekte ve zaman almaktadır. Bu geçişin

kolaylaştırılması için bulut bilişim altyapısının yönetimini soyutlayan sunucusuz

mimariler tercih edilebilir. Böylece kullanıcı daha az altyapı yönetimi ile uğraşırken

daha çok veri analizini yapacak uygulamaya veya algoritmaya yoğunlaşabilir.

Bu tez çalışmasında sunucusuz mimariler üzerinde çalışan mekânsal veri analizi iş

akışı sisteminin tasarımı ve uygulaması sunulmuştur (Pakdil ve Çelik, 2021b). Bu

tasarım ile ileri düzey bulut bilişim altyapı yönetimi bilgisi olmayan kullanıcılar veri

analizi görevlerini bulut bilişim platformlarında sunulan yüksek işlem gücü hacmi ve

düşük çalıştırma maliyetlerinden faydalanarak çalıştırabilirler. Tasarımda sunulan

mimari ile iş akışındaki adımlar sıralı veya paralel şekilde bir akış içerisinde

birbirlerine durum aktararak çalışabilmektedir.

Sistem tasarımında kullanıcıların iş akışlarını tasarlayabilecekleri bir iş akışı modeli

ve tanımı da sunulmuştur. Bu iş akışı tanımı hem makinelerin hem de insanların

kolayca okuyup yazabileceği şekilde tasarlanmıştır. Böylece kullanıcılar karmaşık iş

akışlarını kolayca yazarak çalıştırabilir, diğer kullanıcılarla paylaşabilir veya kod

depolarında arşivleyebilir.

4.6.1 Tasarım

Senaryo

Sistem mimarisi tasarımında kullanılan senaryoda CBS kullanıcıları tasarladıkları

mekânsal veri analizi iş akışlarını sisteme yükleyerek çalıştırırlar. İş akışı sistemi gelen

iş akışlarını çeşitli kapalı veya açık coğrafi veya coğrafi olmayan veri kaynaklarından

okuyarak adım adım çalıştırır. Üretilen analiz sonuçları da CBS kullanıcısının

indirebileceği şekilde saklanır (Şekil 4.20).

90

Şekil 4.20 : Mekânsal analiz iş akışı sisteminin kullanım senaryosu.

Sistemdeki uygulama geliştiriciler de iş akışlarında kullanılabilecek iş akışı görevlerini

sisteme ekleyerek CBS kullanıcılarının mekânsal analiz iş akışı tasarımlarında birer

adım olarak kullanabilmeleri için yayınlarlar.

Gereksinimler

Mekânsal analiz iş akışı sistem mimarisinin tasarımında dikkate alınan gereksinimler

aşağıdaki şekilde belirlenmiştir.

1. CBS kullanıcıları iş akışı tasarımlarını bir iş akışı tanımına göre

yazabilmelidirler. Oluşturulan iş akışı tasarımları makine ve insan tarafından

kolay okunabilir, arşivlenebilir ve paylaşılabilir bir formatta olmalıdır.

2. İş akışlarını çalıştırılmadan önce doğrulamalıdır. Doğrulama kuralları

belgelenerek kullanıcı ile paylaşılmalıdır.

3. İş akışı doğrulama hataları kullanıcıya detaylı bir şekilde iş akışını çalıştırmadan

önce bildirilmelidir.

4. Doğrulamadan geçen iş akışları kullanıcılar tarafından çalıştırılabilmek üzere

saklanır.

5. İş akış tasarımları içerisinde paralel ve tekrarlı işlemler çalıştırılabilmelidir.

6. Tekrarlı işlemler eş zamanlı olarak çalıştırılabilmelidir. Örneğin, on kez tekrar

edecek bir işlem eş zamanlı olarak paralel iki koldan çalışarak beş döngüde

tamamlanabilmelidir.

7. İş akışlarındaki adımlar tasarımdaki sıraya göre çalıştırılmalıdır.

8. Bir iş akışı adımını çıktısı sonraki bir iş akışı adımına girdi olarak

verilebilmelidir.

9. İş akışlarının girdi ve çıktıları olabilir.

91

10. Bir iş akışı girdisi işi akışındaki adımlara girdi olarak verilebilmelidir.

11. Bir iş akışı adımının çıktısı iş akışı adımlarının çıktılarından biri olmalıdır.

12. İş akışı analizinin çalışma sonuçları kalıcı bir depolama alanında saklanmalıdır.

13. İş akışı adımları çeşitli açık veya dahili veri kaynaklarını kullanabilmelidir. Bu

nedenle sistemin internet erişimi olmalıdır.

14. İş akışı tasarımlarında kullanılabilecek yeni iş akışı görevleri sisteme eklenebilir

olmalıdır.

15. İstemci uygulamalar OGC API Processes tanımına uygun istek gönderip cevap

alabilmelidir.

16. Uygulama geliştiriciler yeni iş akışı görevleri ekleyip çıkarabilmelidir.

17. Uygulama geliştiriciler bir iş akışı görevini girdileri ve çıktıları olacak şekilde

tanımlamalıdır. Girdi ve çıktıların türleri de tanımlamada belirtilmelidir. Bu

tanımlamalar iş akışı sisteminin iş akışlarını doğrulamasında kullanılmalıdır.

18. Sistem sunucusuz mimariye uygun tasarlanmalı ve sunucusuz servislerle

çalışabilmelerdir.

19. Sistemdeki uygulamaların sürümleri önce test sonra yayın ortamına alınmalıdır.

Test ortamında hatası bulunan uygulamanın yeni sürümü yayınlanmamalıdır.

20. Sistemdeki uygulamalar için geliştirilen kodlar kod deposunda saklanmalı ve

sürüm yayınlama otomasyonu üzerinden yayınlanmalıdır.

Roller

Uygulama geliştirici rolü sistemin takibi, sistemin bakımı ve yeni iş akışı görevlerinin

eklenmesi ve güncellenmesinden sorumludur. Bu roldeki kullanıcılar sistemdeki

izleme ve yönetim bileşenlerine erişim hakkına sahiptir. Uygulama geliştirici aynı

zamanda yeni iş akışı görevlerinin kod geliştirmesini de yapar. Bu nedenle uygulama

geliştirici bir iş akışı görevinin nasıl geliştirileceğinin eğitimini almış ve gerekli araç

ve vasıflara sahip olmalıdır. Geliştirilen yeni iş akışı görevlerinin dokümantasyonunun

yapılması da uygulama geliştiricinin sorumluluğundadır. Bu belgelendirme yapılırken

iş akışı görevindeki girdilerin ve çıktıların, çalışan algoritmanın açıklamaları CBS

kullanıcıları tarafından anlaşılabilecek şekilde sade ve kolay okunabilir olmalıdır.

Tasarlanan sistem sunucusuz mimaride olduğundan altyapı yönetimi platform

sağlayıcısı tarafından yapılacaktır, bu nedenle uygulama geliştiricinin ileri düzey bulut

bilişim altyapı yönetimi bilmesi gerekmemektedir.

92

CBS kullanıcısı sistemde tanımlı olan iş akışı görevlerini kullanarak bir iş akışı

tanımlar, sisteme ekler ve çalıştırır. Bu nedenle sistem tarafından sunulan iş akışı

çalıştırma ve ekleme servislerine erişime sahip olmalıdır. Bir CBS kullanıcısı sisteme

diğer CBS kullanıcıları tarafından eklenen iş akışlarını yeniden farklı girdilerle

çalıştırabilir. CBS kullanıcısı iş akışı görevlerinde kullanılacak veri kaynaklarını

belirler ve iş akışı görevlerinin bu veri kaynaklarıyla uyumluluğunu kontrol eder.

Örneğin OGC WMS standardındaki bir harita servisi ile uyumlu olmayan bir iş akışı

görevinin uyumlu olacak şekilde geliştirilmesi için uygulama geliştiriciyle birlikte

çalışabilir. CBS kullanıcısı sistemdeki iş akışı görevlerini listeleyebilir, bir iş akışı

görevine ait belgelendirmeye ulaşabilir.

Sistem tasarımı ve bileşenleri

Şekil 4.21’de sunulan sistem tasarımı Pakdil ve Çelik’in (2021) çalışmasından

yararlanılarak tasarlanmış ve gösterilmiştir. Sunulan sistem tasarımındaki tüm

bileşenler sunucusuz mimari ile çalışabilir.

Şekil 4.21 : Mekânsal analiz iş akışı sisteminin tasarımı.

Sistemde kullanıcıların servislere erişim yapabilmesi için bir istemci uygulama

konumlandırılmamıştır. Sistemde kullanıcıların kullanımına sunulan tüm servisler

REST (Representational State Transfer) mimarisindedir. OGC API Processes

standardı da REST mimarisine uygundur. Bu nedenle kullanıcıların bu mimariye

93

uygun seçebilecekleri herhangi bir REST istemci uygulama veya geliştirilebilecek bir

grafik ara yüzü uygulaması sistemdeki servislerle çalışmak için kullanılabilir.

İş akışı yönetim servisi bileşeni iş akışlarının çalıştırılmasını ve takibini sağlayan

servisler sunar. Bu servis kullanıcıdan gelen bir iş akışını doğrulayarak veri tabanına

kaydeder. Kaydedilen iş akışının daha sonra çalıştırılabilmesini sağlar. Kullanıcı

çalışan iş akışının durumunu bu servis üzerinden takip edebilir. Çalışan iş akışının

ihtiyacı olan iş akışı görevlerine ait konteynerlerin yaşam döngülerini yönetir.

Kullanıcıların çalışması tamamlanan iş akışının artifakt (artifact) ve parametre

çıktılarına ulaşılabilmesini sağlar. Sunulan tasarımda iş akışlarının işleyecekleri veri

miktarlarının büyüklüğü ve konteyner yaşam döngülerinin uzunluğu gibi nedenlerden

iş akışlarının uzun süreler çalışabileceği dikkate alınmıştır. Bu nedenle iş akışı yönetim

servisi bileşeninin sunduğu servisler asenkron istek-cevap modeline göre

çalışmaktadır. Örneğin, bir iş akışını çalıştırma isteğini iş akışı yönetim servisi, veri

tabanı ve konteyner servisiyle birlikte çalışarak işi başlatır. Başlayan iş akışına ait iş

takip numarası istemciye geri döndürüldükten sonra iş akışı yönetim servisi

çalışmasını tamamlar. Bu çalışma modeli sayesinde iş akışı yönetim servisi HoF

modelindeki hesaplama hizmetlerinde kolaylıkla çalışabilir. Şekil 4.22’de bileşenler

arasındaki etkileşim Pakdil ve Çelik’in (2021) çalışmasından yararlanılarak

görselleştirilmiştir.

