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ABSTRACT 

 

INTEGRATING HYPERSPECTRAL IMAGING AND MICROSCOPY FOR 

HEPATOCELLULAR CARCINOMA DETECTION FROM H&E STAINED 

HISTOPATHOLOGY IMAGES 

 

Çinar, Umut 

Ph.D, Department of Information Systems 

Supervisor: Prof. Dr. Yasemin Yardımcı Çetin 

 

June 2023, 110 pages 

 

In this study, we introduce a new method for classifying Hepatocellular Carcinoma 

(HCC) using a hyperspectral imaging system (HSI) integrated with a light microscope. 

We developed a custom imaging system that captures 270 bands of hyperspectral 

images from healthy and cancerous tissue samples with HCC diagnosis taken from a 

liver microarray slide. To build an accurate classification model, we utilized 

Convolutional Neural Networks (CNNs) with 3D convolutions (3D-CNN). These 

convolutions incorporate both spectral and spatial features within the hyperspectral 

cube to train a robust classifier. By leveraging 3D convolutions, we can collect 

distinctive features automatically during CNN training without requiring manual 

feature engineering on hyperspectral data. Our proposed method is compact and can 

be applied effectively in medical HSI applications. Additionally, we addressed the 

class imbalance problem in the dataset by utilizing the focal loss function as the CNN 

cost function. This function emphasizes hard examples to learn and prevents 

overfitting caused by the lack of inter-class balancing. Our empirical results indicate 

that hyperspectral data outperforms RGB data in liver cancer tissue classification, and 

increased spectral resolution leads to higher classification accuracy. Furthermore, we 

found that spectral and spatial features are both critical for training an accurate 

classifier for cancer tissue classification. 

Keywords: hyperspectral imaging, hyperspectral microscopy, human carcinoma 

detection, convolutional neural networks, 3D convolutions 
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ÖZ 

 

H&E BOYALI HİSTOPATOLOJİ GÖRÜNTÜLERİNDEN HEPATOSELLÜLER 

KARSİNOM TESPİTİ İÇİN HİPERSPEKTRAL GÖRÜNTÜLEME VE 

MİKROSKOP ENTEGRASYONU 

 

Çinar, Umut 

Doktora, Bilişim Sistemleri Bölümü 

Tez Yöneticisi: Prof. Dr. Yasemin Yardımcı Çetin 

 

Haziran 2023, 110 sayfa 

 

Bu çalışmada, ışık mikroskobu ile entegre bir hiper-spektral görüntüleme sistemi 

(HSI) kullanarak Hepatosellüler Karsinom (HCC) sınıflandırması için yeni bir yöntem 

sunuyoruz. HCC tanısı alan sağlıklı ve kanserli doku örneklerinden oluşan karaciğer 

mikro-dizi slaytlarından 270 bant hiper-spektral görüntü elde etmek için özel bir 

görüntüleme sistemi geliştirdik. Doğru bir sınıflandırma modeli oluşturmak için, 3 

boyutlu evrişimlerle (3B-CNN) Evrişimsel Sinir Ağları (CNN) kullandık. Bu 

evrişimler, hiper-spektral küpte hem spektral hem de mekânsal özellikleri içerir ve 

sağlam bir sınıflandırıcı eğitmek için kullanılır. 3B evrişimler kullanarak, CNN eğitimi 

sırasında hiper-spektral verilere manuel özellik mühendisliği yapmaya gerek 

kalmadan otomatik olarak ayırt edici özellikler toplayabiliriz. Önerilen yöntemimiz 

kompakt olup tıbbi HSI uygulamalarında etkili bir şekilde uygulanabilir. Ayrıca, veri 

kümesindeki sınıf dengesizliği sorununu, CNN maliyet fonksiyonu olarak odak kayıp 

fonksiyonunu kullanarak ele aldık. Bu fonksiyon, zor örneklerin öğrenilmesini 

vurgular ve sınıflar arası dengesizliğin eksikliği nedeniyle meydana gelen aşırı uyumu 

önler. Deneysel sonuçlarımız, karaciğer kanseri doku sınıflandırmasında hiper-

spektral verilerin RGB verilerinden daha iyi performans gösterdiğini ve artan spektral 

boyutun daha yüksek sınıflandırma doğruluğuna yol açtığını göstermektedir. Ayrıca, 

kanser doku sınıflandırması için doğru bir sınıflandırıcı eğitmekte spektral ve 

mekânsal özelliklerin her ikisinin de kritik olduğunu bulduk. 

 

Anahtar Sözcükler: hiperspektral görüntüleme, hiperspektral mikroskopi, insan 

karsinomu tespiti, evrişimsel sinir ağları, 3B evrişimler 
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CHAPTER 1TER 

 

INTRODUCTION 

Hyperspectral imaging (HSI) is an advanced remote sensing technology that has garnered 

significant attention lately due to its ability to provide detailed spectral information across 

a wide range of wavelengths. This non-invasive technique captures along the 

electromagnetic spectrum, providing a continuous spectral curve for each pixel in an 

image [1]. By exploiting the unique spectral signatures of various materials, hyperspectral 

imaging has found applications in numerous fields, including agriculture, environmental 

monitoring, mineral exploration, and defense, among others [2]. As seen in Figure 1, 

unlike multispectral imaging, which records data at a limited number of spectral bands, 

hyperspectral imaging acquires data at hundreds or thousands of neighboring spectral 

bands, enabling the extraction of precise information about the composition and properties 

of the imaged objects. This high-dimensional data, known as hyperspectral data cubes, 

consist of two spatial dimensions and one spectral dimension. Hyperspectral data cubes 

enable the identification, classification, and quantification of materials, even those that are 

not distinguishable in the visible spectrum or conventional imaging devices. The process 

of acquiring hyperspectral images involves the use of specialized sensors, which capture 

the reflected, emitted, or transmitted radiation from the target scene. These sensors can 

employ various scanning mechanisms, such as whisk-broom, push-broom, or global 

imaging techniques, depending on the utilized imaging device [3]. The acquired 

hyperspectral data is then subjected to various preprocessing steps, including radiometric 

and atmospheric corrections, to ensure the accurate representation of the ground 

reflectance. That is, hyperspectral imaging is a powerful remote sensing tool that provides 

spectral information for a wide range of applications. Its ability to capture high-resolution, 

continuous spectral data enables the detection and characterization of materials that would 

be otherwise indiscernible.  

The potential applications of hyperspectral imaging (HSI) in scientific research are broad 

and varied. For instance, in geology, HSI can reveal mineralogical compositions of soils 

or rocks that cannot be discerned by the naked eye, aiding in resource exploration and 

management [4]. In agriculture, hyperspectral data can provide information about crop 

health, soil quality, and pest infestation, thereby guiding precision farming practices for 

improved yield and sustainability [5]. Additionally, in the field of environmental science, 

HSI can track changes in ecosystems over time, assess water quality, and monitor 

pollution levels [6]. The wealth of information provided by HSI, coupled with 

advancements in data processing techniques and machine learning algorithms, offers the 

potential to uncover hidden patterns and insights that could further our understanding of 

various phenomena. Therefore, the continued development and refinement of HSI 

technology and its integration with other technological advancements could pave the way 

for significant breakthroughs across multiple fields. 
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Figure 1 RGB, Multispectral and Hyperspectral coverage on electromagnetic spectrum [7] 

On the other hand, histopathology is a major discipline within the field of pathology, 

focusing on the microscopic examination of tissue samples to diagnose diseases and 

evaluate treatment outcomes. It involves the study of morphological and cellular changes 

in tissues, as well as the identification of specific disease markers, to provide accurate, 

detailed information on the underlying pathological processes [8]. Histopathology plays a 

critical role in various aspects of medical practice, such as clinical diagnostics, 

prognostication, and therapy decision-making, particularly in oncology, where it aids in 

tumor classification, staging, and grading. The conventional workflow in histopathology 

involves several steps, including tissue fixation, embedding, sectioning, staining, and 

finally, microscopic examination by a pathologist [9]. Among the most common staining 

techniques is Hematoxylin and Eosin (H&E) staining, which highlights the basic structure 

and composition of the tissue by differentiating between the cell nuclei and cytoplasm 

[10]. Additionally, immunohistochemistry and in situ hybridization techniques are 

employed to detect specific antigens or nucleic acid sequences within the tissue, providing 

vital information on the molecular characteristics of the disease [11]. In fact, the 

application of HSI in histopathology holds great potential for the discovery of novel 

biomarkers by identifying spectral signatures associated with specific pathological states 

[12]. This can ultimately lead to a better understanding of disease pathogenesis and 

facilitate the development of targeted therapeutic interventions. Despite the invaluable 

insights gained from histopathological analysis, the process is labor-intensive, time-
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consuming, and prone to intra- and inter-observer variability [13]. Moreover, the 

evaluation of large-scale, high-resolution histopathological images demands considerable 

expertise and experience, leading to potential diagnostic discrepancies and delays in 

patient care. To address these challenges, recent advancements in digital pathology, 

computational and imaging techniques such as HSI have paved the way for the 

development of automated histopathological analysis systems, which leverage image 

processing, machine learning, and deep learning algorithms to boost diagnostic accuracy, 

efficiency, and reproducibility [14]. One of the key strengths of HSI is its ability to capture 

spatial and spectral information from a sample, generating a continuous spectrum for each 

pixel in the image. This detailed chemical and structural information enables HSI to reveal 

subtle differences in tissue compositions and structures that may be indistinguishable 

using conventional histopathology techniques. As a result, HSI may produce more precise 

identification and differentiation of various tissue types, leading to enhanced diagnostic 

accuracy and reduced inter-observer variability. Integrating hyperspectral imaging into 

histopathology tasks can offer significant research value and has the potential to open new 

horizons for diagnostic practices and broaden the understanding of disease processes. 

1.1. Motivation 

In 2020, an estimated 960,000 new liver cancer cases were reported, resulting in 

approximately 830,000 deaths attributed to this disease [15]. Liver cancer is the sixth most 

prevalent type of cancer and the third leading cause of cancer-related deaths worldwide. 

Hepatocellular carcinoma (HCC) accounts for the majority of liver cancer cases, with an 

incidence rate of 80%. As depicted in Figure 2, the HCC tumors develop in the liver, 

which is located in the upper right part of the abdomen, beneath the diaphragm and above 

the stomach. The liver is one of the largest organs in the human body and plays a vital role 

in processing nutrients, metabolizing drugs, and detoxifying harmful substances. HCC, as 

a primary liver cancer, has its origins in the cells of the liver itself. It arises due to a series 

of genetic mutations that occur within the liver cells, leading to uncontrolled cellular 

growth and the formation of a tumor. Given the crucial functions of the liver, such as 

nutrient processing, drug metabolism, and toxin detoxification, the onset of HCC can 

significantly disrupt these processes and lead to severe health consequences. The high 

prevalence and mortality rate of HCC underscores the importance of ongoing research 

into effective diagnostic and treatment strategies for this aggressive form of cancer. 
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Figure 2 Hepatocellular Carcinoma (HCC) [16] 

In terms of appearance, HCC tumors can vary widely [17]. Their visual characteristics can 

be influenced by factors such as the stage of the cancer, the overall health of the liver, and 

the underlying cause of the liver disease. In general, HCC tumors often appear as solid 

masses within the liver tissue. They can be single or multiple, and their sizes can vary 

greatly. Early-stage tumors may be small, often less than 3 centimeters in diameter, and 

can be hard to distinguish from surrounding healthy liver tissue. As the cancer progresses, 

the tumors can grow larger and may have an irregular or lobulated shape. Their color often 

differs from the surrounding liver tissue, usually being paler due to the different cell 

structure. Late stage HCC can also lead to a varied appearance in the liver as the tumors 

may cause the liver to enlarge or change shape. However, it's important to note that these 

characteristics are typically not visible to the naked eye. The presence and appearance of 
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HCC tumors are usually determined through imaging studies such as ultrasound, 

computed tomography (CT), and magnetic resonance imaging (MRI), and confirmed 

through biopsy, where a small sample of the tumor is examined under a microscope. 

Figure 3 highlights the abnormal cell development and complex morphology of this 

disease. In part A, the figure provides a microscopic view of dysplastic foci in which small 

cell changes, a possible precursor to cancer, can be observed, stained using hematoxylin 

and eosin. Part B of the figure shows a liver with cirrhosis, a scarring of the liver often 

caused by long-term liver damage, containing a single, nodular HCC, indicated by an 

arrow. In Part C, the figure presents a liver with cirrhosis, which hosts multiple nodules 

of HCC, further emphasizing the multifaceted nature of this disease. Lastly, part D 

exhibits a case of multicentric HCC, indicating the presence of multiple, independent 

tumors within the liver. This visual overview presents the wide spectrum of HCC 

presentations, illustrating the disease's complex development and progression within the 

liver. 

 

Figure 3 Changes in cell structure and the overall appearance of HCC. (A) Abnormal cell development 

demonstrating a small cell transformation (stained with H&E); (B) Nodular HCC located within a liver 

affected by cirrhosis (indicated by an arrow); (C) HCC comprising multiple nodules in a cirrhotic liver 

(marked by an arrow); D: HCC with multiple origins or centers (pointed by an arrow) [18]. 
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HCC develops as a result of a multi-step process of malignant transformation of 

hepatocytes, the primary cell type in the liver. This complex process is influenced by a 

variety of risk factors and involves multiple stages of liver damage and cellular changes. 

Initially, as depicted in Figure 4, the hepatocytes may experience injury and inflammation 

due to factors such as chronic viral hepatitis (hepatitis B and C), exposure to toxins such 

as aflatoxin, alcoholic liver disease, or non-alcoholic steatohepatitis [19]. This chronic 

inflammation can lead to an increased rate of cell turnover and, eventually, the 

development of fibrosis or scar tissue. If the inflammation and injury persist, this fibrosis 

can progress to cirrhosis, a condition where the normal liver architecture is replaced by 

scar tissue and regenerative nodules. This altered environment can lead to genomic 

instability, providing an opportunity for the acquisition of additional genetic mutations. 

 

Figure 4 The transition from normal liver to HCC [20] 

At the cellular level, these genetic mutations may alter the normal regulation of cell 

division and death, leading to uncontrolled cell proliferation. These mutations may affect 

key oncogenes and tumor suppressor genes, which are crucial for controlling cell growth 

and division. Over time, these mutated cells may undergo further changes, such as 

alterations in their size, shape, and organization, a process known as dysplasia. A key step 

in the development of HCC is the activation of telomerase, an enzyme that allows cancer 

cells to divide indefinitely. The mutated hepatocytes may also develop the ability to invade 

surrounding tissues and spread to other parts of the body, a process known as metastasis. 

As a result of these cumulative changes, dysplastic hepatocytes can eventually transform 
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into fully malignant HCC cells. These cells may form a tumor, or multiple tumors, within 

the liver, leading to the clinical disease known as HCC. It is important to note that the 

exact sequence and nature of these mutations can vary between individuals and may be 

influenced by a variety of factors such as the underlying cause of liver disease, individual 

genetics, and lifestyle factors. 

Normal cells and cancer cells, as visualized in Figure 5 and Figure 6, exhibit several 

notable morphological differences. This disparity results from the aberrant growth and 

survival signals characteristic of cancer, which allow these cells to evade the body's usual 

mechanisms of cellular control and homeostasis [21]. Healthy hepatocytes have a distinct, 

uniform appearance under the microscope. These cells are generally large and polygonal, 

with abundant cytoplasm and a round, centrally located nucleus. The liver tissue 

architecture is orderly, with hepatocytes arranged in cords or plates separated by blood-

filled sinusoidal spaces [22]. In contrast, HCC cells exhibit significant cellular and 

architectural irregularity. Firstly, their size can vary considerably, with some cells 

appearing much larger or smaller than typical hepatocytes. HCC cells can also exhibit 

changes in shape, including a less defined, more irregular cellular outline [23]. The 

nucleus of cancer cells often appears larger and more irregular, a feature known as 

pleomorphism. The nuclear to cytoplasmic ratio may be increased, and multiple nuclei 

may be present in some cells. Additionally, the chromatin within the nucleus may be 

coarser, and there may be prominent nucleoli, which are regions within the nucleus where 

ribosome synthesis occurs [24]. Architecturally, HCC tissue lacks the regular cord-like 

arrangement of normal liver tissue. Instead, it may exhibit a trabecular, pseudo-glandular, 

or solid pattern. Increased cell density, unregulated angiogenesis, and the presence of 

necrotic regions are also standard features of HCC. These morphological changes are a 

direct result of the genetic alterations that drive cancer development, reflecting changes 

in genes regulating cell growth, division, and survival. They provide valuable diagnostic 

and prognostic information and are often used to grade the severity of the disease [25]. 

The abnormal morphology of HCC cells and the disorganized tissue architecture they form 

are not mere consequences of cancer, but they actively contribute to the disease's 

progression and spread. For instance, the increased cell density seen in HCC tumors can 

promote a hypoxic environment, which can induce further genetic mutations and enable 

the survival of more aggressive cancer cells [26]. Unregulated angiogenesis, the process 

by which tumors create new blood vessels, ensures that rapidly proliferating cancer cells 

receive necessary nutrients, thereby facilitating tumor growth and offering a potential 

pathway for metastasis, or spread to other body parts [27]. Necrotic regions, areas of cell 

death caused by the harsh tumor environment, can stimulate inflammation and further 

promote tumor growth [28]. The morphological characteristics of HCC cells can also 

impact treatment response. For example, changes in cell size and shape can alter how cells 

interact with therapeutics, and nuclear changes can affect the cell's response to treatments 

that target DNA or disrupt cell division. As such, understanding these morphological 

differences between normal and cancer cells is not only crucial for diagnosing and grading 

HCC but also for developing and optimizing treatment strategies. 
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Figure 5 Characteristic structures of normal and cancer cells [29]. 

 

Figure 6 Differences between normal and cancer cells [30] 
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From the clinical perspective, ultrasonography plays a vital role in the early detection and 

monitoring of tumor nodules. As a non-invasive imaging technique, it allows for the real-

time visualization of the liver and other internal organs, enabling the identification of 

abnormal growths or changes in organ structure. Regular ultrasonographic surveillance is 

particularly crucial for individuals at high risk of developing HCC such as those with 

chronic hepatitis or cirrhosis. In patients with sufficient liver function and small, solitary 

tumors, resection is typically the first-line treatment option. This surgical procedure 

involves the removal of the tumor along with a margin of healthy tissue, with the aim of 

eliminating all cancerous cells. The success of liver resection as a treatment largely 

depends on the tumor's size, location, and number, as well as the patient's overall health 

and liver function [31]. In cases where the disease is more advanced or the patient's health 

status does not allow for resection, other treatment strategies may be pursued. Liver 

transplantation is an option for patients with early-stage HCC who also have severe 

underlying liver disease. It involves replacing the diseased liver with a healthy one from 

a donor [32]. Trans-arterial chemoembolization (TACE) is another option, particularly for 

patients with larger or multiple tumors that cannot be removed surgically. TACE involves 

the delivery of chemotherapy drugs directly to the tumor through the blood vessels feeding 

it, followed by the embolization (blockage) of these vessels to starve the tumor of its blood 

supply [33-34]. Finally, molecular-targeted therapies have emerged as a promising 

treatment approach, especially for advanced HCC. These therapies work at the molecular 

level, interfering with specific signaling pathways that cancer cells rely on for growth and 

survival. One example is tyrosine kinase inhibitors, which block the activity of enzymes 

known as tyrosine kinases, involved in several cellular processes, including cell growth 

and division [35]. Treatment for HCC is usually personalized, based on factors such as 

the stage of the disease, the patient's overall health and liver function, and the genetic 

makeup of the tumor. In some cases, a combination of treatment approaches may be used 

to achieve the best possible outcome [36]. 

On the other hand, a biopsy is a procedure that involves the removal of a small amount of 

tissue for examination under a microscope. In the case of HCC, a liver biopsy can be a 

critical component of the diagnostic process, providing definitive evidence of cancer [37]. 

During a liver biopsy, a thin needle is inserted through the skin and into the liver to collect 

a small tissue sample. This sample is then examined by a pathologist, a doctor who 

specializes in interpreting laboratory tests and evaluating cells, tissues, and organs to 

diagnose disease. The biopsy sample can provide vital information about the nature of the 

liver lesions identified on imaging studies. It can confirm whether a lesion is indeed 

cancerous, differentiate HCC from other types of liver cancer, and detect the presence of 

other liver diseases such as cirrhosis. Moreover, it can provide information about the grade 

of the tumor, which is a measure of how much cancer cells resemble normal cells and 

gives an indication of how quickly the tumor is likely to grow and spread [38]. In terms 

of treatment, the results of a liver biopsy can guide the choice of therapeutic strategies. 

For example, the presence of certain molecular markers in the tumor tissue can suggest 

that a patient might respond to specific targeted therapies [39]. However, it's worth noting 

that biopsy is an invasive procedure and carries risks, including bleeding and infection. 

Therefore, it's typically reserved for cases where imaging studies alone are insufficient for 
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a definitive diagnosis. In fact, pathology tools are instrumental in diagnosing HCC, 

assessing disease grading, determining the risk of recurrence post-surgery, and 

formulating effective treatment strategies, including drug therapies. The development of 

cancer entails complex interactions of genetic mutations within cells, culminating in the 

emergence of distinguishable cancerous tissues. Expert pathologists can recognize these 

tissues using biopsy procedures, which involve extracting and examining tissue samples 

from the affected area. Nevertheless, these tissue examination processes can be laborious, 

time-consuming, and prone to interobserver variability, underscoring the need for more 

efficient and accurate diagnostic methods [40]. Hyperspectral imaging, when integrated 

with microscopy, has the potential to significantly enhance diagnostic accuracy for HCC 

detection from histopathology images. By providing a broad range of spectral information, 

hyperspectral imaging allows for better differentiation of cancerous tissues from healthy 

ones. It can effectively address the challenges faced by traditional pathology methods and 

contributing to improved decision-making in cancer diagnosis. 

