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Danışman: Doç. Dr. Hatice ÇITAKOĞLU 

ÖZET 

 
Bu tez çalışması, Sakarya havzasındaki 10 adet meteoroloji istasyonuna ait uzun dönem 

yağış verileri kullanılarak havzadaki kısa dönem meteorolojik kuraklık değerlerinin 

tahmin edilmesine yöneliktir. Her bir istasyona ait aylık yağış verileri kullanılarak 1, 3, 

6 ve 12 aylık kısa zaman ölçekleri için Standartlaştırılmış Yağış İndeksi (SYİ) kuraklık 

değerleri hesaplanmıştır. Hesaplanan SYİ kuraklık zaman serilerine, daha kısa ve daha 

yüksek özniteliklere sahip alt seriler elde edebilmek amacıyla Ayrık Dalgacık 

Dönüşümü (ADD), Ampirik Mod Ayrıştırma (AMA) ve Varyasyonel Mod Ayrıştırma 

(VMA) ön işleme teknikleri uygulanmıştır. Tahmin modellerinde bağımsız modeller 

olarak Yapay Sinir Ağları, Uyarlamalı Sinirsel Bulanık Çıkarım Sistemi, Gauss Süreç 

Regresyonu, Destek Vektör Makine Regresyonu makine öğrenmesi yöntemleri ile 

Uzun-Kısa Süreli Bellek (UKSB) derin öğrenme yöntemi ele alınmıştır. Bu yöntemlere 

ADD, AMA ve VMA ön işleme teknikleri dâhil edilerek hibrit modeller elde edilmiş ve 

tüm bağımsız ve hibrit modellerin tahmin başarıları performans kriterlerine göre birbiri 

ile karşılaştırılmıştır. Test sonuçlarına göre, hibrit modellerin tahmin performansları 

bağımsız modellere göre oldukça üstündür. Ancak, bu tez çalışmasında UKSB yöntemi 

ile elde edilen bağımsız tahmin modelleri, yüksek tahmin performansları göstermiştir. 

Bundan dolayı kuraklık zaman serilerine farklı ön işleme teknikleri uygulanmadan da 

UKSB derin öğrenme yöntemi kullanılarak modellerden yüksek tahmin 

performanslarının elde edilebileceği sonucuna ulaşılmıştır. Ayrıca UKSB yönteminin 

hibrit modelleri, diğer makine öğrenmesi modellerine göre de daha başarılıdır. Ön 

işleme teknikleri arasında ise VMA tekniği, diğer tekniklere göre daha çok ön plana 

çıkmıştır.   

Anahtar Kelimeler: Meteorolojik kuraklık, Sakarya havzası, SYİ, Makine öğrenmesi, 

Derin öğrenme, Ön işleme teknikleri, Hibrit modeller   
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PREDICTION OF SHORT-TERM METEOROLOGICAL DROUGHT IN THE 

SAKARYA BASIN WITH HYBRID MODELS 
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Supervisor: Assoc. Prof. Dr. Hatice ÇITAKOĞLU 

ABSTRACT 

 

This thesis is aimed at predicting short-term meteorological drought values in the basin 

by using long-term precipitation data from 10 meteorological stations in the Sakarya 

basin. Standardized Precipitation Index (SPI) drought values were calculated for short 

time scales of 1, 3, 6 and 12 months using monthly precipitation data of each station. 

Discrete Wavelet Transform (DWT), Empirical Mode Decomposition (EMD) and 

Variational Mode Decomposition (VMD) pre-processing techniques were applied to the 

calculated SPI drought time series in order to obtain sub-series with shorter and higher 

features. Artificial Neural Networks, Adaptive Neuro-Fuzzy Inference System, 

Gaussian Process Regression, Support Vector Machine Regression machine learning 

methods and Long Short-Term Memory (LSTM) deep learning method were considered 

as stand-alone models in drought prediction models. The hybrid models were obtained 

by incorporating DWT, EMD and VMD pre-processing techniques into these methods, 

and the prediction successes of all stand-alone and hybrid models were compared with 

each other according to performance criteria. The findings indicated that, the prediction 

performance of the hybrid models is quite superior to that of the stand-alone models. 

However, stand-alone prediction models obtained by the LSTM method also showed 

high prediction performances. Therefore, it has been concluded that high prediction 

performances can be obtained from the models by using the LSTM deep learning 

method without applying different pre-processing techniques to the drought time series. 

Moreover, hybrid models of the LSTM method are more successful than other machine 

learning models. Among the pre-processing techniques, the VMA technique 

overperformed than the other techniques. 

Keywords: Meteorological drought, Sakarya basin, SPI, Machine learning, Deep 

learning, Pre-processing techniques, Hybrid models  
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GİRİŞ 

Dünya milletleri tarih boyunca çeşitli savaşlar, afetler ve salgın vakaları ile karşılaşmış 

ve bunların acı etkilerine de belirli zaman dilimleri boyunca maruz kalmıştır. İnsan türü, 

geçmişte yaşanan acı tecrübelerden dersler çıkartıp bunlara göre bir yaşam planı 

oluşturduğunda buna paralel olarak refah ve medeniyet çıtasını daha da yukarı çekmiş, 

tersi durumda ise her zaman maddi ve manevi kayıplarla yüzleşmek zorunda kalmıştır. 

Bilindiği üzere insan türü diğer türlere göre zor şartlara daha kolay uyum sağlayabilmesi 

sayesinde doğada varlığını korumuş ve günden güne kendini geliştirebilmiştir. İnsan, 

doğanın kendisine sunduğu ve sunacağı kaynakların sonsuz olduğunu düşünerek bu 

kaynaklara yönelik gerekli tedbirleri almadığı sürece karşılaşacağı tüm olumsuz 

vakalarda yine çeşitli sıkıntılar yaşayacaktır. Son dönemde insanoğlunu en çok meşgul 

eden ve üzerinde çeşitli tartışmaların halen devam ettiği liste başı konulardan biri 

küresel iklim değişikliğidir. 2023 yılı Ocak ayında yayınlanan Dünya Ekonomik 

Forumu Küresel Risk Raporunda; önümüzdeki 10 yılda dünyanın karşılaşacağı en 

büyük on tehlikeden altısının küresel iklim değişikliği ve buna bağlı olarak ortaya 

çıkacak olan çevresel sorunlar olduğu belirtilmiştir [1]. Küresel iklim değişikliğinin 

etkilerini gün geçtikçe tüm dünya ve canlılar farklı zamanlarda, farklı yerlerde ve farklı 

şekillerde hissetmeye başlamışlardır. İklim değişikliğine bağlı olarak ortaya çıkan 

küresel ısınmanın hidrolojik döngü içerisinde yer alan hidrometeorolojik parametreleri 

doğrudan etkilediği ve bu nedenle sistemin dengesini bozduğu kaçınılmaz bir gerçektir. 

Dünyanın bazı noktalarında aşırı yağışlara bağlı sel felaketleri gözlemlenirken, bazı 

noktalarında ise şiddetli kuraklıklar görülmektedir. Bu şekilde meydana gelen doğa 

olayları uzun periyotlarda ve geniş alanlarda görülebileceği gibi kısa periyotlarda ve dar 

alanlarda da yıkıcı etkilerini gösterebilmektedir. Örneğin taşkın gibi doğal felaketler 

aniden ortaya çıkıp dar bir bölgeye etki ederken, kuraklık gibi doğal felaketler ise yavaş 

yavaş ortaya çıkar ve geniş bir alanda etkisini gösterir. Kuraklık, bu özelliğinden dolayı 

oldukça sinsi ve tehlikeli bir doğal felaket olarak görülmektedir. Tez çalışmasının ana 

konusunu oluşturan ve ilerleyen bölümlerde daha detaylı bir şekilde ele alınacak olan 
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kuraklık kavramı, genel manada “Uzun bir dönem boyunca ve geniş bir bölgede 

yağışların normal seviyelerine göre önemli ölçüde düşmesi sonucu su varlığında ortaya 

çıkan azalma veya eksiklik” olarak tanımlanır [2]. Kuraklık felaketi, insan türü başta 

olmak üzere tüm canlıların temel gereksinimlerine erişimini zorlaştırır, doğanın 

süregelen dengesini bozar ve yaşamın birçok alanında da bu etkileri ortaya çıkar. 

Yetersiz yağışlarla başlayan kuraklık süreci, bitkinin suya erişememesi nedeniyle 

tarımsal faaliyetleri olumsuz etkiler ve gıda arz-talep dengesini bozar. Aynı zamanda 

insan türünün ve diğer canlıların içme-kullanma suyu ihtiyacının da karşılanamadığı 

durumda hem suya hem de gıdaya erişim zora gireceği için susuzluklar ve açlıklar 

görülmeye başlar. Kuraklık devam ettiği sürece, bu susuzluk ve açlık durumlarına bağlı 

olarak kıtlık ortaya çıkar ve büyük boyutlu ölümler gözlemlenebilir. Kuraklık olayı 

ciddi sosyo-ekonomik problemlere neden olan yıkıcı bir doğal afettir [3].  

Diğer doğal afetlere nazaran kuraklık birçok sektörü doğrudan etkilediği için etkisinin 

daha uzun sürdüğü rahatlıkla söylenebilir. Aynı zamanda kuraklığın tespiti ve izlenmesi 

de oldukça zor bir süreçtir. Bu nedenle insanoğlu sahip olduğu kaynakların potansiyelini 

bilerek kuraklık olayını hem küçük ölçeklerde hem de küresel ölçekte sağlıklı bir 

şekilde tespit etmek zorundadır. İşte bu noktada bilim ve teknolojideki gelişmeler de 

dikkate alınarak geçmişteki verilerden kuraklığa etki eden parametrelerle kuraklık 

arasındaki ilişki doğru bir şekilde ortaya konulmalı, mevcut durum ile gelecekte 

karşılaşılacak olan muhtemel kuraklık durumları öngörülebilmelidir. Bu sayede hem 

yerel hem de merkezi yönetimlerin kuraklığa yönelik projeksiyonlar geliştirebilmesi 

mümkün olabilecek, gerçekçi ve entegre politikalar çerçevesinde çeşitli önlemler 

alınabilecek, başta insan hayatı olmak üzere tüm canlı hayatını olumsuz etkileyen bu 

yıkıcı afetle mücadele daha da kolaylaşacaktır.  

Bu çalışmada ele alınan meteorolojik kuraklık, karmaşık kuraklık sürecinin ilk aşaması 

olduğundan bölgesel anlamda kuraklığın genel gidişatı ile ilgili olarak çeşitli fikirler 

sunabilmektedir. Meteorolojik kuraklığın erken tespiti; diğer kuraklık türleri olan 

tarımsal kuraklık, hidrolojik kuraklık ve sosyo-ekonomik kuraklığın yıkıcı etkilerini 

önleyebilmek adına oldukça önem arz etmektedir. Kuraklık sürecinde tüm fiziksel, 

meteorolojik, iklimsel ve beşeri etkenler göz önünde bulundurularak bir değerlendirme 

yapmak zordur. Bu yüzden kuraklığın saptanıp kategorize edilmesinde, zamana bağlı 

gözlemlenen meteorolojik ve iklimsel normallerin dikkate alınması gerekir. Kuraklığın 
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konumu, süresi, şiddeti, frekansı ve periyodu gibi bazı özel karakteristikler çeşitli 

kuraklık indisleri veya göstergelerle belirlenip kategorize edilebilmektedir [4]. 

Son dönemlerde hidrometeoroloji alanında yapılan tahmin çalışmaları gelişen teknoloji 

ve yeni tekniklere bağlı olarak popüler bir araştırma alanı olmuştur. Hidrometeorolojik 

tahmin çalışmaları içerisinde ise yapay zekâ teknikleri ve alt kategorisinde yer alan 

makine öğrenmesi yöntemleri literatürde sıklıkla tercih edilen yöntemlerdir. Yine yapay 

zekâ ve makine öğrenmesi alt kategorisinde yer alan derin öğrenme algoritmaları da bu 

alanda yeni yeni kullanılmaya başlanmıştır. Tüm bu yöntemler bağımsız bir şekilde 

kullanılabildiği gibi diğer yöntemlerle de beraber kullanılıp her bir yöntemin seçkin 

özelliği ortaya çıkartılarak daha bütüncül ve etkili modeller oluşturulabilmektedir. Bu 

tarz modeller ‘hibrit modeller’ olarak adlandırılmakta olup, yine son dönemlerde çok 

tercih edilen bir yaklaşımdır. Esasen hibrit yöntemlerle oluşturulan tahmin modellerinin 

performansları klasik yöntemlere göre daha başarılı olup, hibrit yöntemler kısa sürelerde 

ve geniş perspektifte sonuçlar verebilmektedirler.  

Bu tez çalışmasının birinci bölümünde; iklim değişikliği, kuraklık, iklim değişikliği-

kuraklık ilişkisi, kuraklığa neden olan meteorolojik etmenler, kuraklık türleri, kuraklık 

indisleri ile kuraklığın belirlenmesine yönelik genel bilgiler sunulacak olup, kuraklık ve 

kuraklık tahmini ile ilgili literatür özetleri sunulacaktır. Aynı zamanda problem durumu, 

araştırmanın amacı ve önemi ortaya konulacaktır. 

Çalışmanın ikinci bölümünde; çalışma alanı olan Sakarya havzası ve özellikleri başta 

olmak üzere iklimsel ve meteorolojik koşullar, veri seçimi, istasyonların karakteristik 

özellikleri gibi materyaller hakkında bilgiler verilecektir. Tez çalışmasında ele alınacak 

olan Standartlaştırılmış Yağış İndeksi (SYİ) kuraklık değerlerinin hesabı, DrinC 

yazılımı, homojenlik, durağanlık ve bağımsızlık testleri, otokorelasyon analizi, veri ön 

işleme teknikleri, makine öğrenmesi ve derin öğrenme yöntemleri hakkında detaylı 

bilgiler verilecektir. Yine bu bölümde, çalışmanın metodolojisi ve model gelişimi ortaya 

konulacaktır. Tahmin modellerinde ele alınacak olan yöntemler için tercih edilen model 

parametreleri tanıtılacaktır.  

Çalışmanın üçüncü bölümünde; kuraklık tahminine yönelik yapılan tüm analizlerden 

elde edilen bulgular ortaya konulacak olup tahmin modellerine ait sonuçlar, performans 
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kriterlerine göre saçılma ve zaman serisi grafikleri, Taylor diyagramları ve radar 

grafikleri üzerinden birbiri ile karşılaştırılacaktır. 

Çalışmanın dördüncü ve son bölümünde ise elde edilen bulgular üzerinden konu ile 

ilgili tartışma, sonuç ve öneriler sunulacaktır. 
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1. BÖLÜM  

GENEL BİLGİLER ve LİTERATÜR ÇALIŞMASI 

1.1. İklim ve İklim Değişikliği 

İklim; sıcaklık, nem, hava basıncı, yağış, rüzgâr gibi meteorolojik olayların geniş bir 

bölgede ve uzun bir dönem boyunca baskın karakteristik özelliklerini temsil eden 

ortalama koşullardır. İklimi geniş bir çerçevede ele alan bilim dalına ise klimatoloji 

denir. Genellikle iklim kavramı hava durumu ile çok karıştırılır ve yanlış ifade edilir. 

Hava durumu, atmosferde görülen ve meteorolojik olayları meydana getiren sıcaklık, 

nem, hava basıncı, yağış, rüzgâr gibi değişken iklim elemanlarının belli bir yerde kısa 

süreler içerisinde almış oldukları görünümlerdir. Hava olaylarını inceleyen bilim dalı ise 

meteorolojidir. İklim değişikliği ise meteorolojik olaylardaki uzun dönem boyunca 

oluşan ortalama koşullarda görülen büyük sapmalar veya büyük değişimlerdir [5]. İklim 

değişikliği toplumlarda ve devletlerde en çok tartışılan ve kaygı yaratan konuların 

başında gelmektedir. Ancak iklim değişikliği bu kadar gündemde olmasına rağmen bu 

kavramla ilgili yanlış çıkarımlar söz konusudur. Hava durumunun aksine baskın iklim 

koşullarının oluşabilmesi için yukarıda tanımı yapılırken bahsedildiği üzere çok uzun 

yıllar gerekmektedir. Meteorolojik bir olayın belli bir normale ulaşması için gereken 

süre en az 30 yıl olarak kabul edilirken, klimatolojide bu süre 300 yıla kadar 

çıkabilmektedir [6]. Belirli bir bölgenin karakteristik iklim koşullarından 

bahsedilebilmesi için bu ölçekte uzun bir döneme ait veri setinin olması gerekir. Yine 

aynı perspektifle bakılacak olursa, iklim değişikliğinden bahsedilebilmesi için de uzun 

bir gözlem süresine ihtiyaç vardır. Konunun uzmanı olmayan kişi veya kurumlarca kısa 

süreli hava durumlarına bakılarak iklimin değiştiğine dair yapılan çıkarımlar çok 

rasyonel değildir. Bununla birlikte; iklim koşulları, yerkürenin milyar yıllık varlığından 

beri tüm bölgeler ve tüm zaman ölçeklerinde değişim eğiliminde olmuştur [7].  
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İklim değişikliğinin genel tanımı Birleşmiş Milletler İklim Değişikliği Çerçeve 

Sözleşmesinde (United Nations Framework Convention on Climate Change, UNFCCC) 

yapılmıştır. İklim değişikliği; karşılaştırılabilir iki zaman dilimi içerisinde iklim 

sisteminde gözlenen doğal iç değişikliklere ek olarak doğrudan veya dolaylı bir şekilde 

küresel atmosferin bileşimini değiştiren insan faaliyetlerine atfedilen iklimdeki 

değişikliklerdir. Burada iklim sisteminin kısa bir tanımı da yapılmış olup atmosferin 

(hava tabakası), hidrosferin (su tabakası), biyosferin (canlı tabaka) ve jeosferin (yer 

tabakası) bütünü ve bunların etkileşimleri iklim sistemi anlamına gelmektedir [8]. İklim 

sistemindeki doğal iç değişikliklere sebep olan etkenlere; jeolojik devirlerdeki iklim 

değişiklikleri, volkanik faaliyetler, buzul hareketleri, deniz seviyesindeki yükselme ve 

alçalmalar örnek gösterilebilir [9]. Son yıllarda sürekli gündeme gelen ve iklim 

sisteminin dengesini bozan insan kaynaklı faaliyetler ise yaklaşık 18. yüzyılın 

ortalarında başlayan endüstri devrimi ile birlikte hızlanmıştır. Bu dönemden itibaren 

fosil yakıtların yakılması, ormanların yok edilmesi, arazi kullanımı, sera gazlarının (su 

buharı, karbondioksit, metan, diazotmonoksit, ozon, aeroseller vb. gazlar) atmosferdeki 

miktarlarının önemli ölçüde artması iklim değişikliğine sebep olan insan kaynaklı 

faaliyetlerdir. Özellikle sera gazlarının iklim sistemindeki yeri tartışılmaz derecede 

önemlidir. Yeryüzü ile Güneş arasında kısa ve uzun dalga boylarında meydana gelen 

radyasyon etkileşimini doğrudan etkileyen sera gazları atmosferdeki miktarlarına göre 

yeryüzünün ve atmosferin alt bölümlerinin ısınmasına sebep olmaktadır. Endüstri 

devrimi öncesinde 280 ppm olan atmosferdeki CO2 konsantrasyonu, ABD Ulusal 

Okyanus ve Atmosfer Yönetimince (NOAA) 2022 yılı mayıs ayında 420 ppm olarak 

ölçülmüş olup kayıtlara giren en yüksek değerdir [10]. Dünyanın aldığı ya da yansıttığı 

Güneş ışığı miktarı da dünya yüzeyindeki sıcaklığı etkileyen önemli bir parametredir. 

Burada bahsedilen ısınma ve sıcaklık artışları, yine çok karıştırılan bir kavram olan 

küresel ısınmaya sebebiyet vermektedir. 

Küresel iklim değişikliği ile ilgili en kapsamlı çalışmalar ve değerlendirmeler 800’den 

fazla bilim insanı ve araştırmacının yer aldığı bir platform olan Hükümetlerarası İklim 

Değişikliği Paneli (Intergovernmental Panel on Climate Change, IPCC) tarafından 

yapılmaktadır. 1988 yılında Birleşmiş Milletlere bağlı olarak kurulan bu platform, 

küresel iklim değişikliği ile ilgili günümüze kadar geniş çapta hazırlanan değerlendirme 
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raporları üzerinde çalışmıştır. 2014 yılı Eylül ayında yayınlanan 5. Değerlendirme 

Raporundaki küresel iklim değişikliği ile ilgili öne çıkan bazı değerler şu şekildedir: 

 1901‒2012 yılları arasında küresel sıcaklıklarda yaklaşık 0,9°C’lik bir artış söz 

konusudur. Bu yıllar arasında yerkürenin neredeyse tüm yüzeyi ısınmıştır. Ortalama 

yüzey sıcaklığı ise endüstri devrimi öncesine göre 2°C daha yüksektir.  

 Geride kalan son 30 yıl (1984‒2014) 19. yüzyılın ortalarından itibaren kaydedilen 

en sıcak ardışık 30 yıl olarak, 21. yüzyılın ilk 10 yılı ise en sıcak 10 yıl olarak 

değerlendirilmiştir. 

 Küresel yüzey sıcaklığı 21. yüzyılın sonlarına doğru, yapılan projeksiyon ve 

senaryoların büyük bir kısmında endüstri devrimi öncesine göre 1,5°C’yi, birkaç 

projeksiyona göre ise 2°C’yi geçecektir. 

 1950’li yıllardan itibaren hava olaylarındaki ekstrem durumlarda da ciddi 

değişiklikler gözlenmiş ve özellikle sıcaklık artışlarından kaynaklı küresel ölçekte 

soğuk gün ve gecelerin sayısı azalmış, sıcak gün ve gecelerin sayısı ise artmıştır. 

 1951‒2010 yılları arasında küresel sıcaklıklardaki artış, %95 civarında bir ihtimalle 

insan faaliyetlerinden kaynaklanmıştır. 

 Atmosferdeki karbondioksit (CO2), metan (CH4) ve diazot monoksit (N2O) 

gazlarının birikimleri 2014 yılı itibariyle son 800.000 yıllık dönemdeki kadar 

yüksek bir düzeyde seyretmemiştir. 

 Atmosferdeki karbondioksit (CO2) birikimi, özellikle fosil yakıt yakılması ve arazi 

kullanımındaki değişimler nedeniyle endüstri devrimi öncesine göre %40 oranında 

artmıştır. 

 19. yüzyılın ortalarından beri gözlenen deniz seviyesi yükselme oranı önceki iki bin 

yıllık dönemdeki ortalamalarına göre daha yüksektir. Küresel ortalama deniz 

seviyesi 1901‒2010 yılları arasında 19 cm yükselmiştir [11]. 

Küresel iklim değişikliğinin, yerküre ve canlılar üzerinde birçok olumsuz etkisi 

bulunmaktadır. Mevcutta ve gelecekte karşılaşılacak olan bu olumsuz etkiler ise kısaca 

şöyle özetlenebilir: 
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 Bazı biyolojik türlerin yeni ekosisteme adaptasyonu zorlaşacağından bu türler yok 

olma tehlikesi yaşayacaklardır.  

 Dağlık bölgelerdeki buzullar ve kar örtüsünün azalmasından dolayı öncelikle 

hidrolojik sistem ve toprak dengesi bozulacaktır. Tarım, turizm, kerestecilik gibi 

ekonomik sektörler olumsuz etkileneceklerdir.  

 Deniz seviyesinin son 100 yılda ortalama 15‒25 cm yükselmiş olması ve bu değerin 

2100 yılına kadar 15‒95 cm’ye ulaşabileceğinin öngörülmesi nedeniyle bazı 

ülkelerin kıyı kesimleri sular altında kalacak ve küçük adalar kaybolacaktır. 

Balıkçılık, tarım, turizm, şehircilik ve sigorta gibi sektörler olumsuz etkilenecektir.  

 Tatlı su kaynaklarına tuzlu su karışacağından dolayı canlıların ihtiyacı olan içme ve 

kullanma suyunun kalitesi bozulacaktır.  

 Yeryüzünün bazı bölümlerinde yağışlar artarken bazı bölümlerinde yağışlar 

azalacaktır. Bu nedenle hidrolojik döngü bozulacaktır.  

 Yağış paternlerindeki değişimler nedeniyle sağanak yağışlar artacak, böylece suyun 

topraktaki süzülüşü azalacağından dolayı sel olayları ciddi oranda artacaktır. Bu 

değişimler yerüstü ve yeraltı su kaynaklarının dağılımını ve potansiyelini olumsuz 

etkileyecektir.  

 Su kaynaklarındaki azalma nedeniyle özellikle tarım ve çevre sektörlerinin olumsuz 

etkilenmesinin insanlar üzerinde birçok negatif etkisi olacaktır. 

 Doğal kaynakların potansiyelinde görülebilecek gerilemelerden dolayı kırsal 

kesimlerde yaşayan insanların kentlere göçü artacaktır.  

 Küresel ısınmaya bağlı olarak gerçekleşebilecek kalp ve solunum rahatsızlıkları 

başta olmak üzere, bazı hastalıklardan dolayı insanların psikolojisi olumsuz 

etkilenecektir. Psikolojik rahatsızlıklar, diğer hastalıklar ve ölümler artacaktır [12]. 

  

1.2. İklim Değişikliği-Kuraklık İlişkisi 

Tez çalışmasının ilerleyen bölümlerinde daha detaylı bir şekilde ele alınacak olan 

kuraklık kavramı, iklim koşullarını oluşturan doğal süreçlerden sadece biridir. 
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Yağışların azalmasına bağlı olarak su arz-talep dengesinin bozulması ile birlikte ortaya 

çıkan kuraklık, iklim koşullarının su kaynaklarına, tarım ve canlı hayatına etkilerini 

ortaya çıkartan ve çok önem verilmesi gereken tehlikeli bir doğal afettir. Son 

dönemlerde iklim değişiklikleri ile birlikte kuraklık olayları da geniş bölgelerde etkisini 

artırmış ve en çok tartışılan konulardan biri halini almıştır. Ancak yeryüzünde görülen 

her kuraklık olayını da iklim değişikliğine bağlamak çok sağlıklı bir yaklaşım değildir. 

İklim değişikliğinin etkisinin arttığı dönemlerden önceleri de dünyanın farklı 

bölgelerinde şiddetli kuraklık olayları gözlenmiştir [13]. Son dönemlerde kuraklığın bu 

kadar çok gündemde olmasının önemli nedenlerinden biri de ciddi oranlarda artış 

gösteren küresel ısınmanın hayatı birçok alanda olumsuz etkilemesidir. Küresel 

ısınmaya bağlı olarak sıcaklıkların artması ve yağışların da kayda değer bir şekilde 

azalması sonucu ortaya çıkan kuraklığın olumsuz etkileri yeryüzünün büyük bir 

kısmında günden güne daha da hissedilir bir hal almıştır [14].  

Canlı-cansız ekosisteminin en önemli döngüsü denilebilecek hidrolojik çevrimde, 

küresel iklim değişikliğine bağlı olarak son dönemlerde normal koşullardan önemli 

derecede sapmalar gözlenmektedir. Yaşamın temel kaynağı olan su, yeryüzünde 

maddenin katı, sıvı ve gaz halleri şeklinde bulunur ve bu haller arasında sürekli bir 

dönüşüm eğilimindedir. Büyük bir oranda (%97,5) okyanuslarda ve az bir oranda 

(%2,5) karada bulunan su; buharlaşma ile atmosfere, atmosferden ise yoğunlaşma 

sonucu çeşitli yağış formlarında tekrar yeryüzüne ulaşır. Yeryüzüne dönen su, yüzeysel 

akış ve yeraltı suyu şeklinde nehirlere ve oradan da tekrar okyanuslara ulaşır. Sürekli 

devam eden bu döngüde yer alan meteorolojik olaylar doğal hızından daha uzun veya 

kısa bir sürede, dar veya geniş bir alanda meydana geldiği zaman tüm ekosistemi önemli 

derecede etkilemektedir. Bu etkilerin başında da yeryüzündeki su varlığı ve su dağılımı 

gelmektedir. Bu sonsuz döngü içerisinde yeryüzünün bazı bölgelerinde yağış 

yetersizliğine bağlı olarak kuraklık olayı görülebilmektedir [15]. Ayrıca bu sonsuz 

döngü bazında iklim koşullarına ve kuraklığa daha büyük bir perspektifte bakıldığında 

kuraklığın iklim koşulları içerisinde nasıl bir süreçte yer aldığı net bir şekilde 

anlaşılmaktadır. Bu sürece bağlı olarak yağış paternindeki değişiklikler, kar 

birikimindeki azalma, erime rejimleri ve evapotranspirasyondaki artışlar kuraklık 

koşullarını daha da şiddetlendirmektedirler [16]. 

 



10 

1.3. Kuraklık 

Kuraklık, ekolojik bir sistemde su varlığında veya su kaynaklarında beklenen değerlere 

göre ciddi orandaki azalmalar sonucu ortaya çıkan ve canlıların suya olan talebinin 

karşılanamamasına neden olan çok tehlikeli bir doğa olayıdır. Kuraklık süreci ilk olarak 

yağış eksikliği ile başlar, daha sonra toprak neminde azalmalar görülür, devamında ise 

akışlarda, nehir akımlarında, kaynaklarda, sulak alanlarda ve depolamalarda, yeraltı 

suyu rezervlerinde azalmalar görülür ve en sonunda ise canlıların su taleplerinin 

karşılanamaması nedeniyle çeşitli sosyo-ekonomik etkileri ortaya çıkar. 

Kuraklıkla ilgili olarak oluşum, şiddet, frekans, konum, zaman ve süre gibi kriterlere 

göre birçok tanım geliştirilmiş olup kuraklığın göreceli olmasından dolayı belirli bir 

tanımı bulunmamaktadır. Bununla birlikte kuraklığın en net ve kullanışlı tanımı 1997 

yılında İtalya'da düzenlenen Birleşmiş Milletler Çölleşme ile Mücadele 

Sempozyumunda yapılmıştır. Burada kuraklık; ‘kaydedilen normal seviyelerin önemli 

ölçüde altına düşen yağışlar nedeniyle hidrolojik dengenin bozulması sonucu, su ve 

toprak kaynaklarının olumsuz etkilenmesine neden olan tehlikeli bir doğa olayı’ olarak 

tanımlanmıştır [17]. Kuraklık, bütüncül bir şekilde değerlendirildiğinde mutlak değil 

göreceli bir doğa olayı olarak bilinmektedir. Kuraklıkla ilgili referans noktası 

normallere göre yağış ve su eksikliği olduğundan dolayı, fazla ya da az yağış alması 

fark etmeksizin hemen hemen bütün iklim kuşaklarında ve rejimlerinde kuraklık olayı 

görülebilmektedir [18].  

Kuraklık, yağışlar ve yağışların özellikleri ile doğrudan ilgili olmakla birlikte sıcaklık, 

rüzgâr, bağıl nem, hava basıncı, buharlaşma gibi iklim elemanlarına da bağlı olarak 

değişiklik gösterebilmektedir. Bahsedilen bu iklim elemanları kuraklığın başlangıç 

zamanı, coğrafi dağılımı, süresi ve şiddeti gibi kriterler üzerinde etkili olabilmektedir. 

Bundan dolayı kuraklıkla iklim arasında yakın bir ilişkiden söz etmek mümkündür. 

Kuraklık olayı, su kaynakları üzerindeki baskıyı artırarak insanların, bitkilerin ve 

hayvanların su ihtiyaçlarını karşılamasında zorluklar ve problemler yaratmaktadır. 

Bununla birlikte kuraklığın şiddeti, diğer iklim faktörlerinin dışında insan faaliyetlerine 

ve su taleplerine göre de artmakta ya da azalmaktadır. Mevcut su kaynaklarının israf 

edilmesi ve hali hazırda sınırlı durumdaki kaynakların da sorumsuz ve etkisiz kullanımı 
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sonucu, tarımsal faaliyetler başta olmak üzere insan ve doğa önemli ölçüde 

etkilenmektedir [19].  

Kuraklığın karakteristiklerini tanımlamak, ölçmek ve izlemek; sebep olduğu çevresel, 

toplumsal ve ekonomik etkilerden dolayı oldukça güçtür. Kuraklık ile mücadele, 

kuraklığın oldukça ağır ilerlemesi ve seneler boyunca birikimli olarak büyük bölgeleri 

etkisi altına alması nedeniyle diğer doğa olaylarına göre epey zordur. Kuraklıkla 

mücadeleyi zorlaştıran bir diğer etken de kuraklığın başlangıç ve bitiş tarihlerinin 

genellikle belirsiz olmasıdır. Özellikle insanın doğayı bozmaya devam etmesi halinde 

ekolojik dengedeki bozulmalar giderek artacak olup küresel ısınma ve iklim değişikliği 

ile birlikte kuraklık olayı canlılar ve dünyamız açısından daha büyük bir problem haline 

gelecektir [20]. 

Kuraklık olayı, oluşumu ve başlangıcı açısından tek başına bir felaket gibi olmamasına 

rağmen canlı hayatı üzerine etkileri ve ekolojik çevrenin kuraklığa karşı gösterdiği 

dayanıklılık durumuna göre çok yıkıcı olabilmektedir. Dünyanın birçok bölgesinde ve 

farklı iklim kuşaklarında kuraklığın etkisi görülmektedir. Kuraklığın yıkıcı etkisi 

şiddetine bağlı olarak hem çok kısa dönemlerde hem de uzun dönemlerde ortaya 

çıkmaktadır [21]. 

1.3.1. Kuraklığa Neden Olan Meteorolojik Etkenler 

Yerkürenin yaklaşık 4,6 milyar yıllık bir jeolojik tarihi bulunmakta olup bu süreç 

boyunca hem yerüstü ve yeraltı hareketlerindeki değişimler, hem yörünge hareketleri 

hem de atmosferdeki etkileşimlerden dolayı küresel iklim sürekli değişmektedir. Bu 

konu, hem jeolojinin hem de klimatolojinin içerisinde değerlendirilen geniş bir konu 

olup tez konusunu dağıtmamak adına detaylarına girilmeyecektir. Atmosferdeki 

etkileşimler içerisinde en önemli olay Güneş ışınları ve Güneşten alınan enerji 

miktarıdır. Güneşten alınan enerji miktarı sürekli artış eğiliminde olup, bu da küresel 

iklim koşullarını etkilemektedir. Sıcaklık, buharlaşma, yağışlar, rüzgâr, nem gibi 

meteorolojik değişkenler, iklim değişimlerine bağlı olarak normallere göre sapmalar 

gösterir. Kurak dönemlerin görülmesinde bu meteorolojik değişkenlerdeki sapma 

miktarları önemli bir yer tutmaktadır.  
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Kuraklığa neden olan önemli etkenlerden biri de atmosferdeki dolaşım sistemlerinde 

görülen salınımlar, başka bir ifadeyle basınç farklılıklarıdır. Salınımların etkisi altında 

bulunan bir bölgenin bazı bölümlerinde normallerin üzerinde sıcaklık, yağış, rüzgâr 

değerleri görülürken bazı bölümlerinde ise bu değişkenlerin normallerin altında 

seyrettiği görülür. Bir bölgede kararlı iklim koşullarının görülebilmesi için atmosferde 

mümkün olduğunca salınımların olmaması gerekir. Dünyanın 30° enlemlerine yakın 

bölümlerinde (ekvator) alçak basınç, 60° enlemleri civarında (kutuplar) ise yüksek 

basınç koşulları hâkim olmaktadır. Bu iki zıt basınç koşullarının birbiri ile etkileşimleri 

sonucu da hava olayları oluşmaktadır. Isınmanın fazla olduğu 30° enlemleri civarında 

meydana gelen nemli hava akımları, bu bölgelerde Dünyanın yörünge hareketlerine 

bağlı olarak havayı soğutur ve alçalmaya zorlar. Bu atmosferik alçalma olayına 

‘sübsidans’ denilmekte olup sübsidansın gerçekleştiği durumda hava adyabatik olarak 

ısındığından dolayı daha kuru bir hava formunda yeryüzüne ulaşmaktadır [22]. Kuraklık 

olayına neden olan bir diğer sübsidans durumu da subtropikal yüksek basınç hareketi ile 

meydana gelmektedir. Subtropikal yüksek basınç hareketi; yazları kutuplar bölgesine, 

kışları ise ekvator bölgesine doğru bir salınım yapar. Bu salınım sonucunda 30° 

enlemleri civarında kurak bir kuşağa neden olan yağış rejimi görülür. Tüm bunlara ek 

olarak havanın nem durumu da yağışları ve dolayısıyla kuraklık olayını doğrudan 

etkileyen bir etkendir.  

1.3.2. Kuraklık Sınıflandırması 

Kuraklığın göreceli ve karmaşık bir doğa olayı olduğundan daha önce bahsedilmişti. Bu 

nedenle, kuraklıkla ile ilgili çok çeşitli sınıflandırmalar söz konusudur. Ancak 

literatürde kabul gören kuraklık sınıflandırması, özellikle etkilediği alana ve etkileme 

süresine göre yapılmaktadır. Yine daha önce belirtildiği üzere kuraklık, sistemdeki su 

eksikliğinden kaynaklanan ve canlıların su taleplerinin karşılanamadığı bir durumdur. 

Sistemdeki su eksikliğinin etkilemiş olduğu alanlara göre kuraklık; meteorolojik, 

tarımsal, hidrolojik ve sosyo-ekonomik kuraklık olarak dört sınıfa ayrılmaktadır [23]. 

Etkileme süresine göre ise kısa süreli ve uzun süreli kuraklık olarak ayrılmaktadır. Şekil 

1.1’de etkilediği alanlara göre kuraklık sınıfları gösterilmiştir. 
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Şekil 1.1. Etkilediği alanlara göre kuraklık sınıflandırması  

1.3.2.1. Meteorolojik Kuraklık 

Belirli bir bölgede ve belirli bir sürede normal dönemlerde kaydedilen yağıştan daha az 

bir yağışın görülmesiyle birlikte kuraklık sürecinde ilk olarak ortaya çıkan kuraklık 

türüdür. Meteorolojik kuraklıkta, bölgesel bazda ele alınan bir kuraklık türü olmasından 

dolayı bölgesel iklim modelleri kullanılmaktadır. Yağış seviyeleri ile birlikte kurak veya 

nemli dönemler bölgesel ölçekte yapılan iklimsel karşılaştırmalarla belirlenmektedir 

[24]. Yağış eksikliğine bağlı olarak ortaya çıkan meteorolojik kuraklığın zaman 

ölçekleri aylık, mevsimsel, yıllık veya çok yıllık dönemler olarak ayrılmaktadır. 

Meteorolojik kuraklık seviyesi ile ilgili yapılan değerlendirmeler yağış toplamlarına, 

yağış normallerine ve yağışsız geçen süreye göre belirlenmekte olup, belirli bir bölgede 

kaydedilen yağış normallerinin 1/3’ünden daha düşük olan yağış miktarı ya da yağışsız 

geçen 15 günlük süre, meteorolojik kuraklık olarak değerlendirilebilmektedir [25]. 

Bunların yanı sıra diğer kuraklık türlerinde olduğu gibi kuraklığı izlemek amacıyla 
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geliştirilen özel kuraklık indisleri ile meteorolojik kuraklığın büyüklüğü ya da şiddeti 

belirlenmektedir. Meteorolojik kuraklıkta yağış azlığına bağlı olarak yüzey akışında ve 

yeraltı sularının miktarında azalmalar gibi sonuçlar görülmektedir. Yüksek sıcaklık, 

yüksek rüzgâr hızı, düşük nem ve az bulutluluk gibi etkenlerden dolayı suyun toprakta 

buharlaşması ve bitkiler tarafından gerçekleştirilen terleme de meteorolojik kuraklığı 

etkilemektedir. Meteorolojik kuraklık, genellikle kısa sürelerde ve hızlı bir şekilde 

gelişmektedir [26]. 

1.3.2.2. Tarımsal Kuraklık 

Kuraklık sürecinin ikinci aşaması olan tarımsal kuraklık türü, bitkilerin büyümesi ve 

gelişmesi için gereken suyun ya da toprak neminin, bitkilerin ihtiyaç duyduğu miktara 

göre yetersiz kaldığı durumlarda ortaya çıkmaktadır. Hiyerarşik olarak tarımsal 

kuraklık, meteorolojik kuraklıktan sonra ve hidrolojik kuraklıktan önce meydana gelen 

bir kuraklık türüdür. Bu kuraklık türünün görülmesinin başlıca iki nedeni vardır. Bunlar; 

meteorolojik kuraklığın uzun sürmesi ve bitkilerin büyüme döneminde toprağın nemini 

kaybetmesidir. Tarımsal kuraklığın meydana geldiği yerlerde, toprak derinlerde yağışa 

ve suya doymuş bile olsa, elde edilecek son ürünün verimi ve kalitesi önemli ölçüde 

düşebilmektedir [27]. Çünkü yağışların artmasıyla birlikte doğrudan toprak neminin de 

artacağı söylenemez. Toprağın nemi; bölgenin iklim koşullarına, toprağın eğim başta 

olmak üzere topografik koşullarına, toprağın su tutma kapasitesine ve diğer fiziksel ve 

kimyasal özelliklerine göre değişmektedir. Toprağın su tutma kapasitesi yüksek olan 

bölgeler, kuraklık koşullarına daha çok direnç göstermektedirler [28]. Bir bölgedeki 

tarımsal kuraklığa dayanıklılık toprak yapısı ile birlikte bitki türlerinin ve hayvan 

ırklarının da kuraklık direnci ile ilişkilidir. Yağışlar ve toprak neminin düşmesinin yanı 

sıra artan sıcaklıklar, azalan nem oranı ve rüzgârların kurutucu etkisi, bu kuraklık 

türünün etkilerinin giderek yükselmesini tetiklemektedir. Tüm bunların yanı sıra, tarım 

arazilerinin ekim ve sulama yöntemleri de tarımsal kuraklığın şiddetini 

etkileyebilmektedir [29]. 

1.3.2.3. Hidrolojik Kuraklık 

Yüzey su kaynakları, nehir akımları, sulak alanlar, göl ve baraj-gölet depolamaları, 

yeraltı su kaynakları ile diğer su kaynaklarının normal seviyelerinin altına düştüğü 

durumlarda hidrolojik kuraklık olayı görülmektedir. Bahsedilen bu su kaynaklarında 
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belli bir dönem boyunca görülen aşırı boşalımlar, su seviyelerindeki düşümler ya da 

hacim azalmaları, hidrolojik kuraklığa neden olur. Hidrolojik çevrimin yüzeydeki 

bileşenleri olan başta nehir akımları olmak üzere tüm yerüstü ve yeraltı kaynaklarındaki 

değişimler ya da azalmalar, bütün sistemin dengesini bozabilecek bir duruma sebep 

olabileceğinden hidrolojik kuraklık tüm canlı hayatı için oldukça öneme sahiptir. 

Hidrolojik kuraklık türü, meteorolojik kuraklığın çok uzun sürmesi sonucu görülen 

yağış eksikliği ve su tüketimindeki artışlardan dolayı ortaya çıkmaktadır. Yağış 

eksikliğinin vuku bulması ile akarsu, dere ve rezervuarlardaki su eksikliği arasında 

belirli bir zaman aralığı geçtiğinden dolayı hidrolojik ölçümler, kuraklığın ilk 

göstergelerinden değildir. Bununla ilgili olarak da zaman zaman kavram kargaşası 

yaşanabilmektedir. Meteorolojik kuraklığın bitişinden itibaren, uzun bir zaman sonra 

dahi hidrolojik kuraklık durumu hala var olabilir [30]. Tüm bunların yanı sıra, başta 

tarım arazileri olmak üzere arazi kullanımlarındaki değişiklikler ve toprağın fiziksel ve 

kimyasal yapısındaki bozulmalar da hidrolojik kuraklığın frekans ve büyüklük gibi 

niteliklerini etkilemektedirler [31]. 

1.3.2.4. Sosyo-ekonomik Kuraklık 

Kuraklık sürecinin en son aşamasında ortaya çıkan sosyo-ekonomik kuraklık türü, diğer 

kuraklık türlerine bağlı olarak yağış ve su eksikliğinden kaynaklı insan türü başta olmak 

üzere, canlıların üretim ve tüketim faaliyetlerinin etkilenmesi ya da kısıtlanması 

şeklinde tanımlanabilir. Suya erişimdeki zorluk ve kısıtlamalar, suyun kalitesindeki 

bozulmalar ve suyun üretim, tüketim ve dağıtımındaki ekonomik faktörler nedeniyle 

ortaya çıkan bir kuraklık türüdür. Sosyo-ekonomik kuraklık, fiziksel kuraklık olayları 

nedeniyle insanların sosyal ve ekonomik koşullarının olumsuz etkilendiği ve kuraklık 

sürecinin en bariz şekilde hissedildiği aşamasıdır. Bu kuraklık türü, temiz ve güvenilir 

içme suyu temini başta olmak üzere gıda sıkıntısı, işsizlik, göçler, su kaynakları 

üzerindeki rekabet ve hatta çatışmalar gibi birçok sosyal ve ekonomik soruna neden 

olabilmektedir. Özellikle başlıca gelir kaynağı tarım ve tarıma bağlı faaliyetler olan 

yerel ya da ulusal ölçekteki bölgelerde meydana gelecek olan ciddi yağış ve su 

eksiklikleri, bu bölgelerde sosyo-ekonomik kuraklığın daha keskin bir şekilde 

hissedilmesine neden olmaktadır. İnsanların yaşam kalitesini ve standartlarını doğrudan 

etkileyen bu kuraklık türü; ekonomik, sosyal ve çevresel etkilerinden dolayı oldukça 

yıkıcıdır [32].   
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1.3.2.5. Kısa ve Uzun Süreli Kuraklık 

Etkileme sürelerine göre kuraklık; kısa süreli kuraklık ve uzun süreli kuraklık olmak 

üzere iki gruba ayrılmaktadır [29]. Kısa süreli kuraklıklar genellikle 6 ay ve daha kısa 

periyotlarda etkisini gösterirken, uzun süreli kuraklıklar bu süreden daha fazla olan 

periyotlarda görülmektedir. Kısa süreli kuraklık, yağış eksikliğinden dolayı kuraklığın 

ilk etkilerinin ortaya çıktığı ve meteorolojik kuraklık türünün yaşandığı evredir. İçme 

suyu ve tarımsal sulama başta olmak üzere, su taleplerinin karşılanamaması gibi 

durumlar kısa süreli kuraklık döneminde etkisini göstermektedir. Normalin altındaki 

yağışların aylar ve yıllar boyunca devam etmesi ile birlikte kuraklığın etkilerinin uzun 

dönemlere yayılması halinde ise uzun süreli kuraklıkların yaşandığı evreye 

geçilmektedir. Uzun süreli kuraklık döneminde, meteorolojik kuraklık türünden sonra 

görülen tarımsal, hidrolojik ve sosyo-ekonomik kuraklık türlerinin etkileri daha da ciddi 

bir şekilde hissedilmektedir. Yağış eksikliğinin uzun dönemler boyunca devam etmesi 

ile tüm su kaynakları önemli oranda etkileneceğinden dolayı bu dönemlerde hidrolojik 

kuraklık öne çıkmaktadır. Uzun süreli kuraklıklar, kuraklık süreci içerisinde oldukça 

ekstrem bir durum olmasına rağmen her zaman ihtimal dâhilindedir. 

1.3.3. Kuraklık İndisleri 

Kuraklık indisleri, belirli bir zamanda belirli bir bölgedeki kuraklığa ait şiddet, süre, 

frekans ve yerel dağılım gibi özellikleri tespit etmek, ölçmek veya izlemek için 

kullanılan matematiksel formüllerdir. Kuraklık değerlendirmelerinin, acil eylem planları 

ve erken uyarı sistemlerinin doğru ve güvenilir bir şekilde yapılabilmesi için kuraklık 

indislerinin önemi büyüktür. Kuraklık indisleri; meteorolojik, hidrolojik ve tarımsal 

değişkenlere sahip zaman serilerinin incelenerek, kuraklığın büyüklüğünü ya da 

şiddetini hesaplamaya yarar. Karmaşık kuraklık sürecinin koşullarının tanımlanması ve 

ekosisteme olan etkilerinin belirlenmesi için de indislerden yararlanılmaktadır. Kuraklık 

indisleri, bir bölgenin başta yağış ve sıcaklık olmak üzere çeşitli meteorolojik 

değişkenlerini kullanarak, bölgenin su kaynaklarındaki değişimlerini, toprağın nem 

durumunu, bitki büyümesini ve diğer kuraklık etkilerini belirlemeye yardımcı olur. Bu 

indisler, ele alınan bölgenin normal meteorolojik ve iklim koşullarına göre, o anda 

yaşanan kuraklığın belirlenmesini sağlarlar. Ayrıca bir kuraklık durumunun ne zaman 

başladığının, ne zaman sona erdiğinin ya da kuraklık koşullarının hangi coğrafi alanda 
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etkisini gösterdiğinin bilinebilmesi için kuraklık indisleri aracılığı ile bir şiddet referans 

değeri üzerinden değerlendirme yapılır [18].  

İlk dönemlerde geliştirilen kuraklık indisleri, genellikle dar ve yerel ölçeklerde ele 

alınmış olup sınırlı hesap adımlarına sahiptirler. Daha sonraki dönemlerde ise bu 

indislerin küresel ölçeklerde ve farklı iklim koşullarında da kullanılabilmesi için 

çalışmalar yapılmıştır. Dünyanın bazı bölgelerinde hala o bölgenin iklim koşulları ve su 

talepleri dikkate alınarak geliştirilmiş bölgesel kuraklık indisleri kullanılmaktadır. Farklı 

hesap yöntemleri ve kullanım amaçlarına göre çok değişik kuraklık indisleri 

kullanılmaktadır. Yine kuraklık türlerinde olduğu gibi indisler için de meteorolojik, 

tarımsal ve hidrolojik kuraklık indisleri olmak üzere bir sınıflandırma yapılmaktadır 

[21]. Bunun sebebi, başka bir yöntem ya da amaca yönelik geliştirilen bir kuraklık 

indisinin ele alınan kuraklık türünün çeşitli özellikleri ya da etkilerinden dolayı bu 

kuraklık durumuna uyum sağlayamaması ve beklenen işlemleri yapamamasıdır. 

1.3.3.1. Meteorolojik Kuraklık İndisleri 

Kuraklığın yağış başta olmak üzere sıcaklık, evapotranspirasyon, nem, rüzgâr hızı, 

Güneş radyasyonu gibi meteorolojik değişkenlere bağlı olarak hesaplanması ya da 

belirlenmesi gerektiğinde meteorolojik kuraklık indisleri kullanılmaktadır. Bunlardan en 

çok kullanılan meteorolojik değişken, doğal olarak yağış değişkenidir. Günlük, haftalık, 

aylık, mevsimsel ya da yıllık olarak farklı zaman ölçeklerinde değerlendirilen yağış 

zaman serileri kullanılarak normal değerlere göre kuraklığa ait, sapmalar, trendler ve 

ekstrem noktalar bulunmaktadır. En yaygın kullanılan meteorolojik kuraklık indisleri; 

Standartlaştırılmış Yağış İndeksi (SYİ), Palmer Kuraklık Şiddeti İndisi (PKŞİ), 

Standartlaştırılmış Yağış-Evapotranspirasyon İndisi (SYEİ), Ondalıklar (Deciles), De 

Martonne formülü, Thornthwaite yöntemi, Normal Yağışın Yüzdesi İndisi (NYYİ), 

Aridite Anomali İndeksi (AAİ), Efektif Kuraklık İndisi (EKİ), Çin-Z İndeksi (ÇZİ), 

Erinç Kuraklık İndisi, Yağış Anomali İndisi (YAİ) ve Kuraklık Keşif İndisi (KKİ)’dir. 

Yaygın olarak kullanılan yedi farklı meteorolojik kuraklık indisi, sırasıyla aşağıda 

özetlenmektedir. 

Meteorolojik kuraklık indislerine yönelik ilk çalışma Palmer (1965) tarafından 

geliştirilen Palmer Kuraklık Şiddeti İndisi (PKŞİ) yöntemidir. Bu yöntemdeki asıl amaç; 

belirli bir bölgedeki meteorolojik anomaliyi, kuraklık şiddetinin zaman ve mekân 
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karşılaştırmalarına izin veren bir indis üzerinden değerlendirerek genel bir metodoloji 

geliştirmektir. Belirli bir bölgedeki su dengesinde gözlenen yağış açığına bağlı olarak 

evapotranspirasyon, akışlar ve nem miktarındaki sapma bulunarak bu indis 

geliştirilmiştir. PKŞİ, bir meteorolojik kuraklık indisi olup anormal kurak veya anormal 

nemli meteorolojik koşullarda etkili sonuçlar vermektedir. PKŞİ’de kabul edilen 

sınıflandırma, -4 ile +4 kuraklık şiddetleri referans alınarak bu değerlere karşılık gelen 

farklı kuraklık sınıflarının belirlenmesi ile yapılmaktadır. -4 değeri ve daha küçük 

kuraklık şiddetlerinde aşırı kurak, +4 değeri ve daha büyük kuraklık şiddetlerinde ise 

aşırı nemli dönemin görüldüğü kabulü yapılmaktadır [33]. 

Kuraklık süreci yağış azlığından dolayı ilk olarak ortaya çıkan meteorolojik kuraklıkla 

başlar. Meteorolojik kuraklıkla ilgili çalışmalarda en çok kullanılan ve en pratik olan 

indis, McKee ve ark. (1993) tarafından geliştirilen Standartlaştırılmış Yağış İndeksi 

(SYİ)’dir. SYİ, sadece yağış parametresine bağlı olarak hesaplanabilen ve tek değişkenli 

bir hesap mantığına dayanmaktadır. Belirli bir bölgenin belli bir zaman dilimindeki 

kaydedilen yağış verileri, normal değerlerine göre kıyaslanarak o bölgenin ne kadar 

kurak ya da ne kadar nemli olduğu standart normal dağılıma uyan SYİ ile belirlenir. 

SYİ, karmaşık kuraklık sürecinin başlangıcını, bitişini, yoğunluğunu ve büyüklüğünü 

bir bütün olarak temsil edecek şekilde geliştirilmiş ve olumlu sonuçlar alınmıştır. 

SYİ’nin kabul gören kuraklık sınıflandırması -2 ile +2 kuraklık şiddet değerleri referans 

alınarak belirlenmektedir. -2 değeri ve daha küçük kuraklık şiddetlerinde aşırı kurak, +2 

değeri ve daha büyük kuraklık şiddetlerinde ise aşırı nemli dönemin yaşandığı kabulüne 

göre kuraklık analizleri gerçekleştirilir [34]. 

Yaygın olarak kullanılan meteorolojik kuraklık indislerinden biri de Vicente Serrano ve 

ark. (2010) tarafından geliştirilen Standartlaştırılmış Yağış-Evapotranspirasyon İndisi 

(SYEİ)’dir. Bu indiste hem yağış hem de sıcaklık parametresi kullanılmıştır. Ele alınan 

bölgede aylık olarak yağışlardan potansiyel buharlaşma (PET) çıkarılarak bulunur. PET 

değerlerinin hesabı için gerekli olan sıcaklık, rüzgâr hızı, güneş radyasyonu, bağıl nem 

gibi verilere ihtiyaç olduğundan karmaşık bir yaklaşımdır. SYİ yönteminin 

eksikliklerini azaltabilmek amacıyla geliştirilmiştir. SYEİ yönteminde yapılan kuraklık 

sınıflandırması SYİ’de yapılan sınıflandırma ile aynıdır [35]. 
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Bir diğer önemli meteorolojik kuraklık indisi olan Normal Yağışın Yüzdesi İndisi 

(NYYİ), Willeke ve ark. (1994) tarafından geliştirilmiştir [36]. Belirli bir bölgedeki 

gözlenen yağış miktarının normalden ne kadar sapma gösterdiğini belirlemek için 

kullanılır. Bu indis, bölgenin mevsimsel değişkenliklerini ve iklim değişikliklerini 

dikkate almaz, sadece belirli bir referans dönemi boyunca ortalama yağış miktarına göre 

yağış miktarının yüzdesini hesaplar. NYYİ’de %100'den büyük bir yağış değeri 

normalden fazla yağış olduğunu, %100'den küçük bir yağış değeri normalden az yağış 

olduğunu, %100'e eşit bir değer ise normal yağış olduğunu göstermektedir [37]. Bu 

indis genellikle farklı sektörlere yönelik su kaynakları yönetimi ile ilgili çalışmalarda 

kullanılmaktadır. 

Erinç (1965), kuraklık analizinde maksimum sıcaklıkların ortalamasını hesaba katarak 

Erinç Kuraklık İndisini geliştirmiştir. Kuraklığın sadece yağış azlığından değil 

buharlaşma etkisinden dolayı da önemli ölçüde arttığı kabulü ile geliştirilmiş olan bu 

indise diğer indislerden farklı olarak maksimum sıcaklık ortalamaları dâhil edilmiştir. 

Türkiye’de yaygın olarak kullanılan bir kuraklık indisidir [38]. 

Gibbs ve Maher (1967) tarafından yalnızca yağış verisini kullanan Onluklar (Deciles) 

indeksi geliştirilmiştir. Bazı kaynaklarda yağış kuyrukları olarak da adlandırılmaktadır. 

Bu yaklaşımda, bir bölgedeki yağış verilerine ait veri seti on eşit parçaya ayrılır ve bu 

setteki aşılamayan yağışı temsil eden en düşük %10’luk kısım ilk ondalıktır. İkinci 

ondalık aşılamayan yağışı temsil eden en düşük %20’lik kısımdır ve bu sıralama böyle 

devam eder. Veri setindeki medyan değerleri ise beşinci ondalıktır. Kendine özgü 

kuraklık sınıflandırması olan bu yöntemde ondalık değerlere göre kuraklık analizi 

yapılmaktadır [39]. 

Çin Ulusal İklim Merkezi tarafından 1995 yılında Çin'de geliştirilen Çin-Z İndeksi 

(ÇZİ), SYİ tarafından sağlanan hesap kolaylığını temel alarak hesaplamaları daha da 

kolaylaştırmak amacıyla geliştirilmiştir. Çin-Z İndeksi, kuraklık dönemlerini belirlemek 

ve kuraklığı izlemek için istatistiksel bir Z-skorunu kullanmaktadır. Bu indisin kuraklık 

sınıflandırması SYİ’nin kuraklık sınıflandırması ile aynıdır [40]. 
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1.3.3.2. Tarımsal Kuraklık İndisleri 

Tarımsal kuraklıkta görülen bitki su ihtiyacı ve topraktaki nem eksikliğinin en önemli 

sonucu, tarımsal üretimlerde verim ve ürün miktarındaki düşüşlerdir. Topraktaki nem 

miktarı ve toprağın su tutma kapasitesi, o bölgenin tarımsal kuraklığa karşı direncini de 

göstermektedir. Tarımsal kuraklığa neden olan buna benzer parametrelere yönelik 

spesifik indisler geliştirilmiştir. Literatürde kabul gören ve küresel ölçekte kullanılan 

tarımsal kuraklığa yönelik indisler; Mahsul Nem İndisi (MNİ), NOAA Kuraklık İndeksi 

(NOAA), Toprak Nemi Anomali İndisi (TNAİ) ve Tarımsal-Hidropotansiyel İndisi 

(THİ) şeklinde sıralanabilir. Belirtilen bu indislerden önemli görülen üç tanesi ile ilgili 

bilgiler aşağıda verilmiştir.  

Mahsul Nem İndisi (MNİ), tarımsal kuraklıkların gözlemi için 1960’ların başında 

Palmer tarafından geliştirilmiştir. Daha sonraki dönemlerde daha da geliştirilerek 

PKŞİ’nin bir bileşeni olarak birlikte değerlendirilmiştir. Toprak nemini ölçerek 

bitkilerin ihtiyaç duyduğu suyun yeterli olup olmadığını belirler. MNİ, haftalık ölçekte 

yağış, toprak nem içeriği, bitki örtüsü, sıcaklık ve diğer faktörler dikkate alınarak 

hesaplanır. Tarımsal üretim sistemlerinde bitkinin büyümesi ve ürün verimliliği ile 

ilişkili olan toprak nemi miktarının birkaç aylık bitki büyümesi dönemlerinde izlenmesi 

amacıyla bu indis kullanılmaktadır [41]. MNİ değerleri, -10 ila +10 arasında değişmekte 

olup negatif MNİ değerleri, toprak nemi düzeylerinin normalin altında olduğunu ve 

tarımsal kuraklığın mevcut olduğunu gösterirken, pozitif değerler normalin üzerinde ve 

aşırı nemli koşulların mevcut olduğunu göstermektedir [42].   

NOAA tarımsal kuraklık indeksi, 1980'lerin başında Amerika Birleşik Devletleri Tarım 

Bakanlığı'nın dünya çapında mahsul üretimi tahminleri için meteoroloji ve iklim 

verilerini kullanarak geliştirilmiş bir indekstir. Bitkinin büyüme mevsimi boyunca 

ölçülen yağış değerlerinin normal değerlerle karşılaştırıldığı bir hesap yöntemine 

dayalıdır. Haftalık olarak gerçek yağışlar ölçülür ve sekiz haftalık dönem için bu yağış 

ortalamaları toplanır. Gerçek yağış, sekiz haftalık dönem için normal yağışların 

%60'ından fazlaysa, mevcut haftanın su stresinin çok az olduğu veya hiç olmadığı 

varsayılır. %60 değerinden düşükse o hafta için su stresinin fazla olduğu yani bitkinin 

su ihtiyacını tam olarak karşılayamadığı varsayılır [43]. 
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Toprak Nemi Anomali İndisi (TNAİ), toprak nemindeki değişimleri normal koşullara 

göre ölçmek için kullanılan bir tarımsal kuraklık indisidir. TNAİ, ayrıca yeraltı suyu 

seviyelerindeki değişimleri de hesaba katarak, bir bölgedeki kuraklık durumunu 

ölçmektedir. Bir bölgedeki toprak neminin uzun vadeli trendleri ve mevsimsel 

değişimleri bu indis aracılığı ile izlenmektedir. TNAİ’nin pozitif veya negatif değeri, 

normal koşullardan daha fazla ya da daha az toprak nemi durumunu göstermektedir 

[44]. 

1.3.3.3. Hidrolojik Kuraklık İndisleri 

Hidrolojik kuraklıkta bahsedilen yerüstü ve yeraltı su kaynakları ile ilgili bileşenlerin 

ele alındığı indisler, hidrolojik kuraklık indisleridir. Hidrolojik kuraklık indisleri, 

meteorolojik kuraklık indislerinden farklı olarak daha dar ve spesifik yerlerde ele alınır. 

Örneğin bir yeraltı suyu kaynağı, baraj depolaması ya da nehir çıkışı gibi noktasal 

yerlerde hidrolojik kuraklığın şiddetini ölçmek için bu indisler kullanılır. Akım 

Kuraklık İndisi (AKİ), Standartlaştırılmış Akış İndisi (SAİ), Standartlaştırılmış Yeraltı 

Suyu İndisi (SYSİ), Palmer Hidrolojik Kuraklık İndisi (PHKİ), Yüzey Suyu Temini 

İndisi (YSTİ) ve Standartlaştırılmış Depolama Temin İndisi (SDTİ) yaygın olarak 

kullanılan hidrolojik kuraklık indisleridir. Yine burada da önemli görülen dört farklı 

indisle ile ilgili özet bilgiler aşağıda verilmiştir. 

Akım Kuraklık İndisi (AKİ), Nalbantis ve Tsakiris (2008) tarafından Atina’da iki nehir 

havzası için SYİ metodolojisi ve hesaplamaları temel alınarak geliştirilmiş bir indistir. 

Aylık akış verilerini kullanan bu indis, SYİ ile ilişkili normalleştirme yöntemlerini 

dikkate alır. SYİ’deki gibi bir çıktı değeri elde edilerek kuraklığın şiddeti hesaplanır ve 

böylece hem nemli hem de kurak dönemler incelenebilmektedir [45]. 

Standartlaştırılmış Akış İndisi (SAİ), bir bölgedeki akarsu debisinin ne kadar yüksek 

veya düşük olduğunu ölçmek için geliştirilmiş bir indistir. Bu indis, akarsu debisindeki 

mevsimsel ve yıllık değişkenlikler dikkate alınarak hesaplanır ve belirli bir bölgedeki 

akarsu debilerinin, belirli bir referans dönemi boyunca (genellikle 30 yıl) ortalama 

debilerine göre ne kadar yüksek veya düşük olduğunu ölçer. Bu indis, aynı bölgedeki 

akarsu debilerinin yıllar içindeki değişimlerini karşılaştırmak için kullanılır [46]. 
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Standartlaştırılmış Yeraltı Suyu İndisi (SYSİ), bir bölgedeki yeraltı suyu seviyesinin ne 

kadar yüksek veya düşük olduğunu ölçmede kullanılan bir hidrolojik kuraklık indisidir. 

SYSİ, belirli bir bölgedeki yeraltı suyu seviyelerinin, belirli bir referans dönemi 

boyunca (genellikle 10 yıl) ortalama seviyelerine göre sapmalarını hesaplamaktadır. Bu 

indis aracılığı ile aynı bölgedeki yeraltı suyu seviyelerinin boşalım ve beslenimleri de 

tespit edilerek yıllar içindeki değişimleri karşılaştırılabilmektedir [47]. Pozitif bir SYSİ 

değeri, ortalama yeraltı suyu seviyesinden daha yüksek bir seviye olduğunu, negatif bir 

değer ise daha düşük bir seviye olduğunu gösterir. SYSİ, tarım başta olmak üzere inşaat, 

su yönetimi ve diğer sektörlerdeki yeraltı suyu kaynaklarının sürdürülebilir yönetimi 

için kullanılmaktadır. 

Shafer ve Dezman (1982) tarafından ilk defa tanıtılan Yüzey Suyu Temini İndisi 

(YSTİ), PKŞİ’de bulunan bazı sınırlamaları ortadan kaldırarak onu tamamlamaya 

yönelik olarak geliştirilmiştir. Çok değişkenli bir hidrolojik kuraklık indisi olan YSTİ, 

belirli bir dönem boyunca (genellikle bir yıl) su kaynaklarının ortalamalarına göre 

hesaplanmaktadır. Yağış, kar erimesi, nehir akımları, yüzey suyu depolama seviyeleri 

ve buna benzer diğer hidrolojik değişkenler dikkate alınarak yüzey suyunun temin 

durumu ortalamalara göre değerlendirilmektedir. PKŞİ’de kullanılan kuraklık 

sınıflandırması bu indis için de geçerlidir [48].   

1.4. Literatür Özetleri 

Canlı ve cansız hayatı üzerinde birçok olumsuz etkisi bulunan ve çok tehlikeli bir doğal 

afet olan kuraklık, her geçen gün önemini artırmaktadır. Kuraklık olayının tüm 

aşamalarından itibaren detaylı bir şekilde ele alınması ve özellikle olumsuz etkilerinin 

azaltılmasına yönelik çalışmalar üzerinde durulması, dünyamızın bugünü ve geleceği 

açısından oldukça elzem bir konudur. Bununla birlikte; birçok farklı türü ve 

karakteristik özelliği bulunan kuraklık felaketinin araştırmacılar, kurum-kuruluşlar ya 

da devletler tarafından öngörülebilmesi ya da tahmin edilebilmesi, kuraklıkla 

mücadelenin en kritik aşamasıdır. Bu sayede geleceğe yönelik çeşitli senaryo ve 

projeksiyonlar oluşturularak kuraklık felaketine ve onun olumsuz etkilerine yönelik 

politikalar geliştirilebilecektir.  

Kuraklık konusunun hidrometeoroloji alanında son dönemin en popüler konularından 

biri olduğu rahatlıkla söylenebilir. Bunda küresel iklim değişikliğinin ve kuraklığa olan 
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etkisinin payı yüksektir. Kuraklıkla ilgili farklı amaçlara yönelik olarak birçok yerli ve 

yabancı çalışma bulunmaktadır. Kuraklıkla ilgili yapılan erken dönem çalışmalarında, 

genellikle kuraklığın oluşumu, dağılımı, frekansı ve süresi gibi başlıca karakteristik 

özelliklerine yönelik araştırmalar yapılmıştır. Bu çalışmalara paralel olarak kuraklığın 

tespiti ve izlenmesine olanak sağlayan kuraklık indislerinin geliştirilmesi yine erken 

dönemlerde yoğunluk kazanmıştır. Son dönemlerde ise kuraklığın tahmini, tespiti ve 

izlenmesine yönelik olarak yapay zekâ teknikleri ve alt kümelerinde bulunan makine 

öğrenmesi ile derin öğrenme yöntemlerinin kullanımı çok popüler olmuştur. Bu tez 

çalışmasında yapılan literatür taraması da daha çok kuraklığın tahmini ile yapay zekâ ve 

alt kümelerinde yer alan yöntemlerin ele alındığı çalışmalara yönelik olmuştur.  

1.4.1. Dünya’da Yapılan Kuraklık Çalışmaları 

Dünya’da kuraklıkla ilgili yapılan ilk öncül çalışmalar, 20.yüzyılın ortalarına kadar 

dayanmakta olup; büyük bir oranda kuraklık indislerine yöneliktir. Daha önceki 

bölümde kuraklık indisleri ile ilgili bilgiler verilmiş olduğundan bu kısımda tekrar 

bahsedilmeyecektir. Daha çok kuraklıkla birlikte yapay zekâ yöntemleri ve tahmin 

modelleri üzerine yapılan çalışmalara ağırlık verilmiştir.  

Shin ve Salas (2000), Colorado’nun güneybatısındaki bölgesel kuraklığı analiz etmek 

amacıyla Yapay Sinir Ağları (YSA) yaklaşımını kullanmışlardır. Yıllık yağış verileri 

kullanılarak parametrik olmayan bir mekânsal analiz sinir ağı algoritması 

oluşturmuşlardır. Yağış verileri üzerine, bu algoritma aracılığı ile normalleştirme ve 

standartlaştırma işlemleri uygulanmış olup daha sonra normal dağılımın belirli olasılık 

yüzdelerine göre belirlenen referans değerleri baz alınarak kuraklık şiddetlerine göre 

sınıflandırma yapılmıştır. Bu şekilde belirlenen kuraklık şiddetlerinin sonuçlarına göre 

bölgesel kuraklık haritaları elde edilmiştir [49]. 

Kim ve Valdez (2003), Meksika’daki Conchos Nehir Havzasındaki kuraklıkları tahmin 

etmek amacıyla Dalgacık Dönüşümü (DD) ile Yapay Sinir Ağları (YSA) bağlantılı bir 

tahmin modeli önermişlerdir. DD ile alt serilerine ayrılan Palmer Kuraklık Şiddet İndisi 

(PKŞİ) kuraklık verileri, Çok Katmanlı İleri Beslemeli Sinir Ağında (ÇİBSA) analiz 

edilmiştir. Bu çalışmada, DD tekniğinin kuraklık zaman serilerinin tahmin becerilerini 

önemli ölçüde artırdığı görülmüştür [50].  
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Mishra ve ark. (2007), Hindistan'daki Kansabati Nehir Havzasında kuraklık tahmini için 

doğrusal stokastik modeli ve doğrusal olmayan yapay sinir ağları modelini birleştiren 

hibrit bir model geliştirmişlerdir. Bu hibrit model içerisinde Otoregresif Entegre 

Hareketli Ortalama (Autoregressive Integrated Moving Average-ARIMA), Yapay Sinir 

Ağları (YSA), zaman serileri ve kompleks otokorelasyon yapıları bulunmaktadır. 

Geliştirilen bu hibrit model, performans kriterlerine göre hem stokastik model hem de 

yapay sinir ağlarına kıyasla kuraklıkları daha doğru tahmin etmiştir [51]. 

Karamouz ve ark. (2009), İran’ın orta kesimlerinde yer alan Zayandeh-Rud (Gav-

Khuni) havzasının kuraklık şiddetlerini tahmin etmek ve hibrit bir kuraklık indeksi elde 

etmek amacıyla olasılıksal sinir ağı ve çok katmanlı algılayıcı olmak üzere iki farklı 

algoritma önermişlerdir. Hibrit bir kuraklık indeksi elde edebilmek için SYİ, PKŞİ ve 

Yüzey Suyu Temini İndisleri (YSTİ) kombine edilerek Hibrit Kuraklık İndeksi (HKİ) 

geliştirilmiştir. Bu çalışmada elde edilen model sonuçlarına göre her iki algoritma da 

kuraklık şiddetlerinin tahmininde üstün başarı göstermiştir [52]. 

Karavitis ve ark. (2011), yarı kurak bir iklim rejimine sahip Yunanistan’daki kuraklığın 

süresi, büyüklüğü ve mekânsal boyutu için ileriye yönelik kuraklık değerlendirmeleri 

yapmışlardır. 46 adet yağış istasyonunun 1947‒2004 yılları arasındaki yağış 

verilerinden hesaplanan 1, 3, 6, 12 ve 24 aylık zaman ölçeklerine ait Standartlaştırılmış 

Yağış İndeksi (SYİ) kuraklık değerleri analiz edilmiştir. Daha sonra SURFER-9 yazılım 

paketi kullanılarak jeo-istatistiksel yöntemlerle SYİ değerlerinin mekânsal dağılımı 

gerçekleştirilmiştir [53]. 

Chen ve ark. (2012), Çin'deki Huaihe Nehri Havzasında 1958‒2006 yılları arasındaki 

kısa vadeli (3, 6, 9 ve 12 aylık) SYİ kuraklık değerlerini tahmin etmek için bir derin 

öğrenme algoritması olan Derin İnanç Ağları (DİA) modelini önermişlerdir. Bu modelin 

kısa vadeli kuraklık tahminlerinde geleneksel geri yayılımlı sinir ağlarına göre daha iyi 

performans gösterdiği sonucuna varılmıştır. Önerilen bu derin öğrenme algoritmasının 

kuraklık tahmin teknolojilerini geliştireceği ve karar vericilere kuraklık felaketinin 

yönetiminde yardımcı olacağı vurgulanmıştır [54]. 

Xie ve ark. (2013), Pakistan'da 1960‒2007 yılları arasındaki kuraklıkların görülme 

sıklığının zamansal ve alansal değişkenliğini araştırmışlardır. SYİ değerleri kullanılarak 

yapılan önemli çalışmalardan biri olan bu çalışmada, kuraklık analizlerinde yağış 
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verilerinden hesaplanan SYİ’nin 3, 6 ve 12 aylık zaman ölçekleri ele alınmıştır. Bu 

çalışmada ele alınan Temel Bileşen Analizi (TBA), kuraklıkların geniş alanlarda yaygın 

ve sık bir şekilde meydana geldiğini ortaya koymuştur. Ayrıca kuraklık periyoduna 

yönelik yapılan spektral analiz sonucunda 16 yıl tekerrür periyoduna sahip şiddetli 

kuraklıkların görüldüğü belirlenmiştir [55]. 

Belayneh ve ark. (2016), Etiyopya'nın Awash nehir havzasında uzun vadeli kuraklık 

durumlarını tahmin etmek için makine öğrenmesi yöntemlerini kullanarak farklı tahmin 

modelleri oluşturmuştur. Bu çalışmada; dalgacık dönüşümü ilaveli Otoregresif Entegre 

Hareketli Ortalama (Autoregressive Integrated Moving Average-ARIMA), Yapay Sinir 

Ağları (YSA) ve Destek Vektör Makine Regresyonu (DVMR) modelleri ele alınmıştır. 

Dalgacık dönüşümü ile oluşturulan hibrit modeller, kuraklık tahminlerinde diğer 

bağımsız modellerden daha üstün sonuçlar vermiştir [56]. 

Mokhtarzad ve ark. (2017), İran’ın Kuzey Horasan Eyaleti’nin merkezi olan Bojnourd 

şehrinde görülmesi muhtemel kuraklık durumunu tahmin etmek amacıyla 1984‒2012 

yılları arasındaki yağış verilerine bağlı hesaplanan 3 aylık zaman ölçeğine ait SYİ 

değerlerini kullanmışlardır. Kuraklık tahmini ile ilgili bu çalışmada; Yapay Sinir Ağları 

(YSA), Uyarlanabilir Sinirsel Bulanık Çıkarım Sistemi (USBÇS) ve Destek Vektör 

Makinesi (DVM) yöntemleri ele alınmış ve tüm yöntemler birbiri ile kıyaslanmıştır. 

Modellerin giriş parametreleri sıcaklık, nem ve mevsimsel yağış değerleri olup çıkış 

parametresi ise tek bir SYİ değeridir. Tahmin modellerine ait sonuçlar, DVM modelinin 

daha doğru ve güvenilir sonuçlar verdiğini göstermiştir [57]. 

Agana ve Homafair (2018), Colorado nehir havzasında farklı zaman ölçeklerindeki 

kuraklık yoğunluğunu tahmin edebilmek için Ampirik Mod Ayrıştırması (AMA) ile 

birlikte Derin İnanç Ağları (DİA) modelini oluşturmuşlardır. Kuraklık indisi olarak 

Standartlaştırılmış Akış İndisi (SAİ) verileri ele alınmış olup orijinal kuraklık zaman 

serileri AMA ile alt bantlarına ayrılmıştır. Oluşturulan bu model, Çok Katmanlı 

Algılayıcı (ÇKA) ve Destek Vektör Regresyonu (DVR) makine öğrenmesi yöntemleri 

ile karşılaştırılmış olup bu yöntemlere göre tahmin yeteneği daha üstündür [58]. 

Poornima ve Pushpalatha (2019), Hindistan'ın Haydarabad Bölgesi için 1958‒2014 

gözlem periyodunda kaydedilen çeşitli parametreleri kullanarak 1, 6 ve 12 aylık zaman 

ölçeklerinde SYİ ve SYEİ kuraklık indekslerini tahmin etmişlerdir. Tek değişkenli 
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Otoregresif Entegre Hareketli Ortalama (Autoregressive Integrated Moving Average-

ARIMA) istatistiksel modelini, çok değişkenli girdi kullanan Uzun-Kısa Süreli Bellek 

(UKSB) derin öğrenme modeliyle karşılaştırmışlardır. Bu çalışma sonucunda, UKSB 

modelinin ARIMA modeline göre zaman ölçeği arttığında daha iyi sonuçlar verdiği 

görülmüştür [59]. 

Huang ve ark. (2019), Çin’in en büyük ikinci nehri olan Sarı Nehrin orta kesimlerinde 

bulunan Lanzhou bölgesindeki kuraklığı tahmin etmek için Kopula entropisi ile Genel 

Regresyon Sinir Ağını (GRSA) birleştiren bir yöntemi kullanmışlardır. Tahmin 

modelinin giriş verisi olarak kuraklığa etki eden iklim parametreleri seçilmiştir. Elde 

edilen sonuçlara göre bu model kuraklık tahmininde oldukça başarılı olmuştur. Ayrıca 

bu yaklaşımın iklim faktörlerine bağlı meydana gelen meteorolojik olayların tahmininde 

de rahatlıkla kullanılabileceği belirtilmiştir [60].  

Dikshit ve ark. (2020), şiddetli kuraklıkların yaşandığı Avustralya'nın New South Wales 

bölgesinde SYİ kuraklık değerlerini tahmin etmek için yığınlı Uzun-Kısa Süreli Bellek 

(Y-UKSB) adı verilen yeni bir yaklaşım önermişlerdir. 1901‒2018 yılları arası için 

hesaplanan SYİ kuraklık değerleri, eğitme ve test verisi şeklinde tahmin modelinde giriş 

verisi olarak kullanılmıştır. Y-UKSB tahmin modeli, kapasitesinin anlaşılabilmesi için 

Rastgele Orman (RO) ve Yapay Sinir Ağları (YSA) gibi diğer makine öğrenmesi 

yöntemleri ile kıyaslanmıştır. Model sonuçlarına göre derin öğrenme yöntemi olan Y-

UKSB diğer yöntemlere göre özellikle uzun zaman dilimlerinde kuraklık tahmininde 

daha başarılı sonuçlar vermiştir [61]. 

Kaur ve Sood (2020), yaygın olarak kullanılan kuraklık indekslerinin bölgesel olması 

nedeniyle küresel olarak kullanılabilecek bir indekse ihtiyaç olduğunu belirtmişlerdir. 

Bundan dolayı, mevcut kuraklık koşullarının ve kuraklık olasılıklarının daha güvenilir 

bir şekilde ele alınacağı çerçeve bir model önermişlerdir. Bu çerçeve model için Yapay 

Sinir Ağları (YSA), Genetik Algoritma ile optimize edilmiş YSA ve Derin Sinir Ağları 

(DSA) yeteneklerinden faydalanılmıştır. Ayrıca üç farklı iklim bölgesi ve üç farklı 

zaman ölçeğindeki kuraklık koşullarını öngörebilmek adına Destek Vektör Regresyonu 

(DVR) yöntemi kullanılmıştır. DSA modelinin kuraklık analizlerinde daha doğru, daha 

güvenilir ve daha özgün bir performans gösterdiği sonucuna ulaşılmıştır [62]. 
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Kermani ve Hessaroeyeh (2020), İran’ın güneydoğusunda bulunan Kerman şehrindeki 

kuraklık koşullarını izleyebilmek amacıyla Standartlaştırılmış Yağış İndeksi (SYİ) 

verilerini kullanarak Bulanık Mantık (BM)-k-En Yakın Komşu (KEYK) algoritmasına 

dayalı yeni bir yaklaşım önermişlerdir. Önerilen bu model sonucuna göre bölgede son 

yıllarda ciddi oranda kuraklık artışları ve yağış açığının olduğu görülmüştür [63]. 

