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CLOUD-BASED DIAGNOSIS OF REFRIGERANT
LEAKAGE FAULT OF CHILLER USING VIRTUAL
SENSOR RESIDUALS ASSISTED XGBOOST
ALGORITHM

ABSTRACT

Over the recent decades, improvements in the sensor technology have enabled researchers
to access extensive operational data of HVAC chillers. This large amounts of data have facilitated
the adaptation of novel smart fault detection and diagnosis (FDD) methods as a means to increasing
the energy efficiency of buildings. However, although the data processing methods are very
powerful, the experimental data collected from chillers generally lack the sufficient diversity and
standardization that the data driven methods require to obtain a general model that can be applied
in various cases. A deficiency in preprocessing or a misconception in the selection evaluation
metric may easily result in a misinterpretation of the test results. If there is such misjudgment, the

final FDD method would suffer heavily from low generalization capacity and overfitting.

This paper highlights the origins of common misconceptions and attempts to achieve a
higher generalization performance than the conventional methods by constructing a novel
procedure to diagnose the refrigerant leakage fault of chillers. To achieve this target, first the faulty
and fault-free operation data of an industrial chiller is collected. Then, after conducting the relevant
preprocessing steps, an algorithm that creates virtual sensors based on fault-free conditions is
constructed. This algorithm is then used to calculate selected residuals of actual sensor readings
and virtual sensor predictions. An optimized XGBoost algorithm is supplied with both normal and

faulty conditions as inputs to make the final prediction on the refrigerant charge level.
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methods such as Support Vector Machines (SVM), Multi-Layer Perceptron (MLP), Random

The diagnosis results from the proposed method are compared with other widely-accepted

Forest (RF) and pure Extreme Gradient Boosting (XGBoost). The results reveal that, all of the
traditional methods have above 99% accuracy in random testing. Yet, when these methods are k-
fold tested, even the best compared model could only achieve accuracies of 54%, 68% and 72%.
The proposed method, on the other hand, achieved an exceptional generalization performance with
accuracy results of 68%, 70% and 72%, while the method still retained above 99% accuracy in

random testing.

As the final step, a cloud based FDD framework is constructed to track the status chiller
health from a user friendly website. The framework uses a dedicated server for its FDD module,
where the software makes judgements on chiller health by predicting the refrigerant load level
from the sensor data obtained by the chiller in real-time. The proposed model is uploaded to the

framework and the study is concluded with conducting simulations and tests on the online system.

Keywords: Deep learning; XGBoost; Preprocessing; HVAC system; FDD; Regression
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Chapter 1

Introduction

1.1. Background

Chiller is one of the most important components of heating, ventilation and air conditioning
(HVAC) systems, which are increasingly more essential to ensure thermal comfort in buildings.
Since HVAC systems commit a large share of the total building energy consumption, researchers
and engineers are pursuing for new techniques to limit this consumption [1]. Moreover, it is also
crucial to prevent the economic loss that might be caused by some faults occurring in the HVAC
systems over a lengthy period of time with use of relevant fault detection and diagnosis (FDD)
tools. Refrigerant undercharge fault is one of the most frequent faults occurring in these systems,
as 34% of the systems have this fault with various severities [2]. There are several causes of this
type of fault such as, a failure to charge the refrigerant according to the requirements, leakage

caused by improper maintenance or operation and insufficient air tightness of the system [3].

Similar to other common faults, refrigerant undercharge fault may also result in improper
cooling performance, decreased efficiency of the chiller system and even may cause a total failure
of the HVAC system. Additionally, such fault might also provoke the chiller expansion valve to
fluctuate heavily, leading to instability and additional risks for both safety and the regulation
capacity of the system [4]. To minimize such risks posed by refrigerant undercharge fault, it is
therefore critical to develop a FDD strategy to eliminate the problems that might arise from the

fault remaining undetected during the operation of chiller system.
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Even though the complete FDD methods in the literature are proposed for detecting and
classifying different faults or diagnosing varying fault severities of a specific fault, the core
techniques and algorithms of the majority of the FDD methods are not fault specific. This statement
is especially true for data-driven methods where the input data is collected from the same chiller
system regardless of the inspected fault. Therefore, since different FDD methodologies can be
used and incorporated interchangeably, this section starts with a general literature review of FDD
methodologies, then proceeds with the specific diagnosis methods of refrigerant undercharge fault

and concludes with the contributions of this study.
1.2. State of art

There are several ways to categorize FDD methods that can be found in the literature. Based
on the work of Yang et al. [5], FDD methods can be classified into data-driven (DD) models, gray

box models, and prior knowledge-based (rule-based) methods.
1.2.1. Model based FDD methods

The main idea of model based methods is to construct a dynamic process for signal and
parameter estimation [6, 7]. First-principle method and the gray box method are the two most
widely used approaches [8, 9, 10]. Both dynamic and static systems can be modeled with the first-
principle method according to the systems’ physical characteristics. However, since the time
response is slow and the modeling can only be applied for steady-state conditions, this approach
is not suitable for online FDD process. This drawback of slow response can be improved with
exploiting the gray-box method, where it may stabilize the system by having a direct response to
abrupt faults. On the contrary, using a gray-box model still require precise physical modeling

coupled with regression techniques, thus there exists an uncertainty of oversimplifying the
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complex HVAC system models [11]. Moreover, any modification on the system requires a

construction of a completely new model since previous models are not usable anymore.
1.2.2. Data driven FDD methods

Zhang et al. [12] categorized the data driven approaches into qualitative and quantitative
methods. In such categorization, qualitative-based methods include Expert systems, pattern
recognition, frequency analysis and fuzzy logic. On the other hand, data-driven quantitative-based
methods are divided into two sub categories, namely, statistical methods and neural networks. The
common aspect of data-driven methods is that they use operational data which is collected from
the system that is being studied. Contrastingly to the model-based approach, data-driven methods
have more practicality for applying FDD to the complex HVAC systems since they are not
concerned with system complexity and solely depend on the historical data of system operation.
This real system operational data is the only requirement of data-driven methods and there are no
additional needs such as expert knowledge or the physical models on for the HVAC system [13,

14].

Data-driven methods can also be divided into two groups such as data-mining based methods
(or smart methods) and statistical methods. The statistical methods allow the FDD process to have
flexible dimensionality reduction to reduce the amount of valuable data to be inspected. By
employing dimensionality reduction, high weighted or manually selected features are selected as
inputs for the chosen FDD method. Previous studies on data-mining based FDD employed various
data-mining approaches to study the input and output data relationships to detect the abnormalities
within the HVAC systems [12]. Utilization of pure data-mining methods or a combination

statistical and data-mining methods is possible to develop a data-driven FDD process [15].
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However, Ebrahimifakhar et al. [16] argued that the when overall accuracy of finding faults in a
HVAC system is considered, employing data-mining-based classification methods such as support
vector machines (SVM) generally yields better results than the statistical methods (i.e. linear
discriminant analysis). Data-mining methods also can be divided into two sub-categories such as
supervised and unsupervised methods. In the former, the reorganization of data patterns are based
on the training set, and on the latter, the underlying relations in the dataset are summarized. In the
recent years, various FDD methods are developed for HVAC systems utilizing data-driven
supervised, semi-supervised and unsupervised data-mining techniques. Additionally, there are
many hybrid methods in the literature where two or more of these techniques are employed to

improve the accuracy and reliability of these methods.
1.2.3. Knowledge based FDD methods

Alzghoul et al. [17] defined knowledge-based method as the combination of a qualitative part
of the model-based method, which includes fault trees, structural graphs, or qualitative physics,
and data-driven qualitative subcategory including expert systems or fuzzy logic. In the
circumstances where the physical or mathematical modeling of the system is too costly and
computationally expensive, knowledge-based methods are generally preferred to be used for FDD.
Moreover, usage of a knowledge-based method may be more preferable when modeling the chiller
is not feasible due to a small number of inputs, outputs, and states of the system or when there is

a requirement of specific domain knowledge to model the system [9, 18].
1.2.4. Combination of different methods

Combinations of different types of FDD methods can also be utilized to achieve a higher

accuracy [19]. Models merging together model-based methods and supervised data-driven
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methods to detect the system level faults are proposed by Ding [20] and Khorasgani et al. [21]. To
successfully integrate two methods into a single FDD process, a new model structure is constructed.
For example, two layers of Bayesian network containing fault and fault symptoms layers can be
constructed which takes advantage of previous knowledge regarding the faults and the symptoms
of other related systems [22]. The number of requirements for the attributes of modeling can be
decreased by combining model-based and data-driven methods. Yet, there still exists some
limitations for combining physical models with data-driven or knowledge-based methods. For
instance, over-simplifying the modeling of large-scale HVAC systems may cause a high rate of
false positives and modeling errors. Also, the process of simulating various faulty conditions can

be very time-consuming and this type of combined method might need big data storage [23].

1.3. Data driven fault detection and diagnosis

1.3.1. Supervised FDD methods

First branch of supervised learning methods is the off-line supervised learning. Each
observation in the training set for off-line learning process incorporates both input and output
values (labels). After the training is completed, new data is then classified based on the model
parameters which are learned from the training set. Supervised learning is a robust method in terms
of training the model, also it can enables researchers to evaluate the performance of the FDD
process by providing feedback such as the prediction accuracy and leaning results. This method is
defined as backward approach in the data-mining, since the pre-defined output model is used. In
fact, expert knowledge and accurate training data are critical for this method to initiate the initial
training [24]. Second branch of supervised FDD methods is online supervised-learning, in which

both training and testing procedures are conducted simultaneously for corresponding dataset. This
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process involves two consecutive steps: prediction of labels and label correction. Thus, instead of
initially separating of the dataset into train and test sections, a prediction is made in every iteration
for each sample, which is followed by a correction of the predicted label in the subsequent step.
This label correction is the core method that enables the improvement of the accuracy for future

predictions [25].

In another approach, supervised learning methods can be categorized into two main groups:
classification (which is for discrete target values) and regression. Some of the classification
methods are Bayesian networks, Decision trees, and Support Vector Machines (SVM). On the
other hand, the regression methods includes other methods such as lazy learners (e.g., K-nearest
neighbor (KNN)), supervised neural networks, and ensemble methods. A top-down approach is
employed by decision-tree methods. Where, in the first stage, the class labels are constructed, and

these labels are utilized for classification of unseen data in the following stages.

SV M search for the optimal separating hyperplane with usage of support vectors, which makes
it is a powerful tool for classification. Also, SVM can boost the generalization and minimize error
by finding large margin separators which include training error and confidence level [26]. SVM
has been widely used because of its performance of solving non-linear problems with relatively
high accuracy. For instance, Namburu et al. [27] determined the most sensitive sensor for fault
diagnosis in a chiller system with a genetic algorithm and then developed a data-driven generic
FDD method. First, the fault is detected with SVM, PCA, and partial least-squares (PLS) methods.
Then, the PLS is used again to assess fault severity. Han et al. [28] studied on Multi-label SVM
(ML-SVM) for labeling multiple classes simultaneously. In their work, the more than two faults
occurring in the system at the same time could be identified. They have extended their research

with two other SVM-based FDD methodologies for chillers [29, 30]. Non-linear support vector
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regression (SVR) is another way that can be applied to recognize fault patterns and detect faults.
To resolve the mismatch of linear regression functionality and non-linear FDD problems,
utilization of logistic regression is proposed. Anh et al. [31] constructed modified a least square
support vector regression (LSSVR) model where the accuracy of the FDD method is improved.
Besides, Anh et al. [32] also conducted a study where the performance of different regression
based FDD algorithms are inspected. Moreover, they have proposed a least square-SVM (LS-SVM)
regression-based method for fault detection in chillers, together with Han et al. [33]. The two
studies show that the quality and quantity of labeled training data is a major concern for both LS-
SVM and SVM methods. But, when the size of available faulty data is small, LS-SVM showed a

slightly better performance with more accuracy than SVM.

There are also numerous studies where a neural-network approach is used to find faults in
systems. In instance, Wang et al. [34] applied a kernel-based partial least square regression for
detecting and diagnosing faults in heat exchangers and a SVR model is used by Bailey et al. [35]
for FDD of a chiller. In the study, 28 inputs, seven outputs and two hidden layers for the artificial
neural network (ANN) algorithm are defined to achieve an accurate result. Hou et al. [36] adopted
a RS method for omitting redundant attributes of the ANN for FDD process of an air conditioning

system.

Bayesian networks function is another method that can be applied in FDD methodologies
which is based on the conditional probabilities theorem that predicts the response value of an
observation set. For FDD in HVAC systems, fault labels are the response values. Even if complete
information about the system is not available, Bayesian networks still have the ability to work well
[35]. Since the naive Bayesian assumption requires independence between observations, these

models might have troubles in finding the indirect effects from faults in the case of dependencies,
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thus there might be a degree of error in the network output. Several researchers combined the
Bayesian network with The Gaussian naive Bayesian network, which have the assumptions of a
normal distribution for the response value where the weights of all prediction classes are identical.
Some variations of Bayesian belief networks minimizing the effects of dependencies in the FDD

process of air handling unit system is proposed by Zhao et al. [37, 38] in other studies.

Regression models are generally employed for numerical prediction. In regression models,
logistic and linear regression methods are used for binary and numerical of regression, respectively
[26]. Since the FDD methods primarily aim to construct intrinsic mathematical relationships
between different attributes to detect the abnormalities [39], these two methods may also be

applied in FDD process.

