
Precise Event Sampling: In-depth Analysis and

Sampling-based Profiling Tools for Data Locality

by

Muhammad Aditya Sasongko

A Dissertation Submitted to the

Graduate School of Sciences and Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Doctor of Philosophy

in

Computer Science and Engineering

February 2, 2022

Precise Event Sampling: In-depth Analysis and Sampling-based

Profiling Tools for Data Locality

Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a doctoral dissertation by

Muhammad Aditya Sasongko

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Assist. Prof. Didem Unat (Advisor)

Prof. Öznur Özkasap

Assoc. Prof. Aykut Erdem

Assist. Prof. Ayşe Yılmazer

Prof. Özcan Öztürk

Date:

To my mother, wife Riana, and daughter Sofia

iii

ABSTRACT

Precise Event Sampling: In-depth Analysis and Sampling-based

Profiling Tools for Data Locality

Muhammad Aditya Sasongko

Doctor of Philosophy in Computer Science and Engineering

February 2, 2022

Precise event sampling is a profiling feature in current commodity CPUs that allows

sampling of hardware events and identifies the instructions that trigger the sampled

events. It offers the ability to detect performance bottlenecks with low overhead as

well as the locations of the bottlenecks in source code. There have been a number of

profiling tools developed using this feature that detect various sources of performance

bottlenecks. However, none of these tools detects inter-thread data movement nor

measures data locality in multithreaded applications, which have become widely used

due to the ubiquity of multicore architectures. Furthermore, though this hardware

facility has been used in multiple profiling tools, there have been only few works

that analyze it in terms of accuracy and overhead. All of these works target only

the facility in Intel architecture, and none of these works evaluates other aspects of

precise event sampling such as memory overhead, stability, and functionality of the

facility.

In this dissertation, we present threefold major contributions. First, we per-

form the most comprehensive and in-depth qualitative and quantitative analyses to

date on PEBS and IBS, which are the precise event sampling facilities of two major

vendors, Intel and AMD, respectively. Next, we show the potential for imagina-

tive use of precise event sampling in developing low overhead yet accurate profiling

tools for multicore and design two diagnostic tools with a particular focus on data

movement as it constitutes the main source of inefficiencies. First of such tools is

ComDetective that detects inter-thread communications, classifies them into true

sharing or false sharing, and records them in the form of communication matrices.

Second is ReuseTracker that measures data locality in private and shared caches

of multithreaded applications. ComDetective and ReuseTracker leverage pre-

iv

cise event sampling to profile multithreaded applications accurately and with low

overheads compared to their state-of-the-art alternatives.

To analyze key differences between Intel PEBS and AMD IBS, we firstly de-

veloped a series of carefully designed microbenchmarks. Through our qualitative

analysis and quantitative study using the microbenchmarks, we found that Intel

PEBS samples hardware events more accurately and with higher stability in terms

of the number of samples that it captures, while AMD IBS records richer set of in-

formation at each sample. We also discovered that both PEBS and IBS are afflicted

with bias when sampling the same event across multiple different instructions in a

code. Moreover, we also show how our findings from the quantitative experiments

using the microbenchmarks are relevant for a full-fledged profiling tool that runs on

Intel and AMD machines.

We develop ComDetective, a profiling tool that captures inter-thread commu-

nications accurately and with low runtime and memory overheads. ComDetective

employs precise event sampling to sample memory accesses and utilizes hardware

debug registers to detect inter-thread communications. In addition to detecting

communications, ComDetective can also classify them into true or false sharing.

Its time and memory overheads are only 1.30× and 1.27×, respectively, for the 18

applications studied under 500K sampling interval. Using ComDetective, we gen-

erate insightful communication matrices from several microbenchmarks, PARSEC

benchmark suite, and some CORAL applications and compare the produced ma-

trices against the matrices of their MPI counterparts. Using ComDetective, we

identify communication bottlenecks in a few codes and achieve up to 13% speedup

from code refactoring those codes.

We also design ReuseTracker, which is a profiling technique that measures

reuse distance – a widely used metric that measures data locality. Reuse distance is a

measurement of data locality as it is the number of unique memory locations that are

accessed between two consecutive accesses to a particular memory location (use and

reuse). ReuseTracker leverages precise event sampling to capture uses and debug

registers to detect reuse in measuring reuse distance. ReuseTracker can measure

reuse distance in multithreaded applications by also considering cache-coherence

effects with much lower overheads than existing tools. It introduces only 2.9×
time and 2.8× memory overheads. It achieves 92% accuracy when verified against a

carefully crafted configurable microbenchmark that can generate user-specified reuse

distance patterns. We demonstrate in two use cases how ReuseTracker can be

used to guide code refactoring by detecting spatial reuses in shared caches that are

also false sharing and how it can also be used to predict whether certain applications

can benefit from adjacent cache line prefetch optimization.

We expect that the analysis, algorithms, and the tools presented in this dis-

sertation will benefit hardware architects in designing new precise event sampling

features and performance engineers in performance tuning of their software while

also paving the way for a new generation of low-overhead profiling tools. Moreover,

the outcomes of the dissertation can be used by the end-users (e.g., data analysts,

engineers, compiler developer) to identify the performance issues and increase the

data locality aspects of their software.

ÖZETÇE

Kesin Olay Örnekleme: Derinlemesine Analiz ve Örneklemeye Dayalı

Veri Konumu için Profil Oluşturma Araçları

Muhammad Aditya Sasongko

Bilgisayar Bilimleri ve Mühendisliği, Doktora

13 Ocak 2022

Kesin olay örneklemesi, mevcut emtia işlemcilerde bulunan, donanımsal olayların

örneklenmesinde ve bu olayların tetiklenmesine sebep olan komutların tanımlanmasını

sağlayan bir profilleme özelliğidir. Bu özellik sayesinde, performans darboğazları

düşük ek masraf ile saptanabilir ve bu darboğazların kaynak koddaki yerleri be-

lirlenebilir. Çeşitli performans darboğazlarını belirlemek üzere birkaç profilleme

aracı geliştirilmiştir. Ancak bu araçlardan hiçbiri, iş parçacıkları arasındaki veri

hareketini belirleyemez, veya çok iş parçacıklı uygulamalarda veri yerelliğini ölçemez.

Ek olarak, bu donanım özelliği birçok profilleme aracında kullanılmış olsa da, bu

özelliğin doğruluğu ve masrafı analiz eden çok az çalışma vardır. Tüm bu çalışmalar

sadece Intel mimarisine yöneliktir; ve bunlardan hiçbiri bu donanım özelliğinin hafıza

masrafı, stabilite, ve fonksiyonellik taraflarını değerlendirmemiştir.

Bu tezde, üç-yönlü büyük katkı öne sürülmüştür. İlk olarak, sırasıyla Intel ve

AMD’nin kesin olay örneklemesi araçları olan PEBS ve IBS üzerinde derinlemesine

nitel ve nicel analiz yapılmıştır. İkinci olarak, iş parçacıkları arasında haberleşmeyi

saptayabilen ve bunları true-sharing ve false-sharing olarak sınıflandırıp haberleşme

matrislerinde kaydedebilen bir profilleme aracı olan ComDetective öne sürülmüştür.

Üçüncü olarak, çok iş parçacıklı uygulamalarda özel önbellek ve paylaşılan önbellek

içerisinde veri yerelliğini ölçebilen bir profilleme aracı olan ReuseTracker öne

sürülmüştür. ComDetective ve ReuseTracker, kesin olay örneklemesi kulla-

narak yüksek doğruluk oranı ve düşük ek masraf ile çok iş parçacıklı uygulamaları

profilleyebilmektedir.

Intel PEBS ve AMD IBS arasındaki kilit farkları analiz edebilmek adına, ilk

olarak bir dizi dikkatle tasarlanmış microbenchmark geliştirilmiştir. Bu microbench-

marklar ile yapılan nicel analiz ve nitel çalışmalar sonucunda, Intel PEBS’in do-

vii

nanımsal olayları örneklem sayısı bakımından daha yüksek doğruluk ve stabilite

ile örnekleyebildiği gözlemlenirken; AMD IBS’in ise bilgi bakımından daha kap-

samlı örnekleme yaptığı görülmüştür. Ek olarak, PEBS ve IBS’in farklı komutlar

üzerinde aynı donanım olayını örneklerken kötü yönde etkilendiği gözlemlenmiştir.

Dahası, elde edilen deney sonuçlarımızın Intel ve AMD makinelerinde çalışabilecek

tam teşekküllü bir profilleme aracı bağlamında ilişkilendirilmesi gösterilmiştir.

Intel PEBS ve AMD IBS’in incelenmesinden sonra, iş parçacıkları arasındaki

haberleşmeyi yüksek doğruluk, düşük ek masraf düşük çalışma zamanı ile saptaya-

bilen bir profilleme aracı olan ComDetective öne sürülmüştür. ComDetective

kesin olay örneklemesi ile hafıza erişimlerine örnekleyerek ve donanımsal debug

yazmaçlarını kullanarak iş parçacıkları arasındaki haberleşmeleri saptayabilmekte-

dir. Haberleşmeyi saptamaya ek olarak, ComDetective bu haberleşmeleri true-

sharing ve false-sharing olarak sınıflandırabilmektedir. 18 farklı uygulamada 500K

örnekleme aralığı ile çalıştırıldığında, ComDetective’nin sırasıyla zaman ve hafıza

ek masrafları sadece 1.30times ve 1.27times olarak ölçülmüştür. ComDetective

kullanarak, birkaç microbenchmark, PARSEC benchmark koleksiyonu ve bazı CORAL

uygulamaları için haberleşme matrisleri oluşturulmuş, ve bu matrisler MPI karşıtları

ile karşılaştırılmıştır. Bu sayede bazı uygulamalarda haberleşme darboğazları keşfedil-

miş olup, düzeltilmeleriyle beraber 13%’e kadar hızlanma başarılmıştır.

Ek olarak, bir veri yerelliği ölçütü olarak sıkça kullanılan yeniden-kullanım mesafe-

si’ni ölçebilen ReuseTracker öne sürülmüştür. Yeniden-kullanım mesafesi, her-

hangi bir hafıza adresine ard-arda yapılan iki erişim (kullanım ve yeniden-kullanım)

arasında erişilen farklı adreslerin sayısıdır, ve dolayısıyla bir veri yerelliği ölçütüdür.

ReuseTracker kesin olay örneklemesi ve de donanımsal debug yazmaçlarından

faydalanarak yeniden-kullanım mesafesini ölçmektedir. Ek olarak, ReuseTracker

önbellek-tutunum etkilerini göz önünde bulundurarak çok iş parçacıklı uygulamalarda,

var olan diğer araçlara göre daha az ek masraf ile yeniden-kullanım mesafesini

ölçebilmektedir. Öne sürülen bu araç, sadece 2.9× zaman ve 2.8× hafıza ek mas-

rafına sebep olmaktadır. Kullanıcı tarafından belirlenebilen yeniden-kullanım mesafe-

sine sebep olacak şekilde özel olarak yazılmış bir microbenchmark ile ölçlüdüğü üzere,

ReuseTracker ortalama 92% doğruluk oranına sahiptir. Paylaşılmış önbelleklerde

false-sharing olan mekansal yeniden-kullanım’ların saptanması, ve bazı uygulamaların

komşu önbellek-satırı prefetch optimizasyonundan fayda sağlayabileceğine dair tah-

min yapılması olarak iki farklı senaryoda ReuseTracker’nin, kod düzenlemesinde

nasıl rehber alınabileceği gösterilmiştir.

Bu tez içerisinde öne sürülen araçların ve analizlerin, donanım mimarlarının

yeni kesin olay örnekleme özellikleri geliştirirken ve de performans mühendislerinin

yazılım performansını ayarlarken faydalı olabileceği gibi; performans analiz ve do-

nanım içerisindeki profilleme araçları alanında ileride olabilecek araştırmalar için

yeni yollar açabileceği beklentimizdir.

ACKNOWLEDGMENTS

First, I would like to express my gratitude to my advisor Assist. Prof. Didem

Unat. Without her advice, support and guidance, this work could not have been

completed successfully.

I am also thankful to my thesis progress committee members, Prof. Öznur

Özkasap from Koç University and Assist. Prof. Ayşe Yılmazer from Istanbul Tech-

nical University for their critical feedbacks that have helped me improve this work.

I would also like to thank Assoc. Prof. Aykut Erdem from Koç University and Prof.

Özcan Öztürk from Bilkent University for their willingness to be parts of my thesis

jury committee.

I would like also to thank Milind Chabbi from Scalable Machine and Paul H. J.

Kelly from Imperial College London for the technical discussions that we have had

and their advices for the improvement of this work.

I am also grateful to have some of the sharpest and friendliest research colleagues

at ParCoreLab that have inspired me with a lot of insightful ideas through various

discussions that I have had with them. I am also thankful to them for the fun

moments we have shared together.

Special thanks to Mr. Ufuk Yılmaz from Koç University Advanced Computing

Center for helping me with running the HPC resources. And finally, I would like to

extend my deepest gratitude to my family, especially my mother and wife for their

emotional support.

x

TABLE OF CONTENTS

List of Tables xiv

List of Figures xvi

Abbreviations xx

Chapter 1: Introduction 1

Chapter 2: Background 6

2.1 Hardware Performance Monitoring Unit (PMU) 6

2.1.1 Intel PEBS . 6

2.1.2 AMD IBS . 8

2.2 Hardware debug registers . 10

2.3 Linux perf events . 10

Chapter 3: Related Work 11

3.1 Analysis on Precise Event Sampling Features 11

3.2 Inter-Thread Communication . 13

3.2.1 Simulator-based Approaches 13

3.2.2 OS-based Approaches . 13

3.2.3 Code Instrumentation-based Approaches 14

3.2.4 Profiling Memory Accesses . 14

3.3 PMU-based Multi-Core Reuse Distance Analysis 15

3.3.1 Modeling Individual Threads and Shared Caches 15

3.3.2 Leveraging PMUs and Debug Registers 18

xi

Chapter 4: Comparisons of Precise Event Sampling Features in AMD

and Intel Architectures 19

4.1 Introduction . 19

4.2 Qualitative Comparison . 22

4.2.1 Usable Counters . 22

4.2.2 Type of Precise Events . 23

4.2.3 Sampled Data . 24

4.2.4 Execution Mode . 25

4.3 Quantitative Comparison . 26

4.3.1 Accuracy . 27

4.3.2 Sensitivity to Sampling Rate and Stability 30

4.3.3 Bias and Instruction Attribution 33

4.3.4 Memory Overhead . 35

4.3.5 Multiple Event Monitoring . 37

4.3.6 Kernel Mode vs User Mode Identification 39

4.4 Full-Fledged Profiling Tool . 41

Chapter 5: ComDetective: Inter-Thread Communication Analysis 43

5.1 Introduction . 43

5.2 Background . 46

5.3 Design of ComDetective . 47

5.3.1 Communication Detection Algorithm 48

5.3.2 Quantifying Communication Volume 52

5.3.3 Implementation . 53

5.4 Experimental Study . 54

5.4.1 Accuracy Verification . 54

5.4.2 Communication in CORAL Benchmarks 65

5.4.3 Communication in PARSEC Benchmarks 68

5.4.4 Use-Case: Data Structure Optimization 69

xii

5.4.5 Sensitivity and Overhead Analysis 70

Chapter 6: ReuseTracker: Reuse Distance Analysis 74

6.1 Introduction . 74

6.2 Background and Terminology . 79

6.2.1 Single-threaded Reuse Distance 79

6.2.2 Multi-threaded Reuse Distance 79

6.3 Methodology . 83

6.4 Design and Implementation . 85

6.4.1 Intra-thread profiling 85

6.4.2 Shared cache profiling 89

6.4.3 Implementation . 91

6.5 Evaluation . 93

6.5.1 RIBench Benchmark . 94

6.5.2 Accuracy without Invalidation 97

6.5.3 Accuracy with Invalidation . 100

6.5.4 Accuracy under Different Thread Counts 105

6.5.5 Reuse Distances of PARSEC Benchmarks 106

6.5.6 Use Case: False Sharing Removal 108

6.5.7 Use Case: Adjacent Cache Line Prefetch 109

6.5.8 Overhead Analysis . 111

Chapter 7: Conclusion and Future Work 113

Bibliography 116

Appendix A: List of Microbenchmarks 136

xiii

LIST OF TABLES

4.1 Qualitative comparison of Intel PEBS and AMD IBS. *This informa-

tion is valid for Cascade Lake microarchitecture [55]. 22

4.2 Specs of the AMD and the Intel Machines 27

4.3 Percentage of samples attributed to each instruction in the Bias-Bench

benchmark. 35

5.1 Running time and data movement comparison of OpenMP and MPI

implementations for AMG, MiniFE and Quicksilver using 32 threads 67

5.2 Runtime and space overhead of ComDetective under different sam-

pling intervals for applications using 32 threads (LULESH 27 threads) 72

6.1 Comparison of ReuseTracker against other techniques that per-

form online detection of reuses. Overheads of RDX are measured

using a sampling interval of 100K. †The reported overheads and ac-

curacy are from the original paper. ‡The reported overheads and

accuracy are measured in this work. *StatCache’s accuracy is high in

terms of predicting miss ratio. 77

6.2 Intra-thread reuse. Read (R) or Write (W) may be accessing data at

any level in the memory hierarchy. 81

6.3 Reuse in shared cache. 81

6.4 Reuse distance and reuse count of RIBench 96

6.5 Parameter values of RIBench when assessing accuracy without cache

line invalidation . 98

6.6 Parameter values of RIBench when assessing accuracy with cache line

invalidations on bell-shaped pattern 101

xiv

6.7 Parameter values of RIBench when assessing accuracy with cache line

invalidations on decreasing pattern 102

6.8 Prediction of execution outcomes when ACP is activated 110

xv

LIST OF FIGURES

2.1 Execution scenario of Intel PEBS hardware when it monitors retired

load and store micro-operations. 7

2.2 Execution scenario of AMD IBS hardware when sampling executed

micro-operations. 9

4.1 Comparison of accuracy of PEBS monitoring retired instruction, IBS

monitoring micro-operation execution (IBS op), and IBS monitoring

instruction fetch on the Load-Ratio benchmark 30

4.2 Accuracy of PEBS and IBS in capturing retired load samples from

the Load-Ratio benchmark . 31

4.3 Accuracy of PEBS and IBS in sampling locked load operations under

different sampling intervals . 32

4.4 Comparison of memory overheads on Rodinia benchmarks 36

4.5 Comparison of PEBS accuracy in monitoring different numbers of

events against IBS op. PEBS monitors multiple events simultaneously

except for 1 event case, where it monitors each event in a separate

run. IBS can capture all events at once in its microoperation sampling. 38

4.6 Total communication counts under different sharing fractions in the

Intel (Figures 4.6a, 4.6b, 4.6c) and AMD (Figures 4.6d, 4.6e, 4.6f)

machines. 41

5.1 Communication matrices of LULESH taken from an Intel Broadwell

machine (Left to Right: MPI, ComDetective: All, True and False

Sharing). Darker color indicates more communication. 45

xvi

5.2 One possible execution scenario: 0) Every thread configures its PMU

to sample its stores and loads. 1) Thread Ti’s PMU counter overflows

on a store. 2) Ti publishes the sampled address to BulletinBoard if

no such entry exists and tries to arm its watchpoints with an address

in the BulletinBoard (if any). 3) Thread Tj’ PMU counter overflows

on a load. 4) Tj looks up BulletinBoard for a matching cache line. 5)

If found, communication is reported. 6) Otherwise, Tj tries to arm

watchpoints. 7) Tj accesses an address on which it set a watchpoint,

the debug register traps, communication is reported. 50

5.3 Total communication counts for across different sharing fractions with

threads mapped to a single socket (compact) in the Intel machine. . 56

5.4 Total communication counts for different sharing fractions with threads

mapped evenly to two sockets (scatter) the Intel machine. 57

5.5 Total communication counts for across different sharing fractions with

threads mapped to a single socket (compact) in the AMD machine. . 57

5.6 Total communication counts for different sharing fractions with threads

mapped evenly to two sockets (scatter) the AMD machine. 57

5.7 Comparison between total communication counts captured by Nu-

malize[33], ComDetective, and the real RFO counts in the Intel

machine . 59

5.8 Comparing true sharing vs. false sharing counts across different shar-

ing fractions using 8 threads . 60

5.9 Total communication counts under different fraction of read opera-

tions detected by ComDetective 62

5.10 Communication matrices for point-to-point communications having

different sharing fractions in the Intel machine. Thread 0 only com-

municates with thread 1, thread 2 only communicates with thread 3.

Sharing fractions for each pair are shown on the top of the maps. . . 63

xvii

5.11 Communication matrices for point-to-point communications having

different sharing fractions in the AMD machine. 64

5.12 Communication matrices of CORAL benchmarks. Darker color indi-

cates more communication. 66

5.13 Communication matrices of PARSEC benchmark suites. Darker color

indicates more communication. 69

5.14 Total communication counts detected by ComDetective under dif-

ferent sampling intervals compared with the ground truths when 16

threads are mapped to 2 sockets . 71

6.1 One possible execution scenario when profiling intra-thread reuse dis-

tance: (1) Every thread sets its PMUs to sample its stores and loads.

(2) Thread T1’s PMU counter overflows on a store to address m1. (3)

T1 arms its watchpoint with type RW TRAP and watchpoints of other

threads (e.g., the one in T2) with type W TRAP and with address m1

in debug registers. (4) T1 accesses address m1 again before any other

thread, the watchpoint traps, time reuse distance is computed. (5)

Cache line invalidation happens if T2 stores to address m1 before T1

accesses m1. 86

6.2 One possible execution scenario in profiling reuse distance in L3 cache:

(1) Every thread sets its PMUs to sample its load and store accesses.

(2) Thread T1’s PMU counter overflows on a store or a load on address

m1. (3) T1 arms the watchpoints on other cores that share the same

L3 cache with itself with type RW TRAP and with type W TRAP on cores

that do not share the same L3 cache. (4) T2 accesses address m1 again

before any other thread, the debug register traps, time reuse distance

in L3 is computed. (5) Cache line invalidation in L3 level occurs if T3

or T4 stores to address m1 before T2 accesses m1. 90

xviii

6.3 Reuse distance histograms of RIBench without cache line invalida-

tion in the Intel machine. X-axis shows the reuse distance ranges

in logarithm-scale. Y-axis displays the fraction of reuse-pairs that

belong to specific reuse distance ranges. 99

6.4 Reuse distance histograms of RIBench without cache line invalidation

in the AMD machine. 100

6.5 Reuse distance histograms of RIBench with cache line invalidations

on bell-shaped pattern in the Intel machine. 103

6.6 Reuse distance histograms of RIBench with cache line invalidations

on decreasing pattern in the Intel machine. 103

6.7 Reuse distance histograms of RIBench with cache line invalidations

on bell-shaped pattern in the AMD machine. 104

6.8 Reuse distance histograms of RIBench with cache line invalidations

on decreasing pattern in the AMD machine. 104

6.9 Accuracy of ReuseTracker running the RIBench under different

thread counts in the Intel machine. X-axis displays the thread counts,

and Y-axis shows the accuracy for each thread count. 105

6.10 Accuracy of ReuseTracker running the RIBench under different

thread counts in the AMD machine. 106

6.11 Histograms of intra-thread reuse distance of blackscholes and body-

track from PARSEC. X-axis shows the reuse distance ranges in logarithm-

scale. Y-axis displays in logarithm-scale the fraction of reuse-pairs

that belong to specific reuse distance ranges. 107

6.12 Histograms of reuse distance in L3 cache of streamcluster and fre-

qmine from PARSEC. X-axis shows the reuse distance ranges in

logarithm-scale. Y-axis displays in linear scale the fraction of reuse-

pairs that belong to specific reuse distance ranges. 107

xix

ABBREVIATIONS

CPU Central Processing Unit

PMU Performance Monitoring Unit

PEBS Processor Event Based Sampling

IBS Instruction Based Sampling

MRK Marked Event Sampling

SPE Statistical Profiling Extension

OS Operating System

PMC Performance monitoring counter

MSR Model Specific Register

TLB Translation Look-aside Buffer

PEBS Processor Event Based Sampling

RAW Read after Write

RAR Read after Read

MRC Miss Ratio Curve

AET Average Eviction Time

RISC Reduced Instruction Set Computer

ITLB Instruction Translation Look-aside Buffer

MPI Message Passing Interface

WP Watchpoint

RFO Read for Ownership

LRU Least Recently Used

DRAM Dynamic Random-Access Memory

ACP Adjacent Cache Line Prefetch

xx

Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

Profiling tools are essential resources for performance tuning of any computer ap-

plications. Using profiling tools, programmers are able to identify bottlenecks, such

as cache misses, long-latency memory accesses, or branch mispredictions, that cause

performance slowdowns in the profiled programs. In the post-Moore era where mul-

tithreaded applications become ubiquitous, there is a higher variety of bottlenecks

that prevent these applications from reaching their theoretical peak performance.

Some examples of bottlenecks that may afflict multithreaded code are false sharing,

inter-thread cache line transfers, and coherence misses.

A number of profiling tools have been developed to detect performance bottle-

necks in multithreaded applications and associate these bottlenecks with the threads

or locations in source code that cause them. Among these tools, there are tech-

niques that leverage hardware simulators [14, 29, 104]. There are also techniques

that insert profiling code to original program code, i.e. code instrumentation, using

compiler techniques [82, 83] or binary instrumentation [34, 33, 103, 125]. These ex-

isting tools, though have been demonstrated to be able to locate some bottlenecks

in the code that they profile, still suffer from several drawbacks. One drawback

is that the tools that rely on cycle-accurate simulators and most tools that lever-

age code instrumentation suffer from huge time and memory overheads. Another

drawback is that the simulator and code instrumentation-based tools might suffer

from inaccuracy. Hardware simulators might not accurately capture the behavior

of multithreaded programs when running on actual hardware due to the simplistic

or idealized nature of the simulated machines. Some examples of how simulators

might alter program behavior are when they simulate CPU cores with in-order ex-

Chapter 1: Introduction 2

ecution instead of out-of-order execution, or when the simulated CPU cores access

shared data from memory in different order compared to CPU cores in real ma-

chines, which will result in different amount of inter-thread communication or false

sharing detected by the simulators. Not only simulators, binary instrumentation-

based techniques might also fail to capture the behavior of multithreaded code on

actual hardware as these techniques can distort the parallel schedule of concurrent

threads [92] unless a supplementary tool that can record and replay original program

execution deterministically such as Intel’s PinPlay is also utilized [90].

To avoid the overhead and inaccuracy problems incurred by simulator and code

instrumentation-based techniques, one solution is to leverage performance monitor-

ing units (PMUs), which are hardware features that exist in current commodity

CPUs. PMUs can be programmed to count and sample hardware events, such as

retired instructions, branch instructions, and memory accesses, and software events,

such as page faults and context switches. As PMUs are hardware features, they in-

cur much lower overheads than simulators or code instrumentation-based tools, and

cause minimal perturbations to program execution when used for profiling. However,

ordinary PMUs still have a flaw in the way that they cannot accurately attribute

sampled events to the actual instructions that trigger those events. When one such

PMU samples an event, the instruction address recorded is the value of instruction

pointer at the time the sampling interrupt is handled, and not the address of the

actual instruction that causes the event. To fix this flaw, PMUs are enhanced fur-

ther with precise event sampling technology [53, 38, 108, 124], which allows sampled

events to be accurately associated with the instructions that trigger them and the

effective addresses that they access, in case the sampled events are memory accesses.

Precise event sampling is supported in a number of architectures. Intel provides

this feature through Processor Event Based Sampling (PEBS) that is supported

in Nehalem microarchitecture and its successors [53]. AMD supports this feature

through Instruction Based Sampling (IBS) that is available in AMD Opteron (mi-

croarchitecture family 10h) and its successors [38]. IBM PowerPC architecture also

provides this capability through Marked Event Sampling (MRK) [108] feature that

Chapter 1: Introduction 3

is available in IBM POWER5 and its successors. The most recent example of precise

event sampling technology is ARM’s Statistical Profiling Extension (SPE) which is

available in Armv8.2 [124] and its successors.

A number of profiling techniques have leveraged precise event sampling for var-

ious purposes. Some of these techniques detect long-latency memory accesses and

identify their locations in source code [71, 70]. There are also other techniques that

capture remote memory accesses [72, 74], cache misses [93], false sharing [74, 23, 50],

and profile data locality in single-threaded applications [119]. However, to the best

of our knowledge, none of these hardware-based techniques is able to capture data

movement and measure data locality in the context of multithreaded execution,

which are common sources of bottlenecks in shared memory parallel programs that

run on multicore machines. To address this need, we design a profiling algorithm

that captures inter-thread communications in the form of communication matrices

by also differentiating them into true and false sharing communications, and we

also devise two other profiling algorithms that measure reuse distance, which is a

widely used metric for data locality, in private and shared caches, respectively, in

the context of multithreaded execution.

Though precise event sampling features have been used in a number of profiling

tools, there have been very few works that perform in-depth analysis on these fea-

tures. These works only focus on Intel PEBS, and only analyze its accuracy and

time overhead without addressing other aspects such as memory overhead, stabil-

ity of sample counts, and differences in functionality among precise event sampling

features across different architectures. To address this research gap, in addition to

proposing profiling techniques, we also perform in-depth qualitative and quantita-

tive analyses of two most widely used precise event sampling facilities, i.e. Intel

PEBS and AMD IBS, by analyzing their accuracy, memory overhead, stability, and

functionality.

In this dissertation, we perform qualitative and quantitative analyses on Intel

PEBS and AMD IBS, and present profiling tools that leverage Intel PEBS to capture

inter-thread communications and measure reuse distance. To our knowledge, the

Chapter 1: Introduction 4

analysis on PEBS and IBS that we perform in this work is the most comprehensive

study on precise event sampling to date. Furthermore, the algorithms utilized by

our profiling tools are microarchitecture agnostic as they will work on any multicore

with precise event sampling support and debug registers. To summarize, the major

contributions of this dissertation are as follows.

• The most comprehensive qualitative and quantitative study to date on the

precise event sampling facilities of two major vendors, i.e. Intel and AMD,

using the microbenchmarks

• Imaginative uses of precise event sampling in the forms of two low-overhead,

open-source tools and their underlying algorithms that profile data locality

and communication using precise event sampling and debug registers

– ComDetective, a communication detection tool and its algorithm that

captures inter-thread communications and distinguishes them into false

and true sharing communications

– ReuseTracker, a reuse distance analysis tool and its two algorithms

that measure reuse distance of multithreaded applications in private and

shared caches, respectively

• An extensive set of microbenchmarks that evaluates accuracy, memory over-

head, sampling biases, stability, and functionality of precise event sampling

facilities, and another set of microbenchmarks that evaluates the accuracy of

the developed precise event sampling-based tools, which can also be used to

evaluate other tools that capture inter-thread communications and measure

reuse distance

• Extensive experiments on an Intel Cascade Lake and an AMD Zen 2 machines

using the microbenchmarks as well as large benchmarks from Parsec, Rodinia,

CORAL, CORAL 2, and Synchrobench suites to measure the accuracy and

Chapter 1: Introduction 5

overheads of the developed tools, and to gain insights into data locality and

communication in the benchmarks

• Important use-case scenarios that demonstrate how the profiling tools can be

used to guide optimizations on profiled applications

ComDetective and ReuseTracker have been published in [101] and [102]

respectively. The repository of ComDetective is publicly available at https://

github.com/comdetective-tools, and the repository of ReuseTracker is pub-

licly available at https://github.com/ParCoreLab/ReuseTracker. The microbench-

marks developed and used in this work are listed in Appendix A.

Chapter 2: Background 6

Chapter 2

BACKGROUND

2.1 Hardware Performance Monitoring Unit (PMU)

CPU’s PMU offers a programmable way to count hardware events such as loads,

stores, CPU cycles, etc. PMUs can be configured to trigger an overflow interrupt

once a threshold number of events elapse. A profiler, running in the address space

of the monitored program, handles the interrupt and records and attributes the

measurements to their corresponding communication types or objects. We refer to

a PMU interrupt as a “sample.” PMUs are per CPU core and virtualized by the

operating system for each OS thread.

A subset of PMUs that is called precise event sampling can sample hardware

events and accurately locate the instructions that trigger the events. Intel sup-

ports this capability through Processor Event Based Sampling (PEBS) [25] that is

available in Intel Nehalem and its successors, while AMD processors allow precise

event sampling through their Instruction-Based Sampling (IBS) [17] feature that is

supported in AMD Opteron (microarchitecture family 10h) and its successors.

