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ABSTRACT

PERSONALIZING TREATMENTS VIA CONTEXTUAL
MULTI-ARMED BANDITS BY IDENTIFYING

RELEVANCE

Cem Bulucu

M.S. in Electrical and Electronics Engineering

Advisor: Cem Tekin

August 2019

Personalized medicine offers specialized treatment options for individuals

which is vital as every patient is different. One-size-fits-all approaches are of-

ten not effective and most patients require personalized care when dealing with

various diseases like cancer, heart diseases or diabetes. As vast amounts of data

became available in medicine (and other fields including web-based recommender

systems and intelligent radio networks), online learning approaches are gaining

popularity due to their ability to learn fast in uncertain environments. Contex-

tual multi-armed bandit algorithms provide reliable sequential decision-making

options in such applications. In medical settings (also in other aforementioned

settings), data (contexts) and actions (arms) are often high-dimensional and per-

formances of traditional contextual multi-armed bandit approaches are almost

as bad as random selection, due to the curse of dimensionality. Fortunately, in

many cases the information relevant to the decision-making task does not depend

on all dimensions but rather depends on a small subset of dimensions, called the

relevant dimensions. In this thesis, we aim to provide personalized treatments for

patients sequentially arriving over time by using contextual multi-armed bandit

approaches when the expected rewards related to patient outcomes only vary on

a small subset of context and arm dimensions. For this purpose, first we make use

of the contextual multi-armed bandit with relevance learning (CMAB-RL) algo-

rithm which learns the relevance by employing a novel partitioning strategy on the

context-arm space and forming a set of candidate relevant dimension tuples. In

this model, the set of relevant patient traits are allowed to be different for differ-

ent bolus insulin dosages. Next, we consider an environment where the expected

reward function defined over the context-arm space is sampled from a Gaussian

process. For this setting, we propose an extension to the contextual Gaussian
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process upper confidence bound (CGP-UCB) algorithm, called CGP-UCB with

relevance learning (CGP-UCB-RL), that learns the relevance by integrating ker-

nels that allow weights to be associated with each dimension and optimizing

the negative log marginal likelihood. Then, we investigate the suitability of this

approach in the blood glucose regulation problem. Aside from applying both

algorithms to the bolus insulin administration problem, we also evaluate their

performance in synthetically generated environments as benchmarks.

Keywords: Online Learning, contextual multi-armed bandits, contextual Gaus-

sian process bandits, relevance learning, personalized medicine.



ÖZET

İLGİ BELİRLEYEREK BAĞLAMSAL ÇOK KOLLU
HAYDUTLAR İLE TEDAVİLERİ KİŞİSELLEŞTİRME

Cem Bulucu

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: Cem Tekin

Ağustos 2019

Kişiselleştirilmiş tıp bireyler için özel tedavi seçenekleri sunar, bu da her

hasta farklı olduğu için hayati bir önem taşır. Herkese uyması beklenen ortak

yaklaşımlar genellikle etkili değildir ve çoğu hasta kanser, kalp hastalıkları ve

diyabet gibi çeşitli hastalıklarda kişiselleştirilmiş bakıma ihtiyaç duyar. Tıpta

(aynı zamanda ağ-tabanlı tavsiye sistemleri ve akıllı radyo ağları gibi diğer alan-

larda) çok miktarda verinin elde edilebilmesi ile çevrimiçi öğrenme yöntemleri

belirsiz ortamlarda hızlı öğrenme yetenekleri nedeniyle popülerlik kazanmak-

tadır. Bu tür uygulamalarda bağlamsal çok kollu haydut algoritmaları güvenilir

karar verme seçenekleri sunar. Medikal uygulamalarda(ayrıca yukarıda belir-

tilen uygulamalarda), veriler (bağlamlar) ve eylemler (kollar) genellikle yüksek

boyutludur ve çok boyutluluğun lanetinden dolayı geleneksel bağlamsal çok kollu

haydut yöntemlerinin performansları neredeyse rasgele seçim kadar kötü olur.

Neyse ki, çoğu zaman karar verme görevi ile ilgili bilgiler tüm boyutlara bağlı

değildir, bunun yerine boyutların az sayıda eleman içeren ve ilgili boyutlar adı

verilen bir alt kümesine bağlıdır. Bu tezde, hastaların sonuçlarına ilişkin bekle-

nen ödüller bağlam ve kol boyutlarının yalnızca küçük bir alt kümesi üzerinde

değişiklik gösterdiğinde bağlamsal çok kollu haydut yaklaşımları kullanarak za-

man içinde ardışık olarak gelen hastalar için kişiselleştirilmiş tedaviler sağlamak

hedeflenmiştir. Bu amaç için, ilk olarak bağlam-kol uzayı üzerinde yeni bir

bölümlendirme stratejisi kullanarak ve bir aday ilgili boyut değişkenler grubu

oluşturarak ilgi öğrenen ilgi öğrenmeli bağlamsal çok kollu haydut(contextual

multi-armed bandit with relevance learning veya kısaca CMAB-RL) algoritması

kullanılmıştır. Bu modelde, ilgili hasta özellikleri kümesinin farklı bolus in-

sulin dozları için farklı olmasına izin verilen bir ortamı ele alınmıştır. Daha

sonra, bağlam-kol uzayı üzerinde tanımlanan beklenen ödül fonksiyonunun bir
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Gauss sürecinden örneklendiği bir ortam ele alınmıştır. Bu ortam için, bağlamsal

Gauss süreci üst güven sınırı(contextual Gaussian process upper confidence bound

veya kısaca CGP-UCB) algorithmasının bir uzantısı olan ve ilgi öğrenmeyi her

boyut için bir ağırlık atama sağlayan çekirdek fonksiyonlarını entegre ederek ve

negatif logaritmik marjinal olabilirliği eniyileyerek öğrenen ilgi öğrenmeli CGP-

UCB(CGP-UCB with relevance learning veya kısaca CGP-UCB-RL) algoritması

önerilmiştir. Sonrasında, bu yaklaşımın kan şekeri düzenlemesi problemine uy-

gunluğu incelenmiştir. Bolus insulin düzenlenmesi problemine uygulanmalarının

yanında, iki algoritmanın performansları referans olması için sentetik olarak

yaratılmış ortamlarda değerlendirilmiştir.

Anahtar sözcükler : Çevrimiçi öğrenme, bağlamsal çok kollu haydutlar, bağlamsal

Gauss süreci haydutlar, ilgi öğrenme, kişiselleşmiş tıp.
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Chapter 1

Introduction

Personalized medicine is a very important research area as the physiological prop-

erties of each individual is different and drugs or treatments often have varying

effects on different people. In general, the personal medical histories, genetic

vulnerabilities and ongoing treatments are different for distinct people. In fact,

many people do not respond well to their first offered drug in treatments and it

is argued that the reason behind this is due to their genetic heritage [1, 2]. This

inspires researchers to develop adaptive and personalized strategies to optimize

effectiveness. Although the concept is not new, it has gained popularity in re-

cent years and welcomed in general for which the precision medicine initiative

can be given [3] as an example, which was generally supported. Personalized

medicine allowed improvements in the treatments of diseases cancer and HIV as

targeted treatments are utilized that specifically addresses the root cause, as well

as decreasing the occurrence of side effects. Moreover, the use of personalized

medicine provides a better understanding for a wide range of diseases including

cancer, asthma and sensory neuropathy by analyzing the symptoms, how the

disease progresses and how different treatments work on different demographics

[4]. In addition to treatment options, personalized healthcare also provides dis-

ease prevention and early diagnosis, as due to their medical histories and genetic

heritage people may be prone to certain diseases. Identification of the proneness

of patients helps in managing treatments accordingly or tackling problems they
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may have before the problems surface.

In diabetes patients, determination of relevant patient traits is vital in order to

provide individual based solutions. Regulation of blood glucose needs to be han-

dled with utmost care since low blood glucose(hypoglycemia) can cause seizures,

loss of consciousness and even death whereas high blood glucose(hyperglycemia)

can cause skin infections, nerve damage and damage to eyes, blood vessels and

kidneys. Different individuals should be subject to different insulin treatments

to prevent these complications, as one-size-fits-all dosages may be too high or

too low for distinct people, resulting in hypoglycemia or hyperglycemia. In this

thesis, we aim to tackle this problem through the use of contextual multi-armed

bandit approaches where we aim to use patient information as contexts and bolus

insulin dosage as arms.

Like medical diagnosis and treatment recommendation, many real-world tasks

also require taking actions in uncertain environments, requiring the learner to

base its decisions on observations on the current information about the environ-

ment and its past experiences about similar decisions. These tasks are often

associated with some notion of a reward, which is revealed after taking the ac-

tion. The learner is then expected to update its decisions according to the reward

and achieve higher rewards in upcoming decisions. In this thesis, our blood glu-

cose regulation models consider the current information about the patient(such

as current blood glucose levels, current basal insulin treatment, carbohydrate in-

take, exercise), recommend a bolus insulin dosage. The rewards are generated

according to the effect of the decision on the blood glucose levels of the patient.

Reinforcement learning is an area of machine learning which models this

decision-making process of making observations about the state of the environ-

ment, taking action, receiving reward and updating accordingly. The state of the

environment changes after the action is taken and the reward is associated with

this transition. In reinforcement learning models, the learner interacts with the

environment repeatedly in discrete time steps, called rounds. The objective of

the learner is to maximize its cumulative reward over all rounds. As this set-

ting is very well suited for the blood glucose regulation task we aim to utilize

2



multi-armed bandit approaches, which will be introduced next.

Modeling the sequential decision-making problem with Multi-Armed Ban-

dits(MABs) is common, as it provides a simple and structured way to model

the problem. The importance of such a modeling for online learning tasks in

uncertain environments is due to the fact that, in general, no data about the

environment is available in advance. Thus, in such tasks the decision-maker is

required to quickly learn about the environment and at the same time acquire

high rewards. MABs represent a classical reinforcement learning problem which

demonstrates the exploration-exploitation trade-off. The original MAB problem

involves sequentially determining which slot machine to play in each round, in

order to maximize the cumulative monetary gain over a set of rounds. The slot

machine is also synonymously called ”one-armed bandit” which gives rise to the

term ”arm”(in some works referred to as ”action”) in literature. Intuitively, this

problem translates into a variety of applications, which we will provide exam-

ples of after explaining the generic framework for MAB. MABs can be used to

model problems where a reward notion exists and the objective is to sequentially

make the decisions that maximize the cumulative reward over all rounds. In

MAB problem setting, the learner does not know the underlying reward distri-

butions of arms and as feedback, the learner is revealed a noisy reward sampled

from the reward distribution associated with the selected arm in each round. As

the reward distributions are unknown, the learner has to utilize the information

provided by its previous selections to optimize its decisions. Any learner then

faces the aforementioned exploration-exploitation trade-off, since if the learner

possesses a greedy approach that only selects seemingly best arm, then it misses

the opportunity to give other arms a ”fair” chance. For example, one arm may

have a high sample mean reward when it is played only a few times, however,

it may have a low true mean reward in which case the algorithm would be ex-

ploiting a sub-optimal arm. Conversely, an optimal arm may receive low rewards

in a few rounds due to randomness, but since it would not be explored further,

one may not be able to discover this seeming sub-optimal but truly optimal arm.

