
ISTANBUL TECHNICAL UNIVERSITY ⋆ GRADUATE SCHOOL

OMNET++ SIMULATION MODEL FOR
INTEGRATED MODULAR AVIONICS

M.Sc. THESIS

Mümin Göker GAYRETLİ

Department of Defence Technologies

Defence Technologies Programme

June 2023

ISTANBUL TECHNICAL UNIVERSITY ⋆ GRADUATE SCHOOL

OMNET++ SIMULATION MODEL FOR
INTEGRATED MODULAR AVIONICS

M.Sc. THESIS

Mümin Göker GAYRETLİ
(514201018)

Department of Defence Technologies

Defence Technologies Programme

Thesis Advisor: Asst. Prof. Ramazan YENİÇERİ

June 2023

İSTANBUL TEKNİK ÜNİVERSİTESİ ⋆ LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

ENTEGRE MODÜLER AVİYONİKLER İÇİN
OMNET++ SİMULASYON MODELİ

YÜKSEK LİSANS TEZİ

Mümin Göker GAYRETLİ
(514201018)

Savunma Teknolojileri Anabilim Dalı

Savunma Teknolojileri Programı

Tez Danışmanı: Asst. Prof. Ramazan YENİÇERİ

Haziran 2023

v

Thesis Advisor : Asst. Prof. Ramazan YENİÇERİ
 İstanbul Technical University

Jury Members : Prof. Dr. Sıddıka Berna ÖRS YALÇIN
Istanbul Technical University

Dr. Muhammet Selim DEMİR
TÜBİTAK BİLGEM

Mümin Göker GAYRETLİ, a M.Sc. student of ITU Graduate School student ID
514201018, successfully defended the thesis entitled “OMNET++ SIMULATION
MODEL FOR INTEGRATED MODULAR AVIONICS”, which he prepared after
fulfilling the requirements specified in the associated legislations, before the jury
whose signatures are below.

Date of Submission : 23 May 2023
Date of Defense : 14 June 2023

vi

To my spouse and family,

vii

viii

FOREWORD

During the initial stages of my thesis, I dedicated considerable time to reading and
exploring various subjects. It was challenging to find a topic that aligned with my
interests and expertise. Fortunately, with the invaluable assistance of my colleagues
at TUBITAK and Assist. Prof. Ramazan YENİÇERİ, we identified a thesis topic
that revolves around captivating domains such as simulation, operating systems, and
networking. Once I delved into the subject and began my work, I was captivated
by the interconnections between the three seemingly disparate fields of simulation,
operating systems, and networking. This realization not only piqued my curiosity but
also intensified my motivation to explore further and unravel the intricate relationships
among them. In addition to the technical contributions of the thesis process, I have
gained valuable management skills on how to plan, execute, and conclude an academic
study.

Firstly, I have been deeply grateful to Assist. Prof. Ramazan YENİÇERİ for their
continuous support and guidance in my academic journey since my undergraduate
years. His significant contributions have been instrumental in the completion of this
thesis. Also, I would like to extend my gratitude to the TUBITAK institution and all
my colleagues for their support and collaboration throughout this thesis. However, I
would like to extend my gratitude to my colleagues, Dr. M. Selim Demir, Dr. İbrahim
Hökelek, and Yunus Yılmazer, for being there for me throughout the thesis process,
providing assistance and guidance whenever I needed it. Furthermore, I would like
to thank my family, who have always made me feel their special support and care
throughout my life. Finally, I would like to express my heartfelt gratitude to my
spouse who, throughout the thesis process, has been there to hold my hand and lift
me up whenever I felt tired and demoralized. Her unwavering support and constant
presence by my side have been invaluable.

June 2023 Mümin Göker GAYRETLİ
(Computer Engineer)

ix

x

TABLE OF CONTENTS

Page
FOREWORD . ix
TABLE OF CONTENTS . xi
ABBREVIATIONS. xiii
SYMBOLS . xv
LIST OF TABLES . xvii
LIST OF FIGURES . xix
SUMMARY . xxi
ÖZET . xxv
1. INTRODUCTION . 1

1.1 Purpose of Thesis . 3
1.2 Literature Review . 4
1.3 Hypothesis . 6

2. SYSTEM MODEL . 7
2.1 ARINC 653 . 7
2.2 AFDX . 11
2.3 Application Delay. 13

3. SIMULATION MODEL. 17
3.1 OMNET++ Simulator . 17
3.2 OMNET++ IMA Module. 21

3.2.1 Operating system module . 21
3.2.1.1 Partition manager module of OMNET++ . 21
3.2.1.2 Partition and process manager module of OMNET++ 24
3.2.1.3 Process module of OMNET++ . 24

3.2.2 End system module . 25
4. RESULTS . 29

4.1 Scenario . 29
4.2 Simulation Outcomes . 31
4.3 Advantages of the IMA Simulation Model . 33

5. CONCLUSIONS AND FUTURE WORK . 37
REFERENCES . 41
APPENDICES . 45

APPENDIX A : Pseudo Code of the OMNET++ Modules . 47
APPENDIX B : A process’ co-routine of the Example Scenario 51

xi

xii

ABBREVIATIONS

IMA : Integrated Modular Avionic
JIAWG : Joint Integrated Avionics Working Group
ARINC : Aeronautical Radio, Incorporated
AFDX : Avionics Full-Duplex Switched Ethernet
APEX : Application/Executive
MTF : Major Time Frame
O/S : Operating System
QoS : Quality of Service
OOP : Object-Oriented Programming
CIRA : Italian Aerospace Research Centre
NS : Network Simulator
INET : Station
TCP : Transmission Control Protocol
IP : Internet Protocol
ES : End System
VL : Virtual Link
DES : Discrete Event Simulator
FES : Future Event Set
TTEthernet : Time-Triggered Ethernet
TSN : Time-Sensitive Networking

xiii

xiv

SYMBOLS

UPPALL : Integrated Tool Environment
SIMULINK : A commercial simulator
OPNet : Commercial network simulator
NS-2 : Open-source network simulator
NS-3 : Open-source network simulator
OMNET++ : Open-source network simulator
INET : A framework developed for OMNET++
ms : millisecond

xv

xvi

LIST OF TABLES

Page

Table 4.1 : Applications Information. 30

xvii

xviii

LIST OF FIGURES

Page

Figure 1.1 : The Network Topology on the A380 . 3
Figure 2.1 : Sample Major Frame. 8
Figure 2.2 : System Model of ARINC 653 Module. 10
Figure 2.3 : System Model of ES Device. 12
Figure 2.4 : Application vs Network Delay. 13
Figure 2.5 : Latency Sub Steps. 15
Figure 3.1 : DES Scenario of Ethernet Device. 18
Figure 3.2 : Sample OMNET++ Network Model. 18
Figure 3.3 : Sample OMNET++ IMA Module.. 22
Figure 3.4 : Major Frame of the Sample OMNET++ IMA Module. 23
Figure 3.5 : Sample OMNET++ Partition Module. 24
Figure 3.6 : Sample OMNET++ Process Module. 26
Figure 4.1 : Network Topology. 30
Figure 4.2 : FM Process Timeline. 31
Figure 4.3 : Worst Case Delay Scenario.. 32
Figure 4.4 : Theoretical vs Simulation Application Delay. 32
Figure 4.5 : Packet Loss and BAG Relationship. 33
Figure 4.6 : Network Topology with Hardware Images. 34
Figure 4.7 : Redundant Network Topology with Hardware Images. 35
Figure 4.8 : Network Topology of the Scenario for OMNET++. 36

xix

xx

OMNET++ SIMULATION MODEL FOR
INTEGRATED MODULAR AVIONICS

SUMMARY

As the number and variety of electronic devices in aircraft continue to grow,
the traditional federated architecture needs to be revised to meet these vehicles’
size, weight, and power (SWaP) constraints. Integrated Modular Avionics (IMA)
architecture has emerged as a promising solution for the SWaP problems. The
IMA architecture optimizes the utilization of size, weight, and power by centralizing
multiple application tasks onto a single hardware platform. When developing an IMA
system, it is crucial to consider the relevant standards. ARINC 653 and ARINC 664
P7 (also known as AFDX) are two prominent standards that have garnered considerable
attention and recognition within this context. However, these standards have numerous
configuration parameters and offer various design options for engineers and designers.
Therefore, determining the system configuration for optimal network performance
is complex. In this regard, performing a significant portion of the IMA system
design process in a simulation environment can efficiently conserve limited resources,
including time and finances. This thesis proposes a simulation model of the IMA
system to solve these issues.

It is neither logical nor necessary to simulate all the rules defined by ARINC 653
and AFDX standards to measure the network performance of applications. Therefore,
the first step of the thesis is to develop a system model of ARINC 653 concepts and
AFDX devices to identify the necessary components used to measure communication
performance. It is necessary to design components such as partition, partition
manager, process, and process manager to manage avionic tasks according to ARINC
653 standard. The role of the partition manager component is to handle the
initiation and termination operations of the required partition components based on the
Major Time Frame (MTF). On the other hand, the partition component encompasses
sub-components, including the process manager and process. Furthermore, the
partition should relay the initiation and termination requests it receives to the process
manager. As for the process manager, it executes the operations of stopping or starting
process according to the received requests. In addition to managing avionic tasks, it is
also necessary to have communication between the partitions to measure the system’s
communication performance. Therefore, it is essential to develop components that
perform the sampling and queuing communication modes defined by the ARINC 653
standard.

Two devices must be modeled for the AFDX standard: the End System (ES) and the
Switch. The ES serves as the network device for communication between processes
in the network. When a process wants to send a message, it writes the message
to the sender communication ports within the ES. After writing the message, the

xxi

device applies techniques such as BAG, data packet size compatibility, and redundancy
management mechanisms to the packet before sending it to the network. On the
receiving side, the ES receives the message from the physical link and performs
operations like integrity checking and redundancy management. Then, the packet is
written to the appropriate receiver communication port. When the receiver process
is activated, it can read the message from the port. The switch device connects
the ES in the network and performs filtering, policing, and switching tasks. While
filtering ensures that packets comply with data packet size limitations, policing checks
adherence to BAG rules. Also, switching determines the appropriate output ports for
incoming packets.

The devices and structures developed in the system model must be converted to the
simulation model in a simulation environment. OMNET++ offers better scalability and
extensibility compared to other simulation environments. Additionally, we can benefit
from an active community, open-source code, and frameworks like INET that provide
a detailed implementation of the OSI layer. That is why OMNET++ has been chosen
as the environment for implementing a simulation model of the developed system
model. In addition to the partition, partition manager, process, and process manager
components specified in the system model, two additional components have also
been developed for the simulation model of the ARINC 653 concepts: port channel
and network transmitter driver. The port channel connects the receiver process to
the receiver communication port of the ES, while the network transmitter driver is
responsible for writing the data packets sent by the sender process to the correct sender
communication port within the ES.

For the AFDX device, a previously developed model [1] has been utilized. The same
model from the paper has been used for the switch device. However, additional
enhancements are required for the ES. In the existing model, the ES was designed
solely for performing measurements at the device level, so no sender and receiver
communication ports were designed. In addition to communication ports, the design
does not include the demux component, which is responsible for writing messages
to the appropriate receiver communication ports. The newly developed simulation
model can handle packet reception and transmission operations by adding these two
components to the previous simulation model.

