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DALGA ANALİZİ VE TASARIM YÖNTEMLERİ
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ANALYSIS OF WAVE PROPAGATION CHARACTERISTICS
AND DESIGN METHODS IN TWO DIMENSIONAL

PHOTONIC BANDGAP STRUCTURES

SUMMARY

Over the last few decades, demand for higher data transmission rates increased
drastically due to emergence of applications requiring higher bandwidth services.
Recent advances in photonics and fabrication of nanometer scaled components enabled
the high capacity data transmission in communication technologies. The research field
of periodic structures which ranges from microwave to optical frequencies became
attracting in the sense that their special electromagnetic waveguiding properties
constitute the basis of many promising applications. Among various metallic and
dielectric materials considered in the context of periodic structures, photonic crystals
which are found to have unique propagation characteristics for a certain frequency
range, are one of the most popular. Photonic crystals can be tailored to address
desired bandgap characteristics. Particularly, two-dimensional photonic crystals are
regarded as the essential elements that incorporate periodicity features and enable the
development of new optical components such as filters, waveguides, cavities, splitters,
couplers and reflectors.

Investigation of the photonic bandgaps (PBG) in a photonic crystal plays a fundamental
role coincided in numerous engineering-science applications and design purposes.
The method reported in the literature investigate the problem associated with the
conventional approach of solving eigenvalue equation. This solution approach
requires computationally large memory sources and becomes inefficient especially
when large number of eigenmodes are required at the layer interfaces. The focus of
this dissertation is to present accurate and numerically efficient alternative methods
to analyze bandgap characteristics of two-dimensional PBGs. Full wave analysis
of bandgap structures is addressed by calculating the supported Floquet modes of
infinitely periodic structures, i.e. seeking for the permitted and forbidden band
regions of the unit-cell. A novel approach based on auxiliary functions of generalized
scattering matrix (AFGSM) method is introduced. The proposed technique provides
estimations of the stopband or passband frequencies accurately supported by the single
Floquet mode region simply by carrying through a basic root-search routine. For
a lossless PBG structure real numbered roots correspond to propagating modes and
complex-values roots correspond to non-propagating modes (stopband) respectively.
Therefore, the aim of this thesis is to develop alternative techniques to determine
bandgap characteristics of PBG structures based on AFGSM method.

First section of this dissertation includes a literature survey and introduction of
the thesis scope. The second chapter gives a brief review of wave propagation in
periodic structures and highlight the key theoretical concepts. The third chapter is
concerned with the methodology employed for a fast and hybrid bandgap analysis of
two-dimensional photonic crystals. First, effective medium theory (EMT) is employed
to mitigate two-dimensional geometry (for a structure which has a period much

xxi



smaller than the wavelength) to one-dimensional multilayered equivalence in order
to simplify the computation of the photonic bandedges. Then, bandedges of equivalent
one-dimensional structure are examined using AFGSM method. Subsequently, in the
fourth section, the analysis is extended to a comprehensive and full wave analysis of
2D PBG structures utilizing the rigorous coupled wave analysis (RCWA) to determine
scattering parameters (S-parameters) of unit cell. Thereafter, AFGSM method is used
to investigate bandedge frequencies of infinitely layered periodic media. In the fifth
chapter, different types of filter applications operating in the optical wavelength region
are designed using novel algorithm based on AFGSM method. The final chapter
summarises the principal findings given in the thesis and identifies areas for further
research.
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İKİ BOYUTLU FOTONİK BANT DURDURAN YAPILARDA
DALGA ANALİZİ VE TASARIM YÖNTEMLERİ

ÖZET

Son yıllarda gelişen kablolu ve kablosuz haberleşme teknolojileriyle birlikte yüksek
bant genişliğine ihtiyaç duyan uygulamaların kullanımı artmış, bu da beraberinde
veri kullanım oranının yükselmesine sebep olmuştur. Bu durum taşıyıcı ortamda
bant genişliklerinin etkin kullanımı gereksinimini doğurmuştur. Genellikle GHz
bölgesindeki frekanslarda veri iletiminde, sınırlanmış kesite sahip tek iletkenli
veya dielektrik dolu yapılar kullanılarak elektromanyetik dalganın kılavuzlanması
sağlanmaktadır. Benzer şekilde optik frekanslarda da iletken duvarı olmayan
dielektrik tabaka ve çubuklar da temelde dielektrik ortama sınırlanmış veya
kılavuzlanmış dalga modlarını destekleyebilmektedir. Böylece THz bölgesindeki
frekanslarda malzemelerin dielektrik geçirgenliklerine göre mikrometre ve daha
küçük boyutlarda optik dalga kılavuzları, kaviteler ve rezonatörler gibi uygulamalar
tasarlanabilmektedir. Dalga kılavuzlarının bir alt araştırma konusu olan periyodik
katmanlı yapılarda dalga propagasyonu uzun yıllardır bilim insanları ve mühendislerin
ilgisini çekmiştir. Haberleşme teknolojilerinde ise periyodik yapılar, mikrodalgadan
optik frekansa kadar değişen geniş bir frekans bölgesinde elektromanyetik dalganın
iletimi, yansıması ve kılavuzlanması gibi temel mühendislik problemlerinde yer
bulmuştur. Periyodik yapıların tasarımında kullanılan çeşitli metalik ve dielektrik
malzemeler arasında fotonik kristaller, fabrikasyon sonucu her üç boyutta da
periyodiklik özelliği kazandırılabilen yapılardır. Fotonik kristallerin teknolojik
olarak çok sayıda uygulama alanı bulunması ile birlikte haberleşme, elektronik
devreler ve tıp uygulamaları gibi alt başlıklarda yoğun olarak incelenmektedir.
Değişen dielektrik özellikleri ile periyodik olarak dizilimleri sonucu belirli frekans
bölgesinde sergiledikleri iletim/durdurma karakteristikleri (fotonik bant aralığı, PBG)
sebebiyle THz bölgesindeki uygulamalarda popüler olarak tercih edilen malzemeler
arasındadır. Fotonik kristaller istenen bant aralığı özelliklerini sergilemek üzere
uyarlanabilmektedir. Bir boyutlu (1D), iki boyutlu (2D) ve üç boyutlu (3D) fotonik
kristallerin periyodik, yarı-periyodik, kare, üçgen vb. örgü yapılarında dizilimleri
sonucu ortaya çıkan bant yapılarının belirlenmesi, iletim-yansıma katsayılarının
hesaplanması ve analizi üzerine kayda değer sayıda çalışmalar yapılmıştır. En basit
haliyle farklı kırılma indisine sahip dielektrik malzemelerin farklı dizilimlerde uygun
şekilde tasarımı ile ışığın istenen doğrultu ve belirli frekans bölgesinde ilerleye-
bilmesini/sınırlandırılmasını sağlayan yapıların analizi, gerçekleme ve simülasyon
çalışmaları bu alandaki en önemli araştırma konuları haline gelmiştir. Günümüzde
nanometre boyutlarında malzemelerin fabrikasyonunda elde edilen iyileştirmeler
sayesinde düşük güçle çalışan ve optik spektrumun verimli kullanılmasını sağlayacak
fotonik kristal temelli optik filtreler, dalga kılavuzları, elektro-optik modülatörler,
güç bölücüler, kutuplayıcılar, algılayıcılar gibi bileşenlerin tasarlanması mümkün
olmuştur.
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Fotonik kristallerin bant yapısının belirlenmesi birçok mühendislik uygulamasında ve
tasarım probleminde önemli rol oynamaktadır. Hassas fabrikasyon süreci öncesinde
tasarım aşamasında gerek duyulan sayısız modelleme işlemine hızlı tepki verecek
etkin bir matematiksel model arayışı literatürde bulunan çalışmalarda farklı bakış
açıları ile incelenmeye devam etmektedir. Periyodik yapıların dalga propagasyonu
problemini çözmek için sonlu sayıda birim hücre içeren sonlu periyodik yapılar
ve sonsuz sayıda kaskat bağlı birim hücreden oluştuğu varsayılan yapılar referans
alınmaktadır. Sonlu periyodik yapıda (yarı-periyodik) birim hücre yaklaşımı,
yapının dispersiyon karakteristiği için yaklaşık bir çözüm sağlamakta olup bu
yaklaşımın doğruluğu da kullanılan birim hücre sayısı artırılarak yükseltilebilmektedir.
Fakat birim hücre sayısının artması cevabın doğruluğunu artırırken, hesaplama
yükündeki artışı da beraberinde getirmektedir. Literatürde yer alan geleneksel
yaklaşımlar özdeğer denkleminin çözümüne dayanan yöntemlerdir. Bu yaklaşım
özellikle katman arayüz geçişlerinde çok sayıda özdeğer denkleminin hesaplanmasını
gerektirdiğinden verimsiz hale gelmekte ve hesap uzayında büyük bellek kaynakları
gerektirmektedir. Bu sebeple tez çalışmasında, fotonik bant aralığı karakteristiklerini
belirlemeyi sağlayacak alternatif yöntemler araştırılmış ve geliştirilmiştir. Bu
bağlamda mikrodalga tekniği çerçevesinde daha önce geliştirilen genelleştirilmiş
saçılma matrisi kullanılarak iletim/durdurma bant bölgelerinin kestirimi yöntemi
optik THz bölgesine uygulanarak iki boyutlu periyodik yapının bant aralığı analizine
genişletilmiş ve bu bölgedeki tasarım çalışmalarına entegre edilmiştir. Fotonik bant
aralığı yapısının tam dalga analizi sonsuz periyodik yapıda desteklenen Floquet
modları hesaplanarak, başka bir deyişle sonsuz periyodiklikte olduğu varsayılan
birim hücre için izin verilen veya sınırlanan bant kenar frekansları bulunarak ele
alınır. Böylece sonsuz periyodik birim hücreden oluşan yapının iletim/durdurma bant
bölgelerinin belirlenmesi Floquet koşulu altında birim hücrenin özdeğer denkleminin
çözümüne indirgenmektedir. Çalışmada, önerilen teknik, problemi basit bir kök bulma
algoritmasına indirgeyerek, tek Floquet modlu bölgede bulunan iletim/durdurma
band geçiş frekansları için doğru kestirimler elde edilmiştir. Genelleştirilmiş
Saçılma Matrisi Yardımcı Fonksiyonları (AFGSM: Auxiliary Functions of Generalized
Scattering Matrix) yöntemi olarak literatüre giren yaklaşım ile periyodik yapının
dispersiyon karakteristiğinin elde edilmesi işleminde geleneksel yöntemlere göre
sayısal iş yükünün azaltıldığı gösterilmiştir. Önerilen yöntemin fotonik bant aralığı
analizinin yanı sıra tasarım amacıyla ters problem çözümü şeklinde birim hücre
parametrelerinin belirlenmesinde etkili olarak kullanılabilineceği tez çalışmasında elde
edilen sonuçlarla ortaya konulmuştur.

Fotonik kristallerin belirli bir frekans bandında geliş açısından ve polarizasyondan
bağımsız olarak tam yansıtıcılık gösterdiği frekans bandı tümyönlü yansıtıcı
bant aralığı (OBG: omnidirectional bandgap) olarak adlandırılmaktadır. Tez
kapsamında yapılan konferans bildirileri ve ulusal dergilerde yayınlanmış çalışmalarda
önerilen yöntem kullanılarak geniş bantlı tümyönlü yanısıtıcı tasarımı yapılmış elde
edilen sonuçlar düzlem dalga açılım yöntemi (PWE: Plane Wave Expansion) ile
doğrulanmıştır. Bu özellik sayesinde fotonik kristaller dağılmış geri-beslemeli lazerler,
dielektrik Fabry-Perot filtreler, ayarlanabilir polarizörler, dar-bandlı filtreler ve dielek-
trik yansıtıcılar gibi çok sayıda önemli uygulamada yoğun olarak kullanılmaktadır.
Günümüzde mobil ve sabit haberleşme şebekelerinin temel altyapısını oluşturan
fiber optik haberleşme sistemlerinde uzak mesafelere yüksek kapasiteli veri aktarımı
yeterince yüksek bant genişlikleri ile mümkün olmaktadır. Yüksek band genişliği
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ise kısıtlı frekans spektrumunun etkin bir şekilde kullanılabilemesi için sık ve dar
bandlı filtrelerin uygulanmasını gerektirir. Tümyönlü yansıtıclara ek olarak tez
çalışmaları kapsamında telekomünikasyon sistemlerinde Yoğun Dalgaboyu Bölmeli
Çoğullama (DWDM) birleştirici ve çoğullayıcı (MUX DEMUX) olarak kullanılan
fotonik kristalli dört kanallı optik filtrelerin tasarımı yapılmıştır. Elde edilen sonuçlar
ulusal konferaslarda sunulmuştur.

Tezi oluşturan bölümler kısaca şu şekilde özetlenebilir: Tezin ilk bölümü kapsamlı bir
literatür taraması ve tez amacını vermektedir. İkinci bölüm, periyodik yapılarda dalga
yayılımını özetleyerek periyodik yapılarda dalga propagasyonuna ilişkin temel teorik
kavramları hatırlatmaktadır. Üçüncü bölümde iki boyutlu problem geometrisinin
bant aralığı analizi yapılmıştır. Önerilen yöntemde öncelikle efektif ortam teorisi
(EMT: Effective Medium Theory) ile problem bir boyutlu eşleniğine uygun olarak
indirgenmiş, bir boyuta indirgenen problem geometrisi için ise iletim-durdurma
bant kenar frekanslarının tespitinde AFGSM yöntemi etkili ve hızlı bir şekilde
uygulanmıştır. Elde edilen sonuçlar CST benzetim programının çıktıları ve literatürde
yer alan benzer problem sonuçlarıyla doğrulanmıştır. Bu yaklaşım, iki boyutlu
geometrilerin bant karakteristiğinin çözümünde kullanılmak üzere literatüre Hibrid
Yöntem (HM) ismiyle önerilmiştir. Tezin dördüncü bölümünde ise, iki boyutta
sonlu periyodik yapının tam dalga analizi için Kesin Kuple Dalga Analizi (RCWA:
Rigorous Coupled Wave Analysis) ve Genelleştirilmiş Saçılma Matrisi (GSM)
yöntemleri birleştirilerek 2D yarı periyodik yapının birim hücre saçılma matrisi
hesaplanmıştır. Sonsuz periyodik yapının iletim-durdurma band kenar frekansları ise
AFGSM yöntemi kullanılarak tespit edilmiş ve böylece çalışma iki boyutlu fotonik
bant aralığı yapısının kapsamlı ve tam dalga analizine genişletilmiştir. İki boyutlu
dikdörtgen ve üçgen dizilimli, kare ve dairesel dielektrik sütun kesitine sahip problem
geometrileri modellenmiş ve önerilen yöntemin uygulanabilirliği test edilmiştir.
Dispersiyon diyagramı üzerinde iletim-durdurma bantlarını veren sonuçlar literatürde
yeralan benzer çalışmalar ve HFSS benzetim programından elde edilen sonuçlarla
karşılaştırılmıştır, oldukça tutarlı sonuçların elde edildiği görülmüştür. Beşinci
bölümde ise yöntemin ultraviyole, görünür bölge ve kızılötesi bölgesinde geçerliliğinin
irdelenmesi amacıyla Lazer Taramalı Mikroskobi (LSM) uygulamalarında kullanılan
band geçiren, band durduran, dikroik ve çentik filtre bileşenleri AFGSM yöntemine
dayanan yeni algoritmalar kullanılarak tasarlanmıştır. Tasarlanan filtre karakteristikleri
endüstride ticari olarak kullanılan filtre parametreleri ile kıyaslanmıştır.

Tez çalışması kapsamında genel anlamda periyodik yapıların iletim durdurma
band bölgelerinin tespiti özelde ise farklı dizilim ve kesit alanına sahip dielektrik
sütunlardan oluşan iki boyutlu fotonik bant ileten/durduran yapıların bant aralığı
karakteristiklerini ortaya koyan bant kenar frekanslarının kestirimi için kapsamlı
ve özgün yöntemler literatüre kazandırılmıştır. Sonuç olarak yapılan analizler ve
tasarımlar literatürdeki farklı sonuçlar ile karşılaştırılmış ve hesaplama süresi açısından
doktora tezinde önerilen yöntemlerin benzetim simülasyonlarına ve bilinen diğer
sayısal yöntemlere göre oldukça hızlı olduğu gösterilmiştir.
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1. INTRODUCTION

Periodic structures are constituted the basis of many promising applications in the

microwave to optical wave region. For several decades subject of electromagnetic

field interaction with periodic structures such as wave scattering and wave guiding

has attracted a lot of researches. Latest advancements in material science and

modeling processes revealed the existence of bandgaps in periodic structures. So

far, many studies have been carried out to show that the light propagation in an

artificially designed periodic structure could be prohibited or assisted for a specified

frequency range. In the case of a wave incident to a periodic structure within a

certain frequency range it appears to be reflected completely. This forbidden band

in the frequency spectrum is cited to as electromagnetic bandgap (EBG) or photonic

band gap (PBG) and this phenomenon is mostly realized with periodic dielectric

structures known as photonic crystals (PCs) [1]. In the recent years, many optical

devices constructed by photonic crystals received great attention because of their

potential applicability in the field of optical communication networks and photonic

integrated circuits. These features of photonic crystals have certain advantages not

only in wired telecommunication applications but also in some specific industrial

applications. Some of the most promising applications of band gap technology include

antennas, antenna feeds, high precision GPS, mobile telephony, wearable antennas,

duplexing antennas, filters, phase shifters, slow-wave structures, travelling-wave tubes,

planar wave applications such as frequency selective surfaces (FSS) and phased array

antennas. Additionally, photonic crystals are used as a dielectric mirror in optical

applications due to the very high reflectivity for all incident angles and all polarization

states within a specified frequency range [2].

Recent improvements in high resolution lithography and etching processes made the

optoelectronic device applications advantageous with the lower power consumption,

scalable size for device dimension and reliable high performance features required in

optical integrated circuits. These characteristics allows designing important practical
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components in optoelectronic and microwave engineering fields e.g. thin-film filters,

channel drop filters, optical delay lines [3–6], optical isolators [7], resonance filters

[8], photonic nanocavities, photonic crystal mirrors [9, 10], polarization splitters,

optical interleavers [11, 12], photonic crystal tapers, splitters and combiners [13,

14], planar reflectors, waveguide bends [15]. Various new reports examining the

manipulation of light confinement with PCs have been evaluated i.e., 2D defect

included magneto-photonic crystal structures for circulator design [16], experimental

studies of cross-shaped PC waveguide with wide bandwidth configuration [17] and

reconfigurable PBG structures by modification of the permittivity of materials using

an explicit parameters e.g. temperature [18, 19], electric field [20, 21] and magnetic

field [22], and so on.

Similar to the principle of electron-wave propagation in semiconductors, PCs can

be used to create either allowed or forbidden photonic bands with respect to their

permittivity in the periodicity direction. The pioneering work of E. Yablonovitch

in 1987, as it is underlying this phenomena, remains crucial as revealed a three

dimensional periodic structure that could have the capability to completely inhibit

spontaneous emission within its band gap. Following to this work, S. John’s study

is of great significance as it marks the possibility of light localization by scattering in

periodic structures. Above mentioned works focused on designing the proper materials

at microwave and millimeter-wave frequencies to control electromagnetic modes

where operating wavelength is proportional to the lattice constant. However fabricating

nanometer-scale structures was a challenge due to the difficulties in manufacturing

techniques. Subsequent advances in Nano-scale silicon processing technologies

extended band gap device developments into infrared and terahertz regimes with the

strong reduction of device sizes. The first demonstration of a photonic crystal at optical

wavelengths was made by Thomas Krauss in 1996. Artificially designing the material

properties allows different frequency ranges to be covered to utilize target applications.