ANN-based methods have a great application potential for FDD in building HVAC
components [40, 41]. ANN-based FDD methods mostly utilize on residuals and thresholds.
Residuals contain the information about the deviation from system’s normal operating conditions
and can be calculated by subtracting the predictions from measured value [31, 42-44]. Moreover,
a calculation of the residuals is crucial when the severity of a fault is estimated. ANN methods can
be divided into two main methods based on the utilization of residual information. In the first
group, ANN methods detect the faults by generating residuals and by comparing these residuals
with predefined thresholds. In the second group, ANN methods categorize abnormal residuals in
distinct fault groups [35]. The thresholds in the second group are normally decided with a trial-
and-error method [45] or expert knowledge. To avoid frequent false alarms, there are two more
ways to determine the most appropriate threshold besides statistical testing and norm-based

residuals [46]. If there are different types of faults simultaneously present in the system, ANN
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takes every residual as input to detect the residuals which are related to a specific fault. If a

relationship is found, ANN classifies the faults in their corresponding group [47].

As a recent variant of ANN, deep-learning based FDD, is continually receiving more attention,
since such methods generally provide higher accuracy and robustness compared to other
supervised FDD methods when the available labeled data is limited [48]. In recent years, a number
of deep neural network (DNN) methods are applied to HVAC systems for FDD [49]. In example,
a recurrent neural network (RNN) is developed by Shahnazeri et al. [50] to find faults inan HVAC
system. Even though their method did not require historical data, the limited capacity of their
method to capture the nonlinearity have limited the accuracy of their results. While using DNN
based FDD methods, automatic feature selection step is another factor that might influence the
accuracy of the results. In the some situations, this selection may cause the loss of some essential
data. This phenomena occurs when low weights are automatically assigned to some critical data
during the training process. One of the common problem that significantly decrease the accuracy
of the results is the collection of faulty samples from older components and training the model
with these samples. Moreover, when the training of FDD model is done with the use of the data
which is collected from the first months of the operating period of the components, the data lacks
the systematic routine for the adjustment of FDD model to actual operating conditions [51].
Furthermore, it is also argued that the supervised FDD methods are more applicable to steady-state

operating conditions rather than the transient state operation [52].
1.3.2. Semi-supervised FDD methods

A complete dataset is required to initialize the training process of supervised learning.

However, the faults present in the system is usually not labeled in training obtained from HVAC
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systems. Semi-supervised learning models aims to tackle this issue. The definition of semi-
supervised learning is when only non-fault case labels are supplied to the training algorithm [52].
If only a few faulty samples are provided, semi-supervised learning models might have a better
performance than supervised learning. The semi-supervised methods makes a comparison between
each sample with a non-faulty class and the training set is expanded with new faults after each
iteration. Therefore, with each iteration, the size of the training set with faulty samples is expanded.
Subsequently, the algorithm evaluates the remainder of the testing data. However, it must be kept
in mind that semi-supervised learning is computationally more costly compared to supervised

learning.

A semi-supervised SVM for an FDD process of an AHU system is proposed by Yan et al. [53]
and the method is validated by comparing it with other machine learning techniques such as
random forest, semi-supervised KNN, and semi-supervised classification and regression tree
(CART). It is demonstrated that semi-supervised SVM achieves a higher accuracy compared to
other semi-supervised methods. Specifically, semi-supervised SVM retained 93% accuracy when
the training is limited to using only 6.66% of faulty samples. Moreover, it is found out that
increasing the number of faulty samples in the training dataset did not have an effect on the
prediction accuracy. In their more recent study, they have also implemented generative adversarial
network (GAN) extensions to their work, aiming to improve the accuracy [54]. The purpose of the
addition of GAN is synthetically increasing the number of faulty training observations of the AHU
system. Even though the proposed methodology achieves a higher accuracy in compared to
classical supervised methods, the hyperparameters of the model still need to be configured

according to different system configurations.
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1.3.3. Unsupervised FDD methods

If there are no labels provided for all sets of training data, the learning method is called to be
unsupervised [26]. This method enables the construction of indirect correlation between features
of the dataset. Moreover, other useful relational knowledge and structural information can be
extracted from unlabeled data via the usage of unsupervised learning. The most widely used
methods that use unsupervised learning are: association rule mining (ARM) [24, 57, 58], clustering

[26, 55, 56], motif discovery [59, 60], and self-organized neural networks [24].

ARM methods are employed to find structural patterns and relationships among variables,
which makes it also an effective method to discover the internal regularities within the dataset.
Furthermore, hidden patterns between features can be extracted in some cases [57]. An ARM
method is implemented by Yu et al. [42] where daily and yearly data are collected and then
compared to extract structural rules and finding the inherent faults of a mechanical ventilation

system [42].

Another practical unsupervised approach for FDD is clustering. In clustering method, sets of
samples are grouped into classes constructed from similar samples so that the samples existing in
the same cluster are the ones that are more likely to each other, and the samples that are in different
clusters have less similarities with one another. Clustering method also can be a powerful tool to
understand time specific behavior of the building’s elements, since it can extract intra-cluster
relationships and other useful knowledge from these elements. For example, Reddy et al. [43]
implemented clustering analysis to the hourly energy consumption of the building, where they
aimed to predict the total short-term energy consumption. Xue et al. [61] utilized a combination of

clustering and ARM to detect faults in a district heating system. First, different seasonal patterns

11
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of operation in the heating system are classified via clustering. Then, associated rules for faults are

found from in each cluster by employing ARM.

Some limitations also appear in the application of unsupervised methods. The results retrieved
using such methods (i.e., rules from ARM) are usually very large and might include many
unnecessary data. Therefore, post-processing methods are generally necessary to determine the
correlations and automatically derive meaningful results from these large amount of returned
results. Additionally, when clustering is employed to process the operational data of the system,
the total number of clusters is generally defined based on the fault groups known from previous
knowledge in some cases [62]. Thus, clustering method fails to diagnose all new faults which are
not recognized as members to existing groups. Aside from this, contrary to supervised methods,
the complicated correlations among multiple features may be difficult to detect for clustering

analysis and ARM in the post-mining step [63].

Unsupervised ANN methods are comprehensively reviewed by Krarti et al. [64]. The FDD
process can be enhanced with self-organized ANN algorithms to create an unsupervised model.
The utilization of such algorithms can significantly simplify the process by reducing the number
of iterations in the training process [65]. In other words, the speed of the FDD process can be

considerably increased with self-organized ANN.

Pattern recognition and motif discovery is also another area of FDD methods that received
attention in recent years. These methods are generally employed as a preprocessing algorithm or
as a semi-supervised method used in combination with PCA methods [66]. For example, a
combined PCA and symbolic aggregate approximation (SAX) pattern matching method [54] is
employed in FDD for the whole building. First, a regression method together with a generic

algorithms is implemented on the data to find the initial key features. Then, the key features

12
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obtained in the feature selection stage are used in PCA. SAX produced a weather-based pattern
threshold and this threshold is compared with the historical data to detect the faults. Although,
motif finder and pattern recognition methods have major advantages when studying time series
data, there is still room for improvement in application of these to large scale HVAC system FDD

processes.
1.3.4. Hybrid FDD methods

There are many examples in the literature where the core FDD applications of different
processes utilizing supervised, semi-supervised or unsupervised leaning are examined. However,
in terms of minimizing the false alarms, the results obtained from these methods generally do not
have sufficient precision in large-scale applications. The integrated approach consisting of both
unsupervised and supervised learning techniques has been broadly employed in recent years to
improve such precision. Du et al. [39] coupled subtractive clustering analysis and two consecutive
neural networks (a combined neural network) to detect the faults and abnormities in the AHU. The
first neural network detects the sensitivity of attributes and was utilized for feature selection. The
selected features were later taken as targets to both first and second (auxiliary) neural network. To
determine the corresponding weights target variables for each neural network, a PCA was also
used. Then, these weights were used to calculate the combined relative error. If the defined error
exceeds the threshold, the sample was labeled as a fault. Finally, the faults in the new data are

diagnosed with subtractive clustering analysis.

A combination of CART, clustering, and EANN is employed to identify faults by detecting
outliers in a electricity unit dataset in another study [41]. CART and K-means models are applied

to find outliers in the first stage where a generalized extreme standard deviate (GESD) is used.

13



~9001 349

Then, the results from the k-means, CART, and GESD methods are compared with the noise from
DBSCAN to find the best possible algorithm which minimizes number of false anomalies. The
results revealed that, DBSCAN noise clustering is more applicable for grouping the data than the
k-means, and the single neural network is found to be less robust compared to ensemble neural

networks (EANN).

A multi-class-SVM based FDD methodology is proposed by Dey et al. [67] on data from fan-
coil units. As an extension to the supervised algorithm, the data of a building’s fan-coil units were
also processed by x-means clustering to diagnose system level faults. Bayesian information criteria
is used to automatically construct multiple clusters. Davies—Bouldin and silhouette techniques are
employed to validate and assess the number of clusters. Finally, a Gaussian mixture model and

hierarchical clustering are used to the comparatively validate of the results.

The amount studies on hybrid data-driven FDD processes are still limited when compared to
the other methods present in the literature. Also, there are only a few researchers that utilize hybrid
models for predicting system parameters. In example, Naseri et al. [68] combined clustering and a
neural network to predict the daily peak load of electricity consumption with a hybrid model. The
results reveal that data-driven had a more accuracy compared to the statistical methods. In another
study, both the transient and non-transient operational data of an AHU are examined by Piscitelli
et al. [69]. First, a temporal ARM algorithm is employed to diagnose the faults during the non-
transient period and then classification models are implemented to assess the severity of the faults.
It is possible for a hybrid model to contain limitations of both supervised and unsupervised
techniques. However, a careful selection and combination of supervised and unsupervised learning

methods may help to boost accuracy and decrease the training time of FDD process [70].

14
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1.4. Refrigerant leakage fault detection

In addition to the studies previously mentioned, some researchers specifically focus on
diagnosing refrigerant leakage fault. Following are some of the studies in the literature. Esbri[71]
et al constructed a model based fault state observer using adaptive Kalman filter and genetic
algorithm for diagnosing refrigerant leakage fault. The model has a significant performance on
distinguishing the faulty operation with refrigerant leak from normal operating conditions, and it
is also applicable for online FDD. Based on a rule-based method, a virtual sensor for the refrigerant
charge level of several refrigeration and air-cooling systems is developed by Kim et al. [72], where
the experimental results showed a considerable performance. Furthermore, Zhao [73] introduced
an undercooling perfection coefficient as a principal fault characteristic variable to further increase
the diagnosis accuracy of refrigerant undercharge fault. However, the models ability to represent
the time-varying and extensive operating state of chillers is debatable, since the parameters of the
model are selected based on past experience from singular data points. As a solid illustration of
gray box models, a hybrid model to improve the prediction accuracy of the refrigerant undercharge

fault is proposed by Zhu et al. [74].
1.5. Research objectives

Provided that the training data is sufficiently large, majority of the data driven methods claim
to yield high accuracies in their corresponding dataset. However, many models experience
difficulties when they are applied to another chiller than the specific chiller that the model have
been trained for, and a migration scheme is therefore crucial to use the same model for a different
chiller [75]. This phenomena urged some researchers to question the generalization capacities of

the data driven methods. In fact, randomly sampling the test data is problematic due to the method
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of experimental chiller data collection. Conventionally, only the steady state sensor data of the
chiller at predefined operating conditions are taken as inputs to the data driven models. Although
this is required to discard the noise resulting from the time variations and delays in the chiller
system, collecting large amounts of data at a limited number of operating conditions causes the
sensor data to form mini cloud clusters for respective conditions in the overall dataset. When the
training and test datasets are randomly chosen, both training and test data points would co-exist in
the same cloud for every cluster. Then, since the training and testing points would be stationed in
very close proximity, the algorithm would train and test for basically the same points, thus test
result would resemble nothing other than training loss. It is a common misconception that some
studies claiming this random test result as a final accuracy for their proposed method. This mistake
in choosing the proper evaluation metric might be the reason why these models have very low

generalization capacity.

In many cases, it may not be practical to change the experimentation method, thus this paper
proposes a change in evaluation method and utilizes k-fold cross validation method instead of
random sampling as a testing scheme to correctly measure the accuracy of FDD models.
Furthermore, comparative results of random and k-fold sampled tests of several conventional data-
driven methods are included in this paper to clearly demonstrate the aforementioned phenomena.
Conclusively, this paper proposes a novel methodology to create virtual sensor models and
supplies the residuals of actual and virtual sensor values as inputs to an optimized XGBoost
algorithm to considerably improve the generalization performance, and constructs a cloud-based

framework to reduce the hardware requirements of FDD applications on chillers.

The following is the structure of this paper. First, experimental procedure with different fault

scenarios are specified. Second, the initial data filtering and feature selection methods are
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presented. Third the input data processing method using virtual sensor residuals is developed. Then,
the selected virtual sensor residuals are supplied to the XGBoost algorithm and fault diagnosis
results are obtained. Next, an online framework for real time fault diagnosis is developed. Finally,
the proposed method is verified by comparing its results with the results from conventional

algorithms. The Figure 1-1 demonstrates the overall structure of this study.
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Fig. 1-1 Overall structure of this study

17



~9001 349

Chapter 2

Experimental procedure and data preprocessing

2.1. Description of the experimental system

The experiments are conducted on an air-cooled screw chiller which contains six groups
of condensers and operates in double cycle air cooling operating mode. The chiller used in these
experiments is shown in Figure 2-1. The chiller utilizes a semi closed screw compressor and the
sliding valve of the compressor regulates the refrigerating capacity of the chiller for different
cooling loads. The evaporator of the chiller is shell tube evaporator which employs water as the

external heat exchange medium.

