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3-BOYUTLU ARTIK AĞ EYLEM TANIMA MODELİ İLE SÜPERMARKET 

VİDEO GÖRÜNTÜLERİNDE HIRSIZLIK TESPİTİ 

ÖZET 

Son zamanlarda, süpermarketlerde hırsızlık tespiti için yapay zekâ modellerine ilgi 

artmaktadır. Süpermarket hırsızlıkları, süpermarketleri finansal açıdan marketleri 

zarara sokmaktadır. Bu zararların önüne geçmek için insan hırsızlık eylemine yönelik 

modeller geliştirilmektedir. 

Gündelik olarak gerçekleştirilen insan eylemlerini sınıflandırmak için 2-B CNN ve 3-

B CNN eylem tanıma modelleri kullanılmaktadır. İnsan eylemi gerçekleştirilirken hem 

görsel hem de hareket bilgisi içermektedir. Görsel ve hareket bilgisi, uzam-zamansal 

bilgiyi ifade etmektedir. Eylem tanıma modelleri ile uzam-zamansal eylem bilgisi 

çıkarılmaktadır. 

Bu tez çalışmasında, hırsızlık ve hırsızlık olmayan eylem video veri seti 

oluşturulmuştur. Oluşturulan hırsızlık ve hırsızlık olmayan eylem veri seti videoları 

3’er eylemden oluşmaktadır. Hırsızlık eylemleri: eşyaları; cebe koymak, çantaya 

koymak ve el çantasına koymak şeklindedir. Hırsızlık olmayan eylemler: 

süpermarkette; yürümek, sabit durmak ve raftan eşya almak şeklindedir. 

Eğitim veri seti Youtube’den toplanmış ve test veri seti ise bir süpermarket güvenlik 

kamerasından toplanmıştır. Eğitim veri seti, 161 hırsızlık olmayan eylem, 139 hırsızlık 

eylemi olarak 300 videodan oluşmaktadır. Test veri seti, 140 hırsızlık olmayan eylem, 

130 hırsızlık eylemi olarak 270 videodan oluşmaktadır. 

3-B CNN modellerini sıfırdan optimize etmek için büyük ölçekli veri setleri 

gerekmekte aksi halde ağın doğruluk oranı hızla düşmektedir. Oluşturulan hırsızlık 

eğitim veri seti küçük ölçekli olduğu için büyük ölçekli Kinetics-700 veri setinde 

önceden eğitilmiş olan 18 katmanlı 3-B Artık Ağ modeli transfer öğrenme ile 

kullanılmıştır. Temel alınan 3-B Artık Ağ modelinin FC katmanı dışındaki ağırlıkları 

kullanılmış ve model sadece FC katmanı ağırlıkları güncellenerek eğitilmiştir. 

Hırsızlık eylemini daha detaylı incelemek ve sınıflandırmak için modele ait 12 

versiyon oluşturulmuştur. Oluşturulan versiyonlar, parametre olarak birbirinden 

farklıdır. Versiyonlar, girdi görüntüsü boyutu, çerçeve uzunluğu ve parti büyüklüğü 

olarak farklılık göstermektedir. Versiyonlar; RGB girdi görüntüsü almakta ve 200 

adımda eğitilmiştir. Elde edilen eğitim ve test sonuçları doğruluk oranları bakımından 

karşılaştırılmıştır. 

Eğitim ve test sonuçları neticesinde Versiyon 1 sırasıyla, %88,0 ve %77,0 doğruluk 

oranları ile en iyi sonuca sahip modeldir. Versiyon 1: 2242243 RGB girdi 

görüntüsü, 32 çerçeve uzunluğu ve 12 parti büyüklüğüne sahiptir. Süpermarkette 

hırsızlık tespiti yapabilen 18 katmanlı 3-B Artık Ağ modeli geliştirilmiştir. 

 

Anahtar kelimeler: Hırsızlık Tespiti, Yapay Zekâ, Evrişimsel Sinir Ağları, Eylem 

Tanıma. 
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THEFT DETECTION IN SUPERMARKET VIDEOS WITH 3-

DIMENSIONAL ACTION RECOGNITION RESIDUAL NETWORK MODEL 

SUMMARY 

Recently, there has been increasing interest in artificial intelligence models for theft 

detection in supermarkets. Supermarket thefts are making to lose money for 

supermarkets financially. In order to prevent these losses, models for human theft 

action are being developed. 

2-D CNN and 3-D CNN action recognition models are used to classify daily human 

actions. It contains both visual and movement information while performing human 

action. Visual and motion information refers to spatio-temporal information. Spatio-

temporal action information is extracted with action recognition models. 

In this thesis study, theft and non-theft action video dataset are generated. The 

generated theft and non-theft action dataset videos consist of 3 actions each. Acts of 

theft: belongings to; put in a pocket, put in a bag, and put in a handbag. Non-theft acts: 

in the supermarket; walking, standing still, and picking up items from the shelf. 

The training dataset was collected from Youtube and the test dataset was collected 

from a supermarket security camera. The training dataset consists of 300 videos as 161 

non-theft actions and 139 theft actions. The test dataset consists of 270 videos as 140 

non-theft actions and 130 theft actions. 

Optimizing 3-D CNN models from scratch requires large-scale datasets, otherwise, the 

accuracy of the network drops rapidly. Since the generated theft training dataset is 

small-scale, the 18-layer 3-D Residual Network model, which was pre-trained in the 

large-scale Kinetics-700 dataset, was used with transfer learning. The weights of the 

underlying 3-D Residual Network model except the FC layer are used and the model 

is trained by updating only the FC layer weights. 

In order to examine and classify the act of theft in more detail, a deep model is trained 

12 times with different parameters. The versions created are different from each other 

in terms of parameters. Versions differ in input image size, frame length, and batch 

size. Versions; takes an RGB input image and is trained in 200 epochs. Obtained 

training and test results were compared in terms of accuracy. 

As a result of the training and test results, Version 1 is the model with the best results 

with 88.0% and 77.0% accuracy rates, respectively. Version 1 has, 2242243 RGB 

input image, 32 frame length and batch size of 12. As a result, an 18-layer 3-D Residual 

Network model has been developed, capable of detecting theft in the supermarket. A 

18 layer 3-D Residual Network model has been developed that can successfully 

classify the theft action in supermarket. 

 

Keywords: Theft Detection, Artificial Intelligence, Convolutional Neural Networks, 

Action Recognition. 
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1.  GİRİŞ 

Süpermarketler insanların günlük ihtiyaçlarını karşılamak için bir gerekliliktir ancak 

bu ihtiyaç ile süpermarketlerde hırsızlıklar da görülmekte ve finansal açıdan marketleri 

zarara sokmaktadır. Amerika Birleşik Devletleri'nde (ABD) her yıl yaklaşık 27 milyon 

kişinin hırsızlık yaptığı, sonuç olarak her yıl en az 13 milyar ABD doları değerinde 

malın çalındığı ve dünya çapında da yılda 100 milyar dolar tutarından fazla malın 

çalındığı bildirilmiştir [1]. Ayrıca, bazı süpermarketler önlem olarak etiket alarm 

(paper alarm tag) kullanmaktadır. Ancak, bu etiketler kolayca sökülebileceği için 

hırsızlığın önüne tam anlamıyla geçememektedir. Çoğu süpermarket hırsızlığı 

önlemek için güvenlik kameraları kullanmakta ve kameralar görevliler tarafından 

izlenmektedir. Ancak kamera sayısının fazla olması ve bu durumda, insan görüşünün 

sınırlı olması ve çalışmadan doğan yorgunluk ile hırsızlık tespitinin önüne çoğu zaman 

geçilememektedir. Böylece, süpermarketlerdeki hırsızlık olayının anında tespiti 

çözülmesi gerekli bir problem haline gelmektedir. Yapay zekânın gelişmesiyle 

birlikte, süpermarketlerdeki hırsızlıkları önlemek için bu alandan faydalanılabilir. Bu 

yüzden, bu tez çalışmasında, yapay zekânın konusu olan insan eylem tanıma (ET) 

modeline dayanan hırsızlık tespiti konusuna odaklanılmıştır. 

ET videodaki eylemi anlama ile ilgilidir ve onlarca yıldır araştırılmakta ve 

çalışılmaktadır. ET, kamera sistemleri, insan-bilgisayar etkileşimi ve robotik sistemler 

gibi birçok alanda uygulanmaktadır. ET insanlığın bir parçası olmuş ve genellikle 

günlük yaşantıdaki insan eylemlerini içeren veri setlerini [2-5] sınıflandırmak için 

kullanılmıştır. ET, önceden tanımlanmış veya etiketlenmiş kısa video kliplerindeki (bu 

çalışma için hırsızlık videoları için kısa video uzunluğu 1-2 saniye aralığındadır) 

etkinlikleri hem uzaysal hem de zamansal olarak inceleyerek sınıflandırmaktadır. Bir 

video klip, ET için iki önemli bilgi içermekte ve bunlar da uzay ve zaman bilgileridir. 

Uzaysal bilgi, bir video klibindeki tek bir çerçevedeki (frame) statik bilgiyi ifade 

ederken, zamansal bilgi ise farklı zamanlara ait sıralı görüntüleri temsil etmektedir. 

Başka bir ifadeyle uzaysal bilgi, algılanmak istenen nesnenin görsel bilgisini 

öğrenmek için işe yaramaktadır. Süpermarketteki insanın görsel bilgisinin ET modeli 
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ile işlenmesiyle, insanın tespiti uzaysal bilgiye örnek verilebilir. Zamansal bilgi ise, 

nesnenin zamandaki değişimini inceleyerek, sisteme öğretilmiş olan eylemler 

arasından en doğru tahmini yapmaya çalışmaktadır. Süpermarketteki insanların 

davranışları ele alınıldığında, insanın süpermarkette yürümesi, raftan eşya, mal alması 

veya hırsızlık yaparken ki hareketlerinin bir sıra içerisinde zamanda incelenmesi, 

zamansal bilgiye örnek verilebilir. Sonuç olarak ET, video klibindeki nesnenin 

dinamik değişliklerini izleyebilmektedir. Böylece, ET modelleri süpermarketlerdeki 

hırsızlık eylemlerini gözlemlemek ve belirlemek için kamera sistemlerinde 

kullanılabilir. 

Bu çalışmada, süpermarketlerdeki hırsızlık eylemini sınıflandırmada yeni bir yaklaşım 

önerilmiştir. Önceden eğitilmiş (pre-trained) bir ET 3-Boyutlu (3-Dimensional) 

Evrişimsel Sinir Ağı (Convolutional Neural Network) modelini transfer öğrenim 

(transfer learning) yaparak kullanılmıştır. Eğitim veri seti için hırsızlık ve hırsızlık 

olmayan eylemler, YouTube’dan toplanmıştır. Ayrıca, test veri seti Bursa’daki bir 

süpermarketten, kişiler sanki hırsızlık yapıyormuş şeklinde davranarak, hırsızlık test 

veri seti oluşturulmuş ve hırsızlık olmayan eylemler için ise marketteki normal 

davranışlar toplanarak, hırsızlık olmayan test veri eylemleri oluşturulmuştur. Hırsızlık 

ve hırsızlık olmayan eylemlerde, modellerin parametre etkilerini incelemek için on iki 

farklı model eğitilmiştir. Hırsızlık eylemlerini sınıflandırmak için derin öğrenme (deep 

learning) literatüründe 2-Boyutlu (2-B) ve 3-Boyutlu (3-B) Evrişimsel Sinir Ağı 

(CNN) modelleri kullanılmıştır [6-8]. Ayrıca, çalışmada hazırlanan veri seti diğer 

hırsızlık veri setlerine benzer örnekler içermektedir. Örneğin; hırsızlık olmayan 

eylemler için süpermarkette: sabit olarak durmak, eşyaları (mal) raftan almak, 

yürümek. Hırsızlık olan eylemler için süpermarkette eşyaları: cebe sokmak, çantaya 

sokmak. Bahsedilen örnekler Şekil 1.1’de verilmiştir. 
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Şekil 1.1 : Süpermarket veri seti örnekleri [8]. 

1.1 Uzam-Zamansal Kavramı 

Uzam-zamansal kavramı, uzaysal veri serisinin zamandaki değişimidir. Bu kavram 

hem uzaya hem de zaman bağımlıdır. Uzam-zamansal 3-B’dir. 3-B olan bu 

kavramdaki uzay bilgisi 2-B ve zamansal bilgi ise 1-Boyutlu’dur (1-B). Buradaki 

uzay-zamansal veriye, hareket eden nesneler örnek gösterilebilir [9]. Bu tezde ele 

alınan uzam-zamansal bilgi, video görüntüsünde hareket eden nesnedir. Buna bağlı 

olarak, bir videodaki ardışık görüntünün herhangi bir görüntüsü 2-B uzayı temsil 

etmektedir. Bu 2-B görüntü ise nesnenin görsel bilgisini içermektedir. 1-B olan 

uzaysal bilgi ise sınıflandırılmak istenen eylemin zamana bağlı değişimini ifade 

etmektedir. 

1.2 Derin Öğrenmeden Önce Eylem Tanıma Çalışmaları 

Video kliplerindeki eylemleri tanımak için derin öğrenme öncesinde, matematiksel 

veya algısal modellere dayalı olarak geliştirilmiş formül ve algoritmalar aracılığıyla 

sınıflandırma çalışmaları yapılmıştır. Çalışmalar, 3-B uzam-zamansal dedektör ve 

tanımlayıcılar [10-15] ve Trajectory-Tabanlı dedektör ve tanımlayıcılar [16-21] olarak 

iki başlık altında incelenmiştir. Bu çalışmalarda, uzam-zamansal bilginin çıkarılıp 

işlenmesi ön plana çıkmaktadır. 

Derin öğrenme öncesi ET akış diyagramı Şekil 1.2’de gösterilmiştir. Sisteme, ilk 

olarak girdi videosu verilirmiştir. Daha sonra, el yapımı (hand-crafted) dedektörler 

(detectors) ile uzam-zamansal ilgi noktaları (interest points) çıkartılmıştır. İlgi 

noktaları ile uzam-zamansal tanımlayıcılar (spatio-temporal descriptors) 
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oluşturulurmuştur. Daha sonra, uzam-zamansal tanımlayıcılar kodlanmış ve eylem 

sınıflandırılmıştır. 

