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POLİSOMNOGRAFİ İŞARETLERİ KULLANILARAK YAPAY SİNİR AĞLARI 

VE UYARLAMALI SİNİRSEL BULANIK MANTIK SİSTEMİ İLE 

UYKU VE UYKU APNESİNİN SKORLANMASI 
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Doktora Tezi, Haziran 2023 

Danışman: Prof. Dr. Kerim GÜNEY 

ÖZET 

Uyku bozuklukları, insanların hayat kalitesini doğrudan etkiler. Polisonmografi 

işaretlerine dayalı görsel uyku ve uyku apnesi skorlama, pahalı, karmaşık ve zaman 

alıcıdır. Bu sebepten dolayı uyku ve uyku apnesinin otomatik olarak skorlanmasına dayalı 

çok sayıda farklı metot literatürde sunulmuştur.  

Bu tezde, polisomnografi (PSG) işaretleri kullanılarak uyku ve uyku apnesi skorlaması 

yapılmıştır. Uyku skorlaması, elektroensefalogram (EEG), elektrookülogram (EOG) ve 

elektromiyogram (EMG) işaretleri kullanılarak yapay sinir ağları ile gerçekleştirilmiştir. 

Uyku skorlaması ile uyanıklık, hızlı ve hızlı olmayan göz hareketi evreleri belirlenmiştir. 

Uyku apnesi, solunum işaretleri kullanılarak skorlama algoritması, yapay sinir ağları ve 

uyarlamalı sinirsel bulanık mantık sistemi ile skorlanmıştır. Uyku apnesi skorlaması ile 

bir hastanın uyku apnesi olduğu zaman dilimleri belirlenmiştir. Görsel skorlama kuralları 

kullanılarak bir skorlama algoritması oluşturulmuştur.  

Bu tezde elde edilen uyku ve uyku apnesi skorlama sonuçları literatürdeki mevcut 

metotların sonuçları ile karşılaştırılmıştır. Yapay sinir ağları ve uyarlamalı sinirsel 

bulanık mantık sistemi sonuçlarının literatürdeki sonuçlarla iyi bir uyumluluk içerisinde 

olduğu gözlemlenmiştir.  

Anahtar Kelimeler:  Polisomnografi işaretleri, uyku skorlama, uyku apnesi skorlama, 

skorlama algoritması, yapay sinir ağları, uyarlamalı sinirsel bulanık mantık sistemi. 
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SLEEP AND SLEEP APNEA SCORING WITH ARTIFICIAL NEURAL 

NETWORKS AND ADAPTIVE-NETWORK-BASED FUZZY INFERENCE 

SYSTEMS USING POLYSOMNOGRAPHY SIGNALS 

Osman AYDOĞAN 

Erciyes University, Graduate School of Natural and Applied Sciences 

PhD Thesis, June 2023 

Supervisor: Prof. Dr. Kerim GÜNEY 

ABSTRACT 

Sleep disorders directly influence the quality of life of human beings. Manual visual sleep 

and sleep apnea scoring on the base of polysomnography signals are expensive, complex, 

and time-consuming. For this reason, many different methods based on automatic scoring 

of sleep and sleep apnea have been presented in the literature. 

In this thesis, sleep and sleep apnea scoring were achieved by using polysomnography 

(PSG) signals. Sleep scoring was performed with artificial neural network (ANN) using 

electroencephalogram (EEG), electrooculogram (EOG), and electromyogram (EMG) 

signals. Wakefulness, rapid eye movement (REM), and non-rapid eye movement 

(NREM) stages were determined by sleep scoring. Sleep apnea was scored with a scoring 

algorithm, ANN and adaptive-network-based fuzzy inference system (ANFIS) using 

respiratory signals. With sleep apnea scoring, the time intervals when a patient has sleep 

apnea were determined. Visual scoring rules were used for producing a scoring algorithm.  

The sleep and sleep apnea scoring results obtained in this thesis were compared with the 

results of the methods available in the literature. It was observed that the results of ANN 

and ANFIS are in good agreement with the results in the literature. 

Keywords: Polisomnographic signals, sleep scoring, sleep apnea scoring, scoring 

algorithm, artifical neural networks, adaptive-network-based fuzzy inference systems. 
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GİRİŞ 

İnsan hayatının en önemli amaçlarından birisi de sağlıklı yaşamaktır. Bu nedenle sağlıklı 

yaşamak için yapılan çalışmalar her zaman önemli olmuştur. Biyomedikal işaret işleme 

yöntemlerinin gelişmesi ile bu konuda yapılan çalışmalar yeni bir boyut kazanmıştır. PSG 

işaretlerinin kaydedilmesi noninvaziv bir yöntemdir. Bu tez çalışmasında PSG 

işaretlerinin işlenmesi ve uyku apnesi hastalarında teşhis ve tedavi planlaması için uyku 

ve uyku apnesi skorlaması yapılmıştır. 

Tezin birinci bölümünde uyku ve uyku apnesi hakkında genel bilgiler verilmiştir. Ayrıca 

PSG işaretlerinin önişleme yöntemleri, işaret özelliklerinin çıkarılması, skorlama 

yöntemleri, yapılan skorlamaların doğruluğunun test edilmesi konularında yapılan 

çalışmalar hakkında literatür bilgileri sunulmuştur. 

İkinci bölümde her bir uyku seviyesinde PSG işaretlerinin özellikleri, hipopne ve uyku 

apnesi durumlarında PSG işaretlerinde görülen değişimler gösterilmiştir. Bu değişimler, 

skorlama kuralları ile değerlendirilerek işaretlerin skorlanmasında kullanılmaktadır.  

Üçüncü bölümde yapay sinir ağları ve uyarlamalı sinirsel bulanık mantık sistemi ve bu 

yöntemlerin uyku ve uyku apnesinin skorlanmasında kullanımı açıklanmıştır. Ayrıca 

morfolojik işlemler hakkında bilgi verilmiştir. 

Dördüncü bölümde PSG işaretleri kullanılarak YSA ile uyku skorlaması yapılmıştır. 

Farklı YSA modelleri ve farklı öğrenme yöntemleri ile denemeler yapılmış ve bu 

denemelerin sonuçları açıklanmıştır. Uyku apnesi ise görsel skorlama kuralları ile uyumlu 

bir skorlama algoritması, YSA ve ANFIS kullanılarak skorlanmış ve her bir skorlama 

yönteminin sonuçları ayrı ayrı verilmiştir. 

Beşinci bölümde yapılan bütün skorlama çalışmaları değerlendirilmiştir. 

 



 

 

1. BÖLÜM 

GENEL BİLGİLER ve LİTERATÜR ARAŞTIRMASI 

1.1. Giriş 

Bu bölümde uyku, uyku apnesi ve PSG işaretleri hakkında genel ve tanımlayıcı bilgiler 

verilmiştir. Ayrıca uyku ve uyku apnesinin skorlanmasında kullanılan işaretler, önişleme, 

işaret özelliklerinin çıkarılması, skorlama yöntemleri ve doğruluk testleri hakkında 

literatür özeti sunulmuştur. 

1.2. Uyku Fizyolojisi 

İnsanın bir günlük yaşam döngüsü uyanıklık ve uyku hali olarak isimlendirilir [1]. Kişi, 

uyanıklık halinde etrafında olan olayların farkında iken uyku esnasında bu olayların 

farkında değildir. Uyku, kişinin ses, ışık ve benzeri fiziki uyarılarla uyanabileceği bir 

bilinçsizlik durumu olarak tanımlanmaktadır [2]. Uyku, sağlıklı bir yetişkin için ortalama 

7-8 saattir. Uyku, bir bütün zaman dilimi olmayıp, birbirini izleyen iki farklı dönemden 

oluşur. Uykunun birinci döneminde beyin dalgaları çok yavaşlamaktadır. Bu döneme 

yavaş dalga uykusu (NREM uykusu) denir. Uykunun ikinci döneminde ise gözlerde hızlı 

hareketler oluşmaktadır. Bu döneme hızlı göz hareketi uykusu  

(REM uykusu) denir. 

Gece uykusunun büyük bir kısmı yavaş dalga uykusu tipinde geçer. Bu uyku, saatler süren 

uyanıklık sonrası uykunun ilk saatlerindeki derin ve dinlendirici tipteki bölümüdür. Bu 

dönemde vücut hareketleri azalmış ve vücut kasları gevşemiş olduğundan sakin bir uyku 

dönemidir. Kan basıncı, metabolizma ve solunum hızında %10 ile %30 arasında azalma 

görülür [2]. 

Normal bir gecede 5 ile 30 dakika arasında değişen REM uykusu dönemleri, uyku 

boyunca periyodik olarak ortaya çıkar. REM uykusu dönemleri yetişkinlerde uyku 

süresinin %20’si ile %25’i arasındadır ve ortalama 90 dakikada bir tekrarlanır [1, 2]. Bu 

uyku dönemi sakin bir dönem değil, insan beyninin aktif olduğu bir dönemdir. Kişi çok 
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uykulu ise, REM uyku dilimlerinin süreleri kısalır hatta ortadan kalkar. Diğer taraftan, 

kişi gece boyunca gittikçe daha fazla dinlenmiş olacağından REM uykusunun dilimleri 

giderek uzar. Beyin REM uykusu döneminde yüksek bir etkinliğe sahip olduğundan, 

beyin metabolizmasında %20 oranında artma gözlenir. Bu dönemde kaydedilen EEG 

dalgaları, uyanık kişinin EEG dalgalarına benzer [2]. 

1.3. Uyku Apnesi 

Günlük hayatın önemli bir parçası olan uyku, bir dinlenme ve yenilenme zamanıdır. 

Ancak zamanla vücudu yıpranan ve sağlığı bozulan insanların uyku esnasında 

dinlenmeleri zorlaşmakta hatta dinlenememektedirler. Bu durumun önemli sebeplerinden 

birisi de bazı kişilerde uyku esnasında görülen nörolojik aktivite bozukluklarına veya 

boğazda bulunan kaslarının gevşemesine bağlı olarak solunumun ya azalması ya da 

tamamen durmasıdır. Solunumun en az 10 saniye boyunca en az %70 azalması hipopne, 

en az %90 azalması veya durması ise upku apnesi olarak tanımlanmaktadır [3]. Uyku 

apnesinin meydana geliş şekline göre üç farklı türü vardır [3-7]. 

Tıkayıcı upku apnesi (TUA, Obstructive Sleep Apnea, OSA): En çok görülen ve üst 

solunum yollarının gevşemesinden kaynaklanan bu uyku apnesi tipinde, solunumun 

tamamen durmasına rağmen göğüs hareketlerinde solunum çabası görülmektedir. 

Merkezi uyku apnesi (Central Sleep Apnea, CSA): Uyku apnesinin merkezi sinir 

sisteminden kaynaklanan bu tipinde solunumun tamamen durmasına rağmen solunum 

çabası yoktur. 

Karmaşık uyku apnesi (Complex Sleep Apnea): Bu uyku apnesi, tıkayıcı uyku apnesinin 

ve merkezi uyku apnesinin bir arada görüldüğü durumdur. Bu uyku apnesi, merkezi uyku 

apnesi gibi görülür. Ancak solunum çabasının yokluğu, kısa zaman aralıkları ile yerini 

solunum çabasına bırakır [3-7]. 

Bir saat zaman diliminde ortalama uyku apnesinin sayısı Apne Hipopne İndeksi (AHİ) 

olarak tanımlanır. Uyku apnesi skorlaması yapılan hastalar AHİ’ne göre sınıflandırılır.  
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Bu sınıflandırmaya göre: 

a) Eğer AHİ < 5 ise bu durum normaldir ve bu kişi uyku apnesi hastası değildir. 

b) Eğer 5 ≤ AHİ < 15 ise hasta hafif seviyede uyku apnesidir. 

c) Eğer 15 ≤ AHİ < 30 ise hasta orta seviyede uyku apnesidir. 

d) Eğer AHİ ≥ 30 ise hasta ağır seviyede uyku apnesi hastasıdır. 

Doksandan fazla uyku bozukluğu olmasına rağmen bunların arasında en yaygın olanı 

uyku apnesidir [4].  Uyku apnesi üst solunum yolunda görülen ve insan sağlığını tehdit 

eden ciddi bir hastalıktır.  Bu hastalık tedavi edilmezse başta kalp ve dolaşım sistemleri 

olmak üzere bütün insan vücudu için tehlikeli olmaktadır [3].  

Uyku apnesinin teşhisi, hasta şikayetleri ve hasta yakınlarının gözlemleri ile tam 

donanımlı uyku laboratuvarı bulunan hastanelerde yapılmaktadır [3]. Hastadan alınan 

PSG işaretleri bir tıbbi uzman tarafından skorlanarak AHİ hesaplanmaktadır. Bu 

incelemenin sonucuna göre hipopne veya uyku apnesi teşhisi konulursa ya tedavi 

planlanmakta ya da uyku esnasında solunuma yardımcı olmak için devamlı pozitif 

havayolu basıncı (Continuous Positive Airway Pressure, CPAP) cihazı önerilmektedir. 

1.4. Polisomnografi İşaretleri 

Uyku ve uyku apnesi ile ilgili çalışmaların birçoğu esasında sayısal hale dönüştürülen 

biyolojik işaretler ile yapılan işaret işleme çalışmalarıdır. Hastadan alınan biyolojik 

işaretler PSG cihazı ile kaydedilmektedir. Ortalama sekiz saatlik gece uykusunu hastane 

laboratuvarında geçiren hastadan, PSG cihazı ile 21 adet biyolojik işaret kaydedilmekte 

olup bu işaretlere PSG işaretleri denilmektedir. PSG cihazı ile EEG, EMG, EOG, 

elektrokardiyogram (EKG, electrocardiogram, ECG), solunum basıncı, solunum çabası, 

oksijen saturasyonu, sıcaklık ve vücut hareketleri ile ilgili biyolojik işaretler 

kaydedilmektedir. PSG işaretleri, uyku skorlamasında, apne/hipopne skorlamasında, 

huzursuz bacak sendromu ve benzeri uyku hastalıklarının teşhisinde kullanılmaktadır.  

PSG işaretleri birçok biyolojik işaretten oluşur. Bu işaretlerin işlenmesi ile uyku [8], uyku 

apnesi [9, 10, 11], K-Kompleksi [12] ve uyku iğciklerinin (sleep spindle) skorlanması 

[13, 14], kalp atış hızı değişkenliğinin (KAHD, Heart Rate Variability, HRV) 

hesaplanması [15] gibi çalışmalar yapılmıştır. 
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1.5. Uyku Skorlama İle İlgili Yapılan Çalışmalar 

PSG işaretleri ile uyku skorlama kuralları Amerikan Uyku Tıbbı Akademisi (American 

Academy of Sleep Medicine, AASM) tarafından belirlenmiştir [16, 17, 18]. Uyku 

skorlaması için yapılan çalışmalarda uyku seviyelerinin en temel belirleyicisi olan EEG 

işareti kullanılırken [19-24] bazı çalışmalarda EEG ve solunum işareti birlikte 

kullanılmıştır [21]. Uyku apnesi hastalarında uyku skorlaması için yapılan diğer bir 

çalışmada ise fotopletismografiden (photoplethysmography, PPG) elde edilen KAHD 

kullanılmıştır [25]. 

Uyku skorlanması için kullanılan işaretlerde görülen artefaktlarının giderilmesi, 

istenmeyen frekansların ve sabit eğilimlerin temizlenmesi için sayısal filtreleme, 

regresyon, dalgacık dönüşümü (DD, Wavelet Transform, WT), kör kaynak ayrıştırma 

(Blind Source Separation, BSS) ve hareketli ortalama (Moving Average, MA) gibi bir 

dizi önişlem kullanılmıştır [22, 25]. Ayrıca işaretler, zaman ve frekans özelliklerini elde 

etmek maksadıyla DD veya ayarlanabilir Q faktörlü dalgacık dönüşümü (Tunable-Q 

Factor Wavelet Transform, TQWT) gibi yöntemlerle alt bandlarına ayrılmıştır [19, 20]. 

Uyku skorlama, uyku esnasında kaydedilen EEG işaretinin özelliklerinin yaklaşık sabit 

kaldığı zaman dilimlerine ayrılarak işaretlenmesidir. Biyolojik işaretlerin kullanılma 

şekline göre ya bütün frekans bandının ya da alt bandlarına ayrılarak her bir frekans 

bandının ortalama (mean), etkin değer (rms), enerji, güç, varyans (variance), standart 

sapma, çarpıklık (skewness), basıklık (kurtosis) ve orta değer (median) gibi zaman ve 

frekans özellikleri hesaplanır. Bu özellikler kullanılarak destek vektör makineleri 

(Support Vector Machines, SVM) [22, 25], çok sınıflı destek vektör makineleri 

(Multiclass Support Vector Machines, MC-SVM) [21], çok sınıflı en küçük kareler destek 

vektör makineleri (Multiclass Least Squares Support Vector Machines, MC-LS-SVM) 

[19], K-En Yakın Komşuluk Algoritması (K-Nearest Neighbor Classification Algorithm, 

KNN) [22, 25], doğrusal diskriminant analizi (Linear Discriminant Analysis, LDA) [22], 

adaptif destekleme (adaptive boosting) [20, 26] ve YSA [22-24] gibi yöntemler ile uyku 

skorlaması yapılmıştır. 

Yapılan uyku skorlamasının başarısını göstermek için hassasiyet, seçicilik, pozitif tahmin 

değeri, negatif tahmin değeri, doğruluk (overall accuracy) ve f-skor gibi testler 

yapılmıştır. Uyku skorlama çalışmalarında, kullanılan biyolojik işaretlere ve 
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sınıflandırma yöntemlerine göre %70 ile %90 arasında değişen doğruluk oranları elde 

edilmiştir [19-25]. 

1.6. Uyku Apnesi Skorlama İle İlgili Yapılan Çalışmalar 

PSG işaretleri kullanılarak görsel skorlama yöntemleri ile uykuda solunum 

bozukluklarının tanısının konulması altın standarttır [3]. Uyku apnesinin skorlanması için 

PSG işaretlerinin bütünü bir uzman tarafından görsel olarak incelenir.  

Uyku apnesinin otomatik olarak skorlanması için yapılan çalışmalarda ya PSG işaretleri 

[4, 6, 7, 27-29] ya da tek kanal işaretler kullanılmıştır [26, 30, 31-48]. Solunum ve oksijen 

saturasyonu işaretleri, uyku apnesinin en belirleyici işaretleridir. Tek kanal işaret ile uyku 

apnesi skorlama çalışmalarında çoğunlukla ya solunum işareti ya da solunum işareti ve 

oksijen saturasyonu birlikte kullanılmıştır [30, 40]. Uyku apnesi esnasında solunum 

azaldığından veya durduğundan kanda oksijen saturasyonu azalmaktadır. Kandaki 

oksijen saturasyonunu kontrol ederek uyku apnesi hakkında tahminde bulunulabilir. 

Yapılan çalışmalarda, sadece oksijen saturasyonunun %3 azalması (3% Oxygen 

Desaturation Index, ODI3) uyku apnesi olarak değerlendirilmektedir [26, 45-48]. 

Solunum ve EEG işaretleri ile ilgili bir çalışmada, bu iki işaret arasında anlamlı istatistiki 

bağlantı bulunmuş ancak bağlantı fizyolojisi tam anlaşılamamıştır [49]. 

Tıkayıcı uyku apnesi esnasında hastada solunum çabası artmaktadır. Bunun sonucu 

olarak solunum ile ilgili göğüs ve karın hareketlerine bakılarak uyku apnesi skorlaması 

yapılabilmektedir [41, 42]. Aynı şekilde solunum çabası başladığından, hastanın solunum 

sesleri de skorlama için kullanılmıştır [43, 44]. 

Solunumun azalması veya durması halinde, kalbin çalışması etkilenmekte ve EKG 

işaretlerine yansımaktadır. Normal solunum ve uyku apnesi esnasında EKG işaretleri 

incelenerek farklar ortaya çıkarılmış ve uyku apnesi skorlama çalışmalarında 

kullanılmıştır [31-39]. 

Uyku apnesi, sadece yetişkinlerde değil aynı zamanda çocuklarda da görüldüğünden bu 

konuda da çalışmalar yapılmıştır [29, 30, 45]. Yetişkin kişiler için yapılan bazı 

çalışmalarda tek kanal işaret kullanılarak başarılı sonuçlar elde edilmesine rağmen bu 

yöntemlerin 15 yaş altı çocuklarda yeterince iyi sonuç vermemesi, çocuklar için yeni 

algoritmaların geliştirilmesini zorunlu kılmıştır [29]. 
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Uyku apnesi ile ilgili yapılan diğer bazı çalışmalar ise ucuz, hasta konforunu artıran, 

uzaktan erişim sağlayan elektronik cihaz ve algoritma geliştirme çalışmalarıdır  

[26, 30, 31, 40-42, 44, 46]. Aslında, AASM tarafından yayımlanan raporlarda uyku apnesi 

hastalığına taşınabilir cihazlar ile teşhis konulması, yeterince çalışma yapılmadığı ve 

etkinliklerine dair yeterince delil olmadığı gerekçesi ile tavsiye edilmemektedir [46]. 

Uyku apnesi ile ilgili çalışmalarda, biyolojik işaretler bir önişlemeye tabi tutulmakta ve 

skorlama için hazırlanmaktadır. Önişlemede biyolojik işaretlerin filtrelenmesi, sabit (DC) 

değerlerin veya işaret olarak kabul edilemeyecek işaret dilimlerinin çıkarılmasının 

yanında (artefakt giderme) işaret genliklerinin farklarının azaltılması için normalizasyon 

işlemleri yapılmaktadır. Daha sonra işaretlerin zaman ve frekans özelliklerine bakmak 

için Fourier dönüşümü (FD, Fourier Transform, FT) [31, 32, 41, 47], altband kodlama 

için DD [4, 6, 7, 29, 42] ve TQWT [36, 37], olaylar arasındaki olasılıkları değerlendirmek 

için Gizli Markov Modeli (Hidden Markov Model, HMM) [33], olasılık dağılımlarını 

görmek için Normal Ters Gauss Dağılımı (Normal Inverse Gaussian, NIG) [37] ve 

istatistik analiz [46] yapıldığı görülmüştür. 