2.1.1 Intel PEBS

On Intel architecture, precise event sampling can utilize any programmable counters

available in PMUs [55]. The PMUs in an Intel core consist of a number of compo-

nents: global control registers, status registers, event select registers, and perfor-

mance monitoring counters (PMCs). Global control registers are used to globally

enable or disable event counters or precise event sampling ability of each counter.

Status registers contain info about the capabilities supported by the PMUs or the

overflow status of each event counter. Event select registers are used to choose the

Chapter 2: Background 7

hardware or software event to be monitored. A PMC counts the occurrences of a

monitored event.

To enable precise event sampling, a programmable counter is enabled along with

its PEBS capability by global control registers [55]. This counter is then configured

to monitor a targeted hardware event by programming its event select register with

the mask and number of the targeted event. The counter is also configured to have

a counter overflow in every elapsing of a specified number of events, which is the

sampling interval. When a counter overflows, PEBS hardware is armed to trap the

next occurrence of the monitored event. When the next monitored event occurs, a

mechanism called PEBS assist will copy the machine state to a memory buffer called

PEBS buffer. The machine state and other data such as effective address and load

latency collected by a PEBS assist are grouped into a data structure called a PEBS

record in the PEBS buffer. When the number of PEBS records in the PEBS buffer

has reached a predefined threshold, a hardware interrupt is triggered and handled

by an interrupt handler that is a part of the OS. The interrupt handler reads all of

the PEBS records in the PEBS buffer, clears the buffer, and sends an OS signal to

a user process or thread that will collect the sampled data. On receiving the signal,

the user process/thread retrieves the sampled data and uses it for profiling.

Figure 2.1: Execution scenario of Intel PEBS hardware when it monitors retired
load and store micro-operations.

Figure 2.1 shows an example execution of PEBS when profiling retired load

and store micro-operations. 1 The global control register IA32 PERF GLOBAL CTRL

Chapter 2: Background 8

enables PMC 0 and PMC 1 by setting its bits that correspond to the counters to

1. 2 Another global control register, i.e. IA32 PEBS ENABLE MSR, enables PMC 0

and PMC 1 to capture architectural state using PEBS by setting the corresponding

bits to 1. 3 The event select registers IA32 PERFEVTSEL0 and IA32 PERFEVTSEL1

are programmed to make PMC 0 and PMC 1 count retired load micro-operations

and retired store micro-operations, respectively. 4 The configured PMCs are also

preloaded with -N with N being the sampling interval, so that they overflow on

elapsing N monitored events. 5 After the profiled program executes for a while,

PMC 1’s counter overflows after N stores occur. The PEBS hardware is armed to

trap the next store access that happens in the same core. PMC 1 is preloaded with

-N again. 6 Another store access occurs after the counter overflow. The armed

PEBS hardware traps the access and a microcode records the architectural state

in a PEBS record located in PEBS buffer in kernel space. 7 If the number of

PEBS records has reached a specified threshold, which is 1 in this case, a hardware

interrupt is triggered, and an interrupt handler is called to transfer the PEBS records

to user space.

2.1.2 AMD IBS

Different from Intel, the precise event sampling in AMD, i.e. IBS, employs a

hardware-based facility that is separate from the PMUs that are commonly used

to count or imprecisely sample specific hardware or software events. This mech-

anism is based on the instruction sampling technique proposed in [31]. The IBS

facility in each CPU core consists of a couple of components: two control registers,

two internal counters, and a number of MSRs (Model Specific Registers) for sampled

data [8].

This facility allows only two flavors of sampling: instruction fetch sampling and

micro-operation sampling [38, 8]. Either one of the two control registers is pro-

grammed to control the IBS hardware depending on the sampling flavor that is

chosen. If instruction fetch sampling is selected, the fetch control register is pro-

grammed. Otherwise, the execution control register is programmed. After the con-

Chapter 2: Background 9

trol register is programmed, the internal counter that belongs to the selected sam-

pling flavor, i.e. either the fetch counter or the op counter, will count the monitored

event in the CPU core. When an event sampling occurs, information related to the

event is recorded in the MSRs of sampled data that belong to the chosen sampling

flavor.

The counter for micro-operation sampling, i.e. op counter, can be programmed

to count either clock cycles or dispatched micro-operations. If it is programmed to

count clock cycles, it increments for each clock cycle, and when the counter reaches

the specified sampling interval, a micro-operation is selected for sampling from the

next dispatch line. On the other hand, if the counter is programmed to count

dispatched micro-operations, it increments for every dispatched micro-operation,

and when the counter reaches the sampling interval, a micro-operation is selected

to be sampled in the next cycle. In this work, we only consider the op counter

to be programmed for counting dispatched micro-operations, which is the default

configuration of the IBS driver in [47]. We also choose this configuration as it

generates predictable number of samples given a known number of micro-operations

in a profiled application, which suits our accuracy verification method.

Figure 2.2: Execution scenario of AMD IBS hardware when sampling executed
micro-operations.

Figure 2.2 shows an execution scenario of IBS when counting and sampling micro-

operations. 1 IBS execution control register in a CPU core is programmed to make

the IBS hardware count and sample executed micro-operations. The sampling in-

terval is also written as a field in the control register. The op counter is set to a

Chapter 2: Background 10

pseudorandom 7-bit value in the range of 1 to 127. 2 After the profiled thread

executes for a while, the value in the op counter equals the specified sampling inter-

val. When the value of the counter equals the sampling interval, the next executed

micro-operation will be tagged for sampling. 3 The tagged micro-operation re-

tires. The execution info of the tagged micro-operation, which includes instruction

pointer and effective address, is recorded in a number of MSRs. After the tagged

operation retires, a hardware interrupt is triggered, and the interrupt handler copies

the recorded data in the MSRs to a memory buffer in kernel space. 4 After copying

sampled data, the interrupt handler configures the control register again to re-enable

IBS, and the op counter is preloaded with another pseudorandom 7-bit value.

2.2 Hardware debug registers

Hardware debug registers [59, 85] trap CPU execution when a program counter

reaches an instruction address (breakpoint) or when an instruction accesses a moni-

tored address (watchpoint). When a thread sets up a debug register to trap a future

memory access to certain address, we consider this thread to be arming a watchpoint

on that address. One can configure debug registers with different addresses, widths,

and types of memory accesses to be trapped (i.e. W TRAP for stores and RW TRAP

for both loads and stores). Current processors from x86 architectures typically have

four debug registers.

2.3 Linux perf events

Linux provides an interface to configure PMUs and debug registers using the perf event

open [67] system call and ioctl calls. The ability to configure debug registers has

been available since Linux 2.6.33, and the ability to program multiple PMUs since

Linux 2.6.39 [67]. The Linux kernel can deliver a signal to the specific thread that

encounters a PMU interrupt or a debug register trap. The user code can (1) create

a circular buffer into which the kernel appends the sampled data on each sample

using mmap function and (2) collect the signal context on each watchpoint trap.

Chapter 3: Related Work 11

Chapter 3

RELATED WORK

3.1 Analysis on Precise Event Sampling Features

While there have been a few works that analyze the accuracy and overheads of PEBS,

there is no in-depth study on the accuracy, overheads, stability, or functionality of

IBS. To the best of our knowledge, none of the previous work on PEBS analyzes the

stability and explore the functionality, such as execution mode detection, of PEBS

either.

Larysch [64] evaluated the accuracy and overhead of PEBS in measuring memory

bandwidth. The author performed their experiments using low sampling intervals,

which are between 10 and 1000. Through the experiments, the author discovered

that PEBS suffers from higher sample losses as sampling interval is decreased.

Nonell et al., [89] evaluated the accuracy and time overhead of PEBS on appli-

cations running on a large numbers of CPU cores, which range from 2048 to 128k

cores. By using the PEBS driver that they developed in a lightweight kernel, they

could reach low overhead in capturing memory access patterns with high accuracy.

Their driver could also maintain high accuracy of PEBS in capturing memory access

patterns even under low sampling interval, which is up to 64.

Yi et al., [128] analyzed the accuracy of PEBS, and discovered that PEBS is prone

to bias in event sampling due to shadowing. To eliminate the bias, they propose

insertion of nop instructions after each monitored event. Gottschall et al., [43]

proposed Oracle profiler as a golden reference for time-proportional attribution of

event sampling. They found out that existing precise event sampling facilities such

as Intel PEBS, AMD IBS, and ARM SPE are not time proportional in sampling

instructions i.e. the number of samples taken from an instruction is not proportional

Chapter 3: Related Work 12

to the number of CPU cycles incurred by that instruction. They also discovered

that PEBS suffers from instruction attribution problem when multiple instructions

commit at the same cycle under ILP after a sample is taken.

Weaver and McKee [120] evaluated the variation or, as we refer to it, stability

of event counting by PMUs in nine implementations of x86 architecture. They

discovered that inter-machine variations could happen because certain instructions

could be counted double in certain microarchitectures or a counter for a specific event

in one CPU version could be more accurate than in older versions. They also found

out that intra-machine variations of PMU-generated instruction count might also

occur, which could be caused by virtual memory layout of profiled programs or OS

activities such as page faults and timer interrupts. Weaver et al. [121] also evaluated

PMUs in eleven different implementations of x86 64 architecture and discovered

sources of variation in their counted events. They explored possible ways to work

around these limitations in the machines to produce more deterministic counts.

Akiyama and Hirofuchi [6] quantitatively analyzed the time overhead of PEBS,

and demonstrated how the quantified overhead can be used to predict the actual

overhead of complex applications. They also evaluated the effect of sampling rate

and PEBS buffer size on cache pollution and the performance of profiled applica-

tions. Xu et al., [126] identify the inaccuracies of sampling in PEBS and develop a

mathematical model in software to rectify inaccuracies.

This work differs from the previous work first by benchmarking several behavioral

aspects of precise event sampling through some carefully crafted microbenchmarks.

Second, we evaluate the accuracy and memory overhead under more complex situa-

tions such as while monitoring multiple events in PEBS and monitoring in different

modes. Third, we quantify on the stability of sample counts generated by precise

event sampling.

Chapter 3: Related Work 13

3.2 Inter-Thread Communication

3.2.1 Simulator-based Approaches

Barrow-Williams et al. [14] generate communication patterns for SPLASH-2 and

PARSEC benchmarks by collecting memory access traces using Virtutech simics

simulator [79]. Thread table of the kernel running on the simulator is also accessed

to keep track of all running threads. Similar to [14], Henrique Molina da Cruz et

al. [29] also employ a simulator to generate memory access traces. The resulting

memory traces are used as the basis to create memory sharing matrix. By consid-

ering the memory sharing matrix, thread affinity is implemented by taking memory

hierarchy into account. Application threads are mapped according to the generated

thread affinity by using Minas framework [88]. ComDetective differs from these

techniques in the way that they generate thread communication pattern with the

help of a hardware simulator, while we generate communication matrix by PMUs.

This makes ComDetective practical to use and runs faster than the simulator-

based techniques, especially for full application execution.

3.2.2 OS-based Approaches

Tam et al. [109] and Azimi et al. [12] obtain communication patterns from running

parallel applications through PMUs. Unlike ComDetective, their technique re-

quires kernel support. PMUs are accessed by the kernel and the communication

pattern of a running application can be generated by the kernel. The PMUs that

are accessed are pipeline stall cycle breakdown, L2/L3 remote cache access counters,

and L1 cache miss data address sampler.

Cruz et al. [28] use Translation Look-aside Buffers (TLBs) to generate of com-

munication matrix that records page level memory sharing. Two approaches were

introduced that use software-managed TLB and hardware-managed TLB. For the

software-managed TLB, a trap is sent to OS when TLB miss occurs. Before the

missing page table entry is loaded, TLB content of each core is checked for the

matches of the missing entry. The information on the matches is used to update

Chapter 3: Related Work 14

the communication matrix. For the hardware-managed TLB, kernel will check the

content of TLBs periodically. Both approaches require OS support. In contrast,

ComDetective uses user-space PMU sampling. Moreover, TLB-granularity mon-

itoring is too coarse-grained because inter-thread communications happen at cache-

line granularity.

3.2.3 Code Instrumentation-based Approaches

Diener et al. [33, 34] develop Numalize, which uses binary instrumentation [75] to

intercept memory accesses and identify potential communications among threads

by comparing the intercepted memory accesses. Two or three threads that perform

accesses to a memory block consecutively are considered to communicate by the

tool. We have compared ComDetective with Numalize in our experimental study.

Numalize introduces more than 16× runtime overhead and almost 2000× memory

overhead, whereas ComDetective introduces only 1.30× runtime overhead and

1.27× space overhead. Moreover, ComDetective does not dilate execution and

produces more accurate communication matrices.

A more recent work [83, 82] performs code instrumentation with the help of the

LLVM compiler. This instrumentation allows detection of RAW and RAR depen-

dencies in the original code and outputs this information as communication and

reuse matrices. Through communication reuse distance and communication reuse

ratio derived from these outputs, the tool facilitates analysis of communication bot-

tlenecks that arise from thread interactions in different code regions. However, this

tool still suffers from significant slowdown (140×), and is limited to detection of

memory accesses to similar addresses. Hence, to our knowledge, it cannot detect

cache line transfers that are triggered by false sharing.

3.2.4 Profiling Memory Accesses

Concerning the use of Performance Monitoring Units (PMUs) by library or stan-

dalone tool to profile memory accesses or data movement, our work is not the first one

that implements this idea. Lachaize et al. [61] introduced MemProf, which utilizes

Chapter 3: Related Work 15

kernel function calls to sample data from memory access events. This data is used to

identify objects that are accessed remotely by any thread. Like ComDetective,

MemProf also intercepts functions for thread creation, thread destruction, object

creation, and object destruction to differentiate memory accesses belonging to dif-

ferent objects and different threads. Unat et al. [113] introduce a tool, ExaSAT, to

analyze the movement of data objects using compiler analysis. Even though it has

no runtime overhead, it cannot capture all the program objects or their references

as it relies on static analysis. Chabbi et al. [23] employ PMUs and debug registers

to detect false sharing but do not generalize it for inter-thread communication ma-

trices; furthermore, their technique does not quantify communication volume even

for false sharing. Even though these tools can count memory access events, they do

not associate these events to threads and are not used in generating communication

pattern among threads.

3.3 PMU-based Multi-Core Reuse Distance Analysis

Existing works related to PMU-based multi-core reuse distance analysis can be orga-

nized into two groups. The first group consists of the papers that proposed multi-core

reuse distance analysis techniques that profile individual threads and shared caches.

The second group introduced reuse distance analysis techniques that leverage PMUs

and debug registers.

3.3.1 Modeling Individual Threads and Shared Caches

Ding and Chilimbi proposed an analytical model that predicts shared cache behav-

ior indirectly by combining per-thread reuse distance, interleaving, and data sharing

information [35]. This technique processes execution trace of a multithreaded code

to generate a set of per-thread metrics. This set of metrics covers locality (i.e. reuse

distance profile), data sharing, and interleaving information of each thread. By ac-

counting for multiple sets of metrics from a subset of threads using the model, miss

ratio of this subset of threads while running in a shared cache can be predicted.

Another work by Jiang et al. [58] proposed a probabilistic model that can approx-

Chapter 3: Related Work 16

imate concurrent reuse distance from reuse distances of individual threads. The

multithreaded applications targeted by this model are those that perform similar

computations in all threads and have uniform amount of shared data across their

thread groups. These techniques in [35] and [58] require processing of execution

traces that might incur large storage overhead in the host machines. Furthermore,

the computation of reuse distance profiles from the traces can also require huge

performance overhead depending on the size of the traces.

Schuff et al. introduced a different approach in [104]. Their technique performs

on-the-fly reuse distance computations by using a modified hardware simulator. This

technique computes reuse distances in both private and shared caches by also ensur-

ing the coherence in the private caches. Furthermore, it also models the interleaving

of memory accesses by all threads in the shared cache. This technique was improved

in [103] by having all threads run in parallel while being profiled. Moreover, sampling

technique was also introduced to reduce overhead by computing reuse distances only

on randomly selected memory references. A shortcoming in these approaches is that

they require simulator or binary instrumentation to intercept every single memory

access. The use of simulator introduces huge performance and memory consumption

overhead. Furthermore, the use of binary instrumentation might distort the parallel

schedules of task-parallel and dataflow applications as reported in [92].

Chandra et al. [32] introduced one of the first models that predict L2 cache

misses when multiple threads run on a shared L2 cache. Eklov et al. [42] also pro-

posed another model that estimates miss ratio and CPI of co-scheduled applications

that run on a shared cache. These models work by firstly approximating the reuse

distance profile of the applications’ interleaved accesses in the shared cache. After

that, the models calculate the shared cache miss ratio based on the approximated

profile. One key difference of these works from ours is that they target co-scheduled

applications that do not share data among them.

Pericas et al. [92] introduced a low-overhead method to generate execution traces

of multithreaded code and compute reuse distances of shared caches from these

traces. In generating shared cache reuse distance histograms, it also captures cache

Chapter 3: Related Work 17

coherence-based invalidations across caches. To minimize overhead, this method

reduces trace sizes by operating at the granularity of compute kernels. By operating

at coarse-grained level, this method can accurately capture distant reuses while

losing information on near reuses.

Maeda et al. [78] introduced a technique to profile reuse distances in every level

of a multi-level cache hierarchy. Since this technique still requires memory address

trace as an input, it still needs other tools to generate the trace. As a result, this

technique is still exposed to the drawbacks of these tools, such as huge overhead in

simulators or distortion of parallel schedule due to binary instrumentation.

Another work that leverages memory traces to profile reuse distances in private

and shared caches was proposed by Barai et al. [13]. In this work, they utilized a

compiler-assisted technique to generate a basic block-labeled memory trace from a

single sequential execution of a profiled application. This trace is then used by a

probabilistic analytical method to predict the reuse distance profiles of the applica-

tion in private and shared caches when the application runs in parallel.

Hu et al. [51] proposed a model that reduces time and space costs in constructing

cache miss ratio curves (MRCs) by analyzing only reuse-time distribution. They

used average eviction time (AET) as a parameter to detect reuses that lead to cache

misses. Their model could be extended to predict cache misses in a shared cache

when multiple threads run on it. However, in estimating cache misses in private and

shared caches, their model does not assume data sharing among threads that might

lead to coherence misses in private caches and shared caches.

Ji et al. [56] developed a probability model that computes L2 reuse distance

profile and predicts cache misses in L2 without requiring extra simulations or trace

generations. Though able to give cache miss prediction, this model still needs inputs

in the form of L1 reuse distance histograms. These inputs might have to be generated

by simulator or binary instrumentation-based tools.

There are also recent works in [100], [118], [65], and [66] that proposed analyti-

cal models to profile shared cache behaviors by processing L1 cache reuse distance

profiles. Similar to previously discussed works, these works also depend on other

Chapter 3: Related Work 18

tools to generate per-thread reuse distance histograms that they need.

3.3.2 Leveraging PMUs and Debug Registers

To the best of our knowledge, there have been only two techniques in literature that

utilize hardware counters and watchpoint mechanism to compute reuse distances.

The first technique was presented by Berg and Hagersten in [16]. In that paper, they

proposed StatCache, a profiling tool that calculates time reuse distances by using

hardware counters and watchpoints and deploys a statistical model to predict cache

miss ratio based on the collected time reuse distance profile. This tool could predict

the miss ratio of a fully associative cache with random replacement policy. The

second technique that leverages hardware counters and watchpoints was introduced

by Wang et al. [119]. This technique, which is named RDX, utilizes PMUs and debug

registers in Intel machines to compute time reuse distances, and then, convert them

to stack reuse distances. Both techniques in [16] and [119] differ from our work in

the way that they do not account for inter-thread interactions in multithreaded code

and they do not model shared caches.

Chapter 4: Comparisons of Precise Event Sampling Features in AMD and Intel
Architectures 19

Chapter 4

COMPARISONS OF PRECISE EVENT SAMPLING

FEATURES IN AMD AND INTEL ARCHITECTURES

4.1 Introduction

Precise event sampling is a powerful profiling feature supported by Performance

Monitoring Units (PMUs) in modern CPUs. This technology has been incorporated

in a number of profiling tools that identify performance bottlenecks in parallel ap-

plications [52, 54, 80, 77, 101, 70, 101, 102, 73, 97, 74, 69, 122, 23, 98]. For instance,

some of such tools are used to detect long latency memory accesses, false sharing

and inter-core cache line transfers. In addition to identifying the bottlenecks, precise

event sampling also offers the possibility to pinpoint the source code lines and data

objects causing the bottlenecks through its ability to sample instruction pointers and

effective addresses of the operations. Compared to alternative technologies such as

cycle-accurate hardware simulators [79, 19] and binary instrumentation [21, 75],

techniques that leverage precise event sampling incur much lower time and memory

overheads as they employ existing hardware features to capture real hardware events

without introducing additional software layer.

A number of architectures support hardware-based precise event sampling. In-

tel supports this capability through Processor Event Based Sampling (PEBS) [53]

that is available in Intel Nehalem and its successors and many researchers develop

several tools for PEBS [52, 54, 40, 69, 23, 101]. Similarly, AMD processors al-

low event sampling through their Instruction-Based Sampling (IBS) [38] feature

that is supported in AMD Opteron (microarchitecture family 10h) and its suc-

cessors. A number of tools have been developed using this sampling facility for

AMD [10, 39, 7, 84, 62, 70, 74]. The support for event sampling in IBM PowerPC

Chapter 4: Comparisons of Precise Event Sampling Features in AMD and Intel
Architectures 20

architecture is provided through Marked Event Sampling (MRK) [108] feature that

is available in IBM POWER5 and its successors. This capability is also recently sup-

ported in ARM architecture through Statistical Profiling Extension (SPE) feature

that was introduced in Armv8.2 [124].

Despite the fact that event sampling feature is commonly used for developing

profiling tools, there exists no rigorous study that benchmarks this capability in

the microarchitecture. In this dissertation, we analyze and compare the precise

event sampling facilities of two major vendors namely, Intel and AMD, in depth

through extensive benchmarks. To support precise event sampling, Intel PEBS and

AMD IBS adopt drastically different designs resulting in different characteristics at

hardware level that affect the accuracy, stability, overheads and functionality of the

sampling facility. While the outcomes of this work can be used by the profiling tool

developers to better understand the behaviours of their tools, hardware designers

can leverage the findings to design better PMUs not only for x86-based systems but

also for ARM [124, 11] and emerging RISC-V processors [95, 37].

We firstly present qualitative differences between the two precise event sam-

pling schemes in terms of usable counters, type of precise events, sampled data, and

execution mode. Based on the observations on the qualitative characteristics, we

developed a number of microbenchmarks that can assess the effects of the observed

qualitative characteristics. Through these benchmarks, we then quantitatively com-

pare the two schemes in terms of accuracy and memory overhead in sampling indi-

vidual and multiple events. We also evaluate the stability and sampling bias of both

schemes, and analyze the ability in attributing samples to the instructions that trig-

ger the samples and the execution modes of those instructions, i.e. kernel mode or

user mode. Lastly, to demonstrate how the microarchitectural characteristics that

we identified in our qualitative and quantitative analyses impact profiling tools, we

study a full-fledged open-source tool, namely ComDetective [101, 1], that employs

precise event sampling to detect inter-thread communication.

Our findings based on the quantitative and qualitative study are as follows. (1)

PEBS offers a large set of specific hardware events such as branches, memory loads,

Chapter 4: Comparisons of Precise Event Sampling Features in AMD and Intel
Architectures 21

etc to select from, while IBS has only two flavors of sampling: instruction fetch

sampling and micro-operation execution sampling. One impact of this difference is

that PEBS is more accurate than IBS in capturing proportional number of samples

from specific events, such as loads or branches. (2) Though IBS supports fewer

sampling choices than PEBS, it offers richer information in each sample, which

shows, for example, the origin of accessed data in memory hierarchy and the status

of TLB accesses. As a consequence, PEBS would have to monitor multiple events

simultaneously in order to generate the similar level of information as in one IBS

run. (3) PEBS shares the same counters with other non-PEBS PMU events, while

IBS has its own internal counters. As a result, the number of different events that

PEBS can monitor without multiplexing is limited to the number of available PMU

counters per logical core. Multiplexing in PEBS suffers from sample loss, leading to

reduced accuracy. (4) PEBS is more stable than IBS in capturing sample counts, and

both PEBS and IBS exhibit similar memory overheads. (5) IBS is very sensitive to

the sampling interval and its accuracy significantly drops at high sampling frequency.

PEBS has high accuracy regardless of sampling rate. (6) Both PEBS and IBS are

equally biased in sampling an event from multiple different instructions. (7) PEBS

can be programmed to count events that execute only in user mode, only in kernel

mode, or in any of the two modes, while an IBS counter always increments on any

fetch or micro-operation without discriminating its execution mode.

In summary, the contributions in this chapter are.

• Presenting the most comprehensive study to date on precise event sampling

supported by two major vendors

• Detailed qualitative and quantitative comparisons of microarchitectural char-

acteristics between Intel PEBS and AMD IBS and demonstrating their accu-

racy, stability, bias, functionality and memory overhead

• A suite of synthetic benchmarks that can be used for extending this study to

other vendors and architectures

Chapter 4: Comparisons of Precise Event Sampling Features in AMD and Intel
Architectures 22

• Providing invaluable information both to the hardware designers and tool de-

velopers through our findings that would help understand and improve their

designs

4.2 Qualitative Comparison

This section presents qualitative differences between the two precise event sampling

schemes, Intel PEBS and AMD IBS, and Table 4.1 summarizes these differences.

Aspect *Intel PEBS AMD IBS

Usable Counters

per thread

4 general-purpose

performance counters

2 internal counters

(1 for each sampling flavor)

Event Type 62 subevents of 12 events 2 sampling flavors

Sampled Data

general purpose registers,

RFLAGS register, RIP register,

applicable counter,

data linear address,

data src encoding/store status,

latency value, timestamp counter

eventingIP, TX abort info

16 attributes in

each sampled data

for inst. fetch sampling

44 attributes in

each sampled data for

micro-operation sampling

Execution Mode User or kernel or both modes Both user and kernel modes

Table 4.1: Qualitative comparison of Intel PEBS and AMD IBS. *This information
is valid for Cascade Lake microarchitecture [55].

4.2.1 Usable Counters

Observation 1 PEBS can use up to 4 counters and monitor up to 4 events without

multiplexing in microarchitectures. Starting Ice Lake, PEBS can monitor up to 7,

while IBS has two dedicated counters, one for each sampling flavor.

Chapter 4: Comparisons of Precise Event Sampling Features in AMD and Intel
Architectures 23

Observation 2 If the op counter of IBS is programmed to count dispatched micro-

operations, it is always preloaded with a pseudorandom 7-bit value after its sampling

interrupt is handled.

PEBS shares the PMCs that are also used by other non-precise PMU events.

All microarchitectures before Ice Lake (launched in 2019) allow PEBS to utilize any

of the four general-purpose performance counters in each logical core. In Ice Lake,

PEBS can also use the three fixed-function performance counters in addition to the

general-purpose ones. When the number of events that it monitors is higher than the

number of counters, software overcomes this limitation by context switching more

events on limited counters. When this oversubscription happens, the approximated

counter values are inaccurate, and might cause the events to lose some counter

overflows.

Different from PEBS that shares counters with other PMU events, IBS counts

instruction fetches and executed micro-operations using its own internal counters

that are separate from other PMCs in each AMD CPU core. It has two internal

counters, one for each sampling flavor. Since these counters are not multiplexed,

IBS does not miss an overflow.

Another difference between PEBS and IBS counters is that the IBS counters are

randomized after each sampling interrupt is handled. For the fetch counter, ran-

domization is optional, and it is enabled when certain bit in the control register is

set to 1. On the other hand, the op counter is always randomized with a pseudoran-

dom 7-bit value when it is programmed to count dispatched micro-operations. This

randomization might cause the number of hardware events detected by IBS to vary

across different runs.

4.2.2 Type of Precise Events

Observation 3 PEBS has many choices of precise events to monitor, while IBS

has only two sampling flavors to choose from. As a result, a PEBS counter can be

programmed to count only specific hardware event and trigger sampling only of that

event, while an IBS counter can only count instruction fetches or micro-operations

Chapter 4: Comparisons of Precise Event Sampling Features in AMD and Intel
Architectures 24

indiscriminately and trigger sampling of any event that might or might not be of

interest.

PEBS has the ability to monitor hardware events at finer-grained than IBS. For

example, in Cascade Lake, in total, there are 62 possible hardware sub-events, each

of which is identified by a combination of an event number and a unit mask, that

can be monitored using PEBS. When monitoring certain sub-event such as memory

load, the used hardware counter will increment only for each occurrence of memory

load, and it will trigger sampling of only memory load.

In contrast to PEBS, IBS has only two possible sampling flavors to choose from:

instruction fetch sampling and micro-operation execution sampling. In instruction

fetch sampling, IBS counts instruction fetches and samples from them, while in

micro-operation execution sampling, IBS counts dispatched micro-operations and

samples from retired ones. Consequently, an IBS counter can overflow on any in-

struction fetch or micro-operation, and the sampled fetch or micro-operation does

not have to be the event that is targeted by a profiling code. For instance, a profil-

ing code that aims to profile memory accesses might encounter non-memory access

samples during profiling.

4.2.3 Sampled Data

Observation 4 IBS generates rich set of attributes for each sampled fetch or micro-

operation that record the hardware events during the execution in CPU pipeline.

These hardware events might correspond to multiple different precise events in PEBS.

Thus, PEBS might have to monitor multiple events simultaneously in order to get

the same level of information.

Though IBS has only two sampling flavors, there are a number of attributes

included in each sampled data. IBS generates 16 attributes in each sampled data

for instruction fetch and 44 attributes in each sampled data for executed micro-

operation. These attributes can help identify the hardware events that are triggered

by each sampled instruction fetch or micro-operation, for example, whether a sam-

Chapter 4: Comparisons of Precise Event Sampling Features in AMD and Intel
Architectures 25

pled micro-operation triggers a memory load, an L1 cache miss, or an L1 DTLB

miss.

In each sample, PEBS generates a PEBS record that contains information related

to the sampled event, such as the instruction pointer, the architectural state of the

logical core after the event is retired, and the effective address in case the sampled

event is a memory access. In addition to this general information, PEBS also offers

more detailed information on the origin of accessed data in memory hierarchy if load

latency sampling facility is enabled.

There is some common information that is available in the data sampled by both

PEBS and IBS, such as memory access latency and whether a fetched instruction

or data misses in L1 or L2 cache. However, there are also some attributes that are

included in IBS’ sampled data but not in PEBS, and vice versa. One example is the

width of accessed memory region, which is an attribute in IBS but not in PEBS.

To make up for this, a profiler that uses PEBS will have to utilize a supplementary

library such as Intel XED [24]. Moreover, PEBS has to monitor multiple events si-

multaneously in order to get the same amount of information offered by one sample

of IBS. For instance, to profile memory loads, memory stores, and branch instruc-

tions, PEBS has to monitor those three events separately, while IBS can profile these

in a single micro-operation sample.

4.2.4 Execution Mode

Observation 5 While Intel PMUs can be programmed to count events that execute

only in user mode, only in kernel mode, or in any mode indiscriminately, IBS coun-

ters can only count instruction fetches and micro-operations without regarding their

execution mode.

In each event select register (IA32 PERFEVTSELx) of Intel PMUs, there are bits

that determine whether the controlled counter should count events that execute in

user mode or kernel mode. As a result, it is possible to program PEBS to sample

events that execute only in user mode, only in kernel mode, or any of the two

modes. In contrast, IBS does not have this ability supported at hardware level.

Chapter 4: Comparisons of Precise Event Sampling Features in AMD and Intel
Architectures 26

Consequently, IBS always triggers an interrupt regardless of the execution mode of

the event that it samples, and the identification of the execution mode has to be

done by the interrupt handler by checking the user mode(regs) macro provided by

the Linux kernel. This approach might be less accurate than the method used by

PEBS, which can dedicate a counter to count events that execute only in certain

mode. The inaccuracy of this approach can affect events that occur very close to

mode switches between user mode and kernel mode. For example, a tagged event

that executes in user mode can be counted as an event from kernel space if it occurs

just before the execution mode switches from user mode to kernel mode.

4.3 Quantitative Comparison

In this section, we quantitatively analyze PEBS and IBS. Through carefully designed

benchmarks, we quantify the accuracy of both PEBS and IBS under different scenar-

ios: (i) accuracy in monitoring a single event, (ii) accuracy in monitoring multiple

events, (iii) accuracy under different sampling intervals, and (iv) the stability of the

accuracy across multiple runs. We also study the sampling bias and the functional-

ity of both PEBS and IBS to attribute samples to their instructions and we evaluate

the memory overhead. Lastly, we study the functionality supported by PEBS and

IBS to detect samples from kernel/user mode execution.

