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OMNET++ SIMULATION MODEL FOR
INTEGRATED MODULAR AVIONICS

SUMMARY

As the number and variety of electronic devices in aircraft continue to grow,
the traditional federated architecture needs to be revised to meet these vehicles’
size, weight, and power (SWaP) constraints. Integrated Modular Avionics (IMA)
architecture has emerged as a promising solution for the SWaP problems. The
IMA architecture optimizes the utilization of size, weight, and power by centralizing
multiple application tasks onto a single hardware platform. When developing an IMA
system, it is crucial to consider the relevant standards. ARINC 653 and ARINC 664
P7 (also known as AFDX) are two prominent standards that have garnered considerable
attention and recognition within this context. However, these standards have numerous
configuration parameters and offer various design options for engineers and designers.
Therefore, determining the system configuration for optimal network performance
is complex. In this regard, performing a significant portion of the IMA system
design process in a simulation environment can efficiently conserve limited resources,
including time and finances. This thesis proposes a simulation model of the IMA
system to solve these issues.

It is neither logical nor necessary to simulate all the rules defined by ARINC 653
and AFDX standards to measure the network performance of applications. Therefore,
the first step of the thesis is to develop a system model of ARINC 653 concepts and
AFDX devices to identify the necessary components used to measure communication
performance. It is necessary to design components such as partition, partition
manager, process, and process manager to manage avionic tasks according to ARINC
653 standard. The role of the partition manager component is to handle the
initiation and termination operations of the required partition components based on the
Major Time Frame (MTF). On the other hand, the partition component encompasses
sub-components, including the process manager and process. Furthermore, the
partition should relay the initiation and termination requests it receives to the process
manager. As for the process manager, it executes the operations of stopping or starting
process according to the received requests. In addition to managing avionic tasks, it is
also necessary to have communication between the partitions to measure the system’s
communication performance. Therefore, it is essential to develop components that
perform the sampling and queuing communication modes defined by the ARINC 653
standard.

Two devices must be modeled for the AFDX standard: the End System (ES) and the
Switch. The ES serves as the network device for communication between processes
in the network. When a process wants to send a message, it writes the message
to the sender communication ports within the ES. After writing the message, the
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device applies techniques such as BAG, data packet size compatibility, and redundancy
management mechanisms to the packet before sending it to the network. On the
receiving side, the ES receives the message from the physical link and performs
operations like integrity checking and redundancy management. Then, the packet is
written to the appropriate receiver communication port. When the receiver process
is activated, it can read the message from the port. The switch device connects
the ES in the network and performs filtering, policing, and switching tasks. While
filtering ensures that packets comply with data packet size limitations, policing checks
adherence to BAG rules. Also, switching determines the appropriate output ports for
incoming packets.

The devices and structures developed in the system model must be converted to the
simulation model in a simulation environment. OMNET++ offers better scalability and
extensibility compared to other simulation environments. Additionally, we can benefit
from an active community, open-source code, and frameworks like INET that provide
a detailed implementation of the OSI layer. That is why OMNET++ has been chosen
as the environment for implementing a simulation model of the developed system
model. In addition to the partition, partition manager, process, and process manager
components specified in the system model, two additional components have also
been developed for the simulation model of the ARINC 653 concepts: port channel
and network transmitter driver. The port channel connects the receiver process to
the receiver communication port of the ES, while the network transmitter driver is
responsible for writing the data packets sent by the sender process to the correct sender
communication port within the ES.

For the AFDX device, a previously developed model [1] has been utilized. The same
model from the paper has been used for the switch device. However, additional
enhancements are required for the ES. In the existing model, the ES was designed
solely for performing measurements at the device level, so no sender and receiver
communication ports were designed. In addition to communication ports, the design
does not include the demux component, which is responsible for writing messages
to the appropriate receiver communication ports. The newly developed simulation
model can handle packet reception and transmission operations by adding these two
components to the previous simulation model.

The developed simulation model is tested to determine their capability to handle packet
reception and transmission tasks successfully. For this purpose, a scenario was created
in the network model, consisting of two IMA modules referred to as sender and
receiver. The sender module generates data packets and transmits them to the receiver
module. The message integrity of the received data by the process of the receiver
module is observed on the simulation console, confirming the successful execution of
packet reception and transmission operations.

It is essential to test not only the packet reception and transmission operations but also
the timing of component executions to ensure proper functioning. A more advanced
scenario from a previous study has been utilized [2]. Initially, the theoretical delays
of the Virtual Link (VL) in the scenario are calculated using the application delay
formula that includes software-based overheads. Then, the application delays are
obtained through simulation, and it is observed that they converge with the theoretical
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values. Furthermore, the sender application in VL 1 of the scenario sends two data
packets without any time gaps. However, since the design of the receiver and sender
applications did not consider this, the current BAG value of the VL cannot prevent
packet loss. The expectation is that reducing packet loss can be achieved by increasing
the BAG value to match the period of the receiver application. This relation has been
confirmed through testing with various BAG values. The consistency between the
theoretical and simulated application delays and the expected relationship between
BAG and packet loss indicates that the components are executed at the correct timing.

The system design has been accurately transferred to the simulation environment,
allowing for performance measurement in various IMA scenarios. Future
developments can explore advanced technologies, such as using devices that support
Time-Triggered Ethernet (TTEthernet) and Time-Sensitive Networking (TSN) instead
of AFDX-compliant devices. Additionally, the ARINC 653 standard model has been
designed to model a single processor system, but it can be further enhanced to enable
parallel execution of applications and conduct complex measurements.
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ENTEGRE MODULER AVIYONIKLER ICIN
OMNET++ SIMULASYON MODELI

OZET

Ik icat edilen transistorlerin boyutlar1 oldukca biiyiik oldugu igin bu transistorler
ile olusturulan entegre devreler ve bilgisayarlar hava araclarinin boyut ve agirlik
gibi gereksinimlerini kargilayamamaktaydilar.  Ancak giin gectikge bir entgere
devre iizerine yerlestirilebilecek tiimdevre sayisinin siirekli artmasi hava araglarinda
kullanilabilecek avionik sistemlerin cesitliligi arttirmaktadir. Ancak avionik
sistemlerin cesitliliginin artmasi boliimiin baginda bahsedilen boyut ve agirlik gibi
gereksinimlerin saglanmasinda tekrardan sikintilara neden olmustur. Bu noktada
Entgre Modiiler Aviyonik (Integrated Modular Avionics - IMA) mimarisi bu probleme
bir ¢oziim olarak Ortak Entegre Aviyonik Calisma Grubu (Joint Integrated Avionics
Working Group - JIAWG) tarafindan ilk olarak F-22 savas ucagi programi kapsaminda
onerilmistir. IMA farkli kritiklige sahip aviyonik gorev bilgisayarlarinin yaptigi isleri
tek bir bilgisayar tarafindan yapilmasina olanak saglayan bir mimaridir.

IMA mimarisinin bir ucakta tam anlamiyla saglanabilmesi bir ¢ok farkli standard
geligtirilmistir. Bunlardan ikisi ARINC 653 ve ARINC 664 P7 (Avionics Full-Duplex
Switched Ethernet : AFDX) standardlaridir.  ARINC 653 standardi, aviyonik
gorev bilgisayar iizerinde kullamlmak iizere tasarlanan Gergcek Zamanl Isletim
Sisteminin (GZIS) kurallarini ve servislerini tanimlar. GZIS sayesinde de donanim
tizerindeki hesaplama birimleri ve Girig/Cikis (G/C) cihazlar1 gibi kaynaklar aviyonik
uygulamalara paylastirilabilir. Bu paylasim boliimleme (partitioning) adindaki bir
yontem ile gerceklestirilir. ARINC 653, donanimin ortak kaynaklar1 kullanan her bir
uygulamay1 bolme (partition) olarak adlandirir. Bélmeler Ana Zaman Yapis1 (Major
Time Frame : MTF) olarak adlandirilan zaman akigi tizerine yerlestirilir. Her bir
bolme, MTF iizerinde Bolme Zaman Cercevesi (PTW : Partition Time Window) olarak
isimlendirilen bir zaman aralifina sahiptir ve donanim iizerindeki kaynaklara sadece
bu zaman araliginda erisebilir. Bolme, sadece sanal bir entiti oldugu icin sensor
verisi okuma ve motor kontrolii gibi gorevleri gerceklestiremez. Bu tarz gorevler
islem (process) ad1 verilen ¢alisma birimleri tarafindan gerceklestirilir. Her bolmenin
kendine ait islemleri mevcuttur ve bu islemler farkli kritiklik degerlerine sahiptir.
Zaman, PTW’nun MTF iizerindeki baslangic noktasina ulastifinda, bolmedeki en
yiiksek kritiklige sahip islemm donanimin kaynaklarina erismek iizere islem yoneticisi
tarafindan secilir ve calistirilir.

AFDX standardi temel olarak, IMA sistemindeki ag cihazlarinin band genisliginin
uygulamalara paylastirilmasinda kullanilan yontem ve kurallari tanimlar. Bir génderici
aviyonik uygulama, bir veya birden fazla alici aviyonik uygulamaya ayni veriyi
iletebilir. Bu veri iletiminde kullanilan uygulamalarin olusturdugu alt ag, sanal hat
(VL : Virtual Link) olarak isimlendirilir. AFDX, VL'de gonderici uygulamanin zaman
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farki olmaksizin art arda paket yollamasini onleyen Band genisligi Tahsis Aralig
(Bandwidth Allocation Gap : BAG) kuralin1 tanimlar. Bu kurala gore bir VL kaynak
uygulamasinin gonderdigi iki veri paketi arasinda gegmesi gereken minimum bir siire
vardir. Aviyonik islem bu kurala uymadan veri paketi gonderse dahi U¢ Sistem (End
System : ES) ve Anahatar olarak adlandirilan ve AFDX’in kurallarinin uygulanmasini
saglayan ag cihazlar1 bu veri paketlerini donanim iizerinde depolar ve BAG kuralimi
saglayana kadar bekletir. Bu kural saglandiktan sonra paketler alic1 uygulamalara
gonderilmek iizere aga gonderilir. Bunun yam sira agda iletilen her bir veri paketi
boyutunun maksimum (Spyax) ve minimum (Syn) degerleride belirlenmelidir. Bu veri
boyutu araligini ihlal eden paketler ES ve Anahtar tarafindan diisiiriilmektedir. Bu iki
kural, bir VL'in band genigligini tanimlar.