 

Şekil 1.2 : Derin öğrenme öncesi eylem tanıma akış diyagramı. 

İlgi noktalarının 3-B dedektörler ile çıkarılması işlemi, uzaysal dedektörlerin zamansal 

boyutta genişletilmesiyle gerçekleşmektedir. Bu genişleme ile dedektörler, video 

görüntüsünde 3-B damlalar (blobs) ve köşeler (corners) bulmaktadır [10-15]. 

Trajectory-tabanlı dedektörler de ilgi noktalarının bulunması ise optik akış (optical 

flow), KLT ve SIFT gibi izleyici algoritmalar ile gerçekleştirilmiştir [16,17]. İlgi 

noktaları için uzam-zamansal tanımlayıcıların oluşturulması ise Bag of Visual Words 

(BoVW), Bags of Key Points (BoKP) [18], Fisher Vectors (FV) [19], Vector of 

Locally Aggregated Descriptors (VLAD) [20] gibi modeller ile kodlanarak 

gerçekleştirilmiştir. Bu modeller genel olarak lokal tanımlayıcıları bir kümeye kodlar. 

Buradaki kodlanan küme frekans histgoramı olabilir. BoKP’da kümeleme işlemi için, 

Naive Bayes ve Support Vector Machine (SVM) kullanılmış ancak SVM’nin daha iyi 

sonuç verdiği görülmüştür [18]. FV’de olasılıksal Gaussian Mixture Model (GMM) 

ile yerel tanımlayıcılar oluşturulmuştur. FV’nin BoVW’a göre avantajları; gradyan 

hesaplaması GMM’nin karışım ağırlığı parametrelerine bağlı olmasıyla ek gradyanlar 

ile doğruluk açısından daha üstün olduğu ve FV lineer sınıflandırıcılarla başarılı bir 

şekilde çalıştığı için geniş ölçekli sınıflandırma işlemlerinde daha başarılı olduğu 

gösterilmiştir [19]. VLAD, FV’nin basitleştirilmiş haline benzetilmiştir. SIFT 

tanımlayıcılar kullanılmış, tanımlayıcının kodlama işlemi ise komşu noktaların 

kestirimi ile yapılmış ve kestirim için Euclidean Locality-Sensitive Hashing 

kullanılmıştır [20]. 

1.2.1 3-Boyutlu uzam-zamansal dedektör ve tanımlayıcılar 

2004’te Laptev, uzaysal boyutta tespit edilen ilgi noktalarını uzam-zamansal boyuta 

genişleterek yeni bir kavram ortaya çıkarmıştır [10]. Uzam-zamansal boyutta ilgi 
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noktalarının tespiti için uzaysal ilgi noktası tespit eden Harris ve Förster operatörleri 

temel alınmıştır. Bu operatörler, görüntü ölçek uzayında, Gaussian penceresi üzerine 

entegre edilmiş ikinci moment matrisi kullanmaktadır. İkinci moment tanımlayıcısı, 

bir noktanın yerel komşuluğundaki 2-B görüntünün, yönelimlerinin ve dağılımının 

kovaryans matrisi olarak düşünülebilir. Kovaryans matrisi, yerel ölçekte birinci 

mertebeden türevleri hesaplanarak oluşturulmaktadır. Böylece, kovaryans matrisinde 

oluşan öz değerlerdeki farkların büyük olduğu değerleri inceleyerek kenar tespiti 

yapmaktadır. Sonuç olarak, görüntü üzerinde gezdirilen pencere ile görüntü öz 

değerleri elde edilir ve pencere üzerinde her iki yönde yüksek değişimlere uğrayan 

kenar etrafındaki noktaların tespit edilmesiyle ilgi noktaları çıkartılmaktadır. Yeni 

oluşturulan uzam-zamansal operatör ile zamansal boyutta, görüntü dizilerindeki 

hareketleri ve olayları tespit eden 3-B bir operatör geliştirilmiştir. Temel alınan 

operatördeki gibi uzam-zamansal hacimlerdeki görüntü değerlerinin hem uzaysal hem 

de zamansal yönlerdeki büyük varyasyonlara sahip noktaları hareket noktaları olarak 

kabul edilmektedir. Oluşan noktalar, sabit olmayan hareketli yerel uzam-zamansal 

komşuluklara karşılık gelen, zaman içinde farklı konumlara sahip uzamsal ilgi 

noktalarına karşılık gelmektedir. Böylece, Gaussian penceresine bağımsız zamansal 

varyans eklenmiştir. Sonuç olarak, öz değerler matrisi, maksimum Laplacian of 

Gaussian değerleri aranarak oluşturulmuştur. Şekil 1.3’te geliştirilmiş olan model ile 

görüntü dizisinde tespit edilen ilgi noktaları gösterilmiştir. 

 

Şekil 1.3 : Tespit edilmiş uzam-zamansal ilgi noktaları [10]. 

2005’te yapılan bir çalışmada, 2-B ilgi noktası dedektörlerinin doğrudan 3-B 

karşılıklarının yetersiz olduğu gösterilmiş ve bir alternatif önerilmiştir [11]. İlgi 

noktaları temel alınarak, uzam-zamansal pencerelenmiş verilere dayalı bir algoritma 

geliştirilmiştir. İnsan yüz ifadesi ve bazı kemirgen davranışları gibi eylemler 
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incelenmiştir. Bu eylemlerin tespiti için kullanılan nesne tanıma yaklaşımları ile 

sınıflandırılması sonucu ve [10]’da geliştirilmiş olan 3-B operatör ile ilgi noktaları 

çıkarıldığında tespit edilen ilgi noktalarının çok az olmasından dolayı bu veri seti temel 

alınmıştır. Bu eylemler ise ilgi noktalarının kullanılmasıyla uzam-zamansal boyutta 

dedektör küboidler (cuboid) oluşturulmuş ve geliştirilen tanımlayıcı ile karakterize 

edilmiştir. Uzam-zamansal noktaların çıkarımı için ise uzaysal boyutta 2-B Gaussian 

yumuşatma çekirdeği (kernel) ve 1-B Gabor filtresinin kareleme çifti (a quadrature 

pair) ile konvolüsyonu yapılarak uygulanmıştır. Böylece oluşturulan dedektör, lokal 

görüntü yoğunluklarındaki periyodik frekans bileşenlerinin değişikliklerinin nerede 

fazla olduğunu algılayacak hale getirilmiştir. Sonuç olarak, video görüntüsünden 

uzam-zamansal ilgi noktaları küboidler olarak çıkarılmıştır. Küboidler aracılığı ile 

görüntüden, normalize edilmiş piksel değerleri, parlaklık gradyanı ve pencereli optik 

değerleri çıkarılmıştır. Çıkarılan bu değerler k-means ile kümeleme işlemi yapılarak 

ayrılmış, vektöre çevrildikten sonra eylem sınıflandırılmıştır. Uzam-zamansal ilgi 

noktaları çıkarılmış örnek küboid görüntüsü Şekil 1.4’te gösterilmiştir. 

 

Şekil 1.4 : Uzam-zamansal küboidler [11]. 

2007’de yapılan bir çalışmada, 3-B SIFT tanımlayıcı geliştirilmiştir [12]. 2-B Bag of 

Words (BoW) SIFT tanımlayıcıları görüntü sınıflandırma işleminde, görüntünün 

sınırlarını çok güçlü şekilde ifade ettiği için bu çalışma temel alınmıştır. 3-B SIFT 

modelinde; 2-B BoW modeli genişletilerek 3-B uzam-zamansal hale getirilmiş ve ilgi 

noktalarının bulunmasından ziyade 3-B tanımlayıcıların oluşturulmasına daha çok 

önem verilmiştir. Ayrıca, modelin hızlı çalışması için ilgi noktaları rastgele seçilmiş 

ve seçilen noktalar sınıflandırıldıktan sonra yönleri incelenmiştir. Tanımlayıcının ilk 

adımı, komşu noktaların genel yönelimini yani oryantasyonunu hesaplamaktadır. 
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Oryantasyon hesabı, gradyan büyüklüğünün (magnitude) hesaplanmasıyla 

gerçekleşmektedir. Böylece, görüntüdeki her bir piksel iki değere sahip olmakta ve bu 

değerler de gradyanın 3-B bölgedeki yönünü temsil etmektedir. Sonraki adım da 3-B 

komşuluğu bulmak için ağırlıklı histogramlar oluşturulmaktadır. Son olarak, 

histogramlar arasındaki korelasyona göre eylemler sınıflandırılmaktadır. 3-B SIFT ve 

2-B SIFT test sonuçları karşılaştırılmış ve 3-B SIFT’in 2-B’a göre çok daha başarılı 

olduğu ve uzam-zamansal boyutun önemi gösterilmiştir. Şekil 1.5’te ilk olarak 2-B 

SIFT tanımlayıcısı gösterilmiş, ortadaki şekil ise orijinal 2-B SIFT modelinin bir video 

görüntüsündeki ardışık kullanımını ifade etmekte ve sağdaki şekil ise uzam-zamansal 

boyuta genişletilmiş olan 3-B SIFT modelini göstermektedir. Bahsedildiği gibi 3-B 

SIFT tanımlayıcının bölünmüş hacimleri ile histogramlar oluşturulmuştur. 

 

Şekil 1.5 : 2-B SIFT’in uzaysal boyuttaki ve 3-B SIFT’in uzam-zamansal boyuttaki 

oryantasyonu [12]. 

[13]’deki çalışma 2-B SURF [21] tanımlayıcının uzam-zamansal boyuta genişletilmiş 

halidir. Önceki çalışmalardan farklı olarak bu çalışmadaki dedektör, ilk kez uzam-

zamansal ilgi noktalarının, video içeriğini yoğun bir şekilde kaplayan ve aynı zamanda 

ölçekte değişmez olan bir model oluşturulmuştur. Bunun için, ölçek-uzay teorisi, 

Hessian matris determinantı ile uygulanmış ve ölçekte normalize edilmiş değerlerin 

türevlerinin alınması ile gerçekleştirilmiştir. Buradaki matris, 3 x 3 uzam-zamansal 

ikinci moment matrisidir. Ayrıca, ölçekteki normalizasyon işlemi ile Gaussian 

damlasının (blob) en ideal olduğu yerler bulunmaktadır. Gaussian damlasının 

merkezinde determinant matrisi oluşturulmuştur. Merkezdeki matrisin ikinci 

mertebeden türevleri alınmış ve integral video yapısı kullanılarak karmaşık işlemlerin 

zorluğu azaltılmıştır. Türevlerin hesaplanması için kutu-filtresi (box-filter) 

kullanılmıştır. Kutu filtresinin ölçeği yükseltilerek farklı boyutlarda kutular 

oluşturulmuş ve verimli bir şekilde uygulanmıştır. Son olarak, oluşturulmuş 
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kutulardan tanımlayıcının çıkarımı için Haar-wavelets kullanılmıştır. Şekil 1.6’da bir 

eylemden 3-B SURF ile çıkarılmış olan ilgi noktaları gösterilmiştir. Ayrıca geliştirilen 

3-B SURF metodu ile önceki metotlar değerlendirilmiştir [10,11]. [11]’deki 

çalışmanın ölçekte değişmez olduğu ve küboidlerin boyutunun kullanıcı tarafından 

belirlendiği gösterilmiştir. [10]’daki çalışmanın iteratif olduğu ancak geliştirilen bu 

metot ölçekte değişmez olduğu için iteratif bir yaklaşımın gerekli olmadığı 

gösterilmiştir. 

 

Şekil 1.6 : 3-B SURF ile tanımlayıcıların oluşturulması [13]. 

[14]’deki video sınıflandırma çalışması, görüntü tanıma modellerinden olan uzaysal 

piramitleri (spatial pyramids) temel almaktadır. Piramitler uzam-zamansal boyuta 

genişletilerek 3-B hale getirilmiştir. İlgi noktalarının tespiti için 3-B Harris [10] 

dedektörü kullanılmıştır. Geliştirilen dedektör ile tespit edilen uzam-zamansal ilgi 

noktaları Şekil 1.7’de gösterilmiştir. Ölçek seçimi için çok ölçekli yaklaşım temel 

alınmış ve uzam-zamansal ölçeklerin çoklu seviyelerinde özellikler çıkarılmıştır. 

Böylece, iteratif yaklaşım kullanılmamış ve hesaplama zorluklarından kaçınılmıştır. 

Lokal özelliklerin, hareketini ve görünümünü karakterize etmek için tespit edilen 

komşu noktaların uzam-zamansal hacimlerindeki histogram tanımlayıcıları 

oluşturulmuştur. Her hacim tespit edilen noktanın ölçek büyüklüğüyle alakalıdır. Her 

hacim, bir küboid ızgarasına bölünmüştür. Her küboid için BoW ile yönlendirilmiş 

gradyan (Histogram of Oriented Gradient) ve optik akışın (Histogram of Oriented 

Flow) kaba histogramları hesaplanmıştır. Son olarak, eylemleri sınıflandırmak için 

SVM kullanılmıştır. 
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Şekil 1.7 : Uzam-zamansal ilgi noktalarının tespiti [14]. 

[15]’teki çalışma 3-B SIFT çalışmasını temel almaktadır. 3-B uzam-zamansal 

gradyanları hesaplamak için ölçekler, rastgele seçilmiştir. Geliştirilen algoritma, 

integral videolara dayalıdır. Ayrıca, yumuşatma operatörü olarak genel olarak 

Gaussian filtre kullanılmakta ancak bu çalışmada kutu filtresi kullanılmıştır. 

Çalışmada 3-B gradyanlar kullanıldığı için bellek açısından daha verimli bir modeldir. 

Düzenli çokyüzlülere (polyhedrons) dayanan bir 3-B oryantasyon kullanılmıştır. 3-B 

SIFT [12] modelinde oryantasyon niceleme işlemi için gradyanlar, kutupsal 

koordinatlarla temsil edilmiştir. Oluşan gradyanlar da meridyenler ve paraleller 

kullanılarak gradyan histogramlara dönüştürülmüştür. Ancak bu işlemde oluşan 

gradyan histogram kutular (bins) git gide küçüldüğü için kutuplardaki tekilliklere yol 

açarak problem oluşturduğu görülmüştür. Bu problemin çözümü için oryantasyon 

işleminde, çokyüzlüler kullanılarak çözülmüştür. 