Fig. 2-1 The chiller used for experimental data collection
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Province, China. The main purpose of the chiller installation is to supply an experimentation setup

The experimented chiller is stationed in an industrial park in Taicang City, Jiangsu

in the industrial park with constant inlet water temperature. The schematic of the experimental
system and the locations of the sensors where the experimental data are collected is shown in
Figure 2-2. The sensor data collected from the chiller controller are accessed using Modbus
protocol and transferred to an internet of things intelligent terminal, which are explained in chapter

2.3 in detail.

Condenser Condenser

:
:

0il @ @ Oil
seperator @ @ Expansion Expansion ® @ seperator

Valve Valve
Compressor Compressor .

R
g

Oil cooler Qil cooler

[N [N
Evaporator

@ Temperature sensor High pressure line
® Pressure sensor ~——  Low pressure line

Oil return line

Fig. 2-2 Schematic of the experimental system

2.2. Experimental conditions

During the experiment, the chiller is tested for both fault-free and refrigerant undercharge fault

conditions. The fault-free state test conditions simulate the normal operating conditions for the
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inspected chiller. To test specific severities of refrigerant undercharge fault, the refrigerant already
present in the chiller is first pumped out to vacuum state and then refilled to a set of specified
weights in a standard enthalpy difference laboratory. During the experiment, different operating
conditions of the chiller are reproduced by adjusting ambient temperature, setting the level of
opening of the compressor slider valve and changing the outlet temperature of the evaporator. The
sensor data measured during these sets of experiments are gathered from the intelligent terminal,

the methodology of which is explained in the next section.

Table 2-1 features the experimental conditions for which the sensor data are collected. For all
conditions, the ambient air temperature, the water flow rates and the water outlet temperatures of
the chiller are set to the specified levels. By regulating on the compressor slide valve, the load rate
of the chiller is fixed to 60%, 80% and 100%. The tested refrigerant charge levels are 100%
(normal), 90%, 80% and 70%. The load rates and refrigerant charge levels are tested for all of
other experimental conditions. Yet, because of the system limitations, outlet water temperatures
and outdoor temperatures are tested for the specific ones shown on the table. In total, a set of 60

experiments are conducted.

Table 2-1 Experimental conditions

Outlet water

Ambient air temperature of ~ Water flow Load rate Refrigerant load
temperature evaporator
(°C)
32 5 100% 60/80/100 70/80/90/100
32 9 100% 60/80/100 70/80/90/100
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35 7 100% 60/80/100 70/80/90/100

38 5 100% 60/80/100 70/80/90/100

38 9 100% 60/80/100 70/80/90/100

2.3. Collection of sensor data

The intelligent terminal installed on the chiller refers to the Tracer UC800 controller produced
by Trane Company [76]. The controller enables the access to the real-time sensor data through the
communication interface via the Modicon Communication Bus (Modbus) protocol. Modbus is an
application layer messaging protocol that was created by Schneider Electric Company for
client/server communication between devices over various networks. In Modbus communication
protocol, monitoring computer acts as the master station and the intelligent terminal acts as the
slave station, and only the master can initiate transactions (queries). The address of the slave and
the function to execute is contained in the query message. The bit length of this message may vary
according to the different function codes. During the experiments the real time readings from all
sensors are accessed by the monitoring computer through the aforementioned protocol and

recorded in the relevant database.

After the successful collection of sensor data, the study is proceeded with the preprocessing to
remove any potential noise and abnormality. The preprocessing is an integral part of machine
learning methods to improve the quality of the data and the useful information that it contains.
Similarly, the proposed method also require a proper preprocessing of the data achieve an efficient
training process and to obtain healthy results. The Figure 2-3 presents the three main stages of

preprocessing that are used in this study and the following sections examine these stages in detail.
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Fig. 2-3 Three main stages of preprocessing

2.4. Data cleaning

In order to minimize the negative effects of the possible repetition, abnormality and noise
present in the collected sensor data, an initial filtering is carried out. Besides such sensor level
defects, chiller experimentations also typically have system level irregularities such as time
variations and delays in the responses of the components to the alternating operating conditions.
The time variations can be negated by filtering out the transient data and extracting the steady state
sensor data as an input. Traditionally, the steady state detection is performed by setting a fixed
threshold value. However, establishing a fixed threshold value might result in missed detection
opportunities, a delay in detection or loss of valuable information. Therefore, Moving Window
(MW) [77] is selected as the steady state judgement algorithm to filter out the transient data from
the dataset. Moving window is used to analyze the dataset with a series of averages of different
subsets of the collected data along the time axis. Figure 2-4 illustrates the concept of moving

window with a length of n at the time k.

..................................

Time (t)

n

Fig. 2-4 Illustration of moving window
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Assuming that a data sequence {x;, x,, ... , x5} is collected in time k. A data window of length

n would be {x;_n+1, Xk—n+2, --- » Xx }, and the mean of the window can be calculated as:

_ 1 1 -
Xk = ;Zf=k—n+1 Xi = X1+ " (Xk — Xk—n) (2-1)

And the maximum average deviation for a data in the window is as follows:

Omax = mMax Ixi - xkl (2-2)

The squared deviation (v,) and mean squared deviation of such point within the window can be

defined as:

k

K
1 1 -
Vie = E (i — %) = - § x; — X (23)

i=k—n+1 i=k—n+1

1 o, - 2-4
Vg = Vg1 + ;(xi - xl%—n) - (XI% — Xje—1) (2-4)

o = vk (2-5)

If the data point k within the window satisfies the condition 6,,,, < 36 and g, < ¢ ,where
6 and o denoting the maximum mean deviation and mean square deviation calculated from the
historical data, it is considered to be in a steady state. On the other hand, if these conditions are
not satisfied, the data is labeled as transient state and removed from dataset to prevent the training

the FDD algorithm with erroneous data.
2.5. Initial sensor data selection

The data collected from chiller controllers generally contain many irrelevant features such as
chiller control parameters and temperature set points for the targeted operation. There, it is

necessary discard the irrelevant features are from the dataset. Also, to make the proposed
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preprocessing method applicable to other chillers, more common and easier to collect features are

chosen. Table 2-2 displays the sensor data and their abbreviations that are used as input features

in this study.
Table 2-2 Selected sensor data
No Name of chosen sensor data features Abbreviation
1 Outdoor temperature Tamb
2 Inlet temperature of chilled water Tew,i
3 Outlet temperature of chilled water Tew,o
4 Chilled water flow Few
5 Evaporator saturation temperature Tev
6 Evaporator refrigerant pool temperature Tew
7 Evaporation pressure of evaporator Pev
8 Approaching temperature Tap
9 Compressor suction pressure Psuc
10 Refrigerant pressure difference Pr
11 Compressor mass flow Fcom
12 Compressor refrigerant discharge temperature Tais
13 Superheat Tsh
14 Measured compressor current lcom
15 Condensation temperature Ted
16 Condenser outlet temperature Tedo
17 Condenser outlet sub-cooling temperature Tsc
18 Condenser pressure Pcd
19 Condenser differential refrigerant pressure APcq
20 Condenser liquid line temperature Tu

24



~9001 349

21 Condenser liquid line pressure P

22 Exhaust air temperature Tex

2.6. Input feature correlation filtering

There might be some inter-correlations between some of the initially selected sensor data
features because of two principal reasons. First, the pressure and temperature readings in the same
components have very high chance to be correlated if there is no phase change in the working
medium. Thus, when the data is normalized to a zero mean, unit variance and unitless state before
training in the subsequent algorithm, the data from two features might become basically the same
and one of these would lose significance as an input. Second, since all of the components of the
chiller are connected to each other, there might be some relations in the sensor readings from

connected components.

If the normalization processes from one or more features yield the same result, the duplicate
features must be dropped from the input dataset. Neglecting this filtering might assign some
unwanted weight factors to the correlated inputs in the dataset and cause distortion in the
predictions of the algorithm. Thus, pairwise comparison of all selected features is necessary to
enhance the precision of the model. Statistically, pairwise linear correlations between two features
can be found by calculating the Pearson correlation coefficient [78], which is described in the

following section.
2.6.1. Pearson correlation coefficient

There are many types of correlation formulas in the literature, which describe the strength of a

relationship between two variables. These formulas usually return a value between [-1, 1], where,
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a result of -1 represent a strong negative relationship, 0 indicates there is no relationship and 1
represents a strong positive relationship. Figure 2-5 illustrates the relationship between variables

with different correlation coefficient values.

p=-1 -1<p <0

0< p <+1 p=+1 p=0

Fig. 2-5 llustration of data with different correlation coefficients

As can be seen from the graphs, an absolute value of the correlation coefficients represents the
strength of the relationship between the variables. In other words, the closer the absolute value of
the correlation coefficient, the stronger the correlation between two variables. In statistics,
Pearson’s correlation coefficient formula, developed by Karl Pearson, is one of the most
commonly used formulas to calculate the correlation coefficient, which is also known as, Pearson

product-moment correlation coefficient (PPMCC), Pearson's r and the bivariate correlation.

When Pearson’s correlation coefficient is applied to a population, it is represented by Greek
letter p (rho) and referred as population Pearson correlation coefficient. Given the random variable

pair (X, Y) the population Pearson correlation coefficient (p) is formulated as [78]:
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cov(X,Y) (2-6)

Xy =
Px, Ox Oy

where cov represents the covariance, and oy, oy represent the standard deviations of X and Y,
respectively. The covariance can also be expressed in terms of the mean and expected values of

the input variables such as:

cov(X,Y) = E[(X — ) (Y — py)] (2-7)

where uy, uy represent the mean of X and Y, respectively, and E is the expectation. Therefore

the equation for py  becomes:

E[(X = ) (Y — )] (2-8)
Pxy = 050y

If the uncentered moments of the expressions are taken,

ux = E[X] (2-9)

ty = E[Y] (2-10)

of = E[(X — E[X])?] = E[x?] - (E[X])? (2-11)

of = E[(Y — E[Y])?] = E[r?] - (E[Y])? (2-12)

E[(X —px) = (Y —uy)] = E[(X — E[X])(Y — E[Y])] (2-13)

= E[XY] — E[X]E[Y]
The formula for population Pearson correlation coefficient (p) becomes:

E[XY] — E[X]E[Y] (2-14)

Pxy =

VE[X?2] — (E[XD?JE[Y?] — (E[Y])?
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If the Pearson’s correlation coefficient is applied for a sample, the estimated covariances and

variances are substituted into the above formula and the Pearson’s correlation coefficient ;. ,, for

the pairs {(x1,y1), .., (xn, Yn)} is defined as:

Tey = ?=1(x - f)(x - )_/) (2_15)
VEL(x — 02 X(x — ¥)?

where n is the sample size and x and y are the sample means. The equation 2-10 is used in this
research to calculate the correlation between the input data from two different sensor to obtain the
knowledge about the relationship between sensor pairs. The interpretation of the resultant data

from the correlation analysis is given in the section below.
2.6.2. Analysis results

From definition Pearson correlation coefficients of the feature pairs are resulted in the range
of [-1, 1], where values closer to 1 and -1 signify perfectly positive and negative linear relationships,
respectively. Since a correlation value of 0 signifies no linear relationship between features, it can
be said that such two features contain independent and valuable information as inputs. A heatmap
diagram of the absolute values of Pearson correlation coefficients of the initially selected features

are given in Figure 2-6.
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Fig. 2-6 Heatmap diagram of initial correlation coefficients

To eliminate the features which contain duplicate information, pairs with an absolute
correlation coefficient value bigger than 0.95 are chosen for examination. The comparison graphs
of Figure 2-7 shows the normalized data from some of the highly correlated variables. For every
correlated feature pair, the decision to drop which feature is made based on expert knowledge. It
should be noted that although the Tcw,i and Tewo pair had a correlation coefficient of 0.98, an
exception of keeping both features in the dataset has been made to prevent a loss of critical
diagnosis information. As a result of the correlation filtering process, the data from 11 features of
Tamb, Ted, Tse, Feom, Tdis, Tshy Tev, Tap, Tewi, Tewo and Few are selected as the final inputs to the

proposed method.
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2.1.

experimental chiller setup under various fault experiment conditions as mentioned in the sections
2.1 and 2.2. The data gathered from the intelligent terminal of the chiller usually contains
irregularities, defects, state transitions and many duplicate data which need to be corrected.
Otherwise, such data will lead the main FDD algorithm to learn the incorrect data and therefore
conduct an improper diagnosis on the faults. However, if this filtering of the sensor data is not

done properly, valuable information in the dataset may also be lost and the prediction accuracy of
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Fig. 2-7 Comparison graphs of some highly correlated data

Summary of data collection and preprocessing

The input data for the fault detection and diagnosis algorithm is collected from the
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the FDD algorithm might decrease. In this research, three main stages of preprocessing are

conducted as shown in Figure 2-8.