Depending on the geometry and periodicity direction, PCs are categorized as

one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) structures.

The conventional well-known configuration of a 1D-PC is composed of periodically

arranged layers which have alternating refractive index variation along the periodicity

axis. The theory relies on the reflections at the boundaries of those alternating
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materials of different refractive index (n1, n2) yielding a phase difference where light

cannot propagate through the structure at certain frequency bands and specific incident

angles [1]. This feature can be explained by wave-energy interaction in different

frequencies defined as; the energy of lower frequency modes is concentrated within

the higher refractive index regions whereas oppositely, the energy of higher frequency

modes is concentrated within the lower refractive index regions. Transmission and

reflection properties of periodic structure can be selectively designed by increasing

the index contrast between the alternating layers for desired wavelength region.

Besides the permittivity difference, implementing a variation of thicknesses (p1, p2)

between the connected sections of PCs yields the widening of photonic bandgaps

(PBGs). Theoretically, photonic band structure is analyzed by the variation between

the wavelength (λ ) (or frequency) of the light and wave vector (k) which is represented

in dispersion diagram (dispersion curve). The field inside a periodic structure

governed by Maxwell’s wave equations incorporated with Floquet theorem which is

the superposition of the Floquet modes or Bloch waves. The electric field vector of

a normal mode of propagation in a periodic medium is given by multiplication of

a periodic function with period p = p1 + p2 and wave vector of propagation. The

wavevector which indicates the energy concentration in forbidden bands is known

as Bloch wavevector. For an infinite periodic structure bandgaps are represented in

dispersion curves where Bloch modes are used to identify the properties of structure.

One dimensional photonic crystals are the simplest form of periodic structures that

can be constructed by cascading the dielectric layers periodically in the direction

of propagation. However, restricting the periodicity in a single direction limits

the accessibility to wide application areas of photonic crystals. Therefore, broad

omnidirectional bandgaps or complete bandgaps in any direction with the different

geometric configurations of 2D and 3D photonic crystal structures are exploited in

many real-world problems. A typical 2D PC is comprised of infinitely long rods

or air holes arranged in an array formation. Furthermore, such a structure can

be designed to guide the light in a certain band range by applying a point defect

or a line defect. Introducing the appropriate defects into the structure breaks its

characteristic periodicity in PBG region and generates resonance (defect) modes.

Particularly, lattice defect prevents the reflection of the light and ensures that the light is
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confined. Designing these devices requires numerous numerical modeling attempts to

determine the near-ideal design (complete physical insight) just before going through

the fabrication process. Therefore, fast and accurate numerical modeling of desired

structure is very significant. As the complexity of the structure increased intricate

formulations required to solve the problem. To date, many analytical or numerical

techniques such as plane wave expansion method and transfer matrix method provide

appropriate solutions to band structure computation, most of these approaches are

inefficient and suffer from the high computational burden. Traditional methods for

determination of band diagrams and radiation modes in literature rely on solving

eigenvalue equation. Hence, the algorithms used to analyze band structure require very

long computer time and excessive memory. Hence, in this thesis we intend to develop a

customized method, and investigate the 2D problem. Particularly, a general framework

for the analysis and design of 1.5D and 2D photonic crystals presented and simulation

validations which will contribute to the development of microwave bandpass/stopband

filter applications are exploited.

1.1 Purpose of Thesis

As mentioned beforehand, this research examines the emerging role of photonic

crystals in the practical applications and focuses on the theoretical and numerical

alternate methods of photonic band-gap structure determination techniques. In the

first part of this thesis, a hybrid technique incorporates the effective medium theory

(EMT) and 1D auxiliary functions of generalized scattering matrix (AFGSM) method

is developed to investigate photonic bandgaps of two-dimensional (2D) photonic

crystals. In the developed method, identification of the UC parameters simply allows to

evaluate bandgap edges of photonic bandgap structure. In order to reduce dimensional

complexity of the problem EMT is used to reduce parameters of 2D geometry to

1D equivalent. AFGSM is then employed to determine bandedge frequencies of

1D infinite (ideal) structure. Our results show that computation time is remarkably

reduced. Findings of this study are key contribution to literature for the research of

PBGs in 2D design subjects.

In the second part of this thesis, we mainly focused on an efficient and accurate

method for determining the characterization of 2D photonic crystal is performed under

4



oblique plane wave excitation for both TE and TM polarizations. Considered 2D

PCs are stack of unit cells which are 1D gratings with a periodicity in the transverse

propagation direction whereas identical unitcells are periodic in longitudinal direction.

Rigorous Coupled Wave Analysis (RCWA) method is implemented to consider higher

order mode interactions in modal expansion analysis of unitcell. Transmission and

reflection spectra of finitely periodic stack are calculated by means of GSM method.

Finite number of periodic cascade connection does not provide full-wave analysis of

such a media. In the proposed technique, instead, 2D photonic crystal is assumed

to be an infinite periodic structure that ideally provides band-edge frequencies of

supported Floquet modes. Moreover finite periodic scattering matrix cascading

algorithm is inherently time consuming due to the existence of two matrix inversions.

Therefore, efficient and less time-consuming proposed technique can be implemented

for modeling of finitely periodic practical applications.

In the third part of this thesis, to reveal the capability of the proposed method on

filter applications we developed a novel and robust filter design algorithm. Presented

filters are hybrid type of structure comprising periodic and degenerated multilayered

dielectrics. One of the key features of the proposed approach is flexibility in designing

desired transmission band while offering widened stop-bands. The transmission

and stopband characteristics are attained using Auxiliary Functions of Generalized

Scattering Matrix Method (AFGSM) which has computationally better performance.

In order to demonstrate the suitability of the proposed design strategy, we have

investigated and designed four different types of filters including a laser line filter

at 800 nm wavelength for reflectance confocal microscopy, a band-pass filter at 400

nm wavelength for second harmonic generation microscopy, a laser block filter at 800

nm wavelength and a dichroic filter blocking 350-400 nm while transmitting higher

wavelengths for multiphoton microscopy.

Consequently, in this thesis, a novel method has been proposed based on the

generalized scattering matrix representation of a unit cell pattern to determine the

bandgap characteristics of specified PC structure. Since the proposed method does not

require the solution of the eigenvalue equation unlike the other conventional methods
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reported in the literature, it yields solutions with higher accuracy and much lower

complexity.

1.2 Literature Review

Controlling the wave propagation in periodic structure has led to developments in

engineering of artificial crystals which can be used to employ bandgap properties.

Most of the promising applications were found in the microwave and optical engi-

neering fields. In particular, microwave field contains frequency-selective structures,

leaky-wave antennas, phase-array antennas, slow-wave structures, travelling wave

tubes applications; whereas optical field includes grating couplers and splitters,

leaky-wave structures, diffraction gratings for beam splitting, dielectric gratings,

waveguides, microcavities, resonator applications. Many of the aforementioned

devices require complex production mechanisms as long as the scale mitigated to

nanometer dimensions. Indeed, before stepping into the fabrication process, necessary

measurements need to be executed in order to deal with design changes. However,

surveying in every step of design is not feasible in terms of cost and speed. Therefore,

between the design and fabrication process a mathematical method (computational

modeling) should be implemented to predict electromagnetic wave behavior in the

designed structure. In this regard, simulation tools have attained more importance to

illustrate results numerically.

Several mathematical approaches are developed to analyze propagation characteristics

of periodic structures. Conventionally, periodic boundary conditions are incorporated

into Maxwell’s equations which results in a characteristic equation consisting of

necessary dispersion properties. The eigenvalues (roots) of the dispersion equation

corresponds to propagation constants. Dispersion curves enable one to identify

transmission and reflection properties of the infinitely periodic photonic crystal

structure [23]. The Plane Wave Expansion (PWE) method is the most common

technique used to calculate band structure of an infinite photonic crystal based on

the unit cell approach [24–26]. However, in case of considering large dielectric

contrast between layers and analysis of complex PC structures, method requires

excessive number of plane waves which results in a poor performance in terms of

the convergence. Also mathematical description of lattice structure and eigenfunctions
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requires set of equations to be solved by converting them into a Hermitian eigenvalue

problem. In [27] the convergence problems with the plane-wave method in photonic

crystals have been proposed. The convergence of the method can be improved in case

of using alternate basis system functions i.e. spherical waves may be used instead

of plane waves as a fundament set whenever the 3D photonic crystal is combined

from spherical or cylindrical parts. This technique is known as the spherical-wave

expansion method or vectorial KRR (Koringa Kohn Rostker) method [28]. The

Transfer Matrix Method (TMM) is another essential technique to analyze the bandgap

of photonic crystals. In this method, layers of structure assumed to be invariant along

the direction of propagation and the field transferred from each layer is calculated with

Maxwell’s equations incorporated with boundary conditions. Total transfer matrix is

used to represent the band diagram of the PC and it can be calculated as a product

of each layer’s transfer matrices [23, 29, 30]. Finite difference time domain (FDTD)

method is mathematically derived by differential equations with derivatives of the

field components in a finite computational domain. Conventionally a Cartesian grid

is used to discretize the set of points called mesh. Discretization of each mesh

element is often set to a proper value (e.g. λ /20) where sensitive to field variations

accurately. Differential form of Maxwell’s equations is solved with finite difference

solver considering the related boundary conditions for each material interface. In order

to ensure the stability of the method for different geometries the mesh grid size and

time steps must be selected appropriately. However, discretization of the problem mesh

limits the computational efficiency of the method adversely [31–33]. Finite element

method (FEM) is another widely used technique in computational electromagnetics

in addition to solid modeling of mechanical engineering problems. In this method,

partial differential equations (PDE) incorporated with related boundary conditions are

used to find approximate solutions. Similar to FDTD in FEM computational domain

is divided to sub mesh domains (finite elements) in order to solve simple functions

for each element instead of entire structure. Moreover, in FEM mesh elements can

be selected from various small shapes such as triangular or tetrahedral elements and

allows modifying the element size unequally depending on irregularity of the structure.

Both FDTD and FEM approaches are limited by mesh definition of computational

domain and results in an eigenvalue equation to be solved numerically [34, 35].

Certainly specified geometry of a PC constitutes particular bandgap properties valid
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for a specified frequency region, incidence angle and polarization. In case of varying

these parameters might fade the photonic bandgap away. Hence, a frequency region

which is insensitive to incidence angle and polarization setting, called omnidirectional

bandgap (OBG), appears as a requirement for relevant applications. Many researches

published related to OBG structures in literature [36, 37].

Numerous applications acquired by employing 1D PC in the designed structures can

be found in the literature such as distributed feedback lasers (DFB) [23], dielectric

Fabry-Perot filters [38], reconfigurable polarizers [39], narrow-band filters [40],

dielectric reflectors [41, 42]. On the other hands, some dielectric mirrors and optical

filter applications driven by introducing the defect formations through the structure

where localized modes of light appears [43].

2D PCs are classified depending on lattice types (periodicity formation) of the structure

such as square lattice, circular lattice, hexagonal lattice etc. Photonic bandgaps in 2D

arrays of PCs can be designed by varying the lattice form comprised of air or dielectric

columns immersed in the structure with a definite refractive index contrast [44–47].

In the study of Kee, for a 2D PC in the form of square lattice, PBG responses are

compared for dielectric columns and air columns cases. His study revealed that a 2D

PC having dielectric columns immersed in an air medium configuration constitutes a

wider PBG in comparison to opposite case [48]. Haas and Hwang are investigated the

OBG responses for 2D PCs in their studies [49, 50]. Chen proposed OBG reflectors in

2D PCs for the design purposes of waveguides [51, 52]. Furthermore, some heuristic

approaches to design wide photonic OBG responses have been proposed to literature

[53, 54].

Employing the PBG structures in antenna applications improves the antenna directivity

and supports to suppress surface waves which intensify the directivity of antenna

[55, 56]. Developing narrowband channelized devices is another requirement in

telecommunication systems due to the excessive rates of data. Sharp and narrow

band filter devices can be designed using the PC integrated structures in order to use

frequency spectrum efficiently without interfering the adjacent channels. Some optical

filter application examples can be found in the references [57, 58].
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Most of the abovementioned applications and numerical approaches in these studies

eventually require solving eigenvalue equation. However, an alternative method can

be maintained to investigate and design PBG structures which can provide highly

accurate results and does not require excessive computation resources. Previously,

similar to PBG structures, passband stopband regions of periodically dielectric loaded

rectangular waveguides have been determined using an alternative method based on

Generalized Scattering Matrix (GSM) approach [59]. This thesis intends to extend

proposed approach to solve 2D PC problems without need to solve common eigenvalue

equation. This method is called Auxiliary Functions of Generalized Scattering Matrix

(AFGSM) method and has been published in literature recently [60].

1.3 Hypothesis

In this thesis, a new method is proposed which can be used to design an optical

component consisting of PBG structures such as omnidirectional reflector, cavity, and

dual-polarized waveguide for different frequency regions. The contributions of the

proposed method in this thesis covers following remarks; 1) the transmission stop

bands of the photonic crystals will be calculated more efficiently and faster than the

methods in the literature, 2) to develop an approach that will give fast and accurate

results in determining the electrical and geometrical parameters of the structure to work

in a given frequency domain for the inverse problem (design), 3) to enable the design

of optical components to work independently of variables such as polarization and

incidence angle, 4) Due to the difficulty of fabrication of photonic crystals (especially

2D PCs) in nanoscale, modeling with a fast response approach dielectric lattice and

defect forms will be suitable for scaling of lithography. The theory relies on the

concatenation of scattering parameters (S-parameters) of a single unit cell providing

a generalized scattering matrix of the global structure. Floquet theory is incorporated

to constitute periodicity through the layers of 2D PC where frequency responses and

modal properties of entire structure can be obtained to characterize bandgap properties.
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2. WAVE PROPAGATION IN PERIODIC STRUCTURES

2.1 Transmission Line Theory

Electromagnetic wave propagation through a periodic structure is addressed with the

solutions of wave equations where Floquet’s (Bloch) theorem is incorporated into

the Maxwell’s equations. The solutions (propagating modes or evanescent modes)

of the wave equation supported by a periodic medium are called Floquet modes (Bloch

waves). In the problem statement periodic structures are considered as two-port

networks or transmission lines which have identical layers (unit cells) cascaded

through the boundaries (ports). Fields at the input and output ports of the unit cell

can be decomposed into the modes supported by transmission line/network. Each

explored Floquet mode corresponds to a Bloch wave vector (propagation constant).

Hence, propagation characteristics of a wave guided by a periodic structure can be

analyzed via Floquet’s theorem [61].

In the following part a brief summary of Floquet’s theorem is introduced with brief

overview on transmission line theory. We start by deriving basic proof of the Floquet’s

theorem for a periodic transmission line below. In this case periodic transmission line

consist of two sections with different parameters repeated in z direction. In Figure

2.1, the corresponding parameters of each section are defined as follows: l1 and l2 are

lengths, η1 and η2 are characteristic impedances, k1 and k2 are wavenumbers of first

and second sections of transmission line respectively.

One period of periodic transmission line is denoted by L = l1 + l2 as given in Figure

2.1. Since the structure is infinitely periodic, there should be no difference between

the fields at z and at z+L except for the constant attenuation and phase shift. In other

words, the fields at a point z in an infinite periodic structure differ from the fields one

period L away by a complex constant. Let u(z) represent a wave (either voltage or

current value). Then, a wave u(z) at z and a wave u(z+ L) at z+ L are related as
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defined in Floquet’s theorem definition. For each intersection of the transmission line

can be written as follows

u(z+L)
u(z)

=
u(z+2L)
u(z+L)

= ...=
u(z+mL)

u[z+(m−1)L]
=C (2.1)

where C is a constant value.

After applying some basic mathematic steps on equation (2.1) we obtain

u(z+L)
u(z)

=
u(z+2L)
u(z+L)

= ...=
u(z+mL)

u[z+(m−1)L]
=C→ u(z+mL) =Cmu(z) (2.2)

In equation (2.2) the constant C is generally complex and can be represented by C =

e− jkL where k is the complex wave number.

Consider function R(z)

R(z) = e jkzu(z) (2.3)

and adding one period of phase shift gives,

R(z+L) = e jk(z+L)u(z+L) or R(z+L) = e jkze jkLu(z+L) (2.4)

Then, if we substitute u(z)e− jkL by u(z+L) we get

R(z+L) = e jkze jkLe− jkLu(z) = R(z) (2.5)

Therefore, R(z) is a periodic function of z with period L and it can be represented in a

Fourier series given by

R(z) =
+∞

∑
n=−∞

Ane− j(2nπ/L)z (2.6)

if we equate (2.3) to (2.6) we get

R(z) = e jkzu(z) =
+∞

∑
n=−∞

Ane− j(2nπ/L)z→ u(z) =
+∞

∑
n=−∞

Ane− j(k+2nπ/L)z (2.7)

Another representation of (2.7) is

u(z) =
+∞

∑
n=−∞

Ane− j(kn)z, kn = k± 2nπ

L
(2.8)
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Figure 2.1 : a) Periodically loaded transmission line model, b) two-section line
model.

The nth term of the the equation (2.8) is called Floquet’s mode or Bloch wave.

Floquet’s theorem states that a wave guided by a periodic structure contains infinite

number of space harmonics [61]. Figure 2.1(a) represents the infinitely long periodic

transmission line model and unit cell that comprised of three sections [62]. Each

section of unit cell can be represented by a transmission line section of length d/2

and a shunt susceptance of b. The unloaded transmission line (TL) has a characteristic

impedance Z0 and a propagation constant k. Infinitely periodic TL can be considered

as being composed of two-port identical networks including the voltages and currents

on either side of the nth unit cell which can be related as:

[
Vn
In

]
=

[
A B
C D

][
Vn+1
In+1

]
(2.9)
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0 sin B jZ l

cosD l

Figure 2.2 : ABCD Parameters of Transmission Line Network Model.

Therefore, each section of unit cell in Figure 2.1(a) can be expressed in ABCD matrix

as given in Figure 2.2 [62]. The first and third sections in Figure 2.1(a) corresponds

to third type of network model in Figure 2.2 and middle section can be represented by

second type of microwave network model in Figure 2.2. Using the related ABCD

matrix equivalents the cascade connection of each section can be easily found by

multiplying the ABCD matrices of each individual section (equation 2.10).

[
A B
C D

]
=

 cos θ

2 j sin θ

2

j sin θ

2 cos θ

2

[ 1 0
jb 1

] cos θ

2 j sin θ

2

j sin θ

2 cos θ

2



=

 (cos θ

2 −
b
2 sinθ) j(sinθ + b

2 cosθ − b
2)

j(sinθ + b
2 cosθ − b

2) (cos θ

2 −
b
2 sinθ)

 (2.10)

where θ = kd and k is the propagation constant. Due to considered network is

reciprocal AD− BC = 1. Wave analysis of the network can be done assuming a

propagating wave in the +z direction. Applying Floquet’s theorem to the infinitely
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long structure provides that the voltage and current at the n-th terminal can differ from

the that of at (n+1)th terminals only by a propagating factor eγd given by

Vn+1 =Vne−γd

In+1 = Ine−γd (2.11)

If we substitute equation (2.11) into (2.9) we get

[
A− eγd B

C D− eγd

][
Vn+1
In+1

]
= 0 (2.12)

For a nontrivial solution, determinant of the matrix must be equal to zero:

AD+ e2γd− (A+D)eγd−BC = 0, and AD−BC = 1 (2.13)

1+ e2γd− (A+D)eγd = 0 (2.14)

e−γd + eγd = A+D (2.15)

Using trigonometric identities we obtain

A+D
2

= cosγd = cosθ − b
2

sinθ (2.16)

Propagation constant can be represented as γ = α + jβ and since the right hand-side

in equations in (2.16) is purely real, α = 0 or β = 0 is possible. In this case there are

two physical results:

If α = 0,β 6= 0. Then, cos(βd) = cosθ − b
2sinθ which corresponds to a propagating

wave with no attenuation which identifies the passband of the periodic structure,

If α 6= 0,β = 0 or π . Then, cos(αd) = |cosθ − b
2sinθ | ≥ 1 which corresponds to a

none-propagating wave and attenuates which is the stopband of the periodic structure.

