BB-PLUS: AN EFFICIENT APPROACH FOR SUBGRAPH ISOMORPHISM
PROBLEM IN BIG GRAPH DATABASES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

EZGI TASKOMAZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
COMPUTER ENGINEERING

JUNE 2019

Approval of the thesis:

BB-PLUS: AN EFFICIENT APPROACH FOR SUBGRAPH ISOMORPHISM
PROBLEM IN BIG GRAPH DATABASES

submitted by EZGI TASKOMAZ in partial fulfillment of the requirements for the
degree of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Halil Kalipcilar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oguztiiziin
Head of Department, Computer Engineering

Prof. Dr. Adnan Yazici
Supervisor, Computer Engineering, METU

Examining Committee Members:

Prof. Dr. Ahmet Cosar
Computer Engineering, UTAA

Prof. Dr. Adnan Yazici
Computer Engineering, METU

Assoc. Prof. Dr. Ahmet Oguz Akyiiz
Computer Engineering, METU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Ezgi Taskomaz

Signature

v

ABSTRACT

BB-PLUS: AN EFFICIENT APPROACH FOR SUBGRAPH ISOMORPHISM
PROBLEM IN BIG GRAPH DATABASES

Tagkomaz, Ezgi
M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Adnan Yazici

June 2019, [138| pages

Graph databases are flexible NoSQL databases used to efficiently store and query
complex dataset. The problem of subgraph isomorphism, finding a pattern in a given
graph, is one of the biggest problem of graph databases. Therefore, the goal of this
study is to introduce a new approach called BB-Plus, which consists of heuristics to
find best matching order using the volatility and size of the database, the type and
size of the query as an input in order to improve the performance of the queries. BB-
Plus approach trims candidate nodes at high level and effectively reduces the size of
the problem. The approach is implemented using the Java programming language and
graph data structures of Neo4j GDBMS and compared to the state-of-the-art subgraph
isomorphism algorithms, namely BB-Graph, Cypher, Duallso, GraphQL, Turbolso
and VF3 with three different dataset within the same programming environment. The
results of the performance tests show that BB-Plus is an average on 10%, 37% and
4% faster than the other algorithms based on different queries in public WorldCup,

Pokec and non-public Population dataset, respectively.

Keywords: Subgraph Isomorpishm Problem, Matching Order Selection, Graph Database,
Neo4;j

vi

0z

BB-PLUS: BUYUK CIZGE VERITABANLARINDA ALTCIZGE
ESYAPILILIK PROBLEMINE ETKIN BiR YAKLASIM

Tagkomaz, Ezgi
Yiiksek Lisans, Bilgisayar Miithendisligi Boliimii

Tez Yoneticisi: Prof. Dr. Adnan Yazici

Haziran 2019 , sayfa

Cizge veritabanlari, karmagik veri setlerini daha etkin bir sekilde depolama ve sorgu-
lamada kullanilan esnek NoSQL veritabanlaridir. Altcizge esyapililik problemi yani
verilen bir ¢izgede oriintiilerin bulunmasi ise ¢izge veritabanlarindaki en biiyiik prob-
lemlerden biridir. Bu nedenle bu ¢alismanin amaci, sorgunun performanasini artirmak
icin veritabanin biiyiiykliigii, degiskenligi, sorgunun biiyiikliigii ve tipini girdi olarak
alan sezgisel yontemler kullanarak en iyi eslesen siray1 bulan BB-Plus adinda yeni bir
yaklagim sunmaktir. BB-Plus, iist seviyelerde aday dii§timlerin eler ve arama uzayinin
boyutunun diisiiriir. Yaklagim, Java programlama dili ve Neo4j cizge veri yapilarini
kullanilarak gelistirilmistir ve ayn1 programlama ortaminda ii¢ farkli boyutta veri seti
kullanilarak giincel alt¢izge esyapililik algoritmalar1 olan BB-Graph, Cypher, Du-
allso, GraphQIl, Turbolso ve VF3 ile karsilagtirllmistir. BB-Plus, farkli sorgular baz
alindiinda diger algoritmalardan kullanima a¢ik WorldCup, Pokec ve kullanima agik
olmayan Population veritabanlarinda sirasiyla ortalama %10, %37 ve %4 daha hizli

calismaktadir.

vii

Anahtar Kelimeler: Alt¢izge Esyapililik Problemi, Eslesen Sira Secimi, Cizge Veri
tabani, Neo4j

viii

To my family and friends

X

ACKNOWLEDGMENTS

First of all, I would like to thank and express my special appreciation and gratitude
to my thesis advisor, Prof. Dr. Adnan YAZICI, for his supervision, patience and
encouragement throughout the research. He always keeps me motivated to explore
new ideas and solutions in my research and contributed to this work with his great

experience, knowledge and energy.

I would like to thank Merve Asiler for allowing me to improve her work. I wish to
express my sincere gratitude to her for being always open to share her experience on
the area, to guide me in exploring new ideas and never hesitate to spending time with

me to improve my work.

In addition, I want to thank my company TUBITAK for supporting me to continue my
studies. I would like to thank my colleagues in my project and especially to my old
teammates, Anil Ozberk, Fatma Emiil, Murat Burak Yildirim and Nazli Ece Uykaur,

who never stop supporting me and staying motivated at all times.

I would like to thank especially KALE YAZILIM A.S. for sharing their Population
dataset which is very important for me to complete my experiments. I would like to
thank Basar DALKILIC for his help and finding quick solutions to my problems with
the dataset.

Finally, I would like to thank my family: my mother Yiiksel TASKOMAZ, my father
Erkan TASKOMAZ and my sister Ozge TASKOMAZ. Words cannot express how
grateful I am for their support, love and sacrifices that they have made throughout
my life. They deserve a special thanks for their limitless support and encouragement.

This work would not have been possible without them.

TABLE OF CONTENTS

ABSTRACTI. e e e v
OZ . . . vii
ACKNOWLEDGMENTSI. o o .. X
TABLE OF CONTENTS| xi
................................ XV
................................ Xxix

LIST OF ABBREVIATIONS

CHAPTERS
1 INTRODUCTION| oo e 1
2
5
6
2 BACKGROUND AND REILATED WORK 7
2.1 Graph Databases| 7
[2.1.1 Comparison of Graph Databases| 10
[2.2 Centrality Measures in Graphs| 12
[2.2.1 Degree Centrality| 12
[2.2.2 Closeness Centrality|. 13

xi

[2.2.3 Betweenness Centrality| 16

[2.2.4 Eigenvector Centrality|. 18
2.3 The Subgraph Isomorphism Problem| 20
[2.4 " The Subgraph Isomorphism Algorithms| 21
[2.4.1 Ullmann’s Algorithm| 22
242 NE .. 23
243 QuickSI 23
[2.4.4 GraphQL| 24
245 GADDI 24
246 SUMMAI. 25
2.4.7 SPathl 26
248 Turbolsol. 26
249 Duallsol 28
AT0O BB-GRAPHI i 30
RATT VE2-Plusd oo 37
RAIZVE3 . . oo 38
[2.5 Matching Order Selection in the Subgraph Isomorpishm Problem| . . 40

| GRAPH DATABASE

[3.1 Matching Order Selection Based On Degree Centrality| 51
[3.2 Matching Order Selection Based On Closeness Centrality| 57
[3.3 Matching Order Selection Based On Betweenness Centrality| 62
[3.4 Matching Order Selection Based On Eigenvector Centrality| 67

xii

[3.5 Matching Order Selection Based On Hybrid Centrality| 73

[3.6 Matching Order Selection Based On Candidate Node Selection|. . . . 75
(3.7 Comparison of Matching Order Selection Methods| 84
3.7.1 Based on Their Creation Methods| 84
[3.7.2 Based on the Type of Queries| 87
[3.7.3 Based on the Volatility of Databases| 87
[3.8 Determining Matching Order Selection Methods| 87
4 EXPERIMENTS AND RESULTS 90
90

92

92

4.4 Experiments on the Databases| 93
“.4.1 Experiments on the WorldCup Database] 93
4.4.2 Experiments on the Pokec Databasel 102
4.4.3 Experiments on the Population Database] 109
4.5 Discussions on the Experimental Results| 115

> CONCLUSION AND FUTURE WORKI

1 nclusion| 119

0.2 Future Workl 120

REFERENCES| 121
APPENDICES

A APPENDIX Tl .« . . o v v e et e e e e e e e 125

[A.1 Matching Order Training Datasetf

[A.2 Matching Order Test Dataset|

X1V

TABLES

LIST OF TABLES

Table|l.1

Matching Order Selection Usage 1n the Literature|

Table 2.1

Comparison of graph database management systems|.

Table 2.2

Distance matrix of example query graph G|

Table 2.3

Calculating closeness centrality of example query graph G|

Table [2.4

Calculating betweenness centrality of example query graph GG|. . . .

Table 2.5

Adjacency matrix of example query graph ¢)|

Table 2.6

Comparison of subgraph isomorphism algorithms|

Table 3.1

Distance matrix of query graph Q).

Table 3.2

Calculating closeness centrality of example query graph G|

Table (3.3

Calculating betweenness centrality of example query graph GG|. . . .

Table 3.4

Adjacency matrix of query graph Q). oL

Table 3.5

FilterByLabel method appliesto ()|

Table 3.6

FilterByRelationship method appliesto)}

Table (3.7

Information about Determining Matching Order Dataset|.

Table 3.8

Attributes of Determining Matching Order Dataset|.

Table 3.9

Detailed Accuracy for each Matching Order Selection Method| . . .

XV

17

17

39

59

59

64

69

80

80

88

&9

89

Table|3.10 Confusion Matrix for each Matching Order Selection Method| 89

Table4.1 Statistics of the WorldCup, Pokec and Population Graph Databases| . 92

Tableld.2 The queries and their BB-Graph representation on WorldCup database |

1 P 94
Table 4.3 The query results for the WorldCup Database] 99

Table 4.4 Matching Order of Different Methods for the WorldCup Database| . 99

Tableid.5 The process time for calculating matching order selection on World- [

Table 4.8 ANOVA results of the effects of state-of-the-art subgraph isomor- |

| phism algorithms on subgraph isomorpishm problem|. 101

Table 4.9 ANOVA results of the effects of state-of-the-art subgraph 1somor- [

| phism algorithms on subgraph isomorpishm problem|. 101

Table |4.10 The queries and their BB-Graph representation on Pokec Database| . 102

Table|4.11 The query results for the Pokec Databasel. 106

Table4.12 The query results with different matching orders on Pokec Database| 106

Table4.13 Total process time for calculating matching order in the Pokec Database{l 06

Table |4.14 The total process time without calculating matching order selection| . 107

Table |4.15 Matching Order of Different Methods for the Pokec Database| 107

Table4.16 The queries and their BB-Graph representation on Population Database |
1 108

Table .17 The query results for the Population Database] 113

Xvi

Table|4.18 The query results with different matching orders on Population Database]l 13

Table |4.19 The Total Process Time for Calculating Matching Order in the Pop- |

Table 4.20 The total process time without calculating matching order selection |

| in the Population Databasel. 114

Table 4.21 Matching Order of Different Methods for the Population Database] . 114

Table 4.22 Comparison of the BB-Plus approach with other subgraph 1somor- |

| phism algorithms|. oo oo 118
Table|A.1 Training Data for Determining Matching Order (1)] 125
Table|A.2 Training Data for Determining Matching Order (2)] 126
Table|A.3 Training Data for Determining Matching Order (3)] 127
Table|A.4 Training Data for Determining Matching Order (4)] 128
Table|A.5 Training Data for Determining Matching Order (5)] 129
Table|A.6 Training Data for Determining Matching Order (6)] 130
Table[A.7 Training Data for Determining Matching Order (7)] 131
Table[A.8 Training Data for Determining Matching Order (8) 132
Table[A.9 Training Data for Determining Matching Order (9), 133
Table [A.10Training Data for Determining Matching Order (10), 134
Table [A.11Test Data for Determining Matching Order (1) 135
Table |A.12Test Data for Determining Matching Order (2) 136

Table |A.13Query Results of Subgraph [somorpishm Algorithms on WorldCup |
[Database (Part-1)] 137

Table |A.14Query Results of Subgraph Isomorpishm Algorithms on WorldCup

Database (Part-2)]

xXviii

LIST OF FIGURES

FIGURES

Figure[2.1 Library Graph Database Example] 7
Figure[2.2 Library Relational Database Example|. 8
Figure 2.3 Example graph G for calculating centrality measures| 12
Figure[2.4 Calculating eigenvector centrality of example query graph G| . . 19
Figure[2.5 Example for Subgraph Isomorphism Problem| 20
Figure 2.6 Example for Filtering and Verification Algorithms - Closure |
HF A2 A ANy SO, YR Y 21
Figure[2./ An Example for the working process of BB-Graph (Part-1)| . . . 35
Figure[2.8 An Example for the working process of BB-Graph (Part-2) . . . 36
Figure [2.9 The Importance of Matching Order Selection in the Subgraph |
| Isomorpishm Problem [3] 40
Figure 3.1 Decision Tree for Determining Best Matching Order] 42
Figure (3.2 Flowchart of the BB-Plus Approach| 43
Figure (3.3 An Example of Difference of BB-Plus from the algorithms| . . . 49
Figure[3.4 The Example Query Graph| 50
Figure[3.5 The Example Data Graph| 50
Figure (3.6 Calculating Degree Centrality for Query Graph () (Part-1)]. . . . 53

Xix

Figure (3.7 Calculating Degree Centrality for Query Graph () (Part-2)[. . . .

54

Figure|3.8 An Example of Creating Matching Order with Degree Centrality

| Method (Part-1) 55
Figure[3.9 An Example of Creating Matching Order with Degree Centrality [
| Method (Part-2) o 56
Figure[3.10 Finding Matches for () in G with the BB-Graph| 57
Figure 3.11 An Example of Creating Matching Order with Closeness Cen- [
| trality Method (Part-1)] 60
Figure [3.12 An Example of Creating Matching Order with Closeness Cen- |
| trality Method (Part-2)] L. 61
Figure[3.13 An Example of Finding All Exact Matches with BB-Graph| . . . 62
Figure|3.14 An Example of Creating Matching Order with Betweenness Cen- |
| trality Method (Part-1)] 65
Figure[3.15 An Example of Creating Matching Order with Betweenness Cen- [
| trality Method (Part-1)] 66
Figure(3.16 An Example of Finding All Exact Matches with the BB-Graph| . 67
Figure(3.17 Calculation of Eigenvector Centrality for each Node| 70
Figure[3.18 An Example of Creating Matching Order with Eigenvector Cen- [
| trality Method (Part-1)] 71
Figure[3.19 An Example of Creating Matching Order with Eigenvector Cen- [
| trality Method (Part-1)] 72
Figure3.20 An Example of Finding All Exact Matches with the BB-Graph| . 73
Figure[3.21 An Example of with the MosBasedOnCNS (Part-1)[. 82
Figure(3.22 An Example of with the MosBasedOnCNS (Part-2)[. 83

XX

Figure [3.23

An Example of Finding All Exact Matches with the MosBase- |

Figure 3.24 Example Query Graph for Comparison of the Improved BB-

| Graph Algorithms based on Matching Order| 85

Figure [3.25

Example Data Graph 1 for Comparison of the Improved BB- |

| Graph Algorithms based on MatchingOrdery 85

Figure 3.26 Example Data Graph 2 for Comparison of the Improved BB-

| Graph Algorithms based on Matching Order| 86
Figure 4.1 The Data Model for WorldCup dataset| 91
Figure 4.2 The Data Model for Pokec datasetf 91
Figure 4.3 The System Architecture| 93
Figure 4.4 The Queryl for WorldCup dataset| 95
Figure 4.5 ‘The Query? for WorldCup dataset) 95
Figure 4.6 The Query3 for WorldCup dataset) 96
Figure 4./ The Query4 for WorldCup dataset) 97
Figure 4.8 The Query5 for WorldCup dataset) 98
Figure 4.9 The Queryl for Pokec dataset| 103
Figure4.10 The Query? for Pokec dataset| 103
Figured.11 The Query3 for Pokec dataset| 104
Figure 4.12 The Query4 for Pokec dataset| 105
Figured.13 The Queryl for Population dataset| 109
Figure4.14 The Query?2 for Population dataset| 110
Figurei4.15 The Query3 for Population dataset| 111

Xxi

Figure4.16 The Query4 for Population dataset]

Figurei4.17 The QueryS for Population dataset|

xXxii

LIST OF ABBREVIATIONS

DB Database

GDBMS Graph Database Management System
BB Branch-and-Bound

DC Degree Centrality

CC Closeness Centrality

BC Betweenness Centrality

EC Eigenvector Centrality

CNS Candidate Node Selection

CES Candidate Edge Selection

DFS Depth First Search

BFS Breadth First Search

CR Candidate Region

NEC Neighborhood Equivalence Class
s.t. Such That

i.e. In Other Words

e.g. For Example

query node/vertex ~ Node/Vertex In Query Graph
data node/vertex Node/Vertex In Data Graph
query edge/relationship Edge/Relationship In Query Graph

database edge/relationship Edge/Relationship In Data Graph

xxiii

CHAPTER 1

INTRODUCTION

Over the past decade, the amount of data collected has increased with technological
developments and all research done in computer science. With social networks, e-
commerce websites, web applications, bioinformatics, communication, etc., we pro-
duce "Big Data", which is complex, useful, structured/unstructured, very fast with

questionable veracity [4]].

With the rise of Big Data, NoSQL databases have been created to effectively manage
Big Data in order to overcome limitations of the relational database model such as
fixed schema or data with a consistent structure [5]. NoSQL databases, which are
document, key-value, column store and graph databases, have their own advantages
and disadvantages of solving different Big Data problems with their different data
models [6].

Column stores (e.g., Cassandra, MariaDB, ClickHouse) are highly scalable, fast data-
bases that store data by each column, unlike relational databases, which store data by
each row. Therefore, they are good at aggregation queries, big-data analysis, and
data mining applications. Document stores (e.g., MongoDB, CouchDB, Couchbase)
are schemaless, flexible and highly available databases that can store, retrieve or man-
age large volumes of unstructured/semi-structured data in documents in XML, JSON,
YAML, PDF etc. format and execute queries rapidly with their strong indexing capa-
bilities. Key-value stores (e.g., Riak, DynamoDB, BerkeleyDB) are schemaless and
capable of mass storage databases that keep data as key-value pairs as simple hash
tables. Therefore, they can offer operational simplicity, fast lookups, and high con-
currency. Additionally, they are good at horizontal scaling comparing to the other

NoSQL databases. [7]].

Graph databases (e.g., Neo4j, OrientDB) are flexible databases that use basic graph
structures to store and query complex data sets, such as graphs [5]. They are good for
frequently modified schemas, recursive queries, semantic search and queries with ex-
pensive join operations in complex and highly connected entities. However, GDMBSs
are not as mature as relational database management systems. As a result, they do
not have a feature-rich environment and a standard query language. In addition, the
graph databases introduce high-memory consumption. Therefore, they should instead

be used for more complex database applications rather than for very large sets. [8].

The subgraph isomorphism problem is an NP-Complete problem that can simply be
described as detection of the patterns of a query graph in a data graph. The sub-
graph isomorphism is used in many areas like pattern recognition, computer vision,
computer-aided design, image processing, biocomputing, graph grammars and trans-
formation. Subgraph isomorphism problem plays a big role when we try to execute
a query to find a pattern in a graph database. Therefore, the approach to solving the

problem can directly affect the query performance of the big graph databases [/1]].

1.1 Motivation

In the literature, there are two types of techniques used in subgraph isomorphism al-
gorithms, filtering-and-verification and branch-and-bound techniques. The filtering-
and-verification technique aims to decrease the number of candidate dataset by creat-
ing an index of small graphs (features) and then eliminates irrelevant candidate data
nodes with respect to indexed features. GraphGrep [9], GIndex [10], Labeled Walk
Index (LWI) [11], Closure-Tree [2]], Graph Decomposition Indexing [12], TreePi [13],
TreeDelta [14] are based on the filtering-and-verification algorithm. On the other
hand, the branch-and-bound technique find matching candidate data node for each
query node in the graph by following branches connected to the matching the query
and data node in the graph database. If the algorithm matches with all constraints,
it continues the search, but if it does not match any data node, the algorithm back-
tracks and returns to the previous match [[15]. VF2 [16], QuickSI [15], GADDI [17],
GraphQL [[18]], SPath [19], Turbolso [3], Duallso [20], BB-Graph [1]] and VF3 [21]]

are the most known and efficient branch-and-bound algorithms in the literature.

2

The existing algorithms of these two techniques have some problems with finding
exact matches in big graph databases. More specifically, the filtering-and-verification
techniques are designed for graphs with multiple parts and they are incapable of find-
ing all exact matches in the graph databases. On the other hand, the branch-and-
bound (BB) techniques can find all the exact matches. However, they are not effective
for large datasets due to the recursive calls. Although most BB-based algorithms have
introduced their own pruning methods, they are not efficient enough to eliminate mis-
match patterns in higher levels; therefore, they must look in all the nodes and all
edges. Additionally, using large data structures or customizing indexes increase the
memory consumption. The BB-Graph [1] algorithm was developed based on these
application problems by introducing its own pruning method using the Neo4j’s graph
data structures. It searches for exact matches from a starting node and continues to
search for nodes connected to the already matching nodes. It has been proven that
BB-Graph works with large data sets. However, complex queries cause performance

issues in big graph databases.

In order to improve the performance of branch-and-bound algorithms, we examined
all the subgraph isomorphism algorithms existing in the literature. We realized that
all of these algorithms use various approaches to efficiently search for patterns in a
data graph. However, the matching order selection methods have generally not been
considered to improve query performance in large sets of graph databases. Defining
a good matching order helps algorithms to find patterns in fewer attempts. There-
fore, we examine matching order selection methods of all the algorithms in the lit-
erature as shown in Table [I.I] Only GraphQl, QuickSI, Turbolso, VF2 and its de-
scendants VF2Plus and VF3 algorithms indicate matching order selection to able to
execute queries more efficiently. GraphQIl always selects a query node with the small-
est candidate size connected to the query nodes already matching in each iteration.
QuickSI uses a minimum spanning tree called Q/-Sequence to order the nodes based
on their label frequency. Turbolso searches for neighborhood equivalence class for
each query node and then applies a selection order to them. On the other hand, VF2,
VEF2Plus and VF3 introduce a "node exploration sequence" which first uses the rarest

and the most constrained nodes when searching for patterns [18, (15, 3} 22, 21]].

Table 1.1: Matching Order Selection Usage in the Literature

Algorithm Matching Order Selection Method
QuickSI QI-Sequence
GraphQl Candidate Size For Query Nodes
SPath Candidate Size of the Path
Turboiso Candidate Region Exploration
VF2, VF2-Plus, VF3 Node Exploration Sequence

Motivated by this, we introduced the BB-Plus approach that consists of heuristics
for automatically selecting the best matching order selection method using volatility
(real-time and historical) and size of the database, size and type of query (path, cyclic
and others) as an input to improve the performance of subgraph isomorpishm queries.
The BB-Plus executes time efficient queries in large graph dataset by using these
heuristics to find the best matching order that eliminates redundant candidate nodes

at high level in order to reduce the search space.

Within the scope of this study, we first offered five matching order selection method to
improve the performance of subgraph isomorphism algorithms. Four of the selection
methods were developed using fundamental measures of the graph centrality, such
as the degree, closeness, betweenness and eigenvector centrality. The other one was
developed based on candidate node size. Each of them can be applied to any subgraph

isomorpishm algorithm to increase the query performance.

After developing these five matching order selection method, we decided to combine
these matching order selection methods to a branch and bound algorithm. We choose
BB-Graph algorithm because it gives the best performance among all the state-of-the-
art subgraph isomorphism algorithm. Therefore, Matching Order Based On Degree
Centrality, Matching Order Based On Closeness Centrality, Matching Order Based
On Betweenness Centrality, Matching Order Based On Eigenvector Centrality and
Matching Order Based On Candidate Node Selection methods are emerged and we
examined their performance against various queries and with different dataset. We
see that some methods give greater results in some queries and decide to create rules

for determining the matching order selection method automatically for different query

types.

We used decision tree in the process of generating rules for determining the matching
order selection method. Decision tree created some rules based on the volatility and
size of database, size and type of query as attributes and best matching order selection
methods as output in the queries. Therefore, we used these rules to introduce our
approach the BB-Plus. The BB-Plus decides which matching order selection method

should use while executing a subgraph isomorphism query according to these rules.

1.2 Contributions and Novelties

The main contributions of this thesis are:

1. We introduced a new approach called BB-Plus that consists of heuristics for au-
tomatically selecting the best matching order selection method volatility (real-
time, historical etc.) and size of the database, size and type of query (path,
cyclic, recursive etc.) as an input to improve the performance of subgraph iso-
morpishm queries. It combines the best aspects of five different matching order

selection methods along with BB-Graph algorithm.

2. In order to improve the performance of subgraph isomorphism algorithms, we
offered five different matching order selection methods called Degree Central-
ity, Closeness Centrality, Betweenness Centrality, Eigenvector Centrality and
Candidate Node Selection. We compared these matching order selection meth-
ods and found their strengths and weaknesses in different types of database and
queries. Therefore, we generated basic rules that decide which matching order
selection method to use in which query or databases and we used these rules

while developing the BB-Plus approach.

3. We compared the state-of-the-art subgraph isomorphism algorithms in the liter-
ature such as GraphQl, Duallso, Turbolso, VF 3, BB-Graph and Neo4j’s Cypher
using the same programming language and graph data structures (for storing
nodes, edges and properties or indexing etc.) of Neo4j’s graph database with
our approach BB-Plus. A number of experiments have been performed in three
different dataset. Most of the queries, the BB-Plus performs better than other

algorithms.

1.3 The Outline of the Thesis

Organization of the rest of this thesis is as in the following:

Chapter[2]presents the background and the related work on the subgraph isomorphism
algorithms. Chapter [3|presents our approach, which is called the BB-Plus, and how its
developed using different matching order selection methods. Chapter |4 presents the
experimental results of the comparison of the state-of-the-art subgraph isomorphism
algoritmhs, GraphQl, Duallso, Turbolso, VF3, BB-Graph and Neo4j’s Cypher, with
our approach, BB-Plus. Finally, the conclusion and future work are given in Chapter

&l

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Graph Databases

Graph database is a database that uses graph data structures for semantic queries like
nodes, edges and properties to represent and store data. On the other hand, graph
database management system (GDBMS) are used to manage graph databases. Graph
databases employ nodes, edges and their properties. Nodes represents entities that we
want to keep track and edges connect each nodes. With properties, we can keep infor-
mation on both nodes and edges [5]. Library graph database is given as an example
in Figure[2.1] In this example, we see that graph databases keep nodes such as books,
persons etc. and its properties such as name, title etc., edges such as wrote, purchased

etc. and its properties such as date etc.

PERSON
Name: J.K
Rowling

BOOK
Title: Harry
Potter

PERSON
Name: lan
James

PURCHASED
Date: 03-02-2011

PURCHASED
Date: 03-02-2011

PERSON
Name: J. R.
R. Tolkien

BOOK
Title: Lord
of the Rings

PERSON
Name: Alan
Gates

PURCHASED
Date: 03-02-2011

Figure 2.1: Library Graph Database Example

Graph databases built on three essential properties. Firstly, they use property graph
as a data model [23]. Secondly, they use path traversal as a query language. Lastly,

they satisfies index-free adjacency for physical level organization.

Index-free adjacency means there is no global or external index are needed for search-
ing the existence of an edge between two nodes. Therefore, no index lookups are
required in graph databases [24]. As shown in Figure [2.2] if we want to find "People
who writes Harry Potter" in the example Library Relational Database, we need to cre-
ate three indexes for "Title" attribute in "Book" table, "Bookld" attribute in "Writes"
table and "Id" attribute in "Person" table. However, in the graph databases, we only
need an index to find the root node which is a book with title "Harry Potter" in our

example an then just do traversal to find the people who writes it.

PERSON WRITES
Id Name Personld | Bookld
1 J.K. Rowling 1 1
2 J.R. Tolkien 2 2
3 Edgar Allan Poe 4 3
4 George Orwell 4 4
BOOK
Id Title

1 Harry Potter
2 |Lord of the Rings
3 1984

4 Animal Farm

Figure 2.2: Library Relational Database Example

We need to consider using graph databases rather than relational database when we
have a large and complex data set, expensive join operations, our data is highly con-

nected (e.g. social networks) or in a recommendation systems (e.g. Netflix) [&]].

Graph databases are good at managing ad-hoc and changing data with evolving schemas,
recursive queries, semantic search and managing data set within graph structure,
graph traversal or graph like queries (e.g. shortest path between two given nodes

in a graph) [8].

Although graph databases have great features, they have some existing issues. Mod-
eling a graph database and migrating data, queries, indexes etc. from an existing
database is a big problem because there is no well-defined way to do it. Addition-
ally, some of graph databases are lack of fully ACID properties and standard query
language. On the other hand, relational databases are more mature than the graph
databases and they have feature rich environment. Therefore, graph databases create
trust issues for large businesses. Lastly, their memory consumption is high when they

compare to other databases [23]].

Graph databases are used in different applications in social, information, technologi-
cal and biological networks [3,16]. Graph databases are mostly used in social networks
because it is easy to represent people, groups and their relationships like friendship
etc. with graph data structures. Additionally, graph databases are used for social

network analysis [26].