Mokhtar ve ark. (2021), Çin'in Tibet Platosunda 1980–2019 yılları arasındaki 

Standartlaştırılmış Yağış Evapotranspirasyon İndisi (SYEİ)  kullanarak kuraklık 

analizini gerçekleştirmek için makine öğrenmesi yöntemlerinden oluşan bir kombine 

modeli önermişlerdir. 3 ve 6 aylık SYEİ kuraklık değerlerini tahmin edebilmek için 

Evrişimli Sinir Ağları (ESA), Uzun-Kısa Süreli Bellek (UKSB), Rastgele Orman (RO) 

ve Aşırı Gradyan Artırma (AGA) derin öğrenme yöntemlerini kullanmışlardır. Tahmin 

modellerinde farklı meteorolojik koşullara göre değişen 7 farklı senaryo giriş verisi 

olarak alınmış olup bu senaryolardan 4. senaryoda UKSB en başarılı tahmin sonuçlarını 

vermiştir [64]. 

Maity ve ark. (2021), Hindistan’ın farklı iklim koşullarına sahip iki nehir havzasında, 

çeşitli hidrometeorolojik öncü değişkenlerini kullanarak kuraklık değerlendirmesi 

yapmak için derin öğrenme tabanlı bir Evrişimli Sinir Ağı (ESA) tahmin modelini 

önermişlerdir. Bu modelin performansını, Destek Vektör Makinesi (DVM) makine 

öğrenmesi yöntemi ile karşılaştırdıklarında önerilen modelin, DVM’e göre daha iyi bir 

genelleme yeteneği olduğu ve daha üstün tahmin performansı gösterdiği görülmüştür 

[65]. 

Salimi ve ark. (2021), İran’da 3 farklı iklim rejimine sahip Lighvan, Navroud ve Seqez 

havzalarındaki meteorolojik ve hidrolojik kuraklığı izlemek amacıyla bir çalışma 

yapmışlardır. 1992–2016 yıllarına ait akım, yağış ve buharlaşma verileri bu çalışmada 

kullanılan kuraklık parametreleridir. Meteorolojik kuraklık için SYİ ve SYEİ,  

hidrolojik kuraklık için ise Standartlaştırılmış Akış İndisi (SAİ) kullanılmıştır. Bu 

indisler aracılığı ile havzalardaki kuraklığın şiddetleri, süreleri ve periyotları analiz 

edilmiştir. Analiz sonuçları, her üç havzada da meteorolojik ve hidrolojik kuraklık 

arasındaki ilişkinin %99 düzeyinde anlamlı olduğunu göstermektedir [66]. 

Wu ve ark. (2021), Çin'in kuzeydoğusunda üç farklı iklim rejimini temsil eden üç farklı 

bölgede 1967–2017 yılları arasında aylık ve yıllık yağış zaman serilerine dayalı yağış ve 
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kuraklık çalışmaları üzerine bir çalışma yürütmüşlerdir. Kuraklık indeksi olarak Çin-Z 

İndeksi (ÇZİ) kullanılmıştır. Dalgacık Dönüşümü (DD), Otoregresif Entegre Hareketli 

Ortalama (Autoregressive Integrated Moving Average-ARIMA)  ve Uzun-Kısa Süreli 

Bellek (UKSB) yöntemleri kuraklık zaman serilerini tanımlamak için kullanılmış ve bu 

seriler için yeni bir hibrit model olan DD-ARIMA-UKSB yaklaşımı oluşturulmuştur. 

Farklı iklim türleri ile eğitme ve test seti oranlarına bağlı olarak önerilen bu hibrit 

model, yağış ve kuraklık tahminlerinin doğruluğu açısından ARIMA ve UKSB 

yöntemlerinden daha iyi performans göstermiştir [67]. 

Docheshmeh ve ark. (2022), İran’ın 4 farklı bölgesindeki yağış istasyonlarının aylık 

yağış verilerinden hesaplanan SYİ değerlerini kullanarak Uzun-Kısa Süreli Bellek 

(UKSB) yönteminin kuraklık tahmin kapasitesini araştırmışlardır. 3, 6, 9 ve 12 aylık 

zaman ölçekleri için SYİ kuraklık değerlerinin tahmininde UKSB yöntemi, Çok 

Değişkenli Uyarlanabilir Regresyon Eğrisi (ÇDURE), Ekstra Ağaç (EA) ve Vektör 

Otoregresif Yaklaşım (VOY) teknikleri ile kıyaslanmıştır. Tüm zaman ölçeklerinde 

UKSB derin öğrenme yöntemi diğer tekniklere göre kuraklık tahmininde daha üstün 

sonuçlar vermiştir [68]. 

Filipović ve ark. (2022), Sırbistan’da yer alan 28 adet istasyona ait 2011‒2020 yılları 

arasındaki meteorolojik parametreleri kullanarak dört farklı toprak tipi için toprak nemi 

dolayısıyla tarımsal kuraklık tahminine yönelik Uzun-Kısa Süreli Bellek (UKSB) 

tahmin modelini geliştirmişlerdir. Copernicus İklim Değişikliği Servisi tarafından 

sağlanan ERA5 meteorolojik veri seti tahmin modelinin giriş parametreleri olarak 

seçilmiş olup; veri setinin 2011‒2016 yılları arası eğitme, 2017‒2018 yılları arası 

doğrulama ve Eylül 2019 ile Nisan 2020 dönemleri arası ise test verisi olarak 

seçilmiştir. UKSB tahmin modeli, Rastgele Orman (RO) ve ARIMA yöntemleri ile 

kıyaslanmış olup çok iyi bir genelleme başarısıyla daha üstün sonuçlar vermiştir [69].  

Zhao ve ark. (2022), Çin’in Shandong Eyaletinde 2002‒2020 dönemi yağış ve 

buharlaşma değerlerini kullanarak SYEİ kuraklık değerlerini yeniden üretmeye yönelik 

bir çalışma gerçekleştirmişlerdir. Uydu sensörlerinden, arazi modellerinden ve küresel 

yağış değerlerinden yararlanılan bu çalışmada, kuraklığa etki eden faktörler belirlenerek 

Önyargı Düzeltmeli Rastgele Orman (ÖDRO), Aşırı Gradyan Artırma (AGA) ve Destek 

Vektör Makinesi (DVM) makine öğrenmesi yöntemleri ile regresyon modelleri 
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oluşturulmuştur. Bu modeller içerisinde ÖDRO tahmin model en etkili sonuçları veren 

model olmuştur. Bu modelden elde edilen sonuçlarına göre de SYEİ kuraklık 

değerlerine ait mekânsal kuraklık haritaları üretilmiştir [70]. 

1.4.2. Türkiye’de Yapılan Kuraklık Çalışmaları 

Türkiye’de kuraklıkla ilgili yapılan ilk çalışmalar, 1940’lı yıllardan itibaren başlamıştır. 

Tanoğlu (1943), sıcaklık ve yağış değerlerini kullanarak De Martonne yöntemi ile 

Türkiye’nin geneli için bir kuraklık haritası oluşturmuştur [71]. Tümertekin (1955), yine 

De Martonne kuraklık izleme yöntemi ile 1930‒1951 yılları arası için indisin Türkiye 

coğrafyasındaki dağılımı üzerine bir kuraklık çalışması gerçekleştirmiştir [72].  

Erinç (1957), Türkiye’nin su ihtiyacı ve kuraklık problemi üzerine bir çalışma 

gerçekleştirmiştir. Kendisi tarafından geliştirilen ve yıllık toplam yağışların sıcaklığa 

oranlanması ile bulunan Erinç indisine göre çeşitli kuraklık sınıflandırmaları yapmıştır. 

Bu sınıflandırmalara göre de tüm Türkiye’nin kuraklık haritaları oluşturulmuştur [73]. 

Erdoğan (1989), Türkiye'nin altı büyük nehir havzasının 1938‒1988 yılları arasındaki 

yıllık deşarj verilerini analiz etmiştir. Analiz sonuçlarına göre 1954‒1955, 1960‒1961 

ve 1972‒1973 zaman dilimlerinde kuraklığın etkili olduğu rejimler görülmüştür. Ancak 

bu kurak rejimler çok kısa sürelerde ortaya çıkmıştır. Sadece 1970‒1974 döneminde 

tüm ülkeyi etkisi altına alan şiddetli ve uzun süreli bir kuraklık rejimi gözlenmiştir [74]. 

Türkeş (1996), Türkiye'deki 91 adet meteoroloji istasyonunun 1930‒1993 yıllarına ait 

aylık toplam yağış verilerini kullanarak yıllık yağış değişimlerinin mekânsal ve 

zamansal analizini yapmış ve aynı dönemde görülen meteorolojik kuraklığı incelemiştir. 

Yıllık ve mevsimsel yağış verilerine Mann-Kendall Sıra Korelasyon Testi uygulanmış 

olup yıllık yağışlarda belirgin bir azalma ve birçok zaman diliminde kurak periyotlarda 

artış görülmüştür [75]. 

Kömüşçü (1999), Türkiye’deki 40 farklı yağış istasyonunun 1940‒1997 yılları 

arasındaki yağış verilerine göre hesaplanan SYİ değerleri üzerinden bir kuraklık analizi 

yapmıştır. Her istasyon için kuraklık değerlendirmeleri yapılarak sonuçları ortaya 

konmuştur. Ayrıca farklı iklim rejimlerini barındıran istasyonlardan bazıları için 

kuraklık zaman serileri çizilmiştir [76].  
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Sırdaş ve Şen (2001), Türkiye'nin Marmara ve Trakya bölgelerindeki Edirne, İstanbul 

ve Kırklareli illerinin kuraklık özelliklerini belirlemek için 1931‒1991 dönemindeki 60 

yıllık yağış verilerine göre hesaplanan SYİ değerlerini kullanarak SYİ sınıflandırmasına 

göre illere ait kuraklık periyotlarını belirlemişlerdir. İstanbul ilinde SYİ=0 (normal 

kuraklık) değerinde 27,5 ay, SYİ=-1 (orta kuraklık) 6 ay, SYİ=-1,5 (şiddetli kuraklık) 4 

ay, SYİ=-2 (aşırı kuraklık) 2 ay olarak bulunmuştur [77]. 

Türkiye’de kuraklıkla ilgili yapılan çalışmalar içerisinde en kapsamlısı ve en çok 

referans gösterileni Sırdaş (2002)’a ait doktora tez çalışmasıdır. Bu çalışmada; 

Türkiye’nin kuraklık analizi, hem alansal hem de zamansal boyutta ele alınmıştır. 

Türkiye’nin farklı iklim kuşaklarında yer alan 60 adet istasyonun 1930‒1990 yılları 

arasındaki yağış, sıcaklık ve bağıl nem gibi hidrometeorolojik değişkenlerine ait veriler 

bu çalışmada dikkate alınmıştır. SYİ ile birlikte kuraklık oranı (KO) yaklaşımı ortaya 

atılmış olup Türkiye’nin farklı iklim bölgelerinde ocak, nisan, temmuz ve ekim ayları 

için kuraklık haritaları oluşturulmuştur. Bu kuraklık haritalarının yanı sıra hem 

istasyonlara ait yağışların istatistik değerlerine yönelik hem de nem ve sıcaklık 

değerlerine yönelik dağılım haritaları oluşturulmuştur [4]. 

Keskin ve ark. (2008), Isparta bölgesine ait istasyonlar için Meteoroloji Genel 

Müdürlüğünden (MGM) alınan yağış verilerini kullanarak SYİ yöntemi ile kuraklık 

analizi yapmışlardır. Kuraklık analizinden elde edilen değerlere bağlı olarak Göller 

bölgesi için yapay zekâ yöntemlerinden Yapay Sinir Ağları (YSA) ve Uyarlamalı 

Sinirsel Bulanık Çıkarım Sistemi (USBÇS) kullanılarak kuraklık tahmin modelleri 

geliştirilmiştir. YSA ve USBÇS sonuçları kullanılarak oluşturulan veri tabanı ile 

bölgenin SYİ kuraklık haritaları elde edilmiştir [78].  

Bacanli ve ark. (2009), Orta Anadolu’daki 10 adet yağış istasyonunun 1964–2006 yılları 

arasındaki aylık ortalama yağış verilerini kullanarak 1–12 aylık zaman ölçeklerinde SYİ 

kuraklık değerlerini tahmin etmeye çalışmışlardır. Uyarlamalı Sinirsel Bulanık Çıkarım 

Sistemi (USBÇS) tahmin modelinin SYİ için uygulanabilirliği araştırılmış olup İleri 

Beslemeli Sinir Ağları (İBSA) modelinde de SYİ değerleri eğitme ve teste tabi tutularak 

modeller karşılaştırılmıştır. Elde edilen sonuçlar, USBÇS’nin kuraklık tahminlerinde 

başarılı bir şekilde uygulanabileceğini ve yüksek doğruluk oranlarına sahip olduğunu 

göstermiştir [79]. 



31 

Doğan (2013), Konya Kapalı Havzasının kuraklık karakteristiklerini belirlemek için 

havzada bulunan 12 adet istasyonun 1972–2009 yılları arasındaki yağış verilerini 

kullanarak kuraklık analizi üzerine bir çalışma gerçekleştirmiştir. Çalışmada; 18 farklı 

zaman ölçeği için 6 farklı kuraklık indisini (Normal Yağış Yüzdesi (NYY), Yağış 

Kuyrukları (YK), Z-Skoru, Çin Z İndeksi (ÇZİ), Standartlaştırılmış Yağış İndeksi (SYİ) 

ve Efektif Kuraklık İndeksi (EKİ)) birbirleri ile karşılaştırarak havzadaki kuraklığın 

kategorizasyonu, süreleri ve genlikleri belirlenmiştir [29]. 

Yetmen (2013), yarı kurak bir iklim kuşağında bulunan Türkiye’deki yağışların 

zamansal ve mekânsal değişimi üzerinde dominant bir etkisi olan Kuzey Atlantik 

Salınımın (KAS) meteorolojik kuraklık ve bununla bağlantılı hidrolojik ve tarımsal 

kuraklık olaylarını da aynı ölçüde kontrol ettiğini ispatlamak için istatistik yöntemlere 

dayalı bir çalışma yapmıştır. 1975–2008 yılları arasında meydana gelen kuraklık 

olaylarının Türkiye’deki zamansal ve mekânsal dağılımını yaparak kuraklığın farklı 

zaman ölçekleri için hangi bölgelerde kalıcı olduğu belirlenmiş ve farklı kuraklık 

seviyelerine göre kuraklık şiddetinin ve olasılığının mekânsal dağılımı yapılmıştır [22]. 

Biçkici ve Kahya (2017), Konya Kapalı Havzasının doğusunda yer alan Niğde 

istasyonunun 1970–2014 yılları arasındaki 3 ve 6 aylık kuraklık koşullarını tahmin 

edebilmek için Lineer Genetik Programlama (LGP) modeli üzerine çalışmışlardır. 

Kuraklık göstergeleri olarak Güney Salınım İndeksi (GSİ) ve Palmer Kuraklık Şiddet 

İndisi (PKŞİ) kullanılmış olup 3 ve 6 aylık LGP kuraklık tahmin modelinin GSİ ile daha 

uyumlu olduğu ve daha başarılı sonuçlar verdiği ortaya konulmuştur [80]. 

Katip (2018), Bursa’nın 3, 6, 9 ve 12 aylık zaman ölçeklerindeki meteorolojik 

kuraklığını analiz edebilmek için SYİ değerlerini kullanmıştır. Bursa ilindeki 16 adet 

istasyonun 1984–2013 yılları arasındaki yağış verileri kullanılarak bölgedeki kuraklık 

incelenmiştir. Ayrıca meteorolojik değişkenler ve 12 aylık SYİ değerleri Yapay Sinir 

Ağlarında (YSA) modellenmiştir. YSA modelleri ile yapılan kuraklık tahminlerinin 

başarılı sonuçlar verdiği ortaya konulmuş olup YSA kuraklık tahmin modellerinin su 

kaynaklarının planlanmasında ve kuraklık risk yönetiminde oldukça önemli olacağı 

sonucuna varılmıştır [81]. 

Hezarani (2018), Yeşilırmak Havzasında 1970−2014 yılları arasındaki kuraklık 

durumunun belirlenmesi amacıyla 9 farklı kuraklık indisini kullanarak bir çalışma 
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gerçekleştirmiştir. 1, 3, 6, 12, 24, 36 ve 48 aylık zaman ölçekleri için her bir kuraklık 

indisi hesaplanmış ve YSA tahmin modelinde analiz edilmiştir. Elde edilen en güvenilir 

sonuçlara göre kuraklık haritaları oluşturulmuştur. Ayrıca 3 farklı akım gözlem 

istasyonu (AGİ) verileri kullanılarak, hesaplanan Akım Kuraklık İndisi (AKİ) değerleri 

için Levenberg Marquardt algoritması baz alınarak bir tahmin modeli oluşturulmuştur. 

SYİ’nin YSA modelleri başarılı sonuçlar vermişken AKİ için önerilen model başarılı 

olamamıştır [82]. 

Başakın ve ark. (2019), Kayseri Bölgesinde 116 yıllık yağış verilerinden makine 

öğrenme algoritmalarını kullanarak gelecekteki PKŞİ kuraklık değerlerini tahmin 

etmeye çalışmışlardır. Çalışmalarında; 1, 3 ve 6 aylık zaman ölçeklerinin kuraklık 

değerleri tahmin edilmiştir. Destek Vektör Makineleri (DVM) ve k-En Yakın Komşu 

(KEYK) algoritmaları kullanılarak, oluşturulan tahminlerin başarı oranı istatistiksel 

olarak değerlendirilmiştir. Bu çalışma, makine öğrenimi yöntemlerinin hidrolojik 

problemlerin çözümüne ve tahminine önemli bir katkı sağladığını göstermiştir [83]. 

Başakın ve ark. (2020), Adana ilinin meteorolojik kuraklığını tahmin edebilmek 

amacıyla 1, 3 ve 6 aylık gecikme zamanlarında kendinden kalibreli Palmer Kuraklık 

Şiddet İndisi (kb-PKŞİ) kullanarak kuraklık çalışması yapmışlardır. Tahmin modeli 

olarak Uyarlamalı Sinirsel Bulanık Çıkarım Sistemi (USBÇS) yöntemi ele alınmış olup 

ayrıca kb-PKŞİ kuraklık verileri Ampirik Mod Ayrıştırması (AMA) tekniği ile ön 

işlemeye tabi tutulmuştur. Bağımsız USBÇS tahmin modeli ile hibrit AMA-USBÇS 

tahmin modeli performans kriterlerine göre kıyaslanmış olup, hibrit AMA-USBÇS 

modeli çok daha üstün sonuçlar vermiştir [84]. 

Katipoğlu (2020), Fırat havzası ve çevresinde yer alan 16 adet Meteoroloji Gözlem 

İstasyonu (MGİ) ve 18 adet Akım Gözlem İstasyonu (AGİ) verilerini kullanarak 

meteorolojik ve hidrolojik kuraklıkların analizini yapmıştır. Bu çalışmada; çeşitli zaman 

periyotları için 5 farklı meteorolojik kuraklık indeksi ve 2 farklı hidrolojik kuraklık 

indeksi karşılaştırılmış ve ekstrem kuraklıklar belirlenmiştir. Kuraklıkların en yoğun 

görüldüğü yıllar için her bir kuraklık indeksine göre zamansal ve mekânsal kuraklık risk 

haritaları oluşturulmuştur [85]. 

Özger ve ark. (2020), Antalya ve Adana illerinin 1, 3 ve 6 aylık periyotları için 

kendinden kalibreli Palmer Kuraklık Şiddet İndisi (kb-PKŞİ) değerlerini tahmin etmek 
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için bir çalışma gerçekleştirmişlerdir. Bu çalışmada; Ampirik Mod Ayrıştırma (AMA) 

ve Dalgacık Dönüşümü (DD) ön işleme teknikleri ile birlikte bağımsız M5 model ağacı, 

Uyarlamalı Sinirsel Bulanık Çıkarım Sistemi (USBÇS) ve Destek Vektör Makine 

Regresyonu (DVMR) yöntemlerini kullanmışlardır. Modellerden elde edilen sonuçlara 

göre; DD tahminleri, AMA tahminlerinden daha doğru sonuçlar vermiştir ve uygun 

dalgacık tipinin seçilmesinin sonuçlar üzerinde önemli bir etkiye sahip olduğu 

görülmüştür [86]. 

Jalilzadnezamabad (2021), Türkiye’de Marmara Bölgesinde yer alan 10 adet istasyonun 

1960−2016 yılları arasındaki yağış verilerinden elde edilen Palmer Kuraklık Şiddet 

İndisi (PKŞİ) değerleri ile geleceğe dönük kuraklık tahmininde bulunabilmek için çeşitli 

modeller geliştirmiştir. 1−12 ay arasında değişen gecikme zamanları için oluşturulan bu 

modeller; bağımsız Bulanık Mantık (BM), k-En Yakın Komşu (KEYK) algoritması ve 

Destek Vektör Makineleri (DVM) modelleri ve dalgacık dönüşümü ile oluşturulan hibrit 

D-BM, D-DVM ve D-KEYK modelleridir. Hibrit dalgacık dönüşümlü modellerin 

özellikle 6 gecikme zamanındaki kuraklık tahmin becerileri dalgacıksız modellere göre 

oldukça iyi performanslar göstermiştir [87]. 

Duvan ve ark. (2021), Sakarya havzasında görülen meteorolojik kuraklığın zamansal ve 

alansal özelliklerine iklim değişikliğinin etkisini araştırmışlardır. Yapılan bu çalışmada; 

havzada bulunan istasyonlara ait aylık toplam yağış verileri ile Hadley Merkezi Küresel 

Çevre Modeli sürüm 2 (HadGEM2-ES) küresel iklim modelinin temsili konsantrasyon 

yolları (Representative Concentration Pathways-RCP) 4,5 ve 8,5 senaryoları ile elde 

edilen yağış projeksiyonu verileri kullanılmıştır. Kuraklık şiddetini belirlemek için SYİ, 

kuraklığın alansal dağılımını belirlemek için de Ters Mesafe Ağırlıklı Enterpolasyon 

Yöntemi (Inverse Distance Weighting-IDW) ve Kriging Enterpolasyon Yöntemi 

kullanılmıştır. Noktasal SYİ kuraklık değerleri alansal değerlere dönüştürülerek 

havzanın kuraklık haritaları oluşturulmuştur. Bu kuraklık haritaları üzerinden havzanın 

zamansal ve alansal özellikleri incelenmiştir. Ayrıca gözlemlenmiş yağış verileri ile 

elde edilen kuraklık şiddeti değerlerinin projeksiyon verilerine göre elde edilen 

değerlerden daha büyük olduğu görülmüştür [88]. 

Mehr ve ark. (2021), Ankara’nın 3 ve 6 aylık kısa dönem meteorolojik kuraklığını 

tahmin edebilmek için iki adet meteoroloji istasyonunun 46 yıllık yağış verilerini 
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kullanarak SYEİ sınıflandırmasına göre bir kuraklık çalışması yapmışlardır. Kuraklık 

tahmini üzerine yapılan bu çalışmada; yeni bir yaklaşım olarak hibrit dalgacık paketi-

genetik programlama modeli (DPGP) geliştirilmiştir. Modelin etkinliği otoregresif 

model (AR), Genetik Programlama (GP) ve Rastgele Orman (RO) modelleri ile çapraz 

doğrulanmış olup, önerilen bu hibrit modelin elde edilen sonuçlara göre oldukça 

gerçekçi bir tahmin modeli olduğu ortaya konmuştur. AR ve RO modellerinden oldukça 

üstün olan bu hibrit model, bağımsız GP’nın da tahmin performansını önemli ölçüde 

artırmıştır [89].  

Sekendur (2022), Türkiye’nin 81 il merkezine ait meteoroloji istasyonlarının 1980‒2019 

yılları arasındaki gözlem verilerini kullanarak; SYİ ile SYEİ indislerine göre 1, 6 ve 12 

aylık zaman ölçeklerinde kuraklık analizi üzerine bir çalışma yapmıştır. Bu çalışmada; 

SYİ yöntemi ile FAO-56 Penman-Monteith ve Hargreaves referans evapotranspirasyon 

metotlarıyla hesaplanan SYEİPM ve SYEİHG yöntemleri karşılaştırılmıştır. Modifiye 

Mann-Kendall testine göre kuraklık eğilimi ve Sen’in eğim metoduna göre eğim 

büyüklüğü analizleri, hem zamansal hem de mekânsal olarak yapılmıştır. Bu eğilim 

analizlerine göre Türkiye’nin farklı bölgelerinde hem artan hem de azalan kuraklık 

eğilimleri tespit edilmiştir. En fazla kurak periyot ise SYEİHG zaman serilerinde ikinci 

olarak da SYEİPM zaman serilerinde bulunmuştur [90]. 

Çıtakoğlu ve Coşkun (2022), mevcut tez çalışması kapsamında, Türkiye’nin 

kuzeybatısında yer alan Sakarya ilinin kısa dönem meteorolojik kuraklığını tahmin 

edebilmek amacıyla 1960−2020 yılları arasındaki aylık yağış verilerinden hesaplanan 1, 

3 ve 6 aylık zaman ölçekleri için SYİ değerlerini kullanarak hibrit makine öğrenmesi 

yöntemlerinde tahmin modelleri oluşturmuşlardır. Bu çalışmada; Yapay Sinir Ağları 

(YSA), Uyarlamalı Sinirsel Bulanık Çıkarım Sistemi (USBÇS), Gauss Süreç 

Regresyonu (GSR), Destek Vektör Makine Regresyonu (DVMR), k-En Yakın Komşu 

(KEYK) algoritması makine öğrenmesi yöntemleri kullanılmıştır. Orijinal SYİ kuraklık 

değerleri Ayrık Dalgacık Dönüşümü (ADD), Varyasyonel Mod Ayrıştırma (VMA) ve 

Ampirik Mod Ayrıştırma (AMA) ön işleme teknikleri ile alt serilerine ayrılarak makine 

öğrenmesi yöntemlerinde eğitme ve test verisi olarak dâhil edilip hibrit modeller elde 

edilmiştir. Bu şekilde oluşturulan hibrit modeller bağımsız makine öğrenmesi 

yöntemleri ile karşılaştırılmış olup, hibrit tahmin modelleri bağımsız modellere göre 

oldukça üstün sonuçlar vermiştir. Bundan dolayı ön işleme tekniklerinin tahmin 
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modellerinin başarısını artırmada çok önemli bir yaklaşım olduğu sonucuna ulaşılmıştır 

Ayrıca VMA ön işleme tekniği ADD ve AMA yöntemlerine göre de daha başarılıdır 

[91]. 

Latifoğlu (2022), Türkiye’deki Konya, Rize ve Şanlıurfa illerinin 3, 6, 9 ve 12 aylık SYİ 

kuraklık değerlerini 1 ve 3 ileri zamanları için tahmin etmeye çalışmıştır. Kuraklık 

tahmin çalışması için Uzun-Kısa Süreli Bellek (UKSB) ve Çift Yönlü Uzun-Kısa Süreli 

Bellek (ÇY-UKSB) derin sinir ağları kullanılmıştır. Elde edilen model sonuçlarına göre 

ÇY-UKSB tahmin modelinin daha üstün olduğu ve yüksek korelasyonlu tahminler 

verdiği ortaya konulmuştur [92]. 

Alkan (2022), Seyhan ve Ceyhan Havzalarındaki 14 adet istasyonun 1989−2020 yılları 

arasındaki yağış verilerini kullanarak 3, 4, 6 ve 12 aylık zaman ölçeklerinde SYİ ve 

SYEİ kuraklık değerlerinin tahminleri üzerine bir çalışma yapmıştır. Bu çalışmada; 

Ayrık Dalgacık Dönüşümü (ADD) ve Kalman Smooth Filtreleme (KSF) ön işleme 

teknikleri kullanılarak Yapay Sinir Ağları (YSA), Aşırı Gradyan Artırma (AGA), 

Destek Vektör Makinesi (DVM), Rastgele Orman (RO) ve k-En Yakın Komşu (KEYK) 

algoritması ile beş farklı hibrit tahmin modeli oluşturulmuştur. DVM ve Aşırı Gradyan 

Artırma hibrit modellerinin sırasıyla, diğer ön işleme ve filtreleme teknikleriyle 

oluşturulan hibrit modellere göre daha iyi performans göstermiş oldukları tespit 

edilmiştir [93]. 

Mehr ve ark. (2022), Ankara’daki Beypazarı ve Nallıhan çalışma bölgelerinin 3 ve 6 

aylık kısa dönem meteorolojik kuraklığını tahmin edebilmek amacıyla Evrişimli Sinir 

Ağları ve Uzun-Kısa Süreli Bellek (ESA-UKSB) olarak adlandırılan yeni bir akıllı derin 

öğrenme modelini önermişlerdir. Bu modelde istasyonların 1971−2016 yılları 

arasındaki yağış verilerinden hesaplanan SYEİ değerleri kullanılmıştır. Önerilen bu 

akıllı tahmin modelinin doğruluğu Yapay Sinir Ağları (YSA), Genetik Programlama 

(GP), Evrişimli Sinir Ağları (ESA) ve Uzun-Kısa Süreli Bellek (UKSB) modelleri ile 

karşılaştırılmıştır. ESA-UKSB tahmin modeli sonuçları, diğer tüm modellerden daha iyi 

performans göstermiştir [94]. 

Baykal ve ark. (2023), Isparta ilinin 1929−2021 yılları arasındaki aylık toplam 

yağışlarını kullanarak Uzun-Kısa Süreli Bellek (UKSB) yöntemi ile gelecek 10 yılda 

görülmesi muhtemel hem aylık yağışları hem de SYİ kuraklık değerlerini tahmin 
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etmeye çalışmışlardır. Gelecek 10 yılda görülmesi muhtemel yağışlarla SYİ değerlerinin 

eğilimleri, temsili konsantrasyon yolları (Representative Concentration Pathways-RCP) 

4,5 senaryosuna göre belirlenen yağış projeksiyonları ile karşılaştırılmıştır. Yapılan 

meteorolojik kuraklık tahminlerine göre yağış ve SYİ kuraklık değerlerinin senaryolarla 

benzer bir şekilde azalma eğiliminde olduğu görülmüştür [95]. 

1.5. Problem Durumu 

Önceki bölümlerde detaylı bir şekilde ele alındığı üzere iklim değişikliğine bağlı olarak 

son dönemlerde etkileri daha da artan kuraklık felaketi, dünyada ve ülkemizde en çok 

tartışılan konulardan biri haline gelmiştir. Doğu Akdeniz iklim kuşağında bulunan 

ülkemiz için yapılan birçok bilimsel çalışmada, 2030’lu yılların başından itibaren 

sıcaklıkların ciddi oranda artacağı, Doğu Karadeniz Bölgesi hariç yağışların önemli 

ölçüde azalacağı ve başta meteorolojik kuraklık olmak üzere ülkenin büyük bir 

kısmında kuraklığın bütün aşamalarının görüleceği öngörülmektedir. Çalışma alanımız 

olan Sakarya havzası, ülke nüfusunun yaklaşık %13’ünün yaşadığı ve büyük şehir 

merkezlerinin yer aldığı önemli bir havzadır. Farklı iklim koşullarının görüldüğü yarı 

kurak bir iklim rejimine sahiptir. Havzadaki kuraklık durumunu öngörebilmek adına 

kuraklığın ilk aşaması olan meteorolojik kuraklığın hangi aşamada olduğu henüz 

kapsamlı bir çalışma ile ortaya konulmamıştır. Meteorolojik kuraklığın doğru bir 

şekilde belirlenmesi ve gelecekteki durumunun öngörülmesi kuraklık felaketi ile 

mücadelenin de ilk aşaması olacağından oldukça önemlidir. Büyük bir nüfusa sahip olan 

ülkemizde şiddetli kuraklıkların görülmesi durumunda başta gıda olmak üzere birçok 

sektör olumsuz etkilenecek bu da ülke refahını düşürecektir. Bu nedenle kuraklığın 

tespiti, kategorize edilmesi, zamansal ve mekânsal analizi, geleceğe dönük tahminlerle 

birlikte çeşitli senaryo ve projeksiyonların oluşturulması, eylem planları hazırlanması ve 

erken uyarı sistemlerinin kurulması, ülkemiz için elzem bir konudur. Kuraklığın mevcut 

ve gelecekteki durumu iyi bir öngörü ve planlama ile değerlendirip bu doğal felaketin 

yıkıcı etkilerini azaltmak amacıyla gerçekçi politikalar üretmek hem araştırmacılar hem 

de kamu kurumları açısından oldukça önemlidir. Bu bağlamda kuraklığın hem bölgesel 

ölçekte hem de tüm ülke ölçeğinde kısa süreler içerisinde belirlenmesi ya da tahmin 

edilebilmesi için gelişen teknolojilerden yararlanmak gerekir. 
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Kuraklık koşullarının mevcut ya da gelecekte görülmesi muhtemel durumlarına yönelik 

birçok çalışma yapılmıştır. Kuraklıkla ilgili yapılan son dönem çalışmaları, klasik 

matematiksel denklemlerden yapay zekâ tekniklerine doğru kaymıştır. Son yirmi yıllık 

dönemde yapay zekânın alt kümesinde yer alan makine öğrenmesi (MÖ) yöntemleri ve 

son on yıllık dönemde ise yine yapay zekânın alt kümesinde yer alan derin öğrenme 

(DÖ) algoritmaları yaygın bir şekilde kullanılmaya başlanmıştır. Bilim ve teknoloji, 

ilerlemesine her geçen gün büyük bir hızla devam etmektedir. Kullanılan teknikler 

birbirinin eksiklerini tamamlayarak ya da birbiri ile bağlantılı çalışarak problemlerin 

çözümünde en iyi optimizasyonları sunmak için mücadele halindedir. En kısa zamanda, 

en az işlem yükü ile en doğru ve en güvenilir çözümleri sunan teknikler hem 

insanoğlunun işini kolaylaştırmakta hem de teknolojinin önünü açmaktadır. Bu 

bağlamda insanoğlu için hayati öneme sahip kuraklık gibi bir konuda kullanılan 

tekniklerin tahmin ve öngörü becerilerini daha da artırmak oldukça önemlidir.  

1.6. Araştırmanın Amacı 

Bu tez çalışmasında; Türkiye’nin kuzeybatısında yer alan ve önemli nehir havzalarından 

biri olan Sakarya havzasındaki kısa dönem meteorolojik kuraklık değerlerinin tahmin 

edilmesi amaçlanmıştır. Havzanın bütününü temsil edecek şekilde seçilen 10 adet 

meteoroloji istasyonunun uzun yıllara ait aylık yağış verilerinden hesaplanacak olan 

Standartlaştırılmış Yağış İndeksinin (SYİ) 1, 3, 6 ve 12 aylık zaman ölçeklerindeki 

değerleri tahmin modellerinde kullanılacaktır. SYİ kuraklık değerlerinin %75’i eğitme, 

%25’i ise test verisi olarak kuraklık tahmin modellerinde giriş verisi olarak 

kullanılacaktır. Kuraklık tahmin modellerinde bağımsız modeller olarak Yapay Sinir 

Ağı (YSA), Uyarlamalı Sinirsel Bulanık Çıkarım Sistemi (USBÇS), Destek Vektör 

Makine Regresyonu (DVMR), Gauss Süreç Regresyonu (GSR) ve Uzun-Kısa Süreli 

Bellek (UKSB) makine öğrenmesi yöntemleri ele alınacaktır. Bu yöntemlere Ayrık 

Dalgacık Dönüşümü (ADD), Varyasyonel Mod Ayrıştırma (VMA) ve Ampirik Mod 

Ayrıştırma (AMA) ön işleme teknikleri dâhil edilerek hibrit modeller elde edilecektir. 

Oluşturulan tüm bu modellerin kuraklık tahminindeki başarılarının performans 

kriterlerine göre birbiri ile karşılaştırılması sonucu en doğru ve güvenilir yöntemin 

belirlenmesi amaçlanmaktadır. 
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1.7. Araştırmanın Önemi 

Sakarya havzası farklı iklim özellikleri ve yağış rejimlerini bir arada bulunduran yarı 

kurak bir havzadır. Bu nedenle havzadaki mevcut yağış normallerinin ve kısa 

dönemlerde görülebilecek muhtemel meteorolojik kuraklıkların iyi analiz edilmesi, 

kuraklığın ileriki aşamalarında karşılaşılan etkileri önlemek adına oldukça önemlidir. 

Çalışma alanımız olan Sakarya havzasında daha önceden meteorolojik kuraklık analizi 

ve tahminleri üzerine kapsamlı bir çalışma yapılmamıştır. Havzada mevcut durum ile 

gelecekte görülmesi muhtemel kuraklık durumları için bütüncül bir kuraklık öngörüsü 

yapılabilmesi adına bu çalışma önemlidir. Kuraklık tahmini ile ilgili çalışmalarda 

genellikle bir ya da iki yöntem ele alınmıştır. Bu da yöntemlerin tahmin becerilerinin 

kıyaslanmasında bir eksiklik olarak görülmüştür. Bu çalışmada; daha önceden kuraklık 

tahminlerinde başarılı sonuçlar veren dört farklı makine öğrenmesi yöntemine ek olarak 

henüz yaygın bir kullanımı olmayan ve derin öğrenme yöntemlerinden biri olan Uzun-

Kısa Süreli Bellek (UKSB) yöntemi de kullanılmıştır. Ayrıca hidrometeorolojik zaman 

serilerinin analizlerinde önemli yaklaşımlardan biri olan veri ön işleme uygulaması da 

üç farklı yöntemle ele alınarak çalışmanın kapsamı artırılmıştır. Literatürdeki 

çalışmaların birçoğunda Ayrık Dalgacık Dönüşümü (ADD) başta olmak üzere tek bir 

veri ön işleme tekniği kullanılmaktadır. Bu çalışmada ise ADD ile birlikte Varyasyonel 

Mod Ayrıştırma (VMA) ve Ampirik Mod Ayrıştırma (AMA) ön işleme teknikleri de 

kullanılmıştır. VMA ve AMA yöntemleri genellikle bilgisayar, haberleşme, elektronik, 

tıp ve biyomedikal gibi alanlarda daha sık kullanılmaktadır. Hidrometeorolojik tahmin 

çalışmalarında VMA ve AMA yöntemleri daha yeni yeni kullanılmaya başlanmıştır. 

Ayrıca bu üç ön işleme tekniği ile ilgili birçok farklı ve kapsamlı kombinasyonlar 

(dalgacık ailesi, bant seviyeleri, gecikme zamanları vb.) denenerek en optimum tahmin 

sonuçlarına ulaşılmaya çalışılmıştır. ADD, VMA ve AMA yöntemleri ile alt bantlarına 

ya da alt serilerine ayrılan orijinal veriler makine öğrenmesi ve derin öğrenme 

yöntemlerine entegre edilerek hibrit tahmin modelleri oluşturulmuştur. İstasyon 

sayısının çokluğu, uzun dönem verilerin kullanılması, dört farklı zaman ölçeği, beş 

farklı yöntemin ve üç farklı ön işleme tekniğinin ele alınması ve birçok farklı model 

kombinasyonları ve parametrelerinin dikkate alınması nedenleriyle, mevcut tez 

çalışması kuraklık tahmini ile ilgili literatürde önemli bir yere sahip olacaktır. 
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2. BÖLÜM  

MATERYAL VE YÖNTEM 

2.1.  Materyal 

2.1.1.  Çalışma Alanı 

Bu çalışmada ele alınan alan, Türkiye’nin 25 nehir havzasından biri olan Sakarya 

havzasıdır. Sakarya havzası, Türkiye’nin kuzeybatısında yer almakta olup 63.303 

km2’lik bir yağış alanı ile Türkiye yüzölçümünün (779.450 km2) 1/8’ni oluşturmaktadır 

[96]. Marmara, Susurluk, Akarçay, Konya kapalı havzası, Kızılırmak ve Batı Karadeniz 

havzaları ile komşudur. Şekil 2.1’de Sakarya havzasının konumu gösterilmiştir. 

 
Şekil 2.1. Sakarya havzasının Türkiye’deki konumu 
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Havzaya ismini de veren Sakarya nehri, Kızılırmak ve Fırat nehirlerinden sonra 720 

km’lik uzunluğu ile Türkiye'nin üçüncü en uzun, Kuzeybatı Anadolu’nun ise en büyük 

akarsuyudur. Su potansiyeli olarak Türkiye’deki akarsuların %3,4’nü oluşturan Sakarya 

nehri, 6,4 109 m3/yıl ortalama yıllık akışa sahiptir [97]. Porsuk çayı, Ankara çayı, 

Karasu çayı, Göksu çayı, Porsuk çayı ve Mudurnu çayı Sakarya nehrinin önemli yan 

kollarındandır. Sakarya havzası; Göksu alt havzası, Ankara alt havzası, Porsuk alt 

havzası, Yukarı Sakarya alt havzası, Orta Sakarya alt havzası ve Aşağı Sakarya alt 

havzası olmak üzere 6 adet alt havzaya ayrılmıştır. Şekil 2.2’de Sakarya havzasının alt 

havzaları gösterilmiştir. 

 
Şekil 2.2. Sakarya havzasının alt havzaları 

Sakarya havzası sınırları içerisinde Eskişehir, Sakarya ve Bilecik il sınırlarının tamamı 

Kütahya, Ankara, Konya, Bursa, Afyonkarahisar, Bolu, Kocaeli, Uşak, Çankırı ve 

Düzce illerinin ise bir kısmı yer almaktadır. Görüldüğü gibi Türkiye’nin başkenti olan 

Ankara da dâhil olmak üzere gelişmiş ve gelişmekte olan şehirler havza içerisinde yer 

almaktadır. Türkiye İstatistik Kurumunun (TÜİK) 2020 yılı verilerine göre havzanın 

nüfusu 8.635.894 kişi olup bu sayı Türkiye nüfusunun %10,4’üdür [98]. 
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Geniş bir alana sahip olan Sakarya havzasında, çok farklı iklim tipleri görülmektedir. 

Yükseltilerin fazla olduğu Yukarı Sakarya alt havzasının güney kesimlerinde, Orta 

Sakarya havzasının doğu kesimlerinde ve Ankara alt havzasının büyük bir kısmında İç 

Anadolu’nun tipik karasal iklimi görülmektedir. Bu kesimlerde yazlar sıcak ve kurak, 

kışlar ise soğuk ve özellikle kar yağışlı geçer. Ankara alt havzasının kuzey 

kesimlerinde, Orta Sakarya havzasının kuzey ve kuzeydoğu kesimlerinde ve Aşağı 

Sakarya alt havzasının Karadeniz’e komşu kesimlerinde Karadeniz iklimi 

görülmektedir. Bu kesimlerde yazlar sıcak, kışlar ise ılık ve bol yağışlı geçmekte olup 

genellikle kurak mevsimler görülmemektedir. Porsuk alt havzası; Marmara ve Ege 

Bölgelerinin ılımlı iklim koşullarından İç Anadolu’nun karasal iklim koşullarına geçiş 

bölgesindedir. Bu havzada yazlar sıcak ve kurak, kışlar ise soğuk ve yağışlıdır. Göksu 

alt havzası ise Porsuk alt havzasının tersine karasal İç Anadolu iklim koşullarından 

yağışlı Marmara iklim koşullarına geçiş bölgesindedir. Yağış ortalamaları tüm havzanın 

bütününden fazladır. Bu havzada yazlar sıcak ve az yağışlı, kışlar ise biraz soğuk ve bol 

yağışlıdır.  

Farklı iklim tiplerinin görülmesinden dolayı Sakarya havzasındaki yağış rejimleri de 

farklılıklar göstermektedir. Karasal iklimin hâkim olduğu kesimlerde kış aylarında 

özellikle kar yağışları yoğun iken yaz aylarında az yağış görülmektedir. Düşük 

yüksekliklere sahip havzanın aşağı kesimlerinde özellikle Karadeniz ikliminin etkili 

olduğu yerlerde ise hemen hemen tüm mevsimlerde yağmur şeklinde yağışlar 

görülmektedir. Havzanın yıllık yağış yüksekliği ortalaması yaklaşık 552 mm 

(1991−2020 yılları arası Türkiye ortalaması 573,40 mm)’dir. Havzanın büyük bir kısmı 

karasal İç Anadolu ikliminin etkisinde olduğundan dolayı görüldüğü üzere yağış 

ortalaması Türkiye ortalamasının altındadır. Uzun yıllar ölçümleri maksimum yağış 

değerlerine göre en yüksek yağış 127,70 mm olarak haziran ayında Sakarya MGİ’de, en 

düşük maksimum yağış değeri ise 6,20 mm ile ağustos ayında Gölbaşı MGİ’de 

ölçülmüştür. Sakarya havzasının uzun yıllar sıcaklık değerleri, yüksek rakımlı 

kesimlerden düşük rakımlı özellikle Sakarya ili civarına inildikçe artış göstermektedir. 

Uzun yıllar ortalama sıcaklık değerlerine göre, en soğuk ay ocak dönemi olurken, 

temmuz ayı en yüksek sıcaklıkların ölçüldüğü dönemdir. Uzun yıllar minimum sıcaklık 

değeri, Eskişehir’de ocak ayında -28°C olarak ölçülürken, uzun yıllar maksimum 

sıcaklık değeri ise Sakarya’da temmuz ayında 44⁰C olarak ölçülmüştür. 
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Sakarya havzasının ortalama yükseltisi 965 m’dir. Havzanın yükseltileri Aşağı Sakarya 

alt havzasının Karadeniz kıyılarında sıfır kotlarından başlar ve Göksu alt havzasında yer 

alan Uludağ’da 2.543 m’lik yükseltiye kadar ulaşmaktadır. Uludağ (2.543 m), Sultan 

dağları (2.400 m), Emir dağları (2.280 m), Türkmen Dağı (2.181 m), Köroğlu Dağı 

(2.378 m) ve Domaniç dağları (1.794 m) havzadaki önemli dağlardır. Ayrıca havzada 

eğimler yüksek olmadığından geniş düzlükler ve ovalar görülür. 

2.1.2. Veri Temini ve Seçimi 

Çalışmada kullanılacak olan yağış verileri, Meteoroloji Genel Müdürlüğünden (MGM) 

temin edilmiştir. Havza sınırları içerisinde geçmişten günümüze kadar farklı kurumların 

işlettiği yaklaşık 90 kadar yağış ölçümü yapan istasyon açılmıştır. Bu istasyonların bir 

kısmı daimi olarak bir kısmı ise ihtiyaca binaen kısa süreli olarak açılmıştır. Mevcut 

durumda bu istasyonların büyük bir kısmı kapalı durumdadır. Çalışmada kullanılacak 

olan istasyonların seçiminde; özellikle havzayı temsil etmesi, uzun dönem ölçümlerinin 

olması, eksik verinin olmaması ve ölçümlerin güncel olmasına dikkat edilmiştir. Şekil 

2.3’te çalışmada kullanılacak meteoroloji gözlem istasyonlarının (MGİ) havzadaki 

konumları gösterilmiştir. 

 
Şekil 2.3. Meteoroloji gözlem istasyonlarının (MGİ) havzadaki konumları 
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Tez çalışmasında; havzada yer alan 10 adet meteoroloji gözlem istasyonuna (MGİ) ait 

uzun dönem aylık yağış verileri kullanılacak olup bu verilerden de 1, 3, 6 ve 12 aylık 

zaman ölçekleri için SYİ kuraklık değerleri hesaplanacaktır. Veri setinin uzun olması 

makine öğrenmesi ve derin öğrenme yöntemlerinin geçmiş verileri daha iyi öğrenme ve 

genelleme yetenekleri açısından oldukça önemlidir. Bu yüzden olabildiğince gözlem 

aralığı büyük olan istasyonlar seçilmiştir. Çalışmaya dâhil edilen istasyonlara ait başlıca 

karakteristik bilgiler Tablo 2.1’de verilmiştir.  

Tablo 2.1. Meteoroloji gözlem istasyonları (MGİ) karakteristik bilgileri 

Kurum İstasyon 

No 

İstasyon 

Adı 

Rakım 

(m) 

Gözlem 

Aralığı 

Enlem Boylam Yıllık Ort. 

Yağış Yük. 

(mm) 

MGM 17069 Sakarya 30 1960−2021 40°76' 30°39' 847,40 

MGM 17130 Ankara  887 1960−2021 39°97' 32°86' 411,50 

MGM 17155 Kütahya 969 1960−2021 39°41' 29°98' 567,02 

MGM 17070 Bolu 743 1960−2017 40°44' 31°36' 552,25 

MGM 17752 Emirdağ 983 1964−2012 39°00' 31°14' 410,20 

MGM 17728 Polatlı 886 1964−2012 39°58' 32°16' 363,47 

MGM 17662 Geyve 100 1960−2012 40°52' 30°29' 644,06 

MGM 17832 Ilgın 1036 1968−2012 38°27' 31°89' 420,00 

MGM 17726 Sivrihisar 1070 1960−2012 39°44' 31°53' 412,60 

MGM 17798 Yunak 1148 1971−2012 38°82' 31°72' 450,17 

 

Tablo 2.1’den görüleceği üzere seçilen istasyonların yükseltileri 30 m ile 1148 m 

arasında değişmektedir. İstasyonlar arasında yağış potansiyelinin en yüksek olduğu 

istasyon 847,40 mm yıllık ortalama yağış yüksekliği ile Sakarya MGİ’dir. En düşük 

yağış yüksekliği ise 363,47 mm ile Polatlı MGİ’dir. Çalışmada seçilen bu 10 adet 

MGİ’nin yıllık ortalama yağış yüksekliği ise 507,87 mm’dir. Sakarya, Ankara, Kütahya 

ve Bolu il merkezlerinde yer alan MGİ’lerin gözlem aralığı oldukça uzun ve günceldir. 

Diğer istasyonlar da hem havzayı temsil özelliği hem de gözlem aralıklarının uzun 

olması nedeniyle seçilmiştir. Şekil 2.4−2.7’de Sakarya, Ankara, Kütahya ve Bolu MGİ 

gibi büyük istasyonların yıllık toplam yağış grafikleri verilmiştir. Diğer istasyonların 

yıllık toplam yağış grafikleri ise eklerde verilmiştir. 



44 

 
Şekil 2.4. Sakarya MGİ 1960−2021 dönemi yıllık toplam yağışlar grafiği 

 
Şekil 2.5. Ankara MGİ 1960−2021 dönemi yıllık toplam yağışlar grafiği 

 
 Şekil 2.6. Kütahya MGİ 1960−2021 dönemi yıllık toplam yağışlar grafiği 

 
Şekil 2.7. Bolu MGİ 1960−2017 dönemi yıllık toplam yağışlar grafiği 
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2.2. Yöntem 

2.2.1.  Homojenlik ve Durağanlık Analizleri  

Bir rastgele değişkenin belli bir gözlem periyodu içerisinde zamana bağlı ardışık olarak 

kaydedilmesi ile elde edilen ve sayısal büyüklükleri temsil eden serilere zaman serileri 

denilmektedir [99, 100]. Yağış, sıcaklık, buharlaşma, nem, rüzgâr gibi iklim 

değişkenleri ve bu değişkenlerden etkilenerek meydana gelen taşkın ya da kuraklık gibi 

olaylara ait seriler ise iklimsel zaman serilerini oluşturur. Bu tarz serilerin farklı 

amaçlarda kullanılmak üzere kurum-kuruluşlar ya da araştırmacılar tarafından kayıtları 

tutulur. Veri tabanında uzun dönemler boyunca kayıtları tutulan bu serilerin 

dağılımlarında görülen ekstrem sapmalar ya da değişimler yalnızca iklim değişkenlerine 

bağlı olursa yani doğal yollarla meydana gelirse bu serilere homojen iklim serileri 

denilmektedir. Serilerin homojenliği istatistiksel kriterlerle (standart sapma, varyans, 

medyan, çarpıklık ya da basıklık katsayıları vb.) yakından ilgilidir. Bu kriterler zaman 

serisi boyunca gözlenen trendleri, sapmaları ya da değişimleri gösterdiklerinden dolayı 

oldukça önemlidir. Ölçümlere bilerek ya da bilmeyerek yapılan müdahaleler, kayıt 

hataları, istasyon yerinin değiştirilmesi, ölçüm yönteminin değiştirilmesi, ölçüm 

aletlerindeki hatalar ya da kalibrasyon eksikliği ve çevresel etkiler gibi etmenler 

serilerin homojenliğini bozmaktadır. İklimsel zaman serilerinin homojenliği her tür 

analiz ve test sonucunun doğruluğunu ve güvenilirliğini artırmaktadır. Homojen 

olmayan serilerin varlığı analiz ve test sonuçları üzerinde kuşku bırakır. Eğer veri 

setinde homojen olmayan serilerin varlığı tespit edilirse analizlerde bu verilerin 

kullanılması doğru değildir. Böyle bir durumda homojen olmayan veriler ya homojen 

hale getirilmeli ya da veri setinden çıkartılmalıdır [101].  

Homojenlik gibi durağanlık da iklimsel zaman serilerinin analizinde önemli bir 

göstergedir. Seriyi oluşturan temel etmenlerin ve sürecin zamanla değişmediği 

varsayımına dayanır. Durağanlık süreci, bir serinin ortalamasının ve varyansının 

zamanla değişmeyerek sabit kaldığı ve iki dönem arasındaki kovaryansının da 

zamandan bağımsız olarak sadece dönemler arasındaki gecikmeye bağlı olduğu bir 

süreçtir. Durağan özelliğindeki bir zaman serisi kendi ortalaması çevresinde ve sabit 

genişlikte salınımlar göstermektedir [102]. Durağanlık özelliği göstermeyen iklimsel 
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zaman serilerinin analizleri güvenilir olmayacağından bu seriler durağan hale getirilmeli 

ya da analizlerde kullanılmamalıdır. 

Zaman serileri ile ilgili analizler, serilerin geçmiş dönem kayıtlarını kullanarak hem 

istatistiksel özelliklerini hem de seriyi oluşturan süreci ortaya koyar ve böylece serinin 

gelecekteki muhtemel durumlarının öngörülebilmesini ya da tahmin edilebilmesini 

sağlar. Bu tez çalışmasında ele alınan kuraklık analizinde de yağış değişkenine bağlı 

iklimsel zaman serileri kullanılacağından dolayı homojenlik, durağanlık ve bağımsızlık 

analizleri üzerinde durulmuştur.  

2.2.1.1. Homojenlik, Durağanlık ve Bağımsızlık Testleri 

Homojenlik testleri doğrudan ve dolaylı olmak üzere iki ana başlıkta toplanır. Verilerin 

elde edilmesi ve kayda alınması aşamalarında bilinen bir sebebe (istasyon yerinin 

değiştirilmesi, ölçüm tekniğinin değişmesi gibi) dayalı olarak veri setindeki sapmalara 

ya da değişikliklere yönelik yapılan düzeltmeler için doğrudan homojenlik kontrolü 

yapılabilir. Bilinmeyen sebeplerden dolayı veri setinin homojenliğinin kaybolması 

durumunda ise dolaylı homojenlik kontrolleri yapılmaktadır. Dolaylı homojenlik testleri 

mutlak ve göreceli testler diye ikiye ayrılır. Göreceli homojenlik testlerinde, iklimsel 

zaman serilerinin analizleri yapılırken ana istasyona komşu durumunda bulunan ve 

homojen olduğu bilinen başka bir istasyonun verileri kullanılmaktadır. Mutlak 

homojenlik testlerinde ise sadece ele alınan istasyonun verileri kullanılmaktadır [103]. 

Komşu istasyonlar arasında yüksek bir korelasyon varsa göreceli homojenlik testleri 

kullanılmasında sakınca yoktur. Ancak birbirine yakın olmayan, benzer fiziksel 

özellikleri taşımayan ve komşu istasyonun homojenliği ile ilgili tereddütler bulunan 

durumlarda göreceli testler homojenliği tespit etmekte başarısız olabilmektedir. Bu 

nedenle analizlerin daha doğru ve güvenilir olması amacıyla mutlak homojenlik 

testlerini kullanmak gerekir [104]. Literatürde yaygın bir şekilde kullanılan ve 

güvenilirliğini kanıtlamış mutlak homojenlik testleri ise şunlardır: Standart Normal 

Homojenlik (SNHT), Von Neumann Testi (VNT), Pettitt Testi, Mann-Whitney u Testi 

(MWT), Buishand Aralık Testi ve Çift Toplam Eğri Yöntemi. Bu testlerden SNHT, 

Pettitt Testi, MWT ve Buishand Aralık Testi hesaplanan istatistiklerin veri sayısına göre 

belirlenen kritik seviyelerin üstünde olması durumunda seride bir kırılma (değişim) 

noktasının olduğunu ve homojenlik durumunun bulunmadığını gösterir. Çift Toplam 
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Eğri Yöntemi, zaman serisindeki birbirinden farklı ve tutarsız dönemleri tespit ederek 

kırılma olmamasını sağlayan bir yöntemdir. Ayrıca bu yöntemle homojen olmayan 

zaman serilerindeki hatalar düzeltilerek homojen hale getirilebilmektedir. VNT ise 

sadece homojen olmama durumunu gösterir [105]. 

Durağanlık durumunun kontrolü için kullanılan en yaygın testler; birim kök analizinin 

geliştirilmiş hali olan Genişletilmiş Dickey-Fuller Testi (GDFT), Phillips-Perron Testi 

ve KPSS testidir. Ayrıca bazı durağanlık analizlerinde grafik yöntem, korelogram ve 

otokorelasyon fonksiyonları da kullanılmaktadır. Bahsedilen testlerden KPSS 

(Kwiatkowski-Phillips-Schmidt-Shin testi) testinde serilerin durağanlığı trende göre 

değerlendirilmekte olup tez çalışması kapsamında trend analizlerinin bulunmaması 

nedeniyle bu teste yer verilmemiştir. Phillips-Perron Testi de GDFT ile çok benzer 

olduğundan çalışmada kullanılmamıştır. Otokorelasyon fonksiyonu ise kuraklık zaman 

serilerindeki otokorelasyon varlığının araştırılması ve gecikme zamanlarının 

belirlenmesi aşamasında ayrıca ele alınacaktır. 

Bu tez çalışmasında; homojenlik analizi için Standart Normal Homojenlik Testi 

(SNHT), Von Neumann Testi (VNT), Mann-Whitney u Testi (MWT) ve durağanlık 

analizi için ise Genişletilmiş Dickey-Fuller Testi (GDFT) kullanılmıştır. Bu yöntemler 

literatürde çok yaygın bir şekilde kullanılmaktadır [106, 107, 108, 109]. Belirtilen bu 

testler meteorolojik kuraklık tahmini ile ilgili bu tez çalışmasının tek parametresi olan 

aylık ortalama yağış verilerine uygulanmıştır.   

2.2.1.1.1. Standart Normal Homojenlik Testi (SNHT) 

İklimsel zaman serilerinin ele alındığı birçok çalışmada kullanılan ve güvenilirliği 

kanıtlanan SNHT, Alexandersson (1986) tarafından geliştirilmiştir. n yıllık zaman serisi 

içerisinde bir “k” noktası referans noktası olarak alınır ve seri ikiye bölünür. Zaman 

serisinin ilk “k” yılının ortalaması ile son “n-k” yılının ortalamasının karşılaştırması 

yapılır ve test istatistiği olan 𝑇(𝑘) değeri hesaplanır.   

𝑇(𝑘) = 𝑘𝑧1̅
2 + (𝑛 − 𝑘)𝑧2̅

2    𝑘 = 1, 2, 3, … … , 𝑛          (2.1) 

Bu denklemde yer alan 𝑧1̅ ve 𝑧2̅ ifadeleri aşağıda yer alan eşitliklerle hesaplanır. 

𝑧1̅ = 
1

𝑘
∑  (𝑌𝑖 − 𝑌̅)𝑘

𝑖=1 /𝑠               (2.2) 
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𝑧2̅ = 
1

𝑛−𝑘
∑  (𝑌𝑖 − 𝑌̅)𝑛

𝑖=𝑘+1 /𝑠               (2.3) 

Eşitlik 2.1’de verilen 𝑧1̅ ve 𝑧2̅ ifadeleri sırasıyla ilk k ve son n-k yılları boyunca 𝑧𝑖’nin 

ortalama değerleridir. Eşitlik 2.2 ve 2.3’te yer alan 𝑌̅ gözlem değerlerinin ortalamasını, 

𝑌𝑖 her bir yıl için gözlem değerlerini ve s ise standart sapmayı temsil etmektedir. Seride 

k yılında bir kırılma (değişim) meydana gelirse bu k yılında test istatistiği olan 𝑇(𝑘) en 

büyük değerine ulaşır. Bu durumda nihai test istatistiği olan 𝑇0 aşağıda verilen eşitlik ile 

bulunur. 

𝑇0 = 𝑚𝑎𝑘𝑠1≤𝑘≤𝑛𝑇𝑘              (2.4) 

Seride yer alan bütün 𝑌𝑖̅ değerlerinin benzer bir dağılımdan geldiği kabulü ile yapılan 

sıfır hipotezi 𝑇0 değerinin belirli bir limit değeri aşması halinde reddedilir ve zaman 

serisinin homojen olmadığı sonucuna varılır (H0=veriler homojendir). SNHT’nin 𝑇0 test 

istatistiği ile ilgili kritik limit değerleri Wijngaard ve ark. (2003) tarafından %99 ve %95 

güven aralıklarında değerlendirilerek tablo haline getirilmiştir [103, 110]. Tablo 2.2’de 

SNHT kritik limit değerleri verilmektedir. 

Tablo 2.2. SNHT %99 ve %95 güven aralıklarına göre belirlenen 𝑇0 limit değerleri 

n 20 30 40 50 70 100 

%99 9,11 10,15 10,77 11,19 11,73 12,22 

%95 6,95 7,65 8,10 8,45 8,80 9,15 

 

2.2.1.1.2. Von Neumann Testi (VNT) 

Von Neumann (1941) tarafından geliştirilen bu homojenlik testi, zaman serisindeki 

kırılma (değişim) noktasını tespit etmek yerine serinin homojen olup olmaması 

durumuna bakar. H0 hipotezi veri setinin dağılımının homojen olduğunu gösterir. N 

yıllık bir seride ardışık farkların kareleri toplamının varyansa oranını kullanır. NVN test 

istatistiği değeri aşağıdaki eşitlik ile bulunur. 

𝑁𝑉𝑁 = ∑ (𝑌𝑖 − 𝑌𝑖+1)2𝑛−1
𝑖=1 / ∑ (𝑌𝑖 − 𝑌̅)2𝑛

𝑖=1            (2.5) 

Eşitlik 2.5’teki 𝑌𝑖 ifadesi n. yıla kadarki serideki gözlem değerlerini, 𝑌̅ ifadesi ise serinin 

ortalamasını temsil eder. Eğer 𝑁𝑉𝑁=2 ise bu teste tabi tutulan zaman serisinin homojen 
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olduğunu gösterir. Eğer 𝑁𝑉𝑁 değeri 2’nin üzerinde değerler aldıysa bu serinin hızlı 

kırılma, salınım ya da değişime sahip olduğunu gösterir. 

VNT homojenlik kontrolünde; 𝑁𝑉𝑁 değeri, kritik limit değerini aşarsa H0 hipotezi kabul 

edilir. VNT’nin kritik limit değerleri ile ilgili Buishand (1981) bir çalışma 

gerçekleştirmiş ve bu limit değerlerini tablo haline getirmiştir [21, 103, 111]. Tablo 

2.3’te VNT kritik limit değerleri verilmektedir. 

Tablo 2.3. VNT %99 ve %95 güven aralıklarına göre belirlenen 𝑁𝑉𝑁 limit değerleri 

n 20 30 40 50 70 100 

%99 1,04 1,20 1,29 1,36 1,45 1,54 

%95 1,30 1,42 1,49 1,54 1,61 1,67 

 

2.2.1.1.3. Mann-Whitney u Testi (MWT) 

Zaman serisinin aynı olasılık dağılımından gelip gelmediğini nicel olarak belirlemek 

amacıyla kullanılan parametrik olmayan bir homojenlik testidir. Mann ve Whitney 

(1947) tarafından geliştirilen bu testte temel koşul, serilerin hem kendi içinde hem de alt 

seri grupları arasında bağımsızlık koşulunu yerine getirmesidir [112]. İlk olarak n adet 

elemana sahip orijinal zaman serisi, yaklaşık aynı uzunlukta p ve q adet alt serilere 

ayrılır. Daha sonra orijinal zaman serisi, küçükten büyüğe doğru dizilerek elemanlara 

sıra numarası verilir. Değerleri eşit olan elemanlar gözlendiği takdirde, bunların her 

birinin sıra numarası, sıra numaralarının ortalaması olarak alınır. p adet elemana sahip 

ilk grup serisindeki elemanların orijinal serideki sıra numaralarının toplamı 𝑅𝑀𝑊1, q 

adet elemana sahip ikinci grup serisindeki elemanların orijinal serideki sıra 

numaralarının toplamı ise 𝑅𝑀𝑊2 olarak ifade edildiğinde 𝑉 ve 𝑊 test istatistik değerleri 

aşağıdaki eşitlikler ile bulunur. 

𝑉 = 𝑅𝑀𝑊1 − [𝑝. (𝑝 + 1)]/2            (2.6) 

𝑊 = 𝑅𝑀𝑊2 − [𝑞. (𝑞 + 1)]/2            (2.7) 

Eşitlik 2.6 ile 2.7’den elde edilen 𝑉 ve 𝑊 test istatistik değerlerinden minimum olanı 

nihai Mann-Whitney u test istatistiği olarak kabul edilmektedir. Serideki eleman sayısı 

20’den fazla olduğunda u test istatistiği, klasik normal dağılıma uyan bir rastgele 
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değişken olarak kabul edilmektedir. Normal dağılımla hesaplanan u test istatistiğinin Z 

mutlak değeri, α/2 aşılma olasılığına karşılık gelen Zkr değerinden küçük ise seri 

homojen olup diğer testlerde olduğu gibi H0 hipotezi kabul edilmektedir [107, 113].  

2.2.1.1.4. Genişletilmiş Dickey-Fuller Testi (GDFT) 

Genişletilmiş Dickey-Fuller Testi (GDFT), zaman serilerinin durağanlığını 

değerlendirmek amacıyla yaygın olarak kullanılan bir test yöntemidir. Zaman 

serilerindeki durağanlık, serinin karakteristik özelliklerini temsil eden denklemin 

köklerine bağlı olarak değişir. Karakteristik denklemin kökleri mutlak değer olarak 

1’den küçükse zaman serisi durağandır. Denklemin köklerinin mutlak değer olarak 1 

olması durumuna ise Birim Köklü Zaman Serisi denir ve zaman serisinin durağanlığı 

açısından istenilen bir durum değildir. Birim köklü zaman serileri üzerine ilk çalışmalar, 

Dickey ve Fuller (1979) tarafından önerilmiş olup sonraki dönemlerde geliştirilmiştir. 

Dickey ve Fuller (1979), birim kök üzerine yaptıkları ilk çalışmada otokorelasyon 

varlığını gözardı etmişlerdir. Daha sonra geliştirdikleri Genişletilmiş Dickey-Fuller 

Testinde (GDFT), otokorelasyon varlığını ortadan kaldırabilmek için bağımlı 

değişkenin gecikmeli terimleri modele eklenmiştir. Dickey ve Fuller (1979) ilk 

geliştirdikleri birim kök testinde önerdikleri kritik limit değerleri ve hipotezleri bu testte 

de kullanmaya devam etmişlerdir. Test istatistiklerini kullanırken genişletme 

yaklaşımındaki uygun gecikme terim sayısına karar vermek için Akaike gibi bilgi 

kriterleri kullanılmaktadır. 

GDFT ile birim kökün varlığını araştırmak için en temel birim kök testlerinden itibaren 

çeşitli AR modellerinde iyileştirmeler yapılmıştır. Daha önceki testlerde belirtildiği 

üzere H0 hipotezi ve karşı hipotez (H1) kurulduktan sonra t test istatistiği, δ parametresi 

için hesaplanarak Dickey ve Fuller kritik limit değerleri ile kıyaslanır. GDFT için en 

genelleştirilmiş eşitlik aşağıda verilmiştir. 

𝑌𝑡 = 𝜇 + 𝛿𝑌𝑡−1 + ∑ 𝛽𝑗
𝑝
𝑗=1 ∆𝑌𝑡−𝑗 + 𝜀𝑡             (2.8) 

Eşitlik 2.8’deki, 𝜀𝑡 ifadesi hata kriterini, 𝛽𝑗 ifadesi eğim parametresini, ∆ ifadesi 

genişletme katsayısını, 𝜇 ifadesi ise birim köke bağlı hesaplanan katsayıyı temsil 

etmektedir. GDFT için kabul edilen hipotezler başlıca şöyledir: 

H0: δ=0 ele alınan zaman serisi durağan değildir. 
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H1: δ<0 ele alınan zaman serisi durağandır [21, 100, 114]. 

2.2.2. Otokorelasyon Fonksiyonu 

Bir değişken ile başka bir değişken arasındaki ilişki ya da bağımlılık regresyon terimi 

ile ifade edilmektedir. Değişken sayısı ile bağlantılı olarak basit doğrusal regresyon ve 

çoklu doğrusal regresyon çeşitleri bulunmaktadır. Çoklu doğrusal regresyon modelleri; 

normal dağılım, doğrusallık, hata terimlerinin ortalamasının sıfır olması, sabit varyans, 

bağımsız değişkenler arasında çoklu bağlantı olmaması ve otokorelasyon (öz ilinti) 

olmaması gibi varsayımlar üzerine kurulmuştur. Regresyonda değişkenlere ait hata 

terimleri arasında ilişki olması istenmeyen bir durum olduğundan otokorelasyon varlığı 

da serideki hataları artırmaktadır [115]. 

Otokorelasyon (öz ilinti) fonksiyonları, zaman serileri ile ilgili analizlerde hem hata 

terimleri üzerinden durağanlığın tespiti hem de serideki gecikme zamanlarının 

belirlenmesi amacıyla kullanılmaktadır. Bir serinin herhangi bir dönemdeki değeri ile 

bir önceki veya bir sonraki dönem değeri arasında birlikte hareket etme ilişkisi 

otokorelasyon olarak açıklanmaktadır. Yani zamana bağlı olarak değişen bir değişkenin 

t döneminde almış olduğu değerin gecikmeli t-1, t-2, t-3, … ,t-n dönemlerindeki 

değerlerinden etkilenme durumudur. Gecikmeli olan bu dönemler arasındaki ilişki 

otokorelasyon katsayısı ile belirlenmektedir. k cinsinden tüm bu gecikmelere ait 

otokorelasyon katsayısı değerleri otokorelasyon fonksiyonunu meydana getirmektedir. 

Bir zaman serisindeki otokorelasyon katsayısı aşağıdaki eşitlik ile hesaplanmaktadır. 

𝑟𝑘 =
∑ (𝑧𝑡−𝑧̅)(𝑧𝑡+𝑘−𝑧̅)𝑇−𝑘

𝑡=1

∑ (𝑧𝑡−𝑧̅)2𝑇
𝑡=1

               (2.9) 

Eşitlik 2.9’da verilen ifadelerden 𝑟𝑘 k’ıncı gecikmeye bağlı otokorelasyon katsayısını, 

𝑧𝑡 orijinal zaman serisini, 𝑧̅ zaman serisinin ortalamasını, 𝑧𝑡+𝑘 ise k dönem erken zaman 

serisini temsil etmektedir. 𝑟𝑘 birimsiz olup -1 ile 1 aralığında değerler alır. Durağanlık 

gösteren bir zaman serisinde otokorelasyonun 0’a yakın olması istenilen bir durumdur. 

Eğer bir zaman serisinde otokorelasyon varlığı söz konusu ise ya otokorelasyon sorunu 

giderilmeli ya da o zaman serisi analizlerde kullanılmamalıdır. Bir zaman serisinin 

gecikmeli dönemleri arasında ya da hata terimleri arasında otokorelasyon olup olmadığı 

çeşitli yöntemler ile tespit edilebilmektedir. Bu yöntemler özetle şunlardır: 
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otokorelasyon fonksiyonu, grafik yöntem, sıra testi, Durbin-Watson Testi (DWT), Von 

Neumann Testi (VNT)’dir [116, 117]. 

2.2.3. Kuraklık Analizi 

2.2.3.1. Standartlaştırılmış Yağış İndeksi (SYİ) 

Standartlaştırılmış Yağış İndeksi (SYİ), McKee ve ark. (1993) tarafından geliştirilmiş 

bir meteorolojik kuraklık indisidir [34]. Kuraklık analizlerinde çok yaygın bir kullanımı 

vardır. SYİ’nin yaygın olarak kullanılmasının en önemli nedeni bu indisin bölgesel 

değil küresel olması ve bütün zaman ölçeklerinde kullanılabilmesidir. Tüm 

topografyalarda ve tüm iklim kuşaklarında kolaylıkla uygulanabilmektedir. Dünya’nın 

herhangi bir yerinde, herhangi bir zaman ölçeğinde aylık yağışlara bağlı olarak kurak 

veya nemli koşullar SYİ ile belirlenebilmektedir. Ayrıca SYİ, kuraklık felaketinin ilk 

aşaması olan meteorolojik kuraklığın izlenmesi ve değerlendirmesinde sadece yağış 

değişkenine bağlı olarak hesaplanmasından dolayı diğer indislere göre pratiklik 

sağlamaktadır.  

SYİ kuraklık değerinin hesabı ile ilgili en genelleştirilmiş ifade şu şekildedir: 

𝑆𝑌İ =
𝑥𝑖−𝑥𝑖̅

𝜎𝑖
                                                        (2.10) 

Burada; 𝑥𝑖, i’nci zamandaki yağış değerini; 𝑥𝑖̅, i’nci zamandaki yağışların ortalamasını 

ve 𝜎𝑖 ise standart sapmayı temsil etmektedir. 

Thom (1958), yağış başta olmak üzere iklim verilerine en uygun olasılık dağılımının 

Gama dağılımı olduğunu kanıtlamıştır [118]. McKee ve ark. (1993) ise kuraklık üzerine 

yaptıkları çalışmada; meteoroloji istasyonlarında gözlemlenen yağış değerlerine ait 

dağılımları normal dağılıma dönüştürerek sonrasında standartlaştırma ile SYİ’nin son 

halini daha da geliştirmişlerdir [34]. Normal dağılıma uyan SYİ’nin istatistiksel gelişim 

süreci sırasıyla aşağıda özetlenmektedir. 

Gamma dağılımı olasılık yoğunluk fonksiyonu şu şekilde ifade edilir:   

g(x) =
1 

βαΓ(α)
xα−1 e

−x
β⁄    x > 0 için         (2.11) 
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Burada; α > 0 için α şekil parametresi, β > 0 için β ölçek parametresi, x > 0 için yağış 

değeri ve Γ(α) Gamma fonksiyonudur. Gamma fonksiyonu ise;  

Γ(α) = ∫ yα−1e−y∞

0
dy             (2.12) 

eşitliği ile bulunur. Gamma dağılımı olasılık yoğunluk fonksiyonu parametreleri olan α 

ve β parametreleri aşağıdaki eşitlik yardımıyla bulunur. 

𝛼 =
1

4𝐴
((1 + √1 +

4𝐴

3
) ve 𝛽 =

𝑥̅

𝛼
         (2.13) 

Eşitlik 2.13’te verilen A değeri ise şu şekilde bulunur; 

𝐴 = ln(𝑥̅) −
∑ √ln(𝑥)

𝑛
           (2.14) 

Burada; 𝑛 ifadesi yağış gözlemlerinin sayısıdır. 

Ele alınan yağış serisindeki verilere ait dağılımın tahmin edilmesi gerekir. Belli bir 

zaman ölçeği için gözlemlenen yağış miktarının kümülatif olasılık dağılımı; 

G(x) = ∫ g(x)
x

0
dx =

1 

βαΓ(α)
∫ xα e

−x
β⁄x

0
dx                                                    (2.15) 

eşitliği ile bulunur. Eşitlik 2.15’te; 𝑡 =
𝑥

𝛽
  ifadesi uygun yere konulduğunda; 

G(x) =
1

Γ(α)
∫ tα−1x

0
e−1dt               (2.16) 

eşitliği elde edilir. Bu eşitlik, eksik kalan bir Gamma dağılımı fonksiyonunu 

göstermektedir. 𝑥 = 0 ve 𝑞 = 𝑃(𝑥 = 0) > 0 için Gamma dağılımı belirsizdir. 𝑃(𝑥 = 0) 

yağış olmama olasılığıdır ve kümülatif olasılık artar. Son durumda kümülatif olasılık 

dağılımı aşağıdaki eşitlik ile bulunmaktadır. 

H(x) =  q + (1 − q)G(x)            (2.17) 

Eşitlik 2.17’de verilen q, sıfır olma olasılığını temsil etmektedir.  Yağışsız gözlem 

sayısını temsil eden m değerinin, n toplam gözlem sayısına bölünmesi ile q değeri 

hesaplanmaktadır (q = m/n).  
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H(x) kümülatif olasılık değerleri, daha sonra aşağıda verilen eşitlikler ile standart 

normal dağılıma dönüştürülerek ortalaması 0 ve varyansı 1 olan SYİ kuraklık değerleri 

hesaplanmaktadır [34]. 

t = √ln
1

(H(x))2           0 < H(x) ≤ 0.5                   (2.18) 

t = √ln
1

(1−H(x))2      0.5 < H(x) ≤ 1                   (2.19) 

SYİ(t) = − (t −
c0+c1t+c2t2

1+d1+d2t2+d3t3)      0 < H(x) ≤ 0.5      (2.20) 

SYİ(t) = + (t −
c0+c1t+c2t2

1+d1+d2t2 + d3t3)     0.5 < H(x) ≤ 1        (2.21) 

Eşitlik 2.20 ve 2.21’de verilen sabit değerlerden c0=2,51557, c1=0,802853, 

c2=0,010328, d1=1,432788, d2=0,189269 ve d3=0,001308’dir. 

Gamma dağılımından standart normal dağılıma dönüştürülen SYİ, son durumda Z 

istatistik skorunu göstermektedir. SYİ özetle belli bir zaman ölçeğindeki yağış 

değerinden yağış ortalamasının çıkarılıp standart sapmaya bölünmesi ile elde 

edilmektedir. Ortalamaların altında ya da üstünde pozitif ya da negatif değerler 

olabilmektedir. Pozitif SYİ değerleri ortalamalara göre daha fazla yağışı, negatif SYİ 

değerleri ise ortalamadan daha az yağışı ifade etmektedir. McKee ve ark. (1993), “kurak 

olay” kriterini tanımlayarak SYİ değerlerinin negatif olduğu dönem boyunca kurak 

olayın devam ettiğini ve şiddetinin -1 ya da daha küçük olduğunu belirtmişlerdir. Kurak 

olay, SYİ değerleri pozitife döndüğünde ise son bulmaktadır. McKee ve ark. (1993), 

ortalaması 0 ve standart sapması 1 olan standart normal dağılımlı SYİ kuraklık 

değerlerini daha bilimsel bir sınıflandırma ile nemli ve kurak kategorilere ayırmışlardır 

[34]. Tablo 2.4’te SYİ kuraklık sınıflandırması verilmektedir. 
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Tablo 2.4. SYİ kuraklık sınıflandırması 

SYİ değerleri 
 

Kuraklık kategorisi 

2.00 ve daha büyük 
 

Aşırı nemli 

1.50 − 1.99 
 

Çok nemli 

1.00 − 1.49 
 

Orta şiddette nemli 

-0.99 – 0.99 
 

Normale yakın 

-1.00 − -1.49 
 

Orta şiddette kurak 

-1.50 − -1.99 
 

Şiddetli kurak 

-2.00 ve daha küçük 
 

Aşırı kurak 

 

2.2.3.2. SYİ’nin avantajları 

Karmaşık bir süreç olan kuraklığın izlenmesi ve öngörülebilmesi açısından oldukça 

kullanışlı bir yöntemdir. Sadece aylık yağışlara bağlı hesaplanabilen ve meteorolojik 

kuraklığı tespit edebilen bir kuraklık indisidir. Hesaplanması oldukça kolaydır. Başta 

PKŞİ olmak üzere diğer kuraklık indislerine göre daha az karmaşıktır. Birçok kuraklık 

indisi, bölgesel ihtiyaçlara göre geliştirilmiş olduğundan SYİ bu anlamda daha 

küreseldir. Her bir zaman ölçeği için SYİ rahatlıkla kullanılabilmektedir. Yağış verileri 

özellikle kısa dönemlerde normal dağılıma uymaz iken SYİ kuraklık değerleri normal 

dağılıma uygun hale getirilmiştir. Bu sayede sadece kurak dönemler değil nemli 

dönemler de izlenebilmektedir. SYİ’nin hem hesaplanması hem de sınıflandırılması 

sadece olasılık ile ilgilidir [4]. 

2.2.4. Drought Indices Calculator (DrinC) Yazılımı 

Daha önceki bölümlerde belirtildiği üzere kuraklığın tespiti, izlenmesi ve 

değerlendirmelerinin yapılması kuraklık olayını anlamada oldukça önemlidir. 

Kuraklığın şiddeti ya da büyüklüğü indisler ya da göstergelerle belirlenebilmektedir. 

Farklı tür ve amaçları olan kuraklık indisleri, ilk dönemlerinde genellikle ilgili 

denklemleri üzerinden manuel olarak hesaplanmaktaydı. Teknolojinin çok hızlı bir 

şekilde ilerleme kaydettiği günümüzde bu indislerin hesabına yönelik de hem bireysel 

araştırmacılar hem de kamu kurum-kuruluşlarınca çeşitli çalışmalar yapılmaktadır.  

