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ÖZET 

DOKTARA TEZİ 

DERİN ÖĞRENME TEKNİKLERİ İLE BAZI BAĞ HASTALIKLARININ 

BELİRLENMESI 

 

Ziya ALTAŞ 

Biyosistem Mühendisliği Anabilim Dalı 

Tez Danışmanı: Doç. Dr. Mehmet Metin ÖZGÜVEN 

İkinci Danışman: Doç. Dr. Kemal ADEM 

Aralık 2022, xi + 81 sayfa 

Türkiye, üzüm üretiminin en çok yapıldığı dünyanın en önemli bağ alanlarına sahip olan 

ülkelerdendir. Bağcılıkta verimliliği olumsuz etkileyen en önemli sebeplerden birisi bağ 

hastalıklarıdır. Bu çalışmada, bir yapay zeka yaklaşımı olan Faster R-CNN, SSD Multibox ve 

özgün olarak yeni geliştirilen derin öğrenme modeli kullanılarak bazı bağ hastalıkları tespit 

edilmiş ve sınıflandırılmıştır. Bu hastalıklar yaygın olarak görülen ve ekonomik sorun 

oluşturan külleme, mildiyö, ölü kol hastalığı ile asma yaprak kıvrılma virüs hastalığı (GLRaV) 

ve asma kısa boğum virüs (GFLV) hastalıklarıdır. Önerilen yöntem 11 000 görüntü kullanılarak 

eğitilmiş ve test edilmiştir. Deneysel değerlendirmeler sonucunda hastalıkların tespiti ve 

sınıflandırılmasında genel doğruluk oranları Faster R-CNN %92, SSD Multibox %92.21 ve 

geliştirilen model ile %96.95 olarak bulunmuştur. Önerilen yaklaşım, literatürdeki benzer 

yöntemlerden daha iyi sonuçlar vermiştir. Bu nedenle yöntemin, bazı bağ hastalıklarının tespit 

edilmesi ve sınıflandırılmasında, güvenilir bir şekilde kullanılabileceği sonucuna varılmıştır. 

Bu çalışmanın literatüre temel katkısı, fungal ve viral hastalıklardan oluşan beş farklı bağ 

hastalığı için büyük miktarda yeni bir veri seti oluşturulması ile hastalık tespiti ve 

sınıflandırılmasında özgün yeni bir derin öğrenme modelinin geliştirilmesidir. 

Anahtar Kelimeler: Yapay Zeka, Derin Öğrenme, Bağcılık, Bağ Hastalıkları, Bitki 

Hastalıkları 
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ABSTRACT 

DOCTORATE THESIS 

DETERMINATION OF SOME VINEYARDS DISEASE WITH DEEP LEARNING 

TECHNIQUES 

 

Ziya ALTAŞ 

Department of Biosystems Engineering 

Advisor: Assoc. Prof. Dr. Mehmet Metin ÖZGÜVEN 

Second Advisor: Assoc. Prof. Dr. Kemal ADEM 

December 2022, xi + 81 pages 

Turkey, which has the most important vineyard areas in the world, is one of the countries where 

the most grapes are produced. Vineyard diseases are one of the most important reasons that 

negatively affect the yield in viticulture. In this study, some connective diseases were defined 

and classified using artificial intelligence approach, Faster R-CNN, SSD Multibox and 

originally newly developed deep learning model. These diseases are powdery mildew, downy 

mildew, dead arm disease, grapevine leaf roll-associated virus disease (GLRaV) and grapevine 

fan leaf nepovirus (GFLV) diseases that are common and cause economic problems. The 

proposed method is trained and tested using 11 000 images. As a result of the experimental 

evaluations, the general accuracy rates in the detection and classification of diseases were found 

to be 92% for Faster R-CNN, 92.21% for SSD Multibox and 96.95% with the developed model. 

The proposed approach gave better results than similar methods in the literature. Therefore, it 

has been concluded that the method can be used reliably in the detection and classification of 

some ligament diseases. The main contribution of this study to the literature is the creation of 

a large new data set for five different connective diseases consisting of fungal and viral 

diseases, and the development of a original new deep learning model for disease detection and 

classification. 

 

Keywords: Artifıcial Intelligence, Deep Learning, Vineyard, Vineyard Diseases, Plant 

Diseases 
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1. GİRİŞ 

Dünya nüfusunun hızla artması ve kentleşme, tarım alanlarının ve kişi başına düşen su gibi 

doğal kaynakların azalmasına yol açmaktadır. Bu nedenle tarımsal üretimde verimliliği 

artırmak için teknolojik ve genetik yöntemlerin kullanılması zorunlu hale gelmiştir (Ozguven, 

2018; Özgüven, 2018). Bitki verimliliğini etkileyen en önemli faktörlerden biri bitki 

hastalıklarıdır. Bitki hastalıklarının zamanında tespit edilip önlenememesi, bitki veriminde ve 

kalitesinde önemli düşüşlere yol açmakta ve yetiştiriciler için önemli ekonomik kayıplara 

neden olmaktadır. Hastalıkların güvenilir ve zamanında tespiti, bu tür kayıpları önemli ölçüde 

azaltabilmektedir (Adem ve ark., 2022). Bu nedenle, bitki hastalıklarının hızlı ve doğru bir 

şekilde belirlenmesi ve hastalık şiddetinin değerlendirilmesi, zamanında önleme ve yönetim 

stratejilerinin uygulanması için esastır (Rossi, 1995; Bock ve ark, 2010; Gavhale ve Ujwalla, 

2014; Ampatzidis ve ark., 2017; Cruz ve ark., 2017; Ma ve ark., 2018; Wang ve Qi, 2019). 

Hastalıkların tespiti için bitki koruma uzmanlarının yaptığı gözlemler, uzmanların yaşadığı 

yorgunluk ve konsantrasyon kaybı, sahadan toplanan numunelerin daha sonra değerlendirilmek 

üzere yanıltıcı görsel değerlendirmesi, tekrarlanma ihtiyacı ve doğru uzman 

değerlendirmelerinin elde edilmesi için eğitim maliyetleri gibi bazı olumsuzluklar 

içerebilmektedir. Bu sorunların çözümü için özellikle büyük üretim alanlarında bitki 

hastalıklarının tanımlanmasında, hastalık şiddetinde ve hastalığın ilerlemesinde insan hatalarını 

azaltan daha hızlı ve pratik yöntemlere ihtiyaç duyulmaktadır (Bock ve ark., 2010; Altas ve 

ark., 2018). 

Son yıllarda yapay zeka, görüntü işleme ve grafik işleme birimlerindeki (GPU) gelişmeler, 

hassas bitki koruma ve büyüme uygulamalarını genişletebilmekte ve geliştirebilmektedir. Bitki 

hastalıklarını tespit etmek ve sınıflandırmak için günümüzde çeşitli yapay zeka yaklaşımları 

kullanılmaktadır. En yaygın yaklaşımlar, K-en yakın komşular (K-NN), lojistik regresyon, 

karar ağacı, destek vektör makinesi (SVM) ve derin öğrenme modeli olan Evrişimli sinir 

ağlarıdır (CNN). Bu yaklaşımlardan görüntü tanıma ve sınıflandırma için hızlı, otomatik ve 

doğru bir sistem geliştirmek amacıyla son zamanlarda derin öğrenme çok dikkat çekmekte ve 

hızla görüntü sınıflandırma için standart bir teknik haline gelmektedir (Barbedo, 2019; 

Geetharamani ve Arun, 2019). 

Hastalık tespiti için bilgisayarlı görü uygulamaları, özellikle görüntü işleme teknikleri ve derin 

öğrenme teknikleri, bitki koruma uygulamalarının daha etkin bir şekilde gerçekleştirilmesini 

sağlamak için büyük potansiyel faydalara sahiptir (Ozguven ve Yanar, 2022). Bir hastalık 
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durumunda bitkiler, hastalığın türüne göre şekil ve büyüklükleri değişen renkli benekler, 

bitkinin gövde ve gövde kısımlarında görülen çizgiler şeklinde görsel belirtiler göstermektedir. 

Bu belirtiler hastalık ilerledikçe renk, şekil ve boyut değiştirmektedir. Görüntü işleme 

teknikleri kullanılarak renkli cisimler ayırt edilebilmekte, bitki hastalık ve zararlılarının şiddeti 

belirlenebilmektedir. Görüntü işleme tekniklerine ek olarak, makine öğrenmesi yöntemleri 

uygulanarak anlık hastalık tespiti için uzman sistemler geliştirilebilmektedir. Özellikle makine 

öğrenmesinin bir alt dalı olan derin öğrenme yöntemi, bitki hastalık ve zararlılarının, zarar 

düzeylerinin belirlenmesi ve bitkinin gelişiminin izlenmesi yoluyla daha etkin bitkinin 

korunmasına olanak sağlamaktadır (Ozguven, 2020; Ozguven ve Altas, 2022). 

Bilgi teknolojilerinde görülen hızlı gelişim sonucunda geliştirilen donanım, algoritma ve 

yazılımların tarımda kullanılmaya başlamasıyla ortaya çıkan hassas tarımda, geleneksel tarıma 

göre işletmecilik ve karar verme işlemlerinde önemli değişimler yaşanmıştır. Tarımda mevcut 

bilgi ve tecrübelerin bilgi teknolojileriyle birlikte değerlendirilmesi ile bitki görüntülerinden 

hastalıkları belirlemek, en önemli araştırma alanlarından biri olmuştur (Özgüven, 2018). 

Tarımsal üretimin öncelikli hedefi, bitkisel ve hayvansal üretimde ekonomik, sürdürülebilir ve 

üretken işletmeciliğin sağlanmasıdır. Bu amaçla, tarımda verimliliğin ve ürün kalitesinin 

arttırılması, minimum girdi kullanımı, gıda güvenilirliği, doğal kaynakların ve çevrenin 

korunması gibi çeşitli konularda teknoloji kullanılmasıyla, tarımsal işlemlerin kolaylaştırılması 

ve çözüm veya iyileştirme bekleyen sorunlara alternatif çözümler geliştirilmektedir (Altaş ve 

ark., 2019). Bu çözüm geliştirme potansiyelinden dolayı yapay zeka uygulamalarının günümüz 

ve yakın gelecekteki en önemli tarımsal araştırma konularında yer alması beklenmektedir. 

Tarımda birçok alanda yapay zeka teknikleri kullanılarak bitkisel üretim planlamaları, 

bitkilerin sınıflandırılması, verim tahmini, bitki hastalık, zararlı ve yabancı otlarının tespiti, 

tarım robotlarında rota belirlenmesi ve uygulama kararlarının alınması, serada uygun çevre 

şartlarının belirlenmesi, işletme kararlarının alınması, sulama yönetimi, ürün rotasyonunun 

belirlenmesi, en uygun gübre ve alet-makine seçimi, hayvan hastalıklarının tespiti, uygun yem 

rasyonlarının hazırlanması, hayvan davranışlarının belirlenmesi gibi konularda araştırıcılar 

tarafından çok sayıda çalışma yapılmıştır (Terzi ve ark., 2019). 

Bu tez çalışmasının amacı, ülkemiz için oldukça önemli olan bağcılıkta kısa sürede yüksek 

yoğunluklara ulaşarak, önemli ürün kayıplarına neden olan külleme, mildiyö, ölü kol hastalığı 

ile asma yaprak kıvrılma virüs hastalığı (GLRaV) ve asma kısa boğum virüs (GFLV) hastalık 

görüntülerine bir yapay zeka yaklaşımı olan derin öğrenme teknikleri kullanılarak hastalıkların 

otomatik tespit edilebilmesi ve sınıflandırma işleminin gerçekleştirilmesidir. 
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Bağcılık 

Bağcılık için dünyanın en elverişli iklim kuşağı üzerinde bulunan ülkemiz, kültür asması (Vitis 

vinifera L.) ve bağcılık kültürünün anavatanı olması nedeniyle zengin bir gen potansiyeline ve 

asmanın heterozigotik yapısından dolayı çok geniş çeşit ve tip zenginliğine sahiptir. Ülkemiz 

bağcılığında iklimin uygun olmasından dolayı eski zamanlardan beri asma olarak 

isimlendirilen (Vitis sp.) bitki yetiştiriciliği yapılmaktadır. Asma, toprak ve iklim bakımından 

fazla seçici olmaması ve asmadan üzüm ve yaprak gibi ürünlerin ekonomik olarak 

değerlendirilme imkanına sahip olması nedeniyle birçok ailenin geçim kaynağını 

oluşturmaktadır. Ancak birçok hastalık bağlarda kalite ve verimi düşürerek ekonomik sorunlar 

meydana getirmektedir (Karabat, 2014; Altaş ve ark., 2021). 

Türkiye, 2020 yılı istatistiklerine göre 6 950 930 ha’lık dünya bağ alanları içinde 400 980 ha’lık 

bağ alanı varlığı ve 78 034 332 ton’luk dünya yaş üzüm üretiminin 4 208 980 ton’luk kısmıyla 

önemli bir bağ yetiştiriciliği yapılan bir ülke konumundadır (FAO, 2022). Çizelge 1’de TUİK 

verilerine göre 2017-2021 yılları arası 5 yıllık Türkiye bağ alanı ve üzüm üretim değerleri 

verilmiştir. Çizelge 1 incelendiğinde 2021 yılında ülkemizde üretilen toplam yaş üzümün 

%50.59’u sofralık, %38.96’sı kurutmalık, %10.43’ü şıralık-şaraplık olarak çeşitli gıda 

ürünlerinin elde edilmesi amacıyla kullanılmaktadır. Üzümün diğer değerlendirme 

ürünlerinden sirke, pekmez, sucuk, reçel, köfter (pekmez lokumu), pestil (bastık), samsa vb. 

ürünlerde yoğun olarak tüketilmektedir. Son yıllarda üzüm çekirdeği sanayi, ilaç ve kozmetik 

alanlarda da kullanılmaya başlanmıştır. Resveratrol son yıllarda üzümden elde edilen anti-

kanserojen bir maddedir. Ayrıca asma yaprağından salamura yapılmaktadır. Bu yapraklar 

sarma olarak değerlendirilmektedir. 

Çizelge 1. 2017-2021 yılları arası Türkiye bağ alanı ve üzüm üretimi (TUİK, 2022) 

Yıllar Alan (Dekar) 
Toplam 

Üretim (Ton) 

Toplam 

Sofralık 

Üretim (Ton) 

Toplam 

Kurutmalık 

Üretim (Ton) 

Toplam 

Şaraplık 

Üretim (Ton) 

2017 4 169 068 4 200 000 2 109 000 1 603 000 488 000 

2018 4 170 410 3 933 000 1 945 262 1 524 091 463 647 

2019 4 054 387 4 100 000 2 050 000 1 599 000 451 000 

2020 4 009 979 4 208 908 2 218 056 1 534 499 456 353 

2021 3 902 211 3 670 000 1 856 929 1 430 160 382 911 

Çizelge 2’de verilen 2020 yılı dünya hasat edilen bağ alanları (ha) incelendiğinde ise üretim 

alanı olarak İspanya, Çin, Fransa, İtalya ve Türkiye ilk beş büyük üretici ülke olarak göze 

çarpmaktadır. Ülkelerin 2011-2021 yılları arası üzüm üretim ortalaması değerlendirildiğinde 

ise Çin, İtalya, ABD, Fransa, İspanya ve Türkiye olarak sıralanmaktadır (Şekil 1). 
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Şekil 1. 2011-2021 yılları arası on yıllık üzüm üretimi (ton) (FAO, 2022) 

Şekil 1’de gösterilen bu ülkelerden Fransa ve İspanya şaraplık üzüm üretimi ile ön plana 

çıkarken, İtalya sofralık ve şaraplık, ABD ve Çin sofralık, kurutmalık ve şaraplık ve Türkiye 

ise hem sofralık hem de kurutmalık üzüm üretimi ile öne çıkmaktadır. Arjantin, Şili ve Güney 

Afrika Cumhuriyeti Güney yarım kürede bağcılığın gelişmiş olduğu diğer ülkelerdir ve 

buralarda da sırasıyla sofralık, şaraplık ve kurutmalık amaçlı üretim önem taşımaktadır 

(Karabat, 2014). 

Çizelge 2. Dünya hasat edilen bağ alanları 2020 (ha) (FAO, 2022) 

Sıra No Ülkeler Alan (ha) 

1 İspanya 931 630 

2 Çin 765 038 

3 Fransa 759 060 

4 İtalya 703 900 

5 Türkiye 400 998 

6 ABD 372 311 

7 Arjantin 214 798 

8 Şili 200 906 

9 Portekiz 175 670 

10 İran 158 467 

Ülkemizde 2021 yılı üretim döneminde yaklaşık 3.9 milyon dekar alanda üzüm üretimi 

yapılmıştır. Bölgelere göre üretim incelendiğinde, Ege’de çekirdeksiz sofralık-kurutmalık, 

Marmara’da sofralık-şaraplık, Akdeniz’de çekirdekli sofralık, Orta Anadolu ve Güneydoğu 

Anadolu’da şaraplık, çekirdekli sofralık-kurutmalık üzüm yetiştiriciliği gelişme 
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göstermektedir. Tüm bağ alanları (yaş, kuru ve şaraplık üzüm) bakımından incelendiğinde ise 

%22’lik pay ile Manisa (858 bin da) birinci sırada yer alırken, Manisa’yı Mardin (363 bin da) 

ve Denizli (341 bin da) takip etmektedir. TUİK 2021 verilerine göre oluşturulan Türkiye bağ 

alanları haritası Şekil 2’de ve Türkiye üzüm üretim haritası ise Şekil 3’de gösterilmektedir. 

Şekillerde illerin yüzdelik (%) paylarına göre renklendirme yapılmıştır. 

 
Şekil 2. Türkiye bağ alanları haritası 

2021 yılı üretim döneminde ülkemizde 3.6 milyon ton üzüm üretimi gerçekleşmiştir. Şekil 3’de 

gösterildiği gibi üzüm üretiminde önemli bir yere sahip olan Manisa 1.3 milyon ton üretimle 

ülkemiz üretiminin %35.7’sini gerçekleştirmiştir. Mersin 343 bin tonluk üretimi ile ikinci 

sırada, 324 bin tonluk üretim ile Denizli üçüncü sırada yer almaktadır. Genel olarak 

değerlendirildiğinde sahip olduğu bağ alanı ve üzüm üretimiyle bağcılık sektörü ülkemizin 

bitkisel üretiminde önemli bir yere sahiptir. 

 
Şekil 3. Türkiye üzüm üretim haritası 
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Bağ Hastalıkları 

Fungal Hastalıklar 

Külleme Hastalığı (Uncinula necator (Schv.) Burr.) 

Mantari bir hastalıktır. Küllemeye neden olan fungus obligat bir parazittir. Hastalık etmeni 

nemli, sıcak ve kurak havalarda her yıl görülebilmektedir. Ancak hastalığın gelişiminde 

nemden çok, sıcaklık daha önemlidir. Kurak koşullarda bile gelişebilen bir mantardır. Optimum 

gelişme sıcaklık isteği 20-27°C arasındadır. Hastalık havalanmayan gölge ve yarı ışıklı yerlerde 

daha hızlı gelişmektedir. Bu nedenle asmanın havalanmasını ve iç kısımların ışık almasını 

sağlayan yaz budamaları çok önemlidir. Asmanın tüm yeşil aksamı küllemeye 

yakalanabilmektedir. Hastalığın ilk gelişme döneminde genç yapraklarda hastalık zor fark 

edilmektedir. Şekil 4’te gösterildiği gibi yaprağın alt yüzünde yağ lekesi görünümünde belirti 

oluşur ve üst yüzünde de renk açılması yapmaktadır. Yaprak yaşlandıkça parlaklığını kaybeder, 

kalınlaşır ve gevrekleşir. İleri dönemde, yaprağın alt ve üst yüzleri kirli beyaz renkte kül 

serpilmiş gibi pudramsı bir görünüm almaktadır. Hastalıklı yaprakların kenarları içe doğru 

kıvrılır normal şeklini kaybetmektedir. Sürgünler yeşilken enfekteli kısımlar siyaha yakın koyu 

kahverengindedir. Kışın bu lekeler kırmızımsı kahverengine dönüşmektedir. Salkımda, 

hastalığa erken yakalanan taneler küçük kalmaktadır. İrileşebilmiş veya olgunlaşmadan hemen 

önceki dönemde enfekte olmuş tanelerin sapı doğrultusunda çatladığı görülmektedir. Taneler, 

ben düşme devresine kadar enfeksiyonlara duyarlıdır. Hastalık Türkiye’nin tüm bağ 

bölgelerinde hemen her yıl ortaya çıkmakta ve mücadele yapılmadığında %90’a varan ürün 

kaybına neden olabilmektedir (Anonim, 2019c). 
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Şekil 4. Külleme hastalığının yapraktaki belirtileri (Akgül, 2013) 

 
Şekil 5. Külleme hastalığının sürgün ve tanedeki belirtileri (Pearson ve Goheen, 1994) 

Mildiyö (Plasmopara viticola (Berk. et Curt) Berl. et de Toni) 

Bağ mildiyösü, asmanın vejetatif gelişme dönemi sırasında ılık ve yağışlı geçen iklime sahip 

bölgelerde görülebilen bir hastalıktır. Etmeni obligat bir parazittir. Hastalık asmanın tüm yeşil 

kısımlarında görülebilmektedir. Sürgünler 25 cm iken hastalık görülmeye başlar. Hastalık ilk 

olarak yaprakların üzerinde sarımsı, yuvarlak, şeffaf zeytinyağı lekeleri halinde kendini 

göstermektedir. Lekeler gittikçe büyür, hatta tüm yaprağı sarabilir. Hastalığın sporlarının 

çimlenebilmesi için yaprağın üzerine su damlası olması gerekmektedir. Bu nedenle mildiyö 

yağmurlu havalardan sonra veya çiğ olduğu zaman salgın yapmaktadır. Yaprakta önce yağ 

lekeleri, daha sonra bunların alt kısmında beyazımsı bir küf tabakası oluşmaktadır. Bu lekeler 
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sonradan esmerleşmekte, bazen kızarmakta ve sonuçta kurumaktadır. Hava fazla yağışlı 

geçerse hastalık genç sürgünlere, çiçeklere ve koruklara geçmektedir. Mildiyö küllemedekine 

benzer bir küf oluşturmaktadır. Ancak bu küf küllemedeki gibi yaprağın her iki yüzünde değil 

sadece alt yüzündedir. Bu hastalık ilkbaharda çok sık yağmur yağmadıkça pek görülmez. 

Mildiyö hastalığı asmanın tüm yeşil kısımlarını ve ürünü doğrudan etkilediği için ekonomik 

önemi büyüktür. Şekil 6’da mildiyö hastalığının belirtileri gösterilmektedir (Uzun, 2015; 

Anonim, 2019c). 

 
Şekil 6. Bağ mildiyösünün yapraktaki belirtisi (Anonim, 2019b) 

Ölü Kol Hastalığı (Phomopsis viticola Sacc.) 