The developed simulation model is tested to determine their capability to handle packet
reception and transmission tasks successfully. For this purpose, a scenario was created
in the network model, consisting of two IMA modules referred to as sender and
receiver. The sender module generates data packets and transmits them to the receiver
module. The message integrity of the received data by the process of the receiver
module is observed on the simulation console, confirming the successful execution of
packet reception and transmission operations.

It is essential to test not only the packet reception and transmission operations but also
the timing of component executions to ensure proper functioning. A more advanced
scenario from a previous study has been utilized [2]. Initially, the theoretical delays
of the Virtual Link (VL) in the scenario are calculated using the application delay
formula that includes software-based overheads. Then, the application delays are
obtained through simulation, and it is observed that they converge with the theoretical

xxii

values. Furthermore, the sender application in VL 1 of the scenario sends two data
packets without any time gaps. However, since the design of the receiver and sender
applications did not consider this, the current BAG value of the VL cannot prevent
packet loss. The expectation is that reducing packet loss can be achieved by increasing
the BAG value to match the period of the receiver application. This relation has been
confirmed through testing with various BAG values. The consistency between the
theoretical and simulated application delays and the expected relationship between
BAG and packet loss indicates that the components are executed at the correct timing.

The system design has been accurately transferred to the simulation environment,
allowing for performance measurement in various IMA scenarios. Future
developments can explore advanced technologies, such as using devices that support
Time-Triggered Ethernet (TTEthernet) and Time-Sensitive Networking (TSN) instead
of AFDX-compliant devices. Additionally, the ARINC 653 standard model has been
designed to model a single processor system, but it can be further enhanced to enable
parallel execution of applications and conduct complex measurements.

xxiii

xxiv

ENTEGRE MODÜLER AVİYONİKLER İÇİN
OMNET++ SİMULASYON MODELİ

ÖZET

İlk icat edilen transistörlerin boyutları oldukça büyük olduğu için bu transistörler
ile oluşturulan entegre devreler ve bilgisayarlar hava araçlarının boyut ve ağırlık
gibi gereksinimlerini karşılayamamaktaydılar. Ancak gün geçtikçe bir entgere
devre üzerine yerleştirilebilecek tümdevre sayısının sürekli artması hava araçlarında
kullanılabilecek avionik sistemlerin çeşitliliği arttırmaktadır. Ancak avionik
sistemlerin çeşitliliğinin artması bölümün başında bahsedilen boyut ve ağırlık gibi
gereksinimlerin sağlanmasında tekrardan sıkıntılara neden olmuştur. Bu noktada
Entgre Modüler Aviyonik (Integrated Modular Avionics - IMA) mimarisi bu probleme
bir çözüm olarak Ortak Entegre Aviyonik Çalışma Grubu (Joint Integrated Avionics
Working Group - JIAWG) tarafından ilk olarak F-22 savaş uçağı programı kapsamında
önerilmiştir. IMA farklı kritikliğe sahip aviyonik görev bilgisayarlarının yaptığı işleri
tek bir bilgisayar tarafından yapılmasına olanak sağlayan bir mimaridir.

IMA mimarisinin bir uçakta tam anlamıyla sağlanabilmesi bir çok farklı standard
geliştirilmiştir. Bunlardan ikisi ARINC 653 ve ARINC 664 P7 (Avionics Full-Duplex
Switched Ethernet : AFDX) standardlarıdır. ARINC 653 standardı, aviyonik
görev bilgisayar üzerinde kullanılmak üzere tasarlanan Gerçek Zamanlı İşletim
Sisteminin (GZIS) kurallarını ve servislerini tanımlar. GZIS sayesinde de donanım
üzerindeki hesaplama birimleri ve Giriş/Çıkış (G/Ç) cihazları gibi kaynaklar aviyonik
uygulamalara paylaştırılabilir. Bu paylaşım bölümleme (partitioning) adındaki bir
yöntem ile gerçekleştirilir. ARINC 653, donanımın ortak kaynakları kullanan her bir
uygulamayı bölme (partition) olarak adlandırır. Bölmeler Ana Zaman Yapısı (Major
Time Frame : MTF) olarak adlandırılan zaman akışı üzerine yerleştirilir. Her bir
bölme, MTF üzerinde Bölme Zaman Çerçevesi (PTW : Partition Time Window) olarak
isimlendirilen bir zaman aralığına sahiptir ve donanım üzerindeki kaynaklara sadece
bu zaman aralığında erişebilir. Bölme, sadece sanal bir entiti olduğu için sensör
verisi okuma ve motor kontrolü gibi görevleri gerçekleştiremez. Bu tarz görevler
işlem (process) adı verilen çalışma birimleri tarafından gerçekleştirilir. Her bölmenin
kendine ait işlemleri mevcuttur ve bu işlemler farklı kritiklik değerlerine sahiptir.
Zaman, PTW’nun MTF üzerindeki başlangıç noktasına ulaştığında, bölmedeki en
yüksek kritikliğe sahip işlem donanımın kaynaklarına erişmek üzere işlem yöneticisi
tarafından seçilir ve çalıştırılır.

AFDX standardı temel olarak, IMA sistemindeki ağ cihazlarının band genişliğinin
uygulamalara paylaştırılmasında kullanılan yöntem ve kuralları tanımlar. Bir gönderici
aviyonik uygulama, bir veya birden fazla alıcı aviyonik uygulamaya aynı veriyi
iletebilir. Bu veri iletiminde kullanılan uygulamaların oluşturduğu alt ağ, sanal hat
(VL : Virtual Link) olarak isimlendirilir. AFDX, VL’de gönderici uygulamanın zaman

xxv

farkı olmaksızın art arda paket yollamasını önleyen Band genişliği Tahsis Aralığı
(Bandwidth Allocation Gap : BAG) kuralını tanımlar. Bu kurala göre bir VL kaynak
uygulamasının gönderdiği iki veri paketi arasında geçmesi gereken minimum bir süre
vardır. Aviyonik işlem bu kurala uymadan veri paketi gönderse dahi Uç Sistem (End
System : ES) ve Anahatar olarak adlandırılan ve AFDX’in kurallarının uygulanmasını
sağlayan ağ cihazları bu veri paketlerini donanım üzerinde depolar ve BAG kuralını
sağlayana kadar bekletir. Bu kural sağlandıktan sonra paketler alıcı uygulamalara
gönderilmek üzere ağa gönderilir. Bunun yanı sıra ağda iletilen her bir veri paketi
boyutunun maksimum (Smax) ve minimum (Smin) değerleride belirlenmelidir. Bu veri
boyutu aralığını ihlal eden paketler ES ve Anahtar tarafından düşürülmektedir. Bu iki
kural, bir VL’in band genişliğini tanımlar.

Bahsedilenlere ek olarak, ARINC 653 ve AFDX standardları kullanıldığı sistemlerde
daha bir çok kuralın ve parametrenin tanımlanmasına neden olur. Bu durum sistem
tasarımındaki değişken sayısı arttırmakta ve optimum ağ performansını verecek sistem
tasarımını ve parametreleri bulmayı zorlaştırmaktadır. Fiziksel testlerin fazlalığı
ise projelerin maliyetini arttırır ve teslim tarihlerinde gecikmelere neden olur. Bu
sorunları çözmek adına tasarlanan IMA modeli simulasyon ortamında gerçeklenebilir.
Böylelikle mühendisler daha fazla denemeyi daha kısa bir zamanda gerçekleştirerek
ürünlerin pazara sürüm süresini kısaltabilirler. Bunlara ek olarak sisteme yeni bir
donanım eklemek istediklerinde donanımı satın almak yerine simulasyon ortamındaki
sisteme donanımın modelini ekleyebilirler. Simulasyon ortamında yeterli bir gelişme
görülürse donanım fiziksel olarak alınabilir. Bu tezde, ARINC 653 ve AFDX
standardlarını sağlayan IMA sisteminin bir benztimi OMNET++ simulatoru üzerinde
gerçeklenmiştir.

Uygulamaların ağ performansını ölçmek adına, ARINC 653 ve AFDX standardlarının
tanımladığı bütün kuralları simulasyon ortamında sağlamak hem mantıklı hem de
gerekli değildir. Bu yüzden ilk olarak bir sistem modeli geliştirilerek haberleşme
performansını ölçmek için gerekli olan bileşenler belirlenmiştir. Haberleşme
performans ölçümü yapmak için temelde sistemde bulunan işlemlerin standarda uygun
olarak seçilip çalıştırılması gerekmektedir. Bu görevi yapmak adına bölme, bölme
yöneticisi, işlem ve işlem yöneticisi bileşeleri tasarlanmalıdır. Bölme yöneticisi
modülü, MTF’nin içeriğine göre gerekli olan bölme modüllerinin başlatılması ve
durdurulması operasyonlarını gerçekleştirmelidir. Bölme modülü ise içinde alt
modül olarak işlem yöneticisi ve işlem modüllerini barındırmalıdır. Ayrıca bölme
modülü, kendisine gelen başlatma ve durdurma isteklerini işlem yöneticisi modülüne
aktarmalıdır. İşlem yöneticisi modülüde kendisine gelen bu isteklere göre işlemleri
durdurma veya koşturma operasyonlarını gerçekleştirir. Bu bileşenler, aviyonik
görevlerin ARINC 653 standardına uygun olarak yönetilmesini sağlarlar. Ancak
buna ek olarak bölmeler arasındaki haberleşme de sistemin haberleşme performansını
ölçmek adına gereklidir. Bunun için standard tarafından tanımlanan örnekleme ve
kuyruklama haberleşme modlarını gerçekleyen bileşenlerde geliştirilmelidir.

AFDX standardı için modellenmesi gereken iki adet cihaz vardır: ES ve Anahtar. ES,
işlemlerin ağda iletişim kurmalarını sağlayan cihazdır. Bir işlem, mesaj göndermek
istediği zaman, ilk olarak oluşturulan mesajı ES içinde bulunan gönderici haberleşme
portlarına yazar. Mesaj yazımının ardından cihaz; BAG, veri paket boyutu uyumluluğu

xxvi

ve fazlalık güzergah mekanizması gibi yöntemleri paket üzerinde uygular ve paketi
ağa gönderir. Daha sonra alıcı tarafta mesajı alan ES, paketi bütünlük denetimi ve
fazlalık denetimi gibi işlemlerden geçirerek uygun alıcı haberleşme portuna yazar. Son
olarak alıcı işlem aktive edildiğinde mesajı bu porttan okur. Anahtar ise ağdaki ES’leri
birbirine bağlamada kullanılır ve temelde 3 adet görevleri vardır: süzgeçleme, ilkeleme
ve anahtarlama. Süzgeçleme, anahtara gelen paketlerin VL veri paketi boyutu kısıtının
sağlanıp sağlanmadığını kontrol eder. Öte yandan BAG aralığı kuralının kontrol
edilmesi ise ilkeleme olarak adlandırılır. Anahtarlama özelliği ise gelen paketlerin
hangi çıkış portlarına yönlendirilmesi gerektiğini belirleyen kuraldır. Haberleşmenin
AFDX standardına göre gerçekleştirilmesi için modellenmesi gereken cihazlar ve
yöntemler bu şekilde özetlenebilir.