On the other hand, exploring too much would simply mean unnecessarily select-

ing sub-optimal arms believing that they may be optimal and end up receiving

3



nearly equal amounts of high and low rewards. On the average such a learner

performs poorly as the learner fails to take advantage of arms with high rewards,

in limited amount of time. MAB model addresses this trade-off directly, and

hence attracted much attention. One extension to the classical MAB model is

the contextual MAB(CMAB) model, which allows the model to make use of side

information about the environment. In each round, the learner observes a context

from the context set and selects an arm from the arm set. The learner is required

to optimize arm selection according to previous context observations, arm selec-

tions and rewards as well as the recently received context, because the expected

reward of the arms depend on the current context. The applications of MAB and

CMAB models include but not limited to hyper-parameter optimization in neural

networks [5], intelligent radio networks [6], personalized content [7] and medicine

[8, 9].

The performance of MAB and CMAB models are often measured by a metric

called regret, which is essentially the difference between the performance of the

learner and a strategy (often called an ”oracle”) that makes the optimal arm

selection in every round. Since the oracle is the optimal strategy, minimizing

regret is equivalent to maximizing cumulative reward.

Working with high dimensional data commonly causes problems for all ma-

chine learning tasks which is an infamous phenomenon, called the curse of di-

mensionality. In supervised learning, it leads to over-fitting as the model fails to

identify actually meaningful features out of a vast set of variables. In unsuper-

vised learning, similarity metrics fail to group similar instances together, since all

samples appear to be dissimilar as the volume of the space increases rapidly with

dimensionality.

High dimensionality have similar effects on CMAB problems. When the con-

text and arm sets are finite, the effect of the high dimensionality often do not

pose problems since commonly the cardinality of the context and arm sets are

negligible compared to the number of rounds and the learner can observe enough

samples from each context and arm. In a more general setting however, contexts

and arms can be infinitely many and hence prevent the learner from observing
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each context or selecting each arm even once. In such a setting the context and

arm sets are modeled as multi-dimensional sets. Regret depends exponentially

on the dimensionalities of these sets [10] and with increasing number of dimen-

sions, the regret converges to a linear function of time. As linear regret is the

worst that can be achieved in CMAB setting (for example, a strategy that makes

random arm selections achieves linear regret), reducing the effect of dimension-

ality is of vital importance. Fortunately, in most cases, many of the context and

arm dimensions have negligible to no effect on the reward distributions, which

are referred to as ”irrelevant” hereafter. In this thesis, we consider the CMAB

problem in high-dimensional settings where the reward depends on only a subset

of context and arm dimensions and we aim to exploit this information to provide

personalized treatment in blood glucose regulation of type 1 diabetes mellitus

patients.

We study this setting from two perspectives. First, we consider the setting

given in [11] which is a classical CMAB setting where an upper bound on the

number relevant dimensions for context and arm sets are available a priori to

the learner and the set of relevant context dimensions are allowed to be different

for different arms. As the number of possible context-arm pairs is infinite, any

discretization technique requires some notion of a similarity constraint defined on

the reward distributions and the context-arm pairs. This assumption is needed

in order to ensure that expected rewards in a discretized region does not vary

largely and estimations made for this region are accurate for most of the region.

This sort of constraint on the relation between the expected rewards and the

context-arm pairs is also needed in general to achieve sublinear regret. A nice

example why this sort of assumption is needed is as follows. Consider a setting

where, for all contexts, all arms have 0 expected reward except for a single arm

that has expected reward of 1, which makes it optimal. Then any algorithm

needs to identify this optimal arm in order to minimize regret. In finite amount

of time, identifying the optimal arm in a set of infinitely many arms without any

information gain from other arm selections is not possible, as the learner needs to

play the exact optimal arm to realize its presence. Hence, in [11], the commonly
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used Lipschitz continuity([12], [13]) is also assumed. Lipschitz continuity assump-

tion states that the variation of expected rewards of any two context-arm pairs

is bounded by the distance between the said context-arm pairs times a constant,

called the Lipschitz constant. For this problem, a novel partitioning technique is

proposed in [11], which discretizes subsets of dimensions of the context-arm space

instead of naively applying discretization on the context-arm space. Then, it uses

comparisons of the variation between the sample mean rewards of partitions to

determine an estimated set of relevant context dimensions for each arm. The

arm selection is done via employing optimism in the face of uncertainty in an

effort to balance the exploration-exploitation trade-off. Optimism in the face of

uncertainty can be explained as building optimistic indices for arms and selecting

the arm which has the highest index when we lack the knowledge of true arm re-

wards. [11] adopts the classical regret definition as the performance metric. The

performance of the proposed method is evaluated in experiment environments

created synthetically and we apply it to the management of bolus insulin dosage

in personalized treatments of diabetes patients.

Secondly, we consider the Bayesian version of the CMAB problem. In this set-

ting, the underlying expected reward function is assumed to be sampled from a

Gaussian process prior. We further assume that kernel function of the Gaussian

process prior is such that any function sample is constant along some dimen-

sions, yielding them irrelevant. For this problem, we propose an extension to

the contextual Gaussian process upper confidence bound algorithm (CGP-UCB),

originally introduced in [14]. Briefly, our extension is to consider kernels that

can ignore certain dimensions(a discrete version of the automatic relevance de-

termination model [15]), hence any estimate made with such kernels presume that

expected reward is constant along ignored dimensions. During run-time, nega-

tive log marginal likelihood is optimized to determine which dimensions should be

ignored based on the past context-arm-reward triplets. After the relevant dimen-

sions are estimated, the UCBs of arms are estimated using the kernel associated

with the estimated relevant dimensions and finally the arm with the highest UCB

is selected. Again, we use the classical notion of regret and cumulative rewards

as performance metrics. The comparison between CGP-UCB and our extension
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is examined in settings with irrelevant context and arm dimensions, specifically

in a synthetically created problem instance and in a problem instance which is

based on real-world medical dataset collected from diabetes patients.

1.1 Our Contributions

The summary of contributions of this thesis are given below:

• In personalizing blood glucose control via contextual multi-armed bandits

by identifying relevance;

– We propose a way to integrate CMAB decision-making into blood

glucose regulation of type 1 diabetes mellitus patients and show how

data collected previously can be utilized in doing so.

– We use CMAB-RL algorithm given in [11], an extension of HOO algo-

rithm given in [16] and the IUP algorithm given in [9] to evaluate how

different CMAB algorithms measure in bolus insulin administration

task.

– We also provide a comparison of these algorithms in a synthetic setting

as a benchmark.

• In contextual Gaussian process bandit problem with relevance learning;

– To the best of our knowledge, this work is the first to address relevance

learning in a contextual Gaussian process bandit setting with infinitely

many contexts and arms.

– We propose contextual Gaussian process bandit upper confidence

bound algorithm with relevance learning (CGP-UCB-RL), which does

not require a priori information about the upper bounds on the number

of relevant context and arm dimensions.

– We compare the performance of CGP-UCB-RL with CGP-UCB nu-

merically in a synthetic environment.
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– We also investigate how suitable CGP-UCB-RL and CGP-UCB are

for the bolus insulin administration task.

1.2 Organization of the Thesis

The organization of the thesis is as follows. In Chapter 2, we review the liter-

ature on MABs, CMABs, feature selection, personalized medicine and relevance

learning in MABs and CMABs. Chapter 3 contains contextual multi-armed ban-

dit problem with relevance learning given in [11] and our experiments about the

personalized treatment using CMAB-RL and two other approaches. In Section

3.1, we give problem formulation. In Section 3.2, CMAB-RL algorithm is de-

scribed including notes about the memory requirements as well as computational

complexity and finally, in Section 3.3 we provide the illustrative experimental

results on how CMAB-RL can be utilized for personalized treatment of diabetes

patients. In Chapter 4, we introduce contextual Gaussian process bandit problem

with relevance learning, with formal problem definition on Section 4.1, introduc-

tion of CGP-UCB-RL on Section 4.2 and numerical results about CGP-UCB-RL

on Section 4.3. Lastly, Chapter 5 includes ideas for future work and concludes

the thesis.
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Chapter 2

Literature Review

In this chapter, we provide a review of literature on works that study MABs in

various settings. Specifically, in Section 2.1 we present work on non-contextual

bandits. Section 2.2 includes studies on contextual multi-armed bandits. Later,

in Section 2.3, we discuss feature selection in offline and online settings. Section

2.4 contains work specifically on relevance learning in the non-contextual and

contextual MAB settings. Finally, literature review on machine learning meth-

ods for medicinal applications is given in 2.5. A summary of this section and

comparison of our work with the prior art is given in Table 2.1.

2.1 Non-contextual Multi-Armed Bandit

The earlier studies on MAB problems consider only a finite set of K arms, as

introduced in [23], where the learner selects a single arm in each round and ob-

serves a noisy reward sampled from the reward distribution of the selected arm.

This study shows that O(log T ) is a lower bound on the regret up to a constant

that is determined by the Kullback-Leibler divergence between the distributions

of the optimal arm and the suboptimal arms. They also develop index policies

that asymptotically match this lower bound. In [24], the aforementioned lower
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Table 2.1: Summary of Related Work

Bandit
algorithm

Contextual
Infinite
arm set

Gaussian
process
prior

Relevance
learning

UCB1 [17] No No No No

HOO [16] No Yes No No

GP-UCB [18] No Yes Yes No

Contextual
Zooming
Algorithm [12]

Yes Yes No No

CGP-UCB [14] Yes Yes Yes No

Algorithm 3 [19] Yes Yes Yes No

SI-BO [20] No Yes Yes Yes

CAB [21] No Yes No Yes

RELEAF [22] Yes No No Yes

CMAB-RL [11] Yes Yes No Yes

CGP-UCB-RL(our work) Yes Yes Yes Yes

bound in matched by establishing index policies whose dependence on rewards

of arms are only via their sample means. In a finite time setting, upper con-

fidence bound(UCB) based index computation which only utilizes the current

round number, sample mean rewards and selection counts for each arm is pro-

posed in [17] achieving logarithmic regret. There are other works that study this

setting, including [25] which achieves tighter bounds by using Kullback-Liebler

divergence based UCB indices.

The problem is extended to infinite arms in many works as well, such as [26]

which primarily considers one-dimensional continuum-armed bandit problem. In

[26], the proposed algorithm divides the overall horizon into epochs where each

epoch is twice as long the previous one. The arm space is partitioned into finer

and finer grids with each epoch and in each epoch, an algorithm designed for a

finite armed bandit setting is run. In [16], a more general setting is considered

where the arms are allowed to be multi-dimensional. The hierarchical optimistic
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optimization strategy builds non-uniform partitions structured as a binary tree

and increases the granularity of the partitioning in regions where it believes to

contain higher rewards, which in return enables it to identify the optimal arm with

small discretization error. In continuum-armed problems, a notion of similarity is

required to achieve sublinear regret. For example, in [26] Lipschitz continuity and

in [16] a variant of Lipschitz continuity, which is called weak Lipschitz property,

is assumed.

Another work, [18], assumes that the reward surface is a sample from a Gaus-

sian process prior and utilizes Bayesian optimization to construct UCB bounds

via the posterior distribution of the expected reward surface after observing sam-

ples.

