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ABSTRACT

ENSEMBLE PRUNING USING OPTIMIZATION MODELING

Pınar KARADAYI ATAŞ

Computer Engineering
Supervisor: Assoc. Prof. Dr. Süreyya ÖZÖĞÜR - AKYÜZ

August 2020, 67 Pages

The performance problem of ensemble clustering in unsupervised learning is a
huge concern in data-mining and machine-learning communities. The most cru-
cial concern is diversity and accuracy, both of which determine the outcome of
predictive performance. While some great minds have increased the diversity
or accuracy of component classifiers to boost performance, some have utilized or
manipulated these two metrics to generate excellent ensemble results. This thesis
suggests a new clustering ensemble selection model that can overcome some of
the ensemble-clustering performance limitations noted in the literature, meaning
our goal is to considerably enhance existing ensemble-clustering models. More
specifically, we designed our new ensemble model to satisfy the diversity-and-
accuracy trade-off and used eleven datasets for each of the three cluster-ensemble
methods for comparison. We also ensured that our algorithm did not depend on
the data domain. Not only did we realize that diversity or accuracy alone cannot
enhance performance, but we also noticed that the cardinality of the ensemble
subsets was an important parameter in obtaining better results. After testing
and comparing our technique with recent clustering techniques in terms of the
number of cardinalities, we found that compared to other ensemble methods,
our proposed ensemble-selection method resulted in performance enhancement
in terms of providing a better accuracy to a particular problem. Besides that, the
proposed methodology was adapted and re-modeled for feature selection prob-
lem, which is one of the steps in data pre-processing. In recent years, ensem-
ble based feature selection approaches have been proposed in which, multiple
diverse feature selection methods are combined. The proposed algorithm was
tested on multiple data sets and learning performances are compared with var-
ious feature selection algorithms. The empirical results show that the proposed
algorithm performs at higher classification accuracy.

Keywords: Feature Selection, Ensemble Learning, Ensemble Pruning, Cluster-
ing, Convex Concave Programming,Dynamic Ensemble Selection(DES)
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ÖZET

OPTİMİZASYON MODELLEMESİ KULLANARAK TOPLULUK BUDAMASI

Pınar KARADAYI ATAŞ

Bilgisayar Mühendisliġi
Tez Danışmanı: Doç. Dr. Süreyya ÖZÖĞÜR - AKYÜZ

Aġustos 2020, 67 Sayfa

Denetimsiz öğrenmede topluluk kümelenmesinin performans sorunu, veri maden-
ciliği ve makine öğrenimi topluluklarında büyük bir endişe kaynağıdır. En önemli
endişe, tahmini performansın sonucunu belirleyen çeşitlilik ve doğruluktur. Bazı
büyük fikirler performansı artırmak için bileşen sınıflandırıcılarının çeşitliliğini
veya doğruluğunu artırırken, bazıları mükemmel topluluk sonuçları oluşturmak
için bu iki metriği kullanmış veya manipüle etmiştir. Bu tez, literatürde belir-
tilen bazı topluluk kümelenme performans sınırlamalarının üstesinden gelebile-
cek yeni bir kümelenme topluluğu seçim modelini önermektedir, yani amacımız
mevcut topluluk kümeleme modellerini önemli ölçüde artırmaktır. Daha spesi-
fik olarak, yeni topluluk modelimizi çeşitlilik ve doğruluk ödünleşmesini karşıla-
mak için tasarladık ve karşılaştırma için üç küme topluluğu yönteminin her biri
için onbir veri seti kullandık. Ayrıca algoritmamızın veri alanına bağlı olma-
masını sağladık. Sadece çeşitliliğin veya doğruluğun tek başına performansı
artıramayacağını değil, ayrıca topluluk alt kümelerinin kardinalitesinin iyi sonuçlar
edinmek için önemli bir parametre olduğunu fark ettik. Tekniklerimizi kardi-
nalite sayısı açısından son kümelenme teknikleriyle test ettikten ve karşılaştırdık-
tan sonra, diğer topluluk yöntemleriyle karşılaştırıldığında, önerilen topluluk
seçme yöntemimizin daha iyi bir doğruluk sağlama açısından performans artışı
sağladığını tespit ettik. Bunun yanında, önerilen metodoloji, veri ön işlemedeki
adımlardan olan özellik seçim problemi için uyarlanmış, yeniden modellenmiştir.
Son yıllarda, çeşitli özellik seçme yöntemlerinin birleştirildiği topluluk temelli
özellik seçme yaklaşımları önerilmiştir. Önerilen algoritma birden fazla veri seti
üzerinde test edilmiştir ve öğrenme performansları çeşitli özellik seçim algorit-
maları ile karşılaştırılmıştır. Ampirik sonuçlar, önerilen algoritmanın yüksek
sınıflandırma doğruluğunda performans elde ettiğini göstermektedir.

Anahtar Kelimeler: Öznitelik Seçimi, Topluluk Öğrenimi, Topluluk Budaması,
Kümeleme, Dış Bükey İç Bükey Programlama, Dinamik Topluluk Seçimi.
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1. INTRODUCTION

The advent of information technology (IT) has resulted in the explosion of data,

which needs to be transformed and saved into meaningful information. This

transformation requires smart data-cleaning techniques that generate minimal

errors. The good news is that cloud computing now offers users cheap data stor-

age. Even though today’s huge data can be stored efficiently on the cloud, their

behaviors need to be fully understood with data mining strategies. Data min-

ing refers to an analytic technique used to extract useful patterns, structures or

details from a plethora of raw data. A vast majority of data-mining processes

are not performed manually but automatically with software applications such

as Sisense, Rapid Miner, Orange, and SSDT (SQL Server Data Tools). Regardless

of the data mining tools used, all data mining procedures can be categorized into

three groups: clustering, classification, and association rules.

Furthermore, a successful data mining project cannot be achieved without car-

rying out data clustering analysis, a learning technique used in statistical data

analysis to classify data points into desired groups based on what they have in

common. By combining different component partitions into one output, cluster-

ing algorithms can considerably boost the quality of the final partitions. Cluster-

ing analysis has several applications, and it can be employed to find underlying

patterns, common meaningful structures, and similar generative features among

large amounts of data. In the medical field, for instance, clustering techniques

be utilized to find patient segments with similar disease symptoms. A typical

clustering algorithm is K-means clustering, which begins with finding similar-

ities based on the location of the data and then classifying them into different

groups to produce a consensus solution. Other clustering algorithms used in the

literature are the fuzzy C-means (FCM) algorithm, the expectation-maximization

(EM) algorithm, and the hierarchical clustering algorithm (Ayad, 2008; Fred &



Jain, 2005; Strehl & Ghosh, 2002; Topchy et al., 2004a). Like all algorithms, each

of these clustering algorithms has its benefits and drawbacks.

However, a fundamental problem of clustering is that different cluster ensemble

selection algorithms can produce various clustering results, some of which are

unreliable (Handl & Knowles, 2007). This means that it is not an easy job in se-

lecting the appropriate ensemble algorithms for the same problem. This problem

can be resolved with a cluster ensemble, an efficient method for obtaining pre-

dictive performance. Cluster ensemble learning can be referred to as a machine

learning technique in which the decisions of multiple base learners are combined

to generate better predictions than the ones made by a single base learner. En-

semble learning models are advantageous compared to ordinary machine learn-

ing approaches in that they eliminate variance, noise, and biases, all of which

distort the final results.

Apart from that, research has confirmed the superiority of ensemble methods

to other traditional machine-learning methods, especially in predictive learning.

Compared to other learning methods, ensemble learning methods provide an ex-

cellent performance in implementing a large number of hypotheses. This is be-

cause ensemble models use diverse datasets to predict accurate results. Besides,

in contrast to other statistical methods, ensemble models are flexible and cost-

efficient. They prune or eliminate redundant hypotheses to produce excellent

predictions for problems.

Despite these benefits, existing ensemble models are not immune to problems.

Not only do they require a copious amount of computational power, but they

also consume lots of memory space. Data over-fitting or under-fitting is another

issue of this machine learning paradigm. The effectiveness of ensemble learning

algorithms relies on the diversity and quality of ensemble members. Yet only a

few studies have investigated how to optimize these two factors. More difficult is

even finding the optimal number of classifiers that can solve the same machine

2



problem. While some scientists have found the best performance for a certain

ensemble size, no research has focused on the optimal number of component

subsets for an ensemble size.

In recent times, researchers have uncovered how to select diverse, accurate so-

lutions from a repository of accurate clustering solutions. However, no one has

investigated the optimum number of subset classifiers for an ensemble size. Some

statistical tests can determine how many components are required for a solution,

yet the law of diminishing returns limits the prediction accuracy as the cardinal-

ity of the subsets increases. In other words, there is a trade-off between diversity

and accuracy. The greater the diversity of component classifiers, the lesser the

quality of the algorithms and vice versa. The ensemble size is another problem.

Researchers are yet to find the optimum size of an ensemble subset that has the

best effect on prediction accuracy. To achieve this, most of the redundancies in

the ensemble solutions must be eliminated. While finding the best model that

optimizes both the accuracy of predictions and the diversity of combined models

is the objective of this thesis, the final results depend on other important param-

eters.

The advantages of determining the right number of component subsets in an en-

semble construction are numerous yet attractive. There will be less redundancy,

variance, and noises, meaning that less computation power will be needed for

computers. This also means that predictions will be faster, and there will be an

increase in the overall performance of multiple models. In this thesis, our aim

is to fill the vacuum in the literature by proposing a new ensemble model that

optimizes the number of component classifiers and at the same time produces

improved accuracy. Put simply, our priority in this thesis is to find the ideal car-

dinality number of subsets for an ensemble size. Clustering ensemble methods

will be employed to achieve the goal of this research. The final results of this

study will be compared with the findings of similar studies done in the past.

3



Feature Selection is the process of choosing the most relevant and important fea-

tures which contribute to learning with the highest prediction accuracy. Feature

selection methods have various applications (Forman, 2003; Inza et al., 2004),

the determination of which constitutes the data pre-processing step of machine

learning problems. It is important to eliminate irrelevant features which do not

have any dependency on the target value since those features reduce the predic-

tion accuracy of the learning model. There exist many feature selection meth-

ods in the literature, including filters based on distinct metrics like probability,

entropy, information theory, embedded, and wrapper methods, all using differ-

ent algorithms (Bolón-Canedo et al., 2016). Most feature selection methods are

wrapper methods, which evaluate the features using the learning algorithm. Al-

gorithms based on the filter model examine the intrinsic properties of the data

to evaluate the features before the learning tasks. Filter-based approaches almost

always rely on class labels, most commonly assessing correlations between fea-

tures and class label. Some typical filter methods include data variance, Pearson

correlation coefficients, Fisher score, and the Kolmogorov-Smirnov test.

Ensemble based feature selection methods are designed to generate an optimum

subset of features by combining multiple feature selectors based on the intuition

behind ensemble learning. The general idea of ensemble feature selection is to

aggregate the decisions of diverse feature selection algorithms to improve repre-

sentation ability. Recent studies show that the decision of an ensemble of feature

selection algorithms gives more accurate predictions than any single feature se-

lection technique (Özöğür-Akyüz et al., 2015; Zhang et al., 2006a).

Ensemble based feature selection methods involve two major steps: generation

of diverse feature selectors and aggregation of the decisions. There are three

types of generation approaches studied in the literature employed to construct a

diverse ensemble library, which can be listed as follows:

a) Data Variation Methods,

4



b) Function Variation Methods,

c) Hybrid Variation Methods.

The first approach, Data Variation, creates subsets of samples by using differ-

ent methods, such as bagging (Breiman, 1996) or boosting (Freund & Schapire,

1997) or using different feature subspaces and random subspaces (Barandiaran,

1998). In the second method, Function Variation, the diversity of an ensemble

is provided by the diversity of feature selection functions. Here, the most com-

mon functions are filter based rather than wrapper approaches because of their

advantages in computational cost. Unlike the first two methods, Hybrid Varia-

tion Methods aggregate both data variation and function variation steps since it

is argued that including data variation or function variation alone is not enough

to create a robust ensemble (Guan et al., 2014). In (Dittman et al., 2012), the

similarity between the function variation and hybrid variation is higher than the

similarity between the data variation. Furthermore, function and hybrid varia-

tion methods produce higher classification performance than data variation.

In this study, we propose a novel ensemble based feature selection algorithm

that fills the gap in the literature regarding feature selection problems, described

above, by using an optimization model to simultaneously optimize the accuracy

and diversity trade-off. Since the pruning step of the proposed approach here

involves an optimization model, the cardinality of the subset of an ensemble is

not a hyper-parameter anymore, as it is obtained directly as a solution of the

optimization model.

This remainder of this thesis is divided into six sections. The section 2 will ex-

plore the literature review on this research topic. The chapter 3 will explain the

methodology used.The mathematical model and experimental results for ensem-

ble clustering selection is presented in the chapter 4 , while the chapter 5 will

explain the mathematical model and experimental results for ensemble based
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feature selection. We conclude with some final remarks and ideas for future work

in last chapter.
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2. LITERATURE REVIEW

Various mathematical programming methods have employed in the literature,

such as statistical methods and stochastic process techniques. Yet each tradi-

tional or heuristic optimization algorithm has its cons and pros, meaning that

each one is proficient or deficient in one aspect or the other. Traditional opti-

mization algorithms are more flexible and they require the successive interaction

of previous or initial solutions to obtain optimal solutions, while heuristic op-

timization algorithms rely on shortcuts or rules-of-thumb to generate sufficient,

but not the best, solutions Ali & Gubran (2002). The main advantage of heuris-

tic optimization algorithms over traditional optimization algorithms is that the

former is more practical and faster in producing solutions Ali & Gubran (2002).

Nonetheless, most optimization techniques can produce maximum or minimum

values for a target function.

Scientists have developed such heuristic optimization algorithms as simulated

annealing algorithms, particle swarm (PSO) algorithms and genetic algorithms

Liu et al. (2019). PSO algorithms carry out several iterations to produce multiple

solutions. That is, the solution for the next iteration is usually better than that for

the previous one until the best solution is generated Blondin (2009). Unlike PSO

algorithms which start with starts with an initial solution, simulated annealing

algorithms pick a random variable rather than the variable to generate optimum

global-optima solutions. Totally different from others is the genetic algorithms,

which select the fittest variables for simulation. Genetic algorithms are analo-

gous to Darwin’s theory of natural selection in that only the best and the fittest

parameters are utilized to create high-quality solutions.

The classification of data is a critical step in machine learning. Labeled data

are called supervised learning, while the unlabeled ones or data with undefined

characteristics are referred to as unsupervised learning Caruana & Niculescu-
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Mizil (2006); Hadjitodorov et al. (2006); Margineantu & Dietterich (1997). The

major roadblock of ensemble models includes variance, noise, and bias issues, all

of which distort the performance of ensemble learning Fern & Lin (2008); Had-

jitodorov et al. (2006). Prominent scientists like Fern & Lin (2008) have invented

new ways of machine learning with an eye towards uniting the cost function of

various objectives. Nonetheless, there is no information in the literature regard-

ing any learning model that can meet the requirements of different objectives at

the same time Liu et al. (2019).

