
ISTANBUL TECHNICAL UNIVERSITY ⋆ GRADUATE SCHOOL

COMCOS: AN ENHANCED CACHE PARTITIONING TECHNIQUE
FOR INTEGRATED MODULAR AVIONICS

M.Sc. THESIS

Yakup HÜNER

Department of Defence Technologies

Defence Technologies Programme

JUNE 2023

ISTANBUL TECHNICAL UNIVERSITY ⋆ GRADUATE SCHOOL

COMCOS: AN ENHANCED CACHE PARTITIONING TECHNIQUE
FOR INTEGRATED MODULAR AVIONICS

M.Sc. THESIS

Yakup HÜNER
(514201037)

Department of Defence Technologies

Defence Technologies Programme

Thesis Advisor: Asst. Prof. Ramazan YENİÇERİ

JUNE 2023

İSTANBUL TEKNİK ÜNİVERSİTESİ ⋆ LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

COMCOS: ENTEGRE MODÜLER AVİYONİKLER İÇİN
GELİŞMİŞ BİR ÖNBELLEK BÖLÜMLEME TEKNİĞİ

YÜKSEK LİSANS TEZİ

Yakup HÜNER
(514201037)

Savunma Teknolojileri Anabilim Dalı

Savunma Teknolojileri Programı

Tez Danışmanı: Asst. Prof. Ramazan YENİÇERİ

HAZİRAN 2023

Yakup HÜNER, a M.Sc. student of ITU Graduate School student ID 514201037 suc-
cessfully defended the thesis entitled “COMCOS: AN ENHANCED CACHE PAR-
TITIONING TECHNIQUE FOR INTEGRATED MODULAR AVIONICS”, which he
prepared after fulfilling the requirements specified in the associated legislations, before
the jury whose signatures are below.

Thesis Advisor : Asst. Prof. Ramazan YENİÇERİ
Istanbul Technical University

Jury Members : Prof. Dr. Sıddıka Berna ÖRS YALÇIN
Istanbul Technical University

Dr. Etem DENİZ
TÜBİTAK BİLGEM

Date of Submission : 23 May 2023
Date of Defense : 14 June 2023

v

vi

To my spouse,

vii

viii

FOREWORD

As someone who values innovation, I wanted my professional efforts to be recognized
in the academic field. With this purpose in mind, I conducted this thesis work to
develop a new perspective on the topic of "Cache Partitioning." I hope that my work
will be well-received both academically and in the business world.

First of all, I would like to express my heartfelt gratitude to my advisor Assoc. Prof.
Dr. Ramazan YENİÇERİ for his guidance and support throughout my academic
journey. His mentorship and inspiring vision have greatly contributed to my academic
development and achievements.

I would also like to extend my sincere thanks to TÜBİTAK BİLGEM for providing me
with the resources that facilitated my research and academic endeavors.

Furthermore, I would like to thank my dear spouse and family. Their unwavering
support, patience, and understanding have been a constant source of strength and
motivation during the challenges of my studies. Their love and encouragement have
played a significant role in my success, and I am truly grateful to them.

Once again, I extend my heartfelt thanks to everyone who has played a part in shaping
my academic journey and making my research efforts possible.

June 2023 Yakup HÜNER
(Computer Engineer)

ix

x

TABLE OF CONTENTS

Page
FOREWORD . ix
TABLE OF CONTENTS . xi
ABBREVIATIONS. xiii
SYMBOLS . xv
LIST OF TABLES . xvii
LIST OF FIGURES . xix
SUMMARY . xxi
ÖZET .xxiii
1. INTRODUCTION . 1

1.1 Purpose of Thesis . 4
1.2 Organization of Thesis . 5

2. BACKGROUND AND LITERATURE REVIEW . 7
2.1 Cache . 7
2.2 ARINC 653 . 9
2.3 Certification Process . 11
2.4 Interferences. 13

2.4.1 Cache eviction . 13
2.4.2 Bus interferences . 13
2.4.3 DRAM bank eviction . 14

2.5 Cache Partitioning . 15
2.5.1 Hardware based cache partitioning . 15
2.5.2 Software based cache partitioning. 16
2.5.3 Dynamic and static cache partitioning . 17

2.6 Cache Partitioning in Single Core Systems . 18
2.7 Application Cache Characteristics . 18
2.8 Memory Management Implementations . 18

2.8.1 Static memory allocation . 20
2.8.2 Dynamic memory allocation. 20

3. DESIGN AND IMPLEMENTATIONS . 23
3.1 Reference Implementation (Separate Color Stacks). 23
3.2 Combined Color Stacks . 25
3.3 Cache Partitioning Configuration . 28
3.4 Comparison of Algorithms . 30

4. EXPERIMENTAL RESULTS . 33
4.1 Environmental Setup. 33
4.2 Experiment 1: Cache Eviction . 33
4.3 Experiment 2: Bus Interferences . 35
4.4 Experiment 3: Cache Partitioning in Single Core Systems 37
4.5 Experiment 4: System Initialization Time . 39
4.6 Experiment 5: Dynamic Allocation Time . 41
4.7 Results of the Experiments . 43

5. CONCLUSIONS AND FUTURE WORK . 45
REFERENCES . 47
APPENDICES . 51

APPENDIX A : Pseudo Code of Reference Implementation . 53
APPENDIX B : Pseudo Code of ComCoS Technique . 55

CURRICULUM VITAE . 57

xi

xii

ABBREVIATIONS

EASA : European Union Aviation Safety Agency
FAA : Federal Aviation Administration
I/O : Input/Output
IMA : Integrated Modular Avionics
API : Application Programming Interface
ARINC : Aeronautical Radio, Incorporated
CAST : Certification Authorities Software Team
AMC : Acceptable Means of Compliance
ComCoS : Combined Color Stacks
OS : Operating System
SRAM : Static Random-Access Memory
DRAM : Dynamic Random-Access Memory
APEX : Application Executive
DAL : Design Assurance Level
RTCA : Radio Technical Commission for Aeronautics
AFDX : Avionics Full-Duplex Switched Ethernet
PMC : Performance Monitor Counter
WCET : Worst-Case Execution Time
QoS : Quality Of Service
RTOS : Real-Time Operating System
CAST : Certification Authorities Software Team
AMC : Acceptable Means of Compliance

xiii

xiv

SYMBOLS

N : Number of Cache Pools

xv

xvi

LIST OF TABLES

Page

Table 2.1 : Design Assurance Levels. 11
Table 4.1 : Results of the experiments. 43

xvii

xviii

LIST OF FIGURES

Page

Figure 1.1 : Comparison of Federated and IMA architectures. 2
Figure 2.1 : Schematic of the memory hierarchy. 8
Figure 2.2 : Cache mapping methodologies. 9
Figure 2.3 : ARINC 653 time configuration. 10
Figure 2.4 : Schematic of the page coloring. 16
Figure 2.5 : Address translation of the virtual to physical. 17
Figure 2.6 : Application cache characteristics. 19
Figure 3.1 : Dynamic memory allocation from separate color stacks.. 24
Figure 3.2 : Binary tree structure of ComCoS technique. 25
Figure 3.3 : Example memory allocation from parent index for ComCoS. 26
Figure 3.4 : Dynamic memory allocation for ComCoS. 27
Figure 3.5 : Applications color distributions. 28
Figure 3.6 : Linked color lists in the Reference implementation. 29
Figure 3.7 : Linked color lists in the ComCoS technique. 29
Figure 3.8 : Optimized linked color lists in the ComCoS technique. 30
Figure 4.1 : Cache eviction problem.. 34
Figure 4.2 : Bus interferences problem. 36
Figure 4.3 : Cache eviction problem in single core systems. 38
Figure 4.4 : System initialization time. 40
Figure 4.5 : System initialization time improvement. 41
Figure 4.6 : Dynamic allocation time.. 42

xix

xx

COMCOS: AN ENHANCED CACHE PARTITIONING TECHNIQUE
FOR INTEGRATED MODULAR AVIONICS

SUMMARY

Integrated Modular Avionics (IMA) has been widely used in safety-critical aviation
applications due to its reusability, portability, modularity, and cost-effective
re-certification. IMA-based systems effectively manage numerous applications with
varying levels of criticality by utilizing shared hardware and middleware supported
by hardware-independent application programming interfaces (APIs), such as the
ARINC 653 (Aeronautical Radio Incorporated) interfaces. It enables integrating
multiple applications with varying criticality levels through robust time and memory
partitioning. The standardized and well-defined software architecture of ARINC 653
facilitates the development of safety-critical systems by ensuring a clear separation of
software functions within their designated partitions. This separation minimizes the
risk of interference or failure, enhancing the overall reliability of the systems.

To ensure the reliability of aviation systems in all operational conditions, they are
subject to strict safety standards and regulations, such as the DO-178C software
guidance. Compliance with DO-178C requires detailed documentation of the software
development process, including planning, design, coding, testing, and verification, to
ensure that the software meets the required level of safety and reliability. Analyzing
the system’s worst-case execution Time (WCET), limitations, and utilization is
recommended in the DO-178C software verification process. WCET measures a
software task’s maximum completion time under worst-case conditions.

In IMA-based systems, applications are typically segmented into distinct memory and
time partitions to ensure they have the necessary resources to execute consistently and
reliably. However, shared resources such as cache, busses, and memory can still impact
the WCET of the applications on multi-core platforms, even partitioned. These shared
resources can lead to contention and may cause delays in the execution of applications,
affecting the system’s determinism and overall performance. To address this issue,
CAST-32A (Certification Authorities Software Team) and AMC 20-193 (Acceptable
Means of Compliance) guidance has been published for certifying multi-core avionics
software.

These shared resource contentions can be mitigated through Cache Partitioning, which
involves allocating different applications to separate cache regions. There are two main
approaches to cache partitioning: hardware-based and software-based. Software-based
cache partitioning is more suitable for IMA-based systems due to its hardware
independence, ability to provide finer granularity, and the capability to configure it
based on specific application requirements.

This study conducted numerous experiments to demonstrate the improvements
achieved by cache partitioning in mitigating interferences between applications. The

xxi

first example demonstrates that the execution time of the matrix multiplication
application increased by up to 101,44% due to the trashing effect caused by another
application. Implementing cache partitioning can reduce this effect by up to 0,6%. In
another experiment, a matrix multiplication operation experienced a significant 2483%
increase in execution time due to bus interference, while cache partitioning reduced
this increase by 30%.

The use of a shared cache can cause both determinism and performance degradation
not only in multi-core systems but also in single-core systems. Although cache flushing
during application switching eliminates determinism problems in single-core systems,
this situation leads to performance degradation. The performance degradation caused
by cache flushing, resulting in a loss of 47,4%, was reduced to as low as 0,314%
through the implementation of cache partitioning.

In safety-critical avionics systems, physical memory for application program areas
is fully allocated during application loading. Memory management algorithms for
real-time systems are divided into static memory allocation and dynamic application
allocation. The CAST-32A discourages dynamic memory allocation and recommends
that applications allocate memory at system startup. In static memory allocation, all
cache regions are preloaded during system startup to lists, and applications acquire
memory from these preloaded lists during system initialization. However, this
approach can significantly increase the system’s boot time. While the CAST-32A
guidelines do not recommend dynamic memory allocation, the AMC 20-193 directives
allow for dynamic allocation under specific deterministic conditions and limits. In
large-scale IMA systems, there may be a need for dynamic loading of applications due
to requirements such as load balancing or transferring an application from a faulty card
to other cards. However, it is crucial to ensure that the system’s other applications are
unaffected from dynamic loading.

