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ENRICHING PREDICTIVE MODELS
USING GRAPH EMBEDDINGS

SUMMARY

Today, artificial intelligence and machine learning models are developing rapidly and
their usage areas are increasing in proportion to this speed. These developments have
led to an increase in forecasting models in various industries. In the digitalizing,
changing, and rapidly increasing data world, the spread of these solutions can be seen
as a result of the moves made by companies to seize their competitive power and
increase their profits. Especially with the increase in the amount of data, the need of
the prediction models has also increased.

Predictive models are used in various fields. For example, in financial markets,
forecasting models are used to predict future price movements. Also, in the healthcare
industry, predictive models are used in the diagnosis and treatment of diseases. In a
graph structure such as social networks, prediction models can be used to predict users’
interests. Especially in the field of e-commerce, where social networks are seen a lot,
data is often represented as a graph structure.

Graph embeddings can be used in a variety of prediction models. For example, when
building a prediction model, we can improve the performance of the model by using
graph embeddings. This helps the model better understand the relationships in the
graph structure so it can make more accurate predictions. Also, graph embeddings can
be used to predict relationships between nodes in a graph structure. For example, in
a graph structure such as a social network, graph embeddings can be used to predict
friend relationships between users. Demand forecasting systems and recommendation
models are two different types of forecasting models. Demand forecasting systems
are the accurate calculation of the future demand for a product. Graphs can be
useful demand forecasting for several reasons. For example, demand prediction
often involves working with sparse data, where there are many possible products or
customers but only a small subset of them have any observed demand. Graphs can
help to handle this sparsity by leveraging the relationships between entities to infer
demand for products or customers that have not been directly observed. Graphs can be
also used to handle the temporal dynamics of demand, such as how demand changes
over time. Graphs can be very helpful to capture the compex interactions between
different factors, such as customer preferences. Recommendation systems, on the
other hand, are softwares used to make recommendations based on the interests of
users. For example, in a music player app, by reviewing the songs a user has listened
to and the artists they’ve listened to, other songs can be suggested that match that user’s
interests. Since recommendation systems generally work by finding the user or product
similarities in data sets, using graph embeddings for performance improvement in
recommendation systems can significantly improve performance. As a result, data can
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be easily represented in graph structures in demand forecasting and recommendation
systems. Graph embeddings from these graphs are used as an important method in
demand forecasting systems and recommendation systems and can help improve the
performance of forecasting models in these areas.

This thesis aims to use graph structures in demand forecasting and recommendation
systems and to improve models with embeddings obtained from these graphs. This
study generally consists of 2 parts: The use of graph embeddings in demand
forecasting and the use of graph embeddings in recommendation systems.

In demand forecasting, which is the first stage, although the success of cutting-edge
machine learning and deep learning models in demand forecasting has come to the fore
according to recent research, the usage of datasets that are enriched using graph-based
feature representations to improve demand forecasting models, is still rare. Therefore,
in the demand forecasting stage, a model that predicts demand using graph embeddings
is proposed. Unlike most existing methods, sales information data is used to extract
various relationships between products, and these various relationships are used
to create graphs. Five different embeddings are evaluated to reflect the different
relationships between the products. These five different embeddings are obtained
using five different graphs created using five different relationships. In order to
obtain product embeddings, two different graph embedding methods named Node2Vec
and GraphSAGE were preferred. After the product embeddings are obtained, Long
short-term memory (LSTM) and Extreme gradient boosting (XGBoost) models are
tried to perform demand forecasting. The Mean absolute error (MAE) metric was
preferred to test the accuracy of the predicted values and the model was tested using
a publicly available retail sales dataset. By running both models with different
parameters, the best parameters were found and the results were obtained by using
the best parameters while taking the final results of the models. According to the
results, the use of graph embeddings increased the prediction success in both models.
The prominent model came into prominence as the model formed by the Node2Vec
graph embedding method and the LSTM method with the value of MAE=2.98.

Another study is the use of graph embeddings in recommendation systems. The model
proposed in this study obtains graph embeddings for each product using the product
title information. At this stage, a model used in natural language processing called
BERT was used. With the proposed model, one embedding was created for each
product using product titles, and category (topic) information was obtained for each
product using the embeddings from the BERTopic model. This category information
obtained is then used in the the next stage and enriches the user-product bipartite graph
by transforming it into a heterogeneous user-product-topic tripartite graph. Unlike
most existing methods, categories are created using only product titles as attributes,
making it an easy-to-implement methodology that can be applied in real-world systems
even if items don’t have detailed item descriptions or comments. In addition, it
is aimed to solve the sparsity problem in recommendation systems by learning the
node embeddings using the meta-path-based Metapath2Vec algorithm to explore the
resulting tripartite graph.

Two different categories of the Amazon dataset were used to observe the performance
of the proposed model, and the results showed that the model outperformed even

xxii



the closest basic result by 3.8% when evaluated for both datasets according to hit
raito. Further analysis confirms that incorporating category information into the
graph structure provides an increase in recommendation accuracy, especially when
recommending long-tail items. As a result, the proposed model has been evaluated
using small versions of datasets and versions where we call cold-start products with
little relevance, and the proposed model outperformed the base models for both hit
rate and NDCG.
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TAHMİNLEME MODELLERİNİN
ÇİZGE GÖMMELERİ KULLANILARAK ZENGİNLEŞTİRİLMESİ

ÖZET

Günümüzde, yapay zeka ve makine öğrenmesi modelleri hızla gelişmekte ve kullanım
alanları da bu hızla orantılı şekilde artmaktadır. Bu gelişmeler, çeşitli sektörlerde
tahminleme modellerinin artmasına neden olmuştur. Dijitalleşen, değişen ve hızla
artan veri dünyasında, bu çözümlerin yaygınlaşması, şirketlerin rekabet gücünü
ele geçirmek ve karlarını arttırmak adına yaptıkları hamlelerin bir sonucu olarak
görülebilir. Özellikle veri miktarının artmasıyla birlikte, tahminleme modellerinin
doğruluk oranları da artmıştır.

Tahminleme modelleri, çeşitli alanlarda kullanılmaktadır. Örneğin, finansal
piyasalarda, gelecekteki fiyat hareketlerini tahmin etmek için tahminleme modelleri
kullanılır. Ayrıca, sağlık sektöründe, hastalıkların teşhisi ve tedavisinde tahminleme
modelleri kullanılır. Sosyal ağlar gibi bir çizge yapısında ise, kullanıcıların ilgi
alanlarını tahmin etmek için tahminleme modelleri kullanılabilir. Özellikle sosyal
ağların çok fazla görüldüğü e-ticaret alanında veri sıklıkla çizge yapısı olarak temsil
edilmektedir.

Çizge gömmeleri, çeşitli tahmin modellerinde kullanılabilir. Örneğin tahmin modeli
oluştururken, çizge gömmeleri kullanarak modelin performansını iyileştirebiliriz. Bu,
modelin çizge yapısındaki ilişkileri daha iyi anlayabilmesine yardımcı olur ve böylece
daha doğru tahminler yapabilir. Ayrıca, çizge gömmeleri, bir çizge yapısındaki
düğümler arasındaki ilişkileri tahmin etmek için de kullanılabilir. Örneğin, sosyal
ağlar gibi bir çizge yapısında, bir kişinin arkadaşlarının arkadaşlarını tahmin etmek
için çizge gömmeleri kullanabilir. Tahminleme modellerini, talep tahmin sistemleri ve
öneri sistemleri olarak 2 ayrı sistem açısından ele alabiliriz. Talep tahmini sistemleri,
bir ürünün gelecekte oluşabilecek talebinin, doğru olarak hesaplanmasıdır. Örneğin,
bir e-ticaret sitesinde, bir kullanıcının hangi ürünleri almayı tercih ettiğini tahmin
etmek için çizge gömmeleri kullanılabilir. Bu sayede, müşterilerin geçmiş alışverişleri
ve diğer özelliklerine göre onların hangi ürünleri almayı tercih edeceklerini tahmin
edebilir ve böylece stok yönetimi ve ürün çeşitliliği gibi konularla ilgili daha doğru
karar verilebilir. Öneri sistemleri ise, kullanıcıların ilgi alanlarına göre önerilerde
bulunmak için kullanılan yazılımlardır. Örneğin, bir müzik çalma uygulamasında,
bir kullanıcının dinlediği şarkıları ve dinlediği sanatçıları inceleyerek, o kullanıcının
ilgi alanlarına uygun diğer şarkılar önerilebilir. Öneri sistemleri genellikle veri
setlerinde kullanıcı veya ürün benzerliklerini bularak çalıştığı için çizge gömmelerinin
öneri sistemlerinde performans iyileştirmesi için kullanılması performansı ciddi
oranda iyileştirebilmekledir. Sonuç olarak, talep tahmini ve öneri sistemlerinde veri
kolayca çizge yapıları ise temsil edilebilmektedir. Bu çizgelerden elde edilen çizge
gömmeleri, talep tahmin sistemleri ve öneri sistemlerinde önemli bir yöntem olarak
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kullanılmaktadır ve bu alanlarda tahminleme modellerinin performansını iyileştirmeye
yardımcı olabilir.

Bu tezde, yukarıda belirtildiği gibi talep tahmini ve öneri sistemlerinde çizge
yapılarının kullanılması ve bu çizgelerden elde edilen gömmeler ile modellerin
iyileştirilmesi hedeflenmiştir. Bu çalışma genel olarak 2 parçadan oluşmaktadır:
Talep tahmininde çizge gömmelerinin kullanılması ve öneri sistemlerinde çizge
gömmelerinin kullanılması.

İlk aşama olan talep tahmininde, son araştırmalara göre, talep tahmininde son teknoloji
makine öğrenimi ve derin öğrenme modellerinin başarısı ön plana çıksa da, talep
tahmin modellerini iyileştirmek için çizge tabanlı özellik temsillerini kullanarak veri
kümelerinin zenginleştirildiği çalışmalar hala nadirdir. Bu yüzden talep tahmini
aşamasında, çizge gömmeleri kullanılarak talebi tahmin eden bir model önerilmiştir.
Mevcut yöntemlerin çoğundan farklı olarak, satış bilgisi verileri ürünler arası çeşitli
ilişkileri çıkarmak için kullanılır ve çizgeler oluşturmak için bu çeşitli ilişkiler
kullanılır. Ürünlerin farklı ilişkilerini yansıtmak için beş farklı gömme değerlendirilir.
Bu beş farklı gömme, beş farklı ilişki kullanılarak oluşturulmuş beş farklı çizge
kullanılarak elde edilir. Ürün gömmelerini elde etmek için Node2Vec ve GraphSAGE
adında iki farklı çizge gömme elde etme yöntemi tercih edilmiştir. Ürün gömmeleri
elde edildikten sonra, talep tahminini gerçekleştirmek için Uzun süreli kısa bellek
(LSTM) ve Ekstrem gradyan arttırma (XGBoost) modelleri denenmiştir. Tahmin
edilen değerlerin doğruluğunu test etmek için Ortalama mutlak hata (MAE) metriği
tercih edilmiştir ve halka açık olan açık bir perakende satış veri seti kullanılarak model
test edilmiştir. Her iki model de farklı parametreler ile çalıştırılarak en iyi parametreler
bulunmuş ve modellerin son sonuçları alınırken en iyi parametreler kullanılarak
sonuçlar alınmıştır.Sonuçlara göre, çizge gömmelerinin kullanımı her iki modelde de
tahmin etme başarısını arttırmıştır. Öne çıkan model MAE=2.98 değeri ile Node2Vec
çizge gömülüm yöntemi ve Uzun süreli kısa bellek yönteminin oluşturduğu model
olarak ön plana çıkmıştır. Burada önerilen çözüm, öncelikle marka veya kategori gibi
ürünlerin doğal bir topolojisi olmadığında bile sadece önceki satış verisini kullanarak
daha doğru bir talep tahmini yapmayı hedefliyor. Bununla beraber, çeşitli çizgeler
oluşturarak elde edilen ürün gömmeleri ile, sınırlı satış bilgisine sahip ürünlerin sebep
olduğu veri seyrekliğinin etkisini de azaltmayı hedefliyor.