İşaretler bir ön işlemeye tabi tutulduktan sonra işaret özellikleri çıkarılır. Skorlamanın 

başarısı, doğru sınıflandırıcıyı seçmekle birlikte doğru işaret özelliklerinin seçilmesine de 

bağlıdır. Skorlama işlemlerinde biyolojik işaretlerin genlik, en büyük değer, en küçük 

değer, ortalama, enerji, varyans, standard sapma, çarpıklık ve basıklık gibi zaman ekseni 

özellikleri [29, 30, 38, 47, 48], dalgacık katsayıları [7] ve frekans özellikleri [48] 

kullanılmıştır.  

Tek kanal EKG ile uyku apnesi çalışmalarında QRS kompleksinin genliği, enerjisi,  

R-R aralıklarındaki farklar gibi zaman eksenine ait şekil (morfolojik) özellikleri [31, 34], 

KAHD [32, 39], EKG işaretinin ortalaması, varyans ve basıklık [38] gibi işaret özellikleri 

kullanılmıştır [25]. Ayrıca hesaplanan işaret özelliklerinin hangilerinin daha öncelikli ve 

skorlama işleminde daha ağırlıklı olduğunu belirlemek için SVM gibi yöntemlerin 

kullanıldığı görülmektedir [4]. 

Uyku ve uyku apnesi ile ilgili yapılan çalışmalarda nihai işlem işaretlerin skorlanması 

veya sınıflandırılmasıdır. Biyolojik yapı çok karmaşık bir sistem olduğundan, biyolojik 

işaretlerin sınıflandırılması için YSA [4, 6, 7, 26-29, 33, 35, 36, 43, 46, 47], HMM [33], 

SVM [29, 33-35], LDA [34, 44, 48], en küçük kareler destek vektör makineleri  
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(least-squares support vector machine, LS-SVM) [34], KNN [35, 48], Adaptive Boosting 

(AdaBoost, makine öğrenme algoritması) [37], Bootstrap Aggregating (Bagging, makine 

öğrenme algoritması) [38], çok katmanlı özel algoritmik yapılar [42], çoklu doğrusal 

regresyon (Multiple Linear Regression, MLR) [47] ve lojistik regresyon (Logistic 

Regression, LR) [29, 30, 48] gibi sınıflandırıcılar kullanılmaktadır. Skorlama başarısını 

ve doğruluğunu artırmak için bu yapılardan birkaç tanesinin bir arada kullanıldığı 

çalışmalar da yapılmıştır [29, 33-35, 47, 48]. 

Yapılan skorlama ve sınıflandırmanın doğruluğunun değerlendirilmesi için doğruluk 

testinin yapılması gerekmektedir. Bu maksatla altın standart olarak kabul edilen yöntemle 

yapılan skorlama ve önerilen model ile yapılan skorlama karşılaştırılır. Bu karşılaştırma 

için doğruluk [4, 6, 7, 27, 28, 31-35, 39, 45], seçicilik, hassasiyet, pozitif tahmin değeri, 

negatif tahmin değeri [29, 30, 32, 33, 36-38, 40, 43, 44, 48], f-skor [29] ve korelasyon 

[26, 41, 46, 47] gibi test yöntemleri kullanılmıştır. 

1.7. Tezin Amacı 

Bu tez çalışmasının amacı PSG işaretleri kullanılarak uyku ve uyku apnesinin 

skorlanmasıdır. PSG işaretleri Kahramanmaraş Sütçü İmam Üniversitesi Tıp Fakültesi 

uyku laboratuvarında kaydedilmiştir. Biyolojik işaretlerin değerlendirilerek bir sonuç 

elde edilmesi için önişleme, işaret işleme, işaret özelliklerinin çıkarılması, skorlanması, 

sınıflandırılması ve sonuçların değerlendirilmesi gibi birçok işlem sıra ile gerçekleştirilir. 

Her bir aşama kendi içinde sıralı veya eşzamanlı birçok alt işlem içerebilir. 

Hem uyku hem de uyku apnesinin skorlanması, bir tıbbi uzmanın PSG işaretlerini görsel 

olarak incelemesi ile yapılmaktadır. Görsel skorlama karmaşık, pahalı ve zaman alıcı bir 

işlemdir [26, 30]. Bu incelemenin bilgisayar algoritmaları ile otomatik olarak yapılması 

hem yorgunluk ve aşırı uzmanlaşma gibi kişisel zafiyetlerden bağımsız hem çok daha 

hızlı hem de çok daha ucuz olmaktadır. Bu çalışmada biyolojik işaretlerin önişleme 

yöntemleri, özelliklerinin çıkarılması, skorlanması ve yapılan skorlamanın doğruluk 

testleri anlatılmış ve PSG işaretleri ile uygulama yapılmıştır. 

Gerçek dünyadan alınan biyolojik işaretlerde farklı kaynaklardan gelen gürültüler 

bulunduğundan işaretlerin önce bu gürültülerden arındırılması gerekmektedir. Bu 

maksatla ya istenmeyen frekansların temizlenmesi için filtreler kullanılmakta ya da 
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istatistiki yöntemlerle artefakt giderme işlemi yapılmaktadır. Bu tez çalışmasında her iki 

yöntemde bir arada kullanılmıştır. 

Biyolojik işaretler ya zaman ekseninde ya da frekans ekseninde incelenirler. Bir işaretin 

zaman ekseninde morfolojik ve istatistik özelliklerine bakılırken, frekans ekseninde 

işaretin frekans ve güç dağılımlarına bakılmaktadır. İşaretler zaman ekseninde 

kaydedildiklerinden, morfolojik özelliklerine ve istatistiki dağılımlarına bakılırken 

herhangi bir dönüşüme gerek yoktur. Fakat frekans özellikleri ve güç dağılımlarının 

incelenmesinde, işaretin frekans eksenine dönüştürülmesi gerekir. Bu işlem Fourier 

dönüşümü ile yapılır. Fourier dönüşümü, çok fazla işlem gücü gerektirdiğinden hızlı 

Fourier dönüşümü (Fast Fourier Transform, FFT) geliştirilmiştir. Bir işaretin zaman 

ekseninde frekans özelliklerinin görülmesi zordur. Fakat frekans eksenine geçilince de 

zaman eksenindeki özellikleri kaybolmaktadır. Zaman ve frekans özelliklerini birlikte 

değerlendirebilmek için kısa zamanlı Fourier dönüşümü (Short Time Fourier Transform, 

STFT) ve Çok Çözünürlüklü Dalgacık Dönüşümü (ÇÇDD) geliştirilmiştir. Bu tez 

çalışmasında PSG işaretlerinin hem zaman hem frekans hem de morfolojik özelliklerine 

bakılmıştır. 

Bir biyolojik işaretin zaman eksenindeki ani değeri çoğu durumda önemli değildir. Bu 

sebeple işaretlerin özelliklerinin yaklaşık sabit kaldığı bir zaman dilimindeki değerlerine 

bakılır. Bu değerler işaret özellikleri olarak isimlendirilir. İşaret özelliklerinin çıkarılması 

hem karar mekanizmasını kolaylaştırır hem de işlem yükünü önemli miktarda azaltır. Bu 

tez çalışmasında işaretin genliği, en büyük değer, en küçük değer, ortalama, standart 

sapma, etkin değer, işaret enerjisi, işaret gücü ile frekans ve güç dağılımlarına bakılmıştır. 

Literatürde çok sayıda işaret özelliğinin kullanıldığı görülmektedir [25]. 

İşaret işleme çalışmalarında en çok yapılan işlemlerden birisi işaretlerin skorlanmasıdır. 

İşaretlerin skorlanması veya sınıflandırılması için, kurallara dayalı algoritmik yöntemler, 

istatistik yöntemler veya yapay zekaya dayalı yöntemler kullanılmaktadır. Bu tez 

çalışmasında uyku skorlamak için YSA, uyku apnesi skorlamak için uzman deneyimine 

dayanan algoritmik bir yöntem, YSA ve ANFIS kullanılmıştır. Ayrıca YSA ve ANFIS’in 

çıkışlarında morfolojik işlemlerin kullanılması ile skorlama başarısı artırılmıştır. 

 



10 
 

Bu tez çalışmasında yapılan uyku ve uyku apnesi skorlama işlemlerinin başarısını 

göstermek için doğruluk testleri yapılmıştır. Elde edilen sonuçlar ile literatürde daha önce 

yapılan çalışmaların sonuçları karşılaştırılarak bu çalışmanın güvenilirliği ve doğruluğu 

gösterilmiştir. 

 



 

 

2. BÖLÜM 

POLİSOMNOGRAFİ İŞARETLERİ 

2.1. Giriş 

Uyku ve uyku apnesinin skorlanması için PSG işaretleri kullanılmaktadır. Skorlama 

yapabilmek için önce uyku ve uyku apnesi esnasında PSG işaretlerinde görülen 

değişimlerin bilinmesi gerekmektedir. Bu bölümde, bu tez çalışmasında kullanılan PSG 

işaretlerinin zaman ve frekans özellikleri verilmiş; uyku, uyku apnesi ve hipopne 

esnasında işaret özellikleri açıklanmıştır. 

2.2. Elektroensefelogram İşaretleri 

Beynin yüzeyinden veya kafanın dış yüzeyinden kaydedilen elektrik işaretleri, beynin 

sürekli bir elektriksel aktivite içerisinde olduğunu gösteren önemli bir işarettir. Bu 

elektriksel aktivitenin yoğunluğu ve deseni uyku, uyanıklık, epilepsi ve hatta çeşitli 

psikolojik hastalıklar sebebi ile beynin farklı bölümlerinde farklı şekillerde görülür. 

Kaydedilen elektrik işaretlerindeki dalgalanmalara beyin dalgaları denir ve bütün kayıt 

EEG olarak isimlendirilir. 

Kafa derisinin üzerinden kaydedilen EEG işaretlerinin genliği 0-200 mV arasında ve 

frekansları ise birkaç saniyede 1’den 50 Hz’e kadar veya daha fazla olabilir. Bir biyolojik 

işaretin genliği, sıfır noktasına ya da bir referans noktaya göre ölçülen genlik değil, 

işaretin tepeden tepeye genliğini göstermektedir [17]. EEG dalgalarının karakteristiği, 

serebral korteksin ilgili bölümlerindeki aktivitenin derecesine bağlıdır. 

EEG işaretlerinin işlenmesi ile uyku skorlaması [18-25]; uyku esnasında görülen  

K-Kompleksi ve uyku iğciği (Sleep Spindle) olarak isimlendirilen geçici EEG 

bileşenlerinin tespit edilmesi [27]; uyarılma (arousal) olarak isimlendirilen derin uykudan 

daha hafif uyku evresine veya uyanıklık durumuna ani geçişlerin tespit edilmesi [50]; 

epilepsi [51, 52] ve benzeri birçok durum tespit edilmektedir. EEG işaretleri kullanılarak 
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beyin ile dış dünya arasında bağlantı kurma [53], zihni aktiviteleri sınıflandırma [54], 

anestezi derinliğinin ölçülmesi [55] ve benzeri çalışmalar da yapılmaktadır. 

EEG işaretlerinin kaydedilmesi için ölçme probları Şekil 2.1’de görüldüğü gibi AASM 

tarafından belirlenen 10-20 kuralına göre yerleştirilir. Şekil 2.2(a)’da uyanık bir kişinin 

EEG işareti Şekil 2.2(b)’de ise bu EEG işaretinin frekans spektrumu görülmektedir. Bu 

hasta uyanık fakat uyumaya hazırlanmaktadır. İşaretin en büyük enerji taşıyan frekansı 

0.4 Hz, band genişliği 0.185 Hz’dir. 

Beyin dalgaları çoğu zaman düzensiz ve öngörülemez olduğundan EEG işaretlerinde 

genel bir yapının tanımlanması mümkün değildir [2]. EEG işaretini zaman ekseninde bir 

bütün olarak değerlendirmek yerine, bu işaret delta, teta, alfa ve beta dalgaları olarak 

isimlendirilen alt bandlarına ayrılarak incelenir. Bu dalgalar sıra ile  

Şekil 2.3 ve Şekil 2.4’te gösterilmiştir. Epilepsi ve benzeri durumlarda ise farklı ve 

duruma özel bazı işaret desenleri görülür. 

Delta dalgaları, 3.5 Hz’den daha düşük frekans bandının tamamını içerir. Çok derin 

uykuda, çocuklukta ve ciddi organik beyin hastalıklarında ortaya çıkarlar. Subkortikal 

kesiyle korteksi talamustan ayrılan deney hayvanlarının kortekslerinde de oluşurlar. Bu 

sebeple, delta dalgalarının beynin daha aşağı bölgelerindeki etkinliklerden bağımsız 

olarak kortekste oluşabildiği bilinmektedir [2]. Şekil 2.2(a)’da verilen EEG işaretinin 

delta bandı Şekil 2.3(a)’da görülmektedir. 

Teta dalgaları, 4-7 Hz arasındaki frekans bandında görülür. Özellikle çocukların paryetal 

ve temporal bölgelerinde gözlenmekle birlikte, bazı erişkinlerde düş kırıklığı gibi 

duygusal stresler sırasında ortaya çıkabilirler. Teta dalgaları sıklıkla beynin dejeneratif 

durumları olmak üzere birçok beyin hastalıklarında da oluşurlar [2]. Şekil 2.2(a)’da 

verilen EEG işaretinin teta bandı Şekil 2.3(b)’de görülmektedir. 

 



13 
 

 

Şekil 2.1. AASM kurallarına göre EEG problarının 

yerleştirilmesi için (a) tavsiye edilen ve  

(b) kabul edilebilir ölçüm noktaları [16]. 

 

Şekil 2.2. Uyanık haldeki bir kişinin (a) EEG işareti ve  

(b) EEG işaretinin frekans spektrumu. 
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Şekil 2.3. Uyanık haldeki bir kişinin EEG işaretinin  

(a) Delta bandı ve (b) Teta bandı. 

 

Şekil 2.4. Uyanık haldeki bir kişinin EEG işaretinin  

(a) Alfa bandı ve (b) Beta bandı. 
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Alfa dalgaları, 8-13 Hz arasındaki frekans bandında görülür, sakin ve sessiz durumdaki 

uyanık genç ve yetişkinlerin hemen hemen tamamının EEG’sinde bulunurlar. Bu dalgalar 

frontal (beynin ön bölümü) ve paryetal bölgede (beynin orta bölümü) görülmesine 

rağmen en güçlü olarak oksipital bölgede (beynin arka bölümü) ölçülür. Gerilimleri 

genellikle 50 μV civarındadır. Derin uyku sırasında alfa dalgaları ortadan kalkar. Uyanık 

durumdaki kişinin dikkati özel tipte bir zihinsel etkinliğe yönlendirildiğinde alfa dalgaları 

yerini asenkron, yüksek frekanslı ve şiddeti daha düşük beta dalgalarına bırakırlar.  

Şekil 2.2(a)’da verilen EEG işaretinin alfa bandı Şekil 2.4(a)’da görülmektedir. 

Beta Dalgaları, 14-80 Hz arasındaki frekans bandında bulunur. Merkezi sinir sisteminin 

aktivasyonu fazla olduğu zaman veya gergin hallerde, kafatasının frontal ve paryetal 

alanlarından kaydedilirler [2]. EEG işaretlerinde 35 Hz’in üzerindeki frekanslarda işaret 

enerjisi çok azalmaktadır. AASM kurallarına göre yapılan skorlamalarda EEG işaretinin 

0.3-35 Hz frekans bandı kullanılmaktadır [16]. Şekil 2.2(a)’da verilen EEG işaretinin beta 

bandı Şekil 2.4(b)’de görülmektedir.  

Gözlerin parlak ışıkta açılması ve kapanmasının alfa dalgaları üzerindeki etkisi  

Şekil 2.5’te görülmektedir. Parlak ışıkta gözler kapalı olduğunda EEG işaretinde alfa 

dalgaları görülürken, gözlerin açılması durumunda alfa dalgaları yerini beta dalgalarına 

bırakır. Gözlerin kapanması ile birlikte alfa dalgaları tekrar görülmeye başlar. Görsel 

uyarılmanın alfa dalgalarını ani olarak durdurduğu ve bunların yerine düşük gerilimli 

asenkron beta dalgalarının ortaya çıktığı görülmektedir [2]. 

Şekil 2.2’de verilen EEG işaretinin ve alt bandlarının frekans aralıkları ve genlikleri  

Tablo 2.1’de verilmiştir. Bu tabloda EEG işaretinin genliği 136.18 µV iken delta, teta, 

alfa ve beta bandlarının genlikleri sıra ile 103.71 µV, 35.18 µV, 17.21 µV ve 29.22 µV  

 

 

Şekil 2.5. Parlak ışıkta gözlerin açılıp kapanmasının alfa 

dalgaları üzerindeki etkisi [2]. 
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Tablo 2.1. Şekil 2.2’de verilen EEG işaretinin ve alt bandlarının 

frekans aralıkları ve genlikleri. 

 

Alt Kesim 

Frekansı 

Üst Kesim 

Frekansı 

En Büyük 

Değeri 

En Küçük 

Değeri 

İşaretin 

Genliği 

 
𝐻𝑧 𝐻𝑧 ∙ 10−6 𝑉 ∙ 10−6 𝑉 ∙ 10−6 𝑉 

EEG 0.30 35.00 75.88 -60.30 136.18 

Delta 0.30 3.50 50.93 -52.78 103.71 

Teta 4.00 7.00 17.32 -17.79 35.18 

Alfa 8.00 13.00 8.61 -8.60 17.21 

Beta 14.00 35.00 14.24 -14.98 29.22 

 

olarak ölçülmüştür. Bu değişimlere göre, EEG işaretinin frekansı arttığında genliği 

azalmaktadır. Beta bandının ise 14-35 Hz aralığında geniş bir band olduğuna dikkat 

edilmelidir. 

2.2.1. Uyanıklık ve Uykunun Farklı Evrelerinde EEG Değişimleri 

Bir kişinin, uyanıklık ve uykunun farklı evrelerindeki EEG işareti Şekil 2.6’da verilmiştir. 

Şekil 2.6 (a) ve (b)’de görüldüğü gibi, dikkatli uyanıklık yüksek frekanslı beta dalgaları 

ile karakterize iken sakin uyanıklık genellikle alfa dalgaları ile karakterize edilir. 

Yavaş dalga uykusu dört evreye ayrılır (Yeni kurallara göre üç evre). Çok yüzeysel bir 

uyku olan ilk evrede (NREM1), EEG dalgalarının gerilimi çok azalmıştır. EEG dalgaları 

periyodik olarak oluşan ve uyku iğcikleri olarak adlandırılan, kısa, iğ şeklinde alfa dalgası 

paketleri ile kesintiye uğramaktadır. Şekil 2.6 (d), (e) ve (f)’de görüldüğü gibi yavaş dalga 

uykusunun 2., 3. ve 4. evrelerinde (NREM2, NREM3, NREM4) EEG’nin frekansı 

gittikçe azalarak 4. evrede saniyede sadece 1-3 dalgaya kadar düşmektedir. Bu işaretler 

tipik delta dalgalarıdır. 

Şekil 2.6(c), REM uykusu sırasındaki EEG’yi göstermektedir. Genellikle bu beyin 

dalgası şekli ile uyanık bir kişinin beyin dalgası arasındaki farkı belirtmek güçtür. 

Dalgalar, normalde uyanıklıkta gözlendiği gibi yüksek ancak desenkronize zihin 

aktivitesini düşündüren düzensiz, yüksek frekanslı beta dalgalarıdır. Bu nedenle REM 

uykusu sıklıkla, belirgin beyin etkinliğine karşın nöronların ateşlenmesinde senkroni 

bulunmadığı için desenkronize uyku olarak adlandırılır [2]. 
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Şekil 2.6. Uyanıklık ve uykunun farklı evrelerinde EEG 

işaretinin karakteristik görüntüsü [2]. 

2.3. Elektrookülogram İşaretleri 

EOG işareti, retina ve kornea arasındaki potansiyel farkını göstermektedir. Göz, retinanın 

pozitif, korneanın negatif olduğu bir dipol olarak kabul edilebilir. Bu dipolün hareketi ile 

göz çevresinde bir potansiyel farkı oluşmaktadır. Bu potansiyel, göz etrafına yerleştirilen 

bir çift elektrot ile ölçülür. Tek bir gözden EOG işareti kaydedilebilir fakat sağlıklı bir 

insanda her iki göz birlikte hareket ettiğinden, her iki gözden EOG işaretinin 

kaydedilmesi daha uygundur. Bu yöntem ile gözün hem dikey hem de yatay hareketi 

ölçülebilir. EOG işaretinin genliği 50 μV ile 3.5 mV arasında değişir [56, 57]. 

EOG işareti, işaret işleme uygulamalarında çoğunlukla uyku seviyelerinin 

belirlenmesinde kullanılır. Uyku, fizyolojik olarak hızlı göz hareketlerinin olduğu REM 

(rapid eye movement) ve NREM (nonrapid eye movement) olmak üzere iki seviyeye 

ayrılır. Ayrıca NREM uykusu yüzeysel uyku olan NREM1 ve NREM2 seviyeleri ile derin 

uyku olan NREM3 ve NREM4 seviyelerinden oluşur. Yeni skorlama kurallarında 
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NREM3 ve NREM4 birleştirilerek NREM3 olarak değerlendirilmektedir. Bütün uyku 

skorlamaları, EEG, OEG ve EMG işaretlerini içeren PSG kayıtlarına dayanmaktadır [21]. 

EOG işaretlerinin işlenmesi ile önceden tanımlanmış sembollerin göz hareketleri ile 

yazılması [58], engelli araçlarının kontrolü [59], insan-makine arayüzleri ve teşhis amaçlı 

kullanmak üzere farklı göz hareketlerinin tespiti [60] mümkündür. 

Şekil 2.7’de görülen EOG işaretinin genlik değerleri Tablo 2.2’de verilmiştir.  