Bahsedilenlere ek olarak, ARINC 653 ve AFDX standardlar1 kullanildig1 sistemlerde
daha bir ¢ok kuralin ve parametrenin tanimlanmasina neden olur. Bu durum sistem
tasarimindaki de8isken sayis1 arttirmakta ve optimum ag performansini verecek sistem
tasarimint ve parametreleri bulmayi zorlastirmaktadir. Fiziksel testlerin fazlaligi
ise projelerin maliyetini arttirir ve teslim tarihlerinde gecikmelere neden olur. Bu
sorunlart ¢cozmek adina tasarlanan IMA modeli simulasyon ortaminda gerceklenebilir.
Boylelikle miihendisler daha fazla denemeyi daha kisa bir zamanda gerceklestirerek
iirinlerin pazara siirlim siiresini kisaltabilirler. Bunlara ek olarak sisteme yeni bir
donanim eklemek istediklerinde donanimi satin almak yerine simulasyon ortamindaki
sisteme donanimin modelini ekleyebilirler. Simulasyon ortaminda yeterli bir gelisme
goriilirse donanim fiziksel olarak alinabilir. Bu tezde, ARINC 653 ve AFDX
standardlarini saglayan IMA sisteminin bir benztimi OMNET++ simulatoru iizerinde
gerceklenmistir.

Uygulamalarin ag performansini 6l¢gmek adina, ARINC 653 ve AFDX standardlarinin
tanimladig1 biitiin kurallar1 simulasyon ortaminda saglamak hem mantikli hem de
gerekli degildir. Bu yiizden ilk olarak bir sistem modeli gelistirilerek haberlesme
performansin1 dlgmek icin gerekli olan bilesenler belirlenmistir.  Haberlesme
performans Ol¢iimii yapmak i¢in temelde sistemde bulunan islemlerin standarda uygun
olarak secilip ¢alistirilmas1 gerekmektedir. Bu gorevi yapmak adina bolme, bolme
yoneticisi, islem ve islem yoneticisi bileseleri tasarlanmalidir. Bolme yoneticisi
modiilii, MTF’nin icerigine gore gerekli olan bdlme modiillerinin baglatilmasi ve
durdurulmast operasyonlarin1 gerceklestirmelidir. ~ Bolme modiili ise iginde alt
modiil olarak islem yoneticisi ve islem modiillerini barindirmalidir. Ayrica bolme
modiilii, kendisine gelen baglatma ve durdurma isteklerini islem yoneticisi modiiliine
aktarmalidir. Islem yoneticisi modiiliide kendisine gelen bu isteklere gore islemleri
durdurma veya kosturma operasyonlarini gerceklestirir. Bu bilesenler, aviyonik
gorevlerin ARINC 653 standardina uygun olarak yonetilmesini saglarlar. Ancak
buna ek olarak bolmeler arasindaki haberlesme de sistemin haberlesme performansini
O0lcmek adina gereklidir. Bunun icin standard tarafindan tanimlanan ornekleme ve
kuyruklama haberlesme modlarin1 gercekleyen bilesenlerde gelistirilmelidir.

AFDX standard i¢in modellenmesi gereken iki adet cihaz vardir: ES ve Anahtar. ES,
islemlerin agda iletisim kurmalarim1 saglayan cihazdir. Bir islem, mesaj gondermek
istedigi zaman, ilk olarak olusturulan mesaj1 ES icinde bulunan génderici haberlesme
portlarina yazar. Mesaj yaziminin ardindan cihaz; BAG, veri paket boyutu uyumlulugu
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ve fazlalik giizergah mekanizmasi gibi yontemleri paket iizerinde uygular ve paketi
aga gonderir. Daha sonra alic1 tarafta mesaji alan ES, paketi biitiinliikk denetimi ve
fazlalik denetimi gibi islemlerden gegirerek uygun alict haberlesme portuna yazar. Son
olarak alic1 iglem aktive edildiginde mesaj1 bu porttan okur. Anahtar ise agdaki ES’leri
birbirine baglamada kullanilir ve temelde 3 adet gorevleri vardir: siizgecleme, ilkeleme
ve anahtarlama. Siizgecleme, anahtara gelen paketlerin VL veri paketi boyutu kisitinin
saglamp saglanmadigim kontrol eder. Ote yandan BAG aralig1 kuralmin kontrol
edilmesi ise ilkeleme olarak adlandirilir. Anahtarlama 6zelligi ise gelen paketlerin
hangi cikis portlarina yonlendirilmesi gerektigini belirleyen kuraldir. Haberlesmenin
AFDX standardina gore gerceklestirilmesi icin modellenmesi gereken cihazlar ve
yontemler bu sekilde 6zetlenebilir.

Sistem modeli gelistirilen cihazlarin ve yapilarin simulasyon ortaminda aktarilmasi
gerekmektedir. OMNET++, diger simulasyon ortamlarina kiyasla daha iyi
Olceklenebilme ve genisletilebilme 6zelliklerine sahiptir. Ayrica, OMNET++ aktif bir
topluluga sahiptir ve acik kaynak kodlu bir yazilimdir. Bunlara ek olarak ortamda
INET gibi OSI katmaninin ayrintili gerceklenmesini saglayan bir calisma mevcuttur.
Bu sebeplerden otiirli sistem modellerinin simulasyon iizerinde gerceklenmesi i¢in
OMNET++ ortami secilmistir. ARINC 653 standardi i¢in sistem modelinde belirlenen
bolme, bolme yoneticisi, iglem ve islem yoneticisi bilesenlerine ek olarak port kanali
ve ag gonderici siiriictisii olmak lizere iki adet daha bilesen gelistirilmistir. Port
kanalr, alic1 bilesenler ile ES’nin alic1 haberlesme portunu birbirine baglarken, ag
gonderici siiriictisii ise gonderici islemin yolladig1 veri paketlerinin ES’de bulunan
dogru gonderici haberlesme portuna yazilmasindan sorumludur.

AFDX standardi icin, daha oOnceki bir calismada gelistirilen bir model temel
alinmagtir [1]. Anahtar cihazi i¢in ¢alismadaki model ayni sekilde kullanilabilirken
ES cihazi ise ek bilesen gelistirmelerine ihtiya¢ duymaktadir. Calismadaki modelde
ES sadece cihaz seviyesinde Ol¢iim yapmak adina tasarlandigl icin gonderici ve
alict haberlesme portlar: tasarlanmamigtir. Dolayisiyla alici haberlesme portlarina
mesajin yazilmasindan sorumlu olan yonlendirici bileseni de tasarlanmamstir. Onceki
calismadaki ES simulasyon modeli iizerine bu iki bilesen daha eklenerek paket alma
ve verme islemlerini gerceklestirebilecek simulasyon modeli olusturulmustur.

Olusturulan simulasyon modellerinin ilk olarak paket alma ve verme islemlerini
gerceklestirip gerceklestiremedigi test edilmistir.  Bunu test etmek adina ag
modelinde gonderici ve alict olarak isimledirilen iki adet IMA modiilii bulunduran
bir senaryo olusturulmustur.  GoOnderici modiilii, veri paketi olusturulmasi ve
bu paketin alici modele gonderilmesinden sorumludur.  Senaryoda iki modiil
arasinda herhangi bir anahtar cihazi bulunmamaktadir. Bu yiizden gonderilen paket
dogrudan alici modiiliiniin haberlesme portlarina yazilir.  Alict modiildeki islem
baglatildiginda haberlesme portundaki veriyi alir ve icindeki mesaji simulasyon
konsoluna yazdirir. Islem bilesenin aldigi paket verilerinin dogrulugu simulasyon
konsulunda goézlemlenerek paket alma ve verme islemlerinin dogru bir sekilde
yapildig1 anlagilmugtir.

Paket alma ve verme islemlerine ek olarak bilesenlerin dogru zamanlarda ¢alistirilip
caligtirilmadigr da test edilmelidir. Bunun icin bagka bir ¢alismada bulunan daha
gelismis bir senaryo kullanilmistir [2]. Bu senaryoda toplamda 4 adet IMA modiilii
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ve 5 adet uygulama mevcuttur. Sadece bir modiilde 2 adet uygulama mevcut iken
diger modiillerde birer adet uygulama vardir. Ilk olarak gelistirilen yazilim-tabanl
uygulama gecikmesi formiilii ile senaryoda bulunan sanal hatlarin teorik gecikmesi
hesaplanmugitir. Daha sonra her bir VL'in uygulama gecikmesi simulasyon ortaminda
elde edilmsitir. Elde edilen bu iki verinin birbirleri ile uyumlu oldugu gozlenmistir.
Ayrica senaryodaki 1 numarali sanal hattindaki génderici uygulama 2 adet veri paketini
aralarinda zaman farki olmaksizin gondermektedir. Alic1 ve gonderici uygulamalarin
periyot degerleri de bu durum g6z 6niinde bulundurulmadan tasarlandigi icin VL’in
giincel BAG degeri de paket kaybin1 engelleyememektedir. Bu durumu ¢6zmek adina
BAG degeri alic1 uygulamanin periyoduna yaklastirildiginda paket kabinin azalmasi
beklenmektedir. Bu beklenti farkli BTA degerleri i¢in dogrulanmigstir. Teorik ve
simulasyon uygulama gecikme degerleri ve BAG-Paket kaybi iligkisinin beklenildigi
gibi olmas1 bilesenlerin dogru zamanlarda calistirilabildigini gostermektedir.