\/

- PREPROCESSING - -
Data cleaning Correlation analysis
Missing data Feature selection Data
removal l[: l[: normalization
Sensor data
Moving Window selection Correlation
analysis filtering

Fig. 2-8 Overall flowchart for preprocessing

In the data cleaning stage, the irregularities in the raw data is targeted to be filtered out
from the dataset. The data is separated into two subsets as transient and steady data and the
transient state data is removed. In the sensor data/feature selection stage, the sensors that
historically contain valuable information are selected by expert knowledge to discard the
unnecessary readings in the dataset such as temperature set-points and irrelevant chiller control
information. In the correlation filtering stage the duplicate sensor data is removed from the dataset
to prevent a bias or multiplier in the training of the FDD algorithm. In short, this section presented
the methodology for filtering and processing of the large amount of data collected from the sensors

on the chiller to provide the most valuable information to the subsequent FDD algorithm.
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Chapter 3

Fault Detection and Diagnosis methodology

3.1. K-fold cross validation

K-fold cross validation/testing is used for both the construction of Virtual Sensor models and
the validation of the overall FDD methodology in this research as a testing method, thus, the
underlying principles of k-fold cross validation methodology is briefly introduced in this section.
The k-fold sampling has many advantages over random sampling when testing the FDD algorithms.
Even though the random sampling is the primary testing method of the FDD algorithms in the
literature, such testing method have major defects in detecting the overfitting in the model when

the input dataset have clusters.

As explained in the Chapter 2, the experiments on the chiller are conducted in 60 distinct
experimental conditions and only the steady state data are filtered in the following stages as inputs
to the FDD algorithm. Such processes cause the input dataset to contain internal clusters since
there were many data points collected for these 60 steady state conditions. These steady state data
forms 60 distinct mini data clouds in the experimental conditions input space. When the testing
data is randomly selected, it is almost for sure that there will be a testing and training point existing
in the same cloud. Thus, random testing with such conditions cannot detect any overfitting of the
model and it will only provide the same information as training loss. Figure 3-1 illustrates an
example dataset where the machine learning model with clustered input data results in an
overfitting model and random testing fails to detect this overfitting.
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Fig. 3-1 Random sampling and overfitting in a clustered dataset

The above figures clearly illustrate an overfitting of the prediction model and the allocation of
testing and training data on a clustered dataset. As can be seen from both figures, the resulting
testing scores will be mistakenly very good since the models have sufficient performances within
every single cluster. The case of training FDD models with the steady state data and random testing
is very similar to these examples. The clouds data clouds will be formed for every single
experimental condition and random testing would fail to detect any overfitting of the FDD model.
However, since the inputs and outputs of these models are multi-dimensional, it is not possible to
visualize the cloud formation for the data. Fortunately, even though the visualization of the clusters
are not instantly possible for the multidimensional data, the overfitting of the models can still be

statistically tested by using k-fold cross validation as the testing method.

K-fold cross validation is a resampling procedure used to evaluate machine learning models
where the sample size of the data is limited. The parameter k, as included in the name, refer to the
grouping number that the data samples would be split into. If the value of the k is determined prior

to testing operation, such as if k=9, the model might also be referred as 9-fold cross validation.
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The k-fold cross validation is primarily used to estimate the prediction capacity of the models
on the previously unseen input data sections. This is achieved by limiting the training data samples
in a particular way to estimate the models performance in general. In such procedure, the
predictions are only made for these regions of data that is not used during the training of the model.
This methodology owe its popularity to its simplicity and its ability to achieve less biased and less
optimistic estimates of the model prediction capacity compared to other testing methods such as

random testing.
The following is the general procedure for k-fold cross validation:
1) Randomly shuffle the dataset.
2) Split the dataset is into k groups.
3) For each group:
3.1) take the chosen group as the test dataset
3.2) take all remaining groups as the training dataset
3.3) fit a model on the training set and test the model on the test set
3.4) record the test score
4) Summarize the prediction capacity of the model using the previously collected test scores

Assigning each data point to their respective group prior to the k-fold testing algorithm and
ensuring that these points remain in their respective group until all of the iterations are completed
is a crucial factor in this methodology. This condition assures that each sample is used in testing 1
time and used in training the dataset k-1 times, thus produces an unbiased result. Figure 3-2

demonstrates an example training and testing set allocations on k-fold cross validation algorithm
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where the 6-fold, 3-fold, and 2-fold cross validation methodologies for the same dataset are

displayed from left to the right of the figure.

Train Set Test Set

Iterations

2-fold cross validation

3-fold cross validation

6-fold cross validation

Fig 3-2 Train and test set allocation on k-fold cross validation

It should be noted that, for the case of this study, the initial random shuffling of the data is
neglected because of the aforementioned defects of random sampling. Moreover, since clusters are
assumed to be existent on the experimental condition inputs, the total points of clusters are assumed
to be 60. VVarying numbers of combinations of these clusters are administered as k-fold testing sets
for both construction of virtual sensors and final testing of the FDD algorithm. The specific

numbers (k) of k-fold test are explained with their specific reasoning in the following chapters.
3.2. Base logic of the Virtual Sensors

Flag variables are commonly used to control the initiation of subsequent logic trees or
algorithms in rule-based and hybrid FDD methodologies. Typically, compressor power
consumption is chosen as the main flag variable since it is intuitive that the power consumption of

the chiller compressor would diverge from the normal operating condition values in case of an
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existing fault in the chiller system. When the flag variable is determined, the next step is to detect
the abnormalities in the data. In general, a fault-free model for the variable is constructed from
historical data and then the difference between the fault-free model prediction and the actual value
is calculated. If this value is above a certain threshold, the flagging condition is activated for the
rest of the algorithm. Moreover, more than one flag variables can be chosen for the algorithm
depending on the diagnosis requirements. In other words, there must be three aspects that must be
determined in prior to use flag variables in fault diagnosis algorithm. First, the variables to be used
as flags must be chosen. Second, the method to construct fault-free models must be specified.

Third, the threshold to detect abnormalities must be established.

The proposed method does not utilize any flag variables or logic trees, however, virtual sensor
residuals are based on the same core principles that the flag variables provide to FDD algorithm,
which is the difference of normal condition prediction and the actual value. Instead of using a
single flag variable, normal condition based virtual sensors are constructed for each input feature
as linear combinations of the remaining sensor values. In other words, a virtual copy of each sensor
is created based on the expectations from the remaining sensor readings of the system in fault-free
operating conditions. Each virtual sensor is k-fold cross tested to determine whether that feature
could be successfully modeled by the remaining sensors in the chiller. If the modeling performance
of the virtual sensor is decent, the difference of the actual data and the virtual sensor is used as an
input. If the modeling performance of a single feature is not sufficient, that virtual sensor is
discarded and only the actual data is used for further sections. The differences between the

processes of deciding flag variables and constructing virtual sensors are shown in Figure 3-3.
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variables. First, since the selection of virtual sensors is based on modeling performance, there is
no prior selection of variables for which the virtual sensors would be constructed. Second, the
differences between measured values and virtual sensor predictions are directly provided to the

following diagnosis algorithm, thus, there is no need to define an abnormality threshold.

is preprocessed by the methods defined in the previous chapters. Second, the data is allocated into
training and test sets. This sampling is conducted several ways such as random, 9-fold, 15-fold

and 23-fold sampling to test the robustness of the algorithm. Figure 3-4 illustrates the input space

Flag Variable Method

Sensor data collection

V4

Flag variable decision

N

Calculation of threshold

V4

Detection of the outlier

V4

FDD process

Virtual Sensor Method

Sensor data collection

N

Virtual sensor construction

<3

Residual calculation

V4

FDD process

Fig. 3-3 Differences between flag variable decision and virtual sensor construction

This approach phases out two hyperparameters that must be defined in the methods using flag

The simplified version of the overall method is illustrated in Figure 3-5. First, the sensor data

sampling methodology for k-fold cross validation method used in this study.
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Fig. 3-4 9, 15 and 23-fold sampling for input space

As mentioned in section 2.2 the experimental conditions were four dimensional containing
various refrigerant load, ambient temperature, chiller load and leaving water temperature values.
For all k-fold tests different combinations of three dimensions such as ambient temperature,
leaving water temperature and chiller load are sampled. In 15-fold cross validation, train-test
division is made including combinations of all three dimensions, which contains 15 distinct sets in
total. For instance, ambient temperature of 32, chiller load of 100% and leaving water temperature
of 5 is designated as test set and the remaining data is chosen as training set. Then, the iteration is
proceeded with changing the test set to the next combination and the training set is assigned as the
respective remaining data. This testing methodology is repeated 15 times for all distinct sets and

averages for 15-fold tests are obtained.
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For example, ambient temperature of 38 and leaving water temperature of 9 are selected as test set

In 23-fold testing, two value combinations of these three dimensions are allocated as test sets.

and the remaining data is chosen as training set. For the two value combinations of the three
dimensional experimental conditions, there are 9 + 9 + 5 = 23 unique sets in total. Likewise, the

averages of 23 tests are obtained as the final 23-fold test results.

For 9-fold tests, each experimental condition is tested separately. For example, chiller load of
80% is selected as the test set and the chiller loads of 60% and 100% are chosen as the training set.
Similarly, 3 + 3 + 3 = 9 tests are conducted in total to calculate the averages. In addition to these,
the dataset is also randomly sampling to train and test sets with %80 - 20% testing ratio,
respectively. Altogether, the algorithm is tested with 4 different sampling methods. The following

figure illustrates a simplified flowchart for the proposed method.

—[ Sensor data

[ Construction of Virtual Sensors

v

—)[ Obtain residuals

[ XGBoost Algorithm
[ Results

Fig. 3-5 Simplified flowchart of the proposed methodology

As illustrated Figure 3-5, the fault-free training data is initially utilized for constructing virtual
sensor. A detailed explanation on the modeling of virtual sensors is given in the section 4.1. When
a virtual sensor is created, predictions for both normal and faulty data are made by the virtual

sensors. Then, all of the virtual sensor predictions are subtracted from the actual sensors’ readings
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and virtual sensor residuals are obtained. These residuals are supplied as training data to the
XGBoost algorithm and the model parameters are saved. Finally, the test data is similarly utilized
to obtain virtual sensor residuals from previously trained virtual sensor models and the saved

XGBoost algorithm is tested to obtain the final results.

3.3.  Modeling of Virtual Sensors

3.3.1. Mathematical formulation

A virtual copy of a particular sensor is primarily a regression model for the original sensor
based on the remaining sensors in the chiller system. The training of the virtual sensor is performed
using the fault-free conditions to extract the difference between normal condition expectation and
the actual data. It should be noted that, not all of the remaining sensors are included for the virtual
sensors’ training and the sensors that are used for the models are precisely selected. Furthermore,
if the virtual sensor modeling performance is not acceptable, the model output is fixed to zero, thus
the residual would return only the actual value .The proposed virtual sensor models can be

mathematically expressed as the following:

f=A0Tf+d) (3-1)
where f represents virtual sensors (features) in the vector form, A is decision matrix, 6 is

coefficient matrix, f is the original sensors and d is the bias vector. Explicitly:
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L

In the expression, f; is a single virtual sensor, a; is a binary cancellation parameter, b;; are
binary selection parameters for the remaining sensors, c;; are the regression coefficients, f; are the

original sensors and d; is the bias. For a single virtual sensor, the formula is reduced to:

a1 (0fy + byaCoafo + -+ bpiCuafn + d1) ifi=1
fi = an(bl,ncl,nfl + et bn—l,ncn—l,nfn—l + Ofn + dn) if i=n (3-3)
ai(byicrifs ++0fi + -+ byicpnifn +d;) otherwise

Since the parameters of a; and b; ; are defined as binary, the formula for f; reduces to a linear
regression of some form after the initialization of parameters a; and b; ;. The weight coefficients

¢;,; and bias d; are calculated by minimizing mean-squared error function.

Prior to the assignment the cancelation parameter a;, the reduced linear regression equation

must be constructed. Thus, the values for b;; must be initially determined to calculate the
coefficients of ¢; ;. b;; parameters are initialized with a for-loop through reducing the total number
of b; ; parameters and then by conducting grid search. To reduce to total number of b; ; parameters,

the specific b;; value that would be assigned as zero in each iteration must be figured out. This
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requires a sequence of parameters specifying the next b;; that would be dropped out from the
formula in the next iteration to be used in the for-loop. This sequence is obtained by the backward
elimination algorithm and then provided to the for-loop. The separate calculation logic of virtual
sensor models is given in the Figure 3-6 and the following section explains the working principles

of the backward elimination algorithm in detail.

Input data

v

Get initial decision parameters (aj, b; ;)

Y

Create virtual sensor model (Cjii)

¢ [ Update decision parameters (b;;) ](— Backward elimination
] A

Save model performance

Fig. 3-6 Mathematical calculation flowchart of virtual sensor models

3.3.2. Backward Elimination algorithm

The main idea of backward elimination algorithm is to sort the remaining sensors according to
the information that they contain about the inspected sensor. A detailed schematic for the backward
elimination algorithm that is used for this purpose is given in Figure 3-7. The algorithm returns a
sequence that sorts the remaining sensor by their information potential from lowest to highest. The

backwards elimination algorithm is composed of the following steps.

First, the algorithm selects the normal operating condition data from the training dataset.
Second, a for-loop is started for each feature in the dataset. For each iteration, the selected feature
is the target and the remaining features are the inputs. Hence, the dimension of this input data (n)
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is one less than the original training data dimension (m) at this stage (n = m - 1). Third, a secondary
for-loop is initiated to iterate though this (m-1) dimensions in the algorithm, reducing the feature
dimension each iteration. Fourth, a third for loop is started to discard a single feature from the
input dataset for each iteration. Therefore, the dimension of input features is again reduced by one
(n =m—2). Now this input data with the absence of the discarded feature from the third for-loop
is used to construct a linear regression model and tested with random sampling to predict the
selected feature from the primary for-loop. After the test results are obtained, the mean-squared

error of the prediction is saved, and the discarded feature is restored to the dataset.