Ölü kol (Phomopsis viticola Sacc.) sürgünler üzerinde 0.2-0.4 mm çapında siyah yuvarlak sert 

piknitleri meydana getirmektedir. Başta sürgünler olmak üzere, yapraklar, yaprak sapları, 

salkım ve salkım sapları, taneler hastalığa yakalanabilmektedir. Ülkemizde hastalık daha çok 

sürgünlerde kendini göstermektedir. Sürgünün dipten itibaren üçüncü veya beşinci gözüne 

kadar olan kısmında, lekeler ve çatlamalar görülmektedir. Önce ortaları koyu siyah lekeler 

meydana gelmektedir. Daha sonra bu lekeler birleşir, düzgün olmayan siyah çatlak ve yaraları 

oluşturmaktadır. Yaralar çok derin olup, odun dokusunu da çatlatabilmekte ve bu tür sürgünler 

daha sonra kurumaktadır. Hastalık “sürgün kuruması” adıyla da bilinmektedir. Enfekte olmuş 

yapraklarda önce toplu iğne ucu büyüklüğünde, etrafı sarı haleli küçük siyah lekeler meydana 

gelmektedir. Daha sonra bu yapraklar sararmakta, buruşmakta, kenarları yırtılmakta ve küçük 

kalmaktadır. Hastalanmış salkım ve tane saplarında lekeler oluşabilmektedir. Çatlayan, 

uzunluğuna yarılan sürgünler, sonbaharda beyazlaşarak hastalığın tipik şeklini almaktadır. Ölü 
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kol hastalığı sonuçta asmanın kurumasına neden olduğu için ekonomik önemi fazladır. 

(Anonim, 2019a). Şekil 7’de ölü kol hastalığının sürgünlerdeki belirtisi gösterilmektedir.  

 
Şekil 7. Ölü kol hastalığının sürgünlerdeki belirtisi (Anonim, 2019c) 

Kurşuni Küf Hastalığı (Botrytis cinerea Pers.) 

Kurşuni küf ya da gri küf olarak bilinen hastalık etmeninin eşeyli formu Botryotinia fuckeliana 

(de Bary) Whetzel, eşeysiz formu ise Botrytis cinerea Pers.’dir. Bağlarda etmenin yalnızca 

eşeysiz formu görünmektedir. Hastalığın yapraklardaki belirtileri çok yaygın değildir. 

Yapraklarda kenarları sarı olan, açık kahverengi ve kuru lekeler şeklinde görülmektedir. 

Sürgünlerde ise hastalıklı kısımların rengi açık kahverengiye dönmektedir. Hastalıklı kısımlar 

boğumlara yakın yerlerde gözlenmektedir. Tanelere hastalığın bulaşması çiçeklenme 

döneminde olmaktadır. Ancak hastalık üzümler olgunlaşıncaya kadar gizli kalmaktadır. 

Tanelerin olgunlaşma döneminde hastalık sporları su bulursa çimlenmekte ve gri renkte küf 

oluşturmaktadır. Sporların çimlenebilmesi için taneler üzerinde 12-24 saat boyunca yüksek 

oranda nem (%92 veya yukarısı) veya su olmalıdır. Bu nedenle olgunlaşma dönemi kurak 

geçen yerlerde bu hastalığa pek rastlanmaz. Taneler üzerindeki su yağmurlarından ya da 

tanelerdeki çatlaklardan veya salkım güvesi zararlısının tanede açtığı deliklerden üzüm 

suyunun dışarı çıkmasıyla sağlanmaktadır. Sık salkımlı çeşitlerde hastalık daha çok 

görülmektedir. Taneler üzerinde önce 3-5 mm çapında, yuvarlak, pembemsi, kızıla yakın 

lekeler görülmektedir. Daha sonra bu lekeler taneyi kaplamakta ve rengi de koyulaşmaktadır. 

Hastalık tane içine nüfuz etmiş ise böyle üzümlerin depoda kükürtdioksit ile muamelesinden 

pek başarı sağlanmaz (Uzun, 2015). 
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Şekil 8. Kurşuni küf hastalığının salkımlardaki zararı (Anonim 2019c) 

Kav Hastalığı (Stereum hirsutum (Willd.) Pers., Phellinus igniarius (L.) Quél., Fomitiporia 

mediterranea M. Fisch.) 

Kav hastalığına neden olan fungal etmenler birden fazladır ve Basidiomycota şubesinde yer 

almaktadır. Özellikle yaşlı bağlarda sorun olan Kav Hastalığı “Black measles, Apoplexy, Esca, 

Folletage, White root, Esca proper, Vine decline, Sunstroke” gibi farklı isimlerle anılmaktadır. 

Hastalık tablosunun ana nedeni patojenlerin ürettikleri lakkaz ve peroksidaz enzimlerinin 

asmanın odun dokusundaki lignini tahrip etmesi ve böylelikle su iletiminin sekteye uğraması 

sonucunda yeşil aksamda solgunluk, gelişme geriliği ve hatta kuruma belirtilerinin ortaya 

çıkmasıdır. Belirtiler asmanın tamamında veya yalnızca bir kısmında görülebilmektedir. 

Hastalığın iki belirti tipi vardır. Birincisinde hastalık kronik seyreder ve yapraklardaki 

belirtilerle kendisini belli etmektedir. İkincisinde ise akut bir seyir vardır ve asma aniden 

ölmektedir. Bu olaya apoplexy (inme) adı verilmektedir. Asmada önce gözlerin uyanmasında 

bir gecikme fark edilmektedir. Belirtiler çiçeklenmeden sonra, yaz aylarında veya sonbahar 

başlangıcında, önce sürgünün alt kısmındaki yaşlı yapraklarda başlar, sonra tüm yapraklarda 

ortaya çıkmaktadır. Yapraklar doğal yeşilliğini kaybeder ve zamanla sararmaktadır. 

Yapraklarda damar araları önce sararır, daha sonra kızıl kahverengi renge dönüşmektedir. 

Damarlar nispeten yeşil kalmaktadır. Bu yapraklar kurumakta ve vaktinden önce 

dökülmektedir. Taneler üzerindeki belirtiler tane bağlama ile olgunlaşma arasındaki herhangi 

bir zamanda, tüm salkımda ya da dağınık olarak tanelerin yüzeyinde önce koyu mor noktalar 

şeklinde ortaya çıkmaktadır. Daha sonra bu lekeler birleşerek tüm taneyi kaplayabilmektedir 

(Anonim 2019a). 
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Şekil 9. Kav hastalığının yaprakta, üzüm tanelerinde ve odun dokusunda belirtisi (Anonim 

2019c) 

Şekil 9’ da görüldüğü gibi, yaprak ve tanelerdeki bu belirtilere etmenlerin ürettikleri toksinler 

(pulluans, scytalone ve isosclerone) neden olmaktadır. Bu belirtileri sadece fungal etmenlerin 

varlığı değil, asmanın yaşı, çeşidi, üretim materyali, budama, yaraların korunması, iklim 

koşulları, toprak yapısı, sulama ve arazinin eğimi de etkilemektedir. Hastalıklı asmaların gövde 

ve kalın dallarının enine kesitinde, merkezin çevresinde açık renkli yumuşak dokulu hastalıklı 

kısmın, daha koyu renkli sert dokulu bir kuşakla çevrilmiş olduğu görülmektedir. Yıldan yıla 

asmanın içi kavlar, kavlama içten dışa doğru olmaktadır. Bazen çok sıcak yaz aylarında adeta 

yıldırım çarpmış gibi yaprakların birden bire solup kuruduğu, genç sürgünlerin bunu izlediği 

ve asmanın aniden öldüğü görülmektedir. 

Bağ Antraknozu Hastalığı (Elsinoe ampelina Shear.) 

Bağ Antraknozu hastalığı daha çok ilkbahar ve yaz ayları yağışlı geçen veya devamlı nemli 

olan bağlarda görülmektedir. Sporlarının çimlenebilmesi için havanın nemli olması yetmez, 

yaprak veya taneler üzerinde su damlasına da ihtiyaç vardır. Bu nedenle hastalık kurak 

havalarda pek görülmez. Etmen asmanın tüm yeşil kısımlarını hastalandırırsa da en çok yeni 

sürgünlerde ve salkımlarda görülmektedir. Yapraklarda önce küçük lekeler oluşmaktadır. Daha 

sonra bunların ortası gri, kenarları kırmızımsı-kahverengi veya mor bir renk almaktadır. 

Zamanla bu lekeler kurumakta ve yapraklar delinmektedir. Hastalık şiddetli olursa yapraklar 

tamamen kurumaktadır. Taneler üzerindeki lekeler başlangıçta siyahtır. Bu lekeler zamanla 

büyür ve ortası gri bir renk almaktadır. Bu görünüş nedeniyle hastalığa "kuş gözü çürüklüğü" 

adı da verilmektedir. Hastalık çelik marazı adıyla da bilinmektedir (Uzun, 2015). 
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Şekil 10. Bağ antraknozu’nun yaprakta (a), sürgünde (b), tanelerdeki (c, d) zararı (Anonim, 

2019c) 

Virüs hastalıkları 

Asma Yaprak Kıvrılma Virüs Hastalığı (Grapevine leafrollassociated viruses, GLRaVs) 

Asma Yaprak Kıvrılma Virüs hastalığına 11 farklı virüs neden olmaktadır. Floemde bulunan 

bu farklı virüslerin ayrı ayrı ya da çeşitli kombinasyonlarda bitkiyi enfekte etmesi, yaprak 

kıvrılma hastalığı belirtilerinin ortaya çıkmasına neden olmaktadır. Hastalık, ülkemizde bağ 

üretimi yapılan hemen her bölgede görülmekte olup hastalıkla ilişkili en yaygın görülen 

virüslerin GLRaV-1 ve GLRaV-3 olduğu tespit edilmiştir. Hastalığın yayılışı, enfekteli aşı 

kalemi ve virüsü latent olarak taşıyan asma anaçlarının kullanımı ile olmaktadır. Ayrıca, 

unlubitlerden Planococcus ficus ve Planococcus citri ile Kahverengi koşnil (Parthenolecanium 

corni) GLRaV-3’ün vektörü iken GLRaV-1’in vektörü Parthenolecanium corni’dir. Hastalığın 

belirtileri, büyüme mevsiminin sonuna doğru görülebilmektedir. İklim koşullarına bağlı olarak 

Ağustos ve Eylül ayı başlarından itibaren kırmızı üzüm çeşitlerinin yaşlı yapraklarında 

kırmızımsı lekeler gelişmektedir. Bu lekeler genişlemekte ve birleşmektedir. Yaz sonunda veya 

sonbaharda kırmızımsı ve sarımsı renk, yaprak ayasının tamamını kapladığı halde, ana 

damarlar yeşil olarak kalmaktadır. Kırmızı ve beyaz üzüm çeşitlerinin her ikisinde de yaprak 

ayası kalınlaşmakta, kırılganlaşmakta ve aşağı doğru kıvrılmaktadır. Enfekteli asmalarda 

meyve salkımları çok kısadır. Üzümler geç ve düzensiz olgunlaşmaktadır. Sağlıklı üzüm 
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çeşitlerinde meyveler olgun renklerini aldığı halde, hastalıklı meyveler yeşil ve beyazımsı 

kalmaktadır. Kırmızı üzüm çeşitlerinde salkımlarda düzensiz renklenme görülmektedir. Bu 

belirtiler mevsim sonunda sürgün ucuna doğru yayılmaktadır. Beyaz üzüm çeşitlerinde ise 

yapraklarda beyaz-sarı renk değişimlerine ve yaprak kenarlarından aşağı doğru kıvrılmalara 

rastlanmaktadır. Hastalıklı asmalarda genel bodurluk ve gelişme durgunluğu hemen göze 

çarpmaktadır. Hastalık asma anaçlarında belirti oluşturmamasına rağmen gelişmeleri 

zayıflatmaktadır. Bu hastalık, meyve verimini %10-70 oranında azaltabildiği gibi, şeker oranını 

da düşürmektedir (Şekil 11). (Anonim, 2019a). 

 
Şekil 11. Asma yaprak kıvrılma virüslerinin yapraktaki (a, b) ve salkımdaki (c, d) belirtileri 

(Anonim, 2019c) 

Asma Kısa Boğum Virüs Hastalığı (Grapevine fanleaf nepovirus, GFLV) 

Nepovirüs cinsine ait bir virüsün yol açmış olduğu hastalık “yelpaze yaprak” ve “bulaşık 

soysuzlaşma” olarak da bilinmektedir. Nepovirüs; üretim materyallerinden kalem, anaç ve 

mekanik yolla; ayrıca vektörü olan kamalı nematodlardan Xiphinema index ve Xiphinema 

italiae ile de taşınmaktadır. Hastalığın yaprak belirtileri erken ilkbaharda gelişmekte ve 

vejatasyon boyunca devam etmektedir. Ancak yüksek sıcaklıklarda belirtiler 

maskelenebilmektedir. Yapraklarda şekil bozuklukları görülmekte, yaprak simetrisi 

bozulmakta, yaprak ayası çukurlaşmakta ve karışmakta, yaprakta diş sayısı artmaktadır. Sarılık 
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belirtileri, ilkbaharda erken dönemde gelişerek asmanın bütün vejetatif organlarını (yapraklar, 

taze sürgün uçları ve salkım taslakları) etkilemektedir. Başlangıçta, yapraklarda birkaç sarı leke 

ve damar bantlaşması görülmektedir. İlerleyen dönemde ise damar aralarında çeşitli 

büyüklükteki benekler yayılarak yaprağın tümünün sararmasına neden olmaktadır. Bu tip 

belirtilere GFLV’nin dışında diğer bazı nepovirüsler de yol açmaktadır (Anonim, 2019c). 

 
Şekil 12. Asma yelpaze yaprak virüsü’nün yaprakta meydana getirdiği bozukluklar (a, b), 

muhtelif sarılık belirtileri (c, d, e, f) ve sürgünde meydana gelen kısa boğum araları ve zikzak 

gelişme (g) (Anonim, 2019c) 

Asma Gövde Çukurlaşması Virüs Hastalığı (Rugose wood complex) 

Asmalarda görülen gövde çukurlaşma hastalığına 7 farklı virüs neden olmaktadır. Ülkemizde 

bu virüslerden Grapevine virus A, Grapevine virus B ve Grapevine rupestris stem pitting 

associated virus (GRSPaV) saptanmıştır. Virüs asmanın bünyesinde sistemik olarak yer 

almaktadır. Hastalık, asmanın tüm kültür ve yabani formlarında (Vitis spp.) aşıyla 

taşınmaktadır. Etmenlerin bazıları unlubitlerle (Planococcus ficus ve Planococcus citri) de 

taşınmaktadır. Enfekteli asmalarda göze çarpan ilk belirtiler, bitkilerde gelişme durgunluğu, 

baharda gözlerde geç uyanma, sürgünlerde zayıf gelişmedir. Bu hastalık asmanın odunsu 

kısmındaki belirtiler ile karakterize edilmektedir. Aşı yerinde anaç ve kalem uyuşmazlığına 

benzer şişkinlikler meydana gelmekte ve kalem anaca göre daha geniş çaptadır. Gövdede kabuk 
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dokuda kavlamalar meydana gelmektedir. Aşı noktasındaki kabuk soyulduğunda odun 

yüzeyinde görülen yiv benzeri oluşumlar düzgün olmayıp, girintili çıkıntılıdır. Kabuğun iç 

tarafında ise çivi benzeri çıkıntılar görülmektedir. Bu durum hastalığın en tipik belirtisidir. Bu 

belirtiler genellikle kabuk soyulmadan fark edilmez. Şiddetli enfeksiyonlarda ise konukçuya 

bağlı olarak bu yivler çok daha yoğun ve derindir. Anaç ve kalem kombinasyonu arasındaki 

ilişkiye bağlı olarak odunsu dokulardaki belirtilerin şiddeti değişebilmektedir. Hastalık 

asmalarda gözle görülebilir bir bodurluğa neden olmaktadır. Enfekteli asmaların yaprakları 

daha ufak olup, meyve verimi az ve salkımları ufaktır. Vitis Vinifera L. ve asma anaçlarının 

çoğu bu hastalığa karşı hassastır. Aşısız asmalarda ve anaçlarda hastalık latent halde 

bulunmakta olup, aşılı asmalarda belirtiler ortaya çıkmakla birlikte nadiren de olsa latent 

enfeksiyonlar görülebilmektedir (Anonim, 2019a). 

 
Şekil 13. Asma gövde çukurlaşması virüs hastalığının gövdedeki yiv oluşumu ve aşı 

noktasındaki şişkinlik (solda), gövdedeki kabuk kavlaması ve yiv oluşumu (sağda) (Anonim, 

2019c) 

Bakteriyel hastalıklar 

Kök Ur Hastalığı (Agrobacterium vitis (Ophel ve Kerr)) 

Kök uru hastalığını yapan etmen bakteridir. Optimum gelişme sıcaklığı 25-30°C, minimum 

0°C, maksimum gelişme sıcaklığı ise 37°C’dir. Alkali topraklarda, hafif asit karakterde 

olanlara oranla daha çok yayılmaktadır. Hastalık etmeni sistemik olarak asma bitkisinde, 

toprağa karışmış urlarda ve kök parçalarında uzun yıllar canlılığını sürdürebilmektedir. Bulaşık 

topraklara konukçu bitki dikildiğinde, kök veya gövdenin toprağa yakın kısımlarında kültürel 

işlemler, aşılama, böcek ve nematod beslenmesi gibi nedenlerle açılan taze yaralardan bitkiye 

giriş yapmaktadır. Hastalık, asmanın toprağa yakın kısımlarında ve kollarında görülmektedir. 

Köklerde genellikle ur oluşturmaz ama lokal nekrozlara ve çürümelere neden olabilmektedir. 

Urlar yaz başlangıcında beyaz-krem renkli ve yumuşak görünümlü olup, yaz sonunda 

kahverengine dönüşmektedir. Sonbaharda ise kuru ve odunsu bir yapıya bürünmektedir. Bir 

sezonda tüm asmayı saracak kadar büyük urlar oluşabilmektedir. Urlu bitkiler genellikle zayıf 



 

 

 

 

 

 

 

 

16 

 

sürgün gelişimi gösterir ve sürgünün ur üstünde kalan kısımları kuruyabilmektedir. Özellikle 

don olaylarının görüldüğü yerlerde asma üzerindeki don çatlakları boyunca çok sayıda urlanma 

olmaktadır. Bu belirtiler halk arasında “sıraca” ya da “uyuz” olarak adlandırılmaktadır. Ana 

kök ve kök boğazında çok sayıda ur oluştuğunda, asma bitkisinde besin elementleri ve su 

iletimi sekteye uğramaktadır. Hasta bitkiler olumsuz çevre koşullarına ve özellikle soğuk 

zararına daha duyarlı hale gelmektedir (Anonim, 2019c). Şekil 14’de kök ur hastalığı 

gösterilmektedir. 

 
Şekil 14. Asmanın kollarında (a, b, c, d) kök boğazında (e) urlanmalar (Anonim, 2019c) 

Derin Öğrenme 

Derin öğrenme insan beyninin karmaşık problemler için gözlemleme, analiz etme, öğrenme ve 

karar verme gibi yeteneklerini taklit eden, denetimli veya denetimsiz olarak özellik çıkarma, 

dönüştürme ve sınıflandırma gibi işlemleri büyük miktarlardaki etiketlenmiş verilerden 

yararlanarak yapabilen bir makine öğrenmesi tekniğidir (Kayaalp ve Süzen, 2018). Temel 

olarak verinin temsilinden öğrenmeye dayalıdır. Bir görüntü için temsil denildiğinde; piksel 

başına yoğunluk değerlerinin bir vektörü veya kenar kümeleri, özel şekiller gibi özellikler 

düşünülebilmektedir. Bu özelliklerin içinden bazıları veriyi daha iyi temsil etmektedir 

(Özgüven, 2019). Derin öğrenmenin daha iyi anlaşılması için yapay zeka ve makine öğrenmesi 

kavramlarının bilinmesi gerekmektedir (Şekil 15). 
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Şekil 15. Yapay zeka teknikleri 

Yapay zeka, insan zekasının sahip olduğu algılama, öğrenme, geçmiş tecrübe ve düşünme 

yeteneğinin bilgisayar, makine veya sistemlere kazandırılarak tahmin edilebilen veya 

edilemeyen yeni durumlar karşısında karar vermesini sağlama ve gerekli işlemi yapabilmesidir. 

Bu karar verme işlemi sırasında insan zekası tarafından ilgili konunun hangi parametrelerine 

bakılıp değerlendiriliyorsa, yapay zekaya bu değişkenler öğretilmekte ve karar vermenin 

sağlanması için de insanın zihinsel fonksiyonlarına benzeyen yorumlar yapabilen bilgisayar 

modelleri yardımıyla formüller oluşturulmaktadır. Böylece insanın düşünce yapısına benzer, 

bilgisayar yazılımlarıyla bir düşünme ve karar verme modeli oluşturulmaktadır (Özgüven, 

2019). Yapay zeka uygulamalarında kullanılan yöntemler aşağıdaki gibi gruplandırılmaktadır 

(Alpaydın, 2004): 

 Sınıflandırma: Geçmiş verilerin hangi sınıf içerisinde yer aldığı belirtildiği durumda 

yeni verinin hangi sınıf içerisinde yer alacağını bulma işlemidir. 

 Kümeleme: Geçmiş verilerin hangi sınıf içerisinde yer aldığı belirtilmediği veya 

bilinmediği durumda verilerin benzerliklerine kümelere ayrıştırılması işlemidir. 

 Regresyon (Eğri Uydurma): Geçmiş verilerin süreklilik gösteren sayısal değerlerden 

oluştuğu durumlarda, bu değerlerden bir eğri modeli üretme işlemidir. 

 Özellik Belirleme: Geçmiş verilerin çok fazla olması durumunda bu verilerin sınıfını 

belirleyen özellikler belirlenir. Bu belirleme işlemi sırasında mevcut özelliklerden bir 

alt küme oluşturabileceği gibi, bunların birleşiminden yeni özellikler de oluşturulabilir. 

 İlişki Çıkarımı: Bir veri ile bir başka verinin birlikte yer alma durumunun analiz 

edilerek en çok birlikte olan verilerin belirlenmesidir. 
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Makine öğrenmesi yapay zekanın bir alt dalıdır (Şekil 15). Makine öğrenmesi öncelikle çeşitli 

algoritmalar ve yöntemler ile geçmiş verilere bakarak, veriler arasındaki karmaşık örüntüyü 

belirleyecek matematiksel model tespit edilmekte, daha sonra veriler üzerinden tahmin 

edilmesi istenilen şey hakkında tahmin yapılmaktadır. Makine öğrenmesi yöntemleri; k-en 

yakın komşu algoritması, basit (naive) Bayes sınıflandırıcı, karar ağaçları, lojistik regresyon 

analizi, k-ortalamalar algoritması, destek vektör makinaları ve yapay sinir ağlarıdır. Bu 

yaklaşımların bir kısmı tahmin ve kestirim, bir kısmı kümeleme ve bir kısmı da sınıflandırma 

yapabilme yeteneğine sahiptir (Özgüven, 2019). Bu yöntemlerde öğrenme stratejileri şunlardır 

(Atalay ve Çelik, 2017): 

 Denetimli öğrenme: Oluşturulan model ile bir grup girdi değerine karşılık onlara ait 

hedef değerleri verilerek aralarındaki ilişkiyi öğrenmesi ve hedef değerlere en yakın 

çıktıların üretilmesi amaçlanmaktadır. 