1.2.2 Trajectory dedektör ve tanımlayıcılar 

İlgi noktalarının bulunması için uzam-zamansal boyutta inceleme yapılırken yörünge 

(trajectory) tabanlı çalışmalarda ilgi noktaları uzaysal boyuttan çıkarılmakta ve bu 

noktaları zamansal boyutta takip etmektedir. Yörüngelerin oluşturulması için KLT ve 

SIFT tanımlayıcıları kullanılmıştır [16]. 2012’de yapılan bu çalışmada [16] Dense 

Trajectory (DT) ve hareket sınırı tanımlayıcıları tanıtılmıştır. Yörüngeler, video 

klibinden yerel hareket bilgilerini yakalamaktadır. Optik akış algoritmaları yoğun 

yörüngelerin çıkarılmasını sağlamaktadır. Bu sebeple yoğun yörüngelerin kalitesi, 

optik akış algoritmasının kalitesiyle sınırlanmaktadır. İlgi noktalarının oluşturulması 

için yoğun (dense) örnekleme yapılmıştır. İlgi noktalarının takip edilmesi, yani şekil 

verilmesi için gradyan histogramı, optik akış histgoramı ve hareket sınır histogramları 

kullanılmıştır. Yeni bir tanımlayıcı olarak hareket sınırı histogramları oluşturulmuştur. 

Hareket sınırı tanımlayıcısı, optik akışı vektöre dönüştürür ve her bir noktanın uzaysal 
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olarak birinci mertebeden türevini hesaplamaktadır. Oryantasyon bilgileri ise 

histogramlara nicelenmiştir. Ayrıca, DT ölçekte değişmezdir. Bu çalışmada KLT, 

SIFT ve DT tanımlayıcıları kıyaslanmış ve en iyi sonucu DT’nin verdiği tespit 

edilmiştir. Bu tanımlayıcılarla oluşturulan ilgi noktaları ve yörüngeleri Şekil 1.8’de 

gösterilmiştir. Şekil 1.8’de görüldüğü üzere, DT ile oluşturulmuş ilgi noktaları ve 

noktaların takibi, SIFT ve KLT yörüngelere göre daha pürüzsüz ve temizdir. 

 

Şekil 1.8 : KTL, SIFT ve DT tanımlayıcılarla oluşturulan ilgi noktalarının takibi 

[16]. 

Improved Dense Trajectories (IDT), DT’nin geliştirilmiş halidir [17]. Arka plan 

yörüngelerini ortadan kaldırarak ve optik akışı kamera hareketine yaklaşan bir şekilde 

tahmin edilen, homografi ile çarpıtarak performansın önemli ölçüde iyileştirilebileceği 

gösterilmiştir. Kamera hareketini tahmin etmek için, SURF tanımlayıcıları ve yoğun 

optik akışı kullanarak görüntüler arasındaki özellik noktaları eşleştirilmiştir. Bu 

eşleşmeler, RANSAC ile homografiyi tahmin etmek için kullanılmıştır. İnsan hareketi 

tutarsız eşleşmeler oluşturabilmektedir. Bunun önüne geçmek için, başarılı insan 

dedektörleri ile potansiyel olarak tutarsız eşleşmeler, kamera hareket tahmini sırasında 

kaldırılmıştır. Özellikleri kodlamak için, BoW ve FV kullanılmıştır. IDT ile yapılan 

insan hareket tespit örnekleri Şekil 1.9’da gösterilmiştir. Ayrıca Şekil 1.9’da insan 

dedektörünün olduğu ve olmadığı örnek görüntüler gösterilmiştir. İnsan dedektörü ile 

oluşturulan yaklaşımın optik akış görüntüleri karşılaştırıldığında daha başarılı olduğu 

gösterilmiştir. 
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Şekil 1.9 : IDT ile insan dedektörü yokken ve varken oluşturulan optik akış 

görüntüleri [17]. 

1.3 Derin Öğrenme ile Eylem Tanıma Çalışmaları 

Derin öğrenme öncesi ET için geliştirilmiş modeller, modele bağlı algoritmalar olduğu 

için üzerinde çalışılan veri setine özel geliştirilmiş ve geliştirildiği veri setine bağımlı 

kalmıştır. Bu sebeple, geliştirilen algoritmalar uygulandığı veri setinde yüksek 

performans göstermesine rağmen, farklı veri setlerine uygulandığında aynı 

performansı gösterememiştir. 

Lecun vd. 1988’de derin öğrenmenin gelişmesiyle ve artan bilgi birikimiyle birlikte, 

birden çok özellik katmanındaki bilgileri öğrenebilen, karmaşık ham girdilere karşı en 

az ön işleme gerektiren gradyan tabanlı öğrenme algoritması geliştirmiş ve 2-B 

CNN’nin temelini atmıştır [22]. 2-B CNN mimarilerinin [22,23] herhangi bir ön 

işleme adımı olmadan doğrudan görüntü piksellerinden, görsel örüntüleri 

öğrenebildiği ve özellikleri otomatik olarak çıkarıldığı gösterilmiştir. Böylece, derin 

öğrenme modellerinin 2-B görüntü işleme veri setlerinde gösterdiği başarılardan 

dolayı, ET video veri setlerini sınıflandırmak için uygulanabileceği belirtilmiştir [24]. 

ET için derin öğrenme mimarileri: 2-B [25-28] CNN ve 3-B [29-35] CNN modelleri 

olarak ikiye ayrılmaktadır. Literatürdeki 2-B CNN modelleri: İki-Akış Ağları (Two-

Stream Networks) [25-27] ve Geçici Segment Ağları (Temporal Segment Networks) 

[28] olarak ikiye ayrılmaktadır. 3-B CNN modelleri: Konvolüsyonel 3-B (C3D) [29], 

Şişirilmiş İki-Akış 3-B (I3D) [30], Yalancı-3B (P3D) [31], 3-B Artık Ağlar (3-D 

ResNets) [32], R(2+1)D [33], Ayrılabilir 3-B (S3D) [34] ve Kanalla Ayrılmış 

Evrişimsel Ağlar (CSN) [35]. 
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1.3.1 2-B CNN modelleri 

1.3.1.1 İki-akış ağları ve mimarileri 

İki-akış ağları [25-27], hem uzaysal hem de zamansal boyutu inceleyen iki akış ağına 

sahiptir. Uzaysal ağ, giriş olarak tek bir Red Green Blue (RGB) görüntü alır ve bu 

görüntüyü işler. Zamansal ağ, giriş olarak birden çok ardışık görüntü alır ve bu görüntü 

serisi arasında optik akış yer değiştirme alanlarının istiflenmesiyle oluşturulmaktadır. 

Uzaysal akış ağ bölümünde işlenen görüntüde, sınıflandırılacak olan nesnenin görsel 

bilgisinin çıkarılması amaçlanırken, zamansal akış ağ bölümünde işlenen ardışık 

görüntü serisinde ise sınıflandırılmak istenen eylemin hareket bilgisinin çıkarılması 

amaçlanmaktadır. Uzaysal ve zamansal akış ağ mimarileri genel olarak: 

konvolüsyonel katmanlardan (convolutional layer), tam bağlantılı (FC) (fully-

connected layer) katmanlardan ve softmax katmanından oluşmaktadır. İki-akış 

ağlarında uzaysal ve zamansal bilginin birleştirilmesi için kaynaşma (fusion) işlemi 

yapılmaktadır. Kaynaşma işleminde [25]’de geç kaynaşma, [26]’de ise erken, geç ve 

çoklu katman kaynaşma fonksiyonları kullanılmıştır. 

Karpathy vd. tarafından kaynaşma işlemi, videoda bulunan yerel hareket bilgisinden 

yararlanmak için bir CNN mimarisindeki zamansal bağlantı modeli araştırılarak, ek 

hareket bilgisinin bir CNN’nin tahminini nasıl etkilediği ve genel olarak 

performansının ne kadar değiştiği araştırılarak oluşturulmuştur [3]. Oluşturulacak 

modelin uzam-zamansal boyuta uzatıldığı düşünüldüğünde, klasik CNN modellerinin 

bir girdi görüntüsü alarak eğitildiği modellerin eğitiminin uzun sürmesinden dolayı 

uzam-zamansal modelin girdi olarak birçok görüntü alacağı için eğitim aşamasında 

milyonlarca parametreden oluşacağı öngörülerek, zamandan kazanmak için 

oluşturulan mimari iki akışa ayrılarak uzaysal ve zamansal ağlar oluşturulmuştur [3]. 

Mimaride, bağlam akışı ve fovea akışı vardır. Bağlam akışı, çerçeveyi daha düşük 

çözünürlüklü çerçeveye dönüştürür ve çerçevelerdeki (frame) sınıflandırılmak istenen 

nesnenin görsel bilgisini öğrenmektedir. Fovea akışı, yalnızca çerçevenin orta yüksek 

çözünürlüklü kısmında işlem yapmakta ve çerçevenin hareket bilgisini öğrenmeyi 

amaçlamaktadır. Statik görünümün sınıflandırma katkısını anlamak için tek çerçeveli 

temel bir mimari oluşturulmuştur. Temel alınan mimaride girdi görüntüsü boyutu 

2242243 şeklinde kullanılmıştır. Kaynaşma işlemi, kovolüsyon filtre katmanının 

zamanda uzatılmasıyla gerçekleştirilmiştir. Üç çeşit kaynaşma modeli oluşturulmuş 
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olup bunlar; erken, geç ve yavaş kaynaşmadır. Erken kaynaşma uzantısı, zaman 

penceresinde 10 tane ardışık girdi görüntüsünün, giriş konvolüsyon katmanında 

kaynaşmasıyla gerçekleştirilmektedir. Erken kaynaşma ile ağın, video eyleminin lokal 

hareket yönünü tespit ettiği belirtilmiştir. Geç kaynaşma modeli, iki ayrık tek çerçeve 

ağı ile oluşturulmuştur. Geç kaynaşma, 15 ardışık görüntüden iki görüntü alır ve son 

katmandaki konvolüsyon katmanında kaynaşmayı gerçekleştirir. Yavaş kaynaşma 

modeli, erken ve geç kaynaşma modelinin dengeli halidir. Yavaş kaynaşma, zamansal 

bilgiyi yavaşça işlemektedir. Yavaş kaynaşma 10 girdi görüntüsü alır ve kovolüsyon 

katmanlarıyla girdileri yavaş yavaş işleyerek kaynaşmayı gerçekleştirmektedir. Şekil 

1.10’da kaynaşma çeşitleri ve mimarileri gösterilmiştir [3]. En başarılı kaynaşma 

modelinin yavaş kaynaşma olduğu gösterilmiştir. 

 

Şekil 1.10 : Kaynaşma çeşitleri [3]. 

Çalışma([25])’da oluşturulan iki-akış mimarisi Şekil 1.11’de gösterilmiştir. Mimarinin 

uzaysal bölümünde bir girdi çerçevesi ve zamansal bölümünde ise çoklu optik akış 

girdileri alınmış ve geç kaynaşma metodu kullanılmıştır. Girdiler işlendikten sonra 

softmax katmanından çıkan skorlar ile geç kaynaşma uygulanmış ve iki kaynaşma 

metodu kullanılmıştır. Bu metotlar: ortalama (averaging) ve SVM’dir. SVM’nin daha 

başarılı olduğu gösterilmiştir [25]. 
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Şekil 1.11 : İki-akış mimarisi [25]. 

Uzaysal akış ve zamansal akış ağlarının performans etkileri değerlendirilmiştir [25]. 

Uzaysal ağlarda, RGB çerçeveler üç şekilde değerlendirilmiştir. İlk olarak, UCF-101 

[5] veri seti üzerinde sıfırdan eğitim gerçekleştirilmiştir. İkinci olarak, ağ ilk önce 

ImageNet ILSVRC-2012 [36] veri setinde eğitilmiş ve eğitilen ağ UCF-101 veri 

setinde üzerinde ince ayar (fine-tuning) yapılarak eğitilmiştir. Üçüncü olarak, önceden 

eğitilmiş veri setindeki ağ yapısı korunarak, sadece son katmandaki sınıflandırıcı da 

ince ayar yapılarak eğitilmiştir. Bırakma (dropout) oranı 0,5 ve 0,9 olarak iki eğitim 

doğruluğu oluşturulmuştur. Sonuç olarak, sıfırdan eğitim yapıldığında her iki bırakma 

oranı için ağın ezberlemeye (overfitting) yöneldiği gösterilmiştir. Bırakma oranı 0.5 

olan ince ayar eğitimi ve bırakma oranı 0,9 olan son katman ince ayar eğitim 

doğruluklarının en iyi sonuçları verdiği gösterilmiştir. 

Zamansal ağlarda, optik akışların farklı çeşitlerinin etkileri incelenmiştir. Bunun için, 

tek çerçeve optik akış, optik akışlar 5 ve 10 çerçeve ile yığılmış, yörünge (trajectory) 

de yığılmış 10 optik akış çerçeve ve yığılmış 10 çerçeve iki-yönlü optik akış 

kullanılmıştır. Optik akışlarda, ortalama akış çıkarma (mean flow subtraction) 

uygulanmıştır. Bu işlem genel olarak, girdinin merkezine odaklanarak, doğrusal 

olmayan düzeltmelerden daha iyi yararlanması sağlamaktadır. Böylece, çerçeveler 

arasındaki küresel hareketin etkisini azaltmaktadır [25]. Mimariler UCF-101 veri 

setinde sıfırdan eğitilmiş ve bırakma oranı 0.9 seçilmiştir. Sonuç olarak, 10 çerçeve ile 

yığılmış ve yığılmış 10 çerçeve iki-yönlü optik akış modellerinin en iyi sonuçları 

verdiği gösterilmiştir. 

[26]’de kaynaşma işleminden en iyi uzam-zamansal bilgileri toplamak için zamansal 

ve uzaysal akış mimarileri oluşturulmuş ve Şekil 1.12’de mimariler gösterilmiştir. 

