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ANALYSIS OF WAVE PROPAGATION CHARACTERISTICS
AND DESIGN METHODS IN TWO DIMENSIONAL
PHOTONIC BANDGAP STRUCTURES

SUMMARY

Over the last few decades, demand for higher data transmission rates increased
drastically due to emergence of applications requiring higher bandwidth services.
Recent advances in photonics and fabrication of nanometer scaled components enabled
the high capacity data transmission in communication technologies. The research field
of periodic structures which ranges from microwave to optical frequencies became
attracting in the sense that their special electromagnetic waveguiding properties
constitute the basis of many promising applications. Among various metallic and
dielectric materials considered in the context of periodic structures, photonic crystals
which are found to have unique propagation characteristics for a certain frequency
range, are one of the most popular. Photonic crystals can be tailored to address
desired bandgap characteristics. Particularly, two-dimensional photonic crystals are
regarded as the essential elements that incorporate periodicity features and enable the
development of new optical components such as filters, waveguides, cavities, splitters,
couplers and reflectors.

Investigation of the photonic bandgaps (PBG) in a photonic crystal plays a fundamental
role coincided in numerous engineering-science applications and design purposes.
The method reported in the literature investigate the problem associated with the
conventional approach of solving eigenvalue equation. This solution approach
requires computationally large memory sources and becomes inefficient especially
when large number of eigenmodes are required at the layer interfaces. The focus of
this dissertation is to present accurate and numerically efficient alternative methods
to analyze bandgap characteristics of two-dimensional PBGs. Full wave analysis
of bandgap structures is addressed by calculating the supported Floquet modes of
infinitely periodic structures, i.e. seeking for the permitted and forbidden band
regions of the unit-cell. A novel approach based on auxiliary functions of generalized
scattering matrix (AFGSM) method is introduced. The proposed technique provides
estimations of the stopband or passband frequencies accurately supported by the single
Floquet mode region simply by carrying through a basic root-search routine. For
a lossless PBG structure real numbered roots correspond to propagating modes and
complex-values roots correspond to non-propagating modes (stopband) respectively.
Therefore, the aim of this thesis is to develop alternative techniques to determine
bandgap characteristics of PBG structures based on AFGSM method.

First section of this dissertation includes a literature survey and introduction of
the thesis scope. The second chapter gives a brief review of wave propagation in
periodic structures and highlight the key theoretical concepts. The third chapter is
concerned with the methodology employed for a fast and hybrid bandgap analysis of
two-dimensional photonic crystals. First, effective medium theory (EMT) is employed
to mitigate two-dimensional geometry (for a structure which has a period much

xXxi



smaller than the wavelength) to one-dimensional multilayered equivalence in order
to simplify the computation of the photonic bandedges. Then, bandedges of equivalent
one-dimensional structure are examined using AFGSM method. Subsequently, in the
fourth section, the analysis is extended to a comprehensive and full wave analysis of
2D PBG structures utilizing the rigorous coupled wave analysis (RCWA) to determine
scattering parameters (S-parameters) of unit cell. Thereafter, AFGSM method is used
to investigate bandedge frequencies of infinitely layered periodic media. In the fifth
chapter, different types of filter applications operating in the optical wavelength region
are designed using novel algorithm based on AFGSM method. The final chapter
summarises the principal findings given in the thesis and identifies areas for further
research.
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IKIi BOYUTLU FOTONIK BANT DURDURAN YAPILARDA
DALGA ANALIZI VE TASARIM YONTEMLERI

OZET

Son yillarda gelisen kablolu ve kablosuz haberlesme teknolojileriyle birlikte yiiksek
bant genisligine ihtiya¢ duyan uygulamalarin kullanimi artmig, bu da beraberinde
veri kullanim oraninin yiikselmesine sebep olmustur. Bu durum tasiyici ortamda
bant genigliklerinin etkin kullanimi gereksinimini dogurmustur. Genellikle GHz
bolgesindeki frekanslarda veri iletiminde, sinirlanmis kesite sahip tek iletkenli
veya dielektrik dolu yapilar kullanilarak elektromanyetik dalganin kilavuzlanmasi
saglanmaktadir.  Benzer sekilde optik frekanslarda da iletken duvari olmayan
dielektrik tabaka ve c¢ubuklar da temelde dielektrik ortama smirlanmis veya
kilavuzlanmis dalga modlarim1 destekleyebilmektedir. Boylece THz bolgesindeki
frekanslarda malzemelerin dielektrik gecirgenliklerine gore mikrometre ve daha
kiiciik boyutlarda optik dalga kilavuzlari, kaviteler ve rezonatorler gibi uygulamalar
tasarlanabilmektedir. Dalga kilavuzlarinin bir alt arastirma konusu olan periyodik
katmanl yapilarda dalga propagasyonu uzun yillardir bilim insanlar1 ve miihendislerin
ilgisini ¢cekmigtir. Haberlesme teknolojilerinde ise periyodik yapilar, mikrodalgadan
optik frekansa kadar de8isen genis bir frekans bolgesinde elektromanyetik dalganin
iletimi, yansimasi ve kilavuzlanmasi gibi temel miihendislik problemlerinde yer
bulmusgtur. Periyodik yapilarin tasariminda kullanilan cesitli metalik ve dielektrik
malzemeler arasinda fotonik kristaller, fabrikasyon sonucu her {i¢ boyutta da
periyodiklik o6zelligi kazandirilabilen yapilardir.  Fotonik kristallerin teknolojik
olarak ¢ok sayida uygulama alani bulunmasi ile birlikte haberlesme, elektronik
devreler ve tip uygulamalar1 gibi alt baghiklarda yogun olarak incelenmektedir.
Degisen dielektrik ozellikleri ile periyodik olarak dizilimleri sonucu belirli frekans
bolgesinde sergiledikleri iletim/durdurma karakteristikleri (fotonik bant araligi, PBG)
sebebiyle THz bolgesindeki uygulamalarda popiiler olarak tercih edilen malzemeler
arasindadir.  Fotonik kristaller istenen bant araligi Ozelliklerini sergilemek iizere
uyarlanabilmektedir. Bir boyutlu (1D), iki boyutlu (2D) ve ii¢ boyutlu (3D) fotonik
kristallerin periyodik, yari-periyodik, kare, iicgen vb. orgii yapilarinda dizilimleri
sonucu ortaya cikan bant yapilarinin belirlenmesi, iletim-yansima katsayilarinin
hesaplanmas1 ve analizi lizerine kayda deger sayida ¢alismalar yapilmistir. En basit
haliyle farkli kirilma indisine sahip dielektrik malzemelerin farkli dizilimlerde uygun
sekilde tasarimu ile 15181n istenen dogrultu ve belirli frekans bolgesinde ilerleye-
bilmesini/sinirlandirilmasimi saglayan yapilarin analizi, gergekleme ve simiilasyon
caligmalar1 bu alandaki en 6nemli arastirma konulari1 haline gelmistir. Giiniimiizde
nanometre boyutlarinda malzemelerin fabrikasyonunda elde edilen iyilestirmeler
sayesinde diisiik giicle calisan ve optik spektrumun verimli kullanilmasini saglayacak
fotonik kristal temelli optik filtreler, dalga kilavuzlari, elektro-optik modiilatorler,
giic boliiciiler, kutuplayicilar, algilayicilar gibi bilesenlerin tasarlanmasi miimkiin
olmusgtur.
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Fotonik kristallerin bant yapisinin belirlenmesi bir¢ok miihendislik uygulamasinda ve
tasarim probleminde onemli rol oynamaktadir. Hassas fabrikasyon siireci oncesinde
tasarim asamasinda gerek duyulan sayisiz modelleme islemine hizli tepki verecek
etkin bir matematiksel model arayisi literatiirde bulunan caligmalarda farkli bakis
acilar ile incelenmeye devam etmektedir. Periyodik yapilarin dalga propagasyonu
problemini ¢ézmek i¢in sonlu sayida birim hiicre iceren sonlu periyodik yapilar
ve sonsuz sayida kaskat bagli birim hiicreden olustugu varsayilan yapilar referans
alinmaktadir.  Sonlu periyodik yapida (yari-periyodik) birim hiicre yaklasimi,
yapinin dispersiyon karakteristigi i¢in yaklasik bir ¢oziim saglamakta olup bu
yaklagimin dogrulugu da kullanilan birim hiicre sayis1 artirilarak yiikseltilebilmektedir.
Fakat birim hiicre sayisinin artmasit cevabin dogrulugunu artirirken, hesaplama
yiikiindeki artisi da beraberinde getirmektedir. Literatiirde yer alan geleneksel
yaklagimlar 6zdeger denkleminin ¢6ziimiine dayanan yontemlerdir. Bu yaklasim
ozellikle katman arayiiz gecislerinde cok sayida 6zdeger denkleminin hesaplanmasini
gerektirdiginden verimsiz hale gelmekte ve hesap uzayinda biiyiik bellek kaynaklari
gerektirmektedir. Bu sebeple tez ¢alismasinda, fotonik bant aralig1 karakteristiklerini
belirlemeyi sa8layacak alternatif yontemler arastirllmis ve gelistirilmistir.  Bu
baglamda mikrodalga teknigi cercevesinde daha Once gelistirilen genellestirilmis
sacilma matrisi kullanilarak iletim/durdurma bant bolgelerinin kestirimi yOntemi
optik THz bolgesine uygulanarak iki boyutlu periyodik yapinin bant aralig1 analizine
genigletilmis ve bu bolgedeki tasarim caligmalarina entegre edilmistir. Fotonik bant
araligi yapisinin tam dalga analizi sonsuz periyodik yapida desteklenen Floquet
modlar1 hesaplanarak, baska bir deyisle sonsuz periyodiklikte oldugu varsayilan
birim hiicre i¢in izin verilen veya sinirlanan bant kenar frekanslari bulunarak ele
alinir. Boylece sonsuz periyodik birim hiicreden olusan yapinin iletim/durdurma bant
bolgelerinin belirlenmesi Floquet kosulu altinda birim hiicrenin 6zdeger denkleminin
¢Oziimiine indirgenmektedir. Calismada, 6nerilen teknik, problemi basit bir kok bulma
algoritmasina indirgeyerek, tek Floquet modlu bolgede bulunan iletim/durdurma
band gecis frekanslari icin dogru kestirimler elde edilmistir.  Genellestirilmis
Sacilma Matrisi Yardime1 Fonksiyonlart (AFGSM: Auxiliary Functions of Generalized
Scattering Matrix) yontemi olarak literatiire giren yaklasim ile periyodik yapinin
dispersiyon karakteristiginin elde edilmesi isleminde geleneksel yontemlere gore
sayisal is yiikiiniin azaltildig1 gosterilmistir. Onerilen yontemin fotonik bant aralig
analizinin yani sira tasarim amaciyla ters problem c¢oziimii seklinde birim hiicre
parametrelerinin belirlenmesinde etkili olarak kullanilabilinecegi tez calismasinda elde
edilen sonugclarla ortaya konulmustur.

Fotonik kristallerin belirli bir frekans bandinda gelis acisindan ve polarizasyondan
bagimsiz olarak tam yansiticilik gosterdii frekans bandi tiimyonlii yansitici
bant araligt (OBG: omnidirectional bandgap) olarak adlandirilmaktadir.  Tez
kapsaminda yapilan konferans bildirileri ve ulusal dergilerde yayinlanmis calismalarda
onerilen yontem kullanilarak genis banth tiimyonlii yanisitict tasarimi yapilmis elde
edilen sonuglar diizlem dalga acilim yontemi (PWE: Plane Wave Expansion) ile
dogrulanmistir. Bu 6zellik sayesinde fotonik kristaller dagilmig geri-beslemeli lazerler,
dielektrik Fabry-Perot filtreler, ayarlanabilir polarizorler, dar-bandl filtreler ve dielek-
trik yansiticilar gibi ¢ok sayida énemli uygulamada yogun olarak kullanilmaktadir.
Giiniimiizde mobil ve sabit haberlesme sebekelerinin temel altyapisimi olusturan
fiber optik haberlesme sistemlerinde uzak mesafelere yiiksek kapasiteli veri aktarimi
yeterince yiiksek bant genislikleri ile miimkiin olmaktadir. Yiiksek band genisligi
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ise kisith frekans spektrumunun etkin bir sekilde kullanilabilemesi icin sik ve dar
bandli filtrelerin uygulanmasini gerektirir. Tiimyonlii yansiticlara ek olarak tez
calismalar1 kapsaminda telekomiinikasyon sistemlerinde Yogun Dalgaboyu Bolmeli
Cogullama (DWDM) birlestirici ve ¢ogullayict (MUX DEMUX) olarak kullanilan
fotonik kristalli dort kanalli optik filtrelerin tasarimi yapilmistir. Elde edilen sonuclar
ulusal konferaslarda sunulmustur.

Tezi olusturan boliimler kisaca su sekilde 6zetlenebilir: Tezin ilk boliimii kapsamli bir
literatiir taramas1 ve tez amacim1 vermektedir. Ikinci boliim, periyodik yapilarda dalga
yayilimini dzetleyerek periyodik yapilarda dalga propagasyonuna iligskin temel teorik
kavramlar1 hatirlatmaktadir. Ugiincii boliimde iki boyutlu problem geometrisinin
bant aralig1 analizi yapilmistir. Onerilen yontemde oncelikle efektif ortam teorisi
(EMT: Effective Medium Theory) ile problem bir boyutlu eslenigine uygun olarak
indirgenmis, bir boyuta indirgenen problem geometrisi i¢in ise iletim-durdurma
bant kenar frekanslarinin tespitinde AFGSM yontemi etkili ve hizli bir sekilde
uygulanmugtir. Elde edilen sonuglar CST benzetim programinin ¢iktilar: ve literatiirde
yer alan benzer problem sonuclariyla dogrulanmigtir. Bu yaklasim, iki boyutlu
geometrilerin bant karakteristiginin ¢oziimiinde kullanilmak iizere literatiire Hibrid
Yontem (HM) ismiyle Onerilmistir. Tezin dordiincii boliimiinde ise, iki boyutta
sonlu periyodik yapinin tam dalga analizi i¢in Kesin Kuple Dalga Analizi (RCWA:
Rigorous Coupled Wave Analysis) ve Genellestirilmis Sagilma Matrisi (GSM)
yontemleri birlestirilerek 2D yar1 periyodik yapinin birim hiicre sagilma matrisi
hesaplanmugtir. Sonsuz periyodik yapiin iletim-durdurma band kenar frekanslari ise
AFGSM yontemi kullanilarak tespit edilmis ve boylece ¢alisma iki boyutlu fotonik
bant aralig1 yapisinin kapsamli ve tam dalga analizine genisletilmistir. Iki boyutlu
dikdortgen ve ticgen dizilimli, kare ve dairesel dielektrik siitun kesitine sahip problem
geometrileri modellenmis ve Onerilen yontemin uygulanabilirlidi test edilmistir.
Dispersiyon diyagramu iizerinde iletim-durdurma bantlarin1 veren sonuglar literatiirde
yeralan benzer calismalar ve HFSS benzetim programindan elde edilen sonuglarla
karsilastirilmigtir, oldukga tutarli sonuglarin elde edildigi goriilmiistiir.  Besinci
boliimde ise yontemin ultraviyole, goriiniir bolge ve kizilotesi bolgesinde gecerliliginin
irdelenmesi amaciyla Lazer Taramali Mikroskobi (LSM) uygulamalarinda kullanilan
band geciren, band durduran, dikroik ve ¢entik filtre bilesenleri AFGSM y&ntemine
dayanan yeni algoritmalar kullanilarak tasarlanmistir. Tasarlanan filtre karakteristikleri
endiistride ticari olarak kullanilan filtre parametreleri ile kiyaslanmigtir.

Tez calismasi kapsaminda genel anlamda periyodik yapilarin iletim durdurma
band bolgelerinin tespiti 0zelde ise farkli dizilim ve kesit alanina sahip dielektrik
siitunlardan olugsan iki boyutlu fotonik bant ileten/durduran yapilarin bant aralig
karakteristiklerini ortaya koyan bant kenar frekanslarinin kestirimi i¢in kapsaml
ve Ozgiin yontemler literatiire kazandirilmistir. Sonug olarak yapilan analizler ve
tasarimlar literatiirdeki farkli sonuglar ile karsilastirilmis ve hesaplama siiresi acisindan
doktora tezinde Onerilen yontemlerin benzetim simiilasyonlarina ve bilinen diger
sayisal yontemlere gore olduk¢a hizli oldugu gosterilmistir.
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1. INTRODUCTION

Periodic structures are constituted the basis of many promising applications in the
microwave to optical wave region. For several decades subject of electromagnetic
field interaction with periodic structures such as wave scattering and wave guiding
has attracted a lot of researches. Latest advancements in material science and
modeling processes revealed the existence of bandgaps in periodic structures. So
far, many studies have been carried out to show that the light propagation in an
artificially designed periodic structure could be prohibited or assisted for a specified
frequency range. In the case of a wave incident to a periodic structure within a
certain frequency range it appears to be reflected completely. This forbidden band
in the frequency spectrum is cited to as electromagnetic bandgap (EBG) or photonic
band gap (PBG) and this phenomenon is mostly realized with periodic dielectric
structures known as photonic crystals (PCs) [1]. In the recent years, many optical
devices constructed by photonic crystals received great attention because of their
potential applicability in the field of optical communication networks and photonic
integrated circuits. These features of photonic crystals have certain advantages not
only in wired telecommunication applications but also in some specific industrial
applications. Some of the most promising applications of band gap technology include
antennas, antenna feeds, high precision GPS, mobile telephony, wearable antennas,
duplexing antennas, filters, phase shifters, slow-wave structures, travelling-wave tubes,
planar wave applications such as frequency selective surfaces (FSS) and phased array
antennas. Additionally, photonic crystals are used as a dielectric mirror in optical
applications due to the very high reflectivity for all incident angles and all polarization

states within a specified frequency range [2].