The experiments presented in this section were carried out on an Intel Xeon

Gold 6258R CPU and an AMD EPYC 7352 Zen 2 CPU. Table 4.2 displays the

specifications of the machines. The microbenchmarks used in the experimental study

were written using asm statement [3] as assembly instructions included in C code

and compiled using gcc-10.3.0 compiler on the Intel machine. The same binary is

also used on AMD to ensure that the same software level optimizations are applied.

Unless otherwise stated, the default compiler optimization flag is -O0. We chose this

optimization flag because we did not want any compiler optimizations to modify our

microbenchmarks.

We programmed PEBS using perf event open system call, and programmed

IBS using the IBS driver available in [47]. We chose perf event open to interface

Chapter 4: Comparisons of Precise Event Sampling Features in AMD and Intel
Architectures 27

Specification AMD Intel

CPU Model
AMD EPYC

7352 CPU

Intel Xeon

Gold 6258R CPU

Microarch Family Zen 2 (17h) Cascade Lake

#Sockets 2 2

#Cores/Socket 24 28

#SMT [111] 2-way 1-way

Private Caches L1i, L1d, L2 L1i, L1d, L2

Cache Sizes
L1i: 32KB, L1d: 32KB,

L2: 512KB, L3: 16MB

L1i: 32KB, L1d: 32KB,

L2: 1MB, L3: 39MB

Linux Kernel Version Linux 5.11.0-36 Linux 5.11.0-36

Table 4.2: Specs of the AMD and the Intel Machines

with PEBS as it is the most widely used method that is utilized by Linux perf

tool [48, 4] and a number of other profiling tools [5, 74, 119, 69, 23, 101]. We used

the IBS driver in [47] to program IBS because it is the only possible way to interface

with IBS in our AMD machine as perf event open requires certain versions of BIOS

that are not commonly available as default in commodity AMD machines [45, 46].

To minimize overheads at user space, we implemented a dummy signal handler to

handle OS signals triggered by sampling interrupts for both PEBS and IBS. The

signal handler is dummy as it does not read the data sampled by PEBS or IBS. The

default sampling interval in all experiments is set to 100K. The experimental results

are averaged over 5 runs.

4.3.1 Accuracy

In this experiment, we aim to evaluate the accuracy of PEBS and IBS in capturing

samples from a benchmark with known number of monitored events. We define

accuracy as the closeness of the number of samples captured by PEBS or IBS to

the number of expected samples given a sampling interval and a known number of

Chapter 4: Comparisons of Precise Event Sampling Features in AMD and Intel
Architectures 28

events in the benchmark.

Hypothesis

Based on Observations 2 and 3, we expect PEBS to have better accuracy than both

sampling flavors of IBS in capturing samples from any hardware event.

Methodology

To evaluate the accuracy of PEBS and IBS, we ran both sampling facilities on a

microbenchmark with known numbers of loads and instructions. We programmed

PEBS to sample the precise event version of retired instruction, i.e. INST RETIRED:

PREC DIST, and retired load, i.e. MEM INST RETIRED.ALL LOADS, in separate runs.

We configured IBS to run micro-operation execution sampling, i.e. IBS op, and

instruction fetch sampling, i.e. IBS fetch, in separate runs.

To evaluate the accuracy of both sampling facilities, firstly, we compared the

number of retired instruction samples captured by PEBS, the number of executed

micro-operations sampled by IBS op, and the number of instruction fetches sampled

by IBS fetch against their ground truths. The ground truth for PEBS’ retired

instruction sampling is the number of instructions in the microbenchmark divided

by the sampling interval, the ground truth for IBS fetch is the number of instruction

fetches that hit in L1 ITLB as counted by perf divided by the sampling interval,

and the ground truth for IBS op is the number of retired micro-operations counted

by perf divided by the sampling interval.

After evaluating the accuracy of those sampling facilities in monitoring their

most general events, i.e. instructions, instruction fetches, and micro-operations, we

evaluated their accuracy in sampling a subset event, which is load operation in our

case. For this evaluation, the numbers of load samples detected by PEBS’ retired

load monitoring and IBS op are compared against the expected load sample count

of the microbenchmark. IBS op is used for this comparison because it can capture

loads among its sampled micro-operations.

For this experiment we devised a microbenchmark, called Load-Ratio as it can

Chapter 4: Comparisons of Precise Event Sampling Features in AMD and Intel
Architectures 29

be configured to have different load ratios to all instructions. One of such configura-

tions, 1/4 Load, is shown in Listing 4.1. In each iteration of loop0 there is exactly

one load, i.e. movl (%rax), %ebx, out of four instructions. Therefore, the ratio of

load to any instruction in the configured benchmark is 1/4. By knowing the number

of loads and instructions in the benchmark, given the sampling interval we can easily

calculate the number of expected load and instruction samples. For example, in the

1/4 Load case, there is one load out of four micro-operations in each iteration, and

the loop iterates 10 billions times. Thus, in total, there are 10 billions loads and

40 billions instructions in a single run of the benchmark. As we set up PEBS to

monitor retired load and retired instruction with sampling interval 100K, we can

expect 400K instruction samples to be generated, and among these, the number of

load samples should be 100K.

movq $10000000000 , %rcx

movl $1, %ebx

loop0:

movl (%rax), %ebx

subq $1, %rcx

cmpq $0, %rcx

jne loop0

Listing 4.1: Code for Load-Ratio benchmark with 1/4 load ratio

Results

Figure 4.1 compares the accuracy of PEBS when monitoring retired instruction

against both sampling flavors of IBS. In the figure, PEBS, IBS op, and IBS fetch

display high accuracy, though IBS op still shows slightly lower accuracy than the

rest due to its randomization of counter after each sampling interrupt. Figure 4.2

shows the accuracy of PEBS and IBS when capturing load samples from the mi-

crobenchmark. The plotted results are produced by PEBS that monitors retired

load and IBS op. From the figure, it can be seen that PEBS achieves higher accu-

racy as its sample counts are very close to the expected counts, while IBS deviates

Chapter 4: Comparisons of Precise Event Sampling Features in AMD and Intel
Architectures 30

Figure 4.1: Comparison of accuracy of PEBS monitoring retired instruction, IBS
monitoring micro-operation execution (IBS op), and IBS monitoring instruction
fetch on the Load-Ratio benchmark

more from the ground truth. Unlike the results in Figure 4.1, IBS displays lower

accuracy in Figure 4.2. It shows that, though IBS can capture micro-operation and

instruction fetch samples accurately, its detection of subset event, e.g. how many of

the detected micro-operation samples are load samples, is less accurate.

Findings

PEBS always shows high accuracy in sampling any event, while IBS is accurate only

in sampling its most general events, i.e. micro-operation execution and instruction

fetches. When detecting a subset event, such as load operation, among its samples,

IBS displays lower accuracy.

4.3.2 Sensitivity to Sampling Rate and Stability

Next, we evaluate the accuracy under different sampling intervals and the stability

of both schemes. Stability here refers to variation of accuracy across multiple runs.

Chapter 4: Comparisons of Precise Event Sampling Features in AMD and Intel
Architectures 31

Figure 4.2: Accuracy of PEBS and IBS in capturing retired load samples from the
Load-Ratio benchmark

Hypothesis

Due to Observations 2 and 3, we expect PEBS to have higher accuracy than IBS

under any sampling interval. Based on those observations, we also expect PEBS

to be more stable, i.e. having more consistent accuracy, when profiling the same

benchmark across different runs.

Methodology

To evaluate the accuracy across different sampling intervals, we use the 1/4 Load

configuration of the Load-Ratio benchmark, and we alter the load operation in each

loop iteration into a locked load operation. The reason for this is that we invoke

ioctl function calls to disable and re-enable the counter of PEBS in the dummy

signal handler, and the load operations in the ioctl function code can significantly

increase the number of loads counted by the counter when the sampling interval is

very low, e.g. 100. As locked load operations do not exist in the code of ioctl, we

introduce locked load operations in the benchmark, and monitor them using PEBS

and IBS to prevent any inaccuracy resulting from our monitoring tool that might

Chapter 4: Comparisons of Precise Event Sampling Features in AMD and Intel
Architectures 32

Figure 4.3: Accuracy of PEBS and IBS in sampling locked load operations under
different sampling intervals

happen at very low sampling intervals. We refer to this modified benchmark as the

Locked-Load benchmark.

We also evaluate the stability of PEBS and IBS by measuring the standard error

of sample counts detected across multiple runs in the accuracy benchmarks.

Results

Figure 4.3 shows the accuracy of PEBS and IBS when sampling locked load oper-

ations from the Locked-Load benchmark under different sampling intervals. While

PEBS maintains high accuracy across different sampling intervals, the accuracy of

IBS is high only at 1M sampling interval and degrades dramatically at shorter in-

tervals. As the IBS profiler terminates prematurely when the sampling interval is

100, we do not show any result from that case.

In Figures 4.1, 4.2, and 4.3, the measured standard errors are presented as error

bars. PEBS displays high stability, i.e. low variation of accuracy, regardless of

the event and the number of events that it monitors. In contrast, Figures 4.2 and

4.3 show higher variation of accuracy for IBS in detecting sub-events of executed

Chapter 4: Comparisons of Precise Event Sampling Features in AMD and Intel
Architectures 33

micro-operations, e.g. the number of load and locked load samples among detected

samples. The maximum standard error of IBS op is 11.66% in Figure 4.2 and 8.71%

in Figure 4.3, which is at 10K sampling interval, while the maximum standard error

of PEBS is nearly zero. However, IBS is quite stable in capturing the cumulative

counts of micro-operation and instruction fetch samples when their sub-event types

are not considered as shown in Figure 4.1.

Findings

In capturing samples of subset events, such as load, locked load, PEBS has high ac-

curacy under different sampling intervals, while IBS exhibits high accuracy only at

large sampling interval, and its accuracy decreases substantially when the sampling

interval become short. PEBS displays high stability across multiple program execu-

tions, and IBS is relatively stable in capturing cumulative counts of micro-operation

and instruction fetch samples. However, its stability is much lower in capturing

counts of subset event samples.

4.3.3 Bias and Instruction Attribution

In this experiment, we evaluate the bias of PEBS and IBS in sampling the same

event from multiple different locations in a benchmark, and the accuracy of their

ability in attributing samples to the instructions that trigger them.

Hypothesis

We expect PEBS and IBS to have no bias in sampling from multiple different in-

structions that perform the same monitored event. We also expect PEBS and IBS

to accurately attribute the sampled events to the actual instructions that trigger

those events.

Methodology

movq $10000000000 , %rcx

movl $1, %ebx

Chapter 4: Comparisons of Precise Event Sampling Features in AMD and Intel
Architectures 34

loop0:

movl (%rax), %ebx // load 1

movl (%rax), %ebx // load 2

movl (%rax), %ebx // load 3

movl (%rax), %ebx // load 4

subq $1, %rcx // subq

cmpq $0, %rcx // cmpq

jne loop0 // jne

Listing 4.2: Code for the sampling bias and instruction attribution

We evaluate the sampling bias and the instruction attribution of PEBS and

IBS by programming them to sample retired loads from a synthetic benchmark,

Bias-Bench, shown in Listing 4.2. If there is no sampling bias, the portion of samples

attributed to each load instruction should be 25%. Furthermore, if all samples can

be associated with their triggering instructions accurately, there should not be any

sample associated with non-load instructions, i.e. subq, cmpq, and jne. We use

the tools from HPCToolkit [5] to attribute the sampled instruction pointers to the

source code lines in the benchmark code.

Results

Table 4.3 presents the percentage of samples attributed to each instruction in the

Bias-Bench benchmark. As PEBS does not associate any load samples with the non-

load instructions, we can infer that PEBS accurately attributes the load samples to

the instructions that actually trigger them. In contrast, IBS does not associate

any of the samples with the load 1 instruction, and it associates 29.62% of the load

samples with the subq instruction. From these results, we can infer that IBS actually

records the instruction pointers of the next instructions that execute after the actual

instructions that trigger sampling interrupts. Each instruction pointer recorded by

IBS is likely to be the content of the rip register, which is the address of the next

instruction to be executed, at the time the micro-operation tagged by IBS retires.

Concerning the sampling bias, both PEBS and IBS do not detect load samples

equally across the load instructions. For PEBS, most samples are associated with

the load 1 instruction. For IBS op, most load samples are attributed to the load 3

instruction, which means they were triggered by the load 2 instruction.

Chapter 4: Comparisons of Precise Event Sampling Features in AMD and Intel
Architectures 35

Instruction Expected
Intel

PEBS load

AMD

IBS op

load 1 25% 58.6% 0%

load 2 25% 9.04% 3.58%

load 3 25% 18.34% 62.14%

load 4 25% 14.02% 4.64%

subq 0% 0% 29.62%

Table 4.3: Percentage of samples attributed to each instruction in the Bias-Bench
benchmark.

Findings

Both PEBS and IBS are equally biased in sampling an event from multiple different

instructions. From the synthetic benchmark that we use in this experiment, more

than 50% of the samples are captured only from 1 out of 4 instructions that execute

in a loop.

While PEBS could accurately attribute samples to the instructions that trigger

them, the instruction pointers recorded by IBS op are not actually the addresses of

the triggering instructions. Those instruction pointers are the addresses of the next

instructions that execute after the triggering instructions.

4.3.4 Memory Overhead

In this experiment, we evaluate the memory overheads of PEBS and IBS. Measured

memory overhead is the maximum resident set size of a process in main memory

during the process’ lifetime while being monitored by PEBS or IBS.

Hypothesis

As we use a dummy signal handler to handle sampling signals, we expect low over-

heads in terms of maximum resident set size in main memory from both PEBS and

IBS. The memory overheads of PEBS and IBS should also be approximately the

Chapter 4: Comparisons of Precise Event Sampling Features in AMD and Intel
Architectures 36

same.

Methodology

We evaluate the memory overheads by having PEBS and IBS monitor 10 Rodinia

benchmarks. Using PEBS, we monitored retired load and retired instruction in

separate runs, and we also ran IBS op and IBS fetch separately. We chose not to use

the Load-Ratio benchmark as the memory footprint of the benchmark is too small

and when monitoring that microbenchmark, the memory overhead of any profiling

code that uses PEBS or IBS would appear to be much larger than it usually is when

profiling real workloads.

Results

Figure 4.4 displays the experiment results from the 10 benchmarks. As can be seen

from the figure, PEBS and IBS display nearly the same memory overheads on all

of the tested benchmarks. It shows that memory overhead in terms of maximum

resident set size in main memory is not a function of sample count when each

sampling interrupt is handled by a dummy signal handler. The figure also shows

that the memory overheads incurred by the mechanisms in hardware and OS kernel

code that handle each sampling interrupt in PEBS and IBS are nearly the same.

Benchmark

%
 M

em
or

y
O

ve
rh

ea
d

0

10

20

30

40

lavaMD lud nw pathfinder kmeans backprop cfd bfs hotspot heartwall

Intel PEBS load Intel PEBS instruction AMD IBS op AMD IBS fetch

Figure 4.4: Comparison of memory overheads on Rodinia benchmarks

Chapter 4: Comparisons of Precise Event Sampling Features in AMD and Intel
Architectures 37

Findings

PEBS and IBS incur nearly the same amount of memory overhead. This result

confirms the expectation in our hypothesis.

4.3.5 Multiple Event Monitoring

As a consequence of Observation 4, PEBS might have to monitor multiple events

simultaneously to capture the same amount of information that can be captured

by IBS in one run. Next, we compare the accuracy and overhead of PEBS that

monitors multiple events against IBS. The accuracy here refers to how close the

detected sample counts to the expected.

Hypothesis

Based on Observations 1, 2, and 3, we expect PEBS to have better accuracy than

IBS as long as the number of monitored events is less than or equal to the number

of general-purpose counters. In case the number of monitored events is higher than

the number of general-purpose counters, PEBS will lose samples, thus its accuracy

would drop.

void foo1() {

return;

}

int main () {

int val = 0;

__asm__ __volatile__ (

"movq $100000000 , %%rcx\n\t"

"loop0:\n\t"

"call foo1\n\t"

"lock\n\t"

"addl $1, %0\n\t"

"lock\n\t"

"addl $1, %0\n\t"

"movl %0, %%ebx\n\t"

"subq $1, %%rcx\n\t"

"cmpq $0, %%rcx\n\t"

"je loop1\n\t"

"cmpq $0, %%rcx\n\t"

"jne loop0\n\t"

Chapter 4: Comparisons of Precise Event Sampling Features in AMD and Intel
Architectures 38

"loop1:\n\t"

: "=m" (val)

:

: "memory", "%eax", "%ebx", "%ecx"

);

return 0;

}

Listing 4.3: Code for multiple event monitoring benchmark

Methodology

To compare the accuracy of PEBS monitoring multiple events with IBS, we devel-

oped a microbenchmark, called Mult-Event benchmark, that has known numbers of

load, store, branch, taken branch, return, and locked load instructions. The code of

the microbenchmark is shown Listing 4.3. We programmed PEBS to monitor one,

four, five and six of these events in separate runs to observe the effect of monitoring

more events than the number of available general-purpose counters on accuracy.

Results

Figure 4.5: Comparison of PEBS accuracy in monitoring different numbers of events
against IBS op. PEBS monitors multiple events simultaneously except for 1 event
case, where it monitors each event in a separate run. IBS can capture all events at
once in its microoperation sampling.

Chapter 4: Comparisons of Precise Event Sampling Features in AMD and Intel
Architectures 39

Figure 4.5 shows the accuracy of PEBS when monitoring multiple events si-

multaneously on the Mult-Event benchmark. We compare the accuracy of PEBS

when monitoring 1 event (each event is monitored alone), 4 events (only load, store,

branch, and taken branch are monitored together), 5 events (all of them except

return), and 6 events (all of them) against the accuracy of the micro-operation sam-

pling of IBS. Because there are only 4 general-purpose counters that can be used by

PEBS in each logical core, it is shown that PEBS loses higher percentage of samples

and undercounts when the number of events that it monitors is higher than the

number of available counters, i.e. when there are 5 or 6 events monitored. These

results confirm our hypothesis.

Findings

If the number of events that are simultaneously monitored is higher than the general

purpose counters in PEBS, accuracy of PEBS drops.

4.3.6 Kernel Mode vs User Mode Identification

In this experiment, we evaluate the methods utilized by PEBS and IBS to identify

the execution mode of the sampled events.

Hypothesis

Based on Observation 5, we expect the execution mode of the sample detected by

PEBS to be more accurate than by IBS.

Methodology

To evaluate the accuracy of execution mode detection methods in PEBS and IBS, we

developed a microbenchmark comprising a code that runs in user space and a simple

Linux kernel module. This microbenchmark is referred to as Exec-Mode benchmark.

The user-space code and the kernel module of the Exec-Mode benchmark run to-

gether to cause repetitive execution mode switching during the execution of the

microbenchmark. The code of the user-space code and the relevant piece of code in

Chapter 4: Comparisons of Precise Event Sampling Features in AMD and Intel
Architectures 40

the kernel module are shown in Listing 4.4 and 4.5. To repeatedly switch from user

mode to kernel mode, the user-space code calls the ioctl(fd, TEST CMD) function

call in every loop iteration. In the assembly code in Listing 4.4, the system call

number of ioctl, which is 0x10, is passed as a parameter for the syscall instruction in

the %eax register, the value of fd is already stored in the %edi register earlier before

the shown code, and TEST CMD, which is a macro for 0x67, is placed in the %esi

register as the third parameter for syscall. Upon handling the ioctl function call, the

code in Listing 4.5 executes in the kernel mode. Using this Exec-Mode benchmark,

we can expect that 1 billion locked load operations occur in kernel space and no

such operation in user space.

movq $1000000000 , %r8

loop0:

movl $0x10 , %eax

movl $0x67 , %esi

syscall

subq $1, %r8

cmpq $0, %r8

jne loop0

Listing 4.4: Code in user space

case TEST_CMD:

lock

addl $1, (%rax)

break;

Listing 4.5: Code in kernel space

We ran this experiment by installing the kernel module and running the mi-

crobenchmark while being monitored by PEBS and IBS. If the user mode detection

method is accurate, we expect no locked load sample to be detected in user space.

Results and Findings

Based on the 5 runs of the benchmark, the output from PEBS always shows no

detection of locked load sample in user mode, while the output from IBS shows

that 41 locked load samples on average out of 10K expected samples in the user

space. These results show that PEBS can detect execution mode precisely, while

misattribution of execution mode might occur to IBS samples.

Chapter 4: Comparisons of Precise Event Sampling Features in AMD and Intel
Architectures 41

4.4 Full-Fledged Profiling Tool

To compare the precise event sampling capabilities of Intel and AMD for a full-

fledged profiling tool, we use an open-source tool, ComDetective [101], which

monitors the inter-thread communication within an application. The main idea of

ComDetective is to use PMU samples and debug register traps to detect cache

line transfers between threads. We performed experiments to compare the accuracy

and stability of the communication analyzer under PEBS and IBS. The sampling

interval that we use in each experiment is 500K, which is the default sampling

interval in the experimental study reported in [101].

Accuracy

(a) (b) (c)

(d) (e) (f)

Figure 4.6: Total communication counts under different sharing fractions in the Intel
(Figures 4.6a, 4.6b, 4.6c) and AMD (Figures 4.6d, 4.6e, 4.6f) machines.

Chapter 4: Comparisons of Precise Event Sampling Features in AMD and Intel
Architectures 42

To compare the accuracy, we ran ComDetective on a microbenchmark named

Write-Volume benchmark that we developed. In this benchmark, all threads per-

form an atomic write operation to either a shared variable or a private variable in

a loop that iterates 100M times. The number of accesses to the shared variable

by each thread is controlled by a parameter called sharing fraction. For example,

if the sharing fraction is 0.7, each thread writes to the shared variable approxi-

mately 70M times. The ground truth for total communication count in this exper-

iment is the L2 data cache misses counted by perf since each thread is mapped to

have its own L2 cache and the number of cache line transfers is equal to the L2

data cache misses. Figure 4.6 displays the total communication counts detected

by ComDetective and the ground truths under different sharing fractions when

multiple threads are mapped evenly across different sockets. Consistent with our

results in Section 4.3.1, ComDetective exhibits higher accuracy with PEBS than

AMD as the gaps between the total communication counts and the ground truths

are closer in Figures 4.6a, 4.6b, and 4.6c than in Figures 4.6d, 4.6e, and 4.6f.

Stability

As shown by the standard error bars in Figure 4.6, ComDetective displays the

same level of stability when running with PEBS and IBS in nearly all cases. Lower

stability, i.e. high standard error, is shown when ComDetective runs on 2 threads.

As thread count increases, the stability also gets higher. However, exceptions can be

seen on the results from IBS when the sharing fraction is 1 and the thread count are

8. In that case, IBS exhibits lower stability than PEBS as indicated by the larger

error bar.

Chapter 5: ComDetective: Inter-Thread Communication Analysis 43

Chapter 5

COMDETECTIVE: INTER-THREAD

COMMUNICATION ANALYSIS

5.1 Introduction

Inter-thread communication is an important performance indicator in shared-memory

multi-core systems [112]. Thread communication information offers valuable in-

sights: it divulges, to an extent, the inner workings of the program without having

to examine the code meticulously; it can be used for identifying possible sources of

communication-related performance overhead in parallel applications [23, 107]; it

can also be used for verifying the multicore hardware design. Therefore, identifying

which groups of threads communicate in what volume and their quantitative com-

parison against expectations offer avenues to tune software for high performance.

Several techniques exist to capture communication patterns in multi-threaded

applications [14, 29, 34, 33, 109, 12, 28]. Though the proposed techniques succeed

in generating communication patterns (often called as communication matrix), they

come with several limitations. Simulator-based methods (e.g., [14] [29]) (a) make

simplistic assumptions about CPU features (e.g., an in-order core), cache protocols

and memory hierarchies, (b) introduce ∼ 10, 000× runtime slowdown, and (c) gen-

erate enormous volume of execution traces that grow linearly with execution time;

hence, they are a misfit for evaluating a complex, long-running application in its

entirety. Furthermore, to extract communication patterns from simulators, post-

mortem analysis of execution traces is needed, which adds additional effort to the

user.

Approaches in [109][12][28] use either a modified operating system kernel or hard-

ware extensions to mitigate overheads. The communication pattern that they gen-

Chapter 5: ComDetective: Inter-Thread Communication Analysis 44

erate, however, might contain false communication1—a situation where a cache line

that is already evicted by a core is accessed by another core. Such false communi-

cation is reported when the accesses to the same cache line by different cores are

separated in time. Prior approaches using binary instrumentation techniques, such

as [34][33], detect communications only by retaining the thread ids of previous ac-

cesses but disregard the timestamps of those accesses. Hence, these schemes also

suffer from false communication. An additional source of inaccuracy in binary in-

strumentation is the time dilation caused by fine-grained instrumentation—the time

gap between consecutive accesses by the same core to the same cache line is widened

due to the online analysis overheads, which allows other threads to interleave, which

in turn results in overestimating communication compared to uninstrumented ex-

ecution. For example, Numalize [33], one such tool that we use for comparison in

our experimental study, dilates execution, changes the execution behavior, and as

a result, overestimates total communication count. Other works by Mazaheri et.

al [82][83] instrument program code by using a compiler-assisted tool. The code

instrumentation enables detection of read-after-write (RAW) and read-after-read

(RAR) dependencies among threads in the program and generates true communi-

cation (RAW) and reuse (RAR) matrices as outputs. However, their method still

introduces large overhead, on average 140× slowdown.

In this work, we propose ComDetective, a communication matrix extraction

tool that avoids the drawbacks of the prior art. The key premise of ComDetective

is to observe the execution with minimal perturbation. ComDetective resorts to

the data offered by hardware Performance Monitoring Units (PMUs) and debug

registers as a means of measuring inter-thread communication. Hardware PMUs

enable extracting the effective addresses involved in loads and stores in sampling

fashion. Additionally, debug registers enable monitoring memory access to a des-

ignated address by a thread, without introducing any overhead in the intervening

1False communication should not be confused with false sharing. False sharing results in

communication at the hardware level that was not intended by the programmer, while false com-

munication does not lead to inter-core communication.

Chapter 5: ComDetective: Inter-Thread Communication Analysis 45

window of execution. By employing both PMUs and debug registers, we are able

to detect memory accesses performed by different threads on shared cache lines in

a short time window while not becoming a severe victim of false communication,

unlike other approaches.

Besides being lightweight, ComDetective differentiates communication as true

vs. false sharing, where true refers to the actual communication intended by the

programmer due to the shared objects and false refers to the false sharing between

two threads due to the cache line sharing. Two-dimensional matrices that are gen-

erated by tools such as Numalize[34][33] do not differentiate different types of com-

munication. Figure 5.1 shows a motivating example, where we present the com-

munication matrices for the multi-threaded implementation of LULESH [60] and

compare it against the MPI implementation. The MPI matrix is generated using

EZTrace [110] and requires post-mortem analysis. Meanwhile executing the appli-

cation with ComDetective took only 136 sec with 1.48× runtime overhead. In

addition, ComDetective can optionally attribute communication to each object

in the application. To the best of our knowledge, there exists no other tool for multi-

threaded applications that delivers these features while maintaining a low overhead.

Our contributions can be summarized as follows:

(a) LULESH - MPI

0 5 10 15 20 25
0

5

10

15

20

25

0.0×100

1.0×107

2.0×107

3.0×107

4.0×107

5.0×107

(b) LULESH

0 5 10 15 20 25
0

5

10

15

20

25

0.0×100

1.0×106

2.0×106

3.0×106

4.0×106

5.0×106

6.0×106

7.0×106

8.0×106

9.0×106

(c) LULESH True

Sharing

0 5 10 15 20 25
0

5

10

15

20

25

0.0×100

1.0×107

2.0×107

3.0×107

4.0×107

(d) LULESH False

Sharing

Figure 5.1: Communication matrices of LULESH taken from an Intel Broadwell
machine (Left to Right: MPI, ComDetective: All, True and False Sharing).
Darker color indicates more communication.

• ComDetective, a communication detection algorithm and its lightweight

Chapter 5: ComDetective: Inter-Thread Communication Analysis 46

tool for multi-threaded applications with the feature to distinguish false vs.

true sharing communication

• A thorough evaluation of accuracy, sensitivity, and overhead of ComDetective,

and tool’s comparison with ground truth and prior work

• Insightful communication matrices of PARSEC benchmark suite and six CORAL

applications (AMG, LULESH, MiniFE, PENNANT, Quicksilver, and VPIC),

and comparison with MPI communication matrices for the CORAL applica-

tions

• Independent of code size, only 30% runtime and 27% memory overheads on

the 18 applications studied, making it a practical tool for production use.

The ComDetective tool is available at https://github.com/comdetective-tools.

5.2 Background

Inter-thread communication: We define communication among threads as the

transfer of cache lines across different CPU cores due to cache coherence protocol

in a shared-memory system. An example is a transfer of cache line from a thread

running on a core that has a cache line with ‘modified’ status, according to MESI

protocol, to another thread running on a different core that has the same cache line

in the ‘invalid’ status. Such communication or cache line transfer can also happen

from a core that has a cache line with ‘exclusive’, ‘modified’, or ‘shared’ status to

another core that does not have that cache line in its local caches.

This kind of communications can occur due to either true sharing or false shar-

ing. True sharing happens when two different threads communicate or transfer a

cache line as both of them access the same variable located in the cache line. False

sharing ensues when two threads communicate on a cache line, yet they do not

access the same variables, but these variables happen to reside on the same cache

line. While true sharing is an inevitable communication for cooperating threads

Chapter 5: ComDetective: Inter-Thread Communication Analysis 47

in parallel programs, false sharing can be considered as an overhead since the two

threads do not actually need to communicate as they access different variables.

Communication Matrix: Communication matrix is defined as a matrix that

counts instances of communications between each pair of threads in a multi-threaded

application. The (i, j)th entry in the matrix represents the number of communication

instances between thread i and thread j. The communication matrix is symmetric

(both parties are involved in communication) and has zero along the diagonal (a

thread does not communicate with itself). The cells only count the number of cache

line-granularity data transfers; they do not account other transactions that may be

involved by the underlying implementation of the coherence protocol.

5.3 Design of ComDetective

In generating communication matrices, ComDetective leverages PMUs and debug

registers to detect inter-thread data movement on a sampling basis. If communica-

tion is frequent, the same addresses appear in the samples taken on communicat-

ing threads; by comparing the addresses seen in closely taken samples on different

threads, one can potentially detect communication. If communication is infrequent,

however, the probability of seeing the same address in two samples taken by two

different threads becomes rare. Hence, ComDetective leverages debug registers

to identify infrequent communications. A thread sets a watchpoint for itself to

monitor an address recently accessed by another thread. If and when the thread

accesses such address in the near future, the debug register traps and thus detects

communication.

In ComDetective, each application thread uses PMU to sample its memory

access (load and store) events. When a threshold number of events of a certain type

(load or store) happen, the corresponding PMU counter overflows. The thread, say

T1, encountering an overflow extracts the effective address involved in the instruc-

tion at the time of the overflow (aka sample) and tries to publish the address on to a

global data structure, BulletinBoard, that other threads can readily access. When

another thread, say T2, encounters its PMU overflow, it looks up the BulletinBoard

Chapter 5: ComDetective: Inter-Thread Communication Analysis 48

for an address conflicting with its sampled address located on the same cache line.

If such an entry is found in BulletinBoard and the two accesses are by different

threads, then communication is detected between the two threads. If, however, no

conflicting entry is found, it may mean the sampled address may be a private address

(which is common when the fraction of sharing is less) or the thread may access the

location in the near future. In this situation, T2 picks an unexpired address M

posted in BulletinBoard and arms its CPU’s debug registers to monitor all or as

many as possible addresses that fall on the same cache line L shared by M. A

subsequent access by T2, anywhere on L, is a communication between T2 and the

thread that published M. This communication will be detected by trapping of the

watchpoints in T2. Once communication is detected, the corresponding communi-

cation matrices are updated. The communication is reported if and only if at least

one store operation is involved.