Bir diğer çalışma ise çizge gömmelerinin öneri sistemlerinde kullanılmasıdır. Bu
çalışmada önerilen model, her ürün için ürün başlık bilgilerini kullanarak birer çizge
gömmeleri elde eder. Bu aşamada BERT adında doğal dil işleminde kullanılan bir
model kullanıldı. Önerilen model ile, ürün başlıkları kullanarak her ürün için birer
gömme edildi ve bu gömmeler kullanılarak da BERTopic modeli kullanılarak her ürün
için bir kategori bilgisi elde edilmiştir. BERTopic yöntemi ile kategori bilgilerinin
elde edilmesi konu modelleme olarak kabul edilebilir. Elde edilen bu kategori
bilgileri daha sonra çizge aşamasında kullanılır ve heterojen kullanıcı-ürün çizgesini
kullanıcı-ürün-konu üçlü çizgesine dönüştürerek zenginleştirir. Mevcut yöntemlerin
çoğundan farklı olarak kategoriler, özellik olarak yalnızca ürün başlıkları kullanılarak
oluşturulur, bu da onu, maddelerin açıklama metinleri veya yorumları olmasa bile
gerçek dünyadaki sistemlerde uygulanabilen, uygulaması kolay bir metodoloji haline
getirir. Ayrıca, elde edilen üçlü çizgeyi keşfetmek için meta-yol tabanlı Metapath2Vec

xxvi



algoritması kullanarak düğüm gömmelerini öğrenerek öneri sistemlerindeki seyreklik
probleminin çözülmesi hedeflenmiştir. Önerilen modelin performansını gözlemlemek
için Amazon veri setinin iki farklı kategorisi kullanıldı ve sonuçlar, isabet oranına
göre her iki veri seti için değerlendirildiğinde modelin en yakın temel sonuçtan
bile %3.8 daha iyi performans sergilediğini göstermiştir. Yapılan diğer analizler,
kategori bilgilerinin çizge yapısına dahil edilmesinin, özellikle uzun kuyruklu öğeler
tavsiye edilirken tavsiye doğruluğunda bir artış sağladığını doğrular. Sonuç olarak,
önerilen model, veri kümelerinin küçük versiyonları ve soğuk başlatma adını
verdiğimiz az ilişkisi olan ürünlerin alınarak oluşturulduğu versiyonları kullanarak
değerlendirilmiştir ve önerilen model hem isabet oranı hem de NDCG için temel
modellerden daha iyi performans göstermiştir. Bu öneri sisteminde geliştirilen çözüm,
öncelikle öneri sistemlerinde konu modelleme yönteminin faydasını vurgulamaktadır.
Model, herhangi bir müşteri ile ilişkisi olmayan ürünler için bile farklı meta-yollar
tanımlayarak veride seyreklik sorununu hafifletmeyi amaçlamaktadır. Ayrıca konu
modellemesi yöntemi, aykırı olarak belirlenen konusuz ürünleri de kendi gömmesine
en yakın gömmeye sahip konuya atarak geliştirilmiştir.

İlerleyen çalışmalarda, öncelikle iki model de daha fazla veriseti kullanılarak
test edilebilir. Daha fazla veriseti kullanımı, her iki modelde de, sadece
perakende sektöründe değil, işlemsel verilerin olduğu farklı alanlarda da modellerin
kullanılabilirliğinin anlaşılmasına yardımcı olacaktır. Ayrıca talep tahmininde, model
şimdilik tek bir değerlendirme metriği kullanılarak değerlendirilmektedir. Daha
fazla değerlendirme ölçütü, yaklaşımın etkililiğini farklı bakış açılarından anlamaya
yardımcı olur. Öneri sistemi için model, uygulamaya daha fazla açıklanabilirlik
katmak için vaka çalışmaları genişletilebilir. Ayrıca, ürünlerin başlıkları kullanılarak
ürünler için elde edilen kategoriler gibi kullanıcılar için de benzer şekilde kullanıcı
yorumları kullanılarak kategoriler elde edilebilir. Kullanıcıların ürünlere yaptığı
yorumların bilgisi modele eklenirse daha anlamlı gömmeler elde edilebilir. Son olarak,
tezin tamamı için, farklı çizge gömme sinir ağı modellerinin kullanılması daha iyi
sonuçlar gözlemlememize yardımcı olabilir.
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1. INTRODUCTION

Demand prediction and recommendation systems are two important tools that

businesses use to better understand their customers and make informed decisions

about production and marketing strategies. Demand prediction involves forecasting

the future demand for a product or service based on past data and trends. This can

help businesses optimize their production and inventory management to meet customer

demand. A recommendation system, on the other hand, is a tool that suggests items

to users based on their previous interactions or preferences. This can help businesses

increase customer satisfaction and loyalty by offering personalized recommendations

that are tailored to each individual’s interests and needs. Both demand prediction and

recommendation systems have become increasingly important in the digital age, as the

amount of data available to businesses has grown exponentially and the need to analyze

it has become more pressing.

In recent years, graph embeddings have become an increasingly popular technique

for representing nodes in a graph as continuous vectors, which can then be used as

input for predictive models [2]. Graph embeddings can be a valuable source of context

and details about the underlying patterns and properties of the graph by capturing the

structure and connections between the nodes in the graph such as the connections

between friends in social networks or the co-occurrence of words in a document.

This makes them particularly useful for predictive models such as demand prediction

and recommendation systems that rely on understanding the relationships between

different entities.

The use of graph embeddings in predictive models has grown significantly in recent

years due to their ability to capture complex relationships and patterns in data [3]. For

example, in a demand prediction system, graph embeddings can be used to represent

the relationships between different products, customers, and purchasing patterns [4],

enabling the predictive model to make more accurate predictions about future demand.
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Similarly, in a recommendation system, graph embeddings can be used to represent

the relationships between different users and items [5], allowing the predictive model

to recommend relevant and personalized items to users.

One of the key benefits of using graph embeddings in predictive models is their

ability to handle large and complex graphs with millions of nodes and edges. By

representing nodes as n-dimensional continuous vectors, graph embeddings can reduce

the dimensionality of the data and make it more manageable for predictive models to

handle. In addition, graph embeddings can capture the structure and relationships

between nodes in a way that is not possible with traditional techniques, enabling

predictive models to make more accurate and reliable predictions [5].

1.1 Purpose of Thesis

This thesis aims to explore the use of graphs and graph embeddings as a means of

improving the performance of predictive models. In this thesis, a study was conducted

on developing demand forecasting and recommendation systems forecasting models

in particular.

The focus of this thesis is to explore different techniques for constructing graphs

and computing graph embeddings and to evaluate their impact on the performance of

predictive models in two different application domains which are demand prediction

and recommendation systems.

Focusing on this purpose, the following research questions were investigated within

this study:

1. How do different graph embedding techniques perform for computing graph

embeddings in demand prediction and recommendation systems in terms of

accuracy and efficiency?

2. How can graph embeddings be used to improve the performance of predictive

models in different application domains, recommendation systems, and demand

prediction?
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3. How do different parameters and configurations of graph embedding algorithms

impact the quality of the resulting embeddings and the performance of predictive

models?

4. How do different types of relationships between nodes impact the quality of the

embeddings?

To answer these questions, a detailed analysis of various techniques is conducted

for computing graph embeddings and their performance is evaluated on a range of

recommendation and demand prediction tasks. The use of graph embeddings is

also explored in different application domains and the impact of different types of

relationships between nodes is analyzed on the quality of embeddings.

1.2 Contribution of Thesis

In this work, the effectiveness of graph embeddings for predictive models is examined.

Detailed information on the proposed models is given in Section 3 and Section 4.

The contributions of the studies in this thesis are two folds:

• In Section 3, the proposed solution demonstrates how to use different relationships

between items to enrich previous sales data for more accurate demand prediction

even when there is no natural graph topology like brand or category. By employing

the representation of items by creating various graphs, it is possible to reduce the

effect of data sparsity with limited previous sale information.

• In Section 4, the proposed solution emphasizes the benefit of topic modeling to

improve the graph embeddings for recommendation systems. The model aims to

alleviate the sparsity problem by defining different metapaths to learn that have no

relation to any customer. The topic modeling is also improved to find the most

appropriate topics for each item.
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1.3 Structure of Thesis

In Section 2, related works are given. The thesis includes two different studies to

show the usage of graph embeddings in predictive models. That’s why, both Section

3 and Section 4 shows the proposed models, the dataset, and experimental results for

demand prediction and recommendation systems applications, respectively. Section 5

summarizes the work and makes recommendations about future works.
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2. RELATED WORKS

This chapter summarizes previous works related to the thesis. Related studies are

given under three main headings: Demand Forecasting, Recommendation System, and

Graph Embedding.

2.1 Demand Forecasting

Demand forecasting is a crucial aspect of supply chain management, as it allows

businesses to optimize their production and distribution processes to make informed

decisions about inventory management and pricing [6].

In-depth research has been done in this area, which has a vast literature. At

the beginning of the implementation of demand forecasting, traditional time-series

methods such as exponential smoothing [7,8], Auto-regressive Integrated Moving

Average (ARIMA) [9,10], and Seasonal Auto-regressive Integrated Moving Average

(SARIMA) [11] were quite popular. With the development of machine learning and

deep learning models which are based on artificial intelligence, the success of these

models compared to traditional models has been proven by numerous studies [12,13].

The study [13] shows a comparative study of SARIMA and Long-Short Term Memory

(LSTM) to predict monthly product demand, and LSTM outperforms in predicting

short-term prediction.

A study [14] proposes an ensemble model with nine different time series models

which are Support Vector Regression (SVR), and deep learning models using boosting

ensemble strategy. Another study [15] aims to make better estimations for products

with no sales using a newly proposed model combined with two different methods. The

first method called CombTSB decides which model should be selected to implement

the set of pre-processed time-series data. Then, the second method called Clust-Avg

uses a clustering algorithm, K-Means Clustering, to estimate demand for new items.

A deep neural framework that formulates the issue as a sequence-to-sequence is
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proposed in the article [16]. Qi et al. build a Gated Recurrent Unit-based (GRU-based)

encoder-decoder architecture to include the promotion campaign for the target product.

As far as knowledge goes, the use of graph embeddings or graph neural networks

(GNNs) in demand forecasting is not very common. Moreover, to the best of out

knowledge, there is no study that analyzes the effect of different graph embeddings

for demand prediction. One of the studies based on graph representation [17] uses

graph representation to segment demand prediction in e-commerce where the aim is

to improve the demand prediction accuracy of market segments with limited records

by transferring the knowledge from mainstream segments. The authors create a unique

algorithm with two GRU for collecting both local and seasonal temporal trends in order

to uncover the complicated linkages and increase the stability. Shi et al. additionally

create two distinct data-driven and knowledge-segmented graphs. User transaction

behavior is employed with the DeepWalk technique as the segment knowledge.

Another work [18] aims to forecast the demand of products using their natural topology

such as category and brand using GNN. According to Liao et al., the demand for

one product within the same category or brand may have an impact on the demand

for a different product, or give us an idea about the demand for a different product.

Their proposed model uses Graph Attention Network (GAN) to learn the structural

information between products and GRU to capture the temporal patterns in the

time-series dataset.

In contrast to the studies stated above, a graph is constructed using the relationship

matrix of products only from sales information. In order to train a machine learning

model to predict product demand, feature embedding learning is added to the sales

data. Additionally, obtaining a compressed representation in the form of embeddings

enables us to accurately estimate demand even with low-order models. Finally, even

for limited sales information, employing feature representations undoubtedly enhances

the demand forecast model.
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2.2 Recommendation Systems

There are several methods of developing recommendation systems, including

Collaborative Filtering (CF) [19]–[22], content-based filtering [23,24], and hybrid

methods [25]–[27]. CF approaches build a model from a user’s past behavior as well

as similar decisions made by other users. This model is then used to predict items that

the user may have an interest in. Content-based filtering methods utilize a series of

discrete characteristics of an item in order to recommend additional items with similar

properties. Hybrid methods combine collaborative filtering and content-based filtering

approaches.

