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ABSTRACT

PERSONALIZING TREATMENTS VIA CONTEXTUAL
MULTI-ARMED BANDITS BY IDENTIFYING
RELEVANCE

Cem Bulucu
M.S. in Electrical and Electronics Engineering
Advisor: Cem Tekin
August 2019

Personalized medicine offers specialized treatment options for individuals
which is vital as every patient is different. One-size-fits-all approaches are of-
ten not effective and most patients require personalized care when dealing with
various diseases like cancer, heart diseases or diabetes. As vast amounts of data
became available in medicine (and other fields including web-based recommender
systems and intelligent radio networks), online learning approaches are gaining
popularity due to their ability to learn fast in uncertain environments. Contex-
tual multi-armed bandit algorithms provide reliable sequential decision-making
options in such applications. In medical settings (also in other aforementioned
settings), data (contexts) and actions (arms) are often high-dimensional and per-
formances of traditional contextual multi-armed bandit approaches are almost
as bad as random selection, due to the curse of dimensionality. Fortunately, in
many cases the information relevant to the decision-making task does not depend
on all dimensions but rather depends on a small subset of dimensions, called the
relevant dimensions. In this thesis, we aim to provide personalized treatments for
patients sequentially arriving over time by using contextual multi-armed bandit
approaches when the expected rewards related to patient outcomes only vary on
a small subset of context and arm dimensions. For this purpose, first we make use
of the contextual multi-armed bandit with relevance learning (CMAB-RL) algo-
rithm which learns the relevance by employing a novel partitioning strategy on the
context-arm space and forming a set of candidate relevant dimension tuples. In
this model, the set of relevant patient traits are allowed to be different for differ-
ent bolus insulin dosages. Next, we consider an environment where the expected
reward function defined over the context-arm space is sampled from a Gaussian
process. For this setting, we propose an extension to the contextual Gaussian
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process upper confidence bound (CGP-UCB) algorithm, called CGP-UCB with
relevance learning (CGP-UCB-RL), that learns the relevance by integrating ker-
nels that allow weights to be associated with each dimension and optimizing
the negative log marginal likelihood. Then, we investigate the suitability of this
approach in the blood glucose regulation problem. Aside from applying both
algorithms to the bolus insulin administration problem, we also evaluate their

performance in synthetically generated environments as benchmarks.

Keywords: Online Learning, contextual multi-armed bandits, contextual Gaus-

sian process bandits, relevance learning, personalized medicine.



OZET

ILGI BELIRLEYEREK BAGLAMSAL COK KOLLU
HAYDUTLAR ILE TEDAVILERI KISISELLESTIRME

Cem Bulucu
Elektrik ve Elektronik Miihendisligi, Yiksek Lisans
Tez Danigmani: Cem Tekin
Agustos 2019

Kigisellegtirilmig tip bireyler icin 0zel tedavi segenekleri sunar, bu da her
hasta farkli oldugu icin hayati bir 6nem tagir. Herkese uymasi beklenen ortak
yaklagimlar genellikle etkili degildir ve ¢ogu hasta kanser, kalp hastaliklar1 ve
diyabet gibi cesitli hastaliklarda kigisellegtirilmis bakima ihtiya¢ duyar. Tipta
(aym zamanda ag-tabanh tavsiye sistemleri ve akill radyo aglar1 gibi diger alan-
larda) ¢ok miktarda verinin elde edilebilmesi ile ¢evrimigi 6grenme yontemleri
belirsiz ortamlarda hizli ogrenme yetenekleri nedeniyle popiilerlik kazanmak-
tadir. Bu tiir uygulamalarda baglamsal ¢ok kollu haydut algoritmalar: giivenilir
karar verme secenekleri sunar. Medikal uygulamalarda(ayrica yukarida belir-
tilen uygulamalarda), veriler (baglamlar) ve eylemler (kollar) genellikle yiiksek
boyutludur ve ¢cok boyutlulugun lanetinden dolay1 geleneksel baglamsal ¢ok kollu
haydut yontemlerinin performanslari neredeyse rasgele se¢im kadar koti olur.
Neyse ki, cogu zaman karar verme gorevi ile ilgili bilgiler tiim boyutlara bagh
degildir, bunun yerine boyutlarin az sayida eleman iceren ve ilgili boyutlar adi
verilen bir alt kiimesine baghdir. Bu tezde, hastalarin sonuclarina iligkin bekle-
nen oOdiiller baglam ve kol boyutlarinin yalmzca kiigiik bir alt kiimesi tizerinde
degisiklik gosterdiginde baglamsal ¢ok kollu haydut yaklagimlar: kullanarak za-
man icinde ardigik olarak gelen hastalar icin kigisellestirilmig tedaviler saglamak
hedeflenmistir. Bu amag icin, ilk olarak baglam-kol uzay: tizerinde yeni bir
boliimlendirme stratejisi kullanarak ve bir aday ilgili boyut degiskenler grubu
olugturarak ilgi 6grenen ilgi 6grenmeli baglamsal ¢ok kollu haydut(contextual
multi-armed bandit with relevance learning veya kisaca CMAB-RL) algoritmasi
kullanilmigtir. Bu modelde, ilgili hasta ozellikleri kiimesinin farkli bolus in-
sulin dozlar1 i¢in farkli olmasina izin verilen bir ortami ele alinmistir. Daha

sonra, baglam-kol uzay1 tlizerinde tanimlanan beklenen o6dil fonksiyonunun bir
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Gauss stirecinden ¢rneklendigi bir ortam ele alinmigtir. Bu ortam igin, baglamsal
Gauss siireci tist gliven siiri(contextual Gaussian process upper confidence bound
veya kisaca CGP-UCB) algorithmasinin bir uzantisi olan ve ilgi 6grenmeyi her
boyut icin bir agirlik atama saglayan ¢ekirdek fonksiyonlarini entegre ederek ve
negatif logaritmik marjinal olabilirligi eniyileyerek 6grenen ilgi ogrenmeli CGP-
UCB(CGP-UCB with relevance learning veya kisaca CGP-UCB-RL) algoritmasi
onerilmistir. Sonrasinda, bu yaklasimin kan sekeri diizenlemesi problemine uy-
gunlugu incelenmistir. Bolus insulin diizenlenmesi problemine uygulanmalarinin
yaninda, iki algoritmanin performanslari referans olmasi igin sentetik olarak

yaratilmig ortamlarda degerlendirilmigtir.

Anahtar sozcikler: Cevrimici 6grenme, baglamsal ¢cok kollu haydutlar, baglamsal

Gauss siireci haydutlar, ilgi 6grenme, kisisellesmis tip.
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Chapter 1

Introduction

Personalized medicine is a very important research area as the physiological prop-
erties of each individual is different and drugs or treatments often have varying
effects on different people. In general, the personal medical histories, genetic
vulnerabilities and ongoing treatments are different for distinct people. In fact,
many people do not respond well to their first offered drug in treatments and it
is argued that the reason behind this is due to their genetic heritage [1, 2]. This
inspires researchers to develop adaptive and personalized strategies to optimize
effectiveness. Although the concept is not new, it has gained popularity in re-
cent years and welcomed in general for which the precision medicine initiative
can be given [3] as an example, which was generally supported. Personalized
medicine allowed improvements in the treatments of diseases cancer and HIV as
targeted treatments are utilized that specifically addresses the root cause, as well
as decreasing the occurrence of side effects. Moreover, the use of personalized
medicine provides a better understanding for a wide range of diseases including
cancer, asthma and sensory neuropathy by analyzing the symptoms, how the
disease progresses and how different treatments work on different demographics
[4]. In addition to treatment options, personalized healthcare also provides dis-
ease prevention and early diagnosis, as due to their medical histories and genetic
heritage people may be prone to certain diseases. Identification of the proneness

of patients helps in managing treatments accordingly or tackling problems they



may have before the problems surface.

In diabetes patients, determination of relevant patient traits is vital in order to
provide individual based solutions. Regulation of blood glucose needs to be han-
dled with utmost care since low blood glucose(hypoglycemia) can cause seizures,
loss of consciousness and even death whereas high blood glucose(hyperglycemia)
can cause skin infections, nerve damage and damage to eyes, blood vessels and
kidneys. Different individuals should be subject to different insulin treatments
to prevent these complications, as one-size-fits-all dosages may be too high or
too low for distinct people, resulting in hypoglycemia or hyperglycemia. In this
thesis, we aim to tackle this problem through the use of contextual multi-armed
bandit approaches where we aim to use patient information as contexts and bolus

insulin dosage as arms.

Like medical diagnosis and treatment recommendation, many real-world tasks
also require taking actions in uncertain environments, requiring the learner to
base its decisions on observations on the current information about the environ-
ment and its past experiences about similar decisions. These tasks are often
associated with some notion of a reward, which is revealed after taking the ac-
tion. The learner is then expected to update its decisions according to the reward
and achieve higher rewards in upcoming decisions. In this thesis, our blood glu-
cose regulation models consider the current information about the patient(such
as current blood glucose levels, current basal insulin treatment, carbohydrate in-
take, exercise), recommend a bolus insulin dosage. The rewards are generated

according to the effect of the decision on the blood glucose levels of the patient.

Reinforcement learning is an area of machine learning which models this
decision-making process of making observations about the state of the environ-
ment, taking action, receiving reward and updating accordingly. The state of the
environment changes after the action is taken and the reward is associated with
this transition. In reinforcement learning models, the learner interacts with the
environment repeatedly in discrete time steps, called rounds. The objective of
the learner is to maximize its cumulative reward over all rounds. As this set-

ting is very well suited for the blood glucose regulation task we aim to utilize



multi-armed bandit approaches, which will be introduced next.