Sistem modeli geliştirilen cihazların ve yapıların simulasyon ortamında aktarılması
gerekmektedir. OMNET++, diğer simulasyon ortamlarına kıyasla daha iyi
ölçeklenebilme ve genişletilebilme özelliklerine sahiptir. Ayrıca, OMNET++ aktif bir
topluluğa sahiptir ve açık kaynak kodlu bir yazılımdır. Bunlara ek olarak ortamda
INET gibi OSI katmanının ayrıntılı gerçeklenmesini sağlayan bir çalışma mevcuttur.
Bu sebeplerden ötürü sistem modellerinin simulasyon üzerinde gerçeklenmesi için
OMNET++ ortamı seçilmiştir. ARINC 653 standardı için sistem modelinde belirlenen
bölme, bölme yöneticisi, işlem ve işlem yöneticisi bileşenlerine ek olarak port kanalı
ve ağ gönderici sürücüsü olmak üzere iki adet daha bileşen geliştirilmiştir. Port
kanalı, alıcı bileşenler ile ES’nin alıcı haberleşme portunu birbirine bağlarken, ağ
gönderici sürücüsü ise gönderici işlemin yolladığı veri paketlerinin ES’de bulunan
doğru gönderici haberleşme portuna yazılmasından sorumludur.

AFDX standardı için, daha önceki bir çalışmada geliştirilen bir model temel
alınmıştır [1]. Anahtar cihazı için çalışmadaki model aynı şekilde kullanılabilirken
ES cihazı ise ek bileşen geliştirmelerine ihtiyaç duymaktadır. Çalışmadaki modelde
ES sadece cihaz seviyesinde ölçüm yapmak adına tasarlandığı için gönderici ve
alıcı haberleşme portları tasarlanmamıştır. Dolayısıyla alıcı haberleşme portlarına
mesajın yazılmasından sorumlu olan yönlendirici bileşeni de tasarlanmamıştır. Önceki
çalışmadaki ES simulasyon modeli üzerine bu iki bileşen daha eklenerek paket alma
ve verme işlemlerini gerçekleştirebilecek simulasyon modeli oluşturulmuştur.

Oluşturulan simulasyon modellerinin ilk olarak paket alma ve verme işlemlerini
gerçekleştirip gerçekleştiremediği test edilmiştir. Bunu test etmek adına ağ
modelinde gönderici ve alıcı olarak isimledirilen iki adet IMA modülü bulunduran
bir senaryo oluşturulmuştur. Gönderici modülü, veri paketi oluşturulması ve
bu paketin alıcı modele gönderilmesinden sorumludur. Senaryoda iki modül
arasında herhangi bir anahtar cihazı bulunmamaktadır. Bu yüzden gönderilen paket
doğrudan alıcı modülünün haberleşme portlarına yazılır. Alıcı modüldeki işlem
başlatıldığında haberleşme portundaki veriyi alır ve içindeki mesajı simulasyon
konsoluna yazdırır. İşlem bileşenin aldığı paket verilerinin doğruluğu simulasyon
konsulunda gözlemlenerek paket alma ve verme işlemlerinin doğru bir şekilde
yapıldığı anlaşılmıştır.

Paket alma ve verme işlemlerine ek olarak bileşenlerin doğru zamanlarda çalıştırılıp
çalıştırılmadığı da test edilmelidir. Bunun için başka bir çalışmada bulunan daha
gelişmiş bir senaryo kullanılmıştır [2]. Bu senaryoda toplamda 4 adet IMA modülü

xxvii

ve 5 adet uygulama mevcuttur. Sadece bir modülde 2 adet uygulama mevcut iken
diğer modüllerde birer adet uygulama vardır. İlk olarak geliştirilen yazılım-tabanlı
uygulama gecikmesi formülü ile senaryoda bulunan sanal hatların teorik gecikmesi
hesaplanmışıtır. Daha sonra her bir VL’in uygulama gecikmesi simulasyon ortamında
elde edilmşitir. Elde edilen bu iki verinin birbirleri ile uyumlu olduğu gözlenmiştir.
Ayrıca senaryodaki 1 numaralı sanal hattındaki gönderici uygulama 2 adet veri paketini
aralarında zaman farkı olmaksızın göndermektedir. Alıcı ve gönderici uygulamaların
periyot değerleri de bu durum göz önünde bulundurulmadan tasarlandığı için VL’in
güncel BAG değeri de paket kaybını engelleyememektedir. Bu durumu çözmek adına
BAG değeri alıcı uygulamanın periyoduna yaklaştırıldığında paket kabının azalması
beklenmektedir. Bu beklenti farklı BTA değerleri için doğrulanmıştır. Teorik ve
simulasyon uygulama gecikme değerleri ve BAG-Paket kaybı ilişkisinin beklenildiği
gibi olması bileşenlerin doğru zamanlarda çalıştırılabildiğini göstermektedir.

Sistem modeli oluşturulan tasarım, simulasyon ortamına aktarılmış ve aktarılan
modelin doğruluğu farklı parametreler ve senaryolar kullanılarak test edilmiştir. Bu
model ile daha bir çok senaryonun performansı farklı metrikler kullanılarak ölçülebilir.
Tezde yapılan çalışmaya daha gelişmiş teknolojiler eklenebilir. Örneğin, cihaz
seviyesinde AFDX standardı ile uyumlu cihazlar yerine Zaman Tetiklemeli Ethernet
(Time-Triggered Ethernet : TTE) ve Zaman Duyarlı Ağ (Time-Sensitive Networking
: TSN) gibi teknolojileri destekleyen cihazlar kullanılabilir. Ayrıca tasarlanan ARINC
653 standardı modeli tek işlemcide çalışacak şekilde modellenmiştir. Bu model
uygulamaların paralel olarak çalışıtırılabileceği bir hale getirilip daha farklı ölçümler
yapılabilir.

xxviii

1. INTRODUCTION

Advancements in electronic devices, particularly their form factors becoming smaller,

have made it possible to integrate various avionic sub-systems and components into

aerial vehicles. The diversity of the avionic sub-systems has led to their utilization in

different areas such as military, agriculture, and surveillance through electronic devices

such as radar and cameras. However, the increasing number of these devices harms the

flight duration of aerial vehicles and the power demands of the vehicles, which increase

with the use of a diverse and increasing number of avionic systems. Therefore, the

traditional federated architecture, which utilizes each system in a different hardware

component, cannot meet the needs of current large-scale avionics system development

due to its portability, security, and scalability [3].

A system architecture, namely IMA, is designed to solve these issues. Around three

decades ago, the IMA concept first emerged in the United States through the F-22 Joint

Integrated Avionics Working Group (JIAWG). Subsequently, it spread to commercial

aircraft and business jets during the late 1990s [4]. The IMA architecture combines

various avionics functions with different levels of criticality on a shared computing

and networking platform. The aerospace industry introduced two primary standards,

ARINC 653 and AFDX, to satisfy the growing requirements for safety-critical IMA

systems. These standards were developed to ensure that the integration of multiple

avionics functions is secure and reliable.

ARINC 653 is a software specification that outlines a set of services known as

APEX (Application/Executive) services for implementing communication between

an avionic computer’s application and operating system (O/S). Applying APEX

services can be quickly executed on different O/Ss without significant modification.

For example, there may be an application code that implements Kalman filter for

controlling helicopter motors in VxWorks-653 [5] Real-Time O/S (RTOS). Suppose

the company of the helicopter motor’s producer decided to switch their O/S to GzIS [6]

1

RTOS, and the filter code is written by using APEX services. In that case, engineers do

not have to modify their application codes. Also, the ARINC 653 standard establishes

rules where different software applications can run on a shared hardware platform

while isolated temporally and spatially. This isolation ensures that a problem in one

avionics function does not impact the others. Moreover, the partitioning method is

utilized to overcome issues related to size, weight, and power consumption [7].

In the past, bus standards such as ARINC-429, ARINC 629, and MILSTD-1553 were

designed to communicate between avionic systems in aerial vehicles. However, these

standards need to be revised to meet the requirements of modern aerial vehicles in

terms of duplexity, bandwidth, speed, latency, and isolation [8]. AFDX is a newer

standard that offers a high-speed, isolated, and deterministic network for avionics

applications in aircraft systems. AFDX is based on the Ethernet protocol and provides

features such as quality of service (QoS) guarantees and redundancy management. By

combining ARINC 653 and AFDX, developers can create reliable, efficient, robust,

and safe avionics systems that meet the rigorous demands of aerospace applications.

In the IMA system design, it is difficult to determine the system architecture which

gives optimum network performance using manual methods, especially for large

aircraft, because the degree of freedom in choosing the system architecture designed

by two standards, ARINC 653 and AFDX, is high [9]. Thus, it can be challenging

to predict the overall system behavior without running the entire system physically,

which can be very costly during development. Airbus, a leading aviation industry

company, proposes a concept Open IMA that defines standards for developing IMA

technology on the A380 program. The primary purpose of the Open IMA is applying

open avionic and commercial communication standards (ARINC 600 norms) for the

avionic modules to obtain interoperability between the product owners and third-party

avionic suppliers [10]. Also, the Open IMA introduces the AFDX network topology

used in the A380 program. Figure 1.1 shows the content of the network topology.

The network topology comprises two redundant networks (Network A&B), 9x2 AFDX

switches, and 123 End Systems. Performing tests on a network of this magnitude

using a physically implemented setup would be costly and time-consuming. Hence,

2

Figure 1.1 : The Network Topology on the A380 [10].

simulation is essential to ensure the IMA system operates reliably, safely and performs

as intended in real-world scenarios. It allows designers to verify the design of the IMA

system before deployment, allowing them to identify potential problems and make

necessary modifications to meet the requirements of the avionic projects. Furthermore,

simulation is a cost-effective way to test and validate the system without the need for

physical prototypes, reducing development costs and speeding up the time-to-market

for the system.

1.1 Purpose of Thesis

This thesis implements ARINC 653 concepts, such as partition, process, and

inter-partition communication modes, in the OMNET++ simulator. To the best of our

knowledge, this is the first paper to design these necessary components to build an

IMA Module in OMNET++. The IMA simulation model allows for temporal control

of applications and enables the designer to calculate network performance metrics

such as application delay in the simulator. Since these ARINC 653 concepts are

implemented as separate modules, developers can design their IMA system flexibly

3

and prototype it quickly by using the benefits of object-oriented programming (OOP).

The functional and timing correctness of the designed IMA system modules are tested

on an example scenario [2] that performs packet transfer using ARINC 653 concepts

and AFDX-compatible devices.

Also, many different delay sub-steps in the network data path are taken into account

in various studies [11]–[13]. However, no study considers the overheads of send

and receive calls performed on the application side. This study will consider all

software-based overheads for the application delay calculation for both the source

application and the destination application, which will increase the accuracy of the

application delay calculation.

1.2 Literature Review

Many simulation environments enable engineers to simulate IMA systems. However,

some works develop their simulation tool for system evaluation, which requires

unnecessary high-level and low-level coding efforts such as visualization and

computing resource management of the newly developed simulator [14,15]. One

of the tools used to model and validate the real-time system is UPPAAL. The tool

is well-suited for systems that can be represented as processes with a finite control

structure and utilize real-valued clocks, such as timed automata [16]. ARINC

653 basics, such as partition and process, are developed by [2,17] as timed and

StopWatch automata, respectively. Moreover, developed modules are tested with

sample scenarios for validation. Although the tool is appropriate for obtaining

worst-case scenarios, it does not scale for large systems due to the combinatorial

explosion problem. Besides, the development process is impractical compared to

other tools. MATLAB/SIMULINK environment can also be used to design and

evaluate the IMA system using a toolbox developed by Italian Aerospace Research

Centre (CIRA) and MathWorks. When the SIMULINK block of the ARINC

653 package is created, the ARINC 653 standard and the specific code execution

characteristics of the Wind River VxWorks 653 RTOS are considered [18]. Although

the toolbox provides an excellent opportunity to perform hardware-in-the-loop (HIL)

simulations of IMA scenarios, it restricts users to develop their system according

4

to Wind River VxWorks 653 RTOS. Besides, each environment package is not

available and modifiable since MATLAB/SIMULINK is a commercial environment.

