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VINE COPULA BASED MULTIVARIATE MODELLING FOR

CLASSIFICATION

ABSTRACT

In this thesis, the capabilities of statistical learning are investigated through various

classification applications on simulated and biological data. The models are

developed by fitting multi-dimensional data to standard and custom Bernstein

copulas, as well as vine density frameworks. A convex Bernstein copula approach is

proposed to address the imbalanced classification results observed with standard

Bernstein copulas. Vine classifiers demonstrate strong performance in terms of

classification scores and flexibility in capturing patterns within multi-dimensional

feature spaces. For constructing vine classifiers, a truncation framework based on the

classification performance of validation sets is proposed, which reduces the

complexity of the trained vine classifier. This truncated vine classifier achieves

relatively more balanced and improved results. Furthermore, a neural network

framework is employed to generate the underlying distribution and density functions

of gene expression data. The impact of neural networks on density-based

classification is explored by connecting neural marginals to the vine density as its first

tree nodes.

Keywords: Statistical learning, Bayesian method, Bernstein copula, Vine density,

Neural marginal distribution
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SINIFLANDIRMA İÇİN VINE KOPULAYA DAYALI ÇOK DEĞİŞKENLİ

MODELLEME

ÖZ

Bu tezde, istatistiksel öğrenme yöntemlerinin kapasitesi, simüle edilmiş ve

biyolojik veriler üzerindeki çeşitli sınıflandırma uygulamalarıyla incelenmiştir.

Modeller, çok boyutlu verilerin standart ve özel Bernstein kopulası ile vine yoğunluk

fonksiyonu yöntemleri üzerinden fit edilerek oluşturulmuştur. Standart Bernstein

kopulanın dengesiz sınıflandırma sonuçlarını çözümlendirmek için konveks bir

Bernstein copula yaklaşımı önerilmiştir. Vine sınıflandırıcıları, sınıflandırma skorları

ve çok boyutlu öznitelik uzayındaki desenleri yakalama esnekliği açısından üstün bir

performans göstermiştir. Vine sınıflandırıcılarının oluşturulması sırasında, validasyon

setlerinin sınıflandırma performansına dayalı bir kırpma (truncation) yöntemi

önerilmiş ve böylece eğitilmiş vine sınıflandırıcılarının karmaşık yapısı azaltılmıştır.

Kırpılmış vine sınıflandırıcıyla, nispeten daha dengeli ve yüksek sonuçlar elde

edilmiştir. Ayrıca, gen ekspresyonu veri setine ait temel dağılım ve yoğunluk

fonksiyonlarını oluşturmak için bir sinir ağı yöntemi kullanılmıştır. Sinir ağlarının

yoğunluk fonksiyonu tabanlı sınıflandırma üzerindeki etkisi, sinirsel marjinal

dağılımların vine yoğunluk fonksiyonunun ilk ağaç düğümleri olarak bağlanmasıyla

incelenmiştir.

Anahtar kelimeler: İstatistiksel öğrenme, Bayes yöntemi, Bernstein kopula, Vine

yoğunluk fonksiyonu, Sinirsel marjinal dağılım
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CHAPTER ONE

INTRODUCTION

1.1 Overview

Machine Learning is a research field that focuses on providing machines with the

ability to recognize patterns through algorithms based on mathematical or statistical

theories. The general purpose of this field is to extract meaningful results from data

and to give machines the ability to distinguish objects from one another, similar to how

humans do. Machine Learning is regarded as a subfield of Artificial Intelligence due

to its endeavor to mimic human identification capabilities in computers.

The field of Statistical Learning can be described as one that focuses on using

statistical inference methods to perform machine learning tasks. This learning

approach forms the foundation of our research for the thesis. Primarily, in our

applications, probability distributions are utilized in various ways to create learned

models. In other words, the characteristics or patterns of the data are represented by

fitted distributions, and new data instances are labeled based on these distribution

models. The field utilizes supervised learning (e.g., regression and classification),

(e.g., clustering and dimensionality reduction), and more advanced techniques like

ensemble methods and neural networks in order to build models that can generalize

from data (Hastie (2009), James (2013)). Such techniques are foundational for tasks

like determining relationships between variables or making automated predictions in

finance, healthcare, and marketing (James (2013)). The classification based on

supervised approach is the base machine learning approach of the thesis.

Supervised classification is a subcategory of machine learning in which the classes

are known prior to the classification process. A class is a categorical variable

represented by a dataset consisting of features or variables. A learned model refers to

a machine learning algorithm that has extracted feature information from each class

and is ready to classify new data. From a statistical perspective, a learned model

corresponds to a fitted probability distribution, and a feature corresponds to a random
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variable.

Naive Bayes is one of the well-known supervised classification methods based on

a probabilistic framework. Essentially, the method compares the probability density

functions of features to determine the class of a given data point. Due to its

independence assumption (hence ”naive”), the method is relatively simple to apply.

However, this assumption makes it prone to failure when capturing complex

dependencies among features. Complex associations between features in

high-dimensional datasets are common in real-world machine learning problems.

To build an effective classification model, it is crucial to consider as many features

as possible to obtain sufficient information about the classes and create a robust

classification environment. However, joint distributions in high dimensions often lack

familiar forms outside generalizable distribution families, such as the Gaussian

distribution. To model a complex dependence structure, one can use copula

distributions. Furthermore, in high dimensions, vine copulas can be employed, where

bivariate copulas serve as building blocks for constructing flexible dependency

models.

