

Bilgisayar Mühendisliği Anabilim Dalı

İzmir

2023

Uğur ÖNER

ÇİZGELERİN DÜZLEMSEL

GÖSTERİMLERİNİN ELDE EDİLMESİ

 Yüksek Lisans Tezi

T.C.

EGE ÜNİVERSİTESİ

Fen Bilimleri Enstitüsü

T.C.

EGE ÜNİVERSİTESİ

Fen Bilimleri Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

Bilgisayar Mühendisliği Yüksek Lisans Programı

Uğur Öner

ÇİZGELERİN DÜZLEMSEL

GÖSTERİMLERİNİN ELDE EDİLMESİ

Danışman : Prof. Dr. Vecdi AYTAÇ

İzmir

2023

EGE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ETİK KURALLARA UYGUNLUK BEYANI

EÜ Lisansüstü Eğitim ve Öğretim Yönetmeliğinin ilgili hükümleri

uyarınca Yüksek Lisans Tezi olarak sunduğum “Çizgelerin Düzlemsel

Gösterilimlerinin Elde Edilmesi” başlıklı bu tezin kendi çalışmam olduğunu,

sunduğum tüm sonuç, doküman, bilgi ve belgeleri bizzat ve bu tez çalışması

kapsamında elde ettiğimi, bu tez çalışmasıyla elde edilmeyen bütün bilgi ve

yorumlara atıf yaptığımı ve bunları kaynaklar listesinde usulüne uygun olarak

verdiğimi, tez çalışması ve yazımı sırasında patent ve telif haklarını ihlal edici

bir davranışımın olmadığını, bu tezin herhangi bir bölümünü bu üniversite veya

diğer bir üniversitede başka bir tez çalışması içinde sunmadığımı, bu tezin

planlanmasından yazımına kadar bütün safhalarda bilimsel etik kurallarına

uygun olarak davrandığımı ve aksinin ortaya çıkması durumunda her türlü yasal

sonucu kabul edeceğimi beyan ederim.

 09/02/2023

 İmzası

 Uğur Öner

vii

ÖZET

 ÇİZGELERİN DÜZLEMSEL GÖSTERİMLERİNİN

 ELDE EDİLMESİ

ÖNER, Uğur

Yüksek Lisans Tezi Bilgisayar Mühendisliği Anabilim Dalı

Tez Danışmanı: Prof. Dr. Vecdi AYTAÇ

Şubat 2023, 60 Sayfa

Evrendeki tüm nesneleri ve bunların aralarındaki ilişkileri çizgelerle

modellemek mümkündür. Bu modellemeler kullanılarak analizler yapılabilir,

bilimsel hesaplamalar daha hızlı çözülebilir, veriler depolanabilir. Örneğin

internet, elektrik ve doğalgaz altyapıları gibi kritik sistemler bir çizge modeliyle

temsil edilebilmektedir. Çizge olarak modellenen nesneler arasındaki ilişkiler

üzerinde analiz yapmak ilişkileri anlaşılır ve yalın hale getirmek için çizgelerin

düzlemsel gösterimleri büyük önem taşımaktadır.

Bu tez çalışmasında, karmaşık çizgeleri görüntü işleme algoritmaları

kullanarak analiz etmek ve analiz sonucunda kolay herkesin kavrayabileceği bir

düzlemsel çizgenin düzlemsel görünümünü sağlamak hedeflenmiştir. OpenCV

kütüphanesi çizgelerin tepe noktalarını belirleme konusunda başarılı sonuçlar

vermektedir fakat ayrıtları belirleme konusunda yeterli olmadığı gözlenmiştir.

Bu amaç için görüntü işleme algoritmalarının hatalarının bu çalışma özelinde

giderilmesi ve optimize edilmesi için bir çalışma yapılmıştır. Matplotlib gibi

çizge görselleştirme yapılabilen kütüphaneler graphml gibi veri formatlarını

görüntü haline getirmek konusunda başarılıdır fakat Png veri formatındaki

dosyayı işlemek için uygun değildir. Tez çalışmasının ikinci fazında optimize

edilen ayrıt ve tepe noktalarının, matplotlib kütüphanesinin işleyebileceği uygun

bir veri formatı getirilmesi için çalışılmıştır. Çalışmanın sonunda sisteme iletilen

resim dosyasının işlenerek çizge modelinin çıkarılması ve sonrasında eğer çizge

düzlemsel çizge ise çizgenin düzlemsel görünümünün elde edilmesi

amaçlanmıştır.

Anahtar: Çizge, OpenCV, Düzlemsel Çizge, Görüntü İşleme, Graphml

viii

ix

ABSTRACT

OPTAINING PLANAR VIEW OF GRAPHS

ÖNER, Uğur

MSc in Computer Engineering

Supervisor: Prof. Dr. Vecdi AYTAÇ

February 2023, 60 pages

It is possible to model all objects in the universe and their relationships

with graphs. Analyzes can be made using these models, scientific calculations

can be solved faster, and data can be stored. For example, critical systems such

as internet, electricity and natural gas infrastructures can be represented with a

graph model. The planar representation of the graphs is of great importance in

order to analyze the relations between the objects modeled as graphs and to make

the relations understandable and simple.

In this thesis, it is aimed to analyze complex graphs using image

processing algorithms and to provide a planar view of a planar graph that can be

easily understood by everyone as a result of the analysis. The OpenCV library

gives successful results in determining the vertices of the graphs, but it has been

observed that it is not sufficient to determine the edges. For this purpose, a study

has been carried out to eliminate and optimize the errors of image processing

algorithms in this study. Graph visualization libraries such as matplotlib are good

at rendering data formats such as graphml, but are not suitable for processing

files in Png data format. In the second phase of the thesis work, the optimized

edges and vertices have been studied to bring a suitable data format that the

matplotlib library can handle. At the end of the study, it is aimed to extract the

graph model by processing the image file transmitted to the system and then to

obtain the planar view of the graph if the graph is a planar graph.

Keywords: Graph, OpenCV, Planar Graph, Image Processing, Graphml

x

xi

ÖNSÖZ

Çizge teorisi tepeler ve ayrıtlar olarak nesneleri ve aralarındaki ilişkileri

modelleyerek hayatın her alanında modelleme yapabilme olanağı sunan geniş

yelpazeli bir bilimsel inceleme alanıdır. Çizgeleri görsel olarak veya simgeler ve

belirli gösterilimlerle tutmak mümkündür. İnsan doğası görsel olarak tutulan

verileri, belirli gösterilimlerle tutulan verilere göre daha kolay ve hızlı

kavramaktadır. Görüntü işleme yöntemleri ve görüntüden anlamlı veriler

çıkarma günden güne artarak ilerlemektedir. Bu tez çalışmasının ilk aşamasında,

görsel olarak verilen bir çizge dosyasını bilgisayarın anlayacağı formata

dönüştürmek amacıyla çalışılmıştır.

Düzlemsel çizgeler birçok kritik alanda kullanım senaryosu bulunan

önemli bir çizge türüdür. Bu tez çalışmasının ikinci kısmında görüntü işleme

yöntemiyle analiz edilen çizgenin düzlemselliğinin kontrol edilmesi düzlemsel

görünümünü insanların daha kolay kavrayabileceği görüntü formunda temsil

edilmesi hedeflenmiştir.

 İZMİR

 09/02/2023

Uğur Öner

xii

xiii

İÇİNDEKİLER

Sayfa

ÖNSÖZ .. xi

İÇİNDEKİLER .. xiii

ŞEKİLLER DİZİNİ .. xv

TABLOLAR DİZİNİ ... xvi

KISALTMALAR DİZİNİ ... xvii

1. DÜZLEMSEL ÇİZGELER VE GÖRÜNTÜ İŞLEME 1

2. ÇİZGE TEORİSİ ... 4

2.1 Çizge Kavramları .. 4

2.2 Düzlemsel Çizge ... 10

3. TEKNOLOJİK ALTYAPI VE UYGULAMA MATERYALLERİ 18

3.1 Nodejs ... 18

3.2 Mongo DB .. 22

3.3 Python ... 23

3.4 Spyder ... 28

3.5 Javascript... 29

xiv

 İÇİNDEKİLER (DEVAM)

3.6 Embedded Javascript... 30

3.7 Anaconda .. 30

3.8 Linux Ubuntu 20.04 .. 31

3.9 Visual Studio Code ... 32

4. PROJE GERÇEKLEŞTİRİM ADIMLARI .. 34

4.1 Proje Genel Mimarisi .. 34

4.2 Sisteme Erişim Senaryosu ... 34

4.3 Görüntünün Sisteme Yüklenmesi Süreci .. 36

4.4 Görüntü İşleme Hazırlığı ve Anaconda Platformu Tetiklenmesi 38

4.5 Düzlemsel Olmayan Çizgenin Analizi .. 53

5. TARTIŞMA VE SONUÇ ... 57

KAYNAKLAR DİZİNİ .. 58

TEŞEKKÜR .. 60

xv

ŞEKİLLER DİZİNİ

Şekiller Sayfalar

Şekil 2. 1 (V,E) Çizgesi .. 4

Şekil 2. 2 Bir Çizge Örneği (Şener 2021) ... 5

Şekil 2. 3 Bir Çizge Örneği(Şener 2021) .. 6

Şekil 2. 4 Bir Çizge ve Ona Ait Bir Altçizge ile Geren Altçizge Örneği(Şener

2021) ... 6

Şekil 2. 5 Bir İzomorf Çizge Örneği (Şener 2021) ... 7

Şekil 2. 6 Basit Çizge, Çoklu ve Preudo Çizge Örnekleri 7

Şekil 2. 7 Bağlantılı ve Bağlantısız Çizge Örnekleri (Şener 2021) 8

Şekil 2. 8 Bir Yol Çizge Örneği (Şener 2021) .. 8

Şekil 2. 9 Çevre Çizge Örnekleri (Şener 2021) .. 9

Şekil 2. 10 Ağaç Çizge Örnekleri (Şener 2021) ... 9

Şekil 2. 11 Tam Çizge Örnekleri (Şener 2021) ... 9

Şekil 2. 12 İki Parçalı Çizge ve İki Parçalı Tam Çizge Örneği (Şener 2021)... 10

Şekil 2. 13 K3,3 iki parçalı tam çizgesi (Diestel 2017) 16

Şekil 2. 14 G, X in Bir Alt bölgesi ve X, Y nin bir Top. Minörüdür (Distel 2017)

... 17

Şekil 3. 1 Node.js Mimarisi ve Olayların İşlenme Mekanizması 19

Şekil 3. 2 Senkron ve Asenkron Çalışma Prensibi ... 20

Şekil 4. 1 Sisteme Erişim Senanaryosu... 34

Şekil 4. 2 Sisteme Giriş ... 35

Şekil 4. 3 Graphml ve Png Yükleme Seçenekleri ... 36

Şekil 4. 4 Dosya Yükleme Sayfası ... 36

Şekil 4. 5 Düzlemsel Görünümü İstenen Çizge .. 40

Şekil 4. 6 HoughCircles Yöntemiyle Belirlenen Daireler 46

Şekil 4. 7 Resim Dosyasında Belirlenen Çizgiler ... 47

Şekil 4. 8 Şekil 4.5’de Verilen Çizgenin Düzlemsel Gösterimi 53

Şekil 4. 9 K5 Tam Çizgesi ve K3,3 İki Parçalı Çizgesi 54

Şekil 4. 10 K5 Çizgesinin Tepelerinin ve Ayrıtlarının Tespiti 54

Şekil 4. 11 K3,3 Çizgesinin Tepelerinin ve Ayrıtlarının Tespiti 55

xvi

TABLOLAR DİZİNİ

Tablo 4. 1 Resim Dosyasındaki Dairelerin Düzlemdeki Koordinatları 47

Tablo 4. 2 Resim Dosyasında Belirlenen Ayrıtların Kordinatları 48

Tablo 4. 3 Hataları Giderilmiş Ayrıt Tablosu ... 50

xvii

KISALTMALAR DİZİNİ

Kısaltma Açıklama

NPM Node Paket Yöneticisi(Node Package Manager)

IDE Tümleşik Geliştirme Ortamı (Integrated Development Enviroment)

HTTP Üstmetin Transfer Protokolü (Hypertext Transfer Protocol)

NoSQL Sadece Yapılandırılmış Sorgu Dili Değil(Not Only SQL)

2B İki Boyutlu (Two Dimensional)

PNG Taşınabilir Ağ Çizgeiği (Portable Network Graphic)

OpenCV Açık Bilgisayar Görüşü (Open Computer Vision)

3B Üç Boyutlu(Three Dimensional)

API Uygulama Programlama Arayüzü

PCB Baskılı Devre Kartı (Printed Circuit Board)

XML Genişletilmiş İşaretleme Dili (Extended Markup Language)

EJS Gömülü Javacript (Embedded Javascript)

1

1. DÜZLEMSEL ÇİZGELER VE GÖRÜNTÜ İŞLEME

Çizge teorisi, matematik, fizik bilgisayar bilimleri, endüstriyel üretim

haberleşme teknolojisi gibi çok geniş yelpazede ilişki ağı bulunan bir kuramdır.

Çizgeler, birçok nesnenin birbirleriyle nasıl ilişkide olduğunu açıklamaya

yardımcı olan matematiksel yapılardır. Örneğin, bir çizge, bir ağın yapısını

gösterebilir ve bu ağda verilerin nasıl aktarıldığını açıklayabilir. Çizge teorisi,

ayrıca birçok farklı matematiksel yapıyı inceleyebilme yeteneğine sahip

olduğundan, birçok farklı matematiksel problemi çözmeye yardımcı olabilir. Bu

nedenle, çizge teorisi özellikle, matematik ve fizik gibi alanlarda önemli bir

konudur ve bu alanlarda çalışan bilim insanları tarafından sıklıkla kullanılır.

Çizge teorisi, birçok farklı alanda kullanılabilir. Bilgisayar ağlarının

yapısını verilerin nasıl aktarıldığını anlamaya, birçok bilgisayar programının

nasıl çalıştığını anlamaya, işletmelerin ürünlerinin nasıl dağıtıldığını ve nasıl

pazarlandığını anlamaya, ekonomik sistemlerin nasıl çalıştığını anlamaya

yardımcı olur. Ayrıca Çizge teorisi, sosyal bilimlerde de kullanılabilir. Örneğin,

bir çizge, sosyal ağların yapısını gösterebilir ve bu ağlardaki ilişkileri anlamak

için faydalı olabilir. Ayrıca, bir çizge, bir şirketin organizasyon yapısını

gösterebilir ve bu şirketin nasıl yönetildiğini anlamaya yardımcı olabilir.

Düzlemsel çizge 2B bir platformda tepeler arasında ayrıtları kesişmeden

gösterilebilen çizgelerdir. Bu, çizgedeki herhangi iki ayrıtın birbirleriyle tek bir

noktada kesişmemesi demektir. Bu özellik, düzlemsel çizgeleri diğer tür

çizgelerden ayıran önemli bir özelliktir.

Düzlemsel çizgeler, genellikle matematik ve bilgisayar bilimlerinde

kullanılır ve özellikle çizge teorisi ve algoritma çalışmalarında önemli rol

oynamaktadır. Düzlemsel çizgeler, bilgisayar grafikleri çalışmalarında da

kullanılır ve özellikle, 3B nesnelerin 2B ekranlarda görüntülenmesi için

kullanılır. Haritalar da düzlemsel çizgeler gibi düşünülebilir ve haritalarda,

yerler arasındaki mesafeler gibi bilgileri gösteren ayrıtlar kullanılır.

Gündelik yaşamda pek çok alanda düzlemsel çizgeyle karşılaşmak

mümkündür.

2

• İletişim ağları: Örneğin, bir bilgisayar ağında bilgisayarlar arasındaki

bağlantıları gösteren bir çizge oluşturulabilir ve bu da bir düzlemsel

çizge gibi düşünülebilir.

• Elektrik şebekeleri: Elektrik şebekelerinde, transformatörler ve

elektrik dağıtım hatları arasındaki bağlantılar da bir düzlemsel çizge

gibi düşünülebilir.

• Öğrenme haritaları: Öğrenme haritaları, bir konuyu anlamaya

yardımcı olan bir araçtır ve bu haritalar da bir düzlemsel çizge gibi

düşünülebilir. Öğrenme haritalarında, farklı konular arasındaki

bağlantıları gösteren ayrıtlar kullanılır.

Ayrıca düzlemsel çizgeler endüstriyel sistemler fabrikalar ve iş hayatında

da büyük öneme sahiptir.

• Fabrikalarda, düzlemsel çizgeler genellikle üretim sürecinde farklı

adımları ve bu adımlar arasındaki ilişkiyi göstermek için kullanılır.

Örneğin, bir otomobil üretim tesisinde, araçların nasıl üretildiğini

göstermek için bir düzlemsel çizge kullanılabilir. Bu çizgede, her bir

adım bir tepe olacak ve adımlar arasındaki ilişki ayrıtlar aracılığıyla

gösterilecektir.

• Düzlemsel çizgeler, ayrıca fabrikalarda kullanılan makine ve

ekipmanların nasıl birbirleriyle ilişkili olduğunu göstermek için de

kullanılabilir. Örneğin, bir metal üretim tesisinde, farklı makine ve

ekipmanların nasıl birbirlerine bağlandığını göstermek için bir

düzlemsel çizge kullanılabilir. Bu çizgede, her bir makine ve

ekipman bir tepe olacak ve makine ve ekipmanlar arasındaki ilişkiler

ayrıtlar aracılığıyla gösterilecektir.

• Düzlemsel çizgeler, ayrıca fabrikalarda üretim sürecinde kullanılan

malzemelerin nasıl birbirleriyle ilişkili olduğunu göstermek için de

kullanılabilir. Örneğin, bir gıda üretim tesisinde, farklı malzemelerin

nasıl birbirlerine dönüştürüldüğünü göstermek için bir düzlemsel

çizge kullanılabilir. Bu çizgede, her bir malzeme bir nokta olacak ve

malzemeler arasındaki ilişki çizgiler aracılığıyla gösterilecektir

Düzlemsel çizgeler endüstriyel üretim tesislerinden enerji ve iletişim

altyapılarına şirket yönetim ve iş akış süreçlerinden öğrenme yol haritalarına

kadar çok farklı alanlarda kullanılmaktadır. Düzlemsel çizgelerdeki problem ise

şudur: Pek çok çizge düzlemsel olabilir ama bir çizgenin birden çok gösterim

3

yöntemi olduğu için düzlemsel çizge düzlemsel olmayan bir şekilde

görselleştirilmiş olabilmektedir. Fakat üretim tesisi veya enerji altyapısı gibi bir

sistemin gereksinimlerini bir çizgeye aktardığımızda onu hayata geçirmeden

önce düzlemsel olmasa bile düzlemsel görünümü varsa düzlemsel hale getirip

uygulamak en az maliyetli çözüm olacaktır. Bu çalışma kapsamında bunu

gerçekleştirmek için görüntü yoluyla hızlıca alınan bir çizgenin görüntü işleme

algoritmaları kullanarak analizi ve girilen çizge düzlemselse düzlemsel

görünümü elde etmek amaçlandı.