2.2 Contextual Multi-Armed Bandit

In contextual MAB, the learner observes a context vector at the beginning of a

round and has to shape its arm selection based on this context, as the expected

reward of arms changes with different contexts. In general, the context set is

considered to contain an infinite number of elements, whereas arm set is consid-

ered to have either finite or infinite number of elements in different studies. In

CMAB setting, similar to the MAB setting with infinite number of arms, one re-

quires further assumptions on the expected rewards and context-arm pairs. The

studies in CMAB can be categorized into three main groups in terms of these

assumptions.

First category includes the works which assume that the expected reward of

an arm is given by a linear combination of elements of context and the arm.

Although this model seems to consider a restricted set of CMAB problems, al-

gorithms that adopt this model work well in practice and provide regret bounds

with low dependence on dimensionality. LinUCB [7], which provides empirical

results, and its modified version SupLinUCB [27], in which a theoretical analysis

is given, are examples that adopt the linearity assumption. In [28], a variant of

11



the aforementioned works that makes use of kernel functions is proposed. This

method achieves similar regret to [27] depending on the effective dimensionality

of data instead of the total dimensionality. Effective dimensionality is a rough

measure of number of dimensions in the reproducing kernel Hilbert space that

data mostly resides in. Markedly, in [29], a better regret analysis is given through

the use of more refined confidence sets.

The second category targets a more general set of CMAB problems. In general,

the assumption is that the expected rewards associated with every context-arm

pair form a Lipschitz continuous function with respect to the distances between

contexts-arm pairs. In this setting, no statistical assumptions are made on context

arrivals and the expected reward function is unknown to the learner but fixed. In

[10], Query-Ad-Clustering algorithm that partitions the context space into subsets

is proposed, where the model considers finitely many arms. The regret of Query-

Ad-Clustering algorithm depends on the covering dimension of the context space,

which is d for the d-dimensional Euclidean space. In the continuous context-

arm space setting, Contextual Zooming Algorithm in [12] adaptively partitions

the joint context-arm space, creating smaller sized sets around the high reward

areas. For the Contextual Zooming Algorithm, a regret bound that depends on

the zooming dimension of the context-arm space is derived, where the zooming

dimension is determined by the size of near-optimal arm set. The problem is

also considered in the Bayesian setting by [14] and [19], which assumes that

the expected reward function is drawn from a Gaussian process prior. While

CGP-UCB algorithm in [14] extends the work in [18] to the contextual setting

intuitively, the work in [19] is inspired by the adaptive partitioning strategy given

in [16].

Contexts and arm rewards are assumed to be jointly sampled from a fixed

distribution in the last category. The studies in [30], [31] and [32] provide regret

bounds that do not depend on the dimensionality of the context set in a setting

with finitely many arms.
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2.3 Feature Selection

The feature selection literature can be grouped into three as filter, wrapper and

embedded approaches. Filter methods perform feature selection according to

metrics such as the correlation coefficient or the mutual information of a feature

with a target variable(class labels or target regression values). Wrapper methods

work with a learning model, such as a classifier or a regression model, and selects

the features according to the model’s feedback. In embedded methods, feature

selection is carried out simultaneously in the training process of the model.

As examples for the embedded approaches, [33] is a very famous paper that

introduces LASSO regularization and the work in [34] utilizes regularized trees

in order to perform feature selection. In [35], the model uses a modified objective

function that penalizes the involvement of a feature.

As an example of wrapper methods, in [36], an iterative algorithm that removes

features with the smallest ranking is proposed, with the ranks being calculated

according to the feedback of a classifier. The help of a genetic algorithm is used

in [37] to select features. [38] proposes two methods, namely SFFS and SBFS, in

which the features are included and excluded according to their effect on the loss

function, which can typically be the loss function of a classifier.

The filter methods do not make use of a classifier, as an example the weighting

procedure in [39] can be given. In [40], an information-theoretic approach for de-

termination of relevant features is given. [41] proposes a gradient based approach

that looks to exploit the best of both worlds, aiming to merge the precision of

wrapper methods with the speed of filter methods.

Apart from the above, there are papers that consider an online setting where

the features are revealed sequentially. Generally filter methods are considered

due to speed and compatibility in these settings. The methods given in [42], [43]

and [44] can be considered as examples for this setting.
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Even though there are plenty of feature selection methods in literature, unfor-

tunately most of them can not be utilized in CMAB problems because in CMAB

problems the aim is to maximize the cumulative reward but the aforementioned

literature does not address this objective. We do, however, employ a version of

the automatic relevance determination method given in [15] as part of our re-

search in CGP-UCB-RL. This method allows different weights to be assigned to

each feature and measure their relevance via these weights. In this sense, this

method is similar to [39]. The optimal weights needs to be calculated according

to a non-convex optimization on the negative log marginal likelihood.

2.4 Relevance Learning in Bandits

This section in literature review includes specific work on relevance learning in

non-contextual and contextual MAB problems. Although not many sources are

available in this area, there is a handful of important studies. First we consider

non-contextual settings. In [21], a discretization strategy which cleverly partitions

the arm space so that whatever arm is played the discretization error in relevant

dimensions are small is proposed. This way [21] enjoys a regret bound with the

time order that depends on the dimensionality of the relevant arm subspace,

rather than the whole dimensionality of the arm space. Also in the Bayesian

version of the CMAB problem, [20] proposes a model where the expected reward

function essentially lives on a low-dimensional subspace of the original arm space

and the transformation from the arm space to the low-dimensional subspace is

given by a linear transformation. The proposed SI-BO algorithm first purely

explores the arm space in order to learn the transformation matrix, then it uses

the GP-UCB approach, given in [18], on the transformed space. These methods

are not applicable in our setting as they do not consider the side information in

the form of contexts.

Next we investigate the contextual models in relevance learning. In [45], a

setting with finitely many arms and contexts is considered, whereas we consider

sets for infinitely many contexts and arms. The proposed method determines
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the relevant context dimensions with the use of conditional probabilities. The

last work we consider is the RELEAF algorithm given in [22]. RELEAF adopts

the Lipschitz continuity assumption and requires an upper bound on the number

of relevant context dimensions. This approach is the closest work to [11] in the

sense that it also creates a candidate set of relevant context dimensions in a similar

way. Different from [11], it adaptively partitions the context space, their regret

definition also considers the cost of observing rewards and most importantly, it

diverges from [11] as it considers a finite set of arms whereas in [11] an infinite

number of arms is considered.

2.5 Machine Learning for Personalized Medicine

The final section in literature review contains work on personalized medicine and

machine learning methods in medicine in general.

In [46], C-Path method which analyzes cancer images and predicts prognosis

is given and an analysis of morphological features in terms their relevance to the

task is included. [47] and [48] uses deep learning and XGBoost methods, respec-

tively, to predict blood glucose levels of patients. Although their methods do not

directly come up with recommendations, their models can be used with various

inputs to recommend treatments for different patients. In [49], the diagnosis of

ischaemic heart disease using various machine learning approaches is considered.

In [50], a comprehensive study with many different machine learning approaches

is given for the heart failure subtype classification problem. In [51], a method

that utilizes similarities between different patients and drugs to tackle the prob-

lem of personalized medicine is given. In [52], the DE method which discovers the

relevant patient traits and utilizes them in making accurate diagnosis is proposed.

They consider the case where for different treatments, different patient traits can

be relevant. In [8], the infinite horizon Bayesian Bernoulli MAB and its finite

horizon variant are used in the design and analysis of clinical trials. Another

study is conducted on breast cancer diagnosis in [9], where an ensemble learning

method called Hedged Bandits is proposed. Other than treatments of diseases
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and diagnosis, [53] focuses on when patients should be admitted to the ICU by

constructing personalized risk scores.
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Chapter 3

Personalizing Blood Glucose

Control via Contextual

Multi-Armed Bandits by

Identifying Relevance

In this chapter, we study how CMAB algorithms can be applied to the task of

blood glucose regulation of diabetes patient via the optimization of bolus insulin

dosage. We consider two approaches that do not take relevance information into

account and the CMAB-RL [11] approach that considers relevance information.

For completeness, we provide problem formulation and algorithm description for

CMAB-RL in Sections 3.1 and 3.2, respectively. In Section 3.3, the evaluation of

CMAB-RL and other approaches in personalized treatment is given. This section

also includes a synthetic setup which allows us to investigate the performances

of these algorithms outside of the scope of personalized treatment.
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3.1 Problem Definition

In [11], the sequential decision-making problem is considered, where in each round

t ∈ {1, 2, . . .}, the learner observes a dx-dimensional context x(t) ∈ X where

X := [0, 1]dx . Afterwards, it chooses a da-dimensional arm a(t) from A := [0, 1]da .

Let F := X×A denote the set of context-arm pairs and µa(x) denote the expected

reward of a context-arm pair (x, a) ∈ F . The random reward r(t) is generated

according to the context and arm selection in the given round, specifically given

by r(t) := µa(t)(x(t)) + κ(t). κ(t) is the noise process which is conditionally

1-sub-Gaussian hence, ∀λ ∈ R, it satisfies

E[eλκ(t) | a1:t, x1:t, κ1:t−1] ≤ exp(λ2/2)

where for b ∈ {a, x, κ}, b1:t := (b(1), . . . b(t)).

The set of arm dimensions is denoted with Da := {1, . . . , da} and the |z|-
dimensional subspace of A is denoted with Az := [0, 1]|z|, for any z ⊆ Da. Sim-

ilarly, the |z|-dimensional subarm is denoted using az ∈ Az. An arm a ∈ A can

be represented as an union of two components a = {az, az′} where z ⊆ Da and

z′ ⊆ Da \ z. In this setting, it is assumed that for fixed x ∈ X , expected reward

µa(x) is constant along the irrelevant arm dimensions. In order to define this

behaviour of the expected reward function mathematically, let c ⊆ Da denote

the set of relevant arm dimensions. Then, µ{az ,aDa\z}(x) = µ{a′z ,aDa\z}(x), for all

z ⊆ Da \ c, az, a
′
z ∈ Az, aDa\z ∈ ADa\z and x ∈ X , is assumed.

Likewise, the set of context dimensions is denoted with Dx := {1, . . . , dx}
and the |z|-dimensional subspace of X is denoted with Xz := [0, 1]|z|, for any

z ⊆ Dx. Also, the |z|-dimensional subcontext is denoted using xz ∈ Xz. A

context x ∈ X can also be represented as a union of two components x = {xz, xz′}
where z ⊆ Dx and z′ ⊆ Dx\z. It is assumed that for fixed a ∈ A, expected reward

µa(x) only changes along the relevant context dimensions for arm a. The set of

relevant context dimensions may correspond to a different subset of dimensions for

different arms, hence the set of relevant context dimensions is defined as a function

of an arm. More formally, let ca denote the subset of Dx that contains the relevant
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context dimensions for any a ∈ A. Then, it is assumed that µa({xz, xDx\z}) =

µa({x′z, xDx\z}) holds for all a ∈ A, z ⊆ Dx \ ca, xz, x′z ∈ Xz and xDx\z ∈ XDx\z.

The optimal arm for a context x is defined as the arm that has the maxi-

mum expected reward given x, a∗(x) := arg maxa∈A µa(x). In CMAB problems a

commonly considered performance metric is the contextual regret(see [12], [27]),

given as

Reg(T ) :=
T∑
t=1

µa∗(x(t))(x(t))−
T∑
t=1

µa(t)(x(t)).

which is also adopted in this work. Minimizing Reg(T ) is equivalent to max-

imizing the expected cumulative reward over T rounds as Reg(T ) essentially

compares the expected cumulative reward of the learner against the best possible

policy given a sequence of T contexts.