Modeling the sequential decision-making problem with Multi-Armed Ban-
dits(MABs) is common, as it provides a simple and structured way to model
the problem. The importance of such a modeling for online learning tasks in
uncertain environments is due to the fact that, in general, no data about the
environment is available in advance. Thus, in such tasks the decision-maker is
required to quickly learn about the environment and at the same time acquire
high rewards. MABs represent a classical reinforcement learning problem which
demonstrates the exploration-exploitation trade-off. The original MAB problem
involves sequentially determining which slot machine to play in each round, in
order to maximize the cumulative monetary gain over a set of rounds. The slot
machine is also synonymously called ”one-armed bandit” which gives rise to the
term ”arm” (in some works referred to as "action”) in literature. Intuitively, this
problem translates into a variety of applications, which we will provide exam-
ples of after explaining the generic framework for MAB. MABs can be used to
model problems where a reward notion exists and the objective is to sequentially
make the decisions that maximize the cumulative reward over all rounds. In
MAB problem setting, the learner does not know the underlying reward distri-
butions of arms and as feedback, the learner is revealed a noisy reward sampled
from the reward distribution associated with the selected arm in each round. As
the reward distributions are unknown, the learner has to utilize the information
provided by its previous selections to optimize its decisions. Any learner then
faces the aforementioned exploration-exploitation trade-off, since if the learner
possesses a greedy approach that only selects seemingly best arm, then it misses
the opportunity to give other arms a "fair” chance. For example, one arm may
have a high sample mean reward when it is played only a few times, however,
it may have a low true mean reward in which case the algorithm would be ex-
ploiting a sub-optimal arm. Conversely, an optimal arm may receive low rewards
in a few rounds due to randomness, but since it would not be explored further,
one may not be able to discover this seeming sub-optimal but truly optimal arm.
On the other hand, exploring too much would simply mean unnecessarily select-

ing sub-optimal arms believing that they may be optimal and end up receiving



nearly equal amounts of high and low rewards. On the average such a learner
performs poorly as the learner fails to take advantage of arms with high rewards,
in limited amount of time. MAB model addresses this trade-off directly, and
hence attracted much attention. One extension to the classical MAB model is
the contextual MAB(CMAB) model, which allows the model to make use of side
information about the environment. In each round, the learner observes a context
from the context set and selects an arm from the arm set. The learner is required
to optimize arm selection according to previous context observations, arm selec-
tions and rewards as well as the recently received context, because the expected
reward of the arms depend on the current context. The applications of MAB and
CMAB models include but not limited to hyper-parameter optimization in neural
networks [5], intelligent radio networks [6], personalized content [7] and medicine
8, 9].

The performance of MAB and CMAB models are often measured by a metric
called regret, which is essentially the difference between the performance of the
learner and a strategy (often called an ”oracle”) that makes the optimal arm
selection in every round. Since the oracle is the optimal strategy, minimizing

regret is equivalent to maximizing cumulative reward.

Working with high dimensional data commonly causes problems for all ma-
chine learning tasks which is an infamous phenomenon, called the curse of di-
mensionality. In supervised learning, it leads to over-fitting as the model fails to
identify actually meaningful features out of a vast set of variables. In unsuper-
vised learning, similarity metrics fail to group similar instances together, since all
samples appear to be dissimilar as the volume of the space increases rapidly with

dimensionality.

High dimensionality have similar effects on CMAB problems. When the con-
text and arm sets are finite, the effect of the high dimensionality often do not
pose problems since commonly the cardinality of the context and arm sets are
negligible compared to the number of rounds and the learner can observe enough
samples from each context and arm. In a more general setting however, contexts

and arms can be infinitely many and hence prevent the learner from observing

4



each context or selecting each arm even once. In such a setting the context and
arm sets are modeled as multi-dimensional sets. Regret depends exponentially
on the dimensionalities of these sets [10] and with increasing number of dimen-
sions, the regret converges to a linear function of time. As linear regret is the
worst that can be achieved in CMAB setting (for example, a strategy that makes
random arm selections achieves linear regret), reducing the effect of dimension-
ality is of vital importance. Fortunately, in most cases, many of the context and
arm dimensions have negligible to no effect on the reward distributions, which
are referred to as "irrelevant” hereafter. In this thesis, we consider the CMAB
problem in high-dimensional settings where the reward depends on only a subset
of context and arm dimensions and we aim to exploit this information to provide
personalized treatment in blood glucose regulation of type 1 diabetes mellitus

patients.

We study this setting from two perspectives. First, we consider the setting
given in [11] which is a classical CMAB setting where an upper bound on the
number relevant dimensions for context and arm sets are available a priori to
the learner and the set of relevant context dimensions are allowed to be different
for different arms. As the number of possible context-arm pairs is infinite, any
discretization technique requires some notion of a similarity constraint defined on
the reward distributions and the context-arm pairs. This assumption is needed
in order to ensure that expected rewards in a discretized region does not vary
largely and estimations made for this region are accurate for most of the region.
This sort of constraint on the relation between the expected rewards and the
context-arm pairs is also needed in general to achieve sublinear regret. A nice
example why this sort of assumption is needed is as follows. Consider a setting
where, for all contexts, all arms have 0 expected reward except for a single arm
that has expected reward of 1, which makes it optimal. Then any algorithm
needs to identify this optimal arm in order to minimize regret. In finite amount
of time, identifying the optimal arm in a set of infinitely many arms without any
information gain from other arm selections is not possible, as the learner needs to

play the exact optimal arm to realize its presence. Hence, in [11], the commonly



used Lipschitz continuity([12], [13]) is also assumed. Lipschitz continuity assump-
tion states that the variation of expected rewards of any two context-arm pairs
is bounded by the distance between the said context-arm pairs times a constant,
called the Lipschitz constant. For this problem, a novel partitioning technique is
proposed in [11], which discretizes subsets of dimensions of the context-arm space
instead of naively applying discretization on the context-arm space. Then, it uses
comparisons of the variation between the sample mean rewards of partitions to
determine an estimated set of relevant context dimensions for each arm. The
arm selection is done via employing optimism in the face of uncertainty in an
effort to balance the exploration-exploitation trade-off. Optimism in the face of
uncertainty can be explained as building optimistic indices for arms and selecting
the arm which has the highest index when we lack the knowledge of true arm re-
wards. [11] adopts the classical regret definition as the performance metric. The
performance of the proposed method is evaluated in experiment environments
created synthetically and we apply it to the management of bolus insulin dosage

in personalized treatments of diabetes patients.

Secondly, we consider the Bayesian version of the CMAB problem. In this set-
ting, the underlying expected reward function is assumed to be sampled from a
Gaussian process prior. We further assume that kernel function of the Gaussian
process prior is such that any function sample is constant along some dimen-
sions, yielding them irrelevant. For this problem, we propose an extension to
the contextual Gaussian process upper confidence bound algorithm (CGP-UCB),
originally introduced in [14]. Briefly, our extension is to consider kernels that
can ignore certain dimensions(a discrete version of the automatic relevance de-
termination model [15]), hence any estimate made with such kernels presume that
expected reward is constant along ignored dimensions. During run-time, nega-
tive log marginal likelihood is optimized to determine which dimensions should be
ignored based on the past context-arm-reward triplets. After the relevant dimen-
sions are estimated, the UCBs of arms are estimated using the kernel associated
with the estimated relevant dimensions and finally the arm with the highest UCB
is selected. Again, we use the classical notion of regret and cumulative rewards

as performance metrics. The comparison between CGP-UCB and our extension



is examined in settings with irrelevant context and arm dimensions, specifically
in a synthetically created problem instance and in a problem instance which is

based on real-world medical dataset collected from diabetes patients.

1.1 Owur Contributions

The summary of contributions of this thesis are given below:

e In personalizing blood glucose control via contextual multi-armed bandits

by identifying relevance;

— We propose a way to integrate CMAB decision-making into blood
glucose regulation of type 1 diabetes mellitus patients and show how

data collected previously can be utilized in doing so.

— We use CMAB-RL algorithm given in [11], an extension of HOO algo-
rithm given in [16] and the IUP algorithm given in [9] to evaluate how
different CMAB algorithms measure in bolus insulin administration
task.

— We also provide a comparison of these algorithms in a synthetic setting

as a benchmark.
e In contextual Gaussian process bandit problem with relevance learning;

— To the best of our knowledge, this work is the first to address relevance
learning in a contextual Gaussian process bandit setting with infinitely

many contexts and arms.

— We propose contextual Gaussian process bandit upper confidence
bound algorithm with relevance learning (CGP-UCB-RL), which does
not require a priori information about the upper bounds on the number

of relevant context and arm dimensions.

— We compare the performance of CGP-UCB-RL with CGP-UCB nu-

merically in a synthetic environment.
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— We also investigate how suitable CGP-UCB-RL and CGP-UCB are

for the bolus insulin administration task.

1.2 Organization of the Thesis

The organization of the thesis is as follows. In Chapter 2, we review the liter-
ature on MABs, CMABs, feature selection, personalized medicine and relevance
learning in MABs and CMABs. Chapter 3 contains contextual multi-armed ban-
dit problem with relevance learning given in [11] and our experiments about the
personalized treatment using CMAB-RL and two other approaches. In Section
3.1, we give problem formulation. In Section 3.2, CMAB-RL algorithm is de-
scribed including notes about the memory requirements as well as computational
complexity and finally, in Section 3.3 we provide the illustrative experimental
results on how CMAB-RL can be utilized for personalized treatment of diabetes
patients. In Chapter 4, we introduce contextual Gaussian process bandit problem
with relevance learning, with formal problem definition on Section 4.1, introduc-
tion of CGP-UCB-RL on Section 4.2 and numerical results about CGP-UCB-RL
on Section 4.3. Lastly, Chapter 5 includes ideas for future work and concludes
the thesis.



Chapter 2

Literature Review

In this chapter, we provide a review of literature on works that study MABs in
various settings. Specifically, in Section 2.1 we present work on non-contextual
bandits. Section 2.2 includes studies on contextual multi-armed bandits. Later,
in Section 2.3, we discuss feature selection in offline and online settings. Section
2.4 contains work specifically on relevance learning in the non-contextual and
contextual MAB settings. Finally, literature review on machine learning meth-
ods for medicinal applications is given in 2.5. A summary of this section and

comparison of our work with the prior art is given in Table 2.1.

2.1 Non-contextual Multi-Armed Bandit

The earlier studies on MAB problems consider only a finite set of K arms, as
introduced in [23], where the learner selects a single arm in each round and ob-
serves a noisy reward sampled from the reward distribution of the selected arm.
This study shows that O(logT) is a lower bound on the regret up to a constant
that is determined by the Kullback-Leibler divergence between the distributions
of the optimal arm and the suboptimal arms. They also develop index policies

that asymptotically match this lower bound. In [24], the aforementioned lower



Table 2.1: Summary of Related Work

Bandit Infinite Gaussian Relevance
: Contextual process .
algorithm arm set . learning
prior
UCBL1 [17] No No No No
HOO [16] No Yes No No
GP-UCB [18] No Yes Yes No
Contextual
Zooming Yes Yes No No
Algorithm [12]
CGP-UCB [14] Yes Yes Yes No
Algorithm 3 [19] Yes Yes Yes No
SI-BO [20] No Yes Yes Yes
CAB [21] No Yes No Yes
RELEAF [22] Yes No No Yes
CMAB-RL [11] Yes Yes No Yes
CGP-UCB-RL(our work) Yes Yes Yes Yes

bound in matched by establishing index policies whose dependence on rewards
of arms are only via their sample means. In a finite time setting, upper con-
fidence bound(UCB) based index computation which only utilizes the current
round number, sample mean rewards and selection counts for each arm is pro-
posed in [17] achieving logarithmic regret. There are other works that study this
setting, including [25] which achieves tighter bounds by using Kullback-Liebler
divergence based UCB indices.

