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SAKARYA HAVZASINDAKI KISA DONEM METEOROLOJIK KURAKLIGIN
HiBRIT MODELLER iLE TAHMIiN EDIiLMESI

Omer COSKUN

Erciyes Universitesi, Fen Bilimleri Enstitiisii
Doktora Tezi, Haziran 2023
Damisman: Do¢. Dr. Hatice CITAKOGLU

OZET

Bu tez ¢alismasi, Sakarya havzasindaki 10 adet meteoroloji istasyonuna ait uzun dénem
yagis verileri kullanilarak havzadaki kisa donem meteorolojik kuraklik degerlerinin
tahmin edilmesine yoneliktir. Her bir istasyona ait aylik yagis verileri kullanilarak 1, 3,
6 ve 12 aylik kisa zaman &lgekleri i¢in Standartlastirilmis Yagis Indeksi (SYI) kuraklik
degerleri hesaplanmustir. Hesaplanan SYI kuraklik zaman serilerine, daha kisa ve daha
yiiksek Ozniteliklere sahip alt seriler elde edebilmek amaciyla Ayrik Dalgacik
Doéntistimii (ADD), Ampirik Mod Ayristirma (AMA) ve Varyasyonel Mod Ayristirma
(VMA) 6n isleme teknikleri uygulanmistir. Tahmin modellerinde bagimsiz modeller
olarak Yapay Sinir Aglari, Uyarlamali Sinirsel Bulanik Cikarim Sistemi, Gauss Siireg
Regresyonu, Destek Vektér Makine Regresyonu makine 6grenmesi yontemleri ile
Uzun-Kisa Siireli Bellek (UKSB) derin 6grenme yontemi ele alinmistir. Bu yontemlere
ADD, AMA ve VMA 6n isleme teknikleri dahil edilerek hibrit modeller elde edilmis ve
tim bagimsiz ve hibrit modellerin tahmin basarilar1 performans kriterlerine gére birbiri
ile karsilastirilmigtir. Test sonuglarina gore, hibrit modellerin tahmin performanslar
bagimsiz modellere gore oldukga tistiindiir. Ancak, bu tez ¢alismasinda UKSB yontemi
ile elde edilen bagimsiz tahmin modelleri, yiiksek tahmin performanslar1 gostermistir.
Bundan dolay1 kuraklik zaman serilerine farkli 6n isleme teknikleri uygulanmadan da
UKSB derin 06grenme yontemi kullanilarak modellerden yiiksek tahmin
performanslarinin elde edilebilecegi sonucuna ulagilmigtir. Ayrica UKSB yonteminin
hibrit modelleri, diger makine &grenmesi modellerine gére de daha basarilidir. On
isleme teknikleri arasinda ise VMA teknigi, diger tekniklere gore daha ¢ok 6n plana

cikmustir.

Anahtar Kelimeler: Meteorolojik kuraklik, Sakarya havzasi, SYI, Makine dgrenmesi,

Derin 6grenme, On isleme teknikleri, Hibrit modeller
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PREDICTION OF SHORT-TERM METEOROLOGICAL DROUGHT IN THE
SAKARYA BASIN WITH HYBRID MODELS

Omer COSKUN

Erciyes University, Graduate School of Natural and Applied Sciences
PhD Thesis, June 2023 5
Supervisor: Assoc. Prof. Dr. Hatice CITAKOGLU

ABSTRACT

This thesis is aimed at predicting short-term meteorological drought values in the basin
by using long-term precipitation data from 10 meteorological stations in the Sakarya
basin. Standardized Precipitation Index (SPI) drought values were calculated for short
time scales of 1, 3, 6 and 12 months using monthly precipitation data of each station.
Discrete Wavelet Transform (DWT), Empirical Mode Decomposition (EMD) and
Variational Mode Decomposition (VMD) pre-processing techniques were applied to the
calculated SPI drought time series in order to obtain sub-series with shorter and higher
features. Artificial Neural Networks, Adaptive Neuro-Fuzzy Inference System,
Gaussian Process Regression, Support Vector Machine Regression machine learning
methods and Long Short-Term Memory (LSTM) deep learning method were considered
as stand-alone models in drought prediction models. The hybrid models were obtained
by incorporating DWT, EMD and VMD pre-processing techniques into these methods,
and the prediction successes of all stand-alone and hybrid models were compared with
each other according to performance criteria. The findings indicated that, the prediction
performance of the hybrid models is quite superior to that of the stand-alone models.
However, stand-alone prediction models obtained by the LSTM method also showed
high prediction performances. Therefore, it has been concluded that high prediction
performances can be obtained from the models by using the LSTM deep learning
method without applying different pre-processing techniques to the drought time series.
Moreover, hybrid models of the LSTM method are more successful than other machine
learning models. Among the pre-processing techniques, the VMA technique

overperformed than the other techniques.

Keywords: Meteorological drought, Sakarya basin, SPI, Machine learning, Deep

learning, Pre-processing techniques, Hybrid models
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GIiRiS
Diinya milletleri tarih boyunca cesitli savaslar, afetler ve salgin vakalar1 ile karsilasmis
ve bunlarin aci etkilerine de belirli zaman dilimleri boyunca maruz kalmstir. Insan tiirii,
gecmiste yasanan aci tecriibelerden dersler c¢ikartip bunlara gore bir yasam plani
olusturdugunda buna paralel olarak refah ve medeniyet ¢itasin1 daha da yukari ¢ekmis,
tersi durumda ise her zaman maddi ve manevi kayiplarla ylizlesmek zorunda kalmustir.
Bilindigi iizere insan tiirli diger tiirlere gore zor sartlara daha kolay uyum saglayabilmesi
sayesinde dogada varhigin1 korumus ve giinden giine kendini gelistirebilmistir. Insan,
doganin kendisine sundugu ve sunacagi kaynaklarin sonsuz oldugunu diisiinerek bu
kaynaklara yonelik gerekli tedbirleri almadigi siirece karsilasacagi tiim olumsuz
vakalarda yine ¢esitli sikintilar yasayacaktir. Son dénemde insanoglunu en ¢ok mesgul
eden ve flizerinde ¢esitli tartisgmalarin halen devam ettigi liste basi konulardan biri
kiiresel iklim degisikligidir. 2023 yili Ocak ayinda yaymlanan Diinya Ekonomik
Forumu Kiiresel Risk Raporunda; oniimiizdeki 10 yilda diinyanin karsilasacagi en
biiyiik on tehlikeden altisinin kiiresel iklim degisikligi ve buna bagl olarak ortaya
cikacak olan gevresel sorunlar oldugu belirtilmistir [1]. Kiiresel iklim degisikliginin
etkilerini giin gegtikge tiim diinya ve canlilar farkli zamanlarda, farkli yerlerde ve farkli
sekillerde hissetmeye baslamiglardir. Iklim degisikligine bagli olarak ortaya cikan
Kiiresel 1sinmanin hidrolojik dongii igerisinde yer alan hidrometeorolojik parametreleri
dogrudan etkiledigi ve bu nedenle sistemin dengesini bozdugu kacinilmaz bir gercektir.
Diinyanin bazi1 noktalarinda asir1 yagislara bagli sel felaketleri gbzlemlenirken, bazi
noktalarinda ise siddetli kurakliklar goriilmektedir. Bu sekilde meydana gelen doga
olaylar1 uzun periyotlarda ve genis alanlarda goriilebilecegi gibi kisa periyotlarda ve dar
alanlarda da yikici etkilerini gdsterebilmektedir. Ornegin taskin gibi dogal felaketler
aniden ortaya cikip dar bir bolgeye etki ederken, kuraklik gibi dogal felaketler ise yavas
yavas ortaya ¢ikar ve genis bir alanda etkisini gosterir. Kuraklik, bu 6zelliginden dolay1
oldukga sinsi ve tehlikeli bir dogal felaket olarak goriilmektedir. Tez ¢alismasinin ana

konusunu olusturan ve ilerleyen boliimlerde daha detayli bir sekilde ele alinacak olan



kuraklik kavrami, genel manada “Uzun bir donem boyunca ve genis bir bolgede
yagislarin normal seviyelerine gore dnemli 6l¢iide diismesi sonucu su varliginda ortaya
cikan azalma veya eksiklik” olarak tanimlanir [2]. Kuraklik felaketi, insan tiirli basta
olmak ftizere tiim canlilarin temel gereksinimlerine erisimini zorlastirir, doganin
stiregelen dengesini bozar ve yasamin birgok alaninda da bu etkileri ortaya cikar.
Yetersiz yagislarla baslayan kuraklik siireci, bitkinin suya erisememesi nedeniyle
tarimsal faaliyetleri olumsuz etkiler ve gida arz-talep dengesini bozar. Ayni zamanda
insan tlriiniin ve diger canlilarin igme-kullanma suyu ihtiyacinin da karsilanamadigi
durumda hem suya hem de gidaya erisim zora girecegi igin susuzluklar ve agliklar
goriilmeye baglar. Kuraklik devam ettigi siirece, bu susuzluk ve aglik durumlarina baglh
olarak kitlik ortaya ¢ikar ve biiylik boyutlu dliimler gozlemlenebilir. Kuraklik olay:

ciddi sosyo-ekonomik problemlere neden olan yikici bir dogal afettir [3].

Diger dogal afetlere nazaran kuraklik birgok sektorii dogrudan etkiledigi igin etkisinin
daha uzun siirdiigii rahatlikla soylenebilir. Ayn1 zamanda kurakligin tespiti ve izlenmesi
de oldukga zor bir siiregtir. Bu nedenle insanoglu sahip oldugu kaynaklarin potansiyelini
bilerek kuraklik olayin1 hem kiigiik dlgeklerde hem de kiiresel Ol¢ekte saglikli bir
sekilde tespit etmek zorundadir. Iste bu noktada bilim ve teknolojideki gelismeler de
dikkate alinarak ge¢cmisteki verilerden kurakliga etki eden parametrelerle kuraklik
arasindaki iliski dogru bir sekilde ortaya konulmali, mevcut durum ile gelecekte
karsilasilacak olan muhtemel kuraklik durumlar1 6ngoriilebilmelidir. Bu sayede hem
yerel hem de merkezi yonetimlerin kurakliga yonelik projeksiyonlar gelistirebilmesi
miimkiin olabilecek, gercek¢i ve entegre politikalar cergevesinde cesitli onlemler
alinabilecek, basta insan hayati olmak {iizere tim canli hayatin1 olumsuz etkileyen bu

yikici afetle miicadele daha da kolaylasacaktir.

Bu caligmada ele alinan meteorolojik kuraklik, karmagik kuraklik siirecinin ilk asamasi
oldugundan bolgesel anlamda kurakligin genel gidisati ile ilgili olarak cesitli fikirler
sunabilmektedir. Meteorolojik kurakligin erken tespiti; diger kuraklik tiirleri olan
tarimsal kuraklik, hidrolojik kuraklik ve sosyo-ekonomik kurakligin yikici etkilerini
onleyebilmek adina olduk¢a 6nem arz etmektedir. Kuraklik siirecinde tiim fiziksel,
meteorolojik, iklimsel ve beseri etkenler gbz 6niinde bulundurularak bir degerlendirme
yapmak zordur. Bu ylizden kurakligin saptanip kategorize edilmesinde, zamana bagl

gbzlemlenen meteorolojik ve iklimsel normallerin dikkate alinmasi gerekir. Kurakligin



konumu, siiresi, siddeti, frekansi ve periyodu gibi bazi 6zel karakteristikler gesitli

kuraklik indisleri veya gostergelerle belirlenip kategorize edilebilmektedir [4].

Son doénemlerde hidrometeoroloji alaninda yapilan tahmin ¢alismalar1 gelisen teknoloji
ve yeni tekniklere bagli olarak popiiler bir arastirma alani olmustur. Hidrometeorolojik
tahmin ¢aligmalari igerisinde ise yapay zeka teknikleri ve alt kategorisinde yer alan
makine 6grenmesi yontemleri literatiirde siklikla tercih edilen yontemlerdir. Yine yapay
zeka ve makine 6grenmesi alt kategorisinde yer alan derin 6grenme algoritmalari da bu
alanda yeni yeni kullanilmaya baslanmistir. Tiim bu yontemler bagimsiz bir sekilde
kullanilabildigi gibi diger yontemlerle de beraber kullanilip her bir yontemin seckin
ozelligi ortaya c¢ikartilarak daha biitiinciil ve etkili modeller olusturulabilmektedir. Bu
tarz modeller ‘hibrit modeller’ olarak adlandirilmakta olup, yine son dénemlerde g¢ok
tercih edilen bir yaklasimdir. Esasen hibrit yontemlerle olusturulan tahmin modellerinin
performanslari klasik yontemlere gore daha basarili olup, hibrit yontemler kisa siirelerde

ve genis perspektifte sonuglar verebilmektedirler.

Bu tez calismasiin birinci boliimiinde; iklim degisikligi, kuraklik, iklim degisikligi-
kuraklik iligkisi, kurakliga neden olan meteorolojik etmenler, kuraklik tiirleri, kuraklik
indisleri ile kurakligin belirlenmesine yonelik genel bilgiler sunulacak olup, kuraklik ve
kuraklik tahmini ile ilgili literatiir 6zetleri sunulacaktir. Ayni zamanda problem durumu,

arastirmanin amaci Ve dnemi ortaya konulacaktir.

Calismanin ikinci boliimiinde; ¢alisma alan1 olan Sakarya havzasi ve ozellikleri basta
olmak {iizere iklimsel ve meteorolojik kosullar, veri se¢imi, istasyonlarin karakteristik
ozellikleri gibi materyaller hakkinda bilgiler verilecektir. Tez ¢alismasinda ele alinacak
olan Standartlastirilmis Yagis Indeksi (SYI) kuraklik degerlerinin hesabi, DrinC
yazilimi, homojenlik, duraganlik ve bagimsizlik testleri, otokorelasyon analizi, veri 6n
isleme teknikleri, makine 6grenmesi ve derin 6grenme yontemleri hakkinda detayli
bilgiler verilecektir. Yine bu boliimde, ¢aligmanin metodolojisi ve model gelisimi ortaya
konulacaktir. Tahmin modellerinde ele alinacak olan yontemler i¢in tercih edilen model

parametreleri tanitilacaktir.

Calismanin iiclincli boliimiinde; kuraklik tahminine yonelik yapilan tiim analizlerden

elde edilen bulgular ortaya konulacak olup tahmin modellerine ait sonuglar, performans



kriterlerine gore sagilma ve zaman serisi grafikleri, Taylor diyagramlar1 ve radar

grafikleri {izerinden birbiri ile karsilastirilacaktir.

Calismanin dordiincii ve son boliimiinde ise elde edilen bulgular tizerinden konu ile

ilgili tartisma, sonug ve oneriler sunulacaktir.



1. BOLUM

GENEL BILGILER ve LITERATUR CALISMASI
1.1. iklim ve Iklim Degisikligi

Iklim; sicaklik, nem, hava basinci, yags, riizgar gibi meteorolojik olaylarm genis bir
bolgede ve uzun bir donem boyunca baskin karakteristik 6zelliklerini temsil eden
ortalama kosullardir. iklimi genis bir cergevede ele alan bilim dalma ise klimatoloji
denir. Genellikle iklim kavrami hava durumu ile ¢ok karistirilir ve yanlis ifade edilir.
Hava durumu, atmosferde goriilen ve meteorolojik olaylar1 meydana getiren sicaklik,
nem, hava basinci, yagis, riizgar gibi degisken iklim elemanlarinin belli bir yerde kisa
stireler icerisinde almis olduklar1 gériiniimlerdir. Hava olaylarini inceleyen bilim dali ise
meteorolojidir. Iklim degisikligi ise meteorolojik olaylardaki uzun dénem boyunca
olusan ortalama kosullarda goriilen biiyiik sapmalar veya biiyiik degisimlerdir [5]. Iklim
degisikligi toplumlarda ve devletlerde en ¢ok tartisilan ve kaygi yaratan konularin
basinda gelmektedir. Ancak iklim degisikligi bu kadar giindemde olmasina ragmen bu
kavramla ilgili yanlis ¢ikarimlar s6z konusudur. Hava durumunun aksine baskin iklim
kosullariin olusabilmesi igin yukarida tanimi yapilirken bahsedildigi iizere ¢ok uzun
yillar gerekmektedir. Meteorolojik bir olayin belli bir normale ulasmasi igin gereken
stire en az 30 yil olarak kabul edilirken, klimatolojide bu siire 300 yila kadar
cikabilmektedir [6]. Belirli bir bolgenin karakteristik iklim kosullarindan
bahsedilebilmesi i¢in bu 6lgekte uzun bir doneme ait veri setinin olmasi gerekir. Yine
ayni perspektifle bakilacak olursa, iklim degisikliginden bahsedilebilmesi i¢in de uzun
bir gozlem siiresine ihtiya¢ vardir. Konunun uzmani olmayan kisi veya kurumlarca kisa
sireli hava durumlarina bakilarak iklimin degistigine dair yapilan ¢ikarimlar ¢ok
rasyonel degildir. Bununla birlikte; iklim kosullari, yerkiirenin milyar yillik varligindan

beri tiim bolgeler ve tiim zaman 6l¢eklerinde degisim egiliminde olmustur [7].



Iklim degisikliginin genel tamimi Birlesmis Milletler Iklim Degisikligi Cerceve
Sozlesmesinde (United Nations Framework Convention on Climate Change, UNFCCC)
yapilmistir. Iklim degisikligi; karsilastirilabilir iki zaman dilimi icerisinde iklim
sisteminde gozlenen dogal i¢ degisikliklere ek olarak dogrudan veya dolayl bir sekilde
kiiresel atmosferin bilesimini degistiren insan faaliyetlerine atfedilen iklimdeki
degisikliklerdir. Burada iklim sisteminin kisa bir tanimi1 da yapilmis olup atmosferin
(hava tabakasi), hidrosferin (su tabakasi), biyosferin (canli tabaka) ve jeosferin (yer
tabakas1) biitiinii ve bunlarm etkilesimleri iklim sistemi anlamina gelmektedir [8]. Iklim
sistemindeki dogal i¢ degisikliklere sebep olan etkenlere; jeolojik devirlerdeki iklim
degisiklikleri, volkanik faaliyetler, buzul hareketleri, deniz seviyesindeki yiikselme ve
alcalmalar Ornek gosterilebilir [9]. Son yillarda siirekli giindeme gelen ve iklim
sisteminin dengesini bozan insan kaynakli faaliyetler ise yaklasik 18. yiizyilin
ortalarinda baglayan endiistri devrimi ile birlikte hizlanmistir. Bu donemden itibaren
fosil yakitlarin yakilmasi, ormanlarin yok edilmesi, arazi kullanimi, sera gazlarmin (su
buhari, karbondioksit, metan, diazotmonoksit, ozon, aeroseller vb. gazlar) atmosferdeki
miktarlarinin 6nemli Olgiide artmasi iklim degisikligine sebep olan insan kaynakli
faaliyetlerdir. Ozellikle sera gazlarinin iklim sistemindeki yeri tartisilmaz derecede
onemlidir. Yerylizii ile Glines arasinda kisa ve uzun dalga boylarinda meydana gelen
radyasyon etkilesimini dogrudan etkileyen sera gazlar1 atmosferdeki miktarlarina gore
yeryiiziiniin ve atmosferin alt boliimlerinin 1sinmasma sebep olmaktadir. Endiistri
devrimi Oncesinde 280 ppm olan atmosferdeki CO2 konsantrasyonu, ABD Ulusal
Okyanus ve Atmosfer Yonetimince (NOAA) 2022 yili mayis ayinda 420 ppm olarak
Olglilmiis olup kayitlara giren en yiiksek degerdir [10]. Diinyanin aldig1 ya da yansittigi
Giines 15181 miktar1 da diinya yiizeyindeki sicakligi etkileyen 6nemli bir parametredir.
Burada bahsedilen 1sinma ve sicaklik artiglari, yine ¢ok karistirilan bir kavram olan

kiiresel 1sinmaya sebebiyet vermektedir.

Kiiresel iklim degisikligi ile ilgili en kapsamli ¢aligmalar ve degerlendirmeler 800’den
fazla bilim insan1 ve arastirmacinin yer aldigi bir platform olan Hiikiimetleraras: Iklim
Degisikligi Paneli (Intergovernmental Panel on Climate Change, IPCC) tarafindan
yapilmaktadir. 1988 yilinda Birlesmis Milletlere bagh olarak kurulan bu platform,

kiiresel iklim degisikligi ile ilgili glinimiize kadar genis ¢apta hazirlanan degerlendirme



raporlarnt tizerinde calismistir. 2014 yili Eyliil ayinda yayinlanan 5. Degerlendirme

Raporundaki kiiresel iklim degisikligi ile ilgili one ¢ikan bazi degerler su sekildedir:
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19012012 yillar1 arasinda kiiresel sicakliklarda yaklasik 0,9°C’lik bir artis soz
konusudur. Bu yillar arasinda yerkiirenin neredeyse tiim ylizeyi isinmistir. Ortalama

ylizey sicaklig1 ise endiistri devrimi 6ncesine gore 2°C daha yiiksektir.

Geride kalan son 30 yil (1984-2014) 19. yiizyilin ortalarindan itibaren kaydedilen
en sicak ardisik 30 yil olarak, 21. yiizyilin ilk 10 yili ise en sicak 10 yil olarak

degerlendirilmistir.

Kiiresel ylizey sicakligt 21. ylizyilin sonlarina dogru, yapilan projeksiyon ve
senaryolarin biiyiik bir kisminda endiistri devrimi 6ncesine gore 1,5°C’yi, birkag

projeksiyona gore ise 2°C’yi gegecektir.

1950’li yillardan itibaren hava olaylarindaki ekstrem durumlarda da ciddi
degisiklikler gozlenmis ve ozellikle sicaklik artiglarindan kaynakli kiiresel 6lgekte

soguk giin ve gecelerin sayis1 azalmis, sicak giin ve gecelerin sayisi ise artmistir.

1951-2010 yillar1 arasinda kiiresel sicakliklardaki artis, %95 civarinda bir ihtimalle

insan faaliyetlerinden kaynaklanmistir.

Atmosferdeki karbondioksit (CO2), metan (CH4) ve diazot monoksit (N20)
gazlarinin birikimleri 2014 yili itibariyle son 800.000 yillik donemdeki kadar
yiiksek bir diizeyde seyretmemistir.

Atmosferdeki karbondioksit (COz2) birikimi, 6zellikle fosil yakit yakilmasi ve arazi
kullanimindaki degisimler nedeniyle endiistri devrimi oncesine gore %40 oraninda

artmigtir.

19. ylizy1ilin ortalarindan beri gozlenen deniz seviyesi yiikselme orani 6nceki iki bin
yillik donemdeki ortalamalarma goére daha yiiksektir. Kiiresel ortalama deniz

seviyesi 1901-2010 yillar1 arasinda 19 cm yiikselmistir [11].

Kiresel iklim degisikliginin, yerkiire ve canlilar {izerinde bir¢ok olumsuz etkisi

bulunmaktadir. Mevcutta ve gelecekte karsilagilacak olan bu olumsuz etkiler ise kisaca

sOyle 6zetlenebilir:
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Baz1 biyolojik tiirlerin yeni ekosisteme adaptasyonu zorlasacagindan bu tiirler yok

olma tehlikesi yasayacaklardir.

Daglik bolgelerdeki buzullar ve kar Ortiisiiniin azalmasindan dolay1 oncelikle
hidrolojik sistem ve toprak dengesi bozulacaktir. Tarim, turizm, kerestecilik gibi

ekonomik sektorler olumsuz etkileneceklerdir.

Deniz seviyesinin son 100 yilda ortalama 15-25 c¢m ylikselmis olmasi ve bu degerin
2100 yilma kadar 15-95 cm’ye ulasabileceginin Ongoriilmesi nedeniyle bazi
iilkelerin kiy1 kesimleri sular altinda kalacak ve kiiclik adalar kaybolacaktir.

Balikeilik, tarim, turizm, sehircilik ve sigorta gibi sektdrler olumsuz etkilenecektir.

Tatlh su kaynaklarina tuzlu su karigsacagindan dolay1 canlilarin ihtiyaci olan igme ve

kullanma suyunun kalitesi bozulacaktir.

Yeryiiziiniin bazi boéliimlerinde yagislar artarken bazi boliimlerinde yagislar

azalacaktir. Bu nedenle hidrolojik dongii bozulacaktir.

Yagis paternlerindeki degisimler nedeniyle saganak yagislar artacak, bdylece suyun
topraktaki siiziiliisii azalacagindan dolay1 sel olaylar1 ciddi oranda artacaktir. Bu
degisimler yeriistii ve yeralt1 su kaynaklarinin dagilimin1 ve potansiyelini olumsuz

etkileyecektir.

Su kaynaklarindaki azalma nedeniyle 6zellikle tarim ve ¢evre sektorlerinin olumsuz

etkilenmesinin insanlar iizerinde bir¢ok negatif etkisi olacaktir.

Dogal kaynaklarin potansiyelinde goriilebilecek gerilemelerden dolay1 kirsal

kesimlerde yasayan insanlarin kentlere go¢ii artacaktir.

Kiiresel 1sinmaya bagli olarak gergeklesebilecek kalp ve solunum rahatsizliklar
basta olmak {izere, bazi hastaliklardan dolay1 insanlarin psikolojisi olumsuz

etkilenecektir. Psikolojik rahatsizliklar, diger hastaliklar ve 6liimler artacaktir [12].

1.2. iklim Degisikligi-Kuraklik iliskisi

Tez cgalismasinin ilerleyen boéliimlerinde daha detayli bir sekilde ele alinacak olan

kuraklik kavrami, iklim kosullarin1 olusturan dogal siireclerden sadece biridir.



Yagislarin azalmasina bagli olarak su arz-talep dengesinin bozulmasi ile birlikte ortaya
cikan kuraklik, iklim kosullarinin su kaynaklarina, tarim ve canli hayatina etkilerini
ortaya c¢ikartan ve ¢ok oOnem verilmesi gereken tehlikeli bir dogal afettir. Son
donemlerde iklim degisiklikleri ile birlikte kuraklik olaylar1 da genis bolgelerde etkisini
artirmis ve en ¢ok tartigilan konulardan biri halini almistir. Ancak yeryliziinde goriilen
her kuraklik olaymi da iklim degisikligine baglamak ¢ok saglikli bir yaklasim degildir.
Iklim degisikliginin etkisinin arttign donemlerden &nceleri de diinyanin farkl
bolgelerinde siddetli kuraklik olaylari gézlenmistir [13]. Son dénemlerde kurakligin bu
kadar cok giindemde olmasinin 6nemli nedenlerinden biri de ciddi oranlarda artis
gosteren kiiresel 1sinmanin hayatt birgok alanda olumsuz etkilemesidir. Kiiresel
isinmaya bagl olarak sicakliklarin artmasi ve yagislarin da kayda deger bir sekilde
azalmas1 sonucu ortaya c¢ikan kurakligin olumsuz etkileri yeryiiziiniin biiylik bir

kisminda giinden giine daha da hissedilir bir hal almistir [14].

Canli-cansiz ekosisteminin en o6nemli dongiisii denilebilecek hidrolojik ¢evrimde,
kiiresel iklim degisikligine bagli olarak son donemlerde normal kosullardan Onemli
derecede sapmalar gozlenmektedir. Yasamin temel kaynagi olan su, yeryiiziinde
maddenin kati, sivi ve gaz halleri seklinde bulunur ve bu haller arasinda siirekli bir
doniistim egilimindedir. Biiyiikk bir oranda (%97,5) okyanuslarda ve az bir oranda
(%2,5) karada bulunan su; buharlagsma ile atmosfere, atmosferden ise yogunlagma
sonucu cesitli yagis formlarinda tekrar yeryiiziine ulasir. Yeryiiziine donen su, yiizeysel
akig ve yeralt1 suyu seklinde nehirlere ve oradan da tekrar okyanuslara ulasir. Stirekli
devam eden bu dongiide yer alan meteorolojik olaylar dogal hizindan daha uzun veya
kisa bir siirede, dar veya genis bir alanda meydana geldigi zaman tiim ekosistemi 6nemli
derecede etkilemektedir. Bu etkilerin basinda da yeryiiziindeki su varlig1 ve su dagilimi
gelmektedir. Bu sonsuz dongii icerisinde yeryiiziiniin bazi bolgelerinde yagis
yetersizligine bagli olarak kuraklik olayr goriilebilmektedir [15]. Ayrica bu sonsuz
dongii bazinda iklim kosullarina ve kurakliga daha biiyiik bir perspektifte bakildiginda
kurakligin iklim kosullar1 igerisinde nasil bir siirecte yer aldigi net bir sekilde
anlagilmaktadir. Bu siirece bagli olarak yagis paternindeki degisiklikler, kar
birikimindeki azalma, erime rejimleri ve evapotranspirasyondaki artiglar kuraklik

kosullarini daha da siddetlendirmektedirler [16].
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1.3. Kurakhk

Kuraklik, ekolojik bir sistemde su varliginda veya su kaynaklarinda beklenen degerlere
gore ciddi orandaki azalmalar sonucu ortaya ¢ikan ve canlilarin suya olan talebinin
karsilanamamasina neden olan ¢ok tehlikeli bir doga olayidir. Kuraklik siireci ilk olarak
yagis eksikligi ile baglar, daha sonra toprak neminde azalmalar goriiliir, devaminda ise
akislarda, nehir akimlarinda, kaynaklarda, sulak alanlarda ve depolamalarda, yeralt
suyu rezervlerinde azalmalar goriilir ve en sonunda ise canlilarin su taleplerinin

karsilanamamasi nedeniyle ¢esitli sosyo-ekonomik etkileri ortaya ¢ikar.

Kuraklikla ilgili olarak olusum, siddet, frekans, konum, zaman ve siire gibi kriterlere
gore bircok tanim gelistirilmis olup kurakligin goreceli olmasindan dolay1 belirli bir
tanim1 bulunmamaktadir. Bununla birlikte kurakligin en net ve kullanigh tanimi 1997
yilinda italya'da diizenlenen Birlesmis Milletler Céllesme ile Miicadele
Sempozyumunda yapilmistir. Burada kuraklik; ‘kaydedilen normal seviyelerin dnemli
Olciide altina diisen yagiglar nedeniyle hidrolojik dengenin bozulmasi sonucu, su ve
toprak kaynaklarmin olumsuz etkilenmesine neden olan tehlikeli bir doga olay1” olarak
tamimlanmustir [17]. Kuraklik, biitiinciil bir sekilde degerlendirildiginde mutlak degil
goreceli bir doga olay1 olarak bilinmektedir. Kuraklikla ilgili referans noktasi
normallere gore yagis ve su eksikligi oldugundan dolayi, fazla ya da az yagis almasi
fark etmeksizin hemen hemen biitiin iklim kusaklarinda ve rejimlerinde kuraklik olay1

goriilebilmektedir [18].

Kuraklik, yagislar ve yagislarin 6zellikleri ile dogrudan ilgili olmakla birlikte sicaklik,
rlizgar, bagil nem, hava basinci, buharlagma gibi iklim elemanlarina da bagl olarak
degisiklik gosterebilmektedir. Bahsedilen bu iklim elemanlar1 kurakligin baslangic
zamani, cografi dagilimi, siiresi ve siddeti gibi kriterler lizerinde etkili olabilmektedir.
Bundan dolay1 kuraklikla iklim arasinda yakin bir iliskiden s6z etmek miimkiindiir.
Kuraklik olayi, su kaynaklari {izerindeki baskiy1 artirarak insanlarm, bitkilerin ve
hayvanlarin su ihtiyaglarin1 karsilamasinda zorluklar ve problemler yaratmaktadir.
Bununla birlikte kurakligin siddeti, diger iklim faktorlerinin disinda insan faaliyetlerine
ve su taleplerine gore de artmakta ya da azalmaktadir. Mevcut su kaynaklarinin israf

edilmesi ve hali hazirda simirli durumdaki kaynaklarin da sorumsuz ve etkisiz kullanimi
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sonucu, tarimsal faaliyetler basta olmak iizere insan ve doga Onemli Olgiide

etkilenmektedir [19].

Kurakligin karakteristiklerini tanimlamak, 6lgmek ve izlemek; sebep oldugu g¢evresel,
toplumsal ve ekonomik etkilerden dolayr olduk¢a giictiir. Kuraklik ile miicadele,
kurakligin oldukg¢a agir ilerlemesi ve seneler boyunca birikimli olarak biiylik bolgeleri
etkisi altina almasi nedeniyle diger doga olaylarina gore epey zordur. Kuraklikla
miicadeleyi zorlastiran bir diger etken de kurakligin baslangic ve bitis tarihlerinin
genellikle belirsiz olmasidir. Ozellikle insanin dogay1 bozmaya devam etmesi halinde
ekolojik dengedeki bozulmalar giderek artacak olup kiiresel 1sinma ve iklim degisikligi
ile birlikte kuraklik olay1 canlilar ve diinyamiz agisindan daha biiyiik bir problem haline

gelecektir [20].

Kuraklik olay1, olusumu ve baslangici agisindan tek basina bir felaket gibi olmamasina
ragmen canli hayati lizerine etkileri ve ekolojik ¢evrenin kurakliga karsi gosterdigi
dayaniklilik durumuna gore ¢ok yikici olabilmektedir. Diinyanin bircok bolgesinde ve
farkli iklim kusaklarinda kurakligin etkisi goriilmektedir. Kurakligin yikici etkisi
siddetine bagl olarak hem ¢ok kisa donemlerde hem de uzun donemlerde ortaya
cikmaktadir [21].

1.3.1. Kurakhga Neden Olan Meteorolojik Etkenler

Yerkiirenin yaklasik 4,6 milyar yillik bir jeolojik tarihi bulunmakta olup bu siire¢
boyunca hem vyeriistii ve yeralti1 hareketlerindeki degisimler, hem yoriinge hareketleri
hem de atmosferdeki etkilesimlerden dolay1 kiiresel iklim siirekli degismektedir. Bu
konu, hem jeolojinin hem de klimatolojinin igerisinde degerlendirilen genis bir konu
olup tez konusunu dagitmamak admna detaylarina girilmeyecektir. Atmosferdeki
etkilesimler igerisinde en Onemli olay Giines 1sinlar1 ve Gilinesten alinan enerji
miktaridir. Glinesten alinan enerji miktar1 siirekli artis egiliminde olup, bu da kiiresel
iklim kosullarmi etkilemektedir. Sicaklik, buharlagsma, yagislar, riizgar, nem gibi
meteorolojik degiskenler, iklim degisimlerine bagli olarak normallere gore sapmalar
gosterir. Kurak donemlerin goriilmesinde bu meteorolojik degiskenlerdeki Ssapma

miktarlar1 6nemli bir yer tutmaktadir.



12

Kurakliga neden olan 6nemli etkenlerden biri de atmosferdeki dolasim sistemlerinde
goriilen salinimlar, baska bir ifadeyle basing farkliliklaridir. Salinimlarin etkisi altinda
bulunan bir bdlgenin baz1 bdliimlerinde normallerin iizerinde sicaklik, yagis, riizgar
degerleri goriiliirken bazi1 boliimlerinde ise bu degiskenlerin normallerin altinda
seyrettigi goriiliir. Bir bolgede kararli iklim kosullarinin goriilebilmesi i¢in atmosferde
miimkiin oldugunca salinimlarin olmamas1 gerekir. Diinyanin 30° enlemlerine yakin
boliimlerinde (ekvator) algak basing, 60° enlemleri civarinda (kutuplar) ise yiiksek
basing kosullar1 hakim olmaktadir. Bu iki zit basing kosullarinin birbiri ile etkilesimleri
sonucu da hava olaylar1 olusmaktadir. Issnmanin fazla oldugu 30° enlemleri civarinda
meydana gelen nemli hava akimlari, bu bolgelerde Diinyanin yoriinge hareketlerine
bagl olarak havayr sogutur ve algalmaya zorlar. Bu atmosferik algalma olayina
‘siibsidans’ denilmekte olup siibsidansin gerceklestigi durumda hava adyabatik olarak
1sindigindan dolay1 daha kuru bir hava formunda yerytiziine ulagsmaktadir [22]. Kuraklik
olayima neden olan bir diger siibsidans durumu da subtropikal yiiksek basing hareketi ile
meydana gelmektedir. Subtropikal yiiksek basing hareketi; yazlar1 kutuplar bolgesine,
kiglar1 ise ekvator bolgesine dogru bir salinim yapar. Bu salinim sonucunda 30°
enlemleri civarinda kurak bir kusaga neden olan yagis rejimi goriiliir. Tiim bunlara ek
olarak havanin nem durumu da yagislart ve dolayisiyla kuraklik olaymi dogrudan

etkileyen bir etkendir.
1.3.2. Kurakhik Simiflandirmasi

Kurakligin goreceli ve karmasik bir doga olay1 oldugundan daha 6nce bahsedilmisti. Bu
nedenle, kuraklikla ile ilgili ¢ok gesitli siniflandirmalar s6z konusudur. Ancak
literatiirde kabul goren kuraklik siniflandirmasi, 6zellikle etkiledigi alana ve etkileme
stiresine gore yapilmaktadir. Yine daha once belirtildigi tizere kuraklik, sistemdeki su
eksikliginden kaynaklanan ve canlilarin su taleplerinin karsilanamadigi bir durumdur.
Sistemdeki su eksikliginin etkilemis oldugu alanlara gore kuraklik; meteorolojik,
tarimsal, hidrolojik ve sosyo-ekonomik kuraklik olarak dort sinifa ayrilmaktadir [23].
Etkileme siiresine gore ise kisa siireli ve uzun siireli kuraklik olarak ayrilmaktadir. Sekil

1.1°de etkiledigi alanlara gore kuraklik siiflar1 gosterilmistir.
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Sekil 1.1. Etkiledigi alanlara gore kuraklik siniflandirmasi
1.3.2.1. Meteorolojik Kurakhk

Belirli bir bolgede ve belirli bir siirede normal donemlerde kaydedilen yagistan daha az
bir yagisin goriilmesiyle birlikte kuraklik siirecinde ilk olarak ortaya ¢ikan kuraklik
tiiridiir. Meteorolojik kuraklikta, bolgesel bazda ele alinan bir kuraklik tiirii olmasindan
dolay1 bolgesel iklim modelleri kullanilmaktadir. Yagis seviyeleri ile birlikte kurak veya
nemli donemler bolgesel Olgekte yapilan iklimsel karsilastirmalarla belirlenmektedir
[24]. Yagis eksikligine bagli olarak ortaya c¢ikan meteorolojik kurakligin zaman
Olcekleri aylik, mevsimsel, yillik veya cok yillik donemler olarak ayrilmaktadir.
Meteorolojik kuraklik seviyesi ile ilgili yapilan degerlendirmeler yagis toplamlarina,
yagis normallerine ve yagissiz gecen siireye gore belirlenmekte olup, belirli bir bolgede
kaydedilen yagis normallerinin 1/3’linden daha diisiik olan yagis miktar1 ya da yagissiz
gecen 15 giinliik siire, meteorolojik kuraklik olarak degerlendirilebilmektedir [25].

Bunlarin yam sira diger kuraklik tiirlerinde oldugu gibi kurakligi izlemek amaciyla
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gelistirilen 6zel kuraklik indisleri ile meteorolojik kurakligin biiyiikliigi ya da siddeti
belirlenmektedir. Meteorolojik kuraklikta yagis azligina bagli olarak yiizey akisinda ve
yeralt1 sularinin miktarinda azalmalar gibi sonuclar goriilmektedir. Yiiksek sicaklik,
yliksek riizgar hizi, diisiik nem ve az bulutluluk gibi etkenlerden dolay1 suyun toprakta
buharlagsmas1 ve bitkiler tarafindan gergeklestirilen terleme de meteorolojik kuraklig
etkilemektedir. Meteorolojik kuraklik, genellikle kisa siirelerde ve hizli bir sekilde
gelismektedir [26].

1.3.2.2. Tarimsal Kurakhk

Kuraklik siirecinin ikinci agsamasi olan tarimsal kuraklik tiirii, bitkilerin biiylimesi ve
gelismesi i¢in gereken suyun ya da toprak neminin, bitkilerin ihtiyag duydugu miktara
gore yetersiz kaldi§i durumlarda ortaya ¢ikmaktadir. Hiyerarsik olarak tarimsal
kuraklik, meteorolojik kurakliktan sonra ve hidrolojik kurakliktan dnce meydana gelen
bir kuraklik tiirtidiir. Bu kuraklik tiiriiniin goriilmesinin baslica iki nedeni vardir. Bunlar;
meteorolojik kurakligin uzun siirmesi ve bitkilerin biiyiime doneminde topragin nemini
kaybetmesidir. Tarimsal kurakligin meydana geldigi yerlerde, toprak derinlerde yagisa
ve suya doymus bile olsa, elde edilecek son iiriiniin verimi ve kalitesi 6nemli Olglide
diisebilmektedir [27]. Ciinkii yagislarin artmasiyla birlikte dogrudan toprak neminin de
artacagl sOylenemez. Topragin nemi; bolgenin iklim kosullarina, topragin egim basta
olmak tizere topografik kosullarina, topragin su tutma kapasitesine ve diger fiziksel ve
kimyasal o6zelliklerine gore degismektedir. Topragin su tutma kapasitesi yliksek olan
bolgeler, kuraklik kosullarina daha ¢ok direng gostermektedirler [28]. Bir bolgedeki
tarimsal kurakliga dayaniklilik toprak yapisi ile birlikte bitki tiirlerinin ve hayvan
irklarinin da kuraklik direnci ile iliskilidir. Yagislar ve toprak neminin diismesinin yani
sira artan sicakliklar, azalan nem orani ve riizgarlarin kurutucu etkisi, bu kuraklik
tiiriiniin etkilerinin giderek yilikselmesini tetiklemektedir. Tiim bunlarin yam sira, tarim
arazilerinin ekim ve sulama yontemleri de tarimsal kurakligin siddetini

etkileyebilmektedir [29].
1.3.2.3. Hidrolojik Kurakhk

Yiizey su kaynaklari, nehir akimlari, sulak alanlar, g6l ve baraj-gdlet depolamalari,
yeraltt su kaynaklar1 ile diger su kaynaklarmin normal seviyelerinin altina diistiigii

durumlarda hidrolojik kuraklik olay1 goriilmektedir. Bahsedilen bu su kaynaklarinda
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belli bir déonem boyunca goriilen asir1 bosalimlar, su seviyelerindeki diisiimler ya da
hacim azalmalari, hidrolojik kurakliga neden olur. Hidrolojik ¢evrimin yiizeydeki
bilesenleri olan basta nehir akimlar1 olmak iizere tiim yertistli ve yeralt1 kaynaklarindaki
degisimler ya da azalmalar, biitlin sistemin dengesini bozabilecek bir duruma sebep
olabileceginden hidrolojik kuraklik tiim canli hayati i¢in olduk¢a Oneme sahiptir.
Hidrolojik kuraklik tiirli, meteorolojik kurakligin ¢ok uzun silirmesi sonucu goriilen
yagis eksikligi ve su tiiketimindeki artiglardan dolay1r ortaya c¢ikmaktadir. Yagis
eksikliginin vuku bulmasi ile akarsu, dere ve rezervuarlardaki su eksikligi arasinda
belirli bir zaman aralifi gegtiginden dolayr hidrolojik Ol¢limler, kurakligin ilk
gostergelerinden degildir. Bununla ilgili olarak da zaman zaman kavram kargasasi
yasanabilmektedir. Meteorolojik kurakligin bitisinden itibaren, uzun bir zaman sonra
dahi hidrolojik kuraklik durumu hala var olabilir [30]. Tiim bunlarin yani sira, basta
tarim arazileri olmak iizere arazi kullanimlarindaki degisiklikler ve topragin fiziksel ve
kimyasal yapisindaki bozulmalar da hidrolojik kurakligin frekans ve biiyiikliik gibi
niteliklerini etkilemektedirler [31].

1.3.2.4. Sosyo-ekonomik Kuraklik

Kuraklik siirecinin en son asamasinda ortaya ¢ikan sosyo-ekonomik kuraklik tiirti, diger
kuraklik tiirlerine bagl olarak yagis ve su eksikliginden kaynakli insan tiirii bagta olmak
iizere, canlilarin tretim ve tliketim faaliyetlerinin etkilenmesi ya da kisitlanmasi
seklinde tanimlanabilir. Suya erisimdeki zorluk ve kisitlamalar, suyun kalitesindeki
bozulmalar ve suyun iiretim, tiikketim ve dagitimindaki ekonomik faktorler nedeniyle
ortaya ¢ikan bir kuraklik tliridiir. Sosyo-ekonomik kuraklik, fiziksel kuraklik olaylar
nedeniyle insanlarin sosyal ve ekonomik kosullarinin olumsuz etkilendigi ve kuraklik
stirecinin en bariz sekilde hissedildigi asamasidir. Bu kuraklik tiirii, temiz ve gilivenilir
icme suyu temini basta olmak lizere gida sikintisi, issizlik, gocler, su kaynaklari
tizerindeki rekabet ve hatta catismalar gibi birgok sosyal ve ekonomik soruna neden
olabilmektedir. Ozellikle baslica gelir kaynagi tarim ve tarima bagli faaliyetler olan
yerel ya da ulusal Olgekteki bolgelerde meydana gelecek olan ciddi yagis ve su
eksiklikleri, bu bolgelerde sosyo-ekonomik kurakligin daha keskin bir sekilde
hissedilmesine neden olmaktadir. insanlarin yasam kalitesini ve standartlarii dogrudan
etkileyen bu kuraklik tiirli; ekonomik, sosyal ve ¢evresel etkilerinden dolay1 oldukca

yikicidir [32].
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1.3.2.5. Kisa ve Uzun Siireli Kurakhk

Etkileme siirelerine gore kuraklik; kisa siireli kuraklik ve uzun siireli kuraklik olmak
iizere iki gruba ayrilmaktadir [29]. Kisa siireli kurakliklar genellikle 6 ay ve daha kisa
periyotlarda etkisini gosterirken, uzun siireli kurakliklar bu silireden daha fazla olan
periyotlarda goriilmektedir. Kisa siireli kuraklik, yagis eksikliginden dolay1 kurakligin
ilk etkilerinin ortaya ¢iktig1 ve meteorolojik kuraklik tiiriiniin yasandig1 evredir. Igme
suyu ve tarimsal sulama basta olmak {lizere, su taleplerinin karsilanamamas: gibi
durumlar kisa siireli kuraklik déneminde etkisini gostermektedir. Normalin altindaki
yagislarin aylar ve yillar boyunca devam etmesi ile birlikte kurakligin etkilerinin uzun
donemlere yayilmasi halinde ise uzun siireli kurakliklarin yasandigr evreye
gecilmektedir. Uzun siireli kuraklik doneminde, meteorolojik kuraklik tiirlinden sonra
goriilen tarimsal, hidrolojik ve sosyo-ekonomik kuraklik tiirlerinin etkileri daha da ciddi
bir sekilde hissedilmektedir. Yagis eksikliginin uzun dénemler boyunca devam etmesi
ile tiim su kaynaklar1 6nemli oranda etkileneceginden dolay1 bu donemlerde hidrolojik
kuraklik 6ne g¢ikmaktadir. Uzun siireli kurakliklar, kuraklik siireci igerisinde oldukca

ekstrem bir durum olmasina ragmen her zaman ihtimal dahilindedir.
1.3.3. Kuraklk Indisleri

Kuraklik indisleri, belirli bir zamanda belirli bir bolgedeki kurakliga ait siddet, siire,
frekans ve yerel dagilim gibi Ozellikleri tespit etmek, Olgmek veya izlemek igin
kullanilan matematiksel formiillerdir. Kuraklik degerlendirmelerinin, acil eylem planlar1
ve erken uyari sistemlerinin dogru ve giivenilir bir sekilde yapilabilmesi i¢in kuraklik
indislerinin 6nemi biyiiktiir. Kuraklik indisleri; meteorolojik, hidrolojik ve tarimsal
degiskenlere sahip zaman serilerinin incelenerek, kurakligin biyiikligini ya da
siddetini hesaplamaya yarar. Karmagik kuraklik siirecinin kosullarinin tanimlanmasi ve
ekosisteme olan etkilerinin belirlenmesi i¢in de indislerden yararlanilmaktadir. Kuraklik
indisleri, bir bolgenin basta yagis ve sicaklik olmak {izere c¢esitli meteorolojik
degiskenlerini kullanarak, bolgenin su kaynaklarindaki degisimlerini, topragin nem
durumunu, bitki biiytimesini ve diger kuraklik etkilerini belirlemeye yardimci olur. Bu
indisler, ele alinan bolgenin normal meteorolojik ve iklim kosullarima gore, o anda
yasanan kurakligin belirlenmesini saglarlar. Ayrica bir kuraklik durumunun ne zaman

basladiginin, ne zaman sona erdiginin ya da kuraklik kosullarinin hangi cografi alanda
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etkisini gdsterdiginin bilinebilmesi i¢in kuraklik indisleri aracilig1 ile bir siddet referans

degeri lizerinden degerlendirme yapilir [18].

IIk dénemlerde gelistirilen kuraklik indisleri, genellikle dar ve yerel olgeklerde ele
alinmis olup siirli hesap adimlarina sahiptirler. Daha sonraki donemlerde ise bu
indislerin kiiresel oOlgeklerde ve farkli iklim kosullarinda da kullanilabilmesi igin
caligmalar yapilmistir. Diinyanin bazi bolgelerinde hala o bdlgenin iklim kosullari ve su
talepleri dikkate alinarak gelistirilmis bolgesel kuraklik indisleri kullanilmaktadir. Farkl
hesap yontemleri ve kullaniom amaglarima goére c¢ok degisik kuraklik indisleri
kullanilmaktadir. Yine kuraklik tiirlerinde oldugu gibi indisler i¢in de meteorolojik,
tarimsal ve hidrolojik kuraklik indisleri olmak iizere bir smiflandirma yapilmaktadir
[21]. Bunun sebebi, bagka bir yontem ya da amaca yonelik gelistirilen bir kuraklik
indisinin ele alman kuraklik tiriiniin ¢esitli 6zellikleri ya da etkilerinden dolay1r bu

kuraklik durumuna uyum saglayamamasi ve beklenen islemleri yapamamasidir.
1.3.3.1. Meteorolojik Kurakhk Indisleri

Kurakligin yagis basta olmak tizere sicaklik, evapotranspirasyon, nem, riizgar hizi,
Glines radyasyonu gibi meteorolojik degiskenlere bagli olarak hesaplanmasi ya da
belirlenmesi gerektiginde meteorolojik kuraklik indisleri kullanilmaktadir. Bunlardan en
cok kullanilan meteorolojik degisken, dogal olarak yagis degiskenidir. Giinliik, haftalik,
aylik, mevsimsel ya da yillik olarak farkli zaman Olgeklerinde degerlendirilen yagis
zaman serileri kullanilarak normal degerlere gore kurakliga ait, sapmalar, trendler ve
ekstrem noktalar bulunmaktadir. En yaygin kullanilan meteorolojik kuraklik indisleri;
Standartlastirilmis  Yagis Indeksi (SYI), Palmer Kuraklik Siddeti indisi (PKSI),
Standartlastirilmis Yagis-Evapotranspirasyon Indisi (SYEI), Ondaliklar (Deciles), De
Martonne formiilii, Thornthwaite ydntemi, Normal Yagisin Yiizdesi Indisi (NYYT),
Aridite Anomali Indeksi (AAI), Efektif Kuraklik Indisi (EKI), Cin-Z indeksi (CZI),
Ering Kuraklik Indisi, Yagis Anomali indisi (YAI) ve Kuraklik Kesif indisi (KKi)dir.
Yaygin olarak kullanilan yedi farklt meteorolojik kuraklik indisi, sirasiyla asagida

Ozetlenmektedir.

Meteorolojik kuraklik indislerine yonelik ilk calisma Palmer (1965) tarafindan
gelistirilen Palmer Kuraklik Siddeti indisi (PKSI) yontemidir. Bu yontemdeki asil amacg;

belirli bir bolgedeki meteorolojik anomaliyi, kuraklik siddetinin zaman ve mekan
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karsilastirmalarina izin veren bir indis {izerinden degerlendirerek genel bir metodoloji
gelistirmektir. Belirli bir bolgedeki su dengesinde gozlenen yagis agigina bagli olarak
evapotranspirasyon, akislar ve nem miktarindaki sapma bulunarak bu indis
gelistirilmistir. PKSI, bir meteorolojik kuraklik indisi olup anormal kurak veya anormal
nemli meteorolojik kosullarda etkili sonuclar vermektedir. PKSI’de kabul edilen
siiflandirma, -4 ile +4 kuraklik siddetleri referans alinarak bu degerlere karsilik gelen
farkli kuraklik smiflarinin belirlenmesi ile yapilmaktadir. -4 degeri ve daha kiigiik
kuraklik siddetlerinde asir1 kurak, +4 degeri ve daha biiyiik kuraklik siddetlerinde ise

asirt nemli donemin goriildiigii kabulii yapilmaktadir [33].

Kuraklik siireci yagis azligindan dolay1 ilk olarak ortaya ¢ikan meteorolojik kuraklikla
baglar. Meteorolojik kuraklikla ilgili calismalarda en ¢ok kullanilan ve en pratik olan
indis, McKee ve ark. (1993) tarafindan gelistirilen Standartlastirilmis Yagis Indeksi
(SYI)’dir. SYI, sadece yagis parametresine bagl olarak hesaplanabilen ve tek degiskenli
bir hesap mantigina dayanmaktadir. Belirli bir bélgenin belli bir zaman dilimindeki
kaydedilen yagis verileri, normal degerlerine gore kiyaslanarak o bdlgenin ne kadar
kurak ya da ne kadar nemli oldugu standart normal dagilima uyan SYI ile belirlenir.
SYI, karmasik kuraklik siirecinin baglangicini, bitisini, yogunlugunu ve biiyiikliigiinii
bir biitiin olarak temsil edecek sekilde gelistirilmis ve olumlu sonuglar alinmistir.
SYI’nin kabul géren kuraklik siniflandirmasi -2 ile +2 kuraklik siddet degerleri referans
alinarak belirlenmektedir. -2 degeri ve daha kii¢iik kuraklik siddetlerinde asir1 kurak, +2
degeri ve daha biiylik kuraklik siddetlerinde ise asir1 nemli donemin yasandigi kabuliine

gore kuraklik analizleri gergeklestirilir [34].

Yaygin olarak kullanilan meteorolojik kuraklik indislerinden biri de Vicente Serrano ve
ark. (2010) tarafindan gelistirilen Standartlastirilmis Yagis-Evapotranspirasyon Indisi
(SYEI)’dir. Bu indiste hem yagis hem de sicaklik parametresi kullanilmustir. Ele aliman
bolgede aylik olarak yagislardan potansiyel buharlagsma (PET) ¢ikarilarak bulunur. PET
degerlerinin hesabi i¢in gerekli olan sicaklik, riizgar hizi, giines radyasyonu, bagil nem
gibi verilere ihtiyag¢ oldugundan karmasik bir yaklasimdir. SYI yonteminin
eksikliklerini azaltabilmek amaciyla gelistirilmistir. SYEI yénteminde yapilan kuraklik

smiflandirmast SY1’de yapilan smiflandirma ile aymidir [35].
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Bir diger énemli meteorolojik kuraklik indisi olan Normal Yagisin Yiizdesi Indisi
(NYYI), Willeke ve ark. (1994) tarafindan gelistirilmistir [36]. Belirli bir bdlgedeki
gozlenen yagis miktarinin normalden ne kadar sapma gosterdigini belirlemek igin
kullanilir. Bu indis, bolgenin mevsimsel degiskenliklerini ve iklim degisikliklerini
dikkate almaz, sadece belirli bir referans donemi boyunca ortalama yagis miktarina gore
yagls miktarinin yiizdesini hesaplar. NYYI’de %100'den biiyiik bir yagis degeri
normalden fazla yagis oldugunu, %100'den kii¢iik bir yagis degeri normalden az yagis
oldugunu, %100'e esit bir deger ise normal yagis oldugunu gostermektedir [37]. Bu
indis genellikle farkli sektorlere yonelik su kaynaklar1 yonetimi ile ilgili ¢aligmalarda

kullanilmaktadir.

Ering (1965), kuraklik analizinde maksimum sicakliklarin ortalamasini hesaba katarak
Ering Kuraklik Indisini gelistirmistir. Kurakhgmn sadece yagis azligindan degil
buharlagsma etkisinden dolay1 da 6nemli 6l¢iide arttig1 kabulii ile gelistirilmis olan bu
indise diger indislerden farkli olarak maksimum sicaklik ortalamalar1 dahil edilmistir.

Tiirkiye’de yaygin olarak kullanilan bir kuraklik indisidir [38].

Gibbs ve Maher (1967) tarafindan yalnizca yagis verisini kullanan Onluklar (Deciles)
indeksi gelistirilmistir. Baz1 kaynaklarda yagis kuyruklar1 olarak da adlandirilmaktadir.
Bu yaklasimda, bir bolgedeki yagis verilerine ait veri seti on esit par¢aya ayrilir ve bu
setteki asilamayan yagisi temsil eden en diisiik %10’luk kisim ilk ondaliktir. Ikinci
ondalik asilamayan yagisi temsil eden en diisiik %20’lik kisimdir ve bu siralama bdyle
devam eder. Veri setindeki medyan degerleri ise besinci ondaliktir. Kendine 6zgii
kuraklik siniflandirmasi olan bu yontemde ondalik degerlere gore kuraklik analizi

yapilmaktadir [39].

Cin Ulusal iklim Merkezi tarafindan 1995 yilinda Cin'de gelistirilen Cin-Z Indeksi
(CZI), SYI tarafindan saglanan hesap kolayligin1 temel alarak hesaplamalar1 daha da
kolaylastirmak amaciyla gelistirilmistir. Cin-Z Indeksi, kuraklik dénemlerini belirlemek
ve kuraklig1 izlemek i¢in istatistiksel bir Z-skorunu kullanmaktadir. Bu indisin kuraklik

siniflandirmas1 SYI’nin kuraklik siniflandirmasi ile aynidir [40].
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1.3.3.2. Tarimsal Kurakhk indisleri

Tarimsal kuraklikta goriilen bitki su ihtiyaci ve topraktaki nem eksikliginin en dnemli
sonucu, tarimsal liretimlerde verim ve iirtin miktarindaki disiiglerdir. Topraktaki nem
miktar1 ve topragin su tutma kapasitesi, o bolgenin tarimsal kurakliga karsi direncini de
gostermektedir. Tarimsal kurakliga neden olan buna benzer parametrelere yoOnelik
spesifik indisler gelistirilmistir. Literatiirde kabul goren ve kiiresel ol¢ekte kullanilan
tarimsal kurakliga yonelik indisler; Mahsul Nem Indisi (MNI), NOAA Kuraklik Indeksi
(NOAA), Toprak Nemi Anomali Indisi (TNAI) ve Tarimsal-Hidropotansiyel indisi
(THI) seklinde siralanabilir. Belirtilen bu indislerden énemli goriilen ii¢ tanesi ile ilgili

bilgiler agagida verilmistir.

Mahsul Nem Indisi (MNI), tarimsal kurakliklarin gdzlemi ig¢in 1960’larin basinda
Palmer tarafindan gelistirilmistir. Daha sonraki donemlerde daha da gelistirilerek
PKSI’nin bir bileseni olarak birlikte degerlendirilmistir. Toprak nemini o6lcerek
bitkilerin ihtiya¢ duydugu suyun yeterli olup olmadigini belirler. MNI, haftalik dlgekte
yagis, toprak nem igerigi, bitki Ortiisli, sicaklik ve diger faktorler dikkate alinarak
hesaplanir. Tarimsal iiretim sistemlerinde bitkinin biiylimesi ve iriin verimliligi ile
iliskili olan toprak nemi miktariin birkag aylik bitki biiylimesi donemlerinde izlenmesi
amactyla bu indis kullamlmaktadir [41]. MNI degerleri, -10 ila +10 arasinda degismekte
olup negatif MNI degerleri, toprak nemi diizeylerinin normalin altinda oldugunu ve
tarimsal kurakligin mevcut oldugunu gosterirken, pozitif degerler normalin iizerinde ve

asirt nemli kosullarin mevcut oldugunu gostermektedir [42].

NOAA tarimsal kuraklik indeksi, 1980'lerin basinda Amerika Birlesik Devletleri Tarim
Bakanligi'nmin diinya c¢apinda mahsul {iretimi tahminleri i¢in meteoroloji ve iklim
verilerini kullanarak gelistirilmis bir indekstir. Bitkinin biiyliime mevsimi boyunca
Olciilen yagis degerlerinin normal degerlerle karsilastirildigi bir hesap yontemine
dayalidir. Haftalik olarak gercek yagislar 6l¢iiliir ve sekiz haftalik donem igin bu yagis
ortalamalar1 toplanir. Gergek yagis, sekiz haftalik donem igin normal yagislarin
%60'indan fazlaysa, mevcut haftanin su stresinin ¢ok az oldugu veya hi¢c olmadig:
varsayilir. %60 degerinden diisiikse o hafta i¢in su stresinin fazla oldugu yani bitkinin

su ihtiyacini tam olarak karsilayamadigi varsayilir [43].
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Toprak Nemi Anomali Indisi (TNAI), toprak nemindeki degisimleri normal kosullara
gore dlgmek icin kullamlan bir tarimsal kuraklik indisidir. TNAI, ayrica yeralti suyu
seviyelerindeki degisimleri de hesaba katarak, bir bolgedeki kuraklik durumunu
Olcmektedir. Bir bolgedeki toprak neminin uzun vadeli trendleri ve mevsimsel
degisimleri bu indis aracilifi ile izlenmektedir. TNAI'nin pozitif veya negatif degeri,
normal kosullardan daha fazla ya da daha az toprak nemi durumunu gdstermektedir

[44].
1.3.3.3. Hidrolojik Kuraklik indisleri

Hidrolojik kuraklikta bahsedilen yeriistii ve yeralt1 su kaynaklar ile ilgili bilesenlerin
ele alindig1 indisler, hidrolojik kuraklik indisleridir. Hidrolojik kuraklik indisleri,
meteorolojik kuraklik indislerinden farkli olarak daha dar ve spesifik yerlerde ele alinir.
Ornegin bir yeralt1 suyu kaynagi, baraj depolamasi ya da nehir ¢ikis1 gibi noktasal
yerlerde hidrolojik kurakligin siddetini 6l¢mek i¢in bu indisler kullanilir. Akim
Kuraklik indisi (AKI), Standartlastirilmis Akis Indisi (SAI), Standartlastirilmis Yeralt:
Suyu Indisi (SYSI), Palmer Hidrolojik Kuraklik Indisi (PHKI), Yiizey Suyu Temini
Indisi (YSTI) ve Standartlastirilmis Depolama Temin Indisi (SDTI) yaygin olarak
kullanilan hidrolojik kuraklik indisleridir. Yine burada da 6nemli goriilen dort farkli

indisle ile ilgili 6zet bilgiler asagida verilmistir.

Akim Kuraklik Indisi (AKI), Nalbantis ve Tsakiris (2008) tarafindan Atina’da iki nehir
havzasi i¢in SYI metodolojisi ve hesaplamalari temel alinarak gelistirilmis bir indistir.
Aylik akis verilerini kullanan bu indis, SYI ile iliskili normallestirme yd&ntemlerini
dikkate alir. SYI’deki gibi bir ¢ikt1 degeri elde edilerek kurakligin siddeti hesaplanir ve

boylece hem nemli hem de kurak donemler incelenebilmektedir [45].

Standartlastirilmis Akis Indisi (SAI), bir bdlgedeki akarsu debisinin ne kadar yiiksek
veya diisiik oldugunu 6l¢gmek icin gelistirilmis bir indistir. Bu indis, akarsu debisindeki
mevsimsel ve yillik degiskenlikler dikkate alinarak hesaplanir ve belirli bir bolgedeki
akarsu debilerinin, belirli bir referans dénemi boyunca (genellikle 30 yil) ortalama
debilerine gore ne kadar yiiksek veya diisiik oldugunu 6lcer. Bu indis, ayni bolgedeki

akarsu debilerinin yillar i¢indeki degisimlerini karsilastirmak i¢in kullanilir [46].
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Standartlastirilmis Yeralt: Suyu Indisi (SYSI), bir bolgedeki yeralt suyu seviyesinin ne
kadar yiiksek veya diisiik oldugunu 6l¢gmede kullanilan bir hidrolojik kuraklik indisidir.
SYSI, belirli bir bdlgedeki yeralti suyu seviyelerinin, belirli bir referans dénemi
boyunca (genellikle 10 yil) ortalama seviyelerine gore sapmalarini1 hesaplamaktadir. Bu
indis aracilig1 ile ayn1 bolgedeki yeralt1 suyu seviyelerinin bosalim ve beslenimleri de
tespit edilerek yillar i¢indeki degisimleri karsilastirilabilmektedir [47]. Pozitif bir SYSI
degeri, ortalama yeralt1 suyu seviyesinden daha yiiksek bir seviye oldugunu, negatif bir
deger ise daha diisiik bir seviye oldugunu gosterir. SYSI, tarim basta olmak iizere insaat,
su yonetimi ve diger sektorlerdeki yeralti suyu kaynaklarmin siirdiirilebilir yonetimi

icin kullanilmaktadir.

Shafer ve Dezman (1982) tarafindan ilk defa tamtilan Yiizey Suyu Temini Indisi
(YSTI), PKSi’de bulunan bazi smirlamalar1 ortadan kaldirarak onu tamamlamaya
yonelik olarak gelistirilmistir. Cok degiskenli bir hidrolojik kuraklik indisi olan YSTI,
belirli bir donem boyunca (genellikle bir yil) su kaynaklarinin ortalamalarina gore
hesaplanmaktadir. Yagis, kar erimesi, nehir akimlari, ylizey suyu depolama seviyeleri
ve buna benzer diger hidrolojik degiskenler dikkate alinarak yiizey suyunun temin
durumu ortalamalara gore degerlendirilmektedir. PKSi’de kullanilan kuraklik

siiflandirmasi bu indis i¢in de gegerlidir [48].
1.4. Literatiir Ozetleri

Canl1 ve cansiz hayati lizerinde bir¢ok olumsuz etkisi bulunan ve ¢ok tehlikeli bir dogal
afet olan kuraklik, her gegen giin Onemini artirmaktadir. Kuraklik olaymnin tiim
asamalarindan itibaren detayli bir sekilde ele alinmasi ve 6zellikle olumsuz etkilerinin
azaltilmasia yonelik ¢alismalar iizerinde durulmasi, diinyamizin bugiinii ve gelecegi
acisindan oldukga elzem bir konudur. Bununla birlikte; bir¢ok farkli tiirii ve
karakteristik 6zelligi bulunan kuraklik felaketinin aragtirmacilar, kurum-kuruluslar ya
da devletler tarafindan Ongoriilebilmesi ya da tahmin edilebilmesi, kuraklikla
miicadelenin en kritik asamasidir. Bu sayede gelecege yonelik ¢esitli senaryo ve
projeksiyonlar olusturularak kuraklik felaketine ve onun olumsuz etkilerine yonelik

politikalar gelistirilebilecektir.

Kuraklik konusunun hidrometeoroloji alaninda son donemin en popiiler konularindan

biri oldugu rahatlikla sdylenebilir. Bunda kiiresel iklim degisikliginin ve kurakliga olan
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etkisinin pay1 yliksektir. Kuraklikla ilgili farkli amaglara yonelik olarak bircok yerli ve
yabanci ¢alisma bulunmaktadir. Kuraklikla ilgili yapilan erken donem ¢aligmalarinda,
genellikle kurakligin olusumu, dagilimi, frekansi ve siiresi gibi baslica karakteristik
ozelliklerine yonelik arastirmalar yapilmistir. Bu caligmalara paralel olarak kurakligin
tespiti ve izlenmesine olanak saglayan kuraklik indislerinin gelistirilmesi yine erken
donemlerde yogunluk kazanmigtir. Son donemlerde ise kurakligin tahmini, tespiti ve
izlenmesine yonelik olarak yapay zeka teknikleri ve alt kiimelerinde bulunan makine
O0grenmesi ile derin 6grenme yontemlerinin kullanimi ¢ok popiiler olmustur. Bu tez
calismasinda yapilan literatiir taramas1 da daha ¢ok kurakligin tahmini ile yapay zeka ve

alt kiimelerinde yer alan yontemlerin ele alindig1 ¢alismalara yonelik olmustur.
1.4.1. Diinya’da Yapilan Kurakhk Calismalar:

Diinya’da kuraklikla ilgili yapilan ilk onciil ¢alismalar, 20.yiizyilin ortalarina kadar
dayanmakta olup; biiyiikk bir oranda kuraklik indislerine yoneliktir. Daha onceki
boliimde kuraklik indisleri ile ilgili bilgiler verilmis oldugundan bu kisimda tekrar
bahsedilmeyecektir. Daha ¢ok kuraklikla birlikte yapay zeka yontemleri ve tahmin

modelleri iizerine yapilan ¢alismalara agirlik verilmistir.

Shin ve Salas (2000), Colorado’nun giineybatisindaki bolgesel kurakligi analiz etmek
amaciyla Yapay Sinir Aglart (YSA) yaklasimimi kullanmiglardir. Yillik yagis verileri
kullanilarak parametrik olmayan bir mekéansal analiz sinir agi algoritmasi
olusturmuslardir. Yagis verileri {izerine, bu algoritma araciligi ile normallestirme ve
standartlagtirma islemleri uygulanmis olup daha sonra normal dagilimin belirli olasilik
yilizdelerine gore belirlenen referans degerleri baz alinarak kuraklik siddetlerine gore
siiflandirma yapilmistir. Bu sekilde belirlenen kuraklik siddetlerinin sonuglarina gore

bolgesel kuraklik haritalar1 elde edilmistir [49].

Kim ve Valdez (2003), Meksika’daki Conchos Nehir Havzasindaki kurakliklar1 tahmin
etmek amactyla Dalgacik Doniigiimii (DD) ile Yapay Sinir Aglar1 (YSA) baglantili bir
tahmin modeli énermislerdir. DD ile alt serilerine ayrilan Palmer Kuraklik Siddet Indisi
(PKSI) kuraklik verileri, Cok Katmanl Ileri Beslemeli Sinir Aginda (CIBSA) analiz
edilmistir. Bu calismada, DD tekniginin kuraklik zaman serilerinin tahmin becerilerini

onemli ol¢giide artirdig1 goriilmiistiir [50].
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Mishra ve ark. (2007), Hindistan'daki Kansabati Nehir Havzasinda kuraklik tahmini i¢in
dogrusal stokastik modeli ve dogrusal olmayan yapay sinir aglar1 modelini birlestiren
hibrit bir model gelistirmislerdir. Bu hibrit model igerisinde Otoregresif Entegre
Hareketli Ortalama (Autoregressive Integrated Moving Average-ARIMA), Yapay Sinir
Aglart (YSA), zaman serileri ve kompleks otokorelasyon yapilari bulunmaktadir.
Gelistirilen bu hibrit model, performans kriterlerine gore hem stokastik model hem de

yapay sinir aglarina kiyasla kurakliklar1 daha dogru tahmin etmistir [51].

Karamouz ve ark. (2009), iran’in orta kesimlerinde yer alan Zayandeh-Rud (Gav-
Khuni) havzasimin kuraklik siddetlerini tahmin etmek ve hibrit bir kuraklik indeksi elde
etmek amaciyla olasiliksal sinir ag1 ve ¢ok katmanli algilayict olmak tizere iki farkl
algoritma onermislerdir. Hibrit bir kuraklik indeksi elde edebilmek igin SYI, PKSI ve
Yiizey Suyu Temini Indisleri (YSTI) kombine edilerek Hibrit Kuraklik Indeksi (HKI)
gelistirilmistir. Bu ¢aligmada elde edilen model sonuglarina gore her iki algoritma da

kuraklik siddetlerinin tahmininde {istiin basar1 gostermistir [52].

Karavitis ve ark. (2011), yar1 kurak bir iklim rejimine sahip Yunanistan’daki kurakligin
sliresi, bliyiikliigii ve mekansal boyutu i¢in ileriye yonelik kuraklik degerlendirmeleri
yapmuglardir. 46 adet yagis istasyonunun 1947-2004 yillarn arasindaki yagis
verilerinden hesaplanan 1, 3, 6, 12 ve 24 aylik zaman Olgeklerine ait Standartlastirilmis
Yags Indeksi (SYI) kuraklik degerleri analiz edilmistir. Daha sonra SURFER-9 yazilim
paketi kullanilarak jeo-istatistiksel yontemlerle SYI degerlerinin mekéansal dagilimi

gerceklestirilmistir [53].

Chen ve ark. (2012), Cin'deki Huaihe Nehri Havzasinda 1958-2006 yillar1 arasindaki
kisa vadeli (3, 6, 9 ve 12 aylik) SYI kuraklik degerlerini tahmin etmek icin bir derin
ogrenme algoritmasi olan Derin Inang Aglar1 (DIA) modelini énermislerdir. Bu modelin
kisa vadeli kuraklik tahminlerinde geleneksel geri yayilimli sinir aglarina gére daha iyi
performans gosterdigi sonucuna varilmistir. Onerilen bu derin égrenme algoritmasinin
kuraklik tahmin teknolojilerini gelistirecegi ve karar vericilere kuraklik felaketinin

yonetiminde yardimci olacagi vurgulanmistir [54].

Xie ve ark. (2013), Pakistan'da 1960-2007 yillar1 arasindaki kurakliklarin goriilme
sikliginin zamansal ve alansal degiskenligini arastirmislardir. SY1 degerleri kullanilarak

yapilan Onemli c¢aligmalardan biri olan bu c¢alismada, kuraklik analizlerinde yagis
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verilerinden hesaplanan SYI'nin 3, 6 ve 12 aylik zaman 6lgekleri ele almmugtir. Bu
calismada ele alinan Temel Bilesen Analizi (TBA), kurakliklarin genis alanlarda yaygin
ve sik bir sekilde meydana geldigini ortaya koymustur. Ayrica kuraklik periyoduna
yonelik yapilan spektral analiz sonucunda 16 yil tekerriir periyoduna sahip siddetli

kurakliklarin goriildiigi belirlenmistir [55].

Belayneh ve ark. (2016), Etiyopya'nin Awash nehir havzasinda uzun vadeli kuraklik
durumlarini tahmin etmek i¢in makine 6grenmesi yontemlerini kullanarak farkli tahmin
modelleri olusturmustur. Bu ¢alismada; dalgacik doniisiimii ilaveli Otoregresif Entegre
Hareketli Ortalama (Autoregressive Integrated Moving Average-ARIMA), Yapay Sinir
Aglart (YSA) ve Destek Vektdr Makine Regresyonu (DVMR) modelleri ele alinmustir.
Dalgacik doniisiimii ile olusturulan hibrit modeller, kuraklik tahminlerinde diger

bagimsiz modellerden daha iistiin sonuglar vermistir [56].

Mokhtarzad ve ark. (2017), Iran’in Kuzey Horasan Eyaleti’nin merkezi olan Bojnourd
sehrinde goriilmesi muhtemel kuraklik durumunu tahmin etmek amaciyla 1984-2012
yillar1 arasindaki yagis verilerine bagli hesaplanan 3 aylik zaman o6lgegine ait SYI
degerlerini kullanmislardir. Kuraklik tahmini ile ilgili bu ¢alismada; Yapay Sinir Aglar
(YSA), Uyarlanabilir Sinirsel Bulanik Cikarim Sistemi (USBCS) ve Destek Vektor
Makinesi (DVM) yontemleri ele alinmig ve tiim yontemler birbiri ile kiyaslanmistir.
Modellerin giris parametreleri sicaklik, nem ve mevsimsel yagis degerleri olup ¢ikis
parametresi ise tek bir SYI degeridir. Tahmin modellerine ait sonuglar, DVM modelinin

daha dogru ve giivenilir sonuglar verdigini gostermistir [57].

Agana ve Homafair (2018), Colorado nehir havzasinda farkli zaman o6l¢eklerindeki
kuraklik yogunlugunu tahmin edebilmek i¢cin Ampirik Mod Ayristirmas1t (AMA) ile
birlikte Derin Inang Aglar1 (DIA) modelini olusturmuslardir. Kuraklik indisi olarak
Standartlastirilmis Akis Indisi (SAI) verileri ele alinmis olup orijinal kuraklik zaman
serileri AMA ile alt bantlarina ayrilmistir. Olusturulan bu model, Cok Katmanh
Algilayic1 (CKA) ve Destek Vektor Regresyonu (DVR) makine 6grenmesi yontemleri

ile karsilastirilmis olup bu yontemlere gore tahmin yetenegi daha iistiindiir [58].

Poornima ve Pushpalatha (2019), Hindistan''n Haydarabad Boélgesi i¢in 1958-2014
gbzlem periyodunda kaydedilen gesitli parametreleri kullanarak 1, 6 ve 12 aylik zaman

olgeklerinde SYI ve SYEI kuraklik indekslerini tahmin etmislerdir. Tek degiskenli
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Otoregresif Entegre Hareketli Ortalama (Autoregressive Integrated Moving Average-
ARIMA) istatistiksel modelini, ¢ok degiskenli girdi kullanan Uzun-Kisa Siireli Bellek
(UKSB) derin 6grenme modeliyle karsilagtirmislardir. Bu ¢alisma sonucunda, UKSB
modelinin ARIMA modeline gore zaman Ol¢egi arttiginda daha iyi sonuglar verdigi

goriilmiistiir [59].