Most of the first research studies on recommendation systems were based on the CF

method [28], which uses similarities between users and items. One of the limitations

of CF-based models is that these models are not able to incorporate side features of

items/users and generalize well in the task of cold start cases where there are no or

very few interactions between users and items.

In recent years, GNNs have been more popular in recommender systems due to their

capability to utilize the relational information among users and items. Various studies

exist in the literature that use GNNs to improve recommender systems. GNNs can be

implemented on the graphs that reflect the collaborative information between items

and users as user-item graphs [29]–[31], or are constructed as Knowledge Graphs

(KGs) that show a topology of the given data. Since the side information is essential in

recommender systems to handle the cold strat problem, KGs have been used as helpful

side information to improve the recommendation performance [32]–[34].

The study proposed in [35] aims to learn user and item representations by using

high-order connectivity in the user-item graph. They demonstrate the importance

of explicitly exploiting the collaborative signal in recommender systems, and use

an embedding layer to initialize user and item embeddings, multiple embedding

propagation layers to obtain high-order connectivity relations, and a prediction layer.

The model learns the embedding by aggregating the embedding and optimizing the

affinity score of a user-item pair. Another study [36] aims to learn the hierarchical
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representations on a user-item bipartite graph. They use multiple GNN modules and

a clustering algorithm. By using a hierarchical fashion, the model can learn user

preferences and item attractiveness in a hierarchical way.

In more recent studies, hybrid recommender systems are gaining in popularity

by combining both collaborative and content-based approaches to solve cold start

problems. Because, in addition to user-item representations, the usage of item or

user information can help to improve recommender systems and help to enrich the

information obtained from the user-item representations. Due to these reasons, they

have become undoubtedly important sources for recommender systems.

In a recent study [37], a hybrid recommender system framework is proposed using

both graph embeddings and contextual word representations. By using two different

representations, they aim to learn both collaborative and content-based features.

Another concept in recommendation systems is meta-paths which help recommen-

dations systems to tackle the information in a network [38]–[40]. As for the

attempts to use meta-paths in recommendation systems, Anwaar et al. [41] propose

a meta-path and entity-aware graph neural network for the recommendation. They

collect information from different meta-paths and combine the information from

multiple meta-paths using the attention mechanism. Despite they take benefits of the

meta-paths, the usage of entities is not applicable in the case when there is no entity

information for the users or items.

Different from previous models, in this thesis a novel recommendation model

is proposed for providing item recommendations, where we first obtain item

sub-categories from item titles. Using only title information of items makes it

possible to apply the approach on any platform easily even if text data for items

or users such as review or comment texts are not available (or not reliable). We

then build a heterogeneous tripartite graph to learn joint user and item embeddings

that capture more accurately user interests in items. By successfully addressing the

cold start challenges in our novel model, our proposed model results in performance

improvements over existing methods, as demonstrated through experimental tests.
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3. ENRICHING DEMAND PREDICTION WITH PRODUCT
RELATIONSHIP INFORMATION USING GRAPH EMBEDDINGS

This chapter explains a novel demand prediction model using the sales-based

relationship between products. The sales-based relationships are constructed using

graph structures. Then, the graphs are used to create graph embeddings which in turn

are utilized for demand prediction.

3.1 Background Methods

This study uses various background methods for graph construction, graph

embeddings, and prediction. The following subchapters summarise these methods.

3.1.1 Apriori algorithm

Apriori Algorithm [42] is used to find the association rules within the transaction data

where association rules mean the relationships among the data items. The algorithm

iteratively runs and determines the candidate items for the next step. The parameter

minimum_support (3.1) is used to determine the candidate items for the next step

where the support value of the n− itemset is bigger than minimum_support. When

2− itemset occurs 2 times out of 10 transactions, the support value should be 0.2. In

this study, the apriori algorithm helps us to find the product pairs and their frequency

value for the graph construction step.

Support(A) =
Number o f transaction in which A appears

Total number o f transactions
(3.1)

3.1.2 K-Means clustering

The unsupervised K-Means algorithm [43] aims to cluster N data points X into a fixed

K number of disjoint clusters C where C = {C1,C2, ...,CK}. The objective function

(Equation 3.2) is the sum of squares distances of each data point to its cluster center

and the goal is to minimize the value J. In Equation 3.2, rnk ∈ 0,1 is an indicator
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variable for each data point, that indicates the membership of that data point to cluster

k, and µk is the mean of all points in cluster k. These values are the output of the

clustering process.

J =
N

∑
n=1

K

∑
k=1

rnk ∥xn −µk∥2 (3.2)

The algorithm tries to minimize the within_cluster_sum_o f _squares (Equation 3.2)

where N is the number of data points and K is the number of clusters. K-Means

clustering aims to find µk and tnk iteratively. Each iteration consists of two main steps:

1. The first step is the expectation step (Equation 3.3). The goal is finding the rnk that

minimizes J for each xn in X . It is aimed to assign the data point xn to the closest

cluster according to its sum of squared distance from the cluster’s centroid µ j.

rnk =

{
1 i f k = argmin j

∥∥xn −µ j
∥∥

0 otherwise.
(3.3)

2. The second step is the maximization step. In Equation 3.4, the numerator is the Sum

of all points in a cluster and the denominator is the Number of points in a cluster.

µk =
∑n rnkxn

∑n rnk
(3.4)

The iterations are stopped when J no longer changes.

3.1.3 Node2Vec algorithm

Node2Vec [44] is an algorithm for learning continuous-valued representations, in other

saying embeddings of nodes in a graph. It is based on the idea of random walks, which

consists of a sequence of steps taken by a random walker on a graph. Node2Vec

implements random walks for a given node v of length l. Equation 3.5 shows the

calculation of the probability of moving to node x from the node v where ci is the ith

node in the walk and πvx is the unnormalized transition probability between nodes v

and x, and Z is the normalizing constant. The formula finds a normalized probability

of going to x from v, if there is an edge between the nodes v and x.
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P(ci = x|ci−1 = v) =
{

πvx
Z if(v,x) ∈ E
0 otherwise (3.5)

The second step is understanding the biased random walk. The simplest way to use

a bias for the random walks is the edge weights in the graph but only if the graph

is a weighted graph. If there is an unweighted graph, the bias is created using two

parameters p and q as shown in Equation 3.6 where dtx is the. 2nd order random walk

is used and it gives the flexibility of searching strategy by using the parameters the

return parameter p and the in-out parameter q where p indicates the probability of a

random walker getting back to the previous node and q indicates the probability that

a random walker can pass through a previously unseen part of the graph. These two

parameters p and q make the algorithm smoothly interpolate between Breadth-First

Search (BFS) and Depth-First Search (DFS). Higher p values make the random walk

closer to BFS and higher q values make the random walk closer to DFS. Figure 3.1

shows an example of a random walk procedure when the walk transitioned from t to v

and walks to the next node from v.

αpq(t,x) =


1
p ifdtx = 0
1 ifdtx = 1
1
q ifdtx = 2

(3.6)

Figure 3.1 : Example of the biased random walk for node2vec

After the biased random walks are completed, the Word2Vec algorithm [45] is used

to create node embeddings. The Word2Vec algorithm uses the Skip-Gram model. A

skip-gram model is a neural network with a single input layer, a hidden layer, and an

output layer and it aims to predict the probability of a given work being present when

an input word is present. The hidden layer is responsible for transforming the input
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word into a low-dimensional representation. In Node2Vec, we can assume the words

as nodes. The biased random walks create a list of node ids like sentences. Then, these

sentences (list of nodes) are used as inputs of the Skip-Gram model. In the training

process, the model is presented with a target word and a set of context words, and it is

trained to predict the likelihood of each context word given the target word. After the

training process, the weights of the hidden layer can be used as the node embeddings.

3.1.4 Extreme gradient boosting regressor (XGBR)

XGBR [46] is an ensemble machine-learning algorithm that can be used for regression

modeling. It is a decision tree-based ensemble model because decision trees are

sequentially combined and weights are assigned to the outputs of individual trees.

One of the main advantages of XBGR is that it assigns a higher weight to the

misclassifications of the first decision tree and provides input to the next decision tree.

In this way, the boosting method combines the multiple weak rules into one strong

prediction rule and it aims to improve a single weak model by combining it with other

weak models.

Since it is an iterative process, it is aimed to reduce the value of the objective function.

The objective function of XGBR (Equation 3.7) includes both the training loss L(θ)

and regularization term Ω(θ). It is crucial to use the regularization term because it

controls the complexity of the model and avoids overfitting by adding a penalty to

the objective function. The common loss function used in XGBR is the squared error

(Equation 3.8)

ob j(θ) = L(θ)+Ω(θ) (3.7)

L(θ) =
1
N

N

∑
i=1

(yi − ŷi)
2 (3.8)

3.2 Proposed Model

Using the weekly demand data, the proposed model forecasts the sale amount of

products xτ+1 at the day τ + 1 using the sale amounts of the previous days X =

x1,x2...,xτ .
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Figure 3.2 shows the general framework of the proposed model. Firstly, the online

retail dataset is cleaned and preprocessed in the data preparation step. The dataset is

used in two different steps which are demand prediction and graph construction. First,

the transactional data are used for the graph construction step. The Apriori algorithm

and K-Means algorithm are used to find the product pairs in the graph construction

step and these product pairs are used as the edge set for the graphs. Then, these graphs

are used as inputs for the graph embedding models. Two different graph embedding

models are tried which are the Node2Vec algorithm and GraphSAGE. The next step is

the demand prediction part. Both transactional data and product embeddings are used

as input for the demand prediction model. The transactional data is converted into

a time-series format using the window sliding method. XGBR and LSTM are used

as the predictive models for the demand prediction part and the results are compared.

According to the results, XGBR gives better results than LSTM. On the other hand,

the Node2Vec algorithm produces better embeddings than the GraphSAGE model

according to the MAE of the demand prediction model.

Figure 3.2 : General flow of the proposed demand prediction model [1]
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3.2.1 Graph construction

The proposed demand forecasting model aims to do research on the effect of different

graph embeddings on demand forecasting.

In this step, Apriori Algorithm and K-Means Clustering are applied to extract

relationships among users/items for graph construction. Five different graphs are

constructed by considering the different relationships between users and items.

Supportm(pi, p j) =
f reqm(pi, p j)

Nm
(3.9)

Graph 1 is created based on the frequency of sales of products in the same week. Each

product is a node in the graph. We put edges between products if they are sold in the

same week. In Figure 3.3 vertically, products B and E are sold in the same week, it is

expected that these two products have an edge between them.

The frequent 2-itemsets and their support values are found by using the Apriori

algorithm. The support value is also used as the edge weight in the graph. A matrix

M1 ∈ RNw×Np is used as input for the Apriori algorithm. Then, the algorithm finds the

support value for all the possible frequent 2-itemsets. In equation (3.9), m is the week,

Nm is the number of weeks and the frequency f reqm(pi, p j) indicates the number of

weeks that pi and p j are sold in week m.

The graph is constructed as a weighted graph to research the effect of the frequency of

items being bought together on the success of the demand prediction.

Graph 2 is constructed as a weighted graph based on the frequency of sales of products

in the same invoice. When we examine Figure 3.3 horizontally, products A, E, and F

are sold in the same invoice i3, it means there should be edges between all of the

possible frequent 2-itemsets in A, E, and F (A and E, A and F, E and F). The second

graph is constructed using the same algorithm as the first graph. First, a matrix M2 ∈

RNI×Np is created to use as the input for the Apriori algorithm using the transactional

data. In the matrix M2, each cell defines whether the product is sold in that invoice
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or not. For the sake of example, if M2[i j, pi] is 1, it means pi is sold in the invoice i j.

Then, the Apriori algorithm finds all the possible 2-itemsets and their support value.