The motivation behind this study is to explore and develop the potential of hyperspectral 

imaging in conjunction with microscopy for the diagnosis of HCC. Our ultimate goal is 

to enhance the diagnostic accuracy and reduce the burden on pathologists. By leveraging 

the richness of spectral information available through hyperspectral imaging, this research 

aims to overcome the limitations associated with conventional histopathology, such as 

interobserver variability and time-consuming procedures. Moreover, the study aims to 

develop a new approach that may aid in the automatic detection of HCC, potentially 

enhancing treatment outcomes and reducing mortality rates. Additionally, this study will 

contribute to the broader understanding of the implications of HSI on histopathology 

research, which is essential for the development of new cancer detection methods with 

other tissue samples such as brain, breast, lung, colon, skin and cervix. By tackling the 

major challenges in liver cancer diagnosis, this PhD thesis seeks to make an important 

contribution to the field of cancer research and positively affect the lives of patients 

impacted by HCC. 

1.2. The Purpose of the Study 

The primary objective of this study is to develop a comprehensive and robust decision 

support tool for pathologists by utilizing deep learning methodologies and integrating 

hyperspectral imaging with microscopy devices. Hyperspectral imaging has demonstrated 

significant potential for the analysis of histopathological images, as it provides data within 

a broader interval of the electromagnetic spectrum. It enables the extraction of more 

detailed information about the composition and characteristics of the sample [41]. To 

achieve this integration, we aim to construct a biological tissue image capture system in 

our laboratory. This system combines a hyperspectral camera and a light microscope with 

a 3D-printed motorized stepper, allowing precise control over the sample positioning and 

facilitating the acquisition of high-quality hyperspectral images. 
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Another purpose of this research is to investigate the applicability of deep learning 

methods on hyperspectral images captured from microscopy tissue samples. Deep 

learning has emerged as a powerful tool for analyzing complex data and extracting 

valuable information from large datasets [42]. In particular, deep learning algorithms, such 

as convolutional neural networks (CNN), have demonstrated remarkable success in the 

analysis of medical images and improved the diagnostic accuracy in various fields of 

pathology [43]. By exploring the potential of machine learning algorithms on 

hyperspectral histopathology images, we aim to uncover useful insights and improve the 

accuracy of histopathological assessments, ultimately contributing to better clinical 

outcomes for patients. 

This study also aims to evaluate the classification performance of HCC using the proposed 

integrated hyperspectral imaging and machine learning methods. HCC is a common form 

of liver cancer, and accurate diagnosis and classification are essential for the development 

of effective treatment strategies. Traditional histopathological evaluation is often 

subjective, with considerable inter-observer variability, and may not capture the full 

complexity of the disease [44]. Additionally, as suggested by Trichromatic [45] and 

Opponent Process Theories [46], human color vision is limited by the color sensing 

capabilities of three types of cone cells in the human eye. Therefore, by leveraging the 

broad spectral information provided by hyperspectral imaging and the advanced 

classification competence of deep learning algorithms, an improvement in the 

classification performance of HCC is aimed. 

1.3. Contribution of the Thesis 

In this research, we propose a new HCC tumor detection framework, which exploits the 

synergistic potential of hyperspectral imaging and microscopy in conjunction with 3D 

Convolutional Neural Networks (3D-CNN). To facilitate our approach, we have 

developed a custom, in-house microscopy-based biological tissue image-capturing 

system. This system seamlessly integrates a push broom visible-near-infrared (VNIR) 

hyperspectral camera with a light microscopy device. Hence, it enables the collection of 

an extensive range of spectral data from liver tissue samples, covering wavelengths from 

400 nm to 800 nm. The acquired images from each sample are segmented into smaller 

patches as inputs to the data processing pipeline. These patches are subsequently fed into 

a custom 3D convolution-based CNN learner, which generates a strong cancer tissue 

prediction model. This model incorporates both spectral and spatial features during the 

training phase of the classification model, thereby enhancing its performance. The 3D 

convolution operation is involved in extracting local spectral features within the 

hyperspectral cube, leading to a more comprehensive understanding of the tissue samples. 

In addressing the issue of class imbalance in our dataset similar to most of medical studies, 

we have employed the focal loss function as the CNN cost function [47]. Utilizing a fine-

tuned focal loss function in our model not only mitigates the class imbalance problem but 

also considerably improves the overall classification performance of the model. Our 

empirical results demonstrate the superiority of 3D convolutions in terms of classification 
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accuracy when compared to 2D convolutions applied to the same dataset. Furthermore, 

our experiments highlight the improved performance of hyperspectral data over its RGB 

counterpart in the context of tumor tissue classification. 

Different from existing literature, our study employs a broader range of spectral bands for 

tissue classification, maximizing the potential benefits of hyperspectral imaging. 

Although Acousto-Optic Tunable Filter (AOTF) is utilized in tissue classification tasks, 

some studies have raised concerns about its reliability for radiometric measurements due 

to the lack of homogeneity in diffraction efficiency [48-50]. To address these concerns, 

we have opted for a hyperspectral VNIR camera as the primary imaging equipment, 

ensuring more reliable and accurate data acquisition. Furthermore, we introduce a 

comprehensive and robust classification framework based on CNN and 3D convolutions. 

In contrast to other studies, we provide a clear comparison of the classification 

performance achieved using hyperspectral data, Principal Component Analysis (PCA) of 

hyperspectral data, and RGB datasets. This comparative analysis offers valuable insights 

into the effectiveness of various data types in the context of HCC tumor detection, 

potentially guiding future research in the field. 

The contributions of our study can be summarized as follows; 

1. We have successfully constructed a biological tissue image capture system in our 

laboratory by integrating a hyperspectral camera and a light microscope with a 3D-

printed motorized stepper. This integration allows for the acquisition of high-

resolution hyperspectral images, which can be further analyzed to improve 

histopathological assessments and diagnostic accuracy. 

2. Our research demonstrates that hyperspectral data significantly enhances 

classification performance when compared to traditional RGB data. While RGB 

data can represent the spatial features of tumor tissues in fine detail, hyperspectral 

imaging captures both spatial and spectral features of tumor tissues, which in turn 

leverages the deep neural network classification accuracy. 

3. The proposed method takes advantage of the hyperspectral cube by utilizing 3D 

convolutional neural networks. 3D kernels enable the extraction of voxel 

information in a compact manner, allowing the learner to collect both spectral and 

spatial features via a single convolution operation. This approach results in a more 

efficient and accurate feature extraction process. 

4. Our method does not require manual feature engineering in the pre-processing or 

post-processing stages of the classification pipeline. By employing 3D 

convolutional neural networks, we achieve better generalization performance with 

a simpler network topology, streamlining the overall image analysis process. 

5. In this study, we address the class imbalance problem, a common challenge in 

many medical image analysis studies. We have implemented the focal loss 
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function within our classification model, which compensates for class imbalance 

by using a focusing parameter in the cross-entropy function. This approach 

enhances the learner's sensitivity to misclassified samples and improves model 

generalization without causing overfitting.  

1.4. Thesis Outline 

The remainder of this dissertation is structured as follows: 

- Chapter 2 presents an extensive literature review, focusing on computer-aided 

diagnosis, the application of hyperspectral imaging in the medical domain, and the 

integration of microscopy with hyperspectral instruments. We also elaborate 

theoretical aspects of CNNs and their essential components in this chapter. This 

chapter sets the foundation for understanding the current state of research in these 

areas and identifying potential research opportunities. 

- In Chapter 3, an extensive description of our methodology is provided, containing 

the process of data acquisition and the steps involved in the implementation of 

deep learning techniques. This chapter elucidates the rationale behind our 

approach, detailing the various stages of the proposed framework and the 

underlying techniques employed. 

- Chapter 4 presents the results of our experimental evaluations, comparing the 

performance of various sets of parameters and configurations used by the learners. 

The chapter showcases the effectiveness of our proposed framework, highlighting 

the improvements achieved in comparison to alternative experiment 

configurations and dataset options. 

- In Chapter 5, a thorough discussion of our findings is presented, accompanied by 

a concise conclusion of our study. This chapter also includes the limitations of our 

research and offers recommendations for future research directions, aimed at 

advancing the field of hyperspectral imaging and computer-aided diagnosis in the 

medical domain. 

  



14 

 

  



15 

 

CHAPTER 2TER 

 

BACKGROUND 

2.1. Computer-aided Diagnosis in Medicine 

The field of computer-aided diagnosis (CAD) in medicine has shown notable 

advancements in recent years, driven by the rapid progress in computational techniques, 

artificial intelligence, and medical imaging technologies [51]. As an essential component 

of modern medical practice, CAD systems have been applied to a variety of imaging 

techniques, including computed tomography (CT), magnetic resonance imaging (MRI), 

and mammography. Variety of CAD applications are shown to enhance the diagnostic 

process and improve patient outcomes [52]. In this sub-section, we aim to provide a 

comprehensive understanding of CAD in medicine, discussing its evolution, key 

publications, techniques, applications, and challenges in the field.  

CAD systems have become increasingly vital in enhancing diagnostic accuracy and 

efficiency across various medical domains. As healthcare professionals face growing 

workloads and the need for precise diagnosis, CAD systems offer valuable assistance 

through automated detection and classification of diseases, significantly reducing the time 

and effort required for manual interpretation of medical images [53]. The integration of 

advanced machine learning and deep learning techniques has further improved the 

performance of CAD systems, enabling them to improve precision in identifying and 

diagnosing a wide range of medical conditions, such as cancer, cardiovascular diseases, 

and neurological disorders [54]. The application of CAD systems in medicine not only 

improves diagnostic accuracy but also plays a crucial role in advancing precision medicine 

through the incorporation of artificial intelligence, machine learning, and radiomics. 

From phonocardiography signal processing field, a technique is used to analyze heart 

sounds and murmurs to diagnose various cardiac conditions [55]. The proposed 

methodology involves the application of conventional signal processing techniques, such 

as wavelet transform, adaptive filtering, empirical mode decomposition, and time-

frequency analysis, to extract and analyze essential features from the phonocardiogram 

signals. These methods allow for better representation and understanding of the heart 

sounds, improving the accuracy and reliability of the diagnostic process. On the other 

hand, the study [56] proposes an automated detection system for arrhythmias using 

different intervals of tachycardia ECG segments with CNNs. The authors preprocess the 

ECG signals to remove noise and artifacts and then extract various morphological features 

from the ECG segments. A CNN is used for feature learning and classification of the ECG 

segments into normal or arrhythmic classes. The proposed methodology demonstrates 

high performance in detecting different types of arrhythmias, offering a potential tool for 

real-time arrhythmia monitoring and diagnosis. 
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The study [57] presents a computer-aided pattern classification system for dermoscopy 

images, which aids in the diagnosis of skin lesions. The authors employ an image 

processing pipeline containing RGB to Lab color space conversion, morphological pre-

processing, feature extraction with discrete wavelet transform and local binary patterns. 

A pattern classification system, incorporating support vector machines (SVM) is then 

utilized to classify the skin lesions into different categories. Another study [58] introduces 

a CNN model for lung pattern classification in interstitial lung diseases (ILDs). The 

authors use high-resolution computed tomography (HRCT) images from different 

hospitals and scanners as input to train the CNN model, which learns to recognize different 

ILD patterns. The model topology consisted of five convolutional layers with 2x2 kernels 

and one average pooling layer following each convolution layer. The system outperforms 

traditional machine learning methods with its 85.5% accuracy and other feature-based 

classification techniques, showcasing the potential of deep learning in medical image 

analysis and ILD diagnosis. This approach allows for more accurate, efficient, and 

automated classification of ILD patterns. In another study [59], the authors compare 

logistic regression (LR) and artificial neural network (ANN) models in estimating breast 

cancer risk. The authors utilize a dataset containing various demographic, medical, and 

clinical factors, which are used as input features for both the LR and ANN models. The 

performance of the two models is compared in terms of predictive accuracy, calibration, 

and discrimination. The results indicate that the ANN model outperforms the LR model 

in risk estimation, suggesting that ANN models can be more effective in predicting breast 

cancer risk. Another example of a CAD prediction model has been devised with a machine 

learning-based framework for long-term Type 2 diabetes risk prediction utilizing features 

derived from the English Longitudinal Study of Ageing Database [60]. Their methodology 

involved multiple steps, including data preprocessing to handle missing values and 

normalize data, feature selection using the Correlation-based Feature Selection technique 

to identify the most informative variables, and risk prediction using several machine 

learning algorithms, such as Naïve Bayes Decision Trees, Logistic Regression and ANN. 

Additionally, the authors employed a majority voting ensemble method to combine the 

predictions of the individual classifiers, improving the overall accuracy and robustness of 

the model. The ensemble approach has led to provide Area Under the ROC Curve (AUC) 

of 0.885 classification performance. The study demonstrated the strength of machine 

learning techniques in predicting Type 2 diabetes risk with high accuracy. 

From the field of automatic mammography inspection, the paper [61] presents a 

prospective study on 12,860 patients at a community breast center to investigate the 

effectiveness of CAD methods in screening mammography. The study compared the 

performance of radiologists in detecting breast cancer with and without the assistance of 

a CAD system. The CAD system used in the study was based on the detection of 

microcalcifications and masses in mammograms using image processing techniques, such 

as Gaussian filtering, thresholding, and morphological operations. The study evaluated 

the sensitivity, specificity, and recall rates of radiologists with and without CAD. The 

results indicated a significant increase in cancer detection rates when using CAD, 

particularly in detecting small and early-stage cancers. The study indicated the potential 

of CAD systems in improving mammography inspection performance. However, in 
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another study [62], the authors examined the influence of CAD on screening 

mammography performance in a large-scale, multicenter study. The authors analyzed data 

from over 400,000 mammograms performed by expert radiologists to evaluate the 

sensitivity, specificity, positive predictive values, and recall rates before and after the 

implementation of CAD. The CAD system used in the study was designed to detect 

microcalcifications and masses in mammograms using image processing techniques and 

pattern recognition algorithms. The study revealed that the use of CAD did not 

significantly improve the overall diagnostic accuracy of mammography but increased the 

recall rate, suggesting the need for further optimization of CAD algorithms to reduce false-

positive detections and improve clinical utility. In a more recent study, Lehman et al. [63] 

investigated the diagnostic accuracy of digital screening mammography with and without 

CAD using data from the Breast Cancer Surveillance Consortium. The study included 

mammograms from over 320,000 women and compared the cancer detection rates, recall 

rates, and positive predictive values between the two approaches. The CAD system 

employed in the study was based on the detection of suspicious patterns in mammograms 

with image processing. The results again demonstrated no significant improvement in 

diagnostic accuracy with the addition of CAD. 

In the study [64], the authors proposed a Generative Adversarial Network (GAN)-based 

synthetic medical image augmentation method to improve the performance of CNN in 

liver lesion classification. The authors used GANs to generate synthetic liver lesion 

images based on real CT scan images, with the generator network learning to create 

realistic images by competing against a discriminator network that distinguishes between 

real and synthetic images. The study demonstrated that the inclusion of these synthetic 

images in the training process led to improved classification performance by 7% on real 

medical images, highlighting the potential of GAN-based augmentation in medical image 

analysis. Another study [65] presents a new an end-to-end lung cancer screening system 

using a three-dimensional deep learning model on low-dose chest CT scans. The proposed 

model, a 3D CNN, was designed to automatically detect lung nodules and classify them 

as malignant or benign. The authors used a large dataset of over 42,000 CT scans to train 

the model, with data augmentation techniques to address the class imbalance issue. In 

addition, they employed a sliding window approach and a two-stage classification process, 

which involved a candidate generation stage to identify potential nodules and a false 

positive reduction stage to refine the results. The study demonstrated that the proposed 

model detected lung cancer nodules with high sensitivity and specificity, outperforming 

radiologists in certain cases, suggesting the potential of deep learning in lung cancer 

screening and diagnostics. CNN based models are also utilized in the study [66] for the 

automatic recognition of the thyroid gland and tissues of the neck in ultrasound images. 

The framework consists of R-CNN based deep learning approach operating on 2D thyroid 

ultrasound data. The proposed method was experimented on a dataset of 17 patients, and 

the model has performed better than state-of-the-art. Another CNN model is developed in 

the study [67] for diagnosing meniscus tears using MRI. The authors presented two 

different models; one model to detect meniscal tears and another model for determining 

tear type. The model topology was based on AlexNet, and the study demonstrated the 

efficacy of the proposed CNN model in diagnosing meniscus tears with AUC score of 
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0.924. El-Dahshan et al. [68] provided a survey on computer-aided diagnosis of human 

brain tumors using MRI and proposed a new hybrid algorithm utilizing the feedback 

pulse-coupled neural networks, the discrete wavelet transform and principle component 

analysis. A feed-forward back-propagation neural network-based learner is employed to 

train a model by using 101 images of dataset. The classification performance was 99%, 

demonstrating the efficiency of the proposed hybrid method for brain tumor detection. In 

the study [69], a hybrid device is presented for thyroid nodule diagnosis. The proposed 

system integrates diffuse optics and ultrasound technologies to provide a non-invasive and 

radiation-free approach for detecting and characterizing thyroid nodules. The diffuse 

optics technique involves the use of near-infrared light to measure tissue absorption and 

scattering properties, while the ultrasound component provides high-resolution images of 

the thyroid gland and surrounding tissues. The combination of these two methods enables 

the system to obtain complementary information, enhancing the diagnostic accuracy and 

reducing unnecessary biopsies in thyroid nodule evaluation.  

2.2. Computer-aided Diagnosis in Histopathology 

Histopathology, a vital aspect of medical diagnostics, involves the microscopic 

examination of tissue samples to identify and analyze diseases, particularly cancer. 

Accurate and timely histopathological analysis is essential for determining the appropriate 

course of treatment, predicting patient outcomes, and monitoring disease progression [70]. 

However, manual analysis of histological slides can be labor-intensive, time-consuming, 

and prone to intra and inter-observer variability, which may lead to inconsistent and 

suboptimal diagnoses [71]. This highlights the importance of developing and 

incorporating advanced computational methods, such as computer-aided diagnosis 

systems, to augment and support the work of pathologists and ultimately improve patient 

care. The field of computer-aided diagnosis in histopathology has gained significant 

attention in recent years, as researchers strive to develop solid algorithms that can assist 

pathologists in the precise and efficient interpretation of histopathological images [72]. 

Machine learning and deep learning techniques have become the cornerstone of these 

developments, offering improved diagnostic accuracy, reduced subjectivity, and increased 

efficiency in the analysis of histological slides [73]. This sub-section aims to provide a 

comprehensive overview of the progress made in computer-aided diagnosis in 

histopathology, focusing on key methodologies, challenges, and future directions. 

The study [74] proposes computer-aided diagnosis system for histopathological images of 

the endometrium, utilizing a combination of a VGG-16 based CNN and attention 

mechanisms. The methodology primarily consisted of two components: convolution 

layers generating high-level features from the input images, and a spatial and channel-

wise attention mechanism that adaptively emphasized the most relevant regions and 

channels in the feature maps. The attention mechanisms enabled the model to focus on the 

most discriminative parts of the images, improving classification performance. The 

authors have compared the performance of the proposed CNN topology with the well-

known topologies such as AlexNet, VGG-16, Inception-V3 and ResNet-50. The proposed 
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method has outperformed the existing models and demonstrated 76.91% of classification 

accuracy with 4 categories of endometrial tissue types. In another study [75], the authors 

introduced a cervical histopathology dataset for computer-aided diagnosis of precancerous 

lesions, comprising 1,839 whole-slide images (WSIs) of cervical tissues with different 

grades of cervical intraepithelial neoplasia (CIN). The authors also presented a two-step 

segmentation and classification framework that used a deep learning-based encoder-

decoder architecture for segmentation of the epithelium, and a CNN for classification of 

the segmented regions into different CIN grades. The proposed method demonstrated high 

accuracy in segmenting the epithelium and classifying the CIN grades, paving the way for 

reliable and automated diagnosis of precancerous cervical lesions. 

The researchers in [76] developed a computer-aided diagnosis system for efficient breast 

cancer detection from histopathological images by combining a fully convolutional 

network (FCN) and a bidirectional long short-term memory (Bi-LSTM) model. The FCN 

was employed to extract spatial features from the input images, while the Bi-LSTM was 

utilized to capture the contextual information between different regions. The proposed 

hybrid model effectively combined the advantages of both FCN and Bi-LSTM, resulting 

in improved performance for breast cancer detection in comparison to other state-of-the-

art methods. Similarly, the authors in [77] presented a guided soft attention network 

(GuSA) for classification of breast cancer histopathology images. The GuSA integrated a 

soft attention mechanism into a CNN, allowing the model to focus on the most relevant 

regions in the input images for accurate classification. Additionally, the neural network 

training can be interpreted with the help of the activation maps generated by GuSA. Thus, 

the method is also useful to make neural network decisions transparent as the activations 

can be monitored by the human experts. Another CNN implementation is presented in the 

study [78]. The authors proposed a large-scale tissue histopathology image analysis 

framework that employed deep convolutional activation features for classification, 

segmentation, and visualization. The authors have divided the input images into 336x336 

image patches and utilized AlexNet architecture with transfer learning to train a strong 

classifier. At the final step of classification pipeline, an SVM model is employed for 

classifying the features generated by CNN. The proposed model has tested on both brain 

and colon tissue samples stained with H&E. The authors have concluded that the 

automatically generated features by CNN are more discriminative than the manually 

extracted features when feeding to the SVM classifier. The framework demonstrated 

promising results; 97.5% accuracy for classification and 84% accuracy for segmentation 

tasks. 

A weakly supervised approach for histopathology cancer image segmentation and 

classification is proposed in [79]. The authors employed a multiple clustered instance 

learning (MCIL) approach in order to streamline image-level or patch-level classification 

and segmentation tasks. The researchers effectively identify cancerous regions in whole 

slide images without requiring strong annotations, such as detailed pixel-level ground 

truth. The proposed method combines the benefits of multiple-instance learning and 

clustered learning. A similar approach proposed in the study [80]. The researchers 

presented a weakly supervised deep learning method for the classification and localization 
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of colorectal cancer in histopathology images. The authors proposed a three-stage learning 

framework that first utilized a CNN-based classifier with only global image-level labels 

to perform classification on the lower resolution image. In the second stage, a patch-wise 

classification model was trained using another CNN model, doing cancer vs non-cancer 

binary classification. Finally, the probabilities of all patch images are combined onto the 

whole spatial plane and the heatmap visualization depicting cancerous regions is 

constructed. The proposed method posed 94.6% accuracy on classification and 92% 

accuracy on colorectal cancer localization tasks. 