Recent improvements in high resolution lithography and etching processes made the
optoelectronic device applications advantageous with the lower power consumption,
scalable size for device dimension and reliable high performance features required in

optical integrated circuits. These characteristics allows designing important practical



components in optoelectronic and microwave engineering fields e.g. thin-film filters,
channel drop filters, optical delay lines [3—6], optical isolators [7], resonance filters
[8], photonic nanocavities, photonic crystal mirrors [9, 10], polarization splitters,
optical interleavers [11, 12], photonic crystal tapers, splitters and combiners [13,
14], planar reflectors, waveguide bends [15]. Various new reports examining the
manipulation of light confinement with PCs have been evaluated i.e., 2D defect
included magneto-photonic crystal structures for circulator design [16], experimental
studies of cross-shaped PC waveguide with wide bandwidth configuration [17] and
reconfigurable PBG structures by modification of the permittivity of materials using
an explicit parameters e.g. temperature [18, 19], electric field [20,21] and magnetic

field [22], and so on.

Similar to the principle of electron-wave propagation in semiconductors, PCs can
be used to create either allowed or forbidden photonic bands with respect to their
permittivity in the periodicity direction. The pioneering work of E. Yablonovitch
in 1987, as it is underlying this phenomena, remains crucial as revealed a three
dimensional periodic structure that could have the capability to completely inhibit
spontaneous emission within its band gap. Following to this work, S. John’s study
is of great significance as it marks the possibility of light localization by scattering in
periodic structures. Above mentioned works focused on designing the proper materials
at microwave and millimeter-wave frequencies to control electromagnetic modes
where operating wavelength is proportional to the lattice constant. However fabricating
nanometer-scale structures was a challenge due to the difficulties in manufacturing
techniques. Subsequent advances in Nano-scale silicon processing technologies
extended band gap device developments into infrared and terahertz regimes with the
strong reduction of device sizes. The first demonstration of a photonic crystal at optical
wavelengths was made by Thomas Krauss in 1996. Artificially designing the material

properties allows different frequency ranges to be covered to utilize target applications.

Depending on the geometry and periodicity direction, PCs are categorized as
one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) structures.
The conventional well-known configuration of a 1D-PC is composed of periodically
arranged layers which have alternating refractive index variation along the periodicity

axis. The theory relies on the reflections at the boundaries of those alternating



materials of different refractive index (n1, ny) yielding a phase difference where light
cannot propagate through the structure at certain frequency bands and specific incident
angles [1]. This feature can be explained by wave-energy interaction in different
frequencies defined as; the energy of lower frequency modes is concentrated within
the higher refractive index regions whereas oppositely, the energy of higher frequency
modes is concentrated within the lower refractive index regions. Transmission and
reflection properties of periodic structure can be selectively designed by increasing
the index contrast between the alternating layers for desired wavelength region.
Besides the permittivity difference, implementing a variation of thicknesses (p1, p2)
between the connected sections of PCs yields the widening of photonic bandgaps
(PBGs). Theoretically, photonic band structure is analyzed by the variation between
the wavelength (A1) (or frequency) of the light and wave vector (k) which is represented
in dispersion diagram (dispersion curve). The field inside a periodic structure
governed by Maxwell’s wave equations incorporated with Floquet theorem which is
the superposition of the Floquet modes or Bloch waves. The electric field vector of
a normal mode of propagation in a periodic medium is given by multiplication of
a periodic function with period p = p; + p> and wave vector of propagation. The
wavevector which indicates the energy concentration in forbidden bands is known
as Bloch wavevector. For an infinite periodic structure bandgaps are represented in

dispersion curves where Bloch modes are used to identify the properties of structure.

One dimensional photonic crystals are the simplest form of periodic structures that
can be constructed by cascading the dielectric layers periodically in the direction
of propagation. However, restricting the periodicity in a single direction limits
the accessibility to wide application areas of photonic crystals. Therefore, broad
omnidirectional bandgaps or complete bandgaps in any direction with the different
geometric configurations of 2D and 3D photonic crystal structures are exploited in
many real-world problems. A typical 2D PC is comprised of infinitely long rods
or air holes arranged in an array formation. Furthermore, such a structure can
be designed to guide the light in a certain band range by applying a point defect
or a line defect. Introducing the appropriate defects into the structure breaks its
characteristic periodicity in PBG region and generates resonance (defect) modes.

Particularly, lattice defect prevents the reflection of the light and ensures that the light is



confined. Designing these devices requires numerous numerical modeling attempts to
determine the near-ideal design (complete physical insight) just before going through
the fabrication process. Therefore, fast and accurate numerical modeling of desired
structure is very significant. As the complexity of the structure increased intricate
formulations required to solve the problem. To date, many analytical or numerical
techniques such as plane wave expansion method and transfer matrix method provide
appropriate solutions to band structure computation, most of these approaches are
inefficient and suffer from the high computational burden. Traditional methods for
determination of band diagrams and radiation modes in literature rely on solving
eigenvalue equation. Hence, the algorithms used to analyze band structure require very
long computer time and excessive memory. Hence, in this thesis we intend to develop a
customized method, and investigate the 2D problem. Particularly, a general framework
for the analysis and design of 1.5D and 2D photonic crystals presented and simulation
validations which will contribute to the development of microwave bandpass/stopband

filter applications are exploited.

1.1 Purpose of Thesis

As mentioned beforehand, this research examines the emerging role of photonic
crystals in the practical applications and focuses on the theoretical and numerical
alternate methods of photonic band-gap structure determination techniques. In the
first part of this thesis, a hybrid technique incorporates the effective medium theory
(EMT) and 1D auxiliary functions of generalized scattering matrix (AFGSM) method
is developed to investigate photonic bandgaps of two-dimensional (2D) photonic
crystals. In the developed method, identification of the UC parameters simply allows to
evaluate bandgap edges of photonic bandgap structure. In order to reduce dimensional
complexity of the problem EMT is used to reduce parameters of 2D geometry to
1D equivalent. AFGSM is then employed to determine bandedge frequencies of
1D infinite (ideal) structure. Our results show that computation time is remarkably
reduced. Findings of this study are key contribution to literature for the research of

PBGs in 2D design subjects.

In the second part of this thesis, we mainly focused on an efficient and accurate

method for determining the characterization of 2D photonic crystal is performed under
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oblique plane wave excitation for both TE and TM polarizations. Considered 2D
PCs are stack of unit cells which are 1D gratings with a periodicity in the transverse
propagation direction whereas identical unitcells are periodic in longitudinal direction.
Rigorous Coupled Wave Analysis (RCWA) method is implemented to consider higher
order mode interactions in modal expansion analysis of unitcell. Transmission and
reflection spectra of finitely periodic stack are calculated by means of GSM method.
Finite number of periodic cascade connection does not provide full-wave analysis of
such a media. In the proposed technique, instead, 2D photonic crystal is assumed
to be an infinite periodic structure that ideally provides band-edge frequencies of
supported Floquet modes. Moreover finite periodic scattering matrix cascading
algorithm is inherently time consuming due to the existence of two matrix inversions.
Therefore, efficient and less time-consuming proposed technique can be implemented

for modeling of finitely periodic practical applications.

In the third part of this thesis, to reveal the capability of the proposed method on
filter applications we developed a novel and robust filter design algorithm. Presented
filters are hybrid type of structure comprising periodic and degenerated multilayered
dielectrics. One of the key features of the proposed approach is flexibility in designing
desired transmission band while offering widened stop-bands. The transmission
and stopband characteristics are attained using Auxiliary Functions of Generalized
Scattering Matrix Method (AFGSM) which has computationally better performance.
In order to demonstrate the suitability of the proposed design strategy, we have
investigated and designed four different types of filters including a laser line filter
at 800 nm wavelength for reflectance confocal microscopy, a band-pass filter at 400
nm wavelength for second harmonic generation microscopy, a laser block filter at 800
nm wavelength and a dichroic filter blocking 350-400 nm while transmitting higher

wavelengths for multiphoton microscopy.

Consequently, in this thesis, a novel method has been proposed based on the
generalized scattering matrix representation of a unit cell pattern to determine the
bandgap characteristics of specified PC structure. Since the proposed method does not

require the solution of the eigenvalue equation unlike the other conventional methods



reported in the literature, it yields solutions with higher accuracy and much lower

complexity.

1.2 Literature Review

Controlling the wave propagation in periodic structure has led to developments in
engineering of artificial crystals which can be used to employ bandgap properties.
Most of the promising applications were found in the microwave and optical engi-
neering fields. In particular, microwave field contains frequency-selective structures,
leaky-wave antennas, phase-array antennas, slow-wave structures, travelling wave
tubes applications; whereas optical field includes grating couplers and splitters,
leaky-wave structures, diffraction gratings for beam splitting, dielectric gratings,
waveguides, microcavities, resonator applications. Many of the aforementioned
devices require complex production mechanisms as long as the scale mitigated to
nanometer dimensions. Indeed, before stepping into the fabrication process, necessary
measurements need to be executed in order to deal with design changes. However,
surveying in every step of design is not feasible in terms of cost and speed. Therefore,
between the design and fabrication process a mathematical method (computational
modeling) should be implemented to predict electromagnetic wave behavior in the
designed structure. In this regard, simulation tools have attained more importance to

illustrate results numerically.

Several mathematical approaches are developed to analyze propagation characteristics
of periodic structures. Conventionally, periodic boundary conditions are incorporated
into Maxwell’s equations which results in a characteristic equation consisting of
necessary dispersion properties. The eigenvalues (roots) of the dispersion equation
corresponds to propagation constants. Dispersion curves enable one to identify
transmission and reflection properties of the infinitely periodic photonic crystal
structure [23]. The Plane Wave Expansion (PWE) method is the most common
technique used to calculate band structure of an infinite photonic crystal based on
the unit cell approach [24-26]. However, in case of considering large dielectric
contrast between layers and analysis of complex PC structures, method requires
excessive number of plane waves which results in a poor performance in terms of

the convergence. Also mathematical description of lattice structure and eigenfunctions



requires set of equations to be solved by converting them into a Hermitian eigenvalue
problem. In [27] the convergence problems with the plane-wave method in photonic
crystals have been proposed. The convergence of the method can be improved in case
of using alternate basis system functions i.e. spherical waves may be used instead
of plane waves as a fundament set whenever the 3D photonic crystal is combined
from spherical or cylindrical parts. This technique is known as the spherical-wave
expansion method or vectorial KRR (Koringa Kohn Rostker) method [28]. The
Transfer Matrix Method (TMM) is another essential technique to analyze the bandgap
of photonic crystals. In this method, layers of structure assumed to be invariant along
the direction of propagation and the field transferred from each layer is calculated with
Maxwell’s equations incorporated with boundary conditions. Total transfer matrix is
used to represent the band diagram of the PC and it can be calculated as a product
of each layer’s transfer matrices [23, 29, 30]. Finite difference time domain (FDTD)
method is mathematically derived by differential equations with derivatives of the
field components in a finite computational domain. Conventionally a Cartesian grid
is used to discretize the set of points called mesh. Discretization of each mesh
element is often set to a proper value (e.g. A/20) where sensitive to field variations
accurately. Differential form of Maxwell’s equations is solved with finite difference
solver considering the related boundary conditions for each material interface. In order
to ensure the stability of the method for different geometries the mesh grid size and
time steps must be selected appropriately. However, discretization of the problem mesh
limits the computational efficiency of the method adversely [31-33]. Finite element
method (FEM) is another widely used technique in computational electromagnetics
in addition to solid modeling of mechanical engineering problems. In this method,
partial differential equations (PDE) incorporated with related boundary conditions are
used to find approximate solutions. Similar to FDTD in FEM computational domain
is divided to sub mesh domains (finite elements) in order to solve simple functions
for each element instead of entire structure. Moreover, in FEM mesh elements can
be selected from various small shapes such as triangular or tetrahedral elements and
allows modifying the element size unequally depending on irregularity of the structure.
Both FDTD and FEM approaches are limited by mesh definition of computational
domain and results in an eigenvalue equation to be solved numerically [34, 35].

Certainly specified geometry of a PC constitutes particular bandgap properties valid
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for a specified frequency region, incidence angle and polarization. In case of varying
these parameters might fade the photonic bandgap away. Hence, a frequency region
which is insensitive to incidence angle and polarization setting, called omnidirectional
bandgap (OBG), appears as a requirement for relevant applications. Many researches

published related to OBG structures in literature [36,37].

Numerous applications acquired by employing 1D PC in the designed structures can
be found in the literature such as distributed feedback lasers (DFB) [23], dielectric
Fabry-Perot filters [38], reconfigurable polarizers [39], narrow-band filters [40],
dielectric reflectors [41,42]. On the other hands, some dielectric mirrors and optical
filter applications driven by introducing the defect formations through the structure

where localized modes of light appears [43].

2D PCs are classified depending on lattice types (periodicity formation) of the structure
such as square lattice, circular lattice, hexagonal lattice etc. Photonic bandgaps in 2D
arrays of PCs can be designed by varying the lattice form comprised of air or dielectric
columns immersed in the structure with a definite refractive index contrast [44—47].
In the study of Kee, for a 2D PC in the form of square lattice, PBG responses are
compared for dielectric columns and air columns cases. His study revealed that a 2D
PC having dielectric columns immersed in an air medium configuration constitutes a
wider PBG in comparison to opposite case [48]. Haas and Hwang are investigated the
OBG responses for 2D PCs in their studies [49, 50]. Chen proposed OBG reflectors in
2D PCs for the design purposes of waveguides [51,52]. Furthermore, some heuristic
approaches to design wide photonic OBG responses have been proposed to literature

[53,54].

Employing the PBG structures in antenna applications improves the antenna directivity
and supports to suppress surface waves which intensify the directivity of antenna
[55, 56]. Developing narrowband channelized devices is another requirement in
telecommunication systems due to the excessive rates of data. Sharp and narrow
band filter devices can be designed using the PC integrated structures in order to use
frequency spectrum efficiently without interfering the adjacent channels. Some optical

filter application examples can be found in the references [57,58].



Most of the abovementioned applications and numerical approaches in these studies
eventually require solving eigenvalue equation. However, an alternative method can
be maintained to investigate and design PBG structures which can provide highly
accurate results and does not require excessive computation resources. Previously,
similar to PBG structures, passband stopband regions of periodically dielectric loaded
rectangular waveguides have been determined using an alternative method based on
Generalized Scattering Matrix (GSM) approach [59]. This thesis intends to extend
proposed approach to solve 2D PC problems without need to solve common eigenvalue
equation. This method is called Auxiliary Functions of Generalized Scattering Matrix

(AFGSM) method and has been published in literature recently [60].

1.3 Hypothesis

In this thesis, a new method is proposed which can be used to design an optical
component consisting of PBG structures such as omnidirectional reflector, cavity, and
dual-polarized waveguide for different frequency regions. The contributions of the
proposed method in this thesis covers following remarks; 1) the transmission stop
bands of the photonic crystals will be calculated more efficiently and faster than the
methods in the literature, 2) to develop an approach that will give fast and accurate
results in determining the electrical and geometrical parameters of the structure to work
in a given frequency domain for the inverse problem (design), 3) to enable the design
of optical components to work independently of variables such as polarization and
incidence angle, 4) Due to the difficulty of fabrication of photonic crystals (especially
2D PCs) in nanoscale, modeling with a fast response approach dielectric lattice and
defect forms will be suitable for scaling of lithography. The theory relies on the
concatenation of scattering parameters (S-parameters) of a single unit cell providing
a generalized scattering matrix of the global structure. Floquet theory is incorporated
to constitute periodicity through the layers of 2D PC where frequency responses and

modal properties of entire structure can be obtained to characterize bandgap properties.






2. WAVE PROPAGATION IN PERIODIC STRUCTURES

2.1 Transmission Line Theory

Electromagnetic wave propagation through a periodic structure is addressed with the
solutions of wave equations where Floquet’s (Bloch) theorem is incorporated into
the Maxwell’s equations. The solutions (propagating modes or evanescent modes)
of the wave equation supported by a periodic medium are called Floquet modes (Bloch
waves). In the problem statement periodic structures are considered as two-port
networks or transmission lines which have identical layers (unit cells) cascaded
through the boundaries (ports). Fields at the input and output ports of the unit cell
can be decomposed into the modes supported by transmission line/network. Each
explored Floquet mode corresponds to a Bloch wave vector (propagation constant).
Hence, propagation characteristics of a wave guided by a periodic structure can be

analyzed via Floquet’s theorem [61].

In the following part a brief summary of Floquet’s theorem is introduced with brief
overview on transmission line theory. We start by deriving basic proof of the Floquet’s
theorem for a periodic transmission line below. In this case periodic transmission line
consist of two sections with different parameters repeated in z direction. In Figure
2.1, the corresponding parameters of each section are defined as follows: /; and [, are
lengths, 11 and 1, are characteristic impedances, ki and k; are wavenumbers of first

and second sections of transmission line respectively.