Sistem modeli olusturulan tasarim, simulasyon ortamina aktarilmig ve aktarilan
modelin dogrulugu farkli parametreler ve senaryolar kullanilarak test edilmistir. Bu
model ile daha bir cok senaryonun performansi farkli metrikler kullanilarak Sl¢iilebilir.
Tezde yapilan calismaya daha gelismis teknolojiler eklenebilir. Ornegin, cihaz
seviyesinde AFDX standardi ile uyumlu cihazlar yerine Zaman Tetiklemeli Ethernet
(Time-Triggered Ethernet : TTE) ve Zaman Duyarli Ag (Time-Sensitive Networking
: TSN) gibi teknolojileri destekleyen cihazlar kullanilabilir. Ayrica tasarlanan ARINC
653 standardi modeli tek islemcide calisacak sekilde modellenmistir. Bu model
uygulamalarin paralel olarak calisitirilabilecegi bir hale getirilip daha farkli dl¢timler
yapilabilir.
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1. INTRODUCTION

Advancements in electronic devices, particularly their form factors becoming smaller,
have made it possible to integrate various avionic sub-systems and components into
aerial vehicles. The diversity of the avionic sub-systems has led to their utilization in
different areas such as military, agriculture, and surveillance through electronic devices
such as radar and cameras. However, the increasing number of these devices harms the
flight duration of aerial vehicles and the power demands of the vehicles, which increase
with the use of a diverse and increasing number of avionic systems. Therefore, the
traditional federated architecture, which utilizes each system in a different hardware
component, cannot meet the needs of current large-scale avionics system development

due to its portability, security, and scalability [3].

A system architecture, namely IMA, is designed to solve these issues. Around three
decades ago, the IMA concept first emerged in the United States through the F-22 Joint
Integrated Avionics Working Group (JIAWG). Subsequently, it spread to commercial
aircraft and business jets during the late 1990s [4]. The IMA architecture combines
various avionics functions with different levels of criticality on a shared computing
and networking platform. The aerospace industry introduced two primary standards,
ARINC 653 and AFDX, to satisfy the growing requirements for safety-critical IMA
systems. These standards were developed to ensure that the integration of multiple

avionics functions is secure and reliable.

ARINC 653 is a software specification that outlines a set of services known as
APEX (Application/Executive) services for implementing communication between
an avionic computer’s application and operating system (O/S). Applying APEX
services can be quickly executed on different O/Ss without significant modification.
For example, there may be an application code that implements Kalman filter for
controlling helicopter motors in VxWorks-653 [5] Real-Time O/S (RTOS). Suppose

the company of the helicopter motor’s producer decided to switch their O/S to GzIS [6]



RTOS, and the filter code is written by using APEX services. In that case, engineers do
not have to modify their application codes. Also, the ARINC 653 standard establishes
rules where different software applications can run on a shared hardware platform
while isolated temporally and spatially. This isolation ensures that a problem in one
avionics function does not impact the others. Moreover, the partitioning method is

utilized to overcome issues related to size, weight, and power consumption [7].

In the past, bus standards such as ARINC-429, ARINC 629, and MILSTD-1553 were
designed to communicate between avionic systems in aerial vehicles. However, these
standards need to be revised to meet the requirements of modern aerial vehicles in
terms of duplexity, bandwidth, speed, latency, and isolation [8]. AFDX is a newer
standard that offers a high-speed, isolated, and deterministic network for avionics
applications in aircraft systems. AFDX is based on the Ethernet protocol and provides
features such as quality of service (QoS) guarantees and redundancy management. By
combining ARINC 653 and AFDX, developers can create reliable, efficient, robust,

and safe avionics systems that meet the rigorous demands of aerospace applications.

In the IMA system design, it is difficult to determine the system architecture which
gives optimum network performance using manual methods, especially for large
aircraft, because the degree of freedom in choosing the system architecture designed
by two standards, ARINC 653 and AFDX, is high [9]. Thus, it can be challenging
to predict the overall system behavior without running the entire system physically,
which can be very costly during development. Airbus, a leading aviation industry
company, proposes a concept Open IMA that defines standards for developing IMA
technology on the A380 program. The primary purpose of the Open IMA is applying
open avionic and commercial communication standards (ARINC 600 norms) for the
avionic modules to obtain interoperability between the product owners and third-party
avionic suppliers [10]. Also, the Open IMA introduces the AFDX network topology

used in the A380 program. Figure 1.1 shows the content of the network topology.

The network topology comprises two redundant networks (Network A&B), 9x2 AFDX
switches, and 123 End Systems. Performing tests on a network of this magnitude

using a physically implemented setup would be costly and time-consuming. Hence,
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Figure 1.1 : The Network Topology on the A380 [10].

simulation is essential to ensure the IMA system operates reliably, safely and performs
as intended in real-world scenarios. It allows designers to verify the design of the IMA
system before deployment, allowing them to identify potential problems and make
necessary modifications to meet the requirements of the avionic projects. Furthermore,
simulation is a cost-effective way to test and validate the system without the need for
physical prototypes, reducing development costs and speeding up the time-to-market

for the system.

1.1 Purpose of Thesis

This thesis implements ARINC 653 concepts, such as partition, process, and
inter-partition communication modes, in the OMNET++ simulator. To the best of our
knowledge, this is the first paper to design these necessary components to build an
IMA Module in OMNET++. The IMA simulation model allows for temporal control
of applications and enables the designer to calculate network performance metrics
such as application delay in the simulator. Since these ARINC 653 concepts are

implemented as separate modules, developers can design their IMA system flexibly



and prototype it quickly by using the benefits of object-oriented programming (OOP).
The functional and timing correctness of the designed IMA system modules are tested
on an example scenario [2] that performs packet transfer using ARINC 653 concepts

and AFDX-compatible devices.

Also, many different delay sub-steps in the network data path are taken into account
in various studies [11]-[13]. However, no study considers the overheads of send
and receive calls performed on the application side. This study will consider all
software-based overheads for the application delay calculation for both the source
application and the destination application, which will increase the accuracy of the

application delay calculation.

1.2 Literature Review

Many simulation environments enable engineers to simulate IMA systems. However,
some works develop their simulation tool for system evaluation, which requires
unnecessary high-level and low-level coding efforts such as visualization and
computing resource management of the newly developed simulator [14,15]. One
of the tools used to model and validate the real-time system is UPPAAL. The tool
is well-suited for systems that can be represented as processes with a finite control
structure and utilize real-valued clocks, such as timed automata [16]. ARINC
653 basics, such as partition and process, are developed by [2,17] as timed and
StopWatch automata, respectively. Moreover, developed modules are tested with
sample scenarios for validation. Although the tool is appropriate for obtaining
worst-case scenarios, it does not scale for large systems due to the combinatorial
explosion problem. Besides, the development process is impractical compared to
other tools. MATLAB/SIMULINK environment can also be used to design and
evaluate the IMA system using a toolbox developed by Italian Aerospace Research
Centre (CIRA) and MathWorks. When the SIMULINK block of the ARINC
653 package is created, the ARINC 653 standard and the specific code execution
characteristics of the Wind River VxWorks 653 RTOS are considered [18]. Although
the toolbox provides an excellent opportunity to perform hardware-in-the-loop (HIL)

simulations of IMA scenarios, it restricts users to develop their system according



to Wind River VxWorks 653 RTOS. Besides, each environment package is not
available and modifiable since MATLAB/SIMULINK is a commercial environment.
IMA system design can also use network simulators like NS-2, NS-3, OPNet, and
OMNET++. These tools use programming languages like C and C++ for development,
allowing for code re-usability between simulation and real-world applications. Since
OPNet is commercial, it has the same drawbacks as MATLAB/SIMULINK. Among
open-source simulators, OMNET++ is chosen due to its scalability, extensibility, and
integrability [12]. The simulator has a comprehensive framework named INET that
implements each TCP/IP stack layer and some application layer protocols. Besides, it

is regularly updated, well-documented, and has a large and active community [19].

Numerous studies have measured the end-to-end network delay between AFDX
devices. In [1], an AFDX ES model is developed in OMNET++ simulator, and
the model’s performance is investigated with different traffic scenarios. Moreover,
some papers propose a concept that extends the priority level of VL with two priority
levels in AFDX standard to optimize network delay [20,21]. Also, network delay
performance is enhanced with a genetic algorithm to determine VL priority level in
[20]. Unlike network delay, relatively few papers examine delay at the application
level. Both [12,13] design models that consider buffer latency which is the time the
message waits to be consumed at the destination application’s buffer. Then, the studies
measure the end-to-end delay of VLs for sample network topology. Moreover, the
results of [12] are compared with [22], which calculate the delay using the trajectory
approach. However, the scheduling of applications is performed according to a simple
messaging plan which does not conform to the [7] standard that manages tasks with
fixed-priority preemptive scheduling. Thus, it is impossible to evaluate a complete

IMA system using these two papers.

Badache et.al. investigates the temporal allocation of the IMA system and suggests
a formula for calculating application delay to avoid the overwriting of messages by
newer ones [11]. However, it does not consider consumed time in the transmission
buffer. The studies [12,13] take times in the transmission buffer into account. However,
they need to include transmission and reception operations overheads which should be

considered for precise application delay calculation. Lu et.al. defines the overheads



between buffers and processors for transmission and reception operations, but it does
not include them in its final evaluation [23]. This thesis considers the overheads of

both transmission and reception when the proposed IMA models are evaluated.

1.3 Hypothesis

The essential components required for building an IMA system can be developed on
the OMNET++ simulator. In this way, the development process of complex IMA
systems is enhanced in terms of cost and reliability. Also, developing the IMA modules
enables researchers to increase the precision in delay calculation by including the

overheads of the send and receive user calls.