94

Şekil 4.22 : İş akışı yönetim servisi bileşeninin diğer bileşenlere çalışması ve OGC

API Processes işlemlerinin kullanımı.

İş akışı yönetim servisi iş akışlarını her çalıştırmadan önce de doğrular. Bu sayede

daha önce kaydedilmiş bir iş akışı tanımı çalışmaya başlamadan önce güncel iş akışı

görevleri ile doğrulanır. Eğer iş akışı tanımı sistemde kayıtlı iş akışı görevleri ile artık

uyumlu değilse çalıştırılmayarak kullanıcıya bilgi verilir.

İş akışı yönetim servisi iş akışı tanımı ekleme işlemi hariç OGC API Processes

standartlarına uyumludur. OGC API Processes standardı mekânsal analiz işlemleri için

OGC WPS 2.0’dan sonra modern web teknolojileri dikkate alınarak geliştirilmiştir

(OGC, 2021). Bu standart 2021 yılının aralık ayında son haline kavuşmuştur. Henüz

yeni olduğu için mevcut CBS istemcileri tarafından desteklenmemektedir ancak kısa

zamanda geniş bir uygulama desteğine sahip olacağı düşünülmektedir. Bu standart

hem senkron hem de asenkron mekânsal analiz işlemlerini tanımlamaktadır ancak

tezde sunulan sistem tasarımı yukarıda açıklandığı üzere sadece asenkron çalışma

modeline destek vermektedir.

95

İş akışı çalışması tamamlandığında üretilen parametre ve artifakt çıktılar veri tabanı

ve iş akışı veri deposuna türüne göre kaydolur. Parametre çıktılar veri tabanına, artifakt

çıktılar ise veri deposuna kaydolur. İş akışı sonucu eğer artifakt çıktı varsa bu çıktının

geçici indirme adresi, eğer parametre çıktısı varsa analiz sonucunın cevabı içerisinde

olacak şekilde kullanıcıya sağlanır.

Konteyner servisi ve iş akışı yöntem sistemi birlikte çalışırlar. Çalışma esnasında iş

akışı adımlarının kullandığı iş akışı görevlerine ait konteyner imajları konteyner

servisi üzerinde çalıştırılır. Çalışmasını tamamlayan konteyner iş akışı yönetim

sistemine bildirimde bulunarak kapatılmasını talep eder. İş akışı yönetim sistemi

konteynerleri çalıştırırken konteynerin ortam değişkenlerini de günceller. Örneğin

konteyner uygulaması iş akışı yönetim servisi ile hangi adres üzerinden

haberleşeceğini ortam değişkenlerinden okur.

İş akışı adımları çalışma sonunda ürettikleri parametre ve artifakt türündeki veriler veri

tabanı ve iş akışı veri deposuna kaydedilir. Bunun için konteynerdan iş akışı yönetim

sistemine çıktının kaydı için istek yapılır. Aritfaktların veri deposuna yüklenmesi için

yapısal olmayan veri depolama hizmetinin API servisi ile geçici yükleme adresleri

üretilir. Parametre çıktılar ise iş akışı yönetim sistemi aracılığı ile veri tabanına

kaydedilir.

Konteyner servisi iş akışı görevlerine ait konteyner imajlarının çalıştırıldığı bileşendir.

Sunulan sistem tasarımında konteyner servisi HoK modelinde çalışan bir sunucusuz

hizmet olarak seçilmiştir. Konteyner servisi üzerinde çalışan konteynerlerin

gerektiğinde ulaşılmak istenen harici veri kaynaklarına erişim yetkisi olmalıdır. Bu

nedenle ağ yapılandırması buna izin vermelidir. Konteyner servisi ile iş akışı yönetim

servisinin birlikte çalışabilmesi için servis tarafından konteyner yaşam döngüsünün

yönetilebileceği servisler API olarak sunulmalıdır.

İş akışı görevleri yönetim servisi bileşeni sistemdeki bir diğer REST mimarisindeki

yönetim servisidir. Bu servis uygulama geliştirici rolündeki kullanıcıların kullanması

için tasarlanmıştır. Servis üzerinden sisteme yeni iş görevleri eklenebilir, mevcut

görevler güncellenebilir veya kaldırılabilir. İş akışı görevleri birer konteyner imajına

bağlı olarak çalışırlar bu nedenle iş akışı görevi eklenmeden önce konteyner imajının

varlığı konteyner imaj deposuna sorularak kontrol edilir. Silinen iş akışı görevine ait

konteyner imajı da bu servis tarafından konteyner imaj deposundan silinir (Şekil 4.23).

96

İş akışı görevleri yönetim servisi HoF modelindeki hesaplama hizmetlerinde

çalışabilecek şekilde tasarlanmıştır.

Şekil 4.23 : Konteynerlerin yaşam döngüsünün iş akışının çalışması ile ilişkisi

(Pakdil ve Çelik, 2021b).

Konteyner imaj deposu iş akışı görevlerine ait konteyner imajlarının depolandığı

bileşendir. Bu depo üzerindeki imajlar konteyner servisi bileşeni tarafından çekilerek

çalıştırılırlar. Bu depoya aynı zamanda uygulama geliştiricilerin de erişim yetkisi

vardır. Uygulama geliştirici, yeni konteyner imajlarını bu deponun sunduğu API’lar

aracılığı veya sürüm yönetim sistemi yardımı ile yükleyebilir.

Sunucusuz API yönetim hizmeti iş akışı ve iş akışı görevleri servisini tek bir API adresi

üzerinde toplamak ve güvenliklerini tek merkezden sağlamak üzere kullanılmıştır

(Çizelge 4.11). Bu servis gelen HTTPS isteklerini arkasındaki servislere ileterek

97

cevapları istemcilere geri döndürür. Sunucusuz API yönetim hizmeti REST mimarisini

ve servislere istekleri iletmede JSON formatını desteklemektedir.

Çizelge 4.11 : Sunucusuz API yönetimi servisinin adres tablosu ve karşılık gelen

bileşenler (Pakdil ve Çelik, 2021b).

Adres Açıklama Bileşen

/processes/*

/jobs/*

/workflows/*

/stepexecutions/*

OGC API Processes ve iş akışı yönetim
İş Akışı Yönetim

Servisi

/tasks/* İş akışı görevleri yönetimi
İş Akışı Görevleri

Yöntem Servisi

Veri tabanı bileşeni için herhangi bir sunucusuz yapısal veya ilişkisel veri tabanı

hizmeti seçilebilir. Uygulama tasarımlarının veri depolama ihtiyaçlarına göre veri

depolama hizmeti türü seçilebilir. Burada dikkat edilmesi gereken bir husus da seçilen

veri depolama hizmetinin uygulamanın geliştirildiği programlama dilindeki desteğinin

olmasıdır.

Günlük tutma servisi sistem tasarımındaki bileşenlerde meydana gelen hata ve diğer

günlük kayıtlarını tutar. Uygulama geliştirici bu servisten faydalanarak hata

kayıtlarına erişebilir ve uygulamalardaki hataların kök nedenlerini bularak çözebilir.

Bu servis ayrıca sistem bileşenlerine ait metrikleri de tutarak performans analizlerinin

yapılmasını sağlamaktadır. Uygulama geliştirici bu bilgileri değerlendirerek

uygulamaların iyileştirilmesi için kararlar ve aksiyonlar alabilir.

Ayar saklama servisi, iki yönetim servisinin veri tabanına, konteyner servisine ve iş

akışı veri deposuna güvenli ulaşabilmesi için ayar parametrelerini saklar. Bu

parametreler sürüm saklama otomasyonu üzerinden güncellenebilir.

Bu tez çalışmasında ayrıca iş akışı görev tanımı ve iş akışı tanımı modellenerek

tasarlanmıştır. Bu tanımlar YAML (Yet Another Markup Language) dilinde

geliştirilmiştir. Bu dilin seçilme nedeni ise daha okunabilir ve sade olmasıdır. Örneğin

JSON dili ile karşılaştırıldığında YAML dilinde {}, [] ve "" işaretlerinin kullanılmadığı

görülmektedir. Bu da YAML dilini insanlar için JSON’a göre daha kolay okunan ve

yazılan bir dil yapmaktadır. Bunlarla birlikte iş akışı görevlerinde kullanılacak

konteyner imajları için de bir baz konteyner imajı geliştirilmiştir. Baz konteyner

imajının geliştirilmesi için yaygın olarak kullanılan Docker teknolojisi kullanılmıştır.

98

İş akışı görev tanımı

İş akışı görevleri iş akışları içerisinde birer adım olarak kullanılırlar. Bir iş akışı görevi

bir konteyner imajı ile ilişkilidir. Bu konteyner imajı içerisinde iş akışı görevinde

tanımlanan girdiler kullanılarak çalıştırılan yazılım kodu ile çıktılar üretilir. İş akışı

görevleri iş akışlarının en küçük yapı taşıdır. Şekil 4.24’ta bu tez çalışmasında

tanımlanan iş akışı görevi tanımı formatı gösterilmiştir.

Şekil 4.24 : İş akışı görev tanımı formatı (Pakdil ve Çelik, 2021b).

Bir iş akışı görevini tanımlamak için kurallar belirlenmiştir. Bu kurallar Çizelge

4.12’de verilmiştir. İş akışı görevleri yönetim servisi yeni bir iş akışı görevini sisteme

eklemeden önce bu kuralları kullanarak doğrulama işlemini gerçekleştirir.

Çizelge 4.12 : İş akışı görev tanımı doğrulama kuralları (Pakdil ve Çelik, 2021b).

Özellik Adı Doğrulama Kural(lar)ı

Name

• Boş değer olamaz

• İzin verilen karakterler; Alfa numerik, -, _

• Verilen değer başka bir iş akışı görevi tarafından

kullanılamaz.

Description Boş bırakılamaz

Image
• Boş değer verilemez

• Konteyner imajı konteyner deposunda mevcut olmalı

Inputs[n]:Name

Outputs[n]:Name

• Boş değer olamaz

• İzin verilen karakterler; Alfa numerik, -, _

• Verilen değer iş akışı görevi tanımı içerisinde başka bir

girdi veya çıktı tarafından kullanılamaz.

Inputs[n]:Type

Outputs[n]:Type

• Boş değer olamaz

• İzin verilen değerler; "artifact" veya "parameter"

İş akışı tanımı

İş akışı farklı iş akışı görevlerinin sırayla, paralel ve tekrarlı şekilde çalışmasını

tanımlayan kompozisyonlardır. Şekil 4.25’te tezde sunulan iş akışı modeli tanımında

kullanılan özellikler bir arada gösterilmiştir.