Tablo 2.2’ye göre en büyük işaret genliği uyanık durumda 455.49 µV, en büyük band 

genişliği REM uykusunda 0.31 Hz olarak ölçülmüştür. 

 

Şekil 2.7. Bir kişinin (a) uyanık halde, (b) REM ve  

(c) NREM3 uyku dönemlerinde EOG işaretleri. 
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Tablo 2.2. Şekil 2.7’de görülen EOG işaretlerinin genlik değerleri. 

  
En Büyük 

Değer 

En Küçük 

Değer 
Genlik 

İşaret 

Gücü 

Merkez 

Frekansı 

Band 

Genişliği 

  ∙ 10−6 𝑉 ∙ 10−6 𝑉 ∙ 10−6 𝑉 ∙ 10−9 𝑉2 𝐻𝑧 𝐻𝑧 

Uyanıklık 242.98 -212.51 455.49 10.66 0.50 0.16 

REM 20.81 -19.27 40.08 0.03 0.50 0.31 

NREM3 47.70 -54.02 101.71 0.42 0.30 0.19 

 

2.4. Elektromiyogram İşaretleri 

EMG işaretleri, merkezi sinir sistemi tarafından uyarılan kas dokusunun kasılması 

esnasında üretilen işaretlerdir. Yüzey EMG işaretleri (The surface electromyogram, 

sEMG), belirli bir biçimi olmayan, genlik ve frekans içeriğine göre sınıflandırılan bir 

işaret olup 0-450 Hz frekans bandında bulunur [61]. 

Kas ve sinir sistemi hastalıkları, kasları uyaran beyin hücreleri (motor neurons), kas ve 

sinir bağlantı yerleri (neuromuscular junctions) ve kas dokusu ile ilgili hastalıkları ifade 

eden genel bir terimdir [62]. Kas ve sinir sistemi ile ilgili hastalıkların teşhisi [62] ile dış 

iskelet robot kontrol uygulamalarında [63] çok kullanılan EMG işaretlerinin analiz ve 

sınıflandırılması hakkında birçok çalışma yapılmıştır [62-69]. Şekil 2.8’de görülen EMG 

işaretinin özellikleri Tablo 2.3’te gösterilmiştir. Tablo 2.3’e göre işaret genliği uyanıklık 

durumunda, REM ve NREM3 dönemlerinde sırası ile 126.50 µV, 38.17 µV ve 52.78 µV 

olarak ölçülmüştür. Bu tabloya göre işaret genliği ve işaret gücü uyanıklık ve uyku 

durumu arasında önemli oranda değişiklik göstermektedir. 
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Şekil 2.8. Bir hastanın (a) uyanık halde, (b) REM ve  

(c) NREM3 uykusunda EMG işaretinin görünümü. 

 

Tablo 2.3. Bir hastanın uyanık halde, REM ve NREM3 uykusunda EMG 

işaretinin özellikleri. 

  
En Büyük 

Değer 

En Küçük 

Değer 
Genlik 

İşaret 

Gücü 

Merkez 

Frekansı 

Band 

Genişliği 

  ∙ 10−6 𝑉 ∙ 10−6 𝑉 ∙ 10−6 𝑉 ∙ 10−12 𝑉2 𝐻𝑧 𝐻𝑧 

Uyanıklık 55.10 -71.40 126.50 175.00 47.68 38.49 

REM 20.31 -17.86 38.17 12.36 47.88 8.61 

NREM3 28.96 -23.82 52.78 28.55 54.67 39.39 
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EMG işaretlerinin özelliklerini çıkarmak için dalgacık analizi [62, 66, 68, 69], Tekil 

Spektrum Analizi (Singular Spectrum Analysis, SSA) [61], Ampirik Mod Ayırma 

(Empirical Mode Decomposition, EMD) [64], STFT [65] ve güç spektrumu [67] 

kullanılmıştır. EMG işaretlerin sınıflandırılması için uyarlamalı sinirsel bulanık mantık 

sistemi [62, 67] ve SVM gibi sınıflandırıcılar [65] kullanılmaktadır. 

2.5. Solunum Basıncı İşaretleri 

Solunum, dokulara oksijen sağlamak ve dokularda oluşan karbondioksiti uzaklaştırmak 

için akciğer ve atmosfer arasında gerçekleşen fizyolojik bir olaydır [70]. Hastanın 

solunum değişkenlerine karşılık gelen bilgilerinin analiz edilmesi ile apne veya hipopne 

gibi olası hastalıkların tespit edilmesi mümkündür [27]. Üst solunum yollarında görülen 

sürekli ve iki yönlü hava akışı, sıcaklık bilgisi, arteriyel kanda ölçülen oksijen 

saturasyonu (SaO2) ile hem karın hem de göğüs bölgesinde görülen solunum çabası, 

solunum değişkenleri olarak kullanılmaktadır [27, 30]. Solunum basıncı ve sıcaklık 

bilgisi burun kanülü; kandaki oksijen saturasyonu parmak, alın veya kulak memesine 

yerleştirilen oksimetre; solunum çabası karın ve göğüs bölgesine yerleştirilen bandlar ile 

alınmaktadır. Bütün bu bilgiler solunum değişkenleri, solunum basıncı ise solunum işareti 

olarak değerlendirilmektedir [28]. 

Bir hastanın uyku apnesi zaman dilimlerindeki solunum işareti Şekil 2.9’da verilmiştir. 

Şekildeki gösteriminde “1” seviyesi normal solunum, “0” seviyesi uyku apnesi veya 

hipopne olan zaman dilimlerini göstermektedir. Normal solunum zamanında işaret 

genliğinin büyük, uyku apnesi zamanında ise çok azaldığı veya tamamen kaybolduğu 

görülmektedir. Şekil 2.10’da ise hipopne zamanındaki solunum işareti gösterilmiştir. 

Hipopne zamanında işaret genlik ve güçlerinin önemli oranda azaldığı görülmektedir. 

Ancak hipopne zamanında kısmen de olsa solunum devam ettiğinden işaret genliği uyku 

apnesinde olduğu kadar azalmamaktadır. 
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Şekil 2.9. Bir hastanın uyku apnesi zaman dilimindeki 

solunum işareti ve uyku apnesi gösterimi. 

 

Şekil 2.10. Bir hastanın hipopne zaman dilimindeki solunum 

işareti ve hipopne gösterimi. 

Bir hastanın uyku apnesi durumunda solunum işareti özellikleri Tablo 2.4’te verilmiştir. 

Bu tabloda normal solunum zamanında işaret genliği 262.72 μV olarak görülürken uyku 

apnesi durumunda işaret genliği 10.31 μV olarak ölçülmüştür. İşaret gücünde de aynı 

farklar vardır. İşaret genlikleri ve güçleri arasındaki bu farklar işaretler için belirleyici bir 

özelliktir ve skorlama için kullanılmaktadır. Aynı hastanın hipopne durumunda işaret 

özellikleri Tablo 2.5’te verilmiştir. Normal solunum zamanında işaret genliği 266.45 μV 

olarak görülürken hipopne durumunda işaret genliği 139.43 μV olarak ölçülmüştür.  
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Tablo 2.4. Bir hastanın bir zaman dilimindeki solunum işareti ile bu zaman 

dilimindeki normal solunum ve uyku apnesi zamanlarındaki işaret 

özellikleri. 

  Zaman 
İşaret 

Ortalaması 

Standart 

Sapma 

En Küçük 

Değer 

En Büyük 

Değer 

İşaret 

Genliği 

İşaret 

Gücü 

  s ∙ 10−6 𝑉 ∙ 10−6 ∙ 10−6 𝑉 ∙ 10−6 𝑉 ∙ 10−6 𝑉 ∙ 10−12 𝑉2 

Bütün 

İşaret 
247.05 -0.05 17.88 -134.91 127.80 262.72 319.72 

Normal 

Solunum 
108.14 -0.39 26.96 -134.91 127.80 262.72 726.79 

Uyku 

Apnesi 
138.97 0.21 1.66 -7.47 2.85 10.31 2.81 

 

Tablo 2.5. Bir hastanın bir zaman dilimindeki solunum işareti ile bu zaman 

dilimindeki normal solunum ve hipopne zamanlarındaki işaret özellikleri. 

  Zaman 

İşaret 

Ortalaması 

Standart 

Sapma 

En Küçük 

Değer 

En Büyük 

Değer 

İşaret 

Genliği 

İşaret 

Gücü 

  s ∙ 10−6 𝑉 ∙ 10−6 ∙ 10−6 𝑉 ∙ 10−6 𝑉 ∙ 10−6 𝑉 ∙ 10−12 𝑉2 

Bütün 

İşaret 
237.01 0.08 12.34 -108.37 172.01 280.38 152.18 

Normal 

Solunum 
54.03 0.63 23.75 -94.44 172.01 266.45 564.19 

Hipopne 183.02 -0.09 5.53 -108.37 31.05 139.43 30.55 

 

Solunum hipopne durumunda kısmen devam ettiği için işaret genlik farkları uyku 

apnesine göre daha azdır. 

2.6. Solunum Çabası İşaretleri 

Solunum esnasında akciğere hava dolmakta ve göğüs genişlemekte, solunumdan sonra 

ise tekrar eski haline gelmektedir. Göğüs genişliği solunum ile ilişkili olup solunumun 

seyri hakkında bilgi vermektedir. Tıkayıcı uyku apnesinde solunum kesilmekte fakat 

solunum çabası devam etmektedir. Merkezi uyku apnesi durumunda solunum durmakta 

fakat solunum çabası görülmemektedir. Bu iki husus dikkate alınarak uyku apnesinin tipi 

belirlenmektedir. 
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PSG işaretleri kaydedilirken göğse yerleştirilen bir sensör band ile göğüs hareketleri 

ölçülmekte ve kaydedilmektedir. Bu ölçüm solunum çabası olarak değerlendirilmektedir. 

Bir hastanın uyku apnesi ve hipopne zamanlarındaki solunum çabaları sıra ile Şekil 2.11 

ve Şekil 2.12’de verilmiştir. 

Solunum basıncı ve solunum çabası işaretlerinin birbiri ile uyumlu olması 

beklendiğinden, Şekil 2.9 ve Şekil 2.11 ile Şekil 2.10 ve Şekil 2.12 görsel olarak birbirleri 

ile uyumludur. Bu şekillerde normal solunum zamanında işaret genliği büyük, hipopne 

zamanlarında işaret genliği önemli oranda azalmış, uyku apnesi zamanlarında ise işaret 

genliği ya çok azalmış ya da solunum tamamen durmuştur. 

Tablo 2.6’da bir hastanın uyku apnesi durumunda solunum çabası işaret özellikleri 

verilmiştir. Bu tabloda 0.66 mV olan işaret genliği uyku apnesi zamanında 0.23 mV 

olarak ölçülmüştür. Normal solunumda işaret genliğinin ve gücünün büyük olmasına 

rağmen uyku apnesi olması durumunda bu değerler küçülmektedir. Tablo 2.7’de ise aynı 

hastanın hipopne durumunda solunum çabası işaret özellikleri verilmiştir. Normal 

solunum zamanında 1.2 mV olan işaret genliği hipopne zamanında 0.25 mV olarak 

ölçülmüştür. 

Uyku apnesi durumunda solunum çabasında görülen değişimler hipopne durumunda da 

görülmektedir. İşaret genlik ve güç oranları normal solunumda yüksek, uyku apnesi veya 

hipopne durumunda ise daha düşüktür. 

 

Şekil 2.11. Bir hastanın uyku apnesi zaman dilimindeki 

solunum çabası ve uyku apnesi gösterimi. 
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Şekil 2.12. Bir hastanın hipopne zaman dilimindeki solunum 

çabası ve hipopne gösterimi. 

Tablo 2.6. Bir hastanın bir zaman dilimindeki solunum çabası işareti ile bu 

zaman dilimindeki normal solunum ve uyku apnesi zamanlarındaki 

işaret özellikleri. 

  Zaman 
İşaret 

Ortalaması 

Standart 

Sapma 

En Küçük 

Değer 

En Büyük 

Değer 

İşaret 

Genliği 

İşaret 

Gücü 

  s ∙ 10−6 𝑉 ∙ 10−6 ∙ 10−3 𝑉 ∙ 10−3 𝑉 ∙ 10−3 𝑉 ∙ 10−9 

Bütün 

İşaret 
247.06 -0.01 84.61 -0.36 0.31 0.66 7.16 

Normal 

Solunum 
108.20 0.81 124.39 -0.36 0.31 0.66 15.47 

Uyku 

Apnesi 
139.02 -0.68 26.13 -0.14 0.09 0.23 0.68 

 

2.7. Oksijen Saturasyonu İşaretleri 

Solunumun amacı, dokulardaki karbondioksiti uzaklaştırmak ve dokulara oksijen 

sağlamaktadır. Bu sebeple solunum ve kandaki oksijen saturasyonu arasında bir bağlantı 

vardır. Normal solunum devam ettiği müddetçe kandaki oksijen saturasyonu da belirli 

değerler arasında kalmaktadır. Uyku apnesi başladığında kandaki oksijen saturasyonu da 

azalmaya başlamakta, solumun başlaması ile tekrar yükselmektedir. Fakat uyku apnesinin 

başlaması ile ölçülen oksijen saturasyonu hemen azalmamakta, solunumun başlaması  
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Tablo 2.7. Bir hastanın bir zaman dilimindeki solunum çabası işareti ile bu 

zaman dilimindeki normal solunum ve hipopne zamanlarındaki 

işaret özellikleri. 

  Zaman 
İşaret 

Ortalaması 

Standart 

Sapma 

En Küçük 

Değer 

En Büyük 

Değer 

İşaret 

Genliği 

İşaret 

Gücü 

  s ∙ 10−6 𝑉 ∙ 10−6 ∙ 10−3 𝑉 ∙ 10−3 𝑉 ∙ 10−3 𝑉 ∙ 10−9 

Bütün 

İşaret 
237.02 0.20 87.69 -0.61 0.59 1.20 7.69 

Normal 

Solunum 
54.10 -3.98 171.69 -0.61 0.59 1.20 29.48 

Hipopne 183.08 1.43 35.24 -0.08 0.17 0.25 1.24 

 

ile de hemen yükselmemektedir. Solunum ve oksijen saturasyonu arasında bir zaman 

gecikmesi olmaktadır. 

Uyku apnesi ve hipopne durumunda oksijen saturasyonunun değişimi Şekil 2.13 ve  

Şekil 2.14’te gösterilmiştir. Bu iki şekilde de solunum ve oksijen saturasyonu arasındaki 

zaman gecikmesi çok rahat görülmektedir. Uyku apnesinde solunum kesintili olarak 

devam ettiğinden oksijen saturasyonunda da bu dalgalanmalar görülmektedir. Uyku 

apnesi başladıktan sonra bile ölçülen oksijen saturasyonu artmaya devam etmekte, 

yaklaşık 20 saniye sonra azalmaya başlamaktadır. Solunumun tekrar başlamasından sonra 

azalmaya devam etmekte, 20 - 30 saniye sonra yükselmeye başlamaktadır. Bu farkın, 

büyük oranda akciğerde oksijen ile karbondiaksit değişimi ve akciğer ile ölçme noktası 

arasındaki zaman gecikmesinden kaynaklandığı düşünülmektedir. 

Tablo 2.8’de bir hastanın oksijen saturasyonu işaretinin normal solunum ve uyku apnesi 

zamanlarındaki genlik değerleri verilmiştir. Tablo 2.8’e göre normal solunum zamanında 

11 nV olan işaret genliği uyku apnesi zamanında 14.01 nV olarak ölçülmüştür.  

Tablo 2.9’da ise aynı hastanın normal solunumda 4.98 nV olan işaret genliği hipopne 

durumunda 7.99 nV olarak ölçülmüştür. Uyku apnesi ve hipopne gösterimi ile eşzamanlı 

olarak verilen bu ölçümler otomatik skorlamada zorluk çıkaracaktır. Doğru bir skorlama 

yapmak için zaman gecikmesi dikkate alınmalıdır. 
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Şekil 2.13. Bir hastanın uyku apnesi zaman dilimindeki 

oksijen saturasyonu ve uyku apnesi gösterimi. 

 

Şekil 2.14. Bir hastanın hipopne zaman dilimindeki oksijen 

saturasyonu ve hipopne gösterimi. 

Hem uyku apnesi hem de hipopne skorlamalarında oksijen saturasyonunda azalma olup 

olmadığına bakılır. Oksijen saturasyonunun %3 azalması (ODI3) uyku apnesi olarak 

kabul edilmektedir [30]. Literatürde ODI2, ODI3 ve ODI4 ile çalışmalar yapılmıştır  

[45, 46, 48]. Oksijen saturasyonu yavaş değişen bir işaret olduğu için örnekleme 

frekansının 10 Hz olarak seçilmesi yeterli olmaktadır. 
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Tablo 2.8. Bir hastanın belirli bir zaman dilimindeki oksijen saturasyonu 

işaretinin, bu zaman dilimindeki normal solunum ve uyku apnesi 

zamanlarındaki işaret özellikleri. 

  Zaman 

İşaret 

Ortalaması 

Standart 

Sapma 

En Küçük 

Değer 

En Büyük 

Değer 

İşaret 

Genliği 

İşaret 

Gücü 

  s ∙ 10−12 𝑉 ∙ 10−9 ∙ 10−9 𝑉 ∙ 10−9 𝑉 ∙ 10−9 𝑉 ∙ 10−18 𝑉2 

Bütün 

İşaret 
247.10 -100.10 3.85 -7.72 6.28 14.01 14.82 

Normal 

Solunum 
108.40 -945.66 2.87 -5.72 5.27 11.00 9.13 

Uyku 

Apnesi 
139.20 561.13 4.35 -7.72 6.28 14.01 19.26 

 

Tablo 2.9. Bir hastanın belirli bir zaman dilimindeki oksijen saturasyonu 

işaretinin, bu zaman dilimindeki normal solunum ve hipopne 

zamanlarındaki işaret özellikleri. 

  Zaman 

İşaret 

Ortalaması 

Standart 

Sapma 

En Küçük 

Değer 

En Büyük 

Değer 

İşaret 

Genliği 

İşaret 

Gücü 

  s ∙ 10−12 𝑉 ∙ 10−9 ∙ 10−9 𝑉 ∙ 10−9 𝑉 ∙ 10−9 𝑉 ∙ 10−18 𝑉2 

Bütün 

İşaret 
237,10 2306,61 2,11 -1,01 6,97 7,99 9,76 

Normal 

Solunum 
54,50 916,27 1,20 -1,01 3,97 4,98 2,28 

Hipopne 183,40 2714,02 2,14 -1,01 6,97 7,99 11,95 

 

 



 

 

3. BÖLÜM 

UYKU VE UYKU APNESİ SKORLAMA YÖNTEMLERİ 

3.1. Giriş 

Bu bölümde uyku ve uyku apnesi skorlamak için kullanılan yöntemler hakkında bilgiler 

verilmiştir. Algoritmik yöntemler uzman görüşüne dayanan, girişi ile çıkışı arasındaki 

bağlantı tam olarak bilinen sistemlerin modellenmesinde kullanılan yöntemlerdir. YSA 

ve ANFIS ise girişi ve çıkışı arasındaki bağlantının tam olarak bilinmediği sistemlerin 

modellenmesinde kullanılan başarılı yöntemlerdir. Morfolojik filtreler zaman ekseninde 

işaretin biçimini kullanım amacı doğrultusunda iyileştiren özel filtre algoritmaları olup 

YSA ve ANFIS çıkışlarında skorlama başarısını artırmak için kullanılmıştır. 

3.2. Algoritmik Yöntemler 

Uyku apnesinin uzman görüşlerine göre oluşturulan kurallar ile otomatik olarak 

skorlanmasına algoritmik skorlama denir. Kuralların doğruluğu skorlama başarısını 

doğrudan etkilemektedir. Uyku apnesi skorlama kuralları AASM tarafından 

belirlenmiştir [4, 16]. Bu kurallara göre bir zaman diliminin uyku apnesi olarak 

skorlanabilmesi için belirlenen üç kuralın aynı anda gerçekleşmesi gerekmektedir. Bu üç 

kural aşağıda verilen denklemler ile ifade edilir. 

 𝐾𝑢𝑟𝑎𝑙 1: 𝑆𝑜𝑙𝑢𝑛𝑢𝑚 𝑧𝑎𝑚𝑎𝑛𝚤𝑛𝚤𝑛 𝑒𝑛 𝑎𝑧 10 𝑠𝑎𝑛𝑖𝑦𝑒 𝑠ü𝑟𝑚𝑒𝑠𝑖 (3.1) 

 𝐾𝑢𝑟𝑎𝑙 2: 𝐵𝑢 𝑠𝑜𝑙𝑢𝑛𝑢𝑚 𝑧𝑎𝑚𝑎𝑛𝚤𝑛𝑑𝑎 ℎ𝑎𝑣𝑎 𝑎𝑘𝚤𝑚𝚤𝑛𝚤𝑛 

 𝑒𝑛 𝑎𝑧 %90 𝑜𝑟𝑎𝑛𝚤𝑛𝑑𝑎 𝑎𝑧𝑎𝑙𝑚𝑎𝑠𝚤 (3.2) 

 𝐾𝑢𝑟𝑎𝑙 3: 𝐵𝑢 𝑠𝑜𝑙𝑢𝑛𝑢𝑚 𝑧𝑎𝑚𝑎𝑛𝚤𝑛𝚤𝑛 

 𝑒𝑛 𝑎𝑧 %90′𝚤𝑛𝑑𝑎 ℎ𝑎𝑣𝑎 𝑎𝑘𝚤𝑚𝚤𝑛𝚤𝑛 𝑎𝑧𝑎𝑙𝑚𝑎𝑠𝚤 (3.3) 

 

1. 𝐾𝑢𝑟𝑎𝑙 kolaylıkla kontrol edilebilir. Ancak 2. 𝑣𝑒 3. 𝐾𝑢𝑟𝑎𝑙’ların nasıl gerçekleştirileceği 

açık değildir. Solunum işaretinin uyku apnesini gösteren belirli bir eşik değeri olursa buna 

göre skorlama yapmak kolaydır. Ancak işaret genliği hastaların fizik ve fizyolojik 
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özelliklerine göre değiştiğinden belirli bir eşik değerinin kullanılması iyi bir çözüm 

olmayacaktır. 