Eğitim veri seti olarak, HMDB-51 [4] ve UCF-101 [5] seçilmiştir. Bu çalışmada, üç 
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bulgu araştırılmıştır. İlk olarak, [25]’de olduğu gibi softmax sınıflandırma katmanında 

kaynaşma yapmak yerine bu işlem performans kaybı olmaksızın konvolüsyon 

katmanında gerçekleştirilmiştir. Bunun sebebi, [25]’deki mimarinin uzaysal ve 

zamansal özellikler arasındaki piksel bazındaki haberleşmeyi öğrenememesi olmuştur 

[26]. İkinci olarak, özellikle uzaysal ağlarda, son katmanlarda kaynaşma yapmanın 

sınıflandırma skorunun değerini arttırabileceği ve sınıflandırmada olumsuz etki 

yapabileceği söylenmiş ve bu sebeple erken katmanlarda kaynaşma yapmanın daha iyi 

olacağı belirtilmiştir. Üçüncü olarak, soyut konvolüsyonel özelliklerin uzam-zamansal 

komşular üzerinde havuzlama (pooling) işlemiyle performansının artabileceği 

söylenmiştir [26]. Kaynaşma işleminin araştırılmasının asıl amacı, farklı sınıf ancak 

aynı hareket örüntüsüne sahip eylemlerin, mimari tarafından zamansal ağ ile hareketin 

ne olduğu ve uzaysal ağ ile hareketin konumunun tespit edilmesiyle birlikte bu 

olayların birleşimi ile eylemin daha doğru ayrıştırılması amaçlanmıştır. 

 

Şekil 1.12 : İki-akış mimarilerinde kaynaşma işleminin gerçekleştirildiği katmanlar 

[26]. 

Kaynaşma işlemi için toplama (sum fusion), maksimum (max fusion), birleştirme 

(concatenation fusion), konvolüsyonel (conv fusion) ve bilinear kaynaşma aynı 

uzaysal konumlara sahip iki özellik haritalarında (feature maps) uygulanmıştır. En iyi 

sonucu konvolüsyonel kaynaşmanın verdiği gösterilmiştir [26]. Ayrıca, zamansal 

kaynaşma kısmında, zamansal boyutta 3-B konvolüsyon kaynaşma kullanılmış, 2-B 

havuzlama yerine 3-B maksimum havuzlamanın (max-pooling) daha başarılı olduğu 
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gösterilmiştir. Önceki çalışmalardan farklı olarak 3-B parametreler kullanılmasına 

rağmen yeni mimaride parametre sayısı çok fazla artmamıştır [26]. Mevcut veri 

setlerinin 3-B parametreleri eğitmek için çok küçük ölçekli (small-scale) veya çok kirli 

olduğu söylenmiştir. 

1.3.1.2 Geçici segment ağları (TSN) ve mimarisi 

TSN, uzun menzilli zamansal yapı modelleme fikrine dayanmaktadır [28]. TSN, 

eylemin etkili sınıflandırılması için eylem videosunun tamamını kullanarak seyrek 

zamansal örnekleme stratejisini kullanmaktadır. Mevcut olan uzun menzilli zamansal 

modellerin, genellikle kısa süreli hareketlere ve nesnenin görüntüsüne 

odaklanmasından dolayı uzun menzilli zamansal yapıyı birleştirme kapasitesinden 

yoksun olduğu belirtilmiştir [28]. Dahası, kullanılan bu metotlar önceden tanımlanmış 

bir örnekleme aralığı ile yoğun zamansal örneklenmeye dayanmaktadır. Ancak bu 

yaklaşım uzun video dizilerine uygulandığında, aşırı hesaplama maliyetine sebep 

olmakta ve pratikte uygulanmasını sınırlamaktadır. Ayrıca, önceki çalışmalar 

değerlendirildiğinde ağları optimize etmek için büyük ölçekli video veri setlerinin 

gerektiği ancak küçük ölçekli mevcut veri setleriyle [4,5] sınırlı kalındığı bildirilmiştir. 

Mevcut küçük ölçekli veri setleri ile eğitim yapılacağı için bu probleme yönelik, 

gelişmiş veri büyütme (enhanced data augmentation), ön eğitim (pre-training) ve 

düzenleme (regularization) yöntemleri kullanılmıştır [28]. 

Zamansal yapı modelinde, ardışık çerçevelerin benzer bilgiler içermesinden dolayı 

gereksiz olduğu söylenmiştir. Seyrek uzaysal örnekleme seçiminin daha uygun olacağı 

belirtilmiş ve Şekil 1.13’te seyrek örnekleme ile TSN ağ mimarisi gösterilmiştir. Şekil 

1.13’te gösterildiği gibi, eylem videosunu K tane eşit bölümlere (segments) böldükten 

sonra kısa parçacıklar (snippets) her bir bölümden rastgele seçilmekte ve seyrek bir 

örnekleme ile uzun video klibi küçük parçalara ayrılmaktadır. Böylece, hesaplama 

maliyeti düşürülmektedir. TSN mimarisi farklı küçük parçacıkları, RGB görüntü ve 

çoklu optik akış görüntüleri olarak uzaysal ve zamansal ağlarda işlendikten sonra 

Consensus fonksiyonundan çıkan bilgiler ile sınıf skorunda kaynaştırmaktadır. 

Consensus fonksiyonunda, maksimum havuzlama, ortalama havuzlama (average 

pooling) ve ağırlıklı ortalama fonksiyonları kullanılmıştır. 
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Şekil 1.13 : Geçici segment ağları [28]. 

TSN modelini güçlendirmek için dört farklı girdi modeli değerlendirilmiş ve yeni 

olarak iki girdi modeli tanıtılmıştır [28]. Şekil 1.14’te girdi örneklerine ait görüntüler 

gösterilmiştir. RGB görüntünün bir önceki ve sonraki kareler hakkında bağlamsal 

bilgiden yoksun olduğu düşünülerek RGB fark görüntüsü oluşturulmuştur. RGB fark 

görüntüsü, iki ardışık kare arasındaki görüntü değişimini ifade etmekte ve hareket 

bölgesine karşılık gelmektedir. Optik akış alanlarında, x veya y koordinat değerlerine 

filtrelerle işlem yapılarak, yatay (x) veya dikeydeki (y) pikseller daha belirgin hale 

getirilerek eylem hareketine ilişkin bilgi oluşturulmaktadır. Gerçek uygulamalarda, 

kamera hareketi yüzünden optik akış alanlarının insan eylemine odaklanamayabileceği 

düşünülerek çarpık optik akış alanları geliştirilmiştir. Çarpık optik akış alanları, 

IDT’den [17] esinlenerek oluşturulmuştur. Çarpık optik akış alanlarını oluşturmak için 

önce homografi matrisi tahmin edilmekte ve sonra kamera hareketi dengelenmektedir. 

Sonuç olarak, eğitim sonuçları ile çarpık optik akışın etkisi gösterilmiştir. Consensus 

fonksiyonunda, ortalama havuzlama yöntemi öne çıkmıştır. 

 

Şekil 1.14 : Dört tip girdi örneği: 1. RGB görüntü, 2. RGB fark görüntü, 3. optik akış 

alanları (x, y yönleri) ve 4. çarpık optik akış alanları (x, y yönleri) [28]. 
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1.3.2 3-B CNN modelleri 

1.3.2.1 Konvolüsyonel 3-B (C3D) 

ET literatüründeki ilk 3-B CNN mimarisi C3D’dir (Convolutional 3D) [29]. C3D girdi 

olarak tüm video çerçevelerini almakta ve herhangi bir ön işlem gerektirmediği için 

büyük veri setlerinde kolayca ölçeklenmektedir. Bu çalışma, iki-akış ağından farklı 

olarak [25] 2-B konvolüsyon ve 2-B havuzlama yerine bu fonksiyonları bütün ağa 

(network) yayarak 3-B olarak gerçekleştirmektedir. 

3-B ağda konvolüsyon ve havuzlama işlemleri uzam-zamansal boyutta 

gerçekleşmektedir. Ancak, 2-B ağda bu işlemler sadece uzaysal boyutta 

gerçekleşmektedir. 2-B ve 3-B konvolüsyon işlemlerinin karşılaştırılması Şekil 1.15’te 

gösterilmiştir. Şekil 1.15 incelendiğinde, ilk olarak, 2-B görüntüye 2-B konvolüsyon 

işlemi uygulanmış ve 2-B görüntü elde edilmiştir. İkinci olarak, video görüntüsüne 

(üst üste birikmiş çoklu çerçeve görüntüsü) 2-B konvolüsyon işlemi uygulanmış ve 

yine sonuç olarak 2-B görüntü elde edilmiştir. Üçüncü olarak, video görüntüsüne 3-B 

konvolüsyon işlemi uygulanmış ve 3-B bir sonuç elde edilerek giriş sinyalindeki 

zamansal bilgi korunmuştur [29]. 2-B ağlar, 2-B her bir konvolüsyon işleminde giriş 

sinyalindeki zamansal bilgiyi kaybederken 3-B ağlar bu bilgiyi korumaktadır. Sonuç 

olarak 3-B ağ, 3-B konvolüsyon ve 3-B havuzlama işlemleriyle zamansal bilgileri daha 

iyi modellemektedir [29]. 

 

Şekil 1.15 : 2-B ve 3-B konvolüsyon işlemlerinin uygulanması [29]. 

C3D mimarisi için en uygun çekirdek derinliğinin (kernel depth) değerleri UCF-101 

[5] veri setinde araştırılmıştır. İlk olarak, çekirdek derinliği; 1, 3, 5, 7 seçilmiş ve tüm 

konvolüsyon katmanları boyunca aynı kalarak araştırılmıştır. Ayrıca, çekirdek 

derinliğinin 1 olması Şekil 1.15’teki ikinci şekli ifade etmektedir. Çekirdek derinliği; 

artan 3-3-5-5-7 ve azalan 7-5-5-3-3 şeklinde iki mimari oluşturularak araştırılmıştır. 

Bu üç deney değerlendirildiğinde en iyi sonucu değişmeyen 333 çekirdek derinliği 

vermiş ve derinlik 3 seçilmiştir [29]. C3D mimarisi: 8 konvolüsyon katmanı, 5 

havuzlama katmanı, 2 FC katman ve softmax çıkış katmanı şeklinde oluşturulmuştur. 
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Öncelikle C3D, video tanımlayıcı olarak çok sınıflı doğrusal SVM sınıflandırıcı ile bir 

arada kullanılmış ve büyük ölçekli Sports-1M [3] veri setinde uzam-zamansal 

özellikleri öğrenmesi hedeflenerek eğitilmiştir. Sonuç olarak, C3D’nin video 

klibindeki özellikleri öğrenmede, görünümü ve hareketi aynı anda modelleyen 

öğrenme makineleri olduğu deneysel olarak gösterilmiştir. Son olarak, video 

tanımlayıcı C3D modeli, ET modeli olarak eğitilmiştir. Video tanımlayıcı C3D 

modeli; I380K, Sports-1M [3] ve I380K’de ön eğitim (pre-training) yapılarak Sports-

1M’de ince ayar yapılarak eğitilmiştir. En iyi sonucu ince ayar yapılan ağ vermiştir. 

Eğitin bu modeller UCF-101 [5] veri setinde değerlendirilmiş ve bu veri setinde son 

teknoloji (state-of-the-art) mimarilerinden daha iyi sonuç verdiği gösterilmiştir. 

1.3.2.2 Şişirilmiş iki-akış 3-B (I3D) 

I3D [30] mimarisi, hem iki-akış mimarisinden [25,26] hem de Inception-V1 [37] 2-B 

CNN modelinden esinlenerek oluşturulmuştur. I3D ağı, Şekil 1.16’da Two-Stream 

3D-ConvNet ismiyle gösterilmiştir. I3D mimarisinin girdi bölümleri iki-akış mimarisi 

ile aynıdır. İki-akış mimarisinin uzaysal akış ağı, girdi olarak tek RGB görüntüsü 

alıyorken, I3D uzaysal akış ağı, girdi olarak 64 RGB görüntüsü almaktadır. I3D 

zamansal akış ağıda girdi olarak 64 çerçeve almakta ve iki-akış ağında olduğu gibi 

çoklu optik akış görüntüsü almaktadır. Şekil 1.16’da gösterilen I3D modelinin 3D 

ConvNet katmanı: 2-B görüntü sınıflandırma Inception-V1 [37] modelinin 3-B uzaya 

uzatılmasıyla oluşturulmuştur. Ayrıca, I3D akışları ayrı ayrı eğitilmiş ve ağların 

tahmin sonuçlarının ortalaması alınarak sınıflandırma skoru oluşturulmuştur. 

 

Şekil 1.16 : Birbirleriyle karşılaştırılan farklı video mimarileri [30]. 

I3D modeli ilk olarak, Inception-V1’in ImageNet’te [36] önceden eğitilmiş (pre-

trained) olduğu ağırlık değerleri kullanılarak Şekil 1.16’da gösterilen a, b, c, d 

mimarileriyle, HMDB-51 [4], UCF-101 [5] ve miniKinetics test veri setlerinde 

sınıflandırılmıştır. Ancak, 3D-ConvNet modeli ayrı tutularak sıfırdan eğitilmiş ve test 
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edilmiştir. Sonuç olarak, I3D modeli tüm veri setlerinde en yüksek doğruluk oranlarına 

sahip olmuştur. Daha sonra, Şekil 1.16’daki modeller miniKinetics veri setinde ön 

eğitim yapılarak UCF-101 ve HMDB-51 test veri setlerini sınıflandırmış ve I3D 

modeli tekrardan en yüksek doğruluk oranlarına sahip olmuştur. MiniKinetics veri 

setinde ön eğitimin yapılma amacı, Kinetics-400 [38] veri setine göre küçük ölçekli 

olması ve bu sayede eğitim, test işlemlerini hızlandırmış olmasıdır. Son olarak, I3D 

modeli Kinetics-400 [38] ve miniKinetics veri setlerinde ön eğitim yapılarak, HMDB-

51 ve UCF-101 veri setlerinde, son teknoloji (state-of-the-art) mimarileri (IDT [17], 

iki-akış ağı [25], C3D [29]) ile karşılaştırılmış ve en yüksek doğruluğa I3D Kinetics-

400 ön eğitim modelinin sahip olduğu gösterilmiştir [30]. 