One period of periodic transmission line is denoted by L = [ 4+, as given in Figure
2.1. Since the structure is infinitely periodic, there should be no difference between
the fields at z and at z+ L except for the constant attenuation and phase shift. In other
words, the fields at a point z in an infinite periodic structure differ from the fields one
period L away by a complex constant. Let u(z) represent a wave (either voltage or

current value). Then, a wave u(z) at z and a wave u(z+ L) at z+ L are related as
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defined in Floquet’s theorem definition. For each intersection of the transmission line

can be written as follows

w(z+L)  u(z+2L)  u(z+mL)
@) ueiD) T armng —

where C is a constant value.

After applying some basic mathematic steps on equation (2.1) we obtain

u(z+L)  wu(z+2L)  u(z+mL) om
WD uetD T wer DI =C—u(z+mL)=C"u(z) (2.2)

In equation (2.2) the constant C is generally complex and can be represented by C =

e /¥ where k is the complex wave number.

Consider function R(z)

R(z) = e/u(z) (2.3)
and adding one period of phase shift gives,
R(z+L) =MD y(z 4 L) or R(z+ L) = /e u(z+ L) (2.4)
Then, if we substitute u(z)e /X by u(z+ L) we get

R(z+L) = e/®e/M eI y(7) = R(z) (2.5)

Therefore, R(z) is a periodic function of z with period L and it can be represented in a

Fourier series given by

Z Ape I 2nm/L): (2.6)
Nn——oo
if we equate (2.3) to (2.6) we get
~+oo
R(Z) _ ejkz Z Ao j(2nm/L)z (Z) _ Z Ane—j(k+2n7r/L)z (2.7)
Nn——oo Nn——oo
Another representation of (2.7) is
oo . 2
= Y A =k ZE (2.8)

n——oo
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Figure 2.1 : a) Periodically loaded transmission line model, b) two-section line
model.

The nth term of the the equation (2.8) is called Floquet’s mode or Bloch wave.
Floquet’s theorem states that a wave guided by a periodic structure contains infinite
number of space harmonics [61]. Figure 2.1(a) represents the infinitely long periodic
transmission line model and unit cell that comprised of three sections [62]. Each
section of unit cell can be represented by a transmission line section of length d/2
and a shunt susceptance of b. The unloaded transmission line (TL) has a characteristic
impedance Zy and a propagation constant k. Infinitely periodic TL can be considered

as being composed of two-port identical networks including the voltages and currents

Y

< | ﬂq— l, —»
™ 7,
k, k,

on either side of the nth unit cell which can be related as:

Vi
Iy

A B
C D

13
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Network Model ABCD Parameters

S YA S
C=0 D=1
© | S
A:l B=0
Y
I C:Y D=1
A=cos jl B=jZ,sin gl
Zo, P -
C = jY,sin gl D =cos gl
«—| —— >

Figure 2.2 : ABCD Parameters of Transmission Line Network Model.

Therefore, each section of unit cell in Figure 2.1(a) can be expressed in ABCD matrix
as given in Figure 2.2 [62]. The first and third sections in Figure 2.1(a) corresponds
to third type of network model in Figure 2.2 and middle section can be represented by
second type of microwave network model in Figure 2.2. Using the related ABCD
matrix equivalents the cascade connection of each section can be easily found by

multiplying the ABCD matrices of each individual section (equation 2.10).

A B cos% jsin% 1 0 cos% jsin%
¢ D jsin% cosg jb 1 jsin% cosg

(cos —%sin@)  j(sin@+5cos6 —2)
= (2.10)
j(sin6+§cose—%’) (cos%—%sin@)
where 6 = kd and k is the propagation constant. Due to considered network is

reciprocal AD — BC = 1. Wave analysis of the network can be done assuming a

propagating wave in the +z direction. Applying Floquet’s theorem to the infinitely

14



long structure provides that the voltage and current at the n-th terminal can differ from

the that of at (n + 1)th terminals only by a propagating factor e?? given by

Lip1 = Le " (2.11)

If we substitute equation (2.11) into (2.9) we get

A—erd B
C D—er

Vit ] =0 (2.12)
In—H

For a nontrivial solution, determinant of the matrix must be equal to zero:

AD+e*" —(A+D)e™ —BC=0, and AD—BC =1 (2.13)
14+ — (A+D)e" =0 (2.14)
e "4 =A+D (2.15)

Using trigonometric identities we obtain

A+D b
% = cosyd = cos0 — Esin@ (2.16)

Propagation constant can be represented as ¥ = a + jf and since the right hand-side
in equations in (2.16) is purely real, & = 0 or = 0 is possible. In this case there are

two physical results:

If « =0, # 0. Then, cos (Bd) = cosO — %sin@ which corresponds to a propagating

wave with no attenuation which identifies the passband of the periodic structure,

If o # 0,8 = 0 or 7. Then, cos(ad) = |cos® — 5sin6| > 1 which corresponds to a

none-propagating wave and attenuates which is the stopband of the periodic structure.

Physically, o > O states only one solution for positively traveling waves whereas

o < 0O states only one solution for negatively traveling waves. As a result periodic

15



transmission line can be considered as a filter depending on the exhibition of passband

and stopband with related frequency and susceptance values.

Alternatively, unit cell of a TL can be considered as being composed of two different
transmission-line sections repeated alternately as given in Figure 2.1(b). In this case
two cascaded transmission line will be considered without a section consisting a shunt
susceptance and characteristic impedance values "1;" are used, where i denotes section

number. Thus, cascade ABCD matrix is given as

A B COS 91 ]1‘]1 sin 91 CcoS 92 ]7]2 sin 92

C D

j % sinf; cos6 j % sinf, cos6,

cos 61 cos 6, — % sin 0y sin 6,

= A . (2.17)
— n—f sin 0; sin 6, + cos 0; cos 6,
where 9,' =kil,=w ‘LL,'Sili and i = 1,2.
As a result dispersion relation can be expressed as
A+D 1
cos(kL) = A+h = coskylycoskily — —(m + m) sinky/y sink;l; (2.18)
2 2’m m

Consequently, equations (2.16) and (2.18) are the dispersion equations of periodic
transmission line and multilayered structures respectively. Thus, based on the
frequency and normalized susceptance values, the periodically loaded TL can be used
to exhibit either passbands or stopbands which can be considered as a type of filter.
Generally, when investigating the passband or stopband characteristic of a periodic
structure, variation of propagation constant 3 versus the frequency ® is plotted to
illustrate wave propagation. This representation is called dispersion diagram (or
sometimes called k — 3 or Brillouin diagram). Thus far, microwave TL approach is
used to derive dispersion relations in periodic structures. In the following section same
dispersion equation (eigenvalue equation) will be examined in terms of wave analysis

using the conventional ABCD matrix representation [62].
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2.2 Conventional ABCD Matrix Method

In this section we have examined "Conventional ABCD Matrix Representation" to
understand the relations between the selected geometry and corresponding reflectance
spectrum.  One-dimensional layered periodic medium is considered to derive
dispersion relations. Considered geometry is assumed to be isotropic and nonmagnetic
made of different refractive indexed materials where an incident wave propagating in

the direction of periodicity z as shown in Figure 2.3.

)y?

Z=nNA-a

Figure 2.3 : Schematic drawing of a periodic layered medium consisting of
alternating layers of two different transparent materials with refractive
indices n; and ny and thicknesses a and b, respectively.

Due to periodicity dielectric constant of the considered geometry is a periodic function
of position i.e. €(z) = €(z+ A) where A, namely, the arbitrary lattice constant or spatial
period of structure. Here, we derive reflection and transmission spectrum of a periodic
medium particularly a 1D PC whose bandgaps can be determined by solving the wave

equation.

Therefore, starting with Maxwell’s equations for lossless source free region; (time

dependency is taken as /")

17



Maxwell’s equations:

=

o 0B
VXE=—— 2.1
X 3 (2.19a)
, oD
VxH=+— 2.19b
X to ( )
V-E=0, (2.19¢)
V.-B=0 (2.19d)

Using the constitutive relations D = gy&E and B = pou,H for simple medium

right-hand side of equation (2.19) will take the form
V x H = joeE, (2.20a)

VXE=—jouH (2.20b)

In order to use periodicity properties fields can be expressed with periodic functions

Ex(z) and Hk(z) using the Floquet’s (Bloch) theorem given in section 2.2 such that;

E = Ex(z)e /%¢ (2.21)
H = Hg(z)e /K- (2.22)
where
Ex(z) = Ex(z+A) (2.23)
Hg(z) = Hk(z+A) (2.24)

where K indicates Bloch wave vector (wave number) which functions Ex and Hg
depend on. Using the matrix method exact solution of wave equations for periodic

layered PC can be obtained as follows;

Assume that an isotropic and nonmagnetic (it = U throughout the periodic structure)
periodic layered media consists of two different materials with different refractive

indices described as given below:

n(z) =

{”2’ 0<z<b (2.25)

ny, b<z<A

where b is the thickness of layer with refractive index n;, the layer with the refractive

index n; has a thickness of a = A —b.
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Periodicity of refractive index in the direction of wave propagation is n(z) = n(z+ A)

or &(z) =&(z+A) where A is the period shown in Figure 2.3 .

Assuming the incident plane wave in the zy-direction and medium is homogeneous in

the y-direction thus a general solution for the wave equation can be written as

E(y,2,t) = E(z)e/® e/ (2.26)

where ky is the y-component of the wave vector of propagation, constant throughout
the medium. Electric field in each layer can be expressed in terms of the travelling

waves propagating in the +/- direction of propagation:

E() ane’jkzl (z=nA) 4 bnejkzl (z=nA) nA—a<z<nA
T epe Bl 4 g oAt (n _1)A <z < nA—a

2
wni
=y ()
2
wny
(%) o

where n denotes n-th unit cell. While the wave propagates along the structure

(2.27)

continuity of the tangential electric and magnetic fields at boundary of layers must be

satisfied (see Figure 2.4). Then, unknown coefficients a,, b,, c¢,,d, can be determined.
Since there is no material change in x-direction % = 0 (yz plane of propagation).

For the TE-polarized modes there is no electric field in the direction of propagation

(vz) whereas magnetic field has components in propagation direction

Ec#0,E,=0,E. =0

H, = 0.H, 0, H, £0 (229
VxE=—jouH (2.29)
iy iy it H, P
L _ LJE, _ OE,
% a% a% = —jouH = —jou | H, :uya—z—uZa—y (2.30)
E. E, E, H;
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az_ .].u'yaay

= jouH, 2.31)

Following wave continuity of E, and Hy, at the interfaces z = (n—1)A, z =nA —a will

be considered.

g m—— - ~— ———

Y~

0—

inc

~ BOUNDARY-2 nA-a

Z-nA+a
z—-(n-1)A Z—-nA

Figure 2.4 : Continuity of the tangential electric and magnetic fields at boundaries.
e Boundary 1: (n—1)A

Electric field, E,

a, e~ ki@=(n=DA) L p  piki(z=(n=1)A)
cne—jké(z—n/\—i-a) _|_dnejk§(z—n/\+a)

atz= (n— 1)A interface with A=a+b

(n—1)A—(n—1)A=0
(n—1)A—nA+a=nA—A—nA+a=a—A=—-b

Magnetic field, we take derivative of above equations “5* = — jouH,
_jkian_le_jki (z—(n—1)A) + jk?bn_le%-jkf (z—(n—1)A)
_J‘kécne—jké(z—m\—i-a) + J‘kédne-l-jké(z—nA-i-a)
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at z = (n— 1)A interface with A = a+ b gives

JK (an1 = by1) = jk (cne b — djeIRP)

e Boundary 2: nA—a

Electric field Ey

ane_jki (z—nA) + bne'”k? (z—nA)

cne*jké(zannLa) + dne+jk§(zan+a)

at z = nA — a interface

] _ IR
cn+dy = anei® + be k4

Magnetic field, we take derivative of above equations
—nA)

— jKiaye @A) kD, etk

—jkécne*jké(Z*”AJr“) + jkédneﬂki(f”/\*“)

at z = nA — a interface

]ké(cn _dn) = ]ki (anejkia — bne—jkia)

As a summary continuity equations can be written as

ap_1+ bn—

JK (ap—1 —bp_1) = jké(cneﬂkgb_l_dne—jkgb)

. s
1= Cnejkzb +dye Jkzb

s .
Cptdy = anejkia +bue Jkia

6 (cn — dn) = K (e — be5)

Eqgs. 2.35 can also be written in matrix form:

1 1 an—1 -
jki _jki bp1 |
11 e

and

elkab eIk
jkéeﬂéb —jkée*jkéb

ejkia e—jk”ia

21

= [ ]k?ejkfa _jkiefjk*ia

J0E,
dz

(2.32)

(2.33)

—jouHy,

(2.34)

(2.35a)
(2.35b)
(2.35¢)
(2.35d)

(2.36)

(2.37)



) ) C ) ) )
In order to solve matrix equation column vector d” in equation (2.37) is
n
.. ) ) ) ) a,— A B a
eliminated, and using the unit-cell translation matrix L "
b1 C D b,

which relates the amplitudes of the plane waves in first layer of n-th unit cell and first

layer of (n+ 1)-th unit cell.

. A B . . . .
Since C D matrix relates amplitudes of two equivalent layers with same

refractive index, it’s unimodular. Therefore 2 g =AD—BC=1.

According to Bloch theorem , the electric field vector of a normal mode of propagation

in a periodic medium is of the form

E(y,z,t) = E(z)e/® e 75 (2.38a)
and

E = Eg(z)e /K¢ (2.38b)

E = Eg(z)e /Kol (@—k) (2.38¢)

where Ek(z) is a periodic function with period A, Eg(z) = Ex(z+A)

Using the periodicity, Bloch wave can be expressed as

An | _ —iKA | Gn—1
[32] - o]

and substituting the unit-cell translation matrix into this equation gives;

an | _  —iKA An an iKA

Final representation in equation (2.40) is an ordinary linear eigensystem problem in the

A B
C D

A B
C D

an
b, ] (2.40)

form of Ax = Ax. The propagating modes are the solutions of the eigenvalue equation

and e’X? is the eigenvalue of the unit-cell translation matrix Ié g .
ay iKA A B ay A B ay KA ay .
[bn]e “|lcop bn]—> collo| ¢ |bn|7°
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A B
C D

_ 1,iKA ap |
Ie [ b, ] =0

where I is the identity matrix and e’ can be represented as a diagonal matrix such

that

eiKA 0 A— eiKA 0 a, o
0 KA — 0 D — KA b, | =

For a nontrivial solution, determinant of the matrix must be equal to zero:

AD — (A+D)e'®M 4 #KA _BC =0,AD—BC =1 (2.41a)
14 e*KA _(A+ D) =0 (2.41b)
e KA LKA — A4 D (2.41c)

Using the Euler identities:
KN = cos(KA) +isin(KA)

e KA — cos(KA) —isin(KA)
Thus
KA 4 o7 KA — 2 cos(KA) =A+D

Thus, cos(KA) = 442 or

: 1 1
KA — SA+D)+ Z(A+D)2 —1 (2.42)

Matrix elements of TE wave and TM wave are

Arg =M | cos(kgb) + 2 | 22+ -1 ) sin(kgb) (2.43a)
KK
Brg=e Jkia %(é—é) Sin(kéb) (2.43b)
iksa ] ké ki .
Crg =9 | =2 | 22 = 2L ) sin(K3b) (2.43¢)
2( K ?
(K
Dre = e M4 |cos(k5b) — 2 [ 22+ 71 | sin(k3b) (2.43d)
2\ K



Ay — et | cos(kb) +é (22 22 sin(k3b) (2.44a)
Bry = e k4 % (% — %) sin(kgb)- (2.44b)
Cry = e/ki _% <% _ %) sin(k3b) (2.44c)
Dry = e M4 | cos(kib) — % (% + %) sin(k3b) (2.44d)

Therefore eigenvalue equation for TE and TM cases can be expressed as

cos(KA) = cos(kja)cos(ksb) — M sin(kja) sin(kib) (2.45)
where
1 (K K
M= Ve e (2.46)
2 ) M
and

wn; 2
kf:\/( cl) — ()2, i=1,2 (2.47)

As a result following three important definitions can be stated as (see [23]):

1. If ) (4+D) ‘ < 1 — K is real and corresponds to propagating Bloch waves,

2. If ’ (4+D) ‘ > 1 — K  hasreal and imaginary parts. This type of waves are
called Evanescent Bloch waves and correspond to "photonic bandgaps" of periodic

medium,

3. If ) (A+D) ‘ = 1 — corresponds to "photonic band edges"
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2.3 Auxiliary Functions of Generalized Scattering Matrix (AFGSM) Method

In this section, bandgap characteristics of periodic structures are analyzed considering
a two-port microwave circuit unit cell model. S-parameters of unit cell is determined

with given corresponding voltage and current representations (see Figure 2.5).

(i) (0)
& — < 3,
| Unit Cell ]
pt" <+— — bﬁo)
|
2=0 z=p 7

Figure 2.5 : Unit cell of periodic structure 2-port network.

