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ENRICHING PREDICTIVE MODELS
USING GRAPH EMBEDDINGS

SUMMARY

Today, artificial intelligence and machine learning models are developing rapidly and
their usage areas are increasing in proportion to this speed. These developments have
led to an increase in forecasting models in various industries. In the digitalizing,
changing, and rapidly increasing data world, the spread of these solutions can be seen
as a result of the moves made by companies to seize their competitive power and
increase their profits. Especially with the increase in the amount of data, the need of
the prediction models has also increased.

Predictive models are used in various fields. For example, in financial markets,
forecasting models are used to predict future price movements. Also, in the healthcare
industry, predictive models are used in the diagnosis and treatment of diseases. In a
graph structure such as social networks, prediction models can be used to predict users’
interests. Especially in the field of e-commerce, where social networks are seen a lot,
data is often represented as a graph structure.

Graph embeddings can be used in a variety of prediction models. For example, when
building a prediction model, we can improve the performance of the model by using
graph embeddings. This helps the model better understand the relationships in the
graph structure so it can make more accurate predictions. Also, graph embeddings can
be used to predict relationships between nodes in a graph structure. For example, in
a graph structure such as a social network, graph embeddings can be used to predict
friend relationships between users. Demand forecasting systems and recommendation
models are two different types of forecasting models. Demand forecasting systems
are the accurate calculation of the future demand for a product. Graphs can be
useful demand forecasting for several reasons. For example, demand prediction
often involves working with sparse data, where there are many possible products or
customers but only a small subset of them have any observed demand. Graphs can
help to handle this sparsity by leveraging the relationships between entities to infer
demand for products or customers that have not been directly observed. Graphs can be
also used to handle the temporal dynamics of demand, such as how demand changes
over time. Graphs can be very helpful to capture the compex interactions between
different factors, such as customer preferences. Recommendation systems, on the
other hand, are softwares used to make recommendations based on the interests of
users. For example, in a music player app, by reviewing the songs a user has listened
to and the artists they’ve listened to, other songs can be suggested that match that user’s
interests. Since recommendation systems generally work by finding the user or product
similarities in data sets, using graph embeddings for performance improvement in
recommendation systems can significantly improve performance. As a result, data can
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be easily represented in graph structures in demand forecasting and recommendation
systems. Graph embeddings from these graphs are used as an important method in
demand forecasting systems and recommendation systems and can help improve the
performance of forecasting models in these areas.

This thesis aims to use graph structures in demand forecasting and recommendation
systems and to improve models with embeddings obtained from these graphs. This
study generally consists of 2 parts: The use of graph embeddings in demand
forecasting and the use of graph embeddings in recommendation systems.

In demand forecasting, which is the first stage, although the success of cutting-edge
machine learning and deep learning models in demand forecasting has come to the fore
according to recent research, the usage of datasets that are enriched using graph-based
feature representations to improve demand forecasting models, is still rare. Therefore,
in the demand forecasting stage, a model that predicts demand using graph embeddings
is proposed. Unlike most existing methods, sales information data is used to extract
various relationships between products, and these various relationships are used
to create graphs. Five different embeddings are evaluated to reflect the different
relationships between the products. These five different embeddings are obtained
using five different graphs created using five different relationships. In order to
obtain product embeddings, two different graph embedding methods named Node2Vec
and GraphSAGE were preferred. After the product embeddings are obtained, Long
short-term memory (LSTM) and Extreme gradient boosting (XGBoost) models are
tried to perform demand forecasting. The Mean absolute error (MAE) metric was
preferred to test the accuracy of the predicted values and the model was tested using
a publicly available retail sales dataset. By running both models with different
parameters, the best parameters were found and the results were obtained by using
the best parameters while taking the final results of the models. According to the
results, the use of graph embeddings increased the prediction success in both models.
The prominent model came into prominence as the model formed by the Node2Vec
graph embedding method and the LSTM method with the value of MAE=2.98.

Another study is the use of graph embeddings in recommendation systems. The model
proposed in this study obtains graph embeddings for each product using the product
title information. At this stage, a model used in natural language processing called
BERT was used. With the proposed model, one embedding was created for each
product using product titles, and category (topic) information was obtained for each
product using the embeddings from the BERTopic model. This category information
obtained is then used in the the next stage and enriches the user-product bipartite graph
by transforming it into a heterogeneous user-product-topic tripartite graph. Unlike
most existing methods, categories are created using only product titles as attributes,
making it an easy-to-implement methodology that can be applied in real-world systems
even if items don’t have detailed item descriptions or comments. In addition, it
is aimed to solve the sparsity problem in recommendation systems by learning the
node embeddings using the meta-path-based Metapath2Vec algorithm to explore the
resulting tripartite graph.

Two different categories of the Amazon dataset were used to observe the performance
of the proposed model, and the results showed that the model outperformed even
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the closest basic result by 3.8% when evaluated for both datasets according to hit
raito. Further analysis confirms that incorporating category information into the
graph structure provides an increase in recommendation accuracy, especially when
recommending long-tail items. As a result, the proposed model has been evaluated
using small versions of datasets and versions where we call cold-start products with
little relevance, and the proposed model outperformed the base models for both hit
rate and NDCG.
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TAHMINLEME MODELLERININ
CIZGE GOMMELERI KULLANILARAK ZENGINLESTIRILMESI

OZET

Giintimiizde, yapay zeka ve makine 6grenmesi modelleri hizla gelismekte ve kullanim
alanlar1 da bu hizla orantili sekilde artmaktadir. Bu gelismeler, cesitli sektorlerde
tahminleme modellerinin artmasina neden olmustur. Dijitallesen, degisen ve hizla
artan veri diinyasinda, bu c¢oziimlerin yayginlagsmasi, sirketlerin rekabet giiciinii
ele gecirmek ve karlarini arttirmak adma yaptiklart hamlelerin bir sonucu olarak
goriilebilir. Ozellikle veri miktarmnin artmasiyla birlikte, tahminleme modellerinin
dogruluk oranlar1 da artmugtir.

Tahminleme modelleri, c¢esitli alanlarda kullanilmaktadir. Ornegin, finansal
piyasalarda, gelecekteki fiyat hareketlerini tahmin etmek i¢in tahminleme modelleri
kullanilir. Ayrica, saglik sektoriinde, hastaliklarin teshisi ve tedavisinde tahminleme
modelleri kullanilir. Sosyal aglar gibi bir ¢izge yapisinda ise, kullanicilarin ilgi
alanlarin1 tahmin etmek igin tahminleme modelleri kullanilabilir. Ozellikle sosyal
aglarin ¢ok fazla goriildiigu e-ticaret alaninda veri siklikla ¢izge yapis1 olarak temsil
edilmektedir.

Cizge gommeleri, cesitli tahmin modellerinde kullanilabilir. Ornegin tahmin modeli
olustururken, ¢izge gdbmmeleri kullanarak modelin performansini iyilestirebiliriz. Bu,
modelin cizge yapisindaki iligkileri daha iyi anlayabilmesine yardimci olur ve bdylece
daha dogru tahminler yapabilir. Ayrica, ¢izge gommeleri, bir ¢izge yapisindaki
diigiimler arasindaki iligkileri tahmin etmek icin de kullanilabilir. Ornegin, sosyal
aglar gibi bir cizge yapisinda, bir kisinin arkadaglarinin arkadaglarini tahmin etmek
icin ¢izge gommeleri kullanabilir. Tahminleme modellerini, talep tahmin sistemleri ve
Oneri sistemleri olarak 2 ayri sistem agisindan ele alabiliriz. Talep tahmini sistemleri,
bir iiriiniin gelecekte olusabilecek talebinin, dogru olarak hesaplanmasidir. Ornegin,
bir e-ticaret sitesinde, bir kullanicinin hangi iriinleri almay: tercih ettigini tahmin
etmek icin ¢izge gobmmeleri kullanilabilir. Bu sayede, miisterilerin ge¢cmis aligverisleri
ve diger ozelliklerine gore onlarin hangi iiriinleri almay1 tercih edeceklerini tahmin
edebilir ve boylece stok yonetimi ve iirlin ¢esitliligi gibi konularla ilgili daha dogru
karar verilebilir. Oneri sistemleri ise, kullanicilarin ilgi alanlarma gore onerilerde
bulunmak igin kullanilan yazilimlardir. Ornegin, bir miizik ¢alma uygulamasinda,
bir kullanicinin dinledigi sarkilar1 ve dinledigi sanatcilar inceleyerek, o kullanicinin
ilgi alanlarina uygun diger sarkilar onerilebilir. Oneri sistemleri genellikle veri
setlerinde kullanic1 veya iiriin benzerliklerini bularak calistig i¢in ¢izge gdmmelerinin
oneri sistemlerinde performans iyilestirmesi i¢in kullanilmasi performansi ciddi
oranda iyilestirebilmekledir. Sonug olarak, talep tahmini ve 6neri sistemlerinde veri
kolayca ¢izge yapilari ise temsil edilebilmektedir. Bu cizgelerden elde edilen ¢izge
gommeleri, talep tahmin sistemleri ve Oneri sistemlerinde 6nemli bir yontem olarak
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kullanilmaktadir ve bu alanlarda tahminleme modellerinin performansini iyilestirmeye
yardimct olabilir.

Bu tezde, yukarida belirtildigi gibi talep tahmini ve Oneri sistemlerinde cizge
yapilarinin kullanmilmas1 ve bu cizgelerden elde edilen gommeler ile modellerin
tyilestirilmesi hedeflenmigstir. Bu calisma genel olarak 2 parcadan olugmaktadir:
Talep tahmininde cizge gOmmelerinin kullanilmasi ve Oneri sistemlerinde cizge
gommelerinin kullanilmasi.

