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ÖNSÖZ 
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olduğu inkar edilemez bir gerçektir. Yapılan çalışmalar incelendiğinde insan fizyolojisini bilgisayar 

sistemlerine aktarmayı hedefleyen araştırmalara rastlanmaktadır. Son yıllarda beyin-bilgisayar sistemleri 

alanında çalışmalar yapıldığı ve beyin sinyallerinin farklı disiplinlere konu olduğu görülmektedir. Beyin 

sinyallerinin kararlı, güvenilir ve değiştirilemez olması bu alanda yapılan çalışmaların artmasına neden 
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Elektroensefalografi (EEG) sinyalleri beynin harfleri olarak nitelendirilmektedir ve bilgisayar 

bilimciler bu harfleri yan yana getirerek anlamlı cümleler elde etmeyi amaçlamaktadırlar. Bu sebepten dolayı 

EEG sinyallerini işleme sinir bilim ve makine öğrenmesi için sıcak başlıklı bir konudur. Ancak literatürdeki 

EEG işleme ve sınıflandırma çalışmaları genellikle hastalık tespiti ve duygu tespiti ile ilgilidir.  Bu tez 

kapsamında EEG sinyallerinden daha fazla bilgi çıkarmak için yeni bir proje başlatılmıştır ve bu projenin 

konusu EEG cümle sınıflandırmadır. Bu tez çalışmasında, iki adet EEG cümle veri seti her bir veri seti için 

20 katılımcı olmak üzere 40 adet gönüllü katılımcıdan toplanmıştır. Toplanan veri setleri 20 adet sınıf 

içermektedir ve bu sınıfların her biri bir cümleyi temsil etmektedir. Otomatik sınıflandırma modelleri 

önermek için mikro tanımlayıcılar ve çizge tabanlı özellik çıkarıcılar kullanılmıştır. 

Önerilen kare toplamlı çizge deseni tabanlı EEG sinyal sınıflandırma modeli, %99.19 sınıflandırma 

doğruluğuna ulaşmıştır. Bu çalışmada, toplam-kare grafiğine dayalı bir fonksiyonun öznitelik çıkarma 

yeteneği araştırılmıştır. Önerilen dinamik boyutlu ikili model ve yinelemeli çok sınıflandırıcılı ağırlıklı 

oylama tabanlı model ise gösterme ve dinleme modlarında sırasıyla %98,81 ve %98,19 ile en iyi genel 

sınıflandırma oranlarına ulaşmıştır. Elde edilen sonuçlar EEG sinyalleriyle cümle sınıflandırılmasının 

yapılabileceğini açıkça göstermiştir ve bu tez çalışması EEG cümle tanıma/sınıflandırma alanında yapılan ilk 

tezlerden biri olma özelliğini taşımaktadır. Elde edilen sonuçlar tez çalışmasının başarımını açık bir şekilde 

göstermektedir. 
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Electroencephalography (EEG) signals are described as the letters of the brain, and computer scientists aim 

to obtain meaningful sentences by combining these letters. For this reason, processing EEG signals is a hot 

topic for neuroscience and machine learning. However, EEG processing and classification studies in the 

literature are generally related to disease detection and emotion detection. Within the scope of this thesis, a 

new project has been started to extract more information from EEG signals and the subject of this project is 

EEG sentence classification. In this thesis study, two EEG sentence datasets were collected from 40 volunteer 

participants, 20 participants for each dataset. The collected data sets contain 20 classes and each of these 

classes represents a sentence. Micro descriptors and graph-based feature extractors are used to propose 

automatic classification models.  

The proposed square-sum graph pattern-based EEG signal classification model achieved a classification 

accuracy of 99.19%. In this study, the feature extraction capability of a function based on the sum-square 

graph was investigated. The DSBP-IMCMV based model, on the other hand, achieved the best overall 

classification rates with 98.81% and 98.19%, respectively, in showing and listening modes. The results 

clearly showed that sentence classification can be done with EEG signals, and this thesis is one of the first 

theses in the field of EEG sentence recognition/classification. The results obtained clearly show the success 

of the thesis study. 
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1. GİRİŞ 

İletişim, bireylerin bilgi, duygu ve düşüncelerini yazılı veya sözlü olarak diğer bireylere aktardığı 

önemli bir yaşam becerisi ve etkinliğidir [1]. Sesli iletişim, insanların duygu ve düşüncelerini diğer 

insanlara iletmek için kullandıkları yaklaşımdır. Sesli iletişimde taraflar birbirleriyle kelime ve 

işaretler kullanarak iletişim kurarlar. Pek çok gerçek dünya senaryosu, özellikle yazma veya 

konuşma yetisini kaybetmiş kişilerde sözlü olmayan iletişim gerektirir. Bununla birlikte hala 

bozulmamış bilişsel işlevi koruyan bireylerde [2], sözlü olmayan jestler, örneğin işaret dili 

kullanılarak iletişim hala mümkündür. Bu tür iletişime bir başka alternatif telepatik iletişimdir [3]. 

Telepatik iletişim temel olarak bilginin beyin dalgaları yoluyla aktarılmasıdır [4]. Bu aktarım 

sürecinde bireyler beş duyu organının yardımı olmadan iletişim kurarlar. Bu tür iletişim, özellikle 

konuşma yeteneğini kaybetmiş ancak bilişsel aktivitesi düzgün çalışan bireyler için önemlidir [2]. 

Alternatif olarak, bilgisayar tarafından üretilen metin/konuşma parçaları veya robotik destekli 

fiziksel hareketler olarak belirli düşünce tarafından üretilen aktivite sinyalini çıkarmak için beyin 

aktivitelerini kaydetmek ve yorumlamak için kullanılabilen beyin-bilgisayar arayüz cihazları 

geliştirilmiştir [5]. 

Elektroensefalografi (EEG) sinyali, hayali kelimeler ve cümleler de dâhil olmak üzere beyin 

aktivitelerini çözmek için makine öğreniminde yaygın olarak kullanılan önemli bir fizyolojik 

sinyaldir [6]. EEG sinyallerinin çevrilmesi beyin aktivitesini anlamak için çok önemlidir [7]. 

Günümüzde birçok sinirbilimci EEG sinyallerini yorumlama ve anlama üzerinde çalışmaktadır [8]. 

Uzman nörologlar genellikle beyinle ilgili bazı hastalıkların ön tanısı için EEG sinyallerini kullanır 

[9].  Ayrıca bu sinyaller hem tıbbi hem de tıbbi olmayan alanlarda sıklıkla kullanılmaktadır [10]. 

Özellikle kullanıcılardan toplanan EEG sinyallerinin otomatik olarak yorumlanması ve yorumlanan 

sinyalin çıktısının alınması gerçek dünya problemlerinde kullanılan bir yaklaşımdır. Günümüzde 

EEG sinyalleri kullanılarak sesli harf ve hece sınıflandırması literatürde çalışılan güncel konulardan 

biridir [7]. Ancak bu çalışmalar genellikle ünlü, hece ve kelime sınıflandırmasına odaklanmıştır 

[11]. Bu tez çalışmasında, EEG sinyallerini kullanarak cümle sınıflandırması için yeni yöntemler 

önerilmektedir.  

1.1. Motivasyon  

EEG beynin harfleri olarak kabul edilir ve birçok sinirbilimci beyin aktivitelerini anlamak için EEG 

sinyallerini doğru çevirmek ister [12, 13]. Bu çalışmada telepatik iletişim problemi bir EEG cümle 

sınıflandırması olarak tanımlanmıştır. Bu nedenle 40 katılımcıdan 20 cümlelik EEG sinyalleri 

toplanmıştır. Bu doğrultuda yeni bir EEG sinyal sınıflandırma alanı tanımlanmış ve EEG cümle 

sınıflandırması olarak adlandırılmıştır. Günümüzde derin öğrenme modelleri, yüksek sınıflandırma 
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sonuçları elde etmek için yaygın olarak kullanılmaktadır [14, 15]. Bununla birlikte, derin modeller, 

uygulamaları çok pahalı olduğu için üstel zaman karmaşıklığına sahiptir [16, 17]. Bu nedenle hafif 

ve doğruluğu yüksek bir model önerilmelidir. Bu problemin üstesinden gelmek için yeni birçok 

seviyeli öznitelik çıkarma modeli önerilmiştir. Bu tez çalışmasında önerilen ilk model, graf tabanlı 

bir özellik çıkarıcı kullanır. Bu grafiği oluşturmak için bir matematik probleminin çözümü 

kullanılmıştır. Bu problem kare toplam problemi olarak adlandırılır. Kare toplam problemine bir 

çözüm kullanılarak bir grafik elde edilmiştir ve bu grafik bir özellik çıkarıcı olarak kullanılır ve bu 

özellik çıkarıcı dokusal özellikler üretir. Ancak, bu özellik çıkarıcı, el yapımı bir fonksiyondur ve 

bu tip bir fonksiyon, yüksek düzeyde özellikler üretemez. Çok düzeyli öznitelik çıkarma problemini 

çözmek için etkin bir ayrıştırma modeli kullanılmış ve ayrıştırma modeli olarak TQWT [18] 

seçilmiştir. TQWT ile alt bantlar oluşturulur ve önerilen model, özellikleri oluşturmak için bu alt 

bantları uygular. Özellik seçiminde NCA [19] kullanılmış ve en iyi özellik kombinasyonu 

seçilmiştir. Bu özellikler kNN sınıflandırıcı [20] kullanılarak sınıflandırılmış ve oylama sonuçlarını 

hesaplamak için IMV [21] kullanılmıştır. 

Bu tez çalışmasında önerilen ikinci modelde ise çok düzeyli ayrık dalgacık dönüşümü (MDWT)  

[22] ile birleştirilmiş hesaplama açısından derin modeller kullanarak çok düzeyli özniteliklerin 

çıkarılması taklit edilmeye çalışılmıştır. İstatistiksel özellik çıkarıcılar ve yeni bir dinamik boyutlu 

ikili model (DSBP) dokusal özellik çıkarma işlevi, EEG sinyallerinden düşük ve yüksek seviyeli 

özellikler üretir. Bu nedenle, çoklu sınıflandırıcılardan ve EEG sinyal kanallarından hesaplanan 

çeşitli tahmin vektörlerinden elde edilen en iyi genel sonuçları belirlemek için yeni bir yinelemeli 

çoklu sınıflandırıcı tabanlı çoğunluk oylama (IMCMV) modeli kullanılmıştır. Sonuç olarak, 

önerilen DSBP-IMCMV tabanlı EEG cümle sınıflandırma modeli, çalışma veri setinde %98'in 

üzerinde sınıflandırma doğruluğuna ulaşmıştır. 

1.2. Yenilikler  

Önerilen EEG cümle sınıflandırma modelinin yeni yönleri;  

- Literatürde EEG ile ilgili birçok makine öğrenmesi çalışması bulunmaktadır. Bu çalışmalar 

genellikle duygu veya hastalık tanıma tabanlıdır. Ancak, EEG verisini girdi olarak 

kullanarak cümlelerin sınıflandırılmasıyla ilgili yöntem sayısı çok azdır ve EEG cümle 

sınıflandırma modellerinin test edilebileceği açık veri setleri bulunmamaktadır. Bu boşluğu 

doldurmak için iki adet yeni EEG veri seti toplanmıştır. 

- EEG sinyallerinden cümle tanıma problemi sınıflandırma problemi olarak tanımlanmıştır. 

- Graf tabanlı modeller, makine öğreniminde çok popüler ve etkilidir. Bu modelde, yeni bir 

graf tabanlı özellik çıkarım ve dinamik boyutlu ikili örüntü tabanlı özellik çıkarım modeli 

önerilmiştir. 
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- Bu tez çalışmasında iki adet yüksek başarıma sahip EEG cümle sınıflandırma modeli 

önerilmiştir. 

1.3. Katkılar  

Tezin literatüre sağladığı katkılar aşağıdaki gibi verilmiştir. 

- Bu tez çalışması kapsamında ilk kez 20 sınıflı EEG cümle veri setleri toplanmıştır. Bu 

yönüyle cümle sınıflandırması için bilindiği kadarıyla en kapsamlı veri setleri toplanmıştır. 

- Yeni bir kare toplamlı grafik, istatistiksel öznitelik çıkarımı, TQWT, NCA, kNN ve IMV 

kullanılarak etkili bir EEG sinyal sınıflandırma modeli önerilmiştir. Aslında, elle 

modellenen yeni bir öğrenme mimarisi önerilmiştir. Bu öğrenme mimarisi, özellik 

çıkarmada dokusal özellik çıkarma, istatistiksel özellik çıkarma ve dönüştürme olmak 

üzere üç ana bölüm içerir. Bu bölümlerde, kullanıcılar diğer işlevleri kullanabilir. Ayrıca, 

en iyi özellik kombinasyonlarını seçmek için NCA kullanılmıştır. kNN basit/sığ bir 

sınıflandırıcıdır ve bu sınıflandırıcı üretilen özniteliklerin gücünü göstermek için 

kullanılmıştır. Bu aşamada diğer sınıflandırıcılar kullanılabilir. Önerilen mimarinin son 

aşamasında, sonuç sayısını artırmak ve oylanan sonuçları elde etmek için IMV 

kullanılmıştır. Açgözlü algoritma (Greedy Algorithm) kullanarak oluşturulan mimari en iyi 

sonuçları seçebilir. Bu açıdan önerilen model parametrik ve kendi kendini organize eden 

bir mimaridir. 

- Dokusal özellikler oluşturmak için sabit olmayan boyutta örtüşen bloklar kullanan yeni bir 

özellik çıkarıcı olan DSBP önerilmiştir. Önerilen tez bu açıdan yenilikçi bir tezdir. 

- Genel performans ölçümlerini oluşturmak için EEG kaydındaki tüm kanallardaki iki 

sınıflandırıcının sonuçlarını kullanan yeni bir çoğunluk oylama modeli olan IMCMV 

önerilmiştir. 

- Veri seti toplamak için iki adet model kullanılmıştır. Bu modeller (i) gösterim ve (ii) 

dinleme tabanlı EEG toplama yöntemleridir.  

- Oluşturulan otomatik DSBP-IMCMV EEG cümle sınıflandırma modeli, hesaplama 

açısından hafiftir ve %98'in üzerinde genel sınıflandırma doğruluğu elde etmiştir. 

1.4. Tezin Amacı  

Günümüzde insan-makine etkileşiminin artmasıyla birlikte insan fizyolojisinin bilgisayar 

sistemlerine aktarılması amaçlanmıştır. Son yıllarda beyin sinyallerinin farklı alanlara konu olduğu 

görülmektedir. EEG sinyallerinden hece ve kelime sınıflandırması bu alandaki güncel 

çalışmalardan biridir. Bu tez çalışması, hece ve kelime sınıflandırmasından farklı olarak tam bir 

cümle sınıflandırmasını amaçlamaktadır. Literatürde daha önce böyle bir çalışmaya rastlanmamış 
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olup EEG alanında kullanılan veri setleri de yetersizdir. Bu amaç doğrultusunda yeni bir EEG 

sinyalleri içeren veri seti oluşturulacaktır. Oluşturulan veri setleri kullanılarak yeni nesil özellik 

mühendisliği yöntemleri önerilmiştir. Özellik mühendisliği yöntemlerinin temel amacı, düşük 

algoritmik karmaşıklık ile yüksek performans elde etmektir. Tezin temel amaçları aşağıda 

verilmiştir: 

- Literatür taramasından da anlaşılacağı üzere EEG cümle sınıflandırmasıyla ilgili çalışma 

sayısı sınırlıdır. Bunun temel nedeni ise açık kaynak EEG sinyal veri setlerinin yetersiz 

olmasıdır. EEG cümle sınıflandırma konusuna katkı sağlamak ve bu konunun 

geliştirilmesini desteklemek için yeni EEG sinyal veri setleri toplanmıştır. 