 Denetimsiz öğrenme: Hedef değerleri olmadan sadece girdi değerleri arasındaki ilişki 

ortaya çıkarılmaya çalışılmaktadır. Bu ilişki(ler) yardımı ile birbirine yakın değerler 

kümeleme yapılmaktadır. Yeni girdi bu kümelerden hangisiyle ilişkili ise o kümeye ait 

olacaktır. 

 Pekiştirmeli (takviyeli) öğrenme: Hedef çıktıyı vermek için bir danışman yerine, elde 

edilen çıkışın verilen girişe karşılık iyi ya da kötü olarak değerlendiren bir kriter 

kullanılmaktadır. 

Şekil 16’da farklı yapay zeka tekniklerinde giriş verilerinden çıkış verilerinin elde edilmesi 

aşamaları gösterilmektedir. 

 
Şekil 16. Farklı yapay zeka tekniklerinde işlem aşamaları (Badem, 2017) 
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Derin öğrenme özellikleri 

Derin öğrenme, yapay zeka ve istatistiklerin bir alt kümesi olan makine öğrenmesinin bir alt 

kümesidir. Makine öğrenmesinde nicel veya kategorik analiz yapmak için farklı algoritmalar 

ve yöntemler kullanılmaktadır. Bu tür algoritmalar, tahminler ve çıkarımlar yapmak için 

verilerin karmaşık modeliyle başa çıkabilen matematiksel modeller kullanmaktadır. Derin 

öğrenme ise veri yapısının karmaşıklığını yönetmek için katmanlarda depolanan bilgilerin 

soyut dönüşümlerine dayanan daha geniş bir araç setinden yararlanmaktadır. Bu nedenle derin 

öğrenme, verilerin temsilinden öğrenmeye dayanmaktadır (Song ve Lee, 2013). Derin öğrenme 

tekniğinde, büyük miktarda etiketlenmiş eğitim verisi içerisindeki görüntülerden ilgili 

özellikler otomatik olarak çıkarılmakta ve sınıflandırma gibi bir görevin otomatik olarak nasıl 

gerçekleştirileceği öğretilmektedir (Ayon ve Islam, 2019; Özgüven, 2019; Asraf ve ark., 2020; 

Islam ve ark., 2020; Islam ve ark., 2021). Şekil 17’de örnek bir derin öğrenme uygulamasının 

genel akışı gösterilmektedir. 

 
Şekil 17. Derin öğrenme genel akış diyagramı (Saleem ve ark., 2019) 
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Şekil 17 incelendiğinde, ilk olarak veri seti toplanmakta, ardından genellikle eğitim seti %80 

ve test seti %20 olacak şekilde iki parçaya bölünmektedir. Ardından, derin öğrenme modelleri 

sıfırdan veya transfer öğrenme tekniği kullanılarak eğitilmekte ve modellerin başarısının 

değerlendirilmesi için performans ölçütleri kullanılmaktadır. Son olarak, görüntüleri 

algılamak, yerelleştirmek veya sınıflandırmak için görselleştirme teknikleri/haritalamaları 

kullanılmaktadır (Saleem ve ark., 2019). Derin öğrenmede ön işlemeye gerek kalmadan 

evrişimli yapay sinir ağı (CNN) modeli oluşturulabilmekte ve sınıflandırmalar diğer makine 

öğrenmesi yöntemlerine göre daha hızlı ve daha doğru yapılabilmektedir (Adem, 2018; Adem 

ve Közkurt, 2019). 

Makine öğrenmesinde hedef, daha önce hiç görünmeyen bir girdi için doğru tahminler 

yapılması veya karar verilmesi ve bu tahmin ve karar verme süreçlerini otomatikleştiren verimli 

algoritmaların geliştirilmesidir. Algoritmalar geliştirilirken kuralların oluşturulması sırasında, 

bir uzmanın bir kararı alırken nelere dikkat etmesi gerektiğine dair kriterler dikkate alınmalıdır. 

Makine öğrenmesi yöntemlerinin uygulanmasında hesaplama karmaşıklığı, eğitim 

karmaşıklığı ve eğitilmiş algoritma uygulaması karmaşıklığı gibi karmaşıklıklar 

bulunabilmektedir. Bir algoritmanın performansı test hatasına göre değerlendirilmektedir. 

Ayrıca bir algoritma çalışırken çok sayıda test noktası bulunabilmekte ve bu noktalarda hızlı 

karar alınması istenmektedir. Bu nedenle test işleminin düşük hesaplama yüküne sahip olması 

gerekir (Ozguven, 2023). 

Derin öğrenmede önemli kavramlar 

Sinir Ağı 

Derin öğrenmenin temelini nöral ağlar oluşturmaktadır. Bu nöral ağların amacı, bilinmeyen bir 

fonksiyonun yaklaşımını belirlemektedir. Sinir ağları, birbiriyle bağlantılı olan nöronlardan 

oluşmaktadır. Şekil 18’de basit bir sinir ağı örneği gösterilmiştir. 
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Şekil 18. Sinir ağının basit bir örneği 

Nöron 

Temel biyoloji teriminde nöronlar, aksonları boyunca dendritlerden bir uçtan diğer uca bir 

elektrik sinyali göndermektedir. Bu sinyaller daha sonra başka bir nörona geçirilmektedir. Bu 

işlemler sinir sistemi boyunca iletilerek bilgilerin beyne iletilmesini sağlamaktadır. Benzer 

şekilde makinelerin de insan gibi öğrenebilmesi için beyinde öğrenme sürecinde etkili olan ve 

beynin nöron adı verilen bilgiyi işleme kapasitesinin sinir hücreleri taklit edilmeye 

çalışılmaktadır. Bunun sonucunda yapay nöron kavramı ortaya çıkmıştır. Şekil 19’da örnek bir 

yapay nöron verilmektedir. Yapay nöronlardan oluşan ağa ise nöral ağ denilmektedir. Nöral 

ağda nörona gelen bir girdi alınmakta ve işlenmektedir. Ardından sonraki işlem için diğer 

nöronlara gönderilen bir çıktı ya da sonuç çıktısı gönderilmektedir. 

 
Şekil 19. Yapay nöron 

Ağırlıklar 

Bir yapay sinir ağındaki nöronlar arasında her bağlantı bir ağırlık (weight) ile ilişkilidir. 

Ağırlıklar, bir yapay hücreye gelen bilginin önemini ve hücre üzerindeki etkisini 

göstermektedir. Girdi, nörona geldiğinde bir ağırlık ile çarpılmaktadır. Şekil 20’de gösterildiği 

gibi iki girişli bir nöronda her bir nöron girişi, o girişe atanan bir ağırlığa sahiptir. 
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Şekil 20. Yapay nöronda ağırlıklar 

Bir a girdisinin w1 ağırlığı ile ilişkilendirildiği varsayıldığında, düğümden geçtikten sonraki 

giriş ‘a*w1’ olarak ifade edilmektedir. Ağırlıklar rastgele başlatılmakta ve bu ağırlıklar model 

eğitim sürecinde güncellenebilmektedir. 

Sapma (Bias) 

Girdiye ağırlıktan farklı ek olarak uygulanan doğrusal bileşene sapma denilmektedir. Bu sapma 

değeri giriş olarak tanımlanan ve girdinin ağırlık ile çarpımı sonucuna, ağırlık katsayılı girişin 

aralığını değiştirmek için temel olarak eklenmektedir. Sapma değerinin eklenmesi sonucunda 

giriş ‘a*w1+bias’ olarak ifade edilmektedir. ‘a*w1+bias’, dönüşümün son doğrusal bileşenidir. 

Aktivasyon Fonksiyonları 

Nörona gelen bilginin bir sonraki nörona iletilip iletilmeyeceğine karar vermek için 

kullanılmaktadır. Aktivasyon fonksiyonları nöronların toplam (Σ) fonksiyonunda üretilen 

çıktıların nasıl bir değişimden geçmesi gerektiğini belirlemektedir. Aktivasyon fonksiyonu 

olan f() uygulandıktan sonraki çıktı ‘f(a*w1+b)’ olmaktadır. Şekil 21’de x1’den xm’ye kadar 

m tane girdi ve bu girdilere karşılık gelen w1’den wm’ye kadar ağırlıklar ve sapma 

gösterilmektedir. Ağırlıklar önce kendilerine karşılık gelen girdi ile çarpılmakta ve sonra sapma 

çarpım sonucuna eklenmektedir. Ağırlık toplamlarına karşılık gelen girdi toplamlarının 

çarpımına sapma değeri eklenmesi sonucu oluşan ifade u olarak kabul edilmektedir. 

Aktivasyon fonksiyonunun u’ya uygulanması sonucu f(u) oluşmakta ve nöronda elde edilen 

son çıktı y=f(u) olarak ifade edilmektedir. En yaygın kullanılan aktivasyon fonksiyonları 

sigmoid, ReLU (Rectified Linear Unit) ve Softmax aktivasyon fonksiyonlarıdır. 
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Şekil 21. Yapay nöronda aktivasyon fonksiyonu 

Katmanlar 

Farklı düzeylerde yer alan nöron gruplarıdır. Sinir ağları girdi, gizli ve çıktı olmak üzere üç ana 

katmandan oluşmaktadır. Ağdaki süreç katmanları ağda bulunan gizli katmanlardır. Gizli 

katmanlar, gelen veriler üzerindeki belirli görevleri uygulayan ve bu görevler sonucunda 

oluşturulan çıktıyı bir sonraki katmana aktaran katmanlardır. Orta katmanlar gizlenirken girdi 

ve çıktı katmanları görünür olan katmanlardır. 

Çok Katmanlı Algılayıcı (MLP) 

Karmaşık görevlerin gerçekleştirilebilmesi için tek bir nöron yeterli olmadığından istenen 

çıktıların üretilebilmesi için birden fazla nörondan oluşan nöron grupları kullanılmaktadır. 

Temel olarak en basit ağ giriş katmanı bir gizli katman ve çıkış katmanından oluşmaktadır. 

Tam bağlı bağlantılar olarak adlandırılan MLP’de, her bir katmanda birden fazla nöron 

bulunmakta ve tüm katmanlardaki nöronlar kendisinden sonraki katmanda bulunan nöronlar ile 

bağlantılıdır. 

İleri Yayılım 

Girdi verilerinin giriş katmanından gizli katmana oradan da çıkış katmanına aktarıldığını ifade 

eden işlemdir. İleri yayılım işleminde bilgi sadece tek yönlü ve ileri doğru yol almaktadır. Giriş 

katmanı, gizli katmanlar için girdiyi sağlamaktadır. Gizli katmana aktarılan bilgi, çıktı üretmesi 

için çıkış katmanına aktarılmakta ve çıkış katmanında da çıktı üretilerek süreç 

sonlandırılmaktadır.  Bu yapıda geriye doğru bir hareket söz konusu değildir. 
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Maliyet (Kayıp) Fonksiyonu 

Bir modelde oluşturulan yapay sinir ağının amacı gerçek değerlere en yakın çıktıları tahmin 

etmeye çalışmaktır. Modelin doğruluk değeri maliyet fonksiyonu kullanılarak 

hesaplanmaktadır. Maliyet fonksiyonu, gerçek değerlerin tahmininde başarı için 

ödüllendirmeye, başarısızlık için cezalandırmaya çalışmaktadır. Böylece modelin 

başarılarından veya hatalardan ders çıkarmasını sağlamaktadır. Bir modelin çalıştırılmasındaki 

amaç tahmin doğruluğunun arttırılarak hatanın azaltılması ve maliyet fonksiyonunun minimize 

edilmesidir. En düşük maliyet fonksiyonu değerine sahip sinir ağı, optimize edilmiş çıktıları 

oluşturan ağdır. 

Öğrenme Oranı 

Maliyet fonksiyonunu minimize etmek için yapılan, her tekrar sayısında (iterasyon) elde edilen 

en aza indirgeme miktarı, öğrenme oranı olarak ifade edilmektedir. Basit bir ifadeyle, maliyet 

fonksiyonunun minimum noktasına inme oranı öğrenme oranıdır. Problemin çözümünde en 

uygun sonucu elde etmek için öğrenme oranı dikkatli bir şekilde seçilmelidir. Aksi takdirde en 

uygun çözüm elde edilememekte ve ağın en uygun çözümüne yaklaşması sonsuza dek 

sürebilmektedir. 

Geri Yayılım 

Sinir ağı tanımlandığında, düğümlere rastgele ağırlık ve sapma değerleri atanmaktadır. Tek bir 

iterasyon ile edilen çıktı için ağın hatası hesaplanabilmektedir. Elde edilen hata değeri, maliyet 

fonksiyonunun eğimi ile birlikte ağın ağırlıklarının, güncellenebilmesi için ağa geri 

beslenmektedir. Sonraki iterasyonlarda hatanın minimize edilmesi için bu ağırlıklar 

güncellenmektedir. Maliyet fonksiyonunun eğimi kullanılarak ağırlıkların güncellenmesi geri 

yayılım olarak ifade edilmektedir. Ağın hareketinin geriye doğru olduğu geri yayılımda eğim 

ile birlikte hata, çıktı katmanından geriye doğru gizli katmanlara aktarılarak ağırlıkların 

güncellenmesi sağlanmaktadır. 

Yığınlar 

Tüm girdinin tek seferde gönderilmesi yerine girdiler rastgele seçilmiş eşit büyüklükte, 

birbirinden bağımsız yığınlara bölünerek ağda eğitilmektedir. Verilerin, yığınlar şeklinde 

eğitilmesinde kullanılan ağ modeli, tek seferde tüm veri kümesindeki girdilerin ağa 

beslenmesiyle oluşturulan modele göre daha yaygındır. 
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Yineleme (Epoch) Sayıları 

Hem ileri hem de geri yayılımda tüm girdi yığınlarının tek bir eğitim tekrar sayısı yineleme 

sayısı olarak ifade edilmektedir. Ağın eğitiminde kullanılacak olan yineleme sayısı 

seçilebilmektedir. Tekrar sayısının yüksek olması ağın daha yüksek doğruluk değerine 

ulaşmasını sağlayabilmektedir. Ancak çok yüksek seçilen tekrar sayısı ağın aşırı uyumuna 

(overfitting) sebep olabilmektedir. 

Seyreltme (Dropout)  

Ağın aşırı uyumunu önlemek için kullanılan seyreltme katmanında düzenleme (regülarizasyon) 

işlemine verilen isimdir. Eğitim esnasında gizli katmanlardaki belirli sayıda nöronun rastgele 

bırakılmasıdır. Eğitim, nöronların farklı bileşimlerinden oluşan çeşitli sinir ağı mimarilerinin 

oluşmasına neden olmaktadır. Bu düzenleme işlemi birden fazla ağın çıktısının sonuç çıktısını 

üretmek için bir araya getirildiği toplama işlemi olarak düşünülmektedir. 

Yığın Normalizasyonu 

Veri dağılımının bir sonraki katmanla aynı olmasını sağlamak için yapılan belirli kontrol 

noktaları oluşturma işlemidir. Ağın eğitimindeki ağırlık, eğimli inişin her bir adımında 

değişmektedir. Bu değişiklikler, verinin bir sonraki katmana ne şekilde gönderileceğini 

belirlemektedir. Veriler bir sonraki katmana gönderilmeden önce açık bir şekilde normalize 

edilmektedir. Çünkü sonraki katman, daha önce bu katmana gönderilen dağılımına benzeyen 

bir veri yığını beklemektedir. 

Filtreler 

Evrişimli sinir ağlarındaki bir filtre, sarmalanmış bir çıktı üretmek için girdi görüntüsünün bir 

bölümüyle çarpılan ağırlık matrisi gibidir. 28*28 boyutlarındaki bir görüntüde, 3*3’lük rastgele 

seçilmiş bir filtre belirlenirse, bu filtre sarmalanmış (kıvrımlı) çıktı olarak bilinen sonucu 

oluşturmak için görüntünün farklı 3*3’lük bölümleri ile çarpılması gerekmektedir. Belirlenen 

filtrenin boyutu genellikle orijinal görüntünün boyutundan daha küçük ölçektedir. Filtre 

değerleri, maliyet fonksiyonunun minimize edilmesi için yapılan geri yayılım esnasındaki 

ağırlık değerleri gibi güncellenmektedir. 
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Derin öğrenme kitaplık ve platformları 

Torch 

Çok boyutlu tensörler için veri yapılarının ve bunlar üzerinden matematiksel işlemlerin 

tanımlandığı kitaplıktır. C'deki bir uygulama ile LUA dili kullanılarak geliştirilen Torch'un 

Python uygulamasına PyTorch denilmektedir. 

TensorFlow 

Makine öğrenmesi için Google tarafından geliştirilen uçtan uca açık kaynaklı bir platformdur. 

Vektörler veya n boyutlu matrisler olan tensör kavramına dayanmaktadır. Geliştiricilerin yeni 

makine öğrenmesi teknolojilerini kolayca oluşturulup geliştirmelerine olanak tanıyan kapsamlı 

ve esnek bir kitaplık ekosistemine sahiptir. Çok sayıda soyutlama seviyesi bulunduğu için 

çözülmek istenilen probleme uygun olanı seçme imkânı sunmaktadır. Google'ın TensorFlow'u 

şu anda dünyanın en popüler öğrenme kitaplığıdır. TensorFlow ile sunucularda, cihazlarda ve 

Web’de model oluşturup eğitme ve dağıtma imkanı bulunmaktadır (Savaş, 2019). 

Theano 

Çok boyutlu dizileri içeren matematiksel ifadelerin verimli bir şekilde tanımlanmasına, 

optimize edilmesine ve değerlendirilmesine olanak tanımaktadır. Bir Python kütüphanesidir. 

Python’da yazılmış çok genel bir kütüphane doğrudan derin öğrenme için kullanıldığı gibi 

üzerine yazılmış Keras veya Lasagne gibi kütüphanelerle de kullanılabilmektedir (Clark, 

2018). 

Caffe 

Caffe, ifade yapısı, hız ve modülerlik göz önünde bulundurularak tasarlanmış bir derin öğrenme 

kitaplığıdır. Mimarisi ve uygulamaları, derin öğrenme problemlerinde kullanımını 

yaygınlaştırmaktadır. Bir GPU makinesinde eğitmek için tek bir etiket ayarlayarak CPU ile 

GPU arasında geçiş yapılabilmekte ve bilgisayarlar ile mobil cihazlar üzerinde kullanılmak için 

dağıtılabilmektedir. Genişletilebilir yapısı ve fonksiyonelliği sayesinde, pek çok araştırmacı 

tarafından yenilikler ve eklemeler yapılmıştır. Ayrıca algoritmayı hızlı çalıştırma özelliğine 

sahiptir (Savaş, 2019). 
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Keras 

Python ile yazılan TensorFlow üzerinde çalışan bir derin öğrenme platformudur. İçerdiği çok 

fazla işlevsel fonksiyon sayesinde Keras, Theano ya da Tensorflow’a göre daha kolay 

uygulama geliştirilebilir olduğu için yaygın kullanım alanına sahiptir. Keras, kullanıcı 

deneyimini ön planda tutan, kullanıcı dostu bir arayüzü olan ve önceliği makineler olmayan, 

insanlar için tasarlanmış bir birbiriyle tutarlı ve basit kullanımlı API (Application Programming 

Interface) sunmaktadır. Hata ayıklama için geri bildirim sağlamaktadır. Yeni modüllerin 

eklenmesi kolay olup, mevcut örneklerle yapılabilecek çözüm kümesi geniştir. Bu özellikleri 

araştırmalar için uygun yapıda olmasını sağlamakta ve genişletilebilmektedir. Sinir ağı 

katmanları, maliyet fonksiyonları, optimize ediciler, başlatma şemaları, aktivasyon 

fonksiyonları ve düzenlileştirme şemaları, yeni modeller oluşturmak için birleştirilebilecek 

modüler tasarıma imkân sağlamaktadır (Clark, 2018; Savaş, 2019). 

Microsoft Cognitive Toolkit (CNTK) 

CNTK, sinir ağlarını yönlendirilmiş bir grafik aracılığıyla bir dizi hesaplama adımı olarak 

tanımlayan birleşik bir derin öğrenme platformudur. CNTK, kullanıcının ileri beslemeli 

DNN’ler, CNN’ler ve tekrarlayan sinir ağları (RNN’ler/ LSTM’ler) gibi popüler model tiplerini 

kolayca gerçekleştirmesini ve birleştirmesini sağlamaktadır. Python, C# veya C++ programlara 

bir kütüphane olarak dahil edilebilmekte veya kullanıcının kendi model açıklama dili 

(BrainScript) aracılığıyla bağımsız bir makine öğrenme aracı olarak kullanılabilmektedir. Ek 

olarak, Java programlarında CNTK model değerlendirme işlevselliği kullanılabilmektedir 

(Clark, 2018; Savaş, 2019). 

DL4J 

Java için Derin Öğrenme (DL4J), Java ve Scala için yazılmış ilk derin öğrenme kitaplığıdır. 

Hadoop ve Apache Spark ile koordineli çalışmaktadır (Clark, 2018). 

Derin öğrenmede kullanılan algoritma türleri 

Derin öğrenme algoritmaları hemen hemen her tür veriyle çalışmakta ve karmaşık sorunları 

çözmek için büyük miktarda bilgi işlem gücü ve bilgi gerektirmektedir. Gelişen teknoloji 

sayesinde derin öğrenme algoritmalarının sayısı her geçen gün artmaktadır. Son yıllarda en 

popüler olan algoritmalar (Bengio ve ark., 2015; Janiesch ve ark., 2021): 
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 Evrişimli Sinir Ağları (Convolutional Neural Networks - CNN) 

 Uzun Kısa Süreli Bellek Ağları (Long Short Term Memory Networks - LSTM) 

 Tekrarlayan Sinir Ağları (Recurrent Neural Networks - RNN) 

 Üretken Çekişmeli Ağlar (Generative Adversarial Networks - GAN) 

 Radyal Temel Fonksiyon Ağları (Radial Basis Function Networks - RBFN) 

 Çok Katmanlı Algılayıcılar (Multilayer Perceptrons - MLP) 

 Kendi Kendini Düzenleyen Haritalar (Self Organizing Maps - SOM) 

 Derin İnanç Ağları (Deep Belief Networks - DBN) 

 Kısıtlı Boltzmann Makinaları (Restricted Boltzmann Machines - RBM) 

 Otomatik Kodlayıcılar 

Uzun Kısa Süreli Bellek Ağları (LSTM) 

LSTM'ler, uzun sürede bağımlılıkları öğrenmek ve bunlara uyum sağlamak için programlanmış 

Tekrarlayan Sinir Ağları (RNN) olarak tanımlanmaktadır. Temel olarak geçmişteki bilgilerin 

mevcut bilgiyi açıklamasında ve gelecek bilginin tahmin edilmesinde etkili bir yöntemdir. 