Huang ve ark. (2019), Cin’in en biiylik ikinci nehri olan Sar1 Nehrin orta kesimlerinde
bulunan Lanzhou boélgesindeki kurakligi tahmin etmek i¢in Kopula entropisi ile Genel
Regresyon Sinir Agimi1 (GRSA) birlestiren bir yontemi kullanmiglardir. Tahmin
modelinin giris verisi olarak kurakliga etki eden iklim parametreleri seg¢ilmistir. Elde
edilen sonuglara gore bu model kuraklik tahmininde olduk¢a basarili olmustur. Ayrica
bu yaklasimin iklim faktorlerine bagli meydana gelen meteorolojik olaylarin tahmininde

de rahatlikla kullanilabilecegi belirtilmistir [60].

Dikshit ve ark. (2020), siddetli kurakliklarin yagandigi Avustralya'nin New South Wales
bolgesinde SYI kuraklik degerlerini tahmin etmek igin y1ginli Uzun-Kisa Siireli Bellek
(Y-UKSB) adi verilen yeni bir yaklasim onermislerdir. 1901-2018 yillar1 arasi igin
hesaplanan SYI kuraklik degerleri, egitme ve test verisi seklinde tahmin modelinde giris
verisi olarak kullanilmistir. Y-UKSB tahmin modeli, kapasitesinin anlasilabilmesi i¢in
Rastgele Orman (RO) ve Yapay Sinir Aglart (YSA) gibi diger makine Ogrenmesi
yontemleri ile kiyaslanmistir. Model sonuglarina gore derin 6grenme yontemi olan Y-
UKSB diger yontemlere gore 6zellikle uzun zaman dilimlerinde kuraklik tahmininde

daha basarili sonuglar vermistir [61].

Kaur ve Sood (2020), yaygin olarak kullanilan kuraklik indekslerinin bolgesel olmasi
nedeniyle kiiresel olarak kullanilabilecek bir indekse ihtiya¢ oldugunu belirtmislerdir.
Bundan dolayi, mevcut kuraklik kosullarinin ve kuraklik olasiliklarinin daha giivenilir
bir sekilde ele alinacagi gerceve bir model 6nermislerdir. Bu ¢erceve model icin Yapay
Sinir Aglart (YSA), Genetik Algoritma ile optimize edilmis YSA ve Derin Sinir Aglar1
(DSA) yeteneklerinden faydalanilmistir. Ayrica ii¢ farkli iklim bolgesi ve ii¢ farkh
zaman olcegindeki kuraklik kosullarint 6ngorebilmek adina Destek Vektor Regresyonu
(DVR) yontemi kullanilmistir. DSA modelinin kuraklik analizlerinde daha dogru, daha

giivenilir ve daha 6zgiin bir performans gosterdigi sonucuna ulasilmistir [62].
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Kermani ve Hessaroeyeh (2020), Iran’in giineydogusunda bulunan Kerman sehrindeki
kuraklik kosullarmi izleyebilmek amaciyla Standartlastirilmis Yagis Indeksi (SYI)
verilerini kullanarak Bulanik Mantik (BM)-k-En Yakin Komsu (KEYK) algoritmasina
dayali yeni bir yaklasim dnermislerdir. Onerilen bu model sonucuna gore bdlgede son

yillarda ciddi oranda kuraklik artislar ve yagis agiginin oldugu goriilmistiir [63].

Mokhtar ve ark. (2021), Cin'in Tibet Platosunda 1980-2019 yillar1 arasindaki
Standartlastirilmis  Yagis Evapotranspirasyon Indisi (SYEI)  kullanarak kuraklik
analizini gergeklestirmek i¢in makine 6grenmesi yontemlerinden olusan bir kombine
modeli &nermislerdir. 3 ve 6 aylik SYEI kuraklik degerlerini tahmin edebilmek igin
Evrisimli Sinir Aglar1 (ESA), Uzun-Kisa Siireli Bellek (UKSB), Rastgele Orman (RO)
ve Asirt Gradyan Artirma (AGA) derin 6grenme yontemlerini kullanmiglardir. Tahmin
modellerinde farkli meteorolojik kosullara gore degisen 7 farkli senaryo giris verisi
olarak alinmis olup bu senaryolardan 4. senaryoda UKSB en basarili tahmin sonuglarini

vermistir [64].

Maity ve ark. (2021), Hindistan’in farkli iklim kosullarina sahip iki nehir havzasinda,
cesitli hidrometeorolojik oncii degiskenlerini kullanarak kuraklik degerlendirmesi
yapmak i¢in derin 6grenme tabanli bir Evrisimli Sinir Ag1 (ESA) tahmin modelini
onermislerdir. Bu modelin performansini, Destek Vektér Makinesi (DVM) makine
o0grenmesi yontemi ile karsilastirdiklarinda onerilen modelin, DVM’e gore daha iyi bir

genelleme yetenegi oldugu ve daha iistiin tahmin performansi gosterdigi goriilmiistiir

[65].

Salimi ve ark. (2021), Iran’da 3 farkl: iklim rejimine sahip Lighvan, Navroud ve Seqez
havzalarindaki meteorolojik ve hidrolojik kurakligi izlemek amaciyla bir ¢alisma
yapmiglardir. 1992-2016 yillarina ait akim, yagis ve buharlasma verileri bu ¢alismada
kullanilan kuraklik parametreleridir. Meteorolojik kuraklik icin SYI ve SYEI,
hidrolojik kuraklik icin ise Standartlastirilmis Akis Indisi (SAI) kullanilmistir. Bu
indisler aracilig1 ile havzalardaki kurakligin siddetleri, siireleri ve periyotlar1 analiz
edilmistir. Analiz sonuglar1, her lic havzada da meteorolojik ve hidrolojik kuraklik

arasindaki iliskinin %99 diizeyinde anlamli oldugunu gostermektedir [66].

Wu ve ark. (2021), Cin'in kuzeydogusunda ii¢ farkli iklim rejimini temsil eden ii¢ farkl

bolgede 1967-2017 yillar1 arasinda aylik ve yillik yagis zaman serilerine dayali yagis ve
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kuraklik calismalari iizerine bir ¢aligsma yiiriitmislerdir. Kuraklik indeksi olarak Cin-Z
Indeksi (CZI) kullanilmistir. Dalgacik Déniisiimii (DD), Otoregresif Entegre Hareketli
Ortalama (Autoregressive Integrated Moving Average-ARIMA) ve Uzun-Kisa Siireli
Bellek (UKSB) yontemleri kuraklik zaman serilerini tanimlamak i¢in kullanilmis ve bu
seriler i¢in yeni bir hibrit model olan DD-ARIMA-UKSB yaklasimi olusturulmustur.
Farkli iklim tiirleri ile egitme ve test seti oranlarina bagl olarak Onerilen bu hibrit
model, yagis ve kuraklik tahminlerinin dogrulugu agisindan ARIMA ve UKSB

yontemlerinden daha iyi performans gostermistir [67].

Docheshmeh ve ark. (2022), iran’m 4 farkli bolgesindeki yagis istasyonlarmin aylik
yagis verilerinden hesaplanan SYI degerlerini kullanarak Uzun-Kisa Siireli Bellek
(UKSB) yonteminin kuraklik tahmin kapasitesini arastirmiglardir. 3, 6, 9 ve 12 aylik
zaman Olgekleri igin SYI kuraklik degerlerinin tahmininde UKSB yontemi, Cok
Degiskenli Uyarlanabilir Regresyon Egrisi (CDURE), Ekstra Aga¢c (EA) ve Vektor
Otoregresif Yaklasim (VOY) teknikleri ile kiyaslanmistir. Tiim zaman oOlgeklerinde
UKSB derin 6grenme yontemi diger tekniklere gore kuraklik tahmininde daha iistiin

sonuglar vermistir [68].

Filipovi¢ ve ark. (2022), Sirbistan’da yer alan 28 adet istasyona ait 2011-2020 yillar
arasindaki meteorolojik parametreleri kullanarak dort farkli toprak tipi igin toprak nemi
dolayistyla tarimsal kuraklik tahminine yonelik Uzun-Kisa Siireli Bellek (UKSB)
tahmin modelini gelistirmislerdir. Copernicus iklim Degisikligi Servisi tarafindan
saglanan ERAS5 meteorolojik veri seti tahmin modelinin giris parametreleri olarak
secilmis olup; veri setinin 2011-2016 yillar1 arasi egitme, 2017-2018 yillar1 arasi
dogrulama ve Eylil 2019 ile Nisan 2020 donemleri arasi ise test verisi olarak
secilmistir. UKSB tahmin modeli, Rastgele Orman (RO) ve ARIMA yontemleri ile

kiyaslanmis olup ¢ok iyi bir genelleme basarisiyla daha iistiin sonuglar vermistir [69].

Zhao ve ark. (2022), Cin’in Shandong Eyaletinde 2002-2020 doénemi yagis ve
buharlasma degerlerini kullanarak SYEI kuraklik degerlerini yeniden iiretmeye yonelik
bir ¢alisma gergeklestirmislerdir. Uydu sensorlerinden, arazi modellerinden ve kiiresel
yagis degerlerinden yararlanilan bu calismada, kurakliga etki eden faktorler belirlenerek
Onyargi Diizeltmeli Rastgele Orman (ODRO), Asir1 Gradyan Artirma (AGA) ve Destek

Vektor Makinesi (DVM) makine O6grenmesi yontemleri ile regresyon modelleri
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olusturulmustur. Bu modeller igerisinde ODRO tahmin model en etkili sonuglar1 veren
model olmustur. Bu modelden elde edilen sonuglarina gére de SYEI kuraklik

degerlerine ait mekansal kuraklik haritalari tiretilmistir [70].
1.4.2. Tiirkiye’de Yapilan Kurakhik Calismalar:

Tiirkiye’de kuraklikla ilgili yapilan ilk ¢aligmalar, 1940’11 yillardan itibaren baglamistir.
Tanoglu (1943), sicaklik ve yagis degerlerini kullanarak De Martonne yontemi ile
Tiirkiye’nin geneli igin bir kuraklik haritasi olugturmustur [71]. Tiimertekin (1955), yine
De Martonne kuraklik izleme yontemi ile 1930—1951 yillar1 arasi i¢in indisin Tiirkiye

cografyasindaki dagilimi iizerine bir kuraklik calismasi gergeklestirmistir [72].

Ering (1957), Tirkiye’nin su ihtiyact ve kuraklik problemi iizerine bir ¢alisma
gerceklestirmistir. Kendisi tarafindan gelistirilen ve yillik toplam yagislarin sicakliga
oranlanmasi ile bulunan Ering indisine gore cesitli kuraklik simiflandirmalar1 yapmastir.

Bu siniflandirmalara gore de tiim Tiirkiye’nin kuraklik haritalart olusturulmustur [73].

Erdogan (1989), Tiirkiye'nin alt1 biiyiik nehir havzasinin 1938—1988 yillar1 arasindaki
yillik desarj verilerini analiz etmistir. Analiz sonuglarina gore 1954-1955, 1960-1961
ve 1972-1973 zaman dilimlerinde kurakligin etkili oldugu rejimler gortilmistiir. Ancak
bu kurak rejimler ¢ok kisa siirelerde ortaya ¢ikmistir. Sadece 1970-1974 doneminde

tiim iilkeyi etkisi altina alan siddetli ve uzun siireli bir kuraklik rejimi gézlenmistir [74].

Tiirkes (1996), Tirkiye'deki 91 adet meteoroloji istasyonunun 1930-1993 yillarina ait
aylik toplam yagis verilerini kullanarak yillik yagis degisimlerinin mekansal ve
zamansal analizini yapmis ve aynit donemde goriilen meteorolojik kurakligi incelemistir.
Yillik ve mevsimsel yagis verilerine Mann-Kendall Sira Korelasyon Testi uygulanmis
olup yillik yagislarda belirgin bir azalma ve bir¢ok zaman diliminde kurak periyotlarda

artis gortlmustiir [75].

Komiisci (1999), Tiirkiye’deki 40 farkli yagis istasyonunun 1940-1997 yillan
arasindaki yagis verilerine gore hesaplanan SYI degerleri iizerinden bir kuraklik analizi
yapmustir. Her istasyon icin kuraklik degerlendirmeleri yapilarak sonuglari ortaya
konmustur. Ayrica farkli iklim rejimlerini barindiran istasyonlardan bazilar1 igin

kuraklik zaman serileri ¢izilmistir [76].
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Sirdas ve Sen (2001), Tiirkiye'nin Marmara ve Trakya bolgelerindeki Edirne, istanbul
ve Kirklareli illerinin kuraklik 6zelliklerini belirlemek i¢in 1931-1991 dénemindeki 60
yillik yagis verilerine gore hesaplanan SYI degerlerini kullanarak SY1 smiflandirmasina
gore illere ait kuraklik periyotlarin1 belirlemislerdir. istanbul ilinde SYi=0 (normal
kuraklik) degerinde 27,5 ay, SYI=-1 (orta kuraklik) 6 ay, SYI=-1,5 (siddetli kuraklik) 4
ay, SYI=-2 (asir1 kuraklik) 2 ay olarak bulunmustur [77].

Tiirkiye’de kuraklikla ilgili yapilan calismalar icerisinde en kapsamlist ve en ¢ok
referans gosterileni Sirdag (2002)’a ait doktora tez ¢alismasidir. Bu calismada;
Tiirkiye’nin kuraklik analizi, hem alansal hem de zamansal boyutta ele alinmigtir.
Tiirkiye’nin farkli iklim kusaklarinda yer alan 60 adet istasyonun 1930-1990 yillari
arasidaki yagis, sicaklik ve bagil nem gibi hidrometeorolojik degiskenlerine ait veriler
bu ¢alismada dikkate alinmistir. SYT ile birlikte kuraklik oran1 (KO) yaklasimi ortaya
atilmis olup Tiirkiye nin farkli iklim bolgelerinde ocak, nisan, temmuz ve ekim aylari
icin kuraklik haritalar1 olusturulmustur. Bu kuraklik haritalarinin yani sira hem
istasyonlara ait yagiglarin istatistik degerlerine yonelik hem de nem ve sicaklik

degerlerine yonelik dagilim haritalar1 olusturulmustur [4].

Keskin ve ark. (2008), Isparta bolgesine ait istasyonlar igin Meteoroloji Genel
Miidiirliigiinden (MGM) alinan yagis verilerini Kullanarak SYI yontemi ile kuraklik
analizi yapmislardir. Kuraklik analizinden elde edilen degerlere bagli olarak Gdoller
bolgesi i¢in yapay zekda yontemlerinden Yapay Sinir Aglar1 (YSA) ve Uyarlamali
Sinirsel Bulanik Cikarim Sistemi (USBCS) kullanilarak kuraklik tahmin modelleri
gelistirilmistir. YSA ve USBCS sonuglari kullanilarak olusturulan veri tabani ile

bolgenin SYT kuraklik haritalar1 elde edilmistir [78].

Bacanli ve ark. (2009), Orta Anadolu’daki 10 adet yagis istasyonunun 1964—-2006 yillar1
arasindaki aylik ortalama yagis verilerini kullanarak 1-12 aylik zaman dlgeklerinde SYI
kuraklik degerlerini tahmin etmeye ¢alismislardir. Uyarlamali Sinirsel Bulanik Cikarim
Sistemi (USBCS) tahmin modelinin SYI i¢in uygulanabilirligi arastirilmis olup Ileri
Beslemeli Sinir Aglar1 (IBSA) modelinde de SYI degerleri egitme ve teste tabi tutularak
modeller karsilastirilmistir. Elde edilen sonuglar, USBCS’nin kuraklik tahminlerinde
basarilt bir sekilde uygulanabilecegini ve yiiksek dogruluk oranlarina sahip oldugunu

gostermistir [79].
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Dogan (2013), Konya Kapali Havzasinin kuraklik karakteristiklerini belirlemek i¢in
havzada bulunan 12 adet istasyonun 1972-2009 yillar1 arasindaki yagis verilerini
kullanarak kuraklik analizi lizerine bir calisma gerceklestirmistir. Caligmada; 18 farkl
zaman oOlgegi i¢in 6 farkli kuraklik indisini (Normal Yagis Yiizdesi (NYY), Yagis
Kuyruklari (YK), Z-Skoru, Cin Z Indeksi (CZI), Standartlastirilmis Yagis indeksi (SYI)
ve Efektif Kuraklik indeksi (EKI)) birbirleri ile karsilastirarak havzadaki kurakligin

kategorizasyonu, siireleri ve genlikleri belirlenmistir [29].

Yetmen (2013), yar1 kurak bir iklim kusaginda bulunan Tiirkiye’deki yagislarin
zamansal ve mekansal degisimi iizerinde dominant bir etkisi olan Kuzey Atlantik
Salinimin (KAS) meteorolojik kuraklik ve bununla baglantili hidrolojik ve tarimsal
kuraklik olaylarimi da ayni 6l¢iide kontrol ettigini ispatlamak icin istatistik yontemlere
dayali bir ¢alisma yapmustir. 1975-2008 yillar1 arasinda meydana gelen kuraklik
olaylarmin Tirkiye’deki zamansal ve mekansal dagilimimi yaparak kurakligin farklh
zaman Olgekleri ig¢in hangi bolgelerde kalict oldugu belirlenmis ve farkli kuraklik

seviyelerine gore kuraklik siddetinin ve olasiliginin mekansal dagilimi yapilmustir [22].

Bickici ve Kahya (2017), Konya Kapali Havzasinin dogusunda yer alan Nigde
istasyonunun 1970-2014 yillar1 arasindaki 3 ve 6 aylik kuraklik kosullarini tahmin
edebilmek icin Lineer Genetik Programlama (LGP) modeli iizerine g¢alismislardir.
Kuraklik gostergeleri olarak Giiney Salinim indeksi (GSI) ve Palmer Kuraklik Siddet
Indisi (PKSI) kullanilmis olup 3 ve 6 aylik LGP kuraklik tahmin modelinin GSI ile daha

uyumlu oldugu ve daha basarili sonuglar verdigi ortaya konulmustur [80].

Katip (2018), Bursa’nin 3, 6, 9 ve 12 aylik zaman Olgeklerindeki meteorolojik
kurakligin1 analiz edebilmek i¢in SYI degerlerini kullanmustir. Bursa ilindeki 16 adet
istasyonun 1984-2013 yillar1 arasindaki yagis verileri kullanilarak bolgedeki kuraklik
incelenmistir. Ayrica meteorolojik degiskenler ve 12 aylik SYI degerleri Yapay Sinir
Aglarinda (YSA) modellenmistir. YSA modelleri ile yapilan kuraklik tahminlerinin
basarilt sonuglar verdigi ortaya konulmus olup YSA kuraklik tahmin modellerinin Su
kaynaklarinin planlanmasinda ve kuraklik risk yonetiminde oldukca onemli olacagi

sonucuna varilmistir [81].

Hezarani (2018), Yesilirmak Havzasinda 1970-2014 yillarn arasindaki kuraklik

durumunun belirlenmesi amaciyla 9 farkli kuraklik indisini kullanarak bir c¢alisma
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gerceklestirmistir. 1, 3, 6, 12, 24, 36 ve 48 aylik zaman Olcekleri i¢in her bir kuraklik
indisi hesaplanmis ve YSA tahmin modelinde analiz edilmistir. Elde edilen en giivenilir
sonuglara gore kuraklik haritalar1 olusturulmustur. Ayrica 3 farkli akim goézlem
istasyonu (AGI) verileri kullanilarak, hesaplanan Akim Kuraklik Indisi (AKI) degerleri
icin Levenberg Marquardt algoritmasi baz alinarak bir tahmin modeli olusturulmustur.
SYI’nin YSA modelleri basarili sonuglar vermisken AKI i¢in onerilen model basarili

olamamustir [82].

Basakin ve ark. (2019), Kayseri Bolgesinde 116 yillik yagis verilerinden makine
ogrenme algoritmalarmm kullanarak gelecekteki PKSI kuraklik degerlerini tahmin
etmeye calismislardir. Calismalarinda; 1, 3 ve 6 aylik zaman Olgeklerinin kuraklik
degerleri tahmin edilmistir. Destek Vektor Makineleri (DVM) ve k-En Yakin Komsu
(KEYK) algoritmalar1 kullanilarak, olusturulan tahminlerin basar1 orani istatistiksel
olarak degerlendirilmistir. Bu c¢aligma, makine Ogrenimi yontemlerinin hidrolojik

problemlerin ¢6ziimiine ve tahminine 6nemli bir katki sagladigini gostermistir [83].

Basakin ve ark. (2020), Adana ilinin meteorolojik kurakligim1 tahmin edebilmek
amaciyla 1, 3 ve 6 aylik gecikme zamanlarinda kendinden kalibreli Palmer Kuraklik
Siddet Indisi (kb-PKSI) kullanarak kuraklik calismasi yapmuslardir. Tahmin modeli
olarak Uyarlamal1 Sinirsel Bulanik Cikarim Sistemi (USBCS) yontemi ele alinmig olup
ayrica kb-PKSI kuraklik verileri Ampirik Mod Ayristirmast (AMA) teknigi ile 6n
islemeye tabi tutulmustur. Bagimsiz USBCS tahmin modeli ile hibrit AMA-USBCS
tahmin modeli performans kriterlerine gore kiyaslanmis olup, hibrit AMA-USBCS

modeli ¢ok daha iistiin sonuglar vermistir [84].

Katipoglu (2020), Firat havzas1 ve ¢evresinde yer alan 16 adet Meteoroloji Gozlem
Istasyonu (MGI) ve 18 adet Akim Gozlem Istasyonu (AGI) verilerini kullanarak
meteorolojik ve hidrolojik kurakliklarin analizini yapmistir. Bu ¢aligsmada; ¢esitli zaman
periyotlar1 i¢in 5 farkli meteorolojik kuraklik indeksi ve 2 farkli hidrolojik kuraklik
indeksi karsilastirilmis ve ekstrem kurakliklar belirlenmigtir. Kurakliklarin en yogun
goriildiigii yillar i¢in her bir kuraklik indeksine gore zamansal ve mekansal kuraklik risk

haritalar1 olusturulmustur [85].

Ozger ve ark. (2020), Antalya ve Adana illerinin 1, 3 ve 6 aylik periyotlar: igin
kendinden kalibreli Palmer Kuraklik Siddet Indisi (kb-PKSI) degerlerini tahmin etmek
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icin bir ¢alisma gerceklestirmislerdir. Bu galismada; Ampirik Mod Ayristirma (AMA)
ve Dalgacik Doniisiimii (DD) 6n isleme teknikleri ile birlikte bagimsiz M5 model agaci,
Uyarlamali Sinirsel Bulanik Cikarim Sistemi (USBCS) ve Destek Vektor Makine
Regresyonu (DVMR) yontemlerini kullanmiglardir. Modellerden elde edilen sonuglara
gore; DD tahminleri, AMA tahminlerinden daha dogru sonuglar vermistir ve uygun
dalgacik tipinin segilmesinin sonuglar {izerinde Onemli bir etkiye sahip oldugu

goriilmistiir [86].

Jalilzadnezamabad (2021), Tiirkiye’de Marmara Bolgesinde yer alan 10 adet istasyonun
19602016 yillar1 arasindaki yagis verilerinden elde edilen Palmer Kuraklik Siddet
Indisi (PKSI) degerleri ile gelecege doniik kuraklik tahmininde bulunabilmek icin gesitli
modeller gelistirmistir. 1—12 ay arasinda degisen gecikme zamanlari i¢in olusturulan bu
modeller; bagimsiz Bulanik Mantik (BM), k-En Yakin Komsu (KEYK) algoritmas1 ve
Destek Vektor Makineleri (DVM) modelleri ve dalgacik doniisiimii ile olusturulan hibrit
D-BM, D-DVM ve D-KEYK modelleridir. Hibrit dalgacik doniisimlii modellerin
ozellikle 6 gecikme zamanindaki kuraklik tahmin becerileri dalgaciksiz modellere gore

oldukga iyi performanslar gostermistir [87].

Duvan ve ark. (2021), Sakarya havzasinda goriilen meteorolojik kurakligin zamansal ve
alansal 6zelliklerine iklim degisikliginin etkisini aragtirmislardir. Yapilan bu ¢alismada;
havzada bulunan istasyonlara ait aylik toplam yagis verileri ile Hadley Merkezi Kiiresel
Cevre Modeli siirim 2 (HadGEM2-ES) kiiresel iklim modelinin temsili konsantrasyon
yollart (Representative Concentration Pathways-RCP) 4,5 ve 8,5 senaryolar1 ile elde
edilen yagis projeksiyonu verileri kullanilmistir. Kuraklik siddetini belirlemek igin SYT,
kurakligin alansal dagilimini belirlemek i¢in de Ters Mesafe Agirliklt Enterpolasyon
Yontemi (Inverse Distance Weighting-IDW) ve Kriging Enterpolasyon Yontemi
kullanilmistir. Noktasal SYI kuraklik degerleri alansal degerlere doniistiiriilerek
havzanin kuraklik haritalar1 olusturulmustur. Bu kuraklik haritalar1 {izerinden havzanin
zamansal ve alansal Ozellikleri incelenmistir. Ayrica gézlemlenmis yagis verileri ile
elde edilen kuraklik siddeti degerlerinin projeksiyon verilerine gore elde edilen

degerlerden daha biiyiik oldugu goériilmistiir [88].

Mehr ve ark. (2021), Ankara’nin 3 ve 6 aylik kisa donem meteorolojik kurakligini

tahmin edebilmek icin iki adet meteoroloji istasyonunun 46 yillik yagis verilerini
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kullanarak SYEI smiflandirmasina gére bir kuraklik ¢aligmasi yapnuslardir. Kuraklik
tahmini iizerine yapilan bu ¢aligmada; yeni bir yaklasim olarak hibrit dalgacik paketi-
genetik programlama modeli (DPGP) gelistirilmistir. Modelin etkinligi otoregresif
model (AR), Genetik Programlama (GP) ve Rastgele Orman (RO) modelleri ile ¢apraz
dogrulanmis olup, onerilen bu hibrit modelin elde edilen sonuglara gore oldukca
gercekei bir tahmin modeli oldugu ortaya konmustur. AR ve RO modellerinden oldukca
iistiin olan bu hibrit model, bagimsiz GP’nin da tahmin performansini 6nemli 6lgiide

artirmigtir [89].

Sekendur (2022), Tiirkiye’nin 81 il merkezine ait meteoroloji istasyonlarmin 1980-2019
yillar1 arasindaki gozlem verilerini kullanarak; SYT ile SYEI indislerine gore 1, 6 ve 12
aylik zaman oOl¢eklerinde kuraklik analizi tizerine bir ¢alisma yapmistir. Bu ¢alismada;
SYI yontemi ile FAO-56 Penman-Monteith ve Hargreaves referans evapotranspirasyon
metotlartyla hesaplanan SYEipm ve SYEIne yontemleri karsilastirilmigtir. Modifiye
Mann-Kendall testine gore kuraklik egilimi ve Sen’in egim metoduna gore egim
biiyiikliigii analizleri, hem zamansal hem de mekansal olarak yapilmistir. Bu egilim
analizlerine gore Tiirkiye'nin farkli bolgelerinde hem artan hem de azalan kuraklik
egilimleri tespit edilmistir. En fazla kurak periyot ise SYEIHc zaman serilerinde ikinci

olarak da SYEIpm zaman serilerinde bulunmustur [90].

Citakoglu ve Coskun (2022), mevcut tez ¢alismas1t kapsaminda, Tiirkiye’nin
kuzeybatisinda yer alan Sakarya ilinin kisa donem meteorolojik kurakligin1 tahmin
edebilmek amaciyla 1960—2020 yillar1 arasindaki aylik yagis verilerinden hesaplanan 1,
3 ve 6 aylik zaman &lgekleri icin SYI degerlerini kullanarak hibrit makine 6grenmesi
yontemlerinde tahmin modelleri olusturmuslardir. Bu calismada; Yapay Sinir Aglar
(YSA), Uyarlamali Sinirsel Bulanik Cikarim Sistemi (USBCS), Gauss Siireg¢
Regresyonu (GSR), Destek Vektor Makine Regresyonu (DVMR), k-En Yakin Komsu
(KEYK) algoritmas1 makine dgrenmesi yontemleri kullanilmistir. Orijinal SYI kuraklik
degerleri Ayrik Dalgacik Doniisiimii (ADD), Varyasyonel Mod Ayristirma (VMA) ve
Ampirik Mod Ayristirma (AMA) 6n isleme teknikleri ile alt serilerine ayrilarak makine
ogrenmesi yontemlerinde egitme ve test verisi olarak dahil edilip hibrit modeller elde
edilmigtir. Bu sekilde olusturulan hibrit modeller bagimsiz makine Ogrenmesi
yontemleri ile karsilastirilmis olup, hibrit tahmin modelleri bagimsiz modellere gore

oldukca {istiin sonuglar vermistir. Bundan dolayr 6n isleme tekniklerinin tahmin



35

modellerinin basarisini artirmada ¢ok 6nemli bir yaklasim oldugu sonucuna ulagilmistir
Ayrica VMA 6n isleme teknigi ADD ve AMA yontemlerine gore de daha basarilidir
[91].

Latifoglu (2022), Tiirkiye’deki Konya, Rize ve Sanlrfa illerinin 3, 6, 9 ve 12 aylik SYI
kuraklik degerlerini 1 ve 3 ileri zamanlari i¢in tahmin etmeye calismistir. Kuraklik
tahmin c¢aligsmasi i¢in Uzun-Kisa Siireli Bellek (UKSB) ve Cift Yonli Uzun-Kisa Siireli
Bellek (CY-UKSB) derin sinir aglar1 kullanilmigtir. Elde edilen model sonuglarina gore
CY-UKSB tahmin modelinin daha iistiin oldugu ve yiiksek korelasyonlu tahminler

verdigi ortaya konulmustur [92].

Alkan (2022), Seyhan ve Ceyhan Havzalarindaki 14 adet istasyonun 1989-2020 yillar1
arasindaki yagis verilerini kullanarak 3, 4, 6 ve 12 aylik zaman o6lgeklerinde SYI ve
SYEI kuraklik degerlerinin tahminleri {izerine bir calisma yapmistir. Bu calismada;
Ayrik Dalgacik Doéniisiimii (ADD) ve Kalman Smooth Filtreleme (KSF) 6n isleme
teknikleri kullanilarak Yapay Sinir Aglar1 (YSA), Asir1 Gradyan Artirma (AGA),
Destek Vektor Makinesi (DVM), Rastgele Orman (RO) ve k-En Yakin Komsu (KEYK)
algoritmasi ile bes farkli hibrit tahmin modeli olusturulmustur. DVM ve Asir1 Gradyan
Artirma hibrit modellerinin sirasiyla, diger 6n isleme ve filtreleme teknikleriyle
olusturulan hibrit modellere goére daha iyi performans gostermis olduklari tespit

edilmistir [93].

Mehr ve ark. (2022), Ankara’daki Beypazari ve Nallithan ¢aligma bolgelerinin 3 ve 6
aylik kisa donem meteorolojik kurakligini tahmin edebilmek amaciyla Evrigimli Sinir
Aglar1 ve Uzun-Kisa Siireli Bellek (ESA-UKSB) olarak adlandirilan yeni bir akilli derin
ogrenme modelini Onermislerdir. Bu modelde istasyonlarin 1971-2016 yillar
arasindaki yagis verilerinden hesaplanan SYEI degerleri kullanilmistir. Onerilen bu
akilli tahmin modelinin dogrulugu Yapay Sinir Aglar1 (YSA), Genetik Programlama
(GP), Evrigimli Sinir Aglart (ESA) ve Uzun-Kisa Siireli Bellek (UKSB) modelleri ile
karsilagtiritlmistir. ESA-UKSB tahmin modeli sonuglari, diger tiim modellerden daha iyi

performans gostermistir [94].

Baykal ve ark. (2023), Isparta ilinin 1929-2021 yillar1 arasindaki aylik toplam
yagislarint kullanarak Uzun-Kisa Siireli Bellek (UKSB) yontemi ile gelecek 10 yilda

goriilmesi muhtemel hem aylk yagislart hem de SYI kuraklik degerlerini tahmin
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etmeye calismuslardir. Gelecek 10 yilda goriilmesi muhtemel yagislarla SY1 degerlerinin
egilimleri, temsili konsantrasyon yollar1 (Representative Concentration Pathways-RCP)
4,5 senaryosuna gore belirlenen yagis projeksiyonlar ile karsilastirilmistir. Yapilan
meteorolojik kuraklik tahminlerine gére yagis ve SYI kuraklik degerlerinin senaryolarla

benzer bir sekilde azalma egiliminde oldugu goriilmiistiir [95].
1.5. Problem Durumu

Onceki béliimlerde detayl bir sekilde ele alindi1 {izere iklim degisikligine bagli olarak
son donemlerde etkileri daha da artan kuraklik felaketi, diinyada ve iilkemizde en ¢ok
tartisilan konulardan biri haline gelmistir. Dogu Akdeniz iklim kusaginda bulunan
tilkemiz i¢in yapilan bir¢cok bilimsel c¢alismada, 2030’lu yillarin basindan itibaren
sicakliklarin ciddi oranda artacagi, Dogu Karadeniz Bolgesi hari¢ yagislarin 6nemli
Olclide azalacagr ve basta meteorolojik kuraklik olmak iizere tilkenin biiyiik bir
kisminda kurakligin biitiin asamalarinin goriilecegi ongoriilmektedir. Calisma alanimiz
olan Sakarya havzasi, iilke niifusunun yaklasik %13’iiniin yasadigi ve biiyiik sehir
merkezlerinin yer aldig1 6nemli bir havzadir. Farkli iklim kosullarinin goriildiigli yar
kurak bir iklim rejimine sahiptir. Havzadaki kuraklik durumunu 6ngorebilmek adina
kurakligin ilk asamasi olan meteorolojik kurakligin hangi asamada oldugu heniiz
kapsamli bir ¢aligma ile ortaya konulmamistir. Meteorolojik kurakligin dogru bir
sekilde belirlenmesi ve gelecekteki durumunun Ongoriilmesi kuraklik felaketi ile
miicadelenin de ilk agamas1 olacagindan olduk¢a 6nemlidir. Biiyiik bir niifusa sahip olan
tilkemizde siddetli kurakliklarin goriilmesi durumunda basta gida olmak iizere bir¢ok
sektor olumsuz etkilenecek bu da iilke refahini diisiirecektir. Bu nedenle kurakligin
tespiti, kategorize edilmesi, zamansal ve mekansal analizi, gelecege doniik tahminlerle
birlikte ¢esitli senaryo ve projeksiyonlarin olusturulmasi, eylem planlar1 hazirlanmasi ve
erken uyari sistemlerinin kurulmasi, tilkemiz i¢in elzem bir konudur. Kurakligin mevcut
ve gelecekteki durumu iyi bir 6ngorii ve planlama ile degerlendirip bu dogal felaketin
yikict etkilerini azaltmak amaciyla gercekei politikalar tiretmek hem arastirmacilar hem
de kamu kurumlar1 agisindan oldukca 6nemlidir. Bu baglamda kurakligin hem bolgesel
Olgekte hem de tiim iilke 6l¢eginde kisa siireler igerisinde belirlenmesi ya da tahmin

edilebilmesi icin gelisen teknolojilerden yararlanmak gerekir.
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Kuraklik kosullarinin mevcut ya da gelecekte goriillmesi muhtemel durumlarina yonelik
bir¢ok ¢alisma yapilmistir. Kuraklikla ilgili yapilan son donem c¢aligmalari, klasik
matematiksel denklemlerden yapay zeka tekniklerine dogru kaymistir. Son yirmi yillik
donemde yapay zekanin alt kiimesinde yer alan makine 6grenmesi (MO) ydntemleri ve
son on yilik dénemde ise yine yapay zekanin alt kiimesinde yer alan derin 6grenme
(DO) algoritmalar1 yaygin bir sekilde kullanilmaya baslanmistir. Bilim ve teknoloji,
ilerlemesine her gegen giin biiyiik bir hizla devam etmektedir. Kullanilan teknikler
birbirinin eksiklerini tamamlayarak ya da birbiri ile baglantili ¢alisarak problemlerin
¢Oziimiinde en iyi optimizasyonlar1 sunmak i¢in miicadele halindedir. En kisa zamanda,
en az islem yiki ile en dogru ve en giivenilir ¢éziimleri sunan teknikler hem
insanoglunun isini kolaylagtirmakta hem de teknolojinin Oniinii agmaktadir. Bu
baglamda insanoglu i¢in hayati 6neme sahip kuraklik gibi bir konuda kullanilan

tekniklerin tahmin ve 6ngdrii becerilerini daha da artirmak oldukc¢a 6nemlidir.

1.6. Arastirmanin Amaci

Bu tez ¢alismasinda; Tiirkiye’nin kuzeybatisinda yer alan ve 6nemli nehir havzalarindan
biri olan Sakarya havzasindaki kisa donem meteorolojik kuraklik degerlerinin tahmin
edilmesi amaglanmistir. Havzanin biitiiniinii temsil edecek sekilde secilen 10 adet
meteoroloji istasyonunun uzun yillara ait aylik yagis verilerinden hesaplanacak olan
Standartlastirilmis Yagis Indeksinin (SYI) 1, 3, 6 ve 12 aylik zaman dlgeklerindeki
degerleri tahmin modellerinde kullamlacaktir. SY1 kuraklik degerlerinin %75’ egitme,
%251 ise test verisi olarak kuraklik tahmin modellerinde giris verisi olarak
kullanilacaktir. Kuraklik tahmin modellerinde bagimsiz modeller olarak Yapay Sinir
Ag1 (YSA), Uyarlamali Sinirsel Bulanik Cikarim Sistemi (USBCS), Destek Vektor
Makine Regresyonu (DVMR), Gauss Siire¢ Regresyonu (GSR) ve Uzun-Kisa Siireli
Bellek (UKSB) makine 6grenmesi yontemleri ele alinacaktir. Bu yontemlere Ayrik
Dalgacik Doniisiimii (ADD), Varyasyonel Mod Ayristirma (VMA) ve Ampirik Mod
Ayristirma (AMA) 6n isleme teknikleri dahil edilerek hibrit modeller elde edilecektir.
Olusturulan tiim bu modellerin kuraklik tahminindeki basarilarinin performans
kriterlerine gore birbiri ile karsilastirilmasit sonucu en dogru ve giivenilir yontemin

belirlenmesi amaglanmaktadir.
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1.7. Arastirmamin Onemi

Sakarya havzasi farkli iklim 6zellikleri ve yagis rejimlerini bir arada bulunduran yari
kurak bir havzadir. Bu nedenle havzadaki mevcut yagis normallerinin ve kisa
donemlerde goriilebilecek muhtemel meteorolojik kurakliklarin iyi analiz edilmesi,
kurakligin ileriki asamalarinda karsilagilan etkileri dnlemek adina olduk¢a onemlidir.
Calisma alanimiz olan Sakarya havzasinda daha 6nceden meteorolojik kuraklik analizi
ve tahminleri tizerine kapsamli bir ¢alisma yapilmamistir. Havzada mevcut durum ile
gelecekte goriilmesi muhtemel kuraklik durumlar i¢in biitiinciil bir kuraklik 6ngoriisii
yapilabilmesi adina bu caligma O6nemlidir. Kuraklik tahmini ile ilgili ¢alismalarda
genellikle bir ya da iki yontem ele alinmistir. Bu da yontemlerin tahmin becerilerinin
kiyaslanmasinda bir eksiklik olarak goriilmiistiir. Bu ¢alismada; daha 6nceden kuraklik
tahminlerinde basarili sonuglar veren dort farkli makine 6grenmesi yontemine ek olarak
heniiz yaygin bir kullanimi olmayan ve derin 6grenme yontemlerinden biri olan Uzun-
Kisa Siireli Bellek (UKSB) yontemi de kullanilmistir. Ayrica hidrometeorolojik zaman
serilerinin analizlerinde 6nemli yaklagimlardan biri olan veri 6n isleme uygulamasi da
tic farkli yontemle ele alinarak c¢alismanin kapsami artirilmistir. Literatiirdeki
calismalarin bircogunda Ayrik Dalgacik Doniisiimii (ADD) basta olmak {izere tek bir
veri 6n isleme teknigi kullanilmaktadir. Bu ¢alismada ise ADD ile birlikte VVaryasyonel
Mod Ayristirma (VMA) ve Ampirik Mod Ayristirma (AMA) 6n isleme teknikleri de
kullanilmistir. VMA ve AMA yontemleri genellikle bilgisayar, haberlesme, elektronik,
tip ve biyomedikal gibi alanlarda daha sik kullanilmaktadir. Hidrometeorolojik tahmin
caligmalarinda VMA ve AMA yontemleri daha yeni yeni kullanilmaya baslanmustir.
Ayrica bu ii¢ 6n isleme teknigi ile ilgili bircok farkli ve kapsamli kombinasyonlar
(dalgacik ailesi, bant seviyeleri, gecikme zamanlar1 vb.) denenerek en optimum tahmin
sonuclarina ulasilmaya c¢alisilmistir. ADD, VMA ve AMA yontemleri ile alt bantlarina
ya da alt serilerine ayrilan orijinal veriler makine Ogrenmesi ve derin Ggrenme
yontemlerine entegre edilerek hibrit tahmin modelleri olusturulmustur. Istasyon
sayisinin ¢oklugu, uzun donem verilerin kullanilmasi, dort farkli zaman oOlgegi, bes
farkli yontemin ve ti¢ farkli 6n isleme tekniginin ele alinmasi ve birgok farkli model
kombinasyonlart ve parametrelerinin dikkate alinmasi nedenleriyle, mevcut tez

calismasi kuraklik tahmini ile ilgili literatiirde 6nemli bir yere sahip olacaktir.



2. BOLUM

MATERYAL VE YONTEM

2.1. Materyal
2.1.1. Cahisma Alam

Bu c¢aligmada ele alinan alan, Tiirkiye’nin 25 nehir havzasindan biri olan Sakarya
havzasidir. Sakarya havzasi, Tiirkiye’nin kuzeybatisinda yer almakta olup 63.303
km?’lik bir yagis alani ile Tiirkiye yiizol¢iimiiniin (779.450 km?) 1/8’ni olusturmaktadir
[96]. Marmara, Susurluk, Akargay, Konya kapali havzasi, Kizilirmak ve Bat1 Karadeniz

havzalari ile komsudur. Sekil 2.1°de Sakarya havzasinin konumu gosterilmistir.
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Sekil 2.1. Sakarya havzasimin Tirkiye’deki konumu
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Havzaya ismini de veren Sakarya nehri, Kizilirmak ve Firat nehirlerinden sonra 720
km’lik uzunlugu ile Tiirkiye'nin {ligiincli en uzun, Kuzeybati Anadolu’nun ise en biiyiik
akarsuyudur. Su potansiyeli olarak Tiirkiye’deki akarsularin %3,4’nii olusturan Sakarya
nehri, 6,4 10° m%yil ortalama yillik akisa sahiptir [97]. Porsuk ¢ayi, Ankara cay,
Karasu ¢ay1, Goksu ¢ay1, Porsuk ¢ay1 ve Mudurnu ¢ay1 Sakarya nehrinin 6nemli yan
kollarindandir. Sakarya havzasi; Goksu alt havzasi, Ankara alt havzasi, Porsuk alt
havzasi, Yukar1 Sakarya alt havzasi, Orta Sakarya alt havzasi ve Asagi Sakarya alt
havzasi olmak tizere 6 adet alt havzaya ayrilmistir. Sekil 2.2°de Sakarya havzasinin alt

havzalar1 gdsterilmistir.

0 15 30 60 Kilometers
T I |

T T T 1 T
30°0'0"E 31°0'0"E 32°0°0"E 33°0'0"E 34°0°0"E

Sekil 2.2. Sakarya havzasinin alt havzalari

Sakarya havzasi smirlari igerisinde Eskisehir, Sakarya ve Bilecik il sinirlarinin tamami
Kiitahya, Ankara, Konya, Bursa, Afyonkarahisar, Bolu, Kocaeli, Usak, Cankir1 ve
Diizce illerinin ise bir kismi yer almaktadir. Goriildiigii gibi Tiirkiye nin baskenti olan
Ankara da dahil olmak tizere gelismis ve gelismekte olan sehirler havza igerisinde yer
almaktadir. Tiirkiye Istatistik Kurumunun (TUIK) 2020 yili verilerine gore havzanm

niifusu 8.635.894 kisi olup bu say1 Tiirkiye niifusunun %10,4’tdiir [98].
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Genis bir alana sahip olan Sakarya havzasinda, ¢ok farkli iklim tipleri goriilmektedir.
Yikseltilerin fazla oldugu Yukari1 Sakarya alt havzasinin giiney kesimlerinde, Orta
Sakarya havzasinin dogu kesimlerinde ve Ankara alt havzasmin biiyiik bir kisminda I¢
Anadolu’nun tipik karasal iklimi goriilmektedir. Bu kesimlerde yazlar sicak ve kurak,
kiglar ise soguk ve oOzellikle kar yagish gecer. Ankara alt havzasinin kuzey
kesimlerinde, Orta Sakarya havzasinin kuzey ve kuzeydogu kesimlerinde ve Asagi
Sakarya alt havzasinin Karadeniz’e komsu kesimlerinde Karadeniz iklimi
goriilmektedir. Bu kesimlerde yazlar sicak, kislar ise 1lik ve bol yagish ge¢mekte olup
genellikle kurak mevsimler goriilmemektedir. Porsuk alt havzasi; Marmara ve Ege
Bolgelerinin 1liml1 iklim kosullarindan I¢ Anadolu’nun karasal iklim kosullarina gegis
bolgesindedir. Bu havzada yazlar sicak ve kurak, kislar ise soguk ve yagishdir. Goksu
alt havzasi ise Porsuk alt havzasmin tersine karasal I¢ Anadolu iklim kosullarindan
yagisli Marmara iklim kosullarina gecis bolgesindedir. Yagis ortalamalar: tiim havzanin
biitiiniinden fazladir. Bu havzada yazlar sicak ve az yagisl, kislar ise biraz soguk ve bol

yagishdir.

Farkli iklim tiplerinin goriilmesinden dolay1 Sakarya havzasindaki yagis rejimleri de
farkliliklar gostermektedir. Karasal iklimin hakim oldugu kesimlerde kis aylarinda
ozellikle kar yagislar1 yogun iken yaz aylarinda az yagis goriilmektedir. Diisiik
yliksekliklere sahip havzanin asagi kesimlerinde 6zellikle Karadeniz ikliminin etkili
oldugu yerlerde ise hemen hemen tiim mevsimlerde yagmur seklinde yagislar
goriilmektedir. Havzanin yillik yagis yiiksekligi ortalamasi yaklasgitk 552 mm
(1991-2020 yillar1 arast Tirkiye ortalamasi 573,40 mm)’dir. Havzanin biiyiik bir kism1
karasal I¢ Anadolu ikliminin etkisinde oldugundan dolay: goriildiigii iizere yagis
ortalamasi Tiirkiye ortalamasinin altindadir. Uzun yillar dl¢limleri maksimum yagis
degerlerine gore en yiiksek yagis 127,70 mm olarak haziran ayinda Sakarya MGi’de, en
diisiik maksimum yagis degeri ise 6,20 mm ile agustos aymda Golbast MGi’de
Olgiilmistiir. Sakarya havzasmin uzun yillar sicaklik degerleri, yiiksek rakimli
kesimlerden diisiik rakimli 6zellikle Sakarya ili civarina inildikge artig gostermektedir.
Uzun yillar ortalama sicaklik degerlerine gore, en soguk ay ocak donemi olurken,
temmuz ay1 en yiiksek sicakliklarin dl¢iildiigii donemdir. Uzun yillar minimum sicaklik
degeri, Eskisehir’de ocak ayinda -28°C olarak olgiiliirken, uzun yillar maksimum

sicaklik degeri ise Sakarya’da temmuz ayinda 44°C olarak ol¢iilmiistiir.
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Sakarya havzasinin ortalama yiikseltisi 965 m’dir. Havzanin yiikseltileri Asag1 Sakarya
alt havzasinin Karadeniz kiyilarinda sifir kotlarindan baslar ve Goksu alt havzasinda yer
alan Uludag’da 2.543 m’lik yiikseltiye kadar ulagsmaktadir. Uludag (2.543 m), Sultan
daglar1 (2.400 m), Emir daglar1 (2.280 m), Tiirkmen Dag1 (2.181 m), Koéroglu Dagi
(2.378 m) ve Domanig¢ daglar1 (1.794 m) havzadaki 6nemli daglardir. Ayrica havzada

egimler yiiksek olmadigindan genis diizliikler ve ovalar goriiliir.
2.1.2. Veri Temini ve Se¢imi

Calismada kullanilacak olan yagis verileri, Meteoroloji Genel Miidiirliigiinden (MGM)
temin edilmistir. Havza sinirlari igerisinde ge¢cmisten gilinlimiize kadar farkli kurumlarin
islettigi yaklasik 90 kadar yagis 6l¢limii yapan istasyon agilmistir. Bu istasyonlarin bir
kism1 daimi olarak bir kismu ise ihtiyaca binaen kisa siireli olarak acilmistir. Mevcut
durumda bu istasyonlarin biiyiik bir kism1 kapali durumdadir. Calismada kullanilacak
olan istasyonlarin se¢iminde; 6zellikle havzay1 temsil etmesi, uzun donem 6lgiimlerinin
olmasi, eksik verinin olmamasi ve dlgimlerin giincel olmasina dikkat edilmistir. Sekil
2.3’te calismada kullanmlacak meteoroloji gozlem istasyonlarmm (MGI) havzadaki

konumlar1 gosterilmistir.
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Sekil 2.3. Meteoroloji gézlem istasyonlarinin (MGI) havzadaki konumlari
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Tez ¢aligmasinda; havzada yer alan 10 adet meteoroloji gézlem istasyonuna (MGI) ait
uzun donem aylik yagis verileri kullanilacak olup bu verilerden de 1, 3, 6 ve 12 aylik
zaman Olgekleri igin SYI kuraklik degerleri hesaplanacaktir. Veri setinin uzun olmasi
makine 6grenmesi ve derin 6grenme yontemlerinin gegmis verileri daha iyi 6grenme ve
genelleme yetenekleri agisindan olduk¢a onemlidir. Bu yiizden olabildigince gézlem
aralig1 biiyiik olan istasyonlar secilmistir. Calismaya dahil edilen istasyonlara ait baslica

karakteristik bilgiler Tablo 2.1’de verilmistir.

Tablo 2.1. Meteoroloji gdzlem istasyonlar1 (MGI) karakteristik bilgileri

Kurum istasyon iIstasyon Rakim Gézlem Enlem Boylam Yilhk Ort.

No Ad1 (m) Arahg Yags Yiik.
(mm)
MGM 17069  Sakarya 30 1960—2021 40°76' 30°39' 847,40
MGM 17130  Ankara 887 1960—2021 39°97" 32°86' 411,50
MGM 17155 Kiitahya 969 1960-2021 39°41' 29°9%' 567,02
MGM 17070 Bolu 743  1960-2017 40°44' 31°36' 552,25
MGM 17752 Emirdag 983 1964-2012 39°00' 31°14' 410,20
MGM 17728 Polathi 886 1964-2012 39°58' 32°16 363,47
MGM 17662 Geyve 100 1960—2012 40°52' 30°29' 644,06
MGM 17832 Ilgin 1036 1968—2012 38°27" 31°89' 420,00
MGM 17726 Sivrihisar 1070 1960-2012 39°44' 31°53' 412,60
MGM 17798 Yunak 1148 1971-2012 38°82' 31°72' 450,17

Tablo 2.1°den goriilecegi lizere secilen istasyonlarin yiikseltileri 30 m ile 1148 m
arasinda degismektedir. Istasyonlar arasinda yagis potansiyelinin en yiiksek oldugu
istasyon 847,40 mm yillik ortalama yagis yiiksekligi ile Sakarya MGI’dir. En diisiik
yags yiiksekligi ise 363,47 mm ile Polath MGI’dir. Calismada secilen bu 10 adet
MGI’nin yillik ortalama yagis yiiksekligi ise 507,87 mm’dir. Sakarya, Ankara, Kiitahya
ve Bolu il merkezlerinde yer alan MGI’lerin gdzlem araligi oldukca uzun ve giinceldir.
Diger istasyonlar da hem havzay1 temsil 6zelligi hem de gozlem araliklarinin uzun
olmas1 nedeniyle se¢ilmistir. Sekil 2.4—2.7’de Sakarya, Ankara, Kiitahya ve Bolu MGi
gibi biiyiik istasyonlarin yillik toplam yagis grafikleri verilmistir. Diger istasyonlarin
yillik toplam yagis grafikleri ise eklerde verilmistir.
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Sekil 2.4. Sakarya MGI 1960—2021 donemi yillik toplam yagislar grafigi
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Sekil 2.5. Ankara MGI 1960-2021 dénemi yillik toplam yagislar grafigi
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Sekil 2.6. Kiitahya MGI 1960—2021 dénemi yillik toplam yagislar grafigi
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2.2. Yontem
2.2.1. Homojenlik ve Duraganlik Analizleri

Bir rastgele degiskenin belli bir gozlem periyodu igerisinde zamana bagli ardigik olarak
kaydedilmesi ile elde edilen ve sayisal biiytikliikleri temsil eden serilere zaman serileri
denilmektedir [99, 100]. Yagis, sicaklik, buharlasma, nem, riizgar gibi iklim
degiskenleri ve bu degiskenlerden etkilenerek meydana gelen taskin ya da kuraklik gibi
olaylara ait seriler ise iklimsel zaman serilerini olusturur. Bu tarz serilerin farkli
amaglarda kullanilmak {izere kurum-kuruluslar ya da arastirmacilar tarafindan kayitlar
tutulur. Veri tabaninda uzun donemler boyunca kayitlart tutulan bu serilerin
dagilimlarinda goriilen ekstrem sapmalar ya da degisimler yalnizca iklim degiskenlerine
bagli olursa yani dogal yollarla meydana gelirse bu serilere homojen iklim serileri
denilmektedir. Serilerin homojenligi istatistiksel kriterlerle (standart sapma, varyans,
medyan, carpiklik ya da basiklik katsayilar1 vb.) yakindan ilgilidir. Bu kriterler zaman
serisi boyunca gozlenen trendleri, sapmalar: ya da degisimleri gosterdiklerinden dolay1
olduk¢a &nemlidir. Olgiimlere bilerek ya da bilmeyerek yapilan miidahaleler, kayit
hatalar1, istasyon yerinin degistirilmesi, Ol¢iim yoOnteminin degistirilmesi, Ol¢lim
aletlerindeki hatalar ya da kalibrasyon eksikligi ve cevresel etkiler gibi etmenler
serilerin homojenligini bozmaktadir. Iklimsel zaman serilerinin homojenligi her tiir
analiz ve test sonucunun dogrulugunu ve giivenilirligini artirmaktadir. Homojen
olmayan serilerin varlig1 analiz ve test sonuglar1 lizerinde kusku birakir. Eger veri
setinde homojen olmayan serilerin varlig1 tespit edilirse analizlerde bu verilerin
kullanilmast dogru degildir. Boyle bir durumda homojen olmayan veriler ya homojen

hale getirilmeli ya da veri setinden ¢ikartilmalidir [101].

Homojenlik gibi duraganlik da iklimsel zaman serilerinin analizinde 6nemli bir
gostergedir. Seriyi olusturan temel etmenlerin ve silirecin zamanla degismedigi
varsayimima dayanir. Duraganlik siireci, bir serinin ortalamasmin ve varyansinin
zamanla degismeyerek sabit kaldigi ve iki donem arasindaki kovaryansinin da
zamandan bagimsiz olarak sadece donemler arasindaki gecikmeye bagli oldugu bir
siirectir. Duragan 6zelligindeki bir zaman serisi kendi ortalamasi ¢evresinde ve sabit

genislikte salinimlar gostermektedir [102]. Duraganlik 6zelligi gostermeyen iklimsel
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zaman serilerinin analizleri giivenilir olmayacagindan bu seriler duragan hale getirilmeli

ya da analizlerde kullanilmamalidir.

Zaman serileri ile ilgili analizler, serilerin gegmis donem kayitlarin1 kullanarak hem
istatistiksel 6zelliklerini hem de seriyi olusturan siireci ortaya koyar ve bdylece serinin
gelecekteki muhtemel durumlarinin 6ngdriilebilmesini ya da tahmin edilebilmesini
saglar. Bu tez calismasinda ele alinan kuraklik analizinde de yagis degiskenine bagl
iklimsel zaman serileri kullanilacagindan dolay1 homojenlik, duraganlik ve bagimsizlik

analizleri lizerinde durulmustur.
2.2.1.1. Homojenlik, Duraganhk ve Bagimsizhik Testleri

Homojenlik testleri dogrudan ve dolayli olmak iizere iki ana baglikta toplanir. Verilerin
elde edilmesi ve kayda alinmasi asamalarinda bilinen bir sebebe (istasyon yerinin
degistirilmesi, dl¢iim tekniginin degismesi gibi) dayali olarak veri setindeki sapmalara
ya da degisikliklere yonelik yapilan diizeltmeler i¢in dogrudan homojenlik kontrolii
yapilabilir. Bilinmeyen sebeplerden dolayr veri setinin homojenliginin kaybolmasi
durumunda ise dolayli homojenlik kontrolleri yapilmaktadir. Dolayli homojenlik testleri
mutlak ve goreceli testler diye ikiye ayrilir. Goreceli homojenlik testlerinde, iklimsel
zaman serilerinin analizleri yapilirken ana istasyona komsu durumunda bulunan ve
homojen oldugu bilinen baska bir istasyonun verileri kullanilmaktadir. Mutlak
homojenlik testlerinde ise sadece ele alinan istasyonun verileri kullanilmaktadir [103].
Komsu istasyonlar arasinda yiiksek bir korelasyon varsa goéreceli homojenlik testleri
kullanilmasinda sakinca yoktur. Ancak birbirine yakin olmayan, benzer fiziksel
ozellikleri tasimayan ve komsu istasyonun homojenligi ile ilgili tereddiitler bulunan
durumlarda goreceli testler homojenligi tespit etmekte basarisiz olabilmektedir. Bu
nedenle analizlerin daha dogru ve giivenilir olmasi amaciyla mutlak homojenlik
testlerini kullanmak gerekir [104]. Literatirde yaygin bir sekilde kullanilan ve
giivenilirligini kanitlamis mutlak homojenlik testleri ise sunlardir: Standart Normal
Homojenlik (SNHT), Von Neumann Testi (VNT), Pettitt Testi, Mann-Whitney u Testi
(MWT), Buishand Aralik Testi ve Cift Toplam Egri Yontemi. Bu testlerden SNHT,
Pettitt Testi, MWT ve Buishand Aralik Testi hesaplanan istatistiklerin veri sayisina gore
belirlenen kritik seviyelerin iistiinde olmasi durumunda seride bir kirllma (degisim)

noktasinin oldugunu ve homojenlik durumunun bulunmadigini gosterir. Cift Toplam
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Egri Yontemi, zaman serisindeki birbirinden farkli ve tutarsiz donemleri tespit ederek
kirilma olmamasini saglayan bir yontemdir. Ayrica bu yontemle homojen olmayan
zaman serilerindeki hatalar diizeltilerek homojen hale getirilebilmektedir. VNT ise

sadece homojen olmama durumunu gosterir [105].

Duraganlik durumunun kontrolii i¢in kullanilan en yaygin testler; birim kok analizinin
gelistirilmis hali olan Genisletilmis Dickey-Fuller Testi (GDFT), Phillips-Perron Testi
ve KPSS testidir. Ayrica bazi duraganlik analizlerinde grafik yontem, korelogram ve
otokorelasyon fonksiyonlari da kullanilmaktadir. Bahsedilen testlerden KPSS
(Kwiatkowski-Phillips-Schmidt-Shin testi) testinde serilerin duraganligi trende gore
degerlendirilmekte olup tez calismasi kapsaminda trend analizlerinin bulunmamasi
nedeniyle bu teste yer verilmemistir. Phillips-Perron Testi de GDFT ile ¢ok benzer
oldugundan ¢alismada kullanilmamistir. Otokorelasyon fonksiyonu ise kuraklik zaman
serilerindeki  otokorelasyon varligimmin arastirilmast ve gecikme zamanlarinin

belirlenmesi asamasinda ayrica ele alinacaktir.

Bu tez c¢alismasinda; homojenlik analizi i¢in Standart Normal Homojenlik Testi
(SNHT), Von Neumann Testi (VNT), Mann-Whitney u Testi (MWT) ve duraganlik
analizi i¢in ise Genisletilmis Dickey-Fuller Testi (GDFT) kullanilmistir. Bu yontemler
literatiirde ¢ok yaygin bir sekilde kullanilmaktadir [106, 107, 108, 109]. Belirtilen bu
testler meteorolojik kuraklik tahmini ile ilgili bu tez ¢alismasinin tek parametresi olan

aylik ortalama yagis verilerine uygulanmstir.
2.2.1.1.1. Standart Normal Homojenlik Testi (SNHT)

iklimsel zaman serilerinin ele alindig1 birgok ¢aligmada kullanilan ve giivenilirligi
kanitlanan SNHT, Alexandersson (1986) tarafindan gelistirilmistir. n yillik zaman serisi
icerisinde bir “k” noktasi referans noktasi olarak alinir ve seri ikiye bdliiniir. Zaman
serisinin ilk “k” yilinin ortalamasi ile son “n-k” yilinin ortalamasinin karsilagtirmasi

yapilir ve test istatistigi olan T (k) degeri hesaplanir.
T(k) =kz;*+ (n—k)z,> k=1,2,3,....,n (2.1)

Bu denklemde yer alan z; ve z, ifadeleri asagida yer alan esitliklerle hesaplanir.

7=k, (-1 / (2.2)
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7= = W (G=T) /s (2.3)
Esitlik 2.1°de verilen Z; ve Z, ifadeleri sirasiyla ilk k ve son n-k yillar1 boyunca z;’nin
ortalama degerleridir. Esitlik 2.2 ve 2.3’te yer alan Y gézlem degerlerinin ortalamasin,
Y; her bir y1l i¢in gozlem degerlerini ve s ise standart sapmay1 temsil etmektedir. Seride
k yilinda bir kirilma (degisim) meydana gelirse bu k yilinda test istatistigi olan T'(k) en
biiyiik degerine ulasir. Bu durumda nihai test istatistigi olan T, asagida verilen esitlik ile

bulunur.
To = maks;<x<nTk (2.4)

Seride yer alan biitiin ¥, degerlerinin benzer bir dagilimdan geldigi kabulii ile yapilan
sifir hipotezi T, degerinin belirli bir limit degeri agsmas: halinde reddedilir ve zaman
serisinin homojen olmadig1 sonucuna varilir (Ho=veriler homojendir). SNHT nin T, test
istatistigi ile ilgili kritik limit degerleri Wijngaard ve ark. (2003) tarafindan %99 ve %95
giiven araliklarinda degerlendirilerek tablo haline getirilmistir [103, 110]. Tablo 2.2’de
SNHT kritik limit degerleri verilmektedir.

Tablo 2.2. SNHT %99 ve %95 giiven araliklarina gore belirlenen T, limit degerleri

n 20 30 40 50 70 100
%099 9,11 10,15 10,77 11,19 11,73 12,22
%095 6,95 7,65 8,10 8,45 8,80 9,15

2.2.1.1.2. Von Neumann Testi (VNT)

Von Neumann (1941) tarafindan gelistirilen bu homojenlik testi, zaman serisindeki
kirilma (degisim) noktasint tespit etmek yerine serinin homojen olup olmamasi
durumuna bakar. Ho hipotezi veri setinin dagiliminin homojen oldugunu gosterir. N
yillik bir seride ardisik farklarin kareleri toplaminin varyansa oranini kullanir. Nvn test

istatistigi degeri asagidaki esitlik ile bulunur.
Nyy = 2153 (Y = Vi) B, (Y = 1)? (2.9)

Esitlik 2.5°teki Y; ifadesi n. yila kadarki serideki gdzlem degerlerini, Y ifadesi ise serinin

ortalamasini temsil eder. Eger Ny, ,=2 ise bu teste tabi tutulan zaman serisinin homojen
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oldugunu gosterir. Eger Ny degeri 2’nin lizerinde degerler aldiysa bu serinin hizli

kirilma, salinim ya da degisime sahip oldugunu gdsterir.

VNT homojenlik kontroliinde; Ny, degeri, kritik limit degerini asarsa Ho hipotezi kabul
edilir. VNT’nin kritik limit degerleri ile ilgili Buishand (1981) bir ¢alisma
gerceklestirmis ve bu limit degerlerini tablo haline getirmistir [21, 103, 111]. Tablo
2.3’te VNT kritik limit degerleri verilmektedir.

Tablo 2.3. VNT %99 ve %95 giiven araliklarina gore belirlenen Ny limit degerleri

n 20 30 40 50 70 100
%099 1,04 1,20 1,29 1,36 1,45 1,54
%095 1,30 1,42 1,49 1,54 1,61 1,67

2.2.1.1.3. Mann-Whitney u Testi (MWT)

Zaman serisinin ayni olasilik dagilimindan gelip gelmedigini nicel olarak belirlemek
amaciyla kullanilan parametrik olmayan bir homojenlik testidir. Mann ve Whitney
(1947) tarafindan gelistirilen bu testte temel kosul, serilerin hem kendi iginde hem de alt
seri gruplari arasinda bagimsizlik kosulunu yerine getirmesidir [112]. Ilk olarak n adet
elemana sahip orijinal zaman serisi, yaklasik ayni uzunlukta p ve q adet alt serilere
ayrilir. Daha sonra orijinal zaman serisi, kii¢likten biiyiige dogru dizilerek elemanlara
sira numarast verilir. Degerleri esit olan elemanlar gozlendigi takdirde, bunlarin her
birinin sira numarasi, sira numaralarinin ortalamasi olarak alinir. p adet elemana sahip
ilk grup serisindeki elemanlarin orijinal serideki sira numaralarinin toplami Ry, Q
adet elemana sahip ikinci grup serisindeki elemanlarin orijinal serideki sira
numaralarinin toplami ise Ry, olarak ifade edildiginde V ve W test istatistik degerleri

asagidaki esitlikler ile bulunur.
V =Rywy — [p-(p + D]/2 (2.6)
W = Ryw, — [q.(q + 1]/2 (2.7)

Esitlik 2.6 ile 2.7°den elde edilen V ve W test istatistik degerlerinden minimum olani
nihai Mann-Whitney u test istatistigi olarak kabul edilmektedir. Serideki eleman sayisi

20’den fazla oldugunda u test istatistigi, klasik normal dagilima uyan bir rastgele
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degisken olarak kabul edilmektedir. Normal dagilimla hesaplanan u test istatistiginin Z
mutlak degeri, /2 asilma olasiligmma karsilik gelen Zkr degerinden kiiclik ise seri

homojen olup diger testlerde oldugu gibi Ho hipotezi kabul edilmektedir [107, 113].

2.2.1.1.4. Genisletilmis Dickey-Fuller Testi (GDFT)

Genisletilmis  Dickey-Fuller Testi (GDFT), zaman serilerinin duraganligin
degerlendirmek amaciyla yaygmn olarak kullanilan bir test yontemidir. Zaman
serilerindeki duraganlik, serinin karakteristik Ozelliklerini temsil eden denklemin
koklerine bagli olarak degisir. Karakteristik denklemin kokleri mutlak deger olarak
I’den kiigiikse zaman serisi duragandir. Denklemin koklerinin mutlak deger olarak 1
olmas1 durumuna ise Birim Koklii Zaman Serisi denir ve zaman serisinin duraganligi
acisindan istenilen bir durum degildir. Birim koklii zaman serileri tizerine ilk ¢aligmalar,
Dickey ve Fuller (1979) tarafindan onerilmis olup sonraki dénemlerde gelistirilmistir.
Dickey ve Fuller (1979), birim kok iizerine yaptiklar1 ilk calismada otokorelasyon
varhigmi gozardi etmislerdir. Daha sonra gelistirdikleri Genisletilmis Dickey-Fuller
Testinde (GDFT), otokorelasyon varligini ortadan kaldirabilmek i¢in bagimh
degiskenin gecikmeli terimleri modele eklenmistir. Dickey ve Fuller (1979) ilk
gelistirdikleri birim kok testinde onerdikleri kritik limit degerleri ve hipotezleri bu testte
de kullanmaya devam etmislerdir. Test istatistiklerini kullanirken genisletme
yaklagimindaki uygun gecikme terim sayisina karar vermek icin Akaike gibi bilgi

kriterleri kullanilmaktadir.

GDFT ile birim kokiin varligini arastirmak i¢in en temel birim kok testlerinden itibaren
cesitli AR modellerinde iyilestirmeler yapilmistir. Daha Onceki testlerde belirtildigi
tizere Ho hipotezi ve karsi hipotez (H1) kurulduktan sonra t test istatistigi, & parametresi
icin hesaplanarak Dickey ve Fuller kritik limit degerleri ile kiyaslanir. GDFT igin en

genellestirilmis esitlik asagida verilmistir.
Yo =pu+68Y_ + X0 BiAY,_; +e (2.8)

Esitlik 2.8’deki, &, ifadesi hata kriterini, f; ifadesi egim parametresini, A ifadesi
genisletme katsayisini, p ifadesi ise birim koke bagli hesaplanan katsayiyr temsil

etmektedir. GDFT i¢in kabul edilen hipotezler baslica sdyledir:

Ho: 6=0 ele alinan zaman serisi duragan degildir.
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H1: 6<0 ele alinan zaman serisi duragandir [21, 100, 114].
2.2.2. Otokorelasyon Fonksiyonu

Bir degisken ile baska bir degisken arasindaki iligski ya da bagimlilik regresyon terimi
ile ifade edilmektedir. Degisken sayisi ile baglantili olarak basit dogrusal regresyon ve
coklu dogrusal regresyon cesitleri bulunmaktadir. Coklu dogrusal regresyon modelleri;
normal dagilim, dogrusallik, hata terimlerinin ortalamasinin sifir olmasi, sabit varyans,
bagimsiz degiskenler arasinda c¢oklu baglanti olmamasi1 ve otokorelasyon (6z ilinti)
olmamas1 gibi varsayimlar lizerine kurulmustur. Regresyonda degiskenlere ait hata
terimleri arasinda iliski olmasi istenmeyen bir durum oldugundan otokorelasyon varligi

da serideki hatalar1 artirmaktadir [115].

Otokorelasyon (6z ilinti) fonksiyonlari, zaman serileri ile ilgili analizlerde hem hata
terimleri lizerinden duraganligin tespiti hem de serideki gecikme zamanlarinin
belirlenmesi amaciyla kullanilmaktadir. Bir serinin herhangi bir donemdeki degeri ile
bir onceki veya bir sonraki donem degeri arasinda birlikte hareket etme iligkisi
otokorelasyon olarak ac¢iklanmaktadir. Yani zamana bagl olarak degisen bir degiskenin
t doneminde almis oldugu degerin gecikmeli t-1, t-2, t-3, ... ,t-n donemlerindeki
degerlerinden etkilenme durumudur. Gecikmeli olan bu donemler arasindaki iliski
otokorelasyon katsayisi ile belirlenmektedir. k cinsinden tiim bu gecikmelere ait
otokorelasyon katsayis1 degerleri otokorelasyon fonksiyonunu meydana getirmektedir.

Bir zaman serisindeki otokorelasyon katsayis1 agagidaki esitlik ile hesaplanmaktadir.

T—k = =
n - Bepogtes =
Esitlik 2.9°da verilen ifadelerden 7, k’inc1 gecikmeye bagli otokorelasyon katsayisini,
z, orijinal zaman serisini, Z zaman serisinin ortalamasini, z;, ise k donem erken zaman
serisini temsil etmektedir. r;, birimsiz olup -1 ile 1 araliginda degerler alir. Duraganlik
gosteren bir zaman serisinde otokorelasyonun 0’a yakin olmasi istenilen bir durumdur.
Eger bir zaman serisinde otokorelasyon varligi s6z konusu ise ya otokorelasyon sorunu
giderilmeli ya da o zaman serisi analizlerde kullanilmamalidir. Bir zaman serisinin
gecikmeli donemleri arasinda ya da hata terimleri arasinda otokorelasyon olup olmadigi

cesitli  yontemler ile tespit edilebilmektedir. Bu yontemler o6zetle sunlardir:
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otokorelasyon fonksiyonu, grafik yontem, sira testi, Durbin-Watson Testi (DWT), Von
Neumann Testi (VNT)’dir [116, 117].

2.2.3. Kurakhk Analizi
2.2.3.1. Standartlastirilmus Yagis indeksi (SYT)

Standartlastirilmis Yagis indeksi (SYI), McKee ve ark. (1993) tarafindan gelistirilmis
bir meteorolojik kuraklik indisidir [34]. Kuraklik analizlerinde ¢ok yaygin bir kullanimi
vardir. SYI’nin yaygin olarak kullanilmasinin en dnemli nedeni bu indisin bolgesel
degil kiiresel olmasi ve biitin zaman Jlgeklerinde kullanilabilmesidir. Tiim
topografyalarda ve tiim iklim kusaklarinda kolaylikla uygulanabilmektedir. Diinya’nin
herhangi bir yerinde, herhangi bir zaman 6lgeginde aylik yagislara bagli olarak kurak
veya nemli kosullar SYI ile belirlenebilmektedir. Ayrica SYI, kuraklik felaketinin ilk
asamas1 olan meteorolojik kurakligin izlenmesi ve degerlendirmesinde sadece yagis
degiskenine bagli olarak hesaplanmasindan dolayr diger indislere gore pratiklik

saglamaktadir.

SYI kuraklik degerinin hesabn ile ilgili en genellestirilmis ifade su sekildedir:

Xi—X,

SYi = (2.10)

o
Burada; x;, i’nci zamandaki yagis degerini; X,, i’nci zamandaki yagislarin ortalamasini

Ve g; ise standart sapmay1 temsil etmektedir.

Thom (1958), yagis basta olmak {izere iklim verilerine en uygun olasilik dagiliminin
Gama dagilimi oldugunu kanitlamistir [118]. McKee ve ark. (1993) ise kuraklik iizerine
yaptiklar1 c¢alismada; meteoroloji istasyonlarinda gozlemlenen yagis degerlerine ait
dagilimlar1 normal dagilima déniistiirerek sonrasinda standartlastirma ile SYI’nin son
halini daha da gelistirmislerdir [34]. Normal dagilima uyan SY1 nin istatistiksel gelisim

slireci sirastyla asagida 6zetlenmektedir.

Gamma dagilimi olasilik yogunluk fonksiyonu su sekilde ifade edilir:

—_1 a-1 .,/ L
g(x) = X e B x> 0icin (2.11)
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Burada; o > 0 i¢in « sekil parametresi, § > 0 i¢in (3 6l¢ek parametresi, x > 0 i¢in yagis

degeri ve I'(a) Gamma fonksiyonudur. Gamma fonksiyonu ise;
(@) = f; y* eV dy (2.12)

esitligi ile bulunur. Gamma dagilimi olasilik yogunluk fonksiyonu parametreleri olan o

ve (3 parametreleri asagidaki esitlik yardimiyla bulunur.

-1 / 44 _x
a—4A<(1+ 1+3>veﬁ—a (2.13)
Esitlik 2.13’te verilen A degeri ise su sekilde bulunur;
= In(x) — 2@ ‘“(x (2.14)

Burada; n ifadesi yagis gozlemlerinin sayisidir.

Ele alinan yagis serisindeki verilere ait dagilimm tahmin edilmesi gerekir. Belli bir

zaman 6l¢egi icin gozlemlenen yagis miktarinin kiimiilatif olasilik dagilima;

G(x) = foxg(x) dx = f x%e /B dx (2.15)

B"‘F( ) -0

esitligi ile bulunur. Esitlik 2.15°te; t = % ifadesi uygun yere konuldugunda;
G(X) = ﬁf t% 1 _1dt (216)

esitligi elde edilir. Bu esitlik, eksik kalan bir Gamma dagilimi fonksiyonunu
gostermektedir. x = 0 ve ¢ = P(x = 0) > 0 i¢in Gamma dagilim1 belirsizdir. P(x = 0)
yagis olmama olasiligidir ve kiimiilatif olasilik artar. Son durumda kiimiilatif olasilik

dagilim1 asagidaki esitlik ile bulunmaktadir.

H(x) = g+ (1 — q9)G(x) (2.17)

Esitlik 2.17°de verilen q, sifir olma olasiligini temsil etmektedir. Yagissiz gézlem
sayisini temsil eden m degerinin, n toplam gozlem sayisina boliinmesi ile q degeri

hesaplanmaktadir (@ = m/n).
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H(x) kiimiilatif olasilik degerleri, daha sonra asagida verilen esitlikler ile standart
normal dagilima déniistiiriilerek ortalamasi 0 ve varyanst 1 olan SYI kuraklik degerleri

hesaplanmaktadir [34].