- Derin öğrenme mimarileri günümüzde popüler olan mimarilerdir çünkü derin öğrenme 

mimarileri yüksek performansa sahiptirler. Ancak, derin öğrenme mimarileri yüksek 

hesapsal karmaşıklığa sahip olduğundan pahalı donanımların kullanılması gerekmektedir. 

Bu problemi çözebilmek için iki adet özellik mühendisliği mimarisi önerilmiştir. 

1.5. Tezin Organizasyonu  

Bu tez çalışması 8 bölümden oluşmaktadır. Tezin geriye kalan kısımları şu şekilde organize 

edilmiştir. İkinci bölümünde insan beyninin genel yapısı, EEG sinyalleri ve sinyallerin toplanma 

süreci hakkında bilgi verilmiştir. Üçüncü bölümde gerçekleştirilen literatür taraması sunulmuştur. 

Dördüncü bölümde, materyaller ve metotlar, Beşinci bölümde önerilen kare toplamlı grafik deseni 

ve dinamik boyutlu ikili örüntü tabanlı EEG cümle tanıma yöntemlerinin çalışma prensibinden 

bahsedilmiştir. Altıncı bölümde, önerilen yöntemin uygulama adımları gerçekleştirilmiş ve deney 

süreci hakkında bilgi verilmiştir. Yedinci bölümde elde edilen bulgular tartışılmıştır. Sekizinci ve 

son bölümde ise sonuç ve önerilerden bahsedilmiştir.
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2. İNSAN BEYNİ YAPISINA GENEL BAKIŞ 

Sinir merkezlerinin en büyüğü olan beyin, kafatasının yukarı kısmında bulunur. İnsan vücudundaki 

nöronların %90’ından fazlasını içerir. Öğrenme, hafıza, duyguların ve mantık yürütmenin 

merkezidir. Beynin üst tabakası sinir hücrelerinden oluşurken alt tabakası sinir hücrelerinin 

uzantılarından oluşmaktadır. Beyin, Şekil 2.1’de gösterildiği gibi üzerinde kıvrımlar bulunan iki 

yarım küreye ayrılmıştır [23, 24].  

Sol yarım küre: İnsan beyninin mantıksal kısmıdır. Matematiksel işlemler, analitik düşünme 

becerisi, sayı ve sembollerle ilgilenen kısımdır. Beynin sol lobu insan vücudunun sağ tarafındaki 

organlarını yönetir. Konuşma ve dil merkezidir. Akademik ve bilimsel konularda başarılıdır. 

Sağ yarım küre: İnsan beyninin yaratıcı kısmıdır. Görsel ve sanatsal konularla ilgilenir ve sezgileri 

yönetir. Duygusaldır. Beynin sağ lobu insan vücudunun sol tarafındaki organları yönetir. 

 

 

 

Şekil 2.1. Beyin Loblarının İşlevleri 

Temelde sağ ve sol yarım kürelerden oluşan beyin, incelemelerin daha detaylı ve anlaşılır olması 

açısından loblara ayrılmıştır [24]: 

Ön (Frontal) Lob: Simetrik bir yapıya sahip olan ön beyin ilkel hayvanlarda bulunmaz. Alnın 

hemen arkasında bulunmakta ve beyin yapısının yaklaşık olarak yarısını oluşturmaktadır. Beynin 

kontrol merkezi olup mantık yürütme, problem çözme, empati, cömertlik duyguları ve davranışlarla 

ilgilidir. 
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Şakak (Temporal) Lob: Beynin iki yanında kulak hizasında bulunur ve işitsel görevleri 

gerçekleştirir. Ses ve kokuları tanımlar ve hatırlar. 

Yan (Parietal) Lob: Beynin sağ ve sol bölümlerinde iki tane bulunur. Şekil ve renkleri algılama, 

görme algısı gibi yetenekleri kontrol eder. Yan loblardaki herhangi bir sinir hücresinin zarar 

görmesi Alzheimer hastalığına neden olabilir.  

Arka (Oksipital) Lob: Beynin en arkasında bulunur ve görsel uyarıları algılar. Görmeye dair tüm 

görevler burada gerçekleşir. Bu lobda meydana gelen herhangi bir hasar görme bozukluğuna yol 

açabilir. 

Beyincik (Serebellum) Lobu: Vücut dengesinin sağlanmasında önemli role sahiptir. Kol ve bacak 

kaslarının uyumlu çalışması beyincik lobu sayesindedir.  

Beyinde bulunan bu kısımların hangi alanda geliştiğini ve çalıştığını bilmek,  yapılan çalışmalar 

için alınacak EEG kayıtlarında kafatasının hangi alanlarından ölçümler yapılması gerektiğinin 

bilinmesi açısından önemlidir. 

2.1. EEG Sinyalleri 

Beyin içerisinde bulunan sinir hücrelerinin elektriksel aktiviteleri akımları oluşturur. Bu akımların 

meydana getirdiği gerilim değişimlerinin kaydedilmesi ile elde edilen işaretlere 

Elektroensofalogram (EEG) sinyalleri denir.  

EEG işaretlerinin varlığı tarihte ilk kez 1875 yılında Caton tarafından hayvanlar üzerinde yapılan 

çalışmalar neticesinde tespit edilmiştir.  İnsan beynindeki elektriksel faaliyetler ise 1929 yılında 

Hans Berger’in kafatasına yerleştirdiği elektrotlar ve elektrotlara bağlı galvanometre ile ortaya 

çıkmıştır. Daha sonra Berger, yaptığı çalışmalar neticesinde gözlerin açılıp kapanmasının EEG 

işaretlerinde değişimlere neden olduğunu göstermiştir. 

Gelişen teknolojiyle birlikte EEG sinyallerinin analizinde de kullanılan yöntemlerde de büyük 

gelişmeler yaşanmaya devam etmektedir. EEG sinyallerinin analizi yalnızca tıp alanı ile sınırlı 

kalmayıp farklı disiplinlere de konu olmaktadır. 

Çalışmalarda gerek kullanım kolaylığı gerekse ekonomik olması nedeniyle EEG, en çok kullanılan 

yöntemlerin başında gelmektedir. Teknolojinin gelişmesiyle birlikte EEG cihazları herkesin 

ulaşabileceği şekilde üretilmeye başlanmıştır. Bu sayede büyük cihazlara gerek kalmadan Wi-Fi, 

Bluetooth aracılığıyla da EEG işaretleri elde edilebilmektedir. 

EEG kafa derisine belirli bir düzen içinde yerleştirilen elektrotlar aracılığıyla beyindeki elektriksel 

aktiviteyi ölçer. Ölçüm esnasında beyne veya vücudun herhangi bir yerine elektrik iletimi söz 

konusu değildir bu nedenle işlem ağrısız ve zararsızdır [23]. 

2.2. EEG Sinyalleri Dalga Modelleri 
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EEG sinyalleri durağan olmayan özelliğe sahip olup genliği 2-100 μV arasında,  frekansı ise 1-100 

Hz arasında değişmektedir. Bireylerin uyku, uyanıklık, hareket etme durumlarına göre EEG 

sinyallerinin genlik ve frekansları değişiklik gösterir (Tablo 2.1). Frekans bantları insan beyninin 

çeşitli görevlerini tanımlamak için kullanılabilir [25]: 

 

 
Tablo 2.1. EEG Sinyalleri Dalga Modelleri 

Dalga Boyu  Frekans Aralığı 

Delta 0 – 4 Hz 

Teta 4 – 8 Hz 

Alfa 8 – 13 Hz 

Beta  13 – 30 Hz 

Gama 30 – 100 Hz 

 

 

Delta dalgaları: 0 ile 4 Hz arasında değişir. Derin uyku ile ilgili olup yavaş dalgalardır. Bebeklerde 

görülür. Uyanık gençlerin ve yetişkinlerin EEG verilerinin bileşeni değildir.  

Teta dalgaları: 4 ile 8 Hz arasında değişir. Yetişkinlerde uyku ve meditasyon sırasında gözlenir.  

Alfa dalgaları: 8 ile 13 Hz arasında değişir. Genel olarak görsel işleme, hafıza aktiviteleri ile 

ilişkilidir. Sakin ve stressiz zamanlarda beyindeki oksipital kısımda bulunur.  

Beta dalgaları:13 ile 30 Hz arasında değişir. Beyin aktif bir şekilde çalışırken beynin ön ve orta 

kısımlarında oluşur. İnsanlar korktuğunda veya paniğe kapıldığında yüksek seviyeli beta dalgaları 

yansıyabilir.  

Gama beyin dalgası ise 30 Hz’in üzerindeki yüksek frekanslı dalgalardır. EEG kayıtlarında 

genellikle filtrelenir. Bilgi analizi, görsel/işitsel uyaran sentezi gibi yüksek seviyeli beyin aktivitesi 

ile ilişkili alanlardır.  

Beta ve Gama yüksek frekanslı sinyaller duygu tanıma çalışmalarında diğer sinyallere oranla daha 

başarılı sonuçlar sunmaktadır. 

2.3. EEG Elektrotları 

EEG kayıt sistemleri elektrotlardan oluşmaktadır. Elektrotlar, insan kafası derisi üzerinden beyin 

dalgalarını kaydetmek amacıyla kullanılır. Duygu tanıma çalışmasının en önemli aşamalarından 

biri de elektrot yerleştirmesidir. Beynin ürettiği sinyallerin özellikleri, beynin farklı bölgelerinde 

değişiklik göstermektedir. Bu nedenle beyin loblarının işlevlerini bilmek yapılacak çalışmalarda 

elektrotların yerleştirileceği alanın bilinmesi açısından önem sağlar. 
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İnsan kafasına yerleştirme aşamasında uluslararası kabul görülen 10/20 EEG elektrot 

konumlandırma sistemi dikkate alınır. Bu sisteme göre iki elektrot arasındaki mesafe kafatasının 

ön arka veya sağ-sol mesafesinin %10 veya % 20’sidir ve her elektrotu tanımlayan bir etiketi vardır.  

Çok fazla elektrotun bakımını yapmak araştırmacılar için zor olup sistemin karmaşık hale 

gelmesine neden olmaktadır. Bu zorluğu önlemek için çalışmalarda elektrot sayısının düşük 

tutulması tavsiye edilmektedir [23].  

EEG sinyallerini algılamak amacıyla kullanılan elektrotlar iki farklı şekilde kullanılabilir [23]: 

Dahili Elektrotlar: EEG işaretlerini almak için vücut içine yerleştirilen elektrotlardır. Diğer 

elektrot türlerine göre daha iyi sonuçlar elde eder fakat gerek işaretleri elde eden kişiyi gerekse 

işaret elde edilen bireyleri rahatsız etmektedir. Bu süreçte cerrahi müdahaleye gerek duyulduğu için 

tercih edilmez.  

Yüzey Elektrotlar: EEG işaretlerini saçlı deri üzerinden almaya yarayan elektrot türüdür. Beyin- 

bilgisayar sistemleri alanında yapılan çalışmalarda yüzey elektrotlardan faydalanılır. 

 

 

 

 

Şekil 2.2. Uluslararası kabul edilen 10-20 sistemi 

Uluslararası kabul edilen 10-20 sistemine göre elektrotların kafa derisine yerleştirilme düzeni Şekil 

2.2’deki gibidir. Kafanın ön kısmı Nasion, arka kısmı Inion olarak da adlandırılır. Cz ise tam ortayı 

göstermektedir. 
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Elektrotlar, bir harf ve bir rakam ile birlikte isimlendirilmektedir. Ara elektrotlarda ise iki harf 

kombinasyonu bulunmaktadır. Harfler, elektrotun bulunduğu beynin kısımlarını ifade eder. (Tablo 

2.2) 

Çift sayılı elektrotlar (2,4,6,8) kafatasının sağ tarafına ve tek sayılı elektrotlar (1,3,5,7) kafatasının 

sol tarafına yerleştirilir [25]. 

 

 
Tablo 2.2. Elektrotların Adlandırılması 

       

Fp Frontal Kutup FC Frontal ve merkez elektrotlar arası   

F Frontal (ön lob) PO Parietal ve oksipital elektrotlar arası   

C Central (merkez) Fz Frontal Lob merkezi   

T Temporal (şakak lobu)     

P Parietal (yan lob)     

O Oksipital (arka lob)     

A Kulak Elektrodu     

2.4. EEG Sinyallerinin Kalitesini Etkileyen Faktörler 

EEG sinyalleri son derece hassas veriler olduğu için kayıt esnasında laboratuvar ortamındaki 

faktörlerden olumsuz etkilenebilir. Bunun sonucunda EEG sinyalleri parazitler ile birlikte 

kaydedilebilir. Bu parazitler artefakt ya da gürültü olarak adlandırılır. EEG sinyallerinin her türlü 

iç ve dış etkenlerden etkilenmesi nedeniyle elde edilen kayıtlarda mutlaka artefaktlar olup bu 

duruma engel olunamamaktadır. Çalışmalarda yapılacak ölçümlerin doğru sonuçlar vermesi için 

de işlemlere başlamadan önce bu gürültülerin sinyalden kaldırılması gerekir. 

Artefaktların oluşumunun birden fazla nedeni olabilir. Genel olarak oluşumları deneyde bulunan 

katılımcılara ve kullanılan kayıt cihazına bağlıdır: 

Biyolojik artefaktlar: Genellikle deneklerin göz ve göz kapağının hareketine, kalp atışlarına, 

terlemelerine ve kas kasılması gibi sebeplere bağlı olarak oluşan artefaktlardır. 

Hareket sonucu oluşan artefaktlar: Katılımcıların el titremesi, kafa hareketleri, kol veya vücudun 

herhangi bir uzvunun hareketi sonucu oluşan artefaktlardır. 

Elektrotlara bağlı oluşan artefaktlar: Kayıt cihazında bulunan elektrotların deride bulundukları 

yerden oynaması, doğru yerleştirilmemesi veya elektrotların bozuk olmalarından kaynaklanan 

artefaktlardır. 
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Bu durumlarda alınan tedbirler sonucu artefakt oluşmaya devam edildiği takdirde cihazdan 

kaynaklı bir sorun olduğu düşünülebilir. Bu durumda cihazın yetkili servisiyle iletişime 

geçilmelidir.
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3. LİTERATÜR TARAMASI  

Literatürde bu konu ile ilgili çalışma sayısı oldukça sınırlıdır. Bu çalışmada önerilen yöntemler ile 

bu problem çözülmeye çalışılmış ve EEG cümle sınıflandırması yapılmıştır.  