Görüntü işleme, görüntülerin analizi, değiştirilmesi ve üretilmesi için

kullanılan bir bilgi teknolojisi alanıdır. Bu saha, görüntülerin elemanlarının

tanımlanması, özelliklerinin belirlenmesi, ölçülmesi ve değiştirilmesi gibi

işlemleri içerir. Görüntü işleme, birçok farklı alanda kullanılır, ancak en yaygın

kullanım alanları medikal görüntüleme, bilgisayar grafiği, insansız hava araçları

ve otomatikleştirilmiş kontrol gibi endüstriyel uygulamalardır. Medikal

görüntüleme: Görüntü işleme, radyografik görüntüler, tomografik görüntüler ve

MR görüntüleri gibi tıbbi görüntülerin incelenmesi ve analizi için kullanılır.

Bilgisayar grafiği: Görüntü işleme, 3B modellerin üretilmesi ve

görselleştirilmesi için kullanılır. İnsansız hava araçları: Görüntü işleme, insansız

hava araçlarının yer tespiti, hava koşullarının takibi ve hava koşullarına göre yol

bulma gibi görevleri yerine getirir. Otomatikleştirilmiş kontrol: Görüntü işleme,

otomatikleştirilmiş kontrol sistemlerinde kullanılır. Bu sistemler, üretim

hatlarında üretilen ürünlerin kalitesini kontrol etmek için kullanılır. Özellikle

otomatikleşmiş kontrol hatları ve insansız hava araçları gibi alınan görüntünün

anlık incelenmesi gereken alanlarda kontrol görüntülerin bir çizge modeline

aktarılıp analiz edilmesi daha etkili olacaktır. Bu kapsamda alınan görüntünün

çizge formatına çevrilmesi için ve sonrasında üretim hattı gibi düzlemsel

çizgelerin kullanıldığı sistemlerde alınan ve işlenen resim dosyasının düzlemsel

olarak tekrar görselleştirilmesi için bu tez çalışmasının yapılması planlandı.

4

2. ÇİZGE TEORİSİ

2.1 Çizge Kavramları

Bu bölümde, çizgeler hakkında genel teorileri ve bunlarla ilgili temel

kavramlar ve teoremler üzerinde durulacaktır.

Tanım 2.1: 𝑉; boş olmayan, elemanları tepe (vertex) olarak adlandırılan

𝑉 = {𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛} şeklinde bir küme olmak üzere bu noktaları veya

noktalarının kendisini birleştiren 𝐸 = {𝑒 = 𝑣𝑖𝑣𝑗 ∶ 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉} şeklinde ayrıtlar

kümesinden oluşan (𝑉, 𝐸) ikili yapısına çizge denir (Büyükköse ve Gök 2019).

Tanım 2.2: 𝐺 = (𝑉, 𝐸) bir çizge olmak üzere, 𝐺’nin herhangi bir 𝑣1 ve 𝑣2

tepeleri arasında en az bir ayrıt bulunuyorsa 𝑣1 ve 𝑣2 tepelerine komşudur denir

(Büyükköse ve Gök 2019). Benzer şekilde herhangi bir çizgedeki ortak bir

tepeye sahip olan ayrıtlar, komşu ayrıtlar olarak adlandırılır (Büyükköse ve Gök

2019).

 Şekil 2.1 (V,E) Çizgesi

Şekil 2.1’de verilen çizgede; 𝑣1 ile 𝑣2, 𝑣1 ile 𝑣3, 𝑣2 ile 𝑣3, 𝑣2 ile 𝑣5 ve 𝑣3

ile 𝑣4 komşu tepelerdir. Benzer şekilde 𝑒1 ile 𝑒2, 𝑒1 ile 𝑒3, 𝑒1 ile 𝑒4, 𝑒2 ile 𝑒3, 𝑒2

ile 𝑒5, 𝑒3 ile 𝑒4 ve 𝑒3 ile 𝑒5 komşu ayrıtlardır.

Tanım 2.3: Bir 𝐺 çizgesinde 𝑉 = {𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛} tepeler kümesi

olmak üzere 𝑉 kümesinin eleman sayısına, 𝐺 çizgesinin mertebesi denir ve

|𝑉(𝐺)| ile gösterilir. Bir 𝐺 çizgesine 𝐸 = {𝑒 = 𝑣1𝑣2: 𝑣1, 𝑣2 ∈ 𝑉} ayrıt kümesi

olmak üzere 𝐸 kümesinin eleman sayısına, 𝐺 çizgesinin boyutu denir ve |𝐸(𝐺)|

şeklinde gösterilir.

5

Tanım 2.4: 𝑣1 ve 𝑣2 bir 𝐺 çizgesinde herhangi iki tepe olsun. 𝑣1 ve 𝑣2

tepelerini birleştiren birden fazla sayıda ayrıt varsa bu ayrıtlar, katlı ayrıt veya

paralel ayrıt olarak adlandırılır. Bu çizgedeki başlangıç ve bitiş noktası aynı olan

bir ayrıt, bir döngü olarak adlandırılır (Büyükköse ve Gök 2019).

Tanım 2.5: 𝑣, bir 𝐺 çizgesinin herhangi bir tepe olsun. Buna göre 𝑣’nin

derecesi, 𝑣’ye bağlı ayrıtların sayısıdır ve 𝑣’nin derecisini göstermek için 𝑑𝑣

sembolü kullanılır. Çizgede; en küçük değerli dereceye sahip tepeye minimum

dereceli tepe denir ve bu tepenin derecesini göstermek için 𝛿(𝐺) sembolü

kullanılır, en büyük değerli dereceye sahip tepeye ise maksimum dereceli tepe

denir ve bunu göstermek için Δ(𝐺) sembolü kullanılır. Çizgenin döngü içeren

bir tepesinin derecesine bu durum iki (+2) olarak eklenir. Eğer 𝑑𝑣 = 0 ise 𝑣’ye

izole tepe, 𝑑𝑣 = 1 ise 𝑣’ye ise pendant (uç tepe) adı verilir (Büyükköse ve Gök

2019).

 Şekil 2.2 Bir Çizge Örneği (Şener 2021)

Tanım 2.6: Bir çizgedeki komşu tepeler ve ayrıtlardan oluşan, sayıda

elemana sahip diziye bir yürüme denir ve yürümeyi ifade etmek için 𝑊 sembolü

kullanılır. 𝑊 = 1𝑒12𝑒23 … 𝑘𝑒𝑘(𝑘 + 1) biçimindeki dizi, bir yürümeyi ifade

eder ve bu yürümenin uzunluğu, dizide yer alan ayrıt sayısı ile belirlenir. Eğer

bir yürümedeki her bir ayrıt ve her bir tepe, bir kez yer alıyorsa bu yürümeye yol

adı verilir ve bir yolu göstermek için 𝑃 sembolü kullanılır. Eğer bir yol, aynı

tepeden başlayıp yine aynı tepede sonlanıyorsa devre adını alır. 𝑛 sayıda tepeye

sahip olan bir devreyi göstermek için 𝐶𝑛 sembolü kullanılır (Büyükköse ve Gök

2019).

6

 Şekil 2.3 Bir Çizge Örneği (Şener 2021)

Şekil 2.3 de verilen çizgede; 1𝑒12𝑒23𝑒34𝑒41𝑒53𝑒22 bir yürüme,

1𝑒12𝑒23𝑒34 bir yol ve 1𝑒12𝑒23𝑒51 bir devredir. (Şener 2021).

Tanım 2.7: Bir 𝐺 çizgesinin bazı tepe ya da ayrıtlarının silinmesiyle

oluşan çizgeye, bu 𝐺 çizgesinin alt çizgesi denir. Yani, 𝑆 ve 𝐺 herhangi iki çizge

olmak üzere 𝑉(𝑆) ⊆ V(G) ve 𝐸(𝑆) ⊆ E(G) oluyorsa 𝑆’ye 𝐺’ni bir alt çizgesi

denir.

𝐺 herhangi bir çizge olmak üzere, bu çizgenin tepelerinin tamamını ve bazı

ayrıtlarını kapsayan bir alt çizgeye, 𝐺 çizgesinin geren alt çizgesi (spanning

subgraph) adı verilir (Büyükköse ve Gök 2019). Yani, 𝑆 ve 𝐺 herhangi iki çizge

olsun. Eğer 𝑉(𝑆) = 𝑉(𝐺) ve 𝐸(𝑆) ⊂ 𝐸(𝐺) oluyorsa 𝑆 çizgesine 𝐺 çizgesinin

bir geren alt çizgesi denir.

 Şekil 2.4 Bir Çizge ve Ona Ait Bir Altçizge ile Geren Altçizge Örneği (Şener 2021)

Tanım 2.8: 𝐺1 = (𝑉, 𝐸) ve 𝐺2 = (𝑉′, 𝐸′) iki çizge olsun. Eğer 𝑎𝑏 ∈ E

biçimindeki her 𝑎, 𝑏 ∈ V tepe çifti için 𝑓(𝑎)𝑓(𝑏) ∈ 𝐸′ olacak şekilde birebir ve

örten bir 𝑓: 𝑉1 → 𝑉2 dönüşümü mevcutsa bu çizgelere izomorfik çizgeler denir

ve bu durumu belirtmek için 𝐺1 ≅ 𝐺2 gösterimi kullanılır (Büyükköse ve Gök

2019).

7

 Şekil 2.5 Bir İzomorf Çizge Örneği (Şener 2021)

Tanım 2.9: Bir çizgede yer alan herhangi iki tepe arasında bir ve yalnız

bir adet ayrıt varsa ve hiçbir döngü yoksa bu çizge, basit çizge adını alır (Şekil

2.6 (a)) (Büyükköse ve Gök 2019). Bir çizgenin ayrıtlarına bir yön tayin

edilebilir.

 Şekil 2.6 Basit Çizge, Çoklu ve Preudo Çizge Örnekleri

Tanım 2.10: Bir çizgede yer alan herhangi iki tepe arasında birden çok

sayıda ayrıt varsa diğer bir ifadeyle paralel ayrıtlar mevcutsa bu çizge, çoklu

çizge adını alır (Şekil 2.6 (b)) (Büyükköse ve Gök 2019).

Tanım 2.11: Bir çizgede paralel ayrıtlar ve döngüler mevcutsa bu çizge,

pseudo çizge adını alır (Şekil 2.6 (c)) (Büyükköse ve Gök 2019).

Tanım 2.12: Bir çizgenin keyfi olarak alınan herhangi iki tepesi arasında

daima bir yol mevcutsa bu çizgeye bağlantılı çizge adı verilir. Aksi durumda bu

çizgeye bağlantısız çizge denir (Büyükköse ve Gök 2019).

8

 Şekil 2.7 Bağlantılı ve Bağlantısız Çizge Örnekleri (Şener 2021)

Tanım 2.13: Sadece izole tepe içeren çizgeye boş çizge denir ve boş

çizgenin ayrıtlar kümesi boş kümedir (Büyükköse ve Gök 2019).

Tanım 2.14: Başlangıç ve bitiş tepelerinin derecesi 1, diğer tepelerinin

derecesi 2 olan çizgeye yol çizge denir. 𝑛 tepeli bir yol çizge, 𝑛 − 1 sayıda ayrıta

sahiptir ve 𝑃𝑛 ile gösterilir.

 Şekil 2.8 Bir Yol Çizge Örneği (Şener 2021)

Tanım 2.15: Tepe sayısı üç ve daha fazla olan, tek bir döngüden oluşan

çizgeye devre çizge denir. Böyle bir çizgede; herhangi bir tepeden, kendisine

komşu olan iki tepeye giden birer ayrıt vardır ve böylece her bir tepenin derecesi

2’dir. 𝑛 noktalı bir çevre çizge, 𝑛 ayrıta sahiptir ve 𝐶𝑛 ile gösterilir.

9

 Şekil 2.9 Çevre Çizge Örnekleri (Şener 2021)

Tanım 2.16: İçinde devre bulundurmayan ve ayrıt sayısı tepe sayısının bir

eksiği olan bağlantılı çizgelere ağaç adı verilir ve 𝑛 sayıda tepeye sahip bir ağaç

çizgeyi göstermek için 𝑇𝑛
̅̅ ̅ sembolü kullanılır (Büyükköse ve Gök 2019).

 Şekil 2.10 Ağaç Çizge Örnekleri (Şener 2021)

Tanım 2.17: Basit bir çizgenin her tepe çifti arasında bir ayrıt bulunuyorsa

böyle çizgelere tam çizge adı verilir ve 𝑛 sayıda tepeye sahip bir tam çizgeyi

göstermek için 𝐾𝑛 sembolü kullanılır (Büyükköse ve Gök 2019).

 Şekil 2.11 Tam Çizge Örnekleri (Şener 2021)

10

Tanım 2.18: Tepe kümesi iki ayrık alt kümeye ayrıştırılabilen ve ayrıtları,

sadece bu alt kümelerin elemanları olan tepeler arasında oluşan çizgelere iki

parçalı çizge adı verilir. İki parçalı bir çizgede; 𝐷 ve 𝐹 ayrık tepe kümeleri olmak

üzere 𝐷’nin her elemanı 𝐹’nin her elemanı ile birleştiriliyorsa bu çizge, iki

parçalı tam çizge adını alır ve 𝑠(𝐷) = 𝑝 ve 𝑠(𝐹) = 𝑡 olmak üzere iki parçalı tam

çizgeyi göstermek için 𝐾𝑝,𝑡 sembolü kullanılır (Büyükköse ve Gök 2019).

 Şekil 2.12 İki Parçalı Çizge ve İki Parçalı Tam Çizge Örneği (Şener 2021)

Tanım 2.19: (Bondy and Murty 2008) Bir 𝐺 çizgesi verilsin. 𝐺’nin

karşılıklı olarak birbirine komşu olan tepelerinin kümesine klik kümesi denir.

Bir 𝐺 grafının klik kümelerindeki maksimum eleman sayısı, grafın klik sayısı

olarak adlandırılır. Bu değer (𝐺) ile gösterilir ve matematiksel olarak aşağıdaki

şekilde ifade edilir:

(𝐺) = 𝑚{ |𝑉i| ∶ 𝑉i klik küme}.

Tanım 2.20 Bükümlü tepeler, önceki yıllarda üzerinde derinlemesine

çalışmalar yürütülen bir tepe ailesidir. 2001 yılında Hoste and Shanahan,

bükümlü düğümlerin topolojik özelliklerini araştırdı (Hoste and Shanahan

2001).

2.2 Düzlemsel Çizge

Tanım 2.21: (𝑉, 𝐸) kümesi olmak üzere: 𝑉’nin elemanları “tepeler” ve

𝐸’nin elemanları “ayrıtlar” olarak belirlenirse:

• Her ayrıt ve tepeler arasında bir yay;

• Farklı tepeler farklı uç nokta kümelerine sahip;

• Bir tepenin içi, bir diğer ayrıtın herhangi bir tepesini ve noktasını

içermiyor ise, (𝑉, 𝐸) çiftine bir “düzlemsel çizge” denir.

• 𝑉 ⊆ 𝑅2

11

Tanım 2.22: 𝐺, bir düzlemsel çizge olsun. 𝑅2\𝐺’nin bölgelerine, 𝐺’nin

“bölge”leri denir. Bir çizgenin bölgeleri, 𝑅2’nin açık kümeleridir. Bu sebeple,

herhangi bir yüzün sınırı 𝐺’nin alt kümesidir. 𝐺 çizgesi sınırlı olduğundan, yani

yeterince büyük bir 𝐷 diskinin içinde uzandığı için; bölgelerinden tek bir tanesi

sınırsızdır ve o da 𝑅2\𝐷’yi içeren bölgedir. Bu bölge, 𝐺’nin “dış bölgesi”, diğer

bölgeler ise 𝐺’nin “iç bölgeleri” olarak adlandırılır. 𝐺’nin bölgelerinin kümesi

𝐹(𝐺) ile gösterilmektedir.

Tepe noktası, 3-boyutlu uzay R3’de kendi arakesit noktaları olmaksızın

herhangi bir basit kapalı eğridir ve halka, kesişmeyen basit kapalı eğrilerin

herhangi bir birleşimidir. Bir çizge, noktalardan ve doğru parçalarından oluşan

bir şekil olarak düşünülebilir (topolojik olarak buna 1-kompleks denir) (Bollobas

1998). Her bir tepeye karşılık gelen bir çizge tayin edilebilir ve böyle bir çizgeye

bir tepe çizgesi denir. Tepe diyagramlarının bir uygun temsili 1877’de Peter Tait

tarafından tanıtıldı. Herhangi bir tepe diyagramı; tepe noktaları, kesişme

noktaları olan ve ayrıtları birbirini takip eden kesişmeler arasındaki yollar olan

bir düzlemsel çizgesini tanımlar. Bu düzlemsel çizgenin tam olarak bir bölgesi

sınırsızdır; diğerlerinin her biri 2 boyutlu bir diske homomorfiktir.

Çizge teorisiyle ilişkili herhangi bir çalışma için, düzlemsel çizgeler ele

alınır ve çizge sabitleri için gereken formüller, onların üzerinde hesaplanır veya

ispatlanır. Bu durum çizge teorisindeki bazı karmaşık cebirsel topolojik

ispatların yerine çizge teorik ispatlarının alınabileceğini göstermektedir

(Murasugi 1989).

Düzlemsel çizgelerin bölgeleri ve alt çizgeleri arasında aşikâr bir bağlantı

vardır:

Lemma 2.1: 𝐺, bir düzlemsel çizge, 𝑓 ∈ 𝐹(𝐺) bir yüz ve 𝐻 ⊆ G bir alt

çizge olsun.

• 𝐻 alt çizgesinin 𝑓’yi içeren bir 𝑓′ yüzü vardır.

• Eğer 𝑓’nin sınırı 𝐻 çizgeı içinde kalıyor ise, 𝑓′ = 𝑓’dir.

