
Akciğer Benign ve Malign Tümörlerinin Bölütlemesi için Segmentasyon Modellerinin
Karşılaştırılması

İrem Nur Yoldaş

YÜKSEK LİSANS TEZİ

Bilgisayar Mühendisliği Anabilim Dalı

ARALIK 2022



Comparison of Segmentation Models for Segmentation of Benign and Malignant Tumors of
the Lungs

İrem Nur Yoldaş

MASTER OF SCIENCE THESIS

Department of Computer Engineering

DECEMBER 2022



Akciğer Benign ve Malign Tümörlerinin Bölütlemesi için Segmentasyon Modellerinin
Karşılaştırılması

İrem Nur Yoldaş

Eskişehir Osmangazi Üniversitesi
Fen Bilimleri Enstitüsü

Lisansüstü Yönetmeliği Uyarınca
Bilgisayar Mühendisliği Anabilim Dalı

Bilgisayar Yazılımı Bilim Dalı
YÜKSEK LİSANS TEZİ
Olarak Hazırlanmıştır

Danışman: Prof. Dr. Kemal Özkan
İkinci Danışman: Prof. Dr. Hakan Çevikalp

ARALIK 2022



ETİK BEYAN

Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü tez yazım kılavuzuna
göre, Prof. Dr. Kemal Özkan danışmanlığında hazırlamış olduğum “Akciğer Benign ve
Malign Tümörlerinin Bölütlemesi için Segmentasyon Modellerinin Karşılaştırılması”
başlıklı tezimin özgün bir çalışma olduğunu; tez çalışmamın tüm aşamalarında bilimsel etik
ilke ve kurallara uygun davrandığımı; tezimde verdiğim bilgileri, verileri akademik ve
bilimsel etik ilke ve kurallara uygun olarak elde ettiğimi; tez çalışmamda yararlandığım
eserlerin tümüne atıf yaptığımı ve kaynak gösterdiğimi ve bilgi, belge ve sonuçları bilimsel
etik ilke ve kurallara göre sunduğumu beyan ederim. 02/01/2023

İrem Nur Yoldaş



vi

ÖZET

Bu tez çalışması, çalışma kapsamında hazırlanmış yeni bir medikal görüntü setini
kullanarak akciğer benign ve malign tümör segmentasyonunu konu almaktadır. Veriler
sırasıyla; kanalların ayrı eğitilmesi, aynı hastaya ait tümör görüntüsünün farklı kanalları
olan P, K ve M kanallarının birer veri seti olarak eğitilmesi ve kanalların birleştirilerek
eğitilmesi olmak üzere toplam üç farklı versiyonda eğitilmiştir. Bahsedilen üç versiyon için
ortak olarak Mask R-CNN mimarisi ve ResNet-101 sınıflandırıcısı kullanılmıştır. Sonuç
olarak kanallar arasında en çok bilgi sağlayanının %59, 86 mAP değeri ile K kanalı olduğu
görülmüştür. Sınıf bazında ise %72, 88 AP değeri ile K kanalının benign tümör ve %57, 02

AP değeri ile M kanalının malign tümör tespitinde en başarılı kanal olduğu görülmüştür.
Aynı mimari için üçüncü versiyon veri seti elde ettiği %67, 16 mAP değeri ile beklentileri
doğrulayarak en başarılı versiyon olmuştur. Veri setinin üçüncü versiyonu Mask R-CNN’e
ek olarak YOLACT, SOLOv2 ve DeepLabv3+ mimarileri ve ResNet-101 sınıflandırıcısı ile
eğitilmiştir. %74, 14 mAP ile YOLACT en başarılı sonucu verirken SOLOv2 ile %62, 70

mAP elde edilmiştir. Bir semantik segmentasyon ağı olan DeepLabv3+ %36, 81 mAP ile
diğer modellere göre başarılı segmentasyon sonuçları üretememiştir. Yapılan tez çalışması
ile literatüre yeni veri seti ve akciğer MR görüntüsü üzerinde tümörün sınıfıyla birlikte
segmentasyonunun sağlandığı bir çalışma eklenmiştir.

Anahtar Kelimeler: örnek segmentasyonu, semantik segmentasyon, derin öğrenme,
benign akciğer tümör, malign akciğer tümör, MRI veri seti
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SUMMARY

This thesis study is about lung benign and malignant tumor segmentation using a new
set of medical images prepared within the scope of the study. The data are respectively; it was
trained in three different versions, namely training the channels separately, training the P, K
andM channels, which are different channels of the tumor image of the same patient, as a data
set, and training the channels by combining them.Mask R-CNN architecture and ResNet-101
classifier were used in common for the three versions mentioned. As a result, it was seen that
the K channel provides the most information among the channels with the value of %59.86

mAP. On the basis of class, the K channel was found to be the most successful channel in
detecting benign tumors with %72.88 AP value, and the M channel was the most successful
channel in detecting malignant tumors with %57.02 AP values. For the same architecture,
the third version dataset was the most successful version, confirming the expectations with
the value of %67.16 mAP. The third version of the dataset was trained with the YOLACT,
SOLOv2 and DeepLabv3+ architectures and the ResNet-101 classifier in addition to Mask
R-CNN. %74.14 mAP with YOLACT gave the most successful results, while SOLOv2 with
%62.70mAP. DeepLabv3+, a semantic segmentation network, could not produce successful
segmentation results with %36.81 mAP compared to other models. With the thesis study, a
new data set and a study in which the segmentation of the tumor is provided on the lung MR
image have been added to the literature.

Keywords: instance segmentation, semantic segmentation, deep learning, benign
lung tumor, malignant lung tumor, MRI dataset
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1. GİRİŞ VE AMAÇ

Bu tez çalışmasında Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Hastanesi
Radyoloji Bölümü ile ortak çalışma sonucu ortaya çıkarılmış olan ve Manyetik Rezonans
(Magnetic Resonance) (MR) akciğer tümörü görüntülerini içeren veri setini segmentasyon
yöntemleri ile değerlendirmek hedeflenmiştir. Hazırlanan veri setinin farklı ayırımları ile
tümörleri segmente etmek amaçlanmıştır. Bu çalışma, medikal görüntü segmentasyonu
konusunu içermektedir.

Medikal görüntülerin doğru analiz edilmesi; hastalıkların doğru ve erken teşhisinde,
tedavi ve cerrahi süreçlerin planlanmasında büyük rol oynamaktadır. Özellikle kötü huylu
akciğer tümörü beş yıllık sağkalım oranları düşük olan kanser türleri arasındadır. Genellikle
son evreye gelene kadar belirti vermeyen akciğer kanserini erken farketmek hayati önem
taşımaktadır. Medikal görüntülerin yorumlanmasının tamamen insan uzman yorumuna
bağlı olması ise detayları farketmeme, yanlış yorumlama vb. olumsuzluklara yol
açabilmektedir. Biriken medikal görüntüleri değerlendirmek ve uzmanlara yardımcı olmak
amacıyla medikal görüntü segmentasyonu araştırmacılar arasında artan bir popüleriteye
sahiptir. Tümör segmentasyonu için kullanılan görüntülerin sıklıkla Manyetik Rezonans
Görüntüleme (Magnetic Resonance Imaging) (MRI) ve Bilgisayarlı Tomografi
(Computerized Tomography) (CT) görüntüleri olduğu görülmektedir.

Dijital görüntü segmentasyonu, ileri seviye dijital görüntü işleme olarak geçmektedir.
Bu yüksek seviyeli görev halen gelişmekte ve multidisipliner oluşuyla genişlemektedir. Tıbbi
görüntü segmentasyonu ise dijital görüntü segmentasyonu uygulanabilen diğer alanlara göre
ek zorluklar içermektedir. Medikal görüntülere ulaşmak bu zorluklardan biridir. Yeni veri
seti oluşumunda ise etiketlerin muhakkak uzmanlar kontolünde oluşturulması gerekmektedir.
Medikal veri seti hazırlanırken hata payının düşük olması amaçlanmaktadır. Önerdiğimiz
veri seti, dört kanallı MR görüntüsüne ait P, K ve M kanallarını kullanmaktadır. Veri seti,
akciğerinde tümör bulunan 84 hastadan elde edilmiştir. 543 eğitim, 137 doğrulama örneği
olmak üzere toplam 680 örnekten oluşmaktadır. Bu örneklerin 307 tanesi benign ve 373 tanesi
malign tümördür.

Çalışma kapsamında literatürde popüler segmentasyon yöntemlerinin tıbbi görüntü
segmentasyonu alanında başarıları gözlenmiştir. Segmentasyon için Mask R-CNN (He ve
diğ., 2017), DeepLabv3+ (L.-C. Chen, Zhu ve diğ., 2018), You Only Look CoefficientS
(Bolya ve diğ., 2019) ve Segmenting Objects by LOcations (X. Wang ve diğ., 2020)
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mimarileri kullanılmıştır. Mask R-CNN iki aşamalı bir örnek segmentasyonu mimarisidir
(He ve diğ., 2017). İlk aşamasında bölge teklifleri oluşturmakta ikinci aşamasında ise örnek
maske oluşturmaktadır. Faster R-CNN (Daha Hızlı Bölge Tabanlı Evrişimli Sinir Ağı) (Ren
ve diğ., 2015) nesne tespit ağına maske modülü eklenmesi ile meydana gelmiştir.
YOLACT, Mask R-CNN gibi var olan nesne tespiti ağı olan RetinaNet’e (Lin, Goyal ve
diğ., 2017) maske modülü ekleyerek örnek segmentasyonu modeli elde etmiştir (Bolya ve
diğ., 2019). Mask R-CNN’den farklı olarak YOLACT tek aşamalı mimaridir. Modelde, hızı
arttırmak için bölge önerisi adımı atlanmıştır ve maske katsayısı tahmin etmeye dayalı bir
yol izlenmektedir. SOLOv2’nin (X. Wang ve diğ., 2020) hedefi piksel kümeleme ya da
nesne tespiti yapmadan doğrudan segmentasyon yapabilmektir. Mimari bu amaçla
görüntüyü ızgaralara bölmektedir. Izgarada nesne merkezi bulunması halinde ızgara,
öznitelik ve evrişim çekirdeği öğrenme görevlerini gerçekleştirmektedir. Öğrenme
görevlerinden gelen bu iki maske birleştirilerek prototip maskeleri elde edilmektedir.
DeepLabv3+, kodlayıcı-kod çözücü bir mimaridir. Semantik segmentasyon yapan bu
mimari kodlayıcı kısmında çıkardığı öznitelikleri kullanarak kod çözücü kısımda maske
önerisi üretmektedir. Dört farklı segmentasyon mimarisinin önerilen veri seti üzerideki
segmentasyon başarıları karşılaştırılmıştır. Çalışmanın özgün değeri ve literatüre katkısı
aşağıdaki gibi özetlenmiştir:

• Bu tez ile uzmanlar eşliğinde etiketlenmiş yeni bir veri seti önerilmiştir. Örnekler
akciğer MR görüntülerinden oluşmaktadır ve tümör segmentasyonu
hedeflenmektedir. Veri seti, benign ve malign olmak üzere iki sınıf etiketinden
oluşmaktadır.

• Literatürdeki akciğer tümör segmentasyonu çalışmalarının aksine CT görüntüleri değil
MR görüntüleri kullanılmıştır. Tümörün yerinin segmente edilmesine ek olarak türü de
tahmin edilmiştir.

• Ağ seçimleri, medikal görüntü segmentasyonu alanında literatürde henüz
kullanılmamış ya da az sayıda kullanılmış mimariler arasından yapılmıştır.

• Segmentasyon halen gelişmekte olan bir alan olarak karşımıza çıkmaktadır. Bu
sebeple Türkçe kaynak sıkıntısı bulunmaktadır. Bu çalışmada Makine Öğrenmesi
(Machine Learning) (ML), derin öğrenme ve dijital görüntü segmentasyonu
kavramları derinlemesine incelenmiş ve anlaşılabilir şekilde verilmiştir.
Segmentasyon modellerinin çalışma prensipleri açık şekilde anlatılmıştır. Bu yönüyle
çalışmanın Türkçe kaynak kullanmayı arzu eden araştırmacılara yardım etme
potansiyeli vardır.



3

2. LİTERATÜR ARAŞTIRMASI

2.1 Akciğer Tümörü

Doğada bulunan diğer canlılara benzer şekilde hücreler doğmakta, büyümekte, belli
miktarda çoğalıp ölerek yerini sağlıklı hücrelere bırakmaktadır (Çakıcı, 2019). Sebebi kesin
olarak bilinmemek ile beraber genetik, yaşam koşulları, alışkanlıklar vb. tetikleyici
faktörlerin etkisiyle bahsi geçen yaşam döngüsü hücrelerin gerektiğinde ölmemeleri ya da
kontrolsüz olarak çoğalmaları sebebiyle bozunuma uğramaktadır. Hayat döngüsü bozulmuş
olan bu hücrelerin kümeleşmesi, tümör diğer bir ismi ile neoplazmi oluşumuna sebep
olmaktadır (Charles, 2019).

Akciğer tümörü; geçmeyen ve giderek kötüleşen öksürük, bu öksürük ile kan veya
kanlı balgam çıkarmak, tekerrür eden veyahut geçmeyen akciğer enfeksiyonları, sesin
kısılması, nefesin daralması, iştah problemleri ve buna bağlı olarak kilo kaybı, yorgunluk,
derin nefes alma, öksürük ve gülme durumlarında kötüleşen göğüs ağrısı gibi belirtiler
vermektedir (HSGM, 2017). Çoğu vaka için ilk olarak fiziki muayene ile başlayan tanı
süreci bulunmaktadır. Sonrasında ayrıntı yakalamak için göğüs röntgeni, CT, MRI vb.
yöntemler tercih edilmektedir. Akciğerden alınan biyopsinin patolojik incelenmesi
sonucunda kesin tanı belli olmaktadır. Tümörlerin tedavisi için cerrahi, radyocerrahi,
radyoterapi ve kemoterapi yöntemlerinden hastaya uygun olanı uygulanmaktadır.

Akciğer tümörleri, akciğerde bulunan hücrelerin bozunumu sebebiyle ortaya
çıkmaktadır. Bu bozunuma sahip olan hastaların %80 − 90’ı tütün ve ürünlerini
kullanmaktadır (Hofmann ve diğ., 2004). İkinci el dumana maruz kalma, hava kirliliği vb.
etkenler de hastalığı tetiklemektedir. Tümörler meydana geliş biçimleri ile temel olarak
ikiye ayrılmaktadır. Eğer tümör akciğerde başladıysa ve mevcut olan diğer tümörler ile
ilgisi yoksa tümör birincil akciğer tümörü olarak adlandırılmaktadır (Charles, 2019). Diğer
yandan başka bir dokuda meydana gelmiş kansere ait hücre dolaşım ya da lenf sistemi ile
akciğere gelip orada tutunmuş ise böyle bir tümöre metastaz ya da ikincil akciğer tümörü
ismi verilmektedir. Mesane, meme, kolon, prostat kanserleri, nöroblastom ve sarkom
genellikle akciğere yayılım gösteren kanser türleridir. İkincil akciğer tümörleri akciğer
kanseri olarak geçmemektedir. Örnek olarak kolon kanseri akciğere sıçramışsa buna
akciğer metastazlı kolon kanseri denilmektedir. Davranışları açısından ise tümörler iyi
huylu (benign) ve kötü huylu (malign) tümörler olarak iki ana başlıkta incelenmektedir.
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2.1.1 Benign Akciğer Tümörü

Benign diğer adıyla iyi huylu akciğer tümörü, kanserli olmayan akciğer tümörü olarak
tanımlanmaktadır. Diğer dokulara metastaz yapmaz ve ilerlemesi yavaştır (CCS, 2020b).
Boyut artışı, malign tümöre dönüşme vb. değişimler gösterme riskine karşın hastanın sağlık
ekibi tarafından düzenli olarak kontrol edilmelidir. Genellikle hastanın yaşamını tehdit
etmemektedir bu sebeple anormal doku büyümesi olarak tanımlanması mümkündür. Tıpkı
diğer tümörler gibi tıbbi görüntüleme teknikleri ile tespit edilmektedir. Görüntü olarak kötü
huylu tümörlerden oldukça farklıdır. Daha küçüktür ve kapsül gibi sınırları bellidir.
Oluşturulan veri setinden alınan bir örnek ile benign akciğer tümörü Şekil 2.1’de
gösterilmiştir.