Copulas are flexible distributions that can model or help to model joint dependence

structure. By using copula one can model joint association of random variables and

their marginal distributions independent from each other. A vast choice of copula

families exist to capture a bivariate dependence structure. But they do not possess

obvious forms in high dimensions. In order to bypass this limitation, using bivariate

copulas in a vine structure gives a very effective way to deal with the high

dimensional inference. Vine copula allows using bivariate copulas in multiple steps to

model multivariate structure. First ideas on vine copula is given in Joe (1996), then it

is defined and systemized as a study field in Bedford & Cooke (2001), Bedford &

Cooke (2002).

In the progression of vine copula construction, one needs to determine multiple

bivariate copula distributions. This problem is getting more complex as dimension
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increases. Misspecification of copula families causes increase in error of a vine

model. In order to minimize error potential of a vine model, modifications are

integrated into the vine construction. The adopted vine models are tested based on the

classification metrics. Applying a full nonparametric or semiparametric procedure on

vine copula construction is a promising study topic. Estimating bivariate copula

distributions with the help of non-parametric procedures, error propagation in the vine

process can be avoided. There are several nonparametric candidate instead of copula

families. For example, Bernstein copulas have appropriate properties and flexibility

to use when the distribution is unknown. Furthermore hybrid methods can be used to

obtain more flexibility where vine nodes can have parametric or non-parametric

copula. In high dimensions building a full vine structure is time consuming and could

be redundant to obtain an optimal vine. Modified vines called truncated vine is a

simplifcation strategy which avoids unnecessary errors and it is based on replacing

certain tree nodes with independence copula after a cut point. For more details

address Kurowicka (2010) and Brechmann et al. (2012).

The last application of the research focuses on building artificial neural networks

to adopt cumulative distribution function and probability density function. The

framework in the Zeng & Wang (2022) is used in order to construct cdf and pdf

generating neural networks. According to the results on the benchmark datasets, the

trained Neural copula and its marginals are closer to the true distribution for both

tranining and test cases than classical models; t-copula, Frank copula and Gaussian

copula. In our application Neural copula framework is used to build marginal

distributions and copula distributions for each class labeled data of gene expression

benchmark dataset. The classification performance of neural copula is investigated in

the binary classification context.

1.2 Literature Review

The usage of statistical methods is prominent in the area of machine learning

whether they are used as performance or interpretability enhancer, or as a pattern
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learning method. Okoli (2023) explored the integration of statistical inference

techniques, such as bootstrapping and confidence intervals, within the framework of

ALE, which quantifies feature importance in machine learning models. The methods

include adapting bootstrap algorithms to account for non-parametric data

distributions. This approach enhances interpretability in models like decision trees

and random forests by calculating more robust confidence intervals for ALE values

across multiple bootstrap samples. In the work of Lemaire et al. (2024) naive Bayes

classifiers are used for counterfactual optimization in binary classification tasks. It

modifies naive Bayes by iteratively adjusting feature values to maximize the

likelihood of a sample belonging to a target class. These adjustments provide insight

into decision boundaries and facilitate interpretability improvements. In Kovács et al.

(2024), generalized naive Bayes(GNB) method is used to extend the classical naive

Bayes. The GNB introduces new algorithms that are specifically constructed to find a

better-fitting probability distribution. These algorithms include a greedy algorithm

and an optimal distribution algorithm based on Kullback-Leibler divergence, aiming

to maximize information content and minimize redundancy during the data-fitting

process. Experimental results indicate that the GNB algorithms often outperform

classical Naive Bayes and other related algorithms in terms of accuracy. In the work

of Gohari et al. (2023), Bayesian Latent Class Analysis (BLCA) is introduced to

define latent variable that acts as a parent of model’s parent attributes. This approach

helps in capturing complex dependencies among the attributes, which is a limitation

of the traditional naive Bayes (NB) classifier. The model is applied to real-world data

involving 976 Gastric Cancer (GC) patients and 1189 Non-ulcer dyspepsia (NUD)

patients. These results collectively indicate that the NB-BLCA model not only

enhances classification accuracy but also provides a robust framework for dealing

with real-world data complexities, particularly in the classification of gastric cancer

patients.

Applying machine learning methods for diagnostics, has an important role as a

study area. Diagnosis from an objective source allows for a thorough examination of

any doubts and contributes to establishing decision rules with minimal error.
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Classification methods are very beneficial to control this process. In the work of

Torres-Roca et al. (2005), tumor cells are classified according to their radiation

sensitivity to enhance treatment protocol for cancer patients. McKinney et al. (2020),

developed an A.I. system to help radiologists to spot breast cancer. Findings of the

preceding study is that, radiologists can spot breast cancer more accurately with the

help of machine learning. Thus, machine learning approach in health care, has a big

potential to become a standard.

Vine copula is used in many studies which involves high dimensional modeling.

There are many examples in financial area some of them are; Dissmann et al. (2013),

So & Yeung (2014), Loaiza Maya et al. (2015), Aloui & Aïssa (2016), Scheffer &

Weiß (2017), Kraus & Czado (2017). As a different approach, Gräler (2014) used

spatial vine copula to model emergency routine dataset and used spatial interpolation.