Bu hususta bir başka problemde gece boyunca hastalardan alınan fizyolojik işaret 

genliklerinde değişimler ve seviye kaymaları olmaktadır. Tıbbi uzmanlar bu değişimleri 

görmekte ve buna göre skorlama yapmaktadır. Bilgisayar algoritmalarının bu değişimleri 

kendiliğinden görmeleri mümkün değildir. Skorlama algoritmalarına bu değişimleri 

sezecek ve buna göre davranış belirleyecek yeni kuralların eklenmesi ve daha önceden 

belirlenen eşik değerlerinin sürekli güncellenmesi gerekmektedir. 

Her ne kadar kurallar belirli olsa da bu kurallara göre bir algoritma geliştirmek kolay 

değildir. Burada tıbbi uzman görüşü ve algoritmanın gerçekleştirilme biçimi skorlama 

başarısı üzerinde etkilidir. 

3.3. Yapay Sinir Ağları 

Klasik problemler analitik olarak çözülebilirken günümüzde ortaya çıkan birçok problem 

için bu çözümler yetersiz kalmaktadır. Karmaşık problemlerin çözümünde çoğu olasılık 

ve istatistik teorilerine dayanan optimizasyon ve sınıflandırma yöntemleri geliştirilmiştir. 

Bu yöntemlerin başında YSA gelmektedir. YSA ilk olarak McCulloch ve Pitts tarafından 

1943 yılında duyurulmuştur [71]. Bu araştırmacılar ilk YSA sinir hücresinin tasarımını 

yapmışlardır. YSA çalışmaları Rosenblatt tarafından Perceptron’un tasarımı ile hız 

kazanmıştır [72]. Perceptron, lineer olmayan problemlerin çözümünde yetersiz kalınca 

Minsky ve Papert [73] tarafından iki katmanlı YSA önerilmiştir. Rumelhart ve 

McClelland tarafından karmaşık ve çok katmanlı YSA için geri yayılmalı öğrenme 

algoritmaları ortaya konmuştur [74, 75]. 

YSA, girişleri ve çıkışları arasındaki bağlantının bilinmediği sistemlerin 

gerçekleştirilmesinde kullanılan güçlü bir modeldir. Bu model gücünü içindeki veri 

bağlantılarının ve transfer fonksiyonu parametrelerinin optimize edilmesinden alır. Bu 

işlem eğitim olarak isimlendirilir. 

YSA, sinir hücrelerinden oluşan bir sınıflandırma modelidir. Bir yapay sinir hücresi 

(perceptron) insan sinir hücresine benzer biçimde geliştirilmiştir. Şekil 3.1’de bir sinir 

hücresi modeli görülmektedir. 
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Sinir hücresinin çıkışı, 

  𝑦 = 𝑓[(∑ 𝑥𝑖𝑤𝑖
𝑛
𝑖=1 ) + 𝛽] (3.4) 

denklemi ile hesaplanmaktadır. Bu denklemde 𝑓 sinir hücresinin transfer fonksiyonudur. 

𝑛, 𝑥𝑖 , 𝑤𝑖 𝑣𝑒 𝛽 parametreleri sıra ile giriş verilerinin sayısını, giriş verilerini, her bir girişin 

ağırlığını ve eşik değerini (bias) göstermektedir. 

YSA’lar sinir hücrelerinin yer aldığı çok sayıda katmandan oluşur [75]. Şekil 3.1’de 

görülen sinir hücrelerini kullanarak oluşturulan üç katmanlı bir YSA modeli Şekil 3.2’de 

görülmektedir. Şekil 3.2’de görülen YSA modelinde 𝑂𝑖, sinir ağının çıkışlarını; aradaki 

bağlantılar ise ağırlıkları göstermektedir. 

Σ 

Ağırlıklar

Eşik 
Değer

Aktivasyon 
Foksiyonu

Girişler

f
.
.
.

Çıkış

X1

X2

Xn

w1

w2

wn

y

β 

 

Şekil 3.1. YSA sinir hücresi modeli (Perceptron). 

X1

Gizli Katman 1Girişler ÇıkışlarGizli Katman 2 Çıkış Katmanı

X2

X3

O1

O2

f

f

f

f

f

f

f

f

f

f

 

Şekil 3.2. Üç girişli, üç katmanlı ve iki çıkışlı sinir ağı 

modeli. 
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3.3.1. Bağlantı Ağırlıklarının Optimizasyonu 

YSA’nın bir problem çözümünde doğru sonuç vermesi için eğitilmesi gerekir. Bu eğitim 

YSA’nın ağırlıklarının ve transfer fonksiyonu parametrelerinin optimizasyonu ile yapılır. 

Optimize edilen değişkenlerin başlangıç değerleri bilinmediğinden çoğu durumda 

rastgele değerler kullanılır.  

YSA’nın öğrenmesi için eğitim verileri kullanılır. Bu eğitim verilerinde modellenen 

sistemin giriş ve çıkış değerleri bilinmekte fakat YSA modelinin girişleri ve çıkışları 

arasındaki bağlantı ağırlıkları bilinmemektedir. Bilinen ağırlıklar ile YSA çıkışı 

hesaplanır. Bilinen çıkış ile hesaplanan çıkış arasındaki fark hata olarak değerlendirilir. 

Bu hata, türev fonksiyonları ve geri yayılım algoritmaları ile YSA’nın ağırlıklarının 

optimize edilmesinde kullanılır. Optimizasyon işleminin tekrar edilmesi iterasyon olarak 

isimlendirilir. Hata her bir iterasyonda gittikçe azalır. YSA’nın çıkışında hesaplanan hata, 

kabul edilebilir bir değere ulaştığı zaman eğitim tamamlanmış olur. Eğitimi tamamlanan 

YSA ile bilinen girişlere karşılık bilinmeyen çıkışlar hesaplanır. 

Şekil 3.2’de verilen YSA’nın çıkışında oluşan hata, 

  𝑒 =
1

2
∑ (𝑑𝑖 − 𝑜𝑖)

2𝑚
𝑖=1  (3.5) 

denklemi ile hesaplanır. Bu denklemde  𝑚, 𝑑𝑖 𝑣𝑒 𝑜𝑖 parametreleri sırası ile örnek 

sayısını, YSA’nın çıkışında olması istenen değerleri ve YSA çıkışında elde edilen 

değerleri göstermektedir. Bu hata, ortalama karesel hata (Mean Squared Error, MSE) 

olarak isimlendirilir. YSA’da kullanılan bağlantı ağırlıkları aşağıda verilen denklem ile 

güncellenir. 

  𝑤𝑖
𝑡+1 = 𝑤𝑖

𝑡 − 𝜂
𝜕𝑒

𝜕𝑤𝑖
 (3.6) 

Bu denklemde 𝑡 𝑣𝑒 𝜂 parametreleri sırası ile iterasyon sayısını ve öğrenme katsayısını 

göstermektedir. Öğrenme katsayısı, YSA’nın öğrenme hızını belirler. Öğrenme 

katsayısının küçük olması, YSA’nın yavaş öğrenmesine sebep olur. Büyük olması daha 

hızlı öğrenme sağlarken, bağlantı ağırlıklarının bozulmasına da sebep olabilir.  
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3.3.2. Eğitim Verilerinin Hazırlanması 

YSA’nın başarısı, tasarım parametrelerine bağlı olduğu kadar, eğitim için kullanılan 

verilere de bağlıdır. YSA güçlü bir model olduğu için tasarımında ve eğitim verilerinde 

olan küçük hataları bertaraf etmektedir. En kötü ihtimal ile YSA çıkışında küçük bir 

miktar hata görülür. 

Gözden kaçırılmaması gereken diğer bir husus, eğitim için kullanılan verilerin 

sıralanmasıdır. Bu sıralamaya dikkat edilmez ise aşırı öğrenme veya ezber durumu 

oluşabilmekte ve YSA hatalı öğrenmektedir. Eğitim verilerinin dağılımı düzgün olmadığı 

zaman YSA bir sınıfın özelliklerini çok iyi öğrenmekte, diğer sınıfın özelliklerini 

öğrenememektedir. 

Eğitimi verilerinde iki farklı sınıf “1” ve “0” ile gösterilirse, veriler “11110000” gibi peş 

peşe aynı özellikte olduğu zaman aşırı öğrenme durumu oluşmakta ve hatalı sınıflandırma 

yapılmaktadır. Eğitim verileri yeniden sıralanarak “10101010” biçimine getirilirse aşırı 

öğrenmenin önüne geçilebilir. Eğitim verilerinin az olması yetersiz öğrenmeye neden 

olurken, gereğinden çok olması öğrenme başarısını artırmaz. 

3.3.3. Katman Sayısının Seçimi 

Yapay sinir ağının kaç katmandan oluşacağına dair bir kural yoktur. Katman sayısı 

tecrübe ve denemelerle belirlenmektedir. Çoğunlukla 2 veya 3 katmanlı modeller 

kullanılmaktadır. 

3.3.4. Sinir Hücrelerinin Sayısının Seçimi 

YSA’nın çıkış katmanında YSA’nın çıkış adedince sinir hücresi bulunur. Ancak gizli 

katmanlarda kullanılan sinir hücrelerinin sayısının belirlenmesinde bir kural yoktur. Gizli 

katmanlarda kullanılan sinir hücresi sayısı tecrübe ve denemelerle belirlenmektedir. 

Eğitim verilerinde bulunan değişkenlerin sayısı, sinir hücrelerinin sayısını belirlemek için 

bir başlangıç noktası olabilir. Sinir hücrelerinin sayısı giriş değişkenlerinin sayısının bir, 

iki veya üç katı olabilir.  

3.3.5. Transfer Fonksiyonunun Seçimi 

Sinir hücrelerinde kullanılacak olan transfer fonksiyonu, işaret özelliklerinin değişim 

aralığına ve ağ çıkışında beklenen değerlere uygun olmalıdır. Logaritmik transfer 
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fonksiyonunun çıkışı “0.0” ile “1.0” aralığında değişmektedir. Bu transfer fonksiyonunun 

kullanıldığı çıkış katmanından “-1.0” ile “1.0” arasında bir değer beklemek yanlış 

olacaktır. Fakat ağ çıkışı ilave işlemlerle istenilen değer aralığına ölçeklenebilir. YSA’da 

kullanılan bazı transfer fonksiyonları Şekil 3.3’te verilmiştir. 

3.3.6. Yapay Sinir Ağı Öğrenme Algoritmasının Seçimi 

Tasarımı yapılan YSA’nın en iyi sonucu vermesi için eğitilmesi veya öğrenmesi önemli 

bir işlem adımıdır. Bu işlem esasında YSA’nın matematik modelinin optimizasyonudur. 

Bu işlemi gerçekleştirmek için pek çok öğrenme algoritması geliştirilmiştir [76-83]. 

Farklı öğrenme algoritmaları birçok durumda benzer sonuçlar verir. Ancak bazı öğrenme 

algoritmalarının bazı örneklerde daha iyi veya daha kötü sonuçlar verdiği de 

görülmektedir. En iyi öğrenme yöntemi denemelerle seçilmektedir. Yapılan denemelerde 

Levenberg-Marquardt [76] algoritmasının daha yavaş çalışmasına rağmen daha iyi 

sonuçlar verdiği görülmüştür. 

 

 

Şekil 3.3. Yapay sinir ağlarında kullanılan (a) Simetrik 

sigmoid, (b) Logaritmik sigmoid, (c) Eşik 

aktivasyon ve (d) Doğrusal aktivasyon transfer 

fonksiyonları. 
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3.3.7. Yapay Sinir Ağının Gerçekleştirilmesi 

YSA ile sınıflandırma veya modelleme yapmak için aşağıda verilen işlem adımları takip 

edilir. 

a) Eğitim verileri oluşturulur. 

b) Model parametreleri belirlenir. 

c) Yapay sinir ağı oluşturulur. 

d) Yapay sinir ağı optimize edilir (yapay sinir ağının eğitimi veya öğrenme). 

e) İstenilen giriş değerlerine göre yapay sinir ağının çıkışı hesaplanır. 

Daha önce eğitimi yapılan bir YSA, model parametrelerini değiştirmeden güncellenen 

eğitim verileri ile yeniden eğitime tabi tutulabilir. Giriş ve çıkış sayılarının, katman ve 

sinir hücreleri sayılarının veya transfer fonksiyonlarının değişmesi durumunda YSA’nın 

yeniden eğitilmesi gerekmektedir. 

3.4. Uyarlamalı Sinirsel Bulanık Mantık Sistemi 

Klasik mantık teorisinde bir olay için “1” ve “0” ile gösterilen iki durum vardır. Bu 

gösterime göre bir bilgi ya doğrudur ya da yanlıştır, bir olay ise ya olmuştur ya da 

olmamıştır. Bu gösterim bazı durumlarda yeterli olsa bile gerçek dünya problemlerinde 

“1” ve “0”dan daha fazlası vardır. Bir bilgi kısmi olarak doğru veya bir olay kısmi olarak 

gerçekleşmiş olabilir. Bu durum bizi sadece “1” ve “0”ın olduğu iki durumdan kısmi 

derecelerin olduğu üyelik fonksiyonlarına götürür. Üyelik fonksiyonları Zadeh tarafından 

1965 yılında yayımlanan makalesinde açıklanmıştır [84]. Zadeh tarafından üyelik 

fonksiyonlarını kullanan bulanık mantık geliştirilmiş ve birçok uygulamada başarı ile 

kullanılmıştır. YSA ve bulanık mantık güçlü birer model olduğundan bu her iki modelin 

iyi taraflarını bir arada kullanan uyarlamalı sinirsel bulanık mantık sistemleri 

geliştirilmiştir. Bu yöntemlerden biriside Jang tarafından 1993 yılında yayımlanan 

ANFIS modelidir [85]. 

Birinci derece Sugeno bulanık mantık modelinde 𝐴𝑖  𝑣𝑒 𝐵𝑖 bulanık kümelerini göstermek 

üzere bulanık kurallar aşağıda verilen denklemler ile tanımlanır. 
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 𝐾𝑢𝑟𝑎𝑙 1: 𝐸ğ𝑒𝑟 𝑥1 = 𝐴1 𝑣𝑒 𝑥2 = 𝐵1 𝑖𝑠𝑒 𝑓1 = 𝑝1𝑥1 + 𝑞1𝑥2 + 𝑟1 (3.7) 

 𝐾𝑢𝑟𝑎𝑙 2: 𝐸ğ𝑒𝑟 𝑥1 = 𝐴2 𝑣𝑒 𝑥2 = 𝐵2 𝑖𝑠𝑒 𝑓2 = 𝑝2𝑥1 + 𝑞2𝑥2 + 𝑟2 (3.8) 

Bu denklemlerde; 𝑥𝑖, giriş değişkenlerini; 𝑓𝑗, çıkış değişkenlerini; 𝑝𝑗, 𝑞𝑗 𝑣𝑒 𝑟𝑗, sonuç 

değişkenlerini göstermektedir. Bu denklemlerle ifade edilen kurallara göre tasarımı 

yapılan bulanık sistemin örnek üyelik fonksiyonları Şekil 3.4’te görülmektedir. Bu 

şekilde 𝐴1 ve 𝐴2, genelleştirilmiş çan eğrisi; 𝐵1 ve 𝐵2, 𝜋 − 𝑡𝑖𝑝𝑖 üyelik fonksiyonlarıdır. 

Üyelik fonksiyonları Şekil 3.4’te görülen bulanık sistemin çıkışları aşağıda verilen 

denklemler ile hesaplanır. 

 𝑤𝑖 = µ𝐴𝑖
(𝑥) ∙ µ𝐵𝑖

(𝑦), 𝑖 = 1,2 (3.9) 

 𝑓1 = 𝑝1𝑥1 + 𝑞1𝑥2 + 𝑟1 (3.10) 

 𝑓2 = 𝑝2𝑥1 + 𝑞2𝑥2 + 𝑟2 (3.11) 

 𝑓 =
𝑤1𝑓1+𝑤2𝑓2

𝑤1+𝑤2
 (3.12) 

 𝑓 = 𝑤̅1𝑓1 + 𝑤̅2𝑓2 (3.13) 

Bu denklemlerde 𝑤𝑖, bağlantı ağırlıklarını; 𝑤̅𝑖, normalize edilmiş bağlantı ağırlıklarını 

göstermektedir. İki girişli ve iki çıkışlı Sugeno tipi bulanık modele eşdeğer ANFIS yapısı 

Şekil 3.5’te görülmektedir [85]. 

ANFIS, YSA gibi çok katmanlı bir yapıdır. Ancak YSA’nın katman sayısı gerektiği gibi 

seçilebilirken ANFIS’in belirli bir katman yapısı vardır. ANFIS’te her bir giriş için kaç 

adet üyelik fonksiyonu kullanılacağı ve kullanılacak üyelik fonksiyonlarının seçimi 

yapılabilir. Bu seçimin nasıl yapılacağına dair bir kural yoktur, tecrübe ve denemelerle 

yapılmaktadır. 
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Şekil 3.4. İki girişli ve iki kurallı Sugeno tipi bulanık mantık 

modelinin örnek üyelik fonksiyonları. 
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Şekil 3.5. İki girişli ve iki kurallı Sugeno tipi bulanık 

çıkarıma eşdeğer ANFIS mimarisi [85]. 

YSA ile sınıflandırma veya modelleme yapmak için kullanılan işlem adımları aynı 

şekilde ANFIS için de kullanılabilir. ANFIS’te de YSA gibi model parametrelerini 

değiştirmeden, güncellenen eğitim verileri ile yeniden eğitim yapılabilir. Model 

parametrelerinde bir değişiklik olursa ANFIS’in yeniden eğitilmesi gerekmektedir. 
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3.5. Morfolojik Filtreler 

Morfolojik filtreler, daha çok görüntü işleme algoritmalarında görüntüleri şekil ve yapısal 

olarak iyileştirmek için kullanılan algoritmik yapılardır. Görüntü işlemede morfolojik 

fonksiyonlar kenar belirleme, kenar düzeltme ve benzeri diğer işlemler için kullanılır. 

Biyolojik işaretler bir boyutlu görüntü işareti gibi düşünülebilir. Bu sebeple morfolojik 

fonksiyonlar biyolojik işaretlerin iyileştirilmesinde de kullanılabilir. Morfolojik filtreler, 

morfolojik işlemler ile gerçekleştirilmektedir. Morfolojik filtrelerin genişleme ve aşınma 

olmak üzere temel iki fonksiyonu vardır. Genişleme ve aşınma işlemlerinin farklı sıra ile 

kullanılması, kapanma ve açılma gibi daha yüksek seviyeli morfolojik fonksiyonları 

oluşturur.  

Morfolojik işlemler ileri yönlü bir dönüşümdür. Morfolojik dönüşüm bir 𝑓 kümesi ve bir 

𝑘 yapı elemanı ile gerçekleştirilir. 𝑓, 𝐹 kümesinde tanımlı bir fonksiyon ve 𝑘, 𝐾 

kümesinde tanımlı bir yapı elemanı olsun. Genişleme ve aşınma işlemleri, 

 (𝑓 ⊕ 𝑘)(𝑥) = 𝑚𝑎𝑥{𝑓(𝑥 − 𝑧) + 𝑘(𝑧)}, 𝑧 ∈ 𝐾, (𝑥 − 𝑧) ∈ 𝐹 (3.14) 

 (𝑓 ⊝ 𝑘)(𝑥) = 𝑚𝑖𝑛{𝑓(𝑥 + 𝑧) − 𝑘(𝑧)}, 𝑧 ∈ 𝐾 (3.15) 

ile tanımlanır. Eğer 𝑘 sıfır genlikli bir yapı elemanı ise genişleme ve aşınma işlemleri 

aşağıda verilen denklemler ile hesaplanır. 

 (𝑓 ⊕ 𝑘)(𝑥) = 𝑚𝑎𝑥{𝑓(𝑥)}, 𝑥 ∈ 𝐹 (3.16) 

 (𝑓 ⊝ 𝑘)(𝑥) = 𝑚𝑖𝑛{𝑓(𝑥)}, 𝑥 ∈ 𝐹 (3.17) 

Genişleme işlemi ile bir görüntü veya işaret dilimi daha belirgin hale getirilirken, aşınma 

işlemi ile zayıflatılır. Kapanma ve açılma işlemleri, 

 𝑓 • 𝑘 = (𝑓 ⊕ 𝑘) ⊝ 𝑘 (3.18) 

 𝑓 ∘ 𝑘 = (𝑓 ⊝ 𝑘) ⊕ 𝑘 (3.19) 

ile gerçekleştirilir [86]. Morfolojik işlem örnekleri yapay sinir ağları ile uyku apnesinin 

skorlanması konusunda verilmiştir. 



 

 

4. BÖLÜM 

UYKU VE UYKU APNESİ SKORLAMA 

4.1. Giriş 

Bu bölümde PSG işaretleri kullanılarak uyku ve uyku apnesi skorlaması yapılmıştır. 

Uyku skorlaması için YSA kullanılmıştır. Skorlama için kullanılan işaretler, işaret 

özellikleri, YSA’nın tasarım parametrelerinin seçimi, en iyi sonuç veren YSA modeli ve 

skorlama başarıları bu bölümde verilmiştir. 

Uyku apnesini skorlamak için görsel skorlama kurallarına dayalı bir algoritma, YSA ve 

ANFIS olmak üzere üç farklı yöntem kullanılmıştır. Uyku apnesinin skorlanmasında 

kullanılan işaretler, işaret özellikleri, her bir yöntemin tasarım parametrelerinin seçimi ve 

skorlama başarıları da bu bölümde verilmiştir. Her bir hasta grubu için her bir yöntem ile 

elde edilen başarı ortalamaları ayrı ayrı sunulmuştur. 