(a) Tümörün MR Görüntüsü (b) Tümörün İşaretlenmesi

Şekil 2.1 Benign Akciğer Tümörü

Bening akciğer tümörü bir çok durumda belirti vermemektedir. Ancak belirti verirse
sıklıkla tekrar eden akciğer enfeksiyonları, öksürük, göğüste hırıltı, nefes alma sorunları
ortaya çıkabilmektedir (Stuart, 2021). Pulmoner hamartom, bronşiyal adenom ve papillom
akciğerde görülen benign tümörler arasındadır. Pulmoner hamartom, akciğerde en sık
görülen benign tümördür (Temiz ve Gezer, 2016). Birçok durumda 4 santimetreden küçük
olarak gözlemlenmiştir. Genellikle kas, yağ, kıkırdak gibi farklı hücre çeşitlerinden
kaynaklanmaktadır (Charles, 2019). Bronşiyal adenom, pulmoner hamartomdan sonra
akciğerde en çok rastlanan iyi huylu tümördür (CCS, 2020b). Bu tip bir tümör bronşlarda
bulunan mukus bezlerinden ya da bu bezlerin boşaltımını sağlayan kanallardan meydana
gelmektedir (Brooks ve Krummel, 2006). Papillom ise akciğerlerin içinde bulunan epitel
dokularda oluşum göstermektedir (CCS, 2020b). İnsan Papilloma Virüsü (Human
Papilloma Virus) (HPV) sonucunda ortaya çıkan skuamöz papillom, en sık rastlanan
papillomlardan biridir (Charles, 2019).
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2.1.2 Malign Akciğer Tümörü

Kötü huylu akciğer tümörü ya da akciğer kanseri olarak bilinen malign akciğer tümörü
2008 yılı verilerine göre %12, 7’lik bir oran ile en sık karşılaşılan kanser türüdür (Ferlay ve
diğ., 2010). Küresel olarak kansere bağlı ölümlerin %18, 2’sini aynı zamanda en büyük
kısmını oluşturmaktadır. Ulusal Kanser Enstitüsü’nün 2012-2018 SEER Kanser
İstatistikleri İncelemesi raporlarına göre beş yıllık sağkalım oranı yaklaşık olarak
%22, 9’dur (NCI, 2022). Bahsi geçen oran sıklıkla karşılaşılan başka kanser türlerinin
sağkalım oranından daha düşüktür. Örneğin aynı verilere göre meme kanserinin sağkalım
oranı %90, 6 olarak verilmiştir. 2019 yılı Birleşik Krallık verilerine göre akciğer kanseri
tanısına sahip hastaların %40’ından fazlası 75 yaşın üzerindedir ve tanı alanların %30’u en
az bir yıl %5’i en az 10 yıl yaşamaktadır (NHS, 2019) .

Malign akciğer tümörü, dağınık ve çoğu zaman büyük bir görünüme sahiptir.
Oluşturulan veri setinden alınan örnek Şekil 2.2’de verilmiştir. Benign akciğer tümörlerine
benzer şekilde akciğer kanseri de birçok durumda ilk aşamalarda belirti göstermemektedir
(NHS, 2019). İlerleyen aşamalarla birlikte kalıcı nefes darlığı, kalıcı öksürük, kan tükürme,
sebepsiz kilo kaybı ve yorgunluk gibi semptomlar ortaya çıkmaktadır. Hastalığın tedavisi
için cerrahi operasyon uygulanabilmektedir (Herrera ve diğ., 2003). Ancak bazen kanserin
konumu veya dağılmış oluşu buna müsaade etmemektedir. Bu sebeple cerrahiye alternatif
olarak radyoterapi veya kemoterapi uygulanmaktadır.

(a) Tümörün MR Görüntüsü (b) Tümörün İşaretlenmesi

Şekil 2.2 Malign Akciğer Tümörü

Primer akciğer kanseri (CCS, 2020a) temel olarak 2 ana başlık altında
incelenmektedir: Küçük hücreli akciğer kanseri, Küçük hücreli olmayan akciğer kanseri.
Küçük hücreli akciğer kanseri, adını küçük görünmesinden almıştır. Çoğu vakada vücudun
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diğer bölgelerine metastaz yaptıktan sonra teşhiş edilmektedir. Oldukça agresiftir. İki ana
türü vardır. Bunlar, küçük hücreli karsinom ve kombine küçük hücreli karsinomdur. Küçük
hücreli olmayan akciğer kanseri ise akciğerde en sık görülen kanser türüdür. Tüm akciğer
kanseri vakalarının %80 − 85’ini oluşturmaktadır. Akciğerde bulunan farklı hücre veya
dokularda başlangıç gösterebilen bu kanserin pek çok alt türü bulunmaktadır. Örnek olarak,
adenokarsinom, skuamöz hücre karsinoması, büyük hücreli karsinom küçük hücreli
olmayan karsinomun birkaç alt türüdür (NHS, 2019).

2.2 Tıbbi Görüntüleme

Vücut olarak ifade edilen varlık deri, kas, yağ vb. dokular ile kaplıdır ve sağlıklı bir vücutta
iç organlar ile kemikler çıplak göz ile görülememektedir. Tıbbi görüntüleme, iç organları ve
kemikleri görüntüleyerek bir sorun olması durumunda bu sorunu tespit edebilmek için
kullanılan yöntemlerin tümüne verilen isimdir (Bilyk, 2020). Örneğin trafik kazası geçirmiş
bir hastanın kemiklerinde kırık ve iç kanama olup olmadığını kontrol etmek için tıbbi
görüntülemeden faydalanılmaktadır. Bunun yanı sıra araştırmacılara, anatominin nasıl
işlediğini anlamalarında yardımcı olmaktadır.

Tıbbi görüntüleme yöntemleri; kanser, iç kanama, damar tıkanıklığı, kalp
hastalıkları, travmalar gibi pek çok hastalığın tespit edilmesinde kullanılırken farklı
hastalıkların tespitinde farklı tıbbi görüntüleme yöntemleri kullanılmaktadır. Röntgen, CT,
MRI, ultrasonografi, anjiyografi, Pozitron Emisyon Tomografisi (Positron Emission
Tomography) (PET) sıklıkla kullanılan ve birçok kişi tarafından bilinen tıbbi görüntüleme
yöntemlerindendir. Bütün bu yöntemlerin temeli ise röntgene dayanmaktadır (M. Y. Chen
ve Whitlow, 2011). Röntgen, 1895 yılında fizikçi Wilhelm Röntgen tarafından X ışınları
olarakta bilinen röntgen ışınlarının bulunması ile ortaya çıkmıştır. X ışınını içerdiği
iyonlaştırıcı radyasyonun DNA yapısını bozmaya yetecek enerjiye sahip olması nedeniyle
bazı anormalliklere sebep olabilmektedir (FDA, 2020a). Bu sebeple hamile ve reşit
olmayan hastalara önerilmemektedir.

Görüntüleme işleminde ışınlar, manyetik alanlar ve ses dalgaları gibi gözle
görülemeyen dalgalar kullanılmaktadır. Örneğin röntgen ve CT’de görüntü alabilmek için
X ışını, MRI’da manyetik alan, ultrasonografide ise ses dalgaları kullanmaktadır. Şekil
2.3’te verildiği gibi görüntüleme yaparken genel olarak bir kaynaktan nesneye yöneltilen bu
dalgalar, nesnenin yoğunluğuna göre yoğunluğu fazla olan bölgelerce soğrulmakta diğer
bölgelerin ise içinden geçmektedir (FDA, 2020b). Nesnenin içinden geçen dalgalar
nesnenin arkasına konumlandırılmış olan dedektörler ile yakalanmakta ve matematiksel
hesaplamalar ile görüntü elde edilmektedir.
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Şekil 2.3 Tıbbi Görüntüleme Sistemi (Subagja, 2019)

2.2.1 Manyetik Rezonans Görüntüleme (Magnetic Resonance
Imaging) (MRI)

Ana amacı yumuşak dokuları görüntülemek ve işleyişinin incelenmesine yardım etmek olan
MRI, esnekliği ve hassas ölçüm yapabilmesi ile güçlü bir görüntüleme yöntemidir (Brown
ve diğ., 2014). MRI’nın günümüzde geldiği noktaya ulaşmasının esas sebebi güvenli ve
neredeyse her yaştan hastanın hastalığının teşhisinde kullanılabilir olmasından gelmektedir.
Bunun sebebi Bölüm 2.2’de bahsedildiği gibi MRI görüntü almak için manyetik alan
kullanmaktadır ve radyasyon içermemektedir. Görüntüleme için güçlü bir manyetik alan
kullanmaktadır ve bu manyetik alan dünyanın manyetik alanının yaklaşık 25000 katıdır. Bu
sebeple vücudunda metal parça taşıyanlar MRI cihazına girememektedirler. Aynı sebeple
boyasında kurşun ya da demir bulunma riskine karşın kalıcı dövme sahiplerine ve daha
önce silahla yaralanmış kişilere MRI cihazına girmeleri önerilmemektedir.

MRI, Nükleer Manyetik Rezonans (Nuclear Magnetic Resonance) (NMR) tıbbi
görüntülemeye uygulanması ile ortaya çıkmıştır. NMR, 1940’ların başlarından itibaren
bilinmesine rağmen bunun tıbbi görüntülemenin bir alanı olarak kullanılması 1973 yılında
Paul C. Lauterbur tarafından gerçekleştirilmiştir (Suetens, 2009). Lauterbur, NMR için
kullanılan manyetik alandaki gradyanların yerleştirilmesini yumuşak doku ve organlardan
görüntü almak için kullanmıştır. Atom içinde bulunan proton ve nötronlar hareketli
yapılardır. Bu sayede atomlar ve moleküller manyetik alan içerisinde belirli bir yönelim
almaktadır (Lauterbur - Facts Nobel Prize Outreach 2022). Ancak bu yönelimi yakalamak
için her farklı atoma farklı frekanstaki radyo dalgaları gerekmektedir. 1974 yılında Peter
Mansfield, bu fenomenin insan vücudunun iç kısmının görüntülerinin oluşturulması için
kullanılmasını konu alan matematiksel bir teori sunmuştur. Bu hesaplamalar hidrojen
atomlarının hareketini esas almaktadır ve dokularda bulunan su içeriğindeki farklılıklar,
hidrojen atomlarının farklı hareketleri, MRI için bir temel oluşturmaktadır. Bu çalışmaların
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ardında Lauterbur ve Mansfield aynı alanda beraber çalışmaya başlamışlardır ve 2003
yılındaki Fizyoloji veya Tıp Ödülü’nü birlikte kazanmıştır.

MRI’nın isminde bulunan manyetik, manyetik alanların kullanıldığına atıfta
bulunurken rezonans, salınan bir manyetik alanın frekansının bir doku molekülündeki
çekirdeğin dönüşünün öncelikli frekansı ile eşlemesini ifade etmektedir (Brown ve diğ.,
2014). Burada çekirdeğin dönüşünün iyi huylu rolüne nükleer bileşen olarak atıf
yapılabilmektedir. Bu sebeple MRI yerine Nükleer Manyetik Rezonans Görüntüleme
(Nuclear Magnetic Resonance Imaging) (NMRI) olarak anılması daha doğru olacakken
nükleer kelimesine karşı olan önyargıdan dolayı MRI olarak benimsenmiştir.

2.2.2 Dijital Görüntü İşleme

Dijital görüntü, sonlu ve iki boyutlu f(x, y) fonksiyonu olarak tanımlanmaktadır (Gonzalez
ve Woods, 2008). Fonksiyonun herhangi bir koordinattaki büyüklüğü görüntünün aynı
noktadaki gri renginin yoğunluğunu göstermektedir. Bahsi geçen koordinat ise piksel veya
nokta olarak isimlendirilmektedir. f fonksiyonunun çıktıları dijital bir ortamda iki boyutlu
bir dizi yani matrisler ile temsil edilmektedir. Dijital görüntünün tek bir formatı
bulunmamaktadır (Haqq, 2016). Nokta başına düşen örnek sayısına ya da içerdiği renklere
göre farklı dijital görüntü formatları bulunmaktadır. İkili, gri tonlamalı, Kırmızı Yeşil Mavi
(Red Green Blue) (RGB) dijital görüntüler yaygın olarak kullanılan formatlar arasındadır.
İkili ve gri tonlamalı görüntüler nokta başına bir örnek içermektedir. Bir RGB görüntüde
nokta başına üç örnek bulunmaktadır. Gri tonlamalı ve RGB dijital görüntünün matris
temsili Şekil 2.4’te verilmiştir.

Şekil 2.4 Gri Tonlamalı ve RGB Görüntülerin Matris Temsili

Dijital görüntü işleme, dijital görüntülerin bilgisayarlar yardımı ile işlenmesine
atıfta bulunmaktadır (Gonzalez ve Woods, 2008). Dijital görüntü işleme insan görü
sistemini temel alsa da, görüntüleme makineleri elektromanyetik spektrumun hemen hemen
tamamını algılamaktadır. Bu durum ultrason gibi farklı kaynaklarca oluşturulan
görüntülerin makineler tarafından algılanmasını sağlamakta ve bu sayede dijital görüntü
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işlemenin pek çok uygulama alanı bulunmaktadır. Astronomik gözlemler, PET gibi nükleer
ilaçlar, anjiyografi, röntgen, florasan mikroskop, lazerler, endüstri de sıkça kullanılan
kızılötesi bantlar, radarlar, MRI gibi görüntüleme teknikleri bahsi geçen uygulama alanları
arasındadır.

Dijital görüntü işleme, genel olarak düşük, orta ve yüksek seviyeli olmak üzere üç
kategoride incelenmektedir. Bu paradigma aralarında net bir çizgi bulundurmayan
bilgisayarla görü ve dijital görüntü işlemenin hangi noktada birleştiğini göstermek adına
Gonzalez ve Woods (2008) tarafından kullanışlı olarak tanımlanmıştır. Düşük seviyeli
dijital görüntü işleme; görüntü keskinleştirme, gürültü azaltma gibi temel uygulamaları
içermekte ve bu seviyede bir işlemin girdisi de çıktısı da görüntü olmaktadır. Orta seviyeli
görüntü işleme; bir görüntüyü bilgisayar ile işlemeye uygun hale getirme, görüntüdeki
objelerin segmente edilmesi olarak örneklenebilmektedir. Bu durumda orta seviyeli bir
görüntü işleme görevinde girdi görüntü iken çıktı görüntülerden çıkarılan öznitelikler
olmaktadır. Üçüncü ve son kategori olan yüksek seviyeli görüntü işleme ise dijital görüntü
işleme ile bilgisayarla görünün birleştiği görüntüyü anlamayı içermektedir. Girdi olarak
öznitelik almakta ve çıktı olarak bir algıyı takip eden işlevleri yerine getirmektedir. Nesne
takibi, otonom araçlar bahsi geçen seviye için örnek olabilecek çalışmalardır. Özetle dijital
görüntü işleme görevlerinde girdi ve çıktılar görevin seviyesine göre değişmektedir.

2.3 Makine Öğrenmesi (Machine Learning) (ML)

Yapay zeka çalışma alanının ilk örneklerinde akıllı uygulamaların hemen hepsi if-else koşul
yapıları ile kodlanmaktaydı (A. C. Müller ve Guido, 2016). Manuel olan bu yöntem ile
akıllı uygulamanın kurallarını hazırlamak kuralların göreve özgü olması, insan faktörü
büyük bir role sahip olduğu için zaman maliyetinin, hata payının artması ve nesnelliğin
azalması anlamına gelmekteydi. Hızlı, insan iş gücüne göre oldukça uygun ve duygu
barındırmadığı için objektif olan makine öğrenmesi, terim olarak ilk kez 1959’da
araştırmacı Arthur Samuel’in dama oyunu ile ilgili olan araştırmasıyla dünyaya tanıtılmıştır
(Mitchell ve Mitchell, 1997). Günümüzde hayatın her alanında sıkça kullanılan ve yüz
tanıma gibi geleneksel programlama ile çözülemeyecek görevleri olan ML, geçmişte
toplanmış ve analiz edilmeye uygun verilerden elde ettiği deneyimler ile doğru tahminde
bulunmak ya da başarıyı arttırmak için kullanılan hesaplama yöntemlerinin tümü olarak
tanımlanmaktadır (Mohri ve diğ., 2018). Bahsi geçen veriler sisteme girdi olarak
verilmektedir. Veriler, insanlar tarafından hazırlanmış etiketli veri setleri olabileceği gibi
sistemin çevreden elde ettiği farklı formatta veriler de olabilmektedir. Aynı zamanda bu
alan; kullanılan verilerin kalitesi, analizi ve miktar olarak çokluğuyla sistemin başarısı
doğrudan alakalı olduğu için istatistik, bilgisayar ve yapay zekanın ortak çalışma koludur
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(A. C. Müller ve Guido, 2016) ve literatürde istatistiksel öğrenme olarakta geçmektedir.
ML çalışma alanında sıklıkla kullanılan temel terimler ve onlara ait tanımlar Çizelge 2.1’de
verilmiştir.