2. SYSTEM MODEL

2.1 ARINC 653

This section focuses on the fundamentals and system functionalities of the ARINC 653
standard and explains the system model that is used to emulate the standard concepts.
The standard provides a set of methods (APEX services) for the interface between the
application and the O/S of an avionics computer resource. The use of APEX services
allows applications to run on different O/Ss without additional porting costs. Besides,
the standard defines a software architecture that enables multiple applications with
different levels of criticality to run securely on a single hardware platform. This is
ensured with a technique called partitioning which ensures the spatial and temporal
isolation of avionics applications. Partitioning involves splitting avionics applications
into distinct software units, referred to as partitions. Each partition of an ARINC
653 system can be thought of as an individual avionic application that performs
specific tasks for the entire system. However, they are logically separated within
the same avionic hardware platform rather than being physically separate. Moreover,
any malfunction or error in a partition will not affect others thanks to the partitioning
method. As partitions are just only logical entities, they do not have an executable
unit to carry out avionic tasks. Instead, they consist of a programming unit called
a process, which comprises an executable program, data and stack areas, program
counter, stack pointer, and other attributes such as priority and deadline [7]. The
ARINC 653 standard provides detailed descriptions of all the system functionalities,
including partition management, process management, memory management, and
time management. While all of these requirements must be met to develop a fully
compatible ARINC 653 O/S, this thesis focuses on only a few of them, specifically

partition management, process management, and inter-partition communication.



Partition scheduling is an essential aspect of partition management in which the
partition itself acts as the scheduling unit, and no priority is assigned to it, as stated
in [7]. Partitions are restricted to accessing the computing resource of the module only
during a predetermined time known as the partition time window, which is positioned
on a fixed-size timeline called the MTF. The partition is activated only when its
partition time window is reached. Then, the process scheduler selects the appropriate
process of the activated partition for execution. The core module executes the MTF
repeatedly and continuously until it is powered off. Figure 2.1 shows an example of a

MTF with three partitions.

(—\Iajor Time Frame > <€ Major Time Frame—)
Partition 2 L Parttion 2 Partition 3

0 <_> time
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Figure 2.1 : Sample Major Frame.

As stated at the beginning of this section, avionic computer tasks such as I/O operation
and data filtering are performed by processes. Each process is created and initialized
at the beginning of the owner partition. Moreover, the required utilization of resources

should be defined at the system build.

Each process has fixed attributes; name, entry point, which defines starting address,
stack size, base priority, which defines initial priority, period, time capacity and
deadline [7]. The time capacity defines the elapsed time that process can access
the computing resources of a module, and it is used to calculate deadline time of
the process, which can be calculated by adding time capacity to the process’s release
point time. Moreover, the time capacity does not only define the execution time of the
process; the time that process is waiting for a resource also consumes the capacity of
the process. For example, a process may receive a message from a socket and perform
a data-filtering algorithm using the received message. In the receive operation of the
socket, if no message is found in the socket buffer, the process can be blocked at a
semaphore. The elapsed time while waiting for the network packet at semaphore also
consumes the time capacity of the process. The time capacity of each process is set to
the infinite value in our system model, so the process’ deadline is not checked by the

developed partition manager module.



There are two types of processes periodic (synchronous) and aperiodic (asynchronous)
in terms of periodicity. Aperiodic processes have only an initial release point that
is determined by the start service. After the start service is invoked for an aperiodic
process, it is eligible to be selected by the process manager with partition start and
deadline of the process is calculated by summation of the partition’s start time and
time capacity. After an aperiodic task finishes its task and calls the stop service, it
will not be activated again during MTF. On the other hand, periodic processes are
executed in regular time intervals which are defined with the period attribute. The
period defines the regular time interval of the process’s execution. An explicit and
unique value is assigned to period for the aperiodic process. Thus, the process manager
does not consider the periodicity of the aperiodic processes. The periodic process can
also start to execute with the start of partition as aperiodic ones. However, newer
release points have been created for them during core module execution. Moreover,
the PERIODIC_WAIT service should be called by a periodic process when it finishes
its work for the current activation. After this call, a new release point is assigned to
the process. Hence a new deadline is also calculated. In this thesis, the processes are

designed as aperiodic.

In contrast to partition scheduling, process scheduling involves giving a priority level
to each scheduling unit (process). ARINC 653 follows a fixed-priority preemptive
scheduling approach, where the scheduler chooses the process with the highest priority
for execution, and any lower-priority process currently running is preempted. The
priority level assigned to each process is determined by considering its criticality and

the specific deadlines it needs to meet.

In ARINC 653, inter-partition communication is carried out using a messaging
protocol, where communication ports and channels are utilized to send messages from
a source partition to one or more destination partitions. The functioning of ports is
described in [7], but the implementation may differ based on the design of the O/S. In
this thesis, a shared storage area is employed for both source and destination partitions,
and the memory content of the port is updated according to the algorithm of [7] for
the system model. The ports have two modes of operation, namely sampling and

queuing. For sampling mode, [7] allows a port buffer to hold only one message at



a time, which means that the existing message in the buffer remains there until a new
one overwrites it. Additionally, the freshness of the message can be determined using a
term called the refresh rate, which controls the duration between the arrival and reading
time of the message. A refresh rate is assigned to each sampling port in order to verify
the age of the messages. In ARINC 653, the partition port has also another mode
called queuing that follows the first-in/first-out (FIFO) principle for the storage area.
This mode uses a buffer where the source partition writes messages to the FIFO and
the destination partition retrieves the oldest message from the buffer. To prevent any
unintentional message loss, the application software manages queuing port overflow,

as specified in [7]. Our work utilizes these three sub-functionalities of ARINC 653,

and the developed system model is shown in Figure 2.2.
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Figure 2.2 : System Model of ARINC 653 Module.

The main responsibility of the partition manager component is the initiation and
termination operations of the partition components based on the MTF. The partition
component should have two sub-components namely process manager and process.
Also, the partition component transmits the received requests from the partition
manager to the process manager. When the process manager receives a request, it

identifies the active process component with the highest priority at first. Then, process

10



manager triggers that process to execute its task. The management of processes
can be performed by these four components according to the ARINC 653 standard.
Besides, inter-partition communication is implemented by APEX ports and buffer of
sampling and queuing memory components. When a process wants to write a message
to a memory component, it should first find the source APEX port of the memory
component. Then, the write service of the memory components is invoked by the
writer process. One of the differences between the reader and the writer processes is
that the reader process identifies the destination APEX port of the memory components
rather than the source port. Also, the read service of the memory component is invoked

by the process instead of the write service.

2.2 AFDX

AFDX allocates network device bandwidth to the applications by using VLs, which is
similar to how ARINC 653 allocates computing resources to partitions. The bandwidth
allocated to each VL is determined by two parameters: BAG and Sp,.x. BAG specifies
the minimum time interval between consecutive VL frames, while S;,.x indicates the
maximum frame size that can be transferred over the VL. AFDX communication
requires two primary devices, ES and Switch. The ES is used to send and receive
packets within an IMA module by partition’s processes, while the switch is responsible
for determining packet routes in the network and applying filtering and policy functions
based on the [24]. The components of the ES device system model for transmission

and reception are depicted using blue and orange blocks, respectively, in Figure 2.3.

In AFDX, source applications of partitions assign a sequence number between 0 and
255 to messages that will be sent, which is used to verify message integrity. The
sequence number 0 is reserved for resetting communication in the VL, while other
numbers are used for regular communication. The first message in a VL is assigned
sequence number 1, and subsequent messages’ sequence numbers are incremented
by one. When the sequence number reaches the value of 255, it backs to 1 in the
next message. After the message is set up by the source application, it is written
to AFDX communication ports (AFDXpo¢) by using the write service. These ports

have two modes, sampling and queuing, and the algorithms used for these modes
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are similar to the ones used in ARINC 653. Once the message is received by the
regulator component from AFDX,y, it is checked that the BAG time condition is
met. If the condition is satisfied, the message can be received by the VL Scheduler
component. TheVL Scheduler chooses messages from various VL queues, using a
scheduling algorithm such as round-robin. After a message is selected by the VL
Scheduler, it is duplicated and transmitted over two different networks (Network A
and Network B) by the redundancy management module to enhance communication
reliability. After the destination ES receives the messages, the integrity checker
component ensures that the frames are in the correct order by using sequence numbers.
The first message that arrives at the redundancy management component is sent to the
DEMUX component, while later incoming messages with the same sequence number
are discarded. The message is then routed by DEMUX to the appropriate AFDX,ort
based on its quintuplet, which includes the UDP source port, source IP address,
destination MAC address, destination IP address, and UDP destination port. Finally,
the destination application retrieves the messages from the AFDX,,x with the read

services.

Source Partition

Regulator Regulator
+ +
VL Queue VL Queue

VL
Scheduer

Redundancy
Management

Figure 2.3 : System Model of ES Device.
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The AFDX Switch performs three main tasks: filtering, policing, and switching.
Filtering is used to drop packets that are not within the specified size range, as defined
by Smin and Smax and policing is used to discard packets that do not satisfy the BAG
rule. Finally, switching involves routing incoming packets to predetermined network
ports, as specified by the network planner [1]. Most of the components except DEMUX
and AFDX,o;¢ are implemented in [1]. We utilize these developed and tested AFDX
components as-is in our work, while we implemented the remaining two modules

according to the specification provided in [24].