Vi+
| s - — [T\ /7 2.48a
ai /_ZOi ; 0i ( )

V.
b; = \/lZ_() =1, \/Zy;i (2.48b)
i

where a; and b; denote incident and reflected waves, ViJr and V;~ denote incident and

reflected voltages, IiJr and I;” denote incident and reflected currents respectively [62].

Using above relations S-matrix of the unit cell can be given as

by St Si2 ap
— 2.49
[b2] [521 522][612] (2.49)
with
b b b b
Sy =— s S =2 , Sip=— , Sy =— (2.50)
aj la=0 ai la=0 ar la;=0 ar la;=0

Electric and magnetic fields for a homogeneously periodic structured waveguide are

given as
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N . . . i N . . : i
= Y 2D e’ Y R 20 fD s 2.51a)
n=1 n=1
. . . i N . . . i
= Y —ad\y D ez 1 Y Dy e’ (251b)
=1 n=1
N
0) /7 fn —a\(z—p) Z a}go), /Z,(,O)f,go)ea’gm (z—p) (2.51¢)
n=1
RYA AN AL ~a” =) +Za /10 £0 (=) (2.51d)

where Z is impedance, Y is admittance fn 1s used for wave expansion coefficients and

they are symmetric such as fn = fn , ,S") — Z,(,O), Yn(i) = Y,,(O).

m
||
i Mz i MZ

Using the boundary conditions i.e. for incident waves at z = 0 and for reflected waves

atz=p

EY =g EY = g™ (2.52a)
7=0 7=p

g —gW a1 — g (2.52b)
7z=0 =p

Applying Floquet condition with A, eigenvalue of the periodic structure, which means
reflected waves can differ from incident waves only by the A as explained in the

previous sections.

EVY = AED) (2.53a)

1 — 2% (2.53b)

As aresult field equations are simplified to

N N
Y (@) + )z 1 = Z a1+ b2 7O (2.54a)

n=1 n=1

N N
Zl VA A A Z /@ 0 (2.54b)
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Due to symmetry condition f,gi) = f,§°), Z,gi) = Z,SO), Yn(i) = Yn(o) equation (2.54a)

simplifies to

N N . ;
Y (@) +by) = Y A(a)) + b)) (2.552)
n=1 n=1
N N
Y 6 —a) =Y A(a) — b)) (2.55b)
n=1 n=1
Equations 2.55a(a-b) can be simplified and represented in a matrix form
(@ +bO) =A(a® +50) | O =2al)
(2.56)

by representing in the form of equation (2.49) we get

b St Si2 al?
[ i ] R [ S Sn || a® 2.57)
by replacing the zero-th incident and reflected waves with i-th elements using the

equation (2.56)

O | | S Si al’
FaRERIE. o5

we can represent equation (2.58) in the form of eigenvalue equation

1 =Sy || pD | .| =S 0 || bW
[ 0 —S2 ] [ a |~ A —S» 1 ali) (2.59)
Final equation 2.59 is the eigenvalue equation of the unit cell. Solution to this equation

gives information of eigenstates which is the passband information of the system and

it can be expresses as S11 = S22, 521 = S12,

SH -85 -1
Ry (%) +1=0 (2.60)
21

27



The roots of the equation (2.60)

A= —_S%IS_;%I_I +VA .
—83, 53,1
A —53,—83,—1 VA Mo = “52121 (2.61)
_ 11921 —/A
2 S$21
which corresponds to
oy =e 10 1-83,+83
A 0 A+ =2cos® thus, cos® =7 =2t (2.62)
2=2¢€

For the structures propagating single mode, stop bands and bandedges can be

identified. At the stopbands A and 6 parameters take the following values

Al = A, =1 while 8 =0, A} = A, = —1 while 8 = %, In the passband region |4;| =
A =1.

Another possible formulation is stated which gets rid of the effort to solve
eigen-equation, instead scattering-matrix of symmetric UC is used to interpretation as
given in the RHS of equation (2.62). Generalized scattering matrix (GSM) of cascaded
networks is well analyzed in the literature. Straightforward cascading of two scattering
matrices solves the electromagnetic problem of junction scattering to avoid the often
occurring large transmission matrix elements that lead to computational difficulties.
After calculating the final scattering parameters of N cascaded unit cells, auxiliary
functions X, and X_ are used to determine photonic edge frequencies by observing

the zero transitions of the imaginary part of (S1;+S>;) given by;

Xy = Im{SH :i:Szl} (2.63)

It should be noted that some arbitrary roots might appear while searching the zero
transitions of the auxiliary functions. In such a case, we discard the roots which
correspond to bandedge frequencies located out of the interested waveband region
which includes the photonic bandgap. The proposed technique effectively returns
precise estimations for the calculation of bandedge frequencies supported by Floquet

modes just by performing a straightforward root-determination algorithm based on
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auxiliary functions, namely Auxiliary Functions of Generalized Scattering Matrix
(AFGSM). Convergency success of the integrated computational routine enables one to
perform comprehensive studies in order to find PBG characteristics of stacked periodic

mediums while maintaining the higher order Floquet modes.

2.4 Numerical Results

In this subsection, we considered two numerical examples in order to show
applicability of proposed method to different applications. In the first problem a
wideband omnidirectional bandgap (OBG) reflector design study is presented using
photonic crystal structures (Te, Ta>Os, TiO;) satisfying the periodicity condition
and related simulation results were given. The designed final reflector provides an
omnidirectional photonic stop band with a value of 56.63% omnidirectional relative

bandwidth (ORB) in the range of 924 nm to 1654 nm of optical wavelength region.

In Figure 2.6 dashed lines represent the photonic crystal couple-1 (PC1) which consist
of Tellurium (n; = 4.6) and Ta,Os5 (ny; = 2.1) and dashed-dot lines represent photonic
crystal couple-2 (PC2) which consist of Tellurium (n; = 4.6) and TiO; (ny = 2.45),

respectively. Incidence medium is assumed to be air (ny = 1).

3.5 w 70
3 - 4
60
2571 1
JaV 50
£
CF T \
2r 4
30—
15 20 <
10
1 1
1 3 3.5

Figure 2.6 : Omnidirectional reflection contour plot as a function of n; /ny and ny /ny.
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Band edge frequencies of designed omnidirectional reflector can be calculated by

utilizing AFGSM method on particular incidence angle and polarizations (TM-0° and

TM-90°). In Figure 2.7 and Figure 2.8 dashed blue lines represent X, curve and solid

red lines represent X_ curve of AFGSM method in which zero transitions of the curves

corresponds to bandedge frequencies of the bandgaps for PC1 and PC2, respectively.

Obtained bandedge frequencies and ORB values are summarized in table 2.1. PCl1

(Tellurium, Ta,O5) pair provides an ORB with 416 nm bandwidth and PC2 (Tellurium,

TiO,) pair provides an ORB value of 321 nm.

Table 2.1 : Summary of selected material properties and related bandgap responses.

PC pair pi(nm) py(nm) TM 0% (nm) TM 89Y (nm) OBG (nm) OBG (%)
PC1 112.8 96.8 1238.2 - 1821 1205.2-1654.9 416 28.76
PC2 48.8 132 924.6 - 1357 879.6 - 1245.6 321 29.58

2200 OBG Reflector-1 - 0° 9900 0BG Reflector-1- 89°
7 J
‘ ’
2000 F {1001 nim ,’ {1 2000}
1800 | / 1800 |
_ 1’
E 1e00f ’ 1600
i) ’
5 10l £ 1400 |
E 5
= 1200f I' 1200
41238 nm
1000 % 1000
%
"%~\.
800 | ~. 800}
600 . LN 600
04 02 0 02 04  -04

)(+ X_ functions

Figure 2.7 : Estimating bandedge frequencies of OBG reflectors using AFGSM
method for PC1 pair.
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OBG Reflector-2 - 0° OBG Reflector-2 - 89°
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Figure 2.8 : Estimating bandedge frequencies of OBG reflectors using AFGSM
method for PC2 pair.

Finally coupling of two PC pairs results in a wideband OBG reflector. Designed
reflector has a stopband of 737 nm and ORB value of 56.63% (see Figure 2.9).
Moreover, computational response is 10° times faster than commercial simulators

(HFSS, CST).
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Figure 2.9 : OBG band region of wideband reflector.
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In the second numerical example, 4-channel optical filter design is presented. Design
algorithm comprised of two steps. In the first step, required layer thicknesses are
determined using the AFGSM method for the desired bandgap. In the second
step, transmission bands maintained by utilizing defect modes correspond to filter’s
center frequencies. Obtained results verified with transfer matrix method and CST

electromagnetic simulation software.

For the design purposes Ta;Os, M gF, materials are selected with the refractive indices
2.11 and 1.38 respectively. Layer thicknesses are sweeped with AFGSM method
widest stopband is obtained between 167.5 THz (1791 nm) and 219.2 THz (1368 nm)
range with a layer thickness values of p; = 183 nm and p, = 280 nm, respectively.

Zero transitions of auxiliary functions are illustrated in Figure 2.10.
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Figure 2.10 : Wide bandgap reflector design.

In table 2.2 desired filter channel center wavelengths and related defect layer
thicknesses are given. Hence, 4-channel narrowband transmission channel responses

can be designed in the 1550 nm region.

Table 2.2 : Designed filter parameters.

Optical channel no Transmission band wavelengths Defect layer thickness

M 1496 nm 0.8,
A 1523 nm 0.9/,
A3 1550 nm Iy

A4 1577 nm 1.11,
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Figure 2.11 : 4 channel optical filter transmission bands.

As shown in numerical examples AFGSM method can be efficiently used for design
of different photonic crystal based components in THz spectrum. Inverse problem
which seek for proper physical parameters for desired objective is another area that
the proposed method being employed. Preliminary simulation results showed that
AFGSM method provides a computational advantage over CST more than 100 times
(for a stack of 20 unit cells) whereas providing 1000 times faster response than HFSS
does for a problem including 106 calculation steps. Therefore, AFGSM method
can be used properly used in precisely modeling of photonic crystal based optical

components.
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3. A FAST HYBRID METHOD FOR THE BANDGAP ANALYSIS OF 2D
PHOTONIC CRYSTALS BASED ON EMT AND AFGSM METHODS '

3.1 Introduction

For many years, phenomenal relation between the EM fields and periodic materials
particularly scattering and confining effects of wave propagation, has attracted
attention of many researchers [63, 64]. Numerous practical applications developed
related to high refractive index contrast between concurrent layers and its effect on
signal intensity yielding photonic bandgap (PBG) characteristics. Among available
dielectric substrates photonic crystals (PCs) are the most popular ones used to
achieve aforementioned refractive index contrast. Besides the contrast in refractive
indices, implementing a modulation to thickness and formation allows to existance
of PBGs. Hence, useful optical and photonic components can be modeled e.g.
thin-film filters, channel drop filters, optical delay lines [3, 6, 65, 66], optical-isolators
[7], resonance-filters [8], photonic-nanocavities, photonic-crystal mirrors [9, 10],
polarization splitters, optical interleavers [11, 12], photonic-crystal tapers, splitters and
combiners [13, 14], planar reflectors, waveguide bends and mirrors [15]. Various new
surveys examining the modification of light confinement in PCs have been reported e.g.
2D magnetic photonic crystal defect structures for circulator design [16], cross-shaped
PC waveguide with wide bandwidth configuration [17] and tunable PBG structures
by modificating the permittivities of materials using an external parameter such as

temperature [18,67], electric field [20,68] and magnetic field [22], etc.

Commonly, the wave propagation in 2D periodic structures is analyzed using the
dispersion relation governed by Bloch waves which is initially derived from solutions
of Maxwell’s equations. A lot of mathematical techniques have been formulated to
specify the photonic band structure of PCs. Typically employed techniques include
Transfer Matrix Method (TMM), Finite-Difference Time-Domain (FDTD) method,

IThis chapter is based on the paper "Erkan, O., Akinci, M. N., Simgek, S., 2018. A fast hybrid
method for the bandgap analysis of 2D photonic crystals based on EMT and AFGSM methods,
AEU-International Journal of Electronics and Communications, 87, 107-112."
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Multiple Scattering (MST) method, Plane-Wave Expansion (PWE) method,and Finite
Element Method (FEM) [1, 2, 69-73]. Nevertheless, effectiveness and precision of
abovementioned techniques are still important parameters to be concerned. Even
transmission matrices are generally applied, it may cause numerically unstability
because of the exponential functions including positive and negative arguments in
essence. In contrast to the TMM, the direct association of generalized scattering
matrices yields exponential functions with only negative arguments. Hence, GSM
remaines numerically stable [74]. Since PCs exhibit symmetry properties in the
direction of periodicity, electromagnetic modes of the structure decouples into
transverse magnetic (TM) and transverse electric (TE) modes for corresponding
symmetry planes [24]. Results are presented for both TE and TM polarizations

showing the magnitude of scattering parameter (S11) as a function of frequency.

So far, we represented hybrid method (HM) to specify 2D PBGs which provides
faster response in simulations and requires less computational resources. Described
process involves two steps. In the first one, rather than executing an analysis in two
dimensions, problem is considered for mitigated geometry of 1D equivalent films in
which transformed refractive indices are calculated via EMT. Subsequently, photonic
bandgap of 1D homogenised structure is found by employing AFGSM approach
[59,75-77]. In the method given in [76], roots of two analytic auxiliary functions are
used to estimate band edges effectively. Here, calculation of the auxiliary functions
does not necessitate the eigensystem of the GSM [76]. Thus the presented approach

provides a significant reduction for the analysis of 2D problems.

Theoretically EMT produces better results when the selected wavelength is much
larger than the period of the structure. Thus, performance of HM is only limited
by the operating spectrum of the EMT. Yet, by comparing the numerical results
with simulation results gathered from CST (Computer Simulation Technology), it is
revealed that the our method yields accurate results with realistic wavelength-to-period

ratios.

3.2 Analyzing Method

A periodic square array of 2D PC which includes dielectric squares having width of

p1, relative permittivity of €, embedded in background material which has relative
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permittivity of & and period p is depicted in Figure 3.1. Geometry and parameters of

2D PC given in this paper is based on Lalanne’s work in [78] for verification.

For the analysis of the original problem simulated in CST (see Figure 3.2), periodic
boundary condition is applied in two dimensions (dielectric properties of media are
invariant in the transverse (x, y) plane). In the z-direction, six layers of unit cell is
periodically arranged and TE/TM plane wave is incident with 6;,. angle with respect
to surface normal (Floquet boundary condition is applied). Corresponding unit cell

model of 2D square lattice PC is given at right side of Figure 3.2.

Figure 3.1 : Representation of EMT transformation
(a) 2D square lattice periodic structure consists of square shaped
dielectrics with relative permittivity of €, immersed in background
material with relative permittivity of &
(b) 1D equivalent thin films (effective indices calculated by EMT).
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Figure 3.2 : 2D Photonic crystal square array composed of dielectric square rods and
corresponding unit cell design (¢ =4, &, = 1, A = 1310 nm (operating
wavelength), p; = 209 nm, p = 537 nm).

In order to simplify the computations of 2D PC geometry is reduced to 1D periodic

media using EMT. Effective permittivity of the homogenized 1D geometry can be
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Table 3.1 : Calculated parameters of 1D PC for different polarization, incidence
angle and wavelength.

A(nm)  TE/TM, O;c(deg)  €gr  p1 (nm) pa (nm)

1310 nm TE-wave, 0° 2.4524 209 328
700 nm TE-wave, 30° 2.4524 112 175
900 nm TM-wave, 15° 2.7384 175 225

calculated by expanding period-to-wavelength ratio (@) to power series as follows:
for TE polarization;
2

orr = g+ [f(1= f)(&2— &) 0’ G.1)

for TM polarization;

1 2 [f0—f)(e—e)]” emg »
Eoff=—+— a
eff 3 &€ Ein?

Einy

(3.2)

where €,,; = & f + € (1 — f) is the average relative permittivity and &;,, = f/& + (1 —
f)/€1 is the arithmetic average of the inverse relative permittivity, f = p;/p is the fill

factor (duty cycle), p1 = fp, p» = (1 — f)p and « is as used in [78].

Simulation parameters (for the selected geometry depicted in Figure 3.2) f, a and &

are derived using equations (3.1) and (3.2) as follows (see Table 3.1):
fTE = 0390, OrTE = 0.410, Eeff—TE = 2.4524
frm =0.437, ary =0.444, &, 7y = 1.6564

It is important to note that when EMT is applied considering arbitrary angle of
incidence, second-order effective index formulation has to be used given in [79]. The
high order EMT closed form expressions as given in [79] as a function of x-component
(B = nysin(0)), covers the effective dielectric constants up to 2nd order for TM
polarization and up to 4th order for TE polarization. Consequently, zeroth order EMT
considers only zeroth transmitted and reflected orders of propagating light. In order
to provide a complete model one must take into account evanescent modes that are

covered in high-order EMT expressions.