Hundreds of applications work in a complex structure in IMA-based aviation systems.
Each application has unique cache characteristics and requires a different cache size.
Applications can be assigned to multiple cache regions. However, in existing cache
allocation methods described in the literature, cache requests are provided page by
page, even when applications reside in contiguous cache regions. To overcome this
limitation, a new ComCoS (Combined Color Stacks) technique has been developed
to allocate multiple cache pools in a single request. Instead of keeping physically
adjacent cache regions in separate stacks, they are placed together in a shared stack.
That enables the allocation of multiple cache regions in a single service request. The
ComCoS reduces system startup time for systems that prefer static allocation and
offers faster and more deterministic cache allocation for systems favoring dynamic
application allocation.

Experimental results on an ARINC 653 compatible RTOS demonstrate that the
ComCoS technique provides an average performance improvement of 52% and
reduces the standard deviation in memory distribution by 2,91 times. Additionally,
the technique achieves a 3,48 times improvement in WCET and a 6,23 times reduction
in standard deviation for the memory allocation service.

xxii

COMCOS: ENTEGRE MODÜLER AVİYONİKLER İÇİN
GELİŞMİŞ BİR ÖNBELLEK BÖLÜMLEME TEKNİĞİ

ÖZET

Havacılık endüstrisi geleneksel olarak sıkı güvenlik ve güvenilirlik standartlarına
uyan karmaşık aviyonik sistemlere dayanmaktadır. Geçmişte, aviyonik sistemler
her bir bileşenin ayrı bir değiştirilebilir hat birimi olarak çalıştığı Federatif Mimari
yaklaşımını takip etmiştir. Değiştirilebilir hat birimleri kendi işlemcileri, giriş/çıkış
(G/Ç) cihazları ve haberleşme arayüzlerine sahiptirler ve haberleşme kanallarını
kullanarak iletişim kurmaktadırlar. Ancak, havacılık teknolojisinin ilerlemesi ve
artan karmaşıklık düzeyi nedeniyle Federatif Mimari yaklaşımını kullanarak uçak
tasarımlarını yönetmek, giderek zorlaşmıştır. Entegre Modüler Aviyonik (IMA:
Integrated Modular Avionics) mimarisi, bu zorlukların üstesinden gelmek için
alternatif olarak önerilmiştir.

IMA mimarisi, daha az merkezi işlem birimi kullanarak birden fazla donanım
modülünü yönetir ve bunu donanım bağımsız uygulama programlama arayüzleri (API:
Application Program Interface) aracılığıyla başarır. Bu yaklaşım, alt sistemlerin
işlem gücü, veri depolama ve haberleşme gibi aviyonik kaynakların paylaşılmasını
sağlar. Böylece kaynak kullanımında, sistem boyutunda ve ağırlığında azalma sağlanır.
Boeing, 787 Dreamliner uçağının tasarımının IMA olarak gerçekleştirilmesi ile uçak
aviyoniğinde 2000 libre azalma yaşandığını söylemektedir.

IMA mimarisi tekrar kullanılabilirlik, taşınabilirlik, modülerlik ve maliyet etkin
sertifikasyon özellikleri sayesinde aviyonik dünyada popüler hale gelmiştir. Bu mimari
yaklaşım, sistem tasarımı ve bakımında esneklik sağlarken, yeni uygulamaların daha
kolay entegrasyonunu ve aviyonik kaynaklarının daha verimli kullanımını mümkün
kılar. Bu sayede daha etkin bir şekilde kaynak kullanımı sağlanır ve sertifikasyon
maliyetleri düşer.

IMA mimarili sistemler genellikle INTEGRITY ve TÜBİTAK GIS gibi gerçek
zamanlı işletim sistemlerini kullanırlar. Aviyonik dünyada kullanılan gerçek zamanlı
işletim sistemler, ARINC 653 (Aeronautical Radio Incorporated) gibi donanım
bağımsız arayüzler kullanarak uygulamalar ile iletişim kurmaktadırlar. ARINC 653
katı zaman ve hafıza paylaşımı yaklaşımı sayesinde farklı kritiklik seviyelerindeki
uygulamaların bir arada, birbirini etkilemeden çalışabilmesini sağlar. ARINC 653’ün
standartlaştırılmış ve iyi tanımlı yazılım mimarisi, yazılım uygulamaların belirlenen
bölmeler içinde katı bir şekilde ayrılmasını sağlayarak güvenlik açısından kritik
sistemlerin geliştirilmesini kolaylaştırır. Bu ayrım, müdahale veya arıza riskini en aza
indirir ve sistemlerin genel güvenilirliğini artırır. Ayrıca, ARINC 653 sertifikasyon
maliyetlerini azaltmaya yardımcı olur. Sertifikasyon sürecini daha hızlı ve hatalara
daha az duyarlı hale getirir.

xxiii

Havacılık sistemleri, tüm koşullar altında güvenilirliğini sağlamak için sıkı güvenlik
standartlarına tabi tutulurlar. Avrupa Birliği Havacılık Emniyeti Ajansı (EASA:
European Union Aviation Safety Agency) ve Federal Havacılık İdaresi (FAA: Federal
Aviation Administration), havacılık endüstrisinde en önemli düzenleyici kurumlardan
ikisidir. Temel görevleri, uçak sertifikasyonu ve işletmesi için düzenlemeler
ve standartlar oluşturarak ve bunları uygulayarak hava seyahatinin güvenliğini
sağlamaktır. Bu süreçler, DO-178C rehber dokümanı gibi çeşitli düzenlemelere ve
standartlara uyum gerektirir. DO-178C emniyet kritik sistem yazılımlarının planlama,
tasarım, kodlama, test ve doğrulama gibi tüm yaşam döngüsünü kapsamaktadır.
Uygulamaları ölümcül, tehlikeli, önemli, az önemli ve etkisiz olarak Tasarım Güvence
Seviyelerine (DAL: Design Assurance Level) ayırmaktadır ve her biri için sağlaması
gereken hedef listesi tanımlamaktadır. DO-178C yazılım doğrulama süreci, sistemin
en kötü işlem süresinin (WCET: Worst-Case Execution Time), sınırlarının ve kaynak
kullanımının analiz edilmesini tavsiye etmektedir. Sistemdeki kaynak paylaşımı en
kötü işlem süresine göre yapılmaktadır.

IMA mimarili sistemlerde uygulamalar genellikle katı zaman ve hafıza bölmelerine
ayrılsalar da özellikle çok çekirdekli işlemcilerde ortak kullanılan önbellek, veriyolu
ve hafıza birimleri ile birbirlerinin WCET’ini etkilemektedirler. Bu paylaşılan
kaynaklar arasındaki çekişme, sistem determinizmini ve performansını etkileyebilir.
Çok çekirdekli aviyonik yazılımların sertifikasyonu için CAST-32A ve AMC 20-193
rehber dokümanları yayınlanmıştır.

Ortak kaynak paylaşım problemi önbellek bölümleme ile giderilebilir. Bu yöntemde
uygulamalar farklı önbellek bölgelerine yerleştirilerek, birbirlerinin önbellekdeki
verilerini tahliye etmezler. Önbellek bölümleme için donanım tabanlı ve yazılım
tabanlı olmak üzere iki ana yaklaşım bulunmaktadır. Donanım tabanlı bölümlendirme,
donanıma bağımlılığı ve düşük bölümleme çözünürlüğü nedeniyle IMA tabanlı
sistemler için uygun değildir. Uygulamalar sahip oldukları önbellek miktarlarına göre
farklı davranış göstermektedirler. Bu yüzden her uygulamanın talep edeceği önbellek
miktarı farklı olacaktır. Ancak uygulamaların derleme anında ihtiyacı olan önbellek
miktarını belirlenmesi zordur. Uygulamalara verilen önbellek miktarının dinamik
olarak belirleneceği pek çok çalışma yapılmıştır. Ancak, emniyet kritik sistemler için,
uygulamaya tahsis edilen önbellek bölgelerinin sistem yürütülmesi sırasında dinamik
olarak yer değiştirmesi istenmeyen bir dinamik davranıştır. Bu nedenle, uygulamaya
tahsis edilecek önbellek bölgelerinin yapılandırılması statik olarak belirlenmelidir.

Bu çalışmada, önbellek bölümlemenin uygulamalar arasındaki girişimleri azaltmada
sağladığı gelişmeleri göstermek için birçok deney gerçekleştirilmiştir. Gerçekleştirilen
ilk deneyde, bir matris çarpma uygulamasının başka bir uygulamanın neden olduğu
önbellek boşaltma etkisi nedeniyle yürütme süresinin %101,44’e kadar arttığı
gözlemlenmiştir. Önbellek bölümlemenin bu etkiyi %0,6’ya kadar azaltabileceği
görülmüştür. Başka bir deneyde, bir matris çarpma işlemi, veriyolunda oluşan girişim
nedeniyle yürütme süresinde %2483’lük önemli bir artış yaşamış, ancak önbellek
bölümleme bu artışı %30 oranına kadar azaltmaktadır. Önbellek bölümleme, veriyolu
girişim problemini doğrudan çözmese de girişimin etkisini büyük ölçüde azalttığı
gözlemlenmiştir. Veriyolu girişim problemi uygulamaların belirlenen zaman dilimi

xxiv

içerisinde, tahsis edilen işlem kapasitesini aşması durumunda sonlandırılması ile
önlenebilir.

Paylaşılan önbellek kullanımı, sadece çok çekirdekli sistemlerde değil, tek çekirdekli
sistemlerde de determinizm ve performans bozulmalarına neden olabilir. Tek
çekirdekli sistemlerde uygulama geçişleri sırasında önbellek boşaltılması determinizm
sorunlarını ortadan kaldırsa da bu durum performans kaybına yol açar. Önbellek
boşaltılması %47,4’lük bir performans kaybına sebep olurken, önbellek bölümleme
sayesinde bu kayıp %0,314’e kadar azaltılmıştır.

Talep üzerine sayfa alma, sayfaların yalnızca ihtiyaç duyulduğunda ana belleğe
yükleyen bir bellek yönetimi düzenidir. Bu yöntemde, uygulama sadece ihtiyaç
duyduğunda ikincil depolama alanından (örneğin bir sabit disk) ana belleğe yüklenir.
Bu teknik, yalnızca gerekli olan sayfaların belleğe yüklenmesine izin vererek bellek
kaynaklarının daha verimli kullanılmasını sağlar. Kullanılmayan sayfalar gerektiği
zamana kadar ikincil depolama aygıtında kalabilir. Talep üzerine sayfalandırma, Linux
gibi geleneksel işletim sistemlerinde kullanılarak, programların fiziksel olarak mevcut
olan bellekten daha fazla bellek kullanmasına olanak tanır. Ancak bu yöntem gerçek
zamanlı işletim sistemleri için uygun değildir, çünkü gerekli sayfalar ikincil hafızadan
geç getirilebilir veya ana hafızada hiç yer kalmamışsa getirilemeyebilir. Bu durum
determinizm problemi yarattığı için, emniyet kritik aviyonik sistemlerde uygulamalar
yürütülmeye başlamadan önce tamamıyla ana hafızaya yüklenmektedirler.

Emniyet kritik sistemlerde hafıza yönetimi statik ve dinamik olmak üzere iki grupta
incelenebilir. CAST-32A, dinamik bellek tahsisini teşvik etmez ve uygulamaların
belleği sistem başlatıldığında tahsis etmelerini önerir. Statik bellek tahsisinde,
tüm önbellek bölgeleri sistemin başlatılması sırasında listelere önceden doldurulur.
Uygulamalar ana belleğe yüklenirken, önceden doldurulmuş bu listelerden önbellek
bölgeleri tahsis edilir. Bu yaklaşımda tüm sistem kaynakları sistem ilklenmesi
sırasında tahsis edileceği için, sistem başlatma süresini önemli ölçüde artırabilir.
CAST-32A yönergeleri dinamik bellek tahsisini önermezken, AMC 20-193 direktifleri
belirli deterministik koşullar ve sınırlar altında dinamik bellek tahsisine izin verir.
Büyük ölçekli IMA mimarili sistemlerde, yük dengelemesi yapmak veya arızalanan bir
karttaki uygulamanın başka kartlara taşınması gibi ihtiyaçlardan dolayı uygulamaların
dinamik olarak yüklenmeleri gerekebilir. Ancak bu dinamik yükleme sırasında
sistem içerisinde halihazırda çalışmakta olan uygulamaların çalışmasını kesinlikle
etkilememelidir.