Çizelge 2.1 Temel ML Terimleri (Mohri ve diğ., 2018)

Terim Tanım
Veri Seti Sistemin eğitimi ve değerlendirilmesi için kullanılan veri

örnekleri
Öznitelik Genellikle vektör olarak temsil edilen ve bir örneğe ait olan

özelliklerin hepsi
Etkiket Verilere tayin edilen sınıf değerleri ya da kategorileri

Hiperparametre Kullanıcı tarafından belirlenen ve çoğunlukla sisteme girdi olarak
verilen parametreler

Eğitim Seti Bir makine öğrenmesi algoritmasının eğitim sırasında kullandığı
örneklerin tümü

Doğrulama Seti Sistem etiketli veriler ile çalışırken hiperparametrelerin
değerlerini güncellemek için kullanılan set

Test Seti Sistemin performansının değerlendirilmesi için eğitim verilerden
ayrı olan ve sistemin ilk defa göreceği örnekleri içeren set

Kayıp Fonksiyonu Sistem tarafından yapılan tahmin ile gerçek etiket arasındaki fark
Aşırı Öğrenme Eğitim verilerinin ezberlenecek kadar öğrenilmesi sonucunda

düşük eğitim kaybı ancak yüksek test kaybına neden olması
Eksik Öğrenme Genellikle az hiperparametreli basit modellerde meydana gelen,

verilerdeki püf noktaların kaçırılması sorunu

ML, her biri ayrı bir araştırma kolu olan doğal dil işleme, metin ve belge
sınıflandırılması, yüksek seviyeli bilgisayarla görü uygulamaları gibi birçok problemi
içermektedir. Bunları çözmek için sınıflandırma, regresyon ve kümeleme gibi görevleri
kullanmaktadır (Mohri ve diğ., 2018). ML; verilerin sisteme alınması ve çeşitleri,
değerlendirme sistemi vb. yönüyle farklı türlere ayrılmıştır. Bunlardan en yaygın olanları
denetimli, denetimsiz, yarı denetimli, çevrimiçi, takviyeli, aktif öğrenmedir. Basitçe
denetimli öğrenme etiketli veriler ile çalışmaktadır. Makine, veriler ve onların sınıf
etiketleri ile bir eğitim süreci tamamlamaktadır. Sonrasında hiç görmediği veriler hakkında
tahminde bulunmaktadır. Müller ve Guido (2016) tarafından en başarılı sonuçları veren tür
olarak tanımlanmıştır. Sıklıkla sınıflandırma ve regresyon görevlerini gerçekleştirmek için
kullanılmaktadır (Mohri ve diğ., 2018). Denetimsiz öğrenme eğitim için etiketlenmemiş
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veriyi kullanmaktadır. Etiketli veri kullanmaması somut olarak ölçümleme yapılmasını
güçleştirmektedir. Kümeleme ve boyut azaltma görevlerinde bu yöntem kullanılmaktadır.
Yarı denetimli öğrenme girdi olarak hem etiketli hem de etiketsiz verilerden oluşan bir set
almaktadır. Temelde yarı denetimli bir ML sistemi etiketli olan verileri kullanarak kalan
verilere belirlenen güven değerine göre etiket vermektedir. Genellikle sınıflandırma ve
regresyon görevleri için kullanılmaktadır. Çevrimiçi öğrenme, eğitim ve test adımlarını
karıştıran turlardan oluşmaktadır. Her turun sonunda test setinden birkaç veri alınmakta ve
bu verilerin kayıpları hesaplanmaktadır. Böyle bir sistemin amacı kümülatif kaybı minimize
etmektir. Çevrimiçi öğrenmeye benzer olarak takviyeli öğrenme de eğitim ve test adımlarını
bir arada yürütmektedir. Ancak takviyeli öğrenme farklı olarak sistemin doğru
davranışlarını ödüllendirip yanlış davranışlarını cezalandırmaktadır. Ek olarak sistem çevre
ile iletişim kurabilmektedir. Belli adımdan sonra sistem cezadan kaçma ve ödüle yönelme
eğilimi göstermektedir. Bu tür, Pavlov’un da savunduğu davranışçılık olarak bilinen
psikolojik kuramdan esinlenerek ortaya çıkmıştır (Otterlo ve Wiering, 2012). Son olarak
aktif öğrenme veri miktarının etiketlenemeyecek kadar çok (Solaguren-Beascoa, 2020) ya
da etiketlemenin çok masraflı olduğu durumlarda, veriler arasından belirleyiciliği fazla
olanların seçilmesi ve sistemin seçilen noktalara etkiket talep etmesini esas almaktadır
(Mohri ve diğ., 2018). Böyle bir durum başarılı bir sonuç için pasif öğrenme olarakta anılan
denetimli öğrenmeye göre çok daha az etiketli veri gerektirmektedir.

Esas olarak sistemin öğrenmesi için ilk aşama veri setinin eğitim, test ve doğrulama
olarak rastgele ayrılmasıdır. Genel olarak eğitim seti miktarı tüm veri setinin fazlasını
kapsamaktadır. Kullanışlı öznitelikler ile çalışmak ML algoritmalarının başarılı sonuçlar
elde etmesi için elzemdir. Bu sebeple diğer adım kullanışlı özniteliklerin seçilip, gürültü
olarak ifade edilebilecek içerisinde bilgi barındırmayan özniteliklerin elenmesi için
öznitelik seçimi adımıdır. ML algoritmalarında bu adım kullanıcıya bırakılmıştır. Seçilen
öznitelikler ve ayarlanan hiperparametreler ile eğitim başlatılmakta ve doğrulama seti
içerisinde en iyi sonucu veren eğitim modeli nihai model olmaktadır. Eğitilmiş sistemi
değerlendirmek için test seti ve sisteme uygun olarak seçilen kayıp fonksiyonu
kullanılmaktadır.

Literatürde tıbbi görüntüleme yöntemlerinden MRI ve ML kullanılarak
gerçekleştirilen pekçok çalışma bulunmaktadır. Bu çalışmalardan birinde araştırmacılar,
ML algoritmasına girdi olarak verilen MR görüntüleriyle beyin tümörünü metastazlardan
ayırt etmeyi ve bu tümörlerin derecelendirilmesini hedeflemişlerdir (Zacharaki ve diğ.,
2009). Önerdikleri İlgi Alanı (Region of Interest) (ROI), öznitelik çıkarımı, öznitelik seçimi
ve sınıflandırma gibi birkaç adımdan oluşmakta ve kullandıkları veri seti 98 hastaya ait MR
görüntülerinden oluşmaktadır. ROI’lerin belirlenmesiyle iki uzman nörolog kontrolünde
öznitelik çıkarımı işlemi tamamlanmıştır. Öznitelik çıkarımında yaş ve tümör detaylarını
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içeren çok fazla parametre göz önüne alındığı için araştırmacılar ilk olarak öznitelik
azaltmak adına iki kuyruklu t testi ve Kısıtlı Doğrusal Ayırma Analizi (Constrained Linear
Discriminant Analysis) (CLDA) uygulamıştır. Bahsi geçen iki kuyruklu t testi ile veriler
arası korelasyon hesaba katılmadığından gereksiz öznitelikler seçilmektedir. Bu
öznitelikleri elemek ve sınıflandırıcı başarısını arttırmak amacıyla araştırmacılar, öznitelik
alt kümesi seçimi için Destek Vektör Makinesi (Support Vector Machine) (SVM) tabanlı bir
sistem tercih etmiştir. Veriler; SVM, k En Yakın Komşu (k Nearest Neighbors) (k-NN)
algoritması ve Doğrusal Ayırma Analizi (Linear Discriminant Analysis) (LDA) ile Fisher’ın
diskriminant kuralı olmak üzere üç farklı sınıflandırma metodu kullanılarak
sınıflandırılmıştır. Bu metotlardan en yüksek doğruluk değerini %91, 20 ile araştırmacıların
da beklediği gibi t testi uygulanmış verilerle SVM elde etmiştir. k-NN ve LDA için bu değer
sırasıyla %89, 8 ve %81, 10’dir. CLDA uygulanmış verilerde doğruluk yüzdesi ise SVM,
k-NN ve LDA için sırasıyla %90, 60, %89, 40, %85, 20’dir. Verilen sonuçlar, araştırmanın
yapıldığı dönemde elde edilmiş en yüksek doğruluk değerlerine tekabül etmektedir.

Başka bir çalışmada araştırmacılar (Moradi ve diğ., 2015) Alzheimer hastalığının
erken teşhisinin tahmini için MRI tabanlı bir makine öğrenmesi yöntemi önermişlerdir.
Hastalığın erken teşhisi için yaşa bağlı gerileme ile Alzheimer arasında geçiş olan Hafif
Bilişsel Bozukluk (Mild Cognitive Impairment) (MCI) aşaması baz alınmıştır.
Kullandıkları veri seti Alzheimer Hastalığı Nörogörüntüleme Girişimi (Alzheimer’s
Disease Neuroimaging Initiative) (ADNI) tarafından sağlanmıştır. Veri setinde bulunan
görüntüler içerisindeki heterojenlikler giderilmiş ve normalize edilmiştir. Sınıflandırma için
görüntülerdeki gri madde bölümü kullanılacağından bu bölüm beyaz madde ve omurilik
sıvısı bölümünden segmente edilip yumuşatma filtresinden geçirilmiştir. Sınıflandırma
aşamasında araştırmacılar iki farklı yöntem önermiştir. Bu yöntemlerden ilki MRI
biyobelirteç olarak isimlendirilmiştir. Bu yöntem ek olarak beyindeki yaş etkilerinin
Alzheimer ile karıştırılmaması için görüntüden yaş etkilerinden temizlenmesi adımını
içermekte ve temel olarak iki aşamadan oluşmaktadır. Birinci aşama öznitelik seçimidir ki o
denetimli öğrenme yöntemi olan düzenli lojistik regresyonu kullanarak MRI voksellerinden
iyi öznitelik alt kümesi seçmeyi hedeflemektedir. İkinci aşamada yarı denetimli öğrenme
yöntemi olan ve dönüştürücü SVM’lere dayanan Düşük Yoğunluklu Ayırma (Low Density
Separation) (LDS), İlerici Hafif Bilişsel Bozukluk (Proggresive Mild Cognitive
Impairment) (pMCI) ve Stabil Hafif Bilişsel Bozukluk (Stable Mild Cognitive Impairment)
(sMCI) sınıflandırması için kullanılmıştır. Sistem eğitim esnasında etiketlenmemiş
Bilinmeyen Hafif Bilişsel Bozukluk (Unknown Mild Cognitive Impairment) (uMCI)
görüntüleri ile de beslenmiştir. Eğitim sonucunu değerlendirmek için araştırmacılar ROC
Eğrisi Altında Kalan Alan (Area under the ROC Curve) (AUC) kullanmışlardır. LDS için
%76, 61’lik bir AUC elde ederek literatürdeki oranları yükseltmiştir. AUC hesaplanmasında
kullanılan ROC, İşlem Karakteristikleri Eğrisi (Receiver Operating Characteristic)ni ifade
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etmektedir. İkinci yöntem olan toplu biyobelirteçin öznitelikleri için LDS sınıflandırıcılı
MRI biyobelirteç kullanılmış ve bunlar orijinal verilerin farklı alt kümeleri ile eğitilmiş
karar ağaçlarından oluşan Rastgele Orman (Random Forest) (RF) sınıflandırıcısına girdi
olarak verilmiştir. Araştırmacılar bu sistem ile %90, 20’lik bir AUC elde ederek kendi
sonuçlarını geliştirmişler ve her iki sistemde de 10 kat çapraz doğrulama kullanılmıştır.
Bahsedilen iki sistemin akış diyagramları Şekil 2.5’da verilmiştir.

(a) MRI Biyoişaretçi Akış Diyagramı

(b) Toplu Biyoişaretçi Akış Diyagramı

Şekil 2.5 Önerilen Sistemlerin Akış Diyagramı (Moradi ve diğ., 2015)
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2.4 Derin Öğrenme

Yapay zeka, ML ve derin öğrenme terimleri birbirleri ile sıkça karıştırılan ve esasında
birbirleriyle iç içe bulunan bilgisayar bilimi alanlarıdır. 1950’lerde makineler de insanlar
gibi düşünebilir mi sorusu ile ortaya çıkan yapay zeka, Şekil 2.6’de görüldüğü üzere ML ve
derin öğrenmeyi içine almaktadır (Chollet, 2018). Derin öğrenme, ML’in özel bir çalışma
alanıdır ve bu iki çalışma alanını birbirinden ayıran nokta ise öğrenebildikleri temsil
katmanlarıdır. Bu katmanlar veri dönüşümlerini ifade etmekte ve bu dönüşümlerin veri
setinden örneklere uygulanmasıyla öğrenme gerçekleşmektedir. Bir ML modeli, bu
katmanlardan bir ya da iki adet öğrenebilirken bir derin öğrenme sistemi içerdiği katman
kadar derin olmaktadır. Derin öğrenme, bahsedilen katman temsillerini birbiri üstüne
eklenmiş sinir ağları adı verilen yapılar ile öğrenmektedir. Yani bir derin öğrenme ağının,
bilginin sıralı filtrelerden geçtiği bir damıtma işlemine benzetilmesi olasıdır.

Şekil 2.6 Yapay Zeka, ML ve Derin Öğrenme İlişkisi (Chollet, 2018)

Bir derin öğrenme katmanı, veri dönüşümlerini gerçekleştirmek için ağırlıklarını
kullanmaktadır. Ağırlıklara katmanın parametreleri demek mümkündür. Verilen ağırlıkları
kullanarak örnekler üzerinden tahmin sağlayan sistemi kontrol etmek için beklenen sonuç
ile çıktı arasındaki uzaklık ölçülmelidir. Bu ise Çizelge 2.1’de bahsedilmiş olan kayıp ya da
diğer bir ismi ile amaç fonksiyonunun görevidir. Kayıp fonksiyonunun çıktısı ağırlıkların
istenen yöne doğru güncellenmesi için kullanılmaktadır. Bu ise derin öğrenmenin temel
hilesi olarak tanımlanan geri yayılım algoritmasıdır ki bu optimizasyon fonksiyonu ile
yapılmaktadır. Bahdedilen basit bir derin ağın çalışma ve öğrenme mantığı Şekil 2.7’de akış
diyagramı olarak verilmiştir. Eğitim yeni başlatıldığında ağırlıklar rastgele belirlenebileceği
gibi eğitilmiş başka bir modelin ağırlıkları da yeni sisteme girdi olarak verilebilmektedir.
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Bu yüzden eğitim verileri ile ağın ağırlıkları başlangıçta uyum sağlamayabilmekte, bu da
kayıp fonksiyonunun yüksek olmasına neden olmaktadır. Optimizasyon fonksiyonu, kayıp
fonksiyonu değerini kullanarak ağırlıkları güncelledikçe kayıp fonksiyonunun değeri
düşmektedir. Temelde bir eğitim döngüsü kayıp fonksiyonunu düşürmek için ağırlıkların
güncellenmesini içermektedir. Çünkü minimize edilmiş kayıp, eğitimli ağın çıktılarının
beklenen sonuçlara mümkün olduğu kadar yaklaşması anlamına gelmektedir.