Ik asama olan talep tahmininde, son arastirmalara gore, talep tahmininde son teknoloji
makine O0grenimi ve derin 6grenme modellerinin bagaris1 6n plana ciksa da, talep
tahmin modellerini iyilestirmek icin ¢izge tabanli 6zellik temsillerini kullanarak veri
kiimelerinin zenginlestirildigi calismalar hala nadirdir. Bu yiizden talep tahmini
asamasinda, ¢izge gommeleri kullanilarak talebi tahmin eden bir model Onerilmistir.
Mevcut yontemlerin ¢ogundan farkli olarak, satis bilgisi verileri iirlinler arasi cesitli
iliskileri c¢ikarmak i¢in kullanilir ve cizgeler olusturmak igin bu cesitli iligkiler
kullanilir. Uriinlerin farkl iligkilerini yansitmak icin bes farkli gsmme degerlendirilir.
Bu bes farkli gbmme, bes farkli iliski kullanilarak olusturulmus bes farkli cizge
kullanilarak elde edilir. Uriin gommelerini elde etmek i¢in Node2Vec ve GraphSAGE
adinda iki farkli ¢izge gobmme elde etme yontemi tercih edilmistir. Uriin gommeleri
elde edildikten sonra, talep tahminini gerceklestirmek icin Uzun siireli kisa bellek
(LSTM) ve Ekstrem gradyan arttirma (XGBoost) modelleri denenmistir. Tahmin
edilen degerlerin dogrulugunu test etmek i¢in Ortalama mutlak hata (MAE) metrigi
tercih edilmistir ve halka acik olan agik bir perakende satis veri seti kullanilarak model
test edilmistir. Her iki model de farkli parametreler ile calistirilarak en iyi parametreler
bulunmus ve modellerin son sonuglar1 alinirken en iyi parametreler kullanilarak
sonuglar alinmistir.Sonuglara gore, ¢izge gommelerinin kullanimi her iki modelde de
tahmin etme basarisin1 arttirmistir. One ¢ikan model MAE=2.98 degeri ile Node2Vec
cizge gomiiliim yontemi ve Uzun siireli kisa bellek yonteminin olusturdugu model
olarak 6n plana ¢ikmistir. Burada Onerilen ¢6ziim, dncelikle marka veya kategori gibi
iirtinlerin dogal bir topolojisi olmadiginda bile sadece 6nceki satig verisini kullanarak
daha dogru bir talep tahmini yapmay1 hedefliyor. Bununla beraber, cesitli ¢izgeler
olusturarak elde edilen iiriin gdmmeleri ile, sinirl satig bilgisine sahip iiriinlerin sebep
oldugu veri seyrekliginin etkisini de azaltmay1 hedefliyor.

Bir diger calisma ise ¢izge gommelerinin Oneri sistemlerinde kullanilmasidir. Bu
caligmada onerilen model, her iiriin i¢in iiriin baslik bilgilerini kullanarak birer ¢izge
gommeleri elde eder. Bu asamada BERT adinda dogal dil isleminde kullanilan bir
model kullanildi. Onerilen model ile, iiriin basliklar1 kullanarak her iiriin igin birer
gomme edildi ve bu gommeler kullanilarak da BERTopic modeli kullanilarak her iiriin
icin bir kategori bilgisi elde edilmistir. BERTopic yontemi ile kategori bilgilerinin
elde edilmesi konu modelleme olarak kabul edilebilir. Elde edilen bu kategori
bilgileri daha sonra ¢izge asamasinda kullanilir ve heterojen kullanici-iiriin ¢izgesini
kullanici-iiriin-konu {iclii ¢izgesine doniistiirerek zenginlestirir. Mevcut yontemlerin
cogundan farkli olarak kategoriler, 6zellik olarak yalnizca iiriin bagliklar1 kullanilarak
olusturulur, bu da onu, maddelerin aciklama metinleri veya yorumlar1 olmasa bile
gercek diinyadaki sistemlerde uygulanabilen, uygulamasi kolay bir metodoloji haline
getirir. Ayrica, elde edilen iiclii ¢izgeyi kesfetmek icin meta-yol tabanli Metapath2Vec
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algoritmasi kullanarak diigiim gommelerini 6grenerek Oneri sistemlerindeki seyreklik
probleminin ¢oziilmesi hedeflenmistir. Onerilen modelin performansini gézlemlemek
icin Amazon veri setinin iki farkli kategorisi kullanildi ve sonuglar, isabet oranina
gore her iki veri seti icin degerlendirildiginde modelin en yakin temel sonuctan
bile %3.8 daha iyi performans sergiledigini gostermistir. Yapilan dier analizler,
kategori bilgilerinin ¢izge yapisina dahil edilmesinin, 6zellikle uzun kuyruklu 6geler
tavsiye edilirken tavsiye dogrulugunda bir artis sagladigin1 dogrular. Sonug olarak,
onerilen model, veri kiimelerinin kii¢ciik versiyonlar1 ve soguk baslatma adim
verdigimiz az iligkisi olan iiriinlerin alinarak olusturuldugu versiyonlar1 kullanarak
degerlendirilmistir ve Onerilen model hem isabet oran1 hem de NDCG i¢in temel
modellerden daha iyi performans gostermistir. Bu 6neri sisteminde gelistirilen ¢6ziim,
oncelikle oneri sistemlerinde konu modelleme yonteminin faydasini vurgulamaktadir.
Model, herhangi bir miisteri ile iliskisi olmayan iiriinler i¢in bile farkli meta-yollar
tanimlayarak veride seyreklik sorununu hafifletmeyi amacglamaktadir. Ayrica konu
modellemesi yontemi, aykiri olarak belirlenen konusuz iiriinleri de kendi gdmmesine
en yakin gdommeye sahip konuya atarak gelistirilmigtir.

Ilerleyen calismalarda, oncelikle iki model de daha fazla veriseti kullanilarak
test edilebilir. Daha fazla veriseti kullanimi, her iki modelde de, sadece
perakende sektoriinde degil, islemsel verilerin oldugu farkli alanlarda da modellerin
kullanilabilirliginin anlagilmasina yardimci olacaktir. Ayrica talep tahmininde, model
simdilik tek bir degerlendirme metrigi kullanilarak degerlendirilmektedir. Daha
fazla degerlendirme Olciitii, yaklagimin etkililigini farkli bakis agilarindan anlamaya
yardimer olur. Oneri sistemi icin model, uygulamaya daha fazla aciklanabilirlik
katmak icin vaka calismalar1 genisletilebilir. Ayrica, iiriinlerin bagliklar1 kullanilarak
driinler icin elde edilen kategoriler gibi kullanicilar icin de benzer sekilde kullanici
yorumlar1 kullanilarak kategoriler elde edilebilir. Kullanicilarin iiriinlere yaptigi
yorumlarin bilgisi modele eklenirse daha anlamli gommeler elde edilebilir. Son olarak,
tezin tamamu i¢in, farkli ¢izge gdbmme sinir agr modellerinin kullanilmas: daha iyi
sonuglar gézlemlememize yardimci olabilir.
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1. INTRODUCTION

Demand prediction and recommendation systems are two important tools that
businesses use to better understand their customers and make informed decisions
about production and marketing strategies. Demand prediction involves forecasting
the future demand for a product or service based on past data and trends. This can
help businesses optimize their production and inventory management to meet customer
demand. A recommendation system, on the other hand, is a tool that suggests items
to users based on their previous interactions or preferences. This can help businesses
increase customer satisfaction and loyalty by offering personalized recommendations
that are tailored to each individual’s interests and needs. Both demand prediction and
recommendation systems have become increasingly important in the digital age, as the
amount of data available to businesses has grown exponentially and the need to analyze

it has become more pressing.

In recent years, graph embeddings have become an increasingly popular technique
for representing nodes in a graph as continuous vectors, which can then be used as
input for predictive models [2]. Graph embeddings can be a valuable source of context
and details about the underlying patterns and properties of the graph by capturing the
structure and connections between the nodes in the graph such as the connections
between friends in social networks or the co-occurrence of words in a document.
This makes them particularly useful for predictive models such as demand prediction
and recommendation systems that rely on understanding the relationships between

different entities.

The use of graph embeddings in predictive models has grown significantly in recent
years due to their ability to capture complex relationships and patterns in data [3]. For
example, in a demand prediction system, graph embeddings can be used to represent
the relationships between different products, customers, and purchasing patterns [4],

enabling the predictive model to make more accurate predictions about future demand.



Similarly, in a recommendation system, graph embeddings can be used to represent
the relationships between different users and items [5], allowing the predictive model

to recommend relevant and personalized items to users.

One of the key benefits of using graph embeddings in predictive models is their
ability to handle large and complex graphs with millions of nodes and edges. By
representing nodes as n-dimensional continuous vectors, graph embeddings can reduce
the dimensionality of the data and make it more manageable for predictive models to
handle. In addition, graph embeddings can capture the structure and relationships
between nodes in a way that is not possible with traditional techniques, enabling

predictive models to make more accurate and reliable predictions [5].

1.1 Purpose of Thesis

This thesis aims to explore the use of graphs and graph embeddings as a means of
improving the performance of predictive models. In this thesis, a study was conducted
on developing demand forecasting and recommendation systems forecasting models

in particular.

The focus of this thesis is to explore different techniques for constructing graphs
and computing graph embeddings and to evaluate their impact on the performance of
predictive models in two different application domains which are demand prediction

and recommendation systems.

Focusing on this purpose, the following research questions were investigated within

this study:

1. How do different graph embedding techniques perform for computing graph
embeddings in demand prediction and recommendation systems in terms of

accuracy and efficiency?

2. How can graph embeddings be used to improve the performance of predictive
models in different application domains, recommendation systems, and demand

prediction?



3. How do different parameters and configurations of graph embedding algorithms
impact the quality of the resulting embeddings and the performance of predictive

models?

4. How do different types of relationships between nodes impact the quality of the

embeddings?

To answer these questions, a detailed analysis of various techniques is conducted
for computing graph embeddings and their performance is evaluated on a range of
recommendation and demand prediction tasks. The use of graph embeddings is
also explored in different application domains and the impact of different types of

relationships between nodes is analyzed on the quality of embeddings.

1.2 Contribution of Thesis

In this work, the effectiveness of graph embeddings for predictive models is examined.

Detailed information on the proposed models is given in Section 3 and Section 4.

The contributions of the studies in this thesis are two folds:

* In Section 3, the proposed solution demonstrates how to use different relationships
between items to enrich previous sales data for more accurate demand prediction
even when there is no natural graph topology like brand or category. By employing
the representation of items by creating various graphs, it is possible to reduce the

effect of data sparsity with limited previous sale information.

* In Section 4, the proposed solution emphasizes the benefit of topic modeling to
improve the graph embeddings for recommendation systems. The model aims to
alleviate the sparsity problem by defining different metapaths to learn that have no
relation to any customer. The topic modeling is also improved to find the most

appropriate topics for each item.



1.3 Structure of Thesis

In Section 2, related works are given. The thesis includes two different studies to
show the usage of graph embeddings in predictive models. That’s why, both Section
3 and Section 4 shows the proposed models, the dataset, and experimental results for
demand prediction and recommendation systems applications, respectively. Section 5

summarizes the work and makes recommendations about future works.