Propagation constants of plane waves are the solutions of dispersion equation. In
the classical approach these solutions are obtained by solving the roots of eigenvalue

equation of the form [23]
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cos(Kp) = cos(kip1)cos(kpr) — M sin(k§ py) sin(k5p2) (3.3)

where o
1 v4 V4
L [pEeE) o
- 212 2 .
1 niks | n3ki
2 n%kf + n%ké) ™

By assuming the unit cell (UC) as a two-port network photonic bandgap characteristics
of periodic structure can be determined in terms of scattering parameters. After
applying the boundary conditions and Floquet periodicity condition eigenvalue

equation of the symmetric UC can be expressed in the following alternative form

1—58112+ 82,2
cos(Kp) = 121&1 21 (3.5)

Our procedure is a clear improvement on traditional bandgap investigations that
are considerably time-consuming. Following the application of EMT the scattering
parameters of the 1D UC is calculated using GSM method. Accordingly, edge of
the photonic bandgaps are determined by calculating roots of two analytic auxiliary
functions

Xi :Im{S11:|:S21} (36)

where Im{.} denotes the imaginary part operator and S;; and Sy; are the scattering

parameters of the UC, respectively [76].
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Figure 3.4 : Photonic band structure of 1D equivalent PCs (solid-blue) and variation
of X, and X_ functions (dashed-red) (700 nm (470.968 THz),
6;nc = 30°, TE-polarization).
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Figure 3.5 : Photonic band structure of 1D equivalent PCs (solid-blue) and variation
of X, and X_ functions (dashed-red) (900 nm (297.581 THz),
e = 15°, TM-polarization).

In Figures 3.3, 3.4, 3.5, solid blue line represents the photonic band structure
(dispersion diagram) of 1D PC, dashed lines represent the variation of X, and X_
functions and shaded region represents photonic bandgap of the periodic structure. It
can be seen that, zero transitions of X; and X_ functions perfectly match with bandgap

edge frequencies of dispersion diagram.
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Figure 3.6 : Geometry of cascaded 6 unit-cells of 1D PC and unit cell design
(&1 =2.4524, & = 1, p; =209 nm, p, = 328 nm, 6, = 0°).

Figure 3.6 represents the effective 1D PC model simulated in CST design environment.
Periodic array of 1D PC is assumed to be finite (periodically arranged 6 layers) along
z-direction and infinite in other directions as shown in Figure 3.6. Corresponding unit

cell model of 1D PC is given at the right side of Figure 3.6.

For designing purposes of optical components geometry of interest can be simulated
with a mesh close to its exact shape. Proper discretization of the object often requires
a great amount of computation. The objective of EMT is to reduce the computation
time by replacing the periodic structure with a more simple homogenized layer.
Generally use of EMT yields a good approximation if the wavelength is sufficiently
large compared to period of the structure which is summarized as o = p /Ay << 1 with
Ao is being the incident wavelength. The range of validity that the condition is satisfied
is called as long-wavelength limit (or static limit). As a characteristic behaviour of
EMT, approximation cannot predict accurate effective index results for large o values.

Hence, EMT yields valid results around the region of long-wavelength limit [80-82].

Although the AFGSM method does not have any limitation itself in case of symmetric
UC, application of EMT makes an overall limitation for HM. This limitation means

that study findings need to be interpreted in the sense of EMT boundaries.

In order to provide these findings an illustrative example is provided in Figure 3.7 with
given initial values of structure same as in Figure 3.2 (Ayg = 1310nm, p = 537nm, o0 =

0.41,f = 0.39, &,/ = 2.452)
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Figure 3.7 : Validity of EMT for varying operating wavelength (Ag). Solid-red line
represents A = A, black-dots represent A = 54 with
o =0.082, f = 0.402, & ¢y = 2.506 and blue-dashed line represents
A = Ao/5 with o« =2.049, f = 0.277,&,7r = 1.974

In Figure 3.7 period of the structure is taken as constant and the operating wavelength
is changed to higher and lower values of 54y and Ag/5 respectively. The dashed line in
Figure 3.7 clearly shows that EMT is not valid for analyzing the structures with large

o values, whereas dots show very good agreement with the results of L = Ay.

To examine the effects of different shapes of cross sections, circular rod shaped square
lattice PC is demonstrated in Figure 3.8. Simulation results reported by Frezza et
al. and experimental data given in [83] are compared with results obtained with HM
plotted in Figure 3.8. The results are consistent with data obtained in [83] and [84].
Moreover, when 2D PC structure is considered with hexagonal (or honeycomb) lattice,
EMT cannot resolve spatial arrangement of hexagonal symmetry. In that case, due
to the directional dependency of structure 2D homogenization needs to be applied.
Some different approaches such as multiple-scattering technique (MST), tight-binding
method, coherent potential approximation (CPA) method and Mie scattering theory
exist in the literature [85-88]. However in this context, the proposed HM cannot be

directly applied to the Honeycomb lattice.
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Figure 3.8 : Transmittance of dielectric circular rods immersed in air.
ny = 1,ny =2.98, radius = 0.37mm, p = 1.87mm and 7 cascaded layers.
Solid-red line shows simulation results given in Frezza et al., 2003,
blue-dashed line represents HM results, block-dots show experimental
data given in Robertson et al., 1992
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Figure 3.9 : Magnitude response of S1; for 6 period of PC. Solid blue line represents
1D PC-CST, dashed red line represents 2D PC-CST and circle black line
represents HM results respectively. (1310 nm (227.419 THz), 6;,. = oY,

TE-polarization).

In order to verify validity of the HM for finite periodicity, problem geometries of
2D and 1D PC lattices (Figure 3.2 and Figure 3.6) are modelled in CST design
environment and obtained simulation results are presented in Figures 3.9 to 3.11.
Moreover, calculated GSM-Matlab results of 1D PC comprised of 6 unit cells are
shown in Figures 3.9 to 3.11 marked as circles. The comparison of the numerical
and simulation results reveals that HM produces consistent results even in the case of

different wavelengths, incidence angles and polarization (see Figures 3.3 to 3.5 and see
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Figures 3.9 to 3.11). In Figure 3.10, the stop band is centered on a certain wavelength

such that the bandgap is shifted towards larger frequencies [78].
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Figure 3.10 : Magnitude response of S;; for 6 period of PC. Solid blue line
represents 1D PC-CST, dashed red line represents 2D PC-CST and
circle black line represents HM results respectively. (700 nm (470.968
THz), 6;,. = 30°, TE-polarization).
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Figure 3.11 : Magnitude response of S;; for 6 period of PC. Solid blue line
represents 1D PC-CST, dashed red line represents 2D PC-CST and
circle black line represents HM results respectively. (900 nm (297.581
THz), 6;,c = 15°, TM-polarization).

In identification of photonic bandgaps, use of X, and X_ is computationally more
efficient than the conventional solution of eigenvalue equation by a factor of more
than 10 [76]. Furthermore, the HM has a substantial advantage over the numerical
computation tools in terms of computation time (see Table 3.2). It also has to be noted
that band edge frequencies obtained from CST simulation are in perfect agreement

with those obtained by HM. When 2D PC problem is reduced to effective dielectric
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Table 3.2 : Comparison of computation time for different methods.

A(nm)  TE/TM, 6,c(deg) 2D CST 1DCST HM  Units

1310 nm TE-wave, 0° 890 125 0.596 (sec.)
700 nm TE-wave, 30° 137 20 0.525 (sec.)
900 nm TM-wave, 159 626 113 0.482 (sec.)

layers, AFGSM method can be used to calculate band edges of UC without being need
to cascading procedure that gives opportunity to design wide range of applications
such as filters, cavity resonators, power splitters and PC waveguides constructed by
just applying defect layers in 2D PCs. Numerical computations are obtained on a

modest PC which has Intel i7 @2.60 GHz Processor and 12 GB RAM.

3.3 Conclusion

In this research a unique approach is presented to identify photonic bandgaps of 2D
periodic structures rapidly. Successful execution of HM shows that band structure
computation for the 1D equivalence mitigates the calculation time considerably. It is
also noticed that when period-to-wavelength ratio approaches to zero, results become
consistently good in quality and performance. Likewise, recommended HM is not
only limited to square cross sectional shapes exercised in this paper but also it can
address arbitrary profiles even with different angle of incidence and polarization states.
Thus, we believe that our approach will be useful in further design stages for 2D PC

structures.
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4. BANDGAP ANALYSIS OF 2D PHOTONIC CRYSTALS WITH
AUXILIARY FUNCTIONS OF GENERALIZED SCATTERING MATRIX
(AFGSM) METHOD 2

4.1 Introduction

Photonic crystals (PCs) are a substantial class of periodic structures because of unique
features used to control the light propagation particularly to restrict or allow inside
the material. PCs are the made out of dielectric materials having periodicity in cross
section and being composed of elements bearing symmetry properties with intermittent
index of refraction. When a light penetrates in a dielectric structure physical
phenomenon appears by adjustment of the electrical and dimensional attributes of PC.
Equivalent to idea of implementing waveguiding structures and resonant-cavities to
forbid or permit EM wave flow in a certain direction and spectral region, simply by
varying the electrical and physical attributes of a PC can also lead to obtain desired
propagation properties. Employing the modification in material properties could
results in appearance of photonic bandgap (PBGs) which are effective in a particular

wavelength range and disallows wave propagation regardless from the direction [1,89].

When concerning the two dimensional geometries the most popular and common
forms of the structure comprises of dielectric columns placed in air or air columns
embedded in a material which has a higher index of refraction contrast arrayed in
distinct alignment patterns e.g. square grid, triangular grid, and hexagonal grid
[90-92]. In addition, defect implementation in photonic crystals might grow because
of manufacturing faults or might be applied advisedly to mold its transmittivity
features. Particular defect shapes can be inserted into a 2D PC with the method of
dropping some columns or by utilizing asymmetric dimensional parameters which

leads to asymmetric placement pattern [93-97].

2This chapter is based on the paper "Erkan, O., Akinci, M. N., Simgek, S., 2018. Bandgap analysis
of 2D photonic crystals with Auxiliary Functions of Generalized Scattering Matrix (AFGSM) method,
AEU-International Journal of Electronics and Communications, 95, 287-296."
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Propagation characteristics of 2D PCs constitute significant importance encountered
in several applied science applications especially in designing numerous components
in optical and microwave region e.g. polarization-splitters, optical bandpass-filters,
resonance filters, photonic crystal waveguides, tapers, thin-film lasers, optical switches
and resonators, dielectric mirrors, and patch and microstrip antennas [8,11,13,98-106].
A lot of mathematical techniques have been formulated to specify the photonic band
structure of PCs. Typically employed techniques include Transfer Matrix Method
(TMM), Finite-Difference Time-Domain (FDTD) method, Multiple Scattering (MST)
method, Plane-Wave Expansion (PWE) method,and Finite Element Method (FEM)
[69,70,73,107-109]. Besides these frequently used investigation routines, Fourier
Modal Method (FMM) is one of the significant methods used in similar studies
[84]. Considerable quantity of the studies available in the literature is concerning
the evaluation of the eigenvalue relations obtained by expanding the considered
structure’s dielectric function into series of modes. Generally, considered models are
not advantageous enough to estimate results precisely because of lacking applicable
constraints conceived during modeling process. Nevertheless, comprehensive EM
survey of a periodically patterned medium can be ascertained by examining the
dispersion plot of the Floquet modes assisted by an infinite periodic structure, that

is to say by discovering the permitted and confined wavebands [110].
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Figure 4.1 : Considered 2D rectangular grating structure.

In this chapter of the thesis, we investigate the photonic bandgap characteristics of

2D photonic crystals using auxiliary functions based on generalized scattering matrix
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representation, which preliminary findings of that presented in [59,76]. The alternative
technique introduced recently in [59,76] is called Auxiliary Functions of Generalized
Scattering Matrix (AFGSM) method. As we already concerned in [59, 76, 111],
utilizing AFGSM method provides an effective subroutine as it is examined for
the dielectric loaded periodic waveguides and 1D PCs. This technique does not
necessitate satisfying Floquet-condition and maintaining the solution of eigenvalue
relation. Hence, it is quite practicable and viable in comparison to computational
performance of available techniques in the papers. Thus, AFGSM method outputs
precise approximations for the stopband/passband passage wavelengths supported by

Floquet modes.

In this research, considered 2D PCs assumed to composed of cascaded 1D
gratings which constitute the unit cell (UC) of the total geometry (see Figure 4.1).
Scattering-parameters of the UC is determined by employing the Rigorous Coupled
Wave Analysis (RCWA) which is regarded as a subblock of the technique given in
this context [112]. Subsequently, AFGSM method is incorporated to specify PBG
edges of infinitely periodic structure. The objective of this study is to evaluate the
findings for different types of grid patterns formed by rectangular or circular dielectric
columns and compare them with the results given in technical papers. In particular,
triangular lattice form is maintained by shifting the middle row of the UC in lateral
properties whereas defect pattern is provided by eliminating that row of columns.
PBG spectral response is quantified in case of a variation in the essential configuration
parameters such as polarization, duty cycle, angle of incidence. Convergency of the
integrated computational routine is assessed when the number of diffraction orders
raised and precisely discretized mesh. Furthermore, numerical results attested with

High Frequency Structure Simulator (HFSS).
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Figure 4.2 : TE and TM polarization for a wave incident on two-dimensional
rectangular stacked PC.

4.2 Theory

4.2.1 Problem statement

Basic geometry of the problem comprises of three domains: Region I, IT and IIT where
Region I and III are designated as uniform, homogenous mediums while Region II
consists of rectangular grating pattern periodically arranged along the x axis. As shown
in Figure 4.1 rectangular columns of Region II has dimensional parameters of p, and
p. and A denotes the period which includes grooves and ridges. Refractive index
of uniform mediums, Region I and III are stationary and denoted by n; = njy; = /€3
whereas dielectric constant in Region Il is a periodic function of x and refractive indices
of the dielectric columns in that grating region denoted by n; = /€, and ny = /€2
respectively (see Figure 4.2) . It should be noted that, for the entire geometry dielectric
properties are invariant in y-direction and throughout the paper we assumed that
nir = ni+/€1 , where &, i = 1,2,3 represents the relative permittivity of considered
region. 2D finitely periodic structure constituted by cascading UC in z-direction. In the
full-wave analysis a plane wave is considered to be incident through the geometry from

Region I having a wave number k;,. in x-z plane, applied angle of incidence 6;,. defined
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as the angle between propagation vector and surface normal. Only planar diffraction is
investigated satisfying the Transverse Electric (TE) polarization in which E = (0, Ey, 0)
(electric field vector) is perpendicular to the plane of incidence (x-z plane) and H
(magnetic field vector) is parallel to the x-z plane whereas for the Transverse Magnetic
(TM) polarization in which H= (0, H,0) is perpendicular to x-z plane and E is parallel

to the x-z plane as shown in Figure 4.1.

4.2.2 Analyzing method

This study concerns with photonic bandgap characterization of 2D photonic crystals
having different lattice forms and cross sections. In order to examine PBGs we first
calculate scattering parameters of 1D grating structure using RCWA as a subblock.
Subsequently, obtained s-parameters cascaded in z-direction via generalized scattering
matrix (GSM). Final output provides scattering parameters of finitely periodic 2D
structure. Results compared with that of obtained in HFSS simulations. Thus
far, attested results show the accuracy of RCWA subblock. However, instead of
computational costly calculations in finite system we can estimate band information
only by calculating first Floquet modes of infinitely periodic structure. Theoretically,
a comprehensive wave study including Floquet modes of infinitely periodic structure
provides the band information of the finite system. In other words, evanescent waves of
first Floquet modes in infinite periodic structure corresponds to stopbands of zero order
Floquet modes in finite periodic system. Hence, AFGSM can be applied in order to
determine bandedges of infinitely periodic structure properly. The proposed technique
effectively returns precise estimations for the calculation of bandedge frequencies
supported by Floquet modes just by performing a straightforward root-determination
algorithm. In the following section, we have emphasised a concise introduction of
applying RCWA to 1D periodic grating structure as a subroutine for investigating
scattering parameters. We intended to unveil the performance benefits of employing
AFGSM in comparison to traditional band exploring approaches. The incident electric

field, which is normal to the plane of incidence with TE polarization, is formulated by

E;'nc _ ejlqn](xsin 6+4zcos ) (4'1)
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where k; = ko = 27/ Ao and Ay denotes the wavelength of free space and 7y is the index
of refraction in Region I. The wave numbers of the structure defined as k; = kj;; = ko
where k; and kj;; denote that of the Regions I and III respectively. The electric field in

homogenous regions (Region I and Region III) satisfies form of Floquet condition

Ey (X,Z) = ZEmej(kxInX+ksz); (m = ()7 +1 , th) (42)
m

where ky,, = k;sinf + (%), m = 0,+1,4£2... E, in (4.2) represents the
magnitudes of the fields in the summation and could be obtained by ensuring the
boundary conditions at for each layer. In the uniform host regions Ey(x,z) must fulfil

the Helmholtz wave equation

V2E, + ki Ey =0 (4.3)

where ky = k; = k7 and every partial wave satisfies the dispersion equation provided
by kyn = £4/k# —k2,. In order to identify the exact fields propagated in the total
structure, allowed waves in Region II must be determined. Commonly, wave vector

k(x) in Region II is presented by Fourier series
() = k3 Y kel (R (4.4)
n

where k, denotes the Fourier coefficients. Then, electric field in grating region can be

derived as

+o0
Ex2)= Y Oul(z)e 4.5)

m—=—oo

where @,,(z) is a periodic function which associates the Floquet theory with the electric
field in periodic medium. Replacing equalities (4.4) and (4.5) into Helmholtz equation
(4.3) after utilizing some mathematical initiatives we obtain uncoupled second order

differential equations for unknown coefficients ¢,,(z),

.\ -
) +L|¢p=0 (4.6)
where ¢ is a column vector which has elements ¢,,(z), L is a full matrix which has

2
elements in diagonal k,,,, — (kl sin @ + (%)m) , n:—N<n<N and N is the order

of diffraction for related modes. Solution to equation (4.6) can be derived as

¢ = Ce/* 4.7
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where C is a constant vector and k is the propagation constant in z-direction. Along

with the equation (4.6) we gather linear homogeneous equation in the form of

L.C=x*.C (4.8)

2

k? in equation (4.8) denotes the eigenvalues of matrix L that can be found as the

solution of characteristic equation such as
det [~ 1| =0 (4.9)

Assuming that k, is the eigenvalue of characteristic relation and C, is the
corresponding eigenvector. Accordingly, solutions of eigenfunctions can be calculated

as

O (z) = Cpe™ /5 (4.10a)

O (2) = Cpe /e (4.10b)

In equation 4.9 the sign of @, stands for waves that travel in the forward and backward
directions through the z-axis respectively. Components of eigenvector C p are the
modal solutions of the field in the periodic region that includes an infinite set of space

harmonics with an amplitude C,,,. For the m-th mode we get
On(z) = Y AuCme ™% + B, Cpye %0 (4.11)
n

Equation (4.11) is the modal representation that considers the fields in terms of modes
propagating in the z-direction, each m-th term in the summation stands for an individual
mode with amplitudes A, and B,, that need to be found. If we insert equation (4.11)
into equation (4.5) we get modal expansion of electric field in Region II that can be

derived as
Ey(6,2) = XX Coun (Ane 7505 4+ B9 ) ebons (4.12)
m n
where A,, and B,, are unknown field magnitudes of forward and backward propagating

waves respectively. Cy,, 1s the m-th component of the n-th eigenvector.
Accordingly, incident, reflected and transmitted waves are represented with
plane-wave expansion for the region I and III where Ey(x,z) can be written as follows:

. +00 .
El(x,z) = ek thond) Y R, oi ki —Kon) (4.13)

m—=—oo
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and

+oo .
El(x2)= Y Tyellbortiond) (4.14)

m=—oo
where R, and T, are the normalized complex field amplitudes of the m-th reflected
wave and transmitted wave respectively and

4
2
kxm
koy/nz — <K> Jkong > kyn

Ko = H=11I (4.15)

2
—Jjko <k/2_(r)n> _nqu vk > kong

\
The transmitted and reflected field amplitudes R,, and 7;, are determined by satisfying
the tangential electric and magnetic field boundary conditions at the surfaces.
Components of scattering matrix of the UC is hence determined by identifying the

all unknown constants.