The problem is extended to infinite arms in many works as well, such as [26]
which primarily considers one-dimensional continuum-armed bandit problem. In
[26], the proposed algorithm divides the overall horizon into epochs where each
epoch is twice as long the previous one. The arm space is partitioned into finer
and finer grids with each epoch and in each epoch, an algorithm designed for a
finite armed bandit setting is run. In [16], a more general setting is considered

where the arms are allowed to be multi-dimensional. The hierarchical optimistic
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optimization strategy builds non-uniform partitions structured as a binary tree
and increases the granularity of the partitioning in regions where it believes to
contain higher rewards, which in return enables it to identify the optimal arm with
small discretization error. In continuum-armed problems, a notion of similarity is
required to achieve sublinear regret. For example, in [26] Lipschitz continuity and
in [16] a variant of Lipschitz continuity, which is called weak Lipschitz property,

is assumed.

Another work, [18], assumes that the reward surface is a sample from a Gaus-
sian process prior and utilizes Bayesian optimization to construct UCB bounds
via the posterior distribution of the expected reward surface after observing sam-

ples.

2.2 Contextual Multi-Armed Bandit

In contextual MAB, the learner observes a context vector at the beginning of a
round and has to shape its arm selection based on this context, as the expected
reward of arms changes with different contexts. In general, the context set is
considered to contain an infinite number of elements, whereas arm set is consid-
ered to have either finite or infinite number of elements in different studies. In
CMAB setting, similar to the MAB setting with infinite number of arms, one re-
quires further assumptions on the expected rewards and context-arm pairs. The
studies in CMAB can be categorized into three main groups in terms of these

assumptions.

First category includes the works which assume that the expected reward of
an arm is given by a linear combination of elements of context and the arm.
Although this model seems to consider a restricted set of CMAB problems, al-
gorithms that adopt this model work well in practice and provide regret bounds
with low dependence on dimensionality. LinUCB [7], which provides empirical
results, and its modified version SupLinUCB [27], in which a theoretical analysis

is given, are examples that adopt the linearity assumption. In [28], a variant of
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the aforementioned works that makes use of kernel functions is proposed. This
method achieves similar regret to [27] depending on the effective dimensionality
of data instead of the total dimensionality. Effective dimensionality is a rough
measure of number of dimensions in the reproducing kernel Hilbert space that
data mostly resides in. Markedly, in [29], a better regret analysis is given through

the use of more refined confidence sets.

The second category targets a more general set of CMAB problems. In general,
the assumption is that the expected rewards associated with every context-arm
pair form a Lipschitz continuous function with respect to the distances between
contexts-arm pairs. In this setting, no statistical assumptions are made on context
arrivals and the expected reward function is unknown to the learner but fixed. In
[10], Query-Ad-Clustering algorithm that partitions the context space into subsets
is proposed, where the model considers finitely many arms. The regret of Query-
Ad-Clustering algorithm depends on the covering dimension of the context space,
which is d for the d-dimensional Euclidean space. In the continuous context-
arm space setting, Contextual Zooming Algorithm in [12] adaptively partitions
the joint context-arm space, creating smaller sized sets around the high reward
areas. For the Contextual Zooming Algorithm, a regret bound that depends on
the zooming dimension of the context-arm space is derived, where the zooming
dimension is determined by the size of near-optimal arm set. The problem is
also considered in the Bayesian setting by [14] and [19], which assumes that
the expected reward function is drawn from a Gaussian process prior. While
CGP-UCB algorithm in [14] extends the work in [18] to the contextual setting
intuitively, the work in [19] is inspired by the adaptive partitioning strategy given
in [16].

Contexts and arm rewards are assumed to be jointly sampled from a fixed
distribution in the last category. The studies in [30], [31] and [32] provide regret
bounds that do not depend on the dimensionality of the context set in a setting

with finitely many arms.
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2.3 Feature Selection

The feature selection literature can be grouped into three as filter, wrapper and
embedded approaches. Filter methods perform feature selection according to
metrics such as the correlation coefficient or the mutual information of a feature
with a target variable(class labels or target regression values). Wrapper methods
work with a learning model, such as a classifier or a regression model, and selects
the features according to the model’s feedback. In embedded methods, feature

selection is carried out simultaneously in the training process of the model.

As examples for the embedded approaches, [33] is a very famous paper that
introduces LASSO regularization and the work in [34] utilizes regularized trees
in order to perform feature selection. In [35], the model uses a modified objective

function that penalizes the involvement of a feature.

As an example of wrapper methods, in [36], an iterative algorithm that removes
features with the smallest ranking is proposed, with the ranks being calculated
according to the feedback of a classifier. The help of a genetic algorithm is used
in [37] to select features. [38] proposes two methods, namely SFFS and SBFS, in
which the features are included and excluded according to their effect on the loss

function, which can typically be the loss function of a classifier.

The filter methods do not make use of a classifier, as an example the weighting
procedure in [39] can be given. In [40], an information-theoretic approach for de-
termination of relevant features is given. [41] proposes a gradient based approach
that looks to exploit the best of both worlds, aiming to merge the precision of

wrapper methods with the speed of filter methods.

Apart from the above, there are papers that consider an online setting where
the features are revealed sequentially. Generally filter methods are considered
due to speed and compatibility in these settings. The methods given in [42], [43]

and [44] can be considered as examples for this setting.
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Even though there are plenty of feature selection methods in literature, unfor-
tunately most of them can not be utilized in CMAB problems because in CMAB
problems the aim is to maximize the cumulative reward but the aforementioned
literature does not address this objective. We do, however, employ a version of
the automatic relevance determination method given in [15] as part of our re-
search in CGP-UCB-RL. This method allows different weights to be assigned to
each feature and measure their relevance via these weights. In this sense, this
method is similar to [39]. The optimal weights needs to be calculated according

to a non-convex optimization on the negative log marginal likelihood.

2.4 Relevance Learning in Bandits

This section in literature review includes specific work on relevance learning in
non-contextual and contextual MAB problems. Although not many sources are
available in this area, there is a handful of important studies. First we consider
non-contextual settings. In [21], a discretization strategy which cleverly partitions
the arm space so that whatever arm is played the discretization error in relevant
dimensions are small is proposed. This way [21] enjoys a regret bound with the
time order that depends on the dimensionality of the relevant arm subspace,
rather than the whole dimensionality of the arm space. Also in the Bayesian
version of the CMAB problem, [20] proposes a model where the expected reward
function essentially lives on a low-dimensional subspace of the original arm space
and the transformation from the arm space to the low-dimensional subspace is
given by a linear transformation. The proposed SI-BO algorithm first purely
explores the arm space in order to learn the transformation matrix, then it uses
the GP-UCB approach, given in [18], on the transformed space. These methods
are not applicable in our setting as they do not consider the side information in

the form of contexts.

Next we investigate the contextual models in relevance learning. In [45], a
setting with finitely many arms and contexts is considered, whereas we consider

sets for infinitely many contexts and arms. The proposed method determines
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the relevant context dimensions with the use of conditional probabilities. The
last work we consider is the RELEAF algorithm given in [22]. RELEAF adopts
the Lipschitz continuity assumption and requires an upper bound on the number
of relevant context dimensions. This approach is the closest work to [11] in the
sense that it also creates a candidate set of relevant context dimensions in a similar
way. Different from [11], it adaptively partitions the context space, their regret
definition also considers the cost of observing rewards and most importantly, it
diverges from [11] as it considers a finite set of arms whereas in [11] an infinite

number of arms is considered.

2.5 Machine Learning for Personalized Medicine

The final section in literature review contains work on personalized medicine and

machine learning methods in medicine in general.

In [46], C-Path method which analyzes cancer images and predicts prognosis
is given and an analysis of morphological features in terms their relevance to the
task is included. [47] and [48] uses deep learning and XGBoost methods, respec-
tively, to predict blood glucose levels of patients. Although their methods do not
directly come up with recommendations, their models can be used with various
inputs to recommend treatments for different patients. In [49], the diagnosis of
ischaemic heart disease using various machine learning approaches is considered.
In [50], a comprehensive study with many different machine learning approaches
is given for the heart failure subtype classification problem. In [51], a method
that utilizes similarities between different patients and drugs to tackle the prob-
lem of personalized medicine is given. In [52], the DE method which discovers the
relevant patient traits and utilizes them in making accurate diagnosis is proposed.
They consider the case where for different treatments, different patient traits can
be relevant. In [8], the infinite horizon Bayesian Bernoulli MAB and its finite
horizon variant are used in the design and analysis of clinical trials. Another
study is conducted on breast cancer diagnosis in [9], where an ensemble learning

method called Hedged Bandits is proposed. Other than treatments of diseases
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and diagnosis, [53] focuses on when patients should be admitted to the ICU by

constructing personalized risk scores.
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Chapter 3

Personalizing Blood Glucose

Control via Contextual
Multi-Armed Bandits by
Identifying Relevance

In this chapter, we study how CMAB algorithms can be applied to the task of
blood glucose regulation of diabetes patient via the optimization of bolus insulin
dosage. We consider two approaches that do not take relevance information into
account and the CMAB-RL [11] approach that considers relevance information.
For completeness, we provide problem formulation and algorithm description for
CMAB-RL in Sections 3.1 and 3.2, respectively. In Section 3.3, the evaluation of
CMAB-RL and other approaches in personalized treatment is given. This section
also includes a synthetic setup which allows us to investigate the performances

of these algorithms outside of the scope of personalized treatment.
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3.1 Problem Definition

In [11], the sequential decision-making problem is considered, where in each round
t € {1,2,...}, the learner observes a d,-dimensional context x(t) € X where
X = [0,1]%. Afterwards, it chooses a d,-dimensional arm a(t) from A = [0, 1]%.
Let F := X x A denote the set of context-arm pairs and p,(z) denote the expected
reward of a context-arm pair (x,a) € F. The random reward r(t) is generated
according to the context and arm selection in the given round, specifically given
by r(t) = paw(x(t)) + K(t). x(t) is the noise process which is conditionally
1-sub-Gaussian hence, VA € R, it satisfies

B[eM® | a1y, 214, k14-1] < exp(X?/2)
where for b € {a,x, K}, by = (b(1),...b(t)).

The set of arm dimensions is denoted with D, = {1,...,d,} and the |z|-
dimensional subspace of A is denoted with A, := [0, 1]*!, for any z C D,. Sim-
ilarly, the |z|-dimensional subarm is denoted using a, € A,. An arm a € A can
be represented as an union of two components a = {a,a, } where z C D, and
z' C D, \ z. In this setting, it is assumed that for fixed z € X', expected reward
e () is constant along the irrelevant arm dimensions. In order to define this
behaviour of the expected reward function mathematically, let ¢ C D, denote
the set of relevant arm dimensions. Then, ,u{az,apa\z}(w) = Ji{a, ’aDa\z}(x), for all

z2CD,\¢c, ay,d, € Ay, ap,\» € Ap,\» and z € X, is assumed.