Figure 3.3 : Products sold in the same week and in the same invoice [1]

Graph 3 The next graph is constructed as a weighted graph based on the frequency

of sales of products bought by the same customer. By creating this graph, the goal is

to learn the customers’ habits because we believe that if two products pi and p j are

bought by the same customer, the demand for pi might be similar to the demand for

p j. M3 ∈ RNc×Np is constructed, where each cell defines if the product pi is bought

by the customer c j. The Apriori algorithm again finds the frequent 2-itemsets and their

support value to construct the graph.

Graph 4 is constructed using a similar idea in Graph 3 but it has a different structure.

In Graph 3 there are edges between products if they are bought by the same customer.

In Graph 4, there are edges between all the possible product combinations but only the

corresponding edge weight changes. The euclidean similarity between all the products

is obtained using the equation (3.10), and the weight between the products is calculated

using matrix M3.

d
(

pi, p j
)
=

√√√√ Nc

∑
k=1

(M3[k, i]−M3[k, j])2 (3.10)

Graph 5 is constructed using the cluster similarity between products where the product

clusters are obtained via K-Means Clustering. The clusters are calculated using the

best number of clusters K. Section 3.4.2 explains how the number of clusters K is

determined. While creating graphs, some sale-based information is used which are

price, sold by how many customers, and sold in how many invoices. The approach puts
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edges between the products that are in the same cluster. Equation (3.11) shows how

to assign weights to the graph. In order to connect the generated graph, unconnected

clusters are then connected by determining the nearest cluster members from other

clusters.

ωi, j =

{
1 if ki = k j
0 otherwise (3.11)

where ki is the cluster of the product i and k j is the cluster of the product j.

3.2.2 Demand prediction using XGBR

After all the graphs are implemented, the Node2Vec is used to construct product

embeddings. Since its biased random walk feature, the Node2Vec algorithm is one

of the best choices because it enables us to generate embeddings by learning more

structural information. BFS-like exploration is used, which is effective at learning

the network’s topology, by increasing the q hyperparameter above 1. Finally, XGBR

predicts the demand. The XGBR receives the graph embeddings as input along with

other data like date and pricing features. One of the main reasons why XGBR is

preferred over other methods is largely due to their sparsity awareness [46]. The

dataset has a lot of 0 values because daily demand prediction is implemented and most

products are not sold every day. These values are handled thanks to XGBR’s awareness

of its sparsity.

3.3 Dataset

The online retail dataset 1 includes 541,909 transactions of 4070 products between

12/01/2010 and 12/09/2011. It contains transaction data from a UK-based online retail

store for 373 days. This dataset is preferred because of its feature that allows us to

construct relationships between products based on invoice and customer information.

The preparation steps are split into two sections because some steps are implemented to

make the dataset ready for the graph construction step and some steps are implemented

to make the dataset ready for the time series prediction.

1https://archive.ics.uci.edu/ml/datasets/online+retail, December 2022
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3.3.1 Data preparation for graph construction

The basic data preparation steps are applied. The first step is handling the missing

values. There are 2 different columns with some missing values which are CustomerID

and Description. The column Description is empty for 0.26% of the transactions

and 24.92% of the column CustomerID is missing. As the missing value handling

technique, it is preferred to drop the rows with missing values. Especially for the

column CustomerID, it is important to have a value for each row, because some graphs

are constructed using the relationships between products based on the customers’

purchase habits and there is no appropriate way to fill the missing values of an ID

column. After this step 135,686 rows are deleted.

Another cleaning operation is done based on the explanation of the dataset. Since

some transactions are canceled, these transactions are marked by adding a ’C’ letter in

the InvoiceID column in the dataset. The canceled transactions are 2.2% of the total

transactions and these rows are dropped. In the beginning, the total number of products

(the count of unique StockCode) was 4070. After the preprocessing steps, the total

number of products decreased to 3663. After that, the products which have irrelevant

StockCode values are removed and yield a decrease of 881 in the total number of

products. The irrelevant StockCode means non-numeric codes that do not conform to

the general stock format according to the dataset explanation.

The next preparation step is handling outlier values. After checking the statistical

information of numerical columns, it is realized that the column UnitPrice, which

represents the unit price of a product, has outlier values. While the third quartile of

the column is 3.75, the maximum value is 649,5. The handle outliers in this column,

99% of the column, which is equal to taking the log of the feature, are selected and the

rest of them are assumed as outliers and they are deleted. The same outlier handling

technique is applied for another column Quantity. Finally, the total number of products

becomes 2748.
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3.3.2 Data preparation for sale information

Before using the dataset for the time series prediction, the dataset is converted into

time-series format using the window sliding approach. Using this approach, one can

create a time-series dataset where the value of the last τ days can be used to predict the

value of the τ + 1th day. Figure 3.4 shows how the window sliding approach works.

First, if τ is equal to 6, then the value of d7 is predicted using the values of the last 6

days from d1 to d6. In the next step, the window slides by 1 day and the value of d8 is

predicted using again the previous 6 days’ values from d2 to d7.

Figure 3.4 : The window sliding approach

In this project, the last 30 days of the sale information are used to predict the next day.

That’s why the first 30 days can’t be predicted by the model. While converting the

dataset into this format, 36 products are lost because these products are only sold in

the first 30 days.

Another important preparation step is selecting products that are common to each

graph. It is important that the time-series data only includes the products that are

common to each graph. If there is a product in the time-series data and the same

product is not a node in the graph, it is not possible to predict the demand for that

product. As a result, only the transactions of products that are common to each graph

are selected and the rest of the transactions are removed. This operation yields a

decrease of 420 products the total number of products becomes 2328. These eliminated

420 products are also the products with less sales information than the others.
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Besides the time-series data of the last t days, the following features are added to the

dataset for the model input: Quarter, Month, Week, Weekday, Day, DayofYear, sum,

min, mean, max, median values of the column UnitPrice by both weekly and daily.

3.4 Experiments

In the experiments, the results obtained using different graph embeddings are

compared. The success of the embeddings is calculated using the demand prediction

model.

The dataset is split into training and test sets. After ordering the transactional data by

week, the first 70% of weeks are selected as the training set and the rest of the weeks

are selected as the test set. The important point here is that the graphs are constructed

only using the transactional data from the training set, the test set is never used during

model development.

3.4.1 Evaluation metric

Mean Absolute Error (3.12) is used as the evaluation metric. It is a metric used to

evaluate the regression models and shows how accurate the predictions are. Firstly, the

absolute error which is the difference between the predicted value ŷi and true value yi

is calculated for each data point i and then all the absolute errors are summed. The

MAE of the model is calculated by dividing the sum by the number of total data points

n.

MAE =
1
n

n

∑
i=1

|yi − ŷi| (3.12)

3.4.2 Graph experiments

StellarGraph Library [47] is used for the graph experiments. As it is mentioned,

the Apriori algorithm is used to create Graph 1, Graph 2, and Graph 3. In order to

find the most appropriate graph structure for demand prediction, different minimum

support values are used and the statistical information of different graphs is compared.

Table 3.1, 3.2, and 3.3 show the statistical information of different graphs created with
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different minimum support values. The statistical information includes the number of

nodes V , is the graph connected or not isC, and the connectivity value C. It is preferred

to have a connected graph than an unconnected one because it is impossible to learn

the detailed relationship information for a node when it is in the unconnected small

subgraph. Assume that the graph is an unconnected graph and consists of 2 subgraphs

where one subgraph includes the 99% of the relationships and the second subgraph

only contains 2 nodes A and B and they are connected to each other. It is not expected

that learn the complex relationships for node A or node B because they have only

1 edge. By choosing a connected graph instead of an unconnected graph, it is also

aimed to reduce the number of nodes in the graph for faster calculations. That’s why,

a minimum support value of 0.0001 is chosen for Graph 2 (Table 3.2), and 0.001 is

chosen for Graph 3 (Table 3.3). For the sake of the explanation, minimum support

value 0.3 in Table 3.1 means that there will be an edge between products sold in at

least 0.3 of the total number of weeks (at least in 0.3×51 = 15). The results show that

the graphs created with bigger minimum support values tend to have fewer edges and

be unconnected. It also results in a decrease in the number of products (nodes) in the

graph. More minimum support values are tried and compared to their graph results,

but it is tried to decrease the minimum support value as much as possible to create

embeddings of as many products as possible. Finally, the chosen minimum support

values for each graph are given as follows: 0.05 for Graph 1, 0.0001 for Graph 2, and

0.001 for Graph 3.

Table 3.1 : Graph 1

min_sup V is_C C
0.3 1828 Y 0.77
0.2 2140 Y 0.79
0.1 2430 Y 0.83
0.05 2583 Y 0.88

Graph 4 includes all the products in the dataset because it is created based on the

euclidean similarity between products.

The last graph construction experiment is applied to Graph 5. Since it is created using

the K-Means Clustering, Elbow Method is used to find the best number of clusters.
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Table 3.2 : Graph 2

min_sup V is_C C
0.0007 1703 N 0.05
0.0005 1875 N 0.07
0.0002 2219 N 0.13
0.0001 2362 Y 0.19

Table 3.3 : Graph 3

min_sup V is_C C
0.01 795 N 0.04

0.008 981 N 0.05
0.005 1314 N 0.09
0.001 2196 Y 0.27

Elbow Method calculates the Within-Cluster Sum of Square (WCSS) for different K

values and plots the results where the x-axis shows different K values and the y-axis

shows the WCSS corresponding to the K value. After that, the K value where you can

see the elbow shape in the plot is chosen. For this dataset, the best K value is decided

as 18. Some transactional information is used for the K-Means Clustering as follows:

MedianPrice, Mean Price, Difference between Maximum and Minimum Price, How

many users bought the product, How many invoices the product was sold in total.

While building edges between products, the products in the same cluster are linked to

each other. But after this process, Graph 5 consists of 18 different sub-graphs, because

only the products those are in each cluster are connected. To make the graph connected,

one node from each cluster is chosen that is closest to the center of the cluster, and these

nodes from each cluster are linked to another node from the closest different cluster.

The reason why the closest nodes to the center of the cluster are chosen from each

cluster is that the nodes which are closest to the center of the cluster can reflect the

general information of the cluster better than the nodes which are farthest nodes to the

cluster center. Thanks to this operation, Graph 5 becomes a connected graph. It is

believed that similar products according to their previous sale information might have

similar demand.

The final step in the graph experiments is finding the intersected products in 5 different

graphs. 2328 products are common in all of the graphs. That’s why only transactions
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of those 2328 products are used for the prediction task. In this way, we were able

to compare the results obtained from different graphs and different graph embedding

models.

3.4.3 Comparison models

The below models are used to compare the proposed model with them. LSTM is

preferred because it captures more complex relationships in long-term time series data.

LSTM doesn’t use any graph structure, it is only a time series-based prediction model.

It is used as the comparison model in the demand prediction part as shown in Figure

3.2.LSTM and XGBR are used as the prediction models. On the other hand, Node2Vec

and GraphSAGE models are used for the graph embedding part. GraphSAGE is used

as the comparison model for the graph embedding step. It is explained because the

results obtained using Node2Vec embeddings are compared with the results obtained

using GraphSAGE embeddings. GraphSAGE is chosen as a comparison model for

graph embedding because it is able to use the information from the node features and

can learn better embeddings than the Node2Vec algorithm. Because of the mentioned

reasons, LSTM is preferred as the comparison model for the demand prediction step

and GraphSAGE is preferred as the comparion model for the product embedding step.

3.4.3.1 Long-short term memory (LSTM)

LSTM is a type of recurrent neural network (RNN) that is able to capture long-term

dependencies in sequential data. LSTMs also maintains a memory of past events and

then use these past events to make predictions about future events, unlike the traditional

RNNs which have limited memory and are unable to capture long-term dependencies.

And these benefits make LSTMs useful for time series predictions, where the order of

events is important.

An LSTM consists of a series of interconnected cells that process input sequences

and maintain a memory of past events. The LSTM may selectively keep or forget

knowledge over time thanks to the several gates that regulate the flow of information

into and out of each cell. As a result, LSTMs can learn about long-term dependencies

in the data and produce predictions that are more precise.