99

Şekil 4.25 : İş akışı tanımı formatı (Pakdil ve Çelik, 2021b).

İş akışı tanımı formatında kullanılan özelliklere ait kurallar Çizelge 4.13’te verilmiştir.

Bu kurallar iş akışı yönetim servisi tarafından her çalışma öncesinde kullanılarak iş

akışı tanımları doğrulanır.

100

Çizelge 4.13 : İş akışı tanımı doğrulama kuralları (Pakdil ve Çelik, 2021b).

Özellik Adı Doğrulama Kural(lar)ı

Name

• Boş değer olamaz

• İzin verilen karakterler; Alfa numerik, -, _

• Verilen değer başka bir iş akışı tarafından

kullanılamaz

Inputs

Outputs
Girdi ve çıktılar isteğe bağlıdır.

Inputs:Parameters[n]:Name Boş bırakılamaz

Outputs:Parameters[n]:Name

Outputs:Artifacts[n]:Name
Girdi ve çıktı isimleri boş değer olamaz

Outputs: Parameters [n]:Value

Outputs: Artifacts [n]:Value

• Boş değer olamaz

• Verilen değer referans formatında olmalıdır

• Verilen değer iş akışı içerisindeki bir

parametre veya artifakt adresi olmalıdır

Steps İş akışında en az bir adım tanımlanmalıdır.

Steps[n]:Id

• Boş değer olamaz

• İzin verilen karakterler; Alfa numerik, -, _

• Verilen değer iş akışı içerisinde başka bir

adım tarafından kullanılamaz

Steps[n]:Task

• Boş değer olamaz

• Bu değerlerden biri olabilir:

o Kayıtlı iş akışı görevi adı

o ForEach

o Parallel

Steps[n]:Iterate

Bu özellik Steps[n]:Task değeri

“ForEach” olarak verildiğinde

kullanılabilir

Steps[n]:Iterate:Collection
• Boş değer olamaz

• Referans değeri olmalıdır

Steps[n]:Iterate:MaxConcurreny 1 veya daha büyük bir değer olmalıdır.

Steps[n]:Iterate:Steps

• En az bir iş akışı adımı içermelidir

• Verilen diğer iş adımı kuralları

döngü içindeki kurallar için de

geçerlidir

101

Çizelge 4.13 (devam) : İş akışı tanımı doğrulama kuralları (Pakdil ve Çelik, 2021b).

Özellik Adı Doğrulama Kural(lar)ı

Steps[n]:Branches

• Bu özellik Steps[n]:Task değeri

“Parallel” ise kullanılabilir

• Çok boyutlu iş akışı adımları matrisi

şekildedir

• Her sütun paralel olarak çalışacak

adımları içerir

• En az bir iş adımları satırı olmalıdır

• Verilen diğer iş adımı kuralları

döngü içindeki kurallar için de

geçerlidir

Steps[n]:Inputs
İsteğe bağlıdır. İş adımında girdi

verilmeyecekse yok sayılır.

Steps[n]:Inputs:Parameters

Steps[n]:Inputs:Artifacts

İsteğe bağlıdır. İş adımında parametre veya

artifakt girdi verilmeyecekse yok sayılır.

Steps[n]:Inputs:Parameters[n]:Name

Steps[n]:Inputs:Artifacts[n]:Name

• Boş değer olamaz

• Verilen değer ilişkili iş akışı görevi

parametre veya artifakt girdi

isimlerinden biri olmalıdır

Steps[n]:Inputs:Parameters[n]: Value

• Boş değer olamaz

• Verilen değer kalıp deyim (literal)

veya referans değer olmalıdır

Steps[n]:Inputs:Artifacts[n]:Value

• Boş değer olamaz

• Verilen değer referans değer

olmalıdır

Steps[n]:Outputs
İsteğe bağlıdır. İş adımında çıktı yoksa

yok sayılır

Steps[n]:Outputs:Parameters

Steps[n]:Outputs:Artifacts

İsteğe bağlıdır. İş adımındaki çıktılar

kullanılmayacaksa yok sayılır

Steps[n]:Outputs:Parameters[n]:Name

Steps[n]:Outputs:Artifacts[n]:Name

• Boş değer olamaz

• Verilen değer ilişkili iş akışı görevi

parametre veya artifakt çıktı

isimlerinden biri olmalıdır

Sunulan iş akışı tanımı sıralı, paralel ve tekrarlı çalışma biçimlerini desteklemektedir.

Paralel ve tekrarlı çalışma biçimleri için “Parallel” ve “ForEach” iş akışı görevi

isimleri sistem tarafından rezerve edilmiştir. Uygulama geliştirici kendi yükleyeceği

iş akışı görevleri için bu isimleri kullanılamaz. Paralel ve tekrarlı iş adımları iç içe

çalıştırılabilir. Örneğin bir paralel iş akışı dalı tekrarlı iş akışı adımı içerebilir.

102

Referans değerler çıktıların ve iş akışı girdilerinin iş akışı adımlarına girdi olarak

aktarılabilmesi için kullanılır.

Çıktılara referans verilirken Denklem 4.1’e göre formüle edilerek yazılır.

{{step.[AdımAdı].[ÇıktıAdı]}} (4.1)

İş akışı girdilerine referans verilirken Denklem 4.2’ye göre formüle edilerek yazılır.

{{input.[GirdiAdı]}} (4.2)

Baz konteyner imajı ve iş akışı konteyner imajının yazımı

İş akışı görevlerinde kullanılan konteyner imajları Docker konteyner imajı tanımına

göre yazılmalıdır. Docker konteyner imajları kalıtım özelliklerini desteklemektedir

(Cito ve diğ, 2017). Örneğin bir imaj başka bir veya birkaç imajdan türetilebilir. Bu

çalışmada iş görevi tanımlarında kullanılacak konteyner imajları için bir baz konteyner

imajı tasarlanmıştır (Şekil 4.26). Bu baz imaj için iş akışı yönetim servisi ve iş akışı

veri deposu ile iletişim kuracak bir uygulama geliştirilmiştir. Bu uygulama iş akışı

görevi için geliştirilen kodu çalıştırmadan önce kodun ihtiyacı olan girdileri çeker.

Kodun çalışması sırasında üretilen günlük kayıtlarını da iş akışı yönetim sistemine

iletir. Kodun çalışması tamamlandığında ise üretilen çıktıları iş akışı yönetim sistemi

bileşeni ile çalışarak çıktı türüne göre veri tabanı ve iş akışı veri deposuna kaydeder.

Şekil 4.26 : İş akışı görevi konteyner imajı tanımı (Pakdil ve Çelik, 2021b).

103

4.6.2 Uygulama

Şekil 4.27 : Mekânsal analiz iş akışı sisteminin AWS bulut bilişim sağlayıcısı

üzerinde uygulaması.

Mekânsal analiz iş akışı sistemi tasarımı Şekil 4.27’de gösterildiği gibi AWS bulut

bilişim sağlayıcısına ait sunucusuz hizmetlerle uygulanmıştır (Pakdil ve Çelik, 2021b).

Bu tez çalışmasında AWS bulut bilişim sisteminin seçilmesinin nedeni konteyner

yönetimi aracının dahili otomatik ölçeklendirme ve Microsoft Azure’daki benzer

servise göre daha fazla bellek sunmasıdır.

Sistem tasarımındaki iş akışı yönetim servisi ve iş akışı görevleri yönetim servisi HoF

modelindeki sunucusuz hesaplama servisi olan AWS Lambda üzerinde çalışacak

şekilde geliştirilmiştir. Uygulamaların programlama dili olarak C# programlama dili

ve .Net Core çatkısı sürüm 3.1 seçilmiştir. Bu servislerin ikisi de HTTP isteği

olaylarıyla tetiklenecek şekilde çalışmakta ve ölçeklenmektedir.

İstemcilerden gelen istekleri alarak AWS Lambda servisine HTTP isteği olayı olarak

ileten Amazon API Gateway isimli servis sunucusuz API yönetim hizmeti olarak

kullanılmıştır. Servislerin güvenliği ve kullanıcıların rollere göre yetkilendirilmesi için

Amazon API Gateway ile AWS Cognito hizmeti birlikte kullanılabilir.

Veri tabanı hizmeti olarak Amazon DynamoDB servisi kullanılmıştır. Bu servis

sunucusuz yapısal veri depolama hizmeti sunmaktadır. Anahtar-değer veri tabanı

104

olduğu için veri tabanı modellemesi de buna göre yapılmaktadır. Tezde sunulan

sistemde OGC API Processes standartları kullanıldığı için bu standardın gerektirdiği

bilgiler de saklanmalıdır.

İş akışı veri deposu olarak Amazon S3 sunucusuz yapısal olamayan veri depolama

hizmeti seçilmiştir. Bu hizmet geçici URL (Uniform Resource Locator) adresleri

oluşturulmasına olanak vererek objelerin yüklenmesine ve indirilmesine imkân

vermektedir. Bu özellik sistem tasarımında konteynerler ve kullanıcılar ile güvenli veri

alışverişini sağlamıştır. Bu hizmet üzerinde iş akışı görevlerinin çalışması sonucu

oluşan artifakt çıktılar saklanmıştır.

Konteyner imaj deposu olarak Amazon Container Registry kullanılmıştır. Bu hizmet

üzerinde iş akışı görevi konteyner imajları ve sisteme ait iş akışı görevi baz imajı

saklanır. Saklanan imajlara verilen isimler aynı zamanda iş akışı görevi tanımlarında

da saklanarak çalışma anında doğru imajın depodan çekilmesi sağlanmış olur.

Konteyner servisi olarak Amazon Fargate kullanılmıştır. Bu hizmet HoK modelinde

sunucusuz olarak Docker konteynerlerin çalıştırılmasını ve orkestrasyonunu sağlar. Bu

hizmet ağ ayarları doğru yapılandırıldığında konteynerin harici veri kaynaklarına

erişmesine de izin verebilmektedir.

Sistemdeki bileşenlerin birbirleri ile olan erişim yetkileri AWS IAM hizmeti üzerinden

bileşenlere rol ataması yapılarak sağlanmıştır. Bunun yanında bileşenlerin ayar

saklama servisi kullanarak bir destek servisi ile iletişim kurması gerekmemiştir.

Amazon CloudWatch hizmeti ile tüm bileşenler takip edilmektedir. Bu servis

bileşenlerin hata günlüklerini merkezi bir yerde tutarak izlenebilmesini sağlamaktadır.

Bunun yanında sistem bileşenlerine ait performans metrikleri de bu servis üzerinden

takip edilebilmektedir.

Örnek mekânsal analiz iş akışları

Sistemin çalışmasının daha iyi anlaşılabilmesi için iki örnek uygulama sunulmuştur.