Uzun ve kısa süreli depolama katmanının ana bileşeni, depolama bloğu verilen bir birimdir. 

Uzun ve kısa süreli bellek bloklarının giriş, çıkış ve unutma kapıları olmak üzere üç kapısı 

vardır. Bu kapılar hücrenin yazılmasını, okunmasını ve sıfırlanmasını gerçekleştirmektedir. 

LSTM, geçmiş verileri daha uzun süre ezberleyebilmekte ve geri çağırabilmektedir. Hafızayı 

veya önceki girdileri sınırlayabildikleri için yaygın olarak zaman serisi tahminlerinde 

kullanılmaktadır. LSTM, zaman serileri tahmini uygulamalarının yanı sıra, konuşma tanıyıcılar 

oluşturmak, farmasötiklerde gelişme ve müzik döngülerinin kompozisyonu gibi bir dizi olayda 

da çalışmaktadır. 

Tekrarlayan Sinir Ağları (RNN) 

LSTM'lerden sağlanan girdinin RNN'lerin girdi olarak kullanılmasına izin veren bir döngü 

oluşturan bazı yönlendirilmiş bağlantılardan oluşmaktadır. Bu girdiler, derinlemesine 

gömülmekte ve LSTM'lerin ezberleme yeteneğini zorlamaktadır. Bu durum girdilerin dahili 

bellekte bir süre emilmesini sağlamaktadır. Bu nedenle RNN'ler, LSTM'ler tarafından korunan 

girdilere bağımlıdır ve LSTM'lerin senkronizasyon olgusu altında çalışmaktadır. RNN'ler 

çoğunlukla görüntüye altyazı ekleme, zaman serisi analizi, el yazısı verileri tanıma ve verileri 

makinelere çevirmede kullanılmaktadır. RNN'ler, süre t olarak tanımlanmışsa çıkış beslemeleri 

(t-1) sürede takip etmektedir. Ardından, t tarafından belirlenen çıkış, t+1 girişi beslemektedir. 

Benzer şekilde, bu işlemler herhangi bir uzunlukta oluşan tüm girdiler için tekrarlanmaktadır. 
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Ayrıca, RNN'ler geçmiş bilgileri depolamakta ve model boyutu artırılmasına rağmen girdi 

boyutunda bir artış olmamaktadır. 

Üretken Çekişmeli Ağlar (GAN) 

GAN'lar, eğitim verileriyle eşleşen yeni veri örnekleri oluşturmak için kullanılan derin 

öğrenme algoritmaları olarak tanımlanmaktadır. GAN genellikle yanlış veri üretmeyi öğrenen 

bir üreteç ve bu yanlış veriden öğrenerek kendini uyarlayan bir ayrımcı olmak üzere iki 

bileşenden oluşmaktadır. GAN'lar, sahte verileri ve gerçek verileri üreterek ve anlayarak 

simülasyonda çalışmaktadır. Bu verileri anlamaya yönelik eğitim sırasında, üretici farklı türde 

sahte veriler üretmektedir. Burada ayrımcı hızla uyum sağlamayı ve buna yanlış veri olarak 

yanıt vermeyi öğrenmektedir. 

Radyal Temelli Fonksiyon Ağları (RBFN) 

RBFN'ler, ileri beslemeli bir yaklaşımı izleyen ve aktivasyon fonksiyonunda radyal temelli 

fonksiyonları kullanan sinir ağı türleridir. Genellikle zaman serisi tahmini, regresyon testi ve 

sınıflandırma için kullanılan girdi katmanı, gizli katman ve çıktı katmanı olmak üzere üç 

katmandan oluşmaktadır. RBFN'ler, eğitim veri setinde bulunan benzerlikleri ölçerek bu 

görevleri yerine getirmektedir. Genellikle, bu verileri girdi katmanına besleyen bir girdi 

vektörüne sahiptir. Böylece tanımlamayı doğrular ve önceki veri kümelerini karşılaştırarak 

sonuçları yayınlarlar. Girdi katmanında bu verilere duyarlı nöronlar bulunmakta ve katmandaki 

düğümler veri sınıfını sınıflandırmada etkilidir. Nöronlar, giriş katmanıyla yakın bütünleşme 

içinde çalışsalar da başlangıçta gizli katmanda bulunmaktadır. Gizli katman, çıkışın nöronun 

merkezine olan uzaklığıyla ters orantılı olan Gauss transfer fonksiyonlarını içermektedir. Çıkış 

katmanı, Gauss fonksiyonlarının nöronda parametre olarak iletildiği ve çıktının üretildiği 

radyal tabanlı verilerin doğrusal kombinasyonlarına sahiptir. 

Çok Katmanlı Algılayıcılar (MLP) 

MLP'ler, derin öğrenme teknolojisinin temelidir. Çeşitli algılayıcı katmanlarına sahip ileri 

beslemeli sinir ağları sınıfına aittir. Bu algılayıcıların içinde çeşitli aktivasyon fonksiyonları 

vardır. MLP'ler ayrıca bağlantılı giriş ve çıkış katmanlarına sahiptir ve sayıları aynıdır. Ayrıca 

bu iki katmanın arasında gizli kalan bir katman vardır. MLP'ler çoğunlukla görüntü ve konuşma 

tanıma sistemleri veya diğer bazı çeviri yazılımı türlerini oluşturmak için kullanılır. MLP'lerin 

çalışması, girdi katmanındaki verileri besleyerek başlar. Katmanda bulunan nöronlar, bir yönde 
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geçen bir bağlantı kurmak için bir grafik oluşturmaktadır. Bu girdi verilerinin ağırlığının gizli 

katman ile girdi katmanı arasında olduğu bulunmuştur. MLP'ler, hangi düğümlerin harekete 

geçmeye hazır olduğunu belirlemek için aktivasyon fonksiyonlarını kullanmaktadır. Bu 

aktivasyon fonksiyonları arasında tanh fonksiyonu, sigmoid ve ReLU'lar bulunmaktadır. 

MLP'ler, temel olarak, verilen veri setinden istenen çıktıyı elde etmek için katmanların ne tür 

bir korelasyona hizmet ettiğini anlamak için modelleri eğitmek için kullanılmaktadır. 

Kendi Kendini Düzenleyen Haritalar (SOM) 

SOM'lar, yapay ve kendi kendini organize eden sinir ağları ile verilerin boyutlarını anlamak ve 

verileri görselleştirmek için tasarlanmıştır. Veriler genellikle yüksek boyutludur. SOM'lar, 

farklı düğümlerin ağırlıklarını başlatmakta ve ardından verilen eğitim verilerinden rastgele 

vektörler seçerek verilerin görselleştirilmesine yardımcı olmaktadır. Bağımlılıkların 

anlaşılabilmesi ve göreli ağırlıkları bulmak için her düğümü incelemektedir. Kazanan düğüme 

karar verilmekte ve buna En İyi Eşleşen Birim (BMU) denilmektedir. Daha sonra SOM'lar bu 

kazanan düğümleri keşfetmektedir. Düğüm BMU'ya ne kadar yakınsa, ağırlığı tanıma ve daha 

fazla aktivite gerçekleştirme şansı o kadar fazladır. Ayrıca, BMU'ya daha yakın hiçbir 

düğümün kaçırılmamasını sağlamak için birden fazla yineleme yapılmaktadır. 

Derin İnanç Ağları (DBN) 

DBN'ler, tesadüfi etkenlere maruz değişkenlerin yanı sıra çeşitli gizli katmanlara sahip 

oldukları için üretken modeller olarak adlandırılmaktadır. Gizli değişken, ikili değerlere sahip 

olduğu için gizli birim olarak adlandırılmaktadır. DBN'ler ayrıca Boltzmann Makineleri olarak 

da bilinmektedir. Bunun nedeni önceki ve ardışık katmanlarla iletişim kurmak için birbirinin 

üzerine istiflenmesidir. DBN'ler, aşağıdan yukarıya geçiş yaklaşımını izleyen her katmandaki 

gizli değerde bulunan değerlerden öğrenmektedir. DBN'ler, hareketli nesneleri yakalamanın 

yanı sıra video ve görüntü tanıma gibi uygulamalarda kullanılmaktadır. 

Kısıtlanmış Boltzmann Makineleri (RBM'ler) 

RBM'ler verilen girdi setindeki olasılık dağılımından öğrenen tesadüfi değişken sinir ağlarına 

benzemektedir. Bu algoritma esas olarak boyut küçültme, regresyon ve sınıflandırma, konu 

modelleme alanında kullanılmakta ve DBN'lerin yapı taşları olarak kabul edilmektedir. 

RBM'ler, görünür katman ve gizli katman olmak üzere iki katmandan oluşmaktadır. Bu 

katmanların her ikisi de gizli birimler aracılığıyla bağlanmaktadır. RBM'lerin işleyişi, girdilerin 



 

 

 

 

 

 

 

 

31 

 

kabul edilmesi ve bunların sayılara çevrilmesiyle gerçekleştirilmektedir. RBM'ler, her girdinin 

ağırlığını hesaba katmaktadır. Bu girdi ağırlıkları yeniden yapılandırılmış girdilere 

dönüştürülmektedir. Daha sonra, bu çevrilmiş girdilerin her ikisi de bireysel ağırlıklarla birlikte 

birleştirilmektedir. Bu girdiler son olarak aktivasyonun gerçekleştirildiği görünür katmana 

itilmekte ve kolayca yeniden yapılandırılabilen çıktılar üretilmektedir. 

Otomatik Kodlayıcılar 

Otomatik kodlayıcılar, girişlerin ve çıkışların genellikle aynı olduğu verileri kopyalayan 

yüksek düzeyde eğitilmiş özel bir sinir ağı türüdür. Kodlayıcı, kod ve kod çözücü olmak üzere 

üç bileşenden oluşmaktadır. Denetimsiz öğrenme ile ilgili sorunları çözmek için tasarlanmıştır. 

Otomatik kodlayıcılar görüntüyü veya girişi kodlayarak boyutunu küçültmektedir. Kod çözücü 

görüntü düzgün görünmüyorsa, açıklama için sinir ağına iletmektedir. Ardından netleştirilmiş 

görüntü, yeniden yapılandırılmış görüntü olarak adlandırılarak yeni veri oluşturulmaktadır. 

Kodlayıcıdaki verinin girdi boyutu ile kod çözücü sonucundan oluşan yeni verinin nöron sayısı 

(boyutu) aynı olmaktadır. 

Evrişimli sinir ağları (CNN) 

İnsanlar bir görüntüye baktığında nesneleri, nesnelerin renklerini ve şekillerini, aynı tipteki 

nesnelerin sayısını, duruş biçimleri gibi özelliklerini rahatça söyleyebilmektedir. Aynı 

görüntüyü bilgisayar ise, bir sayı matrisi olarak görmektedir. Evrişimli sinir ağları ile görüntü 

sınıflandırma, nesne tanımlama, görüntü segmentasyonu gibi işlemler başarılı bir şekilde 

yapılmaktadır. CNN çok sayıda gizli katman kullanılarak görüntülerdeki farklı özelliklerin 

algılanmasını sağlamaktadır. Bundan dolayı görüntülerdeki nesnelerin hangi nitelikte olduğu 

kolay bir şekilde ayırt edilebilmektedir. Genel olarak ConvNets olarak bilinen evrişimli sinir 

ağları (CNN), verileri birden çok katmandan geçirmekte ve evrişim işlemlerini özellik haritaları 

çıkararak yapmaktadır. CNN, birden fazla evrişim ve havuzlama katmalarından oluşmaktadır. 

İlk evrişim katmanları, kenarlar veya köşeler gibi küçük temel özellikleri algılayarak yeni 

kanallar eklemektedir. Havuzlama katmanları çözünürlüğü azaltırken kanal sayısını 

değiştirmemektedir. Sonraki evrişim katmanlarının daha önce tespit edilen temel özellikleri, 

veri kümesine özgü daha karmaşık daha büyük özelliklerle yeniden birleştirmesine olanak 

tanımaktadır. Evrişim katmanları filtrelerin öğrenilebilir ağırlık matrislerini kullanarak 

filtrelerin özelliklerini tanırken, havuzlama katmanları da çekirdeklerinde bir ortalama veya 

maksimum işlevini kullanmaktadır. Hem filtreler hem de çekirdekler her seferinde adım adım 

dönen bir pencere olarak giriş üzerinde hareket ettirilmektedir. Bir CNN yapısı Şekil 22’de 
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görüldüğü gibi birden fazla evrişim, ReLU (Düzleştirilmiş Doğrusal Birim) ve havuzlama 

katmanına sahip olabilmektedir. 

 
Şekil 22. Bir evrişimli sinir ağının yapısı 

CNN katmanları 

CNN, iki temel aşamadan oluşmaktadır. Bu aşamalardan ilki öznitelik haritalarının çıkarımı 

aşamasıdır. İkinci aşama ise sınıflandırma aşamasıdır. Derin öğrenme algoritmalarını, klasik 

makine öğrenme algoritmalarından ayıran en temel fark, CNN’lerin birinci aşaması içerisinde 

yer alan, etiketli görüntü verileri kullanılarak öznitelik haritalarının çıkarılması ve ardından bu 

öznitelik haritalarının kendi içlerinde eşlenmesi işlerinin tümü, girdi verileri (etiketli görüntü 

pikselleri) üzerinden tam otomatik olarak yapılmasıdır. Diğer bir ifadeyle öznitelik 

haritalarının çıkarılması işlemi, etiketli görüntü piksellerine farklı filtreler uygulayarak 

görüntünün dokuları ve bu dokuların birbiri ile olan ilişkisi hakkında bilgi edinmektir. 

CNN’lerin birinci aşaması sırasıyla, evrişim katmanları, ReLU katmanı ve havuzlama 

katmanlarından oluşmaktadır. İkinci aşamasında ise, tam bağlantılı katmanlar ve softmax 

katmanı bulunmaktadır (Deng ve Yu, 2013; Kim, 2017). Şekil 23’te CNN katmanları 

gösterilmektedir. 
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Şekil 23. CNN katmanları 

Evrişim Katmanı 

Evrişim katmanı derin öğrenmenin ilk aşamasını oluşturmaktadır. Bu katmanda girdi veriye, 

kayan filtreler uygulanmaktadır. Buradaki kayan filtre terimi, yatay ve dikey hareketler ile girdi 

veri üzerinde dolaşarak filtrelerin uygulanmasını ve girdi verisinin evrilmesini ifade 

etmektedir. Evrişim katmanının sayısı ve içerisinde uygulanacak olan filtre genişliği, filtre 

sayısı, adım aralığı (stride) ve dolgu boyutu (pad) gibi parametreler tasarlanacak ağın yapısına 

göre seçilmektedir. 

ReLU Katmanı 

Derin öğrenme algoritmalarındaki kullanılan verilerin içerisinde yapılacak işin tanımına göre 

anlamlı ve anlamsız veri ayırımı yapmak için farklı düzenleme teknikleri uygulanmaktadır. 

Bunlara örnek olarak L1/L2, Dropout, ReLU teknikleri verilebilmektedir. Dünyada en yaygın 

kullanılan aktivasyon fonksiyonlarından ReLU’da girdi verisinin her bir elemanına bir eşik 

değer uygulanarak negatif giriş değerlerinde sıfırı, pozitif giriş değerlerinde ise giriş değerini 

olduğu gibi çıkışa aktarmaktadır. Verinin değeri, sıfırdan küçük ise sıfıra eşitlenmekte, sıfırdan 

büyük ya da sıfıra eşit ise verinin kendi değerini ilgili veriye atamaktadır. Dropout, büyük 

veriler ile uğraşıldığında, ağın ezberlemesinin önüne geçmek için gizli katmanlar üzerinde, 

belirlenen ağırlıkların tekrar durumuna göre elemeler yapması işlemidir. L1/L2 ise derin 

öğrenme çalışmalarının gizli katmanlarında kullanılan bir aktivasyon fonksiyonudur. 

 

Giriş Katmanı (Input Layer)

Evrişim Katmanı

Düzleştirilmiş Doğrusal Birim (ReLU) Katmanı

Havuzlama (Pooling) Katmanı

Tam Bağlantılı (Full-Connected) Katman

Dropout Katmanı

Sınıflandırma (Classification) Katmanı

Softmax Katmanı
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Havuzlama (Pooling) Katmanı 

Aktivasyon katmanından sonra elde edilen aktivasyon haritasının özelliğini kaybetmeyecek 

şekilde uzamsal boyutunun azaltılması havuzlama katmanı ile mümkün olmaktadır. Daha az 

uzamsal bilgi daha az parametre anlamına gelmekte ve bu da modelin hesaplama performansını 

arttırmaktadır. Bir diğer faydası da aşırı uyumu (ezber) engellemesidir. Evrişim katmanında 

olduğu gibi veri üzerinde filtre gezdirme esasına dayanmaktadır. Ortalama havuzlama ve 

maksimum havuzlama olarak iki farklı şekilde havuzlama çalışması yapılabilmektedir. 

Maksimum havuzlama, belirlenen matris boyutuyla, öznitelik haritası üzerinde dolaşımlar 

yapmaktadır. Dolaşım yapılırken havuzlama matrisi içinde kalan öznitelik haritası bölgesi 

içerisinden, maksimum değere sahip olan değer alınmaktadır. Ortalama havuzlama yönteminde 

ise değerlerin ortalamaları alınmaktadır (Şekil 24). 

 
Şekil 24. İki farklı yöntem kullanılarak elde edilen havuzlama işlemi 

Tam Bağlantılı (Full-Connected) Katman 

Klasik bir CNN’de evrişim ve havuzlama işleminden sonra bir tam bağlı katman 

bulunmaktadır. Tam bağlı katman adından da anlaşılacağı üzere önceki katmana tam olarak 

bağlıdır. Tam bağlı katmanda yapılan işlem; bir önceki katmandan gelen veri ile ağırlık 

değerinin çarpılması ve sonrasında sapma hesaplaması yapılmasıdır. 

Softmax Katmanı 

Softmax katmanı, eğitilen ağa sunulan girdi verisi üzerinde tüm aşamalar gerçekleştirildikten 

sonra son aşama olan etiket tahmininin yapıldığı katmandır. Bu katmanda kullanılan softmax 

sınıflandırıcısı, çıkışın sınıflara ait olma olasılığının dağılımını vermektedir. Dolayısıyla 0-1 

arasında değer üretmektedir. Üretilen değerin 1’e yakın olması ağın tahmin ettiği nesnenin 

doğru olma olasılığını arttırmaktadır. 
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Faster R-CNN Modeli 

Faster R-CNN, nesne tespiti için kullanılan bir derin öğrenme mimarisidir. Bu mimari, Şekil 

25'de görüldüğü gibi üç bölümden oluşmaktadır. 

 
Şekil 25. Faster R-CNN mimarisi (Adem ve ark., 2022) 

Şekil 25'de görüldüğü gibi ilk kısımda evrişim katmanındaki filtreler ile görüntünün 

öznitelikleri çıkarılmış ve böylece iki boyutlu matris yapısında bir öznitelik haritası 

oluşturulmuştur. İkinci bölümde, sinir ağı olarak kullanılan Bölge Önerme Ağı (RPN), özellik 

haritalarında ilgili nesneye benzerlik olasılığını tahmin etmektedir. Tahmin katmanı aşaması 

olan üçüncü bölümde, Fast R-CNN ağı kullanılarak bölgelerin sınıflandırma değeri ile tahmin 

doğruluk oranı birleştirilerek iki çıktı katmanı oluşturulmuştur. İlk çıktı katmanı softmax 

sınıflandırmasını gerçekleştirirken, diğer çıktı katmanı tahmin doğruluğunu veren regresyon 

katmanıdır. Bu bölümde sınırlayıcı kutuların sınıfları belirlenerek puan tahminleri 

yapılmaktadır. Faster R-CNN modelinin getirdiği yenilik, RPN ağının doğrudan özellik 

haritasının bulunduğu katmana bağlanabilmesidir. Bu sayede tüm görüntülerde nesne tespiti 

için bir ortam sağlanmaktadır (Jiang ve Learned-Miller, 2017). 
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SSD Multibox Modeli 

Single Shot Multi-Box Detector (SSD) modeli, görüntülerdeki nesneleri algılamak için tek bir 

CNN kullandığı için bu alandaki en hızlı çalışan algoritmalardan biridir (Liu ve ark., 2016; 

Ning ve ark., 2017). Yüksek çözünürlüklü görüntülerde nesne algılama ve sınıflandırma için 

yaygın olarak kullanılmaktadır (Liu ve ark., 2019). Nesne tespiti için belirlediği alanlarda sabit 

boyutlu sınırlayıcı kutular oluşturmakta ve belirlenen her kutu için tahmin puanı 

hesaplanmaktadır. Eğitim aşamasında, modeldeki tüm parametreler, geriye yayılım algoritması 

ve kayıp değerleri ile güncellenmektedir (Li ve Zhou, 2017). Bu sayede optimum filtre 

parametreleri belirlenmekte ve kayıp değeri en aza indirilmektedir. Bu aşamadaki tüm 

hesaplamaları tek bir ağda yaparak örnekleme aşamasını ortadan kaldırdığı için diğer nesne 

algılama yapan modellere göre uygulaması çok kolay ve basittir (Ghoury ve ark., 2019). SSD 

Multibox mimarisi, Şekil 26'de gösterilmektedir. 

 
Şekil 26. SSD Multibox mimarisi (Adem ve ark., 2022) 
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2. LİTERATÜR ÖZETLERİ 

Fuentes ve ark. (2017) çalışmalarında, domates bitkilerinde Yaprak Küfü, Gri Küf, Kanser, 

Veba, Yaprak Kemirgeni, Düşük Sıcaklık, Külleme, Beyaz Sinek hastalık ve zararlıları tespit 

etmek için derin öğrenme yaklaşımını önermektedirler.  Daha Hızlı Bölge Tabanlı Evrişimli 

Sinir Ağı (Faster R-CNN), Bölge Tabanlı Tamamen Evrişimli Ağ (R-FCN) ve Tek Çekim 

Çoklu Kutu Dedektör (SSD) derin öğrenme modellerini kullanmışlardır. Araştırıcılar derin 

öğrenme modellerinin eğitimi ve testi için dokuz hastalık ve zararlı sınıfı içeren 5 000 adet 

görüntü kullanmışlardır. Deneylerini gerçekleştirmek için veri setini %80 eğitim, %10 

doğrulama ve %10 test seti olarak ayırmışlardır. Yaptıkları çalışma sonucunda modellerin 

başarı oranları Faster R-CNN %83, R-FCN %85.98 ve SSD %82.53 olarak elde ettiklerini 

bildirmişlerdir. R-FCN modelinin, Faster R-CNN ve SSD modellerine göre daha başarılı 

şekilde hastalık ve zararlıları tespit ettiğini raporlamışlardır. 