Sonuç olarak, 3-B CNN [29,30] modellerinin çok fazla parametreye sahip olmasından 

dolayı, hareket özelliklerini doğru öğrenebilmeleri için büyük miktarda doğru veriye 

ihtiyaç duydukları kanıtlanmıştır [30]. I3D modeli C3D modeline göre daha küçük veri 

setiyle eğitilmiş olmasına rağmen daha iyi sonuç vermiştir. Sebep olarak, Sports-1M 

veri setinin kirli ve doğru eylem başlıklarına sahip olmadığı ve mimari olarak I3D 

modelinin daha iyi olduğu rapor edilmiştir [30]. 

1.3.2.3 Yalancı-3B (P3D) 

P3D (Pseudo-3D) [31], 2-B Artık Ağlar’ı [39] temel almaktadır. 11 katmanlı C3D [29] 

ve 152 katmanlı 2-B Artık Ağ [39] modellerinin hafıza (memory) olarak çok yer 

kapladığı için çözüm olarak P3D modeli geliştirilmiştir. Sıfırdan çok derin 3-B CNN 

modelinin geliştirildiği düşünüldüğünde, çok sayıda parametre olacağından dolayı 

pahalı hesaplama maliyeti ve bellek talebi ile sonuçlanacağı belirtilmiştir [31]. Bunun 

önüne geçmek için P3D modelinde, 2-B uzaysal bölgede 3  3  3 konvolüsyonları 1 

 3  3 konvolüsyon filtrelerle değiştirilerek oluşturulmuştur. 1-B zamansal boyutu 

oluşturmak için 1-B CNN özelliği ile özellik haritalarında (feature maps) zamansal 

bağlantılar 3  1  1 konvolüsyonları kullanılarak oluşturulmuştur. Yalancı 199 

katmanlı bu model, 11 katmanlı C3D modelinden hafıza olarak daha az yer 

kaplamaktadır. Ayrıca, 2-B CNN görüntü sınıflandırma veri setlerinde ön eğitim 

sağlayarak sahne ve nesne bilgisi ile daha güçlü bir model oluşturulabilir [31]. 

Şekil 1.17’de temel alınan Artık darboğaz bloğu (bottleneck) [39] ve 3 çeşit P3D 

darboğaz blokları gösterilmiştir [31]. Artık ağın [39] ana fikri, kısa devre bağlantısıyla 

girdi bilgisinin çıkışa direkt aktarılması ve konvolüsyon katmanlarıyla işlenen girdinin 
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çıkış katmanında toplanmasıyla, girdide kaybolabilecek önemli bilgileri korumasıdır. 

P3D-A bloğu: 1-B ve 2-B konvolüsyon filtreleri birbirine kademeli şekilde 

bağlanmasıyla oluşmaktadır. Böylece, iki tür filtre birbirini doğrudan etkilemektedir. 

P3D-B bloğu: İki tür filtre arasında doğrudan bir bağlantı yoktur ve birbirini dolaylı 

olarak etkilemektedir. P3D-C bloğu: Filtreler birbirini hem doğrudan hem de dolaylı 

olarak etkilemektedir. Bloklar, UCF-101 [5] veri setinde test edilmiş ve en iyi sonucu 

P3D-A bloğu vermiştir. Son olarak, oluşturulan düşük maliyetli P3D modeli, UCF-

101 veri setinde son teknoloji mimarilerinden (IDT [17], iki-akış ağı [25], TSN [28], 

C3D [29]) daha iyi sonuç vermiştir [31]. 

 

Şekil 1.17 : Artık Birim Bloğu (Residual Unit) ve P3D Blokları [31]. 

1.3.2.4 R(2+1)D 

R(2+1)D [33] modelinde, artık öğrenme [39] çerçevesinde 3-B CNN'lerin 2-B 

CNN'lere göre doğruluk avantajları deneysel olarak gösterilmiştir. Oluşturulan 

konvolüsyon bloğu Şekil 1.18’de gösterilmiştir [33]. Artık ağlar [39], 3-B ve (2+1)D 

konvolüsyon bloklarıyla 18 ve 34 katmanlı olarak, Kinetics-400 [38] veri setinde 16 

girdi alarak sıfırdan eğitilmiş ve test edilmiştir. R(2+1)D modeli [33], 3-B artık ağ 

modeline göre daha iyi sonuç vermiştir. Ayrıca, R(2+1)D modeli, Sports-1M [3] veri 

setinde de sıfırdan eğitilerek test edilmiştir. Ancak, Kinetics-400 veri seti, Sports-1M 

veri setine göre daha iyi sonuç vermiştir [33]. R(2+1)D mimarisi, Sports-1M [3] ve 

Kinetics-400 [38] veri setlerinde ön eğitim yapıldıktan sonra HMDB-51 [4] ve UCF-

101 [5] veri setlerinde test edilmiş ve son teknoloji mimarilerine yakın veya daha 

yüksek doğruluğa sahip sonuçlar elde etmiştir. Sonuç olarak, 2-B uzaysal ve 1-B 

zamansal ayrılarak oluşturulan ve 3-B artık ağ ile aynı parametre boyutlarına sahip 

(2+1)D bloğunun performansta artış sağladığı gösterilmiştir. 
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Şekil 1.18 : a) 3-B konvolüsyon bloğu b) Oluşturulan 2-B uzaysal ve 1-B zamansal 

konvolüsyon blok [33]. 

1.3.2.5 Ayrılabilir 3-B (S3D) 

S3D [34] modeli I3D [30] modelini temel almakta, 2-B ve 3-B konvolüsyon 

filtrelerden oluşmaktadır. S3D modelinde kullanılan 3-B konvolüsyon filtreler, P3D 

[31] ve R(2+1)D [33] modellerinde olduğu gibi 2-B uzaysal ve 1-B zamansal boyuta 

ayrılarak oluşturulmuştur. Böylece, I3D modelindeki bazı 3-B filtreler, hafıza olarak 

az yer kaplayan 2-B filtrelere dönüştürülmüştür. 

Çalışmada, dört farklı model varyantı incelenmiş ve bu modeller: I3D [30], I2D, 

Bottom-heavy, Top-heavy olarak Şekil 1.19’da gösterilmiştir. I3D [30] modelinin 

orijinali kullanılmıştır. I2D modeli, I3D modelinin 2-B modele dönüştürülmüş hali 

olarak ve çoklu çerçeve girdisi alarak oluşturulmuştur. Bottom-heavy I3D modeli, 

düşük katmanlarda 3-B ve yüksek katmanlarda 2-B konvolüsyon filtreler 

kullanmaktadır. Top-heavy I3D ise Bottom-heavy modelinin tam tersidir, yüksek 

katmanlarda 3-B ve düşük katmanlarda 2-B konvolüsyon filtreler kullanmaktadır. I3D 

ve oluşturulan I2D modeli, Kinetics-400 [38] veri setinde karşılaştırılmıştır. I3D 

modeli daha başarılı olmuştur. Top-heavy ve Bottom-heavy modelleri miniKinetics 

veri setinde karşılaştırıldığında, Top-heavy modeli daha başarılı gelmiştir. Bunun 

sebebi ise girdiden gelen önemsiz yoğun bilgilerin 2-B filtreler ile es geçilmesiyle, 

yüksek katmanda daha zengin bilgi içermesidir. Böylece, 3-B konvolüsyon filtrelerin, 

yüksek katmanda uzam-zamansal örüntüleri daha başarılı çıkardığı gösterilmiştir [34]. 

Son olarak S3D modeli, ImageNet ve Kinetics-400 [38] ile ön eğitim yapıldıktan sonra 

RGB girdi ile HMDB-51 [4], UCF-101 [5] veri setlerinde, C3D [29], I3D [30], P3D 

[31] ve R(2+1)D [33] modellerinden daha yüksek doğruluk oranına sahip olduğu 

gösterilmiştir [34]. 
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Şekil 1.19 : İncelenen dört farklı model: I3D [30], I2D, Bottom-heavy I3D ve Top-

heavy I3D [34]. 

1.3.2.6 Kanalla ayrılmış evrişimsel ağlar (CSN) 

CSN [35] modelleri 101 ve 152 katmanlı olarak oluşturulmuştur. Bu çalışma, video 

sınıflandırması için 3-B CNN ağlarda farklı tasarım seçeneklerinin etkilerini 

incelemektedir. 3-B konvolüsyonları, uzaysal 2-B ve zamansal 1-B olarak ayrılmıştır. 

Farklı kanal bağlantıları kullanılmıştır. Kanallar: Conv, group conv ve depthwise conv 

olarak Şekil 1.20’de gösterilmiştir. Conv bağlantı: Yoğun bağlantı içerir ve her 

konvolüsyon filtresi, önceki katmanından girdi almaktadır. Group conv bağlantı: 

Konvolüsyon filtreleri alt küme halinde gruplayarak dağıtılmıştır. Bir alt kümedeki 

filtreler, yalnızca kendi grubundaki kanallardan sinyal almaktadır. Depthwise conv: 

Grup sayısının giriş ve çıkış kanallarının sayısına eşit olmasıdır. Group conv ve 

depthwise conv’un amacı daha iyi doğruluk ve daha düşük hesaplama maliyeti 

sağlamasıdır [35]. CSN konvolüsyonu, 3-B konvolüsyonlara kıyasla daha düşük 

eğitim doğruluğuna sahiptir. Ancak, daha yüksek test doğruluğu sağlamıştır [35]. CSN 

modeli, Sports-1M [3] ve Kinetics-400 [38] veri setlerinde, son teknoloji 

mimarilerinden daha iyi sonuç verdiği gösterilmiştir [35]. Ayrıca, CSN modeli mevcut 

ağlardan birkaç kat daha hızlıdır. 

 

Şekil 1.20 : Giriş, çıkış kanal bağlantıları [35]. 
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1.4 Eylem Tanıma Veri Setleri 

Öne çıkan ET veri setleri: Youtube-8M [2], Sports-1M [3], HMDB-51 [4], UCF-101 

[5] ve Kinetics’tir [38,40,41]. ET veri setlerine ait örnek video sayıları ve toplam 

sınıfları Çizelge 1.1’de gösterilmiştir. 

Çizelge 1.1 : ET veri setleri. 

Veri Seti Adı Örnek Video Sayısı Sınıf Sayısı 

Youtube-8M 8264650 4800 

Sports-1M 1000000 487 

HMDB-51 6766 51 

UCF-101 13320 101 

Kinetics-400 306245 400 

Kinetics-600 495547 600 

Kinetics-700 650317 700 

1.4.1 Youtube-8M 

Youtube-8M [2] veri seti, 4800 sınıf içermekte ve yaklaşık 8 milyondan fazla video 

klipten oluşmaktadır. Her sınıf, alt küme sınıflarına ayrılmakta ve alt küme sınıfı en az 

200 video içermektedir. Veri kümesindeki her etiket, yalnızca görsel bilgiler 

kullanılarak ayırt edilebilmektedir. Video klipleri ortalama 2,5 saniyeden 

oluşmaktadır. Veri alt kümesindeki sınıflar, faaliyetleri (spor, oyunlar, hobiler), 

nesneleri (otomobiller, yiyecekler, ürünler), sahneleri (seyahat) ve olayları 

kapsamaktadır [2]. 

1.4.2 Sports-1M 

Sports-1M [3] veri seti, 487 sınıf içermekte ve açıklamalı YouTube’den alınmış 1 

milyon video klibinden oluşmaktadır. Sınıflar: Su sporları, takım sporları, kış sporları, 

top sporları, dövüş sporları, hayvanlarla sporlar gibi sınıflar içermekte ve manuel 

olarak seçilmiş bir sınıflandırmada düzenlenmiştir [3]. Sınıf başına yaklaşık 1000-

3000 arası videoya sahiptir. Videolar yarım saniyelik 100 çerçeveden (frame) 

oluşmaktadır. 

1.4.3 HMDB-51 

HMDB-51 [4] veri seti, 51 sınıf içermekte ve yaklaşık 6 binden fazla video klibinden 

oluşmaktadır. Sınıflar beş kategoriye ayrılmıştır. Kategoriler: Genel yüz hareketleri 

(gülmek, çiğnemek, konuşmak), nesne yüz eylemleri (sigara içmek, yemek, içmek), 



25 

genel vücut hareketleri (el çırpma, tırmanış, dalış), nesne etkileşimli vücut hareketleri 

(bisiklete binme, at binme, golf) ve insan etkileşimi için vücut hareketlerinden 

(yumruk atmak, el sıkışmak, sarılmak) oluşmaktadır [4]. Sınıflar en az 101 video klibi 

içermekte ve ortalama en az 1 saniye uzunluğundadır. 

1.4.4 UCF-101 

UCF-101 [5] veri seti, 101 sınıf içermekte ve yaklaşık 13 binden fazla video klibinden 

oluşmaktadır. Sınıflar beş kategoriye ayrılmıştır. Kategoriler: İnsan nesne etkileşimi 

(göz makyajı yapmak, ruj sürmek, diş fırçalamak), yalnızca vücut hareketi (şınav 

çekmek, barfiks çekmek, ip tırmanma), insanla insan etkileşimi (saç kesme, kafa 

masajı, bando yürüyüşü), müzik aletleri çalma (gitar çalmak, piyano çalmak, keman 

çalmak), spordan (bisiklete binme, basketbol oynamak, at binme) oluşmaktadır [5]. 

Video klipleri ortama 7 saniyedir. 

1.4.5 Kinetics 

Kinetics veri setleri, 400, 600 ve 700 sınıflı olmak üzere üç tanedir [38,40,41]. 

Kinetics-400 veri seti [38], yaklaşık 300 binden fazla video klibinden oluşmaktadır. 

Kinetics-400 insan eyleminden oluşan 400 sınıflı bir veri setidir. Sınıf başına 400-1150 

arası videoya sahiptir. Video uzunluğu ortalama 10 saniyedir. Sınıflar genel olarak üç 

kategoriye ayrılmaktadır. Kategoriler: Tekil kişi eylemleri (robot dansı, bacak germe), 

insanla insan eylemleri (el sıkışmak, gıdıklamak), kişi nesne eylemlerinden (bisiklete 

binme) oluşmaktadır [38]. Kinetics-600 veri seti [40], yaklaşık 500 binden az video 

klibinden oluşmaktadır. Kinetics-700 veri seti [41], yaklaşık 650 binden fazla video 

klibinden oluşmaktadır. Kinetics-400 veri seti eylemleri daha da detaylandırılarak 

Kinetics-600 [40] ve Kinetics-700 [41] veri setleri oluşturulmuştur. 