Researchers in the artificial-intelligence communities have investigated over the

years how clustering for unsupervised data works in ensemble learning Dudoit

& Fridlyand (2003); Fern & Brodley (2004); Fred (2001); Strehl & Ghosh (2003);

Topchy et al. (2004a). The main objective of clustering is to categorize datasets

based on how similar they are in terms of distance or other parameters Had-

jitodorov et al. (2006). That is, the quality of results obtained in ensemble learn-

ing is a function of not only the methods used but also the parameters taken

into consideration. Rather than choosing one clustering results, ensemble models

provide solutions to complex problems by combining multiple predictions into

a single output with better performance Hubert & Arabie (1985). In ensemble

learning, multiple base learners are first trained and then combined with such

meta-algorithms as bagging, stacking and boosting, thus generating accurate and

improved results Zhou (2012).

The function of stacking, bagging and boosting is to minimize and adjust the

variance and bias in weak learners to output the best prediction Strehl & Ghosh

(2003). Partitioning and hierarchical clustering algorithms are the two forms of

traditionally clustering algorithms in the literature Akbari et al. (2015); Naldi

et al. (2013). Partitioning clustering divides datasets into multiple groups based

on what the datasets have in common Akbari et al. (2015); Treviño et al. (2006).

Typically used portioning clustering includes K-means clustering, CLARA (Clus-
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tering Large Applications) algorithm, and K-medoids clustering Treviño et al.

(2006). Hierarchical clustering, on the other hand, categorizes raw data into hier-

archies Fern & Lin (2008). In hierarchical clustering, each similar observation is

grouped as clusters, which are turn combined with other clusters with the same

characteristics until a dendrogram is obtained Akbari et al. (2015). Commonly

used hierarchical clustering methods include average linkage, full linkage, single

linkage, and Ward’s hierarchical clustering Akbari et al. (2015). These methods

are employed to create an optimal number of clusters for raw data (Ye et al.,

2010). Nonetheless, partitioning clustering is easy-to-use and efficient especially

in creating close clusters Treviño et al. (2006).

The K-means clustering approach has been used in several data-mining project.

This is because the K-means clustering method generates tighter clusters and pro-

duces faster computation than hierarchical clustering Lourenço et al. (2015). As

of today, no clustering method is perfect. As noted by Sarumanthi et al. (2013),

all clustering algorithms have flaws. While some clustering methods find the op-

timal clusters, some just find sufficiently useful clusters. This explains why they

produce different solutions for the same datasets Alizadeh et al. (2014); Topchy

et al. (2004b). However, with the Cluster Validity Indexes, it is feasible to com-

pare the quality of any clustering technique used Sarumanthi et al. (2013).

The literature is replete with empirical studies of cluster-ensemble methods. Strehl

& Ghosh (2003) were among the first few researchers to investigate cluster-ensemble

frameworks. Some scientists used random parameters for the clustering algo-

rithm, whereas some employed different clustering models Hong et al. (2008b).

Regardless, a vast majority of previous approaches grouped datasets into con-

sensus clusters Topchy et al. (2004b). Apart from that, ample research work

has been carried out to verify the efficacy of different clustering methods. In

their experiment, Yang & Jiang (2019) utilized the Hidden Markov Model with

the meta-clustering approach to work on various datasets. Their method was
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advantageous in that it improved the efficiency of temporal data clustering. In

another research, Nazari et al. (2019) invented a new clustering ensemble selec-

tion method that relies on weighing cluster levels. This method requires picking

the “fittest” clusters and then assigning a weight to each one to generate accu-

rate results. Parvin & Minaei-Bidgoli (2013) confirmed that clustering ensembles

produce better data classification. Developed by Dunn (1973) and improved by

Bezdek et al. (1981) fuzzy clustering is another form of clustering that allows

one dataset can belong to one or more similar clusters. This clustering approach

is widely used in pattern recognition and object detection, and the most popu-

lar fuzzy clustering algorithm is the Fuzzy C-means clustering (FCM) algorithm.

The FCM clustering procedure is similar to that of K-means clustering. The num-

ber of clusters is first selected and coefficients are assigned to each data point in

a cluster. Also, like many clustering algorithms, the FCM algorithm cannot find

the best clusters for datasets. This difficulty can be resolved either by taking the

entropy of outputs or by adjusting the ensemble in the unstable region Fred &

Jain (2005); Mimaroglu & Erdil (2013); Strehl & Ghosh (2003). More importantly,

the ensemble in the unstable area is needed for the parameters, lest the results

will not be accurate Parvin & Minaei-Bidgoli (2015).

Furthermore, Huang et al. (2019) proposed two forms of clustering algorithms,

ultra-scalable ensemble clustering (U-SENC) and ultra-scalable spectral cluster-

ing (U-SPEC). U-SPEC merges the ability of the K-means algorithm with the

random-selection efficiency for the selection process, while U-SENC integrates

multiple clusters to produce better performing base clusters Huang et al. (2019).

Because machine learning comes with feature-selection problems especially if the

datasets contain lots of redundant information, there is a need for a new cluster-

ing method that can eliminate redundancies and generate accurate results Liu

et al. (2016). Numerous studies have confirmed the performance superiority of

ensemble clustering solutions over a single clustering solution Kuncheva & Had-

jitodorov (2004); Kuncheva et al. (2006); Zhang et al. (2006b).
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It is not unusual for clustering ensemble techniques to be used in obtaining con-

sensus clustering solutions. All clustering ensemble models rely on two metrics.

One is the diversity of the base learners, and the other is the accuracy of the

base learners Jia et al. (2011); Hadjitodorov et al. (2006); Hong et al. (2008a); Yu

et al. (2014). Together, these two factors can determine the outcome of cluster-

ing results Hadjitodorov et al. (2006); Yu et al. (2014). Stated another way, the

performance of ensemble clustering algorithms is highly dependent on the di-

versity of component classifiers and the quality of component classifiers Fern &

Lin (2008). As Fern & Lin (2008) put it, diversity is a measure of prediction dif-

ference exhibited by ensemble components, while accuracy is a measure of the

quality of ensemble components. These two factors have an inverse relationship

Akbari et al. (2015). If the diversity is high, the quality will be compromised

and vice versa. For this reason, a trade-off between these parameters is crucial

in obtaining accurate clustering solutions Hadjitodorov et al. (2006); Hong et al.

(2008b).

Besides the diversity and quality of component classifiers, another factor that de-

termines the final performance of the clustering algorithm is the ensemble size.

While the number of clustering solutions in an ensemble should be optimal, re-

searchers are yet to find an optimization-oriented cluster-pruning technique that

can accurately estimate the cardinality of ensemble subsets for a given problem.

At best, only a few studies have identified clustering solutions (for a specific en-

semble size) that can maximize the diversity and quality trade-off Fern & Lin

(2008); Fern & Brodley (2003); Jia et al. (2012, 2011); Naldi et al. (2013). These

pieces of research employed different pruning-rate trials to compare the perfor-

mance of the algorithms, and their methods generated excellent predictions for

the pruning rates.
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2.1 ENSEMBLE CLUSTERING

There are two classes of clustering algorithms. One is hierarchical clustering al-

gorithms, and the other is partitioning clustering algorithms Akbari et al. (2015);

Hadjitodorov et al. (2006). The former ranks datasets in strata by merging them

into clusters based on their similarity. Various techniques of hierarchical cluster-

ing algorithms include complete-linkage, single- linkage, and minimum-variance

algorithms Jain et al. (1999). Unlike hierarchical clustering algorithms that form

dendrogram Akbari et al. (2015), partitioning clustering algorithms do not find

nested patters Treviño et al. (2006). Rather, they split raw datasets into single-

level clusters. Even though both algorithms group clusters based on their simi-

larity, partitioning clustering is more advantageous than hierarchical clustering

when it comes to predicting better results Treviño et al. (2006). To be more spe-

cific, the best form of partitioning clustering is the K-means clustering algorithm

due to its ease-of-use and lower computation requirements Treviño et al. (2006).

This current study will employ K-means clustering to create a library of cluster-

ing solutions.

However, in their study, Wang & Liu (2018) developed a selection method that

could integrate clustering quality criteria. This method can determine the diver-

sity and quality of clusters selected using data-structure levels and clustering-

label levels. With their proposed technique, data characteristics are taken into ac-

count, and different evaluation criteria are utilized for clustering partition Wang

& Liu (2018). Introduced as a novel clustering algorithm, the Greedy optimiza-

tion of K-means-based Consensus Clustering (GKCC) can address the challenges

of K-means consensus clustering (KCC), such as combining partition steps Li &

Liu (2018).

In their research investigation, Li & Liu (2018) discovered that GKCC improves

the quality of partitions and accelerates the computation of the algorithm. By

12



changing the clustering parameters, different solutions can be obtained. Another

way to boost the performance of the partition is by applying cluster weighting

and feature weighting to the problem, a technique that is known as weighted lo-

cally adaptive clustering (WLAC) Parvin & Minaei-Bidgoli (2013). More so, more

than one cluster can be combined within the cluster uncertainty by employing

locally weighted graph partitioning techniques and locally weighted evidence

accumulation; however, this method relies heavily on the cluster size Rashidi

et al. (2019). Using an object-oriented hierarchical technique for a complex UAV

analysis, Yu et al. (2018) were able to create optimal removal and optimal seg-

mentation according to the data of interest. Apart from examining previously

computed problems, dynamic programming can also produce the global optimal

solution using a structural search Yu et al. (2018). The final consensus clustering

solution is the combination of every input clustering. This means the quality of

each cluster determines the accuracy of the solution Huang et al. (2018).

Furthermore, scientists have proposed new methods of eliminating clusters that

are of a low quality not only by assigning a weight to each cluster but also by

classifying them according to their significance Huang et al. (2015); Li & Ding

(2008); Yu et al. (2014). The proposed methods, however, are based on the as-

sumption that the quality of clusters in the same base category is similar. Of

course, this assumption is flawed in that different clusters have contrasting qual-

ities Huang et al. (2018). More discouraging is that no study has reported any

clustering method that can produce the most reliable predictions. No clustering

algorithm generates the same result for the same problem. However, Cluster Va-

lidity Indexes can be utilized to compare the validity and reliability of different

clustering solutions Sarumanthi et al. (2013).

A few years ago, Huang et al. (2018) presented an ensemble clustering approach

that considers ensemble cluster uncertainty and clustering weighting. The eval-

uation of cluster uncertainty is performed by labeling the clusters in the ensem-
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Figure 2.1: Diagram of the general process of cluster ensemble .

Source: Vega-Pons & Ruiz-Shulcloper (2011)

ble using entropic criteria. Apart from developing a cluster validity index, the

researchers proposed two consensus functions for weighting clusters. The con-

sensus functions are Locally Weighted Graph Partitioning (LWGP) and Locally

Weighted Evidence Accumulation (LWEA). This method was able to boost the re-

sults in terms of efficiency and quality Huang et al. (2018). Another clustering

technique, which used a similarity measure between clusters was also suggested

to augment ensemble clustering learning. The result of this new method was at

best satisfactory.

A clustering ensemble combines more than one ensemble model to produce a

result of high quality and efficiency that outperforms one single ensemble algo-

rithm Treviño et al. (2006). The performance of clustering ensembles is depen-

dent on the similarity measures, clustering parameters, clustering techniques,

and consensus function Fern & Lin (2008); Azimi & Fern (2009); Joydeep & Ayan

(2011); Vega-Pons & Ruiz-Shulcloper (2011). The two main procedures of en-

semble clustering comprise the ensemble-library generation and the consensus-

function generation. Figure (2.1) illustrates the two steps.

As shown above, the first step does not restrict how different clustering solutions

are generated. Nevertheless, it allows 1) different clustering models to be created
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Figure 2.2: Diagram of the principal clustering ensemble generation
mechanisms.

Source: Vega-Pons & Ruiz-Shulcloper (2011)

with different parameters, 2) different data subspaces to be selected, and various

objects to be represented. Above is a summary of the step Figure(2.2).

The consensus-function construction is the second step, and it can be divided

into two categories based on the median partitions and the object co-occurrence.

Unlike the first category which is more heuristic, the second category focus on

minimizing the distances between objects. Besides, a similar clustering solution

based on the object co-occurrence can be obtained by using the co-association

matrix Zhong et al. (2015), votes Charkhabi et al. (2014), finite mixture mod-

els Topchy et al. (2004b), graph and hypergraph Strehl & Ghosh (2003), fuzzy

techniques and locally adaptive clustering algorithms Fern & Lin (2008).

The median partitioning approach can be categorized into Mirkin distance meth-

ods, kernel methods, non-negative matrix factorization methods, and genetic al-

gorithm methods Vega-Pons et al. (2010); Vega-Pons & Ruiz-Shulcloper (2011).

The generation step can allow the diversity of clustering solutions to produce

reliable ensemble clustering results. To upgrade the consensus step, the com-

bination of the models can be leveraged. Clustering algorithms can also be en-

hanced with the random projection method, which minimizes the data size by

getting rid of redundant partitions Fern & Brodley (2003). Yang et al. (2014)
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found in their recent studies that to optimize both quality and diversity, random-

projection methods and random sampling methods were useful. An alternative

technique for these two methods is the stratified sampling method, in which fea-

ture hierarchies are built by grouping data randomly Jing et al. (2015).

A group of scientists also tried another strategy, Auto-CES (an automatic cluster-

ing ensemble) method, to generate robust results. This method allowed them

to prune the component classifiers based on the selection and clustering steps

Amiri Maskouni et al. (2018). Regarding the clustering step, similar categories

are grouped with a clustering algorithm, which does not require the cardinal-

ity of the final groups. As for the selection step, the cohesiveness metric se-

lects the best trees based on two parameters, quality and diversity Amiri Mask-

ouni et al. (2018). Strehl & Ghosh (2003) also studied how to determine the

consensus function. Using different heuristic techniques, they measured and

maximized the similarity between groups of clusters. The algorithms were the

MCA (Meta-Clustering Algorithm), HPA (Hypergraph Partitioning Algorithm),

and CSA (Cluster-based Similarity Algorithm). All of them can change the so-

lutions of clustering into hypergraph notation Strehl & Ghosh (2003). Berikov

(2014) suggested another way to aggregate decisions by optimizing the similarity

measures of dataset solutions. This method is similar to that proposed by Vega-

Pons et al. (2010, 2008), who used a kernel function to determine the similarity

measure. Rather than using matrices, Singh et al. (2007) defined the similarity

measures by strings to obtain the maximum value, which was later computed

with mixed-integer programming.

Combining high-quality component classifiers is part of the goal of ensemble

learning even though insignificant clusters can be eliminated in the consensus

function. Banerjee et al. (2018) used another approach that optimized clustering

without compromising the quality of consensus clusters. However, this method

is not immune to scaling problems, especially when the datasets are mammoth.
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Sometimes, ensemble algorithms eliminate high-quality clusters. This challenge,

according to Alizadeh et al. (2014), can be addressed with the APMM (Alizadeh

Parvin Moshki Minaei) criterion rather than with the NMI (Normalized Mutual

Information) criterion.

2.2 ENSEMBLE BASED CLUSTERING SELECTION

Traditional ensemble learning methods make use of all the component classifiers

to produce better predictions. Recent empirical studies, however, have proven

that traditional approaches are inefficient in creating ensemble clustering solu-

tions Fern & Lin (2008); Jia et al. (2011); Azimi & Fern (2009); Caruana et al.