Soto et al. (2012) used vine copula in molecular docking problem and found that vine

copula based algorithms have relatively good performance. Vine distribution in the

context of machine learning is relatively limited study area. Carrera et al. (2016) used

D-vine classifiers for mind reading dataset. Chen (2016) also used D-vine classifiers

to benchmark machine learning datasets and compare the method with classical

methods including naive Bayes. Carrera et al. (2019), allowed flexibility by using

R-vine classifiers and consider all kinds of association between variables in the

model. Preceding study made a classification on Mars dunes. On the other hand, Sun

et al. (2019) proposed vector and reinforcement learning representation of vine

structure problem to find best possible vine model. Şahin & Joe (2024), also used

vine classifiers in their study. Each class in the dataset, univariate distributions are

fitted alongside a vine copula. This approach enables the calculation of posterior

probabilities for each class, which can then be utilized for discriminant analysis. The

results indicate that the vine copula-based classifier outperforms traditional

discriminant analysis methods and random forests, especially in scenarios where

features exhibit different dependent structures across classes. Vines also can be used

as a booster for the data management phase of a machine learning task as it can be

seen in the work of Konstantelos et al. (2018). The paper uses vine copulas primarily
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for data preparation in machine learning tasks. Specifically, the vine copulas model

the dependencies between variables to generate synthetic datasets representative of

real-world system states. These datasets are then used to train machine learning

models, such as classifiers for power system security assessment. To reduce the

complexity of vine structure for the large data scalibility, only the Gaussian copula is

feed to the vine. The approach outperforms traditional sampling methods, producing

datasets that improve the performance of machine learning classifiers used in power

system security assessment.

1.3 Research Scope and Aims

In statistical learning, challenges often arise when fitting data labeled with classes,

including:

• Detecting appropriate fit for the non-obvious data patterns.

• Maintaining multivariable distributions to represent high dimensional feature

space.

To be able to overcome such problems, modifications on the distribution based

classifiers are proposed and tested on the simulated and experimental real life datasets

alongside with the classical approaches. The modifications are made particularly for

the Bernstein copula and vine density classifiers. To address such objectives, a

flexible distributional classifier algorithm was developed in R and progressively

modified.

First, as a non-parametric approach the multivariate Bernstein copula classifier is

applied to learn the data patterns. Performance and limitations are investigated in the

context of classification.

Then vine density classifiers are employed for the machine learning tasks. Vines

are structured based on three different tecniques namely, parametric, non-parametric
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and hybrid. In parametric case, the classic R-vine is fitted by feeding well-known

bivariate copula families into our algorithm. In non-parametric case the vine is

structured only by calibrating Bernstein copulas. Lastly for hybrid case, the vine is

structured by feeding both copula families and Bernstein copula into the algorithm.

Hence, the node distributions of the vine are chosen from parametric families and the

Bernstein copula.
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CHAPTER TWO

METHODOLOGY

2.1 Copula

Let X1, . . . , Xd be the random variables with joint distribution function

H(x1, . . . , xd) with marginals F1(x1) = P (X1 ≤ x1), . . . , Fd(xd) = P (Xd ≤ xd).

Sklar’s theorem plays a crucial role in the theory of copula. The relation between the

copula and the joint distribution function of these random variables can be defined as

H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) = C(u1, . . . , ud).

where U1 = F1(x1), ..., Ud = Fd(xd), and C : [0, 1]d → [0, 1] is a d-variate copula.

The copula function is unique if the marginals are continuous. Note that, this study is

restricted for the continuous case.

Copulas establish a link between a multivariate distribution and its individual

marginals. When the marginal distributions are integrated into the copula, the

multivariate distribution can be derived. Through copula calibration, the original

random variables are transformed from their initial marginal distributions into

uniform variates.In this manner, through copula inference, the relationship between

variables can be explored from the perspective of marginal distributions, leading to a

more comprehensive understanding of their associations. The copula distributions are

especially useful for the inferences involving the bivariate random vectors because

the bivariate copulas have various different forms to represent wide range of

dependence characteristics. Overall, their application in data analysis is beneficial in

terms of capturing non-obvious distribution structures in high dimensional data sets.

For more details, see Nelsen (2006).
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2.2 Bernstein Copula Classifier Framework

2.2.1 Bernstein Copula

The Bernstein polynomial with degreem is given as

Bm,k(z) =

(
m

k

)
zk(1− z)m−k, (2.1)

where k = 0, ...m ∈ N and 0 ≤ z ≤ 1.

Let U = (U1, U2, . . . , Ud) be a discrete random vector with uniform margins over the

set Si = {0, 1, ...,mi−1} where mi denotes the grid size. Let the grid size of each

argument equal to each other i.e. m = m1 = m2 = · · · = md, then Bernstein copula

can be defined as

C(u1, u2, . . . , ud) =
m∑

k1=0

m∑
k2=0

· · ·
m∑

kd=0

α(k1/m, k2/m, . . . , kd/m)
d∏

i=1

Bm,ki(ui),

(2.2)

where,

α(k1, k2, . . . , kd) = P
( d⋂

i=1

(Ui ≤ ki/m)
)
,

{ui}d1 ∈ [0, 1]d, {ki}m1 ∈ Sd,

where Sd is the d-dimensional set for k.

The equation (2.2) can be interpreted as Bernstein copula density is induced by U.

The constant function α can be any copula function to center the Bernstein copula. If

the unknown copula function is approximated, the equation (2.2) formally is known

as the empirical Bernstein copula. Hence, α refers to the counts of original

realizations, fall in equally spaced cells within the d-dimensional hypercube. Thus,

firstly contingency matrix with size of md is obtained from the α function

computations. Secondly, the smoothing effect of Bernstein polynomials is applied on

the empirical copula to complete the evaluation of Bernstein copula.