The study [81] introduced a comprehensive multiple instance learning (MIL) approach 

with center embeddings for histopathology classification. The proposed method utilized a 

deep learning-based MIL framework, where bag feature learning is improved by center 

loss. This approach also enabled the authors to decrease ambiguity in instance labels. The 

center loss was found out effective to reduce intra-class distances. Thus, more instance 

level predictions are achieved, effectively reducing false positives. The proposed method 

is tested on two distinct WSI datasets and the classification accuracy has reached to 

92.31%. An automated brain and breast tissue classification system using deep learning 

techniques is presented in [82]. As the main classifier, a modified version of InceptionV3 

CNN is employed. The proposed method is tested on two datasets; H&E stained brain 

tissue dataset with 3 classes and H&E stained breast tissue dataset with 2 classes. In order 

to prevent overfitting on the small datasets, the authors have implemented a dropout layer 

in CNN. The authors have reported that applying transfer learning form one tissue dataset 

(brain) to other tissue dataset (breast) boosts the classification accuracy significantly. The 

study [83] proposed deep learning models for the histopathological classification of 

gastric and colonic epithelial tumors. The authors have devised two distinct models by 

using CNNs and recurrent neural networks (RNNs) with H&E stained stomach and colon 

tissue samples. Firstly, a CNN model with a slimmer version of inception-V3 network is 

trained. Then, an RNN model is trained by using the features generated by the previous 

CNN network. The feature vectors from CNN are revealed by removing the last fully-

connected layer from the inception-V3 network. There was no clear difference of accuracy 

between CNN and RNN based classifications, and the models were able to reach up to 

0.99 AUC scores.  

The researchers in [84] explored the performance of CNNs for histopathology image 

classification by comparing the performance of training a network from scratch versus 

utilizing pre-trained networks. They employed VGG16 and Inception-V3 networks to 

perform transfer learning on a dataset of histopathology images. The authors highlighted 

the benefits of transfer learning, demonstrating that pre-trained networks significantly 

outperformed those trained from scratch. They also found that the fine-tuning of 

Inception-V3 network further enhanced classification performance whereas the fine-

tuning of VGG16 had no significant effect on the accuracy. Moreover, in the study [85], 

transfer learning was employed for automated classification of histopathology images. 

The author utilized a dataset of grayscale and color histopathological images from 24 

whole-slide tissue images, using pre-trained CNN architectures including ResNet50 and 

DenseNet-161. The results demonstrated that the ResNet50 model achieved the highest 
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classification accuracy among the tested architectures. The study revealed the 

effectiveness of transfer learning in histopathology image classification tasks and 

emphasized the importance of selecting the appropriate pre-trained CNN model. 

The authors in [86] presented a deep learning-based method for classifying H&E stained 

breast tissue images from biopsies. Utilizing the Inception-v3 CNN and images from the 

BACH challenge, the method classifies the images into four categories: normal tissue, 

benign lesion, in situ carcinoma, and invasive carcinoma. By extracting patches based on 

nuclear density and discarding non-epithelial regions, the researchers effectively focus on 

the most informative regions of the images, as visual signs of tumors are most apparent in 

epithelium. The classification of each patch with high nuclear density leads to the 

determination of the entire image's class through majority voting. This approach achieved 

an average accuracy of 85% across the four classes and 93% for non-cancer (normal or 

benign) versus malignant (in situ or invasive carcinoma). In the study [87], the authors 

investigated the use of deep learning for classification in lung cancer histopathology 

images with three classes Adenocarcinoma (LUAD) and squamous cell carcinoma 

(LUSC) and normal samples. The researchers implemented InceptionV3 network, and the 

whole-slide input images are divided into smaller patches as the pre-processing step. The 

model's performance was comparable to experienced pathologists, with an average AUC 

of 0.97, and was validated on independent datasets of frozen tissues, formalin-fixed 

paraffin-embedded tissues, and biopsies. Additionally, the network was trained to predict 

the ten most commonly mutated genes in LUAD, and successfully predicted six of them 

with AUCs ranging from 0.733 to 0.856. The model was further tested on various cohorts 

to identify its limitations, and its performance was evaluated on region-of-interest (ROI) 

selections made by a pathologist. In the paper [88], the researchers developed a method 

for the classification of colorectal tissues using ensemble deep learning methods with two 

neural network architectures; VGG16 and CapsNet. The researchers utilized adaptive 

gamma correction as a part of color enhancement stage and test data augmentation to 

improve performance and reduce uncertainty in predictions. The network 

hyperparameters were determined by applying random search. In the context of ensemble 

learning, the authors deployed 5 flows composed of different combinations of learners 

such as independent, snapshot ensemble and soft voting ensemble learning options. They 

achieved an accuracy of 93-98% for all tissue classes, including tumor, normal, and 

stroma/others.  

2.3. Hyperspectral Imaging in Medical Applications 

HSI imaging technique combines the principles of spectroscopy and imaging to obtain 

spatial and spectral information from a sample, generating a three-dimensional data cube 

that reveals a comprehensive view of the examined area [89]. The use of hyperspectral 

imaging in medical applications offers a non-invasive and non-ionizing approach for the 

visualization, diagnosis, and monitoring of various diseases and conditions. Recent 

developments in hyperspectral imaging systems and data processing techniques have 

expanded the range of potential applications in medicine, including in dermatology, 
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ophthalmology, oncology, and surgical guidance, among others [90]. Various studies have 

demonstrated the potential of HSI in detecting and characterizing tissue abnormalities, 

differentiating between healthy and diseased tissue, and monitoring treatment response 

[91]. As a result, hyperspectral imaging has emerged as a promising tool for improving 

patient care and reducing healthcare costs. The integration of machine learning and 

artificial intelligence techniques with hyperspectral imaging has further propelled the 

technology's potential in medical applications, paving the way for more efficient and 

accurate diagnostic and prognostic tools [92]. Potential benefits of hyperspectral imaging 

for medical applications include enhanced diagnostic accuracy, reduced need for invasive 

procedures, and improved patient outcomes. By providing detailed information on the 

biochemical composition of tissues, HSI can help healthcare professionals differentiate 

between healthy and diseased tissue, enabling more accurate diagnoses and targeted 

treatment plans. Furthermore, the non-invasive nature of HSI minimizes patient 

discomfort and reduces the risk of complications associated with invasive diagnostic 

procedures [93]. In addition, HSI can facilitate real-time intraoperative guidance for 

surgeons, improving surgical precision and reducing the likelihood of postoperative 

complications [94]. Overall, the use of hyperspectral imaging in medical applications has 

the potential to improve disease detection, treatment planning, and patient care. 

In the study presented in [95], HSI was applied to forensic medicine for the first time, 

aiming to demonstrate the potential of this technology in postmortem examinations. HSI 

offers potential benefits to forensic investigations by providing more detailed and accurate 

information about samples. The study highlights how HSI methods can enhance the 

analysis of physical evidence, improve the identification of trace materials, and aid in the 

detection of concealed or altered evidence. In the paper, the authors provide a comparative 

summary of existing HSI systems for applying to forensic medicine domain. Then, the 

authors in paper [96] developed a hyperspectral imaging system specifically designed for 

in vivo optical diagnostics. The system utilized an Acousto-optic Tunable Filter 

spectrometer coupled with a CCD camera for acquiring hyperspectral data in the visible 

spectral range (573-695 nm). The authors have worked on mice and chicken organ 

samples during the experimentations. The spectral signatures of various samples have 

been extracted and illustrated in order to display the potential of HSI on capturing wide 

range of spectral data. The researchers argued that HSI coupled with fiber-optic equipment 

could provide a high potential for surgery-assist applications like endoscopy in real-time. 

The researchers in [97] investigated the use of medical hyperspectral imaging to facilitate 

residual tumor identification during surgery. The authors employed a programmable 

liquid crystal tunable filter with a spectral range of 450-700 nm, and artificial breast cancer 

rat model was adapted for the experimentation. The imaging system was used to collect 

hyperspectral cubes from various tissue types including connective tissues, oxygenated 

tissues, muscle, tumor and blood. The manual classifications were verified by using 

histopathological analysis of the samples. The researchers provided the comparison of 

spectral signatures from distinct tissue types. The proposed application could be used for 

guidance to surgeons during cancer resection procedures and potentially reducing the risk 

of tumor recurrence. By using a larger wavelength interval, Wehner et al. [98] presented 

a near-infrared (NIR) digital light processing (DLP) hyperspectral imaging system 
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specifically designed for medical applications. The system used a DLP-based spectral 

engine capable of operating in the NIR range (760-1600 nm), offering improved 

penetration depth in biological tissues. The proposed system can be used to measure the 

amount of water in the sample, thus, with the help of this technology, various applications 

are possible in surgery guidance field. 

In the work presented in [99], tongue tumor detection was explored using medical 

hyperspectral images. The authors employed an AOTF imaging system with a spectral 

range of 600-1000 nm. The methodology involved the development of an automatic 

tongue tumor detection algorithm, which included preprocessing and a classification with 

dictionary based sparse representations. The proposed method does a pixel-wise 

classification, and the comparative results with SVM and Relevance Vector Machine 

RVM indicated the superiority of the method. The algorithm effectively differentiated 

between healthy tongue tissue and tumors with the accuracy of 96.5%. Another study in 

[100], the authors explored the potential of HSI as a new modality for Age-related-

macular-degeneration (AMD) disease. Without applying extra biochemicals to the 

patients, the hyperspectral system can detect stage of degeneration and oxidative status of 

proteins from retinal ganglion cells. Since the known proteins from eyes has pre-defined 

absorbance within the spectral range of 400-700 nm. The methodology involved acquiring 

hyperspectral data from various ocular tissues, including the retina, iris, and cornea, and 

analyzing the data to differentiate between healthy and pathological conditions. HSI was 

shown for the early detection of eye diseases, such as AMD. 

The work elaborated in papers [101-102] investigated the use of hyperspectral imaging 

and spectral-spatial classification for prostate cancer detection. The authors used a 

hyperspectral imaging system operating in the visible and near-infrared spectral range 

(500-950 nm). Least squares support vector machines (LS-SVMs) are employed for 

classifying hyperspectral data captured from a rat tumor model with in vivo imaging. The 

proposed tumor detection algorithm posed 92.8% sensitivity and 96.9% specificity. A 

method for gastric cancer detection using hyperspectral imaging is introduced in [103]. 

The authors used an HSI system with a spectral range of 400-800 nm and 72 spectral 

bands images. The methodology involved acquiring hyperspectral data from gastric 

mucosa during endoscopic procedures and developing an algorithm to detect gastric 

cancer based on the extracted spectral features. The proposed algorithm was based on a 

supervised method to identify ideal threshold parameters for tumor versus healthy 

discrimination and it has reached 85.6% classification accuracy. Gerstner et al. [104] 

investigated the application of hyperspectral imaging for the examination of mucosal 

surfaces in patients. The authors employed an HSI system with a spectral range of 590-

680 nm, and the sample images were collected by microlaryngoscopy. The captured 

hyperspectral cubes were analyzed with the help of PCA in order to determine spectral 

profiles of the mucosal surfaces of humans. The study demonstrated the potential of HSI 

for in vivo evaluation of mucosal surfaces and early detection of pathological conditions, 

such as lesions and inflammation. 
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Calin et al. [105] conducted a preliminary study on the characterization of burns using 

hyperspectral imaging. The authors employed an HSI system with a spectral range of 400-

1000 nm and 346 spectral bands. The methodology involved acquiring hyperspectral data 

from human skin with various degrees of burns, followed by the extraction of spectral 

signatures and the use of linear spectral unmixing to classify the burn severity. The 

endmembers are detected using PCA, then, spectral unmixing is performed to obtain 

abundance maps. The authors reports that the HSI data analysis is correlated with the 

clinical examination, and HSI is a promising tool for burn wound grading. Similarly, 

Wahabzada et al. [106] explored the use of hyperspectral imaging for monitoring wound 

healing in a 3D wound model. Unlike the traditional techniques in wound healing 

research, hyperspectral imaging is invasive and it does not require tissue biopsy. The 

methodology involved acquiring hyperspectral data from in vitro 3D wound models at 

various stages of healing and applying unsupervised clustering algorithms, such as k-

means and extreme hierarchical clustering. The study showed that HSI could effectively 

monitor the wound healing process, providing valuable insights into tissue regeneration 

and the effectiveness of various treatment strategies.  

The researchers in [107] developed a super-pixel-based spectral classification method for 

the detection of head and neck cancer using hyperspectral imaging. The methodology 

involved acquiring hyperspectral data from head and neck tissue samples from 11 female 

mice. The collected data was firstly decomposed into first two principle components by 

using PCA. Then the principle components were segmented into superpixels with the help 

of simple linear iterative clustering (SLIC) method, which is a modified version of k-

means clustering. Finally, the super-pixel regions were classified using SVM, and the 

tumor regions were identified. The super-pixel-based method aims to reduce 

computational complexity and improve the classification performance by considering the 

spatial context of the data. The super pixel approach in classification has resulted in 93% 

sensitivity and 0.85 specificity, offering a robust segmentation model. A similar super-

pixel approach is also reported in the study [108]. The hyperspectral imaging for 

monitoring neoplastic progression in a mouse model of oral carcinogenesis was 

investigated. The authors collected hyperspectral data from in vivo mouse models with 

various stages of oral cancer and using various classifiers to differentiate between healthy 

and cancerous tissues. The study experimented six different classifiers on the data 

including random forest, linear discriminate analysis, SVM, naïve bayes, k-nearest 

neightnors and decision trees, and SVM approach provided the best classification 

accuracy by 88.9%.  

Li et al. [109] proposed an automation method for red blood cell (RBC) counting using 

microscopic hyperspectral imaging technology. The authors employed a hyperspectral 

microscope covering the spectral range of 550-1000 nm. The methodology involved 

acquiring hyperspectral data from blood smears, performing image preprocessing, and 

employing morphological analysis to segment and count RBCs. The image processing 

pipeline included PCA for dimensionality reduction, a combination of k-means and 

spectral angle mapper (SAM) algorithms for segmentation tasks. Similarly, Huang et al. 

[110] developed a blood cell classification method based on hyperspectral imaging using 
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modulated Gabor features and CNN. Different from conventional CNN, the kernels were 

combined with multi-scale and orientation Gabor filters by calculating dot product of 

them. The classification performance of the proposed method compared with well-known 

methods such as SVM, VGG16 and CNN without Gabor filters. The proposed method 

outperformed all alternatives by reaching 97.65% classification accuracy. Furthermore, in 

the study [111], the researchers proposed a 3D attention network for the classification of 

white blood cells (WBC) from microscopy hyperspectral images. The authors employed 

a hyperspectral microscope covering the spectral range of 450-780 nm with a spatial 

resolution of 0.6 µm and 51 channels images. 3D convolutional neural networks-based 

model was adapted in the study in order to benefit from both spectral and spatial features 

at the same convolution operation. 3D convolutions improved the classification 

performance significantly by reaching 96.72% accuracy while traditional methods 

provided accuracy around 90%. The study highlights the value of 3D-CNN, combined 

with microscopic hyperspectral imaging as a promising tool for WBC classification. On 

the other hand, Verebes et al. presented hyperspectral enhanced dark field microscopy as 

a method for imaging blood cells [112]. The study integrated dark field microscopy with 

HSI to acquire high-resolution images of red and white blood cells, revealing their 

morphological and spectral features. The authors demonstrated that this technique could 

be used to differentiate between different types of blood cells and identify cellular 

abnormalities, suggesting its potential utility in the field of clinical diagnostics and 

hematology research. 

By using brain tissue for research, Fabelo et al. [113] presented an in-vivo hyperspectral 

human brain image database for brain cancer detection, the first of its kind. The study 

aimed to develop a surgery guidance tool that can be used in real-time. The authors 

employed a hyperspectral camera system with a spectral range of 400-1000 nm. In total, 

the publicly published dataset contained 36 hyperspectral images collected from 22 

distinct patients together with their corresponding labels. The study provided a valuable 

resource for researchers working on hyperspectral imaging-based brain cancer detection 

methods. The authors have also provided the classification results with the available 

machine learning and deep learning methods. For tumor detection task from tongue 

tissues, the researchers in [114] proposed a dual stream network in hyperspectral images. 

The dual stream network combined spatial and spectral information for improved tumor 

detection and classification. The first stream had the responsibility of classifying pixel 

signatures, and the second stream was classifying the first three principle components in 

order to embed the textural information into the final model. Although the dataset was 

very small with 7 patients, the resultant classifier was able to achieve 79.8% accuracy. In 

another research [115], liver cancer grade differentiation is investigated using multiphoton 

microscopy images. The study adapts the VGG-16 CNN topology to train a classifier on 

a dataset containing three liver cancer disease grades, yielding over 90% differentiation 

accuracy and demonstrating the efficacy of deep learning approaches with multiphoton 

fluorescence imagery. 
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2.4. Integration of Hyperspectral Imaging and Microscopy in Histopathology 

The integration of HSI and microscopy in histopathology has emerged as a promising 

approach for fostering disease diagnosis, particularly in the field of cancer detection. 

Histopathological examination of tissue samples is an essential tool for accurate cancer 

diagnosis, prognosis, and treatment planning [116]. The traditional method of 

histopathological examination involves manual inspection of stained tissue sections under 

a microscope, which is time-consuming, labor-intensive, and subjective to inter- and intra-

observer variability [117]. The development of advanced imaging techniques such as 

hyperspectral imaging, which combines spatial and spectral information, has the potential 

to improve histopathology literature by providing a more objective and accurate 

assessment of tissue samples. Hyperspectral imaging is a handy imaging technique that 

acquires a continuous spectrum of light reflected or transmitted from a sample at each 

spatial location [118]. This provides rich spatial and spectral information, allowing for a 

more detailed analysis of the tissue samples. In recent years, the integration of HSI with 

microscopy has gained attention as a powerful tool for histopathology, offering enhanced 

diagnostic capabilities and the ability to visualize subtle differences in tissue composition, 

which may be missed in conventional histopathological examination [119].  

Several studies have demonstrated the potential of hyperspectral microscopy in 

histopathology for various applications, such as cancer detection, tissue classification, and 

biomarker identification [120]. By combining the high spatial resolution of microscopy 

with the spectral information provided by HSI, researchers can gain a deeper 

understanding of the tissue samples and identify disease-specific spectral signatures. This 

has led to the development of more accurate and objective diagnostic algorithms that can 

potentially improve patient outcomes and streamline the histopathological examination 

process. The advantages of combining HSI and microscopy are numerous. One of the 

primary benefits is the enhanced diagnostic accuracy, as the rich spatial and spectral 

information provided by the integrated system allows for better differentiation between 

healthy and diseased tissue, and even between different types of diseases. This can result 

in a more accurate and timely diagnosis, ultimately improving patient care. Additionally, 

the integration of HSI and microscopy can lead to a more objective and standardized 

histopathological examination process, reducing inter- and intra-observer variability and 

minimizing the potential for human error [121]. For example, the researchers developed a 

hyperspectral imaging microscopy technique for identifying and quantifying 

fluorescently-labeled cells in highly auto-fluorescent tissue samples [122]. The authors 

utilized an AOTF hyperspectral imaging system to acquire images of tissue samples with 

multiple fluorescent labels. They then applied spectral flat-field correction and linear 

unmixing algorithms to separate the signals from different fluorophores, as well as the 

autofluorescence background. This approach allowed for the accurate identification and 

quantification of fluorescently-labeled components such as nuclei, green fluorescent 

protein, autofluorescence and background. The authors reported that hyperspectral data 

improves the detection accuracy when the tissues are highly auto-fluorescent. 
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One study [123] employs Atrous Spatial Pyramid Pooling (ASPP) blocks to extract multi-

scale texture features from H&E stained HCC histopathology images utilizing RGB data. 

By incorporating ASPP blocks after each max-pool layer, a multi-scale sample space is 

generated, enabling the effective use of texture features in images by deep neural 

networks. This approach achieved a four-category classification accuracy of 90.93% for 

HCC images. The study [124] provides an early example of integrating hyperspectral 

imaging with a light microscope, proposing a reference hardware system to capture 

hyperspectral cubes from microscopy tissue slides. The system combines an imaging 

spectrograph with an epi-fluorescence microscope and utilizes various wavelength light 

sources for sample illumination. A motorized mover is employed to move the sample slide 

during data capture, with a CCD camera capturing the reflected light and custom software 

developed for visualizing and storing hyperspectral data. Another study [125] proposes a 

hyperspectral image analysis-based approach for identifying ALK-positive and ALK-

negative tumors. Sixty-channel hyperspectral data from lung cancer tissues is captured 

using an AOTF-based hyperspectral imaging system. An SVM segmentation algorithm is 

applied to classify lung tissue images into cell nucleus, cytoplasm, and blank area. 

Segmentation accuracy is calculated using manual ground truth data provided by a lung 

cancer expert and evaluated for each class to determine a treatment prescription targeting 

ALK-positive and ALK-negative tumor variation. In a related study [126], an AOTF-

powered hyperspectral imaging system is used to gather hyperspectral data from 30 

channels of bile duct tissue samples. Deep CNNs, specifically Inception-V3 [127] and 

Restnet50 [128], are employed to develop a prediction model. A spectral interval 

convolution method is proposed to adapt hyperspectral data for deep learning 

architectures. CNN experiments are conducted using image patches as input, and a random 

forest-based approach combines image patch predictions from the same scene to provide 

scene-level predictions. The authors report tumor detection accuracies of 0.93 with 

hyperspectral data and 0.92 with RGB data. 

2.5. Convolutional Neural Networks 

CNNs have emerged as a powerful and versatile tool for various computer vision and 

image processing tasks, such as object recognition, segmentation, and classification [129]. 