Şekil 2.7 Temel Derin Öğrenme Adımları (Chollet, 2018)

1989’da LeNet ile ilk başarılı uygulaması gerçekleştirilen derin öğrenme, Evrişimsel
Sinir Ağları (Convolutional Neural Network) (CNN) geri besleme algoritmasının fikri
temellerinin bu çalışma ile atılmasına karşın 2011 yılına kadar ML’nin gerisinde kalmıştır.
2011 yılında ise Grafik İşlemci Birimi (Graphics Processing Unit) (GPU) ile eğitilmiş
görüntü sınıflandırma yarışmaları sonuç vermeye başlamış ve 2012 yılında ImageNet
görüntü sınıflandırma yarışmaları derin öğremenin dönüm noktası olmuştur. Diğer alanlara
göre problemlere hızlı yanıt vermesi, ML’de insan tarafından yapılan öznitelik çıkarma
adımını otomatikleştirmesi vb. özellikleri ile öne çıkan bu alan donanım araçlarının
gelişmesi, internet sayesinde veriye olan erişimin kolaylaşması ile ivmeli bir yükselişe
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geçmiştir. Bugün derin öğrenme farklı ağ mimarilerini içermekte ve bunlara bağlı olarak
geniş bir çalışma alanını kapsamaktadır. CNN, Tam Evrişimsel Ağ (Fully Convolutaional
Network) (FCN), Uzun Kısa Süreli Bellek (Long Short Term Memory) (LSTM),
Tekrarlayan Sinir Ağları (Recurrent Neural Network) (RNN), Çekişmeli Üretici Ağ
(Generative Adversarial Networks) (GAN), Derin İnanç Ağları (Deep Belief Network)
(DBN) bilinen ve sıklıkla kullanılan derin öğrenme algoritmalarıdır (Biswal, 2022). Bu
algoritmalar, hiçbir zaman başarıyı garantilemese de bazıları, belirli çalışmalar için daha
uygundur. Örnek olarak CNN’ler tıbbi görüntü işleme, uydu görüntüsü tanımak, anomali
tespiti için sıklıkla kullanılmaktadır. LSTM’ler genellikle konuşma tanıma, zaman serisi
tahmini gibi görevler ile kullanılmaktadır. RNN’ler resim yazısı, el yazısı tanıma ve doğal
dil işleme vb. görevleri yerine getirmek için tercih edilmektedir. GAN’lar ise astronomik
görüntüleri geliştirmek, çizgi film karakteri ve insan yüzü oluşturmak için giderek artan
şekilde yaygınlaşmaktadır. Çalışma kapsamında tıbbi görüntü segmentasyonu için Bölüm
3.3’te bahsedilecek dört farklı CNN mimarisi kullanılmıştır.

2.5 Evrişimsel Sinir Ağları (Convolutional Neural
Networks) (CNN)

CNN ile geleneksel yapay sinir ağları arasındaki en önemli fark CNN’nin evrişim
katmanında örüntü tanıma alanı bulundurmasıdır (O’Shea ve Nash, 2015). Bu alan, ağı
görüntü odaklı görevlere uyumlu hale getirmeye ve model parametrelerini azaltmaya
yaramaktadır. Bu sayede geleneksel yapay sinir ağlarının en büyük problemlerinden olan
görüntülerin işlenmesi ve beraberinde gelen yüksek hesaplama maliyeti problemini
çözmektedir (Chollet, 2018). CNN genellikle evrişim, havuzlama ve dense olarak da bilinen
tam bağlantılı katman olmak üzere üç tip katman bulundurmaktadır. Evrişim katmanları,
CNN’nin temelini oluşturduğu için mimaride önemli bir yere sahiptir. Evrişim katmanı
girdiyi kenar, doku gibi yerel özniteliklere bölmekte ve bunları öğrenebilmektedir.
Öğrenilen özniteliklerin tıpkı gerçek dünyada olduğu gibi çevirilmiş ya da döndürülmüş
görüntülerde de tanınabilmesi ve bu katmanların hiyerarşiye uygun çalışması nispeten daha
az eğitim seti ile daha çok öğrenmeyi sağlamaktadır. Örnek olarak ilk evrişim katmanı
kenar özniteliklerini öğrenirken sonraki evrişim katmanı bir öncekinin özniteliklerinden
oluşan daha büyük örüntüleri öğrenmektedir. Evrişim katmanları; genişlik, yükseklik,
derinlik ya da kanal ekseni olarak adlandırılan eksenlere sahip Üç Boyutlu (Tree
Dimensional) (3D) tensörlerle çalışmaktadır. Bu 3D tensörler öznitelik haritası şeklinde
isimlendirilmektedir. Öznitelik haritası aynı zamanda katmanların çıktısı ya da girdinin
üzerinde gezen katman filtrelerinin sonuçları olan özniteliklere karşılık gelmektedir.
Öznitelikler tepki haritası şeklinde de anılmaktadır.
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Evrişim işlemi iki farklı parametre ile tanımlanmaktadır: Girdilerden çıkarılan
yamaların boyutu, Katman çıktısı olan öznitelik haritasının derinliği. Girdilerden elde
edilen yamaların boyutu yaygın olarak 3 × 3 olarak seçilmektedir. Öznitelik haritasının
derinliği ise evrişim tarafından hesaplanan filtre sayısına karşılık gelmektedir. Derinlik
ekseninin her boyutu girdinin bir tepki haritasına karşılık gelmektedir. Bir evrişim, boyutu
parametre olarak verilen pencereleri girdi üzerinde varolan her noktayı dolaşacak şekilde
kaydırarak yamaları elde etmektedir. Yamalar, aynı öğrenilmiş ağırlıklara sahip olan ve
evrişim çekirdeği adı verilen matris ile nokta çarpımı işlemine sokulmaktadır. Bu sayede
parametre olarak verilen çıktı derinliğine bir vektör olarak ulaşılmaktadır. Tüm yamalar için
bu işlem tekrar edildikten sonra elde edilen tüm vektörler yükseklik, genişlik, çıktı derinliği
eksenlerini içerecek şekilde birleştirilmektedir. Elde edilmiş çıktı öznitelik haritasındaki her
konum giriş öznitelik haritasında aynı konuma karşılık gelen nokta ile ilgili bilgi
içermektedir. Özetle evrişimin işleyişi Şekil 2.8’da verilmiştir.

Şekil 2.8’da görüldüğü gibi girdi ile evrişim işleminin çıktısı eşit yükseklik ve
genişlik değerlerine sahip değildir. Buna kaydırma adımı ya da piksel ekleme yol
açabilmektedir. Girdi öznitelik haritası ile çıktı öznitelik haritasının aynı boyutta olması için
piksel ekleme kullanılmaktadır. Örneğin, Şekil 2.9a’da görüldüğü gibi 5 × 5 boyutlu bir
girdi üzerinde 3 × 3 boyutlu bir pencere gezdirildiğinde çıktı olarak 3 × 3 boyutlu bir
öznitelik haritası alınmakta ve boyut kaybı yaşanmaktadır. Ancak Şekil 2.9b’de görüldüğü
gibi girdi öznitelik haritasının çevresine bir sıra piksel eklenirse çıktı öznitelik haritası her
karoyu ortalamakta ve 25 adet yama elde edilmektedir. Kaydırma adımı ise çıktı öznitelik
haritasını direkt olarak etkileyen bir parametredir. Girdi öznitelik haritasında dolaşacak
pencerenin adım büyüklüğünü ifade etmektedir. Kaydırma adımının birden büyük olması
altörnekleme olarak da isimlendirilen boyut azaltma anlamına gelmekte ve nadiren
kullanılmaktadır. CNN’ler bunun yerine havuzlama katmanı kullanmaktadır.

Öznitelik haritası evrişim katmanından geçtikçe boyutu büyümektedir. Bu
öğrenilmesi gereken parametre sayısının artması anlamına gelmekte ve aşırı öğrenme,
hesaplama karmaşıklığı gibi problemlere sebep olmaktadır. CNN’ler bahsedilen
problemlerden kaçınmak için havuzlama katmanı kullanılarak altörnekleme yani boyut
azaltma adımı bulundurmaktadır. Bu sayede öğrenilmesi gereken parametre sayısı azalırken
aynı zamanda ardışık evrişim katmanları orijinal görüntüye giderek büyüyen bir pencere ile
bakabilmektedir. Havuzlama katmanı; ortalama havuzlama katmanı, global havuzlama
katmanı vd. farklı dallara ayrılsa da genellikle maksimum havuzlama katmanı tercih
edilmektedir. Çünkü seçilen boyuta göre öznitelik haritasında dolaşan pencerenin en baskın
özelliği seçmesi diğerlerine göre daha bilgilendirici altörnekleme yapılmasını
sağlamaktadır. Kaydırma adımı kullanılmayan evrişim katmanlarından sonra maksimum
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Şekil 2.8 Evrişimin İşleyişi (Chollet, 2018)
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(a) Piksel Ekleme Olmadan Elde Edilen Yamalar

(b) Piksel Ekleme ile Elde Edilen Yamalar

Şekil 2.9 Piksel Ekleme Örnek (Chollet, 2018)

havuzlama katmanının parametreleri genellikle Şekil 2.10’de temsili verildiği gibi pencere
boyutu 2× 2 ve kaydırma adımı iki olacak şekilde ayarlanmaktadır.

Şekil 2.10 Maksimum Havuzlama Katmanı Temsili (Rana, 2020)

Tam bağlantılı katman ise modelin sonunda bulunmaktadır. Genellikle havuzlama
katmanından sonra gelmekte ve bir önceki katmandaki tüm nöronların sonraki
katmandakilere bağlı olduğu bir sinir ağı olarak tanımlanmaktadır (Dumane, 2020). Girdiye
ait global özniteliklerin kullanıldığı bu katman, öznitelik haritasını vektöre çevirmekte ve
nöronlarını bu vektör ile besleyip girdiyi sınıflandırmaktadır. Bunun için son katman
çıktısına bakılmaktadır. Katmandaki her nöron bir sınıfa tekabül etmektedir. Bu katmanda
sınıf sayısına göre Sigmoid ya da Softmax aktivasyon fonksiyonlarından uygun olanı
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kullanılmaktadır. Katmanın verdiği sınıf puanı kullanılarak seçilen kayıp fonksiyonuyla
geri yayılım değeri hesaplanmaktadır.

Aktivasyon fonksiyonları, veriye lineer olmayan bir dönüşüm uygulayıp lineer
olarak ayırmayı hedeflemektedir (Baeldung, 2022). Evrişim katmanlarından ve tam
bağlantılı katmanların çoğundan sonra işlem maliyeti düşük ve verimli olduğı için Rektifiye
Lineer Birim (Rectified Linear Units) (ReLu) adı verilen aktivasyon fonksiyonu
kullanılmaktadır. Ek olarak birçok CNN mimarisi evrişim, havuzlama ve tam bağlantılı
katman dışında aşırı öğrenmeyi engellemek, eğitim başarısını yükseltmek ve hesaplama
maliyetini düşürmek için dropout katmanını bünyesinde barındırmaktadır. Bunu parametre
olarak aldığı 0-1 arasındaki ondalıklı değere göre modeldeki bazı nöronları atarak
sağlamaktadır (Dumane, 2020). Derin öğrenme yöntemlerinde dropout katmanı sıklıkla
kullanılmaktadır (Chollet, 2018).

2.6 Medikal Görüntü Segmentasyonu

Segmentasyon, görüntünün kendini oluşturan objelere bölünmesidir. Otonom segmentasyon,
literatürde dijital görüntü işlemenin en zor başlıklarından biri olarak görülmektedir (Gonzalez
ve Woods, 2008). Görüntünün, segmente edilmesinin tamamlanabilmesi için beş adet şart
bulunmaktadır. Bunlar her pikselin bir bölgeye ait olması, bir bölgenin içerdiği her noktanın
önceden tanımlanmış bir algı ya da anlama bağlanması, her bölgenin birbirinden ayrık olması,
bir bölgenin içine aldığı noktaların aynı yoğunluk seviyesinde olmaları gibi ortak bir özelliğe
sahip olmaları ve son olarak her bölgenin temsil ettiği algının ya da anlamın birbirinden farklı
olmasıdır. Her görüntünün farklı yapısı ve içeriği olması sebebiyle pek çok segmentasyon
tekniği bulunmaktadır. Bu teknikler temel olarak bölge bazlı, eşik, kenar, kümeleme, yapay
sinir ağları tabanlı teknikler şeklinde ayrılmaktadır.

Yapay sinir ağları tabanlı teknikler önemli performans iyileştirmeleri sağlamıştır
(Klingler, 2022). Renkli görüntüler için yapay sinir ağları tabanlı teknikler semantik ve
birey segmentasyon yöntemlerini esas almaktadır. Semantik segmentasyonda her piksel bir
sınıf etiketi ile eşleşmektedir (Karayeğen, 2021). Bu aynı sınıfa ait farklı nesnelerin tek bir
nesne olarak algılanması anlamına gelmektedir. Örnek segmentasyonunda ise aynı sınıfa ait
nesneler farklı bireyler olarak değerlendirilmektedir (Hassan, 2022). Aynı sınıfa ait farklı
bireyleri belli etmek için her bireye farklı renk uygulanmakta ve piksel çakışmalarına izin
verilmektedir. Ek olarak bu yöntem sınırlayıcı kutuları da içermektedir. Özetle semantik
segmentasyon anlamsal etiketler ile çalışmaktayken örnek segmentasyonu ise bireysel
nesnelerin bölümlere ayrılmasına dayanmaktadır (Klingler, 2022). Bir görüntüde üç adet
kuzu varsa semantik segmentasyon bunları tek nesne gibi algılanmakta ve nesne adedini
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sayamamaktadır. Diğer yandan örnek segmentasyonu için her kuzu birey olarak
değerlendirilmekte ve ayrı ayrı segmente edilmektedir. Örnek segmentasyonu ile semantik
segmentasyon arasındaki bahsedilen fark Şekil 2.11’de verilmiştir.

(a) Semantik Segmentasyon (b) Örnek Segmentasyonu

Şekil 2.11 Semantik ve Örnek Segmentasyon Farkı (SuperAnnotate, 2021)

2.7 Benzer Çalışmalar

Medikal görüntü segmentasyonu derin öğrenme, sağlık ve yüksek seviyeli dijital görüntü
işlemenin kesiştiği noktada bulunmaktadır ve günden güne artan bir popüleriteye sahiptir.
Bu alan MRI, CT, röntgen vb. tıbbi görüntüleme cihazları aracılığıyla elde edilen
görüntülerin temel olarak hastalıklı doku ve sağlıklı dokuyu ayıracak şekilde bölütlenmesini
içermektedir. Literatürde bir çalışmada akciğer tümörünün otomatik segmente edilmesiyle
tümörün geometrik değişikliklerini daha rahat analiz etmek amaçlanmıştır (C. Wang ve
diğ., 2019). Araştırmacılar bunun için dokuz akciğer kanseri hastasının altı haftalık MR
görüntülerini takip etmişlerdir ve hastaya özel uyarlanabilen Uyarlanabilir CNN’yi (A-net)
önermişlerdir. Görüntüler arka plan ve tümör olacak şekilde manuel olarak etiketlenmiştir.
Önerilen sistem yama bazlı çalışmaktadır ve yamalar arası yoğunluk değişimlerini
engellemek için tüm yamalar normalize edilmiştir. Evrişim ve havuzlama katmanında
kaydırma adımı için sırasıyla 2 ve 1 değerlerinin ayarlanması ve tam bağlantılı katmandan
sonra ReLu yerine Dropout katmanının olması A-net’i diğer mimarilerden ayırmaktadır.
Sistemin değerlendirilmesi için hassasiyet, Dice benzerlik katsayısı, Kök Ortalama Kare
Yüzey Mesafesi (Root Mean Square Deviation) (RMSD) metrikleri kullanılmış ve her hafta
gelen yeni veriler ile eğitim sonuçları güncellenmiştir. En yüksek sonuçlar ikinci hafta
gelen verilerden elde edilmiştir. Bu değerler verilen metrikler için sırasıyla 0, 80(±0, 15),
0, 84(±0, 10) ve 1, 90(±0, 6)’dur.
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Başka bir çalışmada araştırmacılar medikal görüntü segmentasyonunu
otomatikleştiren ve açık kaynak olarak paylaştıkları bir veri hattı önermişlerdir (D. Müller
ve Kramer, 2021). Evrişimsel Sinir Ağları ile Medikal Görüntü Segmentasyonu (Medical
Image Segmentation with Convolutional Neural Networks) (MIScnn) olarak isimlendirilen
bu veri hattı Şekil 2.12’te de verildiği gibi iki veya üç boyutlu veri girişi, veri ön işleme,
veri arttırma, model seçimi seçenekleri sunmakta ve eğitim adımlarını
otomatikleştirmektedir. Sistem ikili segmentasyona uygun olduğu gibi çok sınıflı da
çalışabilmektedir. İkili sınıflandırma problemlerinde kullanılan tek sıcak kodlama (One Hot
Encoding) MIScnn’de ikili segmentasyon ile beraber çoklu sınıflara da otomatik olarak
uygulanabilmektedir. Diğer veri hatlarından farklı olarak MIScnn, tanımlanan mimariler
dışında özel mimarilerin eklenmesine ve GPU kullanımına izin vermektedir. Veri hattı 300
adet CT görüntüsü bulunduran Böbrek Tümör Segmentasyonu (Kidney Tumor
Segmentation) (KiTS) 2019 veri seti kullanılarak değerlendirilmiştir. Veri seti arka plan,
böbrek ve tümör olmak üzere üç kategoriden oluşmuştur. CT görüntülerinden 120 tanesi
değerlendirme seti olarak kullanılmıştır. Mimari olarak standart 3D UNet tercih edilmiştir.
Sonuçlar için Dice benzerlik katsayısı metrikleri ile beraber kategorik çapraz doğrulama,
Tversky kaybı metrikleri kullanılmıştır. Sınıf bazında Dice benzerlik katsayısı kullanılarak
arka plan, böbrek ve tümör için sırasıyla %99, 94, %93, 19, %67, 50 değerleri elde
edilmiştir.