Kuraklık indisi hesaplama yazılımlarına The SPI_SL_6, The SPATSIM, The SPEI 

Package, The CDI ve R Studio çalışmaları örnek verilebilir. Bu yazılımların 

kullanıcılarının yüksek bilgisayar ve yazılım bilgisinin yanı sıra kuraklık indisleri 

hesaplamalarına da hâkim olması gerekir. Tigkas ve ark. (2015), kullanıcılara kolaylık 
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ve pratiklik ile kuraklık hesaplamalarında işlem yükünden ve zamandan tasarruf 

sağlayacak Drought Indices Calculator (DrinC) adında yeni bir kuraklık hesaplama 

yazılımı geliştirmişlerdir [119]. DrinC, Atina Ulusal Teknik Üniversitesi'nin Doğal 

Afetler ve Proaktif Planlama Değerlendirme Merkezi ile Islah İşleri ve Su Kaynakları 

Yönetimi Laboratuvarında geliştirilmiştir. DrinC yazılımı ile Standartlaştırılmış Yağış 

İndeksi (SYİ), Kuraklık Keşif İndisi (KKİ), Akım Kuraklık İndisi (AKİ) ve Yağış 

Onlukları (YO) indislerinin değerleri yağış verilerine bağlı olarak hesaplanabilmektedir. 

Sadece KKİ yönteminde potansiyel evapotranspirasyon parametresi de değişken olarak 

kullanılmaktadır. DrinC, potansiyel evapotranspirasyonun da sıcaklık parametresine 

bağlı olarak hesaplanmasını sağlamaktadır.  

DrinC yazılımı, kuraklık indislerinin hesaplanması konusunda oldukça kolay, kapsayıcı 

ve kullanıcı dostu bir yapıdadır. Ayrıca bu yazılım ücretsiz olup tüm araştırmacılara, 

kamu kurum ve kuruluşlarına da açıktır. Ana menü penceresinde yer alan veri yönetimi 

ve işlem sekmelerinden opsiyonel olarak hesap yöntemlerine yönelik çeşitli ayarlamalar 

yapılabilmektedir. Hesaplamalar aylık, dönemlik ya da yıllık bazda yapılabilir ayrıca 

veri aralığı su yılı ya da takvim yılına göre çeşitlendirilebilir. DrinC yazılımı, kendi 

içerisinde Gamma ya da Log-Normal olasılık dağılımlarını kullanmaktadır. Yazılım, 

hesaplamaları yaptıktan sonra da kullanıcılara çeşitli kolaylıklar sağlamaktadır. Hesap 

adımları sonrasında elde edilen sonuçlar hem Microsoft Excel formatında hem de 

grafiksel olarak hazır bir şekilde oluşturulabilmektedir. Şekil 2.8’de örnek olması 

açısından DrinC yazılımının ana menü penceresi ile veri yönetimi ve işlem sekmelerine 

ait ekran görüntüsü verilmektedir. 
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Şekil 2.8. DrinC yazılımı ana menü, veri yönetimi ve işlem sekmesi 

2.2.5. Veri Ön İşleme Teknikleri 

İstatistiksel çalışmaların, olasılık hesaplarının, tahmin ve sınıflandırma çalışmalarının, 

geçmiş ve geleceğe yönelik projeksiyonların, modellemelerin ve türlü analizin 

başlangıcı her zaman veridir ve bu çalışmalar farklı türde çeşitli verilere ihtiyaç duyar. 

Çalışmalarda ihtiyaç duyulan bu veriler yazı, görüntü, ses ya da sayısal biçimlerde elde 

edilmektedir. Bu veri türleri analizler ya da modeller için altlık oluşturacak olup 

kullanılacak olan yöntemleri de yönlendirirler. Analiz ya da modellemelerin başarıları 

sadece yöntemlerin performanslarına ya da tasarımlarına göre değil, aynı zamanda 

verilerin kalite ve uygunluğuna da bağlıdır. Kullanılan veri setinde; gürültü, tekrarlar, 

eksik değerler, tutarsız ve gereksiz veriler, çok büyük boyut gibi olumsuz birçok faktör 

bulunabilir. Bunun gibi faktörlerden dolayı kalitesiz veri, kalitesiz bilgiye ve kalitesiz 

bir sonuca sebep olur [120]. Veriler üzerinden daha doğru ve daha güvenilir bir model 

kurulabilmesi için eldeki veri setinin bir takım işlemlerden geçirilmesi gerekir. Çünkü 

yeryüzünde insanlar ya da makineler tarafından doğrudan işlenemeyen çok büyük bir 

miktarda ham veri bulunmaktadır. Ayrıca veri tabanında yönetilmek için hazır bulunan 

ya da mevcutta yönetilen veri hacmi eldeki sistemlerin işleme kapasitesini aşmaktadır 

[121]. Tüm bu sebeplerden dolayı verilerin kullanımına başlanmadan önce bazı 
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teknikler uygulayarak daha uygun hale getirilmesi, veri ön işlemeyi zorunlu kılmaktadır. 

Veri ön işleme teknikleri; ayrıştırma, normalleştirme, boyut azaltma, örnek azaltma, veri 

temizleme, veri birleştirme, eksik tamamlama, özellik çıkarma, öznitelik seçimi, veri 

dönüştürme, sinyal ayrıştırma ve sinyal işleme, gürültü sorunu giderme gibi birçok 

işlemi yerine getiren tekniklerdir. 

Bu tez çalışmasında; hidrometeorolojik zaman serilerinin analizleri yapıldığından dolayı 

veri dönüştürme ve ayrıştırma, özellik çıkarma, öznitelik seçimi, boyut azaltma gibi veri 

ön işlemlerini yerine getiren Ayrık Dalgacık Dönüşümü (ADD), Ampirik Mod 

Ayrıştırma (AMA) ve Varyasyonel Mod Ayrıştırma (VMA) teknikleri ele alınacaktır.  

2.2.5.1. Dalgacık Dönüşümü (DD) 

Karmaşık yapıdaki zaman serilerinin ya da fonksiyonların ilk bakışta görülemeyen 

özelliklerini ya da gizli kalmış bilgilerini ortaya çıkartarak daha işlevsel hale getirmek 

matematiksel dönüşümlerle sağlanır. Bu sayede ele alınan zaman serisi ya da bir 

fonksiyon basit yapı taşları ile de temsil edilebilmektedir [122]. Hidrometeorolojik 

değişkenlerde olduğu gibi birçok veri seti zaman serisi şeklindedir. Zaman serileri ise 

sinyal ve gürültü olmak üzere iki unsurdan oluşur. Sinyal, orijinal seriyi (gözlemlenen) 

temsil ederken gürültü ise periyodik düzensiz verileri temsil etmektedir. Bu kısımda 

zaman serisi ifadesi yerine orijinal seriyi temsil eden sinyal ifadesi kullanılacaktır.  

 

Dalgacık Dönüşümü (DD) (Wavelet Transform-WT) tekniğinden bahsetmeden önce 

dalgacık yaklaşımını açıklamak gerekir. Sinyallerdeki en önemli parametreler hem yerel 

ölçekte hem de genel ölçekte zaman, süre, genlik ve frekans (sıklık) bilgileridir. 

Sinyallerde özellikle frekans bilgisinin doğru bir şekilde elde edilmesi yani sinyal 

işleme veriye dayalı yapılacak analizlerde oldukça önemlidir. Dalgacık yaklaşımının 

temeli, bir frekans analiz yöntemi olan Fourier Dönüşümüne (FD) dayanmaktadır [83]. 

FD, Fransız matematikçi ve fizikçi Jean-Baptiste Joseph Fourier’in 1882’de yazdığı 

“Isının Analitik Teorisi” isimli kitapta ortaya atılmıştır. FD, farklı disiplinler ve farklı 

değişkenlere ait tüm sinyalleri dalga formu şeklinde tanımlayan bir tekniktir. Düzensiz 

sinyallere ait bu dalga formları farklı frekanslara sahip birbirini izleyen ve düzenli 

dalgalardan oluşan sinüs ya da kosinüs fonksiyonlarının toplamı şeklinde matematiksel 

olarak ifade edilir. Öncesinde sinyaller doğal olarak zaman ve uzayın bir fonksiyonu 

olarak gösterilmekte iken, FD ile sinyaller zaman ortamından frekans ortamına 
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dönüştürülmektedir. Bu sayede sürekli sinüs ve kosinüs dalgaları ile temsil edilen bir 

sinyalin tüm frekans bilgilerine hızlı bir şekilde ulaşılabilmektedir. Ancak matematiksel 

sinüs ve kosinüs fonksiyonlarından dolayı da zaman bilgisi kaybolur. Durağanlık 

gösteren sinyallerde FD yöntemi tek başına yeterlidir. Ancak ani değişimler ya da 

kırılmalar gösteren ve durağan olmayan bir sinyali analiz etmek için zaman-frekans 

gösterimi gerektiğinden bu hususta FD yetersiz kalmaktadır. Yani herhangi bir anda 

meydana gelen fiziksel olayları gözlemlemek ve bilgilerine ulaşabilmek mümkün 

olmamaktadır. Bu nedenle zamana bağlı değişimler gösteren sinyalleri analiz edebilmek 

amacıyla, Gabor (1946) Kısa Süreli Fourier Dönüşümünü (KSFD) geliştirmiştir. KSFD 

yöntemi, yine FD’de olduğu gibi sinyalleri frekans ortamında ele alırken frekans 

bileşenlerinin ne zaman gerçekleştiğini inceleyerek zaman ortamında da analiz 

yapabilmektedir. Ancak sinyali tüm zaman ortamında değil de küçük zaman aralıklarına 

bölerek bu işlemi gerçekleştirir. Bu zaman aralıkları sinyalin durağanlık özelliği 

gösterdiği aralıklara göre belirlenerek küçük zaman pencereleri fonksiyonları 

oluşturulur. KSFD’nin bu yaklaşımından dolayı bu yönteme Pencerelenmiş Fourier 

Dönüşümü de denilmektedir. KSFD ile zaman aralıkları bölünüp daraltıldığından daha 

iyi zaman bilgisi ve daha kötü frekans bilgisi elde edilmektedir. Zaman aralıkları 

büyütüldüğünde ise daha kötü zaman bilgisi ve daha iyi frekans bilgisine 

ulaşılabilmektedir. Yani KSFD’nin zaman bilgisi belirlenen zaman penceresinin 

genişliğine göre değişmektedir. Sadece hangi zaman penceresi içerisinde hangi 

frekansın gerçekleştiği bilgisini verir. Şekil 2.9’da KSFD pencere fonksiyonunun bir 

zaman serisine uygulanması gösterilmiştir. 

 
  Şekil 2.9. KSFD pencere fonksiyonunun uygulanması 

Hem FD hem de KSFD yöntemleri tam anlamıyla zamana bağlı analizleri 

yapamamaktadır. Sinyalin yüksek ve düşük frekanslı bileşenleri hem zaman hem de 
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frekans ekseninde aynı netlikte elde edilemediğinden dolayı çözünürlük problemi 

oluşur. Şekil 2.10’da hem FD’nin hem de KSFD’nin temsili çözünürlükleri verilmiştir. 

 
 

Şekil 2.10. FD (solda) ve KSFD (sağda) temsili çözünürlükleri 

Bununla birlikte sinyallerle ilgili analizlerde ortaya çıkan bu çözünürlük problemi, 

temel fonksiyon olarak belirli bir uzunluğa ve değişken frekanslara sahip dalgacıkların 

kullanıldığı dalgacık yaklaşımı ile çözülebilmektedir [123, 124].  

Hidrometeorolojiden tıpa, iktisat-ekonomiden elektronik ve haberleşmeye, bilgisayar 

bilimlerinden astronomiye birçok farklı alanda kullanımı olan Dalgacık Dönüşümü 

(DD), sinyalleri hem zaman hem de frekans ölçeğinde analiz ederek sinyallerin 

periyodik ve karakteristik yapılarını ortaya çıkaran bir sinyal işleme yöntemidir. DD’nin 

temelini, KSFD yönteminde kullanılan pencere fonksiyonlarına benzer bir işlevi olan 

dalgacıklar oluşturur. Bir fonksiyonun dalgacık olabilmesi için süresinin sınırlı ve 

ortalamasının sıfır olması gerekir. Dalgacıklar, sinyalleri farklı frekans bileşenlerine 

bölen ve sonrasında her bileşeni kendi ölçeğine uygun bir çözünürlükle inceleyen ve bu 

sinyalleri matematiksel olarak temsil eden işlevlerdir. Bu açıklama şöyle ifade 

edilebilir: DD ile matematiksel bir mikroskop görevi gören dalgacıklar, sinyalleri kısa 

zaman aralıklarında düşük ölçekte ve yüksek çözünürlükte en ince detaylarına kadar 

incelerken, daha uzun zaman aralıklarında ve düşük çözünürlükte daha kaba (yüzeysel) 

bir incelemeyi sağlamaktadır [125]. Özetle; DD ile büyük bir pencereden bir noktaya 

bakıldığında belli başlı özellikler fark edilirken, küçük bir pencereden bakıldığında ise 

küçük özellikler fark edilmektedir. [126].  

DD’nin en önemli parametresi olan ve küçük dalga anlamındaki dalgacık ifadesini ilk 

kez 1900’lü yılların başında Alfred Haar kullanmıştır. Alfred Haar’ın aynı zamanda 

kendi adını taşıyan bir dalgacık fonksiyonu da bulunmaktadır. Haar dalgacığı, belirli bir 
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aralık dışında sıfır olduğundan sürekli değildir. Daha sonraki dönemlerde özellikle 

1930’lardan sonra dalgacıklar üzerine çalışmalar yapılmıştır. 1980’lerden sonra ise 

dalgacıklar ve dalgacık yaklaşımı büyük bir gelişim göstermiştir. Morlet ve Grossman 

(1984), kuantum fiziği alanında dalgacıkları (wavelets) ilk kez tanımlamışlardır. Ancak 

tanımladıkları dalgacık tabiri fiziksel sezgilere dayanan bir yaklaşım biçimindeydi. 

Mallat (1985), dijital işaretleri işleme konusunda dalgacıklara yönelik çalışmalar yapmış 

olup bu çalışmalar dalgacıkların gelişimini sağlamıştır. Daubechies (1988, 1990), ayrık 

dalgacık teorisinin temelini atmış ve dalgacık yaklaşımı üzerine birçok çalışma 

yapmıştır. Ayrıca dalgacıklar üzerine çalışmaları da olan Ronald Coifman’ın önerileri 

ile Coiflets dalgacıklarını yine kendisi geliştirmiştir. Yves Meyer (1993), kendi adını 

verdiği sürekli türeve sahip dalgacığı geliştirmiştir. Ancak bu dalgacığın da -∞’dan 

+∞’a ortalaması sıfır değildir. 1990’lardan sonra özellikle ayrık dalgacık dönüşümü 

üzerine çalışmalar yapılmış ve büyük gelişimler sağlanmıştır [127, 128, 129].  

Fourier Dönüşümü (FD) ile Kısa Süreli Fourier Dönüşümü (KSFD) zaman-frekans 

ilişkisini tam olarak kuramadıklarından çözünürlük problemleri ile karşı karşıya 

kalırken sinyalleri zaman-ölçek bölgesinde inceleyen Dalgacık Dönüşümü (DD) daha 

doğru frekans bilgilerine ulaşabilmektedir. DD’nin en önemli avantajlarından biri de 

sinyali yerel ölçeklerde analiz edebilmesidir. FD yöntemindeki sinüs ve kosinüs 

fonksiyonları da -∞’dan +∞’a kadar sonsuz aralıkta sürekli ve yumuşak geçişli iken 

DD’deki dalgacıklar sınırlı zaman diliminde, düzensiz ve asimetrik davranış 

göstermektedir. Şekil 2.11’de FD’nin sinüs fonksiyonu ile DD’nin dalgacık fonksiyonu 

gösterilmektedir. 

 
Şekil 2.11. FD sinüs fonksiyonu ve DD dalgacık fonksiyonu 
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Dalgacık analizinin temelinde ana dalgacık şeklinde isimlendirilen özel bir dalgacık 

fonksiyonu bulunmaktadır. Aynı zamanda φ ölçekleme fonksiyonunun (baba dalgacığı 

temsil eder) ve ψ dalgacık fonksiyonunun (ana dalgacığı temsil eder) ötelenmesi ve 

ölçeklendirilmesiyle oluşturulan fonksiyonlar kümesi de dalgacık ailesini 

oluşturmaktadır [130]. 

Herhangi bir fonksiyonun ana dalgacık olabilmesi için şu koşulları sağlaması 

gerekmektedir: 

1. (-∞ +∞) aralığında dalgacık fonksiyonunun integrali sıfırdır. Yani bu aralıkta  

dalgacık fonksiyonunun ortalaması 0’dır.  

∫ ψ(t)dt = 0
+∞

−∞
                       (2.22) 

2. (-∞ +∞) aralığında dalgacık fonksiyonunun karesinin integrali 1’e eşittir. Bu durum 

dalgacık fonksiyonunun birim enerjiye eşit olduğunu göstermekte olup ayrıca 

enerjinin korunumu ilkesini de sağladığını gösterir.  

∫ ψ2(t)dt = 1
+∞

−∞
                                                                                                         (2.23) 

3. Dalgacık fonksiyonu sinüs fonksiyonlarından farklı olarak sınırlı olmalıdır. Ayrıca 

sınırlı bir dalgacık fonksiyonun mutlak değerine ait integralin de sınırlı olması 

gerekir. 

∫ |ψ(t)|dt < ∞
+∞

−∞
             (2.24) 

∫ |sin t|dt = +∞
+∞

−∞
           (2.25) 

4. Frekans değeri olan ƒ sıfıra yaklaştığında, dalgacık fonksiyonu ψ(t)’nin FD’yi 

temsil eden ψ(ƒ) frekans fonksiyonu da sıfıra yaklaşmalıdır. Bu durum kabul 

edilebilirlik (admissibility) koşulu olarak bilinen eşitsizliği ortaya çıkarmaktadır.  

∫
|ψ(ƒ)|2

|ƒ|
dƒ < ∞

+∞

−∞
           (2.26) 

Bir ana dalgacık fonksiyonunun bu özellikleri sağlaması, ölçeklenebilme ve dönüşüm 

kabiliyetleri açısından oldukça önemlidir. Buna karşın ana dalgacık fonksiyonunun 
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tersine  φ ölçekleme fonksiyonunun (baba dalgacık) integrali 1’e eşit olup matematiksel 

gösterimi aşağıda verilmektedir. 

∫ φ(t)dt = 1
+∞

−∞
                      (2.27) 

φ ölçekleme fonksiyonu (baba dalgacık), sinyalin alçak frekansa sahip genel 

eğilimlerini temsil ederken; ψ dalgacık fonksiyonu (ana dalgacık), yüksek frekansa 

sahip sinyalin detay özelliklerini temsil etmektedir [124, 131, 132]. 

ψ(t) ana dalgacık fonksiyonunun 𝑏 ile ötelenmesi ve 𝛼 ile ölçeklendirilmesi ile elde 

edilen ψ𝑎,𝑏(t) fonksiyonu dalgacık olarak adlandırılmaktadır ve aşağıdaki eşitlikte 

matematiksel gösterimi verilmektedir: 

ψ𝑎,𝑏(t) =
1

√|𝛼|
ψ (

𝑡−𝑏

𝛼
) ,    α ≠ 0, α, 𝑏 ∈ 𝑅         (2.28) 

Eşitlik 2.28’de verilen α ana dalgacığın ne kadar sıkıştırıldığını gösteren ölçek 

parametresini, 𝑏 ise yine ana dalgacığın ne kadar ötelendiğini gösteren öteleme 

parametresini ifade etmektedir. Bir dalgacığın ölçeklendirilmesinden kasıt dalgacığın 

sıkıştırılması ya da gerilmesidir. 𝛼 ölçek parametresi küçüldükçe daha sıkıştırılmış bir 

dalgacık, büyütüldüğünde ise daha çok gerilmiş bir dalgacık anlaşılır. Sıkıştırılmış bir 

dalgacık küçük ölçekte yüksek frekanslar yakalarken, gerilen bir dalgacık büyük bir 

ölçekte daha düşük frekansları yakalamaktadır. Ölçek parametresi olan 𝑎, FD’deki 

1/frekans ifadesine eşittir. Bu eşitliğe göre; küçük ölçekli bir dalgacık, yüksek frekans 

bilgisinden dolayı sinyalin detay bileşenlerinin belirlenmesinde, büyük ölçekli dalgacık 

ise sinyalin eğilim karakterinin belirlenmesinde fayda sağlar [133]. 𝑎 ölçek 

parametresinin farklı değerlerinde dalgacık frekansının nasıl değiştiğini gösteren 

grafikler Şekil 2.12’de verilmiştir. Ayrıca bu grafikler üzerinde hem FD sinüs 

fonksiyonlarının hem de DD dalgacık fonksiyonlarının birbirlerine göre değişimleri de 

görülebilmektedir. 



64 

 
Şekil 2.12. 𝑎 ölçek parametresine göre sinüs fonksiyonu ve dalgacık fonksiyonu [134] 

Dalgacık Dönüşümü (DD), literatürde başlıca iki çeşide ayrılmaktadır. Bunlar; Sürekli 

Dalgacık Dönüşümü (SDD) ve Ayrık Dalgacık Dönüşümü (ADD)’dür.  

2.2.5.1.1. Sürekli Dalgacık Dönüşümü (SDD) 

Sürekli Dalgacık Dönüşümü (SDD) (Continuous Wavelet Transform-CWT), zaman ve 

ölçek değişkenlerine bağlı olarak sinyallerin özelliklerini belirlemeye yönelik önemli bir 

yaklaşımdır. SDD, analiz edilen sinyal ile dalgacık fonksiyonunun ölçeklendirilmiş ve 

ötelenmiş durumlarının tüm zaman değerlerinde çarpılarak toplanması sonucu elde 

edilir. KSFD’deki pencere fonksiyonunun gerçekleştirdiği işleve benzer şekilde burada 

da sinyaller farklı büyüklükteki pencerelere ayrılarak dalgacık fonksiyonu ile çarpılır. 

KSFD yönteminde zamana bağlı pencere uzunluğu sabit olduğundan sinyalin sadece o 

aralıktaki özellikleri belirlenebilirken SDD yöntemindeki zaman pencereleri değişken 

olduğundan her bir zaman için sürekli analizler yapılabilmektedir. Ana dalgacıktan elde 

edilen dalgacık fonksiyonu daha önce Eşitlik 2.28’de verilerek açıklanmıştı. Son 

durumda SDD’nin matematiksel gösterimi şu şekildedir; 

C(α, b) = ∫ 𝑥(𝑡)
1

√|𝛼|
ψ (

𝑡−𝑏

𝛼
) 𝑑𝑡

+∞

−∞
,  α > 0 için       (2.29) 

Burada; C; dalgacık dönüşümü sonucunda elde edilen sürekli dalgacık katsayısını ifade 

etmekte olup α ve b’nin birer fonksiyonudur. 𝑥(𝑡) ise analiz edilecek olan sinyali temsil 

etmekte olup her bir zaman için ölçek ve öteleme parametrelerine bağlı olarak değerler 

almaktadır. ψ dalgacık fonksiyonunun pencere fonksiyonu olması ve x(t) 
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fonksiyonunun ters dalgacık dönüşümü ile elde edilebilmesi için çift katlı integral 

kullanılarak; 

𝑥(𝑡) = ∬ C(α, b)ψ (
𝑡−𝑏

𝛼
) 𝑑𝛼 𝑑𝑏          (2.30) 

eşitliği elde edilir. Eşitlik 2.29 ve 2.30’daki hesaplamalar kullanılarak sinyal ile dalgacık 

fonksiyonunun ölçeklendirilmiş ve ötelenmiş durumlarının çarpılması sonucu sürekli 

dalgacık katsayıları, devamında da sinyal fonksiyonuna ulaşılabilmektedir. C sürekli 

dalgacık dönüşüm katsayıları, dalgacık ile sinyal arasındaki ilişkiyi ortaya koyma 

hususunda oldukça önemlidir. SDD yöntemi ile ana dalgacık gerildiğinde 

(ötelendiğinde), dalgacık penceresinin aralığı arttırılmakta olup sinyaldeki düşük 

frekanslar yakalanır. Bu sayede sinyalin kaba (yüzeysel) özellikleri belirlenir. Tam tersi 

ana dalgacığın sıkıştırılması (ötelenmesi) durumunda yani dalgacık penceresinin 

aralığının azaltıldığı durumda ise yüksek frekanslar yakalanır. Bunun faydası ise 

sinyaldeki daha detay bilgilere ulaşılabilmesidir [123, 135]. 

2.2.5.1.2. Ayrık Dalgacık Dönüşümü (ADD) 

SDD’de uygun olan her bir 𝛼 ölçek değeri ve 𝑏 öteleme değerine göre analiz 

yapıldığından dalgacık dönüşüm katsayılarının hesaplama adımları uzamaktadır bu da 

hem zaman hem de işlem yükünü artırmaktadır. Ayrıca sinyalin neredeyse bütününün 

analizi yapıldığından, gereksiz birçok bilgi elde edilmektedir. Bu sorunların 

çözülebilmesi ve sinyallerin daha pratik bir şekilde analiz edilebilmesi amacıyla, Ayrık 

Dalgacık Dönüşümü (ADD) (Discrete Wavelet Transform-DWT) tekniği geliştirilmiştir. 

ADD, SDD gibi her bir ölçek ve öteleme değerinde işlem yapmak yerine, bunların alt 

kümesinde yer alan belli başlı ölçek ve öteleme gruplarını ele alarak sinyalleri analiz 

etmektedir. Sinyalin bütününde dalgacık dönüşüm katsayılarını hesaplamak yerine, 

sadece ele alınan belli başlı yerlerde katsayılar hesaplanmaktadır. Böylece sinyallerdeki 

kötü ve gereksiz bilgiler ortadan kaldırılarak, sadece işe yarayacak olan esas bilgiler 

elde edilmektedir. Bu sayede dalgacıkların veri setindeki gürültüleri ortadan kaldırma 

ve veri sıkıştırma kapasiteleri artırılmaktadır. Ayrıca zamandan ve işlem yükünden de 

tasarruf sağlanmaktadır. ADD’de yapılan dönüşüm işlemlerinin tersi de yapılarak 

orijinal sinyal fonksiyonundaki gereksiz bilgiler çıkartılır, gürültüler arındırılır ve sinyal 

tekrardan bir dalgacık dönüşümü ile analiz edilir [136]. ADD’nin bu pratik ve gerçekçi 
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yaklaşımı nedeniyle birçok farklı disiplindeki Dalgacık Dönüşümü (DD) ile ilgili 

çalışmalarda genellikle ADD kullanılmaktadır. Bu tez çalışmasında da ele alınan 

kuraklık zaman serilerinin analizinde ADD yöntemi kullanılacaktır. 

ADD, birden fazla seviyede uygulanabilen ve ölçek değerleri ile öteleme değerlerini 

2’nin kuvvetlerine bağlı çeşitli katsayılarla alt kümelerine ayıran bir dönüşüm 

tekniğidir. SDD’nin Eşitlik 2.29’da verilen genel ifadesinde;  

𝛼 = 𝛼0
𝑚                                                      (2.31) 

𝑏 = 𝑛𝑏0𝛼0
𝑚

             (2.32) 

m ve n birer tamsayı olmak üzere, eşitlikleri yerine yazılırsa yeni elde edilen dalgacık 

fonksiyonu şu şekilde olmaktadır: 

ψ𝑚,𝑛(𝑡) = 𝛼0

−𝑚

2 ψ(𝛼0
−𝑚𝑡 − 𝑛𝑏0)    𝑚, 𝑛 ∈ 𝑍        (2.33) 

Bu eşitlikte, ADD’nin ikili ölçekleme ve öteleme işlemi yapılarak 𝛼0 = 2 ve 𝑏0 = 1 

ifadeleri Eşitlik 2.31 ve 2.32’de yerine konulduğunda; 𝛼 = 2𝑚 ve 𝑏 = 𝑛2𝑚 olmaktadır. 

Elde edilen bu eşitlikler, Eşitlik 2.33’te yerine yazılırsa; 

ψ𝑚,𝑛(𝑡) = 2
−𝑚

2 ψ(2−𝑚𝑡 − 𝑛)          (2.34) 

eşitliği elde edilmektedir. Bu şekilde yapılan ikili ölçekleme ve öteleme işlemi daha 

sonra bahsedilecek olan filtreleme işleminin de temelini oluşturmaktadır.  

En son durumda 𝛼 = 2𝑚 ve 𝑏 = 𝑛2𝑚 ifadeleri ile Eşitlik 2.34, SDD’nin genel 

eşitliğinde yerine konulursa ADD dalgacık katsayısına ait matematiksel gösterim şu 

şekilde olmaktadır: 

A𝑚,𝑛 = 2
−𝑚

2 ∫ 𝑥(𝑡)ψ(2−𝑚𝑡 − 𝑛)𝑑𝑡
+∞

−∞
        (2.35) 

Eşitlik 2.35’te verilen A𝑚,𝑛 ifadesi, ADD ile hesaplanan dalgacık dönüşüm katsayısını 

göstermektedir. Dalgacık dönüşüm katsayılarının büyük olması sinyalle DD arasındaki 

ilişkinin iyi olduğunu göstermektedir [122, 137]. 
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ADD ile sinyal işleme çalışmalarının en önemli aşamalarından biri de ayrıştırma 

işlemidir. Ayrıştırma, bir sinyali ardı ardına yüksek ve alçak geçiren filtrelerden 

geçirerek ikiye bölme işlemidir. Bu şekilde yapılan filtreleme işlemi ile sinyal farklı 

frekans bantlarına ayrılabilmektedir. Sinyal fonksiyonu olan 𝑥(𝑡), ilk olarak yüksek 

geçiren filtre (𝑔(𝑘)) ve daha sonra ise alçak geçiren filtre (ℎ(𝑘))’den geçirilir. Sinyalin 

filtrelerle ayrıştırılması sonrasında 𝑔(𝑘) ve ℎ(𝑘) için dalgacık dönüşüm katsayıları elde 

edilir. Filtrelere ait matematiksel gösterimler aşağıda verilmiştir. 

𝑔(𝑘) = ∑ 𝑥(𝑡)𝑔(2𝑘 − 𝑡)𝑛            (2.36) 

ℎ(𝑘) = ∑ 𝑥(𝑡)ℎ(2𝑘 − 𝑡)𝑛            (2.37) 

ADD’de uygulanan filtreleme işleminde, yüksek geçiren ve alçak geçiren filtreler 

birbirinden bağımsız olmayıp aralarındaki ilişki aşağıdaki eşitlikte verilmiştir. 

𝑔(𝐿 − 1 − 𝑘) = (−1)𝑘ℎ(𝑘)          (2.38) 

Burada; L ifadesi filtre uzunluğunu temsil eder ve çift sayı olmalıdır. 

Daha önce de bahsedildiği gibi küçük ölçekli bir dalgacık, yüksek frekans bilgisinden 

dolayı sinyalin detay (detail) bileşenlerinin belirlenmesinde, büyük ölçekli dalgacık ise 

sinyalin yaklaşım (approximation) karakterlerinin belirlenmesinde fayda sağlamaktadır. 

ADD kullanılarak, alt bantlardan yaklaşım (A) ve detay katsayıları (D) elde 

edilebilmektedir. Yaklaşım katsayıları (A), alçak frekans bileşenlerini temsil ederken 

detay katsayıları (D) ise yüksek frekans bileşenlerini temsil eder. Bir sinyalde özellikle 

aranılan ya da istenilen bilgiler genellikle alçak frekans bileşenlerinden elde edilir [138].  

ADD yöntemi ile bir sinyale birden fazla ayrıştırma işlemi uygulanabilmektedir. Bu 

nedenle ADD ile ayrıştırma işlemi çoklu çözünürlük analizine uygundur. Çoklu 

çözünürlük analizi; bir sinyalin ayrıştırma işleminin filtreleme yapılarak ardı ardına 

olacak şekilde devam etmesi ve her ayrıştırma seviyesinde sinyalin yaklaşım bileşeninin 

(A) tekrar ayrıştırılmasıdır. Şekil 2.13’te ADD ile yapılan örnek bir ardışık ayrıştırma 

işlemi verilmektedir. 
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Şekil 2.13. ADD ile yapılan n. dereceden ardışık ayrıştırma işlemi 

Şekil 2.13’te verilen ardışık ayrıştırma işleminin matematiksel gösterimleri şu 

şekildedir: 

𝑥(𝑡) = 𝐴1 + 𝐷1            (2.39) 

𝑥(𝑡) = 𝐴2 + 𝐷2 + 𝐷1           (2.40) 

𝑥(𝑡) = 𝐴3 + 𝐷3 + 𝐷2 + 𝐷1          (2.41) 

𝑥(𝑡) = 𝐴𝑛 + 𝐷𝑛 + ⋯ + 𝐷1          (2.42) 

ADD ile yapılan ardışık ayrıştırma işleminin önemli hususlarından biri ayrıştırma 

seviyesinin (bant seviyesi) belirlenmesidir. Çoklu çözünürlük analizine uyan bu işlem 

teorik olarak sonsuza kadar götürülebilir. Bununla ilgili olarak literatürde; 

2𝐿 = 𝑁            (2.43) 

eşitliği verilmiştir. N veri adedini, L ise yapılacak maksimum ayrıştırma seviyesini 

(bant seviyesi) göstermektedir. Ancak yine zaman ve işlem yükü düşünüldüğünde 

ayrıştırma seviyesinin uygun bir değerde tutulması ve analizin bu seviyeye göre 

yapılması gerekmektedir. Deneme yanılma ya da analiz yapanın tecrübelerine göre bu 

değer belirlenebilmektedir [122]. 
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2.2.5.1.3. Dalgacık Aileleri 

Dalgacık Dönüşümünün (DD) en önemli hususlarından biri de dalgacık analizinde 

kullanılacak olan dalgacık ailesinin belirlenmesidir. Ana dalgacık fonksiyonu ve baba 

dalgacık fonksiyonun bir araya gelerek oluşturduğu fonksiyon, dalgacık ailesi 

fonksiyonunu meydana getirmektedir. Dalgacık analizlerinde kullanılmak üzere 

günümüze kadar birçok dalgacık ailesi önerilmiştir. Dalgacık ailelerinin birbirlerinden 

farklı özellikleri bulunmakta olup farklı sinyallerle uyum içerisinde bulunabilirler. 

Sinyalin durumuna ve alanına göre deneme yanılma yoluyla en uygun olabilecek 

dalgacık ailesi belirlenmelidir.  

Dalgacık ailelerine ait farklı ölçek ve ötelenme parametreleri, dalgacık katsayıları, 

birleşme noktaları, fonksiyon özellikleri, süreklilik ya da ayrık olma özellikleri, 

ortogonallik ya da biortogonallik gibi birçok kriter söz konusudur. Literatürde en çok 

tercih edilen dalgacık aileleri şunlardır: Haar, Daubechies, Symlets, Coiflets, 

Biortogonal, Ters Biortogonal, Meyer, Meyer’in Ayrık Yaklaşımı (Discrete 

Approximation of Meyer), Gauss, Karmaşık Gauss, Meksika Şapkası (Mexican Hat), 

Morlet, Karmaşık Morlet, Shannon, Frekans B-Spline (Frequency B-Spline) ve Fejer-

Korovkin. Bu dalgacık ailelerinin kendi içerisinde de farklı format ve versiyonları 

bulunmaktadır [139]. Dalgacık aileleri birçok kritere göre sınıflandırılabilir ancak en 

temelde sürekli ya da ayrık olma durumuna göre ikiye ayrılır. Haar, Daubechies, 

Symlets, Coiflets, Biortogonal, Gauss, Meksika Şapkası, Morlet, Meyer ve Shannon 

dalgacıkları, SDD’ye uygun; Haar, Daubechies, Symlets, Coiflets, Biortogonal 

dalgacıkları ise ADD’ye uygun dalgacıklardır. Görüldüğü gibi iki dönüşüm yönteminde 

de kullanılabilen dalgacık aileleri bulunmaktadır. Bir diğer önemli dalgacık ailesi 

özelliği de birleşme noktalarının sayısıdır. Birleşme noktaları, dalgacıkların sinyale 

yakınsama mertebesini göstermektedir. Daha önce bahsedildiği üzere DD sonrasında 

elde edilen dalgacık katsayılarının oluşturduğu polinomun derecesi, dalgacığın sahip 

olduğu birleşme noktası sayısından en fazla 1 eksik ise analiz edilen sinyal tek bir 

dalgacık katsayısı ile temsil edilebilmektedir. Yani özetle; bir dalgacık ailesinin sahip 

olduğu birleşme noktası ne kadar çok olursa, o kadar az dalgacık katsayısı ile sinyal 

temsil edilebilir [124].  
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Bu tez çalışmasında ele alınan DD analizlerinde; Haar, Daubechies, Symlets, Coiflets, 

Biortogonal, Ters Biortogonal, Fejer-Korovkin ve Meyer’in Ayrık Yaklaşımı (Discrete 

Approximation of Meyer) dalgacık aileleri kullanılmış olup bu dalgacık aileleri ile ilgili 

belli başlı özellikler sırasıyla verilmiştir. 

Sayılan dalgacık aileleri içerisinde en eski ve en basit olanı Haar dalgacığıdır. Alfred 

Haar tarafından 1910’da bulunmuş olmasına rağmen, o dönem dalgacık olarak 

tanımlanmamaktaydı. En az birleşme noktasına sahip olan, simetrik ve ortogonal bir 

dalgacıktır. Haar dalgacığının sıfıra yaklaşan moment sayısı birdir. Sinyal üzerinde sabit 

bir dalgacık aralığında analizlerini yapar. Hızlı ve basit olması, hem SDD’de hem de 

ADD’de kullanılabilmesi, iyi bir hafızasının olması ve tersine dönüşüm yapabilmesi 

avantajları olarak sayılabilir [140]. 

Daubechies dalgacığı, Ingrid Daubechies (1990) tarafından önerilmiş olup Haar 

dalgacığının daha karışık ve daha gelişmiş bir halidir. Daha karışık bir yapıda 

olmasından dolayı uzun hesaplamalar ve işlem yükü fazladır. Farklı alanlarda çok 

yaygın bir kullanımı olan önemli bir dalgacıktır. Simetrik olmayan ve ortogonal 

özelliklerine sahiptir. Sıfıra yaklaşan bu momentlerin sayısı filtre uzunluğunun (L) 

yarısına eşit olmaktadır. Daubechies dalgacığında sıfıra yaklaşan momentlerin sayısı 

8’dir. Bundan dolayı daha uzun dalgacık filtreleri ile yüksek mertebeli durağan olmayan 

stokastik süreçlerden, durağan dalgacık katsayı vektörleri elde edebilmektedir. Hem 

SDD’de hem de ADD’de kullanılabilmektedir [141]. 

Symlets dalgacığı; Daubechies tarafından geliştirilmiş olup Daubechies dalgacıklarına 

benzer özellikler taşımaktadır. Simetrik, ortogonallik, biortogonallik ve kompakt 

desteğe sahip olma özellikleri vardır. N derece olmak üzere, simetrik dalgacığın 

uzunluğu 2N-1 kadardır. Sıfır moment sayısı ölçek fonksiyonu için N'dir. Hem SDD’de 

hem de ADD’de yöntemlerinde kullanılır. 

Coiflets dalgacığı; simetriye yakın özellik gösterirler ve ortogonal analiz yaparlar. Sıfır 

moment sayısı ölçek fonksiyonu için 2N, dalgacık fonksiyonu için 2N-1'dir. Hem 

SDD’de hem de ADD’de yöntemlerinde kullanılmaktadır. 

Biortogonal dalgacıkları, simetrik ve biortogonal özelliktedirler. Biortogonal 

dalgacığının uzunluğu 2N+1 kadardır. Na analiz derecesi olmak üzere sıfır momentlerin 
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sayısı ölçek fonksiyonu için Na-1'dir. Yine hem SDD’de hem de ADD’de 

kullanılabilmektedir.  

Ters Biortogonal dalgacık, Biortogonal dalgacığındaki işlemlerin tam tersi uygulanır. 

Hem SDD’de hem de ADD’de yöntemlerinde kullanılmaktadır. 

Fejer-Korovkin dalgacığı; dalgacık dönüşümünde, alçak geçiren filtrenin sürekli 

olmaması nedeniyle yavaş azalan bir katsayılı frekans çözünürlüğünün ortaya çıktığı 

durumlarda, Fejer-Korovkin çekirdekleri aracılığı ile optimum çözünürlüğe sahip bir 

dizi filtreleme seçeneği sunabilen bir dalgacık ailesidir. Bu yapısı ile diğer 

dalgacıklardan daha farklı bir yaklaşımı söz konusu olup yine ortogonal özelliktedir  

[142]. 

Meyer dalgacıkları, Yves Meyer tarafından geliştirilmiş olup simetrik ve ortogonal 

özelliktedir. Frekans uzayına sahip olup sonsuz türevlenebilir. Süreklilik özelliğinden 

dolayı, SDD yönteminde kullanılması daha uygundur. Meyer’in Ayrık Yaklaşımı 

(Discrete Approximation of Meyer) dalgacığı ise Meyer dalgacığının Sonlu Darbe 

Tepkisi (SDT) (Finite Impulse Response-FIR) tabanlı bir yaklaşımıdır. ADD’de 

kullanıldığında, hızlı bir şekilde dalgacık katsayılarının elde edilmesini sağlar. [122, 

123, 124, 129]. 

2.2.5.2. Ampirik Mod Ayrıştırma (AMA) 

Hem doğrusal olmayan hem de durağan olmayan sinyalleri ayrıştırmak amacıyla Huang 

ve ark. (1998) tarafından geliştirilmiş bir sinyal ayrıştırma tekniğidir. Karmaşık 

sinyalleri çok çeşitli ve yüksek zaman-frekans ölçeğinde ayrıştırması nedeniyle 

elektronik ve haberleşme, tıp, biyomedikal, finans ve hidrometeoroloji gibi alanlarda 

yaygın bir şekilde kullanılmaktadır. AMA yöntemi, ele alınan sinyali tamamen ampirik, 

veri uyarlamalı ve yinelemeli bir şekilde belirli periyodiklikte farklı modlarına (alt 

sinyallerine) ayrıştırmaktadır. Modlar, yerel minimum ve maksimum değerleri 

birbirinden farklı olan alt sinyallerdir. AMA yaklaşımı ile modlar yani bir sinyaldeki 

yerel minimumlar ve maksimumlar yinelemeli olarak saptanabilmektedir. AMA ile ilgili 

ilk tanımlamalarda modlar, yerel ekstrem sayısı ve sıfır geçiş sayısı en fazla bir farklılık 

gösteren alt sinyal olarak ifade edilmişken daha sonraki çalışmalarda, modülasyon 

kriterlerine dayalı olarak İçsel Mod Fonksiyonu (İMF) (Intrinsic Mode Function-IMF) 
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olarak değiştirilmiştir. AMA’nın kendine özgü en önemli özelliği olan eleme (sifting) 

işlemi sayesinde ele alınan bir sinyal, İMF ve artık (residual) mod bileşenlerine 

ayrılabilmektedir. Ayrıştırma sonucu elde edilen bu mod bileşenleri uzunluk ve zaman 

ölçeği bakımından orijinal sinyale benzemektedir. İMF bileşenleri, Hilbert-Huang 

Dönüşümü ile bulunmaktadır [143]. 

Bir sinyalin İMF bileşeni olarak kabul edilebilmesi için aşağıda verilen şu iki koşulu 

sağlaması gerekmektedir: 

1) Yerel maksimum ve minimum uç nokta sayıları ve sıfır geçiş sayısı aynı ya da en 

fazla bir farklı olmalıdır. 

2) Yerel maksimum noktalarıyla belirlenen üst zarf ile yerel minimum noktalarıyla 

belirlenen alt zarfın aritmetik ortalaması sıfır olmalıdır. 

AMA sinyal işleme tekniğinin eleme yaklaşımı ile İMF ve artık mod bileşenlerinin elde 

edilmesi şu işlem adımları sonucu gerçekleşir: 

 Orijinal sinyal 𝑓(𝑡) olmak üzere bu sinyalin içindeki tüm yerel maksimum ve 

minimum noktalar belirlenir.   

𝑀𝑖, 𝑖 = 1, 2, 3, … , 𝑛 ve 𝑀𝑘, 𝑘 = 1, 2, 3, … , 𝑛           (2.44) 

 Sinyale ait yerel maksimum noktalarla üst zarf olan 𝑀ü𝑠𝑡(𝑛) ve yerel minimum 

noktalarla alt zarf olan 𝑀𝑎𝑙𝑡(𝑛) kübik spline enterpolasyonuyla oluşturulur. 

 Oluşturulan bu alt ve üst zarflara ait aritmetik ortalama bulunur. 

ℎ(𝑛) =
(𝑀ü𝑠𝑡(𝑛)+𝑀𝑎𝑙𝑡(𝑛))

2
                                                  (2.45) 

 Daha sonra bulunan bu ortalama değer giriş sinyalinden çıkartılır. 

𝑥(𝑛) = 𝑓(𝑡) − ℎ(𝑛)          (2.46) 

 Eğer 𝑥(𝑛), İMF’nin iki koşulunu sağlıyorsa; 𝜑(𝑛) = 𝑥(𝑛) olarak İMF belirlenmiş 

olur. Ayrıca; 𝑟(𝑛) = ℎ(𝑛) kabul edilerek artık mod bileşeni de belirlenir.  
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 Eğer 𝑥(𝑛), İMF’nin koşullarını sağlamazsa ilk adıma geri dönülür ve işlemler 

tekrarlanır. Giriş sinyali maksimum ve minimum uç nokta barındırmadığı zaman 

İMF ve artık mod bileşenleri elde edilmiş olur ve eleme işlemine son verilir [144, 

145]. 

AMA’nın ele alınan bir sinyali ayrıştırma ve eleme işlemleri sonucunda belirlenen İMF 

ve artık mod bileşenlerinin toplamı orijinal sinyali vermektedir. 𝑓(𝑡) orijinal sinyal 

olarak kabul edildiğinde n. dereceden bir ayrıştırma ile; 

𝑓(𝑡) = ∑ İ𝑀𝐹𝑖 + 𝐴𝑟𝑡𝚤𝑘𝑛
𝑖=1              (2.47) 

eşitliği elde edilmiş olur. 

AMA sinyal işleme tekniğinde, her ne kadar matematiksel teoriden yoksunluk ve geçici 

algoritmik yapılar bulunsa da zaman serileri başta olmak üzere birçok farklı sinyalin 

ayrıştırma işlemlerinde kullanılmaktadır. 

2.2.5.3. Varyasyonel Mod Ayrıştırma (VMA) 

Huang ve ark. (1998) tarafından geliştirilen Ampirik Mod Ayrıştırma (AMA), 

yinelemeli bir sinyal ayrıştırma tekniği olarak daha önceki başlıkta tanıtılmıştı. AMA 

yönteminin gürültüye duyarlılık, örnekleme, serbestlik dereceleri ve matematiksel teori 

eksikliği gibi hususlarda, bıraktığı boşlukları tamamlayabilmek amacıyla yine sinyal 

ayrıştırma işlemlerinden biri olan Varyasyonel Mod Ayrıştırma (VMA), Dragomiretskiy 

ve Zosso (2014) tarafından geliştirilmiştir. VMA, sinyali alt bantlarına ayrıştırarak 

sinyaldeki kararsızlıkları azaltmaya ve sinyaldeki özniteliklerin belirlenmesine yarayan 

varyasyonel (değişken-çeşitli) bir dönüşüm tekniğidir. AMA’nın aksine özyinelemesiz 

yaklaşımı kabul etmiş, modların (alt sinyaller) eş zamanlı olarak çıkarıldığı, uyarlamalı 

bir zaman-frekans analiz yöntemidir. Modlardan kasıt yerel minimum ve maksimum 

değerleri birbirinden farklı olan alt sinyallerdir [146]. AMA tekniğine göre daha yeni ve 

daha az bilinen bir yöntem olmasına rağmen son dönemde elektronik ve haberleşme 

başta olmak üzere tıp, biyoloji ve diğer mühendislik alanlarında popüler bir yöntem 

olmuştur. Özellikle hibrit yöntemlerle oluşturulan tahmin modellerinde tahmin 

performanslarının iyileştirilmesi amacıyla yaygın olarak kullanılmaya başlanmıştır.  
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Mevcutta yaygın bir şekilde kullanılan Fourier Dönüşümü, Hilbert Dönüşümü, Dalgacık 

Dönüşümü, Ampirik Mod Ayrıştırma gibi ayrıştırma yöntemlerinde bazı sınırlamalar 

söz konusudur. Bunlara örnek vermek gerekirse; matematiksel teori eksikliği, serbestlik 

derecesinin sayısı, özyinelemeli ayrıştırmadan kaynaklı geriye doğru hata düzeltmesinin 

zorluğu, gürültü fonksiyonları ile baş edememe, dalgacıklarda olduğu gibi sabit 

ayrıştırma (bant) sınırları ve önceden tanımlanmış filtre yaklaşımıdır. VMA yönteminde 

ise ayrıştırma (bant) sınırları uyarlamalı olarak belirlenmekte ve karşılık gelen modlar 

eşzamanlı olarak tahmin edilerek bunlar arasındaki hatalar uygun bir şekilde 

dengelenebilmektedir. AMA yönteminde olduğu gibi İçsel Mod Fonksiyonu (İMF) 

(Intrinsic Mode Function-IMF) bileşenleri ile dar bant özelliklerinden yararlanarak giriş 

sinyali en optimum şekilde ayrıştırılıp yeniden yapılandırılır. Giriş sinyalindeki gürültü 

fonksiyonlarının varlığı ele alınarak bunları sinyalden ayrıştırmak amaçlanır. Bu 

özelliği, orijinal Wiener filtresine benzemekte olup çoklu uyarlanabilir yapısı nedeniyle 

daha gelişmiş bir yapıdadır. Wiener filtresi, 1940'larda Norbert Wiener tarafından 

önerilen ve 1949'da yayınlanan bir filtredir. Sinyallerdeki gürültü miktarını azaltmayı 

amaçlayan bir filtreleme tekniğidir. Wiener filtresi, sinyalleri durağan olarak kabul 

ettiğinden uyarlanabilir özelliği bulunmamaktadır [147].  

VMA yaklaşımı ile tek boyutlu bir giriş sinyalinin tanımlanmış sayıda moda 

ayrıştırılması sonucu elde edilen bu modlar bir optimizasyon yapısı ile tekrardan ele 

alınmaktadır. VMA’nın optimizasyon yapısı oldukça basit ve hızlıdır. AMA 

yönteminde olduğu gibi VMA’da da sinyal temelde iki ana bileşene ayrılır. Bunlar; 

İçsel Mod Fonksiyonu (İMF) (Intrinsic Mode Function-IMF) ve artık (residual) 

bileşenleridir. VMA’nın teorik yapısı kısaca aşağıda özetlenmiştir.  

VMA'nın amacı, gerçek değerli bir giriş sinyali olarak alınan 𝑓 değerini, girişi yeniden 

üretirken belirli seyreklik özelliklerine sahip dar bant genişliklerinde farklı ayrık 

modlara (𝑢𝑘) ayrıştırmaktır. Burada, spektral alandaki her modun seyrekliği, bant 

genişliği olarak seçilir. Başka bir deyişle, her bir 𝑘 modunun, ayrıştırma ile belirlenecek 

olan bir merkezi frekans olarak tabir edilen 𝜔𝑘 etrafında çoğunlukla kompakt olduğu 

varsayılır. Ayrıca tüm modlara ait bant genişlikleri toplamının minimize edilmesi 

gerekir. Her bir 𝑢𝑘 değeri, tek taraflı bir frekans spektrumu elde etmek için ilişkili 

sinyali Hilbert dönüşümü aracılığıyla hesaplamaktadır. Her bir mod için ilgili merkez 

frekansı ayarlanmış bir üstel ile çarpılarak modun tek taraflı frekans spektrumu 
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harmonik ortamda temel banda kaydırılır. Her bir moda ait bant genişliği, yeniden 

üretilmiş olan sinyalin Gauss yumuşaklığı aracılığı ile gradyanın karesi normunda (L2) 

yani en küçük kareler yöntemiyle tahmin edilmektedir. Bahsedilen bu kısıtlanmış 

varyasyonel optimizasyon probleminin matematiksel gösterimi aşağıda verilmektedir.  

𝑚𝑖𝑛
{𝑢𝑘} {𝜔𝑘}

{∑ ‖𝜕𝑡 [(𝛿𝑡 +
𝑗

𝜋𝑡
) ∗ 𝑢𝑘(𝑡)] 𝑒−𝑗𝜔𝑘𝑡‖

2

2
𝐾
𝑘=1  } ;    𝑓(𝑡) = ∑ 𝑢𝑘(𝑡)𝐾

𝑘=1  𝑖ç𝑖𝑛   (2.48) 

Eşitlik 2.48’de; 𝐾 toplam mod sayısını, 𝑢𝑘 ifadesi tüm 𝐾 mod sayısı kümesini, 𝜔𝑘 

ifadesi ise merkezi frekansı temsil etmektedir. 𝜕𝑡 ifadesi ise zamana bağlı kısmi türevi 

göstermektedir.  

Yeniden sinyal üretme ile ilgili varyasyonel kısıtlamaları gösteren Eşitlik 2.48’deki 

problem farklı şekillerde çözülebilmektedir. Bu problemi kısıtsız hale getirmek için hem 

ikinci dereceden bir ceza terimi hem de Lagrange çarpanları (λ) kullanılmaktadır. 

Genişletilmiş Lagrange fonksiyonu aşağıda verilmektedir. 

𝐿({𝑢𝑘}, {𝜔𝑘}, 𝜆) = 𝛼 ∑ ‖𝜕𝑡 [(𝛿𝑡 +
𝑗

𝜋𝑡
) ∗ 𝑢𝑘(𝑡)] 𝑒−𝑗𝜔𝑘𝑡‖

2

2

𝑘                                

+‖𝑓(𝑡) − ∑ 𝑢𝑘(𝑡)𝑘 ‖2
2 + 〈𝜆(𝑡), 𝑓(𝑡) − ∑ 𝑢𝑘(𝑡)𝑘 〉                     (2.49)  

Eşitlik 2.48’deki varyasyonel optimizasyon problemi, Eşitlik 2.49’da genişletilmiş 

Lagrange’ın eyer noktası olarak artık çözülebilmektedir. Eşitlik 2.49, VMA’da 

Çarpanların Alternatif Yön Yöntemi (The Alternating Direction Method of Multipliers-

ADMM) kullanılarak tam optimizasyon problemi, yinelemeli alt optimizasyon 

problemlerinin bir dizisi olarak çözülmektedir [148]. 

VMA’da; ayrıştırılan modun merkezi frekansı, mevcut tahminlere karşılık gelen dar 

bantlı Wiener filtresi ile diğer tüm modların sinyal tahmin kalıntı bileşenine uygulanır. 

Daha sonra ise merkezi frekans, modun güç spektrumunun ağırlık merkezi olarak 

yeniden tahmin edilir. Bu işleme frekans karıştırma denir. En düşük frekanslı modlar 

yeniden üretilirken, orta güçteki frekansa sahip modlar kabul edilebilir kalitede olarak 

görülmektedir. En yüksek frekanslı modların ise tekrar üretilmesi zordur. Ancak VMA 

algoritması bu modu yeniden üretmeyi başarırsa modun ilk ayrıştırılan halinden daha 

kaliteli olabilmesi de mümkündür. Merkezi frekanslar (𝜔𝑘) ile ilgili alt optimizasyon 
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probleminin matematiksel gösterimi, sonrasında ise Fourier alanındaki matematiksel 

gösterimi ve problemin çözümü sırasıyla aşağıda verilmiştir. 

𝜔𝑘
𝑛+1 = 𝑎𝑟𝑔𝜔𝑘

𝑚𝑖𝑛 {‖𝜕𝑡 [(𝛿𝑡 +
𝑗

𝜋𝑡
) ∗ 𝑢𝑘(𝑡)] 𝑒−𝑗𝜔𝑘𝑡‖

2

2
 }         (2.50) 

𝜔𝑘
𝑛+1 = 𝑎𝑟𝑔𝜔𝑘

𝑚𝑖𝑛{∫ (𝜔 − 𝜔𝑘)2∞

0
|û𝑘(𝜔)|2 𝑑𝜔}                                         (2.51) 

 𝜔𝑘
𝑛+1 =

∫ 𝜔
∞

0
|û𝑘(𝜔)|2𝑑𝜔

|û𝑘(𝜔)|2𝑑𝜔
                      (2.52) 

En son durumda; alt optimizasyonların çözümleri, Çarpanların Alternatif Yön Yöntemi 

algoritması kullanılarak 1'e yerleştirilir ve uygun olduğunda doğrudan Fourier alanında 

optimizasyon yapılarak, yukarıda özetlenen varyasyonel mod ayrışımı için tam 

algoritma elde edilir.  

𝜆𝑛+1(𝜔) = 𝜆𝑛(𝜔) + 𝜏(𝑓𝜔 − ∑ û𝑘
𝑛+1(𝜔)𝑘 )                  (2.53) 

Eşitlik 2.53’te verilen 𝜏 sembolü Lagrange çarpanının güncelleme oranıdır. Değişkenler 

varyasyonel optimizasyonlara yakınsayana kadar güncellenmektedir.  

Genlik modülasyonlu ve frekans modülasyonlu bir sinyalin İçsel Mod Fonksiyonu 

(İMF) bileşenine ait matematiksel gösterimi aşağıda verilmiştir. 

𝑢𝑘(𝑡) = 𝐴𝑘(𝑡) cos(∅𝑘𝑐(𝑡))    𝐴𝑘(𝑡) ≥ 0  𝑣𝑒 ∅𝑘(𝑡) ≥ 0                                       (2.54) 

Eşitlik 2.54’te verilen 𝐴𝑘(𝑡) ve ∅𝑘(𝑡) ifadeleri sırasıyla 𝑘.ncı modun zamana bağlı zarf 

fonksiyonunu ve fazını (aşama) temsil etmektedirler. 𝑘.ncı modun ilgili anlık 

frekansının faza göre yavaş değiştiği ve negatif olmadığı varsayılır. Anlık frekansın 

gösterimi ise aşağıdaki eşitlikte verilmiştir.  

𝑤𝑘(𝑡) = ∅𝑘(𝑡)           (2.55) 

Tüm bu optimizasyon ve ayrıştırma işlemlerinden sonra ele alınan sinyale ait İMF ve 

artık bileşenler elde edilmiş olur. 𝑓(𝑡) orijinal sinyal olarak kabul edildiğinde n. 

dereceden ayrıştırma ile; 

𝑓(𝑡) = ∑ İ𝑀𝐹𝑖 + 𝐴𝑟𝑡𝚤𝑘𝑛
𝑖=1               (2.56) 
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eşitliği elde edilir. İMF ve artık bileşenlerin toplanması sonucu orijinal sinyal bulunmuş 

olur [146, 149, 150]. 

2.2.6. Yapay Zekâ, Makine Öğrenmesi ve Derin Öğrenme  

2.2.6.1. Yapay Zekâ 

Bilim ve teknoloji hızını kaybetmeden gelişimini sürdürmeye devam ediyor. Geliştirilen 

her teknoloji insanoğlunun yalnızca refah seviyesini ve hayat standartlarını artırmakla 

kalmıyor, bir sonraki yeniliğin de başlangıç noktası olarak önünü açıyor. Teknolojiler 

arasındaki eşsiz rekabet ise gelişmeleri daha da hızlandırmakta ve sınırları 

zorlamaktadır. İnsanoğlunun çağlar boyunca kat ettiği ilerlemeye bakıldığında ise 

gelecekte hangi seviyelere ulaşabileceğini tahmin etmek oldukça güçtür. Kâinatın en 

muhteşem varlığı olan ve aklını kullanmayı başarabilen insan türü, bu özelliğini 

bilgisayarlar vasıtasıyla çeşitli robotlara, makinelere, algoritmalara ve yazılımlara 

aktarabilmiştir. Bu sayede insan gücünden, işlem yükünden ve zamandan çok büyük bir 

oranda tasarruf sağlanarak daha hızlı, daha pratik, daha doğru ve daha güvenilir işlemler 

yapılabilmiş ve ayrıca bu teknolojilerin tüm toplumların hizmetine sunulması ile 

toplumların konfor alanı ve hayat standartları daha da yükselmiştir [151]. 

İnsanın kendi türüne özgü düşünme ve öğrenme kabiliyetlerini bilgisayarlar üzerinden 

çeşitli algoritmalara aktarması ve tanıtması sonucu bilgisayarlar başta olmak üzere diğer 

makinelerin insanlar gibi düşünmesi, öğrenmesi ve davranışlarını taklit etmesi yapay 

zekâ ve yapay zekâya bağlı diğer yapay öğrenme teknolojilerini ortaya çıkarmıştır. 

Yapay zekâ ile ilgili ilk tartışmalar, 2. Dünya Savaşı sırasında Almanların Enigma adlı 

şifreleme makinesinin şifrelerini çözmesi ile meşhur olan İngiliz matematikçi ve 

kriptolog Alan Mathison Turing’e (1950) ait “Makineler Düşünebilir mi? (Can 

Machines Think?) adlı makalesine dayanmaktadır. Bu makaledeki ana tema akıllı 

makinelerin icat edilerek yapay bir formda bu makinelerin insanlar gibi düşünüp 

düşünemeyeceği üzerineydi. Yapay zekâ (Artificial Intelligence) tabiri ise ilk olarak 

1956 yılında Amerikalı bir bilgisayar bilimcisi olan John McCarthy tarafından ortaya 

atılmıştır [152]. Ünlü Türk matematikçi Ord. Prof. Dr. Cahit Arf (1959) ise makinelerin 

insana özgü olan bu düşünebilme özelliğini nasıl gerçekleştireceği üzerine fikirlerini 

ortaya atmıştır [153]. 
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Zaman içerisinde, bilgisayar bilimlerindeki gelişmelere paralel olarak yapay zekâ 

alanında ve uygulamalarında çok önemli aşamalar kat edilmiştir. Özellikle son yirmi 

yıllık dönemde yapay zekâ teknikleri ve bu tekniklere yönelik algoritmalar insan 

hayatında önemli bir yer edinmiştir. İnsanın aklını, zekâsını, tepki ve davranışlarını 

taklit edebilen bu algoritmalar, günümüzün en popüler konularından olan yapay zekâ 

tekniklerinin, makine öğrenmelerinin ve derin öğrenme yöntemlerinin temelini 

oluşturmaktadır. Genel olarak yapay zekâ teknikleri, bu alandaki en üst küme olarak 

kabul edilmekte olup makine öğrenmesi ve derin öğrenme ise bu kümenin alt 

elemanlarıdır. Yani makine öğrenmesi ve derin öğrenmeye ait yaklaşım ve algoritmalar 

aynı zamanda yapay zekâyı da oluşturmaktadır. Şekil 2.14’te yapay zekâ, makine 

öğrenmesi ve derin öğrenmenin kendi aralarındaki hiyerarşisi verilmektedir. 

 
Şekil 2.14. Yapay zekâ, makine öğrenmesi ve derin öğrenme hiyerarşisi 

Yapay zekâ tekniklerinin ilk örnekleri olarak; Yapay Sinir Ağları (YSA), Genetik 

Algoritmalar (GA), Bulanık Mantık (BM), Uzman Sistemler (US), Karınca ve Arı 

Kolonileri, Gauss Süreçleri ve Tavlama Benzetimleri sayılabilir. 

2.2.6.2. Makine Öğrenmesi 

Makine öğrenmesi, birçok veri türüne bağlı olarak insana özgü öğrenme ve çıkarım 

yapma gibi işlevleri olanaklı hale getiren bilgisayar algoritmalarının tasarım, geliştirme 

ve iyileştirme aşamalarını konu edinen bir yapay zekâ yaklaşımıdır. Makine öğrenmesi 

yaklaşımlarındaki ana hedef, bilgisayarlar üzerinden karmaşık verileri algılama ve 

öğrenme becerilerinin geliştirilmesi sonucu veriye dayalı çıkarımlar yapabilmesidir. 

Verilerin analizinde, geleneksel klasik yöntemler hem işlem yükünü artırmakta hem de 
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hata payının yüksek olmasından dolayı tam olarak güvenilir çıkarımlara 

ulaşılamamaktadır. Bu nedenle büyük ve karmaşık veri setlerini irdeleyerek geçmişteki 

verileri kullanıp o verilerin gelecekteki durumları hakkında çıkarımlar yapabilmesi için 

makine öğrenmesi geliştirilmiştir. Makine öğrenmesindeki en önemli aşama ele alınan 

veri ile ilgili olarak mevcut problemlerin tespit edilip bu probleme yönelik çözüm odaklı 

modellerin kurulmasıdır. Bu yapay zekâ yaklaşımında verinin önemi oldukça büyük 

olup öğrenme algoritmaları problemin ne olduğunu veriden öğrenmekte ve bu veri 

setinin en belirgin özelliklerine göre tahminler yapabilmektedir [154]. İyi bir makine 

öğrenmesi algoritması, hemen hemen hiç ya da çok az bir insan yardımı alarak otomatik 

öğrenme yoluyla verileri eğiterek, doğru tahminler yapabilmeli ve buna bağlı olarak 

akıllı kararlar alabilmeyi sağlamalıdır. Algoritma üzerinden gerçekleştirilen öğrenme 

verilerdeki gözlemlerin, tecrübelerin, alışkanlıkların ve ekstrem olayların meydana 

getirdiği deneyime ve eğitim sistemine göre yapılır [155].  

Amerikalı bilim adamları mantıkçı Walter Pitts ve nörofizyolog Warren McCulloch, 

1943’te insanın öğrenme ve düşünme sürecini taklit etmeyi amaçlayan ve insan 

beynindeki sinir yapısını matematiksel olarak modelleyen algoritmaları bilim dünyasına 

tanıtmışlardır [156]. Bu çalışma makine öğrenmesi ve derin öğrenmenin gelişimindeki 

en önemli adımdır. Daha sonraki yıllarda bu çalışmadan esinlenerek makine öğrenmesi 

algoritmalarına yönelik birçok çalışma gerçekleştirilmiş olup halen yeni gelişmeler 

devam etmektedir. Yapay zekâ dünyasında bugünlerde en çok konuşulan ve en çok ilgi 

gören konulardan biri ChatGPT (Chat Generative Pre-Trained Transformer) sohbet 

robotu, makine öğrenmesindeki gelişmelere en iyi örnektir. Tıp, haberleşme, ekonomi-

finans, temel bilimler ve mühendisliğin birçok alanında makine öğrenmesi yaklaşımına 

dayalı yöntemler yaygın bir şekilde kullanılmaktadır.  

Makine öğrenmesindeki en önemli adımın, problemin tespiti olduğu daha önce 

belirtilmişti. Problemin tespiti ile başlayan makine öğrenmesi süreci veri ve model 

üzerine birçok aşamadan geçilerek tamamlanmaktadır. Şekil 2.15’te makine öğrenmesi 

aşamaları verilmiştir.   
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Şekil 2.15. Makine öğrenmesi aşamaları  

Makine öğrenmesi algoritmaları; Denetimli öğrenme (Supervised learning), denetimsiz 

öğrenme (Unsupervised learning) ve takviyeli (destekleyici) öğrenme (Reinforcement 

learning) olmak üzere 3 ana sürece göre işlevlerini yerine getirir. Şekil 2.16’da makine 

öğrenmelerine ait öğrenme türleri gösterilmiştir. 

 
Şekil 2.16. Makine öğrenmesine ait öğrenme türleri  
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Denetimli öğrenme; ele alınan bir veri setinde giriş değişkenlerini baz alarak çıkış 

değişkenini tahmin etmeyi amaçlayan ve öğrenen sistemin öğrenmesi istenen olay ile o 

olayın sonuçları arasındaki ilişkiyi belirlemesi istenen bir öğrenme yaklaşımıdır. 

Sistemdeki giriş verisi ile çıkış verisi arasındaki bu ilişkinin belirlenmesi, bilgisayarın 

öğrenme algoritmasına yapılan dış müdahaleler ile gerçekleştiğinden dolayı bu öğrenme 

denetimli öğrenme olarak adlandırılmaktadır [157]. Bu öğrenme temelinde giriş verileri 

bağımsız değişkenler çıkış verileri ise bağımlı değişkenler olarak temsil edilmektedir. 

Denetimli öğrenme yaklaşımında, veri seti kendi içerisinde rastgele ya da belli bir 

kurala göre eğitme ve test verileri olarak ayrılır. Eğitme verileri olarak ayrılan sete 

uygun bir denetimli öğrenme algoritması uygulanarak model üzerinden o setin öğrenme 

kapasitesi ortaya konulur. Daha sonra ise denetimli öğrenme algoritması eğitmesi 

tamamlanan veri setini baz alarak test için ayrılan veri setini test eder. Test sonuçları ise 

belli başlı performans ölçütlerine göre değerlendirilir. Eğer çıkış verisi (tahmin) 

istenilen doğrulukta ise öğrenme süreci tamamlanır, ancak istenilmeyen bir sonuç 

modelden alındığında öğrenme algoritması üzerinden çeşitli varyasyonlar ile öğrenme 

işlemine devam edilir. Denetimli öğrenme algoritmaları temel olarak sınıflandırma ve 

regresyon uygulamalarını ele alır. Eğer bağımlı değişkenin kategorik bir durumu söz 

konusu ise bunlar sınıflandırma, bağımlı değişkenin sürekli olması durumu söz konusu 

ise regresyon uygulamalarında ele alınır. Sınıflandırma uygulamalarının amacı, eldeki 

veri setinde belirlenmiş bir sınıflandırmaya sahip olan verilerin denetimli öğrenme 

yaklaşımı ile henüz sınıfları belli olmayan verilerin sınıflarını yüksek bir doğrulukla 

tahmin edip sınıflarına ayırmaktır. Bu uygulamanın adı her ne kadar sınıflandırma olsa 

da aslında tahmin yaklaşımlarına dayanmaktadır. Çünkü sınıflandırılmış ya da gruplara 

ayrılmış bir veri setinin özelliklerini öğrenerek o verilerle ilgili yeni bir sınıf ya da grup 

belirleme işi, tahmin modelleri üzerinden yapılır.  Sınıflandırma problemlerinde yaygın 

bir şekilde kullanılan makine öğrenmesi yöntemleri ise şunlardır: Yapay Sinir Ağları 

(YSA), Destek Vektör Makineleri (DVM), k-En Yakın Komşu (KEYK) Algoritması, 

Lojistik Regresyon (LR), Rastgele Orman (RO), Basit Bayes Algoritması, Otomatik Ki-

Kare Etkileşim Tekniği [155, 158]. Bilindiği üzere regresyon, bir bağımlı değişken ile 

bir veya daha fazla bağımsız değişken arasındaki ilişkileri ortaya koyan bir yöntemdir. 

Denetimli öğrenme algoritmalarında da yine aynı temel mantıkla regresyon 

uygulamaları yapılmaktadır. Destek Vektör Makineleri (DVM), Lojistik Regresyon 
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(LR) ve Rastgele Orman (RO) makine öğrenmesi yöntemleri denetimli öğrenmenin 

regresyon uygulamalarında sıklıkla kullanılan yöntemlerdendir. 

Denetimsiz öğrenmede, ele alınan veri setindeki bağımsız değişken olan giriş verisi 

öğrenme algoritmasına öğretilir, ancak bağımlı değişken olan çıkış verisi öğretilmez. 

Çıkış verisi olmadan verilerin arasındaki ilişki belirlenmeye çalışılır. Aynı zamanda bu 

öğrenme yönteminde, denetimli öğrenmede olduğu gibi bir dış müdahale bulunmaz. 

Öğrenme algoritması verilerin arasındaki ilişkiyi kendi öğrenerek belirlemeye çalışır. 

Denetimli öğrenmede olduğu gibi veri setinin eğitme ve test olarak ayrılması söz 

konusu değildir, sadece eğitme verileri üzerinden öğrenme algoritması çıkış verilerini 

tahmin etmeye çalışmaktadır. Herhangi bir çıkış verisi öğrenme algoritmasına 

tanıtılmadığından çıkış verilerine ait sonuçların değerlendirmesi daha zordur. Elde 

edilen sonuçların doğru ya da güvenilir olması gibi çıkarımlardan ziyade sonuç 

verilerinin öznitelikleri üzerinde durularak bir bütünlük sağlanmaya çalışılır [155]. Bu 

öğrenme yönteminde genellikle kümeleme, boyut azaltma ve olasılık hesapları üzerine 

çalışmalar yapılmaktadır. Yaygın olarak kullanılan denetimsiz öğrenme algoritmaları 

ise şunlardır: Kümeleme, Hiyerarşik Kümeleme, K-Ortalamalar Yoğunluğa Dayalı 

Uzamsal Kümeleme, Yoğunluğa Dayalı Algoritmalar, Temel Bileşen Analizi (TBA), 

Çekirdek Temel Bileşen Analizleri.  

Takviyeli (destekleyici) öğrenme yönteminin ana yaklaşımı ise öğrenme algoritmasına 

öğrenmesi için tanıtılan giriş verilerinden çıkış verilerini elde etmesi ve elde edilen 

model sonuçlarına göre daha önceden belirlenen hedeflere ulaşabilmesidir. İstenilen 

hedefe ulaşma sürecinde öğrenme algoritması hedefe nasıl ulaşacağına yönelik alacağı 

doğru kararları kendiliğinden öğrenir. Bunun yanı sıra bu doğru kararları 

belirleyebilmek amacıyla, istatistik ve dinamik programlama yaklaşımlarından da 

faydalanılır. Aynı zamanda bu yöntemde ödül ve ceza sistemi vardır. Yani öğrenme 

algoritması sonuca yönelik doğru kararlar alırsa ödül, yanlış kararlar alırsa bir cezayla 

karşılaşır. Bu öğrenme yöntemindeki temel yaklaşım, ödülü arttırmak için ne yapılması 

ve nasıl bir ilişkilendirmenin gerektiğinin öğrenme algoritmasına öğretilmesidir. 

Öğrenme algoritması, ödülünü arttırmak için daha önceden uygulanmış modellerde ödül 

almış olan algoritmaları bulmalıdır. Takviyeli (destekleyici) öğrenmede, veri setindeki 

eğitme ve test aşamaları beraber gerçekleştirilmekte olup modelden elde edilen 

sonuçlara göre öğrenme algoritmasının kendisini geliştirmesi ve bu sayede insan 
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beyninin çalışma şekline benzeyen algoritmaları üretmesi bu yöntemin geliştirilme 

amacıdır. Bu yöntemde kullanılan öğrenme algoritmalarının başında Q öğrenme 

gelmektedir [155, 159]. 

2.2.6.3. Derin Öğrenme 

Yapay zekâ tekniklerinin ve makine öğrenmesinin alt kümesinde yer alan derin 

öğrenme yöntemleri, geleneksel yapay sinir ağlarının oldukça gelişmiş bir formudur. 

Son beş yıllık dönemde birçok alanda kullanılmaya başlanmış olup elde edilen sonuçlar 

ve geri dönüşümlerden dolayı araştırmacılar için oldukça popüler bir alan olmuştur. 

Pitts ve McCulloch (1943)’ın derin öğrenmenin temelini oluşturan çalışmalarından daha 

önce bahsedilmişti. İnsan beyni ile insanın düşünme ve öğrenme özelliğinin 

matematiksel olarak modellendiği bu çalışma, bilgisayarların insan davranışlarını taklit 

edebilmesi amacını taşıdığından önemli bir yer tutmaktadır. Günümüzde ve gelecekte 

de insan beyninin ve davranışlarının bilgisayarlar üzerinden makinelere ya da robotlara 

uyarlanması hep popüler bir konu olmaya devam edecektir. Yaşadığımız bu dönemde 

veri ve verinin kullanımı oldukça önemli hale gelmiştir. İnsanların günlük aktiviteleri, 

alışkanlıkları ve davranışları ile ilgili verilerin birçok sektör tarafından çok kısa 

sürelerde işlenmesi neredeyse zorunluluk haline dönüşmüştür. Bilgisayarlar üzerinden 

sürekli bir sirkülasyon halinde bulunan verilerin analizi de hem veri büyüklüğü hem de 

işlem yükü açısından önem arz etmektedir. Geleneksel sinir ağları ya da diğer makine 

öğrenmesi yöntemleri bu büyük boyutlu verilerle uğraşmada mevcut bilgisayar 

işlemcilerinin kapasitelerinden dolayı da bazen yetersiz kalabilmektedir. Bu sebeplerden 

dolayı derin öğrenmenin geliştirilmesindeki en önemli etkenler olarak veri büyüklüğü 

ve işlem yükü problemleri sayılabilir [160]. 

Derin öğrenme, sinir ağlarındaki ardışık gizli katmanların sayısının artırılması sonucu 

karmaşık ve büyük boyutlu verilerin analizlerinde daha kapsamlı çözümler sunan bir 

makine öğrenmesi yöntemidir. Derin öğrenme ifadesindeki derin kavramı kurulan sinir 

ağı modelindeki katmansal derinliği ifade etmektedir. Geleneksel sinir ağları genellikle 

bir veya iki ara katmandan oluşmasından ötürü sığ öğrenme olarak tanımlanır. Ancak 

derin öğrenmede katmanların sayısı istenilen sayıda belirlenebilir. Derin öğrenmede, her 

bir işlem katmanı kendisinden önceki katmanda tutulan ve en iyi özelliklere sahip çıkış 

verisini giriş verisi olacak şekilde alarak öğrenmeye çalışır. Katman sayısının fazla 
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olmasından dolayı parametre sayısı da çoktur. Öğrenme algoritmaları denetimli ya da 

denetimsiz öğrenme şeklinde olabilir. Derin öğrenme algoritmalarında, ele alınan veri 

setinin birden çok özellik veya temsil durumunun kendiliğinden öğrenilmesine dayanan 

bir yaklaşım söz konusudur. Üst düzey özellik veya temsil, alt düzey özellik veya 

temsilden türetilerek hiyerarşik bir öğrenme algoritması oluşturulmaktadır. Veri 

setinden elde edilen bu en iyi temsiller aracılığı ile yapılan öğrenme, derin öğrenme 

yöntemindeki temel yaklaşımdır [161]. 

Derin öğrenme algoritmaları yine denetimli, denetimsiz ve takviyeli (destekleyici) 

öğrenme türlerinde ele alınmakta olup tahmin, sınıflandırma, görüntü ve sinyal işleme, 

regresyon gibi çeşitli görevlerde kullanılmaktadır. Birçok alanda yaygın kullanımları 

olan Çok Katmanlı Algılayıcı (ÇKA), Derin Sinir Ağları (DSA), Evrişimli Sinir Ağları 

(ESA), Tekrarlayan Sinir Ağları (TSA), Uzun-Kısa Süreli Bellek (UKSB), Kısıtlı 

Boltzmann Makineleri (KBM), Otomatik Kodlayıcılar (OK) ve Derin İnanç Ağları 

(DİA) ve bunların farklı versiyonları derin öğrenme yöntemlerine örnek gösterilebilir. 

Her bir yöntemin kendine özgü öğrenim mimarileri ve öğrenme yaklaşımları 

bulunmaktadır.  

Yapay zekâ teknikleri de kendi içerisinde zamanla gelişmiş olup belli bir alanda çok iyi 

performanslar gösteren bir yöntem daha sonra geliştirilen başka bir yöntemin 

üstünlüklerinden dolayı ilkel kalmıştır. Sınırlı katman sayısı, veri büyüklüğü, problemin 

zorluğu, öğrenme algoritmaları, veri işleme, işlem hızı ve kapasitesi gibi etmenler 

yöntemlerin gelişiminde ve gösterdiği popülerlikte etkili olmaktadır. Makine öğrenmesi 

algoritmaları ile derin öğrenme algoritmaları arasında yaklaşıma dayalı önemli farklar 

bulunmaktadır. Derin öğrenme algoritmalarında, yüksek bir oranda hesaplama ve işlem 

gücüne sahip olan ve karmaşık büyük veri problemlerini çözebilmeyi amaçlayan sinir 

ağları kullanılmaktadır. Derin öğrenme algoritmaları, kendiliğinden öğrenebilen sinir 

ağlarına dayalı bir mimari yapı oluşturmaya dayanırken makine öğrenmesi 

algoritmaları, veriler üzerinden öğrenme sağlayan ve probleme özgü olarak çözümler 

geliştiren algoritmalar olarak kabul edilmektedir. Derin öğrenme algoritmalarının diğer 

yöntemlere göre daha üstün bir genelleme özelliği bulunmakta olup bu nedenle daha 

önce hiç karşılaşılmamış bir test verisi de kolaylıkla öğrenilebilmektedir. Ayrıca veri 

sayısı ya da büyüklüğü arttıkça da derin öğrenme diğer yöntemlere göre daha iyi 

performans göstermektedir [162]. 
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2.2.7. Çalışmada Kullanılan Makine ve Derin Öğrenme Yöntemleri 

Bu tez çalışmasında; makine öğrenmesi yöntemi olarak Yapay Sinir Ağları (YSA), 

Uyarlamalı Sinirsel Bulanık Çıkarım Sistemi (USBÇS), Destek Vektör Makine 

Regresyonu (DVMR) ve Gauss Süreç Regresyonu (GSR), derin öğrenme yöntemi 

olarak ise Uzun-Kısa Süreli Bellek (UKSB) kullanılacaktır. Bu yöntemlerin 

seçilmesinin sebebi özellikle hidrometeorolojik zaman serilerinin tahminleri ile ilgili 

çalışmalarda başarılı sonuçlar alınmasıdır. UKSB yöntemi çoğunlukla elektronik ve 

haberleşme, biyomedikal, ses ve görüntü işleme gibi alanlarda yaygın bir şekilde 

kullanılmakta olup hidrometeorolojide yeni yeni ele alınmaktadır. Ayrıca derin 

öğrenmenin üstün öğrenme kapasitesinin kuraklık zaman serilerinde nasıl bir 

performans göstereceği merak edilmiştir. 