_ 1
t= /ln—(H(X))2 0 <H(x) <05 (2.18)
1

x C0+C1t+C2t

SYi(t) = (t s tg) 0<H®X <05 (2.20)
x - C0+C1t+C2t

sYi(9) = +(t—— e ) 05<HMX <1 (2.21)

Esitlik 2.20 ve 2.21°de verilen sabit degerlerden c¢,=2,51557, ¢;=0,802853,
c,=0,010328, d,=1,432788, d,=0,189269 ve d;=0,001308"dir.

Gamma dagilimmdan standart normal dagilima doniistiiriilen SYI, son durumda Z
istatistik skorunu gostermektedir. SYI 06zetle belli bir zaman 6lcegindeki yagis
degerinden yagis ortalamasinin ¢ikarilip standart sapmaya boliinmesi ile elde
edilmektedir. Ortalamalarin altinda ya da {stiinde pozitif ya da negatif degerler
olabilmektedir. Pozitif SYI degerleri ortalamalara gore daha fazla yagisi, negatif SYI
degerleri ise ortalamadan daha az yagis1 ifade etmektedir. McKee ve ark. (1993), “kurak
olay” kriterini tanimlayarak SYI degerlerinin negatif oldugu dénem boyunca kurak
olaym devam ettigini ve siddetinin -1 ya da daha kii¢iik oldugunu belirtmislerdir. Kurak
olay, SYI degerleri pozitife dondiigiinde ise son bulmaktadir. McKee ve ark. (1993),
ortalamas1 0 ve standart sapmasi 1 olan standart normal dagilimli SYI kuraklik
degerlerini daha bilimsel bir siniflandirma ile nemli ve kurak kategorilere ayirmislardir
[34]. Tablo 2.4°te SYT kuraklik siniflandirmasi verilmektedir.
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Tablo 2.4. SYI kuraklik siiflandirmasi

SYI degerleri Kuraklhik kategorisi
2.00 ve daha biiytik Asirt nemli
1.50 - 1.99 Cok nemli
1.00 — 1.49 Orta siddette nemli
-0.99-0.99 Normale yakin
-1.00 —-1.49 Orta siddette kurak
-1.50 —-1.99 Siddetli kurak
-2.00 ve daha kiiciik Asir1 kurak

2.2.3.2. SYI’nin avantajlar

Karmasik bir siire¢ olan kurakligin izlenmesi ve ongoriilebilmesi agisindan oldukga
kullanisgh bir yontemdir. Sadece aylik yagislara bagli hesaplanabilen ve meteorolojik
kuraklig1 tespit edebilen bir kuraklik indisidir. Hesaplanmasi oldukca kolaydir. Basta
PKSI olmak iizere diger kuraklik indislerine goére daha az karmasiktir. Bircok kuraklik
indisi, bolgesel ihtiyaglara gore gelistirilmis oldugundan SYI bu anlamda daha
kiireseldir. Her bir zaman &lgegi i¢in SYI rahatlikla kullanilabilmektedir. Yagis verileri
ozellikle kisa dénemlerde normal dagilima uymaz iken SYI kuraklik degerleri normal
dagilima uygun hale getirilmistir. Bu sayede sadece kurak donemler degil nemli
donemler de izlenebilmektedir. SYI’nin hem hesaplanmasi hem de siniflandiriimasi

sadece olasilik ile ilgilidir [4].
2.2.4. Drought Indices Calculator (DrinC) Yazilim

Daha oOnceki boliimlerde belirtildigi {izere kurakligin tespiti, izlenmesi ve
degerlendirmelerinin  yapilmasit kuraklik olaymm1 anlamada olduk¢a Onemlidir.
Kurakligin siddeti ya da biiyiikliigii indisler ya da gostergelerle belirlenebilmektedir.
Farkli tiir ve amaglari olan kuraklik indisleri, ilk donemlerinde genellikle ilgili
denklemleri lizerinden manuel olarak hesaplanmaktaydi. Teknolojinin ¢ok hizli bir
sekilde ilerleme kaydettigi giiniimiizde bu indislerin hesabina yonelik de hem bireysel
arastirmacilar hem de kamu kurum-kuruluslarinca c¢esitli calismalar yapilmaktadir.
Kuraklik indisi hesaplama yazilimlarina The SPI_SL_6, The SPATSIM, The SPEI
Package, The CDI ve R Studio ¢alismalari 6rnek verilebilir. Bu yazilimlarin
kullanicilarinin yiiksek bilgisayar ve yazilim bilgisinin yan1 sira kuraklik indisleri

hesaplamalarina da hakim olmasi gerekir. Tigkas ve ark. (2015), kullanicilara kolaylik
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ve pratiklik ile kuraklik hesaplamalarinda igslem yiikiinden ve zamandan tasarruf
saglayacak Drought Indices Calculator (DrinC) adinda yeni bir kuraklik hesaplama
yazilimi gelistirmislerdir [119]. DrinC, Atina Ulusal Teknik Universitesimin Dogal
Afetler ve Proaktif Planlama Degerlendirme Merkezi ile Islah Isleri ve Su Kaynaklari
Yonetimi Laboratuvarinda gelistirilmistir. DrinC yazilimi ile Standartlagtirilmis Yagis
Indeksi (SYI), Kuraklik Kesif indisi (KKI), Akim Kuraklik Indisi (AKI) ve Yagis
Onluklar1 (YO) indislerinin degerleri yagis verilerine bagh olarak hesaplanabilmektedir.
Sadece KKI ydnteminde potansiyel evapotranspirasyon parametresi de degisken olarak
kullanilmaktadir. DrinC, potansiyel evapotranspirasyonun da sicaklik parametresine

bagli olarak hesaplanmasini saglamaktadir.

DrinC yazilimi, kuraklik indislerinin hesaplanmasi konusunda oldukca kolay, kapsayict
ve kullanic1 dostu bir yapidadir. Ayrica bu yazilim {icretsiz olup tiim arastirmacilara,
kamu kurum ve kuruluslarina da agiktir. Ana menii penceresinde yer alan veri yonetimi
ve islem sekmelerinden opsiyonel olarak hesap yontemlerine yonelik cesitli ayarlamalar
yapilabilmektedir. Hesaplamalar aylik, donemlik ya da yillik bazda yapilabilir ayrica
veri araligi su yili ya da takvim yilina gore ¢esitlendirilebilir. DrinC yazilimi, kendi
icerisinde Gamma ya da Log-Normal olasilik dagilimlarint kullanmaktadir. Yazilim,
hesaplamalari yaptiktan sonra da kullanicilara gesitli kolayliklar saglamaktadir. Hesap
adimlar1 sonrasinda elde edilen sonuglar hem Microsoft Excel formatinda hem de
grafiksel olarak hazir bir sekilde olusturulabilmektedir. Sekil 2.8’de 6rnek olmasi
acisindan DrinC yaziliminin ana menii penceresi ile veri yonetimi ve islem sekmelerine

ait ekran goriintiisii verilmektedir.
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E [=
Input files Drought Index
File location SPI (Standardised Precipitation Indes) [ aSPI (Agricultural Standardised Precipitation Indes)
Precipitation data fl () [C:AUsers\User\Deskiop\DOKTORA_TEZADRINC_veritaban| | Biowse... [IRDI (Reconnaissance DroughtIndex) (] eRDI (Effective Reconnaissance Drought Indes)
PET datafils o) ‘ ‘ et [C]5DI (Streamflow Drought Index) [ Precipitation Deciles (PD)
Streamflow data file ‘ Browse... SPI (Standardised Precipitation Index)
Data avaiabilty Output file: iC \Users\User\Desktop\DOKTORA_T EZ\DH!P‘ Browse...  Open after calculation
5 im Load files D
. t v tribuli
@®0ct-Sep st year L Dl Symthti sers istibution
Sep-Aug Hyears |61 v Caleulate PET OGanma @ Lognomal
Calculation settings
Dataload options Help X
Reference period (time scale)
Precipiation data options ® 12-month Otmonth ~ O3month O 1-month (O Other (define)
Values Load direction Statt loading from: 1 i A o
il 4 A -month | Oc
® Monthl ® Rows - E
® & i Row (1 v|Column |1 v |[A] []Auto detect
(O Annual / Seasonal Columns Time step (calculation time interval) Hel
Multi-paints mode P
®) Annual Manthl Graup results per period
PET data options © ol Moty ReERe i 1 Calculate
Values Load direction Start loading from:
® Month ® Rows e I
O) ¢ o Row |1 v ‘ Colurnn {1 v | [A] ] Auto detect
(O &nnual / Seasonal Columns E
Streamflow data options
Values Load direction Start loading from:
® Monthl ® Rows
) Hortly o Row 1 v|Column |1 v|[A] []Auto detect
fnnual / Seasonl olumns

Sekil 2.8. DrinC yazilim1 ana menii, veri yonetimi ve islem sekmesi
2.2.5. Veri On Isleme Teknikleri

Istatistiksel ¢aligmalarm, olasilik hesaplarmin, tahmin ve siniflandirma calismalarinin,
gecmis ve gelecege yonelik projeksiyonlarin, modellemelerin ve tiirlii analizin
baslangici her zaman veridir ve bu ¢aligmalar farkli tiirde ¢esitli verilere ihtiya¢ duyar.
Calismalarda ihtiyag¢ duyulan bu veriler yazi, goriintii, ses ya da sayisal bigimlerde elde
edilmektedir. Bu veri tiirleri analizler ya da modeller igin altlik olusturacak olup
kullanilacak olan yontemleri de yonlendirirler. Analiz ya da modellemelerin basarilari
sadece yoOntemlerin performanslarina ya da tasarimlarina gore degil, ayn1 zamanda
verilerin kalite ve uygunluguna da baghdir. Kullanilan veri setinde; giiriiltii, tekrarlar,
eksik degerler, tutarsiz ve gereksiz veriler, ¢cok biiyiik boyut gibi olumsuz birgok faktor
bulunabilir. Bunun gibi faktorlerden dolay: kalitesiz veri, kalitesiz bilgiye ve kalitesiz
bir sonuca sebep olur [120]. Veriler {izerinden daha dogru ve daha giivenilir bir model
kurulabilmesi i¢in eldeki veri setinin bir takim islemlerden gegirilmesi gerekir. Ciinkii
yeryiiziinde insanlar ya da makineler tarafindan dogrudan islenemeyen ¢ok biiyiik bir
miktarda ham veri bulunmaktadir. Ayrica veri tabaninda yonetilmek i¢in hazir bulunan
ya da mevcutta yonetilen veri hacmi eldeki sistemlerin igsleme kapasitesini agmaktadir

[121]. Tim bu sebeplerden dolayi verilerin kullanimina baslanmadan Once bazi
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teknikler uygulayarak daha uygun hale getirilmesi, veri 6n islemeyi zorunlu kilmaktadir.
Veri 6n isleme teknikleri; ayristirma, normallestirme, boyut azaltma, 6rnek azaltma, veri
temizleme, veri birlestirme, eksik tamamlama, 6zellik ¢ikarma, Gznitelik se¢imi, veri
dontistiirme, sinyal ayristirma ve sinyal isleme, giiriiltii sorunu giderme gibi bir¢ok

islemi yerine getiren tekniklerdir.

Bu tez ¢alismasinda; hidrometeorolojik zaman serilerinin analizleri yapildigindan dolay1
veri doniistiirme ve ayristirma, 6zellik ¢ikarma, 6znitelik se¢imi, boyut azaltma gibi veri
on islemlerini yerine getiren Ayrik Dalgacik Dontisiimii (ADD), Ampirik Mod
Ayristirma (AMA) ve Varyasyonel Mod Ayristirma (VMA) teknikleri ele alinacaktir.

2.2.5.1. Dalgacik Doniisiimii (DD)

Karmasik yapidaki zaman serilerinin ya da fonksiyonlarin ilk bakista goriilemeyen
Ozelliklerini ya da gizli kalmis bilgilerini ortaya ¢ikartarak daha islevsel hale getirmek
matematiksel dontisiimlerle saglanir. Bu sayede ele alinan zaman serisi ya da bir
fonksiyon basit yapi taslari ile de temsil edilebilmektedir [122]. Hidrometeorolojik
degiskenlerde oldugu gibi bir¢ok veri seti zaman serisi seklindedir. Zaman serileri ise
sinyal ve giiriiltii olmak tizere iki unsurdan olusur. Sinyal, orijinal seriyi (gézlemlenen)
temsil ederken giiriiltii ise periyodik diizensiz verileri temsil etmektedir. Bu kisimda

zaman serisi ifadesi yerine orijinal seriyi temsil eden sinyal ifadesi kullanilacaktir.

Dalgacik Doniisiimii (DD) (Wavelet Transform-WT) tekniginden bahsetmeden Once
dalgacik yaklagimini agiklamak gerekir. Sinyallerdeki en 6nemli parametreler hem yerel
Olgekte hem de genel olgekte zaman, siire, genlik ve frekans (siklik) bilgileridir.
Sinyallerde o6zellikle frekans bilgisinin dogru bir sekilde elde edilmesi yani sinyal
isleme veriye dayali yapilacak analizlerde olduk¢a onemlidir. Dalgacik yaklasiminin
temeli, bir frekans analiz yontemi olan Fourier Doniisiimiine (FD) dayanmaktadir [83].
FD, Fransiz matematik¢i ve fizikgi Jean-Baptiste Joseph Fourier’in 1882’de yazdigi
“Isinin Analitik Teorisi” isimli kitapta ortaya atilmistir. FD, farkli disiplinler ve farkl
degiskenlere ait tiim sinyalleri dalga formu seklinde tanimlayan bir tekniktir. Diizensiz
sinyallere ait bu dalga formlar1 farkli frekanslara sahip birbirini izleyen ve diizenli
dalgalardan olusan siniis ya da kosiniis fonksiyonlarinin toplami seklinde matematiksel
olarak ifade edilir. Oncesinde sinyaller dogal olarak zaman ve uzaym bir fonksiyonu

olarak gosterilmekte iken, FD ile sinyaller zaman ortamindan frekans ortamina
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dontstiriilmektedir. Bu sayede siirekli siniis ve kosiniis dalgalari ile temsil edilen bir
sinyalin tiim frekans bilgilerine hizli bir sekilde ulasilabilmektedir. Ancak matematiksel
sinlis ve kosiniis fonksiyonlarindan dolay1r da zaman bilgisi kaybolur. Duraganlik
gosteren sinyallerde FD yontemi tek bagina yeterlidir. Ancak ani degisimler ya da
kirtlmalar gosteren ve duragan olmayan bir sinyali analiz etmek i¢in zaman-frekans
gosterimi gerektiginden bu hususta FD yetersiz kalmaktadir. Yani herhangi bir anda
meydana gelen fiziksel olaylar1 goézlemlemek ve bilgilerine ulasabilmek miimkiin
olmamaktadir. Bu nedenle zamana bagh degisimler gosteren sinyalleri analiz edebilmek
amaciyla, Gabor (1946) Kisa Siireli Fourier Doniistimiinii (KSFD) gelistirmistir. KSFD
yontemi, yine FD’de oldugu gibi sinyalleri frekans ortaminda ele alirken frekans
bilesenlerinin ne zaman gergeklestigini inceleyerek zaman ortaminda da analiz
yapabilmektedir. Ancak sinyali tiim zaman ortaminda degil de kii¢lik zaman araliklarina
bolerek bu islemi gerceklestirir. Bu zaman araliklart sinyalin duraganlik ozelligi
gosterdigi araliklara gore belirlenerek kiiglik zaman pencereleri fonksiyonlari
olusturulur. KSFD’nin bu yaklasimindan dolayr bu yonteme Pencerelenmis Fourier
Doéniistimii de denilmektedir. KSFD ile zaman araliklar1 boliinlip daraltildigindan daha
iyl zaman bilgisi ve daha kotii frekans bilgisi elde edilmektedir. Zaman araliklari
biyitiilldiiglinde ise daha kotii zaman bilgisi ve daha iyi frekans bilgisine
ulagilabilmektedir. Yani KSFD’nin zaman bilgisi belirlenen zaman penceresinin
genisligine gore degismektedir. Sadece hangi zaman penceresi icerisinde hangi
frekansin gergeklestigi bilgisini verir. Sekil 2.9°da KSFD pencere fonksiyonunun bir

zaman serisine uygulanmasi gosterilmistir.

Frekans
A

~
-
h 4

/ Kisa Siireli
Fourier
Déniisiimi

(KSFD)

~,

~———
-

» Zaman » Zaman

Sekil 2.9. KSFD pencere fonksiyonunun uygulanmasi

Hem FD hem de KSFD yontemleri tam anlamiyla zamana bagli analizleri

yapamamaktadir. Sinyalin yiiksek ve diisiik frekansli bilesenleri hem zaman hem de
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frekans ekseninde ayni netlikte elde edilemediginden dolayr ¢oziiniirliik problemi

olusur. Sekil 2.10’da hem FD’nin hem de KSFD’nin temsili ¢oziintirliikleri verilmistir.

A

Genlik
Frekans

Frekans Zaman
Sekil 2.10. FD (solda) ve KSFD (sagda) temsili ¢oziintirliikleri

Bununla birlikte sinyallerle ilgili analizlerde ortaya ¢ikan bu ¢oziniirliik problemi,
temel fonksiyon olarak belirli bir uzunluga ve degisken frekanslara sahip dalgaciklarin
kullanildig1 dalgacik yaklasimu ile ¢oziilebilmektedir [123, 124].

Hidrometeorolojiden tipa, iktisat-eckonomiden elektronik ve haberlesmeye, bilgisayar
bilimlerinden astronomiye bir¢cok farkli alanda kullanimi olan Dalgacik Doniistimii
(DD), sinyalleri hem zaman hem de frekans Olceginde analiz ederek sinyallerin
periyodik ve karakteristik yapilarini ortaya ¢ikaran bir sinyal isleme yontemidir. DD’nin
temelini, KSFD yonteminde kullanilan pencere fonksiyonlarina benzer bir islevi olan
dalgaciklar olusturur. Bir fonksiyonun dalgacik olabilmesi i¢in siiresinin smirli ve
ortalamasinin sifir olmasi gerekir. Dalgaciklar, sinyalleri farkli frekans bilesenlerine
bolen ve sonrasinda her bileseni kendi 6l¢cegine uygun bir ¢dziiniirliikle inceleyen ve bu
sinyalleri matematiksel olarak temsil eden islevlerdir. Bu agiklama sdyle ifade
edilebilir: DD ile matematiksel bir mikroskop gorevi géren dalgaciklar, sinyalleri kisa
zaman araliklarinda diistik Olgekte ve yiiksek ¢oziiniirliikte en ince detaylarina kadar
incelerken, daha uzun zaman araliklarinda ve diisiik ¢oziintirliikkte daha kaba (yiizeysel)
bir incelemeyi saglamaktadir [125]. Ozetle; DD ile biiyiik bir pencereden bir noktaya
bakildiginda belli basl 6zellikler fark edilirken, kii¢iik bir pencereden bakildiginda ise
kiigiik 6zellikler fark edilmektedir. [126].

DD’nin en 6nemli parametresi olan ve kiiciikk dalga anlamindaki dalgacik ifadesini ilk
kez 1900’14 yillarin basinda Alfred Haar kullanmistir. Alfred Haar’in ayn1 zamanda

kendi adin1 tagiyan bir dalgacik fonksiyonu da bulunmaktadir. Haar dalgacigi, belirli bir
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aralik disinda sifir oldugundan siirekli degildir. Daha sonraki donemlerde o6zellikle
1930’lardan sonra dalgaciklar iizerine caligmalar yapilmistir. 1980’lerden sonra ise
dalgaciklar ve dalgacik yaklagimi biiyiik bir gelisim gostermistir. Morlet ve Grossman
(1984), kuantum fizigi alaninda dalgaciklar1 (wavelets) ilk kez tanimlamislardir. Ancak
tanimladiklar1 dalgacik tabiri fiziksel sezgilere dayanan bir yaklasim bicimindeydi.
Mallat (1985), dijital isaretleri isleme konusunda dalgaciklara yonelik ¢alismalar yapmis
olup bu calismalar dalgaciklarin gelisimini saglamistir. Daubechies (1988, 1990), ayrik
dalgacik teorisinin temelini atmis ve dalgacik yaklagimi {izerine bir¢ok c¢alisma
yapmustir. Ayrica dalgaciklar iizerine ¢aligmalar1 da olan Ronald Coifman’in Onerileri
ile Coiflets dalgaciklarin1 yine kendisi gelistirmistir. Yves Meyer (1993), kendi adini
verdigi stirekli tiireve sahip dalgacigi gelistirmistir. Ancak bu dalgacigin da -co’dan
+o0’a ortalamasi sifir degildir. 1990’lardan sonra 6zellikle ayrik dalgacik dontisiimii

lizerine ¢alismalar yapilmis ve biiyiik gelisimler saglanmustir [127, 128, 129].

Fourier Doniisiimii (FD) ile Kisa Siireli Fourier Doniisiimii (KSFD) zaman-frekans
iliskisini tam olarak kuramadiklarindan ¢oziiniirliik problemleri ile karsi karsiya
kalirken sinyalleri zaman-6lgek bdlgesinde inceleyen Dalgacik Doniisiimii (DD) daha
dogru frekans bilgilerine ulasabilmektedir. DD’nin en 6nemli avantajlarindan biri de
sinyali yerel Olceklerde analiz edebilmesidir. FD yontemindeki siniis ve kosiniis
fonksiyonlar1 da -co’dan +oo’a kadar sonsuz aralikta siirekli ve yumusak gecisli iken
DD’deki dalgaciklar smirli zaman diliminde, diizensiz ve asimetrik davranig
gostermektedir. Sekil 2.11°de FD’nin siniis fonksiyonu ile DD’nin dalgacik fonksiyonu

gosterilmektedir.

0 [ 2 3 [ 5 3
t(s)

a) FD siniis fonksiyonu b) Dalgacik fonksiyonu
Sekil 2.11. FD siniis fonksiyonu ve DD dalgacik fonksiyonu
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Dalgacik analizinin temelinde ana dalgacik seklinde isimlendirilen 6zel bir dalgacik
fonksiyonu bulunmaktadir. Ayni1 zamanda ¢ 6l¢ekleme fonksiyonunun (baba dalgacigi
temsil eder) ve y dalgacik fonksiyonunun (ana dalgacigi temsil eder) Gtelenmesi ve
Olceklendirilmesiyle  olusturulan  fonksiyonlar kiimesi de dalgacik ailesini

olusturmaktadir [130].

Herhangi bir fonksiyonun ana dalgacik olabilmesi igin su kosullar1 saglamasi

gerekmektedir:

1. (-0 +o0) aralifinda dalgacik fonksiyonunun integrali sifirdir. Yani bu aralikta

dalgacik fonksiyonunun ortalamasi 0’dur.
[F2wdt=0 (2.22)

2. (-0 +o0) araliginda dalgacik fonksiyonunun karesinin integrali 1’e esittir. Bu durum
dalgacik fonksiyonunun birim enerjiye esit oldugunu gostermekte olup ayrica

enerjinin korunumu ilkesini de sagladigini gosterir.
[Py dt=1 (2.23)

3. Dalgacik fonksiyonu siniis fonksiyonlarindan farkli olarak sinirli olmalidir. Ayrica

sinirh bir dalgacik fonksiyonun mutlak degerine ait integralin de simirli olmasi

gerekir.
[21w@ldt < oo (2.24)
[)sin t|dt = +oo (2.25)

4. Frekans degeri olan f sifira yaklastiginda, dalgacik fonksiyonu {i(t)’nin FD’yi
temsil eden Y(f) frekans fonksiyonu da sifira yaklagsmalidir. Bu durum kabul
edilebilirlik (admissibility) kosulu olarak bilinen esitsizligi ortaya ¢ikarmaktadir.

f_*j’%df < o (2.26)

Bir ana dalgacik fonksiyonunun bu 6zellikleri saglamasi, dlgeklenebilme ve doniisiim

kabiliyetleri acisindan oldukca onemlidir. Buna karsin ana dalgacik fonksiyonunun
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tersine ¢ olgekleme fonksiyonunun (baba dalgacik) integrali 1’e esit olup matematiksel

gosterimi asagida verilmektedir.
[ emdt=1 (2.27)

¢ Olcekleme fonksiyonu (baba dalgacik), sinyalin alcak frekansa sahip genel
egilimlerini temsil ederken; y dalgacik fonksiyonu (ana dalgacik), yiliksek frekansa

sahip sinyalin detay 6zelliklerini temsil etmektedir [124, 131, 132].

P (t) ana dalgacik fonksiyonunun b ile 6telenmesi ve a ile 6lgeklendirilmesi ile elde
edilen Y, ,(t) fonksiyonu dalgacik olarak adlandirilmaktadir ve asagidaki esitlikte

matematiksel gosterimi verilmektedir:
1 t-b
Wap(® = 7= (7) a#0, a,b €R (2.28)

Esitlik 2.28’de verilen a ana dalgacigin ne kadar sikistirlldigini gosteren olgek
parametresini, b ise yine ana dalgacigin ne kadar Otelendigini gosteren Oteleme
parametresini ifade etmektedir. Bir dalgacigin dlgeklendirilmesinden kasit dalgacigin
sikistirilmast ya da gerilmesidir. a 6lgek parametresi kiiciildiikk¢e daha sikistirilmis bir
dalgacik, biiylitiildiigiinde ise daha ¢ok gerilmis bir dalgacik anlasilir. Sikistirilmis bir
dalgacik kiiciik dlcekte yliksek frekanslar yakalarken, gerilen bir dalgacik biiyiik bir
olgekte daha diisiik frekanslar1 yakalamaktadir. Olgek parametresi olan a, FD’deki
1/frekans ifadesine esittir. Bu esitlige gore; kiigiik 6lgekli bir dalgacik, yiiksek frekans
bilgisinden dolay1 sinyalin detay bilesenlerinin belirlenmesinde, biiylik dl¢ekli dalgacik
ise sinyalin egilim karakterinin belirlenmesinde fayda saglar [133]. a 0lgek
parametresinin farkli degerlerinde dalgacik frekansinin nasil degistigini gosteren
grafikler Sekil 2.12°de verilmistir. Ayrica bu grafikler iizerinde hem FD siniis
fonksiyonlarinin hem de DD dalgacik fonksiyonlarinin birbirlerine gore degisimleri de

goriilebilmektedir.



64

g =u=sin(tr)

| =w(r) a=1

g =ysin(2t)

I =w(2r) a=1/2
o =usin(4r)

f=w(4dr) a=1/4

Sekil 2.12. a dlgek parametresine gore siniis fonksiyonu ve dalgacik fonksiyonu [134]

Dalgacik Doniisiimii (DD), literatiirde baslica iki ¢eside ayrilmaktadir. Bunlar; Stirekli
Dalgacik Doniistiimii (SDD) ve Ayrik Dalgacik Doniisiimii (ADD)’diir.

2.2.5.1.1. Siirekli Dalgacik Doniisiimii (SDD)

Stirekli Dalgacik Dontisiimii (SDD) (Continuous Wavelet Transform-CWT), zaman ve
6lcek degiskenlerine bagli olarak sinyallerin 6zelliklerini belirlemeye yonelik 6nemli bir
yaklagimdir. SDD, analiz edilen sinyal ile dalgacik fonksiyonunun 6l¢eklendirilmis ve
Otelenmis durumlarmin tim zaman degerlerinde ¢arpilarak toplanmasi sonucu elde
edilir. KSFD’deki pencere fonksiyonunun gergeklestirdigi isleve benzer sekilde burada
da sinyaller farkli biiyiikliikteki pencerelere ayrilarak dalgacik fonksiyonu ile carpilir.
KSFD yo6nteminde zamana bagli pencere uzunlugu sabit oldugundan sinyalin sadece o
araliktaki ozellikleri belirlenebilirken SDD yontemindeki zaman pencereleri degisken
oldugundan her bir zaman i¢in siirekli analizler yapilabilmektedir. Ana dalgaciktan elde
edilen dalgacik fonksiyonu daha 6nce Esitlik 2.28’de verilerek agiklanmisti. Son

durumda SDD’nin matematiksel gosterimi su sekildedir;
_[t® L ﬂ ..
Cla,b) = ["_ x(t)mtp( - )dt, a> 0 igin (2.29)

Burada; C; dalgacik doniisiimii sonucunda elde edilen siirekli dalgacik katsayisini ifade
etmekte olup o ve b’nin birer fonksiyonudur. x(t) ise analiz edilecek olan sinyali temsil
etmekte olup her bir zaman i¢in dlgek ve dteleme parametrelerine bagl olarak degerler

almaktadir. v dalgactk fonksiyonunun pencere fonksiyonu olmast ve X(t)
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fonksiyonunun ters dalgacik doniisiimii ile elde edilebilmesi i¢in ¢ift katli integral

kullanilarak;

x(t) = [f C(a, b)Y (%) da db (2.30)

esitligi elde edilir. Esitlik 2.29 ve 2.30’daki hesaplamalar kullanilarak sinyal ile dalgacik
fonksiyonunun Ol¢eklendirilmis ve 6telenmis durumlarinin ¢arpilmasi sonucu siirekli
dalgacik katsayilari, devaminda da sinyal fonksiyonuna ulasilabilmektedir. C stirekli
dalgacik doniisiim katsayilari, dalgacik ile sinyal arasindaki iligkiyi ortaya koyma
hususunda olduk¢a Onemlidir. SDD yontemi ile ana dalgacik gerildiginde
(6telendiginde), dalgacik penceresinin araligi arttirilmakta olup sinyaldeki distik
frekanslar yakalanir. Bu sayede sinyalin kaba (yiizeysel) dzellikleri belirlenir. Tam tersi
ana dalgacigin sikistirilmas: (6telenmesi) durumunda yani dalgacik penceresinin
araliginin azaltildigi durumda ise yiiksek frekanslar yakalanir. Bunun faydasi ise

sinyaldeki daha detay bilgilere ulasilabilmesidir [123, 135].
2.2.5.1.2. Ayrik Dalgacik Doniisiimii (ADD)

SDD’de uygun olan her bir a Olgek degeri ve b Oteleme degerine gore analiz
yapildigindan dalgacik doniisiim katsayilarinin hesaplama adimlar1 uzamaktadir bu da
hem zaman hem de islem yiikiinii artirmaktadir. Ayrica sinyalin neredeyse biitliniiniin
analizi yapildigindan, gereksiz bircok bilgi elde edilmektedir. Bu sorunlarin
¢Oziilebilmesi ve sinyallerin daha pratik bir sekilde analiz edilebilmesi amaciyla, Ayrik
Dalgacik Dontisiimii (ADD) (Discrete Wavelet Transform-DWT) teknigi gelistirilmistir.
ADD, SDD gibi her bir 6l¢ek ve oteleme degerinde islem yapmak yerine, bunlarin alt
kiimesinde yer alan belli baslt 6lgcek ve Steleme gruplarini ele alarak sinyalleri analiz
etmektedir. Sinyalin biitiiniinde dalgacik doniisim katsayilarin1 hesaplamak yerine,
sadece ele alinan belli basli yerlerde katsayilar hesaplanmaktadir. Boylece sinyallerdeki
kot ve gereksiz bilgiler ortadan kaldirilarak, sadece ise yarayacak olan esas bilgiler
elde edilmektedir. Bu sayede dalgaciklarin veri setindeki giiriiltiileri ortadan kaldirma
ve veri sikistirma kapasiteleri artirilmaktadir. Ayrica zamandan ve islem yiikiinden de
tasarruf saglanmaktadir. ADD’de yapilan doniisiim islemlerinin tersi de yapilarak
orijinal sinyal fonksiyonundaki gereksiz bilgiler ¢ikartilir, giirtiltiiler arindirilir ve sinyal

tekrardan bir dalgacik doniisiimii ile analiz edilir [136]. ADD’nin bu pratik ve gercekgi
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yaklagimi nedeniyle bir¢cok farkli disiplindeki Dalgacik Doniisiimii (DD) ile ilgili
calismalarda genellikle ADD kullanilmaktadir. Bu tez calismasinda da ele alinan

kuraklik zaman serilerinin analizinde ADD yo6ntemi kullanilacaktir.

ADD, birden fazla seviyede uygulanabilen ve 6lgek degerleri ile 6teleme degerlerini
2’nin kuvvetlerine bagl cesitli katsayilarla alt kiimelerine ayiran bir doniisiim

teknigidir. SDD’nin Esitlik 2.29°da verilen genel ifadesinde;
a=ay™ (2.31)
b = nbyay,™ (2.32)

m ve n birer tamsay1 olmak {izere, esitlikleri yerine yazilirsa yeni elde edilen dalgacik

fonksiyonu su sekilde olmaktadir:

U (t) = ao?lp(ao_mt —nb,) mneZz (2.33)

Bu esitlikte, ADD’nin ikili dlcekleme ve oteleme islemi yapilarak ag = 2 ve by =1
ifadeleri Esitlik 2.31 ve 2.32’de yerine konuldugunda; a = 2™ ve b = n2™ olmaktadir.
Elde edilen bu esitlikler, Esitlik 2.33’te yerine yazilirsa;

Y () = 22 Y(27™t — n) (2.34)

esitligi elde edilmektedir. Bu sekilde yapilan ikili 6l¢ekleme ve Oteleme islemi daha

sonra bahsedilecek olan filtreleme isleminin de temelini olusturmaktadir.

En son durumda a = 2™ ve b =n2™ ifadeleri ile Esitlik 2.34, SDD’nin genel
esitlifinde yerine konulursa ADD dalgacik katsayisina ait matematiksel gosterim su

sekilde olmaktadir:
Apn =22 [*7x(O)P@™ —n)dt (2.35)

Esitlik 2.35’te verilen A,, , ifadesi, ADD ile hesaplanan dalgacik doniisiim katsayisini
gostermektedir. Dalgacik doniisiim katsayilarinin biiylik olmasi sinyalle DD arasindaki

iliskinin iyi oldugunu géstermektedir [122, 137].
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ADD ile sinyal isleme c¢aligmalarinin en 6nemli asamalarindan biri de ayristirma
islemidir. Ayristirma, bir sinyali ardi ardina yiiksek ve alcak gegiren filtrelerden
gecirerek ikiye bolme islemidir. Bu sekilde yapilan filtreleme islemi ile sinyal farkli
frekans bantlarna ayrilabilmektedir. Sinyal fonksiyonu olan x(t), ilk olarak yiiksek
gegiren filtre (g(k)) ve daha sonra ise al¢ak gegiren filtre (h(k))’den gegirilir. Sinyalin
filtrelerle ayristirilmasi sonrasinda g(k) ve h(k) i¢in dalgacik doniisiim katsayilari elde

edilir. Filtrelere ait matematiksel gosterimler asagida verilmistir.
g(k) = Xnx(t)g(2k — t) (2.36)
h(k) = Y x(t)h(2k —t) (2.37)

ADD’de uygulanan filtreleme isleminde, yiliksek geciren ve alcak gegiren filtreler

birbirinden bagimsiz olmayip aralarindaki iliski agagidaki esitlikte verilmistir.
gL —1—k)=(—1D*nk) (2.38)
Burada; L ifadesi filtre uzunlugunu temsil eder ve ¢ift say1 olmalidir.

Daha 6nce de bahsedildigi gibi kiiciik dl¢ekli bir dalgacik, yiiksek frekans bilgisinden
dolayi sinyalin detay (detail) bilesenlerinin belirlenmesinde, biiytlik 6l¢ekli dalgacik ise
sinyalin yaklagim (approximation) karakterlerinin belirlenmesinde fayda saglamaktadir.
ADD kullanilarak, alt bantlardan yaklasim (A) ve detay katsayilar1 (D) elde
edilebilmektedir. Yaklasim katsayilari (A), alcak frekans bilesenlerini temsil ederken
detay katsayilar1 (D) ise yiiksek frekans bilesenlerini temsil eder. Bir sinyalde 6zellikle
aranilan ya da istenilen bilgiler genellikle algak frekans bilesenlerinden elde edilir [138].

ADD yontemi ile bir sinyale birden fazla ayristirma islemi uygulanabilmektedir. Bu
nedenle ADD ile ayristirma islemi ¢oklu ¢oziiniirliik analizine uygundur. Coklu
cozlinlirliik analizi; bir sinyalin ayristirma isleminin filtreleme yapilarak ardi ardina
olacak sekilde devam etmesi ve her ayristirma seviyesinde sinyalin yaklagim bileseninin
(A) tekrar ayristirilmasidir. Sekil 2.13’te ADD ile yapilan 6rnek bir ardisik ayristirma

islemi verilmektedir.
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Sekil 2.13. ADD ile yapilan n. dereceden ardisik ayristirma islemi

Sekil 2.13’te verilen ardigik ayristirma isleminin matematiksel gosterimleri su
sekildedir:

x(t) = A, + D, (2.39)
x(t) = A, + D, + D, (2.40)
x(t) = A3 + D3 + D, + D, (2.41)
x(€) = Ay + Dy + -+ Dy (2.42)

ADD ile yapilan ardisik ayristirma isleminin 6nemli hususlarindan biri ayrigtirma
seviyesinin (bant seviyesi) belirlenmesidir. Coklu ¢oziiniirliik analizine uyan bu iglem

teorik olarak sonsuza kadar gotiiriilebilir. Bununla ilgili olarak literatiirde;
2L=N (2.43)

esitligi verilmistir. N veri adedini, L ise yapilacak maksimum ayrigtirma seviyesini
(bant seviyesi) gostermektedir. Ancak yine zaman ve islem yikii diisliniildiiglinde
ayrigtirma seviyesinin uygun bir degerde tutulmasi ve analizin bu seviyeye gore
yapilmas1 gerekmektedir. Deneme yanilma ya da analiz yapanin tecriibelerine goére bu

deger belirlenebilmektedir [122].
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2.2.5.1.3. Dalgacik Aileleri

Dalgacik Doniisiimiiniin (DD) en 6nemli hususlarindan biri de dalgacik analizinde
kullanilacak olan dalgacik ailesinin belirlenmesidir. Ana dalgacik fonksiyonu ve baba
dalgacik fonksiyonun bir araya gelerek olusturdugu fonksiyon, dalgacik ailesi
fonksiyonunu meydana getirmektedir. Dalgacik analizlerinde kullanilmak {izere
giinimiize kadar birgok dalgacik ailesi onerilmistir. Dalgacik ailelerinin birbirlerinden
farkli ozellikleri bulunmakta olup farkli sinyallerle uyum icerisinde bulunabilirler.
Sinyalin durumuna ve alanina goére deneme yanilma yoluyla en uygun olabilecek

dalgacik ailesi belirlenmelidir.

Dalgacik ailelerine ait farkli dlgek ve Otelenme parametreleri, dalgacik katsayilari,
birlesme noktalari, fonksiyon ozellikleri, siireklilik ya da ayrik olma ozellikleri,
ortogonallik ya da biortogonallik gibi bir¢ok kriter s6z konusudur. Literatiirde en ¢ok
tercih edilen dalgacik aileleri sunlardir: Haar, Daubechies, Symlets, Coiflets,
Biortogonal, Ters Biortogonal, Meyer, Meyer’in Ayrik Yaklasimi (Discrete
Approximation of Meyer), Gauss, Karmasik Gauss, Meksika Sapkasi (Mexican Hat),
Morlet, Karmasik Morlet, Shannon, Frekans B-Spline (Frequency B-Spline) ve Fejer-
Korovkin. Bu dalgacik ailelerinin kendi igerisinde de farkli format ve versiyonlari
bulunmaktadir [139]. Dalgacik aileleri bir¢ok kritere gore smiflandirilabilir ancak en
temelde siirekli ya da ayrik olma durumuna gore ikiye ayrilir. Haar, Daubechies,
Symlets, Coiflets, Biortogonal, Gauss, Meksika Sapkasi, Morlet, Meyer ve Shannon
dalgaciklari, SDD’ye uygun; Haar, Daubechies, Symlets, Coiflets, Biortogonal
dalgaciklar1 ise ADD’ye uygun dalgaciklardir. Goriildigii gibi iki doniisiim yonteminde
de kullanilabilen dalgacik aileleri bulunmaktadir. Bir diger onemli dalgacik ailesi
ozelligi de birlesme noktalarinin sayisidir. Birlesme noktalari, dalgaciklarin sinyale
yakinsama mertebesini gostermektedir. Daha 6nce bahsedildigi iizere DD sonrasinda
elde edilen dalgacik katsayilarinin olusturdugu polinomun derecesi, dalgacigin sahip
oldugu birlesme noktasi sayisindan en fazla 1 eksik ise analiz edilen sinyal tek bir
dalgacik katsayisi ile temsil edilebilmektedir. Yani Ozetle; bir dalgacik ailesinin sahip
oldugu birlesme noktas1 ne kadar ¢ok olursa, o kadar az dalgacik katsayisi ile sinyal

temsil edilebilir [124].
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Bu tez ¢alismasinda ele alinan DD analizlerinde; Haar, Daubechies, Symlets, Coiflets,
Biortogonal, Ters Biortogonal, Fejer-Korovkin ve Meyer’in Ayrik Yaklasimi (Discrete
Approximation of Meyer) dalgacik aileleri kullanilmis olup bu dalgacik aileleri ile ilgili

belli bagh 6zellikler sirasiyla verilmistir.

Sayilan dalgacik aileleri igerisinde en eski ve en basit olan1 Haar dalgacigidir. Alfred
Haar tarafindan 1910°da bulunmus olmasina ragmen, o donem dalgacik olarak
tanimlanmamaktaydi. En az birlesme noktasina sahip olan, simetrik ve ortogonal bir
dalgaciktir. Haar dalgaciginin sifira yaklasan moment sayisi birdir. Sinyal tizerinde sabit
bir dalgacik araliginda analizlerini yapar. Hizli ve basit olmasi, hem SDD’de hem de
ADD’de kullanilabilmesi, iyi bir hafizasinin olmasi ve tersine doniisiim yapabilmesi

avantajlar olarak sayilabilir [140].

Daubechies dalgacigi, Ingrid Daubechies (1990) tarafindan Onerilmis olup Haar
dalgaciginin daha karistk ve daha gelismis bir halidir. Daha karisik bir yapida
olmasindan dolay1 uzun hesaplamalar ve islem yiikii fazladir. Farkli alanlarda ¢ok
yaygin bir kullanimi olan 6nemli bir dalgaciktir. Simetrik olmayan ve ortogonal
Ozelliklerine sahiptir. Sifira yaklasan bu momentlerin sayisi filtre uzunlugunun (L)
yarisina esit olmaktadir. Daubechies dalgaciginda sifira yaklasan momentlerin sayisi
8’dir. Bundan dolay1 daha uzun dalgacik filtreleri ile yiiksek mertebeli duragan olmayan
stokastik stireglerden, duragan dalgacik katsayr vektorleri elde edebilmektedir. Hem
SDD’de hem de ADD’de kullanilabilmektedir [141].

Symlets dalgacigi; Daubechies tarafindan gelistirilmis olup Daubechies dalgaciklarina
benzer o6zellikler tasimaktadir. Simetrik, ortogonallik, biortogonallik ve kompakt
destege sahip olma ozellikleri vardir. N derece olmak iizere, simetrik dalgacigin
uzunlugu 2N-1 kadardir. Sifir moment sayis1 6lgek fonksiyonu i¢in N'dir. Hem SDD’de
hem de ADD’de yontemlerinde kullanilir.

Coiflets dalgacigi; simetriye yakin 6zellik gosterirler ve ortogonal analiz yaparlar. Sifir
moment sayist Olgek fonksiyonu i¢in 2N, dalgacik fonksiyonu igin 2N-1'dir. Hem
SDD’de hem de ADD’de yontemlerinde kullanilmaktadir.

Biortogonal dalgaciklari, simetrik ve biortogonal oOzelliktedirler. Biortogonal

dalgaciginin uzunlugu 2N+1 kadardir. Na analiz derecesi olmak iizere sifir momentlerin
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sayist Olgek fonksiyonu igin Na-1'dir. Yine hem SDD’de hem de ADD’de
kullanilabilmektedir.

Ters Biortogonal dalgacik, Biortogonal dalgacigindaki islemlerin tam tersi uygulanir.

Hem SDD’de hem de ADD’de yontemlerinde kullanilmaktadir.

Fejer-Korovkin dalgacigi; dalgacik doniisiimiinde, al¢ak geciren filtrenin siirekli
olmamasi nedeniyle yavas azalan bir katsayili frekans ¢oziiniirliigiiniin ortaya ¢iktig
durumlarda, Fejer-Korovkin gekirdekleri araciligi ile optimum ¢oziiniirliige sahip bir
dizi filtreleme secenegi sunabilen bir dalgacik ailesidir. Bu yapisi ile diger
dalgaciklardan daha farkli bir yaklagimi s6z konusu olup yine ortogonal ozelliktedir

[142].

Meyer dalgaciklari, Yves Meyer tarafindan gelistirilmis olup simetrik ve ortogonal
ozelliktedir. Frekans uzayina sahip olup sonsuz tiirevlenebilir. Siireklilik 6zelliginden
dolay1r, SDD yonteminde kullanilmast daha uygundur. Meyer’in Ayrik Yaklasim
(Discrete Approximation of Meyer) dalgacigi ise Meyer dalgaciginin Sonlu Darbe
Tepkisi (SDT) (Finite Impulse Response-FIR) tabanli bir yaklasimidir. ADD’de
kullanildiginda, hizli bir sekilde dalgacik katsayilarinin elde edilmesini saglar. [122,
123, 124, 129].

2.2.5.2. Ampirik Mod Ayristirma (AMA)

Hem dogrusal olmayan hem de duragan olmayan sinyalleri ayristirmak amaciyla Huang
ve ark. (1998) tarafindan gelistirilmis bir sinyal ayristirma teknigidir. Karmagsik
sinyalleri c¢ok cesitli ve yiiksek zaman-frekans Olgeginde ayristirmast nedeniyle
elektronik ve haberlesme, tip, biyomedikal, finans ve hidrometeoroloji gibi alanlarda
yaygin bir sekilde kullanilmaktadir. AMA yo6ntemi, ele alinan sinyali tamamen ampirik,
veri uyarlamali ve yinelemeli bir sekilde belirli periyodiklikte farkli modlarina (alt
sinyallerine) ayristirmaktadir. Modlar, yerel minimum ve maksimum degerleri
birbirinden farkli olan alt sinyallerdir. AMA yaklasimi ile modlar yani bir sinyaldeki
yerel minimumlar ve maksimumlar yinelemeli olarak saptanabilmektedir. AMA ile ilgili
ilk tanimlamalarda modlar, yerel ekstrem sayis1 ve sifir ge¢is sayisi en fazla bir farklilik
gosteren alt sinyal olarak ifade edilmisken daha sonraki ¢aligmalarda, modiilasyon

kriterlerine dayali olarak i¢sel Mod Fonksiyonu (IMF) (Intrinsic Mode Function-IMF)
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olarak degistirilmistir. AMA’nin kendine 6zgili en 6nemli 6zelligi olan eleme (sifting)
islemi sayesinde ele alman bir sinyal, IMF ve artik (residual) mod bilesenlerine
ayrilabilmektedir. Ayristirma sonucu elde edilen bu mod bilesenleri uzunluk ve zaman
oleegi bakimindan orijinal sinyale benzemektedir. IMF bilesenleri, Hilbert-Huang

Dontistimii ile bulunmaktadir [143].

Bir sinyalin IMF bileseni olarak kabul edilebilmesi i¢in asagida verilen su iki kosulu

saglamasi gerekmektedir:

1) Yerel maksimum ve minimum ug¢ nokta sayilar1 ve sifir gegis sayist ayni ya da en

fazla bir farkli olmalidir.

2) Yerel maksimum noktalariyla belirlenen iist zarf ile yerel minimum noktalartyla

belirlenen alt zarfin aritmetik ortalamasi sifir olmalidir.

AMA sinyal isleme tekniginin eleme yaklasimi ile IMF ve artik mod bilesenlerinin elde

edilmesi su islem adimlari sonucu gergeklesir:

% Orijinal sinyal f(t) olmak {izere bu sinyalin i¢indeki tiim yerel maksimum ve

minimum noktalar belirlenir.
M;,i=1,2, 3,..,nve My, k=1,2,3,..,n (2.44)

+ Sinyale ait yerel maksimum noktalarla st zarf olan My, (n) ve yerel minimum

noktalarla alt zarf olan M,;;(n) kiibik spline enterpolasyonuyla olusturulur.
+¢* Olusturulan bu alt ve ist zarflara ait aritmetik ortalama bulunur.

h(TL) — (Mﬁst(n)‘;Malt(n)) (245)

+ Daha sonra bulunan bu ortalama deger giris sinyalinden ¢ikartilir.

x(n) = f(t) — h(n) (2.46)

% Eger x(n), IMF nin iki kosulunu saghyorsa; ¢(n) = x(n) olarak IMF belirlenmis
olur. Ayrica; r(n) = h(n) kabul edilerek artik mod bileseni de belirlenir.
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< Eger x(n), IMF’nin kosullarin1 saglamazsa ilk adima geri doniiliir ve islemler
tekrarlanir. Giris sinyali maksimum ve minimum ug¢ nokta barindirmadigi zaman
IMF ve artik mod bilesenleri elde edilmis olur ve eleme islemine son verilir [144,
145].

AMA’nin ele alman bir sinyali ayristirma ve eleme islemleri sonucunda belirlenen IMF
ve arttk mod bilesenlerinin toplami orijinal sinyali vermektedir. f(t) orijinal sinyal

olarak kabul edildiginde n. dereceden bir ayristirma ile;
f() =Y~ IMF, + Artik (2.47)
esitligi elde edilmis olur.

AMA sinyal isleme tekniginde, her ne kadar matematiksel teoriden yoksunluk ve gegici
algoritmik yapilar bulunsa da zaman serileri basta olmak iizere bir¢cok farkli sinyalin

ayrigtirma islemlerinde kullanilmaktadir.
2.2.5.3. Varyasyonel Mod Ayristirma (VMA)

Huang ve ark. (1998) tarafindan gelistirilen Ampirik Mod Ayristirma (AMA),
yinelemeli bir sinyal ayristirma teknigi olarak daha onceki baslikta tanitilmisti. AMA
yonteminin giiriiltitye duyarlilik, 6rnekleme, serbestlik dereceleri ve matematiksel teori
eksikligi gibi hususlarda, biraktigi bosluklari tamamlayabilmek amaciyla yine sinyal
ayristirma islemlerinden biri olan Varyasyonel Mod Ayristirma (VMA), Dragomiretskiy
ve Zosso (2014) tarafindan gelistirilmistir. VMA, sinyali alt bantlarina ayristirarak
sinyaldeki kararsizliklar1 azaltmaya ve sinyaldeki 6zniteliklerin belirlenmesine yarayan
varyasyonel (degisken-gesitli) bir dontisiim teknigidir. AMA’nin aksine 6zyinelemesiz
yaklasimi kabul etmis, modlarin (alt sinyaller) es zamanli olarak ¢ikarildigi, uyarlamali
bir zaman-frekans analiz yontemidir. Modlardan kasit yerel minimum ve maksimum
degerleri birbirinden farkli olan alt sinyallerdir [146]. AMA teknigine gore daha yeni ve
daha az bilinen bir yontem olmasina ragmen son donemde elektronik ve haberlesme
basta olmak iizere tip, biyoloji ve diger miihendislik alanlarinda popiiler bir yontem
olmustur. Ozellikle hibrit ydntemlerle olusturulan tahmin modellerinde tahmin

performanslarinin iyilestirilmesi amaciyla yaygin olarak kullanilmaya baglanmustir.
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Mevcutta yaygin bir sekilde kullanilan Fourier Dontistimii, Hilbert Doniigiimii, Dalgacik
Dontisiimii, Ampirik Mod Ayristirma gibi ayristirma yontemlerinde bazi sinirlamalar
sOz konusudur. Bunlara drnek vermek gerekirse; matematiksel teori eksikligi, serbestlik
derecesinin sayisi, 0zyinelemeli ayrigtirmadan kaynakli geriye dogru hata diizeltmesinin
zorlugu, giiriiltii fonksiyonlar1 ile bas edememe, dalgaciklarda oldugu gibi sabit
ayristirma (bant) sinirlart ve dnceden tanimlanmus filtre yaklagimidir. VMA yonteminde
ise ayristirma (bant) sinirlari uyarlamali olarak belirlenmekte ve karsilik gelen modlar
eszamanlt olarak tahmin edilerek bunlar arasindaki hatalar uygun bir sekilde
dengelenebilmektedir. AMA yonteminde oldugu gibi i¢sel Mod Fonksiyonu (IMF)
(Intrinsic Mode Function-IMF) bilesenleri ile dar bant &zelliklerinden yararlanarak giris
sinyali en optimum sekilde ayristirilip yeniden yapilandirilir. Giris sinyalindeki giiriilti
fonksiyonlarinin varhigi ele almmarak bunlar1 sinyalden ayristirmak amaclanir. Bu
ozelligi, orijinal Wiener filtresine benzemekte olup ¢oklu uyarlanabilir yapisi nedeniyle
daha gelismis bir yapidadir. Wiener filtresi, 1940'larda Norbert Wiener tarafindan
onerilen ve 1949'da yayinlanan bir filtredir. Sinyallerdeki giiriiltii miktarin1 azaltmay1
amaglayan bir filtreleme teknigidir. Wiener filtresi, sinyalleri duragan olarak kabul

ettiginden uyarlanabilir 6zelligi bulunmamaktadir [147].

VMA yaklagimi ile tek boyutlu bir giris sinyalinin tanimlanmis sayida moda
ayristirilmasi sonucu elde edilen bu modlar bir optimizasyon yapisi ile tekrardan ele
alinmaktadir. VMA’nin optimizasyon yapist olduk¢a basit ve hizhidir. AMA
yonteminde oldugu gibi VMA’da da sinyal temelde iki ana bilesene ayrilir. Bunlar;
fcsel Mod Fonksiyonu (IMF) (Intrinsic Mode Function-IMF) ve artik (residual)

bilesenleridir. VM A nin teorik yapisi kisaca asagida 6zetlenmistir.

VMA'nin amaci, gercek degerli bir giris sinyali olarak alinan f degerini, girisi yeniden
iretirken belirli seyreklik o6zelliklerine sahip dar bant genisliklerinde farkli ayrik
modlara (uj) ayristirmaktir. Burada, spektral alandaki her modun seyrekligi, bant
genisligi olarak secilir. Bagka bir deyisle, her bir k modunun, ayrigtirma ile belirlenecek
olan bir merkezi frekans olarak tabir edilen w; etrafinda ¢ogunlukla kompakt oldugu
varsayilir. Ayrica tiim modlara ait bant genislikleri toplaminin minimize edilmesi
gerekir. Her bir u; degeri, tek tarafli bir frekans spektrumu elde etmek igin iliskili
sinyali Hilbert donilisiimii araciligiyla hesaplamaktadir. Her bir mod i¢in ilgili merkez

frekans1 ayarlanmig bir istel ile carpilarak modun tek tarafli frekans spektrumu
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harmonik ortamda temel banda kaydirilir. Her bir moda ait bant genisligi, yeniden
{iretilmis olan sinyalin Gauss yumusaklig1 aracilig1 ile gradyanin karesi normunda (L?)
yani en kiiciikk kareler yontemiyle tahmin edilmektedir. Bahsedilen bu kisitlanmis

varyasyonel optimizasyon probleminin matematiksel gosterimi asagida verilmektedir.

. : i 2
a2 [0 [+ Dy < w@] e | L 0 = Sheyw© sin (249)

Esitlik 2.48°de; K toplam mod sayisini, u; ifadesi tim K mod sayis1 kiimesini, wy
ifadesi ise merkezi frekansi temsil etmektedir. d; ifadesi ise zamana bagli kismi tiirevi

gostermektedir.

Yeniden sinyal iiretme ile ilgili varyasyonel kisitlamalari gosteren Esitlik 2.48°deki
problem farkli sekillerde ¢oziilebilmektedir. Bu problemi kisitsiz hale getirmek igin hem
ikinci dereceden bir ceza terimi hem de Lagrange carpanlar1 (A) kullanilmaktadir.

Genisletilmis Lagrange fonksiyonu asagida verilmektedir.
- 2

— ] _ t
L (@ D) = @ Zi |0 [(8 + 5) » w@ ] eowt]|

HIF(®) = Ziewn (ONIF + (A0, f(8) — Ty wr (£)) (2.49)

Esitlik 2.48’deki varyasyonel optimizasyon problemi, Esitlik 2.49°da genisletilmis
Lagrange’in eyer noktas1 olarak artik c¢oziilebilmektedir. Esitlik 2.49, VMA’da
Carpanlarin Alternatif Yon Yontemi (The Alternating Direction Method of Multipliers-
ADMM) kullanilarak tam optimizasyon problemi, yinelemeli alt optimizasyon

problemlerinin bir dizisi olarak ¢6ziilmektedir [148].

VMA’da; ayristirilan modun merkezi frekansi, mevcut tahminlere karsilik gelen dar
bantli Wiener filtresi ile diger tiim modlarin sinyal tahmin kalint1 bilesenine uygulanir.
Daha sonra ise merkezi frekans, modun giic spektrumunun agirlik merkezi olarak
yeniden tahmin edilir. Bu isleme frekans karistirma denir. En diisiik frekansli modlar
yeniden {iretilirken, orta giicteki frekansa sahip modlar kabul edilebilir kalitede olarak
goriilmektedir. En yiiksek frekansli modlarin ise tekrar tiretilmesi zordur. Ancak VMA
algoritmas1 bu modu yeniden iiretmeyi basarirsa modun ilk ayristirilan halinden daha

kaliteli olabilmesi de miimkiindiir. Merkezi frekanslar (wy) ile ilgili alt optimizasyon
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probleminin matematiksel gosterimi, sonrasinda ise Fourier alanindaki matematiksel

gosterimi ve problemin ¢6zliimii sirasiyla asagida verilmistir.
j ot ||

w1 = argwkmin{”at [(St + =) * uk(t)] e‘f“’kt” } (2.50)
Tt 2

w ™t = argg,,min{[f,” (@ — 0 )? [ (w)]? do} (2.51)

00 ~
f() (l)lLIk((lJ)lzd(l)

ik (w)|?dw

n+1 _

Wy (2.52)

En son durumda; alt optimizasyonlarin ¢dzlimleri, Carpanlarin Alternatif Yon Yontemi
algoritmasi kullanilarak 1'e yerlestirilir ve uygun oldugunda dogrudan Fourier alaninda
optimizasyon yapilarak, yukarida O6zetlenen varyasyonel mod ayrisimi igin tam

algoritma elde edilir.

(@) = M) +7(fy, = T (@) (2.53)

Esitlik 2.53te verilen t sembolii Lagrange ¢arpaninin giincelleme oranidir. Degiskenler

varyasyonel optimizasyonlara yakinsayana kadar giincellenmektedir.

Genlik modiilasyonlu ve frekans modiilasyonlu bir sinyalin i¢sel Mod Fonksiyonu

(IMF) bilesenine ait matematiksel gosterimi asagida verilmistir.
u, (t) = A, (t) cos(@kc(t)) A(t) =0 ve @r(t) =0 (2.54)

Esitlik 2.54’te verilen A, (t) ve @, (t) ifadeleri sirasiyla k.nc1 modun zamana bagl zarf
fonksiyonunu ve fazimi (asama) temsil etmektedirler. k.nct modun ilgili anlik
frekansinin faza gore yavas degistigi ve negatif olmadig1 varsayilir. Anlik frekansin

gOsterimi ise asagidaki esitlikte verilmistir.
wi (£) = P (t) (2.55)

Tiim bu optimizasyon ve ayristirma islemlerinden sonra ele alinan sinyale ait IMF ve
artik bilesenler elde edilmis olur. f(t) orijinal sinyal olarak kabul edildiginde n.

dereceden ayristirma ile;

f() =X~ IMF;, + Artik (2.56)
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esitligi elde edilir. IMF ve artik bilesenlerin toplanmasi sonucu orijinal sinyal bulunmus

olur [146, 149, 150].
2.2.6. Yapay Zeka, Makine Ogrenmesi ve Derin Ogrenme
2.2.6.1. Yapay Zeka

Bilim ve teknoloji hizin1 kaybetmeden gelisimini stirdiirmeye devam ediyor. Gelistirilen
her teknoloji insanoglunun yalnizca refah seviyesini ve hayat standartlarini artirmakla
kalmiyor, bir sonraki yeniligin de baslangi¢ noktasi olarak oniinii agiyor. Teknolojiler
arasindaki essiz rekabet ise gelismeleri daha da hizlandirmakta ve smirlar
zorlamaktadir. Insanoglunun gaglar boyunca kat ettigi ilerlemeye bakildiginda ise
gelecekte hangi seviyelere ulasabilecegini tahmin etmek olduk¢a giictiir. Kainatin en
muhtesem varligi olan ve aklim1 kullanmay1 basarabilen insan tiirii, bu o6zelligini
bilgisayarlar vasitasiyla cesitli robotlara, makinelere, algoritmalara ve yazilimlara
aktarabilmigstir. Bu sayede insan giiciinden, islem yiikiinden ve zamandan ¢ok biiyiik bir
oranda tasarruf saglanarak daha hizli, daha pratik, daha dogru ve daha giivenilir islemler
yapilabilmis ve ayrica bu teknolojilerin tiim toplumlarin hizmetine sunulmasi ile

toplumlarin konfor alani1 ve hayat standartlar1 daha da yiikselmistir [151].

Insanin kendi tiiriine dzgii diisiinme ve dgrenme kabiliyetlerini bilgisayarlar iizerinden
cesitli algoritmalara aktarmasi ve tanitmasi sonucu bilgisayarlar basta olmak iizere diger
makinelerin insanlar gibi diistinmesi, 6grenmesi ve davraniglarimi taklit etmesi yapay
zeka ve yapay zekaya bagl diger yapay Ogrenme teknolojilerini ortaya ¢ikarmustir.
Yapay zeka ile ilgili ilk tartigmalar, 2. Diinya Savasi sirasinda Almanlarin Enigma adli
sifreleme makinesinin sifrelerini ¢ozmesi ile meshur olan Ingiliz matematik¢i ve
kriptolog Alan Mathison Turing’e (1950) ait “Makineler Diisiinebilir mi? (Can
Machines Think?) adli makalesine dayanmaktadir. Bu makaledeki ana tema akilli
makinelerin icat edilerek yapay bir formda bu makinelerin insanlar gibi diisiiniip
diistinemeyecegi lizerineydi. Yapay zeka (Artificial Intelligence) tabiri ise ilk olarak
1956 yilinda Amerikali bir bilgisayar bilimcisi olan John McCarthy tarafindan ortaya
atilmustir [152]. Unlii Tiirk matematik¢i Ord. Prof. Dr. Cahit Arf (1959) ise makinelerin
insana 6zgii olan bu diisiinebilme 6zelligini nasil gerceklestirecegi tizerine fikirlerini

ortaya atmugtir [153].
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Zaman igerisinde, bilgisayar bilimlerindeki gelismelere paralel olarak yapay zeka
alaninda ve uygulamalarinda ¢ok onemli asamalar kat edilmistir. Ozellikle son yirmi
yillik donemde yapay zeka teknikleri ve bu tekniklere yonelik algoritmalar insan
hayatinda 6nemli bir yer edinmistir. Insanin aklim, zekasim, tepki ve davranislarmni
taklit edebilen bu algoritmalar, giiniimiiziin en popiiler konularindan olan yapay zeka
tekniklerinin, makine o6grenmelerinin ve derin Ogrenme yontemlerinin temelini
olusturmaktadir. Genel olarak yapay zeka teknikleri, bu alandaki en iist kiime olarak
kabul edilmekte olup makine O6grenmesi ve derin Ogrenme ise bu kiimenin alt
elemanlaridir. Yani makine 6grenmesi ve derin dgrenmeye ait yaklasim ve algoritmalar
ayni zamanda yapay zekayi da olusturmaktadir. Sekil 2.14’te yapay zeka, makine

O0grenmesi ve derin 6grenmenin kendi aralarindaki hiyerarsisi verilmektedir.

Yapay Zeka

Sekil 2.14. Yapay zeka, makine 6grenmesi ve derin 6grenme hiyerarsisi

Yapay zeka tekniklerinin ilk Ornekleri olarak; Yapay Sinir Aglar1 (YSA), Genetik
Algoritmalar (GA), Bulanik Mantik (BM), Uzman Sistemler (US), Karinca ve Ari

Kolonileri, Gauss Siiregleri ve Tavlama Benzetimleri sayilabilir.
2.2.6.2. Makine Ogrenmesi

Makine 6grenmesi, birgok veri tiiriine baglh olarak insana 6zgli 6grenme ve ¢ikarim
yapma gibi islevleri olanakli hale getiren bilgisayar algoritmalarinin tasarim, gelistirme
ve iyilestirme asamalarini konu edinen bir yapay zeka yaklagimidir. Makine 6grenmesi
yaklasimlarindaki ana hedef, bilgisayarlar iizerinden karmasik verileri algilama ve
O0grenme becerilerinin gelistirilmesi sonucu veriye dayali ¢ikarimlar yapabilmesidir.

Verilerin analizinde, geleneksel klasik yontemler hem islem yiikiinii artirmakta hem de



79

hata paymin yiiksek olmasindan dolayr tam olarak giivenilir c¢ikarimlara
ulagilamamaktadir. Bu nedenle biiyilik ve karmagik veri setlerini irdeleyerek ge¢misteki
verileri kullanip o verilerin gelecekteki durumlar1 hakkinda ¢ikarimlar yapabilmesi igin
makine 6grenmesi gelistirilmistir. Makine 6grenmesindeki en onemli asama ele alinan
veri ile ilgili olarak mevcut problemlerin tespit edilip bu probleme yonelik ¢oziim odakli
modellerin kurulmasidir. Bu yapay zeka yaklasiminda verinin dnemi oldukg¢a biiytlik
olup 6grenme algoritmalar1 problemin ne oldugunu veriden O6grenmekte ve bu veri
setinin en belirgin &zelliklerine gore tahminler yapabilmektedir [154]. 1yi bir makine
ogrenmesi algoritmasi, hemen hemen hi¢ ya da ¢ok az bir insan yardimi alarak otomatik
O0grenme yoluyla verileri egiterek, dogru tahminler yapabilmeli ve buna bagl olarak
akilli kararlar alabilmeyi saglamalidir. Algoritma iizerinden gergeklestirilen 6grenme
verilerdeki goézlemlerin, tecriibelerin, aliskanliklarin ve ekstrem olaylarin meydana

getirdigi deneyime ve egitim sistemine gore yapilir [155].

Amerikal1 bilim adamlart mantik¢t Walter Pitts ve norofizyolog Warren McCulloch,
1943’te insanin Ogrenme ve diisiinme silirecini taklit etmeyi amaclayan ve insan
beynindeki sinir yapisini matematiksel olarak modelleyen algoritmalar1 bilim diinyasina
tanitmislardir [156]. Bu ¢alisma makine 6grenmesi ve derin 6grenmenin gelisimindeki
en onemli adimdir. Daha sonraki yillarda bu ¢alismadan esinlenerek makine 6grenmesi
algoritmalarina yonelik bircok c¢alisma gergeklestirilmis olup halen yeni gelismeler
devam etmektedir. Yapay zeka diinyasinda bugiinlerde en ¢ok konusulan ve en ¢ok ilgi
goren konulardan biri ChatGPT (Chat Generative Pre-Trained Transformer) sohbet
robotu, makine 6grenmesindeki gelismelere en iyi ornektir. Tip, haberlesme, ekonomi-
finans, temel bilimler ve miihendisligin bir¢ok alaninda makine 6grenmesi yaklagimina

dayali yontemler yaygin bir sekilde kullanilmaktadir.

Makine ogrenmesindeki en Onemli adimin, problemin tespiti oldugu daha once
belirtilmisti. Problemin tespiti ile baslayan makine 6grenmesi siireci veri ve model
iizerine birgok asamadan gecilerek tamamlanmaktadir. Sekil 2.15’te makine 6grenmesi

asamalar1 verilmistir.



80

Problemin tespit edilmesi

T

Veri toplama ve segimi

T

Veri ¢ozimleme

Iy

Veri on iglemesi

iy
Ozellik segimi
T

Model segimi
Iy

Model egitimi
L

Model degerlendirmesi

Iy

Performans gelistirme

Sekil 2.15. Makine 6grenmesi agamalari

Makine 6grenmesi algoritmalar1; Denetimli 6grenme (Supervised learning), denetimsiz
ogrenme (Unsupervised learning) ve takviyeli (destekleyici) 6grenme (Reinforcement
learning) olmak {izere 3 ana siirece gore islevlerini yerine getirir. Sekil 2.16’da makine

ogrenmelerine ait 6grenme tiirleri gosterilmistir.

| MAKINE OGRENMESI
| Denetimli Ogrenme | l Denetimsiz C')grenmel I Takviyeli Ogrenme I

‘ Simniflandirma I l Regresyon |

Sekil 2.16. Makine 6grenmesine ait 6grenme tiirleri
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Denetimli 6grenme; ele alinan bir veri setinde giris degiskenlerini baz alarak cikis
degiskenini tahmin etmeyi amaglayan ve 6grenen sistemin 6grenmesi istenen olay ile 0
olayin sonuglar1 arasindaki iligkiyi belirlemesi istenen bir 6grenme yaklagimdir.
Sistemdeki giris verisi ile ¢ikis verisi arasindaki bu iliskinin belirlenmesi, bilgisayarin
Ogrenme algoritmasina yapilan dis miidahaleler ile ger¢eklestiginden dolay1 bu 6grenme
denetimli 6grenme olarak adlandirilmaktadir [157]. Bu 6grenme temelinde giris verileri
bagimsiz degiskenler ¢ikis verileri ise bagimli degiskenler olarak temsil edilmektedir.
Denetimli 6grenme yaklasiminda, veri seti kendi igerisinde rastgele ya da belli bir
kurala gore egitme ve test verileri olarak ayrilir. Egitme verileri olarak ayrilan sete
uygun bir denetimli 6grenme algoritmasi uygulanarak model iizerinden o setin 6grenme
kapasitesi ortaya konulur. Daha sonra ise denetimli 6grenme algoritmasi egitmesi
tamamlanan veri setini baz alarak test i¢in ayrilan veri setini test eder. Test sonuclari ise
belli basli performans Oolgiitlerine gore degerlendirilir. Eger ¢ikis verisi (tahmin)
istenilen dogrulukta ise 6grenme siireci tamamlanir, ancak istenilmeyen bir sonug
modelden alindiginda 68renme algoritmasi iizerinden ¢esitli varyasyonlar ile 6grenme
islemine devam edilir. Denetimli 6grenme algoritmalar1 temel olarak siniflandirma ve
regresyon uygulamalarini ele alir. Eger bagimli degiskenin kategorik bir durumu sz
konusu ise bunlar siniflandirma, bagimli degiskenin siirekli olmasi durumu s6z konusu
ise regresyon uygulamalarinda ele alinir. Smiflandirma uygulamalarinin amaci, eldeki
veri setinde belirlenmis bir siniflandirmaya sahip olan verilerin denetimli 6grenme
yaklagimi ile heniiz siiflart belli olmayan verilerin smiflarini yiiksek bir dogrulukla
tahmin edip siniflarina ayirmaktir. Bu uygulamanin adi her ne kadar siniflandirma olsa
da aslinda tahmin yaklagimlarina dayanmaktadir. Ciinkii siniflandirilmis ya da gruplara
ayrilmig bir veri setinin 6zelliklerini 6grenerek o verilerle ilgili yeni bir sinif ya da grup
belirleme isi, tahmin modelleri lizerinden yapilir. Siniflandirma problemlerinde yaygin
bir sekilde kullanilan makine 6grenmesi yontemleri ise sunlardir: Yapay Sinir Aglari
(YSA), Destek Vektor Makineleri (DVM), k-En Yakin Komsu (KEYK) Algoritmasi,
Lojistik Regresyon (LR), Rastgele Orman (RO), Basit Bayes Algoritmasi, Otomatik Ki-
Kare Etkilesim Teknigi [155, 158]. Bilindigi lizere regresyon, bir bagimli degisken ile
bir veya daha fazla bagimsiz degisken arasindaki iliskileri ortaya koyan bir yontemdir.
Denetimli 6grenme algoritmalarinda da yine aym1 temel mantikla regresyon

uygulamalar1 yapilmaktadir. Destek Vektor Makineleri (DVM), Lojistik Regresyon
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(LR) ve Rastgele Orman (RO) makine 6grenmesi yontemleri denetimli §grenmenin

regresyon uygulamalarinda siklikla kullanilan yontemlerdendir.

Denetimsiz 6grenmede, ele alinan veri setindeki bagimsiz degisken olan giris verisi
O0grenme algoritmasina 6gretilir, ancak bagimli degisken olan ¢ikis verisi Ogretilmez.
Cikis verisi olmadan verilerin arasindaki iliski belirlenmeye ¢alisilir. Aynt zamanda bu
O0grenme yonteminde, denetimli 6grenmede oldugu gibi bir dis miidahale bulunmaz.
Ogrenme algoritmasi verilerin arasidaki iliskiyi kendi 6grenerek belirlemeye calisir.
Denetimli 6grenmede oldugu gibi veri setinin egitme ve test olarak ayrilmasi soz
konusu degildir, sadece egitme verileri lizerinden 6grenme algoritmasi ¢ikis verilerini
tahmin etmeye c¢alismaktadir. Herhangi bir c¢ikis verisi 6grenme algoritmasina
tanitilmadigindan ¢ikis verilerine ait sonuglarin degerlendirmesi daha zordur. Elde
edilen sonuglarin dogru ya da giivenilir olmasi gibi ¢ikarimlardan ziyade sonug
verilerinin Oznitelikleri {izerinde durularak bir biitiinlik saglanmaya caligilir [155]. Bu
o0grenme yonteminde genellikle kiimeleme, boyut azaltma ve olasilik hesaplari lizerine
caligmalar yapilmaktadir. Yaygin olarak kullanilan denetimsiz 6grenme algoritmalari
ise sunlardir: Kiimeleme, Hiyerarsik Kiimeleme, K-Ortalamalar Yogunluga Dayali
Uzamsal Kiimeleme, Yogunluga Dayali Algoritmalar, Temel Bilesen Analizi (TBA),
Cekirdek Temel Bilesen Analizleri.

Takviyeli (destekleyici) 6grenme yonteminin ana yaklasimi ise 6grenme algoritmasina
Ogrenmesi i¢in tanitilan giris verilerinden c¢ikis verilerini elde etmesi ve elde edilen
model sonuglarina gére daha onceden belirlenen hedeflere ulasabilmesidir. Istenilen
hedefe ulagsma siirecinde 6grenme algoritmasi hedefe nasil ulasacagina yonelik alacagi
dogru kararlar1 kendiliginden Ogrenir. Bunun yani sira bu dogru kararlar
belirleyebilmek amaciyla, istatistik ve dinamik programlama yaklasimlarindan da
faydalanilir. Ayn1 zamanda bu yontemde 6diil ve ceza sistemi vardir. Yani 6grenme
algoritmasi sonuca yonelik dogru kararlar alirsa 6diil, yanhs kararlar alirsa bir cezayla
karsilagir. Bu 6grenme yontemindeki temel yaklasim, 6diilii arttirmak igin ne yapilmasi
ve nasil bir iligkilendirmenin gerektiginin 6grenme algoritmasia Ogretilmesidir.
Ogrenme algoritmasi, ddiiliinii arttirmak igin daha énceden uygulanmis modellerde 6diil
almig olan algoritmalar1 bulmalidir. Takviyeli (destekleyici) 6grenmede, veri setindeki
egitme ve test asamalart beraber gerceklestirilmekte olup modelden elde edilen

sonuglara gore Ogrenme algoritmasimin kendisini gelistirmesi ve bu sayede insan
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beyninin calisma sekline benzeyen algoritmalar1 iiretmesi bu yontemin gelistirilme
amacidir. Bu yontemde kullanilan 6grenme algoritmalarmmin baginda Q 6grenme

gelmektedir [155, 159].
2.2.6.3. Derin Ogrenme

Yapay zeka tekniklerinin ve makine Ogrenmesinin alt kiimesinde yer alan derin
O0grenme yoOntemleri, geleneksel yapay sinir aglarinin olduk¢a gelismis bir formudur.
Son bes yillik donemde birgok alanda kullanilmaya baslanmis olup elde edilen sonuglar
ve geri doniisiimlerden dolay1 arastirmacilar i¢in oldukga popiiler bir alan olmustur.
Pitts ve McCulloch (1943)’1n derin 6grenmenin temelini olusturan ¢alismalarindan daha
once bahsedilmisti. Insan beyni ile insanm diisinme ve Ogrenme &zelliginin
matematiksel olarak modellendigi bu ¢aligma, bilgisayarlarin insan davranislarinm taklit
edebilmesi amacini tasidigindan 6nemli bir yer tutmaktadir. Giiniimiizde ve gelecekte
de insan beyninin ve davraniglarinin bilgisayarlar iizerinden makinelere ya da robotlara
uyarlanmasi hep popiiler bir konu olmaya devam edecektir. Yasadigimiz bu dénemde
veri ve verinin kullanimi olduk¢a 6nemli hale gelmistir. Insanlarin giinliik aktiviteleri,
aligkanliklar1 ve davranmiglar1 ile ilgili verilerin bir¢ok sektor tarafindan cok kisa
stirelerde islenmesi neredeyse zorunluluk haline doniismiistir. Bilgisayarlar {izerinden
stirekli bir sirkiilasyon halinde bulunan verilerin analizi de hem veri biiyiikliigii hem de
islem yikii agisindan 6nem arz etmektedir. Geleneksel sinir aglar1 ya da diger makine
O0grenmesi yoOntemleri bu biiyiikk boyutlu verilerle ugrasmada mevcut bilgisayar
islemcilerinin kapasitelerinden dolay1 da bazen yetersiz kalabilmektedir. Bu sebeplerden
dolay1 derin 6grenmenin gelistirilmesindeki en onemli etkenler olarak veri biiyiikliigii

ve islem yiikii problemleri sayilabilir [160].