IMA system design can also use network simulators like NS-2, NS-3, OPNet, and

OMNET++. These tools use programming languages like C and C++ for development,

allowing for code re-usability between simulation and real-world applications. Since

OPNet is commercial, it has the same drawbacks as MATLAB/SIMULINK. Among

open-source simulators, OMNET++ is chosen due to its scalability, extensibility, and

integrability [12]. The simulator has a comprehensive framework named INET that

implements each TCP/IP stack layer and some application layer protocols. Besides, it

is regularly updated, well-documented, and has a large and active community [19].

Numerous studies have measured the end-to-end network delay between AFDX

devices. In [1], an AFDX ES model is developed in OMNET++ simulator, and

the model’s performance is investigated with different traffic scenarios. Moreover,

some papers propose a concept that extends the priority level of VL with two priority

levels in AFDX standard to optimize network delay [20,21]. Also, network delay

performance is enhanced with a genetic algorithm to determine VL priority level in

[20]. Unlike network delay, relatively few papers examine delay at the application

level. Both [12,13] design models that consider buffer latency which is the time the

message waits to be consumed at the destination application’s buffer. Then, the studies

measure the end-to-end delay of VLs for sample network topology. Moreover, the

results of [12] are compared with [22], which calculate the delay using the trajectory

approach. However, the scheduling of applications is performed according to a simple

messaging plan which does not conform to the [7] standard that manages tasks with

fixed-priority preemptive scheduling. Thus, it is impossible to evaluate a complete

IMA system using these two papers.

Badache et.al. investigates the temporal allocation of the IMA system and suggests

a formula for calculating application delay to avoid the overwriting of messages by

newer ones [11]. However, it does not consider consumed time in the transmission

buffer. The studies [12,13] take times in the transmission buffer into account. However,

they need to include transmission and reception operations overheads which should be

considered for precise application delay calculation. Lu et.al. defines the overheads

5

between buffers and processors for transmission and reception operations, but it does

not include them in its final evaluation [23]. This thesis considers the overheads of

both transmission and reception when the proposed IMA models are evaluated.

1.3 Hypothesis

The essential components required for building an IMA system can be developed on

the OMNET++ simulator. In this way, the development process of complex IMA

systems is enhanced in terms of cost and reliability. Also, developing the IMA modules

enables researchers to increase the precision in delay calculation by including the

overheads of the send and receive user calls.

6

2. SYSTEM MODEL

2.1 ARINC 653

This section focuses on the fundamentals and system functionalities of the ARINC 653

standard and explains the system model that is used to emulate the standard concepts.

The standard provides a set of methods (APEX services) for the interface between the

application and the O/S of an avionics computer resource. The use of APEX services

allows applications to run on different O/Ss without additional porting costs. Besides,

the standard defines a software architecture that enables multiple applications with

different levels of criticality to run securely on a single hardware platform. This is

ensured with a technique called partitioning which ensures the spatial and temporal

isolation of avionics applications. Partitioning involves splitting avionics applications

into distinct software units, referred to as partitions. Each partition of an ARINC

653 system can be thought of as an individual avionic application that performs

specific tasks for the entire system. However, they are logically separated within

the same avionic hardware platform rather than being physically separate. Moreover,

any malfunction or error in a partition will not affect others thanks to the partitioning

method. As partitions are just only logical entities, they do not have an executable

unit to carry out avionic tasks. Instead, they consist of a programming unit called

a process, which comprises an executable program, data and stack areas, program

counter, stack pointer, and other attributes such as priority and deadline [7]. The

ARINC 653 standard provides detailed descriptions of all the system functionalities,

including partition management, process management, memory management, and

time management. While all of these requirements must be met to develop a fully

compatible ARINC 653 O/S, this thesis focuses on only a few of them, specifically

partition management, process management, and inter-partition communication.

7

Partition scheduling is an essential aspect of partition management in which the

partition itself acts as the scheduling unit, and no priority is assigned to it, as stated

in [7]. Partitions are restricted to accessing the computing resource of the module only

during a predetermined time known as the partition time window, which is positioned

on a fixed-size timeline called the MTF. The partition is activated only when its

partition time window is reached. Then, the process scheduler selects the appropriate

process of the activated partition for execution. The core module executes the MTF

repeatedly and continuously until it is powered off. Figure 2.1 shows an example of a

MTF with three partitions.

Figure 2.1 : Sample Major Frame.

As stated at the beginning of this section, avionic computer tasks such as I/O operation

and data filtering are performed by processes. Each process is created and initialized

at the beginning of the owner partition. Moreover, the required utilization of resources

should be defined at the system build.

Each process has fixed attributes; name, entry point, which defines starting address,

stack size, base priority, which defines initial priority, period, time capacity and

deadline [7]. The time capacity defines the elapsed time that process can access

the computing resources of a module, and it is used to calculate deadline time of

the process, which can be calculated by adding time capacity to the process’s release

point time. Moreover, the time capacity does not only define the execution time of the

process; the time that process is waiting for a resource also consumes the capacity of

the process. For example, a process may receive a message from a socket and perform

a data-filtering algorithm using the received message. In the receive operation of the

socket, if no message is found in the socket buffer, the process can be blocked at a

semaphore. The elapsed time while waiting for the network packet at semaphore also

consumes the time capacity of the process. The time capacity of each process is set to

the infinite value in our system model, so the process’ deadline is not checked by the

developed partition manager module.

8

There are two types of processes periodic (synchronous) and aperiodic (asynchronous)

in terms of periodicity. Aperiodic processes have only an initial release point that

is determined by the start service. After the start service is invoked for an aperiodic

process, it is eligible to be selected by the process manager with partition start and

deadline of the process is calculated by summation of the partition’s start time and

time capacity. After an aperiodic task finishes its task and calls the stop service, it

will not be activated again during MTF. On the other hand, periodic processes are

executed in regular time intervals which are defined with the period attribute. The

period defines the regular time interval of the process’s execution. An explicit and

unique value is assigned to period for the aperiodic process. Thus, the process manager

does not consider the periodicity of the aperiodic processes. The periodic process can

also start to execute with the start of partition as aperiodic ones. However, newer

release points have been created for them during core module execution. Moreover,

the PERIODIC_WAIT service should be called by a periodic process when it finishes

its work for the current activation. After this call, a new release point is assigned to

the process. Hence a new deadline is also calculated. In this thesis, the processes are

designed as aperiodic.

In contrast to partition scheduling, process scheduling involves giving a priority level

to each scheduling unit (process). ARINC 653 follows a fixed-priority preemptive

scheduling approach, where the scheduler chooses the process with the highest priority

for execution, and any lower-priority process currently running is preempted. The

priority level assigned to each process is determined by considering its criticality and

the specific deadlines it needs to meet.

In ARINC 653, inter-partition communication is carried out using a messaging

protocol, where communication ports and channels are utilized to send messages from

a source partition to one or more destination partitions. The functioning of ports is

described in [7], but the implementation may differ based on the design of the O/S. In

this thesis, a shared storage area is employed for both source and destination partitions,

and the memory content of the port is updated according to the algorithm of [7] for

the system model. The ports have two modes of operation, namely sampling and

queuing. For sampling mode, [7] allows a port buffer to hold only one message at

9

a time, which means that the existing message in the buffer remains there until a new

one overwrites it. Additionally, the freshness of the message can be determined using a

term called the refresh rate, which controls the duration between the arrival and reading

time of the message. A refresh rate is assigned to each sampling port in order to verify

the age of the messages. In ARINC 653, the partition port has also another mode

called queuing that follows the first-in/first-out (FIFO) principle for the storage area.

This mode uses a buffer where the source partition writes messages to the FIFO and

the destination partition retrieves the oldest message from the buffer. To prevent any

unintentional message loss, the application software manages queuing port overflow,

as specified in [7]. Our work utilizes these three sub-functionalities of ARINC 653,

and the developed system model is shown in Figure 2.2.

Figure 2.2 : System Model of ARINC 653 Module.

The main responsibility of the partition manager component is the initiation and

termination operations of the partition components based on the MTF. The partition

component should have two sub-components namely process manager and process.

Also, the partition component transmits the received requests from the partition

manager to the process manager. When the process manager receives a request, it

identifies the active process component with the highest priority at first. Then, process

10

manager triggers that process to execute its task. The management of processes

can be performed by these four components according to the ARINC 653 standard.

Besides, inter-partition communication is implemented by APEX ports and buffer of

sampling and queuing memory components. When a process wants to write a message

to a memory component, it should first find the source APEX port of the memory

component. Then, the write service of the memory components is invoked by the

writer process. One of the differences between the reader and the writer processes is

that the reader process identifies the destination APEX port of the memory components

rather than the source port. Also, the read service of the memory component is invoked

by the process instead of the write service.

2.2 AFDX

AFDX allocates network device bandwidth to the applications by using VLs, which is

similar to how ARINC 653 allocates computing resources to partitions. The bandwidth

allocated to each VL is determined by two parameters: BAG and Smax. BAG specifies

the minimum time interval between consecutive VL frames, while Smax indicates the

maximum frame size that can be transferred over the VL. AFDX communication

requires two primary devices, ES and Switch. The ES is used to send and receive

packets within an IMA module by partition’s processes, while the switch is responsible

for determining packet routes in the network and applying filtering and policy functions

based on the [24]. The components of the ES device system model for transmission

and reception are depicted using blue and orange blocks, respectively, in Figure 2.3.

In AFDX, source applications of partitions assign a sequence number between 0 and

255 to messages that will be sent, which is used to verify message integrity. The

sequence number 0 is reserved for resetting communication in the VL, while other

numbers are used for regular communication. The first message in a VL is assigned

sequence number 1, and subsequent messages’ sequence numbers are incremented

by one. When the sequence number reaches the value of 255, it backs to 1 in the

next message. After the message is set up by the source application, it is written

to AFDX communication ports (AFDXport) by using the write service. These ports

have two modes, sampling and queuing, and the algorithms used for these modes

11

are similar to the ones used in ARINC 653. Once the message is received by the

regulator component from AFDXport, it is checked that the BAG time condition is

met. If the condition is satisfied, the message can be received by the VL Scheduler

component. TheVL Scheduler chooses messages from various VL queues, using a

scheduling algorithm such as round-robin. After a message is selected by the VL

Scheduler, it is duplicated and transmitted over two different networks (Network A

and Network B) by the redundancy management module to enhance communication

reliability. After the destination ES receives the messages, the integrity checker

component ensures that the frames are in the correct order by using sequence numbers.

The first message that arrives at the redundancy management component is sent to the

DEMUX component, while later incoming messages with the same sequence number

are discarded. The message is then routed by DEMUX to the appropriate AFDXport

based on its quintuplet, which includes the UDP source port, source IP address,

destination MAC address, destination IP address, and UDP destination port. Finally,

the destination application retrieves the messages from the AFDXport with the read

services.

Figure 2.3 : System Model of ES Device.

12

The AFDX Switch performs three main tasks: filtering, policing, and switching.

