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ABSTRACT

OPTICAL CLASSIFICATION AND RECONSTRUCTION THROUGH
MULTIMODE FIBERS

Kürekci, Şahin

Ph.D., Department of Physics

Supervisor: Assoc. Prof. Dr. Emre Yüce

December 2022, 116 pages

When a light beam travels through a highly scattering medium, two-dimensional ran-

dom intensity distributions (speckle patterns) are formed due to the complex scattering

within the medium. Although they contain valuable information about the input signal

and the characteristics of the propagation medium, the speckle patterns are difficult to

unscramble, which makes imaging through scattering media an extremely challenging

task. Multimode fibers behave similarly to scattering media since they scramble the

input information through modal dispersion and create speckle patterns at the distal

end. Because multimode fibers are compact and low-cost structures with the ability

to transmit large amounts of data simultaneously for long distances, decoding the

speckle patterns formed by a multimode fiber and reconstructing the input information

has great implications in a wide range of applications, including fiber optic commu-

nication, sensor technology, optical imaging, and invasive biomedical applications

such as endoscopy. In this thesis, we decode the speckle patterns and reconstruct

the input information on the proximal end of a multimode fiber in three different

scenarios. Our choice of input signals consists of numbers encoded as binary digits,

handwritten letters, and optical frequencies. We train a deep learning model to classify
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and reconstruct the handwritten letters, while for the rest of the cases, we construct

a transmission matrix between the input signals and the output speckle patterns, and

solve the inverse propagation equation algebraically. In all cases, the relation between

a speckle pattern and the corresponding input signal is learned with low error rates;

thus, the signals are classified and reconstructed successfully using the speckle patterns

they created. Classifying digits, letters, or images with speckle information aims to

build useful systems in optical imaging, communication, and cryptography, while the

classification of optical frequencies paves the way for building novel spectrometers. In

addition to replicating the currently existing compact, low-budget, and high-resolution

multimode fiber spectrometer, we also build a single-pixel fiber spectrometer in order

to increase the compactness on the detection side and expand the application areas of

the system. The single-pixel spectrometer we offer is based on the integrated intensity

measurements of a fixed target region, where the light is focused by shaping the wave-

front with a spatial light modulator. Spatial light modulators and wavefront shaping

techniques are also utilized in other classification tasks in this thesis to generate the

desired input signals.

Keywords: fiber optics, multimode fibers, speckle pattern, propagation, imaging,

classification, reconstruction, wavefront shaping, spatial light modulator, cryptography,

encryption, deep learning, neural networks, spectrometer, single-pixel, high resolution
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ÖZ

ÇOK MODLU FİBERLER ÜZERİNDEN OPTİK SINIFLANDIRMA VE
YENİDEN OLUŞTURMA

Kürekci, Şahin

Doktora, Fizik Bölümü

Tez Yöneticisi: Doç. Dr. Emre Yüce

Aralık 2022 , 116 sayfa

Bir ışık demeti yüksek saçıcılık özelliklerine sahip bir ortamdan geçtiğinde, ortam

içerisindeki karmaşık saçıcılıktan ötürü iki boyutlu düzensiz şiddet dağılımları (benek

desenleri) oluşur. Giriş sinyali ve yayılma ortamının karakteristiği hakkında değerli

bilgiler içermelerine rağmen benek desenlerini çözümlemenin zor olması saçıcı ortam

üzerinden görüntülemeyi oldukça zorlayıcı bir hâle getirir. Kipsel dağılım yoluyla

girişteki bilgiyi karıştırmaları ve uzak uçta benek desenleri yaratmaları sebebiyle çok

modlu fiberler de saçıcı ortamlara benzer davranışlar gösterirler. Çok modlu fiberlerin

büyük miktarda veriyi eşzamanlı olarak uzun mesafeler boyunca iletme yeteneğine

sahip kompakt ve düşük maliyetli yapılar olmaları sebebiyle, bir çok modlu fiber tara-

fından yaratılan benek desenini çözümlemenin ve girişteki bilgiyi tekrar oluşturmanın

fiber optik iletişim, sensör teknolojisi, optik görüntüleme ve endoskopi gibi invazif

biyomedikal uygulamaları içeren geniş uygulama alanlarına büyük etkileri vardır. Bu

tez çalışmasında, benek desenlerini çözümlüyoruz ve bir çok modlu fiberin yakın ucun-

daki giriş bilgisini üç farklı senaryoda yeniden oluşturuyoruz. Giriş sinyallerimiz ikili

rakamlar şeklinde kodlanmış sayıları, el yazısıyla yazılmış harfleri ve optik frekansları
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içeriyor. El yazısıyla yazılmış harfleri sınıflandırmak ve yeniden oluşturmak için bir

derin öğrenme modeli eğitirken diğer durumlar için girişteki sinyalleri ve çıkıştaki

benekli desenleri birbiriyle ilişkilendiren bir iletim matrisi oluşturarak ters yayılım

problemini cebirsel olarak çözdük. Tüm durumlarda benek deseni ile o desene ait

giriş sinyali arasındaki ilişki düşük hata oranlarıyla öğrenildi, dolayısıyla sinyaller

kendileri tarafından oluşturulan benek desenleri kullanılarak başarılı bir şekilde sınıf-

landırıldı ve yeniden oluşturuldu. Rakamları, harfleri ya da görüntüleri benek deseni

bilgisi ile sınıflandırmak optik görüntülemede, optik iletişimde ve kriptografide faydalı

olabilecek sistemler inşa etmeyi amaçlamaktayken optik frekansların sınıflandırıl-

ması ise özgün spektrometreler inşa etmenin önünü açmaktadır. Halihazırda mevcut

olan kompakt, düşük bütçeli ve yüksek çözünürlüklü çok modlu fiber spektrometreyi

tekrarlamanın yanı sıra, algılama tarafındaki kompaktlığı artırmak ve sistemin uygu-

lama alanlarını genişletmek amacıyla tek pikselli bir fiber spektrometre inşa ediyoruz.

Sunduğumuz tek pikselli spektrometre, dalga önünü uzaysal bir ışık modülatörü ile

şekillendirerek ışığın odaklandığı sabit bir hedef bölgenin entegre yoğunluk ölçümle-

rine dayanmaktadır. Uzaysal ışık modülatörleri ve dalga önü şekillendirme teknikleri,

istenen giriş sinyallerini oluşturmak için bu tezdeki diğer sınıflandırma çalışmalarında

da kullanılmıştır.

Anahtar Kelimeler: fiber optik, çok modlu fiber, benek deseni, yayılma, görüntüleme,

sınıflandırma, yeniden yapılandırma, dalga önü şekillendirme, uzaysal ışık modülatörü,

kriptografi, şifreleme, derin öğrenme, sinir ağları, spektrometre, tek piksek, yüksek

çözünürlük
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Although we are often not consciously aware of them, there are several important

concepts and equations that govern our lives. "Propagation" is one of these concepts,

and it is described by the propagation equation

y = T ∗ x, (1.1)

where x is the input information, y is the output information, T is the propagation

medium, and ∗ denotes multiplication. A general diagram of propagation is shown in

Fig. 1.1, where the sender and the receiver are named Alice and Bob.

Sender 

Alice

Receiver

Bob

Medium

Input

Information

Output

Information

𝐱 𝐲
𝐓

Figure 1.1: A general diagram describing propagation. The input information x is sent

by the sender, Alice, and after propagating through medium T, the output information

is read as y by the receiver, Bob. The input and output information might be different

due to noise gained by propagation in the medium.
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Many daily life phenomena can be explained by the propagation equation, including

communication and vision. In the case of oral communication, the sound is propagated

through the air, and vibrations of air molecules transmit the words to the receiver.

In online communication, the input information is sent as digital signals from data

centers to our computers with optical fibers. We can see the world thanks to the light

reflected from the objects and propagated to our eyes. However, most of the time, the

propagation of information from one point to another is not perfect. The information

gains noise due to the propagation medium, and this results in the difference between

the input information x and the output information y, e.g., it is highly possible for a

receiver to hear something else than what we actually speak in a noisy environment.

The rate of difference between x and y depends on the propagation medium as well

as the input information itself. In general, the input information can be recovered at

the receiver side with high accuracy if it is sent with an amplitude higher than the

amplitude of the noise gained during propagation.

In this thesis, we will concentrate on the propagation of light (electromagnetic waves)

in a multimode fiber. Electromagnetic waves are used almost in all parts of modern

communication and technology for information transfer, imaging, health, and security

purposes. In general terms, electromagnetic waves travel undistorted, almost along

straight lines, in free space, as shown in Fig. 1.2(a). Any medium allowing the light

to propagate undistorted (such as air and glass) seems transparent to the human eye;

hence an object behind them is clearly visible. However, in our daily life, we also

encounter a lot of opaque (non-transparent, complex, or disordered) media. Clear

imaging across an opaque media is not possible due to complex interactions of light

and matter, known as the scattering of light (scattering of light can be considered as

the total effect of reflections, refractions, and diffractions of light from microscopic

small particles inside the material). Interaction of light with such disordered media

results in a random intensity distribution, known as speckle pattern, instead of a clear

image of the light source, as shown in Fig. 1.2(b).
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(a)

(b)

Figure 1.2: Interaction of light with matter. (a) A light source in free space travels

undistorted and follows an almost straight line to form a sharp image of the light source.

(b) The same light source creates a speckle pattern when it encounters a complex,

disordered material due to the multiple scattering inside the medium.

Clearly, scattering of light is a very fundamental limitation for optical imaging across

complex disordered media since all the input information is transformed into a ran-

dom speckle image. Still, increasing the imaging quality across scattering media or

recovering images behind them is highly desirable since such media are commonly

encountered in daily life, as shown in Fig. 1.3. Increasing the visibility across fog, mist,

and clouds can reduce traffic risks, and similarly, increasing the imaging quality across

biological tissue can be useful in the biomedical diagnosis and treatment [1]. Due to its

significance in so many various areas, multiple light scattering has been widely studied

in numerous works in the past decades [2–24]. The unending popularity of these

studies is based on the fact that although the speckle patterns are highly disordered

intensity distributions, multiple scattering itself is a deterministic process, and it can

be described with the principles of wave diffusion theories, thus using Maxwell’s

equations [6].
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Figure 1.3: Examples of scattering media in daily life. Despite the existence of

scattering media in all areas of life, detailed optical examinations are difficult since

they scatter light and form a speckle pattern. The figure is adapted from [1].

Multimode fibers behave similarly to scattering media in several aspects. The light

coupled to a multimode fiber is carried to the other end of the fiber with total internal

reflections, and a speckle pattern is observed. Compared to ordinary scattering media,

multimode fibers possess lower losses since they prevent the scattering of light to high

angles. However, in most applications, single-mode fibers are preferred instead of

multimode fibers due to the speckle pattern formation, i.e., information loss, exhibited

by multimode fibers. Although current applications of multimode fibers are limited

due to speckle formation, there is a great effort for their implementation in optical

fiber systems for several reasons. Three of these reasons can be listed as follows:

1. In single-mode fibers, the amount of information that can be transmitted simul-

taneously is restricted to one channel. However, multimode fibers have multiple

channels to carry information; hence they allow parallel transmission. This

property of multimode fibers allows carrying larger data simultaneously and can

revolutionize telecommunication and biomedicine applications.
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2. Although single-mode fibers are compact structures with sizes around 9 µm,

for most practical applications, bundles (collection) of single-mode fibers are

used to carry signals in order to transmit larger data. The size of single-mode

fiber bundles generally reaches millimeters thickness. The same tasks can be

done with a single multimode fiber whose thickness is around 50-100 µm. Thus,

multimode fibers can offer more compact solutions for current optical fiber

systems.

3. The speckle patterns created by the multimode fibers resemble multiple scatter-

ing from a scattering media. Therefore, studying multimode fibers is insightful

for applications involving scattering media similar to the ones listed in Fig. 1.3.

In order to properly investigate the multimode fibers (or any other scattering medium)

and use them in imaging applications, the scattering properties of the medium need

to be understood or controlled. Wavefront shaping is a powerful method developed

for controlling light propagation in scattering media [25–58]. The basic principle of

the wavefront shaping method is to utilize modulators to change the phase (or the

amplitude) of the incident light. The control over the phase of the light leads to striking

applications such as the optimization of light across scattering media (see Fig. 1.4).

Thus, the scattering medium is forced to act as a focusing lens and safely transmits the

signal to the other side instead of scrambling it into a speckle pattern.

Our purpose in this thesis is to classify and reconstruct different types of spatial

and spectral information traveled across a multimode fiber using wavefront shaping

methods (see Fig. 1.5). Classification can be described as identifying and grouping

similar objects (or signals), and reconstruction is the task of rebuilding the actual input

information which gained noise during the propagation. For both classification and

reconstruction tasks, the propagation of the information from one end to the other

needs to be handled carefully, and the propagation medium (or part of it that will be

useful for the current task) needs to be learned. We develop methods to statistically or

algebraically learn the propagation medium T for specific tasks and then reconstruct

the input information x by inverting Eq. (1.1),

x = T−1 ∗ y. (1.2)
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Figure 1.4: Demonstration of wavefront shaping across a scattering medium. (a)

The light incident on a scattering medium undergoes multiple scatterings and creates

a speckle pattern. All information on the input of the scattering medium is lost in

this process. (b) The scattering of light can be controlled by shaping the wavefront

with a modulator. In this case, light can be focused across the medium, and the input

information can be carried safely.

2) Wavelengths

1) Handwritten Letters

3) Encrypted Message

Medium

Multimode 
Fiber
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Figure 1.5: Visual outline of the thesis. By using the speckle patterns formed at the

distal end, we classify and reconstruct different types of input information (spatial and

spectral signals) transmitted through multimode fibers.
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1.2 Contributions and Novelties

Our contributions in the context of this thesis are as follows:

• S. Kürekci, S. S. Kahraman, and E. Yüce, “Single-Pixel Multimode Fiber

Spectrometer via Wavefront Shaping,” arXiv.2210.13292 [Preprint]

• S. Kürekci, A. T. Temür, M. E. Odabas, G. Afshari, and E. Yüce, “Deep

learning-based image transmission through a multi-mode fiber,” Proc. SPIE

11351, Unconventional Optical Imaging II, 1135126 (2020)

• E. Yüce, and S. Kürekci, “Interference-based spectrometer with multimode

medium,” (Pending-patent, International application number: PCT/TR2021/

051305)

• E. Yüce, and S. Kürekci, “Compact Holographic SLM Spectrometer,” (Pending-

patent, Turkish Patent and Trademark Office application number: 2020/22701.