Physically, α > 0 states only one solution for positively traveling waves whereas

α < 0 states only one solution for negatively traveling waves. As a result periodic
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transmission line can be considered as a filter depending on the exhibition of passband

and stopband with related frequency and susceptance values.

Alternatively, unit cell of a TL can be considered as being composed of two different

transmission-line sections repeated alternately as given in Figure 2.1(b). In this case

two cascaded transmission line will be considered without a section consisting a shunt

susceptance and characteristic impedance values "ηi" are used, where i denotes section

number. Thus, cascade ABCD matrix is given as

[
A B
C D

]
=

 cosθ1 jη1 sinθ1

j 1
η1

sinθ1 cosθ1

 cosθ2 jη2 sinθ2

j 1
η2

sinθ2 cosθ2



=

 cosθ1 cosθ2− η1
η2

sinθ1 sinθ2

−η2
η1

sinθ1 sinθ2 + cosθ1 cosθ2

 (2.17)

where θi = kili = ω
√

µiεili and i = 1,2.

As a result dispersion relation can be expressed as

cos(kL) =
A+D

2
= cosk1l1 cosk1l1−

1
2
(
η2

η1
+

η1

η2
)sink1l1 sink1l1 (2.18)

Consequently, equations (2.16) and (2.18) are the dispersion equations of periodic

transmission line and multilayered structures respectively. Thus, based on the

frequency and normalized susceptance values, the periodically loaded TL can be used

to exhibit either passbands or stopbands which can be considered as a type of filter.

Generally, when investigating the passband or stopband characteristic of a periodic

structure, variation of propagation constant β versus the frequency ω is plotted to

illustrate wave propagation. This representation is called dispersion diagram (or

sometimes called k− β or Brillouin diagram). Thus far, microwave TL approach is

used to derive dispersion relations in periodic structures. In the following section same

dispersion equation (eigenvalue equation) will be examined in terms of wave analysis

using the conventional ABCD matrix representation [62].
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2.2 Conventional ABCD Matrix Method

In this section we have examined "Conventional ABCD Matrix Representation" to

understand the relations between the selected geometry and corresponding reflectance

spectrum. One-dimensional layered periodic medium is considered to derive

dispersion relations. Considered geometry is assumed to be isotropic and nonmagnetic

made of different refractive indexed materials where an incident wave propagating in

the direction of periodicity z as shown in Figure 2.3.

1n 2n 1n 2n 1n 2n 1n 2n

z

y

x

a b a b a b a b

1

1

n

n

a

b





 
 
 

n

n

c

d

 
 
 

n

n

a

b

 
 
 

 1z n  



z n a  
z n 

n-th unit cell

inc

(n+1)th (n+2)th

Figure 2.3 : Schematic drawing of a periodic layered medium consisting of
alternating layers of two different transparent materials with refractive

indices n1 and n2 and thicknesses a and b, respectively.

Due to periodicity dielectric constant of the considered geometry is a periodic function

of position i.e. ε(z) = ε(z+Λ) where Λ, namely, the arbitrary lattice constant or spatial

period of structure. Here, we derive reflection and transmission spectrum of a periodic

medium particularly a 1D PC whose bandgaps can be determined by solving the wave

equation.

Therefore, starting with Maxwell’s equations for lossless source free region; (time

dependency is taken as e jωt)
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Maxwell’s equations:

∇×~E =−∂~B
∂ t

, (2.19a)

∇× ~H =+
∂~D
∂ t

, (2.19b)

∇ ·~E = 0, (2.19c)

∇ ·~B = 0 (2.19d)

Using the constitutive relations ~D = ε0εr~E and ~B = µ0µr~H for simple medium

right-hand side of equation (2.19) will take the form

∇× ~H = jωε~E, (2.20a)

∇×~E =− jωµ~H (2.20b)

In order to use periodicity properties fields can be expressed with periodic functions

EK(z) and HK(z) using the Floquet’s (Bloch) theorem given in section 2.2 such that;

~E = EK(z)e− jKz (2.21)

~H = HK(z)e− jKz (2.22)

where

EK(z) = EK(z+Λ) (2.23)

HK(z) = HK(z+Λ) (2.24)

where K indicates Bloch wave vector (wave number) which functions EK and HK

depend on. Using the matrix method exact solution of wave equations for periodic

layered PC can be obtained as follows;

Assume that an isotropic and nonmagnetic (µ = µ0 throughout the periodic structure)

periodic layered media consists of two different materials with different refractive

indices described as given below:

n(z) =

{
n2, 0 < z < b
n1, b < z < Λ

(2.25)

where b is the thickness of layer with refractive index n2, the layer with the refractive

index n1 has a thickness of a = Λ−b.
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Periodicity of refractive index in the direction of wave propagation is n(z) = n(z+Λ)

or ε(z) = ε(z+Λ) where Λ is the period shown in Figure 2.3 .

Assuming the incident plane wave in the zy-direction and medium is homogeneous in

the y-direction thus a general solution for the wave equation can be written as

~E(y,z, t) = E(z)e jωte− jkyy (2.26)

where ky is the y-component of the wave vector of propagation, constant throughout

the medium. Electric field in each layer can be expressed in terms of the travelling

waves propagating in the +/- direction of propagation:

E(z) =

{
ane− jkz

1(z−nΛ)+bne jkz
1(z−nΛ) nΛ−a < z < nΛ

cne− jkz
2(z−nΛ+a)+dne jkz

2(z−nΛ+a) (n−1)Λ < z < nΛ−a
(2.27)

where

kz
1 =

√(
ωn1

c

)2

− ky
2

kz
2 =

√(
ωn2

c

)2

− ky
2

where n denotes n-th unit cell. While the wave propagates along the structure

continuity of the tangential electric and magnetic fields at boundary of layers must be

satisfied (see Figure 2.4). Then, unknown coefficients an,bn,cn,dn can be determined.

Since there is no material change in x-direction ∂

∂x ≡ 0 (yz plane of propagation).

For the TE-polarized modes there is no electric field in the direction of propagation

(yz) whereas magnetic field has components in propagation direction

Ex 6= 0,Ey = 0,Ez = 0
Hx = 0,Hy 6= 0,Hz 6= 0 (2.28)

∇×~E =− jωµ~H (2.29)

 ~ux ~uy ~uz
∂

∂x
∂

∂y
∂

∂ z
Ex Ey Ez

=− jωµ~H =− jωµ

 Hx
Hy
Hz

= ~uy
∂Ex

∂ z
−~uz

∂Ex

∂y
(2.30)
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∂Ex

∂ z
=− jωµHy,

∂Ex

∂y
= jωµHz (2.31)

Following wave continuity of Ex and Hy at the interfaces z = (n−1)Λ, z = nΛ−a will

be considered.

1n 2n 1n 2n

z

y

 1z n  

z n a  

z n 

n-th unit cell

inc

1na 

1nb 

nc

nd

na

nb

B
O

U
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D
A

R
Y

-1

B
O

U
N

D
A

R
Y

-2




1
n




n
a




Figure 2.4 : Continuity of the tangential electric and magnetic fields at boundaries.

• Boundary 1: (n−1)Λ

Electric field, Ex

an−1e− jkz
1(z−(n−1)Λ)+bn−1e jkz

1(z−(n−1)Λ)

cne− jkz
2(z−nΛ+a)+dne jkz

2(z−nΛ+a)

at z = (n−1)Λ interface with Λ = a+b

(n−1)Λ− (n−1)Λ = 0

(n−1)Λ−nΛ+a = nΛ−Λ−nΛ+a = a−Λ =−b

Magnetic field, we take derivative of above equations ∂Ex
∂ z =− jωµHy,

− jkz
1an−1e− jkz

1(z−(n−1)Λ)+ jkz
1bn−1e+ jkz

1(z−(n−1)Λ)

− jkz
2cne− jkz

2(z−nΛ+a)+ jkz
2dne+ jkz

2(z−nΛ+a)
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at z = (n−1)Λ interface with Λ = a+b gives

jkz
1(an−1−bn−1) = jkz

2(cne+ jkz
2b−dne− jkz

2b) (2.32)

• Boundary 2: nΛ−a

Electric field Ex

ane− jkz
1(z−nΛ)+bne+ jkz

1(z−nΛ)

cne− jkz
2(z−nΛ+a)+dne+ jkz

2(z−nΛ+a)

at z = nΛ−a interface

cn +dn = ane jkz
1a +bne− jkz

1a (2.33)

Magnetic field, we take derivative of above equations ∂Ex
∂ z = − jωµHy,

− jkz
1ane− jkz

1(z−nΛ)+ jkz
1bne+ jkz

1(z−nΛ)

− jkz
2cne− jkz

2(z−nΛ+a)+ jkz
2dne+ jkz

2(z−nΛ+a)

at z = nΛ−a interface

jkz
2(cn−dn) = jkz

1(ane jkz
1a−bne− jkz

1a) (2.34)

As a summary continuity equations can be written as

an−1 +bn−1 = cne jkz
2b +dne− jkz

2b (2.35a)

jkz
1(an−1−bn−1) = jkz

2(cne+ jkz
2b +dne− jkz

2b) (2.35b)

cn +dn = ane jkz
1a +bne− jkz

1a (2.35c)

jkz
2(cn−dn) = jkz

1(ane jkz
1a−bne− jkz

1a) (2.35d)

Eqs. 2.35 can also be written in matrix form:[
1 1

jkz
1 − jkz

1

][
an−1
bn−1

]
=

[
e jkz

2b e− jkz
2b

jkz
2e jkz

2b − jkz
2e− jkz

2b

][
cn
dn

]
(2.36)

and [
1 1

jkz
2 − jkz

2

][
cn
dn

]
=

[
e jkz

1a e− jkz
1a

jkz
1e jkz

1a − jkz
1e− jkz

1a

][
an
bn

]
(2.37)
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In order to solve matrix equation column vector

[
cn
dn

]
in equation (2.37) is

eliminated, and using the unit-cell translation matrix

[
an−1
bn−1

]
=

[
A B
C D

][
an
bn

]
which relates the amplitudes of the plane waves in first layer of n-th unit cell and first

layer of (n+1)-th unit cell.

Since

[
A B
C D

]
matrix relates amplitudes of two equivalent layers with same

refractive index, it’s unimodular. Therefore

[
A B
C D

]
= AD−BC = 1.

According to Bloch theorem , the electric field vector of a normal mode of propagation

in a periodic medium is of the form

~E(y,z, t) = E(z)e jωte− jkyy (2.38a)

and

~E = EK(z)e− jKz (2.38b)

~E = EK(z)e− jKze j(ωt−kyy) (2.38c)

where EK(z) is a periodic function with period Λ, EK(z) = EK(z+Λ)

Using the periodicity, Bloch wave can be expressed as[
an
bn

]
= e−iKΛ

[
an−1
bn−1

]
(2.39)

and substituting the unit-cell translation matrix into this equation gives;

[
an
bn

]
= e−iKΛ

[
A B
C D

][
an
bn

]
−→

[
an
bn

]
eiKΛ =

[
A B
C D

][
an
bn

]
(2.40)

Final representation in equation (2.40) is an ordinary linear eigensystem problem in the

form of Ax = λx. The propagating modes are the solutions of the eigenvalue equation

and eiKΛ is the eigenvalue of the unit-cell translation matrix

[
A B
C D

]
.

[
an
bn

]
eiKΛ =

[
A B
C D

][
an
bn

]
−→

[
A B
C D

][
an
bn

]
− eiKΛ

[
an
bn

]
= 0

22



[ A B
C D

]
− IeiKΛ

[ an
bn

]
= 0

where I is the identity matrix and eiKΛ can be represented as a diagonal matrix such

that[
eiKΛ 0

0 eiKΛ

]
−→

[
A− eiKΛ 0

0 D− eiKΛ

][
an
bn

]
= 0.

For a nontrivial solution, determinant of the matrix must be equal to zero:

AD− (A+D)eiKΛ + e2iKΛ−BC = 0,AD−BC = 1 (2.41a)

1+ e2iKΛ− (A+D)eiKΛ = 0 (2.41b)

e−iKΛ + eiKΛ = A+D (2.41c)

Using the Euler identities:

eiKΛ = cos(KΛ)+ isin(KΛ)

e−iKΛ = cos(KΛ)− isin(KΛ)

Thus

eiKΛ + e−iKΛ = 2cos(KΛ) = A+D

Thus, cos(KΛ) = A+D
2 or

eiKΛ =
1
2
(A+D)±

√
1
4
(A+D)2−1 (2.42)

Matrix elements of TE wave and TM wave are

AT E = e jkz
1a

cos(kz
2b)+

j
2

(
kz

2
kz

1
+

kz
1

kz
2

)
sin(kz

2b)

 (2.43a)

BT E = e− jkz
1a

 j
2

(
kz

2
kz

1
−

kz
1

kz
2

)
sin(kz

2b)

 (2.43b)

CT E = e jkz
1a

− j
2

(
kz

2
kz

1
−

kz
1

kz
2

)
sin(kz

2b)

 (2.43c)

DT E = e− jkz
1a

cos(kz
2b)− j

2

(
kz

2
kz

1
+

kz
1

kz
2

)
sin(kz

2b)

 (2.43d)
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AT M = e jkz
1a

cos(kz
2b)+

j
2

(
n2

2kz
1

n2
1kz

2
+

n2
1kz

2
n2

2kz
1

)
sin(kz

2b)

 (2.44a)

BT M = e− jkz
1a

 j
2

(
n2

2kz
1

n2
1kz

2
−

n2
1kz

2
n2

2kz
1

)
sin(kz

2b)

 (2.44b)

CT M = e jkz
1a

− j
2

(
n2

2kz
1

n2
1kz

2
−

n2
1kz

2
n2

2kz
1

)
sin(kz

2b)

 (2.44c)

DT M = e− jkz
1a

cos(kz
2b)− j

2

(
n2

2kz
1

n2
1kz

2
+

n2
1kz

2
n2

2kz
1

)
sin(kz

2b)

 (2.44d)

Therefore eigenvalue equation for TE and TM cases can be expressed as

cos(KΛ) = cos(kz
1a)cos(kz

2b)−M sin(kz
1a)sin(kz

1b) (2.45)

where

M =


1
2

(
kz

2
kz

1
+

kz
1

kz
2

)
T E

1
2

(
n2

1kz
2

n2
2kz

1
+

n2
2kz

1
n2

1kz
2

)
T M

(2.46)

and

kz
i =

√(
ωni

c

)2

− (ky)2, i = 1,2 (2.47)

As a result following three important definitions can be stated as (see [23]):

1. If
∣∣∣ (A+D)

2

∣∣∣< 1−→ K is real and corresponds to propagating Bloch waves,

2. If
∣∣∣ (A+D)

2

∣∣∣ > 1 −→ K has real and imaginary parts. This type of waves are

called Evanescent Bloch waves and correspond to "photonic bandgaps" of periodic

medium,

3. If
∣∣∣ (A+D)

2

∣∣∣= 1−→ corresponds to "photonic band edges"
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2.3 Auxiliary Functions of Generalized Scattering Matrix (AFGSM) Method

In this section, bandgap characteristics of periodic structures are analyzed considering

a two-port microwave circuit unit cell model. S-parameters of unit cell is determined

with given corresponding voltage and current representations (see Figure 2.5).

Unit Cell

 i
na

 i
nb

 0

na

 0

nb

I II

0z  z p z

Figure 2.5 : Unit cell of periodic structure 2-port network.

ai =
V+

i√
Z0i

= I+i
√

Z0i (2.48a)

bi =
V−i√

Z0i
= I−i

√
Z0i (2.48b)

where ai and bi denote incident and reflected waves, V+
i and V−i denote incident and

reflected voltages, I+i and I−i denote incident and reflected currents respectively [62].

Using above relations S-matrix of the unit cell can be given as

[
b1
b2

]
=

[
S11 S12
S21 S22

][
a1
a2

]
(2.49)

with

S11 =
b1

a1

∣∣∣
a2=0

, S21 =
b2

a1

∣∣∣
a2=0

, S12 =
b1

a2

∣∣∣
a1=0

, S22 =
b2

a2

∣∣∣
a1=0

(2.50)

Electric and magnetic fields for a homogeneously periodic structured waveguide are

given as
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E(I)
y =

N

∑
n=1

a(i)n

√
Z(i)

n f (i)n e−α
(i)
n z +

N

∑
n=1

b(i)n

√
Z(i)

n f (i)n eα
(i)
n z (2.51a)

H(I)
x =

N

∑
n=1
−a(i)n

√
Y (i)

n f (i)n e−α
(i)
n z +

N

∑
n=1

b(i)n

√
Y (i)

n f (i)n eα
(i)
n z (2.51b)

E(II)
y =

N

∑
n=1

b(0)n

√
Z(0)

n f (0)n e−α
(0)
n (z−p)+

N

∑
n=1

a(0)n

√
Z(0)

n f (0)n eα
(0)
n (z−p) (2.51c)

H(II)
x =−

N

∑
n=1

b(0)n

√
Y (0)

n f (0)n e−α
(0)
n (z−p)+

N

∑
n=1

a(0)n

√
Y (0)

n f (0)n eα
(0)
n (z−p) (2.51d)

where Z is impedance, Y is admittance, fn is used for wave expansion coefficients and

they are symmetric such as f (i)n = f (0)n , Z(i)
n = Z(0)

n , Y (i)
n = Y (0)

n .

Using the boundary conditions i.e. for incident waves at z = 0 and for reflected waves

at z = p

E(i)
y = E(I)

y

∣∣∣
z=0

E(0)
y = E(II)

y

∣∣∣
z=p

(2.52a)

H(i)
x = H(I)

x

∣∣∣
z=0

H(0)
x = H(II)

x

∣∣∣
z=p

(2.52b)

Applying Floquet condition with λ , eigenvalue of the periodic structure, which means

reflected waves can differ from incident waves only by the λ as explained in the

previous sections.