(2004); Ferrari & De Castro (2015); Yang et al. (2017); Yu et al. (2014). A promis-

ing better solution is making sure that all component partitions are different from

one another. Many researchers have suggested ways of generating diverse clus-

ters. The procedures are summarized in Figure (2.3).

With the Joint Criterion method, it is possible to optimize the trade-off between

diversity and quality by combining clusters with a similar objective function Fern

& Lin (2008). NMI values are ranked to cull the best clusters that can produce

the best outcome Azimi & Fern (2009). The expression of NMI(X,Y ) is given by

equation (2.1) and equation (2.2). NMI(X,Y ) represents the information func-

tion between two clusters (X and Y ), p(x) and p(y) are the distribution functions,

and H(Y ) and H(X) are the entropy functions of X and Y ,

I(X;Y ) =
∑
yεY

∑
xεX

p(x,y) log
p(x,y)
p(x)p(y)

, (2.1)

NMI(X,Y ) =
I(X;Y )√
H(X)H(Y )

. (2.2)
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Figure 2.3: General Flowchart of the Cluster Ensemble Selection.

In addition, with the spectral clustering method, Jia et al. (2011) updated clusters

that were selected randomly with bagging based on selected NMI values. Similar

to the objective-function of modeling of Jia et al. (2011) was that of Fern & Lin

(2008). However, Fern & Lin (2008) multiplied the NMI values with a natural

logarithm. Some researchers such as Jia et al. (2012); Yu et al. (2014) integrated

their algorithms with weighted functions, while some scientists like Vega-Pons &

Avesani (2015) used lattice information for the optimization. Others developed

ensemble models that factored in three parameters such as consistency, cardinal-

ity, diversity, and quality Fern & Lin (2008); Yang et al. (2017). In addition, some

studies used ensemble subsets with a cardinality of more than 50 Jia et al. (2012,

2011); Naldi et al. (2013); Yu et al. (2014). Azimi & Fern (2009) modified their

model, classifying datasets into stable and unstable values (i.e., NMI values less

than 0.5 were considered unstable with values greater than 0.5 were regarded

as stable). In this study, stable values were ignored, while unstable values were
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selected Azimi & Fern (2009). Because the cardinality of the ensemble selected

affects the final outcome, researchers rate the performance of their models based

on the number of elements in the subset. In short, the cardinality of the ensem-

ble subsets is an important parameter in ensemble learning Fern & Lin (2008);

Kuncheva & Hadjitodorov (2004); Kuncheva et al. (2006); Ghaemi et al. (2011).

This current study aims to develop an ensemble model that not only optimizes

the diversity and accuracy trade-off but also uses a small number of ensemble

subsets to produce better predictions. To achieve this goal, our proposed model

will be compared with three ensemble cluster ensemble techniques developed

by Fern & Lin (2008) and Cruz et al. (2018). The first technique is the Joint

Criterion method, which uses a joint objective function that combines quality and

diversity. The second technique is the Cluster-And-Select method, which groups

similar solutions into clusters and then picks the most competence one among the

similar clusters. The third technique is the DES-Cluster method, which produces

a scatter plot of clustering solutions with average diversity and quality.

2.3 ENSEMBLE BASED FEATURE SELECTION

In the literature, there are two main approaches regarding the use of ensembles in

feature selection. In the first, feature selection steps are used for obtaining the di-

versity needed for using posterior ensemble classification methods (Cunningham

& Carney, 2000). Other authors use ensembles of feature selectors to improve the

accuracy, diversity, and stability of the feature selection process (Das et al., 2017;

Saeys et al., 2008; Seijo-Pardo et al., 2017a,b). This latter approach is of spe-

cial interest in knowledge discovery scenarios, and mainly in high dimensional

cases.In (Tsymbal et al., 2003), five different pairwise measures of diversity were

compared over 21 datasets with fixed ensemble sizes. They aimed to design a fit-

ness function that shows the relation between accuracy and diversity. The results

showed that there is a close relationship between the functions employed and the
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number of ensemble members that produce the highest accuracy. Other works,

such as (Bolón-Canedo et al., 2012), used a fixed number of filters in high dimen-

sional scenarios. In (Bolón-Canedo et al., 2014), two different basic methods of

heterogeneous type were proposed. The first method applied five filters that fed

five classifiers followed by the aggregation step. The same filters were used in the

second formulation with the aggregation step, previous to classification. In (Yang

& Mao, 2010), a new algorithm, named Multicriterion Fusion-based Recursive

Feature Elimination, was developed, whose aim is to increase the robustness of

feature selection algorithms by using multiple feature selection evaluation crite-

ria. Another study used Multi-layer perceptrons at the ensemble stage (Windeatt

et al., 2011).

Diversity is a factor that deserves specific emphasis. By using several types of fea-

ture selectors in an ensemble (Bolón-Canedo et al., 2016) such as rankers, subset

methods filters, wrappers, embedded methods, or univariate and multivariate

methods as in Bolón-Canedo et al. (2014); Seijo-Pardo et al. (2017b), we can pro-

vide diversity.

In Wang et al. (2010), several ensembles of filter rankers were applied to the

area of software quality. The combination of individual rankings included sim-

ple methods like mean, median, and minimum, and complex methods such as

Complete Linear Aggregation Abeel et al. (2009) (CLA), Robust Ensemble Fea-

ture Selection (Rob-EFS) Brahim & Limam (2013), SVM-Rank Seijo-Pardo et al.

(2017b), and data complexity measures Seijo-Pardo et al. (2019). Meanwhile,

there exist many parallel and distributed implementations of feature selection

methods Eiras-Franco et al. (2016); Mitchell et al. (2014). Further, various re-

search projects have developed ensembles making use of distributed or parallel

schemes. In Seijo-Pardo et al. (2017b), a heterogeneous approach was proposed,

with the idea of distributing the dataset in several nodes, applying the same fea-

ture selection method in each of them, and then at the end of their work aggregat-
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ing the results. Hong et al. (2008b) also developed a feature selection algorithm

for unsupervised clustering, which put together the clustering ensemble method

and the population-based incremental learning algorithm.

The same authors also developed the task of feature ranking for unsupervised

clustering Hong et al. (2008a) to guide computation of features relevance. A

different approach was followed in the work by Morita et al. (2004), in which

they developed an ensemble of classifiers based on unsupervised feature selec-

tion. Bellal et al. (2012) developed a new method called semi-supervised ensem-

ble learning guided feature ranking method (SFR), which combined a bagged

ensemble of standard semi-supervised approaches with permutation-based out-

of-bag feature importance. A new wrapper-type semi-supervised feature selec-

tion framework which finds the relevant features using confident unlabeled data

was developed by Han et al. (2011). They employed an ensemble classifier that

supports the estimation of confidence in unlabeled data. In Ko et al. (2008) de-

veloped that the Dynamic classifier selection that the competencies of the indi-

vidual classifiers are calculated during classification operation. Using the major-

ity voting rule for combining classifiers, perform better than the static selection

method.In our study DES was used as classifier method.

It must be noted that in each of the above methods, the number of functions,

i.e., the cardinality of an ensemble library, is not determined theoretically. The

number of functions in the ensemble acts as a hyper-parameter of these methods,

which directly affects the classification performance in the aggregation step. In

the generation step of the ensemble, the most accurate and diverse models are

desired for better prediction performance at the end. However, there might be

models which are weak in the generation phase, causing a decrease in overall ac-

curacy. To eliminate such redundancies in the ensemble, a pruning step is needed

to select the optimum subset of the ensemble. To the best of our knowledge, no

pruning algorithm has been proposed for ensemble-based feature selection al-
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gorithms. There exist pruning methods developed for ensemble classification of

multi-class task problems using Error-Correcting Output Codes Özöğür-Akyüz

et al. (2015); Zhang et al. (2006a). In these studies, the importance of the accu-

racy and diversity trade-off is strongly emphasized and optimization-based ap-

proaches are proposed for ensemble classification models. This trade-off can be

explained as follows: High accuracy in the ensemble leads to a decrease in the

diversity of the ensemble, and an increase in diversity sacrifices the accuracy of

the overall ensemble.
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3. BACKGROUNDMATERIAL

In this section, various background methods used in the pruning, classification

steps of this study are introduced. In the following subsection, Disciplined Convex-

Concave Programming (DCCP), the core of the pruning step, is introduced briefly.

In the later subsection, the classifier in this study, Dynamic Ensemble Selec-

tion(DES), is summarized.General ideas about Joint Criterion Method, Cluster

and Select Method and DES-Clustering is given in this chapter

3.1 DISCIPLINED CONVEX-CONCAVE PROGRAMMING

DCCP is an optimization method which was first introduced in Grant et al. (2006)

and which combines two ideas: Disciplined Convex Programming (DCP) and

Convex- Concave Programming (CCP) Shen et al. (2016). DCP requires a set of

conventions in which problems follow, whereas CCP is an organized heuristic for

solving nonconvex problems. Disciplined convex programming can be defined

by the following optimization problem:

minimize
x

f0(x)− g0(x)

subject to fi(x)− gi(x) ≤ 0, i = 1, . . . ,m,
(3.1)

where x ∈ Rn refers to the optimization variable, and the functions fi : Rn → R

and gi : Rn→R (i = 1, ...,m) are convex functions.

Above problem (3.1) can be rewritten as follows:

minimize f0(x)− t

subject to t = g0(x),

fi(x) ≤ gi(x), i = 1, . . . ,m,

(3.2)
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where x and t refers to the original optimization variable and a new optimization

variable, respectively.

DCCP is an appropriate and simple standard form for Difference Programming

(DC), because the linearized problem of CCP is a DCP problem if the original

problem is DCCP. The linearized problem can then be transformed into a cone

program and solved using generic solvers Shen et al. (2016).

3.2 DYNAMIC ENSEMBLE SELECTION - COMBO

In this study, Dynamic Ensemble Selection(DES) was used as a classifier for the

proposed ensemble model. As previously reported, given that selecting only one

classifier is very vulnerable to error, some researchers chose to pick a subset of

classifiers. Ko et al. (2008) suggested an approach aimed at imitating the Oracle

model, which obtained the best ensemble results Kuncheva (2002). The KNORA-

E (K Nearest ORAcles - Eliminate) eliminates the classifier from the ensemble if

the classifier misclassifies any pattern of the neighbors. There exists moreover

a weighted form KNORA-E-W which weights the labels of the chosen classifiers

based on the distance between the test sample and the neighbors. This work

includes two fusion algorithms: KNORAU (K Nearest ORAcles - Union) and its

weighted form KNORA-U-W. Soares et al. (2006) choose the N most correct clas-

sifier, according to a defined region of competence, and the J most diverse classi-

fiers in order to produce the ensemble. The values of N and J were settled by the

authors. These methods are called dynamic ensemble selection (DES) since they

can choose more than one classifier. In this thesis, DecisionTreeClassifier, Logisti-

cRegression, KNeighborsClassifier, RandomForestClassifier„ GradientBoosting-

Classifier were set as estimators of classifer steps. Here, we used Combo which is

a relatively new library specialized in ensemble learning which provides several

common methods under a unified Scikit-learn-compatible API so that it main-

tains compatibility with many estimators from the Scikit-learn ecosystem Zhao
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et al. (2019). The Combo library delivers algorithms that are capable of combin-

ing models for classification, clustering, and anomaly detection tasks, and it has

been used widely in the Kaggle predictive modeling community. Combo provides

a unified outlook for different ensemble methods whilst remaining compatible

with Scikit-learn.

3.3 SUPPORT VECTOR MACHINES

In this study, SVM was used as a base classifier for the proposed ensemble clus-

tering selection model. SVMs were first introduced by Vapnik (1998) and have

been used frequently in recent years for classification problems. It is a discrimi-

native classifier formally defined by a separating hyperplane which constructs an

optimal hyperplane y = < w,x > +b between classes during the training phase.

Here, x is a vector from the input space, y is the output, <,> refers to dot prod-

uct, w refers to the normal vector of the decision surface and b stands for the

bias term Cristianini & Shawe-Taylor (2000). The optimal separating hyperplane

is obtained by maximizing the margin between two classes with the following

optimization problem:

min
w,ξ
‖w‖2 +C

l∑
i=1

ξi ,

yi(wT xi + b) ≥ 1− ξi (i = 1 . . . l),

where C refers to a regularization (cost) constant corresponding to the error term

ξi which contributes to the model as a penalty term to avoid over fitting. De-

termining an optimum value for C is important since large C results in a small

margin and, a small C results in a large margin for l training points.

25



3.4 JOINT CRITERION METHOD

In the Joint Criterion Method, quality and diversity terms are merged into a joint

criterion function Fern & Lin (2008). For a given ensemble size K , the following

objective function (3.3) is maximized with respect to find the indices of the best

candidates among the ensemble

α
∑

i=1,...,K

SNMI(Ci ,L) + (1−α)
∑
i,j

(1−NMI(Ci ,Cj)), (3.3)

where the first term measures the quality, the second term measures the diversity

and the parameter α controls the impact assigned to each term Fern & Lin (2008).

It starts with a single solution having the highest-quality and the next candidate

is added to the ensemble subsequently which maximizes the objective function

of the problem (3.3) Fern & Lin (2008).

3.5 CLUSTER AND SELECT METHOD

The Cluster and Select (CAS) method is the invention of Fern & Lin (2008), and

the goal of this method is to eliminate all the redundancies among similar clus-

ters and ultimately improve unsupervised learning results. In the library, it is

not uncommon to have many similar cluster solutions, which create redundan-

cies and slow down the computation process of the ensemble. As Fern & Lin

(2008) put it, if two similar clustering solutions (C1 and C2) are in an ensemble,

either C1 or C2 can be used without compromising the quality of the objective

function. Unlike the Joint Criterion method which uses a single AOF (aggregated

objective function) to solve problems, the Cluster and Select method continues to

regroup the clusters based on their similarity and then select one of the clusters

in the group. While clusters can be grouped based on their similarity in many

ways, it is crucial to note that the CAS method selects only the highest quality
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cluster among the similar clusters in the ensemble Fern & Lin (2008). Overall,

the CAS method can achieve improvements, which are statistically significant,

for clustering ensembles of any size.

3.6 DES-CLUSTERING

In machine learning projects, DESlib makes use of dynamic selection (DS) al-

gorithms to implement several techniques that involve ensemble and dynamic

classifiers. This open-source python library assumes that not all classifiers in an

ensemble are effective, and the major advantage of using DESlib is that only the

most competent classifiers in an ensemble are picked. This library uses three

methods: SE (static ensemble) methods, DES (dynamic ensemble) methods, and

DCS (dynamic classifier selection) methods. The DES method was employed for

comparison in this study. First, component classifiers of an ensemble were se-

lected, and the competence region was defined with the K-means algorithm. Two

factors were considered. One, the best cluster in an ensemble of similar clusters

was picked to refine performance. Two, the most accurate ensemble classifiers to

the given problem were culled from the diverse ensemble classifiers Cruz et al.

(2018). Then, the classifiers were categorized into k partitions. After that, they

were ranked in decreasing order according to their quality, which is accuracy and

diversity. The Euclidean distance was utilized to test the set effectiveness Soares

et al. (2006). For instance, the most diverse classifiers (J) were gleaned from N

classifiers.
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4. ENSEMBLE CLUSTERING SELECTION

4.1 THE MATHEMATICAL MODEL

This section focuses on the cluster ensemble selection model used in this study.