4.2. Yapay Sinir Ağları İle Uyku Skorlama 

Uyku skorlama, ilk defa 1968 yılında Rechtschaffen ve Kales’in hazırladığı teknik ve 

skorlama el kitabına göre yapılmıştır [87]. Bu skorlama kurallarına göre uyku, REM uyku 

ve NREM uyku olmak üzere ikiye ayrılır. Ayrıca NREM uykusu da dört evreye ayrılır. 

NREM1, NREM2, NREM3 ve NREM4 olarak isimlendirilen bu evrelerde, NREM1’den 

NREM4’e doğru uyku derinliği giderek artmaktadır. 2007 yılında AASM tarafından bu 

kurallar gözden geçirilmiş ve NREM3 ve NREM4 evreleri birleştirilerek NREM3 olarak 

isimlendirilmiştir.  

Uyku skorlaması için üç EEG, sağ ve sol gözden alınan birer EOG ve bir çene EMG’si 

kullanılmıştır. Uyanıklık ve uyku seviyelerinin belirlenmesi için kurallar AASM el 

kitaplarında verilmiştir [16, 17]. 
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Uyku seviyelerini skorlamak için izlenen adımlar şu şekilde sıralanmaktadır: 

a) Biyolojik işaret en baştan itibaren 30 saniyelik dilimlere ayrılır. 

b) Her bir işaret dilimi ayrı ayrı skorlanır. 

c) Bir işaret diliminde birden fazla uyku evresi görülüyorsa bu zaman dilimi en fazla 

görülen uyku evresi olarak skorlanır. 

4.2.1. Uyku Skorlama İçin Kullanılan Polisomnografi İşaretleri ve İşaret Özellikleri 

Uyku skorlamak için EEG işaretlerinden F4, C4 ve O2; EOG işaretlerinden E1 ve E2; 

çeneden alınan EMG işareti kullanılmıştır. Bu işaretler zaman ekseninde işaret 

özelliklerinin yaklaşık sabit kaldığı 30 saniyelik dilimlere bölünerek her bir dilimin işaret 

ortalaması, enerjisi, gücü ve etkin değeri hesaplanmıştır. 

𝑁 adet örnekten oluşan bir 𝑥 işaretinin aritmetik ortalaması, 

 𝜇 =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1  (4.1) 

ile hesaplanmıştır. Aritmetik ortalama belirleyici bir özelliktir. Ancak bazı işaretlerin 

ortalaması sıfır olduğundan bu işaretlere dikkat edilmelidir. 

Bir 𝑥 işaretinin enerjisini hesaplamak için, 

 𝐸 = ∑ |𝑥𝑖|2𝑁
𝑖=1  (4.2) 

denklemi kullanılmıştır. Bir işaretin enerjisi işaretin örnek sayısına bağlıdır. Eğer farklı 

işaret dilimlerinin enerjisi hesaplanacaksa işaret dilimleri aynı uzunlukta olmalıdır. 

Bir 𝑥 işaretinin gücü, 

 𝑃 =
1

𝑁
∑ |𝑥𝑖|

2𝑁
𝑖=1  (4.3) 

ile hesaplanmıştır. İşaret gücü, işaret enerjisinin dağılımını gösterir. Örnek sayısından 

bağımsız olduğu için işaretin enerjisine göre daha iyi bir belirleyicidir. 
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Bir 𝑥 işaretinin etkin değerini hesaplamak için aşağıda verilen denklem kullanılmıştır. 

 𝑥𝑟𝑚𝑠 = √
1

𝑁
∑ |𝑥𝑖|2𝑁

𝑖=1  (4.4) 

Biyolojik işaret işleme çalışmalarında hangi işaret özelliğinin daha belirleyici olduğu 

yapılan denemelerle belirlenmiştir. 

4.2.2. Polisomnografi İşaretlerinin Özelliklerinin Çıkarılması 

PSG işaretlerin özellikleri Bölüm 2’de açıklanmıştır. Uyku skorlamasında kullanılan 

işaretler, önişleme adımları, işaretlerin iyileştirilmesi ve özelliklerinin çıkarılması için 

aşağıda verilen işlem adımları takip edilerek özellikler tablosu oluşturulmuştur. 

a) Bazı durumlarda biyolojik işaretler, içinde bilgi taşımayan doğrusal eğilimler  

(DC değerler) bulundurmaktadır. Bu eğilimler işaret genliğini ve ortalamasını 

olumsuz etkilemektedir. Biyolojik işaretler DC değerlerden temizlenerek 

karakteristiği daha doğru bir işaret elde edilmiştir. 

b) EEG ve OEG işaretleri alt kesim frekansı 0.3 Hz, üst kesim frekansı 35Hz; EMG 

işaretleri alt kesim frekansı 10 Hz, üst kesim frekansı 100 Hz olan 4. dereceden 

Butterworth filtresi ile istenmeyen frekans bileşenlerinden temizlemiştir. 

c) EEG işaretleri ayrık dalgacık dönüşümü ile 0-4 Hz, 4-8 Hz, 8-12 Hz ve 12-16 Hz 

olan dört alt banda ayrılmış ve her bir frekans bandının işaret gücü; EOG ve EMG 

işaretleri ise alt bandlara ayrılmadan işaret güçleri hesaplanmıştır. Her bir özellik 

vektöründe 15 adet değişken bulunmaktadır. 

d) İşaret özellikleri tablosunda bulunan her bir özelliğin ortalaması ve standart 

sapması hesaplanmıştır. Buna göre, %95 olasılıkla 𝜇 ± 2𝜎 aralığındaki değerler 

geçerli, bu aralığın dışındaki değerler artefakt olarak kabul edilmiş ve özellikler 

tablosundan çıkarılmıştır. 

Bu işlem adımları bütün hastalardan alınan işaretler için tekrar edilmiştir. PSG işaret 

özellikleri çıkarılan toplam 32 hastaya ait veriler, eğitim ve test verileri olmak üzere iki 

gruba ayrılmıştır. Eğitim verilerinin seçiminde, uyku evrelerinin dağılımına ve her bir 

evrenin mümkün olduğu kadar çok görülmesine dikkat edilmiştir. YSA’nın eğitimi için 

kullanılan veriler Tablo 4.1’de, test için kullanılan veriler Tablo 4.2’de verilmiştir. 
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Tablo 4.1. Uyku skorlama için YSA’nın eğitiminde kullanılan verilerde hastalara ait 

AHİ ve epok sayıları. 

S/N AHİ Epok Artefakt Uyanık REM NREM1 NREM2 NREM3 

1 6 864 48 59 123 36 187 411 

2 7 921 31 210 119 63 215 283 

3 27 836 40 278 45 47 295 131 

4 17 1022 71 76 224 36 400 215 

5 25 967 64 115 195 40 364 189 

6 13 884 27 385 88 30 207 147 

Toplam … 5494 281 1123 794 252 1668 1376 

En Küçük 6 836 27 59 45 30 187 131 

En Büyük 27 1022 71 385 224 63 400 411 

Ortalama 15.83 915.67 46.83 187.17 132.33 42.00 278.00 229.33 

Std. Sapma 8.86 69.27 17.72 127.99 66.61 11.71 89.29 104.08 

 

Tablo 4.1’de görüldüğü gibi YSA’nın eğitimi için 6 hasta verisi kullanılmıştır. Bu 

verilerde hastaların AHİ’leri 6 ile 27 arasında değişmekte, ortalaması ise 15.83’tür. 

Toplam 5494 epoğun 281 tanesi artefakt olarak işaretlenmiş, 5213 epok ise eğitim için 

kullanılmıştır. Eğitim için kullanılan epokların 1123 adedi uyanıklık (%21.54), 794 adedi 

REM (%15.23), 252 adedi NREM1 (%4.83), 1668 adedi NREM2 (%32.00) ve 1376 adedi 

NREM3 (%26.40) dönemlerine aittir. 

Tablo 4.2’de görüldüğü gibi YSA’nın test edilmesi için 26 hasta verisi kullanılmıştır. Bu 

verilerde hastaların AHİ’leri 0,3 ile 77 arasında değişmekte, ortalaması ise 19,90’dır. Test 

için kullanılan verilerin ortalama AHİ değeri, eğitim için kullanılan verilerin ortalama 

değerine oldukça yakındır. YSA’nın testi için toplam 24404 epoğun 1061 tanesi artefakt 

olarak işaretlenmiş, 23343 epok ise test için kullanılmıştır. Test için kullanılan epokların 

2733 adedi uyanıklık (%11.71), 3984 adedi REM (%17.07), 546 adedi NREM1 (%2.34), 

9729 adedi NREM2 (%41.68) ve 6351 adedi NREM3 (%27.21) dönemlerine aittir. 

Eğitim verilerinde 2 sıra numaralı hastanın uyanıklık ve uyku seviyelerini gösteren grafik 

(hipnogram) Şekil 4.1’de verilmiştir. Şekil 4.1’de verilen hipnogramda görüldüğü gibi  
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Tablo 4.2. Uyku skorlaması için test grubu hastalara ait AHİ ve epok sayıları. 

S/N AHİ Epok Artefakt Uyanık REM NREM1 NREM2 NREM3 

1 77 851 22 120 155 6 405 143 

2 13 1033 60 177 197 20 295 284 

3 26 1003 39 29 236 25 344 330 

4 5 935 70 112 152 16 391 194 

5 37 893 27 153 50 17 477 169 

6 9 975 35 18 217 26 482 197 

7 17 949 49 74 106 26 488 206 

8 18 923 71 116 124 22 355 235 

9 17 984 49 33 211 18 467 206 

10 8 959 30 189 214 19 289 218 

11 40 928 31 149 119 29 320 280 

12 32 940 50 47 132 26 448 237 

13 9 937 37 166 178 23 358 175 

14 0,3 968 27 66 118 23 401 333 

15 7 940 38 247 144 21 226 264 

16 20 943 26 160 135 21 350 251 

17 18 1008 44 77 251 27 446 163 

18 22 966 33 80 178 29 158 488 

19 13 936 36 148 124 26 407 195 

20 16 1011 17 44 215 15 489 231 

21 5 869 50 91 156 14 343 215 

22 4 886 25 144 47 27 326 317 

23 22 846 32 25 129 16 294 350 

24 12 1029 59 129 154 23 397 267 

25 22 919 60 78 144 19 478 140 

26 48 773 44 61 98 12 295 263 

Toplam … 24404 1061 2733 3984 546 9729 6351 

En Küçük 0.3 773 17 18 47 6 158 140 

En Büyük 77 1033 71 247 251 29 489 488 

Ortalama 19.90 938.62 40.81 105.12 153.23 21.00 374.19 244.27 

Std. Sapma 16.45 60.32 14.64 58.82 51.91 5.67 86.06 76.27 
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Şekil 4.1. Eğitim için kullanılan verilerden 2 sıra numaralı 

hastanın uyku hipnogramı. 

uyku NREM1 ile başlar, NREM2 ve NREM3 ile devam eder. Bu dönemden sonra uyku 

derinliği hızla azalmaya başlayıp REM dönemine kadar devam eder. Daha sonra tekrar 

derinleşmeye başlayan uyku seviyesi eğer bir uyarıcı olmaz ise uyanıncaya kadar aynı 

şekilde devam eder. Şekil 4.1’de verilen örneğin alındığı kişi uyku apnesi hastası 

olduğundan REM uyku dönemlerinden sonra kısa süreli uyanıklık dönemleri 

görülmektedir. Ancak normal uyku süresinin sonuna yaklaşıldığında uyku derinliği 

NREM3 dönemini görmemeye başlar. 

4.2.3. Uyku Skorlama Başarısının Hesaplanması 

Yapılan skorlama çalışmasının doğruluğunun veya başarısının hesaplanması için 

doğruluk (accuracy) testi yapılır. Doğruluk testi, tıbbi uzman tarafından yapılan skorlama 

ile YSA tarafından yapılan skorlama karşılaştırılarak hesaplanır. İstenilen uyku seviyeleri 

“1”, diğer uyku seviyeleri “0” ile gösterilirse muhtemel durumlar Tablo 4.3’te görüldüğü 

gibi olacaktır. Tablo 4.3’e göre doğruluk oranı aşağıdaki şekilde hesaplanır. 

 𝐷𝑜ğ𝑟𝑢𝑙𝑢𝑘 =
𝐷𝑃+𝐷𝑁

𝐷𝑃+𝐷𝑁+𝑌𝑃+𝑌𝑁
 (4.5) 

Doğruluk, “0.0” ile “1.0” arasında değişir. Bu değer ne kadar büyükse yapılan 

sınıflandırma o kadar başarılıdır [29, 44, 88]. 
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Tablo 4.3. Değerlendirme tablosu. 

Tıbbi Uzman Skoru YSA Skoru Durum 

0 0 Doğru Negatif (DN) 

0 1 Yanlış Pozitif (YP) 

1 0 Yanlış Negatif (YN) 

1 1 Doğru Pozitif (DP) 

 

4.2.4. Uyku Skorlama İçin Yapay Sinir Ağı Parametrelerinin Seçimi 

PSG işaretleri ile uyanıklık, REM, NREM1, NREM2 ve NREM3 olmak üzere beş farklı 

seviyede uyku skorlaması yapılmıştır. Her bir uyku seviyesi için ayrı bir YSA 

oluşturulmuştur. İlk olarak özellikler tablosu, istenilen uyku seviyesinin olduğu ve 

olmadığı durumlar olmak üzere ikiye ayrılmıştır. Özellikler tablosunda istenilen uyku 

seviyesi olan zaman dilimleri “+1”, diğer zaman dilimleri “-1” olarak işaretlenmiştir. Bu 

değerler YSA’da kullanılan sinir hücrelerinin transfer fonksiyonu ile uyumludur. 

YSA tasarımında katman sayısının seçimi için genel bir kural olmadığından bu çalışmada 

2 ve 3 katmanlı YSA modelleri ile denemeler yapılmıştır. 

4.2.5. Sinir Hücrelerinin Sayısının Seçimi 

Sinir hücrelerinin sayısının seçimi için herhangi bir kural yoktur. Bu çalışmada iki 

katmanlı YSA ile yapılan denemelerde gizli ve çıkış katmanında sıralı olarak (3, 1), 

(6, 1), (9, 1), (12, 1), (15, 1) ve (18, 1) adet sinir hücresi kullanılmıştır. Üç katmanlı YSA 

ile yapılan denemelerde gizli ve çıkış katmanlarında sıralı olarak (3, 3, 1), (3, 6, 1),  

(3, 9, 1), (3, 12, 1), (3, 15, 1), (3, 18, 1), (6, 3, 1), (9, 3, 1), (12, 3, 1), (15, 3, 1), (18, 3, 1), 

(6, 6, 1), (6, 9, 1), (6, 12, 1), (6, 15, 1) ve (6, 18, 1) adet sinir hücreleri ile denemeler 

yapılmıştır. 

Sinir hücrelerinin transfer fonksiyonlarının seçimi için herhangi bir kural yoktur. Fakat 

başarılı bir uygulama için YSA’nın giriş ve çıkış verileri ile sinir hücrelerinin transfer 

fonksiyonları uyumlu seçilmelidir. Uyku seviyelerinin skorlanması için kullanılan YSA 

modellerinde hiperbolik tanjant sigmoid transfer fonksiyonu kullanılmıştır. 
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4.2.6. Uyku Skorlamak İçin Yapay Sinir Ağlarının Gerçekleştirilmesi  

Uyku skorlaması yapmak için iki ve üç katmanlı, farklı sayıda sinir hücrelerinden oluşan 

22 farklı YSA modeli kullanılmıştır. Her bir YSA modelinde uyanıklık, REM, NREM1, 

NREM2 ve NREM3 olmak üzere beş farklı uyku seviyesi için beş ayrı YSA 

oluşturulmuştur. Bu tez çalışmasında kullanılan YSA’ların eğitimi 12 farklı öğrenme 

yöntemi ile yapılmıştır. Ancak bütün YSA’ları bütün öğrenme yöntemleri ile eğitmek 

uzun bir zaman alacağından üç farklı grup deneme yapılmıştır. YSA’nın eğitim 

verilerinde 5213 adet özellik verisi vardır. Bu veri 43.44 saatlik zamana karşılık 

gelmektedir. Yapılan denemelerde bu kadar özellik verisinin yeterli olduğu görülmüştür. 

Birinci grup denemelerde, 22 farklı YSA modeli Levenberg-Marquardt öğrenme 

algoritması ile eğitilmiş ve yapılan skorlamanın doğruluğu Denklem (4.5) ile 

hesaplanmıştır. Bu denemelere ait öğrenme ve test başarıları Tablo 4.4’te verilmiştir. Bu 

denemelerde elde edilen başarı ortalamaları %70.82 ile %75.77 arasında bulunmuştur. 

Tablo 4.4’te görüldüğü gibi yapılan iki katmanlı model denemelerinde gizli katmanda 

sıra ile 3, 6, 9, 12, 15 ve 18 sinir hücresi bulunan 6 model denemesi yapılmıştır. Bu 

denemelerde en yüksek test başarısı, gizli katmanda 3 hücre bulunan “Model 1” ile 

%74.69 olmuştur. 

Üç katmanlı model denemelerinde birinci gizli katmanda 3 olmak üzere ikinci gizli 

katmanda sıra ile 3, 6, 9, 12, 15 ve 18 sinir hücresi bulunan 6 model denemesi yapılmıştır. 

Bu denemelerde en yüksek test başarısı birinci ve ikinci gizli katmanda 3’er hücre 

bulunan “Model 7” ile %75.77 olmuştur. Bu sonuç 2 katmanlı model denemelerinden 

biraz daha iyidir. 

Üç katmanlı model denemelerinde ikinci gizli katmanda 3 olmak üzere birinci gizli 

katmanında sıra ile 6, 9, 12, 15 ve 18 sinir hücresi bulunan 5 model ile denemeler 

yapılmıştır. Bu denemelerde en iyi sonuç “Model 13” ile %73.96 olarak hesaplanmıştır. 

Birinci gizli katmanda 6 olmak üzere ikinci gizli katmanında sıra ile 6, 9, 12, 15 ve 18 

sinir hücresi bulunan 5 model denemesi yapılmıştır. Bu denemelerde elde edilen en iyi 

sonuç “Model 21” ile %72.95 olmuştur. 
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Tablo 4.4. Uyku seviyelerini belirlemek için kullanılan bütün YSA 

modellerinin Levenberg-Marquardt ile eğitilmesi durumunda 

hesaplanan öğrenme ve test başarıları. 

YSA 

Model 

Numarası 

Katman 

Sayısı 

Giriş 

Katmanı 

Hücre 

Sayısı 

Gizli 

Katman 

Hücre 

Sayısı 

Çıkış 

Katmanı 

Hücre 

Sayısı 

Ortalama 

Öğrenme 

Başarısı 

(%) 

Ortalama 

Test 

Başarısı 

(%) 

1 2 3 - 1 85.52 74.69 

2 2 6 - 1 89.30 73.40 

3 2 9 - 1 90.12 74.08 

4 2 12 - 1 91.53 71.45 

5 2 15 - 1 91.69 73.36 

6 2 18 - 1 90.05 71.67 

7 3 3 3 1 85.09 75.77 

8 3 3 6 1 86.09 73.32 

9 3 3 9 1 86.55 74.08 

10 3 3 12 1 86.13 73.06 

11 3 3 15 1 86.68 73.73 

12 3 3 18 1 86.92 72.38 

13 3 6 3 1 88.95 73.96 

14 3 9 3 1 91.09 73.56 

15 3 12 3 1 91.04 72.76 

16 3 15 3 1 92.29 71.59 

17 3 18 3 1 93.17 70.82 

18 3 6 6 1 90.24 72.69 

19 3 6 9 1 90.65 71.51 

20 3 6 12 1 91.42 72.16 

21 3 6 15 1 91.89 72.95 

22 3 6 18 1 91.59 72.69 

En Küçük     85.09 70.82 

En Büyük     93.17 75.77 

Ortalama     89.45 72.99 

Std. Sapma     2.52 1.19 
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İkinci grup denemelerde, birinci grup denemelerle elde edilen en başarılı YSA modeli 

diğer 11 farklı öğrenme yöntemi ile eğitilmiş ve başarı ortalamaları hesaplanmıştır. Bu 

denemeye ait ortalama test başarıları Tablo 4.5’te verilmiştir. Yapılan bu grup 

denemelerde en iyi başarı ortalaması Bayesian Regularization öğrenme yöntemi ile 

%73.27 olarak elde edilmiştir. Levenberg-Marquardt ile elde edilen başarı ortalaması bu 

başarı ortalamasından daha yüksektir. 

Üçüncü grup denemelerde, birinci grup denemelerle elde edilen 2., 3., 4. ve 5. en başarılı 

4 YSA modeli diğer 11 farklı öğrenme yöntemi ile eğitilmiş ve başarı ortalamaları 

hesaplanmıştır. Her bir model ile yapılan denemelerde en iyi başarı ortalamasını veren 

öğrenme yöntemleri ve bu yöntemlerin başarı ortalamaları Tablo 4.6’da verilmiştir.  

Tablo 4.6’ya göre farklı öğrenme algoritmaları farklı YSA modellerinde daha başarılı 

bulunmuştur. Öğrenme algoritmalarının ortalama test başarıları %73.88 ile %75.26 

arasında hesaplanmıştır. Başarı ortalamalarının farkı bu çalışma için oldukça iyidir.  

Tablo 4.5. Birinci grup denemelerde en iyi başarı ortalamasını veren YSA 

modeli diğer 11 farklı öğrenme algoritması ile eğitildiğinde elde 

edilen ortalama test başarıları. 

S/N Öğrenme Algoritması 
Ortalama Test 

Başarısı (%) 

1 Bayesian Regularization [77] 73.27 

2 Scaled Conjugate Gradient [80] 72.56 

3 BFGS Quasi-Newton [76, 78] 72.23 

4 One Step Secant [81] 71.57 

5 Resilient Backpropagation [78, 79] 70.77 

6 Polak-Ribiére Conjugate Gradient [82] 69.42 

7 Conjugate Gradient with Powell/Beale Restarts [76] 69.19 

8 Fletcher-Powell Conjugate Gradient [81] 68.61 

9 Variable Learning Rate Gradient Descent [82] 66.96 

10 Gradient Descent with Momentum [83] 61.47 

11 Gradient Descent [83] 60.33 

 
Ortalama 69.21 

 
Standart Sapma 4.41 
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Tablo 4.6. Öğrenme algoritmalarının ortalama test başarıları. 