22



Figure 3.5 shows the LSTM architecture. At each time step t, an LSTM cell takes as

input the current input xt and the previous hidden state ht−1. Using these inputs, LSTM

creates outputs; the current hidden state ht and the current cell state xt (3.13).

ht ,ct = LSTM(xt ,ht−1,ct−1) (3.13)

The first step in the LSTM is the forget gate (3.15). In this step, it is decided which

bits of the cell state are useful according to ht−1 and xt . A neural network (NN) is fed

with ht−1 and xt . The NN produces a vector for each piece of information within the

range 0 and 1 using the sigmoid activation function (3.14). Indicating that the gate is

"closed" and not allowing any information to pass through, a value of 0; indicating that

the gate is "open" and allowing information to flow freely, a value of 1.

S(t) =
1

1+ e−t (3.14)

ft = σ(Wf · [ht−1,xt ]+b f ) (3.15)

The next step is the input gate (3.16). This gate aims to decide what new information

should be added to the cell state. Since the function given in equation (3.17) is used as

the activation function, the value of new information is between -1 and 1. If the value

is positive, the information is added to the cell state, otherwise, it is subtracted. After

that, the cell state is updated as given in (3.18).

it = σ(Wi · [ht−1,xt ]+bi) (3.16)

Nt = tanh(WC · [ht−1,xt ]+bC) (3.17)

Ct = ft ∗Ct−1 + it ∗ Ñt (3.18)

The final step is the output gate (3.19). This gate determines what the cell state should

be at time t. Equation (3.19) decides what parts of the cell state we’re going to output.

Then the cell state is put through tanh and multiplied by ot (3.20).
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ot = σ(Wo · [ht−1,xt ]+bo) (3.19)

ht = ot ∗ tanh(Ct) (3.20)

Figure 3.5 : Long-short term memory architecture

3.4.3.2 GraphSAGE

GraphSAGE is defined as a framework for inductive representation learning on large

graphs by the authors of GraphSAGE [48]. It is a graph-based machine learning

algorithm that uses a combination of aggregation functions and neural networks to

generate continuous feature representations for nodes in a graph. In order to find the

representation of a node, the algorithm samples a set of neighborhoods of that node.

This is accomplished by employing a function that converts the neighborhood into a

node embedding and then modifies the representation of the node. With the parameter

of K which tells "how many neighborhoods or how many hops?" to use to compute

the representation of each node, nodes incrementally learn more and more information

from their neighborhoods. The same steps are implemented for each node in the graph

iteratively and a set of node embeddings are produced that can be applied to later tasks

like node classification or link prediction.

Let’s assume that GXi represents the node features for node i, h0
i is the initial node

embedding representation for node i, hk
i is the node embedding representation for node
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i at the k-th iteration and finally, zk is the final node embedding representation for a

random node i after the GraphSAGE implementation. In the first step, initial node

embeddings are set for each node as their feature vectors (3.21).

hk−1
i = h0

i = xi (3.21)

The next step is the aggregation step (3.22). This step is used to combine the features

of the nodes in the neighborhood into a single representation for the target node i.

This step aggregates all the embedding vectors for all the nodes j that are in the

neighborhood of node i.

ai = faggregate(h j| j ∈ N(i)) (3.22)

where N(i) is the set of neighbors of node i. The aggregator functions can be

mean aggregator, LSTM aggregator, and pooling aggregator. After calculating the

aggregated representation for node i using its neighbors, the representation of node i is

updated using its previous representation hk−1
i and aggregated representation ai (3.23).

ak
i = fupdate(ai,hk−1

i ) (3.23)

3.4.4 Results

Table 3.4 shows the mean absolute error results for XGBR and LSTM. The right side

of the table shows the results using the LSTM model and the left side of the table shows

the results using XGBR. RandomizedSearchCV is used to tune the hyperparameter of

the XGBR model. LSTM is used with 4 units and it is trained for 150 epochs.

In Table 3.4, each row represents MAE results using different graph embeddings,

and the results using the graphs are obtained for both XGBR and LSTM. The first

row shows the result without using any embedding and we can use this row as a

comparison result to see if the graph embeddings improve the prediction results. In

the rows, w means with, the number before the character d shows the length of the

embedding vector, and the last numerical value shows the hyperparameter value of
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the Node2vec which is length of the random walk. For the sake of the example, in the

second row, w/10D−100 means that the row shows the demand prediction results with

10-dimensional embedding obtained when the hyperparameter of Node2Vec length of

the random walkis equal to 100. The next 5 rows show the embeddings obtained

with Node2Vec using the different parameters of length of the random walk. Only

this parameter is changed in Node2Vec because this parameter determines how close

products are visited to create an embedding for a product. And, the last row in the

table 3.4 shows the results with graph embeddings obtained using the GraphSAGE

algorithm.

When Table 3.4 is examined, the most general comment we can make is that using node

embeddings of graphs certainly improves demand forecast results. The embedding ’w/

10D-80’ (10-dimensional, length of the random walk = 80) gives the best result using

XGBR for Graph 4. It is expected that items bought by the same customer tend to

be sold together, and the demand for one product might be similar to another product

bought by the same customer. This fact is also supported by the right side of the table.

Graph 4 also gives the best result with the embedding ’w/ 10D-GraphSAGE’ using

LSTM as 2.98.

When GraphSAGE and Node2Vec are compared, it is seen that Node2Vec improves

the demand forecasting model more than GraphSAGE. Nevertheless, the best

embedding model is GraphSAGE (MAE=2.98) with LSTM as the demand prediction

model.According to the results, Node2Vec is chosen as the graph embedding model

because it gives better results than the GraphSAGE model. I think the season of

the LSTM’s poor performance over XGBR is that the dataset has high sparsity and

in another saying it has an excessive number of 0 values. Because of the high

sparsity of the dataset, LSTM cannot produce results that are superior to those of

XGBR. Additionally, Graph 4 sticks out among other graphs for both XGBR and

LSTM, demonstrating that employing euclidean similarities to create embeddings

makes models more vulnerable.
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Table 3.4 : MAE results of XGBR and LSTM with different graph embeddings

XGBR LSTM
Graph 1 Graph 2 Graph 3 Graph 4 Graph 5 Graph 1 Graph 2 Graph 3 Graph 4 Graph 5

wo/ embedding 2.07 2.07 2.07 2.07 2.07 3.13 3.13 3.13 3.13 3.13
w/ 10D-100 2.06 2.04 2.04 2.01 2.03 3.12 3.15 3.11 3.09 3.15
w/ 10D-80 2.05 2.05 2.06 2.00 2.06 3.11 3.06 3.10 3.10 3.11
w/ 10D-50 2.06 2.05 2.06 2.05 2.02 3.08 3.13 3.10 3.07 3.15
w/ 10D-20 2.06 2.06 2.06 2.07 2.04 3.12 3.08 3.09 3.06 3.11
w/ 20D-best 2.06 2.04 2.03 2.07 2.02 3.11 3.08 3.14 3.07 3.15
w/ 10D-GraphSAGE 2.07 2.07 2.08 2.05 2.08 3.06 3.05 3.01 2.98 3.03
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4. TOPIC MODELING ENHANCED TRIPARTITE GRAPH FOR
RECOMMENDATION USING METAPATHS

In this chapter, the benefit of topic modeling is used to present a novel graph-based

recommendation system technique by creating sub-categories of items with their title

information and taking the advantage of the combination of graph embeddings of

user-item interactions and topic-aware item representation.

4.1 Background Methods

Two different methods can be explained as background methods which are BERTopic

and Metapath2Vec. The BERTopic model is used to learn the item embeddings using

their title text and assign each item to the corresponding topic. Then, a heterogeneous

tri-partite graph is constructed using user-item and item-topic pairs. Metapath2Vec is

used to create item and user embeddings from the heterogeneous tri-partite graph.

4.1.1 Topic modeling with BERT

BERT [49] is a type of language model that uses deep learning to process text

written in natural language. BERT stands for "Bidirectional Encoder Representation

from Transformers". It extracts the meaning of words in a sentence by considering

the surrounding words in the context in which they appear. This allows BERT to

understand the nuances and complexities of human language. One of the significant

characteristics of BERT is being a bidirectional model, which implies that it considers

the context on both the left and right sides of each word in a phrase while processing

the sentences. As a result, BERT is able to comprehend the meaning of individual

words in a phrase by taking into account the words that follow before and after them.

This feature contrasts with many other language models that, while processing the

language, often take into account the words that occur before a certain word.

BERTopic [50] uses the BERT model to generate topics from a given document.

The model first creates document embeddings using the pre-trained language model
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BERT to obtain document-level information. Then, they create clusters of semantically

related texts that each represents a different subject by first reducing the dimensionality

of document embeddings. They use UMAP as the dimensionality reduction technique

because UMAP has no computational restrictions on embedding dimensions. The

reduced embeddings are clustered using HDBSCAN which is a variation of the

DBSCAN algorithm. HDBSCAN finds clusters by converting DBSCAN into a

hierarchical clustering algorithm. This clustering algorithm is chosen because it

prevents of assignment of the documents to unrelated clusters. The algorithm labels

some documents as outliers if they are not fit into any cluster.

Finally, they use c-TF-IDF to extract topic representations. All the title texts in the

same topic are concatenated as a single document. Then, TF-IDF is implemented in

each document for each topic (c-TF-IDF). In this way, it is possible o retrieve the top-n

words and their corresponding c-TF-IDF score for each topic.

c-TF-IDF, class-based TF-IDF, is a modified version of TF-IDF. The class in the name

of the method refers to the topic in BERTopic. To understand the c-TF-IDF better,

TF-IDF must be understood first. TF-IDF uses two methods which are Term Frequency

(TF) and Inverse Document Frequency (IDF). The TF is the count of words within a

document. Equation 4.1 shows the formula of TF for the word a in the document d

where Na
d is the number of occurrences of the word a in the document d and Nd is the

total number of words in the document d.

T F(a,d) =
Na

d
Nd

(4.1)

IDF finds how informative certain words are by calculating a word’s frequency in a

document compared to its frequency across all other documents. Equation 4.2 shows

the formula of IDF where N is the total number of documents in the corpus ad na is the

number of documents in which a appears in d.

IDF(a) =
N
na

(4.2)
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Then, TF-IDF produced a sparse word matrix that can be used for many

implementations such as document similarity and feature extraction. In c-TF-IDF, the

class-based TF-IDF, each document is associated with one or more predefined classes

(topics).

The formula of c-TF-IDF is given in Equation 4.3 where c is the class (topic) and it

uses a different version of IDF as given in Equation 4.4 where Nc is the total number

of documents in class c and nc is the number of documents in class c that contains the

word a.

c−T F − IDF(a,d,c) = T F(a,d)× IDF(a,c) (4.3)

IDF(a,c) =
Nc

nc
(4.4)

4.1.2 Metapath2Vec

The Metapath2Vec model uses a heterogeneous skip-gram model to construct node

embeddings by formalizing metapath based random walks. It uses the node’s

heterogeneous neighborhood. One of the main contributions of the model over the

other node embedding models, it can work with heterogeneous networks and learn

the low-dimensional embeddings for multiple types of nodes. As the first step, the

algorithm implements metapath based random walks in the heterogeneous network.

Then, they use an extended version of the skip-gram model to make it easier to describe

nodes that are near in both space and semantics.

As the first step, the algorithm uses a uniform random walk to generate a list of node

IDs from G. It assumes the list of node IDs as sentences and the set of all sentences

as a corpus. After that, each node ID is considered as different words in the dictionary

and then, Word2Vec algorithm [45] is used to calculate the embeddings →
u

and →
i

.

Given the heterogeneous network G and the metapath schema MP, the goal is learning

the d-dimensional latent representations X ∈R|V |×d . The metapath schema defines the

path that the model should follow. For example, in a heterogeneous graph, there are 3

different node types A, B, C and all the node types can connect to each other. In this
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graph, one of the metapath schemas we can define is MP = {(A → B → A),(B →C →

A →C → B)}. It means that the model should follow that scheme when implementing

walks.

4.2 Proposed Model

In this section, the methodology is explained step by step. First, the topic modeling part

using BERT, and then the information about the tri-partite graph is explained. Finally,

the last part gives the details of the proposed model.