Şekil 2.12 MIScnn Veri Hattı Akış Şeması (D. Müller ve Kramer, 2021)

Diğer bir çalışmada araştırmacılar çoklu akış çerçevesi ve uyarlanabilir modalite
tekrar kalibrasyon modülü şeklinde iki ana parçadan oluşan AMRSeg-Net isimli bir ağ
önermişlerdir (J. Li, H. Chen, Y. Li, Peng, Cai ve diğ., 2021). Bu ağ ile çoklu model akciğer
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MR görüntülerindeki tümörleri segmente etmek amaçlanmıştır. Önerilen ağ Şekil 2.13’te
görüldüğü gibi Unet’i temel almış, çoklu model görüntü segmentasyonu sağlayan bir ağ
olan IVD-Net’ten esinlenerek tasarlanmıştır. AMRSeg-Net’i esinlendiği ağdan ayıran iki
temel farklılık bulunmaktadır. Bunlardan ilki gradyan yayılımını ve çok modlu öznitelik
çıkarımını basitleştirmektir. Diğeri ise IVD-Net’te öznitelik birleştirmeden sonra yürütülen
evrişim kaldırılarak kodlanmış çoklu akış öznitelik haritaları birleştirilmektedir. İki farklı
tip MR görüntüsününden alınan farklı bilgileri kullanarak tümör segmentasyonu amaçlayan
ağ, içerisinde öznitelikleri tanımlamak için kanal bazlı değil modalite bazlı bir tanımlayıcı
olan ResSe bloğunu kullanmaktadır. Araştırmacılar veri setini Guangzhou Medikal
Üniversitesi First Affiliated Hastanesi’den toplamışlardır. Veri setinde toplamda 71 hastaya
ait 364 tarama dilimi bulunmaktadır. Görüntüler T2 ağırlıklı ve difüzyon ağırlıklı MR
görüntülerinden oluşmaktadır. AMRSeg-Net veri seti ile beslenmeden önce veri seti
üzerinde sekiz defa rastgele döndürme ve kaydırma işlemlerini içeren veri çoğaltma
uygulanmıştır. Ağı değerlendirmek için ResSe bloğu aracılığıyla kalibre edilmeyen
AMRSeg-Net, kanal bazında kalibre için kullanılan ResSe bloğu ve AMRSeg-Net, modalite
bazında kalibre için kullanılan ResSe bloğu ve AMRSeg-Net’e ek olarak aynı veri seti ile
HyperDenseNet ve UNet tabanlı çoklu model segmentasyon ağı da eğitilmiştir. Eğitim
sonuçlarını değerlendirmek için Dice benzerlik katsayısı, hassasiyet ve Hausdorff mesafesi
kullanılmıştır. En başarılı sonuç modalite bazında kalibre için tüm katmanlara uygulanan
ResSe bloğu ve AMRSeg-Net ile elde edilmiştir ve metriklere göre elde edilen değerler
sırasıyla şu şekildedir: 0, 84(±0, 11), 0, 91, 16, 27. Araştırmacılar önerdikleri model ile son
teknoloji modellerin başarısını Dice benzerlik katsayısı ile %20 oranında iyileştirmişler ve
modalite tabanlı tanımlayıcısı olan bir modele yeniden kalibre modülünü ekleyerek
parametre sayısını önemli ölçüde azaltmışlardır.

Akciğer kanserinin daha gerçekçi incelenebilmesi için fareler üzerinde kanser
tespitinin geliştirilmesi gerektiğini savunan araştırmacılar, farenin tüm vücut Koni Işınlı
Bilgisayarlı Tomografi (Cone Beam Computed Tomography) (CBCT) taramalarında
tümörü segmente etmeyi hedeflemişlerdir (Worp ve diğ., 2021). 10 haftalık 60 erkek
fareden elde edilen 3D CBCT görüntüleri uzmanlar eşliğinde etiketlenerek veri seti olarak
kullanılmıştır. Görüntüler, yeniden boyutlandırmanın sonrasında kırpma ve rotasyon
uygulanarak çoğaltılmıştır. Araştırmacılar, verileri eğitmek için iki adımlı 3D U-Net
önermişlerdir. Her iki adım benzer şekilde üç kodlayıcı ve üç kod çözücü katman
içermektedir. Veri seti, dört kat çapraz doğrulama ile her biri 15 adet görüntü içermekte olan
dört farklı sete bölünmüştür. Bu setler üçü eğitim biri test seti olacak şekilde ayrıldıktan
sonra her setin bir kez test verisi olarak kullanılmasıyla eğitim tamamlanmıştır. Her test
seti, Dice benzerlik katsayısı ve Hausdorrf Mesafesi kullanılarak değerlendirilmiş ve
sırasıyla ortalama olarak 0, 80±0, 10 ve 0, 74±0, 48 mm değerleri elde edilmiştir.



24

Şekil 2.13 AMRSeg-Net Mimarisi (J. Li, H. Chen, Y. Li, Peng, Cai ve diğ., 2021)

Araştırmacılar, otomatik segmentasyon için başarılı sonuçlar elde etmekle beraber insan
etiketlemesine kıyasla 69 kat daha hızlı bir sistem önermişlerdir.

Bir başka çalışmada araştırmacılar Mask R-CNN kullanarak MR görüntülerini
segmente etmişlerdir (Padma ve diğ., 2022). Kullandıkları veri seti içinde ön işlemden
geçmiş ve gri seviyeli toplam 300 beyin MR görüntüsü bulunmaktadır. Mask R-CNN
mimarisinde sınıflandırıcı olarak Artık Ağ (Residual Network) (ResNet) tercih edilmiştir.
Mimari kapsamında ResNet’in çıktısı olan öznitelik haritası Bölge Teklif Önerici Ağ
(Region Proposal Network) (RPN) aracılığı ile taranıp belirlenen ROI’ler ROI Hizalama
bloğuna gelmektedir. Burada tüm ilgi bölgeleri eşit boyuta getirilmekte ve Birleşim
Üzerinden Kesişim (Intersection over Union) (IoU) değerleri hesaplanmaktadır. Elde edilen
değer 0, 85 ve üzerinde ise bölge ilgi bölgesi olarak kabul edilerek nesne tespiti veya
segmentasyon bloklarına gönderilmektedir. Kullanılan yapı Şekil 2.14’te verilmiştir.
Araştırmacılar nesne tespiti bloğu kullanarak Mask R-CNN ile Bölge Tabanlı Evrişimsel
Sinir Ağı (Region-Based Convolutional Neural Network) (R-CNN), Fast R-CNN (Hızlı
R-CNN) ve Faster R-CNN’yi (Daha Hızlı R-CNN) kıyaslamışlar ve beklendiği gibi Mask
R-CNN ile daha yüksek doğruluk oranı elde edildiğini gözlemlemişlerdir.

Başka bir çalışmada araştırmacılar bir önceki çalışmaya benzer şekilde çok modlu
akciğer MR görüntü segmentasyonu için çapraz modalite sentez ağı ve çok modlu bir
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Şekil 2.14 Çalışmanın Akış Şeması (Padma ve diğ., 2022)

segmentasyon ağı olan Res-Unet’in birleşmesi ile meydana gelen bir model önermişlerdir
(J. Li, H. Chen, Y. Li, Peng, Sun ve diğ., 2022). Bu model Döngü Tutarlı Görüntü Koşullu
Varyasyonel Otomatik Kodlayıcı (Cycle-Consistent Image Conditional Variational
Auto-Encoders) (CICVAE) olarak isimlendirilmiştir. CICVAE, üretici ve yeniden
yapılandırıcı olmak üzere iki adet Görüntü Koşullu Otomatik Değişken Kodlayıcı (Image
Conditional Variational Auto-Encoders) (ICVAE) ile meydana gelmiştir. Sentez görüntüyü
bu yapı ve T2 ağırlıklı MR görüntüsü kullanarak üretmektedir. Bunun için difüzyon
ağırlıklı MR görüntülerine ihtiyaç duymaması içerik kaymalarının önüne geçmekle beraber
hesaplama maliyetinin azalmasını sağlamıştır. CICVAE’nin yapısı Şekil 2.15’da verilmiştir.
Deneyler için kullanılan görüntüler T2 ağırlıklı ve difüzyon ağırlıklı MR görüntüleridir.
Veri seti orijinal olarak 57 farklı hastadan elde edilen 355 tarama dilimini içermektedir.
Çalışmada T2 ağırlıklı MR görüntüleri zengin dokusu ve görüntü kalitesi ile anatomik
modalite olarak, difüzyon ağırlıklı MR görüntüsü ise tümör bölgesinin görüntüde diğer
yapılara göre yüksek sinyalli olması ile fonksiyonel modalite olarak kullanılmıştır. Veri seti
sekiz kere rastgele kırpma ve döndürme işlemleri uygulanarak çoğaltılmıştır. Sonuçları
değerlendirmek için Dice benzerlik katsayısı ve Hausdorff Mesafesi tercih edilmiştir.
Objektif değerlendirme için HDUNet, Res-Unet, AMRSegNet, DAFNet modelleri de aynı
veri seti ile eğitilmiştir. En başarılı sonuçlar önerilen model olan CICVAE ve Res-Unet ile
elde edilmiştir. Değerler sırasıyla 0, 85(±0, 10) ve 15, 74(±7, 58)’dir. Model, literatürde
bulunan çalışmalara göre Dice benzerlik katsayısını %3, 14 oranında ve Hausdorrf
Mesafesi’ni %4, 89 oranında attırmıştır.

Akciğer kanserinin tespit edilmesi için Derin Kalıntı Ayrılabilir Evrişimsel Sinir Ağı
(Deep Residual Separable Convolutional Neural Network) (DRS-CNN)-1 ve Derin Kalıntı
Ayrılabilir Evrişimsel Sinir Ağı (Deep Residual Separable Convolutional Neural Network)
(DRS-CNN)-2 olarak isimlendirilmiş iki farklı CNN mimarisi önerilen çalışmada
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Şekil 2.15 CICVAE Mimarisi (J. Li, H. Chen, Y. Li, Peng, Sun ve diğ., 2022)

araştırmacılar, literatürde öne çıkan mimarilerin avantajlarını koruyup dezavantajlarını
minimize etmeyi hedeflemişlerdir (Dutande ve diğ., 2022). Önerilen mimarilerde uçtan uca
veri hattını başarılı bir şekilde tanımladığı için U-net baz alınmıştır. Ek olarak gradyan
problemini çözmek için ResNet, başarı oranını etkilemeden parametre azaltmak için
MobileNet, daha uygun öznitelikler seçebilmek için atrous evrişimlerinin kullanımıyla
DRS-CNN-2’de DeepLab mimarilerinden de esinlenilmiştir. Önerilen iki mimarinin yapısı
da Şekil 2.16’de verilmiştir. U-net’te altörnekleme işlemleri ile kaybolan önemli bilgiler
için bu işlemler DRS-CNN mimarisinde ayrılabilir ayrık evrişim birimleri (SCRE ve
SCRD) ile değiştirilmiştir. Bu birimler sayesinde mimari U-net’ten fazla katman içermesine
rağmen daha az hiperparametreye sahiptir. Model sonuçları objektif olarak
karşılaştırabilmek için aynı veri setleri ile eğitilmiştir. Kullanılan veri setlerinden ilki
Medical Segmentation Decathlon (MSD) isimli veri setidir. 63 hastaya ait CT görüntüsü
içermektedir. Bu veri seti eğitim, doğruluma ve test olarak 7:2:1 oranında bölünmüştür.
Diğer veri seti ise yalnızca test için kullanılan StructSeg 2019 isimli veri setidir ve 50
hastaya ait CT görüntüsü bulundurmaktadır. Görüntülerin hepsi sırasıyla akciğer bölgesinin
belirgin hale gelmesi için satirasyon, araştırmacıların Maksimum Yoğunluk Projeksiyonu
(Maximum Intensity Projection) (MIP) adını verdikleri tümör segmentasyonuna yardım
edebilecek yüksek yoğunluklu yapıların belirginleştirilmesi işlemi ve görüntüden tümör
çevresini içeren 256 × 256 boyutlu yama çıkarılması adımlarından geçirilerek işlenmiştir.
Sonuçların değerlendirilmesi için Dice benzerlik katsayısı, Hausdorrf Mesafesi, ortalama
hassasiyet metrikleri kullanılmıştır. DRS-CNN-2 ortalama olarak sırasıyla 0, 65, 18, 26,
0, 737 değerlerini elde ederek Unet, SegNet, FCN, R2-Unet mimarilerinin önüne geçmiştir.
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Şekil 2.16 DRS-CNN-1 ve DRS-CNN-2 Mimarileri (Dutande ve diğ., 2022)
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3. MATERYAL VE YÖNTEM

Mevcut çalışmada gerçek veriler ile hazırlanmış veri seti kullanarak tümör
segmentasyonu ve tümörün sınıflandırılması yapılmıştır. Farklı formatlarda eğitilen veri
seti segmentasyon modellerine uygun olarak Common Objects in COntext (COCO)(Lin,
Maire ve diğ., 2014) ve Pascal Visual Object Classes (Pascal VOC) (Everingham ve diğ.,
2010) formata getirilmiştir. Segmentasyon için Mask R-CNN (He ve diğ., 2017),
DeepLabv3+ (L.-C. Chen, Zhu ve diğ., 2018), YOLACT (Bolya ve diğ., 2019), SOLOv2
(X. Wang ve diğ., 2020) olmak üzere dört farklı örnek ve semantik segmentasyon yöntemi
kullanılmıştır. Modellerin uygulanması için Python programlama dili (Van Rossum ve
Drake Jr, 1995), PyTorch (Paszke ve diğ., 2017) ve Detectron2 (Girshick, Radosavovic ve
diğ., 2018) modülleri tercih edilmiştir. Eğitim için kullanılan her mimari IoU, AP, mAP ve
Dice benzerlik katsayısı metrikleri kullanılarak değerlendirilmiştir.

3.1 Veri Seti

Çalışma kapsamında Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Hastanesi’nde 32
benign ve 52 malign olmak üzere toplam 84 farklı hastadan elde edilen akciğer MR
görüntüleri kullanılmıştır. Dört kanallı MR görüntülerinin P, K ve M kanallarının farklı
volümetrik görüntüleri ayrı birer görüntü olarak kayıt edildikten sonra radyoloji uzmanları
eşliğinde LabelMe aracı (Wada, 2018) ile nesne sınıfları benign ya da malign olacak şekilde
etiketlenmiştir. Veri setinde toplam 2033 görüntü bulunmaktadır. Bu görüntülerin 920’si
benign tümörü ve 1113’ü malign tümörüdür ve toplamda 306 adet benign ve 371 adet
malign P kanalı, 307 adet benign ve 370 adet malign K kanalı, 307 adet benign ve 372 adet
malign M kanalı görüntüsü bulunmaktadır. Veri setini doğru analiz edebilmek ve
segmentasyon başarısını yükseltebilmek amacıyla veri seti üç farklı versiyonda eğitilmiştir.

3.1.1 Birinci Versiyon

Veri setinin ilk versiyonu, her kanalın ayrı görüntü olarak kayıt edildiği ham versiyondur.
Medikal görüntü kanalların ayrı görüntüler olarak ele alınması RGB bir görüntünün kırmızı,
yeşil ve mavi kanallarının ayrılarak birer görüntü şeklinde işlenmesine eş değerdir. Veri
setinin birinci versiyonu Şekil 3.2a, Şekil 3.2b ve Şekil 3.2c’de verilen görüntüleri
bulundurmaktadır. İlk versiyonda bulunan 920 benign ve 1113 malign tümör görüntüsü,
1633 eğitim ve 400 doğruluma örneği olarak ayrıldıktan sonra segmentasyon mimarisine
girdi olarak verilmiştir.
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3.1.2 İkinci Versiyon

Veri setinin ikinci versiyonunda kanallardan en çok bilgi sağlayanını bulmak ve hangi tümör
tipinin hangi kanalda daha rahat ayırt edildiğini görmek hedefiyle kanallara ait görüntüler
ayıklanarak her kanal ayrı eğitilmiştir. Bu versiyonda veri sayısının P, K ve M kanalları için
eşit olması amacıyla eğitimlerde 306 benign ve 370 malign tümör görüntüsü kullanılmıştır.
Bu görüntüler her kanala ait set için 546 eğitim ve 130 doğrulama örneği olacak şekilde
ayrılmış ve sonrasında eğitilmiştir.