2. RELATED WORKS

This chapter summarizes previous works related to the thesis. Related studies are
given under three main headings: Demand Forecasting, Recommendation System, and

Graph Embedding.

2.1 Demand Forecasting

Demand forecasting is a crucial aspect of supply chain management, as it allows
businesses to optimize their production and distribution processes to make informed

decisions about inventory management and pricing [6].

In-depth research has been done in this area, which has a vast literature. At
the beginning of the implementation of demand forecasting, traditional time-series
methods such as exponential smoothing [7,8], Auto-regressive Integrated Moving
Average (ARIMA) [9,10], and Seasonal Auto-regressive Integrated Moving Average
(SARIMA) [11] were quite popular. With the development of machine learning and
deep learning models which are based on artificial intelligence, the success of these
models compared to traditional models has been proven by numerous studies [12,13].
The study [13] shows a comparative study of SARIMA and Long-Short Term Memory
(LSTM) to predict monthly product demand, and LSTM outperforms in predicting

short-term prediction.

A study [14] proposes an ensemble model with nine different time series models
which are Support Vector Regression (SVR), and deep learning models using boosting
ensemble strategy. Another study [15] aims to make better estimations for products
with no sales using a newly proposed model combined with two different methods. The
first method called CombTSB decides which model should be selected to implement
the set of pre-processed time-series data. Then, the second method called Clust-Avg
uses a clustering algorithm, K-Means Clustering, to estimate demand for new items.

A deep neural framework that formulates the issue as a sequence-to-sequence is



proposed in the article [16]. Qi et al. build a Gated Recurrent Unit-based (GRU-based)

encoder-decoder architecture to include the promotion campaign for the target product.

As far as knowledge goes, the use of graph embeddings or graph neural networks
(GNNs) in demand forecasting is not very common. Moreover, to the best of out
knowledge, there is no study that analyzes the effect of different graph embeddings
for demand prediction. One of the studies based on graph representation [17] uses
graph representation to segment demand prediction in e-commerce where the aim is
to improve the demand prediction accuracy of market segments with limited records
by transferring the knowledge from mainstream segments. The authors create a unique
algorithm with two GRU for collecting both local and seasonal temporal trends in order
to uncover the complicated linkages and increase the stability. Shi et al. additionally
create two distinct data-driven and knowledge-segmented graphs. User transaction

behavior is employed with the DeepWalk technique as the segment knowledge.

Another work [18] aims to forecast the demand of products using their natural topology
such as category and brand using GNN. According to Liao et al., the demand for
one product within the same category or brand may have an impact on the demand
for a different product, or give us an idea about the demand for a different product.
Their proposed model uses Graph Attention Network (GAN) to learn the structural
information between products and GRU to capture the temporal patterns in the

time-series dataset.

In contrast to the studies stated above, a graph is constructed using the relationship
matrix of products only from sales information. In order to train a machine learning
model to predict product demand, feature embedding learning is added to the sales
data. Additionally, obtaining a compressed representation in the form of embeddings
enables us to accurately estimate demand even with low-order models. Finally, even
for limited sales information, employing feature representations undoubtedly enhances

the demand forecast model.



2.2 Recommendation Systems

There are several methods of developing recommendation systems, including
Collaborative Filtering (CF) [19]-[22], content-based filtering [23,24], and hybrid
methods [25]-[27]. CF approaches build a model from a user’s past behavior as well
as similar decisions made by other users. This model is then used to predict items that
the user may have an interest in. Content-based filtering methods utilize a series of
discrete characteristics of an item in order to recommend additional items with similar
properties. Hybrid methods combine collaborative filtering and content-based filtering

approaches.

Most of the first research studies on recommendation systems were based on the CF
method [28], which uses similarities between users and items. One of the limitations
of CF-based models is that these models are not able to incorporate side features of
items/users and generalize well in the task of cold start cases where there are no or

very few interactions between users and items.

In recent years, GNNs have been more popular in recommender systems due to their
capability to utilize the relational information among users and items. Various studies
exist in the literature that use GNNs to improve recommender systems. GNNs can be
implemented on the graphs that reflect the collaborative information between items
and users as user-item graphs [29]-[31], or are constructed as Knowledge Graphs
(KGs) that show a topology of the given data. Since the side information is essential in
recommender systems to handle the cold strat problem, KGs have been used as helpful

side information to improve the recommendation performance [32]—[34].

The study proposed in [35] aims to learn user and item representations by using
high-order connectivity in the user-item graph. They demonstrate the importance
of explicitly exploiting the collaborative signal in recommender systems, and use
an embedding layer to initialize user and item embeddings, multiple embedding
propagation layers to obtain high-order connectivity relations, and a prediction layer.
The model learns the embedding by aggregating the embedding and optimizing the

affinity score of a user-item pair. Another study [36] aims to learn the hierarchical



representations on a user-item bipartite graph. They use multiple GNN modules and
a clustering algorithm. By using a hierarchical fashion, the model can learn user

preferences and item attractiveness in a hierarchical way.

In more recent studies, hybrid recommender systems are gaining in popularity
by combining both collaborative and content-based approaches to solve cold start
problems. Because, in addition to user-item representations, the usage of item or
user information can help to improve recommender systems and help to enrich the
information obtained from the user-item representations. Due to these reasons, they

have become undoubtedly important sources for recommender systems.

In a recent study [37], a hybrid recommender system framework is proposed using
both graph embeddings and contextual word representations. By using two different

representations, they aim to learn both collaborative and content-based features.

Another concept in recommendation systems is meta-paths which help recommen-
dations systems to tackle the information in a network [38]-[40]. As for the
attempts to use meta-paths in recommendation systems, Anwaar et al. [41] propose
a meta-path and entity-aware graph neural network for the recommendation. They
collect information from different meta-paths and combine the information from
multiple meta-paths using the attention mechanism. Despite they take benefits of the
meta-paths, the usage of entities is not applicable in the case when there is no entity

information for the users or items.

Different from previous models, in this thesis a novel recommendation model
is proposed for providing item recommendations, where we first obtain item
sub-categories from item titles. Using only title information of items makes it
possible to apply the approach on any platform easily even if text data for items
or users such as review or comment texts are not available (or not reliable). We
then build a heterogeneous tripartite graph to learn joint user and item embeddings
that capture more accurately user interests in items. By successfully addressing the
cold start challenges in our novel model, our proposed model results in performance

improvements over existing methods, as demonstrated through experimental tests.



3. ENRICHING DEMAND PREDICTION WITH PRODUCT
RELATIONSHIP INFORMATION USING GRAPH EMBEDDINGS

This chapter explains a novel demand prediction model using the sales-based
relationship between products. The sales-based relationships are constructed using
graph structures. Then, the graphs are used to create graph embeddings which in turn

are utilized for demand prediction.
3.1 Background Methods

This study uses various background methods for graph construction, graph

embeddings, and prediction. The following subchapters summarise these methods.

3.1.1 Apriori algorithm

Apriori Algorithm [42] is used to find the association rules within the transaction data
where association rules mean the relationships among the data items. The algorithm
iteratively runs and determines the candidate items for the next step. The parameter
minimum_support (3.1) is used to determine the candidate items for the next step
where the support value of the n — itemset is bigger than minimum_support. When
2 —itemset occurs 2 times out of 10 transactions, the support value should be 0.2. In
this study, the apriori algorithm helps us to find the product pairs and their frequency

value for the graph construction step.

S {(A) Number of transactionin which A appears 3.1)
uppor = .
pp Total number of transactions

3.1.2 K-Means clustering

The unsupervised K-Means algorithm [43] aims to cluster N data points X into a fixed
K number of disjoint clusters C where C = {C},C>,...,Cx}. The objective function
(Equation 3.2) is the sum of squares distances of each data point to its cluster center

and the goal is to minimize the value J. In Equation 3.2, r,; € 0,1 is an indicator



variable for each data point, that indicates the membership of that data point to cluster
k, and y; is the mean of all points in cluster k. These values are the output of the

clustering process.

N K 5
T=YY rucllcn — el (3.2)
n=1k=1

The algorithm tries to minimize the within_cluster_sum_of_squares (Equation 3.2)
where N is the number of data points and K is the number of clusters. K-Means

clustering aims to find t; and t, iteratively. Each iteration consists of two main steps:

1. The first step is the expectation step (Equation 3.3). The goal is finding the r,; that
minimizes J for each x, in X. It is aimed to assign the data point x,, to the closest

cluster according to its sum of squared distance from the cluster’s centroid u;.

1 ifk=argmin; Hx —,u~H
Tnk = {0 othermfise.n 4 (3.3)

2. The second step is the maximization step. In Equation 3.4, the numerator is the Sum

of all points in a cluster and the denominator is the Number of points in a cluster.

. Zn T'nkXn

= = R 34
annk ( )

Hk
The iterations are stopped when J no longer changes.

3.1.3 Node2Vec algorithm

Node2Vec [44] is an algorithm for learning continuous-valued representations, in other
saying embeddings of nodes in a graph. It is based on the idea of random walks, which
consists of a sequence of steps taken by a random walker on a graph. Node2Vec
implements random walks for a given node v of length /. Equation 3.5 shows the
calculation of the probability of moving to node x from the node v where ¢; is the ith
node in the walk and 7,, is the unnormalized transition probability between nodes v
and x, and Z is the normalizing constant. The formula finds a normalized probability

of going to x from v, if there is an edge between the nodes v and x.
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The second step is understanding the biased random walk. The simplest way to use
a bias for the random walks is the edge weights in the graph but only if the graph
is a weighted graph. If there is an unweighted graph, the bias is created using two
parameters p and g as shown in Equation 3.6 where d;, is the. 2nd order random walk
is used and it gives the flexibility of searching strategy by using the parameters the
return parameter p and the in-out parameter ¢ where p indicates the probability of a
random walker getting back to the previous node and ¢ indicates the probability that
a random walker can pass through a previously unseen part of the graph. These two
parameters p and g make the algorithm smoothly interpolate between Breadth-First
Search (BFS) and Depth-First Search (DFS). Higher p values make the random walk
closer to BFS and higher g values make the random walk closer to DFS. Figure 3.1
shows an example of a random walk procedure when the walk transitioned from 7 to v

and walks to the next node from v.