DaSalla ve arkadaşları [26]  2009 yılında /a/ ve /u/ ünlülerini sınıflandırmak için 2 erkek 1 kadın 

katılımcıdan oluşan bir çalışma gerçekleştirmiştir. 5 kat çapraz doğrulama, ortak uzamsal desen ve 

destek vektör makinesi yöntemlerini kullanarak %78 doğruluk bildirmişlerdir. Çalışmada düşük 

sınıf sayısı ve az sayıda katılımcı bulunup doğruluk değeri düşüktür. Garcia ve arkadaşları [27]  

2012’de gerçekleştirdikleri çalışmada ayrık dalgacık dönüşümü ve rastgele ormanlar kullanarak 

“arriba”, “abajo”, “izquierda”, “derecho”, “seleccionar” kelimelerini sınıflandırmayı 

amaçlamışlardır. 21 katılımcının bulunduğu çalışma düşük doğruluk değerine sahiptir. Min ve 

arkadaşları [28]  2016 yılında ünlü harfleri sınıflandırmak için özellik çıkarma (ortalama, varyans, 

standart sapma, çarpıklık), özellik seçimi için seyrek regresyon modeli, sınıflandırma aşamasında 

aşırı makine öğrenmesi yöntemini kullanarak  /a/, /e/, /i/, /o/, /u/ ve MUTE şeklinde altı sınıftan 

oluşan çalışma gerçekleştirmişlerdir. Çalışmada /a/ ve /e/, /a/ ve mute vb. şeklinde ikili 

sınıflandırma kullanılmış olup yalnızca 5 erkek katılımcı bulunmaktadır. Qureshi ve arkadaşları 

[29]  2017’de bağlantı ölçüm yöntemleri, aşırı öğrenme makinesi kullanarak “go”, “back”, “left”, 

right, “stop” kelimelerini sınıflandırmayı amaçlamışlardır. Çalışmada 2 kadın, 6 erkek olmak üzere 

8 katılımcı bulunmaktadır ve çalışma düşük bir doğruluk değerine sahiptir. Balaji ve arkadaşları 

[30] 2017 yılında spektral güç özellik çıkarımı, yapay sinir ağı kullanarak Hintçe ve İngilizce olmak 

üzere 2 farklı dilde kelime sınıflandırma çalışması yapmışlardır. Hintçe “Haan”, “Na” ve İngilizce 

“Yes”, “No” kelimelerinin sınıflandırılmasını amaçlayan bu çalışmada 5 katılımcı bulunmaktadır. 

Sınıf sayısının ve katılımcı sayısının az olması çalışmadaki dezavantajlardan bazılarıdır. Cooney 

ve arkadaşları [31] 2018 yılında Mel frekansı cepstral katsayıları, istatistiksel özellik çıkarımı, 

destek vektör makinesi yöntemlerini kullandıkları çalışmada  /iy/, /uw/, /piy/, /tiy/, /diy/, /m/, /n/, 

“pat”, “pot”, “knew”, “gnaw” olmak üzere 7 hece ve 4 kelimeyi sınıflandırmaya çalışmışlardır. 14 

katılımcının bulunduğu çalışmanın doğruluk değeri düşüktür. Tottrup ve arkadaşları [32] 2019 

yılında zamansal ve spektral özellikler ve rastgele orman yöntemlerini kullanarak  “go”, “stop”, 

“viborg” kelimelerini sınıflandırmaya çalıştılar. 5 kadın 2 erkek olmak üzere 7 katılımcının 

bulunduğu bu çalışmada sınıf ve katılımcı sayısı düşük olmakla birlikte çalışmanın doğruluk değeri 

de düşüktür. Jahangiri ve arkadaşları [33] 2019’da yaptıkları çalışmayla /ba/, /fo/, /le/, /ry/ 

hecelerini sınıflandırmayı amaçlamışlardır. Çalışmada ayrık gabor dönüşümü ve lineer 

diskriminant analizi kullanılmış olup 6 katılımcı bulunmaktadır. Pawar ve Dhage [34] 2020 yılında 

yaptıkları çalışmayla “left”, “right”, “up”, “down” kelimelerini sınıflandırmayı amaçlamışlardır. 

Çalışmada 2 kadın, 4 erkek olmak üzere 6 katılımcı bulunmaktadır ve çalışmanın doğruluk değeri 
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çok sınıflı sınıflandırma için düşüktür. Cooney ve arkadaşları [35] 2020 yılında evrişimli sinir 

ağlarını kullanarak /a/, /e/, /i/, /o/, /u/ sesli harfleri ve “arriba”, “abajo”, “izquierda”, “derecho”, 

“selecionar” kelimelerini sınıflandırmayı amaçlamışlardır. Çalışmada 15 katılımcı bulunmaktadır 

ve çalışma düşük doğruluk değerine sahiptir. M.A. ve arkadaşları [36], 2022 yılında bağlantı 

matrisleri ve destek vektör makinesi yöntemlerini kullanarak /æ/, /o/, /a/, /u/ ünlülerini 

sınıflandırmayı amaçlamışlardır. Çalışmada 2 kadın, 6 erkek olmak üzere 8 katılımcı 

bulunmaktadır. Dash ve arkadaşları [37]  2022 yılında çok değişkenli hızlı ve uyarlanabilir deneysel 

mod ayrıştırması ve sözlük öğrenme yöntemlerini kullanarak 15 katılımcı ile “Left”, “Right”, “Up”, 

“Down”, “Forward”, “Backward” kelimelerini sınıflandırmayı amaçlamışlardır. Çalışma çok sınıflı 

sınıflandırma için düşük doğruluk değerine sahiptir. Kamble ve arkadaşları [38], üç farklı veri 

kümesi üzerinde ikili ve çoklu sınıf sınıflandırması için değerlendirdikleri, ayrıştırma işleme, 

istatistiksel özellik çıkarımı, Kruskal Wallis testine dayalı özellik seçimi ve sınıflandırmayı 

birleştiren, hayali kelime tanıma için bir EEG sınıflandırma modeli önermişlerdir. Bakhshali ve 

arkadaşları [39] sekiz denekten toplanan EEG sinyallerinden dört kelime ve yedi fonem/heceyi 

sınıflandırmak için modellerinde korrentropi spektral yoğunluk matrisleri, Riemann mesafesi ve k-

en yakın komşu (kNN) sınıflandırıcı kullanmışlardır. Benzer bir çalışmada, evrişimli sinir ağı 

(CNN), 15 denekten toplanan EEG sinyallerinden beş ünlü ve altı kelimenin sınıflandırılmasını 

gerçekleştirmek için transfer öğrenme ile birleştirilmiştir [40]. Salinas ve arkadaşları [41] 

önerdikleri yöntemi kullanarak 27 deneğin EEG sinyallerinden beş kelimeyi sınıflandırmak için 

%68.18 doğruluk elde ettiler. Panachakel ve arkadaşları [42] 9 kanallı EEG sinyallerinden hayali 

konuşmanın kodunu çözmek için ayrık dalgacık dönüşümü (DWT) ile birleştirilmiş bir derin 

öğrenme mimarisi önererek %86.2 doğruluk elde etmişlerdir. Aynı yazarlar, farklı bir veri setinde 

aynı modeli kullanarak ortalama sınıflandırma doğruluğunun %57.15 olduğunu bildirdiler [43].  

[44] 'de, hayali konuşma tanıma problemine yeni bir model geliştirmek için iki farklı evrişimli sinir 

ağı, ortak bir uzamsal model ve bir lineer diskriminant analizi sınıflandırıcısı kullanılmış ve 

%62.37'lik maksimum doğruluk elde edilmiştir. Ayrıca literatürde biyomedikal alanda EEG işaret 

sınıflandırması ile ilgili birçok çalışma bulunmaktadır. Goshvarpour [45] EEG sinyali kullanan bir 

epileptik nöbet saptama yöntemi önermiştir. Epileptik nöbetleri tespit etmek için iki adet iki parçalı 

gül sarmal eğri modeli kullandı ve SVM ve kNN sınıflandırıcıları ile %100.0 doğruluk değerine 

ulaştı. Buriro ve arkadaşları [46] alkollü EEG sinyallerini otomatik olarak saptamak için dalgacık 

saçılma dönüşümü ve evrişimli sinir ağı kullandı. UCI veri seti üzerinde (20 alkolik denek ve 20 

sağlıklı deneğin EEG sinyalleri)  SVM sınıflandırıcısı kullanılarak alkollü EEG sinyallerinin 

saptanmasında %100 doğruluk bildirmişlerdir. Cherloo ve arkadaşları [47] motor imgeleme için bir 

EEG sinyal sınıflandırma modeli geliştirdiler. Topluluk düzenlileştirilmiş ortak uzamsal-spektral 

modeli uyguladılar. BCI III ve BCI IV için sırasıyla %86.91 ve %82.64 doğruluk bildirdiler. Wen 

ve arkadaşları [48], EEG sinyallerini kullanan düşük güçlü bir epilepsi saptama yaklaşımı sundular. 
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Kaldırma dalgacık dönüşümü ve SVM sınıflandırıcı kullanarak %91.86 doğruluk elde ettiler. Wang 

ve arkadaşları [49] EEG sinyallerini kullanarak en ayırt edici özelliği seçmek için istatistiksel 

yöntem uygulamışlardır. Çalışmalarının temel amacı, etkili bir öznitelik çıkarma yöntemi önermek 

ve yöntemin performansını test etmektir. Yöntemleri SVM sınıflandırıcı ile %81.99 doğruluk elde 

etmiştir. Baygın ve arkadaşları [16], EEG sinyalleri ile şizofreni saptaması için Collatz desen 

modeli ve yinelemeli komşu bileşen analizi kullanmışlardır. 19 kanallı veri setleri için sırasıyla 

%99,47 ve 10 kanallı veri setleri için %93,58 doğruluk değerine ulaşmışlardır. Aydemir ve 

arkadaşları [50] epilepsi hastalığı tespiti için dörtlü simetrik bir model önermiştir. Bonn EEG veri 

setini kullanarak kNN sınıflandırıcı ile %98.40 doğruluk elde etmişlerdir. Tuncer ve arkadaşları 

[51] yerel altılı modelini kullanan bir epilepsi saptama yöntemi sunmuştur. 5 sınıf Bonn EEG veri 

seti kullanarak SVM sınıflandırıcı ile %93.00 doğruluk bildirmişlerdir. 

Literatür çalışmaları incelendiğinde EEG sinyalleri genellikle kelime ve heceleri sınıflandırmak 

için kullanılmıştır [11]. Ayrıca bu çalışmalarda kullanılan yöntemler genellikle düşük doğruluk 

değerleri üretmiştir. Kelime veya hece sınıflandırması için toplanan EEG sinyalleri genellikle az 

sayıda özneye sahiptir. Ayrıca bu sinyaller çok sınırlı sayıda kelime ve hece grupları için 

toplanmıştır. Bu noktada literatürde önemli bir boşluk bulunmaktadır. Bu boşluk EEG cümle 

sınıflandırmasıdır. Bu çalışmada literatürden farklı olarak önerilen yöntemlerle cümle 

sınıflandırması için EEG sinyalleri kullanılmıştır. Bilindiği kadarıyla bu tez çalışması EEG cümle 

sınıflandırması ile ilgili ilk çalışmadır. Ayrıca önerilen yöntemler yüksek doğruluk sağlamıştır ve 

literatürdeki birçok çalışmanın sonuçlarının üzerindedir.
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4. MATERYAL VE METOTLAR 

Tezin bu bölümünde, toplanan veri setleri ve bu veri setlerine uygulanan makine öğrenmesi 

modelleri verilmiştir. Aynı zamanda tezin materyalleri TÜBİTAK 1002 kapsamında desteklenen 

bir proje ile toplanmıştır.  Oluşturulan EEG veri setleri ve bu veri setlerine uygulanan modeller 

aşağıdaki gibi verilmiştir. Özellik mühendisliği yöntemlerinin kullanılmasının temel sebebi düşük 

zaman karmaşıklığında yüksek performansa ulaşmaktır. Bu açıdan önerilen modeller, derin 

öğrenme modellerine alternatif olarak geliştirilmiştir. Bunu yanı sıra, bu tez çalışması, literatür 

taramasından elde edilen verilere göre EEG sinyallerinden cümle tanımayı konu alan ilk tez 

çalışmasıdır.        

4.1. EEG Cümle Veri Setleri 

Bu çalışmada kullanılan Türkçe cümle-EEG cümlesi (TSEEG) veri seti, katılımcılara sırasıyla 

gösterme ve dinleme modlarında gösterilirken veya okunurken kaydedilmiştir [11]. 

Son olarak 20 adet Türkçe dilinde yaygın olarak kullanılan standartlaştırılmış cümleler (Tablo 4.1) 

elde edilmiştir. 

 

 
Tablo 4.1. TSEEG Veri seti 

No Türkçe Cümle İngilizce Cümle EEG bölümleri,  

(gösterme modu) 

EEG 

bölümleri 

(dinleme 

modu) 

1 Merhaba, hoş 

geldiniz 

Hello, welcome 80 80 

2 Yine görüşürüz See you again 80 80 

3 Güle güle Bye bye 80 80 

4 Sağlık olsun Never mind 80 80 

5 Afiyet olsun Enjoy your meal 80 80 

6 Neye bakmıştınız? What are you 

looking for? 

82 82 

7 Bugün canlı ders var 

mı? 

Is there any online 

lecture today? 

80 80 
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8 Hangi bölümde 

okuyorsun? 

In which 

department are you 

a student? 

79 79 

9 Mesleğiniz nedir? What is your job? 80 80 

10 Bana güvenebilirsin You can trust me 80 80 

11 Sakin ol Calm down 79* 79* 

12 Defol git Get out of here 80 80 

13 Kolay gelsin Good luck 80 80 

14 Haydi gidelim Let's go 80 80 

15 Acele et Hurry up 80 80 

16 Hiç yoktan iyidir It is better than 

nothing 

80 80 

17 Rica ederim You're welcome 80 80 

18 Sen bilirsin It is your choice 80 80 

19 Rezil ettiler bizi, 

rezil olduk 

They disgraced us, 

we became 

disgraced 

81 81 

20 Hiçbir şey 

bilmiyorsun 

You know nothing 79 79 

 

 

Gösteri modunda 20 cümle, 20 gönüllüye (16 erkek, yaş aralığı 19-23, ortalama yaş 21.35 ± 1.20; 

4 kadın, yaş aralığı 19-23, ortalama yaş 20.50 ± 1.73)  bilgisayar terminal ekranları aracılığıyla 

gösterildi. 

Dinleme modunda cümleler bilgisayar ses çıkışı aracılığıyla 20 gönüllüye daha (17 erkek, yaş 

aralığı 19-24, ortalama yaş 21,74 ± 1,39; 3 kadın, yaş aralığı 20-23, ortalama yaş 21 ± 1,73 ) 

okundu. 

16 kafa derisi bölgesinden 14 kanallı EEG sinyalleri toplayan EMOTIV EPOC + mobil sistemi 

(AF3 (1), F7 (2), F3 (3), FC5 (4), T7 (5), P7 (6), O1 (7), O2 (8), P8 (9), T8 (10), FC6 (11), F4 (12), 

F8 (13), AF4 (14), P3(referans bölgesi) ve P4 (referans bölgesi) (Şekil 4.1)) kullanılarak tüm 

gönüllülerden EEG sinyalleri alındı. 