Likewise, the set of context dimensions is denoted with D, = {1,...,d,}

z
#l for any

and the |z|-dimensional subspace of X' is denoted with X, = [0, 1]
z C D,. Also, the |z|-dimensional subcontext is denoted using z, € X,. A
context x € X can also be represented as a union of two components z = {x,, ./}
where z C D, and 2’ C D,\z. It is assumed that for fixed a € A, expected reward
to(z) only changes along the relevant context dimensions for arm a. The set of
relevant context dimensions may correspond to a different subset of dimensions for
different arms, hence the set of relevant context dimensions is defined as a function

of an arm. More formally, let ¢, denote the subset of D, that contains the relevant
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context dimensions for any a € A. Then, it is assumed that j,({2s, 2p,\2}) =

pa({2%, op,\~}) holds for all a € A, 2 C D, \ ¢,, x., 2, € X, and 2p,\» € Xp,\».

The optimal arm for a context x is defined as the arm that has the maxi-
mum expected reward given x, a*(z) = arg max,. 4 fta(x). In CMAB problems a
commonly considered performance metric is the contextual regret(see [12], [27]),

given as

T

Reg(T) = 3 prap (£(6)) — D pragy ((1)).

t=1

which is also adopted in this work. Minimizing Reg(7’) is equivalent to max-
imizing the expected cumulative reward over 7' rounds as Reg(7') essentially
compares the expected cumulative reward of the learner against the best possible

policy given a sequence of T' contexts.

Unfortunately, since there are infinitely many arms and contexts, learning the
optimal arm for each context is impossible. To solve this problem, a similarity
structure is often assumed on expected reward function with respect to the set of
context-arm pairs [12]. A modified version of this Lipschitz continuity assumption
is utilized, which establishes a bound on the variation of the expected reward

function between any two context-arm pairs in the relevant dimensions.
Assumption 1. 3L > 0 such that Va,a' € A and x, 2’ € X, we have
|Ha(2) = par (2)] < L([|le, — e, Il + llac — acll)

where ||.|| represents the Euclidean norm.

Although Assumption 1, is stated according to the relevant context dimensions

¢, of arm a, notice that since it is valid for all a,a’ € A it also implies

() = prar ()| < L([|e,, = e, || + llae — acll)-

In this work, it is assumed that Lipschitz constant L is known by the learner,
whereas () is not. Furthermore, let d, = max,c4 |c,| and d, = |¢| denote

the true number of relevant context and arm dimensions. It is assumed that the
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upper bounds on the number of relevant context and arm dimensions, d, and
d,, are known and satisfy d, < d, and d, < d,. When operating, CMAB-RL
partitioning strategy requires partitions where 2d, dimensions are divided(see
Section 3.2), 2d, < d, is also needed. Overall the assumptions regarding the

relevant number of dimensions can be summarized as

1<d, <d. <d./2and 1<d, <dy <d,.

3.2 Contextual Multi-Armed Bandit with Rel-
evance Learning Algorithm (CMAB-RL)

The pseudo-code for the CMAB-RL algorithm is given in Algorithms 1 and 2.
In a nutshell, the CMAB-RL algorithm creates uniform partitions on 2d, and
d, dimensional subspaces of the context-arm space and forms a set of candidate
dimensions that it regards to contain the relevant dimensions. Each set in the par-
titions uses the past contexts that arrived and arms that are selected to estimate

the expected reward function.

In order to explain how CMAB-RL operates in detail, further notation needs
to be introduced. Let p(S) denote the power set of a set S and V! = {v €
o(D,) : |v] =1} and V! = {v € p(D,) : |v| = I} denote the set of all I-
tuples of context and arm dimensions for any [ € Z%, respectively. Also let
Vi(w) = {v' € p(D,): |v'|=1vCv'} forvCD,andl € {|v|,|v|+1,...,d.}.

In other words, for any w € V!(v), we have the subset relation v C w.

CMAB-RL takes the context set X, the arm set A, the total number of
rounds(horizon) T, the Lipschitz constant L given in Assumption 1, an inte-

ger upper bound on the number of relevant arm dimensions d, < d, and an

L Although a finite horizon T is needed as an input, CMAB algorithms can be run on infinite
horizons by employing the well known doubling trick. The doubling trick involves setting
exponentially increasing intervals one after another, typically as T' = 2T. The doubling trick
allows bandit algorithms designed for finite horizons to enjoy similar performance in an infinite
horizon setup as in the finite horizon setup.
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Algorithm 1 CMAB-RL
1: Input: X, A, T,L,d,,d, o
2: Initialization: Set m = [T/ (2+2detda)]
(C(X),Y) = Generate(X, A, d,,d,, m) B
Set flyp, (0) = 0, Nyp, (0) = 0 for all y € Y, w € Vi%, pyy € Py

3: while 1 <t <T do -
4:  Observe z(t) and for each w € V4= find py,(t) € Py, that z(t) belongs to
5. Compute R,(t) for all y € Y as given in (3.1)
6: forye )Y do
A if R,(t) =0 then
8: Randomly select ¢,(t) from Ve
9: else
10: For each v € R,(t), calculate o7 ,(t) = MAX, )2 () |fiy.w(t) —
() | 2
11: Set €,(t) = argmin,eg, ) 0y (1)
12: end if
T Ay ®Nyw(®)
L2y (t) | wevide ey b))
13: Calculate f1,""" (t) = j’z Yoo
weVv2de (& (1)
14: Determine w, (t) = arg max u, o (t)

w’EV%EI
15:  end for A
16:  Select y(t) = arg max,y pgr® (t) + Sy, 1) (t)
17:  Update estimates and the counters given for all w € V2=
18: end while

integer upper bound on the number of relevant context dimensions d, < d,/2 as

inputs. It sets m = (Tl/(2+28w+aa)w.

During initialization CMAB-RL utilizes the similarity constraint given in As-
sumption 1, which assures context-arm pairs that are close to each other in F to
have similar expected rewards and discretizes X and A. However instead of doing
the partitioning naively on all dimensions it creates partitions on the subsets of
the context and arm spaces according to the upper bounds on the number of
relevant context and arm dimensions as irrelevant dimensions need not be par-
titioned since the expected reward does not change along irrelevant dimensions.
An example of how an arm space with d, = 2 and d, = 1 would be discretized
is given in Fig. 3.1. Expected reward function being constant along one of the

dimensions means that the optimal arm is a line along the irrelevant dimension
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Algorithm 2 Generate

1: Input: X, A, dy, dy,m
Create Z; := {[0, =], (&, 2], ...
Pi={[0, ), (ol -
Generate V% and V2=
for v € V4 do
1, = Hiev 1;
end for
for w € V= do
Pw T Hz‘ew 7)2
end for
10: C(A) = Uvevga 7, and C(X) := Uwevfﬁx Pro
11: Index the geometric center of each set in C(.A) by y and generate the set of
arms Y
12: return C(X) and Y

v

for this 2-D example. Using CMAB-RL strategy, one guarantees that at least one
of the arms is close to this optimal arm line with bounded discretization error. As
it can be seen CMAB-RL strategy yields fewer number of arms without having
an extra discretization error as the reward surface is constant either along arm

dimension 1 or 2.

Precisely, first CMAB-RL generates the set Vga and then partitions each di-

mension in the arm subspace A, into m equal intervals for all v € Vga. In this

manner, A, is partitioned into md non-overlapping sets. Let Z, = [[,., T
denote the partition formed on A,, where Z; := {[0, =], (L, 2] ... (21 1]} is

the partition for a single dimension ¢ € v. As CMAB-RL applies this parti-
tion technique for all v € Vga, the collection of all partitions is then given by
C(A) = U, cyia Lo Where IC(A)| = (gz)maa. After the partitioning operation, we
index the geometric centers of sets in the partitions in C(A) by y, and the set
of all geometric centers is denoted by ). For an arm y that coincides with a
geometric center in Z,,, the values for the dimensions not included in v are set
to 0.5.2 Once arm discretization is completed, we essentially have a discrete arm

set with |C(A)| elements.

2The value 0.5 is selected only for simplicity, certainly any value in [0, 1] would work as the
dimensions not included in v are not partitioned.
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Figure 3.1: Comparison of Uniform and CMAB-RL Discretization Strategies

For the partitioning of context space, CMAB-RL creates the set Vigm similar
to the case in arm partitioning. Then it partitions each dimension in the context
subspace X,, into m equal intervals for all w € V:?z. Hence X, is then partitioned
into m2= non-overlapping sets. Let Py, := []..,, Pi denote the partition formed
on X, where P; := {[0, ], (%, 2],..., (21, 1]} is the partition for a single

dimension 7 € w. Since CMAB-RL also applies this partition technique for all
w € V:EEZ, the collection of all partitions is then given by C(X) := U P

where |C(X)| = (d““ )mﬂz,

2d,

weV:%dz

For simplicity, let « € p,, for w € Viaﬂc for any x € X if 24 € pu fOr Py € Pu.
Moreover, let p,,(t) € Py, denote the set that z,,(t) belongs to.

CMAB-RL stores a sample mean estimate and a sample counter for each com-
bination of elements of C(X) and Y. For each w € V2%, p,, € P, and y € ),
Ny p, (t) denotes the sample counter which simply keeps track of how many times
a context was in p,, and arm y was selected before round ¢. Similarly, fi, ., (f)
keeps the sample mean reward estimate that is obtained from rounds before the
t"" round, when a context was in p,, and arm y was selected. All counters and

sample means are set to 0 during initialization.

As all aspects of the initialization is explained in detail, we next ex-

plain the algorithm details during run-time. The arm selection rule requires

23



one to calculate a term called uncertainty term, which is monotonically de-
creasing with the sample size. More formally, it is defined as w,,, (t) =
V(2 + 4log (2| (s )m2T32)) [Ny, (1) for all w € V2, py, € Py, y € V.

2d,—1
Notice that in each round ¢, p,(t) is unique for each w € V2% hence for sim-
plicity of notation, let fiyw(t) == flyp,)(t), Uyw(l) = Uyp,)(t) and Ny, (t) =
N,

ypw(t)(t). The sample mean estimate for an arm y € Y for the tuple of context

dimensions v € ng in round ¢ is defined as the weighted average over all sample
means in counters for w € V. (v),

Z ﬂy,w(t)Ny,w (t)

N weV%E” (v)
fly () =
Y > Nyw(t)

wGV;%E” (v)

In every round ¢, context x(t) is revealed to CMAB-RL which then determines
the set py () in Py, that z(t) is contained in, for each w € V2% Then for each arm
y € )V, the set of candidate relevant tuples of context dimensions, each of which

is a d,-tuple, are constructed using pairwise comparisons between 2d,-tuples,
Ry (1) = {v € VE - |y aolt) — ity (1)

< 2L\/i/m + Uy (t) + Uy (), Y, w' € Vid’('v)} : (3.1)

The term 2L+v/d, /M 4 Uy ap () + Uy 4 (t) is the summation of the uncertainty
due to randomness in rewards and the uncertainty due to discretization for the
estimates [l ., (t) and fi, 4 (t), called the joint uncertainty. If |y w(t) — fiyw (t)]
is larger than the joint uncertainty, then for w,w’ € V24 (v), it is inferred that
v does not contain all of the relevant dimensions. The reason behind this is that
even though v C w and v C w' are satisfied, the sample mean reward estimated
differ from each other largely. If v did contain all of the relevant context dimen-
sions, then estimates for w and w’ would be similar to each other as variance
of expected reward along irrelevant dimensions is only due to random noise and
discretization error. Any estimate fi,.,(¢f) and uncertainty LVd, /M Uy (1)

such that w € V**(v) would contain the variance along relevant dimensions.