Her uygulamanın benzersiz önbellek özellikleri vardır ve farklı bir önbellek boyutuna
ihtiyaç duyar. Bu yüzden uygulamalar birden çok önbellek bölgesine atanabilirler.
Literatürde tanımlanan mevcut önbellek tahsis yöntemlerinde, uygulamalar bitişik
önbellek bölgelerinde yer alsalar bile önbellek istekleri sayfa sayfa sağlanmaktadır.
Uygulamaların önbellek karakteristiğini korumak adına talep edilen farklı önbellek
bölgeleri sırası ile dağıtılmaktadır. Bu tezde, tek bir istekte birden çok önbellek
havuzunun tahsis edilebilmesini sağlayan, ComCoS (Combined Color Stacks, Birleşik
Renk Yığınları) isimli yeni bir önbellek tahsis tekniği geliştirilmiştir. Fiziksel olarak
bitişik yer alan önbellek bölgeleri ayrı ayrı yığınlarda tutulmaz; bunun yerine, birlikte
paylaşılan bir yığına yerleştirilirler. Bu sayede, tek bir servis isteğinde birden fazla
önbellek bölgesinin tahsisine olanak sağlanır. ComCoS, statik tahsisi tercih eden

xxv

sistemler için sistem başlatma süresini azaltırken ve dinamik uygulama tahsisini tercih
eden sistemler için daha hızlı ve deterministik bir önbellek tahsisi sunar.

ARINC 653 uyumlu bir gerçek zamanlı işletim sistemi üzerinde yapılan deneysel
sonuçlar, ComCoS tekniğinin ortalama performansı %52 artırdığını ve bellek
dağılımındaki standart sapmayı 2,91 kat azalttığını göstermektedir. Ayrıca, ComCoS
bellek tahsis hizmeti için en kötü işlem süresinde 3,48 kat iyileşme ve standart sapmada
6,23 kat azalma sağlamaktadır.

xxvi

1. INTRODUCTION

Aviation systems are safety critical because any malfunction or error in these systems

could lead to catastrophic consequences, including loss of life and property damage. To

ensure the reliability of aviation systems in all operational conditions, they are subject

to strict safety standards and regulations. European Union Aviation Safety Agency

(EASA) and Federal Aviation Administration (FAA) are two of the most important

regulatory bodies in the aviation industry. Their primary role is to ensure the safety and

security of air travel by establishing and enforcing regulations and standards for aircraft

certification and operation. EASA regulates aviation safety in Europe, while the FAA

oversees aviation safety in the United States. These processes involve complying

with various regulations and standards, such as the DO-178C software guidance [1].

This standard sets guidelines for the developing software used in avionics systems.

The DO-178C requires detailed documentation of the software development process,

including planning, design, coding, testing, and verification, to ensure that the software

meets the required level of safety and reliability. Certification authorities evaluate this

documentation to ensure the software meets safety requirements.

Historically, aviation systems have employed a Federated Architecture approach,

wherein each system component is a separate line replaceable unit with its

own processors, input/output (I/O) devices, and communications [3]. However,

managing aircraft designs using this approach has become increasingly challenging

with the advancement and increasing complexity of aviation technology. To

address this issue, the Integrated Modular Avionics (IMA) architecture has been

proposed as an alternative to Federated Avionics. The IMA approach manages

multiple hardware modules using fewer central processing units, accomplished

through hardware-independent application programming interfaces (API). Figure 1.1

demonstrates the comparison of Federated and IMA architectures.

1

Figure 1.1 : Comparison of Federated and IMA architectures [2].

In IMA-based systems, subsystems share avionics resources such as processing power,

data storage, and communication, enabling more efficient resource utilization while

reducing overall system size and weight. For instance, Boeing reported a 2000-pound

weight reduction in the 787 Dreamliner by implementing the IMA architecture.

Similarly, Airbus has reported that IMA architecture reduced the processing units

by half for the new A380 avionics suite [4]. Due to its reusability, portability,

modularity, and cost-effective re-certification, IMA architecture has gained popularity

in safety-critical avionics applications.

IMA-based systems typically use real-time operating systems (RTOS) such as

INTEGRITY [5] and TUBITAK GIS [6], which employ generalized APIs such as

2

ARINC 653 (Aeronautical Radio INC) interfaces [7]. The ARINC 653 standard

defines the interface between the operating system and applications running on

IMA-based systems, enabling the integration of multiple applications with different

criticality levels with robust time and memory partitioning. Moreover, using ARINC

653 facilitates the easy integration and substitution of new and existing applications,

improving the flexibility and adaptability of the systems. ARINC 653 is a crucial

component in meeting certification requirements for developing safety-critical avionics

systems. Its standardized and well-defined software architecture facilitates the creation

of such systems by clearly separating software functions and ensuring each operates

within its own partition. This minimizes the risk of interference or failure, making it

easier for developers to demonstrate compliance with safety standards and regulations.

Moreover, ARINC 653’s widespread adoption within the avionics industry means it

provides a well-documented and validated software architecture that can help reduce

the cost and time required for certification. Therefore, ARINC 653 makes the

certification process faster and less prone to costly errors or delays.

With the rapid evolution of aviation technology, there is an increasing demand for

processing power, which has resulted in a transition from single-core processors to

multi-core processors. Multi-core support is provided by the ARINC 653 standard,

with Supplement 4 published in 2015. However, shared resources such as shared

caches, buses, and memory management in multi-core processors can cause multi-core

interferences. To address this issue, the Certification Authorities Software Team

(CAST) published a guidance paper in November 2016, CAST-32A [8], providing

objectives for certifying multi-core safety critical systems. CAST-32A identifies

concerns that may impact the safety, performance, and integrity of software executing

on multi-core processors and proposes objectives to address these concerns. In

response to CAST-32A, the FAA and EASA collaborated to develop official guidance

for certifying multi-core avionics software. EASA’s Acceptable Means of Compliance

(AMC) 20-193 was released in early 2022 [9]. This guidance document is similar to

CAST-32A and provides a set of objectives and terminology for multi-core avionics

systems certification.

3

In IMA-based systems, applications are typically segmented into distinct memory and

time partitions to ensure they have the necessary resources to execute consistently

and reliably. However, shared resources such as processing power, data storage,

and communication buses can still impact the worst-case execution time (WCET) of

the applications on multi-core platforms, even partitioned. These shared resources

can lead to contention and may cause delays in the execution of applications,

affecting the system’s determinism and overall performance. These shared resource

contentions can be mitigated through Cache Partitioning, which involves allocating

different applications to separate cache regions. The thesis proposes a novel ComCoS

(Combined Color Stacks) approach for implementing cache partitioning in operating

systems (OS) with better performance and determinism.

1.1 Purpose of Thesis

This thesis aims to comprehensively investigate the challenges associated with memory

allocation in safety-critical IMA-based systems for cache partitioning. It identifies

the limitations and drawbacks of current memory allocation approaches and proposes

a novel cache partitioning algorithm as an effective solution to overcome these

challenges.

The CAST-32A discourages dynamic memory allocation and recommends that

applications allocate memory at system start-up. However, allocating memory for

all applications at system start-up can significantly increase system boot time. In

safety-critical IMA-based systems, the health monitoring mechanism triggers if an

error occurs, which may require resetting the entire module depending on the error’s

severity. For example, catastrophic consequences may occur if systems such as engine

control units or flight control systems do not operate for an extended period. Therefore,

system boot time is of great importance and should be as fast as possible.

AMC 20-193 states that "justification for using dynamic allocation features within the

scope of this AMC may rely on robust and proven limitations that lead to deterministic

behavior [9]." However, AMC 20-193 also notes that users should avoid pure dynamic

allocation and use appropriate configurations that do not affect other applications. In

large-scale IMA systems, there may be a need for dynamic loading of applications due

4

to requirements such as load balancing or transferring an application from a faulty card

to other cards. However, it is crucial to ensure that the system’s other applications are

unaffected by dynamic loading.

The thesis proposes a new cache partitioning algorithm called ComCoS to provide

better performance and deterministic behavior. This algorithm reduces system start-up

time for systems preferring static allocation and provides faster and more deterministic

cache allocation for systems favoring dynamic application allocation.

1.2 Organization of Thesis

In Section 2, a detailed background and literature review were conducted on

various topics, including Cache, ARINC 653, Certification Process, Shared Resource

Interferences, Cache Partitioning, and Memory Management in Operating Systems.

Section 3 presents our novel ComCoS cache partitioning technique. Section 4

evaluates our technique with experiments, followed by conclusions and future work

in the final section.

5

6

2. BACKGROUND AND LITERATURE REVIEW

This section provides background information on the working principle of caches,

the ARINC 653 standard, and the certification of IMA-based systems. Then, the

challenges arising from the shared cache, buses, and memory in multicore platforms

are examined, along with the contributions of cache partitioning to address these issues,

supported by examples from the literature. Afterward, different cache partitioning

approaches are evaluated from the perspective of IMA-based systems. Finally, existing

memory management algorithms developed for cache partitioning in the literature are

examined, and their limitations are identified.

2.1 Cache

To improve the performance of computer systems, the cache is generally used, which

is based on static random-access memory (SRAM). However, due to the high unit

cost of SRAM, the amount of cache memory in these systems is limited compared to

the main memory, which is typically dynamic random-access memory (DRAM). The

cache structure is an intermediate layer between the main memory and the processor,

reducing data access time and energy consumption. It is not feasible to optimize cost,

power consumption, volume, and speed using a single type of memory component. As

a solution, the hierarchical memory model has been adopted as in Figure 2.1 [10].

The processor checks for a corresponding entry in the first-level cache (L1D/ L1I). If

the desired location is in the cache, a cache hit occurs; otherwise, a cache miss occurs,

and the processor requests the data from the next memory hierarchy level. The hit

ratio measures cache performance and can be defined as the number of cache hits over

the total number of memory accesses. The hit ratio can be improved by increasing the

cache block size, associativity, temporal and spatial locality, or cache partitioning.

7

Figure 2.1 : Schematic of the memory hierarchy.

The cache mechanism follows general programming practices. After accessing an

address, the near address will probably be accessed soon because instructions and

program segments follow the sequential memory order. So data exchange between

cache and main memory is performed with blocks because of spatial locality. After

accessing an address, high probably it will be reaccessed soon. Frequently used

addresses are not removed from the cache according to the temporal locality.

Memory mapping between the cache and main memory can be performed using

different methods, as seen in Figure 2.2. The direct mapping method allows each

memory block to be placed in a dedicated cache location. However, the main problem

with this technique is that even if there are several unused lines in the cache, two

memory blocks mapped to the same cache region cannot exist simultaneously. In

contrast, with the fully associative mapping method, each memory block can be placed

in any of the cache memory lines. However, this method can only be used for tiny

cache memories due to the high hardware cost of searching the entire cache.

In set associative mapping, the cache is divided into multiple sets, and each set has

a specified number of ways. It is determined in which set the memory block will be

placed, but it is not certain which way is selected for placement. Memory blocks can

map to any way in the specified cache set and ways of the sets are accessed in parallel.

8

Figure 2.2 : Cache mapping methodologies.

The set associative mapping technique can be considered a combination of direct and

fully associative mapping techniques.