1.5 Hırsızlık Tespiti Çalışmaları 

Zhang ve ark. çalışmalarında [6], yüksek çözünürlüklü bir kamera ile hırsızlık ve 

hırsızlık dışı eylemler sınıflandırılmış ve 2-B görüntü sınıflandırma CNN modeli ile 

birleştirilmiştir. Sistemin girişi 100 x 100 RGB görüntüdür ve sistemin 2-B CNN 

yapısı LeNet-5 [22] modeline dayanmaktadır. Araştırmacılar veri toplamada, eğitimde 

kişisel faktörlerin etkisini ortadan kaldırmak için dört farklı kişi (uzun boylu, kısa) 

faktörü seçmişlerdir. Örnek olarak, her kişi üç farklı kombin giymiştir. Ayrıca, 
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hırsızlık davranışını daha iyi tanımlamak için sırt çantası üç farklı konumda (arkada, 

önde ve yanda) kullanılmıştır. Her kişi, raftaki ürünü rastgele seçerek ürün faktörünün 

düşürülmesi hedeflemektedir. Hırsızlık davranışı üç durumdan oluşur: Eşyaları; omuz 

altına sokmak, cebe sokmak ve sırt çantasına koymak. Hırsızlık olmayan davranış da 

üç durumdan oluşur: Raftan eşya almak, rafta eşya aramak ve eşya taşımak. Eğitim 

aşamasında, görüntülerin yarısı hırsızlık, diğer yarısı ise hırsızlık dışı olmak üzere 

toplam 10800 görüntü kullanılmıştır. Hırsızlık eylemleri ve hırsızlık olmayan eylemler 

Şekil 1.21’de gösterilmiştir [6]. Deney aşaması beş aşamada tamamlanmıştır. Aşama 

1-3, dört tür eğitim modeline sahiptir. Bu nedenle, cinsiyet faktörlerinden kaçınmak 

için dört kişi birbirinden ayrı olarak değerlendirilmiştir. Aşama 1-3, üç farklı kombin 

ve sırt çantası kullanarak kıyafet faktörünü incelemektedir. Aşama 4, aynı cinsiyetten 

farklı boyda ve aynı boyda farklı cinsiyette olmak üzere üç tip eğitim modelinde 

kişilerin boy ve cinsiyet faktörünü değerlendirmiştir. Aşama 5, tüm veri setini 

içermektedir. Deneysel sonuçlar, her aşama için doğruluğun arttığını, yani eleme 

faktörlerinin işe yaradığını göstermektedir. Aşama 5, en iyi model ve %83 doğruluk 

oranına sahiptir. Araştırmacılar, doğruluk oranını artırmak için modelin daha fazla 

deneysel veriye ihtiyaç duyduğunu, CNN yapı modelinin daha derin olabileceğini ve 

daha yüksek çözünürlüklü kameraların kullanılabileceğini belirtmiştir [6]. 

 

Şekil 1.21 : a) Hırsızlık eylemleri b) Hırsızlık olmayan eylemler [6]. 

Diğer bir çalışmada [7], süpermarket kameralarından otomatik olarak hırsızlık 

davranışlarını tespit eden bir sistem oluşturulmuştur. Tüm çerçeveden özellikler 
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çıkarmak yerine, gerekli özellikleri daha doğru bir şekilde vurgulamak için İlgi Bölgesi 

(ROI) optik akış kaynaşma ağı kullanılmıştır. Çıkarılan tüm görüntülerin optik akışı 

ve ROI'nin optik akışı Şekil 1.22’de gösterilmiştir [7]. Sistem, anormal davranışları 

tespit etmek için kullanıcı hareketlerinin optik akışını dikkate almaktadır. Önce, Mask-

R-CNN kullanılarak bir kişi nesnesini ROI olarak çıkarmakta ve sonra optik akışa 

çevrilmektedir. Optik akış görüntüsünde, ROI kişi nesnesindeki değişiklik miktarı 

kullanılarak hırsızlık belirlenmektedir. Model girdi olarak 3 ROI çerçeve almaktadır. 

Hırsızlık eylemleri: Eşyaları; çantaya, omuz altına ve cebe koymak. Hırsızlık olmayan 

eylemler ise hırsızlık eylemleri dışındaki tüm eylemler olarak tanımlanmıştır. Veri seti 

örnek sayısı ve çalışma sonuçları hakkında bir bilgi verilmemiştir. 

 

Şekil 1.22 : Tüm çerçeve optik akışı ve ROI’nin optik akışı [7]. 

Süpermarket kameralarından otomatik olarak hırsızlık davranışlarını tespit eden başka 

bir sistem 3-B iki akış modeli kullanan bir çalışma [8] ile oluşturulmuştur. Burada 11 

sınıflı bir veri seti oluşturulmuştur. Sınıfların 6 tanesi normal müşteri olarak 

seçilmiştir. Hırsızlık yapan kişi normal hareketleri de sergileyeceği için 11 sınıfın tüm 

hepsi hırsızlık eylemine dahil edilmiştir. Sınıflar: Markete girmek, yürümek, marketi 

gözetmek, kameraya bakmak, raftan eşya almak, eşyayı cebe sokmak, eşyayı çantaya 

sokmak, eşyayı market arabasına koymak, eşyayı geri rafa koymak ve eşyayı omuz 

altına sokmak olarak belirlenmiştir. Her bir eylem sınıfı için veri sayısı 90-95’tir ve 11 

eylem için toplam veri sayısı yaklaşık 1000’dir. Veri ön işleme adımında, video 

akışlarındaki kişilerin gerçek zamanlı tespiti için YOLO v3 algoritması kullanılmıştır. 

Ardından, tespit edilen kişi tarafından gerçekleştirilen eylemleri tespit etmek için 3-B 
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iki-akış CNN modeli kullanılmıştır. Girdi olarak, çok çerçeveli yoğun optik akış 

kullanılmıştır. 11 eylem sınıfı için ortalama doğruluk oranı %85’tir. 

 

Şekil 1.23 : Veri seti örnekleri [8].
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2.  MATERYAL VE YÖNTEM 

3-B artık ağlar [32], 2-B artık ağlardan [39] esinlenerek oluşturulmuştur. 3-B artık ağ 

modeli 3-B konvolüsyon katmanlarını kullanarak eylemlerin uzam-zamansal 

bilgilerini öğrenmektedir. Bu tez çalışmasında, süpermarket hırsızlık eylemini tespit 

etmek için 3-B artık ağ modeli temel alınmıştır. Materyal ve yöntem için izlenen yol 

Şekil 2.1’de gösterilmektedir. 

 

Şekil 2.1 : Sistem akış diyagramı. 

Şekil 2.1’de görüldüğü üzere: ilk olarak veri seti için süpermarket güvenlik kamerası 

videoları toplanmıştır. Toplanan videolar, hırsızlık ve hırsızlık olmayan eylemler 

olarak iki sınıfa ayrılmıştır. Sınıf videoları, çerçeve görüntülerine dönüştürülerek 

görüntü boyutları model girdilerine uygun hale dönüştürülmüştür. Önceden eğitilmiş 

3-B artık ağ modelinde FC katmanı hariç olarak, transfer öğrenme yapılarak yeni 3-B 

artık ağ modeli oluşturulmuştur. Model, eğitim ve doğrulama veri seti ile eğitilmiştir. 

Daha sonra, eğitilen model test veri seti ile test edilmiştir. Eğer eylem hırsızlık ise 

sistem çıktı olarak 1, eylem hırsızlık değilse sistem çıktı olarak 0 vermektedir. 
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2.1 2-B Artık Ağlar 

Derin ağlar, düşük, orta, yüksek seviye özellikleri ve sınıflandırıcıları uçtan uca çok 

katmanlı bir tarzda entegre etmekte ve özelliklerin seviyeleri katmanların sayısı 

(derinlik) ile zenginleştirilebilmektedir [39]. Böylece, artan katman sayısı ile doğruluk 

oranı da artmaktadır. Ancak, derin ağlar yakınsamaya (converging) başladıkça bir 

bozulma sorunu ortaya çıkmaktadır. Ağ derinliği arttıkça doğruluk oranı doyuma 

ulaşmakta ve doğruluk oranı hızlıca düşmektedir. Böylece, yüksek katman sayısı daha 

yüksek eğitim hatasına yol açmaktadır. Çözüm olarak, Şekil 2.2’deki derin artık 

öğrenme bloğu geliştirilmiş ve bu blok ile kimlik (identity) eşleşmesi kısa devre 

bağlantıları ile oluşturulmuştur [39]. 

 

Şekil 2.2 : Artık öğrenme bloğu [39]. 

Artık öğrenme, çıktının ve girdinin farkının alınmasıyla oluşmakta ve bu işlem 

denklem 2.1’de ifade edilmektedir. 

𝐹(𝑥): = 𝐻(𝑥) − 𝑥 (2.1) 

Denklem 2.1’de görüleceği üzere, F(x) artık öğrenme, H(x) artık öğrenme bloğunun 

bulmayı hedeflediği gerçek çıktı, x ise girdiyi ifade eder. Denklem 2.1 tekrar 

düzenlendiğinde, artık öğrenme Denklem 2.2’deki gibi ifade edilebilir. 

𝐻(𝑥) = 𝐹(𝑥) + 𝑥 (2.2) 

Denklem 2.2’de görüleceği üzere, yığılmış katmanların H(x) değerini yakınsaması 

yerine, H(x) değeri artık öğrenme bloğu ile girdi katmanlarından işlemden geçen F(x) 

ve girdiden çıkışa kimlik kısa devre bağlantısı ile aktarılan x’in toplanmasıyla, ResNet 

ağları H(x) değerini daha kolay bir şekilde yakınsamaktadır. 
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Şekil 2.2’deki artık öğrenme bloğunun tüm mimarideki artık öğrenme bloklarını temsil 

ettiği formül, Denklem 2.3’te ifade edilmektedir. 

𝐻(𝑥) = 𝐹(𝑥, {𝑊𝑖}) + 𝑥 (2.3) 

Denklem 2.3’te görüleceği üzere, F(x,{Wi}) fonksiyonu öğrenilecek artık haritalamayı 

temsil etmekte ve x katmanın girdisini temsil etmektedir. 

Ayrıca, Denklem 2.3’ün tek bir artık öğrenme bloğu olarak ifadesi Şekil 2.2’de 

gösterilmektedir. Denklem 2.3’ün tek bir blok olarak ifade edildiği formül, Denklem 

2.4’te ifade edilmektedir. 

𝐻(𝑥) = 𝐹(𝑥, {𝑊𝑖}) + 𝑥 = (𝑊1𝑥)𝑊2𝜎 + 𝑥 (2.4) 

Denklem 2.4’te görüleceği üzere, W1 ve W2 ağırlık katmanlarını, σ ReLu (Rectified 

Linear Units) aktivasyon fonksiyonunu temsil etmektedir. Ayrıca, 2-B artık ağ 

blokları, ekstra parametre ve hesaplama karmaşıklığı eklememektedir. Tüm ağ, geri 

yayılım ile uçtan uca eğitilebilmektedir. Sonuç olarak, başarılı artık ağ modeli 

oluşturulmuş ve 34 katmanlı mimari Şekil 2.3’te gösterilmiştir. 
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Şekil 2.3 : 34 katmanlı artık ağ mimarisi [39]. 
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2.2 3-B Konvolüsyon İşlemi 

3-B konvolüsyonda filtre derinliği giriş katmanı derinliğinden daha küçüktür (çekirdek 

boyutu < kanal boyutu) [42]. Böylece, 3-B filtre, görüntünün; yüksekliğinde, 

genişliğinde, kanalında ve zamansal boyutunda, konvolüsyon işlemini 

gerçekleştirmektedir. 3-B uzam-zamansal görüntü hacmine uygulanan 3-B filtre her 

seferinde 1 değer sağlamaktadır. Bu işlem Şekil 2.4’te gösterilmiştir [42]. 3-B 

konvolüsyon filtre işlemi sonucu, 3-B uzam-zamansal kodlanmış veri oluşmaktadır. 3-

B konvolüsyon filtre işlemi Denklem 2.5’te ifade edilmektedir. 

3 B uzam zamansal kodlanmış veri = C  T  H  W ∗ k  k  k (2.5) 

Denklem 2.5’te görüleceği üzere, C kanal boyutu (RGB görüntü için 3 kanal), T 

çerçeve uzunluğu (temporal length), H görüntünün yüksekliği (image height), W 

görüntünün genişliği (image width), ∗ konvolüsyon operatörü ve k  k  k’de çekirdek 

(kernel) konvolüsyon filtresini ifade etmektedir. Ayrıca, Denklem 2.5’teki C  T  H 

 W, ağa girdi olarak verilen 4 boyutlu tensörü ifade etmektedir. 

 

Şekil 2.4 : 3-B görüntü hacmine uygulanan 3-B çekirdek filtre [42]. 

2.3 3-B Artık Ağlar 

Hara vd. tarafından 3-B artık ağ modeli, 2-B artık ağ modelini temel alarak 

oluşturulmuştur [32]. 3-B artık ağ [32] modeli, 2-B artık ağ [39] modelinin tüm 

özelliklerini korumaktadır. 3-B artık ağ, 2-B artık ağın sadece zamansal boyuta 
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uzatılmış halidir. 3-B CNN’ler ET veri setlerinden direkt olarak uzam-zamansal bilgiyi 

çıkardıkları için görüntü sınıflandırma 2-B CNN modellerine göre daha kullanışlıdır 

[32]. 3-B CNN’lerin çok sayıda parametre içermesinden dolayı, ağı optimize etmek 

için büyük ölçekli veri setlerine ihtiyaç duymaktadır [32]. 

Oluşturulan 18 ve 34 katmanlı 3-B artık ağ modelleri ayrıntılı olarak Şekil 2.5’te 

gösterilmiştir [32]. 3-B artık ağ, girdi olarak 16 çerçeve RGB görüntü almaktadır. Şekil 

2.5 incelendiğinde, girdi ilk olarak conv1 katmanında uzaysal atlama (stride) ile alt 

örnekleme (down-sampling) yapılarak görüntü çözünürlüğü yarıya düşürülmektedir. 