İlk uygulamada sel taşkın analizi yapmak üzere Lawhead, 2019 tarafından geliştirilen

mekânsal taşkın analizi bu sitem üzerinde iş akışına çevrilerek uygulanmıştır.

Çalışmadaki mekânsal analiz ile sayısal yükseklik modelleri (SYM) kullanılarak basit

bir taşkın analizi yapılmaktadır. Bu analiz Şekil 4.28’de gösterildiği gibi bir iş akışına

çevrilmiştir.

105

Şekil 4.28 : Mekânsal taşkın analizinin iş akış şeması (Pakdil ve Çelik, 2021b).

Çalışmada verilen Python dilindeki taşkın analizi kodu “FloodFill” isimli iş akışı

görevine dönüştürülmüş ve konteyner imajı olarak yayınlanmıştır. Analizde girdi

olarak kullanılacak sayısal yükseklik modellerini bir internet kaynağından indirmek

üzere “DownloadUrl” isimli bir iş akışı görevi geliştirilerek yayınlanmıştır. Taşın

analizi sonucu üretilen raster verinin vektör poligon verisine dönüştürülmesi adımı için

de “Polygonize” isimli iş akışı görevi ve konteyner imajı yayınlanmıştır. Toplamda üç

farklı görev için üç konteyner imajı oluşturulmuştur. Çalışmada girdi olarak kullanılan

veriler ise Lawhead, 2019 çalışmasından alınmıştır. İş akışı Şekil 4.29’da gösterildiği

gibi iş akışı tanımı kurallarına göre yazılmıştır.

106

Şekil 4.29 : Taşkın analizinin iş akışı tanımına göre yazılımı (Pakdil ve Çelik,

2021b).

107

Bir diğer örnek uygulamada ise paralel ve döngü işlemlerinin birlikte raster analizi için

kullanımı incelenmiştir. Böylece sistemdeki iki farklı türdeki dahili iş akışı görevi

birlikte denenmiştir (Şekil 4.30).

Şekil 4.30 : Paralel ve tekrarlı iş akışı görevlerinin raster analizi için iş akışı

içerisinde birlikte kullanımı (Pakdil ve Çelik, 2021b).

Bu iş akışında önceki örnekte kullanılan sayısal yükseklik modelini indirmek için

kullanılan “DownloadUrl” isimli iş akış görevi yeniden başka bir iş akışında

kullanılabilmiştir. Raster verilerine bakı ve eğim analizi yapabilmek için Lawhead,

2019 çalışmasında verilen örnek Python kodu bu çalışmada “ProcessDem” isimi iş

akışı görevi ve konteyner imajı olarak yayınlanmıştır. Ayrıca iş akışına SYM verisinin

projeksiyonunu değiştiren bir iş akışı görevi de yine Python dilinde geliştirilerek iş

akışı görevi ve konteyner imajı olarak “ReprojectRaster” ismi ile yayınlanmıştır. Bu

iş akışı görevi iş akışı içerisinde paralel olarak çalışacak şekilde kullanılmıştır. İş akışı

Şekil 4.31’de gösterildiği gibi iş akışı tanımı kurallarına göre yazılmıştır.

108

Şekil 4.31 : Sayısal yükseklik modellerinde eğim ve bakı analizi iş akışının geliştirilen tanımlama modeline göre yazımı (Pakdil ve Çelik,

2021b).

109

4.6.3 Değerlendirme

Mekânsal analiz iş akışı sistemi tasarımı ve uygulaması Çizelge 4.14’te gösterildiği

gibi 12 Faktör yöntemine göre değerlendirilmiştir. Geliştirilen sistemde HoF ve HoK

modelindeki sunucusuz hesaplama servisleri kullanılmıştır. Bu nedenle 12 Faktör

yöntemindeki “Yönetim Süreçleri” hariç diğer prensipler doğrudan uygulanmıştır ve

değerlendirilmiştir.

Çizelge 4.14 : Mekânsal analiz iş akışı sisteminin 12 Faktör yöntemine göre

değerlendirilmesi.

Prensip Adı Değerlendirme

Kod Deposu
Uygulama geliştirici geliştirdiği uygulamaları ve iş akış

görevlerine ait kodları kod deposu üzerinde arşivlemektedir.

Bağımlılıklar

Bağımlılıklar prensibi HoK modeline çalışan iş akışı görevleri

için değerlendirilebilir. Sistemde bu servis üzerinde çalışacak

konteyner imajları oluşturulurken çalışacak kodun ihtiyaç

duyacağı kütüphanelerin yüklenmesi imaj dosyası tanımlanırken

belirtilir. Örneğin uygulamada GDAL, Rasterio gibi mekânsal

veri kütüphaneleri kullanılacaksa bunların işletim sistemi

üzerindeki bağımlılıkları imaja yüklenmelidir.

Ayarlar

Bu sistemde uygulamaların diğer destek servislerine

bağlanabilmesi için gereken parametrelerin saklanması için ayar

servisi kullanılmıştır. Uygulamada ise bir ayar servisine gerek

olmadan AWS IAM servisinden bileşenler rol bazlı

yetkilendirilerek birbirleri ile iletişim kurmuşlardır.

Destek

Servisleri

Geliştirilen iş akışı yönetim servisi ve iş akışı görevleri yönetim

servisi uygulaması veri tabanı ve iş akışı veri deposu destek

servislerine ağ üzerinden bağlanmışlardır.

Derle, Yayınla

ve Çalıştır

Uygulama geliştirici sürüm yayınlama süreçlerinin

otomasyonundan sorumludur. Bu otomasyon aynı zamanda iş

akışı görevlerinin konteyner imajlarının yayınlanması içinde

kullanılabilir.

Süreçler

Sistem tasarımı uygulanırken HoK modelinde çalışacak

konteynerlerin durumsuz çalışması gerekmektedir. Bir analiz

işlemi bir sonraki analiz işlemine durum aktarmamaktadır.

Port Bağlama

Sistem tasarımında HoK modeli üzerinde çalışan konteynerlere

dışardan erişim gerekmediği için port bağlama prensibinin

uygulanması da gerekmemiştir.

110

Çizelge 4.14 (devam) : Mekânsal analiz iş akışı sisteminin 12 Faktör yöntemine göre

değerlendirilmesi.

Prensip Adı Değerlendirme

Eş Zamanlılık

Sistemdeki iş akışı yönetim servisi ve iş akışı görevleri yönetim

servisi bileşenleri eş zamanlı olarak çalışmaya uygundur. Bu

bileşenlerin eş zamanlı çalışmasına katkı sağlamak için

sunucusuz API yönetim hizmeti servisi de kullanılmıştır.

Sistemde kullanılan konteyner servisi ise aynı anda birden fazla

iş akışı adımını çalıştırması gerekebileceğinden eş zamanlı

çalışmaya uygundur. Uygulamada da AWS Fargate servisi bu

husus dikkate alınarak seçilmiştir.

Kullanılabilirlik

Uygulamadaki yönetim servisi bileşenleri birer istek-cevap

modeli ile çalışan uygulamalardır. Cevap üretildikten sonra

çalışmaları sonlanır. Bu süreç ise HoF çalışma modelinde

platform sağlayıcısı tarafından yönetilmektedir. Ayrıca iş akışı

görevi uygulamaları da konteyner içerisinde görevlerini

tamamladıktan sonra iş akışı yönetim servisi bileşenine

kapanmalarının sağlanması için istek yollamaktadırlar.

Geliştirme, Test

ve Yayın

Ortamlarının

Benzerliği

Uygulama geliştirici sistem tasarımını test ve yayın ortamlarında

birbirlerine benzeyecek şekilde yayınlar. Geliştirmeler uygulama

geliştiricinin bilgisayarında yapılmaktadır.

Günlük Tutma

Sistem bileşenleri tarafından üretilen günlük kayıtları için günlük

tutma servisi bileşeni eklenmiştir. Uygulamada ise Amazon

CloudWatch günlük tutma ve performans metriklerinin izlenmesi

servisi kullanılmıştır.

111

Sistem tasarımı ayrıca mimari değerlendirme ölçütlerine göre Çizelge 4.15’de

değerlendirilmiştir (Pakdil ve Çelik, 2021b).

Çizelge 4.15 : Mekânsal zekâ sisteminin bulut bilişim sağlayıcısı mimari

değerlendirme ölçütlerine göre değerlendirilmesi.

Ölçüt Adı Değerlendirme

Performans

Verimliliği

Sistemdeki bileşenlerin performans verimlilikleri uygulama

geliştiricinin sorumluluğundadır. Sistem bileşenlerinin

geliştirilmesi için seçilen algoritma ve teknolojiler belirleyici

olmaktadır. Aynı durum iş akışı görevlerinin gerçekleştirileceği

konteyner uygulamaları için de geçerlidir. Bu durumlar haricinde

sistemin uygulamasında performans verimliliğine dezavantaj

olabilecek servisler kullanılmamıştır.

Güvenilirlik

Sistem bileşenleri günlük tutma servisi ile izlenerek hatalar takip

edilmektedir. Kullanıcıdan gelen isteklerde yönetim servislerinde

gerçekleşen hatalarda kullanıcıya istek cevabı içerisinde bilgi

verilmektedir. İş akışı görevlerine ait uygulamalarda meydana

gelen hatalar ise konteyner baz imajındaki uygulama üzerinden

takip edilmekte ve iş akışı yönetim servisine bildirilmektedir.

Güvenlik

Sistemdeki kullanıcı ve bileşenlerin erişim yetkileri detaylı bir

şekilde tanımlanmıştır. Örneğin CBS kullanıcısının iş akışları

görevleri yönetim servisine erişim yetkisi bulunmamaktadır.

Sistem bileşenlerinde benzer duruma örnek olarak; iş akışı

yönetim servisinin konteyner imaj deposuna erişim yetkisi

bulunmaması verilebilir.

112

113

5. SONUÇ VE ÖNERİLER

Sunucusuz bulut bilişim teknolojilerinde yaşanan gelişim coğrafi bilgi teknolojilerini

de etkilemektedir. Bu etkileşimin sonuçları bu tez çalışmasında detaylı olarak farklı

CBS senaryoları üzerinden incelenmiştir. Her bir senaryo için sistem tasarımları

geliştirilerek benzer uygulamalar için öncü sistem mimarileri ortaya konmuştur.

Sunucusuz bilgi teknolojileri sunucusuz veri depolama ve hesaplama olarak iki ana

başlık altında incelenmiştir. Her bir veri depolama ve hesaplama hizmet modeli

özellikleri üzerinden açıklanmıştır. Açıklanan hizmet modelleri tezde sunulan sistem

tasarımlarında kullanılmıştır. Özellikle bu hizmet modellerinin mekânsal bilişim

yeteneklerini öne çıkaran tasarımlar geliştirilmiştir.