2.2 ARINC 653

The primary responsibility of operating systems is to facilitate the sharing of system

hardware resources, such as memory, processor time, network connections, etc.,

among the tasks running on it. However, resource sharing for safety-critical systems

must be more restricted. The ARINC 653 specifications provide an interface for

operating systems to protect applications of varying criticality levels from one another.

The primary goal of these specifications is to define the Application Executive (APEX)

interfaces between the operating system and applications as follows:

• Partition Management

• Process Management

• Time Management

• Interpartition Communication

• Intrapartition Communication

• Health Monitoring

9

Figure 2.3 : ARINC 653 time configuration.

The ARINC653 standard does not offer memory management services; instead,

it expects applications to determine and define their memory requirements during

system configuration. Additionally, another responsibility of ARINC653 is to provide

a configuration file for system configuration. The system then allocates each

application’s required physical memory space before it starts running. This means

that each application is responsible for managing its own memory within the allocated

space. Partitions (applications) can define one or more processes to perform their

desired functions. The ARINC 653 standard provides robust memory partitioning,

ensuring that partition processes share the same physical space but cannot access the

physical space of other partitions.

In ARINC 653, robust time partitioning is a mechanism to guarantee the independent

and interference-free operation of different applications in an IMA-based system. This

mechanism divides the processor’s time into fixed intervals called time windows and

assigns specific time windows to each partition. Applications execute within their

assigned time window. The length of the time window, determined by the size of

the time partition, is specified in the configuration file. The time window ensures

that an application completes its execution within the assigned time and prevents it

from exceeding its allocated time. Furthermore, ARINC 653 defines the major frame

as a periodic time interval. During the major frame, time windows execute in a

predetermined sequence. Figure 2.3 shows an ARINC 653 time configuration example.

10

Table 2.1 : Design Assurance Levels (DAL) [11].

DAL Failure
Condition

Resulting Conditions Objectives

A Catastrophic Failure may result in deaths and loss of the
aircraft.

71

B Hazardous Failure creates a major negative impact on
safety or performance or reduces the aircraft
crew’s ability to operate the aircraft. This can
result in serious or fatal injuries.

69

C Major Failure causes significant reduction of the
safety margin or significant increase in the
aircraft crew workload. Passenger discomfort
or minor injuries can result.

62

D Minor Failure slightly reduces the margin of safety
or causes slight increase in aircraft crew
workload. Results can include passenger
inconvenience or changes to a routine flight
plan.

26

E No effect Failure causes no impact or effect on safety,
crew workload, or operation of the aircraft.

0

2.3 Certification Process

The certification of IMA-based systems is critical to ensuring the safety and reliability

of aircraft. These complex structures integrate various critical applications with

different levels of criticality. Criticality levels are defined by the Design Assurance

Level (DAL) in the DO-178C guidance and given in Table 2.1. RTCA (Radio Technical

Commission for Aeronautics) published the DO-178 document in response to the need

to define software processes for compliance with flight safety requirements due to the

increasing use of software in aircraft systems and equipment in the early 1980s. The

document has been revised three times in response to feedback and experience.

Certifying IMA-based systems under DO-178C involves an aviation safety association

or certification body that evaluates the system design to ensure its conformity with

DO-178C and verifies its reliability. This process follows the design and development

of the system and includes various tests and analyses to confirm that the design meets

certain criteria. The certification process covers the system’s entire life cycle, from

its initial design to its production and testing to its use in operation. The life cycle of

processes can be divided into three main categories: the software planning process, the

11

software development processes (requirements, design, coding, and integration), and

the integral processes (verification, configuration management, quality assurance, and

certification liaison) [1].

Analyzing the system’s WCET, limitations, and utilization is recommended as part

of the DO-178C software verification process for safety-critical systems in aviation.

The WCET measures the maximum time a software task or process may take to

complete under worst-case conditions. It is a crucial parameter for allocating sufficient

processing resources and ensuring the system can meet all required deadlines. Another

critical parameter for measuring system utilization in safety-critical systems is the

standard deviation of task or service execution times. High standard deviations

can result in significant losses in system utilization since resources are allocated

based on worst-case scenarios. Therefore, it is necessary to evaluate the system

design comprehensively, identify factors that may influence task execution time, and

implement strategies to mitigate or eliminate them whenever possible to achieve

determinism in ARINC 653 and IMA-based systems.

While it is more cost-effective for system integrators to re-certify completed

applications upon integration, other applications in the system must not impact the

resource usage and analysis of individual applications. This is particularly challenging

because even when applications are separated by time and memory partitioning with

the IMA and ARINC 653 standard, they can still affect each other due to using shared

resources on multi-core platforms. This creates a significant challenge for the system’s

reusability, safety, and determinism, especially when considering WCET analysis of

applications and the distribution of system resources.

EASA and FAA have created guidelines for developing multi-core systems for

aerospace projects, including AMC 20-193 and CAST-32A. These documents guide

compliance with airworthiness regulations and recommend best practices to consider

when dealing with multi-core processors. These two guidelines share many similarities

except for a few topics, such as the dynamic allocation of software execution,

simultaneous multithreading, IMA, etc. [12]. The alteration made to dynamic

allocation is crucial for this thesis. While the CAST-32A document does not

12

recommend dynamic memory allocation, AMC 20-193 states that dynamic allocation

can be performed under specific deterministic conditions and limits.

2.4 Interferences

Interferences in multi-core systems can occur either on-chip or off-chip. Shared

off-chip resources, such as I/O devices, network devices, and other peripherals, are

the principal source of interference in multi-core systems. Concurrent access to these

resources by multiple cores can create interferences, particularly when the device has

limited bandwidth. These interferences can lead to contention for resources and delay

the execution of applications. These problems can be avoided with partitioned device

designs, such as Avionics Full-Duplex Switched Ethernet (AFDX) [13], which utilizes

a partitioned network architecture. However, partitioning device design is not the

subject of this thesis.

Another source of interference is shared on-chip resources, such as shared caches,

buses, and memory management units. Simultaneous access to these resources by

multiple cores can create interference channels that impact the WCET of applications.

2.4.1 Cache eviction

In multi-core systems, cache eviction occurs when an application running on one core

removes the data of another application running on a different core from the cache.

In this case, the execution time of one application is directly affected by the other

application, creating a determinism problem. Single-core systems can eliminate this

problem by flushing the cache during application switches. However, in multi-core

systems, cache partitioning can prevent this issue. The experiment in Section 4.2 shows

the cache eviction determinism problem and the cache partitioning improvement.

2.4.2 Bus interferences

On multi-core systems, applications requesting simultaneous memory access from

different cores can cause bus interference due to using a shared bus, even if

the applications are located in different cache regions. Applications that perform

memory-intensive tasks such as logging and mathematical calculations can saturate the

13

system’s bus bandwidth, causing delays for critical applications with higher priority

running concurrently. These applications are constrained to a designated processing

capacity during specific time intervals to address this issue and terminate if they exceed

that capacity. The system tracks the number of memory accesses made by these

applications using Performance Monitor Counters (PMC) and throws an exception

if they exceed a certain threshold. Safety monitoring terminates these applications,

guaranteeing critical priority applications’ proper functioning. Many studies have been

conducted to determine and manage the memory bus bandwidth [14,15].

Although cache partitioning does not directly solve this situation, it can reduce the

impact on memory bus bandwidth by preventing applications from evicting each

other’s cache regions. The experiment in Section 4.3 illustrates the problem of bus

interference and demonstrates the improvement achieved through cache partitioning.

2.4.3 DRAM bank eviction

Processor cores access the main memory (DRAM) through memory banks, organized

into ranks and channels to enable parallel access. The memory banks consist of rows

and columns, and the memory controller identifies the specific location within the

banks based on the memory address. Accessing the same row allows direct access from

the row buffer, but accessing a different row evicts the previous data. The memory

controller queues access requests due to the speed disparity between the processor

cores and the main memory.

Row buffer eviction causes contention between applications. Which bank will be

accessed in the DRAM chip is determined according to the physical address. Like

cache partitioning, bank partitioning can be accomplished by allocating appropriate

memory zones to different partitions. If the cache and bank selection bits match, cache

partitioning and bank partitioning can be implemented jointly. However, some modern

processors can use bit randomization techniques to select the memory banks, and they

do not document address mappings to banks [16]. Unlike a generalizable method such

as cache address mapping, the design of bank address mapping can vary depending

on the individual designs of the processors. There have been many studies about

combining cache and bank partitioning by revealing the relationship between cache and

14

bank mapping bits [16,17]. On the other hand, memory controllers reorder the queue

to reduce row buffer eviction and interleave the memory request to the banks. Cache

and bank partitioning can be evaluated together based on the compatibility of cache

and bank mapping bits. However, hardware manufacturers do not have a generalized

approach.

2.5 Cache Partitioning

Cache partitioning in multi-core systems is the technique of dividing the shared

cache among applications to reduce contention and improve performance. Basically,

cache partitioning methods are implemented as hardware or software. Sparsh Mittal

conducted a literature survey on cache partitioning from various perspectives [18].

Literature works are evaluated from the perspective of IMA-based systems.

2.5.1 Hardware based cache partitioning

Way partitioning is a hardware-based solution. The cache control registers provided

by the hardware are set, and processor cores are assigned to different cache ways.

For example, L2PIRn, L2PARn, and L2PWRn registers of PowerPC e6500 core are

responsible for way partitioning [19]. There have been many studies based on way

partitioning [20]–[22]. Not only way partitioning but also hardware-provided bits can

be used for deterministic memory, such as research by Farshchi et al. [23].

Hardware cache partitioning methods are straightforward and do not require additional

software design for the operating system. However, not all processor families support

this feature, and hardware dependency in IMA-based systems is undesirable. In

addition, many different partitions run on the same processor cores over time, each

having different memory needs. However, way partitioning forces partitions to have

similar cache behavior. Because modifying the hardware configuration during run-time

is not recommended for safety-critical projects, as it poses potential risks to the

system’s safety and integrity. Furthermore, the system can only support a limited

number of ways, and the cache associativity is proportional to the cache way count.

Processors commonly used in the market have 4-8 cores and 8-16 way set associative

shared caches, such as Xeon E5606, PowerPC e6500, and ARM Cortex-A77. In way

15

Figure 2.4 : Schematic of the page coloring.

partitioning, the partitioning granularity is limited by the number of cores, and the

cache partition size assigned to each core is restricted by the number of ways.

The use of hardware-based cache partitioning methods in large-scale IMA-based

systems is not recommended due to hardware dependency, decreased cache

associativity, and the potential risks of modifying hardware configuration during

system run-time.

2.5.2 Software based cache partitioning

Set partitioning, or page/cache coloring, is a software-based approach that determines

the placement of physical memory regions in cache sets. The applications can access a

specific cache region only when the appropriate physical memory regions are assigned

to them. These cache regions are considered as different colors. Applications may

request more contiguous physical memory than their cache region size, which can be

solved by memory virtualization. The working principle of cache coloring is illustrated

in Figure 2.4

There have been several studies on set partitioning, which does not require hardware

support and does not decrease associativity [24]–[26]. The entire mechanism uses

software but requires changes to the operating system’s memory management. Since

16

Figure 2.5 : Address translation of the virtual to physical.

the whole set partitioning mechanism is implemented in software, it is more suitable

for IMA-based systems in terms of hardware independence and common hardware

usage. With this method, each application can create its configuration independent of

the hardware.

The granularity of set partitioning depends on the virtual page size, the number of sets,

and the size of cache blocks, as seen in Figure 2.5. An example is the PowerPC e6500

processor, which has a shared L2 cache consisting of 4 banks, 512 sets, 16 ways, and

64-byte block sizes shared among four cores. If virtual memory is divided into fixed

4KB pages (minimum page size for the processor), the cache can be divided into 32

cache partitions. Compared to way partitioning, set partitioning has a much better

granularity.