ComDetective maintains BulletinBoard as a concurrent hash table. The

sampled address, rounded down to the nearest cache line address, serves as the

key to the BulletinBoard; the value for each entry in the BulletinBoard is the

following tuple: Memory address M accessed at the point of PMU sample, access

length δ, ID of the publishing thread, timestamp of the publishing. Only addresses

involved in store operations are inserted into the BulletinBoard, but PMU address

samples generated for both loads and stores are looked-up in the BulletinBoard to

detect communication. This arrangement detects both write-after-write and read-

after-write sharing; note that any repeating write-after-read sharing in one thread

will be captured as a read-after-write sharing in another (the reader) thread.

5.3.1 Communication Detection Algorithm

The main components of ComDetective and one possible workflow scenario are

displayed in Figure 5.2. Next, we explain the algorithm used in ComDetective.

Setup: Every thread configures its PMU to monitor its memory store and load

events. Each of these threads is interrupted on elapsing a specified number of events.

Chapter 5: ComDetective: Inter-Thread Communication Analysis 49

Algorithm 1 Communication Detection
1: global ConcurrentMap BulletinBoard

2: thread local Timestamp tprev = 0

3:

4: procedure PMUSampleHandler(Address M1, AccessLen δ1, Timestamp ts1, ThreadID T1, AccessType A1)

5: L1 = getCacheline (M1)

6: entry = BulletinBoard.AtomicGet (key=L1) . Is L1 in hash?

7: if entry == NULL then . Matching cache line is not found in hash

8: TryArmWatchpoint(T1)

9: else

10: < M2, δ2, ts2, T2 > = getEntryAttributes (entry)

11: if T1 != T2 and ts2 > tprev then . A new sample from a different thread

12: if [M1,M1 + δ1) overlaps with [M2,M2 + δ2) then

13: Record true sharing

14: else

15: Record false sharing

16: end if

17: tprev = ts2

18: else

19: TryArmWatchpoint (T1)

20: end if

21: end if

22: if (A1 is not STORE) or (entry != NULL and M2 has not expired) then

23: return

24: end if

25: . A1 is a store and the current entry has expired, then publish M1

26: BulletinBoard.TryAtomicPut(key = L1, value = <M1, δ1, ts1, T1>)

27: end procedure

28:

29: procedure TryArmWatchpoint(ThreadID T)

30: if current WPs in T are old then

31: Disarm any previously armed WPs

32: Set WPs on an unexpired address from BulletinBoard that is not from T

33: end if

34: end procedure

Chapter 5: ComDetective: Inter-Thread Communication Analysis 50

Communication
Matrix

BulletinBoard

Key	 <M,	δ,	ts,	T>	

Li	 Mi,	δi,	tsi,	Ti	

…	 ….	

…	 ….	

2

Thread Ti

CommDetective
signal_handler

PMUs

perf_event

Core

0 1

Debug Registers

4

5

2

Thread Tj

CommDetective
signal_handler

PMUs

perf_event

Core

0 3

Debug Registers

6

7

Figure 5.2: One possible execution scenario: 0) Every thread configures its PMU to
sample its stores and loads. 1) Thread Ti’s PMU counter overflows on a store. 2)
Ti publishes the sampled address to BulletinBoard if no such entry exists and tries
to arm its watchpoints with an address in the BulletinBoard (if any). 3) Thread
Tj’ PMU counter overflows on a load. 4) Tj looks up BulletinBoard for a matching
cache line. 5) If found, communication is reported. 6) Otherwise, Tj tries to arm
watchpoints. 7) Tj accesses an address on which it set a watchpoint, the debug
register traps, communication is reported.

On A PMU Sample: When a PMU counter overflows, the thread T1 that en-

counters the overflow, tries to publish the addressM1 that it sampled to BulletinBoard

and calls PMUSampleHandler presented in Algorithm 1. In Line 6, the thread

queries the BulletinBoard by using the base address of the cache line L1 contain-

ing M1. If no entry is found, it tries to arm its watchpoints (WPs) (Line 13). If the

previously armed WPs are old, the thread T1 selects an unexpired address M3 in

the BulletinBoard and arms its debug registers to monitor the cache line that M3

belongs to (Line 26-31). Since WPs of a thread belong to the same cache line, they

are either all expired or all recent. On x86 with four 8-byte length debug register,

ComDetective can monitor only 32 bytes out of the 64 bytes of a cache line.

Hence, ComDetective randomly chooses four chunks of the 64-byte cache line to

monitor.

In case the entry is already filled by a cache line L2 from a previous sample and

the cachelines are the same, then Line 11 checks the IDs of the publisher thread

Chapter 5: ComDetective: Inter-Thread Communication Analysis 51

T2 and the sampling thread T1. If thread IDs are different, then communication

is detected between T1 and T2 (Line 12-16). The communication could be a true

sharing or false sharing. If the sampled access region [M1,M1 + δ1) overlaps with

the access region published in BulletinBoard [M2,M2 + δ2) we treat it as a true

sharing event and treat it as false sharing event otherwise. We defer the details of

how the volume of communication is computed to Section 5.3.2.

In order not to overcount communications associated with the same published

address between two threads, we keep tprev per thread, which is set when a com-

munication is detected for that thread. Line 17 sets tprev to the timestamp of the

publisher thread, ensuring that we do not overcount the cache line transfer be-

tween two threads. If no communication is recorded for T1, T1 tries to arm its WPs

(Line 19) using an unexpired addressed published by some other thread into the

BulletinBoard, as described previously.

If either the sample is for a memory load operation or the previously published

entry by the same thread is not expired yet, the thread simply returns and resumes

its execution. Otherwise, the thread T1 publishes the sampled address along with

other attributes associated with the cache line L1, such as the timestamp of sampling,

memory access length, and thread ID (Line 26). Atomic operations that perform

load and store are treated as store.

On watchpoint trap: When a thread Ti experiences a trap in one of the

debug registers, Ti is considered to communicate the thread Tj—the thread that

had published an address in the BulletinBoard whose cache line Ti is monitoring

via its debug registers.

After watchpoint trap: After handling the watchpoint trap, the trapping

thread disables all debug register armed to monitor the same cache line. This is

justified because the subsequent accesses to the same cache line are expected to

be served locally without generating any communication. If the cache line were

modified by another core in the meantime, it will not be detectable and it is indeed

not necessary in the coarse-grained sampling scheme. Watchpoints are re-armed with

newer published addresses upon next PMU counter overflow, as explained previously.

Chapter 5: ComDetective: Inter-Thread Communication Analysis 52

On program termination: The profiled data need not leave the matrix sym-

metric. For example, the reported communication may be more in the thread 〈Ti, Tj〉

pair compared to the thread 〈Tj, Ti〉 pair. However, since both parties are equally

involved in a communication event, we update every 〈Ti, Tj〉 pair to be the sum of

both 〈Ti, Tj〉 and 〈Tj, Ti〉, thus making the matrix symmetric.

Expiration period: For practical considerations, each thread treats the times-

tamp of a BulletinBoard entry as “recent” (aka “unexpired”) if it was published

between its current sample and its previous sample (i.e., one sample period), and

“old” (aka “expired”) otherwise. This scheme allows each published address or

watchpoint to survive long enough to be observed by all threads working at the

same rate and yet be naturally evicted by a newer address. A published address

is deemed expired, if it survived for more than two store events from the same

thread. Load events are not used for determining the expiration period of a pub-

lished address, since only stores can ever be published into the BulletinBoard. The

expiration period of watchpoints includes loads as well because watchpoints can be

armed by samples generated by loads or stores.

5.3.2 Quantifying Communication Volume

There are two sources leading to underestimation in communication volume: sparsity

of PMU samples and limited number of debug registers to monitor an entire cache

line. For instance, four debug registers can cover 32 bytes of the total 64 bytes of an

x86-64 cache line. To address the first problem, on each communication detection

or trap, instead of recording just one communication event, ComDetective scales

up the quantity by the sampling period. In case a communication is detected in

a sample and without using debug registers, we update the Matrix[Ti, Tj] cell as:

Matrix[Ti, Tj] + = sampling period.

To address the second problem, we use the probability theory. If D number of

debug registers can monitor M bytes of memory each, they can monitor a total of

D×M bytes. If the CPU cache line is L bytes long, where L > (D×M), then the

probability of trapping on an address involved in a communication after sampling

Chapter 5: ComDetective: Inter-Thread Communication Analysis 53

it is p = (D ×M)/L. If K traps are detected, in expectation, we can scale it up

by 1/p to get an estimated number of events, i.e., K/p. Taking both effects into

account, on each watchpoint trap, we update the Matrix[Ti, Tj] cell as:

Matrix[Ti, Tj]+ =
sampling period× L

(D ×M)

5.3.3 Implementation

We implement ComDetective atop the open-source HPCToolkit performance

analysis tools suite [5]. ComDetective’s profiler loads the monitoring library

into the target application’s address space at link time for statically linked exe-

cutables or at runtime using LD PRELOAD [87] for dynamically linked executables.

As the target application executes, the profiler in ComDetective manages PMUs

and debug registers to record communication pairs. On Intel processors, we use

MEM UOPS RETIRED:ALL STORES and MEM UOPS RETIRED:ALL LOADS to sample mem-

ory access events. These events offer the effective memory address accessed in a

sample along with the program counter. On a PMU sample, the profiler walks the

sampled thread’s call stack via an online binary analysis. It, then, attributes the

measurements to the sampled call path.

Monitoring stack addresses in the target application is tricky, because the frames

of ComDetective’s sample/trap handler can overwrite the stack location and

cause undesired debug register trap. We avoid this problem by establishing a sepa-

rate signal-handler stack frame for both PMU signal handler and watchpoint excep-

tion handler using the Linux sigaltstack facility [68]. The sigaltstack facility

allows each thread in a process to define an alternate signal stack in a user-designated

memory region. We use alternate stack to handle PMU and watchpoint signals. All

other signals continue to use the default stack unless specified otherwise by the

application.

ComDetective optionally allows mapping each communication event to run-

time objects in the program. It uses ADAMANT[26] to extract static and dynamic

object information. Static objects are detected by parsing the binary file and the

dynamic objects are detected by intercepting allocation routines such as malloc

Chapter 5: ComDetective: Inter-Thread Communication Analysis 54

and free. All stack objects of a given thread are grouped into a single object, while

dynamic objects that have the same call stack are grouped into an object.

5.4 Experimental Study

This section evaluates the accuracy, sensitivity, and overheads of ComDetective

and presents insightful communication matrices for the selected CORAL and PAR-

SEC benchmarks. Our evaluation systems are a 2-socket Intel Xeon E5-2640 v4

Broadwell CPU and a 2-socket AMD EPYC 7352 Zen 2 (17h) CPU.

In the Intel machine, there are ten cores per socket with 2-way simultaneous

multi-threading. Each core has its own local L1i, L1d, and L2 caches, while all cores

in a socket share a common L3 cache. We use Linux 4.15.0-rc4+ and GNU-5.4

toolchain.

The AMD machine has 24 cores per socket also with 2-way simultaneous multi-

threading. Each core has its own private L1i, L1d, and L2 caches, and shares

L3 cache with other cores in the same socket. We run Linux 5.11.0-36 and

GNU-10.3.0 toolchain in this machine.

Unless otherwise stated, the default sampling interval in all experiments is 500K

for both reads and writes in the Intel machine and 50K for executed micro-operations

in the AMD machine. Furthermore, the default hash table size in BulletinBoard

is 127.

5.4.1 Accuracy Verification

We evaluate the accuracy of ComDetective with four microbenchmarks we have

developed. These benchmarks assess the accuracy against the known ground truth

by varying the parameters such as communication volume, false sharing fraction,

communicating thread subgroups, and read-to-write ratios.

Chapter 5: ComDetective: Inter-Thread Communication Analysis 55

Write-Volume .

In this benchmark, each thread performs only a single store operation (atomic write)

in each iteration of a loop as shown in Listing 5.1. Each thread randomly either

accesses its private data or common shared data. The ratio of accesses to shared

vs. private data is controlled via the SHARING FRACTION. For example, if the sharing

fraction is specified as 20%, then approximately 20% of the time over the entire

execution, thread writes into the shared data and writes to its private data in the

remaining 80% of the time. There is no false sharing in this benchmark. The source

of ground truth for this benchmark is the sum of L2 RQSTS.ALL RFO hardware

performance event obtained from each thread in the absence of other cache sharing

effects (which there is none in the benchmark). An RFO event happens when a core

tries to gain ownership of a cache line for updating it. If it is not possible to count

RFO events in certain machines, e.g. in AMD machines, another possible ground

truth for this benchmark that can be measured in those machines is the number

of L2 data cache misses. The reason for this is that the number of RFO events in

the benchmark is always close to the total number of L2 data cache misses that it

encounters.

#pragma omp parallel shared(sharedData) private(privateData) \

num_threads(nThreads)

{

for(int i = 0 ; i < N_ITER; i++) {

int rNum = rand_r (); // thread private

if (rNum < SHARING_FRACTION) {

sharedData = rNum;

} else {

privateData = rNum;

}}}

Listing 5.1: Write-Volume Benchmark

Figures 5.3, 5.4, 5.5, and 5.6 display the results with different number of threads

for the Write-Volume benchmark running on the Intel and the AMD machines,

where the x-axis is the sharing fraction and y-axis is the total communication vol-

ume. Figures 5.3 and 5.5 show thread mapping to the same socket (compact), while

Figures 5.4 and 5.6 display results from thread mapping to two different sockets

Chapter 5: ComDetective: Inter-Thread Communication Analysis 56

(scatter). As expected, the communication volume increases as the sharing fraction

increases or thread count increases. Notice, however, that the ground truths in most

cases do not follow straight lines and also in most cases, ComDetective is very

accurate in capturing this trend. The nonlinear growth of communication is because

when the same cache line is repeatedly accessed by the same core, even if there is a

pending request from another core, the request from the core that holds the line is

unfairly favored. While such optimizations are not unexpected from a CPU design

perspective, they are unintuitive for a programmer and make it harder for them

to envision the communication pattern and volume in their programs without the

help of tools such as ComDetective. Another unintuitive behavior is that map-

ping threads to different sockets results in less communication than when they are

mapped to the same socket and ComDetective can identify this phenomenon. We

have also performed similar experiments with atomic add and compare and swap

and observed similar behaviors.

Sharing Fraction

To
ta

l C
om

m
un

ic
at

io
n

C
ou

nt

0M

50M

100M

150M

200M

250M

0.00 0.25 0.50 0.75 1.00

L2_RQSTS.ALL_RFO ComDetective

2 Threads

(a)

Sharing Fraction

To
ta

l C
om

m
un

ic
at

io
n

C
ou

nt

0M

100M

200M

300M

400M

0.00 0.25 0.50 0.75 1.00

L2_RQSTS.ALL_RFO ComDetective

4 Threads

(b)

Sharing Fraction

To
ta

l C
om

m
un

ic
at

io
n

C
ou

nt

0M

200M

400M

600M

800M

0.00 0.25 0.50 0.75 1.00

L2_RQSTS.ALL_RFO ComDetective

8 Threads

(c)

Sharing Fraction

To
ta

l C
om

m
un

ic
at

io
n

C
ou

nt

0.0B

0.5B

1.0B

1.5B

0.00 0.25 0.50 0.75 1.00

L2 RFO Requests ComDetective

16 Threads

(d)

Figure 5.3: Total communication counts for across different sharing fractions with
threads mapped to a single socket (compact) in the Intel machine.

Chapter 5: ComDetective: Inter-Thread Communication Analysis 57

Sharing Fraction

To
ta

l C
om

m
un

ic
at

io
n

C
ou

nt

0M

25M

50M

75M

100M

125M

0.00 0.25 0.50 0.75 1.00

L2_RQSTS.ALL_RFO ComDetective

2 Threads

(a)

Sharing Fraction
To

ta
l C

om
m

un
ic

at
io

n
C

ou
nt

0M

100M

200M

300M

0.00 0.25 0.50 0.75 1.00

L2_RQSTS.ALL_RFO ComDetective

4 Threads

(b)

Sharing Fraction

To
ta

l C
om

m
un

ic
at

io
n

C
ou

nt

0M

200M

400M

600M

800M

0.00 0.25 0.50 0.75 1.00

L2_RQSTS.ALL_RFO ComDetective

8 Threads

(c)

Sharing Fraction

To
ta

l C
om

m
un

ic
at

io
n

C
ou

nt

0.0B

0.5B

1.0B

1.5B

2.0B

0.00 0.25 0.50 0.75 1.00

L2 RFO Requests ComDetective

16 Threads

(d)

Figure 5.4: Total communication counts for different sharing fractions with threads
mapped evenly to two sockets (scatter) the Intel machine.

Sharing Fraction

To
ta

l C
om

m
un

ic
at

io
n

C
ou

nt

0M

50M

100M

150M

200M

0.00 0.25 0.50 0.75 1.00

L2 Data Cache Miss ComDetective

2 Threads

(a)

Sharing Fraction

To
ta

l C
om

m
un

ic
at

io
n

C
ou

nt

0M

100M

200M

300M

400M

0.00 0.25 0.50 0.75 1.00

L2 Data Cache Miss ComDetective

4 Threads

(b)

Sharing Fraction

To
ta

l C
om

m
un

ic
at

io
n

C
ou

nt

0M

250M

500M

750M

1000M

0.00 0.25 0.50 0.75 1.00

L2 Data Cache Miss ComDetective

8 Threads

(c)

Sharing Fraction

To
ta

l C
om

m
un

ic
at

io
n

C
ou

nt

0.0B

0.5B

1.0B

1.5B

2.0B

0.00 0.25 0.50 0.75 1.00

L2 Data Cache Miss ComDetective

16 Threads

(d)

Figure 5.5: Total communication counts for across different sharing fractions with
threads mapped to a single socket (compact) in the AMD machine.

Sharing Fraction

To
ta

l C
om

m
un

ic
at

io
n

C
ou

nt

0M

20M

40M

60M

80M

0.00 0.25 0.50 0.75 1.00

L2 Data Cache Miss ComDetective

2 Threads

(a)

Sharing Fraction

To
ta

l C
om

m
un

ic
at

io
n

C
ou

nt

0M

100M

200M

300M

400M

0.00 0.25 0.50 0.75 1.00

L2 Data Cache Miss ComDetective

4 Threads

(b)

Sharing Fraction

To
ta

l C
om

m
un

ic
at

io
n

C
ou

nt

0M

200M

400M

600M

800M

0.00 0.25 0.50 0.75 1.00

L2 Data Cache Miss ComDetective

8 Threads

(c)

Sharing Fraction

To
ta

l C
om

m
un

ic
at

io
n

C
ou

nt

0.0B

0.5B

1.0B

1.5B

2.0B

0.00 0.25 0.50 0.75 1.00

L2 Data Cache Miss ComDetective

16 Threads

(d)

Figure 5.6: Total communication counts for different sharing fractions with threads
mapped evenly to two sockets (scatter) the AMD machine.

The gaps of undercounting and overcounting in certain cases is an artifact of sam-

pling that relies on probability theory in estimating total number of communications

between any two threads. As described in Sec 5.3.2, we use sampling period to es-

Chapter 5: ComDetective: Inter-Thread Communication Analysis 58

timate the number of communication events that might have been missed between

samples. Because of this reason, certain degree of undercounting and overcounting

with respect to the ground truth is inevitable.

In Figures 5.3, 5.4, and 5.5, ComDetective underestimates the number of com-

munications when the thread count is small and the sharing fraction is high (˜100%).

This undercounting can be attributed to signal handling. When a thread (say T1)

takes a PMU sample or watchpoint trap, T1’s execution gets diverted to handling

the signal. During signal handling, T1 will not generate any cache line communi-

cation with its peer thread (say T2). During this time, T2 progresses unhindered

and continues performing memory access operations across its loop iterations. The

act of monitoring reduces communication and hence it appears as undercounting

with respect to the unmodified original execution. Note however that this level of

extreme sharing without any computation as in our synthetic benchmark shown in

Listing 5.1 is as a pathological case for ComDetective and unlikely in real-world

code.

The right most plot in Figure 5.3 presents the communication volume for 16

threads running on 10-core socket, where some of the physical cores are oversub-

scribed with more than one thread. From the figure, it appears that ComDetective

overestimates the communication. However, RFO events are no longer the ground

truth in this case. This is because L2 RQSTS.ALL RFO counts RFO events between

physical cores at L2 caches; and L2 is shared by logical cores. As a result, com-

munication happening between the threads mapped to the same physical core does

not result in an RFO event. The RFO counts of threads sharing a physical core are

combined if they communicate with other physical cores. Consequently, one would

expect that the RFO counts should be lower than the actual communication count

when cores are oversubscribed. Indeed, ComDetective gives higher counts than

the counts of L2 RQSTS.ALL RFO events.

We compare ComDetective with the prior art in Figure 5.7, which plots

the communication volume captured by Numalize [33], ComDetective, and the

ground truth when two threads are mapped to the same or different sockets using

Chapter 5: ComDetective: Inter-Thread Communication Analysis 59

atomic add benchmark running on the Intel machine. Numalize hugely overesti-

mates the volume possibly because it does not maintain the timestamp of accesses,

records many false communications, and ignore data from the underlying hardware.

0.00001	

0.0001	

0.001	

0.01	

0.1	

1	

10	

0.0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1.0	

To
ta
l	C
om

m
un

ic
at
io
n	
	C
ou

nt
			
	

Sharing	Fraction	

Numalize	vs	ComDetective	vs	Ground	Truth	(x10^9)	

Inter-socket	perf	L2_RQSTS.ALL_RFO		
Inter-socket	ComDetective	
Inter-socket	Numalize	
Intra-socket	perf	L2_RQSTS.ALL_RFO		
Intra-socket	ComDetective	
Intra-socket	Numalize	

Figure 5.7: Comparison between total communication counts captured by Numal-
ize[33], ComDetective, and the real RFO counts in the Intel machine

False-Sharing .

Unlike Write-Volume , which has no false sharing, this benchmark introduces a

controllable amount of false sharing as shown in Listing 5.2. Also for coverage,

instead of an atomic write, it performs atomic add operation. This benchmark is

valuable to assess the statistical nature of randomly selecting parts of a cache line

to observe using limited number of debug registers. The ratio of false sharing to the

entire communications captured is expected to match the fraction of false sharing

specified by the user. Figure 5.8 shows the true and false sharing counts for eight

threads with varying false sharing fractions. As expected, the false sharing count

increases linearly as false sharing fraction increases. Furthermore, the ratio of false

sharing count to total communication count is very close to the specified false sharing

fraction for each data point.

Chapter 5: ComDetective: Inter-Thread Communication Analysis 60

#pragma omp parallel shared(trueSharingData , falseSharingData) \

private(privateData) num_threads(nThreads)

{

int tid = omp_get_thread_num ();

atomic <uint64_t > * falseShared = &(falseSharingData[tid]);

for(int i = 0 ; i < N_ITER; i++) {

int rNum = rand_r (); // thread private

if (rNum < FALSE_SHARING_FRACTION) {

*falseShared += rNum;

} else {

trueSharingData += rNum;

}}}

Listing 5.2: False Sharing Benchmark

False Sharing Fraction

S
ha

rin
g

R
at

io

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

True Sharing False Sharing

(a) Intel

False Sharing Fraction

S
ha

rin
g

R
at

io

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

True Sharing False Sharing

(b) AMD

Figure 5.8: Comparing true sharing vs. false sharing counts across different sharing
fractions using 8 threads

Read-Write .

Since only store operations are inserted into the BulletinBoard, it is important to

assess the quality of results for benchmarks that involve a mix of loads and stores.

The benchmark is configured so that one thread always and only performs a write

operation in each iteration in a shared location, while the remaining threads might

perform either a write or a read operation on the same shared data depending on

the specified read fraction. The usage of the read fraction to control the amount of

read operations is illustrated in Listing 5.3. For the compiler not to eliminate the

Chapter 5: ComDetective: Inter-Thread Communication Analysis 61

loads, the loads are implemented with asm volatile.

#pragma omp parallel shared(sharedData) private(privateData) \

num_threads(nThreads)

{

for(int i = 0 ; i < N_ITER; i++) {

int rNum = rand_r (); // thread private

if (rNum < READ_FRACTION) {

rNum = sharedData;

} else {

sharedData = rNum;

}}}

Listing 5.3: Read-Write Benchmark. Reading from shared data vs. writing to shared

data

Figure 5.9 captures the total detected communication count as a function of read

fraction at different thread counts (2, 4, and 8). The communication volume is nat-

urally higher when there are more number of readers. As read fraction increases,

more and more reads hit in the local cache before the newly written value by the

writer are visible. Thus, increasing the reading fraction linearly decreases the com-

munication volume. One unexpected pattern that we can observe from the results

from AMD is that there is a steep increase in communication volume from read

fraction 0.0 to read fraction 0.1 when the thread count is 8. The cause of this is a

flaw in IBS that labels fewer effective address samples as valid addresses when the

number of threads is high and all threads only write to a shared cache line, i.e. when

the read fraction is 0.0, than when there are interleaved reads to the shared cache

line, i.e. when the read fraction is more than 0.0 and less than 1.0. Since we only

consider effective address samples that are labeled as valid addresses in detecting

inter-thread communications, this reduction of valid address labels at read fraction

0.0 also results in lower communication count. It is also worth noting in the results

from Intel that the drop in communication is more steep with increasing reading

fraction for larger number of threads than for a fewer number of threads.

Chapter 5: ComDetective: Inter-Thread Communication Analysis 62

Read Fraction

C
om

m
un

ic
at

io
n

C
ou

nt

0M

250M

500M

750M

1000M

1250M

0.00 0.25 0.50 0.75 1.00

2 threads 4 threads 8 threads

Communication Count vs Read Fraction

(a) Intel

Read Fraction

C
om

m
un

ic
at

io
n

C
ou

nt

0M

200M

400M

600M

0.00 0.25 0.50 0.75 1.00

2 threads 4 threads 8 threads

Communication Count vs Read Fraction

(b) AMD

Figure 5.9: Total communication counts under different fraction of read operations
detected by ComDetective

Point-to-Point Communication .

In this benchmark, threads are grouped in pairs and the shared variables are per

pair instead of a single shared variable for all threads. This benchmark evaluates the

accuracy of point-to-point communication (every cell of the communication matrix).

To make a pair of threads communicate, they both need to have similar values of

index variables (shared data index), which point to a same shared array element

that they write into as shown in Listing 5.4.

#pragma omp parallel shared(sharedDataArray) private(privateData) \

num_threads(nThreads)

{

int tid = omp_get_thread_num ();

int shared_data_index = getSharedDataIndex(tid);

int sharing_fraction = getSharingFraction(shared_data_index);

atomic <uint64_t > * sharedData = \

&(sharedDataArray[shared_data_index]);

for(int i = 0 ; i < N_ITER; i++) {

int rNum = rand_r (); // thread private

if (rNum < sharing_fraction) {

*sharedData = rNum;

} else {

privateData = rNum;

Chapter 5: ComDetective: Inter-Thread Communication Analysis 63

}}}

Listing 5.4: Point-to-point Communication Benchmark. Communication happens

between threads that have the same shared data index value

0 1 2 3

3

2

1

0

ComDetective (0.1 - 0.9)

0

0

0.14

0

0

0

0

0.14

0

0

0

0

0

0

1

1

0

0.5

1

0 1 2 3

3

2

1

0

Expected (0.1 - 0.9)

0

0

0.11

0

0

0

0

0.11

0

0

0

0

0

0

1

1

0

0.5

1

0 1 2 3

3

2

1

0

ComDetective (0.2 - 0.8)

0

0

0.25

0

0

0

0

0.25

0

0

0

0

0

0

1

1

0

0.5

1

0 1 2 3

3

2

1

0

Expected (0.2 - 0.8)

0

0

0.25

0

0

0

0

0.25

0

0

0

0

0

0

1

1

0

0.5

1

0 1 2 3

3

2

1

0

ComDetective (0.3 - 0.7)

0

0

0.38

0

0

0

0

0.38

0

0

0

0

0

0

1

1

0

0.5

1

0 1 2 3

3

2

1

0

Expected (0.3 - 0.7)

0

0

0.43

0

0

0

0

0.43

0

0

0

0

0

0

1

1

0

0.5

1

0 1 2 3

3

2

1

0

ComDetective (0.4 - 0.6)

0

0

0

0

0

0

0

0

0

0

0

0

0.56

0.56

1

1

0

0.5

1

0 1 2 3

3

2

1

0

Expected (0.4 - 0.6)

0

0

0

0

0

0

0

0

0

0

0

0

0.67

0.67

1

1

0

0.5

1

0 1 2 3

3

2

1

0

ComDetective (0.5 - 0.5)

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0.94

0.94

0

0.5

1

0 1 2 3

3

2

1

0

Expected (0.5 - 0.5)

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0.5

1

Figure 5.10: Communication matrices for point-to-point communications having
different sharing fractions in the Intel machine. Thread 0 only communicates with
thread 1, thread 2 only communicates with thread 3. Sharing fractions for each pair
are shown on the top of the maps.

Chapter 5: ComDetective: Inter-Thread Communication Analysis 64

0 1 2 3

3

2

1

0

Estimated (0.1 - 0.9)

0

0

0.12

0

0

0

0

0.12

0

0

0

0

0

0

1

1

0

0.5

1

0 1 2 3

3

2

1

0

Expected (0.1 - 0.9)

0

0

0.11

0

0

0

0

0.11

0

0

0

0

0

0

1

1

0

0.5

1

0 1 2 3

3

2

1

0

Estimated (0.2 - 0.8)

0

0

0.38

0

0

0

0

0.38

0

0

0

0

0

0

1

1

0

0.5

1

0 1 2 3

3

2

1

0

Expected (0.2 - 0.8)

0

0

0.25

0

0

0

0

0.25

0

0

0

0

0

0

1

1

0

0.5

1

0 1 2 3

3

2

1

0

Estimated (0.3 - 0.7)

0

0

0

0

0

0

0

0

0

0

0

0

0.51

0.51

1

1

0

0.5

1

0 1 2 3

3

2

1

0

Expected (0.3 - 0.7)

0

0

0.43

0

0

0

0

0.43

0

0

0

0

0

0

1

1

0

0.5

1

0 1 2 3

3

2

1

0

Estimated (0.4 - 0.6)

0

0

0

0

0

0

0

0

0

0

0

0

0.69

0.69

1

1

0

0.5

1

0 1 2 3

3

2

1

0

Expected (0.4 - 0.6)

0

0

0

0

0

0

0

0

0

0

0

0

0.67

0.67

1

1

0

0.5

1

0 1 2 3

3

2

1

0

Estimated (0.5 - 0.5)

0

0

0

0

0

0

0

0

0

0

0

0

0.97

0.97

1

1

0

0.5

1

0 1 2 3

3

2

1

0

Expected (0.5 - 0.5)

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0.5

1

Figure 5.11: Communication matrices for point-to-point communications having
different sharing fractions in the AMD machine.

Figures 5.10 and 5.11 show the results for two groups performing only write oper-

ations; thread 0 communicates only with thread 1, and thread 2 only communicates

with thread 3. Both figures show the communication matrices as heat maps; the

observed communication is on the left side and the expected results are on the right

side. The number in each matrix cell displays the normalized communication count

in that cell, which is computed by dividing each cell by the cell with the highest

Chapter 5: ComDetective: Inter-Thread Communication Analysis 65

count in its matrix. It is evident that heat maps produced by ComDetective are

close to the expected heat maps.

5.4.2 Communication in CORAL Benchmarks

In this section, we present insightful communication matrices for the selected CORAL

and CORAL-2 benchmarks, namely AMG [127, 9], LULESH [76], miniFE [86], PEN-

NANT [91], Quicksilver [94], and VPIC [20, 117] as heatmaps in Figure 5.12, where

darker color indicates more cache line transfers between pairs. The matrices are

core-indexed not thread-indexed as ComDetective can covert the thread IDs to

core IDs using the sched getcpu() system call if needed. The threads in each bench-

mark are bound to the cores with compact mapping strategy but evenly distributed

to two sockets.

We compare the inter-thread communication matrices generated by ComDetective

with the inter-process communication matrices generated by EZTrace [110]. EZ-

Trace is a generic trace generation framework and it collects the necessary informa-

tion by intercepting function calls and recording events during execution using the

FxT library [30] and then performs a post-mortem analysis on the recorded events.

The MPI and OpenMP variants of all six applications are based on the same source

distributions with optional flags to turn on/off the OpenMP/MPI compilation in

their makefiles. As a result, there are no significant algorithmic differences in their

implementations. The MPI matrices report the total number of messages exchanged

between processes, not the message size. All applications use 32 threads for OpenMP

and 32 ranks for MPI except for LULESH which uses 27 threads (or ranks) since it

needs a cubic number. For the hybrid implementations of MPI, we set the thread

count per rank to 1.