Problem Definiton Given a set of users U , set of items I and set of topics T , the aim

is to build vector-space representation for each user u ∈ U and for each item i ∈ I,

and then recommend top−K items to each user. If there are Nu number of users, Ni

number of items, and Nt number of topics, there are Nu +Ni +Nt , number of nodes in

the graph.

Assume that there is a heterogeneous graph G = (V,E,F,R,φ ,ϕ) where F is the set

of node types and R is the set of edge types. Each node v ∈ V has associated with

a node type function φ(v) : V → F and each edge e ∈ E is associated with an edge

type mapping function ϕ : E → R, where |F |+ |R| > 2. As shown in Fig. 4.3, a

heterogeneous graph is constructed with three types of nodes (user, item, topic) and

two types of edges (user-item, item-topic). Given the heterogeneous graph G, the goal

of the model is to build low-dimensional representations →
u

and →
i

for each u ∈U and

for each i ∈ I.

4.2.1 Creating topic nodes

BERTopic is used to assign a topic to each item based on its title. The topic assigned

to each item corresponds to the sub-category of that item. In this way, it is possible

to categorize items even if there is no category information of the items in a dataset.

In this study, obtained topics are called sub-categories since each data set used in the

experiments consists of items of one category (Amazon Beauty and Amazon Video

Games). However, if the items in the data set are from different categories, the

BERTopic model can be used again to obtain topics as categories.
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At this step, the topic modeling approach is improved. If the HDBSCAN model can’t

assign a document (item) to any cluster (topic), a new cluster named -1 is created and

includes all the uncategorized documents (items) [50].

To prevent the uncategorized items, the BERTopic model is enriched so that it

calculates the closest topic for the item marked as an uncategorized one and assigns

the item to the closest topic. In this way, it is possible to assign a topic for each item

without exception. The reason why it is aimed to prevent the uncategorized item is

explained in subsection 4.3.

4.2.2 Graph embedding with topic nodes

Tripartite Graph. Each user, item, and topic is represented as a node in the

heterogeneous tripartite undirected graph. If a user u interacts with an item i, then

an edge is constructed between them. There is an edge between item i and topic t,

if item i belongs to topic t. Thus, the undirected heterogeneous graph G has three

different node types: u, i, and t. There is a many-to-many relation between items and

users, one user can buy more than one item and one item can be bought by more than

one user, while one item can be only in one topic.

The graph G is constructed using the interactions between users and items and the

interactions between items and topics. For the interaction between users and items,

only the train set is used, the interactions from the test set are excluded.

The algorithm used to learn the low-dimensional embeddings for multiple types of

nodes in a heterogeneous network is Metapath2Vec. It performs random walks on

G by creating metapaths. Using its metapath advantages, different metapaths can be

defined and learned accurate embeddings according to the problem.

Given the heterogeneous network G and the metapath schema MP, the goal is learning

the d-dimensional latent representations X ∈ R|V |×d . In the implementation, the

metapath schema is MP = {(u → i → u),(i → t → i → u → i)}. In the case that the

metapath (u → i → u) doesn’t work when the item is a sparse item, in other words, if

the item interacts with very few users, the metapath (i → t → i → u → i) allows us to

obtain more accurate embeddings about them. There is no such situation in this dataset,
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but even if some products are not interacting with any users, we can get information

thanks to our metapath that includes the topic node for those products. When the path

starts from a sparse item, there is no possible path toward any user, as a result, it is

not possible to learn transactional information about that item using (u → i → u) path,

instead, the transactional information of the similar item (within the same topic) can

be used to learn more accurate embeddings.

The heterogeneous graph can be seen in Figure 4.1(a). If a metapath (u → i → u) starts

from any user, the path can’t reach i4 from the users because i4 is a cold-start item with

zero user relation in the graph. Thanks to the proposed approach, the 2-hop user node

neighbor can be reached via i3 by following the first metapath (i4 → t2 → i3 → u2 → i2)

from Figure 4.1(b).

(a) Heterogeneous tri-partite graph

(b) Metapaths

Figure 4.1 : Heterogeneous tri-partite graph and an example implementation
metapath schema MP

Neural Network Architecture. This part, it is aimed to further develop product

embeddings by observing the relations of products with users by using a simple neural

network. The neural network consists of an input layer, embedding layer, dot layer,
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and output layer as shown in Figure 4.2. Figure only shows the architecture for u1 and

i1. Users and items are used as the input layer and they are given as the embeddings

to the model. The initial item embeddings and user embeddings in the neural network

are the graph embeddings obtained using Metapath2Vec. The Embedding Layer is

updated during the learning phase. The Dot Layer merges the Embedding Layer by

using the dot product. The model is trained by trying to predict the likelihood that the

product and user will interact. Negative sampling is used to create the training set for

the neural network. The user-item relations that are not included in the dataset were

created randomly and these relations were used as negative samples. The user-item

relations in the dataset were used as positive samples.

Figure 4.2 : Neural network architecture

Obtaining Recommendations. After obtaining the final embedding using Neural

Network architecture, the inner product of the item and user embeddings is taken to

find a score. Each user-item pair (u,v) gets a score showing the relationship between

them. A higher score corresponds to a stronger relationship between the user u and

the item i meaning that user u will probably prefer the item i. The top−M items are

recommended with the highest scores to the users.
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4.3 Dataset

Two different amazon datasets are used which are from the categories Amazon All

Beauty and Amazon Video Games 1. The Amazon datasets contain information

about customer reviews and product-meta data such as product titles, and product

descriptions. These datasets do not include data on whether customers have bought

the products. But in this study, the graphs are constructed based on the purchasing

relationship between customers and products. As a result, if a customer reviews a

product, it means that the user is interested to buy in the product. These datasets are

not used for Chapter 3, because there is no invoice information in Amazon datasets.

Because of the high sparsity of the dataset, only the products and items are filtered that

have relationships greater than a specific threshold. For Amazon All Beauty dataset,

the threshold value is chosen as 5, while it is chosen as 12 for the Amazon Video Games

dataset. The threshold value 5 is chosen because this value is chosen in the dataset link

to create more dense subsets of the dataset. The data are reduced to extract the k-core,

such that each of the remaining users and items has k number of relationships each. The

threshold value is increased to 12 for the Video Games dataset because this dataset is

big and we want to reduce the dataset as much as possible.

In order to create embeddings from the title of products and use them to assign topics,

some data preparation steps are applied. During the data preparation step, all the

stop words, digits, and punctuation are removed from the titles of products, and all

characters are converted to lowercase.

After that, the customer’s interactions are sorted by time and the most recent interaction

of each customer is separated for the test set. All the other interactions but the last one

are used for the training set.

Table 4.1 shows the statistical information of Amazon All Beauty and Amazon Video

Games. All Beauty dataset is smaller and has fewer customers and products than the

Video Games dataset.
1https://nijianmo.github.io/amazon/index.html, December 2022
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Table 4.1 : Dataset information

Dataset #Customers #Products #Topics #Interactions Density
Beauty 1.488 1.395 22 6.961 0,00335

Video Games 19,683 9,349 447 201,869 0.00109

How to handle uncategorized item?

If the topic modeling approach marks an item as uncategorized, in other words, if it

cannot assign the item to any topic, that item is assigned to the closest topic. Assign a

topic for every item without exception is important because the -1 topic contains very

unrelated items together and it may cause to get incorrect information for these items

when using the metapath (i → t → i → u → i). Since the goal is to learn information

from the items on the same topic, assigning all the items to the most relevant topics is

essential to obtain the correct information.

At this stage, firstly a BERT embedding is created for each topic using n number of

words with the BERT model. The n number of words is given by the BERTopic model

and they are the most frequent words for the topic. Then, the sum of BERT embeddings

of n number of words is taken and divided by n to find the topic embeddings. Then, for

each uncategorized item, item embeddings are created with the BERT model using the

title information of the item as implemented in this study [51]. After that, the cosine

similarity between the item embeddings and each topic embedding is calculated. The

closest topic for each uncategorized item is accepted as the topic for that item.

4.4 Experiments

Parameter Settings. StellarGraph [47] library is used for graph construction and

Metapath2Vec implementation. Keras [52] library is used for the NN implementation.

To generate BERT embedding from an item title, HuggingFace BERT implementation

[53] is used. In the Metapath2Vec algorithm, the walk length is set to 20, and the

number of random walks per node is set to 5. While training the NN, the batch size is

set to 32, epoch to 200, and negative ratio to 2.
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4.4.1 Evaluation metrics

In order to evaluate the success of the proposed model it is preferred to use the

most popular ranking metrics Hit Ratio (HR) and Normalized Discounted Cumulative

Gain (NDCG). These metrics allow measuring the ranking quality of our top-K

recommendation. K is set as 20 and the average metrics are reported for all users

in the test set [35].

• Hit Ratio: It is the metric of counting the number of hits in a k-sized list of rated

items without considering the order of the recommendation. It is calculated by

dividing the number of hits by the number of recommendations.

HR@k =
#o f hits

k number o f recommendations
(4.5)

• Normalized Discounted Cumulative Gain (NDCG): It is important to understand

the Cumulative Gain (CG) and Discounted Cumulative Gain (DCG) in order to

understand the formula of NDCG. CG is the sum of all the relevance scores in the

recommendation set (4.6) where relevancei is the ranking score at position i.

CG =
n

∑
i=1

relevancei (4.6)

Because CG doesn’t consider the position of the relevant items, different

recommendation lists might look the same even though one of the lists is much

better than the other list according to the position of the relevant items. Equation

(4.7) shows the calculation of DCG by dividing the relevance score by the log of

the corresponding position where p is the particular rank position.

DCGp =
p

∑
i=1

2reli −1
log2(i+1)

(4.7)

NDCG is more useful than DCG to compare the performances of different models

that result in different recommendation results lists because NDCG normalizes

the cumulative gain at each position for a specified item across different models.
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Equation (4.8) shows the formula of NDCG where |REL| is the list of documents

ordered by relevance in the corpus up to position p.

nDCGp =
DCGp

IDCGp
(4.8)

where

IDCGp =
|RELp|
∑
i=1

2reli −1
log2(i+1)

(4.9)

4.4.2 Comparison models

The following models are used as the baseline models and the hyperparameters are set

as in Polignano et. al.’s study [37] using NeuRec library 2:

• Matrix Factorization (MF) [20]: The method uses the collaborative

filtering-based approach and aims to find the relationship between users and items.

MF is trying to estimate a relation ŷui. It is calculated as a simple dot product of

pu and qi where pu and qi are the latent vectors for user u and item i and K is the

dimension of the latent space as shown in Equation 4.10.

ŷui = f (u, i|pu,qi) = pT
u qi =

K

∑
k=1

pukqik (4.10)

• Multi-Layer Perceptron (MLP) [19] : It is an item-based collaborative filtering

system. It aims to capture the non-linear relationship between user u and item i and

performs better than MF. It can also capture the high-order interactions between

users and items as shown in this study [19]. MLP is a type of feedforward artificial

neural network that consists of multiple layers of perceptrons, which are simple

units that compute a linear combination of their inputs and pass the result through

a non-linear activation function. It is trained by trying to predict ratings for the

user-item pairs.

• Neural Matrix Factorization (NeuMF) [19]: It is an item-based collaborative

filtering based model. It benefits from the combination of MF and MLP models.
2https://github.com/wubinzzu/NeuRec
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NeuMF consists of 4 main layers which are the input layer, embedding layer, neural

CF layers, and output layer. The input layer binarizes the one-hot encoded vectors

for a user and item identification where 1 means the user u interacted with item i.

The embedding layer is a fully connected layer that converts the one-hot encoded

vectors to dense vectors. The obtained dense vectors are the user and item vectors

(latent user and item vectors). The next layers are the Neural CF layers. They

use multi-layered neural architecture to map the embeddings to prediction scores.

Finally, the output layer returns the predicted score by minimizing the pairwise loss.