12

İspat:

Açık şekilde, 𝑓 ⊆ 𝑅2 \ 𝐺 bölgesindeki noktalar, 𝑅2\𝐻 içinde de

denktirler. (𝑥, 𝑦 ∈ 𝑓 ⇔ 𝑥 ve 𝑦 noktaları 𝑓 içinde kalan bir yay ile

birleştirilebilirler. ⇒ 𝐻 ⊆ 𝐺 olduğunda, 𝑥 ve 𝑦 noktaları, 𝑅2\𝐻 içinde kalan bir

yay ile birleştirilebilir. ⇒ 𝑥 ve 𝑦, 𝐻’nin aynı yüzüne aittirler), 𝑓′, 𝑅2\𝐻’nin, 𝑓

yüzündeki noktaları içeren denklik sınıfı olsun.

Karşıt tersini ispat edelim. 𝑓′ ≠ 𝑓 olsun. Bu durumda, 𝑓 ⊈ 𝑓′

olduğundan, 𝑓′ ⊈ 𝑓, yani 𝑓′\𝑓 ≠ ∅’dir. Bu sebeple, 𝑓 ve 𝑓\𝑓′ arasındaki her

yay, 𝑓’nin sınırı 𝑋’i keser. Bu nedenle, 𝑓′ içindeki böyle bir yay üzerinde

bulunan 𝑋’in sınırına ait nokta(lar), H çizgesine ait olamaz (çünkü 𝑅2\𝐻’nin

içindedir(ler)). Bu yüzden, 𝑋 ⊈ 𝐻’dir.

Lemma 2.2: 𝐺 bir düzlemsel çizge ve 𝑒, 𝐺’nin bir ayrıtı olsun. Bu

durumda:

• Eğer 𝑋, 𝐺'nin bir yüzünün sınırı ise, ya 𝑒 ⊆ X’dir ya da 𝑋 ∩ 𝑒̇ =

 ∅’dir.

• Eğer 𝑒, bir 𝐶 ⊆ G çevriminin üzerinde ise bu durum da 𝑒, 𝐺’nin tam

olarak iki yüzünün sınırındadır ve bu iki yüz, 𝐶’nin farklı bölgelerinin

içinde uzanmaktadır.

• Eğer 𝑒 ayrıtını içeren hiçbir çevrim yok ise bu durumda 𝑒, 𝐺’nin tam

olarak bir yüzün sınırındadır.

 Sonuç 2.1: Bir yüzün sınırı, her zaman bir alt çizgenin nokta kümesidir.

Tanım 2.23: Nokta kümesi, bir 𝑓 bölgesinin sınırı olan 𝐺’nin alt çizgesine,

𝑓’nin “sınırı” adı verilir ve bu alt çizge 𝑓’yi “sınırlandırıyor” denir ve 𝐺[𝑓]

biçiminde gösterilir. Bir yüz, sınırının ayrıtları ve tepeleri ile “bağlıdır” denir.

Teorem 2.1: Bir düzlemsel ormanının tam olarak tek bir bölgesi vardır.

Tek bir istisnayla, bir düzlemsel çizgenin farklı bölgeleri farklı sınırlara

sahiptirler:

Lemma 2.3: Eğer bir düzlemsel çizgenin sınırları aynı olan iki yüzü var

ise, bu çizge bir çevrimdir.

13

İspat: 𝐺, bir düzlemsel çizge ve 𝐻 ⊆ G, G’nin birbirinden farklı 𝑓1 ve 𝑓2

bölgelerinin sınırı olsun. 𝑓1 ve 𝑓2, 𝐻’nin de bölgeleridir; bu sebeple, bir önceki

teoremden, 𝐻 bir 𝐶 çevrimi içerir. (Eğer 𝐻 hiçbir çevrim içermeseydi, bir orman

olurdu. Fakat önceki teoremden, bir ormanın tek bir yüzü olduğunu biliyoruz.)

Bir önceki lemma’nın (ii) kısmından, 𝑓1 ve 𝑓2 bölgeleri 𝐶’nin farklı bölgeleri

içinde uzanırlar. 𝐻 alt çizgesinin tamamı 𝑓1 ve 𝑓2 bölgelerinin sınırı olduğundan,

𝐻 = 𝐶’dir.

Diyelim ki 𝐻 ≠ 𝐶, yani 𝐶 ⊆ H olsun. Bu durumda, 𝐻’nin 𝐶 devresinde

olmayan bir tepe veya bir ayrıtı vardır. Fakat bu durumda, bu tepe veya ayrıt,

𝐶’nin iki yüzünden birisinde olacağından ve 𝑓1, 𝑓2 bölgeleri 𝐶’nin farklı

bölgeleri içinde bulunduklarından, bu tepe veya ayrıt, kendisiyle aynı tarafta

olmayan yüzün sınırı üzerinde olmayacaktır. Ki bu bir çelişki verir. Bu sebeple,

𝐻 = 𝐶’ dir ve 𝑓1, 𝑓2, 𝐶’nin farklı bölgeleridir. 𝐶’nin sadece iki yüzü olduğundan,

𝑓1 ∪ 𝐶 ∪ 𝑓2 = 𝑅2’dir ve bu nedenle, 𝐺 = 𝐶’dir.

Teorem 2.2: Bir iki bağlantılı düzlemsel çizgede, her yüz bir çevrim

tarafından sınırlandırılır.

Bir üç bağlantılı düzlemsel çizgede, bölge sınırları olan devreleri,

tamamen kombiratorik terimlerle tanımlayabiliriz:

Teorem 2.3: Bir üç bağlantılı düzlemsel çizgenin yüz sınırları tam olarak,

bu çizgenin ayrılmayan devreleridir.

Tanım 2.25: 𝐺, bir düzlemsel çizge olsun. Eğer 𝐺 çizgesine yeni bir ayrıt

ekleyerek, 𝑉(𝐺′) = 𝑉(𝐺) olmak şartıyla (yani yeni bir tepe eklemeksizin), 𝐺 ⊆

𝐺′ olacak şekilde bir düzlemsel çizge elde edilemiyor ise; 𝐺, bir “maksimal

(düzlemsel)” çizgedir denir. Eğer 𝐺’nin her bölgesi bir üçgen tarafından

sınırlandırılmış ise, 𝐺 çizgesi bir “düzlemsel üçgenleme” olarak adlandırılır.

Teorem 2.4: 𝐺, en az üç tepe içeren bir düzlemsel çizge olsun. Bu

durumda:𝐺 bir maksimal düzlemsel çizgedir, 𝐺 bir düzlemsel üçgenlemesidir.

Euler teoremi, bir düzlemsel çizgede tepe ve ayrıtları ve yüz sayıları

arasındaki ilişkiyi ifade eder. Teorem şöyle söylemektedir: Eğer doğru işaretleri

alırsak, bu sayıların toplamı her zaman 2'dir. Bu teorem, diğer yüzeyler için de

geçerlidir ve elde edilen toplam, sadece yüzeye bağlı olarak, çizgede bağlı

14

olmayan sabit bir sayıdır. Ayrıca, farklı yüzeyler için elde edilen sabit sayılar

farklıdır. Bu nedenle, bu sabit sayılar ile farklı yüzeyler arasındaki ilişki,

yüzeyleri tanımlamak için kullanılabilir.

Teorem 2.5 (Euler Formülü): 𝐺, 𝑛 tepeyi, 𝑚 ayrıtı ve 𝑙 yüzü olan bir

bağlantılı düzlemsel çizge olsun. Bu durumda: 𝑛 − 𝑚 + 𝑙 = 2 eşitliği sağlanır.

İspat: 𝑛’yi sabit tutalım ve 𝑚 üzerinden tümevarım uygulayalım. 𝑚 ≤

𝑛 − 1 için, 𝐺 bağlantılı olduğundan 𝑚 = 𝑛 − 1’dir. Başka bir deyişle 𝐺 bir

ağaçtır. Bu sebeple, bir ağacın tek bir yüzü olduğundan, iddia ispatlanmış olur.

Şimdi 𝑚 ≥ 𝑛 olsun. Bu durumda, 𝐺’nin bir çevrim üzerinde olan bir 𝑒

ayrıtı vardır. 𝐺′ ∶= 𝐺 − 𝑒 olsun 𝑒 ayrıtı, 𝐺 çizgesinin tam olarak iki 𝑓1, 𝑓2

yüzünün sınırı üzerinde bulunduğundan ve 𝑒̇ içindeki tüm noktalar, 𝑅2\𝐺′ de

birbirine denk olduklarından, 𝐺′ çizgesinin 𝑒̇ nokta kümesini içeren bir 𝑓𝑒

bölgesi vardır.

𝐹(𝐺) \{𝑓1, 𝑓2} = 𝐹(𝐺′)\{𝑓𝑒} (*)

olduğunu gösterelim. Bu durumda, 𝐺′ çizgesi, 𝐺 çizgesinden tam olarak

bir eksik bölge ve bir eksik ayrıt içerdiğinden, 𝐺′ çizgesi için tümevarım hipotezi

iddianın doğruluğunu ortaya koyar.

(*)’in bir ispatı için, önce 𝑓 ∈ 𝐹(𝐺)\{𝑓1, 𝑓2} verilsin. Bu alt bölümün

ikinci lemmasının (i) kısmından, 𝑒 bir yüzün sınırına ait veya ait olmadığı bir

sınırla içinin kesişimi boş küme olduğundan, 𝑓 yüzünün sınırı 𝐺[𝑓] ⊆ G\𝑒̇ = 𝐺′

dir. Bu sebeple, bu alt bölümün ilk lemmasının (ii) kısmından, 𝑓 ∈ 𝐹(𝐺′)’dir.

Açık bir şekilde 𝑓 ≠ 𝑓𝑒 olduğundan, (*) eşitliğinde, (⊆) bağıntısı gösterilmiş

olur.

Karşıt olarak, 𝑓′ ∈ 𝐹(𝐺′)\{𝑓𝑒} verilsin. Açık bir şekilde, 𝑓′ ≠ 𝑓1, 𝑓2 ve

𝑓′ ∩ 𝑒̇ = ∅’dir. (Çünkü 𝑒, 𝑓1 ve 𝑓2’nin sınırı üzerindedir ve 𝑒̇ ⊆ 𝑓𝑒’dir.) Bu

sebeple, (𝑓′, 𝐺′ = 𝐺 − 𝑒’nin bir yüzü ve 𝑓′ ∩ 𝑒̇ = ∅ olduğundan,) 𝑓′ yüzü

içindeki herhangi iki nokta, 𝑅2\𝐺 kümesi içindedir ve birbirlerine denktirler. Bu

sebeple, 𝐺 çizgesinin 𝑓′ yüzünü içeren bir 𝑓 yüzü vardır. Bununla birlikte, bu alt

bölümün ilk lemmasının (i) kısmından, 𝑓, 𝐺′ çizgesinin bir 𝑓𝑛 yüzünün içinde

uzanır. Bu nedenle, 𝑓′ ⊆ 𝑓 ⊆ 𝑓′′ dir. Diğer yandan, 𝑓′ ve 𝑓′′, 𝐺′ çizgesinin iki

15

yüzü olduklarından, 𝑓′ = 𝑓 = 𝑓′′ elde edilir. Bu sebeple, 𝑓′ ∈ 𝐹(𝐺)’dir, yani

(*) eşitliğinde, (⊇) bağıntısı da gösterilmiş olur.

Sonuç 2.2: Tepe sayısı 𝑛 ≥ 3 olan bir düzlemsel çizge en fazla 3𝑛 − 6

tane ayrıt içerir. 𝑛 tepe içeren her düzlemsel üçgenlemesinde tam olarak 3𝑛 − 6

tane ayrıt vardır.(Rosen 2012)

İspat: İki önceki teoremden, ikinci iddianın doğruluğunu göstermek

yeterlidir. Bir düzlemsel üçgenlemesi 𝐺 de, her yüzün sınırı tam olarak üç

ayrıt içerir ve bu alt bölümünün ikinci lemmasının (ii) kısmından, her ayrıt

tam olarak iki yüzün sınırına aittir. Bu sebeple, ayrıt kümesi {𝑒𝑓 | 𝑒 ⊆

G[f]} olan, 𝐸(𝐺) ∪ 𝐹(𝐺) üzerindeki iki parçalı çizgenin tam olarak

2|𝐸(𝐺)| = 3|𝐹(𝐺)| ayrıtı vardır. (Çünkü her bir ayrıt iki yüzün sınırına

aittir ve her bir yüzün sınırı bir üçgendir.) Şimdi bu eşitliğe göre, Euler

formülünde, 𝑙 yerine 2𝑚/3 yazarsak, istenilen sonucu elde ederiz:

𝑛 − 𝑚 +
2𝑚

3
= 2 ⟺ 3𝑛 − 3𝑚 = 6 ⟺ 𝑚 = 3𝑛 − 6

Euler formülü, bazı çizgelerin düzlemsel çizge olamayacağını göstermek

için kullanılabilir:

Teorem2.6: Bir çizge düzlemseldir ⇔ Çevrim uzayının bir seyrek tabanı

vardır. (MacLane 1937)

Çizge teorisinin saklı güzelliklerinden birisi, soyut ve görünüşte sezgisel

olmayan iki sonucun örneği, MacLane’in devre uzayındaki üreteç kümeleri ile

ilgili bu teoremi ve Tutte’nin bir 3-bağlantılı çizgesinin devre uzayının,

ayrılmayan indüke çevrimler tarafından üretildiği ifade eden teoreminin bir

araya gelerek, 3−bağlantılı çizgeler için çok somut bir düzlemsellik kriteri ortaya

koymasıdır:

Teorem 2.7: Bir 3-bağlantılı çizge düzlemseldir ⇔ Her bir kenarı en fazla

(denk olarak: tam) iki ayrılmayan indüke çevrim üzerinde bulunur. (Kelmans

1978)

Tanım 2.26: Eğer bir çizge, diğer bir çizgenin ayrıtlarına derecesi 2 olan

düğümler ekleyerek veya çıkararak elde edilebiliyorsa bu iki çizge izomorfiktir.

(Kuratowski 1930)

16

Örnek 2.1: K5 tam çizgesi bir düzlemsel çizge değildir:

K5‘in ayrıt sayısı 𝑚 =
5

2
= 10 ve 10 > 3.5 − 6’dır. Yani K5’in ayrıt sayısı,

önceki sonuçta verilen sınırı aşmaktadır. Bu sebeple K5 bir düzlemsel çizge

olamaz.

Örnek 2.2: 𝐾3,3 iki parçalı tam çizgesi de bir düzlemsel çizge değildir:

𝐾3,3 çizgesi iki parçalı bir tam çizge olarak tanımlanabilir. Ancak, 𝐾3,3

çizgesi düzlemsel çizge olamaz. Çünkü, 𝐾3,3 çizgesi iki-bağlantılı olduğu halde,

üçgen içermemektedir ve bu nedenle tüm bölgeleri uzunluğu en az 4 olan bir

çevrim ile sınırlıdır. Bu nedenle, her ayrıt iki bölge sınırında yer alır ve 2m≥4l

olmalıdır. Ancak, 𝐾3,3 çizgesinde m=9 olsa da 2n-4 >9 olduğundan, 𝐾3,3 çizgesi

düzlemsel çizgesi olamaz.

Yukarıdaki ispatlardan çıkarımla K5 ve 𝐾3,3 birer düzlemsel çizge

olmadığı için herhangi bir alt çizgesi 𝐾3,3 çizgesini barındıran çizgeler düzlemsel

çizge değildir.

 Şekil 2.13 K3,3 iki parçalı tam çizgesi (Diestel 2017)

Bu ispatların sonucunda şunu diyebiliriz: Bir düzlemsel çizge, ne K5 tam

çizgesini ve ne de 𝐾3,3 iki parçalı tam çizgesinin topolojik minörünü alt

çizgelerinde barındırmaz. Eğer bir çizgenin alt çizgelerinden en az 1 tanesi K5

tam çizgesini veya 𝐾3,3 çizgesini barındırıyorsa düzlemsel değildir.

𝐺; 𝑋’in bir alt-bölümlenmesi olsun. 𝐺 içindeki 𝑋’in orijinal tepelerine,

“dal tepeleri”; diğer tepelere, “alt-bölümlenme tepeleri” denir. Dikkat edilirse,

alt-bölümlenme tepelerinin her birinin derecesi 2; dal tepelerinin dereceleri ise,

𝑋 deki dereceleri ile ayınıdır. Eğer bir 𝑌 çizgesi, 𝑋 çizgesinin bir alt-

bölümlenmesi olan bir 𝐺 çizgesini bir alt çizgesi olarak içeriyor ise; 𝑋; 𝑌’nin bir

“topolojik minörüdür” denir.

17

Çizge G, çizge X'in bir alt bölümlemesi olması durumunda. G çizgesi

içinde olan, X çizgesinin orijinal tepelerine "dal tepeleri" denir, diğer tepelere

ise "alt bölüm tepeleri" denir. Alt bölüm tepelerinin dereceleri her zaman 2'dir,

ancak dal tepelerinin dereceleri X çizgesindeki dereceleri ile aynıdır. Eğer Y

çizgesi, X çizgesinin alt bölümü olan G çizgesinin alt çizgesi olarak içeriyorsa,

X çizgesi Y çizgesinin bir "topolojik minörü" olarak tanımlanır.

 Şekil 2.14 G, X in Bir Alt bölgesi ve X, Y nin bir Top. Minörüdür (Distel 2017)

Aynı şekilde, 𝑋 çizgesinin 𝑥 tepelerini, ayrık bağlantılı 𝐺𝑥 çizgesiyle ve

𝑋 çizgenin 𝑥𝑦 ayrıtlarını, 𝐺𝑥 − 𝐺𝑦 ayrıtlarının boştan farklı alt kümeleriyle yer

değiştirirsek, bir 𝐺 çizgesi elde edilir. 𝑋 çizgesi 𝐺’nin bir “büzülme minörü”

olarak adlandırılır. Eğer bir 𝑌 çizgesi, 𝑋 çizgenin bir büzülme minörü olduğu bir

𝐺 çizgesini bir alt çizgesi olarak içeriyor ise; 𝑋, 𝑌’nin bir “minörüdür” denir ve

𝑋 ≼ 𝑌 biçiminde gösterilir. Ayrıca 𝐺 çizgesi, 𝑋’in 𝑌 içinde bir “modeli” olarak

adlandırılır.