In general, ComDetective offers insights into communication patterns in these

applications. For example, the following patterns emerge from our matrices: 1)

L-shape pattern in the lower left corners (e.g. LULESH, PENNANT), which in-

dicates that all threads heavily communicate with the master thread (a central

bottleneck), 2) nearest neighborhood communication pattern, where threads mostly

Chapter 5: ComDetective: Inter-Thread Communication Analysis 66

(a) AMG - MPI

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

1.0×106

2.0×106

3.0×106

4.0×106

5.0×106

6.0×106

(b) AMG

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

2.0×105

4.0×105

6.0×105

8.0×105

1.0×106

(c) AMG True

Sharing

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

1.0×106

2.0×106

3.0×106

4.0×106

5.0×106

6.0×106

(d) AMG False

Sharing

(e) MiniFE -

MPI

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

5.0×104

1.0×105

1.5×105

2.0×105

2.5×105

3.0×105

3.5×105

4.0×105

(f) MiniFE

0 5 10 15 20 25 30
0

5

10

15

20

25

30

−1.0×10−1

−7.5×10−2

−5.0×10−2

−2.5×10−2

0.0×100

2.5×10−2

5.0×10−2

7.5×10−2

1.0×10−1

(g) MiniFE

True Sharing

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

5.0×104

1.0×105

1.5×105

2.0×105

2.5×105

3.0×105

3.5×105

4.0×105

(h) MiniFE

False Sharing

(i) PENNANT

- MPI

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

1.0×106

2.0×106

3.0×106

4.0×106

5.0×106

6.0×106

7.0×106

8.0×106

9.0×106

(j) PENNANT

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

(k) PENNANT

True Sharing

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

1.0×106

2.0×106

3.0×106

4.0×106

5.0×106

6.0×106

7.0×106

8.0×106

9.0×106

(l) PENNANT

False Sharing

(m) Quicksilver

- MPI

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

1.0×106

2.0×106

3.0×106

4.0×106

5.0×106

6.0×106

7.0×106

8.0×106

9.0×106

(n) Quicksilver

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

1.0×106

2.0×106

3.0×106

4.0×106

5.0×106

(o) Quicksilver

True Sharing

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

1.0×106

2.0×106

3.0×106

4.0×106

5.0×106

6.0×106

(p) Quicksilver

False Sharing

(q) VPIC - MPI

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

3.5×106

4.0×106

(r) VPIC

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

2.5×105

5.0×105

7.5×105

1.0×106

1.2×106

1.5×106

1.8×106

2.0×106

(s) VPIC True

Sharing

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

3.5×106

4.0×106

(t) VPIC False

Sharing

Figure 5.12: Communication matrices of CORAL benchmarks. Darker color indi-
cates more communication.

Chapter 5: ComDetective: Inter-Thread Communication Analysis 67

communicate with adjacent threads (e.g. AMG, MiniFE, VPIC), and 3) group

communications (e.g. Quicksilver, LULESH). Although the inter-thread communi-

cation matrices are generally more populated than the inter-process communication

matrices, in most cases, they logically resemble their MPI counterparts except for

MiniFE and Quicksilver. Quicksilver uses a mesh in its computation and the user

defines mesh elements per dimension. If the decomposition geometry is not explic-

itly specified by the user for the MPI ranks, the MPI communication matrix (not

shown) becomes very similar to ComDetective’s matrix. However, following the

suggested decomposition by the Quicksilver developers [94] we decompose the mesh

in only one dimension, resulting in nearest neighborhood communication for MPI.

It is not possible for a user to perform similar type of decomposition for threads in

a configuration file, resulting in more neighbors to communicate.

Execution Time (sec) Data Movement (GB)

MPI OpenMP MPI (Msg Size) OpenMP (Cache Lines)

AMG 35.19 39.22 6.22 7.33

MiniFE 111.82 142.25 3.24 1.46

Quicksilver 19.04 23.45 32.74 106.13

Table 5.1: Running time and data movement comparison of OpenMP and MPI
implementations for AMG, MiniFE and Quicksilver using 32 threads

The total communication counts captured by the communication matrices might

help explain the performance difference between OpenMP/MPI versions and scala-

bility of benchmarks. Table 5.1 presents the execution time of the AMG, MiniFE

and Quicksilver applications. The table also shows the resulting data movement for

each benchmark, where data movement for the multi-threaded applications is cal-

culated based on the total number of cache line transfers in Gbytes with the help of

ComDetective. Similarly, for MPI, we computed the total message size exchanged

including peer-to-peer and collective communications with the help of EZTrace. In

all three applications, MPI outperforms OpenMP. This result, perhaps, can be at-

Chapter 5: ComDetective: Inter-Thread Communication Analysis 68

tributed to the fact that the MPI implementations lead to less data movement than

their OpenMP counterparts. For example, the multi-threaded versions of AMG and

Quicksilver perform respectively 11% and 23% more data movement than the multi-

process versions. The exception for this is MiniFE, in which the communication

count of its OpenMP implementation is lower than its MPI counterpart. However,

while the MPI version exchanges 0.5M messages for its data movement, the OpenMP

version of MiniFE leads to 24.5M cache line transfers during its execution, which

explains the performance gap.

Figure 5.12 also splits the inter-thread communication matrices into two matrices

one each for true and false sharing. Due to the space limitation, we discuss the false

sharing matrices for only MiniFE, which solves kernels of finite-element applications.

It generates a sparse linear-system from the steady-state conduction equation on a

brick-shaped problem domain of linear 8-node hex elements and then solves the

linear-system using a conjugate-gradient algorithm. ComDetective shows that

the communication is among the adjacent threads (other than with the thread id 0)

and dominated by false sharing. False sharing occurs sum in symm elem matrix and

sum into vector functions, where adjacent elements in a vector falling into a single

cache line are accessed by different threads. While padding each scalar forming the

elements of a vector can eliminate such false sharing, it can also have the deleterious

effect of bloating the memory.

5.4.3 Communication in PARSEC Benchmarks

Figure 5.13 shows the PARSEC matrices created by ComDetective. Our matrices

differ from the ones previously studied by [14], [27] and [33]. In general, ours are

sparser. This can be explained by the fact that our approach takes into account the

cache coherency protocol. Since we use expiration period to discard false commu-

nications among threads, which might happen due to the huge time gap between

memory accesses by two supposedly communicating threads, our tool records much

fewer false positives than the techniques previously used. In fact, ComDetective

identifies no communication for Blackscholes and very infrequent communication for

Chapter 5: ComDetective: Inter-Thread Communication Analysis 69

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

1.0×105

2.0×105

3.0×105

4.0×105

5.0×105

(a) Blacksc-

holes

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

2.0×106

4.0×106

6.0×106

8.0×106

1.0×107

1.2×107

(b) Bodytrack

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

2.0×105

4.0×105

6.0×105

8.0×105

1.0×106

(c) Canneal

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

2.0×105

4.0×105

6.0×105

8.0×105

1.0×106

1.2×106

1.4×106

(d) Dedup

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

5.0×107

1.0×108

1.5×108

2.0×108

(e) Facesim

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

2.5×105

5.0×105

7.5×105

1.0×106

1.2×106

1.5×106

1.8×106

2.0×106

(f) Ferret

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

2.5×105

5.0×105

7.5×105

1.0×106

1.2×106

1.5×106

1.8×106

2.0×106

(g) Blacksc-

holes

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

2.5×105

5.0×105

7.5×105

1.0×106

1.2×106

1.5×106

1.8×106

2.0×106

(h) Bodytrack

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

2.0×107

4.0×107

6.0×107

8.0×107

1.0×108

1.2×108

1.4×108

(i) Canneal

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

2.0×106

4.0×106

6.0×106

8.0×106

1.0×107

1.2×107

(j) Dedup

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

2.0×105

4.0×105

6.0×105

8.0×105

1.0×106

(k) Facesim

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

2.0×105

4.0×105

6.0×105

8.0×105

1.0×106

(l) Ferret

Figure 5.13: Communication matrices of PARSEC benchmark suites. Darker color
indicates more communication.

Vips and Freqmine. Blackscholes and Vips indeed exhibit very low communication,

which is also pointed out by the PARSEC authors [18]. For example, Blackscholes,

which is a financial analysis benchmark, splits the price options among threads where

each thread can process the options independently from each other. Communication

can potentially occur at the boundaries of the partitions if boundaries share a cache

line. However, it is very unlikely for threads to access the boundaries around the

same time because these accesses are far separated in time. The PARSEC authors

note that Freqmine has a high amount of sharing; however it has a very large working

set size too, which implies that accesses are served from memory, not from cache.

Moreover, the work in [14] fails to identify any meaningful communication patterns

for Bodytrack, Dedup, Facesim, Ferret, Streamcluster and Swaptions, on the other

hand, ComDetective successfully detects these patterns.

5.4.4 Use-Case: Data Structure Optimization

ComDetective can optionally map detected communications, either true or false

sharing, to the data objects that experience them at the expense of slightly increased

Chapter 5: ComDetective: Inter-Thread Communication Analysis 70

overhead. Object-level attribution and quantification offers actionable feedback to

the developers for object-specific optimizations or code modifications for perfor-

mance tuning. To demonstrate this feature, we analyzed PARSEC’s fluidanimate

and streamcluster to identify their data objects that suffer from false sharing the

most. After identifying and analyzing these objects, we modified some of their data

structures to reduce false sharing and improve the applications’ performance.

For fluidanimate, false sharing is caused by several dynamically allocated ob-

jects and a global variable named barrier. Due to the size of the dynamically

allocated objects, applying padding among object elements might result in mem-

ory bloat. Therefore, we modified only the data structure of barrier. The variable

barrier is a struct that has pthread cond t as an attribute. Since the attributes of

pthread cond t are read and written by multiple threads in the pthread cond wait

function, we introduced padding among the attributes of pthread cond t in the

pthread library. After this modification, we achieved 13% speedup in fluidanimate.

For streamcluster, most of its false sharing is due to inter-thread synchronization

by using pthread mutex t data structure. By introducing padding to the mutex

attributes in the pthread library and no changes in streamcluster itself, we achieved

6% speedup.

5.4.5 Sensitivity and Overhead Analysis

BulletinBoard Size:

To test the sensitivity of the ComDetective under different hash table sizes,

we use the Write-Volume benchmark but vary the size of BulletinBoard. Us-

ing 16 threads, we observe no difference in total communication counts detected by

ComDetective under hash table sizes of 5, 17, 31, 61 and 127. Furthermore, we

evaluate the performance overhead at different hash table sizes using LULESH [60].

Increasing the hash table size does not materially affect the runtime overhead. For

that reason, we use 127 as the hash table size for all experiments.

Chapter 5: ComDetective: Inter-Thread Communication Analysis 71

Sampling Interval:

We measure the sensitivity of the tool against sampling interval in terms of both

the accuracy and overhead using the Write-Volume benchmark with 16 threads.

Figure 5.14 shows the total communication counts under different sharing fractions

and sampling intervals from 50K up to 1M. The detected total communication count

does not deviate much from the ground truth across all sampling intervals. However,

as can be seen in Figure 5.14b, there are noticeable gaps between the detected

communication counts and the ground truth when the sharing fraction is 1.0 in

the AMD machine for all sampling intervals other than 50K. This is the reason

why we chose 50K to be the default sampling interval for our experiments in the

AMD machine. In general, we expect that in an application where communication

is infrequent, a large sampling interval would result in highly sparse communication

matrices or no communication would be detected in the worst case. In such cases,

a small sampling interval should be chosen at the expense of increasing overhead.

Sharing Fraction

To
ta

l C
om

m
un

ic
at

io
n

C
ou

nt

0M

500M

1000M

1500M

2000M

0.00 0.25 0.50 0.75 1.00

L2_RQSTS.ALL_RFO 1M 500K 200K 100K 50K

(a) Intel

Sharing Fraction

To
ta

l C
om

m
un

ic
at

io
n

C
ou

nt

0M

500M

1000M

1500M

2000M

0.00 0.25 0.50 0.75 1.00

L2 Data Cache Miss 1M 500K 200K 100K 50K

(b) AMD

Figure 5.14: Total communication counts detected by ComDetective under dif-
ferent sampling intervals compared with the ground truths when 16 threads are
mapped to 2 sockets

Overhead:

In the Intel machine, we evaluate the runtime and memory overheads of ComDetective

by running it on six CORAL benchmarks and twelve PARSEC benchmarks. Ta-

Chapter 5: ComDetective: Inter-Thread Communication Analysis 72

Sampling Runtime Memory Footprint

Interval Overhead Overhead

AMG LULESH MiniFE AMG LULESH MiniFE

100K 1.07× 2.12× 1.16× 1.00× 1.76× 1.00×

500K 1.10× 1.48× 1.10× 1.00× 1.62× 1.00×

1M 1.07× 1.33× 1.06× 1.00× 1.58× 1.00×

2M 1.08 × 1.20× 1.03× 1.00× 1.51× 1.00×

PARSEC + CORAL PARSEC + CORAL

500K 1.30× 1.27×

Table 5.2: Runtime and space overhead of ComDetective under different sampling
intervals for applications using 32 threads (LULESH 27 threads)

ble 5.2 displays the performance overhead of ComDetective under different sam-

pling intervals for three of the CORAL benchmarks, i.e. AMG, LULESH and

MiniFE. As seen from the table, the tool has a low space overhead, which allows it to

be used in practice for large-scale applications. The runtime overhead drops signifi-

cantly when the sampling interval is increased from 100K to 500K for LULESH and

the overhead is even lower for the other two applications. Since ComDetective

maintains good accuracy with reasonable performance overhead on average at a

sampling interval of 500K, we chose 500K as the default sampling interval for all

experiments. For the twelve PARSEC benchmarks, the runtime overhead ranges

from 1.03× (streamcluster) to 2.10× (x264) with an average of 1.32×. For the

six CORAL benchmarks, the runtime overhead ranges from 1.02× (PENNANT) to

2.17× (VPIC) with an average of 1.27×.

In the AMD machine, we evaluate the overheads by running ComDetective

on four PARSEC benchmarks, i.e. bodytrack, fluidanimate, streamcluster, and swap-

tions, with a sampling interval of 50K. The average runtime overhead over these

benchmarks is 5.02×, and the average memory overhead is 3.43×.

Chapter 5: ComDetective: Inter-Thread Communication Analysis 73

Debug Registers:

x86 processors have four debug registers, and ComDetective uses all four for

arming watchpoints. We study the impact of the number of debug registers (1,

2, 3 and 4) on the total communication counts detected by ComDetective for

16 threads using the Write-Volume benchmark running on both the Intel and the

AMD machines. We observed that the number of debug registers has a negligible

impact on the accuracy of ComDetective. This is because when we quantify the

communication volume, we scale the volume based on the number of debug registers

as discussed in Section 5.3.2.

Chapter 6: ReuseTracker: Reuse Distance Analysis 74

Chapter 6

REUSETRACKER: REUSE DISTANCE ANALYSIS

6.1 Introduction

Data locality remains an important concern in shared-memory multicore architec-

tures and it is often a more important concern than computation in terms of both

energy consumption and performance [112]. Because of its importance, data locality

optimizations have become a central focus of application tuning and tool develop-

ment [114]. One metric widely used to measure data locality is reuse distance.

Reuse distance is an architecture-independent metric that is defined as the number

of unique memory locations that are accessed between two consecutive accesses to

a particular memory location (use and reuse). For example, consider a sequence of

accessed memory locations: a1, b1, c1, b2, d1, a2. In this example, the reuse distance

of a is three because there are three unique locations accessed between the two con-

secutive accesses to a, namely b, c, and d. Reuse distance shows the likelihood of a

cache hit for a memory access in a typical least-recently used (LRU) cache. If the

reuse distance of a memory access is larger than the cache size, the latter access

(reuse) is likely to cause a cache miss.

Reuse distance is well-studied for single-threaded programs [81, 36, 125, 129, 17,

15, 41, 57, 105, 22] and a handful of tools are available [2, 125, 119]. The techniques

introduced in [35, 58, 78] employ analytical models that digest and analyze execution

traces to predict shared cache behavior. The execution traces needed by these models

are generated through hardware simulation or binary instrumentation. Hardware

simulators typically incur significant performance and memory overheads and hence

are limited to studying only a small part of a full application. Similarly high overhead

exists in binary instrumentation methods. Loca, a reuse distance analysis tool [2,

Chapter 6: ReuseTracker: Reuse Distance Analysis 75

125] implemented using PIN binary-instrumentation tool [96] incurs 49× runtime

and 40× memory overheads, which makes the tool impractical to use in real-life

applications. In addition to the overhead problem, authors in [92] show that binary

instrumentation can potentially distort the parallel schedule among threads of the

profiled program.

Significant overheads and distortion of parallel schedule can also occur in the

methods proposed in [42, 56, 100, 65, 118, 104, 103] as they rely on either hard-

ware simulators or binary instrumentation. A technique that avoids these flaws was

proposed in [92]. This technique reduces trace size by generating traces at coarser

granularity instead of at every load/store access. However, as it operates at coarser

granularity, it might miss reuses that are very near in distance while can still cap-

ture distant reuses. Another shortcoming of existing reuse distance profilers is that

a limited number of them are publicly available. To the best of our knowledge, only

Loca [2, 125] and RDX [119] are open source. Yet, both of these tools are limited to

measuring reuse distances of a single thread and discard interactions among threads

in multi-threaded programs. Considering the wide-spread use of multicore archi-

tectures, having a fast yet accurate reuse distance analysis tool for multi-threaded

applications is the need of the hour.

This work proposes ReuseTracker — an open-source, low-overhead reuse dis-

tance analysis tool for multi-threaded applications. To make ReuseTracker fast

and memory efficient, we leverage hardware counters of performance monitoring

units (PMUs) and debug registers, which are commonly available in current com-

modity CPUs. In ReuseTracker’s design, PMUs are utilized to periodically sam-

ple memory accesses (uses) in each profiled thread, while debug registers are used

to trap the next accesses (reuses) to the sampled memory regions. While the prior

PMU-based tools [119, 16] that profile reuse distance have focused only on reuses

in a private cache of a core and single-threaded applications, our tool can analyze

multi-threaded codes by considering cache line invalidations in detecting reuses in

individual threads. Moreover, our tool detects reuses across different threads in

profiling reuse distance in shared caches. This capability has several applications,

Chapter 6: ReuseTracker: Reuse Distance Analysis 76

one of which being deciding the cache sizes in multicore CPUs.

To account for cache-coherence effects when profiling reuse distance in threads,

ReuseTracker employs a novel algorithm that monitors loads and stores in each

thread. A thread that samples a particular memory access arms one of its debug

registers and the debug registers of other cores to trap any future accesses to the

sampled accessed address. When a trap happens, if it pertains to the same core

that had sampled the initial access, reuse is detected. If the trap pertains to a store

access in another core, cache line invalidation is detected, reporting no reuse. When

detecting reuse in a shared cache, when a trap happens in another core that shares

the same cache with the sampling core, a reuse is detected. A cache line invalidation

is detected when the trap is due to a store access in another core located on a different

socket.

Evaluating multithreaded reuse distance, whether for threads or shared caches,

turns out to be surprisingly complicated because one may not know the ground

truth reuse distance; the act of measuring the ground truth via instrumentation

can perturb the parallel schedule and produce incorrect results unless an additional

tool such as Intel’s PinPlay [90] that can record and replay application execution

deterministically is used. Hence, we developed a benchmark that can generate a

variety of reuse distance histograms to aid in validating ReuseTracker. Our

set of benchmarks is useful not only for evaluating this work but can also serve to

evaluate future tools in this area of research.

Table 6.1 compares ReuseTracker against five similar tools that perform on-

line reuse detection. ReuseTracker — to the best of our knowledge — is the

first tool that accurately profiles reuse distances in threads and shared caches for

multi-threaded applications while introducing significantly lower overhead compared

to instrumentation-based or simulation-based tools. More specifically, it introduces

2.9× performance and 2.8× memory overheads. ReuseTracker relies on existing

hardware features in commodity CPUs and works on fully-optimized binaries, which

makes it appropriate for monitoring full applications in production. Furthermore,

ReuseTracker is more accurate compared to other available tools as it profiles

C
h
a
p
ter

6
:
R
e
u
se

T
r
a
c
k
e
r
:
R
eu
se

D
ista

n
ce

A
n
a
lysis

77

Attributes Schuff et al. [104]† Schuff et al. [103]† StatCache [16]† loca [125]‡ RDX [119]‡ ReuseTracker‡

Time

Overhead
High (>100x) 30x <1.4× 49× 2.03x 2.9x

Space

Overhead
Not reported Not reported Not reported 40× 2.8× 2.8×

Intra-thread

Profiling

Accuracy

Close to 100% 96%
*High but

not quantified

Close to

100%
90% 92%

Primary

Method

Cycle accurate

simulator

Binary

instrumentation
PMU

Binary

instrumentation
PMU PMU

Profiling

Private Cache
YES YES YES YES YES YES

Profiling

Shared Cache
YES YES - - - YES

Cache Line

Invalidation
YES YES - - - YES

Open Source - - - YES YES YES

Table 6.1: Comparison of ReuseTracker against other techniques that perform online detection of reuses. Overheads of
RDX are measured using a sampling interval of 100K. †The reported overheads and accuracy are from the original paper. ‡The
reported overheads and accuracy are measured in this work. *StatCache’s accuracy is high in terms of predicting miss ratio.

Chapter 6: ReuseTracker: Reuse Distance Analysis 78

multi-threaded code based on real hardware events without dilating the original

execution. It achieves 92% accuracy when verified against a configurable-synthetic

benchmark that we developed.

In our experimental study, we also demonstrate several use cases of

ReuseTracker. We show that the reuse distance profiles produced by

ReuseTracker can help guide code refactoring by programmers to reduce false

sharing. Through this code refactoring, we could improve the performance of the

benchmarks by up to 87%. Furthermore, we also show that our tool can help predict

whether profiled applications can gain or lose performance when adjacent cache line

prefetch (ACP) is enabled.

In summary, our contributions are listed as follows:

• Formal definitions of reuse in threads and shared caches as microarchitecture-

independent events in multi-core systems.

• Low-overhead reuse distance analysis algorithms that profile reuse distance in

threads and shared caches for multi-threaded programs.

• A synthetic benchmark that can be configured to produce a variety of reuse

distance histograms.

• Open source implementation of aforementioned techniques in a tool called

ReuseTracker, as well as extensive evaluation of this tool using a number

of benchmarks and applications.

• Demonstration of use-case scenarios using PARSEC [18], Rodinia [25], and

Synchrobench [44] benchmark suites where ReuseTracker guides code refac-

toring in these benchmarks by detecting spatial reuses in shared cache that

are also false sharing and predicts whether some benchmarks in these suites

can benefit from adjacent cacheline prefetch (ACP).

The repository of ReuseTracker is publicly available at https://github.

com/ParCoreLab/ReuseTracker.

Chapter 6: ReuseTracker: Reuse Distance Analysis 79

6.2 Background and Terminology

In this section we first provide the background on reuse in single-threaded appli-

cations; we then expand the definition to multi-threaded applications; we finally

provide a background of a few basic building-block hardware and software facilities

needed to develop our tool.

6.2.1 Single-threaded Reuse Distance

Time Reuse Distance and Reuse Distance: Time reuse distance is defined as

the number of memory accesses between the current access (reuse) and the previous

access to the same element (use). If the accessed element is in a unit of cache line,

reuse can be classified into two, temporal reuse and spatial reuse. A temporal reuse

happens when both use and reuse access exactly the same address, while a spatial

reuse occurs when its use and reuse access different addresses that are located in

the same cache line.

The term reuse distance used in this work refers to LRU stack distance as defined

in [81]. The difference between time reuse distance and reuse distance is described

in the following example. Consider the sequence of memory accesses: a1, b1, c1, b2,

d1, d2 a2. In this example, the time reuse distance of a is five because there are five

total memory accesses between the first access to a (a1) and the second access to a

(a2). On the other hand, the reuse distance of a is three since there are only three

unique accesses between a1 and a2, i.e. b, c, and d.

Time reuse histograms can be accurately translated into stack reuse his-

tograms [106, 119]. ReuseTracker captures time-reuse during its online profiling

and exploits the same conversion techniques during a post-processing step to finally

present the stack reuse histograms.

6.2.2 Multi-threaded Reuse Distance

We now define reuse as a microarchitecture-independent event in the context of

cache-coherent multi-core systems. For the ease of prose, in the rest of this chapter,

Chapter 6: ReuseTracker: Reuse Distance Analysis 80

we treat OS threads being pinned to CPU cores and cores are not oversubscribed

hence we use the terms “threads” and “cores” interchangeably.

Definition 6.2.1 (Intra-thread reuse) If two consecutive accesses (loads or

stores) happen to the same memory location in the same thread without an inter-

vening store to the same location in another thread, then the access pair represents

an instance of reuse.

The time reuse distance is the number of memory accesses elapsed on the same

thread between the use and reuse events. As we define intra-thread reuse as a

microarchitecture-independent event, we disregard microarchitectural configurations

such as private cache size, shared cache size, and cache inclusion policy. Therefore

a reuse in a thread, no matter how long it is from its use, is always counted as a

reuse even if it hits in a shared cache or DRAM memory in a real machine provided

that it still happens in the same thread as the use.

Definition 6.2.2 (Invalidation for intra-thread reuse) If two consecutive

memory accesses happen to the same memory location by two different threads

where the second access is a store operation, the second access represents an instance

of invalidation with respect to the first access.

An invalidation makes the previous access ineligible for reuse with the immedi-

ately next access to the same location. Reuse and invalidation are mutually exclusive

events. A pair of consecutive memory accesses to the same location can also neither

be a reuse nor be an invalidation; for example, a read by one core followed by a read

of the same address by another core is neither a reuse nor an invalidation.

Table 6.2 summarizes reuse, no-reuse, and invalidation in all possible read/write

access and same/different core scenarios. R → W indicates that a write access

happens following the read access to the same location. The Read or Write may be

accessing data at any level in the memory hierarchy.

Definition 6.2.3 (Reuse in shared cache) If two consecutive memory accesses

happen to the same memory location from two different cores that share the same

Chapter 6: ReuseTracker: Reuse Distance Analysis 81

access order same core different cores

(any socket)

R→R reuse no reuse

R→W reuse invalidation

W →W reuse invalidation

W →R reuse no reuse

Table 6.2: Intra-thread reuse. Read (R) or Write (W) may be accessing data at any
level in the memory hierarchy.

same core different cores different cores

(same socket) (different socket)

R→R no reuse reuse no reuse

R→W no reuse reuse invalidation

W→W no reuse reuse invalidation

W→R no reuse reuse no reuse

Table 6.3: Reuse in shared cache.

cache on a multi-core machine, then the access pair represents an instance of reuse

in the shared cache.

Definition 6.2.3 covers a situation where one thread fetched data into the shared

cache of a multi-core system and a subsequent access by another core can reuse

the same data without having to refetch it from the main memory. We are aware

of the possibility that an intra-thread reuse might also hit in a shared cache or

DRAM. However, we omit that situation from this definition as it has been covered

by our definition of intra-thread reuse, and thus, will be detected by the intra-thread

profiling. On multi-socket systems, cores span beyond a single socket. In such cases,

writes happening on another socket to the same address can create an invalidation

at shared cache level. This is analogous to write accesses on another thread in the

intra-thread reuse.

Chapter 6: ReuseTracker: Reuse Distance Analysis 82

Definition 6.2.4 (Invalidation in shared cache) If two consecutive memory

accesses happen to the same memory location by cores on different sockets, where

the second access is a store operation, the second access represents an instance of

shared cache invalidation with respect to the first access.

Table 6.3 summarizes reuse, no-reuse, and invalidation in all possible read/write

access and same/different core scenarios. We describe a few cells in more detail.

R→R: The first access is a read that may access data at any level in the memory

hierarchy. (a) If the subsequent read happens on the same core, it is already

captured as a reuse in the intra-thread profiling and thus not a case of shared-

cache reuse. (b) If the subsequent read happens on another core of the same

socket, it offers an opportunity to exploit the data fetched by one core into

the shared cache to be reused by another core (c) Finally, if the subsequent

read happens on another socket, there is no reuse opportunity but it does not

invalidate the data on the first socket.1

R→W : This is similar to R→R except that the second access is a write and the

write on a different socket causes an invalidation.

W→W : The first access is a write. (a) If the subsequent write happens on the same

core, it is already captured as a reuse in the intra-thread profiling and hence

it is not counted as a case of shared-cache reuse. (b) If a subsequent write

happens on another core of the same socket, it is guaranteed to miss in its

private cache; as before, it offers an opportunity for data reuse at the shared-

cache level. (c) Finally, if the subsequent write happens on another socket, it

will invalidate the data on the first socket.

W→R: This is similar to W→W except that the subsequent read on another socket

does not cause an invalidation on the first socket. A following R/W on the

same socket can create a reuse pair.

1We note that a different thread pinning can expose the reuse opportunity but we consider it

orthogonal to our current work.

Chapter 6: ReuseTracker: Reuse Distance Analysis 83

Since we treat reuses and invalidations as microarchitecture-independent events,

we do not consider microarchitectural configurations such as cache inclusion policy,

private cache size, or shared cache size in our definition. Therefore, any memory

access that we count as a reuse in shared cache does not necessarily hit in a shared

cache in an actual machine. Nevertheless, we can still derive metrics such as L2 or

L3 cache miss rates from the reuse distance profiles that follow this definition if the

microarchitectural configurations of the machines are known. The reuse distance

profiles based on this definition can also recommend suitable L3 cache sizes that

optimize the applications’ runtime.

Duality property: Shared and intra-thread reuses are the dual of one another.

A pair of accesses can either be a reuse in a single thread or in the shared cache, but

not both. If an access pair in the same core is counted towards intra-thread reuse,

it is not counted towards shared-cache reuse. If an access pair in the same socket

is not counted towards intra-thread reuse, it is counted towards shared-cache reuse

on the same socket. A subsequent remote write operation always invalidates both

intra-thread and shared cache reuses. A subsequent remote read operation never

causes an invalidation but does not contribute towards reuses neither in a thread

nor in a shared cache.

From the hardware perspective, reuse happens at the cache line granular-

ity or sometimes larger than cache line granularities (e.g., Adjacent Cache-Line

Prefetch [49]).

6.3 Methodology

In this section, we provide a high-level sketch of our approach to measuring reuse

distance in multi-threaded applications. Our tool — ReuseTracker — adopts a

sampling philosophy. One need not observe every instance of reuse or invalidation

but only a few events in an unbiased manner to produce reuse histograms2. We rely

on the statistical significance of reuse or invalidation events to guide us in detecting

2The same philosophy has been at the core of RDX [119], but it is limited to single-threaded

reuse distance measurement.

Chapter 6: ReuseTracker: Reuse Distance Analysis 84

reuse and invalidation and eventually in computing multi-core reuse distance.

In order to accomplish the sampling-based monitoring, we need two building

block components:

1. The ability to sample memory addresses accessed by each thread in the mon-

itored program.

2. The ability to identify whether the immediate next memory access to a sam-

pled address happens on the same thread (reuse) or on a different thread

(invalidation if the access is a memory write).

In other words, we need the ability to sample pairs of consecutive accesses to the

same memory location, irrespective of which thread performs those accesses.

We achieve (1) by using hardware performance monitoring units. As previously

described, when programming in sampling mode, on reaching a threshold number of

events i.e. sampling period, the PMU can pause the CPU and deliver an interrupt

which can include a packet of information including the memory address being

accessed by the thread at the time of counter overflow. This sample is treated as a

use whose reuse or invalidation is to be detected later.

We achieve (2) by using hardware debug registers to trap execution when a thread

accesses a designated memory address. A sampling thread can arm a watchpoint for

itself and for other threads in the process so that any thread accessing a designated

address will cause a trap; based on whether the same thread traps or a different

thread traps (on a different core or a different socket), we can conclude reuse vs.

invalidation. For example, if a watchpoint traps in the sampling thread, before

it traps in any other thread, an intra-thread reuse is detected and the time reuse

distance between the use and reuse is the total loads and stores elapsed on the same

thread; if a watchpoint traps in a different thread on the same socket, a shared cache

reuse is detected and the time reuse distance between the use and reuse is the total

loads and stores elapsed between the two events on all threads on the same socket.

In practice, one may not be able to sample an address and instantaneously convey

the sampled address to all other threads so that they can monitor their access to it.

Chapter 6: ReuseTracker: Reuse Distance Analysis 85

Hence, we mildly relax the definitions as follows.