The tuple of estimated relevant context dimensions to be selected from the set
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R, (t) is denoted by ¢&,(t). If R,(t) = 0, then &,(t) is selected from V% arbitrarily.
Otherwise, CMAB-RL selects ¢,(t) by considering the variation of sample mean

reward estimates which, for arm y € Y and v € R, () is defined as

Oyo(t) = max |fyuw(t) = fiyw(t)]

w,w V2T (v)

CMAB-RL chooses the d,-tuple of context dimensions with minimum variation

as the selection ¢,(t) for all y € ), precisely ¢,(t) = argmin,cr ) 77, (1)-

After determining ¢,(t) for all y € ), CMAB-RL calculates the mean reward
estimates fiy (t) using v = ¢,(t) for all y € ). When selecting an arm, CMAB-RL
does not directly use the mean reward estimates, but instead uses an inflated
term which is an upper confidence bound(UCB) on the expected rewards. For
arm y, in round ¢, let w,(t) = arg Max o, Uyw (t) denote the 2d,-tuple of
context dimensions with the largest uncertainty due to randomness in rewards.

The UCB term for an arm y in round ¢ is defined as
UCB, (1) = 5" (t) + 5uuyu, ) (1).

Finally, CMAB-RL selects the arm y with the highest UCB for round t i.e. y(t) =
arg max, ¢y, UCB, (t). Note that, we have a(t) = y(t) as well. CMAB-RL employs
the usage of UCB to balance the exploration-exploitation trade-off which allows
it to explore arms that are rarely selected(and thus have high uncertainty), even

though they have low sample mean rewards.

Next, how update is executed after the selection of arm a(t) and observation
of reward r(t) is explained. CMAB-RL updates the sample mean rewards and
the sample counters for y(¢) and for all w € V2% as follows
yt)0 () Ny (1) 0 (1) + 7(1)

Ny(o)w(t) +1
Nyyw(t + 1) = Ny w(t) + 1. (3.2)

fly(t)w(t + 1) =

Notice that CMAB-RL updates statistics for all w € V% which is a nice conse-
quence of the partitioning strategy as there is exactly one p,(t) for each w € Vigm.

Context z(t) falls into multiple partitions(across different elements of V%), and
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since the reward is for context-arm pair (z(t),y(t)) is observed, it is allowed
to update all partitions that contain (z(t),y(t)). However, it is also impor-

tant to point out that fi,.,(t) and Ny .(t) for y # y(t) are not updated, thus
I[Lyva (t + 1) = lay»pw (t)7 Ny’pw (t + 1) = Ny,Pw (t) fOI' Yy % y<t)

3.2.1 Memory Requirements of CMAB-RL

The memory requirements analysis for CMAB-RL is relatively brief. For all
yey, we Viaz and p,, € P, CMAB-RL stores sample mean reward estimates

and sample counters. Hence the memory requirement is
da) ( do 2dz+da
0 ((3) (52,)m ) >

substituting m = [T/(2+2d:+de)]  sublinear memory requirements at the order of

O(T 2= +da)/(242d2da)) §5 achieved.

3.2.2 Computational Complexity of CMAB-RL

Next, the computational complexity of CMAB-RL is investigated during run-

time, which requires a deeper analysis. In each round ¢, determining

® py(t) € Py for all w € Vﬁaz requires O <dx + (%;))

o R,(t) for all y € Y requires O ((gz)mda (%z) (dlg;azf)

) 5’371)(15) for all Yy < y, v E 'R,y(t) requires 0] ((%Z)maa (gz) (dma_jm)2>

o &,(t) for all y € ¥ requires O ((§:)m™ (§:))
. ﬂgy(t)(t) for all y € Y requires O ((gz)mﬁa (dﬁa—jx))

o w,(t) for all y € Y requires O ((§)m™ (%))
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e y(t) requires O ((gZ)mEa>

computations. Thus, overall considering the largest terms, the computational
complexity of CMAB-RL becomes

O ((hm™ () (™)),

once more by substituting m = [T%/(2+2d+da)]  sublinear computational com-
plexity at the order of O(7%/(2+2d:+da)) is achieved.

3.3 Illustrative Results

In this section, we compare the performance of CMAB-RL against other algo-
rithms in two experiments. The first experiment involves a synthetic simulation
environment with a multi-dimensional arm set(5 dimensions with only one rel-
evant) as well as a multi-dimensional context set(again with 5 dimensions, only
one being relevant). In our second experiment, we test the performance and
suitability of CMAB-RL in a medical treatment scenario where CMAB-RL and
other competitor algorithms are employed for the problem of bolus insulin admin-
istration for type 1 diabetes mellitus(T1DM) patients based on the OhioT1DM
dataset [54].

3.3.1 Competitor Learning Algorithms

We consider two competitor algorithms to compare CMAB-RL against, with one
employing a uniform partitioning strategy whereas the other adaptively partitions
the context-arm space. We also consider an approach that selects arms randomly

to establish a benchmark where needed.
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3.3.1.1 Instance-based Uniform Partitioning (IUP) [9]

IUP is a CMAB algorithm that uniformly partitions the context-arm space F into
m®+da gets, where they show that the choice of m = [TV/(+d=+da)] minimizes
regret. In each round, IUP determines the subset of hypercubes that context
arrives in, and then it identifies the hypercube with the highest UCB among
subset of hypercubes that contain context. It then selects the arm from the
identified hypercube. Note that, IUP does not consider relevance information,

and operates directly on F.

3.3.1.2 Contextual Hierarchical Optimistic Optimization (C-HOO)

We propose an extension to the hierarchical optimistic optimization(HOO) strat-
egy given in [16] which can be applied to CMAB problems as well. 3 In the vanilla
version, HOO models the arm set A with a binary tree structure and adaptively
partitions A by growing the tree in each round. The root node corresponds to
the entire arm set A and each of the subsequent nodes is mapped to a subset of
A. Smaller subsets are represented by deeper nodes in the tree. Regions that are
represented by the nodes in same depth establish a partition on A. For a node
n, the union of regions that correspond to the children of n is equal to the region

n corresponds to.

In each round, HOO starts at the root node and builds a path which will
eventually end at a leaf node. The criteria when creating the path is such that
at every depth, the child with the higher UCB is added to the path, this goes
on until a node with at most one child is reached. Provided that the node has
no children, a child is created randomly, otherwise the second child is created.
After the path terminates, GOO selects an arm from the recently created child’s
corresponding region. As time increases, HOO essentially zooms into regions

where the expected rewards are likely to be high.

3[19] also proposes a contextual extension of HOO for the CMAB problem with Gaussian
process prior.
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We extend HOO to the contextual case, called C-HOO. The immediate dif-
ference is that the tree is now built on F rather than A. In each round, as it
is a contextual approach, C-HOO observes the context. Although the path con-
struction is similar to that of HOO, the main distinction is that before a selection
according to UCB takes place, first the availability of the children are determined.
The availability in this case refers to whether the child contains the content or
not. Notice that, at each level at least one child must contain the context. If only
one child is available, then that child is selected and added to the path, otherwise
the child with the highest UCB is added to the path.

One drawback of vanilla version of HOO is that the computational complexity
increases quadratically with the number of rounds. In [16], a truncated version of
HOO is also proposed which essentially achieves the same regret bound(additive
factor of 4v/T which does not change the time order of regret) as vanilla version
of HOO. We based C-HOO on the truncated version of HOO in our experiments.

HOO or C-HOO does not take relevance information into consideration either.

3.3.1.3 Uniform Random

This algorithm does not take the current context, past observations or the rele-
vance information into account. It simply selects an arm randomly from A and

is used as a benchmark.

3.3.2 Parameters Used in the Experiments

For both experiments, the set of all feasible context-arm pairs F, time horizon
T, dimensionality of context and arm sets, i.e., d, and d,, are made known to
the algorithms as required. We also assume that L is not known by any of the
algorithms, hence it is set to 1. For CMAB-RL, we set d, = d, and d, = d,,.
As for C-HOO, we set v; = 2v/d, + d, and p = 2(-1/(d=+de)) 5o that Assumption
Al in [16] is satisfied. The IUP algorithm requires no further parameters. It is

important to note that the confidence terms(uncertainty terms due to randomness
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in rewards) are scaled so that they are smaller which forces algorithms to favor
exploitation over exploration. At first, this might not seem as an appropriate
manipulation however when experimenting, it is observed that confidence terms
start much larger compared to the sample mean reward estimations and dominate
the statistics involved in arm selection. Decreasing confidence terms, so that
they are comparable with the sample mean reward estimations increases their
cumulative rewards. For each algorithm we determined the best scaling factor
via grid search over the set {0.001,0.005,0.01,0.05,0.1,0.25,0.5,1}. Also, results
of both experiments represent the results obtained from 20 repetitions, with the
aim of minimizing the effect of randomness in context arrivals, arm selection and

reward generation when measuring the performances.

3.3.3 Experiments on a Synthetic Simulation Environ-

ment

For the experiment with the synthetic environment, we consider d, = 5, d, = 5,
d, =1and d, = 1. It is also assumed that ¢, = ¢, for all a,a’ € A, meaning
that the set of relevant context dimensions is the same for all arms. We consider
a Gaussian mixture model for the expected reward function pu,(z). For a point

(x,a) € F, pa(zx) is given by

Ma(x) = min {Szpif<(x> a)‘eh zi)’ 1}

where min{-, -} function is required so that 1-sub-Gaussianity is satisfied and
we have Zfil pi = 1and p; > 0, for 1 < i < K. For the i component, the
component weight is given by p;, the mean vector is given by 6; and the covariance
matrix is given by ;. Moreover, the number of components is denoted by K,
s denotes the scaling factor and f denotes the probability density function of a
multivariate Gaussian distribution. The parameters that we considered for our
experiment are s = 0.25, K = 2, p; = py = 0.5, 6; = [0.25,0.75]T, 6, = [0.5,0.5]7
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Figure 3.2: The expected reward defined over the relevant dimensions of the
context-arm space
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The expected reward function defined on the relevant dimensions of the context-
arm space can be found in Fig. 3.2, the black line shows the optimal arms for
each context. In this setting, we consider 7(t) ~ Bern(paq)(z(t))) and r(t) are

independent across rounds.

The algorithms are run for 7' = 10 rounds. The arrival of contexts are uni-
formly random and independent from other rounds. After grid search, the values
0.001 for CMAB-RL, 0.01 for IUP and 0.05 for C-HOO are found to achieve the
highest cumulative rewards and thus the results that are reported are the results

of the experiments using these values.