Teorem 2.8: (Kuratowski 1930, Wagrer 1937) Bir G çizgesi için aşağıdaki

ifadeler birbirine denktir:

(i) G düzlemseldir.

(ii) G, ne K5 tam çizgesini ve ne de K3,3 iki parçalı tam çizgesini bir

minör olarak içermez.

(iii) G, ne K5 tam çizgesini ve ne de K3,3 iki parçalı tam çizgesini bir

topolojik minör olarak içermez.

Teorem 2.9: R2 düzlemindeki her J Jordan eğrisinin, tüm düzlemi iki tane

ayrık, her ikisi de J eğrisini sınır kabul eden iki açık ve bağlantılı bölgeye

ayırdığını söyler. Bunun ayrıntılı analizi Stillwell’de bulunabilir (Stillwell

1993).

Teorem 2.10: Bir çizge düzlemseldir ⇔ Bu çizgenin bağlılık kısmi sıralı

kümelerinin boyutu ≤ 3 dür (Schnyder 1989).

18

3. TEKNOLOJİK ALTYAPI VE UYGULAMA MATERYALLERİ

Bu tez çalışması için Nodejs platformu, Python programlama dili,

Javascript programlama dili, Debian tabanlı Linux İşletim Sistemi olan Ubuntu,

Anaconda, Spyder IDE, MongoDB veritabanı ve NPM materyalleri kullanıldı.

 3.1 Nodejs

Node.js, JavaScript diliyle yazılmış, çalıştırılabilen bir programlama

dilidir. Bu dil, tarayıcıda çalıştırılan JavaScript kodlarının dışında, aynı zamanda

server-side (sunucu tarafında) çalıştırılabilir. Özellikle, web sunucuları üzerinde

çalışan uygulamaların geliştirilmesinde kullanılmaktadır.

Node.js, JavaScript dili üzerinde çalışan bir çalışma zamanıdır. Bu çalışma

zamanı, web tarayıcıları gibi bir JavaScript motoru kullanarak JavaScript

kodunu çalıştırır. Google tarayıcıda Javascript çalışması çalıştırılması için V8

motorunu geliştirmiştir. Daha sonar bu V8 motoru tarayıcıdan bağımsız bir

şekilde masaüstü bilgisayarlarda da çalışabilecek hale getirildi. Node.js için, V8

motoru ve Node.js modüllerinin birleşimidir diyebiliriz. Node.js, JavaScript

kodunu çalıştırmak için Google'ın V8 JavaScript motorunu kullanır. Bu motor,

JavaScript kodunu hızlı bir şekilde derler ve çalıştırır. Node.js genel yapısı

aşağıdaki Şekil 3.1’deki gibidir. Node.js, ayrıca birçok iş parçacığı çalıştırmak

için birçok iş parçacığı çalışma zamanına sahiptir.

Single Threaded Event Loop" mimarisi, birden fazla eşzamanlı isteği

işlemek için node.js tarafından kullanılır. Çalışma modeli, geri arama

mekanizmasıyla birlikte JavaScript olay tabanlı modeline dayanmaktadır.

Node.js sunucusunu, iş parçacığı havuzu, olay döngüsü ve olay sırası

olarak gruplandırabiliriz. İstekleri, kullanıcının web uygulamalarında

gerçekleştirdiği, bloklanabilen ve bloklanamayan olmak üzere ikiye ayrılan

kullanıcının sunucuya sunucuya gönderdiği mesajlar olarak tanımlanabilir. Olay

kuyruğu Node.js sunucusuna gelen kullanıcı isteklerinin olay döngüsüne

gönderilmeden önce depolandığı yerdir. Mevcut tüm iş parçacıklarının işlenmek

için bulunduğu yere iş parçacığı havuzu denilir. Olay Döngüsü: Asenkron olarak

yürütülmesi gereken olay kuyruğundaki olayları kesintisiz takibe alır. Asenkron

istekleri koşturur ve sonrasında yapılması gereken iş tamamlandığından bir geri

19

alma işlevi çağırır. Aşağıdaki Şekil 3.1’de bu döngü yalın bir şekilde

açıklanmıştır.

 Şekil 3.1 Node.js Mimarisi ve Olayların İşlenme Mekanizması

Node.js, JavaScript dilini kullanan çoklu platformlu bir çalışma zamanı

(runtime) ortamıdır. Bu ortam, JavaScript kodlarının çalıştırılması için bir

çerçeve sağlar ve bu kodların, web tarayıcıları dışında da çalıştırılmasını

mümkün kılar. Örneğin, Node.js kullanarak bir sunucuda çalışan bir web

sunucusu oluşturulabilir ve bu sunucu, HTTP isteklerini işleyerek, istekleri

karşılayan dinamik web sayfaları oluşturabilir.

Node.js'in diğer programlama dillerinden farklı olarak en büyük özelliği,

JavaScript dilini kullanmasıdır. Bu sayede, web tarayıcılarında çalışan

JavaScript kodları ile benzer şekilde, Node.js ile de sunucu tarafında çalışan

uygulamalar geliştirilebilir. Bu sayede, bir web uygulaması için gerekli olan tüm

kodlar, aynı dil olarak JavaScript ile yazılabilir ve böylece tek bir dil öğrenmek

20

suretiyle, hem tarayıcı hem de sunucu tarafında çalışan uygulamalar

geliştirilebilir.

Nodejs aşağıda değinilen özellikleri sebebiyle birçok büyük şirket, yazılım

geliştiricileri ve proje yöneticisi tarafından tercih edilmektedir

Asenkron ve etkileşimli: Node.js, asenkron bir programlama modelini

kullanır. Bu, bir işlem tamamlandıktan sonra bir callback (geri çağırma)

fonksiyonu çağıran bir yapıya sahiptir. Bu sayede, işlemler arasında etkileşim

kurulabilir ve bir işlem tamamlandıktan sonra diğer işlemlerin çalıştırılması

sağlanabilir. Asenkron çalışma Node.js'in çok yönlülüğünü ve verimliliğini

sağlamak için kullanılan bir yöntemdir. Asenkron çalışma, bir işlem

tamamlanana kadar diğer işlemlerin de yapılmasını sağlar. Bu, Node.js'te çok

sayıda kullanıcıyı aynı anda işleyebilme yeteneğini verir ve bu da web

uygulamaları için önemlidir, çünkü web uygulamaları sıklıkla çok sayıda

kullanıcı tarafından aynı anda kullanılır. Bu sayede, Node.js web uygulamaları

çok daha hızlı ve verimli hale getirilebilir. Bunun sonucunda her kullanıcı sistem

kaynaklarının imkan sağladığı sürece bekleme yapmadan eşzamanlı olarak

sisteme ulaşıp sistemi kullanabilir. Bunu daha elle tutulur bir örnekle şöyle

açıklayabiliriz: Klasik programlama dili çalışma mantığında çalışan bir markete

gidersek alışverişi tamamlamamız için bizden önce alışverişi tamamlayacak tüm

müşterileri beklememiz gereklidir. Asenkron çalışma prensibiyle çalışan

Nodejs’de ise boş bulunan diğer kasaya geçerek bizimde aynı anda veya daha

hızlı alışverişi tamamlama imkanı mevcuttur. Bunu aşağıdaki şekil ile daha açık

aktarabiliriz.

 Şekil 3.2 Senkron ve Asenkron Çalışma Prensibi

21

Şekil 3.2’de görüldüğü gibi senkron çalışma prensibiyle 155 birim sürede

tamamlanan iş parçaçıkları asenkron çalışma prensibiyle 60 birim sürede

tamamlanmaktadır. Bu aynı anda birden fazla kullanıcının yüksek performansla

sisteme erişmesine ve sistemi kullanmasına olanak sağlamaktadır.

Çoklu platform desteği: Node.js, Windows, macOS ve Linux gibi çeşitli

işletim sistemlerinde çalıştırılabilir. Bu tez kapsamında debian tabanlı bir linux

işletim sistemi olan Ubuntu 20.04 kullanıldı.

Modüler yapı: Node.js, modüler bir yapıya sahiptir ve bu sayede kodlar

daha kolay yönetilebilir ve paylaşılabilir. Node.js'te, kütüphaneler "paket" olarak

adlandırılır ve bu paketler, npm (Node Package Manager) adı verilen bir paket

yöneticisi aracılığıyla yüklenir ve kullanılır. Npm (Node Package Manager):

Node.js geliştirme çerçevesine ait bir paket yöneticisidir. npm, Node.js ile

yazılmış kod parçacıklarının (paketlerin) yönetimi, paylaşımı ve kullanımını

sağlar. npm, Node.js'in kurulu olduğu bilgisayarlarda varsayılan olarak gelir ve

Node.js kurulu olmayan bilgisayarlara da ayrıca kurulabilir. Npm, açık kaynaklı

bir paket yöneticisidir ve npm üzerinde bulunan paketler de açık kaynaklıdır.

npm üzerinde, çeşitli kütüphaneler, araçlar ve uygulamalar mevcuttur ve bu

paketler, Node.js ile geliştirilen uygulamalar için çok yararlıdır. npm, Node.js

paketlerini yönetmek için kullanılır ve bu paketler, kodların daha kolay

yönetilebilmesi, paylaşılabilmesi ve kullanılabilmesi amacıyla oluşturulmuştur.

npm üzerinden, çeşitli Node.js paketlerine erişilebilir ve bu paketler, projelerde

kullanılmak üzere indirilebilir. Ayrıca, npm üzerinden kendi paketlerinizi de

paylaşabilirsiniz. Örneğin, npm üzerinden kullanıcı yönetimi, test otomasyonu,

veri tabanı işlemleri gibi işlemleri gerçekleştirebilecek paketler indirilebilir.

Npm ile sadece ihtiyaç olan paketler kurulup kullanılır. Bu daha çevik

yönetilebilir bir yapının ortaya çıkmasını sağlar. Bu tez çalışması için:

Mongoose, Express, Multer, Passport, EJS gibi npm modülleri kullanıldı.

Performans: Node.js, JavaScript dilinin hızlı çalışması sayesinde, yüksek

performanslı uygulamalar geliştirilebilir. Özellikle, çok sayıda bağlantıyı aynı

anda işleyebilme yeteneğine sahiptir ve bu sayede, örneğin bir chat uygulaması

gibi çok sayıda kullanıcıyı destekleyebilir.

Geliştirme araçları: Node.js, geliştirme sürecine yardımcı olacak çeşitli

araçlar içerir. Örneğin, Node.js'in kendi içinde yer alan REPL (Read-Eval-Print

Loop) adı verilen bir konsol aracı vardır ve bu aracı kullanarak, hızlı bir şekilde

22

kodlar yazıp çalıştırılabilir. Ayrıca, Node.js'in çeşitli açık kaynaklı paketleri de

mevcuttur ve bu paketler, örneğin test otomasyonu veya kod kalitesini artırmaya

yönelik olarak kullanılabilir.

Tek dil kullanımı: Node.js ile geliştirilen uygulamalar için tek bir dil olarak

JavaScript kullanılır. Bunun sayesinde, hem tarayıcıda çalışan hem de sunucu

tarafında çalışan kodlar için aynı dil kullanılabilir ve böylece tek bir dil

öğrenilerek, web uygulamalarının tamamı için yeterli hale gelinir.

3.2 Mongo DB

MongoDB, NoSQL veritabanı yönetim sistemidir. NoSQL veritabanı

yönetim sistemleri, verilerin anahtar-değer ikilisi, doküman, çizge veya

koleksiyon gibi şekillerde saklandığı veri tabanlarıdır. Bu veri tabanları, verileri

ilişkisel veri tabanlarındaki gibi tablo ve satır şeklinde saklamazlar ve bu nedenle

de "NoSQL" (Not Only SQL) olarak adlandırılırlar.

MongoDB, verileri JSON benzeri bir formatta saklar ve bu verileri

sorgulamak için JavaScript benzeri bir dil kullanır. MongoDB, çok yüksek

performanslı ve ölçeklenebilir bir veritabanı yönetim sistemidir ve bu nedenle,

özellikle web uygulamaları gibi yüksek trafikli uygulamalar için uygun bir

seçenektir.

MongoDB, çok sayıda sunucuda dağıtılabilir ve bu sayede verilerin çok

daha hızlı işlenmesine yardımcı olur. Ayrıca, MongoDB, verileri sınırsız bir

şekilde genişletebilme özelliğine sahiptir ve bu sayede, özellikle büyüyen veri

yapıları için uygun bir seçenektir.

MongoDB, açık kaynaklı bir veritabanı yönetim sistemidir ve ücretsiz

olarak kullanılabilir. Bu veritabanı yönetim sistemi, çeşitli işletim sistemlerinde

çalıştırılabilir ve birçok programlama diline destek verir. Özellikle, Node.js gibi

JavaScript tabanlı programlama dilleri ile uyumlu bir şekildedir ve bu nedenle,

Node.js ile geliştirilen uygulamalar için uygun bir seçenektir. Bu tez çalışması

kapsamında sunucu tarafında Node.js kullanılacağı için veritabanı yönetim

sistemi olarak da MongoDB seçilmesi uygun görüldü.

NoSQL veri tabanları herhangi dar kalıplı bir şema formatına ve ilişkisel

bir yapıya ihtiyaç duymadan verileri depolayabilen ve yönetebilen sistemlerdir.

23

Veri tipleri önceden belirlenmiş ve genişletilebilir veri şeması kullanmaktadır.

NoSQL veritabanı özellikleri: Sql sorgulama arayüzü gibi gelişmiş bir platform

üzerinden sorgulama ve bilinen Sql sorgulama betikleri yerine daha yalın ve

anlaşılır bir sorgu sözdizimine sahiptir. Veri depolama işlemleri kolay ve hızlıdır

Hem konsol hem de üçüncü parti arayüzler üzerinden işlemleri yapmaya

uygundur. Yatay ölçeklendirmeye göre tasarlanmalarından ötürü global ölçekte

büyük şirketler tarafından tercih edilmektedir. (Facebook, Amazon, Google gibi

her gün terebaytlarca verileri işleyen büyük firmaların NoSQL veri tabanlarını

tercih etmesinin ana nedenlerindendir)

MongoDB, NoSQL veritabanı yönetim sistemlerindendir ve NoSQL

veritabanı yönetim sistemlerinin sahip olduğu avantajlara sahiptir. Bunlar:

Eşzamanlı işleme yeteneği: MongoDB, çok sayıda işlemi aynı anda

gerçekleştirme yeteneğine sahiptir ve bu sayede, özellikle yüksek trafikli

uygulamalar için uygun bir seçenektir. Ölçeklenebilirlik: MongoDB, verileri çok

daha hızlı işleyebilme yeteneğine sahiptir ve bu sayede, veri yapıları

ölçeklendirilebilir. Bu sayede, özellikle büyüyen veri yapıları için uygun bir

seçenektir. Sınırsız genişleme: MongoDB, verileri sınırsız bir şekilde

genişletebilme özelliğine sahiptir ve bu sayede, özellikle büyüyen veri yapıları

için uygun bir seçenektir. Hızlı işleme: MongoDB, verileri hızlı bir şekilde

işleyebilme yeteneğine sahiptir ve bu sayede, veritabanı işlemlerinin hızı

artırılabilir. Doküman tabanlı veri saklama: MongoDB, verileri doküman tabanlı

bir şekilde saklar ve bu sayede, verilerin daha kolay yönetilebilmesine yardımcı

olur. Çoklu platform desteği: MongoDB, Windows, macOS ve Linux gibi çeşitli

işletim sistemlerinde çalıştırılabilir. Açık kaynaklı: MongoDB, açık kaynaklı bir

veritabanı yönetim sistemidir ve ücretsiz olarak kullanılabilir.

3.3 Python

Python programlama dilini Guido van Rossum adlı Hollandalı bir yazılım

geliştirici tarafından geliştirilmiştir. Van Rossum, Python dilini 1989 yılında ilk

kez yayınladı ve dil, günümüzde birçok alanda kullanılmaktadır. Python, açık

kaynak kodlu bir dil olduğu için, kullanıcılar tarafından da geliştirilebilmektedir.

Python, yüksek seviyeli, güçlü bir programlama dilidir. Python, yazılım

geliştirme, veri bilimi, makine öğrenimi gibi birçok alanda kullanılır. Python,

okunabilirliği yüksek, anlaşılır ve kolay bir dil olduğu için, özellikle başlangıç

seviyesi programcılar tarafından sıklıkla tercih edilir. Python, çeşitli işletim

sistemlerinde çalıştırılabilir ve birçok programlama diline destek verir. Python,

24

konsol üzerinden, betikler olarak yazılıp çalıştırılabilir veya Tümleşik

Geliştirme Ortamı (IDE) gibi geliştirme ortamları kullanılarak da kullanılabilir.

Yorumlayıcı dil, yazılım dilinin yorumlanarak çalıştırıldığı dil tipidir.

Yorumlayıcı dil, derleyici dillerine göre daha yavaş çalışabilirler ancak derleyici

dillerine göre daha kolay program yazılmasına olanak sağlar. Python,

yorumlayıcı bir dil olarak tasarlandı ve çalıştırılır. Bu, Python kodunun

çalıştırılmadan önce derlenmediği anlamına gelir. Bunun yerine, Python kodu,

satır satır yorumlandığında çalıştırılır. Bu, Python kodunun hızlı bir şekilde

yazılıp test edilebilmesine olanak sağlar, ancak çalıştırma hızını biraz

düşürmektedir.

Python, birçok çeşitli paket ve kütüphanelere sahiptir ve bu paketler ve

kütüphaneler, özellikle veri bilimi, makine öğrenimi gibi alanlarda çok

yararlıdır. Python, açık kaynaklı bir dil olduğu için, kullanıcılar tarafından

geliştirilen paketler de mevcuttur ve bu paketler, Python ile geliştirilen

uygulamaların çok daha kolay ve hızlı geliştirilebilmesine yardımcı olur. Python

programlama dilinin esnek olması zengin görüntü işleme ve görüntü

görselleştirme kütüphanelerinin bulunması bu tez çalışması kapsamında

kullanılması için diğer programlama dillerine göre daha fazla ön plana çıkmıştır.

Özellikle görüntü işleme için kullanılan openCV kütüphanesi ve görüntü

bitlerinin 2B görselleştirilmesi için matplotlib kütüphanesi gelişmiş özelliklere

sahip kütüphaneler olarak öne çıkmaktadır.

Python, görüntü işleme için ideal bir programlama dilidir. Python, birçok

önemli görüntü işleme kütüphanesine sahiptir ve bu kütüphaneler, görüntüler

üzerinde çeşitli işlemler gerçekleştirilebilmesine yardımcı olur.