2.3 Application Delay

The time elapsed from when a packet leaves the APEX port of the source partition until
it is received by the destination partition is known as the application delay (D) and
includes not only the network delay (Dy.nvork), but also software delay such as buffer

delay and read service call overheads [11]. The green line in Figure 2.4 represents the

packet flow path of D, while the red line represents the path of D,,¢nyork-

Redundancy Manager

Figure 2.4 : Application vs Network Delay.
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Although both application and network delay paths are represented with a complete
line, the paths can be divided into sub-steps as in [23]. The first step is named
Dyop- It is comprised of obtaining and processing raw data operation and it does not
contain any networking task. Reading IMU and gyroscope sensors data and applying
complementary filter method to the data can be given as an example of this step. In the
second step (Dyapp), overheads of writing the frames to the device buffer are included
in Dy, calculation. This step covers the essential operations such as system call,
context switch, and data copy of an O/S. For example, when the filter application
calls a write request to a device sampling port, O/S switches from user mode to
kernel mode with a system call. Then, the application attempts to take the semaphore
that protects AFDX,o¢’s buffer integrity. However, if it is already taken by another
thread, the sender application will be suspended and a context switch will occur.
When the application is awakened, it takes the semaphore and access to AFDXpor’s
buffer. Then, it copies the filtering data to the port buffer of AFDX,o. Afterward,
transmitter ES retrieves the frame from the AFDX,o¢ and sends it to the physical
link. This step (Dsxpey) covers overheads at the device level such as VL scheduling
and frame duplication. Then, frames are transferred through the physical link which
also introduces a delay (Dppyrink). After that, receiver ES takes the frames from the
physical link and applies the integrity checking, redundancy management, and demux
operations as a fifth step (D,xpey). Then, the frames wait in AFDX,o¢ buffer to be
consumed by the destination application. The elapsed time in the buffer is named
buffer delay and represents the sixth step (D,.p,p). Then, the destination application is
activated by the process manager and the frame is read from AFDX,,o in the seventh
step (Dyxapp). Same overheads of Dyap, such as system call and data copy are also
occurred in D;ysp,. Finally, the received frame is processed and transmitted to the
destination component in the last step (D,xop). For example, received data from the
complementary filter may be processed by a control algorithm to convert it to a motor
control command in the destination application. These sub-steps are visualized in

Figure 2.5.
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Figure 2.5 : Latency Sub Steps.

Badache et.al. formulates Dy, as summation of physical link delay (D,4yrink) and

buffer delay (D,.p,p) as follows [11]:
Dapp = Li j+Jij, 2.1)

where L;; represents D ,yrin; between the i and jth partition, and J;; shows the

D rxBuff-

The maximum value (D,""*) of Dy, occurs when a packet experiences a maximum
delay (DppyLink™™") in the physical link and arrive at the destination partition exactly
when it is terminating, as stated in equation 2.2. This coincidence causes the buffer
latency (J;;) to be equal to the destination partition period (7). Thus, D,,™** can be

expressed as the sum of 7; and Dz as shown in equation 2.2.

Dappmax = DphyLinkmaX + Tj (22)

Additional steps need to be included to equation 2.2 since the filtered sensor data is
generated prior to D pypink in the Dyyop process. As a result, the calculation for Dy
should begin after Dy, step. Furthermore, D,,,"** cannot end with D,p,s as the data
can be utilized by the destination application only at the end of Dp,. While Dypey
and D,.p,., are deterministic because they are performed by hardware, their value can
be added to 2.2 as they are. However, the execution times of Dj4p, and D,.4,, which
are comprised of mostly software operations are not deterministic because of memory

and device operations involved. When calculating D,,,""**, the maximum value of
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these two operations (Dyap,™*" and D,xa,,"™*") should be added to equation 2.2. After

taking into account these additional delays, the new expression for D,,"** can be
written as:
Dappmax =D txAppmax + Dixpev + DphyLinkmax + Dyxpev + TJ +D rxAppmax, (23)

Although the complete application delay calculation can be computed with
equation 2.3, the thesis focuses on the software-based application delay so the
deterministic delay steps (Dspey and D,xpey) are included to the formula that is used in

the thesis. Finally, the formula is updated as follows:

DswAppmax =D txAppmax + DphyLinkmax + Tj +D rxAppmaxy (2.4)
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3. SIMULATION MODEL

3.1 OMNET++ Simulator

OMNET++ is a discrete event simulator (DES), so knowing what DES is and how
it works is vital for understanding the proposed simulation model. DES models a
system’s behavior as a series of discrete events that occur over time [25]. The situation
of the system is represented by states and the change in the system’s situation is
indicated by the transition between states. The state transition is named as event
whose execution time is zero for DES. In DES, the time at which events happen is
commonly referred to as event timestamp, but the term arrival time is used instead
of it in OMNeT++ [26]. This is because the word timestamp is already reserved for
a user-defined attribute in the event class library. On the other hand, the time of the
model can be named as simulation time or virtual time. The simulation time represents
the timeline that event timestamp is observed, and it is totally different than real time.
The simulation time elapses only between events, and there will be no change in the

system status between two consecutive events.

Computer networks and devices can be modeled with DES. For example, an Ethernet
device can be represented with two states: idle and transfer. At the beginning of the
simulation, the device is in the idle state, which remains in this state when there is
no packet transfer. However, when a packet is sent or received by the device, the
device switches to the transfer. An Ethernet device may receive a packet from the
network stack 2 nanoseconds after the simulation starts, and the transmission lasts for
5 nanoseconds. Then, the transmission will end, and the device will switch back to the

idle. The graphical representation of this scenario is shown in Fig. 3.1.

An OMNET++ network module is comprised of two basic terms modules and
connections. Modules have two main types, which are named as simple and compound.
The simple module is the core unit of OMNET++’s node, and its behavior is

programmed with C++ programming language. On the other hand, compound modules
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Figure 3.1 : DES Scenario of Ethernet Device.

do not have a C++ function that defines the module’s behavior. They consist of a
combination of simple and other compound modules, which are connected to each
other via connections and gates. An example OMNET++ network module, which

contains a compound module, is illustrated in Figure 3.2.

When OMNET++ users program their simple modules, they use the cSimpleModule
class as a base class. In cSimpleModule class, there four main virtual methods namely,
initialize, finish, handleMessage, and activity. While the default version of initialize
and finish does not do anything, handleMessage and activity throw an error. At the
beginning of the simulation, the constructor of the classes is executed first. After
that, the network simulator builds the network model and calls each module’s initialize

method.

Network Module

Connection

Module
“

Figure 3.2 : Sample OMNET++ Network Model.
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The purpose of the initialize method is that simulation-related code cannot typically be
placed in the constructor of a simple module because the simulation model is still in
the process of being set up, and many necessary objects may not yet be available [26]
during constructor execution. For example, users may want to write a code that
allocates memory for each node that is connected to a specific gate. In this situation,
the connection number can be computed using the gateSize function in initialize since
the network simulator already set up the network module. The finish method is called
after a successful simulation completion, and it is used to record network statistics such
as delay, latency, and packet drop. The method is not called after the simulation ends

with an error, and the destructor of the objects is called after finish method.

A simple module’s behavior is determined by the handleMessage or activity method.
Both methods cannot be used simultaneously for a module, so only one can be
implemented for each simple module. The handleMessage(cMessage* msg) method
is invoked when a message arrives to the module, and the input parameter (msg)
corresponds to the address of the received message. The act of invoking a message
can be considered as an event of DES in OMNET++ because it results in a change
in the network model’s situation. Moreover, simulation time does not elapse in the
handleMessage method. While a simple module is programmed with handleMessage
method, there are three main methods, namely, send, scheduleAt, and cancelEvent.
While the send method is used to send messages through a specified gate, the
scheduleAt method sends messages to the module itself. This method is beneficial
in creating timers within the simulation environment. The cancelEvent method is used

to delete the message that is sent with scheduleAt.

The activity method is another way to specify the behavior of a simple module that
works like a co-routine. Since the workflow of this method resembles threads and
processes, it is more appropriate to implement software-based ARINC 653 concepts
with the activity method rather than the handleMessage method. This notion is
supported by [26], which states that "By using the activity() function, it’s possible
to write a simple module in a way that works as operating system’s process or
thread". Unlike handleMessage, a separate stack is needed for each simple module

when programmed with activity. Thus, the use of this method increases the memory
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consumption of the network model as the number of modules increases. However,
only the operations that are implemented as software in the real world should be
programmed with the activity, while implementing hardware-based operations such
as integrity checking and redundancy management with handleMessage is more
appropriate and sensible. Thus, the simulated network model does not harm the
OMNET++ scalability, and some methods can be programmed with process-style
descriptions more easily and properly. The activity method has six main methods
namely, send, scheduleAt, cancelEvent, receive, wait, and end. While the functioning
of send, scheduleAt, and cancelEvent methods are the same as in handleMessage,
the other three methods cannot be used by a simple module that is programmed with

handleMessage.

The receive method returns the address of the messages that come to the simple
module. Since the simulation time does not elapse in the method as handleMessage, the
inside of the activity can resemble the DES event. However, the simulation time elapses
while waiting for a message with the receive method. There are two signatures for
receive: "cMessage *receive()" and "cMessage *receive(simtime_t timeout)". While
the method whose signature does not have an input parameter waits until a message
comes to the module and never returns until a message comes to the simple module. On
the other hand, the method with simtime_t parameter waits for an absolute simulation
time that is defined by the input parameter for packet reception. If a message does
not come to the module during this time, the receive method will return a NULL
address. The wait method is used to block execution of the activity method and
allows simulation time elapses. Moreover, the end method can be used to terminate

the execution of the simple module’s caller.

When one module sends a message to another, OMNET++ creates an event and adds
it to the Future Event Set (FES) list with its corresponding timestamp. The simulator
executes events in the FES according to their timestamps. If the timestamps of two
events are the same, the one with higher priority assigned by the user will be executed
first. If their priorities are equal to each other, the event added to the FES earlier will

be processed first.
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3.2 OMNET++ IMA Module

The proposed OMNET++ IMA simulation model includes two main modules: the
O/S and the ES module. While the ARINC 653 concepts are implemented by O/S,
the ES offers AFDX end-system capabilities. The O/S module was not designed as a

compound module to show its relationship with ES.