International application number: PCT/TR2021/051613)

1.3 The Outline of the Thesis

In Chapter 2, we review the theory of optical fibers, introduce key fiber parameters,

and investigate light propagation inside multimode fibers. The formation of speckles

is explained in this chapter with various examples.

In Chapter 3, we introduce the experimental setup and methods applied during the

thesis. We explain the details of spatial light modulators and introduce two algorithms

to focus light across a multimode fiber.

In Chapter 4, we show the first demonstration of the use of a multimode fiber in a

classification task where we classify digits between 1-9 by observing the corresponding

speckle patterns.

In Chapter 5, we show image classification and reconstruction through a multimode

fiber by training a deep neural network. We compare the performance of three con-
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volutional neural network architectures in terms of prediction accuracy and training

time.

In Chapter 6, we introduce a high-resolution low-loss multimode fiber spectrometer.

We use speckles captured for different wavelengths to construct a calibration set, and

test the reconstruction ability of the spectrometer by simulating various light sources.

In Chapter 7, we show that a multimode fiber can also be used to build a single-pixel

spectrometer. Here, the light is focused on a chosen target point at the distal end of

the fiber, and the integrated intensity of the target region is used to reconstruct the

unknown input spectra.

In Chapter 8, we give a brief summary and make concluding remarks.
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CHAPTER 2

OPTICAL FIBER THEORY

In this chapter, we review the theory of step-index optical fibers and light propagation

inside multimode fibers. We start with the geometry of an optical fiber and explain

critical fiber parameters such as the acceptance angle, the numerical aperture, and

the V number. We then attempt to solve Maxwell’s equations to investigate light

propagation. Depending on the geometrical parameters of the fiber, the wavelength

of the input light, and the boundary conditions, Maxwell’s equations may have many

solutions, which are called modes of the fiber. A field entering the fiber is decomposed

into the modes and carried to the other end of the fiber. Since each mode has a

distinct propagation constant (modal dispersion), the transmitted light forms random

intensity distributions (speckle patterns) at the other end of the fiber. We conclude

the chapter by simulating the formation of a speckle pattern with the transmission of

an image through a step-index multimode fiber. Unless stated otherwise, the same

fiber parameters (core size = 105 µm, core refractive index = 1.463, cladding refractive

index = 1.446) and the same input wavelength (λ = 1550 nm) are used in all simulation

results and visualizations presented throughout the thesis.
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2.1 Geometry of a Step-Index Optical Fiber

Optical fibers are useful tools for many areas of science, engineering, and biomedicine,

with applications in optical trapping [59–61], fiber laser technology [62–65], fiber

interferometers and sensors [66–73], optical fiber telecommunication [74–80], health

monitoring sensors [81–89], and endoscopy [90–95]. Fig. 2.1 shows the simple

geometry of a step-index optical fiber where a high-index core region is surrounded

by a low-index cladding and a jacket. The geometrical relations in this section can

be understood more clearly by using the ray model of light, but we will switch to the

wave model in Section 2.2 when studying the mode profiles of the fiber.

core cladding

jacket

n1

n2

n2

θi

θ0

θr

Figure 2.1: Geometry of a step-index optical fiber. A core region with refractive index

n1 is surrounded by a lower-index cladding region, n2 < n1. The refractive indices of

core and cladding regions are adjusted for the optimal propagation of light by total

internal reflections.

When light is coupled to the optical fiber, it propagates in the core region by undergoing

successive total internal reflections at the core-cladding boundary. Thus, the light is

guided inside the core region and cladding is responsible for the confinement of the

light inside the core. The outermost jacket of the fiber is used to protect the inner part

of the fiber and is generally made of plastic.

For total internal reflection (hence the propagation of light) to take place inside a

step-index optical fiber, the refractive index of the core, n1, has to be greater than that

of the cladding, n2. Applying Snell’s law at the core-cladding boundary also requires
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the angle θi to be greater than the critical angle,

θmin
i = θc = arcsin(n2/n1). (2.1)

The propagation condition (total internal reflection) brings additional restrictions on

the coupling of light into the fiber. If the medium surrounding the fiber has refractive

index n0, Snell’s law applied on the fiber boundary requires sin θ0 = (n1/n0) sin θr.

Using the geometrical relations between the angles θr and θi together with Eq. (2.1)

yields

θa = θmax
0 = arcsin

(
1

n0

√
n2
1 − n2

2

)
, (2.2)

where θa is the maximum entrance angle, called acceptance angle. An optical beam

entering the fiber at an angle smaller than the acceptance angle can be guided fully

through the optical fiber, i.e., it propagates inside the fiber by undergoing total internal

reflections. For the light rays whose entrance angle θ0 is greater than the acceptance

angle θa, the light will not be guided inside the core region of the fiber but will be

refracted into the cladding. These rays can travel inside the cladding for very short

distances, and they do not contribute to the guided light inside the core. In a fiber

coupling where most of the beam enters the light at angles higher than θa, higher

losses occur in the transmitted intensity, and thus only partial transmittance of light is

expected. Figure 2.2 shows the amount of power coupled to a 105 µm diameter fiber

(ncore = 1.463, nclad = 1.446) as a function of entrance angle for a plane wave of 1550

nm wavelength. For the chosen fiber parameters, the acceptance angle is 12.9◦, and

only %10 percent of the light can couple into the fiber at the acceptance angle.

Although the acceptance angle is a good indicator of how well the light is coupled

into the optical fiber, a more common figure of merit to describe the light-gathering

capacity of the fiber is numerical aperture,

NA = n0 sin θa =
√

n2
1 − n2

2. (2.3)

Unlike the acceptance angle, the numerical aperture is independent of the refractive

index of the outer region, n0, and a more definitive parameter for the fiber geometry.

A fiber with a high numerical aperture accepts more light from the source; thus, more

power can be transferred through the fiber. For efficient coupling of light into the fiber,
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the NA of the focusing lens (the lens used to couple light into the fiber) should be

equal or close to the NA of the fiber.

5 10 15 20 25
Angle (degrees)

0

0.2

0.4

0.6

0.8

1
C

o
u

p
le

d
 P

o
w

er

A
cc

ep
ta

nc
e 

A
ng

le

Figure 2.2: Amount of light power coupled into a 105 µm core diameter fiber as a

function of entrance angle. The incident light is assumed to be a plane wave with

1550 nm wavelength. The acceptance angle, 12.9◦, is also shown on the graph with

the brown dashed line.

The numerical aperture is an important parameter related to the geometry of the fiber,

but it does not tell much about the propagation of light inside the fiber unless the

wavelength of the light and the core size of the fiber are given. Having the wavelength

λ, and core radius a, a new parameter called V-number (also known as waveguide

parameter, or normalized frequency) can be derived,

V =
2πa

λ
NA =

2πa

λ

√
n2
1 − n2

2. (2.4)

Once the V-number is obtained, the number of modes1 of the incident wave can be

estimated roughly as V 2/2. When the V-number is less than 2.405, the fiber can only

support one mode, and such a fiber is known as a single-mode fiber (SMF). If the

V-number is higher than 2.405, the wave can travel in different routes; thus, the fiber
1 The formal definition of a mode is given in the next section. For now, a mode can be considered as a unique

propagation route inside the fiber.
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supports more than one mode. Such fibers are called multimode fibers (MMF). The

incident light is coupled to different modes inside a multimode fiber, and speckle

patterns are formed at the distal end of the fiber due to the complex modal interference

during the transmittance.

2.2 Solutions of Wave Equation and LP Modes

Technically, an optical fiber is a cylindrical waveguide that allows the propagation

of light, i.e., electromagnetic waves. Therefore, studying optical fiber theory refers

to solving Maxwell’s equations in a cylindrical geometry2. For most applications,

cylindrical step-index fibers can be considered homogeneous and lossless dielectric

media (no external charge and current exist), where Maxwell’s equations reduce to

∇×E = −µ
∂H

∂t
, ∇×H = ε

∂E

∂t
, (2.5)

where E is the electric field, H = B/µ is the auxiliary field, and ε and µ are the

electric permittivity and magnetic permeability of the medium, respectively. These

two Maxwell’s equations can be combined into a single wave equation that needs to

be satisfied by both electric and magnetic fields,

∇2

E

H

− µε
∂2

∂t2

E

H

 = 0. (2.6)

Any solution of this wave equation is known as a mode of the optical fiber and

represents a unique, independent transmission route for the light. In the general

solution of the wave equation, none of the six components of the electric and magnetic

field vanishes, and thus complicated hybrid modes exist. Instead of concentrating on

the full solution of the wave equation, a much simpler and practical solution can be

obtained by taking the refractive index difference between the core and the cladding to

be sufficiently small, which is known as weakly guiding approximation [101–104],

n1 − n2 ≪ 1. The resulting modes after the weakly guiding approximation are nearly

linearly polarized and referred to as LP modes. LP modes are good approximated

solutions for most fibers except for photonic crystal fibers and nanofibers where weakly

guiding approximation is not valid [105].
2 The calculations and details of solutions showed in this section can be found in many textbooks such as

[96–100]

13



Assuming the solutions of interest are linearly polarized time harmonic electromagnetic

waves traveling in the z−direction, they can be written in the cylindrical coordinates

as E

H

 =

E(r, ϕ)

H(r, ϕ)

 ei(ωt−βz), (2.7)

where ω = 2πc
n1λ

is the angular oscillation frequency of the wave and β = 2πn1

λ
is the

propagation constant (z−component of the wavevector k). By using the separation

of variables, the angular (azimuthal) solution of the wave can also be found easily

as Eϕ(ϕ) = eimϕ, where m = 0, 1, 2, . . . is an integer emerging as a result of the

azimuthal boundary condition (circular symmetry) of the fiber. The remaining radial

part of the electric and magnetic field satisfies the Bessel equation, whose solutions

are Bessel functions. When physical constraints are applied in the radial direction3,

the radial solutions inside the core are described by the Bessel function of the first

kind, Jm(r), and the solutions outside the core are described by the modified Bessel

function of the second kind, Km(r), whose first three orders are plotted in Fig. 2.3.
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Figure 2.3: The solutions of wave equation inside the fiber are represented by Bessel

function of first kind (a), and outside the fiber by modified Bessel function of second

kind (b). The wave shows an oscillatory behavior inside the fiber core while it decays

exponentially outside.

3 The solution inside the fiber core should be valid at r = 0, and the solution outside the fiber core should
decay with the increasing radius.
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Having the radial part of the solution, the magnitude of electric and magnetic field

components of the wave propagating inside a fiber with core radius a can now be

written as E

H

 =

Jm(
√
k2
0n

2
1 − β2 r)eimϕei(ωt−βz) for r ≤ a

Km(
√
β2 − k2

0n
2
2 r)e

imϕei(ωt−βz) for r > a
(2.8)

where k0 = ω
c

is the wavenumber in vacuum. The last condition to impose on the

system is the continuity of the fields and the potentials at the radial boundary r = a.

When applied to the solution Eq. (2.8), this boundary condition gives the characteristic

equation,

U
Jm+1(U)

Jm(U)
−W

Km+1(W )

Km(W )
= 0, (2.9)

where the normalized wavenumbers U and W are defined as

U = a
√

k2
0n

2
1 − β2, W = a

√
β2 − k2

0n
2
2. (2.10)

The characteristic equation, Eq. (2.9), can be solved to find the propagation constant β.

The equation has more than one solution for a given value of m, where each solution

represents a unique mode of the fiber. For a given m, the pth root of the characteristic

equation corresponds to LPmp mode of the fiber, which travels with the propagation

constant βmp. Here, m, the azimuthal parameter, represents the variations of the

field along the azimuthal (angular) direction, while p, the radial parameter, represents

the variations along the radial direction. The LP mode profiles can be visualized by

neglecting the dynamic ei(ωt−βz) part of the solutions in Eq. (2.8). The azimuthal

exponential can be separated into sine and cosine parts which are called odd and

even solutions, respectively. Visually, the only difference between the odd and even

representations of LPmp mode is a rotation in the azimuthal direction. Therefore, one

azimuthal polarity can be fixed in Eq. (2.8) for visualization purposes.

The details of numerical mode calculations and visualizations can be followed from

[106–108]. The first step in mode solutions is to find all propagation constants βmp for

a fixed azimuthal parameter m. This is achieved by solving the characteristic equation

Eq. (2.9). Each solution is then used in Eq. (2.8) for a chosen azimuthal polarity. The

field and intensity distributions of each mode can then be plotted on an appropriate

polar grid (r, ϕ). In Fig. 2.4, we show the amplitude, phase, and intensity profiles of
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the LP32 mode for a step-index multimode fiber with core diameter 105 µm, NA =

0.22 (ncore = 1.463, ncladding = 1.446) with an incident light of 1550 nm wavelength.

In any LPmp mode, the m index represents the number of azimuthal solutions, and in

visual representations of the mode intensity, it is equal to half of the number of angular

maxima along the circumference of a circle around the fiber center [109]. Similarly,

index p represents the number of radial solutions, which is visualized as the number of

maxima along the radial direction in the mode intensity. In Fig. 2.5, we show more

examples of the LP mode intensity profiles obtained for the same fiber parameters and

the wavelength.