Sunucusuz veri depolama hizmetleri yapısal ve yapısal olmayan şeklinde iki grupta

Bölüm 2.1’de incelenmiştir. Yapısal veri depolama hizmetlerinde çizge, belge, sütun

ailesi, anahtar-değer gibi farklı veri yapıları olduğu görülmüştür. Bu veri yapıları için

yaygın olarak kullanılan SQL yerine kendilerine ait sorgulama yöntemleri veya dilleri

olduğu görülmüştür. Sunucusuz ilişkisel veri depolama hizmetleri yapısal veri

depolama hizmetleri başlığı altında incelenmiştir. CBS uygulamalarında yaygın olarak

kullanılan SQL dili ve ilişkisel veri modelleri için destek ilişkisel sunucusuz veri

depolama hizmetleri tarafından sunulmaktadır. Yapısal veri depolama hizmetlerinin

ilişkisel veri depolama hizmetlerine göre daha ölçeklenebilir olduğu ve bazı

senaryolarda daha iyi performans verebileceği görülmüştür. Bu nedenle sunucusuz

mimarideki CBS uygulamalarında eğer zorunlu değilse ilişkisel veri depolama yerine

yapısal veri depolama hizmetlerinin tercih edilmesinin avantaj sağlayacağı

düşünülmektedir.

Tez çalışmasında incelenen sunucusuz veri depolama hizmetlerinin mekânsal veri

desteklerinin birbirlerinden farklı olduğu görülmüştür. Genel olarak OGC’nin

koyduğu veri ve sorgulama standartları takip edilmiştir. Bulut bilişim sağlayıcıları

üzerinde sunucusuz veri depolama hizmetlerini kullanarak bir CBS uygulaması

geliştirilmek istendiğinde bu farklar incelenerek platform ve teknoloji seçimi

yapılmalıdır.

114

Sunucusuz hesaplama hizmetleri fonksiyon (HoF) ve konteyner (HoK) olarak iki farklı

model üzerinden incelenmiştir. HoF ve HoK modelinin birer konteyner yönetimi

modeli olduğu belirtilmiştir. HoF modelinin HoK modeline göre daha fazla altyapı

yönetimini soyutlayan model olduğu görülmüştür. Buna karşın işletim sistemi

üzerinde çalışmadan önce kurulması gereken bağımlılıkları olan CBS uygulamalarının

HoF modelinde çalışmaya uygun olmadığı değerlendirilmiştir. Bu nedenle HoK

modelinin özel kurulum gerektiren mekânsal uygulamalarda kullanılması

önerilmektedir.

HoF modelinde uygulamaların olay güdümlü olarak çalışabileceği belirtilmiştir. Olay

üzerine tetiklenen HoF modelindeki uygulama çalışmadan önce soğuk başlatma veya

sıcak başlatma süreçlerinden geçmektedir. Bu nedenle HoF modelindeki bir uygulama

çok nadir çalışıyor ve çalışacağı zaman hemen cevap vermesi gerekiyorsa fonksiyonun

belirli aralıklarla tetiklenerek sıcak tutulması gerekmektedir. Bu durumun maliyet

optimizasyonuna etkisinin olumsuz yönde olacağı da dikkate alınmalıdır.

Tezde ortaya konan sistem tasarımlarında iki sunucusuz hesaplama modeli

aralarındaki farklar dikkate alınarak seçilmiş ve kullanılmıştır. Kullanılma nedenleri

tasarımlar açıklanırken irdelenerek gelecekteki çalışmalar için yönlendirici olması

hedeflenmiştir.

Bu tez çalışmasında sunucusuz bulut bilişim sağlayıcılarının yaygınlıkları dikkate

alınarak en çok kullanılan iki sağlayıcının sunucusuz mimarideki hizmetleri mekânsal

bilişim bakış açısıyla incelenmiştir. İki sağlayıcının da Bölüm 2’de verilen sunucusuz

mimarideki hizmet türlerinin tamamı için çözüm sunduğu görülmüştür. Verilen

hizmetler karşılaştırıldığında birbirlerine göre farkları olduğu görülmüştür.

Sunucusuz yapısal veri depolama hizmetlerinde öne çıkan fark Microsoft Azure bulut

bilişim sağlayıcısının daha çok farklı veri türünde hizmet sunması olmuştur. İlişkisel

veri depolama alanında AWS bulut bilişim sağlayıcısının sunduğu PostgreSQL tabanlı

sunucusuz ilişkisel veri depolama hizmeti PostGIS eklentisi ile daha fazla coğrafi veri

türü desteği ve coğrafi sorgulama yetenekleri sunmaktadır. Sunucusuz yapısal

olmayan veri depolama hizmeti her iki sağlayıcıda da benzer yeteneklerde ama farklı

terminolojilerde sunulduğu görülmüştür. Sunucusuz HoF modelindeki hesaplama

hizmetlerinde iki sağlayıcı arasındaki belirgin farklar ölçeklenebilirlik, bellek miktarı

ve çalışma süresinde olduğu görülmüştür. Bir diğer önemli fark ise AWS firmasının

115

HoF modelindeki sunucusuz hesaplama hizmetinde Windows işletim sistemi

desteğinin olmamasıdır.

İki bulut bilişim sağlayıcısının sunucusuz hizmetlerde uyguladıkları ekonomik

modelin benzer olduğu görülmüştür. Her iki sağlayıcıda da kullanılan hesaplama ve

veri depolama kapasitesinin birim ücreti ile bir zaman birimi üzerinden kullanım

sürelerinin çarpımları ile çalışma ücretleri hesaplanmaktadır.

Tezde sunucusuz mimaride beş farklı sistem tasarımı ve uygulaması sunulmuştur. Her

bir tasarım seçilen bir bulut bilişim sağlayıcısı üzerinde uygulanarak

değerlendirilmiştir. Değerlendirmeler iki farklı metot ile yapılmıştır. Değerlendirme

metotları Bölüm 4.1’de incelenerek açıklanmıştır. Literatürde iki metodun birden

kullanıldığı sistem mimari değerlendirmesi yenidir. Tezde sunulan her bir tasarım bir

CBS senaryosu ile desteklenmiştir. Senaryolar bir probleme çözüm üretmek ve

tasarımın anlaşılmasını kolaylaştırmak için kurgulanmıştır. Bu senaryolar sistem

tasarımlarının karmaşık olmaması için mümkün olduğunca genel amaçlı ve basit

tutulmuştur.

CBS uygulamalarında sıklıkla kullanılan vektör karo ve raster karo servislerinin sistem

tasarımları sunucusuz mimariye dayalı olarak Bölüm 4.2 ve 4.3’te incelenmiştir. İki

mimari tasarımda uygulamalar için HoF modelindeki sunucusuz hesaplama hizmetleri

yeterli olmuştur. İki tasarımın uygulamasında da mevcut açık kaynak kodlu vektör

karo ve raster karo sunucusu yazılımları kullanılmıştır. Bu iki sistem tasarımı ile açık

kaynak kodlu hâlihazırdaki uygulamaların CBS problemlerine sunucusuz mimariler

üzerinde çalışarak çözüm üretebileceği gösterilmiştir.

Mekânsal zekâ uygulamalarında kullanılan makine öğrenmesi veya derin öğrenme

kütüphaneleri grafik işlemcisi yardımıyla daha hızlı veri işleyebilmektedirler. Tezde

incelenen iki farklı bulut bilişim sağlayıcısının sunduğu HoF modelindeki hesaplama

hizmetlerinde grafik işlemcisi desteği görülmemiştir. Buna karşın tezde incelenen

bulut bilişim sağlayıcılarının sunduğu HoK modelindeki sunucusuz hesaplama

hizmetlerinde Azure Container Instances servisinin bu desteği verdiği görülmüştür. Bu

nedenle mekânsal zekâ konusunda çalışma yapmak isteyen kullanıcının bu konuya

dikkat ederek platform seçimi yapması önerilmektedir. Gelecekte grafik işlemcisi

desteğinin sunucusuz mimarideki hesaplama hizmetlerinde giderek artacağı

düşünülmektedir. Bu desteğin artmasıyla birlikte gelecekte Bölüm 4.4’te sunulan

116

sistem tasarımının tamamen HoF modelindeki sunucusuz hesaplama hizmetlerinde

çalışabilmesinin mümkün olabileceği düşünülmektedir. Geliştirilen mekânsal zekâ

uygulaması OGC WPS 2.0 standardına göre servis verecek şekilde tasarlanmıştır. Bu

standardın senkron çalışma yönteminin sunucusuz mimariler için uygun olmadığı

görülmüştür.

Sunucusuz hesaplama hizmetlerinin olay güdümlü olarak çalışması Bölüm 4.5’te

sunulan sistem tasarımı ile incelenmiştir. Sunulan sistem tasarımı olay kaynağı olarak

bir doğal afeti ele almıştır. Sunulan sistem tasarımının senaryosunda iki sonuç

hedeflenmiştir. Birincisi deprem bilgilerinin kullanıcılara hızlı, ölçeklenebilir ve kolay

bir şekilde ulaştırılmasıdır. İkincisi ise deprem bilgilerini yayınlayan kurumun internet

sitesi üzerindeki trafik yükünün azaltılarak hizmet vermeye devam edebilmesinin

sağlanmasıdır. Çalışma yaklaşık üç sene boyunca bu amaçlar için bakım

gerektirmeden çalışmıştır. Sistemin bu süre boyunca hiçbir maliyet oluşturmadığı da

görülmüştür. Bu sistemin uygulaması aynı zamanda kaynak kodları açık bir şekilde

yayınlanmıştır. Bu çalışma ile sunucusuz mimarilerin toplum yararına nasıl mekânsal

bilişim teknolojileriyle birlikte kullanılabileceği de gösterilmiştir.

Mekânsal analizlerin bulut bilişim üzerinde sunucusuz mimarilerle iş akışı şeklinde

çalıştırılması için Bölüm 4.6’da sistem tasarımı ve uygulaması sunulmuştur. Sunulan

tasarımın CBS kullanıcıları tarafından kullanılabilmesi için ve uygulama geliştiriciler

tarafından genişletilebilmesi için iş akışı ve iş akışı görevi tanımlama modelleri de

geliştirilerek sunulmuştur. Bu yeni tanım modelleri ayrıca CBS kullanıcısına paralel

ve tekrarlı işlemler içeren analiz iş akışlarını tanımlayarak çalıştırabilmesini

sağlamaktadır. Bunun sağlanabilmesi için konteyner orkestrasyonu uygulaması ve iş

akışı görevlerinde kullanılmak üzere baz konteyner imajı da geliştirilmiştir. Sistem

tasarımı iki farklı iş akışı örneği üzerinden test edilmiştir.