% ifd,, =0
0y (t,x) =4 1 ifd, =1 (3.6)
}1 ifd,, =2

Figure 3.1 : Example of the biased random walk for node2vec

After the biased random walks are completed, the Word2Vec algorithm [45] is used
to create node embeddings. The Word2Vec algorithm uses the Skip-Gram model. A
skip-gram model is a neural network with a single input layer, a hidden layer, and an
output layer and it aims to predict the probability of a given work being present when

an input word is present. The hidden layer is responsible for transforming the input
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word into a low-dimensional representation. In Node2Vec, we can assume the words
as nodes. The biased random walks create a list of node ids like sentences. Then, these
sentences (list of nodes) are used as inputs of the Skip-Gram model. In the training
process, the model is presented with a target word and a set of context words, and it is
trained to predict the likelihood of each context word given the target word. After the

training process, the weights of the hidden layer can be used as the node embeddings.

3.1.4 Extreme gradient boosting regressor (XGBR)

XGBR [46] is an ensemble machine-learning algorithm that can be used for regression
modeling. It is a decision tree-based ensemble model because decision trees are
sequentially combined and weights are assigned to the outputs of individual trees.
One of the main advantages of XBGR is that it assigns a higher weight to the
misclassifications of the first decision tree and provides input to the next decision tree.
In this way, the boosting method combines the multiple weak rules into one strong
prediction rule and it aims to improve a single weak model by combining it with other

weak models.

Since it is an iterative process, it is aimed to reduce the value of the objective function.
The objective function of XGBR (Equation 3.7) includes both the training loss L(6)
and regularization term Q(0). It is crucial to use the regularization term because it
controls the complexity of the model and avoids overfitting by adding a penalty to
the objective function. The common loss function used in XGBR is the squared error
(Equation 3.8)

obj(0)=L(6)+Q(0) (3.7)

1 Y 0
L(0) = N Z(yi—)’i) (3.8)

3.2 Proposed Model

Using the weekly demand data, the proposed model forecasts the sale amount of
products x;y; at the day 7+ 1 using the sale amounts of the previous days X =

X1,X2...,X1.
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Figure 3.2 shows the general framework of the proposed model. Firstly, the online
retail dataset is cleaned and preprocessed in the data preparation step. The dataset is
used in two different steps which are demand prediction and graph construction. First,
the transactional data are used for the graph construction step. The Apriori algorithm
and K-Means algorithm are used to find the product pairs in the graph construction
step and these product pairs are used as the edge set for the graphs. Then, these graphs
are used as inputs for the graph embedding models. Two different graph embedding
models are tried which are the Node2Vec algorithm and GraphSAGE. The next step is
the demand prediction part. Both transactional data and product embeddings are used
as input for the demand prediction model. The transactional data is converted into
a time-series format using the window sliding method. XGBR and LSTM are used
as the predictive models for the demand prediction part and the results are compared.
According to the results, XGBR gives better results than LSTM. On the other hand,
the Node2Vec algorithm produces better embeddings than the GraphSAGE model

according to the MAE of the demand prediction model.
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Figure 3.2 : General flow of the proposed demand prediction model [1]

13



3.2.1 Graph construction

The proposed demand forecasting model aims to do research on the effect of different

graph embeddings on demand forecasting.

In this step, Apriori Algorithm and K-Means Clustering are applied to extract
relationships among users/items for graph construction. Five different graphs are

constructed by considering the different relationships between users and items.

fregm(pi, pj
Supporty(pi, pj) = —1\(7 ) (3.9)

Graph 1 is created based on the frequency of sales of products in the same week. Each
product is a node in the graph. We put edges between products if they are sold in the
same week. In Figure 3.3 vertically, products B and E are sold in the same week, it is

expected that these two products have an edge between them.

The frequent 2-itemsets and their support values are found by using the Apriori
algorithm. The support value is also used as the edge weight in the graph. A matrix
M; € RM*Np is used as input for the Apriori algorithm. Then, the algorithm finds the
support value for all the possible frequent 2-itemsets. In equation (3.9), m is the week,
Ny, is the number of weeks and the frequency fregm(pi,p;) indicates the number of

weeks that p; and p; are sold in week m.

The graph is constructed as a weighted graph to research the effect of the frequency of

items being bought together on the success of the demand prediction.

Graph 2 is constructed as a weighted graph based on the frequency of sales of products
in the same invoice. When we examine Figure 3.3 horizontally, products A, E, and F
are sold in the same invoice i3, it means there should be edges between all of the
possible frequent 2-itemsets in A, E, and F (A and E, A and F, E and F). The second
graph is constructed using the same algorithm as the first graph. First, a matrix M, €
RN>Np s created to use as the input for the Apriori algorithm using the transactional

data. In the matrix M, each cell defines whether the product is sold in that invoice
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or not. For the sake of example, if M;|i s pi] is 1, it means p; is sold in the invoice i i

Then, the Apriori algorithm finds all the possible 2-itemsets and their support value.
Ty
jinvoice 1, @
jinvoice 2| § @
: ! —>
i B © ©
e —
w1 ! w3 1

w2 |

>

Figure 3.3 : Products sold in the same week and in the same invoice [1]

Graph 3 The next graph is constructed as a weighted graph based on the frequency
of sales of products bought by the same customer. By creating this graph, the goal is
to learn the customers’ habits because we believe that if two products p; and p; are
bought by the same customer, the demand for p; might be similar to the demand for
pj- M3 € RNe*Np is constructed, where each cell defines if the product p; is bought
by the customer c;. The Apriori algorithm again finds the frequent 2-itemsets and their

support value to construct the graph.

Graph 4 is constructed using a similar idea in Graph 3 but it has a different structure.
In Graph 3 there are edges between products if they are bought by the same customer.
In Graph 4, there are edges between all the possible product combinations but only the
corresponding edge weight changes. The euclidean similarity between all the products
is obtained using the equation (3.10), and the weight between the products is calculated

using matrix M3.

N,
d (pi,pj) = k; (Msk,i] — M3k, j])* (3.10)

Graph 5 is constructed using the cluster similarity between products where the product
clusters are obtained via K-Means Clustering. The clusters are calculated using the
best number of clusters K. Section 3.4.2 explains how the number of clusters K is
determined. While creating graphs, some sale-based information is used which are

price, sold by how many customers, and sold in how many invoices. The approach puts
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edges between the products that are in the same cluster. Equation (3.11) shows how
to assign weights to the graph. In order to connect the generated graph, unconnected
clusters are then connected by determining the nearest cluster members from other

clusters.

1 itk =k
w”f_{O otherwise G.11)

where k; is the cluster of the product i and k; is the cluster of the product ;.

3.2.2 Demand prediction using XGBR

After all the graphs are implemented, the Node2Vec is used to construct product
embeddings. Since its biased random walk feature, the Node2Vec algorithm is one
of the best choices because it enables us to generate embeddings by learning more
structural information. BFS-like exploration is used, which is effective at learning
the network’s topology, by increasing the g hyperparameter above 1. Finally, XGBR
predicts the demand. The XGBR receives the graph embeddings as input along with
other data like date and pricing features. One of the main reasons why XGBR is
preferred over other methods is largely due to their sparsity awareness [46]. The
dataset has a lot of 0 values because daily demand prediction is implemented and most
products are not sold every day. These values are handled thanks to XGBR’s awareness

of its sparsity.

3.3 Dataset

The online retail dataset ! includes 541,909 transactions of 4070 products between
12/01/2010 and 12/09/2011. It contains transaction data from a UK-based online retail
store for 373 days. This dataset is preferred because of its feature that allows us to
construct relationships between products based on invoice and customer information.
The preparation steps are split into two sections because some steps are implemented to
make the dataset ready for the graph construction step and some steps are implemented

to make the dataset ready for the time series prediction.

1https://archive.ics.uci.edu/ml/datasets/online+rc3,ta1il, December 2022
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3.3.1 Data preparation for graph construction

The basic data preparation steps are applied. The first step is handling the missing
values. There are 2 different columns with some missing values which are CustomerID
and Description. The column Description is empty for 0.26% of the transactions
and 24.92% of the column CustomerlD is missing. As the missing value handling
technique, it is preferred to drop the rows with missing values. Especially for the
column CustomerlID, it is important to have a value for each row, because some graphs
are constructed using the relationships between products based on the customers’
purchase habits and there is no appropriate way to fill the missing values of an ID

column. After this step 135,686 rows are deleted.

Another cleaning operation is done based on the explanation of the dataset. Since
some transactions are canceled, these transactions are marked by adding a ’C’ letter in
the InvoicelD column in the dataset. The canceled transactions are 2.2% of the total
transactions and these rows are dropped. In the beginning, the total number of products
(the count of unique StockCode) was 4070. After the preprocessing steps, the total
number of products decreased to 3663. After that, the products which have irrelevant
StockCode values are removed and yield a decrease of 881 in the total number of
products. The irrelevant StockCode means non-numeric codes that do not conform to

the general stock format according to the dataset explanation.

The next preparation step is handling outlier values. After checking the statistical
information of numerical columns, it is realized that the column UnitPrice, which
represents the unit price of a product, has outlier values. While the third quartile of
the column is 3.75, the maximum value is 649,5. The handle outliers in this column,
99% of the column, which is equal to taking the log of the feature, are selected and the
rest of them are assumed as outliers and they are deleted. The same outlier handling
technique is applied for another column Quantity. Finally, the total number of products

becomes 2748.
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3.3.2 Data preparation for sale information

Before using the dataset for the time series prediction, the dataset is converted into
time-series format using the window sliding approach. Using this approach, one can
create a time-series dataset where the value of the last T days can be used to predict the
value of the 7+ 1th day. Figure 3.4 shows how the window sliding approach works.
First, if 7 is equal to 6, then the value of d7 is predicted using the values of the last 6
days from d; to dg. In the next step, the window slides by 1 day and the value of dg is

predicted using again the previous 6 days’ values from d; to d.

d1 d2 d3 d4 d5 dG d7 d8

Window slides ——>

d dy [ d3 | dy | d5 | dg | dy dg

Figure 3.4 : The window sliding approach

In this project, the last 30 days of the sale information are used to predict the next day.
That’s why the first 30 days can’t be predicted by the model. While converting the
dataset into this format, 36 products are lost because these products are only sold in

the first 30 days.

Another important preparation step is selecting products that are common to each
graph. It is important that the time-series data only includes the products that are
common to each graph. If there is a product in the time-series data and the same
product is not a node in the graph, it is not possible to predict the demand for that
product. As a result, only the transactions of products that are common to each graph
are selected and the rest of the transactions are removed. This operation yields a
decrease of 420 products the total number of products becomes 2328. These eliminated

420 products are also the products with less sales information than the others.
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Besides the time-series data of the last # days, the following features are added to the
dataset for the model input: Quarter, Month, Week, Weekday, Day, DayofYear, sum,

min, mean, max, median values of the column UnitPrice by both weekly and daily.