Figure 2.4: Normalized amplitude (real part), phase, and intensity profiles of

LP32 (m = 3, p = 2) mode. The amplitude, E32, is, in general, a complex number

with both positive and negative values. Once the amplitude E32 and phase ϕ32 of the

mode is known, the intensity can be calculated as I = |E32e
iϕ32|2. The number of

azimuthal and radial solutions represented in a mode can be verified from the intensity

profile as there are 2m = 6 maxima along the azimuthal direction and p = 2 maxima

along the radial direction.
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Figure 2.5: Examples of LP mode intensity profiles for a step-index multimode fiber

with core diameter 105 µm, NA = 0.22 (ncore = 1.463 , ncladding = 1.446) with an

incident light of 1550 nm wavelength.
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2.3 Propagation of Light in Fiber and Formation of Speckle Patterns

When a light beam enters the fiber, the beam profile of the light is transformed to

the fiber modes by coupling to each mode with a specific weight. Thus, the modes

of the fiber can be considered as a complete set of functions, and the spatial profile

of the input light, Ein(r, θ), can be represented as a weighted sum of the fiber modes

Emp(r, θ),

Ein(r, θ) =
∑
m,p

cmpEmp(r, θ), (2.11)

where cmp, the coupling coefficient, is the weight of the input field coupled to mode

Emp. When the input field amplitude Ein(r, θ) is known4, coupling coefficients can be

found by calculating the overlap integral between the input field and the fiber modes,

cmp =

∫∫
E∗

mpEin r dr dθ. (2.12)

Once the coupling coefficients are obtained, the propagation of light inside the fiber can

be fully explained analytically. Considering a monochromatic input light of frequency

ω, the field distribution at a propagation distance z can be written as

E(r, θ, z) = Ein

∑
m,p

ei(ωt−βmpz) =
∑
m,p

cmpEmp(r, θ)e
i(ωt−βmpz), (2.13)

where βmp is the propagation constant of the mode Emp. When a light beam enters

the fiber, it couples to the modes of the fiber with the coupling coefficients calculated

by Eq. (2.12). These coefficients are then used in Eq. (2.13) to calculate the field

(or intensity) profiles at the desired distances. Even when the input beam is a well-

structured pattern like a sharp focus, as the beam propagates further inside the fiber, the

power starts to spread out, and a speckle pattern is observed due to modal interference

given by Eq. (2.13). The propagation of a focused beam inside the fiber at various

distances is visualized in Fig. 2.6. A more interesting example is given in Fig. 2.7, Fig.

2.8, and Fig. 2.9, where a text input is propagated inside the same fiber and amplitude,

phase, and intensity profiles are plotted, respectively.

4 In practical applications, the intensity of the input field |Ein(r, θ)|2 can be given instead of the amplitude. In
this case, the field amplitude can be obtained by taking the square root.
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Figure 2.6: Propagation of a focused beam inside the fiber at various distances. The

input field is first decomposed into the fiber modes by calculating the overlap integral

between the two, and then it is propagated through the fiber by using the propagation

constants of the decomposed modes. Thus, the input light is carried along the fiber

with the propagation of its constituent modes. The wavelength of the incident light and

the fiber parameters used in this simulation are the same as in the previous examples.
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0.004 mm 0.005 mm 0.01 mm 0.02 mm

0.05 mm 0.1 mm 0.2 mm 0.5 mm

1 mm 2 mm 5 mm 10 mm

Figure 2.7: Amplitude variation of the text "METU" at different propagation distances

along a multimode fiber.
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1 mm 2 mm 5 mm 10 mm

Figure 2.8: Phase variation of the text "METU" at different propagation distances

along a multimode fiber.
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Figure 2.9: Intensity variation of the text "METU" at different propagation distances

along a multimode fiber.
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CHAPTER 3

METHODS AND EXPERIMENTAL DETAILS

In this chapter, we introduce the experimental setup, apparatus, and methods used in the

experiments. The inner structure of the spatial light modulator (SLM) is described in

Section 3.2, and the role of liquid crystals in the working principle of SLM is discussed.

Achieving a high-quality focus across a scattering medium is a good indicator and

verification of the proper functioning of the SLM and the setup. In Section 3.3, we

introduce two feedback-based optimization algorithms which are used to modulate the

phase of the incident light to obtain a focus at the distal end of a multimode fiber. We

show that the non-sequential algorithm, which changes the whole SLM pixels at once,

gives a higher-quality focus compared to the pixel-based sequential algorithm. The

quality of the focus is measured by calculating the peak-to-background ratio (PBR) of

the camera image. The PBR is also used as the objective function (to maximize) in

the optimization process of both algorithms. The position and the size of the focusing

region are carefully chosen in this chapter for demonstration purposes, but in principle,

they can be chosen randomly over the image within the physical limitations.
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3.1 Experimental Setup

The experiments in the upcoming chapters are performed with the setup shown in Fig.

3.1. In some experiments, there has been made very slight changes that do not alter

the accuracy or repeatability of the results.

PMF M1HWP

L1 (1000 mm)

Spatial Filter

M3

MMF

Camera

Telescope (15x)

L2 (200 mm)

SLM

M2

L3 (100 mm)

Tunable 

Laser
CP

FP FP

P
B

S

Figure 3.1: Schematic drawing of the experimental setup. M: Mirror, L: Lens, CP:

Collimation Package, FP: Fiber Port, PMF: Polarization Maintaining Fiber, HWP:

Half-Wave Plate, BE: Beam Expander, PBS: Polarizing Beam Splitter, SLM: Spatial

Light Modulator, SF: Spatial Filter, MMF: Multimode Fiber

A tunable laser (SANTEC - WSL100) is used as the primary light source, which can

emit <100 kHz linewidth wavelengths between 1527.60 nm to 1565.50 nm (38 nm

tuning range) with a tuning step-size of ∼1 pm. The output power of the laser can

also be tuned between 5.01 mW to 35.48 mW. The deep learning study in Chapter 5 is

executed on a similar setup with a visible laser operating at 671 nm. The output of

the laser is coupled to an FC/APC polarization maintaining fiber in order to produce a

linearly polarized light. The half-wave plate is used to control the incident polarization
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so that it matches the alignment direction of the liquid crystals inside the spatial light

modulator (more details are given in Section 3.2). The beam is then expanded with a

15x beam expander so that the whole SLM screen (HOLOEYE PLUTO TELCO) can

be covered. The SLM is used to shape the incident wavefront by changing its phase,

which provides a wide range of uses. SLMs can be used to create holograms of the

desired objects as well as to focus light at any target location. A 2-inch polarizing

beam splitter is placed to ensure the same incoming and outgoing polarizations after

the SLM. Other popular methods to implement an SLM into the experiments are listed

in [110]. A 4-f system is used after the SLM with two lenses of focal lengths 1000 mm

and 200 mm. A blazed grating is fixed on the SLM for all applications, and the zeroth

order diffraction formed after the blazed grating is eliminated with a spatial filter since

it carries the "unmodulated" pixelated geometry of the SLM [111–115]. The light is

then directed into the multimode fiber with the help of a fiber port system, and speckles

are captured with an InGaAs FPA camera (Allied Vision - Goldeye G-008 TEC1).

The multimode fiber is fixed to the optical table with adhesive tapes without further

advanced isolation methods. The fiber is susceptible to environmental conditions such

as temperature variation, humidity, and vibrations, and as a result of this, the speckles

formed at the exit of the fiber are expected to change over time. Fig. 3.2 shows the

decorrelation of a speckle image over a five hours period. The speckle obtained after

five hours is observed to be ∼ 2% different than the initial speckle.

Long calibration/optimization times might be needed in the spectrometer studies

presented in Chapter 6 and Chapter 7, and instability of the speckles may create

a huge impact in this case. These studies require the use of matrices constructed

from the pixels of the speckle images, and the inverse of the matrices is taken in the

reconstruction step. Thus, the resolution and accuracy of the spectrometers are highly

dependent on the stability of the speckles. This problem can be overcome by isolating

the multimode fiber better and by the implementation of faster equipment, such as

a laser with high tuning speed, or a faster wavefront modulator, such as a digital

micromirror device. Lacking these solutions in our setup, we applied another method

to simulate the ideal equipment, which is described in Chapter 6.
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Figure 3.2: Decorrelation of speckle images over time. The speckles obtained after

five hours are approximately 2% different than the initial speckle. Fast decorrelation of

speckles may cause problems in applications requiring long measurement times. The

stability of the system and hence the correlation time of the speckles can be increased

with the advanced isolation of the multimode fiber.

3.2 Spatial Light Modulator

The spatial light modulator we use in our experiments is an LCOS (Liquid Crystal on

Silicon) two-dimensional reflective microdisplay with full HD (1920×1080) resolution,

and it is a phase-only device (can only modulate the phase of the incident light but

not the amplitude) [116]. Behind the cover glass of the LCOS microdisplay, there

exists a transparent electrode, a liquid crystal (LC) layer, a complementary metal-

oxide-semiconductor (CMOS) layer, and alignment layers, as shown in Fig. 3.3. More

details about the structure and working principle of spatial light modulators can be

found in various resources such as [117–122].
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V

Figure 3.3: Constituents of an LCOS microdisplay. The back panel of the SLM screen

is a CMOS with a reflective layer. A liquid crystal layer is sandwiched between the

CMOS layer and a transparent electrode, and the front end of the screen is covered

with glass. The applied potential between the CMOS layer and the electrode creates

an electric field and changes the orientation of the LC molecules.

The phase modulation of the incident light is achieved by controlling the orientation

of the liquid crystals through the voltage applied between the CMOS layer and the

electrode. The liquid crystals are rod-like molecules, and with the applied electric field,

they change their orientations. LC molecules are also birefringent; thus, the refractive

indices faced by the incident light in different orientations of the molecule are different.

In the unmodulated state, all parts of the light reflected from the SLM experience the

same orientation of the LC molecules; hence they travel the same distance inside the

liquid crystal. However, as illustrated in Fig. 3.4, when the SLM is programmed, the

modulated LC molecules change orientation, and parts of the light traveling through

these molecules now experience a delay, which causes a phase difference between

different parts of the light. The phase shift between two beams which are reflected

from different pixels of a modulated SLM can be written as

∆ϕ =
2π

λ

∫ d

0

∆n(r) dr, (3.1)

where d is (roughly) the thickness of the liquid crystal layer.
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Figure 3.4: Modulation of LC molecules inside the LCOS microdisplay. When the

SLM is not programmed, the voltage difference across the liquid crystal layer is zero,

and all LC molecules have the same horizontal orientation. In this case, parts of

the light incident on different pixels experience the same refractive index; thus, they

are reflected with zero path difference. When the SLM is programmed, some LC

molecules are rotated as a result of the applied potential. The light reflected from

different pixels experiences different refractive indices, which causes a path difference.

This mechanism can be used to modulate the incident wavefront in the desired shape.

All pixels of the SLM can be modulated individually and independently by applying

unique voltages. In order to create a voltage across the LC layer at a pixel, this pixel

is addressed with an 8-bit (256) grayscale value which corresponds to the magnitude

of the applied voltage. The SLM in our system has 3.5π phase modulation ability for

full addressing. Thus, using the first 146 gray levels is enough to obtain 2π phase

modulation.

3.3 Optimization Algorithm

Most of the time, achieving a sharp focus is a convincing sign that the SLM is working

correctly with good modulation ability. In Chapter 7, a single-pixel spectrometer will

be built by exploiting the modulation ability of the spatial light modulator. Various

algorithms can be used to program the SLM for obtaining focus across a complex

medium such as multimode fiber [123, 124]. In a phase optimization algorithm, the

purpose is to increase the intensity at the desired target location on the detector by
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changing the phase of the incident light field. Representing the fields in a phasor

diagram, this corresponds to changing the orientations of the field vectors on the target

location and making more fields to contribute the constructive interference, as shown

in Fig. 3.5.

In our studies, we have used two feedback-based iterative algorithms, a continuous

sequential algorithm [123], and a non-sequential algorithm [125], to focus light on a

circular target region (r = 5 pixels) at a position slightly away from the center of the

speckle image formed at the distal end of the multimode fiber 1. Although a detailed

comparison of the algorithms is not done in the context of this thesis, we observed that

the non-sequential algorithm gives a better quality focus while the sequential algorithm

provides faster focusing; thus, it is time effective. The final results of the single-pixel

spectrometer in Chapter 7 are obtained by using the sequential algorithm.

Before Wavefront Shaping After Wavefront Shaping

Figure 3.5: Complex plane representation of phase optimization algorithms. Black

vectors represent the electric fields in the complex plane. Before the optimization,

the fields randomly contribute to the total field on that point, shown with the red

arrow. With phase optimization algorithms, the field vectors are rotated to interfere

constructively. As a result of the constructive interference, the light can be focused at

any desired target location on the output of the system.

1 The position and radius of the target region are specific to our setup, although, in general, they can be chosen
at any location and size. Of course, the size of the focal spot is limited by the size of the smallest speckle grain.
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3.3.1 Enhancement and Peak-to-Background Ratio

In their groundbreaking study [126], Vellekoop and Mosk used enhancement factor η

to measure the wavefront shaping performance and focusing quality of their system.

The enhancement factor η is defined as the ratio between the optimized intensity (the

intensity of the focused region after wavefront shaping) and the ensemble averaged

intensity of the speckle image before optimization,

η =
Iafter

target

⟨Ibefore
speckle⟩

, (3.2)

where ⟨. . .⟩ denotes the ensemble average. The enhancement factor is useful when

comparing the initial and final states of the systems, and it is also effective in calculating

the increase in total light transmission.

In our experiments, we used a more dynamic figure of merit, peak-to-background ratio

(PBR), to determine the focus quality of light across the multimode fiber. PBR does

not involve the initial state of the system and aims to compare the intensity of the

focused region to the mean intensity of its surrounding in the current state,

PBR =
Itarget

⟨Isurrounding⟩
. (3.3)

For dynamic scattering media, the quality of the focus is limited by the temporal

stability of the medium, which is given by the persistence time, TP [123]. Therefore,

in highly dynamic media such as living tissue (TP ≈ 10−3 seconds), it may not be

possible to reach high enhancements or PBRs as desired. In such systems, the speed

of the wavefront modulator device becomes a key factor, and for that reason, using a

digital micromirror device (DMD) [30, 127–134] is preferred in biological wavefront

shaping applications.

Fig. 3.6 shows an example of light optimization at the distal end of a multimode fiber

using phase optimization. At each iteration of the optimization, the SLM tries to find a

better pattern to increase the PBR of the output speckle image. The PBR of the final

image is 701.03, and it is ∼11.7 times higher than the initial PBR before wavefront

shaping (initial PBR = 60.15). Fig. 3.6(e)-(f) shows the intensity on the cross-section

shown by the white dashed line on Fig. 3.6(c)-(d).
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(b)(a)

(e) (f)

(d)(c)

Figure 3.6: Comparison of speckle image before and after wavefront shaping. (a)-(b)

3D visualization of the speckles before and after optimization. (c)-(d) 2D visualization

of the speckles before and after optimization. (e)-(f) Intensity variation along the white

dashed line on the 2D speckles before and after optimization.
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3.3.2 Continuous Sequential Algorithm

Fig. 3.7 shows the principle of the continuous sequential algorithm as described in

[123]. Each segment of the SLM is optimized individually to focus the light at the

target location on the camera. The size of the segments (group of pixels) and the

number of phase steps are determined by the user according to the needs 2. Generally,

the phase of each segment is cycled from 0 to 2π, and the peak-to-background ratio (or

any other figure of merit to measure focusing quality) of the output image is computed

for each phase. The phase of each segment is then set to the optimal phase, which

gives the highest PBR. The process is then repeated for all segments of the SLM, and

the optimal SLM pattern is obtained.