Model Numarası Öğrenme Algoritması Ortalama Test Başarısı (%) 

1 Bayesian Regularization [77] 75.26 

3 BFGS Quasi-Newton [76, 78] 74.77 

9 Bayesian Regularization [77] 74.13 

13 Scaled Conjugate Gradient [80] 73.88 

 Ortalama 74.45 

 Standart Sapma 0.56 

 

YSA modellerinin öğrenmeye rastgele değerler ile başladığı ve her defasında farklı 

değerler aldığı düşünülürse her denemede birbirine yakın fakat farklı sonuçlar elde 

edilmesi de mümkündür.  

Özet olarak Tablo 4.4, Tablo 4.5 ve Tablo 4.6 birlikte değerlendirildiğinde en iyi test 

başarısı “Model 7” YSA, Levenberg-Marquardt öğrenme algoritması ile eğitildiğinde 

%75.77 olarak elde edilmiştir. Bu model üç katmanlı bir yapı olup, gizli katmanlarında 

3’er, çıkış katmanında ise 1 sinir hücresi bulunmaktadır. Skorlama için üç EEG, iki EOG 

ve çene EMG işareti, işaret özelliği olarak her bir işaretin işaret gücü kullanılmıştır.  

4.2.7. Yapay Sinir Ağları İle yapılan Uyku Skorlamasının Sonuçları 

Uyku skorlamasında kullanılan hasta verileri, Levenberg-Marquardt öğrenme algoritması 

ile eğitilen en başarılı YSA modeli ile skorlandığında elde edilen öğrenme ve test 

başarıları sıra ile Tablo 4.7 ve Tablo 4.8’de verilmiştir. 

Tablo 4.7’de öğrenme başarıları %82.33 ile %89.20 arasında değişmekte olup, ortalaması 

%85.09 olarak hesaplanmıştır. Öğrenme grubu hasta verileri içerisinde NREM1 uyku 

döneminin görülme oranı %4.83 olduğundan, YSA öğrenmesi zayıf kalmakta ve başarı 

ortalamasını düşürmektedir. NREM1’in olmadığı skorlama başarısı Ortalama* ile 

gösterilmiş olup toplam başarıdan biraz daha yüksektir. 
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Tablo 4.7. Eğitim grubu hastalara ait verilerin uyku skorlaması başarı 

ortalamaları. 

S/N Uyanık REM NREM1 NREM2 NREM3 Ortalama Ortalama* 

1 90.62 89.68 80.26 62.64 88.44 82.33 82.85 

2 90.88 89.88 85.85 83.85 95.55 89.20 90.04 

3 88.80 96.54 78.77 73.75 84.59 84.49 85.92 

4 78.80 85.28 82.30 73.87 92.73 82.59 82.67 

5 84.90 93.43 78.91 72.63 89.01 83.78 84.99 

6 93.33 96.36 84.16 75.62 91.41 88.17 89.18 

En Küçük 78.80 85.28 78.77 62.64 84.59 82.33 82.67 

En Büyük 93.33 96.54 85.85 83.85 95.55 89.20 90.04 

Ortalama 87.89 91.86 81.71 73.73 90.29 85.09 85.94 

Std Sapma 5.26 4.39 2.90 6.79 3.81 2.91 3.11 

 

Tablo 4.8’de test grubu hastalara ait skorlama başarıları görülmektedir. Bu tabloya göre 

en büyük skorlama başarısı %84.62 (Hasta 20), en küçük skorlama başarısı %67.60 

(Hasta 15), ortalama başarı %75.77’dir. NREM1’in olmadığı skorlama başarısı ise 

%78.07 olmuştur. 

Test grubu hastalarda uyku evreleri içinde en yüksek skorlama başarısı %88.70 ile 

uyanıklık evresinde elde edilmiştir. Aynı şekilde REM evresinde %78.82 ve NREM3 

evresinde %76.25 oranında yüksek başarı ortalamaları elde edilmiştir. Ortalama başarı 

oranının standart sapması 4.28 olarak hesaplanmıştır. Bu değer her bir hastanın ortalama 

skorlama başarısının dar bir aralıkta olduğunu göstermektedir. Bu değerin küçük olması 

skorlama modelinin kararlılığını göstermektedir.  

Tablo 4.8’de uyku seviyeleri içinde en düşük ortalama skorlama başarısı %66.60 ile 

NREM1 evresine aittir. NREM1 evresinin epok sayıları eğitim verilerinde %4.83, test 

verilerinde %2.34, toplamda ise %2.80’dir. Bu zaman dilimi çok kısa olduğundan YSA 

bu uyku evresini yeterince öğrenememiştir.  
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4.2.8. Yapay Sinir Ağları İle Yapılan Uyku Skorlamasının Değerlendirilmesi 

Literatürde yapılan araştırmalarda uyku seviyelerinin skorlanması için farklı yöntemlerin 

kullanıldığı bazı çalışmalarda elde edilen başarı oranları Tablo 4.9’da verilmiştir. Tablo 

4.9’da görüldüğü gibi Bajaj ve Pachori [19] tarafından sağlıklı kişilerde MC-LS-SVM 

sınıflandırıcı kullanılarak yapılan çalışmada %79.80 ile %92.93 arasında, Hassan ve 

Bhuiyan [20] tarafından sağlıklı kişilerde adaptive boosting (AdaBoost) ve TQWD 

kullanılarak yapılan çalışmada %90.01 ile %98.01 arasında, Wu ve arkadaşları [21] 

tarafından TUA şüphesi olan kişilerde yapılan çalışmada toplam %81.7, Uçar ve 

arkadaşları [25] tarafından TUA hastalarında yapılan çalışmada %73.36, Boostani ve 

arkadaşları [22] tarafından yapılan çalışmada sağlıklı kişilerde %87.06, hastalarda 

%69.05, bu tez çalışmasında uyku apnesi hastalarında %67.60 ile %84.62 arasında toplam 

%75.77 başarı oranları elde edilmiştir. NREM1 uyku seviyesi hariç olduğunda başarı 

oranı %78.07 olmaktadır. 

Literatürde, uyku skorlaması başarılarının sağlıklı kişilerde yüksek, TUA hastalarında 

daha düşük olduğu görülmektedir. Bu tez çalışmasında yapılan otomatik uyku skorlama 

çalışmalarında eğitim başarıları yüksek, test başarıları kabul edilebilir bir seviyededir. 

Eğitim başarıları ile test başarıları arasındaki fark kullanılan verilerden 

kaynaklanmaktadır. 

4.3. Uyku Apnesinin Skorlanması 

Uyku apnesinin skorlanması için geceyi hastanenin uyku laboratuvarında geçiren 

hastanın PSG işaretleri kaydedilir. Bu PSG işaretleri bir tıbbi uzman tarafından AASM 

tarafından yayımlanan skorlama kurallarına göre görsel olarak skorlanır. Skorlama 

sürecinde önce uyku sonra uyku apnesi skorlaması yapılır. 

Bu tez çalışmasında uyku apnesinin skorlanması için görsel skorlama kuralları ile uyumlu 

aşağıda verilen üç yöntem kullanılmıştır. 

a) Algoritmik bir yöntem ile uyku apnesinin skorlanması. 

b) YSA ile uyku apnesinin skorlanması. 

c) ANFIS ile uyku apnesinin skorlanması. 
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Tablo 4.8. Test grubu hastalara ait verilerin uyku skorlaması başarı 

ortalamaları. 

S/N Uyanık REM NREM1 NREM2 NREM3 Ortalama Ortalama* 

1 88.22 83.90 76.85 74.53 68.80 78.46 78.86 

2 89.76 80.09 54.62 57.96 89.77 74.44 79.40 

3 92.41 51.51 65.34 75.65 81.23 73.23 75.20 

4 87.05 87.17 76.03 70.36 82.19 80.56 81.69 

5 91.58 74.57 57.07 68.87 69.08 72.23 76.03 

6 88.02 86.86 63.95 64.52 79.34 76.54 79.68 

7 89.29 78.15 62.93 68.85 56.99 71.24 73.32 

8 92.12 77.61 56.20 67.71 78.85 74.50 79.07 

9 91.69 81.01 53.38 66.99 84.84 75.58 81.13 

10 87.50 56.22 59.89 71.80 75.25 70.13 72.69 

11 91.78 73.33 77.07 59.97 73.91 75.21 74.74 

12 87.01 75.86 80.56 59.82 57.66 72.18 70.09 

13 79.29 78.46 55.02 65.41 75.72 70.78 74.72 

14 93.66 81.29 50.76 69.72 70.23 73.13 78.72 

15 87.10 67.74 51.70 63.09 68.34 67.60 71.57 

16 87.32 84.14 67.58 68.25 87.76 79.01 81.87 

17 69.39 76.93 72.36 73.65 85.96 75.66 76.48 

18 94.26 87.15 62.44 51.48 68.14 72.69 75.26 

19 94.68 70.55 69.51 69.68 83.55 77.59 79.61 

20 94.11 90.24 74.87 78.12 85.78 84.62 87.06 

21 83.86 91.78 72.11 75.95 88.58 82.45 85.04 

22 90.45 67.75 76.38 62.90 83.46 76.19 76.14 

23 83.90 85.84 76.50 68.27 73.60 77.62 77.90 

24 87.87 84.01 70.22 74.43 54.05 74.12 75.09 

25 90.08 90.49 69.70 79.39 72.46 80.42 83.11 

26 93.86 86.53 78.52 73.73 87.02 83.93 85.29 

En Küçük 69.39 51.51 50.76 51.48 54.05 67.60 70.09 

En Büyük 94.68 91.78 80.56 79.39 89.77 84.62 87.06 

Ortalama 88.70 78.82 66.60 68.50 76.25 75.77 78.07 

Std. Sapma 5.39 9.95 9.40 6.63 10.06 4.28 4.33 
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Tablo 4.9. Literatürde yapılan araştırmalara göre uyku seviyelerinin 

skorlanması için yapılan çalışmalarda elde edilen başarı 

oranları. 

Araştırmacı Örnek Grubu Doğruluk Oranları (%) 

Bajaj ve Pachori [19] Sağlıklı Kişiler 79.80 ile 92.93 arası 

Hassan ve Bhuiyan [20] Sağlıklı Kişiler 90.01 ile 98.01 arası 

Wu ve ark. [21] TUA Şüphesi 81.7 toplam başarı 

Uçar ve ark. [25] TUA Hastaları 73.36 toplam başarı 

Boostani ve ark. [22] 
Sağlıklı Kişiler 87.06 toplam başarı 

Hasta Kişiler 69.05 toplam başarı 

Bu Tez Çalışmasında TUA Hastaları 

67.60 ile 84.62 arasında 

75.77 toplam başarı 

78.07 NREM2 Hariç 

 

4.3.1. Uyku Apnesini Skorlamak İçin Kullanılan PSG İşaretleri ve İşaret Özellikleri 

Uyku apnesinin skorlanması için EEG işaretlerinden F4, C4 ve O2; EOG işaretlerinden 

E1 ve E2; çene, sağ bacak ve sol bacaktan alınan birer EMG işaretleri; solunum 

değişkenlerinden solunum basıncı, solunum çabası ve oksijen saturasyonu olmak üzere  

11 adet işaret kullanılmıştır. Bu işaretler zaman ekseninde işaret özelliklerinin yaklaşık 

sabit kaldığı 1 saniyelik dilimlere bölünerek, her bir işaret dilimin ortalaması, enerjisi, 

gücü ve etkin değeri Denklem (4.1) – (4.4) ile hesaplanmıştır. İşaret özelliklerinin yanında 

işaretlerin mutlak değerlerinin ortalaması hesaplanmış ve işaretler normalize edilmiştir. 

Bu sayede hem uyku apnesinin skorlanması kolaylaşmakta hem de skorlama başarısı 

artmaktadır. Bu işlemler aşağıda gösterildiği gibi hesaplanmaktadır. 

Bazı işaretlerin ortalama değeri sıfır olduğundan, bu işaretlerin mutlak değerlerinin 

ortalamasının kullanılması daha uygundur. Bir 𝑥 işaretinin mutlak değerlerinin 

ortalaması, 

 𝜇𝑎 =
1

𝑁
∑ ∣ 𝑥𝑖 ∣𝑁

𝑖=1  (4.6) 

ile hesaplanır. Bir 𝑥 işaretinin mutlak değerlerinin ortalamasını “1.0” olacak şekilde 

normalize etmek için aşağıda verilen denklem kullanılır. 
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 𝑥𝑗̅ =
∣𝑥𝑗∣

𝜇𝑎
 , 𝑗 = 1. . 𝑁 (4.7) 

Bir 𝑥 işaretini “0.0” ile “1.0” aralığına normalize etmek için 

 𝑥𝑗̅ =
𝑥𝑗−min(𝑥)

max(𝑥)−min(𝑥)
, 𝑗 = 1. . 𝑁 (4.8) 

denklemi kullanılır. Bu denklemde min(𝑥) 𝑣𝑒 max(𝑥) işlemleri sıra ile 𝑥 işaretinin en 

küçük ve en büyük değerlerini göstermektedir. 

4.3.2. Polisomnografi İşaretlerinin Özelliklerinin Çıkarılması 

Uyku apnesini skorlamak için önce üst hava yolunda görülen solunum işaretine bakılır. 

Fakat sadece bu işaret tek başına yeterli değildir. Bilhassa merkezi uyku apnesini 

belirleyebilmek için solunum çabasının olup olmadığına da bakılır ve kandaki oksijen 

saturasyonu da kontrol edilir. Normal solunum ile uyku apnesi ve hipopne durumunda 

işaret özellikleri Bölüm 2’de açıklanmıştır. 

Uyku apnesinin skorlanmasında kullanılan PSG işaretlerinin önişleme ile iyileştirilmesi 

ve özelliklerinin çıkarılması için aşağıda verilen işlem adımları takip edilerek özellikler 

tablosu oluşturulmuştur. 

a) Bazı durumlarda biyolojik işaretler içinde bilgi taşımayan doğrusal eğilimler  

(DC değerler) bulundurmaktadır. Bu eğilimler işaret genliğini ve ortalamasını 

olumsuz etkilemektedir. Biyolojik işaretler bu DC değerlerden temizlenerek 

karakteristiği daha doğru bir işaret elde edilmiştir. 

b) AASM kurallarına göre EEG ve EOG işaretleri 0.3-35 Hz; EMG işaretleri  

10-100 Hz; Solunum basıncı 0.03-100 Hz; Solunum çabası 0.1-15 Hz kesim 

frekanslarına sahip 4. dereceden Butterworth band geçiren filtresi ile istenmeyen 

frekans bileşenlerinden temizlenmiştir. 

c) Hastaların fizyolojik özellikleri birbirinden farklı olduğundan aynı şartlarda bile 

işaret genliklerinde farklılıklar görülmektedir. Bu farklılıkları düzeltmek için her 

bir işaret mutlak değerlerinin ortalaması “1.0” olacak şekilde normalize edilmiştir. 

Normalizasyon işlemi Denklem (4.6) – (4.7) kullanılarak yapılmıştır. 

d) Oksijen saturasyonu genliği % (yüzde) olarak ifade edildiğinden, bu işaretin 

genliği Denklem (4.8) ile “0.0” – “1.0” arasında normalize edilmiştir.  
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e) Bütün işaretler baştan sona kadar 1 saniyelik dilimlere bölünerek 

Denklem (4.1) – (4.4) ile işaret özellikleri çıkarılmıştır. 

f) İstatistiki yöntemlerle artefakt olarak işaretlenen zaman dilimleri özellik 

tablosundan çıkarılmıştır. 

Burada anlatılan önişlemler bütün hastalardan alınan işaretler için tekrar edilerek özellik 

tabloları çıkarılmış ve bu tablolar uyku apnesini skorlamak için kullanılmıştır. Uyku 

apnesi skorlama kuralları AASM referans el kitaplarında ayrıntılı olarak  

verilmiştir [3, 16]. 

4.3.3. Uyku Apnesi Skorlama Başarısının Hesaplanması 

Uyku apnesi skorlamasının başarısını hesaplamak için tıbbi uzman tarafından yapılan 

skorlama ile otomatik skorlama karşılaştırılır. Doğru ve hatalı skorlama zamanları 

aşağıda verilen mantıksal denklemler ile hesaplanır.  

𝐸ğ𝑒𝑟 𝑏𝑖𝑟 𝑧𝑎𝑚𝑎𝑛 𝑑𝑖𝑙𝑖𝑚𝑖𝑛𝑑𝑒 𝑦𝑎𝑝𝚤𝑙𝑎𝑛 𝑠𝑘𝑜𝑟𝑙𝑎𝑚𝑎𝑙𝑎𝑟 𝑎𝑦𝑛𝚤 𝑖𝑠𝑒 

𝑑𝑜ğ𝑟𝑢 𝑠𝑘𝑜𝑟𝑙𝑎𝑚𝑎 𝑦𝑎𝑝𝚤𝑙𝑚𝚤ş𝑡𝚤𝑟. 

(4.9) 

𝐸ğ𝑒𝑟 𝑏𝑖𝑟 𝑧𝑎𝑚𝑎𝑛 𝑑𝑖𝑙𝑖𝑚𝑖𝑛𝑑𝑒 𝑦𝑎𝑝𝚤𝑙𝑎𝑛 𝑠𝑘𝑜𝑟𝑙𝑎𝑚𝑎𝑙𝑎𝑟 𝑓𝑎𝑟𝑘𝑙𝚤 𝑖𝑠𝑒 

ℎ𝑎𝑡𝑎𝑙𝚤 𝑠𝑘𝑜𝑟𝑙𝑎𝑚𝑎 𝑦𝑎𝑝𝚤𝑙𝑚𝚤ş𝑡𝚤𝑟. 

(4.10) 

Doğru ve hatalı skorlama zamanlarının toplamı, toplam skorlama zamanını verir. 

Skorlama başarısı aşağıdaki denklem ile hesaplanır. 

 𝑆𝑘𝑜𝑟𝑙𝑎𝑚𝑎 𝐵𝑎ş𝑎𝑟𝚤𝑠𝚤 =
𝐷𝑜ğ𝑟𝑢 𝑆𝑘𝑜𝑟𝑙𝑎𝑚𝑎 𝑍𝑎𝑚𝑎𝑛𝚤

𝑇𝑜𝑝𝑙𝑎𝑚 𝑆𝑘𝑜𝑟𝑙𝑎𝑚𝑎 𝑍𝑎𝑚𝑎𝑛𝚤
 (4.11) 

4.4. Algoritmik Yöntemle Uyku Apnesinin Skorlanması 

Algoritmik skorlama, görsel skorlama kurallarına göre skorlama yapan bir tıbbi uzman 

deneyiminin algoritmik yöntemlerle gerçekleştirilmesidir. Bu amaçla bir skorlama 

algoritması oluşturulmuştur. Bu çalışmanın başarısı uzman deneyimine ve bu 

deneyimlerin algoritmik olarak gerçekleştirilmesine bağlıdır. 

Bu çalışmada algoritmik skorlama için solunum işaretleri kullanılmıştır. Solunum 

işaretinin genliğinin en az 10 saniye süre ile %70 azalması hipopne, %90 azalması uyku 

apnesi olarak tanımlanır. Görsel skorlama kuralları daha ayrıntılı olmakla beraber 
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temelde bu kurala uyar. Uyku apnesinin uzman deneyimine bağlı olarak algoritmik 

yöntemlerle skorlanmasında da bu kural esas kabul edilmiştir. 

4.4.1. Algoritmik Skorlama Kuralları 

Görsel skorlama kurallarına göre uyku apnesinin skorlanması için 10 saniye genişliğinde 

iki işaret dilimi alınır. Denklem (4.1) ile her bir işaret dilimlerindeki ortalama işaret 

genlikleri (sıra ile 𝑂𝑟𝑡𝑎𝑙𝑎𝑚𝑎1 ve 𝑂𝑟𝑡𝑎𝑙𝑎𝑚𝑎2) hesaplanır. Uyku apnesinin başlangıcı ve 

bitişi aşağıda verilen kurallar ile belirlenir. 

 𝐾𝑢𝑟𝑎𝑙 1: 𝐸ğ𝑒𝑟 (
𝑂𝑟𝑡𝑎𝑙𝑎𝑚𝑎2

𝑂𝑟𝑡𝑎𝑙𝑎𝑚𝑎1
) < 𝐴𝑝𝑛𝑒 𝑒ş𝑖𝑘 𝑑𝑒ğ𝑒𝑟𝑖 𝑖𝑠𝑒 𝑢𝑦𝑘𝑢 𝑎𝑝𝑛𝑒𝑠𝑖𝑛𝑖𝑛 𝑏𝑎ş𝑙𝑎𝑛𝑔𝚤𝑐𝚤 (4.12) 

 𝐾𝑢𝑟𝑎𝑙 2: 𝐸ğ𝑒𝑟 (
𝑂𝑟𝑡𝑎𝑙𝑎𝑚𝑎1

𝑂𝑟𝑡𝑎𝑙𝑎𝑚𝑎2
) < 𝐴𝑝𝑛𝑒 𝑒ş𝑖𝑘 𝑑𝑒ğ𝑒𝑟𝑖 𝑖𝑠𝑒 𝑢𝑦𝑘𝑢 𝑎𝑝𝑛𝑒𝑠𝑖𝑛𝑖𝑛 𝑠𝑜𝑛𝑢 (4.13) 

Apne eşik değeri, normalize edilmiş solunum işaretinin %10’unu gösterir. AASM 

kurallarına göre bu değer “0.1”dir. Bu tez çalışmasında kullanılan işaretler ile yapılan 

denemelerde Apne eşik değerinin “0.2” alınması daha başarılı sonuçlar vermiştir. 