2.2.7.1. Yapay Sinir Ağları (YSA) 

Yapay Sinir Ağları (YSA), insanın merkezi sinir sisteminin bir elemanı olan beynin en 

küçük işlem birimleri olan sinir hücrelerini hem görevi hem de şekli itibari ile taklit 

ederek insana ait öğrenme, düşünme ve çıkarım yapma gibi kabiliyetlerin bilgisayarlar 

üzerinden gerçekleştirilmesini sağlayan bir makine öğrenimi teknolojisidir. YSA’lar 

bilgi işleme sistemleri olduğundan, insanın sinir hücreleri ile karşılaştırılabilir. Bu 

yöntemde sürekli karşımıza çıkan sinir ağlarından kasıt, belli bir ağırlık değeri ile temsil 

edilen ve yapay sinir hücrelerinden teşkil edilen, her birinin kendi belleği olan ve 

bilgileri taşıyan bağlantı elemanları ile birbirlerine bağlanarak oluşturulan matematiksel 

ağ modelidir. YSA’nın öğrenme becerisi algoritmasına sunulan verideki örnekler 

aracılığı ile gerçekleştirilir. Nasıl insan beyni daha önce karşılaştığı örneklerden elde 

ettiği tecrübelere göre bazı bilgileri işliyorsa, YSA algoritması da eğitme aşamasında bu 

tarz tecrübeleri kazanabilmektedir. YSA’nın en önemli özelliği, eğitilmesi için 

algoritmasına sunulan bir giriş değişkenini belirli kurallar çerçevesinde kendi başına 

eğiterek bazı genellemeler yapması ve bu yapılan genelleme işlemi sonrasında giriş 

değişkenlerine karşılık gelen çıkış değişkenlerini elde etmesidir. YSA’lar bulundukları 

ortama uyum sağlayabilen, adaptif, eksik bilgi ile de çalışabilen, belirsiz durumlara göre 

karar alabilen ve hatalara karşı toleransları olan farklı bir hesaplama yöntemi 

yaklaşımına dayanmaktadır [163]. 
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YSA öğrenme algoritmalarının temeli, Kanadalı psikolog Donald Hebb tarafından 1949 

yılında önerilen ve Hebb öğrenme kuralı olarak literatüre giren öğrenme algoritmasına 

dayanmaktadır. Bağlantıların farklı ağırlık değerlerine göre öğrenme kuralına dayanan 

bu algoritma birçok makine öğrenmesinin de öğrenme kurallarının esasını 

oluşturmaktadır. Yapay zekâ alanında çalışmalar yapan Amerikalı nörobiyolog Frank 

Rosenblatt 1957 yılında basit algılayıcı model yapısını geliştirmiş olup Çok Katmanlı 

Algılayıcıları (ÇKA) önermiştir. Özellikle bu iki çalışma YSA’nın gelişiminde önemli 

bir yer tutmaktadır. Daha sonraki yıllarda ise YSA’nın farklı algoritmalarına yönelik 

çalışmalar yapılmış ve gelişimi devam etmiştir. YSA algoritmaları ile tahmin ve 

sınıflandırma başta olmak üzere öğrenme, bağlantı kurma, genelleme ve optimizasyon 

işlemleri gibi çalışmalar gerçekleştirilmektedir [164].  

2.2.7.1.1. Yapay Sinir Ağının Yapısı 

YSA’nın taklit ettiği insan beynine ait biyolojik sinir hücreleri 4 ana elemandan 

oluşmakta olup bunlar: sinaps, çekirdek, akson ve dentrittir. Bu elemanlar arasında 

sürekli bir bilgi ve işlem akışı vardır. Sinaps, sinir hücreleri arasındaki bağlantıyı 

sağlayarak iletişim kurulmasını sağlayan elemandır. Çekirdek, sinapstan gelen bilgiyi 

işleyerek elde edilen çıktı bilgisini akson aracılığı ile dentrite aktaran merkezi birimdir. 

Akson, sinir hücrelerinde işlenen bir bilgiyi diğer bir sinir hücresinde giriş bilgisi olarak 

oluşturulması için sinapsa aktaran elemandır. Dentrit ise diğer hücrelerden gelen 

bilgileri çekirdeğe ileten sinir hücresinin en uç kısmında bulunan elemandır. Biyolojik 

sinir hücrelerindeki elemanlar ve bu elemanların arasında görülen bilgi ve işlem akışı 

yapay sinir hücreleri ile taklit edilerek YSA öğrenme algoritmaları oluşturulmuştur. 

Yapay sinir hücreleri nöronlar vasıtasıyla birbirleri ile bağlantı kurarak yapay sinir ağını 

oluşturmaktadır. Yapay bir sinir ağı temelde 3 ana katmandan ve yapay sinir hücresi ise 

5 farklı bölümden oluşmaktadır. Katmanlar; girdi katmanı, ara (gizli) katman ve çıktı 

katmanı olarak ayrılır. Şekil 2.17’de YSA’nın genel bir ağ yapısı gösterilmektedir. 
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Şekil 2.17. YSA katman yapısı   

Şekil 2.17’de gösterilen katmanlardan girdi katmanı, yapay sinir ağına gelen bilgilerin 

alındığı ve ara (gizli) katmana iletildiği başlangıç katmanıdır. Ara (gizli) katman, girdi 

katmanından gelen bilgilerin işlendiği katmandır. Çıktı katmanında ise girdi 

katmanından ağa giriş yapan veriler için üretilmesi gereken çıktı, ara (gizli) katmandan 

gelen bilgiler işlenerek üretilir. YSA’nın temel katman yapısı yukarıda kısaca 

özetlenmiş olup YSA’nın asıl öğrenme süreci ile ilgili işlemlerin gerçekleştirildiği 

yapay sinir hücresinin bölümleri Şekil 2.18’de gösterilmiştir. 

 
Şekil 2.18. Yapay sinir hücresinin bölümleri   

Şekil 2.18’de gösterilen yapay sinir hücresinin bölümlerinden girdi değerleri, hücreye 

dışardan ya da diğer nöronlardan gelen bilgileri temsil etmektedir. Bu girdi bilgileri, 

girdi katmanında toplanarak bağlantılar aracığı ile çekirdeğe iletilmektedir. Yapay bir 

sinir hücresinde tek bir çıktı değeri elde edilirken istenilen sayıda girdi değeri 

olabilmektedir. Ağırlık değerleri, girdi değerlerinin çekirdeğe iletilmesi aşamasında 
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geldikleri bağlantıların hücreye etkisini belirleyen değerlerdir. Bu değerler sıfır, pozitif 

ya da negatif şeklinde sabit ya da değişken değerler alabilmektedir. Girdi bilgileri, 

bağlantıların ağırlıkları ile çarpılarak çekirdeğe iletilmektedir. Toplama fonksiyonu, 

yapay sinir hücresine girdi olarak gelen ve bağlantıların ağırlıkları ile çarpılarak elde 

edilen tüm bilgilerin toplandığı ve net girdi değerlerinin hesaplandığı fonksiyonlardır. 

Bu fonksiyonlar toplam, çarpım, minimum, maksimum, çoğunluk ve kümülatif toplam 

olarak belirlenebilmekte olup fonksiyon seçimi ise yapay sinir ağının mimarisine uygun 

olacak şekilde isteğe bağlıdır. Literatürde en çok kullanılan fonksiyon ise toplam 

fonksiyonudur [163]. Toplama fonksiyonunda hesaplanan net girdi değeri şu eşitlik 

aracılığı ile bulunmaktadır: 

𝑁𝐸𝑇 = ∑ 𝐺𝑖𝑊𝑖
𝑛
𝑖=1             (2.57) 

Eşitlik 2.57’de verilen 𝑛 hücreye gelen toplam eleman sayısını, 𝐺𝑖 girdi değerini, 𝑊𝑖 ise 

ağırlık değerlerini temsil etmektedir.  

Şekil 2.18’de gösterilen yapay sinir hücresindeki aktivasyon fonksiyonu ise hücreye 

gelerek hesaplanan net girdi değerlerini işleyen yani bilginin işlendiği aşamadır. Burada 

toplama fonksiyonundan sonra bir eşik seviyesine göre girdi değerlerine karşılık çıktı 

değerleri belirlenir ve bir sonraki aşama olan çıktı katmanına aktarılır. Aktivasyon 

fonksiyonunda belirlenen eşik seviyesi aşağıda verilen şu eşitlik ile gösterilmektedir: 

 𝑦 = 𝑓(𝐺𝑥𝑊) = 𝑓(𝑁𝐸𝑇)           (2.58) 

Eşitlik 2.58’de gösterilen 𝑦 eşik değerini, 𝑓 fonksiyonu ise aktivasyon fonksiyonunu 

temsil etmektedir. Bu fonksiyonun doğrusal ya da doğrusal olmayan çeşitleri 

bulunmaktadır. Doğrusal (lineer), sigmoid, adım (step), hiperbolik tanjant, sinüs, ReLU 

(Doğrultulmuş Doğrusal Birim-Rectified Linear Unit) yaygın olarak kullanılan 

aktivasyon fonksiyonlarıdır.  

Yapay sinir hücresinin son aşaması olan çıktı değeri ise aktivasyon fonksiyonunda elde 

edilen sonuç değeridir. Yapay sinir hücresinden tek bir çıktı değeri elde edilmekte olup 

bu değer kendi hücre ortamına, başka bir sinir hücresine ya da farklı bir ortama 

gönderilebilmektedir. Aynı çıktı değeri birden fazla yapay sinir hücresinde girdi değeri 

olarak da kullanılabilmektedir. 
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2.2.7.1.2. Yapay Sinir Ağlarının Sınıflandırması 

YSA’lar; ağın bağlantı yönlerine, öğrenme algoritmalarına ve katman sayısına göre 

genel olarak üç ana grupta sınıflandırılmaktadır. Şekil 2.19’da YSA sınıflandırması 

gösterilmiştir. 

 

Şekil 2.19. Yapay sinir ağlarının sınıflandırması 

YSA’nın bağlantı yönlerine göre sınıflandırılmasından kasıt aslında ağın mimari 

yapısını ve bilginin ilerleme (akış) istikametini gösteren bir ayrımdır. İleri beslemeli 

ağlarda yapay sinir hücresindeki bilgi akışı girişten çıkışa doğru düzenli katmanlar 

aracılığı ile sağlanmaktadır. Yapay sinir hücresinden elde edilen çıktının bir önceki 

katmandaki hücrenin girdi değerini oluşturmadığı ağ yapısıdır. Yani bu ağ yapısında bir 

katmandan sadece kendisinden sonraki katmana bir bağ bulunmaktadır. Geri beslemeli 

ağlarda ise bir yapay sinir hücresinde elde edilen çıktı değeri kendinden önceki 

katmanda veya kendi ortamında bulunan herhangi bir yapay sinir hücresinde girdi 

değeri olarak bağlanabilme durumu söz konusudur. Yapay sinir hücresindeki bilgi akışı 

hem ileriye doğru hem de geriye doğru sağlanmaktadır. Geri beslemeli ağ yapısının bu 

özelliğinden dolayı eğitim süreci ileri beslemeli ağ yapısına göre daha uzun 

olabilmektedir. 

Öğrenme algoritması türleri olan denetimli, denetimsiz ve takviyeli öğrenme daha önce 

derin öğrenme başlığında anlatılan öğrenme türlerinin aynısı olduğundan tekrar 

üzerinde durulmayacaktır. Bir diğer YSA sınıflandırma ölçütü olan katman sayısı ise tek 

katmanlı ve çok katmanlı olmak üzere iki türlüdür. Bazı çalışmalarda katman ifadesinin 
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yanına algılayıcı (perceptron) ifadesi de eklenerek tek katmanlı algılayıcı ya da çok 

katmanlı algılayıcı gibi bir kullanım da söz konusu olmaktadır. Tek katmanlı YSA’larda 

sadece girdi ve çıktı katmanı bulunurken, çok katmanlı YSA’larda girdi katmanı, ara 

katman ya da katmanlar ve çıktı katmanı yer almaktadır. Tek katmanlı ağlarda ağa 

sunulan girdi değerleri girdi katmanı nöronları ile çıktı katmanı nöronu arasındaki 

ağırlıkların hesaplanması sonucu belirlenen aktivasyon fonksiyonunda işlemden 

geçirilerek tek bir çıktı verisi elde edilmektedir. Aktivasyon fonksiyonu özellikle çıktı 

değeri için belirlenir ve belirlenen bu aktivasyon fonksiyonu doğrusaldır. Bu nedenle 

doğrusal olmayan problemlerin ele alındığı durumlarda bu ağ yapısı yetersiz 

kalmaktadır. Ayrıca basit tek katmanlı algılayıcı YSA modeli bu ağ yapısı baz alınarak 

oluşturulmuştur. Çok katmanlı ağların tek katmanlı ağlardan farkı ara katman ya da 

katmanların bulunmasıdır. Yapay sinir hücresine gelen bilgiler ara katmanda ya da 

katmanlarda işlenmektedir. Doğrusal olmayan aktivasyon fonksiyonları kullanılarak 

ağın doğrusal olan yapısı doğrusal olmayan şekle dönüştürülür. Özellikle bu ağın yapısı 

baz alınarak geliştirilen ve ağın öğrenmesini kolaylaştırarak hataların da mümkün 

olduğunca minimumda tutulmasını sağlayan geri yayılım algoritması oluşturulmuştur. 

Çok katmanlı YSA’nın eğitme aşamasında ağa hem girdi hem de çıktı değerleri 

sunularak bilgi işlendiğinden ayrıca denetimli öğrenme de sağlanmış olur [164, 165]. 

2.2.7.1.3. Geri Yayılım Algoritması 

Çok katmanlı YSA’lar, doğrusal olmayan problemleri çözebilmesi için geliştirilmiş bir 

ağ modeliydi. Bu modelde geri yayılım öğrenme algoritmaları kullanılarak girdi 

değerlerine karşılık gelen çıktı değerleri elde edilmektedir. Geri yayılım algoritması, en 

küçük kareler yöntemini esas alan delta öğrenme kuralına dayanarak ağın eğitme 

aşamasında elde edilen çıktı ile gerçek çıktı arasındaki hatanın minimilize edilmesi 

amacıyla ağırlık değerlerini dereceli azaltma ve eğim inişi yöntemleri ile optimize 

etmektedir. Ağırlık değerlerinin optimize edilerek hataların da en aza indirilmesindeki 

amaç ağın performansını artırabilmektir. Bu algoritmada hem ileri beslemeli hem de 

geri beslemeli bağlantı yönleri dikkate alınarak öğrenme akışı sağlanmaktadır. İlk 

aşamada çıktının elde edilebilmesi için ileri beslemeli akış kullanılırken, daha sonra 

ağdaki ağırlık değerlerinin uygun hale getirilebilmesi için geri beslemeli akış 

kullanılmaktadır. Geri yayılım algoritması sadece çok katmanlı YSA modellerinde 

kullanılır.  
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2.2.7.1.4. Levenberg-Marquardt Algoritması 

Geri yayılım algoritması, ağdaki ağırlık değerlerini ayarlarken yakınsama etkinliği ile 

ilgili bazı eksiklikleri bulunmaktadır. Bu algoritmanın optimizasyon kapasitesini 

artırabilmek amacıyla momentum kapasitesi, esnek yayılım, gradyan azaltma, Gauss 

Newton ve Levenberg-Marquardt algoritması gibi bazı yöntemler geliştirilmiştir. Tez 

çalışmasında kullanılacak olan YSA modellerinde öğrenme algoritması olarak 

Levenberg-Marquardt algoritması ele alınacağından bu algoritma üzerinde durulmuştur. 

Levenberg-Marquardt algoritması, standart sayısal optimizasyon tekniklerinden biri 

olup YSA modellerinde son dönemde yaygın bir şekilde kullanılmaktadır. Bu öğrenme 

algoritması, gradyan azaltma ve Gauss Newton yöntemlerinin iyi yönlerinin alındığı, 

eksik yönlerinin ise geliştirildiği daha karmaşık bir yapıya sahiptir. Tek katmanlı ağlar 

kullanılabildiği gibi çoğunlukla çok katmanlı ağlardan oluşmaktadır. Ayrıca genellikle 

ileri beslemeli ağlarda ve denetimli öğrenme modellerinde kullanılmaktadır. Levenberg-

Marquardt algoritması, geri yayılım algoritmasındaki yakınsama eksikliğini gidermek 

ve ağın öğrenme kapasitesini artırabilmek adına, doğrusal olmayan problemlerde 

kullanılan ve en küçük kareler yöntemine dayanan bir algoritmadır. Geri yayılım 

algoritmasını iyileştirebilmek için bu yönteme dâhil edilebilen ikinci dereceden bir 

gradyan yaklaşımına dayanmaktadır [166]. Ele alınan ağdaki hata değeri bulunduktan 

sonra ağı oluşturan her bir nöron, kendi ağırlık değerini optimize ederek hata oranını en 

aza indirmeye çalışır. Ele alınan ağdaki performans değerini belirleyebilmek amacıyla 

aşağıdaki eşitlikte verilen karesel hata fonksiyonu kullanılmaktadır. 

𝐸(𝑘) =
1

2
∑ (𝑑𝑗(𝑘) − 𝑌𝑗

(3)(𝑘))
2

𝑛3
𝑗=1           (2.59) 

Eşitlik 2.59’da verilen 𝐸(𝑘) ifadesi karesel hata fonksiyonunu, 𝑌𝑗
(3)(𝑘) ifadesi öğrenme 

örneği için ağın 𝑗’nci çıkış nöronu tarafından üretilen değeri, 𝑑𝑗(𝑘) ifadesi ise istenilen 

değere karşılık gelen değeri temsil etmektedir. Hata fonksiyonunun belirlenmesinden 

sonra performans değerini elde etmek için ağırlık değerlerine bağlı olarak Hessian 

matrisinin (ikinci dereceden türevlerin matrisi) türevi kullanılmaktadır. Bu aşamanın 

ardından ağırlıkların bulunmasına yönelik çeşitli matris işlemleri yapılarak hata 

oranlarını en aza indirmek amacıyla çeşitli optimizasyonlar yapılmaktadır. Levenberg-
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Marquardt algoritmasında, ağda elde edilen performans değerlerine yakınsama hızı 

yüksektir ancak daha fazla bellek ve işlem yükü gerekmektedir [167]. 

2.2.7.2. Uyarlamalı Sinirsel Bulanık Çıkarım Sistemi (USBÇŞ) 

Uyarlamalı Sinirsel Bulanık Çıkarım Sistemi (USBÇŞ), YSA ile bulanık mantığın 

kombine edilerek oluşturulduğu ve uyarlamalı bir ağ yaklaşımına dayalı makine 

öğrenmesi yöntemidir. Jang tarafından 1993 yılında geliştirilmiştir [168]. Literatürde 

kullanılan adı ANFIS (Adaptive Neuro‑Fuzzy Inference System) olup tez çalışmasında 

Türkçe kısaltması olan USBÇS olarak adlandırılacaktır. USBÇS, YSA’nın öğrenme 

algoritmalarını kullanarak girdi ve çıktı değerleri arasında bulanık mantığa dayalı çeşitli 

kurallar oluşturmaktadır. Bu yöntemde düşünme ve çıkarım yapma gibi yetenekler 

bulanık mantık kullanılarak yapılmaktadır. 

Mantık, akıl yürüterek bazı önermeler sunmaya dayalı bir düşünce faaliyetidir. Mantık 

biliminin kurucusu kabul edilen ve M.Ö. 384−322 yılları arasında yaşamış olan filozof 

Aristo’nun kendi adını da taşıyan Aristo mantığı (klasik mantık, ikili mantık ya da düz 

mantık olarak da bilinmektedir), belirsizlik durumunu içermeyen iki farklı sonuca 

dayanmıştır. Örneğin kesin hükümler çerçevesinde bakılarak bir bilgi ya doğrudur ya da 

yanlış, bir maddenin rengi ya siyahtır ya da beyaz, doktora eğitimi ya kolaydır ya da 

zor. Bununla birlikte daha sonraki dönemlerde bilimin gelişmesine paralel olarak 

belirsizlik durumunun fayda sağlayan bir kavram olarak algılanması ile mantık 

hükümlerinde üçüncü bir sonuç olarak belirsizlik durumu da sayılmıştır. Bunun en 

önemli nedeni bilimle uğraşan insanların şüpheci ve sorgulayıcı olma özellikleridir. İşte 

bu belirsizlik durumundan dolayı bulanık mantık kavramı ortaya çıkmıştır. Lotfy A. 

Zadeh, 1965 yılında mantık değerleri kümesini [0,1] aralığında tanımlayarak Bulanık 

Mantık Teorisini geliştirmiştir. Bu teoride; küme içerisinde yer alan mantık değerleri 0 

ile 1 arasında değişken üyelik derecelerine sahiptir. Üyelik derecesi, sistemde ele alınan 

bir girdinin dilsel değişkeninin bir terime hangi derecede ait olduğunu belirleyen 

değerdir. Bulanık mantıkta, dilsel değişken değerlerin tümü ise üyelik fonksiyonu olarak 

adlandırılmaktadır. Bulanık mantık yaklaşımında, kesin hükümlerden ziyade örnek 

olarak çok, çok büyük, büyük, küçük, daha küçük gibi belirsiz hükümler bulunmaktadır 

[169]. Aristo mantığında örnek gösterilen bir rengin ya siyah ya da beyaz olması gibi 

kesin hükümlerine ek olarak bu iki rengin arasındaki birçok farklı tonu içerisinde 
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barındıran gri rengin de bir hüküm olabileceği bulanık mantığın temelini 

oluşturmaktadır. Bulanık mantığın sınırları Aristo mantığına göre daha esnek olup 

kurulan mantık çerçevesinde yer alan elemanların nitelikleri de daha belirsiz hükümleri 

içermektedir [170].  

Bulanık mantıkta kabul edilen belirsizlik durumundan dolayı ele alınan bir problemde 

yaklaşık sonuçlara ulaşılmaya çalışılmakta olup bulanık mantık esnek bir hesaplama 

tekniği olarak yaygın bir şekilde kullanılmaktadır. Bulanık mantık; giriş, 

bulanıklaştırma birimi, veri tabanı, kural tabanı, bulanık çıkarım mekanizması, 

durulaştırma (berraklaştırma) birimi ve çıkış bölümlerinden meydana gelmektedir [171]. 

Şekil 2.20’de bulanık mantık bölümleri gösterilmiştir. 

 

Şekil 2.20. Bulanık mantık bölümleri 

Şekil 2.20’de gösterilen bulanık mantık bölümlerinden bulanıklaştırma birimi, bir 

sisteme gelen ve kesin olarak tanımlanan bir girdi değerinin çeşitli üyelik fonksiyonları 

kullanılarak 0 ile 1 arasında derecelendirilmesi ile girdi değerinin bulanık bir değere 

dönüştürüldüğü birimdir. Bu aşamada ele alınan üyelik fonksiyonları genellikle üçgen, 

sabit, trapez, sigmoid ve Gauss üyelik fonksiyonlarıdır. Bilgi tabanı, sistemde ele alınan 

girdiye ait tüm sayısal ya da sözel bilgilerin ve verilerin tutulduğu birimdir. Kural 

tabanı, girdi değerlerini çıktı değerleri ile ilişkilendiren ve tüm mantıksal kuralların 

birlikte ele alındığı birimdir. Kurallar belirlenirken bulanıklaştırma biriminden gelen 

tüm girdi ve çıktı değerlerinin arasındaki bulanık değerler dikkate alınmaktadır. Kural 

tabanında girdi ve çıktı değerlerini ilişkilendiren tüm bulanık küme elemanları 



94 

toplanarak sistemden tek bir çıktı elde edilmesi bulanık çıkarım mekanizmasında 

sağlanmaktadır. Durulaştırma (berraklaştırma) birimi ise tüm bu işlemler sonucunda 

elde edilen bulanık çıktı sonucunu kesin bir sayısal değere dönüştürmektedir [172]. 

YSA ve bulanık mantığın kombine edilmesi ile oluşturulan USBÇS, özellikle doğrusal 

olmayan problemlerin çözümünde kullanılmaktadır. Bulanık çıkarım sistemlerinde 

başlıca iki farklı yaklaşım bulunmakta olup bunlar Mamdani ve Takagi-Sugeno 

yöntemleridir. Mamdani bulanık çıkarımı ilk olarak, deneyimli insan operatörlerden 

elde edilen bir dizi dilsel kontrol kuralının sentezlenmesiyle bir kontrol sistemi 

oluşturmak için tanıtılmıştır [173]. Bu yaklaşımda her kuralın bir çıktısı bulunmaktadır. 

Bulanıklaştırma biriminden gelen fonksiyon üyelik seviyeleri, her bir kural için 

maksimum ya da minimum ilişkilendirme operatörü sayesinde çıkış üyelik fonksiyonu 

ile ilişkilendirilmektedir [174]. Her kurala ait çıktı, çıkış üyelik fonksiyonundan ve 

bulanık çıkarım sisteminden türetilen bir bulanık kümedir. Bu çıktı bulanık kümeleri, 

bulanık çıkarım sistemindeki toplama yöntemi kullanılarak tek bir bulanık kümede 

birleştirilmektedir. Daha sonra ise nihai net çıktı değerinin hesaplanması için birleşik 

çıktı bulanık kümesi, durulaştırma (berraklaştırma) işlemi için önerilen yöntemlerden 

biri kullanılarak bulanıklaştırılmaktadır. Mamdani bulanık çıkarımı daha sezgisel 

olmakla birlikte anlaşılması ve yorumlanması daha kolay kural tabanlarına sahiptir 

[175]. Bir diğer bulanık çıkarım yaklaşımı olan Takagi-Sugeno’da, girdi değerlerinin 

sabit veya doğrusal bir fonksiyonu olan tekil çıkış üyelik fonksiyonları kullanılmaktadır. 

Bu yaklaşımda; bulanıklaştırma biriminden gelen fonksiyon üyelik seviyeleri polinom 

çıkış üyelik fonksiyonları ile ilişkilendirilmektedir. Durulaştırma (berraklaştırma) işlemi 

ise iki boyutlu bir alanın merkezini hesaplamak yerine birkaç veri noktasının ağırlıklı 

ortalamasını veya ağırlıklı toplamını kullanmakta olup bu yönüyle Mamdani 

yaklaşımına kıyasla hesaplama kolaylığı sağlamaktadır. Ayrıca Takagi-Sugeno bulanık 

çıkarım sistemi, optimizasyon ve uyarlanabilir tekniklerle iyi çalışmakta olup 

matematiksel analizler için çok uygundur [176]. 

2.2.7.2.1. Uyarlamalı Sinirsel Bulanık Çıkarım Sisteminin (USBÇS) Yapısı 

Uyarlanabilir bir ağ sistemine girdi ve çıktı değerleri verilerek, USBÇS modelinde 

geriye yayma metodu ile en küçük kareler metodu kullanılarak bulanık bir çıkarım 

sonucu elde edilmeye çalışılmaktadır. Bu işlemler esnasında üyelik fonksiyonları ile 



95 

birlikte “eğer-ise” şeklinde oluşturulan bulanık kurallar dikkate alınmaktadır. 𝑥 ve 𝑦 

girdi değerleri ile 𝑓 çıktı değerli, Gauss üyelik fonksiyonuna sahip, “eğer-ise” bulanık 

kurallı birinci mertebeden Takagi-Sugeno yaklaşımına dayalı bir USBÇS’nin yapısı 

matematiksel olarak aşağıda verilmektedir: 

𝜇𝐴(𝑥, 𝑐, 𝑠, 𝑚) = 𝑒𝑥𝑝 [−
1

2
|

𝑥−𝑐

𝑠
|

𝑚
]         (2.60) 

Eşitlik 2.60’da verilen 𝜇𝐴 ifadesi A bulanık kümesinin üyelik fonksiyonunu, 𝑥, 𝑐, 𝑠, 𝑚 

ifadeleri ise kümenin destek ve genişlik parametrelerini temsil etmektedir.  

Kural 1: Eğer 𝜇(𝑥), A1 ve 𝜇(𝑦), B1 ise 𝑓1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1     (2.61) 

Kural 2: Eğer 𝜇(𝑥), A2 ve 𝜇(𝑦), B2 ise 𝑓2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2     (2.62) 

Eşitlik 2.61 ve 2.62’de verilen ifadelerden A1, B1, A2, B2 ifadeleri 𝑥 ve 𝑦 girdi 

değerlerinden üyelik fonksiyonları ile elde edilen bulanık kümeleri; 𝑝1, 𝑞1, 𝑟1, 𝑝2, 𝑞2, 𝑟2 

ifadeleri ise 𝑓 çıktı değerine ait çıkış fonksiyonlarını temsil etmektedir. USBÇS’nin 

Takagi-Sugeno bulanık çıkarım yaklaşımına dayalı iki girişli katman yapısı Şekil 

2.21’de gösterilmiştir.  

 
Şekil 2.21. İki girişli USBÇS genel yapısı  

Şekil 2.21’de gösterilen USBÇS genel yapısında girdi değerleri düğümler aracılığı ile 

ilk katman olan bulanıklaştırma katmanına iletilmektedir. Bu katmanda girdi değerleri 

Ai ve Bi şeklinde bulanık kümelere ayrılarak Gauss üyelik fonksiyonu ile üyelik 

dereceleri belirlenmektedir. 2. katman olan kural katmanında, bulanıklaştırma 

katmanından gelen üyelik derecelerinin çarpılmasıyla “eğer-ise” bulanık kuralına dayalı 
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olarak her bir kuralın ağırlığı 𝑤𝑖 hesaplanmaktadır. Bu 𝑤𝑖 değerleri, katmandaki her bir 

düğümün çıkışıdır. 3. katmana normalleştirme katmanı da denilmekte olup i’nci kuralın 

tüm kurallara oranı hesaplanarak normalleştirme seviyesi belirlenir. Arındırma katmanı 

olarak adlandırılan 4. katmanda, i’nci kuralın model çıktılarına olan etkisi 

hesaplanmaktadır. Son katman olan 5. katman ise toplam katmanıdır. Arındırma 

katmanından gelen tüm düğümlere ait çıkışların toplandığı ve sonuç olarak tek bir 𝑓 

çıktısının elde edildiği katmandır. 

2.2.7.3. Destek Vektör Makineleri (DVM) 

Destek Vektör Makineleri (DVM) (Support Vector Machines-SVMs), 1995 yılında 

Cortes ve Vapnik tarafından önerilmiş istatistiksel öğrenme teorisi ile yapısal risk 

minimizasyonuna dayalı bir makine öğrenmesi yöntemidir [177]. Yüksek boyutlu ve 

küçük sayıdaki eğitim verilerinden başarılı bir şekilde öğrenmeyi gerçekleştiren yeni 

nesil bir öğrenme teknolojisine sahiptir. Sınıflandırma ve regresyon problemlerinin 

çözümünde yaygın bir şekilde kullanılmakta olup Destek Vektör Makine 

Sınıflandırması (DVMS) ve Destek Vektör Makine Regresyonu (DVMR) olmak üzere 

başlıca iki alt gruba ayrılır. DVM, özellikle sınıflandırma problemlerinde başarılı 

sonuçlar vermektedir. Ayrıca iyi bir genelleme yeteneğine sahip olmasından dolayı 

tahmin modellerinde de sıklıkla kullanılmaktadır. 

YSA ve bulanık mantık gibi makine öğrenmesi yöntemlerinde çok fazla eğitim verisine 

ihtiyaç duyma, boyut problemi, yakınsama oranının düşüklüğü, yerel minimuma 

takılma, sisteme odaklanma ve uyum sağlayamama gibi eksiklikler görülebilmektedir 

[178]. Diğer yöntemlerde görülen bu eksikliklerin temel nedeni bu yöntemlerin 

deneysel risk minimizasyonuna bağlı olarak çalışmasıdır. DVM ise yapısal risk 

minimizasyonu prensibine bağlı olarak öğrenme işlemini gerçekleştirdiğinden yukarıda 

belirtilen problemleri çözmesi daha kolay olmuştur [179]. Kısaca özetlenecek olursa 

deneysel risk minimizasyonu, bir yönteme ait öğrenme algoritmasının deneysel riski 

minimum tutmayı amaç edinen tümevarımsal metotlar yaklaşımına dayanmaktadır. Bu 

yaklaşımda sadece eğitme verisinden elde edilen bilgiler baz alındığı için risklerle ilgili 

olarak genelleme yapılmaktadır. Bundan dolayı deneysel risk ile beklenen risk arasında 

yakınsama problemi ortaya çıkmaktadır. Yapısal risk minimizasyonu da deneysel risk 

minimizasyonu gibi tümevarımsal prensibe dayanmaktadır. Ancak farklı olarak yapısal 
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risk minimizasyonunda istatistiksel öğrenme teorisi ile küçük bir örnek uzayı ele 

alınmakta ve yakınsama fonksiyonları belirli sınırlarda tutularak beklenen risklerin ve 

genelleme hatalarının mimimumda kalması sağlanmaktadır. Böylece eğitme verileri için 

en optimum öğrenme becerisi elde edilmektedir. İstatistiksel öğrenme teorisi, Vapnik ve 

Chervonenkis tarafından 1991 yılında geliştirilmiş küçük veri setlerinden öğrenmeyi 

sağlayan etkili bir öğrenme yöntemidir. Ancak bu öğrenme teorisinde, veri ile 

yakınsama fonksiyonları arasında eksik ya da fazla olabilen uyum problemleri ortaya 

çıkabilmektedir. Yani kullanılan öğrenme algoritması bir eğitim verisinden ya eksik 

öğrenme ya da fazla öğrenme kazanmıştır. Bu uyum problemini çözmek ve model 

karmaşıklığını azaltmak adına düzenleyici ya da kontrolü sağlayan bir parametre 

kullanmak gerekir. Bu parametre yardımıyla belirlenecek olan bir denge noktası uygun 

fonksiyonların seçimini kolaylaştırmaktadır. Yine Vapnik ve Chervonenkis (1971) 

tarafından geliştirilen ve Vapnik-Chervonenkis Teorisi (VC) olarak adlandırılan 

yaklaşımda VC boyutu ile en optimum uyum noktası belirlenerek eksik ya da fazla 

öğrenmeden kaçınılır, ayrıca model karmaşıklığı da düzenlenmektedir. VC boyutunun 

istatistiksel öğrenme teorisine dahil edilmesi ile birlikte modelden daha optimum 

sonuçlar elde edebilmek için ele alınan bu risk yaklaşımına da yapısal risk 

minimizasyonu denir. Her ne kadar sınıflandırma problemleri için geliştirilmiş olsa da 

riskin minimize edilmeye çalışıldığı herhangi bir problemde de bu yaklaşım 

kullanılabilir. Yapısal risk minimizasyonunda başlıca iki strateji vardır. Bunlar; VC 

boyutunu sabit tutarak deneysel riski minimize etmek ya da deneysel riski sabit tutup 

VC boyutunu minimize etmektir. Diğer makine öğrenmesi yöntemleri ve istatistiksel 

yöntemler genellikle ilk stratejiyi kullanırken, DVM ikinci stratejiyi kullanmaktadır 

[180]. VC boyutu aslında bir sınırlama parametresidir. VC boyutu sonlu bir değer 

almakta olup matematiksel ifadesi ise aşağıda verilmiştir: 

𝑅(𝛼) ≤ 𝑅𝑑𝑒𝑛(𝛼) + √ℎ(log(
2𝑛

ℎ
)+1)−log (

ƞ

4
)

𝑛
                    (2.63) 

Eşitlik 2.63’te verilen 𝑅(𝛼) gerçek riski, 𝑅𝑑𝑒𝑛(𝛼) deneysel riski, ℎ VC boyutunun 

değerini, 𝑛 eğitim veri sayısını, ƞ ise [0,1] aralığında değer alabilen bir parametredir. 

Daha önce DVM’nin sınıflandırma problemlerinde DVMS ve regresyon problemlerinde 

ise DVMR diye adlandırılan alt yöntemlerine ayrıldığı belirtilmişti. DVM daha çok 
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sınıflandırma problemlerinde ele alınan denetimli öğrenme yaklaşımına dayalı bir 

makine öğrenmesi yöntemidir. Sınıflandırmadaki amaç ele alınan verilerin doğru bir 

şekilde ayrıştırılmasını sağlamaktır. İki farklı sınıfın birbirinden ayrılması amacıyla 

doğrusal bir sınır çizgisi kullanılır. Sınır çizgisi ile birlikte marjin adı verilen bir aralık, 

en iyi ve en geniş (maksimum) sınır aralığını bulmak için kullanılır. Şekil 2.22’de 

DVM’nin gösterimi verilmiştir. 

 

Şekil 2.22. DVM sınıflandırma durumu  

Şekil 2.22’de gösterimi verilen DVM’nin sınıflandırma durumunun daha iyi 

anlaşılabilmesi için sınıflandırma elemanlarını açıklamak gerekir. DVMS ile n 

elemandan oluşan bir örnek uzaydaki eğitme verilerinin A ve B sınıflarına ayrılması 

aşağıda eşitliği verilen ayırıcı fonksiyon ile yapılmaktadır: 

𝑓(𝑥) = 𝑤. 𝑥 + 𝑏 = 0            (2.64) 

Eşitlik 2.64’te verilen 𝑤 ifadesi ağırlık vektörünü, 𝑥 düzlemde bulunan bir veri 

noktasını ve 𝑏 ise bias (sapma ya da hata) değerini temsil etmektedir. Eşitlikte elde 

edilmek istenen 𝑓(𝑥) fonksiyonu ise optimum hiper düzlem yani en optimum doğrusal 

sınır çizgisidir. Optimum hiper düzlemin bulunabilmesi için sınıra en yakın veri 

noktalarını içeren |𝑤. 𝑥𝑖 + 𝑏| = 1 eşitliğinin ölçeklendirilmesi gerekmektedir. Veri 

noktalarının bazıları bu eşitliği 𝑤. 𝑥 + 𝑏 = 1 durumunda sağlarken bazıları da 𝑤. 𝑥 +

𝑏 = −1 durumunda sağlamaktadır. Optimum hiper düzleme en yakın konumda bulunan 

vektörler, destek vektörleri olarak adlandırılmaktadır. Ayrıca optimum hiper düzlemin 

böldüğü sınırın yani marjinin toplam uzunluğu 2/‖𝑤‖’dir. Ağırlık vektörü olan 𝑤’nin 

farklı değerlerine göre farklı ayırıcı fonksiyonlar elde edilebilmektedir. Bu noktada VC 
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boyutu devreye girerek sınırın yani marjinin genişliğini ayarlamaktadır. 𝑤 değerinin 

küçük olması VC boyut değerinin de küçük olduğu anlamına gelir ve bu koşulda marjin 

genişliği maksimumdur. Marjin genişliğinin maksimum istenmesinin sebebi 

algoritmanın daha büyük bir marjinde daha iyi genellemeler yapabilecek olmasıdır. 

DVMS, marjin genişliğini maksimuma ulaştırarak yapısal risk minimizasyonuna olanak 

sağlamaktadır. ‖𝑤‖ değerinin (ağırlık vektörünün normu) minimize edilmesi 1/2‖𝑤‖2 

değerinin karesel programlama problemi ile minimize edilmesi ile mümkün olmaktadır. 

Maksimum marjin genişliği aşağıda verilen Lagrange optimizasyon fonksiyonu 

yardımıyla bulunur: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑠𝑦𝑜𝑛: 𝑚𝑖𝑛
1

2
‖𝑤‖2          𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) ≥ +1    ∀𝑖      (2.65) 

Sınıflandırma problemlerinde görülen genelleme hataları ile model karmaşıklığı 

istatistiksel öğrenme teorisi temel alınarak CV boyutu ile çözülebilirken yine sıklıkla 

karşılaşılan doğrusal olmayan uyum sorunlarının çözümünde de çekirdek (kernel) 

fonksiyonları kullanılmaktadır. Çekirdek fonksiyonları, farklı sınıfların optimum bir 

hiper düzlemle ayrılamadığı durumlarda kullanılır. Ancak hem bu çalışma tahminler 

üzerine olduğundan hem de DVMR’de çekirdek fonksiyonlarından bahsedileceğinden 

dolayı burada çekirdek fonksiyonlarından bahsedilmemiştir. DVMS öğrenme 

algoritmaları, hem eğitme hatalarının bulunmadığı doğrusal sınıflandırma 

problemlerinde hem de eğitme hatalarının bulunduğu doğrusal olmayan sınıflandırma 

problemlerinde kullanılmaktadır. DVMS öğrenmesi, başlangıçta iki sınıflı sınıflandırma 

yapmaktayken daha sonraları oluşan ihtiyaçlara bağlı olarak çoklu sınıflandırmalarda da 

kullanılmıştır. 

2.2.7.3.1. Destek Vektör Makine Regresyonu (DVMR) 

DVM’nin regresyon problemlerini ele alan alt grubu, Destek Vektör Makine 

Regresyonu (DVMR) öğrenme yaklaşımıdır. DVM’lerin regresyon problemlerinin 

çözümünde kullanılması Smola ve Schölkopf (2004) tarafından önerilmiştir [181].  

Burada bahsedilen regresyon problemlerinden kasıt tahmin problemleridir. Ele alınan 

bir veri setini meydana getiren rastgele değişkenin değerini, değişimini etkileyecek 

başka bir değişken değerine bağlı olarak doğru bir şekilde tahmin etmek için regresyon 
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denklemleri kullanılmaktadır [182]. Regresyon ile ilgili daha detaylı bilgiler ilerde 

Gauss Süreç Regresyonu (GSR) yöntemi tanıtılırken verilecektir. 

Genel olarak DVMS’de kabul edilen prensipler DVMR’de de geçerli olmakla birlikte 

bu iki yaklaşım arasında küçük farklılıklar söz konusudur. Sınıflandırma problemlerinde 

verileri birbirinden ayıran optimum hiper düzlemde hiçbir veri kalmayacak şekilde 

marjin genişliği maksimize edilirken regresyon problemlerinde bahsedilen durumun 

tersi olarak optimum hiper düzlem sınırları içerisinde maksimum verinin kalmasına 

yönelik bir yaklaşım söz konusudur. Burada regresyondaki hataların belirli bir eşik 

değer içerisinde kalması sağlanarak hatalar minimize edilmektedir [183]. DVMR, aynı 

zamanda genelleme hatalarını da maksimum bir seviyede tutarak azaltmayı 

amaçlamaktadır. DVMR’deki asıl amaç, ele alınan eğitme verilerinin benzer olan 

özniteliklerini en yakın ve doğru bir şekilde belirlemeye yarayan doğrusal fonksiyonun 

belirlenmesidir. DVMR’de hem doğrusal hem de doğrusal olmayan regresyon 

problemleri ele alınmaktadır. Ancak doğrusal olmayan regresyon problemlerinin 

çözülmesi oldukça zor olduğundan DVMR’nin detaylı öğrenme yaklaşımı daha çok 

doğrusal olmayan problemlere yöneliktir [184]. 

DVMR yönteminde; daha önce Eşitlik 2.64’te verilen 𝑓(𝑥) → 𝑦 = 𝑤. 𝑥 + 𝑏 = 0 

doğrusal ayırım fonksiyonunun sağladığı 𝑤. 𝑥 + 𝑏 = 1 ve 𝑤. 𝑥 + 𝑏 = −1 noktalarından 

önceden belirlenen bir 𝜀 sapma değeri kadar bir mesafeye ve hata oranına müsadele 

edilir. Yani; ele alınan eğitim verisinin elemanı olan gerçek 𝑥i değerinden, önceden 

belirlenen bir değer olan 𝜀’dan büyük olmayan bir uzaklıktaki tahmin 𝑦𝑖 değerini 

hesaplayabilecek bir 𝑓(𝑥) fonksiyonu elde etmek amaçlanmaktadır. Öğrenme 

algoritmasının elde ettiği hata değerinin, 𝜀’dan küçük olması önemsenmeyecek ancak 

bu değeri geçmesi model performansı açısından kabul edilmeyecektir [185]. Doğrusal 

ayırım fonksiyonun her iki noktasına 𝜀 sapma değerinin eklenmesi ile; 

 |𝑦𝑖 − (𝑤. 𝑥𝑖 + 𝑏)| ≤ 𝜀          (2.66) 

eşitliği elde edilmektedir. DVMR’nin doğrusal regresyondan en önemli farkı, doğrusal 

regresyon uygulamalarında veri setinin tamamı dikkate alınırken DVMR’de öznitelik 

bakımından belli bir düzlemde yer alan veriler ele alınır. İşte bu husustan dolayı Eşitlik 

2.66 ile bulunmaya çalışılan 𝑓(𝑥) fonksiyonunun tüm veri seti için sağlanması çok 
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zordur. Bu problemi çözebilmek amacıyla ξ+ ve ξ− esneklik değişkenleri 

kullanılmaktadır. DVMR’nin sapma değerleri eklenmiş gösterimi Şekil 2.23’te 

verilmiştir. 

 

Şekil 2.23. DVMR’nin sapma değerli gösterimi 

 ξ+ ≥ 0 ve  ξ− ≥ 0 olmak üzere 𝑦𝑖 − (𝑤. 𝑥𝑖 + 𝑏) ≤ 𝜀+ξ+ ve (𝑤. 𝑥𝑖 + 𝑏) − 𝑦𝑖 ≤ 𝜀+ξ− 

eşitliklerine bağlı olarak DVM’de de bahsedilen minimizasyon işleminin son durumu 

aşağıdaki eşitlikte verilmiştir. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑠𝑦𝑜𝑛: 𝑚𝑖𝑛
1

2
‖𝑤‖2 + 𝐶 ∑ (𝐿

𝑖=1 ξ𝑖
+ + ξ𝑖

−)        (2.67) 

Eşitlik 2.67’de verilen 𝐶 parametresi, deneme-yanılma yoluyla önceden belirlenen ve 

hatalarla regresyon fonksiyonunun ilişkisini dengeleyen bir karmaşıklık katsayıdır 

[186]. Bu parametreye bazı kaynaklarda ceza parametresi de denilmektedir. 𝐶 

parametresinin seçimi model performansı açısından oldukça önemlidir. Yüksek seçilen 

bir 𝐶 değeri, yüksek hatalara sebep olabileceği gibi, düşük seçilen 𝐶 değeri ise optimum 

hiper düzlemin yeri ile ilgili yanlışlara sebep olabilir.  

Doğrusal olmayan regresyon problemleri, doğrusal olan regresyon problemlerine göre 

daha karmaşık yapıya sahiptir. Eşitlik 2.67’de verilen minimizasyon işleminde doğrusal 

bir fonksiyon elde edilemediği takdirde DVMR’nin doğrusal olmayan durumuna 

dönüştürülebilmesi için giriş uzayından daha yüksek boyutlu bir nitelik uzayına geçişin 

sağlanması gerekmektedir. Bu geçiş, çekirdek (kernel) fonksiyonları aracılığı ile 

haritalama fonksiyonları kullanılarak sağlanır ve böylece optimum hiper düzlem 

belirlenmektedir. 
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Eğitme veri setinin elemanları S={(x1, y1), (x2, y2), … ,(xn, yn)} olmak üzere; giriş 

uzayında bulunan 𝑥𝑖 değişkenleri ∅: 𝑅𝑑 → 𝐻 fonksiyonu ile yüksek boyutlu nitelik 

uzayına haritalanmaktadır. Daha önceden verilen  𝑤. 𝑥 + 𝑏 = 0 eşitliğinde 𝑥 olan yere 

∅(𝑥) haritalama fonksiyonu yazıldığında DVMR hiper düzlemde; 

𝑓(𝑥) = 𝑌(𝑋𝑡) = 𝑤𝑇 . ∅(𝑋𝑡) + 𝑏     𝑤 ∈ 𝑅,   𝑏 ∈ 𝑅       (2.68) 

regresyon fonksiyonunu elde etmeye çalışır. Burada 𝑤 ağırlık vektörünü, ∅ haritalama 

parametresini ve 𝑏 ise bias (sapma ya da hata) değerini temsil etmektedir. Doğrusal 

olmayan regresyon problemlerinin çözümünde iç çarpımları doğrusal olmayan çekirdek 

fonksiyonları kullanılır. DVMR’nin öğrenme algoritmaları sadece 𝑥𝑖 değişkenlerinin 

bulunduğu 𝐻 giriş uzayındaki iç çarpım noktalarına bağlıdır. Bu yüzden iç çarpım 

sonucu, ∅ haritalama fonksiyonunun bilinmesine gerek kalmadan 𝑘(𝑥𝑖 , 𝑥𝑗) =

∅(𝑥𝑖)𝑇∅(𝑥𝑗) fonksiyonunun hesaplanması ile bulunabilmektedir. Yani giriş uzayındaki 

çekirdek nitelik uzayındaki bir iç çarpıma eşitlenmektedir. 𝑘 fonksiyonu yüksek boyutlu 

nitelik uzayında bir noktaya karşılık gelen bir işlevi temsil etmektedir [187]. Ortamlar 

arası geçişler sağlandıktan sonra aşağıda verilen şu hiper düzlem eşitliği elde 

edilmektedir: 

𝑓(𝑥) = (∑ 𝑎𝑖 . 𝑦𝑖 . ∅(𝑥𝑖). ∅(𝑥𝑗) + 𝑏) = ∑ 𝑎𝑖 . 𝑦𝑖 . 𝑘(𝑥𝑖 , 𝑦𝑖) + 𝑏      (2.69) 

Eşitlik 2.69’daki hataları azaltmak amacıyla Lagrange çarpanları ile birlikte karesel 

programlama problemi çözülür ve son durumda nihai regresyon fonksiyonu elde edilir. 

Tüm bu hesap adımlarının ardından elde edilen DVMR regresyon fonksiyonu şu 

şekildedir: 

𝑓(𝑥) = ∑ (𝑎∗ − 𝑎)𝑘(𝑥𝑖 , 𝑥𝑗) + 𝑏𝑛
𝑖=1          (2.70) 

Eşitlik 2.70’de verilen 𝑎∗ ve 𝑎 ifadeleri Lagrange çarpanlarıdır. 𝑘(𝑥𝑖 , 𝑥𝑗) çekirdek 

fonksiyonlarını temsil etmekte olup nitelik uzayındaki iç çarpımı vermektedir.  

Çekirdek fonksiyonları hem sınıflandırma hem de regresyon problemlerinde kullanılan 

öğrenme algoritmalarına esneklik kazandırmaktadır. Doğrusal, Anova, Bessel, polinom, 

radyal tabanlı, Gauss, Laplace, sigmoid (hiperbolik tanjant) gibi başlıca çekirdek 

fonksiyonları bulunmaktadır. Her çekirdek fonksiyonunun farklı yapısı, farklı hesap ve 
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optimizasyon adımları ile farklı parametreleri vardır. DVM’de kullanılan çekirdek 

tipleri ve ana fonksiyonları Tablo 2.5’te verilmiştir. 

Tablo 2.5. Çekirdek tipleri ve fonksiyonları [188] 

Çekirdek tipi Fonksiyonu 

Doğrusal 𝑘(𝑥, 𝑦) = 𝑥𝑇𝑦 + 𝑐 

Polinom 𝑘(𝑥, 𝑦) = (𝑎𝑥𝑇𝑦 + 𝑐)𝑑 

Sigmoid (Hiperbolik tanjant) 𝑘(𝑥, 𝑦) = tanh (𝑎𝑥𝑇𝑦 + 𝑐) 

Bessel 𝑘(𝑥, 𝑥′) = −𝐵𝑒𝑠𝑠𝑒𝑙(𝑛𝑢+1)
𝑛 (𝜎|𝑥 − 𝑥′|2) 

Gauss (Radyal tabanlı) 𝑘(𝑥, 𝑦) = exp (−𝛾‖𝑥 − 𝑦‖2) 

Anova (Radyal tabanlı) 
𝑘(𝑥, 𝑦) = ∑ exp (−𝜎(𝑥𝑘 − 𝑦𝑘)2)𝑑

𝑛

𝑘=1

 

Laplace 
𝑘(𝑥, 𝑦) = exp (−

‖𝑥 − 𝑦‖

𝜎
) 

 

DVMR’nin özellikle tahmin çalışmalarında yaygın bir şekilde kullanılmasında ve model 

performanslarının iyi çıkmasında çekirdek fonksiyonlarının kullanımının önemli bir 

etkisi vardır.  

2.2.7.4. Gauss Süreç Regresyonu (GSR) 

Gauss Süreç Regresyonu (GSR) (Gaussian Process Regression-GPR), Rasmussen ve 

Williams (2006) tarafından önerilen, parametrik olmayan ve Bayes öğrenme 

yaklaşımına dayalı bir makine öğrenmesi yöntemidir [189]. Ayrıca çekirdek (kernel) 

fonksiyonlarını temel alarak olasılık dağılımlarını belirleyen öğrenme yaklaşımlarına 

sahiptir. Kendine özgü bu öğrenme algoritmaları sayesinde daha az veriye ve daha az 

parametreye ihtiyaç duyan ve veri koruma özelliği bulunan esnek bir denetimli öğrenme 

aracıdır. Yine DVM’de olduğu gibi çekirdek fonksiyonları da kullanıldığından doğrusal 

olmayan problemlerin çözümünde başarılı sonuçlar vermektedir. Tüm bu 

özelliklerinden dolayı son yıllarda yapay zekânın kullanıldığı tahmin çalışmalarında 

sıklıkla tercih edilmektedir. 

Tez çalışmasında daha önceki bölümlerde bahsedilen denetimli öğrenme algoritması, 

ele alınan bir eğitme veri setindeki giriş değişkenlerini baz alarak çıkış değişkenini 
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tahmin etmeyi amaçlayan ve öğrenen sistemin öğrenmesi istenen olay ile o olayın 

sonuçları arasındaki ilişkiyi belirlemesi istenen bir öğrenme yaklaşımıdır. Öğrenme 

algoritmasına yapılan dış müdahaleler nedeniyle denetimli olarak adlandırılmaktadır. 

Denetimli öğrenmede, sonlu bir eğitme veri setindeki tüm girdi değerleri için tahminler 

yapan bir fonksiyonu elde etmek oldukça güç olabilmektedir. Bu problemi ortadan 

kaldırmak adına çeşitli yöntemler geliştirilmiştir. Bu yöntemlerde başlıca iki farklı 

strateji dikkate alınmaktadır. Bunlardan ilki, veri setindeki girdinin sadece doğrusal 

fonksiyonlarını dikkate alarak ele alınacak olan fonksiyonu sınırlamaktır. İkinci strateji 

ise her fonksiyona önceden bir olasılık vermektir; hatta, daha olası olduğu düşünülen 

fonksiyonlara daha yüksek olasılıklar vermektir. İlk stratejide fonksiyon seçimi kritik 

bir husus olup ikinci stratejide ise sonsuz sayıdaki olasılık fonksiyonun sonlu hale nasıl 

getirileceği problem olmaktadır. İşte bu noktada Gauss süreci devreye girmektedir. 

Gauss süreci, Gauss olasılık dağılımının özelleştirilmiş bir formudur. Eğitme veri setini 

kendi içinde korumaya alır ve olasılık dağılımlarını detaylıca analiz ederek başarılı bir 

öğrenme sağlar. Diğer makine öğrenmesi algoritmalarında veri koruması yoktur ve 

verilerin dağılımını öğrenme konusunda zorluk yaşarlar. Olasılık dağılımları, skaler ya 

da vektör rastgele değişkenleri karakterize eder ancak fonksiyonların özelliklerini 

belirlemek ve tanımlamak için Gauss süreci gibi stokastik süreçler gerekir [190]. 

Genel olarak öğrenme algoritmaları, elde edilen çıktılar sürekli ise regresyon, kesikli 

(ayrık) ise sınıflandırma problemlerinde analiz edilmektedir. İki veya daha fazla 

sayıdaki değişken arasındaki ilişkiyi tahmin etmek için kullanılan denetimli öğrenme 

yöntemlerine ise regresyon denilmektedir. Stokastik Gauss sürecine regresyon analizi 

bu tanımlamalardan dolayı girmiş olup GSR yöntemi, tahmin belirsizliklerine yönelik 

çalışmalarda yaygın olarak kullanılmaktadır. 

Gauss süreci ile ilgili olarak ilk önce standart doğrusal regresyon modeline ait Gauss 

dağılımı ve Bayes analizinden bahsetmek gerekir. 

𝑓(𝑥) = 𝑥𝑇𝑤,        𝑦 = 𝑓(𝑥) + 𝜀           (2.71) 

Eşitlik 2.71’de verilen 𝑓 fonksiyon değerini, 𝑥 giriş vektörünü, 𝑤 doğrusal modelin 

ağırlık vektörünü, 𝜀 bias (sapma ya da hata) değerini, 𝑦 ise gözlenen hedef vektörünü 

temsil etmektedir. 𝑦 gözlenen hedef vektörü, 𝑓(𝑥) fonksiyonundan 𝜀 sapma değeri 

kadar farklılık göstermektedir ve buna modelin gürültüsü de denmektedir. Bu gürültü 
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değerinin bağımsız, sıfır ortalama ve varyans değeri ile Gauss dağılımına uygun olduğu 

kabulü yapılmıştır. Bu varsayımın matematiksel gösterimleri şu şekildedir: 

𝜀~𝑁(0, 𝜎𝑛
2)            (2.72) 

𝑦 = 𝑓(𝑥) + 𝑁(0, 𝜎𝑛
2)           (2.73) 

Gürültü ile ilgili bu varsayım, eğitme veri setindeki gözlemleri çarpanlarına ayıran 

parametreler aracılığı ile doğrudan gözlemlerin olasılık ve olasılık yoğunluklarına 

ulaşılmasını sağlar. Bu gürültü varsayımından yola çıkarak aşağıda verilen olasılık 

yoğunluk eşitliği elde edilmektedir. 

𝑝(𝑦|𝑋, 𝑤) = ∏ 𝑝(𝑦𝑖|𝑥𝑖 , 𝑤) =𝑛
𝑖=1 ∏

1

√2𝜋𝜎𝑛
exp (−

(𝑦𝑖−𝑥𝑖
𝑇𝑤)

2

2𝜎𝑛
2 )𝑛

𝑖=1 = 𝑁(𝑋𝑇𝑤, 𝜎𝑛
2𝐼)   (2.74) 

Bu eşitlikten Bayes formülüne geçebilmek için de gözlemlerden önce çarpan 

parametreleri ile ilgili çeşitli varsayımlar yapılmış olup ağırlık vektörlerine kovaryans 

matrisi ile sıfır ortalamalı bir Gauss eklenmiştir. 

𝑤~𝑁(0, ∑𝑝)            (2.75) 

Eşitlik 2.75’te verilen varsayımın anlamı, gözlem elemanlarının analizinden önce ağırlık 

vektörleri üzerinde bir öncül dağılımın uygulanmasıdır. Bu işlemden sonra ise Bayes 

kuralına göre gözlem kümesinin soncul olasılık dağılımı belirlenmektedir. İngiliz 

matematikçi, istatistikçi ve teolog Thomas Bayes’in 18. yy’da temellerini attığı ve 

sonradan istatistik ve olasılık çalışmalarında yaygın olarak kullanılan Bayes teoremi ya 

da Bayes kuralı, bir rastgele değişken için olasılık dağılımı içindeki koşullu olasılıklar 

ile marjinal olasılıklar arasındaki ilişkiyi göstermektedir [191].  

𝑝(𝑤|𝑦, 𝑋) =
𝑝(𝑦|𝑋,𝑤)𝑝(𝑤)

𝑝(𝑦|𝑋)
               (2.76) 

Eşitlik 2.76’yı sözel olarak ifade edecek olursak Bayes kuralında soncul dağılım şu 

şekilde olmaktadır: Soncul olasılık dağılımı = (Olasılık × öncül) / (marjinal olasılık) 

Gauss süreci, Gauss dağılımına sahip sonlu sayıdaki rastgele değişkenlerin toplamını 

ifade eder. Daha önce bahsedildiği üzere ele alınan ağırlık vektörlerine kovaryans 
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matrisi ile sıfır ortalamalı bir Gauss eklenmektedir. Son durumda Gauss süreci aşağıda 

verilen şu eşitlik ile temsil edilmektedir: 

𝑓(𝑥)~𝐺𝑃 (𝑚(𝑥𝑖), 𝑘(𝑥𝑖 , 𝑥𝑗))          (2.77) 

Eşitlik 2.77’de verilen 𝑚(𝑥𝑖) ortalama bir fonksiyonu, 𝑘(𝑥𝑖 , 𝑥𝑗) ise kovaryans 

fonksiyonunu temsil etmektedir. Kovaryans matrisini elemanları rastgele değişkenler 

arasındaki benzerlikleri temsil eder. Rastgele değişkenler arasındaki benzerlikler ise 

aşağıda verilen üstel fonksiyon aracılığı ile belirlenebilmektedir. 

𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (‖𝑥𝑖 − 𝑥𝑗‖
2

/(2𝜎2))        (2.78) 

Eşitlik 2.78’de verilen 𝜎, çekirdek genişlik parametresini ifade eder ve bu parametrenin 

optimize edilmesi gerekir. Gauss sürecinde kullanılan öğrenme algoritmalarının en 

önemli avantajlarından biri de Bayes kuralına dayalı olasılıksal öğrenme ile çekirdek 

fonksiyonlarını birleştirmesidir. 

Gauss sürecinde gözlem kümesi dışında bir 𝑥∗ değişken verisine bağlı olarak 𝑤 ağırlık 

vektörü üzerindeki 𝑦∗ çıktı değerinin tahmini dağılımını belirlemek için aşağıda verilen 

ve Gauss tarafından tanımlanan gömüleme fonksiyonu kullanılmaktadır.  

𝑝(𝑦∗|(𝑥, 𝑦), 𝑥∗) = 𝑁(𝜇∗(𝑥∗), 𝜎∗
2(𝑥∗))        (2.79) 

Eşitlik 2.79’da verilen tahmini ortalama 𝜇∗(𝑥∗) ve kovaryans 𝜎∗
2(𝑥∗) ifadelerinin 

değerlerini bulmak için aşağıda verilen eşitlikler kullanılmaktadır. 

𝜇∗(𝑥∗) = 𝑘∗
𝑇(𝐾𝜃 + 𝜎2𝐼)−1𝑦          (2.80) 

𝜎∗
2(𝑥∗) = 𝑘∗∗ − 𝑘∗

𝑇(𝐾𝜃 + 𝜎2𝐼)−1𝑘∗         (2.81) 

Eşitlik 2.81’de verilen 𝑘∗ ifadesi, eğitme ve test verileri arasındaki kovaryans 

değerlerine karşılık gelen N x 1 matris boyutundaki kovaryans vektörüdür. 𝑘∗∗ ifadesi 

ise test veri setinin otokovaryans vektörüdür. Tahmini ortalama ve kovaryansı elde 

etmek için uygun bir kovaryans fonksiyonu seçilmelidir. Çünkü Gauss sürecinde 

gözlem elemanları hakkında ağırlık vektörleri üzerinden önceden bilgi almak, kullanılan 

öğrenme algoritmasının en önemli yaklaşımıdır [192]. Kovaryans matrisi, eğitme ve test 
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çıktıları arasındaki ilişkiyi mesafelerine göre modelleyen çekirdek (kernel) 

fonksiyonları kullanılarak belirlenir. Bu noktada da çekirdek fonksiyonları baz alınarak 

belirlenen kovaryans fonksiyonunun seçimi model performansı açısından oldukça 

önemli olmaktadır. Ayrıca farklı çekirdek fonksiyonlarının kombine edilmesi ile de 

daha anlaşılır ve yeniden kullanılabilir veri setleri elde edilmektedir. Gauss süreçlerinde 

yaygın olarak kullanılan kovaryans fonksiyonları, radyal tabanlı temel fonksiyonlar ve 

diğer çekirdek fonksiyonları ile bunların versiyonları olarak ayrılmaktadır. Radyal 

tabanlı temel fonksiyonlar şunlardır: sabit, doğrusal, sıfır, saf ikinci dereceden. Çekirdek 

fonksiyonları ise karesel üstel, üstel, matern 3/2, matern 5/2, rasyonel ikinci dereceden, 

ard karesel üstel, ard üstel, ard matern 3/2, ard matern 5/2, ard rasyonel ikinci 

derecedendir.  

GSR, doğrusal olmayan fonksiyonların özelliklerini öğrenme konusunda oldukça 

başarılıdır. Eğitme veri setinde öncül olasılık dağılımları ile elde edilen bilgilere göre 

giriş ve çıkış değerlerinin arasındaki regresyonu ortaya koyar. GSR, öğrenme 

aşamasında daha az veriye ve daha az parametreye ihtiyaç duyan ve belirsizlik 

problemleri üzerinde etkili olan bir öğrenme yöntemidir.  

2.2.7.5. Uzun-Kısa Süreli Bellek (UKSB) 

Uzun-Kısa Süreli Bellek (UKSB) (Long-Short Term Memory-LSTM), 1997 yılında 

Hochreiter ve Schmidhuber tarafından tanıtılan bir derin öğrenme algoritmasıdır. UKSB 

modeli, geleneksel Tekrarlayan Sinir Ağı (TSA) modellerinin uzun dönem zaman 

serilerini tahmin etmede karşılaştığı gradyan kaybolması ve sınırlı bellek kapasitesi 

problemlerini çözmek için geliştirilmiştir. UKSB modeli, TSA’nın mimarisini 

kullanmakta olup daha da geliştirilmiş özel bir türüdür [193].  

UKSB öğrenme algoritmalarının yapısı ve işleyişi anlatılmadan önce TSA’nın 

yapısından bahsetmek gerekir. En basit haliyle TSA, ilk kez Amerikalı psikodilbilimci 

Jeffrey Elman tarafından 1990 yılında cümle yapısı simülasyonları ile ilgili 

çalışmasında önerilmiştir. Evrişimli Sinir Ağları (ESA) ile birlikte derin öğrenme 

algoritmalarındaki iki ana mimariden biri de TSA mimarisidir. TSA mimarisi sıralı 

olarak bilgileri işleyen modelleme birimlerinden oluşmaktayken ESA mimarisi ise 

hiyerarşik bir öğrenme yaklaşımına sahiptir [194]. TSA mimarisinde ayrıca geri 

beslemeli bir yaklaşımla çok yönlü bir öğrenme döngüsü bulunduğundan özellikle dil 
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işleme problemleri ve zaman serilerinin tahminleri için uygun bir yapısı vardır. TSA 

mimarisinde tekrarlayan kavramının bulunmasının sebebi, bir eğitme veri setindeki her 

bir veri için aynı öğrenme işlevini önceki çıktılara bağlı olarak yapmasından dolayıdır. 

Yani her bir veriyi sırayla teker teker ele alan bir öğrenme algoritmasına sahiptir. Bu 

sayede her bir verinin bağımsız bilgilerini kendi belleğinde tutarak tüm veri setinin 

özelliklerini ve bağımlılıklarını öğrenebilmektedir [161]. Şekil 2.24’te basit haliyle bir 

TSA mimarisi gösterilmektedir. 

 

Şekil 2.24. TSA mimarisi [195] 

TSA, her ne kadar sıralı bağımlılığı yakalamak amacıyla tüm verileri işleyerek çok 

yönlü bir öğrenme sunsa da bazı dezavantajlara sahiptir. Bu dezavantajların başında 

gradyan kaybolması (Vanishing gradient) problemi gelmektedir. TSA’da kullanılan geri 

beslemeli yaklaşımda bir önceki verinin bilgilerinin ağırlık değerleri ile çarpılması ile 

bir sonraki adıma (katmana) geçilmektedir. Ağırlık değerlerini güncellemek amacıyla 

türev yardımı ile gradyanlar kullanılmaktadır. Türevle ilgili bu hesap adımında bazı 

gradyan değerleri kaybolur. Buna gradyan kaybolması denilmektedir. Ayrıca sıralı bir 

şekilde tüm verilerin işlenmesi ve bir döngüde ele alınması hem zaman hem de bellek 

problemlerini ortaya çıkarmaktadır. Bazı durumlarda TSA, uzun ve sıralı verilere ait 
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bilgilerin birbirine bağımlılığını bulmakta problem yaşar ve önceki öğrendiği bilgileri 

unutmaya başlar.   

Hem gradyan kaybolması hem de özellikle uzun veri setlerinin ele alındığı durumlarda 

TSA’nın bellek probleminden dolayı UKSB derin öğrenme algoritması geliştirilmiştir. 

TSA’nın mimarisini kullanan UKSB yönteminin özellikle uzun zaman serilerindeki 

derin özelliği son yıllarda geliştirilen önemli teknolojilerden biridir. UKSB yöntemi, 

veriler hakkındaki bilgileri uzun vadeli bağımlılıkları hatırlama yeteneği sayesinde 

rahatlıkla öğrenebilmektedir.  UKSB’nin derin özelliği sayesinde unutma, giriş ve çıkış 

kapıları ile bellek hücreleri aracılığıyla verinin durum bilgisinin ne zaman unutulacağı 

ve ne kadar süreyle saklanacağı öğrenilebilmektedir. UKSB yönteminin TSA’dan en 

önemli farklı bellek hücrelerinin olması ve burada gizli hücrelerin hesabının 

yapılmasıdır. UKSB öğrenme algoritmasında, elde edilen bir bilgi bellek hücresinde 

saklanır ve ardından kapı kontrolleri aracılığıyla bir sonraki hücreye gönderilir. Bu 

kapılar aracılığıyla bilgileri detaylı bir şekilde işlemek oldukça kolaydır. Bu öğrenme 

akışı nihai çıktılar elde edilene kadar devam eder. Şekil 2.25’te UKSB modelinin 

mimari yapısı gösterilmektedir.  

 

Şekil 2.25. UKSB mimarisi [196] 

Şekil 2.25’te gösterimi verilen UKSB mimarisinde; 𝑥𝑡 girdi değerini, ℎ𝑡 çıktı değerini, 

𝐶𝑡 bellek hücresi durumunu temsil etmektedir. Ayrıca mimaride gösterilen x ve + 

sembolleri öğrenme aşamasında kullanılan toplama ve çarpma işlemlerini temsil 

etmektedir. Bellek hücresi, yapılan çeşitli iterasyonlar sonucunda verilere ait faydalı 
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bilgileri saklamak amacıyla tasarlanmış bir bileşendir. Kısacası UKSB mimarisinde ağın 

belleğidir [197]. Yine Şekil 2.25’te gösterilen ve kapı diye adlandırılan bölümler 

açıklanacak olursa hücre durumu elemanlarının hangi faydalı bilgileri taşıyacağı kapılar 

vasıtasıyla belirlenmektedir. Öğrenme akışı devam ettikçe kapılar ile hücre durumuna 

bilgi eklenir ya da çıkarılır. Kapılar aslında öğrenme sırasında hangi bilgilerin faydalı ya 

da faydasız olduğu ile hangi bilgilerin unutulup hangi bilgilerin de saklanacağına karar 

veren gelişmiş sinir ağlarıdır [198]. Tek hücreli bir UKSB mimarisindeki öğrenme 

akışının hem kapı bölümleri açıklaması hem de matematiksel ifade edilişi sırasıyla 

aşağıda verilmiştir.  

𝑓𝑡 = 𝜎(𝑊𝑓. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                    (2.82) 

Eşitlik 2.82’de verilen 𝑓𝑡 fonksiyonu, UKSB mimarisindeki unutma kapısını ve unutma 

sürecini,  𝜎 ifadesi sigmoid fonksiyonunu, 𝑊𝑓 ve 𝑏𝑓 parametreleri ise sırasıyla ağırlık 

vektörünü ve bias (hata ya da sapma) değerini temsil etmektedir. İlk kapı olan unutma 

kapısı, hücre durumundan hangi bilgilerin unutulacağının ya da saklanacağının kararının 

verildiği katmandır. Bu kapıda; bir önceki hücreden (ℎ𝑡−1) iletilen bilgi ile birlikte yeni 

bilgi değeri 𝑥𝑡, sigmoid fonksiyonuna gönderilir. Buradan elde edilen çıktı bilgisi 0 ile 

çarpılarak bilgi unutulur ya da 1 ile çarpılarak hücre durumuna aktarılır.  

Unutma sürecinden sonra giriş kapısındaki sigmoid katmanı olarak adlandırılan 𝑖𝑡 

değeri aşağıda verilen eşitlikle hesap edilmektedir. 

𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)          (2.83) 

Giriş kapısı, hücre durumunda hangi yeni bilgilerin saklanacağının belirlendiği ve 

ayrıca hücre durumunun güncellendiği katmandır. Bu kapıda veriler alınarak sahip 

olduğu kısa süreli bellek aracılığı ile daha önceki bildiklerine ek olarak yeni bilgileri 

öğrenmektedir. Unutma kapısında olduğu gibi yine (ℎ𝑡−1) ve 𝑥𝑡 değerleri sigmoid 

fonksiyonuna gönderilir. Sigmoid fonksiyonunun sonucuna göre önceden elde edilen 

bilgi ile yeni ele alınan bilgilerin güncellenip güncellenmeyeceğinin kararı 

verilmektedir. Elde edilen çıktı bilgisi 0 ile çarpılan bilgilerin faydasız, 1 ile çarpılan 

bilgilerin ise faydalı olduğu sonucuna varılır. Sigmoid fonksiyonundan sonra ağı 

düzenlemek amacıyla yine giriş kapısında (ℎ𝑡−1) ve 𝑥𝑡 değerleri tanjant fonksiyonu 

aracılığı ile aday hücre durumu değeri olan 𝐶𝑡̃ elde edilmektedir. Burada hangi bilgilerin 
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saklanacağına karar verebilmek amacıyla elde edilen çıktı sigmoid fonksiyonu ile 

çarpılır.  

𝐶𝑡̃  = 𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)         (2.84) 

Eşitlik 2.84’te verilen 𝐶𝑡̃ ifadesi 0 ile 1 arasında değer alan bir aday hücre durumu 

değerini temsil etmektedir.  

Giriş kapısındaki işlemlerden sonra hücreye gelen 𝐶𝑡−1 hücre durumu diğer 

katmanlardan gelen verilere bağlı olarak 𝑓𝑡 unutma fonksiyonu ile çarpılır ve yeni hücre 

durumu olan 𝐶𝑡 değeri elde edilmektedir. Bu adımda uzun vadeli belleğin bölümlerine 

yeni bilgiler eklenerek uzun süreli bellek yenilenmektedir.  

𝐶𝑡  = 𝑓. 𝐶𝑡−1 + 𝑖𝑡 . 𝐶𝑡̃            (2.85) 

UKSB mimarisinin son kapısı olan çıkış kapısında; önceki katmanlardan geçirilen gizli 

hücre duruma ait  (ℎ𝑡−1) ve 𝑥𝑡 değerleri sigmoid fonksiyonu ile çarpılarak çıkış kapısı 

çıktısı olan 𝑂𝑡 değerinin hücre durumundan ne kadar etkilendiği belirlenir.   

𝑂𝑡  = 𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)          (2.86) 

Eşitlik 2.85’te yeni değiştirilen 𝐶𝑡 hücre durumu, tanjant fonksiyonuna aktarılmakta ve 

gizli hücre durumunun hangi bilgileri taşıyacağına karar vermek amacıyla tanjant 

fonksiyonu çıktısı, Eşitlik 2.86’da hesaplanan sigmoid fonksiyonu çıktısı ile çarpılır ve 

en sonunda gizli hücre durumu çıkışı olan ℎ𝑡 elde edilmektedir [199]. 

ℎ𝑡  = 𝑂𝑡 . tanh (𝐶𝑡)           (2.87) 

Yukarıda özetlenen UKSB’nin öğrenme algoritması bu işlemi her bir veri için uzun 

vadeli bağımlılıkları belirlemek amacıyla gerçekleştirmektedir. Öğrenme akışında hem 

kısa süreli belleği hem de uzun süreli belleği aracılığı ile daha önceki bilgilerine ek 

olarak yeni bilgiler öğrenmekte ve yararlı bilgileri hücre durumunda saklamaktadır. 

Yapısı ve işlevleri yukarıda anlatılan geleneksel UKSB yöntemine ait ağ mimarisinde 

zamanla bazı iyileştirmeler yapılmıştır.  Hücre durumunda saklanan yararlı bilgilerin 

unutma ve giriş kapılarına da etki etmesini sağlamak amacıyla gözetleme deliği 

bağlantıları eklenmiştir. Yapılan bir diğer iyileştirme de unutma ve giriş kapılarının, 
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kapılı tekrarlayan birim (Gated Recurrent Unit-GRU) kapısı olarak tek bir kapı haline 

dönüştürülmesidir. Bu kapı sayesinde güncelleme işlemleri daha pratik olarak 

yapılmaktadır [200].  

TSA öğrenme algoritmasındaki gradyan kaybolması ve sınırlı bellek kapasitesi 

problemlerini ortadan kaldıran UKSB derin öğrenme algoritması büyük ve karmaşık 

veri setlerini öğrenme konusunda oldukça başarılıdır. UKSB yönteminin öğrenme 

kapasitesinin diğer makine öğrenmesi ve derin öğrenme yöntemlerine göre üstün olması 

nedeniyle özellikle son on yıllık dönemde tahmin çalışmaları başta olmak üzere birçok 

alanda yaygın bir kullanımı söz konusudur.  

2.2.8. Model Performansı Değerlendirme Kriterleri 

Kuraklık ile ilgili yapılan bu tez çalışmasında ele alınan tahmin modellerinin doğruluğu 

ve birbirleri ile karşılaştırılması, literatürde yaygın olarak kullanılan istatistik 

hesaplarına dayalı altı farklı performans kriteri ile değerlendirilmiştir. Tahmin 

modellerindeki eğitme ve test sonuçları için bu performans kriterleri ayrı ayrı 

hesaplanmıştır. Çalışmada ele alınan performans kriterleri sırasıyla şunlardır: ortalama 

karesel hata (OKH), kök ortalama karesel hata (KOKH), ortalama mutlak hata (OMH), 

Nash-Sutcliffe etkinliği (NSE), model performansının genel indeksi (Overall Index 

(OI)) ve determinasyon katsayısı (R2).  

OKH, KOKH ve OMH değerlerinin 0’a ve R2 değerinin ise 1’e yaklaşması modelden 

elde edilen tahmin değerinin orijinal verilere güçlü bir şekilde yakınsadığını ve yüksek 

bir tahmin yeteneği olduğunu göstermektedir. NSE, -∞ ile 1 arasında değerler 

almaktadır. 0,5'ten düşük NSE değerleri yetersiz, 0,5 ile 0,7 arası kabul edilebilir, 0,7 ile 

0,9 arası yüksek ve 0,9 ile 1 arası ise mükemmel bir performansı göstermektedir. Ayrıca 

NSE değerlerinin 0’dan küçük olması modelin kabul edilebilir bir model olmadığını 

göstermektedir [201]. Normalleştirilmiş kök ortalama karesel hata ile model verimlilik 

göstergeleri, OI kriterinde birleştirilmiştir. OI değeri de NSE’de olduğu gibi -∞ ile 1 

arasında değerler almaktadır. OI’nin 1 değerini alması modelin mükemmel bir tahmin 

yeteneği olduğunu göstermektedir [202]. Bu çalışmada kullanılan performans kriterleri 

sırasıyla aşağıda verilen eşitliklerle hesaplanmaktadır. 

OKH =
1

𝑁
∑ (𝑆𝑌İtah −  SYİhes)2𝑁

𝑛=1
            (2.88) 
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KOKH = √
1

𝑁
∑ (SYİtah

𝑁

𝑛=1
− SPIhes)2           (2.89) 

OMH =
1

𝑁
∑ |SYİtah − SYİhes|

𝑁

𝑛=1
         (2.90) 

NSE = 1 −  [
 ∑ (SYİhes

N

n=1
−SYİtah)2

∑ (SYİhes
N

n=1
−SYİhes

̅̅ ̅̅ ̅̅ ̅̅ ̅)2
]         (2.91) 

𝑂𝐼 =  
1

2
(2 −

𝐾𝑂𝐾𝐻

𝑆𝑌İℎ𝑒𝑠 𝑚𝑎𝑘− 𝑆𝑌İℎ𝑒𝑠 𝑚𝑖𝑛
−

∑ (𝑆𝑌İℎ𝑒𝑠−𝑆𝑌İ𝑡𝑎ℎ)2𝑁
𝑛=1

∑ (𝑆𝑌İℎ𝑒𝑠−𝑁
𝑛=1 SYİhes

̅̅ ̅̅ ̅̅ ̅̅ ̅)2
 )      (2.92) 

R2 = 1 − [
∑ (SYİhes

𝑁
𝑛=1 −SYİtah)2

∑ (𝑆𝑌İ𝑡𝑎ℎ−𝑁
𝑛=1 SYİtah

̅̅ ̅̅ ̅̅ ̅)2]            (2.93) 

 

Eşitlik 2.88–2.93’te verilen N ifadesi serideki veri sayısını, SYİhes istasyonlarda 

kaydedilen yağış verilerinden hesaplanan kuraklık değerini, SYİtah ise tahmin 

modellerinden elde edilen kuraklık tahmin değerini ifade etmektedir. SYİhes
̅̅ ̅̅ ̅̅ ̅̅  ve SYİtah 

ifadeleri hesaplanan ve tahmin edilen kuraklık değerlerinin ortalamalarını, 𝑆𝑌İℎ𝑒𝑠 𝑚𝑎𝑘 

and 𝑆𝑌İℎ𝑒𝑠 𝑚𝑖𝑛 sembolleri ise hesaplanan kuraklık değerlerine ait serideki maksimum ve 

minimum değerleri temsil etmektedir. 

Yukarıda sayılan performans kriterlerinin yanı sıra hesaplanan kuraklık değerleri ile 

modelden elde edilen kuraklık tahmin değerleri arasındaki ilişkiyi bir arada 

gösterebilmek amacıyla saçılma grafikleri de kullanılmıştır. Yine aynı şekilde 

hesaplanan referans kuraklık değerleri ile tahmin edilen kuraklık değerlerinin standart 

sapma, korelasyon katsayısı ve merkezlenmiş kök ortalama karesel farkı istatistiksel 

değerlerinin eş zamanlı olarak değerlendirilebildiği Taylor diyagramları bu çalışmada 

kullanılmış ve model sonuçları karşılaştırılmıştır. Tüm bunlara ek olarak tüm 

performans kriterlerini bir arada gösteren radar grafikleri, en üstün sonuçları veren 

modeller için hataları daha kolay karşılaştırmak amacıyla kullanılmıştır [91]. 