⋯
⋯

Figure 3.7: Principle of continuous sequential algorithm. Individual pixels (or groups

of pixels) on the SLM are programmed sequentially to increase the focusing quality of

the beam on the desired target region of the camera. The optimal phase value of each

pixel is determined by calculating the PBR of the output image.

Fig. 3.8 shows the states of the SLM and the camera before and after applying the

continuous sequential algorithm. As mentioned earlier in Section 3.1, we always

keep a blazed grating on the SLM and allow only first-order diffraction to reach the

multimode fiber. The SLM screen is divided into 144 macropixels of size 120×120.

Four phase values, 0, π/2, π, 3π/2, are written on each macropixel and for each phase,

the peak-to-background ratio of the speckle image is measured for the chosen target

point (shown with the red circle). The optimization is stopped after three iterations of

the whole SLM screen, which took approximately 30 minutes. The PBR of the output

speckle image is increased 6.6 times, from PBRinitial = 78.3 to PBRfinal = 517.3.

2 It would be wise to choose both the number of segments and the number of phase steps to be as low as
possible for a highly dynamic medium so that the optimization can be completed before the persistence time of the
medium.
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Figure 3.8: Initial and final SLM patterns (left) and corresponding speckles (right)

obtained with the implementation of continuous sequential algorithm. All modulation

is done on the blazed grating kept on the SLM. 144 macropixels are optimized in three

iterations using four phase values between 0− 3π/2. A focus is be obtained on the

target location (shown with the red circle) after ∼30 minutes. The PBR of the system

is increased 6.6 times, from 78.3 to 517.3.

3.3.3 Non-sequential Algorithm

The non-sequential algorithm introduced in [125] is another feedback-based iterative

optimization algorithm we used to focus the light at the distal end of a multimode fiber.

Opposite to the sequential algorithm, this algorithm changes the value of all pixels on

the SLM in each iteration [106]. A simple flowchart of the algorithm is shown in Fig.

3.9. In the nth iteration of the SLM screen, the algorithm calculates a temporary phase,
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Φtemp, using the last successful SLM phase Φn−1,

Φtemp = arg
[
(1− ξ)eiΦn−1(x,y) + ξei(kx cosα+ky sinα+θ)

]
, (3.4)

and decides whether to keep the temporary phase by comparing the performance of

Φn−1 and Φtemp on creating a better quality focus. Here, x and y correspond to SLM

pixels while the other variables, ξ, α, θ, k, are randomly generated in each trial. ξ is

a random number between 0 and 1/2, while the random phase θ and the angle α are

chosen in the range 0 − 2π. The wave vector k is chosen randomly in the interval

[0, kmax], where kmax depends on the system parameters such as the core size of the

fiber, the input wavelength, and focal lengths of the lenses used for imaging the SLM

screen into the fiber, as described in [125].

Generate 
Random 

Parameters
𝑘𝑘, 𝛼𝛼, 𝜃𝜃, 𝜉𝜉

Φtemp = arg[ 1 − 𝜉𝜉 𝑒𝑒𝑖𝑖Φ𝑛𝑛−1 + 𝜉𝜉𝑒𝑒𝑖𝑖(𝑘𝑘𝑘𝑘cos𝛼𝛼+𝑘𝑘𝑘𝑘sin𝛼𝛼+𝜃𝜃)]

Better
Focus?

Update current SLM phase, Φ𝑛𝑛−1

NO
Φn = Φn−1

Set

YES

N
ex

t I
te

ra
tio

n

Φn = Φtemp

Set
𝑛𝑛 → 𝑛𝑛 + 1

Figure 3.9: Flowchart of non-sequential algorithm. The SLM phase is updated in each

iteration with random parameters. The SLM phase mask giving better focus on the

desired target point is kept on the SLM after each iteration.

Fig. 3.10 shows an example of light optimization at the distal end of a multimode

fiber using the non-sequential algorithm. The light is very sharply focused in the target

location (red circle) after 90 minutes, increasing the PBR 8 times (initial PBR is 96.0

for this example).
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Figure 3.10: SLM patterns (left) and corresponding speckles (right) for various itera-

tions in a non-sequential phase optimization algorithm. A decent focus can be obtained

on the target location (shown with the red circle) after ∼30 minutes with PBR > 500.

If the optimization time is increased to 90 minutes, the focus gets very sharp with PBR

= 769.9.
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The results obtained in Fig. 3.10 show that the focusing quality does not significantly

improve between iterations 667 and 1918. The PBR increases by 29% during this

period, in ∼60 minutes, while it increases by 128% between iterations 7 and 667,

in ∼30 minutes. To balance the focusing quality and optimization time, the number

of iterations for which the PBR starts to converge can be set as the final iteration of

the algorithm. Fig. 3.11 shows the increase in the peak-to-background ratio with the

number of iterations for three different runs of the algorithm. For all three runs, the

PBR starts to converge after 800 iterations, where we obtain a decent focus with PBR

> 500. When the average of all runs is considered, PBR = 500 is exceeded after around

600 iterations, which corresponds to roughly 30 minutes of optimization. Therefore,

the algorithm can be set to execute until 600 iterations or 30 minutes of optimization

time is reached.

400 800 1200 1600
Iterations

100

300

500

700

P
B

R

90.6 min
86.3 min
87.4 min

Figure 3.11: Peak-to-background ratio vs. the number of iterations for three different

runs of the optimization algorithm. The increase in the PBR is not significant after

800 iterations, where we obtain a decent focus with PBR > 500.
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CHAPTER 4

OPTICAL CLASSIFICATION THROUGH SPECKLE IMAGES

In this chapter, we present a primitive but also powerful demonstration of wavefront

shaping in optical information transfer, which can lead to insightful applications

in communication, cryptography, and computing. We start the chapter by giving

background information on classical computing and how information is encoded.

The background information is based on the delightful textbook [135]. We then

demonstrate the use of spatial light modulators in encoding information. We write

distinct gratings on the SLM screen for each number from 1 to 9, and guarantee each

grating to create a unique speckle after traveling through a multimode fiber. The

speckle patterns, y, are used to construct a calibration matrix, T, and the input numbers,

x, are reconstructed by solving the inverse propagation equation x = T−1 ∗ y. We test

the long-term classification accuracy of our system and share the results at the end

of the chapter. The system we propose here is a demonstration of two-fold optical

encryption of information where we first encode the numbers as optical gratings and

then scramble the information once more with the propagation inside multimode fiber.

Combined with the results in the long-term tests, we believe this system can be further

improved to build safe communication schemes.
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4.1 Encoding Information into Binary States

In classical computing, the information is expressed in terms of bits, which refers

to two possible states: 0 and 1. Being a two-state system, a bit carries the smallest

amount of information possible. To better understand the concept of bits, we can make

an analogy with the coins. A coin has two states, heads (H) and tails (T), meaning one

coin can only represent two different pieces of information. A common example of a

two-state information system is a switch on an electrical circuit. We can associate the

"on" and "off" states of the switch with the heads and tails of a coin, respectively (see

Fig. 4.1). In this scenario, when the coin is in the H state (switch "on"), no current

flows through the circuit, and the light bulb does not glow. Conversely, when the coin

is in the T state, a current flows through the circuit, electrical energy is transferred to

the bulb, and the bulb glows. Thus the binary information on whether the light bulb is

glowing or not is encoded into the H and T states of the coin as shown in Table 4.1.

Table 4.1: States of the coin and associated information

State of the Coin Encoded Information

Heads (H) The light bulb does not glow

Tails (T) The light bulb glows

+ - + -

Heads Tails

Figure 4.1: Encoding binary information with a single coin. The coin has two states:

heads (H) and tails (T), which are associated with the "on" and "off" states of the

switch in the circuit. In the given scenario, the states of the coin give information on

whether the light bulb is glowing or not.
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The number of coins to be used in order to transfer some encoded information depends

on the nature of the problem, i.e., the amount of information that needs to be transmit-

ted. If n pieces of information need to be transferred, then the number of coins to be

used, m, should satisfy the relation 2m > n. A common way of encoding information

into binary states is to use binary digits (bits), 0 and 1, instead of the H and T states

of a coin. Electronic circuits inside the computers generally have two voltage levels,

0 volts, and 5 volts, and conventionally this two-level system is described by bits. A

group of bits can be combined to represent a larger amount of information. The states

obtained in this form are called binary strings or bit strings.

In common practice, we use decimal numbers which are represented in base-10. A bit

string, on the other hand, can be used to represent numbers in base-2. As in the case of

decimal numbers, for a given binary (base-2) number, digit d denotes how many of

d−power of 2 the number has. For a communication scheme involving only numbers

from 1 to 9 (n = 9), a binary string of length four is enough since 2m > n relation is

satisfied for m = 4, as shown in Table 4.2.

Table 4.2: Representation of decimal (base-10) numbers in binary (base-2) 4-bit form

Decimal (Base-10) Binary (Base-2)

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001
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4.2 Optical Encryption of Binary Numbers

The study we present in this chapter aims to construct a safe communication method

by encrypting binary numbers optically. Encryption can be considered as putting a

piece of information into a form that is difficult to read without the appropriate key.

And decryption is the transformation of encrypted information back into its initial

readable form. In recent years, there has been a growing interest in the utilization of

optical systems for encryption [136–151]. Here, we use two-fold encryption by:

1. Converting the binary numbers into optical gratings

2. Propagating them through a multimode fiber

We first convert the decimal numbers from 1 to 9 into bit strings of length 4 (see

Table 4.2) and then, for each number, we create an appropriate phase mask on the

spatial light modulator. The SLM masks are formed from two phase values, 0 and

π, which correspond to 0 and 1 states of the binary system. Thus, when a digit in

the bit string is 0 (1), then 0 (π) phase shift is added to the SLM to represent this

digit. After deciding on the phase values, we scan the SLM screen with varying-sized

rectangles to determine the regions of the SLM most responsive to the π phase shift.

The four rectangular regions obtained after this process are used in the experiment

to demonstrate the classification of numbers. Fig. 4.2 shows the phase distributions

created for each binary number. We modulate only the region shown with the solid

black rectangular window since it is the most responsive area of the SLM, specific

to our setup. Each small rectangular window (separated by dashed lines) represent a

binary state, or a digit in bit string. As mentioned earlier in Chapter 3, we always keep

a vertical blazed grating on the SLM screen in order to eliminate the unmodulated

(pixelated) part of the SLM. When the phase distributions are added to this blazed

grating, they shift the blazed grating with an amount corresponding to the written

phase distribution. Fig. 4.3 shows the SLM patterns when the phase distributions are

applied. Clearly, a π phase shift on a region changes the original gray levels to their

direct opposite. Fig. 4.4 shows the speckle patterns created after the light reflected

from the gratings travels through the multimode fiber.
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1  0001

-

0

2  0010

-

0

3  0011

-

0

4  0100

-

0

5  0101

-

0

6  0110

-

0

7  0111

-

0

8  1000

-

0

9  1001

-

0

Figure 4.2: Phase distribution written on the SLM screen for encoding bit strings of

length four corresponding to the numbers from 1 to 9. The binary number 0 (1) is

encoded as 0 (π) phase shift. Encoding is applied to the most responsive regions of the

SLM, which are determined by scanning varying-sized rectangles of phase 0 and π

over the whole SLM screen. Four regions used to encode the digits in the bit string are

separated by dashed lines.
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1  0001

0

145
2  0010

0

145
3  0011

0

145

4  0100

0

145
5  0101

0

145
6  0110

0

145

7  0111

0

145
8  1000

0

145
9  1001

0

145

Figure 4.3: SLM patterns for encoding bit strings of length four corresponding to the

numbers from 1 to 9. The numbers are encoded onto the vertical blazed grating, which

is always kept on the screen to avoid the pixelated nature of the SLM. The binary

number 0, which is encoded to create a 0 phase shift, does not change the gray levels

of the blazed grating. The binary number 1, encoded to create π phase shift, shifts the

gray levels to their direct opposite. Optically, the light beam incident on the modulated

part of the SLM is introduced a π phase shift compared to the beams incident on the

unmodulated parts.
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1  0001

0

1
2  0010

0

1
3  0011

0

1

4  0100

0

1
5  0101

0

1
6  0110

0

1

7  0111

0

1
8  1000

0

1
9  1001

0

1

Figure 4.4: Speckle patterns obtained at the exit facet of the multimode fiber for bit

strings of length four corresponding to numbers from 1 to 9. Most responsive regions

of the SLM are modulated to guarantee distinct speckles. The similarity of the speckles

is measured by calculating the correlation coefficients of speckles with each other.

The speckle patterns obtained in Fig. 4.4 represent distinct input information (binary

numbers) and for this reason they have to be distinct in order to distinguish numbers

from each other, thus to classify the numbers accurately. If the similarity between two

speckles is high, the receiver can mix the corresponding numbers and translate the

input message wrong. Although we have modulated the most responsive SLM regions

to prevent this confusion, a more quantitative approach is to calculate the correlation

between the speckles. Fig. 4.5 shows the correlation map of the speckles created by the

numbers. The correlation values yield the similarity percentage of speckles, and they

are calculated with the corr2 function in MATLAB [152], which gives the Pearson

correlation coefficient between two 2D arrays. The diagonal entries of the matrix
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indicate the self-correlation of the speckles, and they are always equal to 1. For the

rest of the entries, the minimum correlation is around 0.4; thus, two speckles created

by different numbers are at least 40% similar to each other. The highest similarity

occurs between the speckles created by numbers 8 and 9, with a correlation around

0.7. In general, the dominancy of the diagonal entries in the correlation matrix is a

good indicator of the distinguishability of the numbers.

1 2 3 4 5 6 7 8 9
Number

1 
2 
3 
4 
5 
6 
7 
8 
9 

N
u

m
b

er

0.4

0.6

0.8

1

Figure 4.5: Correlation map of speckles obtained for numbers 1 to 9. The diagonality

of the correlation map is a good indicator of the distinguishability of the speckles from

each other. The correlation between speckles created by numbers 8 and 9 is around

0.7, which is the highest correlation between two different speckles. The correlation

value yields the similarity percentage of the speckles. Thus all speckles are at least

30% different from each other in the initial configuration.