The effectiveness of CNNs can be attributed to their ability to exploit the spatial structure 

and local patterns within an image, owing to their unique architectural characteristics, such 

as local connectivity, shared weights, and pooling layers [130]. While the foundational 

work of LeCun et al. [131] pioneered the today’s CNN framework, significant 

advancements in computational resources and algorithmic refinements have led to the 

development of deeper and more intricate architectures. The advancements in CNN 

models have resulted in improved performance on a wide range of applications [132]. This 

introduction sub-section aims to provide a comprehensive overview of the principles and 

evolution of CNNs, emphasizing their mathematical foundations, architectural design 

choices, and practical applications in the context of this thesis. 
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CNNs were inspired by biological processes, specifically the organization and functioning 

of the mammalian visual cortex. In the human visual system, neurons are arranged in a 

hierarchical manner, with the early stages of visual processing, such as the primary visual 

cortex (V1), being sensitive to simple features like edges and orientations, while the higher 

stages (e.g., V2, V4, and IT) respond to more complex and abstract features, such as 

shapes, textures, and objects [133]. This hierarchical feature extraction process is mirrored 

in convolutional networks through their successive layers of convolutions and nonlinear 

activations. Additionally, the concept of local receptive fields in the visual cortex, where 

neurons respond to stimuli only within a specific region of the visual field [134], has been 

incorporated into convolutional networks in the form of local connectivity. Furthermore, 

the weight-sharing mechanism employed in convolutional networks, wherein neurons 

within a convolutional layer share the same set of weights and biases, reflects the 

observation that certain neurons in the visual cortex exhibit similar response properties 

[135]. That is, convolutional networks are a simplified and abstracted representation of 

the complex processes underlying biological perception. The theory of CNNs has been 

heavily influenced by these biological insights and led to their high performance in various 

computer vision and image processing tasks. In fact, CNNs exhibit a notable advantage 

over other image classification algorithms due to their minimal reliance on pre-processing 

techniques. Traditional image classification methods often require extensive pre-

processing, including feature engineering, normalization, and dimensionality reduction, 

to achieve optimal performance. However, CNNs possess the built-in ability to learn 

optimal filters through automated training processes. This eliminates the need for manual 

feature engineering and allows the network to adaptively capture useful patterns and 

structures present in the input data. As a result, CNNs can efficiently discover and exploit 

hierarchical features that emerge from successive layers of convolutions and nonlinear 

activations.  

Over the years, several popular CNN architectures have been developed, each 

demonstrating state-of-the-art performance in various computer vision tasks. One of the 

earliest successful CNN architectures, LeNet-5, was developed by Yann LeCun and his 

team in the late 1990s. Primarily designed for handwritten digit recognition, it utilized a 

simple architecture with alternating convolutional and pooling layers, followed by fully 

connected layers [136]. In 2012, the introduction of AlexNet marked a significant 

improvement for the field. With deeper layers, ReLU activations, and dropout for 

regularization, it achieved a notable performance improvement over traditional computer 

vision methods [137]. On the other hand, VGGNet was proposed in 2014. Known for its 

deep architecture with up to 19 layers, it demonstrated the effectiveness of using small 

3x3 convolutional filters and multiple layers for better feature extraction [138]. Following 

this, researchers at Google introduced the Inception architecture, also known as 

GoogLeNet, in 2014. This novel architecture employed inception modules, which allowed 

for more efficient use of computational resources by incorporating parallel convolutional 

layers with varying filter sizes in a single module [139]. Subsequently, in 2015, the 

Residual Network (ResNet) was developed by Kaiming He and his team at Microsoft 

Research. By introducing the concept of residual connections to tackle the problem of 

vanishing gradients and training difficulties in very deep networks, they enabled the 
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training of networks with over a hundred layers [140]. In 2016, DenseNet was introduced, 

connecting each layer to every other layer in a feed-forward fashion. This design promoted 

feature reuse and reduced the number of parameters [141]. A year later, Google 

researchers developed MobileNet, designed specifically for resource-constrained 

environments such as mobile devices. It employed depth-wise separable convolutions to 

reduce the number of parameters and computational cost while maintaining competitive 

performance [142]. Finally, in 2019, EfficientNet was proposed, introducing a systematic 

approach for scaling up CNNs called compound scaling. By adjusting the depth, width, 

and resolution of the network simultaneously, it achieved state-of-the-art performance 

with fewer parameters and lower computational cost compared to other models [143]. 

These popular CNN architectures have served as a foundation for many other variations 

and have been widely used in various computer vision tasks, such as image classification, 

object detection, and semantic segmentation. 

As seen in Figure 7, a CNN model is composed of an input layer, hidden layers, and an 

output layer, each serving a distinct role in the processing and classification of input data. 

The input layer is responsible for receiving and processing raw data, such as images or 

time-series signals, and passing it to the subsequent hidden layers. Hidden layers, which 

consist of multiple convolutional, pooling, and fully connected layers, perform the 

primary computational tasks within the network. Convolutional layers are designed to 

learn hierarchical features from the input data through the application of filters or kernels. 

Pooling layers serve to down-sample and introduce invariance to minor changes in the 

data. Fully connected layers, often found near the end of the network, integrate the high-

level features learned in previous layers and map them to the final output space. Finally, 

the output layer, which usually consists of a SoftMax activation function, generates the 

network's predictions by assigning probabilities to each class or label. At the next sub-

sections, we go through the building blocks of CNN models. 

 

Figure 7: A sample CNN topology sketch. 
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2.1.1. Convolutional Layers 
 

In the convolutional layer, a collection of filters with learnable parameters is employed to 

analyze the input data. These filters have dimensions smaller than the input volume and 

are designed to create activation maps consisting of neurons. The process involves sliding 

the filter across the input's width and height, calculating dot products between the filter 

and input at every spatial location. The resulting output volume is formed by stacking 

these activation maps along the depth axis. As the filters have smaller dimensions than the 

input, neurons in the activation maps are connected only to a limited local region of the 

input volume, resulting in a small receptive field for each neuron, equivalent to the filter 

size. The convolutional layer's local connectivity enables the network to learn filters that 

optimally respond to specific input regions, thus, it leverages the input's spatial local 

correlation. Moreover, since the activation map is produced by convolving the filter with 

the input, filter parameters are shared across all local positions, reducing the number of 

parameters. As a result, it leads to efficient expression, learning, and improved 

generalization capabilities. 

A. 2D Convolutions 

2D convolution takes place at the convolutional layers to derive features from local 

regions on feature maps from the preceding layer. Following this, an additive bias is 

incorporated, and the output is processed through a sigmoid function. In a formal manner, 

2D convolution operator is defined in Equation 1 as follows; 

𝑣𝑖𝑗
𝑥𝑦

= 𝑓 (𝑏𝑖𝑗 + ∑ ∑ ∑ 𝑤𝑖𝑗𝑚
𝑝𝑞

𝑣(𝑖−1)𝑚
(𝑥+𝑝)(𝑦+𝑞)

𝑄𝑖−1

𝑞=0

𝑃𝑖−1

𝑝=0𝑚

) (1) 

 

where 𝑣𝑖𝑗
𝑥𝑦

 refers to the value at position (𝑥, 𝑦) in the 𝑗𝑡ℎfeature map of the 𝑖𝑡ℎ layer. The 

index value 𝑚 denotes the input feature maps from the (𝑖 − 1)𝑡ℎlayer that are connected 

to the current feature map, 𝑃𝑖  and 𝑄𝑖  represent the height and width of the kernel, 

respectively. The kernel value at position 𝑝𝑞 for the 𝑚𝑡ℎ feature map in the previous layer 

is denoted by 𝑤𝑖𝑗𝑚
𝑝𝑞

, and b represents the bias. The activation function is represented by 

𝑓(. ). By stacking multiple layers of convolution and pooling layers together, custom CNN 

topologies can be built. The kernel weights and biases are learnt during the supervised 

training stage. 

B. 3D Convolutions 

In this study, we utilized the 3D convolution operation proposed in a previous study [144]. 
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𝑣𝑖𝑗
𝑥𝑦𝑧

= 𝑓 (𝑏𝑖𝑗 + ∑ ∑ ∑ ∑ 𝑤𝑖𝑗𝑚
𝑝𝑞𝑟

𝑣(𝑖−1)𝑚
(𝑥+𝑝)(𝑦+𝑞)(𝑧+𝑟)

𝑅𝑖−1

𝑟=0

𝑄𝑖−1

𝑞=0

𝑃𝑖−1

𝑝=0𝑚

) (2) 

 

The mathematical formulation of 3D kernels can be expressed using Equation 2, where 

𝑣𝑖𝑗
𝑥𝑦𝑧

 refers to the value at position (𝑥, 𝑦, 𝑧) in the 𝑗𝑡ℎfeature map of the 𝑖𝑡ℎ  layer. The 

index value 𝑚 denotes the input feature maps from the (𝑖 − 1)𝑡ℎlayer that are connected 

to the current feature map, and 𝑃𝑖, 𝑄𝑖, and 𝑅𝑖 represent the height, width, and depth of the 

kernel, respectively. The kernel value at position 𝑝𝑞𝑟 for the 𝑚𝑡ℎ  feature map in the 

previous layer is denoted by 𝑤𝑖𝑗𝑚
𝑝𝑞𝑟

, and b represents the bias. The activation function is 

represented by 𝑓(. ). 

The key distinction between traditional 2D-CNN and 3D-CNN lies in the convolution 

operation performed on the convolution layers. In 2D-CNN classifiers, the kernel slides 

along two dimensions (x and y) on the data, while in 3D-CNN classifiers, the kernel slides 

along three dimensions (x, y, and z) on the data. The use of 3D-shaped kernels in 

convolutions enables the description of features in both spatial and spectral directions. 

This allows the final classification model to embed spectral information, in addition to 

spatial features such as texture and shape attributes. 

2.1.2. Pooling Layers 
 

Pooling layers are used to reduce the spatial dimensions of the feature maps, thereby 

reducing the computational complexity of the network. Pooling layers are typically placed 

between successive convolutional layers in a CNN architecture. There are two common 

types of pooling operations: max pooling and average pooling. Max pooling calculates the 

maximum value within a specified region of the input feature map, whereas average 

pooling computes the average value within the same region. The regions are determined 

by the pooling layer's window size and stride, which define the dimensions of the pooling 

operation and the step size by which the window is moved across the input feature map, 

respectively. 

Max pooling operation can be formulated seen in Equation 3, as follows; 

𝑦𝑘𝑖𝑗 = 𝑚𝑎𝑥(𝑝,𝑞)∈𝑅𝑖𝑗
(𝑥𝑘𝑝𝑞) (3) 

where 𝑦𝑘𝑖𝑗  is the output value related to 𝑘𝑡ℎ  feature map, 𝑥𝑘𝑝𝑞  is the input value at 

coordinate (𝑝, 𝑞) , which is located inside pooling window 𝑅𝑖𝑗  representing local 

neighborhood around the coordinates  (𝑖, 𝑗). Similarly, average pooling can be defined as 

seen in Equation 4.  
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𝑦𝑘𝑖𝑗 =
1

|𝑅𝑖𝑗|
 ∑ 𝑥𝑘𝑝𝑞

(𝑝,𝑞)∈𝑅𝑖𝑗

 (4) 

 

where the term, |𝑅𝑖𝑗|, represents the size of the pooling region 𝑅𝑖𝑗. 

2.1.3. Fully Connected Layers 
 

Fully connected layers, also referred to as dense layers, act as the final phase of a CNN. 

While the convolutional and pooling layers are employed for extracting features and 

reducing spatial dimensions, the fully connected layers function as the network's final 

stage. These layers merge the high-level features obtained from preceding layers and 

execute classification or regression tasks. Within a fully connected layer, every neuron is 

connected to all neurons in the layer before it, enabling the integration of information from 

all input neurons. Figure 8 illustrates the connections between input and output neurons 

in case of fully connected layers. This extensive connectivity allows the layer to learn 

intricate patterns and relationships among the high-level features derived from the 

convolutional and pooling layers. In the majority of CNN architectures, one or more fully 

connected layers are positioned after the last convolutional or pooling layer, succeeded by 

an output layer that aligns with the number of classes or target values specific to the 

problem domain. 

 

Figure 8: Sketch showing fully connected neuron (Y) interacting with input neurons (𝑋𝑖). 

Formally, the fully connected layers can be formulated as depicted in Equation 5.  

𝑦𝑗(𝑥) = 𝑓 (∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑗0

𝑛

𝑖=1

) (5) 

where 𝑦𝑖 is the output value for the given input neurons, 𝑥. 𝑖 is the index of input neuron, 

𝑗 is the index of the current fully connected neuron.  

2.1.4. Activation Functions 
 

Activation functions serve as crucial elements in the structure and operation of 

Convolutional Neural Networks (CNNs), along with other neural network variants. Their 

main objective is to incorporate non-linearity within the network, enabling it to learn and 
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represent intricate, non-linear associations between input features and corresponding 

outputs. These functions are utilized on the outputs of neurons across different layers in 

the network, encompassing convolutional, pooling, and fully connected layers. The 

introduction of non-linearity through activation functions allows the network to capture 

complex patterns and adapt to a wide range of problem domains. Without non-linear 

activation functions, the network would essentially become a linear function, limiting its 

capacity to model complex data and relationships. By applying activation functions to the 

outputs of neurons, the network gains the ability to learn hierarchical representations and 

generalize well to unseen data. 

Among the commonly employed activation functions, the sigmoid function, as formulated 

at Equation 6, is a continuous and differentiable mapping from input values to the range 

of 0 to 1, which has been widely used in early neural network models [145]. Nonetheless, 

the vanishing gradient problem, characterized by diminishing gradient magnitudes during 

backpropagation, can impede learning in deep networks utilizing sigmoid activation 

[146]. The hyperbolic tangent (tanh) function, as formulated at Equation 7, which maps 

input values to a range between -1 and 1, shares similar characteristics with the sigmoid 

function but also encounters the vanishing gradient issue [147]. The Rectified Linear Unit 

(ReLU) activation, as formulated at Equation 8, has gained prominence due to its 

computational efficiency, simplicity, and effectiveness in mitigating the vanishing 

gradient problem [148]. In multi-class classification problems, the softmax function, as 

formulated at Equation 9, is typically employed in the output layer, normalizing output 

values into a probability distribution [149]. 

Sigmoid 
𝑓(𝑥) =

1

1 + 𝑒−𝑥
 (6) 

Tanh 
𝑓(𝑥) =

e𝑥 −  e−𝑥

e𝑥 +  e−𝑥
 (7) 

ReLU 𝑓(𝑥) = max (0, 𝑥) (8) 

SoftMax 
𝑓(𝑥𝑖) =

𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝐾
𝑗=1

 (9) 

 

2.1.5. Cost Functions 
 

Cost functions, often referred to as loss functions or objective functions, are essential 

components in the optimization of CNNs and other machine learning algorithms [130]. 

They quantify the discrepancy between the predicted outputs and the actual target values, 

serving as an indicator of the model's performance. The primary goal during training is to 

minimize the loss function by updating the model's parameters, thereby enhancing the 

network's capacity to generalize and make precise predictions for unseen data [150]. In 

CNNs, the choice of loss functions depends on the specific task and problem domain. For 
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classification tasks, cross-entropy loss is among the most frequently employed loss 

functions [151]. Cross-entropy loss, as formulated in Equation 10, sometimes referred to 

as log loss, evaluates the divergence between the predicted probability distribution and 

the true distribution of class labels. This loss function is particularly well-suited for multi-

class classification problems because it promotes high probabilities for the correct class 

labels and low probabilities for incorrect labels. The utilization of cross-entropy loss in 

CNNs encourages the model to accurately differentiate between various classes while 

maintaining a high degree of confidence in its predictions. Nevertheless, the commonly 

used cross entropy (CE) function is not as effective in handling imbalanced datasets. 

𝐶𝐸(𝑝𝑡) = − log(𝑝𝑡) (10) 

 

where 𝑝𝑡 is given by 

𝑝𝑡 =  {
𝑝         𝑦 = 1 

1 − 𝑝        𝑦 = −1
 (11) 

 

where 𝑦 ∈ {−1,1}  is the ground truth class and 𝑝 ∈ [0,1]  is the classifier’s output 

probability value for the class 𝑦 = 1. 

When the class imbalance is extreme, the cross-entropy-based models can assign too much 

weight to the well-classified examples, which can cause the minority class to be neglected. 

To address this issue, the balanced cross-entropy (BCE) function, as shown in Equation 

12, is often used to handle class imbalance in traditional CE functions. 

𝐶𝐸(𝑝𝑡) = −𝑎𝑡 log(𝑝𝑡) (12) 

where 𝑎𝑡 is a weighting factor hyperparameter and defined as; 

𝑎𝑡 =  {
𝑎         𝑖𝑓 𝑦 = 1 

1 − 𝑎        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (13) 

where 𝑎 ∈ [0,1]. The imbalanced nature of our dataset can cause the loss contribution of 

well-classified examples to dominate the minority class in cross-entropy-based models, 

particularly in cases of extreme class imbalance. Although the balanced cross entropy 

(BCE) function can help address this issue, it cannot balance the loss between easy and 

hard examples. Fortunately, focal loss, as formulated in Equation 14, is derived from the 

cross-entropy loss function by introducing a modulating factor −𝑎(1 − 𝑝𝑡)𝛾.  

𝐹𝐿(𝑝𝑡) = −𝑎(1 − 𝑝𝑡)𝛾  log (𝑝𝑡) (14) 

 

where 𝛾 ≥ 0  is the focusing parameter. The parameter 𝑎  serves the purpose of 

emphasizing the training on the minority class instead of treating all classes equally 



35 

 

important. On the other hand, the parameter 𝛾 is known as the focusing parameter that 

prioritizes the samples resulting in large errors, also known as hard examples [47]. 

2.1.6. Batch Normalization 
 

Batch normalization is a technique introduced in 2015 to address the internal covariate 

shift problem and improve the training of CNNs and other deep learning models [152]. 

Internal covariate shift refers to the change in the distribution of inputs to a layer during 

training, resulting from the continuous updating of weights and biases in preceding layers. 

This shift can lead to slower convergence, as the learning process must constantly adapt 

to the changing input distributions, and may also contribute to overfitting. Batch 

normalization aims to reduce the internal covariate shift by normalizing the inputs to each 

layer, ensuring that they have a consistent mean and variance during the training process. 

As shown in Algoritm-1, the technique operates by normalizing the input activations for 

each mini-batch, scaling and shifting them to have a mean of zero and a variance of one. 

After normalization, learnable parameters (gamma and beta) are introduced, allowing the 

network to adjust the normalized values to the desired mean and variance, which is crucial 

for the model to learn more complex relationships. 

Input: Values of x over a mini-batch: 𝛽 =  {𝑥1…..𝑚} 

Parameters to be learned: 𝛽, 𝛾 

Fixed parameter: ∈ is used to avoid division by zero error. 

Output: {𝑦𝑖 =  𝐵𝑁𝛽,𝛾(𝑥𝑖)} 

𝜇𝛽  ←  
1

𝑚
∑ 𝑥𝑖

𝑚
𝑖=1                                                                               //mini-batch mean 

𝜎𝛽
2  ←  

1

𝑚
∑ (𝑥𝑖 − 𝜇𝛽)

2𝑚
𝑖=1                                                                     //mini-batch variance 

𝑥𝑖  ̂ ←  
𝑥𝑖 − 𝜇𝛽

√𝜎𝛽
2+ ∈

                                                                                    //normalize 

𝑦 𝑖 ←  𝛾𝑥𝑖  ̂ + 𝛽                                                                                 //scale and shift 

Algorithm-1: Batch Normalization Transform. 

Incorporating batch normalization into CNNs offers several benefits. First, it accelerates 

the training process by allowing the use of higher learning rates without the risk of 

divergence or instability. This is because the normalization process reduces the 

dependence of gradients on the parameter scale, making the network more robust to large 

parameter updates [153]. Second, batch normalization acts as a form of regularization. 

This effect is achieved as the normalization process introduces noise into the model due 

to its mini-batch processing algorithm. This makes the model less sensitive to small noise 
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in input data [154]. Finally, batch normalization has been shown to improve generalization 

performance, leading to state-of-the-art results on various computer vision tasks [155]. 

2.1.7. Dropout 
 

Dropout is a regularization technique widely used in CNNs to prevent overfitting and 

improve generalization capabilities. It was first introduced by Srivastava et al. in their 

paper [156]. As depicted in Figure 9, the main idea behind dropout is to randomly 

deactivate, or "drop," a proportion of neurons in the network during training, which forces 

the model to learn redundant representations of the input data. In CNNs, dropout is 

typically applied after fully connected layers or after pooling layers, depending on the 

architecture. During the training phase, dropout randomly selects a predefined fraction of 

neurons and sets their activations to zero. This process effectively simulates the presence 

of multiple subnetworks that are trained in parallel, each sharing a portion of the overall 

network's weights. As a result, this ensemble of networks can yield more robust 

predictions, making the model less reliant on individual neurons and less prone to 

overfitting [157].  

  

(a) (b) 

Figure 9: (a) Standard Neural Net (b) the network after applying dropout 
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CHAPTER 3TER 

 

METHODOLOGY 

3.1. Data Acquisition 

In this research, we developed a system for capturing hyperspectral microscopy images in 

our laboratory by integrating a Headwall A-series VNIR model push-broom hyperspectral 

camera and a Euromex Oxion light microscope. An illustration of our system is available 

at Figure 10. A real-world photo of our data acquisition system is presented in Figure 11.  

 

Figure 10: Illustration of our data acquisition system. 
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Figure 11: Data Acquisition system. (A) Light microscope; (B) VNIR Camera; (C) Motorized Stepper; 

(D) Light Source. 

Light microscopes, also known as optical microscopes, function based on the principle of 

manipulating light to magnify and resolve minute objects utilizing a system of lenses 

[158]. Basic components of a light microscope are illustrated in Figure 12. The image 

formation process in a light microscope can be studied in two primary categories; 

magnification and resolution. Magnification involves enlarging the specimen's 

appearance, which is achieved by the combination of the objective lens, situated near the 

specimen, and the eyepiece (ocular lens), through which the user observes the magnified 

image [159]. The total magnification is the product of the magnification factors of the 

objective lens and the eyepiece. Resolution, on the other hand, is the capacity of the 

microscope to distinguish two closely spaced points as separate entities [160]. In light 

microscopes, the resolution is determined by the wavelength (λ) of the light employed and 

the numerical aperture (NA) of the objective lens. The numerical aperture is a number that 

depends on the refractive index (n) of the medium between the specimen and the objective 
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lens, and the half-angle of the maximum cone of light (α) that can enter the lens. 

Mathematically, numerical aperture can be formatted as Equation 15. 

𝑁𝐴 = 𝑛 sin 𝜃 
(15) 

Whereas the limit of resolution (d) can be calculated using the Abbe's diffraction limit 

formula as Equation 16. 

𝑑 =
𝜆

2𝑁𝐴
 (16) 

 

 

The performance and functionality of a light microscope are contingent upon various 

components working in harmony. These include the eyepiece for image observation, 

objective lenses with different magnification powers (e.g., 4x, 10x, 40x, 100x), the stage 

for holding the specimen, and the light source for illumination (e.g., LED, halogen lamp, 

or mirror). The condenser, situated below the stage, collects and concentrates light onto 

the specimen, while the diaphragm controls the light intensity by adjusting its aperture. 