Lu ve ark. (2017) yaptıkları çalışmada, çeltik hastalıklarının otomatik olarak tanımlanması ve 

tespiti için CNN modeli kullanmışlardır. Veri setleri Mantar Hastalığı, Kahverengi Leke, 

Bakteriyel Yaprak Yanıklığı, Bakteriyel Solgunluk, Bakanae Hastalığı, Tohum Yanıklığı, 

Kabuk Yanıklığı, Kabuk Çürüklüğü, Bakteriyel Kabuk Çürüklüğü, Sahte Leke çeltik 

hastalıklarını içermektedir. Araştırıcılar CNN modelin eğitimi ve testi için hastalıklı ve sağlıklı 

çeltik yaprağı ve sapı görüntüleri içeren 500 adet görüntü kullanmışlardır. Çalışmalarında 

kullanılan CNN modeli ile %95.48 doğruluk elde edilmiş ve önerilen yöntemin etkin şekilde 

uygulanabilir olduğu bildirilmiştir. Ek olarak kullandıkları CNN modelini, destek vektör 

makinesi (SVM) ve parçacık sürüsü optimizasyonu (PSO) ile karşılaştırmışlardır. CNN modeli 

%95.48 doğruluk oranı ile SVM %91 ve PSO %88 modellerinden daha yüksek bir başarı 

oranının elde edildiğini raporlamışlardır. 

DeChant ve ark. (2017) çalışmalarında, mısır bitkisinde Kuzey Yaprak Yanıklığı (NLB) 

hastalığını otomatik olarak tespit etmek için bir sistem önermişlerdir. Araştırıcılar CNN 

modelinin eğitim ve test işlemleri için sağlıklı ve hastalıklı yaprak görüntüleri içeren toplam 1 

796 görüntü kullanmışlardır. Veri setlerini %70'i eğitim, %15'i doğrulama ve %15 test 

görüntüsü olarak bölmüşlerdir. Önerdikleri sistemin, test seti görüntülerinde %96.7 doğruluk 

elde edildiğini bildirmişlerdir.  

Rangarajan ve ark. (2018) çalışmalarında, domates bitkisi hastalığı sınıflandırması için 

AlexNet ve VGG16 olmak üzere iki derin öğrenme modeli önermişlerdir. Veri setlerini 

Sağlıklı, Geç Yanıklık, Yaprak Küfü, İki Noktalı Kırmızı Örümcek Hasarı, Erken Yanıklık, 
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Mozaik Virüsü, Sarı Yaprak Kıvrılması Virüsü Hastalığı olmak üzere 7 sınıf içeren domates 

yaprağı görüntüleri oluşturmaktadır. Araştırıcılar, 13 262 görüntü kullanılan çalışmalarında 

sınıflandırma doğruluğu VGG16 için %97.29 ve AlexNet için %97.49 bulunduğunu 

bildirmişlerdir. 

Barbedo (2018), derin öğrenme ile bitki hastalıklarının sınıflandırılması üzerine bir araştırma 

yapmıştır. Çalışmasında 12 bitki türünde 56 hastalık için 1 383 görüntü içeren veri seti 

kullanmıştır. Görüntülerin %80'i eğitim, %20'si doğrulama için kullanmıştır. Deneylerini 

orijinal ve arka planı kaldırmış görüntüler üzerinde iki farklı şekilde gerçekleştirmiştir. 

Deneysel sonuçları orijinal görüntülerde %84, arka planı kaldırılmış görüntülerde %87 genel 

doğruluk elde edildiğini bildirmiştir. Araştırıcı elde ettiği sonuçlar neticesinde CNN'lerin bitki 

patolojisi problemleri ile başa çıkabilen güçlü araçlar olduğunu raporlamıştır. 

Türkoğlu ve Hanbay (2018) yaptıkları çalışmada, kayısıda çil hastalığı tespiti için önceden 

eğitilmiş CNN’e dayalı AlexNet, VGG16 ve VGG19 derin öğrenme modellerini 

kullanmışlardır. Bu modellerden elde edilen öznitelikler K-En Yakın Komşu (KNN) yöntemi 

kullanılarak sınıflandırılmıştır. Önerdikleri yöntemin başarısının test edilmesi için kullanılan 

veri seti 308 sağlıklı, 652 çil hastalığı olmak üzere toplam 960 yaprak görüntüsü içermektedir. 

Veri setlerini %90'i eğitim ve %10'u test setini oluşturacak şekilde rastgele bölmüşlerdir. 

Yaptıkları çalışma sonucunda, VGG16 modeli %94.8 olarak en yüksek doğruluk elde edildiğini 

ve bunu sırasıyla VGG19 %92.9, AlexNet %89.7 olarak takip edildiğini raporlamışlardır. 

Ferentinos (2018) çalışmasında, otomatik bir bitki hastalığı tespit ve teşhis sistemi oluşturmak 

için AlexNet, AlexNetOWTBn, GoogLeNet, Overfeat ve VGG CNN modellerini kullanmıştır. 

Modellerin eğitim ve test işlemlerini 25 bitki türünü içeren 58 farklı sınıfa sahip 87 848 adet 

görüntü kullanılarak gerçekleştirmiştir. Veri setini %80'i eğitim ve %20'si test setini 

oluşturacak şekilde rastgele bölmüştür. Araştırıcı test seti görüntüleri üzerinden AlexNet 

%99.06, AlexNetOWTBn %99.44, GoogLeNet 97.27, Overfeat %98.96 ve VGG %99.48 

başarı oranı elde ettiğini bildirmiştir. Ayrıca bu yüksek performans seviyelerine dayanarak, 

CNN’lerin bitki hastalıklarının otomatik olarak tespiti ve teşhisi için oldukça uygun olduğunu, 

mobil cihazlarda kullanım için mobil uygulamalara entegrasyonunun mümkün olabileceğini 

raporlamıştır. 

Kerkech ve ark. (2018) yaptıkları çalışmada, bağ hastalıklarının otomatik tespiti için Aşırı Yeşil 

(ExG), Aşırı Kırmızı (ExR), Aşırı Yeşil-Kırmızı (ExGR), Yeşil-Kırmızı Bitki İndeksi (GRVI), 

Normalleştirilmiş Fark İndeksleri (NDI) ve Kırmızı-Yeşil İndeksi (RGI) bitki örtüsü indeksleri 
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kullanarak CNN performanslarını incelemişler ve karşılaştırmışlardır. Veri setleri 4 410 adet 

görüntü içermektedir. Çalışmaları sonucunda, vejetasyon indekslerinin kombinasyonunda 

ExG-ExR %95.79, ExG-ExR-ExGR %95.80, ExG-ExR-GRVI %95.86, ExG-ExR-NDI 

%95.65, ExG-ExR-RGI %95.82 başarı oranı elde edildiğini bildirmişlerdir. 

Ashqar ve Abu-Naser (2018) yaptıkları çalışmada, domateste Erken Yanıklık, Yaprak Lekesi, 

Yaprak Küfü, Bakteri Lekesi ve Sarı Yaprak Kıvrılma Virüsü hastalıklarını CNN modeli 

kullanarak belirlemişlerdir. Çalışmalarında modelin eğitilmesi ve test edilmesi için sağlıklı ve 

hastalıklı 9 000 yaprak görüntüsü kullanmışlardır. Model test setinde %99.84'lük bir doğruluk 

elde edildiğini bildirmişlerdir. 

Dhakal ve Shakya (2018) bitki hastalıklarının tespiti üzerine yaptıkları çalışmada, hazır veri 

seti kullanılarak domateste Bakteriyel Leke, Sarı Yaprak Kıvrılma Virüsü, Geç Yanıklık 

hastalıklarını derin öğrenme ile belirlemişlerdir. Çalışma sonucunda genel doğruluk 

%98.59’luk bir performans göstererek bitki hastalığı tespitinde büyük bir başarı olduğunu 

raporlamışlardır. 

Sharma ve ark. (2019) çalışmalarında, domates bitkisinde Geç Yanıklık, Yaprak Küfü, İki 

Noktalı Kırmızı Örümcek Hasarı, Bakteriyel Leke, Erken Yanıklık, Siyah Leke, Yaprak 

Lekesi, Mozaik Virüsü, Sarı Yaprak Kıvrılması Virüsü hastalığını CNN modelleri ile tespit 

etmişlerdir. Modellerin eğitim ve test işlemleri için toplam 17 929 görüntü kullanmışlardır. 

Veri seti üzerinde aynı CNN modeli, hem tam görüntüler kullanılarak hem de segmentli 

görüntüler kullanılarak eğitilmiştir. Çalışma sonucunda model başarı oranı tam görüntüler için 

%42.3 segmentli görüntüler için %98.6 elde edildiğini bildirmişlerdir. Araştırıcılar, otomatik 

yöntemlerin hastalıkların zamanında tespiti için uzman olmayan kişilere kolaylık sağlayacağı 

raporlanmıştır. 

Too ve ark. (2019) yaptıkları çalışmada, bitki hastalıklarının otomatik tespit edilmesi için VGG 

16, Inception V4, 50-101-152 katmanlı ResNet ve 121 katmanlı DenseNet CNN modelleri 

kullanmışlardır. Kullandıkları veri seti 14 bitki için 38 farklı sınıf içeren 54 306 adet 

görüntüden oluşmaktadır. Veri setindeki görüntüler %80'i eğitim, %20'i test için 

kullanmışlardır. Deneysel çalışmaları sonucunda test görüntüleri üzerinde elde etikleri başarı 

oranları VGG 16 %81.83, Inception V4 %98.08,  ResNet 50 %99.59, ResNet 101 %99.66 

ResNet 152 %99.59 ve DenseNet 121 %99.75 olarak bulunduğunu raporlamışlardır. Elde 

edilen sonuçlar neticesinde, DenseNet modelinin bitkilerin görüntü tabanlı hastalık tanımlama 

görevi için iyi bir mimari olduğunu bildirmişlerdir. 
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Barbedo (2019) yaptığı çalışmada, GoogLeNet derin öğrenme modelini kullanarak bireysel 

lezyonlardan ve lekelerden bitki hastalık tespitini gerçekleştirmiştir. Modelin eğitim ve test 

işlemleri için 14 bitki türünü içeren 56 farklı sınıfa sahip 46 409 adet görüntü kullanmıştır. Veri 

setini %80'i eğitim ve %20'si test setini oluşturacak şekilde rastgele bölmüştür. Çalışmasında 

orijinal görüntüleri kullanarak elde ettiği genel doğruluk %82 iken bireysel leke görüntüleri 

kullanarak elde ettiği genel doğruluk %94 olduğunu bildirmiştir. Araştırıcı bu sonuçlar 

neticesinde yeterli veri olduğu sürece derin öğrenme tekniklerinin bitki hastalıklarının tespiti 

ve tanınması için etkili bir yöntem olduğunu raporlamıştır. 

Sorte ve ark. (2019) çalışmalarında, kahve bitkisinde otomatik hastalık tanıma sistemi 

geliştirmek için Yaprak Leke ve Pas haslığını AlexNet modeli ile belirlemişlerdir. Araştırıcılar 

derin öğrenme modelinin eğitimi ve testi için 2 250 adet görüntü kullanmışlardır. Deneylerini 

gerçekleştirmek için veri setini %80 eğitim, %10 doğrulama ve %10 test seti olarak 

ayırmışlardır. Çalışmaları sonucunda, Yaprak Leke hastalığı için %98, Pas hastalığı için %97 

doğruluk elde edildiğini bildirmişlerdir. 

Alruwaili ve ark. (2019) yaptıkları çalışmada, zeytin hastalıklarının tespiti ve sınıflandırması 

için CNN’e dayalı AlexNet modelini önermişlerdir. Çalışmalarında 14 bitki türü için farklı 52 

sınıf içeren 54 306 yaprak görüntüsünü veri seti olarak kullanmışlardır. Veri setindeki 

görüntülerin %80’i eğitim aşamasında %20’si test aşamasında kullanmışlardır.  Çalışmaları 

sonucunda önerilen yöntem %99.11'lik bir genel doğruluk elde ettiğini bildirmişlerdir. Ek 

olarak genel kesinlik, duyarlılık ve F1 skor değerleri sırasıyla %99.49, %99.11 ve %99.29 

olduğunu raporlamışlardır. 

Geetharamani ve Arun (2019) yaptıkları çalışmada, bitki hastalıklarının tanımlanması için 

CNN modeli kullanmışlardır. Veri seti olarak 39 sınıf içeren 54 305 adet görüntü kullanarak 

modeli eğitmişlerdir. Deneylerini gerçekleştirmek için veri setini %90 eğitim, %5 doğrulama 

ve %5 test seti olarak ayırmışlardır. Çalışma sonucunda modelin genel olarak %96.46 

sınıflandırma doğruluğuna ulaştığını bildirmişlerdir. Önerilen modelin, geleneksel makine 

öğrenimi yaklaşımlarıyla karşılaştırılmış ve SVM %50.69, Lojistik Regresyon %80.99, Karar 

Ağacı %72.23 ve K-NN %87.86 değerlerinden daha yüksek doğruluk elde edildiğini 

raporlamışlardır. 

Ozguven ve Adem (2019) çalışmalarında, şeker pancarında yaprak lekesi hastalığının 

(Cercospora beticola Sacc.) otomatik tespiti için bir CNN modelinin parametreleri 

değiştirilerek güncellenmiş Faster R-CNN mimarisi ve Faster R-CNN mimarisi önermişlerdir. 
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Modellerin eğitilmesi ve test edilmesi için 155 görüntü kullanmışlardır. Deneylerini 

gerçekleştirmek için veri setini %85 eğitim, %15 test seti olarak ayırmışlardır. Test görüntüleri 

üzerinden toplam doğru sınıflandırma oranı %95.48 olarak bulunduğunu bildirmişlerdir. Ek 

olarak, önerilen yaklaşım görüntüye ve tespit edilecek bölgelere göre CNN parametrelerindeki 

değişikliklerin Faster R-CNN mimarisinin başarısını artırabileceğini raporlamışlardır. 

Cruz ve ark. (2019) çalışmalarında, Asma Sarılığı (GY) hastalığını AlexNet, GoogLeNet, 

Inceptionv3, ResNet-50, ResNet-101 ve SqueezeNet CNN modelleri kullanarak 

belirlemişlerdir. Modellerin eğitilmesi ve test edilmesi için 2 680 yaprak görüntüsü 

kullanmışlardır. Deneylerini gerçekleştirmek için veri setini %80 eğitim, %20 test seti olarak 

ayırmışlardır. Deneysel çalışmaları sonucunda test görüntüleri üzerinde elde etikleri başarı 

oranları AlexNet %97.63, GoogLeNet %96.36, Inceptionv3 %98.43, ResNet-50 %99.18, 

ResNet-101 %99.33, SqueezeNet %93.77 olarak bulunduğunu raporlamışlardır. 

Zhong ve Zhao (2020) çalışmalarında, Genel Uyuz, Ciddi Uyuz, Gri Nokta, Genel Sedir Pas 

ve Ciddi Sedir Pas elma yaprağı hastalıklarının tespiti için DenseNet-121 derin öğrenme modeli 

kullanmışlardır. Veri seti olarak 2 462 elma yaprağı görüntüsü kullanılmıştır. Modelin eğitim 

ve test işlemleri için veri setindeki görüntülerin %85'i eğitim, %15'i doğrulama için 

ayırmışlardır.  Araştırıcılar önerilen yöntemin test seti görüntülerinde Genel Uyuz %71.15, 

Ciddi Uyuz %74.47, Gri Nokta %97.97, Genel Sedir Pas %91.42 ve Ciddi Sedir Pas %85.71 

doğruluk elde edildiğini bildirmişlerdir. 

Esgario ve ark. (2020) çalışmalarında, kahve yapraklarındaki biyotik etkenlerin neden olduğu 

stres şiddetini tanımlayabilen ve tahmin edebilen pratik bir sistem tasarlamak için AlexNet, 

GoogLeNet, VGG16, ResNet-50, MobilNetV2 CNN modellerini kullanmışlardır. 

Çalışmalarında kullandıkları veri seti 2 147 arabica kahve yaprağı görüntülerini içermektedir. 

Veri setlerini %80'i eğitim ve %20'si test setini oluşturacak şekilde ayırmışlardır. Çalışmaları 

sonucunda ResNet50 modeli biyotik stres sınıflandırması için %95.24 ve şiddet tahmini için 

%86.51 doğruluk, AlexNet modeli biyotik stres sınıflandırması için %91.67 ve şiddet tahmini 

için %86.90 doğruluk, GoogLeNet modeli biyotik stres sınıflandırması için %94.05 ve şiddet 

tahmini için %82.94 doğruluk, VGG16 modeli biyotik stres sınıflandırması için %94.44 ve 

şiddet tahmini için %86.51 doğruluk, MobilNetV2 modeli ise biyotik stres sınıflandırması için 

%94.44 ve şiddet tahmini için %84.13 doğruluk elde edildiğini bildirmişlerdir. Araştırıcılar 

deneysel sonuçlar neticesinde, önerilen sistemin kahve plantasyonlarındaki biyotik streslerin 
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tanımlanması ve nicellendirilmesinde yardımcı olmak için uygun bir araç olabileceğini 

raporlamışlardır. 

Chen ve ark. (2020) çalışmalarında, bitki hastalıklarının otomatik olarak tanımlanması ve 

tespiti için INC-VGGN adı verilen geliştirdikleri derin öğrenme mimarisini kullanmışlardır.  

Çalışmalarında 500 çeltik ve 466 mısır yaprak görüntüsü içeren toplam 966 görüntü 

kullanılmışlardır. Modelin eğitim ve test işlemleri için veri setindeki görüntülerin %70'i eğitim, 

%30'u doğrulama için ayırmışlardır. Araştırıcılar yaptıkları çalışma sonucunda çeltik 

hastalıklarının ortalama %92, mısır hastalıklarının ortalama %80.38 doğruluk ile tespit 

edildiğini raporlamışlardır. 

Sethy ve ark. (2020) yaptıkları çalışmada, çeltikte Bakteriyel Yanıklık, Kahverengi Leke, 

Tungro ve Yanıklık hastalıklarının tanımlanması için ResNet+SVM yaklaşımında CNN 

modelinin performansını incelemişlerdir. Veri seti, 5 932 çeltik yaprağı görüntüsü 

içermektedir. Modelin eğitim ve test işlemleri için veri setindeki görüntülerin %80'i eğitim, 

%20'si doğrulama için ayırmışlardır. Çalışmaları sonucunda elde ettikleri başarı oranları 

Bakteriyel Yanıklık %98.38, Kahverengi Leke %96.70, Tungro %100 ve Yanıklık %96.43 

olduğunu bildirmişlerdir. 

Mishra ve ark. (2020) çalışmalarında, mısır bitkisinde Pas ve Kuzey Yaprak Yanıklığı 

hastalıklarının tespiti için CNN’e dayanan gerçek zamanlı bir yöntem sunmuşlardır. Derin 

öğrenme modellerinin eğitimi ve testi için 4 382 adet görüntü kullanmışlardır. Deneylerini 

gerçekleştirmek için veri setini %70 eğitim, %10 doğrulama ve %20 test seti olarak 

ayırmışlardır. Çalışmaları sonucunda elde ettikleri başarı oranları Pas hastalığı için %96.32, 

Kuzey Yaprak Yanıklığı için %98.88 olduğunu bildirmişlerdir. Ek olarak, CNN modeli akıllı 

telefondan yakalanan canlı görüntülerde ortalama %88.66 doğruluk elde edildiğini 

raporlamışlardır. Araştırıcılar sundukları mısır bitkisi hastalık tanıma modelinin, Raspberry-Pi 

veya akıllı telefon ve drone’lar gibi akıllı cihazlarda çalışabileceğini vurgulamışlardır. 

Agarwal ve ark. (2020) çalışmalarında, Geç Yanıklık, Yaprak Küfü, İki Noktalı Kırmızı 

Örümcek Hasarı, Erken Yanıklık, Mozaik Virüsü, Sarı Yaprak Kıvrılması Virüsü, Yaprak 

Lekesi, Bakteriyel Leke domates hastalıklarını tespit etmek için CNN tabanlı bir model 

geliştirmişlerdir. Veri setlerinde 10 000 görüntü kullanmışlardır. Deneylerini gerçekleştirmek 

için veri setini %70 eğitim, %20 doğrulama ve %10 test seti olarak ayırmışlardır.  Sınıflandırma 

doğruluğu sınıflara göre %76 ile %100 arasında değişmekte olduğunu bildirmişlerdir. 
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Araştırıcılar önerilen modelin ortalama doğruluğunun 9 hastalık ve 1 sağlıklı sınıf için %91.2 

olduğunu bildirmişlerdir. 

Karthik ve ark. (2020) yaptıkları çalışmada, domates yapraklarındaki Erken Yanıklık, Geç 

Yanıklık ve Yaprak Küfü hastalıklarını tespit etmek için CNN’e dayalı derin öğrenme modeli 

geliştirmişlerdir. Deneyde kullandıkları veri seti 120 000 görüntü içermektedir. Deneylerini 

gerçekleştirmek için veri setini %70 eğitim, %20 doğrulama ve %10 test seti olarak 

ayırmışlardır. Araştırıcılar önerilen yöntemin, toplam %98'lik bir doğruluk elde edildiğini 

bildirmişlerdir. 

Darwish ve ark. (2020) çalışmalarında, mısır bitkisinde Gri Yaprak Lekesi, Kuzey Yaprak 

Yanıklık ve Pas hastalığının tespiti için VGG16 ve VGG19 olmak üzere önceden eğitilmiş 

CNN modeli geliştirmişlerdir. Çalışmalarında veri seti olarak 15 408 görüntü kullanmışlardır. 

Modelin eğitim ve test işlemleri için veri setindeki görüntülerin %80'i eğitim, %20'si 

doğrulama için ayırmışlardır. Araştırıcılar çalışmanın sonucunda VGG16 modeli için Gri 

Yaprak Lekesi %96, Kuzey Yaprak Yanıklık %93 ve Pas hastalığı %100 VGG19 modeli için 

Gri Yaprak Lekesi %91, Kuzey Yaprak Yanıklık %96 ve Pas hastalığı %100 doğruluk elde 

edildiği bildirilmiştir. 

Guti´errez ve ark. (2021) yaptıkları çalışmada, asma yapraklarında mildiyö ve örümcek akarı 

semptomlarının tespiti ve ayırt edilmesi için derin öğrenme modeli kullanmışlardır. 

Çalışmalarında veri seti olarak 841 görüntü kullanmışlardır. Deneylerini gerçekleştirmek için 

veri setini %65 eğitim, %15 doğrulama ve %20 test seti olarak ayırmışlardır.  Hastalık ve 

zararlının ikili sınıflandırmasında (Mildiyö+Örümcek Akarı) %91 doğruluk elde edildiğini 

bildirmişlerdir. Bu yüksek doğruluk, tarla koşullarında alınan asma yaprağı görüntülerinin 

sınıflandırılması için derin öğrenme ve bilgisayarla görme tekniklerinin etkinlik gösterdiğini 

vurgulamışlardır. Ek olarak örümcek akarı ile mildiyö belirtilerini ayırt edebilen karmaşık 

özelliklerin otomatik olarak bulunduğunu raporlamışlardır. 