9



Numerous polynomial forms are available for representing continuous functions,

and Bernstein polynomials share certain properties with copula distribution functions.

Consequently, Bernstein polynomials can be applied in the context of copula theory.

Additionally, Bernstein polynomials exhibit properties such as closure under

differentiation and lower variance compared to common nonparametric estimators.

For more details address, Sancetta (2004).

The implemented Bernstein distribution algorithm consists of three primary

phases. These are Grid Fit, Uniform optimization and Bernstein Density

Computations which are given with detail in the next section. Since α is an empirical

copula within induced in d-dimensional canvas, to be a valid copula approximation

for each marginal component of α should be distributed uniformly. This validation is

not certain during the inference of Bernstein copula. In order to cover this condition,

Pfeifer et al. (2020) proposed contingency table transformation. Let ast be the

original entries of grid fit, and bst be the entries of new contingency table, then

optimization problem can be stated as the following

Minimize
m∑
s=1

m∑
t=1

(ast − bst)
2, (2.3)

subject to,
m∑
s=1

bsj =
m∑
t=1

bit =
1

m
and bij ≥ 0,

where i, j = 1, ...,m.

Optimization problem is carried out by using quadprog library in R. To utilize the

library for this particular problem, a function is designed to dynamically implement

optimization for any contingency table derived from raw frequencies within grid

cells. If non-negativity condition is neglected, this problem also can be immediately

solved as a Lagrange problem. In this case, the general solution is
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bst = ast −
a.t
m
− as.

m
+

2

m
, (2.4)

where s, j = 1, ...,m,

and ast matrix is the computed raw frequencies of the observations that fall into each

cell of md dimensional hypercube. To recover the negative entries in contingency table,

additive correction method can be used. Below, the final form of the contingency table

cst is defined.

b := −min{bst|1 ≤ b, s ≤ m},

cst =
bst + b

1 +m2 a
(2.5)

where a is the original entry of the grid fit. The matrix cst provides initial or

suboptimal solution for the defined minimization problem. Both the description of

optimization problem and its initial solution can be easily enhanced to arbitrary

dimensions. For details refer to Pfeifer et al. (2020).

It’s important to note that both global and initial solutions are employed in real data

applications for the purpose of comparison.

2.2.2 Setting Bernstein Copula Classifier

In machine learning applications, a Bayes rule framework is implemented,

leveraging the joint Bernstein copula density. The Bernstein copula serves as an

approximation to the true copula function. Adjusting the degree of polynomials

allows for fine-tuning the smoothing effect in the Bernstein copula, ultimately leading

to a more accurate approximation. Moreover, higher grid sizes enhance the

smoothing and the capability to capture dependence patterns. When a sample is
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approaching to the independence, the lower grid sizes would be more appropriate to

capture a symmetrical pattern.Indeed, as the correlation weakens and approaches

independence, the copula becomes increasingly similar to the independence copula,

resulting in a data scatter that exhibits a more symmetrical pattern. Hence, using low

grid sizes can indeed be more fitting for robustly capturing symmetrical patterns in

such cases. See, Pfeifer et al. (2020), Rose (2015). Each training set is learned with

the copula density which yields

c(u1, u2, . . . , ud) =
m−1∑
k1=0

m−1∑
k2=0

· · ·
m−1∑
kd=0

p(k1/m, k2/m, . . . , kd/m)
d∏

i=1

mBm−1,ki(ui),

(2.6)

where,

p(k1, k2, . . . , kd) = p
( d⋂

i=1

(Ui = ki/m)
)
.

In real data application, additionaly 2 component convex Bernstein density is used to

improve the discrimination ability. A Convex Bernstein density can be defined as

cCB = wcm1 + (1− w)cm2 , (2.7)

where w ∈ [0, 1].

The equation (2.7) indicates a weighted average of two different Bernstein densities

estimated through sizes of m1 and m2, respectively. Cross-validation processes

involve the initiation of various grid sizes to conduct a comprehensive analysis. The

selected grid size is then applied to the current training sets for each category,

resulting in contingency matrices. Subsequently, the test set is computed using the

Bernstein copula density, applying each categorywise pre-determined contingency

matrices.Following that, each observation in the test set is assigned to the category

with the higher density. This setup is analogous to Gaussian Naive Bayes, with the

key difference being that we abandon the independence assumption and employ the

joint Bernstein copula for modeling dependence.

More formally, let there are two classes with class index l, and d-variate realized
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random vector pseudo-observations; uj = u1j, u2j, . . . , udj, j = 1, . . . , n. After the

calibration of Bernstein densities, cl(uj|l), the unlabeled data point uj is assigned to

the class l according to the decision rule,

argmax
l=1,2

πl(cl(uj|l)) (2.8)

In this study, we focus on estimating each density function cl(uj|l) and prior

probabilities are set equals so πl = P (l) = 1
2
since 2-classes are considered.

The pseudo code for the classification process is presented in Figure 2.1, Figure 2.2

and Figure 2.3.