The coarse and fine focus knobs enable users to adjust the specimen's focus by moving 

the stage or the objective lens assembly vertically.  

 

 

 

 

(A) (B) 
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Figure 12: Components of a light microscope. (A) Microscopy device with components (B) Internal 

optical structure of a light microscope 

Our primary aim of integrating hyperspectral camera with light microscope is to establish 

a robust and versatile imaging system that benefit from the advantages of both 

technologies. By fusing the high-resolution imaging capabilities of light microscopes with 

the comprehensive spectral data procured from hyperspectral cameras, we can attain an 

in-depth understanding of the specimens. High-resolution imaging facilitated by light 

microscopes enables the visualization of intricate details and structures in specimens, 

which is crucial for precise histopathology tasks. Nonetheless, conventional microscopy 

techniques frequently exhibit limitations in delivering extensive chemical or material 

information pertaining to the sample. This is the context in which hyperspectral cameras 

become functional. Hyperspectral cameras capture images over an extensive range of 

wavelengths, yielding a continuous spectrum for each pixel within the image. This spectral 

information empowers our classification models to identify materials, chemical 

compounds.  

We configured the objective lens of the light microscope to view samples with 40× 

magnification, and the hyperspectral camera can capture 408 spectral bands between 400 

nm to 1000 nm. To achieve optimum image quality, we calibrated and verified our 

imaging setup by using a microscope stage calibration slide. The spatial resolution of our 

imaging system is calculated as 0.55 microns, and we measured a liver cell nucleus around 

12–18 pixels in diameter and 6.6 to 9.9 microns, which correlates with clinical 

measurements of human liver cell size [161].  

Along with hyperspectral images, the camera simultaneously captures RGB images of the 

same scene. To obtain data with the proper geometry from our hyperspectral camera, we 

designed a motorized moving table hardware solution that gradually moves tissue samples 

while the camera is in capture mode. We controlled the motor speed using a small Arduino 

device optimized to capture tissue sample images with the highest resolution along the 

track direction. The tissue samples are illuminated from the bottom by a 3200K 150 W 

halogen light source, and all images are captured in a dark room without other light 

sources. For radiometric calibration, we collected white references from an empty glass 

slide illuminated by the halogen lamp and dark references by blinding the camera sensor 

with its lens cap. An example of captured data from healthy and unhealthy classes and 

corresponding tissue components, including cell and background, is presented in Figure 

13. The spectra sketches in Figure 13 are obtained by averaging the selected regions' area 

from the sample image captured with 40× lens magnification. We observed that normal 

and tumor cell samples transmit different spectral signatures for their respective 

components. 
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(a) (b) 

 

 
(c) 

Figure 13: Hyperspectral tissue samples dataset. (a) Tumor (hepatocellular carcinoma, HCC) tissue sample, 

tumor cells (red), tumor background tissue (yellow); (b) Normal (Healthy) tissue sample, normal cells 

(green), normal background tissue (blue); (c) Spectra comparison plotting of the given components. 

Upon examining the tissue spectra depicted in Figure 13, it becomes evident that there are 

two distinct dips around the 540 nm and 650 nm wavelengths. A well-known characteristic 

dip of eosin in H&E staining is situated around the 540 nm wavelength [162-163]. This 
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particular finding is consistent with previous research studies that have investigated 

hyperspectral data of liver tissue samples [164-165]. 

3.2. Classification 

Hyperspectral imaging has great potential for classification tasks by fusing spectral and 

spatial data into machine learning models. However, these models may overfit the training 

data due to the high dimensionality of the dataset, particularly in small datasets. This issue 

is especially relevant for complex classifiers like CNN, which may learn random noise 

instead of meaningful relationships between classes [166]. Additionally, manual feature 

engineering can limit a model's generalization capability by restricting the feature space. 

In contrast, deep learning models can automatically find useful features and identify 

nonlinear relationships between features. Therefore, our study aims to develop a fully 

automatic classification model with high generalization capability to address the HCC 

detection problem. 

In machine learning and statistics, the bias-variance tradeoff is a fundamental concept, 

elucidating the intricate relationship between a model's complexity and its ability to 

generalize to unseen data [167]. Grasping this tradeoff is vital for selecting suitable 

models, avoiding overfitting or underfitting issues, and achieving optimal model 

performance. Bias and variance are two components of a classifier’s expected prediction 

error that help to explain the tradeoff between fitting the training data (low bias) and 

generalizing to new data (low variance). Bias quantifies the systematic deviation 

introduced by a model's assumptions. In other words, bias represents the discrepancy 

between the model's expected predictions and the true underlying relationship within the 

data. Whereas variance implies a model's sensitivity to minor fluctuations in the training 

data, illustrating the inconsistency of the model's predictions across disparate training sets. 

The bias-variance tradeoff arises from the observation that models with low bias typically 

exhibit high variance, and vice versa [168]. Consequently, there exists an implicit tradeoff 

between a model's capacity to fit the training data (low bias) and its capacity to generalize 

to unseen data (low variance). Finding a balance between these two conflicting objectives 

is crucial for optimizing model performance. In the case of high bias and low variance, 

trained models make strong assumptions about the data, potentially oversimplifying the 

underlying relationship. This can lead to underfitting, where the model fails to capture the 

true structure within the data. High-bias models generally exhibit low variance, as their 

predictions are relatively consistent across diverse training sets. However, in the case of 

low bias and high variance, trained models possess greater complexity, enabling them to 

fit the training data more closely. This can result in overfitting, wherein the model captures 

the noise in the training data instead of the true underlying relationship. Overfit models 

often have high variance, as their predictions can be highly sensitive to minor noise in the 

training data. The performance of a model can be measured using its expected prediction 

error (EPE), which can be decomposed into three components: bias, variance, and 
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irreducible error. The irreducible error represents the noise inherent in the data, which 

cannot be reduced by any model. 

The decomposition of EPE is inferred in the study [169]. Let the training set contains 

points, 𝑥1, 𝑥2, … , 𝑥𝑛, and label values 𝑦𝑖 assigned to each 𝑥𝑖 

𝑦 = 𝑓(𝑥) + 𝜀 (17) 

Where the noise, 𝜀, has zero mean and variance 𝜎2 

We seek for a function 𝑓(𝑥; 𝐷), approximating the true function 𝑓(𝑥) on the training 

dataset 𝐷 = {(𝑥1, 𝑦1) … , (𝑥𝑛, 𝑦𝑛)}. Assuming the loss is measured with mean squared 

error, the objective is to minimize the term, ( 𝑦 − 𝑓(𝑥; 𝐷))2. The expected error for our 

classification, EPE, can be formulated as follows: 

𝐸𝐷,𝜀[( 𝑦 − 𝑓(𝑥; 𝐷))2] = (𝐵𝑖𝑎𝑠𝐷[𝑓(𝑥; 𝐷)])2 + 𝑉𝑎𝑟𝐷[𝑓(𝑥; 𝐷)] + 𝜎2 (18) 

where 

𝐵𝑖𝑎𝑠𝐷[𝑓(𝑥; 𝐷)] = 𝐸𝐷[𝑓(𝑥; 𝐷)] − 𝐸[𝑦(𝑥)] (19) 

and 

𝑉𝑎𝑟𝐷[𝑓(𝑥; 𝐷)] = 𝐸𝐷[(𝐸𝐷[𝑓(𝑥; 𝐷)] − 𝑓(𝑥; 𝐷))2] (20) 

 

Informally, the expected prediction error (EPE) can be written as: 

EPE = 𝐵𝑖𝑎𝑠2 + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝐼𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝐸𝑟𝑟𝑜𝑟 (21) 

Achieving both low bias and low variance in classification models is an ideal target for 

machine learning applications. These models aim to accurately capture the underlying 

relationships within the data while still maintaining their ability to generalize to unseen 

data. Given the significance of the bias-variance tradeoff, multiple classification models 

with varying levels of complexity and flexibility needs to be experimented. By comparing 

the performance of these models, the optimal balance between bias and variance for our 

specific dataset and problem domain can be found.  

Contrary to the traditional understanding of the bias-variance tradeoff, recent studies have 

shown that overparameterized deep learning models can achieve better generalization 

performance than simpler models with low variance [170]. This phenomenon, known as 

double descent, challenges the conventional rule of thumb that more complex models are 

prone to overfitting. It suggests that the overparameterized neural networks can 

outperform simpler models in most scenarios. 
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Figure 14: Curves depicting training risk (dotted line) and test risk (continuous line). (A) The traditional 

U-shaped risk curve resulting from the bias-variance tradeoff. (B) The double descent risk curve, 

containing the U-shaped risk and the observed behavior from employing high-capacity function classes. 

As illustrated in Figure 14, the double descent curve is characterized by three distinct 

regions: the underparameterized, the interpolating, and the overparameterized regions. In 

the underparameterized region, models exhibit high bias and low variance, leading to 

underfitting. As model complexity increases, the interpolation threshold is reached, and 

the models begin to fit the training data perfectly. This point marks the transition to the 

interpolating region, where models exhibit low bias but increasing variance, which may 

result in overfitting. Unexpectedly, as model complexity continues to increase, entering 

the overparameterized region, the test error starts to decrease again. In this region, models 

have many parameters that allow them to capture complex relationships within the data. 

The decrease in test error suggests that these overparameterized models can generalize 

better than simpler models, contrary to the traditional understanding of the bias-variance 

tradeoff. A more recent study in [171] elaborates the implications of double descent issue 

on CNN models. According to the experimental results, effective model complexity 

(EMC) can be formulated as follows; 

EMC𝐷,𝜖(𝒯) ≔ max { 𝑛 | 𝐸𝑆∼𝐷𝑛[𝐸𝑟𝑟𝑜𝑟𝑆(𝒯(𝑆))] ≤ 𝜖} (22) 
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where 𝐸𝑟𝑟𝑜𝑟𝑆(𝑀)  is the mean error of model M for the given train samples S, 𝒯 

represents the network training procedure applied on the distribution 𝐷, 𝜖 is a parameter 

greater than zero. The theorem also states that there is a threshold value called 

interpolation threshold such that EMC𝐷,𝜖(𝒯) = 𝑛, where 𝑛 is the size of dataset.  

The double descent phenomenon remains an active research topic, and its underlying 

mechanisms are not yet fully understood. Nonetheless, the lottery ticket hypothesis [172] 

seems as one possible explanation for the functioning of this phenomenon. The lottery 

ticket hypothesis suggests that large neural networks contain small, sparse subnetworks 

that, when trained in isolation, can achieve similar performance to the original network 

with a fraction of the parameters. These small subnetworks are referred to as "winning 

tickets." The hypothesis argues that the success of large neural networks can be attributed 

to the presence of these winning tickets. Connecting the double descent phenomenon to 

the lottery ticket hypothesis, we can infer that the improved generalization performance 

observed in overparameterized models might be due to the existence of these winning 

tickets. In other words, the larger models contain subnetworks that can effectively learn 

the underlying patterns in the data without overfitting, which contributes to their better 

generalization capabilities. 

The double descent phenomenon has significant implications for model selection and 

training in modern machine learning. First, it suggests that the overparameterized models 

offer better generalization performance. However, it is essential to carefully monitor the 

model's performance on validation dataset to ensure that it does not overfit. Second, the 

double descent phenomenon highlights the importance of properly regularizing 

overparameterized models. Regularization techniques, such as dropout, can help to control 

the model's capacity. Then, regularization can mitigate the risk of overfitting while still 

allowing the model to capture complex relationships within the data [173]. 

In this study, we utilized a CNN-based learner with 3D convolutions to fully utilize 

automatic feature learning in deep learning. 3D-CNN models have been extensively 

employed in various fields such as 3D object recognition [174], video action recognition 

[175], and medical image recognition [176]. 3D-CNN learners effectively utilize the 

spatial-spectral data and demonstrate high generalization performance for hyperspectral 

data. Therefore, we utilized a 3D-CNN learner to extract both spectral signature 

information encoded within a 3D hyperspectral cube and textural information available 

on the spatial plane. The activation function utilized in this study is the non-saturating 

ReLU function, which was suggested in a previous study [177]. ReLU introduces non-

linearity into the neural network, which enables the learning of complex and non-linear 

relationships between inputs and outputs. This non-linearity is crucial for the expressive 

power and generalization capabilities of deep learning models. Furthermore, ReLU 

promotes sparse activation of neurons by outputting zero for negative input values. This 

sparsity in activation fosters more effective internal representations, diminishing the 

likelihood of overfitting and enhancing model interpretability. ReLU also addresses the 

vanishing gradient problem, which can cut off the learning process when gradients 

become excessively small. By having a derivative that is either zero or one, depending on 
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the input value, ReLU accelerates the convergence of gradient-based optimization 

algorithms. Due to its simplicity and non-linear properties, ReLU is particularly well-

suited for deep neural networks with multiple layers, thus contributing to the scalability 

of deep learning models. 

We have adapted the 3D-CNN topology suggested in the study [144] for our classification 

task. The details of our 3D-CNN topology are presented in Table 1 and illustrated in 

Figure 15. The network incorporates max-pooling layers between consecutive 

convolution layers to reduce the model's complexity and the number of parameters [178]. 

Additionally, a batch normalization layer follows each max-pooling layer to minimize 

internal covariate shift, which accelerates the training process by normalizing the mean to 

zero and standard deviation to one. Therefore, the optimizer algorithm can use a higher 

learning rate. Instead of a conventional fully connected layer, a global average pooling 

layer is used to generate feature maps into a 2D structure before feeding to the final dense 

layer. As highlighted in [179], this layer is immune to overfitting since it has no parameters 

to optimize, and it is insensitive to spatial translations in the input since it involves spatial 

averaging. Thus, the proposed model can address overfitting related to texture features in 

the training set and minimize the noise impact caused by the stepper motor's small 

vibrations.  
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Table 1: 3D-CNN Topology with parameters. 
 

Layer Parameters Output Size 

Input 
 

100 × 100 × 270 

Convolution3D 
Kernel Size: 3 × 3 × 3 

Number of filters: 4 

Activation: ReLU 

Padding: same 

100 × 100 × 270 × 4 

Max-pooling3D 
Pool Size: 3 × 3 × 3 

Strides: 2 × 2 × 2 

Padding: same 

50 × 50 × 135 × 4 

BatchNormalization 
 

50 × 50 × 135 × 4 

Convolution3D 
Kernel Size: 3 × 3 × 3 

Number of filters: 8 

Activation: ReLU 

Padding: same 

50 × 50 × 135 × 8 

Max-pooling3D 
Pool Size: 3 × 3 × 3 

Strides: 2 × 2 × 2 

Padding: same 

25 × 25 × 68 × 8 

BatchNormalization 
 

25 × 25 × 68 × 8 

Convolution3D 
Kernel Size: 3 × 3 × 3 

Number of filters: 16 

Activation: ReLU 

Padding: same 

25 × 25 × 68 × 16 

Max-pooling3D 
Pool Size: 3 × 3 × 3 

Strides: 2 × 2 × 2 

Padding: same 

13 × 13 × 34 × 16 

BatchNormalization 
 

13 × 13 × 34 × 16 

Convolution3D 
Kernel Size: 3 × 3 × 3 

Number of filters: 32 

Activation: ReLU 

Padding: same 

13 × 13 × 34 × 32 

Max-pooling3D 
Pool Size: 3 × 3 × 3 

Strides: 2 × 2 × 2 

Padding: same 

7 × 7 × 17 × 32 

BatchNormalization 
 

7 × 7 × 17 × 32 

GlobalAveragePooling3D 
 

32 

Dense Units: 512 

Activation: ReLU 

512 

Dropout 
Drop rate: 0.1 

512 

Dense (Classification) 
Units: 1 

1 
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Figure 15: 3D-CNN topology sketch. 

To train our CNN model, we followed the recommended practice of using a 3 × 3 × 3 

kernel size [154]. We have started with 4 filters at the first convolution layer, then doubled 

the number at each successive convolution layer, up to 32 filters. Doubling the number of 

filters in this way helps to capture increasingly complex and abstract features in the 

hierarchical structure of the network as it progresses through the layers [127]. In the early 

layers of a CNN, the filters are responsible for detecting simple and low-level features 

such as edges and textures. As the network progresses through the layers, the receptive 

field of the neurons increases, and they become capable of detecting more complex and 

high-level patterns in the input data. By increasing the number of filters, the model is 

given the capacity to learn a greater variety of higher-level features. Additionally, 

doubling the number of kernels helps to balance the reduction in spatial dimensions caused 

by pooling layers. When pooling layers reduce the spatial dimensions of the feature maps, 

the number of feature maps is increased to preserve the representational power of the 

network.  

We utilized the Adam optimizer for training, which has been shown to be effective in deep 

learning models [180], with default parameters (𝛽1 =  0.9 and 𝛽2 = 0.999) and a learning 

rate of 0.001. During training, we used a batch size of 128 and trained the models for 100 

epochs, while also applying a dropout rate of 10% to regulate the training. As with many 

medical studies, our dataset is imbalanced due to a small number of healthy samples 

compared to tumor samples [181]. This imbalance can lead to CNN classifiers being 

biased towards the majority class and generating false positives, which is not ideal for 

medical applications. To address this issue, we have used the focal loss function, which is 

specifically designed to handle class imbalance in datasets. In our dataset, the presence of 

a significant class imbalance means that easy positives may dominate the training process, 

resulting in excessive focus on these examples. To address this issue, we have employed 

the focal loss function, which can down-weight the loss contribution of easy examples and 

increase the loss contribution of hard examples. 
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CHAPTER 4TER 

 

EXPERIMENTS 

 

4.1.Dataset 

The liver tissue array used in this study was obtained from Biomax LV962 

(TissueArray.Com LLC, Derwood, MD, USA), which is a commercially available H&E-

stained liver tissue slide. The tissue microarray included a range of healthy and unhealthy 

cases, including 3 normal liver tissues, 1 cancer adjacent liver tissue, 1 metastatic 

adenocarcinoma, 1 cavernous hemangioma, 4 liver cirrhosis, 3 cholangiocarcinoma, and 

32 hepatocellular carcinoma samples. For each case, two tissue samples were included in 

our dataset, consisting of normal (healthy) and hepatocellular carcinoma (unhealthy) 

classes. Our dataset comprises 6 healthy and 54 unhealthy tissue samples, as shown in 

Table 2. 

Table 2: Dataset statistics with the class distribution. 

 
Healthy Unhealthy Total 

Training Samples 2 18 20 

Training Cases 1 9 10 

Validation Samples 2 18 20 

Validation Cases 1 9 10 

Testing Samples 2 18 20 

Testing Cases 1 9 10 

Total Samples 6 54 60 

Total Cases 3 27 30 

 

The dataset was evenly partitioned into three distinct subsets: training, validation, and 

testing sets. Each subset includes different patient samples, and there is no overlap 

between them. 
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The dataset consists of sample images that have a resolution of 1000 × 2000 pixels and 

were captured using a 40× microscopy lens magnification. As shown in Figure 16, to 

facilitate visualization, an RGB representation was generated from the hyperspectral cube 

by synthesizing red, green, and blue bands using three normal distributions with a standard 

deviation of 25 and mean values of 630, 540, and 480, respectively. That is, the 

corresponding normal distributions for each red, green and blue bands are used as weights 

to multiply with the spectral dimension. By this way, single band values are obtained from 

the hyperspectral data. The sample images were divided into smaller patches of size S×S 

pixels, where S is a parameter. Some patches contained blank areas without any tissue 

samples. To ensure a reliable dataset, image patches with more than 50% blank area were 

automatically removed. Eliminating blank area patches helps to capture actual variance in 

the dataset, and approximately 5% of the patches are discarded with this method. 

    

    

(a) (b) 

Figure 16: Sample patch images taken with 40X magnification, and the image size is 100 × 100 pixels. (a) 

Tumor sample patches; (b) Healthy sample patches. 

The final number of patches with varying patch size and their class distributions are given 

in Table 3. Our hyperspectral imaging system is capable of outputting 408 bands between 

400 and 1000 nm. However, upon manual inspection of the samples, we observed that the 

bands above 800 nm had a low signal-to-noise ratio. Thus, we only used the first 270 

bands between 400 and 800 nm to reduce computational cost and prevent the classifier 

from being presented with flawed information. 
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Table 3: Dataset statistics for the patch level data 

 
Healthy Unhealthy Total 

Patch Size, S = 50    

Training Samples 1536 13824 15360 

Validation Samples  1536 13824 15360 

Testing Samples 1536 13824 15360 

Class Total 4608 41472  

Patch Size, S = 100    

Training Samples 384 3456 3840 

Validation Samples  384 3456 3840 

Testing Samples 384 3456 3840 

Class Total 1152 10368  

Patch Size, S = 150    

Training Samples 148 1333 1481 

Validation Samples  148 1333 1481 

Testing Samples 148 1333 1481 

Class Total 444 3999  

Patch Size, S = 200    

Training Samples 95 885 950 

Validation Samples  95 885 950 

Testing Samples 95 885 950 

Class Total 285 2655  
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4.2.Hardware and Software Configuration 

The AI server used in our study is equipped with eight NVIDIA V100 Tensor Core 32GB 

GPUs that feature 5,120 Tensor Cores, providing up to 1 petaflop of AI computing 

performance. Additionally, the server is powered by dual Intel Xeon E5-2620 v3 CPUs 

and has 128 GB of DDR4 memory. Our setup allows us to train eight different models 

simultaneously. For deep learning programming, we utilized Python 3.8, Keras 2.3.1 with 

Tensorflow 2.0, CUDA for GPU acceleration, and Ubuntu 18.04 as the primary operating 

system. 