Similar to the model used by Zhang et al. (2006b), a constrained optimization

technique was incorporated into the partitions, and the ensemble model was de-

veloped with an eye towards maximizing diversity and minimizing variances and

noises in the objective function. Also considered in the development of the model

were pairwise errors of components. With the NMI (normalized mutual infor-

mation) function, it was possible to obtain the matrix entries by estimating the

similarities of clusters in an ensemble. As highlighted in Eq. (4.1) and (4.2),

E represents the clustering solutions for n cluster ensembles, NMI(C,Ci) is the

function that computes the similarity between solutions of clusters, SNMI(C,E)

measures the quality, and the matrix G is the parameter with the diversity and

quality information.

SNMI(C,E) =
n∑
i=1

NMI(C,Ci), (4.1)

Gij =


Gii = SNMI(C,Ci), (i = 1, ...,n)

Gij = 1−NMI(Ci ,Cj), (j = 1, ...,n).
(4.2)

As shown above, the quality of the i-th solution and the diversity between two

solutions are measurements of each diagonal element and off diagonals, respec-

tively. The matrix G is transformed as shown below to ensure that all the ele-

ments are similar.

G̃ii =
Gii
N
,
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Where N is the clustering-solution N in the ensemble. Then, the new equation is

denoted as:

G̃ij,i,j =
1
2

(
Gij
Gii

+
Gij
Gjj

)
. (4.3)

As suggested by Zhang et al. (2006b), the diversity and quality trade-off is opti-

mized by the model shown below in (4.4) , With the solution to the Mixed Integer

Problem shown in Eq. (4.4) , we can find the clustering-solution indices, which

indicate the ensemble subsets that should be included.

max
x
xT G̃x (4.4)

subject to
∑
i

xi = k,

xi ∈ {0,1}.

With Eq. (4.4) depicted above, we can find the cluster’s indices for each solu-

tion in an ensemble subset. If a solution, for instance, is x = [1000100011]T , the

1st, 4th, 8th, and 10th indices of vector x will be chosen from the ensemble ma-

trix. This equation, which is called an NP-Hard problem, can be solved with SDP

(Semi-definite programming). As the ensemble size is a function of the quality of

the solution (k) which in turn determines the quality of the ensemble algorithm,

it is essential for k to be divorced from insignificant clusters. For this reason,

like in Lagrangian Relaxation, the constraint
∑
i xi = k will be moved to the ob-

jective function with the regularization constant rho. In short, this constraint can

be changed to ‖x‖0 = k . This new expression represents the subset cardinality

of the total ensemble. With this new equation, the binary vector x can be trans-

formed into the real vector with the support of sparsity. That way, to become the

unconstrained problem, (4.4) can be rewritten as:
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max
x∈Rn

xT G̃x − ρ ‖x‖0 . (4.5)

Regarding the clustering problem, it is feasible to approximate the second value

in the objective function by ‖x‖1. This function is approximated as the Student

t-distribution negative-log likelihood. In the literature, this approximation is not

only more tight than ‖x‖1 but also commonly used in many ensemble studies

Candès et al. (2008); Fazel et al. (2003); Sriperumbudur et al. (2011); Weston

et al. (2003). This objective function can be approximated to ‖x‖0, for example,

‖x‖0 =
n∑
i=1

(1− e−α|xi |) where α > 0 Bradley & Mangasarian (1998). In the objective

function, the zero-norm in the function is estimated with the expression below:

‖x‖0 :=
n∑
i=1

1xi,0 = lim
ε→0

n∑
i=1

log(1 + |xi | /ε)
log(1 + 1/ε)

.

Based on this, Eq. (4.5) is transformed into the expression below:

max
x∈Rn

xT G̃x − ρ lim
ε→0

n∑
i=1

log(1 + |xi | /ε)
log(1 + 1/ε)

. (4.6)

As shown, there is a similar between Eq. (4.6) and the expression proposed by

Sriperumbudur et al. (2011) , which can compute the difference convex-function

(DC). It is feasible to change Eq. (4.6) to a DC problem by defining the positive

matrices and making sure G̃ + τI ∈ S+. This means that one can select any τ > 0

so long G̃ + τI ∈ S+. Selecting τ > −λmin(G̃) results in G̃ + τI ∈ S+ when G̃ is

indefinite. Note that λmin is the minimum eigenvalue of G̃. Sriperumbudur et al.

(2011) used the same approach in their study to solve an eigenvalue problem.

If G̃ ∈ Sn assuming that as τ ≥ max(0,−λmin), then it can be said that positive

semi-definite matrices exist in the expression. Thus, Eq. (4.6) can be expressed

as follows:
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min
x
τ ‖x‖22 − x

T
(
G̃+ τI

)
x+ ρ lim

ε→0

n∑
i=1

log(1 + |xi | /ε)
log(1 + 1/ε)

, (4.7)

where ‖. ‖2 refers to the Euclidean norm. If we neglect the limit of the last term

of the problem (4.7) by choosing ε > 0, the following convex problem is derived:

min
x

τ ‖x‖22 −
xT (

G̃+ τI
)
x − ρ

n∑
i=1

log(1 + |xi | /ε)
log(1 + 1/ε)


. (4.8)

Under the new expression, Eq. (4.4) is presumed to be independent of the en-

semble size k in the model, where ρ is the regularization constant. By taking so

much time to select the fittest k, the efficiency of the algorithm performance be-

comes low. However, our model can overcome this inefficiency by introducing

another parameter ρ = [10−1,10−2,10−3,1,101,102,103,104,105,106]. Put simply,

this method selects the fittest k with the highest NMI values. With this strategy,

the search space can be reduced, meaning the computation speed will be high.

min
x,y

τ ‖x‖22 −
xT (

G̃+ τI
)
x − ρ

n∑
i=1

log(1 + yi/ε)
log(1 + 1/ε)

 : −y ≤ x ≤ y


such that xT x = 1. (4.9)

The first term τ ‖x‖22 is convex in x as τ > 0 and xT
(
G̃+ τI

)
x − ρ

n∑
i=1

log(1 + yi/ε)
log(1 + 1/ε)

is jointly convex in x and y. The Eq. (4.9) represents the minimization of con-

vex difference functions for a data set Sriperumbudur et al. (2011). To solve DC

programs, we use such algorithms as cutting-plane and brand-and-bound algo-

rithms. However, these global algorithms are not scalable, especially if the value

of n is large. For this reason, we use a majorization-minimization method that

uses a local optimization algorithm for the DC problems.

The constraint xT x = 1 makes vector x into small values with restricted interval,
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thereby allowing us to transform the vector solution x into the binary solution.

The expression shown below represents the (4.9) Algorithm 1 binary solution.

x =


1 x ≥ 0.1,

0 x < 0.1.

As shown above, the boundary constraints produce excellent results compared to

(5.4), which generates a low subset size for an ensemble.

Algorithm 1 Ensemble Cluster Selection with DC Programming
Input: Data set,Base learners
Paramters: τ ,ε,ρ
Output: NMI values

1: Generate Ensemble library E in 3 steps given in Section 5.2
2: Compute matrix G̃ defined by equation (4.3)
3: Find a solution x of the below problem by Majorization Minimization OR

DCCP by user selection

min
x,y

τ ‖x‖22 −
xT (

G̃+ τI
)
x − ρ

n∑
i=1

log(1 + yi/ε)
log(1 + 1/ε)

 : −y ≤ x ≤ y


such that xT x = 1. (4.10)

4: Find all x′is such that xi ≥ 0.1, i = 1 . . .m to be the indices of clustering solu-
tions in selected subset

5: Run consensus method Hypergraph Partitioning Algorithm (HGPA) Hein
et al. (2013)

The model was evaluated in this thesis with DCCP (convex-concave program-

ming. Algorithm (1) generates (4.9) , and it implements the DCCP package in

Python 3.0 library. The numerical optimization approach is introduced below.

To obtain robust solutions, the solutions were aggregated in the sub-ensemble.

We then employed the HGPA (Hypergraph Partitioning Algorithm) for cluster-

ing. Despite the objective-function constrain, mutual information is optimized

in the algorithm. The literature provides more information regarding the HGPA

approach.
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4.2 EXPERIMENTAL RESULTS

In this section, we explain the results of our experiments and make informed con-

clusions based on our findings. Apart from presenting the tables and figures, we

explain our ensemble step-up used in this thesis and then compare the datasets

of each ensemble method with others. That way, we can determine whether or

not the performance of our proposed ensemble model is better than that of ex-

isting ensemble models. As shown in 2.2, the ensemble-library generation step

in this study includes three steps. The base learner used was K-means to pro-

duce initial partitions of the datasets. By employing the K-means algorithm,

we were able to obtain diverse clustering solutions. Added to the ensemble li-

brary in the second step were clustering solutions with data attributes, which

were randomly selected. Approximately 50 clustering solutions were also cre-

ated for each generation step with the aim of exploring the data structure, mean-

ing the ensemble library was comprised of 150 diverse clustering solutions. For

the clustering solutions, Algorithm 1 was used as the selection strategy, and ap-

proaches such as Joint Criterion and Cluster-And-Select Fern & Lin (2008) and

DES-ClusteringCruz et al. (2018) methods were utilized to compare the model

performance.

In addition to Algorithm 1, the DCCP algorithm was utilized to resolve the pro-

posed model. Table 4.5 presents the best NMI values for the Joint Criterion

method, Cluster- Select method, DES-Cluster method, and PrunedOPT method.

As recommended by Dheeru & Karra Taniskidou (2017), each method was as-

sessed with 11 benchmark datasets: Frog MFCCs, Glass, Movement, Seeds, Seg-

mentation, Synthetic Control, Wine, Zoo, Yale, Hill-Valley, and USPS. Table 4.1

provides the details of the benchmark dataset, including their Types, Feature

Values, Features, Instances, and Class. As shown in the table below, most of the

datasets have a continuous feature value, and a class number greater than 3.
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Table 4.1: Detailed information of benchmark datasets.

Dataset Type Feature Value # Feature # Instance # Class
Frogs MFCCs Bio Continuous 22 7195 4

Glass Physical Continuous 10 214 6
Movement Image Continuous 91 360 15

Seeds Bio Continuous 7 210 3
Segmentation Image Continuous 19 2310 3

Synthetic Control Time Series 60 600 6
Wine Chemical Continuous 13 178 3
Zoo Artificial Categorical 17 101 7
Yale Image Continuous 1024 165 15

Hill-Valley Physical Continuous 101 606 2
USPS Image Continuous 256 9298 10

After listing the datasets and implementing the Cluster-And-Select, Joint Crite-

rion, and DES-Cluster methods, we compared the proposed ensemble clustering

algorithm. In the DES-Cluster approach, the parameters’ default values (k) was

set as 5, the percentage quality of base classifiers was set as 0.5, and the percent-

age diversity of base classifiers was set as 0.33. For the Joint Criterion method,

the value of a in equation(3.3) was set as 0.5. Tables 4.3 and 4.4 indicate the

NMI values and their standard deviation, including the confidence interval of

Cluster-And-Select and Joint-Criterion methods for different pruning rates. Put

simply, each dataset for the cluster-ensemble methods has different NMI values

for a pruning rate of 100, 90, 80, 70, 60, and 50.

After comparing each method’s performance with the proposed cluster-ensemble

method using the NMI mean values assigned to each pruning rate (Table 4.5), we

found that the mean value results of our proposed method PrunedOPT outper-

formed the Cluster-And-Select, DES-Cluster and Joint-Criterion methods. The

values in bold in Tables 4.3, 4.4 and 4.5 indicate the best NMA results. In Fig-

ure 4.1, we further compared the 11 benchmark datasets by combining the NMA

values for various pruning rates in Tables 4.3, 4.4 and 4.5. It can be concluded

from the graph that the proposed model offers the best NMA values for the vast

majority of the pruning rates.
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In addition to the data comparison, student-test was carried out to estimate the

likely errors in the confidence interval. The error rates found in the confidence

interval are displayed in Tables 4.3, 4.4 and 4.5. For each dataset, the standard de-

viation was performed, and findings are illustrated in each table. The statistical

significance and confidence level are p > 0.99 and 93 percent , respectively. This

means the null hypothesis, in which error rates are random for 5 different tests,

should be rejected. Table 4.2 indicates the time cost of each cluster-ensemble

method. For all the datasets, the time cost of the PrunedOPT method was higher

than that of other ensemble methods. This longer time is a drawback of our

proposed method; nonetheless, this deficiency is not a fair comparison. After

all, our proposed cluster-ensemble method produces better quality. Unlike the

Cluster-And-Select, Joint-Criterion, and DES-Cluster methods, PrunedOPT can

automatically find the optimal pruning rate without compromising the diversity

and quality of the base learners. It is, therefore, pertinent to consider the trial

costs of different pruning-rate selections.

Table 4.2: Time cost in second of each method.

Time Cost (Second)
Data Cluster-Select Joint Criterion DES-Cluster PrunedOPT

Frogs MFCCs 57.131 25.549 23.67 776.241
Glass 57.045 24.564 31.457 862.456

Movement 78.976 28.890 2.21 890.125
Seeds 94.589 25.146 21.567 764.125

Segmentation 92.067 28.648 27.891 779.960
Synthetic Control 58.017 27.578 32.654 859.167

Wine 76.045 26.639 16.456 884.843
Zoo 75.030 37.645 33.876 789.100
Yale 97.321 89.546 78.34 894.678

Hill-Valley 67.45 72.567 48.453 796.435
USPS 202.56 198.45 98.565 1400.11
Mean 76.247 38.677 39.439 826.713

35



Ta
b

le
4.

3:
N

M
I

va
lu

es
,s

ta
n

d
ar

t
d

ev
ia

ti
on

an
d

co
n

fi
d

en
ce

in
te

rv
al

fo
r

va
ri

ou
s

p
ru

n
in

g
ra

te
s

of
Jo

in
t

C
ri

te
ri

on
M

et
h

od
.

Jo
in

t
C

ri
te

ri
on

P
ru

n
in

g
R

at
e

D
at

a
50

60
70

80
90

10
0

Fr
og

s
M

FC
C

s
0.

23
9

(±
0.

01
2)

C
l=

[0
.2

17
,0

.2
71

]
0.

27
2

(±
0.

01
3)

C
l=

[0
.2

83
,0

.2
96

]
0.

20
9

(±
0.

01
1)

C
l=

[0
.2

05
,0

.2
38

]
0.

21
7

(±
0.

02
1)

C
l=

[0
.2

07
,0

.2
56

]
0.

25
2

(±
0.

01
2)

C
l=

[0
.2

29
,0

.2
93

]
0.

25
1

(±
0.

02
1)

C
l=

[0
.2

21
,0

.2
85

]

G
la

ss
0.

78
9

(±
0.

01
4)

C
l=

[0
.7

38
,0

.8
10

]
0.

70
8

(±
0.

01
9)

C
l=

[0
.7

01
,0

.7
28

]
0.

72
3

(±
0.

01
3)

C
l=

[0
.7

14
,0

.7
56

]
0.

72
6

(±
0.

01
2)

C
l=

[0
.7

13
,0

.8
01

]
0.

74
5

(±
0.

01
2)

C
l=

[0
.7

41
,0

.7
49

]
0.