Tez çalışmasında mekânsal bir iş akışı sistemi tasarımında ve uygulamasında OGC

API Processes literatürde ilk kez kullanılmıştır. Bu standart OGC tarafından WPS

standardının devamı olarak modern web teknolojilerine ve mimarilerine uyumlu

olarak yeninden geliştirilmiştir. Bölüm 4.4’teki tasarımda kullanılan OGC WPS

standardı daha eski olması nedeniyle CBS uygulamaları tarafında verilen destek daha

fazladır. Ancak OGC WPS ile modern web CBS uygulamaları OGC API Process’e

göre daha zor geliştirilecektir, çünkü yeni nesil web uygulama çatkılarının çoğunluğu

117

REST mimarisi ve JSON iletişim dili dışındaki iletişim mimarileri ve dilleri ile

çalışmaya doğrudan destek vermemektedirler.

Tezde sunulan tasarımlardaki tüm kullanıcı rollerinin bulut bilişim altyapıları

konusunda ileri düzey bilgi sahibi olmaları gerekmemektedir. Bu da tasarımların

kullanılabilirliğini arttırmakta ve bulut bilişim teknolojilerini ulaşılabilir kılmaktadır.

Tezin bu özelliği ile mekânsal bilişim konusunda çalışan araştırmacılar ve uzmanlar

arasında bulut bilişim teknolojileri farkındalığını ve bu teknolojilere ilgiyi arttıracağı

da düşünülmüştür.

Tez çalışmasında sunulan sistem tasarımları iki farklı bulut bilişim sağlayıcısı üzerinde

uygulanmıştır. Exposito Jimenez ve Zeinzer (2018) çalışmalarında bulut bilişim

pazarındaki diğer aktörlerin sunduğu sunucusuz mimarideki hizmetlerin birbirlerine

çok benzer olduklarını belirtmiştir. Bu nedenle bu tez çalışmasındaki sistem

tasarımları her ne kadar sadece iki bulut bilişim sağlayıcısının sunduğu sunucusuz

hizmetler üzerinde uygulanmış olsa da diğer bulut bilişim sağlayıcıları ile de

uygulanabilir olması beklenmektedir.

Köse (2020) çalışmasında sunucusuz mimarilerin yerinde bilişim altyapıları üzerinde

de uygulanabilir olduğunu belirtmiştir. Sunulan sistem tasarımları yerinde bilişim

altyapıları üzerinde de uygulanabilir. Böylece verinin bulut bilişim sağlayıcısı üzerine

taşınmasının mümkün olmadığı durumlarda da sunucusuz mimarilerden

yararlanılabileceği düşünülmektedir.

Sunduğu yenilikçi sistem tasarımları, karşılaştırmalı incelemeler ve uygulamalar

açısından bu tez kapsamındaki bu çalışmanın amacı; mekânsal bilişim dünyasını

sunucusuz bulut bilişim teknolojileri konusundaki bilinci arttırmak ve bu konuda yeni

kapılar açmak üzere bir kaynak olmaktır. Bununla beraber literatürde sunucusuz bulut

bilişim sistem tasarımlarının ve uygulamaların nasıl değerlendirileceği konusunda yol

haritası da verilmiştir. Tüm bunlara ek olarak CBS teknolojileri, mekânsal zekâ, büyük

veri gibi bilişim dünyasında her geçen gün popülerliği artan teknoloji ve oluşumların

sunucusuz mimarilerle etkileşimi incelenerek gelecekte katkı sağlayacağı düşünülen

bir referans kaynak oluşturulmuştur.

118

119

KAYNAKLAR

Adzic, G. ve Chatley, R. (2017). Serverless computing: economic and architectural

impact. Proceedings of the 2017 11th Joint Meeting on Foundations of

Software Engineering, Paderborn Almanya. s884–889.

Amazon (2022a). Amazon Around the Globe. https://sustainability.about

amazon.com/about/around-the-globe, erişim tarihi 09.05.2022.

Amazon (2022b). Invoking an AWS Lambda function from an Aurora PostgreSQL

DB cluster. https://docs.aws.amazon.com/AmazonRDS/latest/Aurora

UserGuide/PostgreSQL-Lambda.html, erişim tarihi 09.05.2022.

Anand, S., Johnson, A., Mathikshara, P. ve Karthik, R. (2019). Real-time GPS

tracking using serverless architecture and ARM processor. 11th

International Conference on Communication Systems & Networks

(COMSNETS), Bengaluru, Hindistan, s541–543.

Antoniou, V., Morley, J., ve Haklay, M. (2009). Tiled Vectors: A Method for Vector

Transmission over the Web. Web and Wireless Geographical

Information Systems, Berlin, Heidelberg. 56–71.

Atı̇k, M.E., Güngör, Ö., Keskı̇n, E. ve Duran, Z. (2022). Fotogrametrik nokta bulutu

verisinin makine öğrenmesi ile sınıflandırılması. Jeodezi ve

Jeoinformasyon Dergisi, 9, 137–149.

Astrova, I., Koschel, A., Eickemeyer, C., Kersten, J., ve Offel, N. (2017). DBaaS

comparison: Amazon vs. Microsoft. International Conference on

Information Society (i-Society), Dublin. s15–21.

Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., …., Sutter, P.

(2017). Serverless Computing: Current Trends and Open Problems,

Research Advances in Cloud Computing, 1–20.

Baralis, E., Dalla Valle, A., Garza, P., Rossi, C., ve Scullino, F. (2017). SQL versus

NoSQL databases for geospatial applications. 2017 IEEE International

Conference on Big Data (Big Data), Boston, MA. s3388–3397.

Barbieri, L. ve Bonanni M. (2019). Mastering Azure Serverless Computing. Packt

Publishing, Birmingham, Birleşik Krallık.

Bebortta, S., Das, S.K., Kandpal, M., Barik, R.K. ve Dubey, H. (2020). Geospatial

Serverless Computing: Architectures, Tools and Future Directions.

ISPRS International Journal of Geo-Information, 9, 311.

Bertolotto, M. ve Egenhofer, M.J. (2001). Progressive Transmission of Vector Map

Data over the World Wide Web. GeoInformatica, 5, 345–373.

Beswick, J. (2020) Implementing geohashing at scale in serverless web applications.

AWS Compute Blog, https://aws.amazon.com/blogs/compute/imple

120

menting-geohashing-at-scale-in-serverless-web-applications/, erişim

tarihi 08.05.2022.

Bitner, D. (2019). Lambda MapProxy. GitHub, https://github.com/bitner/lambda-

mapproxy/, erişim tarihi 08.05.2022.

Blower, J.D. (2010). GIS in the cloud: implementing a web map service on Google

App Engine. Proceedings of the 1st International Conference and

Exhibition on Computing for Geospatial Research & Application -

COM.Geo ’10, Washington, D.C., 1.

Castro, P., Ishakian, V., Muthusamy, V., ve Slominski, A. (2019). The rise of

serverless computing. Communications of the ACM, 62, 44–54.

Chapin, J. ve Roberts, M. (2020). Programming AWS Lambda. O'Reilly Media, Inc,

Amerika Birleşik Devletleri.

Cito, J., Schermann, G., Wittern, J.E., Leitner, P., Zumberi, S., ve Gall, H.C.

(2017). An Empirical Analysis of the Docker Container Ecosystem on

GitHub. 2017 IEEE/ACM 14th International Conference on Mining

Software Repositories (MSR), Buenos Aires, Arjantin. s323–333.

Cumhuriyet Gazetesi (2015) “4.2'lik deprem yetti: Kandilli'nin sitesi çöktü.”.

Cumhuriyet Gazetesi, 16 Kasım 2015, Erişim adresi

https://www.cumhuriyet.com.tr/haber/42lik-deprem-yetti-kandillinin-

sitesi-coktu-420795

Daher, Z., ve Hajjdiab, H. (2018). Cloud Storage Comparative Analysis Amazon

Simple Storage vs. Microsoft Azure Blob Storage. International

Journal of Machine Learning and Computing, 8, 85–89.

De Beukelaar, I.T.Y. (2018). Cartographic implications of Vector Tile technology.

(Master Tezi). Utrecht Üniversitesi, Hollanda.

De Sousa, L.M., De Jesus, J.M., Čepicky, J., Kralidis, A.T., Huard, D., Ehbrecht,

C., ..., Eberle, J. (2019). PyWPS: overview, new features in version 4

and existing implementations. Open Geospatial Data, Software and

Standards, 4, 13.

Döş, M.E. ve Uysal, M. (2019). Uzaktan algılama verilerinin derin öğrenme

algoritmaları ile sınıflandırılması Türkiye Uzaktan Algılama Dergisi, 1,

28-34.

Exposito Jimenez, V.J. ve Zeiner, H. (2018). Serverless Cloud Computing: A

Comparison Between “Function as a Service” Platforms. Computer

Science & Information Technology, Academy & Industry Research

Collaboration Center (AIRCC), s15–22.

Ferreira, D. R. G. (2014) Using Neo4J for Geospatial Data Storage and Integration

(Master Tezi). Madeira Üniversitesi, Portekiz.

Fitzsimmons, S. (2017). Deploying Tegola on AWS Lambda. Medium.

https://medium.com/@mojodna/deploying-tegola-on-aws-lambda-

a7f74ec8f0df/, erişim tarihi 08.05.2022.

Gandhi, U. (2021) Web Mapping with QGIS2Web (QGIS3). QGIS Tutorials and

Tips,

121

http://www.qgistutorials.com/uk/docs/3/web_mapping_with_qgis2web

.html, erişim tarihi 08.05.2022.

Google Trends (2022) https://trends.google.com/, erişim tarihi 08.05.2022.

Gulabani, S. (2015). Amazon S3 Essentials. Packt Publishing, Birmingham, Birleşik

Krallık.

Güney C. ve Çelik R.N. (2020). Harita ve Kadastro Mühendisliğinin Dijital

Ekosistemde Hayatta Kalabilmesi için Paradigma Değişimi: Mekânsal

Zekâ, 17. Türkiye Harita Bilimsel ve Teknik Kurultayı, İstanbul,

Türkiye.

https://www.hkmo.org.tr/resimler/ekler/3c2e21d6dfb7bea_ek.pdf

Grolinger, K., Higashino, W.A., Tiwari, A., ve Capretz, M.A. (2013). Data

management in cloud environments: NoSQL and NewSQL data stores.