E(0)
y = λE(i)

y (2.53a)

H(0)
x = λH(i)

x (2.53b)

As a result field equations are simplified to

N

∑
n=1

(a(0)n +b(0)n )

√
Z(0)

n f (0)n = λ

N

∑
n=1

(a(i)n +b(i)n )

√
Z(i)

n f (i)n (2.54a)

N

∑
n=1
−(b(0)n −a(0)n )

√
Y (0)

n f (0)n =−λ

N

∑
n=1

(a(i)n −b(i)n )

√
Y (i)

n f (i)n (2.54b)
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Due to symmetry condition f (i)n = f (0)n , Z(i)
n = Z(0)

n , Y (i)
n = Y (0)

n equation (2.54a)

simplifies to

N

∑
n=1

(a(0)n +b(0)n ) =
N

∑
n=1

λ (a(i)n +b(i)n ) (2.55a)

N

∑
n=1

(b(0)n −a(0)n ) =
N

∑
n=1

λ (a(i)n −b(i)n ) (2.55b)

Equations 2.55a(a-b) can be simplified and represented in a matrix form

(a(0)+b(0)) = λ (a(i)+b(i))

(b(0)−a(0)) = λ (a(i)−b(i))

 b(0) = λa(i)

a(0) = λb(i)
(2.56)

by representing in the form of equation (2.49) we get

[
b(i)

b(0)

]
=

[
S11 S12
S21 S22

][
a(i)

a(0)

]
(2.57)

by replacing the zero-th incident and reflected waves with i-th elements using the

equation (2.56)

[
b(i)

λa(i)

]
=

[
S11 S12
S21 S22

][
a(i)

λb(i)

]
(2.58)

we can represent equation (2.58) in the form of eigenvalue equation

[
1 −S11
0 −S21

][
b(i)

a(i)

]
= λ

[
−S12 0
−S22 1

][
b(i)

a(i)

]
(2.59)

Final equation 2.59 is the eigenvalue equation of the unit cell. Solution to this equation

gives information of eigenstates which is the passband information of the system and

it can be expresses as S11 = S22,S21 = S12,

λ
2 +λ

(
S2

11−S2
21−1

S21

)
+1 = 0 (2.60)
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The roots of the equation (2.60)

λ1 =

(
−S2

11−S2
21−1

S21

)
+
√

∆

λ2 =

(
−S2

11−S2
21−1

S21

)
−
√

∆

 λ1 +λ2 =
−S2

11−S2
21−1

S21
(2.61)

which corresponds to

λ1 = e− jθ

λ2 = e+ jθ

}
λ1 +λ2 = 2cosθ thus, cosθ =

1−S2
11+S2

21
2S21

(2.62)

For the structures propagating single mode, stop bands and bandedges can be

identified. At the stopbands λ and θ parameters take the following values

λ1 = λ2 = 1 while θ = 0, λ1 = λ2 =−1 while θ =±π , In the passband region |λ1|=

|λ2|= 1.

Another possible formulation is stated which gets rid of the effort to solve

eigen-equation, instead scattering-matrix of symmetric UC is used to interpretation as

given in the RHS of equation (2.62). Generalized scattering matrix (GSM) of cascaded

networks is well analyzed in the literature. Straightforward cascading of two scattering

matrices solves the electromagnetic problem of junction scattering to avoid the often

occurring large transmission matrix elements that lead to computational difficulties.

After calculating the final scattering parameters of N cascaded unit cells, auxiliary

functions X+ and X− are used to determine photonic edge frequencies by observing

the zero transitions of the imaginary part of (S11±S21) given by;

X± = Im{S11±S21} (2.63)

It should be noted that some arbitrary roots might appear while searching the zero

transitions of the auxiliary functions. In such a case, we discard the roots which

correspond to bandedge frequencies located out of the interested waveband region

which includes the photonic bandgap. The proposed technique effectively returns

precise estimations for the calculation of bandedge frequencies supported by Floquet

modes just by performing a straightforward root-determination algorithm based on
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auxiliary functions, namely Auxiliary Functions of Generalized Scattering Matrix

(AFGSM). Convergency success of the integrated computational routine enables one to

perform comprehensive studies in order to find PBG characteristics of stacked periodic

mediums while maintaining the higher order Floquet modes.

2.4 Numerical Results

In this subsection, we considered two numerical examples in order to show

applicability of proposed method to different applications. In the first problem a

wideband omnidirectional bandgap (OBG) reflector design study is presented using

photonic crystal structures (Te, Ta2O5, TiO2) satisfying the periodicity condition

and related simulation results were given. The designed final reflector provides an

omnidirectional photonic stop band with a value of 56.63% omnidirectional relative

bandwidth (ORB) in the range of 924 nm to 1654 nm of optical wavelength region.

In Figure 2.6 dashed lines represent the photonic crystal couple-1 (PC1) which consist

of Tellurium (n1 = 4.6) and Ta2O5 (n2 = 2.1) and dashed-dot lines represent photonic

crystal couple-2 (PC2) which consist of Tellurium (n1 = 4.6) and TiO2 (n2 = 2.45),

respectively. Incidence medium is assumed to be air (n0 = 1).
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Figure 2.6 : Omnidirectional reflection contour plot as a function of n1/n2 and n2/n0.
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Band edge frequencies of designed omnidirectional reflector can be calculated by

utilizing AFGSM method on particular incidence angle and polarizations (TM-00 and

TM-900). In Figure 2.7 and Figure 2.8 dashed blue lines represent X+ curve and solid

red lines represent X− curve of AFGSM method in which zero transitions of the curves

corresponds to bandedge frequencies of the bandgaps for PC1 and PC2, respectively.

Obtained bandedge frequencies and ORB values are summarized in table 2.1. PC1

(Tellurium, Ta2O5) pair provides an ORB with 416 nm bandwidth and PC2 (Tellurium,

TiO2) pair provides an ORB value of 321 nm.

Table 2.1 : Summary of selected material properties and related bandgap responses.

PC pair p1(nm) p2(nm) TM 00 (nm) TM 890 (nm) OBG (nm) OBG (%)
PC1 112.8 96.8 1238.2 - 1821 1205.2 - 1654.9 416 28.76
PC2 48.8 132 924.6 - 1357 879.6 - 1245.6 321 29.58

Figure 2.7 : Estimating bandedge frequencies of OBG reflectors using AFGSM
method for PC1 pair.
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Figure 2.8 : Estimating bandedge frequencies of OBG reflectors using AFGSM
method for PC2 pair.

Finally coupling of two PC pairs results in a wideband OBG reflector. Designed

reflector has a stopband of 737 nm and ORB value of 56.63% (see Figure 2.9).

Moreover, computational response is 103 times faster than commercial simulators

(HFSS, CST).

Figure 2.9 : OBG band region of wideband reflector.
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In the second numerical example, 4-channel optical filter design is presented. Design

algorithm comprised of two steps. In the first step, required layer thicknesses are

determined using the AFGSM method for the desired bandgap. In the second

step, transmission bands maintained by utilizing defect modes correspond to filter’s

center frequencies. Obtained results verified with transfer matrix method and CST

electromagnetic simulation software.

For the design purposes Ta2O5, MgF2 materials are selected with the refractive indices

2.11 and 1.38 respectively. Layer thicknesses are sweeped with AFGSM method

widest stopband is obtained between 167.5 THz (1791 nm) and 219.2 THz (1368 nm)

range with a layer thickness values of p1 = 183 nm and p2 = 280 nm, respectively.

Zero transitions of auxiliary functions are illustrated in Figure 2.10.

Figure 2.10 : Wide bandgap reflector design.

In table 2.2 desired filter channel center wavelengths and related defect layer

thicknesses are given. Hence, 4-channel narrowband transmission channel responses

can be designed in the 1550 nm region.

Table 2.2 : Designed filter parameters.

Optical channel no Transmission band wavelengths Defect layer thickness
λ1 1496 nm 0.8ld
λ2 1523 nm 0.9ld
λ3 1550 nm ld
λ4 1577 nm 1.1ld
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Figure 2.11 : 4 channel optical filter transmission bands.

As shown in numerical examples AFGSM method can be efficiently used for design

of different photonic crystal based components in THz spectrum. Inverse problem

which seek for proper physical parameters for desired objective is another area that

the proposed method being employed. Preliminary simulation results showed that

AFGSM method provides a computational advantage over CST more than 100 times

(for a stack of 20 unit cells) whereas providing 1000 times faster response than HFSS

does for a problem including 106 calculation steps. Therefore, AFGSM method

can be used properly used in precisely modeling of photonic crystal based optical

components.
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3. A FAST HYBRID METHOD FOR THE BANDGAP ANALYSIS OF 2D
PHOTONIC CRYSTALS BASED ON EMT AND AFGSM METHODS 1

3.1 Introduction

For many years, phenomenal relation between the EM fields and periodic materials

particularly scattering and confining effects of wave propagation, has attracted

attention of many researchers [63, 64]. Numerous practical applications developed

related to high refractive index contrast between concurrent layers and its effect on

signal intensity yielding photonic bandgap (PBG) characteristics. Among available

dielectric substrates photonic crystals (PCs) are the most popular ones used to

achieve aforementioned refractive index contrast. Besides the contrast in refractive

indices, implementing a modulation to thickness and formation allows to existance

of PBGs. Hence, useful optical and photonic components can be modeled e.g.

thin-film filters, channel drop filters, optical delay lines [3, 6, 65, 66], optical-isolators

[7], resonance-filters [8], photonic-nanocavities, photonic-crystal mirrors [9, 10],

polarization splitters, optical interleavers [11,12], photonic-crystal tapers, splitters and

combiners [13, 14], planar reflectors, waveguide bends and mirrors [15]. Various new

surveys examining the modification of light confinement in PCs have been reported e.g.

2D magnetic photonic crystal defect structures for circulator design [16], cross-shaped

PC waveguide with wide bandwidth configuration [17] and tunable PBG structures

by modificating the permittivities of materials using an external parameter such as

temperature [18, 67], electric field [20, 68] and magnetic field [22], etc.

Commonly, the wave propagation in 2D periodic structures is analyzed using the

dispersion relation governed by Bloch waves which is initially derived from solutions

of Maxwell’s equations. A lot of mathematical techniques have been formulated to

specify the photonic band structure of PCs. Typically employed techniques include

Transfer Matrix Method (TMM), Finite-Difference Time-Domain (FDTD) method,
1This chapter is based on the paper "Erkan, O., Akıncı, M. N., Şimşek, S., 2018. A fast hybrid

method for the bandgap analysis of 2D photonic crystals based on EMT and AFGSM methods,
AEU-International Journal of Electronics and Communications, 87, 107-112."
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Multiple Scattering (MST) method, Plane-Wave Expansion (PWE) method,and Finite

Element Method (FEM) [1, 2, 69–73]. Nevertheless, effectiveness and precision of

abovementioned techniques are still important parameters to be concerned. Even

transmission matrices are generally applied, it may cause numerically unstability

because of the exponential functions including positive and negative arguments in

essence. In contrast to the TMM, the direct association of generalized scattering

matrices yields exponential functions with only negative arguments. Hence, GSM

remaines numerically stable [74]. Since PCs exhibit symmetry properties in the

direction of periodicity, electromagnetic modes of the structure decouples into

transverse magnetic (TM) and transverse electric (TE) modes for corresponding

symmetry planes [24]. Results are presented for both TE and TM polarizations

showing the magnitude of scattering parameter (S11) as a function of frequency.

So far, we represented hybrid method (HM) to specify 2D PBGs which provides

faster response in simulations and requires less computational resources. Described

process involves two steps. In the first one, rather than executing an analysis in two

dimensions, problem is considered for mitigated geometry of 1D equivalent films in

which transformed refractive indices are calculated via EMT. Subsequently, photonic

bandgap of 1D homogenised structure is found by employing AFGSM approach

[59, 75–77]. In the method given in [76], roots of two analytic auxiliary functions are

used to estimate band edges effectively. Here, calculation of the auxiliary functions

does not necessitate the eigensystem of the GSM [76]. Thus the presented approach

provides a significant reduction for the analysis of 2D problems.

Theoretically EMT produces better results when the selected wavelength is much

larger than the period of the structure. Thus, performance of HM is only limited

by the operating spectrum of the EMT. Yet, by comparing the numerical results

with simulation results gathered from CST (Computer Simulation Technology), it is

revealed that the our method yields accurate results with realistic wavelength-to-period

ratios.

3.2 Analyzing Method

A periodic square array of 2D PC which includes dielectric squares having width of

p1, relative permittivity of ε1, embedded in background material which has relative
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permittivity of ε2 and period p is depicted in Figure 3.1. Geometry and parameters of

2D PC given in this paper is based on Lalanne’s work in [78] for verification.

For the analysis of the original problem simulated in CST (see Figure 3.2), periodic

boundary condition is applied in two dimensions (dielectric properties of media are

invariant in the transverse (x, y) plane). In the z-direction, six layers of unit cell is

periodically arranged and TE/TM plane wave is incident with θinc angle with respect

to surface normal (Floquet boundary condition is applied). Corresponding unit cell

model of 2D square lattice PC is given at right side of Figure 3.2.
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Figure 3.1 : Representation of EMT transformation
(a) 2D square lattice periodic structure consists of square shaped

dielectrics with relative permittivity of ε1 immersed in background
material with relative permittivity of ε2

(b) 1D equivalent thin films (effective indices calculated by EMT).

first grid

second grid

.

sixth grid

.

. 1p

2

1
p 1p

p

xy

z

Figure 3.2 : 2D Photonic crystal square array composed of dielectric square rods and
corresponding unit cell design (ε1 = 4, ε2 = 1, λ = 1310 nm (operating

wavelength), p1 = 209 nm, p = 537 nm).

In order to simplify the computations of 2D PC geometry is reduced to 1D periodic

media using EMT. Effective permittivity of the homogenized 1D geometry can be
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Table 3.1 : Calculated parameters of 1D PC for different polarization, incidence
angle and wavelength.

λ (nm) TE/TM, θinc(deg) εe f f p1 (nm) p2 (nm)

1310 nm TE-wave, 00 2.4524 209 328
700 nm TE-wave, 300 2.4524 112 175
900 nm TM-wave, 150 2.7384 175 225

calculated by expanding period-to-wavelength ratio (α) to power series as follows:

for TE polarization;

εe f f = εavg +
π2

3
[ f (1− f )(ε2− ε1)]

2
α

2 (3.1)

for TM polarization;

εe f f =
1

εinv
+

π2

3

[
f (1− f )(ε2− ε1)

ε2ε1

]2
εavg

εinv3 α
2 (3.2)

where εavg = ε2 f +ε1(1− f ) is the average relative permittivity and εinv = f/ε2+(1−

f )/ε1 is the arithmetic average of the inverse relative permittivity, f = p1/p is the fill

factor (duty cycle), p1 = f p, p2 = (1− f )p and α is as used in [78].

Simulation parameters (for the selected geometry depicted in Figure 3.2) f , α and εe f f

are derived using equations (3.1) and (3.2) as follows (see Table 3.1):

fT E = 0.390, αT E = 0.410, εe f f−T E = 2.4524

fT M = 0.437, αT M = 0.444, εe f f−T M = 1.6564

It is important to note that when EMT is applied considering arbitrary angle of

incidence, second-order effective index formulation has to be used given in [79]. The

high order EMT closed form expressions as given in [79] as a function of x-component

(β = n1 sin(θ)), covers the effective dielectric constants up to 2nd order for TM

polarization and up to 4th order for TE polarization. Consequently, zeroth order EMT

considers only zeroth transmitted and reflected orders of propagating light. In order

to provide a complete model one must take into account evanescent modes that are

covered in high-order EMT expressions.

Propagation constants of plane waves are the solutions of dispersion equation. In

the classical approach these solutions are obtained by solving the roots of eigenvalue

equation of the form [23]
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cos(K p) = cos(kz
1 p1)cos(kz

2 p2)−M sin(kz
1 p1)sin(kz

2 p2) (3.3)

where

M =


1
2

(
kz

2
kz

1
+

kz
1

kz
2

)
T E

1
2

(
n2

1kz
2

n2
2kz

1
+

n2
2kz

1
n2

1kz
2

)
T M

(3.4)

By assuming the unit cell (UC) as a two-port network photonic bandgap characteristics

of periodic structure can be determined in terms of scattering parameters. After

applying the boundary conditions and Floquet periodicity condition eigenvalue

equation of the symmetric UC can be expressed in the following alternative form

cos(K p) =
1−S11

2 +S21
2

2S21
(3.5)

Our procedure is a clear improvement on traditional bandgap investigations that

are considerably time-consuming. Following the application of EMT the scattering

parameters of the 1D UC is calculated using GSM method. Accordingly, edge of

the photonic bandgaps are determined by calculating roots of two analytic auxiliary

functions

X± = Im{S11±S21} (3.6)

where Im{.} denotes the imaginary part operator and S11 and S21 are the scattering

parameters of the UC, respectively [76].
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Figure 3.4 : Photonic band structure of 1D equivalent PCs (solid-blue) and variation
of X+ and X− functions (dashed-red) (700 nm (470.968 THz),

θinc = 300, TE-polarization).
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Figure 3.3 : Photonic band structure of 1D equivalent PCs (solid-blue) and variation
of X+ and X− functions (dashed-red) (1310 nm (227.419 THz),

θinc = 00, TE-polarization).
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Figure 3.5 : Photonic band structure of 1D equivalent PCs (solid-blue) and variation
of X+ and X− functions (dashed-red) (900 nm (297.581 THz),

θinc = 150, TM-polarization).

In Figures 3.3, 3.4, 3.5, solid blue line represents the photonic band structure

(dispersion diagram) of 1D PC, dashed lines represent the variation of X+ and X−

functions and shaded region represents photonic bandgap of the periodic structure. It

can be seen that, zero transitions of X+ and X− functions perfectly match with bandgap

edge frequencies of dispersion diagram.
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Figure 3.6 : Geometry of cascaded 6 unit-cells of 1D PC and unit cell design
(ε1 = 2.4524, ε2 = 1, p1 = 209 nm, p2 = 328 nm, θinc = 00).

Figure 3.6 represents the effective 1D PC model simulated in CST design environment.

Periodic array of 1D PC is assumed to be finite (periodically arranged 6 layers) along

z-direction and infinite in other directions as shown in Figure 3.6. Corresponding unit

cell model of 1D PC is given at the right side of Figure 3.6.

For designing purposes of optical components geometry of interest can be simulated

with a mesh close to its exact shape. Proper discretization of the object often requires

a great amount of computation. The objective of EMT is to reduce the computation

time by replacing the periodic structure with a more simple homogenized layer.

Generally use of EMT yields a good approximation if the wavelength is sufficiently

large compared to period of the structure which is summarized as α = p/λ0 << 1 with

λ0 is being the incident wavelength. The range of validity that the condition is satisfied

is called as long-wavelength limit (or static limit). As a characteristic behaviour of

EMT, approximation cannot predict accurate effective index results for large α values.

Hence, EMT yields valid results around the region of long-wavelength limit [80–82].

Although the AFGSM method does not have any limitation itself in case of symmetric

UC, application of EMT makes an overall limitation for HM. This limitation means

that study findings need to be interpreted in the sense of EMT boundaries.

In order to provide these findings an illustrative example is provided in Figure 3.7 with

given initial values of structure same as in Figure 3.2 (λ0 = 1310nm, p = 537nm,α =

0.41, f = 0.39,εe f f = 2.452)
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Figure 3.7 : Validity of EMT for varying operating wavelength (λ0). Solid-red line
represents λ = λ0, black-dots represent λ = 5λ0 with

α = 0.082, f = 0.402,εe f f = 2.506 and blue-dashed line represents
λ = λ0/5 with α = 2.049, f = 0.277,εe f f = 1.974

.

In Figure 3.7 period of the structure is taken as constant and the operating wavelength

is changed to higher and lower values of 5λ0 and λ0/5 respectively. The dashed line in

Figure 3.7 clearly shows that EMT is not valid for analyzing the structures with large

α values, whereas dots show very good agreement with the results of λ = λ0.

To examine the effects of different shapes of cross sections, circular rod shaped square

lattice PC is demonstrated in Figure 3.8. Simulation results reported by Frezza et

al. and experimental data given in [83] are compared with results obtained with HM

plotted in Figure 3.8. The results are consistent with data obtained in [83] and [84].

Moreover, when 2D PC structure is considered with hexagonal (or honeycomb) lattice,

EMT cannot resolve spatial arrangement of hexagonal symmetry. In that case, due

to the directional dependency of structure 2D homogenization needs to be applied.