70
8

(±
0.

01
9)

C
l=

[0
.7

01
,0

.7
23

]

M
ov

em
en

t
0.

52
6

(±
0.

01
9)

C
l=

[0
.5

00
,0

.6
01

]
0.

54
1

(±
0.

01
9)

C
l=

[0
.5

31
,0

.5
82

]
0.

53
(±

0.
01

9)
C

l=
[0

.4
01

,0
.7

01
]

0.
53

2
(±

0.
01

9)
C

l=
[0

.5
02

,0
.6

04
]

0.
51

4
(±

0.
01

9)
C

l=
[0

.4
99

,0
.6

12
]

0.
53

1
(±

0.
01

9)
C

l=
[0

.4
98

,0
.6

21
]

Se
ed

s
0.

65
4

(±
0.

00
1)

C
l=

[0
.6

40
,0

.6
81

]
0.

65
4

(±
0.

01
2)

C
l=

[0
.6

30
,0

.6
60

]
0.

53
0

(±
0.

01
4)

C
l=

[0
.5

12
,0

.6
20

]
0.

62
0

(±
0.

01
1)

C
l=

[0
.5

88
,0

.7
20

]
0.

53
0(
±0
.0

13
)

C
l=

[0
.5

12
,0

.5
69

]
0.

62
0(
±0
.0

19
)

C
l=

[0
.5

99
,0

.7
01

]

Se
gm

en
ta

ti
on

0.
26

0
(±

0.
01

4)
C

l=
[0

.1
89

,0
.3

01
]

0.
18

4
(±

0.
01

2)
C

l=
[0

.1
74

,0
.1

92
]

0.
26

2
(±

0.
02

3)
C

l=
[0

.2
19

,0
.3

29
]

0.
34

5
(±

0.
02

1)
C

l=
[0

.3
21

,0
.4

19
]

0.
35

4(
±0
.0

12
)

C
l=

[0
.3

10
,0

.4
20

]
0.

37
1

(±
0.

01
4)

C
l=

[0
.3

20
,0

.4
19

]

Sy
nt

he
ti

c
C

on
tr

ol
0.

74
3

(±
0.

01
3)

C
l=

[0
.7

01
,0

.7
65

]
0.

75
3

(±
0.

01
4)

C
l=

[0
.7

12
,0

.7
87

]
0.

77
5

(±
0.

02
2)

C
l=

[0
.7

28
,0

.7
90

]
0.

69
3

(±
0.

01
8)

C
l=

[0
.6

01
,0

.7
21

]
0.

68
8

(±
0.

03
7)

C
l=

[0
.6

55
,0

.7
21

]
0.

65
4

(±
0.

01
3)

C
l=

[0
.6

30
,0

.7
00

]

W
in

e
0.

75
1

(±
0.

01
4)

C
l=

[0
.7

10
,0

.7
89

]
0.

71
8

(±
0.

01
4)

C
l=

[0
.6

89
,0

.7
30

]
0.

78
1

(±
0.

01
4)

C
l=

[0
.7

72
,0

.7
91

]
0.

78
1

(±
0.

01
4)

C
l=

[0
.7

70
,0

.8
01

]
0.

78
1

(±
0.

00
1)

C
l=

[0
.7

80
,0

.7
81

]
0.

78
1

(±
0.

00
1)

C
l=

[0
.7

80
,0

.7
81

]

Z
oo

0.
64

5
(±

0.
01

6)
C

l=
[0

.6
29

,0
.6

67
]

0.
70

6
(±

0.
01

9)
C

l=
[0

.7
01

,0
.7

12
]

0.
70

4
(±

0.
00

4)
C

l=
[0

.7
01

,0
.7

07
]

0.
75

3
(±

0.
01

3)
C

l=
[0

.7
42

,0
.7

80
]

0.
64

2
(±

0.
01

5)
C

l=
[0

.6
35

,0
.6

66
]

0.
64

6
(±

0.
02

1)
C

l=
[0

.6
31

,0
.6

78
]

Ya
le

0.
54

3
(±

0.
01

1)
C

l=
[0

.5
20

,0
.5

78
]

0.
54

5
(±

0.
01

5)
C

l=
[0

.5
20

,0
.5

80
]

0.
62

0
(±

0.
01

6)
C

l=
[0

.6
12

,0
.6

67
]

0.
58

7
(±

0.
01

5)
C

l=
[0

.5
43

,0
.6

12
]

0.
63

2
(±

0.
01

8)
C

l=
[0

.6
12

,0
.6

54
]

0.
40

0
(±

0.
01

2)
C

l=
[0

.3
68

,0
.4

34
]

H
il

l-
V

al
le

y
0.

64
4

(±
0.

02
7)

C
l=

[0
.6

01
,0

.7
12

]
0.

54
7

(±
0.

02
1)

C
l=

[0
.5

39
,0

.5
78

]
0.

53
8

(±
0.

02
3)

C
l=

[0
.5

11
,0

.5
89

]
0.

54
2

(±
0.

01
8)

C
l=

[0
.5

11
,0

.5
80

]
0.

54
3

(±
0.

03
2)

C
l=

[0
.5

01
,0

.6
02

]
0.

65
3

(±
0.

02
7)

C
l=

[0
.6

03
,0

.6
89

]

U
SP

S
0.

65
6

(±
0.

02
8)

C
l=

[0
.6

12
,0

.7
18

]
0.

52
3

(±
0.

01
8)

C
l=

[0
.5

11
,0

.5
98

]
0.

54
5

(±
0.

01
3)

C
l=

[0
.5

19
,0

.5
61

]
0.

51
2

(±
0.

01
1)

C
l=

[0
.5

11
,0

.5
13

]
0.

57
1

(±
0.

01
4)

C
l=

[0
.5

67
,0

.5
87

]
0.

67
1

(±
0.

04
5)

C
l=

[0
.6

22
,0

.6
92

]
M

ea
n

0.
58

6
(±

0.
01

5)
0.

57
7

(±
0.

01
3)

0.
56

5
(±

0.
01

7)
0.

57
3

(±
0.

01
5)

0.
56

8
(±

0.
01

5)
0.

57
0

(±
0.

01
4)

36



Ta
b

le
4.

4:
N

M
I

va
lu

es
,s

ta
n

d
ar

t
d

ev
ia

ti
on

an
d

co
n

fi
d

en
ce

in
te

rv
al

fo
r

va
ri

ou
s

P
ru

n
in

g
R

at
es

of
C

lu
st

er
-S

el
ec

t
M

et
h

od
.

C
lu

st
er

-S
el

ec
t

P
ru

n
in

g
R

at
e

D
at

a
50

60
70

80
90

10
0

Fr
og

s
M

FC
C

s
0.

32
6

(±
0.

01
5)

C
l=

[0
.3

11
,0

.3
45

]
0.

31
2(
±0
.0

58
)

C
l=

[0
.3

11
,0

.3
15

]
0.

38
5(
±0
.0

98
)

C
l=

[0
.3

21
,0

.3
78

]
0.

31
0(
±0
.0

13
)

C
l=

[0
.2

98
,0

.3
54

]
0.

24
2(
±0
.0

43
)

C
l=

[0
.2

31
,0

.2
78

]
0.

36
8(
±0
.0

89
)

C
l=

[0
.3

01
,0

.3
89

]

G
la

ss
0.

67
1

(±
0.

04
3)

C
l=

[0
.6

56
,0

.6
90

]
0.

66
7

(±
0.

03
4)

C
l=

[0
.6

51
,0

.6
89

]
0.

71
5

(±
0.

02
6)

C
l=

[0
.6

54
,0

.8
09

]
0.

70
8

(±
0.

01
4)

C
l=

[0
.7

02
,0

.7
23

]
0.

74
3

(±
0.

02
4)

C
l=

[0
.7

34
,0

.7
56

]
0.

69
2

(±
0.

03
2)

C
l=

[0
.6

89
,0

.7
02

]

M
ov

em
en

t
0.

58
5

(±
0.

00
32

)
C

l=
[0

.5
34

,0
.6

51
]

0.
59

4
(±

0.
01

1)
C

l=
[0

.5
70

,0
.6

02
]

0.
55

8
(±

0.
03

4)
C

l=
[0

.5
48

,0
.5

79
]

0.
56

2
(±

0.
05

6)
C

l=
[0

.5
52

,0
.5

98
]

0.
53

4
(±

0.
03

4)
C

l=
[0

.5
12

,0
.5

78
]

0.
55

5
(±

0.
09

8)
C

l=
[0

.5
43

,0
.6

09
]

Se
ed

s
0.

53
6

(±
0.

02
1)

C
l=

[0
.5

21
,0

.5
56

]
0.

53
0

(±
0.

00
1)

C
l=

[0
.4

01
,0

.6
80

]
0.

52
2

(±
0.

04
5)

C
l=

[0
.5

12
,0

.5
78

]
0.

64
3

(±
0.

05
4)

C
l=

[0
.6

34
,0

.6
66

]
0.

53
0

(±
0.

02
5)

C
l=

[0
.5

11
,0

.5
89

]
0.

63
1

(±
0.

03
2)

C
l=

[0
.6

02
,0

.6
78

]

Se
gm

en
ta

ti
on

0.
22

4
(±

0.
02

1)
C

l=
[0

.2
11

,0
.2

34
]

0.
46

5
(±

0.
02

3)
C

l=
[0

.4
32

,0
.4

89
]

0.
25

2
(±

0.
01

)
C

l=
[0

.2
11

,0
.3

01
]

0.
08

5
(±

0.
02

1)
C

l=
[0

,0
.1

20
]

0.
23

9
(±

0.
05

6)
C

l=
[0

.2
01

,0
.2

67
]

0.
44

2
(±

0.
04

6)
C

l=
[0

.4
41

,0
.4

44
]

Sy
nt

he
ti

c
C

on
tr

ol
0.

76
3

(±
0.

05
6)

C
l=

[0
.7

34
,0

.7
79

]
0.

73
3

(±
0.

05
8)

C
l=

[0
.7

21
,0

.7
45

]
0.

76
7

(±
0.

05
7)

C
l=

[0
.7

21
,0

.8
02

]
0.

71
2

(±
0.

04
4)

C
l=

[0
.7

01
,0

.7
32

]
0.

70
8

(±
0.

05
5)

C
l=

[0
.6

89
,0

.7
54

]
0.

76
9

(±
0.

06
8)

C
l=

[0
.7

32
,0

.7
98

]

W
in

e
0.

78
1

(±
0.

03
5)

C
l=

[0
.7

05
,0

.8
10

]
0.

78
1

(±
0.

01
4)

C
l=

[0
.7

77
,0

.7
90

]
0.

78
1

(±
0.

00
1)

C
l=

[0
.7

63
,0

.7
99

]
0.

78
1

(±
0.

05
4)

C
l=

[0
.7

12
,0

.8
10

]
0.

76
3

(±
0.

00
6)

C
l=

[0
.7

01
,0

.8
10

]
0.

78
1

(±
0.

01
1)

C
l=

[0
.7

10
,0

.8
02

]

Z
oo

0.
71

6
(±

0.
03

4)
C

l=
[0

.7
01

,0
.7

34
]

0.
78

9
(±

0.
06

5)
C

l=
[0

.7
54

,0
.7

90
]

0.
71

9
(±

0.
03

6)
C

l=
[0

.7
01

,0
.7

49
]

0.
56

6
(±

0.
06

4)
C

l=
[0

.5
34

,0
.5

8]
0.

69
8

(±
0.

06
5)

C
l=

[0
.6

01
,0

.8
43

]
0.

70
8

(±
0.

08
9)

C
l=

[0
.6

58
,0

.7
23

]

Ya
le

0.
57

8
(±

0.
03

6)
C

l=
[0

.5
02

,0
.6

04
]

0.
64

3
(±

0.
01

)
C

l=
[0

.6
12

,0
.6

78
]

0.
72

0
(±

0.
03

6)
C

l=
[0

.6
99

,0
.7

39
]

0.
53

3
(±

0.
04

3)
C

l=
[0

.5
12

,0
.4

5]
0.

52
3

(±
0.

04
0)

C
l=

[0
.5

03
,0

.5
79

]
0.

62
7

(±
0.

04
6)

C
l=

[0
.6

03
,0

.6
60

]

H
il

l-
V

al
le

y
0.

65
0

(±
0.

04
3)

C
l=

[0
.6

23
,0

.7
07

]
0.

54
3

(±
0.

04
3)

C
l=

[0
.5

04
,0

.5
89

]
0.

46
7

(±
0.

05
4)

C
l=

[0
.4

30
,0

.4
98

]
0.

54
2

(±
0.

06
4)

C
l=

[0
.5

18
,0

.5
78

]
0.

52
1

(±
0.

06
5)

C
l=

[0
.5

10
,0

.5
91

]
0.

53
0

(±
0.

07
6)

C
l=

[0
.5

21
,0

.5
67

]

U
SP

S
0.

63
2

(±
0.

04
0)

C
l=

[0
.6

21
,0

.6
43

]
0.

51
2

(±
0.

09
4)

C
l=

[0
.5

10
,0

.5
14

]
0.

47
1

(±
0.

00
9)

C
l=

[0
.4

65
,0

.4
86

]
0.

53
2

(±
0.

00
6)

C
l=

[0
.5

13
,0

.5
43

]
0.

51
1

(±
0.

01
)

C
l=

[0
.5

01
,0

.5
22

]
0.

52
1

(±
0.

01
3)

C
l=

[0
.5

13
,0

.5
31

]
M

ea
n

0.
58

7
(±

0.
03

4)
0.

59
8

(±
0.

03
7)

0.
57

8
(±

0.
03

7)
0.

54
3

(±
0.

04
0)

0.
54

7
(±

0.
04

3)
0.

60
2

(±
0.

05
5)

37



Ta
b

le
4.

5:
T

h
e

b
es

t
N

M
I

va
lu

es
,s

ta
n

d
ar

t
d

ev
ia

ti
on

an
d

co
n

fi
d

en
ce

in
te

rv
al

fo
r

va
ri

ou
s

p
ru

n
in

g
ra

te
s

of
ea

ch
m

et
h

od
.

D
at

a
M

et
h

od
s

Jo
in

t
C

ri
te

ri
on

C
lu

st
er

-S
el

ec
t

D
E

S-
C

lu
st

er
P

ru
n

ed
O

P
T

N
M

I
V

al
u

e
(S

D
)

N
M

I
V

al
u

e
(S

D
)

N
M

I
V

al
u

e
(S

D
)

P
ru

n
in

g
R

at
e

N
M

I
V

al
u

e(
SD

)
Fr

og
s

M
FC

C
s

0.
24

0
(±

0.
0.

01
5)

0.
32

3
(±

0.
05

2)
0.

42
1

(±
0.

03
3)

10
3

0.
40

1
(±

0.
03

4)
G

la
ss

0.
73

3
(±

0.
01

5)
0.

70
1

(±
0.

02
8)

0.
72

1
(±

0.
02

3)
97

0.
75

7
(±

0.
00

1)
M

ov
em

en
t

0.
52

9
(±

0.
01

9)
0.

56
4

(±
0.

04
4)

0.
59

8
(±

0.
06

5)
92

0.
56

8
(±

00
1.

)
Se

ed
s

0.
60

1
(±

0.
00

7)
0.

56
5

(±
0.