4.3 Reconstruction Method

Our decryption scheme is based on the reconstruction of the input information x in

the propagation equation y = T ∗ x. In order to solve the propagation equation for

the input x, we develop a mathematical model where the input numbers and output
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speckles are represented by column vectors, and the propagation medium is modeled

as a matrix. Since the system is calibrated with nine digits, the inputs are vectors of

length 9× 1. The input vectors are called digit vectors, and they are denoted by Di,

where each i = 1, 2, . . . , 9 corresponds to a specific digit. The indices of the digit

vectors represent the digit carried by this vector, and all entries of the digit vectors are

zero except for the entry at the position of the index value. Thus, the digit vectors are

defined as standard unit vectors of 9 dimensional vector space, as shown below.

D1 =



1

0

0
...

0


9×1

D2 =



0

1

0
...

0


9×1

D3 =



0

0

1
...

0


9×1

. . . DM =



0

0

0
...

1


9×1

The outputs, speckle patterns measured by the camera, have two-dimensional structures

and are originally represented by 2D matrices. We reshape the speckle matrices into

column vectors Ii and call them intensity vectors, where i = 1, 2, . . . , 9 specifies the

input number (1 to 9) created that speckle. If the speckle image has a resolution of

m×n, then the original speckle matrices will have m×n dimensions, and the intensity

vectors will have (m× n)× 1 dimensions.

−→



11 15 12 . . . 10

20 14 10 . . . 13

10 16 15 . . . 12
...

...
... . . . ...

13 18 12 . . . 11


m×n

reshape
−→ Ii =



11

15

12
...

11


(m×n)×1

After modeling the inputs and outputs as column vectors, a propagation equation

between the digit vectors and the intensity vectors can be written as

Ii = T ∗Di, (4.1)

where T is a (m× n)× 9 dimensional matrix known as calibration matrix (also called

propagation matrix or transmission matrix), and "∗" denotes the matrix multiplication.
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Since digit vectors are modeled as unit vectors in the standard basis of 9-dimensional

vector space, the propagation equation can only be satisfied if the columns of the

calibration matrix are constructed from the intensity vectors. Below, we show the

matrix form of the calibration matrix (on the left) and a visualization of the calibration

matrix obtained in the experiment for nine numbers (on the right).

T =

 I1 I2 . . . IM


(m×n)×9

−→

0

255

When the speckles of all nine digits are captured, the calibration matrix T can easily be

constructed as described above. The calibration matrix can then be used to reconstruct

the unknown digits. In practice, the user will have the intensity vector, Iu, created

by the unknown input digit, together with the calibration matrix T. In this case, the

unknown digit vector, Du, can be obtained by inverting the propagation equation, Eq.

(4.1),

Du = T−1 ∗ Iu. (4.2)

4.4 Results

The calibration matrix, obtained with the process described in the previous section, is

used as the key between the sender and the receiver. Each time the sender wants to

transmit a message consisting of the digits from 1 to 9, she uses the same encryption

steps and generates speckles. The receiver takes the message in the form of speckles

and uses the key (the calibration matrix) to decrypt the message. Fig. 4.6 and Fig. 4.7

show the confusion charts showing the long-term performance of the cryptographic

messaging system. The numbers inside the charts are the prediction accuracies of the

digits (evaluated over one), measured at different time labels ranging from 5 minutes

to 30 hours. The diagonal entries correspond to correct predictions, and the diagonality

of the confusion charts is a sign of accurately working encryption/decryption scheme

between the sender and the receiver.
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The reconstruction error, µ, denoted on top of the confusion charts is calculated as

µ =

√
1

9
[Dactual

u −Dreconstructed
u ]2 , (4.3)

where Dactual
u is the true digit sent by the sender, and Dreconstructed

u is the digit recon-

structed and read by the receiver after using the inverse propagation equation Eq. (4.2).

The average reconstruction error of the encrypted messaging system increases from

1.8% to 11.9% in 30 hours. Yet, the confusion chart obtained after 30 hours still

shows diagonal behavior. Thus, if the sender and receiver agree on accepting the digit

which has the highest prediction ratio as the correct digit, then the messaging can be

maintained securely even after 30 hours.

The preliminary results presented in this chapter can be improved by testing the

performance of the system for longer times. The security level and the duration of

validity of the messaging can be increased further by using distinct phase values, i.e.,

distinct gratings, for each number, which is expected to decrease the similarity of the

speckle patterns. Furthermore, a more advanced encryption system can be developed

by changing the position of the modulated grating windows on the SLM screen. Such

a system brings extra security with the cost of an enlarged calibration set and longer

calibration time, but it can also be used in advanced classification tasks.
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Figure 4.6: Confusion charts of the message delivery system after 5 min, 15 min, 30

min, and 1 hour. The average reconstruction error, µavg, which is found by averaging

the individual errors of all digits, does not show a structured behavior in the first 30

minutes but then increases monotonically.
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Figure 4.7: Confusion charts of the message delivery system after 2 hours, 5 hours, 15

hours, and 30 hours. The average reconstruction error increases from 4.3% to 11.9%

in 28 hours.
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CHAPTER 5

DEEP LEARNING BASED IMAGE TRANSMISSION THROUGH A

MULTIMODE FIBER

The content presented in this chapter is adapted from the published version:

• S. Kurekci, A. T. Temur, M. E. Odabas, G. Afshari, and E. Yüce, “Deep learning-

based image transmission through a multi-mode fiber,” Proc. SPIE 11351,

Unconventional Optical Imaging II, 1135126 (2020)

Image transmission through a multi-mode fiber is a difficult task, given the complex

interference of light through the fiber that leads to random speckle patterns at the

distal end of the fiber. With traditional methods and techniques, it is impractical to

reconstruct a high-resolution input image by using the information obtained from

the intensity of the corresponding output speckle alone. In this work, we train three

Convolutional Neural Networks (CNNs) with input-output couples of a multi-mode

fiber and test the learning with images outside the learning set. The three implemented

deep learning models have modern UNet, ResNet, and VGGNet architectures and are

trained with 31,200 gray-scale handwritten letters of the Latin alphabet. After the

training, 5,200 images outside the learning set were used for testing, and it was shown

that the models successfully reconstructed the input images with average fidelities

ranging from 81% to 90%. Our results show the superiority of the ResNet-based

architecture over UNet and VGGNet in reconstruction accuracy, achieving up to 97%

fidelity in a short amount of time. This can be attributed to the success of the ResNet

architecture in learning non-linear systems compared to its counterparts. We believe

that the implementation of machine learning techniques to imaging, along with its

contributions to biophysics, can reshape the telecommunication industry and thus will

be a cornerstone in future optics and photonics studies.
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5.1 Introduction

Transmitting a high-quality image through a fiber has important implications in optical

communications and biological applications such as endoscopy and neuroimaging.

Single mode fibers (SMF) allow propagation of a single spatial mode, which can carry

only one-pixel image information. For an advanced everyday image having many more

pixels, a bundle of SMFs can be used for image transmission. Yet, using a bundle of

single-mode fibers is not practical for endoscopic applications due to the inevitable low

resolution they possess. Compared to single-mode fibers, a multimode fiber (MMF)

supports many more propagation modes which, in theory, allows the transmission of an

image with a high number of pixels. However, image transmission through an MMF is

not an easy task since interference between guided modes forms a seemingly random

speckle pattern at the exit facet of the fiber. Local deformations along the fiber also

increase the complexity of this task. Thus, to recover any information related to the

image sent through a multimode fiber, the mathematics behind the transmission must be

understood. Recent studies for understanding transmission through a multimode fiber

concentrate on measuring the transmission matrix of the fiber [153, 154] or building

a deep neural network that learns the mapping between the transmitted images and

output speckles.

The studies for adapting a neural network for image recognition in a multi-mode fiber

started in 1991 by Aisawa et al. [155] and are continuously drawing increased attention

[156, 157]. In these preliminary works, the constructed neural network algorithms

were primitive compared to modern deep neural networks. When modern architectures,

such as UNet, ResNet, and VGGNet 1 based deep neural networks, were used for

image transmission through a multi-mode fiber, significant results were obtained.

The trials over different fiber lengths between 0.2 m and 10 m, where two separate

neural networks were used for reconstruction and classification of hand-written letters,

showed the success of deep learning algorithms in multi-mode fiber image transmission

with reconstruction fidelities up to 97% [158]. In the same study, it was also shown that

for a 1-km-long fiber, due to high interference between the spatial modes inside the

fiber, the success rate of the network in classifying the images was reduced dramatically,

1 As a sidenote in nomenclature, we would like to state that throughout the text, XNet should be understood as
XNet based architecture.
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although the reconstruction rate was still at the levels of 90%. A simulation result

showing the capability of deep neural networks in constructing both the amplitude and

the phase of the MMF input came very shortly after that [159]. In this work, rather

than experimentally captured images, the models were trained with the input-output

pairs obtained from the transmission matrix of the fiber. Moreover, it was shown that

after training, deep neural networks were able to reconstruct images that come from

a different distribution than those in the training set. The learning was successfully

transferred with fidelities around 90%, and the supremacy of ResNet over VGGNet

was shown in terms of computation time. However, the image reconstruction accuracy

of the two networks was shown to be very similar. An exciting study about transmitting

real-time images and videos through a multi-mode fiber was also published recently,

where the transmission matrix of the fiber was statistically measured by a single-layer

deep learning algorithm [160].

Image reconstruction after transmission through a multimode fiber turns into a partic-

ularly difficult task when an intensity-only measurement is done. In this approach,

the neural network needs to find the nonlinear relation between the output speckle

intensity and the input electric field. After being illuminated with the laser light, the

letters are carried to the multimode fiber as an electric field of amplitude A and phase

ϕ,

Ein = Aeiϕ, (5.1)

and, after the transmission along the fiber, they are recorded on a camera as an intensity

distribution

Iout = |Eout|2 = |T ∗ Ein|2, (5.2)

where T is the transmission matrix of the fiber. Therefore, when fed with the out-

put intensity Iout, the objective of the neural network is to correctly reconstruct the

amplitude A and the phase ϕ of the input electric field Ein.

In this work, we reconstruct the images at the proximal end of a multimode fiber from

the corresponding speckle patterns by executing three different modern neural networks

and compare their performances. We first construct the ResNet and VGGNet-based

architectures [159] and then the UNet-based architecture [158]. Our results show the

superiority of ResNet architecture in solving the multimode fiber image transmission
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problem compared to the other two tested networks. Higher reconstruction fidelity

and convenient computation time obtained from ResNet also promises better results

when the network is applied to other nonlinear inverse problems having complex inner

structures such as speckles. To the best of our knowledge, the three architectures

underlined in this study have never been compared for the same system.

5.2 Deep Learning

Deep learning is an implementation of Machine Learning that makes use of biologically

inspired artificial neural networks to perform specific tasks on given data without

explicit instructions, relying on inferences made from the data itself. Artificial neural

networks (ANN) are used to model functions or transformations and are essential

connections of primitive computational units called neurons. Neurons receive signals

and process them based on their internal adjustable parameters (weights and biases),

then pass them through what are called activation functions and onto other neurons.

Activation functions are generally used to allow the output signal to be nonlinear and

are especially important in solving complex nonlinear problems. The general form of

the propagation function of an artificial neuron with input signal x and output signal y

is given as

y = g(w ∗ x+ b), (5.3)

where w is the weight, b is the optional bias term, and g is the activation function of

the neuron.

In supervised deep learning, the goal is to model the mapping from a given set of inputs

to a given set of outputs using ANNs that consist of multiple layers of neurons. The

output of the final layer of an ANN is called the prediction and is expected to match

the target output. However, the parameters of the ANN are randomly initialized and

need to be learned by the network. The process of learning is the adjustment of these

parameters, using backpropagation, to minimize a loss (cost) function that represents

the difference between the prediction and the target output. The backpropagation

algorithm computes the gradient of the loss function with respect to each network

parameter, then slightly readjusts the parameters in the direction of the steepest descent.
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The readjustment of some network parameter w can be formulated as

w := w − α
∂L

∂w
, (5.4)

where L is the loss function and α is the learning rate which is the step size of the

readjustment. Ideally, training continues until the loss function stabilizes, which is

called convergence.

In our study, we use the Mean Squared Error (MSE) loss function

MSE(y, y′) =
1

N

M∑
j=1

N∑
i=1

(
yi,j − y′i,j

)2
, (5.5)

computed pixel-wise between real input patterns and network predictions, where N is

the number of examples (input-output image pairs), M is the number of pixels in each

image, and y and y′ represent the real and predicted images, respectively.

In order to objectively measure the performance of a network, the data is divided into

two sets. One of these sets, called the training set, is used in backpropagation, whereas

the other one, called the validation set, is used for evaluation. This is done to show

that the model has not simply memorized the input-output pairs from the training set

but has instead learned the mapping between them.

To further demonstrate our models’ ability to approximate the mapping without mem-

orization and to provide a more human-readable evaluation metric, we calculate the

Pearson correlation coefficients,

P (y, y′) =

∑M
j=1

∑N
i=1

(
yi,j − ȳ

)(
y′i,j − ȳ′

)√∑M
j=1

∑N
i=1

(
yi,j − ȳ

)2√∑M
j=1

∑N
i=1

(
y′i,j − ȳ′

)2 , (5.6)

between the predicted images y′ and the ground-truth images y.

5.2.1 Convolutional Neural Networks

Many traditional image processing algorithms rely on handcrafted filters that are used

to extract certain features from given images through convolution operations. These

features range from extremely basic ones, such as horizontal and vertical lines, to

more complex ones, such as complicated shapes or even human faces. However,
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handcrafting the filters required to extract relevant features for a sophisticated image-

processing task often proves to be an insurmountable problem. A deep learning-based

solution to this problem is proposed in the form of Convolutional Neural Networks

(CNN), which consist of learnable filters made up of neurons. Filters for extracting

both low and high-level features can be learned through backpropagation. Many

different CNN architectures have been designed over the years to overcome various

obstacles encountered in different image-processing tasks.

Reconstructing input images from speckle patterns created by transmission through

a multi-mode fiber can be considered a complex image processing problem due to

its nonlinear nature. Therefore, any deep learning-based solution to this problem

should utilize CNNs rather than other types of neural networks. Among various types

of networks, models based on CNN architectures ResNet, VGGNet, and UNet have

already been presented as solutions.