Journal of Cloud Computing: Advances, Systems and Applications, 2,

22.

Hashimoto, N. (2015). Amazon S3 Cookbook. Packt Publishing, Birmingham, Birleşik

Krallık.

Hecht, R. ve Jablonski, S. (2011). NoSQL evaluation: A use case oriented survey.

2011 International Conference on Cloud and Service Computing, Hong

Kong, Çin. s336–341.

Ifrah, S. (2020). Getting Started with Containers in Azure: Deploy, Manage, and

Secure Containerized Applications. Apress, Berkeley, CA, Amerika

Birleşik Devletleri.

Jain, P., Munjal, Y., Gera, J. ve Gupta, P. (2020). Performance Analysis of Various

Server Hosting Techniques. Procedia Computer Science, 173, 70–77.

Jackson, D. ve Clynch, G. (2018). An Investigation of the Impact of Language

Runtime on the Performance and Cost of Serverless Functions. 2018

IEEE/ACM International Conference on Utility and Cloud Computing

Companion (UCC Companion), Zurih. s154–160.

Jangda, A., Pinckney, D., Brun, Y., ve Guha, A. (2019). Formal foundations of

serverless computing. Proceedings of the ACM on Programming

Languages, 3, 1–26.

Ji, X., Chen, B., Huang, Z., Sui, Z., ve Fang, Y. (2012). On the use of cloud

computing for geospatial workflow applications. 20th International

Conference on Geoinformatics, Hong Kong, Çin, s1–6.

Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C.-C., Khandelwal, A., Pu, Q.,

…, Patterson, D. A. (2019). Cloud Programming Simplified: A

Berkeley View on Serverless Computing. (Rapor No: UCB/EECS-2019-

3). UC Berkeley

Kalid, S., Syed, A., Mohammad, A., ve Halgamuge, M.N. (2017). Big-data NoSQL

databases: A comparison and analysis of “Big-Table”, “DynamoDB”,

and “Cassandra.”. 2nd International Conference on Big Data Analysis,

Beijing, Çin, s89–93.

122

Kamel Boulos, M.N., Peng, G., ve VoPham, T. (2019). An overview of GeoAI

applications in health and healthcare. International Journal of Health

Geographics, 18, 7.

Kapadia, A., Rajana, K. ve Varma, S. (2015). OpenStack Object Storage (Swift)

Essentials. Packt Packt Publishing, Birmingha, Birleşik Krallık.

Kerkhove, T. (2021). Autoscaling Azure Container Instances with Azure Serverless.

Tom Kerkhove Blog. https://blog.tomkerkhove.be/2021/01/02/autosca

ling-azure-container-instances-with-azure-serverless/, erişim tarihi

08.05.2022.

Kiener, M., Chadha, M., ve Gerndt, M. (2021). Towards Demystifying Intra-

Function Parallelism in Serverless Computing. Proceedings of the

Seventh International Workshop on Serverless Computing (WoSC7)

2021, Sanal Etkinlik, Kanada, s42–49.

Kim, Y. ve Lin, J. (2018). Serverless Data Analytics with Flint. 11th International

Conference on Cloud Computing (CLOUD), San Francisco, CA, 451–

455.

Kleppmann, M. (2017). Designing data-intensive applications: the big ideas behind

reliable, scalable, and maintainable systems. O’Reilly Media, Boston.

Köse, M. (2020). Bilişim Altyapısı Üzerine Sunucusuz Mimari Platformu İnşa Etme.

(Master Tezi). Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü,

Isparta.

Krämer, M., Würz, H.M., ve Altenhofen, C. (2021). Executing cyclic scientific

workflows in the cloud. Journal of Cloud Computing: Advances,

Systems, 10, 25.

Lawhead, J. (2019). Learning geospatial analysis with Python. Üçüncü Baskı. Packt

Publishing, Birmingham, Birleşik Krallık.

Lee, H., Satyam, K. ve Fox, G. (2018). Evaluation of Production Serverless

Computing Environments. 11th International Conference on Cloud

Computing (CLOUD), IEEE, San Francisco, CA. 442–450.

Léger, Y. ve Broshar A. (2021) FaaS vs CaaS: Comparing Use Cases and

Responsibilities. https://www.koyeb.com/blog/faas-vs-caas-

comparing-use-cases-and-responsibilities, erişim tarihi 08.05.2022.

Li, L., Hu, W., Zhu, H., Li, Y., ve Zhang, H. (2017). Tiled vector data model for the

geographical features of symbolized maps. PLoS ONE, 12, e0176387.

Li, S., Dragicevic, S., Castro, F.A., Sester, M., Winter, S., Coltekin, A., …, Cheng,

T. (2016). Geospatial big data handling theory and methods: A review

and research challenges. ISPRS Journal of Photogrammetry and

Remote Sensing, 115, 119–133.

Lopez, E., Béjar, R., Barrera, J., Lopez-Pellicer, F. J., Rodríguez, A. F. ve Abad

P. (2017). Support for vector tiles in INSPIRE view services

[PowerPoint sunumu]. erişim adresi

https://inspire.ec.europa.eu/sites/default/files/presentations/INSPIRE2

017_VectorTiles.pdf

123

Lynn, T., Rosati, P., Lejeune, A., ve Emeakaroha, V. (2017). A Preliminary Review

of Enterprise Serverless Cloud Computing (Function-as-a-Service)

Platforms. 2017 IEEE International Conference on Cloud Computing

Technology and Science (CloudCom), Hong Kong. s162–169.

Maissen, P., Felber, P., Kropf, P., ve Schiavoni, V. (2020). FaaSdom: a benchmark

suite for serverless computing. Proceedings of the 14th ACM

International Conference on Distributed and Event-Based Systems,

Montreal Quebec Canada. s73–84.

Malawski, M., Gajek, A., Zima, A., Balis, B. ve Figiela, K. (2020). Serverless

execution of scientific workflows: Experiments with HyperFlow, AWS

Lambda and Google Cloud Functions. Future Generation Computer

Systems, 110, 502–514.

MapServer (2022). https://hub.docker.com/r/mapserver/mapserver, erişim tarihi

08.05.2022.

Marroquín, R., Müller, I., Makreshanski, D., ve Alonso, G. (2018). Pay One, Get

Hundreds for Free: Reducing Cloud Costs through Shared Query

Execution. Proceedings of the ACM Symposium on Cloud Computing,

Carlsbad CA, Amerika Birleşik Devletleri. s439–450.

Maslov, V. ve Petrashenko, A. (2021). Distributed Serverless Computing

Orchestration Based on Finite Automaton. Advances in Computer

Science for Engineering and Education IV, Springer International

Publishing, Cham. 290–303.

Mete, M.O. ve Yomralıoğlu, T. (2021a). Implementation of serverless cloud GIS

platform for land valuation. International Journal of Digital Earth, 14,

836–850.

Mete, M.O. ve Yomralıoğlu, T. (2021b). Açık Kaynaklı Bulut CBS Yardımıyla

Kitlesel Taşınmaz Değerleme Uygulaması. Harita Dergisi, 165, 28-42.

Microsoft (2022a). Index geospatial data with Azure Cosmos DB. https://docs

.microsoft.com/en-us/azure/cosmos-db/sql/sql-query-geospatial-index,

erişim tarihi 09.05.2022.

Microsoft (2022b). Querying geospatial data with Azure Cosmos DB. https://docs

.microsoft.com/en-us/azure/cosmos-db/sql/sql-query-geospatial-query,

erişim tarihi 09.05.2022.

Microsoft (2022c). OGC Static Geometry Methods. https://docs.microsoft.com/en-

us/sql/t-sql/spatial-geometry/ogc-static-geometry-methods, erişim

tarihi 09.05.2022.

Microsoft (2022d). Tutorial: Implement IoT spatial analytics by using Azure Maps.

https://docs.microsoft.com/en-gb/azure/azure-maps/tutorial-iot-hub-

maps, erişim tarihi 09.05.2022.

Microsoft (2022e). Azure Functions hosting options. https://docs.microsoft.com/en-

us/azure/azure-functions/functions -scale, erişim tarihi 09.05.2022.

Nadon, J. (2017). Website Hosting and Migration with Amazon Web Services. Apress,

Berkeley, CA.

124

Netek, R., Masopust, J., Pavlicek, F., ve Pechanec, V. (2020). Performance Testing

on Vector vs. Raster Map Tiles—Comparative Study on Load Metrics.

ISPRS International Journal of Geo-Information, 9, 101.

Nickoloff, J., Kuenzli, S., ve Fisher, B. (2019). Docker in action. İkinci Baskı.

Manning Publications, Shelter Island, NY, Amerika Birleşik Devletleri.

Obey, J. (2022) Best practices for building serverless applications that follow AWS's

Well-Architected Framework. Datadog. https://www.datadoghq.com/

blog/well-architected-serverless-applications-best-practices, erişim

tarihi 08.05.2022.

OGC (2010). OpenGIS Web Map Tile Service Implementation Standard.

https://www.ogc.org/standards/wmts, erişim tarihi 09.05.2022.

OGC (2006). Web Map Service. https://www.ogc.org/standards/wms, erişim tarihi

09.05.2022.

OGC (2018). Vector Tiles Engineering Report. https://docs.ogc.org/per/17-041.html,

erişim tarihi 09.05.2022.

OGC (2021). OGC API - Processes - Part 1: Core. https://docs.ogc.org/is/18-

062r2/18-062r2.html, erişim tarihi 09.05.2022.

Pakdil, M.E. ve Çelik, R.N. (2021a). Design of a Serverless OGC WPS Based

Geoprocessing Service Solution. 6th International Conference on Smart

City Applications, Karabük Üniversitesi, s425–430.

Pakdil, M.E. ve Çelik, R.N. (2021b). Serverless Geospatial Data Processing Workflow

System Design. ISPRS International Journal of Geo-Information, 11,

20.

Pakdil, M. E. ve Çelik, R. N. (2023, baskıda). Bulut bilişimde sunucusuz mimariler

ile coğrafi bilgi teknolojilerinin kullanımı üzerine bir inceleme. Jeodezi

ve Jeoinformasyon Dergisi, 10(1), 1-15

Patterson, S. (2019). Learn AWS serverless computing. Packt Publishing,

Birmingham, Birleşik Krallık.

Piancazzo, D. (2022). A comparison between azure cosmos DB and elasticsearch : A

case study on cloud databases (Lisans Bitirme Çalışması).

http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-57444

Poccia, D. (2020). New for AWS Lambda – Container Image Support. AWS News

Blog. https://aws.amazon.com/blogs/aws/new-for-aws-lambda-

container-image-support/, erişim tarihi 08.05.2022.