31



x10%

—x— CMAB-RL
C-HOO
> IUP
=== Uniform Random
4 4
T
g
(7] 3 1
[od
©
o -
oo ==
1 4 4—”’—’
04 ==
0.0 0.2 0.4 0.6 0.8 1.0

Rounds x10°

Figure 3.3: Comparison of cumulative rewards of CMAB-RL, C-HOO and TUP

The comparison of algorithms with respect to the cumulative rewards they
achieve are given in Fig. 3.3. One can observe that CMAB-RL outperforms
all its competitors by enjoying more than 29% and 100% improvement over the
cumulative rewards of C-HOO and IUP respectively. Note that, even though
C-HOO does not take relevance information into account, it still performs much
better than IUP as it adaptively partitions the context-arm space. It can be seen
that IUP performs only slightly better than Uniform Random algorithm, since
the dimensionality of the problem is high and IUP need too many exploration

rounds as a result.

We also compare the accumulated regrets of the algorithms, which are shown
in Fig. 3.4. As contexts arrive uniformly random, CMAB-RL purely explores
for about 15000 rounds, however after 15000 rounds, the regret accumulation
rate drops significantly. Although the C-HOO performs better for the first 15000

rounds, as it does not utilize relevance information, it operates on a d, + d,
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Figure 3.4: Comparison of regrets of CMAB-RL, C-HOO and IUP

dimensional space and fails to decrease regret due to dimensionality. Similarly
IUP also suffers from curse of dimensionality and simply explores for too many
rounds. We also investigate the effect of different time horizons on all algorithms
by running them with different time horizons ranging from 7" = 5000 to T = 105.
The result of this comparison can be seen in Fig. 3.5, where it is shown that
CMAB-RL achieves the smallest regret for all time horizons. Note that since the
synthetic environment is the same in all repetitions, the standard deviation of
results are small compared to the values of cumulative rewards and cumulative
regrets. The standard deviations of cumulative rewards and regrets over all rep-
etitions, at the end of all rounds, for CMAB-RL are 255 and 184, respectively.
The corresponding values for C-HOO are 224 and 191. Lastly, for IUP, we have
90 and 77.

At T = 10°, CMAB-RL has a standard deviation of 255 and 184 for the final

value of
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Figure 3.5: Comparison of regrets of CMAB-RL, C-HOO and IUP when they are
run with different time horizons.

3.3.4 Experiments on the OhioT1DM dataset

In our second experiment, we use the OhioT1DM dataset which contains multiple
physiological measurements taken from 6 T1DM patients is used. These patients
were on continuous glucose monitoring and insulin pump therapy and the data
that is taken is over a time interval of 8 weeks. [54] contains a detailed explanation
for this dataset. As we are performing an online learning task, we merge the

training and test sets which are pre-split in the dataset.

The purpose of this experiment is to learn the optimal bolus insulin dosage
by utilizing the side(contextual) information such as the state of the patient and
the ongoing basal insulin treatment. The optimal bolus insulin dosage is not a
predetermined value, and we consider the whether a bolus treatment was proper

or not by observing if the blood glucose levels of the patient remain within the
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desired range 80 — 180 mg/dL. This range is taken from [55].

We consider the following entries as the state of the patient: mean of contin-
uous glucose measurements (CGMs), mean of heart rates, mean of skin temper-
atures, mean of air temperatures and mean of galvanic skin response measure-
ments, sum of carbohydrate intake from meals, sums of exercise scores (multipli-
cation of the duration and the intensity of an exercise session) and sums of number
of steps taken for the last 30 minutes before a bolus injection. We take the mean
of the basal insulin dosages again for the last 30 minutes and consider this as
the basal insulin treatment. The entries listed above correspond to the context
dimensions hence d, = 9. Since the only action we consider the determination of

dosages of bolus insulin treatments we have d, = d, = 1.

As mentioned the goodness of a bolus dosage is determined by the CGM levels
after the injection. For simplicity and convenience we will refer to the CGM
values we use as contexts as past CGMs and we will refer to the CGM levels after
a bolus injection as resulting CGMs. The resulting CGMs are the mean values
of the CGM recording of the patient for the following 30 minutes to 2 hours after

a bolus injection.

The data contains missing values, next we explain how we dealt with this
issue. When extracting structured data from raw data, we first locate the bolus
events and extract other variables near(past values for contexts, future values
for resulting CGMs) the bolus events. Hence bolus injection information always
exists, we do not need to impute. If no data is available for either the past or the
resulting CGMs we omit that bolus event. As for other variables we impute by
setting carbohydrate intakes, exercises and number of steps to zero since lack of
data implies no activity. For heart rates, skin and air temperatures and galvanic
skin response variables we take average value over the whole dataset as the value

zero does not make sense in a human body for these variables.

The simulation setup requires the data to be in range [0, 1] for all context
and arm dimensions, hence first data is scaled. Afterwards, a Gaussian distri-

bution is used to model a patient’s context data. In order to mimic the dataset
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Table 3.1: Percentages of samples for all approaches and individuals

559 5963 570 575 o988 591 | Overall
CMAB-RL | 00.25 | 00.04 | 00.13 | 00.47 | 00.24 | 00.71 | 00.27
<80 C-HOO 00.30 | 00.05 | 00.14 | 00.58 | 00.32 | 00.89 | 00.34
mg/dL IUP 00.35 | 00.05 | 00.18 | 00.69 | 00.38 | 00.96 | 00.38
Dataset 01.97 | 00.25 | 01.59 | 04.50 | 00.00 | 03.41 | 01.75
CMAB-RL | 66.92 | 70.49 | 66.64 | 88.65 | 69.06 | 79.31 | 72.78
80-180 C-HOO 53.57 | 62.54 | 54.98 | 81.54 | 56.73 | 67.27 | 62.30
mg/dL IUP 50.10 | 56.08 | 51.76 | 77.11 | 52.39 | 64.25 | 57.99
Dataset 36.84 | 56.78 | 37.93 | 62.00 | 39.81 | 57.95 | 49.06
CMAB-RL | 32.83 | 29.47 | 33.23 | 10.88 | 30.70 | 19.98 | 26.95
>180 C-HOO 46.12 | 37.41 | 44.88 | 17.87 | 42.95 | 31.84 | 37.36
mg/dL IUP 49.56 | 43.87 | 48.06 | 22.20 | 47.23 | 34.79 | 41.63
Dataset 61.18 | 42.96 | 60.48 | 33.50 | 60.19 | 38.64 | 49.19

better, we also learn a prior distribution over the patients by observing their fre-
quency of occurrence in the dataset. Since dataset only contains a finite amount
of context-arm-reward instances, and as in our CMAB setting both the contexts
and the arms are infinitely many, we also need to have a regression model that
maps contexts-arm pairs to rewards. During run-time the model needs to return
a reward for context-arm pairs that are not in the dataset. We use a Gradient
Boosting regression model which has 100 decision trees with maximum level con-
straint of 5 as simple estimators and we use Huber loss in the model. As required,
the inputs to the regression model consists of contexts and arms, and the outputs
are the resulting CGMs. Before training the Gradient Boosting model, we employ
oversampling(sampling with replacement) to have equal amounts of data for all

patients.

In each round ¢, the prior distribution over the patients is used to select a
patient. Next, the context vector z(t) is sampled from the said patient’s Gaus-
sian distribution repeatedly, until a context vector that resides in [0, 1](%=Fda) ig
sampled. The context vector is then revealed to the CMAB algorithm, which in
succession determines an arm a(t). The bandit environment is then queried to
generate the reward r(t) according to z(¢) and a(t). Bandit environment uses the

regression model to generate the resulting CGM value and translates it into r(t)
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by using the following mapping,

(

0, x <80 (hypoglycemia)
=8 80 <2 <90
flz) =41, 90 < z < 130
80—
0= 130 < 7 < 180
0, 180 <z (hyperglycemia)

\

In order to add randomness to the reward generation process, a noise component
with distribution N (0,25) is added to the resulting CGM value.

In order to determine d,, we examine the average impurity decrease for each
context dimension considering all trees which are then normalized so that the
sum of the average impurities for all inputs add up to 1. The only context
dimension that has a score higher than 0.5 is the past CGMs while the rest of
the context dimensions yield scores lower than 0.1. [47] and [48] use this dataset
for the forecasting problem and our result is consistent with theirs. Hence, it is
rational to claim that the past CGM value affect the reward much more when
compared with other variables in the dataset. Therefore we set d, = 1. Similar
to the synthetic case, the horizon is set as T' = 10°, and for this experiment, the

optimal confidence term multipliers found after grid search are given as 0.001 for

CMAB-RL, 0.05 for IUP and 0.1 for C-HOO.

Since measuring the performance via cumulative rewards may not be mean-
ingful for this setting, we directly examine the resulting CGMs values. Fig. 3.6
contains joint histograms for all patients, one for each algorithm including the
original dataset as a benchmark. The histograms for each algorithm are normal-
ized such that the area under the histograms sum up to 1, the reason is that
since original dataset has much less instances when non-normalized histograms
are plotted, the distribution for original dataset cannot be seen. Interestingly, all
algorithms provide better administration of bolus dosage when compared with
the method used when the data is gathered. To be able to investigate the effect
of each algorithm on each patient, we also include the Table 3.1 where the per-

centages of samples are shown for each algorithm, for each patient and for each
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blood glucose level. The header row indicates the patient identification numbers
as encountered in the dataset. It can be observed that, CMAB-RL not only has
the highest density in the desired range for all patients, it also has the lowest
density in the hypoglycemia and hyperglycemia regions. The only exception to
this for patient 588, where no hypoglycemic resulting CGMs are observed in the
dataset.

Histogram of resulting CGMs for all patients
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Figure 3.6: Joint Histograms of the resulting CGMs for all patients under different
learning algorithms and the original dataset.
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Chapter 4

Contextual Gaussian Process
Bandit Problem with Relevance

Learning

In this chapter, we study the CMAB problem with relevance learning in Bayesian
setting. We do not require upper bounds on the number of relevant context and
arm dimensions. In Section 4.1 we define the Bayesian CMAB setting with ir-
relevant context and arm dimensions, moreover we state our assumptions about
this setting. We propose the CGP-UCB-RL algorithm in Section 4.2. We con-
clude this chapter with Section 4.3, in which we evaluate the performance of
CGP-UCB-RL a numerically in a synthetic environment and in an experiment

regarding the administration of bolus insulin for T1DM patients.

4.1 Problem Definition

The contextual multi-armed bandit(CMAB) problem involves sequential decision
making in discrete rounds indexed by t € {1,...,T}. In each round, the learner

observes the context vector z(t) € X, and selects an arm a(t) € A by utilizing the

39



information of the current context and past observations. Once a(t) is selected
then a reward r(t) = p(z(t),a(t)) + €(t) is observed, where pu(z,a) denotes the
expected reward of a context-arm pair and €(t) ~ A(0,0?) is the random noise

which is i.i.d across rounds and context-arm pairs.