Her bir EEG sinyali segmenti 15 saniye sürdü (örnekleme hızı 128 Hz, bant genişliği 0,16–43 Hz) 

ve EEG sınıflandırma modeline girmeden önce EMOTIV EPOC + sisteminde ön işleme tabi 

tutuldu. Bu çalışmada sınıflandırma için, her EEG kaydı 14 EEG sinyal kanalı içermektedir. Bu 

nedenle, her Türkçe cümle bir sınıf olarak kabul edildi, yani sonuçlar ya kanal bazında ya da 20 

sınıf sınıflandırma performansında raporlanmıştır. Sistem, deneyler için gönüllülerin kafa 
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derilerine uygun şekilde uygulanabilen, ayarlanmış konumlarda ıslak EEG elektrotlarından 

oluşmaktadır. Türkçe cümleler gösterme modunda bilgisayar ekranlarında gönüllülere 

gösterilmiştir. Ayrıca aynı Türkçe cümleler gönüllülere bilgisayar ses çıkışı üzerinden dinleme 

modunda okunmuştur. Her Türkçe cümle için bir adet 15 saniyelik 14 kanallı EEG kaydı alınmıştır. 

Deneylerin gösteri ve dinleme modları, kadın ve erkek gönüllülerden oluşan ayrı gruplarda 

gerçekleştirilmiştir. 

 

 

 

Şekil 4.1. Bilgisayar terminaline kablosuz olarak bağlanan ticari EMOTIV EPOC + mobil sistemi 

kullanılarak kadın (solda) ve erkek (sağda) gönüllülerden EEG sinyali toplama işlemi
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5. MODELLER 

Bir önceki bölümde detayları verilen veri setleri kullanılarak otomatik cümle sınıflandırma için iki 

adet model önerilmiştir ve bu modellerin detayları alt bölümlerde verilmiştir. Önerilen yöntemler 

özellik mühendisliği tabanlı yöntemlerdir.  

5.1. Kare Toplamlı Graf Desen Tabanlı EEG Cümle Tanıma Modeli  

Bu araştırmada yeni bir grafik deseni önerildi ve kare toplamlı desenin bir grafiği kullanıldı. Kare 

toplam grafiğinde, iki komşu düğümün toplamı bir sayının karesine eşittir. Bu nedenle, bireysel bir 

kuralı vardır. Bu örüntüyü yaratmadaki temel amaç, tek boyutlu dokusal özellik çıkarıcı gibi yerel 

bir ikili örüntü sunmaktır. Burada kullanılan sayılar 1, 2, …, 16'dır. Bu sayılar kullanılarak 16 adet 

düğüm oluşturulmuş ve kenarlar kare toplam kuralı tanımlanmıştır. Düğüm oluşturmak için 16 

eleman/değer uzunluğunda örtüşen bir blok ve bu bloğun indeksleri kullanılmıştır. Kullanılan desen 

Şekil 5.1'de gösterilmiştir. 

 

 

 

Şekil 5.1. Kare Toplamlı Grafik Deseni 

Kullanılan kare toplam deseni Şekil 5.1'de gösterilmiştir. Bu grafikte, kare toplam kuralı 

kullanılarak kenarlar oluşturulur, bu desen için bir kenar numaralandırma algoritması önerilmiştir. 

Önerilen kenar numaralandırma algoritması Tablo 5.1'de verilmiştir. 
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Tablo 5.1. Kenar Numaralandırma Algoritması 

 

 

Tablo 5.1 kullanılarak kenarların numaralandırılması hesaplanmış ve kullanılan desen 

oluşturulmuştur (bkz. Şekil 5.1). 

Kare toplam modelinin ayrıntılarını net bir şekilde veren açıklama aşağıda adım adım verilmiştir. 

1: Kullanılan sinyal 16 uzunluğunda örtüşen bloğa bölünür. 

𝑝𝑡 = 𝑠(𝑡 + 𝑘 − 1), 𝑡 ∈ {1,2,… , 𝑙𝑔 − 15}, 𝑘 ∈ {1,2,… ,16} (5.1) 

Denklem (5.1)'de, kullanılan örtüşen blok bölümü tanımlanmıştır ve bu denklemde (Denklem (5.1)) 

kullanılan değişkenler şunlardır: pt 16 uzunluğunda t'nci bloktur, s tek boyutlu bir sinyaldir ve lg 

sinyal(ler)in uzunluğudur. 

2: Verilen grafik (bkz. Şekil 5.1) ve signum fonksiyonu kullanılarak 16 bit ayıklanır. LBP işlevinde 

sekiz bit çıkarılır. Bu nedenle, çıkarılan bitler iki gruba ayrılmıştır. 

𝑏𝑓1
𝑡 = 𝜙

(

 
 
 
 
 
 

𝑝𝑡(1), 𝑝𝑡(3)

𝑝𝑡(1), 𝑝𝑡(8)

𝑝𝑡(1), 𝑝𝑡(15)

𝑝𝑡(2), 𝑝𝑡(7)

𝑝𝑡(2), 𝑝𝑡(14)

𝑝𝑡(3), 𝑝𝑡(6)

𝑝𝑡(3), 𝑝𝑡(13)

𝑝𝑡(4), 𝑝𝑡(5) )

 
 
 
 
 
 

 (5.2) 

Girdi: Kullanılan numaralar  

Çıktı: Numaralandırılmış kenarlar  

01: Kullanılan sayı dizisinin maksimumunu (m) bulun. Bu iş için maksimum sayı 16'dır. 

02: Kare diziyi hesapla: 𝑠𝑞 = {22, 32, … , ⌊√2 × 𝑚 − 1⌋
2
}. Burada sq bir kare dizidir. 

03: for i=1 to 𝑚 do  

04:      𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 1; 

05:      for j=1 to length(𝑠𝑞) do 

06:           𝑑𝑖𝑓𝑓 = 𝑠𝑞(𝑗) − 𝑖; //  𝑑𝑖𝑓𝑓 farkı ifade eder. 

07:           if 𝑑𝑖𝑓𝑓 > 𝑖 and 𝑑𝑖𝑓𝑓 ≤ 𝑚 then 

08:                𝑒𝑑𝑔𝑒[𝑖][𝑐𝑜𝑢𝑛𝑡𝑒𝑟] = 𝑑𝑖𝑓𝑓; //  𝑒𝑑𝑔𝑒 matrisi kenarları temsil eden matristir. 

09:                𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1; //  𝑐𝑜𝑢𝑛𝑡𝑒𝑟 değişkeni sayaç olarak kullanılmaktadır.  

10:           end if 

11:     end for j 

12: end for i        
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𝑏𝑓2
𝑡 = 𝜙

(

 
 
 
 
 
 

𝑝𝑡(4), 𝑝𝑡(12)

𝑝𝑡(5), 𝑝𝑡(11)

𝑝𝑡(6), 𝑝𝑡(10)

𝑝𝑡(7), 𝑝𝑡(9)

𝑝𝑡(9), 𝑝𝑡(16)

𝑝𝑡(10), 𝑝𝑡(15)

𝑝𝑡(11), 𝑝𝑡(14)

𝑝𝑡(12), 𝑝𝑡(13))

 
 
 
 
 
 

 (5.3) 

𝜙(𝑎, 𝑏) = {
0, 𝑎 − 𝑏 < 0
1, 𝑎 − 𝑏 ≥ 0

 (5.4) 

Burada, 𝑏𝑓𝑡
1 ve 𝑏𝑓𝑡

2 , örtüşen her bir bloktan (𝑝𝑡)  çıkarılan ikili özelliklerdir ve her ikili özellik 

vektörü (bf) sekiz bite sahiptir, 𝜙(. , . ) signum fonksiyonunu tanımlar ve a ve b olarak iki giriş 

parametresi alır.  

3: bf vektörlerini kullanarak iki harita (map) sinyalinin değerleri hesaplanır. 

𝑚𝑎𝑝1(𝑡) =∑𝑏𝑓1
𝑡(𝑗) × 28−𝑗

8

𝑗=1

 (5.5) 

𝑚𝑎𝑝2(𝑡) =∑𝑏𝑓2
𝑡(𝑗) × 28−𝑗

8

𝑗=1

 (5.6) 

Burada 𝑚𝑎𝑝1 and 𝑚𝑎𝑝2 oluşturulan haritalardır. 

4: Oluşturulan haritaların histogramları çıkarılır. Bu haritalar sekiz bit ile kodlanmıştır. Böylece, 

çıkarılan her bir histogramın uzunluğu 256 (=28) olarak hesaplanmıştır. 

5: 512 uzunluğunda bir özellik vektörü elde etmek için çıkarılan histogramlar birleştirilir. 

𝑓𝑣𝑐(𝑗 + 256 × (ℎ − 1)) = 𝑚𝑎𝑝ℎ(𝑗), ℎ ∈ {1,2}, 𝑗 ∈ {1,2,… ,256} (5.7) 

Burada fvc, 512 uzunluğunda oluşturulan öznitelik vektörüdür.  

Yukarıdaki bu beş adımda, sunulan kare toplamlı model (SSG(.)) tanımlanmıştır. 

Bu araştırmada elle modellenmiş bir sinyal sınıflandırma modeli önerilmiştir. Öneri dört temel 

aşama içerir ve bunlar: 

(i) Önerilen kare toplamlı grafik deseni ve istatistiksel özellikler kullanılarak çok düzeyli 

hibrit el yapımı özellik çıkarma, 

(ii) NCA tabanlı özellik seçimi, 

(iii) k-NN kullanarak kanal bazında sonuçların hesaplanması, 

(iv) Oylanan sonuçların IMV kullanılarak hesaplanması ve açgözlü algoritmayı kullanarak 

hesaplanan sonuçlar arasından en iyi sonucun seçilmesi.  

Önerilen modelin genel görünümü de Şekil 5.2'de gösterilmektedir. 
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Şekil 5.2. Önerilen SSG tabanlı EEG cümle sınıflandırma modeline genel bakış 

Bu modelde her kanalın EEG sinyali okunmuştur. Okunan EEG sinyalinin özelliklerini çıkarmak 

için TQWT kullanılır ve 12 dalgacık katsayısı (w) üretilir. Sunulan hibrit el yapımı özellik 

oluşturucuyu kullanarak, 13 özellik vektörü (ham EEG sinyalinden oluşturulan ilk özellik vektörü 

ve TQWT bantlarından oluşturulan diğerleri) üretildi. Burada önerilen kare toplamlı grafik deseni 

(SSG) kullanılarak 512 öznitelik çıkarılır ve kullanılan istatistiksel momentler kullanılarak 40 

öznitelik üretilir. Dolayısıyla, her bir özellik vektörünün (f) uzunluğu 552'dir (=512+40). 

Oluşturulan 13 öznitelik vektörünün birleştirilmesiyle 7176 (=552×13) özellikten oluşan 

birleşik/son öznitelik vektörü oluşturulmuştur. 7176 özellikten en iyi 552'si NCA seçim işlevi 

kullanılarak seçilir. kNN kanal bazında sınıflandırma tahmin vektörlerini (p1, p2, … , p14) hesaplar 

ve bu vektörler ve IMV kullanılarak 12 oy tahmini vektörü (p15, p16, … , p26) hesaplanır. 26 
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sonuç, oluşturulan tahmin edilen vektörler kullanılarak hesaplanır. Açgözlü algoritma uygulanarak 

en iyi sınıflandırma sonucu seçilir. 

Şekil 5.2, sunulan SSG tabanlı EEG cümle sınıflandırma yönteminin genel görünümünü 

göstermektedir. Ayrıca, önerilen EEG cümle sınıflandırma modelinin ayrıntılarını vermek için bu 

yöntemin (SSG tabanlı yöntem) adımları aşağıda listelenmiştir. 

Adım 1: Dalgacık alt bantlarını hesaplamak için TQWT EEG sinyaline uygulanır. 

𝑤 = 𝑇𝑄𝑊𝑇(𝑠, 1,3,11) (5.8) 

Burada 𝑤 dalgacık alt bantlarıdır, 𝑇𝑄𝑊𝑇(. , . , . ,.) TQWT alt bant oluşturma fonksiyonudur ve dört 

parametre alır, bu parametreler sinyal, salınım değeri (q), artıklık faktörü (r) ve seviye sayısıdır [18, 

52]. Bu çalışma, 12 dalgacık alt bandı oluşturmak için q, r ve J değerlerini 1,3 ve 11 olarak seçer. 

Adım 2: Önerilen kare toplamlı grafik desen çıkarıcı ve istatistiksel özellik oluşturucu kullanılarak 

dalgacık alt bantlarından ve orijinal EEG sinyalinden öznitelikler çıkarılır. Özellik çıkarma işlemi 

aşağıda verilmiştir. 

𝑓1 = 𝑚𝑒𝑟𝑔𝑒(𝜒(𝑠), 𝑆𝑆𝐺(𝑠)) (5.9) 

𝑓𝑘+1 = 𝑚𝑒𝑟𝑔𝑒(𝜒(𝑤𝑘), 𝑆𝑆𝐺(𝑤𝑘)), 𝑘 ∈ {1,2, … ,12} (5.10) 

f, 552 uzunluğundaki öznitelik vektörlerini tanımlar, χ(.) istatistiksel öznitelik üretecidir, SSG(.) 

önerilen kare toplamlı grafik modeli ve 𝑚𝑒𝑟𝑔𝑒(. )  birleştirme fonksiyonudur. χ(.)'de 20 istatistiksel 

moment kullanılmış ve bu momentler sinyalin ham sinyal ve mutlak değerlerine uygulanmıştır. Bu 

nedenle, bir sinyalden 40 istatistiksel özellik çıkarılmıştır [18]. Kullanılan momentler Tablo 5.2'de 

verilmiştir. 

 
 

Tablo 5.2. İstatistiksel özellikler oluşturmak için kullanılan istatistiksel momentler 

Numara Moment Numara Moment 

1 Higuchi 11 Quartile 1 

2 Lyapunov exponent 12 Quartile range 

3 Fraktal 13 Tsallis entropi 

4 Mean 14 Shannon entropi 

5 Medyan 15 Sure entropi 

6 Mod 16 Wavelet entropi 

7 Minimum 17 Enerji 

8 Maksimum 18 Varyans 

9 Range 19 Skewness 

10 Quartile 3 20 Kurtosis 
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χ(.) ve SSG(.) fonksiyonları kullanılarak, kullanılan tek boyutlu sinyallerden 552 öznitelik 

(=40+512) çıkarılmıştır.  

Adım 3: Oluşturulan özellikler birleştirilir. 

𝑋 = 𝑓𝑘(𝑗 + 552 × (𝑘 − 1)), 𝑗 ∈ {1,2,… ,552}, 𝑘 ∈ {1,2,… ,13} (5.11) 

Burada X, uzunluğu 7176 (=552×13) olan özellik vektörünü temsil eder. 

Adım 4: Üretilen 7176 öznitelikten en iyi 552 özniteliği (her öznitelik vektörünün uzunluğu 552'dir. 

Dolayısıyla 552 öznitelik seçilmiştir) seçmek için NCA uygulanır. NCA, yaygın olarak bilinen 

mesafe tabanlı özellik seçicidir. Bu nedenle, kNN'in bir özellik seçim versiyonu olarak 

adlandırılmıştır. NCA, pozitif ağırlıklar üretir ve bu ağırlıklar kullanılarak en iyi özellikler seçilir. 

Adım 5: Seçilen 552 öznitelik kNN sınıflandırıcısında kullanılmıştır. kNN’de k: 1, mesafe 

Manhattan, oylama: yok,  10 kat çapraz doğrulama özellikleri kullanılmıştır. 

Adım 6: Adım 5 kullanılarak, her sınıfın doğrulama tahmini/tahmin vektörleri hesaplanmıştır. 