Graph databases are also used in recommendation systems to recommend a product,
user etc. to its users by predicting based on user data. Associations between items
or users can be easily defined as a graph model and recommendation can be done
by graph traversal. For example, Google uses graph database to show relevant ads,

Facebook uses for friend suggestions and Amazon uses to recommend products [27].

In bioinformatics, graph databases are used for modelling metabolic pathways, chem-
ical structures, genes, proteins and enzims etc. For example, Bio4j is using graph

database to store and query proteins [28].

Also in technological networks like Geographic Information Systems or spatial databases,

graph databases can be used for geographic, topological and metric operations [26].

2.1.1 Comparison of Graph Databases

Although most of the GDBMSs exist for less than ten years and developments are still

coming within their roadmaps, they provide different capabilities and features [6].

Neo4j, AllegroGraph and Sones have their own query language, which are Cypher,
SPARQL and GraphQL respectively. The others usually use SQL-based language for
querying [6].

Each graph database can use different data structures to represent data. For example,
Hypergraph and SonesDB use hypergraph to store data [S] that is useful in knowledge
representation, artificial intelligence and bioinformatics [29]. OrientDB, Allegro-
Graph and ArangoDB are multi-model databases that can use different data models
for solving different problems. For example, ArangoDB is also a RDF store database

that makes it meet with the Semantic Web standards [J5]].

Most of the graph databases use master/slave architecture for replication. When a
slave needs to write, it needs to synchronize with the master to preserve consistency
[30]. These updates will be eventually visible to other slaves by master node that
could lead master node to bottleneck. OrientDB solves the bottleneck problem by
multi-master (master-master) replication. In OrientDB, all the nodes in the cluster
are master so they can both read and write. This also allows each cluster to scale up

horizontally [31]].

All of the graph databases use different data structure for indexing as shown in Table
[2.1] However, they usually use a text search engine called Apache’s Lucene for full

text indexing.

Triggering feature only comes up with Neo4j, OrientDB, Titan and AllegroGraph for
catching events. Graph databases have high throughput like other NoSQL databases

so using triggering could also create performance problems.

Geospatial queries are available on Neo4j, OrienDB, Titan, AllegroGraph and ArangoDB.
Neo4j and Titan have external geospatial libraries to handle geospatial queries that
are called Neo4j Spatial and Titan Geo respectively. OrientDB, Titan and ArangoDB

have spatial indexes to faster geospatial queries.

10

f graph database management systems

180N O

Compar

Table 2.1

ON SOX TOMIVAS 090) UB], SOX reneds [0oN sauanQ) [enedsoan
SOX ON OoN (snue, BIA) SOX SOX 1ou0dwyoreg donpaydey
KILINOJS [0AS] PIOONY
uonedynuayne | I0AIAS ydein) 10)sxoy
- - uonesnuayINe - Amoag
Ios() UONBOYNUAYINE JOS)
9JoI pue 19s)
amfo[) e[eos e[eoS ‘Aqny ‘uoykg | Aqny 9duogeaer
sogen3ue|
‘Aqny ‘uoyikq ‘Kqny ‘uoyhg uogAq ‘dHd “duogeaer ‘uolyAd ‘dHd ‘Trod
syunidonyg ‘eaef Surwwresdold
: ‘dHd “9diogeaef | ‘Tao4 ‘dsr ‘eaer ‘eae(‘amlo[) e[eog ‘eAe(‘amfo)) ‘eAe[‘AA00ID &
oy10ddn
‘eae(‘dreqs)y | ‘amfop) ‘dreys) ‘dreys) D 90N | 0D ‘amfo[) 1N P s
JUQISISUOD)
Qv Aimd anv anyv Aqremuang av Amd Qv Aimd Kouasisuo)
1o 1DV
Suipreys Surpreys uoneIapa PIm | uruonnied padueeg Surpreys ON Suruonnied
QAR[S/INSEIN QAR[S/ISBIN QAR[S/ISEIN QAR[S/INSEIN I9)SeIN DINA QAR[S/ISEI uonesrdoy
SOX SOX (AaY) oON SAX SOX SOX ydein Kyredoig
xopuj
Xopuj
[eneds auoon
XopuJ 1X9L, [INA renedg suoong Surxopug
xopuj
XopuJ 090 Surxopuy xopuy[IXQL, [[n] Sudon
- IXQ, [0 Quoon Surxopuy
xopuj Is11dys 1X3, 1[0S IXQ, [N uaon soxopu] Aoe3o]
soxopuy
xopuJ yseHq xopu] yseH SOXOpU] BWAYOS
JIUS)-XA
XopuJ 911 -gS
soxopuy ydein
- - SOX ydeinjuoag SYOOH I9[PUBH JUSAT Suraguy,
uruaIn) uruoln) TOUAVIS uIuoIn) paseg-10S JoydLH ogen3ueT K1ond)
[eIoIOWWIO)) Qa1 [BIOIOWIWIO)) Q01 201 IROX /ST WIN ooud
010C (4114 00T Cloc 010T L00T Teax
Q10)$ AN[eA-A9Y]
SINGAD SINAao
SINddd SINGAD SINddd SINGAD [SPOINl °seqere
Q101§ A QI0}§ JUAWNIO(]
Q103§ JUAWNOO(
ydeinayruyuy qgqo3uery ydernoi3oqy uey, quaIQ [F0oN

11

2.2 Centrality Measures in Graphs

Centrality is a quantative measure that determines the most important (or central)
node in a graph. The most central node can be changed based on how a node is
identified as the most important. The most important node could be node with largest
degree or the one that closest to the other nodes or the one that most shortest paths pass
through or the one that has dominant eigenvector. With different centrality measures,
we can detect different properties of a graph. Degree, betweenness, closeness and

eigenvector centralities are one of most popular centrality measures in the literature.

Figure 2.3: Example graph G for calculating centrality measures

2.2.1 Degree Centrality

Degree centrality is the first and the simplest centrality measure that defines the im-
portance of a node based on its degree that can be calculated with the number of
incoming and outgoing edges of nodes. If the node’s degree is bigger than the degree
of other nodes, then the importance of the node is higher than the other nodes. Degree
centrality is good at searching for most connected nodes or the nodes with most in-
formation that can easily connect with other nodes in a graph. The pseudo code [32]

for calculating degree centrality for graph is given in Algorithm 1]

12

Algorithm 1 DegreeCentrality
Input: @ : Query graph
Output: C;(Q) : Degree Centrality values for nodes of graph)

1: procedure DEGREECENTRALITY(())
3 fori from 1 to |Q|>do

»

4: forj from 1 to |Q|>do
5: if matriz[i][j] '= 0 then
6: degreeli] + +

~

Cq(v;) = degreeli] + +
Push Cy(v;) to Cy(Q)

e

9: return C,;(Q)

Degree Centrality can also be expressed as in Equation 21} According to the equation,
the degree centrality of a node can be calculated with incoming and outgoing edges

that touches to the node which can be also describes as degree of the node.

Coegree(Vi) = degree(vy) 20

Let’s calculate degree centrality for each nodes in graph GG. Therefore, we need to find

the degrees of each node which are 2,3,2,3,3,1 for A, B,C, D, E, F respectively.

2.2.2 Closeness Centrality

Closeness centrality is determined for each node in the connected graph based on their
closeness to other nodes in the graph that can be calculated with sum of the shortest
paths between the node and the other nodes. If a node is more central, then its distance
between the other nodes is lower than the other nodes in the graph. With closeness
information of graph, we can determine the time for nodes to spread information from
itself to the all other nodes. Therefore, it is good at searching for nodes that deploy in
the best location to easily affect other nodes in the graph. The pseudo code [32] for

calculating betweenness centrality for graph is given in Algorithm 3]

13

Algorithm 2 ClosenessCentrality
Input: @) : Query graph
Output: C.(Q) : Closeness Centrality values for nodes of graph)

1: procedure CLOSENESSCENTRALITY(Q)

2 CQ) D

3: fori from 1 to |Q|>do

4: Pathli] = Execute Dijkstra(i)
5: forj from 1 to |Q|>do

6: PathLengthli] += Pathli|[j]
7: C.(v;) = 1/PathLengthl|i]

8: Push C.(v;) to C.(Q)

9: return C,(Q)

Closeness Centrality can also be expressed as in Equation[22] According to the equa-
tion, to find closeness value of node k (v;), we need to find the distance between v,

and all other nodes (d(v;, vx)) in the graph and normalize it.

1

_ A 2
> d(on,on) @2

Ccloseness (Uk)
Let’s calculate the closeness value of each nodes in graph G. To do that we need find
the shortest distance between all the nodes as in Table @ For example; the distance
between node £ and all the other nodes is 2,1, 2, 3, 1, respectively. Therefore, the
closeness value of £ can be obtained by dividing total distance (9) by 1 which is

0.11. The closeness value for all the other nodes can be seen in Table

14

Table 2.2: Distance matrix of example query graph G

A/B|C|D|E F
Al -|1|12]2]|3
B/ 1|-[2]1|1]2
Cl|1|2|-1]2]3
D 2|11 |-]1]2
E| 2|1 [2[3]|-]1
F|3|213|2]|1]-

Table 2.3: Calculating closeness centrality of example query graph G

Total # of shortest paths between

Nodes (v) C.(v) (Closeness Centrality of v)
v and the other nodes
A I1+1+2+2+3=9 1/9=0.10
B I1+2+1+1+2=7 1/7=0.14
C 1+2+1+2+3=9 1/9=0.11
D 2+1+1+1+2=7 1/7=0.14
E 2+41+2+3+1=9 1/9=0.11
F 3+42+3+2+1=11 1/11=0.09

15

2.2.3 Betweenness Centrality

Betweenness centrality is defined by how many times a node is included on the short-
est path that is calculated among all the nodes in a graph. The most important node in
the betweenness centrality acts as a bridge between all the nodes in a graph. There-
fore, it is good at defining a node that most affect the flow in a graph. The pseudo

code [32] for calculating betweenness centrality for graph is given in Algorithm 3]

Algorithm 3 BetweennessCentrality
Input: () : Query graph
Output: C,(Q)) : Betweenness Centrality values for nodes of graph @

1: procedure BETWEENNESSCENTRALITY(Q)

2 Co(Q) 0

3: fori from 1 to |Q|>do

4: Vector Path[i] = Execute Dijkstra(i)

5: forj from 1 to |Q|>do

6: Vector AllPath += Pathli][j]

7: Add Pathl[i] into Vector AllPath

8: fori from 1 to |Q|>do

9: forj from 1 to VectorAllPath.size()> do
10: if i in Vector AllPath[j] then

11: PathNumber[i] + +

12 Cy(vi) = PathNumber[i] /2/((|Q] = 1)(IQ] = 2)/2)
13: Push Cy(v;) to Cp(Q)

14: return Cy,(Q))

Betweenness Centrality can also be expressed as in Equation where g;; is the
number of shortest path between v; and v; and g;;(vy) is the number of shortest path

between v; and v; that contains node vy,.

ZN ZN 9ij (vk)
Cbetweenness (Uk) = ng‘ 'k (23)
: iJ

i

16

Table 2.4: Calculating betweenness centrality of example query graph G

Nodes (v) Shortest path passes through the node Cy(v) (Betweenness Centrality of v)
A C-B (C-A-B, C-D-B) 1/2=0.50
B A-D (A-B-D, A-C-D), A-E (A-B-E), A-F (A-B-E-F) 1/2+1+1=250
C A-D (A-B-D, A-C-D) 1/2=0.50
D C-B (C-A-B, C-D-B), C-E (C-D-E), C-F (C-D-E-F) 1+1+1/2=250
E A-F, C-F, B-F, D-F 1+1+1+1=4
F 0

To be able to normalize the betweenness value, we need to divide results by the num-

ber of pairs of vertices not including v, which for directed graphs is (n — 1)(n — 2)

and for undirected graphs is

(n—1)(n—2)
5)

Let’s calculate the betweenness value of each nodes in graph G. To do that we need

find all the shortest paths and the shortest path that contains each nodes like in Table

2.4, For example, the betweenness value of node E is calculated as for 4. Because

four shortest paths in the graph which are A — F,C' — F, B — F and D — F passes

through the node F.

Table 2.5: Adjacency matrix of example query graph ()

A/B|C|D|E F
Al-|1]1]0]0]0
B/ 1|-(0]1|1]0
C/1/]0|-]1]0]0
D oO|j1|1|-]1]0
E| 0]1]0|1]|-]1
F{0/0/0]O0]|T1]-

17

2.2.4 Eigenvector Centrality

Eigenvector centrality is calculated for a node with its degree and the quality of its
edges between other nodes. It is more about calculating the measure of the influence
of a node in the graph. If the edges connected to nodes with high score nodes than it
consider more important than the other nodes. Additionally, Google’s PageRank and
Katz centrality measures derived from eigenvector centrality [33]. The pseudo code

[32]] for calculating degree centrality for graph is given in Algorithm

Algorithm 4 EigenvectorCentrality
Input: @) : Query graph
Output: C,(Q) : Eigenvector Centrality values for nodes of graph @

1: procedure EIGENVECTORCENTRALITY((Q))
2: CQ(Q) +— 0
3 fori from 1 to |Q|>do

4: eigenvector|i] =1

5: forn from 1 to MaxzTimes> do

6: fori from 1 to |Q|>do

7: TmpFEigen[i] = 0

8: forj from 1 to |Q|>do

9: TmpEigenli] += matriz[i][]] * eigenvector|j]
10: NormSq =10

11: forj from 1 to |Q|>do

12: NormSq = TmpFEigen|i] x TmpFEigen]i]
13: Norm = sqrt(NormsSq)

14: forj from 1 to |Q|>do

15: FEigenvector[i]| = TmpFEigen[i|/Norm

18

01101010
10100000
11010000
A (00100100
10000000
00010010
10000101
00000010
-2 1 0 1 0o 1 o0 |[u] [0]
1 0-2 0o 0 0o 0 [|uz] |0
1 1 0-24 1 0 0o 0 o ||lug| |o
0O 0 1 0-2 0 1 0 0 [lua| |oO
(A-A1)C, =0 = _
1 0 0 0 0-4 0 0 o0 ||lus| |oO
o 0 0 1 0 0-2 1 0 [lus| |oO
1 0 o0 0 0 1 o0-2 1 ||lu7| |o
Lo 0o 0o 0 o0 1 0-2]|u8] [0]
0-4 1 o 1 0 1 0
1 0-2 1 o 0 o0 0
1 1 0-24 1 0 0 0 0
a0 0 L 02 0 100
1 0 0 0 0-4 0 0 0
0o 0 o0 1 0 0-2 1 0
1 0 0 0 0 1 0-4 1
0o 0 0 0 0 1 0-2

= 1,=260 4,=-206 A4,=-172 3,=134 J=-160 4 =170 4,=037 /=021

The largest eigenvalue is 2.60. So the corresponding eigenvector:

-26 1 1 0 1 0 1 0 J[ut] [0
1 -26 1 0 0 0 0 0 ||luzf |o
1 1 -26 1 0 0 o0 o0 ||u3]]o
0 0 1 -26 0 1 0 0 ||lua |oO
1 0 o0 o0 -26 0 0 o0 ||lus|T]o
o o o 1 o -26 1 0 ||us| |o
1 0 o0 o0 0 1 -26 1 |lur]]o
o o o o o o 1 -26/|u8| |0

= A4 =-466 1,=-432 14,=-3.60 2,=-2974=-2.38 4,=-1.60 A4, =-1.254,=-0.01
The largest eigenvalue is -0.01 and the eigenvector associated to it:

[0.54]
0.39
0.46
027 A B C D E F G H
0.21| = ce={0.54,0.39,0.46, 0.27, 0.21, 0.24, 0.35, 0.13}
0.24
0.35
10.13]

Figure 2.4: Calculating eigenvector centrality of example query graph G

19

Eigenvector Centrality can also be expressed as in Equation 24| where) is a constant,
A is the adjacency matrix of a graph such that a,; = 1 if node v; is connected to v,

and a;; = 0 if not and z; is leading eigenvector of node v;.

1
Ceigenvectar (vk> - X Z ATy (24)
teG

Let’s calculate the eigenvector value of each nodes in graph G. Firstly, we need to
obtain the adjacency matrix of () that given in Table [2.5|and then we need follow the

steps that given in Figure[2.4]

2.3 The Subgraph Isomorphism Problem

In the thesis, the graph G is defined as (V, E') where V' is the set of nodes and FE is the
set of edges. L, and P, denote the label set and property set of node v respectively.
Similarly, for an edge e =< u,v >, L., P, and dir? denote the label set, property set

and the direction of the edge e with respect to node u, respectively.

Given @ : (V,E) and G : (V', E’), G is an exact match of @), if there is a one-to-one
and onto function f : V < V' such that L, C Ls(v), P, C Ps(v) Vv € @ and s =<
f(u), f(v) >€ E'Vr =< u,v >€ E where L, C L,, P, C P,,dir* = dir{(u).

Definition: Given a query graph () and a data graph G, the subgraph isomorphism

problems is to find all distinct exact matches of () in G.

Query Graph (Q) Data Graph (G)

Figure 2.5: Example for Subgraph Isomorphism Problem

20

The matched nodes must satisfy the label comparison and degree comparison test. In

other words, matching couple (u, u’) must satisfy L,, C L! and u.deg < u’.deg [1].

As shown in Figure [2.5] subgraph isomorpishm problem can be described as, finding
all the exact matches of query graph () in data graph G.

2.4 The Subgraph Isomorphism Algorithms

In the literature, subgraph isomorphism algorithms are divided into filtering-and-
verification and branch-and-bound techniques according to their strategies. Filtering
and verification algorithms filter the data graph based on non-matched index of query
graph and verify the matches. They are good at reducing the candidate data nodes
and graphs with disconnected parts. However, they cannot find all exact matches of

query graph. An example for filtering and verification algorithms (Closure-Tree) is

given in Figure [2.6]

Sample Graph Database CLOSURE-TREE
Podyd
(e o 0 &>
(®) (©) ()
G1 G2 G3 G4 G5

Sample Graph Closures

Cl1=Closure(G1,G2) C2=Closure(G3,G4,G5) C3=Closure(C1,C2)

Figure 2.6: Example for Filtering and Verification Algorithms - Closure Tree [2]

21

On the other hand, branch and bound algorithms can find all the exact matches based
on finding candidate data nodes for each query node and continue with new query
nodes by branching from already matched query nodes. Although they are good at
finding exact matches unlike filtering-and-verification technique algortihms, they are
not computationaly efficient. Because, they search globally on the data graph and
tries to find all candidate nodes by branching on irrelevant relationships and they use
excessive memory based on the need of large data structures [1]]. Therefore, prunning
and matching order selection methods are important in these kind of algorithms to
increase the performance. They eliminate irrevelant candidate nodes at early stepts
in order to find exact matches more efficiently. The comparison of the all subgraph

isomorpishm algorithms are shown in Table [2.6]

24.1 Ullmann’s Algorithm

Ullmann proposed the first subgraph isomorphism algorithm that introduces the es-
sential concepts of the problem and provides a basis for development of subsequent
algorithms. The algorithm uses branch and bound technique to find all exact matches
of a query graph. The algorithm is incapable to execute efficient queries on the large
datasets and cannot compete with subsequent algorithms. Becuase the algorithm is
in the immature state compared to the others and it has inadequate pruning rules and
do not apply any matching order strategies. However, it created a basic structure for

subsequent algorithms to develop new techniques to increase the query performance.

Ullmann’s algorithm filters the candidate data nodes first for each query nodes by
applying label and degree comparison tests. After finding the candidate nodes, it ran-
domly picks a start query node and continue to find matching data nodes for a query
node from randomly ordered query nodes. After finding a matching couple, the al-
gorithm applies IsJoinable procedure that controls all the relationships between the
matching query node and already matched query nodes is defined between matching
data node and already matched data nodes [34]]. If the matching couple successfully
passes the procedure, then the matching couple added to the partial solution. How-
ever, the procedure fails then the algorithm backtracks and continue with the other

candidate nodes [335]].

22

24.2 VF2

The VF2 algorithm was built on the structure of the Ullmann’s algorithm and it de-
signed to achieve better performance on large graph datasets. The algorithm uses

tree-based index structure to find all the exact matches.

The algorithm starts with an initial empty state and then adds a start query node from
given order of the input. It continues with a query node that connected to already
matched query nodes that satisfies all feasibility rules to create intermediate states.
Therefore, the algorithm does not need to apply IsJoinable procedure and can prune
out some candidate data nodes that are not connected to the already matched nodes.

Finally, the algorithm stops when it covers all the nodes in the query graph.

Although the VF2 does not apply matching order selection, it has three pruning rules
to increase the performance. The first one helps to prune out the data node that is not
connected to already matched data nodes. The second one checks that the number of
the intersection of adjacent query vertices and non-matched query vertices is bigger
than the number of the intersection of adjacent data nodes and non-matched data
nodes. The last one checks that the number of query nodes is bigger than data nodes
that can be calculated as the difference between the sum of non-matched and the

matched nodes from the adjacent nodes.

The VF2 algorithm performs better than the Ullmann’s algorithm especially the size
of query graph is bigger than twenty nodes. The execution time of finding patterns for
Ullmann algorithm increase exponentially with the size of query graph and it causes

a low performance when it compares to the VF2 algorithm [16].

2.4.3 QuickSI

The QuickSI is a subgraph isomorphism algorithm based on filtering and verifica-
tion and it uses feature-based index technique, which is called Swift-Index to reduce

computational costs and gain the ability of working on the large datasets.

Additionally, the algorithm has a matching order selection method, which called

QI-Sequence. QI-Sequence is a minimum spanning tree that can be created by the

23

weighted edges. The weight of edges can calculated by the label frequency of both
incoming and outgoing nodes based. QI-Sequence is ordered by ascending label fre-
quency. Therefore the algorithm continues with a low frequency node, both the num-

ber of recursive calls and the query execution time are decreased.

On the other hand, QuickSI applies IsJoinable procedure to able to prune out the
data vertices that has no edges between the already matched data vertices. QuickSI
is also compared with Ullmann’s algorithm and it collects query results in less time,

especially with the increasing size of query graph [15].

24.4 GraphQL

The GraphQL is a query language that is developed to be able to manipulate graph
databases that has attributes on both nodes and edges. GraphQL uses different prun-

ing rules and matching order selection method to increase performance.

The GraphQL algorithm use two different pruning rules that are neighborhood sig-
nature based pruning and pseudo subgraph isomorphism test based pruning. Neigh-
borhood signature based pruning ensures that labels of a query node’s neighbors are
a subset of label of candidate data node. On the other hand, pseudo isomorphism test
helps to prune out data vertex if the breadth first search tree of the query vertex is not

contained by the breadth first search tree of data vertex.

In addition to, the GraphQL also differs from other algorithms with its matching order
selection method. The algorithm always selects a query node with the smallest can-
didate size that is connected with the already matched query nodes in each iteration

of finding matches of query graph [18]].

24.5 GADDI

The GADDI algorithm is emerged from the need for indexing large graphs in biolog-
ical data. Until the GADDI algorithm was developed, there is no algorithm that can
index large data graphs. Therefore, the algorithm uses distance based indexing that

uses neighboring discriminating substructure (NDS) distance in large graphs, which

24

can be calculated with the number of exact patterns in a partial subgraph.

The GADDI does not apply matching order selection. It starts with the first query
vertex in the input and continue with a query node that first appears in the depth-first

search.

Additionally, the GADDI has three pruning rule. Firstly, it checks the query node’s
labels is a a subset of data vertex’s labels. Secondly, it checks NDS distance of query
vertex is smaller or equal than the data vertex’s NDS distance. Finally, the third rule
checks the shortest distance between query node and its neighbors is greater than or

equal to the shortest distance between data node and its neighbors [17].

24.6 SUMMA

The SUMMA algorithm also noted that the database size is the biggest challange for
the subgraph isomorphism problem. The algorithm uses an novel index based struc-
ture that generates local and global indexes to reduce the disk accesses and redundant
calculations to able to execute queries in large graph datasets. Memory consumption

of the algorithm is only based on the number of nodes.

Local indexes keeps infrequent label combinations which is sorted label list by lex-
icographic order. Infrequent label combinations are better than the frequent ones.
Because, it can keep more information within less space. With local indexes, the

algorithm can determine the matching order.

As for global indexes, the algorithm prefers distance based indexing like the GADDI.
However the space complexity is high for the large graph datasets, it prefers shortest

path trees. Because the size changes linearly with the node size.

Zhang et al. compare the SUMMA algorithm with the GADDI algorithm based on
index construction time, index size, induced subgraphs and model generated graphs.
Although, it was shown that the GADDI performs better in small datasets, the SUMMA
beats the GADDI in large graphs dataset [36]].

25

2.4.7 SPath

The SPath algorithm is built on a pattern based indexing structure that uses shortest
path trees as indexes to be able to handle large graph datasets like the SUMMA algo-
rithm. The algorithm divides query graph into shortest path and finds candidate paths
for them in the data graph. Then, it brings all the paths together to find all the em-
beddings. In other words, the algorithm does not match nodes with candidate nodes,

it matches paths with candidate paths at a time.

The selection order of query paths affect the query performance directly. The selec-
tion order of the SPath is about finding the most selective path that depends on the
node with smallest candidate size and size of all vertices in a path. Additionally,
the SPath applies neighborhood signature based pruning on the query path so that
neighbor data path satisfies labels of the neighbor query path.

The SPath was compared GraphQL with thousand queries and the average query pro-

cessing time for the queries are at least four times better than the GraphQl [[19].

2.4.8 Turbolso

The Turbolso algorithm has emerged from low query performance of existing sub-
graph isomorphism algorithms based on lack of a good mathing order selection method.
Turbolso comes with two important concept, which are candidate region exploration

and combine and permute strategy (Comb/Perm).

Candidate region exploration procedure searches candidate regions (CR) in the data
graph and it helps to generate a matching order for each candidate region. Candi-
date region exploration exploits from neighborhood equivalence class (NEC), which
reduce the size of candidate region. The procedure finds all candidate data vertices
for each NEC node and keeps them in a candidate subregion and then, the algorithm

performs DFS in NEC tree to repeat this procedure for each ordered NEC node. The

26

matching order for each NEC node can be calculated as in Equation [25]

CR(v
Z |CR(u,)| (25)
|u'.NEC|
veECR(P(u'),—)

Comb/Perm strategy can find combinations for the query nodes in the same NEC
instead of do permutation for all possible enumerations. However if the algorithm
detects that a combination is not going to involve in the final solution, algorithms

prunes out all the permutations for the combination.

The Turbolso algorithm was compared with QuickSI, GADDI, Spath, VF2 and algo-
rithms with large datasets like AIDS, Human, NASA dataset. According to the paper,
no algorithms other than GraphQI have completed most of the queries. Additionally,
Turbolso performs 3.22 and 1836 times better than GraphQL in NASA and Human
dataset respectively [3]].

Algorithm 5 The Turbolso Algorithm
Input:: () : query graph, G : data graph

Output: all embeddings of Q in G

1: procedure TURBOISO(Q),)

2: ug < ChooseStartVertex

3: Q' < RewriteNecTree(Q, us)

4 for all v, in v|(v € V(G)) and (L(us) C L(vy)) do

5: if ExploreCR(u,vs, CR = FAIL) then

6: continue;

7: order < DetermineM atchingOrder(Q’, CR)
8: UpdateState(M, F, ug, vs)

9: SubgraphSearch(Q,Q’, G, order, 1)

10: RestoreState(M, F, us, vs)

27

2.4.9 Duallso

The Duallso is a tree search based algorithm that uses effiecient pruning rules to be
able to execute queries using less time and memory in large graph datasets. The

Duallso consists of two basic pruning method that are simple and dual simulation.

Simple simulation checks that if there is a neighbor data node of the matched data
node with the same label as the neighbor node’s label of the matched node as shown
in Equation 26| Simple simulation is very close to the refinement procedure of the

Ullmann’s algorithm and therefore insufficient for pruning in large graph dataset.

V(u,u') € E,, Yo € ¢(u), ' € ¢(u')s.t.(v,0') € E (26)

In contrast to simple simulation, dual simulation not only controls child nodes, but
also parent nodes. For each query node, which is a neighbor of a matched query node,
it checks neighbor nodes of the data node, which has any intersection with neighbor
query node as shown in Equation Dual simulation prunes out the nodes early

state, therefore it minimizes the search space and increases the query performance.

V(u,u') € E,, V' € ¢p(u'),Fv € ¢p(u)s.t.(v,0') € E (27)

Firstly, the algorithm tries to find the feasible matches of nodes by finding all data
nodes with the same label as query node and then it applies dual simulation to prune
out unwanted data nodes. Then, it tries to find matching couples with applying depth-
first search procedure until reach the maximum depth of the query graph. If the

algorithm reach an unfeasible state then it backtracks.

Duallso compared with GraphSimlIso, VF2 and GraphQl with amazon-2008 and enwiki-
2018 dataset. In the experiment, the effect of dataset size, query size, labels and data
graph density was investigated and Duallso gives the best results under this circum-

stances [20]].