4.3.Evaluation Metrics 

To assess the performance of our classifier, we have utilized various metrics, including 

accuracy, precision, recall, F1 score, and Matthews Correlation Coefficient (MCC). These 

metrics are formulated in Equations 23 to 27 and are commonly used in medical studies 

[182] to evaluate classifiers that address class imbalance problems. The MCC metric is 

particularly suitable for our study and is calculated using Equation 27. The MCC metric 

ranges between -1 and 1, with 1 indicating perfect predictions, 0 representing random 

predictions, and -1 implying complete disagreement between the classifier's prediction 

and the observation. To compute these metrics, we use True Positive (TP), True Negative 

(TN), False Positive (FP), and False Negative (FN) output metrics from the classifier. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (23) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (24) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (25) 

𝐹1𝑆𝑐𝑜𝑟𝑒 =  2.
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙
 (26) 

𝑀𝐶𝐶 =  
𝑇𝑃. 𝑇𝑁 − 𝐹𝑃. 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (27) 

4.4. Quantitative Results and Discussion 

In order to assess the effectiveness of our proposed method, we trained multiple CNN 

classifiers using various configurations, but with the same base topology outlined in Table 

1. At the first three experiments, we identified the optimal network topology for HCC 

classification task. That is, through experimentation, we determined depth of network, 
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number of filters to employ and input image size parameters. Afterwards, by using the 

optimized CNN topology, we investigated the implications of cost function, spectral data 

resolution and type of convolution operator aspects. As mentioned in [47], the 

hyperparameters γ and α in the focal loss function are specific to the dataset, and must be 

adjusted accordingly. Therefore, to ensure a fair evaluation, we optimized these 

hyperparameters for the dataset related configurations. Additionally, we compared the 

classification performance of various spectral resolutions, including hyperspectral, 

sampled hyperspectral, PCA of hyperspectral, and RGB. Subsequently, we explored the 

implications of convolution operation by comparing the results of 2D and 3D convolution-

based CNNs. Lastly, we conducted an experiment by rotating our dataset splits between 

training, validation, and testing subsets to prove the generalization capability of our 

models for the data. 

4.4.1. Experiment-1: CNN Number of Convolution Layers 
 

For the first experiment setup, we have conducted experiments to evaluate the impact of 

varying the number of convolution layers in our base CNN topology given in Table 1. The 

primary goal was to understand how the depth of the network influences its performance. 

For the experiments, we have used varying number of convolution layers followed by 

max-pooling and batch normalization layers. The results of classification are presented in 

Table 4. The results demonstrate that a CNN with four convolution layers achieves the 

best overall performance, with an accuracy of 0.97, precision of 0.999, recall of 0.968, 

F1-score of 0.984, and MCC of 0.860. This suggests that a four-layer CNN can effectively 

capture the hierarchical features available in the images. On the other hand, a CNN with 

only two convolution layers produces significantly lower performance, with an accuracy 

of 0.745. The lower performance can be attributed to the shallow architecture's limited 

capacity to learn complex features, leading to reduced discriminative power and weaker 

classification results. As the number of convolution layers increases to three, there is an 

obvious improvement in performance, with an accuracy of 0.902. This highlights the 

benefits of adding more layers to capture higher-level features and improve the model's 

generalization capabilities. As the depth of the CNN is further increased to five and six 

layers, the performance remains relatively high, with accuracies of 0.962 and 0.965, 

respectively. While the performance does not surpass that of the four-layer CNN, it 

demonstrates that increasing the depth beyond four layers does not lead to a substantial 

degradation in performance. This suggests that deeper CNNs can still maintain strong 

classification performance, although the gains may be marginal compared to the optimal 

four-layer CNN. 
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Table 4: Classification results for varying topology depth configurations. (focusing parameter γ = 2, 

weighting factor α = 0.50, 3D convolutions, patch size S=100) 

Number of 

Convolution 

Layers 

Accuracy Precision Recall F1-Score MCC 

2 0.745 0.936 0.77 0.83 0.201 

3 0.902 0.975 0.914 0.937 0.583 

4 0.97 0.999 0.968 0.984 0.86 

5 0.962 0.991 0.966 0.976 0.814 

6 0.965 0.995 0.967 0.98 0.834 

 

4.4.2. Experiment-2: CNN Number of Filters 
In the second experiment setup, we have investigated the impact of varying the number of 

filters used in each layer of CNN. The primary objective was to understand how the 

number of filters in each layer influences the performance of the network. For this 

purpose, we have started with the number of filters, n, then doubled the number at each 

successive convolution layer, up to 8n. The results, in Table 5, indicate that the optimal 

number of filters for the CNN in this study is the configuration 4-8-16-32, which achieves 

the highest performance across all evaluation metrics: accuracy (0.97), precision (0.999), 

recall (0.968), F1-score (0.984), and MCC (0.86). This suggests that the 4-8-16-32 

configuration effectively captures the hierarchical features present in the images, 

balancing the complexity of the model and its capacity to generalize to unseen data. When 

comparing the performance of CNNs with different kernel configurations, we can observe 

that the lowest performance is achieved by the 1-2-4-8 configuration, with an accuracy of 

0.703. This can be attributed to the limited capacity of the network to learn complex 

features due to the insufficient number of filters, which results in weaker classification 

performance. As the number of filters increases, such as in the 2-4-8-16 and 8-16-32-64 

configurations, the performance improves significantly, with accuracies of 0.859 and 

0.966, respectively. This improvement highlights the benefits of using more filters to 

capture higher-level features. The configuration with the highest number of filters, 16-32-

64-128, results in a performance close to the optimal configuration, with an accuracy of 

0.969. This suggests that further increasing the number of filters does not necessarily lead 

to a significant improvement in performance. 
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Table 5: Classification results for varying number of filters for each convolution layer. (focusing parameter 

γ = 2, weighting factor α = 0.50, 3D convolutions, patch size S=100). 

Number of 

Filters 
Accuracy Precision Recall F1-Score MCC 

1-2-4-8 0.703 0.935 0.72 0.803 0.174 

2-4-8-16 0.859 0.973 0.868 0.912 0.491 

4-8-16-32 0.97 0.999 0.968 0.984 0.86 

8-16-32-64 0.966 0.996 0.966 0.981 0.838 

16-32-64-128 0.969 0.997 0.968 0.983 0.852 

 

4.4.3. Experiment-3: CNN Topology Input Resolution 
 

The third experiment focused on analyzing the effect of patch size (S) on classification 

performance. This parameter is crucial for the classification approach since it governs the 

variation in textural features on a single patch image. These features comprise different 

components such as cell nucleus, cytoplasm, and blank areas in the tissue sample. It is 

important to note that the cropped patches' size should not be too small to overlook critical 

textural features. Conversely, the classifier may concentrate solely on dense areas when 

the parameter is too large. We analyzed the performance of the model with different patch 

sizes, ranging from 50x50 to 200x200, as the results are shown in Table 6. The results 

reveal that the 100x100 patch size achieved the highest performance across all evaluation 

metrics: accuracy (0.970), precision (0.999), recall (0.968), F1-score (0.984), and MCC 

(0.860). This suggests that a patch size of 100x100 provides an optimal balance between 

capturing spatial information and minimizing computational complexity, leading to better 

generalization capabilities. The 50x50 patch size exhibited slightly lower performance, 

with an accuracy of 0.929 and an MCC of 0.722. While this configuration may require 

less computational resources, the smaller patch size might limit the model's ability to learn 

more complex and discriminative features, thus affecting its overall performance. When 

the patch size was increased to 150x150, the accuracy and MCC dropped slightly to 0.961 

and 0.774, respectively. This indicates that a larger patch size may lead to increased model 

complexity without providing significant improvements in performance. Lastly, the 

200x200 patch size demonstrated the lowest performance among the tested 

configurations, with an accuracy of 0.924 and an MCC of 0.615. The increase in patch 

size resulted in a trade-off between the model's capacity to capture spatial information and 

its ability to generalize to new data, ultimately leading to diminished performance. 

Consequently, we set the patch size parameter to 100 for the remaining experiments. 
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Table 6: Classification results for varying patch size parameter. (focusing parameter γ = 2, weighting factor 

α = 0.50, 3D convolutions). 

Patch Size (S) Accuracy Precision Recall F1-Score MCC 

50 × 50 0.929 0.996 0.924 0.961 0.722 

100 × 100 0.970 0.999 0.968 0.984 0.860 

150 × 150 0.961 0.973 0.983 0.967 0.774 

200 × 200 0.924 0.968 0.947 0.945 0.615 

 

4.4.4. Experiment-4: Optimal Cost Function 
 

During the fourth phase of our experiments, we identified the optimal hyperparameters γ 

and α for the HSI dataset. We compared the performance of the balanced cross-entropy 

function with that of the focal loss function. The focal loss function employs a weighting 

factor α that differentiates between loss values for minority (healthy) and majority (tumor) 

classes, balancing the influence of negative and positive examples on the loss. The 

focusing parameter γ reduces the loss contribution from well-classified, easy examples 

while maintaining a high loss contribution for hard examples. This parameter adjusts the 

level of focus on hard examples during training. The optimal values for α and γ depend 

on the severity of imbalance and the distribution of hard and easy examples in the dataset. 

As reported in the paper [47] that introduced the focal loss function, modifying the 

focusing parameter γ has a greater impact than modifying the weighting factor α. As 

shown in Table 7, empirical results show that the parameter values γ = 2 and α = 0.5 

produce the best classification performance for our HSI dataset, despite the extreme class 

imbalance. The same α value of 0.5 is chosen for both positive and negative classes, as 

the focusing parameter γ down-weights easy positives and requires less focus on 

negatives. Therefore, the model focuses on hard examples rather than intentionally 

emphasizing the minority class. We conclude that γ is the critical factor in the loss 

function, while α should be optimized for each γ value. In the balanced cross-entropy 

configuration, the classifier produces a low precision due to a relatively high false positive 

rate. However, when α is set to 0.25 in balanced cross-entropy, there is an obvious 

improvement in precision due to the reduction in false positives. These results highlight 

the importance of α in the behavior of the cost function in balanced cross-entropy form. 

Nevertheless, focal loss with different combinations of γ and α values generally 

outperforms CE and BCE. As the γ value increases, the performance tends to improve, 

with the best results obtained for γ=2.0. The choice of α also impacts performance, with 

α=0.50 appearing to provide the optimal balance between emphasizing hard-to-classify 

examples and avoiding overfitting. 
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Table 7: Classification results with HSI dataset for varying cost functions and respective parameter sets. 

(patch size parameter S = 100, 3D convolutions). 

Loss Function Accuracy Precision Recall F1-Score MCC 

CE 0.891 0.921 0.961 0.906 0.277 

BCE (𝛾 = 0, 𝛼 = 0.25) 0.901 0.938 0.953 0.919 0.412 

BCE (𝛾 = 0, 𝛼 = 0.75) 0.902 0.916 0.981 0.909 0.278 

FL (𝛾 = 1.5, 𝛼 = 0.25) 0.918 0.982 0.926 0.949 0.646 

FL (𝛾 = 1.5, 𝛼 = 0.50) 0.922 0.978 0.935 0.949 0.643 

FL (𝛾 = 1.5, 𝛼 = 0.75) 0.930 0.969 0.952 0.949 0.638 

FL (𝛾 = 2.0, 𝛼 = 0.25) 0.960 0.993 0.962 0.976 0.811 

FL (𝜸 = 𝟐. 𝟎, 𝜶 = 𝟎. 𝟓𝟎) 0.970 0.999 0.968 0.984 0.860 

FL (𝛾 = 2.0, 𝛼 = 0.75) 0.955 0.983 0.966 0.969 0.766 

FL (𝛾 = 2.5, 𝛼 = 0.25) 0.948 0.998 0.943 0.972 0.782 

FL (𝛾 = 2.5, 𝛼 = 0.50) 0.958 0.999 0.955 0.978 0.818 

FL (𝛾 = 2.5, 𝛼 = 0.75) 0.953 0.986 0.962 0.969 0.768 

 

4.4.5. Experiment-5: Spectral Resolution 
 

We conducted a further experiment to assess the classification performance of different 

spectral resolutions. We compared various versions of our dataset, including a 

hyperspectral dataset with 270 bands (HSI), as well as sampled hyperspectral datasets with 

90 (HSI-90), 30 (HSI-30), and 10 (HSI-10) bands. We also included two PCA-based 

versions of the hyperspectral dataset with nine (PCA-9) and three (PCA-3) principal 

components, as well as RGB versions of our dataset. To generate the HSI-90, HSI-30, and 

HSI-10 datasets, we sampled individual bands from the HSI dataset with a constant 

frequency. Additionally, we utilized the PCA method to reduce the dimensionality of the 

HSI dataset. Specifically, we applied the PCA algorithm described in [183], which is an 

incremental technique designed for calculating the PCA of large datasets. As Figure 17 

suggests, we selected the first nine principal components using a variance threshold value 

of 0.1%. Additionally, we have generated a PCA dataset using the first three principal 

components to compare its performance with the RGB dataset. The total variance of the 

PCA-3 dataset was 93.46%, whereas the PCA-9 dataset had a total variance of 98.60%. 

Alongside hyperspectral datasets, we have also incorporated RGB data captured by the 
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hyperspectral camera, which consists of three individual bands taken from the 630, 540, 

and 480 nm wavelengths. We trained a 3D-CNN model using RGB images with the same 

topology as that of the hyperspectral datasets. The hyperparameters of the focal loss 

function of 3D-CNN for the datasets were fine-tuned empirically, and the results are 

presented in Tables 7-12. The experimentation results indicate that HSI outperforms RGB 

with the highest accuracy and MCC score. Moreover, the sampled HSI datasets 

demonstrate that an increased number of hyperspectral bands result in better classification 

performance. Specifically, we observed that the classification accuracy is directly 

proportional to the number of bands included in the dataset. Among the sampled 

hyperspectral datasets, the PCA-9 dataset achieved the second-best classification accuracy 

since it retains most of the variance from the original HSI dataset. The PCA-3 dataset 

exhibited lower accuracy than the PCA-9 dataset but still outperformed the RGB dataset 

in terms of accuracy and MCC score. 

 

Figure 17: The plot showing principle component ranking and their variance values. The y-axis is log-

scaled for better visualization. 
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Table 8: Classification results with HSI-90 dataset for varying cost functions and respective parameter sets. 

(patch size parameter S = 100, 3D convolutions). 

Loss Function  Accuracy Precision Recall F1-Score MCC 

FL (𝛾 = 1.5, 𝛼 = 0.25) 0.885 0.973 0.897 0.927 0.539 

FL (𝛾 = 1.5, 𝛼 = 0.50) 0.892 0.975 0.903 0.932 0.559 

FL (𝛾 = 1.5, 𝛼 = 0.75) 0.897 0.971 0.913 0.933 0.554 

FL (𝛾 = 2.0, 𝛼 = 0.25) 0.919 0.980 0.929 0.949 0.645 

FL (𝜸 = 𝟐. 𝟎, 𝜶 = 𝟎. 𝟓𝟎) 0.950 0.990 0.955 0.970 0.767 

FL (𝛾 = 2.0, 𝛼 = 0.75) 0.924 0.986 0.929 0.954 0.679 

FL (𝛾 = 2.5, 𝛼 = 0.25) 0.914 0.977 0.926 0.944 0.619 

FL (𝛾 = 2.5, 𝛼 = 0.50) 0.885 0.977 0.894 0.929 0.552 

FL (𝛾 = 2.5, 𝛼 = 0.75) 0.857 0.970 0.868 0.91 0.473 

 

Table 9: Classification results with HSI-30 dataset for varying cost functions and respective parameter sets. 

(patch size parameter S = 100, 3D convolutions). 

Loss Function  Accuracy Precision Recall F1-Score MCC 

FL (𝛾 = 1.5, 𝛼 = 0.25) 0.877 0.970 0.890 0.921 0.510 

FL (𝛾 = 1.5, 𝛼 = 0.50) 0.885 0.973 0.897 0.927 0.537 

FL (𝛾 = 1.5, 𝛼 = 0.75) 0.885 0.971 0.90 0.926 0.53 

FL (𝛾 = 2.0, 𝛼 = 0.25) 0.889 0.974 0.900 0.930 0.55 

FL (𝜸 = 𝟐. 𝟎, 𝜶 = 𝟎. 𝟓𝟎) 0.931 0.985 0.937 0.957 0.692 

FL (𝛾 = 2.0, 𝛼 = 0.75) 0.909 0.975 0.923 0.941 0.598 

FL (𝛾 = 2.5, 𝛼 = 0.25) 0.883 0.971 0.897 0.925 0.524 

FL (𝛾 = 2.5, 𝛼 = 0.50) 0.861 0.973 0.870 0.914 0.495 

FL (𝛾 = 2.5, 𝛼 = 0.75) 0.857 0.97 0.868 0.91 0.473 
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Table 10: Classification results with HSI-10 dataset for varying cost functions and respective parameter 

sets. (patch size parameter S = 100, 3D convolutions) 

Loss Function  Accuracy Precision Recall F1-Score MCC 

FL (𝛾 = 1.5, 𝛼 = 0.25) 0.857 0.967 0.871 0.909 0.46 

FL (𝛾 = 1.5, 𝛼 = 0.50) 0.857 0.970 0.868 0.910 0.472 

FL (𝛾 = 1.5, 𝛼 = 0.75) 0.859 0.966 0.874 0.909 0.46 

FL (𝜸 = 𝟐. 𝟎, 𝜶 = 𝟎. 𝟐𝟓) 0.914 0.978 0.926 0.945 0.622 

FL (𝛾 = 2.0, 𝛼 = 0.50) 0.910 0.977 0.922 0.942 0.61 

FL (𝛾 = 2.0, 𝛼 = 0.75) 0.898 0.973 0.911 0.934 0.565 

FL (𝛾 = 2.5, 𝛼 = 0.25) 0.867 0.973 0.876 0.917 0.505 

FL (𝛾 = 2.5, 𝛼 = 0.50) 0.862 0.973 0.871 0.914 0.498 

FL (𝛾 = 2.5, 𝛼 = 0.75) 0.890 0.970 0.905 0.928 0.534 

 

Table 11: Classification results with PCA-9 dataset for varying cost functions and respective parameter sets. 

(patch size parameter S = 100, 3D convolutions). 

Loss Function  Accuracy Precision Recall F1-Score MCC 

FL (𝛾 = 1.5, 𝛼 = 0.25) 0.897 0.975 0.909 0.934 0.571 

FL (𝛾 = 1.5, 𝛼 = 0.50) 0.911 0.977 0.923 0.943 0.614 

FL (𝛾 = 1.5, 𝛼 = 0.75) 0.911 0.974 0.926 0.941 0.602 

FL (𝛾 = 2.0, 𝛼 = 0.25) 0.945 0.987 0.952 0.966 0.743 

FL (𝜸 = 𝟐. 𝟎, 𝜶 = 𝟎. 𝟓𝟎) 0.957 0.988 0.964 0.972 0.788 

FL (𝛾 = 2.0, 𝛼 = 0.75) 0.927 0.987 0.932 0.956 0.687 

FL (𝛾 = 2.5, 𝛼 = 0.25) 0.930 0.980 0.941 0.954 0.674 

FL (𝛾 = 2.5, 𝛼 = 0.50) 0.892 0.981 0.897 0.934 0.583 

FL (𝛾 = 2.5, 𝛼 = 0.75) 0.882 0.976 0.891 0.927 0.544 
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Table 12: Classification results with PCA-3 dataset for varying cost functions and respective parameter sets. 

(patch size parameter S = 100, 3D convolutions). 

Loss Function Accuracy Precision Recall F1-Score MCC 

FL (𝛾 = 1.5, 𝛼 = 0.25) 0.873 0.971 0.885 0.919 0.503 

FL (𝛾 = 1.5, 𝛼 = 0.50) 0.879 0.970 0.894 0.922 0.511 

FL (𝛾 = 1.5, 𝛼 = 0.75) 0.857 0.941 0.897 0.897 0.336 

FL (𝛾 = 2.0, 𝛼 = 0.25) 0.899 0.977 0.910 0.936 0.584 

FL (𝜸 = 𝟐. 𝟎, 𝜶 = 𝟎. 𝟓𝟎) 0.913 0.983 0.919 0.947 0.638 

FL (𝛾 = 2.0, 𝛼 = 0.75) 0.906 0.975 0.920 0.939 0.590 

FL (𝛾 = 2.5, 𝛼 = 0.25) 0.888 0.976 0.897 0.930 0.556 

FL (𝛾 = 2.5, 𝛼 = 0.50) 0.889 0.974 0.900 0.930 0.550 

FL (𝛾 = 2.5, 𝛼 = 0.75) 0.923 0.972 0.942 0.947 0.626 

 

Table 13: Classification results with RGB dataset for varying cost functions and respective parameter sets. 

(patch size parameter S = 100, 3D convolutions). 

Loss Function Accuracy Precision Recall F1-Score MCC 

FL (𝛾 = 1.5, 𝛼 = 0.25) 0.852 0.964 0.868 0.905 0.440 

FL (𝛾 = 1.5, 𝛼 = 0.50) 0.851 0.966 0.865 0.905 0.449 

FL (𝛾 = 1.5, 𝛼 = 0.75) 0.828 0.936 0.869 0.879 0.269 

FL (𝜸 = 𝟐. 𝟎, 𝜶 = 𝟎. 𝟐𝟓) 0.900 0.974 0.914 0.936 0.573 

FL (𝛾 = 2.0, 𝛼 = 0.50) 0.891 0.972 0.905 0.930 0.544 

FL (𝛾 = 2.0, 𝛼 = 0.75) 0.882 0.970 0.897 0.924 0.520 

FL (𝛾 = 2.5, 𝛼 = 0.25) 0.859 0.970 0.871 0.911 0.479 

FL (𝛾 = 2.5, 𝛼 = 0.50) 0.853 0.968 0.865 0.907 0.458 

FL (𝛾 = 2.5, 𝛼 = 0.75) 0.878 0.964 0.897 0.919 0.486 
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We put the comparative results for all spectral resolutions in Table 14. The performance 

of the model is obviously highest when it is trained with the full 270 bands HIS, boasting 

an accuracy of 0.970, precision of 0.999, recall of 0.968, F1-Score of 0.984, and MCC of 

0.860. This can be explained as the full HSI dataset is the richest in terms of spectral 

information which is crucial for the accurate classification of HCC and normal liver 

tissues. As we decrease the number of bands used in the hyperspectral datasets (HSI-90, 

HSI-30, and HSI-10), there is a clear decline in all the evaluation metrics. This can be 

attributed to the loss of spectral information that contributes to the discriminatory power 

of the model. Notably, the model's performance drops significantly when trained with the 

HSI-10 dataset compared to the full HSI dataset, emphasizing the importance of 

hyperspectral imaging for a robust classification model. The model trained on the PCA-9 

dataset performs relatively close to the HSI-90 dataset, indicating that the first nine 

principal components contain substantial information for the classification task. However, 

reducing the number of principal components to three (PCA-3) results in a considerable 

drop in performance, though it still outperforms the model trained on the RGB data. The 

RGB model trails behind all the others in terms of performance, indicating the superiority 

of hyperspectral data or its PCA equivalents over conventional RGB images in the context 

of tissue classification. Despite the simplicity of RGB data, it misses out on the valuable 

spectral information encapsulated in the hyperspectral data. 