3.4 Experiments

In the experiments, the results obtained using different graph embeddings are
compared. The success of the embeddings is calculated using the demand prediction

model.

The dataset is split into training and test sets. After ordering the transactional data by
week, the first 70% of weeks are selected as the training set and the rest of the weeks
are selected as the test set. The important point here is that the graphs are constructed
only using the transactional data from the training set, the test set is never used during

model development.

3.4.1 Evaluation metric

Mean Absolute Error (3.12) is used as the evaluation metric. It is a metric used to
evaluate the regression models and shows how accurate the predictions are. Firstly, the
absolute error which is the difference between the predicted value y; and true value y;
is calculated for each data point i and then all the absolute errors are summed. The
MAE of the model is calculated by dividing the sum by the number of total data points

n.

1
MAE =~ Y vi— il (3.12)

n
i=1

3.4.2 Graph experiments

StellarGraph Library [47] is used for the graph experiments. As it is mentioned,
the Apriori algorithm is used to create Graph 1, Graph 2, and Graph 3. In order to
find the most appropriate graph structure for demand prediction, different minimum
support values are used and the statistical information of different graphs is compared.

Table 3.1, 3.2, and 3.3 show the statistical information of different graphs created with
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different minimum support values. The statistical information includes the number of
nodes V, is the graph connected or not is¢, and the connectivity value C. It is preferred
to have a connected graph than an unconnected one because it is impossible to learn
the detailed relationship information for a node when it is in the unconnected small
subgraph. Assume that the graph is an unconnected graph and consists of 2 subgraphs
where one subgraph includes the 99% of the relationships and the second subgraph
only contains 2 nodes A and B and they are connected to each other. It is not expected
that learn the complex relationships for node A or node B because they have only
1 edge. By choosing a connected graph instead of an unconnected graph, it is also
aimed to reduce the number of nodes in the graph for faster calculations. That’s why,
a minimum support value of 0.0001 is chosen for Graph 2 (Table 3.2), and 0.001 is
chosen for Graph 3 (Table 3.3). For the sake of the explanation, minimum support
value 0.3 in Table 3.1 means that there will be an edge between products sold in at
least 0.3 of the total number of weeks (at least in 0.3 x 51 = 15). The results show that
the graphs created with bigger minimum support values tend to have fewer edges and
be unconnected. It also results in a decrease in the number of products (nodes) in the
graph. More minimum support values are tried and compared to their graph results,
but it is tried to decrease the minimum support value as much as possible to create
embeddings of as many products as possible. Finally, the chosen minimum support
values for each graph are given as follows: 0.05 for Graph 1, 0.0001 for Graph 2, and
0.001 for Graph 3.

Table 3.1 : Graph 1

min_sup | V is.C|C
0.3 1828 | 'Y |0.77
0.2 2140 | 'Y |0.79
0.1 2430 | 'Y |0.83
0.05 2583 | Y | 0.88

Graph 4 includes all the products in the dataset because it is created based on the

euclidean similarity between products.

The last graph construction experiment is applied to Graph 5. Since it is created using

the K-Means Clustering, Elbow Method is used to find the best number of clusters.
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Table 3.2 : Graph 2

min_sup | V is C|C
0.0007 | 1703 | N | 0.05
0.0005 | 1875 | N | 0.07
0.0002 | 2219 | N | 0.13
0.0001 | 2362 | Y |0.19

Table 3.3 : Graph 3

min_sup | V is. C|C
0.01 795 | N ]0.04
0.008 981 N | 0.05
0.005 | 1314 | N | 0.09
0.001 [2196| Y |0.27

Elbow Method calculates the Within-Cluster Sum of Square (WCSS) for different K
values and plots the results where the x-axis shows different K values and the y-axis
shows the WCSS corresponding to the K value. After that, the K value where you can
see the elbow shape in the plot is chosen. For this dataset, the best K value is decided
as 18. Some transactional information is used for the K-Means Clustering as follows:
MedianPrice, Mean Price, Difference between Maximum and Minimum Price, How
many users bought the product, How many invoices the product was sold in total.
While building edges between products, the products in the same cluster are linked to
each other. But after this process, Graph 5 consists of 18 different sub-graphs, because
only the products those are in each cluster are connected. To make the graph connected,
one node from each cluster is chosen that is closest to the center of the cluster, and these
nodes from each cluster are linked to another node from the closest different cluster.
The reason why the closest nodes to the center of the cluster are chosen from each
cluster is that the nodes which are closest to the center of the cluster can reflect the
general information of the cluster better than the nodes which are farthest nodes to the
cluster center. Thanks to this operation, Graph 5 becomes a connected graph. It is
believed that similar products according to their previous sale information might have

similar demand.

The final step in the graph experiments is finding the intersected products in 5 different

graphs. 2328 products are common in all of the graphs. That’s why only transactions
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of those 2328 products are used for the prediction task. In this way, we were able
to compare the results obtained from different graphs and different graph embedding

models.

3.4.3 Comparison models

The below models are used to compare the proposed model with them. LSTM is
preferred because it captures more complex relationships in long-term time series data.
LSTM doesn’t use any graph structure, it is only a time series-based prediction model.
It is used as the comparison model in the demand prediction part as shown in Figure
3.2.LSTM and XGBR are used as the prediction models. On the other hand, Node2Vec
and GraphSAGE models are used for the graph embedding part. GraphSAGE is used
as the comparison model for the graph embedding step. It is explained because the
results obtained using Node2Vec embeddings are compared with the results obtained
using GraphSAGE embeddings. GraphSAGE is chosen as a comparison model for
graph embedding because it is able to use the information from the node features and
can learn better embeddings than the Node2Vec algorithm. Because of the mentioned
reasons, LSTM is preferred as the comparison model for the demand prediction step

and GraphSAGE is preferred as the comparion model for the product embedding step.

3.4.3.1 Long-short term memory (LSTM)

LSTM is a type of recurrent neural network (RNN) that is able to capture long-term
dependencies in sequential data. LSTMs also maintains a memory of past events and
then use these past events to make predictions about future events, unlike the traditional
RNNSs which have limited memory and are unable to capture long-term dependencies.
And these benefits make LSTMs useful for time series predictions, where the order of

events is important.

An LSTM consists of a series of interconnected cells that process input sequences
and maintain a memory of past events. The LSTM may selectively keep or forget
knowledge over time thanks to the several gates that regulate the flow of information
into and out of each cell. As a result, LSTMs can learn about long-term dependencies

in the data and produce predictions that are more precise.
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Figure 3.5 shows the LSTM architecture. At each time step 7, an LSTM cell takes as
input the current input x; and the previous hidden state /; ;. Using these inputs, LSTM

creates outputs; the current hidden state /4, and the current cell state x; (3.13).

hy,ct :LSTM(Xz,ht—l,Ct—l> (3.13)

The first step in the LSTM is the forget gate (3.15). In this step, it is decided which
bits of the cell state are useful according to 4,_; and x;. A neural network (NN) is fed
with 4,1 and x; . The NN produces a vector for each piece of information within the
range 0 and 1 using the sigmoid activation function (3.14). Indicating that the gate is
"closed" and not allowing any information to pass through, a value of 0; indicating that

the gate is "open" and allowing information to flow freely, a value of 1.

B 1
C l4et!

S(1) (3.14)

fi=0Ws-[h—1,x%]+by) (3.15)

The next step is the input gate (3.16). This gate aims to decide what new information
should be added to the cell state. Since the function given in equation (3.17) is used as
the activation function, the value of new information is between -1 and 1. If the value
is positive, the information is added to the cell state, otherwise, it is subtracted. After

that, the cell state is updated as given in (3.18).

ir =0 (Wi [h—1,%]+b;) (3.16)
Nt = lanh(WC . [htfl,xt] +bC) (317)
C = fixC1+irxN, (3.18)

The final step is the output gate (3.19). This gate determines what the cell state should
be at time ¢. Equation (3.19) decides what parts of the cell state we’re going to output.

Then the cell state is put through ranh and multiplied by o, (3.20).
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0 =Wy [hi—1,x] +b,) (3.19)

]’lt = O¢ * tanh(Ct) (320)
hy
A
Previous Cell New Cell
State State
Ccy_q| —— XJ ;/;\ » Ci

Previous A A New Hidden
Hidden State State
hi1 < o X > hy

Input Data =z,
Figure 3.5 : Long-short term memory architecture

3.4.3.2 GraphSAGE

GraphSAGE is defined as a framework for inductive representation learning on large
graphs by the authors of GraphSAGE [48]. It is a graph-based machine learning
algorithm that uses a combination of aggregation functions and neural networks to
generate continuous feature representations for nodes in a graph. In order to find the
representation of a node, the algorithm samples a set of neighborhoods of that node.
This is accomplished by employing a function that converts the neighborhood into a
node embedding and then modifies the representation of the node. With the parameter
of K which tells "how many neighborhoods or how many hops?" to use to compute
the representation of each node, nodes incrementally learn more and more information
from their neighborhoods. The same steps are implemented for each node in the graph
iteratively and a set of node embeddings are produced that can be applied to later tasks

like node classification or link prediction.

Let’s assume that GX; represents the node features for node i, h? is the initial node

embedding representation for node i, hf is the node embedding representation for node
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i at the k-th iteration and finally, z; is the final node embedding representation for a
random node i after the GraphSAGE implementation. In the first step, initial node

embeddings are set for each node as their feature vectors (3.21).

W =1 = x; (3.21)

The next step is the aggregation step (3.22). This step is used to combine the features
of the nodes in the neighborhood into a single representation for the target node i.
This step aggregates all the embedding vectors for all the nodes j that are in the

neighborhood of node i.

ai = faggregate(hj|j € N(i)) (3.22)

where N(i) is the set of neighbors of node i. The aggregator functions can be
mean aggregator, LSTM aggregator, and pooling aggregator. After calculating the
aggregated representation for node i using its neighbors, the representation of node i is

updated using its previous representation hf_l and aggregated representation a; (3.23).

a* = fupdare(ai, K1) (3.23)
3.4.4 Results

Table 3.4 shows the mean absolute error results for XGBR and LSTM. The right side
of the table shows the results using the LSTM model and the left side of the table shows

the results using XGBR. RandomizedSearchCV is used to tune the hyperparameter of
the XGBR model. LSTM is used with 4 units and it is trained for 150 epochs.