Step 1: Grid Fit
########
gsize: grid size
glist: grid list
gpoints: grid points
CM : contingency matrix
########
function JointGridFit(data, gsize)
d = number of data column (dimension)
n = number of data row (size)
glist = for 1 : d do vector(1, 2, ..., gsize)
gpoints = ×d glist
# Initialize contingency matrix:
CM = ZeroMatrix(row = gsized, column = 1)
for (i in 1 : n) for (j in 1 : md) (if (datai ≤ gpointsj) (CMj + 1)/n break)

Figure 2.1 Grid Fit step that is used in Bernstein copula module

Step 2: Uniform Optimization
if optimization == TRUE
Run CM = function GridOptimizer(CM)
# GridOptimizer() function designed to establish the coefficients of quadratic
problem and constraints for the grid optimization problem in matrix forms then
feed them into solve.QP from quadprog library.
return CM

Figure 2.2 Grid Optimization step that is used in Bernstein copula module

13



Step 3: Bernstein Density Computations
########
sholder: summation holder
c: counter
########
function BernDensity(CMobject = CM)
Initialize CMobject elements: d, gpoints, CM, gsize
n = number of of data row
nn = number of CM row
for(1 : d) index = find (data, gpoints == gsize)
gpoints = discard index from gpoints
CM = discard index from CM
# Initialize: c = 0, sholder = Matrix(row = nn, column = 1), density =
Matrix(row = n, column = 1)
(for (j in 1 : n)
(for (i in 1 : nn)
sholderc = gsized ∗ CMi ∗ (apply product for 1 :
d(Binomial(gpointsi, d, gsize− 1, dataj, d)))
)
Densityj = summing up sholder
c = 0
)
return Density

Figure 2.3 Density computation step that is used in Bernstein copula module

2.3 Vine Classifier Framework

2.3.1 Vine Distributions

Vine distribution process was developed through the works of Joe (1996), Bedford

and Cooke (2001, 2002) to adopt non-obvious joint copulas. Originally, the process

is known as the pair copula construction (PCC) and then embedded into the multiple

directed tree representation (hence the name; vine) and also become a graphical tool

to visualize distribution in arbitrary dimensions. The construction process of vines is

based on the exchanging the parts of conditional distributions with bivariate conditional

copula arguments. The chain rule, which refers to disintegrating a joint distribution into

conditional parts is given as
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f(x1, x2, . . . , xn) = f(x1) f(x2|x1) . . . f(xn|x1, x2, . . . , xn−1). (2.9)

The main conditional term for the exchange is given below,

f(xi|xv) = ci, j|v−j
(F (xi|xv−j

), F (xj|xv−j
)) f(xi|xv−j

), (2.10)

where v−j is the vector which jth element is excluded.

The conditional arguments of copulas in the form of Eq. (2.10) can be expressed as,

h =i,v F (xi|xv) =
∂Ci, j|v−j

(F (xi|xv−j
), F (xj|xv−j

))

∂F (xj|xv−j
)

. (2.11)

The marginals F (xi|xv−j
) and F (xj|xv−j

)) in Eq. (2.11) can be calculated

recursively by plugging conditional copula term that calculated beforehand. The

initial form of h function yields

F (xi|xj) =
∂Ci, j(F (xi), F (xj))

∂F (xj)
. (2.12)

In order to carry out h-function recursions for Bernstein vine, conditional

distribution form of the Bernstein copula must be integrated into the recursions. The

conditional Bernstein copula distribution in bivariate case can be defined with partial

derivative as below. (Janssen et al., 2016)

∂C(u1, u2)

∂u2

= m
m∑

k1=0

m−1∑
k2=0

p(2)(k1, k2)Bm,k1(u1)Bm−1,k2(u2) (2.13)

where p(2)(k1, k2) refers that contingency matrix is completed by fixing the second

argument.
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By using directed tree terminology, vine density can be defined in a compact fashion.

Let E be the edge set and e ∈ Ei (i = 2, ..., n − 2), e = j(e), k(e)|D(e), where

{j(e), k(e)} is the conditioned set of bivariate elements and D(e) is the conditioning

set. The constraint set U c that corresponds to edge e is defined as a complete union

shown as

U c = {j(e), k(e), D(e)}. (2.14)

See Figure 2.4 which presents a five-dimensional vine density to see the calibration

scheme in detail.

A unique density function f for a d-variate random vector X can be obtained by

transforming Eq. 2.9 in terms of copula functions recursively. Hence a d-variate

distribution can be expressed in terms of the product of bivariate (conditional) copulas

as,

f(x1, . . . , xn) =
[ d∏
k=1

fk(xk)
]
×
[ d−1∏

i=1

∏
e∈Ei

cj(e),k(e)|D(e)(Fj(e)|D(e), Fk(e)|D(e))
]
. (2.15)

Note that, if the left hand side density in Eq. 2.15 is expressed with its copula, this

equation becomes a vine copula with the simplification of right hand side marginals.

In this arrangement, T1 has marginals as nodes, then for T≥2 each edge e ∈ Ei has

distributions with the general form,

cj(e),k(e)|D(e)(Fj(e)|D(e), Fk(e)|D(e)). (2.16)

As the root nodes are fundamental for ordering and calibration, selecting a vine’s

root can influence the vine’s shape and distribution of nodes.

2.3.2 Structuring A Valid Vine Distribution

Dissman et al. (2013) proposed an algorithm which connects highly correlated

pairs in each tree by the widely known measure Kendall’s tau. Prioritizing the
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Figure 2.4 A five-dimensional R-vine graphic:Tree 4 has node set: N4 = {(1, 5|23), (1, 4|23)} and edge
set: E4 = {(4, 5|123)}. The edge (4, 5|123) can be inspected as contraint elements: j(e) = 4, j(e) = 5,
D(e) = {1, 2, 3}.

appropriate calibration of correlated variables in the early tree segments is important

since copulas are generally successful at independent cases. For Kendall’s tau τi,j , the

objective function of absolute value summation yields,

max
∑

edges e in spanning tree

|τi,j|, (2.17)

where −1 ≤ τi,j ≤ 1, i ̸= j denotes the edge elements of the spanning tree. In the

main algorithm, this optimization is achieved by the NetworkToolbox library of R. To

adopt a valid vine distribution, two constraints should be satisfied; connectedness of

tree and proximity condition. Therefore, while maximizing a particular spanning tree,

the constraints should be checked through the vine structure setup. Let V be n− variate

vine, then connected tree and proximity conditions are defined as,

• Connected tree: Every node is reachable from any starting node only with total

of n− 1 edges.