Then, the third for loop proceeds with discarding the second feature and repeating the same
steps. When the third for-loop ends, the saved MSE data would demonstrate the m - 2 dimensional
modeling performance for the selected feature in absence of each dropped feature. The dropped
feature with lowest MSE score signifies that feature contains the least information about the
inspected sensor, thus the lowest MSE feature is saved in the removal sequence and removed from
the input dataset reducing the feature dimension to m - 2. The secondary for loop advances to the
next iteration for m - 2 dimensions. Again, the third for loop tests the models for m - 3 dimensions
and records the lowest MSE features. The secondary for-loop iterations are carried out similarly
until there is no feature left to discard and model the selected feature. Ultimately, a sequence of
remaining features sorted in the order of lowest to highest information about the selected feature
is returned. The same logic is repeated for each feature in the primary for loop iterations. In
conclusion, the backward elimination algorithm produces m removal sequences about m features
in the training dataset. An illustration of the usage of backward elimination algorithm to obtain the

dropping sequence is given in Appendix-1.
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q

3.3.3. Virtual Sensor model construction

algorithm is initiated. First, the fault free conditions are selected from the training data. Second,
similarly to the backward elimination algorithm, first for-loop iterating through each feature is
launched. Third, a secondary for-loop is started to iterate from the feature dimension m - 1 to 1
and a linear regression model is constructed in each iteration step. The model is 9-fold sampled to

be trained and tested, as explained in the previous sections. The average MSE values of k-fold
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Fig. 3-7 Backward elimination algorithm

When the removal sequence information is obtained the main virtual sensor model construction
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tests are recorded and the iteration step is concluded. To reduce the input dimension of the models,
the information of which feature to be dropped out of the dataset is obtained from the removal
sequence returned from the backward elimination algorithm output. The next iteration of the
secondary for-loop, which has feature dimension of m - 2, is initiated with the dropping of first
feature supplied from the sequence. These iterations are continued until the model with input
feature dimension 1 is tested. An illustration for the virtual model construction iterations for a

single sensor and selection of the lowest MSE model is shown in Figure 3-8.

Dropping Sequence for Sensor 1: [ Sensor 4, Sensor 6, Sensor 2, ..., Sensor 5 ]

Sensor 1 Sensor 1 Sensor 1 Sensor 1 Sensor 1 Sensor 1 Sensor 1 Sensor 1 Sensor 1 Sensor 1
Sensor 2 Sensor 2 Sensor 2 Sensor 3 Sensor 3 Sensor 3 Senser 3 Senser 5 Senser 5 Sensor 10

Sensor 3 Sensor 3 Sensor 3 Sensor 5 Sensor 5 Sensor 5 Sensor 5 Sensor 10 Sensor 10

Sensor 4 Sensor 5 Sensor § Sensor 7 Sensor 7 Sensor 9 Sensor 10 Sensor 11
Sensor 5 sensor 6 senser 7 Sensor 8 Sensor 9 Sensor 10 sensor 11 ] M‘;?’fg;
Average
Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10 Sel 1"
ensor nsor nsor nsar ensor ensor MSE=03
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Average
MSE = 0.5
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Sensor 10 Sensor 11 H
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Sensor 7 Sensor 8 Sensor § Sensor 10 Sensor 11
Y 1
Sensor 8 Sensor 9 Sensor 10 Sensor 11 Mé’g’:%:

Iterate through reducing model dimension
Fig 3-8 Iterations for constructing virtual model for a single sensor

When the secondary for-loop is concluded, the models of different dimensions are compared
and the minimum MSE model is selected as the best fit for the primary for-loop selected feature.
This step determines the coefficients b;; specified in Equation 3-2. Then, the chosen model is

trained and tested with random sampling, and the regression coefficients c;; and R2 score of the
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model is saved. If the R2 score yields a value higher than 0.95, the model is considered to be a
well fit for the selected feature and regression coefficients are saved as the virtual sensor model.
If the R2 score is less than 0.95, the model is evaluated as unsatisfactory and the coefficients of
the model are saved as zero for virtual sensor output. This stage means that the coefficient a; is
also assigned. The same process is repeated for all features in the training dataset and to construct
all of the virtual sensor models. The overall schematic that presents steps employed to determine

the coefficients a; and b; ; is shown in Figure 3-9.
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Fig. 3-9 Virtual Sensor model construction flowchart
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3.4. Extreme Gradient Boosting algorithm

Artificial neural networks currently outperform all other frameworks of algorithms in
prediction problems involving unstructured data, such as images, texts, etc. On the other hand, if
small-to-medium size structured/tabular are used for regression/classification tasks, decision tree
based algorithms generally perform better. Figure 3-10 displays the evolution of tree-based
machine learning algorithms over the years and Table 3-1 summarizes the working principles of

these algorithms [79-84] and Table 3-2 provides brief a comparison.

N7 o0\ /

Decision Random Gradient

Trees Forest {ostin

Fig. 3-10 Evolution of tree based machine learning algorithms

Table 3-1 Descriptions of tree-based machine learning algorithms

Algorithm Description

Decision | Possible solutions to a decision based on certain conditions is represented in a

Trees graphical format.

Bagging is also known as bootstrap aggregating. It is an ensemble algorithm

Bagging
that combines predictions from multiple trees by a majority voting mechanism.

Random | A subset of features from a bagging-based algorithm are selected in random to

Forest build a final forest or collection of decision trees.
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Sequential models are built by minimizing errors from previous models. During
Boosting
this stage the influence of high performance models are increased (or boosted).

Gradient | A gradient descent algorithm is employed to minimize the errors in sequential

Boosting | models.

An optimized Gradient Boosting algorithm with parallel processing where
XGBoost | overfitting and bias is avoided using tree-pruning, handling of missing values

and regularization.

Table 3-2 Comparison of tree-based machine learning algorithms

Algorithm Weakness Strength Publication
Decision Trees Low accuracy Faster training time 1986
Bagging Long training time Wide range of application 1979
Random Forest Long training time High accuracy 2001
Boosting Sensitivity to outliers High accuracy 1996
Gradient Boosting | Overfitting High accuracy 2001

Requires hyperparameter | High accuracy without 2016
XGBoost
optimization overfitting

The Extreme Gradient Boosting (XGBoost) algorithm is a custom interpretation of gradient
boosting algorithm, which is an ensemble machine learning method that can be used to conduct
both classification and regression tasks. Ensemble methods are one of the sub-classes of decision
tree models. In such methods, a new tree is added to the ensembles per iteration to increase the

accuracy of previous predictions using the previous error residuals. This approach of ensemble
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models is referred as boosting. Also, since the models employ a gradient descent algorithm to
minimize the chosen loss function, the learning technique is called gradient boosting. The
XGBoost algorithm is initially developed by Chen et al. [84] and the predictions of the algorithm

can be formulated as following:

For a given data set containing n examples and m features D = {(x;, y;)} (|D] = n,x; € R™,

y; € R), K additive functions are used in the tree ensemble model to predict to output.

K
9i= )= ) flx), f€F (3-4
k=1

where F = {f(x) = wq(x)}(q : R™ - T,w € R7) is the regression trees space, which is also
known as CART. In the equation each f; represents to an independent tree structure q with leaf
weights w. To learn the function set used in the model, the following regularized objective function

is minimized.

L(¢p) = Z Ly + Z Q(ft) (3-5)
i k

where [ represents the loss function that measures the difference between the actual and

predicted value, and Q symbolizes the regularization function which is given as:

1
Q(f) = yT + 5/1IIWII2 (3-6)
where T is the number of leaves in the tree.

It can be concluded from the formula that higher number of leaves and larger leaf weights are

penalized by the regularization function. Since the ensemble model used in equation used in
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equation 3-5 cannot be optimized in traditional Euclidean space and instead trained in an additive

manner, the objective function must be modified. When yi“) is defined as the prediction at i

instance at iteration t, f; should be added to minimize the following objective:

n

£O = 31 (7987 + filox) + 0D (37

i=1
which means that the f; that improves the model the most (according to the equation 3-5) is
greedily added. The objective in general settings can be optimized via using second-order

approximation.

F® ~ Z [l(yi,ﬁi(t_l)) + gifi (x) + %hiftz (Xl)] + Q(f) (3-8)

where g; = ay(t—1)l(yi,}7i(t_1)) and h; = ayf(t_l)z(yi,yi“‘”) represent the first and second

order gradient statistics of the loss function. The following simplified objective can be obtained

by removing the constant terms at step t.

n

_ 1
L® = Z [gift(xi) + Ehiftz (Xi)] +Q(f) (3-9)

By defining I; = {i|q(x;) = j} as the instance set of leaf j. Equation 3-9 can be rewritten by

expanding Q as follows:

n T

[® = . ) lh- 2(,. T 1 2

gift(x;) +2 ife(xp)|+y +2)\ w;

i=1 j=1

(3-10)
T
1
=Z Zgi W]--I-E Zhi+}\ w]2 +vyT
j=1 iEIj iEIj

for a fixed tree structure g(x), the optimal weight w;" of leaf j can be computed by:
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and the corresponding optimal value is calculated as:

Wt = — Zitegi 311
g Zielj hi+ X (3-11)

T
~ 1 Lelg
- lEI

The equation 3-11 is a valid objective function that can be used as the scoring function which
measures the quality of a tree structure g. Since it is normally impossible to enumerate all possible
trees, a greedy algorithm can be used instead, which iteratively sums the branches starting from a
single leaf. Assuming that I; and I are the instances of left and right node sets after the split, by
letting = I, U I , the loss reduction after the split can be rewritten as:

(ZiEILgi)Z n (ZiEIRgi)Z _ (Ziagi)z

2 ZiEIL hi+ X ZiEIR hi+ X Db+ X

Lsprie = (3-13)

The equation 3-13 is the final formula that is used to evaluate the split candidates in XGBoost
algorithm. This evaluation of finding the best split is one of the key problems in tree learning, and
the method exact greedy algorithm runs through every possible split. However, the greedy methods
are not efficient considering the computational time and memory usage. Therefore, an approximate
algorithm can also be used to improve the efficiency, where candidates can be split according to
the percentiles of feature distribution. The pseudocodes for exact greedy and approximate
algorithm are given in Appendix-2. XGBoost method uses weighted a modified approximate
algorithm, namely, quantile sketch algorithm (Figure 3-11) for candidate split point proposal as

default.

Additionally, the efficiency of training can also be decreased when the input x is sparse. The
sparsity of the input can be caused by 1) missing points in data; 2) frequent zero entries; 3) one hot
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encoding applied to the dataset. Since actual and virtual sensor residuals are used as inputs to the
XGBoost algorithm in this study, there is a possibility that the input data contains zero entries
when the virtual sensor predictions match the actual sensor readings. To prevent such efficiency
decrease, the quantile sketch algorithm also include sparsity-awareness in XGBoost. In the
sparsity-aware split finding algorithm, a default direction is added to each tree node, and the
instance is classified towards this default direction when there is a value missing in the sparse input
matrix. The optimum default directions are learnt using the input data during the iterative process.
The pseudocode for the sparsity-aware split finding (quantile sketch) algorithm is given in Figure

3-11.

Algorithm: Sparsity-aware Split Finding

Input: I, instance set of current node

Input: I = {i € I|z;; # missing}

Input: d, feature dimension

Also applies to the approzimate setting, only collect

statistics of non-missing entries into buckets

gain < 0

G+ Zieﬂth «— Ziel hi

for k=1 to m do

// enumerate missing value goto right

Gr+ 0, HL + 0

for j in sorted(Ix, ascent order by x;i) do
Gr + Gr+gj, HL + Hr + h;
GR*{—G—GL, Hr +— H— Hyp,

G'ZR o2 )

GL
score < max(score + T — T

> Hr+A

end

// enumerate missing value goto left

Gr+ 0, Hr+ 0

for j in sorted(Ix, descent order by x;x) do
Gr+ Gr+gj, HrR + Hr+ h;
GL(—G—GR, Hp + H— Hp

G G7 72
score < max(score, el s i ;,El)\)

end
end
Output: Split and default directions with max gain

Fig. 3-11 Sparsity-aware split finding algorithm
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In addition to these algorithmic enhancements, XGBoost algorithm contains several system

optimization methods such as:

1)

2)

3)

Parallelization:

XGBoost implements a parallel process during the sequential tree building. This is possible
because of the interchangeable and flexible nature of the base learner builder loops. In the
base learner building process, the outer loop generates the leaf nodes of a tree, while the
second inner loop enumerates the features. Normally, this nested loop structure presents a
limit to parallelization since the completion of inner loop (which is more computationally
demanding) is necessary to proceed to the outer loop. Thus, the order of loops are
interchanged by initialization through a global scan where all instances are sorted using
parallel threads to improve run time. This modification offsets any parallelization overhead

in computation and significantly improves algorithmic performance

Tree Pruning:

In traditional gradient boosting frameworks, the stopping criterion for tree splitting
depends on the negative loss criterion and it is greedy in nature. XGBoost algorithm require
the max_depth to be specified instead of this negative loss criterion, and implements
backward tree pruning. This depth-first approach is one of the most significant factors that

cause the high performance of the algorithm.

Hardware Optimization:

The XGBoost algorithm also makes efficient use of the hardware resources. This
optimization is achieved by creating cache aware internal buffer allocation in each thread

where the gradient statistics are stored. Additionally, a further option to enable out-of-core
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computing is provided for optimizing the available disk space during processing of big data

frames which does not fit into the memory.