Kullanılan veri seti 14 kanal içermektedir. Böylece tahmin edilen 14 vektör elde edilmiştir. 

Öngörülen bu 14 vektörün doğrulukları hesaplanmış ve bu tahmin edilen vektörler azalan 

doğruluğa göre sıralanmıştır. Daha sonra mod fonksiyonu, nitelikli tahmin vektörlerine iteratif 

olarak uygulanmıştır. Bu yinelemeli süreç (IMV) kullanılarak, tahmin edilen 12 vektör daha 

hesaplanmıştır. Kullanılan IMV aşağıda matematiksel olarak tanımlanmıştır. 

𝑖𝑑 = 𝑠𝑜𝑟𝑡(𝑎𝑐𝑐, 𝑑𝑒𝑠𝑐) (5.12) 

𝑝ℎ+12(𝑖) = 𝜔 (𝑝𝑖𝑑(1)(𝑖), 𝑝𝑖𝑑(2)(𝑖),… , 𝑝𝑖𝑑(ℎ)(𝑖)) , ℎ ∈ {3,4, … ,14}, 𝑖 ∈ {1,2,… , 𝑛} (5.13) 

Burada IMV, Denklemler (5.12) ve (5.13) kullanılarak tanımlanmıştır.  

Döngünün başlangıç değeri 3 olduğu için 12 oylanmış vektör hesaplanmıştır. id doğruluk (acc) 

değerleri kullanılarak nitelenmiş dizinlerdir, sort(.,.) sıralama işlevidir ve desc azalan sıralamayı 

tanımlar, ω(.) mod işlevidir. p, tahmin edilen vektörleri tanımlar ve n, kullanılan EEG sinyallerinin 

sayısıdır. 

Adım 7: Tahmin edilen bu 26 vektörün doğrulukları hesaplanır ve en iyisi seçilir.  

Yukarıdaki bu yedi adım (Adım 1-7) önerilen EEG cümle sınıflandırma modelini açıklamıştır. 

5.2. Dinamik Boyutlu İkili Örüntü Tabanlı EEG Cümle Tanıma Modeli 

Bu çalışmada, klasik dokusal özellik çıkarıcının özellik çıkarma yeteneğini geliştirmek için yeni 

bir dokusal özellik çıkarıcı önerilmiştir. DSBP, merkez simetrik ve merkez tabanlı özellik çıkarma 

stratejileri kullanarak ikili özellikleri çıkarmak için özdeş merkezlere ve dinamik olarak 

boyutlandırılmış pencere uzunlukları 3, 5, 7 ve 9'a sahip dört örtüşen blok kullanan tek boyutlu bir 

yerel ikili modelin [53] geliştirilmiş bir versiyonudur. (Şekil 5.3). Dikdörtgenler, blokların sinyal 

veri öğelerini temsil eder ve merkez değerleri kırmızı ile gösterilir. Uzunlukları 3,5, 7 ve 9 olan 

örtüşen pencereler merkez değeri tanımlar. Merkez simetrik öznitelik çıkarımında merkezden eşit 
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uzaklıkta olan ve merkeze dayalı öznitelik çıkarımında merkeze göre öğelerin ilişkilerine dayalı 

olarak toplam 30 bit üretilmiştir.  

 

 

 

Şekil 5.3. DSBP tabanlı merkez simetrik ve merkez tabanlı özellik çıkarımı 

 

 

 

Şekil 5.4. Sunulan DSBP özellik çıkarıcısının grafik gösterimi 

DSBP özellik çıkarımının ayrıntılı adımları aşağıda verilmiştir: 

1. Tek boyutlu sinyal dokuz uzunluğa sahip örtüşen bloklara bölünür. 

𝑏𝑙𝑐1 = 𝑠𝑖𝑔𝑛𝑎𝑙(𝑘 + 𝑙 − 1), 𝑘 ∈ {1,2,… , 𝑙𝑒𝑛}, 𝑙 ∈ {1,2,… ,9} (5.14) 

burada 𝑏𝑙𝑐1, uzunluğu dokuz olan örtüşen bloğu temsil eder. 

2. blc kullanılarak alt bloklar oluşturulur. 

𝑏𝑙𝑐ℎ = 𝑏𝑙𝑐ℎ−1(1 + 𝑡), 𝑡 ∈ {1,2,… , 𝑙𝑒𝑛𝑔(𝑏𝑙𝑐ℎ−1) − 2}, ℎ ∈ {2,3,4} (5.15) 

burada leng(.) uzunluk hesaplama fonksiyonudur. 

3. Oluşturulan sabit olmayan boyutlu örtüşen bloklar ve signum işlevi kullanılarak ikili özellikler 

çıkarılır. DSBP özellik çıkarma fonksiyonunun şematik gösterimi, Şekil 5.4’te gösterilmektedir. 
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Tablo 5.3. DSBP tabanlı ikili özellik çıkarımının sözde kodu 

Giriş: Uzunluğu 3,5,7,9 olan bloklar (𝑏𝑙𝑐). 

Çıktı: Uzunluğu 30 olan ikili özellikler (𝑏𝑖𝑡). 

01: 𝑐𝑛𝑡 = 1;  

// Merkez simetrik bit çıkarma 

02: for k=1 to 4 do 

03:      for i=1 to ⌊
𝑙𝑒𝑛𝑔𝑡ℎ(𝑏𝑙𝑐𝑘)

2
⌋ do 

04:           𝑏𝑖𝑡(𝑐𝑛𝑡) = 𝜌(𝑏𝑙𝑐𝑘(𝑖), 𝑏𝑙𝑐𝑘(𝑙𝑒𝑛𝑔𝑡ℎ(𝑏𝑙𝑐𝑘) + 1 − 𝑖); 

05:           𝑐𝑛𝑡 = 𝑐𝑛𝑡 + 1; 

06:      end for i 

07: end for k 

// Merkez tabanlı bit çıkarma 

08: for k=1 to 4 do 

09:      𝑐𝑒𝑛𝑡𝑒𝑟 = ⌈
𝑙𝑒𝑛𝑔𝑡ℎ(𝑏𝑙𝑐𝑘)

2
⌉ ; // Merkez değeri atanır 

10:      for i=1 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑏𝑙𝑐𝑘) do 

11:           if 𝑖! =  𝑐𝑒𝑛𝑡𝑒𝑟 then 

12:                𝑏𝑖𝑡(𝑐𝑛𝑡) = 𝜌(𝑏𝑙𝑐𝑘(𝑖), 𝑏𝑙𝑐𝑘(𝑐𝑒𝑛𝑡𝑒𝑟); 

13:                𝑐𝑛𝑡 = 𝑐𝑛𝑡 + 1; 

14:           end if 

15:      end for i 

16: end for k   

 

 

Tablo 5.3’te 𝑐𝑛𝑡 sayacı temsil eder;  𝑙𝑒𝑛𝑔𝑡ℎ(. ), uzunluk hesaplama fonksiyonu; ρ(.), matematiksel 

olarak aşağıdaki şekilde tanımlanan signum fonksiyonudur: 

𝜌(𝑎, 𝑏) = {
0, 𝑎 − 𝑏 < 0
1, 𝑎 − 𝑏 ≥ 0

 (5.16) 

Burada a, b giriş parametrelerini temsil eder. 

4. Oluşturulan 30 bit, her biri altı bitten oluşan, birbiriyle örtüşmeyen beş bit grubuna bölünür. 

𝑏𝑔𝑡(𝑖) = 𝑏𝑖𝑡(𝑖 + 6 × (𝑡 − 1)), 𝑖 ∈ {1,2,… ,6}, 𝑡 ∈ {1,2,… ,5} (5.17) 

Burada bgt, t ninci bit grubudur. 

5. Oluşturulan beş adet 6 bitlik grup kullanılarak beş harita sinyali hesaplanır. 
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𝑚𝑡(𝑖) =∑𝑏𝑔𝑡(𝑗) × 26−𝑗
6

𝑗=1

 (5.18) 

Burada ikiliden ondalığa dönüştürme gerçekleştirilmiştir ve mt, t'inci harita sinyalini tanımlar. 

6. Hesaplanan harita sinyallerinin histogramları oluşturulur. Her histogramın uzunluğu 64’tür (=26 

) . 

7. DSBP'nin özellik vektörünü elde etmek için oluşturulan histogramlar birleştirilir. 

𝑥(𝑗) = ℎ𝑡(𝑗 + 64 × (𝑡 − 1)), 𝑗 ∈ {1,2,… ,64}, 𝑡 ∈ {1,2,… ,5} (5.19) 

burada x, 320 uzunluğunda üretilen özellik vektörünü temsil eder ve ht, t'ninci harita sinyalinin 

histogramını temsil eder. 

Denklemler (1-7), önerilen DSBP özellik oluşturma fonksiyonunu (δ(.)) tanımlar. 

 

 

 

Şekil 5.5 . Giriş TSEEG veri seti ile önerilen DSBP-IMCMV modelinin blok diyagramı 

5.2.1. Önerilen EEG cümle sınıflandırma modeli 

Tek boyutlu sinyal sınıflandırma modeli dört aşamadan oluşur: 

(i) DSBP, istatistik [54] ve MDWT [55] kullanılarak hibrit özellik çıkarımı; 
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(ii) komşu bileşen analizi (NCA) [56] kullanılarak en önemli özelliklerin seçimi; 

(iii) kNN ve SVM kullanılarak her kanalın sinyal sınıflandırması ve IMCMV algoritması 

kullanılarak tüm kanallardan gelen sonuçların oylanması (Şekil 5.5). 

Gösterilen veya okunan Türkçe cümlelere yanıt olarak alınan her 15 saniyelik EEG kaydını 

oluşturan 14 kanalın tümünden EEG sinyal segmentlerinin yüksek geçiren ve alçak geçiren filtre 

alt bantlarını hesaplamak için 7 seviyeli bir MDWT kullanıldı. 14 MDWT'den türetilmiş alt 

bantların her birinden ve kanalın orijinal giriş EEG sinyalinden sırasıyla 320 ve 40 özellik çıkarmak 

için DSBP ve istatistiksel üreteç işlevleri kullanıldı. Her bir EEG sinyal bölümü için üretilen 360 

özellikten oluşan 15 özellik vektörü (f), NCA seçici kullanılarak en iyi 512 özelliğin seçildiği 5.400 

(=15 × 360) uzunluğunda büyük bir özellik vektörü oluşturmak üzere birleştirildi. Her kanalda iki 

doğrulama tahmin vektörünü hesaplamak için on kat çapraz doğrulamalı SVM ve kNN kullanıldı, 

yani her 14 kanallı EEG kaydı için 28 tahmin vektörü hesaplandı. Son olarak, kanal başına tüm 

EEG sinyal girişlerinde en iyi genel sınıflandırma sonucunu belirlemek için IMCMV algoritması 

kullanıldı. 

Önerilen özellik mühendisliği modeli dört ana aşamadan oluşmaktadır. Bu aşamalar: 

(i) MDWT ve iki özellik seçme fonksiyonu (DSBP ve istatistik) ile hibrit ve çok düzeyli 

öznitelik çıkarma,  

(ii) NCA tabanlı en bilgilendirici öznitelik seçimi, 

(iii) İki klasik sınıflandırıcı (kNN ve SVM) ile sınıflandırma, 

(iv) En iyi sonuç seçimi için çoğunluk oylama kullanılır. 

Ayrıca, DSBP-IMCMV tabanlı modelin ayrıntılı adımları aşağıda aşamalı olarak verilmiştir: 

Özellik çıkarma: El yapımı bir özellik mühendisliği modeli önerilmiştir. Bu nedenle, bu modelin 

en önemli aşaması özellik çıkarımıdır. Bu aşamada, çok düzeyli bir öznitelik çıkarma yöntemi 

oluşturmak için MDWT kullanılmıştır. Ayrıca, el yapımı özellik çıkarımı istatistiksel ve dokusal 

olmak üzere iki ana metodoloji içerir. Bu nedenle, istatistiksel özellikler oluşturmak için iyi bilinen 

20 doğrusal ve doğrusal olmayan istatistiksel moment kullanıldı ve dokusal özellikleri çıkarmak 

için yeni bir özellik oluşturma işlevi (DSBP) önerildi. 

Adım 1: Ayrı kanallardan her bir EEG sinyal segmenti girişi (örnekleme hızı 128 Hz, süre 15 s) 

okunur. Her bir sinyal segmentinin uzunluğu 1.920'dir (=128 x 15). 

Adım 2: MDWT dönüşümü (Şekil 3) kullanılarak EEG sinyali alt bantlara (b) ayrıştırılır. Burada 

yedi seviyeli MDWT kullanılmıştır. Seviye sayısı aşağıdaki formül kullanılarak hesaplanmıştır: 

𝑙𝑒𝑣 = ⌊log2 (
𝑙𝑒𝑛

𝑙𝑏
)⌋ (5.20) 

burada 𝑙𝑒𝑣 seviye sayısını temsil eder; 𝑙𝑒𝑛, EEG sinyalinin uzunluğu; ve 𝑙𝑏, yerleştirilmiş örtüşen 

blokların maksimum uzunluğunu temsil eder. 

MDWT'nin şematik ifadesi, Şekil 5.6'da gösterilmiştir. 
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Şekil 5.6. Yedi seviyeli MDWT'nin gösterimi 

Symlet 4 ana dalgacık fonksiyonu, her biri alçak geçiren (L) ve yüksek geçiren (H) filtre katsayıları 

içeren b alt bantlarını oluşturmak için kullanıldı. Literatürde, genel olarak, çok seviyeli dalgacık 

dönüşümü, özelliklerin frekans alanında oluşturulması için kullanılmaktadır. Bunun yanı sıra çok 

seviyeli dalgacık dönüşümü kullanılarak çok seviyeli bir özellik mimarisi elde edilir ve bu mimari 

kullanılarak hem düşük hem de yüksek seviyeli özellikler çıkarılır. Yüksek geçiren filtre alt 

bantlarının özellik oluşturma yeteneğinden faydalanmak istendiği için hibrit bir yaklaşım 

kullanılmıştır. Bu nedenle, dalgacık paket ayrışımı [57], gibi özellikler oluşturmak için yüksek 

geçiren filtre alt bantları kullanıldı.  

Ayrıca symlet4 filtresi kullanılmıştır. Bu filtre genellikle sinyal gürültü giderme için kullanılır. 

MDWT modeli kullanılarak alt bant üretimi aşağıda matematiksel olarak açıklanmıştır. 

[𝐿1, 𝐻1] = Ψ(𝐸𝐸𝐺, 𝑠𝑦𝑚4) (5.21) 

[𝐿𝑔, 𝐻𝑔] = Ψ(𝐿𝑔−1, 𝑠𝑦𝑚4), 𝑔 ∈ {2,3,… ,7}    (5.22) 

burada L ve H sırasıyla alçak geçiren ve yüksek geçiren filtre katsayılarını temsil eder; ve Ψ(., .), 

ayrı dalgacık dönüşüm fonksiyonudur ve giriş sinyali ve dalgacık filtresi olmak üzere iki parametre 

alır. Burada symlet 4 (sym4) filtresi kullanılmıştır. Oluşturulan alt bantlar (L ve H) kullanılarak 

modelin bant veri yapısı oluşturulmuştur (Şekil 5.3). 
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𝑏2𝑘−1 = 𝐿𝑘, 𝑘 ∈ {1,2,… ,7} (5.23) 

𝑏2𝑘 = 𝐻𝑘 (5.24) 

Adım 3: İstatistiksel ve DSBP özellik çıkarıcıları kullanılarak b ve orijinal EEG sinyalinden özellik 

vektörleri oluşturulur. 