Some different approaches such as multiple-scattering technique (MST), tight-binding

method, coherent potential approximation (CPA) method and Mie scattering theory

exist in the literature [85–88]. However in this context, the proposed HM cannot be

directly applied to the Honeycomb lattice.
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Figure 3.8 : Transmittance of dielectric circular rods immersed in air.
n1 = 1,n2 = 2.98,radius = 0.37mm, p = 1.87mm and 7 cascaded layers.

Solid-red line shows simulation results given in Frezza et al., 2003,
blue-dashed line represents HM results, block-dots show experimental

data given in Robertson et al., 1992
.
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Figure 3.9 : Magnitude response of S11 for 6 period of PC. Solid blue line represents
1D PC-CST, dashed red line represents 2D PC-CST and circle black line
represents HM results respectively. (1310 nm (227.419 THz), θinc = 00,

TE-polarization).

In order to verify validity of the HM for finite periodicity, problem geometries of

2D and 1D PC lattices (Figure 3.2 and Figure 3.6) are modelled in CST design

environment and obtained simulation results are presented in Figures 3.9 to 3.11.

Moreover, calculated GSM-Matlab results of 1D PC comprised of 6 unit cells are

shown in Figures 3.9 to 3.11 marked as circles. The comparison of the numerical

and simulation results reveals that HM produces consistent results even in the case of

different wavelengths, incidence angles and polarization (see Figures 3.3 to 3.5 and see
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Figures 3.9 to 3.11). In Figure 3.10, the stop band is centered on a certain wavelength

such that the bandgap is shifted towards larger frequencies [78].
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Figure 3.10 : Magnitude response of S11 for 6 period of PC. Solid blue line
represents 1D PC-CST, dashed red line represents 2D PC-CST and

circle black line represents HM results respectively. (700 nm (470.968
THz), θinc = 300, TE-polarization).
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Figure 3.11 : Magnitude response of S11 for 6 period of PC. Solid blue line
represents 1D PC-CST, dashed red line represents 2D PC-CST and

circle black line represents HM results respectively. (900 nm (297.581
THz), θinc = 150, TM-polarization).

In identification of photonic bandgaps, use of X+ and X− is computationally more

efficient than the conventional solution of eigenvalue equation by a factor of more

than 10 [76]. Furthermore, the HM has a substantial advantage over the numerical

computation tools in terms of computation time (see Table 3.2). It also has to be noted

that band edge frequencies obtained from CST simulation are in perfect agreement

with those obtained by HM. When 2D PC problem is reduced to effective dielectric
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Table 3.2 : Comparison of computation time for different methods.

λ (nm) TE/TM, θinc(deg) 2D CST 1D CST HM Units
1310 nm TE-wave, 00 890 125 0.596 (sec.)
700 nm TE-wave, 300 137 20 0.525 (sec.)
900 nm TM-wave, 150 626 113 0.482 (sec.)

layers, AFGSM method can be used to calculate band edges of UC without being need

to cascading procedure that gives opportunity to design wide range of applications

such as filters, cavity resonators, power splitters and PC waveguides constructed by

just applying defect layers in 2D PCs. Numerical computations are obtained on a

modest PC which has Intel i7 @2.60 GHz Processor and 12 GB RAM.

3.3 Conclusion

In this research a unique approach is presented to identify photonic bandgaps of 2D

periodic structures rapidly. Successful execution of HM shows that band structure

computation for the 1D equivalence mitigates the calculation time considerably. It is

also noticed that when period-to-wavelength ratio approaches to zero, results become

consistently good in quality and performance. Likewise, recommended HM is not

only limited to square cross sectional shapes exercised in this paper but also it can

address arbitrary profiles even with different angle of incidence and polarization states.

Thus, we believe that our approach will be useful in further design stages for 2D PC

structures.
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4. BANDGAP ANALYSIS OF 2D PHOTONIC CRYSTALS WITH
AUXILIARY FUNCTIONS OF GENERALIZED SCATTERING MATRIX
(AFGSM) METHOD 2

4.1 Introduction

Photonic crystals (PCs) are a substantial class of periodic structures because of unique

features used to control the light propagation particularly to restrict or allow inside

the material. PCs are the made out of dielectric materials having periodicity in cross

section and being composed of elements bearing symmetry properties with intermittent

index of refraction. When a light penetrates in a dielectric structure physical

phenomenon appears by adjustment of the electrical and dimensional attributes of PC.

Equivalent to idea of implementing waveguiding structures and resonant-cavities to

forbid or permit EM wave flow in a certain direction and spectral region, simply by

varying the electrical and physical attributes of a PC can also lead to obtain desired

propagation properties. Employing the modification in material properties could

results in appearance of photonic bandgap (PBGs) which are effective in a particular

wavelength range and disallows wave propagation regardless from the direction [1,89].

When concerning the two dimensional geometries the most popular and common

forms of the structure comprises of dielectric columns placed in air or air columns

embedded in a material which has a higher index of refraction contrast arrayed in

distinct alignment patterns e.g. square grid, triangular grid, and hexagonal grid

[90–92]. In addition, defect implementation in photonic crystals might grow because

of manufacturing faults or might be applied advisedly to mold its transmittivity

features. Particular defect shapes can be inserted into a 2D PC with the method of

dropping some columns or by utilizing asymmetric dimensional parameters which

leads to asymmetric placement pattern [93–97].

2This chapter is based on the paper "Erkan, O., Akıncı, M. N., Şimşek, S., 2018. Bandgap analysis
of 2D photonic crystals with Auxiliary Functions of Generalized Scattering Matrix (AFGSM) method,
AEU-International Journal of Electronics and Communications, 95, 287-296."
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Propagation characteristics of 2D PCs constitute significant importance encountered

in several applied science applications especially in designing numerous components

in optical and microwave region e.g. polarization-splitters, optical bandpass-filters,

resonance filters, photonic crystal waveguides, tapers, thin-film lasers, optical switches

and resonators, dielectric mirrors, and patch and microstrip antennas [8,11,13,98–106].

A lot of mathematical techniques have been formulated to specify the photonic band

structure of PCs. Typically employed techniques include Transfer Matrix Method

(TMM), Finite-Difference Time-Domain (FDTD) method, Multiple Scattering (MST)

method, Plane-Wave Expansion (PWE) method,and Finite Element Method (FEM)

[69, 70, 73, 107–109]. Besides these frequently used investigation routines, Fourier

Modal Method (FMM) is one of the significant methods used in similar studies

[84]. Considerable quantity of the studies available in the literature is concerning

the evaluation of the eigenvalue relations obtained by expanding the considered

structure’s dielectric function into series of modes. Generally, considered models are

not advantageous enough to estimate results precisely because of lacking applicable

constraints conceived during modeling process. Nevertheless, comprehensive EM

survey of a periodically patterned medium can be ascertained by examining the

dispersion plot of the Floquet modes assisted by an infinite periodic structure, that

is to say by discovering the permitted and confined wavebands [110].

Region II

Region III

Λpx

pz

zy

x

inc
Region I

kinc

Figure 4.1 : Considered 2D rectangular grating structure.

In this chapter of the thesis, we investigate the photonic bandgap characteristics of

2D photonic crystals using auxiliary functions based on generalized scattering matrix
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representation, which preliminary findings of that presented in [59,76]. The alternative

technique introduced recently in [59, 76] is called Auxiliary Functions of Generalized

Scattering Matrix (AFGSM) method. As we already concerned in [59, 76, 111],

utilizing AFGSM method provides an effective subroutine as it is examined for

the dielectric loaded periodic waveguides and 1D PCs. This technique does not

necessitate satisfying Floquet-condition and maintaining the solution of eigenvalue

relation. Hence, it is quite practicable and viable in comparison to computational

performance of available techniques in the papers. Thus, AFGSM method outputs

precise approximations for the stopband/passband passage wavelengths supported by

Floquet modes.

In this research, considered 2D PCs assumed to composed of cascaded 1D

gratings which constitute the unit cell (UC) of the total geometry (see Figure 4.1).

Scattering-parameters of the UC is determined by employing the Rigorous Coupled

Wave Analysis (RCWA) which is regarded as a subblock of the technique given in

this context [112]. Subsequently, AFGSM method is incorporated to specify PBG

edges of infinitely periodic structure. The objective of this study is to evaluate the

findings for different types of grid patterns formed by rectangular or circular dielectric

columns and compare them with the results given in technical papers. In particular,

triangular lattice form is maintained by shifting the middle row of the UC in lateral

properties whereas defect pattern is provided by eliminating that row of columns.

PBG spectral response is quantified in case of a variation in the essential configuration

parameters such as polarization, duty cycle, angle of incidence. Convergency of the

integrated computational routine is assessed when the number of diffraction orders

raised and precisely discretized mesh. Furthermore, numerical results attested with

High Frequency Structure Simulator (HFSS).
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Figure 4.2 : TE and TM polarization for a wave incident on two-dimensional
rectangular stacked PC.

4.2 Theory

4.2.1 Problem statement

Basic geometry of the problem comprises of three domains: Region I, II and III where

Region I and III are designated as uniform, homogenous mediums while Region II

consists of rectangular grating pattern periodically arranged along the x axis. As shown

in Figure 4.1 rectangular columns of Region II has dimensional parameters of px and

pz and Λ denotes the period which includes grooves and ridges. Refractive index

of uniform mediums, Region I and III are stationary and denoted by nI = nIII =
√

εr3

whereas dielectric constant in Region II is a periodic function of x and refractive indices

of the dielectric columns in that grating region denoted by n1 =
√

εr1 and n2 =
√

εr2

respectively (see Figure 4.2) . It should be noted that, for the entire geometry dielectric

properties are invariant in y-direction and throughout the paper we assumed that

nIII = n1
√

εr1 , where εri, i = 1,2,3 represents the relative permittivity of considered

region. 2D finitely periodic structure constituted by cascading UC in z-direction. In the

full-wave analysis a plane wave is considered to be incident through the geometry from

Region I having a wave number kinc in x-z plane, applied angle of incidence θinc defined
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as the angle between propagation vector and surface normal. Only planar diffraction is

investigated satisfying the Transverse Electric (TE) polarization in which E= (0,Ey,0)

(electric field vector) is perpendicular to the plane of incidence (x-z plane) and H

(magnetic field vector) is parallel to the x-z plane whereas for the Transverse Magnetic

(TM) polarization in which H= (0,Hy,0) is perpendicular to x-z plane and E is parallel

to the x-z plane as shown in Figure 4.1.

4.2.2 Analyzing method

This study concerns with photonic bandgap characterization of 2D photonic crystals

having different lattice forms and cross sections. In order to examine PBGs we first

calculate scattering parameters of 1D grating structure using RCWA as a subblock.

Subsequently, obtained s-parameters cascaded in z-direction via generalized scattering

matrix (GSM). Final output provides scattering parameters of finitely periodic 2D

structure. Results compared with that of obtained in HFSS simulations. Thus

far, attested results show the accuracy of RCWA subblock. However, instead of

computational costly calculations in finite system we can estimate band information

only by calculating first Floquet modes of infinitely periodic structure. Theoretically,

a comprehensive wave study including Floquet modes of infinitely periodic structure

provides the band information of the finite system. In other words, evanescent waves of

first Floquet modes in infinite periodic structure corresponds to stopbands of zero order

Floquet modes in finite periodic system. Hence, AFGSM can be applied in order to

determine bandedges of infinitely periodic structure properly. The proposed technique

effectively returns precise estimations for the calculation of bandedge frequencies

supported by Floquet modes just by performing a straightforward root-determination

algorithm. In the following section, we have emphasised a concise introduction of

applying RCWA to 1D periodic grating structure as a subroutine for investigating

scattering parameters. We intended to unveil the performance benefits of employing

AFGSM in comparison to traditional band exploring approaches. The incident electric

field, which is normal to the plane of incidence with TE polarization, is formulated by

E inc
y = e jkInI(xsinθ+zcosθ) (4.1)
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where kI = k0 = 2π/λ0 and λ0 denotes the wavelength of free space and nI is the index

of refraction in Region I. The wave numbers of the structure defined as kI = kIII = k0

where kI and kIII denote that of the Regions I and III respectively. The electric field in

homogenous regions (Region I and Region III) satisfies form of Floquet condition

Ey(x,z) = ∑
m

Eme j(kxmx+kzmz); (m = 0,±1,±2...) (4.2)

where kxm = kI sinθ +
(

2π

Λ

)
, m = 0,±1,±2... Em in (4.2) represents the

magnitudes of the fields in the summation and could be obtained by ensuring the

boundary conditions at for each layer. In the uniform host regions Ey(x,z) must fulfil

the Helmholtz wave equation

∇
2Ey + k2

HEy = 0 (4.3)

where kH = kI = kIII and every partial wave satisfies the dispersion equation provided

by kzm = ±
√

k2
I − k2

xm. In order to identify the exact fields propagated in the total

structure, allowed waves in Region II must be determined. Commonly, wave vector

k(x) in Region II is presented by Fourier series

k2(x) = k2
0 ∑

n
kne j( 2πn

Λ )x (4.4)

where kn denotes the Fourier coefficients. Then, electric field in grating region can be

derived as

Ey(x,z) =
+∞

∑
m=−∞

φm(z)e jkxmx (4.5)

where φm(z) is a periodic function which associates the Floquet theory with the electric

field in periodic medium. Replacing equalities (4.4) and (4.5) into Helmholtz equation

(4.3) after utilizing some mathematical initiatives we obtain uncoupled second order

differential equations for unknown coefficients φm(z),(
d2

d2
z
+ L̃

)
φ̃ = 0 (4.6)

where φ̃ is a column vector which has elements φ̃m(z), L̃ is a full matrix which has

elements in diagonal knn−
(

kI sinθ +(2π

Λ
)m
)2

, n : −N ≤ n ≤ N and N is the order

of diffraction for related modes. Solution to equation (4.6) can be derived as

φ̃ = C̃e jkz (4.7)
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where C̃ is a constant vector and κ is the propagation constant in z-direction. Along

with the equation (4.6) we gather linear homogeneous equation in the form of

L̃ ·C̃ = κ
2 ·C̃ (4.8)

κ2 in equation (4.8) denotes the eigenvalues of matrix L̃ that can be found as the

solution of characteristic equation such as

det
[
L̃−κ

2I
]
= 0 (4.9)

Assuming that κp is the eigenvalue of characteristic relation and Cp is the

corresponding eigenvector. Accordingly, solutions of eigenfunctions can be calculated

as

φ̃
+
m (z) = C̃pe− jκmz (4.10a)

φ̃
−
m (z) = C̃pe+ jκmz (4.10b)

In equation 4.9 the sign of φ̃+
m stands for waves that travel in the forward and backward

directions through the z-axis respectively. Components of eigenvector C̃p are the

modal solutions of the field in the periodic region that includes an infinite set of space

harmonics with an amplitude Cnm. For the m-th mode we get

φ̃m(z) = ∑
n

AnCnme− jκmz +BnCnme+ jκmz (4.11)

Equation (4.11) is the modal representation that considers the fields in terms of modes

propagating in the z-direction, each m-th term in the summation stands for an individual

mode with amplitudes An and Bn that need to be found. If we insert equation (4.11)

into equation (4.5) we get modal expansion of electric field in Region II that can be

derived as

Ey(x,z) = ∑
m

∑
n

Cnm

(
Ane− jκmz +Bne+ jκmz

)
e jkxmx (4.12)

where An and Bn are unknown field magnitudes of forward and backward propagating

waves respectively. Cnm is the m-th component of the n-th eigenvector.

Accordingly, incident, reflected and transmitted waves are represented with

plane-wave expansion for the region I and III where Ey(x,z) can be written as follows:

EI
y(x,z) = e j(kxmx+kzmz)

+∞

∑
m=−∞

Rme j(kxmx−kzmz) (4.13)
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and

EIII
y (x,z) =

+∞

∑
m=−∞

Tme j(kxmx+kzmz) (4.14)

where Rm and Tm are the normalized complex field amplitudes of the m-th reflected

wave and transmitted wave respectively and

kzm =


k0

√
n2

H−
(

kxm
k0

)2
,k0nH > kxm

− jk0

√(
kxm
k0

)2
−n2

H ,kxm > k0nH

H = I, II (4.15)

The transmitted and reflected field amplitudes Rm and Tm are determined by satisfying

the tangential electric and magnetic field boundary conditions at the surfaces.

Components of scattering matrix of the UC is hence determined by identifying the

all unknown constants.
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Figure 4.3 : Generalized scattering matrix cascading process of layers.

In the concept of GSM the UC is considered as a two-port network consisting N modes

in which scattering parameters are derived by related normalized wave amplitudes at

input/output ports which is represented as

[
b1
b2

]
=

[
S11 S12
S21 S22

][
a1
a2

]
(4.16)

which is divided into N by N submatrices. Satisfying the Floquet condition for the unit

cell, modal amplitudes can be written in the form of

b2 = λa1 , a2 = λb1 (4.17)
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where λ represents the complex constant. Substituting equation (4.17) into (4.16), we

can get the eigenvalue relation of the periodic system

[
I −S11
0 −S12

][
b1
a1

]
+λ

[
−S12 0
−S22 I

][
b1
a1

]
= 0 (4.18)

where I is the unitary matrix. Accordingly, each stack is connected together using

GSM approach as shown in in Figure 4.3, matrix representation of the procedure is

given below

[
b1

L1

b2
L2

]
=

[
S11

T S12
T

S21
T S22

T

][
a1

L1

a2
L2

]
(4.19)

where

S11
T = S11

L1 +S12
L1S11

L2
(

I−S22
L1S11

L2
)−1

S21
L1 (4.20a)

S12
T = S12

L1 +
(

I−S11
L2S22

L1
)−1

S12
L2 (4.20b)

S21
T = S21

L2
(

I−S22
L1S11

L2
)−1

S21
L1 (4.20c)

S22
T = S22

L2 +S21
L2S22

L1
(

I−S11
L2S22

L1
)−1

S12
L2 (4.20d)

As it is well-known, transfer matrix method (TMM) is not stable because of transfer

matrices including positive and negative arguments in the results of exponential

functions. However, generalized scattering matrix method does not have stability

issue because of consisting only negative arguments in exponential functions [74].

Therefore, GSM method is used in our paper and applied to our problem rigorously.

Nevertheless, this technique is costly in terms of computational performance due to

calculation of matrix inversions in every step of algorithm. Thus, it doesn’t show

any advantage in comparison to existing conventional methods which employed to

compute the dispersion relations as it needs to solve eigen-equation in (4.18) yet.

Following deduced formulation can be used based on the s-parameters of the UC, such

as

cos(KΛ) =
1−S2

11 +S2
21

2S21
(4.21)
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The cos(KΛ) term defines the photonic bands as follows: In the region where∣∣cos(KΛ)
∣∣ < 1, cos(KΛ) has real value where structure supports at least one

propagating Floquet mode.

In the region where
∣∣cos(KΛ)

∣∣ > 1, cos(KΛ) includes real and imaginary parts

where photonic structure allows non-propagating evanescent Floquet modes, namely

photonic bandgaps (PBG). The frequencies which render
∣∣cos(KΛ)

∣∣ = 1 defines the

band-edges separating the two regions.

λ1,2 = e± jθ , θ = KΛ ε0,π (4.22)

The solution of (4.18) matching to λ values in (4.22) is referred to as a Floquet mode. If

periodic structure allows at least one propagating Floquet mode in a certain frequency

region it is called passband. The appearance of complex modes can be clarified by

the existence of cutoff transitions at (KΛ = θ) 6= (0,±π) in the dispersion curve. The

values where the band edges of dispersion relation (4.21) mitigates to S11±S21 =±1

and imaginary part of the S11±S21 vanishes at band-edge wavelengths which are found

at zero transitions of the functions X+ and X− , defined as

X± = Im{S11±S21} (4.23)
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Figure 4.4 : Utilization of proposed technique for a cascaded 2D photonic crystal.