Filtering is used to drop packets that are not within the specified size range, as defined

by Smin and Smax and policing is used to discard packets that do not satisfy the BAG

rule. Finally, switching involves routing incoming packets to predetermined network

ports, as specified by the network planner [1]. Most of the components except DEMUX

and AFDXport are implemented in [1]. We utilize these developed and tested AFDX

components as-is in our work, while we implemented the remaining two modules

according to the specification provided in [24].

2.3 Application Delay

The time elapsed from when a packet leaves the APEX port of the source partition until

it is received by the destination partition is known as the application delay (Dapp) and

includes not only the network delay (Dnetwork), but also software delay such as buffer

delay and read service call overheads [11]. The green line in Figure 2.4 represents the

packet flow path of Dapp, while the red line represents the path of Dnetwork.

Figure 2.4 : Application vs Network Delay.

13

Although both application and network delay paths are represented with a complete

line, the paths can be divided into sub-steps as in [23]. The first step is named

DtxOp. It is comprised of obtaining and processing raw data operation and it does not

contain any networking task. Reading IMU and gyroscope sensors data and applying

complementary filter method to the data can be given as an example of this step. In the

second step (DtxApp), overheads of writing the frames to the device buffer are included

in Dapp calculation. This step covers the essential operations such as system call,

context switch, and data copy of an O/S. For example, when the filter application

calls a write request to a device sampling port, O/S switches from user mode to

kernel mode with a system call. Then, the application attempts to take the semaphore

that protects AFDXport’s buffer integrity. However, if it is already taken by another

thread, the sender application will be suspended and a context switch will occur.

When the application is awakened, it takes the semaphore and access to AFDXport’s

buffer. Then, it copies the filtering data to the port buffer of AFDXport. Afterward,

transmitter ES retrieves the frame from the AFDXport and sends it to the physical

link. This step (DtxDev) covers overheads at the device level such as VL scheduling

and frame duplication. Then, frames are transferred through the physical link which

also introduces a delay (DphyLink). After that, receiver ES takes the frames from the

physical link and applies the integrity checking, redundancy management, and demux

operations as a fifth step (DrxDev). Then, the frames wait in AFDXport buffer to be

consumed by the destination application. The elapsed time in the buffer is named

buffer delay and represents the sixth step (DrxBuff). Then, the destination application is

activated by the process manager and the frame is read from AFDXport in the seventh

step (DrxApp). Same overheads of DtxApp such as system call and data copy are also

occurred in DrxApp. Finally, the received frame is processed and transmitted to the

destination component in the last step (DrxOp). For example, received data from the

complementary filter may be processed by a control algorithm to convert it to a motor

control command in the destination application. These sub-steps are visualized in

Figure 2.5.

14

Figure 2.5 : Latency Sub Steps.

Badache et.al. formulates Dapp as summation of physical link delay (DphyLink) and

buffer delay (DrxBuff) as follows [11]:

Dapp = Li, j + Ji, j, (2.1)

where Li,j represents DphyLink between the ith and jth partition, and Ji,j shows the

DrxBuff.

The maximum value (Dapp
max) of Dapp occurs when a packet experiences a maximum

delay (DphyLink
max) in the physical link and arrive at the destination partition exactly

when it is terminating, as stated in equation 2.2. This coincidence causes the buffer

latency (Ji,j) to be equal to the destination partition period (Tj). Thus, Dapp
max can be

expressed as the sum of Tj and DphyLink
max as shown in equation 2.2.

Dapp
max = DphyLink

max +Tj (2.2)

Additional steps need to be included to equation 2.2 since the filtered sensor data is

generated prior to DphyLink in the DtxOp process. As a result, the calculation for Dapp

should begin after DtxOp step. Furthermore, Dapp
max cannot end with DrxBuff as the data

can be utilized by the destination application only at the end of DrxApp. While DtxDev

and DrxDev are deterministic because they are performed by hardware, their value can

be added to 2.2 as they are. However, the execution times of DtxApp and DrxApp which

are comprised of mostly software operations are not deterministic because of memory

and device operations involved. When calculating Dapp
max, the maximum value of

15

these two operations (DtxApp
max and DrxApp

max) should be added to equation 2.2. After

taking into account these additional delays, the new expression for Dapp
max can be

written as:

Dapp
max = DtxApp

max +DtxDev +DphyLink
max +DrxDev +Tj +DrxApp

max, (2.3)

Although the complete application delay calculation can be computed with

equation 2.3, the thesis focuses on the software-based application delay so the

deterministic delay steps (DtxDev and DrxDev) are included to the formula that is used in

the thesis. Finally, the formula is updated as follows:

DswApp
max = DtxApp

max +DphyLink
max +Tj +DrxApp

max, (2.4)

16

3. SIMULATION MODEL

3.1 OMNET++ Simulator

OMNET++ is a discrete event simulator (DES), so knowing what DES is and how

it works is vital for understanding the proposed simulation model. DES models a

system’s behavior as a series of discrete events that occur over time [25]. The situation

of the system is represented by states and the change in the system’s situation is

indicated by the transition between states. The state transition is named as event

whose execution time is zero for DES. In DES, the time at which events happen is

commonly referred to as event timestamp, but the term arrival time is used instead

of it in OMNeT++ [26]. This is because the word timestamp is already reserved for

a user-defined attribute in the event class library. On the other hand, the time of the

model can be named as simulation time or virtual time. The simulation time represents

the timeline that event timestamp is observed, and it is totally different than real time.

The simulation time elapses only between events, and there will be no change in the

system status between two consecutive events.

Computer networks and devices can be modeled with DES. For example, an Ethernet

device can be represented with two states: idle and transfer. At the beginning of the

simulation, the device is in the idle state, which remains in this state when there is

no packet transfer. However, when a packet is sent or received by the device, the

device switches to the transfer. An Ethernet device may receive a packet from the

network stack 2 nanoseconds after the simulation starts, and the transmission lasts for

5 nanoseconds. Then, the transmission will end, and the device will switch back to the

idle. The graphical representation of this scenario is shown in Fig. 3.1.

An OMNET++ network module is comprised of two basic terms modules and

connections. Modules have two main types, which are named as simple and compound.

The simple module is the core unit of OMNET++’s node, and its behavior is

programmed with C++ programming language. On the other hand, compound modules

17

Figure 3.1 : DES Scenario of Ethernet Device.

do not have a C++ function that defines the module’s behavior. They consist of a

combination of simple and other compound modules, which are connected to each

other via connections and gates. An example OMNET++ network module, which

contains a compound module, is illustrated in Figure 3.2.

When OMNET++ users program their simple modules, they use the cSimpleModule

class as a base class. In cSimpleModule class, there four main virtual methods namely,

initialize, finish, handleMessage, and activity. While the default version of initialize

and finish does not do anything, handleMessage and activity throw an error. At the

beginning of the simulation, the constructor of the classes is executed first. After

that, the network simulator builds the network model and calls each module’s initialize

method.

Figure 3.2 : Sample OMNET++ Network Model.

18

The purpose of the initialize method is that simulation-related code cannot typically be

placed in the constructor of a simple module because the simulation model is still in

the process of being set up, and many necessary objects may not yet be available [26]

during constructor execution. For example, users may want to write a code that

allocates memory for each node that is connected to a specific gate. In this situation,

the connection number can be computed using the gateSize function in initialize since

the network simulator already set up the network module. The finish method is called

after a successful simulation completion, and it is used to record network statistics such

as delay, latency, and packet drop. The method is not called after the simulation ends

with an error, and the destructor of the objects is called after finish method.

A simple module’s behavior is determined by the handleMessage or activity method.

Both methods cannot be used simultaneously for a module, so only one can be

implemented for each simple module. The handleMessage(cMessage* msg) method

is invoked when a message arrives to the module, and the input parameter (msg)

corresponds to the address of the received message. The act of invoking a message

can be considered as an event of DES in OMNET++ because it results in a change

in the network model’s situation. Moreover, simulation time does not elapse in the

handleMessage method. While a simple module is programmed with handleMessage

method, there are three main methods, namely, send, scheduleAt, and cancelEvent.

While the send method is used to send messages through a specified gate, the

scheduleAt method sends messages to the module itself. This method is beneficial

in creating timers within the simulation environment. The cancelEvent method is used

to delete the message that is sent with scheduleAt.

The activity method is another way to specify the behavior of a simple module that

works like a co-routine. Since the workflow of this method resembles threads and

processes, it is more appropriate to implement software-based ARINC 653 concepts

with the activity method rather than the handleMessage method. This notion is

supported by [26], which states that "By using the activity() function, it’s possible

to write a simple module in a way that works as operating system’s process or

thread". Unlike handleMessage, a separate stack is needed for each simple module

when programmed with activity. Thus, the use of this method increases the memory

19

consumption of the network model as the number of modules increases. However,

only the operations that are implemented as software in the real world should be

programmed with the activity, while implementing hardware-based operations such

as integrity checking and redundancy management with handleMessage is more

appropriate and sensible. Thus, the simulated network model does not harm the

OMNET++ scalability, and some methods can be programmed with process-style

descriptions more easily and properly. The activity method has six main methods

namely, send, scheduleAt, cancelEvent, receive, wait, and end. While the functioning

of send, scheduleAt, and cancelEvent methods are the same as in handleMessage,

the other three methods cannot be used by a simple module that is programmed with

handleMessage.

The receive method returns the address of the messages that come to the simple

module. Since the simulation time does not elapse in the method as handleMessage, the

inside of the activity can resemble the DES event. However, the simulation time elapses

while waiting for a message with the receive method. There are two signatures for

receive: "cMessage *receive()" and "cMessage *receive(simtime_t timeout)". While

the method whose signature does not have an input parameter waits until a message

comes to the module and never returns until a message comes to the simple module. On

the other hand, the method with simtime_t parameter waits for an absolute simulation

time that is defined by the input parameter for packet reception. If a message does

not come to the module during this time, the receive method will return a NULL

address. The wait method is used to block execution of the activity method and

allows simulation time elapses. Moreover, the end method can be used to terminate

the execution of the simple module’s caller.

When one module sends a message to another, OMNET++ creates an event and adds

it to the Future Event Set (FES) list with its corresponding timestamp. The simulator

executes events in the FES according to their timestamps. If the timestamps of two

events are the same, the one with higher priority assigned by the user will be executed

first. If their priorities are equal to each other, the event added to the FES earlier will

be processed first.

20

3.2 OMNET++ IMA Module

The proposed OMNET++ IMA simulation model includes two main modules: the

O/S and the ES module. While the ARINC 653 concepts are implemented by O/S,

the ES offers AFDX end-system capabilities. The O/S module was not designed as a

compound module to show its relationship with ES.

3.2.1 Operating system module

The primary goals of the O/S module are to schedule partitions and processes based

on ARINC 653 standard. The thesis provides main OMNET++ modules such as

partitionManager, partition, processManager, and process to accomplish these tasks.

Firstly, a simple send-and-receive operation between IMA modules is performed in

a sample scenario created by ourselves to check whether packet transfer can be

performed. In the scenario, there are two main IMA modules which are named

isrRadar and displayUnit. The isrRadar module collects raw data from different

sensors and processes them to produce the enemy aircraft positions. Then, the

produced data is sent to the displayUnit module, which demonstrates the positions of

the enemy aircraft on a screen for pilots. The isrRadar module’s operations which are

collecting sensor data, processing them, and sending processed data, are performed

by three distinct partitions sensor, algorithm, and transmitter respectively. The

isrRadar is developed as a compound OMNET++ module, and its internal modules

and their connections are shown in Figure 3.3. There are five types of OMNET++

module; partitionManager, application partitions (sensor, algorithm, and transmitter),

networkTxDriver, portChannel, and ES in the isrRadar.