In order to achieve deterministic WCET, IMA-based systems rely on a well-partitioned

cache. This is especially crucial in complex systems like aircraft, where numerous

applications of varying criticality levels coexist and necessitate different cache sizes. A

high level of cache granularity is essential to accommodate these diverse requirements.

2.5.3 Dynamic and static cache partitioning

Determining the cache need of system applications at compile time is challenging.

Therefore, many Quality Of Services (QoS) have been defined for running applications

with optimum cache partitioning [27,28]. However, optimal cache partitioning is an

NP-Hard problem. Several statistical [29,30] and artificial intelligence-based [31,32]

studies have been carried out. When the application requests a new memory, the

location to be given is changed according to the QoS. The cache size and region

allocated for the partition can be updated. However, since IMA-based systems are

17

generally used in safety-critical applications, dynamic cache partitioning cannot be

accepted in run-time because it will change the system’s determinism. Therefore, static

cache partitioning is preferred in IMA-based systems.

2.6 Cache Partitioning in Single Core Systems

Time partitioning is crucial for ensuring determinism in IMA-based systems. In the

ARINC 653 standard, applications run in their sequentially repeated time windows. In

single-core systems, after an application completes its window, it switches to the other

application, and the new application can evict the cache data of the old application.

According to the CAST-20 document [33], cache flushing is recommended during

partition switching to eliminate determinism issues. However, this can cause a

significant performance loss. On the other hand, if cache flushing is not performed,

the thrashing rate varies depending on the time window size. If the time window is

small, the application cache becomes contaminated before it uses the data it puts in

the cache. The experiment in Section 4.4 demonstrates that cache flushing results in

performance degradation, while cache partitioning resolves the determinism problem

without compromising performance.

2.7 Application Cache Characteristics

Applications may exhibit different behavior depending on the size of the cache

allocated to them. Applications can be categorized into three groups based on their

cache characteristics: fitting, friendly, and streaming/thrashing, as in Figure 2.6.

Hundreds of applications work in a complex structure in IMA-based aviation systems.

Each application has unique cache characteristics and requires a different cache size.

In IMA-based systems, the operating system must provide a memory management

structure that allocates memory in a way suitable for the cache characteristics of each

application.

2.8 Memory Management Implementations

Demand paging is a memory management scheme in which pages are loaded into

main memory only when needed. In demand paging, a page is loaded from secondary

18

Figure 2.6 : Application cache characteristics [20].

storage, such as a hard drive, into main memory, such as DRAM, once a running

program requests it. This technique allows for more efficient use of memory resources

since only the necessary pages are loaded into memory. Unused pages can remain

on the secondary storage device until needed. Demand paging is widely used in

traditional operating systems, such as Linux, to enable programs to use more memory

than is physically available. However, demand-based paging is generally incompatible

with real-time systems as it can introduce unpredictable delays due to the time it

takes to fetch the necessary pages from secondary storage. Ensuring a maximum

response time for critical tasks is necessary in real-time systems. Demand-based

paging can compromise these guarantees if it leads to unexpected page faults. In

safety-critical avionics systems, physical memory for the program areas of applications

is fully allocated during application loading. Page coloring memory management

algorithms for real-time systems, dividing them into two groups. The first group

involves allocating memory for applications at system startup following the directives

of CAST-32A. The second group is based on dynamic application allocation according

to the directives of AMC20-193.

19

2.8.1 Static memory allocation

In static memory allocation, all physical memory for applications is allocated during

system startup according to the CAST-32A guidance. In the work of Suzuki et

al. [16], linked lists are created for each color, and application page requests are

satisfied from these lists. Applications may request multiple pages based on their

cache requirements. To maintain cache characteristics, the colors assigned to the

application are sequentially given in a round-robin order. This approach ensures a

deterministic physical cache layout for the contiguous user space of the application,

preventing variations in WCET and determinism issues. Dugo et al. [17] mentioned

that they store data in an array instead of using linked lists due to the high cost of

linked list node linking and lack of trust in linked lists. This optimization resulted in

accelerated system boot time. The initialization time is a critical criterion for these

techniques as it involves acquiring all physical memory during system initialization.

In both studies, applications make single page requests at a time, but the assigned

colors may be contiguous. In the proposed ComCoS algorithm in this thesis, multiple

colors can be allocated simultaneously with a single request, significantly speeding up

application allocation and reducing the system boot time.

2.8.2 Dynamic memory allocation

Applications can dynamically load within the robust and proven limitations specified

in the AMC20-193 directives. In large-scale IMA-based systems, dozens of companies

design applications integrated by system integrators. To balance the load on the

processing units within the system, applications with low criticality levels can be

migrated to another processor. Alternatively, if a card fails, the other cards may need

to assume that responsibility dynamically. Therefore, applicants may require dynamic

application loading. However, this allocation should not impact other applications on

the system and should allocate resources with fast and deterministic behavior within

the robust and proven limitations outlined in the AMC20-193 directives.

Tam et al. [24] modified the Linux page frame to support color awareness by dividing

the single free list into multiple lists, each associated with a specific page color.

20

However, this design has issues with both performance and determinism because the

operating system memory allocator needs to invoke repeatedly until obtaining a page

of the desired color.

COLORIS [26] proposed keeping free pages of the same color together in linked

lists to address these problems. Applications can request multiple colors, and these

allocations are performed round-robin. If a linked list does not have the desired color,

the application requests another color assigned to it. However, this may alter the cache

characteristics and behavior of the application. The operating system memory allocator

is consulted when all requested cache regions are exhausted in lists. If the allocated

memory is not the desired color, it is added to the list of the relevant color. Although

this approach performs better than the previous design, it is still uncertain when the

desired cache color will be reached.

Part et al. [34] proposes allocating all pages from the operating system memory

manager when the desired colored page is not found in the color lists. These pages are

split into all color lists simultaneously. In this method, there is a difference between

the average and worst-case execution times. Because in the best case, only one color

is retrieved from the list, while in the worst case, all colors are allocated from the main

memory, and each page is added to the appropriate color lists. This causes the service

not to exhibit deterministic behavior. Our proposed method differs from previous

approaches because we do not store each color as a separate node. Instead, adjacent

colors are stored together as a single node, allowing for the allocation of multiple pages

with a single service request. This results in faster and more deterministic dynamic

allocation.

Using the memory reservation method is appropriate to ensure sufficient memory

allocation for dynamically loaded applications. This method reserves a specific

memory area from which dynamic memory regions are to be allocated. The reserved

memory area is restricted and separated from existing applications within the system.

Applications already in the system cannot consume this reserved memory region.

There is no need to fill the color lists for the dynamic allocation at system boot time

as this would unnecessarily extend system initialization time. The ComCoS algorithm

21

allows multiple page nodes to be filled dynamically to lists. This allows dynamic

application allocation to occur faster and within a limited time compared to other

applications in the literature.

22

3. DESIGN AND IMPLEMENTATIONS

In this study, two cache allocation algorithms were implemented. The first algorithm,

referred to as the reference implementation, was used for comparison purposes with the

ComCoS design. To avoid the cost of node linking, separate stacks were maintained

for each color, following the approach described by Dugo et al. [17]. The newly

proposed ComCoS design’s second implementation utilized new stacks to handle color

combinations.

Two different versions were defined for each implementation. In the first version,

applications were statically initialized, and the total memory required by the

applications was allocated from the main memory. The stacks were filled with this

allocated memory during start-up, and the applications were initialized using these

stacks. In the second version, dynamic allocation was used to assign memory to the

applications at run-time. This version utilized memory reserved for dynamic allocation

to feed the stacks dynamically.

3.1 Reference Implementation (Separate Color Stacks)

How to calculate the maximum number of colors that can be created for the relevant

platform is given in Figure 2.5. In this thesis, the symbol of N is used to represent

the number of defined colors. N different stacks are created by adjusting the

STACK_CAPACITY configuration parameter based on the specific requirements of the

IMA-based systems in the reference implementation.

In the static memory allocation version, the memory region reserved by the system

configuration for colored page allocation is pushed onto the color stacks one by one

during system start-up. This reserved area will be used to fulfill the colored page

requests of all applications. Algorithm A.1 defines the Cache_Alloc service, which

enables memory allocation in specific cache colors. The service takes a stack index

as a parameter, representing a different cache color ranging from 1 to N. In the first

23

Figure 3.1 : Dynamic memory allocation from separate color stacks.

step, the algorithm attempts to pop a memory region from the corresponding stack.

The static allocation version returns an error if there is no available memory region of

the relevant color in the stack. This is because all the stacks are filled during start-up

according to the configuration, and there is no dynamic memory allocation. Otherwise,

the desired colored memory region return from the service.

In the dynamic memory allocation version, the algorithm may request new dynamic

memory from the OS page allocator if the requested stack is exhausted. However,

following the AMC 20-193 directives, the dynamic memory areas must be pre-reserved

and dedicated exclusively for dynamic application loading. This measure ensures

determinism and imposes limitations on the allocation of dynamic memory. When

there is no desired page remaining in the stack, to guarantee that the allocated memory

will contain the desired color, N pages of memory are obtained from the main memory

using the OS page allocator service, following the approach by Part et al. [34]. The

page in the appropriate color is returned from the service within the N pages, and the

remaining N-1 pages are pushed onto their respective stacks using the Push_Pages

service in Algorithm A.1. Figure 3.1 demonstrates the memory allocation process the

OS page allocator performs when requesting an I indexed cache region in the dynamic

cache allocation version.

The application can be assigned more than one color, but the Cache_Alloc service can

only allocate a single colored page at a time. In such cases, the assigned colors are

distributed to the application using the round-robin method to maintain a consistent

behavior. When the stacks reach their capacity, the system’s behavior may vary. Two

24

Figure 3.2 : Binary tree structure of ComCoS technique.

options can be considered in this situation: increasing the stack size or returning

non-fitting pages directly to the OS page manager. However, in time-critical IMA

systems, it is undesirable to have free or deletion services. Therefore, it is necessary to

reconsider the STACK_CAPACITY parameter.

3.2 Combined Color Stacks

Assigning different amounts of cache pools is essential for each partition due to their

distinct cache characteristics. However, the existing cache allocation services used in

previous methods had performance and service determinism limitations because they

could only return one page at a time. To overcome this limitation, a new ComCoS

technique has been developed to allocate multiple cache pools in a single request.

ComCoS defines new stacks for adjacent free colors instead of having a separate stack

for each color. Specifically, a perfect binary tree structure is constructed with 2N-1

stacks, each covering a range of adjacent free-colored pages. The root stack covers

all N different colors, with its left child covering adjacent free colored pages from 1

to N/2, and its right child covering adjacent free colored pages from N/2+1 to N. The

25

Figure 3.3 : Example memory allocation from parent index for ComCoS.

number of pages kept together in the stack is halved at each level of the tree. The leaf

nodes of the binary tree are separate color stacks. Figure 3.2 illustrates the constructed

binary tree structure. All stacks are created statically with the STACK_CAPACITY

configuration parameter.

In the static memory allocation version, the memory region designated by the system

configuration for colored page allocation is pushed into the root stack in groups of

N colored pages. ComCoS provides the Cache_Alloc service, defined in APPENDIX

B, which allows for memory allocation in multiple colors. This service takes a stack

index as a parameter in the range of 1 and 2N− 1, and it is determined which stack

index corresponds to which color(s). For instance, index 2 represents N/2 colors

between index 1 and N/2, and the starting address of the continuous N/2 colored

page is returned from the service.

Memory fragmentation becomes a significant concern in the ComCoS technique, as

it allows allocating multiple colors in a single request. This means that if the desired

color belongs to a smaller color set, utilizing the larger color set can potentially lead

26

Figure 3.4 : Dynamic memory allocation for ComCoS.

to applications that require this memory region being unable to obtain it later on.