Unfortunately, since there are infinitely many arms and contexts, learning the

optimal arm for each context is impossible. To solve this problem, a similarity

structure is often assumed on expected reward function with respect to the set of

context-arm pairs [12]. A modified version of this Lipschitz continuity assumption

is utilized, which establishes a bound on the variation of the expected reward

function between any two context-arm pairs in the relevant dimensions.

Assumption 1. ∃L > 0 such that ∀a, a′ ∈ A and x, x′ ∈ X , we have

|µa(x)− µa′(x′)| ≤ L(‖xca − x′ca‖+ ‖ac − a′c‖)

where ‖.‖ represents the Euclidean norm.

Although Assumption 1, is stated according to the relevant context dimensions

ca of arm a, notice that since it is valid for all a, a′ ∈ A it also implies

|µa(x)− µa′(x′)| ≤ L(‖xca′ − x
′
ca′
‖+ ‖ac − a′c‖).

In this work, it is assumed that Lipschitz constant L is known by the learner,

whereas µa(x) is not. Furthermore, let dx := maxa∈A |ca| and da := |c| denote

the true number of relevant context and arm dimensions. It is assumed that the
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upper bounds on the number of relevant context and arm dimensions, dx and

da, are known and satisfy dx ≤ dx and da ≤ da. When operating, CMAB-RL

partitioning strategy requires partitions where 2dx dimensions are divided(see

Section 3.2), 2dx ≤ dx is also needed. Overall the assumptions regarding the

relevant number of dimensions can be summarized as

1 ≤ dx ≤ dx ≤ dx/2 and 1 ≤ da ≤ da ≤ da.

3.2 Contextual Multi-Armed Bandit with Rel-

evance Learning Algorithm (CMAB-RL)

The pseudo-code for the CMAB-RL algorithm is given in Algorithms 1 and 2.

In a nutshell, the CMAB-RL algorithm creates uniform partitions on 2dx and

da dimensional subspaces of the context-arm space and forms a set of candidate

dimensions that it regards to contain the relevant dimensions. Each set in the par-

titions uses the past contexts that arrived and arms that are selected to estimate

the expected reward function.

In order to explain how CMAB-RL operates in detail, further notation needs

to be introduced. Let ℘(S) denote the power set of a set S and V lx := {v ∈
℘(Dx) : |v| = l} and V la := {v ∈ ℘(Da) : |v| = l} denote the set of all l-

tuples of context and arm dimensions for any l ∈ Z+, respectively. Also let

V lx(v) := {v′ ∈ ℘(Dx) : |v′| = l,v ⊆ v′} for v ⊆ Dx and l ∈ {|v|, |v|+ 1, . . . , dx}.
In other words, for any w ∈ V lx(v), we have the subset relation v ⊆ w.

CMAB-RL takes the context set X , the arm set A, the total number of

rounds(horizon) T 1, the Lipschitz constant L given in Assumption 1, an inte-

ger upper bound on the number of relevant arm dimensions da ≤ da and an

1Although a finite horizon T is needed as an input, CMAB algorithms can be run on infinite
horizons by employing the well known doubling trick. The doubling trick involves setting
exponentially increasing intervals one after another, typically as T = 2T . The doubling trick
allows bandit algorithms designed for finite horizons to enjoy similar performance in an infinite
horizon setup as in the finite horizon setup.
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Algorithm 1 CMAB-RL

1: Input: X ,A, T, L, dx, da
2: Initialization: Set m = dT 1/(2+2dx+da)e

(C(X ),Y) = Generate(X ,A, dx, da,m)

Set µ̂y,pw(0) = 0, Ny,pw(0) = 0 for all y ∈ Y , w ∈ V2dx
x , pw ∈ Pw

3: while 1 ≤ t ≤ T do
4: Observe x(t) and for each w ∈ V2dx

x , find pw(t) ∈ Pw that x(t) belongs to
5: Compute Ry(t) for all y ∈ Y as given in (3.1)
6: for y ∈ Y do
7: if Ry(t) = ∅ then

8: Randomly select ĉy(t) from Vdxx
9: else

10: For each v ∈ Ry(t), calculate σ̂2
y,v(t) = max

w,w′∈V2dx
x (v)

|µ̂y,w(t) −
µ̂y,w′(t)|

11: Set ĉy(t) = arg minv∈Ry(t) σ̂
2
y,v(t)

12: end if

13: Calculate µ̂
ĉy(t)
y (t) =

∑
w∈V2dxx (ĉy(t))

µ̂y,w(t)Ny,w(t)

∑
w∈V2dxx (ĉy(t))

Ny,w(t)

14: Determine wy(t) = arg max
w′∈V2dx

x

uy,w′(t)

15: end for
16: Select y(t) = arg maxy∈Y µ̂

ĉy(t)
y (t) + 5uy,wy(t)(t)

17: Update estimates and the counters given for all w ∈ V2dx
x

18: end while

integer upper bound on the number of relevant context dimensions dx ≤ dx/2 as

inputs. It sets m = dT 1/(2+2dx+da)e.

During initialization CMAB-RL utilizes the similarity constraint given in As-

sumption 1, which assures context-arm pairs that are close to each other in F to

have similar expected rewards and discretizes X and A. However instead of doing

the partitioning naively on all dimensions it creates partitions on the subsets of

the context and arm spaces according to the upper bounds on the number of

relevant context and arm dimensions as irrelevant dimensions need not be par-

titioned since the expected reward does not change along irrelevant dimensions.

An example of how an arm space with da = 2 and da = 1 would be discretized

is given in Fig. 3.1. Expected reward function being constant along one of the

dimensions means that the optimal arm is a line along the irrelevant dimension
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Algorithm 2 Generate

1: Input: X ,A, da, dx,m
2: Create Ii := {[0, 1

m
], ( 1

m
, 2
m

], . . . , (m−1
m
, 1]} and

Pi := {[0, 1
m

], ( 1
m
, 2
m

], . . . , (m−1
m
, 1]}

3: Generate Vdaa and V2dx
x

4: for v ∈ Vdaa do
5: Iv =

∏
i∈v Ii

6: end for
7: for w ∈ V2dx

x do
8: Pw =

∏
i∈w Pi

9: end for
10: C(A) =

⋃
v∈Vda

a
Iv and C(X ) :=

⋃
w∈V2dx

x
Pw

11: Index the geometric center of each set in C(A) by y and generate the set of
arms Y

12: return C(X ) and Y

for this 2-D example. Using CMAB-RL strategy, one guarantees that at least one

of the arms is close to this optimal arm line with bounded discretization error. As

it can be seen CMAB-RL strategy yields fewer number of arms without having

an extra discretization error as the reward surface is constant either along arm

dimension 1 or 2.

Precisely, first CMAB-RL generates the set Vdaa and then partitions each di-

mension in the arm subspace Av into m equal intervals for all v ∈ Vdaa . In this

manner, Av is partitioned into mda non-overlapping sets. Let Iv :=
∏

i∈v Ii
denote the partition formed on Av, where Ii := {[0, 1

m
], ( 1

m
, 2
m

], . . . , (m−1
m
, 1]} is

the partition for a single dimension i ∈ v. As CMAB-RL applies this parti-

tion technique for all v ∈ Vdaa , the collection of all partitions is then given by

C(A) := ∪
v∈Vda

a
Iv where |C(A)| =

(
da
da

)
mda . After the partitioning operation, we

index the geometric centers of sets in the partitions in C(A) by y, and the set

of all geometric centers is denoted by Y . For an arm y that coincides with a

geometric center in Iv, the values for the dimensions not included in v are set

to 0.5.2 Once arm discretization is completed, we essentially have a discrete arm

set with |C(A)| elements.

2The value 0.5 is selected only for simplicity, certainly any value in [0, 1] would work as the
dimensions not included in v are not partitioned.
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Figure 3.1: Comparison of Uniform and CMAB-RL Discretization Strategies

For the partitioning of context space, CMAB-RL creates the set V2dx
x similar

to the case in arm partitioning. Then it partitions each dimension in the context

subspace Xw into m equal intervals for all w ∈ V2dx
x . Hence Xw is then partitioned

into m2dx non-overlapping sets. Let Pw :=
∏

i∈w Pi denote the partition formed

on Xw, where Pi := {[0, 1
m

], ( 1
m
, 2
m

], . . . , (m−1
m
, 1]} is the partition for a single

dimension i ∈ w. Since CMAB-RL also applies this partition technique for all

w ∈ V2dx
x , the collection of all partitions is then given by C(X ) := ∪

w∈V2dx
x
Pw

where |C(X )| =
(
dx
2dx

)
m2dx .

For simplicity, let x ∈ pw for w ∈ V2dx
x for any x ∈ X if xw ∈ pw for pw ∈ Pw.

Moreover, let pw(t) ∈ Pw denote the set that xw(t) belongs to.

CMAB-RL stores a sample mean estimate and a sample counter for each com-

bination of elements of C(X ) and Y . For each w ∈ V2dx
x , pw ∈ Pw and y ∈ Y ,

Ny,pw(t) denotes the sample counter which simply keeps track of how many times

a context was in pw and arm y was selected before round t. Similarly, µ̂y,pw(t)

keeps the sample mean reward estimate that is obtained from rounds before the

tth round, when a context was in pw and arm y was selected. All counters and

sample means are set to 0 during initialization.

As all aspects of the initialization is explained in detail, we next ex-

plain the algorithm details during run-time. The arm selection rule requires
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one to calculate a term called uncertainty term, which is monotonically de-

creasing with the sample size. More formally, it is defined as uy,pw(t) :=√
(2 + 4 log(2|Y|

(
dx−1
2dx−1

)
m2dxT 3/2))/Ny,pw(t) for all w ∈ V2dx

x , pw ∈ Pw, y ∈ Y .

Notice that in each round t, pw(t) is unique for each w ∈ V2dx
x , hence for sim-

plicity of notation, let µ̂y,w(t) := µ̂y,pw(t)(t), uy,w(t) := uy,pw(t)(t) and Ny,w(t) :=

Ny,pw(t)(t). The sample mean estimate for an arm y ∈ Y for the tuple of context

dimensions v ∈ Vdxx in round t is defined as the weighted average over all sample

means in counters for w ∈ V lx(v),

µ̂v
y (t) :=

∑
w∈V2dx

x (v)

µ̂y,w(t)Ny,w(t)∑
w∈V2dx

x (v)

Ny,w(t)
.