Table 14: Classification results for different spectral datasets (patch size parameter S = 100, 3D 

convolutions, focal loss parameters optimized) 

Dataset  Accuracy Precision Recall F1-Score MCC 

HSI 0.970 0.999 0.968 0.984 0.860 

HSI-90 0.950 0.990 0.955 0.970 0.767 

HSI-30 0.931 0.985 0.937 0.957 0.692 

HSI-10 0.914 0.978 0.926 0.945 0.622 

PCA-9 0.957 0.988 0.964 0.972 0.788 

PCA-3 0.913 0.983 0.919 0.947 0.638 

RGB 0.900 0.974 0.914 0.936 0.573 

 

4.4.6. Experiment-6: Convolution Operator 
 

In the sixth experiment of our study, we investigated the effect of convolution operator on 

classification performance. Specifically, we trained another classification model with a 

2D convolution operation using the same network topology as the 3D-CNN model. We 

fine-tuned the hyperparameters for the 2D convolution model, as given in Table 15. We 

discovered that the best hyperparameter set, γ = 2 and α = 0.5, for the 3D-CNN model also 
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produced the best results for the 2D-CNN model. Unlike 3D convolution, which slides in 

three directions of the hyperspectral cube, 2D convolution operates in two directions of 

the image data. As a result, the feature sets obtained by 2D and 3D convolution operations 

have different descriptive abilities. Our analysis, presented in Table 16, indicates that the 

3D convolution operator outperforms the 2D version in terms of classification 

performance. We attribute this to the fact that the 3D convolution operator can fully 

leverage the potential of hyperspectral data, while the 2D convolution operator leads to a 

decline in classification performance for hyperspectral data. 

Table 15: Classification results with HSI dataset for varying cost functions and respective parameter sets. 

(patch size parameter S = 100, 2D convolutions). 

Loss Function  Accuracy Precision Recall F1-Score MCC 

FL (𝛾 = 1.5, 𝛼 = 0.25) 0.891 0.974 0.903 0.931 0.554 

FL (𝛾 = 1.5, 𝛼 = 0.50) 0.885 0.972 0.897 0.926 0.534 

FL (𝛾 = 1.5, 𝛼 = 0.75) 0.885 0.970 0.900 0.926 0.527 

FL (𝛾 = 2.0, 𝛼 = 0.25) 0.922 0.983 0.929 0.952 0.663 

FL (𝜸 = 𝟐. 𝟎, 𝜶 = 𝟎. 𝟓𝟎) 0.934 0.986 0.940 0.959 0.706 

 FL (𝛾 = 2.0, 𝛼 = 0.75) 0.920 0.980 0.930 0.949 0.646 

FL (𝛾 = 2.5, 𝛼 = 0.25) 0.932 0.983 0.94 0.957 0.689 

FL (𝛾 = 2.5, 𝛼 = 0.50) 0.923 0.982 0.931 0.952 0.658 

FL (𝛾 = 2.5, 𝛼 = 0.75) 0.915 0.975 0.929 0.944 0.615 

 

Table 16: Comparison of classification results of 3D-CNN and 2D-CNN models trained by HSI data. 

Model  Accuracy Precision Recall F1-Score MCC 

HSI-3D-CNN  0.970 0.999 0.968 0.984 0.860 

HSI-2D-CNN  0.934 0.986 0.940 0.959 0.706 

 

4.4.7. Experiment-7: Rotating Datasets 
 

In our seventh experiment, we aimed to demonstrate that our 3D-CNN model is not prone 

to overfitting by rotating the split sets - training, validation, and testing - amongst each 

other. Our dataset comprises three healthy and 27 unhealthy patients. We created three 

distinct data-splitting configurations by placing one healthy and nine unhealthy patients 
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in each of the training, validation, and testing sets. We rotated these sets amongst each 

other and retrained the model for each configuration. As displayed in Table 17, we 

observed similar classification performance results for all three configurations. This 

experiment demonstrates that our 3D-CNN model can learn descriptive features from 

hyperspectral space without overfitting the training data. 

Table 17: Comparison of classification results of 3D-CNN when the training, validation, and testing sets 

are rotated between each other. (patch size parameter S = 100, 3D convolutions). 

Model  Accuracy Precision Recall F1-Score MCC 

HSI-3D-CNN  

(configuration-1) 
0.970 0.999 0.968 0.984 0.860 

HSI-3D-CNN  

(configuration-2) 
0.965 0.997 0.963 0.981 0.836 

HSI-3D-CNN  

(configuration-3) 
0.968 0.996 0.968 0.982 0.846 

 

4.5. Qualitative Results and Discussion 

In this sub-section, our qualitative results and related discussions are presented. From the 

perspective of histopathological analysis, normal and HCC liver H&E tissue samples can 

differ in several ways, as summarized below. 

• Cell Density: HCC samples often exhibit a higher cell density as a result of rapid 

and uncontrolled cell proliferation. 

• Cellular and Nuclear Size: The cells and nuclei in HCC tissues may appear larger 

and irregular compared to those in normal liver tissues. 

• Nuclear Pleomorphism: Normal liver cells typically have uniform nuclear 

shapes, while HCC cells may display nuclear pleomorphism (variation in size, 

shape, and staining). 

• Cellular Arrangement: Normal liver tissues have a regular, organized cellular 

arrangement. In contrast, HCC tissues often show disorganized cell patterns. 

• Portal Tracts: Normal liver tissues will have visible portal tracts. In HCC 

samples, these may be absent or significantly disrupted. 

• Necrosis: HCC tissues may show areas of necrosis or cell death, which are not 

commonly seen in healthy liver tissues. 
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• Stroma: The stroma, or supportive tissue, may be increased in HCC samples due 

to the tumor's growth. 

• Vascular Invasion: HCC tissues may show signs of vascular invasion or growth 

of the tumor into the blood vessels, which is not present in normal liver tissues. 

• Steatosis: Normal liver cells may contain small lipid droplets, whereas HCC cells 

frequently exhibit clear or eosinophilic cytoplasm. 

• Color: HCC tissues might be more eosinophilic (pink) in H&E staining due to the 

increased presence of cytoplasm and connective tissues. 

In fact, these differences can vary and may not be present in all samples. While there are 

obvious differences between normal and HCC liver H&E tissue samples, they also share 

some similarities due to their origin in the same organ. The similarities can be summarized 

as follows. 

• Tissue Structure: Both normal and HCC liver tissues have a similar basic 

structural layout, with cells organized around the central vein and portal tracts, 

though these structures may be distorted or irregular in HCC. 

• Hepatocyte Presence: Both normal and HCC tissues contain hepatocytes, the 

main cell type of the liver, though these cells may appear differently due to tumor 

transformation in HCC. 

• Staining Patterns: Both types of tissues are stained with H&E in a similar way, 

highlighting the cellular and extracellular components. The hematoxylin stains cell 

nuclei blue, while eosin stains the cytoplasm and extracellular matrix pink. 

• Cellular Components: Both types of tissues contain similar cellular components 

including cell nuclei, cytoplasm, and extracellular matrix. 

• Blood Supply: Both types of tissues are vascular, with a blood supply necessary 

for the organ's function. However, the arrangement and structure of blood vessels 

may be more irregular in HCC. 

• Inflammation: Both normal and HCC liver tissues can contain inflammatory 

cells, especially if there is a background of liver disease like cirrhosis. 

• Bile Ducts: The presence of bile ducts can be observed in both normal and HCC 

liver tissues, but they can be deformed or proliferative in HCC. 

In the process of evaluating our proposed model for HCC classification, we encountered 

a series of challenging cases that stemmed from the nuanced differences and similarities 

between HCC and normal liver tissue samples. Our qualitative results in patch level, 
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presented in Table 18, highlight the challenge of this task. Particularly noteworthy aspects 

are the visual similarities between true positive patches (correctly identified tumor 

regions) and false positive patches (non-tumor regions erroneously classified as tumor). 

Conversely, we also observed cases where true negatives (correctly identified non-tumor 

regions) were visually similar to false negatives (tumor regions incorrectly classified as 

non-tumor). This suggests that certain tumor regions may bear a strong resemblance to 

normal tissue, resulting in misclassifications. These cases suggest that certain regions of 

normal tissue may closely resemble tumor tissue, causing our model to mistakenly classify 

them as such. This insight points to the inherent difficulty in accurately distinguishing 

tumor regions based solely on visual appearance. Therefore, in order to improve the 

precision, our classification model needs to capture more complex patterns within the 

hyperspectral data cube while maintaining the validation error at a low level. 

Table 18: Qualitative classification results 

True Positive  False Positive True Negative False Negative 
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There are 18 HCC tumor and 2 normal liver samples in scene level in our test set, 

additionally, there are 200 patches cropped from each scene level sample. When we 

combine the patch level results into scene level results by using a simple scoring scheme 

such as majority voting, our method can successfully classify all scene level samples. We 

have presented our worst performing scene level samples, one for each class, in Table 19. 

As it can be inferred from the scene level results, there are certain regions that are visually 

very similar in both classes.  
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Table 19: Qualitative results from scene level. (A) healthy liver sample. (B) tumor liver sample 

(A) Healthy liver in scene 

level, 3 patches are 

misclassified out of 

200 patches, marked 

with yellow dashed 

line. 
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(B) Tumor liver in scene 

level, 12 patches are 

misclassified out of 

200 patches, marked 

with yellow dashed 

line. 

 

The inherent complexity of liver tissues introduces challenging cases for our CNN learner. 

This complexity is derived from the structural intricacies of liver tissue at the cellular 

level, as well as the potential variations in appearance resulting from differing health 

conditions. That is, normal liver tissues have a distinct cellular structure and arrangement, 

which can be visibly disrupted in the presence of diseases like HCC. However, other 

conditions such as inflammation or fibrosis can also result in alterations to the cellular 

structure of liver tissue. Inflammatory conditions, for instance, can cause tissue swelling 
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and an influx of immune cells, while fibrosis can lead to the formation of excess fibrous 

connective tissue, distorting the normal architecture of the liver. Necrosis, the premature 

death of cells in living tissue, is another condition that can drastically alter tissue 

appearance. These modifications can complicate the task of differentiating between 

normal and diseased tissue, as a CNN could mistakenly identify these changes as 

indicative of HCC. Further complexities arise from the fact that the early stages of HCC 

can closely resemble normal liver tissue, both visually and structurally. Early-stage HCC 

is often characterized by small, well-differentiated tumors that can be hard to distinguish 

from the surrounding liver tissue. 

4.6.Comparison with Similar Studies 

In this sub-section, we provide a comparative analysis of our experimental results with a 

similar study [123]. The referenced study used H&E stained HCC liver tissue images to 

develop a CNN topology for cancer classification. The proposed approach utilizes a 

custom CNN learner, and it integrates Atrous Spatial Pyramid Pooling (ASPP) blocks to 

capture multi-scale features present in H&E stained liver histopathology samples. ASPP 

functions to resample a given feature layer at various rates prior to the convolution 

process. It operates through the application of multiple filters that probe the sample. This 

approach allows ASPP to grasp a range of scales of objects along with crucial image 

context. They derived patches of 224 x 224 from these H&E-stained liver tissues, which 

were in RGB format and thus contained three bands. Their dataset was composed of 2380 

samples from the KMC dataset and 3482 samples from the TCGA dataset, both in patch 

form after data augmentation. Using their custom CNN topology, the researchers reported 

an overall accuracy of 90.93%. 

In order to perform a fair comparison of their method with ours, we considered several 

factors. Unfortunately, we were unable to access the exact datasets (KMC and TCGA) 

that the previous researchers utilized in their study. Consequently, our comparison 

necessitated the usage of their method on our dataset that also consists of RGB images, 

since their methodology supports only three-band images. We evaluate the relative 

performance of their method when applied to a different, though structurally similar, 

dataset. However, as presented in Table 20, upon the application of the original method, 

the results of their model fell short of our expectations with an overall accuracy of 0.852. 

This led us to the process of fine-tuning their method to adapt it to our specific dataset. 

The original input size utilized by Aatresh et al. was 224x224. We adjusted this parameter 

and reduced the patch size to 100x100 to better suit the characteristics of our dataset. 

Beyond this modification, we undertook a parameter tuning process for several 

hyperparameters within their proposed method. Specifically, we refined the number of 

filters, batch size, the dropout parameter, and parameters related to ASPP. Following these 

adjustments, we ran the models again and achieved a better classification performance 

with their method. However, their methodology did not exceed the classification 

performance of our method. As presented in Table 20, our method (using RGB data) 

yielded an accuracy of 0.900, precision of 0.974, recall of 0.914, an F1-score of 0.936, 
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and a MCC value of 0.573. The original method proposed by Aatresh et al., without any 

refinements, presented an accuracy of 0.852, precision of 0.913, recall of 0.924, an F1-

score of 0.881, and an MCC of 0.128. Finally, the refined version of Aatresh et al.'s 

method, tailored to our dataset, achieved an accuracy of 0.889, precision of 0.913, recall 

of 0.969, an F1-score of 0.901, and an MCC of 0.202. We attribute our method’s 

superiority to its streamlined CNN topology and 3D convolutions utilized in the model. 

Additionally, the focal loss function in our classifier has led to focus on hard samples 

rather than concentrating on only the tumor class. This behavior of model can clearly be 

seen in the MCC score comparison. Our model has provided much higher MCC score, 

indicating more robustness to the class imbalance issues. 

Table 20: Comparison with Aatresh et al 

Model  Accuracy Precision Recall F1-Score MCC 

Proposed Method 

(RGB) 
0.900 0.974 0.914 0.936 0.573 

Aatresh et al 

(Orig) 

0.852 0.913 0.924 0.881 0.128 

Aatresh et al 

(Refined) 

0.889 0.913 0.969 0.901 0.202 

 

The second similar study [126] presents an approach for automatic Cholangiocarcinoma 

(CC) diagnosis using deep learning methodologies on a microscopic hyperspectral 

pathological dataset. The researchers aimed to exploit fully the spatial-spectral HSI data 

through a deep CNN. The entire scene is initially divided into several patches, which are 

then input into the CNN for tumor/non-tumor binary prediction. To leverage the 

multispectral pixels in the microscopic hyperspectral data, the researchers propose a 

spectral interval convolution and normalization within the CNN. This approach preserves 

the spectral information in the channel direction, which is critical for accurate tumor 

detection. The study utilizes a dataset comprising H&E stained Cholangiocarcinoma and 

bile duct tissues captured via an Acousto-optic Tunable Filter (AOTF). The images, with 

30 hyperspectral bands and patches of size 299x299, consist of 880 sample images, of 

which 738 contain tumors. The authors utilized two deep learning architectures, ResNet50 

and Inception-V3, coupled with interval convolution. This technique involves dividing the 

spectral dimension into six intervals. Their experiments resulted in an accuracy of 88.20% 

and 87.90% for ResNet50 and Inception-V3, respectively. 

For comparative analysis, while we were unable to access their dataset, we applied their 

methodology on our HSI dataset. When we tested Sun et al.'s approach on our dataset, we 

found that their method’s performance improved compared to their reported results. It is 

notable that their original study was based on 30 band hyperspectral images, whereas our 

dataset contains 270 hyperspectral bands. This provides more depth and complexity to the 

data and might have contributed to the improved performance of their method on our 
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dataset. However, our method still outperformed both the Resnet50 and InceptionV3 

models of Sun et al. in terms of all metrics. The results are presented in Table 21. 

Additionally, our method’s MCC value was much higher than the competitive methods, 

indicating our model’s versatility to resolve class imbalance problem.   

Table 21: Comparison of with Sun, L et al 

Model  Accuracy Precision Recall F1-Score MCC 

Proposed Method 

(HSI) 
0.970 0.999 0.968 0.984 0.860 

Sun, L et al 

(Resnet50) 

0.91 0.926 0.978 0.918 0.39 

Sun, L et al 

(InceptionV3) 

0.902 0.923 0.972 0.912 0.335 

4.7. Experiments with Other Machine Learning Methods 

Throughout our research, we have tested numerous machine learning methods with 

different configurations on our dataset. In this sub-section, we present the machine 

learning methods different from our main 3D-CNN model that we experimented and 

found notable to include in this dissertation.  

4.7.1. K-Nearest Neighbor 
 

The K-Nearest Neighbors (K-NN) algorithm, considered one of the simplest and highly 

interpretable machine learning algorithms, belongs to the instance-based learning 

category of supervised learning techniques [184]. K-NN employs a distance metric such 

as Euclidean or Manhattan distance to identify the 'K' training examples nearest to an 

unseen instance. The algorithm then predicts the unseen instance's class based on the most 

frequent class among these nearest neighbors. The primary advantage of the K-NN 

algorithm is its simplicity and straightforward implementation. It requires no explicit 

training phase. Being non-parametric, K-NN does not make any underlying assumptions 

about the data's distribution, which can be beneficial when the distribution is unknown 

[185]. The K-NN algorithm is also adaptive to the addition of new data because it utilizes 

the entire dataset for prediction. It is robust to noisy data due to its reliance on majority 

voting, and this attribute typically leads to fair performance with large training datasets. 

However, the K-NN algorithm does present several challenges. K-NN's performance can 

be adversely affected by redundant or irrelevant features because they contribute equally 

to the distance calculation. This problem can potentially be alleviated through feature 

selection or feature weighting strategies [186]. Deciding the optimal 'k' value can also be 

difficult; a small 'k' can make the algorithm sensitive to noise and outliers, while a large 

'k' may excessively smooth out decision boundaries, leading to inaccurate classifications. 
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Most importantly, the K-NN algorithm is particularly prone to the curse of dimensionality, 

meaning that the distances in high-dimensional spaces become less meaningful, which can 

lead to deteriorating performance [187]. 

We have adapted a pixel-based classification method with KNN approach. The feature 

vector fed to KNN algorithm contains PCA-9 data and 40 Gabor filter features, resulting 

in 49 total features per pixel. We have experimented several parameter configurations with 

KNN. We found out that K=32 with Euclidean distance and uniform weighting performs 

best for the classification task. The classification result of KNN approach is available in 

Table 22. 

4.7.2. Support Vector Machines 
 

Support Vector Machines (SVMs) are a versatile method for classification and regression, 

offering an effective technique for handling high-dimensional data. SVMs implement a 

learning method that performs a binary classification by defining a hyperplane that 

optimally separates two classes of data in a multidimensional space [188]. The 

fundamental principle behind SVMs is the construction of an optimal separating 

hyperplane in a high-dimensional feature space, such that the margin, or the distance 

between the hyperplane and the nearest data point from either class, is maximized. This 

hyperplane is constructed with the help of support vectors, which are the data points that 

lie closest to the decision boundary. By maximizing the margin, SVMs aim to enhance 

the model's generalization ability and prevent overfitting. One of the significant 

advantages of SVMs lies in their ability to handle high-dimensional data effectively. This 

is achieved through the "kernel trick", which allows SVMs to operate in a high-

dimensional, implicit feature space without computing the coordinates of the data in that 

space [189]. Despite their strengths, SVMs do have several limitations. For one, they can 

be computationally intensive and inefficient to train, particularly for large datasets. The 

complexity of training an SVM typically scales between quadratic and cubic in the number 

of samples, which makes it less suitable for very large datasets [190]. Another challenge 

with SVMs lies in the selection of an appropriate kernel and the tuning of associated 

parameters, which requires domain expertise and can have a significant impact on the 

performance of the model. 

Similar to the KNN approach, we devised a pixel-level classification method using the 

SVM model. The feature vector, provided to the SVM algorithm, includes data from PCA-

9 and 40 Gabor filter features, culminating in a total of 49 features per pixel. We 

experimented with multiple parameter configurations within the SVM model, eventually 

determining that Radial Basis Function (RBF) kernels with C=1.0 and gamma=0.1 were 

the most effective for this classification task. The results from the KNN approach can be 

found in Table 22. 
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4.7.3. Stacked Autoencoders 
 

Stacked Autoencoders (SAE) represent a specific type of autoencoder, which is a neural 

network model that is utilized for unsupervised learning tasks. The principle goal of an 

autoencoder is to learn a compressed, distributed representation (encoding) for a set of 

data, typically for the purpose of dimensionality reduction [191]. A stacked autoencoder 

consists of multiple layers of autoencoders in which the output of each layer serves as the 

input for the next. The operation of a stacked autoencoder is divided into two primary 

phases: encoding and decoding. In the encoding phase, the model learns to reduce the 

dimensionality of the input data and compress it into an encoded representation. Each 

layer of the encoder typically applies a transformation function to the input data to reduce 

its dimensionality. This is generally achieved by using a nonlinear activation function such 

as a sigmoid or a rectified linear unit (ReLU). The decoding phase, conversely, operates 

to reconstruct the input data from the encoded representations. The aim is to minimize the 

reconstruction error, which is usually defined as the difference between the input data and 

the reconstructed data [192]. One of the main advantages of SAEs is their ability to learn 

complex, hierarchical representations of the input data. They can be used to learn features 

from raw input data in an unsupervised manner, which can then be employed to improve 

the performance of other machine learning tasks such as classification or regression. 

However, there are also certain drawbacks associated with the use of SAEs. One of the 

main challenges is that they can be difficult to train, particularly when the network 

architecture is deep. This is largely due to the problem of vanishing gradients, where the 

gradients of the loss function become increasingly small as they are propagated back 

through the layers of the network. This can slow down the learning process and can lead 

to suboptimal solutions. Moreover, SAEs, like other deep learning models, can be prone 

to overfitting, especially when the amount of training data is limited [193]. 

We devised a pixel-level classification method using the SAE model. We utilized HSI 

dataset with a stacked topology of 100 hidden layers at the first autoencoder and 50 hidden 

layers at the second autoencoder. The results from the SAE approach can be found in 

Table 22. 