Derin 6grenme, sinir aglarindaki ardisik gizli katmanlarin sayisinin artirilmasi sonucu
karmasik ve biiyiik boyutlu verilerin analizlerinde daha kapsamli ¢oziimler sunan bir
makine 6grenmesi yontemidir. Derin 6grenme ifadesindeki derin kavrami kurulan sinir
ag1 modelindeki katmansal derinligi ifade etmektedir. Geleneksel sinir aglar1 genellikle
bir veya iki ara katmandan olusmasindan 6tiirii s1g 6grenme olarak tanimlanir. Ancak
derin 6grenmede katmanlarin sayisi istenilen sayida belirlenebilir. Derin 6grenmede, her
bir islem katmani kendisinden 6nceki katmanda tutulan ve en iyi 6zelliklere sahip ¢ikis

verisini giris verisi olacak sekilde alarak 6grenmeye caligir. Katman sayisinin fazla
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olmasindan dolay1 parametre sayist da ¢oktur. Ogrenme algoritmalari denetimli ya da
denetimsiz 6grenme seklinde olabilir. Derin 6grenme algoritmalarinda, ele alinan veri
setinin birden ¢ok 6zellik veya temsil durumunun kendiliginden 6grenilmesine dayanan
bir yaklasim sz konusudur. Ust diizey ozellik veya temsil, alt diizey ozellik veya
temsilden tiiretilerek hiyerarsik bir O6grenme algoritmast olusturulmaktadir. Veri
setinden elde edilen bu en iyi temsiller aracilig1 ile yapilan 6grenme, derin 6grenme

yontemindeki temel yaklagimdir [161].

Derin 6grenme algoritmalar1 yine denetimli, denetimsiz ve takviyeli (destekleyici)
ogrenme tiirlerinde ele alinmakta olup tahmin, siiflandirma, goriintli ve sinyal isleme,
regresyon gibi cesitli gorevlerde kullanilmaktadir. Bir¢cok alanda yaygin kullanimlari
olan Cok Katmanli Algilayici (CKA), Derin Sinir Aglart (DSA), Evrigimli Sinir Aglari
(ESA), Tekrarlayan Sinir Aglar1t (TSA), Uzun-Kisa Siireli Bellek (UKSB), Kisitli
Boltzmann Makineleri (KBM), Otomatik Kodlayicilar (OK) ve Derin Inang Aglari
(DIA) ve bunlarin farkli versiyonlar1 derin 6grenme yontemlerine 6rnek gosterilebilir.
Her bir yontemin kendine 0zgli Ogrenim mimarileri ve O8renme yaklasimlari

bulunmaktadir.

Yapay zeka teknikleri de kendi igerisinde zamanla gelismis olup belli bir alanda ¢ok iyi
performanslar gosteren bir yontem daha sonra gelistirilen baska bir yontemin
istiinliiklerinden dolayi ilkel kalmistir. Sinirli katman sayisi, veri biiyiikliigii, problemin
zorlugu, 6grenme algoritmalari, veri isleme, islem hizi ve kapasitesi gibi etmenler
yontemlerin gelisiminde ve gosterdigi popiilerlikte etkili olmaktadir. Makine 6grenmesi
algoritmalari ile derin 6grenme algoritmalari arasinda yaklasima dayali 6nemli farklar
bulunmaktadir. Derin 6grenme algoritmalarinda, yiiksek bir oranda hesaplama ve islem
giicline sahip olan ve karmagik biiylik veri problemlerini ¢6zebilmeyi amaglayan sinir
aglar1 kullanilmaktadir. Derin 6grenme algoritmalari, kendiliginden 6grenebilen sinir
aglarina dayali bir mimari yapt olusturmaya dayanirken makine &grenmesi
algoritmalari, veriler {izerinden 6grenme saglayan ve probleme 6zgii olarak ¢oziimler
gelistiren algoritmalar olarak kabul edilmektedir. Derin 6grenme algoritmalarinin diger
yontemlere gore daha iistiin bir genelleme 6zelligi bulunmakta olup bu nedenle daha
once hi¢ karsilagilmamis bir test verisi de kolaylikla 6grenilebilmektedir. Ayrica veri
sayisi ya da biyiikligi arttik¢a da derin 6grenme diger yontemlere gore daha iyi

performans gostermektedir [162].
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2.2.7. Cahsmada Kullamlan Makine ve Derin Ogrenme Yontemleri

Bu tez caligmasinda; makine 6grenmesi yontemi olarak Yapay Sinir Aglari (YSA),
Uyarlamal1 Sinirsel Bulanik Cikarim Sistemi (USBCS), Destek Vektor Makine
Regresyonu (DVMR) ve Gauss Siire¢ Regresyonu (GSR), derin 6grenme yontemi
olarak ise Uzun-Kisa Siireli Bellek (UKSB) kullanilacaktir. Bu yontemlerin
secilmesinin sebebi 6zellikle hidrometeorolojik zaman serilerinin tahminleri ile ilgili
caligmalarda basarili sonuglar alinmasidir. UKSB yontemi ¢ogunlukla elektronik ve
haberlesme, biyomedikal, ses ve gorintii isleme gibi alanlarda yaygin bir sekilde
kullanilmakta olup hidrometeorolojide yeni yeni ele alinmaktadir. Ayrica derin
O0grenmenin Ustlin 6grenme kapasitesinin kuraklik zaman serilerinde nasil bir

performans gosterecegi merak edilmistir.
2.2.7.1. Yapay Sinir Aglar1 (YSA)

Yapay Sinir Aglar1 (YSA), insanin merkezi sinir sisteminin bir eleman1 olan beynin en
kiiglik islem birimleri olan sinir hiicrelerini hem gorevi hem de sekli itibari ile taklit
ederek insana ait 6grenme, diisiinme ve ¢ikarim yapma gibi kabiliyetlerin bilgisayarlar
tizerinden gergeklestirilmesini saglayan bir makine 6grenimi teknolojisidir. YSA’lar
bilgi isleme sistemleri oldugundan, insanin sinir hiicreleri ile karsilastirilabilir. Bu
yontemde siirekli karsimiza ¢ikan sinir aglarindan kasit, belli bir agirlik degeri ile temsil
edilen ve yapay sinir hiicrelerinden teskil edilen, her birinin kendi bellegi olan ve
bilgileri tasiyan baglanti elemanlari ile birbirlerine baglanarak olusturulan matematiksel
ag modelidir. YSA’nin 6grenme becerisi algoritmasina sunulan verideki ornekler
aracilif1 ile gergeklestirilir. Nasil insan beyni daha 6nce karsilastigi drneklerden elde
ettigi tecriibelere gore bazi bilgileri isliyorsa, YSA algoritmasi da egitme asamasinda bu
tarz tecriibeleri kazanabilmektedir. YSA’nin en Onemli Ozelligi, egitilmesi ig¢in
algoritmasina sunulan bir giris degiskenini belirli kurallar ¢ercevesinde kendi basina
egiterek bazi genellemeler yapmasi ve bu yapilan genelleme islemi sonrasinda giris
degiskenlerine karsilik gelen ¢ikis degiskenlerini elde etmesidir. YSA’lar bulunduklar
ortama uyum saglayabilen, adaptif, eksik bilgi ile de calisabilen, belirsiz durumlara gore
karar alabilen ve hatalara karsi toleranslart olan farkli bir hesaplama yontemi

yaklagimina dayanmaktadir [163].
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YSA 6grenme algoritmalarinin temeli, Kanadali psikolog Donald Hebb tarafindan 1949
yilinda Onerilen ve Hebb 6grenme kurali olarak literatiire giren 6grenme algoritmasina
dayanmaktadir. Baglantilarin farkli agirlik degerlerine goére 6grenme kuralina dayanan
bu algoritma birgcok makine Ogrenmesinin de Ogrenme kurallarinin esasini
olusturmaktadir. Yapay zeka alaninda caligmalar yapan Amerikali nérobiyolog Frank
Rosenblatt 1957 yilinda basit algilayict model yapisini gelistirmis olup Cok Katmanl
Algilayicilar1 (CKA) 6nermistir. Ozellikle bu iki ¢alisma YSA’nin gelisiminde énemli
bir yer tutmaktadir. Daha sonraki yillarda ise YSA’nin farkli algoritmalarina yonelik
calismalar yapilmis ve gelisimi devam etmistir. YSA algoritmalar1 ile tahmin ve
siniflandirma basta olmak tizere 6grenme, baglanti kurma, genelleme ve optimizasyon

islemleri gibi ¢alismalar gergeklestirilmektedir [164].
2.2.7.1.1. Yapay Sinir Aginin Yapisi

YSA’nin taklit ettigi insan beynine ait biyolojik sinir hiicreleri 4 ana elemandan
olusmakta olup bunlar: sinaps, ¢ekirdek, akson ve dentrittir. Bu elemanlar arasinda
sirekli bir bilgi ve islem akis1 vardir. Sinaps, sinir hiicreleri arasindaki baglantiy1
saglayarak iletisim kurulmasini saglayan elemandir. Cekirdek, sinapstan gelen bilgiyi
isleyerek elde edilen ¢ikt1 bilgisini akson aracilig1 ile dentrite aktaran merkezi birimdir.
Akson, sinir hiicrelerinde islenen bir bilgiyi diger bir sinir hiicresinde giris bilgisi olarak
olusturulmas: i¢in sinapsa aktaran elemandir. Dentrit ise diger hiicrelerden gelen
bilgileri ¢ekirdege ileten sinir hiicresinin en u¢ kisminda bulunan elemandir. Biyolojik
sinir hiicrelerindeki elemanlar ve bu elemanlarin arasinda goriilen bilgi ve islem akist
yapay sinir hiicreleri ile taklit edilerek YSA 6grenme algoritmalari olusturulmustur.
Yapay sinir hiicreleri noronlar vasitasiyla birbirleri ile baglanti kurarak yapay sinir agini
olusturmaktadir. Yapay bir sinir ag1 temelde 3 ana katmandan ve yapay sinir hiicresi ise
5 farkli boliimden olugmaktadir. Katmanlar; girdi katmani, ara (gizli) katman ve ¢ikti

katmani olarak ayrilir. Sekil 2.17°de YSA’nin genel bir ag yapis1 gosterilmektedir.
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Sekil 2.17. YSA katman yapist

Sekil 2.17°de gosterilen katmanlardan girdi katmani, yapay sinir agina gelen bilgilerin
alindig1 ve ara (gizli) katmana iletildigi baslangi¢ katmanmidir. Ara (gizli) katman, girdi
katmanindan gelen bilgilerin islendigi katmandir. Cikti katmaninda ise girdi
katmanindan aga giris yapan veriler i¢in liretilmesi gereken ¢ikti, ara (gizli) katmandan
gelen bilgiler islenerek iretilir. YSA’nin temel katman yapist yukarida kisaca
Ozetlenmis olup YSA’nin asil 6grenme siireci ile ilgili islemlerin gerceklestirildigi

yapay sinir hiicresinin boliimleri Sekil 2.18de gosterilmistir.

b

X1 » Wi

» l Aktivasyon fonksiyonu
n(l—m 3 00—y
Girdi degerleri - . ’ p Cikts

/" Toplama fonksiyvonu

Xa —» Wy 7
Agirlik degerleri

Sekil 2.18. Yapay sinir hiicresinin boliimleri

Sekil 2.18’de gosterilen yapay sinir hiicresinin boliimlerinden girdi degerleri, hiicreye
disardan ya da diger noronlardan gelen bilgileri temsil etmektedir. Bu girdi bilgileri,
girdi katmaninda toplanarak baglantilar aracigi ile ¢ekirdege iletilmektedir. Yapay bir
sinir hiicresinde tek bir ¢ikti degeri elde edilirken istenilen sayida girdi degeri

olabilmektedir. Agirlik degerleri, girdi degerlerinin g¢ekirdege iletilmesi asamasinda
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geldikleri baglantilarin hiicreye etkisini belirleyen degerlerdir. Bu degerler sifir, pozitif
ya da negatif seklinde sabit ya da degisken degerler alabilmektedir. Girdi bilgileri,
baglantilarin agirliklart ile carpilarak cekirdege iletilmektedir. Toplama fonksiyonu,
yapay sinir hiicresine girdi olarak gelen ve baglantilarin agirliklar1 ile ¢arpilarak elde
edilen tiim bilgilerin toplandig1 ve net girdi degerlerinin hesaplandigi1 fonksiyonlardir.
Bu fonksiyonlar toplam, ¢arpim, minimum, maksimum, ¢ogunluk ve kiimiilatif toplam
olarak belirlenebilmekte olup fonksiyon se¢imi ise yapay sinir agiin mimarisine uygun
olacak sekilde istege baghdir. Literatiirde en ¢ok kullanilan fonksiyon ise toplam
fonksiyonudur [163]. Toplama fonksiyonunda hesaplanan net girdi degeri su esitlik

araciligi ile bulunmaktadir:
NET = Y™, G,W; (2.57)

Esitlik 2.57°de verilen n hiicreye gelen toplam eleman sayisini, G; girdi degerini, W; ise

agirlik degerlerini temsil etmektedir.

Sekil 2.18’de gosterilen yapay sinir hiicresindeki aktivasyon fonksiyonu ise hiicreye
gelerek hesaplanan net girdi degerlerini isleyen yani bilginin iglendigi asamadir. Burada
toplama fonksiyonundan sonra bir esik seviyesine gore girdi degerlerine karsilik ¢ikti
degerleri belirlenir ve bir sonraki asama olan ¢ikti katmanina aktarilir. Aktivasyon

fonksiyonunda belirlenen esik seviyesi asagida verilen su esitlik ile gosterilmektedir:
y = f(GxW) = f(NET) (2.58)

Esitlik 2.58’de gosterilen y esik degerini, f fonksiyonu ise aktivasyon fonksiyonunu
temsil etmektedir. Bu fonksiyonun dogrusal ya da dogrusal olmayan cesitleri
bulunmaktadir. Dogrusal (lineer), sigmoid, adim (step), hiperbolik tanjant, siniis, ReLU
(Dogrultulmus Dogrusal Birim-Rectified Linear Unit) yaygin olarak kullanilan

aktivasyon fonksiyonlaridir.

Yapay sinir hiicresinin son asamasi olan ¢ikti degeri ise aktivasyon fonksiyonunda elde
edilen sonug¢ degeridir. Yapay sinir hiicresinden tek bir ¢ikti degeri elde edilmekte olup
bu deger kendi hiicre ortamina, bagka bir sinir hiicresine ya da farkli bir ortama
gonderilebilmektedir. Ayni ¢ikt1 degeri birden fazla yapay sinir hiicresinde girdi degeri

olarak da kullanilabilmektedir.
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2.2.7.1.2. Yapay Sinir Aglarinin Siniflandirmasi

YSA'’lar; agin baglant1 yonlerine, 6grenme algoritmalarina ve katman sayisina gore
genel olarak ii¢ ana grupta smiflandirilmaktadir. Sekil 2.19’da YSA simiflandirmasi

gosterilmistir.

‘ Yapay Sinir Aglan (YSA) |
1l
[ | I
b ¥ ¥ , N
Baglanti Yonlerine Gore Ogrenme Algoritmalarma Gore ’ Katman Sayisina Gore
| | | |
U { Y
1-) Ileri Beslemeli 1-) Denetimli Ogrenme 1-) Tek Katmanh
2-) Geri Beslemeli 2-) Denetimsiz Ogrenme 2-) Cok Katmanl
3-) Takviyeli Ogrenme

Sekil 2.19. Yapay sinir aglarinin siniflandirmasi

YSA’nin baglanti yoOnlerine gore siniflandirilmasindan kasit aslinda agin mimari
yapisini ve bilginin ilerleme (akis) istikametini gdsteren bir ayrimdir. ileri beslemeli
aglarda yapay sinir hiicresindeki bilgi akis1 giristen ¢ikisa dogru diizenli katmanlar
araciligr ile saglanmaktadir. Yapay sinir hiicresinden elde edilen ¢iktinin bir 6nceki
katmandaki hiicrenin girdi degerini olusturmadigi ag yapisidir. Yani bu ag yapisinda bir
katmandan sadece kendisinden sonraki katmana bir bag bulunmaktadir. Geri beslemeli
aglarda ise bir yapay sinir hiicresinde elde edilen ¢ikti degeri kendinden onceki
katmanda veya kendi ortaminda bulunan herhangi bir yapay sinir hiicresinde girdi
degeri olarak baglanabilme durumu s6z konusudur. Yapay sinir hiicresindeki bilgi akisi
hem ileriye dogru hem de geriye dogru saglanmaktadir. Geri beslemeli ag yapisinin bu
ozelliginden dolay1 egitim siireci ileri beslemeli ag yapisina gore daha uzun

olabilmektedir.

Ogrenme algoritmast tiirleri olan denetimli, denetimsiz ve takviyeli 6grenme daha dnce
derin Ogrenme basliginda anlatilan 6grenme tiirlerinin aynis1 oldugundan tekrar
tizerinde durulmayacaktir. Bir diger YSA smiflandirma 6lgiitii olan katman sayisi ise tek

katmanli ve ¢ok katmanli olmak tizere iki tiirliidiir. Baz1 ¢alismalarda katman ifadesinin



90

yanina algilayic1 (perceptron) ifadesi de eklenerek tek katmanli algilayict ya da gok
katmanli algilayici gibi bir kullanim da s6z konusu olmaktadir. Tek katmanli YSA’larda
sadece girdi ve ¢ikti katmani bulunurken, ¢ok katmanli YSA’larda girdi katmani, ara
katman ya da katmanlar ve ¢ikti katmani yer almaktadir. Tek katmanli aglarda aga
sunulan girdi degerleri girdi katmani ndronlart ile ¢ikti katmani ndronu arasindaki
agirliklarin  hesaplanmast sonucu belirlenen aktivasyon fonksiyonunda islemden
gecirilerek tek bir ¢iktr verisi elde edilmektedir. Aktivasyon fonksiyonu 6zellikle ¢ikti
degeri i¢in belirlenir ve belirlenen bu aktivasyon fonksiyonu dogrusaldir. Bu nedenle
dogrusal olmayan problemlerin ele alindigi durumlarda bu ag yapist yetersiz
kalmaktadir. Ayrica basit tek katmanli algilayict YSA modeli bu ag yapisi baz alinarak
olusturulmustur. Cok katmanli aglarin tek katmanli aglardan farki ara katman ya da
katmanlarin bulunmasidir. Yapay sinir hiicresine gelen bilgiler ara katmanda ya da
katmanlarda islenmektedir. Dogrusal olmayan aktivasyon fonksiyonlar1 kullanilarak
agin dogrusal olan yapis1 dogrusal olmayan sekle déniistiiriiliir. Ozellikle bu agmn yapist
baz alinarak gelistirilen ve agin 6grenmesini kolaylastirarak hatalarin da miimkiin
oldugunca minimumda tutulmasini saglayan geri yayilim algoritmasi olusturulmustur.
Cok katmanli YSA’nin egitme asamasinda aga hem girdi hem de c¢ikt1 degerleri

sunularak bilgi islendiginden ayrica denetimli 6grenme de saglanmis olur [164, 165].
2.2.7.1.3. Geri Yayihm Algoritmasi

Cok katmanli YSA’lar, dogrusal olmayan problemleri ¢ozebilmesi i¢in gelistirilmis bir
ag modeliydi. Bu modelde geri yayillm &grenme algoritmalart kullanilarak girdi
degerlerine karsilik gelen cikt1 degerleri elde edilmektedir. Geri yayilim algoritmasi, en
kiiciik kareler yontemini esas alan delta 6grenme kuralina dayanarak agin egitme
asamasinda elde edilen ¢ikt1 ile gercek ¢ikti arasindaki hatanin minimilize edilmesi
amaciyla agirlik degerlerini dereceli azaltma ve egim inisi yontemleri ile optimize
etmektedir. Agirlik degerlerinin optimize edilerek hatalarin da en aza indirilmesindeki
amag¢ agm performansini artirabilmektir. Bu algoritmada hem ileri beslemeli hem de
geri beslemeli baglanti yonleri dikkate alinarak &grenme akisi saglanmaktadir. ilk
asamada ciktinin elde edilebilmesi i¢in ileri beslemeli akis kullanilirken, daha sonra
agdaki agirhik degerlerinin uygun hale getirilebilmesi i¢in geri beslemeli akis
kullanilmaktadir. Geri yayilim algoritmasi sadece ¢ok katmanli YSA modellerinde

kullanilir.
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2.2.7.1.4. Levenberg-Marquardt Algoritmasi

Geri yayilim algoritmasi, agdaki agirlik degerlerini ayarlarken yakinsama etkinligi ile
ilgili bazi eksiklikleri bulunmaktadir. Bu algoritmanin optimizasyon kapasitesini
artirabilmek amaciyla momentum kapasitesi, esnek yayilim, gradyan azaltma, Gauss
Newton ve Levenberg-Marquardt algoritmasi gibi bazi yontemler gelistirilmistir. Tez
calismasinda kullanilacak olan YSA modellerinde &6grenme algoritmast olarak
Levenberg-Marquardt algoritmasi ele alinacagindan bu algoritma {izerinde durulmustur.
Levenberg-Marquardt algoritmasi, standart sayisal optimizasyon tekniklerinden biri
olup YSA modellerinde son donemde yaygin bir sekilde kullanilmaktadir. Bu 6grenme
algoritmasi, gradyan azaltma ve Gauss Newton yontemlerinin iyi yonlerinin alindigi,
eksik yonlerinin ise gelistirildigi daha karmasik bir yapiya sahiptir. Tek katmanli aglar
kullanilabildigi gibi ¢ogunlukla ¢ok katmanli aglardan olusmaktadir. Ayrica genellikle
ileri beslemeli aglarda ve denetimli 6grenme modellerinde kullanilmaktadir. Levenberg-
Marquardt algoritmasi, geri yayilim algoritmasindaki yakinsama eksikligini gidermek
ve agm oOgrenme kapasitesini artirabilmek adina, dogrusal olmayan problemlerde
kullanilan ve en kiiciik kareler yontemine dayanan bir algoritmadir. Geri yayilim
algoritmasim iyilestirebilmek ig¢in bu yonteme dahil edilebilen ikinci dereceden bir
gradyan yaklasimma dayanmaktadir [166]. Ele alinan agdaki hata degeri bulunduktan
sonra ag1 olusturan her bir néron, kendi agirlik degerini optimize ederek hata oranini en
aza indirmeye calisir. Ele alinan agdaki performans degerini belirleyebilmek amaciyla

asagidaki esitlikte verilen karesel hata fonksiyonu kullaniimaktadir.
1 2
E() =327, (4,() - @) (2559)

Esitlik 2.59’da verilen E (k) ifadesi karesel hata fonksiyonunu, Yj(3) (k) ifadesi 6grenme
ornegi icin agm j’nci ¢ikis ndronu tarafindan iiretilen degeri, d;(k) ifadesi ise istenilen
degere karsilik gelen degeri temsil etmektedir. Hata fonksiyonunun belirlenmesinden
sonra performans degerini elde etmek icin agirlik degerlerine bagli olarak Hessian
matrisinin (ikinci dereceden tiirevlerin matrisi) tiirevi kullanilmaktadir. Bu asamanin
ardindan agirliklarin bulunmasina yonelik ¢esitli matris islemleri yapilarak hata

oranlarini en aza indirmek amaciyla cesitli optimizasyonlar yapilmaktadir. Levenberg-
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Marquardt algoritmasinda, agda elde edilen performans degerlerine yakinsama hizi

yiiksektir ancak daha fazla bellek ve islem yiikii gerekmektedir [167].
2.2.7.2. Uyarlamah Sinirsel Bulamik Cikarim Sistemi (USBCS)

Uyarlamal1 Sinirsel Bulanik Cikarim Sistemi (USBCS), YSA ile bulanik mantiin
kombine edilerek olusturuldugu ve uyarlamali bir ag yaklasimmna dayali makine
ogrenmesi yontemidir. Jang tarafindan 1993 yilinda gelistirilmistir [168]. Literatiirde
kullanilan ad1 ANFIS (Adaptive Neuro-Fuzzy Inference System) olup tez caligmasinda
Tiirkge kisaltmasi olan USBCS olarak adlandirilacaktir. USBCS, YSA’nin 6grenme
algoritmalarini kullanarak girdi ve ¢ikt1 degerleri arasinda bulanik mantiga dayali ¢esitli
kurallar olusturmaktadir. Bu yontemde diislinme ve ¢ikarim yapma gibi yetenekler

bulanik mantik kullanilarak yapilmaktadir.

Mantik, akil yiiriiterek bazi 6nermeler sunmaya dayali bir diisiince faaliyetidir. Mantik
biliminin kurucusu kabul edilen ve M.O. 384-322 yillar1 arasinda yasamus olan filozof
Aristo’nun kendi adin1 da tagiyan Aristo mantig1 (klasik mantik, ikili mantik ya da diiz
mantik olarak da bilinmektedir), belirsizlik durumunu icermeyen iki farkli sonuca
dayanmustir. Ornegin kesin hiikiimler ¢ercevesinde bakilarak bir bilgi ya dogrudur ya da
yanlis, bir maddenin rengi ya siyahtir ya da beyaz, doktora egitimi ya kolaydir ya da
zor. Bununla birlikte daha sonraki donemlerde bilimin gelismesine paralel olarak
belirsizlik durumunun fayda saglayan bir kavram olarak algilanmasi ile mantik
hiikiimlerinde tigiincii bir sonug olarak belirsizlik durumu da sayilmistir. Bunun en
onemli nedeni bilimle ugrasan insanlarimn siipheci ve sorgulayict olma dzellikleridir. Iste
bu belirsizlik durumundan dolay1 bulanik mantik kavrami ortaya ¢ikmugtir. Lotfy A.
Zadeh, 1965 yilinda mantik degerleri kiimesini [0,1] aralifinda tanimlayarak Bulanik
Mantik Teorisini gelistirmistir. Bu teoride; kiime igerisinde yer alan mantik degerleri O
ile 1 arasinda degisken iiyelik derecelerine sahiptir. Uyelik derecesi, sistemde ele alinan
bir girdinin dilsel degiskeninin bir terime hangi derecede ait oldugunu belirleyen
degerdir. Bulanik mantikta, dilsel degisken degerlerin tiimii ise iiyelik fonksiyonu olarak
adlandirilmaktadir. Bulanik mantik yaklasiminda, kesin hiikiimlerden ziyade 6rnek
olarak cok, cok biiyiik, biiyiik, kii¢iik, daha kiiciik gibi belirsiz hiikiimler bulunmaktadir
[169]. Aristo mantiginda drnek gosterilen bir rengin ya siyah ya da beyaz olmasi gibi

kesin hiikiimlerine ek olarak bu iki rengin arasindaki bir¢ok farkli tonu igerisinde



93

barindiran gri rengin de bir hiikiim olabilecegi bulanik mantigin temelini
olusturmaktadir. Bulanik mantigin smirlart Aristo mantifina gére daha esnek olup
kurulan mantik ¢ercevesinde yer alan elemanlarin nitelikleri de daha belirsiz hiikiimleri

icermektedir [170].

Bulanik mantikta kabul edilen belirsizlik durumundan dolay1 ele alinan bir problemde
yaklagik sonuglara ulasilmaya g¢alisilmakta olup bulanik mantik esnek bir hesaplama
teknigi olarak yaygin bir sekilde kullanilmaktadir. Bulamk mantik; giris,
bulaniklagtirma birimi, veri tabani, kural tabani, bulanik ¢ikarim mekanizmasi,
durulastirma (berraklagtirma) birimi ve ¢ikis bolimlerinden meydana gelmektedir [171].
Sekil 2.20°de bulanik mantik boliimleri gosterilmistir.
|

" Bilgi tabam

H

Veri tabam

Kural tabant| | I

— Bulamiklagtirma Durulagtrma o
Girig T ‘ , P Cikas
/ birimi l l (Berraklagtirma) | /

A

Bulamk ¢ikarim
mekanizmast

Sekil 2.20. Bulanik mantik boliimleri

Sekil 2.20°de gosterilen bulanik mantik boliimlerinden bulaniklagtirma birimi, bir
sisteme gelen ve kesin olarak tanimlanan bir girdi degerinin ¢esitli tiyelik fonksiyonlari
kullanilarak O ile 1 arasinda derecelendirilmesi ile girdi degerinin bulanik bir degere
doniistiirtildiigii birimdir. Bu asamada ele alinan iiyelik fonksiyonlar1 genellikle ticgen,
sabit, trapez, sigmoid ve Gauss iiyelik fonksiyonlaridir. Bilgi tabani, sistemde ele alinan
girdiye ait tiim sayisal ya da sozel bilgilerin ve verilerin tutuldugu birimdir. Kural
tabani, girdi degerlerini ¢ikt1 degerleri ile iliskilendiren ve tiim mantiksal kurallarin
birlikte ele alindig1 birimdir. Kurallar belirlenirken bulaniklagtirma biriminden gelen
tiim girdi ve ¢ikt1 degerlerinin arasindaki bulanik degerler dikkate alinmaktadir. Kural

tabaninda girdi ve ¢ikt1 degerlerini iligkilendiren tiim bulanik kiime elemanlari
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toplanarak sistemden tek bir ¢ikti elde edilmesi bulanik ¢ikarim mekanizmasinda
saglanmaktadir. Durulastirma (berraklastirma) birimi ise tiim bu islemler sonucunda

elde edilen bulanik ¢iktt sonucunu kesin bir sayisal degere doniistiirmektedir [172].

YSA ve bulanik mantigin kombine edilmesi ile olusturulan USBCS, 6zellikle dogrusal
olmayan problemlerin ¢oziimiinde kullanilmaktadir. Bulamik c¢ikarim sistemlerinde
baslica iki farkli yaklasim bulunmakta olup bunlar Mamdani ve Takagi-Sugeno
yontemleridir. Mamdani bulanik ¢ikarimi ilk olarak, deneyimli insan operatorlerden
elde edilen bir dizi dilsel kontrol kuralinin sentezlenmesiyle bir kontrol sistemi
olusturmak i¢in tanitilmistir [173]. Bu yaklasimda her kuralin bir ¢iktis1 bulunmaktadir.
Bulaniklagtirma biriminden gelen fonksiyon iiyelik seviyeleri, her bir kural igin
maksimum ya da minimum iliskilendirme operatdrii sayesinde ¢ikis tiyelik fonksiyonu
ile iliskilendirilmektedir [174]. Her kurala ait ¢ikti, ¢ikis tiyelik fonksiyonundan ve
bulanik ¢ikarim sisteminden tiiretilen bir bulanik kiimedir. Bu ¢ikt1 bulanik kiimeleri,
bulanik ¢ikarim sistemindeki toplama yoOntemi kullanilarak tek bir bulanik kiimede
birlestirilmektedir. Daha sonra ise nihai net ¢ikt1 degerinin hesaplanmasi igin birlesik
ciktr bulanik kiimesi, durulastirma (berraklastirma) islemi i¢in Onerilen yontemlerden
biri kullanilarak bulaniklagtirilmaktadir. Mamdani bulanik ¢ikarimi daha sezgisel
olmakla birlikte anlasilmasi ve yorumlanmasi daha kolay kural tabanlarina sahiptir
[175]. Bir diger bulanik ¢ikarim yaklasimi olan Takagi-Sugeno’da, girdi degerlerinin
sabit veya dogrusal bir fonksiyonu olan tekil ¢ikis iiyelik fonksiyonlar1 kullanilmaktadir.
Bu yaklasimda; bulaniklastirma biriminden gelen fonksiyon iiyelik seviyeleri polinom
c¢ikis lyelik fonksiyonlart ile iligkilendirilmektedir. Durulastirma (berraklagtirma) islemi
ise iki boyutlu bir alanin merkezini hesaplamak yerine birka¢ veri noktasinin agirlikli
ortalamasin1 veya agirlikli toplamimi kullanmakta olup bu yo6niiyle Mamdani
yaklagimina kiyasla hesaplama kolayligi saglamaktadir. Ayrica Takagi-Sugeno bulanik
cikarim sistemi, optimizasyon ve uyarlanabilir tekniklerle iyi ¢aligmakta olup

matematiksel analizler i¢in ¢ok uygundur [176].
2.2.7.2.1. Uyarlamah Sinirsel Bulanik Cikarim Sisteminin (USBCS) Yapisi

Uyarlanabilir bir ag sistemine girdi ve ¢ikti degerleri verilerek, USBCS modelinde
geriye yayma metodu ile en kiigiik kareler metodu kullanilarak bulanik bir ¢ikarim

sonucu elde edilmeye calisilmaktadir. Bu islemler esnasinda iiyelik fonksiyonlar ile
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birlikte “eger-ise” seklinde olusturulan bulanik kurallar dikkate alinmaktadir. x ve y
girdi degerleri ile f ¢ikt1 degerli, Gauss liyelik fonksiyonuna sahip, “eger-ise” bulanik
kurallt birinci mertebeden Takagi-Sugeno yaklasimina dayali bir USBCS’nin yapisi

matematiksel olarak asagida verilmektedir:

X—C

m] (2.60)

1
pUa(x,c,s,m) = exp [—5 .

Esitlik 2.60°da verilen p, ifadesi A bulanik kiimesinin tiyelik fonksiyonunu, x,c,s, m

ifadeleri ise kiimenin destek ve genislik parametrelerini temsil etmektedir.
Kural 1: Eger u(x), A1 ve u(y), Biise fi = p1x + quy + 1 (2.61)
Kural 2: Eger u(x), A2 ve u(y), Baise f, = p,x + g,y + 13 (2.62)

Esitlik 2.61 ve 2.62°de verilen ifadelerden A1, Bi, A2, B: ifadeleri x ve y girdi
degerlerinden tiyelik fonksiyonlari ile elde edilen bulanik kiimeleri; p;, g4, 71, P2, 42, 1
ifadeleri ise f c¢ikti degerine ait ¢ikis fonksiyonlarini temsil etmektedir. USBCS’nin
Takagi-Sugeno bulanik ¢ikarim yaklasimma dayali iki girisli katman yapist Sekil
2.21°de gosterilmistir.

1 Katman 2Katman 3.Katman 4.Katman 5.Katman

X
Al \ o l
w w
X< IT : N :

Ylfl
A
e —

Sekil 2.21. iki girisli USBCS genel yapis1

Sekil 2.21°de gosterilen USBCS genel yapisinda girdi degerleri diiglimler araciligr ile
ilk katman olan bulaniklastirma katmanina iletilmektedir. Bu katmanda girdi degerleri
Ai ve Bi seklinde bulanik kiimelere ayrilarak Gauss iiyelik fonksiyonu ile tyelik
dereceleri belirlenmektedir. 2. katman olan kural katmaninda, bulaniklagtirma

katmanindan gelen iiyelik derecelerinin ¢arpilmasiyla “eger-ise” bulanik kuralina dayali
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olarak her bir kuralin agirlig1 w; hesaplanmaktadir. Bu w; degerleri, katmandaki her bir
diigimiin ¢ikisidir. 3. katmana normallestirme katmani da denilmekte olup i’nci kuralin
tiim kurallara orani1 hesaplanarak normallestirme seviyesi belirlenir. Arindirma katmani
olarak adlandirilan 4. katmanda, i’nci kuralin model ¢iktilarina olan etkisi
hesaplanmaktadir. Son katman olan 5. katman ise toplam katmanidir. Arindirma
katmanindan gelen tim diigiimlere ait ¢ikislarin toplandigi ve sonug olarak tek bir f

ciktisinin elde edildigi katmandir.
2.2.7.3. Destek Vektor Makineleri (DVM)

Destek Vektor Makineleri (DVM) (Support Vector Machines-SVMs), 1995 yilinda
Cortes ve Vapnik tarafindan Onerilmis istatistiksel 6grenme teorisi ile yapisal risk
minimizasyonuna dayali bir makine 6grenmesi yontemidir [177]. Yiiksek boyutlu ve
kiiclik sayidaki egitim verilerinden basarili bir sekilde 6grenmeyi gerceklestiren yeni
nesil bir 6grenme teknolojisine sahiptir. Siniflandirma ve regresyon problemlerinin
¢oziimiinde yaygin bir sekilde kullanilmakta olup Destek Vektor Makine
Smiflandirmast (DVMS) ve Destek Vektor Makine Regresyonu (DVMR) olmak iizere
baslica iki alt gruba ayrilir. DVM, ozellikle siniflandirma problemlerinde basarili
sonuglar vermektedir. Ayrica iyi bir genelleme yetenegine sahip olmasindan dolay1

tahmin modellerinde de siklikla kullanilmaktadir.

YSA ve bulanik mantik gibi makine 6grenmesi yontemlerinde ¢ok fazla egitim verisine
ihtiyag duyma, boyut problemi, yakinsama oraninin distikligi, yerel minimuma
takilma, sisteme odaklanma ve uyum saglayamama gibi eksiklikler goriilebilmektedir
[178]. Diger yontemlerde goriilen bu eksikliklerin temel nedeni bu ydntemlerin
deneysel risk minimizasyonuna bagli olarak calismasidir. DVM ise yapisal risk
minimizasyonu prensibine bagli olarak 6¢grenme islemini gerceklestirdiginden yukarida
belirtilen problemleri ¢ozmesi daha kolay olmustur [179]. Kisaca 6zetlenecek olursa
deneysel risk minimizasyonu, bir yonteme ait 6grenme algoritmasinin deneysel riski
minimum tutmay1 amag edinen tiimevarimsal metotlar yaklasimia dayanmaktadir. Bu
yaklagimda sadece egitme verisinden elde edilen bilgiler baz alindigi i¢in risklerle ilgili
olarak genelleme yapilmaktadir. Bundan dolay1 deneysel risk ile beklenen risk arasinda
yakinsama problemi ortaya ¢ikmaktadir. Yapisal risk minimizasyonu da deneysel risk

minimizasyonu gibi tiimevarimsal prensibe dayanmaktadir. Ancak farkli olarak yapisal
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risk minimizasyonunda istatistiksel 6grenme teorisi ile kiiglik bir 6rnek uzayi ele
alinmakta ve yakinsama fonksiyonlar1 belirli sinirlarda tutularak beklenen risklerin ve
genelleme hatalarinin mimimumda kalmasi saglanmaktadir. Boylece egitme verileri i¢in
en optimum 6grenme becerisi elde edilmektedir. Istatistiksel dgrenme teorisi, Vapnik ve
Chervonenkis tarafindan 1991 yilinda gelistirilmis kiigiik veri setlerinden 6grenmeyi
saglayan etkili bir 6grenme yontemidir. Ancak bu Ogrenme teorisinde, veri ile
yakinsama fonksiyonlar1 arasinda eksik ya da fazla olabilen uyum problemleri ortaya
cikabilmektedir. Yani kullanilan 6grenme algoritmasi bir egitim verisinden ya eksik
ogrenme ya da fazla 6grenme kazanmistir. Bu uyum problemini ¢dzmek ve model
karmagikligin1 azaltmak adina diizenleyici ya da kontrolii saglayan bir parametre
kullanmak gerekir. Bu parametre yardimiyla belirlenecek olan bir denge noktasi uygun
fonksiyonlarin segimini kolaylastirmaktadir. Yine Vapnik ve Chervonenkis (1971)
tarafindan gelistirilen ve Vapnik-Chervonenkis Teorisi (VC) olarak adlandirilan
yaklasimda VC boyutu ile en optimum uyum noktasi belirlenerek eksik ya da fazla
ogrenmeden kaginilir, ayrica model karmasikligi da diizenlenmektedir. VC boyutunun
istatistiksel 6grenme teorisine dahil edilmesi ile birlikte modelden daha optimum
sonuglar elde edebilmek icin ele alman bu risk yaklasimma da yapisal risk
minimizasyonu denir. Her ne kadar simiflandirma problemleri igin gelistirilmis olsa da
riskin minimize edilmeye c¢alisildigi herhangi bir problemde de bu yaklasim
kullanilabilir. Yapisal risk minimizasyonunda baslica iki strateji vardir. Bunlar; VC
boyutunu sabit tutarak deneysel riski minimize etmek ya da deneysel riski sabit tutup
VC boyutunu minimize etmektir. Diger makine 6grenmesi yontemleri ve istatistiksel
yontemler genellikle ilk stratejiyi kullanirken, DVM ikinci stratejiyi kullanmaktadir
[180]. VC boyutu aslinda bir sinirlama parametresidir. VC boyutu sonlu bir deger

almakta olup matematiksel ifadesi ise asagida verilmistir:

n(1og(3r)+1)-logD)
n

R(a) < Ryen(a) +\/ (2.63)

Esitlik 2.63’te verilen R(a) gercek riski, R;.,(a) deneysel riski, h VC boyutunun

degerini, n egitim veri sayisini, 1) ise [0,1] araliginda deger alabilen bir parametredir.

Daha 6nce DVM’nin simiflandirma problemlerinde DVMS ve regresyon problemlerinde

ise DVMR diye adlandirilan alt yontemlerine ayrildigi belirtilmisti. DVM daha ¢ok
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siiflandirma problemlerinde ele alinan denetimli 6grenme yaklasimina dayali bir
makine 6grenmesi yontemidir. Siniflandirmadaki amag ele alinan verilerin dogru bir
sekilde ayristirilmasmi saglamaktir. Iki farkli sinifin birbirinden ayrilmasi amaciyla
dogrusal bir siir ¢izgisi kullanilir. Sinir ¢izgisi ile birlikte marjin ad1 verilen bir aralik,
en iyi ve en genis (maksimum) sinir aralifini bulmak i¢in kullanilir. Sekil 2.22°de

DVM’nin gosterimi verilmistir.

-
>

LA T
QT B sinifi

> X
Sekil 2.22. DVM smiflandirma durumu

Sekil 2.22°de gosterimi verilen DVM’nin smiflandirma durumunun daha iyi
anlasilabilmesi i¢in siniflandirma elemanlarin1 agiklamak gerekir. DVMS ile n
elemandan olusan bir 6rnek uzaydaki egitme verilerinin A ve B simiflarina ayrilmasi

asagida esitligi verilen ayirict fonksiyon ile yapilmaktadir:
fx)=w.x+b=0 (2.64)

Esitlik 2.64’te verilen w ifadesi agirlik vektoriini, x diizlemde bulunan bir veri
noktasint ve b ise bias (sapma ya da hata) degerini temsil etmektedir. Esitlikte elde
edilmek istenen f(x) fonksiyonu ise optimum hiper diizlem yani en optimum dogrusal
sinir ¢izgisidir. Optimum  hiper diizlemin bulunabilmesi igin smira en yakin veri
noktalarini igeren |w.x; + b| =1 esitliginin Olgeklendirilmesi gerekmektedir. Veri
noktalarinin bazilar1 bu esitligi w.x + b = 1 durumunda saglarken bazilar1 da w.x +
b = —1 durumunda saglamaktadir. Optimum hiper diizleme en yakin konumda bulunan
vektorler, destek vektorleri olarak adlandirilmaktadir. Ayrica optimum hiper diizlemin
boldiigii sinirin yani marjinin toplam uzunlugu 2/||w||’dir. Agirlik vektorii olan w’nin

farkli degerlerine gore farkli ayirict fonksiyonlar elde edilebilmektedir. Bu noktada VC
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boyutu devreye girerek sinirin yani marjinin genisligini ayarlamaktadir. w degerinin
kiiclik olmas1 VC boyut degerinin de kii¢iik oldugu anlamina gelir ve bu kosulda marjin
genisligi maksimumdur. Marjin genisliginin maksimum istenmesinin sebebi
algoritmanin daha biiylik bir marjinde daha iyi genellemeler yapabilecek olmasidir.
DVMS, marjin genisligini maksimuma ulastirarak yapisal risk minimizasyonuna olanak
saglamaktadir. ||w|| degerinin (agirlik vektdriiniin normu) minimize edilmesi 1/2||w||?
degerinin karesel programlama problemi ile minimize edilmesi ile miimkiin olmaktadir.
Maksimum marjin genisligi asagida verilen Lagrange optimizasyon fonksiyonu

yardimiyla bulunur:
Minimizasyon: min% llw||? yilw.x; +b) = +1 Vi (2.65)

Smiflandirma problemlerinde goriilen genelleme hatalar1 ile model karmasikligi
istatistiksel 6grenme teorisi temel alimarak CV boyutu ile ¢oziilebilirken yine siklikla
karsilagilan dogrusal olmayan uyum sorunlarinin ¢oéziimiinde de c¢ekirdek (kernel)
fonksiyonlart kullanilmaktadir. Cekirdek fonksiyonlari, farkli simiflarin optimum bir
hiper diizlemle ayrilamadigi durumlarda kullanilir. Ancak hem bu g¢alisma tahminler
iizerine oldugundan hem de DVMR’de ¢ekirdek fonksiyonlarindan bahsedileceginden
dolayr burada ¢ekirdek fonksiyonlarindan bahsedilmemigtir. DVMS 0grenme
algoritmalari, hem egitme hatalarinin  bulunmadigi  dogrusal siniflandirma
problemlerinde hem de egitme hatalarinin bulundugu dogrusal olmayan siniflandirma
problemlerinde kullanilmaktadir. DVMS 6grenmesi, basglangicta iki sinifli siniflandirma
yapmaktayken daha sonralar1 olusan ihtiyaglara bagli olarak ¢oklu siniflandirmalarda da

kullanilmaigtir.
2.2.7.3.1. Destek Vektor Makine Regresyonu (DVMR)

DVM’nin regresyon problemlerini ele alan alt grubu, Destek Vektér Makine
Regresyonu (DVMR) o6grenme yaklagimidir. DVM’lerin regresyon problemlerinin
¢oziimiinde kullanilmast Smola ve Scholkopf (2004) tarafindan Onerilmistir [181].
Burada bahsedilen regresyon problemlerinden kasit tahmin problemleridir. Ele alinan
bir veri setini meydana getiren rastgele de§iskenin degerini, degisimini etkileyecek

baska bir degisken degerine bagli olarak dogru bir sekilde tahmin etmek icin regresyon
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denklemleri kullanilmaktadir [182]. Regresyon ile ilgili daha detayli bilgiler ilerde

Gauss Siire¢ Regresyonu (GSR) yontemi tanitilirken verilecektir.

Genel olarak DVMS’de kabul edilen prensipler DVMR’de de gecerli olmakla birlikte
bu iki yaklagim arasinda kii¢lik farkliliklar s6z konusudur. Siniflandirma problemlerinde
verileri birbirinden ayiran optimum hiper diizlemde hic¢bir veri kalmayacak sekilde
marjin genisligi maksimize edilirken regresyon problemlerinde bahsedilen durumun
tersi olarak optimum hiper diizlem sinirlart igerisinde maksimum verinin kalmasina
yonelik bir yaklasim s6z konusudur. Burada regresyondaki hatalarin belirli bir esik
deger icerisinde kalmasi saglanarak hatalar minimize edilmektedir [183]. DVMR, ayni
zamanda genelleme hatalarin1 da maksimum bir seviyede tutarak azaltmayi
amaglamaktadir. DVMR’deki asil amag, ele aliman egitme verilerinin benzer olan
Ozniteliklerini en yakin ve dogru bir sekilde belirlemeye yarayan dogrusal fonksiyonun
belirlenmesidir. DVMR’de hem dogrusal hem de dogrusal olmayan regresyon
problemleri ele alinmaktadir. Ancak dogrusal olmayan regresyon problemlerinin
coziilmesi olduk¢a zor oldugundan DVMR’nin detayli 6grenme yaklagimi daha ¢ok

dogrusal olmayan problemlere yoneliktir [184].

DVMR yonteminde; daha once Esitlik 2.64’te verilen f(x) > y=w.x+b =0
dogrusal ayirim fonksiyonunun sagladigi w.x + b = 1 ve w.x + b = —1 noktalarindan
onceden belirlenen bir € sapma degeri kadar bir mesafeye ve hata oranina miisadele
edilir. Yani; ele alinan egitim verisinin elemani olan gercek xi degerinden, dnceden
belirlenen bir deger olan &’dan biiyliik olmayan bir uzakliktaki tahmin y: degerini
hesaplayabilecek bir f(x) fonksiyonu elde etmek amaclanmaktadir. Ogrenme
algoritmasimin elde ettigi hata degerinin, &’dan kii¢iik olmasi 6nemsenmeyecek ancak
bu degeri gecmesi model performansi agisindan kabul edilmeyecektir [185]. Dogrusal

ayirim fonksiyonun her iki noktasina & sapma degerinin eklenmesi ile;
lyi — (w.x; + b)| < ¢ (2.66)

esitligi elde edilmektedir. DVMR’nin dogrusal regresyondan en onemli farki, dogrusal
regresyon uygulamalarinda veri setinin tamami dikkate alinirken DVMR’de 6znitelik
bakimindan belli bir diizlemde yer alan veriler ele almir. Iste bu husustan dolay: Esitlik

2.66 ile bulunmaya calisilan f(x) fonksiyonunun tiim veri seti igin saglanmasi ¢ok
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zordur. Bu problemi ¢ozebilmek amaciyla & ve & esneklik degiskenleri
kullanilmaktadir. DVMR’nin sapma degerleri eklenmis gdsterimi Sekil 2.23°te

verilmistir.
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Sekil 2.23. DVMR’nin sapma degerli gosterimi

¢t >0 ve & >0 olmak tizere y; — (W.x; + b) < e+&"ve (w.x; + b) —y; < e+&
esitliklerine bagli olarak DVM’de de bahsedilen minimizasyon igsleminin son durumu

asagidaki esitlikte verilmistir.
Minimizasyon: min% Wl + C Xk (& + &) (2.67)

Esitlik 2.67°de verilen C parametresi, deneme-yanilma yoluyla dnceden belirlenen ve
hatalarla regresyon fonksiyonunun iliskisini dengeleyen bir karmasiklik katsayidir
[186]. Bu parametreye bazi kaynaklarda ceza parametresi de denilmektedir. C
parametresinin se¢imi model performansi agisindan olduk¢a onemlidir. Yiiksek segilen
bir C degeri, yiiksek hatalara sebep olabilecegi gibi, diisiik secilen C degeri ise optimum

hiper diizlemin yeri ile ilgili yanliglara sebep olabilir.

Dogrusal olmayan regresyon problemleri, dogrusal olan regresyon problemlerine gore
daha karmasik yapiya sahiptir. Esitlik 2.67°de verilen minimizasyon igleminde dogrusal
bir fonksiyon elde edilemedigi takdirde DVMR’nin dogrusal olmayan durumuna
dontstiiriilebilmesi i¢in giris uzayindan daha yiiksek boyutlu bir nitelik uzayina gegisin
saglanmas1 gerekmektedir. Bu gecis, ¢ekirdek (kernel) fonksiyonlari araciligi ile
haritalama fonksiyonlar1 kullanilarak saglanir ve bdylece optimum hiper diizlem

belirlenmektedir.
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Egitme veri setinin elemanlar1 S={(x1, y1), (X2, ¥2), ... ,(Xn, Yn)} olmak {izere; giris
uzayinda bulunan x; degiskenleri @: R; — H fonksiyonu ile yiiksek boyutlu nitelik
uzayina haritalanmaktadir. Daha 6nceden verilen w.x + b = 0 esitliginde x olan yere

@(x) haritalama fonksiyonu yazildiginda DVMR hiper diizlemde;
fx) =Yy, =wl.0(X)+b wEeER, bER (2.68)

regresyon fonksiyonunu elde etmeye ¢alisir. Burada w agirlik vektoriini, @ haritalama
parametresini ve b ise bias (sapma ya da hata) degerini temsil etmektedir. Dogrusal
olmayan regresyon problemlerinin ¢éziimiinde i¢ ¢arpimlart dogrusal olmayan ¢ekirdek
fonksiyonlar1 kullanilir. DVMR’nin 6grenme algoritmalar1 sadece x; degiskenlerinin
bulundugu H giris uzayindaki i¢ ¢arpim noktalarina baglidir. Bu yiizden i¢ ¢arpim
sonucu, @ haritalama fonksiyonunun bilinmesine gerek kalmadan k(xi,xj) =
(Z)(xl-)T(Z)(xj) fonksiyonunun hesaplanmasi ile bulunabilmektedir. Yani giris uzayindaki
cekirdek nitelik uzayindaki bir i¢ carpima esitlenmektedir. k fonksiyonu yiiksek boyutlu
nitelik uzayinda bir noktaya karsilik gelen bir islevi temsil etmektedir [187]. Ortamlar
arast gegisler saglandiktan sonra asagida verilen su hiper diizlem esitligi elde

edilmektedir:

fO) =X ary.0(x).0(x) +b) =T a;.yi. k(x;,y) + b (2.69)

Esitlik 2.69°daki hatalar1 azaltmak amaciyla Lagrange carpanlari ile birlikte karesel
programlama problemi ¢oziiliir ve son durumda nihai regresyon fonksiyonu elde edilir.
Tim bu hesap adimlarinin ardindan elde edilen DVMR regresyon fonksiyonu su

sekildedir:
f(x) =X(a” — a)k(x;,x;) + b (2.70)

Esitlik 2.70°de verilen a® ve a ifadeleri Lagrange carpanlanidir. k(x;,x;) cekirdek

fonksiyonlarini temsil etmekte olup nitelik uzayindaki i¢ ¢arpimi vermektedir.

Cekirdek fonksiyonlari hem siniflandirma hem de regresyon problemlerinde kullanilan
Ogrenme algoritmalarina esneklik kazandirmaktadir. Dogrusal, Anova, Bessel, polinom,
radyal tabanli, Gauss, Laplace, sigmoid (hiperbolik tanjant) gibi baslica ¢ekirdek

fonksiyonlar1 bulunmaktadir. Her ¢ekirdek fonksiyonunun farkli yapisi, farkli hesap ve
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optimizasyon adimlar1 ile farkli parametreleri vardir. DVM’de kullanilan ¢ekirdek

tipleri ve ana fonksiyonlar1 Tablo 2.5’te verilmistir.

Tablo 2.5. Cekirdek tipleri ve fonksiyonlari [188]

Cekirdek tipi Fonksiyonu

Dogrusal k(x,y) =xTy+c

Polinom k(x,y) = (axTy + ¢)4

Sigmoid (Hiperbolik tanjant) k(x,y) = tanh(axTy + ¢)

Bessel k(x,x") = —Bessel{,,.1y(c]x — x'|*)
Gauss (Radyal tabanlr) k(x,y) = exp(—yllx — yll?)

n
k() = ) exp(—o(xk -y
Anova (Radyal tabanli) =1
llx = yli

Laplace k(x, ) = exp(= )

DVMR ’nin 6zellikle tahmin ¢alismalarinda yaygin bir sekilde kullanilmasinda ve model
performanslarinin iyi ¢ikmasinda g¢ekirdek fonksiyonlarinin kullantminin 6nemli bir

etkisi vardir.
2.2.7.4. Gauss Siire¢ Regresyonu (GSR)

Gauss Siire¢ Regresyonu (GSR) (Gaussian Process Regression-GPR), Rasmussen ve
Williams (2006) tarafindan Onerilen, parametrik olmayan ve Bayes 0Ogrenme
yaklagimina dayali bir makine 6grenmesi yontemidir [189]. Ayrica g¢ekirdek (kernel)
fonksiyonlarini temel alarak olasilik dagilimlarini belirleyen 6grenme yaklasimlarina
sahiptir. Kendine 6zgii bu 6grenme algoritmalar1 sayesinde daha az veriye ve daha az
parametreye ihtiyag duyan ve veri koruma 6zelligi bulunan esnek bir denetimli 6grenme
aracidir. Yine DVM’de oldugu gibi ¢ekirdek fonksiyonlar: da kullanildigindan dogrusal
olmayan problemlerin ¢0ziimiinde basarili sonuglar vermektedir. Tim bu
ozelliklerinden dolayr son yillarda yapay zekanin kullanildigi tahmin g¢alismalarinda
siklikla tercih edilmektedir.

Tez calismasinda daha onceki boliimlerde bahsedilen denetimli 6grenme algoritmasi,

ele alman bir egitme veri setindeki giris degiskenlerini baz alarak ¢ikis degiskenini
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tahmin etmeyi amaclayan ve Ogrenen sistemin Ogrenmesi istenen olay ile o olayin
sonuclar1 arasindaki iliskiyi belirlemesi istenen bir 6grenme yaklagimidir. Ogrenme
algoritmasina yapilan dis miidahaleler nedeniyle denetimli olarak adlandirilmaktadir.
Denetimli 6grenmede, sonlu bir egitme veri setindeki tiim girdi degerleri i¢in tahminler
yapan bir fonksiyonu elde etmek olduk¢a gii¢ olabilmektedir. Bu problemi ortadan
kaldirmak adina ¢esitli yontemler gelistirilmistir. Bu yontemlerde baslica iki farkl
strateji dikkate alinmaktadir. Bunlardan ilki, veri setindeki girdinin sadece dogrusal
fonksiyonlarin1 dikkate alarak ele aliacak olan fonksiyonu sinirlamaktir. ikinci strateji
ise her fonksiyona onceden bir olasilik vermektir; hatta, daha olas1 oldugu disiiniilen
fonksiyonlara daha yiiksek olasiliklar vermektir. 1k stratejide fonksiyon segimi kritik
bir husus olup ikinci stratejide ise sonsuz sayidaki olasilik fonksiyonun sonlu hale nasil
getirilecegi problem olmaktadir. Iste bu noktada Gauss siireci devreye girmektedir.
Gauss siireci, Gauss olasilik dagilimimnin 6zellestirilmis bir formudur. Egitme veri setini
kendi i¢cinde korumaya alir ve olasilik dagilimlarmi detaylica analiz ederek basarili bir
O0grenme saglar. Diger makine Ogrenmesi algoritmalarinda veri korumasi yoktur ve
verilerin dagilimin1 6grenme konusunda zorluk yasarlar. Olasilik dagilimlari, skaler ya
da vektor rastgele degiskenleri karakterize eder ancak fonksiyonlarin ozelliklerini

belirlemek ve tanimlamak i¢in Gauss siireci gibi stokastik siirecler gerekir [190].

Genel olarak 6grenme algoritmalari, elde edilen ¢iktilar siirekli ise regresyon, kesikli
(ayrik) ise siniflandirma problemlerinde analiz edilmektedir. Iki veya daha fazla
sayidaki degisken arasindaki iliskiyi tahmin etmek icin kullanilan denetimli 6grenme
yontemlerine ise regresyon denilmektedir. Stokastik Gauss siirecine regresyon analizi
bu tanimlamalardan dolayr girmis olup GSR yo6ntemi, tahmin belirsizliklerine yonelik

calismalarda yaygin olarak kullanilmaktadir.

Gauss siireci ile ilgili olarak ilk once standart dogrusal regresyon modeline ait Gauss

dagilimi ve Bayes analizinden bahsetmek gerekir.

fX)=xTw, y=f(x)+e¢ (2.71)

Esitlik 2.71°de verilen f fonksiyon degerini, x giris vektoriini, w dogrusal modelin
agirlik vektoriinii, € bias (sapma ya da hata) degerini, y ise gozlenen hedef vektoriinii
temsil etmektedir. y gozlenen hedef vektorii, f(x) fonksiyonundan & sapma degeri

kadar farklilik gostermektedir ve buna modelin giiriiltiisii de denmektedir. Bu giiriilti
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degerinin bagimsiz, sifir ortalama ve varyans degeri ile Gauss dagilimina uygun oldugu

kabulii yapilmistir. Bu varsayimin matematiksel gosterimleri su sekildedir:
e~N(0,02) (2.72)
y =f(x)+N(0,07) (2.73)

Giriilti 1le 1lgili bu varsayim, egitme veri setindeki gozlemleri ¢arpanlarina ayiran
parametreler araciligi ile dogrudan goézlemlerin olasilik ve olasilik yogunluklarina
ulagilmasini saglar. Bu giiriiltii varsayimindan yola ¢ikarak asagida verilen olasilik

yogunluk esitligi elde edilmektedir.

o Tu)?
pOIX, w) = [Ty p il w) =TTy o exp(= (yz—w)) =NX"w,02l)  (274)

Bu esitlikten Bayes formiiliine gecebilmek igin de gozlemlerden Once ¢arpan
parametreleri ile ilgili ¢esitli varsayimlar yapilmis olup agirlik vektorlerine kovaryans

matrisi ile sifir ortalamali bir Gauss eklenmistir.
w~N(0,%,) (2.75)

Esitlik 2.75’te verilen varsayimin anlami, gézlem elemanlarinin analizinden dnce agirlik
vektorleri lizerinde bir 6nciil dagilimin uygulanmasidir. Bu islemden sonra ise Bayes
kuralina gore gozlem kiimesinin soncul olasilik dagilimi belirlenmektedir. Ingiliz
matematikgi, istatistik¢i ve teolog Thomas Bayes’in 18. yy’da temellerini attig1 ve
sonradan istatistik ve olasilik caligmalarinda yaygin olarak kullanilan Bayes teoremi ya
da Bayes kural1, bir rastgele degisken i¢in olasilik dagilimi i¢indeki kosullu olasiliklar
ile marjinal olasiliklar arasindaki iligkiyi gostermektedir [191].

_ pIXw)p(w)
pWly, X) === (2.76)

Esitlik 2.76’y1 sozel olarak ifade edecek olursak Bayes kuralinda soncul dagilim su

sekilde olmaktadir: Soncul olasilik dagilimi = (Olasilik X 6nciil) / (marjinal olasilik)

Gauss siireci, Gauss dagilimina sahip sonlu sayidaki rastgele degiskenlerin toplamini

ifade eder. Daha once bahsedildigi iizere ele alinan agirlik vektorlerine kovaryans
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matrisi ile sifir ortalamali bir Gauss eklenmektedir. Son durumda Gauss siireci asagida

verilen su esitlik ile temsil edilmektedir:
f(x)~GP (m(xi), k(xirxj)) (2.77)

Esitlik 2.77°de verilen m(x;) ortalama bir fonksiyonu, k(x; x;) ise kovaryans
fonksiyonunu temsil etmektedir. Kovaryans matrisini elemanlar1 rastgele degiskenler
arasindaki benzerlikleri temsil eder. Rastgele degiskenler arasindaki benzerlikler ise

asagida verilen iistel fonksiyon araciligi ile belirlenebilmektedir.
2 2
k(x;,x;) = exp (||xi — x|/ (20 )) (2.78)

Esitlik 2.78de verilen o, ¢ekirdek genislik parametresini ifade eder ve bu parametrenin
optimize edilmesi gerekir. Gauss siirecinde kullanilan 6grenme algoritmalarinin en
onemli avantajlarindan biri de Bayes kuralina dayali olasiliksal 6grenme ile ¢ekirdek

fonksiyonlarii birlestirmesidir.

Gauss stirecinde gézlem kiimesi disinda bir x, degisken verisine bagl olarak w agirlik
vektoril tizerindeki y, ¢iktr degerinin tahmini dagilimini belirlemek igin asagida verilen

ve Gauss tarafindan tanimlanan gémiileme fonksiyonu kullanilmaktadir.

Pl (x,¥), %) = N(u.(x.), 07 (x.)) (2.79)

Esitlik 2.79’da verilen tahmini ortalama u,(x,) ve kovaryans o2(x,) ifadelerinin

degerlerini bulmak i¢in asagida verilen esitlikler kullanilmaktadir.
w.(x,) = kI'(Kg + 0271y (2.80)
02(x,) = k.. — kT (Kg + a?1)7k, (2.81)

Esitlik 2.81°de verilen k, ifadesi, egitme ve test verileri arasindaki kovaryans
degerlerine karsilik gelen N x 1 matris boyutundaki kovaryans vektoriidiir. k,, ifadesi
ise test veri setinin otokovaryans vektoriidiir. Tahmini ortalama ve kovaryansi elde
etmek i¢in uygun bir kovaryans fonksiyonu secilmelidir. Ciinkii Gauss slirecinde
gbzlem elemanlar1 hakkinda agirlik vektorleri tizerinden 6nceden bilgi almak, kullanilan

ogrenme algoritmasinin en 6nemli yaklasimidir [192]. Kovaryans matrisi, egitme ve test
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ciktilar1 arasindaki iliskiyi mesafelerine goére modelleyen ¢ekirdek (kernel)
fonksiyonlar1 kullanilarak belirlenir. Bu noktada da ¢ekirdek fonksiyonlar1 baz alinarak
belirlenen kovaryans fonksiyonunun se¢imi model performansi agisindan oldukca
onemli olmaktadir. Ayrica farkli ¢ekirdek fonksiyonlarinin kombine edilmesi ile de
daha anlasilir ve yeniden kullanilabilir veri setleri elde edilmektedir. Gauss siireclerinde
yaygin olarak kullanilan kovaryans fonksiyonlari, radyal tabanli temel fonksiyonlar ve
diger cekirdek fonksiyonlar1 ile bunlarin versiyonlar1 olarak ayrilmaktadir. Radyal
tabanli temel fonksiyonlar sunlardir: sabit, dogrusal, sifir, saf ikinci dereceden. Cekirdek
fonksiyonlar1 ise karesel iistel, tistel, matern 3/2, matern 5/2, rasyonel ikinci dereceden,
ard karesel tistel, ard tistel, ard matern 3/2, ard matern 5/2, ard rasyonel ikinci

derecedendir.

GSR, dogrusal olmayan fonksiyonlarin ozelliklerini 6grenme konusunda oldukga
basarilidir. Egitme veri setinde onciil olasilik dagilimlar ile elde edilen bilgilere gore
giris ve c¢ikis degerlerinin arasindaki regresyonu ortaya koyar. GSR, 0Ogrenme
asamasinda daha az veriye ve daha az parametreye ihtiya¢ duyan ve belirsizlik

problemleri lizerinde etkili olan bir 6grenme yontemidir.
2.2.7.5. Uzun-Kisa Siireli Bellek (UKSB)

Uzun-Kisa Siireli Bellek (UKSB) (Long-Short Term Memory-LSTM), 1997 yilinda
Hochreiter ve Schmidhuber tarafindan tanitilan bir derin 6grenme algoritmasidir. UKSB
modeli, geleneksel Tekrarlayan Sinir Ag1 (TSA) modellerinin uzun dénem zaman
serilerini tahmin etmede karsilastigi gradyan kaybolmasi ve siirl bellek kapasitesi
problemlerini ¢ozmek ig¢in gelistirilmistir.  UKSB modeli, TSA’nin mimarisini

kullanmakta olup daha da gelistirilmis 6zel bir tiiriidiir [193].

UKSB o6grenme algoritmalarinin yapist ve isleyisi anlatilmadan once TSA’nin
yapisindan bahsetmek gerekir. En basit haliyle TSA, ilk kez Amerikal1 psikodilbilimci
Jeffrey Elman tarafindan 1990 yilinda ciimle yapis1 simiilasyonlarn ile ilgili
calismasinda Onerilmistir. Evrisimli Sinir Aglar1 (ESA) ile birlikte derin 6grenme
algoritmalarindaki iki ana mimariden biri de TSA mimarisidir. TSA mimarisi siralt
olarak bilgileri isleyen modelleme birimlerinden olusmaktayken ESA mimarisi ise
hiyerarsik bir 6grenme yaklasimina sahiptir [194]. TSA mimarisinde ayrica geri

beslemeli bir yaklasimla ¢ok yonlii bir 6grenme dongiisii bulundugundan 6zellikle dil
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isleme problemleri ve zaman serilerinin tahminleri i¢in uygun bir yapist vardir. TSA
mimarisinde tekrarlayan kavraminin bulunmasinin sebebi, bir egitme veri setindeki her
bir veri i¢in ayn1 6grenme islevini onceki ¢iktilara bagli olarak yapmasindan dolayidir.
Yani her bir veriyi sirayla teker teker ele alan bir 6grenme algoritmasina sahiptir. Bu
sayede her bir verinin bagimsiz bilgilerini kendi belleginde tutarak tiim veri setinin
ozelliklerini ve bagimliliklarin1 6grenebilmektedir [161]. Sekil 2.24°te basit haliyle bir

TSA mimarisi gosterilmektedir.
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Sekil 2.24. TSA mimarisi [195]

TSA, her ne kadar sirali bagimlilig1 yakalamak amaciyla tiim verileri isleyerek cok
yonlli bir 6grenme sunsa da bazi1 dezavantajlara sahiptir. Bu dezavantajlarin basinda
gradyan kaybolmasi (Vanishing gradient) problemi gelmektedir. TSA’da kullanilan geri
beslemeli yaklasimda bir dnceki verinin bilgilerinin agirlik degerleri ile ¢arpilmasi ile
bir sonraki adima (katmana) gecilmektedir. Agirlik degerlerini giincellemek amaciyla
tirev yardimi ile gradyanlar kullanilmaktadir. Tirevle ilgili bu hesap adiminda bazi
gradyan degerleri kaybolur. Buna gradyan kaybolmasi denilmektedir. Ayrica sirali bir
sekilde tiim verilerin islenmesi ve bir dongiide ele alinmasi hem zaman hem de bellek

problemlerini ortaya ¢ikarmaktadir. Bazi durumlarda TSA, uzun ve sirali verilere ait
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bilgilerin birbirine bagimliligin1 bulmakta problem yasar ve onceki 6grendigi bilgileri

unutmaya baslar.

Hem gradyan kaybolmasi hem de 6zellikle uzun veri setlerinin ele alindig1 durumlarda
TSA’nin bellek probleminden dolayr UKSB derin 6grenme algoritmasi gelistirilmistir.
TSA’nin mimarisini kullanan UKSB yonteminin 6zellikle uzun zaman serilerindeki
derin 6zelligi son yillarda gelistirilen 6nemli teknolojilerden biridir. UKSB yontemi,
veriler hakkindaki bilgileri uzun vadeli bagimliliklar1 hatirlama yetenegi sayesinde
rahatlikla 6grenebilmektedir. UKSB’nin derin 6zelligi sayesinde unutma, giris ve ¢ikis
kapilar1 ile bellek hiicreleri araciliiyla verinin durum bilgisinin ne zaman unutulacagi
ve ne kadar siireyle saklanacagi 6grenilebilmektedir. UKSB yonteminin TSA’dan en
onemli farkli bellek hiicrelerinin olmast ve burada gizli hiicrelerin hesabinin
yapilmasidir. UKSB 6grenme algoritmasinda, elde edilen bir bilgi bellek hiicresinde
saklanir ve ardindan kapi kontrolleri aracilifiyla bir sonraki hiicreye gonderilir. Bu
kapilar araciligiyla bilgileri detayli bir sekilde islemek olduk¢a kolaydir. Bu 6grenme
akis1 nihai ciktilar elde edilene kadar devam eder. Sekil 2.25’te UKSB modelinin

mimari yapisi gosterilmektedir.

h¢
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Sekil 2.25. UKSB mimarisi [196]

Sekil 2.25’te gosterimi verilen UKSB mimarisinde; x; girdi degerini, h, ¢ikt1 degerini,
C; bellek hiicresi durumunu temsil etmektedir. Ayrica mimaride gosterilen x ve +
sembolleri 6grenme asamasinda kullanilan toplama ve carpma islemlerini temsil

etmektedir. Bellek hiicresi, yapilan ¢esitli iterasyonlar sonucunda verilere ait faydali
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bilgileri saklamak amaciyla tasarlanmis bir bilesendir. Kisacas1 UKSB mimarisinde agin
bellegidir [197]. Yine Sekil 2.25’te gosterilen ve kapi diye adlandirilan boliimler
aciklanacak olursa hiicre durumu elemanlarinin hangi faydal bilgileri tasiyacag: kapilar
vasitastyla belirlenmektedir. Ogrenme akis1 devam ettikce kapilar ile hiicre durumuna
bilgi eklenir ya da ¢ikarilir. Kapilar aslinda 6grenme sirasinda hangi bilgilerin faydali ya
da faydasiz oldugu ile hangi bilgilerin unutulup hangi bilgilerin de saklanacagina karar
veren gelismis sinir aglaridir [198]. Tek hiicreli bir UKSB mimarisindeki 6grenme
akisinin hem kap1 boliimleri agiklamasi hem de matematiksel ifade edilisi sirasiyla

asagida verilmistir.
fe = o(Wp.[he_y, x,] + by) (2.82)

Esitlik 2.82’de verilen f; fonksiyonu, UKSB mimarisindeki unutma kapisini ve unutma
siirecini, o ifadesi sigmoid fonksiyonunu, Wy ve by parametreleri ise sirastyla agirlik
vektoriinii ve bias (hata ya da sapma) degerini temsil etmektedir. Ilk kap1 olan unutma
kapisi, hiicre durumundan hangi bilgilerin unutulacaginin ya da saklanacaginin kararinin
verildigi katmandir. Bu kapida; bir 6nceki hiicreden (h,_;) iletilen bilgi ile birlikte yeni
bilgi degeri x;, sigmoid fonksiyonuna gonderilir. Buradan elde edilen ¢ikt1 bilgisi O ile

carpilarak bilgi unutulur ya da 1 ile ¢arpilarak hiicre durumuna aktarilir.

Unutma siirecinden sonra giris kapisindaki sigmoid katmani olarak adlandirilan i,

degeri asagida verilen esitlikle hesap edilmektedir.
i = o(W;. [he—q, %] + by) (2.83)

Giris kapisi, hiicre durumunda hangi yeni bilgilerin saklanacaginin belirlendigi ve
ayrica hiicre durumunun giincellendigi katmandir. Bu kapida veriler alinarak sahip
oldugu kisa siireli bellek araciligi ile daha onceki bildiklerine ek olarak yeni bilgileri
ogrenmektedir. Unutma kapisinda oldugu gibi yine (h;_;) ve x; degerleri sigmoid
fonksiyonuna goénderilir. Sigmoid fonksiyonunun sonucuna gore onceden elde edilen
bilgi ile yeni ele alinan bilgilerin giincellenip glincellenmeyeceginin karari
verilmektedir. Elde edilen ¢ikt1 bilgisi O ile garpilan bilgilerin faydasiz, 1 ile ¢arpilan
bilgilerin ise faydali oldugu sonucuna varilir. Sigmoid fonksiyonundan sonra agi
diizenlemek amaciyla yine giris kapisinda (h,_;) ve x; degerleri tanjant fonksiyonu

aracilig1 ile aday hiicre durumu degeri olan C, elde edilmektedir. Burada hangi bilgilerin
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saklanacagina karar verebilmek amaciyla elde edilen cikti sigmoid fonksiyonu ile

carpilir.
C; = tanh(W,. [he_y, x¢] + b) (2.84)

Esitlik 2.84’te verilen C, ifadesi 0 ile 1 arasinda deger alan bir aday hiicre durumu

degerini temsil etmektedir.

Giris kapisindaki islemlerden sonra hiicreye gelen C;_; hiicre durumu diger
katmanlardan gelen verilere bagli olarak f; unutma fonksiyonu ile ¢arpilir ve yeni hiicre
durumu olan C; degeri elde edilmektedir. Bu adimda uzun vadeli bellegin béliimlerine

yeni bilgiler eklenerek uzun siireli bellek yenilenmektedir.
Ct = f. Ct—l + it' C(t (2.85)

UKSB mimarisinin son kapisi olan ¢ikis kapisinda; 6nceki katmanlardan gegirilen gizli
hiicre duruma ait (h,_;) Ve x; degerleri sigmoid fonksiyonu ile garpilarak ¢ikis kapisi

¢iktisi olan O, degerinin hiicre durumundan ne kadar etkilendigi belirlenir.
0; = oWy [he—1, x¢] + bo) (2.86)

Esitlik 2.85°te yeni degistirilen C; hiicre durumu, tanjant fonksiyonuna aktarilmakta ve
gizli hiicre durumunun hangi bilgileri tasiyacagina karar vermek amaciyla tanjant
fonksiyonu ¢iktisi, Esitlik 2.86’da hesaplanan sigmoid fonksiyonu ciktist ile ¢arpilir ve

en sonunda gizli hiicre durumu ¢ikisi olan h, elde edilmektedir [199].
h't == Ot.tanh(ct) (287)

Yukarida ozetlenen UKSB’nin 6grenme algoritmasi bu islemi her bir veri i¢in uzun
vadeli bagimliliklar1 belirlemek amaciyla gergeklestirmektedir. Ogrenme akisinda hem
kisa siireli bellegi hem de uzun siireli bellegi aracilig1 ile daha onceki bilgilerine ek

olarak yeni bilgiler 6grenmekte ve yararli bilgileri hiicre durumunda saklamaktadir.