𝑓1 = 𝛾(𝜛(𝐸𝐸𝐺), 𝛿(𝐸𝐸𝐺)) (5.25) 

𝑓𝑗+1 = 𝛾(𝜛(𝑏𝑗), 𝛿(𝑏𝑗)), 𝑗 ∈ {2,3,… ,14} (5.26) 

Burada f özellik vektörleridir; 𝛾(. ) birleştirme işlevi; 𝜛(. ), istatistiksel özellik çıkarıcı; ve 𝛿(. ), 

DSBP özellik çıkarıcıdır. 

Her bir alt banttan veya giriş EEG sinyalinden sırasıyla 40 ve 320 özellik çıkaran 𝜛(. ) ve 𝛿(. )'nin 

detayları aşağıda verilmiştir. Kullanılan istatistiksel özellik çıkarımı aşağıda açıklanmıştır. 

İstatistiksel özellik çıkarımı hızlı ve etkili bir yöntemdir [58]. Bu çalışmada, her bir tek boyutlu 

sinyalden 40 özellik çıkarmak için her bir tek boyutlu sinyale ve onun mutlak değerine yaygın 

olarak kullanılan yirmi istatistiksel moment uygulanmıştır. Bu çalışmada kullanılan istatistiksel 

özellik çıkarımı, hem doğrusal (medyan, maksimum, minimum, mod, varyans, çarpıklık, standart 

sapma, basıklık, ortalama, aralık, Higuchi, en büyük Lyapunov üssü) hem de doğrusal olmayan 

(enerji, Renyi, Shannon, Kolmogorov-Sinai, Fuzzy, Tsallis, Wavelet ve Permutation entropi) 

yöntemleri içerir [59]. 

Birleştirilmiş bir özellik vektörü oluşturmak için dokusal ve istatistiksel özellikler kullanılmıştır. 

Adım 4: Oluşturulan özellik vektörleri birleştirilir.   

𝑋(𝑞 + 360 × (𝑙 − 1)) = 𝑓𝑙(𝑞), 𝑞 ∈ {1,2,… ,360}, 𝑙 ∈ {1,2, … ,15} (5.27) 

burada X, 5.400 (=360 × 15) uzunluğunda hesaplanan nihai/birleşik özellik vektörünü temsil eder. 

Yukarıdaki 1'den 4'e kadar olan adımlar, önerilen çok düzeyli hibrit özellik çıkarma sürecini 

tanımlar. 

Öznitelik Seçimi: Bu çalışmada, mesafe tabanlı bir fonksiyon olan basit bir özellik seçme 

fonksiyonu kullanılmıştır. Bu fonksiyon NCA'dır ve NCA, kNN'nin seçim versiyonudur. 

NCA, en bilgilendirici özellikleri seçmek için kullanılmış olan özellikler için negatif olmayan 

ağırlıklar üretir (yüksek ağırlıklar ayırt edici özellikleri ve düşük ağırlıklar gereksiz özellikleri 

tanımlar). Böylece üretilen ağırlıklar, özniteliklerin nitelikli indekslerini elde etmek için azalan 

oranlarda sıralanmıştır. Hesaplanan indeksler kullanılarak en bilgilendirici/değerli özellikler 

seçilebilir. Ayrıca, NCA hem basit hem de etkili bir özellik seçme işlevidir. Bu nedenle, özellik 

seçici olarak NCA tercih edilmiştir. Bu araştırmada en değerli 512 özellik seçilmiştir. 

Adım 5: NCA özellik seçiciyi kullanarak en değerli/önemli 512 özellik seçilir. 

kNN'nin özellik seçim karşılığı olan NCA, literatürde yaygın olarak kullanılan basit bir seçicidir. 

Sınıflandırma: Önerilen özellik çıkarma yöntemi ve NCA kullanılarak oluşturulan özelliklerin 

yüksek sınıflandırma yeteneğini göstermek için kNN ve SVM olarak iki sığ sınıflandırıcı 
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kullanmıştır. En uygun sınıflandırıcıları seçmek için MATLAB kullanılmıştır. Hesaplanan test 

sonuçlarına göre, en iyi iki sınıflandırıcı kNN ve SVM'dir. Bu nedenle, bu sınıflandırıcılar 

doğrulama tahmin vektör üreteçleri olarak kullanılmıştır. 

Adım 6: 10 kat çapraz doğrulama ile kNN ve SVM kullanılarak doğrulama tahmin vektörleri 

hesaplanır. Önerilen IMCMV'nin ilk adımı olan her kanalın EEG sinyal segmenti için iki tahmin 

vektörü oluşturuldu. 

𝑝2𝑐−1 = Κ(𝑠𝑓𝑐 , 𝑦, 10), 𝑐 ∈ {1,2,… ,14} (5.28) 

𝑝2𝑐 = Φ(𝑠𝑓𝑐 , 𝑦, 10) (5.29) 

burada p tahmin edilen vektörleri temsil eder; sf, NCA tarafından seçilen özellikler; y, gerçek çıktı; 

“10” değeri, 10 kat çapraz doğrulama; K(.), kNN sınıflandırıcısı; ve Φ(.), DVM sınıflandırıcısıdır. 

Sınıflandırıcıların hiperparametreleri aşağıda verilmiştir: 

k-en yakın komşu (kNN): k 1'dir,  

Destek vektör makinesi (DVM) [60]: İkinci dereceden bir polinom çekirdeği kullanılmış, kutu 

kısıtlama seviyesi bir ve kodlama 1-vs-1 olarak seçilmiştir. 

Çoğunluk oylaması: Bu çalışmada, yeni bir çoğunluk oylama algoritması önerilmiştir. 

 

 

 

Şekil 5.7. En iyi sınıflandırma sonucunu elde etmek için kullanılan IMCMV algoritması 
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Bu çoğunluk oylama modeli, birden fazla oylanan vektör oluşturmak için bir döngü kullanır ve iki 

sınıflandırıcının tahmin edilen vektörlerini kullanmıştır. Bu nedenle bu model, yinelemeli çoklu 

sınıflandırıcılara dayalı çoğunluk oylaması (IMCMV) olarak adlandırılır. Bu aşamanın grafiksel 

özeti Şekil 5.7'de ve adımları ise Tablo 5.4’te verilmiştir. 

Adım 7: p ve y'yi kullanarak her bir kanalın doğruluğu hesaplanır. 

Adım 8: Genel sonuçları hesaplamak için yinelemeli (döngü tabanlı) mod tabanlı çoğunluk 

oylaması uygulanır. 

 

 
Tablo 5.4. IMCMV'nin sözde kodu 

Girdi: Tahminler (p), doğruluklar (oa). 

Çıktı: Oylanan tahminler (vp). 

01: Hesaplanan doğruluk kullanılarak sıralanmış dizinler (idx) hesaplanır. 

02: for g=3 to 28 do // Yinelemeli oylama 

03:      for i=1 to length(𝑦) do 

04:           for j=1 to g do 

05:                𝑎𝑟𝑟(𝑗) = 𝑝𝑖𝑑𝑥(𝑗)(𝑖); // 𝑎𝑟𝑟 oluşturulan diziyi temsil etmektedir. 

06:           end for j 

07:           𝑣𝑝𝑔−2(𝑖) = ℳ(𝑎𝑟𝑟); // ℳ(. ) mode fonksiyonudur. 

08:      end for i 

09: end for h 

 

 

Adım 9: vp ve y kullanılarak oylanan doğruluklar hesaplanır. 

Adım 10: En iyi sonuç seçilir.
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6. DENEYSEL SONUÇLAR 

Bu bölümde, toplanan EEG sinyal veri setini kullanarak elde edilen sınıflandırma sonuçları 

verilmiştir, sunulan öneri bir sinyal sınıflandırma modelidir. 

6.1. Deneysel Kurulum 

Önerilen SSG tabanlı EEG sınıflandırma modeli, el yapımı öznitelik tabanlı bir sinyal sınıflandırma 

modelidir ve MATLAB (2021a) ortamında uygulanmıştır. Bu modelin hafif özelliğini göstermek 

için basit/temel yapılandırılmış bir bilgisayar kullanılmış ve SSG tabanlı EEG sınıflandırması CPU 

modunda herhangi bir grafik işlemci ve paralel programlama kullanılmadan uygulanmıştır. 

Kullanılan bilgisayar Intel i7 7700 CPU, 16 GB RAM bellek, 256 GB SSD ve Windows 11 işletim 

sistemine sahiptir.  

Bu tezde iki adet model önerilmiştir ve modellerin parametreleri aşağıdaki gibi verilmiştir. 

 
 

Tablo 6.1. Kare toplamlı graf deseni tabanlı modelin parametreleri 

Metot Parametreler 

Kare toplamlı graf deseni Kernel: Signum 

Örtüşen blok uzunluğu: 16  

Özelliğin uzunluğu: 512 

İstatistiksel özellik çıkarma Moment Sayısı: 20 

Özelliklerin uzunluğu: 40 

TQWT Q:1, r:3 (yaygın olarak kullanılan salınımlı olmayan 

parametrelerdir), J:11 (en küçük bandın uzunluğu 16'nın 

üzerinde olduğundan maksimum seviye sayısı). TQWT 

kullanılarak, özellikler frekans alanından çıkarılır. 

NCA Oluşturulan 7176 özellik arasından 552 özellik seçildi 

kNN k:1, mesafe: L1-norm, oylama: hayır, doğrulama: 10 kat CV 

IMV Döngü aralığı 3 ile 14 arasındadır 

Seçim Maksimum doğru tahmin edilen vektör seçilir 

 

 

Bu parametreler kullanılarak (bkz. Tablo 6.1) öneri, toplanan EEG veri setinde uygulanmıştır. 

Tablo 6.2’ de DSBP tabanlı modelin oluşturulma parametreleri verilmiştir.  
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Tablo 6.2. DSBP-IMCMV deseni tabanlı modelin parametreleri 

Metot Parametreler 

DSBP Merkezi simetrik ve merkez tabanlı özellik çıkarma stratejileri 

kullanıldı 

Kernel: Signum 

Örtüşen Blok Uzunluğu: 9 

Özellik vektörünün uzunluğu: 320 

MDWT EEG sinyal segmentlerinin yüksek geçiren ve alçak geçiren 

filtre alt bantlarını hesaplamak için 7 seviyeli bir MDWT 

kullanıldı 

NCA Oluşturulan 5400 özellik arasından 512 özellik seçildi 

IMCMV Oylanan sonuçları hesaplamak ve en iyi sonuçları seçmek için 

IMCMV kullanıldı 

İstatistiksel özellik çıkarma Moment Sayısı: 20 

Özelliklerin uzunluğu: 40 

kNN 

SVM 

k: 1, mesafe  (L1-norm)  

Polinomal çekirdekli SVM 

6.2. Performans Değerlendirme Metrikleri 

EEG cümle veri seti, genel sınıflandırma ölçümleri kullanıldığından 20 sınıf içerir. Literatürde en 

çok tercih edilen sınıflandırma ölçümü doğruluktur. Bu nedenle doğruluk kullanılmıştır. Ayrıca 

literatürde genellikle kesinlik, hatırlama ve F1-skor ölçümleri kullanılmıştır. Bu nedenle, doğruluğa 

ek olarak kesinlik, geri çağırma ve F1 puanı ölçümleri de kullanılmıştır [61,62]. Kullanılan 

performans değerlendirme ölçütlerinin matematiksel gösterimleri/denklemleri de aşağıda 

verilmiştir. 

𝑑𝑜ğ𝑟𝑢𝑙𝑢𝑘(𝑎𝑐𝑐) =
𝑛𝑡𝑝 + 𝑛𝑡𝑛

𝑛𝑡𝑝 + 𝑛𝑡𝑓 + 𝑛𝑓𝑝 + 𝑛𝑓𝑛
 (6.1) 

ℎ𝑎𝑡𝚤𝑟𝑙𝑎𝑚𝑎(𝑟𝑒𝑐) =
𝑛𝑡𝑝

𝑛𝑡𝑝 + 𝑛𝑓𝑛
 (6.2) 

𝑘𝑒𝑠𝑖𝑛𝑙𝑖𝑘(𝑝𝑟𝑒) =
𝑛𝑡𝑝

𝑛𝑡𝑝 + 𝑛𝑓𝑝
 (6.3) 

𝐹1 𝑝𝑢𝑎𝑛𝚤 = 2
𝑟𝑒𝑐 × 𝑝𝑟𝑒

𝑟𝑒𝑐 + 𝑝𝑟𝑒
 (6.4) 
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acc doğruluk, rec hatırlamayı tanımlar, pre kesinliği temsil eder, F1, F1 puanıdır. Bu performans 

değerlendirme ölçümlerini hesaplamak için dört değişken kullanılır ve bunlar ntp gerçek 

pozitiflerin sayısını, ntn gerçek negatiflerin sayısını, nfp yanlış pozitiflerin sayısını ve nfn yanlış 

negatiflerin sayısını temsil eder. 

6.3. Kanal Bazında Sonuçlar 

Toplanan veri kümesi 14 kanala sahiptir. Bu araştırmada, kanal bazında sınıflandırmayı göstermek 

için her bir kanalın sınıflandırma performansları hesaplanmıştır. Ayrıca kanal bazında 

sınıflandırma performansı hesaplanarak her bir kanalın cümle sınıflandırma etkisi 

değerlendirilmiştir. Kullanılan önerilere ait hesaplanan kanal bazında sonuçlar Tablo 6.3 ve 6.4’te 

gösterilmiştir. 

 

 
Tablo 6.3. Birinci modelin kanal bazlı sonuçları (%) 

Kanallar Hatırlama Kesinlik F1 Puanı Doğruluk 

1: AF3 93 93,13 93,06 93 

2: F7 94,19 94,20 94,19 94,19 

3: F3 92,45 92,61 92,53 92,44 

4: FC5  65,60 66,10 65,85 65,63 

5: T7 89,22 89,36 89,29 89,25 

6: P7 75,11 75,92 75,51 75,13 

7: O1 92,73 93,03 92,88 92,75 

8: O2 95,06 95,15 95,11 95,06 

9: P8 93,07 93,29 93,18 93,06 

10: T8 92,50 92,85 92,68 92,50 

11: FC6 92,69 92,93 92,81 92,69 

12: F4 89,50 89,61 89,55 89,50 

13: F8 91,58 91,78 91,68 91,56 

14: AF4 93,87 94 93,94 93,88 

 

 

Tablo 6.3'den de anlaşılacağı gibi, O2 kanalında %95,06 sınıflandırma doğruluğu elde edildiği için 

en doğru kanal O2 kanalıdır. En kötü doğru kanal FC5'tir ve bu kanalın sınıflandırma doğruluğu 

%65,63'e eşittir. 20 sınıf bulunmakta olup tüm bireysel kanal bazında sonuçlar %60'ın üzerindedir. 
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Ayrıca kNN sınıflandırıcı kullanılarak önerilen modelin genel sınıflandırma doğruluğu (ortalama 

± standart sapma) %89,33 ± %8,39 olarak hesaplanmıştır. 