02
9)

0.
56

7
(±

0.
06

5)
99

0.
63

4
(±

0.
00

9)
Se

gm
en

ta
ti

on
0.

29
6

(±
0.

01
4)

0.
28

4
(±

0.
02

9)
0.

43
2

(±
0.

07
8)

,
99

0.
48

4
(±

0.
01

1)
Sy

nt
he

ti
c

C
on

tr
ol

0.
71

7
(±

0.
02

3)
0.

74
1

(±
0.

05
6)

0.
73

1
(±

0.
06

5)
96

0.
77

7
(±

0.
05

5)
W

in
e

0.
76

5
(±

0.
01

1)
0.

77
8

(±
0.

02
9)

0.
72

1
(±

0.
06

5)
89

0.
76

3
(±

0.
06

5)
Z

oo
0.

68
2

(±
0.

00
9)

0.
69

9
(±

0.
05

8)
0.

74
5

(±
0.

01
3)

97
0.

77
7

(±
0.

01
)

Ya
le

0.
58

7
(±

0.
01

5)
0.

60
4

(±
0.

03
5)

0.
71

3
(±

0.
01

1)
89

0.
72

3
(±

0.
03

0)
H

il
l-

V
al

le
y

0.
57

4
(±

0.
02

5)
0.

54
2

(±
0.

05
7)

0.
65

7
(±

0.
05

6)
92

0.
64

2
(±

0.
07

6)
U

SP
S

0.
57

9
(±

0.
01

6)
0.

52
9

(±
0.

02
9)

0.
62

7
(±

0.
08

8)
92

0.
67

2
(±

0.
02

2)
M

ea
n

0.
57

3
(±

0.
01

5)
0.

57
5

(±
0.

04
)

0.
62

7
(±

0.
08

8)
96

0.
63

0
(±

0.
05

1)

38



Figure 4.1: Graphical illustration of NMI values versus various
pruning rates for all data sets.
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5. ENSEMBLE BASED FEATURE SELECTIONMETHODS

5.1 GENERATION OF ENSEMBLE LIBRARY

In this study, 28 different traditional feature selection algorithms are used to cre-

ate the ensemble of feature selection methods. These are grouped into four cate-

gories similarity based, information theoretical based, sparse learning based and

statistical based methods.

5.1.1 Similarity Based Methods

In general, feature selection algorithms utilize a variety of criteria distance, sep-

arability, information, correlation, dependency, and reconfiguration error to de-

fine attribute appropriateness. Similarity-based feature selection methods as-

sess the importance of preserving data similarity and the importance of features.

They are divided into five sub-categories as follows:

a) Laplacian Score

The Laplacian Score (LS) is an uncontrolled and three-phase attribute se-

lection algorithm that can best protect the data manifold structure He et al.

(2006). It is generated by Laplacian Eigenmaps Belkin & Niyogi (2002) and

Locality Preserving Projection He & Niyogi (2003) which evaluates the fea-

tures according to their locality preserving power.

b) Spectral Feature Selection (SPEC)

SPEC is a graph based feature selection method which is an extension of LS.

It can be used for both supervised and unsupervised scenarios. For exam-

ple, in the unsupervised case, Radial Basis Function (RBF) kernel function

is used to measure data similarity. In the supervised case, a diagonal matrix
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is constructed using affinity matrix information Zhao & Liu (2007).

c) Fisher Score

Fisher score is supervised feature selection methods that selects each fea-

ture independently according to their scores under the Fisher criterion Duda

et al. (2012).

d) Trace Ratio Criterion

In the Trace Ratio Criterion method, a feature subset is selected based on

the corresponding subset-level score, which is calculated in a trace ratio

form Nie et al. (2008).

e) ReliefF

ReliefF algorithm is one of the most successful filtering feature selection

methods. It selects features to separate instances from different classes

Robnik-Šikonja & Kononenko (2003). It assesses the quality of features

based on how well their values discriminate between samples that are near

each other.

5.1.2 Information Theoretical Based Methods

Information theoretical based methods use different heuristic filter criteria to

measure the importance of the attributes which maximize the relevance of the

attributes and minimize their redundancy Duda et al. (2012). These types of

methods can be divided into nine sub-categories as follows:

a) Mutual Information Maximization (MIM) (or Information Gain)

MIM evaluates the significance of a feature by its correlation with the class

label Lewis (1992).

b) Mutual Information Feature Selection (MIFS)
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The MIFS criterion considers both feature relevance and feature redun-

dancy in the feature selection phase Battiti (1994).

c) Minimum Redundancy Maximum Relevance (MRMR)

The MRMR criterion considers both feature with maximum relevance and

feature with minimum redundancy in the feature selection phase Peng et al.

(2005).

d) Conditional Infomax Feature Extraction (CIFE)

As long as the feature redundancy of a given class label is stronger than the

intra feature redundancy, the feature selection is affected negatively Tang

et al. (2006). CIFES takes this into account by including a third term which

maximizes the conditional redundancy between unselected features and al-

ready selected features for a given class label.

e) Joint Mutual Information (JMI)

MIFS and MRMR reduce feature redundancy in the feature selection pro-

cess. It is recommended that JMI, an alternative criterion, increase the

shared information between the new selected attribute, and the selected at-

tributes given the class labels Yang & Moody (2000). The basic idea of JMI

consists of adding new features that are complementary to existing features

for a given class label.

f) Conditional Mutual Information Maximization (CMIM)

CMIM selects features iteratively by maximizing the mutual information

with the class labels given the selected features Vidal-Naquet & Ullman

(2003); Fleuret (2004).

g) Double Input Symmetrical Relevance (DISR)

DISR performs normalization techniques to normalize mutual information

Meyer & Bontempi (2006).

h) Fast Correlation Based Filter (FCBF)
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FCBF is an algorithm that has the capability of being employed as the

approximation method for relevance and redundancy analysis Yu & Liu

(2003).

i) Interaction Capping

The Interaction Capping feature selection criterion is similar to CMIM ex-

cept that Interaction Capping restricts the term I(Xj ;Xk) − I(Xj ;Xk |Y ) to

be nonnegative where I(., .) refers to the information gain function Jakulin

(2005).

5.1.3 Sparse Learning Based Methods

Filter based feature selection methods select attributes that are independent of

any learning algorithm. The bias of the learning algorithm is not taken into ac-

count in filter type approaches, so that the selected attributes may not be opti-

mal for a specific problem. In order to overcome this issue, embedded type ap-

proaches are developed which embed the feature selection step into the learning

model construction so that each step feeds into one other. There are three types

of embedded feature selection methods: The first is based on pruning redundant

features by assigning binary weights to features while maintaining prediction ac-

curacy. The second type consists of a built-in feature selection mechanism such

as ID3 Quinlan (1986) and C4.5 Ross Quinlan (1993). The last type refers to

sparse learning based methods, which minimize empirical error by inducing a

regularization term to the objective function so that some feature coefficients are

small or exactly zero. There are different types of sparse based approaches, but

we will introduce only those that are used in this study.

a) Multi-Cluster Feature Selection (MCFS)

Most of the existing sparse feature selection methods use label information

of the data where the feature selection step is modeled after determining
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the sparse feature coefficients. Since labeled data is costly and time con-

suming to collect, unsupervised sparse learning based feature selection has

gained increasing attention in recent years Du & Shen (2015); Liu et al.

(2014). MCFS is one of the first unsupervised feature selection algorithms

developed and performs spectral clustering and sparse coefficient learning

before the feature selection step Cai et al. (2010).

b) Feature Selection with L1 norm Regularization

This method performs feature selection by assigning insignificant input

features with zero weight and useful features with a non zero weight by in-

corporating l1 norm penalty functions to the objective function while min-

imizing the empirical error on the training set Tibshirani (1996).

c) l2,1 norm Regularized Discriminative Feature Selection

A widely accepted criterion for choosing an unsupervised feature is to

select attributes that best protect the manifold structure of the data He

et al. (2006). One crucial property of 2,1-norm regularization is that it

allows multiple predictors to share similar sparsity patterns. However,

the resulting optimization problem is difficult to solve because of the non-

smoothness of 2,1-norm regularization.

d) Nonnegative Discriminative Feature Selection (NDFS)

NDFS is an algorithm that performs spectral clustering and attribute se-

lection at the same time to select a subset of distinctive attributes. Li et al.

(2012). Unlike other spectral clustering methods, NDFS executes nonnega-

tive and orthogonal constraints in the spectral clustering phase which causes

the learned pseudo class labels to be closer to real cluster results.
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5.1.4 Statistical based Methods

Another feature selection algorithm category is based on various statistical mea-

surements. Because they rely on statistical criteria instead of learning the al-

gorithm to assess the appropriateness of attributes, most of these methods are

filter-based methods. We can divide statistical methods into three categories:

a) F-score

In statistical analysis of binary classification, F-score is a measure of a test’s

accuracy. It considers both the precision and the recall of the test to obtain

the scores Wright (1965).

b) Gini Index

Gini index is a statistical measure to quantify if the feature is able to sepa-

rate instances from different classes Gini (1912).

c) Correlation Based Feature Selection (CFS)

The basic idea of CFS is a heuristic approach based on a correlation to

evaluate the value of the attribute subset Hall & Smith (1999).

5.1.5 Feature Selection with Structure Features

Most of the feature selection algorithms are based on the assumption that the

features are independent from each other though the essential structures among

them are disregarded. Yet, in many real problems, features reveal various types

of structures such as spatial or temporal smoothness, disjointed groups, trees and

graphs Tibshirani et al. (2005). Next, we briefly give the idea of graph based and

group based approaches.

a) Feature Selection with Graph Feature Structures

In many cases, strong dependencies may occur between the attributes so
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that an unverified graph can be used to encode these dependencies such

that nodes represent features and edges between two nodes showing the

pairwise dependencies between features Cai et al. (2010). Those dependen-

cies on the graph can be transformed to a more mathematical representation

by adjacency matrices consisting of binary entries.

b) Feature Selection with Group Feature Structures

In many real-world applications, features represent group structures. One

of the most common examples is seen in multi-factor analysis-of-variance

(ANOVA), where each factor is associated with several groups. When se-

lecting attributes, this method obtains accurate predictions when the group

structure between attributes is considered Cai et al. (2010).

5.1.6 Wraper Methods

Wrapper methods consider the selection of a set of features as a search problem,

where different combinations are prepared, evaluated, and compared to other

combinations Whitney (1971); Marill & Green (1963).

5.2 MATHEMATICAL MODEL

In this study, we developed a model which determines the optimum subset of the

different solutions among a library of 28 feature selection methods (summarized

in the previous sections). After the generation step of the ensemble of feature

selectors on the training set,the accuracy and diversity trade off within the en-

semble are introduced with a matrix T which is defined by equation 5.1 below:

[T ] =


Acci , i = j∑
{YDES
i , YDES

j }, i , j
(5.1)
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In the matrix T , the total number of correct predictions of the i-th feature se-

lector by base classifier DES, represented by Acci are defined on the diagonal

entries and the total number of uncommon predictions of these feature selectors

are assigned to the off-diagonal entries as a measure of diversity in T . In this way,

diagonal elements of the matrix T represent the accuracy criterion whereas the

off-diagonal elements represent diversity.

Here, we adapted our previous study for ensemble clustering selection approach

in Otar & Akyüz (2017) and Üçüncü et al. (2018) to the ensemble based feature

selection model. The previous model differs by involving different accuracy and

diversity metrics in the matrix T . In Otar & Akyüz (2017) and Üçüncü et al.

(2018), since the problem was a clustering problem which did not have label in-

formation, normalized mutual information values were previously used to define

accuracy and diversity metrics.

In this thesis, quality (accuracy) and diversity metrics are defined to be the total

number of accurate predictions and the uncommon pairwise predictions of each

binary couple of feature selectors, respectively. Basically, the main intuition be-

hind maximizing the accuracy and diversity trade off within the ensemble learn-

ing library studied previously in Özöğür-Akyüz et al. (2015); Zhang et al. (2006a);

Otar & Akyüz (2017); Üçüncü et al. (2018) is to adapt the ensemble of feature se-

lectors with the same optimization model (5.2) by adapting the accuracy diversity

notion using metrics based on feature selectors as follows:

maximize xT T x

subject to
∑n
i=1xi = k,

xi ∈ {0,1} (i = 1,2, . . . ,n),

(5.2)

where k stands for the pruning rate of the ensemble, i.e., the cardinality of the

47



subset of the ensemble. Since above 0- 1 binary integer problem (5.2) is NP-hard

in general. However, there exist studies that approximates the solution of inte-

ger programming optimally in the literature for many years. One of the recent

study in the field of machine learning, presents a new formulation of the clas-

sical univariate decision tree problem as an Mixed Integer Programming (MIP)

problem that motivates their new classification method which is called Optimal

Classification Trees (OCT) Bertsimas & Dunn (2017). In one of the applications

of MIP involves with the tensor complementarity problem where a global solver

LINGO was used to obtain optimal solution Du & Zhang (2019). The proposed

ensemble pruning model for problem in this thesis was inspired from the MIP

in Zhang et al. (2006a) which includes the parameter k in its constraint. The

constraint in problem (5.2) determines the size of the subset of the ensemble, in

other words, the parameter k is given by the user beforehand as a pruning rate.

Furthermore, its variables are integer because it is defined with a sum that counts

the number of elements to be selected in the new subset of ensemble which can

be defined as cardinality constraint by a zero norm. Thus, the solution of the MIP

and the accuracy of the machine learning model highly depend on the optimal

value of parameter k. The objective of our study is to get rid of the parameter k to

automate finding the optimal value of k while selecting the best candidates con-

sidering both accuracy and diversity within the optimization problem. In order

to do this, we moved that cardinality constraint to the objective function with a

regularization constant so that the whole MIP turned into continuous optimiza-

tion problem. This procedure can also be regarded as regularization in statistical

learning to overcome the complexity as in Lasso regularization.

This relaxation by moving the cardinality constraint to the objective function

with a regularization constant ρ is further improved by adding bound constraint
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to variable x to obtain sparse solution as shown below:

minimize
x∈Rn

−xT T x+ ρ‖x‖0

subject to xT x = 1,
(5.3)

Since the model (5.2) is relaxed to a continuous programming, in order to keep

the sparsity, an additional constraint that bounds x is added to the problem (5.3).

The proposed ensemble based feature selection model introduced by equation

(5.3) is non-convex because of the second term and the matrix T might be nega-

tive definite. Approximating the zero norm with the student log likelihood distri-

bution and adding/subtracting the term τI to the first term leads to a difference

of convex functions where τ is defined to be τ ≥ max{0,−λmin(T )}. Hence the

optimization problem (5.3) can be rewritten as:

minimize
x∈Rn

τ ‖x‖22 −
xT (

T̃ + τI
)
x − ρ

n∑
i=1

log(1 + |xi | /ε)
log(1 + 1/ε)




subject to xT x = 1,

(5.4)

where T̂ is the normalized form of the matrix T and ρ refers to the regularization

parameter corresponding to the cardinality of a subset of the ensemble which is

introduced by a zero norm.

If the absolute value in equation (5.4) is replaced with an additional variable yi

by adding an extra constraint −y ≤ x ≤ y, the model (5.4) takes the following final

form:

minimize
x,y∈Rn

τ ‖x‖22 −
xT (

T̃ + τI
)
x − ρ

n∑
i=1

log(1 + yi/ε)
log(1 + 1/ε)




subject to −y ≤ x ≤ y,

xT x = 1.