The method that governed by zero passings of related functions (X± = 0) precisely

match the roots of (4.23), namely AFGSM allows to determine the PBGs of the
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PC structure accurately. Primary subblock RCWA which is used to calculate UC

scattering parameters including higher order modes, considers the dielectric functions

of rectangular gratings as an expansion of Fourier series with space variables.

Reflected and transmitted waves in each layer are used to calculate complex amplitudes

and intensities for individual diffraction orders. Ones that correspond to reflected

orders are denoted by dashed blue arrows whereas transmitted orders are denoted by

solid green arrows having a series of n = 0,±1,±2,... orders illustrated in Figure 4.4.

As referred to detailed formulations given in [69] and [113], solutions of differential

equations which are stated in the form of linear algebraic matrix formulation that

represents the parameters of the UC.

This study provides a novel approach to identifying PBGs using auxiliary functions

(X±) that it does not need an eigenvalue solution when finite structures considered.

The proposed algorithm effectively returns precise estimations for the calculation of

bandedge frequencies governed by Floquet modes just by performing a straightforward

root-determination algorithm in AFGSM. Thus, implemented technique smoothly

yields to examine arbitrary form of PBG structures comprised of dielectric columns

or air columns in background media in an enhanced and simple approach.

In the following part, we introduce our findings related to dispersion curves of

the 2D PC structure comprised of circular and rectangular dielectric columns with

varying dielectric constant while analyzing the dispersion curve effects of the changing

electrical and dimensional parameters in an infinitely arrayed PC.

4.3 Numerical Results

In this section, we have assessed the computational performance and potential of

proposed method. Furthermore, obtained results are compared with available data

in the literature. Accuracy of numerical execution when physical and geometrical

parameters varied are examined.

Below list of symbols used throughout this research is itemized:

"R" denotes radius of circular cross section dielectric rods,

"FR" denotes the filling ratio (duty cycle) given as the ratio of the px and Λ,

"N" denotes number of diffraction orders,
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"D" denotes the discretization number of rectangular cross-section gratings to

approximate circular,

"NC" denotes number of cascaded stack layers for a finite periodic PC,

"DLN" denotes the position of the defect layer in the UC.

In order to examine the proposed technique, PCs consisting of columns with various

shapes, such as rectangular and circular (or cylindrical) cross sections and different

lattice forms including rectangular and triangular are considered. The acronyms used

in Figure 4.5 addresses the type of geometry used in numerical evaluations i.e. first

letter designates the cross-section type of rod, e.g., rectangular or cylindrical, and

second letter stands for the lattice type of array formation.

a)

c)

b)

d)

Figure 4.5 : a) RR-PC: rectangular cross section, rectangular lattice b) RT-PC:
rectangular cross section, triangular lattice c) CR-PC: circular cross

section, rectangular lattice d) CT-PC: circular cross section, triangular
lattice.

4.3.1 Validation of method

This section presents the comparison of results we remarked within the studies with

that of existing among research papers. First of all, RCWA subblock routine results

are verified for a quasi-periodic geometry, subsequently, generalized scattering matrix

approach is employed to obtain 2D unit cell scattering parameters. For the comparison

purposes transmittance and reflectance plots are depicted in the same figure both for

our approach and HFSS outputs as well as the data gathered from reports available
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Figure 4.6 : a) Transmittance frequency response of RR-PC configuration (solid line)
compared with results reported in Dansas and Paraire, 1998 (dots) and

the results obtained with HFSS (diamonds) b) Dispersion diagram
showing the variation of auxiliary functions (X±) versus frequency.

Normally incident plane wave is excited with TE-polarization and the
parameters, n1 = 1,n2 = 2.85,N = 11,FR = 0.35, px = pz = 212nm, l =

194nm,Λ = 600nm,NC = 11.
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Table 4.1 : Comparison of band-edge frequencies for different number of layers.

Layer Numbers Method Band-edge frequencies (THz) Computation time*

NC=11 RCWA+GSM 149 < f < 220 2.737

NC=20 RCWA+GSM 144 < f < 223 3.346

NC=25 RCWA+GSM 143 < f < 223 3.496

NC=∞ AFGSM 143 < f < 224 0.027

*simulation time in seconds

in the literature. This spectral response of magnitude is shown in the LHS of the

figures. Concurrently, on the RHS of each figure zero transitions of AFGSM’s

auxiliary functions (X+) are illustrated in dispersion diagrams in order to compare

the bandedges with that of described aforementioned above. As it’s clearly seen in the

Figure 4.6(a) that combined approach (RCWA+GSM) outputs are consistent with with

ones gathered by utilizing the AFGSM method shown in Figure 4.6(b). Considered

geometry is RR-PC with the parameters; n1 = 1,n2 = 2.85,N = 11,FR = 0.35, px =

pz = 212nm, l = 194nm,Λ = 600nm,NC = 11 which a TE polarized plane wave is

incident on the structure from air medium. Bandedge transitions given in Figure 4.6(b)

reveals that a PBG exists between 143 THz and 224 THz and tuned at 183.5 THz center

frequency. In Figure 4.6(a), it is proven that the results are amenable with the results

reported in [113]. In order to explore the effect of varying NC values in computation

time and precision on bandedge values are listed in the Table 4.1 for several NC values

incorporated to computation durations for RR-PC structure given in Figure 4.6(a). It

can be seen that given in Table 4.1, as the NC is increased, PBG edge frequencies

approach to that of infinite periodic case while minimum values for the NC is defined

as ‘25’.

In Figure 4.7(a) to attest our sub routine (RCWA+GSM) we implemented the data

of experiment available in [114] and also results obtained with HFSS. In a similar

fashion, a PBG is resides between 23.1 GHz and 38.1 GHz and it is respresented

in Figure 4.7 (b) which the values received via utilizing the AFGSM method. The

configuration parameters given in [114] are n1 = 1,n2 = 3.1,N = 19,FR = 0.5,D =

20,R = 0.75, px = pz = 1.5mm, l = 0.75mm,Λ = 3mm,NC = 18 in which impinging

wave is normally and TE polarized.
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Figure 4.7 : a) Transmittance frequency response of CR-PC configuration (solid line)
compared with results reported in Lourtioz et al., 2005 (dots) and the

results obtained with HFSS (diamonds) b) Dispersion diagram showing
the variation of auxiliary functions (X±) versus frequency. Normally

incident plane wave is excited with TE-polarization and the parameters,
n1 = 1,n2 = 3.1,N = 19,FR = 0.5,D = 20,R = 0.75, px = pz =

1.5mm, l = 0.75mm,Λ = 3mm,NC = 18.
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Figure 4.8 : a) Reflectance frequency response of RT-PC configuration (see the inset)
as a function of frequency is shown (solid line) for comparison with

results obtained with HFSS (dots) b) Dispersion diagram showing the
variation of auxiliary functions (X±) versus frequency. Normally

incident plane wave is excited with TE-polarization and the parameters,
n1 = 1,n2 = 2,N = 3,FR = 0.33, px = pz = 542.5nm, l = 272nm,Λ =

1627nm,NC = 3.
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Triangular grid pattern is also investigated and simulation results are given in

comparison among the data retrieved through HFSS simulations . In this case, a lateral

shift in the x-direction between two adjacent layers is applied. Identical approach

used for comparison with combined routine (RCWA+GSM) given in Figures 4.6 and

4.7. Subsequently, AFGSM is applied to attest the dispersion characteristics of the

equivalent structures. Figure 4.8(a) depicts the outcomes of sub-routine compared

with HFSS results for the RT-PC shaped structure. From the Figure 4.8(b) one can

see that there is a PBG existing between the 94 THz and 124.5 THz with a central

frequency of 109.3 THz. Likewise, we have noticed perfect agreement between

the results of HFSS, RCWA+GSM and AFGSM method for the CT-PC setup. In

conclusion, we have implemented our sub-block routine to several different structure

conformations to compare with the values found in literature and those of received

from HFSS simulations. Due to practical constraints, accurate determination of PBGs

in finite periodic structure needs adequate amount of cascaded stacks. However as

the number of layers are increased computational performance mitigates. Instead of

that alternatively calculating the scattering parameters and employing the AFGSM

accordingly allows to determine bandedge values corresponding to total geometry

by maintaining considerable benefit in computation time. That is to say, in finding

the band-edge frequencies with particular precision the use of AFGSM mitigates

the computing time by a factor of more than 10 when compared to the traditional

method which based on solving the eigenvalue equation using a more finer frequency

mesh [76]. After executing comprehensive simulation experiments it is found that,

in the frequency region wherein the PC supports a single propagating Floquet wave,

AFGSM estimates PBG frequencies with an improved accuracy more than 0.1% which

constitute another vital finding of proposed method (Numerical computations are

obtained on a modest PC which has Intel i7 @2.60 GHz Processor and 12 GB RAM).

Table 4.2 displays a more explanatory information while comparing the calculation

techniques in terms of computational performance governed in this study. Quantity of

mesh size used in simulations ran over HFSS is 2254 for RR-PC, 19036 for CR-PC and

1834 for RT-PC respectively. PBG computation duration is less than 30 milliseconds

via AFGSM method as seen from Table 4.1 when the GSM of UC is computed. Most

striking computational performance is seen on a value difference (by a factor of 103)

for RR-PC structure which including eleven stacked unit cell. In conclusion, some key
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Table 4.2 : Simulation time comparison.

Structure Configuration HFSS* RCWA* RCWA+GSM* AFGSM*
RR-PC (Figure 6) 2344 2.26 3.02 0.026
CR-PC (Figure 7) 502 50.56 51.09 0.012
RT-PC (Figure 8) 177 0.65 1.47 0.025

*simulation time in seconds

supremacies of defined technique when using in computational experiments and related

observations are remarked by attesting with the results available in the literature.

4.3.2 Effect of variations of physical and electrical parameters

In this part, we investigated the PBG frequencies along with the varying parameters

such as filling ratio, wave polarization and angle of incidence. Contour figures are also

presented for either TE and TM polarizations which can be useful in design studies.
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Figure 4.9 : Transmittance frequency response of RR-PC configuration (same as in
Figure 4.2) as a function of frequency is shown for different values of

px = pz. Plane wave is excited under normal incidence with the
parameters, n1 = 1,n2 = 2,N = 27,FR = 0.55, px = pz = 380nm (left),

px = pz = 597nm (right) l = 244nm,Λ = 1085nm,NC = 20. In both
figures, TE polarized wave (dashed line) and TM polarized wave (solid

line) results plotted.

Initially, the impact on the spectral position of PBG when changing the filling ratio is

examined and displayed in Figure 4.9. It’s shown in the figure that two PBGs come

out in the particular range of frequency. The first TE PBG located on fc ≈ 118.2 THz
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for px = 0.35Λ whereas the first TE PBG for px = 0.55Λ configuration centered on

fc ≈ 100.2 THz which states an 18 THz shift towards the lower frequency region.

Nevertheless, nearly no shift is noticed in the first PBG appearance of TM polarization

when filling ratio is altered whereas PBG of which shows a heavy mitigation in size

oppositely. For the second PBG a similar behavior can be observed, but shifting of

center frequencies doubled this time, i.e., the TE PBG is shifted 29 THz to lower

frequency region. The second photonic bandgap of px = 0.35Λ configuration has a

particular interest as it stimulates the widest stop band i.e., 35 THz which is 16.4% of

central frequency fc ≈ 214.9 THz.

Additional valuable aspect found on the Figure 4.9 is the complete PBG which is

defined as the overlap of stopbands that comes out in case of both TE and TM

polarizations leading an intersection in frequency region [1]. For the Figure 4.9 two

complete bandgaps centered on fc ≈ 116.7 THz and fc ≈ 207.2 THz respectively.

The first complete bandgap is 26 THz and 12.7% of fc which is the widest one and

independent of polarization.
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Figure 4.10 : Photonic bandgap size in (THz) as a function of the incidence angle for
the same geometrical and physical parameters of Figure 4.9 normally

incident TE-polarized wave. (dots: px = pz = 0.35Λ, diamonds:
px = pz = 0.55Λ.

It should be noticed that, the bandgap features of the device is not only affected by a

variation in duty cycle but also depends on the angle of incidence. Hence, the results

shown in Figure 4.10 illustrate the impact of varying angle of incidence on the first

65



PBG edges for the same structure of Figure 4.9 in TE polarization. Also in the figure

peak value of gap width for both configuration, appears in 400 incidence angle, i.e., 43

THz for px = 0.35Λ and 40 THz for px = 0.55Λ respectively. Afterwards that as the

value rises, size of PBG likely to drop sharply through the smaller values, i.e., such as

16 THz at 800 for px = 0.35Λ configuration.

Figure 4.11 : Contour diagram in frequency spectrum as a function of filling ratio for
the same structure as in Figure 4.9. First and second photonic bandgaps
of both polarizations TE and TM is shown (dashed line: TM, PBG-1,
solid line: TM, PBG-2, dotted line: TE, PBG-1 and dashed-dot line:

TE, PBG-2).

Contour diagrams (sometimes called GAP maps) can be employed to a wide range

of problems including the PC based component design. It is particularly important

when design framework is structured to govern the variation and identification of

the physical dimensions in order to maintain desired PBG specifications such as the

minimum reflectance or peak transmission in a certain frequency range. Figure 4.11

depicts PBG results for changing filling ratio as a function of frequency spectrum for

the same structure setup as given in Figure 4.10. As it can be seen in Figure 4.11, it is

obvious that largest complete bandgap exist between the filling ratio values of 0.35 and

0.4, i.e., ∆ f = 27 THz bandgap size centered at FR=0.37. To be more precise, in case

of inverse problem with an objective of designing a 2D PC with a stop-band between

the 101 THz and 128 THz, and assuming the parameters n1 = 1,n2 = 2,Λ = 1085 nm,

NC = 20 are given. It can be readily determined that the FR=0.37 value maintains
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the largest PBG in case of dual-polarization. However, generation of the contour

plots requires significant computation resources because of the sweep process of the

frequency mesh for each value of filling ratio concurrently. Enhanced performance of

the AFGSM method allows to generate PBG maps faster than conventional methods

as of computation time by about two orders of magnitude.
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Figure 4.12 : Gap-width to midgap ratio as a function of the filling ratio for circular
and square cross-section columns both for TE (open circles and open

squares) and TM polarization (filled circles and filled squares).

Gap-midgap ratio (GMR) is another essential characterization of PBG which denotes

the gap size in percentage. GMR is described as the ∆ f/ fc where ∆ f is the width of

bandgap in terms of frequency and fc is the center frequency of PBG [1]. Figure 4.12

displays the variation of PBG characteristics by means of GMR against the duty cycle

for circular and square column configurations. Figure 4.12 provides the highest GMR

values as much as 0.7 centered on FR=0.5 for TE-polarized wave in case of circular

type of cross-section. The results shown in Figure 4.12 can also be used to develop

design approaches similar to ones in previous figures.

Table 4.3 compares the GMR values and center frequencies for varying structure

configurations with corresponding filling ratios. As remarked in the table, RT-PC

configuration provides the highest GMR value, i.e., 0.279 and second highest GMR

value can be obtained with CT-PC type structure with a value of 0.268. Another

important notice of Table 4.3 is the spectral location of PBG center frequencies which
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Table 4.3 : Comparison of GMR for different structure configurations.

Structure Configuration f ∗c GMR FR**

RT-PC 109.3 0.279 0.34
RR-PC 119.5 0.234 0.34
CT-PC 112 0.268 0.34
CR-PC 121 0.214 0.34

*in THz units, **filling ratio (duty cycle).

is shifted towards the higher frequency region in CR-PC structure configuration. For

circular columns, peak value of discretized filling ratio is indicated.

4.3.3 Convergence and discretization of proposed approach
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Figure 4.13 : Rectangular discretization of circular cross section.
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Figure 4.14 : Convergence performance of proposed method in case of increasing
diffracted orders (N) for the same configuration parameters of Figure

4.8 when different values of discretization parameter considered: D=50
(circles), D=100 (crosses), D=150 (diamonds), D=200 (squares).

When arbitrary cross-section structures different than rectangular are considered mesh

should be discretized properly. In Figure 4.13 a circular shaped column unit cell is
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discretized by splitting into rectangular forms having different duty cycles distributed

in a range between FR1 to FRD where D denotes the number of discretized rectangular

sections. Convergence performance of the proposed method is given in in Figure

4.14 for varying diffracted orders N with respect to different values of discretization

parameter D for the same configuration as in Figure 4.8. It is obvious that, the proposed

technique’s convergency performance is rapid remarkably for each D value stably.

4.3.4 Introducing periodic defect

As noticed in introduction part, defect inclusion in periodic structures can be existent

either because of fabrication faults or manmade for a particular objective such as

missing columns of some layers, ensuring different shaped rods in a specified row

or by occurrence of misaligned layers. On the basis of aim of designing numerous

practical applications of PC structures with line or point defects can be examined

comprehensively using proposed method. The response in case of the structure

including defect (refractive index of defect layer located in the center is 2.89) compared

with that of without defect, results illustrated in Figure 4.15. As shown in Figure 4.15

(see the inset) inserting a line defect in the middle of a PC yields a sharp transmission

peak which is spectrally located on fc = 254.3 THz and maintains a 100 GHz 3-dB

width of the peak. According to findings given in this subsection, defect applied

periodic structures could be examining in a quick and precise manner. Moreover,

narrow-band or frequency selective filters can be easily designed and simulated with

our approach accurately.
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Figure 4.15 : a) Magnitude response of transmission spectrum of structure in the
RR-PC configuration with (see the inset) and w/o defect. Plane wave is

excited under normal incidence with TE-polarization with the
parameters n1 = 1, n2 = 3.69, N = 15, FR = 0.38, px = pz = 232nm,

l = 183nm, Λ = 600nm, NC = 21. (solid line: structure without a
defect configuration, dashed line: structure with a central defect

configuration, n2 = 2.89) b) Dispersion diagram showing the variation
of auxiliary functions (X±) as a function of frequency. Inset shows the

transmission band response of AFGSM.
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4.4 Conclusion

So far, we proposed a uniquely developed approach to investigate the PBG

characteristics of 2D PC structures comprised of dielectric columns with various

cross-sections and grid types. This study offers comprehensive numerical examples

to support proposed originally developed idea that the allowed Floquet modes in

an infinite periodic system provides the bandedge frequency information of the

finite structure while maintaining the full-wave modal analysis. Additionally, the

novelty of the technique resides on the independence of requirement to an eigenvalue

solution for each layer in case of examining the finite structure. Thus, it allows to

estimate the bandedge frequencies of the entire structure accurately. We experienced

broad variety of simulation experiments including rectangular and circular shaped

columns built on rectangular and triangular grid patterns. For each specific case,

dispersion characteristics explored with our approach resulting transmittivity and

reflectivity responses for a finite number of periodic layers compared in terms of PBG

existence. Besides the numerical computations executed for verification purposes,

existing experimental and theoretical data provided in the literature are compared

with proposed method and a good agreement observed between them. Furthermore,

some useful diagrams, e.g., Gap-Midgap-Ratio, PBG maps, are illustrated in case of

varying the angle of incidence, physical and geometrical parameters for both TE and

TM polarizations. The effect of introducing the defect in 2D PC is examined related

results are presented.