3.1.3 Üçüncü Versiyon

Farklı kanallardan gelen görüntülerin birbirinden ayrı bilgiler vermesi sebebiyle aynı
hastaya ait tümörün farklı kanal görüntülerindeki poligonları örtüşmemektedir. Bu sebeple
görüntünün tüm kanallarından gelen bilgilerden faydalanmak ve segmentasyon başarısını
yükseltmek amacıyla kanallar birleştirilerek üçüncü versiyon veri seti elde edilmiştir.
Kanalların birleştirilmesi Şekil 3.1’de verilen görselleştirmeye uygun olarak
gerçekleştirilmiştir. Şekil 3.2’de bir tümöre ait ayrı kanal görüntüleri ve kanalların
birleşmesi ile ortaya çıkan yeni görüntü verilmiştir.

Şekil 3.1 Veri Setinin P, K ve M Kanallarının Birleştirilmesi

Veri setinin üçüncü versiyonunda tümörün çevresini işaret eden poligonların
örtüşmemesi sebebiyle farklı poligonların birleşimi alınarak veri setinin etiketleri
düzenlenmiştir. Görüntülere ait etiketlerin birleştirilmesi Şekil 3.3’te verilen temsile uygun
olarak gerçekleştirilmiştir. Birleştirme sonrası veri setinin üçüncü versiyonunda 307 adet
benign, 373 adet malign tümör bulunmaktadır. Üçüncü versiyon veri setinde 543 eğitim ve
137 doğrulama verisi olacak şekilde bir ayırma yapılmıştır.
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(a) K Kanalı (b) M Kanalı (c) P Kanalı (d) Birleşim

(e) K Kanalı (f) M Kanalı (g) P Kanalı (h) Birleşim

(i) K Kanalı (j) M Kanalı (k) P Kanalı (l) Birleşim

(m) K Kanalı (n) M Kanalı (o) P Kanalı (p) Birleşim

Şekil 3.2 Veri Setinden Örnekler



31

Şekil 3.3 Veri Setinin P, K ve M Kanallarının Etiketlerinin Birleştirilmesi

3.2 Ön İşleme

Çalışma kapsamında veri seti üç farklı versiyonda ve model gereksinimlerine bağlı olarak
iki farklı formatta eğitilmiştir. LabelMe aracı (Wada, 2018) etiketleme çıktısını JavaScript
Object Notation (JSON) uzantılı dosyalara kayıt etmektedir. Her görüntünün kendine ait bir
dosyası bulunmakta ve bu dosya görüntü ismi, poligon noktaları vb. bilgiler içermektedir.
Veriler bahsi geçen formattan COCO formata (Lin, Maire ve diğ., 2014) çevirilmiştir. İlk
olarak Microsoft tarafından yayınlanan COCO veri seti, verilerin yönetimini kolaylaştıran
ve segmentasyon, obje tanıma gibi görevleri bir değişiklik yapmadan uygulamaya yarayan
bir formata sahiptir. Bu sebeple format özel veri setlerine de uygulanmaya başlanmıştır.
COCO formatında bir veri seti; eğitim, değerlendirme ve varsa test veri seti için ayrı birer
JSON dosyası içermektedir. Setlerin içerisindeki görüntüler ve görüntülere ait etiket
kimliği, görüntü kimliği nesne sınıfı, sınırlayıcı kutu koordinatları, segmentasyon noktaları
vd. bütün bilgiler tek JSON dosyasında toplanmıştır. Bu çalışmada Mask R-CNN,
YOLACT ve SOLOv2 modelleri JSON formatında veri seti ile beslenmiştir. Ek olarak veri
setinin üç versiyonu için veriler JSON formata çevirilmiştir.

Semantik segmentasyon yapan DeepLabv3+ modeli için veri setinin Pascal VOC
formatı (Everingham ve diğ., 2010) elde edilmiştir. Pascal VOC, COCO’ya benzer şekilde
veri seti olarak yayınlanmış ve formatın kullanışlı bulunması ile özel veri setlerine
uygulanmaya başlanmıştır. Bu formatta veriler Extensible Markup Language (XML)
dosyalarındadır ve her görüntü için bir XML dosyası bulunmaktadır. Her bir dosya;
sınırlayıcı kutu koordinatları, segmentasyon için kullanılacaksa segmentasyon noktaları,
görüntünün ismi ve bulunduğu dosya yolu, içerdiği nesnelerin sınıfı gibi bilgiler
içermektedir. Segmentasyon için kullanıldığında JSON formatın aksine görüntülere ait
maskelerinde veri seti içerisinde bulunması gerekmektedir. Tüm görüntüler tek bir klasör
altında verilmekte ve görüntülerin ait oldukları veri seti grubunun bulunması için metin
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dosyası içinde görüntü isimleri verilmektedir. Veri setinin üçüncü versiyonu Pascal VOC
formata çevirilmiştir.

Görüntülerin yeniden boyutlandırılarak boyutlarının azaltılması, görüntüye oranla
küçük olan tümörlerin daha da küçülmesine yol açtığı için tercih edilmemiştir. Bunun
dışında görüntüler modeller için uygun formata çevrildikten sonra Mask R-CNN için bir
dönüşüm uygulanmazken, SOLOv2 için görüntülerin normalizasyonu, YOLACT için
görüntülerin normalizasyonu, DeepLabv3+ için ise görüntülerin normalizasyonu ve mimari
büyüklüğü sebebiyle boyutları 513 × 513 olacak şekilde merkezi ve rastgele kırpma
dönüşümleri uygulanmıştır.

3.3 Derin Öğrenme Mimarileri

3.3.1 Mask R-CNN

Nesne tespiti, örnek segmentasyonu ve oynar eklemlerin konumunu tahmin etmek adına
anahtar nokta tespiti olmak üzere üç farklı görevi yerine getirebilen Mask R-CNN (He ve
diğ., 2017); kolay eğitilebilir, esnek ve verimli olması ile öne çıkmaktadır. Facebook
tarafından geliştirilen bu mimari, Faster R-CNN mimarisini (Ren ve diğ., 2015) temel
almaktadır. Mask R-CNN mimarisi, tıpkı Faster R-CNN mimarisi gibi iki aşamalı ve CNN
tabanlı bir mimaridir (He ve diğ., 2017). İlk aşamada RPN ile ROI teklifleri
oluşturulmaktadır. İkinci aşama her ROI’nin sınıflandırılmasını ve ikili maske
oluşturulmasını içermektedir. İkili maske oluşturmak Faster R-CNN mimarisinde
halihazırda bulunan sınırlayıcı kutu konumu ve sınıf etiketi çıkışlarına paralel maske
tahmini veren üçüncü bir dal ekleyerek sağlanmıştır.

Faster R-CNN, R-CNN mimarisinde (Girshick, Donahue ve diğ., 2014) bulunan
ROI’lere uygulanan ilgi havuzu bölgesi ile önemli bilgi içeren daha küçük alanı
incelemekte ve eğitimi hızlandırmaktadır. Ancak ROI havuzlama olarak isimlendirilen bu
katmanda iki defa niceleme kullanımı önemli bilgi kaybına yol açmaktadır (He ve diğ.,
2017). Bu sebeple araştırmacılar Mask R-CNN’de her ROI’den çıkarılan öznitelik haritasını
niceleme kullanmadan elde edebilen bu sayede bilgi kaybını minimize eden ROIAlign
işlemini önermişlerdir. Bahsi geçen mimarinin temsili Şekil 3.4’te verilmiştir.

Çalışmada hızı kaybetmeden doğruluğu arttırmak için sınıflandırıcı olarak ResNet
ve Öznitelik Piramit Ağı (Feature Pyramid Network) (FPN) beraber kullanılmıştır. Önerilen
bu mimari ResNet-101-FPN sınıflandırıcısı ile COCO veri seti kullanılarak eğitilmiştir.
Mask R-CNN, COCO 2015 ve 2016 kazananlarını geride bırakarak 35,40 IoU Üzerinden
Ortalama ya da diğer bir deyişle Ortalama Kesinlik (Average Precision) puanı elde etmiştir.
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Şekil 3.4 Mask R-CNN Mimarisi Temsili (He ve diğ., 2017)

Çalışma kapsamında, veri setinin Bölüm 3.1’de verilen üç ayrımı Mask R-CNN mimarisi
ile eğitilmiştir. Veri setinin ilk versiyonu ResNet-101 sınıflandırıcı kullanılarak 0,0005
öğrenme oranı, 12 batch boyutu ile 5000 iterasyon eğitilmiştir. 4000. iterasyondan sonra ise
WarmUpMultiStepLR öğrenme oranı düzenleyicisi uygulanmıştır. İkinci versiyonunda K, P
ve M kanalları ayrı olarak ResNet-101 sınıflandırıcısı kullanılarak 12 batch boyutu, 0,0004
öğrenme oranı ile 3000 iterasyon eğitilmiştir. 2500. iterasyondan sonra ise
WarmUpMultiStepLR öğrenme oranı düzenleyicisi uygulanmıştır. Üç kanalın
birleştirilmesi ile elde edilen versiyonda ResNet-101 sınıflandırıcı olarak tercih edilmiştir.
Öğrenme oranı 0,0005 ve her iterasyon için batch boyutu 12 olarak belirlenmiştir. İlk iki
versiyonda uygulanan öğrenme oranı düzenleyicisi bu eğitimde de kullanılmış olup toplam
5000 iterasyon olan eğitim sürecinin 4000. iterasyonundan sonra uygulanmıştır. Versiyon
iki ve üç için ROIMaskHead parametresi 512 olarak güncellenmiştir. Diğer parametreler
orijinale sadık kalınarak değiştirilmemiştir. Modelin Detectron2 modülü ile inşası için
Roboflow (Solawetz, 2020) tarafından sağlanan açık kaynaklı bir eğitim temel olarak
alınmıştır. Her üç eğitim tek NVIDIA Quadro P5000 GPU ile gerçekleştirilmiştir.
Değiştirilen parametrelerin değerleri yapılan deneyler sonucunda elde edilmiş en yüksek
başarıyı veren parametrelerdir.

3.3.2 DeepLabv3+

DeepLabv3+, Google tarafından geliştirilmiş ve DeepLabv3’nin genişletilmiş versiyonu
olarak literatüre eklenmiştir (L.-C. Chen, Zhu ve diğ., 2018). Önerilen model, Derin
Evrişimsel Sinir Ağları (Deep Convolutaional Neural Network) (DCNN) örneklerinden biri
olan FCN’yi temel almaktadır. FCN, yapısında tam bağlantılı katman bulundurmadığı için
girdi olarak verilen görüntülerin boyutlarında özgürlük sağlayan bir CNN’dir.
DeepLabv3+’nın önceki versiyonunda bulunan ve DCNN mimarilerin gerektirdiği yukarı
örnekleme işlemini hesaplama maliyetini arttırmadan katman filtresinin görüş alanını
genişletmek amacıyla kullanılan Atrous ya da genişletilmiş evrişim katmanı ile
DeepLabV2’de (L.-C. Chen, Papandreou ve diğ., 2017) önerilen ve aynı objenin farklı
boyutlarda tespit edilmesini kolaylaştıran (Atrous Mekansal Piramit Havuzu (Atrous Spatial
Pyramid Pooling) (ASPP) bu modelde de korunmaktadır.
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DeepLabv3+, bir kodlayıcı-kod çözücü mimaridir (L.-C. Chen, Zhu ve diğ., 2018).
Araştırmacılar mimariyi güçlü bir kodlayıcı ve basit ama etkili bir kod çözücü olarak
tanımlamışlardır. Hem keskin sınırlar elde etmeyi hem de başarılı bir segmentasyon işlemi
yapmayı hedefleyen DeepLabv3+, bir önceki versiyonu olan DeepLabv3’ü kodlayıcı olarak
kullanmaktadır. Atrous evrişim katmanı, mimarinin kodlayıcı kısmında DCNN tarafından
hesaplanmış öznitelikkleri çıkarmak için kullanılmaktadır. Önerilen modele ait mimari
Şekil 3.5’te verilmiştir.

Şekil 3.5 DeepLabv3+ Mimarisi Temsili (L.-C. Chen, Zhu ve diğ., 2018)

DeepLabv3’den farklı olarak önerilen model, maksimum havuzlama katmanı yerine
araştırmacıların önermiş olduğu atrous derinlemesine ayrılabilir evrişim katmanını
kullanmaktadır. Atrous derinlemesine ayrılabilir evrişim katmanı, MobileNetV1 (Howard
ve diğ., 2017) ile tanıtılan derinlemesine ayrılabilir evrişim katmanının atrous evrişim
katmanı ile desteklenmesidir. Derinlemesine ayrılabilir evrişim katmanı ise standat evrişim
ile noktasal evrişim işlemini birleştirerek hesaplama karmaşıklığını azaltan bir katmandır
(L.-C. Chen, Zhu ve diğ., 2018). Atrous evrişimi ile desteklenerek modelin başarımı
korunurken hesaplama karmaşıklığı da azaltılmıştır. Katman hem ASPP hem de kod çözücü
kısımda kullanılmıştır. Şekil 3.6’da derinlemesine, noktasal ve atrous evrişim katmanlarının
çalışma prensibi verilmiştir.
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(a) Derinlemesine Ayrılabilir (b) Noktasal
(c) Atrous Derinlemesine
Ayrılabilir

Şekil 3.6 Derinlemesine, Noktasal ve Atrous Evrişim Katmanlarının Çalışma Prensibi
(L.-C. Chen, Zhu ve diğ., 2018)

DCNN, aşamalı olarak öznitelik haritalarının boyutlarını belirlenen bir faktöre göre
azaltmaktadır. Klasik sınıflandırma görevleri için bu faktör genellikle 32 olarak
belirlenirken otomatik segmentasyon gibi yüksek seviyeli bir göreve seyrek öznitelik
çıkarımı yetmeyeceği için önerilen modelde çıktı adımı olarak isimlendirilen bu
parametrenin 8 ya da 16 şeklinde kullanılması önerilmiştir. Araştırmacılar önerilen modeli,
sınıflandırıcı olarak segmentasyon için uyarladıkları Xception-JFT kullanarak Pascal VOC
veri seti üzerinde eğitmişlerdir. DeepLabv3+, semantik segmentasyon yapan benzer
modelleri geçerek %89, 00 ortalama IoU elde etmiştir. Bu çalışmada veri setinin üçüncü
versiyonu kullanırak gerçekleştirilen deneylerde çıktı adımı 16 olarak kullanılmıştır.
Araştırmacıların Tensorflow kullanarak açık kaynaklı paylaştıkları modeli Pytorch
modülünü kullarak Pascal VOC format veri setine uygulamak için yayımlanmış olan bir
GitHub deposu kullanılmıştır (VainF, 2022). Eğitimde sınıflandırıcı olarak ResNet-101
tercih edilmiştir. Öğrenme oranı 0,03 ve batch boyutu 36 olacak şekilde parametreler
güncellenmiştir. Dört adet NVIDIA Quadro P5000 GPU kullanılarak ve model 10000
iterasyon eğitilerek eğitim tamamlanmıştır. Bahsedilen parametreler DeepLabv3+ için
yapılan deneyler sonucunda en yüksek başarımın elde edildiği eğitime ait parametrelerdir.

3.3.3 You Only Look at Coefficients (YOLACT)

Başarılı dijital görüntü segmentasyon ağları, hesaplama maliyetlerinin yüksek oluşundan
dolayı gerçek zamanlı uygulamaların gerektirdiği hızı karşılayamamaktadır. Araştırmacılar
literatürdeki bu eksikliği gidermek adına YOLACT mimarisini önermişler (Bolya ve diğ.,
2019) ve Mask R-CNN’ye (He ve diğ., 2017) benzer şekilde var olan bir nesne tanıma
modeline maske dalı eklemeyi hedeflemişlerdir. Araştırmacılar hesaplama maliyetini
düşürüp hızı arttırmak için tek aşamalı model olan CNN tabanlı RetinaNet’i (Lin, Goyal ve
diğ., 2017) tercih etmiştir. Aynı sebepten modelde ROIAlign bölgesi veya ROI havuzlama
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katmanı tarafından gerçekleştirilen önerilen bölgelerin maskeye hizalanması adımı
atlanmıştır (Bolya ve diğ., 2019). YOLACT bunu yapabilmek için maskelerin uzamsal
olarak tutarlı oluşuna dayanarak problemi iki paralel dala ayırmaktadır. İlk dal, örneğe bağlı
olmadan prototip maske üretmek için FCN kullanmaktadır. Diğer dal ise prototip
uzayındaki her elemana ait maske katsayılarını tahmin etmek üzere nesne tanıma dalına
fazladan bir kafa eklemektedir. ”Tahmin Kafası” olarak adlandırılan bu bloğun yapısı Şekil
3.7’de görüldüğü gibi RetinaNet’e göre daha sığdır ve maske katsayılarını veren fazladan
bir dal bulundurmaktadır. Tahmin Kafası bloğunun sonrasında Maksimum Olmayan
Bastırma (Non-Maximum Suppression) (NMS) bloğundan çıkmayı başarmış her örnek için
bahsedilen iki dalın çalışmaları doğrusal olarak birleştirilerek örnek için bir maske önerisi
üretilmektedir.