Lu ve ark. (2022) yaptıkları çalışmada, bağ yaprağı Mildiyö, Külleme, Kahverengi Leke, Siyah 

Leke, Yaprak Yanıklığı, Esca, Besin Eksiklik, Bağ Yaprak Uyuzu, Yaprak Güvesi, Virüs 

hastalık tespiti için Ghost-Convolution ve Transformer ağlarına dayalı etkili ve doğru bir 

yaklaşım önermişlerdir. Araştırıcılar 11 sınıf içeren 12 615 görüntü veri seti kullanmışlardır. 

Deneylerini gerçekleştirmek için veri setini %70 eğitim, %10 doğrulama ve %20 test seti olarak 

ayırmışlardır. Test görüntüleri üzerinde %98.14 genel doğruluk değeri elde edildiğini 

bildirmişlerdir. 
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Guo ve ark. (2022) yaptıkları çalışmada, bağda Külleme, Antraknoz, Kahverengi Leke, 

Kurşuni Küf, Siyah Leke ve Mildiyö hastalığını tespit etmek için Faster R-CNN, SSD ve Yolox 

modellerini uygulamışlardır. Modelleri eğitmek ve test etmek için 2 300 görüntüyü veri seti 

olarak kullanmışlardır. Veri setindeki görüntülerin %90'i eğitim, %10'u doğrulama için 

ayırmışlardır. Çalışma sonunda Faster R-CNN %79.12, Yolox %83.22, SSD %76.23 doğruluk 

oranı elde edildiğini bildirmişlerdir. Araştırıcılar yaptıkları çalışma ile bağ yaprağı hastalığı 

tespitindeki sorunlara çözümler getirildiğini ve tarımsal üretimde bağ hastalıklarının ve 

semptomlarının otomatik analizi için bir referans sağlandığını raporlamışlardır. 

Literatür taramalarında çeşitli araştırıcılar tarafından bitki hastalıklarının derin öğrenme ile 

tespiti ve sınıflandırılmasına yönelik yapılan çalışmalar incelendiğinde tespit edilen detaylar 

aşağıda sıralanmıştır; 

 Çalışmaların bir kısmı doğal koşullarda bir kısmı ise sabit bir arka plan kullanılarak 

gerçekleştirildiği görülmektedir. Bu durum bazı avantajlar veya dezavantajlar 

sağlamaktadır. Sabit bir arka planda alınan görüntülerde modelin çalışmasının daha 

kolay olduğu ve başarı oranının daha yüksek çıkmasına katkı sağladığı belirlenmiştir. 

Doğal koşullarda alınan görüntüler üzerinden bu durumun tersi olabilmektedir. Ancak 

doğal koşullarda başarının arttırılması, ileride yapılacak gerçek zamanlı sistemler için 

oldukça önem taşımaktadır. 

 Yapılan çalışmaların bazılarında hazır görüntüler bazılarında ise görüntüleme cihazları 

ile toplanan veriler kullanılarak gerçekleştirildiği görülmektedir. Bitki hastalıkları 

konularında yapılan çalışmalar ile literatüre büyük katkılar sağlanmaktadır. Böylece 

tarımsal faaliyetleri iyileştirmek için gerekli çalışmaların yapılmasının önü açılacaktır. 

 Özellikle bağ hastalıkları konusunda büyük miktarda veri bulunmamasına rağmen 

külleme ve mildiyö hastalıkları çalışılmıştır. 

 Bazı çalışmalar sadece derin öğrenme modeli ile gerçekleştirilebildiği gibi, başarı 

oranını artırmak için makine öğrenmesi veya görüntü işlemeyle birlikte kullanılarak da 

gerçekleştirildiği görülmüştür. 

 Çalışmaların genelinde daha önceden eğitilmiş modeller kullanılarak transfer öğrenme 

uygulandığı ve yeni geliştirilen model sayılarının ise az olduğu tespit edilmiştir. 



 

 

 

 

 

 

 

 

45 

 

Bu tez çalışmasının özgünlüğü, bağda yaygın olarak görülen ve ekonomik sorun oluşturan 

külleme, mildiyö, ölü kol hastalığı ile asma yaprak kıvrılma virüs hastalığı (GLRaV) ve asma 

kısa boğum virüs (GFLV) hastalık görüntülerinin olduğu özgün yeni bir veri seti 

oluşturulmuştur. Görüntüler farklı doğal koşullarda sabit bir arka plan kullanılmadan gerçek 

ortamdan toplanmıştır. Çalışmada hem transfer öğrenme hem de yeni bir model geliştirilerek 

sınıflandırma işlemi gerçekleştirilmiş ve performans karşılaştırılması yapılmıştır. 
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3. MATERYAL ve YÖNTEM 

3.1. Materyal 

3.1.1. Çalışmada değerlendirilen bağ hastalıkları 

Bağ hastalıkları fungal, virüs ve bakteriyel olmak üzere üç grupta toplanmaktadır. Çalışmada 

yaygın olarak görülen ve ekonomik sorun oluşturan fungal hastalıklardan külleme, mildiyö,  

ölü kol hastalığı ile virüs hastalıklarından asma yaprak kıvrılma virüs hastalığı (GLRaV) ve 

asma kısa boğum virüs (GFLV) hastalıkları değerlendirilmiştir. Şekil 27’de çalışmada 

değerlendirilen bağ hastalıklarına örnek görüntüler verilmiştir. 

 
Şekil 27. Çalışmada değerlendirilen bağ hastalıkları 

3.1.2. Araştırma alanları 

Çalışmada değerlendirilen bağ hastalıkları görüntülerinin elde edilmesi için Tokat ilinde bağ 

alanları araştırılmıştır. Araştırılan bağ alanlarının bulunduğu ilçeler Şekil 28’da verilmiştir. Bu 

ilçelere ait aşağıda sıralanan yerlerden hastalık görüntüleri alınmıştır. 

 Tokat Orta Karadeniz Geçit Kuşağı Tarımsal Araştırma Enstitüsü Müdürlüğüne ait bağ 

alanları, 

 Tokat Gaziosmanpaşa Üniversitesi Tarımsal Uygulama ve Araştırma Merkezi bağ 

alanları, 

 Merkez ilçesine bağlı Güryıldız beldesi bağ alanları, 

 Merkez ilçesine bağlı Emirseyit beldesi bağ alanları, 

 Merkez ilçesine bağlı Kömeç köyü bağ alanları, 

 Merkez ilçesine bağlı Büyükyıldız ve Küçükyıldız köyleri bağ alanları, 
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 Pazar ilçesine bağlı bazı beldeler ile özellikle Üzümören beldesi bağ alanları, 

 Erbaa ilçesine bağlı bazı belde bağ alanları, 

 Niksar ilçesine bağlı bazı belde bağ alanları. 

 
Şekil 28. Araştırma alanları 

Şekil 29 ve Şekil 30’da gösterilen Tokat Gaziosmanpaşa Üniversitesi Tarımsal Uygulama ve 

Araştırma Merkezi’ne ait bağ alanlarında ayrılan 4 sırada ilaçlama yapılmayarak mildiyö, 

külleme ve ölü kol hastalıkların görülmesi kontrollü şartlarda sağlanmıştır. 

 
Şekil 29. Tokat Gaziosmanpaşa Üniversitesi Tarımsal Uygulama ve Araştırma Merkezi bağ 

alanları 
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Şekil 30. Çalışma için ayrılan sıralar 

3.1.3. Çalışmada kullanılan cihazlar 

Bağ hastalıklarının görüntülerini elde edebilmek için Şekil 31’de gösterilen GoPro marka Hero 

7 Black model kamera ve akıllı telefon kullanılmıştır. Çizelge 3’te kullanılan GoPro Hero 7 

Black kameranın ve Çizelge 4’te ise akıllı telefonun özellikleri verilmiştir. 

 
Şekil 31. GoPro Hero 7 Black 

Çizelge 3. GoPro Hero 7 Black kameranın teknik özellikleri 

Donanım Teknik Özellik 

Görüntü İşlemcisi GoPro GP1 

Sensör Tipi CMOS 

Etkin Piksel 12 MP 

Ekran Boyutu 2.0 inç 

Azami Çözünürlük 4 000×3 000 

Azami Video Çözünürlüğü 3 840x2 160 

Video Çözünürlüğü Ultra HD 

Video Kare Hızı 60 fps 

Görüntü Oranı 4:3 

Sensör Formatı 1/2.3 inç 

Sensör Boyutu (Genişlik) 6.17 mm 

Sensör Boyutu (Uzunluk) 4.62 mm 

En Düşük ISO 100 

En Yüksek ISO 6 400 

GPS (Konum) özelliği Mevcut 

Optik İmaj Sabitleme Mevcut 
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Çizelge 4. Akıllı telefonun teknik özellikleri 

Donanım Teknik Özellik 

İşletim Sistemi Android 

İşlemci Türü Qualcomm SnapDragon 810 

İşlemci Hızı 2 GHz 

İşlemci Çekirdek Sayısı 8 

Ekran Çözünürlüğü 1 920x1 080 

Etkin Piksel 23 MP 

Video Çözünürlüğü 3 840x2 160 

Video Çözünürlüğü Ultra HD 

Video Kare Hızı 60 fps 

Sensör Formatı 1/2.3 inç 

En Düşük ISO 100 

En Yüksek ISO 12 800 

Odak Uzaklığı 24 mm 

Derin öğrenme işlemleri için iyi bir işlemci ve ekran kartına sahip bilgisayara gereksinim 

vardır. Yüksek performanslı grafik işleme birimleri (GPU) derin öğrenme işlemleri için verimli 

bir yapıya sahiptir. Çalışmada da Nvidia grafik kartına (GPU) sahip Asus marka bilgisayar 

kullanılmıştır. Bilgisayarın teknik özellikleri Çizelge 5’de verilmiştir. 

Çizelge 5. Çalışmada kullanılan bilgisayarın teknik özellikleri 

Donanım Teknik Özellikler 

Sistem Üreticisi Asus 

İşlemci (CPU) Intel Core i9 

Ekran Kartı (GPU) Nvidia Quadro RTX 4000 - 8 GB - GDDR6 

İşlemci Önbelleği 20 MB 

Çekirdek Sayısı 20 

İşlemci Tipi 10850K (10.Nesil) 

İşlemci Hızı 4.8 GHz 

Bellek (RAM) 64 GB-DDR5 

Bellek Hızı 3600 Mhz 

SSD Kapasitesi 1 TB  

3.1.4. MATLAB 

MATLAB, kullanıcıların sistemleri hızlı ve verimli bir şekilde analiz etmeleri ve tasarlamaları 

için özel olarak hazırlanmış bir programlama platformudur. MATLAB, matematiğin en doğal 

ifadesine izin veren matris tabanlı bir dil kullanmaktadır. MATLAB, derin öğrenme 

matrislerini basit ve sezgisel bir şekilde işleyebilme konusunda en iyi programlama 

platformlarından biri olarak kabul edilmektedir. MATLAB, etiketleme için sinyal verilerini, 

ses verilerini, görüntüleri ve videoyu içeren etkileşimli derin öğrenme uygulamalarına sahiptir. 

Etiketleme, derin öğrenmedeki en zor ve zaman alan işlemlerden biridir. MATLAB, bu 
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işlemleri otomatikleştiren ideal bir uygulamadır. Derin öğrenme işlemleri çok büyük miktarda 

veri setine ihtiyaç duyduğundan MATLAB,  yeterli veriye sahip olunmadığında yapay veri 

üretilmesine de yardımcı olabilmektedir. Bu sayede modellerin başarı oranının arttırılmasını 

sağlamaktadır. Derin öğrenme işlemleri için MATLAB'ın avantajları; 

 MATLAB, derin öğrenme TensorFlow, PyTorch ve MxNet gibi çerçeveler arasında 

etkileşim kurmanın ve veri aktarmanın çeşitli yollarına sahiptir. 

 MATLAB, modelleri diğer çerçeveler arasında içe ve dışa aktarmak için ONNX'i 

destekler. Örneğin, PyTorch'ta tasarlanan bir model MATLAB'a getirilebilmekte ve 

MATLAB'de eğitilen modeller ONNX çerçevesi kullanılarak dışa aktarılabilmektedir. 

 MATLAB, Python ile birlikte çalışabilirliğini de destekler: Python MATLAB'dan ve 

MATLAB Python'dan aratılabilmektedir. 

 Deep Learning Toolbox algoritmaları, önceden eğitilmiş modeller ve uygulamalarla 

derin sinir ağlarını tasarlamak ve uygulamak için bir çerçeve sağlamaktadır. 

 MATLAB ayrıca pekiştirmeli (takviyeli) öğrenme, otonom sürüş, doğal dil işleme, tıbbi 

görüntü işleme ve bilgisayarla görü için özel araç kutuları ve işlevsellik sağlamaktadır. 

3.2. Yöntem 

Çalışmada belirlenen amaca ulaşmak için gerçekleştirilen yöntem ve uygulamalar aşağıda 

sıralanmıştır. 

3.2.1. Görüntülerin elde edilmesi 

Tokat iklim şartlarında erken ilkbahar ile geç sonbahar (Mart-Kasım) arasında asma 

yetiştiriciliği yapılmaktadır. Bu süre zarfında çalışılan hastalıkların her biri vejetasyon 

döneminde ilk semptomların görülmesinden hastalıkların gelişme dönemleri boyunca takip 

edilerek görüntüler alınmıştır. Çalışmada akıllı telefon kullanılarak 1 920 x 1 080 piksel 

çözünürlükte 4 892 adet görüntü, GoPro Hero Black 7 kamera kullanılarak 4 000 x 3 000 piksel 

çözünürlükte 6 108 adet görüntü olmak üzere toplam 11 000 görüntü elde edilmiştir. Görüntüler 

sağlıklı ve hastalıklı yaprak, sürgün ve salkım görüntüleri içermektedir. Derin öğrenme 

başarısının arttırılmasına katkı sağlamak için görüntüler farklı doğal aydınlanma koşullarında 

alınmıştır. 
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3.2.2. Veri setinin oluşturulması 

Vejetasyon süresince alınan ham görüntüler bilgisayara aktarılıp, sağlıklı ve her bir hastalık 

için ayrı ayrı dosyalanmıştır. Çizelge 6’da oluşturulan veri seti gösterilmiştir. Çizelgede 

gösterildiği gibi veri seti 6 sınıf (ID) içeren toplam 11 000 görüntüden oluşmaktadır. Literatür 

taramalarında bitki hastalık tespitinin yapıldığı derin öğrenme çalışmalarında (Cruz ve ark., 

2019; Guti´errez ve ark., 2021; Ji ve Wu, 2022) veri setleri %70 eğitim, %30 test işlemleri için 

bölünmektedir. Bu çalışmalardan yola çıkarak veri seti benzer şekilde bölünmüştür. Her bir 

sınıfta görüntü sayısının %70’i eğitimde %10’u doğrulamada ve %20’si de testte kullanılmıştır. 

Toplam görüntünün 7 700’ü eğitimde, 1 100’ü ise eğitim doğruluğunu kontrol etmek için 

doğrulamada kullanılmıştır. Sistemin hiç görmediği kalan 2 220 görüntü ise test olarak 

kullanılmıştır. Çalışmada sağlıklı görüntüler yaprak, salkım, sürgün üzerinde, külleme hastalığı 

ise hem yaprak, hem de salkım üzerinde gerçekleştirildiğinden görüntü sayıları diğer 

sınıflardan daha fazla olmuştur. 

Çizelge 6. Çalışmada oluşturulan veri seti 

Sınıf 

(ID) 
Hastalık 

Görüntü sayısı 

(adet) 

Eğitim 

(%70) 

Doğrulama 

(%10) 

Test 

(%20) 

0 Sağlıklı 2 420 1 694 242 484 

1 Külleme 3 215 2 250 322 643 

2 Mildiyö 1 375 963 137 275 

3 Ölü kol 1 729 1 211 172 346 

4 GLRaV 1 136 795 114 227 

5 GLFV 1 125 787 113 225 

Toplam 11 000 7 700 1 100 2 200 

3.2.3. Veri ön işleme ve etiketleme 

Çalışma hastalıkların belirlenmesi üzerine olduğu için görüntülerdeki nesnelerin örneklerini 

bulmak için bir bilgisayarlı görme tekniği olan nesne algılama algoritmaları kullanılmıştır. 

Nesne algılama algoritmaları, yüksek bir başarı oranında nesneleri tespit edebilmesi için 

görüntülerin bir ön işlemden geçirilmesi ve özellikle veri setinin etiketleme işlemleri oldukça 

önemlidir. Bu yüzden çalışmada veri seti işleme tabi tutulmadan önce bazı görüntülerdeki ışık 

yansıması, bulanıklık ve benek gibi gürültülerin giderilmesi için ön işleme tabi tutulmuştur.  

Gürültüler giderildikten sonra tüm görüntüler modellere giriş boyutu olarak 512x512 

çözünürlükte yeniden boyutlandırılmıştır. Ön işlemlerden sonra MATLAB programında 

“Image Labeler” uygulaması ile toplam 11 000 görüntü üzerinde etiketleme işlemleri 

yapılmıştır. Image Labeler uygulamasında ilgili alanı (ROI) etiket olarak işaretlemek için 
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dikdörtgen etiketleri kullanılmıştır. Çalışmada Image Labeler ile etiketlenen görüntülere 

örnekler Şekil 32 ile Şekil 37 arasında verilmiştir. 

 
Şekil 32. Tane üzerinde külleme etiketi örneği 

 
Şekil 33. Yaprakta külleme etiketi örneği 
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Şekil 34. Mildiyö etiketi örneği 

 
Şekil 35. Ölü kol etiketi örneği 
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Şekil 36. Asma yaprak kıvrılma virüs etiketi (GLRaV) örneği 

 
Şekil 37. Asma kısa boğum virüs etiketi (GFLV) örneği 
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3.2.4. Modellerin geliştirilmesi 

Bağ hastalıkları görüntülerinde hastalıklı bölgelerin tespit edilmesi ve sınıflandırılması için 

yeni bir model geliştirilmiştir. Geliştirilen modelin mimarisi Şekil 38’de gösterilmiştir. Mimari 

dört evrişim katmanı ile birlikte dört ReLU katmanı, üç havuzlama katmanı, bir tam bağlantılı 

katman ve softmax sınıflandırıcısından oluşmaktadır. Giriş görüntüleri 512x512x3 RGB olarak 

modele verilmiştir. Çıktı sınıfları sağlıklı ve beş hastalık görüntülerinden oluşmaktadır. 

 
Şekil 38. Çalışmada geliştirilen model mimari 

Model mimari tasarlanırken aşağıdaki adımlar dikkate alınmıştır; 

 Nesne algılama için eğitim verilerinin oluşturulması. Görüntüdeki nesnenin konumunu ve 

boyutunu tanımlayan dikdörtgen etiketleri kullanarak nesne algılama yer gerçeği (ground 

truth) etiketlenmiştir. 

 Nesne algılama dedektör ağının oluşturulması. Her nesne dedektörü benzersiz bir ağ 

mimarisi içermektedir. Örneğin, Faster R-CNN dedektörü algılama için iki aşamalı bir ağ 

kullanırken, SSD Multibox dedektörü tek aşamalı bir ağ kullanmaktadır. Geliştirilen 

modelde ağ oluşturmak için “layers” işlevleri kullanılmıştır. Ayrıca, Derin Ağ Tasarımcısı 

(Deep Network Designer) kullanılarak ağ katman katman tasarlanmıştır. 

 Dedektörün eğitilmesi. Nesne algılama dedektörünü eğitmek için “trainObjectDetector” 

işlevi kullanılmıştır. 

 Test seti kullanılarak dedektörün değerlendirilmesi. Geliştirilen modelin performansını 

ölçmek için eğitilmiş nesne detektörü geniş bir görüntü kümesi üzerinde 

değerlendirilmiştir. Sonuçları değerlendirmek için “evaluateDetectionPrecision”, 

“evaluateDetectionRecall” gibi işlevler kullanılmıştır. 
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 Derin öğrenme dedektörlerini kullanarak nesneleri algılama. Eğitimli dedektör 

kullanılarak bir görüntüdeki nesneler algılanmıştır. Nesne algılama işlevi kullanılarak 

sınırlayıcı kutular, tahmin puanları ve sınırlayıcı kutulara atanan kategorik etiketler 

gösterilmiştir. 

Teknolojik gelişmelerle birlikte her gün yeni model mimariler ortaya çıkmaktadır. Literatür 

taramaları incelendiğinde araştırıcılar tarafından nesne tespitinde doğruluk ve zaman 

performansı açısından Faster R-CNN ve SSD Multibox modelleri en yaygın kullanılan 

modellerdir. Bu nedenle çalışmada yeni geliştirilen model ile karşılaştırma yapmak için Faster 

R-CNN ve SSD Multibox modelleri kullanılmıştır. 

Çalışmada kullanılan derin öğrenme modellerine ilişkin eğitim sırasında oluşturulan 

parametreler modelin hesaplama karmaşıklığını doğrudan etkilemektedir. Hesaplama 

karmaşıklığına ek olarak, modelin yüksek sınıflandırma doğruluğu da çok önemlidir. 

Modellerde kullanılan parametreler deneysel sonuçlar neticesinde elde edilmiştir. Objektif bir 

değerlendirme yapabilmek için kullanılan derin öğrenme modellerinin eğitimi sırasında 

parametrelere aynı değerler verilmiştir. Bunlar; CNN modellerinde hastalıklı bölgelerin daha 

iyi ayırt edilebilmesi için input değeri 512x512x3 olarak alınmıştır. Evrişim katmanlarında 32 

adet 4 adım, 2 dolgu’lu 3x3’lük filtre uygulanmıştır. Öğrenme oranı 0.001 olarak belirlenmiştir. 

Değerin çok düşük seçilme amacı öğrenme hızını düşürmek ve öğrenme süresini artırmaktır. 

Bu değerin yüksek seçilmesi durumunda çok hızlı öğrenmeye çalıştığı için yetersiz öğrenmeye 

neden olmaktadır. Ağırlık güncelleme aşamasında kullanılan “MiniBatchSize” değeri 32 olarak 

belirlenmiştir. Eğitim algoritmasının veri seti üzerindeki uygulama sayısını gösteren 

“MaxEpochs” değeri 100 olarak belirlenmiştir. Hastalıklı bölgeyi aynı verilerle öğrenerek 

“Shuffle” değeri “ever-epoch” olarak seçilmiştir. Aşırı öğrenmeyi önlemek için “Dropout” 

değeri 0.1 olarak ayarlanmıştır. Ayrıca daha iyi bir değerlendirme için veri setinden örnekler 

rastgele seçilmiştir. Çalışmada bağ hastalık görüntülerinde hastalıklı bölgelerin tespiti ve 

sınıflandırılması için kullanılan modelin işlem basamakları Şekil 39'da gösterilmiştir. 
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Şekil 39. Çalışmanın genel akış şeması 

Şekil 39’da görüldüğü gibi, ön işleme aşamasında etiketlenen veri seti, model kurulum 

aşamasında Faster R-CNN, SSD Multibox ve geliştirilen derin öğrenme modelinde ayrı ayrı 

eğitilmiştir. Eğitilen modeller sınıflandırma aşamasında test edilerek sınıfları tahmin etmiştir. 