Therefore, the algorithm first utilizes the ALLOC_FROM_STACKS service to search

for the desired index in the stack indexed by the relevant index and all of its parents.

The service returns the memory region if the desired index is found directly. If it is

found in the parent indexes, the remaining pages are pushed to the appropriate stacks

using the Push_Pages service. Finally, the desired page block address is updated

according to the index, as the stacks always hold the starting address of the N page

memory block taken from the main memory and returned.

Figure 3.3 presents an example scenario with 16 different colors. In this scenario,

the Cache_Alloc service is called to request a cache region with index 8. Firstly, the

algorithm attempts to pop from the cache stack indexed by 8, but it is unsuccessful.

Then, it sequentially requests cache from the parent indexes 4 and 2. It finds an

available cache block in the stack indexed by 2. While returning the two-page memory

27

block corresponding to index 8, the remaining two-page are pushed to index 9, and the

four-page are pushed to index 5.

In dynamic allocation, if the desired cache index is not found in any parent stack, the

OS page allocator takes N pages. It then pushes the pages other than the desired stack

index to the appropriate stacks using the Push_Pages service. For example, in Figure

3.4, when a free page with index N +1 is requested but not found in any parent stack,

the algorithm takes N pages from the main memory. It returns the page with index

N+1 and pushes the remaining N−1 pages to the stacks of its sibling and the siblings

of its parent.

3.3 Cache Partitioning Configuration

Numerous software applications from different suppliers in IMA-based systems must

work together safely. To ensure the coexistence of these applications, a configuration

process is required that partitions system resources like memory, processors, and I/O

devices among the various applications. For static and dynamic cache allocations,

separate memory regions should be reserved through in that configuration. In the

configuration of the memory to be taken statically, the whole reserved memory region

should be distributed among stacks according to their colors, and applications should

allocate the relevant memory areas from the stacks. In the configuration of the memory

to be taken dynamically, the reserved memory is not entirely distributed to color

stacks at system initialization; instead, it is filled into stacks in response to dynamic

application loading requests. Additionally, the depth of these stacks must be configured

and passed to the cache management algorithms as STACK_CAPACITY.

Figure 3.5 : Applications color distributions.

28

Figure 3.6 : Linked color lists in the Reference implementation.

Figure 3.7 : Linked color lists in the ComCoS technique.

As discussed in Section 2.7, each application has a different cache characteristic.

Therefore, assigning different amounts of cache for each application should be

possible. Applications can create combinations of any desired number from N different

colors. As mentioned, it is determined in which time window each application will

run. Applications not running in the same time window can be assigned the same

cache pool. For example, Figure 3.5 shows the example configuration of the 16 color

distribution for five different applications.

Colors are assigned to the applications in a sequential round-robin order to maintain

their behavior. The configuration file is parsed to create circular linked lists for the

applications. However, there is a difference in the generated linked list between the

reference and ComCoS implementations. In the reference implementation, each cache

region resides in a separate stack, and as a result, each assigned cache region becomes

a node in the list. Figure 3.6 illustrates the cyclic linked list for the given configuration

shown in Figure 3.5 for the reference implementation.

29

Figure 3.8 : Optimized linked color lists in the ComCoS technique.

In the ComCoS technique, adjacent colors can be placed in a single stack, retrieving

multiple colors with a single call. Figure 3.7 illustrates the circular linked list created

for the ComCoS algorithm using the cache configuration provided in Figure 3.5. The

stack indices are based on the ordering shown in Figure 3.4.

Creating the cache configuration from adjacent colors will facilitate faster initialization

of the applications. For example, in Figure 3.5, Application 5 shares the same cache

region with Applications 1, 2, and 3. As a result, it will not be executed concurrently

with these applications for determinism. Configuring the system, as shown in Figure

3.8, is more optimized for the ComCoS algorithm since it allows for more adjacent

colors can be allocated in a single call.

3.4 Comparison of Algorithms

In the static allocation version, the system fills all stacks at system start-up. In the

reference design, each color places in a separate stack, while in the ComCoS design,

N adjacent pages are placed in a single stack, reducing the number of stash pushes

by N times during stack filling. Figure 3.5 demonstrates that each application can

be assigned to multiple cache regions. If adjacent cache regions are configured,

they can be obtained from the stack in a single operation. However, if none of the

30

assigned colors for an application are adjacent, additional pop and push operations

are performed, directly impacting initialization time. Each color request assigned to

an application is fulfilled individually in the reference implementation. Through the

accelerated filling of stacks by N times and the capability for applications to receive

multiple colors in a single iteration, ComCoS reduces the system start-up time for

systems that favor static allocation. Section 4.5 compares the initialization times

for different configurations in both the reference and ComCoS implementations with

examples.

In dynamic allocation, when an application requests a cache region from reference

implementation, the ideal situation is that it can obtain a cache region by performing

a single pop operation from the corresponding stack. However, in the worst-case

scenario, the algorithm takes N pages from the main memory and pushes N-1 of them to

other stacks. This creates a determinism problem between the best and worst cases of

the service. In the worst-case scenario of the ComCoS design, the algorithm explicitly

requests a single color. If the color is not found in parent stacks, it retrieves memory

from the reserved memory area. In this case, it performs log2(N) pop operations and

log2(N) push operations, resulting in a total of 2log2(N) stack operations. Due to its

ability to receive multiple colors in a single request and the reduced memory allocation

time difference between best and worst-case scenarios, ComCoS provides faster and

more deterministic cache allocation for systems that prioritize dynamic application

allocation. Detailed analysis is given in Section 4.6 for dynamic cache allocation.

31

32

4. EXPERIMENTAL RESULTS

In this section, the first three experiments demonstrate the determinism issue arising

from shared resource utilization and the improvements achieved through cache

partitioning. In the final two experiments, the reference implementation and the

ComCoS cache allocation algorithm were compared and evaluated in terms of

performance and determinism for systems that prefer static and dynamic allocation.

4.1 Environmental Setup

The NXP T2080RDB board has been selected as the target hardware due to its

specialized features, including four high-performance PowerPC e6500 processor

cores, rich I/O and networking capabilities. The aerospace and defense industry

commonly uses that target. Additionally, it contains 2 MB of shared 16-way L2 cache,

with a maximum of 32-page colors.

TUBITAK GIS-653 is a Real-Time Operating System (RTOS) [6] developed explicitly

for hard real-time safety-critical avionics applications. It is fully compatible with

ARINC 653 Part-1 Supplement-5. In addition, it includes many possibilities, such

as file system, analyzer agent, hard-soft debugging, advanced scheduling, etc. The

experiments are performed on the TUBITAK GIS-653 operating system, implementing

both the ComCoS and reference designs. In these implementations, the T2080RDB

shared L2 cache is divided into 32 colors, and the physical spaces of the applications

are allocated from these colors based on the configuration file.

4.2 Experiment 1: Cache Eviction

Purpose of the Experiment: When one application removes another application’s data

from the shared cache, it can disrupt the determinism of the evicted applications.

This experiment aims to illustrate the cache eviction problem across different cache

configurations and demonstrate the improvements achieved through cache partitioning.

33

Figure 4.1 : Cache eviction problem.

Methodology: To illustrate the shared cache eviction problem, a 200*200 matrix

multiplication scenario is conducted with two defined partitions. The first partition

aimed to execute the matrix multiplication on the first core. The second partition

aimed to deliberately pollute the cache by making sequential accesses to an array

on the second core. In order to assess the impact of a thrasher application on the

execution time of matrix multiplication, several experiments are conducted and plotted

the results in Figure 4.1. The x-axis represents the number of cache colors assigned to

the matrix multiplication application, while the y-axis represents the level of thrashing

effect observed when the thrasher application is activated. Two sets of experiments

were performed: one where the applications shared the same cache pools (NO_CP)

and another where the applications used different cache pools (CP). These experiments

aimed to analyze and compare the effects of cache sharing on execution time and

thrashing behavior.

Inferences:

• The thrasher application causes a minimum thrashing effect of 20% when it is

located in the same cache region as the application. This situation creates problems

in terms of both performance and determinism.

34

• Operating systems typically strive to avoid fragmentation when allocating physical

space for user applications. However, there may be situations where the OS needs

to allocate space from a fragmented portion of physical memory, which could result

in two applications sharing a small cache pool. When two applications are located

in the same cache region, and the thrasher application is active, the thrashing effect

can be as high as 101.44%. This can pose a significant problem for determinism

and is considered an edge case for this application.

• Observations have indicated that when smaller caches are shared between

applications, there is an increase in the thrashing factor. On the other hand,

assigning more than eight cache pools to the matrix multiplication application does

not significantly impact the thrashing effects. This observation indicates that the

matrix multiplication application demonstrates cache-fitting behavior.

• When applications are located in different cache regions, the thrashing effect

remains relatively low, averaging around 0.2%. In the worst-case scenario of

cache partitioning, even where applications are situated in different cache regions,

the measured thrashing factor reaches 0.6%. This phenomenon arises from the

utilization of shared memory and buses between cores.

• When 32 cache colors are assigned to the matrix multiplication application and

cache partitioning is enabled, the thrasher application operates in a non-cacheable

manner. However, a minor thrashing effect of 0.08% remains due to shared memory

and busses.

4.3 Experiment 2: Bus Interferences

Purpose of the Experiment: Simultaneous memory access from different cores can

lead to bus interference in multi-core systems. While cache partitioning cannot directly

resolve the bus interference problem, it can mitigate cache eviction by ensuring that

applications are placed in separate cache regions. That reduces the frequency of

accessing the main memory by the applications. This experiment aims to show the

bus interference problem using various configurations and highlight the enhancements

achieved through cache partitioning.

35

Figure 4.2 : Bus interferences problem.

Methodology: In this example, three thrasher applications are used instead of one,

unlike Experiment 4.2. While the first partition aims to perform matrix multiplication

on the first core, the remaining three partitions attempt to pollute the same cache

by sequentially accessing an array on their respective cores. The three thrasher

applications generate continuous memory requests to the main memory by interfering

with each other on the same cache. The bus interference problem is depicted in Figure

4.2, using a similar graphical representation as Experiment 4.2.

Inferences:

• In the standard scenario, where 32 cache pools are assigned to all applications, both

the matrix multiplication and thrasher applications utilize all cache regions. As

a result, a significant thrashing effect of 128% is observed. This occurs because

the thrasher applications, by interfering with each other’s cache, create cache

contention. Consequently, the data of the matrix multiplication application in the

cache is evicted by the thrasher applications.

• In the scenario of no-cache partitioning, all applications can reside in a small cache

region due to memory fragmentation. In this case, the cache thrashing effect reaches

an unacceptable level of 2483%. This high value is because all applications are

36

crowded into a tiny cache region, leading to quick cache pollution and constant

memory access.

• In the scenario where cache partitioning is not used(NO_CP), it is observed that

increasing the number of cache pools assigned to thrasher applications reduces

cache pollution.

• When cache partitioning is enabled, it has been observed that the bus interferences

can cause a thrashing effect of up to 30% in the best case and 90% in the worst case.

This occurs despite cache partitioning being active because the thrasher applications

continue evicting each other’s data, leading to contention on the main memory.

• To minimize cache misses in the matrix multiplication application, it is

recommended to assign a minimum of six cache pools. It is also stated in

Experiment 4.2 that the matrix multiplication application displays cache-fitting

behavior. To mitigate memory contention caused by thrasher applications, it is

crucial to minimize the cache eviction they impose on each other. This can be

achieved by allocating the maximum number of cache regions to the thrasher

applications. By following these guidelines, it is possible to limit the thrashing

effect to 30%.

• In the final scenario depicted in the graph, all cache regions are assigned to the

matrix multiplication application while configuring the thrasher applications as

non-cacheable. Even though cache is not shared between applications, it has been

observed that there is an 8% thrashing impact due to the shared memory and busses.