2.2.9. Model Gelişimi  

Bu tez çalışmasında; Türkiye'nin kuzeybatısında yer alan ve önemli nehir havzalarından 

biri olan Sakarya havzasını temsil edecek 10 adet meteoroloji gözlem istasyonuna ait 

uzun dönem yağış verileri kullanılarak 1, 3, 6 ve 12 aylık kısa dönemlerdeki 

meteorolojik kuraklık değerleri tahmin edilmeye çalışılmıştır. İstasyonların aylık yağış 

verilerinden hesaplanan SYİ-1, SYİ-3, SYİ-6 ve SYİ-12 kuraklık değerleri, bağımsız ve 
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hibrit tahmin modellerinde eğitme ve test giriş verisi olarak kullanılmıştır. Çalışmada 

dikkate alınan metodolojiye ait akış şeması Şekil 2.26’da gösterilmektedir. 

 

Şekil 2.26. Çalışmanın akış şeması 
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Şekil 2.26’da gösterildiği üzere çalışmada ilk olarak istasyonlara ait yağış verileri ele 

alınmıştır. Yağış verileri, Meteoroloji Genel Müdürlüğünden (MGM)’den temin edilmiş 

olup gözlem süresinin yeterli kabul edilebilecek uzunlukta olması, eksik veri olmaması, 

verilerin güncel olması ve havzayı temsil etme durumlarına göre havza içerisinden 10 

adet yağış istasyonu seçilmiştir. Seçilen istasyonlarda gözlem süreleri içerisinde eksik 

veri bulunmadığından verilerin tamamlanmasına yönelik herhangi bir işleme gerek 

kalmamıştır. 

Özellikle hidrometeorolojik zaman serilerindeki değişkenlerin dağılımlarında serinin 

homojen, durağan ve bağımsız olması önemlidir. Seride görülen trendlerin, ekstrem 

sapmaların ya da değişimlerin yalnızca ilgili değişkene bağlı olması durumu olan 

homojenlik, zaman serisi tahmin modellerinin doğruluğunu, tutarlılığını ya da 

güvenilirliğini doğrudan etkilemektedir. Bu nedenle ele alınan serinin homojenlik, 

durağanlık ve bağımsızlık durumlarının istatistiksel testlerle kontrol edilmesi 

gerekmektedir. Bu çalışmada, ele alınan tüm istasyonlara ait ham yağış verilerinin 

homojenliğini araştırmak amacıyla literatürde yaygın bir şekilde kullanılan Standart 

Normal Homojenlik Testi (SNHT), Genişletilmiş Dickey-Fuller Testi (GDFT), Von-

Neumann Homojenlik Testi (VNT) ve Mann-Whitney u Testi (MWT) yöntemleri 

kullanılmıştır. Testlerle ilgili analizler MATLAB 2021b yazılımında tamamlanmıştır. 

Bu çalışmanın temelini oluşturan kuraklık tahmininde, kısa dönem meteorolojik 

kuraklık değerlerini temsil edecek olan kuraklık indisi ile birlikte indisin değerlerini 

hesaplamak da önemli bir yer tutmaktadır. Bu nedenle havzada ele alınan 10 adet yağış 

istasyonunun geçmiş dönem kaydedilen aylık yağış verilerinden meteorolojik kuraklık 

değerlerini temsil edecek olan Standartlaştırılmış Yağış İndeksi (SYİ) kuraklık değerleri 

1, 3, 6 ve 12 aylık zaman ölçekleri için SYİ-1, SYİ-3, SYİ-6 ve SYİ-12 olacak şekilde 

hesaplanmıştır. Hesaplama işlemi için araştırmacılara ücretsiz ve açık olan pratik bir 

kuraklık indisi hesaplama yazılımı DrinC (Drought Indices Calculator) kullanılmıştır. 

DrinC yazılımının kullanılmasının sebebi, çalışmada ele alınan istasyon sayısının fazla 

olması ve dört farklı zaman ölçeğinde hesaplamalar yapılması gerektiği için işlem 

yükünden ve zamandan tasarruf sağlamaktır. DrinC yazılımı ile tüm istasyonlara ait 

SYİ-1, SYİ-3, SYİ-6 ve SYİ-12 kuraklık değerleri hesaplanarak tahmin modellerinin 

altlığını oluşturacak olan kuraklık zaman serileri elde edilmiştir.  
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SYİ kuraklık zaman serileri elde edildikten sonra bu serilerde otokorelasyon 

probleminin olup olmadığı araştırılmıştır. Otokorelasyon varlığı, zaman serileri ile ilgili 

analizlerde hata terimleri arasındaki bir iç bağımlılık durumudur. Bu bağımlılık tahmin 

modellerinin başarısını etkileyen önemli bir faktördür. Bu çalışmada; SYİ-1, SYİ-3, 

SYİ-6 ve SYİ-12 kuraklık değerlerinin farklı gecikme zamanları (t, t-1, t-2, t-3, …vb.) 

tahmin modellerinde girdi değişkeni, t+1 zamanı ise çıktı değeri olarak kabul edilmiştir. 

Zaman serilerine dayalı tahmin modellerinin başarısı, gecikme süreleri ile optimum 

sayıda girdi değişkeni arasındaki ilişki ile belirlenmektedir. Bu nedenle çalışmada, 

otokorelasyon fonksiyonu aracılığı ile hem serilerdeki otokorelasyon varlığı araştırılmış 

hem de tahmin modellerine girecek olan optimum gecikme zamanlarının hangi güven 

aralığında kaldığı belirlenmiştir. Çalışmada nihai olarak kullanılan gecikme zamanları 

ADD-USBÇS hibrit modelleri ile belirlenmiş olup bu bölümün ilerleyen kısımlarında 

daha detaylı bir şekilde anlatılacaktır. SYİ kuraklık zaman serilerindeki otokorelasyon 

varlığı ve optimum gecikme zamanı güven aralığını belirlemek için MATLAB 2021b 

yazılımında geliştirilen otokorelasyon fonksiyonunun açık kodları kullanılmıştır. 

Bu tez çalışmasında; kuraklık zaman serilerinin analizleri üzerinde durulduğundan veri 

dönüştürme ve ayrıştırma, özellik çıkarma, öznitelik seçimi gibi veri ön işlemlerini 

yerine getiren Ayrık Dalgacık Dönüşümü (ADD), Ampirik Mod Ayrıştırma (AMA) ve 

Varyasyonel Mod Ayrıştırma (VMA) teknikleri kullanılmıştır. İlk olarak ele alınan ön 

işleme tekniği ADD’dir. DD tekniğinin bir alt yöntemi olan Ayrık Dalgacık Dönüşümü 

(ADD) kullanılarak Sakarya meteoroloji istasyonunun yağış verilerinden hesaplanan 

orijinal SYİ-1, SYİ-3, SYİ-6 ve SYİ-12 kuraklık verileri, dalgacık alt bantlarına 

ayrılmış ve bu alt bantlar, USBÇS tahmin modelinde eğitme ve test verisi şeklinde girdi 

değişkeni olarak kullanılmıştır. Burada sadece Sakarya meteoroloji istasyonunun 

kuraklık değerleri dalgacık alt bantlarına ayrılmıştır. Bu istasyonun dalgacık alt 

bantlarına göre oluşturulan hibrit ADD-USBÇS tahmin modelinde, optimum gecikme 

zamanlarının belirlenmesi ile birlikte dalgacık ailesi seçimi ve dalgacık bant seviyesi 

seçimi yapılmıştır. Bu modelden elde edilen en iyi sonuçlar her bir zaman ölçeği için 

diğer istasyonlarla birlikte diğer yöntemlerle oluşturulan modellerde de kullanılmıştır.  

Optimum gecikme zamanları, otokorelasyon fonksiyonu ile ortaya konulan güven 

aralığı sınırlarına göre ele alınmış olup t orijinal kuraklık verisi olmak üzere (t, t-1, t-2, 

t-3, t-4 ve t-5) 5 farklı gecikme zamanına göre analiz edilmiştir. Yalnızca Sakarya 
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istasyonunun her bir zaman ölçeği (SYİ-1, SYİ-3, SYİ-6 ve SYİ-12) için hibrit ADD-

USBÇS tahmin modelindeki en iyi performansı gösteren gecikme zamanları belirlenmiş 

ve belirlenen bu optimum gecikme zamanları tüm istasyon ve modellerde kullanılmıştır. 

Kuraklık zaman serilerinin ADD ile alt serilerine ayrıştırılması sürecinde diğer 

çalışmalara nazaran bu çalışmada çok daha fazla dalgacık ailesi ve onların versiyonları 

incelenmiştir. Çünkü dalgacık ailesi seçimi ile dalgacık ailesinin serileri alt bantlarına 

ayrıştırma yeteneği modelin tüm performansını etkileyen özelliklerdir. Ayrıca, kuraklık 

zaman serilerinin hangi dalgacık ailesi ile daha uyumlu olduğunu belirlemek amacıyla 

da çok sayıda dalgacık ailesi ele alınarak çalışmanın kapsamı artırılmıştır. Bu 

çalışmadaki dalgacık dönüşümünde; Haar, Daubechies (db40), Symlets (sym3), Coiflets 

(coif2), Biortogonal (bior1.3), Ters Biortogonal (rbio1.3), Meyer’in Ayrık Yaklaşımı 

(Discrete Approximation of Meyer (dmey)) ve Fejer-Korovkin (fk4) dalgacık aileleri 

kullanılmıştır. Sayılan bu dalgacık ailelerinin Sakarya istasyonuna ait kuraklık zaman 

serilerini alt bantlarına ayrıştırma yetenekleri, performans kriterlerine göre birbirleri ile 

karşılaştırılmış ve her bir zaman ölçeği için en üstün sonuçlara sahip dalgacık ailesi 

çalışmanın tümünde kullanılmıştır. 

ADD ile serinin alt bantlarına ayrıştırılması işlemindeki en önemli hususlardan biri de 

dalgacık bant seviyesinin (dalgacık ayrıştırma seviyesinin) belirlenmesidir. Burada yine 

çalışmanın kapsamını artıracak şekilde diğer çalışmalara göre daha fazla dalgacık bant 

seviyesi üzerinde durulmuştur. Bu çalışmada; 3, 4, 5, 6 ve 7 olmak üzere beş farklı 

dalgacık bant seviyesine göre kuraklık zaman serileri alt bantlarına ayrıştırılmıştır. ADD 

ile ilgili yapılan analizler yine MATLAB 2021b yazılımında geliştirilen açık kodlar 

kullanılarak tamamlanmıştır. MATLAB 2021b yazılımı ile Sakarya istasyonu SYİ-1 

için yapılan dmey dalgacık ailesine sahip, 3 gecikme zamanlı ve 3. bant seviyesine göre 

bir dalgacık dönüşümü Şekil 2.27’de gösterilmiştir. 
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Şekil 2.27.  dmey dalgacık ailesi ile 3 gecikme zamanlı 3. bant seviyesine göre 

yapılan dalgacık dönüşümü 

 

ADD ile alt bantlarına ayrılan Sakarya istasyonu SYİ kuraklık serileri, USBÇS tahmin 

modelinde eğitme ve test verisi şeklinde girdi değişkeni olarak kullanılmıştır. Bu 

aşamada USBÇS makine öğrenmesi yönteminin seçilme sebebi, bu yöntemin 

uyarlanabilir özelliği ile hızlı analizler yapmasıdır. ADD-USBÇS hibrit tahmin 

modelinde, Sakarya istasyonunun alt bantlarına ayrılan giriş verilerinin %75’i (1960–

2005) eğitme verileri, %25’i (2006–2021) ise test verisi olarak kabul edilmiştir. USBÇS 

tahmin modeli ile ilgili analizler yine MATLAB 2021b yazılımında geliştirilen açık 

kodlar kullanılarak tamamlanmıştır.  

USBÇS tahmin modelinde bulanık çıkarım sistemi olarak Takagi-Sugeno yaklaşımı 

kullanılmıştır. Takagi-Sugeno yaklaşımı, optimizasyon ve uyarlanabilir tekniklerle 

birlikte ele alındığında Mamdani yaklaşımına göre daha başarılıdır ve hesap adımları 

pratiktir. Sinir ağı modeli olarak ise ızgara kümeleme (grid partition) yöntemi tercih 

edilmiş olup bunun sebebi daha az bağlantı ile katmanları birbirine daha hızlı bağlama 

özelliğidir. USBÇS’de öğrenme algoritması olarak hem bulanık mantık hem de sinir ağı 
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kurallarını kolaylıkla öğrenebilen hibrit algoritması kullanılmıştır. Ayrıca bu algoritma 

diğer öğrenme algoritmalarına göre daha hızlıdır. Giriş üyelik fonksiyonları olarak 

Gauss (gaussmf) ve üçgen (triangular-trimf), çıkış üyelik fonksiyonları olarak ise sabit 

(constant) ve doğrusal (linear) fonksiyonlar kullanılmıştır. Bu çalışmada kullanılan 

USBÇS yönteminde dikkate alınan model parametreleri Tablo 2.6’da verilmiştir. 

Tablo 2.6. USBÇS tahmin modeli parametreleri 

Parametre adı Parametre özelliği veya değeri 

Bulanık çıkarım tipi Takagi-Sugeno 

Sinir ağı modeli Izgara kümeleme (Grid partition) 

Eğitme optimizasyonu Hibrit algoritması 

Girdi sayısı 6 adet (t, t-1, t-2, t-3, t-4 ve t-5) 

Çıktı sayısı 1 adet (t+1) 

Üyelik fonksiyon sayıları 2 ve 3 

İterasyon sayısı 1-10 

Öğrenme oranını artırma katsayısı 1.1 

Öğrenme oranını azaltma katsayısı 0.9 

Giriş üyelik fonksiyonları Gauss (gaussmf) ve üçgen (triangular-trimf) 

Çıkış üyelik fonksiyonları Sabit (constant) ve doğrusal (linear) 

 

Dalgacık dönüşümünden sonra Ampirik Mod Ayrıştırma (AMA) ve Varyasyonel Mod 

Ayrıştırma (VMA) ön işleme teknikleri ile Sakarya istasyonunun orijinal kuraklık 

zaman serilerinin (SYİ-1, SYİ-3, SYİ-6 ve SYİ-12) alt bantlarına ayrıştırılması işlemine 

geçilmiştir. ADD-USBÇS hibrit modelinde elde edilen optimum gecikme zamanına 

göre her iki yöntemde de dört farklı bant seviyesi (2D, 3D, 4D, 5D) için orijinal 

kuraklık zaman serileri alt bantlarına ayrılmıştır. Bant seviyelerinin ayrıştırma 

kapasitesini ve model başarısındaki etkilerini görebilmek adına farklı bant seviyeleri ele 

alınmıştır. Her bant seviyesi için serilerin İçsel Mod Fonksiyonu (İMF) ve artık 

bileşenlerinin toplamları alınarak alt bantlar elde edilmiştir. AMA ve VMA ön işleme 

teknikleri ile alt bantlarına ayrıştırma analizleri, MATLAB 2021b yazılımında 

geliştirilen açık kodlar kullanılarak tamamlanmıştır. MATLAB 2021b yazılımı ile 

Sakarya istasyonu SYİ-1 için 2D (2. bant seviyesi) bant seviyesine göre yapılan bir 

AMA dönüşümü örneği Şekil 2.28’de, VMA dönüşüm örneği ise Şekil 2.29’da 

gösterilmiştir. 
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Şekil 2.28. 2D bant seviyesine göre yapılan AMA örnek dönüşümü  

 

Şekil 2.29. 2D bant seviyesine göre yapılan VMA örnek dönüşümü 

AMA ve VMA ile elde edilen alt bant serileri, AMA-USBÇS ve VMA-USBÇS hibrit 

modellerinde eğitme ve test verisi şeklinde girdi değişkeni olarak kullanılmıştır. Yine 

daha önce olduğu gibi bu hibrit modellerde, Sakarya istasyonunun alt bantlarına ayrılan 

giriş verilerinin %75’i (1960–2005) eğitme verileri, %25’i (2006–2021) ise test verisi 
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olarak kabul edilmiştir. Sakarya istasyonunun her bir zaman ölçeği için belirlenen en 

optimum AMA ve VMA bant seviyeleri, diğer istasyonlarda ve modellerde de 

kullanılmıştır.  

Sakarya meteoroloji istasyonunun orijinal kuraklık değerlerine her bir zaman ölçeği için 

(SYİ-1, SYİ-3, SYİ-6 ve SYİ-12) DD, AMA ve VMA ön işleme teknikleri uygulanarak 

USBÇS hibrit tahmin modellerinde çalışmanın tamamında dikkate alınacak olan 

optimum gecikme zamanı, optimum dalgacık ailesi, optimum dalgacık bant seviyesi ile 

optimum AMA ve VMA bant seviyeleri bulunmuştur. Tüm bu analizlerin sonucunda 

bağımsız veya hibrit tahmin modellerine girecek olan nihai eğitme ve test verilerinin 

giriş karakteristikleri elde edilmiştir. Daha sonraki aşamada ise tüm istasyonların 

kuraklık tahmin değerlerinin elde edilmesi için bağımsız ve hibrit tahmin modeli 

oluşturulmuştur. Bağımsız modeller olarak sadece YSA, USBÇS, GSR, DVMR ve 

UKSB tahmin modelleri ele alınmıştır. Hibrit tahmin modelleri ise yine bu beş modele 

ADD, AMA ve VMA ön işleme tekniklerinin dâhil edilmesi ile oluşturulmuştur. 

Çalışmada; her bir istasyonun her bir zaman ölçeği için toplamda 20 adet (5 adet 

bağımsız ve 15 adet hibrit) kuraklık tahmin modeli kullanılmıştır.  

Daha önce USBÇS yönteminin model kurulumu ve parametrelerinden bahsedildiğinden 

dolayı kalan dört yöntemin model kurulumu ve parametrelerinden bahsedilecektir. 

YSA, güçlü öğrenme algoritmaları ve tahmin problemlerindeki başarısı nedeniyle 

kuraklık tahmini ile ilgili bu çalışmada da tercih edilmiştir. Bağımsız ve hibrit YSA 

tahmin modellerine girecek olan eğitme ve test verileri, tüm veri setinin %75’i eğitme 

ve %25’i test olacak şekilde kabul edilmiştir. Giriş verileri, hızlı ve diğer öğrenme 

yöntemlerine göre daha doğru tahminler veren sayısal bir optimizasyon tekniği olan 

Levenberg-Marquardt öğrenme algoritması (trainlm) ile eğitilmiştir. YSA modelinde, 

bilgi akışının iki yönlü olarak sağlanması istendiğinden geri beslemeli ağ yapısı tercih 

edilmiştir. Ayrıca bu çalışmada bir ara (gizli) katmana sahip çok katmanlı bir sinir ağı 

modeli kullanılmıştır. Katmanlar arası bilgi aktarımını sağlayan transfer fonksiyonları 

olarak hiperbolik tanjant sigmoid (tansig) ve logaritmik sigmoid fonksiyonu (logsig) 

tercih edilmiştir. Girdilere dayalı olarak çıktıların özelliklerini belirleyen ve çıktıların 

elde edilmesini sağlayan aktivasyon fonksiyonu olarak ise doğrusal transfer fonksiyonu 

(purelin) kullanılmıştır. Çalışmada tercih edilen transfer ve aktivasyon fonkiyonları ile 

birlikte 2–10 aralığındaki nöron sayısı ve 1–200 arasında değişen iterasyonlarla farklı ve 
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çok çeşitli model kombinasyonlarına göre tahmin modelleri elde edilmiştir. Tablo 

2.7’de YSA tahmin modellerine ait parametreler özet olarak verilmiştir. 

Tablo 2.7. YSA tahmin modeli parametreleri 

Parametre adı Parametre özelliği veya değeri   

Ağın bağlantı yönü Geri beslemeli 

Sinir ağı modeli Çok katmanlı 

Öğrenme algoritması Levenberg-Marquardt (trainlm) 

Girdi sayısı 4 adet (t, t-1, t-2, t-3) 

Çıktı sayısı 1 adet (t+1) 

Nöron sayısı 2-10 

İterasyon sayısı 1-200 

 

Transfer fonksiyonları 
Logaritmik sigmoid (logsig) ve hiperbolik tanjant 

sigmoid (tansig) 

Aktivasyon fonksiyonu Doğrusal transfer fonksiyonu (purelin) 

 

MATLAB 2021b yazılımında Sakarya istasyonu SYİ-1 için YSA tahmin modeline ait 

örnek bir öğrenme süreci Şekil 2.30’da gösterilmiştir. 

 

Şekil 2.30. YSA tahmin modeli öğrenme süreci 
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Çalışmada ele alınan bir diğer makine öğrenmesi yöntemi Destek Vektör Makine 

Regresyonu (DVMR)’dir. İstatistiksel öğrenme teorisi ile yapısal risk minimizasyonuna 

dayalı bir yöntem olan DVM’nin regresyon yani tahmin problemlerine yönelik 

geliştirilen bir alt grubu olan DVMR, iyi bir genelleme yeteneği olması ve doğrusal 

olmayan problemleri çekirdek (kernel) fonksiyonları aracılığı ile kolaylıkla çözebilmesi 

nedenlerinden dolayı tercih edilmiştir. DVMR’nin hem bağımsız hem de ADD, AMA 

ve VMA’lı hibrit kuraklık tahmin modelleri oluşturulmuştur. DVMR tahmin modelleri, 

MATLAB 2021b yazılımında geliştirilen açık kodlar kullanılarak tamamlanmıştır. 

DVMR tahmin modellerinde; Gaussian, polinom, radyal tabanlı fonksiyon ve doğrusal 

(lineer) olmak üzere dört farklı çekirdek fonksiyonu kullanılmıştır. Ayrıca, DVMR’nin 

öğrenme aşamasında ortaya çıkan ikinci dereceden programlama problemini çözen 

Sıralı Minimum Optimizasyon (SMO) yöntemi modellerde optimizasyon algoritması 

olarak kullanılmıştır. DVMR modellerinde kutu sınırlama seviyesi belirlenerek 

optimum hiper düzlem aralığı için gerekli işlemler ve parametre hesapları bu aralıkta 

yapılır. Bu çalışmada, kutu sınırlama seviyesi 1 olarak seçilmiştir. Tahmin 

modellerindeki girdi ve çıktılar, 1–30 arasında değişen iterasyonlarla ve doğru 

standardizasyon yöntemi ile analiz edilerek elde edilmiştir. DVMR tahmin modeli 

parametreleri Tablo 2.8’de özetlenmiştir. 

Tablo 2.8. DVMR tahmin modeli parametreleri 

Parametre adı Parametre özelliği veya değeri   

Çekirdek fonksiyonları 

 

Gauss, polinom, radyal tabanlı ve doğrusal 

Optimizasyon algoritması Sıralı minimum optimizasyon (SMO) 

Standardize yöntemi Doğru 

Girdi sayısı 4 adet (t, t-1, t-2, t-3) 

Çıktı sayısı 1 adet (t+1) 

İterasyon sayısı 1-30 

Kutu sınırı 1-1000 

Kernel ölçeği 1 

𝜀 parametresi 0.09 

𝐶 parametresi Otomatik 
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MATLAB 2021b yazılımı ile DVMR modelinde Sakarya istasyonu SYİ-1 için 

optimizasyonla hiper düzlemin ve minimum hata oranının bulunmasına yönelik model 

örneği Şekil 2.31’de verilmiştir. 

 

Şekil 2.31.  DVMR yöntemi ile optimum hiper düzlemin ve minimum hata oranının 

bulunmasına ait örnek model 

 

Bu çalışmada ele alınan bir diğer makine öğrenmesi yöntemi, Gauss Süreç Regresyonu 

(GSR)’dur. Tahmin problemlerini ele alırken daha az veriye ve daha az parametreye 

ihtiyaç duyan parametrik olmayan bir öğrenme algoritmasına sahiptir. Çekirdek (kernel) 
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fonksiyonları ile oldukça iyi uyum gösteren bu yöntem, tahmin problemlerindeki 

başarısından dolayı bu çalışmada tercih edilmiştir. GSR modellerindeki en kritik 

parametre optimum kovaryans matrisinin ve buna bağlı olarak kovaryans 

fonksiyonunun belirlenmesidir. Çalışmada; GSR’nin tahmin kapasitesini kapsamlı bir 

şekilde ele alabilmek ve model performanslarını artırabilmek adına birçok farklı 

fonksiyon ele alınmıştır. Gauss süreçlerinde yaygın olarak kullanılan kovaryans 

fonksiyonları, radyal tabanlı temel fonksiyonlar ve diğer çekirdek fonksiyonları olarak 

ayrılmaktadır. Radyal tabanlı temel fonksiyonlar şunlardır: sabit, doğrusal, sıfır, saf 

ikinci dereceden. Çekirdek fonksiyonları ise karesel üstel, üstel, matern 3/2, matern 5/2, 

rasyonel ikinci dereceden, ard karesel üstel, ard üstel, ard matern 3/2, ard matern 5/2, 

ard rasyonel ikinci derecedendir.  GSR modeli ile yapılan analizlerde bu fonksiyonlar 

içinden hata kriteri en az olan yönteme ait çıktılar sonuç çıktısı olarak kabul edilmiştir. 

Ayrıca bu denli çok fonksiyonun ele alınmasındaki önemli bir neden de MATLAB 

2021b yazılımında GSR modeli tahmin işlemlerinin hızlı bir şekilde yapılabilmesidir.  

GSR tahmin modellerinde, öğrenme algoritması olarak önceden herhangi bir ön 

parametre bilgisine ihtiyaç duymayan ve olasılık tabanlı Bayes optimizasyon tekniği 

kullanılmıştır. GSR modellerinde değerleri bulunmaya çalışılan 𝛽 (tahmini ortalama 

değer) (bazı kaynaklarda 𝜇 olarak gösterilmektedir [192]) ve 𝜎 (çekirdek genişlik 

parametresi) parametreleri, tamamen bağımsız koşullu yaklaşım (fully independent 

conditional approximation) ile bulunarak varyans probleminin önüne geçilmekte ve 

çekirdek fonksiyonları daha da işlevsel hale getirilmektedir [203]. Kernel ölçeği 

DVMR’de oldu gibi GPR tahmin modellerinde de 1 alınmıştır. 1–30 arasında değişen 

iterasyonlarla ve doğru standardizasyon yöntemi ile analizler yapılarak model çıktıları 

elde edilmiştir. GSR yöntemi kullanılarak oluşturulan tahmin modelleri, MATLAB 

2021b yazılımında analiz edilmiştir. GSR tahmin modeli parametreleri Tablo 2.9’da 

özetlenmiştir. 
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Tablo 2.9. GSR tahmin modeli parametreleri 

Parametre adı Parametre özelliği veya değeri   

Radyal tabanlı temel fonksiyonlar 

 

Sabit, doğrusal, sıfır, saf ikinci dereceden 

 

Çekirdek fonksiyonları 

 

Karesel üstel, üstel, matern 3/2, matern 5/2, 

rasyonel ikinci dereceden, ard karesel üstel, 

ard üstel, ard matern 3/2, ard matern 5/2, 

ard rasyonel ikinci dereceden 

Optimizasyon algoritması Bayes optimizasyon tekniği 

Parametre hesap yöntemi Tamamen bağımsız koşullu yaklaşım 

Standardize yöntemi Doğru 

Girdi sayısı 4 adet (t, t-1, t-2, t-3) 

Çıktı sayısı 1 adet (t+1) 

İterasyon sayısı 1-30 

Kernel ölçeği 1 

 

Çalışmada ele alınan tahmin modellerinden biri de son dönemin popüler öğrenme 

algoritmalarından biri olan Uzun-Kısa Süreli Bellek (UKSB) ile oluşturulmuştur. 

Geleneksel yöntemlerde karşılaşılan gradyan kaybolması ve sınırlı bellek kapasitesi 

problemlerini çözmek için geliştirilen UKSB, bir derin öğrenme yöntemidir. Veri 

setindeki bilgileri uzun vadeli bağımlılıkları hatırlama yeteneği sayesinde rahatlıkla 

öğrenebildiğinden bu çalışmada tercih edilmiştir.  

Kuraklık tahmin çalışmasında önerilen UKSB modellerine ait hücre mimarisinde; giriş 

katmanı olarak “dizi giriş katmanı” (sequence input layer), gizli katman olarak “çift 

yönlü UKSB katmanı” (bidirectional LSTM layer-BILLSTM), bağlantı katmanı olarak 

“tam bağlantılı katman” (fully connected layer) ve çıkış katmanı olarak ise “regresyon 

katmanı” (regression layer) kullanılmıştır. UKSB tahmin modellerinde, derin ağı 

eğitmesi amacıyla üç farklı öğrenme algoritması kullanılmıştır. Bu algoritmalar; 

“momentumlu stokastik gradyan inişi” (stochastic gradient descent with momentum-

SGDM), “kök ortalama karesel yayılma” (root mean squared propagation-RMSProp) ve 

Adam algoritmasıdır. Bu algoritmalar her analiz için tek tek denenmiş ve içlerinden hata 

kriterlerine göre en iyi sonucu veren algoritma seçilmiştir. Hücredeki bilgi iletimini 

sağlayan kapılar için sigmoid aktivasyon fonksiyonu, verileri saklama işlevi olan hücre 
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durum bellekleri için tanjant aktivasyon fonksiyonu kullanılmıştır. Ayrıca UKSB 

tahmin modellerinde; karesel gradyan kaybolma faktörü 1, eğitme sürecinin başında 

belirlenen ilk öğrenme oranı 0,05, öğrenme oranı azaltma faktörü 0,2 ve öğrenme oranı 

azaltma döngüsü 50 olarak tercih edilmiştir. Modellerde ele alınan bir gizli katmanda 

nöron sayısı 5–20 aralığında olup maksimum döngü sayısı ise 200 olarak kabul 

edilmiştir. UKSB derin öğrenme algoritması, verileri kendi içinde standartlaştırdığından 

ilave bir yönteme ihtiyaç duymamaktadır. Tablo 2.10’da UKSB tahmin modeli 

parametreleri verilmiştir. 

Tablo 2.10. UKSB tahmin modeli parametreleri 

Parametre adı Parametre özelliği veya değeri   

Hücre mimarisi 

 

-Dizi giriş katmanı (sequence input layer) 

 

-Çift yönlü UKSB katmanı (bidirectional 

LSTM layer (BILLSTM)) 

 

-Tam bağlantılı katman (fully connected 

layer) 

 -Regresyon katmanı (regression layer) 

Öğrenme algoritmaları 

 

SGDM, RMSProp, Adam 

Aktivasyon fonksiyonları Tanjant ve sigmoid  

Karesel gradyan kaybolma faktörü  1 

Maksimum döngü sayısı 200 

Nöron sayısı 5-20 

İlk öğrenme oranı 0.05 

Öğrenme oranı azaltma faktörü  0.2 

Öğrenme oranı azaltma döngüsü 50 

Girdi sayısı 4 adet (t, t-1, t-2, t-3) 

Çıktı sayısı 1 adet (t+1) 

 

UKSB tahmin modelleri, MATLAB 2021b yazılımında geliştirilen açık kodlar 

kullanılarak tamamlanmıştır. UKSB tahmin modelinde Sakarya istasyonu SYİ-1 için 

örnek bir öğrenme süreci Şekil 2.32’de verilmiştir. 
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Şekil 2.32. UKSB tahmin modeli örnek öğrenme süreci 
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3. BÖLÜM 

 

BULGULAR 

 

3.1. Sakarya Havzası Meteoroloji İstasyonları Yağış Verilerinin İstatistiksel  

         Özellikleri 

Bu tez çalışmasında; Sakarya havzası sınırları içerisinde yer alan 10 adet meteoroloji 

istasyonunun yağış verileri kullanılmıştır. Çalışmada; havzanın kısa dönem 

meteorolojik kuraklığı ve buna bağlı olarak sadece yağış verisinden hesaplanabilen bir 

kuraklık indisi olan Standartlaştırılmış Yağış İndeksi (SYİ) değerlendirildiğinden diğer 

iklimsel ve meteorolojik parametrelere ihtiyaç duyulmamıştır. Materyal bölümünde 

temel özelliklerinden bahsedildiğinden dolayı tekrar bu istasyonlardan 

bahsedilmeyecektir. Seçilen bu 10 adet istasyonun tercih edilme sebebi havzanın 

bütününü temsil kabiliyeti, uzun dönem gözlemlerinin olması, güncel olması ve eksik 

verinin bulunmamasıdır. İstasyonların dikkate alınan gözlem aralığı içerisinde eksik veri 

bulunmamasından dolayı veri tamamlama işlemlerine gerek duyulmamıştır. Çalışmada 

kullanılan bu 10 adet MGİ’e ait istatistiksel bilgiler Tablo 3.1’de verilmiştir. 

 

Tablo 3.1. Meteoroloji gözlem istasyonları (MGİ) istatistiksel bilgileri 

İstasyon 
Adı 

Min.  
Ort. 

Yağış 
(mm/ay) 

Mak.  
Ort. 

Yağış 
(mm/ay) 

Ort. 
Yağış  

(µ)  
(mm/ay) 

Standart 
Sapma 

(σ) 
(mm/ay) 

Çarpıklık 
Katsayısı 

(Cs) 

Basıklık 
Katsayısı 

(K) 

Değişim 
Katsayısı  
(Cv) (%)  

 
Sakarya 49.86 108.87 71.16 18.70  0.58 -0.23 26.28 
Ankara  13.37 52.39 34.48 13.07 -0.57 -0.90 37.89 
Kütahya 18.40 82.38 47.61 20.04 -0.08 -0.55 42.09 

Bolu 23.24 63.27 47.35 13.12 -0.83 -0.57 27.71 
Emirdağ 16.62 49.33 34.57 11.77 -0.57 -0.90 34.02 
Polatlı 10.09 45.08 30.37 12.18 -0.53 -0.90 40.12 
Geyve 27.39 96.10 53.86 20.58  0.56  0.06 38.21 
Ilgın 10.78 51.46 35.74 14.00 -0.93 -0.50 39.17 

Sivrihisar 13.80 52.27 34.58 13.02 -0.48 -0.82 37.65 
Yunak 12.49 59.24 38.05 15.36 -0.67 -0.65 40.37 
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Tablo 3.1’den görüleceği üzere minimum, maksimum ve ortalama yağış değerlerine 

bağlı olarak yağış potansiyeli en yüksek istasyon Sakarya MGİ’dir. 71,16 mm olan aylık 

yağış ortalaması ile diğer istasyonlara göre daha fazla yağış almaktadır. Ayrıca 

%26,28’lik değişim katsayısı değerine bakıldığında aylar arasındaki yağış değerlerinin 

diğer istasyonlara göre daha az değişiklik gösterdiği yani daha homojen bir yağış 

rejimine sahip olduğu görülmektedir. İstatistiksel olarak yağış potansiyeli en düşük olan 

istasyon ise Polatlı MGİ’dir. Minimum, maksimum ve ortalama yağış değerlerinin 

tamamında seçilen bu 10 adet istasyon içerisinde en düşük değerler Polatlı MGİ’e aittir. 

Polatlı MGİ’nin standart sapması her ne kadar diğerlerinden küçük de olsa özellikle 

basıklık (-0,90) ve değişim katsayıları (%40,12) incelendiğinde aylar arasındaki 

değişimlerin yüksek olduğu ve normal dağılımdan uzaklaştığı görülmektedir. Kütahya 

MGİ’nin minimum ve maksimum aylık yağış değerleri arasındaki fark oldukça yüksek 

olup standart sapma (20,04 mm/ay) ve değişim katsayısı değerine (%42,09) 

bakıldığında ortalamadan uzaklaşan ve düzensiz bir yağış rejimine sahip bir istasyon 

olduğu rahatlıkla söylenebilir. Minimum ve maksimum yağış değerleri arasındaki fark 

ile standart sapması (20,58 mm/ay) en yüksek olan istasyon Geyve MGİ’dir. Geyve 

MGİ’nin değişim katsayısı değeri (%38,21) de yüksek olup bu istasyonun da aylık 

ölçekte düzensiz bir yağış rejimine sahip olduğu görülmektedir. 

3.2. Sakarya Havzası Meteoroloji İstasyonları Yağış Verilerinde Homojenlik,  

         Durağanlık ve Bağımsızlık Testleri 

Hidrometeorolojik zaman serileri üzerinden çeşitli analizler ya da modellemeler 

yapılmadan önce çalışmanın doğruluğu, tutarlılığı ve güvenilirliği açısından çok önemli 

olan serideki homojenlik, durağanlık ve bağımsızlık durumları istatistiksel testlerle 

incelenmeli ve değerlendirmeleri yapılmalıdır. Bu kapsamda, çalışmada ele alınan 

Sakarya havzasındaki 10 adet istasyonun kuraklık tahminlerinin güvenilir bir şekilde 

tamamlanabilmesi için bu istasyonlara ait ham yağış verilerine homojenlik, durağanlık 

ve bağımsızlık testleri uygulanmıştır. Testlerle ilgili analizler MATLAB 2021b 

yazılımında tamamlanmıştır. İstasyonlara ait ham yağış verileri, %95 güven aralığında 

kalacak şekilde Standart Normal Homojenlik Testi (SNHT), Genişletilmiş Dickey-

Fuller Testi (GDFT), Von-Neumann Homojenlik Testi (VNT) ve Mann-Whitney u 

Testine (MWT) tabi tutulmuş olup test sonuçları Tablo 3.2’de verilmiştir.  
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Tablo 3.2. İstasyonlara ait homojenlik, durağanlık ve bağımsızlık test sonuçları 

İstasyon 

Adı 

Standart 

Normal 

Homojenlik 

Testi (SNHT) 

Genişletilmiş 

Dickey-Fuller 

Testi (GDFT) 

Von-Neumann 

Homojenlik 

Testi (VNT) 

Mann-Whitney u 

Testi (MWT) 

  T
0
 

T
te

st
 

K
ar

ar
 

T
es

t 

is
t.

 

c 
d
eğ

. 

K
ar

ar
 

Q
 

p
 

K
ar

ar
 

q
 

P
1

/2
 

K
ar

ar
 

Sakarya 6.08 10.50 H -10.66 -1.94 D 1.80 0.997 B 0.16 0.025 H 

Ankara 3.29 10.50 H -11.66 -1.94 D 1.71 1 B 0.49 0.025 H 

Kütahya 4.21 10.50 H -11.21 -1.94 D 1.54 1 B 0.30 0.025 H 

Bolu 4.28 10.45 H -10.37 -1.94 D 1.89 0.928 B 0.18 0.025 H 

Emirdağ 4.65 10.45 H -10.23 -1.94 D 1.81 0.988 B 0.41 0.025 H 

Polatlı 3.54 10.45 H  -9.73 -1.94 D 1.57 1 B 0.41 0.025 H 

Sivrihisar 4.63 10.45 H  -9.89 -1.94 D 1.57 1 B 0.21 0.025 H 

Geyve 3.14 10.45 H -10.19 -1.94 D 1.67 1 B 0.09 0.025 H 

Ilgın 3.10 10.45 H  -9.86 -1.94 D 1.69 1 B 0.13 0.025 H 

Yunak 4.20 10.20 H  -8.94 -1.94 D 1.59 1 B 0.33 0.025 H 

 

Tablo 3.2’de verilen testlere ait sonuç tablosunda yer alan H: homojen, D: durağan ve 

B: bağımsız durumu temsil etmektedir. İstasyonların ham yağış verilerine uygulanan bu 

dört teste ait istatistiksel sonuçlara göre, istasyon verilerinin tamamı homojen, durağan 

ve bağımsız çıkmıştır. Bu sonuçlara göre istasyonlara ait yağış verileri ele alınacak olan 

kuraklık tahmin modelleri için tutarlı ve kullanışlıdır. Ayrıca yağış verilerinde şüpheli 

bir durum söz konusu olmadığından dolayı bu çalışmada istasyonlara ait yağış 

verilerinin homojen hale getirilmesine gerek yoktur. 

3.3. DrinC Yazılımı ile SYİ Kuraklık Değerlerinin Hesaplanması 

Bu çalışmada; kuraklık tahmin modellerinde eğitme ve test verisi şeklinde giriş verisi 

olarak kullanılacak olan SYİ kuraklık değerleri, istasyonların aylık yağış verilerine bağlı 

olarak hesaplanmıştır. Çalışmada, Sakarya havzasının kısa dönem meteorolojik 

kuraklığı tahmin edilmek istendiğinden dolayı burada 1, 3, 6 ve 12 aylık kısa dönemler 

dikkate alınmış olup tüm istasyonlar için dört farklı zaman ölçeğinde SYİ-1, SYİ-3, 

SYİ-6 ve SYİ-12 kuraklık değerleri hesaplanmıştır. Kuraklık indislerinin hesabı manuel 

olarak yapılabildiği gibi özellikle son dönemde çeşitli kuraklık indisi hesaplama 

yazılımları ile de yapılabilmektedir. Bu çalışmada; istasyon sayısının fazla olması, uzun 

dönem yağış verilerinin kullanılması ve dört farklı zaman ölçeğinin dikkate 

alınmasından dolayı kuraklık indisi hesaplama adımında çok fazla işlem yükü ve 
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zamana gereksinim duyulması sebebi ile bir kuraklık indisi hesaplama yöntemi olan 

DrinC (Kuraklık İndisleri Hesaplayıcısı (Drought Indices Calculator)) yazılımı 

kullanılmıştır. SYİ kuraklık değerlerinin hesaplanma sürecinde oldukça kolaylık 

sağlayan bu yazılım sayesinde istenilen parametrelere ve seçilen zaman ölçeklerine göre 

(SYİ-1, SYİ-3, SYİ-6 ve SYİ-12) her istasyon için kuraklık değerleri hesaplanmıştır. 

Ayrıca DrinC yazılımı ile elde edilen bazı değerler için manuel olarak hesaplama 

yapılmış ve yazılımın hesap doğruluğu teyit edilmiştir.  

3.3.1. SYİ Kuraklık Değerlendirmesi 

Sakarya havzasındaki istasyonların gözlenen aylık yağış verilerine göre hesaplanan 

geçmiş dönem SYİ kuraklık değerlerinin kabul gören SYİ kuraklık sınıflandırmasına 

göre değerlendirmeleri yapılmıştır. Kuraklık ile ilgili değerlendirmeler, SYİ-1 ve SYİ-

12 zaman ölçekleri için kuraklık izleme tabloları, kuraklık zaman serisi grafikleri ile 

aylara ve yıllara göre kuraklık sınıfları oluşum yüzde grafikleri üzerinden yapılmıştır. 

SYİ-3 ve SYİ-6 zaman ölçeklerine ait kuraklık değerlendirmeleri, hem tez içerisinde 

fazla yer tutmaması için hem de bu zaman ölçeklerinde kuraklık sınıflarının birbirine 

benzer ve öngörülebilir olmasından dolayı yapılmamıştır. Örnek olarak Sakarya SYİ-1 

için Tablo 3.3’te kuraklık değerleri izleme tablosu, Şekil 3.1’de kuraklık zaman serisi 

grafiği ve Şekil 3.2’de aylara göre kuraklık sınıfları oluşumu yüzde grafiği verilmiştir. 

Diğer istasyonlara ait SYİ-1 kuraklık izleme tabloları ise ekte verilmiştir.  
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Tablo 3.3. Sakarya SYİ-1 kuraklık değerleri izleme tablosu 

       Aylar      

Yıllar 1 2 3 4 5 6 7 8 9 10 11 12 

1960 - 1961 0.99 0.27 0.30 -0.52 0.36 0.45 0.28 0.45 -0.09 -2.14 -1.39 -0.34 

1961 - 1962 0.52 0.26 0.28 -0.41 0.60 0.36 1.36 -1.31 0.83 -0.28 -0.35 -0.99 

1962 - 1963 -0.99 1.15 0.46 0.42 -0.88 -1.59 0.81 -1.51 0.21 0.87 -0.13 1.81 

1963 - 1964 1.81 -1.14 1.69 -0.12 -0.13 -1.01 0.43 -1.18 1.01 -0.01 -0.87 1.63 

1964 - 1965 -1.16 0.75 0.29 -0.59 0.16 0.19 -0.52 0.83 1.21 -2.10 1.25 0.95 

1965 - 1966 -2.02 1.09 0.13 1.19 0.20 -0.83 1.03 -0.47 -2.10 -0.42 0.61 0.06 

1966 - 1967 0.42 -2.13 1.30 -0.18 -1.05 -0.31 -0.51 0.51 -0.96 -0.55 -2.33 0.08 

1967 - 1968 0.25 0.34 0.54 0.36 0.45 -0.22 -1.24 -0.83 0.69 -0.30 1.39 -0.12 

1968 - 1969 1.14 -0.70 0.67 0.23 -0.91 -1.44 -3.20 1.38 1.80 0.61 0.38 -0.29 

1969 - 1970 0.32 -0.12 -0.19 1.69 -0.32 0.98 0.46 -1.51 -1.90 -1.76 -0.13 -0.41 

1970 - 1971 0.16 1.73 0.57 0.56 -0.56 -0.19 -1.22 -0.14 1.00 0.72 0.33 0.69 

1971 - 1972 -1.35 -0.43 1.17 -0.07 0.17 -0.13 -0.10 -0.15 0.69 0.05 0.36 1.28 

1972 - 1973 -0.76 -0.57 -1.61 -0.17 -0.59 2.83 1.48 1.55 0.96 0.34 -0.34 -2.09 

1973 - 1974 -1.64 -1.02 -0.07 -0.34 -1.48 0.17 -0.57 0.49 -0.39 0.83 1.10 -0.30 

1974 - 1975 -0.57 -0.89 -0.22 -0.53 0.61 -0.30 -1.27 1.78 -0.21 -1.55 -0.28 0.46 

1975 - 1976 0.56 1.16 0.13 -0.67 1.12 0.02 -0.30 1.02 -0.01 0.59 0.48 0.54 

1976 - 1977 -0.48 -0.13 -1.92 -0.23 -0.67 0.64 0.85 0.47 0.41 0.23 0.47 -0.54 

1977 - 1978 -0.49 -2.02 0.76 0.55 -0.77 0.53 0.02 -0.63 0.29 -0.79 -0.24 0.97 

1978 - 1979 1.11 -0.05 -0.35 1.42 -0.55 -1.38 -1.48 0.73 0.56 0.85 -2.39 0.03 

1979 - 1980 0.75 -0.03 -1.46 0.21 0.51 -0.25 0.77 0.83 0.38 -0.14 0.67 0.47 

1980 - 1981 0.79 -0.60 0.90 -0.80 0.22 -0.76 -0.38 0.04 0.23 -0.59 1.42 0.63 

1981 - 1982 1.10 1.18 0.56 -1.30 0.53 -0.99 1.85 -0.62 0.30 -0.14 -0.63 1.18 

1982 - 1983 0.46 0.02 0.08 1.29 0.01 -1.14 0.35 0.61 -0.92 -0.94 -0.43 -0.27 

1983 - 1984 0.24 0.63 -1.69 0.25 -0.13 0.45 0.16 0.92 0.18 1.23 1.27 -1.24 

1984 - 1985 -0.66 0.48 0.13 1.69 -0.90 0.36 1.39 0.73 -2.02 -0.47 0.25 -1.95 

1985 - 1986 -0.17 0.48 -1.31 -1.13 1.00 -1.32 -0.59 -0.93 0.06 0.91 -0.03 -0.46 

1986 - 1987 0.45 0.67 -2.91 -1.39 -0.66 0.94 0.60 -1.33 -0.45 0.58 0.92 -0.44 

1987 - 1988 1.54 -1.02 1.84 0.14 -0.24 -0.90 0.08 0.65 -1.90 1.03 0.50 0.99 

1988 - 1989 -1.66 -0.14 0.23 -0.13 1.28 0.21 0.67 -1.20 -0.47 0.61 1.06 -0.51 

1989 - 1990 -1.50 -1.50 -2.82 -3.60 0.26 0.45 0.20 -0.40 -0.12 1.29 1.24 -0.39 

1990 - 1991 -0.46 -0.21 -0.01 0.80 -0.25 -0.12 -0.55 -0.62 1.22 0.16 0.07 -0.94 

1991 - 1992 -0.97 0.81 -1.04 1.45 1.60 0.53 -0.27 -0.46 1.13 -0.09 -0.22 0.92 

1992 - 1993 -0.91 0.36 1.22 -0.07 -1.01 0.65 1.12 -1.43 -0.25 0.74 -0.10 0.55 

1993 - 1994 -0.41 -0.64 -1.54 -0.55 1.00 -0.25 -1.00 0.31 -0.11 -1.88 1.24 -0.62 

1994 - 1995 0.32 -0.26 -0.83 -0.61 -0.72 0.91 -0.42 0.31 -2.14 1.48 1.60 0.63 

1995 - 1996 0.43 -1.80 0.98 0.87 -2.98 1.03 0.34 -0.15 0.04 0.89 0.31 -1.43 

1996 - 1997 0.20 0.16 1.20 0.29 0.95 -0.94 -0.82 0.71 0.70 0.25 -1.67 0.09 

1997 - 1998 -0.93 0.23 0.25 1.95 -1.29 -0.27 1.39 2.06 -0.46 2.02 -1.24 0.85 

1998 - 1999 0.18 -0.23 0.98 -0.34 2.13 0.29 0.48 -1.51 -0.06 0.05 0.06 0.38 

1999 - 2000 -1.32 0.68 -0.30 -0.24 -0.68 2.00 0.68 1.29 -1.46 -0.14 0.13 -0.56 

2000 - 2001 1.44 0.05 0.88 1.07 -0.46 0.29 -0.07 1.10 1.24 1.13 -1.38 -1.13 

2001 - 2002 -2.28 0.44 -0.67 0.86 0.14 -0.71 0.62 -0.02 -0.93 -1.33 1.34 2.32 

2002 - 2003 0.18 -1.50 -0.87 0.56 -0.59 0.28 1.42 1.40 1.02 -0.02 -0.63 -0.96 
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2003 - 2004 -0.25 1.65 -0.22 0.58 -2.13 -3.92 -0.83 -1.01 0.41 0.65 0.35 0.72 

2004 - 2005 1.93 0.38 0.04 -0.13 -0.13 0.96 -0.56 1.37 -1.10 -1.49 1.45 -1.11 

2005 - 2006 1.06 0.35 0.50 -0.06 -0.67 0.00 1.87 -0.50 0.61 0.40 1.71 -0.54 

2006 - 2007 -0.24 0.68 -0.04 -2.98 -1.49 0.66 -2.95 -0.98 1.00 -0.49 -0.13 -0.59 

2007 - 2008 0.31 -1.94 -0.39 -0.06 0.25 -0.72 -0.22 0.60 -0.69 -0.34 0.42 0.39 

2008 - 2009 -0.47 0.00 0.63 -1.46 1.16 -0.85 -0.85 -0.88 1.19 -1.06 0.18 -0.02 

2009 - 2010 0.28 2.18 0.79 0.08 -1.09 -0.50 0.69 -0.78 1.10 0.06 0.57 0.31 

2010 - 2011 0.82 1.15 0.60 1.07 0.96 -0.01 -0.75 -0.94 0.66 1.91 -1.82 0.58 

2011 - 2012 0.43 -1.48 0.76 0.41 -1.07 -0.36 0.08 -0.66 -0.68 0.08 -1.86 -0.40 

2012 - 2013 0.72 0.94 0.39 0.11 1.64 -0.60 -1.16 0.21 -1.27 -1.40 0.34 0.65 

2013 - 2014 0.06 -0.15 0.59 -0.88 -0.03 -0.02 -0.83 0.04 0.27 1.24 -1.04 -0.91 

2014 - 2015 -2.34 -1.11 0.64 -1.02 1.54 0.91 0.61 0.74 1.77 -0.03 0.43 0.51 

2015 - 2016 1.82 1.88 -0.72 1.43 0.52 2.37 0.05 0.14 1.09 1.48 -1.57 -1.76 

2016 - 2017 1.33 1.31 0.54 0.03 1.29 0.61 -0.22 0.69 0.19 -0.69 0.32 1.72 

2017 - 2018 -0.05 -1.79 -0.92 0.58 0.61 0.86 0.31 0.66 -0.03 0.49 -0.75 0.36 

2018 - 2019 -0.60 -0.45 1.09 -1.26 2.08 0.00 1.07 -0.50 0.43 -0.25 0.33 1.42 

2019 - 2020 0.22 0.23 -1.14 0.62 0.07 0.64 1.29 1.44 -0.65 -1.01 -1.30 0.19 

2020 - 2021 0.45 0.48 -0.51 -0.23 1.14 1.14 -0.98 -1.51 -0.84 -0.06 -1.04 -2.14 

 

 

Şekil 3.1. Sakarya SYİ-1 kuraklık zaman serisi grafiği 

 

Şekil 3.2. Sakarya SYİ-1 aylara göre kuraklık sınıfları oluşumu yüzde grafiği 
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Tablo 3.3’te verilen Sakarya SYİ-1 kuraklık değerleri izleme tablosunda, SYİ’nin kabul 

edilen kuraklık sınıflandırması dikkate alınarak farklı renkler aracılığı ile SYİ-1 

kuraklık değerleri sınıflarına ayrılmıştır. Tablo 3.3 incelendiğinde; toplam 732 ay 

bulunan SYİ-1 veri setinde 507 ay normale yakın sınıfında, 79 ay orta şiddette nemli, 61 

ay orta şiddette kurak, 28 ay çok nemli, 26 ay şiddetli kurak, 23 ay aşırı kurak ve son 

olarak da sadece 8 ay aşırı nemli olarak belirlenmiştir. 1969 yılının ağustos, eylül ve 

ekim aylarında 3 aylık bir dönemde şiddetli kuraklıklar görülmüştür. 1989 yılının ilk 

dört aylık döneminde de şiddetli ve aşırı kurak bir dönem görülmüştür. 2003 yılının 

mayıs ve haziran aylarında ardı ardına aşırı kuraklık görülmüştür. Yine 2015 yılının son 

iki ayını kapsayan dönemi de şiddetli kurak bir şekilde geçmiştir. Tüm bunların yanı 

sıra 1972 yılı haziran, temmuz ve ağustos aylarının arka arkaya aşırı nemli, orta şiddette 

nemli ve çok nemli bir dönem olduğu görülmektedir. 2002 yılı temmuz, ağustos ve 

eylül aylarında da çok nemli bir dönem görülmüştür.  

Tablo 3.3 ile Şekil 3.1’de verilen SYİ-1 kuraklık zaman serisi grafiği birlikte 

incelendiğinde; 1968 yılı temmuz ayında -3,20, 1989 yılı mayıs ayında -3,60, 2003 yılı 

haziran ayında -3,92 olarak hesaplanan SYİ-1 değerlerinden dolayı, bu veri setindeki en 

şiddetli kuraklıklar bu dönemlerde görülmüştür. 1972 yılı haziran ayında 2,83, 2001 yılı 

aralık ayında 2,32 ve 2015 yılı haziran ayında 2,37 olarak hesaplanan SYİ-1 

değerlerinden dolayı da bu dönemler veri setindeki en nemli dönemler olarak 

belirlenmiştir. 

Şekil 3.2’den görüleceği üzere Sakarya SYİ-1 kuraklık değerleri, büyük bir oranda 

normale yakın sınıfında yer almaktadır. Tüm veri seti içinde aylara göre normale yakın 

sınıfının oluşum yüzdesi %75,41 olarak bulunmuştur. %6,56 oranında orta şiddette 

kuraklık, %4,92 oranlarında orta şiddette nemli ve çok nemli kuraklık, %3,28 

oranlarında şiddetli kurak ve aşırı kurak ve son olarak da %1,64 oranında aşırı nemli 

kuraklık sınıflarının oluştuğu belirlenmiştir.  

Sakarya SYİ-1 zaman ölçeğinde olduğu gibi SYİ-12 zaman ölçeğinde de kuraklık 

değerlendirmeleri yapılmıştır. Sakarya SYİ-12 için Şekil 3.3’te kuraklık zaman serisi 

grafiği, Şekil 3.4’te yıllık kuraklık değerleri ve kuraklık sınıfları grafiği ve Şekil 3.5’te 

yıllara göre kuraklık sınıfları oluşumu yüzde grafiği verilmiştir. 
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Şekil 3.3. Sakarya SYİ-12 kuraklık zaman serisi grafiği 

 
Şekil 3.4. Sakarya SYİ-12 kuraklık değerleri ve kuraklık sınıfları grafiği 

 
Şekil 3.5. Sakarya SYİ-12 yıllara göre kuraklık sınıfları oluşumu yüzde grafiği 
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Şekil 3.3, 3.4 ve 3.5’te görüldüğü üzere; Sakarya istasyonu SYİ-12 zaman ölçeğinde 

bulunan toplam 61 yılın 43 yılı normale yakın, 7 yılı orta şiddette kuraklık, 4 yılı orta 

şiddette nemli, 3 yılı şiddetli kuraklık, 2 yılı aşırı nemli ve 2 yılı da çok nemli olarak 

belirlenmiştir. SYİ-12 zaman ölçeğinin yıllara göre kuraklık sınıfları oluşum 

yüzdelerine bakıldığında ise %70,49 değeri ile normale yakın SYİ sınıfının, bu 

istasyonda hâkim kuraklık sınıfı olduğu görülmüştür. Bu sınıfı %11,48 ile orta şiddette 

kuraklık takip etmektedir. Bu zaman ölçeğinde aşırı kurak bir yıl görülmemiş olup 

1966, 1993 ve 2011 yıllarında şiddetli kuraklık görülmüştür. 1997 ve 2015 yılları ise 

aşırı nemli geçmiştir. 2015 yılından itibaren Sakarya istasyonunun SYİ-12 zaman 

ölçeğinde kuraklıkların sürekli artma eğiliminde olduğu tespit edilmiştir. 

Sakarya istasyonu için örnek olarak verilen SYİ-1 ve SYİ-12 zaman ölçeklerinde 

yapılan kuraklık değerlendirmeleri tüm istasyonlar için yapılmış olup Tablo 3.4’te ve 

Tablo 3.5’te sırasıyla SYİ-1 ve SYİ-12 zaman ölçeklerinde istasyonlardaki kuraklık 

sınıflarına göre oluşum sayıları ve oluşum yüzdeleri verilmiştir. 

Tablo 3.4. İstasyonların aylara göre SYİ-1 kuraklık sınıfları oluşum sayıları ve yüzdeleri 

İstasyon adı 

Veri 

sayısı 

(ay) 

Aylara göre SYİ-1 kuraklık sınıfları oluşum sayıları ve yüzdeleri 

Aşırı 

nemli 

Çok 

nemli 

Orta 

şiddette 

nemli 

Normale 

yakın 

Orta 

şiddette 

kurak 

Şiddetli 

kurak 

Aşırı 

kurak 

Sakarya 732 
8 

(%1.09) 

28 

(%3.83) 

79 

(%10.79) 

507 

(%69.26) 

61 

(%8.33) 

26 

(%3.55) 

23 

(%3.14) 

Ankara 732 
8 

(%1.09) 

36 

(%4.92) 

69 

(%9.43) 

503 

(%68.72) 

65 

(%8.88) 

34 

(%4.64) 

17 

(%2.32) 

Kütahya 732 
14 

(%1.91) 

30 

(%4.10) 

71 

(%9.70) 

504 

(%68.85) 

65 

(%8.88) 

32 

(%4.37) 

16 

(%2.19) 

Bolu 672 
13 

(%1.93) 

29 

(%4.32) 

52 

(%7.74) 

464 

(%69.05) 

70 

(%10.42) 

23 

(%3.42) 

21 

(%3.13) 

Emirdağ 576 
9 

(%1.56) 

19 

(%3.30) 

57 

(%9.90) 

398 

(%69.10) 

55 

(%9.55) 

21 

(%3.65) 

17 

(%2.95) 

Polatlı 564 
11 

(%1.95) 

16 

(%2.84) 

62 

(%10.99) 

388 

(%68.79) 

46 

(%8.16) 

23 

(%4.08) 

18 

(%3.19) 

Sivrihisar 624 
6 

(%0.96) 

33 

(%5.29) 

53 

(%8.49) 

432 

(%69.23) 

58 

(%9.29) 

23 

(%3.69) 

19 

(%3.04) 

Geyve 624 
13 

(%2.08) 

21 

(%3.37) 

57 

(%9.13) 

440 

(%70.51) 

43 

(%6.89) 

28 

(%4.49) 

22 

(%3.53) 

Ilgın 528 
4 

(%0.76) 

30 

(%5.68) 

50 

(%9.47) 

360 

(%68.18) 

54 

(%10.23) 

19 

(%3.60) 

11 

(%2.08) 

Yunak 492 
7 

(%1.42) 

15 

(%3.05) 

52 

(%10.57) 

339 

(%68.90) 

49 

(%9.96) 

23 

(%4.67) 

7 

(%1.42) 
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Tablo 3.4’ten görüleceği üzere, havzada yer alan 10 adet istasyonun tamamında SYİ-1 

zaman ölçeğine göre %68,18 ile %70,51 arasında değişen yüzdelerde normale yakın 

SYİ sınıfı görülmektedir. Bu nedenle SYİ-1 zaman ölçeğinde görülen normale yakın 

sınıfın havzanın hâkim kuraklık sınıfı olduğu sonucuna ulaşılmıştır. Geyve istasyonu bu 

zaman ölçeğinde hem aşırı nemli hem de aşırı kurak sınıflarında en yüksek SYİ 

değerlerinin görüldüğü istasyon olmuştur. Meteorolojik kuraklığın hissedildiği orta 

şiddette kurak, şiddetli kurak ve aşırı kurak sınıflarında en yüksek yüzdeye (%16,97) 

sahip olan istasyon ise Bolu istasyonudur. Bu üç kuraklık sınıfında diğer istasyonlar 

yaklaşık %15’lik oranlara sahiptir. Orta şiddette nemli, çok nemli ve aşırı nemli 

sınıflarında en yüksek yüzdeye (%15,91) sahip olan istasyon Ilgın istasyonu olup diğer 

istasyonlar ise yaklaşık %14-15 aralığında değişmektedir. Tablo 3.4’te verilen SYİ-1 

kuraklık sayıları ve oluşum yüzdeleri incelendiğinde, kuraklık sınıflarına göre 

istasyonlar arasında benzer sayıların ve yüzdelerin olduğu görülmekte olup havzadaki 

kuraklık durumunun homojen bir dağılımda olduğu söylenebilir. 

 

Tablo 3.5.  İstasyonların yıllara göre SYİ-12 kuraklık sınıfları oluşum sayıları ve 

yüzdeleri 

İstasyon adı 

Veri 

sayısı 

(yıl) 

Yıllara göre SYİ-12 kuraklık sınıfları oluşum sayıları ve yüzdeleri 

Aşırı 

nemli 

Çok 

nemli 

Orta 

şiddette 

nemli 

Normale 

yakın 

Orta 

şiddette 

kurak 

Şiddetli 

kurak 

Aşırı 

kurak 

Sakarya 61 
2 

(%3.28) 

2   

(%3.28) 

4   

(%6.56) 

43 

(%70.49) 

7 

(%11.48) 

3 

(%4.92) 
0 

Ankara 61 
2 

(%3.28) 

2   

(%3.28) 

6   

(%9.84) 

40 

(%65.57) 

8 

(%13.11) 

1 

(%1.64) 

2 

(%3.28) 

Kütahya 61 0 
1   

(%1.64) 

14 

(%22.95) 

35 

(%57.38) 

6   

(%9.84) 

3 

(%4.92) 

2 

(%3.28) 

Bolu 56 0 
6   

(%10.71) 

3   

(%5.36) 

38 

(%67.86) 

5   

(%8.93) 

2 

(%3.57) 

2 

(%3.57) 

Emirdağ 48 
1 

(%2.08) 

2   

(%4.17) 

4   

(%8.33) 

33 

(%68.75) 

3   

(%6.25) 
5 

(%10.42) 
0 

Polatlı 47 
1 

(%2.13) 

1   

(%2.13) 

5 

(%10.64) 

32 

(%68.09) 

3   

(%6.38) 
5 

(%10.64) 
0 

Sivrihisar 52 
1 

(%1.92) 

3   

(%5.77) 

5   

(%9.62) 

35 

(%67.31) 

5   

(%9.62) 

2 

(%3.85) 

1 

(%1.92) 

Geyve 52 
1 

(%1.92) 

2   

(%3.85) 

6 

(%11.54) 

32 

(%61.54) 

8 

(%15.38) 

2 

(%3.85) 

1 

(%1.92) 

Ilgın 44 0 
2   

(%4.55) 

6 

(%13.64) 

30 

(%68.18) 

3   

(%6.82) 
0 

3 

(%6.82) 

Yunak 41 
2 

(%4.88) 
0 

5 

(%12.20) 

27 

(%65.85) 

3   

(%7.32) 

4 

(%9.76) 
0 
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Tablo 3.5’ten görüleceği üzere, SYİ-12 zaman ölçeğinde yıllara göre %57,38 ile 

%70,49 arasında değişen yüzdelerde normale yakın sınıfı görülmektedir. Yine bu zaman 

ölçeğinde de hâkim SYİ kuraklık sınıfının, normale yakın olduğu belirlenmiştir. 

Sakarya, Emirdağ, Polatlı ve Yunak istasyonlarında aşırı kuraklık hiç görülmemiştir. 

Kütahya, Bolu ve Ilgın istasyonlarında ise aşırı nemli bir yıl görülmemiştir. Ayrıca 

Yunak istasyonunda çok nemli ve Ilgın istasyonunda ise şiddetli kuraklık hiç 

görülmemiştir. Orta şiddette kurak, şiddetli kurak ve aşırı kurak sınıflarının tamamı için 

%21,15 ile en yüksek değer Geyve istasyonuna aittir. Orta şiddette nemli, çok nemli ve 

aşırı nemli sınıflarında ise en yüksek değer (%24,59), Kütahya istasyonuna aittir. Tablo 

3.5’te verilen SYİ-12 kuraklık sayıları ve oluşum yüzdeleri ile aylara göre belirlenen 

SYİ-1 kuraklık değerlerinin birbiri ile tutarlı olduğu görülmüştür. 

3.4. Otokorelasyon Varlığının Araştırılması 

Tek değişkenli zaman serilerine dayalı tahmin modellerinin tahmin başarısını önemli 

ölçüde etkileyen otokorelasyon varlığı, bir serinin kendinden önceki veya sonraki 

gecikmeli değerlerine ait hata terimleri arasındaki seri bağımlılığını gösteren istatistiksel 

bir kavramdır. Mevcut zaman serisi ile gecikmeli zaman serisi arasındaki korelasyonun 

istenmeyen bir durum olmasından dolayı bu çalışmada otokorelasyon varlığı 

araştırılmıştır. Ayrıca zaman serilerine dayalı tahmin modellerinin başarısı, gecikme 

zamanları ile optimum sayıda girdi değişkeni arasındaki ilişkiyle de alakalıdır. Bu 

nedenle tahmin modellerine girecek olan optimum gecikme zamanlarının hangi 

güvenilir aralıkta kaldığı da bu aşamada belirlenmiştir.  

Bu çalışmada; SYİ-1, SYİ-3, SYİ-6 ve SYİ-12 kuraklık değerlerinin farklı gecikme 

zamanları (t, t-1, t-2, t-3, …vb.) tahmin modellerinde girdi değişkeni, t+1 zamanı ise 

çıktı değeri olarak kabul edilmiştir. İstasyonların aylık yağış verilerinden elde edilen 

SYİ kuraklık zaman serileri, MATLAB 2021b yazılımında geliştirilen otokorelasyon 

fonksiyonuna ait açık kodlar yardımıyla analiz edilmiştir. Her bir istasyon ve her bir 

zaman ölçeği için ele alınan kuraklık zaman serileri, %95 güven aralığında ve en fazla 

10 gecikmeye kadar otokorelasyon fonksiyonuna tabi tutularak sonuçlar elde edilmiştir. 

Örnek olarak Sakarya istasyonu için SYİ-1, SYİ-3, SYİ-6 ve SYİ-12 kuraklık zaman 

serilerinden elde edilen otokorelasyon fonksiyonu grafikleri Şekil 3.6–3.9 arasında 

verilmiştir. 
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 Şekil 3.6. Sakarya istasyonu SYİ-1 otokorelasyon fonksiyonu grafiği 

 
Şekil 3.7. Sakarya istasyonu SYİ-3 otokorelasyon fonksiyonu grafiği 
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Şekil 3.8. Sakarya istasyonu SYİ-6 otokorelasyon fonksiyonu grafiği 

 
Şekil 3.9. Sakarya istasyonu SYİ-12 otokorelasyon fonksiyonu grafiği 

Şekil 3.6–3.9 arasındaki grafiklerde sonuçları verilen otokorelasyon fonksiyonları, 

Gauss dağılımını temel almakta olup tüm zaman ölçeklerinde 0 gecikmesindeki (aslında 

serinin kendisi) otokorelasyon katsayısı değeri doğal olarak 1’i göstermektedir. 

Grafiklerde yer alan bazı gecikme zamanlarında (Şekil 3.8’de) otokorelasyon katsayısı 

değerinin 0 olduğu görülmekte olup bunun anlamı gecikme zamanındaki serinin 
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bağımsız olduğudur. Şekil 3.6–3.9 arasında verilen grafiklerden elde edilen sonuçlara 

göre; tüm zaman ölçeklerinde dikkate alınan en fazla gecikme zamanı olan 10 

gecikmeye kadar gecikme zaman serileri arasında otokorelasyon varlığı söz konusu 

değildir. Her bir zaman ölçeği için tüm gecikme zamanları %95 güven aralığındaki 

otokorelasyon katsayısının alt ve üst sınırları içerisinde kalmıştır. Otokorelasyon 

katsayılarının alt ve üst sınırları; SYİ-1 için +/- 0,0742, SYİ-3 için +/- 0,1292, SYİ-6 

için +/- 0,1858 ve SYİ-12 için +/- 0,2658 olarak bulunmuştur. Şekil 3.6’da görüldüğü 

üzere, Sakarya SYİ-1 otokorelasyon fonksiyonu grafiğinde 6 ve 9 gecikme 

zamanlarında alt ve üst sınırlara yaklaşılmış ancak aşılmamıştır. Şekil 3.8’de Sakarya 

SYİ-6 otokorelasyon fonksiyonu grafiğinde 2 gecikme zamanında otokorelasyon 

katsayısı değeri 0 olup bu gecikme zamanı için serinin bağımsız olduğu sonucuna 

ulaşılmıştır. Ayrıca yine bu zaman ölçeğinde 4 gecikme zamanında alt güven sınırına 

yaklaşılmış ancak aşılmamıştır. 

Şekil 3.6–3.9 arasında verilen otokorelasyon fonksiyonu grafiklerine göre tüm zaman 

ölçeklerinde 10 gecikme zamanına kadar olan gecikmelerin, tahmin modellerinde girdi 

değişkenleri olarak kullanılabileceği sonucuna ulaşılmıştır. 

3.5. Ayrık Dalgacık Dönüşümü Sonuçları 

Her bir zaman ölçeği için optimum gecikme zamanlarının belirlenmesi, en uygun 

dalgacık ailesi ile en uygun dalgacık bant seviyesinin seçilmesi amacıyla SYİ kuraklık 

zaman serilerine Ayrık Dalgacık Dönüşümü (ADD) uygulanmıştır. Havzadaki 10 

istasyonu temsilen sadece Sakarya istasyonunun SYİ-1, SYİ-3, SYİ-6 ve SYİ-12 

kuraklık zaman serileri ADD ile alt bantlarına ayrılarak ADD-USBÇS hibrit modelinde 

eğitme ve teste tabi tutulmuştur. t orijinal kuraklık serisi olmak üzere t, t-1, t-2, t-3, t-4 

ve t-5 olarak 5 farklı gecikme zamanı, 8 farklı dalgacık ailesi ve 3, 4, 5, 6 ve 7 olmak 

üzere 5 farklı bant seviyesine göre analizler tamamlanarak sonuçlar elde edilmiştir. 

Ancak yapılan ADD analizlerinde çok fazla model kombinasyonu denendiğinden dolayı 

öncelikle her bir zaman ölçeğinde belirlenen optimum gecikme zamanına göre (3 

gecikme zamanı) en iyi sonucu veren dalgacık ailesi ile dalgacık bant seviyelerine ait 

ADD-USBÇS hibrit model sonuçlarına yer verilmiştir. Daha sonra ise optimum 

gecikme zamanı ile ilgili tablolar verilecektir.  Sakarya istasyonunun 3 gecikme zamanı 

için (t, t-1, t-2, t-3 girdi değişkeni) ele alınan SYİ-1, SYİ-3, SYİ-6 ve SYİ-12 zaman 
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ölçeklerindeki dalgacık ailesi ve dalgacık bant seviyesi model sonuçları sırasıyla Tablo 

3.6, 3.7, 3.8 ve 3.9’da verilmiştir. 

Tablo 3.6.  Sakarya SYİ-1’e ait 3 gecikme zamanlı ADD-USBÇS hibrit modeli 

dalgacık ailesi ve dalgacık bant seviyelerinin karşılaştırması 

Dalgacık ailesi 

Dalgacık 

Bant 

Seviyesi 

EĞİTME TEST 
Sıra 

OMH R2 OMH R2 

Haar 

3 0.7445 0.2987 0.5513 0.5102 

8 

4 0.7649 0.3001 0.5540 0.5090 

5 0.7775 0.3028 0.5531 0.5098 

6 0.7880 0.2998 0.5574 0.5066 

7 0.7958 0.3009 0.5558 0.5067 

Symlets (sym3) 

3 0.3603 0.7763 0.3958 0.7487 

5 

4 0.3600 0.7768 0.3866 0.7600 

5 0.3599 0.7768 0.3816 0.7663 

6 0.3598 0.7769 0.3836 0.7640 

7 0.3598 0.7769 0.3855 0.7614 

Coiflets (coif2) 

3 0.3231 0.8202 0.4006 0.7468 

4 

4 0.3222 0.8213 0.3807 0.7753 

5 0.3220 0.8215 0.3753 0.7789 

6 0.3221 0.8215 0.3767 0.7781 

7 0.3221 0.8214 0.3734 0.7779 

Biorthogonal 

(bior1.3) 

3 0.4031 0.7082 0.4287 0.6974 

7 

4 0.4025 0.7087 0.4282 0.6944 

5 0.4023 0.7090 0.4313 0.6913 

6 0.4023 0.7089 0.4308 0.6939 

7 0.4023 0.7089 0.4334 0.6921 

Reverse 

biorthogonal 

(rbio1.3)  

3 0.7682 0.3530 0.4267 0.6946 

6 

4 0.7925 0.3589 0.4277 0.6934 

5 0.7905 0.3664 0.4259 0.6954 

6 0.7908 0.3662 0.4295 0.6914 

7 0.7872 0.3651 0.4297 0.6913 

Discrete 

approximation of 

Meyer (dmey) 

3 0.7637 0.5799 0.2976 0.8537 

1 

4 0.8007 0.5917 0.2973 0.8534 

5 0.8291 0.5817 0.2972 0.8533 

6 0.8474 0.5832 0.2973 0.8533 

7 0.8575 0.5881 0.2975 0.8531 

Fejer-Korovkin 

(fk4) 

3 0.7363 0.5654 0.3160 0.8368 

2 

4 0.7616 0.5789 0.3122 0.8411 

5 0.7797 0.5761 0.3117 0.8420 

6 0.7908 0.5786 0.3117 0.8418 

7 0.7978 0.5744 0.3122 0.8417 

Daubechies (db40) 

3 0.7592 0.5715 0.3254 0.8301 

3 

4 0.7708 0.5767 0.3240 0.8310 

5 0.7625 0.5744 0.3240 0.8309 

6 0.7574 0.5701 0.3237 0.8313 

7 0.7574 0.5702 0.3241 0.8310 
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Tablo 3.7.  Sakarya SYİ-3’e ait 3 gecikme zamanlı ADD-USBÇS hibrit modeli 

dalgacık ailesi ve dalgacık bant seviyelerinin karşılaştırması 

Dalgacık ailesi 

Dalgacık 

Bant 

Seviyesi 

EĞİTME TEST 
Sıra 

OMH R2 OMH R2 

Haar 

3 0.7002 0.4458 0.6307 0.2657 

8 

4 0.7242 0.4664 0.7169 0.2520 

5 0.7383 0.4677 0.7460 0.2402 

6 0.7547 0.4748 0.7393 0.2424 

7 0.7660 0.4720 0.7309 0.2452 

Symlets (sym3) 

3 0.7203 0.5888 0.4546 0.6592 

2 

4 0.7514 0.5913 0.5285 0.6041 

5 0.7682 0.5921 0.4375 0.6090 

6 0.7818 0.5963 0.4699 0.5781 

7 0.8606 0.5811 0.4656 0.5828 

Coiflets (coif2) 

3 0.6984 0.6280 0.6017 0.4650 

6 

4 0.7276 0.6314 0.5963 0.4902 

5 0.7557 0.6219 0.5996 0.4906 

6 0.7757 0.6249 0.6700 0.4101 

7 0.8379 0.6167 0.6838 0.4062 

Biorthogonal 

(bior1.3) 

3 0.7194 0.5628 0.6036 0.4074 

7 

4 0.7465 0.5707 0.6057 0.4465 

5 0.7819 0.5579 0.6105 0.4360 

6 0.8123 0.5650 0.6066 0.4347 

7 0.8606 0.5358 0.6231 0.4276 

Reverse 

biorthogonal 

(rbio1.3)  

3 0.7492 0.5217 0.6060 0.4870 

5 

4 0.7920 0.5403 0.6664 0.5092 

5 0.8192 0.5440 0.7130 0.4667 

6 0.8524 0.5426 0.6924 0.4926 

7 0.8815 0.5482 0.6919 0.4934 

Discrete 

approximation of 

Meyer (dmey) 

3 0.7205 0.6403 0.2974 0.8745 

1 

4 0.7642 0.6402 0.3524 0.8268 

5 0.7897 0.6337 0.3227 0.8514 

6 0.8553 0.6275 0.4453 0.7803 

7 0.8108 0.6423 0.3227 0.8503 

Fejer-Korovkin 

(fk4) 

3 0.7193 0.4775 0.4733 0.5976 

4 

4 0.7471 0.4900 0.8288 0.4412 

5 0.7734 0.4930 0.8541 0.4286 

6 0.8011 0.4932 0.8562 0.4191 

7 0.8718 0.4580 0.9417 0.4124 

Daubechies (db40) 

3 0.7553 0.4439 0.4896 0.6326 

3 

4 0.7856 0.4419 0.4793 0.6432 

5 0.8079 0.4523 0.4598 0.6487 

6 0.8409 0.4471 0.5227 0.5499 

7 0.9666 0.3970 0.7096 0.4510 
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Tablo 3.8.  Sakarya SYİ-6’a ait 3 gecikme zamanlı ADD-USBÇS hibrit modeli   

dalgacık ailesi ve dalgacık bant seviyelerinin karşılaştırması 

Dalgacık ailesi 

Dalgacık 

Bant 

Seviyesi 

EĞİTME TEST 
Sıra 

OMH R2 OMH R2 

Haar 

3 0.6392 0.5635 1.7249 0.1808 

3 

4 0.6712 0.5725 1.7120 0.1911 

5 0.6937 0.5805 1.7126 0.1901 

6 0.7163 0.5790 1.7154 0.1892 

7 0.7570 0.5683 1.7209 0.1849 

Symlets (sym3) 

3 0.6241 0.7232 1.4839 0.0030 

8 

4 0.6603 0.7429 1.6122 0.0021 

5 0.6905 0.7279 1.6124 0.0028 

6 0.8073 0.7010 1.8496 0.0047 

7 1.1043 0.5631 1.7844 0.0055 

Coiflets (coif2) 

3 0.6328 0.6908 1.6352 0.0608 

6 

4 0.6659 0.7029 1.6306 0.0568 

5 0.6918 0.7085 1.6386 0.0523 

6 0.7439 0.7051 1.6517 0.0563 

7 0.8537 0.6792 1.6322 0.0580 

Biorthogonal 

(bior1.3) 

3 0.6536 0.5970 1.9760 0.0319 

7 

4 0.6947 0.5856 1.9437 0.0295 

5 0.7261 0.5954 1.8940 0.0245 

6 0.7423 0.5914 1.8970 0.0255 

7 0.7490 0.5866 1.8955 0.0255 

Reverse 

biorthogonal 

(rbio1.3)  

3 0.6981 0.6379 2.0154 0.0955 

5 

4 0.7465 0.6605 2.0105 0.0932 

5 0.7764 0.6821 2.0180 0.0808 

6 0.8131 0.6664 2.0146 0.0808 

7 0.8344 0.6693 2.0199 0.0801 

Discrete 

approximation of 

Meyer (dmey) 

3 0.6759 0.6318 0.2942 0.9323 

1 

4 0.6971 0.6368 0.2785 0.9371 

5 0.7142 0.6396 0.2788 0.9368 

6 0.7214 0.6406 0.2887 0.9381 

7 0.7224 0.6411 0.2883 0.9376 

Fejer-Korovkin 

(fk4) 

3 0.6643 0.6801 2.4297 0.1255 

4 

4 0.7559 0.6362 2.6447 0.1147 

5 0.7318 0.6731 2.1573 0.1352 

6 0.7577 0.6568 2.0215 0.1498 

7 0.7577 0.6567 2.0540 0.1540 

Daubechies (db40) 

3 0.6322 0.4292 0.6494 0.6130 

2 

4 0.6639 0.4498 0.6582 0.6187 

5 0.6834 0.4499 1.5942 0.2900 

6 0.7409 0.4340 1.5982 0.2888 

7 0.8696 0.4479 1.5359 0.3012 
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Tablo 3.9.  Sakarya SYİ-12’e ait 3 gecikme zamanlı ADD-USBÇS hibrit modeli 

dalgacık ailesi ve dalgacık bant seviyelerinin karşılaştırması 

Dalgacık ailesi 

Dalgacık 

Bant 

Seviyesi 

EĞİTME TEST 
Sıra 

OMH R2 OMH R2 

Haar 

3 0.6945 0.4318 1.0161 0.1402 

8 

4 0.7110 0.4472 1.0078 0.1467 

5 0.7234 0.4495 1.0074 0.1373 

6 0.7569 0.4418 1.0223 0.1163 

7 0.8004 0.4249 1.0480 0.0972 

Symlets (sym3) 

3 0.7522 0.4775 0.5655 0.8210 

1 

4 0.7873 0.4601 0.5943 0.8035 

5 0.8599 0.4402 0.6726 0.7823 

6 1.0337 0.4007 0.6169 0.8083 

7 1.0961 0.4327 0.5762 0.8194 

Coiflets (coif2) 

3 0.7153 0.5913 0.7673 0.5222 

4 

4 0.7690 0.5812 0.7504 0.5520 

5 0.7907 0.5949 0.7466 0.5566 

6 0.8114 0.5944 0.7433 0.5558 

7 0.8220 0.5888 0.7434 0.5558 

Biorthogonal 

(bior1.3) 

3 0.7300 0.5233 0.9451 0.3425 

6 

4 0.7499 0.5027 1.0186 0.2958 

5 0.7699 0.5076 1.0249 0.2953 

6 0.7928 0.5053 1.0738 0.2953 

7 0.7928 0.5053 1.0738 0.2953 

Reverse 

biorthogonal 

(rbio1.3)  

3 0.7236 0.5867 0.9882 0.3147 

7 

4 0.7706 0.5566 0.9977 0.3064 

5 0.8109 0.5748 0.9990 0.3060 

6 0.8280 0.5745 0.9967 0.3063 

7 0.9444 0.5799 0.9974 0.3059 

Discrete 

approximation of 

Meyer (dmey) 

3 0.7267 0.6647 0.6525 0.7013 

3 

4 0.7606 0.6353 0.6685 0.6945 

5 0.7676 0.6566 0.6654 0.6988 

6 0.7736 0.6344 0.7115 0.6688 

7 0.7692 0.6564 0.6654 0.6989 

Fejer-Korovkin 

(fk4) 

3 0.7489 0.5938 0.5532 0.7717 

2 

4 0.7833 0.5783 0.5935 0.7180 

5 0.8312 0.5926 0.5974 0.7164 

6 0.8880 0.5535 0.5961 0.7170 

7 0.9518 0.5425 0.5940 0.7180 

Daubechies (db40) 

3 0.7579 0.4926 0.9211 0.3603 

5 

4 0.7875 0.4785 0.9177 0.3734 

5 0.7930 0.4769 0.9129 0.3755 

6 0.7961 0.4814 0.9148 0.3749 

7 0.8351 0.4817 0.9148 0.3749 

 

Tablo 3.6’da görüleceği üzere, SYİ-1 zaman ölçeğinde 3 gecikme zamanlı ADD-

USBÇS hibrit modelinde OMH=0,2976 ve R2=0,8537 test verisi performans kriterlerine 

göre en iyi sonucu Discrete approximation of Meyer (dmey) dalgacık ailesi ile 3. 
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dalgacık bant seviyesi vermiştir. Fejer-Korovkin (fk4) ve Daubechies (db40) dalgacık 

ailelerinin sonuçlarının da dmey dalgacık ailesine oldukça yakın olduğu görülmüştür. 