Hastaların fizyolojik özellikleri, uzman deneyimleri ve algoritmanın gerçekleştirme şekli 

bu değerin belirlenmesinde etkilidir. Bu eşik değeri, ortalama sekiz saat süre ile kayıt 

yapılan 74 hastanın verilerinde yapılan hesaplamalardan elde edilmiştir. Daha başka ve 

daha fazla hasta verilerinde bu oran değişebilir ve daha iyi skorlama başarıları elde 

edilebilir. Skorlama algoritması ile uyku apnesinin skorlanması, Denklem (4.12)-(4.13) 

ile ifade edilen kurallar ile yapılmıştır. 

4.4.2. Uyku Apnesini Skorlamak için Algoritmanın Gerçekleştirilmesi 

Uyku apnesini otomatik olarak skorlamak için bir skorlama algoritması oluşturulmuştur. 

Bu algoritmanın kuralları görsel skorlama kuralları ile uyumludur. Aşağıda verilen bu 

algoritma bütün hastalar için tekrar edilmiştir. Skorlama için özellikler tablosundaki 

solunun işaretinin özellikleri kullanılmıştır.  
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Görsel skorlama kurallarına göre oluşturulan skorlama algoritması: 

1) Uyku apnesini skorlamaya başla. 

2) Hastanın işaret özellikleri tablosunu al. 

3) İşaret dilimlerinin indekslerini ayarla. 

4) Birinci işaret diliminin ortalama genliğini hesapla (Ortalama1). 

5) İkinci işaret diliminin ortalama genliğini hesapla (Ortalama2). 

6) 𝐾𝑢𝑟𝑎𝑙 1 ile uyku apnesinin başlangıcını işaretle. 

7) 𝐾𝑢𝑟𝑎𝑙 2 ile uyku apnesinin bitişini işaretle. 

8) İşaret dilimlerinin indekslerini yeniden ayarla. 

9) Eğer bütün işaret skorlanmadı ise 4. adıma git. 

10) Skorlama başarısını hesapla. 

11) Skorlamayı tamamla. 

 

4.4.3. Skorlama Algoritması İle Yapılan Uyku Apnesi Skorlamasının Sonuçları 

Skorlama algoritması ile yapılan skorlama çalışması özet olarak Tablo 4.10’da 

verilmiştir. Bu yöntem ile 74 hastanın uyku apnesi skorlaması yapılmış olup, skorlama 

başarısı Denklem (4.11) ile hesaplanmıştır. Hastaların AHİ’leri 0.3 ile 100.4 arasında 

değişmekte, ortalaması ise 21.83’tür. 14 hastanın (hastaların %19’u) skorlama başarısı 

%50’nin altından olduğundan bu hasta verilerinin işlenmesinde, skorlama algoritması 

başarısız olarak değerlendirilmiştir. Toplam skorlama başarısı %69.35’tir. 45 hastanın 

(hastaların %60’ı) skorlama başarısı ortalama başarıdan daha yüksek, 29 hastanın 

(hastaların %40’ı) skorlama başarısı ortalama başarının altındadır. Skorlama 

algoritmasının başarılı olduğu değerlendirilen 60 hastanın (hastaların %81’i) skorlama 

başarı ortalaması %81.23 olarak hesaplanmıştır. Bu değer oldukça iyi bir başarı 

ortalamasıdır. 

AHİ’leri 5’ten küçük olan normal kişilerin sayısı 9’dur (hastaların %12’si). Bu kişilerde 

ortalama skorlama başarısı %44.30 olarak hesaplanmıştır. Bu grupta 4 kişinin skorlama 

başarısı çok iyi, 5 kişinin skorlama başarısı çok kötüdür. Skorlama algoritmasının bu grup 

hastaların skorlanmasında başarısız olduğu görülmektedir. 
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Tablo 4.10. Skorlama algoritması ile yapılan uyku apnesi skorlamasının başarı 

oranları. 

  En Küçük En Büyük Ortalama 

Toplam 

74 kişi 

AHİ 0.30 100.40 21.83 

Skorlama Başarısı (%) 0.26 100.00 69.35 

Normal 

9 kişi 

AHİ 0.30 4.70 2.72 

Skorlama Başarısı (%) 0.26 100.00 44.30 

Hafif Seviye 

25 kişi 

AHİ 5.00 14.00 9.99 

Skorlama Başarısı (%) 1.52 98.23 77.71 

Orta Seviye 

23 kişi 

AHİ 16.00 29.00 20.70 

Skorlama Başarısı (%) 6.12 95.90 75.34 

Ağır Hasta 

17 kişi 

AHİ 31.90 100.40 50.87 

Skorlama Başarısı (%) 20.54 83.55 62.23 

 

AHİ’leri 5 ile 15 arasında olan hafif uyku apnesi hastalarının sayısı 25’tir (hastaların 

%34’ü). Bu kişilerde ortalama skorlama başarısı %77.71 olarak hesaplanmıştır. Bu 

gruptaki 19 hastanın skorlama başarısı ortalamanın üstünde, 6 hastanın skorlama başarısı 

ortalamanın altında kalmıştır. Skorlama algoritması bu grup hastaların skorlanmasında 

oldukça başarılıdır. 

AHİ’leri 15 ile 30 arasında olan orta seviyede uyku apnesi hastalarının sayısı 23’tür 

(hastaların %31’i). Bu kişilerde ortalama skorlama başarısı %75.34 olarak hesaplanmıştır. 

Bu gruptaki 15 hastanın skorlama başarısı ortalamanın üstünde 8 hastanın skorlama 

başarısı ortalamanın altında kalmıştır. 

AHİ’leri 30’dan daha büyük olan ağır seviyede uyku apnesi hastalarının sayısı 17’dir 

(hastaların %23’ü). Bu kişilerde ortalama skorlama başarısı %62.23 olarak 

hesaplanmıştır. Bu gruptaki 7 hastanın skorlama başarısı ortalamanın üstünde,  

10 hastanın skorlama başarısı ortalamanın altındadır. 

4.4.4. Skorlama Algoritması İle Yapılan Uyku Apnesi Skorlamasının 

Değerlendirilmesi 

Şekil 4.2’de skorlama algoritması ile yapılan bir skorlama görülmektedir. “0” seviyeleri, 

uyku apnesini “1” seviyeleri normal solunumu göstermektedir. Bu şekilde otomatik 
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skorlama ile görsel skorlamanın uyumlu olduğu görülmektedir. Skorlama kurallarının 

gerçekleştirilme şekline bağlı olarak skorlanan uyku apnesinin genişliklerinde bazı 

farklar görülmektedir. Skorlama algoritmasına ilave kural eklenerek bu farkların 

önlenmesi mümkündür. 

Görsel skorlama kurallarının en temel iki kuralına göre yapılan skorlama algoritması ile 

skorlama çalışmasında uyku apnesi olmayan normal hastaların haricinde iyi bir skorlama 

başarısı elde edilmiştir. Skorlama algoritması hasta kişilerin PSG işaretlerine göre 

optimize edildiğinden, normal kişilerin skorlama başarısı beklenen ortalamanın altında  

 

 

Şekil 4.2. Skorlama algoritması ile yapılan uyku apnesi 

skorlama. (a) Solunum işareti, (b) Görsel skorlama 

ve (c) Algoritmik skorlama. 
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kalmıştır. Skorlama algoritmasına, uzman deneyimine göre daha fazla kural eklenerek 

normal hastaların skorlama başarısı da yükseltilebilir. Bu yöntemin gelişmeye açık 

olması, sebep ile sonuç arasındaki bağlantının tam olarak bilinmesi büyük bir avantajdır. 

4.5.Yapay Sinir Ağları İle Uyku Apnesinin Skorlanması 

Görsel skorlama kurallarına göre skorlama algoritmasıyla uyku apnesinin skorlanması 

için kullanılan hasta verileri bu defa YSA ile skorlama yapmak için kullanılmıştır. YSA 

ile yapılan skorlama başarısı, işaret özellikleri ile YSA model parametrelerinin 

belirlenmesine bağlıdır. YSA’nın tasarımı ana hatları ile doğru olduğu zaman tasarımda 

yapılan küçük hatalar YSA tarafından düzeltilmekte, skorlama başarısı yaklaşık sabit 

kalmaktadır. Özellik tablolarında beklenen ağ çıkışları “-1.0” ve “+1.0” olacak şekilde 

planlanmıştır. Bu değerler YSA’da kullanılan sinir hücrelerinin transfer fonksiyonu ile 

uyumlu seçilmiştir. 

YSA tasarımında katman sayısının seçimi için herhangi bir kural yoktur. Bu çalışmada  

2 ve 3 katmanlı YSA modelleri ile denemeler yapılmıştır. 

4.5.1. Sinir Hücrelerinin Sayısının Seçimi 

Sinir hücrelerinin sayısının seçiminde herhangi bir kural olmadığı için iki katmanlı 

YSA’lar ile yapılan denemelerde gizli ve çıkış katmanında sıralı olarak (6, 1), (9, 1),  

(12, 1) ve (15, 1) adet sinir hücreleri kullanılmıştır. Ayrıca yapılan denemelerde farklı 

sayıda işaret özelliği kullanıldığından gizli katmanda işaret özelliklerinin sayısı kadar ve 

işaret özelliklerinin sayısının iki katı kadar sinir hücreleri ile de denemeler yapılmıştır. 

Üç katmanlı YSA’lar ile yapılan denemelerde gizli ve çıkış katmanlarında sıralı olarak 

(6, 3, 1), (10, 5, 1), (14, 7, 1) ve (18, 9, 1) adet sinir hücreleri ile denemeler yapılmıştır. 

Ayrıca yapılan denemelerde farklı sayıda işaret özelliği kullanıldığından birinci gizli 

katmanda işaret özelliklerinin sayısı kadar ve işaret özelliklerinin sayısının iki katı kadar 

sinir hücreleri, ikinci gizli katmanda işaret özelliklerinin sayısı kadar sinir hücreleri ile 

denemeler yapılmıştır. 

Sinir hücresi transfer fonksiyonlarının seçimi için herhangi bir kural yoktur. Fakat başarılı 

bir uygulama için YSA’nın giriş ve çıkış verileri ile sinir hücrelerinin transfer 
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fonksiyonları uyumlu seçilmelidir. Uyku apnesinin skorlanması için kullanılan YSA 

modellerinde hiperbolik tanjant sigmoid transfer fonksiyonu kullanılmıştır.  

4.5.2. Yapay Sinir Ağları İle Uyku Apnesini Skorlama  

Uyku apnesini skorlamak için kullanılan YSA’ların çıkışlarında skorlama başarısını 

artırmak için morfolojik işlemler ve hareketli ortalamalar kullanılarak işaret 

iyileştirmeleri yapılmış ve altı farklı çıkış elde edilmiştir. Bu skorlama ve işaret 

iyileştirme işlemleri aşağıda verilmiştir. 

a) Ağ çıkışında hiçbir işlem yapılmadı. 

b) Ağ çıkışında morfolojik kapanma işlemi yapıldı. 

c) Ağ çıkışında morfolojik açılma işlemi yapıldı. 

d) Ağ çıkışında hareketli ortalama işlemi yapıldı. 

e) Ağ çıkışında önce hareketli ortalama sonra morfolojik kapanma işlemi yapıldı. 

f) Ağ çıkışında önce hareketli ortalama sonra morfolojik açılma işlemi yapıldı. 

Toplam altı çıkışın her biri aşağıda verilen skorlama kuralları ile ayrı ayrı skorlanarak 

başarı ortalamaları hesaplanmıştır. 

 𝐾𝑢𝑟𝑎𝑙 1: 𝐸ğ𝑒𝑟 𝐴ğ ç𝚤𝑘𝚤ş𝚤 ≥ 0 𝑖𝑠𝑒 𝑢𝑦𝑘𝑢 𝑎𝑝𝑛𝑒𝑠𝑖 𝑑𝑒ğ𝑖𝑙𝑑𝑖𝑟. (4.14) 

 𝐾𝑢𝑟𝑎𝑙 2: 𝐸ğ𝑒𝑟 𝐴ğ ç𝚤𝑘𝚤ş𝚤 < 0 𝑖𝑠𝑒 𝑢𝑦𝑘𝑢 𝑎𝑝𝑛𝑒𝑠𝑖𝑑𝑖𝑟. (4.15) 

Uyku apnesini skorlamak için bu çalışmada farklı işaret özellikleri, iki veya üç katmanlı 

ağ yapıları, farklı sayıda sinir hücrelerinin kullanılması ve YSA çıkışında işaret 

iyileştirmelerinin yapılması ile oluşturulan 288 YSA modeli oluşturulmuştur. YSA’nın 

eğitimi için 12 farklı öğrenme yöntemi kullanılmıştır. Ancak bütün YSA modellerinin 

bütün öğrenme yöntemleri ile eğitilmesi uzun zaman alacağından iki farklı grup deneme 

yapılmıştır. YSA’nın eğitim verilerinde 21467 adet özellik verisi vardır. Bu veri 5.96 

saatlik zamana karşılık gelmektedir. Yapılan denemelerde bu kadar özellik verisinin 

yeterli olduğu görülmüştür. 

Birinci grup denemelerde 288 farklı YSA modeli Levenberg-Marquardt öğrenme 

algoritması ile eğitilmiş ve yapılan skorlamanın doğruluğu Denklem (4.11) ile 

hesaplanmıştır. Bu denemede en başarılı YSA modeli ile %89.60 başarı ortalaması elde 
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edilmiştir. Bu YSA modeli üç katmanlı bir yapı olup her bir katmanda sıra ile 18, 9 ve 1 

adet sinir hücresi kullanılmıştır. Farklı sayıda işaret grupları ile denemeler yapılmış olup 

en iyi başarı ortalaması, solunum basıncı ve solunum çabası işaretleri kullanıldığında elde 

edilmiştir. YSA’nin girişinde bu işaretlerin ortalaması kullanılmıştır. YSA’nın çıkışında 

morfolojik kapanma işleminin kullanılması ile elde edilen sonuçların daha iyi olduğu 

görülmüştür. Morfolojik yapı elemanının 9 saniye genişliğinde olması durumunda en iyi 

sonuçlar elde edilmiştir. 

Yapılan denemelerde en iyi ikinci başarı ortalaması %89.54’tür. Bu sonucu veren model 

ise yine üç katmanlı bir yapı olup, her bir katmanda sıra ile 4, 2 ve 1 adet sinir hücresi 

kullanılmıştır. Bu modelde de solunum basıncı ve solunum çabası işaretleri ve bu 

işaretlerin etkin değeri kullanılmıştır. 

Üç katmanlı modeller ile yapılan denemelerde iki model başarısız olmuştur. Bu 

modellerde skorlama başarıları %38.11 ve %32.36 olarak hesaplanmıştır. Bu iki modelin 

dışında başarı ortalamaları %78.36 ile %89.60 arasında değişmektedir. Başarısız olan 

modellerin YSA katmanlarında sıra ile 2, 2 ve 1 sinir hücresi kullanılmıştır. Bu YSA 

modelleri yapılan denemelerde en az sinir hücresine sahip modellerdir.  

İki katmanlı yapıların en başarısız iki modelinde başarı ortalamaları %36.35 ve 

%19.43’tür. Bu iki modelin dışında başarı ortalamaları %77.44 ile %89.31 arasında 

değişmektedir. En başarısız modelin YSA katmanlarında sıra ile 15 ve 1 adet sinir hücresi 

kullanılmıştır. Bu model iki katmanlı modellerde en çok sinir hücresine sahip modeldir.  

İkinci grup denemelerde, birinci grup denemelerde elde edilen en başarılı YSA modeli 

diğer 11 farklı öğrenme yöntemi ile eğitilmiş ve başarı ortalamaları hesaplanmıştır. Bu 

denemeye ait ortalama test başarıları Tablo 4.11’de verilmiştir. Yapılan bu denemede 

Bayesian Regularization öğrenme yöntemi ile %89.48 başarı ortalaması elde edilmiştir. 

Levenberg-Marquardt ile elde edilen başarı ortalaması bu başarı ortalamasından daha 

yüksektir. 
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Tablo 4.11. Levenberg-Marquardt öğrenme algoritması kullanılarak seçilen en iyi 

YSA modelinin farklı öğrenme algoritmaları ile eğitilmesi durumunda 

elde edilen ortalama test başarıları. 

S/N Öğrenme Algoritması 
Ortalama Test 

Başarısı (%) 

1 Bayesian Regularization [77] 89.48 

2 Conjugate Gradient with Powell/Beale Restarts [76] 89.22 

3 One Step Secant [81] 89.02 

4 Resilient Backpropagation [78, 79] 88.65 

5 BFGS Quasi-Newton [76, 78] 88.59 

6 Polak-Ribiére Conjugate Gradient [82] 88.48 

7 Variable Learning Rate Gradient Descent [82] 87.85 

8 Scaled Conjugate Gradient [80] 87.60 

9 Fletcher-Powell Conjugate Gradient [81] 87.44 

10 Gradient Descent [83] 78.97 

11 Gradient Descent with Momentum [83] 54.28 

 

Tablo 4.11’de verilen 11 farklı öğrenme algoritması ile eğitilen YSA’ların 9’unda 

oldukça iyi başarı ortalamaları elde edilmiştir. Bu başarı ortalamaları %87.44 ile %89.48 

arasında değişmektedir. Diğer iki öğrenme algoritması ile eğitilen YSA’ların skorlama 

başarıları biraz düşük çıkmıştır. Gradient Descent öğrenme algoritmaları oldukça hızlı 

çalışmaktadır. Fakat bu öğrenme algoritması ile eğitilen YSA’ların başarı ortalamalarının 

düşük olduğu görülmektedir. Yapılan denemelerde öğrenme algoritmalarının başarı 

ortalamaları, veri kümeleri ve ağ yapılarına göre değişiklik göstermektedir. Yapılan her 

denemede birbirine yakın ancak farklı sonuçların alınacağı göz önünde tutulmalıdır. 

4.5.3. Yapay Sinir Ağları İle Yapılan Uyku Apnesi Skorlamasının Sonuçları 

Levenberg-Marquardt algoritması ile eğitilen YSA ile bulunan uyku apnesi skorlaması 

sonuçları özet olarak Tablo 4.12’de verilmiştir. Bu yöntem ile 74 hastanın uyku apnesi 

skorlaması yapılmıştır. Hastaların AHİ’leri 0.3 ile 100.4 arasında değişmekte olup 

ortalaması 21.83’tür. Skorlama başarısı %69.95 ile %100 arasında değişmektedir. Bu 

grup hasta verileri ile elde edilen ortalama başarı %89.60’tır. 49 hastanın (hastaların 

%66’sı) skorlama başarısı ortalama başarıdan daha yüksek, 25 hastanın (hastaların  
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Tablo 4.12. Levenberg-Marquardt algoritması ile eğitilen YSA ile bulunan uyku 

apnesi skorlamasının başarı oranları. 

  En Küçük En Büyük Ortalama 

Toplam 

74 kişi 

AHİ 0.30 100.40 21.83 

Skorlama Başarısı (%) 69.95 100.00 89.60 

Normal 

9 kişi 

AHİ 0.30 4.70 2.72 

Skorlama Başarısı (%) 91.29 100.00 96.22 

Hafif Seviye 

25 kişi 

AHİ 5.00 14.00 9.99 

Skorlama Başarısı (%) 73.35 98.57 92.45 

Orta Seviye 

23 kişi 

AHİ 16.00 29.00 20.70 

Skorlama Başarısı (%) 72.69 96.48 88.54 

Ağır Hasta 

17 kişi 

AHİ 31.90 100.40 50.87 

Skorlama Başarısı (%) 69.95 93.17 83.34 

 

%34’ü) skorlama başarısı ortalama başarıdan daha düşüktür. Başarı ortalamaları en hafif 

hastalık grubundan en ağır hastalık grubuna doğru bir azalma gösterse de kabul edilebilir 

bir seviyededir. 

AHİ’leri 5’ten küçük olan normal kişilerin sayısı 9’dur (hastaların %12’si). Skorlama 

başarısı %91.29 ile %100 arasında değişmekte olup ortalama %96.22’dir. Bu gruptaki 

bütün kişilerin skorlama başarısı ortalamanın üstündedir. 

AHİ’leri 5 ile 15 arasında olan hafif uyku apnesi hastalarının sayısı 25’tir (hastaların 

%34’ü). Skorlama başarısı %73.35 ile %98.57 arasında değişmekte olup ortalama 

%92.45’tir. Bu gruptaki 21 hastanın skorlama başarısı ortalamanın üstünde, 4 hastanın 

skorlama başarısı ortalamanın altında kalmıştır. 

AHİ’leri 15 ile 30 arasında olan orta seviyede uyku apnesi hastalarının sayısı 23’tür 

(hastaların %31’i). Skorlama başarısı %72.69 ile %96.48 arasında değişmekte olup 

ortalama %88.54’tür. Bu gruptaki 15 hastanın skorlama başarısı ortalamanın üstünde,  

8 hastanın skorlama başarısı ortalamanın altında kalmıştır. 

AHİ’leri 30’dan daha büyük olan ağır seviyede uyku apnesi hastalarının sayısı 17’dir 

(hastaların %23’ü). Skorlama başarısı %69.95 ile %93.17 arasında değişmekte olup 
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ortalama %83.34’tür. Bu gruptaki 4 hastanın skorlama başarısı ortalamanın üstünde,  

15 hastanın skorlama başarısı ortalamanın altında kalmıştır. 

Bu çalışmada YSA ile, algoritmik skorlama yöntemine göre daha iyi bir skorlama başarısı 

elde edilmiştir. YSA ile yapılan uyku apnesi skorlaması Şekil 4.3 ve Şekil 4.4’te 

görülmektedir. Şekil 4.3’te görüldüğü gibi solunum işareti YSA çıkışında daha belirgin 

bir hale gelmiş, morfolojik işlemler ile YSA çıkışı daha da iyileştirilmiştir. 

Şekil 4.4’te YSA ve morfolojik filtre çıkışının skorlanması görülmektedir. Bu şekilde 

YSA çıkışında yapılan skorlama ile görsel skorlamanın uyumlu fakat morfolojik filtre 

çıkışında yapılan skorlamanın daha başarılı olduğu görülmektedir. 