3.2.1.1 Partition manager module of OMNET++

The partitionManager module is programmed as a simple OMNET++ module and

is responsible for activating and deactivating application partitions. Activation and

deactivation operations are performed by sending Start Partition and Stop Partition

messages to application partitions, respectively. The necessary module data structure is

constructed in the initialize method. Two main tasks, identifying the gate and obtaining

the timing feature of application partitions, are performed in the initialize method.

21

Figure 3.3 : Sample OMNET++ IMA Module.

Each application partition is connected to the partitonManager via a gate, namely

Scheduler_Out, and no other modules are connected to the partitionManager module

through the Scheduler_Out. When the initialize method of the partitionManager is

invoked with simulation start, the number of the application partition is computed by

getting the size of Scheduler_Out with the gateSize method at first. Then, memory

addresses of the connected application partitions are found by using gate, getNextGate,

and getOwnerModule methods. Then, ID of the application partitions are found by

using the module address and par method. Afterward, gate index and application

partition ID matchings are preserved in an array. Thus, the gate indexes to which the

partitions are connected are identified.

In addition to gate identification, the offset and duration of each application partition

should be found to perform activation operations with the correct timing. The

offset and duration of each partition are preserved in the XML file, which is named

radarMajorFrame.xml. The XML file separates partition information using tags,

namely, the partition, which contains ID, offset, duration, and name of application

partitions. The content of the radarMajorFrame.xml can be seen in Figure 3.4. The

XML file is parsed by using the methods of the cXMLElement class to construct a

structure that contains the offset and duration of the application partitions. Once all

the necessary data structures are set up, a self-message is sent to the module itself for

the first application partition’s offset. This is achieved using the schedAt method at the

end of the initialize method.

22

Figure 3.4 : Major Frame of the Sample OMNET++ IMA Module.

To invoke partitionManager at partition switch times regularly, a self-message is sent

to the module itself by using the schedAt method in both initialize and activity method.

However, gate indexes of the current active partition and the partition that will be

activated should be already known to send the Start Partition and Stop Partition

messages. These indexes are calculated before sending a message with schedAt,

and the computed gate indexes of the current active partition and newly activated

partition are preserved in prevPartitionIndex and nextPartitionIndex attributes,

respectively. When the module receives the self-message, it will send Partition

Stop message to the application partition, which is connected to partitionManager

with prevPartitionIndexth index of the Scheduler_Out gate if the index value is a

non-negative number. After that, Partition Start message is sent to the application

partition, which is connected to partitionManager with nextPartitionIndexth index of

the Scheduler_Out gate if the index value is a non-negative number. For example,

the nextPartitionIndex is set to 0, while the prevPartitionIndex is set to -1 since there

are no active partitions at the end of initialize method. After the index setting, a

self-message is sent to the time after the offset of the first application partition. When

the self-message is received in activity method, the method first checks the value of

prevPartitionIndex. Since it is a negative value, the Stop Partition message is not sent

to any partition. However, Start Partition is sent to the first partition of the MTF since

the nextPartitionIndex is non-negative. The pseudo-code of the initialize and activity

method of the partitionManager can be examined in the Algorithm A.2. Besides,

the activation messages are sent with sendDelayed methods whose second parameter

defines the delay time of the invocation message. If a delay time is defined, the cost

of the partition switching overhead can be simulated on the model to obtain a more

realistic result.

23

3.2.1.2 Partition and process manager module of OMNET++

The partition module is made up of two simple modules: processManager and process.

Each partition must contain a processManager which schedules the processes within

the partition based on the fixed-priority method. When a Partition Stop message is

sent by the partitionManger, the message reaches the processManager module at first.

Then, processManager deactivates all processes and sends a Process Stop message

to each of the process. On the other hand, if it receives a Partition Start message,

it will activate all of them and send a Process Start message to the process with

the highest priority. Additionally, the active process triggers the processManager to

select a new process after finishing its execution by using gate, getPreviousGate, and

getOwnerModule methods. Similar to the overhead involved in partition switching,

switching between processes also comes with a cost in an embedded system. This

cost can also be applied to the simulation model with the second parameter of the

sendDelayed. The content of the sensor application partition is illustrated in Figure 3.5.

Figure 3.5 : Sample OMNET++ Partition Module.

3.2.1.3 Process module of OMNET++

The main tasks of the process module are transmitting and receiving AFDX messages

to and from the ES ports. The process can perform its tasks only after it receives a

Process Start message. In the transmission, the module creates an AFDX message

and sends it to the NetworkTxDriver module. When NetworkTxDriver receives a

message, it scans the transmission ports of the ES (afdxPortTX) to find a port with

a matching quintuplet at first. Then, if a port is found, the message will be written

24

to that port buffer. Once the packet is placed in an afdxPortTX, the remaining packet

transmission operations are performed by ES module. However, before sending the

message to NetworkTxDriver, the waitAndEnqueue method is called to simulate the

overhead of the user send service. The waitAndEnqueue waits for the time determined

by the first parameter. If a message is received during the wait operation, it will be

enqueued to a queue whose address is given as a second parameter. If process module

receives a Process Stop message during the waiting, the action of the process will not

be performed.

In the case of receiving, the process module first finds the address of the portChannel

module, which connects an ES receiver port (afdxPortRX) to the one or more process

module(s). Each portChannel module has a VL ID parameter, so it controls whether

it is connected to the afdxPortRX module whose VL ID is the same or not. If it is not,

a run-time error will be thrown at the initialize method. Although portChannel is not

compulsory for the IMA model, it provides a more understandable view by reducing

connection complexity. After finding the address of portChannel, the address of the

connected afdxPortRX is also found. Then, the getPacket method of the port is called

using the module address. This method returns the message stored in the afdxPortRX

buffer to the caller process. As in transmission, the waitAndEnqueue method is called

before all of these operations to simulate the overhead of the user receive service.

The activity methods of the simple transmitter and receiver process are represented in

Algorithm A.3.

3.2.2 End system module

The developed ES module expands the modules given in [1] with newly developed

demux and afdxPort OMNET++ modules. The afdxPort modules should function in

both queuing and sampling modes according to ARINC 653 standard, but only the

sampling mode is implemented in the thesis. Figure 3.6 shows the simulation model

that is used in the thesis.

The afdxPort consists of two types: transmitter (afdxPortTX) and receiver

(afdxPortRX). In transmission, the role of afdxPortTX is just establishing a connection

between the process and the VL queue. Once it receives a message from a process,

25

it forwards it directly to the connected VL queue. In the reception, AFDX packets

coming from the redundancyChecker module are directed to the afdxPortRX through

the demux module. The operation of the demux module resembles the DEMUX

concept, which passes the input signal to the output according to selection bits in

digital design. When an AFDX message arrives at the demux, it checks the ES table

to determine the destination afdxPort based on the message’s destination MAC and IP

addresses and UDP port. Once the appropriate afdxPortRX is identified, the demux

writes the message to that afdxPortRX buffer. The process module can access and read

these messages when it becomes activated, as described in Chapter 3.2.1.3.

Figure 3.6 : Sample OMNET++ Process Module.

Unlike the afdxPortTX module, the afdxPortRX module is accessed by two modules,

namely demux and process. Therefore, it is crucial to manage concurrent access to

26

ensure data integrity. Since the execution of the activity method can be seen as a DES

event, accessing the afdxPortRX buffer within this method automatically maintains

the integrity of the data. However, ensuring that the port access must occur within a

single event is essential. For instance, if a write operation is designed to be executed

in multiple events, reading from the buffer between these write events may lead to the

reception of an incorrect message.

27

28

4. RESULTS

The message transfer capability of the proposed IMA module is verified through a

basic send-and-receive scenario, as outlined in Chapter 3. However, it is crucial to

assess not only the functional behavior but also the temporal behavior of the proposed

modules. Therefore, the proposed modules are evaluated through a scenario involving

parameters such as application delay and the relationship between BAG and Packet

Loss.

4.1 Scenario

To validate the proposed OMNET++ IMA module, a Navigation and Guidance System

scenario described in [2] is examined. This scenario involves five applications:

Anemometer (Anemo), Flight Warning (FW), Flight Manager (FM), Multifunction

Control Display Unit (MCDU), and Autopilot (AP). The Anemo and FW applications

reside within the same IMA module (Module 1), while others are distributed across

different IMA modules (Module 2,3,4).

In this scenario, sensor data which are altitude (Z) and broadcast speed (M), are

obtained by the Anemo (module1), and they are sent to the AP (module4) using VL 1

as separate frames. While FW (module1) sends equipment status to MCDU (module3)

through VL 2 in order to keep, the crew informed about the aircraft’s situation,

FM (module2) transmits the upcoming position that the aircraft should reach to the

AP via VL 3. Additionally, the crew can send a new flight plan using the MCDU,

which sends frames with VL 4 to the AP. Each VL connection has a BAG value of

2 milliseconds (ms), and the size of each frame is set to 4000 bits. Moreover, the

scenario includes two switches that connect the four IMA modules, and the network

topology and VL transfer path are depicted in Figure 4.1.

The execution of an application in the given scenario [2] is divided into three sub-steps:

reception, processing, and transmission. Each sub-step is allocated a specific time

29

Figure 4.1 : Network Topology.

interval, indicating the best and worst-case completion times. Table 4.1 demonstrates

the periods of the applications and the completion time intervals for these sub-steps.

For instance, the processing step of Anemo is expected to be completed within a

minimum of 3 ms and a maximum of 8 ms after the start of the major time frame.

Although the processing step concludes before 8 ms, the transmission step will not

begin before 8 ms. Once the module time reaches 8 ms, the transmission step is

executed within 2 ms.

Table 4.1 : Applications Information.

Application Sub steps Interval (ms) Application
Name RX Process TX Period (ms)
Anemo [0-3] [3-8] [8-10] 20

FW [12-14] [14-17] [17-19] 20
FM [0-5] [5-15] [15-19] 20

MCDU [0-5] [5-17] [17-20] 20
AP [0-4] [4-12] [12-15] 15

In the OMNET++ implementation, each sub-step is treated as an individual event,

and the duration of each event is simulated using the waitAndEnqueue method, which

was explained in Chapter 3. Before executing each sub-step, the waitAndEnqueue

method is invoked. Thus, the overhead of each sub-step, such as frame transmission

and reception, is also simulated. The pseudo-code of the FM’s process will be

as in Algorithm B.1. Also, the graphical representation of the FM’s sub-steps is

demonstrated in Figure 4.2.

30

Figure 4.2 : FM Process Timeline.

4.2 Simulation Outcomes

The scenarios where the DswApp
max occurs for all VLs, as determined by equation 2.4,

are depicted in Figure 4.3. Orange blocks represent sender applications, while blue

blocks denote receiver applications. The DswApp
max for VL 1 may be observed in the

8th activation of Anemo. Since the frames, Z and M that will be sent are created at the

processing step; the DswApp
max calculation should start 148 ms after the start of Module

1 for 8th activation. Since Anemo sends the two frames simultaneously, the second

frame must wait 2 ms at the ES due to the BAG time. When the second frame leaves

ES, the reception step of AP has already begun. Consequently, the second frame waits

for the destination application’s new period on the sampling port of the destination

application. Furthermore, suppose the transmission step of the 9th activation of Anemo

is completed after at least 1 ms (169 ms). In that case, the second frame of the 8th

activation will not be overwritten by the frames of the 9th activation. Based on these

assumptions, the DswApp
max for VL 1 can be computed as 21 ms. The DswApp

max for

other VLs can be calculated using a similar approach.