8" i — ;" |8 — - b, 2
S L1 [— —i— — — i — — —i > S L2
blLl < < ale blLZ < < aZLZ
3 — — b2
L1 ST L2
b e— - 2,

Figure 4.3 : Generalized scattering matrix cascading process of layers.

In the concept of GSM the UC is considered as a two-port network consisting N modes
in which scattering parameters are derived by related normalized wave amplitudes at

input/output ports which is represented as

by Sui Siz| |
= 4.16
[b2] [521 S»| (a2 (16)
which is divided into N by N submatrices. Satisfying the Floquet condition for the unit

cell, modal amplitudes can be written in the form of
b2 = 7Lal , Ay = lbl (4.17)
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where A represents the complex constant. Substituting equation (4.17) into (4.16), we

can get the eigenvalue relation of the periodic system

I _Sll b1 _SIZ 0 b1 .
sl bl e

where I is the unitary matrix. Accordingly, each stack is connected together using

GSM approach as shown in in Figure 4.3, matrix representation of the procedure is

given below

bLl S T S T aLl
| - S ] o

where

S’ =SuH + S8 (1-8"181"?) Syt (4.20a)

S]gT = Slle + <I — SllLZSZZLl Slsz (4.20b)

Su’ =8u" (1-8"811"2) Syt (4.20c)

S22" =82" +821"8" (I —-Su"sn™)  sp”? (4.20d)

As it is well-known, transfer matrix method (TMM) is not stable because of transfer
matrices including positive and negative arguments in the results of exponential
functions. However, generalized scattering matrix method does not have stability
issue because of consisting only negative arguments in exponential functions [74].
Therefore, GSM method is used in our paper and applied to our problem rigorously.
Nevertheless, this technique is costly in terms of computational performance due to
calculation of matrix inversions in every step of algorithm. Thus, it doesn’t show
any advantage in comparison to existing conventional methods which employed to
compute the dispersion relations as it needs to solve eigen-equation in (4.18) yet.
Following deduced formulation can be used based on the s-parameters of the UC, such

as
1-5%, 453

cos(KA) = X

(4.21)
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The cos(KA) term defines the photonic bands as follows: In the region where
|cos (KA)| < 1, cos(KA) has real value where structure supports at least one

propagating Floquet mode.

In the region where |cos(KA)| > 1, cos(KA) includes real and imaginary parts
where photonic structure allows non-propagating evanescent Floquet modes, namely
photonic bandgaps (PBG). The frequencies which render |cos (KA)| = 1 defines the

band-edges separating the two regions.
Ao =e9, 0=KA ¢€0,7 (4.22)

The solution of (4.18) matching to A values in (4.22) is referred to as a Floquet mode. If
periodic structure allows at least one propagating Floquet mode in a certain frequency
region it is called passband. The appearance of complex modes can be clarified by
the existence of cutoff transitions at (KA = 0) # (0,%m) in the dispersion curve. The
values where the band edges of dispersion relation (4.21) mitigates to S;; £ 5> = £1
and imaginary part of the S;; -S> vanishes at band-edge wavelengths which are found

at zero transitions of the functions X, and X_ , defined as

X:t =Im {Sll :|:521} (423)

RCWA (= GSM }SLl

Al RCWA [=»| GSM }SLZ >
ot @
IR <
_________ ®
UnitCell | °
- C
g, 314‘1 RCWA || GSM }SLN
I ®
3 NN :
N="2=%! o n=l °

Figure 4.4 : Utilization of proposed technique for a cascaded 2D photonic crystal.

The method that governed by zero passings of related functions (X = 0) precisely

match the roots of (4.23), namely AFGSM allows to determine the PBGs of the
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PC structure accurately. Primary subblock RCWA which is used to calculate UC
scattering parameters including higher order modes, considers the dielectric functions
of rectangular gratings as an expansion of Fourier series with space variables.
Reflected and transmitted waves in each layer are used to calculate complex amplitudes
and intensities for individual diffraction orders. Ones that correspond to reflected
orders are denoted by dashed blue arrows whereas transmitted orders are denoted by
solid green arrows having a series of n = 0,£1,%2,... orders illustrated in Figure 4.4.
As referred to detailed formulations given in [69] and [113], solutions of differential
equations which are stated in the form of linear algebraic matrix formulation that

represents the parameters of the UC.

This study provides a novel approach to identifying PBGs using auxiliary functions
(X4 ) that it does not need an eigenvalue solution when finite structures considered.
The proposed algorithm effectively returns precise estimations for the calculation of
bandedge frequencies governed by Floquet modes just by performing a straightforward
root-determination algorithm in AFGSM. Thus, implemented technique smoothly
yields to examine arbitrary form of PBG structures comprised of dielectric columns

or air columns in background media in an enhanced and simple approach.

In the following part, we introduce our findings related to dispersion curves of
the 2D PC structure comprised of circular and rectangular dielectric columns with
varying dielectric constant while analyzing the dispersion curve effects of the changing

electrical and dimensional parameters in an infinitely arrayed PC.

4.3 Numerical Results

In this section, we have assessed the computational performance and potential of
proposed method. Furthermore, obtained results are compared with available data
in the literature. Accuracy of numerical execution when physical and geometrical
parameters varied are examined.

Below list of symbols used throughout this research is itemized:

"R" denotes radius of circular cross section dielectric rods,
"FR" denotes the filling ratio (duty cycle) given as the ratio of the p, and A,

"N" denotes number of diffraction orders,
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"D" denotes the discretization number of rectangular cross-section gratings to
approximate circular,
"NC" denotes number of cascaded stack layers for a finite periodic PC,

"DLN" denotes the position of the defect layer in the UC.

In order to examine the proposed technique, PCs consisting of columns with various
shapes, such as rectangular and circular (or cylindrical) cross sections and different
lattice forms including rectangular and triangular are considered. The acronyms used
in Figure 4.5 addresses the type of geometry used in numerical evaluations i.e. first
letter designates the cross-section type of rod, e.g., rectangular or cylindrical, and

second letter stands for the lattice type of array formation.

) [ - Ry B

o

Figure 4.5 : a) RR-PC: rectangular cross section, rectangular lattice b) RT-PC:
rectangular cross section, triangular lattice ¢) CR-PC: circular cross
section, rectangular lattice d) CT-PC: circular cross section, triangular
lattice.

4.3.1 Validation of method

This section presents the comparison of results we remarked within the studies with
that of existing among research papers. First of all, RCWA subblock routine results
are verified for a quasi-periodic geometry, subsequently, generalized scattering matrix
approach is employed to obtain 2D unit cell scattering parameters. For the comparison
purposes transmittance and reflectance plots are depicted in the same figure both for

our approach and HFSS outputs as well as the data gathered from reports available
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Figure 4.6 : a) Transmittance frequency response of RR-PC configuration (solid line)

compared with results reported in Dansas and Paraire, 1998 (dots) and
the results obtained with HFSS (diamonds) b) Dispersion diagram
showing the variation of auxiliary functions (X1.) versus frequency.
Normally incident plane wave is excited with TE-polarization and the
parameters, ny = 1,np =2.85,N =11,FR=0.35,px = p, = 212nm,l =
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Table 4.1 : Comparison of band-edge frequencies for different number of layers.

Layer Numbers Method  Band-edge frequencies (THz) Computation time*
NC=11 RCWA+GSM 149 < f < 220 2.737
NC=20 RCWA+GSM 144 < f < 223 3.346
NC=25 RCWA+GSM 143 < f <223 3.496
NC=c0 AFGSM 143 < f <224 0.027

*simulation time in seconds

in the literature. This spectral response of magnitude is shown in the LHS of the
figures. Concurrently, on the RHS of each figure zero transitions of AFGSM’s
auxiliary functions (X, ) are illustrated in dispersion diagrams in order to compare
the bandedges with that of described aforementioned above. As it’s clearly seen in the
Figure 4.6(a) that combined approach (RCWA+GSM) outputs are consistent with with
ones gathered by utilizing the AFGSM method shown in Figure 4.6(b). Considered
geometry is RR-PC with the parameters; n; = 1,np =2.85,N =11,FR=0.35,p, =
p; = 212nm,l = 194nm, A = 600nm,NC = 11 which a TE polarized plane wave is
incident on the structure from air medium. Bandedge transitions given in Figure 4.6(b)
reveals that a PBG exists between 143 THz and 224 THz and tuned at 183.5 THz center
frequency. In Figure 4.6(a), it is proven that the results are amenable with the results
reported in [113]. In order to explore the effect of varying NC values in computation
time and precision on bandedge values are listed in the Table 4.1 for several NC values
incorporated to computation durations for RR-PC structure given in Figure 4.6(a). It
can be seen that given in Table 4.1, as the NC is increased, PBG edge frequencies
approach to that of infinite periodic case while minimum values for the NC is defined
as ‘25°.

In Figure 4.7(a) to attest our sub routine (RCWA+GSM) we implemented the data
of experiment available in [114] and also results obtained with HFSS. In a similar
fashion, a PBG is resides between 23.1 GHz and 38.1 GHz and it is respresented
in Figure 4.7 (b) which the values received via utilizing the AFGSM method. The
configuration parameters given in [114] are ny = 1,np =3.1,N =19,FR=0.5,D =
20,R =0.75,py = p; = 1.5mm,l = 0.75mm, A = 3mm,NC = 18 in which impinging

wave is normally and TE polarized.
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Figure 4.7 : a) Transmittance frequency response of CR-PC configuration (solid line)
compared with results reported in Lourtioz et al., 2005 (dots) and the
results obtained with HFSS (diamonds) b) Dispersion diagram showing
the variation of auxiliary functions (X ) versus frequency. Normally
incident plane wave is excited with TE-polarization and the parameters,
ny=1,n=31,N=19,FR=0.5,D=20,R=0.75,p, = p, =
1.5mm,l = 0.75mm, A = 3mm,NC = 18.
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Figure 4.8 : a) Reflectance frequency response of R7-PC configuration (see the inset)
as a function of frequency is shown (solid line) for comparison with
results obtained with HFSS (dots) b) Dispersion diagram showing the
variation of auxiliary functions (X.) versus frequency. Normally
incident plane wave is excited with TE-polarization and the parameters,
ny=1,np=2,N=3,FR=0.33,p, = p, =542.5nm,l = 272nm,\ =
1627nm,NC = 3.
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Triangular grid pattern is also investigated and simulation results are given in
comparison among the data retrieved through HFSS simulations . In this case, a lateral
shift in the x-direction between two adjacent layers is applied. Identical approach
used for comparison with combined routine (RCWA+GSM) given in Figures 4.6 and
4.7. Subsequently, AFGSM is applied to attest the dispersion characteristics of the
equivalent structures. Figure 4.8(a) depicts the outcomes of sub-routine compared
with HFSS results for the R7-PC shaped structure. From the Figure 4.8(b) one can
see that there is a PBG existing between the 94 THz and 124.5 THz with a central
frequency of 109.3 THz. Likewise, we have noticed perfect agreement between
the results of HFSS, RCWA+GSM and AFGSM method for the CT-PC setup. In
conclusion, we have implemented our sub-block routine to several different structure
conformations to compare with the values found in literature and those of received
from HFSS simulations. Due to practical constraints, accurate determination of PBGs
in finite periodic structure needs adequate amount of cascaded stacks. However as
the number of layers are increased computational performance mitigates. Instead of
that alternatively calculating the scattering parameters and employing the AFGSM
accordingly allows to determine bandedge values corresponding to total geometry
by maintaining considerable benefit in computation time. That is to say, in finding
the band-edge frequencies with particular precision the use of AFGSM mitigates
the computing time by a factor of more than 10 when compared to the traditional
method which based on solving the eigenvalue equation using a more finer frequency
mesh [76]. After executing comprehensive simulation experiments it is found that,
in the frequency region wherein the PC supports a single propagating Floquet wave,
AFGSM estimates PBG frequencies with an improved accuracy more than 0.1% which
constitute another vital finding of proposed method (Numerical computations are
obtained on a modest PC which has Intel i7 @2.60 GHz Processor and 12 GB RAM).
Table 4.2 displays a more explanatory information while comparing the calculation
techniques in terms of computational performance governed in this study. Quantity of
mesh size used in simulations ran over HESS is 2254 for RR-PC, 19036 for CR-PC and
1834 for RT-PC respectively. PBG computation duration is less than 30 milliseconds
via AFGSM method as seen from Table 4.1 when the GSM of UC is computed. Most
striking computational performance is seen on a value difference (by a factor of 10%)

for RR-PC structure which including eleven stacked unit cell. In conclusion, some key
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Table 4.2 : Simulation time comparison.

Structure Configuration HFSS* RCWA* RCWA+GSM* AFGSM*

RR-PC (Figure 6) 2344 2.26 3.02 0.026
CR-PC (Figure 7) 502 50.56 51.09 0.012
RT-PC (Figure 8) 177 0.65 1.47 0.025

*simulation time in seconds

supremacies of defined technique when using in computational experiments and related

observations are remarked by attesting with the results available in the literature.

4.3.2 Effect of variations of physical and electrical parameters

In this part, we investigated the PBG frequencies along with the varying parameters
such as filling ratio, wave polarization and angle of incidence. Contour figures are also

presented for either TE and TM polarizations which can be useful in design studies.
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Figure 4.9 : Transmittance frequency response of RR-PC configuration (same as in
Figure 4.2) as a function of frequency is shown for different values of
px = p;. Plane wave is excited under normal incidence with the
parameters, n| = 1,np =2,N =27, FR = 0.55, p, = p, = 380nm (left),
Px = p; = 597nm (right) | = 244nm, A = 1085nm, NC = 20. In both
figures, TE polarized wave (dashed line) and TM polarized wave (solid
line) results plotted.

Initially, the impact on the spectral position of PBG when changing the filling ratio is
examined and displayed in Figure 4.9. It’s shown in the figure that two PBGs come

out in the particular range of frequency. The first TE PBG located on f. ~ 118.2 THz
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for p, = 0.35A whereas the first TE PBG for p, = 0.55A configuration centered on
fe =~ 100.2 THz which states an 18 THz shift towards the lower frequency region.
Nevertheless, nearly no shift is noticed in the first PBG appearance of TM polarization
when filling ratio is altered whereas PBG of which shows a heavy mitigation in size
oppositely. For the second PBG a similar behavior can be observed, but shifting of
center frequencies doubled this time, i.e., the TE PBG is shifted 29 THz to lower
frequency region. The second photonic bandgap of p, = 0.35A configuration has a
particular interest as it stimulates the widest stop band i.e., 35 THz which is 16.4% of

central frequency f, ~ 214.9 THz.