Yapisi ve islevleri yukarida anlatilan geleneksel UKSB yontemine ait ag mimarisinde
zamanla bazi iyilestirmeler yapilmistir. Hiicre durumunda saklanan yararli bilgilerin
unutma ve giris kapilarma da etki etmesini saglamak amaciyla gozetleme deligi

baglantilar1 eklenmistir. Yapilan bir diger iyilestirme de unutma ve giris kapilarinin,
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kapili tekrarlayan birim (Gated Recurrent Unit-GRU) kapisi olarak tek bir kapi haline
doniistiiriilmesidir. Bu kap1 sayesinde giincelleme islemleri daha pratik olarak

yapilmaktadir [200].

TSA Ogrenme algoritmasindaki gradyan kaybolmasi ve smirli bellek kapasitesi
problemlerini ortadan kaldiran UKSB derin 6grenme algoritmasi biiylik ve karmagik
veri setlerini 0grenme konusunda oldukg¢a basarilidir. UKSB yonteminin 6grenme
kapasitesinin diger makine 6grenmesi ve derin 6grenme yontemlerine gore listiin olmasi
nedeniyle 6zellikle son on yillik donemde tahmin ¢alismalar1 basta olmak iizere birgcok

alanda yaygin bir kullanimi s6z konusudur.
2.2.8. Model Performansi Degerlendirme Kriterleri

Kuraklik ile ilgili yapilan bu tez ¢alismasinda ele alinan tahmin modellerinin dogrulugu
ve birbirleri ile karsilastirilmasi, literatiirde yaygin olarak kullanilan istatistik
hesaplarina dayali alti farkli performans kriteri ile degerlendirilmistir. Tahmin
modellerindeki egitme ve test sonuglari i¢in bu performans kriterleri ayr1 ayri
hesaplanmistir. Calismada ele alinan performans Kkriterleri sirasiyla sunlardir: ortalama
karesel hata (OKH), kok ortalama karesel hata (KOKH), ortalama mutlak hata (OMH),
Nash-Sutcliffe etkinligi (NSE), model performansinin genel indeksi (Overall Index
(OD)) ve determinasyon katsayisi (R?).

OKH, KOKH ve OMH degerlerinin 0’a ve R? degerinin ise 1’e yaklasmas1 modelden
elde edilen tahmin degerinin orijinal verilere giiglii bir sekilde yakinsadigimi ve yiiksek
bir tahmin yetenegi oldugunu gostermektedir. NSE, -co ile 1 arasinda degerler
almaktadir. 0,5'ten diisiik NSE degerleri yetersiz, 0,5 ile 0,7 aras1 kabul edilebilir, 0,7 ile
0,9 aras1 yiiksek ve 0,9 ile 1 arasi ise miikemmel bir performans: géstermektedir. Ayrica
NSE degerlerinin 0’dan kiigiik olmas1 modelin kabul edilebilir bir model olmadigini
gostermektedir [201]. Normallestirilmis kok ortalama karesel hata ile model verimlilik
gostergeleri, Ol kriterinde birlestirilmistir. OI degeri de NSE’de oldugu gibi -oo ile 1
arasinda degerler almaktadir. OI’nin 1 degerini almasi modelin miikkemmel bir tahmin
yetenegi oldugunu gostermektedir [202]. Bu ¢alismada kullanilan performans kriterleri

sirastyla asagida verilen esitliklerle hesaplanmaktadir.

OKH == 3" (S¥itah — SYipes)? (2.88)
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1 N .
KOKH = \/E 2 ey (SYlgan — SPles)? (2.89)
1 N . .
OMH = 2y |SYltan — SYlhes] (2.90)
N (SYipes—SYitan)?
NSE — 1 _ [ er\llzl( .hes .tah) (2.91)
Zn=1(SYlhes_SYIhes)2

1 KOKH SN (SYipes—SYitan)?
or=1(2- M— - 2110 Ei (2.92)
2 SYlhes mak— SYlhes min Zn:1(SYIhes_SYlhes)

R2 _ [ ﬁ:l(SYihes_SYitah)z]
N1 (SYliqh—SYitan)

(2.93)

Esitlik 2.88-2.93’te verilen N ifadesi serideki veri sayisini, SYI} .. istasyonlarda

kaydedilen yagis verilerinden hesaplanan kuraklik degerini, SYl;, ise tahmin

modellerinden elde edilen kuraklik tahmin degerini ifade etmektedir. SYljes Ve SYliap
ifadeleri hesaplanan ve tahmin edilen kuraklik degerlerinin ortalamalarini, SY1}.¢ mak
and SY ;¢ min sembolleri ise hesaplanan kuraklik degerlerine ait serideki maksimum ve

minimum degerleri temsil etmektedir.

Yukarida sayilan performans kriterlerinin yani sira hesaplanan kuraklik degerleri ile
modelden elde edilen kuraklik tahmin degerleri arasindaki iliskiyi bir arada
gosterebilmek amaciyla sagilma grafikleri de kullanilmistir. Yine ayni sekilde
hesaplanan referans kuraklik degerleri ile tahmin edilen kuraklik degerlerinin standart
sapma, korelasyon katsayist ve merkezlenmis kok ortalama karesel farki istatistiksel
degerlerinin es zamanl olarak degerlendirilebildigi Taylor diyagramlar1 bu c¢alismada
kullanilmis ve model sonuglari karsilastirilmistir. Tiim bunlara ek olarak tiim
performans kriterlerini bir arada gosteren radar grafikleri, en iistiin sonuclari veren

modeller i¢in hatalar1 daha kolay karsilastirmak amaciyla kullanilmistir [91].
2.2.9. Model Gelisimi

Bu tez calismasinda; Tiirkiye'nin kuzeybatisinda yer alan ve 6nemli nehir havzalarindan
biri olan Sakarya havzasini temsil edecek 10 adet meteoroloji gozlem istasyonuna ait
uzun donem yagis verileri kullanilarak 1, 3, 6 ve 12 aylik kisa donemlerdeki
meteorolojik kuraklik degerleri tahmin edilmeye calisilmustir. istasyonlarin aylik yagis

verilerinden hesaplanan SYI-1, SYi-3, SYI-6 ve SYi-12 kuraklik degerleri, bagimsiz ve
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hibrit tahmin modellerinde egitme ve test giris verisi olarak kullanilmistir. Calismada
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Sekil 2.26°da gosterildigi tizere ¢alismada ilk olarak istasyonlara ait yagis verileri ele
alimmistir. Yagis verileri, Meteoroloji Genel Miidiirliigiinden (MGM)’den temin edilmis
olup gozlem siiresinin yeterli kabul edilebilecek uzunlukta olmasi, eksik veri olmamasi,
verilerin giincel olmas1 ve havzayi temsil etme durumlarina goére havza igerisinden 10
adet yagis istasyonu segilmistir. Segilen istasyonlarda gozlem siireleri igerisinde eksik
veri bulunmadigindan verilerin tamamlanmasina yonelik herhangi bir isleme gerek

kalmamustir.

Ozellikle hidrometeorolojik zaman serilerindeki degiskenlerin dagilimlarinda serinin
homojen, duragan ve bagimsiz olmasi dnemlidir. Seride goriilen trendlerin, ekstrem
sapmalarin ya da degisimlerin yalnizca ilgili degiskene bagli olmasi durumu olan
homojenlik, zaman serisi tahmin modellerinin dogrulugunu, tutarliligmi ya da
giivenilirligini dogrudan etkilemektedir. Bu nedenle ele alinan serinin homojenlik,
duraganlik ve bagimsizlik durumlarinin istatistiksel testlerle kontrol edilmesi
gerekmektedir. Bu caligmada, ele alinan tiim istasyonlara ait ham yagis verilerinin
homojenligini arastirmak amaciyla literatiirde yaygin bir sekilde kullanilan Standart
Normal Homojenlik Testi (SNHT), Genisletilmis Dickey-Fuller Testi (GDFT), Von-
Neumann Homojenlik Testi (VNT) ve Mann-Whitney u Testi (MWT) yontemleri
kullanilmugtir. Testlerle ilgili analizler MATLAB 2021b yaziliminda tamamlanmustir.

Bu calismanin temelini olusturan kuraklik tahmininde, kisa donem meteorolojik
kuraklik degerlerini temsil edecek olan kuraklik indisi ile birlikte indisin degerlerini
hesaplamak da dnemli bir yer tutmaktadir. Bu nedenle havzada ele alinan 10 adet yagis
istasyonunun ge¢mis donem kaydedilen aylik yagis verilerinden meteorolojik kuraklik
degerlerini temsil edecek olan Standartlastirilmis Yagis indeksi (SYI) kuraklik degerleri
1, 3, 6 ve 12 aylik zaman 6lgekleri igin SYI-1, SYI-3, SYI-6 ve SYI-12 olacak sekilde
hesaplanmistir. Hesaplama islemi i¢in arastirmacilara iicretsiz ve acik olan pratik bir
kuraklik indisi hesaplama yazilim1 DrinC (Drought Indices Calculator) kullanilmistir.
DrinC yaziliminin kullanilmasinin sebebi, ¢alismada ele alinan istasyon sayisinin fazla
olmas1 ve dort farkli zaman Olgeginde hesaplamalar yapilmasi gerektigi icin islem
yiikiinden ve zamandan tasarruf saglamaktir. DrinC yazilimi ile tiim istasyonlara ait
SYI-1, SYI-3, SYI-6 ve SYI-12 kuraklik degerleri hesaplanarak tahmin modellerinin

altligini olusturacak olan kuraklik zaman serileri elde edilmistir.
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SYI kuraklik zaman serileri elde edildikten sonra bu serilerde otokorelasyon
probleminin olup olmadig: arastirilmistir. Otokorelasyon varligi, zaman serileri ile ilgili
analizlerde hata terimleri arasindaki bir i¢ bagimlilik durumudur. Bu bagimlilik tahmin
modellerinin basarisin1 etkileyen onemli bir faktordiir. Bu ¢alismada; SYI-1, SYI-3,
SYI-6 ve SYI-12 kuraklik degerlerinin farkli gecikme zamanlan (t, t-1, t-2, t-3, ...vb.)
tahmin modellerinde girdi degiskeni, t+1 zamani ise ¢ikt1 degeri olarak kabul edilmistir.
Zaman serilerine dayali tahmin modellerinin basarisi, gecikme siireleri ile optimum
sayida girdi degiskeni arasindaki iliski ile belirlenmektedir. Bu nedenle calismada,
otokorelasyon fonksiyonu araciligi ile hem serilerdeki otokorelasyon varlig1 arastirilmis
hem de tahmin modellerine girecek olan optimum gecikme zamanlarinin hangi giiven
araliinda kaldig1 belirlenmistir. Calismada nihai olarak kullanilan gecikme zamanlari
ADD-USBCS hibrit modelleri ile belirlenmis olup bu boliimiin ilerleyen kisimlarinda
daha detayli bir sekilde anlatilacaktir. SYI kuraklik zaman serilerindeki otokorelasyon
varligi ve optimum gecikme zamani giiven araligini belirlemek icin MATLAB 2021b

yaziliminda gelistirilen otokorelasyon fonksiyonunun agik kodlar1 kullanilmistir.

Bu tez calismasinda; kuraklik zaman serilerinin analizleri lizerinde duruldugundan veri
doniistirme ve ayristirma, 6zellik ¢ikarma, Oznitelik se¢imi gibi veri 6n islemlerini
yerine getiren Ayrik Dalgacik Doniisimii (ADD), Ampirik Mod Ayristirma (AMA) ve
Varyasyonel Mod Ayristirma (VMA) teknikleri kullanilmistir. {lk olarak ele alinan 6n
isleme teknigi ADD’dir. DD tekniginin bir alt yontemi olan Ayrik Dalgacik Dontistimii
(ADD) kullanilarak Sakarya meteoroloji istasyonunun yagis verilerinden hesaplanan
orijinal SYI-1, SYI-3, SYi-6 ve SYi-12 kuraklik verileri, dalgacik alt bantlarma
ayrilmis ve bu alt bantlar, USBCS tahmin modelinde egitme ve test verisi seklinde girdi
degiskeni olarak kullanilmigtir. Burada sadece Sakarya meteoroloji istasyonunun
kuraklik degerleri dalgacik alt bantlarina ayrilmistir. Bu istasyonun dalgacik alt
bantlarina gore olusturulan hibrit ADD-USBCS tahmin modelinde, optimum gecikme
zamanlarinin belirlenmesi ile birlikte dalgacik ailesi se¢imi ve dalgacik bant seviyesi
se¢imi yapilmigtir. Bu modelden elde edilen en iyi sonuglar her bir zaman 6l¢egi i¢in

diger istasyonlarla birlikte diger yontemlerle olusturulan modellerde de kullanilmistir.

Optimum gecikme zamanlari, otokorelasyon fonksiyonu ile ortaya konulan giiven
aralig1 sinirlarina gore ele alinmig olup t orijinal kuraklik verisi olmak tizere (t, t-1, t-2,

t-3, t-4 ve t-5) 5 farkli gecikme zamanina gore analiz edilmistir. Yalnizca Sakarya
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istasyonunun her bir zaman 6lgegi (SYI-1, SYI-3, SYI-6 ve SYI-12) i¢in hibrit ADD-
USBCS tahmin modelindeki en iyi performansi gosteren gecikme zamanlari belirlenmis

ve belirlenen bu optimum gecikme zamanlari tiim istasyon ve modellerde kullanilmustir.

Kuraklik zaman serilerinin ADD ile alt serilerine ayristirilmasi siirecinde diger
calismalara nazaran bu ¢alismada ¢ok daha fazla dalgacik ailesi ve onlarin versiyonlari
incelenmistir. Cilinkii dalgacik ailesi se¢imi ile dalgacik ailesinin serileri alt bantlarina
ayristirma yetenegi modelin tiim performansini etkileyen 6zelliklerdir. Ayrica, kuraklik
zaman serilerinin hangi dalgacik ailesi ile daha uyumlu oldugunu belirlemek amaciyla
da ¢ok sayida dalgacik ailesi ele alinarak calismanin kapsami artirilmistir. Bu
calismadaki dalgacik doniisiimiinde; Haar, Daubechies (db40), Symlets (sym3), Coiflets
(coif2), Biortogonal (biorl.3), Ters Biortogonal (rbiol.3), Meyer’in Ayrik Yaklasimi
(Discrete Approximation of Meyer (dmey)) ve Fejer-Korovkin (fk4) dalgacik aileleri
kullanilmistir. Sayilan bu dalgacik ailelerinin Sakarya istasyonuna ait kuraklik zaman
serilerini alt bantlarina ayristirma yetenekleri, performans kriterlerine gére birbirleri ile
karsilastirilmis ve her bir zaman 6lgegi i¢in en {istiin sonucglara sahip dalgacik ailesi

calismanin tiimiinde kullanilmustir.

ADD ile serinin alt bantlarina ayristirilmasi iglemindeki en énemli hususlardan biri de
dalgacik bant seviyesinin (dalgacik ayristirma seviyesinin) belirlenmesidir. Burada yine
calismanin kapsamini artiracak sekilde diger ¢alismalara gore daha fazla dalgacik bant
seviyesi lzerinde durulmustur. Bu ¢alismada; 3, 4, 5, 6 ve 7 olmak iizere bes farkl
dalgacik bant seviyesine gore kuraklik zaman serileri alt bantlarina ayristirilmigtir. ADD
ile ilgili yapilan analizler yine MATLAB 2021b yaziliminda gelistirilen agik kodlar
kullanilarak tamamlanmistir. MATLAB 2021b yazilimi ile Sakarya istasyonu SYI-1
icin yapilan dmey dalgacik ailesine sahip, 3 gecikme zamanli ve 3. bant seviyesine gore

bir dalgacik doniistimii Sekil 2.27°de gosterilmistir.
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Sekil 2.27.  dmey dalgacik ailesi ile 3 gecikme zamanli 3. bant seviyesine gore
yapilan dalgacik doniistimii
ADD ile alt bantlarina ayrilan Sakarya istasyonu SYI kuraklik serileri, USBCS tahmin
modelinde egitme ve test verisi seklinde girdi degiskeni olarak kullanilmistir. Bu
asamada USBCS makine oOgrenmesi yOnteminin secilme sebebi, bu ydntemin
uyarlanabilir 6zelligi ile hizli analizler yapmasidir. ADD-USBCS hibrit tahmin
modelinde, Sakarya istasyonunun alt bantlarina ayrilan giris verilerinin %751 (1960—
2005) egitme verileri, %251 (2006-2021) ise test verisi olarak kabul edilmistir. USBCS
tahmin modeli ile ilgili analizler yine MATLAB 2021b yaziliminda gelistirilen agik

kodlar kullanilarak tamamlanmustir.

USBCS tahmin modelinde bulanik ¢ikarim sistemi olarak Takagi-Sugeno yaklagimi
kullanilmistir. Takagi-Sugeno yaklagimi, optimizasyon ve uyarlanabilir tekniklerle
birlikte ele alindiginda Mamdani yaklasimina gore daha basarilidir ve hesap adimlar
pratiktir. Sinir ag1 modeli olarak ise 1zgara kiimeleme (grid partition) yontemi tercih
edilmis olup bunun sebebi daha az baglant: ile katmanlar1 birbirine daha hizli baglama

ozelligidir. USBCS’de 6grenme algoritmasi olarak hem bulanik mantik hem de sinir ag1
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kurallarim1 kolaylikla 6grenebilen hibrit algoritmasi kullanilmistir. Ayrica bu algoritma
diger 6grenme algoritmalarina gore daha hizhidir. Giris tiyelik fonksiyonlar: olarak
Gauss (gaussmf) ve tiggen (triangular-trimf), ¢ikis tiyelik fonksiyonlari olarak ise sabit
(constant) ve dogrusal (linear) fonksiyonlar kullanilmistir. Bu c¢alismada kullanilan

USBCS yonteminde dikkate alinan model parametreleri Tablo 2.6’da verilmistir.

Tablo 2.6. USBCS tahmin modeli parametreleri

Parametre ad1 Parametre 6zelligi veya degeri
Bulanik ¢ikarim tipi Takagi-Sugeno

Sinir ag1 modeli Izgara kiimeleme (Grid partition)
Egitme optimizasyonu Hibrit algoritmasi

Girdi sayisi 6 adet (t, t-1, t-2, t-3, t-4 ve t-5)
Cikt1 sayisi 1 adet (t+1)

Uyelik fonksiyon sayilari 2ve3

Iterasyon sayisi 1-10

Ogrenme oranini artirma katsayisi 11

Ogrenme oranini azaltma katsayisi 0.9

Giris tiyelik fonksiyonlari Gauss (gaussmf) ve tiggen (triangular-trimf)
Cikas tiyelik fonksiyonlari Sabit (constant) ve dogrusal (linear)

Dalgacik doniistimiinden sonra Ampirik Mod Ayristirma (AMA) ve Varyasyonel Mod
Ayristirma (VMA) 6n isleme teknikleri ile Sakarya istasyonunun orijinal kuraklik
zaman serilerinin (SYI-1, SYI-3, SYI-6 ve SYi-12) alt bantlarina ayristirilmasi islemine
gecilmistir. ADD-USBCS hibrit modelinde elde edilen optimum gecikme zamanina
gore her iki yontemde de dort farkli bant seviyesi (2D, 3D, 4D, 5D) igin orijinal
kuraklik zaman serileri alt bantlarma ayrilmistir. Bant seviyelerinin ayrigtirma
kapasitesini ve model basarisindaki etkilerini gérebilmek adina farkli bant seviyeleri ele
almmistir. Her bant seviyesi icin serilerin Igsel Mod Fonksiyonu (IMF) ve artik
bilesenlerinin toplamlari alinarak alt bantlar elde edilmistir. AMA ve VMA 06n isleme
teknikleri ile alt bantlarma ayristirma analizleri, MATLAB 2021b yaziliminda
gelistirilen acik kodlar kullanilarak tamamlanmistir. MATLAB 2021b yazilimi ile
Sakarya istasyonu SYI-1 icin 2D (2. bant seviyesi) bant seviyesine gore yapilan bir
AMA doniistimii 6rnegi Sekil 2.28’de, VMA doniisiim o6rnegi ise Sekil 2.29°da

gosterilmistir.
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Sekil 2.28. 2D bant seviyesine gore yapilan AMA 6rnek doniisiimii
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Sekil 2.29. 2D bant seviyesine gore yapilan VMA 6rnek doniistimii

AMA ve VMA ile elde edilen alt bant serileri, AMA-USBCS ve VMA-USBCS hibrit
modellerinde egitme ve test verisi seklinde girdi degiskeni olarak kullanilmistir. Yine
daha 6nce oldugu gibi bu hibrit modellerde, Sakarya istasyonunun alt bantlarina ayrilan

giris verilerinin %751 (1960-2005) egitme verileri, %25’1 (2006-2021) ise test verisi
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olarak kabul edilmistir. Sakarya istasyonunun her bir zaman 6lgegi icin belirlenen en
optimum AMA ve VMA bant seviyeleri, diger istasyonlarda ve modellerde de

kullanilmastir.

Sakarya meteoroloji istasyonunun orijinal kuraklik degerlerine her bir zaman 6l¢egi i¢in
(SYI-1, SYI-3, SYI-6 ve SYIi-12) DD, AMA ve VMA 6n isleme teknikleri uygulanarak
USBCS hibrit tahmin modellerinde c¢alismanin tamaminda dikkate alinacak olan
optimum gecikme zamani, optimum dalgacik ailesi, optimum dalgacik bant seviyesi ile
optimum AMA ve VMA bant seviyeleri bulunmustur. Tiim bu analizlerin sonucunda
bagimsiz veya hibrit tahmin modellerine girecek olan nihai egitme ve test verilerinin
giris karakteristikleri elde edilmistir. Daha sonraki asamada ise tiim istasyonlarin
kuraklik tahmin degerlerinin elde edilmesi i¢in bagimsiz ve hibrit tahmin modeli
olusturulmustur. Bagimsiz modeller olarak sadece YSA, USBCS, GSR, DVMR ve
UKSB tahmin modelleri ele alinmistir. Hibrit tahmin modelleri ise yine bu bes modele
ADD, AMA ve VMA 0n isleme tekniklerinin dahil edilmesi ile olusturulmustur.
Calismada; her bir istasyonun her bir zaman 6l¢egi igin toplamda 20 adet (5 adet

bagimsiz ve 15 adet hibrit) kuraklik tahmin modeli kullanilmistir.

Daha 6nce USBCS yonteminin model kurulumu ve parametrelerinden bahsedildiginden
dolayr kalan dort yontemin model kurulumu ve parametrelerinden bahsedilecektir.
YSA, giclii 6grenme algoritmalar1 ve tahmin problemlerindeki basaris1 nedeniyle
kuraklik tahmini ile ilgili bu ¢alismada da tercih edilmistir. Bagimsiz ve hibrit YSA
tahmin modellerine girecek olan egitme ve test verileri, tiim veri setinin %75’1 egitme
ve %25’ test olacak sekilde kabul edilmistir. Giris verileri, hizli ve diger 6grenme
yontemlerine gore daha dogru tahminler veren sayisal bir optimizasyon teknigi olan
Levenberg-Marquardt 6grenme algoritmasi (trainlm) ile egitilmistir. YSA modelinde,
bilgi akisinin iki yonlii olarak saglanmasi istendiginden geri beslemeli ag yapisi tercih
edilmistir. Ayrica bu ¢alismada bir ara (gizli) katmana sahip ¢ok katmanli bir sinir ag
modeli kullanilmigtir. Katmanlar arasi bilgi aktarimini saglayan transfer fonksiyonlari
olarak hiperbolik tanjant sigmoid (tansig) ve logaritmik sigmoid fonksiyonu (logsig)
tercih edilmistir. Girdilere dayali olarak ¢iktilarin 6zelliklerini belirleyen ve ¢iktilarin
elde edilmesini saglayan aktivasyon fonksiyonu olarak ise dogrusal transfer fonksiyonu
(purelin) kullanilmigtir. Calismada tercih edilen transfer ve aktivasyon fonkiyonlari ile

birlikte 2—10 araligindaki noron sayisi ve 1-200 arasinda degisen iterasyonlarla farkli ve
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¢ok ¢esitli model kombinasyonlarina gore tahmin modelleri elde edilmistir. Tablo

2.7’de YSA tahmin modellerine ait parametreler 6zet olarak verilmistir.

Tablo 2.7. YSA tahmin modeli parametreleri

Parametre adi Parametre 6zelligi veya degeri
Agin baglant1 yonii Geri beslemeli

Sinir ag1 modeli Cok katmanl

Ogrenme algoritmasi Levenberg-Marquardt (trainlm)
Girdi sayisi 4 adet (t, t-1, t-2, t-3)

Cikt1 say1si 1 adet (t+1)

Noron sayist 2-10

Iterasyon sayisi 1-200

Logaritmik sigmoid (logsig) ve hiperbolik tanjant
sigmoid (tansig)

Aktivasyon fonksiyonu Dogrusal transfer fonksiyonu (purelin)

Transfer fonksiyonlari

MATLAB 2021b yaziliminda Sakarya istasyonu SYI-1 i¢in YSA tahmin modeline ait

ornek bir 6grenme siireci Sekil 2.30’da gosterilmistir.

Neural Network

Layer Layer
Input Output
3 E E E IE 1
10 1
Algorithms
Training: Levenberg-Marquardt (trainim)

Performance: Mean Squared Error (mse)
Calculations: MEX

Progress
Epoch: o | 200 iterations 200
Time: 0:00:00
Performance:  0.0720 1.00e-10
Gradient: 0.615 s 3 1.00e-100
Mu: 0.00100 1.00e-09 1.00e+10
Plots

Performance (plotperform)

Training State (plottrainstate)

Regression (plotregression)
Plot Interval: ' 1 epochs

v Maximum epoch reached.

Sekil 2.30. YSA tahmin modeli 6grenme siireci
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Calismada ele alinan bir diger makine 6grenmesi yontemi Destek Vektér Makine
Regresyonu (DVMR)’dir. Istatistiksel 6grenme teorisi ile yapisal risk minimizasyonuna
dayalt bir yontem olan DVM’nin regresyon yani tahmin problemlerine yonelik
gelistirilen bir alt grubu olan DVMR, iyi bir genelleme yetenegi olmasi ve dogrusal
olmayan problemleri ¢ekirdek (kernel) fonksiyonlar: araciligr ile kolaylikla ¢6zebilmesi
nedenlerinden dolayi tercih edilmistir. DVMR’nin hem bagimsiz hem de ADD, AMA
ve VMA’I1 hibrit kuraklik tahmin modelleri olusturulmustur. DVMR tahmin modelleri,
MATLAB 2021b yaziliminda gelistirilen agik kodlar kullanilarak tamamlanmistir.
DVMR tahmin modellerinde; Gaussian, polinom, radyal tabanli fonksiyon ve dogrusal
(lineer) olmak tizere dort farkli ¢ekirdek fonksiyonu kullanilmistir. Ayrica, DVMR’nin
o0grenme asamasinda ortaya cikan ikinci dereceden programlama problemini ¢dzen
Sirali Minimum Optimizasyon (SMO) yontemi modellerde optimizasyon algoritmasi
olarak kullanilmistir. DVMR modellerinde kutu smirlama seviyesi belirlenerek
optimum hiper diizlem aralig1 i¢in gerekli islemler ve parametre hesaplari bu aralikta
yapilir. Bu c¢alismada, kutu sinirlama seviyesi 1 olarak segilmistir. Tahmin
modellerindeki girdi ve ¢iktilar, 1-30 arasinda degisen iterasyonlarla ve dogru
standardizasyon yontemi ile analiz edilerek elde edilmistir. DVMR tahmin modeli

parametreleri Tablo 2.8’de 6zetlenmistir.

Tablo 2.8. DVMR tahmin modeli parametreleri

Parametre adi Parametre 6zelligi veya degeri

Cekirdek fonksiyonlari Gauss, polinom, radyal tabanli ve dogrusal
Optimizasyon algoritmast Siralt minimum optimizasyon (SMO)
Standardize yontemi Dogru

Girdi sayist 4 adet (t, t-1, t-2, t-3)

Cikt1 say1si 1 adet (t+1)

Iterasyon sayisi 1-30

Kutu sinirt 1-1000

Kernel dlgegi 1

€ parametresi 0.09

C parametresi Otomatik
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MATLAB 2021b yazilmu ile DVMR modelinde Sakarya istasyonu SYi-1 igin

optimizasyonla hiper diizlemin ve minimum hata oraninin bulunmasina yonelik model
ornegi Sekil 2.31°de verilmistir.

DVMR model_1 (Optimizasyon_ DVM)

—— Minimum tahmin OKH
—®— Minimum gergek deger OKH
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DVMR yontemi ile optimum hiper diizlemin ve minimum hata oraninin
bulunmasina ait drnek model

Bu caligsmada ele alinan bir diger makine 6grenmesi yontemi, Gauss Siire¢ Regresyonu
(GSR)’dur. Tahmin problemlerini ele alirken daha az veriye ve daha az parametreye

ihtiya¢ duyan parametrik olmayan bir 6grenme algoritmasina sahiptir. Cekirdek (kernel)
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fonksiyonlar1 ile olduk¢a iyi uyum gésteren bu yontem, tahmin problemlerindeki
basarisindan dolayr bu calismada tercih edilmistir. GSR modellerindeki en kritik
parametre optimum kovaryans matrisinin  ve buna bagli olarak kovaryans
fonksiyonunun belirlenmesidir. Calismada; GSR’nin tahmin kapasitesini kapsamli bir
sekilde ele alabilmek ve model performanslarimi artirabilmek adina birgcok farkli
fonksiyon ele alinmistir. Gauss slireclerinde yaygin olarak kullanilan kovaryans
fonksiyonlari, radyal tabanli temel fonksiyonlar ve diger c¢ekirdek fonksiyonlar1 olarak
ayrilmaktadir. Radyal tabanli temel fonksiyonlar sunlardir: sabit, dogrusal, sifir, saf
ikinci dereceden. Cekirdek fonksiyonlari ise karesel iistel, listel, matern 3/2, matern 5/2,
rasyonel ikinci dereceden, ard karesel iistel, ard istel, ard matern 3/2, ard matern 5/2,
ard rasyonel ikinci derecedendir. GSR modeli ile yapilan analizlerde bu fonksiyonlar
icinden hata kriteri en az olan yonteme ait ¢iktilar sonug ¢iktisi olarak kabul edilmistir.
Ayrica bu denli ¢ok fonksiyonun ele alinmasindaki 6énemli bir neden de MATLAB
2021b yaziliminda GSR modeli tahmin islemlerinin hizli bir sekilde yapilabilmesidir.

GSR tahmin modellerinde, 6grenme algoritmasi olarak ©onceden herhangi bir 6n
parametre bilgisine ihtiyac duymayan ve olasilik tabanli Bayes optimizasyon teknigi
kullanilmistir. GSR modellerinde degerleri bulunmaya c¢alisilan £ (tahmini ortalama
deger) (baz1 kaynaklarda u olarak gosterilmektedir [192]) ve o (¢ekirdek genislik
parametresi) parametreleri, tamamen bagimsiz kosullu yaklasim (fully independent
conditional approximation) ile bulunarak varyans probleminin Oniine gecilmekte ve
cekirdek fonksiyonlari daha da islevsel hale getirilmektedir [203]. Kernel o6lgegi
DVMR’de oldu gibi GPR tahmin modellerinde de 1 alinmistir. 1-30 arasinda degisen
iterasyonlarla ve dogru standardizasyon yontemi ile analizler yapilarak model ¢iktilari
elde edilmistir. GSR yontemi kullanilarak olusturulan tahmin modelleri, MATLAB
2021b yaziliminda analiz edilmistir. GSR tahmin modeli parametreleri Tablo 2.9°da

Ozetlenmistir.
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Tablo 2.9. GSR tahmin modeli parametreleri

Parametre adi Parametre 6zelligi veya degeri

Radyal tabanli temel fonksiyonlar Sabit, dogrusal, sifir, saf ikinci dereceden

Cekirdek fonksiyonlari Karesel iistel, iistel, matern 3/2, matern 5/2,
rasyonel ikinci dereceden, ard karesel {istel,
ard ustel, ard matern 3/2, ard matern 5/2,
ard rasyonel ikinci dereceden

Optimizasyon algoritmasi Bayes optimizasyon teknigi
Parametre hesap yontemi Tamamen bagimsiz kosullu yaklasim
Standardize yontemi Dogru

Girdi sayisi 4 adet (t, t-1, t-2, t-3)

Cikt1 sayisi 1 adet (t+1)

Iterasyon sayisi 1-30

Kernel dlcegi 1

Calismada ele alinan tahmin modellerinden biri de son donemin popiiler 6grenme
algoritmalarindan biri olan Uzun-Kisa Siireli Bellek (UKSB) ile olusturulmustur.
Geleneksel yontemlerde karsilagilan gradyan kaybolmasi ve simirli bellek kapasitesi
problemlerini ¢6zmek icin gelistirilen UKSB, bir derin 6grenme yontemidir. Veri
setindeki bilgileri uzun vadeli bagimliliklar1 hatirlama yetenegi sayesinde rahatlikla

ogrenebildiginden bu ¢alismada tercih edilmistir.

Kuraklik tahmin ¢alismasinda 6nerilen UKSB modellerine ait hiicre mimarisinde; giris
katmani olarak “dizi giris katmani” (sequence input layer), gizli katman olarak “gift
yonlii UKSB katmani” (bidirectional LSTM layer-BILLSTM), baglanti1 katmani olarak
“tam baglantili katman” (fully connected layer) ve ¢ikis katmani olarak ise “regresyon
katman1” (regression layer) kullanilmistir. UKSB tahmin modellerinde, derin agi
egitmesi amaciyla ii¢ farkli 6grenme algoritmasi kullanilmistir. Bu algoritmalar;
“momentumlu stokastik gradyan inisi” (stochastic gradient descent with momentum-
SGDM), “kok ortalama karesel yayilma™ (root mean squared propagation-RMSProp) ve
Adam algoritmasidir. Bu algoritmalar her analiz igin tek tek denenmis ve iglerinden hata
kriterlerine gére en iyi sonucu veren algoritma secilmistir. Hiicredeki bilgi iletimini

saglayan kapilar igin sigmoid aktivasyon fonksiyonu, verileri saklama iglevi olan hiicre



127

durum bellekleri i¢in tanjant aktivasyon fonksiyonu kullanilmistir. Ayrica UKSB
tahmin modellerinde; karesel gradyan kaybolma faktorii 1, egitme siirecinin basinda
belirlenen ilk 6grenme orani1 0,05, 6grenme orani1 azaltma faktorii 0,2 ve 6grenme orant
azaltma dongiisii 50 olarak tercih edilmistir. Modellerde ele alinan bir gizli katmanda
néron sayist 5-20 aralifinda olup maksimum dongii sayist ise 200 olarak kabul
edilmigtir. UKSB derin 6grenme algoritmasi, verileri kendi i¢inde standartlastirdigindan
ilave bir yonteme ihtiyag duymamaktadir. Tablo 2.10’da UKSB tahmin modeli

parametreleri verilmistir.

Tablo 2.10. UKSB tahmin modeli parametreleri

Parametre adi Parametre 6zelligi veya degeri

-Dizi giris katmani1 (Sequence input layer)
-Cift yonlii UKSB katmani (bidirectional
LSTM layer (BILLSTM))

-Tam baglantili katman (fully connected
layer)

-Regresyon katmani (regression layer)

Hiicre mimarisi

Ogrenme algoritmalar1

Aktivasyon fonksiyonlar1

SGDM, RMSProp, Adam

Tanjant ve sigmoid

Karesel gradyan kaybolma faktorii 1

Maksimum dongii sayist 200

Noron sayist 5-20

[k 6grenme orani 0.05

Ogrenme oran1 azaltma faktorii 0.2

Ogrenme orani azaltma dongiisii 50

Girdi sayist 4 adet (t, t-1, t-2, t-3)
Cikt1 sayisi 1 adet (t+1)

UKSB tahmin modelleri, MATLAB 2021b yaziliminda gelistirilen agik kodlar

kullanilarak tamamlanmistir. UKSB tahmin modelinde Sakarya istasyonu SYI-1 igin

ornek bir 6grenme siireci Sekil 2.32°de verilmistir.
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3. BOLUM

BULGULAR

3.1. Sakarya Havzas1 Meteoroloji Istasyonlar1 Yagis Verilerinin Istatistiksel

Ozellikleri

Bu tez ¢alismasinda; Sakarya havzasi sinirlar igerisinde yer alan 10 adet meteoroloji
istasyonunun yagis verileri kullanilmigtir. Calismada; havzanin kisa donem
meteorolojik kurakligi ve buna bagli olarak sadece yagis verisinden hesaplanabilen bir
kuraklik indisi olan Standartlastirilmis Yagis Indeksi (SYI) degerlendirildiginden diger
iklimsel ve meteorolojik parametrelere ihtiya¢ duyulmamistir. Materyal bdliimiinde
temel  Ozelliklerinden  bahsedildiginden  dolayr  tekrar bu  istasyonlardan
bahsedilmeyecektir. Segilen bu 10 adet istasyonun tercih edilme sebebi havzanin
biitiiniinii temsil kabiliyeti, uzun donem gozlemlerinin olmasi, giincel olmasi ve eksik
verinin bulunmamasidir. Istasyonlarin dikkate alinan gézlem aralig1 igerisinde eksik veri
bulunmamasindan dolay1 veri tamamlama islemlerine gerek duyulmamistir. Calismada

kullanilan bu 10 adet MGI’e ait istatistiksel bilgiler Tablo 3.1°de verilmistir.

Tablo 3.1. Meteoroloji gdzlem istasyonlar1 (MGI) istatistiksel bilgileri

Min. Mak. Ort. Standart Degisim

Istasyon  Ort. Ort. Yagis Sapma ?(j:;ls):\kilsll( Ilg:tssl:hll;l Katsayisi
Adi  Yags  Yags  (n) (o) ©) K () (%)

(mm/ay) (mm/ay) (mm/ay) (mm/ay) =

Sakarya  49.86 108.87 71.16 18.70 0.58 -0.23 26.28
Ankara 13.37 52.39 34.48 13.07 -0.57 -0.90 37.89
Kiitahya  18.40 82.38 47.61 20.04 -0.08 -0.55 42.09
Bolu 23.24 63.27 47.35 13.12 -0.83 -0.57 27.71
Emirdag  16.62 49.33 34.57 11.77 -0.57 -0.90 34.02
Polath 10.09 45.08 30.37 12.18 -0.53 -0.90 40.12
Geyve 27.39 96.10 53.86 20.58 0.56 0.06 38.21
Ilgin 10.78 51.46 35.74 14.00 -0.93 -0.50 39.17
Sivrihisar  13.80 52.27 34.58 13.02 -0.48 -0.82 37.65

Yunak 12.49 59.24 38.05 15.36 -0.67 -0.65 40.37
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Tablo 3.1°den goriilecegi iizere minimum, maksimum ve ortalama yagis degerlerine
bagl olarak yagis potansiyeli en yiiksek istasyon Sakarya MGI’dir. 71,16 mm olan aylik
yagis ortalamasi ile diger istasyonlara goére daha fazla yagis almaktadir. Ayrica
%26,28’lik degisim katsayis1 degerine bakildiginda aylar arasindaki yagis degerlerinin
diger istasyonlara gore daha az degisiklik gosterdigi yani daha homojen bir yagis
rejimine sahip oldugu goriilmektedir. Istatistiksel olarak yagis potansiyeli en diisiik olan
istasyon ise Polatli MGI’dir. Minimum, maksimum ve ortalama yagis degerlerinin
tamaminda segilen bu 10 adet istasyon icerisinde en diisiik degerler Polatli MGI’e aittir.
Polatli MGI’nin standart sapmasi her ne kadar digerlerinden kiigiik de olsa 6zellikle
basiklik (-0,90) ve degisim katsayilart (%40,12) incelendiginde aylar arasindaki
degisimlerin yiiksek oldugu ve normal dagilimdan uzaklastig1 goriilmektedir. Kiitahya
MGIi’nin minimum ve maksimum aylik yagis degerleri arasindaki fark oldukea yiiksek
olup standart sapma (20,04 mm/ay) ve degisim katsayisi degerine (%42,09)
bakildiginda ortalamadan uzaklasan ve diizensiz bir yagis rejimine sahip bir istasyon
oldugu rahatlikla sdylenebilir. Minimum ve maksimum yagis degerleri arasindaki fark
ile standart sapmasi (20,58 mm/ay) en yiiksek olan istasyon Geyve MGI’dir. Geyve
MGI’nin degisim katsayis1 degeri (%38,21) de yiiksek olup bu istasyonun da aylik

Olgekte diizensiz bir yagis rejimine sahip oldugu goriilmektedir.

3.2. Sakarya Havzas1 Meteoroloji Istasyonlar1 Yagis Verilerinde Homojenlik,

Duraganhik ve Bagimsizlik Testleri

Hidrometeorolojik zaman serileri iizerinden gesitli analizler ya da modellemeler
yapilmadan once ¢alismanin dogrulugu, tutarliligi ve giivenilirligi a¢isindan ¢ok 6nemli
olan serideki homojenlik, duraganlik ve bagimsizlik durumlar: istatistiksel testlerle
incelenmeli ve degerlendirmeleri yapilmalidir. Bu kapsamda, ¢alismada ele alinan
Sakarya havzasindaki 10 adet istasyonun kuraklik tahminlerinin giivenilir bir sekilde
tamamlanabilmesi i¢in bu istasyonlara ait ham yagis verilerine homojenlik, duraganlik
ve bagimsizlik testleri uygulanmistir. Testlerle ilgili analizler MATLAB 2021b
yaziliminda tamamlanmustir. Istasyonlara ait ham yagis verileri, %95 giiven araliginda
kalacak sekilde Standart Normal Homojenlik Testi (SNHT), Genisletilmis Dickey-
Fuller Testi (GDFT), Von-Neumann Homojenlik Testi (VNT) ve Mann-Whitney u
Testine (MWT) tabi tutulmus olup test sonuglar1 Tablo 3.2’de verilmistir.
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Tablo 3.2. Istasyonlara ait homojenlik, duraganlik ve bagimsizlik test sonuglari

. SIEMEET Genisletilmis Von-Neumann .
Istasyon Normal . S Mann-Whitney u
Adi Homojenlik chk_ey-FuIIer Horr_101enhk Testi (MWT)

Testi (SNHT) Testi (GDFT) Testi (VNT)
o & & B.o w8 S N 8
S s g R T 29 ¢ T & ¢
Sakarya {6.08 10.50 H{ -10.66 -1.94 D 1.80 0.997 B{ 0.16 0.025 H
Ankara {3.29 1050 Hi -11.66 -1.94 D 1.71 1 Bi 049 0025 H
Kiitahya {4.21 1050 Hj -11.21 -1.94 Di 1.54 1 Bi 030 0.025 H
Bolu i4.28 1045 H{ -10.37 -1.94 D! 1.89 0928 B{ 0.18 0.025 H
Emirdag {4.65 1045 H{ -10.23 -194 D; 181 0988 B 041 0.025 H
Polath (354 1045 Hi{ -9.73 -194 D: 157 1 Bi 041 0025 H
Sivrihisar {4.63 1045 Hi{ -9.89 -194 D 157 1 Bi 021 0025 H
Geyve i3.14 1045 H!{ -10.19 -194 D! 1.67 1 Bi{ 009 0025 H
llgn {3.10 1045 H{ -9.86 -1.94 D{ 1.69 1 Bi{ 013 0.025 H
Yunak {420 10.20 H{ -8.94 -194 D{ 159 1 B{ 033 0025 H

Tablo 3.2°de verilen testlere ait sonug tablosunda yer alan H: homojen, D: duragan ve
B: bagimsiz durumu temsil etmektedir. Istasyonlarin ham yagis verilerine uygulanan bu
dort teste ait istatistiksel sonuglara gore, istasyon verilerinin tamami homojen, duragan
ve bagimsiz ¢cikmistir. Bu sonuglara gore istasyonlara ait yagis verileri ele alinacak olan
kuraklik tahmin modelleri igin tutarli ve kullamishdir. Ayrica yagis verilerinde siipheli
bir durum so6z konusu olmadigindan dolayr bu calismada istasyonlara ait yagis

verilerinin homojen hale getirilmesine gerek yoktur.
3.3. DrinC Yazihmu ile SYI Kuraklik Degerlerinin Hesaplanmasi

Bu ¢aligsmada; kuraklik tahmin modellerinde egitme ve test verisi seklinde giris verisi
olarak kullanilacak olan SYT kuraklik degerleri, istasyonlarin aylik yagis verilerine bagl
olarak hesaplanmigtir. Calismada, Sakarya havzasmin kisa dénem meteorolojik
kuraklig1 tahmin edilmek istendiginden dolay1 burada 1, 3, 6 ve 12 aylik kisa donemler
dikkate alinmis olup tiim istasyonlar i¢in dort farkli zaman 6lgeginde SYI-1, SYI-3,
SYI-6 ve SYI-12 kuraklik degerleri hesaplanmistir. Kuraklik indislerinin hesab1 manuel
olarak yapilabildigi gibi ozellikle son donemde cesitli kuraklik indisi hesaplama
yazilimlar1 ile de yapilabilmektedir. Bu caligmada; istasyon sayisinin fazla olmasi, uzun
déonem yagis verilerinin kullanilmas1 ve dort farkli zaman Olceginin dikkate

alinmasindan dolay1r kuraklik indisi hesaplama adiminda ¢ok fazla islem yiikii ve
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zamana gereksinim duyulmasi sebebi ile bir kuraklik indisi hesaplama yontemi olan
DrinC (Kuraklik Indisleri Hesaplayicis1 (Drought Indices Calculator)) yazilimi
kullanilmistir. SYI kuraklik degerlerinin hesaplanma siirecinde olduk¢a kolaylik
saglayan bu yazilim sayesinde istenilen parametrelere ve segilen zaman dlgeklerine gore
(SYI-1, SYI-3, SYi-6 ve SYI-12) her istasyon igin kuraklik degerleri hesaplanmustir.
Ayrica DrinC yazilimi ile elde edilen bazi degerler icin manuel olarak hesaplama

yapilmis ve yazilimin hesap dogrulugu teyit edilmistir.
3.3.1. SYI Kuraklik Degerlendirmesi

Sakarya havzasindaki istasyonlarin gozlenen aylik yagis verilerine gore hesaplanan
gecmis donem SYI kuraklik degerlerinin kabul goren SYI kuraklik smiflandirmasina
gore degerlendirmeleri yapilmistir. Kuraklik ile ilgili degerlendirmeler, SYI-1 ve SYI-
12 zaman Olgekleri i¢in kuraklik izleme tablolari, kuraklik zaman serisi grafikleri ile
aylara ve yillara gore kuraklik siniflari olusum yiizde grafikleri iizerinden yapilmstir.
SYI-3 ve SYI-6 zaman &lgeklerine ait kuraklik degerlendirmeleri, hem tez igerisinde
fazla yer tutmamasi i¢in hem de bu zaman 6l¢eklerinde kuraklik siiflarinin birbirine
benzer ve dngoriilebilir olmasindan dolayr yapilmamistir. Ornek olarak Sakarya SYIi-1
icin Tablo 3.3’te kuraklik degerleri izleme tablosu, Sekil 3.1°de kuraklik zaman serisi
grafigi ve Sekil 3.2°de aylara gore kuraklik siniflart olusumu yiizde grafigi verilmistir.

Diger istasyonlara ait SYI-1 kuraklik izleme tablolar1 ise ekte verilmistir.



Tablo 3.3. Sakarya SYI-1 kuraklik degerleri izleme tablosu
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Aylar

Yillar 1 2 3 4 5 6 7 8 9 10 11 12
1960-1961 099 027 030 -052 036 045 028 045 -0.09 |[E2MEN -1.39 -0.34
1961-1962 052 026 028 -0.41 060 036 136 -1.31 083 -0.28 -0.35 -0.99
1062-1963 -0.99 115 046 042 -0.88 [EHBGN o.s1 JEBH 021 o087 -013
1963 - 1964 [y -1.14 BH6ON 012 -0.13 -101 043 -118 101 -001 -0.87.
1964-1965 -116 075 029 -059 016 019 -052 083 1.21 125 095
1965 - 1966 1.09 013 | 119 020 -0.83  1.03 -0.47 042 061 0.6
1966 - 1967  0.42 130 -0.18 -1.05 031 -051 051 -0.96 -0.55 [EkG@N 0.08
1967-1968 0.25 034 054 036 045 -022 -124 -0.83 069 -0.30 1.39 -0.12
1968-1969 | 114 -0.70 0.67 023 -0.91 -1.44 1.38 061 038 -0.29
1969-1970 032 -0.12 -0.19 [J6ON -0.32 098 046 -0.13 -0.41
1970-1971 016 [JIN@N 057 056 -0.56 -0.19 -122 -0.14 100 072 033 0.69
1971-1972 -1.35 -0.43 117 -0.07 017 -0.13 -010 -0.15 0.69 005 0.36  1.28
1972-1973 -0.76 -0.57 [EHGH -0.17 -0.50 [283 148 JEEEN 096 034 -0.34 [E2N8N
1973-1974 |8 -102 -007 -0.34 -148 017 -057 049 -0.39 083 110 -0.30
1974-1975 -057 -0.89 -0.22 -053 061 -0.30 -127 [igaN -0.21 [EHEE] -0.28 o0.46
1975-1976 056 | 1.16 0.3 -0.67 112 002 -030 1.02 -0.01 059 048 0.54
1976-1977 -0.48 -0.13 -0.23 -0.67 064 085 047 041 023 047 -054
1977-1978 -0.49 0.76 055 -077 053 002 -063 029 -079 -024 097
1978-1979 111 -005 -0.35 142 -055 -1.38 -148 073 056 0.85 |GG 0.03
1979-1980 075 -0.03 -1.46 021 051 -025 077 083 038 -0.14 067 047
1980-1981 079 -0.60 0.90 -0.80 022 -0.76 -0.38 004 023 -059 142 0.63
1981-1982 | 110 118 056 -130 053 -0.99 [N88N -062 030 -0.14 -063 1.8
1082-1983 046 002 008 1.29 001 -114 035 061 -092 -0.94 -0.43 -0.27
1983-1984 024 0.63 025 -013 045 016 092 018 123 127 -1.24
1984-1985 -0.66 048 0.3 090 036 139 o073 B8N 047 o025 [EHEEN
1985-1986 -0.17 048 -1.31 -113 1.00 -1.32 -059 -0.93 006 091 -0.03 -0.46
1986-1987 045 0.67 139 -0.66 094 060 -1.33 -045 058 092 -0.44
1987 - 1988 -1.02 014 -024 -090 008 o065 [EHGOY 1.03 050 0.99
1988 - 1989 014 023 -013 128 021 067 -120 -047 061 106 -051
1989-1990 -150 -1.50 [ESIGENESIG0N 026 045 020 -040 -0.12 129 124 -0.39
1990-1991 -0.46 -0.21 -0.01 0.80 -0.25 -0.12 -055 -0.62 122 016 0.07 -0.94
1991-1992 -097 081 -104 145 8ON 053 -027 -046 113 -0.09 -0.22 0.92
1992-1993 -0.91 036 122 -0.07 -1.01 065 112 -143 -025 074 -0.10 0.55
1993-1994 -041 -0.64 BB -055 100 -0.25 -1.00 031 -0.11 124 -0.62
1994-1995 0.32 -0.26 -0.83 -0.61 -0.72 091 -042 0.31 1.48 0.63
1995-1096 0.43 [JEHGON 0.908 o087 [EBNGE) 103 034 -015 004 089 031 -143
1996-1997 020 016 120 029 095 -0.94 -082 071 070 0.25 0.09
1997-1998 -0.93 0.23 0.25 -0.27 = 1.39 -0.46 -1.24 0.85
1998-1999 0.8 -0.23 0.98 029 0.8 -0.06 005 0.06 0.38
1999 - 2000 -1.32 0.68 -0.30 -0.24 068 129 -146 -0.14 013 -0.56
2000-2001 144 005 088 107 -046 029 -007 110 124 113 -1.38 -1.3
2001 - 2002 044 -067 086 014 -071 062 -0.02 -093 -1.33 134 | 232
2002 -2003 0.18 -0.87 056 -0.59 028 | 142 140 1.02 -0.02 -0.63 -0.96
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2003-2004 -0.25 022 058 [[ENMGINGIO2) 083 -101 041 065 035 0.72
2004 - 2005 0.38 0.04 -0.13 -0.13 096 -056 1.37 -1.10 -149 145 -1.11
2005-2006 | 1.06 035 050 -006 -0.67 0.00 050 061 040 JINAN -054
2006 -2007 -024 068 -0.04 JEBISEN -149 0.66 098 1.00 -0.49 -0.13 -0.59
2007-2008 031 |G 039 006 025 -0.72 -022 060 -0.69 -0.34 042 039
2008 -2009 -0.47 000 063 -1.46 1.16 -0.85 -0.85 -088 1.19 -1.06 0.18 -0.02
2009-2010 028 248 079 008 -1.09 -050 069 -0.78 110 006 057 031
2010-2011 082 115 060 1.07 096 -001 -0.75 -0.94 0.66 0.58
2011-2012 0.43 -148 076 041 -1.07 -0.36 008 -0.66 -0.68 0.08 -0.40
2012-2013 072 094 039 011 864 -060 -1.16 021 -127 -140 034 0.65
2013-2014 0.06 -0.15 059 -0.88 -003 -0.02 -0.83 004 027 124 -104 -091
2014 - 2015 111 064 -102 091 061 074 BN -003 043 051
2015 - 2016 072 143 052 005 014 109 148
2016-2017 133 131 054 003 129 061 -022 069 019 -0.69 0.32
2017-2018 -0.05 [0 0.92 058 061 086 031 066 -0.03 049 -0.75 0.36
2018-2019 -060 -0.45 109 -1.26 2081 0.00 1.07 -050 043 -025 033 142
2019-2020 0.22 023 -1.14 062 007 064 129 144 -065 -1.01 -1.30 0.19
2020-2021 045 048 -051 -023 114 114 -0.98 [ESH -084 -0.06 -1.04 2NN
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Sekil 3.1. Sakarya SYI-1 kuraklik zaman serisi grafigi
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Sekil 3.2. Sakarya SYI-1 aylara gore kuraklik siiflar1 olusumu yiizde grafigi
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Tablo 3.3’te verilen Sakarya SYI-1 kuraklik degerleri izleme tablosunda, SYI’nin kabul
edilen kuraklik siiflandirmas: dikkate almarak farkli renkler aracihigi ile SYIi-1
kuraklik degerleri smiflarina ayrilmigtir. Tablo 3.3 incelendiginde; toplam 732 ay
bulunan SYI-1 veri setinde 507 ay normale yakin sinifinda, 79 ay orta siddette nemli, 61
ay orta siddette kurak, 28 ay ¢ok nemli, 26 ay siddetli kurak, 23 ay asir1 kurak ve son
olarak da sadece 8 ay asir1 nemli olarak belirlenmistir. 1969 yilinin agustos, eyliil ve
ekim aylarinda 3 aylik bir donemde siddetli kurakliklar goériilmiistiir. 1989 yilinin ilk
dort aylik doneminde de siddetli ve asir1 kurak bir donem goriilmiistiir. 2003 yilinin
mayis ve haziran aylarinda ard1 ardina asir1 kuraklik goriilmiistiir. Yine 2015 yilinin son
iki ayin1 kapsayan donemi de siddetli kurak bir sekilde gegmistir. Tiim bunlarin yani
sira 1972 yili haziran, temmuz ve agustos aylarinin arka arkaya asiri nemli, orta siddette
nemli ve ¢ok nemli bir donem oldugu goriilmektedir. 2002 yili temmuz, agustos ve

eyliil aylarinda da ¢ok nemli bir donem goriilmiistiir.

Tablo 3.3 ile Sekil 3.1’de verilen SYI-1 kuraklik zaman serisi grafigi birlikte
incelendiginde; 1968 yili temmuz ayinda -3,20, 1989 yili mayis ayinda -3,60, 2003 yili
haziran ayinda -3,92 olarak hesaplanan SYI-1 degerlerinden dolay1, bu veri setindeki en
siddetli kurakliklar bu donemlerde goriilmiistiir. 1972 yil1 haziran ayinda 2,83, 2001 y1li
aralik ayinda 2,32 ve 2015 yili haziran aymnda 2,37 olarak hesaplanan SYi-1
degerlerinden dolayr da bu donemler veri setindeki en nemli donemler olarak

belirlenmistir.

Sekil 3.2°den goriilecegi iizere Sakarya SYI-1 kuraklik degerleri, biiyiik bir oranda
normale yakin sinifinda yer almaktadir. Tiim veri seti i¢inde aylara gore normale yakin
smifinin olusum yiizdesi %75,41 olarak bulunmustur. %6,56 oraninda orta siddette
kuraklik, %4,92 oranlarinda orta siddette nemli ve ¢ok nemli kuraklik, %3,28
oranlarinda siddetli kurak ve asir1 kurak ve son olarak da %]1,64 oraninda asir1 nemli

kuraklik siniflariin olustugu belirlenmistir.

Sakarya SYI-1 zaman 6lceginde oldugu gibi SYIi-12 zaman 6lceginde de kuraklik
degerlendirmeleri yapilmistir. Sakarya SYI-12 igin Sekil 3.3’te kuraklik zaman serisi
grafigi, Sekil 3.4’te yillik kuraklik degerleri ve kuraklik siniflart grafigi ve Sekil 3.5°te

yillara gore kuraklik siniflar1 olusumu yiizde grafigi verilmistir.
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Sekil 3.3. Sakarya SY1-12 kuraklik zaman serisi grafigi
\ Sakarya SYI-12
300
200
100
P
% 00 ! !
-L00
200
300
CrHAMTNOENAO~NMFTNONAS AN TNUORUAS AT OO =Nt O AO =AMt ONUOO
vovovooouwewnnonnebtb0000 000NN 00000 OO000CCCO0000mm e m M mmMmm (|
[nEn RN NoNoRoEnEn R Rola N No RN Ne o NoNoRoRoloRolngn o oolnEoln ol ol elninNe ol ojo o oNoNeNojo o) oj oo ool e f o oo o)
el Rl R e R R R R R R e R R e R e R R e N e NN R N N R e R RN R R N K Ee N N R e

mAsinkwrak  WSiddetli kuak  © Orta iddette kurak — Normale vakn - # Orta siddefte nemli B Cok nemli - W Asin nemli

Sekil 3.4. Sakarya SYI-12 kuraklik degerleri ve kuraklik siniflar grafigi
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Sekil 3.5. Sakarya SYI-12 yillara gére kuraklik siniflar1 olusumu yiizde grafigi
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Sekil 3.3, 3.4 ve 3.5’te goriildiigii iizere; Sakarya istasyonu SYI-12 zaman dlgeginde
bulunan toplam 61 yilin 43 yili normale yakin, 7 yili orta siddette kuraklik, 4 yil1 orta
siddette nemli, 3 yili siddetli kuraklik, 2 yili asir1 nemli ve 2 yili da ¢ok nemli olarak
belirlenmistir. SYI-12 zaman 6lgeginin yillara gére kurakhik smiflar1 olusum
yiizdelerine bakildiginda ise %70,49 degeri ile normale yakin SYI smifinin, bu
istasyonda hakim kuraklik sinifi oldugu goriilmiistiir. Bu sinifi %11,48 ile orta siddette
kuraklik takip etmektedir. Bu zaman oOlgeginde asir1 kurak bir yil goriillmemis olup
1966, 1993 ve 2011 yillarinda siddetli kuraklik gorilmistiir. 1997 ve 2015 yillart ise
asir1 nemli gegmistir. 2015 yilindan itibaren Sakarya istasyonunun SYI-12 zaman

Ol¢eginde kurakliklarin siirekli artma egiliminde oldugu tespit edilmistir.

Sakarya istasyonu igin &rnek olarak verilen SYI-1 ve SYI-12 zaman olgeklerinde
yapilan kuraklik degerlendirmeleri tlim istasyonlar i¢in yapilmis olup Tablo 3.4’te ve
Tablo 3.5’te sirastyla SYI-1 ve SYI-12 zaman &lgeklerinde istasyonlardaki kuraklik

siiflarina gore olusum sayilari ve olusum yiizdeleri verilmistir.

Tablo 3.4. istasyonlarm aylara gore SYI-1 kuraklik siniflar1 olusum sayilari ve yiizdeleri

Veri Aylara gore SYi-1 kuraklik siniflar olusum sayilari ve yiizdeleri
ist
stasyon adi | sayisi Asiri Cok .Orta Normale .Orta Siddetli | Asir
(ay) - . siddette siddette
nemli nemli . yakin kurak | kurak
nemli kurak
8 28 79 507 61 26 23
Sakarya 7321 (9%1.00) | (%3.83) | (%10.79) | (%69.26) | (%8.33) | (%3.55) | (%3.14)
8 36 69 503 65 34 17
Ankara 1321 061.09) | (%4.92) | (%9.43) | (%68.72) | (%8.88) | (%A4.64) | (%2.32)
itava | 730 14 30 71 504 65 32 16
y (%1.91) | (%4.10) | (%9.70) | (%68.85) | (%8.88) | (%4.37) | (%2.19)
Bl 672 13 29 52 464 70 23 21
(%1.93) | (%4.32) | (%7.74) | (%69.05) | (%10.42) | (%3.42) | (%3.13)
Ermicdas 576 9 19 57 398 55 21 17
g (%1.56) | (%3.30) | (%9.90) | (%69.10) | (%9.55) | (%3.65) | (%2.95)
polatl 64 11 16 62 388 46 23 18
(%1.95) | (%2.84) | (%10.99) | (%68.79) | (%8.16) | (%4.08) | (%3.19)
o 6 33 53 432 58 23 19
Sivrihisar | 624 | 010 96) | (065.20) | (%8.49) | (%69.23) | (%69.29) | (%3.69) | (%3.04)
ovve 624 13 21 57 440 43 28 22
y (%2.08) | (%3.37) | (%9.13) | (%7051) | (%6.89) | (%4.49) | (%3.53)
o 525 4 30 50 360 54 19 11
g (%0.76) | (%5.68) | (%9.47) | (%68.18) | (%10.23) | (%3.60) | (%2.08)
7 15 52 339 49 23 7
Yunak 492 | 061.42) | (%3.05) | (%10.57) | (%68.90) | (%9.96) | (%4.67) | (%1.42)
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Tablo 3.4’ten goriilecegi iizere, havzada yer alan 10 adet istasyonun tamaninda SYIi-1
zaman Olcegine gore %68,18 ile %70,51 arasinda degisen ylizdelerde normale yakin
SYI smifi goriilmektedir. Bu nedenle SYI-1 zaman 6lgeginde goriilen normale yakin
siifin havzanin hakim kuraklik sinifi oldugu sonucuna ulasilmistir. Geyve istasyonu bu
zaman olgeginde hem asirt nemli hem de asir1 kurak simiflarinda en yiiksek SYI
degerlerinin gorildiigli istasyon olmustur. Meteorolojik kurakligin hissedildigi orta
siddette kurak, siddetli kurak ve asir1 kurak siniflarinda en yiiksek yiizdeye (%16,97)
sahip olan istasyon ise Bolu istasyonudur. Bu ii¢ kuraklik sinifinda diger istasyonlar
yaklagik %15°1lik oranlara sahiptir. Orta siddette nemli, ¢ok nemli ve asir1 nemli
smiflarinda en yiiksek yiizdeye (%15,91) sahip olan istasyon Iigin istasyonu olup diger
istasyonlar ise yaklasik %14-15 araliginda degismektedir. Tablo 3.4’te verilen SYI-1
kuraklik sayilar1 ve olusum yiizdeleri incelendiginde, kuraklik simiflarina gore
istasyonlar arasinda benzer sayilarin ve yiizdelerin oldugu goriilmekte olup havzadaki

kuraklik durumunun homojen bir dagilimda oldugu soylenebilir.

Tablo 3.5. Istasyonlarin yillara gére SYI-12 kuraklik smiflari olusum sayilari ve
ylizdeleri
Veri Yillara gore SYI-12 kurakhk simiflar1 olusum sayilari ve yiizdeleri
Istasyon ad1 | sayisi Asiri Cok .Orta Normale .Orta Siddetli i A
(yil) . . siddette siddette
y nemli nemli . yakin kurak i kurak
nemli kurak
Sakarya 61 2 2 4 43 ! 3 0
(%3.28) | (%3.28) | (%6.56) ! (%70.49) | (%11.48) ! (%4.92)
Ankara 61 2 2 6 40 8 1 2
(%3.28) | (%3.28) | (%9.84) ! (%65.57) | (%13.11) ! (%1.64) | (%3.28)
Kiitahya 61 0 1 14 35 6 3 2
(%1.64) | (%22.95) | (%57.38) | (%9.84) | (%4.92) | (%3.28)
Bolu 56 0 6 3 38 5 2 2
(9%10.71) | (%5.36) | (%67.86) | (%8.93) | (%3.57) | (%3.57)
Emirdag 48 ! 2 4 33 3 5 0
(%2.08) | (%4.17) | (%8.33) | (%68.75) | (%6.25) ! (%10.42)
1 1 5 32 3 5
Polath AT 1 62.13) | (2.13) | (%10.64) | (%68.09) | (%6.38) | (%1064)F O
Sivrihisar 52 ! 3 > 35 > 2 !
(%1.92) | (%5.77) | (%9.62) | (%67.31) | (%9.62) | (%3.85) | (%1.92)
Gevve 50 1 2 6 32 8 2 1
W (%1.92) | (%3.85) | (%11.54) | (%61.54) | (%15.38) | (%3.85) | (%1.92)
Ilgin 44 0 2 6 30 3 0 3
(%4.55) | (%13.64) | (%68.18) | (%6.82) (%6.82)
2 5 27 3 4
04. 0 . 0 . ofl. 0Y.
Yunak AL a.88) 0 (%12.20) | (%65.85) | (%7.32) | (%9.76) | °
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Tablo 3.5°ten goriilecegi iizere, SYI-12 zaman &lgeginde yillara gore %57,38 ile
%70,49 arasinda degisen ylizdelerde normale yakin sinifi goriilmektedir. Yine bu zaman
olgeginde de hakim SYI kuraklik smifinin, normale yakin oldugu belirlenmistir.
Sakarya, Emirdag, Polatli ve Yunak istasyonlarinda asir1 kuraklik hi¢ goriilmemistir.
Kiitahya, Bolu ve Ilgin istasyonlarinda ise asirt nemli bir yil goriilmemistir. Ayrica
Yunak istasyonunda ¢ok nemli ve Ilgin istasyonunda ise siddetli kuraklik hig
goriilmemistir. Orta siddette kurak, siddetli kurak ve asir1 kurak siniflarinin tamamai i¢in
%?21,15 ile en yliksek deger Geyve istasyonuna aittir. Orta siddette nemli, ¢ok nemli ve
asirt nemli siiflarinda ise en yiiksek deger (%24,59), Kiitahya istasyonuna aittir. Tablo
3.5’te verilen SYI-12 kuraklik sayilari ve olusum yiizdeleri ile aylara gore belirlenen

SYIi-1 kuraklik degerlerinin birbiri ile tutarli oldugu goriilmiistiir.
3.4. Otokorelasyon Varh@imin Arastirilmasi

Tek degiskenli zaman serilerine dayali tahmin modellerinin tahmin basarisin1 6nemli
Olciide etkileyen otokorelasyon varligi, bir serinin kendinden onceki veya sonraki
gecikmeli degerlerine ait hata terimleri arasindaki seri bagimliligini gosteren istatistiksel
bir kavramdir. Mevcut zaman serisi ile gecikmeli zaman serisi arasindaki korelasyonun
istenmeyen bir durum olmasindan dolayr bu ¢alismada otokorelasyon varligi
arastirilmistir. Ayrica zaman serilerine dayali tahmin modellerinin basarisi, gecikme
zamanlar1 ile optimum sayida girdi degiskeni arasindaki iliskiyle de alakalidir. Bu
nedenle tahmin modellerine girecek olan optimum gecikme zamanlarmin hangi

giivenilir aralikta kaldig1 da bu asamada belirlenmistir.

Bu calismada; SYI-1, SYI-3, SYI-6 ve SYi-12 kuraklik degerlerinin farkli gecikme
zamanlar (t, t-1, t-2, t-3, ...vb.) tahmin modellerinde girdi degiskeni, t+1 zamani ise
cikt1 degeri olarak kabul edilmistir. Istasyonlarm aylik yagis verilerinden elde edilen
SYI kuraklik zaman serileri, MATLAB 2021b yaziliminda gelistirilen otokorelasyon
fonksiyonuna ait acik kodlar yardimiyla analiz edilmistir. Her bir istasyon ve her bir
zaman Olgegi i¢in ele alinan kuraklik zaman serileri, %95 giiven araliginda ve en fazla
10 gecikmeye kadar otokorelasyon fonksiyonuna tabi tutularak sonuglar elde edilmistir.
Ornek olarak Sakarya istasyonu igin SYIi-1, SYIi-3, SYIi-6 ve SYI-12 kuraklik zaman
serilerinden elde edilen otokorelasyon fonksiyonu grafikleri Sekil 3.6-3.9 arasinda

verilmistir.
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Sekil 3.7. Sakarya istasyonu SYI-3 otokorelasyon fonksiyonu grafigi
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Sekil 3.8. Sakarya istasyonu SYI-6 otokorelasyon fonksiyonu grafigi
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Sekil 3.9. Sakarya istasyonu SYI-12 otokorelasyon fonksiyonu grafigi

Sekil 3.6-3.9 arasindaki grafiklerde sonuglar1 verilen otokorelasyon fonksiyonlari,
Gauss dagilimini temel almakta olup tiim zaman 6lgeklerinde O gecikmesindeki (aslinda
serinin kendisi) otokorelasyon katsayisi degeri dogal olarak 1’i gostermektedir.
Grafiklerde yer alan baz1 gecikme zamanlarinda (Sekil 3.8’de) otokorelasyon katsayisi

degerinin 0 oldugu goriilmekte olup bunun anlami gecikme zamanindaki serinin
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bagimsiz oldugudur. Sekil 3.6-3.9 arasinda verilen grafiklerden elde edilen sonuglara
gbre; tim zaman Olceklerinde dikkate aliman en fazla gecikme zamani olan 10
gecikmeye kadar gecikme zaman serileri arasinda otokorelasyon varligi s6z konusu
degildir. Her bir zaman 06lgegi icin tiim gecikme zamanlart %95 giiven araligindaki
otokorelasyon katsayisinin alt ve ist smirlar igerisinde kalmistir. Otokorelasyon
katsayilarinin alt ve st sinirlari; SYI-1 igin +/- 0,0742, SYI-3 i¢in +/- 0,1292, SYIi-6
i¢in +/- 0,1858 ve SYI-12 igin +/- 0,2658 olarak bulunmustur. Sekil 3.6’da gériildiigii
iizere, Sakarya SYI-1 otokorelasyon fonksiyonu grafiginde 6 ve 9 gecikme
zamanlarinda alt ve st sinirlara yaklasilmis ancak agilmamistir. Sekil 3.8’de Sakarya
SYI-6 otokorelasyon fonksiyonu grafiginde 2 gecikme zamaninda otokorelasyon
katsayis1 degeri 0 olup bu gecikme zamani icin serinin bagimsiz oldugu sonucuna
ulagilmistir. Ayrica yine bu zaman o6lgeginde 4 gecikme zamaninda alt giiven sinirina

yaklagilmig ancak agilmamistir.

Sekil 3.6-3.9 arasinda verilen otokorelasyon fonksiyonu grafiklerine gore tiim zaman
Olgeklerinde 10 gecikme zamanina kadar olan gecikmelerin, tahmin modellerinde girdi

degiskenleri olarak kullanilabilecegi sonucuna ulasilmistir.
3.5. Ayrik Dalgacik Doniisiimii Sonuglar:

Her bir zaman 6l¢egi igin optimum gecikme zamanlarmin belirlenmesi, en uygun
dalgacik ailesi ile en uygun dalgacik bant seviyesinin secilmesi amaciyla SYI kuraklik
zaman serilerine Ayrik Dalgacik Donilisimii (ADD) uygulanmistir. Havzadaki 10
istasyonu temsilen sadece Sakarya istasyonunun SYi-1, SYI-3, SYi-6 ve SYI-12
kuraklik zaman serileri ADD ile alt bantlarina ayrilarak ADD-USBCS hibrit modelinde
egitme ve teste tabi tutulmustur. t orijinal kuraklik serisi olmak iizere t, t-1, t-2, t-3, t-4
ve t-5 olarak 5 farkli gecikme zamani, 8 farkli dalgacik ailesi ve 3, 4, 5, 6 ve 7 olmak
iizere 5 farkli bant seviyesine gore analizler tamamlanarak sonuglar elde edilmistir.
Ancak yapilan ADD analizlerinde ¢ok fazla model kombinasyonu denendiginden dolay1
oncelikle her bir zaman olgeginde belirlenen optimum gecikme zamanina gore (3
gecikme zamani) en iyi sonucu veren dalgacik ailesi ile dalgacik bant seviyelerine ait
ADD-USBCS hibrit model sonuglarina yer verilmistir. Daha sonra ise optimum
gecikme zamanu ile ilgili tablolar verilecektir. Sakarya istasyonunun 3 gecikme zamani

icin (t, t-1, t-2, t-3 girdi degiskeni) ele alinan SYi-1, SYI-3, SYi-6 ve SYI-12 zaman
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olgeklerindeki dalgacik ailesi ve dalgacik bant seviyesi model sonuglari sirasiyla Tablo
3.6, 3.7, 3.8 ve 3.9°da verilmistir.

Tablo 3.6. Sakarya SYi-1’e ait 3 gecikme zamanli ADD-USBCS hibrit modeli
dalgacik ailesi ve dalgacik bant seviyelerinin karsilagtirmasi

Dalgacik EGITME TEST
Dalgacik ailesi Bant 5 5 Sira
Seviyesi OMH R OMH R

3 0.7445 0.2987 | 0.5513  0.5102
0.7649  0.3001 : 0.5540  0.5090
0.7775 0.3028 | 0.5531  0.5098 8
0.7880  0.2998 | 0.5574  0.5066
0.7958  0.3009 : 0.5558  0.5067
0.3603  0.7763 | 0.3958  0.7487
0.3600 0.7768 | 0.3866  0.7600
0.3599 0.7768 | 0.3816  0.7663 5
0.3598 0.7769 | 0.3836  0.7640
0.3598  0.7769 : 0.3855 0.7614
0.3231  0.8202 | 0.4006  0.7468
0.3222  0.8213 | 0.3807 0.7753
0.3220 0.8215 | 0.3753  0.7789 4
0.3221 0.8215 | 0.3767 0.7781
0.3221  0.8214 | 0.3734  0.7779
0.4031 0.7082 : 0.4287 0.6974
0.4025 0.7087 | 0.4282 0.6944
0.4023 0.7090 | 0.4313 0.6913 7

Haar

Symlets (sym3)

Coiflets (coif2)

Biorthogonal

(biorl.3) 04023 07089 | 0.4308  0.6939

04023 07089 | 0.4334  0.6921

07682  0.3530 | 0.4267  0.6946

Reverse 07925 0.3589 | 0.4277 0.6934
biorthogonal 07905 0.3664 | 0.4259  0.6954 6

(rbiol.3) 07908 0.3662 | 0.4295 0.6914

07872 0.3651 | 0.4297  0.6913

0.7637 05799 | 0.2976  0.8537

Discrete 0.8007 05917 | 0.2973  0.8534
approximation of 0.8291 0.5817 | 0.2972  0.8533 1

Meyer (dmey) 0.8474  0.5832 | 0.2973  0.8533

0.8575 0.5881 | 0.2975 0.8531
0.7363 0.5654 | 0.3160  0.8368
0.7616  0.5789 | 0.3122  0.8411
0.7797 05761 | 0.3117 0.8420 2
0.7908 0.5786 | 0.3117 0.8418
0.7978  0.5744 | 0.3122  0.8417
0.7592  0.5715 | 0.3254  0.8301
0.7708 0.5767 | 0.3240  0.8310
0.7625 0.5744 | 0.3240  0.8309 3
0.7574  0.5701 { 0.3237  0.8313
0.7574  0.5702 | 0.3241  0.8310

Fejer-Korovkin
(fk4)

Daubechies (db40)

~N~No ok~ wiNOoO Olh,hWNOOPR,WNOOPA,WINOOPA,WNOOPR,OWNOOIEE WINO O &
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Tablo 3.7. Sakarya SYIi-3’e ait 3 gecikme zamanli ADD-USBCS hibrit modeli
dalgacik ailesi ve dalgacik bant seviyelerinin karsilagtirmasi

__ |Dalgack EGITME TEST
Dalgacik ailesi Bant Sira

Seviyesi OMH R? OMH R?