4.4 Experiment 3: Cache Partitioning in Single Core Systems

Purpose of the Experiment: The use of a shared cache can cause both determinism

and performance degradation not only in multi-core systems but also in single-core

systems. Although cache flushing during application switching eliminates determinism

problems, this situation leads to performance degradation. This experiment

demonstrates the performance degradation caused by the cache eviction and flushing

for different time window configurations for the matrix multiplication application in a

single-core system.

37

Figure 4.3 : Cache eviction problem in single core systems.

Methodology: To illustrate the shared cache eviction problem in single-core systems,

two partitions were defined. While the first partition was engaged in 200*200 matrix

multiplication, the second application was responsible for cache trashing. Both

partitions were executed sequentially on the same core with equal time windows. In

Figure 4.3, the y-axis shows how much of a thrashing effect happens on the execution

time of matrix multiplication when the thrasher applications are activated, and the

x-axis shows the time window interval of the applications. Two groups of experiments

are available as applications using the same cache pools (NO CP) and using different

cache pools(CP). These applications have been running in 16 same or different cache

pools.

Inferences:

• The multiplication operation is completed within many windows, so data in the

L2 cache during matrix multiplication is removed by the thrasher application when

the time window ends. The pollution rate increases up to 27.85% for 0.5 ms time

windows.

• Although the shared cache eviction problem can be resolved by cache flushing

in single-core systems, this solution causes performance degradation. Despite

eliminating the determinism problem, a significant performance loss of 47.4% is

38

observed for the 0.5 ms time windows. This decrease in performance is due to

both cache eviction and the cache flush operation during the matrix multiplication

application’s time window.

• Running the applications in different cache regions eliminates the determinism

problem caused by single-core cache contention. The thrashing effect has decreased

up to 0.314% thanks to cache partitioning.

4.5 Experiment 4: System Initialization Time

Purpose of the Experiment: The CAST-32A guidelines advise against dynamic

memory allocation and suggest that application memory allocations should be done

at system initialization. However, allocating memory for all applications at system

initialization can significantly increase the system’s boot time. In safety-critical

IMA-based systems, the health monitoring mechanism is triggered if an error occurs.

Depending on the severity of the error, the entire module may need to be reset.

Especially in aviation applications, the reset time should be as short as possible to

prevent catastrophic consequences. In this test, the system boot times for the reference

implementation (Algorithm A.1) and ComCoS (Algorithm B.1) were compared using

Monte Carlo simulation technique.

Methodology: In complex IMA-based systems, predicting the specific applications

and their configurations in advance is challenging. Therefore, relying on a single

configuration to analyze the impact of different algorithms on system boot times is

insufficient. To address this issue, the Monte Carlo simulation technique is preferred,

which allows us to simulate multiple scenarios encompassing various applications

and their configurations. This approach enables us to understand better the potential

outcomes and variations in system boot times.

Monte Carlo Simulation is a technique that employs statistical methods to model and

analyze complex systems or processes through computational methods. The method

uses random sampling and probability distributions to simulate and evaluate how the

system would behave under various conditions or scenarios.

39

Figure 4.4 : System initialization time.

Random 2000 IMA systems are created within a Monte Carlo simulation. Each system

has a random number of applications selected between 10 and 30. Each application in

these systems is created with two parameters.

The first is the stack index in the ComCoS binary tree, where the application wants

to reside in the cache. This binary tree stack index is converted into a linear form for

separate color allocation requests in a round-robin for reference implementation. Since

the T2080rdb has a maximum of 32 colors, the stack index for ComCoS is in the range

of 1-63, while the reference implementation is between 1 and 32.

The second is the number in the range of 100-1000 which determines how many

times the cache is requested. Using uniformly generated random values within the

specified ranges for these three parameters, 2000 systems are created and tested on the

reference implementation and ComCoS regarding memory allocation time. Since this

test examines static initialization, stacks were filled using a large memory block taken

from the main memory, and the time it took to fill the stacks was added to the test

times.

The distribution of system boot times for the reference and ComCoS implementations

are shown in Figure 4.4. The x-axis corresponds to each example of the IMA system

number, while the y-axis indicates the memory allocation time of this IMA system.

40

Figure 4.5 : System initialization time improvement.

Figure 4.5 shows the improvement in memory allocation times for 2000 different IMA

systems. While the x-axis corresponds to each example of the IMA system number,

the y-axis indicates the memory allocation improvement of the IMA system performed

by the ComCoS algorithm compared to the reference algorithm.

Inferences:

• The improvement in memory allocation varies depending on the memory needs of

the applications within the system, and it gets better as more combined color stacks

are used. On average, a 52% decrease in memory allocation time is observed in the

system.

• The results show that the ComCoS technique outperforms the reference

implementation regarding the standard deviation of boot time, with a factor of 2.91

(337 µs and 982 µs, respectively). This indicates that the ComCoS algorithm has a

more deterministic behavior.

4.6 Experiment 5: Dynamic Allocation Time

Purpose of the Experiment: Applications can be dynamically loaded within the

robust and proven limitations outlined in the AMC20-193 directives. In large-scale

IMA-based systems, load balancing or hardware failures may require application

41

Figure 4.6 : Dynamic allocation time.

migration or dynamic loading. However, any dynamic allocation should not affect

other partitions and should exhibit deterministic behavior. The time required to allocate

the desired color group is an essential factor in allocating resources for an application.

In this test, the allocation time of a color group for both the reference implementation

(Algorithm A.1) and ComCoS (Algorithm B.1) was compared using Monte Carlo

simulation in terms of WCET and standard deviation.

Methodology: A Monte Carlo simulation environment was created, which is the same

as Experiment 4.5. Within this setup, 2000 different systems experienced 5019648

color group allocations in the test scenario. The distribution of the time required

for each color group allocation is depicted in Figure 4.6 for both the reference and

ComCoS implementations. The graph illustrates the x-axis representing the time

taken for color group allocation and the y-axis indicating the number of color group

allocations that occurred within each time interval.

Inferences:

• The WCET is calculated as 1947 ns for the ComCoS implementation and 6774 ns

for the reference implementation. The standard deviation is 224 ns and 1396 ns,

respectively. ComCoS improved the WCET by a factor of 3.48 and the standard

deviation by a factor of 6.23 compared to the reference method.

42

• The ComCoS algorithm demonstrates much more efficient and deterministic

behavior for dynamic allocation.

4.7 Results of the Experiments

The purpose and outputs of the conducted experiments are provided in Table 4.1, along

with their respective experiment numbers.

Table 4.1 : Results of the experiments.

No Purpose Result
1 Cache partitioning effect on

cache eviction problem
Execution time of the matrix multiplication applica-
tion increased by up to 101,44% due to the trashing
effect caused by another application. Implementing
cache partitioning can reduce this effect by up to 0,6%.

2 Cache partitioning effect on
bus interference problem

Matrix multiplication operation experienced a signif-
icant 2483% increase in execution time due to bus
interference, while cache partitioning reduced this
increase by 30%.

3 Cache partitioning effect on
single-core systems

Cache flushing during application switching elimi-
nates determinism problems in single-core systems but
causes significant performance degradation. Imple-
menting cache partitioning reduces this performance
degradation from 47.4% to as low as 0.314%.

4 The comparison of the ref-
erence implementation and
the ComCoS technique in
terms of system initializa-
tion time

ComCoS technique provides an average performance
improvement of 52% and reduces the standard
deviation in memory distribution by 2,91 times.

5 The comparison of the ref-
erence implementation and
the ComCoS technique in
terms of dynamic allocation
time

ComCoS technique achieves a 3,48 times improve-
ment in WCET and a 6,23 times reduction in standard
deviation for the memory allocation service.

43

44

5. CONCLUSIONS AND FUTURE WORK

As part of the certification process, detailed WCET analyses are conducted for

applications and resource allocation is performed based on these analyses. The

interference of one application with another within the system poses a significant

determinism problem. Particularly in multi-core systems, sharing cache, bus, and

memory by applications leads to determinism issues. Cache partitioning techniques

can be employed to address the interferences arising from shared resource usage.

There are two main approaches to cache partitioning: hardware-based and

software-based. Software-based cache partitioning is more suitable for IMA-based

systems due to its hardware independence and higher granularity. Each application

has different cache characteristics, making it challenging to determine the cache

requirements of system applications at compile time. However, dynamically relocating

application caches during system execution is an undesirable dynamic behavior for

safety-critical systems. Therefore, the configuration of application caches should be

set statically to avoid such dynamic behavior.

This study conducted a series of experiments to illustrate the benefits of cache

partitioning in reducing interferences among applications. One example showed that

the execution time of a matrix multiplication application increased by up to 101.44%

due to cache eviction interference from another application. Implementing cache

partitioning reduced this interference by up to 0.6%. In another experiment, a matrix

multiplication operation experienced a significant 2483% increase in execution time

caused by bus interference, which was mitigated by 30% through cache partitioning.

Using a shared cache can lead to decreased determinism and performance degradation,

not only in multi-core systems but also in single-core systems. While cache flushing

during application switching resolves determinism issues in single-core systems,

it results in performance degradation. However, implementing cache partitioning

45

significantly reduced the performance degradation caused by cache flushing from

47.4% to as low as 0.314%.

Existing literature maintains each cache region in a separate list, leading to the

allocation of pages individually during cache allocation and causing a degradation in

performance. To overcome this limitation, a novel cache partitioning technique called

ComCoS has been proposed in the thesis. This technique allows for allocating multiple

cache pools in a single request, reducing the startup time for systems prioritizing

static allocation according to the CAST32-A. Moreover, it provides faster and more

deterministic cache allocation for systems that prefer dynamic application allocation,

according to the AMC 20-193.

ComCoS technique is tested on the NXP T2080RDB platform and resulted in an

average speedup of 52% and a 2.91 times reduction in the standard deviation of

memory initialization time of systems. The cache allocation mechanism also provided

a 3.48 times improvement in worst-case execution time and a 6.23 times improvement

in standard deviation. Although ComCoS consumes more memory than traditional

implementations due to its utilization of additional N-1 stacks for adjacent colors, it

provides faster and more deterministic cache allocation.

In safety-critical aviation systems, the use of hypervisors has become increasingly

prevalent. The hypervisor isolates non-safe traditional OS and safety-critical RTOS.

Cache partitioning is crucial in maintaining isolation and preventing interference

between these two operating systems regarding cache, busses, and memory. Since

real-time and traditional operating systems coexist, the ComCoS algorithm may

need to perform static and dynamic allocation simultaneously. As a future work,

the ComCoS cache partitioning algorithm can be implemented on a safety-critical

hypervisor. Furthermore, the proposed ComCoS technique can be tested with different

applications on various platforms in future works.

46

REFERENCES

[1] Radio Technical Commission for Aeronautics (RTCA Inc) (2011). DO-178C,
Software Considerations in Airborne Systems and Equipment Certifica-
tion.

[2] Watkins, C.B. (2006). Integrated Modular Avionics: Managing the Allocation
of Shared Intersystem Resources, 2006 ieee/aiaa 25TH Digital Avionics
Systems Conference, pp.1–12.

[3] Watkins, C.B. and Walter, R. (2007). Transitioning from federated avionics
architectures to Integrated Modular Avionics, 2007 IEEE/AIAA 26th
Digital Avionics Systems Conference, pp.2.A.1–1–2.A.1–10.

[4] Ramsey, J.W. (2007). Integrated Modular Avionics: Less is More,
https://www.aviationtoday.com/2007/02/01/
integrated-modular-avionics-less-is-more/.

[5] Green Hills Software (2023). INTEGRITY Real-Time Operating System, https:
//www.ghs.com/products/rtos/integrity.html.