• Denoising Auto-Encoder (DAE): [54] It is a type of autoencoder, which is a

neural network architecture. An autoencoder consists of two main components: an

encoder and a decoder. The encoder maps the input data to a lower-dimensional

representation, called the bottleneck or latent representation. The decoder then

maps the bottleneck representation back to the original input space. The DAE is

a modified version of AEs. In the corruption process, some of the interactions are

masked randomly. Then, DAE is trained by learning a robust representation of

the users and items that is able to reconstruct the original interactions despite the

added noise. The representations learned by the DAE are used as the user and item

embeddings in a recommendation system.

• Neural Graph Collaborative Filtering (NGCF) [35]: In this study, the authors

propose a recommendation system by exploiting the user-item graph. By taking

benefit from the high-order connectivity of the user-item graph, they propagate

embeddings and improve the recommendation system using a bipartite graph.

NGCF uses an encoder-decoder architecture to model the user-item interactions,

the encoder is used to learn the representations of the users and items, while the

decoder is used to predict the ratings. The encoder is typically implemented as a

GNN and the decoder is typically implemented as a neural network. The model is

trained to minimize the difference between the predicted ratings and the true ratings.
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4.4.3 Results

The experiments are implemented from three different perspectives. Firstly, the

model is compared with the baselines, and a special scenario which is cold-start is

implemented. Then, the results of different graph embeddings are compared. As the

final experiment, visualizations are used to show some case studies.

4.4.3.1 Comparison the baselines & cold-start scenario

The proposed model is compared with the baselines in two cases in the first

experimental group. Besides showing the performance of the proposed model in the

general test set, results with the small sparse test set are given to present that the

proposed model can make better predictions even for sparse items. While Table 4.2

shows the results of baseline models and our result using the entire test set, Table 4.3

shows the results using only the small test set with sparse items.

According to Table 4.2, the proposed model is being outstanding to all baselines in the

HR metric by at least 3.8 %. The model only outperforms the Video Games dataset in

the NDCG metric. It might be caused by the size difference between the two datasets

because the Video Games dataset is bigger in size compared to the Beauty dataset.

Another reason is the diversity of the items in the datasets. The items in the Beauty

dataset repeat themselves and there is little variety in items. In the Beauty dataset, most

of the products sold are repeating themselves. According to the data analysis, only the

7 products make up almost 50% of total sales. 2874 of 5473 sales include sales of only

7 products. Nevertheless, in the Video Games category, there are no products that take

up most of the sales. The products generally have similar volumes of sales.

To investigate how the model performs for the items that have a very low number

of interactions, a small test dataset is created by selecting the items from the test set

that have only 1 or 2 interactions in the train set. Table 4.3 shows the metric results

of the baselines and our model with the sparse test set. The results from Table 4.3

show that the model makes better predictions than the baselines for the sparse dataset.

The reason why the baseline models can’t predict a newly added item with only a
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Table 4.2 : Baseline results with entire test set

Amazon Beauty Amazon Video Games
HR@20 NDCG@20 HR@20 NDCG@20

MLP 0.7484 0.5048 0.0352 0.0130
MF 0.8109 0.6938 0.0471 0.0192
NeuMF 0.6999 0.5737 0.0485 0.0185
DAE 0.6773 0.5948 0.0186 0.0079
NGCF 0.8091 0.6997 0.0581 0.0220
Our Model 0.8421 0.4781 0.0837 0.0365

few interactions successfully that they use the CF-based approach or user-item based

graph structure. On the other hand, a connection in sparse items by only looking at the

relationship between items and users wasn’t established. A hybrid model is developed

that could include the relationships of the items fed from the item’s title information in

the modeling of the user-item relationship, and it allowed us to achieve more successful

results.

Table 4.3 : Baseline results with sparse test set

Amazon Beauty Amazon Video Games
HR@20 NDCG@20 HR@20 NDCG@20

MLP 0.0603 0.0324 0.0033 0.0018
MF 0.0862 0.0403 0.0008 0.0002
NeuMF 0.0948 0.0683 0.0067 0.0021
DAE 0.0258 0.0107 0.0000 0.0000
NGCF 0.0689 0.0343 0.0016 0.0003
Our Model 0.1034 0.0369 0.0504 0.0182

Although the model couldn’t pass all of the baseline results according to the NDCG

metric using the sparse dataset for the Beauty dataset, it was able to pass 2 baseline

results and gave results close to the other two baselines compared to the entire test

set. Again, the model gives better results than the baselines according to HR for both

datasets.

Table 4.2 shows how the model outperforms the baselines thanks to the topic node

used while building our model, and the metapath (i → t → i → u → i) used to get more

information about sparse items.
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4.4.3.2 Comparison of the different graph embeddings

The second experiment compares the proposed model with the different graph

embeddings. Besides the tri-partite graph, a bi-partite graph is also created by using

only user-item interaction. Only two different node types U and I are used, and there

are edges only between items and users. Table 4.4 shows the comparison between

different graph embeddings. The proposed model in the last row outperforms all

results. Metapath2Vec algorithm with the tri-partite graph gives the lowest score. After

these embeddings are trained using NN, the best score is obtained in our proposed

model. Besides the proposed model, the second and third-best scores are obtained

using the Metapath2Vec algorithm with a bipartite graph and the Node2Vec algorithm

with a bipartite graph. As expected, NN improves the embeddings obtained from

tripartite Metapath2Vec, because it can learn relationships between input variables and

output variables better rather than our graph representation since just (u → i → u)

metapaths aren’t used, (i → t → i → u → i) metapath is also used.

Probably it is possible to learn the user-product relationships more accurately by using

NN when a more complex metapath is used, and the results support this. Especially,

to demonstrate the outstanding contribution of the (i → t → i → u → i) metapath,

the result of the model is compared with the result of the model without using that

metapath. The last two rows from Table 4.4 shows the results. While the first

model shows the result of the model without using that metapath, the second model

also includes (i → t → i → u → i) metapath. The results show that the usage of

that metapath improves HR by 3.5% and NDCG by 21% for the Beauty dataset and

improves HR by 161% and NDCG by 165% for Video Games dataset compared to the

result without using (i → t → i → u → i) metapath.

4.4.3.3 Case study

Besides the evaluation part using metrics, there are also some visualizations for

example topics and an example for the assignment of the uncategorized items to the

closest topics.
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Table 4.4 : Comparison of different graph embeddings

Amazon Beauty Amazon Video Games
HR@20 NDCG@20 HR@20 NDCG@20

Bi-HinSAGE 0.6018 0.3556 0.0775 0.0305
Bi-Node2Vec 0.8125 0.4774 0.0394 0.0132
Tri-Metapath2Vec 0.7840 0.4357 0.0254 0.0091
Bi-Metapath2Vec 0.8197 0.4724 0.0016 0.0006
Bi + NN 0.8126 0.3841 0.0090 0.0030
Tri + NN 0.8421 0.4781 0.0837 0.0365

Topic Word Visualization: To show the success of our topic modeling, example

word cloud visualizations are given that show the most common words in the topics.

In the word cloud, words are written bigger the more often they are mentioned. Figure

4.4(a) and 4.4(b) show the two most dense topics from Beauty Dataset. It is clear

that one topic includes items about nails, nail art, and other nail products such as

polish, stickers, manicure, while another topic includes items about skincare, cream,

anti-aging products, and serums. The word amp is a skincare brand. Figure 4.4(c) and

4.4(d) give the most common words from Video Games dataset topics. Figure 4.4(c)

includes items about Nintendo DS and its games. Figure 4.4(d) shows that it includes

items about Xbox.

Assigning uncategorized items to the closest topics: In this part, the assignment

quality of the uncategorized items to the closest topics is shown. Random items

from uncategorized topics are chosen and they are investigated according to the

compatibility of the assignments. Figure 4.4(b) shows the Beauty Skin Care / Cream

topic and randomly three uncategorized items that are assigned to that topic. The titles

of the items with the keywords (most frequent words in the topic) in bold are as follows:

"aloe vera gel huge organic cold pressed aloe nutrilab naturals natural ingredients

use eczema sun burn sun bug insect bites aloe rich vitamins e c b vitamins nourish

skin aloe vera grown bottled usa amp certified organic texas department agriculture"

(1), "natures greatest secret amber formula antibacterial antifungal colloidal silver

coconut oil intensive formula soothing skin treatment (2)", "alexa organic kona coffee

scrub dead sea salt organic olive oil sweet almond oil grape seed oil shea butter amp
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(3)". If you compare the most frequent words you can see that there are many common

words that prove the success of the uncategorized item assignment approach.

(a) Beauty-Nail / Nail Art (b) Beauty-Skin Care / Cream

(c) Video Games-Nintendo DS (d) Video Games-Xbox

Figure 4.4 : Word Cloud Visualization
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5. CONCLUSION AND FUTURE WORKS

This thesis proposes two different novel frameworks for demand prediction and

recommendation system by taking the advantage of graph embeddings.

The first implementation aims to enrich the demand forecasting model by using

the different relationships of products. Different relationships between products are

constructed with graph structure using the transactional sales data of products, and

graph embedding techniques are implemented to learn the relationships between

the products. To implement the proposed model, firstly the Apriori algorithm and

K-Means Clustering are used to extract the relationship between products. The next

step is extracting the vector representation of products. The Node2Vec algorithm

and GraphSAGE algorithm are implemented, and according to the MAE metric, the

more successful algorithm becomes the Node2Vec algorithm. Finally, the vector

representations or the embeddings of products are used with the previous sales data

to predict the demand value of the products. XGBR and LSTM models are used to

make time-series predictions. According to the results, Graph 4, which represents

the relationship between products using euclidean distance, gives the best result as

MAE=2.00 with the hyper-parameters of the Node2Vec where the embedding size is

10 and the walk length is 80 using XGBR. LSTM also gives the best result using Graph

4 with 10D embedding as MAE=2.98. When XGBR and LSTM are compared, XGBR

gives better results according to the MAE. However, the results show that the usage of

embeddings improved the demand prediction for both XGBR and LSTM.

The second implementation proposed a hybrid recommendation system by using

topic-enriched item embeddings. The model is improved with topic modeling so that

it is possible o extract meaningful embeddings even for sparse items. As the first

step, topics are extracted for each item using title information. At this point, the topic

modeling is enriched by assigning uncategorized items to the closest topics. After

that, a heterogeneous tripartite graph is constructed and the Metapath2Vec algorithm

47



is implemented with reasonable metapaths. The evaluated embeddings are used as the

initial embedding for NN, and finally, the recommendations are implemented. Various

experiments on two different Amazon datasets show that the proposed model can

predict effective recommendations. Besides, the case studies demonstrate the success

of the approach to topic modeling.

The future works can be explained from three different perspectives which are the

demand prediction model, the recommendation system, and the future works for the

general of the thesis. In the demand prediction model, more than one dataset should be

used to evaluate the success of the approach. It also helps to understand the usability

of the model in different fields, where there are transactional data, not only in the

retail industry. For the recommendation system, the model can be evaluated using

one more dataset and the case studies can be extended to add more explainability to

the implementation. In addition, the users can be grouped as it is implemented for

items as topics. If the reviews made by users to items are added to the model, more

meaningful embeddings can be obtained. Finally, as the future works for all the parts

of the thesis, the usage of different graph neural network models helps us to observe

better results.
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[7] Ferbar, L., Čreslovnik, D., Mojškerc, B. and Rajgelj, M. (2009). Demand
forecasting methods in a supply chain: Smoothing and denoising,
International Journal of Production Economics, 118(1), 49–54,
https://www.sciencedirect.com/science/article/
pii/S0925527308002466, special Section on Problems and models
of inventories selected papers of the fourteenth International symposium
on inventories.

[8] Harrison, P. (1967). Exponential smoothing and short-term sales forecasting,
Management Science, 13(11), 821–842.

[9] Fattah, J., Ezzine, L., Aman, Z., El Moussami, H. and Lachhab, A. (2018).
Forecasting of demand using ARIMA model, International Journal of
Engineering Business Management, 10, 1847979018808673.

49



[10] Ramos, P., Santos, N. and Rebelo, R. (2015). Performance of state space
and ARIMA models for consumer retail sales forecasting, Robotics and
computer-integrated manufacturing, 34, 151–163.