The performance of a learner is measured by a metric called contextual
regret. The instantaneous regret, regret for a fixed round ¢, is defined as
A(z(t), a(t)) = p(x(t), a*((t)))—p(x(t), at)) where a*(z) = arg max,c 4 u(z, a).
The cumulative contextual regret at the end of T rounds is then given by

Reg(T) = 32,1 A(x(t), a(?)).

Let dy and d 4 denote the dimensionality of the context and arm spaces, X and
A, respectively. Also let Dy = {1,...,dx} and D4 = {1,...,d4} denote the set
of dimensions for context and arm spaces, respectively. For any ¢ C D4, let the
|¢|-dimensional subspace of A be denoted by A,. Equivalently, for any ¢ C Dy,
let the |¢|-dimensional subspace of X be denoted by X,. We denote the elements
of A, and &, by adding the ¢ subscript to the vectors a and z, i.e. a, € A, and
Tq € Ay

We assume that the expected reward function, u(zx,a), is sampled from a
Gaussian process where the kernel function is such that some dimensions of Dy
and D4 do not affect the expected reward function and the mean is 0. In order
to formally define this setting first we need some notation. Let p(S) denote the
set of all subsets of a set S excluding the empty set. Also let of = I[i € s] for
s € p(S) and i € N, where I|-| denotes the indicator function'. Consider the
squared exponential kernel that inputs two context-arm pairs (z,a), (2,a") and

returns a similarity measure, as given below:

dx da
K (2,0), (2! a')) = exp <_0'5chm - “""”2> o (452&? o )2)
i—1 j=1

where (v, w) denote the context-arm dimensions tuple pair for v € p(Dy) and

Lag are used as inverse of parameters commonly referred to as length-scale in literature,

which are utilized in automatic relevance determination(see [15] for details). Although length-
scale parameters generally appear as denominators for each dimension, in our case it is more
convenient to consider them as multipliers since we desire to completely ignore distances in
some dimensions, requiring the multiplier to be 0.
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w € ©(D4). The choice of squared exponential is purely for simplicity purposes,
in fact any kernel that enables a similar usage of weights per dimensions can be
utilized. For any v € p(Dx) and w € p(D4), let GP, ) be a Gaussian process
such that GP, ) = GP(0,k")((x,a),(2',a')). Let Cx and C4 denote the set
of relevant context and arm dimensions respectively where 1 < [Cx| < dy and
1 < |C4l £ dy. We assume that pu(z,a) ~ GPcycy- In Fig. 4.1, a sample
from a Gaussian process with 4 dimensions, with the first 2 being relevant, is
given where the expected reward function is viewed from all possible dimension
combinations to observe the effect of such a kernel on the reward surface. Note
that when two dimensions are plotted, values of the elements in other dimensions
are taken to be zero, and due to memory constraints, first a sparse discretization

of the function is realized then it is interpolated using linear interpolation.

For any noisy sample Z,, = {z(1),...,2(n)} = {(x(1),a(1)), ..., (z(n),a(n))},
R, = [r(1),...,7(n)]", we define mean and variance estimations for point (z,a) €

X x A, according to a context-arm dimension tuple pair (v, w) as,

10 (2, a) = kO (2, 0) T (K + 0%, 00) 'Ry
60 (2,0) = KO((2,0), () — KO (2, 0) (KL + 0L 4 (2, 0)

and when (v, w) = (Cy,C4), then given estimations are parameters of the poste-

rior distribution of p(z,a). Here
k(@ a) = KO ((2,0), 2(1)), . KO (2, a), 2(n)]F

and K\ = {k) (2, 2')}2.2rez, is positive definite kernel matrix.

4.2 Contextual Gaussian Process Upper Con-
fidence Bound Algorithm with Relevance
Learning (CGP-UCB-RL)

The CGP-UCB-RL algorithm is described in algorithm 3. CGP-UCB-RL algo-
rithm is an extension of CGP-UCB algorithm described in [14]. Unlike in [14],
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in our approach we aim to exploit the existence of possible irrelevant dimensions
that do not affect the reward distributions. The relevance learning is done via
minimizing the negative log marginal likelihood according to different assump-

tions on which dimensions are relevant.

Algorithm 3 CGP-UCB-RL
1: Input: X, A, v, 7
2: Initialization: Observe x(1), select a(1) arbitrarily, observe r(1),
set Z; = {(z(1),a(1)} and Ry = [r(1)]T
3: fort=2,3,...do

4: Observe xz(t)

5. if rem(t,7) = 0 then

6: Calculate NLL®)(t) for all v € p(Dx) and w € p(D,4) according to 4.1
7 Determine (v(t), w(t)) according to 4.2

8: else

9: Set (v(t),w(t)) = (v(t —1),w(t — 1))

10:  end if

11:  Determine estimated optimal arm subspace P®®:w®)(¢) according to 4.3

12:  Select arm a(t) according to 4.4 (ties broken arbitrarily)

13:  Observe r(t) and perform update on mean and variance estimations for all
v € p(Dy) and w € p(Dy)

14: end for

Let rem(a,b) denote the remainder when a is divided by b, for a,b € N.
If rem(t,7) = 0, CGP-UCB-RL calculates the negative log marginal likeli-
hood(NLL) for all pairs of (v,w) where v € p(Dy) and w € p(D4) and selects
the (v, w) pair that minimizes the NLL, otherwise (v, w) pairs selected for the
previous round is used. Although one can set 7 = 1 and perform optimization in
every round, we include this option as one needs to calculate (2%* — 1)(2%4 — 1)
NLL values and considering the matrix inverse operation this step may be de-

sired to repeat every 7 steps due to time constraints. In round ¢, for a pair (v, w),

)

-1
+0.5RT, <Kt(ﬁ’{”) n azl(t,l)x(t,1)> Ri_1 + 0.5(t — 1) log(2n)
(4.1)

negative log marginal likelihood is given by,

NLLY%)(t) = 0.51og <‘Kt(f’fj) + 0% L)% (t-1)
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The (v, w) pair that minimizes the NLL is given as

(v(t),w(t)) == arg min NLL)(¢) (4.2)
vep(Dx)
wep(Da)

Once the (v(t),w(t)) pair is determined, CGP-UCB-RL use this pair when
calculating the estimation of the mean rewards and variances. Let upper con-
fidence bound of a point (z,a), with respect to pair (v,w) be Ut(”’w)(m, a) =
A (2, a) + /76" (x, @) where ; is a function that can be optimized via
prior knowledge about the problem instance or preliminary experiments on avail-

able data.

For round ¢, CGP-UCB-RL could then simply select any arm a that achieves

U O) (5(4), ), however notice that arms that are estimated to have

largest
the largest UCB actually form a (d4 — |w(t)|)-dimensional hyperplane. This is
because for any Z,, R, 0% x € X, v € p(Dx), w € p(D4) and a,a’ € A such
that a, = d,, we have k") (z,a) = k") (z,a') and k) ((z,a), (z,a')) = 1.

w?

Hence, we have 2" (z,a) = 4™ (z, ') and 63" (z,a) = 65" (2, d).

Instead of selecting any arm arbitrarily, CGP-UCB-RL aims to gather the
maximum amount of information by selecting the arm that has the maximum
variance among the set of arms that has the largest estimated UCB. Let

PE() = {a e A| UM (@(t).0) = max U (a(0),a)} - (4.3)

be the set of arms that have the largest estimated UCBs with respect to the pair
(v,w). Then in round ¢, CGP-UCB-RL selects arm

a(t) = argmax 60T (x(t), d). (4.4)
@ EP (D) (1)

Finally, reward r(¢) is observed, the mean estimations ﬂﬁ”’“}) (x,a) and the variance

(v,w)

estimations 6, "’ (z,a) are updated for all v € p(Dx) and w € E(D4).
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4.3 Illustrative Results

We evaluate the performance of CGP-UCB-RL by comparing it to the CGP-
UCB approach in experiments with both synthetically generated data and data
gathered from type 1 diabetes mellitus(T1DM) patients. CGP-UCB, proposed
and discussed in detail in [14], assumes that the expected reward function p(z, a)
is sampled from a Gaussian process, however unlike in our setting, their work do
not consider that one or more dimensions may be irrelevant. Thus, the kernel
models they consider also do not allow different length-scale parameters to be
learned for individual dimensions. During both experiments we assume that

both algorithms do not have a priori information about the problem instance.

4.3.1 Competitor Learning Algorithms

We compare CGP-UCB-RL against CGP-UCB which does not take relevance
information into account and an algorithm that makes uniformly random arm

selections that is used as a benchmark.

4.3.1.1 Contextual Gaussian Process Bandit UCB Algorithm (CGP-
UCB) [14]

The CGP-UCB algorithm is set in the Bayesian version of the CMAB problem
which assumes that the expected reward function is sampled from a Gaussian
process. In each round, CGP-UCB calculates statistics of posterior distribution
over the expected reward function p(z,a), which is again a Gaussian process
distribution and applies UCB algorithm by identifying the arm with the highest
UCB. The UCB is calculated using the posterior mean and standard deviation

over p(z,a).
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4.3.1.2 Uniform Random

We include an algorithm that makes random arm selections without considering
the context, past experiences or relevance information, in order to establish a

benchmark in synthetic experiment setting.

4.3.2 Parameters Used in the Experiments

For both of our experiments, we used the square exponential kernel for both
algorithms. As mentioned, we assume that both algorithms have no informa-
tion available about the problem instance in advance. Hence, initial length-
scale parameters are set to 1 for both algorithms as well as the noise vari-

ance o2. Also, both algorithms are given the context set X and the arm

set A. Additionally, for CGP-UCB, we set ; = 2log (t*272/(36)) + 2(dx +
d4) log <t2(d/\/ + d 4)bry/log(4(dx + dA)a/(S)) where we set § = 0.01(see [14])%.

We use r = 10 in the synthetic experiment and in the T1DM experiment we set

r to the largest value in any dimension in data after standardization. We also
assume that L = 1 for the similarity assumption in Theorem 1 of [14] and then set
a = 0de', b=1so that ae"“/?* = §. For CGP-UCB-RL, we set ~, = 1(again,
assuming we do no have a priori knowledge about the problem instance) and
7 = 10. Last but not least, although we set the values of 3; and ; as mentioned,
during our studies we noticed that assigning smaller values tend to work better.
In order to optimize these values, we scaled these values by a certain value se-
lected from the set {0.01, 0.05, 0.1, 0.25, 0.5, 1}, using grid search. We report
the results generated by the optimal scaling factor for each algorithm in both
experiments. Also note that, reported performances are results acquired from 20
independent runs in an effort to minimize the effect of randomness which arises

from context arrivals, arm selection and noisy rewards.