• Proximity Condition: If {xi, xj} ∈ E(any edge set of a spanning tree), then
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|xi△ xj| = 2, for i ̸= j.

2.3.3 Machine Learning Framework: Vine Bayes

For the machine learning applications, vine densities are constructed as discriminant

functions which represent the training data for each class labels. Then the fitted vine

models are compared to determine the class membership of the current test data point.

In this study, we work on supervised data with two categories hence the decision rule

is defined accordingly. Let (x|l) = ((x1i, x2i, . . . , xdi)|l) be realized d-variate random

vector for each categories l = 1, 2 and sample size i = 1, 2, . . . , n. In the learning

process, two vectors are fitted to the class labelled vine densities f(x|l) as in Eq. 2.15.

And then, the decision rule for test data point xt that is, assign xt to class L where,

L = argmax
l=1,2

(f(xt|l)). (2.18)

Classification procedure is applied with 3 different vine approaches; parametric

vine, Bernstein vine and hybrid vine. The posterior probability is set as equal i.e.

f(xt|l) = 0.5. Parametric vine density involving independence, Gumbel, Clayton and

Gaussian bivariate copulas is used as a benchmark model. Bernstein vine is the vine

model fully integrated with Bernstein density and conditional Bernstein distribution.

And finally the hybrid vine model is referred to a semi-parametric vine process that

chooses between the parametric copulas and Bernstein copula and also assigns the

adequate one to the current vine node. The procedure of choosing among a

semi-parametric distribution candidates is given in the following section in detail.

2.3.4 Truncated Vine Model

Truncated vine distributions are the vines structured until a determined tree level

k. After the kth level, structuring does not continue and rest of the node densities are

evaluated as independence copula which is 1. The truncation level is implemented
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inside of the vine distribution module, allowing establishment of vine until given level,

then the algorithm exits with the information of partial vine structure. Also, the density

algorithm of a pre-determined vine structure is adjusted in order to evaluate the density

(density product of each node) according to the limited structure.

A sample structure can be visualized in Figure 2.5. In earlier studies, Brechman et

al. (2012) used the truncated vine distributions based on Bayesian Information

Criterion (BIC) metric. They mainly examined the issue of whether, following a

specific tree, R-vine copulas can be pairwise reduced or, alternatively, simplified

using Gaussian pair-copulas. They used the simplification of a canonical vine copula

using a multivariate copula as previously treated by Heinen and Valdesogo (2009) and

Valdesogo (2009). Additionally, Carrera, D. (2019) employed BIC to create truncated

vines for a vine-based categorization technique. According to this strategy, a selected

metric is computed for each tree level of vine and if the metric of tree Tk+1 is smaller

than the previous tree Tk then the vine is truncated after the tree level k and the

independence copula assigns to all trees. In our work, we establish the truncation

level using this process in a machine learning validation. The truncation level is

chosen based on the validation set’s highest accuracy percentage. As a result, the

machine learning grid search technique for the cut-off parameter yields an optimal

level. By applying the truncated vine distributions, it is aimed to prevent possible

overfitting caused by the complex vine structures. As getting more copula densities

included in the vine, the model could suffer from complexity. In addition,

correlations are getting weak as trees advance, hence it will be more appropriate to

use independence copula after some tree level. To use the truncated vine in machine

learning, the validation set convention is used along with the training set. After

training the model with vine calibration, the model is tried on the validation set for all

of the cut points. And the cut point k which gives the highest accuracy is selected.

Hence, the decision metric is determined by the classification accuracy achieved on

the validation set.
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Figure 2.5 A five-dimensional truncated R-vine graphic. Vine is cut from tree level 3. Nodes(densities)
after the level 2 are taken as the independence copula.

2.3.5 Hybrid Vine Model

The process of selecting a copula from the candidate set of parametric copulas and

Bernstein copula for structuring a hybrid vine model has the following steps given

below. Note that, since the Bernstein copulas with the largest grid size always have

the higher score in our experiments, we use only one Bernstein copula with a moderate

grid size,

Step 1 Fit current data to parametric copulas and generate number ofK simulations for

each parametric model.

Step 2 Compute mean Akaike score for each model then select the copula which has the

minimum score.

Step 3 Use the selected parametric copula and compute density values. This computed

values will be the baseline density. Then generate number of K simulations

based on this copula.
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Step 4 Compute the density values for number of K simulations by using both the

selected parametric copula and Bernstein copula. (candidate densities)

Step 5 Determine the mean relative distance between the baseline density and candidate

densities.

Step 6 Continue with the originally selected parametric copula if its distance is smaller

or change the selected parametric copula with the Bernstein copula if its distance

is smaller and assign it to the current vine node.

Akaike Information Criterion (AIC) score is obtained by the expression,

2k − 2L(θ|u, v), (2.19)

where k is the number of parameters,

and L is the copula log likelihood.