3.2.5. Model performans metrikleri 

Karışıklık matrisi (Confusion Matrix) bir sınıflandırma işlemleri için kurulan modellerin 

performans değerlendirmesinde kullanılabilen bir ölçüttür. Karışıklık matrisi, hem ikili 

sınıflandırmada hem de çok sınıflı sınıflandırma problemlerinde yaygın kullanılmaktadır. 

Tahmin edilen ve gerçek değerlerin 4 farklı kombinasyonundan oluşmaktadır. Şekil 40’da 

karışıklık matrisi örneği verilmiştir. Tablonun bir boyutunda, matris gerçek değerleri 

almaktadır. Matris daha sonra gerçek değerleri diğer boyuttaki tahmin edilen değerlerle 

eşlemektedir. Matristen Duyarlılık, Kesinlik, Özgüllük, Doğruluk ve en önemlisi AUC-ROC 

eğrileri gibi hesaplanabilen birçok performans metriği vardır. 
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Şekil 40. Karışıklık matrisi (Confusion matrix) 

 Doğru pozitif (True Positive-TP); sınıflandırıcı tarafından pozitif sınıfa ait verilerden 

kaç tanesinin doğru şekilde sınıflandırıldığı temsil edilmektedir. 

 Doğru negatif (True Negative-TN); sınıflandırıcı tarafından negatif sınıfa ait verilerden 

kaç tanesinin doğru şekilde sınıflandırıldığı temsil edilmektedir. 

 Yanlış pozitif (False Positive (Tip 1 Hata)-FP); gerçekte negatif sınıfa ait olan bir 

verinin sınıflandırma sonucunda pozitif sınıf olarak etiketlenmesidir. 

 Yanlış negatif (False Negative (Tip 2 Hata)-FN); gerçekte pozitif sınıfa ait olan bir 

verinin sınıflandırma sonucunda negatif sınıf olarak etiketlenmesidir.  

 
Şekil 41. Karışıklık matrisinden hesaplanan birçok ölçümün gösterilmesi 

Şekil 41’de verilen bir karışıklık matrisinden elde edilen performans ölçümleri, Eşitlik 1-7 

denklemlerinde gösterildiği gibi temsil edilmektedir; 

 Duyarlılık, pozitif olarak tahmin edilmesi gereken işlemlerin ne kadarını pozitif olarak 

tahmin edildiğini gösteren bir metriktir. 
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Duyarlılık veya Hassasiyet (Recall-Sensitivity) =  
TP

(TP+FN)
 = 

TP

Tüm pozitifler
  (1) 

 Özgüllük, gerçek değeri negatif olup negatif sınıflandırılan sayının, gerçek değeri negatif 

olanların tümüne oranıdır. 

Özgüllük (Specificity) = 
TN

(TN+FP)
 = 

TN

Tüm negatifler
     (2) 

 Kesinlik, pozitif olarak tahminlenen değerlerin gerçekten kaç adedinin pozitif olduğunu 

göstermektedir. 

Kesinlik (Precision) =  
TP

(TP+FP)
 = 

TP

Tahmin edilen pozitifler
    (3) 

Yaygınlık (Prevalence) = 
TP+FN

Toplam
 = 

Tüm pozitifler

Toplam
     (4) 

 Doğruluk, bir modelin başarısını ölçmek için çok kullanılan ancak tek başına yeterli 

olmadığı görülen bir metriktir. Doğruluk değeri modelde doğru tahmin edilen alanların 

toplam veri kümesine oranı ile hesaplanmaktır. 

Doğruluk (Accuracy) = 
TP+TN

Toplam
        (5) 

 F1 Skor, kesinlik ve duyarlılık değerlerinin harmonik ortalamasını göstermektedir. Basit bir 

ortalama yerine harmonik ortalama olmasının sebebi ise uç durumları da göz ardı 

edilmemesidir. Basit bir ortalama hesaplaması olması durumunda kesinlik değeri 1 ve 

duyarlılık değeri 0 olan bir modelin F1 skoru 0.5 olacak ve bu durum yanıltacaktır. F1 skor 

değerinin kullanılmasının en temel sebebi eşit dağılmayan veri kümelerinde hatalı bir model 

seçimi yapılmamasıdır. 

F1 Skor (F1 Score) =  
2 ∗ Duyarlılık ∗ Kesinlik

Duyarlılık+Kesinlik
      (6) 

Hata Oranı (Error Rate) = 
FP+FN

Toplam
       (7)  
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4. BULGULAR ve TARTIŞMA 

4.1. Faster R-CNN Sonuçları 

Çizelge 7’de Faster R-CNN modelinin performansının değerlendirilmesi için hedef niteliğe ait 

tahminlerin ve gerçek değerlerin karşılaştırıldığı karışıklık matrisi verilmiştir. 

Çizelge 7. Faster R-CNN modelinin karışıklık matrisi (Confusion matrix) 

 

Tahmin 

0 

Sağlıklı 
1 

Külleme 

2 

Mildiyö 

3 

Ölü kol 
4 

GLRaV 

5 

GLFV 

Gerçek 

0 

Sağlıklı 
470 8 6 0 0 0 

1 

Külleme 
18 590 11 11 3 10 

2 

Mildiyö 
3 11 240 7 5 9 

3 

Ölü kol 
0 6 5 319 5 11 

4 

GLRaV 
0 4 5 8 206 4 

5 

GLFV 
0 6 9 7 4 199 

Çizelge 7 incelendiğinde test görüntüleri üzerinde yapılan işlemlerden sonra; sarı ile gösterilen 

değerler gerçekte olması gereken sınıfın doğru tahmin edildiği sayıyı, kırmızı ile ise gerçekte 

olması gereken sınıfın yanlış tahmin edildiği sayıları göstermektedir. Faster R-CNN derin 

öğrenme modelinin test görüntülerine uygulanması sonucunda, 484 sağlıklı görüntünün 470’i, 

643 külleme hastalığının 590’ı, 275 mildiyö hastalığının 240’ı, 346 ölü kol hastalığının 319’u, 

227 GLRaV hastalığının 206’sı ve 225 GLFV hastalığının 199’u doğru sınıflandırılmıştır. 

Çizelge 8’de Faster R-CNN modelinin başarısının değerlendirilmesinde kullanılan kesinlik, 

duyarlılık, F1 skor ve doğruluk değerleri verilmiştir. Toplamda 2 220 test görüntüsünden 2024 

görüntü doğru tahmin edilerek genel başarı oranı %92 olarak bulunmuştur. 

Çizelge 8. Faster R-CNN modelinin başarısının değerlendirilmesi 

Sınıf Kesinlik Duyarlılık F1 Skor Doğruluk 

0 (Sağlıklı) 97.10 95.72 96.40 98.30 

1 (Külleme) 91.33 94.4 92.83 95.83 

2 (Mildiyö) 87.27 86.95 87.10 96.61 

3 (Ölükol) 92.19 90.62 91.39 97.12 

4 (GLRaV) 90.74 92.37 91.54 98.15 

5 (GLFV) 84.44 85.40 84.91 97.12 
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Faster R-CNN modelinin doğruluk açısından elde edilen sonuçların daha iyi 

değerlendirilebilmesi için Kesinlik-Duyarlılık (PR) eğrisi ve ROC eğrisi Şekil 42'de 

gösterilmiştir. 

 
Şekil 42. Faster R-CNN modelinin PR eğrisi ve ROC eğrisi 

Kesinlik-Duyarlılık (PR) eğrisi, dengesiz verilerle işlem yaparken bir modelin performansının 

daha gerçekçi bir görünümünü sağlamaktadır. Şekil 42'de görüldüğü gibi eğrinin altında kalan 

oldukça fazladır. Bu alanın yüksek olması çalışmada kullanılan veri setinde sınıflar arasında 

ayırt etmede bir sorun yaşanmadığını ve tutarlı sonuçlar elde edildiğini göstermektedir. Eğrinin 

altında kalan arttıkça modelin sınıflar arasında ayırt etme performansı artmaktadır. 

4.2. SSD Multibox Sonuçları 

Çizelge 9’da SSD Multibox modelinin performansının değerlendirilmesi için hedef niteliğe ait 

tahminlerin ve gerçek değerlerin karşılaştırıldığı karışıklık matrisi verilmiştir.  

Çizelge 9. SSD Multibox modelinin karışıklık matrisi (Confusion matrix) 

 

Tahmin 

0 

Sağlıklı 
1 

Külleme 

2 

Mildiyö 

3 

Ölü kol 
4 

GLRaV 

5 

GLFV 

Gerçek 

0 

Sağlıklı 
460 11 9 0 0 4 

1 

Külleme 
24 591 19 0 0 9 

2 

Mildiyö 
7 14 251 0 3 0 

3 

Ölü kol 
0 17 0 324 5 0 
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4 

GLRaV 
0 8 6 0 213 0 

5 

GLFV 
0 7 10 0 0 208 

Çizelge 9 incelendiğinde test görüntüleri üzerinde yapılan işlemlerden sonra; sarı ile gösterilen 

değerler gerçekte olması gereken sınıfın doğru tahmin edildiği sayıyı, kırmızı ile ise gerçekte 

olması gereken sınıfın yanlış tahmin edildiği sayıları göstermektedir. SSD Multibox modelinin 

test görüntülerine uygulanması sonucunda 484 sağlıklı görüntünün 460’i, 643 külleme 

hastalığının 591’ı, 275 mildiyö hastalığının 251’ı, 346 ölü kol hastalığının 324’u, 227 GLRaV 

hastalığının 213’sı ve 225 GLFV hastalığının 208’u doğru sınıflandırılmıştır. Çizelge 10’da 

SSD Multibox modelinin başarısının değerlendirilmesinde kullanılan kesinlik, duyarlılık, F1 

skor ve doğruluk değerleri verilmiştir. Toplamda ise 2 220 test görüntüsünden 2 047 görüntü 

doğru tahmin edilerek genel başarı oranı %92.21 olarak bulunmuştur. SSD Multibox modelinin 

doğruluk açısından elde edilen sonuçların daha iyi değerlendirilebilmesi için Kesinlik-

Duyarlılık (PR) eğrisi ve ROC eğrisi Şekil 43'de gösterilmiştir. 

Çizelge 10. SSD Multibox modelinin başarısının değerlendirilmesi 

Sınıf Kesinlik Duyarlılık F1 Skor Doğruluk 

0 (Sağlıklı) 95.04 93.69 94.36 97.38 

1 (Külleme) 91.91 91.20 91.55 94.94 

2 (Mildiyö) 91.27 85.10 88.11 96.78 

3 (Ölükol) 93.64 100 96.72 98.94 

4 (GLRaV) 93.83 96.38 95.10 98.95 

5 (GLFV) 92.44 94.12 93.27 98.56 

 

 
Şekil 43. SSD Multibox modelinin PR eğrisi ve ROC eğrisi 
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Şekil 43'de gösterilen SSD Multibox modelinin Kesinlik-Duyarlılık (PR) eğrisi, Faster R-CNN 

modeline göre eğri altında kalan biraz fazladır. Bu alanın yüksek olması çalışmada kullanılan 

veri setinde sınıflar arasında ayırt etmede bir sorun yaşanmadığını ve tutarlı sonuçlar elde 

edildiğini göstermektedir. Eğrinin altında kalan alanın 1’e yaklaşması modelin sınıfları ayırt 

etme performansının arttığını göstermektedir. 

4.3. Geliştirilen Model Sonuçları 

Çizelge 11’de, çalışmada geliştirilen modelin performansının değerlendirilmesi için hedef 

niteliğe ait tahminlerin ve gerçek değerlerin karşılaştırıldığı karışıklık matrisi verilmiştir.  

Çizelge 11. Çalışmada geliştirilen modelin karışıklık matrisi (Confusion matrix) 

 

Tahmin 

0 

Sağlıklı 
1 

Külleme 

2 

Mildiyö 

3 

Ölü kol 
4 

GLRaV 

5 

GLFV 

Gerçek 

0 

Sağlıklı 
484 0 0 0 0 0 

1 

Külleme 
20 610 13 0 0 0 

2 

Mildiyö 
4 10 261 0 0 0 

3 

Ölü kol 
0 6 0 340 0 0 

4 

GLRaV 
0 0 5 0 222 0 

5 

GLFV 
0 0 9 0 0 216 

Çizelge 11 incelendiğinde, test görüntüleri üzerinde yapılan işlemlerden sonra; sarı ile 

gösterilen değerler gerçekte olması gereken sınıfın doğru tahmin edildiği sayıyı, kırmızı ise 

gerçekte olması gereken sınıfın yanlış tahmin edildiği sayıları göstermektedir. Geliştirilen 

modelde 484 sağlıklı test görüntüsünden hepsi tespit edilmiştir. 643 külleme hastalığının 610’u, 

275 mildiyö hastalığının 261’i, 346 ölü kol hastalığının 340’ı, 227 GLRaV hastalığının 222’si 

ve 225 GLFV hastalığının 216’sı doğru sınıflandırılmıştır. Her bir sınıf için elde edilen tahmin 

değerleri diğer modellere göre daha yüksek bulunmuştur. Çizelge 12’de ise çalışmada 

geliştirilen modelinin başarısının değerlendirilmesinde kullanılan kesinlik, duyarlılık, F1 skor 

ve doğruluk değerleri verilmiştir. Toplamda ise 2 220 test görüntüsünden 2 133 görüntü doğru 

tahmin edilerek genel başarı oranı %96.95 olarak bulunmuştur. 
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Çizelge 12. Çalışmada geliştirilen modelin başarısının değerlendirilmesi 

Sınıf Kesinlik Duyarlılık F1 Skor Doğruluk 

0 (Sağlıklı) 100 9527 97.58 98.89 

1 (Külleme) 94.87 97.44 96.14 97.75 

2 (Mildiyö) 94.91 90.63 92.72 98.11 

3 (Ölükol) 98.27 100 99.13 99.72 

4 (GLRaV) 97.80 100 98.89 99.77 

5 (GLFV) 96 100 97.96 99.58 

Geliştirilen modelinin doğruluk açısından elde edilen sonuçların daha iyi değerlendirilebilmesi 

için Kesinlik-Duyarlılık (PR) eğrisi ve ROC eğrisi Şekil 44'de gösterilmiştir. 

 
Şekil 44. Geliştirilen modelinin PR eğrisi ve ROC eğrisi 

Geliştirilen modelin Kesinlik-Duyarlılık (PR) eğrisi incelendiğinde, dengesiz verilerle 

uğraşırken bir modelin performansının daha gerçekçi bir görünümünü sağlamaktadır. Şekil 

44’de görüldüğü gibi, eğrinin altında kalan Faster R-CNN ve SSD Multibox modeline göre 

daha fazladır. Bu alanın çok yüksek olması çalışmada kullanılan veri setinde sınıflar arasında 

ayırt etmede bir sorun yaşanmadığı ve diğer modellere göre daha tutarlı sonuçlar elde edildiğini 

göstermektedir. Modelin sınıfları ayırt etme başarı oranı arttıkça eğrinin altında kalan 

artmaktadır. Eğrinin altında kalan alanın 1 olması modelin mükemmel bir performans 

gösterdiği anlamına gelmektedir. 

4.4. En İyi Sonucun Değerlendirilmesi 

Çalışmada geliştirilen modelin yanı sıra transfer öğrenme yapılarak hazır modeller ile de 

denemeler yapılmıştır. Kullanılan bu modeller SSD Multibox ve Faster R-CNN’dir. Modellerin 
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test görüntüleri üzerinden elde edilen başarı sonuçlarının karşılaştırılması Çizelge 13’de 

verilmiştir. 

Çizelge 13. CNN modellerinin başarı oranlarının karşılaştırılması 

Sınıflar 
Doğruluk 

Geliştirilen Model Faster R-CNN SSD Multibox  

0 (Sağlıklı) 98.89 98.30 97.38 

1 (Külleme) 97.75 95.83 94.94 

2 (Mildiyö) 98.11 96.61 96.78 

3 (Ölükol) 99.72 97.12 98.94 

4 (GLRaV) 99.77 98.15 98.95 

5 (GLFV) 99.58 97.12 98.56 

Çizelge 13 incelendiğinde, geliştirilen modelin sağlıklı ve hastalıklı görüntüler üzerinden 

Faster R-CNN ve SSD Multibox modellerine göre genel olarak daha başarılı bir şekilde çalıştığı 

görülmektedir. Geliştirilen modelin genel doğruluğu %96.95 elde edilerek Faster R-CNN %92 

ve SSD Multibox %92.21 modellerine göre daha başarılı bulunmuştur. Sonuç olarak geliştirilen 

model halihazırda olan modellere göre başarı oranı daha yüksek bir şekilde hastalıkları tespit 

edebilmiş ve sınıflandırmıştır. Faster R-CNN ve SSD Multibox modellerinin birbirine göre 

karşılaştırması incelendiğinde de sağlıklı ve külleme sınıfında Faster R-CNN modelinde daha 

iyi sonuçlar elde edilirken, virüs hastalıkları ile mildiyö ve ölükol hastalığında ise SSD 

Multibox modeli daha iyi sonuçlar vermiştir. Şekil 45-48’de elde edilen performans metriklerin 

karşılaştırmalı grafikleri verilmiştir. 

 
Şekil 45. Modellerin karşılaştırmalı doğruluk değerleri 
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Şekil 46. Modellerin karşılaştırmalı kesinlik değerleri 

 
Şekil 47. Modellerin karşılaştırmalı duyarlılık değerleri 
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Şekil 48. Modellerin karşılaştırmalı F1 skor değerleri 

Şekil 45 ile Şekil 48 arasında verilen grafikler incelendiğinde, geliştirilen model ile kesinlik, 

duyarlılık ve F1 skor metriklerinde Faster R-CNN ve SSD Multibox modellerinden daha 

yüksek değerler bulunmuştur. SSD Multibox modeli kesinlik metriğinde sadece sağlıklı 

görüntü sınıfında, duyarlılık metriğinde ise sağlıklı, külleme ve mildiyö sınıflarında Faster R-

CNN modeline göre düşük değerde kalmıştır. SSD Multibox modeli Faster R-CNN modeline 

göre özellikle mildiyö, ölü kol ve virüs hastalıklarında daha başarılı sonuçlar elde etmiştir. 

Bitkilerde bazı bağ hastalıkların teşhisi konusunda son yıllarda yapılan akademik çalışmaların 

ve önerilen yöntemde geliştirilen modelin başarı oranlarının karşılaştırılması Çizelge 14’de 

verilmiştir. 

Çizelge 14. Bağ hastalıkların tespitine yönelik çalışmaların karşılaştırılması 

Yazar Yıl Görüntü Sayısı Model Nesne Doğruluk 

Ghoury ve ark. 2019 113 Faster R-CNN 
GLRaV 93.30 

Mildiyö 95.57 

Liu ve ark. 2020 12 740 DICNN Mildiyö 96.00 

Gutierrez ve ark. 2021 275 CNN Mildiyö 91.00 

Guo ve ark. 2022 2 300 Faster R-CNN 
Mildiyö 86.91 

Külleme 85.39 

Lu ve ark. 2022 12 615 MobilenetV3_large 

Mildiyö 96.44 

Külleme 99.31 

GLRaV 98.55 

Önerilen Yöntem 2022 11 000 Geliştirilen Model 

Külleme 97.75 

Mildiyö 98.11 

Ölü kol 99.72 

GLRaV 99.77 

GLFV 99.58 
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Önerilen yaklaşım, literatürdeki benzer yöntemlerden daha iyi sonuçlar vermiştir. Literatürde 

son 5 yılda yapılan çalışmalar incelendiğinde, bitki hastalıklarının teşhisinde derin öğrenme 

modellerinin yoğun olarak kullanıldığı görülmektedir. Çalışmalarda genellikle derin öğrenme 

modelleri olarak Faster R-CNN, SSD, VGG16, VGG19 ve GoogLeNet, AlexNet, ResNet 

modellerinin tercih edildiği görülmektedir. Ayrıca literatürdeki tüm çalışmalarda derin 

öğrenme modellerinin doğrudan bitki hastalıklarının görüntülerine uygulandığı görülmüştür. 

Bu çalışmada, Faster R-CNN derin öğrenme modelinin test veri setine uygulanması sonucunda 

hastalıkların doğruluk oranları; külleme %95.83, mildiyö %96.61, ölü kol %97.12, GLRaV 

%98.15, GFLV %97.12 olarak bulunmuştur. Hastalıkların tespiti ve sınıflandırılmasında %92 

genel doğruluk elde edilmiştir. 

SSD Multibox derin öğrenme modelinin test veri setine uygulanması sonucunda hastalıkların 

doğruluk oranları; külleme %94.94, mildiyö %96.78, ölü kol %98.94, GLRaV %98.95, GFLV 

%98.56 olarak bulunmuştur. Hastalıkların tespiti ve sınıflandırılmasında %92.21 genel 

doğruluk elde edilmiştir. 

Geliştirilen derin öğrenme modelinin test veri setine uygulanması sonucunda hastalıkların 

doğruluk oranları; külleme %97.75, mildiyö %98.11, ölü kol %99.72, GLRaV %99.77, GFLV 

%99.58 olarak bulunmuştur. Hastalıkların tespiti ve sınıflandırılmasında %96.95 genel 

doğruluk elde edilmiştir. 

Bu sonuçlar neticesinde bağ hastalıklarının tespit edilmesi ve sınıflandırılması için doğru derin 

öğrenme modelinin belirlenmesinin önemli olduğu sonucuna varılmıştır. Yanlış 

sınıflandırmalar incelendiğinde, bitki yapraklarının görüntülerinde güneş kaynaklı parıltı ve 

gölgelerin olduğu görülmektedir. Kılıçarslan (2022), hibrit yöntemlerin daha yüksek 

performans gösterdiğini bildirmiştir. Hastalık tespitinde de hibrit yöntemler uygulanarak yanlış 

sınıflandırmaların önüne geçip başarı oranının daha da artacağı düşünülmektedir. Şekil 49’da 

Faster R-CNN modelinin uygulanmasına, Şekil 50’de ise geliştirilen modelinin uygulanmasına 

örnek görüntü verilmiştir. 
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Şekil 49. Faster R-CNN modelinin uygulanmasına örnek görüntüler 
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Şekil 50. Geliştirilen modelin uygulanmasına örnek görüntüler 
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5. SONUÇ ve ÖNERİLER 

Görüntü işleme ve yapay zeka alanlarındaki hızlı gelişmelere bağlı olarak tarımsal alanlardaki 

çalışmalar da bu teknolojik gelişmelerden payını almıştır. Son yıllarda, özellikle bitki 

hastalıklarının otomatik teşhisi için araştırıcılar derin öğrenme yöntemlerinin geliştirilmesine 

odaklanmıştır. Yapılan çalışmalarda, hastalık semptomlarının daha hızlı saptanması ve hastalık 

sınıflandırma sonuçlarının doğruluğunun artırılması üzerine çalışılmaktadır. Model 

performansı arttıkça bitki hastalıklarının tanımlanmasındaki başarı da artacaktır. 