Moreover, an optimization of hyperparameters of the model is necessary to improve model
reliability. The optimization of hyperparameters is performed by conducting a grid search on
results of 9-fold tests of the models. 9-fold testing is chosen as the sampling method since its
results would give the most critical information about the generalization capacity of the model
compared to the random, 15-fold and 23-fold methods. This is because 9-fold testing dismisses the
highest number of clusters from training and conducts tests in operating conditions totally
unknown to the trained model. After the grid search, the hyperparameters of the XGBoost model
are selected and the proposed virtual sensor residual assisted XGBoost method is trained and tested
as previously mentioned. The final test results and its comparison with other methods are given in

the 5™ chapter.
3.5.  Summary of the overall FDD methodology

The overall FDD process proposed in this study can be briefly summarized as the following.
First, the collected sensor data must be preprocessed as explained in Chapter 2, this preprocessing
involves stages such as data cleaning, sensor selection and input data correlation filtering. This
stage ensures that the input data for the FDD algorithm is free of defects and does not contain
duplicate or irrelevant information. Then, the FDD algorithm is initiated, in which the main

processes can be described as shown in Figure 3-12.
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results are validated using k-fold cross testing. The backward elimination process is the first sub-
stage of virtual sensor construction where the importance of other sensors are ranked according to
the information they contain about the tested sensor in an iterative manner. As a result of this stage,

a dropping sequence is obtained, which provides the series of sensors to be removed in the main

Sensor data

c

Moving Window
steady data filter

Initial feature
selection

filtering

J

T { """" N

Train-test data
sampling

I

T
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e

Construction of
Virtual Sensors

Make Virtual
Sensor predictions

Make Virtual
Sensor predictions

v

v

Subtract Virtual
Sensor pred. data
from training data

Subtract Virtual
Sensor pred. data
from test data

Train XGBoost Make XGBoost
Model Model Predictions
Save XGBoost N
Model Obtain Results

virtual sensor modeling algorithm iterations.
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Fig. 3-12 Flowchart for the overall FDD methodology

The construction of virtual sensors itself include several sub-stages, where the intermediary

Feature correlation
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The virtual sensor modeling algorithm is the second sub-section of the virtual sensor
construction algorithm. In this stage virtual models for actual sensors are constructed and tested
using k-fold cross validation. The iterations proceed with removal of single sensors from the virtual
models per iteration according to each dropping sequence. As a result, the best models with highest

generalization capacities are selected as virtual sensor models.

In the last stage the differences between the actual sensors and their virtual models are supplied
as inputs to the XGBoost algorithm. The XGBoost algorithm predicts the FDD result of data using
its optimized gradient boosting framework. The training and testing of the FDD framework follows
the same flowchart with different data which is split prior to the training. The prediction

performance results of the overall FDD framework are given in Chapter 5.
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Chapter 4

Cloud-based fault diagnosis framework

4.1. Front end framework

Front end layer of the fault diagnosis framework refers to the user interface where the users
directly interact with the software. As per request of browsers, web pages return a Hyper Text
Markup Language (HTML) [85] file that visualize the content and allow user-software interactions.
HTML was created in 1991 by Berners-Lee, and HTML 2.0 was published as the first standard
HTML specification in 1995. The current version of HTML is HTML 5.0, which is used in every
modern web content. Aside from HTML, the contents appearance/presentation is managed by
Cascading Style Sheets (CSS) [86] and the functionality/behavior is handled by JavaScript (JS)
[87]. CSS is a declarative language that is used to style the HTML elements and display them
properly. With the use of selectors, any element’s style can be altered by changing its properties
and values. JavaScript is a lightweight and interpreted programming language that is used as the
scripting language for web content. It is currently the most popular programming language in the
world and it is integrated with HTML. The JavaScript code of the HTML is run in the client’s

browser. However, there are many non-browser environments that can also run the JavaScript code.

Aside from the HTML-CSS-JavaScript basis, the frontend of the project is constructed using
React.js library [88]. React is a JavaScript library that is used to create reusable user interfaces. It
is released by Facebook in 2013. React aim to offer simpler programming model and improved
performance by creating a virtual Document Object Model (DOM) which is a JavaScript object.
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The library recommends use of JSX which is the JavaScript syntax extension. Different parts of
the webpage can be constructed as different components, therefore the readability and rendering
speed is increased. Also, the data flow in the virtual DOM is unidirectional, therefore any state
change of the component is rendered on the virtual DOM, and only the updated result will be
shown on the browser DOM. Thus, there is no need for a page refresh. The rendering principle of

React virtual DOM is illustrated in Figure 4-1.

o fx e

State Change —  Compute Diff ——  Re-render

Browser
DOM

Fig. 4-1 State change principle of virtual DOM

In addition to React.js, Ant Design Ul [89] library is used for the Ul elements and Mapbox
API [90] is used for the representing the locations of the chillers on an interactive map. And such
elements of the website are styled using Less [91], which is a customizable CSS preprocessor. All
of these libraries are installed via Yarn [92] package manager to the root folder of the project. The
file tree of the frontend framework of this project is given in Appendix-1 and the simplified page
and component tree is given in Figure 4-2. As can be seen from the figure, the website consists of
6 pages namely, login, home, atlas, graph, operator and unavailable pages. Also, the components

are separated for their respective pages with the corresponding file names. It should be noted that
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the components that are not classified in a folder with a page name are the ones that are used in

multiple pages such as page header and page footer components.

A\ 4
[ Pages ] |C0mponents|
2 v v v 4
—)[ Login ] [ Home ] [ Atlas ] [ Graph ] [ Operator ] [ Shared ]
I I ] 1 I
Home 's a s X ~ s ~ s - \ s N
[ ] N Area N Chiller N Data Query N Add Chiller N Sidebar
3 [ A I Chart Form Form Form Menu
tlas J \ J \ J \ J \.
[ Column | [ Chiller | Fetch Status | [ Add User | [ Select
g Chart ) _)L Info ) _)L Chart ) _)L Form ) > LChiller Formj
Unavailable _)r Gauge ] _)r Chiller | _)r Large ] _)r Chi.ller ] _)r Page ]
( Chart J|"| Map JI"| Graph J| ( List J| | Header |
[ MultiLine || [ Chiller )| [ Semsor ||.[ Delete ||.[ Page ]
i Chart ) _)L Table ) _)L List ) i philler FormJ _)h Footer )
S (Delete User | | [ Chiller
€nsor elete User hiller
> Table i Form > Health
\ J . v . 7
Update
i Chiller Form
—
EE—
N Uéer
List

Fig. 4-2 Page and component tree of the frontend framework

In the login page, the user is required to enter his account name and password to proceed to
the home page. If it is a new user, the user can redirect to the register page and register a new
account by entering username, email and password. Moreover, visitors can also access the website
with default credentials test: pass. When the user is authenticated, the homepage will directly

display the chillers that are registered to the specific user.

59



~9001 349

displays the map section, where the registered chillers are displayed in the real world locations.

In the atlas page, users can interact with the first page of the dashboard. The center of the page

Additionally, the users can click the chiller pinpoints on the map to change the currently selected
chiller to display additional information. The left part of this page contains the chiller information
board, which illustrates the information regarding chiller name, location, connection status, and
the chiller manager. Chiller managers are the users who are authorized to change the chiller
information such as, chiller name and chiller users. A manager can add or remove other users to
view the chiller with or without admin rights. On the bottom of the left panel is the chiller
administration form, where such chiller information changes can be conducted. On the right side,
top panel shows the FDD prediction on chiller health and can be refreshed on user request. Below,
that panel, all chillers registered to the current user are displayed in a list format, where their
connection and health status are also included. Lastly, homepage also contain the navigation bar
on top to conduct pagination and user information changes, similarly to other pages of the

dashboard.

Second page of the dashboard is the home page where chiller specific information are
demonstrated in detail. The main system schematic is a Support Vector Graphic (SVG) file which
is styled with CSS and made interactive with JavaScript element selectors. From the schematic
user can click a desired component or sensor to view the respective data in the other components
of the page. On the left panel, there is a line graph showing the data from the selected sensor and
there is a table containing all sensor data. Below the main panel, there is a card named system
information, which contains the information from compressor and the same system health data
containing the FDD prediction on the chiller. On the right panel, there are cooling performance

gauges, a multi-line graph and a bar chart about power consumption of the chiller.
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The third page of the dashboard is comprised of the real-time line graph of the chosen sensor
data. From the left panel user can change the selected chiller and choose any data that is desired to
be displayed in real time. Moreover, user can query the past data between the defined dates from

the bottom right form. The refreshing of the data is conducted with predefined 5 second intervals.

The remaining pages are the operator and unavailable pages. In the operator page, website
admin can add a new chiller to the system by defining its name, location and users. Also, current
users and chillers registered in the system can be viewed in a tabulated format. On the other hand,
unavailable page is served to the newly registered user when there is no chiller assigned to the
particular user. These users may ask the chiller admins to assign the chiller to their account to pass

the unavailable page error and access the dashboard.

4.2. Back end framework

4.2.1. REST API server

The first part of the backend framework is the representational state transfer application
programming interface (REST API), also known as RESTful API. In this server, how devices and
applications communicate with each other is defined with a set of rules. The REST structure is
first defined by computer scientist Dr. Roy Fielding in 2000, and since became the most common

connection method for components and applications.

The backend server runs in Node.js [93], which is a cross-platform JavaScript runtime
environment that runs the V8 JavaScript engine. The Node.js applications do not create a new
process per incoming request, and instead runs in a single process. Moreover, it can utilize a set of

asynchronous 1/0 primitives to prevent the blocking behavior of JavaScript code. Therefore,
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Node.js servers can handle a large number or concurrent requests without a need for concurrent

thread management.

In this project Express [94] framework is used in the Node.js server to set up middlewares to
respond requests and to define the routing table. The file tree of the Node.js server is given in
Appendix-2. In the root folder, the index.js file is where the main code for the server runs and the
required packages and modules are imported. The models folder includes the relevant database
models where the types and shapes of the data to be written to the database are defined. The routes
folder defines the REST API routes where the front end framework accesses to interact with the

Node.js server. The schematic for the routes are given in Figure 4-3.

—ﬁ user < 3 Server routes
O External access
_ﬁ auth User —>» One-way data flow
; A <€» Two-way data flow
—ﬁ chiller
Routes }—
—ﬁ rename  [|€
> sensor e Chiller

Fig. 4-3 Node.js server routes schematic

The names of the routes are in fact self-explanatory. In example, the auth route is accessed for
user authentication, user, chiller and sensor routes are accessed for reading, writing and editing
user, chiller and sensor information, and pred route is accessed for making predictions on the

chiller health. On the pred route, the FDD predictions are in fact obtained by sending request to
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another standalone machine learning server. The following chapter introduces the working

principles of the machine learning server used in this project.
4.2.2. Machine learning server

The machine learning server of this project uses the Flask [95] web application framework
which is written in Python. Flask was developed by Armin Ronacher in 2012 and consists of Web
Server Gateway Interface (WSGI) toolkit and Jinja2 template engine. WSGI is a standard
specification for Python web application development interface and Jinja2 is a template rendering
engine for web pages. The choice of using Flask in this project as a machine learning server
framework is made because of the freedom that it provides in the construction of the server
structure. Because of this freedom, the FDD algorithm could be integrated in the server to make

chiller health predictions on request.

The proposed algorithm is constructed using the PyTorch [96] machine learning framework
and incorporated into the Flask server. The FDD models are first trained on a local computer and
the saved models are then uploaded to the server. Figure 4-4 shows the separated processes of
training and prediction incorporated into the machine learning server. Since training the models
are very CPU/GPU intensive, the limited CPU capacity of the server is only used to make
predictions form the loaded models. The main Node.js server requests predictions from the Flask
server periodically, or on the user request. The file tree of the machine learning server is given in

Appendix-3.
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> Data flow
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\
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Fig. 4-4 Separation of training and prediction processes in machine learning server

As can be seen from the file tree, the app.py file in the root folder is responsible for running
the server and importing the necessary modules for the FDD algorithm. The codes for the FDD
algorithm (including virtual sensor modeling) are placed in the files such as fdd_main.py,
ffm_predict.py and utils.py. These files import the pre-trained model states from the folders
model_state and feature_data. These states of the pre-trained model can be updated by accessing

the servers root folder and changing the loaded .sav and .bin files of the FDD model.

4.3. Cloud database

For the database of this this project MongoDB Atlas [97] is used, which is the company’s cloud
database service. MongoDB is considered to be a document-oriented NoSQL database, where
collections and documents are used in contrary to the tables and rows of the traditional relational
databases. The documents are comprised of key-value pairs as their basic unit and the collections
consist of sets of documents. The models for the collections and documents used in this project

are illustrated in Figure 4-5.
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email users cond SatRfgtTemp sensorDataTime
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Fig. 4-5 Database collection and document models

As can be seen from the figure, user, chiller, sensorData and refLoadPred collections store the
relevant documents containing the information about users, chillers, sensor data and the refrigerant
load predictions. The chillers data field of user documents and the users data field of the chiller
documents ensure the many-to-many relationship between users and the chillers. Additionally,
chillerld data fields of the sensorData and refLoadPred documents establish the one-to-many
relationship between chillers and sensor/prediction data. Even though the FDD predictions are
obtained from the Flask server, these predictions are initially transferred to the Node.js server, and
then written to the database. Therefore, only the Node.js server can directly access the cloud

database.

4.4. Overall online framework

Overall, the cloud framework of the proposed methodology can be divided into three main
sections such as the database, the backend and the frontend. The frameworks of these sections are

explained in detail in the previous sections, and a diagram describing how these sections of the
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overall online framework are connected to each other is given in Figure 4-6. The database, backend

and frontend sections are represented with colors red, green and blue, respectively.