 
 

Tablo 6.4. İkinci modelin kanal bazlı sonuçları (%) 

Kanallar kNN SVM 

𝑂𝑎(%) 𝑅𝑐(%) 𝑃𝑟(%) 𝐹1(%) 𝑂𝑎(%) 𝑅𝑐(%) 𝑃𝑟(%) 𝐹1(%) 

1 88,38 88,38 88,48 88,43 91,31 91,32 91,65 91,48 

2 91,06 91,06 91,15 91,11 90,75 90,75 90,89 90,82 

3 89 89,01 88,99 89 90,50 90,51 90,70 90,60 

4 87,75 87,74 87,84 87,79 90 90 90,48 90,24 

5 89,50 89,46 89,56 89,51 90,88 90,85 91,01 90,93 

6 90,25 90,24 90,29 90,26 88,88 88,87 89,27 89,07 

7 89,75 89,72 90,04 89,88 90,38 90,36 90,81 90,59 

8 94,69 94,69 94,83 94,76 93,69 93,69 93,98 93,83 

9 92,13 92,11 92,30 92,20 92,06 92,06 92,52 92,29 

10 92,38 92,37 92,49 92,43 92,63 92,62 92,85 92,73 

11 92,31 92,32 92,43 92,37 91,81 91,82 92,17 91,99 

12 86,44 86,43 86,64 86,53 88,69 88,68 89,23 88,95 

13 83,56 83,58 83,65 83,62 87,56 87,56 87,88 87,72 

14 90,31 90,32 90,36 90,34 91 91 91,22 91,11 

 

 

Tablo 6.4'ten de anlaşılacağı gibi, 8 numaralı kanalda %94,69 sınıflandırma doğruluğu elde edildiği 

için en doğru kanal 8 numaralı kanaldır.  

6.4. Ağırlıklı Oylama Sonuçları 

Birinci önerilen modelin sınıflandırma kabiliyetini artırmak için IMV algoritması kullanılmış ve 

12 kanaldan 14 sonuç hesaplanmıştır. IMV'nin iterasyon aralığı 3 ile 14 arasındadır. Böylece IMV 

kullanılarak 12 oylama sonucu hesaplanmıştır. Hesaplanan oylama sonuçları aşağıdaki tablolarda 

gösterilmiştir. 

 

 
Tablo 6.5. Birinci modele ait IMV kullanılarak oylanan sonuçlar (%) 

Kanalların 

Numaraları 

Hatırlama Kesinlik F1 Puanı Doğruluk 
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3 97,44 97,52 97,48 97,44 

4 98,25 98,33 98,29 98,25 

5 98,75 98,78 98,76 98,75 

6 98,94 98,97 98,95 98,94 

7 98,69 98,74 98,71 98,69 

8 99,06 99,10 99,08 99,06 

9 98,87 98,94 98,91 98,88 

10 99 99,04 99,02 99 

11 99 99,06 99,03 99 

12 99,13 99,16 99,14 99,13 

13 98,88 98,92 98,90 98,88 

14 99,19 99,21 99,20 99,19 

 

 

Tablo 6.5, hesaplanan en iyi doğruluğun %99,19'a eşit olduğunu göstermektedir ve bu doğruluk 

tüm (14) kanalların oylanmasıyla elde edilmiştir. IMV kullanılarak, tüm sonuçlar %97'nin üzerinde 

elde edilmiştir (en kötü genel doğruluk, ilk üç kanal kullanılarak %97,44'tür). Ayrıca, IMV en iyi 

sınıflandırma doğruluğunu %95.06'dan (kanal bazında en iyi doğruluktur) %99,19'a yükseltir. 

Açgözlülük temelli bir mimari önerilmiştir. Bu nedenle önerilen SSG tabanlı EEG cümle 

sınıflandırma modelinin elde edilen sınıflandırma doğruluğu %99,19'a eşittir. 

İkinci modele ait gösteri modunda elde edilen TSEEG sinyallerinde kullanılan tahmin vektörlerinin 

sayısına karşı oylanan doğruluk grafiği ise Şekil 6.1’de verilmiştir. 
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Şekil 6.1. İkinci modele ait gösteri modunda elde edilen TSEEG sinyallerinde kullanılan tahmin 

vektörlerinin sayısına karşı oylanan doğruluk grafiği 

6.5. Sınıf Bazında Sonuçlar 

6.5.1. Birinci Modele Ait Sonuçlar 

Birinci öneri, kendi kendini organize eden bir EEG cümle sınıflandırma modelidir. Önceki iki 

bölümden de görüleceği üzere (bkz. Bölüm 6.3 ve Bölüm 6.4), 14 kanal bazında ve 12 oylama 

sonucu hesaplanmıştır. Bu mimari, hesaplanan 26 sonuçtan en iyi sonuçları seçer. Hesaplanan 

sonuçlara göre önerilen model %99,19 sınıflandırma doğruluğu sağlamıştır. Ayrıca, kullanılan veri 

seti 20 kategori içermektedir.  
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Şekil 6.2. Karışıklık matrisi 

Şekil 6.2, yanlış sınıflandırılan EEG sinyallerinin toplam sayısının 11 olduğunu göstermektedir. 14 

sınıfın geri çağırma değerleri %100'e eşittir. En kötü doğru sınıf 9. sınıftır (Mesleğiniz nedir?) ve 

bu sınıfta %93,75 hatırlama (sınıf bazında doğruluk) elde edilmiştir. Ayrıca, sınıf bazında 

hatırlama, kesinlik ve F1 puanları Şekil 6.3'de gösterilmektedir. 
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Şekil 6.3. Sınıf bazında hatırlama, F1 puanı ve kesinlik değerleri. 

Şekil 6.3, en iyi sonuçların %100'e eşit olduğunu göstermektedir. En kötü hatırlama, kesinlik ve F1 

puanları sırasıyla %93.75 ile 9. kanala ait, %94.05 ile 17. kanala ait ve %96.15 ile 17. kanala aittir. 

6.5.2. İkinci Modele Ait Sonuçlar 

Gösteri modu sonuçları: Model, Kanal 8'de görülen en iyi performansla, kNN ve SVM 

sınıflandırıcılarını kullanarak kanal bazında sonuçlara ulaşmıştır. (Tablo 6.3). 

Tüm kanallardaki genel sınıflandırma doğruluk oranları, kNN ve SVM sınıflandırıcıları 

kullanılarak sırasıyla %89,82 ±%2,79 ve %90,72 ±%1,62 olarak elde edilmiştir. IMCMV 

algoritması kullanılarak, karşılık gelen doğruluklarla oylanan 26 sonuç daha yinelemeli olarak 

hesaplanmıştır. Model, IMCMV'yi dağıtarak, tahmin edilen üç vektörün minimumunu kullanarak 

%96,19'luk bir doğruluk elde etti (en kötü) ve tahmin edilen 28 vektörün tümünü kullanarak 

%98,81'lik en iyi doğruluk elde edildi (Şekil 6.1). Gösterim modunda elde edilen TSEEG sinyalleri 

kullanılarak elde edilen modelin karışıklık matrisi, düşük yanlış sınıflandırma oranlarını 

göstermektedir (Şekil 6.4). En kötü ihtimalle Türkçe cümle 9 Numara “Mesleğiniz  nedir?” gösteri 

modunda sekiz kez Türkçe Cümle Numarası 17 “Rica ederim” olarak yanlış sınıflandırılmıştır 

(Tablo 4.1). 
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Şekil 6.4. Gösterme modunda elde edilen TSEEG sinyalleri için oylanan sonuçların karışıklık matrisi 

Dinleme modu sonuçları: Model, sırasıyla kNN ve SVM sınıflandırıcıları için Kanal 7 ve 10 için 

elde edilen en iyi performansla, kanal bazında sonuçlara ulaştı (Tablo 6.6).  Tüm kanallardaki genel 

sınıflandırma doğruluk oranları, kNN ve SVM sınıflandırıcıları kullanılarak sırasıyla %92,48 

%±2,61 ve %92,27 %±1,94’tür. Model, IMCMV'yi dağıtarak, tahmin edilen en az üç vektörü 

kullanarak %96,56'lık bir doğruluk sonucu ve tahmin edilen 15 vektörü kullanarak %98,19'luk en 

iyi doğruluk sonucunu elde etti (Şekil 6.5). Dinleme modunda elde edilen TSEEG sinyalleri için 

modelin karışıklık matrisi, yanlış sınıflandırma oranlarını göstermektedir (Şekil 7.4).  

En kötü durumda, dinleme modundaki 3 Numaralı Türkçe cümle “Güle güle” on iki kez Türkçe 13 

Numaralı “Kolay gelsin” cümlesi olarak yanlış sınıflandırılmıştır (Tablo 4.1).  

Numaralandırılmış her gerçek sınıf, Tablo 4.1'de listelenen numaralandırılmış Türkçe cümleye 

karşılık gelir. 
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Tablo 6.6. KNN ve SVM sınıflandırıcıları kullanılarak dinleme modunda elde edilen kanal bazlı sonuçlar 

(%). 

 

 

 

Şekil 6.5.  Dinleme modunda kullanılan tahmin vektörlerinin sayısına karşı oylanan doğrulukların grafiği

Kanallar kNN SVM 

𝑂𝑎(%) 𝑅𝑐(%) 𝑃𝑟(%) 𝐹1(%) 𝑂𝑎(%) 𝑅𝑐(%) 𝑃𝑟(%) 𝐹1(%) 

1 91.94 91.92 91.98 91.95 92.56 92.54 92.75 92.65 

2 93.38 93.36 93.45 93.41 92.38 92.36 92.47 92.42 

3 90.13 90.12 90.23 90.18 90.13 90.11 90.60 90.35 

4 93.75 93.75 93.80 93.77 92.50 92.49 92.67 92.58 

5 92.94 92.93 93.13 93.03 93.69 93.69 93.95 93.82 

6 93.50 93.49 93.71 93.60 92.94 92.94 93.12 93.03 

7 95.25 95.24 95.39 95.32 94.31 94.31 94.48 94.40 

8 95.06 95.06 95.09 95.08 93.75 93.73 93.96 93.85 

9 95.06 95.06 95.13 95.09 93.81 93.80 93.98 93.89 

10 94.25 94.24 94.34 94.29 94.63 94.62 94.74 94.68 

11 92.63 92.62 92.76 92.69 92.44 92.43 92.51 92.47 

12 89.19 89.17 89.40 89.29 89.75 89.73 90.09 89.91 

13 85.88 85.86 85.88 85.87 87.81 87.80 88.33 88.07 

14 91.81 91.80 91.80 91.80 91.13 91.11 91.27 91.19 
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7. BULGULAR VE TARTIŞMA 

Bu tez çalışmasında iki adet model önerilmiştir. Bu modellerle elde edilen bulgular ve sonuçlar bu 

bölümde tartışılmıştır.  

7.1. Toplamsal Kareler Tabanlı Yöntem 

Bu araştırmada yeni bir EEG sınıflandırma metodolojisi tanımlanmıştır ve bu metodoloji EEG 

cümle sınıflandırması olarak adlandırılmıştır. Önerilen SSG tabanlı EEG sinyal sınıflandırması, 

EEG sinyallerini kullanan bir makine öğrenme modelinin cümle sınıflandırma kapasitesini 

göstermek için yeni toplanmış bir EEG sinyal veri seti üzerinde test edilmiştir. Toplanan veri seti, 

15 saniye uzunluğunda 1600 EEG sinyali içerir. Bu EEG sinyalleri 20 katılımcıdan toplanmıştır. 

Ayrıca bu EEG sinyal veri setinde 20 sınıf bulunmaktadır. Bu veri setini otomatik olarak 

sınıflandırmak için elle modellenmiş yeni bir gelişmiş sinyal işleme modeli önerilmiştir ve bu 

model yeni bir graf tabanlı öğrenme modeli kullanmaktadır. Sunulan graf tabanlı özellik çıkarıcı, 

kare toplamlı bir problem kullanır. Sunulan SSG modeli, kendi kendini organize eden bir EEG 

sınıflandırma mimarisinde kullanılır. Bu mimaride, dalgacık alt bantlarından üst düzey öznitelikler 

çıkarılmıştır. Ayrıca, ham EEG sinyallerine SSG ve istatistiksel öznitelik çıkarıcılar uygulanır. Bu 

açıdan, sunulan öneri hem uzay hem de frekans alanlarından özellikler çıkarır. En iyi öznitelikler 

NCA (kNN'nin özellik seçim versiyonu) seçicisi ve kNN (Özellikler NCA kullanılarak seçilmiştir. 

Bu nedenle, kanal bazında sınıflandırma sonuçları elde etmek için kNN sınıflandırıcısı 

kullanılmıştır) kullanılarak seçilmiştir. Ayrıca, en iyi sınıflandırıcıyı seçmek için MATLAB 

kullanılmıştır. Karar ağacı, destek vektör makinesi, kNN, yapay sinir ağı ve torbalamalı ağaç 

sınıflandırıcıları kullanılmıştır. AF3 kanalı için bu beş sınıflandırıcının sınıflandırma sonuçları 

Şekil 7.1'de gösterilmiştir. 
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Şekil 7.1. AF3 kanalı için kullanılan sınıflandırıcıların kıyaslaması 

Şekil 7.1, kullanılan sığ sınıflandırıcılardan bu problemi çözmek için en uygun sınıflandırıcının 

kNN olduğunu göstermiştir. IMV'yi konuşlandırarak, hesaplanan tahmin edilen vektör sayısı 14'ten 

26'ya çıkarıldı. Tahmin edilen tüm vektörlerin sınıflandırma doğrulukları hesaplandı ve en iyisi 

önerilen SSG tabanlı kendi kendine organize EEG sinyal sınıflandırma modeli tarafından seçildi. 

Hesaplanan 26 doğruluk Şekil 7.2'de gösterilmiştir. 
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Şekil 7.2. Tahmini 26 vektörü kullanan hesaplanmış 26 sınıflandırma doğruluğu 

Şekil 7.2, en iyi sınıflandırma doğruluğunun (%99,19), tahmin edilen 26. vektör kullanılarak elde 

edildiğini göstermiştir. Bu nedenle, bu (26.) tahmin edilen vektör, nihai tahmin edilen vektör olarak 

kullanıldı. Tahmin edilen ilk 14 vektör her kanala aittir ve 15. – 26. tahmin edilen vektörler IMV 

kullanılarak hesaplanır. Bu nedenle, oylanan tahmin vektörleri olarak adlandırılırlar. Önerinin 

kanal bazında sınıflandırma doğruluklarını daha iyi tartışmak için, Şekil 7.3 doğrulukları 

konumlarla birlikte göstermektedir. 
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Şekil 7.3. 10 katlı CV ile kNN sınıflandırıcıyı kullanan kanal konumlarına göre modelin kanal bazında 

sınıflandırma doğrulukları (%) 

Sonuçları vurgulamak için üç renk kullanıldı. Sonuçları %93'e eşit ve üzerinde vurgulamak için 

kırmızı ve %90'dan %93'e kadar sınıflandırma doğruluklarını göstermek için siyah yazı tipi rengi 

kullanıldı. %90'dan daha düşük doğrulukları göstermek için mavi yazı tipi rengi kullanılmıştır. 