3 0.7002  0.4458 | 0.6307  0.2657
0.7242  0.4664 | 0.7169  0.2520
0.7383  0.4677 | 0.7460  0.2402 8
0.7547  0.4748 | 0.7393  0.2424
0.7660  0.4720 : 0.7309  0.2452
0.7203  0.5888 | 0.4546  0.6592
0.7514  0.5913 | 0.5285 0.6041
0.7682  0.5921 | 0.4375 0.6090 2
0.7818  0.5963 | 0.4699 0.5781
0.8606  0.5811 | 0.4656  0.5828
0.6984  0.6280 : 0.6017  0.4650
0.7276  0.6314 | 0.5963  0.4902
0.7557  0.6219 | 0.5996  0.4906 6
0.7757  0.6249 | 0.6700 0.4101
0.8379  0.6167 : 0.6838  0.4062
0.7194 0.5628 : 0.6036  0.4074
0.7465 0.5707 | 0.6057  0.4465
0.7819  0.5579 | 0.6105 0.4360 7

Haar

Symlets (sym3)

Coiflets (coif2)

Biorthogonal

(bigEgse) 08123 05650 | 0.6066  0.4347

0.8606 0.5358 | 0.6231  0.4276

07492 05217 | 0.6060  0.4870

Reverse 07920 05403 | 0.6664  0.5092
biorthogonal 08192 05440 | 0.7130  0.4667 5

(rbiol.3) 08524 05426 | 0.6924  0.4926

0.8815 0.5482 @ 0.6919  0.4934

07205 06403 | 0.2974  0.8745

Discrete 07642  0.6402 | 0.3524 0.8268
approximation of 0.7897  0.6337 | 0.3227 0.8514 1

Meyer (dmey) 0.8553  0.6275 | 0.4453  0.7803

0.8108  0.6423 | 0.3227  0.8503
0.7193  0.4775 | 0.4733  0.5976
0.7471  0.4900 | 0.8288 0.4412
0.7734  0.4930 | 0.8541 0.4286 4
0.8011 0.4932 | 0.8562 0.4191
0.8718  0.4580 : 0.9417 0.4124
0.7553  0.4439 | 0.4896 0.6326
0.7856  0.4419 | 0.4793  0.6432
0.8079  0.4523 | 0.4598  0.6487 3
0.8409  0.4471 | 0.5227  0.5499
0.9666  0.3970 | 0.7096  0.4510

Fejer-Korovkin
(fk4)

Daubechies (db40)

~NOoO O, WINO U, WNOOPR,WNOOTRA,ARWNOUIS, WNOOTE, WINO O WINO O
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Tablo 3.8. Sakarya SYIi-6’a ait 3 gecikme zamanli ADD-USBCS hibrit modeli
dalgacik ailesi ve dalgacik bant seviyelerinin karsilagtirmasi

__ |Dalgack EGITME TEST
Dalgacik ailesi Bant Sira

Seviyesi OMH R? OMH R?

3 0.6392 0.5635 | 1.7249  0.1808
0.6712 0.5725 | 1.7120 0.1911
0.6937 0.5805 | 1.7126  0.1901 3
0.7163  0.5790 | 1.7154  0.1892
0.7570  0.5683 | 1.7209  0.1849
0.6241 0.7232 | 1.4839  0.0030
0.6603  0.7429 | 1.6122  0.0021
0.6905 0.7279 | 1.6124  0.0028 8
0.8073 0.7010 : 1.8496  0.0047
1.1043 0.5631 | 1.7844  0.0055
0.6328 0.6908 ;| 1.6352  0.0608
0.6659  0.7029 | 1.6306  0.0568
0.6918 0.7085 | 1.6386  0.0523 6
0.7439  0.7051 | 1.6517  0.0563
0.8537  0.6792 | 1.6322  0.0580
0.6536  0.5970 ; 1.9760 0.0319
0.6947  0.5856 | 1.9437  0.0295
0.7261  0.5954 | 1.8940  0.0245 7

Haar

Symlets (sym3)

Coiflets (coif2)

Biorthogonal

(biord.3) 07423 05914 & 18970  0.0255

0.7490 0.5866 | 1.8955  0.0255

0.6981  0.6379 | 2.0154  0.0955

Reverse 0.7465 0.6605 | 2.0105  0.0932
biorthogonal 0.7764  0.6821 | 2.0180  0.0808 5

(rbiol.3) 0.8131 0.6664 | 2.0146  0.0808

0.8344 0.6693 | 2.0199  0.0801

0.6759  0.6318 | 0.2942  0.9323

Discrete 0.6971 0.6368 | 0.2785  0.9371
approximation of 0.7142 0.6396 | 0.2788  0.9368 1

Meyer (dmey) 0.7214  0.6406 | 0.2887 0.9381

0.7224  0.6411 | 0.2883  0.9376
0.6643  0.6801 | 2.4297  0.1255
0.7559  0.6362 | 2.6447  0.1147
0.7318 0.6731 | 2.1573  0.1352 4
0.7577  0.6568 | 2.0215  0.1498
0.7577  0.6567 : 2.0540  0.1540
0.6322 0.4292 | 0.6494 0.6130
0.6639  0.4498 | 0.6582  0.6187
0.6834  0.4499 | 1.5942  0.2900 2
0.7409  0.4340 | 1.5982  0.2888
0.8696  0.4479 | 1.5359 0.3012

Fejer-Korovkin
(fk4)

Daubechies (db40)

~NoOoO OO, WINO O, WINOUOUTRA,AWNOOTE, WINOOTPE, WINO O, WINO O WINO O
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Tablo 3.9. Sakarya SYI-12’e ait 3 gecikme zamanli ADD-USBCS hibrit modeli
dalgacik ailesi ve dalgacik bant seviyelerinin karsilagtirmasi
Dalgacik EGITME TEST
Dalgacik ailesi Bant Sira
Seviyesi | OMH R? OMH R?
3 0.6945 0.4318 1.0161 0.1402
4 0.7110 0.4472 1.0078 0.1467
Haar 5 0.7234 0.4495 1.0074 0.1373 8
6 0.7569 0.4418 1.0223 0.1163
7 0.8004 0.4249 1.0480 0.0972
3 0.7522 0.4775 0.5655 0.8210
4 0.7873 0.4601 | 0.5943 0.8035
Symlets (sym3) 5 0.8599  0.4402 | 0.6726  0.7823 1
6 1.0337 0.4007 0.6169 0.8083
7 1.0961 0.4327 0.5762 0.8194
3 0.7153 0.5913 0.7673 0.5222
4 0.7690 0.5812 0.7504 0.5520
Coiflets (coif2) 5 0.7907 0.5949 0.7466 0.5566 4
6 0.8114 0.5944 0.7433 0.5558
7 0.8220 0.5888 0.7434 0.5558
3 0.7300 0.5233 0.9451 0.3425
Biorthogonal 4 0.7499 0.5027 1.0186 0.2958
(bior1.3) 5 0.7699 0.5076 | 1.0249 0.2953 6
6 0.7928 0.5053 | 1.0738 0.2953
7 0.7928 0.5053 | 1.0738 0.2953
3 0.7236 0.5867 0.9882 0.3147
Reverse 4 0.7706 0.5566 0.9977 0.3064
biorthogonal 5 0.8109 0.5748 | 0.9990 0.3060 7
(rbiol.3) 6 0.8280 0.5745 0.9967 0.3063
7 0.9444 0.5799 0.9974 0.3059
3 0.7267 0.6647 | 0.6525 0.7013
Discrete 4 0.7606 0.6353 | 0.6685 0.6945
approximation of 5 0.7676 0.6566 | 0.6654 0.6988 3
Meyer (dmey) 6 0.7736 0.6344 0.7115 0.6688
7 0.7692 0.6564 0.6654 0.6989
3 0.7489 0.5938 | 0.5532 0.7717
Fejer-Korovkin 4 0.7833 0.5783 | 0.5935 0.7180
(fkd) 5 0.8312 0.5926 0.5974 0.7164 2
6 0.8880 0.5535 0.5961 0.7170
7 0.9518 0.5425 0.5940 0.7180
3 0.7579 0.4926 | 0.9211 0.3603
4 0.7875 0.4785 0.9177 0.3734
Daubechies (db40) 5 0.7930 0.4769 0.9129 0.3755 5
6 0.7961 0.4814 0.9148 0.3749
7 0.8351 0.4817 0.9148 0.3749

Tablo 3.6°da goriilecegi iizere, SYI-1 zaman o6lgeginde 3 gecikme zamanli ADD-
USBCS hibrit modelinde OMH=0,2976 ve R?=0,8537 test verisi performans kriterlerine

gore en iyi sonucu Discrete approximation of Meyer (dmey) dalgacik ailesi ile 3.
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dalgacik bant seviyesi vermistir. Fejer-Korovkin (fk4) ve Daubechies (db40) dalgacik
ailelerinin sonuglarinin da dmey dalgacik ailesine oldukca yakin oldugu goriilmiistiir.
Haar dalgacik ailesi disindaki diger dalgacik ailelerinin SYI-1 kuraklik degerlerini alt
bantlarina ayristirma islemindeki performanslar1 da makul seviyelerdedir. Hibrit
modelde en iyi sonucu veren dmey dalgacik ailesinde bant seviyesinin artmasi ile
ayristirma performansinin artmadigi goriilmiistiir. Diger dalgacik ailelerinde de bant
seviyesinin artmasi ile ayristirma performansi arasinda anlamh bir iligkinin olmadigi

tespit edilmistir.

Tablo 3.7°de goriilecegi iizere, SYI-3 zaman o6lgeginde 3 gecikme zamanli ADD-
USBCS hibrit modelinde OMH=0,2974 ve R?=0,8745 test verisi performans kriterlerine
gore en iyi sonucu Yine Discrete approximation of Meyer (dmey) dalgacik ailesi ile 3.
dalgacik bant seviyesi vermistir. Bu zaman 06l¢eginde dmey dalgacik ailesini, Symlets
(sym3) ve Daubechies (db40) dalgacik aileleri takip etmektedir. Ancak burada dmey
dalgacik ailesinin sonuglar1 diger dalgacik ailelerinin sonuglarina gore oldukga
istlindiir. Ayrica bu zaman 06lcegi i¢cin elde edilen model sonuglarina goére dmey

dalgacik ailesinde bant seviyesi arttik¢a ayristirma performanslar1 diismiistiir.

Tablo 3.8’de goriilecegi iizere, SYi-6 zaman 6lceginde 3 gecikme zamanli ADD-
USBCS hibrit modelinde OMH=0,2785 ve R?=0,9371 test verisi performans kriterlerine
gbre en iyi sonucu yine Discrete approximation of Meyer (dmey) dalgacik ailesi ile
oncekilerden farkli olarak 4. dalgacik bant seviyesi vermistir. Daubechies (db40)
dalgacik ailesinin 3. ve 4. bant seviyeleri hari¢ diger tiim dalgacik ailelerinin, bu zaman
Olgeginde test verisi performans kriterlerine gore oldukg¢a basarisiz sonuglar verdigi
goriilmiistiir. Burada, dmey dalgacik ailesinde bant seviyesinin artmasi ile R? degerleri
ve OMH degerleri artmistir. OMH’de 0’a yaklasildikca daha basarili sonuclar elde
edildiginden hem R? hem de OMH’e bakilarak en iyi sonug olarak 4. dalgacik bant

seviyesi secilmigtir.

Tablo 3.9°da goriilecegi iizere, SYI-12 zaman o6lgeginde 3 gecikme zamanli ADD-
USBCS hibrit modelinde OMH=0,5655 ve R?=0,8210 test verisi performans kriterlerine
gore en 1yi sonucu Symlets (sym3) dalgacik ailesi ile 3. dalgacik bant seviyesi vermistir.
Burada, Symlets (sym3) dalgacik ailesinin ayristirma performansini Fejer-Korovkin

(fk4) dalgacik ailesinin performansi takip etmektedir. Ayrica dmey dalgacik ailesi de
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yine bu dlgekte yiiksek R? degerlerini vermistir. Bu zaman lgeginde hem en iyi sonucu
veren Symlets (sym3) dalgacik ailesinde hem de diger dalgacik ailelerinde OMH
degerlerinin diger zaman Olceklerine gore daha yiiksek degerlere sahip olmasindan

dolay1 model performansinin diisiik kaldig1 goriilmiistiir.

ADD-USBCS hibrit modellerinden elde edilen OMH ve R? performans kriterlerine
gore, Sakarya istasyonunun her bir zaman 6lgegi i¢in optimum gecikme zamani 3
gecikme zamani (t, t-1, t-2, t-3 girdi degiskeni) olarak bulunmustur. Optimum gecikme
zamanimin belirlenmesine yonelik olarak Sakarya istasyonu SYI-1 zaman 6lgegi icin
dmey dalgacik ailesine gore elde edilen gecikme zamanlari ve dalgacik bant

seviyelerinin karsilastirmasi 6rnek olmasi agisindan Tablo 3.10°da verilmistir.

Tablo 3.10. Sakarya SYIi-1 i¢cin dmey dalgacik ailesine sahip ADD-USBCS hibrit
modeli gecikme zamanlari ve dalgacik bant seviyelerinin karsilagtirmasi

Dalgack | gGiTME TEST
Gecikme zamam Bant
Seviyesi OMH R2 OMH Rz
3 0.6018 0.4206 | 0.7465 0.2952
4 0.6001 0.4213 { 0.7700 0.3130
t, t-1 5 0.5990 0.4220 | 0.8023 0.3053
6 0.5995 0.4217 | 0.8197 0.2973
7 0.5995 0.4217 | 0.8278 0.2983
3 0.7710 0.5204  0.7377 0.5558
4 0.8059 0.5314 | 0.8012 0.5656
t, t-1, t-2 5 0.8299 0.5261 | 0.8578 0.5544
6 0.8500 0.5274 1 0.8709 0.5565
7 0.8582 0.5312 | 0.8915 0.5561
3 0.7637 05799 | 0.2976 0.8537
4 0.8007 0.5917 i 0.2973 0.8534
t, t-1, t-2, t-3 5 0.8291 0.5817 | 0.2972 0.8533
6 0.8474 0.5832 | 0.2973 0.8533
7 0.8575 0.5881 | 0.2975 0.8531
3 0.7651 0.6028 | 0.7209 0.7047
4 0.8065 0.6102 | 0.8014 0.6986
t, t-1, t-2, t-3, t-4 5 0.8362 0.6014 | 0.8479 0.6902
6 0.8564 0.6009 i 0.8862 0.6931
7 0.8665 0.6066 | 0.8990 0.6897
3 0.7619 0.6192 i 0.7216 0.7127
4 0.8056 0.6266 | 0.8017 0.7085
t, t-1, t-2, t-3, t-4, t-5 5 0.8363 0.6187 | 0.8537 0.6948
6 0.8568 0.6189 { 0.8909 0.7006
7 0.8675 0.6237 | 0.9021 0.6968
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Tablo 3.10°da goriilecegi iizere, Sakarya istasyonu SYI-1 zaman olgeginde dmey
dalgacik ailesine sahip ADD-USBCS hibrit modelinde OMH=0,2976 ve R?=0,8537
performans kriterlerine gore 3 gecikme zamani (t, t-1, t-2, t-3 girdi degiskeni) ve 3.
dalgacik bant seviyesi en iyi sonuglar1 vermistir. 3 gecikme zamanina kadar performans
kriterlerinin degeri iyilesirken 4 ve 5 gecikme zamanlarinda ise degerler diigmiistiir.
Burada oldugu gibi Sakarya istasyonunun diger tiim zaman Olgeklerinde de gecikme
zamanlari i¢in benzer sonuclar elde edilmis olup optimum gecikme zamani olarak 3
gecikme zaman (1, t-1, t-2, t-3 girdi degiskeni) kabul edilmistir. Elde edilen bu sonug

diger istasyonlar ve diger hibrit modeller i¢in de kullanilmistir.

Sakarya istasyonunun her bir zaman Olgegi icin ADD-USBCS hibrit modelinde
belirlenen optimum gecikme zamanlar1 ile dalgacik ailelerinin basar1 siralar1 Tablo

3.11°de verilmistir.

Tablo 3.11.  Sakarya istasyonu optimum gecikme zamanlari icin ADD-USBCS hibrit
modelinde dalgacik ailelerinin basar1 siralari

TR OMH ve R? Performans Kriterlerine Gére Model Basar: Sirasi

Sl Gecikme zamani
1 2 3 4 5 6 7 8

tt-1 dmey | coif2 fk4 db40 rbiol.3; sym3 i haar {biorl.3

t, t-1, t-2 dmey | fk4 db40 | coif2 i sym3 irbiol.3{biorl.3{ haar

Syi-1 t, t-1, t-2, t-3 dmey | fk4 db40 | coif2 i sym3 irbiol.3{biorl.3{ haar

t,t-1,t-2,t-3,t-4 | db40 | dmey | fk4 coif2 | sym3 {biorl.3rbiol.3; haar

t, t-1, t-2, t-3, t-4, t-5 i dmey | db40 k4 coif2 { sym3 {biorl.3} haar rbiol.3

t t-1 coif2 { dmey { sym3 | db40 irbiol.3; fk4 biorl.3; haar

t, t-1, t-2 coif2 { sym3 | dmey {biorl.3; db40 {rbiol.3; fk4 haar

SYi-3 t, t-1, t-2, t-3 dmey  sym3 | db40 fk4 irbiol.3{ coif2 |biorl.3}{ haar

t,t-1,t-2,t-3,t-4 {dmey i db40 | coif2 {rbiol.3{biorl.3; haar fk4 i sym3

t,t-1,t-2,t-3, t-4, t-5: dmey | db40 i coif2 ibiorl.3irbiol.3: haar | sym3 i fk4

tt-1 db40 { haar | coif2 i dmey i fk4 | sym3 :rbiol.3biorl.3

t, t-1, t-2 dmey { db40 | sym3 | coif2 | haar fk4 {rbiol.3{biorl.3

SYi-6 t, t-1, t-2, t-3 dmey | db40 | haar | fk4 irbiol.3| coif2 |biorl.3{ sym3

t, t-1,t-2,t-3,t-4 i dmey { db40 {rbiol.3{ sym3 | coif2 fk4 haar | biorl.3

t, t-1,t-2, t-3, t-4, t-5 i dmey | coif2 fk4 sym3 ibiorl.3: db40 haar | rbiol.3

tt-1 fk4 irbiol.3{ dmey { haar { sym3 ibiorl.3; db40 | coif2

t, t-1, t-2 dmey | fk4 db40 irbiol.3i coif2 {biorl.3{ sym3 | haar

SYi-12 t, t-1, t-2, t-3 sym3; fk4 | dmey | coif2 | db40 |biorl.3}rbiol.3| haar

t, t-1, t-2, t-3, t-4 fk4 § db40 | dmey {biorl.3{ haar | sym3 irbiol.3 | coif2

t, t-1,t-2, t-3, t-4, t-5 i dmey { bior1.3{ db40 | sym3 | fk4 coif2 {rbiol.3{ haar

Tablo 3.11 incelendiginde; 4 farkli zaman 6lgegi, 5 farkli gecikme zamani ve 8 farkli
dalgacik ailesine gore toplam 160 adet (5 farkli dalgacik bant seviyesi de dikkate
almirsa 800 adet olmaktadir) ADD-USBCS hibrit modeli dalgacik doniistimii

asamasinda ele almmistir. Bu hibrit modeller dikkate alindiginda SYI kuraklik zaman
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serilerinin dalgacik doniistimii ile analizinde, Discrete approximation of Meyer (dmey)
dalgacik ailesinin olduk¢a basarili oldugu ve diger dalgacik ailelerine goére kuraklik
verilerine daha iyi uyum sagladigi goriilmiistiir. Tablo 3.11°den goriilecegi iizere, dmey
dalgacik ailesinin ardindan siralama agisindan en basarili 2. dalgacik ailesi ise Yyine
hidrometeorolojik ¢aligsmalarda yaygin kullanilan Daubechies (db40) dalgacik ailesidir.
Ayrica gecikme zamani olarak 3 gecikme zamami (t, t-1, t-2, t-3 girdi degiskeni)
dalgacik doniisiimiiniin genelinde daha iyi bir performans gostermistir. Calismada ele
alman dalgacik doniisiimiinde, 3 gecikme zamanindan sonraki 4 ve 5 gecikme

zamanlarmimn OMH ve R? performans kriterlerini iyilestiremedigi goriilmiistiir.

Calismada Sakarya istasyonu igin yapilan tiim bu dalgacik doéniisiimii analizlerinin

sonucunda;

-SYi-1 ve SYI-3 zaman &lgekleri i¢in dmey dalgacik ailesine sahip, 3 gecikme zamanl

ve 3. dalgacik bant seviyesi,

-SYi-6 zaman &lgegi icin dmey dalgacik ailesine sahip, 3 gecikme zamanli ve 4.

dalgacik bant seviyesi,

-SYI-12 zaman &lgegi icin Symlets (sym3) dalgacik ailesine sahip, 3 gecikme zamanli

ve 3. dalgacik bant seviyesi en iistiin model performanslarini gostermistir.

Burada her bir zaman o6lgegi i¢in elde edilen optimum gecikme zamani, en uygun
dalgacik ailesi ve en uygun dalgacik bant seviyesi diger istasyonlar ve diger hibrit

modeller i¢in de kullanilmistir.
3.6. Ampirik Mod Ayristirmasi (AMA) Sonuglari

Her bir zaman &lgegi i¢in optimum AMA bant seviyesinin belirlenmesi amaciyla SYI
kuraklik zaman serileri, AMA yontemi ile alt bantlarina ayrilmistir. AMA ile alt
bantlarina ayristirma isleminde 2D, 3D, 4D ve 5D olmak iizere 4 farkli bant seviyesi
dikkate alinmistir. Ayrica otokorelasyon fonksiyonu ve dalgacik doniigiimii sonucunda
belirlenen optimum 3 gecikme zamanina (t, t-1, t-2, t-3) gore alt bantlarma ayrilan SYI
kuraklik zaman serileri egitme ve test verisi seklinde AMA-USBCS hibrit modelinde

girdi verisi olmak {izere kullanilmistir. Dalgacik doniisiimiinde oldugu gibi burada da
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havzadaki 10 adet istasyonu temsilen sadece Sakarya istasyonuna ait SYI kuraklik
zaman serileri icin AMA yontemi uygulanmistir. Tablo 3.12°de her bir zaman 6lgegi

i¢cin Sakarya istasyonuna ait AMA-USBCS hibrit modeli sonuglar1 verilmistir.

Tablo 3.12.  Sakarya istasyonu her bir zaman 6l¢egi i¢in AMA-USBCS hibrit model

erformanslari
. AMA EGITME TEST
Zaman Gecikme EE— —
P Cikis Bant
olcegi zamani

seviyesi | KOKH R? | KOKH R?

2D 0.447 0940 | 0571 0.881
3D 0486 0939 i 0.604 0.880
4D 0.507 0.939 | 0.605 0.880
5D 0.523 0.939 | 0.605 0.880
2D 0411 0945 i 0.708 0.896
3D 0468 0943 i 0.749 0.899
4D 0.501 0942 i 0.740 0.900
SD 0.559 0.942 { 0.743 0.900
2D 0.406 0.935 | 0.702 0.942
3D 0.442 0936 i 0.662 0.940
4D 0484 0938 i 0.657 0.941
sD 0.500 0.937 i 0.661 0.940
2D 0.449 0.838 i 0.607 0.842
3D 0470 0.829 i 0.615 0.840
4D 0471 0830 i 0.614 0.840
sD 0474 0.829 } 0.621  0.838

SYi-1 t, t-1, t-2, t-3 t+1

SYi-3 t, t-1, t-2, t-3 t+1

SYi-6 t, t-1, t-2, t-3 t+1

SYi-12 t, t-1, t-2, t-3 t+1

Tablo 3.12°de verilen AMA-USBCS hibrit modeli test sonuglar1 incelendiginde; SYI-1,
SYi-3 ve SYIi-12 zaman 6lgekleri igin hem KOKH (0,571, 0,708, 0,607) hem de R?
(0,881, 0,896, 0,842) performans kriteri degerlerine goére 2D bant seviyesi en basarili
sonuglart vermistir. Bu zaman Olgeklerinde bant seviyesinin artmasi model
performansini iyilestirememistir. SYI-6 zaman 6lcegi icin R?=0,942 degerine gore 2D
bant seviyesi, KOKH=0,657 degerine gore ise 4D bant seviyesi daha basarilidir. Bu
calismada, AMA yontemi ile alt bantlarina ayristirma isleminin biitiinii diisiiniildiiglinde
bant seviyelerinin artmasi ile model performanslarinin 6nemli 6l¢iide iyilesmedigi tespit
edildiginden SYI-6 zaman 6lceginde de R?=0,942 degerinden dolay1 optimum AMA
bant seviyesi olarak 2D se¢ilmistir. Tablo 3.12’den elde edilen ve her bir zaman 6lgegi
icin belirlenen optimum AMA bant seviyeleri hem diger istasyonlar hem de diger hibrit

modeller i¢in de dikkate alinmustir.
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3.7. Varyasyonel Mod Ayristirmasi (VMA) Sonuclari

AMA yonteminde oldugu gibi her bir zaman 06lgegi i¢in optimum VMA bant
seviyesinin belirlenmesi amaciyla SYI kuraklik zaman serileri, VMA yéntemi ile alt
bantlarina ayrilmistir. VMA ile alt bantlarina ayrigtirma isleminde yine 2D, 3D, 4D ve
5D olmak iizere 4 farkli bant seviyesi dikkate alinmistir. Ayrica otokorelasyon
fonksiyonu ve dalgacik doniisiimii sonucunda belirlenen optimum 3 gecikme zamanina
(t, t-1, t-2, t-3) gore alt bantlarina ayrilan SYI kuraklik zaman serileri egitme ve test
verisi seklinde VMA-USBCS hibrit modelinde girdi verisi olmak {izere kullanilmistir.
Dalgacik doniisiimii ve AMA yonteminde oldugu gibi burada da havzadaki 10 adet
istasyonu temsilen sadece Sakarya istasyonuna ait SYI kuraklik zaman serileri igin
VMA yontemi uygulanmigtir. Tablo 3.13’te her bir zaman o6lgegi icin Sakarya
istasyonuna ait VMA-USBCS hibrit modeli sonuglar1 verilmistir.

Tablo 3.13.  Sakarya istasyonu her bir zaman 6l¢egi icin VMA-USBCS hibrit model

erformanslart
. VMA EGITME TEST
Zaman Gecikme - —
et Cikis Bant
olcegi zamani

seviyesi | KOKH R? | KOKH R?
2D 0.967 0.379 i 0.644 0.607
3D 1012 0.464 | 0531 0.722
4D 0.982 0.627 { 0.377 0.857
5D 1.029 0.703 | 0.254 0.935
2D 0.907 0572 | 0.964 0.442
3D 0.963 0509 } 0.830 0.510
4D 0.967 0.628 | 0.469 0.826
5D 0.955 0.673 i 0.294 0.932
2D 0.878 0.462 i 1.070 0.346
3D 0.851 0558 | 1.224 0.489
4D 0.867 0.768 i 0.639 0.825
5D 0971 0721 { 0.720 0.847
2D 0.935 0576 i 0.957 0.527
3D 0.938 0.602 } 0.788 0.637
4D 0.983 0.747 } 0.829 0.760
5D 0951 0.702 } 0.465 0.910

SYi-1 t, t-1, t-2, t-3 t+1

SYi-3 t, t-1, t-2, t-3 t+1

SYi-6 t, t-1, t-2, t-3 t+1

SYi-12 t, t-1, t-2, t-3 t+1

Tablo 3.13’te verilen VMA-USBCS hibrit modeli test sonuglar1 incelendiginde; SYI-1,
SYi-3 ve SYIi-12 zaman 6lgekleri icin hem KOKH (0,254, 0,294, 0,465) hem de R?
(0,935, 0,932, 0,910) performans kriteri degerlerine goére 5D bant seviyesi en basarili

sonuglart vermigtir. Bu zaman 06lgeklerinde bant seviyesinin 2D’den 5D’e kadar



153

artirllmas;, KOKH ve R? performans kriterlerinin her ikisine goére de model
performansini &nemli dlgiide iyilestirmistir. SYI-6 zaman 6lceginde KOKH=0,639
degerine gore 4D bant seviyesi, R>=0,847 degerine gore ise SD bant seviyesi en iyi
sonuglar1 vermistir. SYI-6 zaman dlgeginde 4D ile 5D bant seviyeleri i¢in elde edilen
KOKH degerleri arasinda dnemli bir performans farki olmasina ragmen 4D ile 5D bant
seviyelerindeki R? degerleri birbirine ¢ok yakin sonuglar vermistir. Bu sebepten dolay1
SYi-6 zaman 6l¢eginde KOKH degerleri dikkate alinarak optimum bant seviyesi olarak
4D bant seviyesi sec¢ilmistir. VMA yonteminde, AMA yonteminin aksine bant
seviyeleri arttikca model performanslart fark edilir bir sekilde iyilesme gostermistir.
Burada belirlenen optimum VMA bant seviyeleri, hem diger istasyonlar hem de diger

hibrit modeller i¢in de dikkate alinmistir.
3.8. Bagmmsiz ve Hibrit Tahmin Model Sonu¢larinin Elde Edilmesi

ADD, AMA ve VMA analizleri ile optimum gecikme zamani, en uygun dalgacik ailesi
ve dalgacik bant seviyeleri ile optimum AMA ve VMA bant seviyeleri belirlenmis olup
bu degerlere gore alt bantlarina ayrilan ve yeniden elde edilen SYI kuraklik zaman
serileri tiim istasyonlar i¢in bagimsiz ve hibrit tahmin modellerinde egitme ve test verisi
seklinde girdi degiskeni olarak kullanilmistir. Veri setinin %75°1 egitme, veri setinin
%?25°1 ise test verisi olacak sekilde bir kabul yapilarak 3 gecikme zaman (t, t-1, t-2, t-3
girdi degiskeni) i¢cin modellerde t+1 zamanindaki ¢ikis degerleri elde edilmistir. Daha
onceden model gelisiminde bahsedilen parametrelere gére olusturulan bagimsiz tahmin
modellerinde; YSA, USBCS, GSR, DVMR makine 6grenmesi yontemleri ve UKSB
derin 6grenme yontemi kullanilmigtir. Hibrit modeller icin ise ADD, AMA ve VMA’I1
YSA, USBCS, GSR, DVMR ve UKSB modelleri bu ¢alismada ele alinmistir. Boylece
her bir istasyonun her bir zaman 0Ol¢egi i¢in toplamda 20 adet tahmin modeli
olusturulmustur. Tahmin modellerinden elde edilen tiim sonuglar 6 farkli performans
kriterine gore birbirleri ile karsilastirilnistir. Tablo 3.14-3.17°de Sakarya SYI-1, SYI-3,
SYIi-6 ve SYIi-12 icin elde edilen tahmin modellerine ait sonuglarm karsilastirmasi

verilmistir.
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Tablo 3.14. Sakarya istasyonu SYI-1 tahmin model performanslarinin karsilastirmasi

EGITME TEST
Modeller OKH KOKH NSE Ol OMH R? {OKH KOKH NSE Ol OMH R?
USBCS 0.889 0.943 0.093 0.477 0.729 0.122}1566 1.252 -0.628 0.069 0.921 0.002
ADD-USBCS }0.986 0.993 -0.005 0.604 0.764 0.580}0.145 0.380 0.850 0.889 0.298 0.854
AMA-USBCS}{0.200 0.447 0.796 0.830 0.317 0.940}0.325 0.571 0.662 0.778 0.456 0.881
VMA-USBCS}{1.058 1.029 -0.080 0.709 0.830 0.703}0.064 0.254 0.933 0.943 0.204 0.935
YSA 0.926 0.962 0.055 0.456 0.755 0.055}1.220 1.105 -0.268 0.263 0.876 0.164
ADD-YSA 0.115 0.339 0.880 0.920 0.267 0.88310.148 0.385 0.846 0.887 0.301 0.851
AMA-YSA 0.359 0599 0.634 0.769 0.463 0.881;0.341 0.584 0.646 0.768 0.471 0.880
VMA-YSA 0.064 0.253 0.935 0.949 0.198 0.935;0.060 0.245 0.939 0.946 0.200 0.940
GSR 0.935 0.967 0.046 0.451 0.763 0.094}1.013 1.007 -0.053 0.380 0.809 0.054
ADD-GSR 0.135 0.367 0.863 0.892 0.291 0.863}0.143 0.378 0.852 0.891 0.297 0.861
AMA-GSR 0.360 0.600 0.633 0.765 0.461 0.881}0.348 0.590 0.638 0.764 0.474 0.879
VMA-GSR 0.065 0.255 0.933 0.941 0.201 0.934}0.063 0.251 0.935 0.944 0.205 0.937
DVMR 0.964 0.982 0.016 0.435 0.757 0.021};1.247 1117 -0.296 0.248 0.870 0.293
ADD-DVMR }0.132 0.364 0.865 0.940 0.283 0.869}0.217 0.466 0.774 0.844 0.347 0.780
AMA-DVMR }0.372 0.610 0.620 0.769 0.470 0.878:0.344 0.586 0.643 0.767 0.471 0.875
VMA-DVMR 1 0.065 0.255 0.934 0.946 0.199 0.934}0.079 0.282 0.918 0.933 0.227 0.921
UKSB 0029 0171 0970 0951 0.119 0.974{0.029 0170 0971 0955 0.111 0.972
ADD-UKSB 10.047 0.216 0.953 0.916 0.176 0.972}0.049 0.221 0.949 0.918 0.173 0.955
AMA-UKSB }0.017 0.131 0.982 0.982 0.107 0.989}0.062 0.249 0.937 0.945 0.187 0.954
VMA-UKSB |0.051 0.225 0.948 0.921 0.202 0.989;0.054 0.208 0.948 0.937 0.179 0.970
Tablo 3.15. Sakarya istasyonu SYI-3 tahmin model performanslariin karsilastirmasi
EGITME TEST

Modeller OKH KOKH NSE Ol OMH R? !OKH KOKH NSE Ol OMH R?

USBCS 0.834 0913 0.110 0.479 0.728 0.153}1.999 1414 -0.621 0.069 1.034 0.080
ADD-USBCS }0.848 0.921 0.090 0.660 0.721 0.640!0.158 0.398 0.872 0.902 0.315 0.875
AMA-USBCS }{ 0.169 0.411 0.820 0.777 0.291 0.945;0.502 0.708 0.593 0.736 0.528 0.896
VMA-USBCS { 0.912 0.955 0.026 0.678 0.766 0.673}0.087 0.294 0.930 0.940 0.224 0.932
YSA 0.740 0.860 0.211 0.534 0.658 0.211}1.134 1065 0.081 0.450 0.893 0.136
ADD-YSA 0.128 0.357 0.863 0.917 0.282 0.895}0.153 0.391 0.876 0.905 0.315 0.884
AMA-YSA 0.259 0.509 0.723 0.763 0.395 0.890}0.400 0.633 0.676 0.784 0.505 0.914
VMA-YSA 0.127 0.356 0.865 0.903 0.297 0.941}0.118 0.344 0.904 0.923 0.277 0.961
GSR 0.921 0960 0.018 0.429 0.758 0.018}1.325 1.151 -0.074 0.365 0.916 0.034
ADD-GSR 0.135 0.367 0.863 0.890 0.291 0.863}0.155 0.394 0.874 0.904 0.322 0.876
AMA-GSR 0.262 0.512 0.720 0.764 0.395 0.889}0.404 0.636 0.672 0.782 0.506 0.911
VMA-GSR 0.062 0.249 0.934 0.941 0.193 0.942}0.058 0.241 0.953 0.956 0.196 0.957
DVMR 0.671 0.819 0.284 0.574 0.579 0.301}1.239 1113 -0.005 0.403 0.865 0.020
ADD-DVMR }0.110 0.332 0.882 0.981 0.255 0.883!0.167 0.409 0.837 0.876 0.330 0.843
AMA-DVMR }{0.268 0518 0.714 0.827 0.394 0.887:0.221 0.470 0.821 0.871 0.349 0.934
VMA-DVMR }0.052 0.229 0.944 0970 0.180 0.954}0.179 0.423 0.855 0.891 0.327 0.876
UKSB 0.029 0.169 0.970 0.941 0.139 0.988}0.098 0.313 0.913 0.930 0.220 0.927
ADD-UKSB 10.027 0.163 0.971 0946 0.136 0.981!0.132 0.364 0.894 0.916 0.300 0.907
AMA-UKSB }0.008 0.087 0.992 0.989 0.068 0.99310.122 0.349 0.901 0.921 0.278 0.909
VMA-UKSB }0.011 0.104 0.988 0.976 0.082 0.990}0.057 0.239 0.954 0.956 0.166 0.962
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Tablo 3.16. Sakarya istasyonu SYI-6 tahmin model performanslarinin karsilastirmasi

EGITME TEST
Modeller OKH KOKH NSE Ol OMH R? {OKH KOKH NSE Ol OMH R?
USBCS 0.701 0.837 0.082 0.462 0.643 0.121}3.235 1799 -0.920 -0.082 1.348 0.016
ADD-USBCS }0.761 0.872 0.000 0.643 0.697 0.637}0.109 0.330 0.935 0.945 0.276 0.937
AMA-USBCS {0.165 0.406 0.785 0.800 0.270 0.935}0.493 0.702 0.707 0.806 0.535 0.942
VMA-USBCS {1 0.752 0.867 0.014 0.426 0.734 0.768}0.409 0.639 0.758 0.836 0.492 0.825
YSA 0.557 0.747 0.257 0.558 0.555 0.257}2.240 1.497 -0.329 0.234 1.119 0.113
ADD-YSA 0.107 0.327 0.860 0.867 0.253 0.864}0.102 0.319 0.940 0.948 0.256 0.945
AMA-YSA 0.238 0.488 0.688 0.738 0.376 0.884}0.565 0.752 0.665 0.781 0.571 0.936
VMA-YSA 0.098 0.314 0.871 0.906 0.244 0.874}0.238 0.487 0.859 0.897 0.387 0.865
GSR 0.691 0.831 0.078 0.461 0.655 0.200}1.665 1.290 0.012 0.419 0.940 0.020
ADD-GSR 0.085 0.291 0.888 0.899 0.233 0.890}0.114 0.338 0.932 0.943 0.291 0.934
AMA-GSR 0.243 0.493 0.681 0.725 0.381 0.889}0.641 0.801 0.620 0.756 0.597 0.926
VMA-GSR 0.069 0.262 0.910 0.922 0.209 0.910}0.158 0.398 0.906 0.926 0.324 0.914
DVMR 0449 0.670 0.401 0.638 0.415 0.420}1.636 1.279 0.030 0.428 0.923 0.035
ADD-DVMR }0.099 0.315 0.870 0.899 0.250 0.870}0.374 0.611 0.778 0.848 0.482 0.821
AMA-DVMR {0.228 0.478 0.701 0.848 0.359 0.890}0.396 0.630 0.765 0.840 0.425 0.853
VMA-DVMR 1 0.053 0.230 0.931 0.943 0.189 0.933}0.256 0.506 0.848 0.890 0.400 0.881
UKSB 0.003 0050 00997 0.968 0.047 1.000}0.096 0.310 00924 0934 0229 0.952
ADD-UKSB }0.002 0.044 0.998 0.973 0.035 0.998}0.293 0.542 0.830 0.766 0.352 0.883
AMA-UKSB }0.010 0.101 0.987 0.984 0.089 0.996}0.280 0.529 0.834 0.881 0.324 0.893
VMA-UKSB |0.008 0.088 0.990 0.973 0.071 0.993}0.221 0.470 0.869 0.903 0.330 0.945
Tablo 3.17. Sakarya istasyonu SYI-12 tahmin model performanslarmnin karsilastirmasi
EGITME TEST
Modeller OKH KOKH NSE Ol OMH R? {OKH KOKH NSE Ol OMH R?
USBCS 0.783 0.885 0.060 0.420 0.709 0.096}2.740 1.655 -0.631 0.006 1.286 0.019
ADD-USBCS }0.850 0.922 -0.021 0.375 0.752 0.478:0.495 0.704 0.705 0.776 0.565 0.821
AMA-USBCS {0.202 0.449 0.758 0.823 0.301 0.838}0.369 0.607 0.781 0.825 0.425 0.842
VMA-USBCS {0.905 0.951 -0.087 0.338 0.817 0.702}0.216 0.465 0.872 0.885 0.373 0.910
YSA 1.201 1.096 -0.443 0.142 0.892 0.009}2.441 1562 -0.452 0.105 1.302 0.084
ADD-YSA 0.178 0.422 0.786 0.840 0.330 0.786}0.466 0.683 0.723 0.788 0.500 0.728
AMA-YSA 0.183 0.428 0.780 0.837 0.310 0.781;0.561 0.749 0.666 0.752 0.625 0.749
VMA-YSA 0.089 0.297 0.894 0.910 0.244 0.901;0.201 0.449 0.880 0.892 0.402 0.914
GSR 0.739 0.860 0.112 0.449 0.724 0.112}2524 1589 -0.502 0.077 1.317 0.051
ADD-GSR 0.135 0.368 0.837 0.873 0.274 0.842;0.615 0.784 0.634 0.732 0.607 0.782
AMA-GSR 0.221 0.470 0.735 0.809 0.368 0.743}0.474 0.689 0.718 0.784 0.560 0.754
VMA-GSR 0.070 0.264 0917 0926 0.212 0917;0.170 0.412 0.899 0.905 0.362 0.912
DVMR 0.404 0.635 0.515 0.679 0.393 0.240}1.736 1.318 -0.033 0.341 1.130 0.020
ADD-DVMR }0.176 0.420 0.788 0.842 0.322 0.791}0.544 0.737 0.677 0.758 0.542 0.789
AMA-DVMR }0.238 0488 0.714 0.797 0.344 0.720}0.519 0.720 0.691 0.768 0.478 0.712
VMA-DVMR }0.075 0.275 0910 0.921 0.215 0.911}0.435 0.659 0.741 0.799 0.560 0.891
UKSB 0.000 0.007 1.000 0.999 0.003 1.000;0.180 0.424 0.893 0.901 0.304 0.917
ADD-UKSB }0.009 0.096 0.989 0.983 0.085 0.997{0.203 0.450 0.879 0.891 0.363 0.899
AMA-UKSB }0.005 0.073 0.994 0.988 0.068 0.999:0.277 0.526 0.835 0.861 0.417 0.931
VMA-UKSB }0.019 0.138 0.977 0971 0.129 0.997:0.114 0.338 0.932 0.929 0.265 0.959
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Tablo 3.14 ile 3.17 arasinda verilen Sakarya SYI-1, SYI-3, SYI-6 ve SYi-12 i¢cin tahmin
modelleri test sonuclarina ait performans karsilastirmalarma bakildiginda; SYi-1 zaman
6lceginde performans kriterlerine (OKH=0,029, KOKH=0,170, NSE=0,971, OI=0,955,
OMH=0,111 ve R?=0,972) gére en iistiin sonuglar1 bagimsiz UKSB tahmin modeli
vermistir. Tablo 3.14’ten goriilecegi lizere UKSB derin 6grenme yontemine ait bagimsiz
ya da hibrit tiim modeller, diger yontemlere ait modellere gére SYI kuraklik
degerlerinin tahmininde daha basarilidir. Ayrica egitme sonuclar1 da irdelenecek olursa
UKSB yontemine ait tiim modellerin egitme basarisi oldukga iistiindiir. Bu zaman
olgeginde VMA-USBCS, VMA-YSA, VMA-GSR ve VMA-DVMR hibrit tahmin
modellerinin basarilar1 da yiiksek olup UKSB tahmin modellerine yakin bir performans
gostermislerdir. Bu nedenle VMA 6n isleme tekniginin diger ADD ve AMA
tekniklerine gore kuraklik zaman serilerini ayristirmada daha basarili oldugu rahatlikla
sOylenebilir. Ayrica YSA, USBCS, GSR ve DVMR yodntemlerine ait bagimsiz

modellere ait hem egitme hem de test sonuglarinin oldukea diisiik kaldig1 goriilmiistiir.

Tablo 3.15°te goriilecegi iizere, Sakarya istasyonu SYI-3 zaman &lgeginde tahmin
modelleri test sonuglarina ait performans kriterlerine (OKH=0,057, KOKH=0,239,
NSE=0,954, O1=0,956, OMH=0,166 ve R?=0,962) gore; VMA-UKSB hibrit tahmin
modelinde en iistiin sonuglar elde edilmistir. SYI-1 zaman 6l¢eginde oldugu gibi UKSB
derin 6grenme yoOntemine ait tiim modellerin yine oldukc¢a basarili sonuglar verdigi
goriilmiistiir. Yine SYI-1°de oldugu gibi VMA-USBCS, VMA-YSA, VMA-GSR hibrit
tahmin modellerine ait test sonuglar1 da oldukca basarilidir. Burada da YSA, USBCS,
GSR ve DVMR yontemlerine ait bagimsiz modellerin tahmin performanslarinin

oldukca zayif oldugu goriilmiistiir.

Tablo 3.16°da verilen Sakarya istasyonu SYI-6 zaman &lgegi tahmin modelleri test
sonuglarma ait performans kriterlerine (OKH=0,096, KOKH=0,310, NSE=0,924,
01=0,934, OMH=0,229 ve R2=0,952) gore; bagimsiz UKSB tahmin modeli en {istiin
sonuclart vermistir. Bunun yani sira ADD-YSA hibrit tahmin modelinin test sonuglari,
bagimsiz UKSB tahmin modeline olduk¢a yakin sonuglar vermis olup NSE=0,940 ve
0I=0,948 performans kriterlerinde bagimsiz UKSB modelinden daha {istiindiir. Bu
zaman Olgeginde ADD-YSA ve ADD-GSR hibrit tahmin modellerinin performanslari
da oldukga tatmin edicidir. Burada, SYI-1 ve SYI-3 zaman &lgeklerinden farkli olarak
ADD ve AMA’l1 UKSB hibrit modellerinin tahmin basaris1 ise beklenene gore diisiik
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kalmistir. Diger zaman Olceklerinde oldugu gibi burada da YSA, USBCS, GSR ve
DVMR yoéntemlerine ait bagimsiz modellerin tahmin performanslarinin oldukca zayif

oldugu goriilmektedir.

Tablo 3.17°de goriilecegi iizere, Sakarya istasyonu SYI-12 zaman 6lgegi tahmin
modelleri test sonuglarina ait performans kriterlerine (OKH=0,114, KOKH=0,338,
NSE=0,932, 01=0,929, OMH=0,265 ve R?=0,959) gore; VMA-UKSB hibrit tahmin
modeli en {istiin sonuglar1 vermistir. Ayrica yine UKSB yOntemine ait tiim bagimsiz ve
hibrit modellerin tahmin performanlar1 oldukc¢a basarilidir. Bu zaman Olgeginde;
VMA’nin dahil oldugu VMA-YSA, VMA-USBCS ve VMA-GSR hibrit modellerin
tahmin performanslar1 yine olduk¢a iyi durumdadir. VMA-DVMR hibrit tahmin
modelinde, R?=0,891 degeri hari¢ diger performans kriterlerinde iyilestirme
saglanamamistir. Diger tiim zaman Olgeklerinde oldugu gibi UKSB derin 6grenme
modeli hari¢ olmak iizere bagimsiz makine 6grenmesi yontemlerinde oldukca zayif

tahmin performanslari elde edilmistir.

Tablo 3.14 ile 3.17 arasinda verilen Sakarya SYI-1, SYi-3, SYI-6 ve SYI-12 zaman
Olceklerine ait tahmin modeli performanslarinin biitliniine bakildiginda genel olarak
benzer sonuglar alindig1 goriilmiis olup Ornek olmast agisindan detaylica
degerlendirmesi yapilmistir. Bundan sonra ele alinacak olan istasyonlara ait tahmin
model sonuglarinda yalnizca lstiin olan modele ait test sonuglart i¢in performans
kriterleri degerleri belirtilecektir. Tablo 3.18-3.21 arasinda Ankara istasyonuna ait tim

zaman Ol¢ekleri i¢in tahmin modellerinin performanslari verilmistir.
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Tablo 3.18. Ankara istasyonu SYI-1 tahmin model performanslarinin karsilastirmasi

EGITME TEST

Modeller OKH KOKH NSE Ol OMH R? {OKH KOKH NSE Ol OMH R?

USBCS 0.889 0.943 0.086 0.476 0.743 0.114}1.428 1.195 -0.556 0.118 0.888 0.004
ADD-USBCS }0.929 0.964 0.044 0.454 0.765 0.618}0.135 0.367 0.853 0.895 0.295 0.854
AMA-USBCS}{0.215 0.464 0.779 0.856 0.370 0.885}0.204 0.451 0.778 0.850 0.352 0.793
VMA-USBCS {1259 1.122 -0.296 0.273 0.929 0.573}0.253 0.503 0.724 0.818 0.408 0.804
YSA 1.005 1.002 -0.034 0.412 0.811 0.001}0.960 0.980 -0.046 0.392 0.779 0.016
ADD-YSA 0.134 0.367 0.862 0.905 0.296 0.863};0.132 0.363 0.856 0.897 0.287 0.857
AMA-YSA 0.241 0491 0.752 0.841 0.392 0.790;0.203 0.450 0.779 0.850 0.352 0.796
VMA-YSA 0.097 0.312 0.900 0.928 0.253 0.900;0.085 0.291 0.908 0.928 0.232 0.908
GSR 0.972 0.986 0.000 0.430 0.796 0.000}0.924 0.961 -0.006 0.413 0.764 0.000
ADD-GSR 0.130 0.361 0.866 0.908 0.293 0.866;0.130 0.360 0.859 0.898 0.288 0.859
AMA-GSR 0.254 0,504 0.739 0.834 0.402 0.827;0.197 0.444 0.785 0.854 0.351 0.815
VMA-GSR 0.096 0.309 0.902 0.929 0.250 0.902;0.087 0.296 0.905 0.927 0.236 0.905
DVMR 0.795 0.892 0.182 0.528 0.666 0.188;0.976 0.988 -0.063 0.382 0.786 0.007
ADD-DVMR }0.135 0.368 0.861 0.904 0.297 0.861}0.143 0.378 0.845 0.889 0.297 0.853
AMA-DVMR 1 0.274 0.524 0.718 0.822 0.420 0.843}0.244 0.494 0.735 0.824 0.390 0.838
VMA-DVMR 1 0.096 0.309 0.902 0.929 0.248 0.902}0.130 0.361 0.858 0.898 0.288 0.869
UKSB 0.007 0.085 0.993 0.990 0.065 0.995;0.036 0.189 0.961 0.964 0.147 0.977
ADD-UKSB }0.009 0.095 0.991 0.989 0.076 0.994:0.039 0.198 0.957 0.961 0.122 0.958
AMA-UKSB }0.012 0.108 0.988 0.986 0.088 0.994}0.045 0.212 0.951 0.957 0.174 0.975
VMA-UKSB |0.004 0.065 0.996 0.993 0.050 0.996}0.067 0.259 0.927 0.941 0.208 0.934

Tablo 3.19. Ankara istasyonu SYi-3 tahmin model performanslarmin karsilastirmasi
EGITME TEST

Modeller OKH KOKH NSE Ol OMH R? {OKH KOKH NSE Ol OMH R?

USBCS 0.858 0.926 0.127 0477 0.722 0.182}1.695 1302 -0.671 0.023 1.074 0.122
ADD-USBCS }0.942 0.970 0.041 0.430 0.769 0.654}0.107 0.327 0.902 0.919 0.263 0.906
AMA-USBCS}{0.181 0.426 0.816 0.868 0.314 0.912}0.254 0.504 0.767 0.835 0.393 0.879
VMA-USBCS}{0.874 0.935 0.110 0.468 0.806 0.785}0.113 0.336 0.896 0.916 0.259 0.913
YSA 0.900 0.949 0.083 0.453 0.752 0.083}1.204 1.097 -0.187 0.287 0.893 0.069
ADD-YSA 0.111 0.333 0.887 0.913 0.269 0.889}0.120 0.346 0.890 0.911 0.283 0.894
AMA-YSA 0.248 0.498 0.747 0.827 0.402 0.848:0.242 0.492 0.778 0.841 0.388 0.869
VMA-YSA 0.487 0.698 0.504 0.687 0.620 0.8940.132 0.363 0.879 0.905 0.283 0.927
GSR 0.788 0.888 0.198 0.516 0.711 0.352}1.238 1.113 -0.220 0.269 0.922 0.126
ADD-GSR 0.115 0.339 0.883 0.910 0.274 0.884}0.125 0.353 0.886 0.909 0.291 0.890
AMA-GSR 0.296 0.544 0.698 0.798 0.429 0.872}0.305 0.552 0.721 0.807 0.428 0.894
VMA-GSR 0495 0.704 0.496 0.682 0.627 0.900}0.126 0.355 0.884 0.908 0.277 0.924
DVMR 0.616 0.785 0.373 0.613 0.514 0.375}1.775 1332 -0.750 -0.020 1.083 0.122
ADD-DVMR }0.118 0.343 0.880 0.908 0.273 0.881}0.162 0.403 0.851 0.887 0.333 0.877
AMA-DVMR }0.334 0.578 0.660 0.776 0.452 0.877}0.320 0.566 0.706 0.798 0.397 0.899
VMA-DVMR {0512 0.716 0.478 0.672 0.625 0.921}0.114 0.337 0.896 0.915 0.251 0.900
UKSB 0.005 0.071 0.995 0.991 0.056 0.996}0.067 0.260 0.938 0.944 0.227 0.967
ADD-UKSB }0.011 0.105 0.989 0.985 0.083 0.991}0.097 0.311 0911 0.926 0.232 0.937
AMA-UKSB }0.012 0.109 0.988 0.984 0.086 0.993}0.073 0.270 0.933 0.941 0.177 0.939
VMA-UKSB }0.009 0.093 0.991 0.987 0.080 0.997}0.097 0.311 0.911 0.925 0.267 0.955
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Tablo 3.20. Ankara istasyonu SYI-6 tahmin model performanslarinin karsilastirmasi

EGITME TEST

Modeller OKH KOKH NSE Ol OMH R? {OKH KOKH NSE Ol OMH R?

USBCS 0.543 0.737 0.420 0.635 0.470 0.613}1.334 1.155 0.019 0.400 0.893 0.034
ADD-USBCS }0.959 0.979 -0.057 0.372 0.813 0.704}0.163 0.403 0.880 0.902 0.341 0.881
AMA-USBCS }{0.144 0.380 0.841 0.882 0.307 0.926}0.358 0.599 0.736 0.812 0.507 0.882
VMA-USBCS }0.964 0.982 -0.063 0.369 0.834 0.645}0.221 0.470 0.838 0.874 0.390 0.842
YSA 0.817 0.904 0.127 0.472 0.701 0.131};1.380 1.175 -0.015 0.381 0.917 0.081
ADD-YSA 0.109 0.330 0.880 0.906 0.261 0.885;0.143 0.379 0.895 0.911 0.294 0.896
AMA-YSA 0.165 0.407 0.818 0.868 0.341 0.888}0.212 0.460 0.844 0.878 0.408 0.864
VMA-YSA 0.137 0.370 0.849 0.887 0.287 0.850;0.217 0.466 0.840 0.876 0.376 0.845
GSR 0.821 0.906 0.123 0.470 0.702 0.43311.428 1.195 -0.050 0.362 0.900 0.088
ADD-GSR 0.120 0.347 0.868 0.899 0.280 0.871;0.144 0.379 0.894 0.911 0.312 0.895
AMA-GSR 0.181 0.425 0.801 0.857 0.354 0.896;0.220 0.469 0.838 0.875 0.423 0.846
VMA-GSR 0.154 0.392 0.831 0.876 0.304 0.831;0.207 0.455 0.848 0.881 0.345 0.851
DVMR 0.797 0.893 0.148 0.484 0.631 0.162};1.392 1.180 -0.024 0.376 0.898 0.005
ADD-DVMR }0.342 0.584 0.623 0.752 0.461 0.864;0.248 0.498 0.818 0.862 0.410 0.854
AMA-DVMR 10.200 0.447 0.779 0.844 0.366 0.887}0.276 0.525 0.797 0.849 0.434 0.916
VMA-DVMR 10.119 0.346 0.868 0.899 0.251 0.871}0.202 0.449 0.852 0.883 0.337 0.853
UKSB 0.002 0.044 0.998 0.995 0.034 0.999;0.215 0.464 0.842 0.877 0.263 0.865
ADD-UKSB }0.009 0.093 0.990 0.986 0.076 0.994:0.185 0.430 0.864 0.891 0.330 0.906
AMA-UKSB }0.032 0.179 0.965 0.964 0.161 0.993}0.241 0.491 0.823 0.865 0.407 0.925
VMA-UKSB }0.025 0.159 0.972 0970 0.122 0.973}0.095 0.308 0.930 0.936 0.228 0.948
Tablo 3.21. Ankara istasyonu SYI-12 tahmin model performanslarimin karsilastirmasi

EGITME TEST

Modeller OKH KOKH NSE Ol OMH R? {OKH KOKH NSE Ol OMH R?

USBCS 0.785 0.886 0.229 0.519 0.622 0.474:1.635 1279 -0.695 -0.028 1.108 0.135
ADD-USBCS }1.160 1.077 -0.140 0.314 0.920 0.400:0.484 0.696 0.498 0.651 0.545 0.566
AMA-USBCS}0.958 0.979 0.059 0424 0.771 0.657}0.386 0.622 0.600 0.712 0.505 0.727
VMA-USBCS}1.172 1.083 -0.152 0.308 0.917 0.738}0.097 0.311 0.900 0.906 0.215 0.920
YSA 0.877 0937 0.138 0.468 0.738 0.144}0.969 0.984 -0.005 0.359 0.813 0.335
ADD-YSA 0.270 0520 0.735 0.811 0.392 0.735}0.355 0.596 0.632 0.732 0.448 0.782
AMA-YSA 0.316 0.562 0.690 0.784 0.459 0.696:0.396 0.629 0.590 0.706 0.513 0.670
VMA-YSA 0.047 0.217 0.954 0.954 0.173 0.965;0.040 0.201 0.958 0.951 0.158 0.966
GSR 1.018 1.009 0.000 0.391 0.805 0.706}1.169 1.081 -0.212 0.241 0.925 0.251
ADD-GSR 0.115 0.340 0.887 0.907 0.266 0.887;0.262 0.512 0.728 0.792 0.409 0.794
AMA-GSR 0.305 0.552 0.701 0.791 0.460 0.705}0.361 0.600 0.626 0.728 0.497 0.735
VMA-GSR 0.021 0.145 0979 0974 0.115 0.982;0.059 0.243 0.939 0.935 0.151 0.964
DVMR 0.485 0.697 0.523 0.687 0.438 0.6281.093 1.045 -0.133 0.286 0.772 0.192
ADD-DVMR }0.287 0.536 0.718 0.801 0.424 0.721:0.370 0.608 0.616 0.722 0.537 0.718
AMA-DVMR }0.309 0.556 0.696 0.788 0.464 0.700}0.375 0.613 0.611 0.719 0.502 0.661
VMA-DVMR }0.074 0.271 0.928 0.935 0.190 0.942}0.341 0.584 0.647 0.741 0.459 0.870
UKSB 0.001 0.083 0.999 0.996 0.025 0.999:0.069 0.262 0.929 0.927 0.229 0.931
ADD-UKSB }0.010 0.101 0.990 0.984 0.081 0.992:0.140 0.374 0.855 0.875 0.312 0.925
AMA-UKSB }0.030 0.174 0970 0.967 0.137 0.976:0.147 0.383 0.848 0.870 0.312 0.908
VMA-UKSB }0.015 0.121 0.986 0.980 0.106 0.996:0.036 0.190 0.963 0.954 0.125 0.977
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Tablo 3.18°de goriilecegi iizere, Ankara istasyonu SYI-1 zaman &lgegi igin tahmin
modellerine ait test sonuglarinda performans kriterlerine (OKH=0,036, KOKH=0,189,
NSE=0,961, OI=0,964, OMH=0,147 ve R2=0,977) gore; bagimsiz UKSB tahmin
modeli en iistiin sonuglar1 vermistir. Tablo 3.19°da verilen Ankara istasyonu SYI-3
zaman Olcegi i¢in tahmin modellerine ait test sonuglarinda performans kriterlerine
(OKH=0,067, KOKH=0,260, NSE=0,938, O1=0,944, OMH=0,227 ve R?>=0,967) gore;
yine bagimsiz UKSB tahmin modeli en {stiin sonuglar1 vermistir. Tablo 3.20°de verilen
Ankara istasyonu SYI-6 zaman 6lgegi igin tahmin modellerine ait test sonuglarinda
performans kriterlerine (OKH=0,095, KOKH=0,308, NSE=0,930, 0OI=0,936,
OMH=0,228 ve R?=0,948) gére; VMA-UKSB hibrit tahmin modeli en iistiin sonuglari
vermistir. Tablo 3.21°de goriilecegi iizere Ankara istasyonu SYI-12 zaman 6lcegi icin
tahmin modellerine ait test sonuglarinda performans kriterlerine (OKH=0,036,
KOKH=0,190, NSE=0,963, 01=0,954, OMH=0,125 ve R?=0,977) gére; yine VMA-
UKSB hibrit tahmin modelinin en istiin sonuglar1 verdigi goriilmistiir. Tablo 3.22-3.25
arasinda Kiitahya istasyonuna ait tim zaman Olgekleri i¢in tahmin modellerinin

performanslar: verilmistir.

Tablo 3.22. Kiitahya istasyonu SYI-1 tahmin model performanslarinin karsilastirmasi

EGITME TEST
2 2
Modeller OKH KOKH NSE Ol OMH R? !OKH KOKH NSE Ol OMH R
USBCS 0.812 0.901 0.110 0476 0.707 0.140!1.241 1.114 -0.129 0.347 0.886 0.016

ADD-USBCS }0.863 0.929 0.053 0.445 0.736 0.603}0.162 0.403 0.853 0.894 0.325 0.853
AMA-USBCS {1 0.186 0.431 0.797 0.861 0.338 0.904}0.287 0.536 0.739 0.827 0.420 0.843
VMA-USBCS | 0.983 0.992 -0.078 0.374 0.801 0.645}0.111 0.333 0.900 0.923 0.266 0.900

YSA 0.862 0.929 0.054 0.446 0.739 0.054}1.082 1.040 0.017 0.426 0.824 0.017
ADD-YSA 0.135 0.368 0.852 0.894 0.290 0.852}0.156 0.395 0.858 0.897 0.322 0.858
AMA-YSA 0.241 0491 0.736 0.825 0.379 0.858}0.305 0.552 0.723 0.818 0.436 0.854
VMA-YSA 0.094 0306 0.897 0.922 0.247 0.898}0.108 0.328 0.902 0.925 0.264 0.903

GSR 0.839 0916 0.080 0.460 0.730 0.122}1.149 1.072 -0.045 0.392 0.851 0.011
ADD-GSR 0.122 0350 0.866 0.902 0.276 0.866}0.161 0.402 0.854 0.895 0.325 0.855
AMA-GSR 0.240 0.490 0.737 0.826 0.379 0.855}0.281 0.531 0.744 0.830 0.417 0.839
VMA-GSR 0.093 0.306 0.898 0.922 0.247 0.898}0.113 0.336 0.898 0.922 0.271 0.898

DVMR 0.746 0.864 0.182 0.515 0.644 0.193}1.298 1.139 -0.180 0.319 0.900 0.016
ADD-DVMR 10.142 0.376 0.845 0.889 0.294 0.84710.166 0.407 0.849 0.892 0.327 0.851
AMA-DVMR 1 0.284 0.533 0.688 0.798 0.414 0.87410.291 0.539 0.736 0.825 0.427 0.869
VMA-DVMR 10.090 0.299 0.902 0.925 0.240 0.902}0.126 0.355 0.885 0.914 0.285 0.894

UKSB 0.005 0.073 0.994 0.991 0.056 0.996}0.036 0.190 0.967 0.969 0.109 0.979
ADD-UKSB }0.006 0.078 0.993 0.990 0.062 0.994}0.037 0.193 0.966 0.968 0.142 0.976
AMA-UKSB }0.019 0.138 0.979 0.978 0.121 0.994}0.052 0.228 0.953 0.958 0.164 0.975
VMA-UKSB }0.004 0.066 0.995 0.992 0.052 0.996}0.036 0.190 0.967 0.968 0.149 0.977
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Tablo 3.23. Kiitahya istasyonu SYI-3 tahmin model performanslarinin karsilastirmasi
EGITME TEST

Modeller OKH KOKH NSE Ol OMH R? {OKH KOKH NSE Ol OMH R?

USBCS 0.844 0919 0.089 0460 0.721 0.117}1.944 1394 -0.858 -0.098 0.969 0.063
ADD-USBCS {0.905 0.952 0.003 0.414 0.768 0.604}0.191 0.437 0.847 0.886 0.348 0.848
AMA-USBCS | 0.281 0530 0.691 0.796 0.402 0.823}0.282 0.531 0.775 0.842 0.404 0.819
VMA-USBCS |1.036 1.018 -0.140 0.336 0.836 0.685}0.109 0.330 0.913 0.928 0.235 0.917
YSA 0.793 0.890 0.128 0.482 0.692 0.129}1.463 1210 -0.399 0.154 0.945 0.372
ADD-YSA 0.123 0351 0.864 0.900 0.284 0.865;0.186 0.431 0.852 0.889 0.347 0.853
AMA-YSA 0.195 0.442 0.785 0.852 0.350 0.845}0.283 0.532 0.774 0.841 0.398 0.828
VMA-YSA 0.054 0.233 0.940 0.949 0.181 0.943}0.050 0.223 0.960 0.961 0.179 0.963
GSR 0.909 0.953 0.000 0.412 0.749 0.050}1.253 1.120 -0.003 0.402 0.880 0.024
ADD-GSR 0.123 0.351 0.865 0.900 0.281 0.865;0.187 0.432 0.851 0.888 0.339 0.851
AMA-GSR 0.191 0.438 0.789 0.854 0.345 0.826:0.282 0.531 0.774 0.841 0.401 0.807
VMA-GSR 0.050 0.225 0.945 0.952 0.174 0.945;0.061 0.248 0.951 0.954 0.191 0.953
DVMR 0.696 0.835 0.249 0.548 0.580 0.279}1.313 1146 -0.051 0.375 0.944 0.007
ADD-DVMR }0.126 0.355 0.862 0.898 0.282 0.862}0.247 0.497 0.802 0.858 0.380 0.831
AMA-DVMR }0.203 0.451 0.776 0.847 0.358 0.857:0.291 0.540 0.767 0.837 0.404 0.841
VMA-DVMR | 0.054 0.233 0.940 0.949 0.179 0.941:0.130 0.360 0.896 0.917 0.286 0.932
UKSB 0.013 0.116 0.985 0.982 0.103 0.996;0.115 0.339 0.908 0.925 0.177 0.933
ADD-UKSB }0.009 0.093 0.991 0.987 0.072 0.991:0.119 0.345 0.905 0.922 0.252 0.927
AMA-UKSB }0.016 0.125 0.983 0.980 0.100 0.984}0.102 0.319 0.918 0.932 0.228 0.927
VMA-UKSB {0.026 0.161 0.971 0971 0.124 0.976}0.034 0.184 0.973 0.971 0.150 0.978

Tablo 3.24. Kiitahya istasyonu SYI-6 tahmin model performanslarinin karsilastirmasi

EGITME TEST
Modeller OKH KOKH NSE Ol OMH R? !OKH KOKH NSE Ol OMH R?
USBCS 0.855 0.925 0.084 0.466 0.710 0.111!1.754 1.324 -0.419 0.140 0.953 0.016
ADD-USBCS 1 0.976 0.988 -0.045 0.396 0.824 0.724!0.117 0.343 0.905 0.914 0.255 0.913
AMA-USB(CS 1 0.308 0.555 0.670 0.789 0.443 0.836!0.212 0.461 0.828 0.862 0.373 0.828
VMA-USBCS 1 0.960 0.980 -0.028 0.405 0.804 0.658!0.244 0.494 0.803 0.845 0.405 0.812
YSA 0.879 0.937 0.059 0452 0.715 0.059i1.172 1.083 0.052 0.403 0.840 0.075
ADD-YSA 0.141 0.376 0.849 0.893 0.307 0.87810.146 0.382 0.882 0.898 0.303 0.916
AMA-YSA 10281 0.530 0.700 0.806 0.423 0.855!0.197 0.444 0.840 0.870 0.358 0.841
VMA-YSA 10121 0.348 0.871 0.907 0.265 0.871!0.184 0.429 0.852 0.877 0.361 0.858
GSR 0934 00966 0.000 0.420 0.744 0.13211.238 1.112 -0.001 0.373 0.866 0.057
ADD-GSR 0.120 0.347 0.871 0.907 0.264 0.872!0.107 0.327 0.914 0.920 0.258 0.917
AMA-GSR 0.322 0.567 0.655 0.781 0.452 0.826!0.222 0.471 0.821 0.857 0.381 0.821
VMA-GSR 0.114 0.338 0.878 0911 0.270 0.886!0.198 0.445 0.840 0.869 0.354 0.847
DVMR 0.909 0.953 0.027 0.435 0.663 0.067!1.099 1.048 0.111 0.437 0.872 0.138
ADD-DVMR 10.123 0.350 0.869 0.905 0.262 0.870!0.122 0.349 0.902 0.911 0.269 0.905
AMA-DVMR !0.266 0.516 0.715 0.815 0.412 0.863!0.189 0.434 0.847 0.874 0.349 0.848
VMA-DVMR 10.114 0.337 0.878 0.911 0.269 0.892!0.199 0.446 0.839 0.869 0.340 0.845
UKSB 0.000 0.018 1.000 0.998 0.013 1.000!0.103 0.321 0.917 0.922 0.236 0.936
ADD-UKSB 10.021 0.145 0.977 00977 0.115 0.982!0.104 0.323 00916 0.921 0.199 0.920
AMA-UKSB 10.056 0.236 0940 0.951 0.066 0.941!0.109 0.331 0.912 0.918 0.234 0.917
VMA-UKSB 10.028 0.167 0.970 0971 0.135 0.980!0.109 0.330 0912 0.919 0.215 0.939
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Tablo 3.25. Kiitahya istasyonu SYi-12 tahmin model performanslarmnin karsilastirmasi

EGITME TEST

2 2

Modeller OKH KOKH NSE Ol OMH R? {OKH KOKH NSE Ol OMH R
USB(CS 0.786 0.887 0.075 0417 0.735 0.122{1269 1126 0.092 0.401 0.970 0.106

ADD-USBCS }{0.901 0.949 -0.059 0.341 0.805 0.608}0.345 0.587 0.753 0.801 0.420 0.772
AMA-USBCS | 0.493 0.702 0.421 0.615 0.578 0.640};0.418 0.647 0.701 0.767 0.579 0.731
VMA-USBCS } 1.033 1.016 -0.215 0.255 0.838 0.746}0.127 0.357 0.909 0.909 0.299 0.914

YSA 0.651 0.807 0.235 0.508 0.616 0.235}1.020 1.010 0.270 0.505 0.859 0.352
ADD-YSA 0.167 0.409 0.804 0.846 0.314 0.811}0.330 0.574 0.764 0.808 0.439 0.795
AMA-YSA 0.279 0528 0.672 0.764 0.448 0.726}0.417 0.646 0.702 0.768 0.566 0.716
VMA-YSA 0.069 0.262 0919 0.924 0.224 0.926}0.267 0.517 0.809 0.838 0.447 0.890

GSR 0.345 0.587 0594 0.717 0.485 0.782}1.007 1.004 0.279 0.511 0.905 0.382
ADD-GSR 0.156 0.395 0.817 0.855 0.308 0.823}0.251 0.501 0.821 0.846 0.412 0.836
AMA-GSR 0.276 0.525 0.676 0.766 0.444 0.731}0.393 0.627 0.719 0.779 0.550 0.744
VMA-GSR 0.043 0.207 0950 0.947 0.168 0.957}0.159 0.398 0.886 0.892 0.331 0.928

DVMR 0.428 0.655 0.496 0.659 0.430 0.531:0.829 0.911 0.407 0.586 0.817 0.423
ADD-DVMR }0.190 0436 0.777 0.829 0.354 0.789}0.350 0.592 0.750 0.799 0.435 0.779
AMA-DVMR 10.304 0552 0.642 0.746 0.474 0.685};0.479 0.692 0.657 0.740 0.592 0.662
VMA-DVMR 1 0.063 0.251 0.926 0.929 0.190 0.936}0.209 0.457 0.851 0.867 0.405 0.907

UKSB 0.010 0.099 0.988 0.981 0.087 0.996}0.198 0.445 0.858 0.872 0.386 0.936
ADD-UKSB }0.003 0.055 0.997 0.991 0.044 0.997}0.173 0.416 0.876 0.885 0.350 0.918
AMA-UKSB }0.006 0.077 0.993 0.986 0.070 0.999}0.281 0.530 0.799 0.832 0.433 0.924
VMA-UKSB {0.004 0.066 0.995 0.989 0.051 0.9960.110 0.331 0.921 0.918 0.288 0.941

Tablo 3.22°de goriilecegi iizere, Kiitahya istasyonu SYI-1 zaman 6lgegi i¢in tahmin
modellerine ait test sonuglarinda performans kriterlerine (OKH=0,036, KOKH=0,190,
NSE=0,967, OI=0,969, OMH=0,109 ve R2:0,979) gore; bagimsiz UKSB tahmin
modeli en iistiin sonuglar1 vermistir. Tablo 3.23’te verilen Kiitahya istasyonu SYI-3
zaman Olgegi i¢in tahmin modellerine ait test sonuglarinda performans kriterlerine
(OKH=0,034, KOKH=0,184, NSE=0,973, 01=0,971, OMH=0,150 ve R?=0,978) gore;
VMA-UKSB hibrit tahmin modeli en istiin sonuglar1 vermistir. Tablo 3.24°te verilen
Kiitahya istasyonu SYI-6 zaman &lgegi igin tahmin modellerine ait test sonuclarinda
performans kriterlerine (OKH=0,103, KOKH=0,321, NSE=0,917, 0I1=0,922,
OMH=0,236 ve R220,936) gore; bagimsiz UKSB tahmin modeli en {istiin sonuglari
vermistir. Tablo 3.25’te goriilecegi iizere Kiitahya istasyonu SYI-12 zaman 6lcegi igin
tahmin modellerine ait test sonuglarinda performans kriterlerine (OKH=0,110,
KOKH=0,331, NSE=0,921, OI=0,918, OMH=0,288 ve R?=0,941) gore ise VMA-
UKSB hibrit tahmin modelinin en iistiin sonuglar1 verdigi goriilmiistiir. Tablo 3.26-3.29
arasinda Emirdag istasyonuna ait tim zaman Olgekleri i¢in tahmin modellerinin

performanslar verilmistir.