5.3 Experimental Setup

A simple schematic of the experimental setup is given in Fig. 5.1. A diode laser

operating at 671 nm is used for illuminating the screen of a 1280x768 pixel Spatial

Light Modulator (SLM). 31,200 gray-scale handwritten letters from the Latin alphabet

(taken from the EMNIST-Letters dataset [161] as 28x28 pixel images) are written on

the SLM by modulating the phase and the amplitude of the incoming laser light. The

letters on the SLM are transmitted through a stable 2-meter-long multimode fiber with

a core diameter of 105 µm and NA = 0.22. The speckle patterns formed at the exit

facet of the fiber are recorded by a visible CCD camera (1024x768 resolution) and

stored in the database. Speckle recordings are then processed by a neural network to

reconstruct the input patterns.
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Figure 5.1: Schematic of the experimental setup used for constructing the datasets

required to train the neural network and test its accuracy. The input letters sent through

the multimode fiber are successfully reconstructed by the deep learning model.

5.4 Results

The required letter-speckle pairs for testing the learning capability of the networks are

obtained with the setup shown in Fig. 5.1. The captured image pairs are divided into

training and validation sets with 31,200 and 5,200 images, respectively, and equally

distributed between 26 letters. All three networks are trained on the training set using

mean squared error as the loss function. The loss function is minimized using the

Adam optimizer [162] with default parameters for all three models. We trained all

three of our models using a batch size (number of predictions before each optimization

step) of 64 and for 100 epochs (iterations of the training set). After each epoch of

training, the models are fed all speckle patterns from the validation set and asked

to produce predictions. Input images from the validation set, corresponding speckle

patterns, and reconstructed images by the ResNet-based network are shown in Fig. 5.2,

where fidelities are denoted by r.

Moreover, the total training times, the number of layers, and the number of adjustable

parameters for each model are listed in Table 5.1. VGGNet is the most complex model

with 22 layers, and it has the longest training time2. As for the ResNet and UNet,
2 All three models are trained for 100 epochs using an NVidia Tesla V100.
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although the UNet has more parameters, it has a shorter training time as it has the

fewest number of multiplications of neurons in one pass through the network due to

its architectural design.

Fiber Input Speckle Network Prediction

Reconstruction

Reconstruction

Reconstruction

Reconstruction

𝑟 = 0.863

𝑟 = 0.924

𝑟 = 0.980

𝑟 = 0.901

Figure 5.2: Test images reconstructed from the speckle patterns by the ResNet-based

deep neural network. Numbers under the reconstructed images represent their correla-

tions to the original input images.

Table 5.1: Number of layers, number of adjustable parameters, and total training time

for each architecture.

Model Name Number of Layers Number of Parameters Total Training Time

VGGNEt 22 3,691,457 4 h 13 m

ResNet 14 1,369,411 41 m

UNet 14 1,836,225 25 m
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The predictions produced by the networks are then compared with their ground truth

fiber inputs to compute the mean squared error values in Fig. 5.3. It can be seen from

the figure that the ResNet and the UNet both converge (minimize validation set loss) in

less than 20 epochs, after which their validation set losses very slightly increase while

their training losses keep decreasing. This phenomenon is called overfitting in deep

learning, and it occurs due to the model memorizing specific features of the training

set rather than capturing its general features. It is expected that models start overfitting

the training set after they reach a minimum validation loss. The reason we see less

divergence between the training and validation loss curves in the VGGNet is that it

simply has not converged yet.

In order to provide a better metric for our predictions, we calculated the Pearson

correlation coefficients between predicted and ground truth images. The average

correlation coefficients for the training and validation sets after each epoch is plotted

in Fig. 5.4. We can see that the ResNet produces results with up to 90% correlation on

average and converges more quickly compared to the other networks.

Figure 5.3: MSE loss on both training and validation sets after each epoch for the

ResNet, UNet, and VGGNet-based networks. The ResNet-based network converges

faster than its counterparts and yields better results.
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Figure 5.4: Average Pearson correlation coefficient (multiplied by 100) between pairs

of predicted and ground truth images for the ResNet, UNet, and VGGNet-based

networks after each epoch.

5.5 Comments

The ResNet and the UNet are encoder-decoder architectures where the input features

get stacked and represented in smaller matrices in the encoder part and then progres-

sively decoded to reconstruct the MMF input (Fig. 5.5). Unlike these two models,

the VGGNet architecture preserves the input shape through the network by reshaping

layers. We believe that VGGNet is less suitable for this problem due to its architecture

and high complexity.

The skip connections in the ResNet add the values of the previous layer to the output

of the following layer, whereas, in the UNet, they concatenate (append matrices

along an axis) the values of the encoding layers to specifically chosen decoding

layers. Skip connections are generally used in networks with large numbers of layers

to overcome issues with backpropagation. For our problem, we did not observe a

significant difference in the learning process of either network due to the presence of

skip connections. The training and validation results for the ResNet with and without

the skip connections can be seen in Fig. 5.6.
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Model Input Model Output

Encoder Part Decoder Part

Figure 5.5: A simple schematic showing an encoder-decoder architecture. Progres-

sively higher-level features are extracted from the input in the encoder part to be

decoded later to create the prediction.

Figure 5.6: Average Pearson correlation coefficients (multiplied by 100) between

pairs of predicted and ground truth images for the ResNet-based network (a) with and

without skip connections
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We believe that part of the reason behind the faster convergence and superior results

of the ResNet is the utilization of Batch Normalization layers in the network. Batch

Normalization layers standardize the layer activations, making the optimizer function

more smoothly. They also stabilize the gradient flow and increase the robustness of

the network to different hyperparameters, and random initializations [163]. When

we trained the ResNet without the Batch Normalization layers, we obtained lower

fidelities and slower convergence, as shown in Fig. 5.7.

Figure 5.7: Average Pearson correlation coefficients (multiplied by 100) between pairs

of predicted and ground truth images for the ResNet-based network with and without

batch normalization layers computed after each epoch.

62



5.6 Conclusion

Our results show the superiority of the ResNet-based architectures over the other two

networks, UNet and VGGNet, in terms of accuracy in reconstructing the input images

that are transmitted through a multimode fiber. An average reconstruction fidelity of

89.8% was obtained for the validation set by using the ResNet architecture, while it

was 86.6% for the UNet and 81% for the VGGNet. Utilization of Batch Normalization

layers was shown to be a significant contributing factor to the superiority of the

ResNet-based architecture. We believe that the evaluation of different architectures

from various aspects may give researchers an opinion on whether to apply these

algorithms in their field and may give rise to different application areas for machine

learning tools. However, the study of deep learning-based solutions to our problem

should not be limited to a study of different architectures but of different approaches

like semi-supervised or unsupervised learning or generative models.
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CHAPTER 6

MULTIMODE FIBER SPECTROMETER

In this chapter, we introduce a high-resolution, compact, low-cost, and low-loss

spectrometer based on the speckle measurements obtained at the distal end of a

multimode fiber. We start the chapter by reviewing conventional spectrometers and

highlighting the trade-offs between the resolution, size, and cost of such systems.

Next, we prove the principle of fiber spectrometers by measuring the response of the

speckle pattern to the change in the wavelength of light coupled to the fiber. We then

introduce the mathematical model used to investigate the propagation equation, where

the input (spectrum) and output (speckle) of the fiber are related via a calibration matrix.

We explain the construction of the calibration matrix in detail and demonstrate the

reconstruction process with a simulated spectrum involving two discrete wavelengths.

In the final section, we test the performance of the spectrometer with experimental data

and show the reconstruction of three different types of input sources. Our results show

that a multimode fiber spectrometer can resolve two lines with 10 pm separation, which

corresponds to a record resolving power of R ≈ 105 at the telecom wavelengths. We

also show that the reconstruction error of the spectrometer for a continuous broadband

source increases as the bandwidth of the signal increases, reaching ∼9% when the

bandwidth covers 20% of the whole calibrated spectral range.
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6.1 Conventional Spectrometers

Spectroscopy can be defined as the method of understanding the spectra (the wave-

length content) of a light source or the spectra created after light-matter interaction.

Being a vital technique for developing a scientific understanding of light and matter,

spectroscopy is used in many areas of science and technology, including characteri-

zation of light sources, atomic structure analysis [164], medical applications [165],

biochemistry [166,167], material science [168], and optical communication technology

[169, 170]. Conventional spectroscopy is based on the dispersion of light, which is

the relation between the phase velocity and the wavelength. In material dispersion,

the phase velocity of light changes when the propagation medium changes, thus, for

example, when light undergoes refraction. Therefore, as a result of dispersion, different

wavelengths (colors) travel in different directions across a medium; thus, the dispersion

property of the light can be used to split light into its constituent wavelengths. This

effect can be easily observed in the chromatic aberration of lenses and in the refraction

of light through a prism, as shown in Fig. 6.1(a) and Fig. 6.1(b). Due to the relation

between the phase velocity vp of light within a medium and the refractive index n of

that medium (vp = c/n, where c is the speed of light), the material dispersion can also

be considered as the change in the refractive index of the materials with wavelength.

Fig. 6.1(c) shows the refractive index change of various optical glasses commonly

used in manufacturing lenses and prisms with respect to wavelength.

⋯
12𝑀

⋯
12𝑀

Figure 6.1: (a) Dispersion of light in a lens results in chromatic aberration. (b) Due

to dispersion, light can be separated into its constituent wavelengths. (c) Dispersion

curves of some optical glasses commonly used in manufacturing lenses and prisms.
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Due to their material dispersion property, prisms are extensively used in conventional

spectroscopic analysis. Diffraction gratings are another widely preferred option for

building conventional spectrometers, which separate light into wavelengths by using

the angular dispersion of light occurring after diffraction. A diffraction grating consists

of multiple slits (or grooves), as shown in Fig. 6.2, and when a planar wavefront en-

counters this structure, spherical wavelets are emitted from each slit due to the bending

of the wavefront. The spherical wavelets then overlap and create constructive and

destructive interference, which results in a fringe pattern. In the case of polychromatic

light, different wavelengths constructively interfere at different positions in space as a

result of the grating equation,

mλ = d(sinα + sin β), (6.1)

where d is the distance between the slits (or grooves) of the grating, m is the diffraction

order, α and β are incident and diffracted angles, respectively.

1

2

𝑀

Figure 6.2: Schematic drawing of a reflection diffraction grating. The grating separates

the input light into its constituent wavelengths by diffraction. Depending on the grating

groove separation d and the incident angle α, a specific wavelength λ diffracts with a

distinct angle β at diffraction order m.

There are many critical aspects to consider when building a spectrometer, including the

resolution, size, cost, and stability of the system. The resolution of the spectrometer is

defined as its ability to separate adjacent wavelengths, and in conventional spectrome-

ters, the resolution generally depends on the quality of the equipment or the optical path

length of the dispersed light. In the case of prisms, high-quality prism materials lower

the unwanted effects (such as the absorption and reflectance of light), hence resulting

in higher resolutions. In the case of diffraction gratings, when the number of lines in

67



the grating is increased, the resolution also increases. However, using high-quality

equipment (high-quality prism materials or gratings with high lines/mm) increases the

cost of the system. The other parameter defining the higher resolution is the optical

path length. As the path that light travels after the grating increases, the resolution

also increases. In conventional spectrometers with conventional diffraction gratings,

optical path length can be changed by either changing the position or orientation of

the grating. In either case, the mechanical motion causes instabilities and noise in

the measurements, and it may also lead to alignment problems. Although increasing

optical path length is more cost-effective compared to using high-quality equipment,

it causes the volume of the spectrometer to increase. Thus, the compactness of the

spectrometer is lost.

6.2 Multimode Fiber Spectrometers

For all the aforementioned reasons, there is a huge interest in building miniaturized,

low-cost spectrometers [171–179]. Among these efforts, speckle-based spectrometers

[180–184], and particularly multimode fiber spectrometers are of interest to us in the

context of this thesis. The idea of using a multimode fiber in spectroscopic analysis

dates back to the 80s [185, 186], but it gained popularity very recently with a series of

papers published during the years 2012-2016 [187–195]. Compared to conventional

spectrometers, multimode fibers offer low-cost systems, and since fiber cables can

be coiled, the optical path length can be increased easily without compromising the

compactness of the system. Therefore, multimode fibers can be utilized to build

low-cost, compact, and high-resolution spectrometers with very low loss.

Unlike a conventional spectrometer, which maps the input spectral channels (wave-

lengths) to distinct space points in one-dimension, a multimode fiber spectrometer is a

two-dimensional spectral-to-spatial instrument. As seen in Fig. 6.3, a distinct speckle

pattern is formed at the distal end of a multimode fiber for different input wavelengths.

This effect can be explained with the wavelength-dependent propagation constants of

the fiber modes as the field coupled to the fiber gains an extra phase proportional to

eβ(λ) when the input wavelength changes (see Chapter 2 for more details).
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Figure 6.3: A multimode fiber can be used for spectroscopic analysis since different

input wavelength creates distinguishable speckle patterns at the distal end of the fiber.

The sensitivity (or response) of the speckle patterns to the wavelength of light is the

key building block behind the idea of building a multimode fiber spectrometer. This

sensitivity can be calculated analytically by using the correlation function of speck-

les captured under different wavelengths. The two-dimensional Pearson correlation

coefficient between two speckles A and B is given as

r =

∑
m

∑
n(Amn − Ā)(Bmn − B̄)√∑

m

∑
n

(
Amn − Ā

)2√∑
m

∑
n

(
Bmn − B̄

)2 , (6.2)

where m and n are the horizontal and vertical pixels of the speckle image, and the bar

denotes the average over all pixels. In [188], a slightly different intensity correlation

metric is defined to measure the speckle correlations,

C(∆λ, x) =
⟨I(λ, x)I(λ+∆λ, x)⟩
⟨I(λ, x)⟩⟨I(λ+∆λ, x)⟩

− 1, (6.3)

where I(λ, x) is the intensity of the speckle at position x, created by wavelength λ,

and ⟨. . .⟩ represent averaging over all wavelengths. Both correlation functions can

be used to measure the decorrelation of speckle images under wavelength variations.