28

Algorithm 6 The Duallso Algorithm

1: procedure DUALISO(G, @, P)
2: changed < true

3: while changed do

4: changed < false

5 for all u <— V, do

6: for all ' + Q.adj(u) do

7: ' (u') + 0

8: for all v <~ ® do

9: O, (u') G.adj(v) N P(u)
10: if ®,(u') = () then

11: remove v from ®(u)
12: if ®(u) = () then

13: return empty ¢
14: changed < true

15: ' (u) « D' (u') U D, (u)
16: if ®'(v') = () then

17: return empty ¢

18: if &'(u') < ®(u’) then

19: changed < true
20: O(u') =o(u) NP (u)
21: return ¢

29

24.10 BB-GRAPH

The BB-Graph algorithm has emerged from inadequate pruning techniques and ex-
cessive memory usage due to the large data structure needs of other algorithms. The
BB-Graph algorithm uses branch and bound technique with backtracking strategy.
Additionaly, the algorithm has efficient memory usage because it is built on data

structures of Neo4j. The psuedo code for the algorithm is given in Algorithm

Algorithm 7 The BB-Graph Algorithm
Input:: @ : query graph, G : data graph

Output: M : all embeddings of Q in G

1: procedure BBGRAPH(Q, ()

2 M<+)

3: us <— up where uy is the first node given in the input
4: (Cy)s < Filter ByLabel(us)

5: (Cy)s < Filter ByRelationships(us, (Cy)s)

6: if u; has property then

7: (Cy)s < Filter ByProperty(us, (Cy)s)
8: for all <v, € (C,)s> do

9: Myode < 0, Myl <0, < ()

10: S.push M_ugz, vg >

11: Add M_ug,vs > into M,,pq4e

12: TransitionState()

13: return C,

The algorithm starts with a query node and find its potential candidate nodes by
checking their label, degree, property and both incoming and outgoing relationships.
FilterByLabel method helps to find all candidates nodes that have the same label with
query nodes as described in Algorithm 28] After finding the candidate nodes with the
same label, the algorithm checks the incoming and outgoing edges of candidates node
are matching with the query nodes with FilterByRelationship method as described in
Algorithm [29] The method makes sure that edges of candidate nodes have the same
type and direction. This step takes linear time based on the size of candidate nodes

list. Finally, the algorithm narrows the size of candidate nodes list down by calling

30

FilterByProperty method to checks that the candidate node’s properties and their val-
ues are matched with the query nodes that described in Algorithm [30] This step calls
if the query nodes has properties, if not then the step is passed and filtering process

ends up. This step also takes linear time based on the candidate nodes list.

After finding the final candidate node list, the algorithm continue with calling the re-
ciprocal node branching process recursively to obtain new matchings. In the process,
the algorithm traverses on the other query nodes which is connected to the already
matched query nodes. The algorithm backtracks to traverse on other possible matches
on the data graph until find all the exact matches of the query graph. The branching
process is described in Algorithm [§]and [9]

Algorithm 8 Transition State
Illpllt1 S’ M, Mnodea Mrel

Output: -

1: procedure TRANSITIONSTATE(S, M, M, o4e, Myer)
2. if S # () then

3: My s = S.pop()

4: BranchAndMatch(M<,,)
5: S.push(Mcy)

6: else

7: M .add(Mpoge, Myer)

8: return

Matched query node u and graph node v is stored in M (< u,v >) stack and the
algorithm branches from M (< w,v >). But if there is another options exists for

M (< u,v >), they are handled by backtrack mechanism later.

The algorithm needs candidate relationships for node couple < w,v > to branch
from M (< u,v >) and uses FindCandidateRelationships method at this point which
is described in Algorithm [I0] The method eliminate candidate relationships with
checking the direction and type of candidate graph edges that matches with query
edge.

The algorithm uses IsMatchValid method to make three types of conflict control on

M, .~ that described in Algorithm The first one checks that if u; was matched

31

Algorithm 9 Branch and Match

Input: S, M, ,, Myodes Mrer

Output: -
1: procedure BRANCHANDMATCH(S, My, 4, Myodes Myei)
2: R, = [relationship r of w | 3r, € Rys.t. M < r,ry >€ M,¢]
3 if R, # () then

4: for r, € R, do

5: C,, = FindCandidateRelationship(M,,,, ;)

6: nd; =0

7: size; = |C,,

8: 1=0

9: while : >= 0 do

10 while ind; < size; do

11: ifi == |R,| then

12: TransitionState()

13: 1 — —

14: Take back M,,oq¢, M,¢; and S to the previous values
15: s; = Cy,.get(ind;)

16: ind; + +

17: if IsMatchValid(M < r;,s; >, M < u,v >) then
18: 1+ +

19: ind; =0

20: 1 — —

21: Take back M,,4e, M,¢; and S to the previous values

22: return

32

Algorithm 10 Find Candidate Relationships
Input: M., ,~: The matched node that is branching

r;: The query relationship adjacent to « whose candidate are searched
Output: C,.: Set of candidate relationships for 7;

1: procedure FINDCANDIDATERELATIONSHIPS(My, 4>, 74, Cr,)

2: if r;.dir* == OUTGOING then

3: Cr, = [si =< v,v" > |s;.type = ritype, v’ € Vg
4: else

5: Cr, = [si =< V', v > |s;.type = ritype,v' € Vg
6: return C,,

with v; before. The second one checks that if u; was not matched but v; is already
matched. The last one uses FilterByRelationships and FilterByProperty to checks that
two nodes is matching. After all the checks, < w;, v; > is considered as a valid match.
The algorithm continues to branch until validity of all the candidate relationship are

evaluated.

The BB-Graph algorithm offers different pruning techniques like matching node prin-
cipal for the nodes and matching relationship principal for the relationships. Match-
ing node principal ensures that all the candidate nodes of a query node has the same
label, degree and property with the query node. On the other hand, matching relation-
ship principal ensures that all the candidate edges have the same label, property and

direction with the query edge.

The BB-Graph was compared with the GraphQL and Cypher on WorldCup, Bank and
Population graph databases and it was shown that BB-Graph gives the best results
among the all databases for most of the query types [1].

The detailed working process of BB-Graph is given in Figure [2.7)and [2.8] It shows
how the algorithm finds query graph () in data graph G, step-by-step.

33

Algorithm 11 IsMatchValid
Input: M, ;,-: The matched relationship to be checked

M, »~ The matched node currently being brached
Output: -

1: procedure ISMATCHVALID(M, 5,5, Mcy >)

2: u; = r;.getOther Node(u)

3: u; = s;.getOther Node(u)

4: if Ju, # w;stM < ug,v; >€ M,,q. then

5: return false

6: if Ju, # v;stM < u;, v, >€ M4, then

7: return false

8: if M < u;, v, >¢ M,pq. then

9: if FilterByRelationships(u;,v; # ()) and FilterByProperty(u;,v; # 0)
then

10: Modge-add(M (< ui, v; >))

11: Shode-add(M (< u;,v; >))

12: else

13: return false

14: M,e.add(M(< r;, s; >))

15: return true

34

BB-GRAPH

>
&

z
&
2

-
o

N

o

%
£y

09

2.
%

o)
Oy

Query Graph Data Graph

BB-GRAPH
Step: Starts with node A

S
4

-
ke

z
=t

i

@*
x
50

@x
=
A

Query Graph Data Graph

BB-GRAPH
Step: Starts with node A (FilterByLabel)

©
&

{m};/é
o4

PA

2

9

28
o}

Query Graph Data Graph

BB-GRAPH
Step: Starts with node A (FilterByRelationship)

z

108
X3

®

1

Q

ON

2
%

Query Graph Data Graph

BB-GRAPH
Step: Starts with node A (find the exact match)

O
X

»

1

Q

@

Query Graph Data Graph

BB-GRAPH
Step: Continue to branch with node B

@

A
v

2%
O
(s

28
°

2

x
‘X 2

Query Graph Data Graph

BB-GRAPH
Step: Continue to branch with node B (FilterByLabel)

:

®
A
.

2

x
50

z
%
%

@
°

Query Graph Data Graph

BB-GRAPH
Step: Continue to branch with node B (find exact matches)

:

o
X3

-
e

g
‘X 2
Qz

.

Query Graph Data Graph

Figure 2.7: An Example for the working process of BB-Graph (Part-1)

35

BB-GRAPH
Step: Continue to branch with node C

o
PG

Query Graph Data Graph

®
N
‘X 26

b

BB-GRAPH

Step: Continue to branch with node C (FilterByLabel)

o
® ¢

Query Graph

»
i

® o

*e
X3

%

Data Graph

BB-GRAPH
Step: Continue to branch with node C (FilterByRelationship)

!

3

'z
o

%

%o
X
®
°

Query Graph Data Graph

BB-GRAPH

Step: Continue to branch with node C (FilterByProperty)

%o
o

Query Graph

»
i

*
%

&
®

Data Graph

BB-GRAPH
Step: Continue to branch with node C (Attempt 1 Backtracks to B)

z

°

‘
® o
X2

“Backtracks ¥

BB-GRAPH

Step: Continue to branch with node C (Attempt 2)

*e
oo

»
4

¢
e ®

Query Graph Data Graph Query Graph Data Graph
BB-GRAPH BB-GRAPH
Step: Continue to branch with node C (Attempt 2: Find Exact Match) Step: Return the Exact Matches
+ 2 - +
© 0000 0 (
Query Graph Data Graph Query Graph Data Graph

Figure 2.8: An Example for the working process of BB-Graph (Part-2)

36

2.4.11 VF2-Plus

The VF2-Plus algorithm is an improvement of VF2 algorithm by adding new prun-
ing rules and a new matching order selection method to be able to execute query
efficiently. The algorithm aims to generate a good matching order in order to prune

infeasible branches at higher level and reduce the search space.

The algorithm introduces node exploration sequence for the matching order selection.
Node exploration sequence tries to create an order based on the rareness of each
nodes. In order to calculate their rareness, it calculates the probability of finding the
node with same label and degree in data graph for each node in the query graph. In
addition, it consider node mapping degree when defining the order. Node mapping
degree is number of edges between the remaining node of query graph and the node

in the node exploration sequence.

The VF2 algorithm applies state space exploration that starts with an empty state. A
new pair of nodes that are a candidate node from the query graph and the matched
node from data graph is added to create a new state. The algorithm applies feasibility
rules to the new state to understand whether adding a new state will create a consistent
state or not. It continues to adding new pair of nodes until there is no candidate node
left and the goal state is reached. When no pair of nodes remains, the algorithm

backtracks to the its parent state and try different pair of nodes.

There are three feasibility rules are defined in the algorithm which are “core rule”,
“I-level look-ahead rule” and ‘“2-level look ahead rule”. Core rules satisfies that the
neighbors of matched couple nodes are needs to be matched with each other. 1-level
and 2-level look ahead rule check the number of remaining neighbors that connected

with incoming and outgoing edges, respectively [22]].

37

24.12 VF3

The VF3 algorithm is an improvement of the VF2-Plus algorithm and it is very similar
to its ancestor methods the VF2 and VF2-Plus algorithms. VF3 differs from VF2Plus
with the way of preprocessing the query graph and selecting the next candidate cou-
ples. In the preprocessing, a tree is created based on node exploration sequence and
the edges between nodes. For selecting the next candidate couple, the algorithm se-
lects a node from node exploration sequence based on order for the query node. For
the data node, it selects a node unmatched nodes based on the neighbors of matched

query node [21]].

Algorithm 12 The VF3 Algorithm
Input:: @ : query graph, G : data graph

Output: M : all embeddings of Q) in G

1: procedure VF3(Q, &)

2 M<)

3 Py = ComputeProbabilities(G, Q)

4: Ng = GenerateNodeSequence(Q, Py)

5 ClassifyNodes(Q, Q)

6: (s0, Parent) = PreprocessPatternGraph(Q), Ng)
7: Match(sy, G,Q, Ng, Parent, M)

8: return M

38

lgorithms

ism a

h

isomorp

f subgraph

1S0n O

: Compari

Table 2.6

9[NI Peaye-JOO[[QA[-T

2ounabag uoneloldxyg opoN 9[nI peaye-j00] [9A[-] - L10T ‘T8 12 mapre) €dA
9[nI 210D
NI Peaye-jOO[[QAJ[-T
Sounabag uoneIodxg SpoN S[nI peaye-j0O[[9AJ]-[- 910T ‘T8 30 rounn(g SN[d-CHA
9[nI 910D
redrourig diysuoneoy Suryojey
- - ¥10T ‘Te 19 1[isy ydein-gg
[ediourig opoN Suryorejy
uoneWIS Ten(y
- - ¥10C ‘Te e ZaeS osyreng
uone[nuwig oydwrg
uonero[dxq uorsoy Aeppue) sse[D aouareAmnby pooyroqySoN Surxopuy paseq-urened €102 ‘Te 10 uey osjoqing,
yred ay) Jo 9zZIS AepIpue) Surunig paseq-amnjeusIS pooyroquySIoN (91T, yied 159110yS) SUIxopu] paseq-urdned 010C ‘Te 10 oeyz yeds
9an yyed 1s9)10ys Juo (Surxapuy [8qQO[D) 10J) SUTXopU] Paseq-aduelSI(]
- 010T Te 32 Sueyz VININNS
ur readde jsnur xo1r0A (Surxopuy [8007 10J) UOHRUIqUIO)) [oqe T Judanbarjuy
SI0qU3IoU)T puB SOpou
U99M19q 90UB)SIP 1SAI0YS -
- (eouBISIT SAN) SurXapu] Paseq-odueIsI(y 600C Te 10 Sueyz 1aavo
duelsig SAN -
1597, uostedwo)) [oqer -
1591, wstydiowos] ydeiqng opnasg
IpON A1anQ) 10J 9ZIS AqepIpuL) Surxopuy paseq-[oqe] 800C ‘e 30 94 TOydeIn
Surunig paseq-omnjeusi§ pooyIoqusIaN
Qouanbasg-10) 1897, 9[qeUIO[S] (XopupjIms) Surxopuy paseq-oInjed| 800T ‘Te 30 Sueysg ISYomd
SOPON Juade[py 9y} WOoIJ SOPON PIYILIA
PUE PaYOIRW-UON] Y} JO OUAIJI(] -
- SOMISA A19nQ) PaydIRW-UON Surxopuy paseq-9a1], 200T ‘[& 19 B[[opIo) TdA
pue Juade[py JO UONOISINU] -
1897, 9[qBUIOfS] -
159} uostredwod 92139
- - 9L61 uuet) wWyLoS[y s uuew(yn
159) uostredwod [oqe |
uono9[AS I9pIQ SuryoIe SPOYIRIN Surunig Surxopug Teqx osea[oy sioyny

39

2.5 Matching Order Selection in the Subgraph Isomorpishm Problem

In subgraph isomorpishm problem, matching order selection defines the order of
query nodes that match with the candidate data nodes. Matching order selection is
critical for the subgraph isomorpishm algorithms, because it directly affects the query

performance by reducing the number attempts to find patterns in data graph.

The importance of matching order selection is shown in the figure[2.9] Let’s consider
that we have two data graphs, GG; and G, like in the figure. If we use the matching
order O(1) = (uy,us,u3) for G then it only requires three attempts to find all the
patterns. However, for G5, we need 1003 attempts to find them. On the other hand, if
we use O(2) = (uy, usg, uz), we need 1003 and 3 attempts to find patterns in data graph

(1 and G respectively [3]].

v3 v5 v1004 w3 w1002 w1005
Query Graph (Q) Data Graph (G1) Data Graph (G2)

Figure 2.9: The Importance of Matching Order Selection in the Subgraph Isomor-
pishm Problem [3]

In the literature, most of the algorithms do not consider matching order selection as
we mentioned before. They randomly picks a query node to find all the matching
patterns. Therefore, if we can define a good matching order selection method, we can

avoid useless computation and execute time-effecient queries.

40

CHAPTER 3

BB-PLUS:AN APPROACH FOR SUBGRAPH ISOMORPHISM IN BIG
GRAPH DATABASE

The BB-Plus approach consists of heuristics for automatically selecting the best match-
ing order selection method using information of database (volatility and size) and
query (type and size) as an input to improve the performance of subgraph isomor-
pishm queries. The BB-Plus uses these heuristics to find the best matching order that
eliminates redundant candidate nodes at high level in order to reduce the search space
and execute queries with less time in large graph datasets. The pseudocode for the

approach is given in Algorithm[I3]

Algorithm 13 The BB-Plus Approach
Input: @) : All query nodes, GG : All data nodes,

volatilityO f Db : Volatility of database (Historical/Real-Time)
Output: M : All embeddings of Q in G

1: procedure BBPLUS(Q), G, volatilityO f Db)
2: if /sBe foreQuery then

3: if volatilityO f Db != RealTime then

4 StoreCandidateNodeSizes(Q, G)

5: else

6: if containsSameNode((Q)) then

7: 0Q) @

8: else

9: 0(Q) < FindMatchingOrder(Q, volatilityO f Db))
10: M < BBGraph(O(Q),G)

11: return M

41

The rules for selecting the best matching order selection methods are created based
on experiments. We created a "Matching Order Selection" dataset based on executing
different kinds of queries on three different databases which are the WorldCup, Pokec
and Population dataset. "Matching Order Selection” dataset contains information
about queries such as size of the databases (which they are applied), size of query
(nodes and edges) and type of query. Also it contains the matching order selection
method that gives the best performance. After we obtain this dataset, we create a
decision tree using this dataset and create rules to determine best matching order
selection method based on the type and size of the query as shown in in Figure [3.1]

The details of creation of this dataset and the decision tree is given in later in Chapter

B.8

Query Others
Type
Cyclic
Path
Edge Size Node Size
>4 <=4 <=5 >5—
A 4 Y

Closeness
Centrality

Betweenness
Centrality

Degree
Centrality

Eigenvector
Centrality

Figure 3.1: Decision Tree for Determining Best Matching Order

According to these rules, we shaped the our approach, the BB-Plus, to perform effi-
ciently based on any queries on any databases. Therefore, we divided our approach
into two parts which are before querying and executing a query which is described in

the flow chart of the approach as shown in Figure [3.2

42

Before Querying

Is the database
real-time?

Retrieve and calculate
node size for each N
node type

Yes Do nothing

|
C(Q)Q—

Store candidate node (
size for each node C(Q) Graph Database

While Executing the Query

Is query graph
contains same
node that has no
properties?

Graph Database

c(Q)
l No

Will the query be
executed in real-time
database?

Retrieve candidate
node sizes

What is type of the

Yi
€S query?

—No

Cyclic Query

]
v Others

Yes
Apply Candidate Node

Selection Without Path Queries Query Edge Query Node

Candidates Size <= 4
No T Yes N
Yes r 01
Y
Appl Appl Appl
Apply Degree pply pply _ pply
Centralit Betweenness Closeness Eigenvector
y Centrality Centrality Centrality

Ordered Query Nodes (0(Q))

A 4

BB-Graph

Figure 3.2: Flowchart of the BB-Plus Approach

43

Before querying, the approach uses the volatility of database as an input and checks
the database is real-time or not. If the database is not real-time (historical), then the
approach calls StoreCandidateNodeSizes method to retrieve and calculate the candi-
date node size for each query node and store them in the database for further uses.
Since calculating candidate node size takes a lot of time, calculating it before query-

ing helps to improving the performance of subgraph isomorpishm queries.

Algorithm 14 Store Candidate Node Sizes
Input: () : All query nodes, GG : All data nodes

Output: C(QQ) : Candidate Node Size for

1: procedure STORECANDIDATENODE(Q, G3)

2: for all <u € @)> do

3 C,+ 0 > C,, = Candidate node size of u
4: C, < FilterByLabel(u, &)

5: C,, < FilterByRelationships(u, C,, G)

6: if © has property then

7: C,, <« FilterByProperty(u, C,, G)

8: Push C,, to C(Q)

9: Store C'(()) in database

However, the approach does not do anything if the database is real-time. Because
candidate node size could be changing based on the volatility of the database. Based
on this, the approach does not use candidate node sizes in real-time databases. It uses

a matching order that can be easily calculated at the time of query execution.

Algorithm 15 ContainsSameNode
Input: @) : All query nodes

Output: containsSameN ode: true/false

1: procedure CONTAINSSAMENODE((Q)
2: if distinctNodeLabels(Q)) = 1 and distinct EdgeLabels(Q)) = 1 and
nodesHasSameProperties(Q)) = 1 then

3: return true
4: else
5: return false

44

While executing a query, the approach first checks if the query graph contains same
nodes with ContainsSameNode method. If all the nodes are the same then the ap-
proach does not calculate matching order. Because, if all the nodes have the same
importance and putting anyone into the first place does not change the query per-
formance. Therefore, if the approach knows all nodes are the same, then it calls

BB-Graph algorithm at the first place to find all exact matches.

If all the nodes are not the same, the approach calls Find Matching Order to look
for the volatility of database and checks if the database is real-time or not again. If
the database is not real-time, then the approach calls the Candidate Node Selection
Without Calculating Candidates which is an extension of the Candidate Node Selec-
tion that uses already calculated candidate nodes size instead of calculating candidate
node size while executing a query. Therefore, it eliminates the time for calculating

candidate node size and performs more efficient queries.

Algorithm 16 Decision Tree
Input: @ : All query nodes

Output: matchingOrder : Matching Order Selection Method (DC-BC-CC-EC)

1: procedure DECISIONTREE(())

2: if typeO fQuery(Q) = Path then

3: matchingOrder = DegreeCentrality

4: else if typeO fQuery(Q)) = Cyclic then

5: if numberO f Edges(Q)) <= 4 then

6: matchingOrder = BetweennessCentrality
7: else

8: matchingOrder = DegreeCentrality

9: else if typeO fQuery(Q)) = Others then

10: if numberO f Nodes(Q)) <=5 then

11 matchingOrder = ClosenessCentrality
12: else

13: matchingOrder = EigenvectorCentrality
14: return matchingOrder

45

Algorithm 17 Find Matching Order
Input:) : All query nodes, volatilityO f Db : Volatility of database

Output: O(Q) : Ordered Query Graph

1: procedure FINDMATCHINGORDER(())
2: O(Q) « 0
3: if volatilityO f Db == RealT1me then

4: if decisionTree(Q)) = DegreeCentrality then

5: O(Q) «+ MosBasedOnDC(Q)

6: else if decisionTree(Q)) = BetweennessCentrality then
7: 0(Q) < MosBasedOnBC(Q)

8: else if decisionTree(Q) = ClosenessCentrality then

9: 0(Q) < MosBasedOnCC(Q)

10: else

11: O(Q) < MosBasedOnEC(Q)

12: else

13: Retrieve C'(Q) from database

14: 0(Q) < MosBasedOnC N SWithoutCandidates(Q, C(Q))

15: return O(Q))

On the other hand, if the database is real-time, the approach calls DecisionTree to
determine matching order selection based on the type and size of the query. Deci-
sionTree method uses TypeOfQuery to determine the type of query. It uses Tarjan’s
Algorithm and IsPathQuery method to determine whether the type of query is path

query, cyclic query or the others like recursive query.

After determining the type of query, the approach calls a matching order selection
method that performs best with these query types. These matching order selection
methods does not use data graph to give an order. Therefore, these matching order
selection methods does not give more accurate order like Candidate Node Selection.
However, they can be easily calculate and give great results when they match with the

right types of query.

46

Algorithm 18 Type of Query
Input: () : All query nodes

Output: queryType : Type of query
1: procedure TYPEOFQUERY((Q))
2 if Tarjan(Q) != () then
3: queryType < Cyclic
4: else if /sPathQuery(Q) == true then

5: queryType < Path
6: else

7: queryType < Others
8: return queryT'ype

Algorithm 19 Is Path Query
Input: () : All query nodes

Output: isPathQuery : true/false

1: procedure ISPATHQUERY(())

2: N (Q)=0 > No(Q) : Number of nodes that has 1 degree in Q
3: No(@) =0 > N1 (Q) : Number of nodes that has 2 degree in Q
4: for all <u € > do

5 if degree(u) =1 then N, (Q) + +

6: else if degree(u) = 2 then Ny (Q) + +

7: else

8: return false

9: if N1(Q) =2 && N2(Q) = numberO f Nodes(()) — 2 then
10: return true
11: else

12: return false

47

Therefore, if the type of query is a "path query", then the approach applies the Degree
Centrality to get ordered query graph. If the type of query is a "cyclic query", then
the approach looks for edge size of query graph. If the edge size is smaller than
four, than it applies Betweenness Centrality. If not than it applies Degree Centrality
to get ordered query graph. If the type of query is an another type of query such as
"recursive query", then the approach looks for the node size of query graph. If the
query graph node size is smaller than five, then the approach calls for the Closeness

Centrality. If not, then it calls for Eigenvector Centrality to get ordered query graph.

If we take a more closer look to TypeOfQuery method, it uses Tarjan’s Algorithm and
IsPathQuery method to determine the query type. The method first applies IsPath-
Query to check if the query is a type of path query. IsPathQuery checks the graph
that has two nodes of degree 1 and the other n-2 nodes of degree 2. If the graph
matches with that structure, then we consider our query graph is a path query. If it
is not path query, then the method uses Tarjan’s algorithm which is the most effi-
cent algorithm to find if a graph contains any cycles. If Tarjan’s Algorithm returns
any cycles, then we consider our query graph is a cyclic query. If the query graph
is not "path" or "cyclic" type, then the graph type is consider as "others". The pseu-

docode for TypeOfQuery and IsPathQuery methods can be seen in Algorithm [T8]and
[19] respectively.

Finally, after the approach getting the best matching order based on the information
of database and query graph, it calls for the BB-Graph algorithm with ordered query
graph to find all the exact matches. Normally, the BB-Graph algorithm does not use
matching order selection. It matches query nodes with data nodes based on the order
of nodes in the query. However, with BB-Plus approach, the algorithm works based
on a calculated matching order. Therefore, the BB-Plus approach gives better results

than BB-Graph for most of the time.

48

Let’s explain the BB-Plus approach and show its difference with other algorithms
with a simple example. Let’s assume that we have query graph () and data graph
(1 as shown in Figure We want to find exact matches of () in G, which is only
(v7,v6,08,v9,v10).

vlil vl v7
(O——® (»)
v6
(&) ® |(& (®
v4 v9
u2 u3 e o e G
v3 v5 v8 v10
Query Graph (Q) Data Graph (G1)

Figure 3.3: An Example of Difference of BB-Plus from the algorithms

First, let’s see how many attempts are required for finding exact matches of () in G
with a branch-and-bound algorithm without calculating matching order selection. In
this situtation, the algorithm uses a random matching order such as (A — B — C' —
D — E). If the algorithm uses (A — B — C' — D — E) order, then it needs to search
at (vl,v2,v3,v11), (v1l,v4,v5), (vl,v6,v8) and (v7,v6,v8,v9,v10). Therefore, it
requires 4 attemps to find the exact match. The algorithm loses time for cannot prun-

ning out (v1,v2,v3,v11), (vl,v4,v5) and (v1, v6, v8) at early steps of query.

On the other hand, if we use BB-Plus approach, we can exploit from matching order.
Let’s say BB-Plus approach decided to use Degree Centrality in this example. There-
fore, the approach uses (F— D — A— B—(') order. In this situation, the approach only
search for (v7, v6, v8,v9, v10) which only requires 1 attempt. (£ — D — A— B —C)

order helps to pruning at early steps and query efficiently with reduced search space.

In this chapter, new matching order selection methods that we defined in the devel-
oping process of BB-Plus approach will be described and visualized with examples
using the query graph () and data graph G which are shown in Figure and Fig-
ure [3.5] respectively. Matching order selection methods based on Degree Centrality,
Closeness Centrality, Betweenness Centrality, Eigenvector Centrality and Candidate

Node Selection are examined in this chapter.

49

OO’
e

Figure 3.4: The Example Query Graph

o

6 @

® By

@ B
s

Figure 3.5: The Example Data Graph

50

3.1 Matching Order Selection Based On Degree Centrality

We use Degree Centrality to create a matching order in order to find exact matching
couples < u,v > efficiently by combining this order with a branch-and-bound algo-
rithm. The pseudocode of calculating a Matching Order Selection based on Degree

Centrality is given in Algorithm [20]

Algorithm 20 Matching Order Selection Based On Degree Centrality
Input: @) : All query nodes, GG : All data nodes

Output: O(Q) : Query nodes in matching order
1: procedure MOSBYDC(Q,)

2 OQ) «+ 0 > O(Q) : Query nodes in matching order
3 04(Q) < DegreeCentrality(Q) > Oq4(Q): List of degree of query nodes
4 04a(Q) + Sort,s.(04(Q)) > Sort O4((®) in ascending order

5: 0(Q) < CreateM atchingOrder(O4(Q))
6: return O(Q)

Algorithm 21 Create Matching Order
Input:) : Query nodes

Output: O(Q) : Ordered query nodes

1: procedure CREATEMATCHINGORDER(())
2: O(Q) «—0
3: for all <u € > do

4: nextNode < u

5: for all <u' € Q> do

6: if order(nextNode) = order(u') then

7: if orderi,(neighbor(nextNode)) > ordermy,(neighbor(u'))
then

8: next Node < u'

9: Add nextNode to O(Q)

10: Remove nextNode from @)

11: return O(Q))

51

First, the algorithm calls the DegreeCentrality method that given in Algorithm [1| to
obtain degree centrality values for all query nodes in query graph (). DegreeCentral-
ity looks incoming and outgoing edges of each nodes to find degrees of each nodes
and assings degree centrality value to each query node. After calling DegreeCentral-
ity, the algorithm sorts query nodes ascendingly by their degree centrality values to
obtain O4(Q) and become ready for calling the CreateMatchingOrder method which
is described in Algorithm[21] The method looks at O4(Q) and if there are nodes with
same minimum degree then the algorithm prioritize the one that has neighbor nodes

with minimum degree centrality value and creates an order that called O(Q).

The BB-Plus approach uses Matching Order Selection based on Degree Centrality
when the database is real-time and the query type is path query. Also it uses for
cyclic queries that has more than 4 edges. The approach first find a matching order
with Matching Order Selection based on Degree Centrality and then call BB-Graph
algorithm to find the exact matches efficiently. The algorithm starts with the node that
has the first place in the order and it continues to branch from first matched node in
the order that connected to the already matched query nodes. The algorithm branches

for all query nodes in the order until all of them find matches in data graph.