In Table 3.4, each row represents MAE results using different graph embeddings,
and the results using the graphs are obtained for both XGBR and LSTM. The first
row shows the result without using any embedding and we can use this row as a
comparison result to see if the graph embeddings improve the prediction results. In
the rows, w means with, the number before the character d shows the length of the

embedding vector, and the last numerical value shows the hyperparameter value of
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the Node2vec which is length of the random walk. For the sake of the example, in the
second row, w/10D — 100 means that the row shows the demand prediction results with
10-dimensional embedding obtained when the hyperparameter of Node2Vec length of
the random walkis equal to 100. The next 5 rows show the embeddings obtained
with Node2Vec using the different parameters of length of the random walk. Only
this parameter is changed in Node2Vec because this parameter determines how close
products are visited to create an embedding for a product. And, the last row in the
table 3.4 shows the results with graph embeddings obtained using the GraphSAGE

algorithm.

When Table 3.4 is examined, the most general comment we can make is that using node
embeddings of graphs certainly improves demand forecast results. The embedding *w/
10D-80’ (10-dimensional, length of the random walk = 80) gives the best result using
XGBR for Graph 4. It is expected that items bought by the same customer tend to
be sold together, and the demand for one product might be similar to another product
bought by the same customer. This fact is also supported by the right side of the table.
Graph 4 also gives the best result with the embedding *w/ 10D-GraphSAGE’ using
LSTM as 2.98.

When GraphSAGE and Node2Vec are compared, it is seen that Node2Vec improves
the demand forecasting model more than GraphSAGE. Nevertheless, the best
embedding model is GraphSAGE (MAE=2.98) with LSTM as the demand prediction
model.According to the results, Node2Vec is chosen as the graph embedding model
because it gives better results than the GraphSAGE model. I think the season of
the LSTM’s poor performance over XGBR is that the dataset has high sparsity and
in another saying it has an excessive number of O values. Because of the high
sparsity of the dataset, LSTM cannot produce results that are superior to those of
XGBR. Additionally, Graph 4 sticks out among other graphs for both XGBR and
LSTM, demonstrating that employing euclidean similarities to create embeddings

makes models more vulnerable.
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Table 3.4 : MAE results of XGBR and LSTM with different graph embeddings

XGBR LSTM
Graph1 Graph2 Graph3 Graph4 Graph5 | Graphl Graph2 Graph3 Graph4 Graph5
wo/ embedding 2.07 2.07 2.07 2.07 2.07 3.13 3.13 3.13 3.13 3.13
w/ 10D-100 2.06 2.04 2.04 2.01 2.03 3.12 3.15 3.11 3.09 3.15
w/ 10D-80 2.05 2.05 2.06 2.00 2.06 3.11 3.06 3.10 3.10 3.11
w/ 10D-50 2.06 2.05 2.06 2.05 2.02 3.08 3.13 3.10 3.07 3.15
w/ 10D-20 2.06 2.06 2.06 2.07 2.04 3.12 3.08 3.09 3.06 3.11
w/ 20D-best 2.06 2.04 2.03 2.07 2.02 3.11 3.08 3.14 3.07 3.15
w/ 10D-GraphSAGE 2.07 2.07 2.08 2.05 2.08 3.06 3.05 3.01 2.98 3.03
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4. TOPIC MODELING ENHANCED TRIPARTITE GRAPH FOR
RECOMMENDATION USING METAPATHS

In this chapter, the benefit of topic modeling is used to present a novel graph-based
recommendation system technique by creating sub-categories of items with their title
information and taking the advantage of the combination of graph embeddings of

user-item interactions and topic-aware item representation.

4.1 Background Methods

Two different methods can be explained as background methods which are BERTopic
and Metapath2Vec. The BERTopic model is used to learn the item embeddings using
their title text and assign each item to the corresponding topic. Then, a heterogeneous
tri-partite graph is constructed using user-item and item-topic pairs. Metapath2Vec is

used to create item and user embeddings from the heterogeneous tri-partite graph.

4.1.1 Topic modeling with BERT

BERT [49] is a type of language model that uses deep learning to process text
written in natural language. BERT stands for "Bidirectional Encoder Representation
from Transformers". It extracts the meaning of words in a sentence by considering
the surrounding words in the context in which they appear. This allows BERT to
understand the nuances and complexities of human language. One of the significant
characteristics of BERT is being a bidirectional model, which implies that it considers
the context on both the left and right sides of each word in a phrase while processing
the sentences. As a result, BERT is able to comprehend the meaning of individual
words in a phrase by taking into account the words that follow before and after them.
This feature contrasts with many other language models that, while processing the

language, often take into account the words that occur before a certain word.

BERTopic [50] uses the BERT model to generate topics from a given document.

The model first creates document embeddings using the pre-trained language model
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BERT to obtain document-level information. Then, they create clusters of semantically
related texts that each represents a different subject by first reducing the dimensionality
of document embeddings. They use UMAP as the dimensionality reduction technique
because UMAP has no computational restrictions on embedding dimensions. The
reduced embeddings are clustered using HDBSCAN which is a variation of the
DBSCAN algorithm. HDBSCAN finds clusters by converting DBSCAN into a
hierarchical clustering algorithm. This clustering algorithm is chosen because it
prevents of assignment of the documents to unrelated clusters. The algorithm labels

some documents as outliers if they are not fit into any cluster.

Finally, they use c-TF-IDF to extract topic representations. All the title texts in the
same topic are concatenated as a single document. Then, TF-IDF is implemented in
each document for each topic (c-TF-IDF). In this way, it is possible o retrieve the top-n

words and their corresponding c¢-TF-IDF score for each topic.

c-TF-IDF, class-based TF-IDF, is a modified version of TF-IDF. The class in the name
of the method refers to the topic in BERTopic. To understand the c-TF-IDF better,
TF-IDF must be understood first. TF-IDF uses two methods which are Term Frequency
(TF) and Inverse Document Frequency (IDF). The TF is the count of words within a
document. Equation 4.1 shows the formula of TF for the word a in the document d
where Ny is the number of occurrences of the word a in the document d and Ny is the

total number of words in the document d.

_ N

TF(Cl,d) V
d

“4.1)

IDF finds how informative certain words are by calculating a word’s frequency in a
document compared to its frequency across all other documents. Equation 4.2 shows
the formula of IDF where N is the total number of documents in the corpus ad n, is the

number of documents in which a appears in d.

IDF(a) = nﬁ “2)
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Then, TF-IDF produced a sparse word matrix that can be used for many
implementations such as document similarity and feature extraction. In c-TF-IDF, the
class-based TF-IDF, each document is associated with one or more predefined classes

(topics).

The formula of c-TF-IDF is given in Equation 4.3 where c is the class (topic) and it
uses a different version of IDF as given in Equation 4.4 where N, is the total number
of documents in class ¢ and n. is the number of documents in class c¢ that contains the

word a.

¢—TF —IDF(a,d,c) = TF(a,d) x IDF(a,c) 4.3)
N,

IDF (a,c) = —< 4.4)
ne

4.1.2 Metapath2Vec

The Metapath2Vec model uses a heterogeneous skip-gram model to construct node
embeddings by formalizing metapath based random walks. It uses the node’s
heterogeneous neighborhood. One of the main contributions of the model over the
other node embedding models, it can work with heterogeneous networks and learn
the low-dimensional embeddings for multiple types of nodes. As the first step, the
algorithm implements metapath based random walks in the heterogeneous network.
Then, they use an extended version of the skip-gram model to make it easier to describe

nodes that are near in both space and semantics.

As the first step, the algorithm uses a uniform random walk to generate a list of node
IDs from G. It assumes the list of node IDs as sentences and the set of all sentences
as a corpus. After that, each node ID is considered as different words in the dictionary

and then, Word2Vec algorithm [45] is used to calculate the embeddings — and —.
u 1

Given the heterogeneous network G and the metapath schema MP, the goal is learning

VIxd The metapath schema defines the

the d-dimensional latent representations X € R
path that the model should follow. For example, in a heterogeneous graph, there are 3

different node types A, B, C and all the node types can connect to each other. In this
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graph, one of the metapath schemas we can define is MP={(A—B—A),(B—C —
A — C — B)}. It means that the model should follow that scheme when implementing

walks.

4.2 Proposed Model

In this section, the methodology is explained step by step. First, the topic modeling part
using BERT, and then the information about the tri-partite graph is explained. Finally,

the last part gives the details of the proposed model.

Problem Definiton Given a set of users U, set of items / and set of topics 7', the aim
is to build vector-space representation for each user u € U and for each item i € [,
and then recommend fop — K items to each user. If there are N, number of users, N;
number of items, and N; number of topics, there are N, + N; + N;, number of nodes in

the graph.

Assume that there is a heterogeneous graph G = (V,E,F,R,¢,®) where F is the set
of node types and R is the set of edge types. Each node v € V has associated with
a node type function ¢(v) : V — F and each edge e € E is associated with an edge
type mapping function ¢ : E — R, where |F|+|R| > 2. As shown in Fig. 4.3, a
heterogeneous graph is constructed with three types of nodes (user, item, topic) and
two types of edges (user-item, item-topic). Given the heterogeneous graph G, the goal
of the model is to build low-dimensional representations — and — for each u € U and

1

foreachi e I.

4.2.1 Creating topic nodes

BERTopic is used to assign a topic to each item based on its title. The topic assigned
to each item corresponds to the sub-category of that item. In this way, it is possible
to categorize items even if there is no category information of the items in a dataset.
In this study, obtained topics are called sub-categories since each data set used in the
experiments consists of items of one category (Amazon Beauty and Amazon Video
Games). However, if the items in the data set are from different categories, the

BERTopic model can be used again to obtain topics as categories.
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At this step, the topic modeling approach is improved. If the HDBSCAN model can’t
assign a document (item) to any cluster (topic), a new cluster named -1 is created and

includes all the uncategorized documents (items) [50].

To prevent the uncategorized items, the BERTopic model is enriched so that it
calculates the closest topic for the item marked as an uncategorized one and assigns
the item to the closest topic. In this way, it is possible to assign a topic for each item
without exception. The reason why it is aimed to prevent the uncategorized item is

explained in subsection 4.3.

4.2.2 Graph embedding with topic nodes

Tripartite Graph. Each user, item, and topic is represented as a node in the
heterogeneous tripartite undirected graph. If a user u interacts with an item i, then
an edge is constructed between them. There is an edge between item i and topic ¢,
if item i belongs to topic t. Thus, the undirected heterogeneous graph G has three
different node types: u, i, and ¢. There is a many-to-many relation between items and
users, one user can buy more than one item and one item can be bought by more than

one user, while one item can be only in one topic.