Additional valuable aspect found on the Figure 4.9 is the complete PBG which is
defined as the overlap of stopbands that comes out in case of both TE and TM
polarizations leading an intersection in frequency region [1]. For the Figure 4.9 two
complete bandgaps centered on f. ~ 116.7 THz and f. ~ 207.2 THz respectively.
The first complete bandgap is 26 THz and 12.7% of f. which is the widest one and

independent of polarization.
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Figure 4.10 : Photonic bandgap size in (THz) as a function of the incidence angle for
the same geometrical and physical parameters of Figure 4.9 normally
incident TE-polarized wave. (dots: p, = p, = 0.35A, diamonds:
px = p; = 0.55A.

It should be noticed that, the bandgap features of the device is not only affected by a

variation in duty cycle but also depends on the angle of incidence. Hence, the results

shown in Figure 4.10 illustrate the impact of varying angle of incidence on the first
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PBG edges for the same structure of Figure 4.9 in TE polarization. Also in the figure
peak value of gap width for both configuration, appears in 40° incidence angle, i.e., 43
THz for p, = 0.35A and 40 THz for p, = 0.55A respectively. Afterwards that as the
value rises, size of PBG likely to drop sharply through the smaller values, i.e., such as

16 THz at 80° for p, = 0.35A configuration.
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Figure 4.11 : Contour diagram in frequency spectrum as a function of filling ratio for
the same structure as in Figure 4.9. First and second photonic bandgaps
of both polarizations TE and TM is shown (dashed line: TM, PBG-1,
solid line: TM, PBG-2, dotted line: TE, PBG-1 and dashed-dot line:
TE, PBG-2).

Contour diagrams (sometimes called GAP maps) can be employed to a wide range
of problems including the PC based component design. It is particularly important
when design framework is structured to govern the variation and identification of
the physical dimensions in order to maintain desired PBG specifications such as the
minimum reflectance or peak transmission in a certain frequency range. Figure 4.11
depicts PBG results for changing filling ratio as a function of frequency spectrum for
the same structure setup as given in Figure 4.10. As it can be seen in Figure 4.11, it is
obvious that largest complete bandgap exist between the filling ratio values of 0.35 and
0.4, 1.e., Af = 27 THz bandgap size centered at FR=0.37. To be more precise, in case
of inverse problem with an objective of designing a 2D PC with a stop-band between
the 101 THz and 128 THz, and assuming the parameters n; = 1,n, =2, A = 1085 nm,

NC = 20 are given. It can be readily determined that the FR=0.37 value maintains
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the largest PBG in case of dual-polarization. However, generation of the contour
plots requires significant computation resources because of the sweep process of the
frequency mesh for each value of filling ratio concurrently. Enhanced performance of
the AFGSM method allows to generate PBG maps faster than conventional methods

as of computation time by about two orders of magnitude.
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Figure 4.12 : Gap-width to midgap ratio as a function of the filling ratio for circular
and square cross-section columns both for TE (open circles and open
squares) and TM polarization (filled circles and filled squares).

Gap-midgap ratio (GMR) is another essential characterization of PBG which denotes
the gap size in percentage. GMR is described as the Af/ f. where Af is the width of
bandgap in terms of frequency and f. is the center frequency of PBG [1]. Figure 4.12
displays the variation of PBG characteristics by means of GMR against the duty cycle
for circular and square column configurations. Figure 4.12 provides the highest GMR
values as much as 0.7 centered on FR=0.5 for TE-polarized wave in case of circular
type of cross-section. The results shown in Figure 4.12 can also be used to develop

design approaches similar to ones in previous figures.

Table 4.3 compares the GMR values and center frequencies for varying structure
configurations with corresponding filling ratios. As remarked in the table, RT-PC
configuration provides the highest GMR value, i.e., 0.279 and second highest GMR
value can be obtained with CT-PC type structure with a value of 0.268. Another

important notice of Table 4.3 is the spectral location of PBG center frequencies which
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Table 4.3 : Comparison of GMR for different structure configurations.

Structure Configuration ff  GMR FR™
RT-PC 109.3 0.279 0.34
RR-PC 119.5 0234 0.34
CT-PC 112 0268 0.34
CR-PC 121 0214 0.34

*in THz units, **filling ratio (duty cycle).

is shifted towards the higher frequency region in CR-PC structure configuration. For

circular columns, peak value of discretized filling ratio is indicated.

4.3.3 Convergence and discretization of proposed approach
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Figure 4.13 : Rectangular discretization of circular cross section.
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Figure 4.14 : Convergence performance of proposed method in case of increasing
diffracted orders (N) for the same configuration parameters of Figure
4.8 when different values of discretization parameter considered: D=50
(circles), D=100 (crosses), D=150 (diamonds), D=200 (squares).

When arbitrary cross-section structures different than rectangular are considered mesh

should be discretized properly. In Figure 4.13 a circular shaped column unit cell is
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discretized by splitting into rectangular forms having different duty cycles distributed
in a range between F'R| to FRp where D denotes the number of discretized rectangular
sections. Convergence performance of the proposed method is given in in Figure
4.14 for varying diffracted orders N with respect to different values of discretization
parameter D for the same configuration as in Figure 4.8. It is obvious that, the proposed

technique’s convergency performance is rapid remarkably for each D value stably.

4.3.4 Introducing periodic defect

As noticed in introduction part, defect inclusion in periodic structures can be existent
either because of fabrication faults or manmade for a particular objective such as
missing columns of some layers, ensuring different shaped rods in a specified row
or by occurrence of misaligned layers. On the basis of aim of designing numerous
practical applications of PC structures with line or point defects can be examined
comprehensively using proposed method. The response in case of the structure
including defect (refractive index of defect layer located in the center is 2.89) compared
with that of without defect, results illustrated in Figure 4.15. As shown in Figure 4.15
(see the inset) inserting a line defect in the middle of a PC yields a sharp transmission
peak which is spectrally located on f, = 254.3 THz and maintains a 100 GHz 3-dB
width of the peak. According to findings given in this subsection, defect applied
periodic structures could be examining in a quick and precise manner. Moreover,
narrow-band or frequency selective filters can be easily designed and simulated with

our approach accurately.
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Figure 4.15 : a) Magnitude response of transmission spectrum of structure in the
RR-PC configuration with (see the inset) and w/o defect. Plane wave is
excited under normal incidence with TE-polarization with the
parameters ny = 1, np, =3.69, N =15, FR =0.38, p, = p, = 232nm,
[ = 183nm, A = 600nm, NC = 21. (solid line: structure without a
defect configuration, dashed line: structure with a central defect
configuration, ny = 2.89) b) Dispersion diagram showing the variation
of auxiliary functions (X1 ) as a function of frequency. Inset shows the
transmission band response of AFGSM.
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4.4 Conclusion

So far, we proposed a uniquely developed approach to investigate the PBG
characteristics of 2D PC structures comprised of dielectric columns with various
cross-sections and grid types. This study offers comprehensive numerical examples
to support proposed originally developed idea that the allowed Floquet modes in
an infinite periodic system provides the bandedge frequency information of the
finite structure while maintaining the full-wave modal analysis. Additionally, the
novelty of the technique resides on the independence of requirement to an eigenvalue
solution for each layer in case of examining the finite structure. Thus, it allows to
estimate the bandedge frequencies of the entire structure accurately. We experienced
broad variety of simulation experiments including rectangular and circular shaped
columns built on rectangular and triangular grid patterns. For each specific case,
dispersion characteristics explored with our approach resulting transmittivity and
reflectivity responses for a finite number of periodic layers compared in terms of PBG
existence. Besides the numerical computations executed for verification purposes,
existing experimental and theoretical data provided in the literature are compared
with proposed method and a good agreement observed between them. Furthermore,
some useful diagrams, e.g., Gap-Midgap-Ratio, PBG maps, are illustrated in case of
varying the angle of incidence, physical and geometrical parameters for both TE and
TM polarizations. The effect of introducing the defect in 2D PC is examined related

results are presented.

In order to assess the frequency dependence of a band structure designed upon a
particular UC and to find their suitable parameters for a desired application, our unique
method can be utilized in a constant and efficient manner without a dependency on the
number of layers. Particularly when designing practical applications proposed method
maintains a framework to pattern the PBG characteristics in a quick and accurate
way. It should be remarked that, proposed combined method including RCWA and
AFGSM methods for 2D PCs is bounded with the limitations of RCWA method. The
reported aspects might have key deductions for developing arbitrarily shaped 2D PC

applications which we leave as a future work.
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5. ENHANCED TRANSMITTING AND BLOCKING FILTER DESIGN
APPROACH FOR LASER SCANNING APPLICATIONS BASED ON
COMBINING GSM AND AFGSM METHODS

5.1 Introduction

Photonic crystals (PC) comprised of dielectric materials have been widely used in
many applications such as gratings, mirrors, filters [115-117], coupler and splitters,
bends, etc. [118, 119], owing to their low power loss and high reflection at optical
frequencies. Optical filters have also been employed in laser scanning microscopy
applications to isolate the desired emitted light from tissue while blocking unwanted
light [120, 121]. Photonic bandgap characteristics in which PCs exhibit transmission
and reflection properties within a specified wavelength range can be constructed with

proper design of multilayered dielectrics [122].

A variety of methods were proposed to determine bandgap characteristics of PCs,
namely Plane Wave Expansion Method (PWE), Finite Difference Time Domain
(FDTD) method, and Finite Element Method (FEM). While FDTD and FEM methods
require fine meshing of the examined structure with a full-wave electromagnetic
analysis, in PWE method the bandgaps are determined by solving an eigenvalue
equation on a fine frequency mesh. In an effort to develop a computationally effective
routine to examine bandgap characteristics which eliminates the need of solving an
eigenvalue equation, we recently proposed the Auxiliary Functions of Generalized
Scattering Matrix (AFGSM) method [60]. Here, we summarize our comprehensive
filter design strategy via AFGSM and showcase its efficacy on a number of filters

employed in laser scanning microscopy applications.

3This chapter is based on the paper submitted to AEU-International Journal of Electronics and
Communications
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5.2 Theory and Modeling

We base our filter designs, whose details are given in the numerical examples section,
on the geometry illustrated in Figure 5.1, comprising a defective periodic dielectric
stack (whose transmittance characteristics are achieved using GSM) sandwiched in
between periodic dielectric stacks (whose transmittance characteristics are achieved
using AFGSM). For any given filter, we start our design efforts with a multilayered
periodic (HL)N design to set the initial stop band (indeed acting as a mirror), where
“H” and “L” represents high and low refractive index dielectric layers, respectively,
and “N” is the number of periods used in the design. In order to introduce the
transmission band, we introduce a defect in the middle of the initial design through
breaking its periodicity to achieve (HL)N2L(HL)N?2, such that the number of total
layer numbers in the initial design is conserved (0.5N value is ceiled, in case N is odd).
The new (HL)N2L(HL)V? filter is called a Fabry-Perot resonator (FPR). General
structure of FPR is based on inserting a quarter-wave layer L. between the two groups
of reflecting structures (HL)N. FPR provides narrow band transmission characteristics

at the design wavelength Ay.

Finally, AFGSM is utilized to extend the stop-bands on either side of the transmission
band through a rapid sweep of material properties and thicknesses, while preserving
the peak transmission. The extended stop-band is provided through two additional
stop-band filters for left and right sides of the spectrum. The details of the overall

design algorithm could be summarized with the following steps:

1. Material pairs, as well as thicknesses are selected to ensure that transmission band
with desired full-width at half maximum (FWHM) value for stage-1 filter (Figure
5.1a,c). Note that the peak transmission value limited to satisfy a predetermined value
(>90%). Table 5.1 summarizes a list of the considered dielectric materials. Note that
there are surely more material options available, who can be deposited with precision

using sputtering (magnetron, RF, DC) or evaporation techniques.

2. AFGSM is employed in designing additional periodic filter structures for an
extended stop-band (Figure 5.1a,b). The bandgap values are limited to satisfy the

given
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Table 5.1 : List of optical coating materials, and their refractive index at design
wavelength (A = Ag).

Type (L vs. H) Material Symbol Refractive Index Reference
Cryolite Na, AlF, 1.35 [123]
Magnesium Fluoride = MgF; 1.38 [123]
L(n<2) Calcium Fluoride CaF, 1.42 [124]
Silicon Dioxide Si0, 1.46 [123]
Sodium Chloride NaCl 1.53 [125]
Lead Difluoride PbF, 1.73 [123]
Hafnium Oxide HfO, 2.05 [126]
Tantalum Oxide TayOs5 2.10 [127]
H(n>2) Zirconium Dioxide ~ ZrO, 2.25 [128]
Titanium Dioxide TiO, 2.35 [129]
Tellurium Te 4.6 [123]

constraint around the center frequency (f.) such that the overall stop band becomes:

fe £Af, where 2Af is the frequency extent of the stop-band.

3. GSM method is utilized to cascade the defected intermediate filter with the periodic
multilayered dielectric structures to calculate the overall filter characteristics. Once
again the transmission value is limited to satisfy a predetermined value of >90% for

the periodic filters (stage 2) as well.

In Figure 5.1 nj(= ng) denotes the low refractive index material, ny(= ny) denotes
the high refractive index material. The scheme of the 3-stage algorithm illustrated
in Figure 5.1a. In the first two steps of the algorithm desired filter characteristics
including the stopband and passband windows are obtained. Accordingly, fine-tuning
step is executed which varies for different filter designs, whose details will be shared

in the upcoming sections.

5.2.1 Generalized scattering matrix approach and AFGSM method

Here, we summarize the well-known Generalized Scattering Matrix Approach.
Propagation characteristics of periodic multilayered structures can be specified using

the generalized scattering matrix (GSM) method. Since the GSM technique takes into
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account propagating and non-propagating modes of periodic structure together with all
interactions between the layers, reflection and transmission properties of each layer can
be represented by corresponding generalized scattering matrices [60]. In the following
formulations, scattering parameters of each layer is formulated and then scattering

matrix for the overall structure is obtained by appropriate matrix calculations.

Characteristic impedance of glass, low and high refractive index materials are denoted

by Z,, Zy and Z, respectively. For reference planes RP; and RP,, I'jg;, i=1,2 junction

) . . 77,
reflection coefficients become as I';g; and I'j5, which equal to 'y = 7 +Zg and

Z,—7 . e
[jgo = 254, The correspondlng characteristic impedance values are expressed as
Zg+Zl

Z) = %‘ 2y = and Zy = k n ¢ where u and L are the magnetic permeability of the

medium and free space respectively.

Junction scattering matrices for reference planes at glass boundaries are expressed as

SJ Gi SJ Gi

SJGi: SJGt SJGI (51)

where

Sit" = Lsci S{3" = /1= Tigp

(5.2)
SI6 =\ /1-T2.., 835" = —Tji, and i=1,2
Scattering matrix of subcell is determined by equation (5.3)
efje)l 0 ef.j@l 0
sw=1" eS|, e (5.3)
where
Ssub S{ —j20, Ssub SJl e ](®1+®2)
(5.4)
Ssub Séile—j(@l—l-@z) Ssub SJle j20,
and
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St =T, S, =/1-T7,
S =3/1-T3,, 80 =Ty
St =T, st = \1-T3,. 85 = \/1-T5,. 85 = I, 66

Finally s-matrix of unit cell is represented as given in equation (5.7)

(5.5

SUC _ [Ssl’ib szib] (5.7)

where ®; and O, are the optical thicknesses of high and low refractive index regions

(n1 and ny respectively) as shown in Figure 5.1b and denoted by

O =ki*p1,02 =k ’p> (5.8)

In equation (5.8), the term k;* (i=1,2) denotes the z component of the wave vector
of propagating modes, p; and p> (p = p1 + p2, period) denote the thicknesses of the

corresponding dielectric regions respectively.

Following the s-matrix determination for a unit cell given in the equation (5.7),
auxiliary functions can be used as an alternative technique to calculate bandgaps
of periodic structure. This alternative method mentioned in [60] is referred to
as Auxiliary Functions of Generalized Scattering Matrix (AFGSM) which neither
requires imposing the Floquet condition (periodicity) nor solving the eigenvalue
equation to compute band edges. Simply, regarding to fact that given in equation
(5.9); zero transitions (or roots) of auxiliary functions (X1 = 0) coincide exactly with
photonic band boundaries containing the certain frequency values of allowed and
forbidden band-edges of the structure. Therefore, AFGSM method yields accurate
estimates for the stopband/passband transition frequencies located within the single

Floquet mode region only by calculating the roots of functions in equation (5.9).

Xj::Im{SH:l:S21} (59)

With the initial design parameters, the blocking bands on either side of the central

wavelength is relatively small. In order to increase the blocking range of the
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filter on both sides, proper material parameters must be selected to ensure a broad
blocking range. On the other hand, the choice of material parameters can effectively
block out of band transmission of incident radiation but they can also decrease
the peak transmission value in the pass-band adversely. Therefore, to make sure
that all unwanted laser noise is eliminated and a consistent peak transmission value
maintained, precisely identification of parameters is very crucial. Utilizing the
AFGSM method provides a considerable advantage in terms of computation time not

only for bandgap determination but also for parameter scanning.