Haar dalgacık ailesi dışındaki diğer dalgacık ailelerinin SYİ-1 kuraklık değerlerini alt 

bantlarına ayrıştırma işlemindeki performansları da makul seviyelerdedir. Hibrit 

modelde en iyi sonucu veren dmey dalgacık ailesinde bant seviyesinin artması ile 

ayrıştırma performansının artmadığı görülmüştür. Diğer dalgacık ailelerinde de bant 

seviyesinin artması ile ayrıştırma performansı arasında anlamlı bir ilişkinin olmadığı 

tespit edilmiştir. 

Tablo 3.7’de görüleceği üzere, SYİ-3 zaman ölçeğinde 3 gecikme zamanlı ADD-

USBÇS hibrit modelinde OMH=0,2974 ve R2=0,8745 test verisi performans kriterlerine 

göre en iyi sonucu yine Discrete approximation of Meyer (dmey) dalgacık ailesi ile 3. 

dalgacık bant seviyesi vermiştir. Bu zaman ölçeğinde dmey dalgacık ailesini, Symlets 

(sym3) ve Daubechies (db40) dalgacık aileleri takip etmektedir. Ancak burada dmey 

dalgacık ailesinin sonuçları diğer dalgacık ailelerinin sonuçlarına göre oldukça 

üstündür. Ayrıca bu zaman ölçeği için elde edilen model sonuçlarına göre dmey 

dalgacık ailesinde bant seviyesi arttıkça ayrıştırma performansları düşmüştür. 

Tablo 3.8’de görüleceği üzere, SYİ-6 zaman ölçeğinde 3 gecikme zamanlı ADD-

USBÇS hibrit modelinde OMH=0,2785 ve R2=0,9371 test verisi performans kriterlerine 

göre en iyi sonucu yine Discrete approximation of Meyer (dmey) dalgacık ailesi ile 

öncekilerden farklı olarak 4. dalgacık bant seviyesi vermiştir. Daubechies (db40) 

dalgacık ailesinin 3. ve 4. bant seviyeleri hariç diğer tüm dalgacık ailelerinin, bu zaman 

ölçeğinde test verisi performans kriterlerine göre oldukça başarısız sonuçlar verdiği 

görülmüştür. Burada, dmey dalgacık ailesinde bant seviyesinin artması ile R2 değerleri 

ve OMH değerleri artmıştır. OMH’de 0’a yaklaşıldıkça daha başarılı sonuçlar elde 

edildiğinden hem R2 hem de OMH’e bakılarak en iyi sonuç olarak 4. dalgacık bant 

seviyesi seçilmiştir.  

Tablo 3.9’da görüleceği üzere, SYİ-12 zaman ölçeğinde 3 gecikme zamanlı ADD-

USBÇS hibrit modelinde OMH=0,5655 ve R2=0,8210 test verisi performans kriterlerine 

göre en iyi sonucu Symlets (sym3) dalgacık ailesi ile 3. dalgacık bant seviyesi vermiştir. 

Burada, Symlets (sym3) dalgacık ailesinin ayrıştırma performansını Fejer-Korovkin 

(fk4) dalgacık ailesinin performansı takip etmektedir. Ayrıca dmey dalgacık ailesi de 
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yine bu ölçekte yüksek R2 değerlerini vermiştir. Bu zaman ölçeğinde hem en iyi sonucu 

veren Symlets (sym3) dalgacık ailesinde hem de diğer dalgacık ailelerinde OMH 

değerlerinin diğer zaman ölçeklerine göre daha yüksek değerlere sahip olmasından 

dolayı model performansının düşük kaldığı görülmüştür. 

ADD-USBÇS hibrit modellerinden elde edilen OMH ve R2 performans kriterlerine 

göre, Sakarya istasyonunun her bir zaman ölçeği için optimum gecikme zamanı 3 

gecikme zamanı (t, t-1, t-2, t-3 girdi değişkeni) olarak bulunmuştur. Optimum gecikme 

zamanının belirlenmesine yönelik olarak Sakarya istasyonu SYİ-1 zaman ölçeği için 

dmey dalgacık ailesine göre elde edilen gecikme zamanları ve dalgacık bant 

seviyelerinin karşılaştırması örnek olması açısından Tablo 3.10’da verilmiştir. 

Tablo 3.10.  Sakarya SYİ-1 için dmey dalgacık ailesine sahip ADD-USBÇS hibrit 

modeli gecikme zamanları ve dalgacık bant seviyelerinin karşılaştırması 

Gecikme zamanı 

Dalgacık 

Bant 

Seviyesi 

EĞİTME TEST 

OMH    R2 OMH R2 

t, t-1 

3 0.6018 0.4206 0.7465 0.2952 

4 0.6001 0.4213 0.7700 0.3130 

5 0.5990 0.4220 0.8023 0.3053 

6 0.5995 0.4217 0.8197 0.2973 

7 0.5995 0.4217 0.8278 0.2983 

t, t-1, t-2 

3 0.7710 0.5204 0.7377 0.5558 

4 0.8059 0.5314 0.8012 0.5656 

5 0.8299 0.5261 0.8578 0.5544 

6 0.8500 0.5274 0.8709 0.5565 

7 0.8582 0.5312 0.8915 0.5561 

 t, t-1, t-2, t-3 

3 0.7637 0.5799 0.2976 0.8537 

4 0.8007 0.5917 0.2973 0.8534 

5 0.8291 0.5817 0.2972 0.8533 

6 0.8474 0.5832 0.2973 0.8533 

7 0.8575 0.5881 0.2975 0.8531 

 t, t-1, t-2, t-3, t-4 

3 0.7651 0.6028 0.7209 0.7047 

4 0.8065 0.6102 0.8014 0.6986 

5 0.8362 0.6014 0.8479 0.6902 

6 0.8564 0.6009 0.8862 0.6931 

7 0.8665 0.6066 0.8990 0.6897 

t, t-1, t-2, t-3, t-4, t-5 

3 0.7619 0.6192 0.7216 0.7127 

4 0.8056 0.6266 0.8017 0.7085 

5 0.8363 0.6187 0.8537 0.6948 

6 0.8568 0.6189 0.8909 0.7006 

7 0.8675 0.6237 0.9021 0.6968 
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Tablo 3.10’da görüleceği üzere, Sakarya istasyonu SYİ-1 zaman ölçeğinde dmey 

dalgacık ailesine sahip ADD-USBÇS hibrit modelinde OMH=0,2976 ve R2=0,8537 

performans kriterlerine göre 3 gecikme zamanı (t, t-1, t-2, t-3 girdi değişkeni) ve 3. 

dalgacık bant seviyesi en iyi sonuçları vermiştir. 3 gecikme zamanına kadar performans 

kriterlerinin değeri iyileşirken 4 ve 5 gecikme zamanlarında ise değerler düşmüştür. 

Burada olduğu gibi Sakarya istasyonunun diğer tüm zaman ölçeklerinde de gecikme 

zamanları için benzer sonuçlar elde edilmiş olup optimum gecikme zamanı olarak 3 

gecikme zamanı (t, t-1, t-2, t-3 girdi değişkeni) kabul edilmiştir. Elde edilen bu sonuç 

diğer istasyonlar ve diğer hibrit modeller için de kullanılmıştır. 

Sakarya istasyonunun her bir zaman ölçeği için ADD-USBÇS hibrit modelinde 

belirlenen optimum gecikme zamanları ile dalgacık ailelerinin başarı sıraları Tablo 

3.11’de verilmiştir.  

Tablo 3.11.  Sakarya istasyonu optimum gecikme zamanları için ADD-USBÇS hibrit 

modelinde dalgacık ailelerinin başarı sıraları  

Zaman 

ölçeği 
Gecikme zamanı 

OMH ve R2 Performans Kriterlerine Göre Model Başarı Sırası 

1 2 3 4 5 6 7 8 

SYİ-1 

t, t-1 dmey coif2 fk4 db40 rbio1.3 sym3 haar bior1.3 

t, t-1, t-2 dmey fk4 db40 coif2 sym3 rbio1.3 bior1.3 haar 

t, t-1, t-2, t-3 dmey fk4 db40 coif2 sym3 rbio1.3 bior1.3 haar 

t, t-1, t-2, t-3, t-4 db40 dmey fk4 coif2 sym3 bior1.3 rbio1.3 haar 

t, t-1, t-2, t-3, t-4, t-5 dmey db40 fk4 coif2 sym3 bior1.3 haar rbio1.3 

SYİ-3 

t, t-1 coif2 dmey sym3 db40 rbio1.3 fk4 bior1.3 haar 

t, t-1, t-2 coif2 sym3 dmey bior1.3 db40 rbio1.3 fk4 haar 

t, t-1, t-2, t-3 dmey sym3 db40 fk4 rbio1.3 coif2 bior1.3 haar 

t, t-1, t-2, t-3, t-4 dmey db40 coif2 rbio1.3 bior1.3 haar fk4 sym3 

t, t-1, t-2, t-3, t-4, t-5 dmey db40 coif2 bior1.3 rbio1.3 haar sym3 fk4 

SYİ-6 

t, t-1 db40 haar coif2 dmey fk4 sym3 rbio1.3 bior1.3 

t, t-1, t-2 dmey db40 sym3 coif2 haar fk4 rbio1.3 bior1.3 

t, t-1, t-2, t-3 dmey db40 haar fk4 rbio1.3 coif2 bior1.3 sym3 

t, t-1, t-2, t-3, t-4 dmey db40 rbio1.3 sym3 coif2 fk4 haar bior1.3 

t, t-1, t-2, t-3, t-4, t-5 dmey coif2 fk4 sym3 bior1.3 db40 haar rbio1.3 

SYİ-12 

t, t-1 fk4 rbio1.3 dmey haar sym3 bior1.3 db40 coif2 

t, t-1, t-2 dmey fk4 db40 rbio1.3 coif2 bior1.3 sym3 haar 

t, t-1, t-2, t-3 sym3 fk4 dmey coif2 db40 bior1.3 rbio1.3 haar 

t, t-1, t-2, t-3, t-4 fk4 db40 dmey bior1.3 haar sym3 rbio1.3 coif2 

t, t-1, t-2, t-3, t-4, t-5 dmey bior1.3 db40 sym3 fk4 coif2 rbio1.3 haar 

 

Tablo 3.11 incelendiğinde; 4 farklı zaman ölçeği, 5 farklı gecikme zamanı ve 8 farklı 

dalgacık ailesine göre toplam 160 adet (5 farklı dalgacık bant seviyesi de dikkate 

alınırsa 800 adet olmaktadır) ADD-USBÇS hibrit modeli dalgacık dönüşümü 

aşamasında ele alınmıştır. Bu hibrit modeller dikkate alındığında SYİ kuraklık zaman 
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serilerinin dalgacık dönüşümü ile analizinde, Discrete approximation of Meyer (dmey) 

dalgacık ailesinin oldukça başarılı olduğu ve diğer dalgacık ailelerine göre kuraklık 

verilerine daha iyi uyum sağladığı görülmüştür. Tablo 3.11’den görüleceği üzere, dmey 

dalgacık ailesinin ardından sıralama açısından en başarılı 2. dalgacık ailesi ise yine 

hidrometeorolojik çalışmalarda yaygın kullanılan Daubechies (db40) dalgacık ailesidir. 

Ayrıca gecikme zamanı olarak 3 gecikme zamanı (t, t-1, t-2, t-3 girdi değişkeni) 

dalgacık dönüşümünün genelinde daha iyi bir performans göstermiştir. Çalışmada ele 

alınan dalgacık dönüşümünde, 3 gecikme zamanından sonraki 4 ve 5 gecikme 

zamanlarının OMH ve R2 performans kriterlerini iyileştiremediği görülmüştür. 

Çalışmada Sakarya istasyonu için yapılan tüm bu dalgacık dönüşümü analizlerinin 

sonucunda;  

-SYİ-1 ve SYİ-3 zaman ölçekleri için dmey dalgacık ailesine sahip, 3 gecikme zamanlı 

ve 3. dalgacık bant seviyesi, 

-SYİ-6 zaman ölçeği için dmey dalgacık ailesine sahip, 3 gecikme zamanlı ve 4. 

dalgacık bant seviyesi, 

-SYİ-12 zaman ölçeği için Symlets (sym3) dalgacık ailesine sahip, 3 gecikme zamanlı 

ve 3. dalgacık bant seviyesi en üstün model performanslarını göstermiştir.  

Burada her bir zaman ölçeği için elde edilen optimum gecikme zamanı, en uygun 

dalgacık ailesi ve en uygun dalgacık bant seviyesi diğer istasyonlar ve diğer hibrit 

modeller için de kullanılmıştır. 

3.6. Ampirik Mod Ayrıştırması (AMA) Sonuçları 

Her bir zaman ölçeği için optimum AMA bant seviyesinin belirlenmesi amacıyla SYİ 

kuraklık zaman serileri, AMA yöntemi ile alt bantlarına ayrılmıştır. AMA ile alt 

bantlarına ayrıştırma işleminde 2D, 3D, 4D ve 5D olmak üzere 4 farklı bant seviyesi 

dikkate alınmıştır. Ayrıca otokorelasyon fonksiyonu ve dalgacık dönüşümü sonucunda 

belirlenen optimum 3 gecikme zamanına (t, t-1, t-2, t-3) göre alt bantlarına ayrılan SYİ 

kuraklık zaman serileri eğitme ve test verisi şeklinde AMA-USBÇS hibrit modelinde 

girdi verisi olmak üzere kullanılmıştır. Dalgacık dönüşümünde olduğu gibi burada da 
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havzadaki 10 adet istasyonu temsilen sadece Sakarya istasyonuna ait SYİ kuraklık 

zaman serileri için AMA yöntemi uygulanmıştır. Tablo 3.12’de her bir zaman ölçeği 

için Sakarya istasyonuna ait AMA-USBÇS hibrit modeli sonuçları verilmiştir.  

Tablo 3.12.  Sakarya istasyonu her bir zaman ölçeği için AMA-USBÇS hibrit model 

performansları 

Zaman 

ölçeği 
Gecikme 

zamanı 
Çıkış 

AMA 

Bant 

seviyesi 

EĞİTME 
 

 KOKH       R2 

TEST 
 

 KOKH       R2 

SYİ-1 t, t-1, t-2, t-3 t+1 

2D 0.447 0.940 0.571 0.881 

3D 0.486 0.939 0.604 0.880 
4D 0.507 0.939 0.605 0.880 

5D 0.523 0.939 0.605 0.880 

SYİ-3 t, t-1, t-2, t-3 t+1 

2D 0.411 0.945 0.708 0.896 

3D 0.468 0.943 0.749 0.899 
4D 0.501 0.942 0.740 0.900 

5D 0.559 0.942 0.743 0.900 

SYİ-6 t, t-1, t-2, t-3 t+1 

2D 0.406 0.935 0.702 0.942 

3D 0.442 0.936 0.662 0.940 

4D 0.484 0.938 0.657 0.941 

5D 0.500 0.937 0.661 0.940 

SYİ-12 t, t-1, t-2, t-3 t+1 

2D 0.449 0.838 0.607 0.842 

3D 0.470 0.829 0.615 0.840 

4D 0.471 0.830 0.614 0.840 
5D 0.474 0.829 0.621 0.838 

 

Tablo 3.12’de verilen AMA-USBÇS hibrit modeli test sonuçları incelendiğinde; SYİ-1, 

SYİ-3 ve SYİ-12 zaman ölçekleri için hem KOKH (0,571, 0,708, 0,607) hem de R2 

(0,881, 0,896, 0,842) performans kriteri değerlerine göre 2D bant seviyesi en başarılı 

sonuçları vermiştir. Bu zaman ölçeklerinde bant seviyesinin artması model 

performansını iyileştirememiştir. SYİ-6 zaman ölçeği için R2=0,942 değerine göre 2D 

bant seviyesi, KOKH=0,657 değerine göre ise 4D bant seviyesi daha başarılıdır. Bu 

çalışmada, AMA yöntemi ile alt bantlarına ayrıştırma işleminin bütünü düşünüldüğünde 

bant seviyelerinin artması ile model performanslarının önemli ölçüde iyileşmediği tespit 

edildiğinden SYİ-6 zaman ölçeğinde de R2=0,942 değerinden dolayı optimum AMA 

bant seviyesi olarak 2D seçilmiştir. Tablo 3.12’den elde edilen ve her bir zaman ölçeği 

için belirlenen optimum AMA bant seviyeleri hem diğer istasyonlar hem de diğer hibrit 

modeller için de dikkate alınmıştır. 

 



152 

3.7. Varyasyonel Mod Ayrıştırması (VMA) Sonuçları 

AMA yönteminde olduğu gibi her bir zaman ölçeği için optimum VMA bant 

seviyesinin belirlenmesi amacıyla SYİ kuraklık zaman serileri, VMA yöntemi ile alt 

bantlarına ayrılmıştır. VMA ile alt bantlarına ayrıştırma işleminde yine 2D, 3D, 4D ve 

5D olmak üzere 4 farklı bant seviyesi dikkate alınmıştır. Ayrıca otokorelasyon 

fonksiyonu ve dalgacık dönüşümü sonucunda belirlenen optimum 3 gecikme zamanına 

(t, t-1, t-2, t-3) göre alt bantlarına ayrılan SYİ kuraklık zaman serileri eğitme ve test 

verisi şeklinde VMA-USBÇS hibrit modelinde girdi verisi olmak üzere kullanılmıştır. 

Dalgacık dönüşümü ve AMA yönteminde olduğu gibi burada da havzadaki 10 adet 

istasyonu temsilen sadece Sakarya istasyonuna ait SYİ kuraklık zaman serileri için 

VMA yöntemi uygulanmıştır. Tablo 3.13’te her bir zaman ölçeği için Sakarya 

istasyonuna ait VMA-USBÇS hibrit modeli sonuçları verilmiştir.  

Tablo 3.13.  Sakarya istasyonu her bir zaman ölçeği için VMA-USBÇS hibrit model 

performansları 

Zaman 

ölçeği 
Gecikme 

zamanı 
Çıkış 

VMA 

Bant 

seviyesi 

EĞİTME 
 

 KOKH       R2 

TEST 
 

 KOKH       R2 

SYİ-1 t, t-1, t-2, t-3 t+1 

2D 0.967 0.379 0.644 0.607 

3D 1.012 0.464 0.531 0.722 

4D 0.982 0.627 0.377 0.857 

5D 1.029 0.703 0.254 0.935 

SYİ-3 t, t-1, t-2, t-3 t+1 

2D 0.907 0.572 0.964 0.442 

3D 0.963 0.509 0.830 0.510 

4D 0.967 0.628 0.469 0.826 

5D 0.955 0.673 0.294 0.932 

SYİ-6 t, t-1, t-2, t-3 t+1 

2D 0.878 0.462 1.070 0.346 

3D 0.851 0.558 1.224 0.489 

4D 0.867 0.768 0.639 0.825 

5D 0.971 0.721 0.720 0.847 

SYİ-12 t, t-1, t-2, t-3 t+1 

2D 0.935 0.576 0.957 0.527 

3D 0.938 0.602 0.788 0.637 

4D 0.983 0.747 0.829 0.760 

5D 0.951 0.702 0.465 0.910 

 

Tablo 3.13’te verilen VMA-USBÇS hibrit modeli test sonuçları incelendiğinde; SYİ-1, 

SYİ-3 ve SYİ-12 zaman ölçekleri için hem KOKH (0,254, 0,294, 0,465) hem de R2 

(0,935, 0,932, 0,910) performans kriteri değerlerine göre 5D bant seviyesi en başarılı 

sonuçları vermiştir. Bu zaman ölçeklerinde bant seviyesinin 2D’den 5D’e kadar 
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artırılması, KOKH ve R2 performans kriterlerinin her ikisine göre de model 

performansını önemli ölçüde iyileştirmiştir. SYİ-6 zaman ölçeğinde KOKH=0,639 

değerine göre 4D bant seviyesi, R2=0,847 değerine göre ise 5D bant seviyesi en iyi 

sonuçları vermiştir. SYİ-6 zaman ölçeğinde 4D ile 5D bant seviyeleri için elde edilen 

KOKH değerleri arasında önemli bir performans farkı olmasına rağmen 4D ile 5D bant 

seviyelerindeki R2 değerleri birbirine çok yakın sonuçlar vermiştir. Bu sebepten dolayı 

SYİ-6 zaman ölçeğinde KOKH değerleri dikkate alınarak optimum bant seviyesi olarak 

4D bant seviyesi seçilmiştir. VMA yönteminde, AMA yönteminin aksine bant 

seviyeleri arttıkça model performansları fark edilir bir şekilde iyileşme göstermiştir. 

Burada belirlenen optimum VMA bant seviyeleri, hem diğer istasyonlar hem de diğer 

hibrit modeller için de dikkate alınmıştır. 

3.8. Bağımsız ve Hibrit Tahmin Model Sonuçlarının Elde Edilmesi 

ADD, AMA ve VMA analizleri ile optimum gecikme zamanı, en uygun dalgacık ailesi 

ve dalgacık bant seviyeleri ile optimum AMA ve VMA bant seviyeleri belirlenmiş olup 

bu değerlere göre alt bantlarına ayrılan ve yeniden elde edilen SYİ kuraklık zaman 

serileri tüm istasyonlar için bağımsız ve hibrit tahmin modellerinde eğitme ve test verisi 

şeklinde girdi değişkeni olarak kullanılmıştır. Veri setinin %75’i eğitme, veri setinin 

%25’i ise test verisi olacak şekilde bir kabul yapılarak 3 gecikme zamanı (t, t-1, t-2, t-3 

girdi değişkeni) için modellerde t+1 zamanındaki çıkış değerleri elde edilmiştir. Daha 

önceden model gelişiminde bahsedilen parametrelere göre oluşturulan bağımsız tahmin 

modellerinde; YSA, USBÇS, GSR, DVMR makine öğrenmesi yöntemleri ve UKSB 

derin öğrenme yöntemi kullanılmıştır. Hibrit modeller için ise ADD, AMA ve VMA’lı 

YSA, USBÇS, GSR, DVMR ve UKSB modelleri bu çalışmada ele alınmıştır. Böylece 

her bir istasyonun her bir zaman ölçeği için toplamda 20 adet tahmin modeli 

oluşturulmuştur. Tahmin modellerinden elde edilen tüm sonuçlar 6 farklı performans 

kriterine göre birbirleri ile karşılaştırılmıştır. Tablo 3.14–3.17’de Sakarya SYİ-1, SYİ-3, 

SYİ-6 ve SYİ-12 için elde edilen tahmin modellerine ait sonuçların karşılaştırması 

verilmiştir. 
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Tablo 3.14. Sakarya istasyonu SYİ-1 tahmin model performanslarının karşılaştırması 

  

 

Modeller 

EĞİTME TEST 

OKH KOKH NSE OI OMH R2 OKH KOKH NSE OI OMH R2 

USBÇS 0.889 0.943 0.093 0.477 0.729 0.122 1.566 1.252 -0.628 0.069 0.921 0.002 

ADD-USBÇS 0.986 0.993 -0.005 0.604 0.764 0.580 0.145 0.380 0.850 0.889 0.298 0.854 

AMA-USBÇS 0.200 0.447 0.796 0.830 0.317 0.940 0.325 0.571 0.662 0.778 0.456 0.881 

VMA-USBÇS 1.058 1.029 -0.080 0.709 0.830 0.703 0.064 0.254 0.933 0.943 0.204 0.935 

YSA 0.926 0.962 0.055 0.456 0.755 0.055 1.220 1.105 -0.268 0.263 0.876 0.164 

ADD-YSA 0.115 0.339 0.880 0.920 0.267 0.883 0.148 0.385 0.846 0.887 0.301 0.851 

AMA-YSA 0.359 0.599 0.634 0.769 0.463 0.881 0.341 0.584 0.646 0.768 0.471 0.880 

VMA-YSA 0.064 0.253 0.935 0.949 0.198 0.935 0.060 0.245 0.939 0.946 0.200 0.940 

GSR 0.935 0.967 0.046 0.451 0.763 0.094 1.013 1.007 -0.053 0.380 0.809 0.054 

ADD-GSR 0.135 0.367 0.863 0.892 0.291 0.863 0.143 0.378 0.852 0.891 0.297 0.861 

AMA-GSR 0.360 0.600 0.633 0.765 0.461 0.881 0.348 0.590 0.638 0.764 0.474 0.879 

VMA-GSR 0.065 0.255 0.933 0.941 0.201 0.934 0.063 0.251 0.935 0.944 0.205 0.937 

DVMR 0.964 0.982 0.016 0.435 0.757 0.021 1.247 1.117 -0.296 0.248 0.870 0.293 

ADD-DVMR 0.132 0.364 0.865 0.940 0.283 0.869 0.217 0.466 0.774 0.844 0.347 0.780 

AMA-DVMR 0.372 0.610 0.620 0.769 0.470 0.878 0.344 0.586 0.643 0.767 0.471 0.875 

VMA-DVMR 0.065 0.255 0.934 0.946 0.199 0.934 0.079 0.282 0.918 0.933 0.227 0.921 

UKSB 0.029 0.171 0.970 0.951 0.119 0.974 0.029 0.170 0.971 0.955 0.111 0.972 

ADD-UKSB 0.047 0.216 0.953 0.916 0.176 0.972 0.049 0.221 0.949 0.918 0.173 0.955 

AMA-UKSB 0.017 0.131 0.982 0.982 0.107 0.989 0.062 0.249 0.937 0.945 0.187 0.954 

VMA-UKSB 0.051 0.225 0.948 0.921 0.202 0.989 0.054 0.208 0.948 0.937 0.179 0.970 

 

Tablo 3.15. Sakarya istasyonu SYİ-3 tahmin model performanslarının karşılaştırması 

  

 

Modeller 

EĞİTME TEST 

OKH KOKH NSE OI OMH R2 OKH KOKH NSE OI OMH R2 

USBÇS 0.834 0.913 0.110 0.479 0.728 0.153 1.999 1.414 -0.621 0.069 1.034 0.080 

ADD-USBÇS 0.848 0.921 0.090 0.660 0.721 0.640 0.158 0.398 0.872 0.902 0.315 0.875 

AMA-USBÇS 0.169 0.411 0.820 0.777 0.291 0.945 0.502 0.708 0.593 0.736 0.528 0.896 

VMA-USBÇS 0.912 0.955 0.026 0.678 0.766 0.673 0.087 0.294 0.930 0.940 0.224 0.932 

YSA 0.740 0.860 0.211 0.534 0.658 0.211 1.134 1.065 0.081 0.450 0.893 0.136 

ADD-YSA 0.128 0.357 0.863 0.917 0.282 0.895 0.153 0.391 0.876 0.905 0.315 0.884 

AMA-YSA 0.259 0.509 0.723 0.763 0.395 0.890 0.400 0.633 0.676 0.784 0.505 0.914 

VMA-YSA 0.127 0.356 0.865 0.903 0.297 0.941 0.118 0.344 0.904 0.923 0.277 0.961 

GSR 0.921 0.960 0.018 0.429 0.758 0.018 1.325 1.151 -0.074 0.365 0.916 0.034 

ADD-GSR 0.135 0.367 0.863 0.890 0.291 0.863 0.155 0.394 0.874 0.904 0.322 0.876 

AMA-GSR 0.262 0.512 0.720 0.764 0.395 0.889 0.404 0.636 0.672 0.782 0.506 0.911 

VMA-GSR 0.062 0.249 0.934 0.941 0.193 0.942 0.058 0.241 0.953 0.956 0.196 0.957 

DVMR 0.671 0.819 0.284 0.574 0.579 0.301 1.239 1.113 -0.005 0.403 0.865 0.020 

ADD-DVMR 0.110 0.332 0.882 0.981 0.255 0.883 0.167 0.409 0.837 0.876 0.330 0.843 

AMA-DVMR 0.268 0.518 0.714 0.827 0.394 0.887 0.221 0.470 0.821 0.871 0.349 0.934 

VMA-DVMR 0.052 0.229 0.944 0.970 0.180 0.954 0.179 0.423 0.855 0.891 0.327 0.876 

UKSB 0.029 0.169 0.970 0.941 0.139 0.988 0.098 0.313 0.913 0.930 0.220 0.927 

ADD-UKSB 0.027 0.163 0.971 0.946 0.136 0.981 0.132 0.364 0.894 0.916 0.300 0.907 

AMA-UKSB 0.008 0.087 0.992 0.989 0.068 0.993 0.122 0.349 0.901 0.921 0.278 0.909 

VMA-UKSB 0.011 0.104 0.988 0.976 0.082 0.990 0.057 0.239 0.954 0.956 0.166 0.962 
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Tablo 3.16. Sakarya istasyonu SYİ-6 tahmin model performanslarının karşılaştırması 

  

 

Modeller 

EĞİTME TEST 

OKH KOKH NSE OI OMH R2 OKH KOKH NSE OI OMH R2 

USBÇS 0.701 0.837 0.082 0.462 0.643 0.121 3.235 1.799 -0.920 -0.082 1.348 0.016 

ADD-USBÇS 0.761 0.872 0.000 0.643 0.697 0.637 0.109 0.330 0.935 0.945 0.276 0.937 

AMA-USBÇS 0.165 0.406 0.785 0.800 0.270 0.935 0.493 0.702 0.707 0.806 0.535 0.942 

VMA-USBÇS 0.752 0.867 0.014 0.426 0.734 0.768 0.409 0.639 0.758 0.836 0.492 0.825 

YSA 0.557 0.747 0.257 0.558 0.555 0.257 2.240 1.497 -0.329 0.234 1.119 0.113 

ADD-YSA 0.107 0.327 0.860 0.867 0.253 0.864 0.102 0.319 0.940 0.948 0.256 0.945 

AMA-YSA 0.238 0.488 0.688 0.738 0.376 0.884 0.565 0.752 0.665 0.781 0.571 0.936 

VMA-YSA 0.098 0.314 0.871 0.906 0.244 0.874 0.238 0.487 0.859 0.897 0.387 0.865 

GSR 0.691 0.831 0.078 0.461 0.655 0.200 1.665 1.290 0.012 0.419 0.940 0.020 

ADD-GSR 0.085 0.291 0.888 0.899 0.233 0.890 0.114 0.338 0.932 0.943 0.291 0.934 

AMA-GSR 0.243 0.493 0.681 0.725 0.381 0.889 0.641 0.801 0.620 0.756 0.597 0.926 

VMA-GSR 0.069 0.262 0.910 0.922 0.209 0.910 0.158 0.398 0.906 0.926 0.324 0.914 

DVMR 0.449 0.670 0.401 0.638 0.415 0.420 1.636 1.279 0.030 0.428 0.923 0.035 

ADD-DVMR 0.099 0.315 0.870 0.899 0.250 0.870 0.374 0.611 0.778 0.848 0.482 0.821 

AMA-DVMR 0.228 0.478 0.701 0.848 0.359 0.890 0.396 0.630 0.765 0.840 0.425 0.853 

VMA-DVMR 0.053 0.230 0.931 0.943 0.189 0.933 0.256 0.506 0.848 0.890 0.400 0.881 

UKSB 0.003 0.050 0.997 0.968 0.047 1.000 0.096 0.310 0.924 0.934 0.229 0.952 

ADD-UKSB 0.002 0.044 0.998 0.973 0.035 0.998 0.293 0.542 0.830 0.766 0.352 0.883 

AMA-UKSB 0.010 0.101 0.987 0.984 0.089 0.996 0.280 0.529 0.834 0.881 0.324 0.893 

VMA-UKSB 0.008 0.088 0.990 0.973 0.071 0.993 0.221 0.470 0.869 0.903 0.330 0.945 

 

Tablo 3.17. Sakarya istasyonu SYİ-12 tahmin model performanslarının karşılaştırması 

  

 

Modeller 

EĞİTME TEST 

OKH KOKH NSE OI OMH R2 OKH KOKH NSE OI OMH R2 

USBÇS 0.783 0.885 0.060 0.420 0.709 0.096 2.740 1.655 -0.631 0.006 1.286 0.019 

ADD-USBÇS 0.850 0.922 -0.021 0.375 0.752 0.478 0.495 0.704 0.705 0.776 0.565 0.821 

AMA-USBÇS 0.202 0.449 0.758 0.823 0.301 0.838 0.369 0.607 0.781 0.825 0.425 0.842 

VMA-USBÇS 0.905 0.951 -0.087 0.338 0.817 0.702 0.216 0.465 0.872 0.885 0.373 0.910 

YSA 1.201 1.096 -0.443 0.142 0.892 0.009 2.441 1.562 -0.452 0.105 1.302 0.084 

ADD-YSA 0.178 0.422 0.786 0.840 0.330 0.786 0.466 0.683 0.723 0.788 0.500 0.728 

AMA-YSA 0.183 0.428 0.780 0.837 0.310 0.781 0.561 0.749 0.666 0.752 0.625 0.749 

VMA-YSA 0.089 0.297 0.894 0.910 0.244 0.901 0.201 0.449 0.880 0.892 0.402 0.914 

GSR 0.739 0.860 0.112 0.449 0.724 0.112 2.524 1.589 -0.502 0.077 1.317 0.051 

ADD-GSR 0.135 0.368 0.837 0.873 0.274 0.842 0.615 0.784 0.634 0.732 0.607 0.782 

AMA-GSR 0.221 0.470 0.735 0.809 0.368 0.743 0.474 0.689 0.718 0.784 0.560 0.754 

VMA-GSR 0.070 0.264 0.917 0.926 0.212 0.917 0.170 0.412 0.899 0.905 0.362 0.912 

DVMR 0.404 0.635 0.515 0.679 0.393 0.240 1.736 1.318 -0.033 0.341 1.130 0.020 

ADD-DVMR 0.176 0.420 0.788 0.842 0.322 0.791 0.544 0.737 0.677 0.758 0.542 0.789 

AMA-DVMR 0.238 0.488 0.714 0.797 0.344 0.720 0.519 0.720 0.691 0.768 0.478 0.712 

VMA-DVMR 0.075 0.275 0.910 0.921 0.215 0.911 0.435 0.659 0.741 0.799 0.560 0.891 

UKSB 0.000 0.007 1.000 0.999 0.003 1.000 0.180 0.424 0.893 0.901 0.304 0.917 

ADD-UKSB 0.009 0.096 0.989 0.983 0.085 0.997 0.203 0.450 0.879 0.891 0.363 0.899 

AMA-UKSB 0.005 0.073 0.994 0.988 0.068 0.999 0.277 0.526 0.835 0.861 0.417 0.931 

VMA-UKSB 0.019 0.138 0.977 0.971 0.129 0.997 0.114 0.338 0.932 0.929 0.265 0.959 
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Tablo 3.14 ile 3.17 arasında verilen Sakarya SYİ-1, SYİ-3, SYİ-6 ve SYİ-12 için tahmin 

modelleri test sonuçlarına ait performans karşılaştırmalarına bakıldığında; SYİ-1 zaman 

ölçeğinde performans kriterlerine (OKH=0,029, KOKH=0,170, NSE=0,971, OI=0,955, 

OMH=0,111 ve R2=0,972) göre en üstün sonuçları bağımsız UKSB tahmin modeli 

vermiştir. Tablo 3.14’ten görüleceği üzere UKSB derin öğrenme yöntemine ait bağımsız 

ya da hibrit tüm modeller, diğer yöntemlere ait modellere göre SYİ kuraklık 

değerlerinin tahmininde daha başarılıdır. Ayrıca eğitme sonuçları da irdelenecek olursa 

UKSB yöntemine ait tüm modellerin eğitme başarısı oldukça üstündür. Bu zaman 

ölçeğinde VMA-USBÇS, VMA-YSA, VMA-GSR ve VMA-DVMR hibrit tahmin 

modellerinin başarıları da yüksek olup UKSB tahmin modellerine yakın bir performans 

göstermişlerdir. Bu nedenle VMA ön işleme tekniğinin diğer ADD ve AMA 

tekniklerine göre kuraklık zaman serilerini ayrıştırmada daha başarılı olduğu rahatlıkla 

söylenebilir. Ayrıca YSA, USBÇS, GSR ve DVMR yöntemlerine ait bağımsız 

modellere ait hem eğitme hem de test sonuçlarının oldukça düşük kaldığı görülmüştür.  

Tablo 3.15’te görüleceği üzere, Sakarya istasyonu SYİ-3 zaman ölçeğinde tahmin 

modelleri test sonuçlarına ait performans kriterlerine (OKH=0,057, KOKH=0,239, 

NSE=0,954, OI=0,956, OMH=0,166 ve R2=0,962) göre; VMA-UKSB hibrit tahmin 

modelinde en üstün sonuçlar elde edilmiştir. SYİ-1 zaman ölçeğinde olduğu gibi UKSB 

derin öğrenme yöntemine ait tüm modellerin yine oldukça başarılı sonuçlar verdiği 

görülmüştür. Yine SYİ-1’de olduğu gibi VMA-USBÇS, VMA-YSA, VMA-GSR hibrit 

tahmin modellerine ait test sonuçları da oldukça başarılıdır. Burada da YSA, USBÇS, 

GSR ve DVMR yöntemlerine ait bağımsız modellerin tahmin performanslarının 

oldukça zayıf olduğu görülmüştür. 

Tablo 3.16’da verilen Sakarya istasyonu SYİ-6 zaman ölçeği tahmin modelleri test 

sonuçlarına ait performans kriterlerine (OKH=0,096, KOKH=0,310, NSE=0,924, 

OI=0,934, OMH=0,229 ve R2=0,952) göre; bağımsız UKSB tahmin modeli en üstün 

sonuçları vermiştir. Bunun yanı sıra ADD-YSA hibrit tahmin modelinin test sonuçları, 

bağımsız UKSB tahmin modeline oldukça yakın sonuçlar vermiş olup NSE=0,940 ve 

OI=0,948 performans kriterlerinde bağımsız UKSB modelinden daha üstündür. Bu 

zaman ölçeğinde ADD-YSA ve ADD-GSR hibrit tahmin modellerinin performansları 

da oldukça tatmin edicidir. Burada, SYİ-1 ve SYİ-3 zaman ölçeklerinden farklı olarak 

ADD ve AMA’lı UKSB hibrit modellerinin tahmin başarısı ise beklenene göre düşük 
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kalmıştır. Diğer zaman ölçeklerinde olduğu gibi burada da YSA, USBÇS, GSR ve 

DVMR yöntemlerine ait bağımsız modellerin tahmin performanslarının oldukça zayıf 

olduğu görülmektedir. 

Tablo 3.17’de görüleceği üzere, Sakarya istasyonu SYİ-12 zaman ölçeği tahmin 

modelleri test sonuçlarına ait performans kriterlerine (OKH=0,114, KOKH=0,338, 

NSE=0,932, OI=0,929, OMH=0,265 ve R2=0,959) göre; VMA-UKSB hibrit tahmin 

modeli en üstün sonuçları vermiştir. Ayrıca yine UKSB yöntemine ait tüm bağımsız ve 

hibrit modellerin tahmin performanları oldukça başarılıdır. Bu zaman ölçeğinde; 

VMA’nın dâhil olduğu VMA-YSA, VMA-USBÇS ve VMA-GSR hibrit modellerin 

tahmin performansları yine oldukça iyi durumdadır. VMA-DVMR hibrit tahmin 

modelinde, R2=0,891 değeri hariç diğer performans kriterlerinde iyileştirme 

sağlanamamıştır. Diğer tüm zaman ölçeklerinde olduğu gibi UKSB derin öğrenme 

modeli hariç olmak üzere bağımsız makine öğrenmesi yöntemlerinde oldukça zayıf 

tahmin performansları elde edilmiştir. 

Tablo 3.14 ile 3.17 arasında verilen Sakarya SYİ-1, SYİ-3, SYİ-6 ve SYİ-12 zaman 

ölçeklerine ait tahmin modeli performanslarının bütününe bakıldığında genel olarak 

benzer sonuçlar alındığı görülmüş olup örnek olması açısından detaylıca 

değerlendirmesi yapılmıştır. Bundan sonra ele alınacak olan istasyonlara ait tahmin 

model sonuçlarında yalnızca üstün olan modele ait test sonuçları için performans 

kriterleri değerleri belirtilecektir. Tablo 3.18–3.21 arasında Ankara istasyonuna ait tüm 

zaman ölçekleri için tahmin modellerinin performansları verilmiştir. 
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Tablo 3.18. Ankara istasyonu SYİ-1 tahmin model performanslarının karşılaştırması 

     
 

Modeller 

EĞİTME TEST 

OKH KOKH NSE OI OMH R2 OKH KOKH NSE OI OMH R2 

USBÇS 0.889 0.943 0.086 0.476 0.743 0.114 1.428 1.195 -0.556 0.118 0.888 0.004 

ADD-USBÇS 0.929 0.964 0.044 0.454 0.765 0.618 0.135 0.367 0.853 0.895 0.295 0.854 

AMA-USBÇS 0.215 0.464 0.779 0.856 0.370 0.885 0.204 0.451 0.778 0.850 0.352 0.793 

VMA-USBÇS 1.259 1.122 -0.296 0.273 0.929 0.573 0.253 0.503 0.724 0.818 0.408 0.804 

YSA 1.005 1.002 -0.034 0.412 0.811 0.001 0.960 0.980 -0.046 0.392 0.779 0.016 

ADD-YSA 0.134 0.367 0.862 0.905 0.296 0.863 0.132 0.363 0.856 0.897 0.287 0.857 

AMA-YSA 0.241 0.491 0.752 0.841 0.392 0.790 0.203 0.450 0.779 0.850 0.352 0.796 

VMA-YSA 0.097 0.312 0.900 0.928 0.253 0.900 0.085 0.291 0.908 0.928 0.232 0.908 

GSR 0.972 0.986 0.000 0.430 0.796 0.000 0.924 0.961 -0.006 0.413 0.764 0.000 

ADD-GSR 0.130 0.361 0.866 0.908 0.293 0.866 0.130 0.360 0.859 0.898 0.288 0.859 

AMA-GSR 0.254 0.504 0.739 0.834 0.402 0.827 0.197 0.444 0.785 0.854 0.351 0.815 

VMA-GSR 0.096 0.309 0.902 0.929 0.250 0.902 0.087 0.296 0.905 0.927 0.236 0.905 

DVMR 0.795 0.892 0.182 0.528 0.666 0.188 0.976 0.988 -0.063 0.382 0.786 0.007 

ADD-DVMR 0.135 0.368 0.861 0.904 0.297 0.861 0.143 0.378 0.845 0.889 0.297 0.853 

AMA-DVMR 0.274 0.524 0.718 0.822 0.420 0.843 0.244 0.494 0.735 0.824 0.390 0.838 

VMA-DVMR 0.096 0.309 0.902 0.929 0.248 0.902 0.130 0.361 0.858 0.898 0.288 0.869 

UKSB 0.007 0.085 0.993 0.990 0.065 0.995 0.036 0.189 0.961 0.964 0.147 0.977 

ADD-UKSB 0.009 0.095 0.991 0.989 0.076 0.994 0.039 0.198 0.957 0.961 0.122 0.958 

AMA-UKSB 0.012 0.108 0.988 0.986 0.088 0.994 0.045 0.212 0.951 0.957 0.174 0.975 

VMA-UKSB 0.004 0.065 0.996 0.993 0.050 0.996 0.067 0.259 0.927 0.941 0.208 0.934 

 

Tablo 3.19. Ankara istasyonu SYİ-3 tahmin model performanslarının karşılaştırması 

     
 

Modeller 

EĞİTME TEST 

OKH KOKH NSE OI OMH R2 OKH KOKH NSE OI OMH R2 

USBÇS 0.858 0.926 0.127 0.477 0.722 0.182 1.695 1.302 -0.671 0.023 1.074 0.122 

ADD-USBÇS 0.942 0.970 0.041 0.430 0.769 0.654 0.107 0.327 0.902 0.919 0.263 0.906 

AMA-USBÇS 0.181 0.426 0.816 0.868 0.314 0.912 0.254 0.504 0.767 0.835 0.393 0.879 

VMA-USBÇS 0.874 0.935 0.110 0.468 0.806 0.785 0.113 0.336 0.896 0.916 0.259 0.913 

YSA 0.900 0.949 0.083 0.453 0.752 0.083 1.204 1.097 -0.187 0.287 0.893 0.069 

ADD-YSA 0.111 0.333 0.887 0.913 0.269 0.889 0.120 0.346 0.890 0.911 0.283 0.894 

AMA-YSA 0.248 0.498 0.747 0.827 0.402 0.848 0.242 0.492 0.778 0.841 0.388 0.869 

VMA-YSA 0.487 0.698 0.504 0.687 0.620 0.894 0.132 0.363 0.879 0.905 0.283 0.927 

GSR 0.788 0.888 0.198 0.516 0.711 0.352 1.238 1.113 -0.220 0.269 0.922 0.126 

ADD-GSR 0.115 0.339 0.883 0.910 0.274 0.884 0.125 0.353 0.886 0.909 0.291 0.890 

AMA-GSR 0.296 0.544 0.698 0.798 0.429 0.872 0.305 0.552 0.721 0.807 0.428 0.894 

VMA-GSR 0.495 0.704 0.496 0.682 0.627 0.900 0.126 0.355 0.884 0.908 0.277 0.924 

DVMR 0.616 0.785 0.373 0.613 0.514 0.375 1.775 1.332 -0.750 -0.020 1.083 0.122 

ADD-DVMR 0.118 0.343 0.880 0.908 0.273 0.881 0.162 0.403 0.851 0.887 0.333 0.877 

AMA-DVMR 0.334 0.578 0.660 0.776 0.452 0.877 0.320 0.566 0.706 0.798 0.397 0.899 

VMA-DVMR 0.512 0.716 0.478 0.672 0.625 0.921 0.114 0.337 0.896 0.915 0.251 0.900 

UKSB 0.005 0.071 0.995 0.991 0.056 0.996 0.067 0.260 0.938 0.944 0.227 0.967 

ADD-UKSB 0.011 0.105 0.989 0.985 0.083 0.991 0.097 0.311 0.911 0.926 0.232 0.937 

AMA-UKSB 0.012 0.109 0.988 0.984 0.086 0.993 0.073 0.270 0.933 0.941 0.177 0.939 

VMA-UKSB 0.009 0.093 0.991 0.987 0.080 0.997 0.097 0.311 0.911 0.925 0.267 0.955 
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Tablo 3.20. Ankara istasyonu SYİ-6 tahmin model performanslarının karşılaştırması 

     
 

Modeller 

EĞİTME TEST 

OKH KOKH NSE OI OMH R2 OKH KOKH NSE OI OMH R2 

USBÇS 0.543 0.737 0.420 0.635 0.470 0.613 1.334 1.155 0.019 0.400 0.893 0.034 

ADD-USBÇS 0.959 0.979 -0.057 0.372 0.813 0.704 0.163 0.403 0.880 0.902 0.341 0.881 

AMA-USBÇS 0.144 0.380 0.841 0.882 0.307 0.926 0.358 0.599 0.736 0.812 0.507 0.882 

VMA-USBÇS 0.964 0.982 -0.063 0.369 0.834 0.645 0.221 0.470 0.838 0.874 0.390 0.842 

YSA 0.817 0.904 0.127 0.472 0.701 0.131 1.380 1.175 -0.015 0.381 0.917 0.081 

ADD-YSA 0.109 0.330 0.880 0.906 0.261 0.885 0.143 0.379 0.895 0.911 0.294 0.896 

AMA-YSA 0.165 0.407 0.818 0.868 0.341 0.888 0.212 0.460 0.844 0.878 0.408 0.864 

VMA-YSA 0.137 0.370 0.849 0.887 0.287 0.850 0.217 0.466 0.840 0.876 0.376 0.845 

GSR 0.821 0.906 0.123 0.470 0.702 0.433 1.428 1.195 -0.050 0.362 0.900 0.088 

ADD-GSR 0.120 0.347 0.868 0.899 0.280 0.871 0.144 0.379 0.894 0.911 0.312 0.895 

AMA-GSR 0.181 0.425 0.801 0.857 0.354 0.896 0.220 0.469 0.838 0.875 0.423 0.846 

VMA-GSR 0.154 0.392 0.831 0.876 0.304 0.831 0.207 0.455 0.848 0.881 0.345 0.851 

DVMR 0.797 0.893 0.148 0.484 0.631 0.162 1.392 1.180 -0.024 0.376 0.898 0.005 

ADD-DVMR 0.342 0.584 0.623 0.752 0.461 0.864 0.248 0.498 0.818 0.862 0.410 0.854 

AMA-DVMR 0.200 0.447 0.779 0.844 0.366 0.887 0.276 0.525 0.797 0.849 0.434 0.916 

VMA-DVMR 0.119 0.346 0.868 0.899 0.251 0.871 0.202 0.449 0.852 0.883 0.337 0.853 

UKSB 0.002 0.044 0.998 0.995 0.034 0.999 0.215 0.464 0.842 0.877 0.263 0.865 

ADD-UKSB 0.009 0.093 0.990 0.986 0.076 0.994 0.185 0.430 0.864 0.891 0.330 0.906 

AMA-UKSB 0.032 0.179 0.965 0.964 0.161 0.993 0.241 0.491 0.823 0.865 0.407 0.925 

VMA-UKSB 0.025 0.159 0.972 0.970 0.122 0.973 0.095 0.308 0.930 0.936 0.228 0.948 

 

Tablo 3.21. Ankara istasyonu SYİ-12 tahmin model performanslarının karşılaştırması 

     
 

Modeller 

EĞİTME TEST 

OKH KOKH NSE OI OMH R2 OKH KOKH NSE OI OMH R2 

USBÇS 0.785 0.886 0.229 0.519 0.622 0.474 1.635 1.279 -0.695 -0.028 1.108 0.135 

ADD-USBÇS 1.160 1.077 -0.140 0.314 0.920 0.400 0.484 0.696 0.498 0.651 0.545 0.566 

AMA-USBÇS 0.958 0.979 0.059 0.424 0.771 0.657 0.386 0.622 0.600 0.712 0.505 0.727 

VMA-USBÇS 1.172 1.083 -0.152 0.308 0.917 0.738 0.097 0.311 0.900 0.906 0.215 0.920 

YSA 0.877 0.937 0.138 0.468 0.738 0.144 0.969 0.984 -0.005 0.359 0.813 0.335 

ADD-YSA 0.270 0.520 0.735 0.811 0.392 0.735 0.355 0.596 0.632 0.732 0.448 0.782 

AMA-YSA 0.316 0.562 0.690 0.784 0.459 0.696 0.396 0.629 0.590 0.706 0.513 0.670 

VMA-YSA 0.047 0.217 0.954 0.954 0.173 0.965 0.040 0.201 0.958 0.951 0.158 0.966 

GSR 1.018 1.009 0.000 0.391 0.805 0.706 1.169 1.081 -0.212 0.241 0.925 0.251 

ADD-GSR 0.115 0.340 0.887 0.907 0.266 0.887 0.262 0.512 0.728 0.792 0.409 0.794 

AMA-GSR 0.305 0.552 0.701 0.791 0.460 0.705 0.361 0.600 0.626 0.728 0.497 0.735 

VMA-GSR 0.021 0.145 0.979 0.974 0.115 0.982 0.059 0.243 0.939 0.935 0.151 0.964 

DVMR 0.485 0.697 0.523 0.687 0.438 0.628 1.093 1.045 -0.133 0.286 0.772 0.192 

ADD-DVMR 0.287 0.536 0.718 0.801 0.424 0.721 0.370 0.608 0.616 0.722 0.537 0.718 

AMA-DVMR 0.309 0.556 0.696 0.788 0.464 0.700 0.375 0.613 0.611 0.719 0.502 0.661 

VMA-DVMR 0.074 0.271 0.928 0.935 0.190 0.942 0.341 0.584 0.647 0.741 0.459 0.870 

UKSB 0.001 0.033 0.999 0.996 0.025 0.999 0.069 0.262 0.929 0.927 0.229 0.931 

ADD-UKSB 0.010 0.101 0.990 0.984 0.081 0.992 0.140 0.374 0.855 0.875 0.312 0.925 

AMA-UKSB 0.030 0.174 0.970 0.967 0.137 0.976 0.147 0.383 0.848 0.870 0.312 0.908 

VMA-UKSB 0.015 0.121 0.986 0.980 0.106 0.996 0.036 0.190 0.963 0.954 0.125 0.977 
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Tablo 3.18’de görüleceği üzere, Ankara istasyonu SYİ-1 zaman ölçeği için tahmin 

modellerine ait test sonuçlarında performans kriterlerine (OKH=0,036, KOKH=0,189, 

NSE=0,961, OI=0,964, OMH=0,147 ve R2=0,977) göre; bağımsız UKSB tahmin 

modeli en üstün sonuçları vermiştir. Tablo 3.19’da verilen Ankara istasyonu SYİ-3 

zaman ölçeği için tahmin modellerine ait test sonuçlarında performans kriterlerine 

(OKH=0,067, KOKH=0,260, NSE=0,938, OI=0,944, OMH=0,227 ve R2=0,967) göre; 

yine bağımsız UKSB tahmin modeli en üstün sonuçları vermiştir. Tablo 3.20’de verilen 

Ankara istasyonu SYİ-6 zaman ölçeği için tahmin modellerine ait test sonuçlarında 

performans kriterlerine (OKH=0,095, KOKH=0,308, NSE=0,930, OI=0,936, 

OMH=0,228 ve R2=0,948) göre; VMA-UKSB hibrit tahmin modeli en üstün sonuçları 

vermiştir. Tablo 3.21’de görüleceği üzere Ankara istasyonu SYİ-12 zaman ölçeği için 

tahmin modellerine ait test sonuçlarında performans kriterlerine (OKH=0,036, 

KOKH=0,190, NSE=0,963, OI=0,954, OMH=0,125 ve R2=0,977) göre; yine VMA-

UKSB hibrit tahmin modelinin en üstün sonuçları verdiği görülmüştür. Tablo 3.22–3.25 

arasında Kütahya istasyonuna ait tüm zaman ölçekleri için tahmin modellerinin 

performansları verilmiştir. 

Tablo 3.22. Kütahya istasyonu SYİ-1 tahmin model performanslarının karşılaştırması 

     
 

Modeller 

EĞİTME TEST 

OKH KOKH NSE OI OMH R2 OKH KOKH NSE OI OMH R2 

USBÇS 0.812 0.901 0.110 0.476 0.707 0.140 1.241 1.114 -0.129 0.347 0.886 0.016 

ADD-USBÇS 0.863 0.929 0.053 0.445 0.736 0.603 0.162 0.403 0.853 0.894 0.325 0.853 

AMA-USBÇS 0.186 0.431 0.797 0.861 0.338 0.904 0.287 0.536 0.739 0.827 0.420 0.843 

VMA-USBÇS 0.983 0.992 -0.078 0.374 0.801 0.645 0.111 0.333 0.900 0.923 0.266 0.900 

YSA 0.862 0.929 0.054 0.446 0.739 0.054 1.082 1.040 0.017 0.426 0.824 0.017 

ADD-YSA 0.135 0.368 0.852 0.894 0.290 0.852 0.156 0.395 0.858 0.897 0.322 0.858 

AMA-YSA 0.241 0.491 0.736 0.825 0.379 0.858 0.305 0.552 0.723 0.818 0.436 0.854 

VMA-YSA 0.094 0.306 0.897 0.922 0.247 0.898 0.108 0.328 0.902 0.925 0.264 0.903 

GSR 0.839 0.916 0.080 0.460 0.730 0.122 1.149 1.072 -0.045 0.392 0.851 0.011 

ADD-GSR 0.122 0.350 0.866 0.902 0.276 0.866 0.161 0.402 0.854 0.895 0.325 0.855 

AMA-GSR 0.240 0.490 0.737 0.826 0.379 0.855 0.281 0.531 0.744 0.830 0.417 0.839 

VMA-GSR 0.093 0.306 0.898 0.922 0.247 0.898 0.113 0.336 0.898 0.922 0.271 0.898 

DVMR 0.746 0.864 0.182 0.515 0.644 0.193 1.298 1.139 -0.180 0.319 0.900 0.016 

ADD-DVMR 0.142 0.376 0.845 0.889 0.294 0.847 0.166 0.407 0.849 0.892 0.327 0.851 

AMA-DVMR 0.284 0.533 0.688 0.798 0.414 0.874 0.291 0.539 0.736 0.825 0.427 0.869 

VMA-DVMR 0.090 0.299 0.902 0.925 0.240 0.902 0.126 0.355 0.885 0.914 0.285 0.894 

UKSB 0.005 0.073 0.994 0.991 0.056 0.996 0.036 0.190 0.967 0.969 0.109 0.979 

ADD-UKSB 0.006 0.078 0.993 0.990 0.062 0.994 0.037 0.193 0.966 0.968 0.142 0.976 

AMA-UKSB 0.019 0.138 0.979 0.978 0.121 0.994 0.052 0.228 0.953 0.958 0.164 0.975 

VMA-UKSB 0.004 0.066 0.995 0.992 0.052 0.996 0.036 0.190 0.967 0.968 0.149 0.977 
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Tablo 3.23. Kütahya istasyonu SYİ-3 tahmin model performanslarının karşılaştırması 

     
 

Modeller 

EĞİTME TEST 

OKH KOKH NSE OI OMH R2 OKH KOKH NSE OI OMH R2 

USBÇS 0.844 0.919 0.089 0.460 0.721 0.117 1.944 1.394 -0.858 -0.098 0.969 0.063 

ADD-USBÇS 0.905 0.952 0.003 0.414 0.768 0.604 0.191 0.437 0.847 0.886 0.348 0.848 

AMA-USBÇS 0.281 0.530 0.691 0.796 0.402 0.823 0.282 0.531 0.775 0.842 0.404 0.819 

VMA-USBÇS 1.036 1.018 -0.140 0.336 0.836 0.685 0.109 0.330 0.913 0.928 0.235 0.917 

YSA 0.793 0.890 0.128 0.482 0.692 0.129 1.463 1.210 -0.399 0.154 0.945 0.372 

ADD-YSA 0.123 0.351 0.864 0.900 0.284 0.865 0.186 0.431 0.852 0.889 0.347 0.853 

AMA-YSA 0.195 0.442 0.785 0.852 0.350 0.845 0.283 0.532 0.774 0.841 0.398 0.828 

VMA-YSA 0.054 0.233 0.940 0.949 0.181 0.943 0.050 0.223 0.960 0.961 0.179 0.963 

GSR 0.909 0.953 0.000 0.412 0.749 0.050 1.253 1.120 -0.003 0.402 0.880 0.024 

ADD-GSR 0.123 0.351 0.865 0.900 0.281 0.865 0.187 0.432 0.851 0.888 0.339 0.851 

AMA-GSR 0.191 0.438 0.789 0.854 0.345 0.826 0.282 0.531 0.774 0.841 0.401 0.807 

VMA-GSR 0.050 0.225 0.945 0.952 0.174 0.945 0.061 0.248 0.951 0.954 0.191 0.953 

DVMR 0.696 0.835 0.249 0.548 0.580 0.279 1.313 1.146 -0.051 0.375 0.944 0.007 

ADD-DVMR 0.126 0.355 0.862 0.898 0.282 0.862 0.247 0.497 0.802 0.858 0.380 0.831 

AMA-DVMR 0.203 0.451 0.776 0.847 0.358 0.857 0.291 0.540 0.767 0.837 0.404 0.841 

VMA-DVMR 0.054 0.233 0.940 0.949 0.179 0.941 0.130 0.360 0.896 0.917 0.286 0.932 

UKSB 0.013 0.116 0.985 0.982 0.103 0.996 0.115 0.339 0.908 0.925 0.177 0.933 

ADD-UKSB 0.009 0.093 0.991 0.987 0.072 0.991 0.119 0.345 0.905 0.922 0.252 0.927 

AMA-UKSB 0.016 0.125 0.983 0.980 0.100 0.984 0.102 0.319 0.918 0.932 0.228 0.927 

VMA-UKSB 0.026 0.161 0.971 0.971 0.124 0.976 0.034 0.184 0.973 0.971 0.150 0.978 

 

Tablo 3.24. Kütahya istasyonu SYİ-6 tahmin model performanslarının karşılaştırması 

     
 

Modeller 

EĞİTME TEST 

OKH KOKH NSE OI OMH R2 OKH KOKH NSE OI OMH R2 

USBÇS 0.855 0.925 0.084 0.466 0.710 0.111 1.754 1.324 -0.419 0.140 0.953 0.016 

ADD-USBÇS 0.976 0.988 -0.045 0.396 0.824 0.724 0.117 0.343 0.905 0.914 0.255 0.913 

AMA-USBÇS 0.308 0.555 0.670 0.789 0.443 0.836 0.212 0.461 0.828 0.862 0.373 0.828 

VMA-USBÇS 0.960 0.980 -0.028 0.405 0.804 0.658 0.244 0.494 0.803 0.845 0.405 0.812 

YSA 0.879 0.937 0.059 0.452 0.715 0.059 1.172 1.083 0.052 0.403 0.840 0.075 

ADD-YSA 0.141 0.376 0.849 0.893 0.307 0.878 0.146 0.382 0.882 0.898 0.303 0.916 

AMA-YSA 0.281 0.530 0.700 0.806 0.423 0.855 0.197 0.444 0.840 0.870 0.358 0.841 

VMA-YSA 0.121 0.348 0.871 0.907 0.265 0.871 0.184 0.429 0.852 0.877 0.361 0.858 

GSR 0.934 0.966 0.000 0.420 0.744 0.132 1.238 1.112 -0.001 0.373 0.866 0.057 

ADD-GSR 0.120 0.347 0.871 0.907 0.264 0.872 0.107 0.327 0.914 0.920 0.258 0.917 

AMA-GSR 0.322 0.567 0.655 0.781 0.452 0.826 0.222 0.471 0.821 0.857 0.381 0.821 

VMA-GSR 0.114 0.338 0.878 0.911 0.270 0.886 0.198 0.445 0.840 0.869 0.354 0.847 

DVMR 0.909 0.953 0.027 0.435 0.663 0.067 1.099 1.048 0.111 0.437 0.872 0.138 

ADD-DVMR 0.123 0.350 0.869 0.905 0.262 0.870 0.122 0.349 0.902 0.911 0.269 0.905 

AMA-DVMR 0.266 0.516 0.715 0.815 0.412 0.863 0.189 0.434 0.847 0.874 0.349 0.848 

VMA-DVMR 0.114 0.337 0.878 0.911 0.269 0.892 0.199 0.446 0.839 0.869 0.340 0.845 

UKSB 0.000 0.018 1.000 0.998 0.013 1.000 0.103 0.321 0.917 0.922 0.236 0.936 

ADD-UKSB 0.021 0.145 0.977 0.977 0.115 0.982 0.104 0.323 0.916 0.921 0.199 0.920 

AMA-UKSB 0.056 0.236 0.940 0.951 0.066 0.941 0.109 0.331 0.912 0.918 0.234 0.917 

VMA-UKSB 0.028 0.167 0.970 0.971 0.135 0.980 0.109 0.330 0.912 0.919 0.215 0.939 
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Tablo 3.25. Kütahya istasyonu SYİ-12 tahmin model performanslarının karşılaştırması 

     
 

Modeller 

EĞİTME TEST 

OKH KOKH NSE OI OMH R2 OKH KOKH NSE OI OMH R2 

USBÇS 0.786 0.887 0.075 0.417 0.735 0.122 1.269 1.126 0.092 0.401 0.970 0.106 

ADD-USBÇS 0.901 0.949 -0.059 0.341 0.805 0.608 0.345 0.587 0.753 0.801 0.420 0.772 

AMA-USBÇS 0.493 0.702 0.421 0.615 0.578 0.640 0.418 0.647 0.701 0.767 0.579 0.731 

VMA-USBÇS 1.033 1.016 -0.215 0.255 0.838 0.746 0.127 0.357 0.909 0.909 0.299 0.914 

YSA 0.651 0.807 0.235 0.508 0.616 0.235 1.020 1.010 0.270 0.505 0.859 0.352 

ADD-YSA 0.167 0.409 0.804 0.846 0.314 0.811 0.330 0.574 0.764 0.808 0.439 0.795 

AMA-YSA 0.279 0.528 0.672 0.764 0.448 0.726 0.417 0.646 0.702 0.768 0.566 0.716 

VMA-YSA 0.069 0.262 0.919 0.924 0.224 0.926 0.267 0.517 0.809 0.838 0.447 0.890 

GSR 0.345 0.587 0.594 0.717 0.485 0.782 1.007 1.004 0.279 0.511 0.905 0.382 

ADD-GSR 0.156 0.395 0.817 0.855 0.308 0.823 0.251 0.501 0.821 0.846 0.412 0.836 

AMA-GSR 0.276 0.525 0.676 0.766 0.444 0.731 0.393 0.627 0.719 0.779 0.550 0.744 

VMA-GSR 0.043 0.207 0.950 0.947 0.168 0.957 0.159 0.398 0.886 0.892 0.331 0.928 

DVMR 0.428 0.655 0.496 0.659 0.430 0.531 0.829 0.911 0.407 0.586 0.817 0.423 

ADD-DVMR 0.190 0.436 0.777 0.829 0.354 0.789 0.350 0.592 0.750 0.799 0.435 0.779 

AMA-DVMR 0.304 0.552 0.642 0.746 0.474 0.685 0.479 0.692 0.657 0.740 0.592 0.662 

VMA-DVMR 0.063 0.251 0.926 0.929 0.190 0.936 0.209 0.457 0.851 0.867 0.405 0.907 

UKSB 0.010 0.099 0.988 0.981 0.087 0.996 0.198 0.445 0.858 0.872 0.386 0.936 

ADD-UKSB 0.003 0.055 0.997 0.991 0.044 0.997 0.173 0.416 0.876 0.885 0.350 0.918 

AMA-UKSB 0.006 0.077 0.993 0.986 0.070 0.999 0.281 0.530 0.799 0.832 0.433 0.924 

VMA-UKSB 0.004 0.066 0.995 0.989 0.051 0.996 0.110 0.331 0.921 0.918 0.288 0.941 

 

Tablo 3.22’de görüleceği üzere, Kütahya istasyonu SYİ-1 zaman ölçeği için tahmin 

modellerine ait test sonuçlarında performans kriterlerine (OKH=0,036, KOKH=0,190, 

NSE=0,967, OI=0,969, OMH=0,109 ve R2=0,979) göre; bağımsız UKSB tahmin 

modeli en üstün sonuçları vermiştir. Tablo 3.23’te verilen Kütahya istasyonu SYİ-3 

zaman ölçeği için tahmin modellerine ait test sonuçlarında performans kriterlerine 

(OKH=0,034, KOKH=0,184, NSE=0,973, OI=0,971, OMH=0,150 ve R2=0,978) göre; 

VMA-UKSB hibrit tahmin modeli en üstün sonuçları vermiştir. Tablo 3.24’te verilen 

Kütahya istasyonu SYİ-6 zaman ölçeği için tahmin modellerine ait test sonuçlarında 

performans kriterlerine (OKH=0,103, KOKH=0,321, NSE=0,917, OI=0,922, 

OMH=0,236 ve R2=0,936) göre; bağımsız UKSB tahmin modeli en üstün sonuçları 

vermiştir. Tablo 3.25’te görüleceği üzere Kütahya istasyonu SYİ-12 zaman ölçeği için 

tahmin modellerine ait test sonuçlarında performans kriterlerine (OKH=0,110, 

KOKH=0,331, NSE=0,921, OI=0,918, OMH=0,288 ve R2=0,941) göre ise VMA-

UKSB hibrit tahmin modelinin en üstün sonuçları verdiği görülmüştür. Tablo 3.26–3.29 

arasında Emirdağ istasyonuna ait tüm zaman ölçekleri için tahmin modellerinin 

performansları verilmiştir. 
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Tablo 3.26. Emirdağ istasyonu SYİ-1 tahmin model performanslarının karşılaştırması 

     
 

Modeller 

EĞİTME TEST 

OKH KOKH NSE OI OMH R2 OKH KOKH NSE OI OMH R2 

USBÇS 0.819 0.905 0.126 0.493 0.704 0.160 1.876 1.370 -0.834 -0.055 1.076 0.002 

ADD-USBÇS 0.919 0.959 0.018 0.435 0.737 0.582 0.190 0.435 0.815 0.863 0.344 0.826 

AMA-USBÇS 0.216 0.465 0.769 0.849 0.381 0.899 0.265 0.514 0.741 0.819 0.420 0.831 

VMA-USBÇS 1.161 1.078 -0.240 0.297 0.878 0.573 0.167 0.409 0.837 0.877 0.318 0.840 

YSA 0.881 0.939 0.060 0.458 0.755 0.061 1.119 1.058 -0.094 0.347 0.868 0.007 

ADD-YSA 0.115 0.339 0.878 0.913 0.269 0.878 0.179 0.423 0.825 0.870 0.334 0.833 

AMA-YSA 0.291 0.539 0.690 0.803 0.431 0.848 0.267 0.517 0.739 0.818 0.422 0.820 

VMA-YSA 0.140 0.374 0.851 0.897 0.295 0.854 0.159 0.399 0.845 0.882 0.308 0.847 

GSR 0.788 0.888 0.159 0.511 0.704 0.245 1.012 1.006 0.011 0.404 0.824 0.025 

ADD-GSR 0.113 0.337 0.879 0.914 0.267 0.880 0.190 0.436 0.814 0.863 0.347 0.826 

AMA-GSR 0.304 0.552 0.675 0.795 0.440 0.854 0.279 0.528 0.728 0.811 0.438 0.843 

VMA-GSR 0.140 0.374 0.850 0.896 0.295 0.853 0.156 0.395 0.848 0.884 0.305 0.850 

DVMR 0.740 0.860 0.210 0.539 0.638 0.235 1.123 1.060 -0.098 0.344 0.869 0.007 

ADD-DVMR 0.113 0.336 0.880 0.914 0.262 0.880 0.198 0.445 0.806 0.858 0.362 0.822 

AMA-DVMR 0.332 0.577 0.645 0.778 0.462 0.856 0.272 0.522 0.734 0.814 0.435 0.828 

VMA-DVMR 0.139 0.373 0.851 0.897 0.294 0.854 0.177 0.421 0.827 0.871 0.333 0.838 

UKSB 0.075 0.274 0.920 0.939 0.255 0.986 0.064 0.253 0.937 0.943 0.198 0.962 

ADD-UKSB 0.020 0.142 0.979 0.978 0.115 0.988 0.071 0.267 0.931 0.938 0.217 0.966 

AMA-UKSB 0.013 0.112 0.987 0.985 0.093 0.994 0.075 0.274 0.927 0.936 0.207 0.965 

VMA-UKSB 0.011 0.103 0.989 0.987 0.086 0.995 0.040 0.199 0.961 0.961 0.158 0.962 

 

Tablo 3.27. Emirdağ istasyonu SYİ-3 tahmin model performanslarının karşılaştırması 

     
 

Modeller 

EĞİTME TEST 

OKH KOKH NSE OI OMH R2 OKH KOKH NSE OI OMH R2 

USBÇS 0.960 0.980 0.072 0.450 0.766 0.102 1.381 1.175 -0.475 0.126 0.943 0.083 

ADD-USBÇS 0.962 0.981 0.070 0.448 0.765 0.596 0.134 0.367 0.856 0.886 0.297 0.866 

AMA-USBÇS 0.348 0.590 0.664 0.780 0.463 0.796 0.235 0.485 0.749 0.818 0.410 0.760 

VMA-USBÇS 1.182 1.087 -0.143 0.333 0.881 0.685 0.191 0.437 0.796 0.847 0.330 0.817 

YSA 1.082 1.040 -0.046 0.385 0.847 0.008 1.009 1.004 -0.077 0.345 0.837 0.095 

ADD-YSA 0.165 0.406 0.841 0.885 0.320 0.842 0.136 0.369 0.855 0.885 0.307 0.864 

AMA-YSA 0.327 0.572 0.684 0.791 0.448 0.811 0.219 0.468 0.766 0.829 0.390 0.789 

VMA-YSA 0.085 0.291 0.918 0.934 0.239 0.921 0.065 0.254 0.931 0.936 0.202 0.948 

GSR 1.034 1.017 0.000 0.410 0.820 0.060 0.951 0.975 -0.016 0.379 0.767 0.041 

ADD-GSR 0.155 0.394 0.850 0.890 0.315 0.850 0.139 0.373 0.852 0.883 0.304 0.861 

AMA-GSR 0.314 0.561 0.696 0.799 0.440 0.820 0.215 0.464 0.770 0.831 0.384 0.802 

VMA-GSR 0.040 0.199 0.962 0.963 0.158 0.967 0.074 0.272 0.921 0.929 0.218 0.938 

DVMR 0.952 0.976 0.079 0.454 0.728 0.096 1.071 1.035 -0.144 0.308 0.842 0.005 

ADD-DVMR 0.145 0.381 0.860 0.896 0.293 0.860 0.124 0.352 0.868 0.893 0.262 0.871 

AMA-DVMR 0.303 0.551 0.707 0.805 0.433 0.828 0.217 0.466 0.768 0.830 0.388 0.793 

VMA-DVMR 0.081 0.285 0.921 0.936 0.226 0.922 0.059 0.242 0.937 0.941 0.194 0.948 

UKSB 0.002 0.044 0.998 0.995 0.036 0.999 0.040 0.200 0.957 0.956 0.162 0.982 

ADD-UKSB 0.010 0.098 0.991 0.987 0.080 0.991 0.090 0.300 0.904 0.917 0.246 0.936 

AMA-UKSB 0.006 0.074 0.995 0.991 0.060 0.996 0.049 0.221 0.948 0.948 0.169 0.969 

VMA-UKSB 0.037 0.193 0.964 0.965 0.183 0.996 0.089 0.299 0.905 0.918 0.239 0.934 
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Tablo 3.28. Emirdağ istasyonu SYİ-6 tahmin model performanslarının karşılaştırması 

     
 

Modeller 

EĞİTME TEST 

OKH KOKH NSE OI OMH R2 OKH KOKH NSE OI OMH R2 

USBÇS 0.917 0.958 0.109 0.464 0.739 0.150 1.095 1.047 -0.070 0.329 0.854 0.123 

ADD-USBÇS 0.987 0.993 0.042 0.427 0.779 0.670 0.293 0.541 0.714 0.787 0.457 0.723 

AMA-USBÇS 0.304 0.551 0.705 0.800 0.440 0.714 0.275 0.524 0.731 0.798 0.429 0.736 

VMA-USBÇS 0.303 0.551 0.706 0.801 0.444 0.834 0.202 0.449 0.803 0.843 0.361 0.848 

YSA 1.021 1.011 0.008 0.409 0.784 0.011 1.192 1.092 -0.164 0.277 0.831 0.166 

ADD-YSA 0.119 0.345 0.884 0.910 0.265 0.885 0.249 0.499 0.757 0.814 0.416 0.761 

AMA-YSA 0.279 0.529 0.729 0.815 0.409 0.750 0.249 0.499 0.757 0.814 0.411 0.757 

VMA-YSA 0.219 0.468 0.788 0.850 0.380 0.856 0.188 0.434 0.816 0.852 0.334 0.852 

GSR 1.030 1.015 0.000 0.404 0.781 0.116 1.025 1.012 -0.001 0.368 0.781 0.101 

ADD-GSR 0.121 0.347 0.883 0.909 0.272 0.883 0.238 0.488 0.767 0.820 0.414 0.773 

AMA-GSR 0.295 0.543 0.713 0.805 0.429 0.727 0.264 0.514 0.742 0.804 0.427 0.742 

VMA-GSR 0.192 0.439 0.813 0.865 0.353 0.870 0.186 0.432 0.818 0.853 0.337 0.856 

DVMR 0.642 0.801 0.377 0.613 0.503 0.424 0.926 0.962 0.096 0.423 0.749 0.108 

ADD-DVMR 0.112 0.335 0.891 0.914 0.250 0.893 0.213 0.462 0.792 0.836 0.405 0.810 

AMA-DVMR 0.299 0.547 0.709 0.803 0.433 0.722 0.294 0.542 0.713 0.786 0.454 0.714 

VMA-DVMR 0.192 0.438 0.814 0.865 0.338 0.874 0.228 0.478 0.777 0.827 0.387 0.804 

UKSB 0.006 0.080 0.994 0.989 0.069 0.997 0.107 0.327 0.896 0.906 0.230 0.903 

ADD-UKSB 0.011 0.106 0.989 0.985 0.083 0.990 0.110 0.331 0.893 0.904 0.271 0.902 

AMA-UKSB 0.008 0.091 0.992 0.987 0.083 0.997 0.177 0.421 0.827 0.859 0.333 0.836 

VMA-UKSB 0.038 0.194 0.963 0.963 0.182 0.996 0.164 0.404 0.840 0.868 0.315 0.884 

 

Tablo 3.29. Emirdağ istasyonu SYİ-12 tahmin model performanslarının karşılaştırması 

     
 

Modeller 

EĞİTME TEST 

OKH KOKH NSE OI OMH R2 OKH KOKH NSE OI OMH R2 

USBÇS 0.984 0.992 0.107 0.433 0.798 0.145 0.822 0.907 -0.044 0.321 0.792 0.013 

ADD-USBÇS 1.003 1.001 0.090 0.424 0.760 0.551 0.390 0.625 0.504 0.644 0.521 0.721 

AMA-USBÇS 0.507 0.712 0.540 0.683 0.538 0.620 0.244 0.494 0.690 0.759 0.432 0.732 

VMA-USBÇS 0.749 0.866 0.320 0.555 0.728 0.848 0.061 0.246 0.923 0.919 0.182 0.941 

YSA 0.880 0.938 0.201 0.487 0.738 0.202 1.030 1.015 -0.309 0.169 0.834 0.206 

ADD-YSA 0.179 0.423 0.838 0.868 0.317 0.842 0.145 0.381 0.816 0.842 0.307 0.895 

AMA-YSA 0.343 0.585 0.689 0.774 0.476 0.702 0.315 0.562 0.599 0.702 0.439 0.748 

VMA-YSA 0.075 0.274 0.932 0.933 0.214 0.956 0.065 0.254 0.918 0.915 0.226 0.938 

GSR 0.224 0.473 0.797 0.841 0.367 0.858 0.807 0.899 -0.026 0.331 0.682 0.127 

ADD-GSR 0.087 0.295 0.921 0.925 0.231 0.922 0.224 0.474 0.715 0.775 0.380 0.770 

AMA-GSR 0.361 0.601 0.672 0.763 0.504 0.682 0.279 0.528 0.646 0.731 0.409 0.677 

VMA-GSR 0.049 0.222 0.955 0.951 0.188 0.972 0.042 0.204 0.947 0.938 0.186 0.950 

DVMR 0.423 0.650 0.616 0.729 0.451 0.766 1.091 1.045 -0.387 0.125 0.926 0.258 

ADD-DVMR 0.269 0.519 0.756 0.815 0.409 0.757 0.281 0.530 0.643 0.730 0.387 0.714 

AMA-DVMR 0.220 0.469 0.800 0.843 0.292 0.812 0.283 0.532 0.641 0.728 0.429 0.774 

VMA-DVMR 0.040 0.200 0.964 0.958 0.158 0.973 0.045 0.213 0.942 0.934 0.194 0.943 

UKSB 0.000 0.003 1.000 1.000 0.001 1.000 0.087 0.295 0.890 0.894 0.259 0.907 

ADD-UKSB 0.002 0.044 0.998 0.994 0.034 0.998 0.167 0.408 0.788 0.823 0.349 0.809 

AMA-UKSB 0.027 0.164 0.976 0.968 0.130 0.981 0.122 0.349 0.845 0.862 0.286 0.905 

VMA-UKSB 0.013 0.115 0.988 0.980 0.103 0.998 0.040 0.200 0.949 0.940 0.152 0.969 
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Tablo 3.26–3.29 arasında verilen Emirdağ istasyonuna ait tüm zaman ölçekleri için ele 

alınan tahmin modelleri performans kriterlerine göre değerlendirilmiştir. Tablo 3.26’da 

görüleceği üzere, Emirdağ istasyonu SYİ-1 zaman ölçeği için tahmin modellerine ait 

test sonuçlarında performans kriterlerine (OKH=0,040, KOKH=0,199, NSE=0,961, 

OI=0,961, OMH=0,158 ve R2=0,962) göre; UKSB hibrit tahmin modeli en üstün 

sonuçları vermiştir. Tablo 3.27’de verilen Emirdağ istasyonu SYİ-3 zaman ölçeği için 

tahmin modellerine ait test sonuçlarında performans kriterlerine (OKH=0,040, 

KOKH=0,200, NSE=0,957, OI=0,956, OMH=0,162 ve R2=0,982) göre; bağımsız 

UKSB tahmin modeli en üstün sonuçları vermiştir. Tablo 3.28’te verilen Emirdağ 

istasyonu SYİ-6 zaman ölçeği için tahmin modellerine ait test sonuçlarında performans 

kriterlerine (OKH=0,107, KOKH=0,327, NSE=0,896, OI=0,906, OMH=0,230 ve 

R2=0,903) göre; bağımsız UKSB tahmin modeli en üstün sonuçları vermiştir. Tablo 

3.29’da görüleceği üzere Emirdağ istasyonu SYİ-12 zaman ölçeği için tahmin 

modellerine ait test sonuçlarında performans kriterlerine (OKH=0,040, KOKH=0,200, 

NSE=0,949, OI=0,940, OMH=0,152 ve R2=0,969) göre ise VMA-UKSB hibrit tahmin 

modelinin en üstün sonuçları verdiği görülmüştür.  