(5.5)

49



5.3 EXPERIMENTAL RESULTS

In this work, the eight most popular feature selection data sets, selected from dif-

ferent domains are used Li et al. (2018). The features that exist in these datasets

are either numerical or categorical values. The number of features, number of

instances and number of classes are presented in Table (5.1).

Table 5.1: Detailed information of benchmark datasets.

Dataset Type Feature Value # Feature # Instance # Class

Lung small Bio Discrete 325 73 7

Madelon Artificial Continuous 500 2600 2

Yale Image Continuous 1024 165 15

WarpAR10P Image Continuous 2400 130 10

Colon Bio Discrete 2000 62 2

Urban Land Cover Physical Continuous 148 168 9

Libras Image Bio Continuous 91 360 15

Hill-Valley Physical Continuous 101 606 2

The dataset is divided into three parts:testing, validation, and training. 20 per-

cent of the entire dataset is used for testing, and remaining 80 percent is divided

into (20 percent) validation and (80 percent) training folds. 28 different feature

selection algorithms were applied on training data. SVMs were employed with

5-fold cross-validation with the selected features by the 28 different feature se-

lection techniques.

Optimization problem (5.5) is solved by the DCCP algorithm Grant et al. (2006)

of cvxpy library of Python 3.7. The solution of the optimization model defined

by equation (5.5) provides the indices of the selection of the results of the twenty

eight attribute selection methods. The hyper-parameter ρ was determined by five

fold cross-validation on the validation set among the different numbers which

is ρ =
[
10−3,10−2,10−1,1,10,102,103

]
and the threshold value of 0.01 was deter-
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mined experimentally for x values to binarize it.The coordinates of vector x rep-

resent the feature selection methods and the indices of vector x having 0 values

corresponds to redundant feature selectors being eliminated whereas indices of

values of 1 correspond to the methods which are to be chosen.

The solution of the DCCP model corresponding to the optimum ρ parameter

refers to the best subset among 28 feature selection methods. The elements of

this subset are composed of the different attribute sets Sfi introduced in Algo-

rithm 2 that are generated by the those feature selection methods outputted by

the DCCP method. The voting algorithm, was applied to aggregate the results

of subsets Sfi of the feature selectors. In this voting step, the solutions of the

algorithms that were voted more than 50 percent were included in the selected

attributes. We used voting method to select features as an aggregation of fea-

ture selector in the final subset determined by DCCP. In full ensemble there may

be methods which decrease the performance of the ensemble. Our main goal is

to eliminate such methods by pruning. One can increase the number of possi-

ble method candidates in the ensemble so that diversity increases. All pruning

methods compared including the proposed DCCP model and also full ensemble

results find the final set of features using voting. In this manner, voting should

be considered as an aggregation function for both pruned and unpruned cases.

For example, if the solutions of 15 methods from 28 methods were selected to

the subset by using the DCCP model (5.5), the attributes of those 15 techniques

which passed the 50 percent of threshold would be considered to be the final

attributes of the test data. All the steps described here are given in the flowchart

shown by Algorithm 2 and Figure 5.1 and the performance of the models was

compared with the methods in the literature called Joint Criterion Fern & Lin

(2008).

The percentage of accuracy results on the test set for the proposed model Prune-

dOPT is given in the first column of Table 5.2 and accuracy values of the un-
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Algorithm 2 Improved Ensemble Feature Selection with DCCP

Input:Xtr , Xval , Xtest, Sn (Feature Selection Algorithms)
Parameter:ρ (DCCP parameter), k (Number of Features)
Output: percentage of accuracy

1: for i← 1 to n do
2: S

f
i = Sn(X) /* the feature selection subset that each feature selection al-

gorithm chooses /*
3: Acci = acc(DES(Xtr

S
f
i

)) /* DES percentage of accuracies using the training

set /*
4: end for
5: Tii = Acci /* The percentage of accuracies for feature selection methods/*
6: Tij =

∑
i,j
YDES
i , YDES

j /* non-common estimation results for i-th and j-th fea-

ture selection methods /*
7: S̆ρ = DCCP(T ,ρ) /* Obtaining the optimum subset of feature selection algo-

rithms with DCCP method on Xval /*
8: F = V otting(S̆ρ) on Xtest

9: P ercentage of Accuracy = DES(Xtest)

pruned case corresponding to Full Ensemble, and the Joint Criterion with its best

pruning rates are illustrated by second and the third columns respectively. Here,

the best pruning rate of Joint Criterion is selected among the values [5,10,15,20]

based on corresponding accuracies. It is clear from the experimental results that

the proposed ensemble based feature selection approach PrunedOPT achieves

better prediction accuracies than both unpruned case and Joint Criterion. In Ta-

ble 5.2, the bold numbers correspond to the best accuracy values measured by

the ratio of correct predictions to the total number of examples in the test set.

In order to perform a thorough comparison of the results, we presented these

results in Tables 5.2 and visually by Figure 5.2 for each of the eight data sets. In

Figure 5.2, each subfigure stands for different data sets in which our proposed

method called PrunedOPT and the method Joint Criterion are compared against

their accuracy values versus pruning rate k. It is clear from each subfigure in

Figure 5.2 that the proposed optimization model PrunedOPT approximates the

optimal accuracy value with respect to its optimal pruning rate when compared
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with accuracy values corresponding to various pruning rates of Joint Criterion

method.

Figure 5.1: Flow chart of the proposed method.
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Figure 5.2: Graphical illustration of accuracy values versus various pruning
rates for all data sets.
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As the Joint Criterion method requires pruning rate to be an input parameter

for each different input parameters, we get different accuracy values. In order

to compare the best accuracy results of the Joint Criterion method with the pro-

posed ensemble pruning, we illustrated the best of each method for each data

referring to their corresponding pruning rates in Table 5.2. It should be noted

that our proposed approach achieves better accuracy values than both unpruned

case and Joint Criterion.

For each of the 8 datasets, the performance evaluation was measured against each

of those 28 constituent feature selection methods. Those methods were run 5

times randomly. The performance (accuracy) results of these methods are shown

in Table 5.4 -5.11 where the first column represents the method names, remaning

second, third, fourth and fifth columns show the accuracy values calculated by

using equation (5.6) below:

Accuracy =
# of correct predictions

# of samples
. (5.6)

The last two columns named by AVG and STD show the average accuracy and

average standard deviation values of 5 random iterations for each data set.

The average running time required for DCCP were calculated as two minutes

while time required for the Joint Criterion method was three seconds. From these

results, we observe that our proposed ensemble pruning method takes longer

time than Joint Criterion. However, this drawback is not a fair comparison be-

tween two methods since the proposed pruning method gives not only higher

accuracy but it also automates finding the optimal pruning rate with a unified

framework of optimizing accuracy and diversity simultaneously; whereas the

joint criterion finds the pruning rate combinatorially. Thus, when one compares

the running times, time spend for trials of different selections of pruning rates

should be considered. Further, one cannot know the optimal pruning rate with-

out trials in Joint Criterion which differs also in each data set.
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Table 5.3: Proposed feature selection algorithm percentage of best accuracy
for each classifaction method.

Methods PrunedOPT by DCCP Unpruned Case Joint Criterion
Linear SVM 0.634 0.615 0.557

Non-linear SVM 0.625 0.612 0.608
Decision Tree 0.608 0.610 0.578

DES 0.702 0.625 0.557

In our experimental analysis, the selected features by PrunedOPT, unpruned case

and Joint Criterion for each data set were tested with widely used ML methods

such as decision tree algorithm, nonlinear SVM and DES in Table 5.2. It is clear

from the Table 5.2 that the proposed algorithm PrunedOPT has always better

accuracy values in average for all data sets in Table 5.1 when compared with

other methods for all classification algorithms except decision tree with a slight

difference. The reason behind this can come from the well-known fact that there

is no unique and best algorithm that works for all type of data sets. This slight

differene can be seen as negligibile.
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Table 5.4: The accuracy measurements for each feature selection
algorithms for Small Lung dataset.

Data Accuracy

Small Lung Dataset 1st 2nd 3rd 4th 5th AVG STD

LS 0,53 0,21 0,33 0,00 0,32 0,28 0,19

(SPEC) 0,63 0,47 0,58 0,57 0,32 0,52 0,13

Fisher Score 0,42 0,37 0,67 0,29 0,47 0,44 0,14

Trace Ratio Criterion 0,32 0,32 0,00 0,86 0,21 0,34 0,32

ReliefF 0,16 0,53 0,58 0,43 0,68 0,48 0,20

MIM 0,58 0,42 0,42 0,29 0,47 0,44 0,11

MIFS 0,53 0,11 0,25 0,14 0,37 0,28 0,17

MRMR 0,47 0,32 0,50 0,57 0,68 0,51 0,14

CIFE 0,32 0,26 0,33 0,57 0,68 0,43 0,18

JMI 0,53 0,32 0,42 0,57 0,21 0,41 0,15

CMIM 0,21 0,42 0,17 0,43 0,32 0,31 0,12

DISR 0,53 0,26 0,17 0,29 0,47 0,34 0,15

FCBF 0,32 0,21 0,50 0,71 0,53 0,45 0,20

Interaction Capping 0,63 0,37 0,33 0,57 0,11 0,40 0,21

MCFS 0,26 0,32 0,33 0,86 0,37 0,43 0,24

L1 norm Regularization 0,47 0,26 0,58 0,43 0,47 0,44 0,12

l2;1 norm Regularized 0,37 0,11 0,42 0,57 0,47 0,39 0,17

NDFS 0,26 0,63 0,67 0,71 0,37 0,53 0,20

F-score 0,32 0,26 0,17 0,29 0,32 0,27 0,06

Gini Index 0,37 0,21 0,42 0,57 0,42 0,40 0,13

CFS 0,42 0,21 0,58 0,57 0,42 0,44 0,15

Wraper 0,53 0,21 0,25 0,14 0,26 0,28 0,15

Group Feature Structures 0,47 0,26 0,50 0,43 0,21 0,38 0,13

UDFS 0,26 0,32 0,67 0,29 0,21 0,35 0,18

Tree-fs 0,42 0,21 0,50 0,57 0,42 0,42 0,14

RFS 0,16 0,63 0,33 0,57 0,26 0,39 0,20

SVMBackward 0,63 0,26 0,50 0,71 0,26 0,47 0,21

SVMForward 0,32 0,42 0,50 0,57 0,32 0,42 0,11

AVG 0,40 0,35 0,41 0,48 0,37 0,40 0,16
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Table 5.5: The accuracy measurements for each feature selection
algorithms for Madelon dataset.

Data Set Accuracy

Madelon Data 1st 2nd 3rd 4th 5th AVG STD

LS 0,38 0,60 0,50 0,56 0,30 0,47 0,13

(SPEC) 0,38 0,50 0,17 0,56 0,50 0,42 0,16

Fisher Score 0,38 0,30 0,33 0,75 0,10 0,37 0,24

Trace Ratio Criterion 0,38 0,50 0,67 0,44 0,20 0,44 0,17

ReliefF 0,31 0,50 0,50 0,69 0,40 0,48 0,14

MIM 0,75 0,30 0,33 0,63 0,70 0,54 0,21

MIFS 0,63 0,60 0,17 0,56 0,60 0,51 0,19

MRMR 0,63 0,50 0,33 0,50 0,40 0,47 0,11

CIFE 0,38 0,40 0,50 0,50 0,40 0,44 0,06

JMI 0,56 0,60 0,33 0,56 0,70 0,55 0,13

CMIM 0,44 0,50 0,33 0,63 0,50 0,48 0,11

DISR 0,56 0,40 0,67 0,81 0,60 0,61 0,15

FCBF 0,56 0,40 0,50 0,69 0,40 0,51 0,12

Interaction Capping 0,44 0,60 0,33 0,56 0,70 0,53 0,14

MCFS 0,69 0,50 0,33 0,63 0,50 0,53 0,14

L1 norm Regularization 0,44 0,70 0,33 0,69 0,40 0,51 0,17

l2;1 norm Regularized 0,50 0,40 0,50 0,56 0,50 0,49 0,06

NDFS 0,44 0,60 0,83 0,88 0,60 0,67 0,18

F-score 0,56 0,20 0,33 0,63 0,40 0,42 0,17

Gini Index 0,63 0,40 0,33 0,69 0,60 0,53 0,15

CFS 0,50 0,20 0,33 0,69 0,20 0,38 0,21

Wraper 0,31 0,50 0,17 0,56 0,30 0,37 0,16

Group Feature Structures 0,44 0,30 0,50 0,81 0,30 0,47 0,21

UDFS 0,44 0,50 0,33 0,69 0,40 0,47 0,13

Tree-fs 0,44 0,10 0,83 0,50 0,60 0,49 0,27

RFS 0,44 0,30 0,17 0,56 0,40 0,37 0,15

SVMBackward 0,56 0,50 0,33 0,63 0,50 0,50 0,11

SVMForward 0,50 0,50 0,33 0,50 0,10 0,39 0,18

AVG 0,48 0,47 0,40 0,62 0,43 0,47 0,15
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Table 5.6: The accuracy measurements for each feature selection
algorithms for Yale dataset.

Data Accuracy

Yale Dataset 1st 2nd 3rd 4th 5th AVG STD

LS 0,31 0,30 0,12 0,55 0,86 0,43 0,29

(SPEC) 0,17 0,37 0,41 0,64 0,57 0,43 0,18

Fisher Score 0,36 0,44 0,53 0,36 0,57 0,45 0,10

Trace Ratio Criterion 0,12 0,26 0,41 0,45 0,29 0,31 0,13

ReliefF 0,24 0,33 0,24 0,36 0,29 0,29 0,06

MIM 0,19 0,44 0,47 0,55 0,71 0,47 0,19

MIFS 0,24 0,37 0,29 0,36 0,43 0,34 0,07

MRMR 0,36 0,22 0,65 0,64 0,57 0,49 0,19

CIFE 0,33 0,30 0,47 0,82 0,43 0,47 0,21

JMI 0,40 0,48 0,59 0,82 0,57 0,57 0,16

CMIM 0,24 0,48 0,47 0,36 0,43 0,40 0,10

DISR 0,29 0,44 0,59 0,64 0,71 0,53 0,17

FCBF 0,33 0,41 0,47 0,64 0,57 0,48 0,12

Interaction Capping 0,29 0,48 0,59 0,36 1,00 0,54 0,28

MCFS 0,19 0,33 0,12 0,27 0,57 0,30 0,17

L1 norm Regularization 0,26 0,41 0,65 0,55 0,57 0,49 0,15

l2;1 norm Regularized 0,38 0,37 0,41 0,82 0,71 0,54 0,21

NDFS 0,33 0,33 0,24 0,55 0,57 0,40 0,15

F-score 0,24 0,22 0,24 0,27 0,29 0,25 0,03

Gini Index 0,29 0,37 0,41 0,36 0,43 0,37 0,06

CFS 0,17 0,19 0,35 0,18 0,57 0,29 0,17

Wraper 0,31 0,52 0,53 0,45 0,29 0,42 0,12

Group Feature Structures 0,14 0,48 0,53 0,27 0,86 0,46 0,27

UDFS 0,17 0,56 0,59 0,45 0,57 0,47 0,18

Tree-fs 0,26 0,41 0,53 0,45 0,14 0,36 0,16

RFS 0,33 0,48 0,24 0,27 0,71 0,41 0,20

SVMBackward 0,24 0,30 0,47 0,64 0,86 0,50 0,25

SVMForward 0,31 0,41 0,35 0,18 0,57 0,36 0,14

AVG 0,26 0,42 0,42 0,47 0,56 0,42 0,16
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Table 5.7: The accuracy measurements for each feature selection
algorithms for Warp dataset.