Şekil 3.7 Tahmin Kafası Bloğu Temsili (Bolya ve diğ., 2019)

Prototip maskelerin üretildiği dal, Mask R-CNN’den esinlenerek tasarlanmış ve
Protonet olarak isimlendirilmiştir. Burada her görüntü için k adet prototip bulunmaktadır.
Her prototip için bir kanalı bulunan k kanallı çıktı FCN olarak uygulanarak sınıflandırıcının
öznitelik katmanına eklenmektedir. Araştırmacılar daha derin sınıflandırıcı
özniteliklerinden protonet alınmasının daha sağlam maskeler ürettiğini vurgulamaktadır.
Daha sağlam maskeler yüksek çözünürlüklü prototiplerin ortaya çıkmasını sağlamakta ve
bu ise görüntüde bulunan küçük nesnelerin tespitinde daha iyi performans gösterilmesini
sağlamaktadır. Araştırmacılar bundan faydalanmak için FPN kullanmışlardır. Nihai maske
oluşumu için prototip dalı ve maske katsayısını tahmin eden daldan gelen bilgiler doğrusal
olarak birleştirilmiştir. Bahsedilen YOLACT mimarisinin temsili Şekil 3.8’de verilmiştir.

Literatürdeki diğer örnek segmentasyonu modellerinden farklı olarak YOLACT
çoklu GPU yerine tek GPU ile eğitilmiştir. Araştırmacılar sınıflandırıcı olarak FPN ve
ResNet-101’i beraber kullanmışlardır. Veri seti olarak COCO veri seti tercih edilmiştir.
550 × 550 boyutlu veriler ile beslenmiş YOLACT-550, rekabet içinde olduğu diğer örnek
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Şekil 3.8 YOLACT Mimarisi (Bolya ve diğ., 2019)

segmentasyonu modellerine göre 3,9 kat daha hızlıdır. Bu ise 33, 50 Saniyedeki Kare Sayısı
(Frame Per Second) (FPS) olarak ölçülmüştür. Ortalama AP (Mean Average Precision)
(mAP) değeri 29, 80 ile benzerinden bir miktar geri kalmış olsa da YOLACT mimarisi bunu
hızıyla telafi etmektedir. Çalışma kapsamında bu mimariyi kullanmak için araştırmacıların
çalışamalarında bağlantısına yer verdikleri ve GitHub üzerinde açık kaynaklı olarak
paylaştıkları depo kullanılmıştır. Orijinalde tek GPU ile çalışma imkanı sağlayan
YOLACT’a sonrasında çoklu GPU özelliği de getirilmiştir ve çalışma kapsamında dört adet
NVIDIA Quadro P5000 GPU kullanılarak eğitim gerçekleştirilmiştir. Eğitimde
sınıflandırıcı olarak ResNet-101 kullanılırken toplam batch boyutu 24 ve öğrenme oranı
0,001 olarak belirlenmiştir.

3.3.4 Segmenting Objects by Locations (SOLOv2)

Segmentasyon görevini yerine getiren ağlar genellikle iki ana yaklaşım benimsemektedir:
Nesne tespitinden sonra segmentasyon, Benzer piksellerin kümelenmesi (X. Wang ve diğ.,
2020). SOLOv2, benzer pikselleri gruplamadan ve sınırlayıcı kutuları kullanmadan
doğrudan segmentasyon hedeflemekte ve bahsedilen yaklaşımlara bir yenisini
eklemektedir. Tek aşamada segmentasyon için nesneleri konumlarına göre ayırmakta ve
ismini de buradan almaktadır. Doğrudan, dinamik segmentasyon için SOLOv2 görüntüyü
ızgaralara ayırmaktadır. İçerisinde nesne merkezi bulunduran ızgaralar iki farklı görevi
gerçekleştirmektedir. Bunlar evrişim çekirdeği öğrenmek (Maske G) ve öznitelik
öğrenmektir (Maske F). İki görevden gelen maskeler dinamik evrişim ile birleştirilerek
maske önerisi (Maske M) elde edilmektedir. İki maskenin ayrı ayrı öğrenilmesi Maske
M’nin doğrudan üretilmesine göre daha avantajlıdır. Maske M büyük bir tensördür ve bir
çekirdek için üretilen her maske eğitim aşamasında kullanılmamaktadır. Bu sebeple her
çekirdek için her Maske M’nin hesaplanması hesaplama maliyetini arttırmaktadır. Maske F
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ve Maske G’nin ayrı öğrenilmesi ile ızgara çekirdeği daha rahat seçilmektedir. Ek olarak
çekirdeğin girdiye göre dinamik olarak üretilmesi modele esneklik sağlamaktadır.
Bahsedilen SOLOv2 mimarisi Şekil 3.9’da verilmiştir.

Şekil 3.9 SOLOv2 Mimarisi (X. Wang ve diğ., 2020)

Bir objenin tespiti için birden çok maske üretilmektedir. Bu şekilde yinelenen
tahminleri kaldırmak için NMS algoritması kullanılmaktadır. Maske NMS, sınırlayıcı kutu
NMS’ye göre daha maliyetlidir. İşlemi gerçekleştirmek için farklı metotlar önerilmiştir
ancak bu metotlar hızı arttırmak için doğruluğu ikinci plana atmaktadır. Araştırmacılar bu
darboğazı çözmek için paralel matris işlemleriyle bir defada NMS yapan Matris NMS’yi
önermişlerdir. Matris NMS, geleneksel NMS’den dokuz kat daha hızlı ve %0, 4 AP daha
doğrudur. COCO veri seti ve ResNet-101 sınıflandırıcısı ile eğitilen SOLOv2 %39, 70 AP
değeri ile Mask R-CNN (He ve diğ., 2017) ve YOLACT (Bolya ve diğ., 2019) gibi benzer
örnek segmentasyonu modellerini geride bırakmıştır. Bu çalışma kapsamında veri setinin
üçüncü versiyonuyla eğitilen SOLOv2 modeli en başarılı sonucu ResNet-101
sınıflandırıcısını kullanılarak, öğrenme oranı ve batch boyutu parametrelerinin sırasıyla
0,005 ve 4 şeklinde güncellenmesiyle elde etmiştir. Eğitim bir adet NVIDIA Quadro P5000
GPU ile gerçekleştirilmiştir. Modelin uygulanması için araştırmacıların GitHub üzerinden
açık kaynaklı paylaştıkları depo kullanılmıştır.
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3.4 Değerlendirme Metrikleri

Farklı segmentasyon yöntemleri eğitim sonuçlarını farklı metrikler kullanarak
değerlendirmektedir. Semantik segmentasyon için bu yöntem IoU metriğidir. Örnek
segmentasyonu ise gerçek maskeler ile tahmin edilenler arasındaki benzerliği
değerlendirmek için AP metriğini kullanmaktadır (Kookna, 2022).

3.4.1 Karmaşıklık Matrisi

Karmaşıklık matrisi, makine öğrenmesi ya da derin öğrenme yöntemlerinin çıktılarını
değerlendirmek için kullanılan metriklerin hesaplanmasını sağlayan matristir (Caelen,
2017). IoU, AP, doğruluk, duyarlılık, hassasiyet gibi pek çok metrik karmaşıklık matrisi
kullanılarak hesaplanmaktadır. Matris içerisinde Gerçek Pozitif (True Positive) (TP), Yanlış
Pozitif (False Positive) (FP), Gerçek Negatif (True Negative) (TN) ve Yanlış Negatif (False
Negative) (FN) olmak üzere dört farklı bileşen bulunmakta ve m sınıfa sahip bir görevde
karmaşıklık matrisi m × m boyutunda olmaktadır. İki sınıflı bir görev için karmaşıklık
matrisi taslağı Çizelge 3.1’de verildiği gibidir.

Çizelge 3.1 Karmaşıklık Matrisi

Gerçek
Doğru Yanlış

Tahmin
Doğru TP FP

Yanlış FN TN

3.4.2 Birleşim Üzerinden Kesişim (Intersection over Union) (IoU)

IoU, orijinal maske ve tahmin edilen maske arasındaki kesişmeyi ölçmek için kullanılan
metriktir (Subramanyam, 2021). Literatürde Jaccard İndeksi ya da Jaccard Benzerlik
Katsayısı olarakta geçmektedir (Csurka ve diğ., 2013). Maskelerin kesişim bölgesi arttıkça
IoU değeri yükselmektedir (Sheremet, 2020). Örneğin iki maske birbiriyle tam olarak
örtüştüğünde IoU değeri %100 olmaktadır. Şekil 3.10’da görüldüğü gibi orijinal maske ile
tahmin maskesinin kesişiminin yine bu iki maskenin birleşimine bölümü IoU değerini
vermektedir.
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Şekil 3.10 IoU Metriği (Padilla ve diğ., 2020)

Doğrulama setine ait IoU değeri karmaşıklık matrisi içerisindeki değerler
kullanılarak hesaplanmaktadır (Karayeğen, 2021). Temel mantığı Denklem 3.1’de verildiği
gibi kesişimin birleşime bölünmesinden gelmektedir. Karmaşıklık matrisi kullanarak IoU
hesaplanması Denklem 3.2’te verilmiştir.

Jaccard(A,B) =
|A ∩ B|
|A ∪ B|

(3.1) Jaccard = IoU =
TP

TP + FP + FN
(3.2)

3.4.3 Ortalama Kesinlik (Average Precision) (AP)

AP metriği IoU, kesinlik (Precision) ve duyarlılık (Recall) metrikleri kullanarak
hesaplanmaktadır (Schütze ve diğ., 2008). Bu sebeple metriğin temeli karmaşıklık matrisine
dayanmaktadır. Kesinlik, modelin tüm tahminler arasında gerçek pozitif değerlerin oranını
vermektedir (Ay, 2020). Özellikle yanlış pozitif tahminlerin maliyetinin yüksek olduğu
durumlarda kesinlik değerinin yüksek olması beklenmektedir. Kesinlik metriğini veren
denklem Denklem 3.3’te verilmiştir. Duyarlılık metriği kesinliğe benzemekte ve pozitif
olarak etiketlediğimiz verilerin kaçının gerçek pozitif olduğunu hesaplamaktadır. Duyarlılık
metriğinin hesaplanışı Denklem 3.4’te verilmiştir.

Precision =
TP

TP + FP
(3.3) Recall =

TP

TP + FN
(3.4)



41

AP metriği, Kesinlik Duyarlılık (Precision Recall) (PR) Eğrisi altında kalan alanın
hesaplanması ile elde edilmektedir. PR eğrisi altında kalan alan, Denklem 3.5’te formülü
verilmiş olan 11 Noktalı İnterpolasyon kullanarak hesaplanmaktadır (Schütze ve diğ.,
2008). Bahsedilen denklemde i = 0, 0.1, 0.2, ..., 1 olarak alınmaktadır. PR Eğrisi farklı IoU
eşikleri için farklı sonuçlar vermektedir (Anwar, 2022). IoU eşikleri, güven eşikleri
şeklinde de isimlendirilmektedir. Örneğin AP 50 olarak verilen bir değer için IoU eşiği %50
olarak uygulanmıştır. Genellikle IoU eşikleri ne kadar yüksek olursa eğitilmiş modelin
tahminleri o kadar kesin ve güvenilir olmaktadır. Örneğin tahmin IoU değeri 0, 4 olan bir
görüntü, 0, 5 eşik uygulanırsa FP olarak değerlendirilirken 0, 3 eşik uygulandığında TP
olarak ele alınmaktadır.

AP =
1

11

∑
Recalli

Precision(Recalli) (3.5)

AP değeri her nesne sınıfı için ayrı olarak hesaplanmaktadır (Liu, 2018). Doğrulama
setine ait genel bir değer elde etmek için Ortalama AP (Mean Average Precision) (mAP)
metriği kullanılmaktadır. COCO tarafından geçerli olarak kabul edilen mAP değeri, farklı
eşik değerleri kullanılarak hesaplanmakta ve IoU üzerinden ortalama olarak geçmektedir
(Lin, Maire ve diğ., 2014). Eşik değerleri, adım büyüklüğü 0, 05 olacak şekilde 0, 50 ile
0, 95 arasındaki 10 farklı değerden oluşmaktadır. Literatürde eşik değerlerini ifade etmek
için mAP metriğinden mAP 0,50:0,05:0,95 şeklinde de bahsedilmektedir. Verilen AP 50

örneğinde olduğu gibi eşik değerinden büyük tahmin değerleri TP, küçük tahmin değerleri
de FP olarak ele alınmaktadır. Her eşik değeri için Denklem 3.5 kullanılarak AP değeri
hesaplanmaktadır. Elde edilen değerlerin ortalaması sınıfa ait AP değerini verirken tüm
nesne sınıflarına ait AP değerlerinin aritmetik ortalaması mAP değerini vermektedir.

3.4.4 Sorenson-Dice Katsayısı

Literatürde Dice Katsayısı, F1 puanı ya da Dice Benzerlik Katsayısı olarakta geçen metrik
iki örneğin benzerliğini ölçmek adına kullanılmaktadır (Guindon ve Zhang, 2017).
Özellikle tıbbi görüntü segmentasyonu görevlerinde sıkça tercih edilmekte ve benzerliği
ölçülecek iki görüntünün birbirleri ile eşit boyutta olmaları gerekmektedir. Denklem 3.6’da
verilen formül ile hesaplanan katsayı ile 0-1 arasında bir değer elde edilmektedir. İşleme
alınan görüntülerin benzerliğinin yüksek olması değerin bire yakın olması anlamına
gelmektedir. Segmentasyon sınıfları için ayrı ayrı hesaplanabileceği gibi genel bir Dice
katsayısı hesaplamakta mümkündür.

DiceKatsays =
2 ∗ |A ∩B|
|A|+ |B|

(3.6)
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4. BULGULAR VE TARTIŞMA

Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Hastanesi’nden elde edilen veri
setinin ilk versiyonu Mask R-CNN ile eğitilmiştir. Eğitim sonrası veriler için elde edilen
AP ve mAP değerleri Çizelge 4.1’de verilen değerlere ulaşılmıştır. Alınan sonuçlara göre
Mask R-CNN mimarisi benign nesne sınıfı için %65, 11 AP, malign sınıfı için %64, 31 AP
elde etmiştir. Mimarinin tüm nesne sınıfları üzerindeki mAP değerinin ise %64, 71 olduğu
görülmüştür. IoU eşiğinin %50 olarak belirlenmesi ile sonuçta %89, 03 mAP değerine
ulaşılmıştır. Şekil 4.1’de eğitim sonucunda tahmin edilen maskeler, orijinal maskeler ve
orijinal görüntüler verilmiştir.