3.2.1 Operating system module

The primary goals of the O/S module are to schedule partitions and processes based
on ARINC 653 standard. The thesis provides main OMNET++ modules such as
partitionManager, partition, processManager, and process to accomplish these tasks.
Firstly, a simple send-and-receive operation between IMA modules is performed in
a sample scenario created by ourselves to check whether packet transfer can be
performed. In the scenario, there are two main IMA modules which are named
isrRadar and displayUnit. The isrRadar module collects raw data from different
sensors and processes them to produce the enemy aircraft positions. Then, the
produced data is sent to the displayUnit module, which demonstrates the positions of
the enemy aircraft on a screen for pilots. The isrRadar module’s operations which are
collecting sensor data, processing them, and sending processed data, are performed
by three distinct partitions sensor, algorithm, and transmitter respectively. The
isrRadar is developed as a compound OMNET++ module, and its internal modules
and their connections are shown in Figure 3.3. There are five types of OMNET++
module; partitionManager, application partitions (sensor, algorithm, and transmitter),

networkTxDriver, portChannel, and ES in the isrRadar.

3.2.1.1 Partition manager module of OMNET++

The partitionManager module is programmed as a simple OMNET++ module and
is responsible for activating and deactivating application partitions. Activation and
deactivation operations are performed by sending Start Partition and Stop Partition
messages to application partitions, respectively. The necessary module data structure is
constructed in the initialize method. Two main tasks, identifying the gate and obtaining

the timing feature of application partitions, are performed in the initialize method.
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Figure 3.3 : Sample OMNET++ IMA Module.

Each application partition is connected to the partitonManager via a gate, namely
Scheduler_Out, and no other modules are connected to the partitionManager module
through the Scheduler_Out. When the initialize method of the partitionManager is
invoked with simulation start, the number of the application partition is computed by
getting the size of Scheduler_Out with the gateSize method at first. Then, memory
addresses of the connected application partitions are found by using gate, getNextGate,
and getOwnerModule methods. Then, ID of the application partitions are found by
using the module address and par method. Afterward, gate index and application
partition ID matchings are preserved in an array. Thus, the gate indexes to which the

partitions are connected are identified.

In addition to gate identification, the offset and duration of each application partition
should be found to perform activation operations with the correct timing. The
offset and duration of each partition are preserved in the XML file, which is named
radarMajorFrame.xml. The XML file separates partition information using tags,
namely, the partition, which contains ID, offset, duration, and name of application
partitions. The content of the radarMajorFrame.xml can be seen in Figure 3.4. The
XML file is parsed by using the methods of the cXMLElement class to construct a
structure that contains the offset and duration of the application partitions. Once all
the necessary data structures are set up, a self-message is sent to the module itself for
the first application partition’s offset. This is achieved using the schedAt method at the

end of the initialize method.
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1 <root>

2 <partition id="@" duration="18ms" offset="8ms" name="Sensor"><{/partition:

3 <partition id="1" duration="8ms" offset="12ms" name="Algorithm"></partition>

4 ¢partition id="2" duration="7ms" offset="28ms" name="Transmitter":</partition>
5 </root>

Figure 3.4 : Major Frame of the Sample OMNET++ IMA Module.

To invoke partitionManager at partition switch times regularly, a self-message is sent
to the module itself by using the schedAt method in both initialize and activity method.
However, gate indexes of the current active partition and the partition that will be
activated should be already known to send the Start Partition and Stop Partition
messages. These indexes are calculated before sending a message with schedAt,
and the computed gate indexes of the current active partition and newly activated
partition are preserved in prevPartitionlndex and nextPartitionlndex attributes,
respectively. When the module receives the self-message, it will send Partition
Stop message to the application partition, which is connected to partitionManager
with prevPartitionIndex™ index of the Scheduler_Out gate if the index value is a
non-negative number. After that, Partition Start message is sent to the application
partition, which is connected to partitionManager with nextPartitionlndex™ index of
the Scheduler_Out gate if the index value is a non-negative number. For example,
the nextPartitionlndex is set to 0, while the prevPartitionlndex is set to -1 since there
are no active partitions at the end of initialize method. After the index setting, a
self-message is sent to the time after the offset of the first application partition. When
the self-message is received in activity method, the method first checks the value of
prevPartitionIndex. Since it is a negative value, the Stop Partition message 1s not sent
to any partition. However, Start Partition is sent to the first partition of the MTF since
the nextPartitionIndex is non-negative. The pseudo-code of the initialize and activity
method of the partitionManager can be examined in the Algorithm A.2. Besides,
the activation messages are sent with sendDelayed methods whose second parameter
defines the delay time of the invocation message. If a delay time is defined, the cost
of the partition switching overhead can be simulated on the model to obtain a more

realistic result.
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3.2.1.2 Partition and process manager module of OMNET++

The partition module is made up of two simple modules: processManager and process.
Each partition must contain a processManager which schedules the processes within
the partition based on the fixed-priority method. When a Partition Stop message is
sent by the partitionManger, the message reaches the processManager module at first.
Then, processManager deactivates all processes and sends a Process Stop message
to each of the process. On the other hand, if it receives a Partition Start message,
it will activate all of them and send a Process Start message to the process with
the highest priority. Additionally, the active process triggers the processManager to
select a new process after finishing its execution by using gate, getPreviousGate, and
getOwnerModule methods. Similar to the overhead involved in partition switching,
switching between processes also comes with a cost in an embedded system. This
cost can also be applied to the simulation model with the second parameter of the

sendDelayed. The content of the sensor application partition is illustrated in Figure 3.5.

X

professianager

Figure 3.5 : Sample OMNET++ Partition Module.

3.2.1.3 Process module of OMNET++

The main tasks of the process module are transmitting and receiving AFDX messages
to and from the ES ports. The process can perform its tasks only after it receives a
Process Start message. In the transmission, the module creates an AFDX message
and sends it to the NetworkTxDriver module. When NetworkTxDriver receives a
message, it scans the transmission ports of the ES (afdxPortTX) to find a port with

a matching quintuplet at first. Then, if a port is found, the message will be written
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to that port buffer. Once the packet is placed in an afdxPortTX, the remaining packet
transmission operations are performed by ES module. However, before sending the
message to NetworkTxDriver, the waitAndEnqueue method is called to simulate the
overhead of the user send service. The waitAndEnqueue waits for the time determined
by the first parameter. If a message is received during the wait operation, it will be
enqueued to a queue whose address is given as a second parameter. If process module
receives a Process Stop message during the waiting, the action of the process will not

be performed.

In the case of receiving, the process module first finds the address of the portChannel
module, which connects an ES receiver port (afdxPortRX) to the one or more process
module(s). Each portChannel module has a VL ID parameter, so it controls whether
it is connected to the afdxPortRX module whose VL ID is the same or not. If it is not,
a run-time error will be thrown at the initialize method. Although portChannel is not
compulsory for the IMA model, it provides a more understandable view by reducing
connection complexity. After finding the address of portChannel, the address of the
connected afdxPortRX is also found. Then, the getPacket method of the port is called
using the module address. This method returns the message stored in the afdxPortRX
buffer to the caller process. As in transmission, the waitAndEnqueue method is called
before all of these operations to simulate the overhead of the user receive service.
The activity methods of the simple transmitter and receiver process are represented in

Algorithm A.3.

3.2.2 End system module

The developed ES module expands the modules given in [1] with newly developed
demux and afdxPort OMNET++ modules. The afdxPort modules should function in
both queuing and sampling modes according to ARINC 653 standard, but only the
sampling mode is implemented in the thesis. Figure 3.6 shows the simulation model

that is used in the thesis.

The afdxPort consists of two types: transmitter (afdxPortTX) and receiver
(afdxPortRX). In transmission, the role of afdxPortTX is just establishing a connection

between the process and the VL queue. Once it receives a message from a process,
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it forwards it directly to the connected VL queue. In the reception, AFDX packets
coming from the redundancyChecker module are directed to the afdxPortRX through
the demux module. The operation of the demux module resembles the DEMUX
concept, which passes the input signal to the output according to selection bits in
digital design. When an AFDX message arrives at the demux, it checks the ES table
to determine the destination afdxPort based on the message’s destination MAC and IP
addresses and UDP port. Once the appropriate afdxPortRX is identified, the demux
writes the message to that afdxPortRX buffer. The process module can access and read

these messages when it becomes activated, as described in Chapter 3.2.1.3.
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Figure 3.6 : Sample OMNET++ Process Module.

Unlike the afdxPortTX module, the afdxPortRX module is accessed by two modules,

namely demux and process. Therefore, it is crucial to manage concurrent access to
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ensure data integrity. Since the execution of the activity method can be seen as a DES
event, accessing the afdxPortRX buffer within this method automatically maintains
the integrity of the data. However, ensuring that the port access must occur within a
single event is essential. For instance, if a write operation is designed to be executed
in multiple events, reading from the buffer between these write events may lead to the

reception of an incorrect message.
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4. RESULTS

The message transfer capability of the proposed IMA module is verified through a
basic send-and-receive scenario, as outlined in Chapter 3. However, it is crucial to
assess not only the functional behavior but also the temporal behavior of the proposed
modules. Therefore, the proposed modules are evaluated through a scenario involving
parameters such as application delay and the relationship between BAG and Packet

Loss.

4.1 Scenario

To validate the proposed OMNET++ IMA module, a Navigation and Guidance System
scenario described in [2] is examined. This scenario involves five applications:
Anemometer (Anemo), Flight Warning (FW), Flight Manager (FM), Multifunction
Control Display Unit (MCDU), and Autopilot (AP). The Anemo and FW applications
reside within the same IMA module (Module 1), while others are distributed across

different IMA modules (Module 2,3,4).