The comparison between the simulation and theoretical results for DswApp
max is

presented in Figure 4.4. The results indicate that the OMNET++ simulation outcomes

align with the theoretical results, confirming the validation of the developed modules.

However, it is essential to note that the simulation results are not identical to the

theoretical results. This discrepancy arises from utilizing the uniform function in

the OMNET++ simulator. The uniform function is responsible for generating the

31

Figure 4.3 : Worst Case Delay Scenario.

execution times for the sub-steps of the applications. The generation of the execution

time is performed randomly with a uniform distribution. The function takes two

parameters: the lower and upper bounds of the execution time range. While the first

parameter sets the lower bound, the second parameter determines the upper bound. The

function generates a random time within the range of [lower bound, upper bound),

meaning it cannot generate the worst-case execution time. As a result, achieving

perfectly matching results between simulation and theory is unattainable because of

the uniform function.

Figure 4.4 : Theoretical vs Simulation Application Delay.

32

In addition to the application delay, the OMNET++ proposed modules are verified by

examining the relationship between BAG and packet loss. Generally, IMA systems

should be designed to ensure packet loss does not happen. However, in the given

scenario [2], transmitting Z and M in separate frames leads to packet loss in VL 1. The

packet loss occurs due to the relationship between the BAG value and the period of the

destination partition (AP). Since the BAG value for VL 1 is smaller than the period of

the destination partition (AP), some packets overwrite older ones until the subsequent

activation of the destination partition (AP). However, the packet loss can be reduced

by aligning the BAG value with the period of the destination partition. When the BAG

value equals or exceeds the period, the destination application does not experience any

packet loss. The packet loss ratio for VL 1 is depicted for various BAG values in

Figure 4.5.

Figure 4.5 : Packet Loss and BAG Relationship.

4.3 Advantages of the IMA Simulation Model

In this section, the contribution of the simulation model to the IMA development

process will be examined using the scenario in which simulation validation is

performed. Hardware images are utilized instead of the placeholder blocks in the

network topology demonstration to show the contribution clearly. The network

topology with hardware images is shown in Figure 4.6. While TTTech Switch A664

Lab v2.0 image is used for AFDX switch [27], the ES hardware image is taken by [28].

33

Figure 4.6 : Network Topology with Hardware Images.

In the aviation sector, redundant critical components are located in aircraft to increase

fault tolerance. These components can perform the main components’ tasks when the

main components fail. Also, the redundant components can be used to obtain more

accurate data. For example, two sensor systems that produce the same raw data can

be used in avionic systems to increase the reliability of the data obtained from sensors.

The application that interprets these sensor data applies a sensor fusion algorithm to

the raw data for getting more accurate results. When the redundancy method is applied

to the Navigation and Guidance System scenario, the network topology with redundant

components can be seen in Figure 4.7. It can be easily seen that cable complexity which

makes the testing process cumbersome, is increasing with redundant modules. While

there are only ten cables in the non-redundant topology, the cable number becomes

twenty-four in the redundant network topology. In physical testing, increased cable

usage makes the testing setup more error-prone and decelerates the testing process. In

addition, as the complexity of IMA systems increases, the physical space required for

testing also increases. Conducting physical tests for systems of a certain size becomes

nearly impossible. However, since simulation models do not occupy any physical

space, engineers can test highly complex systems, such as those implemented in the

A380 [10], without hassle.

Furthermore, the configuration of the AFDX switches must be updated with additional

modules by adding new port-MAC mappings. Although this update can be done

by adding just a few lines of code to the simulation configuration file in the

34

simulation-based development process, the hardware content of the AFDX switches

must be updated in physical testing. For example, the developer must load a newer

.bit file to each AFDX switch if FPGA is preferred as hardware in the AFDX switch.

Also, simulation can increase the efficiency of the development process in terms of

money. For instance, engineers may want to add switches and End Systems to their

IMA system. Thanks to the simulation, they can observe the effect of the new network

devices addition without buying them physically.

Figure 4.7 : Redundant Network Topology with Hardware Images.

In OMNET++, implementing scenarios with redundancy components is straightfor-

ward. The developer only needs to make a copy of the existing components and paste

them into the model. After establishing the necessary connections, the components

become operational within the model. The scenario’s redundant and non-redundant

network topology can be seen in the Figure 4.8 for OMNET++.

35

(a) Non-Redundant OMNET++ Scenario.

(b) Redundant OMNET++ Scenario.

Figure 4.8 : Network Topology of the Scenario for OMNET++.

36

5. CONCLUSIONS AND FUTURE WORK

When developing an IMA system, it is essential to consider relevant standards. ARINC

653 and AFDX have received significant attention and consideration among these

standards. These standards have numerous configuration parameters and offer various

design options for engineers and designers. However, determining the optimal system

configuration can be a complex task. In this regard, conducting a substantial portion

of the IMA system design process within a simulation environment can save limited

resources such as time and money.

Several options for selecting a simulation environment are available, including coding

a custom simulator using tools like UPPAAL, MATLAB/SIMULINK, OPNet, NS-2,

NS-3, and OMNET++. Among these options, open-source network simulators such

as NS-3 and OMNET++ appear more favorable due to their code re-usability and

source code access. Among the open-source simulators, OMNET++ is chosen for

its superior scalability and extensibility compared to the alternatives. Additionally,

OMNET++ benefits from an active community and comprehensive frameworks like

INET, which provide a detailed implementation of the OSI layer. To the best of our

knowledge, this thesis represents the first effort to design the necessary components

for building an IMA System within a network simulator. Thanks to this work,

the communication performance of an IMA system can now be evaluated without

physical implementation. Furthermore, while previous studies have considered various

communication overheads such as link-level and buffer delay, they have yet to include

the overheads of receiving and sending user calls to their application delay calculations.

Including these overheads will enhance the accuracy of the delay calculation.

The ARINC 653 standard explains all the necessary aspects for building a complete

operating system, including the management of partitions and processes and

communication between them. However, for this thesis, designing a fully compatible

O/S adhering to the ARINC 653 standard is not practical or necessary. Instead,

37

the focus is on evaluating the communication performance by activating partitions

and processes following the ARINC 653 standard. While the partitionManager and

partition modules are developed to perform temporal control of the applications,

process and processManager modules are designed for the implementation and

management of the tasks that perform communication operations respectively. The

functionality of the developed modules is verified through a scenario that includes

basic send and receive operations. The objective is to assess whether the transfer of

packets can be executed successfully.

Complete validation does not only include functional behavior checking; the temporal

behavior of the proposed modules should also be examined. Thus, the modules

are tested with a scenario using different metrics: application delay and packet loss

ratio. It is observed that the application delay obtained in the simulation environment

converged to the theoretical calculations. Also, packet loss is observed in VL 1 of the

scenario. The reason for packet loss is the difference between the BAG of VL 1 and the

period of the destination application. As expected, packet losses decrease as the BAG

value converges to the destination application’s period, and when they are equalized,

the packet loss is removed. These two outcomes prove that processes are operated at

the correct timing.

As future work, the scope of the designed ARINC 653 modules can be expanded.

For example, processes are designed to operate aperiodically, and their time capacity

is infinite. Thus, implementing a periodic process and adding control of the time

duration increases the model’s realism. Also, implementing synchronization objects

makes the model more flexible for the scenario considering concurrent access. Besides,

developing a VL scheduler algorithm that considers the MTF when choosing AFDX

packets from the VL queue is possible. This algorithm may reduce latency and improve

the fairness of packet egress.

Furthermore, the proposed IMA modules can be used with standards such as Ethernet,

Time-Triggered Ethernet (TTEthernet), and Time-Sensitive Networking (TSN). For

example, many networking devices in the market only support the Ethernet standard,

although most of the IMA system uses TTEthernet and TSN. However, the networking

38

devices that only support Ethernet should also be integrated IMA system without

violating ARINC 653 partitioning method. As the architecture of each network stack

may differ, the performance of network communication can vary across different

IMA systems. Consequently, selecting an appropriate network topology and network

stack architecture becomes challenging as the IMA system grows in complexity. The

proposed IMA modules allow for examining various network stack architectures,

topologies, and devices without needing physical implementation. This ability enables

the evaluation and exploration of different configurations and setups in a virtual

environment, eliminating the need for physical effort.

Also, it is possible to develop a tool that automates the testing process for OMNET++.

For instance, instead of the developer manually changing each possible VL BAG value

when examining the second validation metric (BAG-Packet Loss Ratio), a software

tool can execute each simulation scenario with different BAG values. Additionally,

the number and diversity of input parameters of a scenario may be high. However,

in such cases, a suitable cost function should be defined to determine the outcomes of

simulation scenario tests. Thanks to the automatization tool, optimum input values that

the developer may overlook within an extensive input parameter set can be obtained.

39

40

REFERENCES

[1] Akpolat, E.C., Şeker, M., Cevher, S., Şapla, E. and Ata, S. (2020). An Omnet++
Simulation for Performance Analysis of ARINC 664 P7 Avionics Data
Network, 2020 28th Signal Processing and Communications Applications
Conference (SIU), pp.1–4.

[2] M. Lauer, J. Ermont, C.P. and Boniol, F. (2010). Analyzing End-to-End
Functional Delays on an IMA Platform, 4th International Symposium on
Leveraging Applications, volume6415, pp.243–257.

[3] Heimbigner, D. and McLeod, D. (1985). A Federated Architecture for Information
Management, 3(3), 253–278, https://doi.org/10.1145/4229.
4233.

[4] Gaska, T., Watkin, C. and Chen, Y. (2015). Integrated Modular Avionics - Past,
present, and future, IEEE Aerospace and Electronic Systems Magazine,
30(9), 12–23.

[5] Wind River Systems (2022). VxWorks 653 Multi-core Edition, Wind River
Systems, Inc., white paper.

[6] TUBITAK-BILGEM. https://bilgem.tubitak.gov.tr/en/
content/rtos/gis-real-time-operating-system, date
retrieved: 09.05.2023.

[7] Airlines Electronic Engineering Committee (AEEC) (2010). ARINC 653
Avionics Application Software Standard, ARINC Specification 653, part
1.

[8] Fuchs, C.M., Schneele, S. and Klein, A. (2012). The Evolution of Avionics
Networks From ARINC 429 to AFDX.

[9] Gaska, T., Watkin, C. and Chen, Y. (2018). Model-driven Development
and Simulation of Integrated Modular Avionics (IMA) Architectures,
EUROSIM Scientific Membership Journal, 28(2), 61–66.

[10] Butz, H. and Sas, A. (2007). THE AIRBUS APPROACH TO OPEN IN-
TEGRATED MODULAR AVIONICS (IMA): TECHNOLOGY, METH-
ODS, PROCESSES AND FUTURE ROAD MAP.

[11] Badache, N., Jaffres-Runser, K., Scharbarg, J.L. and Fraboul, C. (2014). Man-
aging temporal allocation in Integrated Modular Avionics, Proceedings
of the 2014 IEEE Emerging Technology and Factory Automation (ETFA),
pp.1–8.

41

[12] Rejeb, N., Ben Salem, A.K. and Ben Saoud, S. (2017). AFDX simulation based
on TTEthernet model under OMNeT++, 2017 International Conference
on Advanced Systems and Electric Technologies (ICASET), pp.423 −
−429.