OpenCV (Open Computer Vision) bir görüntü işleme kütüphanesidir.

OpenCV, Python ve diğer programlama dilleri ile birlikte kullanılabilir ve

görüntüler üzerinde çeşitli işlemler gerçekleştirilebilmesine olanak sağlar.

OpenCV, 2001 yılında Itseez tarafından kurulmuş ve daha sonra Intel tarafından

satın alınmıştır. OpenCV, görüntüler üzerinde çeşitli işlemler

gerçekleştirilebilmesine olanak sağlar ve bu işlemler arasında, görüntülerin

okunması, ölçeklendirilmesi, dönüştürülmesi, filtrelemesi gibi işlemler yer alır.

OpenCV, yaşam bilimleri dahil olmak üzere çok çeşitli bağlamlarda uygulanan

yaygın bir bilgisayar görüşü ve makine öğrenimi kitaplığıdır. (Kaehler and

Bradski 2007). OpenCV'nin gücü, bu kitaplık tarafından sağlanan hem klasik

25

hem de son teknoloji bilgisayar görme algoritmalarının büyük miktarına

(2500'den fazla) dayanmaktadır. OpenCV yardımıyla pek çok bilgisayarlı görü

sistemi gerçekleştirmek mümkündür (Sirkov and Novikov 2020). OpenCV,

görüntü işleme, özellik algılama, nesne algılama, makine öğrenimi ve video

analizi için algoritmalar sağlar. OpenCV'yi yaşam bilimlerinde kullanmanın

başlıca zorlukları, kullanılabilirliği ve etkileşimidir: OpenCV, ne varsayılan

olarak bir grafik arabirimi ne de ilgi alanları (ROI'ler) ile etkileşim işlevselliği

sağlar. Bu, OpenCV ile etkileşimi kodlamak gerektiği anlamına gelir ve bu,

yaşam bilimcileri için bir sorun olabilir (Dominguez and Heras 2017). OpenCV

(Open Source Computer Vision) adı verilen bir kütüphane ve açık kaynak kodlu

bir bilgisayar görüşü kütüphanesidir. OpenCV, bilgisayar görüşü

algoritmalarının kullanımını ve uygulanmasını kolaylaştıran bir yapıya sahiptir.

OpenCV, görüntü işleme, nesne tespiti ve tanıma, veri madenciliği gibi birçok

alanda kullanılabilir. Örneğin, OpenCV kütüphanesi kullanılarak, görüntüler ve

video dosyaları okunabilir, düzenlenebilir ve işlenebilir. Görüntülerdeki

nesneler tanımlanabilir ve tespit edilebilir ve görüntüler arasındaki benzerlikler

analiz edilebilir. Görüntünün daha önceden sizin belirlediğiniz özniteliklere

sahip olup olmadığının kontrolü yapılabilir. OpenCV kütüphanesinin birçok

özelliği vardır. Örneğin, OpenCV kütüphanesi, görüntülerdeki nesneleri tespit

etmek için Haar cascades yöntemini kullanır. Bu yöntem, nesne tanıma için

kullanılan bir makine öğrenmesi yöntemidir ve OpenCV kütüphanesi tarafından

desteklenir. OpenCV ayrıca, görüntülerdeki nesnelerin yerlerini tespit etmek için

template matching yöntemini de destekler Ayrıca, OpenCV, görüntüler üzerinde

nesne tanıma, yüz tanıma, el yazısı tanıma gibi işlemleri de

gerçekleştirilebilmesine olanak sağlar. Ayrıca “Python ve OpenCV ile bir

velodrom pistinde takım değişimi sırasında tek bir bisikletçiyi izleme” isimli

çalışmada OpenCV kütüphanesi kullanarak hareket eden bir nesneyi tespit eden

ve takip edebilen sistemlerin kurgulanmasının mümkün olduğu görülmüştür (

Burden and Cleland 2010).

OpenCV, birçok farklı alanda kullanılır. Örneğin: Endüstriyel otomasyon:

OpenCV, endüstriyel otomasyon sistemlerinde kullanılır ve bu sistemlerde,

görüntüler kullanılarak üretim süreçlerinin izlenmesi ve kontrolü sağlanır.

Sağlık: OpenCV, sağlık alanında da kullanılır ve bu alanda, görüntüler

kullanılarak hastalıkların tanısı ve tedavisi için kullanılır. Örneğin, MR

görüntülerini kullanılarak beyin tümörlerinin tespiti ve takibi yapılabilir.

26

OpenCV Hough Dönüşüm yöntemleriyle bir resim dosyasındaki daire ve

çizgileri algılayabilir. Çizge teorisinde çizgelerin tepeleri genelde daire şeklinde

ayrıtları ise çizgiler olarak temsil edilmektedir. Özellikle bir çizge barındıran

resim dosyasından çizgenin tepeleri ve ayrıtlarının tespit edilmesi aşamaları için

openCV ve Hough dönüşüm algoritmaları yüksek öneme sahiptir.

Matplotlib, Python dilinde kullanılan bir veri görselleştirme

kütüphanesidir. Matplotlib, çeşitli grafikler, histogramlar, günlükler, dağılım

grafikleri gibi çeşitli veri görselleştirme yöntemleri oluşturmak için kullanılır.

Matplotlib kütüphanesi, Python kodu kullanılarak kolayca kullanılabilir ve açık

kaynak kodlu olduğu için ücretsizdir.

Matplotlib, veri görselleştirme öğelerinin oluşturulması için birkaç yöntem

sunar. Örneğin, plot() fonksiyonu, veri setlerini bir grafikte göstermek için

kullanılabilir. Ayrıca, scatter() fonksiyonu, veri noktalarını bir grafikte

dağılımını göstermek için kullanılabilir. Matplotlib ayrıca, veri görselleştirme

öğelerine çeşitli özelleştirme seçenekleri sunar, örneğin veri etiketleri ve

legendler ekleyebilir, eksen etiketleri ve başlıklar ekleyebilir ve grafikleri farklı

renklerde ve stil seçenekleriyle özelleştirebilirsiniz.

Matplotlib kütüphanesi, birçok farklı veri görselleştirme yöntemleri

destekler ve bu yöntemlerin birçoğu, veri görselleştirme için kullanılan diğer

popüler kütüphanelerin özelliklerine benzerdir. Bu nedenle, Matplotlib

kütüphanesi, veri görselleştirme için ihtiyacınız olan birçok özelliği sunar.

Python, yüksek seviyeli, güçlü ve çok yönlü bir programlama dilidir ve bu

nedenle bazı avantajları vardır: Kolaylık: Python, okunabilirliği yüksek ve

anlaşılır bir dil olduğu için, özellikle başlangıç seviyesi programcılar tarafından

kolayca öğrenilebilir. Çok yönlülük: Python, farklı alanlarda kullanılabilir ve bu

sayede, çok çeşitli projeler geliştirilebilir. Örneğin, veri bilimi, makine öğrenimi,

web geliştirme, masaüstü uygulamaları gibi alanlarda kullanılabilir. Büyük

topluluk: Python, dünya çapında büyük bir topluluğa sahiptir ve bu topluluk,

Python ile ilgili yardım almak, öğrenmek ve geliştirmek isteyenler için çok

yararlıdır. Ayrıca, Python topluluğu tarafından geliştirilen paketler ve

kütüphaneler de mevcuttur ve bu paketler ve kütüphaneler, Python ile geliştirilen

uygulamaların çok daha kolay ve hızlı geliştirilebilmesine yardımcı olur.

Ölçeklenebilirlik: Python, ölçeklenebilir bir dil olduğu için, büyük ve karmaşık

projeler için de uygun bir seçenektir. Açık kaynaklı: Python, açık kaynaklı bir

27

dil olduğu için, ücretsiz olarak kullanılabilir ve kullanıcılar tarafından

geliştirilebilir.

Pillow da bir görüntü işleme kütüphanesidir. Pillow, Python ile birlikte

kullanılabilir ve görüntüler üzerinde çeşitli işlemler gerçekleştirilebilmesine

olanak sağlar. Pillow, PIL (Python Image Library) adıyla bilinen eski bir görüntü

işleme kütüphanesinin devamıdır ve PIL'in bazı sınırlamalarını aşmayı amaçlar.

Pillow, görüntüler üzerinde çeşitli işlemler gerçekleştirilebilmesine olanak

sağlar ve bu işlemler arasında, görüntülerin okunması, yazılması,

ölçeklendirilmesi, dönüştürülmesi gibi işlemler yer alır. Pillow, birçok farklı

görüntü dosya türünü destekler ve bu dosya türleri arasında, JPEG, PNG, TIFF

gibi dosya türleri yer alır.

Pillow, birçok farklı alanda kullanılır. Örneğin: Web geliştirme: Pillow,

web geliştirme projelerinde kullanılır ve bu projelerde, görüntülerin yüklenmesi,

düzenlenmesi ve gösterilmesi gibi işlemler gerçekleştirir.

 NumPy, bir Python kütüphanesidir ve veri işleme ve cinsinden ciddi bir

hız kazanç sağlar. NumPy, verilerin düzenlenmesi, ölçeklendirilmesi,

filtrelemesi gibi işlemler için optimizasyonlar sağlar. NumPy, verilerin

düzenlenmesinde diziler (ndarray - n-boyutlu dizi) adı verilen veri yapılarını

kullanır. Bu diziler, verilerin belirli bir şekilde düzenlenmesini sağlar ve

verilerin hızlı bir şekilde işlenmesine olanak sağlar. NumPy dizileri, Python

listelerine benzerdir ancak daha hızlıdır ve daha fazla özellik sunar.

 NumPy, birçok farklı alanda kullanılır. Örneğin: Veri bilimi: NumPy,

veri bilimi projelerinde sıklıkla kullanılır ve bu projelerde, verilerin

düzenlenmesi, ölçeklendirilmesi, filtrelemesi gibi işlemler için kullanılır.

Makine öğrenimi: NumPy, makine öğrenimi projelerinde de kullanılır ve bu

projelerde, verilerin hazırlanması ve işlenmesi için kullanılır. Öğretim: NumPy,

öğretim amaçlı projelerde de kullanılır ve bu projelerde, verilerin öğrenciler

tarafından daha kolay anlaşılmasını sağlar. NumPy, Python ile birlikte kullanılır

ve Python kurulumunda otomatik olarak yüklenir. NumPy kütüphanesinin

kullanımı, verilerin yüklenmesi ve düzenlenmesi gibi işlemlerle başlar ve daha

sonra veriler üzerinde çeşitli işlemler gerçekleştirilebilir.

28

3.4 Spyder

 Spyder (Scientific Python Development Environment) adı verilen bir

Python geliştirme ortamıdır. Spyder, birçok popüler Python kütüphanesini

(örneğin NumPy, Matplotlib ve SciPy) destekler ve bu kütüphanelerin

kullanımını kolaylaştırır. Spyder ayrıca, birçok Python ile ilgili araç ve özellik

içerir ve bu araçlar sayesinde Python kodunun yazımı, test edilmesi ve

depolanması kolaylaştırılır.

 Spyder, birçok farklı Python dilinde çalışabilen bir geliştirme ortamıdır

ve bu nedenle Python ile ilgili birçok projede kullanılabilir. Örneğin, Spyder

kullanılarak veri görselleştirme projeleri yapılabilir, machine learning

modellemeleri yapılabilir ve sayısal hesaplamalar gerçekleştirilebilir.

 Spyder, birçok araç ve özelliğe sahiptir ve bu araçlar sayesinde Python

kodunun yazımı, test edilmesi ve depolanması kolaylaştırılır. Örneğin, Spyder,

Python kodunun yazılması için bir kod editörü içerir ve bu kod editörü, Python

kodunun düzenlenmesi ve yazılması için faydalı araçlar sunar. Spyder ayrıca,

Python kodunun test edilmesi için bir konsol ve bir hata ayıklayıcı (debugger)

da içerir. Bu araçlar sayesinde, Python kodunun çalışma durumu izlenebilir ve

hata ayıklanabilir. Spyder ayrıca, Python kodunun depolanması için bir proje

yöneticisi de içerir ve bu proje yöneticisi sayesinde, Python kodunun sürümleri

yönetilebilir ve kodun değişiklikleri takip edilebilir.

 Spyder, Python ile ilgili birçok projede kullanılabilen bir geliştirme

ortamıdır ve birçok araç ve özelliğe sahiptir. Bu araçlar sayesinde, Python

kodunun yazımı, test edilmesi ve depolanması kolaylaştırılır ve bu sayede

Python ile ilgili projeler daha verimli bir şekilde yürütülebilir.

Kod editörü: Spyder, kodların yazımı için bir kod editörü içerir ve bu kod

editörü, kodların yazımını kolaylaştıran birçok özellik sunar. Örneğin, otomatik

tamamlama, sözcük önerileri, açıklamalı işaretler gibi özellikler vardır.

Çalıştırma penceresi: Spyder, kodların çalıştırılması için bir çalıştırma penceresi

içerir. Bu çalıştırma penceresi, kodların çalıştırılmasını ve çıktılarının

görüntülenmesini sağlar. Hata ayıklama: Spyder, kodların hata ayıklanması için

bir hata ayıklama aracı içerir. Bu hata ayıklama aracı, kodların çalıştırılması

sırasında oluşan hata mesajlarını görüntüler ve hata ayıklanmasına yardımcı

olur. Konsol: Spyder, konsol üzerinden de kodların yazılıp çalıştırılmasına

29

olanak sağlar. Bu konsol, kodların daha hızlı çalıştırılmasını ve test edilmesini

sağlar.

3.5 Javascript

JavaScript, bir web tarama programı (web browser) üzerinde çalışan bir

programlama dilidir. İnternet sayfalarına dinamik özellikler katmak için

kullanılır. Örneğin, bir web sayfasında bir form doldurulurken hata mesajlarının

otomatik olarak gösterilmesi veya bir butona tıklandığında bir pencerenin

açılması gibi işlemler JavaScript ile yapılabilir.

JavaScript, bir script dilidir ve genelde HTML (HyperText Markup

Language) veya XML (Extensible Markup Language) dosyalarına yerleştirilerek

kullanılır. HTML ve XML dosyaları, bir web sayfasının görünümünü ve yapısını

tanımlayan dosyalardır ve JavaScript, bu sayfalara dinamik özellikler eklemek

için kullanılır. JavaScript, diğer programlama dillerinden farklı olarak,

çoğunlukla tarama programı üzerinde çalışır ve bilgisayarınızda çalışan bir

program değildir. Bu, JavaScript'in internet tarayıcıları tarafından desteklenmesi

gerektiği anlamına gelir. Internet tarayıcıları, JavaScript kodunu anlayarak

çalıştırır ve sonuçları web sayfasında gösterir.

Javascript aynı zamanda bir prototype tabanlı dil olup, nesne yönelimli

programlamanın temel kavramlarını benimser. Bu, Javascript'te bir nesnenin

özelliklerini ve davranışlarını tanımlayan bir "çalışma şablonu" olarak

düşünülebilir. Bu şablonlar, diğer nesneler tarafından kullanılarak yeni nesneler

oluşturulabilir.

Javascript ayrıca çok yönlü bir dil olup, web tarayıcılarında yalnızca değil,

aynı zamanda masaüstü uygulamaları, mobil uygulamalar ve sunucu tarafı

uygulamaları gibi farklı platformlarda da kullanılabilir. Örneğin, bu tez

çalışması sürecinde de kullanılan Node.js adlı bir platform sayesinde JavaScript,

sunucu tarafında da çalıştırılabilir. Javascript bu çalışmada sunucu tarafında

tarayıcıdan gelen isteklerin doğru kanalize edilmesi için kullanıldı. MVC yapısı

kurularak tasarlanan sistem mimarisinde javascript omurgada yer almaktadır.

Javascript yardımıyla Node.js ortamında router ve controller oluşturularak gelen

isteklerin anaconda platformundaki Python backend ile iletişimi sağlandı.

30

JavaScript, birçok programlama dilinden farklı olarak, prototipli bir dil

olarak tasarlandı. Bu, bir nesnenin özelliklerini ve davranışlarını belirten bir

şablon olarak düşünülebilen bir prototip üzerinde çalışmayı mümkün kılar. Bu

sayede, JavaScript'te yeni nesneler oluşturmak ve özelliklerini ve davranışlarını

bu prototip üzerinden kalıtım yoluyla geçirilebilir. JavaScript, ayrıca dinamik bir

dil olarak da bilinir. Bu, bir değişkenin türünün ve değerinin çalışma zamanında

belirlenmesine olanak sağlar.

3.6 Embedded Javascript

EJS (Embedded JavaScript), web geliştiricileri için bir şablon motorudur.

EJS, bir web sayfasının HTML kodunun içine birkaç satır Javascript kodu

ekleyebilmenizi sağlar. Bu sayede, dinamik olarak oluşturulmuş verileri bir web

sayfasına dahil edebilirsiniz. EJS avantajları: Dinamik web sayfaları oluşturmayı

kolaylaştırır, verileri çektiğiniz zaman otomatik olarak güncelleyen bir web

sayfası oluşturabilirsiniz, kod tekrarını azaltır. Örneğin, aynı verileri birden fazla

yerde göstermeniz gerektiğinde, tek bir yerde bu verileri tanımlamanız yeterlidir,

kullanımı kolaydır. EJS, birkaç satır Javascript kodu eklemenize olanak sağlar

ve bu kodlar HTML etiketleri içine yerleştirilebilir.

 Genel kullanım kuralları şu şekildedir: Etiketler arasına veri yerleştirme:

<%= veri %> gibi bir etiketle HTML etiketleri içine veri yerleştirilebilir, kod

bloğu oluşturma: <% kod %> gibi bir etiketle bir kod bloğu oluşturulabilir. Bu

kod bloğu, sadece EJS tarafından işlenir ve web tarayıcısında çalıştırılmaz,

fonksiyon çağırma: <%= fonksiyon() %> gibi bir etiketle bir fonksiyon

çağırılabilir ve fonksiyonun döndürdüğü değer yerine geçirilebilir, EJS, dinamik

web sayfaları oluşturmak için kullanılan popüler bir şablon motorudur, verileri

çektiğiniz zaman otomatik olarak güncelleyen bir web sayfası oluşturmayı ve

kod tekrarını azaltmayı amaçlar. Etiketler arasına veri yerleştirme, kod bloğu

oluşturma ve fonksiyon çağırma gibi özellikleri vardır.