Çizelge 4.1 Veri Setinin Birinci Versiyonu için Eğitim Sonuçları

AP - Benign AP - Malign mAP mAP50 mAP75

Mask R-CNN %65,11 %64,31 %64,71 %89,03 %82,69

Veri setinin ikinci versiyonunda P, K ve M kanalları ayrı ayrı eğitilmiştir. Eğitim
için Mask R-CNN mimarisi kullanılmıştır. Her kanal aynı parametreler ile eğitilmiştir.
Eğitim sonuçları Çizelge 4.2’de verilmiştir. K kanalı benign nesne sınıfı için %72, 88 AP
değeri ve malign nesne sınıfı için %46, 85 AP değeri elde etmiştir. Modelin mAP değeri ise
%59, 86’dir. P kanalı ise benign nesne sınıfı için %70, 46 AP değeri, malign nesne sınıf için
%43, 76 AP değeri vermiştir. P kanalı için yapılan eğitimin mAP değeri %57, 11’dir. Son
kanal olan M kanalı benign tümörleri %54, 94 AP değeri ile segmente etmişken malign
tümörler üzerinde %57, 02 AP başarı elde etmiştir. M kanalı için ulaşılan mAP değeri
%55, 98’dur. Alınan sonuçlara göre benign tümörleri segmente etmek için K kanalı daha
fazla bilgi verirken malign tümörler için M kanalından gelen bilgiler daha faydalı
olmaktadır. İkinci versiyon veri setinin eğitimi sonucu K kanalı için alınan maske
tahminleri, orijinal görüntü örnekleri Şekil 4.2’de, P kanalı için alınan maske tahminleri,
asıl görüntü görnekleri Şekil 4.3’te ve M kanalı için elde edilen maske tahminleri, orijinal
maske örnekleri Şekil 4.4’te verilmiştir. Seçilen örnekler, her sıra farklı bir hastayı ifade
edecek şekilde toplam dört farklı hastadan seçilmiştir. Örnek olarak Şekil 4.2a, Şekil 4.3a
ve Şekil 4.4a’da verilen görüntü aynı hastaya ait görüntünün K, P ve M kanalıdır. Şekil
4.2e, Şekil 4.3e ve Şekil 4.4e’de verilen örnek, malign tümörlerin segmente edilmesi
görevinde M kanalının daha başarılı olduğunun bir diğer kanıtıdır. M kanalına göre daha
yüksek mAP değerlerine sahip K ve P kanallarından gelen bilgilerle model tarafından
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(a) Orijinal (b) Orijinal Maske (c) Önerilen Maske

(d) Orijinal (e) Orijinal Maske (f) Önerilen Maske

(g) Orijinal (h) Orijinal Maske (i) Önerilen Maske

(j) Orijinal (k) Orijinal Maske (l) Önerilen Maske

Şekil 4.1 Veri Seti Versiyon-1 için Orijinal Görüntüler, Maskeler ve Tahmin Edilen
Maskeler
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yakalanamayan malign tümörü M kanalından gelen bilgiler ile başarılı şekilde segmente
etmiştir. Sonuçlar mAP değerlerine göre genel olarak ele alındığında K kanalının tümör
segmentasyonu için daha çok bilgi sağladığı görülmüştür.

Çizelge 4.2 Veri Setinin İkinci Versiyonu için Eğitim Sonuçları

P Kanalı K Kanalı M Kanalı
Mimari Mask R-CNN
mAP %57,11 %59,86 %55,98
AP - Benign %70,46 %72,88 %54,94
AP - Malign %43,76 %46,85 %57,02

Nihai veri seti olan üçüncü versiyon veri seti Mask R-CNN, YOLACT,
DeepLabv3+ ve SOLOv2 segmentasyon modelleri ile eğitilmiştir. Mask R-CNN ve
SOLOv2 mimarileri tek NVIDIA Quadro P5000 GPU ile eğitilmiştir. YOLACT ve
DeepLabv3+ modelleri 4 adet NVIDIA Quadro P5000 GPU kullanarak eğitilmiştir. Elde
edilen sonuçların değerlendirilmesi için mAP, AP, IoU ve Dice katsayısı olmak üzere dört
farklı metrik kullanılmıştır. Eğitimler için alınan sonuçlar Çizelge 4.3’te verilmiştir. Küçük
nesnelerin tespiti konusunda en iddialı model olan YOLACT mimarisi Çizelge 4.3’te
görüldüğü gibi %73, 54 mAP değeri ile en başarılı sonucu vermiştir. YOLACT mimarisini
Mask R-CNN %67, 16 mAP değeri ile takip etmektedir. Ardından SOLOv2 mimarisiyle
%62, 70 mAP değerine ve DeepLabv3+ mimarisiyle %36, 81 mAP değerine ulaşılmıştır.
Nispeten büyük obje içeren veri setlerinde başarı sonuçlar veren DeepLabv3+
segmentasyon mimarisi (L.-C. Chen, Zhu ve diğ., 2018), tümörün sınırlarının
belirlenmesinde %36, 81 mAP ile en az başarının elde edildiği ağ olmuştur. DeepLabv3+,
etiket sınıflarını doğru tahmin etse de tümörlerin sınırlarının doğru belirlememesi ve
özellikle küçük tümör içeren görüntülere bir maske üretmemesiyle düşük olarak
tanımlanabilecek bir performans göstermiştir. Mask R-CNN eğitimi sonucu elde edilen
maske, orijinal maske ve görüntü örnekleri Şekil 4.5’te verilmiştir. YOLACT eğitimi
sonucu ulaşılmış olan maske, orijinal maske ve görüntü örnekleri Şekil 4.6’da verilmiştir.
SOLOv2 mimarisine ait sonuçlar Şekil 4.7’de ve DeepLabv3+ semantik segmentasyon
ağına ait örnek görüntü, tahmin ve maskeler Şekil 4.8’de verilmiştir. Şekil 4.5, Şekil 4.6 ve
4.7’de verilmiş olan orijinal maske görüntülerinde kırmızı renk benign ve beyaz renk
malign akciğer tümörünü ifade etmektedir. Ek olarak Şekil 4.8’de orijinal maske
görüntülerinde bulunan pudra rengi benign, fuşya ise malign akciğer tümörünü ifade
etmektedir.
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(a) Orijinal (b) Önerilen Maske

(c) Orijinal (d) Önerilen Maske

(e) Orijinal (f) Önerilen Maske

Şekil 4.2 Veri Seti Versiyon-2 K Kanalı için Orijinal Görüntüler ve Tahmin Edilen Maskeler
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(a) Orijinal (b) Önerilen Maske

(c) Orijinal (d) Önerilen Maske

(e) Orijinal (f) Önerilen Maske

Şekil 4.3 Veri Seti Versiyon-2 P Kanalı için Orijinal Görüntüler ve Tahmin Edilen Maskeler
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(a) Orijinal (b) Önerilen Maske

(c) Orijinal (d) Önerilen Maske

(e) Orijinal (f) Önerilen Maske

Şekil 4.4 Veri Seti Versiyon-2 M Kanalı için Orijinal Görüntüler ve Tahmin Edilen Maskeler
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Çizelge 4.3 Veri Setinin Üçüncü Versiyonu için Örnek Segmentasyonu Modellerinin Eğitim
Sonuçları

AP - Benign AP - Malign mAP IoU Dice

Mask R-CNN %74,14 %60,17 %67,16 %75,60 %79,25
YOLACT %77,40 %69,70 %73,54 %76,28 %81,89
SOLOv2 %62,89 %62,43 %62,70 %61,31 %73,15
DeepLabv3+ %58,69 %14,94 %36,81 %53,76 %59,28

Mimari sabit tutularak veri setinin farklı ayrımlarından gelen sonuçlar objektif
olarak gözlenebilmiştir. Çizelge 4.1 ve Çizelge 4.3’te verilmiş olan Mask R-CNN
mimarisinin sonuçlarına bakıldığında kanalların birleştirilmesiyle elde edilen üçüncü
versiyon veri seti %2, 45 mAP değeriyle daha yüksek başarı göstermiştir. Aradaki boşluk
nesne sınıfı bazında değerlendirildiğinde benign tümörler için başarı %9, 03 AP artarken
malign sınıfı için bu değer %4, 14 AP düşmüştür. Başarıyı yükseltmek amacıyla oluşturulan
üçüncü versiyon veri setinin yapılan deneyler sonucunda AP- Benign ve mAP değerleri ile
beklentiyi doğruladığı görülmüştür.

Literatürde daha başarılı tümör segmentasyonu için görüntünün tümör konumuna
göre kırpılması sıklıkla tercih edilmektedir. Ancak yeni tanı alacak pekçok tümör bahsi
geçen görüntülerde sahip olduğu kadar büyük alan kaplamamaktadır. Bu sebeple çalışma
kapsamında görüntüler tümöre göre kırpılmamıştır ve bu işlem atlandığından elde edilen
sonuçların benzerlerine göre düşük olması beklenen bir durumdur. Elde edilen değerler ile
küçük nesne içeren veri setlerinin ön işlemsiz kodlayıcı-kod çözücü mimarileri beslemek
için kullanılması önerilmemektedir. Bu tip mimarilerin kodlayıcı kısımlarında sürekli
olarak aşağı örnekleme yapılmakta ve bu ise önemli bilgi kaybetmeye sebep olmaktadır.
Nesne sınırlarının geniş olmaması kaybedilen her bilgiyi daha önemli kılmaktadır. Bu
nedenle YOLACT gibi ayrıntıları yakalamakta daha başarılı olan modeller (Bolya ve diğ.,
2019) kullanıldığında daha kaliteli çıktılar elde edilmektedir. Ek olarak daha düzgün
sınırlara sahip benign tümörlerin (CCS, 2020b), dağınık şekilde görünen malign tümörlere
(NHS, 2019) göre daha yüksek başarı gösterdiği Çizelge 4.1, Çizelge 4.2 ve Çizelge 4.3’te
verilen sonuçlarda görülmektedir. Çünkü maskelerin doğrulukları hesaplanırken segmente
edilmiş alan kullanılmaktadır. Tümörün yeri ve etiketi doğru olarak tahmin edilse dahi
sınırlarının hatalı olması başarıyı etkilemektedir. Alanın dağınıklaşması ise sınırların
gerçeğe yaklaşma olasılığını olumsuz etkilemektedir. Tümörün segmente edilmesinin tümör
sınıfına göre yapılması başarıyı etkileyen diğer bir faktördür. Doğru segmente edilip yanlış
sınıf etiketi atanan ya da doğru sınıf etiketine sahip ancak doğru sınırlar ile segmente
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(a) Orijinal (b) Orijinal Maske (c) Önerilen Maske

(d) Orijinal (e) Orijinal Maske (f) Önerilen Maske

(g) Orijinal (h) Orijinal Maske (i) Önerilen Maske

(j) Orijinal (k) Orijinal Maske (l) Önerilen Maske

Şekil 4.5 Veri Seti Versiyon-3 için Mask R-CNN Mimarisinin Ürettiği Orijinal Görüntüler,
Maskeler ve Tahmin Edilen Maskeler
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(a) Orijinal (b) Orijinal Maske (c) Önerilen Maske

(d) Orijinal (e) Orijinal Maske (f) Önerilen Maske

(g) Orijinal (h) Orijinal Maske (i) Önerilen Maske

(j) Orijinal (k) Orijinal Maske (l) Önerilen Maske

Şekil 4.6 Veri Seti Versiyon-3 için YOLACT Mimarisinin Ürettiği Orijinal Görüntüler,
Maskeler ve Tahmin Edilen Maskeler
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(a) Orijinal (b) Orijinal Maske (c) Önerilen Maske

(d) Orijinal (e) Orijinal Maske (f) Önerilen Maske

(g) Orijinal (h) Orijinal Maske (i) Önerilen Maske

(j) Orijinal (k) Orijinal Maske (l) Önerilen Maske

Şekil 4.7 Veri Seti Versiyon-3 için SOLOv2 Mimarisinin Ürettiği Orijinal Görüntüler,
Maskeler ve Tahmin Edilen Maskeler
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(a) Orijinal (b) Orijinal Maske (c) Önerilen Maske

(d) Orijinal (e) Orijinal Maske (f) Önerilen Maske

(g) Orijinal (h) Orijinal Maske (i) Önerilen Maske

(j) Orijinal (k) Orijinal Maske (l) Önerilen Maske

Şekil 4.8 Veri Seti Versiyon-3 için DeepLabv3+ Mimarisinin Ürettiği Orijinal Görüntüler,
Maskeler ve Tahmin Edilen Maskeler
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edilememiş görüntüler de segmentasyon sonucunu olumsuz etkilemektedir. İleride veri
setinin farklı ön işlemlere tabi tutulması ve daha güçlü GPU kullanımı ile modellerinin
başarısının arttırılması ihtimal dahilindedir. Aynı zamanda kanalların ayrı ayrı eğitilerek
üretilen sonuçların birleştirilmesi ya da görüntülere boyut azaltma işlemi uygulanmadan
görüntüyü ızgaralara bölerek parça parça ele alacak şekilde ağı eğitmek daha güçlü maske
tahmini sağlayabilir.
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5. SONUÇ VE ÖNERİLER

Bu tezde akciğer tümör segmentasyonu için yeni ve gerçek MR görüntülerinden
oluşan bir veri seti önerilmiştir. Veri seti, Eskişehir Osmangazi Üniversitesi Tıp Fakültesi
Hastanesi’nden sağlanmış ve dört kanallı MR görüntüsünün P, K ve M kanalı çalışmaya
dahil edilmiştir. Veri seti toplam 84 farklı hastaya ait verileri içermektedir. Bu hastaların 32
tanesi benign tanısı, kalan 52 adeti malign tümörü tanısı almıştır. Veri seti toplam üç farklı
versiyonda eğitilmiştir. İlk versiyon, veri setinin elde edildiği işlemsiz halidir. Her kanal
farklı birer görüntü olarak veri setinde varlık göstermektedir. İkinci versiyon, görüntü
kanallarını birbiri ile kıyaslamak için oluşturulmuştur. Bu amaçla veri seti üç alt parçaya
bölünmüştür ve kanallar ayrı ayrı eğitilmiştir. Son versiyon ise kanalların birleşmesinin
segmentasyon başarısını arttıracağı hipotezi ile düzenlenmiştir. P, K ve M kanalları
birleştirilerek üç kanallı yeni bir görüntü elde edilmiştir. Tüm versiyonların içerdiği
görüntülere ait detaylar Çizelge 5.1’de verildiği gibidir.

Çizelge 5.1 Veri Setinin Birinci, İkinci ve Üçüncü Versiyonlarında Veri Dağılımı

Benign Malign Eğitim Doğrulama Toplam
Versiyon-1 920 1113 1633 400 2033

Versiyon-2
P 306 370 546 130 676
K 306 370 546 130 676
M 306 370 546 130 676

Versiyon-3 307 373 543 137 680

Her versiyon, objektif olarak karşılaştırabilmek için aynı mimariyi ve sınıflandırıcıyı
kullanarak eğitilmiştir. Bu görev için Mask R-CNN mimarisi ile ResNet-101 sınıflandırısı
seçilmiştir. Yapılan deneyler doğrultusunda üçüncü versiyon veri seti ile %2, 45 mAP daha
yüksek sonuç elde edilmiş ve hipotezi doğrulamıştır. Ek olarak ikinci versiyonda her kanala
ait set yine Mask R-CNN mimarisi ve ResNet-101 sınıflandırıcısı kullanarak eğitime tabi
tutulmuştur. Alınan sonuçlara göre K kanalı görüntülerindeki tümörler %2, 75 mAP ile P
kanalı ve %3, 79 mAP ile M kanalı görüntülerindeki tümörlerden daha başarılı segmente
edilmiştir. Hesaplanan AP değerlerine göre K kanalı görüntüleri benign ve M kanalı
görüntüleri malign tümörlerin segmente edilmesinde daha iyi sonuçlar vermiştir.
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Son olarak veri setinin nihai versiyonunu eğitmek için Mask R-CNN’le beraber
diğer popüler mimariler olan SOLOv2, YOLACT ve DeepLabv3+ mimarileri seçilmiştir.
Bahsi geçen mimarilerden Mask R-CNN, SOLOv2 ve YOLACT örnek segmentasyon
mimarileri ve DeepLabv3+ ise semantik segmentasyon mimarisidir. Ağları değerlendirmek
için AP, mAP ve IoU metrikleri kullanılmıştır. En başarılı sonuç YOLACT mimarisi ile
elde edilmiş ve alınan sonucun en yakını olan Mask R-CNN’den %6, 30 mAP daha yüksek
olduğu görülmüştür. Yapılan deneyler sonucunda yoğun şekilde aşağı örnekleme yapan
modellerin küçük tümörleri doğru segmente etmek konusunda başarısının yeterli olmadığı
görülmüştür. Benign tümörlerin düzgün sınırları sayesinde malign tümörlere oranla daha
kolay segmente edildiği çıkarımları yapılmıştır.

Bu çalışmada literatürde bulunmayan akciğer benign ve malign tümör
segmentasyonu görevine çözüm aranmıştır. Kullanılan veri seti çalışma kapsamında
hazırlanmış olup gerçek tümörlerden oluşmaktadır. Veri setinin yeni oluşturulması ile bu
çalışma, literatürdeki benzer çalışmalardan ayrılmıştır. Ek olarak literatürde bulunan birçok
tümör segmente çalışmasında görüntüler tümör çevresinden kırpılmaktadır. Bu ise
görüntüde daha büyük tümör alanı yakalanmasını ve tümörün daha kolay segmente
edilmesini sağlamaktadır. Bu çalışmada örnek segmentasyonu modellerine kırpma işlemi
uygulanmamıştır.
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