In order to assess the frequency dependence of a band structure designed upon a

particular UC and to find their suitable parameters for a desired application, our unique

method can be utilized in a constant and efficient manner without a dependency on the

number of layers. Particularly when designing practical applications proposed method

maintains a framework to pattern the PBG characteristics in a quick and accurate

way. It should be remarked that, proposed combined method including RCWA and

AFGSM methods for 2D PCs is bounded with the limitations of RCWA method. The

reported aspects might have key deductions for developing arbitrarily shaped 2D PC

applications which we leave as a future work.
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5. ENHANCED TRANSMITTING AND BLOCKING FILTER DESIGN
APPROACH FOR LASER SCANNING APPLICATIONS BASED ON
COMBINING GSM AND AFGSM METHODS 3

5.1 Introduction

Photonic crystals (PC) comprised of dielectric materials have been widely used in

many applications such as gratings, mirrors, filters [115–117], coupler and splitters,

bends, etc. [118, 119], owing to their low power loss and high reflection at optical

frequencies. Optical filters have also been employed in laser scanning microscopy

applications to isolate the desired emitted light from tissue while blocking unwanted

light [120, 121]. Photonic bandgap characteristics in which PCs exhibit transmission

and reflection properties within a specified wavelength range can be constructed with

proper design of multilayered dielectrics [122].

A variety of methods were proposed to determine bandgap characteristics of PCs,

namely Plane Wave Expansion Method (PWE), Finite Difference Time Domain

(FDTD) method, and Finite Element Method (FEM). While FDTD and FEM methods

require fine meshing of the examined structure with a full-wave electromagnetic

analysis, in PWE method the bandgaps are determined by solving an eigenvalue

equation on a fine frequency mesh. In an effort to develop a computationally effective

routine to examine bandgap characteristics which eliminates the need of solving an

eigenvalue equation, we recently proposed the Auxiliary Functions of Generalized

Scattering Matrix (AFGSM) method [60]. Here, we summarize our comprehensive

filter design strategy via AFGSM and showcase its efficacy on a number of filters

employed in laser scanning microscopy applications.

3This chapter is based on the paper submitted to AEU-International Journal of Electronics and
Communications
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5.2 Theory and Modeling

We base our filter designs, whose details are given in the numerical examples section,

on the geometry illustrated in Figure 5.1, comprising a defective periodic dielectric

stack (whose transmittance characteristics are achieved using GSM) sandwiched in

between periodic dielectric stacks (whose transmittance characteristics are achieved

using AFGSM). For any given filter, we start our design efforts with a multilayered

periodic (HL)N design to set the initial stop band (indeed acting as a mirror), where

“H” and “L” represents high and low refractive index dielectric layers, respectively,

and “N” is the number of periods used in the design. In order to introduce the

transmission band, we introduce a defect in the middle of the initial design through

breaking its periodicity to achieve (HL)N/2L(HL)N/2, such that the number of total

layer numbers in the initial design is conserved (0.5N value is ceiled, in case N is odd).

The new (HL)N/2L(HL)N/2 filter is called a Fabry-Perot resonator (FPR). General

structure of FPR is based on inserting a quarter-wave layer L between the two groups

of reflecting structures (HL)N. FPR provides narrow band transmission characteristics

at the design wavelength λ0.

Finally, AFGSM is utilized to extend the stop-bands on either side of the transmission

band through a rapid sweep of material properties and thicknesses, while preserving

the peak transmission. The extended stop-band is provided through two additional

stop-band filters for left and right sides of the spectrum. The details of the overall

design algorithm could be summarized with the following steps:

1. Material pairs, as well as thicknesses are selected to ensure that transmission band

with desired full-width at half maximum (FWHM) value for stage-1 filter (Figure

5.1a,c). Note that the peak transmission value limited to satisfy a predetermined value

(>90%). Table 5.1 summarizes a list of the considered dielectric materials. Note that

there are surely more material options available, who can be deposited with precision

using sputtering (magnetron, RF, DC) or evaporation techniques.

2. AFGSM is employed in designing additional periodic filter structures for an

extended stop-band (Figure 5.1a,b). The bandgap values are limited to satisfy the

given
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Table 5.1 : List of optical coating materials, and their refractive index at design
wavelength (λ = λ0).

Type (L vs. H) Material Symbol Refractive Index Reference

L (n < 2)

Cryolite Na2AlF2 1.35 [123]

Magnesium Fluoride MgF2 1.38 [123]

Calcium Fluoride CaF2 1.42 [124]

Silicon Dioxide SiO2 1.46 [123]

Sodium Chloride NaCl 1.53 [125]

Lead Difluoride PbF2 1.73 [123]

H (n≥ 2)

Hafnium Oxide H f O2 2.05 [126]

Tantalum Oxide Ta2O5 2.10 [127]

Zirconium Dioxide ZrO2 2.25 [128]

Titanium Dioxide TiO2 2.35 [129]

Tellurium Te 4.6 [123]

constraint around the center frequency ( fc) such that the overall stop band becomes:

fc±∆ f , where 2∆ f is the frequency extent of the stop-band.

3. GSM method is utilized to cascade the defected intermediate filter with the periodic

multilayered dielectric structures to calculate the overall filter characteristics. Once

again the transmission value is limited to satisfy a predetermined value of >90% for

the periodic filters (stage 2) as well.

In Figure 5.1 n1(= nL) denotes the low refractive index material, n2(= nH) denotes

the high refractive index material. The scheme of the 3-stage algorithm illustrated

in Figure 5.1a. In the first two steps of the algorithm desired filter characteristics

including the stopband and passband windows are obtained. Accordingly, fine-tuning

step is executed which varies for different filter designs, whose details will be shared

in the upcoming sections.

5.2.1 Generalized scattering matrix approach and AFGSM method

Here, we summarize the well-known Generalized Scattering Matrix Approach.

Propagation characteristics of periodic multilayered structures can be specified using

the generalized scattering matrix (GSM) method. Since the GSM technique takes into
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account propagating and non-propagating modes of periodic structure together with all

interactions between the layers, reflection and transmission properties of each layer can

be represented by corresponding generalized scattering matrices [60]. In the following

formulations, scattering parameters of each layer is formulated and then scattering

matrix for the overall structure is obtained by appropriate matrix calculations.

Characteristic impedance of glass, low and high refractive index materials are denoted

by Zg, Z1 and Z2 respectively. For reference planes RP1 and RP2, ΓJGi, i=1,2 junction

reflection coefficients become as ΓJG1 and ΓJG2 which equal to ΓJG1 =
Z2−Zg
Z2+Zg

and

ΓJG2 =
Zg−Z1
Zg+Z1

. The corresponding characteristic impedance values are expressed as

Z1 =
ωµ

kz
1

, Z2 =
ωµ

kz
2

and Zg =
ωµ0
k0ng

where µ and µ0 are the magnetic permeability of the

medium and free space respectively.

Junction scattering matrices for reference planes at glass boundaries are expressed as

SJGi =

[
SJGi

11 SJGi
12

SJGi
21 SJGi

22

]
(5.1)

where

SJGi
11 = ΓJGi, SJGi

12 =
√

1−Γ2
JGi,

SJGi
21 =

√
1−Γ2

JGi, SJGi
22 =−ΓJGi, and i=1,2

(5.2)

Scattering matrix of subcell is determined by equation (5.3)

Ssub =

[
e− jΘ1 0

0 e− jΘ2

]
[SJ1]

[
e− jΘ1 0

0 e− jΘ2

]
(5.3)

where

Ssub
11 = SJi

11e− j2Θ1 , Ssub
12 = SJi

12e− j(Θ1+Θ2),

Ssub
21 = SJi

21e− j(Θ1+Θ2), Ssub
22 = SJi

22e− j2Θ2

(5.4)

and
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SJ1
11 = ΓJ1, SJ1

12 =
√

1−Γ2
J1,

SJ1
21 =

√
1−Γ2

J1, SJ1
22 =−ΓJ1

(5.5)

SJ2
11 = ΓJ2, SJ2

12 =
√

1−Γ2
J2, SJ2

21 =
√

1−Γ2
J2, SJ2

22 =−ΓJ2 (5.6)

Finally s-matrix of unit cell is represented as given in equation (5.7)

SUC =

[
Ssub

11 Ssub
12

Ssub
21 Ssub

22

]
(5.7)

where Θ1 and Θ2 are the optical thicknesses of high and low refractive index regions

(n1 and n2 respectively) as shown in Figure 5.1b and denoted by

Θ1 = k1
z p1,Θ2 = k2

z p2 (5.8)

In equation (5.8), the term ki
z (i=1,2) denotes the z component of the wave vector

of propagating modes, p1 and p2 (p = p1 + p2, period) denote the thicknesses of the

corresponding dielectric regions respectively.

Following the s-matrix determination for a unit cell given in the equation (5.7),

auxiliary functions can be used as an alternative technique to calculate bandgaps

of periodic structure. This alternative method mentioned in [60] is referred to

as Auxiliary Functions of Generalized Scattering Matrix (AFGSM) which neither

requires imposing the Floquet condition (periodicity) nor solving the eigenvalue

equation to compute band edges. Simply, regarding to fact that given in equation

(5.9); zero transitions (or roots) of auxiliary functions (X± = 0) coincide exactly with

photonic band boundaries containing the certain frequency values of allowed and

forbidden band-edges of the structure. Therefore, AFGSM method yields accurate

estimates for the stopband/passband transition frequencies located within the single

Floquet mode region only by calculating the roots of functions in equation (5.9).

X± = Im{S11±S21} (5.9)

With the initial design parameters, the blocking bands on either side of the central

wavelength is relatively small. In order to increase the blocking range of the
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filter on both sides, proper material parameters must be selected to ensure a broad

blocking range. On the other hand, the choice of material parameters can effectively

block out of band transmission of incident radiation but they can also decrease

the peak transmission value in the pass-band adversely. Therefore, to make sure

that all unwanted laser noise is eliminated and a consistent peak transmission value

maintained, precisely identification of parameters is very crucial. Utilizing the

AFGSM method provides a considerable advantage in terms of computation time not

only for bandgap determination but also for parameter scanning.

5.3 Filter Design Strategy for Laser Scanning Microscopy

Sub-cellular resolution imaging of biological specimens or tissue samples with laser

scanning microscopy techniques such as confocal (reflectance and fluorescence),

multi-photon and harmonic-generation microscopy [120, 121] has been a powerful

tool in their assessment. For all aforementioned scanning microscopes, multiple

optical filters are utilized to transmit the signal while block unwanted light for

improved imaging performance. Here we focus on four different filters that are

readily utilized in laser scanning microscopy, as illustrated in Figure 5.2. Next we

apply our hybrid filter design strategy to meet the design requirements of these filters

and compare our filters with those commercially available. Figure 5.2 shows all

optical components involved in a i) reflectance confocal microscope, ii) fluorescence

confocal microscope, and a iii) two-photon microscope (with both fluorescence and

harmonic generation detection channels. Furthermore, Table 5.2 summarizes the

types of filters used in different laser scanning microscopy techniques. A confocal

reflectance laser-scanning microscope captures the laser light that is being scanned on

the tissue. Thus the most critical filter is the laser-line filter that allows for capturing the

light reflecting off the tissue, while blocking other wavelengths that may be available

within the room in which experiments are being conducted. On the contrary, in a

confocal fluorescence microscope, fluorescence signal from tagged or auto-fluorescing

molecules are captured. The detected wavelength is lower in energy, and higher

in wavelength, necessitating a laser-blocking (notch) filter to eliminate any spurious

reflection of the laser light while isolating the fluorescent light.
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Figure 5.2 : Laser scanning microscopy architecture, comprising a light and scan
engine unit that is common to all imaging modalities.

Thus a confocal fluorescence microscope is a slightly modified version of the confocal

reflectance microscope, such that the beam splitter is replaced with a dichroic filter

(also called as a dichroic beam splitter, which reflects laser light and transmits

fluorescent light) and the laser line filter is replaced with a laser-notch filter. On

the contrary, a multi-photon scanning microscope does not require the laser light to

be de-scanned (the emitted light to hit the scanner once again on the return path).

Thus, the first filter (F1) is not employed (could be replaced by a simple mirror).

The emitted light is captured right after being collected with the objective lens with

a dichroic filter. After reflecting of the dichroic mirror, the returning light may once

Table 5.2 : List of optical filters used in laser scanning microscopes.

F1 F2 F3 F4 F5 F6

Confocal (reflectance) Beam splitter - Laser line - - -

Confocal (fluorescence) Dichroic - Laser notch - - -
Multiphoton
(two-photon + SHG) Mirror Dichroic - Dichroic Laser notch Harmonic line
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again be divided into two-photon (or any higher multi-photon modality) path that

requires another dichroic filter, and a second (or higher) harmonic generation (SHG)

path, which necessitates a band-pass filter.

In both reflectance confocal and multiphoton laser scanning microscopes,

near-Infrared (NIR) Laser sources are typically utilized, owing to their superior tissue

penetration depth (see ref: [130]). On the other hand, a lower wavelength source is

employed in fluorescence confocal imaging to excite auto fluorescing proteins.

Without loss of generality, in the upcoming section, we summarize our effort in

designing:

1. Laser line (narrow-band pass) filter (F1) @ λ = 800 nm for reflectance confocal

microscopy, for oblique incidence.

2. Narrow band filter (F6) @ λ = 400 nm (laser source @ λ = 800 nm) for SHG

microscopy, for oblique incidence.

3. Dichroic filter (F1,2,4) @ λcenter = 380 - 420 nm range, where λ < λcenter is

reflected, and λ > λcenter is transmitted, for 450 incidence. This configuration is

useful for 3 different filters illustrated in Figure 5.2.

(a) It could be utilized as F1 in fluorescent confocal microscopy for a laser source

of λ = 405 nm (or similar), to excite blue fluorescent protein types.

(b) It could be utilized as F4 in multiphoton microscopy, to distinguish between

SHG signal (λ = 400 nm), and two-photon emitted signal ( 400 nm < λ <

600 nm), once again to excite blue fluorescent protein types (laser source @

λ = 800 nm).

(c) It could be utilized as F2 in multiphoton microscopy, to reflect the captured

light after the objective (laser source @ λ = 800 nm). This would indeed

require the reflection and transmission band to interchange, i.e. range, where

λ > λcenter should be reflected now. Note that this filter would require quiet

similar design steps to 3-a, and 3-b, respectively.

4. A band stop filter working at laser wavelength of: λ = 800 nm, to block any residue

from the detector. Once again this filter would be useful as:
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• A laser blocker for fluorescent confocal microscopy

• A laser blocker for SHG signal, and

• A laser blocker for two-photon microscopy.

Below, we give further details of the design strategy of all four-filter types that is based

on the scheme illustrated in Figure 5.1.

5.3.1 Laser line filter @ λ = 800 nm

Laser line filter is designed for use in reflectance confocal laser scanning microscope,

to only detect reflected laser light from the specimen while blocking other wavelengths.

Assuming an NIR laser source at λ = 800 nm, the specification of an off-the-shelf laser

line filter and the designed filter are shared in Table 5.3. In accordance with the design

algorithm provided in theory and modeling section, we first design a preliminary and

perfectly periodic version of stage-1 filter to provide a stop-band whose center matches

the center transmission wavelength as (HL)7 and then introduce the low-index defect

to define narrow-transmission region (Figure 5.3a), such that the initial periodic design

(HL)3L(HL)3. Then, stage 2 filters are designed with AFGSM to extend the stop-band

toward lower and higher wavelengths, as illustrated in Figure 5.3a,b. Finally, the

overall filter characteristic is illustrated in Figure 5.3c.

5.3.2 Harmonic line filter @ λ = 400 nm

The harmonic line filter is designed for use in SHG laser scanning microscope, to

isolate the SHG light from tissues (such as collagen tissue) while blocking other

wavelengths, once again assuming an NIR laser source at λ = 400 nm. The design

is near identical to the laser line filter, but with different material selection and layer

thicknesses. The stage-1, stage-2, and overall filter characteristics are illustrated in

Figure 5.4a,b and Figure 5.4c, while the details are shared in Table 5.3, and Table 5.4.
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Figure 5.3 : Laser line filter; a) stage 1 filter characteristics with and without
degeneration b) stage 2 filter characteristics, showing left (dashed red
line) and right (squared solid line) blocking filter behavior, c) overall

laser line filter characteristics.
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Figure 5.4 : Harmonic line filter; a) stage 1 filter characteristics with and without
degeneration b) stage 2 filter characteristics, showing left (dashed red
line) and right (squared solid line) blocking filter behavior, c) overall

harmonic line filter characteristics.
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Table 5.3 : Comparison of off-the shelf filters vs. designed.

Laser Linea Harmonic Lineb Dichroic Notch

Designed RF11 Designed RF22 Designed RF33 Designed RF44

Center
Wavelength
(nm)

799.7 800 ± 2 399.9 400 ± 2 383.2 383.5 811.2 800 ± 2

Reflection
Region
(nm)

454 - 1018 200 - 1200 262 - 886 200 - 1200 360.4 - 406.8 360 - 407 NA NA

Transmission
Region
(nm)

NA NA NA NA 422 - 575 425 - 575
600 - 789.6

837.4 - 1100
610 - 778

838 - 1060

Peak
Transmission
(%)

94.23 ≥ 85 90.05 ≥ 85 94.8 ≥ 90 90 ≥ 90

FWHM
(nm) 10.7 10 ± 2 7.3 8 - 10 NA NA 32.4 34

a λ0 = 800 nm.
b λ0 = 400 nm.
1 Reference Filter (RF1) : edmundoptics, part no:19773
2 Reference Filter (RF2) : edmundoptics, part no:19730
3 Reference Filter (RF3) : thorlabs, part no:MD416
4 Reference Filter (RF4) : thorlabs, part no:NF808-34

In Table 5.3, transmission region and reflection region bands are determined by

applying stage-1 and stage-2 of the proposed algorithm, respectively. Transmission

region, peak transmission and FWHM values of designed filters in Table 5.3 perfectly

agree with the reference filters which are commercially available. In Table 5.3,

Magnitude square of scattering parameter (S21) corresponds to transmittance of the

designed filter (|S21|2). Furthermore, reflection region of corresponding frequency

band is determined by satisfying |S11|2 < 10(−4) condition.

5.3.3 Dichroic filter

As detailed previously, the dichroic filter is designed for use in fluorescent confocal

microscopy or multiphoton microscopy, to re-direct the emitted light from the tissue

to the detector [131]. Assuming a source wavelength of λ = 800 nm, both setups

require a filter having @ λcenter ≈ 380-420 nm range, where λ <λcenter is reflected,

and λ >λcenter is transmitted, at 450 incidence. In accordance with our design scheme,

we first determine the layer materials and thicknesses. For the dichroic filter, only
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utilizing a stage-1 design having (0.5H L 0.5H)15 form is sufficient, while using a

slightly altered version having form (0.5HL(HL)130.5H) refines the ripple effects in

the overall transmission behavior as illustrated in Figure 5.5. Therefore, basic stack

of (0.5H L 0.5H)15 is modified by adding a periodic reflection block in the form of

(HL)13. In addition to that modification, entire building block designed to be coated

with MgF2 as incident medium and with glass as a substrate to ensure the supression

of unwanted ripples.

Figure 5.5 : Dichroic filter characteristics a) AFGSM results b) improved results after
refinement.

5.3.4 Notch filter

This filter is to be employed in all of the aforementioned laser scanning imaging

modalities apart from the reflectance confocal imaging, to block the laser light [132]

(Here we assume a laser wavelength of λ = 800 nm).

In order to construct notch filter shape we first need to identify the properties of desired

rejection zone which depends on the ratio of the refractive indices and thickness of

the high and low index layers. Proposed method accelerates the identification of

stop-band parameters which will primitively ensure narrow band reflection region.