3.7 Anaconda

Anaconda, bir Python dağıtımıdır ve birçok çalışma ortamını, kütüphane

ve araç setini içerir. Bu dağıtım, veri bilimi, makine öğrenimi, çoklu-ortam

uygulamaları ve bulut hizmetleri gibi alanlarda kullanılır.

31

Anaconda, birçok açık kaynaklı ve özel kütüphane ve araç setini içerir.

Örneğin, NumPy, SciPy, Pandas, Matplotlib, Jupyter Notebook ve PyTest gibi

popüler kütüphaneler, Anaconda ile birlikte gelir. Bu kütüphaneler, veri bilimi,

makine öğrenimi ve matematiksel işlemler gibi alanlarda kullanılır.

Anaconda, ayrıca birden fazla ortam oluşturmayı ve yönetmeyi destekler.

Bu ortamlar, birbirinden bağımsız olarak çalışan Python uygulamaları için

kullanılabilir ve her ortamda farklı kütüphane ve araç setleri kullanılabilir. Bu

sayede, aynı bilgisayarda birden fazla projede çalışabilecek ve her proje için

gerekli olan kütüphaneleri kurabileceksiniz.

Anaconda, ayrıca birçok platformda çalışabilir, bu sayede Windows,

macOS ve Linux gibi farklı işletim sistemlerinde de kullanılabilir.

Sonuç olarak, Anaconda, bir Python dağıtımıdır ve veri bilimi, makine

öğrenimi ve matematiksel işlemler gibi alanlarda kullanılan birçok kütüphane ve

araç setini içerir. Birden fazla ortam oluşturmayı ve yönetmeyi destekler ve

farklı platformlarda çalışabilir. Bu yüzden bu tez çalışması arka ucu için

anaconda platform kullanıldı.

3.8 Linux Ubuntu 20.04

Linux, çeşitli cihazlarda çalışan bir işletim sistemidir. Bu cihazlar,

masaüstü bilgisayarlar, sunucular, mobil cihazlar ve hatta bazı ev aletleri gibi

geniş bir yelpazede yer alır. Linux, özellikle sunucu ve ciddi işletmelerde yaygın

olarak kullanılır, ancak masaüstü bilgisayarlar için de çeşitli dağıtımları

mevcuttur.

Linux, özellikle özelleştirilebilirliği ve açık kaynaklı yapısıyla bilinir. Bu,

Linux işletim sisteminin kaynak kodlarının herkes tarafından görülebilir ve

değiştirilebilir olması demektir. Bu sayede, Linux'un özelleştirilebilir ve özel

ihtiyaçları karşılayacak şekilde özelleştirilebilir.

Linux, ayrıca çok sayıda komut satırı araçları içerir. Bu araçlar, sistem

yönetimi görevlerini gerçekleştirmeyi ve sistemler arasında veri taşımayı

kolaylaştırır. Linux ayrıca birçok ücretsiz ve açık kaynaklı yazılım ve

uygulamaları destekler.

32

Linux, genellikle bir dağıtım olarak dağıtılır. Bir dağıtım, bir Linux işletim

sisteminin çeşitli parçalarının bir arada toplandığı bir pakettir. Örneğin, Ubuntu

ve Fedora gibi popüler dağıtımlar, Linux işletim sistemini ve gerekli araçları

içerir. Bu sayede, Linux'u kurmak ve kullanmak için çeşitli parçaları tek tek

indirmenize gerek kalmaz. Ubuntu dağıtımı, Linux işletim sisteminin çeşitli

parçalarının bir arada toplandığı bir pakettir. Ubuntu, masaüstü bilgisayarlar için

tasarlandı ve özelleştirilebilirliği, güçlü komut satırı araçları ve çeşitli ücretsiz

yazılımları ile bilinir.

Ubuntunun avantajları: Özelleştirilebilirlik: Ubuntu, özelleştirilebilirliği

ile bilinir. Bu, Ubuntu işletim sisteminin özel ihtiyaçlarınızı karşılayacak şekilde

özelleştirilebilmesini sağlar. Güçlü komut satırı araçları: Ubuntu, çok sayıda

komut satırı araçları içerir. Bu araçlar, sistem yönetimi görevlerini

gerçekleştirmeyi ve sistemler arasında veri taşımayı kolaylaştırır. Çeşitli ücretsiz

yazılım ve uygulamalar: Ubuntu, birçok ücretsiz yazılım ve uygulamaları

destekler. Bu yazılımlar arasında, ofis uygulamaları, resim düzenleme

programları ve oyunlar gibi çeşitli türlerde uygulamalar bulunur.

Sonuç olarak, Linux, çeşitli cihazlarda çalışan bir işletim sistemidir ve

özelleştirilebilirliği ve açık kaynaklı yapısıyla bilinir. Birçok komut satırı

araçları ve ücretsiz yazılım ve uygulamaları destekler ve genellikle dağıtım

olarak dağıtılır. Bu avantajlar ve özelliklerin olumlu olmasından dolayı Ubuntu

işletim sistemi bu tez kapsamında geliştirme ortamı olarak kullanıldı.

3.9 Visual Studio Code

Visual Studio Code (VSCode), bir kod editörüdür ve çeşitli programlama

dilleri için kullanılabilir. VSCode, özellikle web geliştirme için popülerdir ve

HTML, CSS ve JavaScript gibi dilleri destekler. VSCode, ayrıca birçok eklenti

ve araç seti ile genişletilebilir ve bu sayede özel ihtiyaçlarınızı karşılayacak

şekilde özelleştirilebilir.

VSCode, JavaScript geliştirme için uygun bir kod editörüdür. Özellikle,

VSCode'un JavaScript Debugger eklentisi sayesinde JavaScript kodlarınızı hata

ayıklama ve test etmeyi kolaylaştırır. Ayrıca, VSCode'un IntelliSense özelliği

sayesinde kod yazarken otomatik tamamlama ve hata ayıklama özellikleri sunar.

Bu sayede, hızlı ve doğru bir şekilde JavaScript kodları yazmanıza yardımcı olur.

VSCode ayrıca, Git özelliği sayesinde kodlarınızı sürüm yönetimi için

33

kullanabilirsiniz. Bu sayede, kodlarınızın değişikliklerini izleyebilir ve daha

önceki sürümlerine geri dönebilirsiniz.

Sonuç olarak, Visual Studio Code (VSCode), JavaScript geliştirme için

uygun bir kod editörüdür. JavaScript Debugger eklentisi sayesinde hata

ayıklama ve test etmeyi kolaylaştırır ve IntelliSense özelliği sayesinde kod

yazarken otomatik tamamlama ve hata ayıklama özellikleri sunar. Bu proje tez

çalışmasının ön yüzünde ve sunucu tarafında javascript ve javascript tabanlı

teknolojiler kullanıldığı için VSCode geliştirme esnasında kullanılmaya uygun

görüldü.

34

4. PROJE GERÇEKLEŞTİRİM ADIMLARI

4.1 Proje Genel Mimarisi

 Şekil 4.1 Sisteme Erişim Senanaryosu

4.2 Sisteme Erişim Senaryosu

Şekil 4.1’de sistemin genel mimarisi görselleştirildi. Sistem iki ana

yapıdan oluşmaktadır. Birincisi gelen isteklerin adreslenip yönetilmesinde

kullanılan Node.js sunucu yapısı ve MongoDB veritabanı ikinci anayapı ise

Python ve görüntü işleme ve görselleştirme işlemlerinin kurgulandığı Anaconda

çerçevesidir.

Sistemin kullanımı adım adım şu şekilde sınıflandırarak aktarabiliriz:

35

• Kullanıcı sistemin olduğu adrese istekte bulunur daha sonra kullanıcı adı ve

şifresiyle sisteme giriş yapar.

• Kullanıcı başarılı giriş işlemi yapması sonucunda sistem tarafından graphml

ve png dosyası için iki seçenek sunulur.

• Kullanıcı seçtiği seçeneğe göre uygun formattaki dosyayı sisteme yükler.

• Sunucu ilgili dosyayı Anaconda çerçevesinin işleyebileceği konum ve

formata getirir ve anaconda çerçevesini tetikler.

• Anaconda çerçevesindeki ilgili kod parçaçıkları gelen dosyayı işler. Sunucu

işlenen dosyaları kullanıcıya aktarır.

 Şekil 4.2 Sisteme Giriş

Şekil 4.2’de: Kullanıcı düzlemsel çizge sistemine erişmek için bir web

tarayıcısı üzerinden sunucunun adresine istek atar. Gelen istek yönlendirme

yöneticisine gider. Yönlendirme yöneticisi isteği çözümler ve ilgili kontrolcü

birimine aktarır. Kontrolcü gelen isteğin giriş sayfasına get isteği olduğunu görür

ve giriş işlemleri için kullanılan EJS sayfasını kullanıcıya gösterir.

İkinci adım: 1: Kullanıcı gelen giriş sayfasına kullanıcı ve şifresini girer

ve http post isteği olarak sunucuya gönderir. 2: Sunucu tarafında yönlendirme

yöneticisi isteği giriş yönlendiricisine giriş yönlendiricisi de giriş kontrolcüsüne

gönderir. 3: Giriş kontrolcüsü gelen kullanıcı adı ve şifrenin sistemdeki

36

veritabanında bulunup bulunmadığını kontrol eder. 4: Düzlemsel çizge

veritabanı sisteminde girilen bilgilerle eşleşen bir kullanıcı bulunması

durumunda kontrolcü kullanıcının sistemi kullanabilmesi için sistem

kaynaklarını kullanıcıya gönderir. Girilen kullanıcı ve şifre parametreleri yanlış

bir değere sahipse kullanıcı giriş sayfasına tekrar gönderilir. Sisteme girmesine

izin verilmez.

 Şekil 4.3 Graphml ve Png Yükleme Seçenekleri

Kullanıcı adı ve şifresini doğru giren kullanıcı şekil 4.3’deki dosya

yükleme seçeneklerinin olduğu sayfaya yönlendirilir. Kullanıcı daha sonra

seçenek kontrolcüsü tarafından yüklemek istediği dosyaya göre ilgili dosya

yükleme sayfasına yönlendirilir.

4.3 Görüntünün Sisteme Yüklenmesi Süreci

 Şekil 4.4 Dosya Yükleme Sayfası

Png dosyayı yükleme servisi kullanıldığında yönlendirici yöneticisine giden

istek oradan image yönlendiricisine aktarılır. Image yönlendiricisi image

kontrolcüsüne mantıksal işlemlerin yapılması için başvuru yapar. Png uzantılı

dosya multer modülü kullanılarak anaconda platformunun işleme yapacağı

ortama aktarılır.

37

var express = require('express');

var router = express.Router();

var ctrlsigned = require('../controller/imageprocessController');

const multer = require('multer');

const path = require('path');

const storage = multer.diskStorage({

 destination: function(req, file, cb) {

 cb(null,path.join(__dirname,'../../public'));

 },

 filename: function(req, file, cb) {

 cb(null, file.fieldname+ path.extname(file.originalname))

 }

});

var upload = multer({ storage: storage })

module.exports=upload

router.get('/', ctrlsigned.index);

router.post('/',upload.array('slot'), ctrlsigned.indexPost);

module.exports = router;

Yukarıdaki yöntemle gelen png dosyası düzlemsel çizge sistemine

alındıktan sonra anaconda platformunun işlemesi için gereken konuma

depolanır. Bu adımların gerçekleştirilmesi için multer ve express modülleri

kullanılır.

Express, JavaScript dili ile yazılmış bir web çerçevesidir. Bu çerçeve, web

uygulamaları ve API'lerin geliştirilmesi için kullanılır. Express, Node.js

üzerinde çalışır ve birçok farklı özelliğe sahiptir. Örneğin, Express ile: HTTP

isteklerini işleyebilir ve yanıt verebilir Dinamik içerik oluşturabilir ve

gönderebilir Önbellekleme, yönlendirme ve diğer web özelliklerini kullanabilir

Veritabanına erişebilir ve veri depolayabilir Express, diğer web çerçevelerine

göre daha hafif ve esnektir. Bu, özellikle küçük ve orta ölçekli projeler için iyi

bir seçim olabilir. Ayrıca, Express'in yüksek seviyede kullanım kolaylığı ve açık

kaynak kodlu olması, geliştiriciler tarafından sıklıkla tercih edilir.

Multer, Node.js için yazılmış bir eklentidir ve HTTP isteklerinde yer alan

dosya yüklemelerini işlemeyi amaçlar. Multer, Express çerçevesi ile birlikte

kullanıldığında, dosya yüklemelerini kolayca kullanılabilir hale getirir. Multer,

dosya yüklemelerini yönetmek için çeşitli seçenekler sunar. Örneğin, yüklenen

dosyaların nereye kaydedileceğini ve dosya isimlerinin nasıl değiştirileceğini

belirleyebilirsiniz. Ayrıca, Multer ile dosya türlerini ve dosya boyutlarını

sınırlayabilir ve yüklenen dosyaların geçerli olup olmadığını doğrulayabilirsiniz.

38

Multer, yalnızca dosya yüklemeleri için değil aynı zamanda dosya indirme ve

dosya güncelleme işlemleri için de kullanılabilir. Bu, web uygulamalarında

dosya yönetimi için çok yönlü bir araç sağlar. Bu avantajlarından dolayı express

ve multer modüllerini birlikte kullanılarak dosya transferlerinde görev aldı.

4.4 Görüntü İşleme Hazırlığı ve Anaconda Platformu Tetiklenmesi

const spawn = require('child_process').spawn;

const delay = require('delay');

const fs = require('fs');

const rimraf = require('rimraf');

const {

 read

} = require('fs');

const {

 session

} = require('passport');

module.exports.index = function (req, res) {

 if (req.session.userId) {

 res.render('imageprocess')

 } else {

 res.redirect('/');

 }

}

module.exports.indexPost = function (req, res) {

 if (req.session.userId) {

 const process = spawn('python3', ['image.py']);

 process.stdout.on('data', data => {});

 process.stderr.on('data', function (data) {});

 process.on('close', function (code) {});

 process.on('close', function (code) {});

 (async () => {

 while(!fs.existsSync('public/graph.png')) {

 await delay(2000);

 }

 res.render('imageprocess');

 })();

 //res.redirect('/imageprocess');

 } else {

 res.redirect('/');

 }

}

Yukarıdaki resim işleme kontrolcüsü resim işleme yönlendiricisine gelen

get ve post isteklerini karşılamak için geliştirilmiştir. Gelen istekler eğer

kullanıcının sessionid’si hala geçerliyse gerçekleştirilir. Bu bloğun temel görevi

anaconda çerçevesindeki python kodlarını bir childprocess olarak çalıştırmak ve

39

bu işlemin çıktı zamanına göre son kullanıcıya uygun EJS sayfasının

gösterilmesinin organizasyonunu yapmaktır. Bu fonksiyonel özellikleri

sağlamak için child_process, delay, rimraf ve fs modülleri kullanılmıştır.

Node.js "child_process" modülü, bir Node.js uygulaması içinde diğer bir

işlem oluşturmanızı ve bu işlemleri yönetmenizi sağlar. Bu modül, Node.js

çerçevesinin "process" modülünden türetilmiştir ve aşağıdaki işlevleri sağlar:

• Yeni bir işlem oluşturma: "spawn", "exec", "execFile" ve "fork" gibi

fonksiyonlar kullanılarak yeni bir işlem oluşturulabilir.

• Işlemlerin haberleşmesi: Işlemler arasında veri gönderme ve alma

işlemleri yapılabilir.

• Işlemlerin durumunun izlenmesi: Işlemlerin çalışma durumu ve çıkış

kodları izlenebilir.

Child_process modülü, çeşitli senaryolarda kullanışlıdır. Örneğin, bir

Node.js uygulamasında bash komutlarını çalıştırmak için kullanılabilir veya

Node.js uygulamasının birden fazla CPU çekirdeği kullanarak

paralelleştirilmesini sağlayabilir. Bu tez projesi kapsamında child_process

nodejs sunucusundan anaconda platformundaki python kodlarını çalıştırmak için

kullanıldı.

Node.js "rimraf" modülü (REMOVE Rm -rf), Node.js çerçevesi içinde bir

dizin veya dosya silme işlemini gerçekleştirir. Bu modül, bir komut satırı

uygulaması olarak kullanılan "rm -rf" komutunun Node.js çerçevesinde

kullanılabilir hale getirilmiş halidir. Rimraf modülü, dizinler ve dosyalar

içindeki tüm alt dosya ve dizinleri de siler. Bu, dizinler ve dosyaları tamamen

temizlemeyi sağlar. Rimraf modülü, genellikle Node.js uygulamalarında dosya

ve dizinlerin silinmesi gerektiğinde kullanılır. Örneğin, bir Node.js uygulaması

çalıştırılmadan önce gerekli olan dosya ve dizinlerin silinmesi için kullanılabilir.

PNG Formatındaki Resim Dosyasının Görüntü İşleme Yöntemleriyle

Analiz Edilmesi.

Node.js tarafında kontrolcünün anacondayı tetiklemesiyle birlikte resim

dosyasının işlenmesini aşağıdaki kod bloğu sağlamaktadır.