Data Accuracy

Warp Dataset 1st 2nd 3rd 4th 5th AVG STD

LS 0,38 0,31 0,30 0,13 0,13 0,25 0,12

(SPEC) 0,44 0,25 0,70 0,50 0,31 0,44 0,18

Fisher Score 0,50 0,44 0,90 0,56 0,63 0,61 0,18

Trace Ratio Criterion 0,44 0,56 0,90 0,19 0,69 0,56 0,27

ReliefF 0,50 0,44 0,60 0,25 0,19 0,40 0,17

MIM 0,69 0,69 0,80 0,50 0,63 0,66 0,11

MIFS 0,13 0,31 0,60 0,50 0,31 0,37 0,18

MRMR 0,56 0,38 0,80 0,56 0,44 0,55 0,16

CIFE 0,56 0,25 0,60 0,56 0,19 0,43 0,20

JMI 0,75 0,50 0,70 0,56 0,50 0,60 0,12

CMIM 0,56 0,56 0,50 0,38 0,50 0,50 0,08

DISR 0,69 0,75 0,60 0,31 0,44 0,56 0,18

FCBF 0,19 0,63 1,00 0,75 0,75 0,66 0,30

Interaction Capping 0,56 0,56 0,70 0,38 0,50 0,54 0,12

MCFS 0,69 0,56 0,90 0,69 0,56 0,68 0,14

L1 norm Regularization 0,50 0,19 0,70 0,56 0,19 0,43 0,23

l2;1 norm Regularized 0,88 0,50 0,50 0,69 0,56 0,63 0,16

NDFS 0,88 0,38 0,80 0,50 0,56 0,62 0,21

F-score 0,44 0,25 0,60 0,50 0,50 0,46 0,13

Gini Index 0,06 0,44 0,60 0,44 0,25 0,36 0,21

CFS 0,50 0,88 0,90 0,19 0,31 0,56 0,32

Wraper 0,38 0,50 0,50 0,50 0,31 0,44 0,09

Group Feature Structures 0,56 0,38 0,90 0,56 0,19 0,52 0,26

UDFS 0,63 0,06 0,70 0,50 0,44 0,47 0,25

Tree-fs 0,38 0,88 0,70 0,38 0,19 0,50 0,28

RFS 0,44 0,69 0,70 0,38 0,38 0,52 0,17

SVMBackward 0,63 0,31 0,90 0,63 0,31 0,56 0,25

SVMForward 0,38 0,63 0,50 0,88 0,19 0,51 0,26

AVG 0,51 0,51 0,7 0,48 0,39 0,51 0,19
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Table 5.8: The accuracy measurements for each feature selection
algorithms for Colon dataset.

Data Accuracy

Colon Dataset 1st 2nd 3rd 4th 5th AVG STD

LS 0,31 0,88 0,80 0,50 0,44 0,59 0,24

(SPEC) 0,56 0,75 0,80 0,44 0,88 0,69 0,18

Fisher Score 0,81 1,00 0,90 0,63 0,94 0,86 0,15

Trace Ratio Criterion 0,88 0,94 1,00 0,75 0,69 0,85 0,13

ReliefF 0,88 1,00 0,50 0,69 0,81 0,78 0,19

MIM 0,88 1,00 0,90 0,75 0,88 0,88 0,09

MIFS 0,63 0,94 0,50 0,44 0,63 0,63 0,19

MRMR 0,56 0,94 0,80 0,63 0,88 0,76 0,16

CIFE 1,00 0,88 0,40 0,88 0,88 0,81 0,23

JMI 0,94 1,00 0,80 0,63 0,88 0,85 0,14

CMIM 0,69 0,88 1,00 0,69 0,81 0,81 0,13

DISR 0,94 0,63 1,00 0,88 0,88 0,86 0,14

FCBF 0,88 0,94 1,00 0,88 0,88 0,91 0,06

Interaction Capping 0,56 0,69 0,40 0,31 0,38 0,47 0,15

MCFS 0,88 0,75 0,50 0,44 0,88 0,69 0,21

L1 norm Regularization 0,50 0,50 0,50 0,75 0,56 0,56 0,11

l2;1 norm Regularized 0,94 0,75 0,90 0,56 0,88 0,81 0,15

NDFS 0,88 0,81 0,60 0,56 0,75 0,72 0,13

F-score 0,63 0,44 0,50 0,56 0,75 0,58 0,12

Gini Index 0,81 0,69 0,60 0,56 0,56 0,65 0,11

CFS 0,50 0,88 0,50 0,88 0,81 0,71 0,20

Wraper 0,56 0,75 0,90 0,81 0,38 0,68 0,21

Group Feature Structures 0,75 0,88 0,80 0,56 0,69 0,74 0,12

UDFS 0,56 0,81 0,70 0,63 0,81 0,70 0,11

Tree-fs 0,94 0,69 0,80 0,56 0,69 0,74 0,14

RFS 0,81 0,50 0,80 0,50 0,81 0,69 0,17

SVMBackward 0,69 0,63 0,50 0,81 0,69 0,66 0,11

SVMForward 0,88 0,69 0,60 0,63 0,81 0,72 0,12

AVG 0,74 0,83 0,71 0,63 0,74 0,72 0,14
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Table 5.9: The accuracy measurements for each feature selection
algorithms for Urban Land Cover dataset.

Data Accuracy

Urban Land Cover Dataset 1st 2nd 3rd 4th 5th AVG STD

LS 0,56 0,64 0,61 0,49 0,70 0,60 0,08

(SPEC) 0,47 0,70 0,70 0,61 0,35 0,57 0,15

Fisher Score 0,88 0,64 0,65 0,44 0,85 0,69 0,18

Trace Ratio Criterion 0,70 0,58 0,61 0,61 0,55 0,61 0,06

ReliefF 0,65 0,51 0,65 0,38 0,45 0,53 0,12

MIM 0,65 0,45 0,38 0,44 0,60 0,50 0,12

MIFS 0,52 0,58 0,70 0,32 0,45 0,51 0,14

MRMR 0,79 0,58 0,43 0,55 0,50 0,57 0,14

CIFE 0,65 0,58 0,79 0,44 0,60 0,61 0,13

JMI 0,70 0,58 0,56 0,61 0,35 0,56 0,13

CMIM 0,61 0,51 0,70 0,61 0,50 0,59 0,08

DISR 0,65 0,95 0,75 0,49 0,35 0,64 0,23

FCBF 0,65 0,64 0,84 0,38 0,75 0,65 0,17

Interaction Capping 0,79 0,70 0,70 0,73 0,65 0,71 0,05

MCFS 0,56 0,58 0,52 0,26 0,70 0,52 0,16

L1 norm Regularization 0,56 0,58 0,75 0,55 0,65 0,62 0,08

l2;1 norm Regularized 0,56 0,64 0,75 0,49 0,55 0,60 0,10

NDFS 0,79 0,58 0,65 0,49 0,45 0,59 0,14

F-score 0,65 0,58 0,56 0,49 0,55 0,57 0,06

Gini Index 0,52 0,51 0,70 0,44 0,50 0,53 0,10

CFS 0,56 0,58 0,61 0,38 0,50 0,52 0,09

Wraper 0,47 0,51 0,65 0,61 0,55 0,56 0,07

Group Feature Structures 0,52 0,45 0,56 0,32 0,50 0,47 0,09

UDFS 0,61 0,70 0,70 0,61 0,40 0,60 0,12

Tree-fs 0,70 0,64 0,70 0,67 0,45 0,63 0,10

RFS 0,79 0,51 0,52 0,44 0,60 0,57 0,14

SVMBackward 0,70 0,76 0,43 0,61 0,70 0,64 0,13

SVMForward 0,61 0,45 0,56 0,55 0,50 0,54 0,06

AVG 0.63 0,59 0,63 0,50 0,54 0,58 0,11
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Table 5.10: The accuracy measurements for each feature selection
algorithms for Libras Movement dataset.

Data Accuracy

Libras Movement Dataset 1st 2nd 3rd 4th 5th AVG STD

LS 0,49 0,30 0,72 0,67 0,56 0,55 0,17

(SPEC) 0,36 0,36 0,88 0,76 0,56 0,58 0,23

Fisher Score 0,43 0,59 0,62 0,62 0,69 0,59 0,10

Trace Ratio Criterion 0,36 0,36 0,62 0,76 0,69 0,56 0,19

ReliefF 0,61 0,30 0,35 0,29 0,50 0,41 0,14

MIM 0,30 0,54 0,56 0,71 0,56 0,54 0,15

MIFS 0,43 0,42 0,56 0,67 0,69 0,55 0,13

MRMR 0,43 0,36 0,72 0,90 0,75 0,63 0,23

CIFE 0,49 0,36 0,46 0,67 0,75 0,54 0,16

JMI 0,43 0,48 0,41 0,67 0,69 0,53 0,14

CMIM 0,43 0,36 0,51 0,52 0,63 0,49 0,10

DISR 0,61 0,48 0,83 0,52 0,75 0,64 0,15

FCBF 0,43 0,30 0,77 0,43 0,50 0,49 0,18

Interaction Capping 0,49 0,42 0,51 0,52 0,50 0,49 0,04

MCFS 0,49 0,42 0,46 0,62 0,69 0,53 0,11

L1 norm Regularization 0,43 0,36 0,72 0,57 0,56 0,53 0,14

l2;1 norm Regularized 0,49 0,48 0,72 0,62 0,69 0,60 0,11

NDFS 0,74 0,36 0,51 0,76 0,75 0,62 0,18

F-score 0,61 0,30 0,62 0,67 0,63 0,56 0,15

Gini Index 0,30 0,48 0,67 0,62 0,50 0,51 0,14

CFS 0,55 0,42 0,51 0,57 0,50 0,51 0,06

Wraper 0,43 0,48 0,67 0,71 0,69 0,59 0,13

Group Feature Structures 0,49 0,36 0,62 0,62 0,56 0,53 0,11

UDFS 0,49 0,48 0,51 0,71 0,56 0,55 0,10

Tree-fs 0,49 0,30 0,62 0,57 0,63 0,52 0,13

RFS 0,61 0,48 0,67 0,48 0,63 0,57 0,09

SVMBackward 0,49 0,42 0,77 0,71 0,81 0,64 0,18

SVMForward 0,43 0,42 0,67 0,43 0,56 0,50 0,11

AVG 0,47 0,42 0,61 0,62 0,62 0,54 0.13

64



Table 5.11: The accuracy measurements for each feature
selection algorithms for Hill-Valley dataset.

Data Accuracy

Hill-Valley Dataset 1st 2nd 3rd 4th 5th AVG STD

LS 0,63 0,33 0,50 0,31 0,50 0,45 0,13

(SPEC) 0,56 0,27 0,44 0,44 0,63 0,47 0,14

Fisher Score 0,50 0,53 0,44 0,44 0,50 0,48 0,04

Trace Ratio Criterion 0,63 0,40 0,56 0,31 0,44 0,47 0,13

ReliefF 0,63 0,27 0,56 0,56 0,50 0,50 0,14

MIM 0,50 0,60 0,63 0,50 0,69 0,58 0,08

MIFS 0,44 0,53 0,38 0,56 0,38 0,46 0,09

MRMR 0,50 0,40 0,44 0,50 0,56 0,48 0,06

CIFE 0,69 0,53 0,44 0,50 0,63 0,56 0,10

JMI 0,50 0,40 0,63 0,63 0,44 0,52 0,10

CMIM 0,44 0,40 0,38 0,50 0,44 0,43 0,05

DISR 0,63 0,60 0,38 0,50 0,69 0,56 0,12

FCBF 0,44 0,53 0,56 0,25 0,50 0,46 0,12

Interaction Capping 0,88 0,67 0,38 0,44 0,44 0,56 0,21

MCFS 0,81 0,60 0,38 0,38 0,63 0,56 0,19

L1 norm Regularization 0,69 0,60 0,44 0,31 0,56 0,52 0,15

l2;1 norm Regularized 0,63 0,40 0,63 0,63 0,56 0,57 0,10

NDFS 0,63 0,53 0,44 0,31 0,50 0,48 0,12

F-score 0,63 0,40 0,38 0,63 0,31 0,47 0,15

Gini Index 0,50 0,53 0,38 0,44 0,69 0,51 0,12

CFS 0,56 0,40 0,44 0,56 0,56 0,51 0,08

Wraper 0,50 0,33 0,56 0,56 0,31 0,45 0,12

Group Feature Structures 0,75 0,40 0,31 0,50 0,56 0,51 0,17

UDFS 0,56 0,40 0,63 0,38 0,63 0,52 0,12

Tree-fs 0,75 0,60 0,44 0,50 0,19 0,50 0,21

RFS 0,56 0,40 0,44 0,38 0,38 0,43 0,08

SVMBackward 0,63 0,33 0,56 0,50 0,69 0,54 0,14

SVMForward 0,63 0,27 0,56 0,56 0,50 0,50 0,14

AVG 0,6 0.50 0,47 0,46 0,51 0.50 0.12
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6. RESULT ANDDISCUSSION

This study evaluates the performance of the novel ensemble-pruning model by

comparing it with that of other similar models such as Cluster-And-Select, Joint-

Criterion, and DES-Cluster methods. The same datasets and settings are utilized

throughout the experiments, and a total of 11 benchmark datasets were applied,

such as Frog MFCCs, Glass, Movement, Seeds, Segmentation, Synthetic Control,

Wine, Zoo, Yale, Hill-Valley, and USPS. Experimental results revealed that the

proposed model contains no cardinality of the subset chosen. More importantly,

our experimental evaluation demonstrates that our ensemble approach produces

better performance than other cluster ensemble selection models. Our method

is also advantageous in that it minimizes pruning-rate search space. As well as

maximizing the diversity-accuracy trade-off, we observe that our proposed prun-

ing algorithm is independent of the data domain. Even after comparing our pre-

diction results with existing cluster ensemble-selection methods, our suggested

ensemble model is superior in terms of finding better optimal solutions.

Same model was adapted to ensemble learning based feature selection.The pro-

posed approach is validated on the most well known data sets and the perfor-

mance results are compared with an un-pruned case of ensemble learning and

Joint criterion method. DES is used as a classifier of these classification tasks.

In addition to this, we implemented our model with other classification algo-

rithms such as Linear SVM, nonlinear SVM and decision tree method where our

proposed approach gave better accuracy performance with those classification

techniques as well. As a future study, ensemble library can be enhanced by con-

sidering data variation techniques such as bagging.The performance evaluation

was carried out against each of those 28 constituent feature selection methods.

When analyzing feature selection algorithms individually versus Ensemble Fea-

ture selection method performance, ensemble methods show great promise for
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large feature domains. It turns out that the best trade-off between accuracy and

diversity performance depends on the ensemble feature selection model, giving

rise to a new model selection strategy.
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