In every round t, context x(t) is revealed to CMAB-RL which then determines

the set pw(t) in Pw that x(t) is contained in, for each w ∈ V2dx
x . Then for each arm

y ∈ Y , the set of candidate relevant tuples of context dimensions, each of which

is a dx-tuple, are constructed using pairwise comparisons between 2dx-tuples,

Ry(t) :=
{
v ∈ Vdxx : |µ̂y,w(t)− µ̂y,w′(t)|

≤ 2L

√
dx/m+ uy,w(t) + uy,w′(t),∀w,w′ ∈ V2dx

x (v)

}
. (3.1)

The term 2L
√
dx/m + uy,w(t) + uy,w′(t) is the summation of the uncertainty

due to randomness in rewards and the uncertainty due to discretization for the

estimates µ̂y,w(t) and µ̂y,w′(t), called the joint uncertainty. If |µ̂y,w(t)− µ̂y,w′(t)|
is larger than the joint uncertainty, then for w,w′ ∈ V2dx

x (v), it is inferred that

v does not contain all of the relevant dimensions. The reason behind this is that

even though v ⊂ w and v ⊂ w′ are satisfied, the sample mean reward estimated

differ from each other largely. If v did contain all of the relevant context dimen-

sions, then estimates for w and w′ would be similar to each other as variance

of expected reward along irrelevant dimensions is only due to random noise and

discretization error. Any estimate µ̂y,w(t) and uncertainty L
√
dx/m + uy,w(t)

such that w ∈ V2dx
x (v) would contain the variance along relevant dimensions.

The tuple of estimated relevant context dimensions to be selected from the set
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Ry(t) is denoted by ĉy(t). If Ry(t) = ∅, then ĉy(t) is selected from Vdxx arbitrarily.

Otherwise, CMAB-RL selects ĉy(t) by considering the variation of sample mean

reward estimates which, for arm y ∈ Y and v ∈ Ry(t) is defined as

σ̂2
y,v(t) := max

w,w′∈V2dx
x (v)

|µ̂y,w(t)− µ̂y,w′(t)|.

CMAB-RL chooses the dx-tuple of context dimensions with minimum variation

as the selection ĉy(t) for all y ∈ Y , precisely ĉy(t) := arg minv∈Ry(t) σ̂
2
y,v(t).

After determining ĉy(t) for all y ∈ Y , CMAB-RL calculates the mean reward

estimates µ̂v
y (t) using v = ĉy(t) for all y ∈ Y . When selecting an arm, CMAB-RL

does not directly use the mean reward estimates, but instead uses an inflated

term which is an upper confidence bound(UCB) on the expected rewards. For

arm y, in round t, let wy(t) := arg max
w′∈V2dx

x
uy,w′(t) denote the 2dx-tuple of

context dimensions with the largest uncertainty due to randomness in rewards.

The UCB term for an arm y in round t is defined as

UCBy(t) := µ̂ĉy(t)
y (t) + 5uy,wy(t)(t).

Finally, CMAB-RL selects the arm y with the highest UCB for round t i.e. y(t) =

arg maxy∈Y UCBy(t). Note that, we have a(t) = y(t) as well. CMAB-RL employs

the usage of UCB to balance the exploration-exploitation trade-off which allows

it to explore arms that are rarely selected(and thus have high uncertainty), even

though they have low sample mean rewards.

Next, how update is executed after the selection of arm a(t) and observation

of reward r(t) is explained. CMAB-RL updates the sample mean rewards and

the sample counters for y(t) and for all w ∈ V2dx
x as follows

µ̂y(t),w(t+ 1) =
µ̂y(t),w(t)Ny(t),w(t) + r(t)

Ny(t),w(t) + 1
and

Ny(t),w(t+ 1) = Ny(t),w(t) + 1. (3.2)

Notice that CMAB-RL updates statistics for all w ∈ V2dx
x , which is a nice conse-

quence of the partitioning strategy as there is exactly one pw(t) for each w ∈ V2dx
x .

Context x(t) falls into multiple partitions(across different elements of V2dx
x ), and
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since the reward is for context-arm pair (x(t), y(t)) is observed, it is allowed

to update all partitions that contain (x(t), y(t)). However, it is also impor-

tant to point out that µ̂y,w(t) and Ny,w(t) for y 6= y(t) are not updated, thus

µ̂y,pw(t+ 1) = µ̂y,pw(t), Ny,pw(t+ 1) = Ny,pw(t) for y 6= y(t).

3.2.1 Memory Requirements of CMAB-RL

The memory requirements analysis for CMAB-RL is relatively brief. For all

y ∈ Y , w ∈ V2dx
x and pw ∈ Pw, CMAB-RL stores sample mean reward estimates

and sample counters. Hence the memory requirement is

O
((

da
da

)(
dx
2dx

)
m2dx+da

)
,

substituting m = dT 1/(2+2dx+da)e, sublinear memory requirements at the order of

O(T (2dx+da)/(2+2dx+da)) is achieved.

3.2.2 Computational Complexity of CMAB-RL

Next, the computational complexity of CMAB-RL is investigated during run-

time, which requires a deeper analysis. In each round t, determining

• pw(t) ∈ Pw for all w ∈ V2dx
x requires O

(
dx +

(
dx
2dx

))
• Ry(t) for all y ∈ Y requires O

((
da
da

)
mda

(
dx
dx

)(
dx−dx
dx

)2)
• σ̂2

y,v(t) for all y ∈ Y , v ∈ Ry(t) requires O
((

da
da

)
mda

(
dx
dx

)(
dx−dx
dx

)2)
• ĉy(t) for all y ∈ Y requires O

((
da
da

)
mda

(
dx
dx

))
• µ̂ĉy(t)

y (t) for all y ∈ Y requires O
((

da
da

)
mda

(
dx−dx
dx

))
• wy(t) for all y ∈ Y requires O

((
da
da

)
mda

(
dx
2dx

))
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• y(t) requires O
((

da
da

)
mda

)

computations. Thus, overall considering the largest terms, the computational

complexity of CMAB-RL becomes

O
((

da
da

)
mda

(
dx
dx

)(
dx−dx
dx

)2)
,

once more by substituting m = dT 1/(2+2dx+da)e, sublinear computational com-

plexity at the order of O(T da/(2+2dx+da)) is achieved.

3.3 Illustrative Results

In this section, we compare the performance of CMAB-RL against other algo-

rithms in two experiments. The first experiment involves a synthetic simulation

environment with a multi-dimensional arm set(5 dimensions with only one rel-

evant) as well as a multi-dimensional context set(again with 5 dimensions, only

one being relevant). In our second experiment, we test the performance and

suitability of CMAB-RL in a medical treatment scenario where CMAB-RL and

other competitor algorithms are employed for the problem of bolus insulin admin-

istration for type 1 diabetes mellitus(T1DM) patients based on the OhioT1DM

dataset [54].

3.3.1 Competitor Learning Algorithms

We consider two competitor algorithms to compare CMAB-RL against, with one

employing a uniform partitioning strategy whereas the other adaptively partitions

the context-arm space. We also consider an approach that selects arms randomly

to establish a benchmark where needed.
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3.3.1.1 Instance-based Uniform Partitioning (IUP) [9]

IUP is a CMAB algorithm that uniformly partitions the context-arm space F into

mdx+da sets, where they show that the choice of m = dT 1/(2+dx+da)e minimizes

regret. In each round, IUP determines the subset of hypercubes that context

arrives in, and then it identifies the hypercube with the highest UCB among

subset of hypercubes that contain context. It then selects the arm from the

identified hypercube. Note that, IUP does not consider relevance information,

and operates directly on F .

3.3.1.2 Contextual Hierarchical Optimistic Optimization (C-HOO)

We propose an extension to the hierarchical optimistic optimization(HOO) strat-

egy given in [16] which can be applied to CMAB problems as well. 3 In the vanilla

version, HOO models the arm set A with a binary tree structure and adaptively

partitions A by growing the tree in each round. The root node corresponds to

the entire arm set A and each of the subsequent nodes is mapped to a subset of

A. Smaller subsets are represented by deeper nodes in the tree. Regions that are

represented by the nodes in same depth establish a partition on A. For a node

n, the union of regions that correspond to the children of n is equal to the region

n corresponds to.

In each round, HOO starts at the root node and builds a path which will

eventually end at a leaf node. The criteria when creating the path is such that

at every depth, the child with the higher UCB is added to the path, this goes

on until a node with at most one child is reached. Provided that the node has

no children, a child is created randomly, otherwise the second child is created.

After the path terminates, GOO selects an arm from the recently created child’s

corresponding region. As time increases, HOO essentially zooms into regions

where the expected rewards are likely to be high.

3[19] also proposes a contextual extension of HOO for the CMAB problem with Gaussian
process prior.
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We extend HOO to the contextual case, called C-HOO. The immediate dif-

ference is that the tree is now built on F rather than A. In each round, as it

is a contextual approach, C-HOO observes the context. Although the path con-

struction is similar to that of HOO, the main distinction is that before a selection

according to UCB takes place, first the availability of the children are determined.

The availability in this case refers to whether the child contains the content or

not. Notice that, at each level at least one child must contain the context. If only

one child is available, then that child is selected and added to the path, otherwise

the child with the highest UCB is added to the path.

One drawback of vanilla version of HOO is that the computational complexity

increases quadratically with the number of rounds. In [16], a truncated version of

HOO is also proposed which essentially achieves the same regret bound(additive

factor of 4
√
T which does not change the time order of regret) as vanilla version

of HOO. We based C-HOO on the truncated version of HOO in our experiments.

HOO or C-HOO does not take relevance information into consideration either.

3.3.1.3 Uniform Random

This algorithm does not take the current context, past observations or the rele-

vance information into account. It simply selects an arm randomly from A and

is used as a benchmark.

3.3.2 Parameters Used in the Experiments

For both experiments, the set of all feasible context-arm pairs F , time horizon

T , dimensionality of context and arm sets, i.e., dx and da, are made known to

the algorithms as required. We also assume that L is not known by any of the

algorithms, hence it is set to 1. For CMAB-RL, we set dx = dx and da = da.

As for C-HOO, we set v1 = 2
√
dx + da and ρ = 2(−1/(dx+da)) so that Assumption

A1 in [16] is satisfied. The IUP algorithm requires no further parameters. It is

important to note that the confidence terms(uncertainty terms due to randomness
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in rewards) are scaled so that they are smaller which forces algorithms to favor

exploitation over exploration. At first, this might not seem as an appropriate

manipulation however when experimenting, it is observed that confidence terms

start much larger compared to the sample mean reward estimations and dominate

the statistics involved in arm selection. Decreasing confidence terms, so that

they are comparable with the sample mean reward estimations increases their

cumulative rewards. For each algorithm we determined the best scaling factor

via grid search over the set {0.001, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5, 1}. Also, results

of both experiments represent the results obtained from 20 repetitions, with the

aim of minimizing the effect of randomness in context arrivals, arm selection and

reward generation when measuring the performances.

3.3.3 Experiments on a Synthetic Simulation Environ-

ment

For the experiment with the synthetic environment, we consider dx = 5, da = 5,

dx = 1 and da = 1. It is also assumed that ca = ca′ for all a, a′ ∈ A, meaning

that the set of relevant context dimensions is the same for all arms. We consider

a Gaussian mixture model for the expected reward function µa(x). For a point

(x, a) ∈ F , µa(x) is given by

µa(x) = min

{
s

K∑
i=1

ρif((x, a)|θi,Σi), 1

}

where min{·, ·} function is required so that 1-sub-Gaussianity is satisfied and

we have
∑K

i=1 ρi = 1 and ρi > 0, for 1 ≤ i ≤ K. For the ith component, the

component weight is given by ρi, the mean vector is given by θi and the covariance

matrix is given by Σi. Moreover, the number of components is denoted by K,

s denotes the scaling factor and f denotes the probability density function of a

multivariate Gaussian distribution. The parameters that we considered for our

experiment are s = 0.25, K = 2, ρ1 = ρ2 = 0.5, θ1 = [0.25, 0.75]T , θ2 = [0.5, 0.5]T
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Figure 3.2: The expected reward defined over the relevant dimensions of the
context-arm space

and

Σ1 =

[
0.05 0.03

0.03 0.025

]
, Σ2 =

[
0.025 −0.03

−0.03 0.05

]
.