In this scenario, sensor data which are altitude (Z) and broadcast speed (M), are
obtained by the Anemo (modulel), and they are sent to the AP (module4) using VL 1
as separate frames. While FW (module1) sends equipment status to MCDU (module3)
through VL 2 in order to keep, the crew informed about the aircraft’s situation,
FM (module2) transmits the upcoming position that the aircraft should reach to the
AP via VL 3. Additionally, the crew can send a new flight plan using the MCDU,
which sends frames with VL 4 to the AP. Each VL connection has a BAG value of
2 milliseconds (ms), and the size of each frame is set to 4000 bits. Moreover, the
scenario includes two switches that connect the four IMA modules, and the network

topology and VL transfer path are depicted in Figure 4.1.

The execution of an application in the given scenario [2] is divided into three sub-steps:

reception, processing, and transmission. Each sub-step is allocated a specific time
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Figure 4.1 : Network Topology.

interval, indicating the best and worst-case completion times. Table 4.1 demonstrates
the periods of the applications and the completion time intervals for these sub-steps.
For instance, the processing step of Anemo is expected to be completed within a
minimum of 3 ms and a maximum of 8 ms after the start of the major time frame.
Although the processing step concludes before 8 ms, the transmission step will not
begin before 8 ms. Once the module time reaches 8 ms, the transmission step is

executed within 2 ms.

Table 4.1 : Applications Information.

Application | Sub steps Interval (ms) | Application

Name RX | Process | TX | Period (ms)
Anemo [0-3] [3-8] [8-10] 20
FW [12-14] | [14-17] | [17-19] 20
FM [0-5] [5-15] | [15-19] 20
MCDU [0-5] [5-17] | [17-20] 20
AP [0-4] [4-12] | [12-15] 15

In the OMNET++ implementation, each sub-step is treated as an individual event,
and the duration of each event is simulated using the waitAndEnqueue method, which
was explained in Chapter 3. Before executing each sub-step, the waitAndEnqueue
method is invoked. Thus, the overhead of each sub-step, such as frame transmission
and reception, is also simulated. The pseudo-code of the FM’s process will be
as in Algorithm B.1. Also, the graphical representation of the FM’s sub-steps is

demonstrated in Figure 4.2.
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Figure 4.2 : FM Process Timeline.

4.2 Simulation Outcomes

The scenarios where the Dy,,4,,"*" occurs for all VLs, as determined by equation 2.4,
are depicted in Figure 4.3. Orange blocks represent sender applications, while blue
blocks denote receiver applications. The Dy,,4,,"™*" for VL 1 may be observed in the
8™ activation of Anemo. Since the frames, Z and M that will be sent are created at the
processing step; the Dy,4,,"*" calculation should start 148 ms after the start of Module
1 for 8™ activation. Since Anemo sends the two frames simultaneously, the second
frame must wait 2 ms at the ES due to the BAG time. When the second frame leaves
ES, the reception step of AP has already begun. Consequently, the second frame waits
for the destination application’s new period on the sampling port of the destination
application. Furthermore, suppose the transmission step of the 9" activation of Anemo
is completed after at least 1 ms (169 ms). In that case, the second frame of the gth
activation will not be overwritten by the frames of the 9™ activation. Based on these
assumptions, the Dy,,4,,"*" for VL 1 can be computed as 21 ms. The Dy, for

other VLs can be calculated using a similar approach.

The comparison between the simulation and theoretical results for Dyys,,""" is
presented in Figure 4.4. The results indicate that the OMNET++ simulation outcomes
align with the theoretical results, confirming the validation of the developed modules.
However, it is essential to note that the simulation results are not identical to the
theoretical results. This discrepancy arises from utilizing the uniform function in

the OMNET++ simulator. The uniform function is responsible for generating the
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Figure 4.3 : Worst Case Delay Scenario.

execution times for the sub-steps of the applications. The generation of the execution
time is performed randomly with a uniform distribution. The function takes two
parameters: the lower and upper bounds of the execution time range. While the first
parameter sets the lower bound, the second parameter determines the upper bound. The
function generates a random time within the range of [lower bound, upper bound),
meaning it cannot generate the worst-case execution time. As a result, achieving
perfectly matching results between simulation and theory is unattainable because of

the uniform function.
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Figure 4.4 : Theoretical vs Simulation Application Delay.
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In addition to the application delay, the OMNET++ proposed modules are verified by
examining the relationship between BAG and packet loss. Generally, IMA systems
should be designed to ensure packet loss does not happen. However, in the given
scenario [2], transmitting Z and M in separate frames leads to packet loss in VL 1. The
packet loss occurs due to the relationship between the BAG value and the period of the
destination partition (AP). Since the BAG value for VL 1 is smaller than the period of
the destination partition (AP), some packets overwrite older ones until the subsequent
activation of the destination partition (AP). However, the packet loss can be reduced
by aligning the BAG value with the period of the destination partition. When the BAG
value equals or exceeds the period, the destination application does not experience any
packet loss. The packet loss ratio for VL 1 is depicted for various BAG values in

Figure 4.5.
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Figure 4.5 : Packet Loss and BAG Relationship.

4.3 Advantages of the IMA Simulation Model

In this section, the contribution of the simulation model to the IMA development
process will be examined using the scenario in which simulation validation is
performed. Hardware images are utilized instead of the placeholder blocks in the
network topology demonstration to show the contribution clearly. The network
topology with hardware images is shown in Figure 4.6. While TTTech Switch A664
Lab v2.0 image is used for AFDX switch [27], the ES hardware image is taken by [28].
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Figure 4.6 : Network Topology with Hardware Images.

In the aviation sector, redundant critical components are located in aircraft to increase
fault tolerance. These components can perform the main components’ tasks when the
main components fail. Also, the redundant components can be used to obtain more
accurate data. For example, two sensor systems that produce the same raw data can
be used in avionic systems to increase the reliability of the data obtained from sensors.
The application that interprets these sensor data applies a sensor fusion algorithm to
the raw data for getting more accurate results. When the redundancy method is applied
to the Navigation and Guidance System scenario, the network topology with redundant
components can be seen in Figure 4.7. It can be easily seen that cable complexity which
makes the testing process cumbersome, is increasing with redundant modules. While
there are only ten cables in the non-redundant topology, the cable number becomes
twenty-four in the redundant network topology. In physical testing, increased cable
usage makes the testing setup more error-prone and decelerates the testing process. In
addition, as the complexity of IMA systems increases, the physical space required for
testing also increases. Conducting physical tests for systems of a certain size becomes
nearly impossible. However, since simulation models do not occupy any physical
space, engineers can test highly complex systems, such as those implemented in the

A380 [10], without hassle.

Furthermore, the configuration of the AFDX switches must be updated with additional
modules by adding new port-MAC mappings. Although this update can be done

by adding just a few lines of code to the simulation configuration file in the
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simulation-based development process, the hardware content of the AFDX switches
must be updated in physical testing. For example, the developer must load a newer
.bit file to each AFDX switch if FPGA is preferred as hardware in the AFDX switch.
Also, simulation can increase the efficiency of the development process in terms of
money. For instance, engineers may want to add switches and End Systems to their
IMA system. Thanks to the simulation, they can observe the effect of the new network
devices addition without buying them physically.
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Figure 4.7 : Redundant Network Topology with Hardware Images.
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In OMNET++, implementing scenarios with redundancy components is straightfor-
ward. The developer only needs to make a copy of the existing components and paste
them into the model. After establishing the necessary connections, the components
become operational within the model. The scenario’s redundant and non-redundant

network topology can be seen in the Figure 4.8 for OMNET++.
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Figure 4.8 : Network Topology of the Scenario for OMNET++.
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5. CONCLUSIONS AND FUTURE WORK

When developing an IMA system, it is essential to consider relevant standards. ARINC
653 and AFDX have received significant attention and consideration among these
standards. These standards have numerous configuration parameters and offer various
design options for engineers and designers. However, determining the optimal system
configuration can be a complex task. In this regard, conducting a substantial portion
of the IMA system design process within a simulation environment can save limited

resources such as time and money.

Several options for selecting a simulation environment are available, including coding
a custom simulator using tools like UPPAAL, MATLAB/SIMULINK, OPNet, NS-2,
NS-3, and OMNET++. Among these options, open-source network simulators such
as NS-3 and OMNET++ appear more favorable due to their code re-usability and
source code access. Among the open-source simulators, OMNET++ is chosen for
its superior scalability and extensibility compared to the alternatives. Additionally,
OMNET++ benefits from an active community and comprehensive frameworks like
INET, which provide a detailed implementation of the OSI layer. To the best of our
knowledge, this thesis represents the first effort to design the necessary components
for building an IMA System within a network simulator. Thanks to this work,
the communication performance of an IMA system can now be evaluated without
physical implementation. Furthermore, while previous studies have considered various
communication overheads such as link-level and buffer delay, they have yet to include
the overheads of receiving and sending user calls to their application delay calculations.

Including these overheads will enhance the accuracy of the delay calculation.

The ARINC 653 standard explains all the necessary aspects for building a complete
operating system, including the management of partitions and processes and
communication between them. However, for this thesis, designing a fully compatible

O/S adhering to the ARINC 653 standard is not practical or necessary. Instead,
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the focus is on evaluating the communication performance by activating partitions
and processes following the ARINC 653 standard. While the partitionManager and
partition modules are developed to perform temporal control of the applications,
process and processManager modules are designed for the implementation and
management of the tasks that perform communication operations respectively. The
functionality of the developed modules is verified through a scenario that includes
basic send and receive operations. The objective is to assess whether the transfer of

packets can be executed successfully.