Sakarya, Ankara, Kütahya ve Emirdağ istasyonlarının tüm zaman ölçeklerine ait model 

performansları değerlendirildiğinde, bütün bu istasyonlarda UKSB derin öğrenme 

yöntemine ait bağımsız ya da VMA-UKSB hibrit tahmin modellerinin diğer makine 

öğrenmesi ve ön işleme tekniklerine göre daha üstün sonuçlar verdiği görülmüştür. 

Bağımsız ve hibrit UKSB tahmin modelleri ile diğer yöntemlere ait sonuçların 

genellikle benzer doğrultuda eğitme ve test sonuçları verdiği belirlenmiştir. Ele alınan 

10 adet istasyonun 4’ünde elde edilen bu benzer sonuçlardan dolayı kalan diğer 6 adet 

istasyonun sadece UKSB derin öğrenme yöntemine ait bağımsız ve hibrit modelleri için 

tahmin çalışmalarına devam edilmiştir. Bolu, Geyve, Ilgın, Polatlı, Sivrihisar ve Yunak 

istasyonlarının her bir zaman ölçeğindeki UKSB tahmin modelleri sırasıyla verilmiş 

olup sonuçları değerlendirilmiştir. Tablo 3.30’da Bolu istasyonuna ait tüm zaman 

ölçekleri için tahmin modellerinin performansları verilmiştir. 

 

 



166 

Tablo 3.30. Bolu istasyonuna ait her bir zaman ölçeği için tahmin model 

performanslarının karşılaştırması 

Zaman 

ölçeği 

 

Modeller 

EĞİTME TEST 

OKH KOKH NSE OI OMH R2 OKH KOKH NSE OI OMH R2 

SYİ-1 

UKSB 0.011 0.106 0.988 0.986 0.087 0.994 0.016 0.125 0.985 0.982 0.086 0.989 

ADD-UKSB 0.013 0.115 0.986 0.984 0.093 0.992 0.131 0.362 0.872 0.904 0.302 0.916 

AMA-UKSB 0.015 0.122 0.985 0.983 0.105 0.994 0.051 0.225 0.951 0.956 0.173 0.952 

VMA-UKSB 0.008 0.088 0.992 0.989 0.072 0.996 0.048 0.220 0.953 0.957 0.171 0.959 

SYİ-3 

UKSB 0.004 0.066 0.996 0.992 0.053 0.997 0.103 0.321 0.898 0.909 0.288 0.957 

ADD-UKSB 0.004 0.065 0.996 0.992 0.051 0.996 0.201 0.449 0.801 0.844 0.377 0.874 

AMA-UKSB 0.005 0.070 0.995 0.991 0.055 0.995 0.156 0.395 0.846 0.873 0.333 0.906 

VMA-UKSB 0.044 0.210 0.955 0.958 0.202 0.997 0.127 0.357 0.874 0.892 0.285 0.898 

SYİ-6 

UKSB 0.050 0.223 0.944 0.947 0.186 0.986 0.516 0.718 0.594 0.703 0.606 0.812 

ADD-UKSB 0.003 0.057 0.996 0.992 0.045 0.997 0.488 0.698 0.616 0.717 0.593 0.855 

AMA-UKSB 0.004 0.066 0.995 0.990 0.051 0.995 0.445 0.667 0.650 0.738 0.547 0.779 

VMA-UKSB 0.006 0.075 0.994 0.989 0.060 0.996 0.428 0.654 0.663 0.746 0.484 0.818 

SYİ-12 

UKSB 0.000 0.005 1.000 0.999 0.002 1.000 0.584 0.764 0.589 0.688 0.722 0.898 

ADD-UKSB 0.018 0.135 0.977 0.971 0.117 0.993 0.580 0.762 0.591 0.689 0.607 0.850 

AMA-UKSB 0.001 0.028 0.999 0.996 0.023 0.999 0.712 0.844 0.498 0.632 0.684 0.769 

VMA-UKSB 0.007 0.081 0.992 0.985 0.069 0.994 0.478 0.691 0.664 0.736 0.566 0.914 

 

Tablo 3.30’dan görüleceği üzere, Bolu istasyonu SYİ-1 zaman ölçeği için tahmin 

modellerine ait test sonuçlarında performans kriterlerine (OKH=0,016, KOKH=0,125, 

NSE=0,985, OI=0,982, OMH=0,086 ve R2=0,989) göre; bağımsız UKSB tahmin 

modeli en üstün sonuçları vermiştir. Bu zaman ölçeğinde UKSB yöntemine ait diğer 

tüm modellerin tahmin performansları da oldukça iyidir. Hibrit modeller içerisinde ise 

yine VMA-UKSB modeli diğer hibrit modellerden üstündür. Bolu istasyonu SYİ-3 

zaman ölçeğinde elde edilen tahmin modeli test sonuçları değerlendirildiğinde; 

performans kriterlerine (OKH=0,103, KOKH=0,321, NSE=0,898, OI=0,909, 

OMH=0,288 ve R2=0,957) göre en üstün model yine bağımsız UKSB tahmin modelidir. 

Bu zaman ölçeğinde; yalnızca VMA-UKSB hibrit modelindeki en düşük OMH=0,285 

değeri bağımsız UKSB tahmin modelindeki performans kriterlerinden daha iyi bir sonuç 

vermiştir. Bolu istasyonu SYİ-6 zaman ölçeği için tahmin modellerine ait test 

sonuçlarında performans kriterlerine (OKH=0,428, KOKH=0,654, NSE=0,663, 

OI=0,746, OMH=0,484 ve R2=0,818) göre; VMA-UKSB hibrit modeli en üstün 

sonuçları vermiştir. Bu zaman ölçeğinde de ADD-UKSB hibrit modelindeki en yüksek 

R2=0,855 değeri üstün çıkan model değerinden daha yüksektir. Bolu istasyonu SYİ-12 
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zaman ölçeği için tahmin modellerine ait test sonuçlarında performans kriterlerine 

(OKH=0,478, KOKH=0,691, NSE=0,664, OI=0,736, OMH=0,566 ve R2=0,914) göre; 

VMA-UKSB hibrit modeli en üstün sonuçları vermiştir. Tablo 3.31’de Polatlı 

istasyonuna ait tüm zaman ölçekleri için tahmin modellerinin performansları verilmiştir. 

Tablo 3.31.  Polatlı istasyonuna ait her bir zaman ölçeği için tahmin model 

performanslarının karşılaştırması 

Zaman 

ölçeği 

 

Modeller 

EĞİTME TEST 

OKH KOKH NSE OI OMH R2 OKH KOKH NSE OI OMH R2 

SYİ-1 

UKSB 0.012 0.111 0.987 0.983 0.098 0.996 0.039 0.199 0.966 0.964 0.146 0.986 

ADD-UKSB 0.007 0.081 0.993 0.989 0.062 0.993 0.054 0.233 0.953 0.955 0.183 0.960 

AMA-UKSB 0.014 0.119 0.985 0.981 0.102 0.995 0.041 0.203 0.964 0.963 0.146 0.974 

VMA-UKSB 0.003 0.057 0.997 0.993 0.043 0.997 0.054 0.233 0.953 0.954 0.175 0.967 

SYİ-3 

UKSB 0.004 0.059 0.996 0.993 0.049 0.998 0.032 0.178 0.968 0.962 0.138 0.969 

ADD-UKSB 0.010 0.100 0.990 0.987 0.075 0.991 0.039 0.197 0.961 0.956 0.154 0.975 

AMA-UKSB 0.017 0.129 0.983 0.981 0.109 0.994 0.033 0.182 0.967 0.960 0.151 0.968 

VMA-UKSB 0.006 0.075 0.994 0.991 0.060 0.995 0.067 0.259 0.933 0.934 0.198 0.948 

SYİ-6 

UKSB 0.001 0.034 0.999 0.996 0.025 1.000 0.213 0.462 0.829 0.865 0.357 0.885 

ADD-UKSB 0.052 0.227 0.946 0.953 0.184 0.976 0.132 0.363 0.894 0.908 0.287 0.898 

AMA-UKSB 0.003 0.057 0.997 0.993 0.046 0.997 0.294 0.543 0.764 0.823 0.461 0.899 

VMA-UKSB 0.015 0.121 0.985 0.982 0.104 0.994 0.090 0.300 0.928 0.932 0.231 0.968 

SYİ-12 

UKSB 0.064 0.253 0.930 0.929 0.233 0.989 0.503 0.709 0.667 0.757 0.581 0.884 

ADD-UKSB 0.004 0.067 0.995 0.988 0.050 0.997 0.523 0.723 0.654 0.749 0.561 0.841 

AMA-UKSB 0.001 0.035 0.999 0.994 0.030 0.999 0.378 0.615 0.750 0.809 0.510 0.850 

VMA-UKSB 0.007 0.083 0.992 0.985 0.067 0.994 0.266 0.516 0.824 0.856 0.412 0.863 

 

Tablo 3.31’den görüleceği üzere, Polatlı istasyonu SYİ-1 zaman ölçeği için tahmin 

modellerine ait test sonuçlarında performans kriterlerine (OKH=0,039, KOKH=0,199, 

NSE=0,966, OI=0,964, OMH=0,146 ve R2=0,986) göre; bağımsız UKSB tahmin 

modeli en üstün sonuçları vermiştir. Bu zaman ölçeğinde UKSB yöntemine ait diğer 

tüm modellerin tahmin performansları da oldukça iyidir. AMA-UKSB hibrit modelinin 

performans kriterleri, üstün çıkan bağımsız UKSB tahmin modeline çok yakın olup 

OMH=0,146 değerinde her iki modelin de aynı sonucu verdiği görülmüştür. Polatlı 

istasyonu SYİ-3 zaman ölçeği için tahmin modellerine ait test sonuçlarında performans 

kriterlerine (OKH=0,032, KOKH=0,178, NSE=0,968, OI=0,962, OMH=0,138 ve 

R2=0,969) göre; bağımsız UKSB tahmin modeli en üstün sonuçları vermiştir. Yine 

burada da UKSB yöntemine ait diğer tüm modellerin tahmin performansları oldukça 

başarılıdır. ADD-UKSB hibrit modelinde elde edilen R2=0,975 değeri ise bağımsız 
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UKSB hibrit modelin değerinden daha yüksektir. Polatlı istasyonu SYİ-6 zaman ölçeği 

için tahmin modellerine ait test sonuçlarında performans kriterlerine (OKH=0,090, 

KOKH=0,300, NSE=0,928, OI=0,932, OMH=0,231 ve R2=0,968) göre; VMA-UKSB 

hibrit tahmin modelinin en başarılı sonuçları verdiği görülmüştür. Bu zaman ölçeğinde 

diğer modellerin başarısı beklenenden biraz daha düşük kalmıştır. Polatlı istasyonu SYİ-

12 zaman ölçeği için tahmin modellerine ait test sonuçlarında performans kriterlerine 

(OKH=0,266, KOKH=0,516, NSE=0,824, OI=0,856, OMH=0,412 ve R2=0,863) göre; 

VMA-UKSB hibrit tahmin modeli en başarılı sonuçları vermiştir. Bağımsız UKSB 

tahmin modelinde elde edilen R2=0,884 değeri ise bu zaman ölçeğinde en yüksek değer 

olarak bulunmuştur. Tablo 3.32’de Geyve istasyonuna ait tüm zaman ölçekleri için 

tahmin modellerinin performansları verilmiştir. 

Tablo 3.32.  Geyve istasyonuna ait her bir zaman ölçeği için tahmin model 

performanslarının karşılaştırması 

Zaman 

ölçeği 

 

Modeller 

EĞİTME TEST 

OK

H 
KOKH NSE OI OMH R2 OKH KOKH NSE OI OMH R2 

SYİ-1 

UKSB 0.012 0.109 0.988 0.984 0.091 0.995 0.057 0.240 0.942 0.954 0.198 0.977 

ADD-UKSB 0.008 0.091 0.992 0.988 0.070 0.992 0.048 0.219 0.952 0.960 0.169 0.973 

AMA-UKSB 0.013 0.112 0.987 0.984 0.085 0.991 0.044 0.210 0.955 0.963 0.154 0.961 

VMA-UKSB 0.004 0.066 0.996 0.992 0.050 0.996 0.032 0.178 0.968 0.972 0.147 0.987 

SYİ-3 

UKSB 0.003 0.050 0.998 0.995 0.039 0.998 0.111 0.333 0.883 0.902 0.255 0.948 

ADD-UKSB 0.039 0.198 0.962 0.966 0.176 0.991 0.059 0.243 0.938 0.940 0.196 0.948 

AMA-UKSB 0.009 0.094 0.991 0.989 0.073 0.993 0.136 0.369 0.856 0.884 0.305 0.930 

VMA-UKSB 0.026 0.160 0.975 0.975 0.142 0.995 0.083 0.288 0.913 0.922 0.230 0.941 

SYİ-6 

UKSB 0.001 0.028 0.999 0.997 0.025 1.000 0.106 0.325 0.863 0.884 0.279 0.943 

ADD-UKSB 0.021 0.144 0.980 0.978 0.135 0.998 0.146 0.383 0.810 0.849 0.328 0.954 

AMA-UKSB 0.002 0.039 0.999 0.996 0.032 0.999 0.219 0.468 0.716 0.789 0.406 0.936 

VMA-UKSB 0.005 0.074 0.995 0.991 0.058 0.995 0.252 0.502 0.674 0.763 0.445 0.929 

SYİ-12 

UKSB 0.002 0.046 0.998 0.993 0.040 0.999 0.402 0.634 0.522 0.666 0.508 0.779 

ADD-UKSB 0.015 0.121 0.985 0.978 0.111 0.998 1.028 1.014 -0.223 0.237 0.923 0.729 

AMA-UKSB 0.003 0.052 0.997 0.992 0.047 1.000 0.458 0.676 0.456 0.627 0.567 0.743 

VMA-UKSB 0.024 0.155 0.976 0.970 0.140 0.996 0.283 0.532 0.664 0.752 0.476 0.881 

 

Tablo 3.32’den görüleceği üzere, Geyve istasyonu SYİ-1 zaman ölçeği için tahmin 

modellerine ait test sonuçlarında performans kriterlerine (OKH=0,032, KOKH=0,178, 

NSE=0,968, OI=0,972, OMH=0,147 ve R2=0,987) göre; VMA-UKSB hibrit tahmin 

modeli en üstün sonuçları vermiştir. Bu zaman ölçeğinde UKSB yöntemine ait diğer 

bağımsız ve hibrit tüm modellerin tahmin performansları da oldukça başarılıdır. Geyve 
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istasyonu SYİ-3 zaman ölçeği için tahmin modellerine ait test sonuçlarında performans 

kriterlerine (OKH=0,059, KOKH=0,243, NSE=0,938, OI=0,940, OMH=0,196 ve 

R2=0,948) göre; ADD-UKSB hibrit tahmin modelinin en üstün sonuçları verdiği 

görülmüştür. Yine bu zaman ölçeğinde de UKSB yöntemine ait diğer tüm modellerin 

tahmin performansları oldukça başarılıdır. Bağımsız UKSB tahmin modelinde elde 

edilen R2=0,948 değeri ise ADD-UKSB hibrit modelinin değeri ile aynı sonucu 

vermiştir. Geyve istasyonu SYİ-6 zaman ölçeği için tahmin modellerine ait test 

sonuçlarında performans kriterlerine (OKH=0,106, KOKH=0,325, NSE=0,863, 

OI=0,884, OMH=0,279 ve R2=0,943) göre; bağımsız UKSB tahmin modelinin en üstün 

sonuçları verdiği görülmüştür. ADD-UKSB hibrit tahmin modelinde ise en yüksek 

R2=0,954 değeri elde edilmiştir. Geyve istasyonu SYİ-12 zaman ölçeği için tahmin 

modellerine ait test sonuçlarında performans kriterlerine (OKH=0,283, KOKH=0,532, 

NSE=0,664, OI=0,752, OMH=0,476 ve R2=0,881) göre; hibrit VMA-UKSB tahmin 

modeli en başarılı sonuçları vermiştir. Başta ADD-UKSB hibrit modeli olmak üzere 

diğer UKSB tahmin modellerinin tahmin performansları bu zaman ölçeğinde çalışmanın 

geneline bakıldığında oldukça zayıf kalmıştır. Ayrıca bu zaman ölçeğinde bahsedilmesi 

gereken önemli bulgulardan biri de zaman ölçeği arttıkça test tahmin sonuçlarına ait 

model performanslarının düştüğüdür.  

Tablo 3.33’te Sivrihisar istasyonuna ait tüm zaman ölçekleri için tahmin modellerinin 

performansları verilmiştir. 
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Tablo 3.33.  Sivrihisar istasyonuna ait her bir zaman ölçeği için tahmin model 

performanslarının karşılaştırması 

Zaman 

ölçeği 

 

Modeller 

EĞİTME TEST 

OKH KOKH NSE OI OMH R2 OKH KOKH NSE OI OMH R2 

SYİ-1 

UKSB 0.007 0.081 0.993 0.989 0.063 0.995 0.036 0.191 0.966 0.966 0.108 0.973 

ADD-UKSB 0.010 0.100 0.989 0.986 0.087 0.997 0.033 0.181 0.970 0.969 0.118 0.974 

AMA-UKSB 0.006 0.077 0.994 0.990 0.056 0.994 0.044 0.210 0.959 0.961 0.117 0.960 

VMA-UKSB 0.003 0.051 0.997 0.994 0.039 0.998 0.032 0.180 0.970 0.969 0.140 0.977 

SYİ-3 

UKSB 0.013 0.112 0.987 0.984 0.095 0.994 0.046 0.215 0.957 0.955 0.176 0.966 

ADD-UKSB 0.008 0.089 0.992 0.989 0.071 0.992 0.076 0.276 0.929 0.935 0.185 0.935 

AMA-UKSB 0.010 0.101 0.990 0.987 0.081 0.993 0.051 0.226 0.953 0.952 0.160 0.957 

VMA-UKSB 0.033 0.181 0.967 0.968 0.162 0.994 0.105 0.324 0.903 0.917 0.271 0.937 

SYİ-6 

UKSB 0.001 0.026 0.999 0.998 0.021 1.000 0.159 0.399 0.870 0.894 0.309 0.901 

ADD-UKSB 0.003 0.055 0.997 0.994 0.042 0.997 0.234 0.483 0.810 0.855 0.407 0.812 

AMA-UKSB 0.004 0.061 0.996 0.993 0.046 0.996 0.174 0.417 0.858 0.886 0.326 0.862 

VMA-UKSB 0.005 0.067 0.995 0.992 0.053 0.997 0.100 0.317 0.918 0.926 0.253 0.922 

SYİ-12 

UKSB 0.019 0.136 0.983 0.977 0.127 0.998 0.194 0.440 0.807 0.833 0.312 0.822 

ADD-UKSB 0.007 0.085 0.993 0.987 0.062 0.994 0.276 0.525 0.725 0.778 0.422 0.799 

AMA-UKSB 0.000 0.020 1.000 0.998 0.016 1.000 0.176 0.420 0.825 0.845 0.370 0.855 

VMA-UKSB 0.016 0.128 0.984 0.978 0.110 0.997 0.174 0.417 0.827 0.847 0.322 0.853 

 

Tablo 3.33’ten görüleceği üzere, Sivrihisar istasyonu SYİ-1 zaman ölçeği için tahmin 

modellerine ait test sonuçlarında performans kriterlerine (OKH=0,032, KOKH=0,180, 

NSE=0,970, OI=0,969, OMH=0,140 ve R2=0,977) göre; VMA-UKSB hibrit tahmin 

modeli en üstün sonuçları vermiştir. Bu zaman ölçeğinde UKSB yöntemine ait diğer 

bağımsız ve hibrit tüm modellerin tahmin performansları yine oldukça başarılı olup 

VMA-UKSB hibrit modelinin sonuçlarına yakındır. En düşük OMH=0,108 değeri 

bağımsız UKSB tahmin modelinde elde edilmiştir. Sivrihisar istasyonu SYİ-3 zaman 

ölçeği için tahmin modellerine ait test sonuçlarında performans kriterlerine 

(OKH=0,046, KOKH=0,215, NSE=0,957, OI=0,955, OMH=0,176 ve R2=0,966) göre; 

bağımsız UKSB tahmin modelinin en üstün sonuçları verdiği görülmüştür. Yine bu 

zaman ölçeğinde de UKSB yöntemine ait diğer tüm modellerin tahmin performansları 

oldukça başarılıdır. AMA-UKSB hibrit tahmin modelinde elde edilen en düşük 

OMH=0,160 değerinin, bağımsız UKSB modelinin değerinden daha düşük olduğu 

görülmüştür. Sivrihisar istasyonu SYİ-6 zaman ölçeği için tahmin modellerine ait test 

sonuçlarında performans kriterlerine (OKH=0,100, KOKH=0,317, NSE=0,918, 

OI=0,926, OMH=0,253 ve R2=0,922) göre; VMA-UKSB hibrit tahmin modelinin en 
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üstün sonuçları verdiği görülmüştür. Sivrihisar istasyonu SYİ-12 zaman ölçeği için 

tahmin modellerine ait test sonuçlarında performans kriterlerine (OKH=0,174, 

KOKH=0,417, NSE=0,827, OI=0,847, OMH=0,322 ve R2=0,853) göre; hibrit VMA-

UKSB tahmin modeli yine en başarılı sonuçları vermiştir. R2=0,853 en yüksek değeri 

ile AMA-UKSB hibrit tahmin modelinde, en düşük OMH=0,253 değeri ise bağımsız 

UKSB tahmin modelinde elde edilmiştir. Bu istasyondan elde edilen model sonuçlarına 

göre de zaman ölçeği arttıkça tahmin başarısı düşmektedir. Tablo 3.34’te Ilgın 

istasyonuna ait tüm zaman ölçekleri için tahmin modellerinin performansları verilmiştir. 

Tablo 3.34.  Ilgın istasyonuna ait her bir zaman ölçeği için tahmin model 

performanslarının karşılaştırması 

Zaman 

ölçeği 

 

Modeller 

EĞİTME TEST 

OKH KOKH NSE OI OMH R2 OKH KOKH NSE OI OMH R2 

SYİ-1 

UKSB 0.004 0.064 0.995 0.992 0.052 0.997 0.027 0.163 0.974 0.974 0.100 0.986 

ADD-UKSB 0.023 0.152 0.973 0.973 0.128 0.990 0.080 0.283 0.922 0.937 0.228 0.950 

AMA-UKSB 0.006 0.080 0.993 0.989 0.062 0.995 0.067 0.260 0.934 0.946 0.188 0.967 

VMA-UKSB 0.007 0.085 0.992 0.988 0.067 0.996 0.047 0.217 0.954 0.959 0.177 0.956 

SYİ-3 

UKSB 0.005 0.068 0.995 0.991 0.057 0.996 0.058 0.240 0.941 0.946 0.194 0.963 

ADD-UKSB 0.013 0.116 0.986 0.982 0.103 0.997 0.070 0.265 0.928 0.937 0.212 0.932 

AMA-UKSB 0.017 0.131 0.982 0.979 0.117 0.996 0.068 0.260 0.931 0.939 0.168 0.940 

VMA-UKSB 0.018 0.135 0.981 0.978 0.121 0.996 0.099 0.315 0.898 0.918 0.237 0.901 

SYİ-6 

UKSB 0.001 0.038 0.998 0.995 0.030 1.000 0.075 0.274 0.848 0.874 0.238 0.865 

ADD-UKSB 0.003 0.056 0.997 0.993 0.046 0.997 0.042 0.206 0.914 0.919 0.161 0.922 

AMA-UKSB 0.017 0.129 0.982 0.978 0.117 0.997 0.198 0.445 0.597 0.717 0.360 0.794 

VMA-UKSB 0.028 0.168 0.969 0.967 0.150 0.995 0.081 0.285 0.835 0.866 0.234 0.913 

SYİ-12 

UKSB 0.010 0.099 0.990 0.984 0.074 0.991 0.065 0.255 0.793 0.831 0.215 0.890 

ADD-UKSB 0.006 0.077 0.994 0.988 0.056 0.996 0.114 0.338 0.636 0.731 0.273 0.803 

AMA-UKSB 0.171 0.414 0.831 0.869 0.329 0.848 0.073 0.271 0.766 0.814 0.209 0.793 

VMA-UKSB 0.002 0.045 0.998 0.994 0.034 0.998 0.047 0.217 0.850 0.869 0.163 0.862 

 

Tablo 3.34’ten görüleceği üzere, Ilgın istasyonu SYİ-1 zaman ölçeği için tahmin 

modellerine ait test sonuçlarında performans kriterlerine (OKH=0,027, KOKH=0,163, 

NSE=0,974, OI=0,974, OMH=0,100 ve R2=0,986) göre; bağımsız UKSB hibrit tahmin 

modeli en üstün sonuçları vermiştir. Bu zaman ölçeğinde UKSB yöntemine ait diğer 

bağımsız ve hibrit tüm modellerin tahmin performansları yine oldukça başarılıdır. Ilgın 

istasyonu SYİ-3 zaman ölçeği için tahmin modellerine ait test sonuçlarında performans 

kriterlerine (OKH=0,058, KOKH=0,240, NSE=0,941, OI=0,946, OMH=0,194 ve 

R2=0,963) göre; bağımsız UKSB tahmin modelinin en üstün sonuçları verdiği 
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görülmüştür. Yine bu zaman ölçeğinde de UKSB yöntemine ait diğer tüm modellerin 

tahmin performansları oldukça başarılıdır. En düşük OMH=0,168 değeri ile AMA-

UKSB hibrit tahmin modelinde elde edilmiştir. Ilgın istasyonu SYİ-6 zaman ölçeği için 

tahmin modellerine ait test sonuçlarında performans kriterlerine (OKH=0,042, 

KOKH=0,206, NSE=0,914, OI=0,919, OMH=0,161 ve R2=0,922) göre; ADD-UKSB 

hibrit tahmin modelinin en üstün sonuçları verdiği görülmüştür. Bu zaman ölçeğinde 

sadece AMA-UKSB hibrit tahmin modelin performansları düşük kalmıştır. Ilgın 

istasyonu SYİ-12 zaman ölçeği için tahmin modellerine ait test sonuçlarında performans 

kriterlerine (OKH=0,047, KOKH=0,217, NSE=0,850, OI=0,869, OMH=0,163 ve 

R2=0,862) göre; hibrit VMA-UKSB tahmin modelinin en başarılı sonuçları verdiği 

görülmüştür. Burada R2=0,890 en yüksek değeri UKSB tahmin modelinde elde 

edilmiştir. Tablo 3.35’te Yunak istasyonuna ait tüm zaman ölçekleri için tahmin 

modellerinin performansları verilmiştir. 

Tablo 3.35.  Yunak istasyonuna ait her bir zaman ölçeği için tahmin model 

performanslarının karşılaştırması 

Zaman 

ölçeği 

 

Modeller 

EĞİTME TEST 

OKH KOKH NSE OI OMH R2 OKH KOKH NSE OI OMH R2 

SYİ-1 

UKSB 0.005 0.074 0.994 0.991 0.056 0.995 0.026 0.160 0.974 0.969 0.103 0.984 

ADD-UKSB 0.010 0.101 0.989 0.986 0.078 0.989 0.065 0.254 0.936 0.939 0.206 0.942 

AMA-UKSB 0.012 0.111 0.986 0.984 0.083 0.989 0.061 0.248 0.939 0.942 0.200 0.952 

VMA-UKSB 0.026 0.161 0.971 0.973 0.147 0.996 0.078 0.279 0.923 0.930 0.219 0.942 

SYİ-3 

UKSB 0.003 0.059 0.997 0.993 0.046 0.997 0.044 0.210 0.949 0.946 0.166 0.962 

ADD-UKSB 0.038 0.195 0.964 0.966 0.177 0.993 0.059 0.243 0.931 0.933 0.209 0.947 

AMA-UKSB 0.017 0.131 0.984 0.981 0.116 0.996 0.053 0.230 0.939 0.938 0.162 0.946 

VMA-UKSB 0.013 0.115 0.987 0.984 0.089 0.993 0.028 0.167 0.967 0.961 0.138 0.979 

SYİ-6 

UKSB 0.001 0.033 0.999 0.996 0.028 1.000 0.125 0.354 0.874 0.890 0.254 0.876 

ADD-UKSB 0.008 0.087 0.993 0.988 0.073 0.996 0.246 0.496 0.752 0.811 0.405 0.806 

AMA-UKSB 0.019 0.137 0.982 0.978 0.121 0.994 0.261 0.511 0.737 0.801 0.404 0.782 

VMA-UKSB 0.020 0.141 0.981 0.977 0.119 0.994 0.271 0.520 0.727 0.795 0.438 0.797 

SYİ-12 

UKSB 0.000 0.010 1.000 0.999 0.009 1.000 0.055 0.235 0.927 0.919 0.179 0.958 

ADD-UKSB 0.004 0.065 0.996 0.991 0.053 0.996 0.171 0.414 0.772 0.808 0.326 0.878 

AMA-UKSB 0.013 0.113 0.988 0.981 0.107 0.998 0.141 0.375 0.813 0.835 0.296 0.819 

VMA-UKSB 0.011 0.103 0.990 0.983 0.085 0.995 0.116 0.341 0.846 0.858 0.251 0.917 

 

Tablo 3.35’ten görüleceği üzere, Yunak istasyonu SYİ-1 zaman ölçeği için tahmin 

modellerine ait test sonuçlarında performans kriterlerine (OKH=0,026, KOKH=0,160, 

NSE=0,974, OI=0,969, OMH=0,103 ve R2=0,984) göre; bağımsız UKSB hibrit tahmin 
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modeli en üstün sonuçları vermiştir. Bu zaman ölçeğinde UKSB yöntemine ait diğer 

bağımsız ve hibrit tüm modellerin tahmin performansları yine oldukça başarılıdır. 

Yunak istasyonu SYİ-3 zaman ölçeği için tahmin modellerine ait test sonuçlarında 

performans kriterlerine (OKH=0,028, KOKH=0,167, NSE=0,967, OI=0,961, 

OMH=0,138 ve R2=0,979) göre; VMA-UKSB hibrit tahmin modelinin en üstün 

sonuçları verdiği görülmüştür. Yine bu zaman ölçeğinde de UKSB yöntemine ait diğer 

tüm modellerin tahmin performansları oldukça başarılıdır. Yunak istasyonu SYİ-6 

zaman ölçeği için tahmin modellerine ait test sonuçlarında performans kriterlerine 

(OKH=0,125, KOKH=0,354, NSE=0,874, OI=0,890, OMH=0,254 ve R2=0,876) göre; 

UKSB hibrit tahmin modelinin en üstün sonuçları verdiği görülmüştür. Yunak istasyonu 

SYİ-12 zaman ölçeği için tahmin modellerine ait test sonuçlarında performans 

kriterlerine (OKH=0,055, KOKH=0,235, NSE=0,927, OI=0,919, OMH=0,179 ve 

R2=0,958) göre; yine bağımsız UKSB tahmin modelinin en başarılı sonuçları verdiği 

görülmüştür.  

Sakarya havzasında yer alan 10 adet istasyona ait SYİ kuraklık tahmin modellerinin 

performans kriterlerine göre sonuçları elde edilerek sırasıyla tablolar halinde verilmiştir. 

Bu aşamada ise her bir zaman ölçeği için en iyi test sonuçlarını veren tahmin 

modellerine ait saçılma ve zaman serisi grafikleri elde edilmiştir. Çok fazla istasyon ve 

zaman ölçeği incelendiğinden dolayı burada yalnızca üç büyük istasyon olan Sakarya, 

Ankara ve Kütahya istasyonlarına yer verilmiştir. Şekil 3.10’da Sakarya istasyonunun 

her bir zaman ölçeği için elde edilen en iyi model sonuçlarına ait saçılma ve zaman 

serisi grafiği verilmiştir.  

 



174 

 
Şekil 3.10.  Sakarya istasyonu her bir zaman ölçeği için en iyi sonucu veren 

modellere ait saçılma ve zaman serisi grafikleri  
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Şekil 3.10’dan görüleceği üzere, Sakarya istasyonun her bir zaman ölçeğinde UKSB 

derin öğrenme yöntemine ait bağımsız ya da hibrit kuraklık tahmin modelleri oldukça 

üstün performanslar göstermiştir. Test sonuçlarına göre, Sakarya istasyonunun SYİ-1 

zaman ölçeğinde bağımsız UKSB modelinin tahmin performansı oldukça başarılıdır. 

UKSB tahmin modelinden elde edilen tahmin değerleri ile hesap değerlerine göre 

çizilen doğrusal regresyon çizgisi, 1:1 doğrusal eğriyi (y=x (45°)) çok yakından 

kesmektedir. Aynı şekilde hesap edilen SYİ-1 değerleri ile tahmin edilen SYİ-1 

değerlerine ait zaman serisi grafiğinde veriler büyük bir oranda çakışmaktadır. SYİ-3 

zaman ölçeğinde ise VMA-UKSB hibrit tahmin modeli oldukça iyi bir tahmin 

performansı göstermiştir. Doğrusal regresyon çizgisi yine doğrusal eğriyi güçlü bir 

şekilde kesmekte olup SYİ-3 hesap değerleri ile tahmin değerlerine ait zaman serisi 

yüksek bir oranda çakışmaktadır. Zaman ölçeği arttıkça modellerin tahmin 

performansları biraz düşse de yine de SYİ-6 ve SYİ-12 zaman ölçeklerinde sırasıyla 

bağımsız UKSB ve VMA-UKSB hibrit modellerinden üstün tahmin başarıları elde 

edilmiştir. Hem SYİ-6 hem de SYİ-12 zaman ölçeğinde hesap edilen kuraklık değerleri 

ile tahmin edilen kuraklık değerleri zaman serisi grafiklerinde büyük bir oranda 

çakışmaktadır. Şekil 3.11’de Ankara istasyonunun her bir zaman ölçeği için en iyi 

sonucu veren modellere ait saçılma ve zaman serisi grafikleri verilmiştir. 
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Şekil 3.11.  Ankara istasyonu her bir zaman ölçeği için en iyi sonucu veren modellere 

ait saçılma ve zaman serisi grafikleri  
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Şekil 3.11’de verilen grafiklerden görüleceği üzere, Ankara istasyonun her bir zaman 

ölçeğinde Sakarya istasyonunda olduğu gibi yine UKSB derin öğrenme yöntemine ait 

bağımsız ya da hibrit kuraklık tahmin modelleri oldukça üstün performanslar 

göstermiştir. Test sonuçlarına göre, Ankara istasyonunun SYİ-1 zaman ölçeğinde 

bağımsız UKSB modelinin tahmin performansı oldukça üstündür. Burada, doğrusal 

regresyon çizgisi, 1:1 doğrusal eğriyi (y=x (45°)) güçlü bir şekilde kesmektedir. Aynı 

şekilde hesap edilen SYİ-1 değerleri ile tahmin edilen SYİ-1 değerlerine ait zaman serisi 

grafiğinde veriler çok büyük bir oranda çakışmaktadır. Bu da tahmin modelinin üstün 

başarısını göstermesi açısından önemli bir göstergedir. SYİ-3 zaman ölçeğinde bağımsız 

UKSB tahmin modeli oldukça iyi bir tahmin performansı göstermiştir. Doğrusal 

regresyon çizgisi yine doğrusal eğriyi güçlü bir şekilde kesmekte olup SYİ-3 hesap 

değerleri ile SYİ-3 tahmin değerleri zaman serisi grafiğinde yüksek oranda 

çakışmaktadır. SYİ-6 zaman ölçeğinde tahmin performansları biraz düşmüş olsa da 

VMA-UKSB hibrit modelinin kuraklık tahmin performansı yine de oldukça başarılıdır. 

Diğer zaman ölçekleri ile kıyaslandığında doğrusal regresyon çizgisi, doğrusal eğriden 

biraz daha fazla sapmış olmasına rağmen zaman serisi grafiğinde hesaplanan kuraklık 

değerleri ile tahmin edilen kuraklık değerleri bazı noktalarda birbirlerinden uzak 

geçmiştir. Yine SYİ-12 zaman ölçeğinde de VMA-UKSB hibrit modeli test sonuçlarına 

göre en iyi sonucu vermiş olup doğrusal regresyon çizgisi, doğrusal eğriyi çok güçlü bir 

şekilde kesmektedir. Bu zaman ölçeği için verilen zaman serisi grafiğinden de 

görüleceği üzere test veri setinin büyük bir kısmında hesap edilen kuraklık değerleri ile 

tahmin edilen kuraklık değerleri aynı çizgiyi takip etmektedir. Şekil 3.12’de Kütahya 

istasyonunun her bir zaman ölçeği için en iyi sonucu veren modellere ait saçılma ve 

zaman serisi grafikleri verilmiştir. 

 

 



178 

 
Şekil 3.12.  Kütahya istasyonu her bir zaman ölçeği için en iyi sonucu veren 

modellere ait saçılma ve zaman serisi grafikleri  



179 

Şekil 3.12’de verilen saçılma ve zaman serisi grafiklerinden görüleceği üzere, Kütahya 

istasyonun her bir zaman ölçeğinde Sakarya ve Ankara istasyonlarında olduğu gibi yine 

UKSB derin öğrenme yöntemine ait bağımsız ya da hibrit kuraklık tahmin modelleri 

oldukça üstün performanslar göstermiştir. Tahmin modellerinden elde edilen test 

sonuçlarına göre, Kütahya istasyonunun SYİ-1 zaman ölçeğinde bağımsız UKSB 

modelinin tahmin performansının yine oldukça başarılı olduğu görülmüştür. Burada da, 

doğrusal regresyon çizgisi 1:1 doğrusal eğriyi çok güçlü bir şekilde kesmektedir. Aynı 

şekilde hesap edilen SYİ-1 değerleri ile tahmin edilen SYİ-1 değerlerine ait zaman serisi 

grafiğinde veriler çok büyük bir oranda çakışmaktadır. SYİ-3 zaman ölçeğinde VMA-

UKSB hibrit tahmin modeli oldukça iyi bir tahmin performansı göstermiştir. Doğrusal 

regresyon çizgisi yine doğrusal eğri ile güçlü bir şekilde kesişmiş olup zaman serisi 

grafiğinde SYİ-3 hesap değerleri ile SYİ-3 tahmin değerleri yüksek bir oranda 

çakışmaktadır. SYİ-6 zaman ölçeğinde bağımsız UKSB tahmin modeli, SYİ-12 zaman 

ölçeğinde ise VMA-UKSB hibrit tahmin modeli en iyi sonucu vermiştir. Kütahya 

istasyonunda zaman ölçeği arttıkça modellerin tahmin performansları diğer zaman 

ölçeklerine kıyasla biraz düşmüş olsa da yine de SYİ-6 ve SYİ-12 zaman ölçeklerinde 

başarılı tahminler elde edilmiştir. Diğer zaman ölçekleri ile kıyaslandığında SYİ-6 ve 

SYİ-12 zaman ölçeklerinde doğrusal regresyon çizgisi, doğrusal eğriden az da olsa 

sapma göstermiş olup hesaplanan kuraklık değerleri ile tahmin edilen kuraklık değerleri 

zaman serisi grafiğinde bazı noktalarda birbirlerinden uzak geçmiştir.  

Sakarya, Ankara ve Kütahya istasyonlarına ait saçılma ve zaman serileri grafiklerinden 

de anlaşılacağı üzere bu kuraklık tahmin çalışmasında bağımsız UKSB ve VMA-UKSB 

hibrit modellerinin tahmin performansları oldukça başarılıdır. Burada yer verilmeyen 

diğer istasyonlarda da benzer sonuçlar elde edilmiştir.  

 

Performans kriterlerine ek olarak modellere ait test sonuçlarını bir arada görebilmek ve 

karşılaştırmasını yapabilmek amacıyla Taylor diyagramlarından faydalanılmıştır. Hesap 

edilen kuraklık değerleri ile modellerden elde edilen kuraklık tahmin değerlerinin 

standart sapma, korelasyon katsayısı ve merkezlenmiş kök ortalama karesel farkı 

istatistiksel kriterlerine göre Taylor diyagramları üzerinden karşılaştırmaları yapılmıştır. 

Taylor diyagramlarında; Sakarya, Ankara, Kütahya ve Emirdağ istasyonları için 

yöntemlerin her birinde en iyi sonucu veren bağımsız ya da hibrit modeller, geri kalan 

istasyonlarda ise UKSB yönteminin bağımsız ve hibrit modelleri bir arada 
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değerlendirilmiştir. İstasyonların yalnızca SYİ-1 zaman ölçeği için Taylor diyagramları 

elde edilmiş olup tüm istasyonlara ait SYİ-1 Taylor diyagramları Şekil 3.13–3.22 

arasında verilmiştir. 

 
Şekil 3.13.  Sakarya istasyonu SYİ-1 için her bir yönteme ait en iyi sonucu veren 

tahmin modellerine ait Taylor diyagramı 

Şekil 3.13’ten görüleceği üzere Sakarya istasyonu SYİ-1 için elde edilen Taylor 

diyagramında, hesaplanan referans kuraklık değerlerine korelasyon katsayısı, standart 

sapma ve merkezlenmiş kök ortalama karesel farkı (RMSD) istatistiksel kriterlerine 

göre en yakın ve en uyumlu olan bağımsız UKSB tahmin modelidir. VMA-YSA hibrit 

modeli dışındaki diğer üç modelin referans noktasına neredeyse aynı uzaklıkta olduğu 

görülmüştür. 

 
Şekil 3.14.  Ankara istasyonu SYİ-1 için her bir yönteme ait en iyi sonucu veren 

modellere ait Taylor diyagramı 
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Şekil 3.14’te verilen Ankara istasyonu SYİ-1 Taylor diyagramında, hesaplanan referans 

kuraklık değerine en yakın ve en uyumlu olan model yine bağımsız UKSB tahmin 

modelidir. Bağımsız UKSB modeli standart sapma eğrisi ile çok güçlü bir şekilde 

kesişmiş olup ayrıca korelasyon katsayısı değeri de yüksektir. VMA-DVMR hibrit 

modeli standart sapma eğrisine çok yakın olmasına rağmen diğer kriterlerden dolayı 

bağımsız UKSB modelinden geride kalmıştır. VMA-GSR ile VMA-YSA modellerinin 

tahmin sonuçları da birbirine çok yakındır. ADD-USBÇS hibrit modeli tüm kriterlere 

göre performans olarak diğer modellerin gerisinde kalmıştır. 

 
Şekil 3.15.  Kütahya istasyonu SYİ-1 için her bir yönteme ait en iyi sonucu veren 

modellere ait Taylor diyagramı 

Şekil 3.15’ten görüleceği üzere Kütahya istasyonu SYİ-1 Taylor diyagramında da 

bağımsız UKSB tahmin modeli, hesaplanan referans kuraklık değerine daha yakın ve 

daha uyumludur. Bağımsız UKSB modeli standart sapma eğrisinden uzaklaşmış olsa da 

yüksek korelasyon katsayısı ve düşük RMSD değerlerinden dolayı diğer modellere göre 

daha üstündür. Burada da yine VMA-GSR ile VMA-YSA modellerinin tahmin 

sonuçları birbirine çok yakındır.  
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Şekil 3.16.  Emirdağ istasyonu SYİ-1 için her bir yönteme ait en iyi sonucu veren 

modellere ait Taylor diyagramı 

Şekil 3.16’da verilen Emirdağ istasyonu SYİ-1 Taylor diyagramından görüleceği üzere 

VMA-UKSB tahmin modeli, hesaplanan referans kuraklık değerine daha yakın ve daha 

uyumludur. Diğer VMA’lı hibrit modellerin performansları ise birbirlerine oldukça 

yakın çıkmıştır. Bu dört model standart sapma eğrisine yakın olmalarına rağmen diğer 

kriterlere göre VMA-UKSB modelinin gerisinde kalmışlardır.  

 
Şekil 3.17.  Bolu istasyonu SYİ-1 için UKSB yöntemine ait en iyi sonucu veren 

modellere ait Taylor diyagramı 

Şekil 3.17’den görüleceği üzere Bolu istasyonu SYİ-1 Taylor diyagramında bağımsız 

UKSB tahmin modeli, diğer hibrit UKSB modellerine göre hesaplanan referans kuraklık 

değerine daha yakın ve daha uyumludur. VMA-UKSB ve AMA-UKSB modelleri ise 
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birbirine çok yakın sonuçlar vermiş olup VMA-UKSB modeli az da olsa referans 

noktasına daha yakındır. ADD-UKSB hibrit modeli ise bu zaman ölçeğinde tahmin 

performansı olarak diğer modellerin gerisinde kalmıştır. 

 
Şekil 3.18.  Polatlı istasyonu SYİ-1 için UKSB yöntemine ait en iyi sonucu veren 

modellere ait Taylor diyagramı 

Şekil 3.18’de verilen Polatlı istasyonu SYİ-1 Taylor diyagramında, bağımsız UKSB 

tahmin modelinin diğer hibrit UKSB modellerine göre yine hesaplanan referans 

kuraklık değerine daha yakın ve daha uyumlu olduğu görülmüştür. AMA-UKSB hibrit 

modeli burada ikinci en iyi sonucu veren model olmuştur. ADD-UKSB ve VMA-UKSB 

modelleri, RMSD eğrisini aynı noktada kesmiş olup sonuçları ise oldukça yakındır.  

 
Şekil 3.19.  Geyve istasyonu SYİ-1 için UKSB yöntemine ait en iyi sonucu veren 

modellere ait Taylor diyagramı 
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Şekil 3.19’da verilen Geyve istasyonu SYİ-1 Taylor diyagramında görüleceği üzere, 

VMA-UKSB hibrit tahmin modelinin diğer UKSB tahmin modellerine göre hesaplanan 

referans kuraklık değerine daha yakın ve daha uyumlu olduğu görülmüştür. Geyve 

istasyonunun bu zaman ölçeğindeki tüm tahmin modelleri oldukça başarılıdır. UKSB ve 

ADD-UKSB modellerinin performansları ise birbirine çok yakındır. 

 
Şekil 3.20.  Sivrihisar istasyonu SYİ-1 için UKSB yöntemine ait en iyi sonucu veren 

modellere ait Taylor diyagramı 

Şekil 3.20’dan görüleceği üzere, Sivrihisar istasyonu SYİ-1 Taylor diyagramında VMA-

UKSB hibrit tahmin modeli, diğer UKSB modellerine göre hesaplanan referans kuraklık 

değerine daha yakın konumdadır. Sivrihisar istasyonunun bu zaman ölçeğindeki tüm 

tahmin modellerinin performansları yüksek olup diyagramdan görüleceği üzere 

birbirlerine de oldukça yakındırlar. 

 
Şekil 3.21.  Ilgın istasyonu SYİ-1 için UKSB yöntemine ait en iyi sonucu veren 

modellere ait Taylor diyagramı 
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Tablo 3.21’de verilen Ilgın istasyonu SYİ-1 Taylor diyagramında bağımsız UKSB 

tahmin modeli, diğer hibrit UKSB modellerine göre hesaplanan referans kuraklık 

değerine daha yakın ve daha uyumludur. Bağımsız UKSB tahmin modeli, standart 

sapma eğrisi dikkate alındığında ADD-UKSB ve VMA-UKSB hibrit modellerinin 

gerisinde kalmıştır.  

 
Şekil 3.22.  Yunak istasyonu SYİ-1 için UKSB yöntemine ait en iyi sonucu veren                  

modellere ait Taylor diyagramı 

Şekil 3.22’de verilen Yunak istasyonu SYİ-1 Taylor diyagramında görüleceği üzere 

bağımsız UKSB tahmin modeli, diğer hibrit UKSB modellerine göre hesaplanan 

referans kuraklık değerine daha yakın ve daha uyumludur. UKSB’nin diğer hibrit 

modelleri, referans değerine hemen hemen aynı uzaklıkta bulunmaktadır. 

Çalışmada, tahmin modellerinden elde edilen test sonuçlarına ait performans 

kriterlerinin daha kolay karşılaştırılabilmesi amacıyla radar grafikleri de kullanılmıştır. 

İstasyonların SYİ-12 zaman ölçeğindeki en iyi test sonucunu veren tahmin modellerinin 

ve bu modellerden elde edilen performans kriterlerinin bir arada gösterildiği radar 

grafikleri Şekil 3.23–3.27 arasında sırasıyla verilmiştir.  
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Şekil 3.23.  Sakarya ve Ankara istasyonları SYİ-12 için en iyi test sonucunu veren 

beş modele ait radar grafikleri 

 

Şekil 3.23’te verilen radar grafiğinden görüleceği üzere, Sakarya SYİ-12 zaman ölçeği 

için tüm performans kriterleri dikkate alındığında VMA-UKSB hibrit modeli en iyi 

tahmin sonuçlarını vermiş olup R2 ve OMH kriterleri hariç olmak üzere VMA-GSR 

hibrit modeli onu takip etmektedir. Ankara SYİ-12 zaman ölçeğinde de tüm performans 

kriterlerine göre yine VMA-UKSB hibrit modeli en üstün tahmin performansına 

sahiptir. Bu modelin ardından ise OMH kriteri hariç olmak üzere VMA-YSA hibrit 

modeli gelmektedir. 

 

 

Şekil 3.24.  Kütahya ve Emirdağ istasyonları SYİ-12 için en iyi test sonucunu veren 

beş modele ait radar grafikleri 
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Şekil 3.24’te verilen radar grafiğinden görüleceği üzere, Kütahya SYİ-12 zaman ölçeği 

için tüm performans kriterleri dikkate alındığında VMA-UKSB hibrit modeli en iyi 

tahmin sonuçlarını vermiştir. VMA-UKSB hibrit tahmin modelini, R2 performans kriteri 

hariç olmak üzere VMA-USBÇS hibrit modeli izlemektedir. Emirdağ SYİ-12 zaman 

ölçeğine ait radar grafiğinde yine VMA-UKSB hibrit modelinin tahmin performansının 

yüksek olduğu görülmektedir. Onu takip eden model ise OMH performans kriteri hariç 

VMA-GSR hibrit modelidir.  

 
Şekil 3.25.  Bolu ve Polatlı istasyonları SYİ-12 için UKSB yöntemine ait modellerin 

test sonuçlarını gösteren radar grafikleri 

 

Şekil 3.25’te verilen Bolu SYİ-12 zaman ölçeğine ait radar grafiğinden görüleceği 

üzere, tüm performans kriterleri dikkate alındığında VMA-UKSB hibrit tahmin modeli 

en üstün sonuçları vermiştir. Bu modeli, R2 performans kriteri hariç olmak üzere ADD-

UKSB hibrit modeli takip etmektedir. Bu zaman ölçeğinde AMA-UKSB hibrit tahmin 

modelinin performansı zayıf kalmıştır. Polatlı SYİ-12 zaman ölçeğine ait radar grafiği 

incelendiğinde, R2 performans kriteri hariç diğer performans kriterlerine göre VMA-

UKSB hibrit tahmin modeli en başarılı sonuçları vermiştir. VMA-UKSB hibrit 

modelinden sonra ise yine R2 performans kriteri hariç olmak üzere, AMA-UKSB hibrit 

modeli gelmektedir. R2 performans kriterinde ise bağımsız UKSB tahmin modeli en 

başarılı sonuçları vermiştir. 
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Şekil 3.26.  Geyve ve Sivrihisar istasyonları SYİ-12 için UKSB yöntemine ait 

modellerin test sonuçlarını gösteren radar grafikleri 

 

Şekil 3.26’da verilen Geyve SYİ-12 zaman ölçeğine ait radar grafiğinden görüleceği 

üzere, tüm performans kriterleri dikkate alındığında VMA-UKSB hibrit tahmin modeli 

en üstün sonuçları vermiştir. Bu zaman ölçeğinde ADD-UKSB hibrit tahmin modeli, 

tüm performans kriterlerine göre UKSB modelleri içerisinde en başarısız model 

olmuştur. Yine Şekil 3.26’dan görüleceği üzere, Sivrihisar SYİ-12 zaman ölçeğine ait 

radar grafiğinde altı performans kriterinin dördünde en iyi sonuçları VMA-UKSB hibrit 

tahmin modeli vermiştir. R2 performans kriterine göre AMA-UKSB hibrit modeli, 

OMH performans kriterine göre ise bağımsız UKSB modeli en iyi tahmin sonucunu 

vermiştir. Sivrihisar SYİ-12 zaman ölçeğinde, VMA-UKSB ile AMA-UKSB hibrit 

modellerinin tahmin performansları birbirine oldukça yakındır.  
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Şekil 3.27.  Ilgın ve Yunak istasyonları SYİ-12 için UKSB yöntemine ait modellerin 

test sonuçlarını gösteren radar grafikleri 

 

Şekil 3.27’de verilen Ilgın SYİ-12 zaman ölçeğine ait radar grafiğinden görüleceği 

üzere, R2 performans kriteri hariç tüm kriterlerde VMA-UKSB hibrit tahmin modeli en 

üstün sonuçları vermiştir. R2 performans kriterine göre ise en başarılı sonuçlar bağımsız 

UKSB tahmin modeline aittir. Yine Şekil 3.27’de verilen Yunak SYİ-12 zaman 

ölçeğine ait radar grafiğinden görüleceği üzere, tüm performans kriterleri dikkate 

alındığında bağımsız UKSB tahmin modeli en üstün sonuçları vermiştir. Yunak SYİ-12 

zaman ölçeği için UKSB yöntemine ait tüm modellerin tahmin performanslarının 

yüksek olduğu söylenebilir.  
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4. BÖLÜM 

 

TARTIŞMA-SONUÇ ve ÖNERİLER  

 

4.1. Tartışma 

2023 yılı Ocak ayında yayınlanan Dünya Ekonomik Forumu Küresel Risk Raporunda; 

önümüzdeki 10 yılda dünyanın karşılaşacağı en büyük on tehlikeden altısının küresel 

iklim değişikliği ve buna bağlı olarak ortaya çıkacak olan çevreyi ilgilendiren sorunlar 

olduğu belirtilmiştir. Canlı-cansız ekosisteminin en önemli döngüsü diyebileceğimiz 

hidrolojik çevrimde küresel iklim değişikliğine bağlı olarak son dönemlerde normal 

koşullara göre önemli derecede sapmalar gözlenmektedir. Bu sapmalar ile bağlantılı 

olarak meydana gelen kuraklık olayları da geniş bölgelerde etkisini artırmış ve en çok 

tartışılan konulardan biri haline gelmiştir. Yağışların azalmasına bağlı olarak su arz-

talep dengesinin bozulması ile birlikte ortaya çıkan kuraklık, iklim koşullarının su 

kaynaklarına, tarım ve canlı hayatına etkilerini ortaya çıkartan ve çok önem verilmesi 

gereken tehlikeli bir doğal afettir. Ayrıca kuraklığın tespiti, izlenmesi ve öngörülmesi de 

oldukça zor bir süreçtir. Bundan dolayı kuraklık olayını hem küçük ölçeklerde hem de 

küresel ölçekte doğru ve güvenilir bir şekilde tespit etmek oldukça önemlidir. Bilim ve 

teknolojideki gelişmeler dikkate alınarak kuraklığa etki eden parametrelerle kuraklık 

durumu arasındaki ilişki doğru bir şekilde ortaya konulmalıdır. Ayrıca bir bölgedeki 

kuraklığın gelecekteki muhtemel durumunun güvenilir bir şekilde öngörülebilmesi, 

kuraklığa yönelik projeksiyonların geliştirilebilmesi için de oldukça önemlidir. 

Bu çalışmada ele alınan meteorolojik kuraklık, karmaşık kuraklık sürecinin ilk aşaması 

olduğundan bölgesel olarak kuraklığın genel gidişatı ile ilgili bizlere çeşitli fikirler 

sunabilmektedir. Bu doğrultuda, Türkiye’nin kuzeybatısında yer alan ve önemli nehir 

havzalarından biri olan Sakarya havzasındaki istasyonlara ait kısa dönem meteorolojik 

kuraklıklar tahmin edilmeye çalışılmıştır. Çalışma alanı olarak Sakarya havzasının 
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seçilme nedeni; yarı kurak bir iklim bölgesinde yer almasından dolayı kuraklığa meyilli 

olması, kişi başına düşen su miktarından dolayı su stresi yaşaması ve havzada daha 

önceden bu kapsamda bir kuraklık tahmin çalışmasının olmamasıdır. Havzayı temsilen 

10 adet meteoroloji istasyonu seçilmiştir. Bu istasyonların özellikle uzun dönem 

verilerinin olmasına dikkat edilmiş olup gözlem aralığında eksik veri bulunmaması, 

ölçüm kayıtlarının güncel olması ve havzayı temsilleri de seçilmelerindeki 

etkenlerdendir. Kısa dönem kuraklık tahmini yapıldığından dolayı bu istasyonlar için 1, 

3, 6 ve 12 aylık zaman ölçekleri dikkate alınmıştır. Kuraklık indisi olarak sadece yağış 

değişkenine bağlı olarak hesaplanabilen ve ülkemizin iklim koşullarına iyi uyum 

sağladığı bilinen [4, 204], Standartlaştırılmış Yağış İndeksi (SYİ) kullanılmıştır. Bu 

çalışmada; SYİ’nin Palmer Kuraklık Şiddet İndisi (PKŞİ) ve Standartlaştırılmış Yağış-

Evapotranspirasyon İndisi (SYEİ) gibi diğer meteorolojik kuraklık indislerinin yerine 

kullanılma sebepleri yalnızca yağış verisine bağlı olması, farklı zaman ölçekleri için 

değerlendirilebilmesi ve hesap kolaylığıdır. PKŞİ, su dengesinde yağış açığına bağlı 

olarak evapotranspirasyon, akışlar ve nem miktarındaki sapmaları dikkate alan bir indis 

olup karmaşık bir yapıdadır [33]. SYEİ’de ise yağış değişkeni ile birlikte potansiyel 

evapotranspirasyon (PET) değişkeni de ele alınmaktadır. PET hesabı için gerekli olan 

sıcaklık, rüzgâr hızı, güneş radyasyonu, bağıl nem gibi parametrelerden dolayı bu 

kuraklık indisi de karmaşık bir yapıdadır [35]. Ayrıca SYEİ’nin bazı kurak bölgelerde 

uygulanabilirliği sınırlı olmaktadır [205].  

İstasyonlara ait ham yağış verilerine, %95 güven aralığında kalacak şekilde Standart 

Normal Homojenlik Testi (SNHT), Genişletilmiş Dickey-Fuller Testi (GDFT), Von-

Neumann Homojenlik Testi (VNT) ve Mann-Whitney u Testi (MWT) uygulanmıştır. 

Bu dört teste ait istatistiksel sonuçlara göre, kurulan H0 hipotezleri kabul edilmiş olup 

istasyon verilerinin tamamı homojen, durağan ve bağımsız çıkmıştır. Çalışmada 

kullanılan yağış verilerinde şüpheli bir durum söz konusu olmadığından dolayı bu 

çalışmada istasyonlara ait yağış verilerinin homojen hale getirilmesine gerek 

kalmamıştır. Hidrometeorolojik zaman serilerine dayalı tahmin modellerinden doğru ve 

güvenilir sonuçlar elde edilebilmesi için homojenlik testlerinin yapılması gerekir.  

Ele alınan istasyonlara ait uzun dönem aylık yağış verilerinden SYİ-1, SYİ-3, SYİ-6 ve 

SYİ-12 kuraklık zaman serileri elde edilmiştir. Çalışmada SYİ kuraklık değerlerinin 

hesabı, hem fazla istasyonun seçilmesi hem de fazla zaman ölçeğinden dolayı DrinC 
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yazılımı kullanılarak oldukça pratik bir şekilde yapılmış olup işlem yükü ve zamandan 

tasarruf sağlanmıştır. Kullanılan yazılımın kalibrasyonu için manuel hesaplamalardan 

da faydalanılmış olup yazılımdan elde edilen verilerin güvenilir olduğu bulunmuştur.  

DrinC yazılımı ile elde edilen SYİ kuraklık değerleri, SYİ-1 ve SYİ-12 zaman ölçekleri 

için değerlendirilmiştir. SYİ-3 ve SYİ-6 zaman ölçeklerindeki kuraklık değerlerinin 

değerlendirilmesi yapılmamıştır. Çünkü bu iki zaman ölçeğinde benzer kuraklık 

sınıflarının oluştuğu ve birbirini tekrar ettiği görülmüştür. SYİ-1 zaman ölçeğinde 

havzada yer alan istasyonların tamamında %68,18 ile %70,51 arasında değişen 

yüzdelerde normale yakın SYİ kuraklık sınıfı görülmüştür. %1,42 ile %3,53 arasında 

değişen yüzdelerde aşırı kurak,  %0,76 ile %2,08 arasında değişen yüzdelerde ise aşırı 

nemli kuraklık sınıfı görülmüştür. Yine SYİ-12 zaman ölçeğinde havzada yer alan 

istasyonların tamamında %57,38 ile %70,49 arasında değişen yüzdelerde normale yakın 

SYİ kuraklık sınıfı görülmüştür. SYİ-12 zaman ölçeğinde Sakarya, Emirdağ, Polatlı ve 

Yunak istasyonlarında aşırı kurak bir yıl olmamıştır. Diğer istasyonlarda ise %1,92 ile 

%6,82 arasında değişen yüzdelerde aşırı kurak yıllar olmuştur. Aynı şekilde Kütahya, 

Bolu ve Ilgın istasyonlarında aşırı nemli bir yıl görülmemiştir. Diğer istasyonlarda ise 

%1,92 ile %4,88 arasında değişen yüzdelerde aşırı nemli yıllar yaşanmıştır. 

SYİ-1, SYİ-3, SYİ-6 ve SYİ-12 kuraklık değerlerinin farklı gecikme zamanlarından (t, 

t-1, t-2, t-3, …vb.) hangisinin optimum gecikme zamanı olarak modellerde ele 

alınacağını belirlemek ve kuraklık zaman serilerindeki otokorelasyon varlığını 

araştırmak amacıyla Sakarya istasyonunun her bir SYİ zaman ölçeğine otokorelasyon 

fonksiyonu uygulanmıştır. Her bir zaman ölçeği için tüm gecikme zamanları %95 güven 

aralığındaki otokorelasyon katsayısının alt ve üst sınırları içerisinde kalmış olup 

otokorelasyon varlığı söz konusu değildir. Ayrıca tüm zaman ölçeklerinde 10 gecikme 

zamanına kadar olan gecikmelerin, tahmin modellerinde girdi değişkenleri olarak 

kullanılabileceği sonucuna ulaşılmıştır. Optimum gecikme zamanı ise Ayrık Dalgacık 

Dönüşümü (ADD) analizleri sonucunda nihai olarak belirlenmiştir. Bu çalışmaya benzer 

nitelikteki birçok çalışmada [82, 93, 206] otokorelasyon varlığı araştırılmamış olup 

zaman serilerinin tahmini ile ilgili analizlerde dikkate alınması gereken optimum 

gecikme zamanının genellikle deneme yanılma yoluyla belirlendiği görülmüştür. 
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SYİ kuraklık zaman serilerinin Ayrık Dalgacık Dönüşümü (ADD), Ampirik Mod 

Ayrıştırma (AMA) ve Varyasyonel Mod Ayrıştırma (VMA) ön işleme teknikleri ile alt 

bantlarına ayrılmasına yönelik analizler bu çalışmanın en önemli uygulamalarındandır. 

Tahmin modellerinde girdi değişkeni olarak kullanılacak olan SYİ kuraklık verileri, ele 

alınan ön işleme teknikleri aracılığı ile alt bantlarına ayrılmış olup verilerin sıkıştırılarak 

boyutunun azaltılması, gereksiz bilgilerin temizlenmesi, özellik ve özniteliklerin ortaya 

çıkarılması, veri birleştirmesi ve dönüştürmesi gibi faydalar sağlanmıştır.  

Bu çalışmada ele alınan ADD ön işleme tekniği, detaylı ve geniş bir perspektifte 

kuraklık verilerine uygulanmıştır. ADD tekniği, belli başlı ölçek ve öteleme katsayıları 

üzerinden ayrıştırma işlemini gerçekleştirdiğinden SDD’e göre hem daha nitelikli alt 

seriler elde etmekte hem de zaman ve işlem yükünden tasarruf sağlamaktadır. Bu 

nedenle ADD tercih edilmiştir. Çalışmanın tamamında dikkate alınan optimum gecikme 

zamanının, uygun dalgacık ailesinin ve dalgacık bant seviyelerinin belirlenmesi 

amacıyla Sakarya istasyonunun her bir zaman ölçeğinde ADD-USBÇS hibrit tahmin 

modeli kullanılmıştır. USBÇS makine öğrenmesi yönteminin dalgacık dönüşümünde 

kullanılmasının sebebi, yöntemin hızlı ve güvenilir bir şekilde analizler yapmasıdır [91]. 

Dalgacık dönüşümünün en önemli hususlarından biri veriye uygun dalgacık ailesinin 

seçilmesidir. Orijinal veriyi alt bantlarına ayrıştırma yeteneği yüksek olan bir dalgacık 

ailesi seçildiğinde model performansı da önemli ölçüde artmaktadır. Bu tez 

çalışmasında; sekiz farklı dalgacık ailesi kullanılmış olup bu dalgacık ailelerinin 

kuraklık zaman serilerini alt bantlarına ayrıştırma yetenekleri araştırılmıştır. Literatür 

incelendiğinde [86, 87]; genellikle Haar, Daubechies, Morlet ve Meksika şapkası gibi 

tek bir dalgacık ailesine göre zaman serileri alt bantlarına ayrılmaktadır.  

ADD-USBÇS hibrit tahmin modelinden elde edilen test sonuçları OMH ve R2 

performans kriterlerine göre karşılaştırıldığında; Sakarya istasyonu SYİ-1, SYİ-3 ve 

SYİ-6 zaman ölçeklerinde Meyer’in Ayrık Yaklaşımı (Discrete Approximation of 

Meyer-dmey) dalgacık ailesi,  SYİ-12 zaman ölçeğinde ise Symlets (sym3) dalgacık 

ailesinin en üstün sonuçları verdiği görülmüştür. Özellikle dmey dalgacık ailesinin, bu 

çalışmada ele alınan kuraklık zaman serileri ile yüksek bir uyum yakaladığı ve alt 

bantlarına ayırma işleminde oldukça başarılı olduğu görülmüştür. Birçok 

hidrometeorolojik çalışmada [207, 208] dalgacık dönüşümü ile ilgili analizlerde yaygın 

bir şekilde kullanılan Haar dalgacık ailesi bu çalışmada en başarısız dalgacık ailesi 
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olarak bulunmuştur. Ayrıca literatür incelendiğinde, dmey dalgacık ailesinin bu 

çalışmada olduğu gibi yüksek bir başarı gösterdiği başka bir hidrometeorolojik 

çalışmaya rastlanmamıştır. Yine dalgacık dönüşümünün önemli hususlarından biri olan 

dalgacık bant seviyesi ile ilgili olarak 3, 4, 5, 6 ve 7 olmak üzere beş farklı bant 

seviyesinin ayrıştırma kapasitesi araştırılmıştır. Dalgacık ailesinde olduğu gibi bant 

seviyeleri için çok sayıda alternatif değerlendirilmiştir. Yine Sakarya istasyonu için 

ADD-USBÇS hibrit tahmin modelinden elde edilen test sonuçlarına ait OMH ve R2 

performans kriterlerine göre; SYİ-1, SYİ-3 ve SYİ-12 zaman ölçeklerinde 3. dalgacık 

bant seviyesi,  SYİ-6 zaman ölçeğinde ise 4. dalgacık bant seviyesi en başarılı sonuçları 

vermiştir. ADD ön işleme tekniği ile belirlenen tahmin modellerinde kullanılacak olan 

bir diğer model parametresi ise optimum gecikme zamanıdır. Otokorelasyon fonksiyonu 

aracılığı ile daha önceden uygun gecikme zamanları aralığı (10 gecikmeye kadar) 

belirlenmişti. Nihai optimum gecikme zamanını belirlemek amacıyla yine Sakarya 

istasyonunun her bir zaman ölçeği için ADD-USBÇŞ hibrit tahmin modelinde analizler 

yapılmıştır. Modelden elde edilen test sonuçları OMH ve R2 performans kriterlerine 

göre değerlendirildiğinde; her bir zaman ölçeğinde de 3 gecikme zamanı (t, t-1, t-2, t-3 

girdi değişkeni) üstün bir başarı göstermiştir. Burada, giriş sayısı 1’den 4’e kadar 

giderken model performansları artmış ancak 4’ten sonra ele alınan 5 ve 6 giriş sayısı 

için performanslar çok değişmemiş bazı zaman ölçeklerinde de azalmıştır. Çalışmada, t 

orijinal kuraklık verisi olmak üzere; t, t-1, t-2, t-3 girdi değişkenleri ve t+1 çıktı 

değişkeni olarak belirlenmiş olup tüm tahmin modellerinde bu yapı kullanılmıştır.  

Dalgacık dönüşümü ile optimum gecikme zamanı, en uygun dalgacık ailesi ile dalgacık 

bant seviyeleri belirlendikten sonra diğer ön işleme teknikleri olan AMA ve VMA 

teknikleri ile yine kuraklık zaman serileri alt bantlarına ayrılmıştır. Bu tez çalışması; 

ADD, AMA ve VMA ön işleme tekniklerinin hidrometeorolojik zaman serilerinde bir 

arada kullanıldığı ilk tez çalışmasıdır. Literatür incelemesine göre [86, 87, 93, 122, 

209]; hidrometeorolojik zaman serilerinde veri ön işlemesi için en çok tercih edilen 

yöntem olan dalgacık dönüşümü başta olmak üzere genellikle tek ya da iki farklı 

yöntemin ele alındığı görülmüştür. Bu çalışmada, tahmin modellerinin performanslarını 

artırabilmek amacıyla bu denli kapsamlı bir veri ön işlemesi üzerinde durulmuştur. 

Ayrıca daha çok haberleşme, elektronik, biyomedikal ve tıp gibi alanlarda kullanılan 

AMA ve VMA tekniklerinin kuraklık zaman serilerini alt bantlarına ayrıştırma 
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performansları da görülmek istenmiştir. Dalgacık dönüşümünde olduğu gibi Sakarya 

istasyonunun her bir zaman ölçeği için AMA ve VMA’lı USBÇS hibrit tahmin 

modelinde optimum bant seviyeleri belirlenerek alt bantlarına ayrılan kuraklık zaman 

serileri tüm istasyonlar için tahmin modellerinde kullanılmıştır. Hem AMA hem de 

VMA yönteminde 2D, 3D, 4D ve 5D olmak üzere dört farklı bant seviyesi üzerinden 

veriler alt bantlarına ayrılmıştır. AMA-USBÇS hibrit tahmin modelinden elde edilen 

test sonuçlarına ait KOKH ve R2 performans kriterlerine göre; Sakarya istasyonunun her 

bir zaman ölçeğinde 2D bant seviyesi en başarılı sonuçları vermiştir. VMA-USBÇS 

hibrit tahmin modelinden elde edilen test sonuçlarına ait KOKH ve R2 performans 

kriterlerine göre ise Sakarya istasyonunun SYİ-1, SYİ-3 ve SYİ-12 zaman ölçeklerinde 

5D, SYİ-6 zaman ölçeğinde ise 4D bant seviyesi en başarılı sonuçları vermiştir. AMA 

tekniğinde bant seviyesinin artması performans kriterlerini iyileştirmemiş, VMA 

tekniğinde ise bant seviyesi arttıkça daha başarılı performans kriterleri elde edilmiştir.  

Kuraklık zaman serileri ile ilgili tüm veri hazırlıkları tamamlandıktan sonra ön işleme 

teknikleri ile alt bantlarına ayrılan ve yeniden elde edilen SYİ kuraklık zaman serileri, 

tüm istasyonlar için bağımsız ve hibrit tahmin modellerinde eğitme ve test verisi 

şeklinde girdi değişkeni olarak kullanılmıştır. İstasyonlara ait veri setlerinin %75’i 

eğitme, %25’i ise test verisi olarak alınmıştır. Tahmin modellerinde; YSA, USBÇS, 

GSR, DVMR makine öğrenmesi yöntemleri ile UKSB derin öğrenme yöntemi 

kullanılmıştır. Bu yöntemler, özellikle hidrometeoroloji alanında yapılan daha önceki 

çalışmalarda gösterdikleri tahmin performanslarına göre seçilmiştir [86, 91, 93, 210, 

211, 212]. Model gelişimde detaylı bir şekilde anlatıldığı üzere her bir makine ve derin 

öğrenme yöntemi için sayıca fazla, çok yönlü ve farklı kombinasyonlara imkân veren 

model parametreleri seçilmiştir. 

USBÇS tahmin modellerinde genellikle 3 üyelik sayısına sahip gaussmf-constant 

fonksiyonları en başarılı sonuçları vermiştir. İterasyon sayısının artması ise model 

performanslarını önemli ölçüde artırmamıştır. Bunun aksine YSA tahmin modellerinde 

hem nöron sayısı hem de iterasyon sayısı arttıkça modellerden daha başarılı sonuçlar 

elde edilmiştir. YSA tahmin modellerinde, transfer ve aktivasyon fonksiyonu 

kombinasyonları içerisinde logsig-purelin fonksiyonları genel olarak daha başarılı 

sonuçlar vermiştir. DVMR tahmin modellerinde ele alınan çekirdek fonksiyonları 

içerisinden radyal tabanlı fonksiyon (rbf) ve Gauss fonksiyonları, polinom ve doğrusal 
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fonksiyonlarına göre daha üstün sonuçlar vermiş olup sonuçları birbirine çok yakındır. 

GSR tahmin modellerinde çok sayıda radyal tabanlı fonksiyon ve çekirdek fonksiyonu 

denenmiş olup çekirdek fonksiyonları bu yönteme ait modellerde daha üstündür. 

Çekirdek fonksiyonları içerisinden de ard karesel üstel (ardsquaredexponential) 

fonksiyonu diğerlerine göre genelde daha üstün sonuçlar vermiştir. UKSB tahmin 

modellerinde ise hem nöron sayısı hem de döngü sayısı arttıkça tahmin başarısı 

artmaktadır. Öğrenme algoritmaları arasında ise Adam algoritması, SGDM ve 

RMSProp algoritmalarına göre daha üstün tahmin başarılarına ulaşmıştır. 

Tüm yöntemlere ait analizlerin yapıldığı Sakarya, Ankara, Kütahya ve Emirdağ 

istasyonlarında en üstün tahmin modelleri, ya bağımsız UKSB modeli ya da VMA-

UKSB hibrit modeli olarak bulunmuştur. Çalışmanın genelinde de, UKSB derin 

öğrenme yöntemine ait tüm bağımsız ve hibrit tahmin modelleri çok başarılı sonuçlar 

vermiştir. Ayrıca UKSB yöntemine ait tahmin modelleri, diğer USBÇS, YSA, GSR ve 

DVMR yöntemlerine ait modellere göre tahmin performansı bakımından üstünlük 

sağlamıştır. UKSB tahmin modellerine en çok yaklaşan modeller ise VMA-YSA, 

VMA-GSR ve ADD-YSA modelleri olmuştur. Ön işleme teknikleri içerisinde de VMA 

tekniği bu çalışmada öne çıkmış olup kuraklık zaman serilerini alt bantlarına 

ayrıştırmada, literatürde oldukça yaygın kullanımı olan ADD ve diğer bir yöntem olan 

AMA’a göre daha başarılı sonuçlar vermiştir. VMA ön işleme tekniğinin diğer 

yöntemlerle beraber oluşturduğu hibrit modellerde de başarısı oldukça iyidir. Örneğin; 

Sakarya istasyonu SYİ-1 zaman ölçeğinde VMA-YSA hibrit modelinin test sonuçlarına 

ait performans kriterlerine (OKH=0,060, KOKH=0,245, NSE=0,939, OI=0,946, 

OMH=0,200 ve R2=0,940) bakıldığında sonuçların oldukça iyi olduğu görülmüştür. 

Aynı zaman ölçeğinde YSA’nın diğer hibrit modellerine bakıldığında ise; ADD-YSA 

hibrit modelinin performans kriterlerinin (OKH=0,148, KOKH=0,385, NSE=0,846, 

OI=0,887, OMH=0,301 ve R2=0,851) ve AMA-YSA hibrit modelinin performans 

kriterlerinin (OKH=0,341, KOKH=0,584, NSE=0,646, OI=0,768, OMH=0,471 ve 

R2=0,880), VMA-YSA hibrit modelinin gerisinde kaldığı görülmüştür. Çalışmanın 

genelinde bu şekilde benzer sonuçlar görülmüştür. Daha önce bulgularda verilen ilgili 

tablolardan görüleceği üzere, ADD ile AMA teknikleri kendi içerisinde 

karşılaştırıldığında ise ADD tekniği daha başarılıdır. Bundan dolayı bu çalışmada, ADD 
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ve AMA tekniklerinin karşılaştırıldığı bazı çalışmalarla [86, 213] kıyaslandığında 

benzer ve tutarlı sonuçlara ulaşıldığı görülmüştür. 

Yukarıda belirtilen dört istasyonun tahmin modelleri incelendiğinde bağımsız USBÇS, 

YSA, GSR, DVMR tahmin modellerinin başarıları oldukça düşük kalmıştır. Yine 

Sakarya istasyonu SYİ-1 zaman ölçeğinden örnek vermek gerekirse; bağımsız USBÇS 

modelinin test sonuçlarına ait performans kriterleri (OKH=1,566, KOKH=1,252, NSE=-

0,628, OI=0,069, OMH=0,921 ve R2=0,002), bağımsız YSA modelinin test sonuçlarına 

ait performans kriterleri (OKH=1,220, KOKH=1,105, NSE=-0,268, OI=0,263, 

OMH=0,876 ve R2=0,164), bağımsız GSR modelinin test sonuçlarına ait performans 

kriterleri (OKH=1,013, KOKH=1,007, NSE=-0,053, OI=0,380, OMH=0,809 ve 

R2=0,054) ve bağımsız DVMR modelinin test sonuçlarına ait performans kriterleri 

(OKH=1,247, KOKH=1,117, NSE=-0,296, OI=0,248, OMH=0,870 ve R2=0,293) 

oldukça zayıf ve kabul edilemez değerlere sahiptir. Bağımsız modeller içerisinde 

yalnızca bağımsız UKSB tahmin modellerinden kabul edilebilir ve başarılı sonuçlar elde 

edilmiştir. Bağımsız modellerin tahmin performansları da yine çalışmanın genelinde 

benzer sonuçlar vermiştir.  

Sadece UKSB yöntemine ait bağımsız ve hibrit modellerin ele alındığı altı istasyonda da 

daha önceki istasyonlarda olduğu gibi test sonuçlarına ait performans kriterlerine göre 

yine bağımsız UKSB modeli ve VMA-UKSB hibrit modelinin büyük bir oranda diğer 

modellere üstünlük sağladığı görülmüştür. Bununla birlikte UKSB derin öğrenme 

yöntemine ait tüm modellerde test sonuçlarının performans kriterleri oldukça başarılıdır. 

Burada diğer dört istasyondan farklı olarak Geyve istasyonu SYİ-3 zaman ölçeği ve 

Ilgın istasyonu SYİ-6 zaman ölçeği için ADD-UKSB hibrit modeli en başarılı sonuçları 

vermiştir.  

Bu çalışma, benzer nitelikteki diğer çalışmalarla [56, 57, 58, 61, 62, 64, 86, 87 ve 93] 

kıyaslandığında; hem veri ön işleme teknikleri hem de tahmin yöntemleri açısından 

daha kapsamlıdır hem de kuraklık tahmin modellerinden daha üstün sonuçlar elde 

edilmiştir. 