(] Database

MongoDB B Backend
Atlas (] Frontend

<—>» C(CRUD Requests

Database

Y

e S e
REST API AI Module | PYthon
Flask
| |
Node js 0
¥
React.js Website «—>»  Map API Mapbox

—_—

Fig. 4-6 Structure of the cloud framework of the proposed methodology

The connections between the cloud framework sections are represented by arrows in the
diagram. These connections are conducted with HTML requests using the necessary access keys
for security purposes. Such keys are stored in .env files of each server, as shown in the Appendix.
As shown in the figure, the users access the Node.js server by sending HTML requests through
their interactions with the front end website, and chillers can directly access the server from a
dedicated route. This dedicated route is only used for sensor data collection. The database is then
accessed from the Node.js server with the access key and the necessary create-read-update-delete
(CRUD) operations are conducted. Either periodically, or upon user request, the main Node.js
server requests FDD predictions from the Flask server by getting the sensor data from the database

and sending it to the Flask server. Then the Node.js writes the FDD prediction response data from
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the Flask server to the cloud database. The aforementioned processes as a whole summarize the

cloud-based FDD framework used in this project.

4.5. Internet of Things framework

4.5.1. Hardware Setup

The chiller side access to the online framework is conducted with the use of Internet of Things
(1oT) devices connected to the intelligent terminal of the chiller through Modbus protocol. In the
applications where the FDD framework is not cloud based, Raspberry Pi [98] microcomputers are
the most common choice of engineers to can run the FDD software locally and then send or store
the fault prediction data for one or multiple chillers. However, when the FDD algorithm is handled
in the cloud, there won’t be a requirement for computational power in the local IoT device network
endpoint anymore. The only task of the 10T device network is to collect and send sensor data to
the online framework for the cloud-based fault diagnosis. Therefore, NodeMCU ESP8266 [99]
development board has been selected in this study to perform the task of sensor data transfer to the

online framework.

This board significantly reduces the cost of implementing FDD algorithms to chillers,
compared with the systems that are using Raspberry Pi. Moreover, since there is no need for a
single endpoint of the system to perform fault diagnosis in the proposed framework, every loT
device can access the Wi-Fi router independently. This modification also add a reliability
advantage to the overall framework, since the data collection operation from remaining chillers
would still continue in case of a failure in the communication of a single chiller in a multi chiller

system. The pinpoint diagram of NodeMCU ESP8266 development board is given in Figure 4-7.
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Fig. 4-7 Pinpoint diagram of NodeMCU ESP8266 board

The core of the NodeMCU ESP8266 development board is the ESP-12E module that contains
the ESP8266 chip which includes Tensilica Xtensa 32-bit LX106 RISC microprocessor. The
microprocessor supports RTOS and operates at 80-160MHz adjustable clock frequency. The
NodeMCU board accommodates 128 KB RAM and 4MB of Flash memory for data and program
storage. The relatively high processing power, built in Wi-Fi / Bluetooth module and deep sleep
operating feature makes the board a popular choice for the 10T projects. The board can be powered
by both using a Micro-USB jack and external power supply pin (VIN). Also the NodeMCU board

supports UART, SPI and I12C interface for data transfer.

The complete specifications and features of the NodeMCU ESP8266 board are given in the

following list and the exact locations of the components are shown in Figure 4-8:

e Microcontroller: Tensilica 32-bit RISC CPU Xtensa LX106

e Input Voltage: 7-12V
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e Operating Voltage: 3.3V

e Flash Memory: 4 MB

e SRAM: 64 KB

e Clock Speed: 80 MHz

e Digital I/0 Pins (D10): 16

e Analog Input Pins (ADC): 1

e UARTs: 1

e SPIs:1

e [2Cs:1

e USB-TTL based on CP2102 is included onboard,

e PCB Antenna

ESP-12E Chip 3.3V Voltage Regulator

.......
........

CP2102
USB to TTL Converter

2.4 GHz Antenna On-Board LED
DO Pin

Fig. 4-8 Exact locations of components on the NodeMCU ESP8266 board

4.5.2. Board Programming

The NodeMCU ESP8266 board is programmed using MicroPython [100] in this study.

MicroPython is a lean and efficient software implementation of Python3 programming language
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which was originally developed by Australian theoretical physicist and programmer Damien
George in 2013. It is written in C, optimized to operate on microcontrollers/constrained

environments, and contains a small fraction of the Python3 library.

MicroPython compiles the Python code to bytecode and also compiles the runtime interpret of
that bytecode to be executed on the microcontroller hardware. The users can also use the read-
eval-print loop (REPL) interactive prompt to run supported commands. The bytecode that are
generated by the MicroPython compiler has the “.mpy” file extension and allows the programmers
to access to low level hardware. The logic flowchart for the MicroPython code that is used for

programming the NodeMCU ESP8266 board is given in Figure 4-9.

Import Assign pins, Setup LED Set interrupt
packages timer, Wi-Fi light handler
Y
gl Post data to Read sensor Connect to
cep server data Wi-Fi
| i

MAIN LOOP

Fig. 4-9 Flowchart for the MicroPython code

As the first stage of the initialization, essential packages such as machine, time, network
urequests and ujson are downloaded from the MicroPython library. Then the pin assignments are
made for led light and switch button. The timer is initiated from the machine module to enable
continuous led blinking during uninterrupted operation and the Wi-Fi module is launched in the

station mode. Next, a led blinking function is defined to blink led light in different modes after
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successful operations such as connecting to Wi-Fi router and posting data to server to give an
output to the user. The last stage of initialization is the definition of the interrupt handler, which

switches the device to standby mode on flash button press for debugging purposes.

After defining the time periods for the led blinking durations, the main loop of the device is
initiated by connecting to Wi-Fi. If the board cannot connect to the Wi-Fi router, the software
won’t proceed and the connection loop would continuously try to connect the router with 5 second
intervals. After successful connection, the board reads the sensor data and posts the data in JSON
format to the REST API server by using urequests module. If the transfer is unsuccessful, the
device will raise a non-blocking error that is displayed in the terminal if the device is connected to
the PC. Proceeding the post request, the device sleeps for 5 seconds and repeats the main loop. In
conclusion, the NodeMCU ESP8266 board sends the sensor data to the server every 5 seconds in
an endless loop where the faults of the chiller are checked periodically. The next chapter evaluates

the performance of the proposed FDD algorithm and the overall online system.
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Chapter 5

Results and comparison

5.1. Virtual Sensor models

As mentioned in the previous sections, a new set of virtual sensor models are constructed
every change in the training dataset. Which means, the binary parameters of the virtual sensors
might be different for every unique set of training data, therefore the coefficients will be calculated
again for each training of random, 9-fold, 15-fold and 23-fold testing. To illustrate the
methodology and the changing test scores of the virtual sensor model construction, randomly
sampled training data is inspected. Figure 5-1 demonstrates the mean MSE results of 9-fold tests

of virtual sensor construction algorithm for three different input features as examples.
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Fig. 5-1 9-fold mean MSE results of some virtual sensor models

As can be seen from the figures, the virtual sensor models of Tcq, Fcom and Tgis are chosen
to respectively include 2, 7 and 2 of the remaining features to obtain the highest generalization

capacity models in fault-free conditions. This stage assigns the b;; parameters in the formula.
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Next is the training step with random sampling to obtain the c;; linear regression coefficients and
R2 score. The same processes are applied for all features in the dataset. Figure 5-2 illustrates the

feature dimensions with minimum MSE and respective R2 scores of the selected models.
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1
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w7 F_dim 5 2 4 7 2 2 3 6 10 8 3
—8—=R2score -3.02 1 0491 0968 1 0.999 0.998 0.984 0.995 0.927 -0.08

Fig. 5-2 Feature dimensions and R2 scores of virtual sensor models

There are two key points that can be obtained from this figure. First, majority of the models
use a few remaining features to create virtual sensors with higher generalization. This is because
when more features are added to the model, there might be some overfitting of the data and this
would result in poor 9-fold test scores. For example, virtual condenser temperature model utilizes
only the features Tsh and Tadis, Whereas virtual evaporator saturation temperature uses Tcw,o, Tew,i and
Tap in their main linear regression models. Second, it is observed that the models for Tamb, Tsc, Tew,o
and Few can’t pass the R2 score requirement to be a valid virtual sensor. Meaning that the linear

combinations of other features are not sufficient to model these features because of the non-
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linearities within chiller the system, independence of the feature from the other sensors or the
uniqueness of the information contained in the feature. As mentioned before, the respective a;
parameters of these features with lower R2 score are saved as zero. As a result, when calculating
the virtual sensor residuals these parameters will not generate any residual value but directly

provide the sensor information as an input to the XGBoost algorithm.

Figure 5-3 demonstrates the processing effect of virtual sensor residuals method on features
Fcom and Tew,i With histogram analysis. The actual and residual data shown in the figures include
both training and test datasets used in the random testing iteration. Since the virtual sensor models
are trained with fault-free data (100% refrigerant load), the residual values are distributed around
0 for 100% refrigerant load condition data in both models. Also, it can be seen from the models
that the residuals get larger when the fault intensities get larger, as expected. Similar behavior can
be observed for other features of virtual sensor models with specific characteristics in their
respective histograms. Although the constructed virtual sensor models are changing at each
iteration of random and k-fold training, the processing effect of virtual sensor residuals method is
found out to be similar for every iteration. Thus, it can be declared that the virtual sensor residuals
method process the raw input data and converts it into high quality information for the subsequent

fault diagnosis algorithm.
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5.2

The XGBoost algorithm contains various hyperparameters that can be tuned to increase the
accuracy of the model. In this study, the parameters of the maximum depth per tree (max_depth),
minimum child node weight (min_child_weight), the fraction of columns to be randomly sampled
for each tree (colsample_bytree) and fraction of sampled observations (subsample) are optimized
utilizing grid search technique. Considering time limitations, other hyperparameters such as

learning rate, number of trees in the ensemble, alpha, lambda and gamma coefficients are set to
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the default values of 0.3, 100, 1, 0, 1 and O, respectively. The hyperparameters max_depth,

min_child_weight, colsample_bytree and subsample are tested with the following sets of [8, 9, 10,

11, 12], [1, 32, 64, 128, 256, 512], [0.8, 0.9, 1] and [0.8, 0.9, 1]. Thus, in total, the model is 9-fold

tested for 270 different points in the grid search space, however, since the grid search space is 4

dimensional, the results are visualized by demonstrating average mean MSE and the minimum

mean MSE scores for each dimension of the tested hyperparameters in Figure 5-4.
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In Figure 5-4, points marked as avg_mse displays the average all samples for that value of the
inspected parameter, whereas the min_mse shows a single sample. For example, avg_mse point at
max_depth value of 8 takes into account of the average of 54 sample tests. For each sample, the
model is tested 9-fold before the mean MSE are obtained. As a result of the grid search of the 270
samples, the hyperparamaters of the absolute minimum MSE sample are chosen as the optimized
values. Which means, the final values 10, 256, 1 and 0.8 are selected for the hyperparameters

max_depth, min_child_weight, colsample_bytree and subsample, respectively.
5.3. Fault diagnosis results of the proposed model

Predicting the refrigerant charge level in the chiller system is in fact a regression problem.
However, the results of evaluation metrics of regression methods such as mean-squared error, is
dependent on the input dataset and might not be directly intuitive. Therefore, the model outputs
are rounded to the nearest dataset refrigerant load level to enable the use of classification methods’
evaluation metrics. When the predictions are rounded, the proposed method can be treated as a
multi-class classification algorithm with four classes, namely, 70%, 80%, 90%, 100% refrigerant

load. All of the possible prediction outcomes for the k' class ck is given in Table 5-1.

Table 5-1 Possible outcomes in a multi-class classification problem

Prediction

Co ... Ck1 Ck Ck+1 ... Cn

Co...ck1  True Negative (TN) False Positive (FP) True Negative (TN)

Ground

truth Ck False Negative (FN) True Positive (TN) False Negative (FN)

Ck+1 ... cn  True Negative (TN) False Positive (FP) True Negative (TN)
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According to the definitions given in Table 5-1, the following equations (5-1 to 5-4) are the

used in this paper to measure the classification performance of the proposed model.

TruePositive+TrueNegative

Accuracy = -1
Y TruePositive+TrueNegative+FalsePositive+FalseNegative (5 )
- TruePositive
Precision = — — (5-2)
TruePositive+FalsePositive
TruePositive
Recall = -
TruePositive+ FalseNegative (5 3)
2XPrecisionxRecall
F1 score = — (5-4)
Precision+Recall

It should be noted that while calculating precision, recall and F1 score, the metrics are
calculated for each label first and then their unweighted average is taken. Also, the mean values of
k tests are shown as results for the k-fold tests. After conducting random, 9-fold, 23-fold and 15-
fold tests, the classification scores of the proposed model are obtained. The fault diagnosis results

of the proposed method for respective tests are shown in Table 5-2 and Figure 5-5.