163

Tablo 3.26. Emirdag istasyonu SYI-1 tahmin model performanslarinin karsilastirmasi
EGITME TEST
Modeller OKH KOKH NSE Ol OMH R? {OKH KOKH NSE Ol OMH R?
USBCS 0.819 0905 0.126 0.493 0.704 0.160}1.876 1370 -0.834 -0.055 1.076 0.002
ADD-USBCS {0.919 0.959 0.018 0.435 0.737 0.582}0.190 0.435 0.815 0.863 0.344 0.826
AMA-USBCS | 0.216 0.465 0.769 0.849 0.381 0.899:0.265 0.514 0.741 0.819 0.420 0.831
VMA-USBCS}{1.161 1.078 -0.240 0.297 0.878 0.573:0.167 0.409 0.837 0.877 0.318 0.840
YSA 0.881 0.939 0.060 0.458 0.755 0.061};1.119 1.058 -0.094 0.347 0.868 0.007
ADD-YSA 0.115 0.339 0.878 0.913 0.269 0.878:0.179 0.423 0.825 0.870 0.334 0.833
AMA-YSA 0.291 0,539 0.690 0.803 0.431 0.848:0.267 0.517 0.739 0.818 0.422 0.820
VMA-YSA 0.140 0.374 0.851 0.897 0.295 0.854;0.159 0.399 0.845 0.882 0.308 0.847
GSR 0.788 0.888 0.159 0.511 0.704 0.245:1.012 1.006 0.011 0.404 0.824 0.025
ADD-GSR 0.113 0.337 0.879 0.914 0.267 0.880:;0.190 0.436 0.814 0.863 0.347 0.826
AMA-GSR 0.304 0,552 0.675 0.795 0.440 0.854:0.279 0.528 0.728 0.811 0.438 0.843
VMA-GSR 0.140 0.374 0.850 0.896 0.295 0.853}0.156 0.395 0.848 0.884 0.305 0.850
DVMR 0.740 0.860 0.210 0.539 0.638 0.235}1.123 1.060 -0.098 0.344 0.869 0.007
ADD-DVMR }0.113 0.336 0.880 0.914 0.262 0.880}0.198 0.445 0.806 0.858 0.362 0.822
AMA-DVMR 10.332 0.577 0.645 0.778 0.462 0.856:0.272 0.522 0.734 0.814 0.435 0.828
VMA-DVMR 10.139 0.373 0.851 0.897 0.294 0.854:0.177 0.421 0.827 0.871 0.333 0.838
UKSB 0.075 0.274 0.920 0.939 0.255 0.986;0.064 0.253 0.937 0.943 0.198 0.962
ADD-UKSB }0.020 0.142 0.979 0.978 0.115 0.9880.071 0.267 0.931 0.938 0.217 0.966
AMA-UKSB }0.013 0.112 0.987 0.985 0.093 0.994{0.075 0.274 0.927 0.936 0.207 0.965
VMA-UKSB {0.011 0.103 0.989 0.987 0.086 0.995}0.040 0.199 0.961 0.961 0.158 0.962
Tablo 3.27. Emirdag istasyonu SYI-3 tahmin model performanslarinin karsilastirmasi
EGITME TEST

Modeller OKH KOKH NSE Ol OMH R? {OKH KOKH NSE Ol OMH R?
USBCS 0.960 0.980 0.072 0.450 0.766 0.102}1.381 1.175 -0.475 0.126 0.943 0.083
ADD-USBCS }0.962 0.981 0.070 0.448 0.765 0.596}0.134 0.367 0.856 0.886 0.297 0.866
AMA-USBCS {1 0.348 0.590 0.664 0.780 0.463 0.79610.235 0.485 0.749 0.818 0.410 0.760
VMA-USBCS | 1.182 1.087 -0.143 0.333 0.881 0.685}0.191 0.437 0.796 0.847 0.330 0.817
YSA 1.082 1.040 -0.046 0.385 0.847 0.008}1.009 1.004 -0.077 0.345 0.837 0.095
ADD-YSA 0.165 0.406 0.841 0.885 0.320 0.842}0.136 0.369 0.855 0.885 0.307 0.864
AMA-YSA 0.327 0572 0.684 0.791 0.448 0.811}0.219 0.468 0.766 0.829 0.390 0.789
VMA-YSA 0.085 0.291 0.918 0.934 0.239 0.921;0.065 0.254 0.931 0.936 0.202 0.948
GSR 1.034 1.017 0.000 0.410 0.820 0.060{0.951 0.975 -0.016 0.379 0.767 0.041
ADD-GSR 0.155 0.394 0.850 0.890 0.315 0.850}0.139 0.373 0.852 0.883 0.304 0.861
AMA-GSR 0.314 0.561 0.696 0.799 0.440 0.820}0.215 0.464 0.770 0.831 0.384 0.802
VMA-GSR 0.040 0.199 0.962 0.963 0.158 0.967}0.074 0.272 0921 0.929 0.218 0.938
DVMR 0.952 0976 0.079 0.454 0.728 0.096}1.071 1.035 -0.144 0.308 0.842 0.005
ADD-DVMR }0.145 0.381 0.860 0.896 0.293 0.860}0.124 0.352 0.868 0.893 0.262 0.871
AMA-DVMR {0303 0.551 0.707 0.805 0.433 0.82810.217 0.466 0.768 0.830 0.388 0.793
VMA-DVMR }0.081 0.285 0.921 0.936 0.226 0.922}0.059 0.242 0.937 0.941 0.194 0.948
UKSB 0.002 0.044 0.998 0.995 0.036 0.999;0.040 0.200 0.957 0.956 0.162 0.982
ADD-UKSB }0.010 0.098 0.991 0.987 0.080 0.991;0.090 0.300 0.904 0.917 0.246 0.936
AMA-UKSB }0.006 0.074 0.995 0.991 0.060 0.996;0.049 0.221 0.948 0.948 0.169 0.969
VMA-UKSB }0.037 0.193 0.964 0.965 0.183 0.9960.089 0.299 0.905 0.918 0.239 0.934
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Tablo 3.28. Emirdag istasyonu SYI-6 tahmin model performanslarinin karsilastirmasi

EGITME TEST
Modeller OKH KOKH NSE Ol OMH R? !OKH KOKH NSE Ol OMH R2?
USBCS 0.917 0958 0.109 0.464 0.739 0.150!1.095 1.047 -0.070 0.329 0.854 0.123
ADD-USBCS !0.987 0.993 0.042 0.427 0.779 0.670!0.293 0541 0.714 0.787 0.457 0.723
AMA-USBCS ! 0.304 0551 0.705 0.800 0.440 0.71410.275 0524 0.731 0.798 0.429 0.736
VMA-USBCS ! 0.303 0551 0.706 0.801 0.444 0.83410.202 0.449 0.803 0.843 0.361 0.848
YSA 1.021 1.011 0.008 0.409 0.784 0.011}1.192 1.092 -0.164 0.277 0.831 0.166
ADD-YSA 0.119 0.345 0.884 0.910 0.265 0.885!0.249 0.499 0.757 0.814 0.416 0.761
AMA-YSA 10279 0529 0.729 0.815 0.409 0.750!0.249 0.499 0.757 0.814 0.411 0.757
VMA-YSA 10219 0468 0.788 0.850 0.380 0.856!0.188 0.434 0.816 0.852 0.334 0.852
GSR 1.030 1.015 0.000 0.404 0.781 0.116}1.025 1.012 -0.001 0.368 0.781 0.101
ADD-GSR 0.121 0.347 0.883 0.909 0.272 0.88310.238 0.488 0.767 0.820 0.414 0.773
AMA-GSR 0.295 0543 0.713 0.805 0.429 0.72710.264 0514 0.742 0.804 0.427 0.742
VMA-GSR 0.192 0.439 0.813 0.865 0.353 0.870!0.186 0.432 0.818 0.853 0.337 0.856
DVMR 0.642 0.801 0.377 0.613 0.503 0.424!10.926 0.962 0.096 0.423 0.749 0.108
ADD-DVMR !0.112 0.335 0.891 0914 0250 0.893!0.213 0.462 0.792 0.836 0.405 0.810
AMA-DVMR 10.299 0547 0.709 0.803 0.433 0.722:0.294 0.542 0.713 0.786 0.454 0.714
VMA-DVMR 10.192 0.438 0.814 0.865 0.338 0.874:0.228 0.478 0.777 0.827 0.387 0.804
UKSB 0.006 0.080 0.994 0.989 0.069 0.997!0.107 0.327 0.896 0.906 0.230 0.903
ADD-UKSB !0.011 0.106 0.989 0.985 0.083 0.990!0.110 0.331 0.893 0.904 0.271 0.902
AMA-UKSB !0.008 0.091 0.992 0.987 0.083 0.997!0.177 0.421 0.827 0.859 0.333 0.836
VMA-UKSB !0.038 0.194 0.963 0.963 0.182 0.996!0.164 0.404 0.840 0.868 0.315 0.884

Tablo 3.29. Emirdag istasyonu SYI-12 tahmin model performanslariin karsilastirmasi

EGITME TEST
Modeller OKH KOKH NSE Ol OMH R? {OKH KOKH NSE Ol OMH R2?
USBCS 0.984 0992 0.107 0.433 0.798 0.145!0.822 0.907 -0.044 0.321 0.792 0.013
ADD-USBCS !1.003 1.001 0.090 0.424 0.760 0.551!0.390 0.625 0.504 0.644 0.521 0.721
AMA-USBCS ! 0.507 0.712 0.540 0.683 0.538 0.620!0.244 0.494 0690 0.759 0.432 0.732
VMA-USBCS ! 0.749 0.866 0.320 0.555 0.728 0.848!0.061 0.246 0923 0.919 0.182 0.941
YSA 0.880 0.938 0.201 0.487 0.738 0.20211.030 1.015 -0.309 0.169 0.834 0.206
ADD-YSA 0.179 0.423 0.838 0.868 0.317 0.84210.145 0.381 0.816 0.842 0.307 0.895
AMA-YSA 10.343 0585 0.689 0.774 0.476 0.70210.315 0562 0599 0.702 0.439 0.748
VMA-YSA 10.075 0274 0.932 0.933 0.214 0.956!0.065 0.254 00918 0.915 0.226 0.938
GSR 0.224 0.473 0.797 0.841 0.367 0.858!0.807 0.899 -0.026 0.331 0.682 0.127
ADD-GSR 0.087 0.295 0.921 0.925 0.231 0.92210.224 0.474 0.715 0.775 0.380 0.770
AMA-GSR 0.361 0.601 0.672 0.763 0504 0.68210.279 0.528 0.646 0.731 0.409 0.677
VMA-GSR 0.049 0222 0.955 0.951 0.188 0.97210.042 0.204 0.947 0.938 0.186 0.950
DVMR 0423 0650 0.616 0.729 0.451 0.766!1.091 1.045 -0.387 0.125 0.926 0.258
ADD-DVMR !0.269 0519 0.756 0.815 0.409 0.75710.281 0530 0.643 0.730 0.387 0.714
AMA-DVMR !0.220 0.469 0.800 0.843 0.292 0.812!0.283 0.532 0.641 0.728 0.429 0.774
VMA-DVMR !0.040 0.200 0.964 0.958 0.158 0.973!0.045 0.213 00942 0.934 0.194 0.943
UKSB 0.000 0.003 1.000 1.000 0.001 1.000:!0.087 0.295 0.890 0.894 0.259 0.907
ADD-UKSB !0.002 0.044 0.998 0.994 0.034 0.998!0.167 0.408 0.788 0.823 0.349 0.809
AMA-UKSB !0.027 0.164 0.976 0.968 0.130 0.981!0.122 0.349 0.845 0.862 0.286 0.905
VMA-UKSB !0.013 0.115 0.988 0.980 0.103 0.998!0.040 0.200 0.949 0.940 0.152 0.969
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Tablo 3.26-3.29 arasinda verilen Emirdag istasyonuna ait tiim zaman olgekleri i¢in ele
alinan tahmin modelleri performans kriterlerine gére degerlendirilmistir. Tablo 3.26°da
goriilecegi ilizere, Emirdag istasyonu SYI-1 zaman &lcegi igin tahmin modellerine ait
test sonuglarinda performans kriterlerine (OKH=0,040, KOKH=0,199, NSE=0,961,
0l1=0,961, OMH=0,158 ve R?=0,962) gore; UKSB hibrit tahmin modeli en iistiin
sonuglar1 vermistir. Tablo 3.27°de verilen Emirdag istasyonu SYi-3 zaman dlgegi igin
tahmin modellerine ait test sonuglarinda performans kriterlerine (OKH=0,040,
KOKH=0,200, NSE=0,957, OI=0,956, OMH=0,162 ve R?=0,982) goére; bagimsiz
UKSB tahmin modeli en iistiin sonuglart vermistir. Tablo 3.28’te verilen Emirdag
istasyonu SYI-6 zaman 6l¢egi i¢in tahmin modellerine ait test sonuglarinda performans
kriterlerine (OKH=0,107, KOKH=0,327, NSE=0,896, OI=0,906, OMH=0,230 ve
R?=0,903) gére; bagimsiz UKSB tahmin modeli en iistiin sonuclar1 vermistir. Tablo
3.29°da goriilecegi iizere Emirdag istasyonu SYI-12 zaman 6lgegi icin tahmin
modellerine ait test sonuglarinda performans kriterlerine (OKH=0,040, KOKH=0,200,
NSE=0,949, 01=0,940, OMH=0,152 ve R?=0,969) gore ise VMA-UKSB hibrit tahmin

modelinin en iistiin sonuglar1 verdigi goriilmiistiir.

Sakarya, Ankara, Kiitahya ve Emirdag istasyonlarinin tiim zaman 6l¢eklerine ait model
performanslar1 degerlendirildiginde, biitiin bu istasyonlarda UKSB derin 6grenme
yontemine ait bagimsiz ya da VMA-UKSB hibrit tahmin modellerinin diger makine
O0grenmesi ve On isleme tekniklerine gore daha iistiin sonuclar verdigi goriilmiistiir.
Bagimsiz ve hibrit UKSB tahmin modelleri ile diger yontemlere ait sonuglarin
genellikle benzer dogrultuda egitme ve test sonuglar1 verdigi belirlenmistir. Ele alinan
10 adet istasyonun 4’linde elde edilen bu benzer sonuglardan dolay: kalan diger 6 adet
istasyonun sadece UKSB derin 6grenme yontemine ait bagimsiz ve hibrit modelleri i¢in
tahmin ¢aligmalarina devam edilmistir. Bolu, Geyve, Ilgin, Polatl, Sivrihisar ve Yunak
istasyonlarmin her bir zaman 6l¢egindeki UKSB tahmin modelleri sirasiyla verilmis
olup sonuglari degerlendirilmistir. Tablo 3.30°da Bolu istasyonuna ait tiim zaman

Olcekleri i¢in tahmin modellerinin performanslari verilmistir.
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Tablo 3.30. Bolu istasyonuna ait her bir zaman o&lgegi igin tahmin model
performanslarinin karsilagtirmasi

EGITME TEST

2amaN | Modeller ok KOKH NSE Ol OMH RZ JOKH KOKH NSE O OMH R?
olcegi

UKSB 0.011 0.106 0.988 0.986 0.087 0.994i 0.016 0.125 0.985 0.982 0.086 0.989

. ADD-UKSB ; 0.013 0.115 0.986 0.984 0.093 0.992 0.131 0.362 0.872 0.904 0.302 0.916

Sy AMA-UKSB ; 0.015 0.122 0.985 0.983 0.105 0.994: 0.051 0.225 0.951 0.956 0.173 0.952

VMA-UKSB 1 0.008 0.088 0.992 0.989 0.072 0.996: 0.048 0.220 0.953 0.957 0.171 0.959

UKSB 0.004 0.066 0.996 0.992 0.053 0.997 i 0.103 0.321 0.898 0.909 0.288 0.957

. ADD-UKSB  0.004 0.065 0.996 0.992 0.051 0.996: 0.201 0.449 0.801 0.844 0.377 0.874

SYl-3 AMA-UKSB ; 0.005 0.070 0.995 0.991 0.055 0.995: 0.156 0.395 0.846 0.873 0.333 0.906

VMA-UKSB 1 0.044 0.210 0.955 0.958 0.202 0.997: 0.127 0.357 0.874 0.892 0.285 0.898

UKSB 0.050 0.223 0.944 0947 0.186 0.986; 0.516 0.718 0.594 0.703 0.606 0.812

. ADD-UKSB ; 0.003 0.057 0.996 0.992 0.045 0.997: 0.488 0.698 0.616 0.717 0.593 0.855

ST AMA-UKSB i 0.004 0.066 0.995 0.990 0.051 0.995i 0.445 0.667 0.650 0.738 0.547 0.779

VMA-UKSB 1 0.006 0.075 0.994 0.989 0.060 0.996: 0.428 0.654 0.663 0.746 0.484 0.818

UKSB 0.000 0.005 1.000 0.999 0.002 1.000: 0.584 0.764 0.589 0.688 0.722 0.898

. ADD-UKSB ; 0.018 0.135 0.977 0971 0.117 0.993: 0.580 0.762 0.591 0.689 0.607 0.850

SYl-12 AMA-UKSB ; 0.001 0.028 0.999 0.996 0.023 0.999 0.712 0.844 0.498 0.632 0.684 0.769

VMA-UKSB i 0.007 0.081 0.992 0.985 0.069 0.994: 0.478 0.691 0.664 0.736 0.566 0.914

Tablo 3.30°dan goriilecegi iizere, Bolu istasyonu SYI-1 zaman &lgegi igin tahmin
modellerine ait test sonuglarinda performans kriterlerine (OKH=0,016, KOKH=0,125,
NSE=0,985, 0I1=0,982, OMH=0,086 ve R?=0,989) gore; bagimsiz UKSB tahmin
modeli en istiin sonuglar1 vermistir. Bu zaman 6lgeginde UKSB yontemine ait diger
tiim modellerin tahmin performanslar1 da oldukga iyidir. Hibrit modeller igerisinde ise
yine VMA-UKSB modeli diger hibrit modellerden iistiindiir. Bolu istasyonu SYI-3
zaman Olceginde elde edilen tahmin modeli test sonuclar1 degerlendirildiginde;
performans kriterlerine (OKH=0,103, KOKH=0,321, NSE=0,898, 0OI=0,909,
OMH=0,288 ve R?>=0,957) gére en iistiin model yine bagimsiz UKSB tahmin modelidir.
Bu zaman 6l¢eginde; yalnizca VMA-UKSB hibrit modelindeki en diisiik OMH=0,285
degeri bagimsiz UKSB tahmin modelindeki performans kriterlerinden daha iyi bir sonug
vermistir. Bolu istasyonu SYI-6 zaman o6lgegi igin tahmin modellerine ait test
sonuglarinda performans kriterlerine (OKH=0,428, KOKH=0,654, NSE=0,663,
01=0,746, OMH=0,484 ve R?=0,818) gore; VMA-UKSB hibrit modeli en iistiin
sonuglar1 vermistir. Bu zaman 6lgeginde de ADD-UKSB hibrit modelindeki en yiiksek
R?=0,855 degeri {istiin ¢cikan model degerinden daha yiiksektir. Bolu istasyonu SYI-12
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zaman Olcegi i¢in tahmin modellerine ait test sonuglarinda performans kriterlerine
(OKH=0,478, KOKH=0,691, NSE=0,664, O1=0,736, OMH=0,566 ve R?>=0,914) gére;
VMA-UKSB hibrit modeli en istiin sonug¢lar1 vermistir. Tablo 3.31°de Polath

istasyonuna ait tiim zaman 6lgekleri i¢in tahmin modellerinin performanslar1 verilmistir.

Tablo 3.31.  Polath istasyonuna ait her bir zaman o&lgegi igin tahmin model
performanslarinin karsilagtirmasi

EGITME TEST

2amaN | Modeller ok KOKH NSE Ol OMH RZ (OKH KOKH NSE OI OMH R?
olcegi

UKSB 0.012 0.111 0.987 0.983 0.098 0.996 i 0.039 0.199 0.966 0.964 0.146 0.986

. ADD-UKSB  0.007 0.081 0.993 0.989 0.062 0.993; 0.054 0.233 0.953 0.955 0.183 0.960

Syl AMA-UKSB ; 0.014 0.119 0.985 0.981 0.102 0.995: 0.041 0.203 0.964 0.963 0.146 0.974

VMA-UKSB 1 0.003 0.057 0.997 0.993 0.043 0.997: 0.054 0.233 0.953 0.954 0.175 0.967

UKSB 0.004 0.059 0.996 0.993 0.049 0.998 i 0.032 0.178 0.968 0.962 0.138 0.969

. ADD-UKSB ; 0.010 0.100 0.990 0.987 0.075 0.991: 0.039 0.197 0.961 0.956 0.154 0.975

SYl-3 AMA-UKSB ; 0.017 0.129 0.983 0.981 0.109 0.994: 0.033 0.182 0.967 0.960 0.151 0.968

VMA-UKSB 1 0.006 0.075 0.994 0.991 0.060 0.995: 0.067 0.259 0.933 0.934 0.198 0.948

UKSB 0.001 0.034 0.999 0.996 0.025 1.000 0.213 0.462 0.829 0.865 0.357 0.885

. ADD-UKSB ; 0.052 0.227 0.946 0.953 0.184 0.976! 0.132 0.363 0.894 0.908 0.287 0.898

SYl-6 AMA-UKSB i 0.003 0.057 0.997 0.993 0.046 0.997 i 0.294 0.543 0.764 0.823 0.461 0.899

VMA-UKSB 1 0.015 0.121 0.985 0.982 0.104 0.994: 0.090 0.300 0.928 0.932 0.231 0.968

UKSB 0.064 0.253 0.930 0.929 0.233 0.989: 0.503 0.709 0.667 0.757 0.581 0.884

. ADD-UKSB ; 0.004 0.067 0.995 0.988 0.050 0.997: 0.523 0.723 0.654 0.749 0.561 0.841

SYl-12 AMA-UKSB ; 0.001 0.035 0.999 0.994 0.030 0.999 0.378 0.615 0.750 0.809 0.510 0.850

VMA-UKSB i 0.007 0.083 0.992 0.985 0.067 0.994: 0.266 0.516 0.824 0.856 0.412 0.863

Tablo 3.31°den goriilecegi iizere, Polatli istasyonu SYI-1 zaman 6lgegi icin tahmin
modellerine ait test sonuglarinda performans kriterlerine (OKH=0,039, KOKH=0,199,
NSE=0,966, OI1=0,964, OMH=0,146 ve R2=0,986) gore; bagimsiz UKSB tahmin
modeli en listiin sonuglar1 vermistir. Bu zaman 6lgeginde UKSB yontemine ait diger
tiim modellerin tahmin performanslar1 da oldukga iyidir. AMA-UKSB hibrit modelinin
performans kriterleri, iistiin ¢ikan bagimsiz UKSB tahmin modeline ¢ok yakin olup
OMH=0,146 degerinde her iki modelin de ayni sonucu verdigi goriilmiistiir. Polatl
istasyonu SYI-3 zaman 6lcegi i¢in tahmin modellerine ait test sonuglarinda performans
kriterlerine (OKH=0,032, KOKH=0,178, NSE=0,968, 0I=0,962, OMH=0,138 ve
R?=0,969) gore; bagimsiz UKSB tahmin modeli en iistiin sonuglar1 vermistir. Yine
burada da UKSB yontemine ait diger tiim modellerin tahmin performanslar1 oldukca

basarilidir. ADD-UKSB hibrit modelinde elde edilen R>=0,975 degeri ise bagimsiz
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UKSB hibrit modelin degerinden daha yiiksektir. Polatl1 istasyonu SYI-6 zaman &lgegi
icin tahmin modellerine ait test sonuglarinda performans kriterlerine (OKH=0,090,
KOKH=0,300, NSE=0,928, 01=0,932, OMH=0,231 ve R>=0,968) gore; VMA-UKSB
hibrit tahmin modelinin en basarili sonuglar1 verdigi goriilmiistiir. Bu zaman 6lgeginde
diger modellerin basaris1 beklenenden biraz daha diisiik kalmistir. Polatli istasyonu SYI-
12 zaman 06lgegi i¢cin tahmin modellerine ait test sonuglarinda performans kriterlerine
(OKH=0,266, KOKH=0,516, NSE=0,824, 01=0,856, OMH=0,412 ve R?=0,863) gore;
VMA-UKSB hibrit tahmin modeli en basarili sonuglar1 vermistir. Bagimsiz UKSB
tahmin modelinde elde edilen R?=0,884 degeri ise bu zaman dlgeginde en yiiksek deger
olarak bulunmustur. Tablo 3.32°’de Geyve istasyonuna ait tim zaman Olgekleri igin

tahmin modellerinin performanslari verilmistir.

Tablo 3.32. Geyve istasyonuna ait her bir zaman Olgegi ic¢in tahmin model
performanslarinin karsilagtirmasi

EGITME TEST

Z(jg;“ Modeller OHK KOKH NSE Ol OMH R2 {OKH KOKH NSE Ol OMH R?
UKSB 0.012 0.109 0.988 0.984 0.091 0.995: 0.057 0.240 0.942 0954 0.198 0.977

. ADD-UKSB 0.008 0.091 0.992 0.988 0.070 0.992 : 0.048 0.219 0.952 0.960 0.169 0.973
SYI- AMA-UKSB  0.013 0.112 0.987 0.984 0.085 0.991: 0.044 0.210 0.955 0.963 0.154 0.961
VMA-UKSB 1 0.004 0.066 0.996 0.992 0.050 0.996 : 0.032 0.178 0.968 0.972 0.147 0.987

UKSB 0.003 0.050 0.998 0.995 0.039 0.998 | 0.111 0.333 0.883 0.902 0.255 0.948

. ADD-UKSB 0.039 0.198 0.962 0.966 0.176 0.991: 0.059 0.243 0.938 0.940 0.196 0.948
SYl-3 AMA-UKSB 10.009 0.094 0.991 0.989 0.073 0.993: 0.136 0.369 0.856 0.884 0.305 0.930
VMA-UKSB 10.026 0.160 0.975 0.975 0.142 0.995: 0.083 0.288 0.913 0.922 0.230 0.941

UKSB 0.001 0.028 0.999 0.997 0.025 1.000: 0.106 0.325 0.863 0.884 0.279 0.943

. ADD-UKSB 0.021 0.144 0980 0.978 0.135 0.998 : 0.146 0.383 0.810 0.849 0.328 0.954
SYl-6 AMA-UKSB | 0.002 0.039 0.999 0.996 0.032 0.999: 0.219 0.468 0.716 0.789 0.406 0.936
VMA-UKSB 0.005 0.074 0995 0.991 0.058 0.995: 0.252 0.502 0.674 0.763 0.445 0.929

UKSB 0.002 0.046 0.998 0.993 0.040 0.999 | 0.402 0.634 0.522 0.666 0.508 0.779

. ADD-UKSB 0.015 0.121 0.985 0.978 0.111 0.998 : 1.028 1.014 -0.223 0.237 0.923 0.729
SYl-12 AMA-UKSB 1 0.003 0.052 0.997 0.992 0.047 1.000: 0.458 0.676 0.456 0.627 0.567 0.743
VMA-UKSB 1 0.024 0.155 0.976 0.970 0.140 0.996 { 0.283 0.532 0.664 0.752 0.476 0.881

Tablo 3.32’den goriilecegi iizere, Geyve istasyonu SYI-1 zaman 6l¢egi igin tahmin
modellerine ait test sonuglarinda performans kriterlerine (OKH=0,032, KOKH=0,178,
NSE=0,968, O1=0,972, OMH=0,147 ve R?=0,987) gore; VMA-UKSB hibrit tahmin
modeli en iistiin sonuglar1 vermistir. Bu zaman 06l¢eginde UKSB yontemine ait diger

bagimsiz ve hibrit tiim modellerin tahmin performanslar1 da oldukg¢a basarilidir. Geyve
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istasyonu SYI-3 zaman &lgegi igin tahmin modellerine ait test sonuglarinda performans
kriterlerine (OKH=0,059, KOKH=0,243, NSE=0,938, 0I=0,940, OMH=0,196 ve
R?=0,948) gore; ADD-UKSB hibrit tahmin modelinin en iistin sonuglar1 verdigi
goriilmistiir. Yine bu zaman 6l¢eginde de UKSB yontemine ait diger tiim modellerin
tahmin performanslar1 oldukca basarilidir. Bagimsiz UKSB tahmin modelinde elde
edilen R?=0,948 degeri ise ADD-UKSB hibrit modelinin degeri ile ayni sonucu
vermistir. Geyve istasyonu SYI-6 zaman olgedi igin tahmin modellerine ait test
sonuglarinda performans kriterlerine (OKH=0,106, KOKH=0,325, NSE=0,863,
01=0,884, OMH=0,279 ve R?=0,943) gore; bagimsiz UKSB tahmin modelinin en {istiin
sonuclart verdigi goriilmiistiir. ADD-UKSB hibrit tahmin modelinde ise en yiiksek
R?=0,954 degeri elde edilmistir. Geyve istasyonu SYI-12 zaman &lgegi icin tahmin
modellerine ait test sonuglarinda performans kriterlerine (OKH=0,283, KOKH=0,532,
NSE=0,664, O1=0,752, OMH=0,476 ve R?=0,881) gore; hibrit VMA-UKSB tahmin
modeli en basarili sonuglart vermistir. Basta ADD-UKSB hibrit modeli olmak {izere
diger UKSB tahmin modellerinin tahmin performanslar1 bu zaman 6l¢eginde caligmanin
geneline bakildiginda oldukca zayif kalmistir. Ayrica bu zaman 6lgeginde bahsedilmesi
gereken onemli bulgulardan biri de zaman Olgegi arttikca test tahmin sonuglarina ait

model performanslarinin diistiigiidiir.

Tablo 3.33’te Sivrihisar istasyonuna ait tiim zaman ol¢ekleri i¢in tahmin modellerinin

performanslari verilmistir.



170

Tablo 3.33.  Sivrihisar istasyonuna ait her bir zaman o&lgegi igin tahmin model
performanslarinin karsilagtirmasi

EGITME TEST

2amaN | Modeller ok KOKH NSE Ol OMH RZ JOKH KOKH NSE O OMH R?
olcegi

UKSB 0.007 0.081 0.993 0.989 0.063 0.995i 0.036 0.191 0966 0.966 0.108 0.973

. ADD-UKSB ; 0.010 0.100 0.989 0.986 0.087 0.997 0.033 0.181 0.970 0.969 0.118 0.974

Sy AMA-UKSB ; 0.006 0.077 0.994 0.990 0.056 0.994: 0.044 0.210 0.959 0.961 0.117 0.960

VMA-UKSB 1 0.003 0.051 0.997 0.994 0.039 0.998: 0.032 0.180 0.970 0.969 0.140 0.977

UKSB 0.013 0.112 0.987 0.984 0.095 0.994 i 0.046 0.215 0.957 0.955 0.176 0.966

. ADD-UKSB  0.008 0.089 0.992 0.989 0.071 0.992: 0.076 0.276 0.929 0.935 0.185 0.935

SYl-3 AMA-UKSB ; 0.010 0.101 0.990 0.987 0.081 0.993: 0.051 0.226 0.953 0.952 0.160 0.957

VMA-UKSB 1 0.033 0.181 0.967 0.968 0.162 0.994: 0.105 0.324 0.903 0.917 0.271 0.937

UKSB 0.001 0.026 0.999 0.998 0.021 1.000 0.159 0.399 0.870 0.894 0.309 0.901

. ADD-UKSB ; 0.003 0.055 0.997 0.994 0.042 0.997: 0.234 0.483 0.810 0.855 0.407 0.812

ST AMA-UKSB i 0.004 0.061 0.996 0.993 0.046 0.996i 0.174 0.417 0.858 0.886 0.326 0.862

VMA-UKSB 1 0.005 0.067 0.995 0.992 0.053 0.997: 0.100 0.317 0918 0.926 0.253 0.922

UKSB 0.019 0.136 0.983 0.977 0.127 0.998: 0.194 0.440 0.807 0.833 0.312 0.822

. ADD-UKSB ; 0.007 0.085 0.993 0.987 0.062 0.994: 0.276 0.525 0.725 0.778 0.422 0.799

SYl-12 AMA-UKSB ; 0.000 0.020 1.000 0.998 0.016 1.000 0.176 0.420 0.825 0.845 0.370 0.855

VMA-UKSB i 0.016 0.128 0.984 0.978 0.110 0.997: 0.174 0.417 0.827 0.847 0.322 0.853

Tablo 3.33’ten goriilecegi iizere, Sivrihisar istasyonu SYi-1 zaman 6lgegi igin tahmin
modellerine ait test sonuglarinda performans kriterlerine (OKH=0,032, KOKH=0,180,
NSE=0,970, OI1=0,969, OMH=0,140 ve R?>=0,977) gére; VMA-UKSB hibrit tahmin
modeli en iistiin sonuglar1 vermistir. Bu zaman 6l¢eginde UKSB yontemine ait diger
bagimsiz ve hibrit tiim modellerin tahmin performanslart yine olduk¢a basarili olup
VMA-UKSB hibrit modelinin sonuglarina yakindir. En diisik OMH=0,108 degeri
bagimsiz UKSB tahmin modelinde elde edilmistir. Sivrihisar istasyonu SYi-3 zaman
Olcegi icin tahmin modellerine ait test sonuglarinda performans kriterlerine
(OKH=0,046, KOKH=0,215, NSE=0,957, 01=0,955, OMH=0,176 ve R?>=0,966) gore;
bagimsiz UKSB tahmin modelinin en istiin sonuglar1 verdigi goriilmiistiir. Yine bu
zaman Olceginde de UKSB yontemine ait diger tiim modellerin tahmin performanslari
olduk¢a basarilidir. AMA-UKSB hibrit tahmin modelinde elde edilen en diisiik
OMH=0,160 degerinin, bagimsiz UKSB modelinin degerinden daha diisiik oldugu
goriilmiistiir. Sivrihisar istasyonu SYI-6 zaman &lgegi i¢in tahmin modellerine ait test
sonuglarinda performans kriterlerine (OKH=0,100, KOKH=0,317, NSE=0,918,
01=0,926, OMH=0,253 ve R?=0,922) gére; VMA-UKSB hibrit tahmin modelinin en
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{istiin sonuglar1 verdigi goriilmiistiir. Sivrihisar istasyonu SYI-12 zaman dlgegi icin
tahmin modellerine ait test sonuglarinda performans kriterlerine (OKH=0,174,
KOKH=0,417, NSE=0,827, 01=0,847, OMH=0,322 ve R?=0,853) gére; hibrit VMA-
UKSB tahmin modeli yine en basarili sonuglar1 vermistir. R>=0,853 en yiiksek degeri
ile AMA-UKSB hibrit tahmin modelinde, en diisik OMH=0,253 degeri ise bagimsiz
UKSB tahmin modelinde elde edilmistir. Bu istasyondan elde edilen model sonuglarina
gore de zaman Olgegi arttikca tahmin basarisi diismektedir. Tablo 3.34’te Ilgin

istasyonuna ait tiim zaman 06lg¢ekleri i¢in tahmin modellerinin performanslar verilmistir.

Tablo 3.34. Ilgin istasyonuna ait her bir zaman Ol¢egi icin tahmin model
performanslarinin karsilagtirmasi

EGITME TEST

2amaN | Modeller o KOKH NSE Ol OMH RZ |OKH KOKH NSE OI OMH R?
olcegi

UKSB 0.004 0.064 0.995 0.992 0.052 0.997 i 0.027 0.163 0.974 0.974 0.100 0.986

. ADD-UKSB ; 0.023 0.152 0.973 0.973 0.128 0.990 { 0.080 0.283 0.922 0.937 0.228 0.950

Sy AMA-UKSB ; 0.006 0.080 0.993 0.989 0.062 0.995: 0.067 0.260 0.934 0.946 0.188 0.967

VMA-UKSB 1 0.007 0.085 0.992 0.988 0.067 0.996: 0.047 0.217 0.954 0.959 0.177 0.956

UKSB 0.005 0.068 0.995 0.991 0.057 0.996 i 0.058 0.240 0.941 0.946 0.194 0.963

. ADD-UKSB ; 0.013 0.116 0.986 0.982 0.103 0.997: 0.070 0.265 0.928 0.937 0.212 0.932

SYl-3 AMA-UKSB ; 0.017 0.131 0.982 0.979 0.117 0.996: 0.068 0.260 0.931 0.939 0.168 0.940

VMA-UKSB  0.018 0.135 0.981 0.978 0.121 0.996 : 0.099 0.315 0.898 0.918 0.237 0.901

UKSB 0.001 0.038 0.998 0.995 0.030 1.000 0.075 0.274 0.848 0.874 0.238 0.865

. ADD-UKSB ; 0.003 0.056 0.997 0.993 0.046 0.997: 0.042 0.206 0914 0.919 0.161 0.922

SYl-6 AMA-UKSB ;| 0.017 0.129 0.982 0.978 0.117 0.997 i 0.198 0.445 0597 0.717 0.360 0.794

VMA-UKSB 1 0.028 0.168 0.969 0.967 0.150 0.995: 0.081 0.285 0.835 0.866 0.234 0.913

UKSB 0.010 0.099 0.990 0.984 0.074 0.991: 0.065 0.255 0.793 0.831 0.215 0.890

. ADD-UKSB  0.006 0.077 0.994 0.988 0.056 0.996i 0.114 0.338 0.636 0.731 0.273 0.803

SYl-12 AMA-UKSB ; 0.171 0.414 0.831 0.869 0.329 0.848 0.073 0.271 0.766 0.814 0.209 0.793

VMA-UKSB i 0.002 0.045 0.998 0.994 0.034 0.998: 0.047 0.217 0.850 0.869 0.163 0.862

Tablo 3.34’ten goriilecegi iizere, Ilgin istasyonu SYi-1 zaman o&lgegi igin tahmin
modellerine ait test sonuglarinda performans kriterlerine (OKH=0,027, KOKH=0,163,
NSE=0,974, O1=0,974, OMH=0,100 ve R2=0,986) gore; bagimsiz UKSB hibrit tahmin
modeli en iistiin sonuglar1 vermistir. Bu zaman 6l¢eginde UKSB ydntemine ait diger
bagimsiz ve hibrit tim modellerin tahmin performanslari yine olduk¢a basarilidir. Ilgin
istasyonu SY1-3 zaman 6l¢egi i¢in tahmin modellerine ait test sonuglarinda performans
kriterlerine (OKH=0,058, KOKH=0,240, NSE=0,941, OI=0,946, OMH=0,194 ve

R?=0,963) gore; bagimsiz UKSB tahmin modelinin en iistiin sonuglart verdigi
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goriilmiistiir. Yine bu zaman dlgeginde de UKSB yontemine ait diger tiim modellerin
tahmin performanslar1 oldukca basarilidir. En diisik OMH=0,168 degeri ile AMA-
UKSB hibrit tahmin modelinde elde edilmistir. Ilgin istasyonu SYI-6 zaman dlgegi igin
tahmin modellerine ait test sonuglarinda performans kriterlerine (OKH=0,042,
KOKH=0,206, NSE=0,914, O1=0,919, OMH=0,161 ve R*=0,922) gére; ADD-UKSB
hibrit tahmin modelinin en istiin sonuglar1 verdigi goriilmiistiir. Bu zaman 6lgeginde
sadece  AMA-UKSB hibrit tahmin modelin performanslart disiik kalmistir. Ilgin
istasyonu SYI-12 zaman 6l¢egi i¢in tahmin modellerine ait test sonuglarinda performans
kriterlerine (OKH=0,047, KOKH=0,217, NSE=0,850, OI=0,869, OMH=0,163 ve
R?=0,862) gore; hibrit VMA-UKSB tahmin modelinin en basarili sonuglar1 verdigi
goriilmiistir. Burada R?=0,890 en yiiksek degeri UKSB tahmin modelinde elde
edilmistir. Tablo 3.35’te Yunak istasyonuna ait tiim zaman Olgekleri i¢in tahmin

modellerinin performanslar: verilmistir.

Tablo 3.35.  Yunak istasyonuna ait her bir zaman Olgegi i¢in tahmin model
performanslarinin karsilastirmasi

EGITME TEST

Zaman | Modeller ok KOKH NSE Ol OMH RZ JOKH KOKH NSE OI OMH R?
olcegi

UKSB 0.005 0.074 0.994 0991 0.056 0.995: 0.026 0.160 0.974 0.969 0.103 0.984

_ IADD-UKSB {0010 0101 0989 0986 0078 0989} 0.065 0254 0936 0939 0206 0.942

SYLL  AMA-UKSB | 0012 0111 0986 098¢ 0083 0989|0061 0243 0939 0942 0200 0952

VMA-UKSB 1 0.026 0.161 0.971 0973 0.147 0.996: 0.078 0.279 0.923 0.930 0.219 0.942

UKSB 0003 0059 0997 0.993 0046 0.997 | 0.044 0210 0949 0.946 0.166 0.962

~ IADD-UKSB } 0038 0195 0964 0966 0.177 0993|0059 0243 0931 0933 0209 0.947

SYL3 | AMAUKSB | 0017 0131 0984 0981 0116 0996] 0053 0230 0939 0938 0162 0.046

VMA-UKSB | 0.013 0115 0987 0.984 0089 0993|0028 0.167 0967 0.961 0.138 0.979

UKSB 0001 0033 0999 0996 0.028 1.000 0.125 0354 0.874 0.890 0.254 0.876

~ IADD-UKSB {0008 0087 0993 0988 0.073 0996 0.246 0496 0752 0.811 0.405 0.806

SYl-6 AMA-UKSB ; 0.019 0.137 0.982 0978 0.121 0.994: 0.261 0.511 0.737 0.801 0.404 0.782

VMA-UKSB 1 0.020 0.141 0.981 0977 0.119 0.994: 0.271 0.520 0.727 0.795 0.438 0.797

UKSB 0000 0010 1000 0.999 0.009 1.000| 0.055 0235 0927 0919 0.179 0.958

. ADD-UKSB ; 0.004 0.065 0.996 0.991 0.053 0.996: 0.171 0.414 0.772 0.808 0.326 0.878

SYLI2 t  MAUKSB | 0013 0113 0988 0981 0107 0998|0141 0575 0813 0835 0296 0819

VMA-UKSB  0.011 0.103 0.990 0.983 0.085 0.995: 0.116 0.341 0.846 0.858 0.251 0.917

Tablo 3.35’ten goriilecedi iizere, Yunak istasyonu SYI-1 zaman &lgegi igin tahmin
modellerine ait test sonuglarinda performans kriterlerine (OKH=0,026, KOKH=0,160,
NSE=0,974, 01=0,969, OMH=0,103 ve R?>=0,984) gore; bagimsiz UKSB hibrit tahmin
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modeli en iistiin sonuglar1 vermistir. Bu zaman 06l¢eginde UKSB yontemine ait diger
bagimsiz ve hibrit tim modellerin tahmin performanslar1 yine oldukc¢a basarilidir.
Yunak istasyonu SYI-3 zaman o6lgedi icin tahmin modellerine ait test sonuclarinda
performans kriterlerine (OKH=0,028, KOKH=0,167, NSE=0,967, 0OI1=0,961,
OMH=0,138 ve R?=0,979) gére; VMA-UKSB hibrit tahmin modelinin en {istiin
sonuglar1 verdigi goriilmiistiir. Yine bu zaman dlgeginde de UKSB yontemine ait diger
tiim modellerin tahmin performanslar1 olduk¢a basarilidir. Yunak istasyonu SYI-6
zaman Ol¢egi icin tahmin modellerine ait test sonuclarinda performans kriterlerine
(OKH=0,125, KOKH=0,354, NSE=0,874, 01=0,890, OMH=0,254 ve R?=0,876) gbre;
UKSB hibrit tahmin modelinin en iistiin sonuglari verdigi goriilmistiir. Yunak istasyonu
SYIi-12 zaman o&lgegi igin tahmin modellerine ait test sonuclarinda performans
kriterlerine (OKH=0,055, KOKH=0,235, NSE=0,927, OI=0,919, OMH=0,179 ve
R?=0,958) gore; yine bagimsiz UKSB tahmin modelinin en basarili sonuglar verdigi

goriilmistir.

Sakarya havzasinda yer alan 10 adet istasyona ait SYI kuraklik tahmin modellerinin
performans kriterlerine gore sonuglar elde edilerek sirasiyla tablolar halinde verilmistir.
Bu agsamada ise her bir zaman o6lg¢egi igin en iyi test sonuglarini veren tahmin
modellerine ait sagilma ve zaman serisi grafikleri elde edilmistir. Cok fazla istasyon ve
zaman Olg¢egi incelendiginden dolay1 burada yalnizca ii¢ biiyiik istasyon olan Sakarya,
Ankara ve Kiitahya istasyonlarina yer verilmistir. Sekil 3.10’da Sakarya istasyonunun
her bir zaman 0lcegi icin elde edilen en iyi model sonuglarina ait sacilma ve zaman

serisi grafigi verilmigtir.
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Sekil 3.10. Sakarya istasyonu her bir zaman Ol¢egi icin en iyi sonucu veren

modellere ait sagilma ve zaman serisi grafikleri
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Sekil 3.10°dan goriilecegi lizere, Sakarya istasyonun her bir zaman 6l¢eginde UKSB
derin 0grenme yontemine ait bagimsiz ya da hibrit kuraklik tahmin modelleri oldukg¢a
iistiin performanslar gdstermistir. Test sonuclarina gére, Sakarya istasyonunun SYI-1
zaman Ol¢eginde bagimsiz UKSB modelinin tahmin performansi olduk¢a bagarilidir.
UKSB tahmin modelinden elde edilen tahmin degerleri ile hesap degerlerine gore
cizilen dogrusal regresyon c¢izgisi, 1:1 dogrusal egriyi (y=X (45°)) ¢ok yakindan
kesmektedir. Ayni sekilde hesap edilen SYi-1 degerleri ile tahmin edilen SYI-1
degerlerine ait zaman serisi grafi§inde veriler biiyiik bir oranda cakismaktadir. SYI-3
zaman Olgeginde ise VMA-UKSB hibrit tahmin modeli olduk¢a iyi bir tahmin
performans1 gostermistir. Dogrusal regresyon ¢izgisi yine dogrusal egriyi giiclii bir
sekilde kesmekte olup SYi-3 hesap degerleri ile tahmin degerlerine ait zaman serisi
yikksek bir oranda c¢akismaktadir. Zaman 0Olgegi artttkca modellerin  tahmin
performanslar1 biraz diisse de yine de SYI-6 ve SYI-12 zaman 6lgeklerinde sirasiyla
bagimsiz UKSB ve VMA-UKSB hibrit modellerinden {istiin tahmin basarilar1 elde
edilmistir. Hem SYI-6 hem de SYi-12 zaman &lgeginde hesap edilen kuraklik degerleri
ile tahmin edilen kuraklik degerleri zaman serisi grafiklerinde biiylik bir oranda
cakismaktadir. Sekil 3.11°de Ankara istasyonunun her bir zaman 06lgegi i¢in en iyi

sonucu veren modellere ait sagilma ve zaman serisi grafikleri verilmistir.
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Sekil 3.11.  Ankara istasyonu her bir zaman 6l¢egi i¢in en iyi sonucu veren modellere

ait sagilma ve zaman serisi grafikleri
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Sekil 3.11°de verilen grafiklerden goriilecegi iizere, Ankara istasyonun her bir zaman
Ol¢eginde Sakarya istasyonunda oldugu gibi yine UKSB derin 6grenme yontemine ait
bagimsiz ya da hibrit kuraklik tahmin modelleri oldukg¢a iistiin performanslar
gostermistir. Test sonuglarina gore, Ankara istasyonunun SYIi-1 zaman &lceginde
bagimsiz UKSB modelinin tahmin performansi oldukca istlindiir. Burada, dogrusal
regresyon ¢izgisi, 1:1 dogrusal egriyi (y=x (45°)) gii¢lii bir sekilde kesmektedir. Ayni
sekilde hesap edilen SYI-1 degerleri ile tahmin edilen SYi-1 degerlerine ait zaman serisi
grafiginde veriler ¢ok biiyiik bir oranda ¢akismaktadir. Bu da tahmin modelinin iistiin
basarisini gdstermesi agisindan dnemli bir gdstergedir. SYI-3 zaman dlgeginde bagimsiz
UKSB tahmin modeli oldukca iyi bir tahmin performansi gostermistir. Dogrusal
regresyon ¢izgisi yine dogrusal egriyi giiclii bir sekilde kesmekte olup SYI-3 hesap
degerleri ile SYI-3 tahmin degerleri zaman serisi grafiginde yiiksek oranda
cakismaktadir. SYI-6 zaman 6lgeginde tahmin performanslar1 biraz diismiis olsa da
VMA-UKSB hibrit modelinin kuraklik tahmin performans: yine de olduk¢a basarilidir.
Diger zaman o6l¢ekleri ile kiyaslandiginda dogrusal regresyon c¢izgisi, dogrusal egriden
biraz daha fazla sapmis olmasina ragmen zaman serisi grafiginde hesaplanan kuraklik
degerleri ile tahmin edilen kuraklik degerleri bazi noktalarda birbirlerinden uzak
gecmistir. Yine SYI-12 zaman dl¢eginde de VMA-UKSB hibrit modeli test sonuglarma
gbre en iyi sonucu vermis olup dogrusal regresyon ¢izgisi, dogrusal egriyi ¢cok giiclii bir
sekilde kesmektedir. Bu zaman 0l¢egi icin verilen zaman serisi grafiginden de
goriilecedi lizere test veri setinin biiyiik bir kisminda hesap edilen kuraklik degerleri ile
tahmin edilen kuraklik degerleri ayni ¢izgiyi takip etmektedir. Sekil 3.12°de Kiitahya
istasyonunun her bir zaman 6l¢egi i¢in en iyi sonucu veren modellere ait sagilma ve

zaman serisi grafikleri verilmistir.
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Sekil 3.12.

Kiitahya istasyonu her bir zaman Olcegi

icin en 1yl sonucu veren

modellere ait sagilma ve zaman serisi grafikleri
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Sekil 3.12°de verilen sacilma ve zaman serisi grafiklerinden goriilecegi iizere, Kiitahya
istasyonun her bir zaman 6l¢eginde Sakarya ve Ankara istasyonlarinda oldugu gibi yine
UKSB derin 6grenme yontemine ait bagimsiz ya da hibrit kuraklik tahmin modelleri
oldukca {istiin performanslar gostermistir. Tahmin modellerinden elde edilen test
sonuglarma gore, Kiitahya istasyonunun SYI-1 zaman &lgeginde bagimsiz UKSB
modelinin tahmin performansinin yine olduk¢a basarili oldugu goriilmiistiir. Burada da,
dogrusal regresyon c¢izgisi 1:1 dogrusal egriyi ¢ok giiclii bir sekilde kesmektedir. Ayni1
sekilde hesap edilen SYI-1 degerleri ile tahmin edilen SYI-1 degerlerine ait zaman serisi
grafiginde veriler ¢ok biiyiik bir oranda ¢akismaktadir. SYI-3 zaman 6lgeginde VMA-
UKSB hibrit tahmin modeli oldukga iyi bir tahmin performansi gostermistir. Dogrusal
regresyon ¢izgisi yine dogrusal egri ile gliglii bir sekilde kesismis olup zaman serisi
grafiginde SYI-3 hesap degerleri ile SYI-3 tahmin degerleri yiiksek bir oranda
cakismaktadir. SYI-6 zaman &lgeginde bagimsiz UKSB tahmin modeli, SYI-12 zaman
Olgeginde ise VMA-UKSB hibrit tahmin modeli en iyi sonucu vermistir. Kiitahya
istasyonunda zaman Olgcegi arttikga modellerin tahmin performanslart diger zaman
dlgeklerine kiyasla biraz diismiis olsa da yine de SYI-6 ve SYIi-12 zaman dl¢eklerinde
basarili tahminler elde edilmistir. Diger zaman 6lgekleri ile kiyaslandiginda SYI-6 ve
SYIi-12 zaman olgeklerinde dogrusal regresyon cizgisi, dogrusal egriden az da olsa
sapma gostermis olup hesaplanan kuraklik degerleri ile tahmin edilen kuraklik degerleri

zaman serisi grafiginde bazi noktalarda birbirlerinden uzak ge¢mistir.

Sakarya, Ankara ve Kiitahya istasyonlarina ait sagilma ve zaman serileri grafiklerinden
de anlasilacag lizere bu kuraklik tahmin ¢aligmasinda bagimsiz UKSB ve VMA-UKSB
hibrit modellerinin tahmin performanslari oldukg¢a basarilidir. Burada yer verilmeyen

diger istasyonlarda da benzer sonuglar elde edilmistir.

Performans kriterlerine ek olarak modellere ait test sonuglarini bir arada gorebilmek ve
karsilastirmasini yapabilmek amaciyla Taylor diyagramlarindan faydalanilmistir. Hesap
edilen kuraklik degerleri ile modellerden elde edilen kuraklik tahmin degerlerinin
standart sapma, korelasyon katsayisi ve merkezlenmis kok ortalama karesel farki
istatistiksel kriterlerine gore Taylor diyagramlari lizerinden karsilagtirmalari yapilmistir.
Taylor diyagramlarinda; Sakarya, Ankara, Kiitahya ve Emirdag istasyonlar1 ig¢in
yontemlerin her birinde en iyi sonucu veren bagimsiz ya da hibrit modeller, geri kalan

istasyonlarda ise UKSB yoOnteminin bagimsiz ve hibrit modelleri bir arada
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degerlendirilmistir. Istasyonlarin yalmzca SYI-1 zaman 6lgegi igin Taylor diyagramlart
elde edilmis olup tiim istasyonlara ait SYi-1 Taylor diyagramlar: Sekil 3.13-3.22

arasinda verilmistir.

a 0.1 0.2 Sakarya SYi-1

Standard Deviation

© Hesaplanan

Sekil 3.13. Sakarya istasyonu SYI-1 icin her bir yonteme ait en iyi sonucu veren
tahmin modellerine ait Taylor diyagrami

Sekil 3.13’ten goriilecegi iizere Sakarya istasyonu SYI-1 igin elde edilen Taylor
diyagraminda, hesaplanan referans kuraklik degerlerine korelasyon katsayisi, standart
sapma ve merkezlenmis kok ortalama karesel farki (RMSD) istatistiksel kriterlerine
gore en yakin ve en uyumlu olan bagimsiz UKSB tahmin modelidir. VMA-YSA hibrit
modeli digindaki diger ii¢ modelin referans noktasina neredeyse ayni uzaklikta oldugu
gorilmiistiir.

0 01 g Ankara SYi-1
3

o
=

Standard Deviation

o Hesaplanan

Sekil 3.14.  Ankara istasyonu SYI-1 igin her bir yonteme ait en iyi sonucu veren
modellere ait Taylor diyagrami
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Sekil 3.14’te verilen Ankara istasyonu SYI-1 Taylor diyagraminda, hesaplanan referans
kuraklik degerine en yakin ve en uyumlu olan model yine bagimsiz UKSB tahmin
modelidir. Bagimsiz UKSB modeli standart sapma egrisi ile ¢ok gii¢lii bir sekilde
kesismis olup ayrica korelasyon katsayisi degeri de yiiksektir. VMA-DVMR hibrit
modeli standart sapma egrisine ¢ok yakin olmasimna ragmen diger kriterlerden dolay1
bagimsiz UKSB modelinden geride kalmigtir. VMA-GSR ile VMA-YSA modellerinin
tahmin sonuglar1 da birbirine ¢ok yakindir. ADD-USBCS hibrit modeli tim kriterlere

gore performans olarak diger modellerin gerisinde kalmustir.

Standard Deviation
°
o

1
Hesaplanan

Sekil 3.15.  Kiitahya istasyonu SYI-1 i¢in her bir ydnteme ait en iyi sonucu veren
modellere ait Taylor diyagrami

Sekil 3.15°ten goriilecegi iizere Kiitahya istasyonu SYI-1 Taylor diyagraminda da
bagimsiz UKSB tahmin modeli, hesaplanan referans kuraklik degerine daha yakin ve
daha uyumludur. Bagimsiz UKSB modeli standart sapma egrisinden uzaklasmis olsa da
yiiksek korelasyon katsayisi ve diisitk RMSD degerlerinden dolay1 diger modellere gore
daha istiindiir. Burada da yine VMA-GSR ile VMA-YSA modellerinin tahmin

sonuglari birbirine ¢ok yakindir.
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001 o, Emirdag SYi-1
0.3

Standard Deviation

Hesaplanan

Sekil 3.16. Emirdag istasyonu SYI-1 igin her bir yonteme ait en iyi sonucu veren
modellere ait Taylor diyagrami

Sekil 3.16°da verilen Emirdag istasyonu SYI-1 Taylor diyagramindan goriilecegi iizere
VMA-UKSB tahmin modeli, hesaplanan referans kuraklik degerine daha yakin ve daha
uyumludur. Diger VMA’ll hibrit modellerin performanslari ise birbirlerine oldukca
yakin ¢ikmistir. Bu dort model standart sapma egrisine yakin olmalarina ragmen diger

kriterlere gore VMA-UKSB modelinin gerisinde kalmiglardir.

. 01 g2 Bolu SYi-1

Standard Deviation

Hesaplanan

Sekil 3.17. Bolu istasyonu SYI-1 icin UKSB yontemine ait en iyi sonucu veren
modellere ait Taylor diyagrami

Sekil 3.17°den goriilecegi iizere Bolu istasyonu SYI-1 Taylor diyagraminda bagimsiz
UKSB tahmin modeli, diger hibrit UKSB modellerine gore hesaplanan referans kuraklik
degerine daha yakin ve daha uyumludur. VMA-UKSB ve AMA-UKSB modelleri ise
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birbirine ¢ok yakin sonuglar vermis olup VMA-UKSB modeli az da olsa referans
noktasina daha yakindir. ADD-UKSB hibrit modeli ise bu zaman 6lgeginde tahmin

performansi olarak diger modellerin gerisinde kalmustir.

0 e 4 Polath SYi-1
0.3

Standard Deviation
o
o

0 0.5 1
o Hesaplanan

Sekil 3.18. Polatl istasyonu SYI-1 icin UKSB ydntemine ait en iyi sonucu veren
modellere ait Taylor diyagrami

Sekil 3.18’de verilen Polatli istasyonu SYI-1 Taylor diyagraminda, bagimsiz UKSB
tahmin modelinin diger hibrit UKSB modellerine gore yine hesaplanan referans
kuraklik degerine daha yakin ve daha uyumlu oldugu goriilmiistir. AMA-UKSB hibrit
modeli burada ikinci en iyi sonucu veren model olmustur. ADD-UKSB ve VMA-UKSB

modelleri, RMSD egrisini ayni noktada kesmis olup sonuglari ise olduk¢a yakindir.

0.2 Geyve SYi-1
0.3 yve

0.4

Standard Deviation

0.95

& Hesaplanan

Sekil 3.19.  Geyve istasyonu SYI-1 i¢in UKSB ydntemine ait en iyi sonucu veren
modellere ait Taylor diyagrami
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Sekil 3.19°da verilen Geyve istasyonu SYI-1 Taylor diyagraminda goriilecegi iizere,
VMA-UKSB hibrit tahmin modelinin diger UKSB tahmin modellerine gére hesaplanan
referans kuraklik degerine daha yakin ve daha uyumlu oldugu gorilmiistiir. Geyve
istasyonunun bu zaman 6l¢egindeki tiim tahmin modelleri oldukga basarilidir. UKSB ve

ADD-UKSB modellerinin performanslar ise birbirine ¢cok yakindir.

0.2 Sivrihisar SYi-1
0.3

0.4 Co

0.5

Standard Deviation

0
o 0.5 o 1 Hesaplanan

Sekil 3.20. Sivrihisar istasyonu SYI-1 i¢in UKSB y6ntemine ait en iyi sonucu veren
modellere ait Taylor diyagrami

Sekil 3.20°dan goriilecegi iizere, Sivrihisar istasyonu SYI-1 Taylor diyagraminda VMA-
UKSB hibrit tahmin modeli, diger UKSB modellerine gére hesaplanan referans kuraklik
degerine daha yakin konumdadir. Sivrihisar istasyonunun bu zaman 6l¢egindeki tiim
tahmin modellerinin performanslar1 yiiksek olup diyagramdan goriilecegi tizere

birbirlerine de olduk¢a yakindirlar.

9 0 0.2 ligin SYi-1
0.3

Standard Deviation

Hesaplanan

Sekil 3.21.  Ilgmn istasyonu SYI-1 igin UKSB yontemine ait en iyi sonucu veren
modellere ait Taylor diyagrami
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Tablo 3.21°de verilen Ilgin istasyonu SYI-1 Taylor diyagraminda bagimsiz UKSB
tahmin modeli, diger hibrit UKSB modellerine gore hesaplanan referans kuraklik
degerine daha yakin ve daha uyumludur. Bagimsiz UKSB tahmin modeli, standart
sapma egrisi dikkate alindiginda ADD-UKSB ve VMA-UKSB hibrit modellerinin

gerisinde kalmistir.

Standard Deviation
o
(5]

0 0.5 1
~ Hesaplanan

Sekil 3.22.  Yunak istasyonu SYI-1 icin UKSB y6ntemine ait en iyi sonucu veren
modellere ait Taylor diyagrami

Sekil 3.22°de verilen Yunak istasyonu SYi-1 Taylor diyagraminda goriilecegi iizere
bagimsiz UKSB tahmin modeli, diger hibrit UKSB modellerine gore hesaplanan
referans kuraklik degerine daha yakin ve daha uyumludur. UKSB’nin diger hibrit

modelleri, referans degerine hemen hemen ayn1 uzaklikta bulunmaktadir.

Calismada, tahmin modellerinden elde edilen test sonuglarma ait performans
kriterlerinin daha kolay karsilastirilabilmesi amaciyla radar grafikleri de kullanilmistir.
Istasyonlarin SYI-12 zaman &lgegindeki en iyi test sonucunu veren tahmin modellerinin
ve bu modellerden elde edilen performans kriterlerinin bir arada gosterildigi radar

grafikleri Sekil 3.23—-3.27 arasinda sirastyla verilmistir.
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Sakarya SYi-12 Ankara SYi-12

.

—\/MA-YSA
= VMA-GSR
UKSB
=== ADD-UKSB
= VMA-UKSB

—— VMA-USBGS
e VMA-YSA
VMA-GSR
—— UKSB
~——— VMA-UKSB

Sekil 3.23.  Sakarya ve Ankara istasyonlar: SYI-12 icin en iyi test sonucunu veren
bes modele ait radar grafikleri

Sekil 3.23’te verilen radar grafi§inden goriilecegi iizere, Sakarya SYI-12 zaman &lgegi
icin tim performans kriterleri dikkate alindiginda VMA-UKSB hibrit modeli en iyi
tahmin sonuglarin1 vermis olup R? ve OMH kriterleri hari¢ olmak iizere VMA-GSR
hibrit modeli onu takip etmektedir. Ankara SYI-12 zaman 6l¢eginde de tiim performans
kriterlerine gore yine VMA-UKSB hibrit modeli en {istiin tahmin performansina
sahiptir. Bu modelin ardindan ise OMH kriteri hari¢ olmak {izere VMA-YSA hibrit
modeli gelmektedir.

Kiitahya SYi-12 Emirdag SYi-12

= \/MA-USBGS
= VMA-YSA
VMA-GSR

——— VMA-USBGS
—— VMA-GSR
UKSB
——— ADD-UKSB
——— VMA-UKSB

= VMA-DVMR
e VMA-UKSB

Sekil 3.24.  Kiitahya ve Emirdag istasyonlar1 SYI-12 i¢in en iyi test sonucunu veren
bes modele ait radar grafikleri
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Sekil 3.24°te verilen radar grafiginden goriilecegi iizere, Kiitahya SYi-12 zaman 6lgegi
icin tim performans kriterleri dikkate alindiginda VMA-UKSB hibrit modeli en iyi
tahmin sonuglarmi vermistir. VMA-UKSB hibrit tahmin modelini, R? performans kriteri
hari¢ olmak iizere VMA-USBCS hibrit modeli izlemektedir. Emirdag SYI-12 zaman
Ol¢egine ait radar grafiginde yine VMA-UKSB hibrit modelinin tahmin performansinin
yiiksek oldugu goriilmektedir. Onu takip eden model ise OMH performans kriteri harig¢
VMA-GSR hibrit modelidir.

Bolu SYi-12 Polatl SYi-12

OKH

0.7.

06

b

= UKSB

s ADD-UKSB
AMA-UKSB

e \/MA-UKSB

= UKSB
ADD-UKSB

AMA-UKSB
e \/MA-UKSB

Sekil 3.25.  Bolu ve Polatli istasyonlar1 SYI-12 i¢in UKSB ydntemine ait modellerin
test sonuglarini gosteren radar grafikleri

Sekil 3.25’te verilen Bolu SYI-12 zaman &lgegine ait radar grafiginden goriilecegi
tizere, tim performans kriterleri dikkate alindiginda VMA-UKSB hibrit tahmin modeli
en {istiin sonuglar1 vermistir. Bu modeli, R? performans kriteri hari¢ olmak iizere ADD-
UKSB hibrit modeli takip etmektedir. Bu zaman 6lgeginde AMA-UKSB hibrit tahmin
modelinin performansi zayif kalmistir. Polatli SYI-12 zaman 6lgegine ait radar grafigi
incelendiginde, R? performans kriteri hari¢ diger performans kriterlerine gére VMA-
UKSB hibrit tahmin modeli en basarili sonuglar1 vermistir. VMA-UKSB hibrit
modelinden sonra ise yine R? performans kriteri hari¢ olmak iizere, AMA-UKSB hibrit
modeli gelmektedir. R? performans kriterinde ise bagimsiz UKSB tahmin modeli en

basarili sonuclar1 vermistir.
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Geyve SYi-12 Sivrihisar SYi-12

= UKSB
s ADD-UKSB

——UKSB

s ADD-UKSB
AMA-UKSB

e \/MA-UKSB

AMA-UKSB
e \IMA-UKSB

Sekil 3.26.  Geyve ve Sivrihisar istasyonlar1 SYI-12 icin UKSB yontemine ait
modellerin test sonuglarini gosteren radar grafikleri
Sekil 3.26°da verilen Geyve SYI-12 zaman 6lgegine ait radar grafiginden goriilecegi
lizere, tiim performans kriterleri dikkate alindiginda VMA-UKSB hibrit tahmin modeli
en Ustiin sonuglar1 vermistir. Bu zaman 6l¢eginde ADD-UKSB hibrit tahmin modeli,
tim performans kriterlerine gére UKSB modelleri igerisinde en basarisiz model
olmustur. Yine Sekil 3.26°dan gériilecegi iizere, Sivrihisar SYI-12 zaman 6lgegine ait
radar grafiginde alt1 performans kriterinin dordiinde en iyi sonuglart VMA-UKSB hibrit
tahmin modeli vermistir. R? performans kriterine gére AMA-UKSB hibrit modeli,
OMH performans kriterine gore ise bagimsiz UKSB modeli en iyi tahmin sonucunu
vermistir. Sivrihisar SYI-12 zaman &lceginde, VMA-UKSB ile AMA-UKSB hibrit

modellerinin tahmin performanslari birbirine oldukg¢a yakindir.
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ligin SYi-12 Yunak SYi-12

, o]

= UKSB

e ADD-UKSB
AMA-UKSB

e \IMA-UKSB

——UKSB

s ADD-UKSB
AMA-UKSB

e \/MA-UKS B

Sekil 3.27.  Ilgin ve Yunak istasyonlar1 SYI-12 i¢cin UKSB y6ntemine ait modellerin
test sonuglarini gosteren radar grafikleri
Sekil 3.27°de verilen Ilgin SYIi-12 zaman o6lgegine ait radar grafiginden goriilecegi
lizere, R? performans kriteri harig tiim kriterlerde VMA-UKSB hibrit tahmin modeli en
iistiin sonuglar1 vermistir. R? performans kriterine gore ise en basarili sonuglar bagimsiz
UKSB tahmin modeline aittir. Yine Sekil 3.27°de verilen Yunak SYI-12 zaman
Olcegine ait radar grafiginden goriilecegi iizere, tim performans kriterleri dikkate
alindiginda bagimsiz UKSB tahmin modeli en iistiin sonuglar1 vermistir. Yunak SYI-12
zaman Olgegi icin UKSB yontemine ait tim modellerin tahmin performanslarinin

yliksek oldugu sdylenebilir.



4. BOLUM

TARTISMA-SONUC ve ONERILER

4.1. Tartisma

2023 yil1 Ocak ayinda yayinlanan Diinya Ekonomik Forumu Kiiresel Risk Raporunda;
ontimiizdeki 10 yilda diinyanin karsilasacagi en biiylik on tehlikeden altisinin kiiresel
iklim degisikligi ve buna bagl olarak ortaya ¢ikacak olan g¢evreyi ilgilendiren sorunlar
oldugu belirtilmistir. Canli-cansiz ekosisteminin en 6nemli dongiisii diyebilecegimiz
hidrolojik ¢evrimde kiiresel iklim degisikligine bagli olarak son donemlerde normal
kosullara gore onemli derecede sapmalar gozlenmektedir. Bu sapmalar ile baglantili
olarak meydana gelen kuraklik olaylari da genis bolgelerde etkisini artirmis ve en ¢ok
tartisilan konulardan biri haline gelmistir. Yagislarin azalmasia bagl olarak su arz-
talep dengesinin bozulmasi ile birlikte ortaya ¢ikan kuraklik, iklim kosullarinin su
kaynaklarina, tarim ve canli hayatina etkilerini ortaya ¢ikartan ve ¢ok 6nem verilmesi
gereken tehlikeli bir dogal afettir. Ayrica kurakligin tespiti, izlenmesi ve 6ngoriilmesi de
oldukga zor bir siirectir. Bundan dolay1 kuraklik olaymi hem kiigiik 6l¢eklerde hem de
kiiresel 6lgekte dogru ve glivenilir bir sekilde tespit etmek olduk¢a 6nemlidir. Bilim ve
teknolojideki gelismeler dikkate alinarak kurakliga etki eden parametrelerle kuraklik
durumu arasindaki iliski dogru bir sekilde ortaya konulmalidir. Ayrica bir bolgedeki
kurakligin gelecekteki muhtemel durumunun giivenilir bir sekilde Ongoriilebilmesi,

kurakliga yonelik projeksiyonlarin gelistirilebilmesi i¢in de oldukca 6nemlidir.

Bu caligmada ele alinan meteorolojik kuraklik, karmasik kuraklik siirecinin ilk agsamasi
oldugundan bolgesel olarak kurakligin genel gidisat1 ile ilgili bizlere cesitli fikirler
sunabilmektedir. Bu dogrultuda, Tiirkiye’nin kuzeybatisinda yer alan ve 6nemli nehir
havzalarindan biri olan Sakarya havzasindaki istasyonlara ait kisa donem meteorolojik

kurakliklar tahmin edilmeye ¢alisilmistir. Calisma alani olarak Sakarya havzasinin
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secilme nedeni; yar1 kurak bir iklim bolgesinde yer almasindan dolay1 kurakliga meyilli
olmasi, kisi basina diisen su miktarindan dolay1 su stresi yasamasi ve havzada daha
onceden bu kapsamda bir kuraklik tahmin ¢alismasinin olmamasidir. Havzay1 temsilen
10 adet meteoroloji istasyonu segilmistir. Bu istasyonlarin ozellikle uzun donem
verilerinin olmasina dikkat edilmis olup gdzlem araliginda eksik veri bulunmamasi,
Olciim kayitlarinin  gilincel olmast ve havzayr temsilleri de seg¢ilmelerindeki
etkenlerdendir. Kisa donem kuraklik tahmini yapildigindan dolay1 bu istasyonlar igin 1,
3, 6 ve 12 aylik zaman 06lgekleri dikkate alinmistir. Kuraklik indisi olarak sadece yagis
degiskenine bagli olarak hesaplanabilen ve iilkemizin iklim kosullarina iyi uyum
sagladig1 bilinen [4, 204], Standartlastirilmis Yagis indeksi (SYI) kullanilmistir. Bu
calismada; SYI’nin Palmer Kuraklik Siddet Indisi (PKSI) ve Standartlastirilmis Yagis-
Evapotranspirasyon indisi (SYEI) gibi diger meteorolojik kuraklik indislerinin yerine
kullanilma sebepleri yalnizca yagis verisine bagli olmasi, farkli zaman &lgekleri igin
degerlendirilebilmesi ve hesap kolayligidir. PKSI, su dengesinde yagis agiga bagh
olarak evapotranspirasyon, akislar ve nem miktarindaki sapmalar1 dikkate alan bir indis
olup karmasik bir yapidadir [33]. SYEI’de ise yagis degiskeni ile birlikte potansiyel
evapotranspirasyon (PET) degiskeni de ele alinmaktadir. PET hesabi i¢in gerekli olan
sicaklik, riizgar hizi, giines radyasyonu, bagil nem gibi parametrelerden dolayi bu
kuraklik indisi de karmasik bir yapidadir [35]. Ayrica SYEI’nin bazi1 kurak bélgelerde
uygulanabilirligi sinirli olmaktadir [205].

Istasyonlara ait ham yagis verilerine, %95 giiven arahiginda kalacak sekilde Standart
Normal Homojenlik Testi (SNHT), Genisletilmis Dickey-Fuller Testi (GDFT), Von-
Neumann Homojenlik Testi (VNT) ve Mann-Whitney u Testi (MWT) uygulanmistir.
Bu dort teste ait istatistiksel sonuglara gore, kurulan Ho hipotezleri kabul edilmis olup
istasyon verilerinin tamami homojen, duragan ve bagimsiz cikmistir. Caligmada
kullanilan yagis verilerinde siipheli bir durum s6z konusu olmadigindan dolayr bu
calismada istasyonlara ait yagis verilerinin homojen hale getirilmesine gerek
kalmamistir. Hidrometeorolojik zaman serilerine dayali tahmin modellerinden dogru ve

giivenilir sonuclar elde edilebilmesi i¢in homojenlik testlerinin yapilmasi gerekir.

Ele alman istasyonlara ait uzun dénem aylik yagis verilerinden SYi-1, SYI-3, SYI-6 ve
SYi-12 kuraklik zaman serileri elde edilmistir. Calismada SYI kuraklik degerlerinin

hesabi, hem fazla istasyonun se¢ilmesi hem de fazla zaman 6lgeginden dolayr DrinC
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yazilimi kullanilarak oldukga pratik bir sekilde yapilmis olup islem yiikii ve zamandan
tasarruf saglanmigtir. Kullanilan yazilimin kalibrasyonu i¢in manuel hesaplamalardan

da faydalanilmis olup yazilimdan elde edilen verilerin giivenilir oldugu bulunmustur.

DrinC yazilimi ile elde edilen SYT kuraklik degerleri, SYI-1 ve SYI-12 zaman 6lgekleri
icin degerlendirilmistir. SYI-3 ve SYIi-6 zaman &lgeklerindeki kuraklik degerlerinin
degerlendirilmesi yapilmamistir. Ciinkii bu iki zaman Olgeginde benzer kuraklik
siniflarmin olustugu ve birbirini tekrar ettigi goriilmiistiir. SYI-1 zaman &lceginde
havzada yer alan istasyonlarin tamaminda 9%068,18 ile %70,51 arasinda degisen
yiizdelerde normale yakmn SYI kuraklik simifi goriilmiistiir. %1,42 ile %3,53 arasinda
degisen yiizdelerde asir1 kurak, 90,76 ile %2,08 arasinda degisen yiizdelerde ise asir1
nemli kuraklik smifi goriilmiistiir. Yine SYI-12 zaman &lceginde havzada yer alan
istasyonlarin tamaminda %57,38 ile %70,49 arasinda degisen yiizdelerde normale yakin
SYI kuraklik smifi gériilmiistiir. SYI-12 zaman &lgeginde Sakarya, Emirdag, Polath ve
Yunak istasyonlarinda asir1 kurak bir y1l olmamistir. Diger istasyonlarda ise %1,92 ile
%6,82 arasinda degisen yiizdelerde asir1 kurak yillar olmustur. Ayni sekilde Kiitahya,
Bolu ve Ilgin istasyonlarinda asirt nemli bir yil goriilmemistir. Diger istasyonlarda ise

%1,92 ile %4,88 arasinda degisen ylizdelerde asir1 nemli yillar yaganmustir.

SYIi-1, SYI-3, SYI-6 ve SYi-12 kuraklik degerlerinin farkli gecikme zamanlarindan (t,
t-1, t-2, t-3, ...vb.) hangisinin optimum gecikme zamani olarak modellerde ele
almacagimi belirlemek ve kuraklik zaman serilerindeki otokorelasyon varligim
aragtirmak amaciyla Sakarya istasyonunun her bir SYI zaman &lgegine otokorelasyon
fonksiyonu uygulanmistir. Her bir zaman 6lgegi i¢in tim gecikme zamanlar1 %95 giiven
araligindaki otokorelasyon katsayisimin alt ve iist sirlar igerisinde kalmis olup
otokorelasyon varligi s6z konusu degildir. Ayrica tiim zaman 6lgeklerinde 10 gecikme
zamanina kadar olan gecikmelerin, tahmin modellerinde girdi degiskenleri olarak
kullanilabilecegi sonucuna ulasilmistir. Optimum gecikme zamani ise Ayrik Dalgacik
Doniistimii (ADD) analizleri sonucunda nihai olarak belirlenmistir. Bu ¢aligmaya benzer
nitelikteki bir¢ok calismada [82, 93, 206] otokorelasyon varligi arastirilmamis olup
zaman serilerinin tahmini ile ilgili analizlerde dikkate alinmasi gereken optimum

gecikme zamaninin genellikle deneme yanilma yoluyla belirlendigi goriilmiistiir.
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SYI kuraklik zaman serilerinin Ayrik Dalgacik Déniisiimii (ADD), Ampirik Mod
Ayristirma (AMA) ve Varyasyonel Mod Ayristirma (VMA) 6n isleme teknikleri ile alt
bantlarina ayrilmasina yonelik analizler bu ¢aligmanin en 6nemli uygulamalarindandir.
Tahmin modellerinde girdi degiskeni olarak kullanilacak olan SYI kuraklik verileri, ele
alinan 6n isleme teknikleri aracilig ile alt bantlarina ayrilmis olup verilerin sikistirilarak
boyutunun azaltilmasi, gereksiz bilgilerin temizlenmesi, 6zellik ve 6zniteliklerin ortaya

cikarilmasi, veri birlestirmesi ve doniistiirmesi gibi faydalar saglanmistir.

Bu ¢alismada ele alinan ADD 6n isleme teknigi, detayli ve genis bir perspektifte
kuraklik verilerine uygulanmistir. ADD teknigi, belli basli 6l¢ek ve dteleme katsayilar
izerinden ayristirma islemini gergeklestirdiginden SDD’e gore hem daha nitelikli alt
seriler elde etmekte hem de zaman ve islem yiikiinden tasarruf saglamaktadir. Bu
nedenle ADD tercih edilmistir. Calismanin tamaminda dikkate alinan optimum gecikme
zamaninin, uygun dalgacik ailesinin ve dalgacik bant seviyelerinin belirlenmesi
amaciyla Sakarya istasyonunun her bir zaman 6l¢eginde ADD-USBCS hibrit tahmin
modeli kullanilmigtir. USBCS makine 6grenmesi yonteminin dalgacik doniisiimiinde
kullanilmasinin sebebi, yontemin hizli ve giivenilir bir sekilde analizler yapmasidir [91].
Dalgacik doniisiimiiniin en 6nemli hususlarindan biri veriye uygun dalgacik ailesinin
secilmesidir. Orijinal veriyi alt bantlarina ayristirma yetenegi yiiksek olan bir dalgacik
ailesi secildiginde model performanst da O©nemli Ol¢iide artmaktadir. Bu tez
caligmasinda; sekiz farkli dalgacik ailesi kullanilmis olup bu dalgacik ailelerinin
kuraklik zaman serilerini alt bantlarina ayristirma yetenekleri arastirilmistir. Literatiir
incelendiginde [86, 87]; genellikle Haar, Daubechies, Morlet ve Meksika sapkasi gibi

tek bir dalgacik ailesine gore zaman serileri alt bantlarina ayrilmaktadir.