5.3 Filter Design Strategy for Laser Scanning Microscopy

Sub-cellular resolution imaging of biological specimens or tissue samples with laser
scanning microscopy techniques such as confocal (reflectance and fluorescence),
multi-photon and harmonic-generation microscopy [120, 121] has been a powerful
tool in their assessment. For all aforementioned scanning microscopes, multiple
optical filters are utilized to transmit the signal while block unwanted light for
improved imaging performance. Here we focus on four different filters that are
readily utilized in laser scanning microscopy, as illustrated in Figure 5.2. Next we
apply our hybrid filter design strategy to meet the design requirements of these filters
and compare our filters with those commercially available. Figure 5.2 shows all
optical components involved in a i) reflectance confocal microscope, ii) fluorescence
confocal microscope, and a iii) two-photon microscope (with both fluorescence and
harmonic generation detection channels. Furthermore, Table 5.2 summarizes the
types of filters used in different laser scanning microscopy techniques. A confocal
reflectance laser-scanning microscope captures the laser light that is being scanned on
the tissue. Thus the most critical filter is the laser-line filter that allows for capturing the
light reflecting off the tissue, while blocking other wavelengths that may be available
within the room in which experiments are being conducted. On the contrary, in a
confocal fluorescence microscope, fluorescence signal from tagged or auto-fluorescing
molecules are captured. The detected wavelength is lower in energy, and higher
in wavelength, necessitating a laser-blocking (notch) filter to eliminate any spurious

reflection of the laser light while isolating the fluorescent light.
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Figure 5.2 : Laser scanning microscopy architecture, comprising a light and scan
engine unit that is common to all imaging modalities.
Thus a confocal fluorescence microscope is a slightly modified version of the confocal
reflectance microscope, such that the beam splitter is replaced with a dichroic filter
(also called as a dichroic beam splitter, which reflects laser light and transmits
fluorescent light) and the laser line filter is replaced with a laser-notch filter. On
the contrary, a multi-photon scanning microscope does not require the laser light to
be de-scanned (the emitted light to hit the scanner once again on the return path).
Thus, the first filter (F1) is not employed (could be replaced by a simple mirror).
The emitted light is captured right after being collected with the objective lens with

a dichroic filter. After reflecting of the dichroic mirror, the returning light may once

Table 5.2 : List of optical filters used in laser scanning microscopes.

F1 F2 F3 F4 F5 F6
Confocal (reflectance) Beam splitter - Laser line - - -
Confocal (fluorescence) Dichroic - Laser notch - - -
Multiphoton Mirror Dichroic - Dichroic Laser notch Harmonic line

(two-photon + SHG)

80



again be divided into two-photon (or any higher multi-photon modality) path that
requires another dichroic filter, and a second (or higher) harmonic generation (SHG)

path, which necessitates a band-pass filter.

In both reflectance confocal and multiphoton laser scanning microscopes,
near-Infrared (NIR) Laser sources are typically utilized, owing to their superior tissue
penetration depth (see ref: [130]). On the other hand, a lower wavelength source is
employed in fluorescence confocal imaging to excite auto fluorescing proteins.

Without loss of generality, in the upcoming section, we summarize our effort in

designing:

1. Laser line (narrow-band pass) filter (F1) @ A = 800 nm for reflectance confocal

microscopy, for oblique incidence.

2. Narrow band filter (F6) @ A = 400 nm (laser source @ A = 800 nm) for SHG

microscopy, for oblique incidence.

3. Dichroic filter (F1,2,4) @ Aceprer = 380 - 420 nm range, where A < Acoprer 18
reflected, and A > Agomrer is transmitted, for 459 incidence. This configuration is

useful for 3 different filters illustrated in Figure 5.2.

(a) It could be utilized as F1 in fluorescent confocal microscopy for a laser source

of A =405 nm (or similar), to excite blue fluorescent protein types.

(b) It could be utilized as F4 in multiphoton microscopy, to distinguish between
SHG signal (A = 400 nm), and two-photon emitted signal ( 400 nm < A <
600 nm), once again to excite blue fluorescent protein types (laser source @

A =800 nm).

(c) It could be utilized as F2 in multiphoton microscopy, to reflect the captured
light after the objective (laser source @ A = 800 nm). This would indeed
require the reflection and transmission band to interchange, i.e. range, where
A > Acenter should be reflected now. Note that this filter would require quiet

similar design steps to 3-a, and 3-b, respectively.

4. A band stop filter working at laser wavelength of: A = 800 nm, to block any residue

from the detector. Once again this filter would be useful as:
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e A laser blocker for fluorescent confocal microscopy
e A laser blocker for SHG signal, and

e A laser blocker for two-photon microscopy.

Below, we give further details of the design strategy of all four-filter types that is based

on the scheme illustrated in Figure 5.1.

5.3.1 Laser line filter @ A = 800 nm

Laser line filter is designed for use in reflectance confocal laser scanning microscope,
to only detect reflected laser light from the specimen while blocking other wavelengths.
Assuming an NIR laser source at A = 800 nm, the specification of an off-the-shelf laser
line filter and the designed filter are shared in Table 5.3. In accordance with the design
algorithm provided in theory and modeling section, we first design a preliminary and
perfectly periodic version of stage-1 filter to provide a stop-band whose center matches
the center transmission wavelength as (HL)7 and then introduce the low-index defect
to define narrow-transmission region (Figure 5.3a), such that the initial periodic design
(HL)3L(HL)3. Then, stage 2 filters are designed with AFGSM to extend the stop-band
toward lower and higher wavelengths, as illustrated in Figure 5.3a,b. Finally, the

overall filter characteristic is illustrated in Figure 5.3c.

5.3.2 Harmonic line filter @ A = 400 nm

The harmonic line filter is designed for use in SHG laser scanning microscope, to
isolate the SHG light from tissues (such as collagen tissue) while blocking other
wavelengths, once again assuming an NIR laser source at A = 400 nm. The design
is near identical to the laser line filter, but with different material selection and layer
thicknesses. The stage-1, stage-2, and overall filter characteristics are illustrated in

Figure 5.4a,b and Figure 5.4c, while the details are shared in Table 5.3, and Table 5.4.

82



without degeneration

= = =with degeneration

Transmittance, (%)

0 s s
500 600 700 800 900 1000 1100 1200
Wavelength (nm)

—&— Right blocking filter
---------- Left blocking filter

70 = Stage-1 filter (w/o deg.) |

Transmittance, (%)

Il
400 500 600 700 800 900 1000 1100 1200
Wavelength (nm)

70

60

50 1

Transmittance, (%)

30 1

JJ\\ o

400 500 600 700 800 900 1000 1100 1200
Wavelength (nm)

Figure 5.3 : Laser line filter; a) stage 1 filter characteristics with and without
degeneration b) stage 2 filter characteristics, showing left (dashed red
line) and right (squared solid line) blocking filter behavior, c) overall

laser line filter characteristics.

83



Figure 5.4 :
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Table 5.3 : Comparison of off-the shelf filters vs. designed.

Harmonic Line® Dichroic Notch

RF22

Laser Line?

Designed  RF1! Designed Designed RF3*  Designed RF4*

Center
Wavelength
(nm)

799.7 800 +2 399.9 400 £2 383.2 383.5 811.2 800 +2

Reflection
Region
(nm)

454 - 1018 200 - 1200 262 - 886 200 - 1200 360.4 - 406.8 360 - 407 NA NA

Transmission
Region NA NA NA NA
(nm)

425 - 575 600 - 789.6 610-778

422-575 837.4- 1100 838 - 1060

Peak
Transmission
(%)

94.23 > 85 90.05 > 85 94.8 >90 90 > 90

FWHM
(nm)

a 2o = 800 nm.
b 2o = 400 nm.

10.7 10£2 7.3 8-10 NA NA 324 34

I Reference Filter (RF1) :
2 Reference Filter (RF2) :
3 Reference Filter (RF3) :
4 Reference Filter (RF4) :

edmundoptics, part no:19773
edmundoptics, part no:19730
thorlabs, part no:MD416
thorlabs, part no:NF808-34

In Table 5.3, transmission region and reflection region bands are determined by
applying stage-1 and stage-2 of the proposed algorithm, respectively. Transmission
region, peak transmission and FWHM values of designed filters in Table 5.3 perfectly
agree with the reference filters which are commercially available. In Table 5.3,
Magnitude square of scattering parameter (S;1) corresponds to transmittance of the

designed filter (]521|2). Furthermore, reflection region of corresponding frequency

band is determined by satisfying |S1;|> < 10(=4) condition.

5.3.3 Dichroic filter

As detailed previously, the dichroic filter is designed for use in fluorescent confocal
microscopy or multiphoton microscopy, to re-direct the emitted light from the tissue
to the detector [131]. Assuming a source wavelength of A = 800 nm, both setups
require a filter having @ Aceprer ~ 380-420 nm range, where A <Acepser is reflected,
and A >Acenser is transmitted, at 459 incidence. In accordance with our design scheme,

we first determine the layer materials and thicknesses. For the dichroic filter, only
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utilizing a stage-1 design having (0.5H L 0.5H)'® form is sufficient, while using a
slightly altered version having form (0.SHL(HL)!30.5H) refines the ripple effects in
the overall transmission behavior as illustrated in Figure 5.5. Therefore, basic stack
of (0.5H L 0.5H)'® is modified by adding a periodic reflection block in the form of
(HL)"3. In addition to that modification, entire building block designed to be coated
with MgF, as incident medium and with glass as a substrate to ensure the supression

of unwanted ripples.
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Figure 5.5 : Dichroic filter characteristics a) AFGSM results b) improved results after
refinement.

5.3.4 Notch filter

This filter is to be employed in all of the aforementioned laser scanning imaging
modalities apart from the reflectance confocal imaging, to block the laser light [132]

(Here we assume a laser wavelength of A = 800 nm).

In order to construct notch filter shape we first need to identify the properties of desired
rejection zone which depends on the ratio of the refractive indices and thickness of
the high and low index layers. Proposed method accelerates the identification of
stop-band parameters which will primitively ensure narrow band reflection region.
Therefore, we first employed AFGSM method to determine most proper refractive
index values of materials, required number of layers and corresponding FWHM in the
reflectance window for the desired filter characteristics. As a next step we calculate
the layer thicknesses with a gradual thickness change in high index to low index by
getting thinner from center of the stack towards the ends. Such refinement is ensured

by applying a Gaussian shaped modulation formulated with well-known apodization
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functions which are used to calculate optical thicknesses of each layer;
Ty = ae =3/ (5.10)

TL:2—TH(1’1) (5.11)

where Ty and 7} indicates the quarter-wave optical thickness of n-th layer. N is the
total number of layers in the structure and a is the apodization ratio used in functions.

C is related to the FWHM of the Gaussian function by

c— FWHM (5.12)
2+/2In(2)]

Using the presented method desired notch (minus) filter characteristics are achieved
utilizing that high-reflectivity around the center wavelength (Ag) of the narrow rejection
band while showing high-transmission elsewhere. Moreover, we demonstrated that,
ripples in the transmission region can be suppressed considerably along with increasing
the steepness in band edges. In this example, we consider the notch filter design
with the performance that should satisfy high transmittance (> 90%) in the pass-band
wavelength ranges of 610 - 778 nm and 838 - 1060 nm, and high reflectivity centered

at 808 + 2 nm with a FWHM value of 34 nm under normal incidence (see Figure 5.6).

100 pevwoare
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o 60 |
o
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S 50r i
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Figure 5.6 : Transmittance of the designed notch filter. Dashed line represents the
response of AFGSM method and solid line shows the final proposed
filter response after refinement with modulation functions.

87



Table 5.4 : Design summary of the presented filters.

Number Total

Filter Type Building Block Stack p1, p2 (nm)  ny,no of Layers Thickness
Filter 1 Left blocking = (HL)® 454,424 46,14
800 nm Central FPR = (HL)’L(HL)? 85.1, 140.8 2.35,1.42 17 2.74 pm
BPF

Right blocking = (HL)* 23.2,157.6 4.6,2.35
Filter 2 Left blocking = (HL)® 29.6,45.6 2.35,1.35
400 nm Central FPR = (HL)?>L(HL)? 21.7,42.5 4.6,2.35 15 1.42 um
BPF

Right blocking = (HL)* 36,132 4.6,1.35
Filter 3 Incidence medium = MgF, - 1.38
450 Central block = 0.SHL(HL)'30.5H 50.8,60.2 2.05,1.73 18 1.55 um
Dichroic

Substrate = glass - 1.52
Filter 4 Incidence medium = glass - 1.52
800 nm Modulated block = (HL)!4? Ty, ;" 225,147 147 58.6 um
Notch .
Substrate = air - 1

* Ty, Tp, are calculated as given in equation (5.10) and (5.11)

5.4 Conclusion

We present hybrid filter structures towards use in numerous laser scanning microscopy
modalities, comprising a combination of periodic and degenerated multilayered
dielectric structures. The proposed approach utilizing both GSM and AFGSM for the
design of stage-1 and stage-2 parts of the overall filter structure provides significant
flexibility in setting the desired transmission band while offering widened stop-bands.
The flexibility and robustness comes from the computational advantages that AFGSM
brings owing to obtaining bandgap edge frequencies without solving an eigenvalue
equation. The designed filters are comparable in performance to the off-the-shelf filter
counterparts. As a future work, we are planning to design sophisticated filters using
our algorithm, which can replace multiple filters to simplify and reduce the number of

components in laser scanning microscopy.
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6. CONCLUSIONS

In this thesis, wave propagation characteristics in periodic structures have been studied.
Particularly, in the framework of the thesis, alternative techniques have been developed
to extend the bandgap analysis to various two-dimensional photonic bandgap structures
(2D PBGs). Since the considered periodic structure is composed of the infinite
succession of a unit cell, methods are based on the primarily exploring the scattering
matrix of the unit cell in order to specify the PBG edges spectrally. Indeed, designing
a new device is time consuming and expensive, numerical techniques are very crucial
to characterize electromagnetic behavior of the existing devices. However, these
techniques are restricted by the complexity of structures. Therefore, the main objective
of this thesis is to provide an alternative method to overcome the limitations of
numerical and heuristic approaches. First chapter of the thesis starts with a basic

introduction of the scope and a summarized literature survey.

The second chapter of the thesis is concerned with the general formulation of the
transmission line theory and conventional ABCD matrix approaches. Fundamental
steps of the rigorous coupled wave analysis (RCWA) method, which is used as a
preliminary computational routine to find out the s-parameters of a grating unit cell,
introduced. Instead of conventional technique which requires solution of eigenvalue
equation, we proved that dispersion diagram of the Floquet modes supported by
the infinite periodic system provides the allowed and forbidden frequency band
information of the finite structure which provides the full-wave modal analysis
of a periodic structure. Here, a novel approach based on auxiliary functions
of generalized scattering matrix (AFGSM) method is introduced to estimate the
band-edge frequencies of the global structure properly provides bandedge frequencies
of ideal structure. The proposed technique yields accurate estimates for the
stop-band/pass-band transition frequencies located within the single Floquet mode
region just by executing a simple root-finding algorithm. In final part of the chapter

some numerical results of design applications are presented including four-channel
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photonic crystal based optical filter and omnidirectional reflector with extended

stopband region.

The third part of the thesis present a hybrid method that is a combination of
effective-medium theory (EMT) and AFGSM is an original technique proposed to
literature. Presented alternative method yields accurate estimations of bandedge
frequencies through solely varying the dimensional and physical factors of considered
geometry.  The approach applies EMT to deduce two-dimensional structure
to one-dimensional (1D) multilayered equivalence to overcome the dimensional
complexness of the problem. Accordingly, PBG edges of the equivalent 1D structure
is specified by using the auxiliary functions of generalized scattering matrix (AFGSM)
method. Formulated mixed process is implemented to square and circular formed
rectangular grid PCs in order to explore bandgaps. Since method reduces the problem
complexity of 2D geometry, it provides a faster analysis opportunity for design
purposes. The remarks might create a significant contribution to the area of photonic

bandgap investigation techniques.

In the fourth chapter of the thesis, we then have extended the findings to full-wave
electromagnetic wave analysis of 2D PC structures constituted by arrays of dielectric
rods with arbitrary cross-sections. In this study, 2D PBG (photonic bandgap) structure
is considered as a stack of 1D gratings which diffraction properties are exploited by
rigorious coupled wave analysis (RCWA) method. Considered 2D PCs are constituted
by varying configurations such as rectangular and circular cross-sections of dielectric
rods and arbitrary lattice types. Electromagnetic properties of such structures are
analyzed in terms of photonic bandgpas located on reflectance spectrum as a function
of filling ratio, incidence angle and frequency. Results are presented in a comparison
with that of traditional ones reported in the literature as well as available experimental
data. Moreover obtained results have been successfully validated with commercial

electromagnetic simulator which uses finite element method on the frequency domain.

In the fifth and last part of the thesis, we presented an algorithm to design filter
structures that can be used in numerous laser scanning microscopy applications
including laser-line filter, notch filter and dichroic filter. The proposed algorithm
consists of two main stages that GSM and AFGSM approaches applied respectively.

Developed algorithm successfully provides significant flexibility in setting the
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desired transmission band while offering widened stop-bands. The designed filters
are comparable in performance to the commercially available filter counterparts.
A number of new applications can be developed using the solution technique
implemented in Chapter 5. While this thesis provides novel theoretical contributions,
many interesting and important problems are yet to be studied. The work presented
in this thesis concentrates on lossless dielectric 2D PBG structures. However, in most
of the real-world applications available materials involves metallic or lossy dielectrics.
Therefore an alternative topic could be built upon the analysis of hybrid structures
comprised of metallic and dielectric materials. We hope that the open problems
presented herein stimulate the further research on wave propagation analysis and
design approaches on photonic bandpag structures, both on the theoretical side as well

as in the practical applications.
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