Let’s assume that we want to find the exact matches of () query graph in data graph ¢
using the BB-Plus approach and the approach uses Matching Order Selection based
on Degree Centrality for efficient querying. The algorithm first calls DegreeCentrality
to find the degree centrality values of query nodes which are (4,2, 3,2,1,2,3,1) for
(A,B,C,D,E, F,G, H) as explained in Figures [3.6/and [3.7]

After finding the degrees of each query nodes, the algorithm orders the query nodes in
ascending order and obtain O4(Q) = (E, H, B, D, F,C, G, A). Because of the degree
of E and H are the same, the algorithm looks for the degree of their neighbor nodes.
Since the degree of GG (the neighbor of H) is smaller than A (the neighbor of), the
algorithm prioritize // when putting it into the order. Then, the algorithm continues
with G which is connected to H. Then it adds F', D, C', B, A and E respectively to
the order based on their degrees. Therefore, the final version of the matching order
for the algorithm is defined as O(Q) = (H,G,F,D,C, B, A, E). All the steps for
finding Matching Order based on Degree Centrality can be seen in Figure[3.8] [3.9]

52

1.Step: Apply DegreeCentrality() Matching Order Selection based on Degree Centrality
od(Q) ={}

O Q= _O 00
F oD F oD
@ OO @o ------ FOSRONS0
It kO
O @ @o ------ FoANCNaC

N

~

G&@@dqn@ ------ ------ ------ _______

\
~
N
N
N
N
~
N
\
N
i
’
’
’

O D@ ®C O
F D GO0

Figure 3.6: Calculating Degree Centrality for Query Graph () (Part-1)

AN
,

53

0d(Q) = {E(1),A(4),G(3),H(1)} 0d(Q) = {E(1),A(4),G(3),H(1),B(2)}

=

N

N

~

Figure 3.7: Calculating Degree Centrality for Query Graph () (Part-2)

54

O

@
O

@
C

@
O
%

Apply CreateMatchingOrder() Matching Order Selection based on Degree Centrality

o(Q)={} od(q) = {E(1),F(1),H(1),B(2),D(2),G(3),C(3),A(4)} o(Q)={H(1)} 0d(Q) = {E(1),F(1),B(2),D(2),G(3),C(3),A(4)}

DDy O (DG

’
N ,
~ ’
~ .
~ ’

i N
N
.
~
s N
.

~

,
’ \\
; N
, N
, N

------ O DD DD

0(Q)={H(1)} od(q) = {E(1),F(1),B(2),D(2),G(3),C(3),A(4)} 0(Q)={H(1),G(3)} od(Q) = {E(1),F(1),B(2),D(2),C(3),A(4)}

O —@ OO

~

’ ’
. AN .
’ N ’

. N .

’ N ’

/ /
4 \\ 4 \\
4 N 4 ~
’ N ’ ~
/ ~ ’ N

------ OO0 GO0

0(Q)={H(1),G(3)} 0d(Q) = {E(1),F(1),B(2),D(2),C(3),A(4)} 0(Q)={H(1),G(3),F(1)} 0d(Q) = {E(1),B(2),D(2),C(3),A(4)}

’
N ,
~ ’
~ .
~ ’

------ oNrosE Yol

0(Q)={H(1),G(3),F(1)} 0d(Q) = {E(1),B(2),D(2),C(3),A(4)} 0(Q)={H(1),G(3),F(1),D(2)} 0Od(Q) = {E(1),B(2),C(3),A(4)}

®< / e 9 ®< , 9 3
L,
1
,

. i

’, 1

4 ’ [}

1

i

0(Q)={H(1),G(3),F(1),D(2)} 0d(Q) = {E(1),B(2),C(3),A(4) 0(Q)={H(1),G(3),F(1),D(2),C(3)} 0d(Q) ={E(1),B(2),A(4)}

O @G —® (D
=

’
.
’
.
’

4
1
’
| .
| ’
|
1
|

.
’
.
’
.

------ @—@—® T

Figure 3.8: An Example of Creating Matching Order with Degree Centrality Method
(Part-1)

55

0(Q)={H(1),G(3),F(1),D(2),C(3)} 0Od(Q) = {E(1),B(2),A(4)} 0(Q)={H(1),G(3),F(1),D(2),C(3),B(2)} Od(Q) = {E(1),A(4)}

0(Q)={H(1),G(3),F(1),D(2),C(3),B(2)} 0d(Q) ={E(1),A(4)} 0(Q)={H(1),G(3),F(1),D(2),C(3),B(2),A(4)} 0Od(Q) = {E(1)}

0(Q)={H(1),G6(3),F(1),D(2),C(3),B(2),A(4)} 0d(Q) = {E(1)} 0(Q)={H(1),G(3),F(1),D(2),C(3),B(2),A(4),E(1)} Od(Q) = {}

The Matching Order for Q is

0(Q)=(H,G,F,D,CB, A, E)

Figure 3.9: An Example of Creating Matching Order with Degree Centrality Method
(Part-2)

56

After finding the matching order for the (), the approach calls the BB-Graph algorithm
with the ordered query graph O((Q) to find all the exact matches of the data graph G.
As shown in Figure [3.10] BB-Graph branches for two graphs which are G1 and G2.
Although G prunes out after cannot find a matching for the query node C, G2 gives

the exact solution for ().
@ @@ = X

()
8 q q0 a a c
7
2 1
x
G2 z b
4 3
5
B (o3
6 q1 y a2 t w

Figure 3.10: Finding Matches for () in G with the BB-Graph

3.2 Matching Order Selection Based On Closeness Centrality

We use Closeness Centrality to create a matching order in order to find exact matching
couples < u,v > efficiently by combining this order with a branch-and-bound algo-
rithm. The pseudocode of calculating a Matching Order Selection based on Closeness

Centrality is given in Algorithm [22]

At the first step, the algorithm calls the ClosenessCentrality method that given in Al-
gorithm 2] to generate closeness centrality values for all query nodes. ClosenessCen-
trality calculate the sum of the shortest paths between the query node and the other
nodes to find closeness value of each query nodes and assigns the closeness central-
ity value to each query node. After calling ClosenessCentrality, the algorithm sorts

query nodes in ascending order by their closeness centrality value to obtain O.(Q)

57

Algorithm 22 Matching Order Selection Based On Closeness Centrality
Input: () : All query nodes, G : All data nodes

Output: O(Q) : Query nodes in matching order
1: procedure MOSBASEDONCC(Q,)
2: 0Q) «+ 0 > O(Q) : Query nodes in matching order
0.(Q) < ClosenessCentrality(Q) > O.(Q): List of query nodes that

b

assigned closeness value

4 O.(Q) + Sortas.(0.(Q)) > Sort O.(Q)) with ascending order
5: 0O(Q) + CreateMatchingOrder(O.(Q))
6: return O(Q)

and become ready for calling the CreateMatchingOrder method which is described
in Algorithm The method looks at O.(()) and if there are nodes with same min-
imum closeness value then the algorithm picks the one that has neighbor nodes with

minimum closeness centrality value and puts them into an order that called O(Q).

The BB-Plus approach uses Matching Order Selection based on Closeness Centrality
when the database is real-time and the query type is defined as others (such as recur-
sive queries) and query node size is bigger than 5. The approach first find a matching
order with Matching Order Selection based on Closeness Centrality and then call BB-
Graph algorithm to find the exact matches efficiently. The BB-Graph algorithm starts
with the node that has the first place in the order and continues to branch from it based

on the order until finding all the exact matches for the query graph in the data graph.

Let’s assume that we want to find the exact matches of () in G using the BB-Plus
approach and the approach uses Matching Order Selection based on Closeness Cen-
trality for efficient querying. The algorithm first calls ClosenessCentrality to find the
closeness centrality values of query nodes. In order to that, the algorithm first find
shortest distance between all the nodes as shown in Table[3.1] For all the query nodes,
the algorithm calculate the total shortest distance and divide it to 1 like shown in Table
Therefore, it obtains the closeness value for the query nodes called O.(Q) which
consists of (A, B,C, D, E, F, G, H) with (0.10,0.07,0.08,0.07,0.06, 0.07, 0.09, 0.05)
values. After obtaining the closeness centrality values for query graph (), the algo-

rithm sorts O.(Q) in ascending order and the O.(Q)) become (H, E, B, D, F,C, G, A).

58

The algorithm calls CreateMatchingOrder method to get matching order O(Q) after
obtaining the O.(Q). The algorithm first pushes H, the node with minimum closeness
value, into O((Q) and then push G because it is the only node that connected with H. It
continues with F' which is the node with the minimum closeness value that connected
to G. The algorithm push D, C, B, A and F into O(Q)) respectively with following
the minimum closeness value rule. Therefore, the final version of the matching order
for the algorithm is defined as O(Q) = (H, G, F, D, C, B, A, E). The steps for finding
Matching Order based on Closeness Centrality can be seen in Figure[3.11] [3.12]

Table 3.1: Distance matrix of query graph ()

A/B|C|D|E|F|GH
Al -1 |1 2|1]2]|1]2
B|1|-]1|2|2|3]|]2]3
cC/ 1|1}-]11]2(2|2]3
D|2|2|1|-]3|1]2]3
E|1]2|2|3|-3|2]3
F |23 [2|1|3|-]1]2
G|l |2|2|2|2|1]-|1
H 2 |3|/2|3|3/2|2]-

Table 3.2: Calculating closeness centrality of example query graph GG

Nodes (v) Total # of shortest paths between C.(v) (Closeness Centrality of v)
v and the other nodes
A I1+1+4+2+1+2+1+2=10 1/10=0.10
B I1+1+2+2+3+2+3=14 1/14=0.07
C I+1+1+2+2+2+3=12 1/12=0.08
D 2+2+1+3+1+2+3=14 1/14=0.07
E 1+2+4+2+3+3+2+3=16 1/16=0.06
F 2+3+2+1+3+1+2=14 1/14=0.07
G 1+2+2+2+2+1+1=11 1/11=0.09
H 2+3+2+3+3+2+2=17 1/17=0.05

59

Apply CreateMatchingOrder() Matching Order Selection based on Closeness Centrality

o(Q)={} 0d(Q) ={E,A,G,H,B,C,D,F} 0(Q)={H} 0d(Q) = {E,A,G,B,C,D,F}

------ O—Cr—@ & OSSO -

04 AR A N
. 1 N . 1 N
, | N , | ~
4 1 ~ ’ 1 ~
,/ 1 \\ ,/ 1 \\
B\ ______ C N _ o DN ____ B\ _ _____ (S Y A R
0.07 0.08 0.07 0.08
0(Q)={H} 0d(Q) ={E,A,G,B,C,D,F} 0(Q)={H,G} 0d(Q) = {E,A,B,C,D,F}
,// | \\ ,// | \\
p 1 N p 1 ~
// 1 N // 1 ~
, | N , ! AN
’ 1 ~ ’ 1 N
P4 | N e | ~
B\ ______ C N _ _____of DN _______ B\ _ _____ (O Ny 2 > W
0.07 0.08 0.07 0.08
0(Q)={H,G} 0d(Q) ={E,A,B,C,D,F} 0(Q)={H,G,F} 0d(Q) ={E,A,B,C,D}

------ @ 6 —® 5

/// | N /// 1

, | N , |

v ! AN v !

4 1 ~ 4 1

S ! AN S !

B\ ______ C N _ ____ o D\ _______ B\ _ _____ C

0.07 0.08 0.07 0.08

0(Q)={H,G,F} 0d(Q) = {E,A,B,C,D} 0(Q)={H,G,F,D} 0d(Q) = {E,A,B,C}

------ @ @ & & @—@

,’/ 1 ,’/ 1
’ ! ’ 1
’ [} ’]
7’ 1 7’ 1
// ! // !
B\ ______ C N _ ____of D\ _______ B\ _ _____ cC N\ ______
0.07 0.08 0.07 0.08
0(Q)={H,G,F,D} 0d(Q) ={E,A,B,C} 0(Q)={H,G,F,D,C} 0d(Q) ={E,A,B}
,’// 1 ,’// 1
’ ! ’ 1
’ [} ’]
7’ 1 7’ 1
// ! // !

B\ ______ C \ ______ B\ _ _____
0.07 0.08 0.07

Figure 3.11: An Example of Creating Matching Order with Closeness Centrality
Method (Part-1)

60

0(Q)={H,G,F,D,C} 0d(Q) = {E,B,A} 0(Q)={H,G,F,D,C,B} 0d(Q) ={E,A}

0(Q)={H,G,F,D,C,B} 0d(Q) = {E,A} 0(Q)={H,G,F,D,C,B,A} 0d(Q) = {E}

0(Q)={H,G,F,D,C,B,A} 0d(Q) = {E} 0(Q)={H,G,F,D,C,B,A,E}

The Matching Order for Q is

0(Q)=(H,G,F,D,C,B,AE)

Figure 3.12: An Example of Creating Matching Order with Closeness Centrality
Method (Part-2)

61

After finding the matching order for the (), the approach calls the BB-Graph algorithm
with ordered query graph Q(O) to find all the exact matches of the data graph G. As
shown in Figure [3.13] the approach branches for two graphs which are G1 and G2.
Although G1 prunes out after cannot find a matching for the query node C, G2 gives

the exact solution for ().
1 2 3 4
. — X

:) /q;O\) @ c
7
2 1
X
G2 z b
4 3
5
B C
6 q1 y a2 t w

Figure 3.13: An Example of Finding All Exact Matches with BB-Graph

3.3 Matching Order Selection Based On Betweenness Centrality

We use Betweenness Centrality to create a matching order in order to find exact
matching couples < u,v > efficiently by combining this order with a branch-and-
bound algorithm. The pseudocode of calculating a Matching Order Selection based

on Betweenness Centrality is given in Algorithm 23]

At the first step, the algorithm calls the BetweennessCentrality method that given
in Algorithm [3] to assign betweenness centrality values for all query nodes in query
graph (). BetweennessCentrality tries to find how many times a node is included on
a shortest path that is defined among all the nodes in the query nodes and assigns this

value to each query nodes to generate betweenness centrality values.

62

Algorithm 23 Matching Order Selection Based On Betweenness Centrality
Input: () : All query nodes, G : All data nodes

Output: O(Q) : Query nodes in matching order
1: procedure MOSBASEDONBC((Q,)
2 0OQ) « 0 > O(Q) : Query nodes in matching order
Oy(Q) < BetweennessCentrality(Q) > Oy(Q): List of query nodes that

w

assigned betweenness value

4: Op(Q) + Sortas.(0(Q)) > Sort Oy () with ascending order
5 O(Q) « CreateMatchingOrder(Oy(Q))
6: return O(Q))

After calling BetweennessCentrality, the algorithm sorts each query nodes in ascend-
ing order by their betweenness centrality value to obtain Oy (@) and become ready for
calling the CreateMatchingOrder method which is described in Algorithm 21| The
method looks at O,(Q)) and it adds a start query node with the minimum betweenness
value into matching order list O(()) and continue to add nodes that it is connected to
the already added nodes. When adding nodes to the matching order, if the algortihm
stuck between nodes that has the same betweenness value, it selects the one that has

neighbors with the minimum betweenness value.

The BB-Plus approach uses Matching Order Selection based on Betweenness Cen-
trality when the database is real-time, the query type is defined as cyclic query with
edge size smaller than 4. The approach first find a matching order with Matching
Order Selection based on Betweenness Centrality and then call BB-Graph algorithm
to find the exact matches efficiently. The BB-Graph algorithm starts with the node
that has the first place in the order and continues to branch from it based on the order

until finding all the exact matches for the query graph in the data graph.

Let’s assume that we want to find the exact matches of () in G using the Match-
ing Order Selection based on Closeness Centrality and BB-Graph. At the first step,
the algortihm applies the BetweennessCentrality to assign betweenness value to each
query node. In order to that, the algorithm tries to find all the shortest path in the
query graph and determine how many times a nodes pases through them which is

shown in Table Finally, it finds the betweenness value O,(Q) for each nodes

63

Table 3.3: Calculating betweenness centrality of example query graph G

Nodes (v) Shortest path passes through the node Colv)
(Betweenness Centrality of v)
B-E (B-A-E), B-G (B-A-G), B-H (B-A-G-H),
A C-E (C-A-E), C-G (C-A-G), C-H (C-A-G-H), 10
D-E (D-C-A-E), E-F (E-A-G-F), E-G (E-A-G),
E-H (E-A-G-H)
B 0
C A-D (A-C-D), B-D (B-C-D), 4
B-F (B-C-D-F), D-E (D-C-A-E)
D B-F (B-C-D-F), C-F (C-D-F) 2
E 0
F D-G (D-F-G), D-H (D-F-G-H)
A-F (A-G-F), A-H (A-G-H), B-H (B-A-G-H),
G C-H (C-A-G-H), D-H (D-F-G-H), E-F (E-A-G-F), 8
E-H (E-A-G-H), F-H (F-G-H)
H - 0

which are (21,0,17,3,0,4,17,0) for (A, B,C,D, E, F,G, H) respectively. After
finding the betweenness value of query nodes, the algorithm sorts them ascendingly
by their betweenness value and put them in O(Q) list. Therefore, the Oy(Q) is be-
come (B,E,H,D,F,C G,A).

The algorithm calls CreateMatchingOrder method to get matching order O(Q). Be-
cause of the similarity of betweenness value of the query nodes B, E, H, the algo-
rithm checks the minimum betweenness value of neighbours of (B, E, H) which are
(17,21,17) and adds B into O((Q) because B is the first node that has neighbors with
the minimum betweenness value. The algorithm keeps searching for a query node
that branching from B and continues to adding C', D, F', G, H, A, E query nodes to
O(Q) with respect to their betweenness value. The steps for finding Matching Order
based on Betweenness Centrality can be seen in Figure [3.14] [3.15]

64

Apply CreateMatchingOrder() Matching Order Selection based on Betweenness Centrality

o(Q)={} 0d(Q) = {H,E,B,D,F,C,G,A} 0(Q)={B} 0d(Q) = {H,E,D,F,C,G,A}

------ O @ O D

///] \\\\ /// | \\\\
0(Q)=(8} 0d(Q) = {HEDFCGA} OQ)={B,C} 0d(Q) = {H,E,DF,GA}
,/// l. \\\ ,/// : \\\
0(Q)=(B,C} 0d(Q) = {HEDFGA} O(Q)=(B,C,D} 0d(Q) = {H,EF,G,A}

------ ------ ------- ------ DGy

7 1 AN 7 1 AN
, | N , | AN
0 | N . 1 ~
’ | 8 7 | N
; | N ’ 1 ~
P ! AN P ! AN
0(Q)={B,C,D} 0d(Q) = {H,E,F,G,A} 0(Q)={B,C,D,F} 0d(Q) ={H,E,G,A}

// S // b
! ~ N
. [l . [l
4 . 4 S
. 1 ~ , | N
4 N 4 N
| N | N
. H N . H N
s N s Y
| |
1 1

0(Q)={8,C,D,F} 0d(Q) = {H,E,G,A} 0(Q)={B,C,D,F,G} 0d(Q) = {H,E,A}

.
’
.
’
.

~
~
~
~
~
‘ ‘ . \.

Figure 3.14: An Example of Creating Matching Order with Betweenness Centrality
Method (Part-1)

65

0(Q)={B,C,D,F,G} 0d(Q) = {H,E,A} 0(Q)={B,C,D,F,G,H} 0d(Q) = {E,A}

0(Q)={B,C,D,F,G,H} 0d(Q) = {E,A} 0(Q)={B,C,D,F,G,H,A}

0(Q)={B,C,D,F,G,H,A} 0od(Q) = {E} 0(Q)={B,C,D,F,G,H,A,E}

The Matching Order for Q is

0(Q)=(8,C,D,F, G, H,A,E)

Figure 3.15: An Example of Creating Matching Order with Betweenness Centrality
Method (Part-1)

66

At the final step, the algorithm calls the BB-Graph algorithm with ordered query
graph O((Q)) and the data graph G. As shown in Figure 3.16| the algorithm branches
for two graph which are GG1 and G2. (G1 prunes out after cannot find a matching for

query node A. However, all query nodes find an exact matches in G2.

G, K9
G0
GG
F——

Figure 3.16: An Example of Finding All Exact Matches with the BB-Graph

3.4 Matching Order Selection Based On Eigenvector Centrality

We use Eigenvector Centrality to create a matching order in order to find similar
patterns of query graph () in data graph G efficiently by combining this order with
a branch-and-bound algorithm. The pseudocode of calculating a Matching Order

Selection based on Eigenvector Centrality is given in Algorithm [24]

The algorithm firstly applies the EigenvectorCentrality method that is given in Algo-
rithm 4] to map eigenvector values with each query node in query graph. Eigenvector-
Centrality tries to calculate the the measure of the influence of each query node in the
graph. In order to do that, it creates and adjanceny matrix, calculates the eigenvalue

and eigenvector values for the nodes based on this matrix and assigns eigenvector

67

Algorithm 24 Matching Order Selection Based On Eigenvector Centrality
Input: () : All query nodes, G : All data nodes

Output: O(Q) : Query nodes in matching order
1: procedure MOSBASEDONEC(Q, GG)
2: 0Q) «+ 0 > O(Q) : Query nodes in matching order
O.(Q) < FEigenvectorCentrality(Q) > O.(Q): List of query nodes that

b

assigned eigenvector value

4 Oc(Q) + Sorts.(0.(Q)) > Sort O, (Q) with ascending order
5: O(Q) + CreateMatchingOrder(O.(Q))
6: return O(Q))

centrality values based on the eigenvector value that comes from maximum eigen-

value.

After calling EigenvectorCentrality, the algorithm sorts each query nodes in ascend-
ing order by their eigenvector centrality value to obtain O.(()) and become ready for
calling the CreateMatchingOrder method which is described in Algorithm The
method looks at O, (@) and it adds a start query node with the minimum eigenvector
value into matching order list O(() and continue to add nodes that it is connected to
the already added nodes. When adding nodes to the matching order, if the algortihm
stuck between nodes that has the same betweenness value, it selects the one that has

neighbors with the minimum eigenvector value.

The BB-Plus approach uses Matching Order Selection based on Eigenvector Cen-
trality when the database is real-time and the query type is defined as "others" and
the query node size is bigger than 5. The approach first find a matching order with
Matching Order Selection based on Eigenvector Centrality and then call BB-Graph
algorithm to find the exact matches efficiently. The BB-Graph algorithm starts with
the node that has the first place in the order and continues to branch from it based on

the order until finding all the exact matches for the query graph in the data graph.

For the query graph () and data graph GG example, let’s explain BB-Plus approach and
how it uses Matching Order Selection based on Eigenvector Centrality for efficient
querying. In the beginning, the algorithm calls the EigenvectorCentrality method

to find the eigenvector centrality values which is called O, (@) for each query node

68

which are (0.54,0.39, 0.46,0.27,0.21,0.24, 0.35,0.35, 0.13), for (A, B,C, D, E, F,G, H)
respectively. In order to calculate eigenvector centrality, the method creates an adja-
ceny matrix for query graph () as shown in Table[3.4and then applies all the steps that
shown in Figure After finding the centrality values, the algorithm sorts O, (Q)

by ascending order and O, (Q) becomes (H, E, F, D, G, B, A, C).

Table 3.4: Adjacency matrix of query graph @)

A/B|C|D|E|F|G|H
A|l-|1]1[0]1]0]1]O0
B 1|-]1/0[{0]0]0]O
c 1/1}-]1{0(0|0]O
D{O0O/O|1|-]0]1]0]O0
E|1]0[]0|O0O|-]0]0]O0
F|0|0|O]1]|O|-1]0
G| 1]0/0]0|O0O|1]-|1
H|0[0O|O0O]O0OIO0|O0O|1]-

In order to obtain a matching order for the query graph, the algorithm applies Cre-
ateMatchingOrder and it finds O(Q) = (H,G, F, D,C, B, A, E). Similar to the other
algorithms, it looks at the O, (@) and change the node places based on their eigen-
vector values. Nodes with minimum eigenvector values comes first in the method.
However if the nodes have the same eigenvector centrality value, then it picks the one
that has neighbors with minimum eigenvector centrality value. Each step for finding

a matching order with the Matching Order based on Eigenvector Centrality is given
in Figure[3.18] [3.19]

Finally, the algorithm calls the BB-Graph algorithm with ordered query graph Q(Q)
and the data graph G. As shown in Figure [3.20] the algorithm braches for two graph
which are G1 and G2. G1 prunes out after cannot find a matching for query node A.

However, all query nodes find an exact matches in G2.

69

01101010
10100000
11010000
A_[00 100100
10000000
00010010
10000101
0000001 0
0-2 1 0o 1 0 1 0 |[ul] [0]
1 0-2 1 0o 0o 0 0 [[uz] |0
1 1 0-2 o 0o 0 0 [|u3] |0
o 0 1 0-2 0 1 0 0 ||u4] |0
(A-21)C,=0 = -
1 0 0 0 0-2 0 0 0 |[lus]| |0
o 0o 0 1 0 0-2 1 0 ||ue| [0
1 0o 0 0 0 1 0-i 1 |[u7] |0
0o 0o 0 0 0 1 0-2]|u8] |o]
0-42 1 o 1 0 1 o0
1 0-2 0o 0 0 0 O
1 1 0-2 0o 0 0 0
A © 0 1 04 0 10 0
1 0 0 0 0-2 0 0 0
o 0o 0 1 0 0-2 1 0
1 0 0 0 0 1 0-42 1
o 0 0 o0 0 1 0-4

= 1, =260 2,=-206 A,=-172 3,=134 A4=-160 A =170 4 =037 4 =021

The largest eigenvalue is 2.60. So the corresponding eigenvector:

Cul]
u2
u3
us
us
ué
u7
ug

(2]

O o0 oo o r NPk
o

6

oo omNOoO o o

6

P NP OO O o
N B OO oo oo

[o)]
O O O O o o o o

0

0

0

1

6 0
-2.

1

0

O R, OFR ORr RPN
O o r oOoNBEF oo
o

1
1
-2
1
0
0
0
0

= 4 =-466 1,=-432 4,=-360 2,=-2971,=-2.38 4;=-160 A,=-1.254,=-0.01
The largest eigenvalue is -0.01 and the eigenvector associated to it:

[0.54]
0.39
0.46
0.27 A B C D E F G H
021| = Ce ={0.54, 0.39, 0.46, 0.27, 0.21, 0.24, 0.35, 0.13}
0.24
0.35

10.13 |

Figure 3.17: Calculation of Eigenvector Centrality for each Node

70

Apply CreateMatchingOrder() Matching Order Selection based on Eigenvector Centrality

o(Q)={} 0d(Q) = {H,EF,D,B,G,C,A} 0(Q)={H} 0d(Q) = {EF,D,B,G,C,A}

------ &G @ O R

/" ! \\\ /" ! \\\
B\ _ ____ o C N DN _______ B\ o C N ____ DN ___
0.39 0.39
0(Q)={H} od(Q) ={EF,D,B,G,CA} O(Q)={H,G} 0d(Q) = {E,F,D,B,C,A}
,'/’ : \\\\ ,'/’ : \\\\\
/// : \\\ /// : \\\
B\ o C N . DN_______ B\ o C N ____ WD N\N_______
0.39 0.39
0(Q)={H,G} 0d(Q) ={E,F,D,B,C,A} 0(Q)={H,G,F} 0d(Q) ={E,D,B,C,A}

------ @ -6—©® & e

,', 1 ~ ,', 1
. | N . |
, | NG 2/ |
4 1 N ' 1
B\ o CN_____ WD\ _______ B\ _ _____
0.39 0.39
O(Q)={H,G,F} 0d(Q) ={E,D,B,C,A} 0(Q)={H,G,F,D} 0d(Q) ={E,B,C,A}

------ &G —® G © @ —®

B Y o DN BY o\ ______
0.39 0.39
0(Q)={H,G,F,D} 0d(Q) = {E,B,C,A} 0(Q)={H,G,F,D,C} 0d(Q) ={E,B,A}

’ @ @ ’ @ @
’
.
.
.
’
.
.
.

Figure 3.18: An Example of Creating Matching Order with Eigenvector Centrality

------ ------ &0 T
Method (Part-1)

’
.
.
.

’

.
.
.
’
.