Pothecary, R. (2021). Running Microsoft Workloads on AWS: Active Directory,

Databases, Development, and More. Apress, Berkeley, CA, Amerika

Birleşik Devletleri.

Richter, F. (2022). Amazon Leads $180-Billion Cloud Market, statista,

https://www.statista.com/chart/18819/worldwide-market-share-of-

leading-cloud-infrastructure-service-providers/, erişim tarihi

08.05.2022.[1]

Sahay, R. (2020). Microsoft Azure Architect Technologies Study Companion: Hands-

on Preparation and Practice for Exam AZ-300 and AZ-303. Apress,

Berkeley, CA, Amerika Birleşik Devletleri.

125

Sampé, J., Sánchez-Artigas, M., García-López, P., ve París, G. (2017). Data-driven

serverless functions for object storage. Proceedings of the 18th

ACM/IFIP/USENIX Middleware Conference, ACM, Las Vegas

Nevada. s121–133.

Sánchez, J., Nothstein, M., Neic, A., Huang, Y.-L., J. Prassl, A., Klar, J., …, Axel,

L. (2020). openCARP: An Open Sustainable Framework for In-Silico

Cardiac Electrophysiology Research. 2020 Computing in Cardiology,

1-4.

Satapathi, A. ve Mishra, A. (2021). Hands-on Azure Functions with C#: Build

Function as a Service (FaaS) Solutions. Apress, Berkeley, CA,

Amerika Birleşik Devletleri.

Sbarski, P., Cui, Y., ve Nair, A. (2022). Serverless architectures on AWS. İkinci

Baskı. Manning Publications, Shelter Island, NY, Amerika Birleşik

Devletleri.

Siddiqui, T., Siddiqui, S.A., ve Khan, N.A. (2019). Comprehensive Analysis of

Container Technology. 4th International Conference on Information

Systems and Computer Networks (ISCON), Mathura, Hindistan. s218–

223.

Solanki, J. (2021). Serverless Database – Everything you Need to Know, Simform

Blog, https://www.simform.com/blog/serverless-databases/, erişim

tarihi 08.05.2022.

Soueidi, C. (2015). Microsoft Azure Storage Essentials. Packt Publishing,

Birmingham, Birleşik Krallık.

Souissia, N., ve Mainguenaudb, M. (2014). Database Server Models for WMS and

WFS Geographic Web Services. Geographical Information Systems:

Trends and Technologies, s142.

Tomey, S. (2017). Geographic Spatial Analysis with Azure Data Lake Analytics

(ADLA). Adatis. https://adatis.co.uk/geographic-spatial-analysis-with-

azure-data-lake-analytics-adla/, erişim tarihi 08.05.2022.

Top, T., Yıldırım, T., Gültekin, T., Kuşdemir, Y., Yenen, M., Koşak, E.,

Kahraman, F. (2011) 5.9'da bile çuvalladık. Hürriyet Gazetesi. Erişim

adresi https://www.hurriyet.com.tr/gundem/5-9da-bile-cuvalladik-

17838905

URL-1 <https://registry.opendata.aws/>, erişim tarihi 08.05.2022.

URL-2 <https://github.com/aws/containers-roadmap/issues/88>, erişim tarihi

08.05.2022.

URL-3 < https://tegola.io>, erişim tarihi 08.05.2022.

URL-4 <https://mapproxy.org/>, erişim tarihi 08.05.2022.

URL-5 <https://dl.acm.org/sig/sigspatial>, erişim tarihi 08.05.2022.

URL-6 <https://github.com/Geomates/KandilliEarthquakeNotifier>, erişim tarihi

08.05.2022.

https://www.hurriyet.com.tr/gundem/5-9da-bile-cuvalladik-17838905
https://www.hurriyet.com.tr/gundem/5-9da-bile-cuvalladik-17838905

126

Vemula, R. (2019). Integrating Serverless Architecture: Using Azure Functions,

Cosmos DB, and SignalR Service. Apress, Berkeley, CA, Amerika

Birleşik Devletleri.

Vohra, D. (2018). Amazon Fargate Quick Start Guide: Learn How to Use AWS

Fargate to Run Containers with Ease. Packt Publishing, Birmingham,

Birleşik Krallık.

VoPham, T., Hart, J.E., Laden, F., ve Chiang, Y.-Y. (2018). Emerging trends in

geospatial artificial intelligence (geoAI): potential applications for

environmental epidemiology. Environ Health, 17, 40.

Weaver, E. (2021): AWS Aurora Serverless v2: Architecture, Features, Pricing, and

Comparison with Fauna. Fauna. https://fauna.com/blog/compare-aws-

aurora-serverless-v2-architecture-features-pricing-vs-fauna, erişim

tarihi 08.05.2022.

Wiggins, A. (2012). The Twelve-Factor App. https://12factor.net, erişim tarihi

08.05.2022.

Wittig, M., Wittig, A., ve Whaley, B. (2018). Amazon Web Services in action. İkinci

Baskı. Manning Publications, Shelter Island, NY, Amerika Birleşik

Devletleri.

Yusuf, S. (2021): CaaS Services Through AWS, Azure, and Google Cloud. Thundra

Blog. https://blog.thundra.io/caas-services-through-aws-azure-and-

google-cloud, erişim tarihi 08.05.2022.

Zois T. (2021). The Evolution of Serverless Services. doi:

10.13140/RG.2.2.33924.86407.

127

ÖZGEÇMİŞ

Ad-Soyad : Mete Ercan PAKDİL

ÖĞRENİM DURUMU:

• Lisans : 2011, İstanbul Teknik Üniversitesi, İnşaat Fakültesi, Geomatik

Mühendisliği Bölüm

• Yüksek lisans : 2014, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü,

Geomatik Mühendisliği Yüksek Lisans Programı

MESLEKİ DENEYİM VE ÖDÜLLER:

• 2022 yılında ISPRS International Journal of Geo-Information dergisine yazdığı

“Serverless Geospatial Data Processing Workflow System Design “ başlıklı

makale ile Mott MacDonald MMDV (Mott MacDonald Digital Ventures) bölgesi

“En İyi Makale (Best Technical Paper)” ödülünü aldı.

• 2019 Kasım ayından bu yana halen İngiltere’de Mott MacDonald firmasında

Yazılım Uzmanı ve Yönetici olarak çalışmaktadır.

• 2019 Ekim-Kasım ayları arasında İngiltere’de DCSL Yazılım firmasında Yazılım

Mimarı olarak görev yaptı.

• 2017 -2019 yılları arasında Hollanda’da Exact firmasında Uzman Yazılım

Mühendisi ve Mimar olarak görev yaptı.

• 2017 yılında Pegasus Havayolları’nda geliştirilen uçuş haritaları üretim ve

dağıtım sistemi ile ESRI CBS Özel Başarı (Special Achievement in GIS) ödülü

aldı.

• 2014 yılında İstanbul Teknik Üniversitesi’nde Geomatik Mühendisliği

bölümünde yüksek lisansını tamamladı.

• 2013 yılında Bilim, Sanayi ve Teknoloji Bakanlığı tarafından yürütülen

SAN­TEZ Programı kapsamında “Ulusal veUluslararası Sayısal Navigasyon

Bilgisi ve Uçuş Haritalarının Üretim ve Yönetim Sisteminin Tasarımı,

Oluşturulması. I. Üretim Fazı:Kalkış Haritalarının Üretimi” başlıklı proje ile

yüksek lisans tezi projesi için destek kazandı.

• 2012 -2017 yılları arasında Türkiye’de Pegasus Hava Taşımacılığı firmasında

Navigasyon Lideri olarak görev yaptı.

• 2011 -2012 yılları arasında Türkiye’de Universal Bilgi Teknolojileri firmasında

Yazılım Uzmanı olarak görev yaptı.

• 2011 yılında Haziran – Eylül ayları arasında Amerika Birleşik Devletleri’nde

ESRI firmasının genel merkezinde dört ay staj yapmak üzere seçildi.

• 2011 yılında İstanbul Teknik Üniversitesi’nde Geomatik Mühendisliği

bölümünde lisansını tamamladı.

128

• 2010 yılında TÜBİTAK’ın 2209 Üniversite Öğrencileri Yurt İçi / Yurt Dışı

Araştırma Projeleri Destekleme Programı’nda “İnternet Tabanlı Bir Uzaktan

Eğitim Laboratuvarı: Geomatik Uygulamalar” başlıklı proje ile lisans bitirme

ödevi için destek kazandı.

DOKTORA TEZİNDEN TÜRETİLEN YAYINLAR, SUNUMLAR VE

PATENTLER:

• Pakdil, M.E. ve Çelik, R.N. (2021a). Design of a Serverless OGC WPS Based

Geoprocessing Service Solution. 6th International Conference on Smart City

Applications, Karabük Üniversitesi, s425–430.

• Pakdil, M.E. ve Çelik, R.N. (2021b). Serverless Geospatial Data Processing

Workflow System Design. ISPRS International Journal of Geo-Information, 11,

20.

• Pakdil, M. E. ve Çelik, R. N. (2023, baskıda). Bulut bilişimde sunucusuz mimariler

ile coğrafi bilgi teknolojilerinin kullanımı üzerine bir inceleme. Jeodezi ve

Jeoinformasyon Dergisi, 10(1), 1-15

DİĞER YAYINLAR, SUNUMLAR VE PATENTLER:

• Bıçakçı, Y. S., Sarıca, B., Pakdil, M. E., Yazırlı, B., ve Demirel, H. (2017). Spatio-

temporal analyses to estimate speed information for transport forecasting and

scenario testing. Fresenius Environmental Bulletin, 26(1), 100-106.

• Pakdil, M.E., Çelik, R.N., Kaya, Ö., Konak, Y.C., ve Güney, C. (2015). Smart

Aeronautical Chart Management System Design. 2015 Joint International

Geoinformation Conference. s83–87.

• Keskin, M., Çelik, B., Doğru, A. Ö., ve Pakdil, M. E. (2015). A Comparison of

Space-time 2D and 3D Geovisualization. 27th International Cartographic

Conference, Rio de Janeiro, Brezilya. s23-28.

• Kıvılcım, C.Ö., Sterenczak, K., Kanjir, U., Şengül, A., Stavbar, G., Pakdil, M.E.,

Lobo, E., Oo, K. S. (2012). ISPRS Student Consortium: The Network of Youth in

Geoinformation Society. XXII ISPRS Congress.

• Kıvılcım, C. Ö., Pakdil, M. E., ve Şengül, A. (2010). Role of internet as a

communication platform and ISPRS Student Consortium web site. International

Archives of the Photogrammetry, Remote Sensing and Spatial Information

Sciences, 38, s38-41.