4.7.4. Resnet50 
 

The Residual Network (ResNet) is a popular deep learning model that provided significant 

contribution to the field of computer vision. ResNet50, specifically, is a variant of the 

ResNet model that is 50 layers deep, and it is commonly used for a variety of computer 

vision tasks such as image classification and object detection. The main aspect of ResNet 

lies in its unique "skip connections" or "shortcut connections" that allow the gradient to 

be directly backpropagated to earlier layers [194]. In traditional deep learning models, 

each layer attempts to learn the underlying mapping from inputs to outputs. However, in 

ResNet, each layer is designed to learn the residual (or difference) between its input and 

output. This residual learning strategy is effective for avoiding the vanishing gradient 

problem and helps train very deep networks. One of the significant advantages of 

ResNet50 is its ability to train extremely deep networks by using residual learning. It helps 
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to avoid overfitting by reusing previously learned features, thereby reducing the need for 

a larger number of parameters. The model also addresses the degradation problem (where 

accuracy saturates and then degrades rapidly) when training deep networks [195]. 

However, while Resnet50 works well on large and complex datasets, it may not be the 

best choice for smaller and simpler datasets due to its complexity. When comparing 

ResNet50 with its 3D variant, ResNet50-3D, the main difference lies in the nature of the 

data they process. ResNet50-3D extends the original model to handle volumetric (3D) 

data, making it suitable for tasks such as video processing or medical imaging where 

temporal or depth information is crucial. This is achieved by replacing the 2D 

convolutions in the original ResNet50 with 3D convolutions [196]. 

We utilized Resnet50 and its 3D variant (Resnet50-3D) with our HSI dataset with patch 

size 100 pixels to train an HCC classification model. The results from the Resnet50 

approach can be found in Table 22. 

4.7.5. DenseNet121 
 

Densely Connected Convolutional Networks, or DenseNets, represent a significant model 

in the design of convolutional networks. DenseNet121, in particular, refers to a variant 

that has 121 layers [197]. DenseNets introduce a unique architecture where each layer is 

directly connected to every other layer in a feed-forward manner, meaning that each layer 

receives the feature maps of all preceding layers and passes on its own feature maps to all 

subsequent layers. This design results in a significant reduction in the number of 

parameters, and it enhances feature propagation throughout the network. It is also 

beneficial in strengthening feature reuse, alleviating the vanishing gradient problem, and 

providing regularization to prevent overfitting. DenseNet121 has shown remarkable 

performance in many computer vision tasks. Its main advantage is the substantial 

improvement in computational efficiency due to parameter reduction without 

compromising the learning capability. The dense connections also enforce feature reuse, 

which is beneficial for learning compact and robust models [198]. As for the 3D version 

of DenseNet121, it extends the network to handle 3D data. In DenseNet121-3D, the 2D 

convolutions are replaced with 3D convolutions to process volumetric data. 

We employed DenseNet121 and its 3D variant (DenseNet121-3D) with our HSI dataset 

with patch size 100 pixels to train an HCC classification model. The results from the 

DenseNet121 approach can be found in Table 22. 

4.7.6. Results and Discussion 
 

The results of the supervised learning models constructed by different machine learning 

approaches including KNN, SVM, SAE, Resnet50 and DenseNet121are presented in 

Table 22. For the CNN based topologies (Resnet50 and DenseNet121), we have included 

both 2D and 3D versions by utilizing 2D and 3D convolutions at distinct configurations.  
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Table 22: Comparison of other machine learning methods 

Model  Accuracy Precision Recall F1-Score MCC 

Proposed Method 

(3D-CNN) 
0.970 0.999 0.968 0.984 0.860 

K-NN 0.805 0.911 0.868 0.855 0.088 

SVM 0.875 0.921 0.942 0.897 0.238 

SAE 0.894 0.929 0.955 0.911 0.343 

Resnet50-2D 0.913 0.946 0.958 0.929 0.491 

Resnet50-3D 0.938 0.962 0.969 0.95 0.642 

DenseNet121-2D 0.883 0.942 0.927 0.912 0.392 

DenseNet121-3D 0.909 0.965 0.933 0.936 0.559 

 

The empirical results presented in the table clearly demonstrate the superior performance 

of our proposed method, 3D-CNN, over a range of commonly used machine learning and 

deep learning models for HCC classification. Our method achieved the highest 

performance across all the key metrics - accuracy (0.970), precision (0.999), recall 

(0.968), F1-Score (0.984), and MCC (0.860). This high level of performance is indicative 

of the effectiveness of 3D convolutions in capturing both spatial and spectral features in 

hyperspectral images, which is critical for accurate HCC classification. KNN model, on 

the other hand, yielded the lowest results in all metrics. This lower performance could be 

due to the high dimensional nature of the data, where distance-based methods like K-NN 

may struggle to identify meaningful patterns. The SVM model exhibited decent 

performance, scoring higher than K-NN, but still lagged behind our proposed method. 

This could be attributed to the limitations in SVM's ability to handle high-dimensional 

hyperspectral data and the requirement for manual feature engineering, which may limit 

its capacity to capture the complex feature relationships inherent in our dataset. Both the 

SAE and the 2D versions of the Resnet50 and DenseNet121 models posed moderate 

performances. Their lower scores, relative to our method, might be attributed to the use of 

2D convolutions, which are less capable of capturing the interplay between spatial and 

spectral features inherent in the hyperspectral cube. The 3D versions of Resnet50 and 

DenseNet121 showed an improvement over their 2D counterparts, reflecting the added 

value of considering the spectral dimension in the convolution process. Despite this, their 

performance still fell short compared to our proposed 3D-CNN model, further 

emphasizing the effectiveness of our specific design choices, such as the streamlined 

topology and the use of focal loss function for dealing with class imbalance. 

During our study, we have experimented numerous machine learning methods on our 

dataset in order to devise a robust classification model. We have presented the empirical 
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results for various classification methods including KNN, SVM, SAE, Resnet50 and 

Densenet121. We observed that the methods requiring engineered feature vectors 

including KNN and SVM performs worse than the automatic methods. Manual feature 

engineering essentially requires domain knowledge and an understanding of which 

features are relevant for the prediction task. Therefore, the selection and creation of these 

features are subjective and may not capture all relevant information. In high-dimensional 

data, such as hyperspectral images, the relationships between variables can be complex 

and non-linear. Attempting to manually define features in such a context is a challenging 

task that can easily lead to suboptimal results. This complexity is further amplified in the 

context of biological data, where interactions among features can be complex and not 

well-understood. This is why models that rely on manual feature engineering, such as 

KNN and SVM, may underperform compared to methods that automatically learn features 

from data, such as deep learning models. Deep learning models such as Resnet50 and 

DenseNet121 have exhibited lesser performance in our specific context. In fact, those 

models are known for their robust architecture and proven efficiency in generic image 

recognition tasks involving hundreds of classes. These models are developed to handle 

complex image recognition challenges, which implies their complexity is a necessary trait 

to solve a wide array of tasks. However, this complexity can be a disadvantage when 

applied to simpler or more specific problems, like classifying H&E stained tissue samples 

into either HCC or normal. The method we proposed in our study, on the contrary, is a 

streamlined and optimized model tailored specifically for discerning patterns in H&E 

stained tissue images. We invested significant effort in fine-tuning and experimenting with 

our architecture to ensure it is well-suited to the unique characteristics of tissue 

classification. This approach resulted in a network consisting of just four convolution 

layers, tailored for our specific task, outperforming the more complex architectures of 

Resnet50 and DenseNet121. Moreover, these deep network architectures are more 

susceptible to overfitting, especially when trained on smaller datasets like ours. 

Overfitting is a common problem in machine learning where a model learns the noise and 

detailed specifics in the training data to an extent that it negatively impacts its performance 

on new, unseen data. As our dataset is relatively small, a complex model might fit too well 

to the training data and fail to generalize the learnt features to unseen data, resulting in 

poorer performance. Hence, our model showed better results, demonstrating the 

importance of optimizing model complexity to align with the specificity and size of the 

task at hand. 
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CHAPTER 5TER 

 

CONCLUSION 

This study proposes a robust method for detecting HCC tumors using hyperspectral 

imaging and a custom deep-learning model. A biological tissue imaging system is devised 

by integrating a VNIR hyperspectral camera with a light microscopy device, which is 

employed to collect hyperspectral images of tumor and healthy liver tissues. A custom 

3D-CNN classification topology is designed to fully utilize the potential of HSI data. The 

topology includes four convolution layers with max-pooling and batch normalization 

layers between them to down-sample the data and reduce model complexity. The use of 

3D convolution layers enables both textural and spectral features to be leveraged in a 

single training pipeline. This way, we eliminate the need for separate feature extraction 

stage. The network topology is optimized by replacing the traditional cross-entropy cost 

function with the focal loss cost function, which significantly overcomes the class 

imbalance problem in the dataset. The proposed method is shown to be effective in 

detecting HCC tumors, and the results demonstrate the potential of hyperspectral imaging 

and deep learning in the field of biomedical imaging. 

A significant contribution of this research lies in the successful construction of a biological 

tissue image capture system within our laboratory environment. This system's design and 

implementation have enabled us to capture high-resolution hyperspectral images of 

biological tissues, substantially enhancing the quality of histopathological assessments. 

Hyperspectral imaging technique captures light across a broad spectrum, resulting in 

multidimensional, high-resolution images that reveal more detailed information about 

tissue structures. Consequently, the utilization of the hyperspectral data has the potential 

to improve diagnostic accuracy significantly. Furthermore, the system presents an 

affordable alternative to commercial systems that are often financially prohibitive for 

many research labs and medical institutions. Therefore, our system not only advances the 

field through enhanced imaging capabilities, but also broadens the potential user base for 

hyperspectral imaging in histopathological assessments by providing a more economically 

viable solution. This cost-effective approach opens doors for smaller or economically 

disadvantaged institutions to benefit from hyperspectral imaging's advanced capabilities, 

thus democratizing access to high-quality, detailed biological tissue imaging. 

The use of hyperspectral data in our research has played a pivotal role in enhancing the 

classification performance of our machine learning models. The vast majority of CAD 

studies rely on RGB data obtained using CCD or CMOS sensors [199-201]. However, our 

study employs a more detailed range of the electromagnetic spectrum. Specifically, we 

utilize a hyperspectral dataset that consists of 270 contiguous bands spanning from 400 to 

800 nm in the spectrum. In comparison, the RGB dataset only includes three individual 

bands at 630, 540, and 480 nm. With hyperspectral imaging, we are able to analyze the 
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chemical composition of the subject material in addition to conventional spatial attributes 

like size, shape, and texture. This abundance of spectral information presents a significant 

advantage as it allows for the capture of a more comprehensive representation of tissue 

samples, which in turn, contributes to a more accurate and precise classification.  

The hyperspectral cube is ideal for our classification task since it can capture the fine 

details of material properties as spectral signatures. Different from RGB dataset, the 

descriptive features along the spectral dimension can be effectively captured using a 3D 

convolution operation. Our supervised learner, based on 3D CNN is capable of capturing 

the complex relationships between the features in both spectral and spatial dimensions. 

Specifically, features such as corners, edges, and textures in the spatial plane can be 

associated with peaks, dips, slopes, and valleys in the spectral signatures of pixels. By 

adopting a 3D CNN approach, we were able to consolidate both spectral and spatial feature 

extraction into a single convolution operation. This is a major improvement from previous 

studies requiring separate steps for spectral and spatial feature extraction. Such an 

integrated approach not only streamlines the feature extraction process but also allows for 

the extraction of hybrid spectral-spatial features that better capture the complexities of 

hyperspectral data. One of the key advantages of our approach is that it eliminates the 

need for manual feature engineering or pre-processing steps, which are often time-

consuming and can introduce bias or inaccuracies. Instead, our method utilizes 3D 

convolutions that automatically learn the most discriminative features from the 

hyperspectral data. By feeding hyperspectral data directly into our 3D CNN model, we 

enable the model to learn directly from the spectral-spatial complexities of the tissue 

samples, thus ensuring a more accurate and robust representation of the data. Moreover, 

our method is characterized by a simpler network topology compared to general purpose 

image recognition CNN topologies. By adopting a streamlined CNN topology and 

incorporating 3D convolutions, our model is less complex and easier to train, yet capable 

of capturing the complex spectral-spatial interactions present in hyperspectral data. This 

not only reduces the computational resources required for model training but also makes 

the model less prone to overfitting, thus resulting in more reliable and generalizable 

results. 

With the help of the vast amount of information present in the hyperspectral cube, our 

deep learning model can create a strong classifier with its strong feature extraction 

capabilities. Additionally, we have observed that by subsampling the original 

hyperspectral dataset into lower dimension datasets, such as HSI-90, HSI-30, and HSI-10, 

compared to RGB dataset, we can improve classification accuracy by introducing more 

spectral bands to the model. This suggests that the deep learning model's predictive power 

can be boosted by utilizing more spectral bands in classification. In addition to using 

hyperspectral imaging, we explored the effectiveness of principal component analysis for 

reducing the dimensionality of our original hyperspectral dataset containing 270 bands. 

We generated two new datasets using PCA, one with nine principal components (PCA-9) 

and another with three principal components (PCA-3). The PCA method has the 

advantage of reducing data complexity and improving the signal-to-noise ratio, making it 

easier for the learner to converge. By operating 3D convolutions on PCA data, our learner 
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captures patterns across the different PCA bands as well as spatial patterns within each 

band, as coined by previous studies [202-206]. Our CNN models trained with PCA data 

showed lower classification accuracy than the CNN model trained with the original HSI 

dataset. The PCA-9 dataset, which had a maximum variance of 98.60%, performed almost 

as well as the HSI dataset. Considering the simplicity of PCA-9 compared to the original 

HSI dataset, PCA provides a cost-effective way to utilize hyperspectral data for our 

classification task. However, it's important to note that PCA, being a linear transformation 

technique, may not always capture the full complexity of the spectral signatures present 

in the hyperspectral data.  Furthermore, the PCA-3 dataset outperformed the RGB dataset, 

suggesting that compressing hyperspectral data into three bands contains more useful 

information for classifying tissue samples than RGB. Our experimental results 

demonstrate that the HSI dataset is more useful for accurate classification than its RGB 

and PCA counterparts.  

Class imbalance, where the number of samples in different classes are significantly 

disproportionate, is a common challenge in machine learning and particularly in medical 

imaging tasks. In our dataset, there are 54 tumor tissue samples and 6 healthy tissue 

samples. In other words, only 10% of the data belongs to the healthy class. Running a 

malformed classifier predicting tumor class for all the given samples would result in 90% 

accuracy for our dataset. In order to identify such anomalies in the classification 

performance we have utilized MCC metric in addition to traditional metrics such as 

accuracy, precision and recall. MCC considers all four values of the confusion matrix (true 

positives, false positives, true negatives, and false negatives) and generates a score that 

lies between -1 and 1. A value of +1 represents a perfect prediction, 0 indicates no better 

than random prediction, and -1 demonstrates total disagreement between prediction and 

the actual class. The reason MCC is particularly suited to our dataset is that it considers 

both under-predicted and over-predicted classes at the same time. In our case, 

classification errors often appeared as false positives, in fact, healthy tissues classified as 

tumor. In our work, we tackled the class imbalance problem effectively by utilizing the 

focal loss function instead of the conventional cross-entropy loss function. The focal loss 

function is specifically designed to increase the model's sensitivity to hard-to-classify 

instances. It does this by down-weighting the contribution of easy-to-classify examples 

and focusing more on the misclassified samples. This approach is particularly beneficial 

when dealing with imbalanced datasets, as it encourages the model to pay more attention 

to the underrepresented class that typically contains harder to classify instances. In 

contrast, the traditional cross-entropy loss function treats all errors equally, regardless of 

whether they come from majority or minority classes. This can result in a model that is 

biased towards the majority class and performs poorly on the minority class. The 

hyperparameters of the focal loss function, γ (focusing parameter) and α (weighting 

factor), are empirically optimized for each experiment configuration. It is worth noting 

that the γ parameter has a critical impact on the classification performance, while α has a 

minor effect on the results.  By using focal loss instead of cross-entropy loss, we were 

able to more effectively handle the class imbalance in our dataset, resulting in a robust 

learner that performs well across all classes. 
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Our work in HCC classification resonates with two comparable studies in the literature, 

even though with key differences in methodologies and results. One study [123] utilized 

RGB histopathological images to achieve HCC classification. The competitive study 

employed a custom CNN topology with ASPP blocks. The other study [126] was based 

on 30 bands hyperspectral imaging of bile duct tissues. The authors have proposed two 

distinct classification models based on two popular topologies (Resnet50 and Inceptionv3) 

and interval convolutions. We have implemented the competitive methods and run their 

algorithms on our own datasets. The empirical results confirm the superiority of our 

proposed method over the previous studies. In fact, 3D convolutions and focal loss 

function are the key elements in our methodology to achieve high accuracy and MCC 

scores. The competitive studies are lack of essential modules to deal with class imbalance. 

Furthermore, as the experimental results imply, their feature extraction layers (ASPP and 

interval convolution) are not functioning to collect sufficient descriptive features from the 

hyperspectral cube. 

Limitations 

Despite the promising results obtained from our proposed 3D-CNN classification model, 

our study has some limitations that need to be addressed. First, the dataset used in our 

study needs to be expanded by incorporating more tissue samples. By increasing the 

amount of data used during the training phase, we expect to obtain a classifier that is less 

susceptible to overfitting and has a greater ability to generalize. It is advisable to perform 

additional validation of our model using a larger tissue sample dataset collected from 

various laboratories and labeled by different pathologists. This approach would increase 

the variability of the dataset and enable the classification model to cover a larger area in 

the solution space. This diversification would better represent the broad spectrum of 

histopathological variations seen in real-world settings. 

The system we have developed has promising potential applications not only in aiding 

HCC diagnosis but also in several other areas of pathology. Given its ability to accurately 

classify tissue samples, it can be used to support pathologists during their examinations. 

By providing a quantitative, data-driven second opinion, our system could help reduce the 

risk of human error and facilitate more accurate diagnoses. Furthermore, our model could 

be an invaluable resource for training purposes. Medical students and early-career 

pathologists could use the system to learn about and familiarize themselves with the 

features of HCC and normal liver tissues. It can provide instant feedback, allowing users 

to self-correct and reinforce learning effectively. Similarly, the system could be integrated 

into the initial screening process. The ability of our model to analyze hyperspectral images 

and swiftly categorize them as 'normal' or 'tumor' could expedite the preliminary screening 

process. By identifying suspicious cases early on, the system could facilitate timely 

intervention and potentially improve patient outcomes. However, it should be noted that 

while our model can be a powerful tool, it is not intended to replace human expertise. 

Rather, it should be used to supplement and support the decision-making process, 

ultimately leading to better clinical outcomes. While our system can effectively 

differentiate between HCC and normal liver tissues based on hyperspectral images, it 
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currently does not have the ability to inspect other essential attributes that a trained 

pathologist would consider in a comprehensive diagnosis. For instance, the system is not 

capable of assessing features such as inflammation, necrosis, and the presence or condition 

of blood vessels. These elements are essential for a complete and accurate evaluation of 

liver tissues and are routinely considered by pathologists during examination. These 

limitations highlight the current confines of our system and underline the necessity of the 

human element in the pathology field. Trained pathologists have a solid understanding 

and expertise that encompasses a wider range of pathological indicators beyond the simple 

HCC versus normal tissue binary. As it stands, our system is a tool to assist and enhance 

the work of pathologists rather than a replacement. 

Future Work 

Our model's utility extends beyond its current application in classifying HCC and normal 

liver tissues. In fact, the methodologies we have developed could be broadly applicable to 

a variety of other tissue types such as lung, breast, brain, colon and cervix. The principles 

and methodologies that our study embodies have the potential to make significant 

contributions to the broader field of histopathology and cancer research, demonstrating 

the potential to transform diagnostic processes across a spectrum of tissue types and 

diseases.  

Generative Adversarial Networks (GANs), composed of two neural networks, a generator 

and a discriminator, can be used to generate synthetic images of pathological tissues, 

which can be valuable for augmenting our dataset and improving the robustness of our 

model. That is, GANs can be employed to generate synthetic hyperspectral images of 

tissue samples that closely represent real samples. This could help in overcoming the 

limitations posed by a shortage of certain types of tissue samples and lead to more robust 

and generalizable models [207-208]. In order to develop new image classification 

approaches within hyperspectral histopathology field, there are a few promising 

alternatives that we spot. For instance, the image classification task can be modelled as an 

object detection task, and the methods for identifying tumor regions from scene level 

images can be studied. For this purpose, You Only Look Once (YOLO) models can help 

to improve the speed and accuracy of histopathological assessments [209]. By identifying 

and isolating regions of interest within tissue samples, YOLO could significantly enhance 

the efficiency of our classification process. This is especially important in pathological 

analysis, where quick and accurate identification of cancerous regions can significantly 

improve patient prognosis. YOLO's real-time object detection capabilities could also aid 

in automated biopsy targeting, thereby increasing the precision of tissue sampling and 

reducing potential harm to patients. On the other hand, the incorporation of the attention 

mechanism into our computational model has the potential to enhance its performance by 

facilitating targeted processing of input tissue samples. This mechanism offers the model 

the capability to prioritize specific regions in the hyperspectral images, especially those 

regions bearing the most diagnostic relevance. Consequently, the overall effectiveness of 

our model can be improved as it is enabled to focus more on these informative and critical 

areas in the hyperspectral images, rather than processing the entire image uniformly. 
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Complementing the attention mechanism, Vision Transformers (ViT) present a promising 

technique in image classification tasks. ViT can effectively capture long-range 

dependencies within the hyperspectral cube by establishing correlations between both 

spatial and spectral features in a compact and efficient manner. The utilization of ViT in 

our dataset could thus pave the way for a more comprehensive analysis of hyperspectral 

images. By this way, the learner takes into account the interconnectedness of spatial and 

spectral features and the model's ability to differentiate between normal and diseased 

tissues will be streamlined. [210-211]. The self-attention mechanism, employed in ViT, 

provides a global view of the tissue sample, enabling the model to consider relationships 

and dependencies between distant pixels. Incorporating ViT into our methodology has the 

potential to enhance the depth of feature understanding, by integrating the spatial and 

spectral inter-dependencies that traditional CNNs might overlook. 
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APPENDICES 

 

Figure A1. Topology of 3D-CNN utilized for HSI data. 
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Figure A2. Topology of 3D-CNN utilized for Three-Channel data. 
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Figure A3. Topology of 2D-CNN utilized for HSI data. 
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