For the case of a fiber spectrometer, spectral resolution is the minimum shift in the

wavelength sufficient to reduce the degree of correlation of the speckle pattern to 0.5

[188]. In Fig. 6.4, we show examples of speckle patterns and the correlation curves of

these speckles calculated for both approaches given by Eq. (6.2) and Eq. (6.3). The

speckle patterns in the figure are obtained for λ = 1550.2 nm, λ = 1550.205 nm, and
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λ = 1550.210 nm, respectively. The correlation coefficient of the first speckle with

the second one is r = 0.8548, which implies that our system is not able to distinguish

wavelengths separated by 5 pm. However, the correlation reduces below 0.5 when the

wavelength is shifted by 10 pm (r = 0.4696). Thus, the system is able to distinguish

these wavelengths. A more accurate spectral resolution can be calculated by observing

the correlation curves in Fig. 6.4(b)-(c), where a full-width at half-maximum (FWHM)

value around 9 pm is obtained for both correlation functions. Therefore, it can be

safely claimed that such a system can be used as a spectrometer with ∼9 pm resolution.

(b) (c)

(a)

Figure 6.4: Decorrelation of speckles for a 20 meters long fiber (core size = 105 µm,

NA = 0.22). (a) Speckle images obtained for 1550.2 nm, 1550.205 nm, and 1550.205

nm. Although the correlation between the speckles is high when the wavelength

separation is 5 pm, it reduces below 0.5 when the wavelength is shifted by 10 pm.

(b) Correlation curve obtained by using Pearson correlation function. (c) Correlation

curve obtained by using intensity correlation function. Both correlation functions

imply a spectral resolution, δλ, around 9 pm.
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6.3 Experimental Details

Although the use of a spatial light modulator is not required for the purpose of building

a fiber spectrometer, we used the same setup given in Fig. 3.1, which was developed

for other applications presented in this thesis involving the modulation of light. A fiber

spectrometer can be built with a much simpler setup where a spatial light modulator

and other optics are not used. Expanding/shrinking the beam and filtering the zeroth

order diffraction is also not required. The only consideration is to achieve a good

coupling of light to the multimode fiber by keeping the polarization of the input light

the same for all wavelengths. The ideal simplified version of the setup used in [188] is

shown in Fig. 6.5. Although we kept the SLM in the setup, we did not program it by

any means (in this case, it behaves like a mirror) and created a data acquisition process

similar to the fiber spectrometer studies in the literature.

SMF Camera

Tunable 

Laser

MMF

Fixed coupling

Figure 6.5: A simplified experimental setup for building a fiber spectrometer. The

signal emitted from the tunable laser is coupled into a polarization-maintaining single-

mode fiber, which is then sent through a multimode fiber (core diameter 105 µm, NA

= 0.22) with a fixed coupling. Speckles generated at the distal end of the fiber are

imaged onto an InGaAs camera.

With the aforementioned setup, we have constructed the calibration data by measuring

the speckles of 201 wavelengths between 1550 nm and 1551 nm in steps of 5 pm.

Normally, the spectrometer has to be tested after the calibration data is obtained.

However, in our system, setting and stabilizing a single wavelength takes ∼30 seconds,

and calibration of 201 wavelengths can be completed in around 100 minutes. Thus

an extra 100 minutes is added between the calibration set and the test set although

the calibration process would be much faster with the use of more capable tunable

lasers or wavelength-swept lasers. As mentioned in [196], the standard tunable lasers
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used in telecommunication have the ability to tune the wavelengths very rapidly, at

about 0.1 ms - 1 s. In [188], a calibration time of around a few minutes is reported

for 500 wavelengths, which also implies a tuning speed below 1 s (for a single

wavelength). When the time spent for the calibration increases, the multimode fiber

becomes more exposed to the environmental changes and vibrations, and hence the

speckles start to decorrelate, as was previously shown in Fig. 3.2 in Chapter 3. This

delay between the calibration and test set constructions increases the reconstruction

error of the wavelengths. Thus it is a major obstacle in building a properly calibrated

fiber spectrometer, which is specific to the equipment used in our setup. We handled

this problem by speeding up the calibration process with the assumption that a standard

tunable laser with 0.5 seconds tuning speed is implemented in the setup. With this

assumption, the calibration of 201 wavelengths would be completed in ∼2 minutes.

Therefore, it would be possible to test any wavelength 2 minutes after the calibration.

For this purpose, instead of waiting for the whole calibration set to be completed, we

captured the test set speckle of the wavelengths 2 minutes after the calibration speckles

of the same wavelengths were captured.

6.4 Reconstruction Algorithm

The algorithm used to reconstruct the input wavelengths in the fiber spectrometer is

very similar to the one introduced in Chapter 4. To construct a propagation equation,

we first model the inputs and outputs as column vectors. If the system is calibrated

with M wavelengths, then the inputs are vectors of length M × 1. The input vectors

are called spectrum vectors, and they are denoted by Si, where each i = 1, 2, . . . ,M

corresponds to a specific wavelength. The indices of the spectrum vectors (the positions

of the elements inside the vector) represent the wavelengths, and the entries correspond

to the signal weight (intensity) of the wavelengths in the total spectrum. Under these

considerations, the calibration spectrum vectors are defined as standard unit vectors

of M dimensional vector space, as shown below. This definition is reasonable since

the laser power is set to a fixed value during the data acquisition process. Independent

from the actual output power, the spectrum vectors can be considered as normalized

vectors as long as all wavelengths are emitted with the same power.
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S1 =



1

0

0
...

0


M×1

S2 =



0

1

0
...

0


M×1

S3 =



0

0

1
...

0


M×1

. . . SM =



0

0

0
...

1


M×1

The outputs, speckle patterns measured by the camera, have two-dimensional structures

and are originally represented by 2D matrices. We reshape the speckle matrices into

column vectors Ii (called intensity vectors), where i = 1, 2, . . . ,M specifies the input

wavelength created the speckle. If the speckle has a resolution of m × n, then the

original speckle matrices will have m× n dimensions, and the intensity vectors will

have (m× n)× 1 dimensions.

−→



11 15 12 . . . 10

20 14 10 . . . 13

10 16 15 . . . 12
...

...
... . . . ...

13 18 12 . . . 11


m×n

reshape
−→ Ii =



11

15

12
...

11


(m×n)×1

After modeling the inputs and outputs as column vectors, a propagation equation

between the spectrum vectors and the intensity vectors can be written as

Ii = T ∗ Si, (6.4)

where T is a (m × n) × M dimensional matrix known as calibration matrix (also

called propagation matrix or transmission matrix), and "∗" denotes the matrix multi-

plication. Since spectrum vectors are modeled as unit vectors in the standard basis

of M -dimensional vector space, the propagation equation can only be satisfied if the

columns of the calibration matrix are constructed from the intensity vectors. Below,

we show the matrix form of the calibration matrix (on the left) and a visualization of

the calibration matrix obtained in the experiment for 201 wavelengths (on the right).
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T =

 I1 I2 . . . IM


(m×n)×M

−→

0

255

When the speckles of all M wavelengths are captured, the calibration matrix T can

easily be constructed as described above. The calibration matrix can then be used

to reconstruct any unknown input spectrum consisting of combinations of calibrated

wavelengths. In practice, the user will have the intensity vector, Iu, created by the

unknown input spectrum, together with the calibration matrix T. In this case, the

unknown spectrum vector, Su, can be obtained by inverting the propagation equation,

Eq. (6.4),

Su = T−1 ∗ Iu. (6.5)

Once the spectrum vector is obtained, it can be plotted to obtain the reconstructed

spectrum. In Fig. 6.6, we show an example of the reconstruction procedure for an input

spectrum Sprobe
u = 0.3S40 + 0.7S160, which is a combination of two wavelengths in

the calibration set with different signal weights. Since the optical signals of different

frequencies do not interfere [188], the intensity vector of the unknown spectrum can be

obtained by the weighted sum of the speckles corresponding to the same combination

as the unknown spectrum vector, Iu = 0.3 I40 + 0.7 I160. By using the measured

speckle, Iu, and the calibration matrix T, the unknown spectrum can be reconstructed

with slight deviations from the actual probe spectrum.
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Figure 6.6: An example of the reconstruction procedure in fiber spectrometer. (a) The

input spectrum consists of two wavelengths with different weights and is represented

by a column vector. (b) The measured speckle (which is the sum of the individual

speckles created by the wavelengths in the spectrum) is also converted into a column

vector. (c) The input spectrum is reconstructed by using the measured speckle and the

calibrated data.
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6.5 Results

After the calibration of the system is completed and a calibration matrix T is obtained,

the spectrometer can be tested with different light sources whose spectral content is

within the range of the calibrated wavelengths. In order to test the performance of the

fiber spectrometer, we have used the following three input spectra:

1. Single wavelength produced by a monochromatic light source

2. Discrete line spectra produced by an atomic gas

3. Broadband continuous spectra produced by a supercontinuum light source

For all cases, the intensity vector Iu is obtained, and the inverse propagation equation

is used to reconstruct the input spectra. To measure the accuracy of the spectrometer,

the root-mean-square error (RMSE),

µ =

√
1

M
[Sprobe

u − Sreconstructed
u ]2 , (6.6)

between the actual probe spectrum Sprobe
u and the reconstructed spectrum Sreconstructed

u

is calculated, where M is the number of calibrated wavelengths, which is equal to

the size of the spectrum vectors. The reconstruction results for the first case, the

monochromatic spectra, are shown in Fig. 6.7(a). Here, each wavelength is recon-

structed separately, and the results are plotted in a single graph. In this case, the

average reconstruction error is around 3%. Fig. 6.7(b) shows the performance of the

spectrometer in reconstructing a spectrum consisting of three discrete wavelengths

with different weights. The error between the actual spectrum (dashed red line) and

the reconstructed spectrum (solid blue curve) is ∼1.8%. Fig. 6.7(c) demonstrates the

spectrometer’s ability to reach the resolution value promised by the speckle correlation

curves. The 10 pm resolution is approved as the system can successfully distinguish

two discrete spectral lines with 10 pm separation. The reconstruction of broadband

continuous spectra is shown in Fig. 6.7(d) for three sources having different band-

widths. In this case, the spectral reconstruction error increases from 3.8% to 8.7% as

the bandwidth of the signal increases from 50 pm (covering 5% of the whole spectral

range) to 200 pm (covering 20% of the whole spectral range).
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(b)(a)

(d)(c)

Figure 6.7: Reconstruction results for three different types of input spectra. (a)

Monochromatic spectrum is reconstructed with an average error of ∼3%. Each wave-

length is reconstructed separately, and the results are shown in a single graph. (b) A

spectrum involving three discrete lines with different weights is reconstructed with

1.8% error. The probe spectrum is shown with the dashed red line. (c) The resolution

value suggested by the correlation curves is approved as the spectrometer is able to

reconstruct two lines separated by 10 pm. (d) For an input source producing a continu-

ous broadband spectrum, the error depends on the bandwidth of the signal. When the

bandwidth of the signal covers 20% of the whole spectral range, the reconstruction

error increases to ∼9%.
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CHAPTER 7

SINGLE-PIXEL MULTIMODE FIBER SPECTROMETER

The content presented in this chapter is adapted from the preprint version:

• S. Kürekci, S. S. Kahraman, and E. Yüce, “Single-Pixel Multimode Fiber

Spectrometer via Wavefront Shaping,” arXiv.2210.13292 [Preprint]

When light passes through a multimode fiber, two-dimensional random intensity

patterns are formed due to the complex interference within the fiber. The extreme sen-

sitivity of speckle patterns to the frequency of light paved the way for high-resolution

multimode fiber spectrometers. However, this approach requires expensive IR cameras

and impedes the integration of spectrometers on-chip. In this study, we propose a

single-pixel multimode fiber spectrometer by exploiting wavefront shaping. The input

light is structured with the help of a spatial light modulator, and optimal phase masks,

focusing light at the distal end of the fiber, are stored for each wavelength. Variation of

the intensity in the focused region is recorded by scanning all wavelengths under fixed

optimal masks. Based on the intensity measurements, we show that an arbitrary input

spectrum having two wavelengths 20 pm apart from each other can be reconstructed

successfully (with a reconstruction error of ∼3%) in the near-infrared regime, corre-

sponding to a resolving power of R ≈ 105. We also demonstrate the reconstruction

of broadband continuous spectra for various bandwidths. With the installation of a

single-pixel detector, our method provides low-budget and compact detection at an

increased single-to-noise ratio.
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7.1 Introduction

Spectrometers achieve spectral-to-spatial mapping, which allows spectral decompo-

sition of the input light. Conventional spectrometers use dispersive media such as

gratings or prisms, and they can achieve resolving powers around R < 104 and can

reach up to R < 105 only with the installation of complex triple-grating systems (the

spectral resolution is δλ = λ0/R, where λ0 is the operating wavelength). However,

such spectrometers generally require moving parts (grating, mirrors) and a line array

detector for scanning whole wavelengths of interest. Moreover, inverse proportionality

between spectral resolution and optical path length leads to bulky systems when high

resolution is demanded. The fundamental need for high-resolution spectral analysis in

various lines of research and applications triggers new concepts that are built on the

basis of holography [197], scattering of light by a photonic crystal [189,198] a random

scattering medium [199] or a multimode fiber (MMF) [188, 190, 192, 200] to form

a complex spatial intensity distribution (a speckle pattern) on a multipixel detector

such as a charged couple device (CCD) or a focal plane array (FPA). In such systems,

wavelengths experience different propagation constants inside the scattering medium,

thus forming distinct spatial intensity profiles on the detector, which provides the

required one-to-one spectral-to-spatial mapping. Before the use of the spectrometer, a

calibration matrix is measured by scanning all wavelengths in the operational range,

and it stores the corresponding speckle patterns. The calibration matrix is then utilized

to reconstruct an arbitrary input spectrum based on the measured intensity distribution.

However, the increased cost of CCD and FPA sensors, especially in the infrared regime,

limits the deployment of high-resolution spectral analysis tools.

Among all scattering-based systems, the multimode fiber spectrometers have been

particularly attractive by offering high resolutions with reduced scattering losses

(keeping the light collimated inside the fiber and preventing scattering to higher

angles). Since fibers can be wrapped, higher spectral resolution can be achieved

without enlarging the system. It was shown in [190] that high resolving powers

R > 106 in near-infrared regime is possible with fibers of 100 m long. Yet the signal-

to-noise ratio (SNR) is the main limiting factor for the resolution at low signal levels,

and increased fiber length [184].
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Single pixel detection together with compressed sensing [201–203] have been revo-

lutionizing imaging methods. Surprisingly, the penetration of these methods in spec-

troscopy has been very limited due to mechanical resolution limits. The single-pixel

imaging (SPI) systems are based on the use of a spatial light modulator (SLM) and a

single-pixel detector. Employing the SPI method is particularly useful when working

in the infrared regime since FPAs get extremely expensive at longer wavelengths [204].