Relaxed Definition of Reuse. Rather than holding up to the ground truth

definition of reuse in Definition 6.2.1 (6.2.3), we relax it to mean that no intervening

store happened on another core (another socket) between two consecutively observed

accesses to the same memory location by the same thread. This relaxation accommo-

dates the possibility of the profiler missing an invalidation event in a short window

between when the tool samples an address accessed in one thread and informs all

other threads to monitor their own accesses to the same address. Thus, if an in-

stance of reuse is detected in this scheme, there is a high probability that a reuse

happened; but we could have missed an invalidation with a small probability.

We do not relax the definition of invalidation because a thread that produces an

address sample can be immediately paused before it can execute the next instruction,

thanks to the precise performance events in modern PMUs. Hence, any invalidation

detected by a sampling-based profiler is a true invalidation event.

6.4 Design and Implementation

ReuseTracker utilizes two slightly different algorithms to profile reuse distance in

individual threads and in shared caches. Next, we present the intra-thread profiling

algorithm followed by the one for shared caches.

6.4.1 Intra-thread profiling

Figure 6.1 shows the main components of the Intra-thread profiling algorithm

and one of the possible execution scenarios. In this algorithm, ReuseTracker

samples memory store and load events. It handles PMU samples of these events

and watchpoint traps with algorithms shown in Algorithm 2 and 3, respectively. In

both algorithms, there is a common global data structure, GlobalWP, which is an

array of a struct of length equal to the number of available debug registers per core

(e.g., four on an x86 machine). The ith element in GlobalWP holds the information

about the watchpoints currently set in the ith debug register of every thread in the

monitored process.

Chapter 6: ReuseTracker: Reuse Distance Analysis 86

3

PMU

Core

Thread T1

perf_event signal handler

m1
Debug Registers

2

PMU

Core

Thread T2

m1
Debug Registers

11

3

3
Cache line invalidation

5

Reuse distance is computed

4

perf_event signal handler
3

3

Example Histogram

Figure 6.1: One possible execution scenario when profiling intra-thread reuse dis-
tance: (1) Every thread sets its PMUs to sample its stores and loads. (2) Thread
T1’s PMU counter overflows on a store to address m1. (3) T1 arms its watchpoint
with type RW TRAP and watchpoints of other threads (e.g., the one in T2) with type
W TRAP and with address m1 in debug registers. (4) T1 accesses address m1 again
before any other thread, the watchpoint traps, time reuse distance is computed. (5)
Cache line invalidation happens if T2 stores to address m1 before T1 accesses m1.

On a PMU Sample: On reaching a threshold number of loads or stores an

interrupt is delivered to the thread reaching the threshold. Assume M1 is the address

accessed at the time of interrupt by thread, say T1. This signal-handling function,

PMUSampleHandler shown in Algorithm 2, takes the sampled address, sampling

thread ID, and the total value of load and store PMU counters at the time of

sample as inputs. We iterate over all watchpoint slots looking for an available slot

(line 4); we look for the unused slots first; the search ends if we find one. If we

do not find an unused (inactive) slot, the search continues into in-use (active) slots.

The check AllowReplacement on line 5 is the reservoir sampling logic, which we

explain later. If the slot is in-use, it returns true or false probabilistically. If the slot

is inactive, AllowReplacement will return true because slot.samples is reset to 1.0

when a watchpoint traps in Line 11 of Algorithm 3. In case of a successful search, the

address will be armed on all watchpoints on all cores. However, the search may end

without arming any watchpoint, in which case the sampled address will be dropped.

Special attention needs to be placed on the mode in which the watchpoints are

Chapter 6: ReuseTracker: Reuse Distance Analysis 87

set up. A subsequent load or store access to the sampled address by the same

thread, indicates reuse (see Table 6.2); hence, the sampling thread, T1, arms the

watchpoints in its own debug registers in read-write WP RW mode. A subsequent

store to the sampled address by another thread, indicates invalidation; hence, the

sampling thread arms the watchpoints in debug registers of other threads in write-

only WP WRITE mode.

Algorithm 2 PMU Sample Handler
1: global GlobalWP[NUM DEBUG REGS]

2:

3: procedure PMUSampleHandler(Address M , ThreadID T , PMUCounterValue P)

4: for each slot ∈ { GlobalWP } ordered-by inactive to active do

5: if AllowReplacement(slot) then

6: slot.active = true

7: for each Ti ∈ { all threads in the program } do

8: if Ti == T then

9: mode = WP RW

10: else

11: mode = WP WRITE

12: end if

13: ArmWatchpoint (M , Ti, P , slot, mode) return

14: end for

15: end if

16: end for

17: end procedure

18:

19: procedure AllowReplacement(WPInfo slot)

20: r = GenerateRandomNumber(0.0, 1.0)

21: ret = (r ≤ 1.0 / slot.samples) ? true : false

22: slot.samples++

23: return ret

24: end procedure

25:

26: procedure ArmWatchpoint(Address M , ThreadID T , PMUCounterValue P , WPInfo slot, WPMode t)

27: WP.address = M

28: WP.PMUValue = P

29: WP.mode = t

30: Set a WP in the debug register watchpoint slot of thread T

31: end procedure

Chapter 6: ReuseTracker: Reuse Distance Analysis 88

Algorithm 3 Watchpoint Trap Handler
1: procedure WPTrapHandler(ThreadID T , PMUCounterValue P , WPInfo slot)

2:

3: if GlobalWP[slot].active then . Check if no thread has trapped on this address

4: if T == GlobalWP[slot].ownerTID then

5: P0 = GlobalWP[slot].GetPMUCounterValue()

6: Record time reuse distance P - P0 . Reuse distance is recorded

7: else

8: Record invalidation . WP type must be WP WRITE

9: end if

10: GlobalWP[slot].active = false

11: GlobalWP[slot].samples = 1.0

12: end if

13: end procedure

On watchpoint trap: When a watchpoint traps in a thread, say T2, due to a

memory access to an address, say M1, ReuseTracker handles the trap with an

algorithm shown in Algorithm 3. In Line 3, T2 checks if the watchpoint slot that

corresponds to the trapping debug register is still active (meaning never trapped in

any threads). If it is still active, T2 checks if the thread ID of the watchpoint slot

matches its own thread ID. If it matches, time reuse distance is computed as use and

reuse occur on the same thread. In this case, the time reuse distance is the number

of loads and stores elapsed from the use to the reuse point, which is read from

PMU counters. If the two accesses are from two different threads (the latter one

guaranteed to be a write access), an invalidation is detected. After detecting either

a reuse or an invalidation, in Line 10, T2 marks the watchpoint slot as inactive;

subsequent traps, if any, on the same slot will be ignored so that at most one reuse

or invalidation is detected per sampled address.

After detecting reuse or invalidation, the watchpoint slot is immediately released

for use by a subsequent sample. As a special case, if every armed watchpoint traps

before the next PMU address sample, the reservoir sampling ensures all sampled

addresses to be monitored.

Reservoir Sampling Strategy: On a PMU sample, a previously armed watch-

point may have already trapped (either because of reuse or invalidation) or not yet

trapped. ReuseTracker needs to balance between retaining a previously armed

Chapter 6: ReuseTracker: Reuse Distance Analysis 89

watchpoint to potentially detect a reuse separated by some other memory accesses

and a new address that may trap sooner; neither of these is predictable without time

traveling into the future of execution.

We employ reservoir sampling to give equal probability to retain an already mon-

itored address for a longer time vs. beginning to monitor a new address, disregarding

when the sample happens. This gives a fair opportunity to short vs. long distance

reuses. The probability of an older, already armed watchpoint to be replaced with

a new sampled address decays following the harmonic progression [123] over time

with each new PMU sample; meaning, the longer a watchpoint stays armed, the

higher the probability for it to stay even longer. However, a newly sampled address

always has a probability to replace an older sample in such a way that any sampled

address has equal probability to be observed irrespective of when the address was

sampled. AllowReplacement on Line 19 in Algorithm 1 probabilistically an-

swers this question, whether the sampling thread is allowed to arm watchpoint in a

slot in all threads including replacing any old existing un-trapped watchpoints. We

refer the reader to [116] for theoretical guarantees of reservoir sampling [122, 119].

6.4.2 Shared cache profiling

To detect reuses in the shared cache, ReuseTracker again samples load and store

accesses, and employs debug registers to trap accesses to the sampled addresses that

happen in the same shared cache.

In this algorithm, when a thread samples a load or a store access, this sampled

event is considered as a use. After extracting the effective address of the event, the

sampling thread arms watchpoints on the address in all threads. Watchpoints that

trap load or store accesses are created in cores that share the same socket (and hence

the same shared cache) with the sampling thread. In cores that do not share the

same socket, watchpoints that trap only store accesses are set up. When the next

trap happens in a watchpoint in a core on the same socket, a reuse in the shared

cache is detected, otherwise an invalidation is detected if the trap happens in a core

on another socket.

Chapter 6: ReuseTracker: Reuse Distance Analysis 90

1

PMU

Core

Thread T1
perf_event signal_handler

Debug Registers

2

PMU

Core

Thread T2
signal handlerperf_event

m1
Debug Registers

1

L2 cache L2 cache

L3 cache

PMU

Core

Thread T3
perf_event signal_handler

m1
Debug Registers

1

PMU

Core

Thread T4
signal handlerperf_event

m1
Debug Registers

1

L2 cache L2 cache

L3 cache

3 3

3

5

3

4

Reuse is detected Cache line invalidation

5

Cache line invalidation

Figure 6.2: One possible execution scenario in profiling reuse distance in L3 cache:
(1) Every thread sets its PMUs to sample its load and store accesses. (2) Thread T1’s
PMU counter overflows on a store or a load on address m1. (3) T1 arms the watch-
points on other cores that share the same L3 cache with itself with type RW TRAP

and with type W TRAP on cores that do not share the same L3 cache. (4) T2 accesses
address m1 again before any other thread, the debug register traps, time reuse dis-
tance in L3 is computed. (5) Cache line invalidation in L3 level occurs if T3 or T4
stores to address m1 before T2 accesses m1.

Figure 6.2 shows the main components and one possible execution scenario

of the Shared cache profiling algorithm. Next, we explain the steps how

ReuseTracker handles a PMU sample when profiling reuse distance in shared

cache.

On a PMU sample: When a thread, say T1, samples a load or a store access

to an address, say M1, a signal is delivered by the Linux kernel to T1. This signal

is handled by our signal-handling function, which is very similar to the intra-thread

profiling algorithm except for few differences. If T1 is allowed to arm watchpoints

globally, then T1 collects the sum of the PMU counter values of load and store

events from all cores that share the same socket as the sampled core. T1 sets the

watchpoint types and arms watchpoints that trap load or store accesses in all of the

other threads that share the same socket with itself. The aim of these watchpoints

is to detect a reuse in the shared cache. To detect cache line invalidation from the

shared cache, T1 also arms watchpoints that trap only store accesses in cores of other

sockets.

On watchpoint trap: When a watchpoint trap happens in a thread, say T2,

Chapter 6: ReuseTracker: Reuse Distance Analysis 91

due to an access to an address, say M1, the trap is handled by ReuseTracker.

Firstly, T2 checks if the watchpoint slot is still active to see if no trap has occurred on

this slot globally. On an active slot, T2 checks whether it shares the same socket with

the thread that arms its watchpoint. If so, a shared cache reuse is detected and time

reuse distance between the trap in T2 and the sample owner is computed. However,

if T2 and the sample owner are on different sockets, an invalidation is detected. After

detecting a reuse or an invalidation, the reservoir sampling probability is reset, and

the watchpoint slot is marked as inactive.

Measuring Time Reuse Distance in Shared Cache Profiling: To measure

time reuse distance when a reuse in a shared cache is detected, we leverage the PMU

counter for loads and stores. The time reuse distance is measured as follows.

1. At the sampling point when the watchpoints are armed, the

PMU sample handler function memorizes the total count C1 =∑ncores on skt
i=1 Loads(i) + Stores(i) of load and store events from all cores that

share the same socket where the sample occurs. C1 becomes an attribute in

each watchpoint that can be accessed by the watchpoint trap handler.

2. When a reuse is detected, and the trap handler records the total count, say

C2 =
∑ncores on skt

i=1 Loads(i) + Stores(i) of loads and stores again from all

cores sharing the same socket again. C2−C1 is recorded as time reuse distance.

6.4.3 Implementation

ReuseTracker is built on top of the open-source HPCToolkit tools suite [5]. It

intercepts thread creation and termination using LD PRELOAD for dynamically-

linked executables [87]. On each thread creation, we configure the Linux

perf events for the newly created thread to monitor relevant PMU events.

To profile reuse distance in individual threads and in shared caches, we sample

MEM UOPS RETIRED:ALL STORES and MEM UOPS RETIRED:ALL LOADS

events, respectively for sampling stores and loads. All of these events allow

the signal-handling function to record the accessed effective address and the

Chapter 6: ReuseTracker: Reuse Distance Analysis 92

program counter when an event is sampled. By recording effective address,

ReuseTracker’s signal-handling function is able to detect a memory access use

and its reuse.

In addition to recording effective address and calculating time reuse distance,

the signal-handling and the watchpoint trap-handling functions also record program

counters at the moments of PMU samples and watchpoint traps. Using the program

counters, the profiling functions can trace the sampled and trapped threads’ call

stacks through an online binary analysis. This online binary analysis is performed

by HPCToolkit every time a PMU sample or a watchpoint trap is handled to retrieve

the procedure frames that are parts of the call stack that becomes the execution

context of the detected PMU sample or the watchpoint trap. After tracing the

call stack of a sampled or a trapped memory access, the detected use or reuse can

be attributed to the call stack, which makes it easier for programmers to spot the

locations of each detected use-reuse pairs in the source code.

Concurrency Control: GlobalWP is a shared data structure and accessed

concurrently by different PMU sample handlers and watchpoint traps. We use a

two-counter-based transactional memory mechanism proposed by Lamport [63] that

allows multiple readers and a single writer to concurrently access the same slot of

GlobalWP; accessing different slots of GlobalWP by different threads is obviously

conflict free. We ensure mutual exclusion among multiple writers to the same slot

via a test-and-test-and-set lock [99].

Workaround for Limited GlobalWP Slot Count: We acknowledge the possi-

bility of having much higher thread count than there are GlobalWP slots. If profiled

threads exhibit uniform behavior, a low number of GlobalWP slots, which is 4 in

x86 architecture, is sufficient. In case there are more than 4 different behaviors at

the same time, ReuseTracker might still capture all of these behaviors in one

run as multiple threads can context switch to be monitored by a GlobalWP slot.

However, in an extreme condition where the thread count in an application is much

higher than the number of GlobalWP slots and the behaviors of the threads are very

diverse to the point that each thread might have its own distinct behavior, there is a

Chapter 6: ReuseTracker: Reuse Distance Analysis 93

possibility that ReuseTracker might not capture all of these behaviors as it can

only monitor 4 behaviors at the same time. To work around this limitation, a user

of our tool might have to profile the application a number of times to get a more

complete insight into the reuse behavior of the application.

6.5 Evaluation

This section evaluates the accuracy of ReuseTracker and demonstrates its func-

tionality in analyzing reuse distances in PARSEC, Rodinia, and Synchrobench

benchmarks. Additionally, this section also evaluates the performance and mem-

ory overheads of ReuseTracker.

The experimental study is carried out in a 2-socket Intel Xeon Gold 6148 Skylake

CPU and a 2-socket AMD EPYC 7352 Zen 2 (17h) CPU. In the Intel machine, each

socket has twenty cores, each core has its own L1d, L1i, and L2 caches, and each

socket has one shared L3 cache. The machine runs Linux 5.5.2 kernel, and we

use gcc 8.3.1 compiler. In the AMD machine, there are 24 cores per socket. Each

core has its local L1i, L1d, and L2 caches, and shares L3 cache with other cores

in the same socket. The AMD machine runs Linux 5.11.0-36 and gcc-10.3.0

compiler.

Unless otherwise stated, the default sampling interval for both load and store

events in the Intel machine is 100K, the default sampling interval for executed micro-

operations in the AMD machine is 50K, and the used debug register count in each

core is 4. In each experiment, the threads are distributed evenly across the two sock-

ets, and the threads in each socket are bound to CPU cores with compact mapping3

strategy by default.

3Compact mapping assigns the thread t+ 1 to a free thread context as close as possible to the

thread context where the thread t was placed.

Chapter 6: ReuseTracker: Reuse Distance Analysis 94

6.5.1 RIBench Benchmark

To evaluate the accuracy of ReuseTracker, we develop a synthetic benchmark

with controllable reuse and invalidation counts shown in Listing 6.1. We refer to

this benchmark as RIBench. Using the RIBench, one can configure the amount

of reuses for different reuse distances as well as the amount of invalidations that

happen during execution.

#pragma omp parallel shared(shared_array) \

private(private_array1 , private_array2 , private_array3 , \

private_array4 , private_array5)

{

for(int i = 0; i < outer; i++)

for(int j = 0; j < a; j++)

for(int k = 0; k < inv; k++)

Store to shared_array[k]

for(int k = 0; k < a1; k = k+2)

Load from private_array1[k]

Store to private_array1[k+1]

for(int j = 0; j < b; j++)

for(int k = 0; k < inv; k++)

Store to shared_array[k];

for(int k = 0; k < b1; k = k+2)

Load from private_array2[k]

Store to private_array2[k+1]

for(int j = 0; j < c; j++)

for(int k = 0; k < inv; k++)

Store to shared_array[k]

for(int k = 0; k < c1; k = k+2)

Load from private_array3[k]

Store to private_array3[k+1]

for(int j = 0; j < d; j++)

for(int k = 0; k < inv; k++)

Store to shared_array[k];

for(int k = 0; k < d1; k = k+2)

Load from private_array4[k]

Store to private_array4[k+1]

for(int j = 0; j < e; j++)

for(int k = 0; k < inv; k++)

Store to shared_array[k]

for(int k = 0; k < e1; k = k+2)

Load from private_array5[k]

Store to private_array5[k+1]

Chapter 6: ReuseTracker: Reuse Distance Analysis 95

}

Listing 6.1: Pseudo-code for Reuse-Invalidation Benchmark, RIBench

In the RIBench, there are several configurable parameters; outer, a, a1, b, b1, c,

c1, d, d1, e, e1, and inv. These parameters can be configured to generate expected

reuse distances and number of reuses for each reuse distance. There are five different

reuse distances that can be generated. These reuse distances are a1+inv, b1+inv,

c1+inv, d1+inv, and e1+inv. When we want to configure each thread to have five

different non-zero reuse distances without being interrupted by any invalidation,

we set up the values of a1, b1, c1, d1, and e1 to be five different non-zero values

as these five variables determine the number of iterations to access five different

private arrays, while the value of inv variable is set to be zero. Then, in case we

want to introduce cache line invalidations, we set the value of inv variable to be a

non-zero value since this variable determines the number of iterations that access a

shared array. The other parameters, i.e. outer, a, b, c, d, and e, can be configured

to determine the reuse count of each reuse distance.

The computation of expected reuse count for each reuse distance is displayed in

Table 6.4. By changing the parameters, it is possible to produce a variety of reuse

distance histogram patterns. For example, if e1 > d1 > c1 > b1 > a1, inv = 0, and

e ∗ e1 < d ∗ d1 < c ∗ c1 < b ∗ b1 < a ∗ a1, the reuse distance histogram will exhibit a

decreasing pattern. Another example is when e1 > d1 > c1 > b1 > a1, inv = 0, and

e ∗ e1 > d ∗ d1 > c ∗ c1 > b ∗ b1 > a ∗ a1, then the reuse distance histogram will form

an increasing pattern.

Chapter 6: ReuseTracker: Reuse Distance Analysis 96

Reuse Distance Reuse Count

inv+a1 num threads*outer*a*a1

inv+b1 num threads*outer*b*b1

inv+c1 num threads*outer*c*c1

inv+d1 num threads*outer*d*d1

inv+e1 num threads*outer*e*e1

Table 6.4: Reuse distance and reuse count of RIBench

In addition to controlling the shapes of patterns in generated reuse distance

histograms, it is also possible to control the amount of cache line invalidations by

setting up the value of inv parameter when there are more than one thread. This

parameter determines the iteration count of a loop that performs store access to a

shared array shared array. The number of cache line invalidations can be increased

by increasing the value of inv variable. Therefore, say, for reuse distance inv+a1,

instead of having reuse count num threads*outer*a*(a1+inv), its reuse count be-

comes num threads*outer*a*a1, as each access to shared array is expected to lead

to a cache line invalidation instead of a reuse.

To evaluate the accuracy of ReuseTracker, we compute the expected reuse

distance histogram of the RIBench with a given set of parameters, and this his-

togram is compared with the histogram produced by ReuseTracker. Given two

histograms H and Ĥ, the accuracy, S, is calculated as below [106][119]:

S = 1−

∑n
i=1

∣∣∣Bi − B̂i

∣∣∣
2

Bi and B̂i are fractions of reuse-pairs in H and Ĥ, respectively, that fall into the

ith bin, and n is the number of bins in each histogram. The value of S metric is in

the range [0, 1.0] with 1.0 meaning H and Ĥ are perfectly similar.

Chapter 6: ReuseTracker: Reuse Distance Analysis 97

6.5.2 Accuracy without Invalidation

The simplest case is that of intra-thread reuse distance when there is no invalida-

tion (this is analogous to single-threaded reuse distance). For this base case, we

configured the parameters of the RIBench to generate four different reuse distance

patterns, increasing, decreasing, bell-shaped, and multi-modal. We also created two

cases for each pattern, short reuse distance (short-RD) and long reuse distance (long-

RD) cases. In the short-RD cases, the reuse distance is lower than the sampling

period, while in the long-RD cases, the reuse distance is higher than or equal to the

sampling period. Therefore, in total there are eight different test cases. Table 6.5

shows the values of the parameters in each test case. As can be seen in the table,

a1, b1, c1, d1, and e1 that determine the reuse distances in each thread are always

less than the sampling interval, which is 100K, for the short-RD cases, while they

are always equal to or higher than the sampling interval for the long-RD cases.

Chapter 6: ReuseTracker: Reuse Distance Analysis 98

Test Case Parameter Values

Short-RD Increasing

outer = 10, a = 20, a1 = 1000, b = 20,

b1 = 2000, c = 20, c1 = 4000, d = 20,

d1 = 8000, e = 20, e1 = 16000, inv = 0

Short-RD Decreasing

outer = 10, a = 200, a1 = 1000, b = 60,

b1 = 2000, c = 15, c1 = 4000, d = 4,

d1 = 8000, e = 2, e1 = 16000, inv = 0

Short-RD Bell-Shaped

outer = 10, a = 50, a1 = 1000, b = 40,

b1 = 2000, c = 40, c1 = 4000, d = 10,

d1 = 8000, e = 3, e1 = 16000, inv = 0

Short-RD Multi-Modal

outer = 10, a = 100, a1 = 1000, b = 30,

b1 = 2000, c = 24, c1 = 4000, d = 8,

d1 = 8000, e = 7, e1 = 16000, inv = 0

Long-RD Increasing

outer = 10, a = 10, a1 = 100000, b = 10,

b1 = 200000, c = 10, c1 = 400000, d = 10,

d1 = 800000, e = 10, e1 = 1600000, inv = 0

Long-RD Decreasing

outer = 10, a = 100, a1 = 100000, b = 30,

b1 = 200000, c = 12, c1 = 400000, d = 5,

d1 = 800000, e = 2, e1 = 1600000, inv = 0

Long-RD Bell-Shaped

outer = 10, a = 50, a1 = 100000, b = 40,

b1 = 200000, c = 40, c1 = 400000, d = 10,

d1 = 800000, e = 3, e1 = 1600000, inv = 0

Long-RD Multi-Modal

outer = 10, a = 100, a1 = 100000, b = 30,

b1 = 200000, c = 24, c1 = 400000, d = 8,

d1 = 800000, e = 7, e1 = 1600000, inv = 0

Table 6.5: Parameter values of RIBench when assessing accuracy without cache line
invalidation

The results produced by ReuseTracker running these test cases with 32

threads are presented in Figures 6.3 and 6.4. As can be seen in the figures, the

Chapter 6: ReuseTracker: Reuse Distance Analysis 99

reuse distance histograms generated by ReuseTracker are close to the ground

truth. In the Intel machine, the average accuracy for short reuse distance cases

is 94%, and the accuracy for long reuse distance cases is 90%, while in the AMD

machine, the average accuracies are 95.4% and 94.7% respectively. In short reuse

distance cases, all reuses can be trapped without having to rely on reservoir sam-

pling. Thus, ReuseTracker exhibits better accuracy in these cases than in the

long reuse distance ones.

0.0

0.2

0.4

0.6

0.0
0E

+0
0

1.1
0E

+0
3

2.2
0E

+0
3

4.4
0E

+0
3

8.8
0E

+0
3

1.7
6E

+0
4

3.5
2E

+0
4

7.0
4E

+0
4

1.4
1E

+0
5

2.8
2E

+0
5

Ground truth ReuseTracker

(a) Short-RD Increas-

ing

0.0

0.2

0.4

0.6

0.0
0E

+0
0

1.1
0E

+0
3

2.2
0E

+0
3

4.4
0E

+0
3

8.8
0E

+0
3

1.7
6E

+0
4

3.5
2E

+0
4

7.0
4E

+0
4

1.4
1E

+0
5

2.8
2E

+0
5

5.6
3E

+0
5

Ground truth ReuseTracker

(b) Short-RD Decreas-

ing

0.0

0.1

0.2

0.3

0.4

0.5

0.0
0E

+0
0

1.1
0E

+0
3

2.2
0E

+0
3

4.4
0E

+0
3

8.8
0E

+0
3

1.7
6E

+0
4

3.5
2E

+0
4

7.0
4E

+0
4

1.4
1E

+0
5

2.8
2E

+0
5

Ground truth ReuseTracker

(c) Short-RD Bell-

Shaped

0.0

0.1

0.2

0.3

0.0
0E

+0
0

1.1
0E

+0
3

2.2
0E

+0
3

4.4
0E

+0
3

8.8
0E

+0
3

1.7
6E

+0
4

3.5
2E

+0
4

7.0
4E

+0
4

1.4
1E

+0
5

2.8
2E

+0
5

5.6
3E

+0
5

Ground truth ReuseTracker

(d) Short-RD Multi-

Modal

0.0

0.2

0.4

0.6

0.0
0E

+0
0

1.1
0E

+0
5

2.2
0E

+0
5

4.4
0E

+0
5

8.8
0E

+0
5

1.7
6E

+0
6

3.5
2E

+0
6

7.0
4E

+0
6

1.4
1E

+0
7

2.8
2E

+0
7

5.6
3E

+0
7

1.1
3E

+0
8

2.2
5E

+0
8

4.5
1E

+0
8

Ground truth ReuseTracker

(e) Long-RD Increasing

0.0

0.1

0.2

0.3

0.4

0.0
0E

+0
0

1.1
0E

+0
5

2.2
0E

+0
5

4.4
0E

+0
5

8.8
0E

+0
5

1.7
6E

+0
6

3.5
2E

+0
6

7.0
4E

+0
6

1.4
1E

+0
7

2.8
2E

+0
7

5.6
3E

+0
7

1.1
3E

+0
8

2.2
5E

+0
8

4.5
1E

+0
8

Ground truth ReuseTracker

(f) Long-RD Decreas-

ing

0.0

0.1

0.2

0.3

0.4

0.5

0.0
0E

+0
0

1.1
0E

+0
5

2.2
0E

+0
5

4.4
0E

+0
5

8.8
0E

+0
5

1.7
6E

+0
6

3.5
2E

+0
6

7.0
4E

+0
6

1.4
1E

+0
7

2.8
2E

+0
7

5.6
3E

+0
7

1.1
3E

+0
8

2.2
5E

+0
8

4.5
1E

+0
8

9.0
1E

+0
8

Ground truth ReuseTracker

(g) Long-RD Bell-

Shaped

0.0

0.1

0.2

0.3

0.0
0E

+0
0

1.1
0E

+0
5

2.2
0E

+0
5

4.4
0E

+0
5

8.8
0E

+0
5

1.7
6E

+0
6

3.5
2E

+0
6

7.0
4E

+0
6

1.4
1E

+0
7

2.8
2E

+0
7

5.6
3E

+0
7

1.1
3E

+0
8

2.2
5E

+0
8

4.5
1E

+0
8

9.0
1E

+0
8

Ground truth ReuseTracker

(h) Long-RD Multi-

Modal

Figure 6.3: Reuse distance histograms of RIBench without cache line invalidation in
the Intel machine. X-axis shows the reuse distance ranges in logarithm-scale. Y-axis
displays the fraction of reuse-pairs that belong to specific reuse distance ranges.

Among the long reuse distance cases running in the Intel machine, we can see that

the Long-RD Decreasing (Figure 6.3f) and the Long-RD Multi-Modal (Figure 6.3h)

cases have the lowest accuracies. These results can be attributed to the probabilistic

nature of reservoir sampling and the fact that the Long-RD Decreasing and the Long-

RD Multi-Modal cases have fewer sample counts taken from the loops in lines 18-35

of Listing 6.1, which access large arrays, than the other two Long-RD cases.

s

Chapter 6: ReuseTracker: Reuse Distance Analysis 100

0.0

0.2

0.4

0.6

0.0
0E

+0
0

3.0
0E

+0
3

6.0
0E

+0
3

1.2
0E

+0
4

2.4
0E

+0
4

4.8
0E

+0
4

9.6
0E

+0
4

1.9
2E

+0
5

3.8
4E

+0
5

7.6
8E

+0
5

Ground truth ReuseTracker

(a) Short-RD Increas-

ing

0.0

0.1

0.2

0.3

0.4

0.5

0.0
0E

+0
0

3.0
0E

+0
3

6.0
0E

+0
3

1.2
0E

+0
4

2.4
0E

+0
4

4.8
0E

+0
4

9.6
0E

+0
4

1.9
2E

+0
5

3.8
4E

+0
5

7.6
8E

+0
5

Ground truth ReuseTracker

(b) Short-RD Decreas-

ing

0.0

0.1

0.2

0.3

0.4

0.5

0.0
0E

+0
0

3.0
0E

+0
3

6.0
0E

+0
3

1.2
0E

+0
4

2.4
0E

+0
4

4.8
0E

+0
4

9.6
0E

+0
4

1.9
2E

+0
5

3.8
4E

+0
5

7.6
8E

+0
5

Ground truth ReuseTracker

(c) Short-RD Bell-

Shaped

0.00

0.05

0.10

0.15

0.20

0.25

0.0
0E

+0
0

3.0
0E

+0
3

6.0
0E

+0
3

1.2
0E

+0
4

2.4
0E

+0
4

4.8
0E

+0
4

9.6
0E

+0
4

1.9
2E

+0
5

3.8
4E

+0
5

7.6
8E

+0
5

Ground truth ReuseTracker

(d) Short-RD Multi-

Modal

0.0

0.2

0.4

0.6

0.8

0.0
0E

+0
0

1.1
0E

+0
5

2.2
0E

+0
5

4.4
0E

+0
5

8.8
0E

+0
5

1.7
6E

+0
6

3.5
2E

+0
6

7.0
4E

+0
6

1.4
1E

+0
7

Ground truth ReuseTracker

(e) Long-RD Increasing

0.0

0.1

0.2

0.3

0.4

0.5

0.0
0E

+0
0

1.1
0E

+0
5

2.2
0E

+0
5

4.4
0E

+0
5

8.8
0E

+0
5

1.7
6E

+0
6

3.5
2E

+0
6

7.0
4E

+0
6

1.4
1E

+0
7

2.8
2E

+0
7

Ground truth ReuseTracker

(f) Long-RD Decreas-

ing

0.0

0.1

0.2

0.3

0.4

0.5

0.0
0E

+0
0

1.1
0E

+0
5

2.2
0E

+0
5

4.4
0E

+0
5

8.8
0E

+0
5

1.7
6E

+0
6

3.5
2E

+0
6

7.0
4E

+0
6

1.4
1E

+0
7

2.8
2E

+0
7

Ground truth ReuseTracker

(g) Long-RD Bell-

Shaped

0.0

0.1

0.2

0.3

0.0
0E

+0
0

1.1
0E

+0
5

2.2
0E

+0
5

4.4
0E

+0
5

8.8
0E

+0
5

1.7
6E

+0
6

3.5
2E

+0
6

7.0
4E

+0
6

1.4
1E

+0
7

2.8
2E

+0
7

Ground truth ReuseTracker

(h) Long-RD Multi-

Modal

Figure 6.4: Reuse distance histograms of RIBench without cache line invalidation
in the AMD machine.