40

 Şekil 4.5 Düzlemsel Görünümü İstenen Çizge

import cv2

import numpy as np

from PIL import Image

import networkx as nx

import matplotlib.pyplot as plt

from subprocess import call

import math

import os

G = nx.DiGraph()

img = cv2.imread("./public/slot.png",cv2.IMREAD_COLOR)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

gray = cv2.medianBlur(gray, 11)

rows = gray.shape[0]

circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT,

0.01, rows / 15,

 param1=500, param2=28 ,

 minRadius=1, maxRadius=70)

output = img.copy()

if circles is not None:

 circles = np.round(circles[0, :]).astype("int")

 for (x, y, r) in circles:

 cv2.circle(output, (x, y), r, (255, 0,0), 4)

 cv2.rectangle(output, (x - 5, y - 5), (x + 5, y + 5), (0,

128, 255), -1)

 cv2.rectangle(img,(x , y), (x ,y), (255, 255, 255), 3*r)

 cv2.imwrite("./public/circle.png",output)

else:

 print("not found")

default_file ='./public/slot.png'

src = cv2.imread(default_file, cv2.IMREAD_GRAYSCALE)

41

image = cv2.Canny(src, 50, 200, None, 3)

cimage = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)

cimageP = np.copy(cimage)

def find_line_slope(point1, point2):

 x1, y1 = point1

 x2, y2 = point2

 if (x2-x1)!=0:

 m = (y2 - y1) / (x2 - x1)

 angle = np.arctan(m) * 180 / np.pi

 else:

 angle=90

 return angle

linesP = cv2.HoughLinesP(image, 1, np.pi / 180, 50, None,2*r,

r)

def lineboy(x0, y0, x1, y1):

 return math.sqrt((x0 - x1)**2 + (y0 - y1)**2)

def minimum_distance(a0, b0, x0, y0, x1, y1):

 if x1-x0==0:

 distance=abs(x1-a0)

 else:

 a = (y1 - y0) / (x1 - x0)

 b = y0 - a * x0

 # minumum mesafe formülü

 distance = abs(a0 * a - b0 + b) / math.sqrt(a**2 + 1)

 return distance

edges=np.zeros((0, 4))

for a in circles:

 for b in circles:

 mcircle=find_line_slope((a[0],a[1]),(b[0],b[1]))

 if a[0]==b[0] and a[1]==b[1]:

 break

42

 else:

 for i in range(0,len(linesP)):

 l=linesP[i][0]

 cv2.line(cimageP, (l[0], l[1]), (l[2], l[3]), (255,0,0), 3,

cv2.LINE_AA)

 boy=lineboy(l[0],l[1],l[2],l[3])

mindist1=minimum_distance(l[0],l[1],a[0],a[1],b[0],b[1])

mindist2=minimum_distance(l[2],l[3],a[0],a[1],b[0],b[1])

 medge=find_line_slope((l[0],l[1]),(l[2],l[3]))

 mdiff=abs(mcircle-medge)

 if mdiff<0.8:

 if boy>3*r:

 if mindist1<r/4 and mindist2<r/4:

 edges =

np.append(edges,[[a[0],a[1],b[0],b[1]]],axis=0)

finaledges=np.zeros((0, 4))

finaledges=np.append(finaledges,[[1,2,3,4]],axis=0)

for a in edges:

 flag=False

 for b in finaledges:

 if a[0]==b[0] and a[1]==b[1]:

 if a[2]==b[2] and a[3]==b[3]:

 flag=True

 if a[0]==b[2] and a[1]==b[3]:

 if a[2]==b[0] and a[3]==b[1]:

 flag=True

 if flag==False:

 finaledges =

np.append(finaledges,[[a[0],a[1],a[2],a[3]]],axis=0)

 flag=False

finaledges=finaledges[1:]

for i in finaledges:

 x1=i[0]

 y1=i[1]

 x2=i[2]

 y2=i[3]

 G.add_node(tuple((x1, y1)))

 G.add_node(tuple((x2, y2)))

 G.add_edge((x1, y1), (x2, y2))

Ga = G

def main(G):

 fig = plt.figure()

 graph = nx.Graph()

43

 for v in G.nodes():

 graph.add_node(v)

 for delta in G.edges():

 for w in delta:

 graph.add_edge(delta[0],delta[1])

 nx.draw_planar(graph)

 fig.savefig('./public/graph.png')

try:

 main(Ga)

except:

 ca = ' cp graph.png public/'

 cal=call(ca, shell=True)

cv2.imwrite("./public/line.png", cimageP)

nx.write_graphml(G, "./public/graph.graphml")

file_path = './public/graph.graphml'

if os.path.exists(file_path):

 create='mkdir public/graph'

 cpg= 'cp public/graph.png public/graph/'

 cpline='cp public/line.png public/graph/'

 cpcircle='cp public/circle.png public/graph/'

 cpgml='cp public/graph.graphml public/graph/'

 zipf='zip -r public/graph.zip public/graph '

 decrypted = call(create, shell=True)

 decrypted = call(cpg, shell=True)

 decrypted = call(cpline, shell=True)

 decrypted = call(cpgml, shell=True)

 decrypted = call(zipf, shell=True)

 decrypted = call(cpcircle, shell=True)

Cv2 (OpenCV) kütüphanesi, görüntü işleme ve bilgisayar görüşü gibi

alanlarda kullanılan bir kütüphanedir. OpenCV, görüntülerden veri çıkarma,

görüntüler arasındaki ilişkileri tanımlama ve görüntüler üzerinde değişiklikler

yapma gibi işlemleri yapmak için kullanılabilir. Örneğin, OpenCV kullanılarak

görüntülerde nesne tespiti, görüntü stabilizasyonu, görüntü ön işleme ve

görüntüler arasında geçiş yapma gibi işlemler gerçekleştirilebilir. Bu tez

kapsamında resim dosyasındaki bir çizgenin tepe noktaları ve ayrıtlarını tespit

etmek için cv2 kütüphanesinden faydalanıldı. Tepe noktalarını tespit etme

konusunda OpenCV kütüphanesi kullanılarak başarılı sonuçlar elde

edilmektedir. Çizgeye ait ayrıtları tespit etme konusunda OpenCV kütüphanesi

hatasız sonuçlar verme konusunda başarılı değildir bu nedenle ayrıtların tespiti

konusunda özgün bir optimizasyon çalışması yapıldı. Bu çalışmanın temel çıkış

noktası iki tepe noktası arasında bulunma ihtimali olan ayrıtın tespit edilmesi

44

oldmaktadır. İki tepe nokta arasında hayali bir doğru parçasından yola çıkılarak

elde edilen ayrıt parçalarının hayali doğru parçasına benzerliği kullanıldı.

Benzerlik oranına göre hayali doğrunun çizildiği tepe noktaları arasında bir ayrıt

bulunup bulunmadığının tespiti yapıldı.

img = cv2.imread("./public/slot.png",cv2.IMREAD_COLOR)

Yukarıdaki kod satırı openCV kütüphanesiyle bir resim dosyasının

okunması için kullanıldı.

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

Yukarıdaki kod satırı, verilen görüntüyü (img) gri seviye görüntüsüne

dönüştürür. Örneğin, bir resim üzerinde çalışılıyorsa, bu işlem resmi siyah beyaz

hale getirir. Bu işleme "gri seviye dönüşümü" denir. cv2.cvtColor() fonksiyonu,

OpenCV kütüphanesinin bir renk dönüşüm fonksiyonudur. Bu fonksiyon,

verilen görüntüyü belirtilen renk espasından başka bir renk espasına dönüştürür.

Bu örnekte, img değişkeni BGR (Blue, Green, Red - Mavi, Yeşil, Kırmızı) renk

espasında bir görüntüdür ve cv2.COLOR_BGR2GRAY renk dönüşümü

kullanılarak bu görüntü GRAY (Gri) renk espasına dönüştürülür. Bu

dönüştürülmüş resimde aranılan spesifik şekilleri daha az hatayla tespit etmek

mümkün olacaktır.

Hough Dönüşümü, bir görüntüdeki çizgilerin, dairelerin ve diğer eğrilerin

tespit edilmesine yardımcı olan bir yöntemdir. Bu yöntem, görüntü işleme

alanında sıklıkla kullanılır ve özellikle nesne tespiti ve tanıma gibi

uygulamalarda önemlidir. Hough Dönüşümü, görüntüdeki çizgilerin ve eğrilerin

parametrik bir formülle ifade edilmesine dayanır. Örneğin, bir düz çizgi için, y

= mx + b formülü kullanılır, bu formül çizginin eğimi (m) ve y eksenine olan

kesişim noktasını (b) gösterir. Bu formül kullanılarak, görüntüdeki çizgiler

belirlenebilir ve bu çizgilerin koordinatları bulunabilir. Hough Dönüşümü,

görüntüdeki çizgilerin tespit edilmesinde sıklıkla kullanılır ancak aynı zamanda

dairelerin ve diğer eğrilerin tespit edilmesinde de kullanılabilir. Hough

Dönüşümü, görüntüdeki çizgilerin ve eğrilerin tespit edilmesinde çok etkili bir

yöntemdir ancak bu yöntem biraz zaman alıcı olabilir ve bazı durumlarda

görüntülerdeki gürültüler yüzünden hassas tespitler yapılamayabilir.

45

Aşağıdaki kod bloğu HoughCircles yöntemiyle gri tonlara getirdiğimiz

resim dosyası üzerindeki dairelerin tespitini yapmaktadır. Resim dosyası çizge

içeren bir çizge dosyasıdır ve bu çizgedeki her bir daire çizgenin bir tepesini

oluşturmaktadır.

circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 0.01, rows /

15,param1=500, param2=28 ,minRadius=1, maxRadius=70)

Yukarıdaki kod parçası gri seviye görüntüde (gray) daireleri tespit etmek

için HoughCircles yöntemini kullanır. Bu yöntem, görüntü üzerinde dairelerin

merkezlerini ve yarıçaplarını tespit etmek için kullanılır.

cv2.HoughCircles() fonksiyonu, aşağıdaki parametreleri alır:

• gray: Tespit edilecek dairelerin olduğu gri seviye görüntü.

• cv2.HOUGH_GRADIENT: Dairelerin tespit edilebilmesini

kolaylaştıran bir yöntem. Bu yöntem, Hough Dönüşümünün bir

modifikasyonudur.

• 0.01: Dairelerin tespit edilebilmesini kolaylaştıran bir parametre.

• rows / 15: Tespit edilecek dairelerin merkezlerinin birbirine olan

uzaklığını belirten bir parametre. Bu parametre, görüntünün satır

sayısının 15'e bölümüdür.

• param1: Dairelerin tespit edilebilmesini kolaylaştıran bir parametre. Bu

parametre, Hough Dönüşümü için kullanılan bir threshold değeridir.

• param2: Dairelerin tespit edilebilmesini kolaylaştıran bir parametre. Bu

parametre, Hough Dönüşümü için kullanılan bir threshold değeridir.

• minRadius: Tespit edilecek dairelerin minimum yarıçaplarını belirten

parametre.

• maxRadius: Tespit edilecek dairelerin maksimum yarıçaplarını belirten

parametre.

Sonuç olarak, circles değişkeni, görüntü üzerinde tespit edilen dairelerin

merkezlerini ve yarıçaplarını tutan bir dizidir. Bu dizi, her bir daire için 3 tane

eleman içerir: daire merkezinin x koordinatı, daire merkezinin y koordinatı ve

daire yarıçapıdır.

image = cv2.Canny(src, 50, 200, None, 3)

Yukarıdaki kod satırınki openCV fonksiyonu, girdi olarak verilen görüntü

(src) için Canny ayrıt tespiti yapar. Bu fonksiyon, girdi olarak verilen görüntüyü

iki adımda işler: Öncelikle, görüntünün Gauss gürültüsünü azaltmak için bir

46

Gauss filtresi uygular. Daha sonra, Canny ayrıt tespiti algoritmasını uygular. Bu

algoritma, bir görüntüdeki ayrıtları bulmak için iki adımda işler:

• Görüntünün gradient değerlerini hesaplar. Gradient, görüntünün piksel

değerlerinde meydana gelen değişimleri ölçen bir değerdir.

• Daha sonra, görüntüdeki potansiyel ayrıtları belirler ve bu ayrıtların

güçlüğünü ölçer. Güçlü ayrıtlar, olası ayrıtlar arasından seçilir ve çıktı

olarak döndürülür.

Bu fonksiyonun parametreleri şunlardır:

• src: İşlem yapılacak görüntü (8 bitlik renkli veya siyah-beyaz).

• 50: İşlem yapılacak görüntünün üst eşik değeri. Bu değer, görüntüdeki

ayrıt piksellerinin gradient değerlerine göre seçilir ve bu değerden daha

düşük olan pikseller atlanır.

• 200: İşlem yapılacak görüntünün alt eşik değeri. Bu değer, görüntüdeki

ayrıt piksellerinin gradient değerlerine göre seçilir ve bu değerden daha

yüksek olan pikseller atlanır.

• None: Bu parametre opsiyoneldir ve görüntü üzerinde işlem yapılmadan

önce uygulanacak bir kernal (çapraz matris) verilebilir. Bu parametre

verilmezse, standart bir 3x3 kernal kullanılır.

• 3: Bu parametre de opsiyoneldir ve görüntü üzerinde işlem yapılmadan

önce uygulanacak bir kernal (çapraz matris) verilebilir. Bu parametre

verilmezse, standart bir 3x3 kernal kullanılır.

 Şekil 4.6 HoughCircles Yöntemiyle Belirlenen Daireler

Yukarıda Şekil 4.5’de girilen resim dosyasının görüntü işleme yöntemiyle

belirlenen daireler ve koordinatları verilmiştir. Tablo 4.1’de koordinatlar

ayrıntılı olarak verilmiştir.

47

Kordinat

X

Kordinat

Y

Yarıçap

1120 720 40

890 230 40

210 90 40

90 620 40

 Tablo 4.1 Resim Dosyasındaki Dairelerin Düzlemdeki Koordinatları

linesP = cv2.HoughLinesP(image, 1, np.pi / 180, 50, None,2*r, r)

 Şekil 4.7 Resim Dosyasında Belirlenen Çizgiler

cv2.HoughLinesP(), OpenCV kitaplığında bir görüntüdeki çizgileri

algılamak için kullanılan bir fonksiyondur. Bu fonksiyon birkaç bağımsız

değişken alır:

• image: Çizgilerin algılanacağı görüntü. Bu, ikili bir görüntü olmalıdır

(yani yalnızca iki renkli bir görüntü).

• rho: r parametresinin piksel cinsinden çözünürlüğü.

• teta: teta parametresinin radyan cinsinden çözünürlüğü.

• eşik: Bir çizgiyi "algılamak" için minimum kavşak sayısı.

• minLineLength: Geçerli bir satır olarak kabul edilecek bir satırın (piksel

olarak) minimum uzunluğu.

• maxLineGap: Tek bir çizgi oluşturmak için bağlanacak segmentler

arasındaki maksimum mesafe (piksel olarak).

Bu fonksiyon, her biri iki öğeli bir vektörle (r, teta) temsil edilen bir numpy

ndarray dizisi döndürür. Daha sonra bu numpy dizisinin içinden kirli verileri

temizleyerek yalın ve doğru bir numpy dizisi oluşturulacak. Yeni oluşturulan

dizide sadece tepeler arası bulunan ayrıtlar temsil edilecek bu sayede çizgenin

doğru verilerle temsil edilme olanağı oluşacaktır.

48

Aşağıdaki tablo 4.2’de belirlenen tüm çizgilerin bulunduğu kirli data

verilmiştir.

X1 Y1 X2 Y2

127 598 852 244

128 605 854 251

129 599 854 251

128 606 855 252

905 269 1099 685

824 510 1086 693

911 285 1105 681

824 905 1099 693

382 204 696 423

829 522 1084 700

707 429 1008 639

246 110 475 270

130 628 337 647

130 628 213 635

517 306 816 516

532 666 750 688

563 662 791 585

234 630 452 652

429 131 711 190

103 578 176 258

250 102 414 136

532 666 740 650

552 177 849 218

234 630 452 652

297 111 579 170

851 697 1079 721

251 94 507 148

997 705 1077 712

461 652 657 667

677 673 864 692

770 682 987 704

512 294 761 468

972 621 1084 699

95 579 153 328

358 642 544 661

243 117 428 246

603 357 891 558

438 140 715 198

 Tablo 4.2 Resim Dosyasında Belirlenen Ayrıtların Kordinatları

49

K4 çizgesinde 4 tepe noktası 6 ayrıt bulunmaktadır. OpenCV kütüphanesi

fonksiyonları kullanırak 4 tepe noktasının tespit edilmesi sağlandı. Çizgenin 6

ayrıtı olmasına rağmen yukarıdaki tabloda OpenCV kütüphanesinin 39 tane ayrıt

tespit ettiği gözlenmektedir. Bu tespit edilen ayrıtlarla hatasız bir çizge

modellemesi olabilmesi için ayrıtların optimize edilerek hataların elimine

edilmesi gerekmektedir. Bunun optimizasyon için tepe noktalarını referans alan

bir algoritma geliştirildi. Aşağıdaki fonksiyon verilen koordinatların arasındaki

eğim değerinden faydalanarak (x0,y0) (x1,y1) koordinatlarından geçen bir

doğrunun koordinat düzlemindeki açısını bulmaktadır. Bu fonksiyonla hem iki

tepe noktasından geçen doğrunun hem de resim dosyasında belirlenen doğruların

açısı derece biriminden bulunmaktadır. Eğer herhangi iki tepenin arasındaki

açıyla HoughlinesP fonksiyonuyla belirlenen belirlenen çizgeler arasındaki açı

farkı 1 dereceden az ise bu iki node arasında bir ayrıt olma ihtimali ortaya çıkar.

Bunun doğruluğunu ispatlamak için birkaç gereksinimin daha karşılanması

gerekmektedir. Aşağıda diğer gereksinimler incelenmiştir.

def find_line_slope(point1, point2):

 x1, y1 = point1

 x2, y2 = point2

 if (x2-x1)!=0:

 m = (y2 - y1) / (x2 - x1)

 angle = np.arctan(m) * 180 / np.pi

 else:

 angle=90

 return angle

Aşağıdaki fonksiyon iki tepe kordinatlarından geçen bir doğru parçasına,

HoughlineP algoritmasıyla belirlenen ayrıtların minimum mesafesini bulur.

Eğer minimum mesafe doğrunun yarıçapının çeyreğinden küçük ise ve

yukarıdaki fonksiyon ile de eğim farkı sınır değerin daha altındaysa bu doğru

parçasının o iki node arasında olduğu kesinleşir. Son olarak doğru parçasının

gerçek doğru mu yoksa tepe noktalarından kaynaklanan hata olup olmadığının

tespiti yapılır. Son adımda da sonuç istenilen gibi olduğunda ele alınan bu iki

tepe arasında bir ayrıt olduğu kesinleşir.

50

def minimum_distance(a0, b0, x0, y0, x1, y1):

 if x1-x0==0:

 distance=abs(x1-a0)

 else:

 a = (y1 - y0) / (x1 - x0)

 b = y0 - a * x0

 # minumum mesafe formülü

 distance = abs(a0 * a - b0 + b) / math.sqrt(a**2 + 1)

 return distance

def lineboy(x0, y0, x1, y1):

 return math.sqrt((x0 - x1)**2 + (y0 - y1)**2)

Son adımda lineboy() fonsiyonu ele alınır. Girdi olarak belirlenen

çizgilerin başlangıç ve bitiş koordinatlarını alan bu fonksiyon sayesinde

çizgilerin boyları bulunur. Eğer çizginin boyu belirlenen dairelerin çapından

büyükse ve yukarıdaki diğer iki koşul da sağlanıyorsa, ele alınan iki tepe noktası

arasında bir ayrıt olduğu kesinleşir ve o ayrıt ayrıtların bulunduğu numpy array

dizisine eklenir.