Ancak, ilk katmanda zamansal olarak alt örnekleme yapılmamaktadır. Girdilere alt 

örnekleme işlemi, özellik haritalarının 128, 256 ve 512 olarak arttığı, conv3_x, 

conv4_x ve conv5_x katmanlarında hem uzaysal hem de zamansal boyutta 

gerçekleşmektedir. Conv5_x katmanı çıktısı, ortalama havuzlama filtresinden 

geçtikten sonra FC katmana verilmektedir. FC katmanındaki bilgi softmax fonksiyonu 

ile olasılığı oluşturulduktan sonra girdinin sınıflandırılması yapılmaktadır. 

 

Şekil 2.5 : 18 ve 34 katmanlı 3-B artık ağ modelleri [32]. 

18, 34, 50, 101 ve 152 katmanlı artık ağ modelleri oluşturulmuş ve bu ağlar HMDB-

51 [4], UCF-101 [5], ActivityNet [43] ve Kinetics-400 [38] veri setlerinde sıfırdan 

eğitilmiştir. HMDB-51, UCF-101 ve ActivityNet veri setlerinde sıfırdan eğitilen 

ağların, küçük ölçekli veri seti olmasından dolayı doğruluk oranın hızla düşerek 

ezberlemeye yöneldiği (overfitting) gösterilmiştir. ActivityNet veri seti, Kinetics-400 

veri setine göre daha az doğruluk oranına sahip olmuş ve Kinetics-400 veri setinin 3-
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B CNN’leri eğitmek için daha iyi bir veri seti olduğu gösterilmiştir. Böylece, Kinetics-

400 veri setinin parametreleri optimize etmek için yeterli veri büyüklüğüne sahip 

olduğu, sıfırdan eğitilen ağların sonuçlarıyla kanıtlanmıştır. 18, 34, 50, 101 ve 152 

katmanlı artık ağların, Kinetics-400 veri seti doğrulama (validation) grafiği Şekil 

2.6’te gösterilmiştir. Şekil 2.6’te görüleceği üzere, artık ağ katman sayısı arttıkça 

doğruluk oranı da artmaktadır. 152 ve 200 katmanlı artık ağlarda doğruluk oranı 

doyum noktasına gelmiştir. Ayrıca, Kinetics-400’de ön eğitilmiş model, transfer 

öğrenme yapılarak HMDB-51 ve UCF-101 veri setlerinde test edilmiştir. Sonuç 

olarak, kompleks 2-B mimarilerinden daha iyi performans göstermiştir. 

 

Şekil 2.6 : 18, 34, 50, 101 ve 152 katmanlı artık ağların kinetics-400 doğrulama veri 

seti sonuçları [32]. 

2.4 Hırsızlık Tespiti Yapan 3-B Artık Ağ Model Versiyonları 

Bu tezde oluşturulan veri seti videoları, hırsızlık ve hırsızlık olmayan eylemler için 10-

32 arasında RGB görüntü çerçevesinden oluşmaktadır. Videoların farklı çerçeve 

aralığına sahip olmasından dolayı, süpermarketteki hırsızlık ve hırsızlık olmayan 

eylemleri incelemek için dört farklı 3-B artık ağ mimarisi oluşturulmuştur. Çerçeve 

etkisini incelemek için girdi olarak 16 ve 32 çerçeve girdisine sahip versiyonlar 

oluşturulmuştur. Ayrıca, çözünürlüğün etkisini incelemek için 112112 ve 224224 

çözünürlüklerine sahip versiyonlar oluşturulmuştur. Oluşturulan 18 katmanlı 3-B artık 

ağ mimarisi Çizelge 2.1’de detaylı olarak gösterilmektedir. 
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2.4.1 Farklı girdi çerçevesine ve çözünürlüğe sahip 3-B artık ağ mimarileri 

Hırsızlık tespiti için oluşturulan 3-B model, 18 katmanlı 3-B artık ağ [32] mimarisinin 

aynısıdır. Modele ait farklı parametrelere sahip 12 versiyon oluşturulmuştur. 

Oluşturulan 12 versiyon, 18 katmanlı 3-B artık ağ modelinden oluşmaktadır. 

Versiyonlar sadece; girdi boyutu, çerçeve uzunluğu, parti büyüklüğü olarak değişiklik 

göstermekte yani parametre olarak farklılık göstermektedir. 

Çizelge 2.1 modeli girdisi: C  T  H  W şeklindedir. C kanal sayısı (number of 

channels), T çerçeve uzunluğu (temporal length), H görüntünün yüksekliği, W 

görüntünün genişliğini temsil etmektedir. 

Versiyonlar ilk olarak, 3 kanallı (C) RGB video girdi serisini, 16 veya 32 çerçeve (T) 

olarak ve 112112 (H  W) veya 224224 (H  W) girdi boyutunda almaktadır. 

Çizelge 2.1 girdisi, kanal sayısı 3, çerçeve uzunluğu 32, girdi görüntü boyutu 224  

224 olduğu durum için geçirli olarak katman girdi ve çıktıları oluşturulmuştur. Conv1 

katmanı konvolüsyon çekirdek filtre boyutu 777’dir. Conv1 katmanı dışındaki 

katmanların konvolüsyon çekirdek (kernel) filtre boyutu 333’tür. Her konvolüsyon 

katmanından sonra, toplu normalleştirme [44] (BN) (batch normalization) ve ReLu 

katmanları gelmektedir. BN, katman girdilerini yeniden ölçeklendirerek normalize 

etmektedir. Böylece ağın eğitimini hızlandırmakta ve sabit tutmaktadır. Ayrıca BN ile 

eğitim yakınsamasından ödün vermeden daha geniş bir öğrenme aralığı (learning rate) 

kullanabilmektedir. ReLu, doğrusal bir aktivasyon fonksiyonudur. ReLu fonksiyonu 

girdi değerleri pozitif ise çıktı olarak girdi değerleri kendi değerini korumaktadır. 

Ancak, girdi değerleri negatif ise çıkış değerleri sıfır olmaktadır. Artık ağ kısa devre 

bağlantısı olarak shortcut type B [39] kullanılmıştır. Shortcut type B: Girdi ve çıktı 

katmanlarında oluşabilen herhangi bir uyuşmazlıkta boyutları uygun hale getiren kısa 

devre bağlantı tipidir [39]. Conv1 katmanı, uzam-zamansal görüntü seri girdisine 

sadece uzaysal boyutta 122 atlama ile alt örnekleme yaparak girdi boyutunu 

zamansal olarak yarıya düşürmektedir. Girdi Pooling katmanına verilir ve uzam-

zamansal olarak alt örnekleme yapılır. Özellik haritalarının (feature maps) 128, 256 ve 

512 olarak arttığı Conv3, Conv4 ve Conv5 katmanlarında, 222 atlama ile uzam-

zamansal girdiyi hem uzaysal hem de zamansal olarak alt örnekleme uygulanarak girdi 

boyutu uzam-zamansal olarak yarıya düşmektedir. Conv5 katmanı çıktısı FC 

katmanına verilmektedir. Son olarak, FC katmanında 2 sınıflı veri setimiz, hırsızlık 
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veya hırsızlık olmayan eylem olarak softmax aktivasyon fonksiyonu ile bir olasılık 

değeri üreterek eylemi sınıflandırmaktadır. 

 

Çizelge 2.1 : 32 çerçeve girdisi alan 224224 çözünürlüğe sahip 18 katmanlı 3-B 

artık ağ mimarisi. 

Katman 

adı 
Girdi Katman detayları Çıktı 

Conv1 C  T  H  W 777, atlama 122 
6432128 

128 

Pooling 6432128128 
333 maksimum havuzlama ile 

atlama 2 
64166464 

Conv2 64166464 (
333

333
) ×2 64166464 

Conv3 64166464 (
333

333
) ×2 12883232 

Conv4 12883232 (
333

333
) ×2 25641616 

Conv5 25641616 (
333

333
) ×2 512288 

FC 

katmanı 
512288 

Ortalama havuzlama 

2 - d FC softmax 
21 

2.4.2 Uygulama 

Uygulama ayarları genel olarak [45]’ten alınmıştır. Bu tezde oluşturulan hırsızlık veri 

seti, 3-B CNN ağını sıfırdan eğitmek için küçük ölçekli olmasından dolayı sıfırdan 

eğitime uygun değildir. Bu sebeple, büyük ölçekli Kinetics-700 [41] veri setinde ön 

eğitim yapılmış 18 katmanlı 3-B artık ağ [45] transfer öğrenme ile kullanılmıştır. 

Transfer öğrenme ile FC katmanı dışındaki diğer katmanlar, ön eğitim yapılmış 

modelin ağırlıklarını kullanmaktadır. Böylece, oluşturulan yeni hırsızlık ağ mimarisi 

eğitiminde sadece FC katman ağırlıkları güncellenmiştir. Oluşturulan modelin 12 

versiyonu için eğitim, doğruluk ve test uygulamaları PyCharm Community Edition 

2020.3.3 programı ve Pytorch kütüphanesi kullanılarak uygulanmıştır. Uygulamada 

kullanılan ekran kartı NVIDIA GeForce GTX 1070’tir. Eğitilen versiyonlar: farklı 

girdi çözünürlüğü, farklı çerçeve uzunluğu (temporal length) ve farklı parti 

büyüklüğüne (batch size) sahiptir. Girdi çözünürlüğü 112112 ve 224224’tür. 

Çerçeve uzunluğu 16 ve 32’dir. Parti büyüklüğü 8, 10 ve 12’dir. Modele girdi olarak 

verilen videonun çerçeve uzunluğu eğer uygulanan çerçeve uzunluğundan küçükse, 

video klibi çerçeveleri iteratif bir şekilde yinelenerek model girdi çerçeve uzunluğuna 

ayarlanmaktadır. Oluşturulan modelin 12 versiyonu Çizelge 2.2’te gösterilmiştir. 
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Çizelge 2.2 : Hırsızlık tespiti için oluşturulan modelin 12 versiyonu. 

Versiyon 
Girdi Çözünürlüğü 

(WxH) 

Çerçeve Uzunluğu 

(Temporal Length) 

Parti Büyüklüğü 

(Batch Size) 

1 224224 32 12 

2 224224 32 10 

3 224224 32 8 

4 224224 16 12 

5 224224 16 10 

6 224224 16 8 

7 112112 32 12 

8 112112 32 10 

9 112112 32 8 

10 112112 16 12 

11 112112 16 10 

12 112112 16 8 

Her veri örneğinin zamansal konumları, her adımda (epoch) giriş video klibinden eşit 

(uniformly) olarak seçilmektedir. Girdi görüntüleri [0-1] aralığında normalize edilerek 

baskınlık oluşturabilecek piksel değerleri baskılanmaktadır. Kinetik-700 ortalama 

çıkarma (mean subtraction) değerleri ile her örnek için ortalama çıkarma 

yapılmaktadır. Uzaysal kırpma (spatial crop) olarak uygulanan 10 eğitim görüntüsü 

örnekleri için veri büyütme ayrıntıları (data augmentation) dört köşe ve merkez ile 

uygulanır. Dört köşe ve merkez ölçeği {1, 
1

2
1

4⁄
, 

1

√2
, 

1

2
3

4⁄
, 

1

2
} arasından seçilir. Ölçek 1, 

örnek genişliği ve yüksekliğinin çerçevenin kısa kenar uzunluğu ile aynı olduğu ve 0,5 

ölçeği, örneğin kısa kenar uzunluğunun yarısı kadar olduğu anlamına gelmektedir. 

Örnek en boy oranı 1'dir ve örneğin seçilen konumlarında, ölçekte ve en boy oranında 

uzam-zamansal olarak kırpılmaktadır. Ardından kırpılan görüntünün genişliği ve 

yüksekliği mimarinin giriş çözünürlüğüne ayarlanmaktadır. Oluşturulan 12 mimari 

200 adımda (epoch) eğitilmiştir. Veri büyütme ile oluşturulan örnek, %50 olasılıkla 

yatay olarak çevrilmektedir. 

Optimize edici olarak SGD ve kayıp fonksiyonu olarak çapraz entropi kaybı (cross-

entropy loss) kullanılmıştır. SGD, yüksek boyutlu optimizasyon problemlerinde 

hesaplama yükünü azaltır ve daha düşük bir yakınsama oranı ile daha hızlı yineleme 

sağlamaktadır. SGD, kayıp fonksiyonunu en aza indirmek için gradyanları ve öğrenme 

oranını kullanarak model parametrelerini güncellemektedir. Model parametreleri: 

Ağırlık azalması (weight decay), öğrenme hızı (learning rate) ve momentum sırasıyla 

0,001, 0,1 ve 0,9 olarak ayarlanmıştır. Doğrulama (validation) kaybı doyuma 

ulaştığında öğrenme oranı 10'a bölünmektedir. Çapraz entropi kaybı, çıktısı 0 ile 1 
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arasında bir olasılık değeri olan bir sınıflandırma modelinin performansını ölçerek 

oluşan hatayı hesaplamaktadır. Çapraz entropi kaybının ifadesi Denklem 2.6’da 

gösterilmektedir. 

CE = − ∑ 𝑡𝑖

𝐶

𝑖

𝑙𝑜𝑔(𝑓(𝑠𝑖)) (2.6) 

Denklem 2.6’da görüleceği üzere, CE çapraz entropi kaybı, c sınıf sayısı, ti ve si temel 

gerçek (ground truth) ve c’deki her i sınıfı için mimarinin oluşturduğu skor, f(si) 

softmax katmanı aktivasyon fonksiyonu olasılık sınıf skorunu ifade etmektedir. 

Hırsızlık veya hırsızlık dışı eylemi sınıflandırmak için test veri kümesinde eğitilmiş 

model kullanılırken: Giriş klipleri oluşturmak için kayan pencere yöntemini kullanılır 

[45] ve her klip maksimum ölçekte bir merkez konumu etrafında kırpılır. Ardından, 

her videonun sınıf olasılıklarını tahmin etmekte ve test veri setinde genel doğruluk için 

bunların ortalaması alınmaktadır. 