The expected reward function defined on the relevant dimensions of the context-

arm space can be found in Fig. 3.2, the black line shows the optimal arms for

each context. In this setting, we consider r(t) ∼ Bern(µa(t)(x(t))) and r(t) are

independent across rounds.

The algorithms are run for T = 105 rounds. The arrival of contexts are uni-

formly random and independent from other rounds. After grid search, the values

0.001 for CMAB-RL, 0.01 for IUP and 0.05 for C-HOO are found to achieve the

highest cumulative rewards and thus the results that are reported are the results

of the experiments using these values.
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Figure 3.3: Comparison of cumulative rewards of CMAB-RL, C-HOO and IUP

The comparison of algorithms with respect to the cumulative rewards they

achieve are given in Fig. 3.3. One can observe that CMAB-RL outperforms

all its competitors by enjoying more than 29% and 100% improvement over the

cumulative rewards of C-HOO and IUP respectively. Note that, even though

C-HOO does not take relevance information into account, it still performs much

better than IUP as it adaptively partitions the context-arm space. It can be seen

that IUP performs only slightly better than Uniform Random algorithm, since

the dimensionality of the problem is high and IUP need too many exploration

rounds as a result.

We also compare the accumulated regrets of the algorithms, which are shown

in Fig. 3.4. As contexts arrive uniformly random, CMAB-RL purely explores

for about 15000 rounds, however after 15000 rounds, the regret accumulation

rate drops significantly. Although the C-HOO performs better for the first 15000

rounds, as it does not utilize relevance information, it operates on a dx + da
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Figure 3.4: Comparison of regrets of CMAB-RL, C-HOO and IUP

dimensional space and fails to decrease regret due to dimensionality. Similarly

IUP also suffers from curse of dimensionality and simply explores for too many

rounds. We also investigate the effect of different time horizons on all algorithms

by running them with different time horizons ranging from T = 5000 to T = 105.

The result of this comparison can be seen in Fig. 3.5, where it is shown that

CMAB-RL achieves the smallest regret for all time horizons. Note that since the

synthetic environment is the same in all repetitions, the standard deviation of

results are small compared to the values of cumulative rewards and cumulative

regrets. The standard deviations of cumulative rewards and regrets over all rep-

etitions, at the end of all rounds, for CMAB-RL are 255 and 184, respectively.

The corresponding values for C-HOO are 224 and 191. Lastly, for IUP, we have

90 and 77.

At T = 105, CMAB-RL has a standard deviation of 255 and 184 for the final

value of
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Figure 3.5: Comparison of regrets of CMAB-RL, C-HOO and IUP when they are
run with different time horizons.

3.3.4 Experiments on the OhioT1DM dataset

In our second experiment, we use the OhioT1DM dataset which contains multiple

physiological measurements taken from 6 T1DM patients is used. These patients

were on continuous glucose monitoring and insulin pump therapy and the data

that is taken is over a time interval of 8 weeks. [54] contains a detailed explanation

for this dataset. As we are performing an online learning task, we merge the

training and test sets which are pre-split in the dataset.

The purpose of this experiment is to learn the optimal bolus insulin dosage

by utilizing the side(contextual) information such as the state of the patient and

the ongoing basal insulin treatment. The optimal bolus insulin dosage is not a

predetermined value, and we consider the whether a bolus treatment was proper

or not by observing if the blood glucose levels of the patient remain within the
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desired range 80− 180 mg/dL. This range is taken from [55].

We consider the following entries as the state of the patient: mean of contin-

uous glucose measurements (CGMs), mean of heart rates, mean of skin temper-

atures, mean of air temperatures and mean of galvanic skin response measure-

ments, sum of carbohydrate intake from meals, sums of exercise scores (multipli-

cation of the duration and the intensity of an exercise session) and sums of number

of steps taken for the last 30 minutes before a bolus injection. We take the mean

of the basal insulin dosages again for the last 30 minutes and consider this as

the basal insulin treatment. The entries listed above correspond to the context

dimensions hence dx = 9. Since the only action we consider the determination of

dosages of bolus insulin treatments we have da = da = 1.

As mentioned the goodness of a bolus dosage is determined by the CGM levels

after the injection. For simplicity and convenience we will refer to the CGM

values we use as contexts as past CGMs and we will refer to the CGM levels after

a bolus injection as resulting CGMs. The resulting CGMs are the mean values

of the CGM recording of the patient for the following 30 minutes to 2 hours after

a bolus injection.

The data contains missing values, next we explain how we dealt with this

issue. When extracting structured data from raw data, we first locate the bolus

events and extract other variables near(past values for contexts, future values

for resulting CGMs) the bolus events. Hence bolus injection information always

exists, we do not need to impute. If no data is available for either the past or the

resulting CGMs we omit that bolus event. As for other variables we impute by

setting carbohydrate intakes, exercises and number of steps to zero since lack of

data implies no activity. For heart rates, skin and air temperatures and galvanic

skin response variables we take average value over the whole dataset as the value

zero does not make sense in a human body for these variables.

The simulation setup requires the data to be in range [0, 1] for all context

and arm dimensions, hence first data is scaled. Afterwards, a Gaussian distri-

bution is used to model a patient’s context data. In order to mimic the dataset
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Table 3.1: Percentages of samples for all approaches and individuals

559 563 570 575 588 591 Overall

<80

mg/dL

CMAB-RL 00.25 00.04 00.13 00.47 00.24 00.71 00.27

C-HOO 00.30 00.05 00.14 00.58 00.32 00.89 00.34

IUP 00.35 00.05 00.18 00.69 00.38 00.96 00.38

Dataset 01.97 00.25 01.59 04.50 00.00 03.41 01.75

80-180

mg/dL

CMAB-RL 66.92 70.49 66.64 88.65 69.06 79.31 72.78

C-HOO 53.57 62.54 54.98 81.54 56.73 67.27 62.30

IUP 50.10 56.08 51.76 77.11 52.39 64.25 57.99

Dataset 36.84 56.78 37.93 62.00 39.81 57.95 49.06

>180

mg/dL

CMAB-RL 32.83 29.47 33.23 10.88 30.70 19.98 26.95

C-HOO 46.12 37.41 44.88 17.87 42.95 31.84 37.36

IUP 49.56 43.87 48.06 22.20 47.23 34.79 41.63

Dataset 61.18 42.96 60.48 33.50 60.19 38.64 49.19

better, we also learn a prior distribution over the patients by observing their fre-

quency of occurrence in the dataset. Since dataset only contains a finite amount

of context-arm-reward instances, and as in our CMAB setting both the contexts

and the arms are infinitely many, we also need to have a regression model that

maps contexts-arm pairs to rewards. During run-time the model needs to return

a reward for context-arm pairs that are not in the dataset. We use a Gradient

Boosting regression model which has 100 decision trees with maximum level con-

straint of 5 as simple estimators and we use Huber loss in the model. As required,

the inputs to the regression model consists of contexts and arms, and the outputs

are the resulting CGMs. Before training the Gradient Boosting model, we employ

oversampling(sampling with replacement) to have equal amounts of data for all

patients.

In each round t, the prior distribution over the patients is used to select a

patient. Next, the context vector x(t) is sampled from the said patient’s Gaus-

sian distribution repeatedly, until a context vector that resides in [0, 1](dx+da) is

sampled. The context vector is then revealed to the CMAB algorithm, which in

succession determines an arm a(t). The bandit environment is then queried to

generate the reward r(t) according to x(t) and a(t). Bandit environment uses the

regression model to generate the resulting CGM value and translates it into r(t)
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by using the following mapping,

f(x) =



0, x ≤ 80 (hypoglycemia)

x−80
10

, 80 ≤ x ≤ 90

1, 90 ≤ x ≤ 130

180−x
50

, 130 ≤ x ≤ 180

0, 180 ≤ x (hyperglycemia)

In order to add randomness to the reward generation process, a noise component

with distribution N (0, 25) is added to the resulting CGM value.

In order to determine dx, we examine the average impurity decrease for each

context dimension considering all trees which are then normalized so that the

sum of the average impurities for all inputs add up to 1. The only context

dimension that has a score higher than 0.5 is the past CGMs while the rest of

the context dimensions yield scores lower than 0.1. [47] and [48] use this dataset

for the forecasting problem and our result is consistent with theirs. Hence, it is

rational to claim that the past CGM value affect the reward much more when

compared with other variables in the dataset. Therefore we set dx = 1. Similar

to the synthetic case, the horizon is set as T = 105, and for this experiment, the

optimal confidence term multipliers found after grid search are given as 0.001 for

CMAB-RL, 0.05 for IUP and 0.1 for C-HOO.

Since measuring the performance via cumulative rewards may not be mean-

ingful for this setting, we directly examine the resulting CGMs values. Fig. 3.6

contains joint histograms for all patients, one for each algorithm including the

original dataset as a benchmark. The histograms for each algorithm are normal-

ized such that the area under the histograms sum up to 1, the reason is that

since original dataset has much less instances when non-normalized histograms

are plotted, the distribution for original dataset cannot be seen. Interestingly, all

algorithms provide better administration of bolus dosage when compared with

the method used when the data is gathered. To be able to investigate the effect

of each algorithm on each patient, we also include the Table 3.1 where the per-

centages of samples are shown for each algorithm, for each patient and for each
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blood glucose level. The header row indicates the patient identification numbers

as encountered in the dataset. It can be observed that, CMAB-RL not only has

the highest density in the desired range for all patients, it also has the lowest

density in the hypoglycemia and hyperglycemia regions. The only exception to

this for patient 588, where no hypoglycemic resulting CGMs are observed in the

dataset.
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Figure 3.6: Joint Histograms of the resulting CGMs for all patients under different
learning algorithms and the original dataset.
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Chapter 4

Contextual Gaussian Process

Bandit Problem with Relevance

Learning

In this chapter, we study the CMAB problem with relevance learning in Bayesian

setting. We do not require upper bounds on the number of relevant context and

arm dimensions. In Section 4.1 we define the Bayesian CMAB setting with ir-

relevant context and arm dimensions, moreover we state our assumptions about

this setting. We propose the CGP-UCB-RL algorithm in Section 4.2. We con-

clude this chapter with Section 4.3, in which we evaluate the performance of

CGP-UCB-RL a numerically in a synthetic environment and in an experiment

regarding the administration of bolus insulin for T1DM patients.

4.1 Problem Definition

The contextual multi-armed bandit(CMAB) problem involves sequential decision

making in discrete rounds indexed by t ∈ {1, . . . , T}. In each round, the learner

observes the context vector x(t) ∈ X , and selects an arm a(t) ∈ A by utilizing the
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information of the current context and past observations. Once a(t) is selected

then a reward r(t) = µ(x(t), a(t)) + ε(t) is observed, where µ(x, a) denotes the

expected reward of a context-arm pair and ε(t) ∼ N (0, σ2) is the random noise

which is i.i.d across rounds and context-arm pairs.