71

0(Q)={H,G,F,D,C} 0d(Q) = {E,B,A} 0(Q)={H,G,F,D,C,B} 0d(Q) ={E,A}

0(Q)={H,G,F,D,C,B} 0d(Q) = {E,A} 0(Q)={H,G/F,D,C,B,A}

0(Q)={H,G,F,D,C,B,A} 0d(Q) = {E} 0(Q)={H,G,F,D,C,B,A,E}

The Matching Order for Q is

0(Q)=(H,G,F,D,CB,AE)

Figure 3.19: An Example of Creating Matching Order with Eigenvector Centrality
Method (Part-1)

72

« @@= X

N
: ! qo : e :
7
2 1
X
G2 z b
4 3
5
C D
6 y a2 t s w

Figure 3.20: An Example of Finding All Exact Matches with the BB-Graph

3.5 Matching Order Selection Based On Hybrid Centrality

Based on the success of graph centrality measures on matching order selection, we
decided to create a new matching order selection method that combines all graph
centrality measures to improve the performance. The pseudocode of calculating a

Matching Order Selection based on Hybrid Centrality is given in Algorithm [25]

Algorithm 25 Matching Order Selection Based On Hybrid Centrality
Input: () : All query nodes, G : All data nodes

Output: O(Q) : Query nodes in matching order
1: procedure MOSBASEDONHC(Q, G)

2 OQ) «+ 0 > O(Q) : Query nodes in matching order

3 On(Q) < HybridCentrality(Q) > On(Q): List of query nodes that
assigned hybrid value

4: On(Q) < Sortas.(On(Q)) > Sort Oy (Q) with ascending order

5 O(Q) « CreateMatchingOrder(On(Q))

6: return O(Q))

73

Algorithm 26 Hybrid Centrality
Input: @) : Query graph
Output: C.(Q) : Closeness Centrality values for nodes of graph)

1: procedure HYBRIDCENTRALITY(())

2: Ch(Q) +— 0
3 04(Q) + DegreeCentrality(Q)
4: 0.(Q) < ClosenessCentrality(Q)

(@)
(@)
5: Oy(Q) < BetweennessCentrality(Q)
6: O.(Q) < EigenvectorCentrality(Q)
7: fori from 1 to |Q|>do

8: ordery = order of i*" element of O4(Q)

9: order, = order of i’ element of O..(Q)

10: ordery, = order of i element of Oy(Q)
11: order, = order of i""* element of O.(Q)

12: Cy(v;) = (orderq + order. + ordery, + order,) /4
13: Push C.(h;) to Cp,(Q)

14: return C},(Q)

The algorithm firstly applies the HybridCentrality method that is given in Algorithm
to collect all graph centrality values. The method calculates degree, closeness,
betweenness and eigenvector centrality values and find orders of query nodes for each
centrality value. After finding the centrality values, it get averages of them. After
calling HybridCentrality, the algorithm sorts each query nodes in ascending order
by their values to obtain Op(Q) and then calls CreateMatchingOrder method. The
method looks at Op,(Q) and it adds a start query node with the minimum value into
matching order list O(()) and continue to add nodes that it is connected to the already
added nodes. If there are nodes with same value, then it selects the one that has

neighbors with the minimum value.

The BB-Plus approach does not use this centrality because of its performance prob-
lem. When we are experimenting on different dataset, we see that each graph central-
ity measure fits with a spesific size and type of query. Combining them, makes them

weaker on these queries. Therefore, we do not prefer to use this centrality measure.

74

3.6 Matching Order Selection Based On Candidate Node Selection

We use Matching Order Selection Based On Candidate Node Selection to create a
matching order in order to find exact matches of () in G efficiently by combining this
order with a branch-and-bound algorithm. The pseudocode of the Matching Order
Selection based on Candidate Node Selection is given in Algorithm [27]

Algorithm 27 Matching Order Selection Based On Candidate Node Selection
Input: @) : All query nodes, GG : All data nodes,

Output: M : All embeddings of Q in G

1: procedure BBGRAPHWITHCNS(Q, G)
2 OQ) «+ 0 > O(Q) : Query nodes in matching order
3: for all <u € > do

4: C,+ 0 > C,, = Candidate nodes of u
5: List(Cey) 0

6: C,, < FilterByLabel(u, G)

7: C, < FilterByRelationships(u, C,,, G)

8: if u has property then

9: C,, + FilterByProperty(u, C,,, G)

10: for all <e € edgesO f(u)> do

11: C., = createCandidateEntity(label(e), label(u))
12: for all <v € edgesOf(u)> do

13: if e = v then

14: Cey-getSize() + +

15: Push C.,, to List(C.,)

16: Ocns(Q) < Sort ByCandidate Entity,s.(O(Q), List(Cey)) > Sort O(Q)
with ascending order based on C.u

17: 0(Q) < CreateMatchingOrder(O(Q))

18: M <+ BBGraph(O(Q),QG)

19: return M

75

In the beginning, the algorithm uses filtering methods of the BB-Graph algorithm
to obtain candidate node size for each query node. Firslty, it applies filterByLabel to
narrow the candidate node list down by finding matching labels of both query and data
nodes. The pseudo code for the filterByLabel can be found in Algorithm[28] Then, the
algorithm applies filterByRelationships to the candidate node list to eliminate the data
nodes which have not the same incoming and outgoing nodes with the query nodes.
The pseudo code for the filterByRelationships can be found in Algorithm[29] The last
step for finding candidate nodes, the algorithm uses filterByProperty to eliminate the
data nodes that have not same property value with query node’s if there is any. The

pseudo code for the filterByProperty can be found in Algorithm [30]

Algorithm 28 Filter By Label
Input:: « : Query node,

[(u) : Label of query node,
C, : Set of candidate nodes for u
1: procedure FILTERBYLABEL(u)

2: for all <v € G> do

3: if [(u) =1(v) then
4: Add v into C,,
5: return C,

Algorithm 29 Filter By Relationship
Input: « : Query node, C,, : Candidate set for u constructed by label

Output: C : Set of candidate nodes for u

1: procedure FILTERBYRELATIONSHIP(u, C),)

2: Cr10

3: Lg < List of groups GG of the adjacent relationships of u based on
<type, direction>

4; for all <v € C,> do

5: if foreach G < type,direction > in Lg, v has at least G <
type, direction > many number of adjacent relationships of type type and di-
rection direction then

6: Add v into C;

7: return C

76

Algorithm 30 Filter By Property
Input: u : Query node,

C, : Candidate set for u constructed by label and relationships

Output: C : Set of candidate nodes for u

1: procedure FILTERBYPROPERTY (u, C,,)

2: CZ +— 0
3: for all <v € C,,> do
4: if foreach different property p of u, v satisfies the same value conditions

as u for p then
5 Add v into C;

6: return C

Algorithm 31 Create Candidate Entity
Input: /. : Label of edge, [, : Label of node

Output: . : Candidate Entity
1: procedure CREATECANDIDATEENTITY (!, [,)
2: Cou-setLabelO f Edge(l,)
3: Cey-setLabelO f Node(l,)
4: Cey.setSize(0)

5: return C,,,

Algorithm 32 Sort By Candidate Entity
Input: O(Q) : Ordered Query Nodes, List(C,,) : List of Candidate Entities

Output: O(Q) : Ordered Query Nodes

1: procedure SORTBYCANDIDATEENTITY(O(Q), List(C.y))
List(Cpy) < Sort,s.(List(Cy,))

3: for all <C,, € List(C.,)> do

4: if |C.,.getNodeLabel() € O(Q) then

5: Push C.,,.get Node Label() to O(Q)

6: return O(Q))

Y

77

After the algorithm finding the candidate node list size for query nodes, it creates
Candidate Entities for each edges of query nodes with the CreateCandidateEntity
method which can be found in Algorithm [31] It basically gives the total number of
edges (that matches query node’s labels) of candidates nodes. Each candidate entity
consists of an edge label, node label and size. After calculating candidate entities, sort
them candidate entity’s sizes with the SortByCandidateEntity method which can be
found in Algorithm [32[to obtain O.,(Q). If a node’s candidate entity size is smaller
than the others, than it finds itself a better place at the order.

Then, CreateMatchingOrder method is called to find a matching order for the query
node. The method puts query node with minimum candidate node size first. However,
if the candidate node list size is same with another query node, then it looks at their
candidate node size of their neighbor. The method puts first the query node that has
neighbor with minimum value. Because when it is branching from the data graph,
big portion of the data nodes are eliminated at the first steps and it requires less can-
didate nodes to check in order to obtain all the matchings. Therefore, the algorithm
can eliminate redundant candidate nodes and reach to the goal state in less time by

reducing the search space.

The BB-Plus approach uses an extended version of Matching Order Selection based
on Candidate Node Selection when the database is not real-time which is called
Matching Order Selection based on Candidate Node Selection Without Candidates
and the pseudocode for the algorithm given in Algorithm [33] The approach calcu-
lates candidate node size and store it to database before querying. It calculates the
candidate node size based on filterByLabel, filterByRelationships and filterByProp-
erty. While querying it uses that candidate node size information and calls Matching
Order Selection based on Candidate Node Selection Without Candidates to create a
matching order. This algorithm calculates matching order in less time in compare to
Matching Order Selection based on Candidate Node Selection. Because, it uses al-
ready calculated candidates nodes and does not lost time for calculating them. After
finding the matching order, the approach calls BB-Graph algorithm to find the exact
matches efficiently. The BB-Graph algorithm starts with the node that has the first
place in the order and continues to branch from it based on the order until finding all

the exact matches for the query graph in the data graph.

78

Algorithm 33 Matching Order Selection based on Candidate Node Selection Without

Candidates
Input: () : All query nodes

C(Q) : Candidate node size list of @)

Output: O(Q) : Query nodes in matching order

1: procedure MOSBASEDONCNSWITHOUTCANDIDATES(Q, C(Q))

2 0Q) «+ 0 > O(Q) : Query nodes in matching order
3: for all <u € > do

4 C,, = Candidate node size of u from C'(Q)

5: Push C), and u to O(Q)

A

Oens(Q) < Sorts.(0(Q)) > Sort O.,s(Q)) with ascending order based on
candidate node size

O(Q) < CreateMatchingOrder(O(Q))

return O(Q)

5l

(]

In the example, the Matching Order Selection based on Candidate Node Selection
firstly applies FilterByLabel method as shown in Table [3.5]to get a candidate node
list. According to the table, query node A is matching with ¢0 and ¢17, B is matching
with ¢1 and ¢16, C' is matching with ¢2, ¢10 and ¢18, D is matching with ¢3, ¢9 and
q19, E is matching with ¢4, F' is matching with ¢5, ¢12 and ¢20, G is matching with
q6, ¢8, q11, q13, q15 and H is matching with ¢7, ¢g14 in the data graph.

After applying the FilterByLabel method, it calls the FilterByRelationships method to
apply on the candidate node list as shown in Table[3.6] According to the table, for the
query node A, ¢q17 is eliminated because it does not have a relationship with a node
that have label I£. For the query node B, the candidate node list remains the same
because all of its relationships exits in data nodes g1 and ¢16. For the query node
C, ¢q18 is eliminated because it does not have a relationship with a node that have
label B. ¢10 is also eliminated because it does not have a relationship with nodes that
have label A and B. For the query node D, the candidate node list remains the same
because all of its relationships exits in data nodes ¢3, ¢9 and ¢19. For the query node
D, the candidate node list also remains the same because all of its relationships exits

in data node g4. For the query node F', q20 is eliminated because it does not have a

79

Table 3.5: FilterByLabel method applies to ()

Nodes | Candidate Node List (Nodes with same label)
A q0, q17

ql, ql6
q2,ql10, q18
q3, 49, q19

g4
g5, ql2, q20
g6, g8, qll, ql3, ql5
q7, ql4

= Q=T A=

relationship with a node that have label GG. For the query node G, ¢8 is eliminated
because it does not have a relationship with a node that have label A. ¢11 is also
eliminated because it does not have a relationship with a node that have label F'. ¢13
is also eliminated because it does not have a relationship with a node that have label A.
Lastly for the query node H, the candidate node list also remains the same because all
of its relationships exits for both data node ¢7 and ¢14. Finally, the algorithm looks
that if is there any property on any query node. Because of lack of properties, the

algorithm does not apply FilterByProperty method.

Table 3.6: FilterByRelationship method applies to ()

Nodes | Incoming Relationships | Outgoing Relationships | Candidate Node List

A C->A A->B, A->E, A->G q0

B A->B B->C ql, q16

C B->C C->D q2

D C->D D->F q3,q9, ql9

E A->E - q4

F D->F F->G g5, ql2

G A->G, F->G G->H q6, q15

H G->H - q7,ql4

80

After all the filtering methods, the candidates nodes size for each query node is de-
fined as (2,2,1,3,1,1,2,2) for (A, B,C,D, E, F,G, H). The algorithm sorts them
in ascending order to obtain O,,s(Q) = (C, E, F, A, B,G, H, D) and calls CreateM-
atchingOrder. Therefore, it obtains O(Q) = (C, A, E, D,G, F, D, H). All the steps
for finding a matching order with the Matching Order Selection based on Candidate
Node Selection is given in Figure 3.21] [3.22]

81

Apply CreateMatchingOrder() Matching Order Selection based on Candidate Node Selection

o(Q)={} 0d(Q) ={C,E,F,A,B,G,H,D} o(q)={c} 0d(Q) = {E,F,A,B,G,H,D}

@ DD GrfD oD

4 ! \\\\ /// : \\\\
ol 1 . |:> 7 ! -
e i ~ e i N
o(Q)={c} 0d(Q) = {E,F,A,B,G,H,D} 0(Q)={C,A} 0d(Q) = {E,F,B,G,H,D}

. : Z\ L <
~ P N
N . N
N 4 S
N 4 N

~

0(Q)={C,A} 0d(Q) ={E,F,B,G,H,D} 0(Q)={C,AE} 0d(Q) = {F,B,G,H,D}
0(Q)={C,AE} 0d(Q) = {F,B,G,H,D} 0(Q)={C,AE,B} 0d(Q) ={F,G,H,D}

N
N
N
N
N
N
N
~
N
N
~

S)

0(Q)={C,AE,B} 0d(Q) = {F,G,H,D} 0(Q)={C,AE,B,G} 0d(Q) = {F,H,D}

Figure 3.21: An Example of with the MosBasedOnCNS (Part-1)

82

0(Q)={C,AE,B,G} 0d(Q) = {F,H,D} 0(Q)={C,AE,B,G,F} 0d(Q) = {H,D}

900 90

’ N ’ N
2 AN 2 AN
’ N ’ N
4 N 4 N
’ ’ N

N

’ ’
’ ’ N
’ ’ N
2 ’ N
’ / N

------ © 00 @000

N
N
N
N
N

0(Q)={C,AE,B,G,F} 0d(Q) = {H,D} 0(Q)={C,A/E,B,G,F,H} 0d(Q) = {D}

0(Q)={C,AE,B,G,F,H} 0d(Q) = {D} 0(Q)={C,A/E,B,G,F,H,D} 0d(Q) ={}

G0 090

\ \
N % N
N , 1 N
N . 1 AN
N

N e ! N
1
1
1

~ . ~
,
. AN . AN
N ; ~
2 ~

OO GO OO
O—D0—C—O

Figure 3.22: An Example of with the MosBasedOnCNS (Part-2)

The Matching Order for Q is

0(Q)=(C,AEB,G,FH,D)

After finding the matching order, the BB-Plus approach calls the BB-Graph algorithm
with the ordered query graph O(Q)) and the data graph G. As shown in Figure

the algorithm branches for only graph GG1 that contains all the exact matches for Q).

RS R AN

Figure 3.23: An Example of Finding All Exact Matches with the MosBasedOnCNS

83

3.7 Comparison of Matching Order Selection Methods

In this chapter, all matching order selection methods are compared to each other based
on how they are created and how they act in different types of queries in different

types of databases.

3.7.1 Based on Their Creation Methods

All the matching order selection methods are distinguished from each other with their
way of creating their order. However, they can be divided into two groups according

to whether they use fundamental graph centrality measures or not.

The first group consists of the Matching Order Selection Based On Degree Centrality,
Matching Order Selection Based On Closeness Centrality, Matching Order Selection
Based On Betweenness Centrality, Matching Order Selection Based On Eigenvector
Centrality. All of them uses fundamental graph centrality measures on query graph
to find a matching order and does not consider the data graph. Their only concern is
detecting the most important nodes in query graph and then finding candidate nodes
in data graph based on the order that determined with importance of query nodes.
Their time of calculating matching order is shorter than the other group. Therefore if
they create a great matching order, they will beat the other groups. Because they do
not spend too much time create matching order and spends all time to finding exact
matches. However if they create a bad matching order because of not considering the
data graph, finding the exact matches in the data graph can take too much time and

the algorithms will lose their effectiveness.

The second group consists of Matching Order Selection Based On Candidate Node
Selection that does not use graph centrality measures. However, it work on both the
query and data graph by finding candidate nodeon the data graph for the query graph.
Because it touches the data graph, it can find a better matching order and get more
efficient results. However, the time of calculating matching order takes much time in
compare to the first group. Therefore, they can not compete with the ones in the first
group because they spend extra time for gathering candidate node to create a matching

order. On the other hand, if these candidate sizes are predefined in the database or we

84

do not consider the time for creating a matching order, it can be seen that they give

Figure 3.24: Example Query Graph for Comparison of the Improved BB-Graph Al-

quicker results than others.

gorithms based on Matching Order

Figure 3.25: Example Data Graph 1 for Comparison of the Improved BB-Graph Al-
gorithms based on Matching Order

85

Figure 3.26: Example Data Graph 2 for Comparison of the Improved BB-Graph Al-
gorithms based on Matching Order

Let’s explain the effect of creating matching order with an example using example
query graph as shown in Figure and data graphs as shown in Figure
and take the Matching Order Selection Based On Degree Centrality from the first
group and the Matching Order Selection Based On Candidate Node Selection from

the second group. There is only one exact matches at the both data graphs.

The Matching Order Selection Based On Degree Centrality creates a matching order
C — A — B — D using query graph. This matching order is good for the example
second data graph, because it only takes 2 attemps to find the exact match. However,

for the example first data graph, 1002 attempts are required to find it.

On the other hand, the Matching Order Selection Based On Candidate Node Selection
adapts the matching order based on the data graph. It looks at the candidate node size
for the query graph and finds the matching order A— D — B —C' for the first data graph
and C' — A — D — B for the second graph. Only 4 and 2 attemps are required for first
data graph and second graph respectively. Therefore the methods of second group
are good at finding a good matching order to find exact matches efficiently. However,
they can get behind the algorithms of first group like at the second graph. Because
both algorithms find the matching order but it takes more time find a matching order

for the algorithms of second group.

86

3.7.2 Based on the Type of Queries

The algorithms of first group can affected by the query types. They can give greater
performance at specific query types. For example, degree centrality gives greater
results than the others at path queries. Degree centrality also give greater results at
cyclic queries as betweenness centrality. On the other hand, closeness and eigenvector

centrality give greater results at other types of queries.

The algorithms of second group also does not affected by the query types. Because,
they adapt themselves to changing data graphs and they can act with the best perfor-
mance for the each query types as we can see from Figure [3.24] [3.25| and [3.26]

3.7.3 Based on the Volatility of Databases

Matching order selection methods of first group does not affected by the volatility of
database because they do not consider data graph while they are calculating. There-

fore, they are great when working on real-time databases.

On the other hand, matching order selection methods of second group consider both
query and data graph while they are calculating. Therefore, they spend a lot of time
for creating a matching order as we mentioned earlier. The time for creating matching
order needs to be eliminated by calculating candidate nodes or edges before querying.
If the database is real-time and changes very fast, then we cannot calculate candidate

nodes or edges before querying and the total process time querying can be increased.

3.8 Determining Matching Order Selection Methods

As we mentioned earlier, the approach uses rules to determine the best matching order
for queries that executed on any real-time databases. Graph centrality based match-
ing order selection methods are used in real-time databases. However, there is no
exact rules for which matching order selection method performs best at which query.
Therefore, we used machine learning to create rules for determining best matching

order selection method.

87

At first, we execute queries on three different databases which are the WorldCup,
Pokec and Population dataset. We execute 100 queries on the WorldCup, 50 queries
on the Pokec and 50 queries on the Population dataset for the training data set. Also
we execute 20 queries on the WorldCup, 10 queries on the Pokec and 10 queries on

the Population dataset for the test data set.

The information about training and test dataset for determining matching order se-
lection can be found in Figure [3.7)and the dataset can be found Appendix [Al In both
training and test dataset, we generate different queries with different inputs that has
executed on these three dataset. As shown in Figure [2.9] eight attributes used in the
dataset which are data graph node size, data graph edge size, query graph node size,
query graph edge size, number of distinct query node label, number of distinct query
edge label, number of query node with properties and query type. We recored the best

matching order selection method for each query.

Table 3.7: Information about Determining Matching Order Dataset

Training Data Size | Test Data Size | 7 of Attributes Output Values

Degree Centrality
Betweenness Centrality
190 39 8 Closeness Centrality
Eigenvector Centrality

BB-Graph

We used Weka Software for creating decision tree based on the training and test
dataset. We applied J48 to create the decision tree as shown in Figure and get

results for criticize its performance.

Based on the decision tree, if the query type is "path query", degree centrality gives
the best results. On the other hand, if the query type is "cyclic query", the tree
branches and look for edge sizes. If the edge size is bigger than four, then it se-
lects degree centrality again. However, if the edge size is equals or smaller than four,
then it selects betweenness centrality. Finally, if the query type is "others", then it
branches based on node size. If the node size is bigger than five, then it selects eigen-

vector centrality. If not, then it selects closeness centrality.

88

Table 3.8: Attributes of Determining Matching Order Dataset

Attributes Type

Data Graph Node Size Small, Medium, Big

Data Graph Edge Size Small, Medium, Big
Query Graph Node Size Numeric
Query Graph Edge Size Numeric
Number of Distinct Node Label Numeric
Number of Distinct Edge Label Numeric
Number of Nodes with Properties Numeric

Query Type Path, Cyclic, Others

According to the accuracy values as shown in Table [3.9] the decision tree correctly
classifies the matching order selection methods with 79.48% percentage. In addi-

tion to the accuracy values, the confusion matrix for each matching order selection

methods are given in Table[3.10]

Table 3.9: Detailed Accuracy for each Matching Order Selection Method

Precision | Recall | F-Measure
Degree Centrality 0.81 0.94 0.87
Betweenness Centrality 0.83 0.71 0.77
Closeness Centrality 0.75 0.67 0.70
Eigenvector Centrality 0.75 0.60 0.67
Average 0.79 0.80 0.79

Table 3.10: Confusion Matrix for each Matching Order Selection Method

Degree | Betweenness | Closeness | Eigenvector
Centrality | Centrality | Centrality | Centrality
Degree Centrality 17 1 0 0
Betweenness Centrality 2 5 0 0
Closeness Centrality 2 0 6 1
Eigenvector Centrality 0 0 2 3

89

CHAPTER 4

EXPERIMENTS AND RESULTS

In this section, the BB-Graph, Neo4j’s Cypher, Duallso, GraphQl, Turbolso, VF3 and
our approach BB-Plus are compared based on their time complexity. The algorithms
were executed with different type of queries in different graph databases that created
with importing WorldCup, Pokec and Population dataset via Neo4j GDMBS. Each

dataset were considered as both real-time and historical when running experiments.

4.1 The Dataset

The WorldCup is a publicly available dataset that contains information about matches,
players, squads, countries etc. and their relationships for all World Cup Tournaments

from 1930 to present day [37]]. The Data Model for WorldCup dataset can be seen in
Figure

The Pokec dataset is publicly available and it consists of data from Pokec which is one
of the biggest social network platform in Slovakia. The dataset contains anonymized
data from Pokec network, which is about the user’s profile like gender, age, hobbies,
interests, education, likes. Additionaly, it contains friendships relation between all

the users [38]. The Data Model for Pokec dataset can be seen in Figure 4.2

Our last dataset, the Population dataset, is not publicly available but it has very large
and complex data to show the performance of all algorithms. The population database
is owned by Kale Yazilim. It contains anonymized population data of Turkey. It
includes personal information of people like gender, address etc. and the relationships

like mother, father, spouse between these people.

90

Graph databases are good for all the datasets because they are both large, complex
and highly connected. Especially, Population dataset needs expensive join operations
to execute queries. Therefore, all the dataset is imported to Neo4j database with using
Java API. Statistics of the WorldCup, Pokec and Population graph databases can be
seen in Table 4.1l

id: int
m : Strin,
name: String name. B
@ i IN_SQUAD

year: int

&,
&

)

<
AWAY_TEAM

4____.—-—-'——'_"_'_'————_

HOME_TEAM

e PLAYED IN

@ worksIn
activeDoing

@ passiveDoing
prefers ™

@ hasProfiIe—J_hasLikes

Figure 4.2: The Data Model for Pokec dataset

talks

91

Table 4.1: Statistics of the WorldCup, Pokec and Population Graph Databases

WorldCupDB | PokecDB | PopulationDB
Size 112 MB 4.93GB 19.6 GB
of nodes 45348 1632803 70422787
of relationships 86577 30622564 77163109
of distinct node labels 12 8 14
of distinct relationship types 17 10 18
Average of # of labels per node 1 1 1

4.2 The System Configuration

All experiments were performed on a machine with Intel Core Quad Core 2,70 GHz
17-6820HQ CPU, 32 GB DDR4 RAM and running Windows 10 operation system.
On the other hand, all the algorithms were implemented in Java programming lan-
guage on IntelliJ IDEA and using graph data structures of Neo4j GDBMS v3.4.9 via
embedded Java API. The system architecture can be seen in Figure 4.3

4.3 Queries

In the experiments, different types of queries were executed on the databases. We
tried to use different nodes and relationships in each query to show the performance of
algorithms under different cases. The results were collected for 5 real-world queries
for the Population database, 4 real-world queries for the Pokec database and 5 real-

world queries for the WorldCup.

The queries for all the algorithms were given in BFS format like in the Asiler’s pa-
per which was explained in Section except Cypher’s queries. The average
execution time was used in the experiments to algorithm’s performance, which was
calculated with repeating each queries 10 times, except the slow queries which was

repeated only one time.

92

Y

Turbolso | N—
Pokec
D

BB.Graph ataset

N—
VF3 — ()

N

Neodj
GraphQl JavaAPl < query® | GDBMS [#imports— JavaAPl [# WorldCup
v3.4.9 Dataset
—

N~
Duallso —

Y

N
BB-Plus Query € returns — Population

Results Dataset

N~

Cypher —

Pokec
Graph
Database

WorldCup Population
Graph Graph
Database Database

Figure 4.3: The System Architecture

4.4 Experiments on the Databases

In this section, queries are executed on the WorldCup, Pokec and Population databases
to evaluate the performance of all the algorithms. Especially, we repeated the same
queries in the Asiler’s paper [1] in WorldCup and Population databases to show the
improvement in time complexity. We show the performance of BB-Plus based on
historical and real-time databases. In addition, we show the performance of histori-
cal BB-Plus with or without the consideration of degree factor in CNS to show the

difference in time efficiency.

4.4.1 Experiments on the WorldCup Database

In this section, we compare the algorithms using the WorldCup database. We execute
5 different queries to evaluate the performance of each algorithm. All queries and
their BB-Graph representation can be seen in Table [4.2] and all the results are going

to discussed in this chapter.

93

Table 4.2: The queries and their BB-Graph representation on WorldCup database [1]]

(dnDPHOM ‘DNINOINI'HOLVIN. SNIVINOD UIEIN‘6°9)

(dnDPLOA “DNINOINI HOLVIN- SNIVINOD YRN8 S)(AnDPHOM “ONINOINI HOLVIN SNIVLNOD UML)
(2N ONIODLNO HOLVIA™ NI'UBULIOLIS] 9 €) (YN 'DNIODLNO HOLYIN NI@UBWION G T)
(PN ONIODLNO HOLVIN NI'UBULIOLIS] ')(99UBULIONId ‘DNIODLNO AALI VLS 1AL € 0)
(e0urULIOJR ONIOD LNO AALIVLS TOABId T0)(SUBULIONSG ‘ONIODLNO AALI VLS 1o4e[d‘ 1°0)

sdno prIom ¢ 1se9[Je yojew Kue Ul 9[0I) oym SIoKe[d

(Ie0D'DNIODLNO TVOD ATI0DS @OUBWION] 6°9)(1ABId DNINOODNI ALY VLS @oULWIOLd]‘‘9)
(19[4 “DONINOINI QHLI VLS ‘99UEULIOJI8] ‘g) ([E0D DNIODLNO TVOD AHYODS @OULWION™] L E)
(eouBULIONR ‘DNINODNI HOLVIN NI U9 7)(Anuno)y DONIODLNO NYAL HNOH U 'GT)
(Anuno)*DNIODLNO NVHL AVAY UYL H) (Anuno)y ONIODLNO WYHL AVMY UNBIA‘G 1)
(Anunod*ONIODLNO NVAL HNOH U [)(9dueiofad ONINOINI HOLVIN NI UM€1)

(2N ONIODLNO HOLVIN- SNIVLNOD ‘AnDPHOM T 0) (U ONIODLNO HOLVIN SNIVLNOD dnDPHOM T°0)

SOUOJEW JOq Ul [e0T | JSBI] J8 PII0ds
1oAerd owres ay) pue dno prrIom oures oY) ur
(19130 9y} UT WEd) SWOY PUE JUO UT WILd} KBME SE)

soyojew ¢ Jsed] e paked SSINUNOd oM} YOIYM Je Sase))

(dnOPHOM “DONINODNI'HOIVIN- SNIVINOD UMIEN‘9“2)(ANno)*DNINOINI NI AHAY Td UIBIN‘¥°T)
(Anunod*DNINODINI'NI” AHAY 1d UNEIN € 2)(ANDIPHIOM ‘ONINOINI HOLVINT SNIVINOD UIEIN‘G 1)
(Anuno)*ONINOINI'NI” AHAV Td U H* T)(ADUNO) ONINOININI AHAV Id UBIN € T)
(U2eA"DNINODNI HNLL LV AHAY 1d OWLL T 0)(UIBIN “DONINODNI‘HNILL LV AHAV TdQWIL[°0)

sdno PLIOM JUSISHIP UI PILINIJ0

SOLIJUNOD JWES Y} UIM)Qq SAYIIJBIA

(Y21 'DNIODLNO HIOLVIN NI‘9dueuLiojiod ¢ 7) (YN ‘ONIODLNO HOLVIA NI @oUetWION ¢)
(SourULIOfRd ‘ONIOD.LNO HLNLLLS 9N S 10AR[d 7 0)(0UBULIOId ‘DNIODLNO AH LI VLS OARId 1 °0)

yojew awes ay) ul (qALAV.LS) 2An08 pue

Amnsqns Yjoq se 901 e} oym s19Ae[d

(Anuno)*ONINODNI'AVNOS AAINVN Penbs t*€)(Penbg* ONIODLNO AVNOS NITeARId € T)
(19£e[d ‘ONINODNI‘AVNOS™ NI Penbg‘z 1)(PenbS ONIOOLNO AVNOS AHINVYNABUNOD [0)

SOINUNOD JUAIAIJIP Jo penbs utof oym s1oke[q

uonejuesdrday ydeio-ggq

saLN()

94

Named_Squad In_Squad In_Squad Named_Squad

Figure 4.4: The Queryl for WorldCup dataset

In the first query, we are looking for "Player who join squad of different countries"
in the WorldCup database. The query is an example to path queries and it consists of
5 nodes and 4 edges like shown in Figure 4.4} The results for the query is shown in
Table 4.3] .4l According to the results, the BB-Plus approach gives the best result

among all the algorithms on both historical and real-time WorldCup database.