Şekil 7.3, kullanılan cümlelerin sınıflandırma haritasını göstermektedir. Yalnızca kırmızı kanallar 

(AF3, AF4, F7, P8, O2) ve çoğunluk oylaması kullanılarak önerilen model %98,75 sınıflandırma 

doğruluğuna ulaşmıştır. Bu harita kullanılarak beynin cümle oluşturma/düşünme eylemi hakkında 

bilgi çıkarılabilir. 

Sunulan SSG tabanlı EEG cümle sınıflandırma modelinin önemli nitelikleri/özellikleri şunlardır: 

• Bu araştırmada EEG işaretlerini kullanarak cümle sınıflandırma/tahmin problemi tanımlanmış ve 

bu problem EEG cümle sınıflandırması olarak adlandırılmıştır.  

• Kare toplamlı bir problem kullanılarak graf tabanlı yeni bir öznitelik çıkarma işlevi önerilmiştir.  

• Önerilen mimari 26 sonucu hesapladığından ve en iyi sonuç tahmin vektörünü otomatik olarak 

seçtiğinden, önerilen SSG öznitelik çıkarımı kullanılarak kendi kendini organize eden bir öğrenme 

mimarisi önerilmiştir.  

• Önerilen öğrenme mimarisi, elle modellenen bir öğrenme yöntemidir. Burada hem dokusal (SSG 

kullanılarak) hem de istatistiksel özellikler çıkarılmıştır. TQWT kullanılarak frekans alt bantları 

oluşturulmuştur. Bu alt bantlar kullanılarak hem düşük hem de yüksek seviyelerde hibrit el yapımı 

özellikler çıkarılmıştır. Ayrıca, hem uzay alanından (ham EEG sinyali kullanılarak) hem de frekans 

alanından (TQWT kullanılarak) özellikler çıkarılmıştır.  
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• Özellikleri seçmek için basit bir özellik seçici (NCA) kullanılmıştır. kNN (genel olarak bilinen 

bir sığ sınıflandırıcıdır), sunulan SSG tabanlı çok düzeyli ve hibrit özellik çıkarıcının gücünü 

göstermek için kullanılmıştır. Burada NCA ve kNN kombinasyonunun etkinliğinden 

faydalanılmıştır. 

• Kanal bazında sınıflandırma doğruluklarını sunulmuştur ve en iyi sonuçlar (%93'ün üzerinde elde 

ettiler) O2, F7, AF4, P8 ve AF3 kanallarına aittir. Bu alanlar beyindeki cümle oluşumu hakkında 

ipucu verir. Beyin cümlesi oluşturma/düşünme yapısı bu tür araştırmalar kullanılarak 

modellenebilir. Ayrıca, en kötü doğru kanallar FC5 ve P7'dir, çünkü bu kanallar %80'den daha 

düşük sınıflandırma doğruluğuna ulaşmıştır.  

• IMV algoritması kullanılarak 12 oylanan tahmin vektörü oluşturuldu ve bu oylanan sonuçların 

tümü %97'nin üzerinde sınıflandırma doğruluğuna sahiptir.  

• Önerilen SSG tabanlı modelin hesaplanan nihai sonucu %99,19'dur (sadece 11 yanlış 

sınıflandırılmış EEG gözlemidir).  

• Önerilen model, 14 sınıfta %100 sınıf bazında sınıflandırma doğruluğuna (geri çağırma) 

ulaşmıştır.  

• Önerilen mimari çok basit ve parametriktir. Herhangi bir araştırmacı bu modeli kendi sinyal 

sınıflandırma problemine uygulayabilir ve bu mimari kullanılarak birçok model önerilebilir (bkz. 

Tablo 6.1).  

• Elle modellenmiş tek boyutlu bir sinyal sınıflandırma mimarisi sunulmuştur. Yüksek 

sınıflandırma performansını hesaplamak için, derin öğrenme ağları kullanılmıştır.  

7.2. DSBP Tabanlı EEG Cümle Tanıma Modeli 

 Bu çalışmada, sırasıyla okuma-gösterme ve dinleme modlarında gösterilen ana dillerinde 

standartlaştırılmış yirmi Türkçe cümle 40 gönüllüden oluşan iki farklı katılımcı grubundan elde 

edilen ileriye dönük bir EEG veri seti olan TSEEG kullanılarak bir EEG cümle sınıflandırma 

modeli geliştirilmiştir. İki farklı modun incelenmesi ve gösteri ve dinleme modları için ayrı gönüllü 

gruplarının kullanılması, deney düzeneğinde temel hususlardır. Beyindeki görsel ve işitsel nöral 

yollar farklıdır. Cümle tanıma ve indüklenen EEG sinyallerini işlemeleri farklı olacaktır. Yeni 

DSBP ve IMCMV yöntemlerini kullanan yeni bir hafif sınıflandırma modeli, doğru bir EEG cümle 

sınıflandırma sistemi geliştirmek için TSEEG veri seti üzerinde eğitildi ve test edildi. Yerel dokusal 

özellikleri ve düşük seviyeli istatistiksel özellikleri çıkarmak için DSBP ve istatistiksel özellik 

çıkarıcılar konuşlandırıldı. Bununla birlikte, MDWT, EEG sinyallerini düşük ve yüksek geçişli alt 

bantlara ayrıştırır. Bu nedenle, çoklu seviyelerde üretilen hem düşük hem de yüksek seviyeli 

özellikler olan DSBP ve istatistiksel özellik çıkarıcıları besler. Giriş EEG segmenti başına 5.400 

özellik üretildi ve en iyi 512 özelliği seçmek için NCA seçici kullanıldı. Sınıflandırma aşamasında, 

EEG sinyal kanalı başına iki tahmin vektörü oluşturmak için kNN ve SVM sınıflandırıcıları 
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kullanıldı. Gösteri modunda, kanal bazında en iyi sonuçlar, beyindeki oksipital loblardan birinin 

yakınında yüzey EEG sinyallerini toplayan Kanal 8'den (O2) elde edildi. Bu gözlem, çalışma 

deneylerinin gösteri modunda bir bilgisayar terminal ekranında katılımcılara gösterilen cümlelerle 

örneklendiği gibi, görsel bilgilerin işlenmesinde oksipital lobların temel rolünü desteklemektedir. 

Buna karşılık, dinleme modunda kanal bazında sonuçlar farklıdır ve en iyi performans sırasıyla 

kNN ve SVM sınıflandırıcılarla Kanal 7 (O1) ve 10'da (T8) gözlemlenmiştir. Temporal lob işitsel 

yönetimde kritik bir role sahiptir ve oksipital lob beynin görsel sistemini yönetir.  

Bu tez çalışmasında, dinleme ve gösterme yoluyla EEG sinyalleri toplanmıştır. Ayrıca 

katılımcılardan sadece ekranda görüntülenen cümleyi düşünmeleri istenildi. Bu sayede veri 

toplama aşamasında bu loblar aktif hale getirildi ve en iyi sonuçlar 7,8 ve 10 numaralı kanallardan 

alındı. Her EEG kaydı 14 kanal içerdiğinden, TSEEG veri setinden 1.600 EEG kayıt örneğinin her 

biri için 28 tahmin vektörü üretildi. Oylanan sonuçları hesaplamak ve bireysel EEG kayıtlarının 

tüm kanalları arasından en iyi genel sonuçları seçmek için IMCMV kullanıldı. IMCMV 

kullanılarak en iyi genel doğruluk, hatırlama, kesinlik ve F1 puanı, gösteri modunda 28 tahmin 

vektörü ile sırasıyla %98,81, %98,81, %98,88 ve %98,84 olarak; ve dinleme modunda 15 tahmin 

vektörü ile sırasıyla %98,19, %98,19, %98,28 ve %98,23 olarak bulundu. Deneylerde yaygın olarak 

kullanılan 20 Türkçe cümle rastgele seçilmiş ve tüm cümlelerin modeli eğitmek ve test etmek için 

uygun olduğu önceden tespit edilememiştir. Buna göre, deneylerde kullanılan tüm sınıflar (Türkçe 

cümleler) için minimum tatmin edici performansı belirlemek için modelin sınıf bazında 

sınıflandırma sonuçlarının değerlendirilmesi esastır. Veri kümesindeki 1.600 kayıt örneğinin 

tamamının sınıf bazında doğruluk oranları mükemmeldir (Şekil 7.5). On iki ve dokuz sınıf, sırasıyla 

gösteri ve dinleme modlarında sınıf bazında %100 doğruluk oranlarına ulaştı. En kötü doğruluk 

oranları, sırasıyla gösteri ve dinleme modlarında 9. Sınıfta (%90) ve 3. Sınıfta (%85) gözlendi. 

Ayrıca karışıklık matrislerinin bulguları (Şekil 6.4 ve 7.4) bu durumu göstermektedir.  
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Şekil 7.4. Dinleme modunda alınan TSEEG sinyalleri için oylanan sonuçların karışıklık matrisi 

Numaralandırılmış her gerçek sınıf, Tablo 4.1'de listelenen numaralandırılmış Türkçe cümleye 

karşılık gelir. Ancak, bu sonuçlar çalışma deneyleri için tatmin edici olarak kabul edilebilir. 

Karşılaştırmalı sonuçlar elde etmek için, gösteri ve dinleme veri kümeleri için en doğru kanallar 

seçilmiştir. Gösterim tabanlı EEG veri kümesi için en doğru kanal 8. kanaldır ve 7. kanal dinleme 

tabanlı EEG veri kümesi için en iyisidir. Böylece bu kanallar üzerinde testler uygulanmıştır. 

Karşılaştırmalar için kullanılan modeller şunlardır: (i) istatistik, (ii) yerel ikili model, (iii) üçlü 

model, (iv) Hamsi modeli ve (v) Twine-shuffle modeli [22] 

 

 
Tablo 7.1. Farklı metotların kanal bazlı doğruluklarının karşılaştırılması 

Metot Gösteri tabanlı EEG veriseti 

(Kanal 8) 

Dinleme tabanlı EEG veriseti 

(Kanal 7) 

İstatistik 85.34 78 

Yerel ikili model 50.70 54.13 

Üçlü model 51.99 53.98 

Hamsi modeli 71.76 75.98 
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Twine-shuffle modeli 73.01 80.97 

Önerilen model 94.69 95.25 

 

 

Hesaplanan sınıflandırma doğrulukları Tablo 7.1'de listelenmiştir. Tablo 7.1’den görüldüğü gibi, 

önerilen model, bu modeller arasında en iyi sınıflandırma doğruluğunu elde etmiş ve önerilen 

DSBP-IMCMV tabanlı EEG sınıflandırma modelinin üstünlüğünü göstermiştir. Ayrıca Tablo 7.1, 

çok düzeyli ve hibrit öznitelik çıkarımının sınıflandırma performansını artırdığını vurgulamıştır. 

Önerilen modelin avantajları ve sınırlamaları aşağıda listelenmiştir. 

Avantajlar: 

• Ayrı gönüllü gruplarında, modeli geliştirmek için iki modda (gösterme ve dinleme) ileriye dönük 

olarak yeni bir EEG cümle veri seti elde edildi. 

• Tek boyutlu yerel ikili modelin [63] geliştirilmiş bir versiyonu olan DSBP, MDWT tarafından 

ayrıştırılan EEG sinyallerinin alt bantlarından yüksek seviyeli özellikler dahil olmak üzere dokusal 

özellikleri çıkarmak için konuşlandırıldı. 

• Yeni bir oylama modeli olan IMCMV, çoklu sınıflandırıcılardan ve çoklu EEG sinyal 

kanallarından en iyi genel sonuçları, artan sayıda hesaplanmış tahmin vektörü kullanılarak 

yinelemeli olarak oylanan sonuçlardan seçmek için önerildi. 

• Önerilen DSBP-IMCMV tabanlı model basit ve sağlamdır. 

• Model, hem gösterim hem de dinleme modları için TSEEG veri setini kullanarak tek boyutlu EEG 

sinyalleri için %98'in üzerinde sınıflandırma doğruluğu oranlarına ulaşmıştır. 

Bu nedenle, modelin diğer tek boyutlu sinyalleri sınıflandırmak için de kullanılması 

beklenmektedir. 

Sınırlamalar: 

• TSEEG veri seti, gönüllülerin anadili olan yirmi Türkçe cümleden oluşmaktadır. Bu nedenle, 

deneylerin diğer dillerde toplanan cümleler kullanılarak çoğaltılması gerekebilir. 

• Modelde kullanılan kNN ve SVM sınıflandırıcıları için önceden belirlenmiş hiperparametre 

ayarları kullanılmıştır. Bu hiperparametreler, sınıflandırma sonuçlarını optimize etmek için daha 

da geliştirilebilir. 
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Şekil 7.5. Veri setindeki yirmi sınıfın (Türkçe cümlelerin) deney modundaki doğruluğu
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8. SONUÇLAR 

EEG sinyalleri kullanarak insan fizyolojisinde çalışmalar yapılması ve bu alandaki ilerlemeler 

araştırmacılar tarafından en çok tercih edilen konulardan biri olmuştur. Araştırmacılar farklı 

koşullar içerisinde çalışmalarına en uygun çözümleri üretmeye devam etmektedirler. Bu tez 

çalışmasında yeni bir EEG tabanlı sınıflandırma problemi tanımlanmıştır ve bu sınıflandırma 

problemi EEG cümle sınıflandırmasıdır. EEG cümle sınıflandırmasının temel amacı telepatik 

iletişimi sağlamaktır. Bu nedenle katılımcılara cümleler gösterilerek bir EEG cümle veri seti 

toplanmıştır. Bu veri seti 20 sınıfa ait 1600 EEG sinyali içermektedir (20 cümle kullanılmıştır). Bu 

cümleleri otomatik olarak sınıflandırmak için iki farklı model önerilmiştir: 

- Önerilen SSG modeli kullanılarak, kendi kendini organize eden bir sinyal sınıflandırma 

mimarisi önerilmiştir. Önerilen mimari, toplanan EEG cümle veri setinde %99,19 

sınıflandırma doğruluğu elde etmiştir. Ayrıca kanal bazında oylama ve sınıf bazında 

sonuçlar bu çalışmada gösterilmiştir. Hesaplanan sonuçlar ve bulgular, önerilen modelin 

doğrusal karmaşıklık ile yüksek sınıflandırma doğruluğuna ulaştığını açıkça göstermiştir.  

- Önerilen DSBP tabanlı EEG cümle tanıma modeli, TSEEG veri seti ile gösterme ve 

dinleme modlarında sırasıyla %98.81 ve %98.19 genel doğruluk oranlarına ulaşmıştır. Bu 

olumlu sonuçlar, önerilen DSBP-IMCMV tabanlı EEG sinyal sınıflandırma modelinin 

beyin bilgisayar arayüzü uygulamalarında cümle sınıflandırması için uygulanabileceğini 

göstermektedir. Ayrıca, modelin DSBP tabanlı öznitelik mühendisliği ve IMCMV tabanlı 

oylanan sonuç üretimi oldukça çok yönlüdür ve diğer fizyolojik sinyallerin 

sınıflandırılmasına uygulanabilir. 

Bu çalışma, beyin bilgisayar etkileşiminin yakın gelecekte daha fazla cümle sınıfı ve daha sağlam 

EEG sinyal toplama/beyin görüntüleme cihazları kullanılarak uygulanabileceğini göstermektedir. 

Bunun yanı sıra EEG cümle sınıflandırma konusunda yapılan en sistematik çalışmalar bu tez 

kapsamında sunulmuştur. 
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