 

Şekil 4.3. YSA ile uyku apnesi skorlama. (a) Solunum 

İşareti, (b) YSA çıkışı ve (c) Morfolojik filtre 

çıkışı. 
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Şekil 4.4. YSA ile uyku apnesi skorlama. (a) Görsel 

skorlama, (b) YSA çıkışının skorlanması ve  

(c) Morfolojik filtre çıkışının skorlanması. 

4.6. Uyarlamalı Sinirsel Bulanık Mantık Sistemi ile Uyku Apnesinin Skorlanması 

Uyarlamalı sinirsel bulanık mantık sistemi, yapay sinir ağları ile bulanık mantığın (FIS) 

iyi yönlerinin birlikte kullanıldığı güçlü bir modeldir. YSA ve ANFIS birer işlem bloğu 

gibi düşünülebilir. Her ne kadar bu iki işlem bloğunun yapıları birbirinden farklı olsa da 

giriş ve çıkış yapıları benzerdir. YSA geri beslemeli ve çok katmanlı olabilir. ANFIS’in 

kullanımında üyelik fonksiyonları ve sayılarının değişmesine rağmen katman yapısı 

değişmemektedir. 

ANFIS ile uyku apnesi skorlamak için, YSA ile kullanılan işaretler ve özellik tabloları 

kullanılmaktadır. Her iki yapının tasarım parametrelerinde benzerlikler olsa da 
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birbirinden farklı olan parametreleri de vardır. ANFIS’in yapısı ve tasarımı sebebiyle 

eğitimi ve ağ çıkışlarının hesaplanması daha uzun sürmektedir. Bu sebeple YSA ile elde 

edilen en iyi bazı özelliklerin ANFIS’in tasarımında kullanılması kolaylık sağlayacaktır. 

4.6.1. Kullanılan İşaretler ve İşaret Özellikleri 

YSA ile yapılan skorlamada en iyi skorlama başarısı, solunum basıncı ve solunum çabası 

işaretleri ile elde edilmiştir. Bu işaretler ANFIS ile skorlama denemelerinde aynı şekilde 

kullanılmış, diğer işaretler ile deneme yapılmamıştır. YSA ile yapılan skorlama 

denemelerinde kullanılan işaretlerin ortalama değeri, etkin değeri, enerjisi ve gücü olmak 

üzere 4 farklı özelliği, ANFIS ile yapılan denemelerde de kullanılmıştır. ANFIS’in eğitim 

verilerinde 21467 adet özellik verisi vardır. Bu veri 5.96 saatlik zamana karşılık 

gelmektedir. Yapılan denemelerde bu kadar özellik verisinin yeterli olduğu görülmüştür. 

4.6.2. Üyelik Fonksiyonlarının Seçimi 

Üyelik fonksiyonlarının ve sayısının belirlenmesi için herhangi bir kural olmadığı için 

farklı sayılarda üyelik fonksiyonları kullanılarak denemeler yapılmıştır. Deneme yapılan 

7 farklı ANFIS modeli aşağıda verilmiştir. 

a) Her bir giriş için 2 adet genelleştirilmiş çan eğrisi üyelik fonksiyonu. 

b) Her bir giriş için 3 adet genelleştirilmiş çan eğrisi üyelik fonksiyonu. 

c) Her bir giriş için 4 adet genelleştirilmiş çan eğrisi üyelik fonksiyonu. 

d) Her bir giriş için 2 adet gauss eğrisi üyelik fonksiyonu. 

e) Her bir giriş için 2 adet asimetrik gauss eğrisi üyelik fonksiyonu. 

f) Her bir giriş için 2 adet üçgen üyelik fonksiyonu. 

g) Her bir giriş için 2 adet pi tipi üyelik fonksiyonu. 

Bu çalışmada, kullanılan işaret özelliklerinin ve farklı üyelik fonksiyonlarının sayısına 

bağlı olarak toplam 28 farklı ANFIS modeli ile denemeler yapılmış ve model çıkışları 

hesaplanmıştır. YSA çıkışlarında yapılan işaret iyileştirmeleri ve skorlama başarısının 

değerlendirilmesi, ANFIS’in çıkışlarında da aynı şekilde kullanılmıştır. 
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4.6.3. Uyarlamalı Sinirsel Bulanık Mantık Sistemi İle Uyku Apnesi Skorlamasının 

Gerçekleştirilmesi 

Uyku apnesini skorlamak için 28 farklı ANFIS modeli ile denemeler yapılmıştır. 

Ortalama en büyük başarı, işaret gücünün kullanıldığı işaret özellikleri ile elde edilmiştir. 

En iyi başarı ortalamasının elde edildiği ANFIS modelinde her bir giriş için 2 üçgen 

üyelik fonksiyonu kullanılmıştır. ANFIS’in çıkışında morfolojik işlemlerin kullanılması 

ile elde edilen sonuçların daha da iyileştiği görülmüştür. 

ANFIS ile yapılan skorlama çalışması özet olarak Tablo 4.13’de verilmiştir. Bu yöntem 

ile 74 hastanın uyku apnesi skorlaması yapılmıştır. Hastaların AHİ’leri 0.3 ile 100.4 

arasında değişmektedir. Ortalama AHİ 21.83’tür. Skorlama başarısı %71.01 ile %100 

arasında değişmekte olup ortalama %88.81’dir. 45 hastanın (hastaların %60’ı) skorlama 

başarısı ortalama başarıdan daha yüksek, 29 hastanın (hastaların %40’i) skorlama başarısı 

ortalama başarıdan daha düşüktür. 

4.6.4. Uyarlamalı Sinirsel Bulanık Mantık Sistemi İle Yapılan Uyku Apnesi 

Skorlamasının Sonuçları 

Tablo 4.13’e göre hastalık teşhisi konulan 65 kişinin AHİ’leri ise 5 ile 100.4 arasında 

değişmektedir. Bu hastaların skorlama başarıları %71.01 ile %98.77 olup ortalaması 

%88.81’dir. 

AHİ’leri 5’ten küçük olan normal kişilerin sayısı 9’dur (hastaların %12’si). Bu kişilerde 

ortalama skorlama başarısı %94.88 olarak hesaplanmıştır. Bu grupta 8 hastanın skorlama 

başarısı ortalamanın üstündedir. 

AHİ’leri 5 ile 15 arasında olan hafif uyku apnesi hastalarının sayısı 25’tir (hastaların 

%34’ü). Bu kişilerde ortalama skorlama başarısı %90.73 olarak hesaplanmıştır. Bu grupta 

19 hastanın skorlama başarısı ortalamanın üstünde, 6 hastanın skorlama başarısı 

ortalamanın altında kalmıştır. 

AHİ’leri 15 ile 30 arasında olan orta seviyede uyku apnesi hastalarının sayısı 23’tür 

(hastaların %31’i). Bu hastalarda ortalama skorlama başarısı %87.39 olarak 

hesaplanmıştır. Bu grupta 13 hastanın skorlama başarısı ortalamanın üstünde 10 hastanın 

skorlama başarısı ortalamanın altında kalmıştır. 
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Tablo 4.13. ANFIS ile yapılan uyku apnesi skorlamasında elde edilen başarı 

oranları. 

  En Küçük En Büyük Ortalama 

Toplam 

74 kişi 

AHİ 0.30 100.40 21.83 

Skorlama Başarısı (%) 71.01 100.00 88.81 

Normal 

9 kişi 

AHİ 0.30 4.70 2.72 

Skorlama Başarısı (%) 86.36 100.00 94.88 

Hafif Seviye 

25 kişi 

AHİ 5.00 14.00 9.99 

Skorlama Başarısı (%) 72.93 98.77 90.73 

Orta Seviye 

23 kişi 

AHİ 16.00 29.00 20.70 

Skorlama Başarısı (%) 71.01 96.80 87.39 

Ağır Hasta 

17 kişi 

AHİ 31.90 100.40 50.87 

Skorlama Başarısı (%) 71.60 91.90 84.70 

 

AHİ’leri 30’dan daha büyük olan ağır seviyede uyku apnesi hastalarının sayısı 17’dir 

(hastaların %23’ü). Bu kişilerde ortalama skorlama başarısı %84.70 olarak 

hesaplanmıştır. Bu grupta 5 hastanın skorlama başarısı ortalamanın üstünde, 12 hastanın 

skorlama başarısı ortalamanın altındadır. 

ANFIS ile yapılan uyku apnesi skorlama çalışmasında başarı ortalaması %88.81 olarak 

hesaplanmıştır. Başarı oranları en hafif hastalık grubundan en ağır hastalık grubuna doğru 

bir azalma gösterse de yine de çok iyi bir başarı ortalaması elde edilmiştir. 

Şekil 4.5’te ANFIS ile yapılan skorlama işlemine ait örnek bir zaman dilimi 

gösterilmiştir. Bu şekilde sırası ile solunum işaretinin özellikleri ile ANFIS ve morfolojik 

filtre çıkışlarından alınan işaretler görülmektedir. ANFIS çıkışında solunum işaretlerinin 

daha belirgin hale geldiği ve morfolojik filtre ile ANFIS çıkışının daha da iyileştiği 

görülmektedir. Şekil 4.6’da ise aynı solunum işaretinin görsel skorlama grafiği ile ANFIS 

ve morfolojik filtre çıkışlarının otomatik olarak skorlanması ile elde edilen grafikler 

görülmektedir. 
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Şekil 4.5. ANFIS ile uyku apnesi skorlama. (a) Solunum 

işareti, (b) ANFIS çıkışı ve (c) Morfolojik filtre 

çıkışı. 

 

Şekil 4.6’dan ANFIS çıkışında yapılan skorlamanın görsel skorlama ile uyumlu olduğu 

fakat ANFIS çıkışının morfolojik filtre ile iyileştirilmesinden sonra yapılan skorlamanın 

daha iyi olduğu görülmektedir. 

Bu çalışmada YSA ile ANFIS’de aynı işaret ve özellik tablolarını kullandığından dolayı 

yapılan uyku apnesi skorlama çalışmaları birbiri ile uyumlu sonuçlar vermiştir. 
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Şekil 4.6. ANFIS ile uyku apnesi skorlama. (a) Görsel 

skorlama, (b) ANFIS çıkışının skorlanması ve  

(c) Morfolojik filtre çıkışının skorlanması. 

 

4.7. Uyku Apnesi Skorlama Çalışmasının Değerlendirilmesi 

Bu tez çalışmasında uyku apnesinin skorlanması için algoritmik bir yöntem, YSA ve 

ANFIS kullanılmıştır. Literatürde mevcut  skorlama başarıları ile bu tez çalışmasında elde 

edilen skorlama başarıları Tablo 4.14’te verilmiştir.  

Tablo 4.14’e göre uyku apnesi skorlamak için çoğunlukla ya bütün PSG işaretleri ya da 

sadece EKG işaretlerinin kullanıldığı görülmektedir. Oksijen saturasyonu veya solunum 

sesleri gibi tek kanal işaret kullanılarak da skorlama yapılmıştır. Fakat bu  

şekilde tek kanal işaret ile skorlama yapılması tavsiye edilmemektedir [46]. 



72 
 

Tablo 4.14. Bu tez çalışmasında ve literatürde yapılan araştırmalara göre uyku 

apnesinin skorlanması için yapılan çalışmalar, kullanılan yöntemler ve 

başarı oranları. 

Araştırmacı Hedef Kitle İşaretler Skorlama Yöntemleri 

Başarı 

Oranları 

(%) 

Berdinas ve ark. [4] Yetişkinler PSG YSA 94.62 

Tağluk ve ark. [6] Yetişkinler PSG YSA 73.42 

Romero ve ark. [7] Yetişkinler PSG YSA 83.78 

Canosa ve ark. [27] Yetişkinler PSG Zekî Sistemler 92.31 

Güneş ve ark. [28] Yetişkinler PSG YSA 84.14 

Rios ve Erazo [29] Çocuklar PSG 

SVM 

YSA 

LR 

100 

28.67 

47.3 

Surrel ve  

Murali [31] 
Yetişkinler EKG 

Zaman-Frekans 

Analizi 
92.15 

Li ve ark. [33] Yetişkinler EKG YSA 85 

Varon ve ark. [34] Yetişkinler EKG 

LDA 

SVM 

LS-SVM 

71.43 

72.6 

84.7 

Sharma ve  

Sharma [35]  
Yetişkinler EKG 

KNN 

YSA 

SVM 

77.03 

93.04 

97.14 

Hassan ve  

Haque [36] 
Yetişkinler EKG 

Makine Öğrenme 

Algoritmaları 
91.94 

Hassan [37] Yetişkinler EKG Adaboost Algoritması 87.33 

Hassan ve  

Haque [38] 
Yetişkinler EKG Bagging Algoritması 85.97 

Babaeizadeh ve ark. 

[39] 
Yetişkinler EKG 

Solunumdan 

Elde Edilen KAHD 
88 

Javid ve ark. [44] Yetişkinler 
Solunum 

Sesleri 
LDA 70 

Tobal ve ark. [30] Çocuklar O2Sat LR 86.3 

Villar ve ark. [45] Çocuklar O2Sat Frekans Analizi 

Orta: 

81.3 

Ağır: 

85.3 

Bu Tez 

Çalışmasında 
Yetişkinler PSG 

Skorlama Algoritması 

YSA 

ANFIS 

69.35 

89.60 

88.81 

 

Uyku apnesi skorlamak için YSA ve ANFIS’in yanında SVM, LR, LDA, KNN, zaman-

frekans analizleri ve özel öğrenme algoritmaları gibi birçok algoritma kullanılmıştır. 

Skorlama başarıları çoğunlukla %70 ile %95 aralığında değişmektedir. Bu skorlama 

başarılarında kullanılan işaretlerin etkisi büyüktür. 
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Tablo 4.14’te skorlama çalışmalarının yetişkin insanlarda ve çocuklarda ayrı ayrı 

yapıldığı görülmektedir. Yetişkin insanlarda kullanılan yöntemlerin, çocuklarda aynı 

başarıyı vermediği görülmüştür [29]. 

Tablo 4.14’teki verilere göre bu tez çalışmasında yapılan uyku apnesi skorlama çalışması 

oldukça başarılı görülmektedir. 

 

 



 

 

5. BÖLÜM 

TARTIŞMA, SONUÇ VE ÖNERİLER 

Bu tez çalışmasında Kahramanmaraş Sütçü İmam Üniversitesi Tıp Fakültesi araştırma ve 

uygulama hastanesi uyku laboratuvarında geceyi geçiren hastalardan alınan PSG 

işaretleri kullanılarak uyku ve tıkayıcı tip uyku apnesi skorlaması yapılmıştır.  

Uyku seviyeleri, PSG işaretleri kullanılarak AASM skorlama kurallarına göre YSA ile 

skorlanmıştır. Skorlama için ortalama sekiz saatlik kayıt süresi olan EEG, EOG ve EMG 

işaretleri kullanılmış, önişleme ile yapılan iyileştirmelerden sonra bu işaretlerin 

özellikleri çıkarılmıştır. Bu özelliklerin çıkarılması için EEG işaretleri dalgacık 

dönüşümü ile alt bandlarına ayrılmış ve her bir EEG bandının işaret gücü ayrı ayrı 

hesaplanmıştır. EOG ve EMG işaretleri alt bandlarına ayrılmadan işaret güçleri 

hesaplanarak her bir epok için özellik tabloları oluşturulmuştur. 

Uyku seviyelerinin skorlanmasında farklı sayıda YSA katmanı, her katmanda farklı 

sayıda sinir hücreleri ve farklı öğrenme algoritmaları ile denemeler yapılmıştır. Birbirine 

yakın sonuçlar elde edilmesine rağmen en iyi başarı ortalaması üç katmanlı YSA ile elde 

edilmiştir. Skorlama çalışmasında ortalama başarı hesaplanarak yapılan skorlama 

değerlendirilmiştir. Farklı öğrenme yöntemlerinin etkisini görmek için çok sayıda 

deneme yapılmasına rağmen başarı ortalamalarının birbirine yakın olduğu görülmüştür.  

Uyku seviyelerinin skorlanmasında oldukça iyi başarı ortalamaları elde edilmiştir. 

NREM1 uyku evresinin skorlama başarısının, diğer uyku evrelerinin skorlama 

başarılarına yakın ama biraz daha düşük olduğu görülmüştür. Toplam uyku içerisinde 

NREM1 uyku dönemi çok kısa ve bu uyku dönemine ait az sayıda epok bulunduğundan 

YSA, NREM1 uyku evresini yeterince öğrenememiştir. 

Uyku seviyelerinin skorlanmasında kullanılan PSG işaretleri uyku apnesi hastalarından 

alındığından, bu hastaların uykuları sık sık bölünmekte ve uyku skorlamasını olumsuz 

etkilemektedir. Yapılan çalışmanın ortalama başarısı literatürde yapılan çalışmalar ile 
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karşılaştırılmış, aynı hasta grubunda yapılan uyku skorlamaları ile uyumlu sonuçlar elde 

edilmiştir. 

Uyku apnesinin skorlanması için, uyku skorlamasında kullanılan PSG işaretleri 

kullanılmıştır. Ancak skorlama kuralları farklı olduğundan kullanılan işaret özelliklerine 

yeni özellikler eklenmiş ve yeni özellik tabloları oluşturulmuştur. Uyku apnesi, görsel 

skorlama kurallarına göre oluşturulan bir skorlama algoritması, YSA ve ANFIS olmak 

üzere üç farklı yöntem kullanılarak skorlanmıştır. Üç farklı tipi olan uyku apnesinin en 

yaygın görülen tipi TUA olduğundan bu çalışmada da TUA skorlaması yapılmıştır. Uyku 

apnesini skorlamak için EEG, EOG, EMG ve solunum işaretleri kullanılmıştır. İşaret 

kaydı yapılan kişiler uyku apnesi hastası veya şüphelisi olduklarından gece boyunca 

yapılan işaret kayıtlarında sorunlar görülmüş, işaret özellikleri istatistiki olarak 

değerlendirilerek işaretlerde bulunan bazı artefaktlar giderilmiştir. 

Algoritmik yöntem ile uyku apnesinin skorlanması için görsel skorlama kurallarına dayalı 

bir algoritma kullanılmıştır. Hafif ve orta sınıf uyku apnesi vakalarında oldukça iyi başarı 

ortalamaları, ağır sınıf hastalarda ise kabul edilebilir sonuçlar elde edilmiştir. Skorlama 

algoritması hasta kişilerin PSG işaretlerinin skorlanması için optimize edildiğinden 

hastalık şüphesi olan fakat normal kişilerin PSG işaretlerinin skorlama başarısı 

beklenenden düşük çıkmıştır. Görsel skorlama kurallarına göre yapılan skorlama 

algoritmasına daha fazla kural eklendiğinde başarı ortalamalarının daha yüksek olacağı 

beklenmektedir.  

YSA ile uyku apnesi skorlama denemelerinde farklı sayıda YSA katmanı ve her katmanda 

farklı sayılarda sinir hücresi kullanılmıştır. YSA’lar farklı 12 öğrenme algoritması ile 

eğitilmiştir. Genellikle birbiri ile uyumlu sonuçlar alınmıştır. En iyi sonuç solunum 

işaretlerinin ortalamalarının kullanıldığı üç katmanlı YSA modeli ile elde edilmiştir. 

ANFIS ile her bir giriş için farklı sayıda ve farklı üyelik fonksiyonlarının kullanıldığı 

modeller ile denemeler yapılmıştır. YSA ile en iyi başarının elde edildiği işaret özellikleri 

ANFIS ile yapılan denemelerde de kullanılmıştır. Bu denemelerde ANFIS çıkışlarının 

birbiri ile uyumlu olduğu görülmüştür. En iyi başarı ortalaması, her bir giriş için iki üçgen 

üyelik fonksiyonunun kullanıldığı ANFIS modeli ile elde edilmiştir. 
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Uyku apnesi skorlamasında YSA ve ANFIS ile elde edilen sonuçlar birbiri ile uyumludur. 

YSA ve ANFIS ile elde edilen skorlama başarılarıları, skorlama algoritmasıyla yapılan 

skorlama başarısından daha yüksek bulunmuştur. Fakat skorlama algoritmasının girişi ve 

çıkışı arasındaki bağlantının bilinmesi bu yöntemin güçlü tarafıdır. YSA ve ANFIS gibi 

yöntemler ile yapılan skorlama çalışmalarında modellemenin daha kolay olması ve 

yüksek başarı oranlarına rağmen literatürde algoritmik yöntemler ile yapılan çalışmaların 

devam etmesi bu yöntemlerin gelişmeye açık olduğunu göstermektedir. 

YSA ile yapılan uyku ve uyku apnesi skorlama denemelerinde, iki katmanlı yapılar ile 

oldukça başarılı skorlamalar yapılmakla birlikte, üç katmanlı yapılar ile daha yüksek 

skorlama başarıları elde edilmiştir. YSA’ların katmanlarında gereğinden az veya 

gereğinden fazla sinir hücrelerinin kullanılması durumunda yapılan denemeler başarısız 

olmuştur. 

Bu tez çalışmasında yapılan uyku apnesi skorlaması literatürde yapılan çalışmalar ile 

karşılaştırıldığında tatmin edici başarı ortalamaları elde edilmiştir. Yapılan çalışmalarda 

skorlama başarısının yüksek olması, öncelikle kullanılan yönteme bağlıdır. Ancak 

kullanılan veri tabanları ve bu verilerin görsel skorlamasını yapan tıbbi uzmanın tecrübesi 

de etkilidir.  

Hem algoritmik yöntemlerle hem de YSA ve ANFIS gibi yapay zekâ teknikleri ile yapılan 

otomatik skorlama çalışmalarının uyku ve uyku apnesi çalışmalarına katkı sağlayacağı 

düşünülmektedir. Uyku apnesi hastalarının tedavi planlaması uyku ve uyku apnesi 

skorlamasına göre yapıldığından bu konuda yapılan çalışmaların insan sağlığına önemli 

katkıları olacaktır.  
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