The BB-Plus applies Matching Order Selection Based On Candidate Node Selection
Without Candidates by using the candidate node size that is already calculated and
stored in the database. It finds the best result with (0 —4 — 1 — 3 — 2) order on
historical WorldCup database as shown in Table

On the other hand, the approach applies Matching Order Selection Based On Degree
Centrality, because the query can be described as path query. It finds best results with
(0 —4 — 1 — 2 — 3) order on real-time WorldCup database as shown in Table

1
Performance

Started In_Match

Player

Substitute In_Match

2
Performance

Figure 4.5: The Query?2 for WorldCup dataset

95

In the second query, we are looking for "Players who take role as both substitute and
active (STARTED) in the same match". The query is an example to cyclic queries and
it consists of 4 nodes and 4 edges like shown in Figure [d.5] The results for the query is
shown in Table[d.3| [4.4] According to the results, the BB-Plus approach gives the best

result among all the algorithms on both historical and real-time WorldCup database.

The BB-Plus applies Matching Order Selection Based On Candidate Node Selection
Without Candidates by using the candidate node size that is already calculated and
stored in the database. It finds the best result with (3 — 0 — 1 — 2) order on historical
WorldCup database as shown in Table 4.4]

On the other hand, the approach applies Matching Order Selection Based On Be-
tweenness Centrality, because the query can be described as cyclic query and the
query edge size is smaller than four. It finds best results with (3 — 0 — 1 — 2) order

on real-time WorldCup database as shown in Table

Pla ed_At_Time/'"\myed_At_Time
Played_In * Played_In
Played_In Played_In

Contains_Match Contains_Match
6
WorldCup

Figure 4.6: The Query3 for WorldCup dataset

In the third query, we are looking for "Matches between the same countries occured
in different worldcups”. The query consists of 7 nodes, 8 edges and 2 cycles like
shown in Figure .6] The results for the query is shown in Table #.3] .4 According
to the results, the BB-Plus approach gives the best result among all the algorithms on

both historical and real-time WorldCup database again.

96

The BB-Plus applies Matching Order Selection Based On Candidate Node Selection
Without Candidates on the historical WorldCup database and it finds the best result
with (5 -6 —0 — 3 —4 — 1 — 2) order as shown in Table 4.4

On the other hand, the approach applies Matching Order Selection Based On Degree
Centrality on real-time WorldCup database. Because the query can be described as
cyclic query and the query edge size is bigger than four. It beats other algorithms with
(5—6—0—3—4—1—2) order as shown in Table 4.4]

0
WorldCup

Contains_Match Contains_Match

Home_Team Home_Team

In_Match Away_Team Away_Team In_Match

3 6

Scored_Goal Scored_Goal

Started Started
8
Player

Figure 4.7: The Query4 for WorldCup dataset

In the forth query, we are looking for "Cases at which two countries played at least 2
matches (as away team in one and home team in the other) in the same world cup and
the same player scored at least 1 goal in both matches" in the WorldCup database.
The query consists of 10 nodes, 12 edges and 4 cycles like shown in Figure [4.7| The
results for the query is shown in Table According to the results, the BB-
Plus approach again beats all the other algorithms on both historical and real-time

WorldCup database again.

In the historical database, The BB-Plus applies Matching Order Selection Based On
Candidate Node Selection Without Candidates and finds the best result with (0 — 4 —
5—1—2—7—9—8—3—0) order as shown in Table[4.4]

97

However in the real-time database, it applies Matching Order Selection Based On
Degree Centrality based on cyclic query type and with twelve edges and it gets the
best results with (7—9—-0—4—-5— -3 -6 — 1 — 2) order.

1

In_Match Contains_Match
Performance - -
Started
0 Started 2 In_Match Contains_Match 8
Player Performance - - World_Cup
Started
3 In_Match Contains_Match 9
Performance - - World_Cup

Figure 4.8: The Query5 for WorldCup dataset

In the final query, we are looking for "Players who take role in any match at least 3
worldcups". The query consists of 10 nodes and 9 edges like shown in Figure 4.8
The results for the query is shown in Table[d.3| .4 the BB-Plus approach is the best
among all the algorithm on both real-time and historical WorldCup database again

when we look at the results.

The BB-Plus approachuses 7 —8 -9 -4 —-5—-6 —0—1— 2 — 3 order based on
Matching Order Selection Based On Candidate Node Selection Without Candidates
and beats all algorithms on historical WorldCup database as shown in Table #.4]

On the other hand, it applies Matching Order Selection Based On Eigenvector Cen-
trality on real-time database. Because, the query type can be described as "others”
and the query node size is bigger than five. Therefore, it gets the best result with
(5—6—0—3—4—1—2) order in real-time WorldCup database as shown in Table
4.4

98

Table 4.3: The query results for the WorldCup Database

Algorithm / Query (ms) Query-1 | Query-2 | Query-3 | Query-4 | Query-5
Cypher 1052 10123 7851 26711 2M >
Duallso 10453 34675 35763 26311 2M >
GraphQL 24747 2M > 16082 10654 2M >
Turbolso 5116 6361 - 22072 | 113714
VE3 6337 2M > - 78543 2M >
BB-Graph 1050 3353 6500 11193 23754
DO ieteriea) 602 | 3231 | 3092 | 10850 | 18121
(CNS without Degree Cons.)
BB-Plus (Historical) 574 3120 2990 10672 18033
BB-Plus (Real-Time) 874 3124 3180 3939 18126

Table 4.4: Matching Order of Different Methods for the WorldCup Database

Algorithm /
Query-1 | Query-2 Query-3 Query-4 Query-5
Query (ms)
Degree
0-4-1-2-3 | 0-1-2-3 | 5-6-0-3-4-1-2 | 7-9-0-4-5-8-3-6-1-2 | 7-8-9-1-2-3-4-5-6-0
Centrality
Closeness
1-3-2-0-4 | 3-0-1-2 | 0-3-4-5-6-1-2 | 4-5-7-9-8-0-3-6-1-2 | 4-5-6-0-1-2-3-7-8-9
Centrality
Betweenness
0-1-2-3-4 | 0-3-1-2 | 0-3-4-5-6-1-2 | 0-4-5-7-8-9-3-6-1-2 | 0-4-5-6-7-8-9-1-2-3
Centrality
Eigenvector
0-4-1-3-2 | 0-1-2-3 | 5-6-1-2-0-3-4 | 9-7-8-6-3-0-4-5-1-2 | 7-8-9-4-5-6-1-2-3-0
Centrality
Candidate Node
0-4-1-3-2 | 3-0-1-2 | 5-6-0-3-4-1-2 | 0-4-5-1-2-7-9-8-3-6 | 7-8-9-4-5-6-0-1-2-3
Selection

99

Table 4.5: The process time for calculating matching order selection on WorldCupDB

Algorithm / Query (ms) | Query-1 | Query-2 | Query-3 | Query-4 | Query-5
Degree Centrality 69 68 69 64 64
Closeness Centrality 88 89 90 92 89
Betweenness Centrality 81 79 82 7 78
Eigenvector Centrality 79 78 75 87 81
Candidate Node Selection 356 855 279 1195 972

Table 4.6: The query results with different matching orders on WorldCupDB

Algorithm / Query (ms) | Query-1 | Query-2 | Query-3 | Query-4 | Query-5
Degree Centrality 874 3342 3260 3939 18334
Closeness Centrality 1022 9491 6392 6735 18764
Betweenness Centrality 1097 3124 6640 12586 26021
Eigenvector Centrality 1148 3339 3673 7030 18224
Candidate Node Selection 848 3314 3270 11973 19045

Table 4.7: Total process time without calculating matching order on WorldCupDB

Algorithm / Query (ms) | Query-1 | Query-2 | Query-3 | Query-4 | Query-5
Degree Centrality 805 3274 3191 3875 18270
Closeness Centrality 934 9402 6302 6643 18675
Betweenness Centrality 1016 3045 6558 12499 25943
Eigenvector Centrality 1069 3261 3598 6943 18743
Candidate Node Selection 492 2168 2715 10778 17985

100

We also apply ANOVA on query results of subgraph isomorphism algorithms on
WorldCup database to show the effects of state-of-the-art subgraph isomorphism al-
gorithms on subgraph isomorpishm problem. We use query results as given in Ap-

pendix [A] The results are given in Table 4.8]and 4.9

Table 4.8: ANOVA results of the effects of state-of-the-art subgraph isomorphism

algorithms on subgraph isomorpishm problem

Algorithms Count | Sum Average Variance
Cypher 48 627154 | 13065,70833 | 87392902,38
Duallso 48 1812112 | 37752,33333 | 2257631713
GraphQL 35 616660 | 17618,85714 | 131615013,2
Turbolso 30 1156157 | 38538,56667 | 880991739,8
VF3 22 923757 | 41988,95455 | 445518926,9
BB-Graph 50 427307 | 8546,14 45323765,8
BB-Plus (Historical) | 50 398677 | 7973,54 40869012,99
BB-Plus (Real-Time) | 50 373225 | 7464.,5 37541892,09

Table 4.9: ANOVA results of the effects of state-of-the-art subgraph isomorphism

algorithms on subgraph isomorpishm problem

Source of Variation | SS df | MS F P-value F-value
Between Groups 59912310167 | 7 8558901452 | 17,87 | 4,61376E-20 | 2,037793878
Within Groups 1,55659E+11 | 325 | 478949920,6

Total 2,15571E+11 | 332 | | | |

According to the results BB-Plus (Historical) and BB-Plus (Real-Time) gives the best
results with the queries that executed on WorldCup databases. On the other hand,

Turbolso and VF3 gives the worst results.

101

(ystiSus=owreu2pagensue T'ONIOD.LNO SAEI IS T E)
(19SN*DONIODLNO SPUSLY IS € 0)
(ystiSus=owreu2pagensue T ONIOD.LNO SAEIIS1°T°0)
(s[oYsoosAA=[eAaTuOTIEINPH2pUOIRANIO O DONTOD LN O UISSHOM IS N 1))

ySI[Sug Y[B} UBd pue [9AJ] UOIBOND
_OYS[OYSONOSAA, & OS[E ST OUyM SIS [)IM SPUSLI
Jey) [9A] UOTIBONPA ,IYS[ONSONOSAA, pue

ystSug ey ued oym ofdoad oy,

(19SN*DNIODLNO SPUSLY IS E*))
(Surpreogareys=owreu2ysiiodS ONIOD LN O Sutogaarssed1asnz o)
(Teqroseq=owreuzps0ds*ONIODLNO SUIOFIANIR IS T°0)

[reqiayseq Surkerd mou nq Jurpreoqajeys

0} pasn oYM SIdSN JO SPUILIJ A,

(L1=98vy299[y01d‘DNIOD.LNOAYOIdSeY IS T°0)
(vs[oysopans=[eaaTuonedNpgpuonednod) ONIQOO LN UISHOM IS N 1))

[0AQ] UOTIEONPA J& ,AYS[OSOPaIIs,
pue pjo s1eak /1 st oym o[doad jo

SISTSUOD YOI ISI[1OSN Y],

(2T=P11951 291951 *“DNTOD.LNO SPUSLY‘T=P[IS 119N T°0)

TPy 1asn) yum diyspusty
B Sey OyMm 7T PI YIIm JOsn Y],

uonejuesaaday ydein-gq

saLdINQ)

In this section, we compare the algorithms using the Pokec database. We execute 4
BB-Graph representation can be seen in Table [4.10] and all the results are going to
Table 4.10: The queries and their BB-Graph representation on Pokec Database

different queries to evaluate the performance of each algorithm. All queries and their

4.4.2 Experiments on the Pokec Database

discussed in this chapter.

102

friends

Figure 4.9: The Query1 for Pokec dataset

In the first query, we are looking for "A User with id 22 who has a friendship with the
user with id 2" in the Pokec database. The query is an example to the path queries
and it consists of 2 nodes and 1 edges like shown in Figure 4.9 The results for the
query is shown in Table@.TT|and@.13] According to the results, the BB-Plus approach
gives the best results only on the historical Pokec database in compare to the other

algorithms.

The BB-Plus approach uses 0 — 1 order based on Matching Order Selection Based On
Candidate Node Selection Without Candidates and beats all algorithms on historical
Pokec database as shown in Table 4.4

On the other hand, it applies Matching Order Selection Based On Degree Centrality
with 0 — 1 on real-time dPokec database. Because, the query type can be described
as "path query". However, the Cypher beats the BB-Plus approach and all the other
algorithms in this query. Cypher beats all the algorithms since the query is too short
and does not effected by matching order as shown in 4.13] Table #.14]is the proof
of the BB-Plus approach is greater than Cypher algorithm, however the time that was

spending on calculating of the matching order causes to get behind of it.

1
Occupation
educationLevel=
"stredoskolske "

hasProfile workslIn
User

Figure 4.10: The Query2 for Pokec dataset

103

In the second query, we are looking for "The user list which consists of people who is
17 years old and ’stredoskolske’ at education level" in the Pokec database. The query
is also an example to path queries and it consists of 3 nodes and 2 edges like shown in
Figure [4.10] The results for the query is shown in Table 4.11] According to the
results, the BB-Plus approach gives the best results on both historical and real-time

Pokec database.

The BB-Plus approach uses (2 — 1 — 0) order based on Matching Order Selection
Based On Candidate Node Selection Without Candidates and beats all algorithms on

historical Pokec database as shown in Table [4.4]

On the other hand, it applies Matching Order Selection Based On Closeness Central-
ity with (2 — 1 — 0) order in real-time Pokec database based on the type of "others"
and the edge size is smaller than five and it beats all the other algorithms as shown in

Table

2
Sports
name=

"skateboarding "

1
Sports
name="basketbal "

passiveDoing activeDoing

friends

Figure 4.11: The Query3 for Pokec dataset

In the third query, we are looking for "The friends of users who used to skateboarding

but now playing basketball”. The query consists of 4 nodes and 3 edges as shown in

Figure The results for the query is shown in Table According to the

results, the BB-Plus approach gives the best results on both historical and real-time

Pokec database.

104

The BB-Plus approach uses (1 — 2 — 3 — 0) order based on Matching Order Selection
Based On Candidate Node Selection Without Candidates and beats all algorithms on

historical Pokec database as shown in Table[4.4]

On the other hand, it applies Matching Order Selection Based On Closeness Central-
ity with same order in real-time Pokec database based on the type of "others" and the

edge size is smaller than five and it beats all the other algorithms again.

2 1
Language 0 Occupation
name= talks User worksin educationLevel=

"english" "vysokoskolske "

friends

3
w

Figure 4.12: The Query4 for Pokec dataset

The last one is about "The people who can talk English and "vysokoskolske’ education
level that friends with users who is also at 'vysokoskolske’ education level and can
talk English". It is a cyclic query with 4 nodes, 5 edges and 2 cycles as shown in
Figure According to the results as shown in Table the BB-Plus

approach gives the best results on both historical and real-time Pokec database.

The BB-Plus approach uses (1 —2— —0—3) order based on Matching Order Selection
Based On Candidate Node Selection Without Candidates and beats all algorithms on

historical Pokec database as shown in Table [4.4]

On the other hand, it applies Matching Order Selection Based On Degree Centrality
with same order in real-time Pokec database based on "cyclic"” type of query and edge

size is bigger than four and it beats all the other algorithms again.

105

Table 4.11: The query results for the Pokec Database

Algorithm / Query (ms) Query-1 | Query-2 | Query-3 | Query-4
Cypher 94 2761 4873 4832
Duallso 109 30915 - 30506
GraphQL 108 - 2851 12069
Turbolso 2465 9436 7527 8124
VE3 2998 9532 8126 8576
BB-Graph 126 5940 4734 4700
BB-Plus (Historical) &7 01 1758 2193
(CNS without Degree Cons.)
BB-Plus (Historical) 65 2006 1787 2115
BB-Plus (Real-Time) 125 2565 1752 1372

Table 4.12: The query results with different matching orders on Pokec Database

Algorithm / Query (ms) | Query-1 | Query-2 | Query-3 | Query-4
Degree Centrality 125 2593 1814 1372
Closeness Centrality 127 2565 1752 1376
Betweenness Centrality 126 5465 5663 5313
Eigenvector Centrality 128 5474 5659 5633
Candidate Node Selection 126 2660 4098 3587

Table 4.13: Total process time for calculating matching order in the Pokec Database

Algorithm / Query (ms) | Query-1 | Query-2 | Query-3 | Query-4
Degree Centrality 67 69 61 58
Closeness Centrality 81 85 88 82
Betweenness Centrality 75 78 79 76
Eigenvector Centrality 76 73 76 72
Candidate Node Selection 91 753 1765 1653

106

Table 4.14: The total process time without calculating matching order selection

Algorithm / Query (ms) | Query-1 | Query-2 | Query-3 | Query-4
Degree Centrality 58 2524 1753 1314
Closeness Centrality 46 2480 1664 1294
Betweenness Centrality 51 5387 5585 5237
Eigenvector Centrality 52 5401 5583 5561
Candidate Node Selection 35 1907 2333 1834

Table 4.15: Matching Order of Different Methods for the Pokec Database

Algorithm / Query (ms) | Query-1 | Query-2 | Query-3 | Query-4
Degree Centrality 0-1 1-2-0 1-2-3-0 | 1-2-0-3
Closeness Centrality 0-1 2-10 1-2-3-0 | 1-2-0-3
Betweenness Centrality 0-1 0-1-2 | 0-1-2-3 | 0-3-1-2
Eigenvector Centrality 0-1 0-1-2 0-1-2-3 | 0-3-1-2
Candidate Node Selection 0-1 2-10 1-2-3-0 | 1-2-0-3

107

Table 4.16: The queries and their BB-Graph representation on Population Database

(L]

(INHFNIEVAY ‘ONIODLNO INANIN VAV 0 LV T IV T 6 L)(INFNLIVAY DNIODLNO INHNIIVAY 40 IV IV II6°9)
(INANIN VAV ‘ONIODLNO INANINVIY 40 IV TL IV T8)(IV I ONIODLNONI SHAITNOSIAd L E)
(AVA™HIMI'DONIOOLNO NIOI NOSIHd S €)(LV TA"DNIODLNO NI SHAI'T'NOSHAd 9T
(AVAHIMIG"ONIODLNO NIOI NOSIA 'S) (LV TADONIODLNONI SHATTNOSIH ¥ 1)

(NOSIAd " DONITNOINIT YFHION NOSIAd € D(INOSIAd DNITNOINI YFHIOW NOSIAd T 1)
(IVIA'DONIODLNONI SHAITNOSYAd v 0)(NOSIAd DNINOINIT YTHIVA ' NOS YA €'0)
(NOSYHd"DNINOINI YHHIVA NOS YA T'0)(NOSIHd DNIODLNOASNOdS NOSIHd 1°0)

AAT] syuared Jroy) a1oyMm
JuounIede oY) WOIJ JUAIRJJIP ST YIIYM Juduniede

Quues 9y} JO S)ep JUIAJJIP UT JAI[OYM SUIM],

(NOSYHd DNIODLNO YAHIVA'NOSIHd L 9)
(NOS¥Ad ‘ONIODLNO IAHIVA NOSIAd 9°S)(NOSIAd " DNIODLNO YAHIVA NOSIAd S)
(NOS¥Ad 'DONIODLNO YAHLVA NOSYAd ' €) (NOSIAd “DNIODLNO YAHILVA NOSIAd €T
(NOS¥Hd "DNIODLNO YHHLVA NOSIHd T TNINOSYHd ONIODLNO YAHLVA NOSHAd 1°0)

uoneIauag-02130p-g SUOE SUOS IIAY) PUL SIAY)E]

(JALSIOHY ALVLS‘ONIODLNOHO JAINANNOSIAd € 1)
(MALSIOT dIVLSONIOOLNOTO JAGNAN'NOSIAd T 0)(INOSIAd ‘DNIODILNOASNOIS NOSIAd T°0)

JUQIQYJIP ST SI13)SISa1 9)e)S asoym sa[dno))

(NOSYHd 'ONIODLNOTSH'NOSYHd +*€)
(NOSYAd ONINOONIYFHLOW NOSYAd 0 (NOSYAd ONINOINI YAHLOW NOSIAd ‘€' T)
(NOS¥Ad ONINODNI“YAHLVA ' NOSYAd ' 0)(INOSIAd ONINOINI YTHILVANOS A 1°0)

SIQ)SIS QI8 SIAYIOW soyMm S[dNod PILLIBIA

(NOSYHAd DNINODNI'NI” SHAITIV TA Y €)
(NOSYAd 'ONIODLNOASNOdS NOSIHd ¥ IV T DONIODLNONI SHATTNOSIA €0)
(IVIA*ONIODLNONI SHAITNOSIAd € 1)
(NOSYHd"DNINOINI YHHIVA NOSHAd T (LY TA ONIODLNO' NI SHAI'TNOSHAd €°0)
(NOSYHAd DNINODNI YHHLOW NOSIHd T 0)(NOSYAd ONINOINI'HSNOdS NOSUHd T°0)

SSQIpPE QWIES) UI SUTAT] [[& PUR 9JIM S, UOS pUB UOS

‘I9YIBJ ‘TAYIOW JO JUNSISUOD SATIUIR] PIPUIXF

uonejuesdaday ydearo-ggq

saLN)

108

4.4.3 Experiments on the Population Database

In this section, we compare the algorithms using the Population database. We execute
5 different queries to evaluate the performance of each algorithm. All queries and
their BB-Graph representation can be seen in Table and all the results are going

to discussed in this chapter.

4
. Person
Lives_In Lives_In
Lives_In Lives_In Spouse
Mother
Father 2
Person

Figure 4.13: The Query1 for Population dataset

First query for the population database is about finding "Extended families consisting
of mother, father, son and son’s wife and all living in the same address". It consists
of 5 nodes and 7 edges as shown in Figure According to the results that is
given in M.21] the BB-Plus approach beats all the algorithms only on real-time
Population database and give close results to the winner on the historical Population

database.

The BB-Plus approach uses (0—1—2—4—3) order based on Matching Order Selection
Based On Candidate Node Selection Without Candidates on historical Pokec database
as shown in Table 4.21] However, BB-Graph algorithm gives greater result than BB-

Plus in this query with no matching order.

109

The BB-Plus approach beats all the algorithms with 4 — 0 — 1 — 2 — 3 order us-
ing Matching Order Selection Based On Degree Centrality on real-time Population
database. It chooses Degree Centrality, because the query is "cyclic” and has edges

more than four.

0
Person
Father Father
Mother Mother
4
Spouse Person

Figure 4.14: The Query?2 for Population dataset

In the second query, we are trying to find "Married couples whose mothers are sis-
ters”. This cyclic query consists of 5 nodes and 5 edges as shown in Figure {.14]
Query results that is given in show us that the BB-Plus approach gives the

best results on both historical and real-time Population database.

The BB-Plus approach uses no matching order on both historical and real-time Popu-
lation database. Because all the nodes and edges in the query graph has the same label
and nodes has no properties. Therefore, matching order does not affect the results.
The BB-Plus approach directly calls the BB-Graph algorithm for this query and beats
all the other algorithms.

The third query is path query which is about finding "Couples whose state registers
are different” which is consists of 4 nodes and 3 edges as shown in[4.15] According
to the the query results that is given in[4.17] [4.21] the BB-Plus approach gives the best

results on both historical and real-time Population database.

110

0 0 3
State_Register Member_Of Spouse Member_Of State_Register

Figure 4.15: The Query3 for Population dataset

The BB-Plus approach uses (2 —3 — 0 — 1) order based on Matching Order Selection
Based On Candidate Node Selection Without Candidates on historical Pokec database

and give greater results than the other algorithms.

The BB-Plus approach chooses Matching Order Selection Based On Degree Central-
ity, because the query is type of "path” and beats all the algorithms with4—0—1—-2—3

order on real-time Population database.

0 4 6
Person Person Person

Father Father Father Father Father Father Father

Figure 4.16: The Query4 for Population dataset

The forth query is also a path query that is searching "Fathers and their sons along
8-degree-generation”. The query is structured around 8 nodes and 7 edges as shown
in BB-Plus approach gives the best results on both historical and real-time

Population database.

The BB-Plus approach uses no matching order on both historical and real-time Pop-
ulation database also in this query. Because all the nodes and edges in the query
graph has the same label and nodes has no properties again. The BB-Plus approach
directly calls the BB-Graph algorithm for this query and beats all the other algorithms

as shown in 4.21l

111

8
Apartment

Flat_Of_Apartment

Lvesn/v‘\ Lives_In

Spouse

0
Person

Mother Father
Father Mother

5
Born BirthDay Born

Lives_In Lives_In

9
Flat_of_Apartment w Flat_Of_Apartment

Figure 4.17: The Query5 for Population dataset

The last query is a complex cyclic query for finding "Twins who live in different flats
of the same apartment which is different from the apartment where their parents live".
It consists of 10 nodes and 14 edges as shown in[4.17} The BB-Plus approach is failed
to find the results in an acceptable and the BB-Graph algorithm sits the first place for
this query without taking consideration of matching order as shown in

112

Table 4.17: The query results for the Population Database

Algorithm / Query (ms) Query-1 | Query-2 | Query-3 | Query-4 | Query-5
Cypher 33376 40234 24215 38756 2M >
Duallso 2M > 2M > 2M > 2M > 2M >
GraphQL 2M > 2M > 2M > 2M > 2M >
Turbolso 2M > 2M > 2M > 2M > 2M >
VF3 2M > 2M > 2M > 2M > 2M >
BB-Graph 31376 34405 24215 37159 86452
BB-Flus (Historical) 35296 34481 18873 37140 2M >
(CNS without Degree Cons.)
BB-Plus (Historical) 35518 34223 18873 37063 2M >
BB-Plus (Real-Time) 28436 34401 19031 37136 | 116863 >

Table 4.18: The query results with different matching orders on Population Database

Algorithm / Query (ms) | Query-1 | Query-2 | Query-3 | Query-4 | Query-5
Degree Centrality 28436 34402 19031 38521 2M >
Closeness Centrality IM > 36325 19112 27512 2M >

Betweenness Centrality 31526 39853 26847 38984 | 116863
Eigenvector Centrality 28524 34458 18916 39102 2M >
Candidate Node Selection | 35542 35095 19101 37172 2M >

Table 4.19: The Total Process Time for Calculating Matching Order in the Population

Database
Algorithm / Query (ms) | Query-1 | Query-2 | Query-3 | Query-4 | Query-5
Degree Centrality 64 57 51 51 65
Closeness Centrality 74 72 79 82 99
Betweenness Centrality 71 69 71 67 76
Eigenvector Centrality 64 72 81 70 68
Candidate Node Selection | 2904 380 595 1037 10375

113

Table 4.20: The total process time without calculating matching order selection in the

Population Database

Algorithm / Query (ms) | Query-1 | Query-2 | Query-3 | Query-4 | Query-5
Degree Centrality 28372 34345 18980 38470 -
Closeness Centrality - 36253 19033 27430 -

Betweenness Centrality 31455 39784 26776 38917 | 116787
Eigenvector Centrality 28460 34386 19053 39032 -
Candidate Node Selection | 32860 34493 17838 3623 -

Table 4.21: Matching Order of Different Methods for the Population Database

Algorithm /
Query-1 | Query-2 | Query-3 Query-4 Query-5
Query (ms)
Degree
4-0-1-2-3 | 0-1-2-3-4 | 2-3-0-1 | 0-7-1-2-3-4-5-6 | 8-5-6-7-9-4-0-1-2-3
Centrality
Closeness
3-2-1-0-4 | 0-3-4-1-2 | 2-3-0-1 | 7-0-1-2-3-4-5-6 | 5-8-9-2-3-0-1-4-6-7
Centrality
Betweenness
0-1-2-3-4 | 0-3-1-2-4 | 0-2-3-1 | 0-7-1-6-2-5-3-4 | 2-3-5-8-9-6-7-0-1-4
Centrality
Eigenvector
4-0-1-2-3 | 0-1-2-3-4 | 2-3-0-1 | 0-7-1-6-2-5-3-4 | 9-8-7-6-5-4-2-3-0-1
Centrality
Candidate Node
0-1-2-4-3 | 0-1-2-3-4 | 2-3-0-1 | 0-1-2-3-4-5-6-7 | 5-0-1-2-3-8-9-4-6-7
Selection

114

4.5 Discussions on the Experimental Results

Concept

We propose BB-Plus approach which chooses six different matching order selection
methods automatically to improve the performance of subgraph isomorphism queries.
The new matching orders are degree centrality, closeness centrality, betweenness cen-

trality, eigenvector centrality, and selection based on candidate nodes.