6.5.3 Accuracy with Invalidation

Next, we introduce invalidations in the setup and assess the intra-thread reuse pro-

filing algorithm with cache line invalidations. This setup has twelve test cases that

were derived from the Bell-Shaped and Decreasing configurations given in Table 6.5.

Each configuration was modified to generate three different reuse distance histogram

patterns that have different amount of cache line invalidations. Table 6.6 displays

the modified configurations for the Bell-Shaped cases, while Table 6.7 shows the

modified configurations for the Decreasing cases. Among these configurations, Case

3 leads to more cache line invalidations than Case 2, which leads to more cache line

invalidations than Case 1. The reason for this is that there are more loop iterations

that perform store accesses to shared array in Case 3 than in Case 2 and there

are more store accesses to the shared array in Case 2 than in Case 1. These store

accesses to the shared array is also the main difference between this experiment and

the experiment without invalidation in Section 6.5.2. In the experiment without in-

validation, the parameter inv, which defines number of store accesses to the shared

array, is always zero.

Chapter 6: ReuseTracker: Reuse Distance Analysis 101

Test Case Parameter Values

Short-RD

Bell-Shaped Case 1

outer = 10, a = 50, a1 = 1000, b = 40,

b1 = 2000, c = 40, c1 = 4000, d = 10,

d1 = 8000, e = 3, e1 = 16000, inv = 0

Short-RD

Bell-Shaped Case 2

outer = 10, a = 50, a1 = 500, b = 40,

b1 = 1500, c = 40, c1 = 3500, d = 10,

d1 = 7500, e = 3, e1 = 15500, inv = 1000

Short-RD

Bell-Shaped Case 3

outer = 10, a = 50, a1 = 0, b = 40,

b1 = 1000, c = 40, c1 = 3000, d = 10,

d1 = 7000, e = 3, e1 = 15000, inv = 2000

Long-RD

Bell-Shaped Case 1

outer = 10, a = 50, a1 = 100000, b = 40,

b1 = 200000, c = 40, c1 = 400000, d = 10,

d1 = 800000, e = 3, e1 = 1600000, inv = 0

Long-RD

Bell-Shaped Case 2

outer = 10, a = 50, a1 = 50000, b = 40,

b1 = 150000, c = 40, c1 = 350000, d = 10,

d1 = 750000, e = 3, e1 = 1550000, inv = 100000

Long-RD

Bell-Shaped Case 3

outer = 10, a = 50, a1 = 0, b = 40,

b1 = 100000, c = 40, c1 = 300000, d = 10,

d1 = 700000, e = 3, e1 = 1500000, inv = 200000

Table 6.6: Parameter values of RIBench when assessing accuracy with cache line
invalidations on bell-shaped pattern

Chapter 6: ReuseTracker: Reuse Distance Analysis 102

Test Case Parameter Values

Short-RD

Decreasing Case 1

outer = 10, a = 200, a1 = 1000, b = 60,

b1 = 2000, c = 15, c1 = 4000, d = 4,

d1 = 8000, e = 2, e1 = 16000, inv = 0

Short-RD

Decreasing Case 2

outer = 10, a = 200, a1 = 500, b = 60,

b1 = 1500, c = 15, c1 = 3500, d = 4,

d1 = 7500, e = 2, e1 = 15500, inv = 1000

Short-RD

Decreasing Case 3

outer = 10, a = 200, a1 = 0, b = 60,

b1 = 1000, c = 15, c1 = 3000, d = 4,

d1 = 7000, e = 2, e1 = 15000, inv = 2000

Long-RD

Decreasing Case 1

outer = 10, a = 200, a1 = 100000, b = 60,

b1 = 200000, c = 15, c1 = 400000, d = 4,

d1 = 800000, e = 2, e1 = 1600000, inv = 0

Long-RD

Decreasing Case 2

outer = 10, a = 200, a1 = 50000, b = 60,

b1 = 150000, c = 15, c1 = 350000, d = 4,

d1 = 750000, e = 2, e1 = 1550000, inv = 100000

Long-RD

Decreasing Case 3

outer = 10, a = 200, a1 = 0, b = 60,

b1 = 100000, c = 15, c1 = 300000, d = 4,

d1 = 700000, e = 2, e1 = 1500000, inv = 200000

Table 6.7: Parameter values of RIBench when assessing accuracy with cache line
invalidations on decreasing pattern

Figures 6.5, 6.6, 6.7, and 6.8 show the reuse distance histograms generated by

ReuseTracker running on 32 threads compared to the ground truth. As shown

in both figures, our results are close to the ground truth with an average accuracy

89% over short reuse distance cases, and 93% over long reuse distance cases. The

lower accuracy in short reuse distance cases is the result of our relaxed definition of

reuse. Within a short interval between when a thread samples a memory access and

when the thread arms watchpoints in all threads, a cache line invalidation to the

sampled address might occur undetected. If the interval between the watchpoint

Chapter 6: ReuseTracker: Reuse Distance Analysis 103

arming and the reuse of the sampled address is very short, which is the case for the

short reuse distance cases, the undetected invalidation that happens between the

sample and the watchpoint arming might be the only opportunity to detect cache

line invalidation, which is missed. As a result, a false detection of reuse will occur,

which still satisfies our relaxed definition of reuse but violates the ground truth

definition in Definition 6.2.1.

0.0

0.1

0.2

0.3

0.4

0.5

0.0
0E

+0
0

1.1
0E

+0
3

2.2
0E

+0
3

4.4
0E

+0
3

8.8
0E

+0
3

1.7
6E

+0
4

3.5
2E

+0
4

7.0
4E

+0
4

1.4
1E

+0
5

2.8
2E

+0
5

Ground truth ReuseTracker

(a) Long-RD Bell-Shaped

Case 1

0.0

0.2

0.4

0.6

0.8

0.0
0E

+0
0

1.1
0E

+0
3

2.2
0E

+0
3

4.4
0E

+0
3

8.8
0E

+0
3

1.7
6E

+0
4

3.5
2E

+0
4

7.0
4E

+0
4

1.4
1E

+0
5

2.8
2E

+0
5

Ground truth ReuseTracker

(b) Long-RD Bell-Shaped

Case 2

0.0

0.2

0.4

0.6

0.0
0E

+0
0

1.1
0E

+0
3

2.2
0E

+0
3

4.4
0E

+0
3

8.8
0E

+0
3

1.7
6E

+0
4

3.5
2E

+0
4

7.0
4E

+0
4

1.4
1E

+0
5

2.8
2E

+0
5

Ground truth ReuseTracker

(c) Long-RD Bell-Shaped Case

3

Figure 6.5: Reuse distance histograms of RIBench with cache line invalidations on
bell-shaped pattern in the Intel machine.

0.0

0.1

0.2

0.3

0.4

0.5

0.0
0E

+0
0

1.1
0E

+0
5

2.2
0E

+0
5

4.4
0E

+0
5

8.8
0E

+0
5

1.7
6E

+0
6

3.5
2E

+0
6

7.0
4E

+0
6

1.4
1E

+0
7

2.8
2E

+0
7

Ground truth ReuseTracker

(a) Long-RD Decreasing Case

1

0.0

0.1

0.2

0.3

0.4

0.0
0E

+0
0

1.1
0E

+0
5

2.2
0E

+0
5

4.4
0E

+0
5

8.8
0E

+0
5

1.7
6E

+0
6

3.5
2E

+0
6

7.0
4E

+0
6

1.4
1E

+0
7

2.8
2E

+0
7

Ground truth ReuseTracker

(b) Long-RD Decreasing Case

2

0.0

0.1

0.2

0.3

0.4

0.5

0.0
0E

+0
0

1.1
0E

+0
5

2.2
0E

+0
5

4.4
0E

+0
5

8.8
0E

+0
5

1.7
6E

+0
6

3.5
2E

+0
6

7.0
4E

+0
6

1.4
1E

+0
7

2.8
2E

+0
7

Ground truth ReuseTracker

(c) Long-RD Decreasing Case

3

Figure 6.6: Reuse distance histograms of RIBench with cache line invalidations on
decreasing pattern in the Intel machine.

Chapter 6: ReuseTracker: Reuse Distance Analysis 104

0.0

0.1

0.2

0.3

0.4

0.5

0.0
0E

+0
0

1.1
0E

+0
3

2.2
0E

+0
3

4.4
0E

+0
3

8.8
0E

+0
3

1.7
6E

+0
4

3.5
2E

+0
4

7.0
4E

+0
4

1.4
1E

+0
5

2.8
2E

+0
5

Ground truth ReuseTracker

(a) Long-RD Bell-Shaped

Case 1

0.0

0.2

0.4

0.6

0.8

0.0
0E

+0
0

1.1
0E

+0
3

2.2
0E

+0
3

4.4
0E

+0
3

8.8
0E

+0
3

1.7
6E

+0
4

3.5
2E

+0
4

7.0
4E

+0
4

1.4
1E

+0
5

2.8
2E

+0
5

Ground truth ReuseTracker

(b) Long-RD Bell-Shaped

Case 2

0.0

0.1

0.2

0.3

0.4

0.5

0.0
0E

+0
0

1.1
0E

+0
3

2.2
0E

+0
3

4.4
0E

+0
3

8.8
0E

+0
3

1.7
6E

+0
4

3.5
2E

+0
4

7.0
4E

+0
4

1.4
1E

+0
5

2.8
2E

+0
5

5.6
3E

+0
5

Ground truth ReuseTracker

(c) Long-RD Bell-Shaped Case

3

Figure 6.7: Reuse distance histograms of RIBench with cache line invalidations on
bell-shaped pattern in the AMD machine.

0.0

0.1

0.2

0.3

0.4

0.5

0.0
0E

+0
0

1.1
0E

+0
3

2.2
0E

+0
3

4.4
0E

+0
3

8.8
0E

+0
3

1.7
6E

+0
4

3.5
2E

+0
4

7.0
4E

+0
4

1.4
1E

+0
5

2.8
2E

+0
5

Ground truth ReuseTracker

(a) Long-RD Decreasing Case

1

0.0

0.1

0.2

0.3

0.4

0.0
0E

+0
0

1.1
0E

+0
3

2.2
0E

+0
3

4.4
0E

+0
3

8.8
0E

+0
3

1.7
6E

+0
4

3.5
2E

+0
4

7.0
4E

+0
4

1.4
1E

+0
5

2.8
2E

+0
5

5.6
3E

+0
5

Ground truth ReuseTracker

(b) Long-RD Decreasing Case

2

0.0

0.1

0.2

0.3

0.4

0.5

0.0
0E

+0
0

1.1
0E

+0
3

2.2
0E

+0
3

4.4
0E

+0
3

8.8
0E

+0
3

1.7
6E

+0
4

3.5
2E

+0
4

7.0
4E

+0
4

1.4
1E

+0
5

2.8
2E

+0
5

5.6
3E

+0
5

Ground truth ReuseTracker

(c) Long-RD Decreasing Case

3

Figure 6.8: Reuse distance histograms of RIBench with cache line invalidations on
decreasing pattern in the AMD machine.

One pattern that can be observed from the ground truths in Figures 6.5, 6.6, 6.7,

and 6.8 is that the offsets of the histograms shift to the right as we go from Case 1

to 3. The reason for the offset shift is the sum of inv+a1, which is the shortest reuse

distance in all cases, that keeps increasing from Case 1 to 2 and from Case 2 to

3. Another pattern that can be observed from the ground truths and the results is

that the histograms become narrower as we go from Case 1 to 3. This is the result

of the logarithmic scaling of the bin sizes whose range increases along the X-axis.

Therefore, as the histogram shifts to the right due to increases in reuse distances,

the capacity of each bin becomes larger, and hence the number of filled bins becomes

smaller. The increase in all reuse distances and the logarithmic scaling are also the

reasons for the mode shift of the histograms in Figures 6.5 and 6.7 as the mode that

Chapter 6: ReuseTracker: Reuse Distance Analysis 105

is in the third bin in Case 1 becomes ”pushed” to the fourth bin in Case 2 and

grouped together with the reuses that are already in the fourth bin in Case 1. Such

transformation also happens from Case 2 to Case 3 as some reuses that belong to

the fourth bin in Case 2 are ”pushed” to the fifth bin in Case 3 and makes the

height of the fifth bin taller.

6.5.4 Accuracy under Different Thread Counts

To evaluate ReuseTracker’s accuracy under different thread counts, we ran it

on the RIBench with Long-RD Bell-Shaped Case 2 and Long-RD Decreasing Case

2 configurations. We chose these configurations as they include invalidations and

reservoir sampling in their executions and, among all Long RD cases that have

invalidations, they have the most complex patterns since they have more filled bins

and more variation of tall and short bins in their patterns. We performed the

experiment under six different thread counts; 1, 2, 4, 8, 16, and 32. The accuracy

results are presented in Figures 6.9 and 6.10. The accuracy of ReuseTracker is

consistently high under different thread counts with an average of 96% in the Intel

machine and an average of 95% in the AMD machine.

Thread Count

0.00

0.25

0.50

0.75

1.00

1 2 4 8 16 32

(a) Long-RD Bell-Shaped Case 2

Thread Count

0.00

0.25

0.50

0.75

1.00

1 2 4 8 16 32

(b) Long-RD Decreasing Case 2

Figure 6.9: Accuracy of ReuseTracker running the RIBench under different
thread counts in the Intel machine. X-axis displays the thread counts, and Y-axis
shows the accuracy for each thread count.

Chapter 6: ReuseTracker: Reuse Distance Analysis 106

Thread Count

0.00

0.25

0.50

0.75

1.00

1 2 4 8 16 32

(a) Long-RD Bell-Shaped Case 2

Thread Count

0.00

0.25

0.50

0.75

1.00

1 2 4 8 16 32

(b) Long-RD Decreasing Case 2

Figure 6.10: Accuracy of ReuseTracker running the RIBench under different
thread counts in the AMD machine.

6.5.5 Reuse Distances of PARSEC Benchmarks

In this section, we present and discuss the reuse distance histograms for the PARSEC

benchmark suite [18]. For the sake of brevity, we will only discuss four of the

benchmarks in detail.

Figure 6.11 shows the histograms of blackscholes and bodytrack generated from

intra-thread reuse distance profiling for 32 threads processing native input size.

Figure 6.11 shows that most reuses in the selected benchmarks are short in distance.

blackscholes, which computes prices of a portfolio of European options, has a huge

portion of short-distanced reuses. These short-distanced reuses mostly occur on the

prices array, a data structure that records options’ prices. Reuses happen in the

bs thread, the BlkSchlsEqEuroNoDiv, and the CNDF functions. Longer-distanced

reuses are detected in the main function on accesses to local variables which become

memory accesses due to register spilling.

Chapter 6: ReuseTracker: Reuse Distance Analysis 107

0.001

0.01

0.1

1

0.0
0E
+0
0

4.0
0E
+0
3

8.0
0E
+0
3

1.6
0E
+0
4

3.2
0E
+0
4

6.4
0E
+0
4

1.2
8E
+0
5

2.5
6E
+0
5

5.1
2E
+0
5

1.0
2E
+0
6

2.0
5E
+0
6

4.1
0E
+0
6

8.1
9E
+0
6

temporal spatial

(a) blackscholes

0.001

0.01

0.1

1

0.0
0E
+0
0

4.0
0E
+0
3

8.0
0E
+0
3

1.6
0E
+0
4

3.2
0E
+0
4

6.4
0E
+0
4

1.2
8E
+0
5

2.5
6E
+0
5

5.1
2E
+0
5

1.0
2E
+0
6

2.0
5E
+0
6

4.1
0E
+0
6

8.1
9E
+0
6

temporal spatial

(b) bodytrack

Figure 6.11: Histograms of intra-
thread reuse distance of blackscholes
and bodytrack from PARSEC. X-axis
shows the reuse distance ranges in
logarithm-scale. Y-axis displays in
logarithm-scale the fraction of reuse-
pairs that belong to specific reuse dis-
tance ranges.

0.001

0.01

0.1

1

0.0
0E
+0
0

4.0
0E
+0
3

8.0
0E
+0
3

1.6
0E
+0
4

3.2
0E
+0
4

6.4
0E
+0
4

1.2
8E
+0
5

2.5
6E
+0
5

5.1
2E
+0
5

1.0
2E
+0
6

2.0
5E
+0
6

4.1
0E
+0
6

8.1
9E
+0
6

1.6
4E
+0
7

3.2
8E
+0
7

6.5
5E
+0
7

temporal spatial

(a) streamcluster

0.001

0.01

0.1

1

0.0
0E
+0
0

4.0
0E
+0
3

8.0
0E
+0
3

1.6
0E
+0
4

3.2
0E
+0
4

6.4
0E
+0
4

1.2
8E
+0
5

2.5
6E
+0
5

5.1
2E
+0
5

1.0
2E
+0
6

2.0
5E
+0
6

4.1
0E
+0
6

8.1
9E
+0
6

1.6
4E
+0
7

temporal spatial

(b) freqmine

Figure 6.12: Histograms of reuse dis-
tance in L3 cache of streamcluster and
freqmine from PARSEC. X-axis shows
the reuse distance ranges in logarithm-
scale. Y-axis displays in linear scale
the fraction of reuse-pairs that belong
to specific reuse distance ranges.

In bodytrack, a lot of reuses of various distances happen within the Track-

ingModel::LogLikelihood function and in other functions called by it. Tracking-

Model::LogLikelihood is a function that computes the likelihood of each observed

particle in tracking an object in an image. This computation is needed in resam-

pling particles with the best fitness values from image data to help analyze interesting

regions in the image in more detail.

Figure 6.12 displays the histograms of streamcluster and freqmine generated

from shared cache reuse distance profiling. streamcluster is a benchmark that solves

an online clustering problem by grouping streamed data points into their nearest

centers. In streamcluster, some of the detected temporal and spatial reuses happen

with distances less than or equal to 8M. Most of these use-reuse pairs happen on

Point-typed shared array elements in the pgain, dist, and shuffle functions. Aside

from accesses to Point-typed data structures, there are also detected short-distanced

reuses due to locking mechanism in the pthread barrier wait function. For reuses that

are longer than 8M in distance, they also occur because of accesses to shared Point

data structures in the dist function. These reuses can be long in distance because

dist is a function that measures distances between data points when making new

Chapter 6: ReuseTracker: Reuse Distance Analysis 108

cluster centers and consecutive accesses to the same data points can happen across

different dist function calls separated by wide time gaps.

freqmine is a data mining benchmark that performs the Frequent Pattern-growth

(FP-growth) method for frequent itemset mining (FIMI) problem. In this bench-

mark, reuses of various distances are detected between the FP tree::database tiling

and FP tree::scan2 DB functions due to memory accesses to a shared tree

data structure. Furthermore, long-distanced reuses are also detected in the

FP tree::database tiling function on accesses to the item order array. These long-

distanced reuses occur due to accesses to the shared array in creating a prefix tree

whose branches represent frequent itemsets.

6.5.6 Use Case: False Sharing Removal

Spatial reuses in shared cache detected by ReuseTracker include false sharing

as the use-reuse pair belong to different threads that access different memory re-

gions located in the same cache line. Therefore shared cache spatial reuse dis-

tance profiles produced by ReuseTracker can assist in guiding code refactoring

that reduces false sharing in the profiled code. To demonstrate this capability,

we leverage ReuseTracker to profile some benchmarks from Synchrobench[44],

namely ESTM-rbtree, MUTEX-hashtable, MUTEX-lazy-list, SPIN-hashtable, and

SPIN-lazy-list, and use the generated profiles to guide code modifications that im-

prove their performances. To detect only false sharing, we generate a shared cache

reuse distance profile that includes only read-after-write (RAW) and write-after-

write (WAW) use-reuse pairs. The reason for this is these kinds of use-reuse pairs

trigger inter-core cache line transfers caused by false sharing for certain.

In ESTM-rbtree, we identify false sharing in the TMlookup function that involves

struct node and struct thread data data types. To remove the false sharing,

we inserted padding manually into struct node and struct thread data. After

this modification, ESTM-rbtree’s performance is improved by 87%. In MUTEX-

hashtable, MUTEX-lazy-list, SPIN-hashtable, and SPIN-lazy-list, false sharing is

found in the parse delete function or in other functions called from it. In all

Chapter 6: ReuseTracker: Reuse Distance Analysis 109

of these benchmarks, the detected false sharing involves struct node l data type.

Paddings in this data structure improves the performance of these benchmarks by

6%, 46%, 39% and 58% for MUTEX-hashtable, MUTEX-lazy-list, SPIN-hashtable,

and SPIN-lazy-list, respectively.

6.5.7 Use Case: Adjacent Cache Line Prefetch

By analyzing the intra-thread and shared cache reuse distance histograms of a multi-

threaded code, we demonstrate that it is possible to decide whether the code will

benefit from adjacent cache line prefetch (ACP) [49] or not. ACP, a feature in

Intel microarchitectures, allows prefetching a cache line that is adjacent to the cur-

rently accessed cache line. This feature can improve an application performance

if the application threads have a good spatial locality where each thread actually

accesses the prefetched cache lines before they are evicted. In addition to local-

ity in individual threads, another factor that affects application performance when

using ACP is inter-thread communication. Excessive communication, such as false

sharing, may hinder the benefit of spatial locality that ACP offers. Due to com-

munication, prefetched cache lines could be invalidated before they are accessed by

the prefetching threads. To account for locality-affected access latencies and inter-

thread communication, we build a model to predict whether an application can

benefit from ACP or not.

We consider an application to have better performance with ACP if its perfor-

mance overhead due to main memory access is higher than its overhead due to false

sharing. Let G be a binary predictor metric, where

G = Tm − Tfs,

such that Tm is the total latency of accesses to main memory, and Tfs is the total

false sharing latency. Tm in this model is computed as follow.

Tm = Rdram ∗ Ldram,

Chapter 6: ReuseTracker: Reuse Distance Analysis 110

where Rdram is the number of detected spatial reuses in the intra-thread reuse

distance histogram that access DRAM, and Ldram is the latency of access to DRAM.

In the model, Tfs is calculated as follow.

Tfs = Rfs ∗ Lfs,

where Rfs is the number of detected spatial reuses in the shared cache reuse

distance histogram with reuse distances that are short enough to be in the range of

false sharing communication, and Lfs is the latency of inter-core cache line trans-

fer. We obtained the values of Ldram and Lfs by running Intel®Memory Latency

Checker (Intel MLC)[115] on our machine.

Benchmarks Predictor Metric Actual Speedup

bodytrack −1.1 ∗ 109 (G <0) -5.41%

streamcluster −1.2 ∗ 108 (G <0) -8.84%

swaptions 0 (G >= 0) 9.74%

vips 0 (G >= 0) 12.02%

backprop 6.9 ∗ 1010 (G >= 0) 8.21%

bfs 7.6 ∗ 1010 (G >= 0) 15.54%

ESTM-specfriendly-tree −1.6 ∗ 1010 (G <0) -25.00%

lockfree-fraser-skiplist −1.5 ∗ 1012 (G <0) -12.10%

MUTEX-hashtable −3.1 ∗ 1011 (G <0) -7.25%

MUTEX-skiplist −9.6 ∗ 1010 (G <0) -15.34%

SPIN-hashtable −5.3 ∗ 1010 (G <0) -11.66%

SPIN-hoh-list −1.8 ∗ 1010 (G <0) -11.24%

Table 6.8: Prediction of execution outcomes when ACP is activated

We expect an application to get a performance speedup when running with ACP

if G ≥ 0. By using this metric, we predict whether an application will gain or

lose performance when ACP is activated in the Intel Xeon Gold 6148 Skylake. The

Chapter 6: ReuseTracker: Reuse Distance Analysis 111

benchmarks that we use in this experiment are 10 benchmarks from PARSEC [18]

(bodytrack, streamcluster, swaptions, vips, blackscholes, dedup, facesim, ferret, flu-

idanimate, and freqmine), 7 benchmarks from Rodinia [25] (backprop, bfs, hotspot,

kmeans, leukocyte, needle, and srad), and all 14 benchmarks from Synchrobench [44].

After running these benchmarks with ACP enabled, we noticed that only 12 of them

display performance gains or losses that are higher than 5%. Our model accurately

predicts the execution outcomes of these 12 benchmarks as shown in Table 6.8.

6.5.8 Overhead Analysis

To evaluate the runtime and memory overheads of ReuseTracker in the Intel

machine, we run it on ten PARSEC benchmarks to profile their intra-thread reuse

distance with 100K sampling interval. For these benchmarks, the average runtime

overhead is 2.9×, and the average memory overhead is 2.8×, which are much lower

than the overheads of existing simulator and binary instrumentation-based tools

as shown in Table 6.1. However, the overheads of ReuseTracker are slightly

higher than the overheads of other PMU-based techniques like StatCache [16] and

RDX [119]. This is because each sampling thread in ReuseTracker arms not

only its own debug registers but also debug registers of other cores. The comparison

between ReuseTracker and other similar techniques are shown in Table 6.1. The

overheads of RDX and loca were obtained by running them with the same ten

PARSEC benchmarks, and RDX with 100K sampling interval. The overheads of

RDX reported here are higher than the ones reported in its paper because in [119]

authors used a sampling interval of 5M. In addition to measuring overheads while

profiling reuse distance in individual threads, we also measure overheads for shared

cache profiling. The average runtime overhead for reuse distance profiling in shared

cache is 2.1×, and the average memory overhead is 2.4×, which are even lower than

the overheads of intra-thread profiling. These lower overheads might be caused by

lower number of watchpoint traps that are handled at shared cache level than at

intra-thread level.

To evaluate the overheads in the AMD machine, we run ReuseTracker on six

Chapter 6: ReuseTracker: Reuse Distance Analysis 112

PARSEC benchmarks, i.e. bodytrack, fluidanimate, freqmine, streamcluster, swap-

tions, and vips, with a sampling interval of 50K. The average runtime overhead that

we observe is 4.92×, and the average memory overhead is 3.84×.

Chapter 7: Conclusion and Future Work 113

Chapter 7

CONCLUSION AND FUTURE WORK

Precise event sampling is a low-overhead profiling technology in current com-

modity CPUs. It allows hardware or software event sampling by also attributing

the sampled events to the instructions that trigger the events. This capability has

been supported in several different architectures, and has been used in a number of

profiling techniques. However, none of the existing techniques captures inter-thread

communications and measures reuse distance in multithreaded applications, which

are essential information to guide performance tuning on shared memory parallel

applications. Furthermore, there have also been only few works that analyze the

characteristics of the precise event sampling facilities in commodity CPUs. All of

these works focus only on the facility in the Intel architecture, i.e. Intel PEBS. Fur-

thermore, these works only analyze the accuracy and time overhead of PEBS, and

do not address other aspects such as memory overhead, stability, and functionality

of PEBS.

To address the mentioned research gaps, in this dissertation, we firstly present

comprehensive qualitative and quantitative analyses on the precise event sampling

facilities of Intel and AMD architectures. After that, we propose two precise event

sampling-based tools that capture inter-thread communications and measure reuse

distance of multithreaded applications, respectively.

We extensively analyze two precise event sampling facilities from Intel and AMD

architectures. In our qualitative analysis, we present their differences in terms of

usable counters, types of events that can be sampled, types of data that is available in

each sample, and their abilities to identify the execution mode of each sample. Then,

we quantitatively analyze the accuracy, stability, sampling bias, memory overhead,

and functionalities of each sampling facility. We also relate how the qualitative

Chapter 7: Conclusion and Future Work 114

differences that we identified affect some of those aspects that we quantitatively

study. We believe our findings can greatly help tool developers understand the

behaviour of their profiling tools and guide hardware designers to better design

precise event sampling facility of future CPUs.

After analyzing the precise event sampling facilities, we propose

ComDetective, a communication matrix generation tool that leverages PMUs

and debug registers to detect inter-thread data movement on a sampling basis and

avoids the drawbacks of prior work by being more accurate and introducing low

time and memory overheads. We present the algorithm used by ComDetective

and its implementation details, then evaluate the accuracy, performance, and utility

of the tool, by carrying out extensive experiments. Tuning code based on the

insights gained from ComDetective delivered up to 13% speedup. Programmers

can generate insightful communication matrices, differentiate true and false sharing,

associate communication to objects, and pinpoint high inter-thread communication

in their applications with the help of ComDetective.

We also present ReuseTracker, a reuse distance analysis tool that profiles

reuse distance in individual threads and in shared caches of multi-threaded appli-

cations with low overheads by leveraging PMUs and debug registers. We proposed

two different algorithms to profile reuse distance in individual threads and shared

caches respectively. To verify the accuracy of the intra-thread profiling algorithm,

we developed a synthetic benchmark that can be configured to generate a variety

of reuse distance histogram patterns. We also demonstrated how ReuseTracker

can be used to guide performance optimization by removing false sharing via code

refactoring and how it can predict whether multi-threaded applications gain or

lose performance when adjacent cache line prefetch (ACP) is enabled. By using

ReuseTracker, programmers will be able to profile data locality in thread and

shared caches with low overheads, and use the generated information to tune appli-

cation performance [102],[101].

We plan to extend our work in two ways. Firstly, we will also perform in-

depth qualitative and quantitative analyses on Statistical Profiling Extension (SPE),

Chapter 7: Conclusion and Future Work 115

which is the precise event sampling facility of ARM. Secondly, we will extend

ComDetective and ReuseTracker to run on ARM processors by modifying

them to interface with SPE in sampling memory accesses from profiled applications.

Bibliography 116

BIBLIOGRAPHY

[1] “ComDetective: A tool for inter-thread/inter-core communication analysis

based on HPCToolkits.” https://github.com/comdetective-tools/hpctoolkit.

[2] “dcompiler/loca: Program locality analysis tools,” https://github.com/

dcompiler/loca, accessed: 20 July 2020.

[3] “Extended Asm - Assembler Instructions with C Expression Operands,” https:

//gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html.

[4] “perf: Linux profiling with performance counters ,” https://perf.wiki.kernel.

org/index.php/Main Page, June 2020.

[5] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-

Crummey, and N. R. Tallent, “Hpctoolkit: Tools for performance analysis

of optimized parallel programs,” Concurrency Computation: Practice Experi-

ence, vol. 22, no. 6, pp. 685–701, 2010.

[6] S. Akiyama and T. Hirofuchi, “Quantitative evaluation of intel pebs overhead

for online system-noise analysis,” in Proceedings of the 7th International

Workshop on Runtime and Operating Systems for Supercomputers ROSS 2017,

ser. ROSS ’17. New York, NY, USA: Association for Computing Machinery,

2017. [Online]. Available: https://doi.org/10.1145/3095770.3095773

[7] AMD, “AMD uProf,” https://developer.amd.com/amd-uprof/, Advanced Mi-

cro Devices, Inc., accessed: 2021-05-14.

[8] ——, AMD64 Technology. AMD64 Architecture Programmer’s Manual Vol-

ume 2: System Programming. Publication No. 24593 Revision 3.36, Advanced

Micro Devices, Inc., October 2020.

Bibliography 117

[9] AMG, “Parallel Algebraic Multigrid Solver,” https://github.com/LLNL/

AMG, 2017.

[10] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Henzinger,

S.-T. A. Leung, R. L. Sites, M. T. Vandevoorde, C. A. Waldspurger, and

W. E. Weihl, “Continuous profiling: Where have all the cycles gone?”

ACM Trans. Comput. Syst., vol. 15, no. 4, p. 357–390, Nov. 1997. [Online].

Available: https://doi.org/10.1145/265924.265925

[11] ARM, Arm Neoverse TM N1 Core. Version r3p1, ARM, February 2019.

[12] R. Azimi, D. K. Tam, L. Soares, and M. Stumm, “Enhancing operating system

support for multicore processors by using hardware performance monitoring,”

ACM SIGOPS Operating Systems Review, vol. 43, no. 2, pp. 56–65, 2009.

[13] A. Barai, G. Chennupati, N. Santhi, A.-H. Badawy, Y. Arafa, and

S. Eidenbenz, “Ppt-sasmm: Scalable analytical shared memory model:

Predicting the performance of multicore caches from a single-threaded

execution trace,” in The International Symposium on Memory Systems,

ser. MEMSYS 2020. New York, NY, USA: Association for Computing

Machinery, 2020, p. 341–351. [Online]. Available: https://doi.org/10.1145/

3422575.3422806

[14] N. Barrow-Williams, C. Fensch, and S. Moore, “A communication characteri-

sation of splash-2 and parsec,” in IEEE International Symposium on Workload

Characterization, 2009. IISWC 2009., 2009.