In this study, we develop a high-resolution single-pixel multimode fiber spectrometer

and demonstrate its ability to reconstruct arbitrary spectra. The single-pixel detection

is achieved by focusing light on a selected target region of a focal plane array which is

employed as a bucket detector. The input wavefronts are structured using a spatial light

modulator which provides distinct output intensities at the detector [15, 38, 126, 205,

206]. The intensity variations at the target position as a function of input wavelength

are used to reconstruct the spectra at a resolution of 20 pm. The increased intensity at

the focused point also increases SNR, which removes low signal barrier in reaching

high resolutions at low signal levels. This, to the best of our knowledge, is the first

demonstration of a high-resolution scattering medium-based spectrometer exploiting

single-pixel detection. Replacing an FPA with a single-pixel detector reduces the

cost in infrared applications enormously, and it also provides a new method for on-

chip hyperspectral compressed imaging, which is brought by the compact size of a

single-pixel spectrometer.

7.2 Methods

The spectrometer is built based on the system given in Fig. 7.1. A tunable laser

operating around 1550 nm with 38 nm tuning range is used for illuminating an SLM

(HOLOEYE PLUTO-TELCO) with 1920×1080 pixels screen resolution. The beam

is expanded to cover the SLM screen, and a half-wave plate is used to control the

incident polarization so that it matches the alignment direction of the liquid crystals

inside the SLM.

The light is phase-modulated via SLM and focused on the distal end of a 20-meter-

long multimode fiber (core diameter 105 µm, NA = 0.22). A continuous sequential
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algorithm [123] is used in the modulation steps where the SLM is divided into 144

superpixels of size 16×9 and four phase steps between 0-2π are scanned through each

superpixel. The modulated beam is focused into a circular target region consisting of

76 pixels on a bucket detector of 30 µm×30 µm cell size. The intensity at the focus

spot is then integrated to reconstruct the input spectrum from single-pixel data. Since

the whole spectrometer is built upon the intensity measurements of the target region,

which effectively covers an area around 0.07 mm2, the bucket detector can safely be

replaced with commercial photodiodes, which generally have active areas larger than

the size of our target region [207].

Bucket

Detector

Laser PMF HWP

MMF

L1

L2 

SF

PBSBE
SLM

𝜆𝑀 𝜆2 𝜆1

⋯

4
𝑓

Figure 7.1: Schematic of the setup. The input wavelengths provided by a tunable laser

are optimized at the end of a 20-meter-long multimode fiber by using a spatial light

modulator. Unique SLM patterns are used to focus distinct wavelengths. L: Lens,

PMF: Polarization Maintaining Fiber, HWP: Half-Wave Plate, BE: Beam Expander,

PBS: Polarizing Beam Splitter, SLM: Spatial Light Modulator, SF: Spatial Filter,

MMF: Multimode Fiber.

In order to calibrate the spectrometer, we have modified the calibration process in

[188] for an SLM-based single-pixel system as depicted in Fig. 7.2. We represent the
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input spectrum of a single wavelength λi as a unit vector,

Si = [λ1 λ2 . . . λM ]T , (7.1)

where all the elements except λi = 1 are set to zero (T is the transpose operator).

All M input wavelengths within the scope of the operating range of the spectrometer

are modulated by the SLM and optimized on the target region of the detector. The

optimized SLM phase masks, ϕi (i = 1, 2, . . . ,M) are stored. Once the optimization

process is completed, the target region intensities of individual wavelengths are mea-

sured under all recorded SLM patterns, and the intensity values are then integrated into

a single numerical value. Throughout the text, Iϕj

λi
denotes the integrated intensity of

the target region under input wavelength λi and optimized SLM pattern ϕj . For each

wavelength, λi (or spectrum vector Si), a corresponding intensity vector as a function

of SLM phase mask ϕ is created,

Ii = [Iϕ1

λi
Iϕ2

λi
. . . IϕM

λi
]T . (7.2)

The intensity vectors are then combined into a single M × M matrix T, which is

called the calibration matrix, whose rows can be used as a measure of the system

response to wavelength variations. With the implementation of advanced wavefront

optimization methods, it is possible to focus light in milliseconds [208] and complete

the calibration of the spectrometer in less than a few minutes for many practical

spectroscopy applications.

The entries sitting in the main diagonal of the calibration matrix are expected to have

the highest numerical values in their row and column since they correspond to the

perfect match between the input wavelength and the optimized SLM pattern. In the off-

diagonal entries, wavelength and the optimized phase mask mismatch, and as a result,

the integrated intensity drops for steps out of the diagonal. More contrast between the

diagonal and off-diagonal entries can be produced when the light is sharply focused

on the detector. In this case, the spectrometer is expected to be more sensitive to

wavelength variations, and thus have a higher resolution. The sharpness of the focus

can be controlled by involving a measure of merit (such as enhancement factor) during

the optimization. In our experiments, we measured an average enhancement around

η ≈ 70, which is approximately 40% below the theoretical maximum value [206].
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Figure 7.2: Schematic explanation of calibration and reconstruction. The upper

rectangle illustrates the process used to obtain the calibration matrix T. The heatmap

of the 50×50 calibration matrix obtained in the experiment is shown inside the bottom

left rectangle. Using the inverse of the calibration matrix, an unknown input spectrum

can be reconstructed as formulated in the bottom right corner. The asterisk operator

(*) denotes matrix multiplication.

The calibration process of the spectrometer can be modeled mathematically as a set

of linear propagations where the inputs are the spectrum vectors Si, outputs are the

intensity vectors Ii, and the propagation operator is the calibration matrix T,

T ∗ Si = Ii. (7.3)

To test the performance of the spectrometer, an unknown spectrum Sprobe
u is sent

through the system and the corresponding intensity vector Iu is captured. By inverting

Eq. (7.3), we obtain the reconstructed spectrum vector Sreconstructed
u based on the

calibration data and the measured intensity,

Sreconstructed
u = T−1 ∗ Iu. (7.4)
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The performance of the spectrometer is measured by comparing the reconstructed

spectrum to the actual probe spectrum, where the comparison is done by calculating

the root mean square error,

µ =

√
1

M
[Sprobe − Sreconstructed]2 (7.5)

7.3 Results

Using the calibration process explained in Fig. 7.2, we have calibrated our system with

50 wavelengths around the central wavelength 1550 nm (from 1549.75 nm to 1550.24

nm) with 10 pm step-size between consecutive wavelengths. After the calibration

matrix is obtained and stored, individual wavelengths are sent through the system and

measured intensities are plugged in Eq. (7.4). The reconstructed spectrum vectors of

individual wavelengths in the spectral range are plotted in Fig. 7.3(a). Since optical

signals of different wavelengths do not interfere, an arbitrary spectrum can be modeled

with a tunable laser by creating the spectrum content separately and then superposing

the measured intensities. In the mathematical formulation, we sum the individual

intensity vectors and plug the resulting vector in Eq. (7.4) as the measured intensity.

For two wavelengths 20 pm apart from each other, the spectrum reconstruction is

shown in Fig. 7.3(b). We show that a single pixel spectrometer can resolve the

spectral lines accurately and is able to reconstruct the unknown input spectrum with a

reconstruction error µ = 0.0298.

While the input light entering the system may consist of sparse wavelengths, it may

also carry a broadband spectrum. In this case, we model the continuous broadband

spectrum as a weighted combination of individual wavelengths. We discretize the

broadband spectrum with 10 pm spacing, which is the step size between two consec-

utive wavelengths in our dataset. To test the performance of the spectrometer, we

modeled broadband Lorentzian beams of different bandwidths in the 490 pm spectral

range from 1549.75 nm to 1550.24 nm. Each wavelength involved in the broadband

signal is expected to contribute to the final intensity by its weight in the spectrum. Thus,

the final intensity measured on the detector is found by superposing the individual

intensity vectors scaled by the weight of the corresponding wavelength. Then, the
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resulting intensity vector is inserted in Eq. (7.4) to predict the input spectrum. The

results for three Lorentzian beams centered at 1549.99 nm with 20 pm, 100 pm, and

200 pm bandwidths corresponding to ∼4%, ∼20% and ∼40% of the total spectral

range are plotted in Figure 7.3(c). It is observed that the reconstruction error increases

with the bandwidth of the signal, reaching ∼6% (µ = 0.0569) when ∼40% of the

spectral range is covered.
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Figure 7.3: Performance of spectrometer in reconstructing (a) individual wavelengths,

(b) arbitrary spectra with two wavelengths, and (c) broadband Lorentzian spectra of

various bandwidths.
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7.4 Discussion

It is possible to reduce the spectrum reconstruction error of a multimode fiber-based

speckle spectrometer by suppressing the system noise using computational methods

such as truncated inversion [188, 209]. In this study, we show pure physical results

solely based on intensity measurements without any computational aid. The computa-

tional manipulations should be handled carefully in a single-pixel spectrometer since

1) the number of data points is fewer compared to a speckle spectrometer which may

immediately dismiss some methods, and 2) diagonal data is positively biased in the

calibration matrix of the single-pixel spectrometer opposite to the speckle spectrometer

where the data is randomly distributed due to the nature of speckle images. A computa-

tional method preserving the diagonality of the calibration matrix and simultaneously

respecting the correlation between the columns of T may be a good candidate for

reducing the errors. Increasing the isolation of the system by stabilizing the multimode

fiber is another way of suppressing the system noise [192]. In preferred cases, the

isolation can be provided by replacing the multimode fiber with an integrated ridge

waveguide which is much less susceptible to environmental variations. With such

improvements, we believe the single-pixel spectrometer will be able to go beyond

the resolution limit of a speckle spectrometer which is more affected by the detection

noise [184].

7.5 Conclusion

In summary, we have demonstrated a high-resolution, single-pixel multimode fiber

spectrometer employing wavefront shaping of light. The working principle of the

spectrometer is based on the abrupt distortion of the focused intensity when the

wavelength of the incoming light changes. Thus, the use of the SLM is not required

for our method. The system can be externally perturbed by heat or carrier injection

to a semiconductor waveguide. The calibration can be performed with respect to the

external perturbation, and an arbitrary spectrum can be reconstructed accordingly. The

SLM, on the other hand, brings an additional advantage by increasing the signal-to-

noise level. The efforts regarding the miniaturized wavefront controllers can pave the
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way for simultaneous spectral reconstruction as well as increasing the SNR [210, 211].

The proposed spectrometer is promising in developing single-pixel hyperspectral

imaging applications across scattering media, and it offers replacing bulky, expensive

cameras with a single-pixel detector to develop low-budget systems.
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CHAPTER 8

CONCLUSION

In this thesis, the classification and reconstruction of spatial and spectral information

across multimode fibers are studied. Scrambling of input information into speckle

patterns (random intensity distributions) during the propagation of electromagnetic

waves in multimode fibers is discussed. The wavefront shaping method and the spatial

light modulators (SLM) are introduced, and two feedback-based wavefront shaping

algorithms are developed for focusing light at the distal end of the multimode fiber.

The use of spatial light modulators and fibers in safe optical communication and in

cryptography is investigated. For this purpose, binary numbers between 1 and 9 are

encoded as optical gratings on the spatial light modulator, and light reflected from the

SLM is propagated through a multimode fiber. The input numbers are reconstructed

from the corresponding speckle patterns by solving the inverse propagation equation

algebraically. The long-term performance of this communication system is tested

without the use of high-level isolation precautions, yet accurate classification of the

numbers is achieved for 30 hours. The classification task over multimode fibers is

expanded to include images of handwritten letters, and a deep-learning algorithm is

developed for this objective. The images are written on the SLM screen, and output

speckles obtained at the end of the multimode fiber are stored. Three different neural

networks, Res-Net, U-Net, and VGG-Net, are trained with the input-output couples,

and their performance is tested. A high reconstruction accuracy of around 90% is

achieved, and the superiority of Res-Net architecture in terms of accuracy is shown.

The classification and reconstruction task is further enlarged to cover the spectral

signals, and a high-resolution, compact, low-cost multimode fiber spectrometer is

demonstrated. A calibration matrix is constructed from the speckles obtained for the

wavelengths in the spectral range of interest, and this matrix is then used to recon-
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struct input spectra with high resolving powers (R ≥ 105). The performance of the

spectrometer is tested for three cases, including monochromatic spectra, arbitrary

discrete spectra, and continuous spectra, and the unknown input spectrum is success-

fully reconstructed in all cases with low errors. To decrease the size of the system

on the detection side, a single-pixel multimode fiber spectrometer is developed. All

wavelengths in the spectral range are focused on a chosen target region at the distal

end of the multimode fiber, and the spectrometer is built based on the measurements

of the integrated intensity of the target region. This spectrometer is also tested for

the aforementioned three cases, and unknown input spectra are reconstructed with a

resolving power of R ≈ 105.

We believe the studies presented in this thesis can be developed further to build high-

level fiber optic systems in telecommunication, biomedicine, and spectroscopy. The

methods we introduced here may also inspire new applications in quantum optics and

in cryptography.
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WORK EXPERIENCE

■ Teaching Assistant Middle East Technical University 2017-ongoing

General Physics I & II (First-year courses for engineering students)

– tutoring, lab coordination

Physics I & II (First-year courses for physics students)

– homework grading, problem solving

Applied Modern Physics Laboratory (Third-year course for physics students)

– experiment supervision, lab coordination

Electromagnetism (Third-year course for physics students)

– homework grading

113



Classical Mechanics I & II (Third-year courses for physics students)

– homework grading

Quantum Mechanics I (Fourth-year course for physics students)

– homework grading

Electromagnetism I (Graduate-level course for physics students)

– homework grading, problem solving

Quantum Mechanics I (Graduate-level course for physics students)

– homework grading

■ Tutoring Assistant Middle East Technical University 2012-2013

Mathematical Methods in Physics (Second-year course for physics students)

– homework grading, problem solving

■ PC Lab Assistant Middle East Technical University 2011-2012

HONORS, AWARDS, FELLOWSHIPS

■
Best poster prize (2nd place) in FOTONİK 2022 –
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Transmission Through a Multi-mode Fiber,” FOTONİK 2019 - 21. Ulusal Optik,
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