The graph G is constructed using the interactions between users and items and the
interactions between items and topics. For the interaction between users and items,

only the train set is used, the interactions from the test set are excluded.

The algorithm used to learn the low-dimensional embeddings for multiple types of
nodes in a heterogeneous network is Metapath2Vec. It performs random walks on
G by creating metapaths. Using its metapath advantages, different metapaths can be

defined and learned accurate embeddings according to the problem.

Given the heterogeneous network G and the metapath schema MP, the goal is learning
the d-dimensional latent representations X € RV In the implementation, the
metapath schema is MP = {(u — i — u),(i >t — i — u — i)}. In the case that the
metapath (u — i — u) doesn’t work when the item is a sparse item, in other words, if
the item interacts with very few users, the metapath (i — ¢ — i — u — i) allows us to

obtain more accurate embeddings about them. There is no such situation in this dataset,
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but even if some products are not interacting with any users, we can get information
thanks to our metapath that includes the topic node for those products. When the path
starts from a sparse item, there is no possible path toward any user, as a result, it is
not possible to learn transactional information about that item using (« — i — u) path,
instead, the transactional information of the similar item (within the same topic) can

be used to learn more accurate embeddings.

The heterogeneous graph can be seen in Figure 4.1(a). If a metapath (u — i — u) starts
from any user, the path can’t reach iy from the users because i4 is a cold-start item with
zero user relation in the graph. Thanks to the proposed approach, the 2-hop user node
neighbor can be reached via i3 by following the first metapath (ig — tp — i3 — up — i)

from Figure 4.1(b).

i1
t1
U1 ’ig
U2 'i3
ts
u3 iq

(a) Heterogeneous tri-partite graph

Q

1y —— o — 2'3 19
U2
19
A A
U1 U2

(b) Metapaths
Figure 4.1 : Heterogeneous tri-partite graph and an example implementation
metapath schema MP

Neural Network Architecture. This part, it is aimed to further develop product
embeddings by observing the relations of products with users by using a simple neural

network. The neural network consists of an input layer, embedding layer, dot layer,
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and output layer as shown in Figure 4.2. Figure only shows the architecture for #; and
i1. Users and items are used as the input layer and they are given as the embeddings
to the model. The initial item embeddings and user embeddings in the neural network
are the graph embeddings obtained using Metapath2Vec. The Embedding Layer is
updated during the learning phase. The Dot Layer merges the Embedding Layer by
using the dot product. The model is trained by trying to predict the likelihood that the
product and user will interact. Negative sampling is used to create the training set for
the neural network. The user-item relations that are not included in the dataset were
created randomly and these relations were used as negative samples. The user-item

relations in the dataset were used as positive samples.

Input Layer Embedding Layer Dot Layer Qutput Layer
Z'1 €y
Diyu,
U1
e’U,l

Figure 4.2 : Neural network architecture

Obtaining Recommendations. After obtaining the final embedding using Neural
Network architecture, the inner product of the item and user embeddings is taken to
find a score. Each user-item pair (u,v) gets a score showing the relationship between
them. A higher score corresponds to a stronger relationship between the user u and
the item i meaning that user u will probably prefer the item i. The top — M items are

recommended with the highest scores to the users.
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4.3 Dataset

Two different amazon datasets are used which are from the categories Amazon All
Beauty and Amazon Video Games !. The Amazon datasets contain information
about customer reviews and product-meta data such as product titles, and product
descriptions. These datasets do not include data on whether customers have bought
the products. But in this study, the graphs are constructed based on the purchasing
relationship between customers and products. As a result, if a customer reviews a
product, it means that the user is interested to buy in the product. These datasets are

not used for Chapter 3, because there is no invoice information in Amazon datasets.

Because of the high sparsity of the dataset, only the products and items are filtered that
have relationships greater than a specific threshold. For Amazon All Beauty dataset,
the threshold value is chosen as 5, while it is chosen as 12 for the Amazon Video Games
dataset. The threshold value 5 is chosen because this value is chosen in the dataset link
to create more dense subsets of the dataset. The data are reduced to extract the k-core,
such that each of the remaining users and items has k number of relationships each. The
threshold value is increased to 12 for the Video Games dataset because this dataset is

big and we want to reduce the dataset as much as possible.

In order to create embeddings from the title of products and use them to assign topics,
some data preparation steps are applied. During the data preparation step, all the
stop words, digits, and punctuation are removed from the titles of products, and all

characters are converted to lowercase.

After that, the customer’s interactions are sorted by time and the most recent interaction
of each customer is separated for the test set. All the other interactions but the last one

are used for the training set.

Table 4.1 shows the statistical information of Amazon All Beauty and Amazon Video
Games. All Beauty dataset is smaller and has fewer customers and products than the

Video Games dataset.

'https://nijianmo.github.io/amazon/index.html, December 2022
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Table 4.1 : Dataset information

Dataset #Customers #Products #Topics #Interactions Density
Beauty 1.488 1.395 22 6.961 0,00335
Video Games 19,683 9,349 447 201,869 0.00109

How to handle uncategorized item?

If the topic modeling approach marks an item as uncategorized, in other words, if it
cannot assign the item to any topic, that item is assigned to the closest topic. Assign a
topic for every item without exception is important because the -1 topic contains very
unrelated items together and it may cause to get incorrect information for these items
when using the metapath (i —t — i — u — i). Since the goal is to learn information
from the items on the same topic, assigning all the items to the most relevant topics is

essential to obtain the correct information.

At this stage, firstly a BERT embedding is created for each topic using n» number of
words with the BERT model. The n number of words is given by the BERTopic model
and they are the most frequent words for the topic. Then, the sum of BERT embeddings
of n number of words is taken and divided by 7 to find the topic embeddings. Then, for
each uncategorized item, item embeddings are created with the BERT model using the
title information of the item as implemented in this study [51]. After that, the cosine
similarity between the item embeddings and each topic embedding is calculated. The

closest topic for each uncategorized item is accepted as the topic for that item.

4.4 Experiments

Parameter Settings. StellarGraph [47] library is used for graph construction and
Metapath2Vec implementation. Keras [52] library is used for the NN implementation.
To generate BERT embedding from an item title, HuggingFace BERT implementation
[53] is used. In the Metapath2Vec algorithm, the walk length is set to 20, and the
number of random walks per node is set to 5. While training the NN, the batch size is

set to 32, epoch to 200, and negative ratio to 2.
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4.4.1 Evaluation metrics

In order to evaluate the success of the proposed model it is preferred to use the
most popular ranking metrics Hit Ratio (HR) and Normalized Discounted Cumulative
Gain (NDCG). These metrics allow measuring the ranking quality of our top-K
recommendation. K is set as 20 and the average metrics are reported for all users

in the test set [35].

» Hit Ratio: It is the metric of counting the number of hits in a k-sized list of rated
items without considering the order of the recommendation. It is calculated by

dividing the number of hits by the number of recommendations.

#o fhits
HR@k = 4.5
< k number o frecommendations (4.5)

* Normalized Discounted Cumulative Gain (NDCG): It is important to understand
the Cumulative Gain (CG) and Discounted Cumulative Gain (DCG) in order to
understand the formula of NDCG. CG is the sum of all the relevance scores in the

recommendation set (4.6) where relevance; is the ranking score at position i.

CG=

n
relevance; 4.6)
i=1

Because CG doesn’t consider the position of the relevant items, different
recommendation lists might look the same even though one of the lists is much
better than the other list according to the position of the relevant items. Equation
(4.7) shows the calculation of DCG by dividing the relevance score by the log of

the corresponding position where p is the particular rank position.

14 2rel,- -1

DCG, =Y

S logy(i+1) S0

NDCQG is more useful than DCG to compare the performances of different models
that result in different recommendation results lists because NDCG normalizes

the cumulative gain at each position for a specified item across different models.
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Equation (4.8) shows the formula of NDCG where |REL]| is the list of documents

ordered by relevance in the corpus up to position p.

DCG
D = P 4.
nDCG) = - G, (4.8)
where
|RELP| zreli -1
IDCG, = ) (4.9)

] loga(i+1)

=

4.4.2 Comparison models

The following models are used as the baseline models and the hyperparameters are set

as in Polignano et. al.’s study [37] using NeuRec library 2:

e Matrix Factorization (MF) [20]: The method uses the collaborative
filtering-based approach and aims to find the relationship between users and items.
MF is trying to estimate a relation y,;. It is calculated as a simple dot product of
pu and g; where p, and g; are the latent vectors for user u and item i and K is the

dimension of the latent space as shown in Equation 4.10.
, K
Yui = (il pus@i) = Pudi = Y, Pukdix (4.10)
k=1

* Multi-Layer Perceptron (MLP) [19] : It is an item-based collaborative filtering
system. It aims to capture the non-linear relationship between user u and item i and
performs better than MF. It can also capture the high-order interactions between
users and items as shown in this study [19]. MLP is a type of feedforward artificial
neural network that consists of multiple layers of perceptrons, which are simple
units that compute a linear combination of their inputs and pass the result through
a non-linear activation function. It is trained by trying to predict ratings for the

user-item pairs.

* Neural Matrix Factorization (NeuMF) [19]: It is an item-based collaborative

filtering based model. It benefits from the combination of MF and MLP models.

Zhttps://github.com/wubinzzu/NeuRec

40



NeuMF consists of 4 main layers which are the input layer, embedding layer, neural
CF layers, and output layer. The input layer binarizes the one-hot encoded vectors
for a user and item identification where 1 means the user u interacted with item i.
The embedding layer is a fully connected layer that converts the one-hot encoded
vectors to dense vectors. The obtained dense vectors are the user and item vectors
(latent user and item vectors). The next layers are the Neural CF layers. They
use multi-layered neural architecture to map the embeddings to prediction scores.

Finally, the output layer returns the predicted score by minimizing the pairwise loss.

Denoising Auto-Encoder (DAE): [54] It is a type of autoencoder, which is a
neural network architecture. An autoencoder consists of two main components: an
encoder and a decoder. The encoder maps the input data to a lower-dimensional
representation, called the bottleneck or latent representation. The decoder then
maps the bottleneck representation back to the original input space. The DAE is
a modified version of AEs. In the corruption process, some of the interactions are
masked randomly. Then, DAE is trained by learning a robust representation of
the users and items that is able to reconstruct the original interactions despite the
added noise. The representations learned by the DAE are used as the user and item

embeddings in a recommendation system.