[6] TUBITAK BILGEM (2023). TUBITAK GIS Real-Time Operating Sys-
tem, https://bilgem.tubitak.gov.tr/en/content/rtos/
gis-real-time-operating-system.

[7] Aeronautical Radio, Incorporated (ARINC Inc) (2019). ARINC 653 Specifica-
tion: Avionics application software standard interface.

[8] Certification Authorities Software Team (CAST) (2016). CAST-32A, Multi-core
Processors.

[9] European Union Aviation Safety Agency (EASA) (2022). AMC 20-193, Use of
multi-core processors.

[10] Hennessy, J.L. and Patterson, D.A. (2017). Computer Architecture, Sixth
Edition: A Quantitative Approach, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 6th edition.

[11] Wind River Software (2023). What Is DO-178C?, https://www.
windriver.com/solutions/learning/do-178c.

[12] Rapida Systems (2023). AMC 20-193, https://www.rapitasystems.
com/amc-20-193#cast-32a.

47

[13] Schuster, T. and Verma, D. (2008). Networking concepts comparison for avionics
architecture, 2008 IEEE/AIAA 27th Digital Avionics Systems Conference,
pp.1.D.1–1–1.D.1–11.

[14] Liu, F., Jiang, X. and Solihin, Y. (2010). Understanding how off-chip
memory bandwidth partitioning in Chip Multiprocessors affects system
performance, HPCA - 16 2010 The Sixteenth International Symposium on
High-Performance Computer Architecture, pp.1–12.

[15] Yun, H., Yao, G., Pellizzoni, R., Caccamo, M. and Sha, L. (2016). Memory
Bandwidth Management for Efficient Performance Isolation in Multi-Core
Platforms, IEEE Transactions on Computers, 65(2), 562–576.

[16] Suzuki, N., Kim, H., Niz, D.d., Andersson, B., Wrage, L., Klein, M.
and Rajkumar, R. (2013). Coordinated Bank and Cache Coloring for
Temporal Protection of Memory Accesses, 2013 IEEE 16th International
Conference on Computational Science and Engineering, pp.685–692.

[17] Torres Aurora Dugo, A., Lefoul, J.B., Harnois, S., Gohring de Magalhaes, F.
and Nicolescu, G. (2022). Certifiable Memory Management System for
Safety Critical Partitioned System, ERTS2022, Toulouse, France, https:
//hal.science/hal-03697093.

[18] Mittal, S. (2017). A Survey of Techniques for Cache Partitioning in Multicore
Processors, ACM Comput. Surv., 50(2), https://doi.org/10.
1145/3062394.

[19] NXP Semiconductors (2014). e6500 Core Reference Manual, Rev 0.

[20] Kaseridis, D., Iqbal, M.F. and John, L.K. (2014). Cache Friendliness-Aware
Managementof Shared Last-Level Caches for HighPerformance
Multi-Core Systems, IEEE Trans. Computers, 63(4), 874–887,
https://doi.org/10.1109/TC.2013.18.

[21] Subramanian, L., Seshadri, V., Ghosh, A., Khan, S.M. and Mutlu, O. (2015).
The application slowdown model: quantifying and controlling the impact
of inter-application interference at shared caches and main memory,
M. Prvulovic, editor, Proceedings of the 48th International Symposium
on Microarchitecture, MICRO 2015, Waikiki, HI, USA, December 5-9,
2015, ACM, pp.62–75, https://doi.org/10.1145/2830772.
2830803.

[22] Kim, S., Chandra, D. and Solihin, Y. (2004). Fair cache sharing and partitioning
in a chip multiprocessor architecture, Proceedings. 13th International
Conference on Parallel Architecture and Compilation Techniques, 2004.
PACT 2004., pp.111–122.

[23] Farshchi, F., Valsan, P.K., Mancuso, R. and Yun, H. (2017). Deterministic
Memory Abstraction and Supporting Cache Architecture for Real-Time
Systems, CoRR, abs/1707.05260, http://arxiv.org/abs/1707.
05260, 1707.05260.

48

[24] Tam, D., Azimi, R., Soares, L.B. and Stumm, M. (2007). Managing shared L2
caches on multicore systems in software, Proceedings of the Workshop on
the Interaction Between Operating Systems and Computer Architecture,
pp.26–33.

[25] Ward, B.C., Herman, J.L., Kenna, C.J. and Anderson, J.H. (2013).
Outstanding Paper Award: Making Shared Caches More Predictable on
Multicore Platforms, 25th Euromicro Conference on Real-Time Systems,
ECRTS 2013, Paris, France, July 9-12, 2013, IEEE Computer Society,
pp.157–167, https://doi.org/10.1109/ECRTS.2013.26.

[26] Ye, Y., West, R., Cheng, Z. and Li, Y. (2014). COLORIS: a dynamic cache
partitioning system using page coloring, J.N. Amaral and J. Torrellas,
editors, International Conference on Parallel Architectures and Compi-
lation, PACT ’14, Edmonton, AB, Canada, August 24-27, 2014, ACM,
pp.381–392, https://doi.org/10.1145/2628071.2628104.

[27] Qureshi, M.K. and Patt, Y.N. (2006). Utility-Based Cache Partitioning: A
Low-Overhead, High-Performance, Runtime Mechanism to Partition
Shared Caches, 2006 39th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO’06), pp.423–432.

[28] Brock, J., Ye, C., Ding, C., Li, Y., Wang, X. and Luo, Y. (2015). Optimal
Cache Partition-Sharing, 2015 44th International Conference on Parallel
Processing, pp.749–758.

[29] Kandemir, M., Yemliha, T. and Kultursay, E. (2011). A helper thread
based dynamic cache partitioning scheme for multithreaded applications,
2011 48th ACM/EDAC/IEEE Design Automation Conference (DAC),
pp.954–959.

[30] Zhan, D., Jiang, H. and Seth, S.C. (2014). CLU: Co-Optimizing Locality and
Utility in Thread-Aware Capacity Management for Shared Last Level
Caches, IEEE Transactions on Computers, 63(7), 1656–1667.

[31] Bitirgen, R., Ipek, E. and Martinez, J.F. (2008). Coordinated management
of multiple interacting resources in chip multiprocessors: A machine
learning approach, 2008 41st IEEE/ACM International Symposium on
Microarchitecture, pp.318–329.

[32] Liu, L., Li, Y., Cui, Z., Bao, Y., Chen, M. and Wu, C. (2014). Going
vertical in memory management: Handling multiplicity by multi-policy,
2014 ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA), pp.169–180.

[33] Certification Authorities Software Team (CAST) (2003). Cast-20, addressing
cache in airborne systems and equipment.

[34] Park, J., Yeom, H.Y. and Son, Y. (2020). Page Reusability-Based Cache
Partitioning for Multi-Core Systems, IEEE Trans. Computers, 69(6),
812–818, https://doi.org/10.1109/TC.2020.2968066.

49

50

APPENDICES

APPENDIX A : Pseudo Code of Reference Implementation
APPENDIX B : Pseudo Code of ComCoS Technique

51

52

APPENDIX A : Pseudo Code of Reference Implementation

Algorithm A.1 Cache allocation from Separate Color Stacks
/* Memory allocated from indexed stack(Color) */
function CACHE_ALLOC(stack_index)

address← POP(cache_stacks[stack_index-1])
if address ̸= NULL then

return address
else

if DY NAMIC_ALLOCAT ION_ENABLED then
/* Memory is obtained from the reserved space for dynamic allocation. */
address← PAGE_ALLOC(N)
if address ̸= NULL then

PUSH_PAGES(address, stack_index)
/* Address is updated according to index */
address← UPDATE(address, stack_index)
return address

else
FAULT(MEMORY_EXHAUSTED)

end if
else

/* All partitioned memory regions are pre-configured, and no dynamic
allocation is performed. */
FAULT(MEMORY_EXHAUSTED)

end if
end if

end function

/* Remaining pages are pushed to stacks */
function PUSH_PAGES(address,stack_index)

for index← 1 to N do
if index ̸= stack_index then

address← UPDATE(address, index)
PUSH(cache_stacks[index-1], address)

end if
end for

end function

53

54

APPENDIX B : Pseudo Code of ComCoS Technique

Algorithm B.1 ComCoS cache allocation algorithm (Part 1)
/* Memory allocated from indexed stack(Color) */
function CACHE_ALLOC(stack_index)

address← ALLOC_FROM_STACKS(stack_index)
if address ̸= NULL then

return address
else

if DY NAMIC_ALLOCAT ION_ENABLED then
/* N pages allocated from from the reserved space for dynamic allocation */
address← PAGE_ALLOC(N)
if address ̸= NULL then

PUSH_PAGES(address, stack_index, ROOT_INDEX)
/* Address is updated according to index */
address← UPDATE(address, stack_index)
return address

else
FAULT(MEMORY_EXHAUSTED)

end if
else

/* All partitioned memory regions are pre-configured, and no dynamic allocation
is performed. */
FAULT(MEMORY_EXHAUSTED)

end if
end if

end function

55

Algorithm B.2 ComCoS cache allocation algorithm (Part 2)
/* Try allocate cache region from stack_index or the parents of this index.*/
function ALLOC_FROM_STACKS(stack_index)

address←NULL
index←stack_index
while index ̸= ROOT _INDEX do

address← POP(cache_stacks[index-1])
if address ̸= NULL then

PUSH_PAGES(address, stack_index, index)
address← UPDATE(address, stack_index)

else
index← GET_PARENT_INDEX(index)

end if
end while
return address

end function

/* The remaining pages from the received memory are pushed to the relevant
stacks */
function PUSH_PAGES(address, index, parent_index)

while index ̸= parent_index do
index← GET_SIBLING_INDEX(index)
PUSH(cache_stacks[index-1], address)
index← GET_PARENT_INDEX(index)

end while
end function

56

CURRICULUM VITAE

Name SURNAME: Yakup HÜNER

EDUCATION:

• B.Sc.: 2019, Istanbul Technical University, Faculty of Electrical and Electronics
Engineering, Electronics and Communication Engineering

• B.Sc.: 2020, Istanbul Technical University, Faculty of Computer and Informatics
Electronics, Computer Engineering

PROFESSIONAL EXPERIENCE AND REWARDS:

• 2018 1. Place in Fighting UAV Rotary Wing category in Istanbul Teknofest

• 2019 2. Place in Fighting UAV Rotary Wing category in Istanbul Teknofest

• 2019 Graduated with second-highest honors from ITU Electronics and Communi-
cation Engineering Bachelor Degree

• 2019-2020 Part-Time Embedded Developer at the ITU Aerospace Research Center.

• 2020-2023 Software Engineer at the TUBITAK BILGEM.

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS:

• Huner Y., Yeniçeri R. (2023). Evaluation of Cache Partitioning for Integrated
Modular Avionics, 2nd International Graduate Research Symposium IGRS’23,
March 16-18, 2023 Istanbul, Turkey.

• Huner Y., Yeniçeri R. (2023). ComCoS: Enhanced Cache Partitioning Technique
for Integrated Modular Avionics, 26th Euromicro Conference on Digital System
Design (DSD), Sept. 6-8, 2023 Durres, Albania.

57

OTHER PUBLICATIONS, PRESENTATIONS AND PATENTS:

• Yeniçeri R., Hüner Y. (2020). HW/SW Codesign and Implementation of an
IMU Navigation Filter on Zynq SoC with Linux. 7th International Conference
on Electrical and Electronics Engineering (ICEEE), Antalya, Turkey, 2020, pp.
351-354.

• Hüner Y., Gayretli M.G., Yeniçeri R., (2021). HW/SW Design Space Exploration
of A Complementary Filter on Zynq SoC. 8th International Conference on
Electrical and Electronics Engineering (ICEEE), Antalya, Turkey, 2021, pp. 1-5.

58