Therefore, we first employed AFGSM method to determine most proper refractive

index values of materials, required number of layers and corresponding FWHM in the

reflectance window for the desired filter characteristics. As a next step we calculate

the layer thicknesses with a gradual thickness change in high index to low index by

getting thinner from center of the stack towards the ends. Such refinement is ensured

by applying a Gaussian shaped modulation formulated with well-known apodization
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functions which are used to calculate optical thicknesses of each layer;

TH = ae−[n−
N
2 ]

2
/2C2

(5.10)

TL = 2−TH(n) (5.11)

where TH and TL indicates the quarter-wave optical thickness of n-th layer. N is the

total number of layers in the structure and a is the apodization ratio used in functions.

C is related to the FWHM of the Gaussian function by

C =
FWHM

[2
√

2ln(2)]
(5.12)

Using the presented method desired notch (minus) filter characteristics are achieved

utilizing that high-reflectivity around the center wavelength (λ0) of the narrow rejection

band while showing high-transmission elsewhere. Moreover, we demonstrated that,

ripples in the transmission region can be suppressed considerably along with increasing

the steepness in band edges. In this example, we consider the notch filter design

with the performance that should satisfy high transmittance (≥ 90%) in the pass-band

wavelength ranges of 610 - 778 nm and 838 - 1060 nm, and high reflectivity centered

at 808 ± 2 nm with a FWHM value of 34 nm under normal incidence (see Figure 5.6).
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Figure 5.6 : Transmittance of the designed notch filter. Dashed line represents the
response of AFGSM method and solid line shows the final proposed

filter response after refinement with modulation functions.
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Table 5.4 : Design summary of the presented filters.

Filter Type Building Block Stack p1, p2 (nm) n1, n2
Number
of Layers

Total
Thickness

Filter 1
800 nm
BPF

Left blocking = (HL)6 45.4, 42.4 4.6, 1.4

17 2.74 µmCentral FPR = (HL)3L(HL)3 85.1, 140.8 2.35, 1.42

Right blocking = (HL)4 23.2, 157.6 4.6, 2.35

Filter 2
400 nm
BPF

Left blocking = (HL)6 29.6, 45.6 2.35, 1.35

15 1.42 µmCentral FPR = (HL)2L(HL)2 21.7, 42.5 4.6, 2.35

Right blocking = (HL)4 36, 132 4.6, 1.35

Filter 3
450

Dichroic

Incidence medium = MgF2 - 1.38

18 1.55 µmCentral block = 0.5HL(HL)130.5H 50.8, 60.2 2.05, 1.73

Substrate = glass - 1.52

Filter 4
800 nm
Notch

Incidence medium = glass - 1.52

147 58.6 µmModulated block = (HL)145 TH , TL
* 2.25, 1.47

Substrate = air - 1

* TH , TL are calculated as given in equation (5.10) and (5.11)

5.4 Conclusion

We present hybrid filter structures towards use in numerous laser scanning microscopy

modalities, comprising a combination of periodic and degenerated multilayered

dielectric structures. The proposed approach utilizing both GSM and AFGSM for the

design of stage-1 and stage-2 parts of the overall filter structure provides significant

flexibility in setting the desired transmission band while offering widened stop-bands.

The flexibility and robustness comes from the computational advantages that AFGSM

brings owing to obtaining bandgap edge frequencies without solving an eigenvalue

equation. The designed filters are comparable in performance to the off-the-shelf filter

counterparts. As a future work, we are planning to design sophisticated filters using

our algorithm, which can replace multiple filters to simplify and reduce the number of

components in laser scanning microscopy.
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6. CONCLUSIONS

In this thesis, wave propagation characteristics in periodic structures have been studied.

Particularly, in the framework of the thesis, alternative techniques have been developed

to extend the bandgap analysis to various two-dimensional photonic bandgap structures

(2D PBGs). Since the considered periodic structure is composed of the infinite

succession of a unit cell, methods are based on the primarily exploring the scattering

matrix of the unit cell in order to specify the PBG edges spectrally. Indeed, designing

a new device is time consuming and expensive, numerical techniques are very crucial

to characterize electromagnetic behavior of the existing devices. However, these

techniques are restricted by the complexity of structures. Therefore, the main objective

of this thesis is to provide an alternative method to overcome the limitations of

numerical and heuristic approaches. First chapter of the thesis starts with a basic

introduction of the scope and a summarized literature survey.

The second chapter of the thesis is concerned with the general formulation of the

transmission line theory and conventional ABCD matrix approaches. Fundamental

steps of the rigorous coupled wave analysis (RCWA) method, which is used as a

preliminary computational routine to find out the s-parameters of a grating unit cell,

introduced. Instead of conventional technique which requires solution of eigenvalue

equation, we proved that dispersion diagram of the Floquet modes supported by

the infinite periodic system provides the allowed and forbidden frequency band

information of the finite structure which provides the full-wave modal analysis

of a periodic structure. Here, a novel approach based on auxiliary functions

of generalized scattering matrix (AFGSM) method is introduced to estimate the

band-edge frequencies of the global structure properly provides bandedge frequencies

of ideal structure. The proposed technique yields accurate estimates for the

stop-band/pass-band transition frequencies located within the single Floquet mode

region just by executing a simple root-finding algorithm. In final part of the chapter

some numerical results of design applications are presented including four-channel

89



photonic crystal based optical filter and omnidirectional reflector with extended

stopband region.

The third part of the thesis present a hybrid method that is a combination of

effective-medium theory (EMT) and AFGSM is an original technique proposed to

literature. Presented alternative method yields accurate estimations of bandedge

frequencies through solely varying the dimensional and physical factors of considered

geometry. The approach applies EMT to deduce two-dimensional structure

to one-dimensional (1D) multilayered equivalence to overcome the dimensional

complexness of the problem. Accordingly, PBG edges of the equivalent 1D structure

is specified by using the auxiliary functions of generalized scattering matrix (AFGSM)

method. Formulated mixed process is implemented to square and circular formed

rectangular grid PCs in order to explore bandgaps. Since method reduces the problem

complexity of 2D geometry, it provides a faster analysis opportunity for design

purposes. The remarks might create a significant contribution to the area of photonic

bandgap investigation techniques.

In the fourth chapter of the thesis, we then have extended the findings to full-wave

electromagnetic wave analysis of 2D PC structures constituted by arrays of dielectric

rods with arbitrary cross-sections. In this study, 2D PBG (photonic bandgap) structure

is considered as a stack of 1D gratings which diffraction properties are exploited by

rigorious coupled wave analysis (RCWA) method. Considered 2D PCs are constituted

by varying configurations such as rectangular and circular cross-sections of dielectric

rods and arbitrary lattice types. Electromagnetic properties of such structures are

analyzed in terms of photonic bandgpas located on reflectance spectrum as a function

of filling ratio, incidence angle and frequency. Results are presented in a comparison

with that of traditional ones reported in the literature as well as available experimental

data. Moreover obtained results have been successfully validated with commercial

electromagnetic simulator which uses finite element method on the frequency domain.

In the fifth and last part of the thesis, we presented an algorithm to design filter

structures that can be used in numerous laser scanning microscopy applications

including laser-line filter, notch filter and dichroic filter. The proposed algorithm

consists of two main stages that GSM and AFGSM approaches applied respectively.

Developed algorithm successfully provides significant flexibility in setting the
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desired transmission band while offering widened stop-bands. The designed filters

are comparable in performance to the commercially available filter counterparts.

A number of new applications can be developed using the solution technique

implemented in Chapter 5. While this thesis provides novel theoretical contributions,

many interesting and important problems are yet to be studied. The work presented

in this thesis concentrates on lossless dielectric 2D PBG structures. However, in most

of the real-world applications available materials involves metallic or lossy dielectrics.

Therefore an alternative topic could be built upon the analysis of hybrid structures

comprised of metallic and dielectric materials. We hope that the open problems

presented herein stimulate the further research on wave propagation analysis and

design approaches on photonic bandpag structures, both on the theoretical side as well

as in the practical applications.

91



92



REFERENCES

[1] Joannopoulos, J.D., Johnson, S.G., Winn, J.N. and Meade, R.D. (2011).
Photonic crystals: molding the flow of light, Princeton University Press.

[2] Prather, D.W., Shi, S., Sharkawy, A., Murakowski, J. and Schneider, G. (2009).
Photonic crystals: Theory, Aplications and Fabrication, Wiley Online
Library.

[3] Chigrin, D.N. and Torres, C.S. (2001). Periodic thin-film interference filters
as one-dimensional photonic crystals, Optics and Spectroscopy, 91(3),
484–489.

[4] Akahane, Y., Mochizuki, M., Asano, T., Tanaka, Y. and Noda, S. (2003). Design
of a channel drop filter by using a donor-type cavity with high-quality
factor in a two-dimensional photonic crystal slab, Applied Physics Letters,
82(9), 1341–1343.

[5] Qiu, M. and Jaskorzynska, B. (2003). Design of a channel drop filter in a
two-dimensional triangular photonic crystal, Applied Physics Letters,
83(6), 1074–1076.

[6] Wang, Z. and Fan, S. (2003). Compact all-pass filters in photonic crystals as the
building block for high-capacity optical delay lines, Physical Review E,
68(6), 066616.

[7] Wang, C., Zhong, X.L. and Li, Z.Y. (2012). Linear and passive silicon optical
isolator, Scientific reports, 2, 674.

[8] Oh, S.S. and Choi, C.G. (2009). Photonic-crystal-slab-type guided mode
resonance filters in infrared range, IEEE Photonics Technology Letters,
21(5), 316–318.

[9] Akahane, Y., Asano, T., Song, B.S. and Noda, S. (2003). High-Q photonic
nanocavity in a two-dimensional photonic crystal, Nature, 425(6961),
944–947.

[10] Happ, T., Markard, A., Kamp, M., Gentner, J.L. and Forchel, A. (2001).
InP-based short cavity lasers with 2D photonic crystal mirror, Electronics
Letters, 37(7), 428–429.

[11] Morita, Y., Tsuji, Y. and Hirayama, K. (2008). Proposal for a compact
resonant-coupling-type polarization splitter based on photonic crystal
waveguide with absolute photonic bandgap, IEEE photonics technology
letters, 20(2), 93–95.

93



[12] Wu, Y.D., Huang, M.L. and Shih, T.T. (2007). Optical interleavers based on
two-dimensional photonic crystals, Applied optics, 46(29), 7212–7217.

[13] Pottier, P., Gnan, M. and Richard, M. (2007). Efficient coupling into slow-light
photonic crystal channel guides using photonic crystal tapers, Optics
Express, 15(11), 6569–6575.

[14] Kim, S., Park, I. and Lim, H. (2005). Proposal for ideal 3-dB splitters–combiners
in photonic crystals, Optics letters, 30(3), 257–259.

[15] Chutinan, A., Okano, M. and Noda, S. (2002). Wider bandwidth with high
transmission through waveguide bends in two-dimensional photonic
crystal slabs, Applied physics letters, 80(10), 1698–1700.

[16] Wang, Y., Zhang, D., Xu, S., Ouyang, Z. and Li, J. (2016). Low-loss
Y-junction two-dimensional magneto-photonic crystals circulator using a
ferrite cylinder, Optics Communications, 369, 1–6.

[17] Wang, Y., Zhang, D., Xu, S., Xu, B., Dong, Z. and Huang, T. (2017).
Experimental evidence of photonic crystal waveguides with wide
bandwidth in two-dimensional Al 2 O 3 rods array, Chinese Optics Letters,
15(6), 062301.

[18] Aly, A.H. and Mohamed, D. (2015). BSCCO/SrTiO 3 one dimensional
superconducting photonic crystal for many applications, Journal of
Superconductivity and Novel Magnetism, 28(6), 1699–1703.

[19] El-Naggar, S.A., Elsayed, H.A. and Aly, A.H. (2014). Maximization of photonic
bandgaps in two-dimensional superconductor photonic crystals, Journal
of Superconductivity and Novel Magnetism, 27(7), 1615–1621.

[20] Wu, C.J., Liao, J.J. and Chang, T.W. (2010). Tunable multilayer Fabry-Perot
resonator using electro-optical defect layer, Journal of Electromagnetic
Waves and Applications, 24(4), 531–542.

[21] Meng, Q.B., Fu, C.H., Hayami, S., Gu, Z.Z., Sato, O. and Fujishima, A.
(2001). Effects of external electric field upon the photonic band structure
in synthetic opal infiltrated with liquid crystal, Journal of Applied Physics,
89(10), 5794–5796.

[22] Aly, A.H., El-Naggar, S.A. and Elsayed, H.A. (2015). Tunability of two
dimensional n-doped semiconductor photonic crystals based on the
Faraday effect, Optics express, 23(11), 15038–15046.

[23] Yeh, P., Yariv, A. and Hong, C.S. (1977). Electromagnetic propagation in periodic
stratified media. I. General theory, JOSA, 67(4), 423–438.

[24] Sakoda, K. (2004). Optical properties of photonic crystals, volume 80, Springer
Science & Business Media.

[25] Johnson, S.G. and Joannopoulos, J.D. (2001). Block-iterative frequency-domain
methods for Maxwell’s equations in a planewave basis, Optics express,
8(3), 173–190.

94



[26] Plihal, M. and Maradudin, A. (1991). Photonic band structure of
two-dimensional systems: The triangular lattice, Physical Review B,
44(16), 8565.

[27] Sözüer, H.S., Haus, J. and Inguva, R. (1992). Photonic bands: Convergence
problems with the plane-wave method, Physical Review B, 45(24), 13962.

[28] Sukhoivanov, I.A. and Guryev, I.V. (2009). Photonic crystals: physics and
practical modeling, volume152, Springer.

[29] Pendry, J. (1994). Photonic band structures, Journal of Modern Optics, 41(2),
209–229.

[30] Sigalas, M., Chan, C., Ho, K. and Soukoulis, C. (1995). Metallic photonic
band-gap materials, Physical Review B, 52(16), 11744.

[31] Yee, K. (1966). Numerical solution of initial boundary value problems involving
Maxwell’s equations in isotropic media, IEEE Transactions on antennas
and propagation, 14(3), 302–307.

[32] Taflove, A. and Hagness, S.C. (2005). Computational electrodynamics: the
finite-difference time-domain method, Artech house.

[33] Pelosi, G., Cocchi, A. and Monorchio, A. (2000). A hybrid FEM-based procedure
for the scattering from photonic crystals illuminated by a Gaussian beam,
IEEE Transactions on Antennas and Propagation, 48(6), 973–980.

[34] Saitoh, K. and Koshiba, M. (2002). Full-vectorial imaginary-distance beam
propagation method based on a finite element scheme: application to
photonic crystal fibers, IEEE Journal of Quantum Electronics, 38(7),
927–933.

[35] Jin, J.M. (2015). The finite element method in electromagnetics, John Wiley &
Sons.

[36] Winn, J.N., Fink, Y., Fan, S. and Joannopoulos, J. (1998). Omnidirectional
reflection from a one-dimensional photonic crystal, Optics letters, 23(20),
1573–1575.

[37] Fink, Y., Winn, J.N., Fan, S., Chen, C., Michel, J., Joannopoulos, J.D. and
Thomas, E.L. (1998). A dielectric omnidirectional reflector, Science,
282(5394), 1679–1682.

[38] Fowles, G.R. (1989). Introduction to modern optics, Courier Corporation.

[39] Awasthi, S.K., Malaviya, U., Ojha, S.P., Mishra, N.K. and Singh, B. (2008).
Design of a tunable polarizer using a one–dimensional nano sized photonic
bandgap structure, Progress In Electromagnetics Research, 5, 133–152.

[40] Hsu, H.T., Chang, T.W., Yang, T.J., Chu, B.H. and Wu, C.J. (2010). Analysis
of wave properties in photonic crystal narrowband filters with left-handed
defect, Journal of Electromagnetic Waves and Applications, 24(16),
2285–2298.

95



[41] Dai, X., Xiang, Y. and Wen, S. (2011). Broad omnidirectional reflector in
the one-dimensional ternary photonic crystals containing superconductor,
Progress In Electromagnetics Research, 120, 17–34.

[42] Xu, Z., Wang, J., He, Q., Cao, L., Su, P. and Jin, G. (2005). Optical filter based
on contra-directional waveguide coupling in a 2D photonic crystal with
square lattice of dielectric rods, Optics express, 13(15), 5608–5613.

[43] Hecht, E. and Zajac, A. (1974). Optics addison-wesley, Reading, Mass, 19872,
350–351.

[44] Meade, R.D., Brommer, K.D., Rappe, A.M. and Joannopoulos, J. (1992).
Existence of a photonic band gap in two dimensions, Applied Physics
Letters, 61(4), 495–497.

[45] Villeneuve, P.R. and Piche, M. (1992). Photonic band gaps in two-dimensional
square and hexagonal lattices, Physical Review B, 46(8), 4969.

[46] Villeneuve, P.R. and Piché, M. (1992). Photonic band gaps in two-dimensional
square lattices: Square and circular rods, Physical Review B, 46(8), 4973.

[47] Dyogtyev, A., Sukhoivanov, I. and De La Rue, R. (2010). Photonic band-gap
maps for different two dimensionally periodic photonic crystal structures,
Journal of Applied Physics, 107(1), 013108.

[48] Kee, C.S., Kim, J.E. and Park, H.Y. (1997). Absolute photonic band gap in a
two-dimensional square lattice of square dielectric rods in air, Physical
Review E, 56(6), R6291.

[49] Haas, T., Hesse, A. and Doll, T. (2006). Omnidirectional two-dimensional
photonic crystal band gap structures, Physical Review B, 73(4), 045130.

[50] Hwang, R.B. and Pu, T.C. (2007). Omnidirectional stop band by using composite
two-dimensionally artificial crystal, Microwave and Optical Technology
Letters, 49(8), 1914–1917.

[51] Chen, B., Tang, T., Liu, C. and Chen, H. (2010). Study on optical waveguides
based on omnidirectional reflection of two-dimensional photonic crystals,
JOSA B, 27(5), 972–974.

[52] Chen, B., Li, S., Tang, T., Liu, C., Chen, H., Li, Y., Huang, L. and Liu, G.
(2011). Study on Omnidirectional Reflection Bands of Two-Dimensional
Photonic Crystals and Optical Waveguides Based on This Effect, Journal
of Lightwave Technology, 29(13), 1975–1979.

[53] Gazonas, G.A., Weile, D.S., Wildman, R. and Mohan, A. (2006). Genetic
algorithm optimization of phononic bandgap structures, International
journal of solids and structures, 43(18-19), 5851–5866.

[54] Jiang, L., Zheng, G., Shi, L., Yuan, J. and Li, X. (2008). Broad omnidirectional
reflectors design using genetic algorithm, Optics Communications,
281(19), 4882–4888.

96



[55] Sharma, A., Dwivedi, V.K. and Singh, G. (2008). THz rectangular patch
microstrip antenna design using photonic crystal as substrate, Progress
in Electromagnetic Research Symposium, Cambridge, USA, pp.161–165.

[56] Liang, J. and Yang, H.D. (2009). Microstrip patch antennas on tunable
electromagnetic band-gap substrates, IEEE transactions on antennas and
propagation, 57(6), 1612–1617.

[57] Banaei, H. A., R.A. (2008). A novel proposal for passive all-optical
demultiplexer for DWDM systems using 2-D photonic crystals, Journal
of Electromagnetic Waves and Applications, 22(4), 471–482.

[58] Djavid, M., A.M.S. (2012). Multi-channel drop filters using photonic crystal ring
resonators, Optik-International Journal for Light and Electron Optics,
123(2), 167–170.

[59] Simsek, S., T.E. (2007). Some properties of generalized scattering matrix
representations for metallic waveguides with periodic dielectric loading,
IEEE Transactions on Microwave Theory and Techniques, 55(11),
2336–2344.
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