Table 5-2 Fault diagnosis results of virtual sensor residuals assisted XGBoost method

Random

(20%) 9-fold 23-fold 15-fold
Accuracy 0.998448 0.678124 0.705349 0.716063
Precision 0.998451 0.641901 0.730551 0.728765
Recall 0.998192 0.658418 0.729212 0.744636
F1 0.998321 0.610689 0.679501 0.677242
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q

As shown in the graph, accuracy, precision, recall and F1 scores from random testing are all
very high compared to other testing methods. The root cause of this phenomena is random
sampling’s tendency to train and test the same points in clustered datasets, which was explained

in previous sections. Figure 5-6 shows a comparison of targets and the predictions from random
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testing and the first iteration of 9-fold testing for this model.
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When the data is sampled randomly for a clustered and steady state filtered large datasets,

training and testing datasets automatically overlap, therefore the results from random tests only

contain the information of training loss. Raising the random allocation proportion to 30% or

decreasing it to 10% would not have a significant effect since the overlapping phenomena would

remain unchanged. On the other hand, in 9-fold tests, the models are tested for the operating

conditions that were completely unknown in training. Thus, it is more challenging for the

algorithm to make accurate predictions. Since the tested proportion of the dataset gets smaller and

the trained proportion gets larger for 23-fold and 15-fold tests, the accuracies of predictions

increase, as expected. The confusion matrixes for all testing methods are shown in Figure 5-7.
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The confusion matrixes for k-fold tests represent the cumulative results of all k tests. Since the
9-fold and 23-fold tests scan through the dataset three times the total number of predictions are
also three times of random and 15-fold tests. The k-fold results indicate that the classification
between 100% and 90% refrigerant charge levels still needs to be improved. To check the validity

of the proposed method, comparisons with conventional methods are made in the next section.
5.4. Comparison with conventional methods

The results from proposed virtual sensor residuals assisted XGBoost (VSR-XGB) method is
compared with Support Vector Machines (SVM), Multi-Layer Perceptron (MLP), Random Forest
(RF) and XGBoost (XGB) algorithms. Same stages of preprocessing are conducted for all
algorithms before the models are trained to yield fault diagnosis results. The comparison graphs
of the results are illustrated in Figure 5-8 and the numerical values for accuracies are shown in

Table 5-3.
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Fig. 5-8 Comparison of different methods

Table 5-3 Accuracy comparison for different methods

SVM MLP RF XGB VSR-XGB
Random 0.992045 1 0.999806 0.999806 0.998448
9-fold 0.431478 0.578713 0.54971 0.594262 0.678124
23-fold 0.534013 0.640586 0.67972 0.639568 0.705349
15-fold 0.589648 0.696117 0.719671 0.683363 0.716063

In comparison to other methods, the proposed VSR-XGB model has greater accuracy results

in 9-fold and 23-fold tests, whereas it is 0.2% behind of MLP in random testing and 0.4% behind
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of RF in 15-fold testing. However, as explained before, random testing score only produces a
reflection of training loss for the algorithm and any smart method can achieve results very close
to 100% with optimized hyperparameters. Thus, the random testing score comparison should not
be taken as a metric of comparison. Which means, the proposed model is actually only surpassed
by RF algorithm in 15-fold testing by a very small margin. Nonetheless, if the 9-fold score of the
RF model is inspected, it can be seen that the RF model performs poorly with only 54.97%.
Moreover, 9-fold accuracy is intuitively a more important metric to measure generalization
capacity compared to 15-fold score since a larger fraction data is hidden from the model during
training. Yet, if the unweighted averages of k-fold scores are chosen as a metric to measure the
generalization capacity of the models, VSR-XGB ranks the first and RF ranks the second best
model. Therefore, it can be claimed that compared to the second best model, VSR-XGB improves
the 9-fold, 23-fold test accuracies from 54.97% and 67.97% to 67.81% and 70.53% whereas only

decreasing 15-fold test accuracy from 71.97% to 71.61%.
5.5. Deployment and testing of online framework

Following the tests, the final model is deployed to the dedicated Flask server hosted on Heroku
[101]. Similarly, the REST API module which runs on Node.js is also deployed to its dedicated
server on Heroku. The website build is hosted on Netlify [102], which can be accessible with the
URL: “https://fdd-anduv.netlify.app/”. Both the user interfaces of the website and the backend
access routes of the REST API are thoroughly tested. Moreover, real time data collection from the
chiller is successfully simulated by both sending the previously collected data from a PC and an
IoT device, namely, NodeMCU ESP8266 board. Source code of the whole project can be found in
“https://github.com/burkayanduv/fdd-app” and the Figure 5-9 shows some screenshots from the
final build of the website.
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Chapter 6

Conclusion and future prospects

6.1. Summary

This study presented the methodology of virtual sensors construction and diagnosis of
refrigerant leakage fault of chiller using an optimized XGBoost algorithm which utilizes the
residual data from virtual and actual sensors. In addition, this methodology is uploaded to an online
framework to make tracking the status of chiller health possible from a user friendly website. As
the first step, various operating condition experiments are conducted on an industrial chiller to
collect large amounts of experimental data. Then, the unique and information rich features are
extracted from the dataset by necessary preprocessing algorithms. After the construction and
training of the proposed method, the overall methodology is tested and the results are validated by

comparing it with conventional machine learning methods.

The results reveal that, the chiller experiments’ data collection framework causes the random
testing results to be misleading, where all machine learning methods achieve very high
classification accuracies. Therefore it is beneficial to use another evaluation metric such as k-fold
cross validation to correctly measure the actual overall accuracy. A backward elimination
algorithm is employed while constructing the virtual sensors to obtain the ideal number of input
features. When the construction of virtual sensors are done and the residuals are calculated, the

hyperparameters of the XGBoost algorithm are optimized utilizing grid search.
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superior ability to make generalized predictions. If the mean accuracies are compared, the

In comparison with the popular machine learning methods, the proposed method has shown a

proposed method surpasses the second best model with 12.84% and 2.56% higher 9-fold and 23-
fold accuracies, whereas only lacking behind 0.37% for the 15-fold accuracy. If it is compared
with pure XGBoost algorithm, it can be seen that the accuracies are improved by 8.38%, 6.57%
and 3.27% with the use of proposed model to the respective final values 67.81%, 70.53% and
71.61% for 9-fold, 23-fold and 15-fold tests. Thus, the virtual sensor residuals assisted XGBoost
algorithm presents a significant improvement in making generalized predictions for refrigerant

charge level, which means that it would have a considerable advantage in practical applications.

Finally, an online web application framework is constructed where the users can monitor the
sensor readings and the health status of the chiller in real-time. The proposed model is uploaded
to its dedicated server, where it would make predictions about the refrigerant charge level of the
chiller according to the data and requests sent by the main server. The user interface and the data
transfer routes of the online framework is thoroughly tested and the study is concluded with the

deployment of the final online FDD web application.
6.2. Future prospects

Currently the model is developed only for diagnosing the refrigerant leakage fault of chillers,
however, many faults can occur in the chiller after an extended service time. Hence, the model can
be modified further to classify several types of faults and their corresponding fault severities. This
task is in fact not very hard to achieve since the virtual sensor models are independent of fault type
and severity, and the utilized XGBoost algorithm have already used the mode of multi-class

classification to detect the fault severity. Therefore, with some minor adjustments, the model can
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be easily modified to detect and diagnose multiple faults. The limiting factor in this study was the
experiments that have been only conducted to collect the data for refrigerant undercharge fault of
chiller. With the proper experimentation and data collection, the same model can be further applied

detect and diagnose other faults.

Another area that the model can be applied for is the migration of the model to other chillers.
Since the model have already achieved a solid generalization performance on different and
unknown operating conditions of a chiller, the model can be also pushed further to be applied on
another chiller. However, employing the same model on two or more different chillers requires an
extensive preprocessing step which contains necessary standardization and domain adaptation
steps for the input data. If the input data from different chillers can be sufficiently standardized,
the model can be tested to obtain a general model which is able to detect and diagnose faults for

many chillers.

The last area that can be improved further is the online framework. Firstly, since the
applications are hosted on free shared servers, the REST API and the Al module are hosted
separately. The free servers activates sleep mode if there are no incoming request for a while, and
it takes a while for the servers to turn on when there is a new request. Therefore, the Al module
sometimes have some delays to respond when a prediction request is made during the sleep mode.
Moreover, the free cloud database currently operates in overseas servers, thus an access to database
also adds additional delays to the process. As a solution to this, a dedicated commercial server can
be hired to host all the backend and database software together. Which will drastically cut the
communication times between the modules. Finally, the security of the framework can be further
improved. Although the CRUD requests are currently secured with use of access tokens, an

additional security layer can be added with use of JSON web tokens.
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Appendix

1. Backward elimination algorithm iterations 1, 2 and n for obtaining the dropping sequence

for a single sensor.
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2. Exact Greedy and Approximate Algorithm for split finding

Algorithm 1: Exact Greedy Algorithm for Split Finding

Input: 7, instance set of current node

Input: d, feature dimension

gain <0

G2 ier9is H 2 e hi

for k=1 to m do

Gr« 0, HL < 0

for j in sorted(I, by x;r) do
GL + GL +gj, HL < HL + h;
GR'K—G—GL= Hrp+— H—-Hp

GQR G2 )

x
) \ L —_
score <— max(.score, HL+X -+ Hp+ 2 Hix

end
end
Output: Split with max score

Algorithm 2: Approximate Algorithm for Split Finding

for k=1 to m do

Propose Sk = {Sk1, Sk2, - - - Sk} by percentiles on feature k.
Proposal can be done per tree (global), or per split(local).
end

for k =1 to m do

Gro = E

Hyp = ZJ‘E{jlskaXjk>5km—1} hj

end

Follow same step as in previous section to find max
score only among proposed splits.

JE{dlsk, 02Xk >58 01} i

3. File tree of the front end framework (excluding node_modules and build folders).

1- client/

2- — public/

3- — index.html

4- — assets/

5-  icon/

6- L |— icon.jpg
7- images/

8- | | s3Tu-bg.jpg
9- | I logo.jpg
10- — src/

11- — index.jsx

12- — App.Jjsx

13- — views/

14- |— LoginPage.jsx
15- |— HomePage. jsx
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16-
17-
18-
19-
20-
21-
22-
23-
24-
25-
26-
27-
28-
29-
30-
31-
32-
33-
34-
35-
36-
37-
38-
39-
40-
41-
42-
43-
44-
45-
46-
47-
48-
49-
50-
51-
52-
53-
54-
55-
56-
57-
58-
59-
60-
61-
62-
63-
64-
65-
66-
67-
68-
69-

— AtlasPage.jsx

— GraphPage.jsx

— OperatorPage.jsx

— UnavailablePage. jsx

— components/

— home/

AreaChart.jsx
ColumnChart. jsx
GaugeChart.jsx
MultiLineChart.jsx
RingProgressChart.jsx
SensorTable.jsx

— atlas/

ChillerForm.jsx
ChillerInfo.jsx
ChillerMap.jsx
ChillerTable.jsx

— graph/

DataQueryForm.jsx
FetchStatusChart.jsx
LargeGraph.jsx
SensorGraphList.jsx

— operator/
- OperatorAddChillerForm.jsx

OperatorAddUserForm. jsx
OperatorChillerList.jsx
OperatorDeleteChillerForm.jsx
OperatorDeleteUserForm. jsx
OperatorUpdateChillerForm. jsx
OperatorUserList.jsx

— SidebarMenu. jsx

— SelectChillerForm.jsx
— PageHeader. jsx

— PageFooter. jsx

— ChillerHealth.jsx

— context/

— Context.jsx
— Actions.jsx
— Reducer.jsx

— functions/

— roundSensorData.jsx
— uselocalStorege.jsx

— assets/

F— schematic.svg
— constants/

F— actionTypes.jsx
— styles/

F_
P_
F_

— App.less
— pageStyles/

homePage. less

— componentStyles/

chillerForm.less
chillerMap.less
pageHeader. less
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70- | | |— sidebarMenu.less
71- — .env

72- — .eslintrc.js

73- — craco-config.js

74- — package-lock.json
75- — package.json
76- — yarn.lock

4. File tree of the back end framework (excluding node_modules and build folders)

1- api/

2- — models/

3- — User.js

4- — Chiller.js

5- — SensorData.js
6- — RefLoadPred.js
7- | routes/

8- — user.js

9- — chiller.js
10- — sensor.js

11- — auth.js

12- — pred.js

13- — rename.js

14- — index.js

15- |~ .env

16- — .eslintrc.js

17- — package.json

18- — yarn.lock

19- — Procfile

5. File tree of machine learning module

1- ai-module/

2- [~ app.py

3- — fdd_main.py

4- = ffm_predict.py

5- | utils.py

6- — model state/

7- — XGB_model.sav

8- — ffm_model_DATA_COLUMN.sav*

9- — input_data_scaler_ffm_DATA_COLUMN.bin*
10- — input_data_scaler_ffm_k.bin

11- — input_data_scaler_ffm_r.bin

12- — input_data_scaler_r.bin

13- — target_data_scaler_ffm_DATA_COLUMN.bin*
14- — target_data_scaler_ffm_k.bin

15- — target_data_scaler_ffm_r.bin

16- — target_data_scaler_r.bin’

17- — feature_data/
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18- l: ffm_features.txt
19- kept_columms.txt
20- — Pipfile

21- — Pipfile.lock

22- — Procfile

* DATA_COLUMN denotes a compressed illustration of the 11 separate files, namely:
comp_DiscSupe, comp_DischTemp, comp_MassFlow, cond_DischSubc, cond_SatRfgt_Temp,
evap_ApprchTemp, evap_EntWtrTemp, evap_LvgWtrTemp, evap_OutdoorAirTemp,
evap_Sat_RfgtTemp, evapWtrFlowEsti. These files would have the same prefix as shown in the
file tree. Therefore, the actual file names are: ffm_model_comp_DiscSupe.bin,

ffm_model_comp_DischTemp.bin, etc.
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