And then, relative distance is calculated by the distance formula below as in the study

of Rose (2015),

RDN,p =
||cθ − ce||N,p

||ce||N,p

. (2.20)

where N is the sample size and p is the distance order. In the distance calculcations

p set as 2 so, the numerator is equivalent to the mean squared error (MSE).

Pseudo-code for the selection process is also given in Algorithm 1. Note that, the

inner functions are only expressed with symbolic names to point out their role, and they

are either customly written or used from base functions of RStudio (2013) along with

the VineCopula package functions.
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1: function COPULASELECTOR(data, paramList, nonparamList, trialNumber,
relativeDistance())

2: ◃ Initialize the vector that holds the average akaike score that corresponds to the ith copula,
3: aic← vector()
4: for i in paramList do
5: Initialize: aicDummy← vector()
6: copPar← function fitCopula()
7: for j in trialNumber do
8: set jth random number seed
9: copSim← Simulated observations for data based on copPar
10: aicDummy[j]← Akaike score based on the jth simulation
11: end for
12: aic← average of aicDummy
13: end for
14: ◃ Initialize the following variables for the second part of the algorithm,
15: paramCopCand← minimum of aicDummy
16: baseCopPar← function fitCopula(data)
17: baseCopPdf ← function copulaPdf(data, baseCopPar)
18: hybridCopList← string(paramCopCand, nonparamList)
19: ◃ Vector that holds the average of relative distance that corresponds to ith

copula.
20: rd← vector()
21:
22: for i in hybridCopList do
23: Initialize: rdDummy← relative distance of the current trial
24: for j in trialNumber do
25: set jth random number seed
26: ◃ Simulate a bootstrap sample with the ith copula and make needed

calculations.
27: copSim← function simulateCopula()
28: bootstrapCopPar← function fitCopula(copSim)
29: bootstrapCopPdf ← function copulaPdf(copSim,

bootstrapCopPar)
30: rdDummy[j] ← function relativeDistance(bootstrapCopPdf,

baseCopPdf)
31: end for
32: rd[i]← average of rdDummy
33: end forreturn chosenCop← copula that matches the minimum value index of

rd
34: end function

Figure 2.6 Select a copula in a semi-parametric environment.

2.4 Neural Copula

Neural networks can operate in parallel to learn and estimate cumulative

distribution functions (CDFs) through the integration of specialized loss functions.
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These loss functions enforce the necessary conditions for a model to satisfy the

properties of both CDFs and probability density functions (PDFs). To ensure the

validity of the probabilistic model, penalties for violating these conditions are

incorporated into the system. According to the work of Zeng & Wang (2022) Zeng

(2022) such networks have the capability of reaching a convergence. The study is

inspired from the applications on the constructing Archimedes copulas based on

neural networks Ling et al. (2020). In general, neural based distributions offer a

generalized distribution representation combined with pattern learning power of

neural networks. After calibrating a distribution as a tensor, necessity of fitting a data

into known distribution families can be bypassed.

2.4.1 Neural Copula General Framework

To construct a copula model with the network, the marginal model is first learned

using neural networks. As the initial step, marginal distributions are estimated through

several fully connected neural networks. These networks represent the arguments of

the copula and collectively form the marginal model. By estimating the CDF using the

marginal model, it is integrated into the copula network, resulting in the construction

of the copula’s CDF. TensorFlow’s automatic differentiation system enables efficient

computation of gradients for each argument, allowing the joint PDF to be estimated as

the gradient of the network with respect to its input layer.

Given the neural network’s flexibility in gradient computation, it is practical to first

estimate the CDF. Estimating the PDF directly with a neural network would require a

chain integration system, which is less flexible.

2.4.1.1 Constructing Marginal Networks

The fully connected marginal CDF which represented by fully connected neural

network can be expessed as:
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Input Layer:

h0m = x ∈ Ω ⊆ R (2.21)

where Ω is the domain of x.

Hidden layer:

hj+1
m = tanh

(
wj

mhjm + bjm
)

j ∈ {0, 1, . . . , lm − 1} (2.22)

Output layer:

F̂m = Sigmoid
(
wlmulm + blm

)
∈ [0, 1] (2.23)

The marginal model is denoted as the F̂m(x,θm), where θm is the corresponding

network weights that is θm = {wj
m} ∪ {bjm} By conducting the gradient operation on

the whole network the PDF can be obtained as

f̂m(x,θm) =
dF̂m(x,θm)

dx
(2.24)

2.4.1.2 Constructing Copula Network

The network that represens a copula is expressed as below.

Input Layer:

h0c = u = [u1, . . . , ud]
T ∈ [0, 1]d (2.25)
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Hidden layer:

hj+1
c = tanh

(
wj

chjc + bjc
)

j ∈ {0, 1, . . . , lc − 1} (2.26)

Output layer:

Ĉm = Sigmoid
(
wlculc + blc

)
∈ [0, 1] (2.27)

• d denotes the dimension of the u vector.

• The copula model has total of lc − 1 hidden layers.