The performance of a learner is measured by a metric called contextual

regret. The instantaneous regret, regret for a fixed round t, is defined as

∆(x(t), a(t)) := µ(x(t), a∗(x(t)))−µ(x(t), a(t)) where a∗(x) := arg maxa∈A µ(x, a).

The cumulative contextual regret at the end of T rounds is then given by

Reg(T ) =
∑T

t=1 ∆(x(t), a(t)).

Let dX and dA denote the dimensionality of the context and arm spaces, X and

A, respectively. Also let DX = {1, . . . , dX} and DA = {1, . . . , dA} denote the set

of dimensions for context and arm spaces, respectively. For any q ⊆ DA, let the

|q|-dimensional subspace of A be denoted by Aq. Equivalently, for any q ⊆ DX ,

let the |q|-dimensional subspace of X be denoted by Xq. We denote the elements

of Aq and Xq by adding the q subscript to the vectors a and x, i.e. aq ∈ Aq and

xq ∈ Xq.

We assume that the expected reward function, µ(x, a), is sampled from a

Gaussian process where the kernel function is such that some dimensions of DX
and DA do not affect the expected reward function and the mean is 0. In order

to formally define this setting first we need some notation. Let ℘(S) denote the

set of all subsets of a set S excluding the empty set. Also let αsi = I[i ∈ s] for

s ∈ ℘(S) and i ∈ N, where I[·] denotes the indicator function1. Consider the

squared exponential kernel that inputs two context-arm pairs (x, a), (x′, a′) and

returns a similarity measure, as given below:

k(v,w)((x, a), (x′, a′)) := exp

(
−0.5

dX∑
i=1

αvi (xi − x′i)2
)

exp

(
−0.5

dA∑
j=1

αwj (aj − a′j)2
)

where (v, w) denote the context-arm dimensions tuple pair for v ∈ ℘(DX ) and

1αs
i are used as inverse of parameters commonly referred to as length-scale in literature,

which are utilized in automatic relevance determination(see [15] for details). Although length-
scale parameters generally appear as denominators for each dimension, in our case it is more
convenient to consider them as multipliers since we desire to completely ignore distances in
some dimensions, requiring the multiplier to be 0.
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w ∈ ℘(DA). The choice of squared exponential is purely for simplicity purposes,

in fact any kernel that enables a similar usage of weights per dimensions can be

utilized. For any v ∈ ℘(DX ) and w ∈ ℘(DA), let GP(v,w) be a Gaussian process

such that GP(v,w) = GP (0, k(v,w)((x, a), (x′, a′)). Let CX and CA denote the set

of relevant context and arm dimensions respectively where 1 ≤ |CX | ≤ dX and

1 ≤ |CA| ≤ dA. We assume that µ(x, a) ∼ GP(CX ,CA). In Fig. 4.1, a sample

from a Gaussian process with 4 dimensions, with the first 2 being relevant, is

given where the expected reward function is viewed from all possible dimension

combinations to observe the effect of such a kernel on the reward surface. Note

that when two dimensions are plotted, values of the elements in other dimensions

are taken to be zero, and due to memory constraints, first a sparse discretization

of the function is realized then it is interpolated using linear interpolation.

For any noisy sample Zn = {z(1), . . . , z(n)} := {(x(1), a(1)), . . . , (x(n), a(n))},
Rn = [r(1), . . . , r(n)]T, we define mean and variance estimations for point (x, a) ∈
X ×A, according to a context-arm dimension tuple pair (v, w) as,

µ̂(v,w)
n (x, a) := k(v,w)n (x, a)T(K(v,w)

n + σ2In×n)−1Rn

σ̂(v,w)
n (x, a) := k(v,w)((x, a), (x, a))− k(v,w)n (x, a)T(K(v,w)

n + σ2In×n)−1k(v,w)n (x, a)

and when (v, w) = (CX , CA), then given estimations are parameters of the poste-

rior distribution of µ(x, a). Here

k(v,w)n (x, a) := [k(v,w)((x, a), z(1)), . . . , k(v,w)((x, a), z(n))]T

and K
(v,w)
n := {k(v,w)(z, z′)}z,z′∈Zn is positive definite kernel matrix.

4.2 Contextual Gaussian Process Upper Con-

fidence Bound Algorithm with Relevance

Learning (CGP-UCB-RL)

The CGP-UCB-RL algorithm is described in algorithm 3. CGP-UCB-RL algo-

rithm is an extension of CGP-UCB algorithm described in [14]. Unlike in [14],
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in our approach we aim to exploit the existence of possible irrelevant dimensions

that do not affect the reward distributions. The relevance learning is done via

minimizing the negative log marginal likelihood according to different assump-

tions on which dimensions are relevant.

Algorithm 3 CGP-UCB-RL

1: Input: X , A, γt, τ
2: Initialization: Observe x(1), select a(1) arbitrarily, observe r(1),

set Z1 = {(x(1), a(1)} and R1 = [r(1)]T

3: for t = 2, 3, . . . do
4: Observe x(t)
5: if rem(t, τ) = 0 then
6: Calculate NLL(v,w)(t) for all v ∈ ℘(DX ) and w ∈ ℘(DA) according to 4.1
7: Determine (v(t), w(t)) according to 4.2
8: else
9: Set (v(t), w(t)) = (v(t− 1), w(t− 1))

10: end if
11: Determine estimated optimal arm subspace P(v(t),w(t))(t) according to 4.3
12: Select arm a(t) according to 4.4 (ties broken arbitrarily)
13: Observe r(t) and perform update on mean and variance estimations for all

v ∈ ℘(DX ) and w ∈ ℘(DA)
14: end for

Let rem(a, b) denote the remainder when a is divided by b, for a, b ∈ N.

If rem(t, τ) = 0, CGP-UCB-RL calculates the negative log marginal likeli-

hood(NLL) for all pairs of (v, w) where v ∈ ℘(DX ) and w ∈ ℘(DA) and selects

the (v, w) pair that minimizes the NLL, otherwise (v, w) pairs selected for the

previous round is used. Although one can set τ = 1 and perform optimization in

every round, we include this option as one needs to calculate (2dX − 1)(2dA − 1)

NLL values and considering the matrix inverse operation this step may be de-

sired to repeat every τ steps due to time constraints. In round t, for a pair (v, w),

negative log marginal likelihood is given by,

NLL(v,w)(t) = 0.5 log
(∣∣∣K(v,w)

t−1 + σ2I(t−1)×(t−1)

∣∣∣)
+ 0.5RT

t−1

(
K

(v,w)
t−1 + σ2I(t−1)×(t−1)

)−1
Rt−1 + 0.5(t− 1) log(2π)

(4.1)
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The (v, w) pair that minimizes the NLL is given as

(v(t), w(t)) := arg min
v∈℘(DX )
w∈℘(DA)

NLL(v,w)(t) (4.2)

Once the (v(t), w(t)) pair is determined, CGP-UCB-RL use this pair when

calculating the estimation of the mean rewards and variances. Let upper con-

fidence bound of a point (x, a), with respect to pair (v, w) be U
(v,w)
t (x, a) :=

µ̂
(v,w)
t−1 (x, a) +

√
γtσ̂

(v,w)
t−1 (x, a) where γt is a function that can be optimized via

prior knowledge about the problem instance or preliminary experiments on avail-

able data.

For round t, CGP-UCB-RL could then simply select any arm a that achieves

largest U
(v(t),w(t))
t (x(t), a), however notice that arms that are estimated to have

the largest UCB actually form a (dA − |w(t)|)-dimensional hyperplane. This is

because for any Zn, Rn, σ2, x ∈ X , v ∈ ℘(DX ), w ∈ ℘(DA) and a, a′ ∈ A such

that aw = a′w, we have k
(v,w)
n (x, a) = k

(v,w)
n (x, a′) and k(v,w)((x, a), (x, a′)) = 1.

Hence, we have µ̂
(v,w)
n (x, a) = µ̂

(v,w)
n (x, a′) and σ̂

(v,w)
n (x, a) = σ̂

(v,w)
n (x, a′).

Instead of selecting any arm arbitrarily, CGP-UCB-RL aims to gather the

maximum amount of information by selecting the arm that has the maximum

variance among the set of arms that has the largest estimated UCB. Let

P(v,w)(t) := {a ∈ A | U (v,w)
t (x(t), a) = max

a′∈A
U

(v,w)
t (x(t), a′)} (4.3)

be the set of arms that have the largest estimated UCBs with respect to the pair

(v, w). Then in round t, CGP-UCB-RL selects arm

a(t) = arg max
a′∈P(v(t),w(t))(t)

σ̂
(DX ,DA)
t (x(t), a′). (4.4)

Finally, reward r(t) is observed, the mean estimations µ̂
(v,w)
t (x, a) and the variance

estimations σ̂
(v,w)
t (x, a) are updated for all v ∈ ℘(DX ) and w ∈ ℘(DA).
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4.3 Illustrative Results

We evaluate the performance of CGP-UCB-RL by comparing it to the CGP-

UCB approach in experiments with both synthetically generated data and data

gathered from type 1 diabetes mellitus(T1DM) patients. CGP-UCB, proposed

and discussed in detail in [14], assumes that the expected reward function µ(x, a)

is sampled from a Gaussian process, however unlike in our setting, their work do

not consider that one or more dimensions may be irrelevant. Thus, the kernel

models they consider also do not allow different length-scale parameters to be

learned for individual dimensions. During both experiments we assume that

both algorithms do not have a priori information about the problem instance.

4.3.1 Competitor Learning Algorithms

We compare CGP-UCB-RL against CGP-UCB which does not take relevance

information into account and an algorithm that makes uniformly random arm

selections that is used as a benchmark.

4.3.1.1 Contextual Gaussian Process Bandit UCB Algorithm (CGP-

UCB) [14]

The CGP-UCB algorithm is set in the Bayesian version of the CMAB problem

which assumes that the expected reward function is sampled from a Gaussian

process. In each round, CGP-UCB calculates statistics of posterior distribution

over the expected reward function µ(x, a), which is again a Gaussian process

distribution and applies UCB algorithm by identifying the arm with the highest

UCB. The UCB is calculated using the posterior mean and standard deviation

over µ(x, a).
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4.3.1.2 Uniform Random

We include an algorithm that makes random arm selections without considering

the context, past experiences or relevance information, in order to establish a

benchmark in synthetic experiment setting.

4.3.2 Parameters Used in the Experiments

For both of our experiments, we used the square exponential kernel for both

algorithms. As mentioned, we assume that both algorithms have no informa-

tion available about the problem instance in advance. Hence, initial length-

scale parameters are set to 1 for both algorithms as well as the noise vari-

ance σ2. Also, both algorithms are given the context set X and the arm

set A. Additionally, for CGP-UCB, we set βt = 2 log (t22π2/(3δ)) + 2(dX +

dA) log
(
t2(dX + dA)br

√
log(4(dX + dA)a/δ)

)
where we set δ = 0.01(see [14])2.

We use r = 10 in the synthetic experiment and in the T1DM experiment we set

r to the largest value in any dimension in data after standardization. We also

assume that L = 1 for the similarity assumption in Theorem 1 of [14] and then set

a = δe−1, b = 1 so that ae−(L/b)
2

= δ. For CGP-UCB-RL, we set γt = 1(again,

assuming we do no have a priori knowledge about the problem instance) and

τ = 10. Last but not least, although we set the values of βt and γt as mentioned,

during our studies we noticed that assigning smaller values tend to work better.