[13] Yang, Q., Lu, H. and Tu, X. (2020). Simulation and Experiment of AFDX
Network Based on OMNeT++, 2020 Chinese Automation Congress
(CAC), pp.5849–5854.

[14] Li, X. and Xiong, H. (2009). Modelling and simulation of integrated modular
avionics systems, 2009 IEEE/AIAA 28th Digital Avionics Systems
Conference, pp.7.B.3–1–7.B.3–8.

[15] Xiang, W. and He, F. (2018). End-to-End Delay Analysis Considering Partition
Scheduling On a DIMA Platform, TENCON 2018 - 2018 IEEE Region 10
Conference, pp.1548–1553.

[16] Distributed, E. and (DEIS), I.S. https://docs.uppaal.org/, date
retrieved: 25.04.2023.

[17] P. Han, Z. Zhai, B.N.U.N. and Kristjansen, M. (2019). Schedulability Analysis
of Distributed Multicore Avionics Systems with UPPAAL, Journal of
Aerospace Information Systems, 16(11), 1–27.

[18] Corraro, G., Bove, E., Garbarino, L. and Memoli, E. (2018). A novel approach
for the development and coding of avionics functionalities for IMA
architectures, 2018 IEEE/AIAA 37th Digital Avionics Systems Conference
(DASC), pp.1–8.

[19] Gökçe, P, I. (2023). AFDX (AVIONICS FULL-DUPLEX SWITCHED ETHERNET)
NETWORK SIMULATION AND PERFORMANCE ANALYSIS.

[20] Akpolat, E.C., Faruk Gemici, , Demir, M.S., Hökelek, , Coleri, S. and Çırpan,
H.A. (2021). Genetic Algorithm Based ARINC 664 Mixed Criticality Op-
timization Using Network Calculus, 2021 IEEE International Conference
on Communications Workshops (ICC Workshops), pp.1–6.

[21] Yeniaydın, M., Gemici, F., Demir, M.S., Hökelek, , Coleri, S. and Tureli,
U. (2021). Priority Re-assignment for Improving Schedulability and
Mixed-Criticality of ARINC 664, 2021 IFIP Networking Conference
(IFIP Networking), pp.1–6.

[22] Bauer, H., Scharbarg, J.L. and Fraboul, C. (2009). Applying and optimizing
trajectory approach for performance evaluation of AFDX avionics
network, 2009 IEEE Conference on Emerging Technologies Factory
Automation, pp.1–8.

[23] Lu, J., Xiong, H., He, F. and Wang, R. (2020). Enhancing Real-Time and
Determinacy for Network-Level Schedule in Distributed Mixed-Critical
System, IEEE Access, 8, 23720–23731.

42

[24] Airlines Electronic Engineering Committee (AEEC) (2009). ARINC 664 P7-1
Avionics Full-Duplex Switched, ARINC Specification ARINC 664 P7-1,
part 7.

[25] Discrete-event simulation. https://en.wikipedia.org/wiki/
Discrete-event_simulation, Retrieved May 1, 2023, from
http://en.wikipedia.org.

[26] David Wu, A.V. https://doc.omnetpp.org/omnetpp/manual, date
retrieved: 01.05.2023.

[27] TTTech. TTE-Switch A664 Lab v2.0, https://www.
tttech.com/aerospace/products/switches/
tte-switch-a664-lab-v2-0.

[28] Speedgoat. IO781: ARINC-664 Part 7 / AFDX protocol support with
Simulink, https://www.speedgoat.com/products/
communication-protocols-arinc-afdx-io781.

43

44

APPENDICES

APPENDIX A : Pseudo Code of the OMNET++ Modules
APPENDIX B : A process’ co-routine of the Example Scenario

45

46

APPENDIX A : Pseudo Code of the OMNET++ Modules

Algorithm A.1 Activity Methods of Simple Send&Receive Process
/* The co-routine of the transmitter process.*/
function ACTIVITY

while 1 do
msg← RECEIVE();
if msg == StopProcess then

processState←PASSIVE;
else if msg == StartProcess then

processState←ACTIVE;
WAITANDENQUEUE(WAITACTIONTIME, &WAITQUEUE);
if Stop Process In waitQueue then

CONTINUE();
else

a f dxMsg← CREATEJOBFORMODULE();
SEND(a f dxMsg, APEXPORTNAME, APEXPORTINDEX);
RESCHEDULEPROCESS();

end if
end if

end while
end function

/* The co-routine of the receiver process.*/
function ACTIVITY

while 1 do
msg← RECEIVE();
if msg == StopProcess then

processState←PASSIVE;
else if msg == StartProcess then

processState←ACTIVE;
WAITANDENQUEUE(WAITACTIONTIME, &WAITQUEUE);
if Stop Process In waitQueue then

CONTINUE();
else

a f dxMsg← RECVAFDXMSG();
RESCHEDULEPROCESS();

end if
end if

end while
end function

47

Algorithm A.2 Initialize and Activity Methods of Partition Manager
/*Construct Data Structures and Send a Self-Message for the First Partition*/
function INITIALIZE

partitionNumber← GATESIZE(SCHEDULER_OUT);
modulePartitionIn f o← NEW PARTITIONINFO[partitionNumber];
for i = 0 to partitionNumber do

partitionGate← GATE("SCHEDULER_OUT$O", i)->GETNEXTGATE();
partitionModule← partitionGate->GETOWNERMODULE();
partitionId← partitionModule->PAR("ID");
partitionsGate[partitionId]←i;

end for
ma jorFrameXML← PAR("MAJORFRAMEXML").XMLVALUE();
xmlPartition←ma jorFrameXML->GETELEMENTSBYTAGNAME("PARTITION");
for partitionIterator = xmlPartition.begin to xmlPartition.end do

modulePartitionIn f o[i].ID← partitionIterator->GETATTRIBUTE("ID");
modulePartitionIn f o[i].duration← partitionIterator->GETATTRIBUTE("DURATION");
modulePartitionIn f o[i].o f f set← partitionIterator->GETATTRIBUTE("OFFSET");
i++;

end for
prevPartitionIndex←−1;
nextPartitionIndex← 0;
SCHEDULEAT(SIMTIME() + modulePartitionIn f o[nextPartitionIndex].OFFSET, TIMERMSG);

end function

/* The co-routine of the processManager.*/
function ACTIVITY

msg←NULL
while 1 do

msg← RECEIVE();
if prevPartitionIndex > 0 then

prevPartitionId←modulePartitions[prevPartitionIndex].partitionId;
SENDDELAYED(STOPMSG,BIGCONTEXTSWITCH,SCHEDULER_OUT$O,
partitionsGate[prevPartitionId]);

end if
if nextPartitionIndex > 0 then

nextPartitionId←modulePartitions[nextPartitionIndex].partitionId;
SENDDELAYED(STARTMSG,BIGCONTEXTSWITCH,SCHEDULER_OUT$O,
partitionsGate[nextPartitionId]);

end if
prevPartitionIndex← CALCULATENEXTINDEX();
nextPartitionIndex← CALCULATEPREVINDEX();
timeO f f set← CALCULATETIMEOFFSET();
SCHEDULEAT(SIMTIME() + timeO f f set , TIMERMESSAGE);

end while
end function

48

Algorithm A.3 Process Manager Methods
/* The method deactivates all connected process.*/
function DEACTIVATEALLPROCESS

for i = 0 to processNumber do
SETPROCESSSTATE(i, PASSIVE);
SENDDELAYED("PROCESS STOP", processSwitchTime, i);

end for
end function

/* The method activates all connected process.*/
function ACTIVATEALLPROCESS

for i = 0 to processNumber do
SETPROCESSSTATE(i, ACTIVE);

end for
end function

/* The method selects an active process with the highest priority for all connected
processes.*/
function SCHEDULEPROCESS

currPrio←−1;
procIndex←−1;
for i = 0 to processNumber doPRIO(i)

if ISACTIVE(i) and currPrio < PRIO(i) then
currPrio← PRIO(i)
procIndex← i;

end if
end for

if procIndex ̸=−1 then
sendDelayed("PROCESS START", processSwitchTime, i);

end if
end function

/* The co-routine of the process manager process.*/
function ACTIVITY

while 1 do
msg← receive();
if msg == StopProcess then

deactivateAllProcess();
else if msg == StartProcess then

deactivateAllProcess();
scheduleProcess();

else
throwcRuntimeError("PARTITION RECEIVE UNDEFINED MESSAGE!");

end if
end while

end function

49

50

APPENDIX B : A process’ co-routine of the Example Scenario

Algorithm B.1 The co-routine of the FM process
function ACTIVITY

while 1 do
msg← receive();
if msg == StopProcess then

processState←PASSIVE;
else if msg == StartProcess then

processState←ACTIVE;
/* Wait for the rx substep of the FM */
WAITRANDOMTIME(0, GETRXTIME(), WAITTIME);
if Stop Process NOT in waitQueue then

a f dxMsg← CREATEJOBFORMODULE();
/* Wait for the remaining time of the FM’s rx substep */
WAITREMAININGTIME(GETRXTIME(), WAITTIME);
if Stop Process NOT in waitQueue then

/* Wait for the process sub-step of the FM */
WAITRANDOMTIME(0, GETPROCESSTIME(), WAITTIME);
if Stop Process NOT in waitQueue then

/* Wait for the remaining time of the FM’s process substep */
WAITREMAININGTIME(GETPROCESSTIME(), WAITTIME);
if Stop Process NOT in waitQueue then

/* Wait for the tx sub-step of the FM */
WAITRANDOMTIME(0, GETTXTIME(), WAITTIME);
SEND(a f dxMsg, APEXPORTNAME, APEXPORTINDEX);
RESCHEDULEPROCESS();

end if
end if

end if
end if

end if
end while

end function

51

52

CURRICULUM VITAE

Name SURNAME: Mümin Göker GAYRETLİ

EDUCATION:

• B.Sc.: 2019, Istanbul Technical University, Electric Electronics Faculty, Electronics
and Communication Engineering

• B.Sc.: 2020, Istanbul Technical University, Computer and Informatics Faculty,
Computer Engineering (Double Major)

PROFESSIONAL EXPERIENCE:

• 2019, Graduated with second-highest honors from ITU Electronics and Communi-
cation Engineering

• 2019-2021, Part-Time Embedded Developer at ITU Aerospace Research Center

• 2020-2023, Software Engineer at the TUBITAK BILGEM

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS:

• Gayretli, M. G., Yeniçeri, R., and Demir, M. S., (2023). Partitioning
Network Stack Implementation in OMNET++, 2nd INTERNATIONAL GRADUATE
RESEARCH SYMPOSIUM IGRS’23, March 16-18, 2023 Istanbul, Turkey.

• Gayretli, M. G., Yeniçeri, R., Demir, M. S., and Hökelek, I, (2023). An OMNET++
Simulation Model for IMA Systems, 11nd IEEE International Black Sea Conference
on Communications and Networking, July 5-7, 2023 Istanbul, Turkey.

53

OTHER PUBLICATIONS, PRESENTATIONS AND PATENTS:

• Hüner, Y., Gayretli, M. G., and Yeniçeri, R, (2021). HW/SW Design Space
Exploration of A Complementary Filter on Zynq SoC, 8th International Conference
on Electrical and Electronics Engineering (ICEEE), Antalya, Turkey, pp. 1-5.

54