Complete validation does not only include functional behavior checking; the temporal
behavior of the proposed modules should also be examined. Thus, the modules
are tested with a scenario using different metrics: application delay and packet loss
ratio. It is observed that the application delay obtained in the simulation environment
converged to the theoretical calculations. Also, packet loss is observed in VL 1 of the
scenario. The reason for packet loss is the difference between the BAG of VL 1 and the
period of the destination application. As expected, packet losses decrease as the BAG
value converges to the destination application’s period, and when they are equalized,
the packet loss is removed. These two outcomes prove that processes are operated at

the correct timing.

As future work, the scope of the designed ARINC 653 modules can be expanded.
For example, processes are designed to operate aperiodically, and their time capacity
is infinite. Thus, implementing a periodic process and adding control of the time
duration increases the model’s realism. Also, implementing synchronization objects
makes the model more flexible for the scenario considering concurrent access. Besides,
developing a VL scheduler algorithm that considers the MTF when choosing AFDX
packets from the VL queue is possible. This algorithm may reduce latency and improve

the fairness of packet egress.

Furthermore, the proposed IMA modules can be used with standards such as Ethernet,
Time-Triggered Ethernet (TTEthernet), and Time-Sensitive Networking (TSN). For
example, many networking devices in the market only support the Ethernet standard,

although most of the IMA system uses TTEthernet and TSN. However, the networking
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devices that only support Ethernet should also be integrated IMA system without
violating ARINC 653 partitioning method. As the architecture of each network stack
may differ, the performance of network communication can vary across different
IMA systems. Consequently, selecting an appropriate network topology and network
stack architecture becomes challenging as the IMA system grows in complexity. The
proposed IMA modules allow for examining various network stack architectures,
topologies, and devices without needing physical implementation. This ability enables
the evaluation and exploration of different configurations and setups in a virtual

environment, eliminating the need for physical effort.

Also, it is possible to develop a tool that automates the testing process for OMNET++.
For instance, instead of the developer manually changing each possible VL BAG value
when examining the second validation metric (BAG-Packet Loss Ratio), a software
tool can execute each simulation scenario with different BAG values. Additionally,
the number and diversity of input parameters of a scenario may be high. However,
in such cases, a suitable cost function should be defined to determine the outcomes of
simulation scenario tests. Thanks to the automatization tool, optimum input values that

the developer may overlook within an extensive input parameter set can be obtained.
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APPENDIX A : Pseudo Code of the OMNET++ Modules

Algorithm A.1 Activity Methods of Simple Send&Receive Process

/* The co-routine of the transmitter process.*/
function ACTIVITY
while 1 do
msg <— RECEIVE();
if msg == StopProcess then
processState < PASSIVE,;
else if msg == StartProcess then
processState < ACTIVE;
WAITANDENQUEUE(WAITACTIONTIME, & WAITQUEUE);
if Stop Process In wait Queue then
CONTINUE();
else
afdxMsg <— CREATEJOBFORMODULE();
SEND(afdxMsg, APEXPORTNAME, APEXPORTINDEX);
RESCHEDULEPROCESS();
end if
end if
end while
end function

/* The co-routine of the receiver process.*/
function ACTIVITY
while 1 do
msg <— RECEIVE();
if msg == StopProcess then
processState < PASSIVE;
else if msg == StartProcess then
processState < ACTIVE;
WAITANDENQUEUE(WAITACTIONTIME, & WAITQUEUE);
if Stop Process In wait Queue then
CONTINUE();
else
afdxMsg <— RECVAFDXMSG();
RESCHEDULEPROCESS();
end if
end if
end while
end function
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Algorithm A.2 Initialize and Activity Methods of Partition Manager

/*Construct Data Structures and Send a Self-Message for the First Partition*/
function INITIALIZE
partitionNumber <— GATESIZE(SCHEDULER_OUT);
modulePartitionInfo <— NEW PARTITIONINFO| partitionNumber];
for i = 0 to partitionNumber do
partitionGate < GATE("SCHEDULER_OUTS$0", i)->GETNEXTGATE();
partitionModule < partitionGate->GETOWNERMODULE();
partitionld < partitionModule->PAR("ID");
partitionsGate|partitionld] <i;
end for
majorFrameXML < PAR("MAJORFRAMEXML").XMLVALUE();
xmlPartition <— ma jorFrameXML->GETELEMENTSBYTAGNAME("PARTITION");
for partitionlterator = xmlPartition.begin to xmlPartition.end do
modulePartitionInfoli].ID < partitionlterator->GETATTRIBUTE("ID");
modulePartitionInfoli].duration < partitionlterator->GETATTRIBUTE("DURATION");
modulePartitionInfoli].of fset < partitionlterator->GETATTRIBUTE("OFFSET");
I+ +;
end for
prevPartitionlndex < —1;
next PartitionIndex < 0;
SCHEDULEAT(SIMTIME() + modulePartitionInfo|next PartitionIndex].OFFSET, TIMERMSG);
end function

/* The co-routine of the processManager.*/
function ACTIVITY
msg <—NULL
while 1 do
msg <— RECEIVE();
if prevPartitionIndex > 0 then
prevPartitionld <—modulePartitions[prevPartitionIndex].partitionld;
SENDDELAYED(STOPMSG,BIGCONTEXTSWITCH,SCHEDULER_OUTS$O0,
partitionsGate[ prevPartitionld]);
end if
if nextPartitionIndex > 0 then
next Partitionld <—modulePartitions[nextPartitionIndex].partitionld;
SENDDELAYED(STARTMSG,BIGCONTEXTSWITCH,SCHEDULER_OUTS$O0,
partitionsGate[nextPartitionld]);
end if
prevPartitionIndex <— CALCULATENEXTINDEX();
nextPartitionIndex < CALCULATEPREVINDEX();
timeOf fset < CALCULATETIMEOFFSET();
SCHEDULEAT(SIMTIME() + timeOf fset, TIMERMESSAGE);
end while
end function
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Algorithm A.3 Process Manager Methods

/* The method deactivates all connected process.*/
function DEACTIVATEALLPROCESS
for i = 0 to processNumber do
SETPROCESSSTATE(i, PASSIVE);
SENDDELAYED("PROCESS STOP", processSwitchTime, i);
end for
end function

/* The method activates all connected process.*/
function ACTIVATEALLPROCESS
for i = 0 to processNumber do
SETPROCESSSTATE(i, ACTIVE);
end for
end function

/* The method selects an active process with the highest priority for all connected

processes.*/
function SCHEDULEPROCESS

currPrio +— —1;
proclndex < —1;
for i = 0 to processNumber doPRIO(i)
if ISACTIVE(i) and currPrio < PRIO(i) then
currPrio < PRIO(Q)
proclndex < i
end if
end for

if procIndex # —1 then
sendDelayed("PROCESS START", processSwitchTime, i);
end if
end function

/* The co-routine of the process manager process.*/
function ACTIVITY
while 1 do
msg <— receive();
if msg == StopProcess then
deactivateAllProcess();

else if msg == StartProcess then
deactivateAllProcess();
scheduleProcess();
else
throwcRuntimeError("PARTITION RECEIVE UNDEFINED MESSAGE!");
end if
end while

end function
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APPENDIX B : A process’ co-routine of the Example Scenario

Algorithm B.1 The co-routine of the FM process

function ACTIVITY
while 1 do
msg < receive();
if msg == StopProcess then
processState <—PASSIVE,;
else if msg == StartProcess then
processState <—ACTIVE,;
/* Wait for the rx substep of the FM */
WAITRANDOMTIME(O, GETRXTIME(), WAITTIME);
if Stop Process NOT in waitQueue then
afdxMsg < CREATEJOBFORMODULE();
/* Wait for the remaining time of the FM’s rx substep */
WAITREMAININGTIME(GETRXTIME(), WAITTIME);
if Stop Process NOT in wait Queue then
/* Wait for the process sub-step of the FM */
WAITRANDOMTIME(O, GETPROCESSTIME(), WAITTIME);
if Stop Process NOT in waitQueue then
/* Wait for the remaining time of the FM’s process substep */
WAITREMAININGTIME(GETPROCESSTIME(), WAITTIME);
if Stop Process NOT in waitQueue then
/* Wait for the tx sub-step of the FM */
WAITRANDOMTIME(O, GETTXTIME(), WAITTIME);
SEND(afdxMsg, APEXPORTNAME, APEXPORTINDEX);
RESCHEDULEPROCESS();
end if
end if
end if
end if
end if
end while
end function

51






CURRICULUM VITAE

Name SURNAME: Miimin Goker GAYRETLI

EDUCATION:

* B.Sc.: 2019, Istanbul Technical University, Electric Electronics Faculty, Electronics
and Communication Engineering

* B.Sc.: 2020, Istanbul Technical University, Computer and Informatics Faculty,
Computer Engineering (Double Major)
PROFESSIONAL EXPERIENCE:

* 2019, Graduated with second-highest honors from ITU Electronics and Communi-
cation Engineering

* 2019-2021, Part-Time Embedded Developer at ITU Aerospace Research Center

* 2020-2023, Software Engineer at the TUBITAK BILGEM

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS:

* Gayretli, M. G., Yeniceri, R., and Demir, M. S., (2023). Partitioning
Network Stack Implementation in OMNET++, 2nd INTERNATIONAL GRADUATE
RESEARCH SYMPOSIUM IGRS’23, March 16-18, 2023 Istanbul, Turkey.

* Gayretli, M. G., Yeniceri, R., Demir, M. S., and Hokelek, I, (2023). An OMNET++
Simulation Model for IMA Systems, 71/ nd I[EEE International Black Sea Conference
on Communications and Networking, July 5-7, 2023 Istanbul, Turkey.

53



OTHER PUBLICATIONS, PRESENTATIONS AND PATENTS:

* Hiiner, Y., Gayretli, M. G., and Yeniceri, R, (2021). HW/SW Design Space
Exploration of A Complementary Filter on Zynq SoC, 8th International Conference
on Electrical and Electronics Engineering (ICEEE), Antalya, Turkey, pp. 1-5.

54