[15] E. Berg and E. Hagersten, “Statcache: a probabilistic approach to efficient

and accurate data locality analysis,” in IEEE International Symposium on

- ISPASS Performance Analysis of Systems and Software, 2004, 2004, pp.

20–27.

Bibliography 118

[16] E. Berg and E. Hagersten, “Fast data-locality profiling of native execution,”

in Proceedings of the 2005 ACM SIGMETRICS International Conference

on Measurement and Modeling of Computer Systems, ser. SIGMETRICS’05.

New York, NY, USA: Association for Computing Machinery, 2005, pp.

169–180. [Online]. Available: https://doi.org/10.1145/1064212.1064232

[17] K. Beyls and E. D’Hollander, “Reuse distance as a metric for cache behavior.”

in Proceedings of the IASTED International Conference on Parallel and Dis-

tributed Computing and Systems, IASTED, Anaheim, California, USA, 2001,

2001, pp. 617–622.

[18] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:

Characterization and architectural implications,” in 2008 International Con-

ference on Parallel Architectures and Compilation Techniques (PACT), Oct

2008, pp. 72–81.

[19] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,

J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,

M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”

SIGARCH Comput. Archit. News, vol. 39, no. 2, p. 1–7, Aug. 2011. [Online].

Available: https://doi.org/10.1145/2024716.2024718

[20] K. J. Bowers, B. J. Albright, B. Bergen, L. Yin, K. J. Barker,

and D. J. Kerbyson, “0.374 pflop/s trillion-particle kinetic modeling of

laser plasma interaction on roadrunner,” in Proceedings of the 2008

ACM/IEEE Conference on Supercomputing, ser. SC ’08. Piscataway,

NJ, USA: IEEE Press, 2008, pp. 63:1–63:11. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=1413370.1413435

[21] D. Bruening, T. Garnett, and S. Amarasinghe, “An infrastructure for adap-

tive dynamic optimization,” in Proceedings of the International Symposium

Bibliography 119

on Code Generation and Optimization: Feedback-Directed and Runtime Opti-

mization, ser. CGO ’03. USA: IEEE Computer Society, 2003, p. 265–275.

[22] C. Cascaval and D. A. Padua, “Estimating cache misses and locality

using stack distances,” in Proceedings of the 17th Annual International

Conference on Supercomputing, ser. ICS ’03. New York, NY, USA:

Association for Computing Machinery, 2003, pp. 150–159. [Online]. Available:

https://doi.org/10.1145/782814.782836

[23] M. Chabbi, S. Wen, and X. Liu, “Featherlight on-the-fly false-sharing

detection,” in Proceedings of the 23rd ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, ser. PPoPP ’18. New York,

NY, USA: Association for Computing Machinery, 2018, p. 152–167. [Online].

Available: https://doi.org/10.1145/3178487.3178499

[24] M. J. Charney, “Intel X86 Encoder Decoder Software Library,”

https://software.intel.com/content/www/us/en/develop/articles/

xed-x86-encoder-decoder-software-library.html, Jul 2015.

[25] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and

K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”

in Proceedings of the 2009 IEEE International Symposium on Workload

Characterization (IISWC), ser. IISWC ’09. USA: IEEE Computer Society,

2009, p. 44–54. [Online]. Available: https://doi.org/10.1109/IISWC.2009.

5306797

[26] P. Cicotti and L. Carrington, “Adamant: Tools to capture, analyze, and man-

age data movement,” in The International Conference on Computational Sci-

ence, 2016. ICCS 2016., 2016.

[27] E. H. M. Cruz, M. Diener, L. L. Pilla, and P. O. A. Navaux,

“Eagermap: A task mapping algorithm to improve communication and

Bibliography 120

load balancing in clusters of multicore systems,” ACM Trans. Parallel

Comput., vol. 5, no. 4, pp. 17:1–17:24, Mar. 2019. [Online]. Available:

http://doi.acm.org/10.1145/3309711

[28] E. H. Cruz, M. Diener, and P. O. Navaux, “Using the translation lookaside

buffer to map threads in parallel applications based on shared memory,” in

2012 IEEE 26th International Parallel and Distributed Processing Symposium

(IPDPS), 2012.

[29] E. H. M. da Cruz, M. A. Z. Alves, A. Carissimi, P. O. A. Navaux, C. P. Ribeiro,

and J.-F. Mehaut, “Using memory access traces to map threads and data on

hierarchical multi-core platforms,” in 2011 IEEE International Symposium on

Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW),

2011.

[30] V. Danjean, R. Namyst, and P.-A. Wacrenier, “An efficient multi-level trace

toolkit for multi-threaded applications,” in Proceedings of the 11th Interna-

tional Euro-Par Conference on Parallel Processing, ser. Euro-Par’05. Berlin,

Heidelberg: Springer-Verlag, 2005, pp. 166–175.

[31] J. Dean, J. Hicks, C. Waldspurger, W. Weihl, and G. Chrysos, “Profileme:

hardware support for instruction-level profiling on out-of-order processors,”

in Proceedings of 30th Annual International Symposium on Microarchitecture,

1997, pp. 292–302.

[32] Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Solihin, “Predicting

inter-thread cache contention on a chip multi-processor architecture,” in 11th

International Symposium on High-Performance Computer Architecture, 2005,

pp. 340–351.

[33] M. Diener, E. H. M. Cruz, M. A. Z. Alves, and P. O. A. Navaux, “Commu-

nication in shared memory: Concepts, definitions, and efficient detection,” in

Bibliography 121

2016 24th Euromicro International Conference on Parallel, Distributed, and

Network-Based Processing, 2016.

[34] M. Diener, E. H. Cruz, L. L. Pilla, F. Dupros, and P. O. Navaux, “Charac-

terizing communication and page usage of parallel applications for thread and

data mapping,” Performance Evaluation, vol. 88-89, pp. 18–36, 2015.

[35] C. Ding and T. Chilimbi, “A composable model for analyzing locality

of multi-threaded programs,” Tech. Rep. MSR-TR-2009-107, August 2009.

[Online]. Available: https://www.microsoft.com/en-us/research/publication/

a-composable-model-for-analyzing-locality-of-multi-threaded-programs/

[36] C. Ding and Y. Zhong, “Reuse distance analysis,” Tech. Rep., 2001.

[37] J. M. Domingos, P. Tomas, and L. Sousa., “Supporting risc-v performance

counters through performance analysis tools for linux (perf),” in CARRV

2021: Fifth Workshop on Computer Architecture Research with RISC-V, 2021.

[38] P. J. Drongowski, “Instruction-Based Sampling: A New Performance Analy-

sis Technique for AMD Family 10h Processors,” https://pdfs.semanticscholar.

org/5219/4b43b8385ce39b2b08ecd409c753e0efafe5.pdf, November 2007.

[39] ——, “An introduction to analysis and optimization with amd codeanalyst™

performance analyzer,” Advanced Micro Devices, Inc., Tech. Rep., 2008.

[40] A. Eizenberg, S. Hu, G. Pokam, and J. Devietti, “Remix: Online

detection and repair of cache contention for the jvm,” in Proceedings

of the 37th ACM SIGPLAN Conference on Programming Language

Design and Implementation, ser. PLDI ’16. New York, NY, USA:

Association for Computing Machinery, 2016, p. 251–265. [Online]. Available:

https://doi.org/10.1145/2908080.2908090

Bibliography 122

[41] D. Eklov and E. Hagersten, “Statstack: Efficient modeling of lru caches,”

in 2010 IEEE International Symposium on Performance Analysis of Systems

Software (ISPASS), 2010, pp. 55–65.

[42] D. Eklov, D. Black-Schaffer, and E. Hagersten, “Fast modeling of shared

caches in multicore systems,” in Proceedings of the 6th International

Conference on High Performance and Embedded Architectures and Compilers,

ser. HiPEAC’11. New York, NY, USA: Association for Computing

Machinery, 2011, pp. 147–157. [Online]. Available: https://doi.org/10.1145/

1944862.1944885

[43] B. Gottschall, L. Eeckhout, and M. Jahre, “Tip: Time-proportional

instruction profiling,” in MICRO-54: 54th Annual IEEE/ACM International

Symposium on Microarchitecture, ser. MICRO ’21. New York, NY, USA:

Association for Computing Machinery, 2021, p. 15–27. [Online]. Available:

https://doi.org/10.1145/3466752.3480058

[44] V. Gramoli, “More than you ever wanted to know about synchronization:

Synchrobench, measuring the impact of the synchronization on concurrent

algorithms,” in Proceedings of the 20th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, ser. PPoPP 2015. New

York, NY, USA: Association for Computing Machinery, 2015, p. 1–10.

[Online]. Available: https://doi.org/10.1145/2688500.2688501

[45] J. L. Greathouse, “Re: Error : IBS profiling is disabled in

your BIOS ,” https://community.amd.com/t5/general-discussions/

error-ibs-profiling-is-disabled-in-your-bios/td-p/55043, AMD Community.

[46] ——, “Re: IBS not available on EPYC 7451 ?” https://community.amd.com/

t5/server-gurus-discussions/ibs-not-available-on-epyc-7451/m-p/258228,

AMD Community.

Bibliography 123

[47] ——, “AMD Research Instruction Based Sampling Toolkit,” https://github.

com/jlgreathouse/AMD IBS Toolkit, Jul 2017.

[48] B. Gregg, “perf Examples,” http://www.brendangregg.com/perf.html, Jul

2020.

[49] R. Hegde, “Optimizing Application Performance on Intel Core

Microarchitecture Using Hardware-Implemented Prefetchers,”

https://software.intel.com/content/www/us/en/develop/articles/

optimizing-application-performance-on-intel-coret-microarchitecture-using-hardware-implemented-prefetchers.

html, 2015.

[50] C. Helm and K. Taura, “Perfmemplus: A tool for automatic discovery of

memory performance problems,” in High Performance Computing, M. Wei-

land, G. Juckeland, C. Trinitis, and P. Sadayappan, Eds. Cham: Springer

International Publishing, 2019, pp. 209–226.

[51] X. Hu, X. Wang, L. Zhou, Y. Luo, Z. Wang, C. Ding, and C. Ye, “Fast miss

ratio curve modeling for storage cache,” ACM Trans. Storage, vol. 14, no. 2,

Apr. 2018. [Online]. Available: https://doi.org/10.1145/3185751

[52] Intel, Intel Performance Tuning Utility 3.2 Update. Intel Corporation, 2008.

[53] ——, “Intel Microarchitecture Codename Nehalem Performance Monitoring

Unit Programming Guide,” https://software.intel.com/sites/default/files/m/

5/2/c/f/1/30320-Nehalem-PMU-Programming-Guide-Core.pdf, 2010.

[54] ——, “Avoiding and Identifying False Sharing Among Threads,”

https://software.intel.com/content/www/us/en/develop/articles/

avoiding-and-identifying-false-sharing-among-threads.html, Intel Corpo-

ration, 2011.

Bibliography 124

[55] ——, Intel 64 and IA-32 Architectures Software Developer’s Manual - Vol-

ume 3B: System Programming Guide, Part 2. Order Number 253669, Intel

Corporation, May 2020.

[56] K. Ji, M. Ling, and L. Liu, “A probability model of calculating l2

cache misses,” in Proceedings of the 2018 International Conference on

Computer Science, Electronics and Communication Engineering (CSECE

2018). Atlantis Press, 2018/02, pp. 329–332. [Online]. Available: https:

//doi.org/10.2991/csece-18.2018.71

[57] K. Ji, M. Ling, Y. Zhang, and L. Shi, “An artificial neural network model

of lru-cache misses on out-of-order embedded processors,” Microprocessors

and Microsystems, vol. 50, pp. 66 – 79, 2017. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0141933117301126

[58] Y. Jiang, E. Z. Zhang, K. Tian, and X. Shen, “Is reuse distance applicable

to data locality analysis on chip multiprocessors?” in Compiler Construction,

R. Gupta, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp.

264–282.

[59] M. S. Johnson, “Some Requirements for Architectural Support of Software

Debugging,” in Proceedings of the First International Symposium on

Architectural Support for Programming Languages and Operating Systems,

ser. ASPLOS I. New York, NY, USA: ACM, 1982, pp. 140–148. [Online].

Available: http://doi.acm.org/10.1145/800050.801837

[60] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. DeVito,

R. Haque, D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz, and C. Still,

“Exploring traditional and emerging parallel programming models using a

proxy application,” in 27th IEEE International Parallel & Distributed Pro-

cessing Symposium (IEEE IPDPS 2013), Boston, USA, May 2013.

Bibliography 125

[61] R. Lachaize, B. Lepers, and V. Quema, “Memprof: a memory profiler for

NUMA multicore systems,” in USENIX ATC’12 Proceedings of the 2012

USENIX conference on Annual Technical Conference, 2012, p. 5.

[62] R. Lachaize, B. Lepers, and V. Quéma, “Memprof: A memory profiler for

numa multicore systems,” in Proceedings of the 2012 USENIX Conference on

Annual Technical Conference, ser. USENIX ATC’12. USA: USENIX Associ-

ation, 2012, p. 5.

[63] L. Lamport, “Concurrent reading and writing,” Commun. ACM, vol. 20,

no. 11, p. 806–811, Nov. 1977. [Online]. Available: https://doi.org/10.1145/

359863.359878

[64] F. Larysch, “Fine-grained estimation of memory bandwidth utilization,” Mas-

ter’s thesis, Karlsruhe Institute of Technology (KIT), Germany, 2016.

[65] M. Ling, J. Ge, and G. Wang, “Fast modeling l2 cache reuse distance

histograms using combined locality information from software traces,”

Journal of Systems Architecture, vol. 108, p. 101745, 2020. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1383762120300394

[66] M. Ling, X. Lu, G. Wang, and J. Ge, “Analytical modeling the multi-core

shared cache behavior with considerations of data-sharing and coherence,”

IEEE Access, vol. 9, pp. 17 728–17 743, 2021.

[67] Linux, “perf event open - Linux man page,” https://linux.die.net/man/2/

perf event open, 2012.

[68] ——, “SIGALTSTACK,” http://man7.org/linux/man-pages/man2/

sigaltstack.2.html, 2018.

[69] T. Liu and X. Liu, “Cheetah: Detecting false sharing efficiently and

effectively,” in Proceedings of the 2016 International Symposium on Code

Bibliography 126

Generation and Optimization, ser. CGO ’16. New York, NY, USA:

Association for Computing Machinery, 2016, p. 1–11. [Online]. Available:

https://doi.org/10.1145/2854038.2854039

[70] X. Liu and J. Mellor-Crummey, “Pinpointing data locality problems using

data-centric analysis,” in Proceedings of the 9th Annual IEEE/ACM Interna-

tional Symposium on Code Generation and Optimization, ser. CGO ’11. USA:

IEEE Computer Society, 2011, p. 171–180.

[71] ——, “A data-centric profiler for parallel programs,” in Proceedings of

the International Conference on High Performance Computing, Networking,

Storage and Analysis, ser. SC ’13. New York, NY, USA: Association for

Computing Machinery, 2013. [Online]. Available: https://doi.org/10.1145/

2503210.2503297

[72] ——, “A tool to analyze the performance of multithreaded programs on

numa architectures,” in Proceedings of the 19th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, ser. PPoPP ’14. New

York, NY, USA: Association for Computing Machinery, 2014, p. 259–272.

[Online]. Available: https://doi.org/10.1145/2555243.2555271

[73] ——, “A tool to analyze the performance of multithreaded programs on

numa architectures,” in Proceedings of the 19th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, ser. PPoPP ’14. New

York, NY, USA: Association for Computing Machinery, 2014, p. 259–272.

[Online]. Available: https://doi.org/10.1145/2555243.2555271

[74] X. Liu and B. Wu, “Scaanalyzer: A tool to identify memory scalability

bottlenecks in parallel programs,” in Proceedings of the International

Conference for High Performance Computing, Networking, Storage and

Analysis, ser. SC ’15. New York, NY, USA: Association for Computing

Bibliography 127

Machinery, 2015. [Online]. Available: https://doi.org/10.1145/2807591.

2807648

[75] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,

S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized

program analysis tools with dynamic instrumentation,” in Proceedings

of the 2005 ACM SIGPLAN Conference on Programming Language

Design and Implementation, ser. PLDI ’05. New York, NY, USA:

Association for Computing Machinery, 2005, p. 190–200. [Online]. Available:

https://doi.org/10.1145/1065010.1065034

[76] LULESH 2.0, “Livermore Unstructured Lagrangian Explicit Shock Hydrody-

namics (LULESH),” https://github.com/LLNL/LULESH.

[77] L. Luo, A. Sriraman, B. Fugate, S. Hu, G. Pokam, C. J. Newburn, and J. De-

vietti, “Laser: Light, accurate sharing detection and repair,” in 2016 IEEE In-

ternational Symposium on High Performance Computer Architecture (HPCA),

2016, pp. 261–273.

[78] R. K. V. Maeda, Q. Cai, J. Xu, Z. Wang, and Z. Tian, “Fast and accurate

exploration of multi-level caches using hierarchical reuse distance,” in 2017

IEEE International Symposium on High Performance Computer Architecture

(HPCA), 2017, pp. 145–156.

[79] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hog-

berg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full system simu-

lation platform,” Computer, vol. 35, no. 2, pp. 50–58, 2002.

[80] J. Mario, “C2C - False Sharing Detection in Linux Perf,” https://joemario.

github.io/blog/2016/09/01/c2c-blog/, 2016.

[81] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation techniques

for storage hierarchies,” IBM Systems Journal, vol. 9, no. 2, pp. 78–117, 1970.

Bibliography 128

[82] A. Mazaheri, F. Wolf, and A. Jannesari, “Characterizing loop-level commu-

nication patterns in shared memory applications,” in Proceedings of the 2015

44th International Conference on Parallel Processing, ser. ICPP 2015, 2015.

[83] ——, “Unveiling thread communication bottlenecks using hardware-

independent metrics,” in Proceedings of the 47th International Conference on

Parallel Processing, ser. ICPP 2018. New York, NY, USA: ACM, 2018, pp.

6:1–6:10. [Online]. Available: http://doi.acm.org/10.1145/3225058.3225142

[84] C. McCurdy and J. Vetter, “Memphis: Finding and fixing numa-related perfor-

mance problems on multi-core platforms,” in 2010 IEEE International Sym-

posium on Performance Analysis of Systems Software (ISPASS), 2010, pp.

87–96.

[85] R. E. McLear, D. M. Scheibelhut, and E. Tammaru, “Guidelines for Creating

a Debuggable Processor,” in Proceedings of the First International Symposium

on Architectural Support for Programming Languages and Operating Systems,

ser. ASPLOS I. New York, NY, USA: ACM, 1982, pp. 100–106. [Online].

Available: http://doi.acm.org/10.1145/800050.801833

[86] miniFE, “MiniFE Finite Element Mini-Application,” https://github.com/

Mantevo/miniFE.

[87] G. Nakhimovsky, “Debugging and Performance Tuning with Library Inter-

posers,” http://dsc.sun.com/solaris/articles/lib interposers.html, Jul 2001.

[88] D. S. Nikolopoulos, E. Ayguadé, and C. D. Polychronopoulos, “Runtime vs.

manual data distribution for architecture-agnostic shared-memory program-

ming models,” International Journal of Parallel Programming, vol. 30, no. 4,

pp. 225–255, 2002.

[89] A. R. Nonell, B. Gerofi, L. Bautista-Gomez, D. Martinet, V. B. Querol,

and Y. Ishikawa, “On the applicability of pebs based online memory access

Bibliography 129

tracking for heterogeneous memory management at scale,” in Proceedings

of the Workshop on Memory Centric High Performance Computing, ser.

MCHPC’18. New York, NY, USA: Association for Computing Machinery,

2018, p. 50–57. [Online]. Available: https://doi.org/10.1145/3286475.3286477

[90] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie, “Pinplay:

A framework for deterministic replay and reproducible analysis of parallel

programs,” in Proceedings of the 8th Annual IEEE/ACM International

Symposium on Code Generation and Optimization, ser. CGO ’10. New York,

NY, USA: Association for Computing Machinery, 2010, p. 2–11. [Online].

Available: https://doi.org/10.1145/1772954.1772958

[91] PENNANT, “Unstructured mesh hydrodynamics for advanced architectures,”

https://github.com/lanl/PENNANT, 2016.

[92] M. Pericas, K. Taura, and S. Matsuoka, “Scalable analysis of multicore

data reuse and sharing,” in Proceedings of the 28th ACM International

Conference on Supercomputing, ser. ICS ’14. New York, NY, USA:

Association for Computing Machinery, 2014, pp. 353–362. [Online]. Available:

https://doi.org/10.1145/2597652.2597674

[93] A. Pesterev, N. Zeldovich, and R. T. Morris, “Locating cache performance

bottlenecks using data profiling,” in Proceedings of the 5th European

Conference on Computer Systems, ser. EuroSys ’10. New York, NY, USA:

Association for Computing Machinery, 2010, p. 335–348. [Online]. Available:

https://doi.org/10.1145/1755913.1755947

[94] Quicksilver, “A proxy app for the Monte Carlo Transport Code, Mercury,”

https://github.com/LLNL/Quicksilver.

[95] C. Ramı́rez, C. A. Hernández, O. Palomar, O. Unsal, M. A. Ramı́rez,

and A. Cristal, “A risc-v simulator and benchmark suite for designing and

Bibliography 130

evaluating vector architectures,” ACM Trans. Archit. Code Optim., vol. 17,

no. 4, nov 2020. [Online]. Available: https://doi.org/10.1145/3422667

[96] V. Reddi, A. Settle, D. A. Connors, and R. Cohn, “Pin: a binary instrumen-

tation tool for computer architecture research and education,” in WCAE ’04,

2004.

[97] P. Roy and X. Liu, “Structslim: A lightweight profiler to guide structure

splitting,” in Proceedings of the 2016 International Symposium on Code

Generation and Optimization, ser. CGO ’16. New York, NY, USA:

Association for Computing Machinery, 2016, p. 36–46. [Online]. Available:

https://doi.org/10.1145/2854038.2854053

[98] P. Roy, S. L. Song, S. Krishnamoorthy, and X. Liu, “Lightweight detection

of cache conflicts,” in Proceedings of the 2018 International Symposium on

Code Generation and Optimization, ser. CGO 2018. New York, NY, USA:

Association for Computing Machinery, 2018, p. 200–213. [Online]. Available:

https://doi.org/10.1145/3168819

[99] L. Rudolph and Z. Segall, “Dynamic decentralized cache schemes for

mimd parallel processors,” in Proceedings of the 11th Annual International

Symposium on Computer Architecture, ser. ISCA ’84. New York, NY, USA:

Association for Computing Machinery, 1984, p. 340–347. [Online]. Available:

https://doi.org/10.1145/800015.808203

[100] J. M. Sabarimuthu and T. G. Venkatesh, “Analytical derivation of concurrent

reuse distance profile for multi-threaded application running on chip multi-

processor,” IEEE Transactions on Parallel and Distributed Systems, vol. 30,

no. 8, pp. 1704–1721, 2019.

[101] M. A. Sasongko, M. Chabbi, P. Akhtar, and D. Unat, “Comdetective: A

lightweight communication detection tool for threads,” in Proceedings of

Bibliography 131

the International Conference for High Performance Computing, Networking,

Storage and Analysis, ser. SC ’19. New York, NY, USA: Association for

Computing Machinery, 2019. [Online]. Available: https://doi.org/10.1145/

3295500.3356214

[102] M. A. Sasongko, M. Chabbi, M. B. Marzijarani, and D. Unat,

“Reusetracker: Fast yet accurate multicore reuse distance analyzer,” ACM

Trans. Archit. Code Optim., vol. 19, no. 1, dec 2021. [Online]. Available:

https://doi.org/10.1145/3484199

[103] D. L. Schuff, M. Kulkarni, and V. S. Pai, “Accelerating multicore reuse dis-

tance analysis with sampling and parallelization,” in 2010 19th International

Conference on Parallel Architectures and Compilation Techniques (PACT),

2010, pp. 53–63.

[104] D. L. Schuff, B. S. Parsons, and V. S. Pai, “Multicore-aware reuse distance

analysis,” in 2010 IEEE International Symposium on Parallel Distributed Pro-

cessing, Workshops and Phd Forum (IPDPSW), 2010, pp. 1–8.

[105] R. Sen and D. A. Wood, “Reuse-based online models for caches,”

SIGMETRICS Perform. Eval. Rev., vol. 41, no. 1, pp. 279–292, Jun. 2013.

[Online]. Available: https://doi.org/10.1145/2494232.2465756

[106] X. Shen, J. Shaw, and B. Meeker, “Accurate approximation of locality from

time distance histograms,” Tech. Rep., 2006.

[107] P. N. Soomro, M. A. Sasongko, and D. Unat, “Bindme: A thread

binding library with advanced mapping algorithms,” Concurrency and

Computation: Practice and Experience, vol. 30, no. 21, 2018. [Online].

Available: https://doi.org/10.1002/cpe.4692

[108] M. Srinivas, B. Sinharoy, R. J. Eickemeyer, R. Raghavan, S. Kunkel, T. Chen,

W. Maron, D. Flemming, A. Blanchard, P. Seshadri, J. W. Kellington, A. Mer-

Bibliography 132

icas, A. E. Petruski, V. R. Indukuru, and S. Reyes, “IBM POWER7 perfor-

mance modeling, verification, and evaluation,” IBM JRD, vol. 55, no. 3, pp.

4:1–4:19, May-June 2011.

[109] D. Tam, R. Azimi, and M. Stumm, “Thread clustering: sharing-aware schedul-

ing on SMP-CMP-SMT multiprocessors,” in Proceedings of the 2nd ACM

SIGOPS/EuroSys European Conference on Computer Systems 2007, 2007, pp.

47–58.

[110] F. Trahay, F. Rue, M. Faverge, Y. Ishikawa, R. Namyst, and J. Dongarra,

“Eztrace: A generic framework for performance analysis,” in 2011 11th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Comput-

ing, May 2011, pp. 618–619.

[111] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multithreading:

Maximizing on-chip parallelism,” in Proceedings of the 22nd Annual

International Symposium on Computer Architecture, ser. ISCA ’95. New

York, NY, USA: Association for Computing Machinery, 1995, pp. 392–403.

[Online]. Available: https://doi.org/10.1145/223982.224449

[112] D. Unat, A. Dubey, T. Hoefler, J. Shalf, M. Abraham, M. Bianco, B. L.

Chamberlain, R. Cledat, H. C. Edwards, H. Finkel, K. Fuerlinger, F. Han-

nig, E. Jeannot, A. Kamil, J. Keasler, P. H. J. Kelly, V. Leung, H. Ltaief,

N. Maruyama, C. J. Newburn, and M. Pericas, “Trends in data locality ab-

stractions for hpc systems,” IEEE Transactions on Parallel and Distributed

Systems, vol. 28, no. 10, pp. 3007–3020, Oct 2017.

[113] D. Unat, C. Chan, W. Zhang, S. Williams, J. Bachan, J. Bell,

and J. Shalf, “Exasat: An exascale co-design tool for performance

modeling,” The International Journal of High Performance Computing

Applications, vol. 29, no. 2, pp. 209–232, 2015. [Online]. Available:

https://doi.org/10.1177/1094342014568690

Bibliography 133

[114] D. Unat, T. Nguyen, W. Zhang, M. N. Farooqi, B. Bastem, G. Michelogian-

nakis, A. Almgren, and J. Shalf, “Tida: High-level programming abstractions

for data locality management,” in High Performance Computing, J. M. Kunkel,

P. Balaji, and J. Dongarra, Eds. Cham: Springer International Publishing,

2016, pp. 116–135.

[115] K. Viswanathan, “Intel® Memory Latency Checker v3.9,”

https://software.intel.com/content/www/us/en/develop/articles/

intelr-memory-latency-checker.html, 2013.

[116] J. Vitter, “Random sampling with a reservoir,” ACM Transactions on Math-

ematical Software (TOMS), vol. 11, pp. 37–57, 03 1985.

[117] VPIC, “Vector Particle-In-Cell (VPIC) Project,” https://github.com/lanl/

vpic.

[118] G. Wang, J. Ge, Y. Yan, and M. Ling, “A data-sharing aware and scalable

cache miss rates model for multi-core processors with multi-level cache hier-

archies,” in 2019 IEEE 25th International Conference on Parallel and Dis-

tributed Systems (ICPADS), 2019, pp. 267–274.

[119] Q. Wang, X. Liu, and M. Chabbi, “Featherlight reuse-distance measurement,”

in 2019 IEEE International Symposium on High Performance Computer

Architecture (HPCA). Los Alamitos, CA, USA: IEEE Computer Society,

feb 2019, pp. 440–453. [Online]. Available: https://doi.ieeecomputersociety.

org/10.1109/HPCA.2019.00056

[120] V. M. Weaver and S. A. McKee, “Can hardware performance counters be

trusted?” in 2008 IEEE International Symposium on Workload Characteriza-

tion, 2008, pp. 141–150.

[121] V. M. Weaver, D. Terpstra, and S. Moore, “Non-determinism and overcount

on modern hardware performance counter implementations,” in 2013 IEEE

Bibliography 134

International Symposium on Performance Analysis of Systems and Software

(ISPASS), 2013, pp. 215–224.

[122] S. Wen, X. Liu, J. Byrne, and M. Chabbi, “Watching for software

inefficiencies with witch,” in Proceedings of the Twenty-Third International

Conference on Architectural Support for Programming Languages and

Operating Systems, ser. ASPLOS’18. New York, NY, USA: Association

for Computing Machinery, 2018, pp. 332–347. [Online]. Available: https:

//doi.org/10.1145/3173162.3177159

[123] “Harmonic progression,” https://en.wikipedia.org/wiki/Harmonic

progression (mathematics), Wikipedia, accessed: 12 January 2021.

[124] M. Williams, “Statistical Profiling Extension for ARMv8-A,”

https://community.arm.com/developer/ip-products/processors/b/

processors-ip-blog/posts/statistical-profiling-extension-for-armv8-a, Jan

2017.

[125] X. Xiang, C. Ding, H. Luo, and B. Bao, “Hotl: A higher order theory of

locality,” SIGARCH Comput. Archit. News, vol. 41, no. 1, pp. 343–356, Mar.

2013. [Online]. Available: https://doi.org/10.1145/2490301.2451153

[126] H. Xu, Q. Wang, S. Song, L. K. John, and X. Liu, “Can we trust profiling

results? understanding and fixing the inaccuracy in modern profilers,” in

Proceedings of the ACM International Conference on Supercomputing, ser.

ICS ’19. New York, NY, USA: Association for Computing Machinery, 2019,

p. 284–295. [Online]. Available: https://doi.org/10.1145/3330345.3330371

[127] U. M. Yang, “Parallel algebraic multigrid methods high performance precon-

ditioner,” Numerical Solution of Partial Differential Equations on Parallel

Computers, LNCS 51, pp. 209–233, 2006.

Bibliography 135

[128] J. Yi, B. Dong, M. Dong, and H. Chen, “On the precision of precise

event based sampling,” in Proceedings of the 11th ACM SIGOPS Asia-

Pacific Workshop on Systems, ser. APSys ’20. New York, NY, USA:

Association for Computing Machinery, 2020, p. 98–105. [Online]. Available:

https://doi.org/10.1145/3409963.3410490

[129] Y. Zhong, X. Shen, and C. Ding, “Program locality analysis using reuse

distance,” ACM Trans. Program. Lang. Syst., vol. 31, no. 6, Aug. 2009.

[Online]. Available: https://doi.org/10.1145/1552309.1552310

Appendix A: List of Microbenchmarks 136

Appendix A

LIST OF MICROBENCHMARKS

Benchmark Name Description

Load-Ratio
Evaluates the accuracy of precise event sampling

facilities in capturing expected sample count

Locked-Load
Evaluates the accuracy of precise event sampling

facilities in capturing samples at low sampling intervals

Bias-Bench
Evaluates sampling bias and instruction attribution

accuracy of precise event sampling facilities

Mult-Event
Evaluates precise event sampling facilities when

monitoring different event numbers

Exec-Mode

Evaluates the accuracy of precise event sampling

facilities in associating samples with the execution

modes of the instructions that trigger them

Write-Volume

Evaluates the accuracy of inter-thread

communication analyzers in capturing total

communication counts of profiled applications

False-Sharing
Evaluates the accuracy of communication analyzers

in differentiating true sharing and false sharing

Read-Write
Evaluates the effect of mixing read and write

accesses to shared data on total communication counts

Point-to-Point

Communication

Evaluates the accuracy of communication analyzers

in capturing point-to-point communications

RIBench
Evaluates the accuracy of reuse distance analyzers

in capturing different reuse distance patterns