2.5 Süpermarket Hırsızlık ve Hırsızlık Olmayan Eylem Veri Seti 

Bu tez çalışmasında, hırsızlık ve hırsızlık olmayan eylem olarak iki sınıflı bir veri seti 

oluşturulmuştur. Hırsızlık eylemi sınıfı: eşyaları; cebe koymak, çantaya koymak ve el 

çantasına koymak şeklinde üç farklı hırsızlık eylemini içeren bir sınıftır. Hırsızlık 

eylemlerine ait veri seti örnekleri Şekil 2.7’de gösterilmektedir. Hırsızlık olmayan 

eylem sınıfı: süpermarkette; yürümek, sabit durmak ve raftan eşya almak şeklinde üç 

farklı hırsızlık olmayan eylemi içeren bir sınıftır. Hırsızlık olmayan eylemlere ait veri 

seti örnekleri Şekil 2.8’de gösterilmektedir. Eğitim veri seti eylemleri YouTube’den 

toplanmıştır. Test veri seti eylemleri Bursa’daki bir süpermarketten toplanmıştır. 

Ancak, eğitim veri seti hırsızlık eylemlerinin aksine, süpermarketten toplanan test veri 

seti eylemlerinde gerçekleştirilen hırsızlık eylemi hırsızlık yapılıyormuş gibi 

davranılarak oluşturulmuştur. Eğitim ve test veri seti hırsızlık sınıfında, eşyaları cebe 

koymak eylemi en fazla örneğe sahip eylemdir. Eğitim ve test veri seti hırsızlık 

olmayan sınıfta ise üç eylem de neredeyse aynı örnek sayısına sahiptir. Eğitim ve test 

veri setlerinde, hemen hemen tüm kişiler hem hırsızlık hem de hırsızlık dışı eylemler 

için kullanılmaktadır. Toplanan videolar eylem sınıflarına uygun olarak kırpılmıştır. 
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Şekil 2.7 : Süpermarket hırsızlık eylem çerçeve örnekleri. 

 

Şekil 2.8 : Süpermarket hırsızlık olmayan eylem çerçeve örnekleri. 

Eğitim veri seti, 139 hırsızlık eylemi ve 161 hırsızlık dışı eylem videosu olmak üzere 

300 videodan oluşmaktadır. Doğrulama veri seti, 7 hırsızlık eylemi ve 7 hırsızlık dışı 

eylem videosu olmak üzere 14 videodan oluşmaktadır. Test veri seti, 130 hırsızlık ve 

140 hırsızlık olmayan eylem videosu olmak üzere 270 videodan oluşmaktadır. Test 

veri seti, eğitim veri seti kadar büyük olmasına rağmen eğitim veri setinde kişi sayısı 

çeşitliyken, test veri setinde tüm videolar için sadece bir kadın ve bir erkek olmak 

üzere 2 kişi ile sınırlıdır. Videoların ortalama süresi yaklaşık 1,5 saniye ve bu da 32 

RGB görüntü çerçevesine eşittir. Her 32 çerçeveli girdi versiyonu, eğitim ve test için 

sırasıyla 10048 ve 8640 görüntüye sahiptir. Her 16 çerçeveli girdi versiyonu, eğitim 

ve test için sırasıyla 5024 ve 4320 görüntüye sahiptir.
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3.  BULGULAR VE TARTIŞMA 

Eğitim ve test çalışmasında, Çizelge 2.2’te gösterilen versiyonların, farklı; girdi 

görüntülerinin, çerçeve uzunluklarının ve parti büyüklüklerinin etkilerinin 

karşılaştırılması amaçlanmıştır. Bu tez çalışmasında oluşturulan hırsızlık ve hırsızlık 

olmayan veri setinde, versiyonlar eğitilip test edilmiştir. Versiyonların performansını 

analiz etmek için tüm versiyonlar 200 adımda eğitilmiş ve son adımda oluşturulmuş 

olan 200. adım versiyonu tarafından test edilmiştir. Eğitim grafiği Şekil 3.1’de 

gösterilmektedir. 

 

Şekil 3.1 : Versiyon 1, 4, 7 ve 10’un eğitim grafiği. 

Versiyonlar için eğitim grafiği oluşturulurken parti büyüklüğü 12 olan versiyonlar baz 

alınmış ve versiyonlar, girdi görüntüsü, çerçeve uzunluğu olarak birbirinden farklıdır. 

Versiyon 1, 224224 girdi görüntüsü ve 32 çerçeve uzunluğu ile %88,0 doğruluk 

oranına sahiptir. Versiyon 4, 224224 girdi görüntüsü ve 16 çerçeve uzunluğu ile 

%82,0 doğruluk oranına sahiptir. Versiyon 7, 112112 girdi görüntüsü ve 32 çerçeve 

uzunluğu ile %80,3 doğruluk oranına sahiptir. Versiyon 10, 112112 girdi görüntüsü 

ve 16 çerçeve uzunluğu ile %77,6 doğruluk oranına sahiptir. Şekil 3.1’de görüldüğü 

üzere en yüksek doğruluk oranına Versiyon 1 sahiptir. Farklı girdi görüntüsü boyutuna 



42 

ve aynı çerçeve uzunluğuna sahip olan Versiyon 1 ve Versiyon 7, Versiyon 4 ve 

Versiyon 10 kendi aralarında karşılaştırıldığında, girdi görüntüsü boyutunun önemi 

görülmektedir. Aynı girdi görüntüsü boyutuna ve farklı çerçeve uzunluğuna sahip olan 

Versiyon 1 ve Versiyon 4, Versiyon 7 ve Versiyon 10 kendi aralarında 

karşılaştırıldığında çerçeve uzunluğunun önemi görülmektedir. Ayrıca, Versiyon 1, 4, 

7 ve 10’nun Şekil 3.2’de CE eğitim hata eğrisi ve Şekil 3.3’te CE doğruluk (validation) 

hata eğrisi gösterilmektedir. Şekil 3.2 ve Şekil 3.3’te Versiyon 1 hem eğitim hem de 

doğrulama  hata grafiği için en düşük hata değerlerine sahiptir.  

 

Şekil 3.2 : Versiyon 1, 4, 7 ve 10’un CE ile eğitim hata eğrisi. 
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Şekil 3.3 : Versiyon 1, 4, 7 ve 10’un CE ile doğrulama hata eğrisi. 

Tüm versiyonlara ait eğitim ve test doğrulukları Çizelge 3.1’de gösterilmektedir. 

Versiyon 1, sırasıyla %88,0 ve %77,0 ile en yüksek eğitim ve test doğruluğuna 

sahiptir. Versiyon 1, test veri setinde 131 hırsızlık eylemi videosundan 104 video 

eylemini doğru olarak etiketlerken 26 videoyu yanlış etiketlemiştir. Böylece, hırsızlık 

eylemi veri seti doğruluk sonucu %79,4’tür. Versiyon 1, test veri setinde 139 hırsızlık 

olmayan eylem videosundan 104 video eylemini doğru etiketlerken 36 videoyu yanlış 

etiketlemiştir. Hırsızlık olmayan eylem veri seti doğruluk sonucu %74,8’dir. Sonuç 

olarak Versiyon 1 270 test videosunu %77,0 doğruluk oranı ile sınıflandırmıştır. Test 

veri setinde Versiyon 1’in; duyarlılık (recall) oranı %80, kesinlik (precision) oranı 

%74,28 ve F1 skoru %77,03’tür.  
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Çizelge 3.1 : Modelin 12 versiyonuna ait eğitim ve test doğrulukları. 

Versiyon 

Girdi 

Çözünürlüğü 

(WxH) 

Çerçeve 

Uzunluğu 

(Temporal 

Length) 

Parti 

Büyüklüğü 

(Batch Size) 

Eğitim 

Doğruluğu 

(%) 

Test 

Doğruluğu 

(%) 

1 224224 32 12 88.0 77.0 

2 224224 32 10 84.3 72.5 

3 224224 32 8 85.0 68.8 

4 224224 16 12 82.0 55.1 

5 224224 16 10 79.6 55.1 

6 224224 16 8 82.3 56.6 

7 112112 32 12 80.3 55.1 

8 112112 32 10 78.0 57.0 

9 112112 32 8 77.6 55.5 

10 112112 16 12 77.6 44.8 

11 112112 16 10 77.0 53.3 

12 112112 16 8 75.0 53.7 

Çizelge 3.1 incelendiğinde, aynı girdi görüntüsü 224224 ve aynı parti boyutlarına 

sahip olan versiyonlar farklı çerçeve uzunluğunda, Versiyon 1 ve Versiyon 4, Versiyon 

2 ve Versiyon 5, Versiyon 3 ve Versiyon 6 kendi aralarında karşılaştırıldığında 

Versiyon 4, Versiyon 5 ve Versiyon 6 için eşleştirilen versiyonlar ile eğitim doğruluk 

oranları yakın olsa da test doğruluk oranları sırasıyla %21,9, %17,4 ve %12,2 olarak 

büyük ölçüde düşmüştür. Aynı şekilde, aynı girdi görüntüsü 112112 ve aynı parti 

boyutlarına sahip olan versiyonlar farklı çerçeve uzunluğunda, Versiyon 7 ve Versiyon 

10, Versiyon 8 ve Versiyon 11, Versiyon 9 ve Versiyon 12 kendi aralarında 

karşılaştırıldığında eğitim doğruluk oranlarını birbirine daha da yakın ve test doğruluk 

oranları da Versiyon 7 ve Versiyon 10 çifti dışında birbirine yakındır. Versiyon 7 ve 

Versiyon 10 arasındaki test doğruluk düşüşü %10,3’tür. Sonuç olarak test doğruluk 

oranları ile hırsızlık eylemini sınıflandırmak için 32 çerçeve uzunluğunun 16 çerçeve 

uzunluğundan daha üstün olduğu gösterilmiştir. 
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Çizelge 3.1’de görüldüğü üzere, farklı görüntü girdi versiyonları için hem eğitim hem 

de test doğruluk oranları düşmektedir. Ancak, test doğruluk oranı eğitim doğruluk 

oranına göre daha fazla düşüş gösterdiği için girdi görüntüsü karşılaştırılmasında test 

doğruluk oranına göre karşılaştırma yapılmıştır. Versiyon 1 ve Versiyon 7, Versiyon 

2 ve Versiyon 8, Versiyon 3 ve Versiyon 9, Versiyon 4 ve Versiyon 10, Versiyon 5 ve 

Versiyon 11, Versiyon 6 ve Versiyon 12 kendi aralarında karşılaştırıldığında test 

doğruluk oranı düşüşü sırasıyla %21,9, %15,5, %13,3, %10,3, %1,8 ve %2,9'dur. 

Böylece, hırsızlık eyleminin tanınması için çok önemli olan girdi görüntüsünün etkisi 

doğrulanmıştır. Buna ek olarak, parti boyutunun etkisi bilinmektedir ve iyi bir model 

eğitmek için büyük bir parti büyüklüğü önemlidir [44].
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4.  SONUÇ VE ÖNERİLER 

Hırsızlık eylemi, hareket eylemi ile gerçekleşmektedir. Bu sebeple, hırsızlık eylemi 

uzam-zamansal bilgi içermektedir. Uzam-zamansal bilgiyi doğru bir şekilde çıkarmak 

ve sınıflandırmak için 2-B ve 3-B CNN olmak üzere insan eylemi tanıma modelleri 

kullanılmaktadır. Bu tez çalışmasında, 18 katmanlı 3-B artık ağ modeli [32] temel 

alınarak hırsızlık tespiti yapan başarılı bir model geliştirilmiştir. 

Bu tez çalışmasında, süpermarketlerdeki hırsızlık ve hırsızlık olmayan eylemleri 

içeren eğitim video veri seti Youtube’den ve test veri seti bir süpermarketten 

toplanarak oluşturulmuştur. Hırsızlık veri seti sınıfı: eşyaları; cebe koymak, çantaya 

koymak ve el çantasına koymak şeklinde 3 eylemden oluşmaktadır. Hırsızlık olmayan 

veri seti sınıfı: süpermarkette; yürümek, raftan eşya almak ve sabit durmak şeklinde 3 

eylemden oluşmaktadır. Eğitim veri seti, 161 hırsızlık olmayan eylem ve 139 hırsızlık 

eylemi videosu ile toplamda 300 videodan oluşmaktadır. Test veri seti, 140 hırsızlık 

olmayan eylem ve 130 hırsızlık eylemi videosu ile toplamda 270 videodan 

oluşmaktadır. Eğitim veri setinde kişi sayısı çeşitliyken, test veri seti için sadece bir 

kadın ve bir erkek olmak üzere 2 kişi ile sınırlıdır. 

Hırsızlık tespitini gerçekleştirmek için tasarlanan CNN ağı, 12 versiyon şeklinde farklı 

parametreli olarak oluşturulmuş ve 200 adımda eğitilmiştir. Oluşturulan versiyonlar, 

girdi görüntüsü, çerçeve uzunluğu ve parti büyüklüğü olarak birbirinden farklıdır. 

Versiyonlar RGB girdi almaktadır. Eğitim ve test sonuçları Çizelge 3.1’de 

gösterilmekte ve Versiyon 1, 224224 girdi görüntüsü, 32 çerçeve uzunluğu ve 12 

parti büyüklüğü ile eğitim veri seti %88,0, test veri seti %77,0 ile en iyi sonuca sahiptir. 

Test sonuçları ile 224224 girdi görüntüsünün 112112 girdi görüntüsüne göre daha 

üstün olduğu net bir şekilde görülmektedir. Eğitim ve test videoları ortalama olarak 32 

girdi çerçevesine sahip ve 32 çerçeve uzunluğuna sahip versiyonların 16 çerçeve 

uzunluğuna sahip olan versiyonlara göre doğruluk oranının daha yüksek olduğu 

gösterilmiştir. Parti büyüklüğünün etkisi BN [44] çalışması ile zaten bilinmekte ve 

parti büyüklüğü arttıkça doğruluk oranı da genel olarak artmaktadır. Sonuç olarak, 

süpermarket hırsızlık eylemi tespiti için başarılı bir model oluşturulmuştur. Ayrıca, 
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yapılan deneylerde, çerçeve uzunluğu ve parti büyüklüğü parametreleri donanım 

yetersizliği sebebiyle daha büyük değerlerde test edilememiştir. 

İlerde yapılacak çalışmalar için çerçeve uzunluğu, parti büyüklüğü ve veri seti 

örnekleri arttırılabilir. 
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