Tüm bunlara ek olarak; bu çalışmada kabul edebileceğimiz en önemli sınır, kuraklık 

tahmininde meteorolojik değişken olarak sadece yağış değişkenin ele alınması ve 

bundan dolayı sadece yağışa bağlı hesaplanabilen SYİ kuraklık indisinin 
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kullanılmasıdır. Ayrıca Sakarya havzasında yer alan istasyonların kuraklık tahminleri 

yapıldıktan sonra her bir zaman ölçeği için alansal kuraklık haritalarının elde 

edilmemesi de çalışmanın sınırlarındandır.  

4.2. Sonuç ve Öneriler  

Bu tez çalışmasında; Türkiye’nin kuzeybatısında yer alan ve önemli nehir havzalarından 

biri olan Sakarya havzasındaki 10 adet istasyonun uzun dönem aylık yağış verileri 

kullanılmıştır. Yağış değişkenine bağlı olarak kolaylıkla hesaplanabilen ve yaygın bir 

kullanımı olan Standartlaştırılmış Yağış İndeksi (SYİ) kuraklık değerleri 1, 3, 6 ve 12 

aylık kısa zaman ölçekleri için elde edilmiştir. Heaplanan bu SYİ kuraklık zaman 

serileri; Ayrık Dalgacık Dönüşümü (ADD), Ampirik Mod Ayrıştırma (AMA) ve 

Varyasyonel Mod Ayrıştırma (VMD) ön işleme tekniklerine tabi tutularak alt bantlarına 

ayrılmış olup, böylece kuraklık zaman serileri yeniden elde edilmiştir. SYİ kuraklık 

zaman serileri; Uyarlamalı Sinirsel Bulanık Çıkarım Sistemi (USBÇS), Yapay Sinir 

Ağları (YSA), Gauss Süreç Regresyonu (GSR), Destek Vektör Makine Regresyonu 

(DVMR) ve Uzun-Kısa Süreli Bellek (UKSB) yöntemlerinin bağımsız ve hibrit 

modellerinde eğitme ve test verisi şeklinde girdi değişkeni olarak analiz edilmiştir. 

Analizler, MATLAB 2021b yazılımında geliştirilen kodlar aracılığı ile tamamlanmıştır. 

Böylece bağımsız ve hibrit modeller üzerinden istasyonların kısa dönem meteorolojik 

kuraklığı tahmin edilmiştir.  

Çalışmada; Sakarya havzasını temsilen seçilen 10 adet istasyonun ham yağış verilerine 

homojenlik, durağanlık ve bağımsızlık testleri uygulanmıştır. İstasyonların ham yağış 

verilerine uygulanan testlere ait istatistiksel sonuçlara göre, istasyon verilerinin tamamı 

homojen, durağan ve bağımsız çıkmıştır. Yağış verileri ile ilgili herhangi bir tutarsızlık 

ya da şüpheli durum söz konusu değildir. 

Havzayı temsilen seçilen 10 adet istasyonun aylık yağış verileri kullanılarak, DrinC 

yazılımı ile SYİ kuraklık değerleri elde edilmiştir. DrinC yazılımı, kuraklık indislerinin 

hesabını oldukça kolaylaştırmakta olup, işlem yükünden ve zamandan ciddi oranda 

tasarruf sağlayan bir yazılımdır. Standartlaştırılmış Yağış İndeksi (SYİ), Kuraklık Keşif 

İndisi (KKİ), Akım Kuraklık İndisi (AKİ) ve Onluklar indislerinin ele alındığı 

çalışmalarda DrinC yazılımının kullanılması önerilmektedir. Ayrıca bu yazılım ücretsiz 

olup tüm araştırmacılara, kamu kurum ve kuruluşlarına da açıktır. 
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Seçilen bu 10 istasyonun mevcut durumdaki SYİ kuraklık sınıfı, normale yakın olarak 

bulunmuştur. İstasyonlarda görülen kuraklık sınıflarının oluşum yüzdeleri genel olarak 

benzer bir eğilimdedir. SYİ-1 ve SYİ-12 zaman ölçeklerinde aşırı nemli ya da aşırı 

kurak dönemler çok az görülmüştür. Havzadaki bu 10 istasyon için mevcut kuraklık 

durumunun homojen bir dağılımda olduğu söylenebilir. 

SYİ kuraklık zaman serilerinde, dikkate alınan 10 gecikme zamanına kadar %95 güven 

aralığında otokorelasyon varlığı mevcut değildir.  

Dalgacık dönüşümü ile orijinal SYİ kuraklık zaman serilerine ait veri seti, alt bantlarına 

ayrılarak daha kısa ve öznitelikleri daha yüksek bir formda yeniden elde edilmiştir. 

Dalgacık dönüşümünde, Ayrık Dalgacık Dönüşümü (ADD) tekniği uygulanmıştır. 

Dalgacık dönüşümü ile ilgili yapılan analizler sonucunda; SYİ-1, SYİ-3, SYİ-6 zaman 

ölçeklerinde, Meyer’in Ayrık Yaklaşımı (Discrete approximation of Meyer-dmey) 

dalgacık ailesinin kuraklık zaman serilerileri ile daha uyumlu olduğu ve alt bantlarına 

ayırmada üstün performans gösterdiği görülmüştür. SYİ-12 zaman ölçeğinde ise 

Symlets (sym3) dalgacık ailesi iyi bir performans göstermiştir. Ayrıca, bu çalışmada 

dalgacık dönüşümünde gecikme zamanının ve dalgacık bant seviyelerinin artması 

model performansını önemli ölçüde iyileştirmemiştir. Dalgacık dönüşümü analizleri 

sonucunda; 3 gecikme zamanı (t, t-1, t-2, t-3 girdi değişkeni) ve 3. bant seviyesi 

optimum değerler olarak bulunmuştur. Sadece SYİ-6 zaman ölçeğinde 4. bant seviyesi 

daha iyi bir performans göstermiştir. 

Dalgacık dönüşümünde olduğu gibi Ampirik Mod Ayrıştırma (AMA) ve Varyasyonel 

Mod Ayrıştırma (VMA) ön işleme teknikleri, daha nitelikli bir veri seti oluşturmak 

amacıyla SYİ kuraklık zaman serilerine uygulanarak alt bantlarına ayrılmıştır. AMA 

tekniğinde 2D bant seviyesi, VMA tekniğinde ise 4D ve 5D bant seviyeleri iyi bir başarı 

göstermişlerdir. AMA tekniğinde bant seviyesinin artması ile birlikte model 

performansları iyileşmezken, VMA tekniğinde ise bant seviyesi arttıkça daha başarılı 

tahmin modelleri elde edilmiştir. VMA bant seviyesi, bu çalışmada 2D’den 5D’e kadar 

incelendiğinden dolayı, VMA tekniğinin ele alınacağı ileriki çalışmalarda bant 

seviyesinin daha fazla artırılması ile sonuçların nasıl değişecebileceği detaylıca 

araştırılmalıdır. 
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ADD, AMA ve VMA ön işleme tekniklerinin uygulanmadığı bağımsız USBÇS, YSA, 

GSR ve DVMR tahmin modelleri, çalışmada dikkate alınan performans kriterlerine göre 

oldukça zayıf tahmin performansları göstermişlerdir. Kuraklık zaman serilerinin ele 

alınacağı tahmin çalışmalarında bu makine öğrenmesi yöntemlerine dayalı modellerin 

ön işleme teknikleri ile desteklenmesi önerilmektedir.   

Bu çalışmada; Uzun-Kısa Süreli Bellek (UKSB) derin öğrenme yöntemine ait bağımsız 

ve hibrit tahmin modelleri, çok başarılı sonuçlar vermiştir. Diğer bağımsız makine 

öğrenmesi modellerinin aksine bağımsız UKSB modellerinin tahmin performansları da 

oldukça üstündür. Veri ön işleme teknikleri uygulanmamasına rağmen hem eğitme hem 

de test sonuçlarına göre bağımsız UKSB modellerinin tahmin kapasitesi çok yüksektir. 

Bağımsız UKSB tahmin modellerinin bu başarısının, ön işleme tekniklerine olan ilgiyi 

azaltacağı düşünülmektedir. UKSB’nin hibrit modelleri içerisinde ise VMA-UKSB 

hibrit modeli diğer hibrit modellere göre daha üstündür. UKSB tahmin modellerinden 

elde edilen en olumsuz sonuç, veri sayısının azalması ile tahmin performansının 

düşmesidir.  Ayrıca, UKSB yönteminde işlem yükü ve süresi diğer makine öğrenmesi 

yöntemlerine kıyasla daha fazladır. 

VMA-YSA, VMA-GSR ve ADD-YSA hibrit tahmin modellerinin performansları, 

UKSB tahmin modellerine oldukça yakındır. Kuraklık tahmin çalışmalarında bu 

modellerin de mutlaka değerlendirilmesi önerilmektedir. 

Çalışmada kullanılan ADD, AMA ve VMA ön işleme teknikleri arasında, VMA tekniği 

diğerlerine göre daha üstündür. VMA’nın hemen hemen her yöntemle uyumlu olduğu 

görülmüştür. ADD ile AMA teknikleri karşılaştırıldığında ise ADD tekniği daha başarılı 

sonuçlar vermiştir. Özellikle elektronik, haberleşme, biyomedikal ve tıp gibi alanlarda 

yaygın kullanılan VMA tekniğinin hidrometeorolojik değişkenlerin ele alındığı 

çalışmalarda kullanılması model performanslarının iyileştirilmesi adına önemlidir.  

Kuraklığın tespiti, izlenmesi ve geleceğe yönelik öngörülerin yapılabilmesi için bilim ve 

teknolojik gelişmelerden yararlanılmalıdır. Son yıllarda hemen hemen tüm sektörlerde 

yaygın olarak kullanılan makine öğrenmesi ve derin öğrenme yöntemlerinin kuraklık 

analizlerinde de dikkate alınması gerekir. Bu çalışmada sadece yağış değişkenine bağlı 

olarak meteorolojik kuraklık analiz edilmiştir. Kuraklık analizlerinde kuraklığın en 

önemli değişkeni olan yağış parametresi ile birlikte diğer meteorolojik ve iklimsel 
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parametreler de kuraklık tahmin modellerine dâhil edilmelidir. Bu şekilde elde edilen 

modeller daha kompleks olacağından bu kuraklık modellerini çözebilmek için en uygun 

tekniklerin yapay zekâ ve yapay zekânın alt dallarında yer alan yöntemlerin olacağı 

aşikârdır. Özellikle son dönemin en gelişmiş öğrenme algoritmaları olan derin sinir 

ağları ve derin öğrenme algoritmaları yaygın bir şekilde kuraklık çalışmalarında dikkate 

alınmalıdır.  
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EK 2. Diğer istasyonlara ait aylık SYİ kuraklık değerleri izleme tabloları 

Tablo 1. Ankara SYİ-1 kuraklık değerleri izleme tablosu 

              Aylar           

Yıllar 1 2 3 4 5 6 7 8 9 10 11 12 

1960 - 1961 -0.29 0.75 0.50 0.28 -0.79 0.36 0.50 -0.29 -0.04 0.34 -0.26 -0.44 

1961 - 1962 -0.26 0.96 -0.70 -1.69 -0.53 2.03 -0.55 -1.20 0.74 0.15 -1.65 0.58 

1962 - 1963 -0.15 1.46 1.05 -0.97 -0.89 -1.11 -0.87 0.37 1.74 0.29 -1.17 1.47 

1963 - 1964 1.55 1.63 -0.26 1.23 1.86 -0.35 0.76 -1.20 1.67 0.21 -1.07 0.56 

1964 - 1965 -2.27 1.01 0.32 -1.40 -0.24 0.79 -0.28 -0.32 0.10 -2.14 0.57 1.36 

1965 - 1966 -1.05 1.51 0.06 0.23 0.50 -0.77 -0.21 -0.60 -1.51 -0.74 0.59 -0.21 

1966 - 1967 0.65 -2.77 0.89 0.30 0.55 -0.65 0.94 0.96 0.15 -0.97 -0.43 0.16 

1967 - 1968 0.03 -0.22 0.51 1.24 0.24 -0.99 -0.30 -0.07 -0.47 -0.70 0.16 0.03 

1968 - 1969 1.71 -0.74 0.64 0.31 -0.22 0.95 0.24 0.57 1.16 0.40 1.09 1.27 

1969 - 1970 1.23 1.11 0.53 0.90 0.69 -0.02 -0.53 -1.20 -0.54 -0.84 0.32 1.13 

1970 - 1971 0.38 1.04 -0.22 -1.60 0.07 -0.63 1.45 -1.20 0.31 0.46 -0.10 0.08 

1971 - 1972 0.02 -0.56 0.13 0.02 0.94 -0.20 -0.35 0.09 0.45 -0.48 1.00 0.35 

1972 - 1973 -1.07 -0.53 -1.59 0.03 0.11 1.34 1.54 1.33 1.22 1.32 -0.52 -1.17 

1973 - 1974 -1.30 -0.54 0.18 0.72 -1.10 0.79 0.51 -0.26 0.44 -1.56 -0.82 0.42 

1974 - 1975 -1.93 -0.35 -0.68 -0.64 1.51 0.57 0.19 0.70 0.57 -0.45 -0.72 0.57 

1975 - 1976 0.71 0.15 -1.13 1.18 1.40 1.19 -0.71 0.96 -1.30 -0.16 1.15 0.05 

1976 - 1977 1.18 -0.74 -0.73 0.13 0.58 -0.11 -1.27 -0.60 0.38 1.54 -0.51 0.83 

1977 - 1978 -0.45 -1.25 -0.56 0.34 -0.87 -0.75 -0.61 0.24 0.43 -0.91 -0.51 -0.59 

1978 - 1979 0.42 0.51 -0.11 1.43 -1.65 -1.37 -1.52 -0.23 1.58 0.86 -3.09 0.84 

1979 - 1980 1.79 -0.31 -1.32 -2.04 0.51 -0.64 -0.47 -0.68 -1.15 0.58 0.56 -0.38 

1980 - 1981 1.44 -0.03 -0.22 0.59 0.65 -0.55 0.01 -0.07 -1.15 -1.50 1.22 -0.01 

1981 - 1982 0.94 0.23 1.76 -0.68 0.21 -0.27 0.85 0.10 0.65 -0.45 1.06 1.02 

1982 - 1983 -0.17 -1.50 -0.69 1.35 -1.00 0.41 0.60 2.45 -1.15 0.00 -2.07 -0.62 

1983 - 1984 0.22 0.23 -1.63 0.02 0.80 0.35 1.65 1.10 -0.02 -0.13 2.42 -0.63 

1984 - 1985 0.15 -0.40 -0.01 1.10 -0.73 -0.17 1.47 0.51 -1.51 -2.07 -0.25 -1.95 

1985 - 1986 0.86 1.46 -1.27 0.28 0.08 -1.47 -0.38 -0.58 -1.51 1.09 0.86 -0.23 

1986 - 1987 1.20 0.67 -1.43 -1.34 -0.29 0.91 -0.32 -1.05 0.23 -0.92 -0.16 0.99 

1987 - 1988 1.42 -0.72 0.47 -0.12 0.20 0.20 0.56 -0.41 -0.70 -0.17 -0.04 0.88 

1988 - 1989 -1.18 0.29 1.09 0.52 0.01 1.59 -1.02 -1.20 0.01 1.51 0.38 -1.01 

1989 - 1990 -2.02 -1.11 -1.17 -2.19 0.84 -0.50 0.11 0.31 -0.54 1.24 1.85 -0.08 

1990 - 1991 -0.72 -1.05 -0.51 1.85 0.14 -0.75 0.51 0.90 1.35 0.61 -0.67 0.17 

1991 - 1992 -0.53 0.51 -1.55 0.84 0.73 0.18 -0.81 -0.19 -0.07 0.86 -0.85 0.82 

1992 - 1993 -2.27 -2.01 0.54 -0.02 -3.63 0.71 1.18 0.77 -0.67 0.46 0.78 -0.04 

1993 - 1994 -0.36 0.07 -0.89 -0.55 1.17 -0.86 -0.78 0.31 -1.01 -1.76 0.37 -0.23 

1994 - 1995 -0.29 0.09 -1.19 -0.42 -0.28 -1.33 -0.55 -0.75 -0.26 0.30 1.39 -0.79 

1995 - 1996 -0.14 -1.37 1.91 0.68 -0.63 0.86 3.41 -0.32 0.16 0.19 1.23 -0.70 

1996 - 1997 -0.30 0.27 1.53 -0.18 1.05 -1.63 -0.64 0.89 1.65 0.76 -1.26 0.77 

1997 - 1998 0.00 -0.83 -1.46 1.44 0.75 2.04 -1.21 1.15 -1.30 1.18 0.42 0.79 

1998 - 1999 -1.52 0.81 0.35 0.95 0.56 0.51 0.57 -1.20 -0.10 0.31 0.45 0.49 

1999 - 2000 -0.40 1.76 0.70 -1.40 -2.34 0.13 1.76 1.20 0.53 0.72 0.18 -0.01 

2000 - 2001 0.38 0.45 0.16 1.06 -1.40 0.11 -1.65 0.96 -0.43 -0.13 -1.41 -0.31 

2001 - 2002 -1.98 0.47 -0.26 -0.59 1.63 -1.84 -0.96 0.75 0.18 -1.94 1.32 1.86 

2002 - 2003 -0.31 -1.27 -0.85 1.65 -0.29 -0.10 1.41 -0.02 1.48 -0.03 -0.44 -1.04 

2003 - 2004 0.19 0.87 -2.19 0.93 -1.35 -1.84 -0.87 -1.05 0.29 0.27 -1.71 0.68 

2004 - 2005 0.34 -0.76 -1.67 -0.11 -0.50 -0.23 -0.40 0.40 -0.65 -0.70 0.35 -1.58 

2005 - 2006 -0.87 -0.22 1.17 1.14 1.13 0.19 0.15 -1.11 1.20 0.20 0.82 -1.16 

2006 - 2007 -0.06 1.26 0.12 -0.49 -0.70 0.01 -1.02 -1.11 1.93 0.53 -0.44 -2.12 

2007 - 2008 0.08 -0.89 -0.02 -0.77 -1.36 0.00 -0.71 0.22 -1.51 -0.49 1.37 0.18 

2008 - 2009 -0.82 -1.89 0.72 -0.33 -0.04 -1.05 -1.65 -0.86 1.62 -0.23 0.67 -0.40 

2009 - 2010 0.82 1.32 0.75 0.94 -0.94 -0.14 0.30 -0.96 0.03 -0.51 0.65 0.85 

2010 - 2011 0.86 1.20 0.30 -0.13 -0.62 0.78 0.98 -0.96 -0.86 3.03 0.22 0.83 

2011 - 2012 0.19 -0.39 0.82 0.33 0.80 0.42 0.05 0.82 -1.11 1.23 -1.04 0.01 

2012 - 2013 1.61 0.64 0.23 -0.72 0.58 -1.79 -0.61 0.05 -0.53 -0.23 0.40 1.27 

2013 - 2014 0.31 0.14 0.93 0.13 -1.11 -0.38 0.50 -0.64 -0.76 0.02 -0.39 -1.97 

2014 - 2015 -0.18 -1.00 0.83 0.09 1.16 0.95 -0.13 1.71 1.57 0.68 0.01 0.18 

2015 - 2016 0.60 0.31 1.90 -0.71 0.64 2.21 -0.54 1.00 -0.27 0.70 -0.26 -1.83 

2016 - 2017 1.57 0.33 1.72 -1.02 0.16 -0.43 -1.65 2.11 0.68 -1.39 -0.21 0.43 

2017 - 2018 -0.03 -1.60 0.56 -0.83 0.24 0.74 0.12 0.65 -0.44 0.33 0.59 0.24 

2018 - 2019 0.62 0.20 1.69 -2.69 1.29 0.44 0.07 0.34 -0.45 1.05 -0.10 0.91 

2019 - 2020 0.39 0.28 0.07 0.43 -0.41 0.36 1.35 1.12 -1.30 -0.99 -0.32 0.80 

2020 - 2021 -0.69 1.35 -0.83 -0.79 0.70 1.81 -0.54 -1.20 -0.33 0.26 -1.61 -2.14 
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Tablo 2. Kütahya SYİ-1 kuraklık değerleri izleme tablosu 

              Aylar           

Yıllar 1 2 3 4 5 6 7 8 9 10 11 12 

1960 - 1961 1.08 0.24 1.27 0.33 -0.25 0.77 0.36 -0.49 0.03 0.27 -0.68 1.55 

1961 - 1962 -0.27 0.49 -0.06 0.02 -1.98 0.70 -1.33 -0.79 0.37 0.46 -0.39 -0.10 

1962 - 1963 -0.49 1.12 1.49 -0.27 -0.44 -0.96 -0.24 -1.22 1.17 0.43 -0.35 1.76 

1963 - 1964 0.79 1.43 0.45 -0.23 1.64 0.66 0.63 -1.29 -0.58 0.88 -0.02 0.39 

1964 - 1965 -1.87 -0.32 1.52 -1.33 -0.16 1.88 0.31 -0.64 0.82 -2.14 0.42 0.25 

1965 - 1966 -0.40 1.78 0.16 1.77 2.43 -1.52 0.20 -1.16 -1.84 -1.09 1.28 0.02 

1966 - 1967 1.30 -1.15 2.07 0.21 -0.07 0.13 0.19 1.11 -0.60 -1.48 -0.01 0.50 

1967 - 1968 0.30 -0.13 0.28 0.29 -0.55 -1.58 1.36 -0.99 -0.43 -0.59 -0.59 0.52 

1968 - 1969 1.72 -0.15 2.21 -0.95 -0.66 0.05 -1.07 0.38 0.01 0.27 -0.01 0.81 

1969 - 1970 0.31 1.04 -0.17 0.54 -1.01 0.18 1.30 -1.29 -0.91 -1.75 0.24 1.41 

1970 - 1971 0.72 1.86 2.01 -0.35 -0.44 -0.14 0.15 -1.29 0.64 0.48 0.11 0.25 

1971 - 1972 0.07 -0.53 1.19 -0.44 0.53 0.31 1.71 0.73 0.54 0.68 0.86 0.27 

1972 - 1973 -0.92 -0.88 -0.77 -0.37 0.54 1.17 1.39 0.78 0.58 1.52 -0.59 -2.06 

1973 - 1974 -1.50 1.11 -0.33 0.53 -0.60 0.32 0.12 -0.42 -0.32 0.78 0.28 0.57 

1974 - 1975 -0.85 0.69 -0.70 0.55 0.31 -0.11 -1.36 0.76 0.70 -0.10 -0.03 -0.01 

1975 - 1976 -0.34 0.07 1.24 0.25 1.68 0.96 -1.39 1.16 0.48 -0.23 1.05 0.27 

1976 - 1977 0.24 -0.50 -1.01 0.25 0.42 -0.10 0.57 0.16 -0.32 0.87 -1.19 0.97 

1977 - 1978 -0.64 -0.75 -0.70 0.87 -1.12 0.08 0.26 -0.11 1.10 0.92 0.49 0.82 

1978 - 1979 1.05 1.24 0.48 0.48 -0.05 -0.92 -1.39 -1.29 1.67 0.63 -1.07 0.06 

1979 - 1980 1.78 -0.52 -1.22 -0.85 1.53 0.97 -0.69 -1.13 0.22 0.23 1.14 0.08 

1980 - 1981 1.48 -0.80 0.93 0.28 -0.66 -0.22 -0.86 -0.88 1.31 0.19 1.15 1.28 

1981 - 1982 0.98 0.54 0.26 -0.40 -0.20 0.66 -0.01 0.51 -0.31 0.46 0.67 1.41 

1982 - 1983 -0.28 -0.42 -1.55 1.16 0.28 -0.70 0.26 -0.99 -0.27 -0.05 -1.89 -1.04 

1983 - 1984 0.51 -0.05 -1.56 0.41 -0.17 -0.11 1.55 -0.84 -0.79 -0.42 2.21 -0.46 

1984 - 1985 -0.02 0.27 0.67 1.66 -0.31 -1.94 0.57 1.23 -1.46 -2.08 0.08 -1.72 

1985 - 1986 1.47 0.72 0.21 -0.49 -0.76 -0.54 -1.39 -0.20 -1.12 -0.51 0.77 -0.58 

1986 - 1987 0.69 1.10 -2.32 -0.60 -0.74 0.15 -0.79 -0.47 0.59 -0.54 -1.28 1.40 

1987 - 1988 1.36 -0.69 0.16 0.63 -0.11 0.07 0.16 0.60 -1.50 -0.42 0.53 -0.14 

1988 - 1989 -1.48 0.54 0.00 0.48 0.48 0.46 -0.22 0.51 -0.48 1.18 1.05 -0.24 

1989 - 1990 -1.57 -1.51 -1.49 -3.27 -0.07 -0.90 0.94 -0.71 -1.66 1.16 1.02 0.08 

1990 - 1991 -1.78 -0.66 -1.25 0.60 -1.33 0.18 -0.04 0.60 0.72 0.42 -0.14 0.80 

1991 - 1992 -0.05 0.08 -1.14 0.14 1.14 -0.17 0.78 0.95 -1.04 -0.21 -0.03 0.23 

1992 - 1993 -2.41 -1.68 0.55 0.71 -2.12 0.97 1.63 0.24 -1.84 0.42 0.07 -0.80 

1993 - 1994 -0.25 0.90 -0.96 -0.93 0.36 -0.83 -0.68 0.14 -0.65 -1.52 1.05 -0.03 

1994 - 1995 -0.45 -0.16 0.05 -0.30 -1.16 -0.84 0.23 0.65 -1.35 0.97 0.45 -0.23 

1995 - 1996 0.20 -1.95 0.87 0.43 -0.95 -0.15 0.95 -0.07 0.28 0.61 0.61 0.03 

1996 - 1997 -0.03 0.20 0.88 -0.21 -0.66 -1.40 1.05 -0.84 1.12 -0.09 -0.70 0.48 

1997 - 1998 -0.67 -1.19 -1.22 1.34 0.01 0.65 0.05 2.12 0.09 1.66 -0.61 0.30 

1998 - 1999 -0.64 0.01 0.79 0.36 1.81 1.13 -0.94 -1.29 0.09 0.22 0.59 0.21 

1999 - 2000 0.58 1.37 0.16 -1.28 -2.22 -0.29 1.35 0.72 0.03 -0.86 0.04 -1.10 

2000 - 2001 0.22 1.07 0.35 1.94 0.34 -1.88 -0.34 1.11 0.18 -0.23 -1.21 -0.08 

2001 - 2002 -1.48 -0.36 -0.36 0.53 0.19 -2.54 -0.48 0.24 -0.79 -1.89 2.44 2.21 

2002 - 2003 0.16 -1.37 0.48 1.71 -0.98 -1.71 2.07 0.54 2.03 0.29 0.25 -0.53 

2003 - 2004 -0.51 1.80 -1.16 1.25 -0.45 -1.27 -1.39 0.20 -0.34 0.75 -1.83 0.59 

2004 - 2005 0.09 -0.46 -0.92 0.41 0.80 -1.08 -0.57 0.80 -1.66 -1.40 0.71 -1.26 

2005 - 2006 -0.50 0.47 1.10 0.37 -0.15 -0.24 1.06 0.37 0.76 -1.06 0.45 -0.39 

2006 - 2007 0.77 -0.10 -0.26 -2.91 -0.55 -0.55 -0.22 -1.29 1.45 1.34 -0.27 -1.88 

2007 - 2008 -0.08 -1.69 -0.65 -0.84 0.15 0.80 -1.39 0.28 -0.26 0.26 1.71 -0.06 

2008 - 2009 -2.84 -2.29 0.88 -0.81 -0.97 -0.63 -0.91 -0.07 1.41 -0.93 0.14 -0.67 

2009 - 2010 0.34 1.81 0.22 0.28 0.57 -1.07 0.47 -0.51 0.99 -0.72 0.36 0.28 

2010 - 2011 0.09 0.66 -0.42 -1.07 -0.94 0.93 -0.70 0.74 0.28 1.37 -0.84 -0.03 

2011 - 2012 -0.15 -1.54 -1.10 1.18 1.42 1.30 -1.05 0.06 0.39 1.56 -3.74 0.40 

2012 - 2013 1.85 0.63 0.31 0.31 0.61 -0.36 0.84 -0.50 -1.19 0.39 -0.49 0.58 

2013 - 2014 0.15 0.21 0.32 -0.70 -1.01 0.48 0.52 -0.47 -1.14 0.51 -0.64 -1.90 

2014 - 2015 -0.67 -1.17 -0.73 0.22 1.19 1.14 -0.39 -0.27 2.54 0.72 0.06 0.83 

2015 - 2016 0.58 0.84 -0.66 0.51 1.69 2.02 -1.25 2.25 0.47 -0.05 -0.14 -2.10 

2016 - 2017 1.37 -0.55 0.77 -0.78 0.18 0.61 -0.83 0.52 0.85 -1.89 0.07 -0.29 

2017 - 2018 0.17 -1.22 -0.87 0.77 1.47 1.18 0.41 2.40 0.22 0.91 -0.20 -0.01 

2018 - 2019 0.00 -0.15 1.07 -1.88 1.35 1.68 1.00 1.67 -0.66 1.18 -0.01 0.44 

2019 - 2020 0.77 0.06 -1.30 -0.29 -0.59 1.18 0.39 -0.68 -0.73 -0.50 -0.52 -0.02 

2020 - 2021 0.30 0.62 -0.56 -1.69 1.20 1.22 0.24 0.12 0.70 -0.54 -2.07 -2.14 
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Tablo 3. Bolu SYİ-1 kuraklık değerleri izleme tablosu 

              Aylar           

Yıllar 1 2 3 4 5 6 7 8 9 10 11 12 

1960 - 1961 1.94 0.31 0.66 -0.65 0.36 0.46 0.64 1.66 -0.35 -0.07 -1.30 0.25 

1961 - 1962 -0.53 0.45 0.25 -0.35 -0.63 0.72 -0.33 -1.18 -0.02 0.44 0.69 -1.54 

1962 - 1963 -1.80 0.68 0.31 0.17 -0.75 -1.95 -0.63 -1.35 0.62 0.93 -0.94 1.53 

1963 - 1964 1.65 -0.64 0.46 0.48 0.84 -0.07 1.02 -1.17 0.61 -0.16 -0.20 1.37 

1964 - 1965 -0.02 0.36 0.12 -0.62 -0.50 0.51 -1.05 0.66 1.12 -2.33 1.12 0.37 

1965 - 1966 -1.83 0.82 0.44 0.79 0.37 -0.17 1.56 -0.06 -2.10 -1.08 0.60 -0.09 

1966 - 1967 0.08 -2.30 1.19 0.21 0.23 -1.11 -0.16 0.98 -0.06 -0.75 -1.26 -0.42 

1967 - 1968 -0.26 0.24 0.04 -0.06 1.05 -0.31 0.21 -1.02 0.37 -0.71 1.56 -0.43 

1968 - 1969 2.23 -0.33 1.06 0.18 0.54 0.27 -1.25 0.39 1.91 -0.54 -0.24 0.23 

1969 - 1970 -0.34 -0.16 -0.25 0.29 -0.43 0.72 -0.92 -1.35 -0.16 -1.61 -0.49 0.12 

1970 - 1971 0.00 1.72 1.15 0.03 0.91 0.46 -0.25 0.76 -0.09 -0.24 -0.26 1.86 

1971 - 1972 -0.32 -0.24 0.65 0.67 0.96 0.24 -0.05 -0.27 0.66 0.06 -0.20 2.35 

1972 - 1973 -1.58 -2.04 -2.31 0.27 -0.37 1.99 0.62 1.33 1.34 0.97 -0.27 -1.95 

1973 - 1974 -0.19 -0.41 0.27 0.40 -0.85 0.13 0.35 0.27 -1.09 -0.61 1.92 -0.61 

1974 - 1975 -0.08 -0.92 -0.44 0.69 0.90 0.06 -1.15 0.87 0.86 -1.08 -0.30 -0.78 

1975 - 1976 0.11 0.18 0.07 -0.04 3.09 0.46 -1.16 1.74 -0.55 -0.05 0.04 0.82 

1976 - 1977 0.86 -0.61 -0.19 -0.80 1.21 -0.66 0.53 1.10 -0.22 0.29 -0.60 -0.13 

1977 - 1978 -1.03 -1.10 -0.14 0.21 -1.54 -0.62 -1.07 -0.15 0.32 -0.47 0.25 -0.49 

1978 - 1979 0.91 -0.06 -1.25 1.48 -0.43 -1.55 0.43 0.25 1.73 0.19 -2.71 0.71 

1979 - 1980 1.09 0.15 -1.57 -0.51 0.80 0.16 1.22 0.01 -0.65 -0.66 1.12 -0.61 

1980 - 1981 0.79 -0.44 1.11 0.32 0.15 -1.18 -1.88 -0.26 -0.01 -1.13 1.73 0.54 

1981 - 1982 0.44 -0.15 1.63 -2.17 0.43 -1.67 -1.17 -0.82 0.45 0.07 0.21 1.76 

1982 - 1983 0.04 -0.38 -1.02 0.07 0.35 -0.74 0.86 1.82 0.60 -0.77 -0.99 -1.49 

1983 - 1984 1.50 -0.08 -1.48 -0.98 -0.61 0.34 1.77 0.08 0.36 0.64 1.45 -1.30 

1984 - 1985 -0.08 -0.54 -0.13 0.84 -0.07 -0.74 0.42 1.02 -1.72 -1.43 0.46 -2.22 

1985 - 1986 -0.53 1.91 -1.39 -0.11 -0.10 -0.37 -0.50 -0.89 -1.36 0.46 -0.49 1.76 

1986 - 1987 1.00 0.04 -2.54 -0.62 -0.14 0.55 -0.18 -0.13 -1.13 -0.21 0.55 0.13 

1987 - 1988 1.17 -1.37 -0.15 0.08 0.37 -0.40 0.65 0.13 -1.79 0.57 -0.32 1.07 

1988 - 1989 -1.43 -0.33 0.65 -0.71 1.01 1.12 0.65 -0.20 -1.49 0.40 0.49 0.76 

1989 - 1990 -2.03 -1.34 -1.08 -3.10 0.11 1.18 0.24 0.89 0.08 0.46 1.03 0.26 

1990 - 1991 -1.13 -1.93 -2.06 0.88 -0.47 -0.30 -0.47 -0.64 1.06 0.62 0.05 0.10 

1991 - 1992 -1.04 0.18 -0.85 -0.66 1.35 0.16 1.24 0.74 0.33 0.08 -0.20 0.32 

1992 - 1993 0.25 -0.07 0.52 -0.47 -3.22 0.65 0.49 -1.35 -1.11 0.91 1.37 0.82 

1993 - 1994 -1.33 -0.62 -0.76 -1.69 0.89 -0.99 -2.89 1.13 -0.60 -1.40 0.50 -0.58 

1994 - 1995 -0.64 -0.16 -1.68 -0.96 -0.78 -1.37 -0.79 -0.52 -0.95 -0.08 1.39 0.72 

1995 - 1996 0.33 -1.47 0.80 0.02 -1.03 0.63 1.35 0.20 0.31 0.00 0.99 -1.21 

1996 - 1997 -0.16 -0.25 1.39 -0.36 0.11 -1.19 0.48 0.31 1.07 0.67 -0.96 -0.01 

1997 - 1998 0.56 -0.27 0.14 2.45 -0.45 0.72 -0.01 2.02 -1.00 1.05 0.22 0.62 

1998 - 1999 0.58 0.91 -0.52 0.96 2.76 0.52 -0.49 -1.35 0.70 0.52 0.14 -0.79 

1999 - 2000 -1.28 1.44 -0.50 -0.58 -1.37 0.96 1.68 0.96 0.40 0.10 0.59 -0.94 

2000 - 2001 -0.02 0.17 0.92 2.45 -0.74 0.01 0.43 1.16 -0.63 -0.20 -2.18 -1.36 

2001 - 2002 -2.03 -0.16 0.74 -0.05 1.25 -1.59 -0.64 0.98 -0.22 -1.72 1.42 1.36 

2002 - 2003 0.43 -0.41 -0.85 1.67 -0.29 -0.34 0.71 0.76 0.29 0.16 -0.19 -1.06 

2003 - 2004 0.76 0.60 -1.31 -1.44 -0.53 -3.23 -1.88 -0.32 0.60 1.34 -1.21 0.58 

2004 - 2005 -0.08 1.13 0.89 0.05 -0.57 0.76 0.36 0.88 -1.57 -1.06 0.28 -1.56 

2005 - 2006 0.34 -0.10 0.99 0.90 -0.46 0.25 1.04 -0.49 0.15 0.29 0.81 -0.73 

2006 - 2007 -0.68 0.64 0.05 -2.22 -0.74 -1.00 -0.59 -1.14 1.73 -0.78 -0.02 -1.07 

2007 - 2008 2.43 -2.03 1.25 -0.95 0.65 -0.62 -1.12 0.41 -2.03 -1.04 0.82 -0.34 

2008 - 2009 0.21 -0.51 0.87 -0.43 0.73 0.25 -0.23 -1.35 1.97 -0.69 0.75 0.05 

2009 - 2010 0.31 0.53 1.25 0.29 -1.12 0.29 1.29 -0.92 0.95 -1.12 0.26 -0.21 

2010 - 2011 -0.06 1.67 0.68 0.62 -0.42 1.44 0.70 -0.84 0.21 2.06 -1.10 0.45 

2011 - 2012 0.59 0.68 1.12 0.22 -0.34 1.02 0.55 -0.28 0.56 0.91 0.73 -1.05 

2012 - 2013 0.96 1.04 0.33 1.62 1.41 1.84 1.17 0.37 0.32 -1.15 -1.34 0.75 

2013 - 2014 -1.26 0.63 0.68 -1.52 -0.82 0.66 -1.25 -0.56 0.71 0.78 0.24 -0.69 

2014 - 2015 0.36 0.94 1.25 0.35 0.74 0.44 0.97 0.38 1.21 1.63 0.40 0.53 

2015 - 2016 0.74 0.67 -0.56 0.73 -1.16 0.88 -2.19 -0.32 0.33 0.36 -1.76 -0.84 

 

 



227 

Tablo 4. Emirdağ SYİ-1 kuraklık değerleri izleme tablosu 

              Aylar           

Yıllar 1 2 3 4 5 6 7 8 9 10 11 12 

1964 - 1965 -2.07 0.26 0.95 -1.44 -0.63 2.16 0.43 -0.69 0.59 -2.04 0.47 0.96 

1965 - 1966 0.07 1.53 0.28 0.67 0.12 -1.16 -0.18 -1.02 -0.56 -0.72 0.52 -0.25 

1966 - 1967 0.57 -2.38 1.22 0.33 1.24 0.22 0.35 -0.11 1.19 -1.51 -0.05 0.78 

1967 - 1968 0.20 0.86 0.26 0.71 1.09 -0.39 0.12 -0.48 -0.24 -0.13 0.12 0.63 

1968 - 1969 1.69 0.20 2.29 0.10 0.74 0.36 -1.30 0.74 1.15 0.25 0.36 0.91 

1969 - 1970 1.23 0.86 0.71 1.43 0.26 -0.82 0.65 -1.00 0.25 -1.07 0.02 0.93 

1970 - 1971 1.44 0.52 0.89 -1.37 -1.66 -0.05 1.02 0.86 0.05 1.26 -0.39 0.78 

1971 - 1972 -1.01 1.06 1.31 0.88 0.82 0.84 -0.17 1.10 1.37 0.45 -0.11 0.78 

1972 - 1973 0.04 -0.30 -0.73 0.06 -0.41 1.30 -0.10 1.17 0.53 0.75 -1.30 -1.74 

1973 - 1974 -1.05 -1.18 0.12 0.28 -0.18 -1.54 0.44 0.18 0.23 -0.39 -0.90 0.11 

1974 - 1975 0.40 0.00 0.35 -1.29 0.98 -0.97 -0.59 0.71 0.19 -1.05 -0.21 0.46 

1975 - 1976 -0.39 0.63 -0.80 -0.70 1.68 1.02 -0.58 1.86 -1.26 -0.19 0.88 0.15 

1976 - 1977 1.28 0.11 -0.12 0.66 1.53 -0.19 -0.68 0.11 -0.09 0.71 0.21 0.28 

1977 - 1978 -0.78 -0.29 0.11 1.19 -1.06 -0.64 0.55 -0.93 1.11 0.50 -1.28 0.04 

1978 - 1979 1.21 0.31 0.96 -0.10 -0.48 -1.65 -0.63 -1.38 0.65 0.90 -2.55 0.29 

1979 - 1980 0.40 -1.49 -1.25 -0.46 2.51 1.20 0.16 -0.56 0.25 1.17 0.73 -0.77 

1980 - 1981 0.96 -0.55 0.53 0.78 -0.35 -0.87 -1.30 0.13 0.89 0.09 0.57 -0.76 

1981 - 1982 0.82 -0.29 -0.25 -0.01 -0.20 1.01 0.81 0.48 0.32 1.13 0.29 0.08 

1982 - 1983 -0.55 -1.30 -0.98 0.78 0.70 0.67 0.57 0.40 -0.18 -0.25 -0.69 -1.79 

1983 - 1984 0.11 0.43 0.66 -0.10 0.20 1.29 1.50 -0.27 -0.07 -0.35 1.58 -0.42 

1984 - 1985 -0.76 0.12 0.69 1.49 -0.75 -0.39 2.81 -0.29 -1.09 -1.83 -0.04 -1.15 

1985 - 1986 0.78 0.65 -0.34 -0.94 -0.20 -0.08 -1.30 0.59 -0.49 0.86 0.27 0.86 

1986 - 1987 0.32 -0.20 -2.64 -2.23 0.12 0.59 -0.51 -0.91 -0.39 -0.13 -0.85 1.19 

1987 - 1988 0.15 -0.22 0.17 0.65 -0.88 0.28 -0.18 -0.29 -1.26 -0.30 0.97 0.95 

1988 - 1989 -1.31 0.61 0.61 0.90 -0.83 0.44 0.01 -0.08 -0.33 1.07 1.09 -1.68 

1989 - 1990 -1.26 -2.34 -1.03 -3.19 0.29 -1.15 -0.10 -0.45 -1.53 0.89 1.70 -0.44 

1990 - 1991 -1.68 -1.77 -2.64 0.15 -0.05 0.11 0.60 0.21 0.97 0.08 -0.40 0.33 

1991 - 1992 0.19 0.40 -0.81 0.02 1.71 -1.19 0.29 2.32 -0.08 1.39 0.00 1.13 

1992 - 1993 -2.49 -1.62 -0.33 -1.29 -0.40 0.43 2.00 -0.93 -1.47 0.55 -0.46 -0.61 

1993 - 1994 0.13 -0.08 -2.09 -0.52 0.17 0.42 -0.27 0.63 -0.66 -2.03 0.61 -1.36 

1994 - 1995 -0.13 -0.06 0.42 -0.16 -0.95 -1.15 0.62 0.73 0.22 0.22 1.08 -0.34 

1995 - 1996 -0.77 -0.99 0.98 -0.93 -0.78 0.78 1.44 0.63 -1.06 0.36 1.58 -0.88 

1996 - 1997 0.95 0.02 1.66 -1.16 0.94 -1.12 1.21 0.05 1.07 0.78 -1.66 -0.12 

1997 - 1998 -0.35 -0.09 -0.99 0.37 -0.18 0.96 -0.43 3.30 -1.04 1.54 -0.06 -0.38 

1998 - 1999 -0.39 -1.03 0.92 0.94 1.52 -0.19 -1.38 -1.38 0.30 0.45 0.26 0.82 

1999 - 2000 -0.02 1.88 0.28 -0.31 -3.03 1.54 0.90 1.27 0.57 -0.47 -0.08 -1.15 

2000 - 2001 1.46 1.35 0.28 1.14 0.23 0.03 -1.38 -0.74 0.04 0.27 -1.94 0.23 

2001 - 2002 -2.23 0.43 0.30 0.46 -0.07 -1.66 -0.54 0.05 -0.97 -1.64 1.17 2.64 

2002 - 2003 1.10 -0.75 -0.52 1.76 -0.80 -0.66 1.07 0.03 1.90 -0.27 -0.43 0.78 

2003 - 2004 -0.53 2.29 -1.00 0.36 -0.72 -2.04 -1.38 -0.46 -0.03 0.00 -1.27 1.09 

2004 - 2005 -0.01 -0.42 -1.15 0.12 0.18 0.38 -0.35 -0.40 -1.53 -1.68 0.75 -1.38 

2005 - 2006 -0.20 0.74 1.11 1.27 0.28 1.03 0.64 -0.85 0.51 0.20 1.29 -1.63 

2006 - 2007 1.12 0.75 -0.51 -0.82 0.54 0.68 -0.56 -1.38 1.73 1.28 -0.54 -2.32 

2007 - 2008 1.09 -0.83 -0.21 -0.62 -1.89 1.29 -0.54 -0.54 -1.53 -0.27 1.73 0.74 

2008 - 2009 -1.05 -0.43 0.12 -0.93 -0.64 -1.06 -1.38 -0.58 2.02 0.40 0.10 0.45 

2009 - 2010 0.87 1.31 0.20 1.29 0.22 -1.27 0.60 -1.38 1.26 -0.35 0.58 0.72 

2010 - 2011 0.14 0.86 -0.34 0.15 -1.12 0.88 -0.33 -0.77 -0.99 1.01 -1.07 0.85 

2011 - 2012 0.72 0.57 0.71 -0.07 0.30 0.60 -0.96 -0.07 -1.02 0.70 -2.28 -0.66 

 

 

 

 

 



228 

Tablo 5. Polatlı SYİ-1 kuraklık değerleri izleme tablosu 

              Aylar           

Yıllar 1 2 3 4 5 6 7 8 9 10 11 12 

1965 - 1966 -0.26 1.25 0.24 0.13 0.48 -1.35 -0.55 -0.96 -1.25 -0.71 0.73 0.84 

1966 - 1967 0.85 -1.79 0.90 -0.24 0.24 0.16 1.30 -0.88 -1.12 -1.55 -0.32 0.51 

1967 - 1968 -0.05 0.35 0.42 0.59 0.44 -0.91 0.53 -0.13 0.04 -0.63 -0.17 0.04 

1968 - 1969 1.15 -0.48 0.66 0.43 -1.40 0.48 0.20 0.59 0.76 0.45 0.62 1.12 

1969 - 1970 1.55 1.34 0.61 0.43 -0.01 0.00 -0.05 -1.17 -0.02 -0.84 0.20 1.46 

1970 - 1971 0.73 0.71 -0.24 -1.60 -2.26 -0.74 -0.19 -1.37 0.17 0.64 -0.32 -0.41 

1971 - 1972 -0.64 -0.28 0.50 -0.06 1.17 -0.45 -0.77 0.93 0.32 0.09 0.70 -0.37 

1972 - 1973 -0.98 -0.85 -1.10 0.25 -0.18 2.01 1.44 0.72 0.49 1.54 -0.59 -1.77 

1973 - 1974 -1.18 -0.25 -0.21 0.14 -0.68 0.27 0.67 0.27 -0.49 -0.77 -1.36 0.22 

1974 - 1975 -1.37 -0.07 0.02 -0.81 1.27 0.70 0.23 0.74 0.94 -0.46 -0.61 0.27 

1975 - 1976 0.50 -0.03 -0.10 0.73 1.99 1.95 -0.41 1.49 -1.08 0.00 0.70 -0.06 

1976 - 1977 1.28 -1.37 -0.62 0.41 1.14 0.03 0.33 -0.72 -0.06 1.05 -0.49 0.68 

1977 - 1978 0.31 -0.34 -0.13 0.20 -1.88 -0.17 0.24 1.51 0.96 -0.62 -0.62 -1.08 

1978 - 1979 0.79 0.58 1.09 1.10 -0.08 -1.63 -1.76 -0.92 0.96 1.65 -2.47 0.69 

1979 - 1980 1.48 -0.80 -1.00 -2.35 0.81 0.21 -0.29 -1.37 -0.12 0.29 0.60 -0.26 

1980 - 1981 1.44 0.17 0.15 0.18 1.04 -0.53 -1.42 0.65 -0.88 -0.95 0.80 -1.36 

1981 - 1982 1.10 0.47 0.27 -0.80 1.11 1.15 0.55 0.37 -0.38 0.20 0.83 1.01 

1982 - 1983 -0.60 -0.97 -1.37 0.90 -0.33 -0.72 2.15 1.23 -0.01 -0.13 -2.70 -0.68 

1983 - 1984 0.37 -0.27 -0.31 -0.10 0.06 0.10 0.57 0.32 -0.46 -0.36 2.00 -0.97 

1984 - 1985 -0.51 -0.13 1.21 1.60 -0.77 -1.24 1.13 0.71 -1.25 -2.21 -0.27 -1.74 

1985 - 1986 0.65 0.48 -0.21 -0.49 0.44 -0.10 -0.19 -0.64 -1.25 1.28 0.53 -0.37 

1986 - 1987 1.05 0.88 -2.26 -1.75 -0.33 0.89 -1.87 -1.10 0.94 -1.07 -0.79 0.65 

1987 - 1988 0.79 -0.70 -0.01 -0.43 0.03 0.01 -0.29 -0.10 -0.78 -0.31 -0.07 1.04 

1988 - 1989 -0.94 0.13 1.14 0.98 -0.53 1.09 0.95 -1.00 -0.86 1.04 1.10 -0.95 

1989 - 1990 -2.13 -1.84 -2.09 -2.37 -0.26 -0.78 0.25 -0.17 -0.68 0.94 1.58 -0.44 

1990 - 1991 -0.63 -1.42 -1.22 1.46 0.45 0.04 -0.46 1.28 1.31 0.52 -0.47 0.40 

1991 - 1992 -0.50 0.72 -1.47 1.26 1.00 0.03 0.12 0.39 0.75 0.55 0.04 1.03 

1992 - 1993 -2.68 -1.38 -0.20 0.52 -1.93 0.16 1.45 -1.00 -1.18 0.87 0.28 -0.02 

1993 - 1994 0.08 -0.45 -1.00 -0.66 0.74 0.20 -1.53 0.16 -1.08 -2.66 -0.01 -0.37 

1994 - 1995 0.41 0.67 -0.51 -0.90 0.09 -1.07 -0.65 -0.18 1.16 0.43 1.15 -0.66 

1995 - 1996 0.06 -1.48 2.40 0.20 0.03 0.71 0.73 0.23 0.39 0.50 1.14 -0.63 

1996 - 1997 0.24 0.21 1.58 -0.75 0.24 -1.60 0.78 0.61 1.77 0.38 -1.51 0.83 

1997 - 1998 -0.04 -0.33 -1.17 1.59 0.16 1.38 -1.09 2.37 -0.45 1.16 0.02 0.35 

1998 - 1999 -1.19 0.73 0.46 0.44 1.89 0.33 0.19 -0.78 0.43 0.52 0.61 0.82 

1999 - 2000 0.01 1.48 0.58 -0.79 -2.43 0.23 1.16 2.07 1.41 0.29 -0.14 -0.62 

2000 - 2001 0.29 0.89 0.01 1.47 -1.74 0.60 0.12 -0.11 0.86 -0.68 0.05 0.85 

2001 - 2002 -2.71 -0.05 -0.19 -0.93 1.18 -2.03 -0.60 -0.01 0.74 -2.21 1.11 2.02 

2002 - 2003 -0.10 -0.87 -0.04 0.49 0.80 -0.54 0.86 0.15 1.27 -0.18 -0.25 -0.87 

2003 - 2004 0.62 1.34 -0.15 1.13 -0.32 -1.97 -1.67 0.38 -0.51 0.54 -1.52 0.80 

2004 - 2005 0.30 -0.53 -1.70 -0.10 -0.52 0.63 -0.24 1.21 -1.25 -1.55 0.39 -1.74 

2005 - 2006 -0.89 0.58 1.89 1.58 -0.05 0.42 1.24 -0.92 0.11 -0.03 0.92 -1.52 

2006 - 2007 0.31 2.12 -0.56 -1.43 0.62 0.49 -0.66 -1.37 1.94 0.62 -0.86 -2.63 

2007 - 2008 0.41 -0.70 -0.34 -0.86 -1.11 0.07 -0.93 0.40 -1.25 0.31 1.41 0.94 

2008 - 2009 -0.94 -1.40 0.60 -0.46 -0.17 0.22 -2.03 -1.05 1.32 -0.02 0.55 0.06 

2009 - 2010 0.73 2.60 1.46 0.95 -0.36 -0.79 -0.89 -0.55 -0.28 -0.35 0.46 1.39 

2010 - 2011 1.10 1.25 1.11 -1.10 -0.52 2.58 1.59 -1.37 -0.01 2.30 -0.11 1.23 

2011 - 2012 0.27 -0.34 0.92 -0.06 0.69 0.15 0.56 0.26 0.52 0.66 -2.23 0.47 
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Tablo 6. Sivrihisar SYİ-1 kuraklık değerleri izleme tablosu 

              Aylar           

Yıllar 1 2 3 4 5 6 7 8 9 10 11 12 

1960 - 1961 0.78 0.93 1.63 0.55 0.03 0.49 -0.23 -0.53 0.43 -0.04 -0.87 0.29 

1961 - 1962 0.04 1.65 -0.14 -0.88 -0.62 1.97 -0.22 -1.10 0.05 0.63 -1.48 0.19 

1962 - 1963 -0.59 1.39 0.30 -0.10 0.40 -1.80 -0.69 0.01 1.17 0.11 -0.43 1.81 

1963 - 1964 1.29 1.45 0.03 -0.08 0.90 0.77 1.83 -1.43 1.42 0.27 -1.07 -1.19 

1964 - 1965 -2.22 0.72 1.82 -2.60 -0.24 1.36 -0.99 -0.34 0.89 -2.07 0.62 0.71 

1965 - 1966 0.03 0.41 -0.15 1.01 -0.05 -1.34 0.24 -1.26 -1.57 -0.89 1.07 0.79 

1966 - 1967 0.50 -2.02 1.30 0.03 -0.02 -0.35 1.43 -0.85 -0.41 -1.13 -0.72 0.90 

1967 - 1968 -0.30 -0.61 -0.24 0.72 1.91 -1.78 -1.06 -0.28 -0.83 -0.44 0.04 0.04 

1968 - 1969 1.78 0.03 1.30 -0.50 -1.03 1.83 0.45 0.53 1.08 0.55 0.28 1.19 

1969 - 1970 1.79 1.13 0.85 0.19 0.18 0.33 0.27 -0.74 -0.34 -0.33 -0.06 1.61 

1970 - 1971 0.85 0.93 0.14 -2.08 -1.69 0.10 0.96 -1.43 -0.04 0.23 -0.47 -0.24 

1971 - 1972 -0.45 0.23 0.85 0.45 0.54 0.93 -0.72 -0.12 0.08 0.23 0.73 -0.43 

1972 - 1973 -0.69 -0.72 -1.05 0.85 -0.11 0.94 0.98 0.89 0.55 1.13 -0.89 -2.46 

1973 - 1974 -1.28 -1.17 -0.75 0.60 0.26 0.86 0.83 -0.30 0.53 -0.72 -0.88 0.24 

1974 - 1975 -1.27 0.76 0.97 -0.60 0.32 0.60 -0.07 1.05 0.41 -0.38 -0.54 0.47 

1975 - 1976 -0.15 -0.60 -0.24 0.43 2.35 1.82 -0.35 0.85 -1.41 -0.27 0.91 0.06 

1976 - 1977 1.20 -0.95 -0.94 0.38 1.27 0.60 0.63 0.87 -0.27 1.14 -0.06 0.44 

1977 - 1978 -0.37 0.72 -0.81 0.87 -1.78 -0.50 0.89 -0.87 0.55 -0.33 -0.70 -0.47 

1978 - 1979 0.73 0.63 1.08 0.37 -0.05 -1.12 -1.13 -1.43 0.37 1.31 -2.37 0.37 

1979 - 1980 1.28 -0.70 -1.23 -1.54 1.80 0.50 -0.51 -1.43 0.01 0.74 0.94 -0.91 

1980 - 1981 0.97 0.10 0.56 0.70 0.64 0.07 -1.53 0.36 0.65 -0.74 0.54 -0.87 

1981 - 1982 1.32 0.69 0.05 -0.32 0.06 -0.67 -1.11 0.52 -0.25 0.64 0.47 0.51 

1982 - 1983 -0.64 -1.42 -1.01 1.03 -0.01 -0.07 0.11 0.84 -0.06 0.62 -1.26 -1.14 

1983 - 1984 0.25 -0.11 0.25 -0.23 -0.85 0.21 0.61 -1.10 -0.88 -0.70 2.23 -0.30 

1984 - 1985 -0.26 -0.30 1.23 2.40 -0.82 0.33 1.44 0.87 -1.41 -2.05 0.28 -1.36 

1985 - 1986 0.77 0.93 -0.91 -0.80 -0.14 0.13 -0.58 0.87 -1.57 1.54 0.28 0.19 

1986 - 1987 0.60 0.36 -1.85 -1.66 -0.58 0.20 -0.04 -0.19 1.07 -1.37 -0.92 0.62 

1987 - 1988 0.55 -0.77 0.57 0.33 -0.51 0.23 1.52 -0.10 -0.57 0.25 -0.01 0.93 

1988 - 1989 -1.44 0.17 0.63 0.89 -0.82 0.55 -0.75 -0.45 -0.21 0.76 1.08 -1.30 

1989 - 1990 -1.82 -2.17 -2.04 -2.78 -0.49 -1.51 0.75 -0.74 -1.26 0.24 1.86 -1.15 

1990 - 1991 -0.79 -1.66 -1.52 0.98 -0.27 0.23 2.15 1.29 0.77 0.28 -0.57 -0.13 

1991 - 1992 -0.29 0.24 -1.23 0.83 1.10 -0.42 0.71 1.91 0.86 1.68 0.57 1.15 

1992 - 1993 -3.12 -1.38 -0.09 -0.37 -1.49 0.16 1.16 0.07 -1.41 0.72 -0.10 -0.19 

1993 - 1994 0.51 -0.52 -1.36 -0.32 0.70 0.25 -1.19 -0.79 -0.71 -2.05 0.38 -0.61 

1994 - 1995 0.01 0.31 -0.08 -0.11 -0.03 -2.12 -0.29 -0.78 0.03 0.25 1.71 -0.61 

1995 - 1996 -0.15 -2.16 1.38 -0.21 -1.19 -0.07 0.70 0.71 -0.56 0.16 1.22 -0.87 

1996 - 1997 0.36 0.40 1.31 -0.55 0.85 -0.93 0.49 0.99 1.65 -0.08 -1.25 0.79 

1997 - 1998 -0.57 -0.31 -1.09 0.90 0.19 -0.20 -0.80 1.78 -1.26 1.09 0.28 0.29 

1998 - 1999 -0.28 0.60 1.58 1.37 1.56 -0.37 -0.33 -0.57 1.14 0.52 0.42 1.21 

1999 - 2000 0.29 1.28 0.38 -0.31 -3.34 0.45 0.38 2.18 1.81 0.57 0.13 -0.62 

2000 - 2001 0.57 0.58 -0.37 -0.24 -0.54 0.47 -1.01 0.70 0.14 -0.13 -1.21 0.06 

2001 - 2002 -1.80 -0.35 -0.38 0.12 -0.08 -2.71 -0.11 1.83 -0.25 -1.82 1.85 2.34 

2002 - 2003 0.66 -1.06 -0.15 1.59 0.22 0.15 0.38 1.57 1.39 0.26 -0.22 0.18 

2003 - 2004 0.11 1.22 -1.61 1.23 -0.84 -1.64 -2.38 -1.01 -0.51 0.62 -1.52 0.85 

2004 - 2005 -0.10 -0.72 -1.41 -0.18 0.00 0.63 -1.58 -0.65 -1.57 -1.32 0.57 -1.17 

2005 - 2006 -0.43 0.31 1.16 0.93 0.36 -0.39 1.59 -0.87 0.20 -0.32 0.97 -1.62 

2006 - 2007 0.58 0.96 -0.47 -1.17 0.44 0.85 1.35 -0.26 1.47 0.20 -0.89 -2.74 

2007 - 2008 1.04 -0.74 -0.52 -0.88 -0.16 1.05 -0.38 0.74 -1.41 0.25 1.33 0.58 

2008 - 2009 -1.08 -1.14 0.19 -0.85 -0.30 -1.39 -1.32 -0.31 1.54 0.52 0.21 -0.02 

2009 - 2010 1.21 1.89 0.64 0.31 0.68 -0.69 -0.57 -0.49 0.97 0.16 0.19 0.50 

2010 - 2011 0.29 1.00 0.15 0.09 -0.48 0.33 -0.93 0.18 0.27 1.75 -0.85 0.99 

2011 - 2012 0.26 -0.27 1.33 -0.55 1.97 1.27 -1.35 -0.32 -0.77 0.82 -1.90 0.30 
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Tablo 7. Geyve SYİ-1 kuraklık değerleri izleme tablosu 

              Aylar           

Yıllar 1 2 3 4 5 6 7 8 9 10 11 12 

1960 - 1961 0.53 -0.36 0.45 -0.49 0.87 -0.39 0.17 0.83 -0.52 -0.62 -1.30 0.19 

1961 - 1962 -0.05 1.10 -0.45 -0.14 0.41 0.45 0.90 -0.76 0.77 -0.26 0.07 -2.09 

1962 - 1963 -1.76 1.99 0.63 0.50 -2.11 -1.90 -0.09 -1.30 0.69 1.20 -0.45 1.39 

1963 - 1964 1.91 -0.71 1.27 -0.11 0.86 -0.34 2.18 -0.79 1.33 0.15 -0.03 1.47 

1964 - 1965 -1.25 1.18 -0.10 -0.15 0.21 -0.45 -0.57 1.19 1.26 -2.40 1.40 0.98 

1965 - 1966 -1.75 1.21 -0.03 1.03 0.35 -0.87 1.42 -0.13 -1.66 -0.73 0.85 0.12 

1966 - 1967 0.23 -2.13 1.29 0.15 -0.91 0.84 -0.20 0.84 -0.33 -1.72 -1.69 0.14 

1967 - 1968 0.39 0.52 1.40 0.92 0.55 -0.26 -0.88 0.15 0.51 0.22 1.82 -0.06 

1968 - 1969 1.51 -0.22 0.11 0.32 -1.32 -0.28 -2.55 1.88 2.54 -0.06 0.05 -0.70 

1969 - 1970 1.03 0.01 -0.22 1.58 -0.80 0.70 -0.34 -1.30 -1.90 -2.40 -0.73 -0.43 

1970 - 1971 -0.06 2.59 0.02 0.22 0.54 -0.52 -0.95 0.41 0.66 0.47 0.61 1.35 

1971 - 1972 -0.99 -0.05 1.35 0.20 1.61 -0.35 0.16 0.84 0.01 0.63 -0.08 1.21 

1972 - 1973 -0.88 -0.56 -1.17 0.08 0.00 2.61 0.71 1.75 0.99 0.51 -0.29 -1.66 

1973 - 1974 -1.32 -0.35 -0.32 -0.21 0.05 0.48 -1.30 0.50 -0.42 0.20 1.03 0.50 

1974 - 1975 0.38 0.28 0.51 -0.36 1.87 0.33 -1.26 2.11 -0.10 -1.66 -0.43 0.41 

1975 - 1976 0.91 0.94 0.48 -0.64 2.06 0.14 -1.15 1.17 -0.27 0.26 0.03 0.50 

1976 - 1977 0.32 -0.25 -1.99 -0.19 0.31 1.30 -0.12 0.89 -0.31 1.03 0.62 -0.26 

1977 - 1978 -0.78 -1.55 0.88 0.05 -2.05 -0.38 -0.16 -0.50 -0.15 0.50 0.10 0.98 

1978 - 1979 1.77 0.99 -0.02 0.62 -0.50 -1.29 -0.86 0.33 0.59 0.20 -2.05 0.52 

1979 - 1980 0.88 -0.06 -0.75 -0.01 0.91 1.52 0.51 0.56 0.21 0.17 1.14 0.73 

1980 - 1981 1.37 -0.84 0.55 -1.11 0.96 -0.50 -0.20 -0.08 0.09 -1.10 1.15 1.58 

1981 - 1982 0.44 0.60 0.59 -1.86 1.10 -1.47 1.26 -0.60 0.97 0.02 -0.45 1.12 

1982 - 1983 0.15 -0.03 -0.04 1.28 0.03 -0.55 1.13 0.55 -0.17 -0.27 -0.38 -0.29 

1983 - 1984 0.24 0.81 -1.37 0.31 -0.31 -0.06 0.93 0.71 -0.25 1.13 1.32 -1.47 

1984 - 1985 -0.34 0.23 -0.06 2.11 -0.67 0.61 1.50 0.71 -2.07 -1.08 -0.60 -2.32 

1985 - 1986 0.26 0.26 -1.07 -1.08 -0.79 0.02 -0.30 -1.06 -1.56 0.74 0.30 -0.51 

1986 - 1987 0.13 0.00 -3.08 -1.06 -0.01 0.19 -0.72 -1.30 -0.36 -0.08 -0.17 0.48 

1987 - 1988 1.70 -1.02 0.99 -0.29 0.33 -0.86 -0.11 0.48 -1.84 0.80 0.18 0.26 

1988 - 1989 -1.41 -0.12 -0.03 -0.06 0.13 1.00 0.83 -0.84 -0.39 0.72 0.74 -0.16 

1989 - 1990 -1.42 -2.20 -2.43 -3.01 0.13 -0.68 0.53 -0.18 -0.27 1.25 1.76 0.32 

1990 - 1991 -0.73 -0.41 -0.35 0.84 -0.46 -1.38 -0.60 -0.90 1.20 0.65 -0.03 -0.39 

1991 - 1992 -0.49 0.37 -2.07 0.64 1.94 0.45 0.50 -0.66 0.69 -0.33 -0.48 0.73 

1992 - 1993 -0.84 0.54 1.01 -0.21 -1.45 0.93 1.71 -1.20 -1.24 1.12 0.55 0.41 

1993 - 1994 -0.64 -0.64 -0.72 0.21 0.71 -0.20 -0.67 0.38 -0.28 -2.03 1.15 -0.61 

1994 - 1995 0.58 -0.36 -1.11 -0.61 -0.43 -0.16 -2.18 0.01 -1.79 -0.18 1.29 0.36 

1995 - 1996 1.39 -2.30 2.06 0.58 -1.22 0.74 1.40 0.39 0.49 0.40 1.07 -1.72 

1996 - 1997 -0.17 -0.16 1.12 0.36 0.14 -1.79 0.75 -0.28 1.31 0.60 -1.62 0.39 

1997 - 1998 -0.36 0.32 0.21 2.17 -0.96 0.05 0.05 1.90 -0.76 1.59 -0.94 0.41 

1998 - 1999 -0.56 0.40 0.42 -0.21 2.09 0.02 0.32 -1.30 0.63 0.43 0.16 -0.09 

1999 - 2000 -0.76 0.84 -0.15 -0.01 0.10 3.64 -0.75 0.55 -0.04 -0.93 0.05 -1.73 

2000 - 2001 1.13 0.10 0.61 1.63 0.40 0.53 0.07 0.19 0.11 1.34 -2.15 -1.00 

2001 - 2002 -3.13 -0.30 -0.38 0.43 -0.25 -0.85 0.13 0.74 -0.40 -1.14 0.99 2.06 

2002 - 2003 0.24 -1.52 -0.30 0.48 0.16 0.97 1.15 1.11 0.89 0.53 -0.82 -1.10 

2003 - 2004 -0.30 1.75 -0.98 0.16 -1.84 -1.83 -0.59 -1.00 0.32 1.14 0.14 0.89 

2004 - 2005 1.09 0.21 0.06 0.23 0.40 -0.12 -0.88 0.39 -1.36 -1.59 0.40 -1.87 

2005 - 2006 0.09 0.43 0.11 0.15 -0.89 -0.23 1.62 -0.45 0.41 -0.55 1.07 -0.57 

2006 - 2007 0.16 0.43 0.40 -3.44 -1.68 -0.38 -1.70 -1.13 1.11 -0.33 -0.59 -1.00 

2007 - 2008 0.50 -1.77 0.77 -0.67 1.04 -0.50 -0.97 -0.37 -1.30 -0.65 0.09 0.07 

2008 - 2009 -0.16 -0.36 0.99 -1.15 -0.31 -0.12 -0.77 -1.30 1.21 -0.32 -0.50 -0.42 

2009 - 2010 0.31 1.02 0.40 -0.10 -0.33 -0.09 0.92 -0.85 0.60 -0.11 0.17 0.06 

2010 - 2011 0.78 0.44 0.23 0.59 -0.35 0.90 -0.47 -1.11 0.62 2.10 -1.79 1.18 

2011 - 2012 -0.07 -1.22 0.71 -0.02 -0.68 -0.28 0.40 0.07 0.82 0.79 -2.46 -0.19 
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Tablo 8. Ilgın SYİ-1 kuraklık değerleri izleme tablosu 

              Aylar           

Yıllar 1 2 3 4 5 6 7 8 9 10 11 12 

1968 - 1969 -2.50 -2.00 -2.13 -2.10 -0.98 -0.05 -1.10 -0.30 1.39 0.06 0.49 0.60 

1969 - 1970 0.99 1.41 1.06 0.55 0.60 -0.49 -0.24 -0.47 0.95 -0.95 0.56 0.57 

1970 - 1971 0.95 -0.66 -0.90 -1.40 0.41 -0.22 -0.18 1.30 0.70 0.25 0.24 -0.54 

1971 - 1972 -1.37 0.85 0.31 0.49 1.23 0.57 0.18 1.46 0.29 -0.61 0.22 -0.15 

1972 - 1973 -1.32 0.56 -1.27 -0.18 -0.79 1.53 -0.09 0.81 -0.13 0.11 -1.08 -1.95 

1973 - 1974 -1.84 -0.92 0.68 -0.71 0.49 -0.27 -0.81 -0.85 -1.21 -1.32 -0.67 0.13 

1974 - 1975 -0.55 -1.41 -1.17 -1.01 -0.55 -0.79 0.17 0.59 0.62 -0.65 -0.75 0.19 

1975 - 1976 -0.01 0.51 0.27 0.21 0.53 1.58 -0.73 0.24 -0.92 -0.23 0.35 -0.52 

1976 - 1977 0.78 -0.65 -0.30 0.54 1.72 -0.91 -0.38 -0.37 -0.20 1.32 -0.18 1.61 

1977 - 1978 0.33 -1.07 0.35 1.80 -1.69 0.44 -0.32 -1.21 0.98 0.46 -1.88 -0.24 

1978 - 1979 1.49 -0.53 0.92 -0.32 -0.43 -1.22 -1.00 -1.21 1.10 1.10 -2.26 -0.26 

1979 - 1980 0.52 -1.20 -0.71 -0.08 0.08 1.16 0.01 0.03 -0.03 1.45 0.84 -0.43 

1980 - 1981 0.62 -0.87 -0.59 1.02 0.72 -0.04 -1.10 -0.33 0.20 0.04 0.15 -0.70 

1981 - 1982 1.51 -0.19 -0.83 -1.34 0.52 1.00 0.89 -0.26 -0.21 -0.30 0.09 0.48 

1982 - 1983 -0.47 -1.06 0.51 0.90 -0.23 0.86 1.61 0.98 0.00 -0.03 -0.98 -1.00 

1983 - 1984 -0.05 0.53 1.01 -0.32 -0.07 -0.25 0.26 -0.45 0.25 -0.79 0.67 1.07 

1984 - 1985 -0.42 -0.68 0.83 1.06 -0.21 0.45 0.49 1.14 -1.34 -1.91 -0.09 -1.26 

1985 - 1986 0.46 1.07 -0.41 -0.03 0.70 -1.05 -0.03 0.38 -1.24 1.70 0.81 0.21 

1986 - 1987 -0.32 0.43 -1.93 -0.12 0.31 -0.58 -0.44 1.60 1.86 -0.86 0.29 0.38 

1987 - 1988 0.66 0.26 0.62 0.21 -0.46 1.22 1.28 -0.29 -1.34 -0.04 1.09 0.76 

1988 - 1989 -1.47 0.66 0.39 1.97 -0.42 1.01 1.49 -1.13 -0.40 0.89 0.86 -0.93 

1989 - 1990 0.61 -1.85 0.07 -1.97 0.81 -1.32 -0.61 -1.02 -1.34 0.73 1.68 0.16 

1990 - 1991 -0.43 -0.35 -1.50 -0.63 1.16 -0.47 0.28 -1.16 1.03 0.00 -0.11 0.43 

1991 - 1992 -0.24 0.49 -1.27 1.11 -0.03 -1.43 0.53 1.04 0.24 0.94 0.33 1.04 

1992 - 1993 -1.73 -0.77 -0.30 -0.58 0.97 0.66 1.74 -0.17 -1.21 -0.98 0.47 0.73 

1993 - 1994 0.28 -0.12 -0.58 -1.37 2.02 -0.58 -1.10 -1.02 -0.97 -2.00 0.03 -0.50 

1994 - 1995 0.64 -0.75 1.08 -0.26 -1.05 -1.83 0.05 0.49 -0.53 0.50 1.21 0.41 

1995 - 1996 0.05 0.56 0.70 1.58 0.41 -0.87 1.55 0.66 -0.53 0.45 1.95 -0.83 

1996 - 1997 0.39 1.22 3.15 0.39 -0.74 0.17 1.61 1.00 0.90 0.43 -2.30 0.21 

1997 - 1998 0.35 0.31 -0.58 1.18 0.10 1.90 -0.81 0.76 -0.04 1.44 -0.20 -0.43 

1998 - 1999 -0.87 -1.22 1.97 0.25 -0.39 0.64 -1.10 -1.21 -0.20 0.41 -0.12 1.72 

1999 - 2000 0.82 1.49 -0.32 -1.02 -1.42 1.22 1.25 1.71 0.25 0.14 -1.14 -0.97 

2000 - 2001 1.12 1.71 0.70 -0.09 1.55 -0.62 -1.10 1.18 -0.64 0.34 -1.86 0.13 

2001 - 2002 -1.57 -0.90 -0.30 0.10 1.49 -2.00 1.39 -0.07 0.55 -1.94 0.83 2.85 

2002 - 2003 0.95 -0.40 0.77 1.35 -1.53 0.03 0.55 0.56 1.94 -0.72 -0.44 0.31 

2003 - 2004 -0.23 1.88 0.73 0.82 -0.66 -0.36 -1.10 0.66 1.09 0.62 -0.60 0.32 

2004 - 2005 -0.09 0.40 -0.45 0.49 -0.22 1.17 1.70 -0.55 -1.34 -1.66 0.57 -1.69 

2005 - 2006 -0.89 0.67 -0.09 0.78 -0.11 -0.60 0.06 1.17 0.04 -0.25 1.30 -0.51 

2006 - 2007 0.36 -0.53 0.05 0.50 0.59 0.00 0.14 -1.21 0.93 1.89 0.27 -3.16 

2007 - 2008 1.38 0.59 0.32 -1.12 -2.57 -0.90 -0.71 0.70 0.28 -0.37 1.52 0.61 

2008 - 2009 -1.53 0.08 -0.24 -1.28 -0.81 -0.69 0.19 -1.21 1.87 0.10 0.01 0.38 

2009 - 2010 1.05 2.29 0.26 0.10 0.29 -0.81 -0.39 -0.61 0.07 0.26 0.71 0.14 

2010 - 2011 1.19 0.06 -0.97 -0.19 -2.16 1.99 -0.39 0.48 -0.49 0.48 -1.67 1.06 

2011 - 2012 0.85 0.31 0.29 -0.48 0.97 0.79 -1.00 -0.63 -1.08 0.97 -0.78 -0.16 
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Tablo 9. Yunak SYİ-1 kuraklık değerleri izleme tablosu 

              Aylar           

Yıllar 1 2 3 4 5 6 7 8 9 10 11 12 

1971 - 1972 -1.48 0.60 0.07 1.43 0.70 0.60 0.68 1.39 1.04 0.26 -0.22 1.01 

1972 - 1973 -0.07 0.08 -1.33 -0.23 -0.19 0.96 1.20 0.26 0.68 0.67 -0.82 -2.49 

1973 - 1974 -1.70 -1.16 1.02 0.33 0.41 -0.09 0.21 0.04 -0.95 -0.34 -0.62 0.02 

1974 - 1975 0.07 -0.40 0.82 -1.03 0.54 0.07 0.09 1.37 0.45 -1.25 -0.46 0.34 

1975 - 1976 -1.97 1.07 -0.68 -0.32 1.28 0.75 -0.45 0.70 -0.95 -0.46 0.08 0.40 

1976 - 1977 1.47 0.64 -0.20 1.15 2.22 0.76 0.07 0.16 -0.05 1.17 0.42 0.54 

1977 - 1978 0.68 0.65 1.02 0.82 -2.10 0.20 -0.92 -1.05 0.90 0.12 -1.22 0.39 

1978 - 1979 1.48 0.40 1.45 0.05 -2.07 -0.35 -0.75 -1.05 0.83 1.13 -1.97 0.10 

1979 - 1980 0.53 -1.08 -1.70 -0.71 1.22 0.58 -0.24 -0.45 -0.54 0.39 0.11 -0.30 

1980 - 1981 0.74 -1.14 0.46 -0.35 1.49 -0.33 -1.17 -0.57 0.37 -0.31 0.16 -0.39 

1981 - 1982 1.36 -0.08 0.11 -1.15 0.11 -0.97 -0.06 -1.05 -0.60 0.34 0.33 0.17 

1982 - 1983 0.12 -0.93 -0.89 0.24 -1.11 0.48 0.88 0.66 -0.41 -0.24 -1.31 -0.68 

1983 - 1984 0.43 0.95 0.10 0.19 0.20 1.25 0.08 1.45 -0.38 -0.51 1.43 -0.34 

1984 - 1985 0.02 -1.08 0.38 2.64 0.23 -0.87 0.85 -1.05 -0.95 -1.97 -1.02 -1.72 

1985 - 1986 0.37 0.61 -0.02 -1.26 -1.64 -0.17 -1.17 0.34 -0.95 1.89 0.48 -0.05 

1986 - 1987 0.02 -0.52 -2.18 -0.97 0.17 0.35 -0.64 -0.70 -0.20 -0.96 -0.14 0.84 

1987 - 1988 0.50 -0.30 0.55 0.24 0.06 0.30 0.78 0.72 -0.95 0.07 1.11 1.32 

1988 - 1989 -1.19 1.53 0.66 0.97 -0.69 0.68 1.80 0.49 0.09 0.89 1.14 -0.82 

1989 - 1990 -0.41 -1.66 -1.26 -1.65 -0.21 -0.04 -0.12 0.63 -0.83 0.54 1.63 -0.10 

1990 - 1991 0.31 -0.72 -0.64 -0.63 0.57 0.14 -0.51 0.17 1.65 -0.34 -0.56 0.33 

1991 - 1992 -0.40 0.79 -2.29 0.73 0.89 0.08 -0.32 1.29 -0.02 0.97 0.53 1.13 

1992 - 1993 -1.39 -1.13 -0.68 -0.28 0.19 0.68 1.76 -0.50 -0.56 -0.01 0.33 0.00 

1993 - 1994 0.60 -0.39 -1.45 -0.68 0.47 -0.01 -1.17 -0.88 -0.95 -1.94 0.36 -0.09 

1994 - 1995 0.70 0.46 1.30 -0.25 -0.65 -1.79 0.38 0.26 0.86 0.22 0.72 0.06 

1995 - 1996 -0.89 -0.78 0.64 0.48 -0.08 0.48 0.91 0.79 0.85 0.17 1.39 -0.26 

1996 - 1997 0.74 0.48 1.83 0.23 -1.17 -0.51 1.44 0.57 1.30 1.25 -1.42 0.40 

1997 - 1998 0.34 0.63 -0.83 1.51 0.57 2.32 -0.41 2.60 0.06 1.21 -0.29 -0.32 

1998 - 1999 -1.10 -1.11 1.61 0.03 0.80 -1.87 -0.45 -1.05 0.11 0.37 0.16 1.00 

1999 - 2000 -0.13 1.34 0.48 -0.71 -1.65 1.54 1.12 1.41 -0.34 -0.54 -0.69 -1.26 

2000 - 2001 1.28 1.29 0.21 1.22 0.47 0.26 -1.17 0.12 0.06 0.30 -1.08 -0.39 

2001 - 2002 -1.92 -1.22 0.51 -1.44 0.86 -3.12 -0.44 0.64 0.16 -1.92 0.77 3.14 

2002 - 2003 1.09 -1.57 0.27 1.20 -0.63 -1.31 1.20 -0.23 1.47 -0.64 -0.49 0.44 

2003 - 2004 0.09 2.29 -0.22 0.98 0.24 -0.96 -1.17 -0.51 0.76 0.12 0.05 0.62 

2004 - 2005 -0.14 0.83 -1.05 -0.56 -0.27 0.71 0.99 0.34 -0.95 -1.77 0.54 -1.46 

2005 - 2006 -0.79 -1.96 1.30 1.56 0.64 -1.33 0.50 -0.97 0.78 -0.12 1.42 -1.42 

2006 - 2007 0.97 0.32 -0.41 -1.30 0.46 0.06 1.43 -0.65 1.93 1.45 -0.09 -2.20 

2007 - 2008 0.69 -0.24 0.36 -0.66 -1.66 -0.22 -0.87 0.33 -0.91 0.18 2.17 0.79 

2008 - 2009 -1.44 -0.14 -0.97 -1.22 -1.69 0.01 -1.06 -0.68 1.86 0.58 -0.10 0.05 

2009 - 2010 0.56 1.62 0.63 0.31 0.32 -1.12 -0.75 -0.92 0.55 0.14 1.10 0.33 

2010 - 2011 1.19 0.55 0.72 0.69 -0.45 0.88 0.94 -1.05 -0.60 0.73 -1.71 1.22 

2011 - 2012 -0.11 0.44 0.46 -1.70 1.31 1.58 -1.04 -0.50 -0.80 0.38 -1.76 -0.29 
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