In order to optimize these values, we scaled these values by a certain value se-

lected from the set {0.01, 0.05, 0.1, 0.25, 0.5, 1}, using grid search. We report

the results generated by the optimal scaling factor for each algorithm in both

experiments. Also note that, reported performances are results acquired from 20

independent runs in an effort to minimize the effect of randomness which arises

from context arrivals, arm selection and noisy rewards.

2The parameters of βt are not extremely crucial as we optimize the uncertainty terms by
scaling them specifically for each experiment
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4.3.3 Experiments on a Synthetic Simulation Environ-

ment

In the synthetic setting, we consider an environment where the expected reward

function is sampled from a Gaussian process prior where dx = 10, da = 2, |CX | = 1

and |CA| = 1, with the relevant dimensions being the first dimensions for both the

context and arm sets. Specifically, we have µ(x, a) ∼ GP(CX ,CA) where CX = {1}
and CA = {1}. We utilized squared exponential kernel as suggested in Section

4.1 to generate the environment with irrelevant context and arm dimensions. As

expected reward function is randomly generated, it changes for each repetition

of the experiment. However, to gain some perspective on the expected reward

function instances, in Fig. 4.2 we provide several realizations of the reward surface

with respect to the relevant context and arm dimensions. Reward r(t) in round

t, is generated using σ2 = 1. Note that, here the relevant context dimension is

the same for all arms.

The contexts are sampled independently from a uniform random distribution.

Scale factor for βt of CGP-UCB is set to 0.05, and scale factor for γt of CGP-UCB-

RL is set to 0.5 after grid search over possible candidates. We set the horizon as

T = 100 rounds for this setting.

We compare the algorithms by investigating their cumulative rewards and cu-

mulative regrets. The plots of cumulative rewards and cumulative regrets as a

function of time are given in Fig. 4.3 and in Fig. 4.4, respectively. It can be

seen that CGP-UCB-RL achieves better performance by exploiting the fact that

a total of 10 dimensions of the context-arm space do not affect the rewards, by

learning to ignore them through the optimization of negative log marginal like-

lihood. For each round, we also provide 95% confidence intervals for cumulative

rewards and regrets calculated over repetitions, shown in light-shaded regions.

We provide this information because the synthetic environment is different for

each repetition and hence the performance of the algorithms may vary due to

the differences in the expected reward function. For the cumulative rewards, the

confidence intervals we obtained were expected to be loose as in one repetition
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the environment may be yielding higher rewards but in another repetition the

rewards may be low. However, the confidence intervals for the cumulative regret

were expected to be tighter as regret measures the difference between the optimal

selection and the selection made by the learner. Thus, cumulative regret does not

depend on whether the expected reward function yields high or low rewards. The

confidence intervals we obtained for cumulative regret confirms this expectation.

As both algorithms do not rely on T to optimize themselves, we do not include

an experiment where the algorithms are run for different time horizons.

4.3.4 Experiments on the OhioT1DM dataset

We consider an experiment based on the OhioT1DM dataset, which is gathered

from 6 patients whose various physiological traits and insulin treatments are

monitored for 2 months(see [54] for a detailed review of the dataset). The dataset

in vanilla version contains training and test sets separately, however we merge

them as we are performing online learning.

We aim to use bandit algorithms to learn the optimal dosage of bolus insulin

to regulate the blood glucose levels of a patient in the desire range, 80 − 180

mg/dL given in [55]. A fixed bolus insulin dosage may be too high or too low to

properly regulate the blood glucose levels depending on state of the patient and

their current basal insulin treatment. In a CMAB setting, the state of the patient

and the current basal treatment can be modeled as the contexts while the bolus

insulin dosages can be modeled as the arms.

In our experiment we consider the state of the patient and basal insulin treat-

ment for the last 30 minutes as contexts. Specifically, for the said 30 minutes the

mean of continuous glucose measurements (CGMs), mean of heart rates, mean

of skin temperatures, mean of air temperatures, mean of galvanic skin response

measurements, sum of carbohydrate intake from meals, sums of exercise scores

(multiplication of the duration and the intensity of an exercise session), sums of

number of steps taken and the mean of the basal insulin dosages are extracted

before a bolus injection event from the dataset as contexts, making a total of 9
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Table 4.1: Percentages of samples for both approaches and all patients

559 563 570 575 588 591 Overall

<80

mg/dL

CGP-UCB-RL 00.00 00.20 00.23 02.73 00.40 00.62 00.60

CGP-UCB 00.44 00.79 00.45 03.12 00.00 02.16 01.10

Dataset 01.97 00.25 01.59 04.50 00.00 03.41 01.75

80-180

mg/dL

CGP-UCB-RL 72.00 84.78 72.79 84.77 81.05 81.17 79.65

CGP-UCB 68.44 77.47 66.89 79.30 71.77 68.52 72.20

Dataset 36.84 56.78 37.93 62.00 39.81 57.95 49.06

>180

mg/dL

CGP-UCB-RL 28.00 15.02 26.98 12.50 18.55 18.21 19.75

CGP-UCB 31.11 21.74 32.65 17.58 28.23 29.32 26.70

Dataset 61.18 42.96 60.48 33.50 60.19 38.64 49.19

variables. We consider bolus injection dosage as the single arm variable.

The rewards are generated according to the CGM levels of the patient after a

bolus injection, averaged over the following 30 minutes to 2 hours. We used the

following mapping to translate CGMs to rewards

f(x) =



0, x ≤ 80 (hypoglycemia)

x−80
40

, 80 ≤ x ≤ 120

180−x
60

, 120 ≤ x ≤ 180

0, 180 ≤ x (hyperglycemia)

(4.5)

As data contains missing values, we need imputation to conduct experiments.

While extracting data, first bolus events are located hence bolus injection events

always exist. Then for missing contexts, we set the values of carbohydrate intake,

exercise, basal insulin dosage and number of steps taken to 0, as no data implies

no activity, but for heart rates, skin temperatures, air temperatures and galvanic

skin responses we take the average over the dataset where imputing by 0 is not

meaningful.

Before the experiments, we standardize the data so that each variable has zero

mean and unit variance. Then, we construct a prior distribution over the patients

by taking how many times they occur in the dataset into account. After this,

we use a Gaussian distribution to model context data for each patient separately.
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Since we assume that the expected reward function is sampled from a Gaussian

process prior, we use Gaussian process regression to model the data(with contexts

and arms as inputs and CGM levels after bolus injection as outputs) whose kernel

is the squared exponential kernel and the length-scale parameters of the kernel

are optimized during training. We use under sampling to create equal amounts

of the data from each patient.

During run time, first a patient is randomly selected by sampling from the

prior distribution. Afterwards, Gaussian distribution associated with the selected

patient is used to sample the context vector. Then, the context vector is made

available to the CMAB algorithm to observe which, in return, selects an arm.

Finally, the CGMs are estimated according to the context and arms, a noise

component with distribution N (0, 25) is added to the estimated CGM and the

reward is generated according to function given in (4.5).

Since both algorithms are time consuming but converging fast, we run the

experiments for T = 100 rounds. The optimal scale factors for CGP-UCB and

CGP-UCB-RL are determined to be 0.01 and 0.05, respectively and the results are

reported for these values. Examining the final CGMs instead of other statistics

is a better way to analyze the results as it is hard to relate rewards or regret to

the practical outcomes. In Fig. 4.5, the histograms for all approaches and the

dataset are given, combining the results for all patients. Note that the histograms

are normalized in order to eliminate the difference in sample sizes. We also give a

more detailed view of the final distributions of the CGM levels after the injections

in Table 4.1 where the header row contains the identification numbers of patients

as they are given in the OhioT1DM dataset. CGP-UCB-RL outperforms CGP-

UCB and achieves the largest density in the desired blood glucose level range over

all patients. CGP-UCB-RL has less density in hypoglycemia and hyperglycemia

ranges in general, except only for the hypoglycemia range for patient 588.

49



Dimension 1

Di
m

en
sio

n 
2

Dimension 1
Di

m
en

sio
n 

3

Dimension 1

Di
m

en
sio

n 
4

Dimension 2

Di
m

en
sio

n 
3

Dimension 2

Di
m

en
sio

n 
4

Dimension 3

Di
m

en
sio

n 
4

Figure 4.1: A sample of an expected reward function from a Gaussian process
prior with 2 relevant and 2 irrelevant dimensions
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Figure 4.2: Four expected reward functions illustrated over the relevant dimen-
sions of the context-arm space
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Figure 4.3: Comparison of cumulative rewards of CGP-UCB-RL, CGP-UCB and
Uniform Random
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Figure 4.4: Comparison of regrets of CGP-UCB-RL, CGP-UCB and Uniform
Random
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Chapter 5

Conclusion

In this thesis, we investigate the suitability of CMAB approaches to the blood

glucose regulation problem in type 1 diabetes mellitus patients through the man-

agement of bolus insulin dosages. We make use of the OhioT1DM dataset, which

is collected from diabetes patients, when setting up a realistic simulation scenario

for the blood glucose regulation problem. When modeling the task as a CMAB

problem, the contexts are considered to be the state of the patient, arms are

considered to be different bolus insulin dosages and rewards are generated ac-

cording to the blood glucose levels of patients after the injections. In both of the

investigated problem settings, it is assumed that the expected reward function

generated accordingly to the blood glucose levels is constant along a subset of di-

mensions of context and arm sets. Moreover, in the first problem, set of relevant

patient traits are allowed to be different for different bolus insulin dosages and it

is assumed that the expected reward function satisfies the Lipschitz continuity as-

sumption. Upper bounds on the number of relevant context and arm dimensions

are also assumed to be known in this setting. For this case, we use the CMAB-

RL algorithm which includes a novel discretization strategy for the partitioning of

context and arm sets. Empirically, we compare CMAB-RL against other CMAB

approaches that do not take relevance into account in the setting of personalized

treatment and show that CMAB-RL outperforms other approaches since irrele-

vant dimensions exist. CMAB-RL and other algorithms are also evaluated in a
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synthetic environment where the expected reward function is generated using a

Gaussian mixture model as a benchmark. In the second problem, we consider a

Bayesian version of the CMAB problem, where the expected reward function is

assumed to be a sample from a Gaussian process prior. We propose an extension

of CGP-UCB, called CGP-UCB-RL, which learns the relevant context and arm

dimensions by optimizing the negative log marginal likelihood of gathered sam-

ples. The performance of CGP-UCB-RL is numerically compared to CGP-UCB

in two experimental settings and it is demonstrated that CGP-UCB-RL provides

better performance when the number of relevant dimensions is small compared

to the dimensionality of the context-arm space. The first experimental setting

includes an environment sampled from Gaussian process prior and the second

experiment involves the objective of this thesis, that is testing the algorithms in

administration of bolus insulin to regulate the blood glucose levels of diabetes

patients. For future work, we aim to provide theoretical guarantees for CGP-

UCB-RL now that it is shown to perform well in practical settings. Furthermore,

we aim to improve CMAB-RL and CGP-UCB-RL by considering adaptive par-

titioning strategies for relevance learning in CMAB problems. Moreover, we aim

to extend this study to other personalized healthcare problems such as treatment

of cancer and heart disease patients.
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