Discussion

1. Performance Increase: With a great matching order, algorithms can easily
prune out the data that is not matching with query graph. Therefore, they can
reduce the search space and find matching nodes and edges efficiently using

less memory and time.

2. Performance on Different Query Types: Centrality based matching order selec-
tion methods such as Matching Order Selection Based On Degree Centrality,
Matching Order Selection Based On Closeness Centrality, the BB-Plus with
Betweenness Centrality, Matching Order Selection Based On Eigenvector Cen-
trality does not consider data graph. Although their matching order can be
easily calculated, they may found a bad matching order because they do not

consider data graph.

However, Matching Order Selection Based On Candidate Node Selection con-
siders the query and data graph. Therefore, it does not affected by the query
types and find a great matching order that fits with both the query and data
graph.

On the other hand, centrality based matching order selection methods are good
for real-time databases. Because they can be easily calculated on execution

time and they can adapt themselves to different types of queries.

115

3. Drawbacks of Matching Order Selection:

(a) Cost of Calculating Process: Calculation of matching order reduce the
performance when the the query nodes is already in best order. Because
the approach loses time for calculating the matching order to find the
same order. Therefore, BB-Graph or the other subgraph isomorphism al-

gorithms gives better results than BB-Plus approach in some experiment.

(b) Working with Poor Matching Order: Matching order increase the perfor-
mance if the order is selected based on considering both query and data
graph. When the matching order is selected poorly, the search space is
can be become bigger than the one without matching order and the time

for finding matchings can be increase.

Concept

All the algorithms in the comparison are developed using Neo4j’s graph data struc-
tures such as nodes, edges and indexes. Normally GraphQI, Turbolso and VF3 use

their own data structures to store and retrieve nodes and edges.

Discussion

1. Easy Implemantation: With Neo4j’s graph data structures, the implementation
of algorithms become easier. We do not need to develop new data structures for
each algorithm. We only need to store nodes and edges of dataset in Neo4;j’s
graph database and use its methods to retrieve those when we need them in any

step of any algorithm.

2. Performance Issues: GraphQl, Turbolso and VF3, Matching Order Selection
Based On Candidate Edge Selection have performance issues based on the us-
age of Neo4;j’s graph data structures. Especially, Turbolso and VF3 are affected
directly and need their own data structures in most of the queries. For example,
retrieving nodes based on an edge can be a big problem in Neo4j. There is no
efficient method defined to retrieve them. However, the data structures of Tur-
bolso and VF3 can handled this efficiently. Therefore, in most of the queries

Turbolso and VF3 does not give great results as we expected.

116

3. Fair Comparison: Eventhough Turbolso and VF3 affected by the usage Neo4j’s
graph data structures, the comparison gives fair results to us because all the

algorithms are run in the same environment using same data structures.

4. Memory Usage: All the algortihms use memory more effectively with Neo4j’s
graph data structures. They do not need extra memory for large indexing or

data storing.

5. Query Language: We can query using same query represantation for all the
algorithms. We can a query and run for all the algorithms without changing

anything on the query represantation.

Concept

Matching Order Selection Based On Candidate Node Selection faster than the other

algorithms if the candidate node size given before querying.
Discussion

Eventhough the Matching Order Selection Based On Candidate Node Selection is
good at finding good matching order and effective querying, calculating candidate
node size while querying can be take too much time and it affects the performance
of the algorithm. Therefore, the BB-Plus approach takes it into the consideration and
use the Matching Order Selection Based On Candidate Node Selection Without Can-
didates algorithm which is an extension of the Matching Order Selection Based On
Candidate Node Selection algorithm that calculate candidate node size before query-

ing in order to do not lose time in matching order calculation and query efficiently.

117

ism

h

isomorp

f the BB-Plus approach with other subgraph

1S01n O

Compari

Table 4.22

algorithms

sarNQ) PYO
poon 1004 wnIpajA wnIpajA 1004 wnipaj
U0 IDUBULIOLIDJ
SaLRNQ) d1PL)
poon 1004 wnIpajA wnIpajA 1004 wnIpapw
U0 DUBULIOLIDJ
sadNnd) Yed
poon 1004 WnIpaA WNIpaN 1004 wnIpajy
U0 DUBULIOLIDdJ
saLdng) Jo
pooH poon wnipsjy 1004 poon 1004 adAY, yua1appI(x
0} uoneydepy
1584 MO[S wnIpajA wnIpajA MO[S wnIpa WL, $$30014 [BIO],
(aseqeje(q WIL-[ed)
1se] MO[S - - MO[S - I9pIQ) SuIyIRIA Jo
wil], uonemdE)
(3seqeye([eIH0ISTH)
MO[S MO[S - - MO[S - J9PIQ SuryoIeA Jo
wl], uonemIE)
eje(q ydean jo
poon 1004 wnIpay WnIpIN 1004 1004 EL 0 (NERAL |
U0 DUBULIOLIDdJ
UONDJ[AS 9PON AepIpue)
KAenua)) 10109AUd319
uonesodxg POYIIA UON)RPS
AIenud) ssouuaImlog dounabag uonelodxyg apoN - - 9PON A1aonQ) 10 9ZIG AJBPIPUR)
uoI3ay AepIpue) 19paQ Suryorey

ANTenua)) ssauaso[)

Arenua) 92130

[ediourlq drysuoneoy Suryorejy

QNI PEAYL-YOO[JO [9AJ] T

[ediourg drysuone[oy Suryojejy

uone[nwIg [enq

sse[) @ouaeambyy

1591, wisiydiowos] ydei3qng opnosq

SPOYIRA Suruunig

[ediourig apoN Suryoiejy 9[nI 210D [ediouLid opoN Suryolen uone[nuis d[dwig pooyI0quIIoN Surunig paseq-arneusis pooyoqysSIoN
- - - - Surxopuy paseq-uianeq Surxopuy paseq-joqe] Surxapuy
610C L10T ¥10C ¥10C €10¢ 800C EL)S
snid-44 €AA ydexn-gg osyrenq osjoqany, TOudesn

118

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this thesis, we introduce new approach called the BB-Plus, which improves the
performance of the branch-and-bounnd algorithms by using different matching order
selection methods for subgraph isomorpishm queries to find the best matching order
and reduce the search space. The approach uses rules to find matching order selection
methods automatically, which are degree centrality, closeness centrality, betweenness

centrality, eigenvector centrality and candidate node selection.

We compare our BB-Plus approach with the BB-Graph, Cypher, Duallso, GraphQl,
Turbolso and VF3 algorithms with the publicly available WorldCup and Pokec datasets
and with a much larger data set of the entire population of a country, the Population
dataset. In most of the queries, our BB-Plus approach outperforms the rest of all the

algorithms for most queries in these three dataset.

On the other hand, we realize that if we do not take into account the computation time
of the matching order, the Matching Order Selection Based On Candidate Node Se-
lection gives better results than BB-Graph, Cypher, Duallso, GraphQl, Turbolso, VF3
and other matching order selection methods with branch-bound algorithms. Most of
the time, the algorithm beats or gives very close results to the other improved BB-
Graph algorithms. Therefore, we divide queries based on database that they are exe-

cuted.

119

In historical databases, we use Matching Order Selection with Candidate Node Selec-
tion Without Candidates that uses already calculated candidate node size list. How-
ever, on real-time databases, we uses graph centrality measures as matching order.
Because they can be easily calculated and they adapt themselves easily to the any
type of query. Therefore, the BB-Plus approach becomes the best algorithm among

all the algorithms on both historical and real-time databases.

In addition, we see that in some queries for some matching order selection method,
the BB-Graph algorithm (or the other algorithms) still gives better results. The reason
BB-Plus approach is worse than the BB-Graph algorithm is that the BB-Graph query
is already given in the best selection order to the algorithm. The BB-Graph does not
consider the time for calculating the order unlike ours and the others. Therefore, it
can give better results than others with the difference in processing time of computing

the matching order.

Although GraphQL does not give the worst result for a small database such as World-
Cup, it cannot handle large data sets such as Pokec and Population and gives no re-
sults in a reasonable amount of time. On the other hand, VF3, Duallso and Turbolso
consider matching order selection, they are both worse than the BB-Graph and the
BB-Plus algorithms. The reason of low performance of VF3, Duallso and Turbolso
is determined by the use of Neo4j’s graph data structures. Normally, these algorithms
use their own data structures. However, with the usage of Neo4j’s data structures,
it has become very difficult to find nodes with a corresponding relationship and we

detect that it affects their performance.

5.2 Future Work

As we pointed out in the conclusion, all the matching order selection methods used
in the BB-Plus approach are not affected by query types. Their performance is deter-
mined by the distribution of the nodes in the data graph. For future works, different
machine learning algorithms or different inputs could be used in the dataset or the size
of the dataset could be increased to determine which matching order selection meth-

ods performs best with which query types in order to improve the performance.

120

[1]

(2]

[3]

(4]

[5]

[6]

[7]

[8]

REFERENCES

M. Asiler and A. Yazici, “Bb-graph: A new subgraph isomorphism algorithm
for efficiently querying big graph databases,” arXiv preprint arXiv:1706.06654,
2017.

H. He and A. K. Singh, “Closure-tree: An index structure for graph queries,”
in 22nd International Conference on Data Engineering (ICDE’06), pp. 38-38,
IEEE, 2006.

W.-S. Han, J. Lee, and J.-H. Lee, “Turbo iso: towards ultrafast and robust sub-
graph isomorphism search in large graph databases,” in Proceedings of the 2013
ACM SIGMOD International Conference on Management of Data, pp. 337-348,
ACM, 2013.

P. Bhatia and B. Mallick, “Critique of wordcount blueprint by virtue of mapre-
duce postulate,” International Journal of Advanced Research in Computer and

Communication Engineer (IJARCCE), vol. 5, no. 2, 2016.

R. Angles, “A comparison of current graph database models,” in IEEE 28th
International Conference on Data Engineering Workshops (ICDEW), pp. 171-
177, IEEE, 2012.

S. Jouili and V. Vansteenberghe, “An empirical comparison of graph databases,”
in 2013 International Conference on Social Computing (SocialCom), pp. 708—
715, IEEE, 2013.

A. Nayak, A. Poriya, and D. Poojary, “Type of nosql databases and its compar-
ison with relational databases,” International Journal of Applied Information

Systems, vol. 5, no. 4, pp. 16-19, 2013.

A. Moniruzzaman and S. A. Hossain, “Nosql database: New era of databases for
big data analytics-classification, characteristics and comparison,” arXiv preprint

arXiv:1307.0191, 2013.

121

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

R. Giugno and D. Shasha, “Graphgrep: A fast and universal method for querying
graphs,” in Object recognition supported by user interaction for service robots,

vol. 2, pp. 112-115, IEEE, 2002.

X. Yan, P. S. Yu, and J. Han, “Graph indexing: a frequent structure-based ap-
proach,” in Proceedings of the 2004 ACM SIGMOD international conference on
Management of data, pp. 335-346, ACM, 2004.

S. Srinivasa, M. Maier, M. R. Mutalikdesai, K. Gowrishankar, and P. Gopinath,
“Lwi and safari: A new index structure and query model for graph databases.,”

in COMAD, pp. 138-147, 2005.

D. W. Williams, J. Huan, and W. Wang, “Graph database indexing using struc-
tured graph decomposition,” in 2007 IEEE 23rd International Conference on
Data Engineering, pp. 976-985, 1EEE, 2007.

S. Zhang, M. Hu, and J. Yang, “Treepi: A novel graph indexing method,” in
2007 IEEE 23rd International Conference on Data Engineering, pp. 966975,
IEEE, 2007.

P. Zhao, J. X. Yu, and P. S. Yu, “Graph indexing: tree+ delta<= graph,” in Pro-

ceedings of the 33rd international conference on Very large data bases, pp. 938—

949, VLDB Endowment, 2007.

H. Shang, Y. Zhang, X. Lin, and J. X. Yu, “Taming verification hardness: an
efficient algorithm for testing subgraph isomorphism,” Proceedings of the VLDB
Endowment, vol. 1, no. 1, pp. 364-375, 2008.

L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub) graph isomor-
phism algorithm for matching large graphs,” IEEE transactions on pattern anal-

ysis and machine intelligence, vol. 26, no. 10, pp. 1367-1372, 2004.

S. Zhang, S. Li, and J. Yang, “Gaddi: distance index based subgraph matching
in biological networks,” in Proceedings of the 12th International Conference on
Extending Database Technology: Advances in Database Technology, pp. 192—
203, ACM, 20009.

122

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

H. He and A. K. Singh, “Graphs-at-a-time: query language and access methods
for graph databases,” in Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pp. 405418, ACM, 2008.

P. Zhao and J. Han, “On graph query optimization in large networks,” Proceed-

ings of the VLDB Endowment, vol. 3, no. 1-2, pp. 340-351, 2010.

M. Saltz, A. Jain, A. Kothari, A. Fard, J. A. Miller, and L. Ramaswamy,
“Dualiso: An algorithm for subgraph pattern matching on very large labeled

graphs,” in Big Data (BigData Congress), 2014 IEEE International Congress
on, pp. 498-505, 1IEEE, 2014.

V. Carletti, P. Foggia, A. Saggese, and M. Vento, “Introducing vf3: A new algo-
rithm for subgraph isomorphism,” in International Workshop on Graph-Based

Representations in Pattern Recognition, pp. 128—139, Springer, 2017.

V. Carletti, P. Foggia, and M. Vento, “V{2 plus: An improved version of v{2 for
biological graphs,” in International Workshop on Graph-Based Representations

in Pattern Recognition, pp. 168—177, Springer, 2015.

M. Ciglan, A. Averbuch, and L. Hluchy, “Benchmarking traversal operations
over graph databases,” in Data Engineering Workshops (ICDEW), 2012 IEEE
28th International Conference on, pp. 186—189, IEEE, 2012.

R. De Virgilio, A. Maccioni, and R. Torlone, “Converting relational to graph
databases,” in First International Workshop on Graph Data Management Expe-

riences and Systems, p. 1, ACM, 2013.

C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins, “A compar-
ison of a graph database and a relational database: a data provenance perspec-

tive,” in Proceedings of the 48th annual Southeast regional conference, p. 42,

ACM, 2010.

R. Angles and C. Gutierrez, “Survey of graph database models,” ACM Comput-
ing Surveys (CSUR), vol. 40, no. 1, p. 1, 2008.

J. J. Miller, “Graph database applications and concepts with neo4j,” in Proceed-

ings of the Southern Association for Information Systems Conference, Atlanta,

GA, USA, vol. 2324, p. 36, 2013.

123

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

P. Pareja-Tobes, E. Pareja-Tobes, M. Manrique, E. Pareja, and R. Tobes, “Bio4j:
An open source biological data integration platform.,” in IWBBIO, p. 281, 2013.

B. Iordanov, “Hypergraphdb: a generalized graph database,” in International

conference on web-age information management, pp. 25-36, Springer, 2010.

H. Huang and Z. Dong, ‘“Research on architecture and query performance based
on distributed graph database neo4j,” in Consumer Electronics, Communica-
tions and Networks (CECNet), 2013 3rd International Conference on, pp. 533—
536, IEEE, 2013.

O. Manual, “Distributed architecture.” http://orientdb.com/docs/2.
1/Distributed—-Architecture.htmll Accessed: 2016-04-04.

C. Phillips, “Centrality measures.” http://web.eecs.
utk.edu/~cphillip/cs594_spring2015_projects/
CentralityProject.pdfl Accessed: 2019-07-21.

N. Matas, “Comparing network centrality measures as tools for identifying key
concepts in complex networks: A case of wikipedia.,” Journal of Digital Infor-

mation Management, vol. 15, no. 4, 2017.

J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee, “An in-depth comparison of
subgraph isomorphism algorithms in graph databases,” in Proceedings of the

VLDB Endowment, vol. 6, pp. 133—-144, VLDB Endowment, 2012.

J. R. Ullmann, “An algorithm for subgraph isomorphism,” in Journal of the ACM
(JACM), pp. 31-42, ACM, 1976.

S. Zhang, S. Li, and J. Yang, “Summa: subgraph matching in massive graphs,”
in Proceedings of the 19th ACM international conference on Information and

knowledge management, pp. 1285-1288, ACM, 2010.

N. Staffl, “World cup fun with neo4j.” http://worldcup.neodj.org.
Accessed: 2018-12-08.

J. Leskovec, “Pokec social network.” https://snap.stanford.edu/

data/soc—Pokec.html. Accessed: 2018-12-08.

124

http://orientdb.com/docs/2.1/Distributed-Architecture.html
http://orientdb.com/docs/2.1/Distributed-Architecture.html
http://web.eecs.utk.edu/~cphillip/cs594_spring2015_projects/CentralityProject.pdf
http://web.eecs.utk.edu/~cphillip/cs594_spring2015_projects/CentralityProject.pdf
http://web.eecs.utk.edu/~cphillip/cs594_spring2015_projects/CentralityProject.pdf
http://worldcup.neo4j.org
https://snap.stanford.edu/data/soc-Pokec.html
https://snap.stanford.edu/data/soc-Pokec.html

APPENDIX A

APPENDIX 1

A.1 Matching Order Training Dataset

Table A.1: Training Data for Determining Matching Order (1)

Query Dataset Data Graph | Data Graph | Query Query # of Dis- | # of Dis- | # of Nodes | Query | Best
Node Size | Edge Size | Graph Graph tinct Node | tinct Edge | with Prop- | Type Re-
Node Size | Edge Size Label Label erties sults

1 Players who join squad of different | WorldCup | Small Small 5 4 3 2 0 Path DC
countries (45348) (86577)

2 | Players who take role as both sub- | WorldCup | Small Small 4 4 3} 3 0 Cyclic | BC
stitute and starter in the same match (45348) (86577)

3 Matches between the same coun- | WorldCup | Small Small 7 8 4 3 0 Cyclic | DC
tries occurred in different world (45348) (86577)
cups

4 | Cases at which two countries | WorldCup | Small Small 10 12 6 6 0 Cyclic | DC
played at least 2 matches (as away (45348) (86577)
team in one and home team in the
other) in the same world cup and the
same player scored at least 1 goal in
both matches

5 Players who take role in any match | WorldCup | Small Small 10 9 4 3 0 Others | EC
at least 3 world cups (45348) (86577)

6 | Players who take role in any match | WorldCup | Small Small 7 6 4 3 0 Others | EC
at least 2 world cups (45348) (86577)

7 Players scores a hat-trick as starters | WorldCup | Small Small 5 4 3 2 0 Others | CC

(45348) (86577)

8 | Players scores at least 5 goals as | WorldCup | Small Small 7 6 3 2 0 Others | EC
starters (45348) (86577)

9 Countries which hosted World Cup | WorldCup | Small Small 3 2 2 1 0 Path DC
more than one time (45348) (86577)

10 | Players who take role as substitute | WorldCup | Small Small 3 2 3 2 0 Path DC
and scores goal (45348) (86577)

11 | Two countries played at least 2 | WorldCup | Small Small 5 6 3 3 0 Cyclic | BC
matches (as away team in one and (45348) (86577)
home team in the other) in the same
world cup

12 | Players in the squad of England | WorldCup | Small Small 4 3 4 3 2 Others | CC
Team in 1990 World Cup (45348) (86577)

13 | Players in the squad of Italy Team | WorldCup | Small Small 4 3 4 3 2 Others | CC
in 1990 World Cup (45348) (86577)

14 | Players in the squad of France Team | WorldCup | Small Small 4 3 4 3 2 Others | CC
in 1998 World Cup (45348) (86577)

125

Table A.2:

Training Data for Determining Matching Order (2)

15 | Players in the squad of Brazil Team | WorldCup | Small Small 4 3 4 Others | CC
in 2002 World Cup (45348) (86577)
16 | Players in the squad of England | WorldCup | Small Small 4 3 4 Others | EC
Team in 1986 World Cup (45348) (86577)
17 | Players in the squad of Italy Team | WorldCup | Small Small 4 3 4 Others | CC
in 1982 World Cup (45348) (86577)
18 | Players in the squad of Argentina | WorldCup | Small Small 4 3 4 Others | CC
Team in 1978 World Cup (45348) (86577)
19 | Players in the squad of Germany | WorldCup | Small Small 4 3 4 Others | CC
Team in 1974 World Cup (45348) (86577)
20 | Players in the squad of Brazil Team | WorldCup | Small Small 4 3 4 Others | EC
1970 in World Cup (45348) (86577)
21 | All World Cups hosted by France WorldCup | Small Small 2 1 2 Path DC
(45348) (86577)
22 | All World Cups hosted by England | WorldCup | Small Small 2 1 2 Path DC
(45348) (86577)
23 | All World Cups hosted by Italy WorldCup | Small Small 2 1 2 Path DC
(45348) (86577)
24 | All World Cups hosted by Brazil WorldCup | Small Small 2 1 2 Path DC
(45348) (86577)
25 | All matches played in San Siro Sta- | WorldCup | Small Small 2 1 2 Path DC
dium (45348) (86577)
26 | All matches played in Olympiasta- | WorldCup | Small Small 2 1 2 Path DC
dion Stadium (45348) (86577)
27 | All matches played in San Siro Sta- | WorldCup | Small Small 2 1 2 Path DC
dium (45348) (86577)
28 | All matches played in Stade de | WorldCup | Small Small 2 1 2 Path DC
France Stadium (45348) (86577)
29 | All matches played in Rose Bowl | WorldCup | Small Small 2 1 2 Path DC
Stadium (45348) (86577)
30 | Matches between France and Brazil | WorldCup | Small Small 4 3 3 Others | CC
in 1998 World Cup (45348) (86577)
31 | Matches between Germany and | WorldCup | Small Small 4 3 3 Others | CC
Brazil in 2002 World Cup (45348) (86577)
32 | Matches between Uruguay and | WorldCup | Small Small 4 3 3 Others | CC
Brazil in 1994 World Cup (45348) (86577)
33 | Matches between Italy and Brazil in | WorldCup | Small Small 4 3 3 Others | EC
1994 World Cup (45348) (86577)
34 | Matches between Italy and France | WorldCup | Small Small 4 3 3 Others | CC
in 1994 World Cup (45348) (86577)
35 | All players takes role as substi- | WorldCup | Small Small 4 5 Others | CC
tute in any match that played in (45348) (86577)
Olympiastadion Stadium in any
‘World Cup
36 | All players takes role as substitute | WorldCup | Small Small 5 4 5 Others | CC
in any match that played in Daegu (45348) (86577)
World Cup Stadium in any World
Cup
37 | All players takes role as substitute | WorldCup | Small Small 5 4 5 Others | CC
in any match that played in Stade de (45348) (86577)
France Stadium in any World Cup
38 | All players takes role as substitute | WorldCup | Small Small 5 4 5 Others | CC
in any match that played in Rose (45348) (86577)
Bowl in any World Cup
39 | All players takes role as substitute | WorldCup | Small Small 5 4 5 Others | CC
in any match that played in San Siro (45348) (86577)
Stadium in any World Cup
40 | All matches of Brazil in a World | WorldCup | Small Small 4 3 Cyclic | BC
Cup that hosted by them (45348) (86577)

126

Table A.3: Training Data for Determining Matching Order (3)

41 | All matches of France in a World | WorldCup | Small Small 3 4 3 4 Cyclic | BC
Cup that hosted by them (45348) (86577)

42 | All matches of Argentina ina World | WorldCup | Small Small 3 4 3 4 Cyclic | BC
Cup that hosted by them (45348) (86577)

43 | All matches of Germany in a World | WorldCup | Small Small 3 4 3 4 Cyclic | BC
Cup that hosted by them (45348) (86577)

44 | All players takes role as starters and | WorldCup | Small Small 7 6 5 4 Others | EC
scores a hat trick in any match that (45348) (86577)
played in San Siro Stadium

45 | All players takes role as starters and | WorldCup | Small Small 7 6 5 4 Others | EC
scores a hat trick in any match that (45348) (86577)
played in Olympiastadion Stadium

46 | All players takes role as starters and | WorldCup | Small Small 7 6 5 4 Others | EC
scores a hat trick in any match that (45348) (86577)
played in Daegu World Cup Sta-
dium

47 | All players takes role as starters and | WorldCup | Small Small 7 6 5 4 Others | CC
scores a hat trick in any match that (45348) (86577)
played in Stade de France Stadium

48 | All players takes role as starters and | WorldCup | Small Small 7 6 5 4 Others | EC
scores a hat trick in any match that (45348) (86577)
played in Rose Bowl Stadium

49 | Countries scores at least 5 goals as | WorldCup | Small Small 3 3 3 3 Cyclic | BC
home team in any match at World (45348) (86577)
Cup which is hosted by the same
country

50 | Countries scores at least 4 goals as | WorldCup | Small Small 3 3 3 3 Cyclic | BC
home team in any match at World (45348) (86577)
Cup which is hosted by the same
country

51 | Countries scores at least 3 goals as | WorldCup | Small Small 4 4 3 3 Cyclic | BC
away team in any match at World (45348) (86577)
Cup which is hosted by the home
teams’ country

52 | World Cups hosted by at least two | WorldCup | Small Small 3 2 2 1 Path DC
countries (45348) (86577)

53 | World Cups hosted by at least three | WorldCup | Small Small 4 3 2 1 Others | CC
countries (45348) (86577)

54 | Players who is in the squad of same | WorldCup | Small Small 6 6 4 3 Cyclic | DC
team that played at least two differ- (45348) (86577)
ent World Cup

55 | Players who is in the squad of same | WorldCup | Small Small 6 6 4 3 Cyclic | DC
team that played at least three dif- (45348) (86577)
ferent World Cup

56 | Players who is in the squad of | WorldCup | Small Small 6 6 4 3 Cyclic | DC
Brazil team that played at least two (45348) (86577)
different World Cup

57 | Players who is in the squad of Eng- | WorldCup | Small Small 6 6 4 3 Cyclic | DC
land team that played at least two (45348) (86577)
different World Cup

58 | Players who is in the squad of | WorldCup | Small Small 6 6 4 3 Cyclic | DC
France team that played at least two (45348) (86577)
different World Cup

59 | Players who is in the squad of Italy | WorldCup | Small Small 6 6 4 3 Cyclic | DC
team that played at least two differ- (45348) (86577)
ent World Cup

127

Table A .4:

Training Data for Determining Matching Order (4)

60 | Players who is in the squad of Ar- | WorldCup | Small Small 4 Cyclic | DC
gentina team that played at least (45348) (86577)
two different World Cup

61 | Stadiums used for at least two | WorldCup | Small Small 3 Path DC
World Cups (45348) (86577)

62 | Goals that Ronaldo scores in 1998 | WorldCup | Small Small 5 Others | CC
World Cup (45348) (86577)

63 | Goals that Raul scores in 1998 and | WorldCup | Small Small 5 Others | CC
2002 World Cup (45348) (86577)

64 | Goals that Michel Platini scores in | WorldCup | Small Small 5 Others | EC
1978, 1982 and 1986 World Cup (45348) (86577)

65 | Goals that Thierry Henry scores in | WorldCup | Small Small 5 Others | CC
1998 and 2006 World Cup (45348) (86577)

66 | Goals that Dennis Bergkamp scores | WorldCup | Small Small 5 Others | CC
in 1994 and 1998 World Cup (45348) (86577)

67 | Goals that Rivaldo scores in 1998 | WorldCup | Small Small 5 Others | CC
and 2002 World Cup (45348) (86577)

68 | All the goals that Pelé scores in any | WorldCup | Small Small 5 Others | CC
World Cup (45348) (86577)

69 | All the goals that Ronaldo scores in | WorldCup | Small Small 5 Others | CC
any World Cup (45348) (86577)

70 | All the goals that Thierry Henry | WorldCup | Small Small 5 Others | CC
scores in any World Cup (45348) (86577)

71 | All the goals that Dennis Bergkamp | WorldCup | Small Small 5 Others | EC
scores in any World Cup (45348) (86577)

72 | All the goals that Raul scores in any | WorldCup | Small Small 5 Others | CC
World Cup (45348) (86577)

73 | Players bigger than 30 years old | WorldCup | Small Small 3 Others | CC
that both take role as both substitute (45348) (86577)
and starter in the same match

74 | Players bigger than 30 years old | WorldCup | Small Small 4 Others | CC
that both take role as both substi- (45348) (86577)
tute and starter in the same match
and scores a goal

75 | Players take role as starter in at least | WorldCup | Small Small 4 Others | EC
two match in 1998 World Cup (45348) (86577)

76 | Players take role as starter in at least | WorldCup | Small Small 4 Others | CC
two match in 1994 World Cup (45348) (86577)

77 | Players take role as starter in at least | WorldCup | Small Small 4 Others | EC
two match in 1990 World Cup (45348) (86577)

78 | Players take role as starter in at least | WorldCup | Small Small 4 Others | EC
two match in 2002 World Cup (45348) (86577)

79 | Players take role as starter in at least | WorldCup | Small Small 4 Others | EC
two match in 1986 World Cup (45348) (86577)

80 | All matches of Brazil as an away | WorldCup | Small Small 3 Path DC
team in 1998 World Cup (45348) (86577)

81 | All matches of France as an away | WorldCup | Small Small 3 Path DC
team in 1998 World Cup (45348) (86577)

82 | All matches of England as an away | WorldCup | Small Small 3 Path DC
team in 1998 World Cup (45348) (86577)

83 | All matches of Argentina as an | WorldCup | Small Small 3 Path DC
away team in 1998 World Cup (45348) (86577)

84 | All matches of Germany as an away | WorldCup | Small Small 3 Path DC
team in 1998 World Cup (45348) (86577)