2The parameters of 8; are not extremely crucial as we optimize the uncertainty terms by
scaling them specifically for each experiment
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4.3.3 Experiments on a Synthetic Simulation Environ-

ment

In the synthetic setting, we consider an environment where the expected reward
function is sampled from a Gaussian process prior where d, = 10, d, = 2, |[Cx| =1
and |C4| = 1, with the relevant dimensions being the first dimensions for both the
context and arm sets. Specifically, we have p(x,a) ~ GPc,c,) where Cx = {1}
and C4 = {1}. We utilized squared exponential kernel as suggested in Section
4.1 to generate the environment with irrelevant context and arm dimensions. As
expected reward function is randomly generated, it changes for each repetition
of the experiment. However, to gain some perspective on the expected reward
function instances, in Fig. 4.2 we provide several realizations of the reward surface
with respect to the relevant context and arm dimensions. Reward r(¢) in round
t, is generated using 02 = 1. Note that, here the relevant context dimension is

the same for all arms.

The contexts are sampled independently from a uniform random distribution.
Scale factor for 8; of CGP-UCB is set to 0.05, and scale factor for v, of CGP-UCB-
RL is set to 0.5 after grid search over possible candidates. We set the horizon as

T = 100 rounds for this setting.

We compare the algorithms by investigating their cumulative rewards and cu-
mulative regrets. The plots of cumulative rewards and cumulative regrets as a
function of time are given in Fig. 4.3 and in Fig. 4.4, respectively. It can be
seen that CGP-UCB-RL achieves better performance by exploiting the fact that
a total of 10 dimensions of the context-arm space do not affect the rewards, by
learning to ignore them through the optimization of negative log marginal like-
lihood. For each round, we also provide 95% confidence intervals for cumulative
rewards and regrets calculated over repetitions, shown in light-shaded regions.
We provide this information because the synthetic environment is different for
each repetition and hence the performance of the algorithms may vary due to
the differences in the expected reward function. For the cumulative rewards, the

confidence intervals we obtained were expected to be loose as in one repetition
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the environment may be yielding higher rewards but in another repetition the
rewards may be low. However, the confidence intervals for the cumulative regret
were expected to be tighter as regret measures the difference between the optimal
selection and the selection made by the learner. Thus, cumulative regret does not
depend on whether the expected reward function yields high or low rewards. The
confidence intervals we obtained for cumulative regret confirms this expectation.
As both algorithms do not rely on 7' to optimize themselves, we do not include

an experiment where the algorithms are run for different time horizons.

4.3.4 Experiments on the OhioT1DM dataset

We consider an experiment based on the OhioT1DM dataset, which is gathered
from 6 patients whose various physiological traits and insulin treatments are
monitored for 2 months(see [54] for a detailed review of the dataset). The dataset
in vanilla version contains training and test sets separately, however we merge

them as we are performing online learning.

We aim to use bandit algorithms to learn the optimal dosage of bolus insulin
to regulate the blood glucose levels of a patient in the desire range, 80 — 180
mg/dL given in [55]. A fixed bolus insulin dosage may be too high or too low to
properly regulate the blood glucose levels depending on state of the patient and
their current basal insulin treatment. In a CMAB setting, the state of the patient
and the current basal treatment can be modeled as the contexts while the bolus

insulin dosages can be modeled as the arms.

In our experiment we consider the state of the patient and basal insulin treat-
ment for the last 30 minutes as contexts. Specifically, for the said 30 minutes the
mean of continuous glucose measurements (CGMs), mean of heart rates, mean
of skin temperatures, mean of air temperatures, mean of galvanic skin response
measurements, sum of carbohydrate intake from meals, sums of exercise scores
(multiplication of the duration and the intensity of an exercise session), sums of
number of steps taken and the mean of the basal insulin dosages are extracted

before a bolus injection event from the dataset as contexts, making a total of 9

47



Table 4.1: Percentages of samples for both approaches and all patients

559 563 570 975 588 591 | Overall

CGP-UCB-RL | 00.00 | 00.20 | 00.23 | 02.73 | 00.40 | 00.62 | 00.60

m<g?3L CGP-UCB 00.44 | 00.79 | 00.45 | 03.12 | 00.00 | 02.16 | 01.10
Dataset 01.97 | 00.25 | 01.59 | 04.50 | 00.00 | 03.41 | 01.75

80.180 CGP-UCB-RL | 72.00 | 84.78 | 72.79 | 84.77 | 81.05 | 81.17 | 79.65
me /dL CGP-UCB 68.44 | 77.47 | 66.89 | 79.30 | 71.77 | 68.52 | 72.20
Dataset 36.84 | 56.78 | 37.93 | 62.00 | 39.81 | 57.95 | 49.06

5180 CGP-UCB-RL | 28.00 | 15.02 | 26.98 | 12.50 | 18.55 | 18.21 | 19.75

me /dL CGP-UCB 31.11 | 21.74 | 32.65 | 17.58 | 28.23 | 29.32 | 26.70
Dataset 61.18 | 42.96 | 60.48 | 33.50 | 60.19 | 38.64 | 49.19

variables. We consider bolus injection dosage as the single arm variable.

The rewards are generated according to the CGM levels of the patient after a

bolus injection, averaged over the following 30 minutes to 2 hours. We used the

following mapping to translate CGMs to rewards

fx) =

/

0, x <80 (hypoglycemia)
=80 80 <2 <120
(4.5)
B, 120 < x < 180
0, 180 < z (hyperglycemia)

As data contains missing values, we need imputation to conduct experiments.

While extracting data, first bolus events are located hence bolus injection events

always exist. Then for missing contexts, we set the values of carbohydrate intake,

exercise, basal insulin dosage and number of steps taken to 0, as no data implies

no activity, but for heart rates, skin temperatures, air temperatures and galvanic

skin responses we take the average over the dataset where imputing by 0 is not

meaningful.

Before the experiments, we standardize the data so that each variable has zero

mean and unit variance. Then, we construct a prior distribution over the patients

by taking how many times they occur in the dataset into account. After this,

we use a Gaussian distribution to model context data for each patient separately.
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Since we assume that the expected reward function is sampled from a Gaussian
process prior, we use Gaussian process regression to model the data(with contexts
and arms as inputs and CGM levels after bolus injection as outputs) whose kernel
is the squared exponential kernel and the length-scale parameters of the kernel
are optimized during training. We use under sampling to create equal amounts

of the data from each patient.

During run time, first a patient is randomly selected by sampling from the
prior distribution. Afterwards, Gaussian distribution associated with the selected
patient is used to sample the context vector. Then, the context vector is made
available to the CMAB algorithm to observe which, in return, selects an arm.
Finally, the CGMs are estimated according to the context and arms, a noise
component with distribution N (0,25) is added to the estimated CGM and the

reward is generated according to function given in (4.5).

Since both algorithms are time consuming but converging fast, we run the
experiments for 7' = 100 rounds. The optimal scale factors for CGP-UCB and
CGP-UCB-RL are determined to be 0.01 and 0.05, respectively and the results are
reported for these values. Examining the final CGMs instead of other statistics
is a better way to analyze the results as it is hard to relate rewards or regret to
the practical outcomes. In Fig. 4.5, the histograms for all approaches and the
dataset are given, combining the results for all patients. Note that the histograms
are normalized in order to eliminate the difference in sample sizes. We also give a
more detailed view of the final distributions of the CGM levels after the injections
in Table 4.1 where the header row contains the identification numbers of patients
as they are given in the OhioT1DM dataset. CGP-UCB-RL outperforms CGP-
UCB and achieves the largest density in the desired blood glucose level range over
all patients. CGP-UCB-RL has less density in hypoglycemia and hyperglycemia

ranges in general, except only for the hypoglycemia range for patient 588.
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Dimension 2 Dimension 3

Figure 4.1: A sample of an expected reward function from a Gaussian process
prior with 2 relevant and 2 irrelevant dimensions

20



.

w B~

Relevant Context Dimension Relevant Context Dimension

Relevant Arm Dimension

Relevant Arm Dimension

Relevant Arm Dimension
Relevant Arm Dimension

Relevant Context Dimension Relevant Context Dimension

Figure 4.2: Four expected reward functions illustrated over the relevant dimen-
sions of the context-arm space
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Figure 4.3: Comparison of cumulative rewards of CGP-UCB-RL, CGP-UCB and

Uniform Random
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Figure 4.4: Comparison of regrets of CGP-UCB-RL, CGP-UCB and Uniform
Random
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Figure 4.5: Histograms for CGP-UCB, CGP-UCB-RL and the dataset, combined
for all patients
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Chapter 5

Conclusion

In this thesis, we investigate the suitability of CMAB approaches to the blood
glucose regulation problem in type 1 diabetes mellitus patients through the man-
agement of bolus insulin dosages. We make use of the OhioT1DM dataset, which
is collected from diabetes patients, when setting up a realistic simulation scenario
for the blood glucose regulation problem. When modeling the task as a CMAB
problem, the contexts are considered to be the state of the patient, arms are
considered to be different bolus insulin dosages and rewards are generated ac-
cording to the blood glucose levels of patients after the injections. In both of the
investigated problem settings, it is assumed that the expected reward function
generated accordingly to the blood glucose levels is constant along a subset of di-
mensions of context and arm sets. Moreover, in the first problem, set of relevant
patient traits are allowed to be different for different bolus insulin dosages and it
is assumed that the expected reward function satisfies the Lipschitz continuity as-
sumption. Upper bounds on the number of relevant context and arm dimensions
are also assumed to be known in this setting. For this case, we use the CMAB-
RL algorithm which includes a novel discretization strategy for the partitioning of
context and arm sets. Empirically, we compare CMAB-RL against other CMAB
approaches that do not take relevance into account in the setting of personalized
treatment and show that CMAB-RL outperforms other approaches since irrele-

vant dimensions exist. CMAB-RL and other algorithms are also evaluated in a
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synthetic environment where the expected reward function is generated using a
Gaussian mixture model as a benchmark. In the second problem, we consider a
Bayesian version of the CMAB problem, where the expected reward function is
assumed to be a sample from a Gaussian process prior. We propose an extension
of CGP-UCB, called CGP-UCB-RL, which learns the relevant context and arm
dimensions by optimizing the negative log marginal likelihood of gathered sam-
ples. The performance of CGP-UCB-RL is numerically compared to CGP-UCB
in two experimental settings and it is demonstrated that CGP-UCB-RL provides
better performance when the number of relevant dimensions is small compared
to the dimensionality of the context-arm space. The first experimental setting
includes an environment sampled from Gaussian process prior and the second
experiment involves the objective of this thesis, that is testing the algorithms in
administration of bolus insulin to regulate the blood glucose levels of diabetes
patients. For future work, we aim to provide theoretical guarantees for CGP-
UCB-RL now that it is shown to perform well in practical settings. Furthermore,
we aim to improve CMAB-RL and CGP-UCB-RL by considering adaptive par-
titioning strategies for relevance learning in CMAB problems. Moreover, we aim
to extend this study to other personalized healthcare problems such as treatment

of cancer and heart disease patients.
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