[11] Falatouri, T., Darbanian, F., Brandtner, P. and Udokwu, C. (2022). Predictive
Analytics for Demand Forecasting–A Comparison of SARIMA and LSTM
in Retail SCM, Procedia Computer Science, 200, 993–1003.

[12] Elmasdotter, A. and Nyströmer, C. (2018). A comparative study between LSTM
and ARIMA for sales forecasting in retail.

[13] Jain, A., Karthikeyan, V., Sahana, B., Shambhavi, B., Sindhu, K. and Balaji,
S. (2020). Demand Forecasting for E-Commerce Platforms, 2020 IEEE
International Conference for Innovation in Technology (INOCON), IEEE,
pp.1–4.

[14] Kilimci, Z.H., Akyuz, A.O., Uysal, M., Akyokus, S., Uysal, M.O., Atak Bulbul,
B. and Ekmis, M.A. (2019). An improved demand forecasting model
using deep learning approach and proposed decision integration strategy
for supply chain, Complexity, 2019.

[15] Benhamida, F.Z., Kaddouri, O., Ouhrouche, T., Benaichouche, M.,
Casado-Mansilla, D. and López-de Ipiña, D. (2020). Stock&Buy: A
New Demand Forecasting Tool For Inventory Control, 2020 5th Inter-
national Conference on Smart and Sustainable Technologies (SpliTech),
IEEE, pp.1–6.

[16] Qi, Y., Li, C., Deng, H., Cai, M., Qi, Y. and Deng, Y. (2019). A deep
neural framework for sales forecasting in e-commerce, Proceedings of
the 28th ACM International Conference on Information and Knowledge
Management, pp.299–308.

[17] Shi, J., Yao, H., Wu, X., Li, T., Lin, Z., Wang, T. and Zhao, B.
(2021). Relation-aware Meta-learning for E-commerce Market Segment
Demand Prediction with Limited Records, Proceedings of the 14th ACM
International Conference on Web Search and Data Mining, pp.220–228.

[18] Liao, S., Yin, J. and Rao, W. (2020). Towards Accurate Retail Demand
Forecasting Using Deep Neural Networks, International Conference on
Database Systems for Advanced Applications, Springer, pp.711–723.

[19] He, X., Liao, L., Zhang, H., Nie, L., Hu, X. and Chua, T. (2017). Neural
Collaborative Filtering, CoRR, abs/1708.05031, http://arxiv.org/
abs/1708.05031, 1708.05031.

[20] Koren, Y., Bell, R. and Volinsky, C. (2009). Matrix factorization techniques for
recommender systems, Computer, 42(8), 30–37.

[21] Lee, D. and Seung, H.S. (2000). Algorithms for non-negative matrix factorization,
Advances in neural information processing systems, 13.

50



[22] Sedhain, S., Menon, A.K., Sanner, S. and Xie, L. (2015). Autorec: Autoencoders
meet collaborative filtering, Proceedings of the 24th international
conference on World Wide Web, pp.111–112.

[23] Shu, J., Shen, X., Liu, H., Yi, B. and Zhang, Z. (2018). A content-based
recommendation algorithm for learning resources, Multimedia Systems,
24(2), 163–173.

[24] Bouihi, B. and Bahaj, M. (2019). Ontology and Rule-Based Recommender
System for E-learning Applications., International Journal of Emerging
Technologies in Learning, 14(15).

[25] Walek, B. and Fajmon, P. (2023). A hybrid recommender system for an online
store using a fuzzy expert system, Expert Systems with Applications, 212,
118565.

[26] Vahidi Farashah, M., Etebarian, A., Azmi, R. and Ebrahimzadeh Dastjerdi,
R. (2021). A hybrid recommender system based-on link prediction for
movie baskets analysis, Journal of Big Data, 8(1), 1–24.

[27] Wang, H.C., Jhou, H.T. and Tsai, Y.S. (2021). Adapting topic map and social
influence to the personalized hybrid recommender system, Information
Sciences, 575, 762–778.

[28] Schafer, J.B., Frankowski, D., Herlocker, J. and Sen, S. (2007). Collaborative
Filtering Recommender Systems, Springer-Verlag, Berlin, Heidelberg,
p.291–324.

[29] Berg, R.v.d., Kipf, T.N. and Welling, M. (2017). Graph Convolutional Matrix
Completion, https://arxiv.org/abs/1706.02263.

[30] Chen, L., Wu, L., Hong, R., Zhang, K. and Wang, M. (2020). Revisiting Graph
based Collaborative Filtering: A Linear Residual Graph Convolutional
Network Approach, https://arxiv.org/abs/2001.10167.

[31] He, X., Deng, K., Wang, X., Li, Y., Zhang, Y. and Wang, M. (2020).
Lightgcn: Simplifying and powering graph convolution network for
recommendation, Proceedings of the 43rd International ACM SIGIR
conference on research and development in Information Retrieval,
pp.639–648.

[32] Wang, F., Li, Y., Zhang, Y. and Wei, D. (2022). KLGCN: Knowledge
graph-aware Light Graph Convolutional Network for recommender
systems, Expert Systems with Applications, 195, 116513,
https://www.sciencedirect.com/science/article/
pii/S0957417422000148.

[33] Wu, C., Liu, S., Zeng, Z., Chen, M., Alhudhaif, A., Tang, X., Alenezi,
F., Alnaim, N. and Peng, X. (2022). Knowledge Graph-Based
Multi-Context-Aware Recommendation Algorithm, Inf. Sci., 595(C),
179–194, https://doi.org/10.1016/j.ins.2022.02.054.

51



[34] Wang, P., Li, X., Du, F., Liu, H. and Zhi, S. (2019). A Personalized
Recommendation System based on Knowledge Graph Embedding and
Neural Network, 2019 3rd International Conference on Data Science and
Business Analytics (ICDSBA), pp.161–165.

[35] Wang, X., He, X., Wang, M., Feng, F. and Chua, T.S. (2019). Neural
Graph Collaborative Filtering, Proceedings of the 42nd International ACM
SIGIR Conference on Research and Development in Information Retrieval,
SIGIR’19, Association for Computing Machinery, New York, NY, USA,
p.165–174, https://doi.org/10.1145/3331184.3331267.

[36] Li, Z., Shen, X., Jiao, Y., Pan, X., Zou, P., Meng, X., Yao, C. and Bu, J. (2020).
Hierarchical Bipartite Graph Neural Networks: Towards Large-Scale
E-commerce Applications, 2020 IEEE 36th International Conference on
Data Engineering (ICDE), IEEE, pp.1677–1688.

[37] Polignano, M., Musto, C., de Gemmis, M., Lops, P. and Semeraro, G.
(2021). Together is Better: Hybrid Recommendations Combining Graph
Embeddings and Contextualized Word Representations, Association for
Computing Machinery, New York, NY, USA, p.187–198, https://
doi.org/10.1145/3460231.3474272.

[38] Fan, S., Zhu, J., Han, X., Shi, C., Hu, L., Ma, B. and Li, Y.
(2019). Metapath-Guided Heterogeneous Graph Neural Network for
Intent Recommendation, Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery amp; Data Mining,
KDD ’19, Association for Computing Machinery, New York, NY, USA,
p.2478–2486, https://doi.org/10.1145/3292500.3330673.

[39] Sheng, D., Yuan, J., Xie, Q. and Luo, P. (2020). MOOCRec: An
Attention Meta-Path Based Model for Top-K Recommendation in MOOC,
Knowledge Science, Engineering and Management: 13th International
Conference, KSEM 2020, Hangzhou, China, August 28–30, 2020,
Proceedings, Part I, Springer-Verlag, Berlin, Heidelberg, p.280–288,
https://doi.org/10.1007/978-3-030-55130-8_25.

[40] Xu, S., Yang, C., Shi, C., Fang, Y., Guo, Y., Yang, T., Zhang, L. and Hu,
M. (2021). Topic-Aware Heterogeneous Graph Neural Network for Link
Prediction, Proceedings of the 30th ACM International Conference on
Information amp; Knowledge Management, CIKM ’21, Association for
Computing Machinery, New York, NY, USA, p.2261–2270, https:
//doi.org/10.1145/3459637.3482485.

[41] Han, Z., Anwaar, M.U., Arumugaswamy, S., Weber, T., Qiu, T., Shen, H.,
Liu, Y. and Kleinsteuber, M. (2020). Metapath- and Entity-aware Graph
Neural Network for Recommendation, CoRR, abs/2010.11793, https:
//arxiv.org/abs/2010.11793, 2010.11793.

52



[42] Agrawal, R., Srikant, R. et al. (1994). Fast algorithms for mining association
rules, Proc. 20th int. conf. very large data bases, VLDB, volume1215,
Santiago, Chile, pp.487–499.

[43] Likas, A., Vlassis, N. and Verbeek, J.J. (2003). The global k-means clustering
algorithm, Pattern recognition, 36(2), 451–461.

[44] Grover, A. and Leskovec, J. (2016). node2vec: Scalable feature learning
for networks, Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pp.855–864.

[45] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. and Dean, J. (2013).
Distributed Representations of Words and Phrases and their Composi-
tionality, CoRR, abs/1310.4546, http://arxiv.org/abs/1310.
4546, 1310.4546.

[46] Chen, T. and Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting
System, CoRR, abs/1603.02754, http://arxiv.org/abs/1603.
02754, 1603.02754.

[47] Data61, C. (2018). StellarGraph Machine Learning Library, https://
github.com/stellargraph/stellargraph.

[48] Hamilton, W.L., Ying, R. and Leskovec, J. (2017). Inductive Representation
Learning on Large Graphs, CoRR, abs/1706.02216, http://arxiv.
org/abs/1706.02216, 1706.02216.

[49] Devlin, J., Chang, M.W., Lee, K. and Toutanova, K. (2018). BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,
https://arxiv.org/abs/1810.04805.

[50] Grootendorst, M. (2022). BERTopic: Neural topic modeling with a class-based
TF-IDF procedure, https://arxiv.org/abs/2203.05794.

[51] Islek, I. and Oguducu, S.G. (2020). A Hybrid Recommendation System Based
on Bidirectional Encoder Representations, I. Koprinska, M. Kamp,
A. Appice, C. Loglisci, L. Antonie, A. Zimmermann, R. Guidotti,
Ö. Özgöbek, R.P. Ribeiro, R. Gavaldà, J. Gama, L. Adilova,
Y. Krishnamurthy, P.M. Ferreira, D. Malerba, I. Medeiros, M. Ceci,
G. Manco, E. Masciari, Z.W. Ras, P. Christen, E. Ntoutsi, E. Schubert,
A. Zimek, A. Monreale, P. Biecek, S. Rinzivillo, B. Kille, A. Lommatzsch
and J.A. Gulla, editors, ECML PKDD 2020 Workshops, Springer
International Publishing, Cham, pp.225–236.

[52] Chollet, F. (2015). keras, https://github.com/fchollet/keras.

[53] HuggingFace, https://huggingface.co/docs/transformers/
model_doc/bert.

53



[54] Wu, Y., DuBois, C., Zheng, A.X. and Ester, M. (2016). Collaborative Denoising
Auto-Encoders for Top-N Recommender Systems, Proceedings of the
Ninth ACM International Conference on Web Search and Data Mining,
WSDM ’16, Association for Computing Machinery, New York, NY, USA,
p.153–162, https://doi.org/10.1145/2835776.2835837.

54



CURRICULUM VITAE

Name SURNAME:
Yaren YILMAZ
Place and Date of Birth: Izmir, 02.03.1997

E-Mail: yilmazy20@itu.edu.tr

EDUCATION:

• B.Sc.: 2020, Dokuz Eylul University, Faculty of Engineering, Department of
Computer Engineering

• M.Sc.: 2022, Istanbul Technical University, Faculty of Computer and Informatics
Engineering, Department of Computer Engineering

PROFESSIONAL EXPERIENCE AND REWARDS:

• 2021-... Research and Teaching Assistant at ITU Artificial Intelligence and Data
Engineering Department

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS:
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