Neural Graph Collaborative Filtering (NGCF) [35]: In this study, the authors
propose a recommendation system by exploiting the user-item graph. By taking
benefit from the high-order connectivity of the user-item graph, they propagate
embeddings and improve the recommendation system using a bipartite graph.
NGCEF uses an encoder-decoder architecture to model the user-item interactions,
the encoder is used to learn the representations of the users and items, while the
decoder is used to predict the ratings. The encoder is typically implemented as a
GNN and the decoder is typically implemented as a neural network. The model is

trained to minimize the difference between the predicted ratings and the true ratings.
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4.4.3 Results

The experiments are implemented from three different perspectives. Firstly, the
model is compared with the baselines, and a special scenario which is cold-start is
implemented. Then, the results of different graph embeddings are compared. As the

final experiment, visualizations are used to show some case studies.

4.4.3.1 Comparison the baselines & cold-start scenario

The proposed model is compared with the baselines in two cases in the first
experimental group. Besides showing the performance of the proposed model in the
general test set, results with the small sparse test set are given to present that the
proposed model can make better predictions even for sparse items. While Table 4.2
shows the results of baseline models and our result using the entire test set, Table 4.3

shows the results using only the small test set with sparse items.

According to Table 4.2, the proposed model is being outstanding to all baselines in the
HR metric by at least 3.8 %. The model only outperforms the Video Games dataset in
the NDCG metric. It might be caused by the size difference between the two datasets
because the Video Games dataset is bigger in size compared to the Beauty dataset.
Another reason is the diversity of the items in the datasets. The items in the Beauty
dataset repeat themselves and there is little variety in items. In the Beauty dataset, most
of the products sold are repeating themselves. According to the data analysis, only the
7 products make up almost 50% of total sales. 2874 of 5473 sales include sales of only
7 products. Nevertheless, in the Video Games category, there are no products that take

up most of the sales. The products generally have similar volumes of sales.

To investigate how the model performs for the items that have a very low number
of interactions, a small test dataset is created by selecting the items from the test set
that have only 1 or 2 interactions in the train set. Table 4.3 shows the metric results
of the baselines and our model with the sparse test set. The results from Table 4.3
show that the model makes better predictions than the baselines for the sparse dataset.

The reason why the baseline models can’t predict a newly added item with only a
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Table 4.2 : Baseline results with entire test set

Amazon Beauty Amazon Video Games

HR@20 NDCG@20 HR@20 NDCG@20
MLP 0.7484 0.5048 0.0352 0.0130
MF 0.8109 0.6938 0.0471 0.0192
NeuMF 0.6999 0.5737 0.0485 0.0185
DAE 0.6773 0.5948 0.0186 0.0079
NGCF 0.8091 0.6997 0.0581 0.0220

Our Model  0.8421 0.4781 0.0837 0.0365

few interactions successfully that they use the CF-based approach or user-item based
graph structure. On the other hand, a connection in sparse items by only looking at the
relationship between items and users wasn’t established. A hybrid model is developed
that could include the relationships of the items fed from the item’s title information in
the modeling of the user-item relationship, and it allowed us to achieve more successful

results.

Table 4.3 : Baseline results with sparse test set

Amazon Beauty Amazon Video Games

HR@20 NDCG@20 HR@20 NDCG@20
MLP 0.0603 0.0324 0.0033 0.0018
MF 0.0862 0.0403 0.0008 0.0002
NeuMF 0.0948 0.0683 0.0067 0.0021
DAE 0.0258 0.0107 0.0000 0.0000
NGCF 0.0689 0.0343 0.0016 0.0003

Our Model  0.1034 0.0369 0.0504 0.0182

Although the model couldn’t pass all of the baseline results according to the NDCG
metric using the sparse dataset for the Beauty dataset, it was able to pass 2 baseline
results and gave results close to the other two baselines compared to the entire test
set. Again, the model gives better results than the baselines according to HR for both

datasets.

Table 4.2 shows how the model outperforms the baselines thanks to the topic node
used while building our model, and the metapath (i — ¢t — i — u — i) used to get more

information about sparse items.
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4.4.3.2 Comparison of the different graph embeddings

The second experiment compares the proposed model with the different graph
embeddings. Besides the tri-partite graph, a bi-partite graph is also created by using
only user-item interaction. Only two different node types U and I are used, and there
are edges only between items and users. Table 4.4 shows the comparison between
different graph embeddings. The proposed model in the last row outperforms all
results. Metapath2Vec algorithm with the tri-partite graph gives the lowest score. After
these embeddings are trained using NN, the best score is obtained in our proposed
model. Besides the proposed model, the second and third-best scores are obtained
using the Metapath2 Vec algorithm with a bipartite graph and the Node2Vec algorithm
with a bipartite graph. As expected, NN improves the embeddings obtained from
tripartite Metapath2Vec, because it can learn relationships between input variables and
output variables better rather than our graph representation since just (u — i — u)

metapaths aren’t used, (i — ¢ — i — u — i) metapath is also used.

Probably it is possible to learn the user-product relationships more accurately by using
NN when a more complex metapath is used, and the results support this. Especially,
to demonstrate the outstanding contribution of the (i — ¢ — i — u — i) metapath,
the result of the model is compared with the result of the model without using that
metapath. The last two rows from Table 4.4 shows the results. While the first
model shows the result of the model without using that metapath, the second model
also includes (i — t — i — u — i) metapath. The results show that the usage of
that metapath improves HR by 3.5% and NDCG by 21% for the Beauty dataset and
improves HR by 161% and NDCG by 165% for Video Games dataset compared to the

result without using (i — ¢t — i — u — i) metapath.

4.4.3.3 Case study

Besides the evaluation part using metrics, there are also some visualizations for
example topics and an example for the assignment of the uncategorized items to the

closest topics.
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Table 4.4 : Comparison of different graph embeddings

Amazon Beauty Amazon Video Games

HR@20 NDCG@20 HR@20 NDCG@20
Bi-HinSAGE 0.6018 0.3556 0.0775 0.0305
Bi-Node2Vec 0.8125 0.4774 0.0394 0.0132

Tri-Metapath2Vec  0.7840 0.4357 0.0254 0.0091
Bi-Metapath2Vec  0.8197 0.4724 0.0016 0.0006
Bi+ NN 0.8126 0.3841 0.0090 0.0030
Tri + NN 0.8421 0.4781 0.0837 0.0365

Topic Word Visualization: To show the success of our topic modeling, example
word cloud visualizations are given that show the most common words in the topics.
In the word cloud, words are written bigger the more often they are mentioned. Figure
4.4(a) and 4.4(b) show the two most dense topics from Beauty Dataset. It is clear
that one topic includes items about nails, nail art, and other nail products such as
polish, stickers, manicure, while another topic includes items about skincare, cream,
anti-aging products, and serums. The word amp is a skincare brand. Figure 4.4(c) and
4.4(d) give the most common words from Video Games dataset topics. Figure 4.4(c)
includes items about Nintendo DS and its games. Figure 4.4(d) shows that it includes

items about Xbox.

Assigning uncategorized items to the closest topics: In this part, the assignment
quality of the uncategorized items to the closest topics is shown. Random items
from uncategorized topics are chosen and they are investigated according to the
compatibility of the assignments. Figure 4.4(b) shows the Beauty Skin Care / Cream
topic and randomly three uncategorized items that are assigned to that topic. The titles
of the items with the keywords (most frequent words in the topic) in bold are as follows:
"aloe vera gel huge organic cold pressed aloe nutrilab naturals natural ingredients
use eczema sun burn sun bug insect bites aloe rich vitamins e c b vitamins nourish
skin aloe vera grown bottled usa amp certified organic texas department agriculture"
(1), "natures greatest secret amber formula antibacterial antifungal colloidal silver

coconut oil intensive formula soothing skin treatment (2)", "alexa organic kona coffee

scrub dead sea salt organic olive oil sweet almond oil grape seed oil shea butter amp
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(3)". If you compare the most frequent words you can see that there are many common

words that prove the success of the uncategorized item assignment approach.
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Figure 4.4 : Word Cloud Visualization
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5. CONCLUSION AND FUTURE WORKS

This thesis proposes two different novel frameworks for demand prediction and

recommendation system by taking the advantage of graph embeddings.

The first implementation aims to enrich the demand forecasting model by using
the different relationships of products. Different relationships between products are
constructed with graph structure using the transactional sales data of products, and
graph embedding techniques are implemented to learn the relationships between
the products. To implement the proposed model, firstly the Apriori algorithm and
K-Means Clustering are used to extract the relationship between products. The next
step is extracting the vector representation of products. The Node2Vec algorithm
and GraphSAGE algorithm are implemented, and according to the MAE metric, the
more successful algorithm becomes the Node2Vec algorithm. Finally, the vector
representations or the embeddings of products are used with the previous sales data
to predict the demand value of the products. XGBR and LSTM models are used to
make time-series predictions. According to the results, Graph 4, which represents
the relationship between products using euclidean distance, gives the best result as
MAE=2.00 with the hyper-parameters of the Node2Vec where the embedding size is
10 and the walk length is 80 using XGBR. LSTM also gives the best result using Graph
4 with 10D embedding as MAE=2.98. When XGBR and LSTM are compared, XGBR
gives better results according to the MAE. However, the results show that the usage of

embeddings improved the demand prediction for both XGBR and LSTM.

The second implementation proposed a hybrid recommendation system by using
topic-enriched item embeddings. The model is improved with topic modeling so that
it is possible o extract meaningful embeddings even for sparse items. As the first
step, topics are extracted for each item using title information. At this point, the topic
modeling is enriched by assigning uncategorized items to the closest topics. After

that, a heterogeneous tripartite graph is constructed and the Metapath2Vec algorithm
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is implemented with reasonable metapaths. The evaluated embeddings are used as the
initial embedding for NN, and finally, the recommendations are implemented. Various
experiments on two different Amazon datasets show that the proposed model can
predict effective recommendations. Besides, the case studies demonstrate the success

of the approach to topic modeling.

The future works can be explained from three different perspectives which are the
demand prediction model, the recommendation system, and the future works for the
general of the thesis. In the demand prediction model, more than one dataset should be
used to evaluate the success of the approach. It also helps to understand the usability
of the model in different fields, where there are transactional data, not only in the
retail industry. For the recommendation system, the model can be evaluated using
one more dataset and the case studies can be extended to add more explainability to
the implementation. In addition, the users can be grouped as it is implemented for
items as topics. If the reviews made by users to items are added to the model, more
meaningful embeddings can be obtained. Finally, as the future works for all the parts
of the thesis, the usage of different graph neural network models helps us to observe

better results.
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