Bu çalışmada, bazı bağ hastalıklarının tespiti ve sınıflandırılması için Faster R-CNN, SSD 

Multibox ve geliştirilen derin öğrenme modeli yöntem olarak önerilmiştir. Deneysel 

değerlendirmeler sonucunda, hastalıkların tespiti ve sınıflandırılmasında genel doğruluk 

oranları sırasıyla Faster R-CNN %92, SSD Multibox %92.21 ve geliştirilen model %96.95 

olarak bulunmuştur. Bu sonuçlar neticesinde önerilen yöntemin, bağ hastalıklarının tespiti ve 

sınıflandırılmasında güvenilir bir şekilde kullanılabileceği sonucuna varılmıştır. Ayrıca yapay 

zeka yöntemleri ile birlikte hastalık tespitinin manuel yaklaşımlara göre çok daha hızlı ve daha 

başarılı sonuçlar ürettiği görülmektedir. Ek olarak, geliştirilecek yeni model başarılarının daha 

da arttırılması ile görüntüleme ve veri iletimi teknolojilerindeki gelişmeler ile bitki hastalık 

görüntülerinin gerçek zamanlı olarak değerlendirilmesini de sağlayabilecektir. 

Derin öğrenmenin mevcut hesaplama ve verilerin miktarındaki artışlardan kolayca 

yararlanabilmesi ve elle çok az mühendislik gerektirmesi nedeniyle, yakın gelecekte çok daha 

fazla başarıya sahip olacağı düşünülmektedir. Gelecekteki çalışmalarda, bağ hastalıkları 

görüntüleri üzerinden derin öğrenme yöntemleri kullanılarak, hızlı karar verebilecek uzman 

sistemlerin geliştirilmesi amaçlanmaktadır. 

Bağcılık, özel bilgi ve beceri isteyen tarım koludur. Bakım işlerinin zamanında uygulanması 

çok önemlidir. Hastalık ve zararlılarla mücadele mutlaka yapılmalıdır. Ancak zamansız ve 

gereksiz ilaç kullanımı doğal dengeyi bozmakta, insan sağlığına zarar vermekte, üründe kalite 

ve verim kayıplarına yol açmaktadır. Bu nedenle, hastalıkların erken teşhisi ve tanısı çok 

önemlidir. Yürütülen çalışma bağ hastalıklarının erken dönemde tespit edilmesine imkan 

sağlayabilecektir. Çalışma sonunda elde edilen çıktılar ve ulaşılan sonuçlar neticesinde, bu 

çalışmanın bilimsel ve teknik olarak çeşitli iş kollarında faydalı olacağı düşünülmektedir. 

Bunlar; 
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 Bilim açısından: Derin öğrenme, hızla görüntü sınıflandırma için standart bir teknik 

haline gelmektedir. Derin öğrenme kullanarak bitki hastalıklarının otomatik olarak 

tanımlanmasının önündeki sorun, pratikte bulunan çok çeşitli koşulları ve belirti 

özelliklerini temsil edebilecek görüntü veri tabanlarının eksikliğidir. Tarımsal alanda 

hastalık görüntü veri seti bulmak çok zor olmaktadır. Bu çalışmada, bazı bağ 

hastalıklarının farklı aydınlanma koşullarında alınan görüntüleri ile oluşturulan yeni 

veri seti bağ hastalıkları alanına önemli katkı sağlayacaktır. Bu veri setlerini kullanacak 

araştırmacıların yapacağı farklı çalışmalara kolaylık sağlayacak ve gerçekleştirilen bu 

çalışma, araştırıcıların kendi çalışmalarına yol gösterici olacaktır. Ayrıca çalışmadan 

elde edilen sonuçlar, yeni çalışmaların yapılmasına öncülük edeceği düşünülmektedir. 

 Çiftçi/Üretici açısından: Toprakların birinci derecede faydalanıcıları onu işleyip 

üzerinde üretim yapan çiftçilerdir. Bitki hastalıkları, üreticinin verimini 

etkileyeceğinden öncelikle kendileri bu durumdan olumsuz etkilenecektir. Bu 

olumsuzlukların önlenebilmesi için erken uyarı veren uzman sistemlerin geliştirilmesi, 

çiftçilere zaman kaybı olmadan gerekli tedbirlerin alınmasını sağlayacaktır. Böylelikle 

çiftçilerin hastalıklara erken müdahalesiyle verim kaybı olabildiğince en aza 

indirilecektir. 

 Sanayi açısından: Bitki hastalıkları ile mücadelede en yaygın olarak kimyasal yollardan 

elde edilen pestisitler kullanılmaktadır. Ancak zamanında ve yerinde uygulanmayan 

pestisitler bitkiye ve çevreye zarar vererek, doğal dengeyi bozmakta ve insan sağlığına 

zarar vermektedir. Bu sorunların önüne geçmek için zamanında, doğru miktarda ve 

doğru pestisitin uygulaması gerekmektedir. Bu çalışmanın devamında yapılacak 

çalışmalarla, bitki hastalıklarının otomatik ve gerçek zamanlı olarak belirlendiği uzman 

sistemler, otonom ilaçlama robotları gibi uygulamaların geliştirilmesine çalışılacaktır. 

 Ekonomi açısından: Tarım ürünleri fiyatlarının giderek arttığı günümüz koşullarında, 

verimli ve kaliteli üretim yapılmasıyla ülke ekonomisine önemli katkılar sağlanacaktır. 

 

 

 

 



 

 

 

 

 

 

 

 

73 

 

6. KAYNAKLAR 

Adem, K., 2018. Exudate detection for diabetic retinopathy with circular hough transformation 

and convolutional neural networks. Expert Systems with Applications, (114):289-295. 

Adem, K. ve Közkurt, C., 2019. Defect detection of seals in multilayer aseptic packages using 

deep learning. Turk J Elec Eng & Comp Sci, 27:4220-4230. 

Adem, K., Ozguven, M.M. ve Altas, Z., 2022. A sugar beet leaf disease classification method 

based on image processing and deep learning. Multimedia Tools and Applications. 

Anonim, 2019a. Bağ entegre mücadele teknik talimatı. Gıda Tarım ve Hayvancılık Bakanlığı, 

Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü, Türkiye. 

Anonim, 2019b. Westover vineyard advising. http://www.vineyardadvising.com/frost-or-

fungi/ (Erişim Tarihi: 27.10.2019). 

Anonim, 2019c. Zirai mücadele teknik talimatları cilt 4. Gıda Tarım ve Hayvancılık Bakanlığı, 

Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü, Bitki Sağlığı Araştırma Daire 

Başkanlığı. 

Akgül, D.S., 2013. Bitki fungal hastalıkları (bağ hastalıkları). Çukurova Üniversitesi, Ziraat 

Fakültesi Bitki Koruma Bölümü, Ders Notları, Adana. 

Altas, Z., Ozguven, M.M. ve Yanar, Y.,  2018. Determination of sugar beet leaf spot disease 

level (Cercospora beticola sacc.) with ımage processing technique by using drone. 

Current Investigations In Agriculture And Current Research, 5(3):621-631. 

Altaş, Z., Özgüven, M.M. ve Yanar, Y., 2019. Bitki hastalık ve zararlı düzeylerinin 

belirlenmesinde görüntü işleme tekniklerinin kullanımı: şeker pancarı yaprak leke 

hastalığı örneği. International Erciyes Agriculture, Animal Food Sciences Conference 

24-27 April 2019 - Erciyes University - Kayseri/Turkiye. 

Altaş, Z., Özgüven, M.M. ve Dilmaç, M., 2021. Görüntü işleme teknikleri ile bağ yaprak uyuzu 

hasarının belirlenmesi. Gaziosmanpaşa Bilimsel Araştırma Dergisi (GBAD), 10(3):77-

87. 

Alpaydın, E., 2004. Introduction to machine learning. The MIT Press. 

Atalay, M. ve Çelik, E., 2017. Büyük veri analizinde yapay zeka ve makine öğrenmesi 

uygulamaları. Mehmet Akif Ersoy Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 

9(22):155-172. 

Ampatzidis, Y., De Bellis, L. ve Luvisi, A., 2017. iPathology: robotic applications and 

management of plants and plant diseases. Sustainability, 9(6):1010. 

Asraf, A., Islam, M. ve Haque, M., 2020. Deep learning applications to combat novel 

coronavirus (COVID-19) pandemic. SN Comput Sci, 1(6):1-7. 

Agarwal, M., Singh, A., Arjariac, S., Sinhad, A. ve Gupta, S., 2020. ToLeD: tomato leaf disease 

detection using convolution neural network. Procedia Computer Science 167:293–301. 

Alruwaili, M., Alanazi, S., El-Ghany, S.A. ve Shehab, A., 2019. An efficient deep learning 

model for olive diseases detection. (IJACSA) International Journal of Advanced 

Computer Science and Applications, 10:8. 

Ashqar, B.A.M. ve Abu-Naser, S.S., 2018. Image-based tomato leaves diseases detection using 

deep learning. International Journal of Academic Engineering Research (IJAER), 

2(12):10-16. 

Ayon, S.I. ve Islam, M.M., 2019. Diabetes prediction: a deep learning approach. Int J Inform 

Eng Electron Bus, 12(2):21. 

Barbedo, J.G.A., 2018. Impact of dataset size and variety on the effectiveness of deep learning 

and transfer learning for plant disease classification. Computers and Electronics in 

Agriculture, 153:46-53. 

Barbedo, J,G.A., 2019. Plant disease identification from individual lesions and spots using deep 

learning. Biosystems Engineering, 180:96-107. 

http://www.vineyardadvising.com/frost-or-fungi/
http://www.vineyardadvising.com/frost-or-fungi/


 

 

 

 

 

 

 

 

74 

 

Badem, H., 2017. Derin öğrenme yöntemleri kullanarak hiperspektral imgelerin 

sınıflandırılmasına yönelik yeni yaklaşımlar. Erciyes Üniversitesi, Fen Bilimleri 

Enstitüsü, Bilgisayar Mühendisliği Anabilim Dalı (Doktora Tezi), Kayseri. 

Bengio, Y., Goodfellow, I. ve Courville, A., 2015. Deep learning. MIT Press, 2015. 

Bock, C.H., Poole, G.H., Parker, P.E. ve Gottwald, T.R., 2010. Plant disease severity estimated 

visually, by digital photography and image analysis, and by hyperspectral imaging. CRC 

Crit Rev Plant Sci, 29(2):59-107. 

Chen, J., Chen, J., Zhang, D., Sun, Y. ve Nanehkaran, Y.A., 2020. Using deep transfer learning 

for image-based plant disease identification. Computers and Electronics in Agriculture 

173:05393. 

Clark, D., 2018. Top 16 open source deep learning libraries and platforms. 

https://www.kdnuggets.com/2018/04/top-16-open-source-deep-learning-libraries.html. 

Cruz, A.C., Luvisi, A., De Bellis, L. ve Ampatzidis, Y., 2017. X-FIDO: an effective application 

for detecting olive quick decline syndrome with deep learning and data fusion. Front 

Plant Sci, 8:1741. 

Cruz, A., Ampatzidis, Y., Pierro, R., Materazzi, A., Panattoni, A., Bellis, L.D. ve Luvisi, A., 

2019. Detection of grapevine yellows symptoms in vitis vinifera L. with artificial 

intelligence. Computers and Electronics in Agriculture, 157:63-76. 

Darwish, A., Ezzat, D., Hassanien ve A.E., 2020. An optimized model based on convolutional 

neural networks and orthogonal learning particle swarm optimization algorithm for plant 

diseases diagnosis. Swarm and Evolutionary Computation, 52:100616. 

DeChant, C., Wiesner-Hanks, T., Chen, S., Stewart, E.L, Yosinski, J., Gore, M.A, Nelson, R.J. 

ve Lipson, H., 2017. Automated identification of northern leaf blight-infected maize 

plants from field imagery using deep learning. Phytopathology, 

http://dx.doi.org/10.1094/PHYTO-11-16-0417-R. 

Deng, L. ve  Yu, D., 2013. Deep learning: methods and applications. Foundations and Trends 

in Signal Processing, 7(3–4):197–387. 

Dhakal, A. ve Shakya, S., 2018. Image-based plant disease detection with deep learning. 

International Journal of Computer Trends and Technology ( IJCTT ), 61(1):2231-2803. 

Esgario, J.G.M., Krohling R.A. ve Ventura J.A., 2020. Deep learning for classification and 

severity estimation of coffee leaf biotic stress. Computers and Electronics in Agriculture, 

169:105162. 

FAO, 2022. Food and agriculture organization of the united nations. FAOSTAT, 

https://www.fao.org/faostat/en/#data/QCL (Erişim Tarihi: 25.10.2022). 

Ferentinos, K.P., 2018. Deep learning models for plant disease detection and diagnosis. 

Computers and Electronics in Agriculture, 145:311–318. 

Fuentes, A., Yoon, S., Kim, S.C. ve Park, D.S., 2017. A robust deep-learning-based detector 

for real-time tomato plant diseases and pests recognition. Sensors, 17:2022. 

Gavhale, K.R. ve Ujwalla, G., 2014. An overview of the research on crop leaves disease 

detection using image processing techniques. IOSR J Comput Eng, 16(1):10-16. 

Geetharamani, G. ve Arun, P.J., 2019. Identification of plant leaf diseases using a nine-layer 

deep convolutional neural network. Computers and Electrical Engineering, 76:323-338. 

Ghoury, S., Sungur, C. ve Durdu, A., 2019. Real-time diseases detection of grape and grape 

leaves using Faster R-CNN and SSDMobileNet architectures. International Conference 

on Advanced Technologies, Computer Engineering and Science (ICATCES 2019), Apr 

26–28, 2019 Alanya, Turkey. 

Guti´errez, S., Hern´andez, I., Ceballos, S., Barrio, I, Navajas, A.M.D. ve Tardaguila, J., 2021. 

Deep learning for the differentiation of downy mildew and spider mite in grapevine under 

field conditions. Computers and Electronics in Agriculture, 182:105991. 

Guo, W., Feng, Q., Li, X., Yang, S. ve Yang, J., 2022. Grape leaf disease detection based on 

attention mechanisms. Int J Agric & Biol Eng, 15(5):205-2012. 

http://dx.doi.org/10.1094/PHYTO-11-16-0417-R
https://www.fao.org/faostat/en/#data/QCL


 

 

 

 

 

 

 

 

75 

 

Islam, M., Haque, M., Iqbal, H., Hasan, M., Hasan, M. ve Kabir, M.N., 2020. Breast cancer 

prediction: a comparative study using machine learning techniques. SN Comput Sci, 

1(5):1-14. 

Islam, M.M., Karray, F., Alhajj, R. ve Zeng, J., 2021. A review on deep learning techniques 

for the diagnosis of novel coronavirus (COVID-19). IEEE Access, 9:30551-30572. 

Janiesch, C., Zschech, P. ve Heinrich, K., 2021. Machine learning and deep learning. Electronic 

Markets, 31:685-695. 

Ji, M. ve Wu, Z., 2022. Automatic detection and severity analysis of grape black measles 

disease based on deep learning and fuzzy logic. Computers and Electronics in 

Agriculture, 193:106718. 

Jiang, H. ve Learned-Miller, E., 2017. Face detection with the Faster R-CNN. In: 2017 12th 

IEEE international conference on automatic face & gesture recognition (FG 2017), pp 

650-657. 

Karabat, S., 2014. Türkiye ve dünya bağcılığı. Apelasyon, ISSN:2149-4908. 

http://apelasyon.com/Yazi/33-dunya-ve-turkiye-bagciligi (Erişim Tarihi: 26.08.2019). 

Kayaalp, K. ve Süzen, A.A., 2018. Derin öğrenme ve Türkiye’deki uygulamaları. IKSAD 

Yayınevi, ISBN 978-605-7510-53-2. 

Karthik, R., Hariharan, M., Anand, S., Mathikshara, P., Johnson, A. ve Menaka, R., 2020. 

Attention embedded residual CNN for disease detection in tomato leaves. Applied Soft 

Computing Journal, 86:105933. 

Kerkech, M., Hafiane, A. ve Canals, R., 2018. Deep leaning approach with colorimetric spaces 

and vegetation indices for vine diseases detection in UAV images. Computers and 

Electronics in Agriculture, 155:237-243. 

Kılıçarslan, S., 2022. Kuru üzüm tanelerinin sınıflandırılması için hibrit bir yaklaşım. Müh. 

Bil. ve Araş. Dergisi, 4(1):62-71. 

Kim, P., 2017. MATLAB Deep Learning; with machine learning, neural networks and artificial 

intelligence. Springer, ISBN-13 (electronic): 978-1-4842-2845-6. 

Li, Z. ve Zhou, F., 2017. FSSD: feature fusion single shot multibox detector. arXiv 

preprintarXiv:1712.00960. 

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Yang Fu, C. ve Berg, A.C., 2016. 

SSD: single shot multibox detector. European Conference on Computer Vision, ECCV 

2016: Computer Vision-ECCV 2016, pp 21–37. 

Liu, F., Wang, Y., Wang, F.C., Zhang, Y.Z. ve Lin, J., 2019. Intelligent and secure content-

based image retrieval for mobile users. IEEE Access, 7(99):1-1. 

Liu, B., Ding, Z., Tian, L., He, D., Li, S. ve Wang, H., 2020. Grape leaf disease identification 

using improved deep convolutional neural networks. Front Plant Sci, 11:1082. 

Lu, Y., Yi, S., Zeng, N., Liu, Y. ve Zhang, Y., 2017. Identification of rice diseases using deep 

convolutional neural networks. Neurocomputing, 267:378-384. 

Lu, X., Yang, R., Zhou, J., Jiao, J., Liu, F., Liu, Y., Su, B. ve Gu, P., 2022. A hybrid model of 

ghost-convolution enlightened transformer for effective diagnosis of grape leaf disease 

and pest. Journal of King Saud University-Computer and Information Sciences, 34:1755-

1767. 

Ma, J., Du, K., Zheng, F., Zhang, L., Gong, Z. ve Sun, Z., 2018. A recognition method for 

cucumber diseases using leaf symptom ımages based on deep convolutional neural 

network. Comput Electron Agric, 154:18-24. 

Mishra, S., Sachan, R. ve Rajpal, D., 2020. Deep convolutional neural network based detection 

system for real-time corn plant disease recognition. Procedia Computer Science, 

167:2003–2010. 

Ning, C., Zhou, H., Song, Y. ve Tang, J., 2017. Inception single shot multibox detector for 

object detection. Proceedings of the IEEE International Conference on Multimedia and 

Expo Workshops (ICMEW) 10–14 July 2017. IEEE, 978-1-5386-0560-8/17. 

http://apelasyon.com/Yazi/33-dunya-ve-turkiye-bagciligi


 

 

 

 

 

 

 

 

76 

 

Ozguven, M.M., 2018. The newest agricultural technologies. Curr Investigations Agric Curr 

Res, 5(1):573-580. 

Ozguven, M.M. ve Adem, K., 2019. Automatic detection and classification of leaf spot disease 

in sugar beet using deep learning algorithms. Physica A, 535:122537. 

Ozguven, M.M., 2020. Deep learning algorithms for automatic detection and classification of 

mildew disease ın cucumber. Fresenius Environmental Bulletin, 29(08/2020):7081-7087. 

Ozguven, M.M. ve Altas, Z., 2022. A new approach to detect mildew disease on cucumber 

(Pseudoperonospora cubensis) leaves with image processing. Journal of Plant Pathology, 

104:1397–1406. 

Ozguven, M.M. ve Yanar, Y., 2022. The technology uses in the determination of sugar beet 

diseases. ın. sugar beet cultivation, management and processing. Springer, Editör: Misra, 

V., Srivastava, S., Mall, A.K. (Eds), Sayfa: 621-642, ISBN: 978-981-19-2729-4. 

Ozguven, M.M., 2023. The digital age in agriculture. Florida: CRC Press Taylor & Francis 

Group LLC. ISBN 9781032385808. 

Özgüven, M.M., 2018. Hassas tarım. Akfon Yayınları, Sayfa Sayısı: 334, Ankara. 

Özgüven, M.M., 2019. Teknoloji kavramları ve farkları. International Erciyes Agriculture, 

Animal Food Sciences Conference 24-27 April 2019-Erciyes University-

Kayseri/Turkiye. 

Pearson, R.C. ve Goheen, A.C., 1994. Compendium of grape disease. The American 

Phytopathological Society (APS), ISBN 0-89054-088-8, USA. 

Rangarajan, A.K., Purushothaman, R. ve Ramesh, A., 2018. Tomato crop disease classification 

using pre-trained deep learning algorithm. Procedia Computer Science 133:1040-1047. 

Rossi, V., 1995. Effect of host resistance in decreasing infection rate of cercospora leaf spot 

epidemics on sugarbeet. Phytopathol Mediterr, 34:149-156. 

Savaş, S., 2019. Karotis arter ıntima media kalınlığının derin öğrenme ile sınıflandırılması. 

Gazi Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Ana Bilim Dalı, 

Doktora Tezi, Ankara. 

Saleem, M.H., Potgieter, J. ve Arif, K.M., 2019. Plant disease detection and classification by 

deep learning. Plants, 8:468. 

Sharma, P., Berwal, Y.P.S. ve Ghai, W., 2019. Performance analysis of deep learning CNN 

models for disease detection in plants using image segmentation. Information Processing 

in Agriculture, 2214-3173. 

Sethy, P.K., Barpanda, N.K., Rath, A.K. ve Behera, S.K., 2020. Deep feature based rice leaf 

disease identification using support vector machine. Computers and Electronics in 

Agriculture, 175:105527. 

Sorte, L.X.B., Ferraz, C.T., Fambrini, F., Goulart, R.D.R. ve Saito, J.H., 2019. Coffee leaf 

disease recognition based on deep learning and texture attributes. Procedia Computer 

Science, 159:135-144. 

Song, H.A. ve Lee, S.Y., 2013. Hierarchical representation using NMF. International 

conference on neural information processing, pp 466–473. 

Terzi, İ., Özgüven, M.M., Altaş, Z. ve Uygun T., 2019. Tarımda yapay zeka kullanımı. 

International Erciyes Agriculture, Animal Food Sciences Conference 24-27 April 2019 - 

Erciyes University - Kayseri/Turkey. 

TUİK 2022. Türkiye istatistik kurumu. https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-

111&dil=1. (Erişim Tarihi: 21.11.2022). 

Too, E.C., Yujian, L., Njuki, S. ve Yingchun, L., 2019. A comparative study of fine-tuning 

deep learning models for plant disease identification. Computers and Electronics in 

Agriculture, 161:272-279. 

Türkoğlu, M. ve Hanbay, D., 2018. Derin öğrenme algoritmalarından elde edilen özniteliklere 

dayalı kayısı hastalık tespiti. IEEE, 978-1-5386-6878-8/18. 

Uzun, İ., 2015. Bağcılık. Hasad Yayıncılık, ISBN:9758377336. 



 

 

 

 

 

 

 

 

77 

 

Wang, Q. ve Qi, F., 2019. Tomato diseases recognition based on Faster RCNN. IEEE, 10th 

International Conference on Information Technology in Medicine and Education 

(ITME), 78-1-7281–3918–0. 

Zhong, Y. ve Zhao, M., 2020. Research on deep learning in apple leaf disease recognition. 

Computers and Electronics in Agriculture, 168:105146. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

78 

 

7. ÖZGEÇMİŞ 