X1 Y1 X2 Y2

890 230 1120 720

210 90 1120 720

210 90 890 230

90 620 1120 720

90 620 890 230

90 920 210 90

 Tablo 4.3 Hataları Giderilmiş Ayrıt Tablosu

Çizgeye ait tepe noktaları v={v1,v2,v3,…,vn} ve çizgenin belirlenen hatalı

hatasız tüm ayrıtları e={e1,e2,e3,…,em} olsun. Yukarıdaki işlemler her bir tepe

noktası noktası için kendisi hariç diğer tepe noktalarıyla çift oluşturacak şekilde

(v1-v2, v1-v2, v1-v3, v1-vm) iki tepe noktası merkezinden geçen bir hayali doğru

parçası oluşturulur. O doğru parçasının e={e1,e2,e3,…,em} dizisi içerisinde yer

alan ayrıtlarla olan benzerliği kontrol edilir. Ayrıtların bulunduğu dizideki uygun

çizgeler optimize edilmiş çizgelerin olduğu listeye eklenir. Bu optimizasyon

51

algoritmasının çalıştırılması sonucunda çizgeye ait tepe noktalarının ve çizgeye

ait ayrıtların bulunduğu iki farklı diziye ulaşılır.

Networkx kütüphanesi graphml gibi çizgelerin modellenebileceği bir veri

tutma formatının görselleştirilmesi konusunda doğru sonuçlar verebilmektedir.

Fakat bir resim dosyasındaki ayrıtları ve tepe noktalarını belirleyip çizgenin

sınıflandırılmasını yapmak konusunda herhangi bir fonksiyonu

bulunmamaktadır. Yine Networkx kütüphanesi numpyarray gibi çizgelerin ayrıt

ve tepe noktalarının tutulabileceği veri yapıları için de bir fonksiyon

kullanmamaktadır. Bu problemin de çözüme kavuşturulması için numpyarray

olarak tutulan ayrıtların ve tepe noktalarının graphml veri formatına

dönüştürülmesi için bir çalışma yapıldı.

Tablo 4.3’de de görüldüğü gibi 4 tepe noktası ve 6 ayrıtı buluna çizgenin

tüm tepeleri ve ayrıtları elde edildi. Sonraki adımda elde edilen tepeler ve ayrıtlar

kullanılarak bir graphml verisi elde edilecek ve eğer elde edilen graphml datası

çizgeyi düzlemsel olarak göstermeye uygun ise çizgenin düzlemsel olarak

gösterimi yapılacak.

for i in finaledges:

 x1=i[0]

 y1=i[1]

 x2=i[2]

 y2=i[3]

 G.add_node(tuple((x1, y1)))

 G.add_node(tuple((x2, y2)))

 G.add_edge((x1, y1), (x2, y2))

Yukarıdaki kod parçasıyla numpy ndarray dizisi aşağıda verilen graphml

verisine dönüştürüldü. Yukarıda elde edilen bilgiler sayesinde çizgenin her bir

ayrıtının başlangıç ve bitiş noktalarında bir tepe noktası olduğu biliniyor.

Ayrıtların bulunduğu dizi ele alınarak dizinin her bir elemanının başlangıç ve

bitiş noktalarının koordinatları için iki adet node graphml dosyasına eklendi.

Yine ayrıtlar dizinin her bir elemanı için graphml dizisine bir adet ayrıt eklenerek

resim dosyasında bulunan bir çizgenin veri kaybı olmadan orijinal halinin

graphml veri formatına aktarılması sağlandı.

52

Aşağıdaki graphml dosyasında K4 çizgesinin tepe noktalarının ve

ayrıtlarının bilgileri bulunmaktadır.

<?xml version='1.0' encoding='utf-8'?>

<graphml

xmlns="http://graphml.graphdrawing.org/xmlns"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns

http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd"><g

raph edgedefault="directed"><node id="(890.0, 230.0)"/>

<node id="(1120.0, 720.0)"/>

<node id="(210.0, 90.0)"/>

<node id="(90.0, 620.0)"/>

<edge source="(890.0, 230.0)" target="(1120.0,

720.0)"/>

<edge source="(210.0, 90.0)" target="(1120.0,

720.0)"/>

<edge source="(210.0, 90.0)" target="(890.0,

230.0)"/>

<edge source="(90.0, 620.0)" target="(1120.0,

720.0)"/>

<edge source="(90.0, 620.0)" target="(890.0,

230.0)"/>

<edge source="(90.0, 620.0)" target="(210.0,

90.0)"/>

</graph></graphml>

Yukarıda verilen graphml dosyasında çizgenin tepe noktalarının sayısı ve

ayrıtlarının sayısı bilinmektedir. Eulerin düzlemsellik formülü kullanarak

çizgenin düzlemsel olmadığının kontrolü yapıldı. Eğer G bir bağlantılı ve basit

bir çizgeyse e G çizgesinin ayrıt sayısı ve v G çizgesinin tepe noktası sayısı

olmak üzere;

• v ≥ 3 ise

• e ≤ 3v − 6

 Formülü sağlanmalıdır. Bu formülü sağlamayan çizgelerin düzlemsel olmadığı

kesinleştiği için direkt çizgenini düzlemsel gösteriliminin mümlün olmadığı

bilgisi aktarıldı. Eğer bu formülü sağlıyorsa graphml verileri aşağıdaki

fonksiyonla görselleştirildi.

http://graphml.graphdrawing.org/xmlns
http://www.w3.org/2001/XMLSchema-instance
http://graphml.graphdrawing.org/xmlns
http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd

53

def main(G):

 fig = plt.figure()

 graph = nx.Graph()

 for v in G.nodes():

 graph.add_node(v)

 for delta in G.edges():

 for w in delta:

 graph.add_edge(delta[0],delta[1])

 nx.draw_(graph)

 fig.savefig('./public/graph.png')

try:

 main(Ga)

except:

 ca = ' cp graph.png public/'

 cal=call(ca, shell=True)

cv2.imwrite("./public/line.png", cimageP)

Yukarıda fonksiyon graphml dosyasından dataları tek tek alıp çizgenin

düzlemsel görünümünü elde etmektedir. Eğer çizgenin düzlemsel görünümü

mümkün değer bir istisna yardımıyla fonksiyon sonlandırılarak çizgenin

düzlemsel olmadığı ve bu yüzden düzlemsel gösteriminin mümkün olmadığı

bilgisi aktarılır. Bu fonksiyona yukarıdaki şekil 4.5’ten elde edilen graphml giriş

olarak verildiği zaman şekil 4.8’deki resim dosyası oluşmaktadır.

 Şekil 4.8 Şekil 4.5’de Verilen Çizgenin Düzlemsel Gösterimi

4.5 Düzlemsel Olmayan Çizgenin Analizi

Programa alt çizgelerinden bir tanesi veya kendisi düzlemsel olmayan png

dosyası yüklendiği senaryoda sistem çizgenin tepelerini ve ayrıtlarını görüntü

işleme teknikleri kullanarak analiz etmektedir ve çizgeye ait graphml dosyasını

54

oluşturmaktadır. Fakat çizgenin düzlemsel gösterimi mümkün olmadığı için

çizgenin düzlemsel gösteriminin mümkün olmadığı uyarısını kullanıcıya bilgi

olarak vermektedir.

Şekil 4.9’da verilen çizgelerin analizleri yapıldıktan sonra aşağıdaki

çıktılar sistem tarafından elde edildi.

 Şekil 4.9 K5 Tam Çizgesi ve K3,3 İki Parçalı Çizgesi

 Şekil 4.10 K5 Çizgesinin Tepelerinin ve Ayrıtlarının Tespiti

OpenCV kütüphanesi kullanılarak sisteme yüklenen K5 çizgesinin tepeleri

belirlendi. Koordinatlar kullanıcıya belirtilmek amacıyla resim üzerinde görüntü

işleme teknikleri kullanıldı. Tespit edilen koordinatlar bir numpy dizisi içine

eklenildi. Daha sonra belirlenen ayrıtların bu numpyarray noktaları kullanılarak

optimize edilmesi için veriler uygun hale getirildi. Şekil 4.11’de sağdaki

görselde çizgenin ayrıtlarının belirlenmesi png formatındaki dosya üzerinde

55

canny metodu çalıştırıldı. Daha yalın bir formata dönüştürülen png dosyası daha

sonra sınır belirleme algoritması kullanılarak analiz edildi Belirlenen ayrıtların

hepsi bir numpy dizisine eklendi. Daha sonra tepe koordinatları ve optimizasyon

algoritmaları kullanılarak herhangi iki tepe arasında bulunan ayrıtlar ayrı bir veri

olarak elde edildi. Elde edilen ayrıtlar ve tepeler kullanılarak bir grapml dosyası

oluşturuldu. Daha sonra graphml dosyasında temsil edilen çizgeye düzlemsellik

testi yapıldı ve düzlemsel bir çizge olmadığı için düzlemsel gösterim elde

edilemedi. Kullanıcıya bununla ilgili bilgi verildi.

 Şekil 4.11 K3,3 Çizgesinin Tepelerinin ve Ayrıtlarının Tespiti

Şekil 4.11 soldaki görselde K3,3 çizgesinin tepeleri belirlenmiştir sağdaki

görselde ise K3,3 çizgesinin ayrıtları HoughLine yöntemiyle belirlenmiştir.

<?xml version='1.0' encoding='utf-8'?>

<graphml xmlns="http://graphml.graphdrawing.org/xmlns"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns

http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd"><graph

edgedefault="directed"><node id="(94.0, 1330.0)"/>

<node id="(92.0, 730.0)"/>

<node id="(1214.0, 730.0)"/>

<node id="(1214.0, 1330.0)"/>

<node id="(644.0, 92.0)"/>

<edge source="(94.0, 1330.0)" target="(92.0, 730.0)"/>

<edge source="(1214.0, 730.0)" target="(92.0, 730.0)"/>

<edge source="(1214.0, 730.0)" target="(94.0, 1330.0)"/>

<edge source="(1214.0, 1330.0)" target="(92.0, 730.0)"/>

<edge source="(1214.0, 1330.0)" target="(94.0, 1330.0)"/>

<edge source="(1214.0, 1330.0)" target="(1214.0, 730.0)"/>

56

<edge source="(644.0, 92.0)" target="(92.0, 730.0)"/>

<edge source="(644.0, 92.0)" target="(94.0, 1330.0)"/>

<edge source="(644.0, 92.0)" target="(1214.0, 730.0)"/>

<edge source="(644.0, 92.0)" target="(1214.0, 1330.0)"/>

</graph></graphml>

Yukarıdaki graphml formatındaki dosya K5 çizgesini içeren bir png

dosyasını analiz ettikten sonra elde edilen veriler görüntü işleme yöntemleriyle

tepeleri ve ayrıtları belirlenip yukarıdaki formata dönüşümü sağlandı.

<?xml version='1.0' encoding='utf-8'?>

<graphml xmlns="http://graphml.graphdrawing.org/xmlns"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns

http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd"><graph

edgedefault="directed"><node id="(1350.0, 802.0)"/>

<node id="(1340.0, 142.0)"/>

<node id="(90.0, 94.0)"/>

<node id="(90.0, 772.0)"/>

<node id="(610.0, 774.0)"/>

<node id="(600.0, 132.0)"/>

<edge source="(1350.0, 802.0)" target="(1340.0, 142.0)"/>

<edge source="(1350.0, 802.0)" target="(90.0, 94.0)"/>

<edge source="(90.0, 772.0)" target="(1340.0, 142.0)"/>

<edge source="(90.0, 772.0)" target="(90.0, 94.0)"/>

<edge source="(610.0, 774.0)" target="(1340.0, 142.0)"/>

<edge source="(610.0, 774.0)" target="(90.0, 94.0)"/>

<edge source="(600.0, 132.0)" target="(1350.0, 802.0)"/>

<edge source="(600.0, 132.0)" target="(90.0, 772.0)"/>

<edge source="(600.0, 132.0)" target="(610.0, 774.0)"/>

</graph></graphml>

Yukarıdaki graphml formatındaki dosya K3,3 çizgesini içeren bir png

dosyasını analiz ettikten sonra elde edilen veriler görüntü işleme yöntemleriyle

tepeleri ve ayrıtları belirlenip yukarıdaki formata dönüşümü sağlandı.

57

5. TARTIŞMA VE SONUÇ

Çizge teorisi matematikten fiziğe bilgisayar bilimlerinden enerji

sistemlerine hatta günümüz teknolojik ürünlerinin PCB kartlarının tasarımının

modellenmesine kadar çok geniş alanlarda kullanılan optimizasyonu yapılan bir

konu olduğu için önümüzdeki yıllarda öneminin daha da artacağı

öngörülmektedir. Özellikle PCB kart tasarımı ve enerji dağıtım sistemlerinde bir

çizgenin düzlemsel gösterimi büyük öneme sahip oldu için bu konudaki soruna

bir çözüm getirecek çalışma gerçekleştirilmiştir. Çalışma sonucunda çizge

teorisinin bir alt konusu olan düzlemsel çizgeler ve çizgelerin düzlemsel

gösterimine yönelik önemli katkılar sağlayacak bir çalışma gerçekleştirilmiştir.

Günümüz bilgisayarlar ve görüntü kaydetme aygıtlarının donanımlarının

gelişmesiyle birlikte görüntülerin işlenmesi ve anlamlandırılması adına büyük

gelişmeler sağlandı. Bu çalışma kapsamında da alınan png dosyası formatındaki

bir görüntünün görüntü işleme algoritmalarıyla çizge modelinin belirlenmesi

hususunda önemli konular çözüme kavuşturuldu. Png dosyasındaki çizgenin

tepelerinin hatasız olarak belirlenmesi için gerekli geliştirmeler yapıldı. Uygun

formatta çizge içeren bir png dosyasının tepelerin koordinatları hatasuz olarak

belirlendi. Tepe bazlı bir yaklaşım kullanarak iki tepe arasındaki ayrıtların

hatalardan arındırılması için optimizasyon yapıldı OpenCV görüntü işleme

algoritmaları çizgelerin tepe noktalarını tanımada başarılı sonuçlar vermektedir

fakat ayrıtları belirlemek için kullanılan algoritmalar yüksek hata oranıyla

çalışmaktaydı. Bu çalışma kapsamında ayrıtların belirlenmesi sırasında oluşan

hatalara spesifik çözümler getirmiştir.

Çalışmanın ikinci fazında graphml moduna dönüştürülen çizgenin türünün

belirlenmesi için çizge belirleme algoritmaları çalıştırıldı. Çizgenin düzlemsellik

kontrolü yapıldı. Son aşamada eğer çizge düzlemsel bir çizge olarak ifade

edilebiliyorsa çizgenin düzlemsel olarak png formatında gösterilmesi sağlandı.

Bu çalışma sırasında matplotlib kütüphanesinden faydalanıldı. Matplotlib

kütüphanesi graphml veri formatında verilen çizgeleri görselleştirme konusunda

oldukça başarılıdır fakat png dosyaları için bir desteği bulunmamaktadır. Bu

çalışmada png dosyasından görüntü işleme yoluyla belirlenen niteliklerin

matplotlib kütüphanesinin işlem yapabileceği graphml veri formatına dönüşümü

sağlanmıştır.

58

 KAYNAKLAR DİZİNİ

Bollobas, B., 1998. Modern Graph Theory. Springer Science + Business

Media, Inc,New York.

Bondy, J.A., Murty, U.S.R., 2008, Graph Theory, Springer., New York.

Burden, J., Cleland, M., “Tracking a single cyclist during a team

changeover on a velodrome track with Python and OpenCV”,

https://www.sciencedirect.com/science/article/pii/S1877705810003449 (Erişim

Tarihi: 20 Eylül 2022)

Büyükköse, Ş., Kaya, G.K., 2019, Çizge Teoriye Giriş. Nobel Yayınları,

Ankara.

Diestel, R., 2017. Graph Theory, Fifth Edition (Graduate Texts in

Mathematics, 173). Springer, 448p, Berlin.

Dominguez, C., Heras, J., “IJ-OpenCV: Combining ImageJ and

OpenCV for processing images in biomedicine”,

https://www.sciencedirect.com/science/article/abs/pii/S0010482517300823

(Erişim Tarihi: 05 Mayıs 2020)

Hoste, J., Shanahan., P.D., 2001. Trace fields of twist knots. Journal of

Knot Theory and Its Ramifications, 10(4), 625–639.

Kaehler, A., Bradski, G., 2007. Learning OpenCV 3, O'Reilly Media

Kelmans, A.K., 1981. The concept of a vertex in a matroid, the non-

separating cycles in a graph and a new criterion for graph planarity. In: Algebraic

Methods in Graph Theory, Issue 25, Vol. 1. Lovasz, L. and Sos, V. T. (eds.).

North-Holland, pp. 345–388, Amsterdam.

Kuratowski, K., 1930. Sur le probleme des courbes gauches en

Topologie. Fundamenta Mathematicae, 15(1): 271-283.

https://www.sciencedirect.com/science/article/pii/S1877705810003449
https://www.sciencedirect.com/science/article/abs/pii/S0010482517300823

59

MacLane, S., 1937. A combinatorial condition for planar graphs.

Fundamenta Mathematicae, 28: 22–32.

Murasugi, K., 1989. Invariants of Graphs and Their Applications to Knot

Theory. Algebraic Topology Poznan, pp. 83–97 and (1991). Lecture Notes in

Mathematics, Vol. 1474, Springer, Berlin, Heidelberg.

Rosen, K., 2012. Discrete Mathematics and its Applications”, Mc Graw

Hill.

Schnyder, W., 1989. Planar graphs and poset dimension. Order 5: 323–

343.

Sirkov, S., Novikov, L.,“The algorithm development for operation of a

computer vision system via the OpenCV library”,

https://www.sciencedirect.com/science/article/pii/S1877050920303161 (Erişim

Tarihi 20 Aralık 2022)

Stillwell, J., 1993. Classical topology and combinatorial group theory (2nd

ed.). Springer, 348 pages, Berlin.

60

TEŞEKKÜR

Bu çalışmamın her safhasında ve her anında, manevi desteklerini her an

hissettiğim ve hiç eksik etmeyen aileme, bilgi ve tecrübesiyle bana yön veren,

beni destekleyen ve bu çalışmamda benden tüm yardımlarını esirgemeyen sayın

hocam Prof. Dr. Vecdi AYTAÇ’a ve her zaman yanımda olan arkadaşlarıma çok

teşekkür ederim.