128

Table A.5: Training Data for Determining Matching Order (5)

85 | All World Cups that any player | WorldCup | Small Small 5 5 3 Others | CC
scores a hat trick in any match (45348) (86577)

86 | All World Cups that any player | WorldCup | Small Small 8 8 5 Others | EC
scores at least 4 goals in any match (45348) (86577)

87 | All World Cups that any player | WorldCup | Small Small 4 4 5 Others | CC
scores at least 5 goals in any match (45348) (86577)

88 | All stadiums that Final Matches are | WorldCup | Small Small 2 1 2 Path DC
played (45348) (86577)

89 | Home and away teams of final | WorldCup | Small Small 4 3 3 Others | CC
matches of all World Cups (45348) (86577)

90 | Countries played at finals of a | WorldCup | Small Small 3 4 3 Cyclic | BC
World Cup that is hosted by the (45348) (86577)
same country

91 | Countries played at semi-finals of | WorldCup | Small Small 3 4 3 Cyclic | BC
a World Cup that is hosted by the (45348) (86577)
same country

92 | Players scores at finals games WorldCup | Small Small 4 4 4 Others | CC

(45348) (86577)
93 | Players scores at semi-finals games | WorldCup | Small Small 4 4 4 Others | CC
(45348) (86577)

94 | Players takes role as starters at 1998 | WorldCup | Small Small 5 4 5 Others | CC
‘World Cup Finals and score at least (45348) (86577)
one goal

95 | Players takes role as starters at 1998 | WorldCup | Small Small 5 4 5 Others | CC
‘World Cup Semi-Finals and score at (45348) (86577)
least one goal

96 | Players takes role as starters at 1990 | WorldCup | Small Small 5 4 5 Others | CC
‘World Cup Finals and score at least (45348) (86577)
one goal

97 | Players takes role as starters at 1990 | WorldCup | Small Small 5 4 5 Others | CC
‘World Cup Semi-Finals and score at (45348) (86577)
least one goal

98 | Players takes role as starters of | WorldCup | Small Small 5 4 5 Others | CC
home team at 1994 World Cup Fi- (45348) (86577)
nals

99 | Players takes role as starters of | WorldCup | Small Small 5 4 5 Others | EC
away team at 1994 World Cup Fi- (45348) (86577)
nals

100| The user with id 22 who has a | Pokec Medium Medium 2 1 2 Path DC
friendship with the user with id 2 (1632803) | (30622564)

101| The user with id 1 who has a friend- | Pokec Medium Medium 2 1 2 Path DC
ship with the user with id 131 (1632803) | (30622564)

102| The user with id 8 who has a friend- | Pokec Medium Medium 2 1 2 Path DC
ship with the user with id 495258 (1632803) | (30622564)

103| The user with id 1822 who has | Pokec Medium Medium 2 1 2 Path DC
a friendship with the user with id (1632803) (30622564)
2922

104| The user with id 151 who has a | Pokec Medium Medium 2 1 2 Path DC
friendship with the user with id 141 (1632803) (30622564)

105| The user list which consists of peo- | Pokec Medium Medium 3 2 3 Path cC
ple who is 17 years old and ’stre- (1632803) (30622564)
doskolske’ at education level

106| The user list which consists of peo- | Pokec Medium Medium 3 2 3 Path DC
ple who is 18 years old and ’stre- (1632803) (30622564)
doskolske’ at education level

129

Table A.6:

Training Data for Determining Matching Order (6)

107| The user list which consists of peo- | Pokec Medium Medium 3 2 3 2 Path CcC
ple who is 19 years old and ’stre- (1632803) (30622564)
doskolske’ at education level

108| The user list which consists of peo- | Pokec Medium Medium 2 3 2 Path DC
ple who is 20 years old and ’stre- (1632803) | (30622564)
doskolske’ at education level

109| The user list which consists of peo- | Pokec Medium Medium 3 2 3 2 Path CcC
ple who is 21 years old and ’stre- (1632803) (30622564)
doskolske’ at education level

110| The friends of users who used to | Pokec Medium Medium 4 3 2 3 Others | CC
skateboarding but now playing bas- (1632803) | (30622564)
ketball

111| The friends of users who used to | Pokec Medium Medium 4 3 2 3 Others | CC
squash but now playing tennis (1632803) | (30622564)

112| The friends of users who used to | Pokec Medium Medium 4 3 2 3 Others | CC
tennis but now playing basketball (1632803) (30622564)

113| The friends of users who used to | Pokec Medium Medium 4 3 2 3 Others | CC
football but now playing basketball (1632803) | (30622564)

114| The friends of users who used to | Pokec Medium Medium 4 3 2 3 Others | CC
basketball but now playing football (1632803) (30622564)

115| The people who can talk ‘En- | Pokec Medium Medium 4 5 3 3 Cyclic | DC
glish’ and ’vysokoskolske’ educa- (1632803) | (30622564)
tion level that
friends with users who is also at
’vysokoskolske’
education level and can talk ‘En-
glish’

116| The people who can talk ‘Ital- | Pokec Medium Medium 4 5 3 3 Cyclic | DC
ian’ and ’vysokoskolske’ education (1632803) (30622564)
level that
friends with users who is also at
’vysokoskolske’
education level and can talk ‘Ital-
ian’

117| The people who can talk ‘Span- | Pokec Medium Medium 4 5 3 3 Cyclic | DC
ish’ and "vysokoskolske’ education (1632803) (30622564)
level that
friends with users who is also at
’vysokoskolske’
education level and can talk ‘Span-
ish’

118| The people who can talk ‘French’ | Pokec Medium Medium 4 5 3 3 Cyclic | BC
and ’vysokoskolske’ education (1632803) (30622564)
level that
friends with users who is also at
’vysokoskolske’
education level and can talk
‘French’

119 The people who can talk ‘Ger- | Pokec Medium Medium 4 5 3 3 Cyclic | BC
man’ and ’vysokoskolske’ educa- (1632803) (30622564)
tion level that
friends with users who is also at
’vysokoskolske’
education level and can talk ‘Ger-
man’

120| Users talk English and play hockey | Pokec Medium Medium 4 3 3 3 Others | CC
and basketball (1632803) | (30622564)

130

Table A.7:

Training Data for Determining Matching Order (7)

121] Users talk French and play football | Pokec Medium Medium 3 3 Others | CC
and basketball (1632803) | (30622564)
122| Users talk Italian and play tennis | Pokec Medium Medium 3 3 Others | CC
and squash (1632803) | (30622564)
123| Users talk Dutch and play tennis | Pokec Medium Medium 3 3 Others | CC
and basketball (1632803) | (30622564)
124| Users talks Spanish and play | Pokec Medium Medium 3 3 Others | EC
hockey and tennis (1632803) (30622564)
125| Friends play basketball Pokec Medium Medium 3 2 Cyclic | BC
(1632803) | (30622564)
126| Friends play hockey Pokec Medium Medium 3 2 Cyclic | BC
(1632803) | (30622564)
127| Friends play football Pokec Medium Medium 3 2 Cyclic | BC
(1632803) | (30622564)
128| Friends play tennis Pokec Medium Medium 3 2 Cyclic | BC
(1632803) | (30622564)
129| Friends play volleyball Pokec Medium Medium 3 2 Cyclic | BC
(1632803) | (30622564)
130| Friends of friends of user with id 1 | Pokec Medium Medium 2 1 Path DC
(1632803) | (30622564)
131| Friends of friends of user with id 2 | Pokec Medium Medium 2 1 Path DC
(1632803) | (30622564)
132| Friends of friends of user with id 3 | Pokec Medium Medium 2 1 Path DC
(1632803) | (30622564)
133| Friends of friends of user with id 4 | Pokec Medium Medium 2 1 Path cc
(1632803) | (30622564)
134| Friends of friends of user with id 5 | Pokec Medium Medium 2 1 Path DC
(1632803) | (30622564)
135| Friends both talks English and | Pokec Medium Medium 2 2 Cyclic | BC
French (1632803) | (30622564)
136| Friends both talks English and Ger- | Pokec Medium Medium 2 2 Cyclic | BC
man (1632803) | (30622564)
137| Friends both talks English and Slo- | Pokec Medium Medium 2 2 Cyclic | BC
vak (1632803) | (30622564)
138| Friends both talks Slovak and | Pokec Medium Medium 2 2 Cyclic | BC
French (1632803) | (30622564)
139| Friends both talks Slovak and Ger- | Pokec Medium Medium 2 2 Cyclic | BC
man (1632803) | (30622564)
140| Female users play football and | Pokec Medium Medium 5 2 Cyclic | BC
friend with 1 female users that play (1632803) (30622564)
football
141| Female users play football and | Pokec Medium Medium 8 2 Cyclic | BC
friend with 2 female users that play (1632803) (30622564)
football
142| Female users play football and | Pokec Medium Medium 11 2 Cyclic | DC
friend with 3 female users that play (1632803) | (30622564)
football
143| Female users play football and | Pokec Medium Medium 14 2 Cyclic | DC
friend with 4 female users that play (1632803) (30622564)
football
144| Female users play football and | Pokec Medium Medium 17 2 Cyclic | DC
friend with 5 female users that play (1632803) (30622564)
football
145| Users with leo zodiac and 17 years | Pokec Medium Medium 5 2 Others | EC
old friends with libra zodiac and 17 (1632803) | (30622564)
years old

131

Table A.8: Training Data for Determining Matching Order (8)

146| Users with virgo zodiac and 18 | Pokec Medium Medium 6 5 Others | EC
years old friends with libra zodiac (1632803) (30622564)
and 18 years old

147| Users with gemini zodiac and 19 | Pokec Medium Medium 6 5 Others | EC
years old friends with virgo zodiac (1632803) (30622564)
and 19 years old

148| Users with gemini zodiac and 20 | Pokec Medium Medium 6 5 Others | EC
years old friends with capricorn zo- (1632803) (30622564)
diac and 20 years old

149| Users with leo zodiac and 21 years | Pokec Medium Medium 6 5 Others | EC
old friends with scorpio zodiac and (1632803) (30622564)
21 years old

150| Extended families consisting of | Population | Big Big 5 8 Cyclic | DC
mother, father, son and son’s wife (70422787) | (77163109)
and all living in the same address

151| Extended families consisting of | Population | Big Big 5 8 Cyclic | DC
mother, father, daughter and daugh- (70422787) | (77163109)
ter’s husband and all living in the
same address

152| Married couples whose mothers are | Population | Big Big 5 5 Cyclic | BB-
sisters (70422787) | (77163109) Graph

153| Married couples whose fathers are | Population | Big Big 5 5 Cyclic | BB-
brothers (70422787) | (77163109) Graph

154| Married couples whose mothers of | Population | Big Big 7 7 Cyclic | BB-
mothers are sisters (70422787) | (77163109) Graph

155| Married couples whose fathers of | Population | Big Big 7 7 Cyclic | BB-
fathers are brothers (70422787) | (77163109) Graph

156| Married couples whose state regis- | Population | Big Big 4 3 Path DC
ters are different (70422787) | (77163109)

157| Sisters whose state registers are dif- | Population | Big Big 5 4 Path DC
ferent (70422787) | (77163109)

158| Father and their sons along 8- | Population | Big Big 8 7 Path BB-
degree-generation (70422787) | (77163109) Graph

159| Mothers and their daughters along | Population | Big Big 8 7 Path BB-
8-degree-generation (70422787) | (77163109) Graph

160| Twins who live in different flats of | Population | Big Big 9 14 Cyclic | BC
the same apartment which is differ- (70422787) | (77163109)
ent from the apartment
where their parents live

161| Persons live in same flat but their | Population | Big Big 5 4 Path DC
mothers are different (70422787) | (77163109)

162| Persons live in same flat but their fa- | Population | Big Big 7 6 Others | EC
thers and mothers are different (70422787) | (77163109)

163| Sisters live in same flat but their fa- | Population | Big Big 6 8 Cyclic | DC
ther and mother lives in different (70422787) | (77163109)
flat

164| Twins live in same flat but their fa- | Population | Big Big 7 9 Cyclic | DC
ther and mother lives in different (70422787) | (77163109)
flat

165| Divorced couples who lives in same | Population | Big Big 3 3 Cyclic | BC
flat (70422787) | (77163109)

166| Married couples born in same day | Population | Big Big 3 3 Cyclic | BC

(70422787) | (77163109)

167| Daughters born in same day with | Population | Big Big 3 3 Cyclic | BC
her mother (70422787) | (77163109)

168| Sons born in same day with her | Population | Big Big 3 3 Cyclic | BC
mother (70422787) | (77163109)

169| Daughters born in same day with | Population | Big Big 3 3 Cyclic | BC
her father (70422787) | (77163109)

132

Table A.9:

Training Data for Determining Matching Order (9)

170| Mothers lives with her daughter | Population | Big Big 6 7 3 4 Cyclic | DC
from ex-husband in the same apart- (70422787) | (77163109)
ment
171| Mothers lives with her son from ex- | Population | Big Big 6 7 3 4 Cyclic | DC
husband in the same apartment (70422787) | (77163109)
172| Fathers lives with her son from ex- | Population | Big Big 6 7 3 4 Cyclic | DC
wife in the same apartment (70422787) | (77163109)
173| People born after 1995 and having | Population | Big Big 3 2 2 2 Path DC
at least one daughter as a mother (70422787) | (77163109)
174| People born after 1995 and having | Population | Big Big 3 2 2 2 Path DC
at least one son as a mother (70422787) | (77163109)
175| People born after 1995 and having | Population | Big Big 3 2 2 2 Path DC
at least one daughter as a father (70422787) | (77163109)
176| People born after 1995 and having | Population | Big Big 4 3 2 2 Others | EC
at least one son and one daughter as (70422787) | (77163109)
a father
177| People born after 1995 and having | Population | Big Big 4 3 2 2 Others | EC
at least one son and one daughter as (70422787) | (77163109)
a mother
178| Families with at least 3 children and | Population | Big Big 6 11 3 4 Cyclic | DC
all (mother + father + 3 children) (70422787) | (77163109)
living in the same address
179| Families with at least 4 children and | Population | Big Big 7 14 3 4 Cyclic | DC
all (mother + father + 4 children) (70422787) | (77163109)
living in the same address
180| People who has 2 ex-wife Population | Big Big 3 2 1 1 Path BB-
(70422787) | (77163109) Graph
181| People who has 3 ex-wife Population | Big Big 4 3 1 1 Others | BB-
(70422787) | (77163109) Graph
182| People who has 2 ex-husband Population | Big Big 3 2 1 1 Path BB-
(70422787) | (77163109) Graph
183| People who has 3 ex-husband Population | Big Big 4 3 1 1 Others | BB-
(70422787) | (77163109) Graph
184| Women born after 2000 and mar- | Population | Big Big 3 2 2 2 Path cc
ried (70422787) | (77163109)
185| Women born after 2000 and does | Population | Big Big 5 4 3 3 Others | CC
not live in the same address with her (70422787) | (77163109)
father
186| Men born after 2000 and does not | Population | Big Big 5 4 3 3 Others | CC
live in the same address with his fa- (70422787) | (77163109)
ther
187| Women born after 1995 and does | Population | Big Big 5 4 3 3 Others | EC
not live in the same address with her (70422787) | (77163109)
father
188| Men born after 1995 and does not | Population | Big Big 5 4 3 3 Others | CC
live in the same address with his fa- (70422787) | (77163109)
ther
189| Women born after 2000 and got di- | Population | Big Big 3 2 2 2 Path DC
vorced (70422787) | (77163109)

133

Table A.10: Training Data for Determining Matching Order (10)

190| Women born after 1995 and got di- | Population | Big Big 3 2 Path DC
vorced (70422787) | (77163109)

191| Men born after 2000 and got di- | Population | Big Big 3 2 Path DC
vorced (70422787) | (77163109)

192| Men born after 1995 and got di- | Population | Big Big 3 2 Path DC
vorced (70422787) | (77163109)

193| Women who lives with her mother | Population | Big Big 7 8 Cyclic | DC
and daughter (70422787) | (77163109)

194| Women who lives with her father | Population | Big Big 7 8 Cyclic | BC
and son (70422787) | (77163109)

195| Men who lives with his father and | Population | Big Big 7 8 Cyclic | DC
son (70422787) | (77163109)

196| Men who lives with his father and | Population | Big Big 7 8 Cyclic | DC
daughter (70422787) | (77163109)

197| Married couples with more than 70 | Population | Big Big 3 3 Cyclic | BC
years old (70422787) | (77163109)

198| Women who is more than 40 years | Population | Big Big 8 7 Cyclic | BC
old and live her mother and father (70422787) | (77163109)

199| Men who is more than 50 years old | Population | Big Big 8 7/ Cyclic | DC
and live her mother and father (70422787) | (77163109)

200 Women who is more than 50 years | Population | Big Big 8 7 Cyclic | DC
old and live her mother and father (70422787) | (77163109)

134

A.2 Matching Order Test Dataset

Table A.11: Test Data for Determining Matching Order (1)

Query Dataset Data Graph | Data Graph | Query Query # of Dis- | # of Dis- | # of Nodes | Query | Best
Node Size | Edge Size Graph Graph tinct Node | tinct Edge | with Prop- | Type Re-
Node Size | Edge Size Label Label erties sults
1 | Players who take role in any match | WorldCup | Small Small 13 12 4 3 0 Others | EC
at least 4 world cups (45348) (86577)
2 | Players scores at least 4 goals as | WorldCup | Small Small 6 5 3 2 0 Others | EC
starters (45348) (86577)
3 | Players in the squad of Brazil Team | WorldCup | Small Small 4 3 4 3 2 Others | CC
in 1998 World Cup (45348) (86577)
4 | Players in the squad of England | WorldCup | Small Small 4 3 4 3 2 Others | CC
Team in 1966 World Cup (45348) (86577)
5 | All World Cups hosted by Germany | WorldCup | Small Small 2 1 2 1 1 Path DC
(45348) (86577)
6 | All matches played in Daegu World | WorldCup | Small Small 2 1 2 1 1 Path DC
Cup Stadium (45348) (86577)
7 | Matches between Sweden and | WorldCup | Small Small 4 3 3 3 3 Others | CC
Brazil in 1994 World Cup (45348) (86577)
8 | All matches of England in a World | WorldCup | Small Small 3 4 3 4 2 Cyclic | BC
Cup that hosted by them (45348) (86577)
9 | Countries scores at least 3 goals as | WorldCup | Small Small 3 3 3 3 1 Cyclic | BC
home team in any match at World (45348) (86577)
Cup which is hosted by the same
country
10| All stadiums that Semi-Final | WorldCup | Small Small 2 1 2 1 1 Path DC
Matches are played (45348) (86577)
11| All players takes role as substitute | WorldCup | Small Small 5 4 5 4 1 Others | CC
in any match that played in Estadio (45348) (86577)
Azteca Stadium in any World Cup
12| All players takes role as starters and | WorldCup | Small Small 7 6 5 4 1 Others | EC
scores a hat trick in any match that (45348) (86577)
played in Estadio Azteca Stadium
13| Players who is in the squad of | WorldCup | Small Small 6 6 4 3 1 Cyclic | DC
Uruguay team that played at least (45348) (86577)
two different World Cup
14| Goals that Roberto Carlos scores in | WorldCup | Small Small 5 5 5 5 2 Others | CC
2002 World Cup (45348) (86577)
15| All matches of Uruguay as an away | WorldCup | Small Small 3 2 3 2 2 Path DC
team in 1998 World Cup (45348) (86577)
16| The user with id 11 who has a | Pokec Medium Medium 2 1 2 1 2 Path DC
friendship with the user with id 61 (1632803) | (30622564)
17| Friends play baseball Pokec Medium Medium 3 3 2 3 2 Cyclic | BC
(1632803) | (30622564)
18| The people who can talk ‘Rus- | Pokec Medium Medium 4 5 3 3 3 Cyclic | DC
sian” and ’vysokoskolske’ educa- (1632803) | (30622564)
tion level that

135

Table A.12: Test Data for Determining Matching Order (2)

Query Dataset Data Graph | Data Graph | Query Query # of Dis- | # of Dis- | # of Nodes | Query | Best
Node Size | Edge Size Graph Graph tinct Node | tinct Edge | with Prop- | Type Re-
Node Size | Edge Size Label Label erties sults
19| The friends of users who used to | Pokec Medium Medium 4 3 2 3 2 Others | CC
basketball but now playing tennis (1632803) | (30622564)
20| The user list which consists of peo- | Pokec Medium Medium 3 2 3 2 2 Path DC
ple who is 20 years old and ’stre- (1632803) (30622564)
doskolske” at education level
21| Users talk English and play tennis | Pokec Medium Medium 4 3 3 3 3 Others | CC
and basketball (1632803) | (30622564)
22| Friends of friends of user withid 6 | Pokec Medium Medium 3 2 1 1 1 Path DC
(1632803) | (30622564)
23| Friends both talks Slovak and Ital- | Pokec Medium Medium 3 2 2 2 2 Cyclic | BC
ian (1632803) | (30622564)
24| Female users play football and | Pokec Medium Medium 7 14 2 2 3 Cyclic | DC
friend with 3 male users that play (1632803) (30622564)
football
25| Users with cancer zodiac and 21 | Pokec Medium Medium 6 5 2 2 2 Others | EC
years old friends with scorpio zo- (1632803) | (30622564)
diac and 21 years old
26| Extended families consisting of | Population | Big Big 7 10 2 4 0 Cyclic | DC
mother, father, son, son’s wife and (70422787) | (77163109)
children and all living in the same
address
27| Brothers whose state registers are | Population | Big Big 5 4 2 3 0 Path DC
different (70422787) | (77163109)
28| Persons live in same flat but their fa- | Population | Big Big 5 4 2 2 0 Path DC
thers are different (70422787) | (77163109)
29| Brothers live in same flat but their | Population | Big Big 6 8 2 2 0 Cyclic | DC
father and mother lives in different (70422787) | (77163109)
flat
30| Daughters born in same day with | Population | Big Big 3 3 2 2 0 Cyclic | BC
her father (70422787) | (77163109)
31| Fathers lives with her daughter from | Population | Big Big 6 7 3 4 0 Cyclic | DC
ex-wife in the same apartment (70422787) | (77163109)
32| People born after 1995 and having | Population | Big Big 3 2 2 2 1 Path DC
at least one son as a father (70422787) | (77163109)
33| Families with at least 5 children and | Population | Big Big 8 17 3 4 0 Cyclic | DC
all (mother + father + 5 children) (70422787) | (77163109)
living in the same address
34| People who has 3 ex-husband Population | Big Big 4 3 1 1 0 Others | BB-
(70422787) | (77163109) Graph
35| Men born after 2000 and married Population | Big Big 3 2 2 2 1 Path DC
(70422787) | (77163109)
36| Men born after 1997 and got di- | Population | Big Big 3 2 2 2 1 Path DC
vorced (70422787) | (77163109)
37| Men born after 1997 and does not | Population | Big Big 5 4 3 3 1 Others | CC
live in the same address with his fa- (70422787) | (77163109)
ther
38| Men who lives with his mother and | Population | Big Big 7 8 3 3 0 Cyclic | DC
daughter (70422787) | (77163109)
39| Married couples with more than 65 | Population | Big Big 3 3 2 2 1 Cyclic | BC
years old (70422787) | (77163109)
40| Men who is more than 40 years old | Population | Big Big 8 7 4 5 1 Cyclic | DC
and live her mother and father (70422787) | (77163109)

136

A.3 Query Results of Subgraph Isomorpishm Algorithms on WorldCup Database

Table A.13: Query Results of Subgraph Isomorpishm Algorithms on WorldCup
Database (Part-1)

Cypher | Duallso | GraphQL | Turbolso | VF3 | BB-Graph | —o s | BB-Plus
(Historical) | (Real-Time)
Query 1 | 1052 | 10453 | 24747 5116 | 6337 | 1050 602 874
Query2 | 10123 | 34675 6361 3353 3231 3124
Query 3 3092 3260
Query4 | 26711 | 26311 22072 | 78543 | 11193 10850 3939
Query 5 10654 | 113714 23754 18121 18224
Query 6 15243 | 132842 25743 21245 21382
Query7 | 15234 | 30324 8746 4324 3874 3764
Query 8 | 12245 | 28465 7543 4121 3645 3521
Query9 | 12345 | 27364 | 16237 7923 | 12432 3421 3127 3317
Query 10| 12963 | 37852 8754 3682 3495 3374
Query 11| 34950 | 36475 20845 | 87421 | 12875 12123 10874
Query 12| 6745 | 29745 | 13425 3421 2983 2869
Query 13| 7213 | 30818 | 14759 3874 3145 3111
Query 14 | 7126 | 30485 | 14743 3842 3214 3022
Query 15| 6323 | 29845 | 13543 3485 2964 3097
Query 16| 6983 | 28453 | 13845 3742 3125 3098
Query 17| 6853 | 28745 | 13954 3632 3245 4532
Query 18 | 7342 | 31938 | 14756 3975 3423 3398
Query 19 | 7263 | 31634 | 14367 3795 3214 3211
Query20 | 7163 | 31641 | 13226 3887 3874 3812
Query21 | 8932 | 33421 | 17432 | 45632 |42386| 5436 4932 4873
Query22 | 9321 | 32873 | 17293 | 39563 | 45684 | 5983 5821 6873
Query23 | 9123 | 38742 | 18734 | 41937 | 43857 | 5743 5674 5678
Query 24 | 8674 | 35949 | 16384 | 46327 | 48932 | 5274 4984 4976
Query25 | 8372 | 34632 | 18353 | 51345 |48235| 5129 4564 4485
Query 26 | 8234 | 38938 | 20983 | 48732 | 45973 | 5243 4673 4569
Query27 | 8268 | 37945 | 21874 | 65321 | 55328 | 5283 4988 4925
Query28 | 7921 | 29834 | 18274 | 45684 | 51423 | 5198 4873 4912
Query29 | 9834 | 31736 | 17365 | 58732 | 68234 | 5291 5189 5211

137

Table A.14: Query Results of Subgraph Isomorpishm Algorithms on WorldCup
Database (Part-2)

Cypher | Duallso | GraphQL | Turbolso | VF3 | BB-Graph | oS | BB-Plus
(Historical) | (Real-Time)
Query30 | 6431 | 21467 | 11235 | 18365 | 21567 | 4539 4128 3875
Query31 | 6648 | 22747 | 12398 | 20943 | 22774 | 4673 4576 4597
Query32 | 5983 | 19834 | 11723 | 19823 | 20983 | 4555 4432 4245
Query33 | 6436 | 21745 | 11986 | 18373 | 19834 | 4984 4698 4356
Query34 | 7121 | 20872 | 11764 | 12764 | 13873 | 4763 4768 4759
Query35 | 9746 | 34867 | 10883 7531 6537 6973
Query 36 | 10223 | 38745 | 12456 7432 7425 7399
Query37 | 9654 | 37659 | 11345 7683 7643 7598
Query38 | 9879 | 32746 | 10763 7573 7523 7511
Query39 | 9435 | 40875 | 12743 7442 7228 7246
Query 40 | 21712 | 19374 38734 | 52495 | 15367 14850 14249
Query 41 | 20974 | 25748 37645 | 51828 | 14324 14214 14356
Query 42 | 22875 | 27648 41983 | 39857 | 16437 16246 16298
Query 43 | 21857 | 18736 40872 | 45761 | 15384 15224 15325
Query 44 | 32185 | 356793 22395 22390 22384
Query 45 | 30987 | 29845 21874 21876 2143
Query 46 | 35784 | 41983 22888 22654 22756
Query 47 | 35873 | 42985 23567 23123 23432
Query 48 | 32865 | 37646 19284 18723 18992
Query49 | 7348 | 34867 | 63259 | 69383 6246 6128 6221
Query 50| 7974 | 20874 | 59832 | 51083 6117 6001 6005

138

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation
	Contributions and Novelties
	The Outline of the Thesis

	BACKGROUND AND RELATED WORK
	Graph Databases
	Comparison of Graph Databases

	Centrality Measures in Graphs
	Degree Centrality
	Closeness Centrality
	Betweenness Centrality
	Eigenvector Centrality

	The Subgraph Isomorphism Problem
	The Subgraph Isomorphism Algorithms
	Ullmann’s Algorithm
	VF2
	QuickSI
	GraphQL
	GADDI
	SUMMA
	SPath
	TurboIso
	DualIso
	BB-GRAPH
	VF2-Plus
	VF3

	Matching Order Selection in the Subgraph Isomorpishm Problem

	BB-PLUS:AN APPROACH FOR SUBGRAPH ISOMORPHISM IN BIG GRAPH DATABASE
	Matching Order Selection Based On Degree Centrality
	Matching Order Selection Based On Closeness Centrality
	Matching Order Selection Based On Betweenness Centrality
	Matching Order Selection Based On Eigenvector Centrality
	Matching Order Selection Based On Hybrid Centrality
	Matching Order Selection Based On Candidate Node Selection
	Comparison of Matching Order Selection Methods
	Based on Their Creation Methods
	Based on the Type of Queries
	Based on the Volatility of Databases

	Determining Matching Order Selection Methods

	EXPERIMENTS AND RESULTS
	The Dataset
	The System Configuration
	Queries
	Experiments on the Databases
	Experiments on the WorldCup Database
	Experiments on the Pokec Database
	Experiments on the Population Database

	Discussions on the Experimental Results

	CONCLUSION AND FUTURE WORK
	Conclusion
	Future Work

	REFERENCES
	Appendix 1
	Matching Order Training Dataset
	Matching Order Test Dataset
	Query Results of Subgraph Isomorpishm Algorithms on WorldCup Database