ADD-USBCS hibrit tahmin modelinden elde edilen test sonucglari OMH ve R?
performans kriterlerine gore karsilastirildiginda; Sakarya istasyonu SYI-1, SYI-3 ve
SYi-6 zaman &lgeklerinde Meyer’in Ayrik Yaklasimi (Discrete Approximation of
Meyer-dmey) dalgacik ailesi, SYI-12 zaman 6lgeginde ise Symlets (sym3) dalgacik
ailesinin en {istiin sonuglar1 verdigi goriilmiistiir. Ozellikle dmey dalgacik ailesinin, bu
calismada ele alinan kuraklik zaman serileri ile yiiksek bir uyum yakaladigi ve alt
bantlarina ayirma isleminde olduk¢a Dbasarili oldugu goriilmiistir. Birgok
hidrometeorolojik ¢alismada [207, 208] dalgacik doniigiimii ile ilgili analizlerde yaygin

bir sekilde kullanilan Haar dalgacik ailesi bu calismada en basarisiz dalgacik ailesi
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olarak bulunmustur. Ayrica literatiir incelendiginde, dmey dalgacik ailesinin bu
calisgmada oldugu gibi yiiksek bir basar1 gosterdigi bagka bir hidrometeorolojik
calismaya rastlanmamistir. Yine dalgacik doniisiimiiniin 6nemli hususlarindan biri olan
dalgacik bant seviyesi ile ilgili olarak 3, 4, 5, 6 ve 7 olmak {izere bes farkli bant
seviyesinin ayrigtirma kapasitesi arastirilmistir. Dalgacik ailesinde oldugu gibi bant
seviyeleri i¢in ¢ok sayida alternatif degerlendirilmistir. Yine Sakarya istasyonu igin
ADD-USBCS hibrit tahmin modelinden elde edilen test sonuglarina ait OMH ve R2
performans kriterlerine gore; SYIi-1, SYI-3 ve SYIi-12 zaman &lceklerinde 3. dalgacik
bant seviyesi, SYI-6 zaman dlgeginde ise 4. dalgacik bant seviyesi en basarili sonuglari
vermistir. ADD 6n isleme teknigi ile belirlenen tahmin modellerinde kullanilacak olan
bir diger model parametresi ise optimum gecikme zamanidir. Otokorelasyon fonksiyonu
araciligr ile daha onceden uygun gecikme zamanlar1 araligi (10 gecikmeye kadar)
belirlenmisti. Nihai optimum gecikme zamanini belirlemek amaciyla yine Sakarya
istasyonunun her bir zaman 6lgegi icin ADD-USBCS hibrit tahmin modelinde analizler
yapilmistir. Modelden elde edilen test sonuglari OMH ve R? performans kriterlerine
gore degerlendirildiginde; her bir zaman 6l¢eginde de 3 gecikme zaman (t, t-1, t-2, t-3
girdi degiskeni) Ustiin bir basar1 gdstermistir. Burada, giris sayist 1’den 4’e kadar
giderken model performanslari artmis ancak 4’ten sonra ele alinan 5 ve 6 giris sayisi
icin performanslar ¢ok degismemis bazi zaman 6l¢eklerinde de azalmistir. Calismada, t
orijinal kuraklik verisi olmak {lizere; t, t-1, t-2, t-3 girdi degiskenleri ve t+1 c¢ikti

degiskeni olarak belirlenmis olup tiim tahmin modellerinde bu yap1 kullanilmastir.

Dalgacik doniistimii ile optimum gecikme zamani, en uygun dalgacik ailesi ile dalgacik
bant seviyeleri belirlendikten sonra diger on isleme teknikleri olan AMA ve VMA
teknikleri ile yine kuraklik zaman serileri alt bantlarina ayrilmistir. Bu tez ¢alismasi,
ADD, AMA ve VMA 6n isleme tekniklerinin hidrometeorolojik zaman serilerinde bir
arada kullanildig1 ilk tez ¢alismasidir. Literatiir incelemesine gore [86, 87, 93, 122,
209]; hidrometeorolojik zaman serilerinde veri 6n islemesi ig¢in en ¢ok tercih edilen
yontem olan dalgacik donisiimii basta olmak iizere genellikle tek ya da iki farkli
yontemin ele alindig1 goriilmiistiir. Bu ¢alismada, tahmin modellerinin performanslarini
artirabilmek amaciyla bu denli kapsamli bir veri 6n islemesi iizerinde durulmustur.
Ayrica daha ¢ok haberlesme, elektronik, biyomedikal ve tip gibi alanlarda kullanilan

AMA ve VMA tekniklerinin kuraklik zaman serilerini alt bantlarina ayristirma
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performanslar1 da goriilmek istenmistir. Dalgacik doniisiimiinde oldugu gibi Sakarya
istasyonunun her bir zaman 06lgegi icin AMA ve VMA’lL USBCS hibrit tahmin
modelinde optimum bant seviyeleri belirlenerek alt bantlarina ayrilan kuraklik zaman
serileri tiim istasyonlar i¢in tahmin modellerinde kullanilmistir. Hem AMA hem de
VMA yonteminde 2D, 3D, 4D ve 5D olmak {izere dort farkli bant seviyesi lizerinden
veriler alt bantlarina ayrilmistir. AMA-USBCS hibrit tahmin modelinden elde edilen
test sonuglarina ait KOKH ve R? performans kriterlerine gore; Sakarya istasyonunun her
bir zaman Olgeginde 2D bant seviyesi en basarili sonuglar1t vermistir. VMA-USBCS
hibrit tahmin modelinden elde edilen test sonuglarina ait KOKH ve R? performans
kriterlerine gore ise Sakarya istasyonunun SYI-1, SYI-3 ve SYI-12 zaman &lgeklerinde
5D, SYIi-6 zaman dl¢eginde ise 4D bant seviyesi en basarili sonuglar1 vermistir. AMA
tekniginde bant seviyesinin artmasi performans kriterlerini iyilestirmemis, VMA

tekniginde ise bant seviyesi arttik¢a daha basarili performans kriterleri elde edilmistir.

Kuraklik zaman serileri ile ilgili tiim veri hazirliklar1 tamamlandiktan sonra 6n isleme
teknikleri ile alt bantlarma ayrilan ve yeniden elde edilen SYI kuraklik zaman serileri,
tim istasyonlar i¢in bagimsiz ve hibrit tahmin modellerinde egitme ve test verisi
seklinde girdi degiskeni olarak kullanilmistir. istasyonlara ait veri setlerinin %75’
egitme, %251 ise test verisi olarak alinmistir. Tahmin modellerinde; YSA, USBCS,
GSR, DVMR makine ogrenmesi yontemleri ile UKSB derin 6grenme yontemi
kullanilmistir. Bu yontemler, 6zellikle hidrometeoroloji alaninda yapilan daha dnceki
calismalarda gosterdikleri tahmin performanslarina gore segilmistir [86, 91, 93, 210,
211, 212]. Model gelisimde detayli bir sekilde anlatildig1 {izere her bir makine ve derin
O0grenme yontemi igin sayica fazla, ¢ok yonlii ve farkli kombinasyonlara imkan veren

model parametreleri secilmistir.

USBCS tahmin modellerinde genellikle 3 iiyelik sayisina sahip gaussmf-constant
fonksiyonlar1 en basarili sonuglar1 vermistir. Iterasyon sayisinin artmasi ise model
performanslarint 6nemli 6l¢lide artirmamistir. Bunun aksine YSA tahmin modellerinde
hem noron sayisi hem de iterasyon sayisi arttikca modellerden daha basarili sonuglar
elde edilmistir. YSA tahmin modellerinde, transfer ve aktivasyon fonksiyonu
kombinasyonlar1 igerisinde logsig-purelin fonksiyonlar1 genel olarak daha basarili
sonuglar vermistir. DVMR tahmin modellerinde ele alinan ¢ekirdek fonksiyonlari

icerisinden radyal tabanli fonksiyon (rbf) ve Gauss fonksiyonlari, polinom ve dogrusal
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fonksiyonlarina gore daha iistiin sonuglar vermis olup sonuglari birbirine ¢ok yakindir.
GSR tahmin modellerinde ¢ok sayida radyal tabanli fonksiyon ve ¢ekirdek fonksiyonu
denenmis olup ¢ekirdek fonksiyonlar1 bu yonteme ait modellerde daha {istiindiir.
Cekirdek fonksiyonlar1 igerisinden de ard karesel iistel (ardsquaredexponential)
fonksiyonu digerlerine gore genelde daha iistiin sonuglar vermistir. UKSB tahmin
modellerinde ise hem noron sayisi hem de dongii sayist arttikga tahmin basarisi
artmaktadir. Ogrenme algoritmalar1 arasinda ise Adam algoritmasi, SGDM ve

RMSProp algoritmalarina gore daha iistiin tahmin basarilarina ulagmistir.

Tiim yoOntemlere ait analizlerin yapildigi Sakarya, Ankara, Kiitahya ve Emirdag
istasyonlarinda en iistin tahmin modelleri, ya bagimsiz UKSB modeli ya da VMA-
UKSB hibrit modeli olarak bulunmustur. Calismanin genelinde de, UKSB derin
O0grenme yOntemine ait tiim bagimsiz ve hibrit tahmin modelleri ¢ok basarili sonuglar
vermistir. Ayrica UKSB yoOntemine ait tahmin modelleri, diger USBCS, YSA, GSR ve
DVMR yontemlerine ait modellere gore tahmin performansi bakimindan stiinliik
saglamigtir. UKSB tahmin modellerine en ¢ok yaklagan modeller ise VMA-YSA,
VMA-GSR ve ADD-YSA modelleri olmustur. On isleme teknikleri icerisinde de VMA
teknigi bu c¢aligmada One c¢ikmis olup kuraklik zaman serilerini alt bantlarina
ayristirmada, literatiirde oldukca yaygin kullanimi olan ADD ve diger bir yontem olan
AMA’a gore daha basarili sonuglar vermisti. VMA 0On isleme tekniginin diger
yontemlerle beraber olusturdugu hibrit modellerde de basaris1 oldukgca iyidir. Ornegin;
Sakarya istasyonu SYI-1 zaman 6lceginde VMA-YSA hibrit modelinin test sonuglaria
ait performans kriterlerine (OKH=0,060, KOKH=0,245, NSE=0,939, 0OI1=0,946,
OMH=0,200 ve R?=0,940) bakildiginda sonugclarin olduk¢a iyi oldugu gériilmiistiir.
Ayni1 zaman Slgeginde YSA’nin diger hibrit modellerine bakildiginda ise; ADD-YSA
hibrit modelinin performans kriterlerinin (OKH=0,148, KOKH=0,385, NSE=0,846,
01=0,887, OMH=0,301 ve R?=0,851) ve AMA-YSA hibrit modelinin performans
kriterlerinin (OKH=0,341, KOKH=0,584, NSE=0,646, OI=0,768, OMH=0,471 ve
R?=0,880), VMA-YSA hibrit modelinin gerisinde kaldig1 goriilmiistiir. Caligmanin
genelinde bu sekilde benzer sonuglar goriilmiistiir. Daha 6nce bulgularda verilen ilgili
tablolardan goriilecegi iizere, ADD ile AMA teknikleri kendi igerisinde
karsilagtirildiginda ise ADD teknigi daha basarilidir. Bundan dolay1 bu ¢alismada, ADD
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ve AMA tekniklerinin karsilastirildigi bazi ¢alismalarla [86, 213] kiyaslandiginda

benzer ve tutarli Sonuglara ulagildig1 goriilmiistiir.

Yukarida belirtilen dort istasyonun tahmin modelleri incelendiginde bagimsiz USBCS,
YSA, GSR, DVMR tahmin modellerinin basarilar1 olduk¢a diisiik kalmistir. Yine
Sakarya istasyonu SYI-1 zaman &lgeginden drnek vermek gerekirse; bagimsiz USBCS
modelinin test sonuglarina ait performans kriterleri (OKH=1,566, KOKH=1,252, NSE=-
0,628, 01=0,069, OMH=0,921 ve R?=0,002), bagimsiz YSA modelinin test sonuglaria
ait performans kriterleri (OKH=1,220, KOKH=1,105, NSE=-0,268, 0OI1=0,263,
OMH=0,876 ve R*=0,164), bagimsiz GSR modelinin test sonuglarina ait performans
kriterleri (OKH=1,013, KOKH=1,007, NSE=-0,053, OI=0,380, OMH=0,809 ve
R?=0,054) ve bagimsiz DVMR modelinin test sonuglarina ait performans kriterleri
(OKH=1,247, KOKH=1,117, NSE=-0,296, OI=0,248, OMH=0,870 ve R®=0,293)
oldukca zayif ve kabul edilemez degerlere sahiptir. Bagimsiz modeller igerisinde
yalnizca bagimsiz UKSB tahmin modellerinden kabul edilebilir ve bagarili sonuglar elde
edilmistir. Bagimsiz modellerin tahmin performanslari da yine ¢alismanin genelinde

benzer sonuclar vermistir.

Sadece UKSB yontemine ait bagimsiz ve hibrit modellerin ele alindig: alt1 istasyonda da
daha onceki istasyonlarda oldugu gibi test sonuglarina ait performans kriterlerine gore
yine bagimsiz UKSB modeli ve VMA-UKSB hibrit modelinin biiylik bir oranda diger
modellere tstlinliik sagladigi goriilmiistiir. Bununla birlikte UKSB derin 6grenme
yontemine ait tim modellerde test sonuglarinin performans kriterleri oldukca basarilidir.
Burada diger dort istasyondan farkli olarak Geyve istasyonu SYIi-3 zaman 6lgegi ve
Ilgin istasyonu SYI-6 zaman 6lgegi icin ADD-UKSB hibrit modeli en basarili sonuglar

vermistir.

Bu calisma, benzer nitelikteki diger ¢alismalarla [56, 57, 58, 61, 62, 64, 86, 87 ve 93]
kiyaslandiginda; hem veri 6n isleme teknikleri hem de tahmin yontemleri agisindan
daha kapsamlidir hem de kuraklik tahmin modellerinden daha {istiin sonuglar elde

edilmistir.

Tim bunlara ek olarak; bu ¢alismada kabul edebilecegimiz en 6nemli sinir, kuraklik
tahmininde meteorolojik degisken olarak sadece yagis degiskenin ele alinmasi ve

bundan dolayr sadece yagisa bagli hesaplanabilen SYI kuraklik indisinin
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kullanilmasidir. Ayrica Sakarya havzasinda yer alan istasyonlarn kuraklik tahminleri
yapildiktan sonra her bir zaman Olcegi icin alansal kuraklik haritalarinin elde

edilmemesi de ¢alismanin siirlarindandir.

4.2. Sonuc ve Oneriler

Bu tez ¢aligmasinda; Tiirkiye’nin kuzeybatisinda yer alan ve 6nemli nehir havzalarindan
biri olan Sakarya havzasindaki 10 adet istasyonun uzun donem aylik yagis verileri
kullanilmustir. Yagis degiskenine bagli olarak kolaylikla hesaplanabilen ve yaygin bir
kullanim1 olan Standartlastirilmis Yagis indeksi (SYT) kuraklik degerleri 1, 3, 6 ve 12
aylik kisa zaman &lgekleri igin elde edilmistir. Heaplanan bu SYI kuraklik zaman
serileri; Ayrik Dalgacik Doniisimii (ADD), Ampirik Mod Ayristirma (AMA) ve
Varyasyonel Mod Ayristirma (VMD) 6n isleme tekniklerine tabi tutularak alt bantlarina
ayrilmis olup, bdylece kuraklik zaman serileri yeniden elde edilmistir. SYI kuraklik
zaman serileri; Uyarlamali Sinirsel Bulanik Cikarim Sistemi (USBCS), Yapay Sinir
Aglart (YSA), Gauss Siire¢ Regresyonu (GSR), Destek Vektor Makine Regresyonu
(DVMR) ve Uzun-Kisa Siireli Bellek (UKSB) yontemlerinin bagimsiz ve hibrit
modellerinde egitme ve test verisi seklinde girdi degiskeni olarak analiz edilmistir.
Analizler, MATLAB 2021b yaziliminda gelistirilen kodlar aracilig1 ile tamamlanmustir.
Boylece bagimsiz ve hibrit modeller iizerinden istasyonlarin kisa dénem meteorolojik

kuraklig1 tahmin edilmistir.

Calismada; Sakarya havzasini temsilen se¢ilen 10 adet istasyonun ham yagis verilerine
homojenlik, duraganlik ve bagimsizlik testleri uygulanmistir. Istasyonlarm ham yagis
verilerine uygulanan testlere ait istatistiksel sonuglara gore, istasyon verilerinin tamami
homojen, duragan ve bagimsiz ¢ikmistir. Yagis verileri ile ilgili herhangi bir tutarsizlik

ya da siipheli durum s6z konusu degildir.

Havzay: temsilen secilen 10 adet istasyonun aylik yagis verileri kullanilarak, DrinC
yazilinu ile SYT kuraklik degerleri elde edilmistir. DrinC yazilimi, kuraklik indislerinin
hesabin1 olduk¢a kolaylastirmakta olup, islem yiikiinden ve zamandan ciddi oranda
tasarruf saglayan bir yazilimdir. Standartlastirilmis Yagis indeksi (SY1), Kuraklik Kesif
Indisi (KKI), Akim Kurakhik indisi (AKI) ve Onluklar indislerinin ele alindig
calismalarda DrinC yaziliminin kullanilmasi 6nerilmektedir. Ayrica bu yazilim iicretsiz

olup tiim aragtirmacilara, kamu kurum ve kuruluslarina da agiktir.
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Segilen bu 10 istasyonun mevcut durumdaki SYI kuraklik sinifi, normale yakin olarak
bulunmustur. Istasyonlarda gériilen kuraklik siniflarinin olusum yiizdeleri genel olarak
benzer bir egilimdedir. SYI-1 ve SYIi-12 zaman &lgeklerinde asir1 nemli ya da asiri
kurak donemler ¢ok az goriilmiistiir. Havzadaki bu 10 istasyon i¢in mevcut kuraklik

durumunun homojen bir dagilimda oldugu sdylenebilir.

SYI kuraklik zaman serilerinde, dikkate alman 10 gecikme zamanina kadar %95 giiven

araliginda otokorelasyon varligi mevcut degildir.

Dalgacik déniisiimii ile orijinal SYI kuraklik zaman serilerine ait veri seti, alt bantlarina
ayrilarak daha kisa ve Oznitelikleri daha yiiksek bir formda yeniden elde edilmistir.
Dalgacik doniisiimiinde, Ayrik Dalgacik Doniisiimii (ADD) teknigi uygulanmistir.
Dalgacik doniisiimii ile ilgili yapilan analizler sonucunda; SYI-1, SYi-3, SYI-6 zaman
Olgeklerinde, Meyer’in Ayrik Yaklasimi (Discrete approximation of Meyer-dmey)
dalgacik ailesinin kuraklik zaman serilerileri ile daha uyumlu oldugu ve alt bantlarina
ayirmada iistiin performans gosterdigi goriilmiistiir. SYI-12 zaman &lgeginde ise
Symlets (sym3) dalgacik ailesi iyi bir performans gostermistir. Ayrica, bu caligmada
dalgacik doniisiimiinde gecikme zamanmin ve dalgacik bant seviyelerinin artmasi
model performansin1 6nemli Olglide iyilestirmemistir. Dalgacik doniisiimii analizleri
sonucunda; 3 gecikme zamani (t, t-1, t-2, t-3 girdi degiskeni) ve 3. bant seviyesi
optimum degerler olarak bulunmustur. Sadece SYI-6 zaman 6lgeginde 4. bant seviyesi

daha iyi bir performans gostermistir.

Dalgacik dontigiimiinde oldugu gibi Ampirik Mod Ayristirma (AMA) ve Varyasyonel
Mod Ayristirma (VMA) 6n isleme teknikleri, daha nitelikli bir veri seti olusturmak
amacityla SYI kuraklik zaman serilerine uygulanarak alt bantlarina ayrilmistir. AMA
tekniginde 2D bant seviyesi, VMA tekniginde ise 4D ve 5D bant seviyeleri iyi bir basari
gostermiglerdir. AMA tekniginde bant seviyesinin artmasi ile birlikte model
performanslar: iyilesmezken, VMA tekniginde ise bant seviyesi arttik¢a daha basarili
tahmin modelleri elde edilmistir. VMA bant seviyesi, bu ¢alismada 2D’den 5D’e kadar
incelendiginden dolayi, VMA tekniginin ele alinacagi ileriki caligmalarda bant
seviyesinin daha fazla artirilmasi ile sonucglarin nasil degisecebilecegi detaylica

arastirilmalidir.
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ADD, AMA ve VMA 6n isleme tekniklerinin uygulanmadigi bagimsiz USBCS, YSA,
GSR ve DVMR tahmin modelleri, ¢caligmada dikkate alinan performans kriterlerine gore
olduk¢a zayif tahmin performanslar1 gostermislerdir. Kuraklik zaman serilerinin ele
alinacagi tahmin galismalarinda bu makine 6grenmesi yontemlerine dayali modellerin

On isleme teknikleri ile desteklenmesi 6nerilmektedir.

Bu c¢alismada; Uzun-Kisa Siireli Bellek (UKSB) derin 6grenme yontemine ait bagimsiz
ve hibrit tahmin modelleri, ¢ok basarili sonuglar vermistir. Diger bagimsiz makine
ogrenmesi modellerinin aksine bagimsiz UKSB modellerinin tahmin performanslar1 da
oldukga iistiindiir. Veri 6n isleme teknikleri uygulanmamasina ragmen hem egitme hem
de test sonuglarina gore bagimsiz UKSB modellerinin tahmin kapasitesi ¢ok yiiksektir.
Bagimsiz UKSB tahmin modellerinin bu basarisinin, 6n isleme tekniklerine olan ilgiyi
azaltacagl diisiiniilmektedir. UKSB’nin hibrit modelleri igerisinde ise VMA-UKSB
hibrit modeli diger hibrit modellere gére daha iistiindiir. UKSB tahmin modellerinden
elde edilen en olumsuz sonug, veri sayisinin azalmasi ile tahmin performansinin
diismesidir. Ayrica, UKSB yonteminde islem yiikii ve siiresi diger makine dgrenmesi

yontemlerine kiyasla daha fazladir.

VMA-YSA, VMA-GSR ve ADD-YSA hibrit tahmin modellerinin performanslari,
UKSB tahmin modellerine oldukg¢a yakindir. Kuraklik tahmin ¢alismalarinda bu

modellerin de mutlaka degerlendirilmesi 6nerilmektedir.

Calismada kullanilan ADD, AMA ve VMA 06n isleme teknikleri arasinda, VMA teknigi
digerlerine gore daha tiistiindiir. VMA’nin hemen hemen her yontemle uyumlu oldugu
goriilmistiir. ADD ile AMA teknikleri karsilastirildiginda ise ADD teknigi daha basarili
sonuglar vermistir. Ozellikle elektronik, haberlesme, biyomedikal ve tip gibi alanlarda
yaygin kullanillan VMA tekniginin hidrometeorolojik degiskenlerin ele alindigi

caligmalarda kullanilmas1 model performanslarinin iyilestirilmesi adina 6nemlidir.

Kurakligin tespiti, izlenmesi ve gelecege yonelik dngoriilerin yapilabilmesi i¢in bilim ve
teknolojik gelismelerden yararlanilmalidir. Son yillarda hemen hemen tiim sektdrlerde
yaygin olarak kullanilan makine 68renmesi ve derin 68renme yontemlerinin kuraklik
analizlerinde de dikkate alinmas1 gerekir. Bu calismada sadece yagis degiskenine bagl
olarak meteorolojik kuraklik analiz edilmistir. Kuraklik analizlerinde kurakligin en

onemli degiskeni olan yagis parametresi ile birlikte diger meteorolojik ve iklimsel
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parametreler de kuraklik tahmin modellerine dahil edilmelidir. Bu sekilde elde edilen
modeller daha kompleks olacagindan bu kuraklik modellerini ¢6zebilmek i¢in en uygun
tekniklerin yapay zeka ve yapay zekanin alt dallarinda yer alan yontemlerin olacagi
asikardir. Ozellikle son donemin en gelismis 6grenme algoritmalar1 olan derin sinir
aglar ve derin 6grenme algoritmalar1 yaygin bir sekilde kuraklik ¢aligmalarinda dikkate

alinmalidir.
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EK 2. Diger istasyonlara ait ayhk SYI kurakhk degerleri izleme tablolar

Tablo 1. Ankara SYI-1 kuraklik degerleri izleme tablosu
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051 -0.11 1.43
-0.31 ' -1.32 0.51
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-0.75

-1.27 -0.60
-0.61 0.24

0.38 54 051 0.83

0.43

-0.91

-0.51 -0.59

-1.37 3 -0.23 E8) o0.s6 EEIOE 0.84

-1.15 0.58 0.56 -0.38

1979 - 1980 [N -0.64 -0.47 -0.68
1980-1981 | 1.44 -0.03 -0.22 059 0.65 -055 0.01 -0.07
1981-1982 0.94 0.23 [Jig6l 068 021 -027 085 0.10

1982 - 1983 -0.17
1983-1984 0.22

-1.50 -0.69 @ 1.35 -1.00

0.23 HlB8] 0.02 0.0

0.41 0.60
0.35 1.10

-1.15
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1995 - 1996 -0.14 -1.37- 0.68 -0.63 0.86 -0.32 0.16 0.9 1.23 -0.70
1996 - 1997 -0.30 0.27 -0.18 | 1.05 -0.64 0.89 65l 0.76 -1.26 0.77
1997-1998 0.00 -0.83 -1.46 144 0.75 -1.21 115 -1.30 118 042 0.79
1998-1999-& 035 095 056 051 057 -1.20 -0.10 031 0.45 0.49
1999 - 2000 -0.40 0.70 '-1.40 284 0.13 1.20 053 072 0.18 -0.01
2000-2001 0.38 045 0.16  1.06 -1.40 0.11 0.96 -0.43 -0.13 -1.41 -0.31
2001 - 2002 B8N 0.47 -0.26 -0.59 -0.96 0.75 0.18 S 1.32 J0EEl
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2003-2004 0.19 0.87 -1.35 B -0.87 -1.05 0.29 0.27-&
2004 - 2005 0.34 -0.76 011 -050 -0.23 -0.40 040 -0.65 -0.70 0.35
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2007 -2008 0.08 -0.89 -0.02 -0.77 -1.36 0.00 -0.71 0.22 -0.49 [ 1.37 0.18
2008 - 2009 -0.82 B8N 0.72 -0.33 -0.04 -1.05 [JEIESN -0.86 -0.23 0.67 -0.40
2009-2010 0.82  1.32 075 094 -0.94 -014 0.30 -096 0.03 -051 0.65 0.85
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2012 -2013 6@ 064 023 -072 058 [H@ 061 005 -053 -0.23 040 1.27
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Tablo 2. Kiitahya SYI-1 kuraklik degerleri izleme tablosu

Aylar
Yillar 1 2 3 4 5 6 7 8 9 10 11 12
1960 - 1961 | 1.08 024 127 033 -025 077 036 -049 003 027 -0.68 [MhSSN
1961-1962 -0.27 049 -0.06 0.02 88 070 -1.33 -0.79 0.37 0.46 -0.39 -0.10
1962 - 1963 112 149 -027 -0.44 096 -0.24 -122 1147 043 -0.35 |GI
1963 - 1964 143 045 -0.23 0.66 063 -1.29 -058 0.88 -0.02 0.39
1964 - 1965 -0.32 0.31 -0.64 %- 0.42 0.25
1965 - 1966 -0.40 0.20 -1.16 -1.09 1.28 0.2
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1969-1970 0.31  1.04 -0.17 054 -1.01 0.18 1.30 -1.29 -0.91 BN 0.24 | 141
1970-1971 0.72 -0.35 -044 -0.14 0.5 -1.29 064 048 0.11 0.25
1971-1972 0.07 -053 | 119 -0.44 053 0.31 8 073 054 068 0.86 027
1972-1973 -0.92 -0.88 -0.77 -0.37 054 117 139 0.78 0.58 |52l -0.59 |E2N06E
1973-1974 [-1.50 =~ 1.11 -0.33 053 -0.60 0.32 0.12 -042 -0.32 0.78 0.28 0.57
1974-1975 -0.85 0.69 -0.70 055 0.31 -0.11 -136 0.76 0.70 -0.10 -0.03 -0.01
1975-1976 -0.34 0.07 | 1.24 0.25 68 0.96 -1.39 1.16 0.48 -0.23| 1.05 0.27
1976-1977 024 -050 -1.01 025 042 -0.10 057 0.6 -0.32 087 -1.19 0.97
1977-1978 -0.64 -0.75 -0.70 0.87 -1.12 008 026 -0.11| 1.10 092 0.49 0.82
1978-1979 | 1.05 1.24 048 048 -0.05 -0.92 -1.39 -1.29 [M6A 0.63 -1.07 0.06
1979 - 1980 [NANZ8Y -0.52 -1.22 -0.85 B8] 097 -0.69 -1.13 022 023 1.14 0.08
1980-1981 | 1.48 -0.80 093 0.8 -0.66 -0.22 -0.86 -0.88 | 1.81 0.19 1.15 1.28
1981-1982 0.98 054 026 -0.40 -0.20 066 -0.01 051 -0.31 046 0.67 1.41
1982 -1983 -0.28 -0.42 116 0.28 -0.70 0.26 -0.99 -0.27 -0.05 -1.04
1983-1984 0.51 -0.05 0.41 -0.17 %--0.84 -0.79 -0.42 -0.46
1984-1985 -0.02 0.27 0.67 -0.31 0.57 | 1.23 -1.46 0.08
1985-1986 | 1.47 0.72 021 -0.49 -0.76 -054 -1.39 -0.20 -1.12 -051 0.77 -0.58
1986 -1987 0.69 | 1.10 B2l -0.60 -0.74 0.15 -0.79 -047 059 -0.54 -1.28 1.40
1987-1988 [ 1.36 -0.69 0.16 0.63 -011 0.07 016 0.60 HlEEN 042 053 -0.14
1988-1989 -1.48 054 000 048 048 046 -022 051 -048 1.18 1.05 -0.24
1989—1990r-1.49--0.07 090 0.94 -0.71 |BlEBN 116 1.02 0.08
1990 - 1991 -066 -1.25 060 -1.33 018 -0.04 060 0.72 042 -0.14 0.80
1991-1992 -0.05 0.08 -1.14 0.4 114 -017 078 0.95 -1.04 -0.21 -0.03 0.23
1992 - 1993 0.55 0.71 [E2E2 o.97 63l 0.24-% 0.07 -0.80
1993-1994 -025 0.90 -0.96 -0.93 0.36 -0.83 -0.68 0.14 -0.65 1.05 -0.03
1994-1995 -0.45 -0.16 0.05 -0.30 -1.16 -0.84 023 065 -1.35 097 045 -0.23
1995-1996 0.20 JElBE] 087 043 -0.95 -0.15 095 -007 028 061 061 003
1996 - 1997 -0.03 0.20 0.88 -0.21 -0.66 -1.40 1.05 -0.84 | 1.12 -0.09 -0.70 0.48
1997 -1998 -0.67 -1.19 -122 1.34 0.01 0.65 0.05 252 0.09 66N -0.61 0.30
1998-1999 -0.64 0.01 079 0.36 113 094 -129 009 022 059 021
1999 -2000 0.58 | .37 0.16 '-1.28 -029 | 1.35 072 0.03 -0.86 0.04 -1.10
2000-2001 0.22  1.07 035 0.34 -0.34 111 018 -0.23 -1.21 -0.08
2001 -2002 | -1.48 -0.36 -0.36 0.53 0.19 -0.48 024 -0.79
2002-2003 0.16 -1.37 0.48 [ -0.98 0.54 029 0.25 -0.53
2003 -2004 -0.51 [MBON -1.16 125 -0.45 -1.27 -1.39 020 -0.34 0.75 NG 0.59
2004 -2005 0.09 -0.46 -0.92 041 0.80 -1.08 -0.57 0.80 JEMGEN -1.40 0.71 -1.26
2005-2006 -0.50 0.47 | 110 0.37 -0.15 -0.24| 1.06 037 0.76 -1.06 0.45 -0.39
2006 - 2007 0.77 -0.10 -0.26 |E2IGM -0.55 -055 -0.22 -1.29 1.45 134 %-
2007 - 2008 -0.08 -0.65 -0.84 0.15 0.80 -1.39 028 -0.26 0.26 -0.06
2008 - 2009 0.88 -0.81 -0.97 -0.63 -0.91 -0.07 | 141 -093 0.14 -0.67
2009 - 2010 0.34 0.22 028 057 -1.07 047 -051 099 -0.72 036 0.28
2010-2011 0.09 0.66 -0.42 -1.07 -0.94 093 -070 074 028 1.37 -0.84 -0.03
2011 - 2012 ﬁ--l.lo 118 142 130 -1.05 0.06 0.39 0.40
2012 - 2013 063 031 031 061 -0.36 084 -050 -1.19 039 -0.49 0.8
2013-2014 015 021 032 -0.70 -1.01 048 052 -047 -1.14 051 -0.64 |FGE
2014 -2015 -0.67 [-1.17 -0.73 022 119 1.14 -0.39 a- 0.72 0.06 0.83
2015-2016 0.58 0.84 -0.66 0.51 -1.25 0.47 -0.05 -0.14 ENGN
2016 -2017 | 1.87 -055 0.77 -0.78 0.8 0.61 -0.83 052 0.85 ENE8] 0.07 -0.29
2017-2018 0.17 -1.22 -0.87 0.77 | 1.47 1.8 0.41- 0.22 091 -0.20 -0.01
2018-2019 0.00 -0.15 " 1.07 EEEN 1.35 B68 1.00 -0.66 | 118" -0.01 0.44
2019-2020 0.77 0.06 -1.30 -0.29 -0.59 1.18 0.39 -0.68 -0.73 -0.50 -0.52 -0.02
2020-2021 0.30 0.62 -0.56 HEEl 120 122 024 012 0.70 -0.54
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Tablo 3. Bolu SYI-1 kuraklik degerleri izleme tablosu

Aylar

Yillar 1 2 3 4 5 6 7 8 9 10 11 12
1960- 1961 D94 031 066 -065 036 046 0.64 JNM66) -0.35 -0.07 -1.30 0.25
1961-1962 -0.53 045 025 -0.35 -0.63 072 -0.33 -118 -0.02 0.44 0.69-
1962 - 1963 - 068 031 017 -0.75 @Bl -063 -135 062 093 -0.94
1963 - 1964 064 046 048 084 -007 1.02 -117 061 -0.16 -0.20 1.37
1964-1965 -0.02 036 012 -0.62 -050 051 -1.05 0.66 1-12- 112 037
1965 - 1966 -& 0.44 079 037 -0.17 [SEN -0.06 -1.08 0.60 -0.09
1966 - 1967  0.08 119 021 023 -111 -016 098 -0.06 -0.75 -1.26 -0.42
1967-1968 -0.26 0.24 0.04 -0.06 | 1.05 -0.31 021 -1.02 0.37 -0.71 [S6N -0.43
1968 -1969 [228] -0.33 | 1.06 018 054 027 -1.25 0.39 -0.54 -024 023
1969-1970 -0.34 -0.16 -0.25 029 -043 072 -0.92 -135 -0.16 049 012
1970-1971  o.00 2 115 003 091 046 -025 076 -0.09 -0.24 -0.26
1971-1972 032 -024 065 067 096 024 -005 -027 066 006 -0.20
1972 - 1973 027 -0.37 J88] o062 133 134 097 -0.27
1973-1974 019 -041 027 040 -085 013 035 027 -1.09 -0.61 -0.61
1974-1975 008 -092 -044 069 090 006 -115 087 086 -1.08 -0.30 -0.78
1975-1976 0.1 0.8 0.07 -0.04 809 0.46 -1.16 A -055 -0.05 0.04 0.82
1976-1977 0.86 -0.61 -019 -0.80 1.21 -0.66 0.53 110 -022 029 -0.60 -0.13
1977-1978 | -1.03 -1.10 -0.14 0.21-% -1.07 -015 032 -047 025 -0.49
1978-1979 091 -0.06 -1.25 148 -0.43 043 025 @1 o.10 2 o071
1979-1980 | 1.09' o0.15 EB@ -051 080 016 1.22 001 -0.65 -0.66 1.12 -0.61
1980-1981 079 -0.44 141 032 015 -1.18 -0.26 -0.01 -1.13-&
1981-1982 044 -0.15 [NGSEEN 0.43 -1.17 -0.82 045 007 0.21
1982-1983  0.04 -0.38 -1.02 0.07 035 -0.74 g- 0.60 -0.77 -0.99 -1.49
1983-1984 | 150 -0.08 -148 -098 -0.61 034 0.08 0.36 0.64 145 -1.30
1984-1985 -0.08 -0.54 -0.13 0.84 -007 -0.74 042 102 2N -1.43 0.46-
1985 - 1986 -0.53-% 011 -010 -0.37 -050 -0.89 -1.36 0.46 -0.49
1986-1987  1.00 0.04 062 -0.14 055 -0.18 -0.13 -1.13 -021 055 0.3
1987-1988 | 117 -137 -015 008 037 -040 065 0.13 @ 057 -0.32| 1.07
1988-1989 -1.43 -0.33 0.65 -0.71 [ 101 112 065 -0.20 -1.49 040 049 0.76
1989 - 1990 -1.34 -1.08 011 118 024 089 008 046 1.08 026
1990-1991 = -1.13 0.88 -0.47 -030 -0.47 -0.64 1.06/ 062 005 0.10
1991-1992 | -1.04 0.8 -0.85 -0.66| 1.35 016 124 074 033 008 -0.20 0.32
1992-1993 025 -0.07 052 -0.47 0.65 049 -1.35 -1.11 091 187 082
1993-1994 | -1.33 -0.62 -0.76 0.89 -0.99 B8] 113 -060 -140 050 -0.58
1994-1995 -0.64 -0.16 096 -0.78 -1.37 -0.79 -052 -0.95 -0.08 1.39 0.72
1995-1996 033 -147 080 002 -1.03 063/ 185 020 031 000 099 -121
1996-1997 -0.16 -0.25| 1.39 -0.36 0.11 -1.19 048 031| 1.07 067 -0.96 -0.01
1997-1998 056 -0.27 OM_& 0.72 -0.01 B2162) -1.00 1.05 022 062
1998-1999 058 091 -052 096 052 -049 -1.35 070 052 014 -0.79
1999-2000 | -1.28 144 -050 -0.58 -1.37 096 8] 096 040 010 059 -0.94
2000-2001 -0.02 0.7 092 2%5] 074 001 043 116 -0.63 ﬁzo- -1.36
2001-2002 [EBIO8N 016 074 -005 125 B8l -064 098 -0.22 142 136
2002-2003  0.43 -041 -0.85 6@ 029 -034 071 076 029 016 -0.19 -1.06
2003-2004 0.76 0.60 -1.31 -1.44 -0.53 032 060 134 -121 058
2004-2005 -0.08 | 113 089 005 -057 076 0.36 0.83 @ -1.06 0.2s [EHSEl
2005-2006 034 -0.10 099 090 -046 025 1.04 -049 015 029 081 -0.73
2006-2007 -0.68 0.64 0.05 283 0.74 -100 -059 -1.14 -0.78 -0.02 -1.07
2007 - 2008 125 -095 065 -0.62 -112 041 -1.04 082 -0.34
2008-2009 021 -051 087 -043 073 025 -0.23 -135 069 075 0.05
2009-2010 031 053 125 029 -1.12 029 129 -092 095 -1.12 026 -0.21
2010-2011 -0.06 6@ 068 062 -042 144 070 -0.84 021 206 -1.10 0.45
2011-2012 059 0.68 112 022 -034 102 055 -028 056 091 0.73 -1.05
2012-2013  0.96 G4 0.33- 141 88 117 037 032 115 -1.34 0.75
2013-2014 | -1.26 0.63 0.68 082 066 -125 -056 071 078 024 -0.69
2014-2015 036 094 125 035 074 044 097 038[ 121 040 0.53
2015-2016  0.74 067 -056 0.73 -1.16 0.3 2N -032 033 036 -0.84
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Tablo 4. Emirdag SYI-1 kuraklik degerleri izleme tablosu

Aylar

Yillar 1 2 3 4 5 6 8 9 1 12
1964 - 1965 026 095 -144 -0.63 126 043 -0.69 059- 047 0.96
1965 - 1966  0.07 0.28 067 0.12 -1.16 -0.18 -1.02 -056 -0.72 052 -0.25
1966 - 1967 0.57 122 033 124 022 035 -011 1.19 |EE@ 005 0.78
1967-1968 0.20 0.86 026 071 1.09 -0.39 012 -048 -0.24 -0.13 0.12 0.63
1968 - 1969 |68 0.20 229 0.10 074 036 -1.30 0.74 115 025 036 091
1969-1970 | 1.23 0.86 071 [ 143 0.6 -0.82 065 -1.00 0.25 -1.07 0.2 0.93
1970-1971 | 1.44 052 0.89 -1.37 JHE8N -0.05 102 086 005 1.26 -039 0.78
1971-1972 -1.01 1.06 131 088 0.82 084 -0.17 110 1.37 045 -0.11 0.78
1972-1973 0.04 -0.30 -0.73 0.6 -041  1.30 -0.10 | 1.17 0.53 0.75 -1.30 |
1973-1974 [-1.05 -1.18 012 028 -0.18 [EBM 044 018 023 -0.39 -0.90 0.11
1974-1975 040 0.00 035 -1.29 0.98 -0.97 -059 0.71 019 -1.05 -0.21 0.46
1975-1976 -0.39 0.63 -0.80 -0.70- 1.02° -0.58 86N -1.26 -0.19 0.88 0.15
1976-1977 | 1.28 0.11 -0.12 0.66 -0.19 -0.68 0.11 -0.09 071 021 0.28
1977-1978 -0.78 -0.29 0.1 | 119 -1.06 -0.64 055 -0.93| 1.11 050 -1.28 0.04
1978-1979 | .21 031 096 -0.10 ﬁ- -0.63 -1.38 0.65 0.90 [E2BEl 0.29
1979-1980 0.40 -1.49 -125 -0.46 120 0.16 -056 0.5 117 073 -0.77
1980-1981 0.96 -0.55 053 0.78 -0.35 -0.87 -1.30 0.3 0.89 009 057 -0.76
1981-1982 0.82 -0.29 -0.25 -0.01 -0.20 1.00 081 048 0.32| 1.13 0.29 0.08
1982-1983 -0.55 -1.30 -0.98 0.78 070 0.67 057 0.40 -0.18 -0.25 -0.69

1983-1984 0.11 043 066 -0.10 020 1.29 150 -0.27 -0.07 -0.35 -0.42
1984 -1985 -0.76 0.12 0.69 | 149 -0.75 -0.39 [2:81) -0.29 |-1.09 -0.04 -1.15
1985-1986 0.78 0.65 -0.34 -0.94 -0.20 -0.08 -1.30 059 -049 086 0.27 0.86
1986 - 1987 0.32 -0.20 [F2GZE2E8] 0.12 059 -051 -091 -0.39 -0.13 -0.85| 1.19
1987-1988 0.5 -0.22 0.17 0.65 -0.88 028 -0.18 -0.29 -1.26 -0.30 0.97 0.95
1988-1989 [-1.31 061 061 090 -0.83 0.44 001 -0.08 -0.33  1.07 1.-09-
1989 - 1990 -1.26 -1.03 0.29 [-1.15 -0.10 -0.45 S8 0.89 -0.44
1990 - 1991 015 -005 011 060 021 097 008 -0.40 0.33
1991-1992 0.19 0.40 -0.81 0.02 [N -1.19 g_-o.os 1.39 000 1.13
1992-1993_ﬁ-1.29 -0.40 0.43 -0.93 -1.47 055 -046 -0.61
1993-1994 0.13 -0.08 -052 017 042 -027 063 -0.66 B8N 0.61 -1.36
1994-1995 -0.13 -0.06 0.42 -0.16 -0.95 -1.15 062 073 022 022 1.08 -0.34
1995-1996 -0.77 -0.99 098 -0.93 -078 0.78 144 063 -1.06 0.36 -0.88
1996 - 1997 0.95 0.02 66N -1.16 0.94 -112 121 0.05| 1.07 0.78 -0.12
1997-1998 -0.35 -0.09 -0.99 037 -0.18 0.96 -0.43 NS8O} -1.04 -0.06 -0.38
1998-1999 -0.39 -1.03 092 0.94 -0.19 -1.38 -1.38 0.30 0.45 0.26 0.82
1999 - 2000 -0.02 [NN88N 0.28 -0.31 0.90 | 1.27 057 -0.47 -0.08 |-1.15
2000-2001 | 1.46 1.35 028 114 023 0.03 -1.38 -0.74 004 0.27 0.23
2001 - 2002 228N 0.43 030 046 -0.07 JEMBBN -0.54 0.05 -0.97 1.17

2002 - 2003 | 1.10 -0.75 -0.52 |6l -0.80 -0.66 = 1.07 0.03 -0.27 -0.43 0.78
2003 - 2004 -0.53 21290 -1.00 0.36 -0.72 |B2IOA -1.38 -0.46 -003 0.00  -1.27 1.09
2004 -2005 -0.01 -0.42 -115 0.12 0.18 038 -0.35 -0.40 |NGSHENGEE] 0.75 -1.38
2005-2006 -0.20 0.74 | 111 1.27 028 1.08| 064 -0.85 051 0.20 | 1.29

2006 -2007 | 1.12° 0.75 -051 -0.82 0.54 0.68 -0.56 -1.38 1.28 -0.54

2007 - 2008 | 1.09 -0.83 -0.21 -0.62 |EMEEN 129 -054 -0.54 -0.27 0.74
2008 - 2009  -1.05 -0.43 0.2 -0.93 -0.64 -1.06 -1.38 -0.58 040 0.10 045
2009-2010 0.87 | 1.81| 0.20 | 1.29 022 -127 060 -1.38 1.26 -0.35 058 0.72
2010-2011 0.14 086 -0.34 015 -1.12 088 -0.33 -0.77 -0.99 1.01 -1.07 0.85
2011-2012 0.72 057 071 -007 030 060 -0.96 -0.07 -1.02 0.70 [E228Y -0.66
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Tablo 5. Polatli SYi-1 kuraklik degerleri izleme tablosu

Aylar

Yillar 1 2 3 4 5 6 7 8 9 10 11 12
1965-1966 -0.26 = 1.25 024 0.13 048 -1.35 -0.55 -0.96 -1.25 -0.71 073 0.84
1966 - 1967 0.85 @l 090 -024 024 0.16 130 -0.88 -1.12 ElE8l -0.32 051
1967-1968 -005 0.35 042 059 044 -091 053 -0.13 004 -0.63 -0.17 0.04
1968-1969 | 1.15 -0.48 066 0.43 -1.40 048 020 059 0.76 045 0.62 [ 112
1969 - 1970 BB 1.34 061 043 -0.01 0.00 -0.05 -1.17 -0.02 -0.84 0.20 1.46
1970-1971 073 0.71 -0.24 |ENGONEEES) 0.74 -0.19 -1.37 017 064 -0.32 -0.41
1971-1972 -064 -0.28 050 -0.06  1.17 -0.45 -0.77 0.93 0.32 009 0.70 -0.37
1972-1973 -0.98 -0.85 -1.10 0.25 -0.18 20 144 0.72 0.49 54 -0.50 |E
1973-1974 [-1.18 -0.25 -0.21 0.4 -0.68 027 067 0.27 -049 -0.77 -1.36 0.22
1974-1975 -1.837 -0.07 002 -0.811.27 070 023 074 094 -0.46 -0.61 0.27
1975-1976 0.50 -0.03 -0.10 0.73 [NNOOMEGS] -0.41 | 149 -1.08 0.00 0.70 -0.06
1976-1977 [ 1.28 -1.37 -062 041 114 003 033 -0.72 -0.06 1.05 -0.49 0.68
1977-1978 0.31 -0.34 -0.13 OIZO-M- 0.96 -0.62 -0.62 -1.08
1978-1979 0.79 058 1.09 1.10 -0.08 -0.92 0.96 [NGSHEREE 0.69
1979-1980 | 148 -0.80 -1.00 [E28BN 0.81 021 -029 -1.37 -0.12 029 0.60 -0.26
1980-1981 | 144 017 015 0.8 1.04 -053 -142 0.65 -0.88 -0.95 0.80 -1.36
1981-1982 | 1.10 047 027 -0.80 111 115 055 0.37 -0.38 020 0.83/ 1.01
1982 -1983 -0.60 -0.97 -1.37 0.90 -0.33 -0.72 J2MBN 1.23 -0.01 -0.13 -0.68
1983-1984 0.37 -0.27 -0.31 -0.10 006 0.10 057 0.32 -046 -0.36 -0.97
1984 -1985 -0.51 -0.13 | 1.21 60N -0.77 -1.24 1138 0.71 |-1.25 -0.27

1985-1986 0.65 048 -0.21 -0.49 044 -0.10 -0.19 -0.64 -1.25 1.28 053 -0.37
1986 - 1987 [ 1.05 0.83 |EZ2GHEMS] 0.33 0.80 BB -1.10 094 -1.07 -0.79 0.65
1987-1988 0.79 -0.70 -0.01 -0.43 003 0.01 -0.29 -0.10 -0.78 -0.31 -0.07 | 1.04
1988-1989 -0.94 013 114 098 -053 | 1.09 0095 -1.00 -0.86 1.04 1.10 -0.95
1989 - 1990 -0.26 -0.78 0.25 -0.17 -0.68 0.94 [Nl58Y -0.44
1990-1991 -0.63 -1.42 -122 146 045 004 -0.46) 128 1.31 052 -0.47 0.40
1991-1992 -050 0.72 -147 126 1.00 003 012 0.39 075 055 0.04[1.03
1992 - 1993 [EBIG8N -1.38 -0.20 052 JEMEE) o0.16 145 -1.00 -1.18 0.87 0.28 -0.02
1993-1994 0.08 -0.45 -1.00 -0.66 0.74 0.20 [JEMS8N 0.16 -1.08 E2GEN -0.01 -0.37
1994-1995 041 067 -051 -0.90 0.09 -1.07 -0.65 -0.18 | 1.16 0.43  1.15 -0.66
1995-1996 0.06 | -1.48 020 003 071 073 023 039 050 1.14 -0.63
1996 -1997 0.24 0.21 -0.75 0.24 |88l 078 061 0.38 HBH 0.3
1997 - 1998 -0.04 -0.33 -1.17 0.16 1.38 -1.09 -0.45 | 116 0.02 0.35
1998 -1999 [-1.19 0.73 0.46 0.44 033 019 -0.78 043 052 061 082
1999 -2000 0.01 | 1.48 0.58 -0.79 023 1.16 B207 141 029 -0.14 -0.62
2000-2001 0.29 0.89 0.01 | 1.47 0.60 012 -0.11 0.86 -0.68 005 0.85
2001 - 2002 |E25@H -0.05 -0.19 -0.93 | 1.18 -0.60 -001 0.74 [F2EH 1.11 02020
2002 -2003 -0.10 -0.87 -0.04 049 0.80 -054 086 0.5 1.27 -0.18 -0.25 -0.87
2003-2004 0.62 | 1.34 -0.15 | 1.13 -0.32 0.38 -0.51 054 0.80
2004 - 2005 0.30 -0.53 -0.10 -0.52 063 -0.24 1.21 -1.25 0.39

2005 - 2006 -0.89 0.58 -0.05 042 124 -092 011 -0.03 092

2006 - 2007  0.31 -0.56 -1.43 062 049 -0.66 -1.37 94 062 -0.86

2007-2008 041 -0.70 -0.34 -0.86 -1.11 007 -0.93 040 -1.25 031141 0.94
2008 -2009 -0.94 -1.40 060 -046 -0.17 0.22 [JE208J -1.05 1.32 -0.02 055 0.06
2009-2010 0.73 2601 146 0.95 -0.36 -0.79 -0.89 -0.55 -0.28 -0.35 0.46 | 1.39
2010-2011 | 1.10 125 111 -1.10 -0.52 -1.37 -0.01-% 1.23
2011-2012 0.27 -0.34 092 -006 069 015 056 026 052 0.66 0.47
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Tablo 6. Sivrihisar SYI-1 kuraklik degerleri izleme tablosu

Aylar

Yillar 1 2 3 4 5 6 7 8 9 10 11 12
1960 - 1961 0.78 %- 055 003 049 -0.23 -053 043 -004 -087 0.29
1961-1962 0.04 -0.14 -0.88 -0.62 -0.22 -1.10 005 0.63 -1.48 0.19
1962 -1963 -0.59 | 1.39 0.30 -0.10 0.40 0.69 0.01 117 011 -0.43 [JiEH
1963-1964 [ 1.29 145 0.03 -0.08 0.90 0.77 -143 142 027 -1.07 -1.19
1964 - 1965 [E2I22l 0.72 SZIEE0N -0.24 | 1.36 -0.99 -0.34 %- 0.62 0.71
1965-1966 0.03 041 -0.15| 1.01 -0.05 -1.34 0.4 -1.26 -0.89 | 1.07 0.79
1966 - 1967 0.50 202l 130 0.03 -0.02 -0.35 143 -0.85 -0.41 -1.13 -0.72 0.90
1967 - 1968 -0.30 -0.61 -0.24 0.72‘ -1.06 -0.28 -0.83 -0.44 0.04 0.04
1968-1969- 0.03 | 1.30 -0.50 -1.03 045 053108 055 028 1.19
1969 - 1970 113 085 0.9 018 033 027 -0.74 -0.34 -0.33 -0.06 NG
1970-1971 0.85 0.93 0.14 0.10 0096 -1.43 -004 0.23 -0.47 -0.24
1971-1972 -045 023 085 045 054 093 -0.72 -0.12 0.08 023 073 -043
1972-1973 -0.69 -0.72 -1.05 0.85 -011 094 098 0.89 0.55 1.13 -0.89 [E2EEI
1973-1974 -1.28 -117 -0.75 0.0 026 086 083 -0.30 0.53 -0.72 -0.88 024
1974-1975 -1.27 0.76 097 -0.60 0.32 0.60 -0.07 [ 1.05 041 -0.38 -0.54 0.47
1975-1976 -0.15 -0.60 -0.24 0.43 [J2I35N#82] -035 0.85 -1.41 -027 091 0.06
1976-1977 [ 1200 -0.95 -0.94 038 1.27 0.60 063 087 -027 | 1.14 -0.06 0.44
1977 -1978 -0.37 0.72 -0.81 0.87 |E@l -050 0.89 -0.87 055 -0.33 -0.70 -0.47
1978-1979 073 0.63 | 1.08| 0.37 -0.05 -1.12 -1.13 -1.43 0.37 | 1.31 [E28@ 0.37
1979 -1980 [ 1.28 -0.70 -1.23 |ENSEB0] 050 -051 -1.43 0.01 074 094 -091
1980-1981 0.97 0.0 056 070 0.64 0.07 [JEMB8) 036 065 -0.74 054 -0.87
1981-1982 | .82 0.69 005 -0.32 0.06 -0.67 -111 052 -0.25 064 047 051
1982-1983 -0.64 -1.42 -1.01  1.03 -001 -0.07 011 084 -006 0.62 -126 -1.14
1983-1984 0.25 -0.11 025 -0.23 -0.85 021 061 -1.10 -0.88 -0.70 -0.30
1984 -1985 -0.26 -0.30 | 1.23 2¥0] -0.82 0.33 | 144 087 -1.41 0.28 -1.36
1985-1986 0.77 093 -0.91 -0.80 -0.14 0.3 -0.58 0.87 0.28 0.19
1986 -1987 0.60 0.3 |FNGSHEMBE] 058 020 -0.04 -0.19  1.07 -1.37 -092 0.62
1987-1988 0.55 -0.77 057 0.33 -0.51 0.23 B2 -0.10 -0.57 025 -0.01 0.93
1988-1989 -1.44 017 063 0.89 -082 055 -0.75 -0.45 -0.21 0.76 | 1.08 -1.30
lQSQ—lQQOT-OAQ 0.75 -0.74 -1.26 0.24 [86N -1.15
1990 - 1991 -0.79 098 -027 0.23 129 077 028 -057 -0.13
1991-1992 -0.29 0.24 -123 083 | 1.10 -042 071 0.86 681 0.57 | 1.15
1992 - 1993 B8Nl -1.38 -0.09 -0.37 -1.49 0.16 116 0.07 -1.41 0.72 -0.10 -0.19
1993-1994 051 -052 -1.36 -0.32 070 0.25 -119 -0.79 -0.71-%-0.61
1994-1995 0.01 0.31 -0.08 -0.11 -0.03 [E2NN -0.29 -0.78 0.03 0.5 -0.61
1995-1996 -0.15 28N 138 -0.21 -1.19 -0.07 070 071 -0.56 0.16 1.22 -0.87
1996-1997 0.36 0.40 1.31 -055 0.85 -0.93 0.49 %--0.08 -1.25 0.79
1997 -1998 -057 -0.31 -1.09 0.90 0.19 -020 -0.80 -1.26  1.09 028 0.29
1998 -1999 -0.28 0.60 [NEEN 1.37--0.37 -0.33 -057 114 052 042 121
1999 -2000 0.29 | 1.28 0.38 -0.31 0.45 0.38 J2ABINI8H 057 0.13 -0.62
2000-2001 0.57 058 -0.37 -024 -0.54 0.47 -101 070 014 -0.13 -1.21 0.06
2001 - 2002 |88 -0.35 -0.38 0.12 -0.08 |E2N@ -0.11 -0.25 |ENEEINRSsINZ2134
2002 - 2003 0.66 -1.06 -0.15 0.22 015 0.38 139 0.26 -0.22 0.8
2003-2004 0.11 | 1.22 1.23 -0.84 -1.01 -051 0.62 [ElBE 0.85
2004 -2005 -0.10 -0.72 -1.41 -0.18 0.00 0.63 -0.65 Bl -132 057 -1.17
2005-2006 -0.43 0.31 ) 1.16 093 0.36 -0.39 -0.87 020 -0.32 0.97-
2006 - 2007 0.58 096 -0.47 -1.17 044 085 1.35 -0.26 1.47 0.20 -0.89

2007 - 2008 | 1.04 -0.74 -0.52 -0.88 -0.16 | 1.05 -0.38 0.74 -1.41 025/ 1.33 0.58
2008 - 2009 -1.08 -1.14 019 -0.85 -0.30 -1.39 -1.32 -0.31 [lS4 052 021 -0.02
2009 -2010 | 1.21 89N 0.64 031 0.68 -0.69 -0.57 -0.49 0.97 0.16 0.19 050
2010-2011 0.29 | 1.00 0.5 0.09 -0.48 0.33 -0.93 0.18 0.27_& 0.99
2011-2012 0.26 -0.27 [ 1.33 -0.55 8@l 127 -1.35 -0.32 -0.77 0.82 0.30
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Tablo 7. Geyve SYI-1 kuraklik degerleri izleme tablosu

Aylar
Yillar 1 2 3 4 5 6 7 8 9 10 11 12
1960-1961 0.53 -0.36 0.45 -0.49 0.87 -039 017 0.83 -0.52 -0.62 -1.30 0.19
1961-1962 -0.05| 1.10 -0.45 -0.14 041 045 090 -0.76 0.77 -0.26 0.07 2081
1962-1963r 0.63 0.50_%-1.30 0.69 | 1.20 -0.45 1.39
1963 - 1964 -0.71 '1.27 -0.11 0.86 -0.34 -0.79 0.15 -0.03 147
1964 - 1965 -1.25 118 -0.10 -0.15 0.21 -0.45 -0.57 | 1.19 1.40 0.98
1965-1966-1-21-0.03 1.03 035 -0.87 | 1.42 -0.13 -0.73 0.85 0.12
1966 - 1967 0.23 129 015 -091 084 -020 0.84 -0.33 0.14
1967-1968 0.39 052 1.40 092 055 -0.26 -0.88 0.5 0.51 0.22 -0.06
1968 - 1969 BM -0.22 011 0.32 -1.32 -0.70

1997 - 1998

-0.28 -0.06 0.05
0.70 -0.34 -1.30 -0.73

0.05

-0.76

1969 - 1970 | 1.03 0.01 -0.22 [J58J -0.80 -0.43
1970-1971 -0.06 28] 0.02 0.22 054 -052 -095 041 0.66 047 0.61) 1.35
1971-1972 -0.99 -0.05 1.35 0.20_& 0.16 0.84 001 063 -0.08 1.21
1972-1973 -0.88 -0.56 -1.17 0.08 0.00 0.71 1 099 051 -0.29 [ENGEN
1973-1974 [-1.32 -0.35 -0.32 -0.21 0.05 048 -130 050 -042 020 1.03 0.50
1974-1975 0.38 0.28 0.51 -0.36- 0.33  -1.26 -0.10 [BBN -0.43 041
1975-1976 091 094 0.48 -0.64 0.14 -1.15 117 -027 026 003 050
1976 - 1977 0.32 -0.25 -019 031 130 -0.12 0.89 -0.31 1.08 0.62 -0.26
1977 - 1978 -0.78 0.88 0.05 [l2B8] 038 -0.16 -050 -0.15 050 0.10 0.98
1978 - 1979 0.99 -0.02 062 -050 -1.29 -0.86 0.33 0.59 0.20 [F2@8] 0.52
1979-1980 0.88 -0.06 -0.75 -0.01 0.91 J§#62] 051 056 021 017 1.14 0.73
1980 - 1981 | 1.37 -0.84 055 -1.11 0.96 -0.50 -0.20 -0.08 0.09 -1.10 1.15 S8
1981-1982 0.44 0.60 059 [BM88N 1.10 -1.47 126 -060 0.97 0.02 -0.45| 1.12
1982-1983 0.15 -0.03 -0.04 | 1.28 0.3 -055 113 055 -0.17 -0.27 -0.38 -0.29
1983-1984 024 081 -1.37 031 -031 -0.06 093 071 -0.25 1.13 1.32 -1.47
1984 -1985 -0.34 0.23 -0.06 2MN -0.67 0.61 150 0.71--1.08 -0.60 [E2821
1985-1986 0.26 0.26 -1.07 -1.08 -0.79 0.02 -0.30 -1.06 0.74 030 -0.51
1986 -1987 0.13 0.00 [ESI98N -1.06 -0.01 0.19 -0.72 -1.30 -0.36 -0.08 -0.17 0.48
1987 - 1988 [JNGON -1.02 0.99 -0.29 0.33 -0.86 -0.11 0.43 |HlEH 080 0.18 0.26
1988-1989 -1.41 -0.12 -0.03 -0.06 013 1.00 083 -0.84 -0.39 072 0.74 -0.16
1989 - 1990 | -1.42 [FERONENEIEEGN 0.13 068 053 -0.18 -0.27 | 1.25 |6l 0.32
1990-1991 -0.73 -0.41 -0.35 0.84 -046 -1.38 -0.60 -0.90 | 1.200 0.65 -0.03 -0.39
1991-1992 -049 0.37 [F20@ o.64 94 045 050 -0.66 0.69 -0.33 -0.48 0.73
1992-1993 -0.84 054 101 -0.21 -1.45 0.93 [N -1.20 -1.24 112 055 041
1993-1994 -0.64 -0.64 -0.72 021 071 -020 -0.67 0.38 %- 1.15 -0.61
1994 -1995 0.58 -0.36 -1.11 -0.61 -0.43 -0.16 [JE2NEN 0.01 -0.18 | 1.29 0.36
1995 - 1996 | 1.39 0.58 -1.22 074 140 039 049 0.40 1.07
1996 - 1997 -0.17 -0.16 112 036 0.4 [El@ 075 -0.28 | 1.31 0.60 0.39
[ 190 -0.94 0.41

-0.36 032 0.21 -0.96 0.05
-0.56 0.40 042 -0.21 0.02
-0.76  0.84 -0.15 -0.01 0.10

1998 - 1999 0.32
1999 - 2000 -0.75
2000-2001 | 113 0.10 o0.61 68 040 053 0.7
2001 - 2002 -0.30 -0.38 043 -025 -0.85 0.3
2002 - 2003  0.24 -0.30 048 0.16 097 [ 115
2003 - 2004 -0.30 -0.98 0.16 -0.59
2004-2005 | 1.09° 021 0.06 023 040 -0.12 -0.88
2005-2006 0.09 043 011 0.15 -0.89 -0.23-
2006 -2007 0.16 0.43 0.40 |ESEEENGE] -0.35

2007 -2008 0.50 @@ 0.77 -0.67 | 1.04 -0.50 -0.97
2008 -2009 -0.16 -0.36 0.99 -1.15 -0.31 -0.12 -0.77
2009-2010 0.31 | 1.02| 0.40 -0.10 -0.33 -0.09 0.92
2010-2011 0.78 044 023 059 -0.35 0.90 -0.47
2011-2012 -0.07 -1.22 0.71 -0.02 -0.68 -0.28 0.40

-1.30
0.55
0.19
0.74
111

-1.00
0.39

-0.45

-1.13

-0.37

-1.30

-0.85

-1.11
0.07

0.63
-0.04

0.43 0.16 -0.09

-0.93 0.05
1.34 -1.00
-0.40 -1.14 0.99

0.11
0.89 053 -0.82 -1.10
032 114 014 0.89
-1.36 B8 o.40 EEEE
0.41 -0.55 | 1.07 -0.57
111 -0.33 -0.59 -1.00
-1.30 -0.65 0.09 0.07
121 -0.32 -050 -0.42
0.60 -0.11 0.7 0.06

1.18

0.62
0.82 0.79 -0.19
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Tablo 8. Ilgm SYI-1 kuraklik degerleri izleme tablosu

8 9 10 11 12

Aylar
Yillar 1 2 3 4 5 6 7
1968 - 1969 -0.98 -0.05 -1.10

1969-1970 0.99 @ 1.41

1.06

055 0.60 -0.49 -0.24

-0.30 £ 1.39 0.06 0.49 0.60
-0.47 095 -0.95 0.56 0.57

1970-1971 0.95 -0.66 -0.90 -1.40 041 -0.22 -0.18| 130 0.70 0.25 024 -0.54
1971-1972 [-1.37 085 031 049128 057 018 146 029 -061 022 -0.15
1972-1973 |-1.32 056 -1.27 -0.18 -0.79 B8] -0.09 081 -0.13 0.11 -1.08 |EHSEl
1973-1974 |EIEM 092 068 -0.71 049 -027 -0.81 -0.85 -1.21 -1.32 -0.67 0.3
1974-1975 -0.55 -1.41 -1.17 -1.01 -055 -0.79 017 059 0.62 -0.65 -0.75 0.19
1975-1976 -001 051 027 021 053 073 024 -092 -023 0.35 -0.52
1976 -1977 0.78 -0.65 -0.30 0.54 -0.91 -0.38 -0.37 -0.20 | 1.32 -0.18

1977-1978 0.33 -1.07 0.35 0.44 -0.32 -121 098 0.46 -0.24
1978-1979 | 149 053 092 -0.32 -043 -1.22 -1.00 -1.21 110 1.10 -0.26
1979-1980 052 -1.20 -0.71 -0.08 0.08 1.16 001 0.03 -0.03 145 0.84 -0.43
1980-1981 0.62 -0.87 -0.59 | 1.02 0.72 -0.04 -1.10 -0.33 020 0.04 0.15 -0.70
1981 - 1982 [ -0.19 -0.83 -1.34 052 100 0.89 -0.26 -0.21 -0.30 0.09 0.48
1982-1983 -0.47 -1.06 051 0.90 -0.23 0.86 [JE6M 0.98 0.0 -0.03 -0.98 -1.00
1983-1984 -0.05 0.53 | 101 -0.32 -0.07 -025 026 -0.45 0.25 -0.79 0.67  1.07
1984-1985 -0.42 -0.68 0.83 [ 1.06 -021 045 049|114 -1.34 -0.09 -1.26
1985-1986 0.46 | 1.07 -0.41 -0.03 0.70 -1.05 -0.03 0.38 -1.24 0.81 021
1986 - 1987 -0.32 0.43 B8] -0.12 031 -058 -0.44 -0.86 0.29 0.38
1987-1988 0.66 0.26 062 021 -046 122 128 -0.29 -1.34 -0.04 | 1.09 0.76
1988 - 1989 [-1.47 0.66 0.39 042 1.01 149 -113 -040 089 0.86 -0.93
1989 -1990 0.61 0.07 0.81 -1.32 -0.61 -1.02 -1.34 0.73 |68l 0.16
1990 - 1991 -0.43 -0.35 -0.63 116 -0.47 028 -1.16 1.03 000 -0.11 043
1991-1992 -0.24 049 -1.27 141 -003 -143 053 1.04 024 094 033) 1.04
1992 - 1993 @I -0.77 -0.30 -058 0.97 0.66 N -0.17 -1.21 -0.98 047 0.73
1993-1994 0.28 -0.12 -0.58 -1.37 -0.58 -1.10 -1.02 -0.97 E2@J 0.03 -0.50
1994-1995 0.64 -0.751.08 -0.26 -1.05 0.05 0.49 -053 050 1.21 0.41
1995-1996 0.05 0.56 ﬂ- 0.41 0.66 -0.53 0.45--0.83
1996 - 1997 0.39 | 1.22 0.39 -0.74 1000 0.90 0.3 0.21
1997-1998 0.35 0.31 -0.58 | 1.18' 0.10 -0.81 0.76 -0.04 [ 144 -0.20 -0.43
1998-1999 -0.87 -1.22 8@ 0.25 -039 064 -1.10 -1.21 -020 0.41 -0.12 |21
1999-2000 0.82 | 1.49 -0.32 -1.02 -1.42 122 125 0.25 014 -1.14 -0.97
2000 - 2001 ﬂ- 0.70 -0.09 -0.62 -1.10 1.18 -0.64 0.34 0.13
2001 - 2002 -0.90 -0.30 0.10 | 1.49 1.39 -0.07 055 0.83

2002 -2003 0.95 -0.40 0.77 | 1.35 0.03 055 0.56 -0.72 044 0.31
2003 -2004 -0.23 J#88] 0.73 082 -0.66 -0.36 -1.10 0.66 1.09 0.62 -0.60 0.32
2004 -2005 -0.09 0.40 -0.45 0.49 -0.22 | 1.17 0N -0.55 -1.34 ElGEl o.57 [EGEN
2005-2006 -0.89 0.67 -0.09 0.78 -0.11 -0.60 0.06 1.7 0.04 -0.25 1.30 -0.51
2006 - 2007 0.36 -0.53 005 050 059 000 014 -1.21 0.93 0.27

2007-2008 | 1.38° 059 0.32 -1.12 BBl -0.90 -0.71 0.70 0.28 -0.37 0.61
2008—2009-&-0.24 -1.28 -0.81 -0.69 0.9 -1.21 8@ 0.10 0.01 0.38
2009 - 2010 | 1.05 026 010 0.29 -0.81 -0.39 -061 007 026 071 0.14
2010-2011 | 1.19 0.06 -0.97 -0.19 |EEGINESS] -0.39 048 -049 0.48 HNEH 1.06
2011-2012 0.85 031 029 -048 097 079 -1.00 -0.63 -1.08 097 -0.78 -0.16
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Tablo 9. Yunak SYI-1 kuraklik degerleri izleme tablosu

Aylar
Yillar 1 2 3 4 5 6 7 8 9 10 11 12
1971-1972 [-1.48 060 007 | 1438 070 060 068 1.39 1.04 026 -0.22 | 1.01
1972-1973 -0.07 0.08 -1.33 -0.23 -019 096 120 026 0.68 0.67 -0.82 |E2NE
1973-1974 @ -1.16 1.02 033 041 -0.09 021 0.04 -095 -0.34 -0.62 0.02
1974-1975 0.07 -0.40 0.82 -1.08 054 0.07 009 [ 137 045 -1.25 -0.46 0.34
1975 - 1976 B8 1.07 -068 -0.32 [ 128 075 -045 0.70 -0.95 -0.46 0.8 0.40
1976 -1977 | 1.47 0.64 -0.20 | 1.15 0.76 0.07 0.6 -0.05| 1.17 042 054
1977-1978 0.68 0.65 1.02| 0.82 020 -0.92 -1.05 090 012 -122 039
1978-1979 | 148 0.40 1.45 0.05 -0.35 -0.75 -1.05 0.83 | 1.13 [ElE@ 0.10
1979-1980 0.53 -1.08 [E@N -0.71 1.22 058 -0.24 -0.45 -0.54 039 0.1 -0.30
1980-1981 0.74 -1.14 046 -0.35 149 -0.33 -117 -057 0.37 -0.31 0.16 -0.39
1981-1982 | 1.36 -0.08 0.11 -1.15 0.11 -0.97 -0.06 -1.05 -0.60 0.4 0.33 0.7
1982-1983 012 -093 -0.89 0.24 -111 048 088 0.66 -041 -0.24 -1.31 -0.68
1983-1984 043 095 010 019 020 1.25 008|145 -0.38 -0.51 143 -0.34
1984 -1985 0.02 -1.08 0.38-%-0.87 0.85 -1.05 -0.95--1.02-
1985-1986 0.37 0.61 -0.02 -1.26 017 = -1.17 034 -0.95 0.48 -0.05
1986 -1987 0.02 -0.52 BNl -097 017 035 -0.64 -0.70 -0.20 -0.96 -0.14 0.84
1987-1988 050 -0.30 055 0.24 006 030 078 072 -0.95 007 111 1.32
1988 - 1989 -1.19- 0.66 0.97 -0.69 0.68 [JE#8E] 049 0.09 089 1.14 -0.82
1989 - 1990 -0.41 -1.26 BBl -0.21 -0.04 -012 0.63 -0.83 0.54 68N -0.10
1990-1991 0.31 -0.72 -0.64 -0.63 057 0.4 -051 0.17 [J68N -0.34 -0.56 0.33
1991-1992 -0.40 0.79 [E2B8) 0.73 089 0.08 -0.32| 129 -0.02 097 053] 113
1992 - 1993 [-1.39 -1.13 -0.68 -0.28 0.19 0.68 6N -0.50 -0.56 -0.01 0.33 0.00
1993-1994 0.60 -0.39 -1.45 -0.68 047 -0.01 -1.17 -0.88 -0.95 |EH 0.36 -0.09
1994-1995 0.70 0.46 130 -0.25 -0.65 M@ 038 026 086 022 0.72 0.06
1995-1996 -0.89 -0.78 0.64 048 -008 048 091 079 0.85 017 1.39| -0.26
1996 - 1997 0.74 0.48 0.23 -1.17 -051| 144 057 1.30 125 -1.42 0.40
1997 -1998 0.34 0.63 -0.83 0.57 -0.41 25601 0.06 = 1.21 -0.29 -0.32
1998 - 1999 [-1.10 -1.11 0.03 0.80 045 -1.05 0.11 0.37 0.6 1.00
1999 -2000 -0.13 = 1.34 0.48 -0.71 112 141 -0.34 -054 -0.69 -1.26
2000-2001 | 1.28° 129 021122 047 026 -117 012 0.06 0.30 -1.08 -0.39
2001 - 2002 -1.22 051 -144 o086 @ -044 o064 0.16 ESE o.77 B4
2002 - 2003 | 1.09 0.27 | 120 -063 -1.31 1.20 -0.23 | 1.47 -0.64 -0.49 0.4
2003 - 2004  0.09 022 098 024 -096 -1.17 -051 076 0.12 005 0.62
2004 -2005 -0.14 0.83 -1.05 -056 -0.27 0.71 099 0.34 -0.95 |F@l 054 -1.46
2005 - 2006 -0.79 [MGEN 1.30 56 0.64 -1.33 050 -097 0.78 -0.12 142 -1.42
2006 -2007 0.97 0.32 -0.41 -1.30 046 0.06 [ 1.43 -0.65 O8] 1.45 g-
2007 - 2008 0.69 -0.24 0.36 -0.66--0.22 -0.87 033 -091 0.8 0.79
2008 - 2009 |-1.44 -0.14 -0.97 -1.22 0.01 | -1.06 -0.68 8B} 0.58 -0.10 0.05
2009-2010 0.56 62 063 031 032 -1.12 -0.75 -0.92 055 0.14 110 0.33
2010-2011 | 1.19 055 0.72 0.69 -0.45 0.88 0.94 -1.05 -0.60 0.73- 1.22
2011-2012 -0.11 0.44 0.6 |E0N 1.31 58] -1.04 -050 -0.80 0.38 -0.29
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