• The jth layer has the weight: wj
c and bias: bjc

• For the estimated copula function Ĉm(u,θc) set of all weights can be shown as

θc = {wj
c} ∪ {bjc}

• By the networks gradient mechanism the PDF of copula can be obtained as:

ĉ(u,θc) =
∂dĈm(x,θm)

∂u

By the estimated copula distribution, the PDF of the sampled data can be expressed

as

f̂
(
x, {θi

m},θc

)
= ĉ

(
F̂1

(
x1,θ

1
m

)
, F̂2

(
x2,θ

2
m

)
, . . . , F̂d

(
xd,θ

d
m

)
,θc

)
d∏

i=1

fi
(
xi,θ

i
m

)
(2.28)

The CDF of the sampled data can be expressed as
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F̂
(
x, {θi

m},θc

)
= Ĉ

(
F̂1

(
x1,θ

1
m

)
, F̂2

(
x2,θ

2
m

)
, . . . , F̂d

(
xd,θ

d
m

)
, {θim},θc

)
(2.29)

2.4.2 Loss Functions of the Marginal Model

2.4.2.1 Log-loss

The fitness of f̂m(x,θm) can be integrated in the loss function as maximum

likelihood:

L(1)
m (θm) = −

1

nl
m

nl
m∑

i=1

log f̂m(xi,θm) (2.30)

The loss L(1)
m involves the training samples: D1

m = {xi} where i = 1, . . . , n1
m

2.4.2.2 Non-negativeness

The violation of f̂m(x,θm) > 0 is added as penalty coming from the negative part:

L(2)
m (θm) =

∫
xm∈Ωm

relu(−f̂m(x,θm))dxm (2.31)

The sample version can be calculated as

L(2)
m (θm) ≈

1

nl
m

nl
m∑

i=1

relu(−f̂m(xi,θm)) (2.32)

The loss L(2)
m involves the training samples: D2

m = {xi} where i = 1, . . . , n2
m
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2.4.2.3 PDF Summation Over Domain Leads to 1

Penalty is added if the summation of f̂m(x,θm) over the domain is not 1 as

L(3)
m (θm) =

∣∣∣∣1− ∫
xm∈Ωm

f̂m(x,θm)dxm

∣∣∣∣ (2.33)

The sample version can be calculated as:

L(3)
m (θm) ≈

∣∣∣∣∣∣1− 1

nl
m

nl
m∑

i=1

f̂m(xi,θm)λm 

∣∣∣∣∣∣ (2.34)

The loss L(3)
m involves the training samples: D3

m = {xi} where i = 1, . . . , n3
m

2.4.2.4 CDF function constraints

F̂m(x,θm) must satisfy the following conditions:

F̂m(0,θm) = 0

F̂m(1,θm) = 1

(2.35)

The loss function for the given constraint yields:

L(4)
m (θm) = F̂m(0,θm) +

∣∣∣1− F̂m(1,θm)
∣∣∣ (2.36)

The loss L(4)
m involves the training samples: D4

m = {0, 1}
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2.4.3 Loss Functions of the Copula Model

2.4.3.1 Log-loss

The fitness of f̂c(xi; {θi
m},θc) used as penalty in the loss:

L(1)
c ({θi

m},θc) = −
1

n1
c

nl
c∑

i=1

log f̂c(xi; {θi
m},θc) (2.37)

The loss L(1)
c involves the training samples: D1

c = {xi} where i = 1, . . . , n1
c

2.4.3.2 Non-negativeness

The violation of f̂c(xi; {θi
m},θc) > 0 is added as penalty coming from the negative

part:

L(2)
c ({θi

m},θc) =

∫
x1∈Ω1

· · ·
∫
xd∈Ωd

relu(−f̂c(xi; {θi
m},θc))dx1  · · ·  dxd (2.38)

With numerical approximation the calculation can be simply made as:

L(2)
c ({θi

m},θc) ≈
1

n2
c

n2
c∑

i=1

relu
(
−f̂c

(
xi, {θi

m},θc

))
(2.39)

The loss L(2)
c involves the training samples: D2

c = {xi} where i = 1, . . . , n2
c

2.4.3.3 PDF Summation Over Domain Leads to 1

Similarly if the sum of f̂c
(
xi, {θi

m},θc

)
over the domain is not 1 penalty is added:
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L(3)
c ({θi

m},θc) =

∣∣∣∣1− ∫
x1∈Ω1

∫
x2∈Ω2

· · ·
∫
xd∈Ωd

f̂c
(
xi, {θi

m},θc

)
dx

∣∣∣∣ (2.40)

Calculation can be approximated as

L(3)
c ({θi

m},θc) ≈

∣∣∣∣∣∣1− 1

n3
c

n3
c∑

i=1

f̂c
(
xi, {θi

m},θc

) d∏
j=1

∆j

∣∣∣∣∣∣ (2.41)

The loss L(3)
c involves the training samples: D3

c = {xi} where i = 1, . . . , n3
c

2.4.3.4 CDF function constraints

Ĉ(u,θc) must satisfy Copula’s definition:



Ĉ(u1,θc) = Ĉ(0, u2, . . . , ud,θc) = 0

Ĉ(u2,θc) = Ĉ(u1, 0, u3, . . . , ud,θc) = 0

...

Ĉ(ud,θc) = Ĉ(u1, u2, . . . , 0,θc) = 0

Ĉ(ū1,θc) = Ĉ(u1, 1, 1, . . . , 1,θc) = u1

Ĉ(ū2,θc) = Ĉ(1, u2, 1, . . . , 1,θc) = u2

...

Ĉ(ūd,θc) = Ĉ(1, 1, . . . , ud,θc) = ud

(2.42)

Corresponding loss function can be expressed as
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L(4)
c ({θi

m},θc) =
d∑

i=1

n4
c∑

j=1

Ĉ(uji ;θc) +
d∑

i=1

n4
c∑

j=1

∣∣∣Ĉ(ūji ;θc)− uj
i

∣∣∣ (2.43)

The loss L(4)
c involves the training samples:

D4
c =

d⋃
i=1

({
uj

i

}
j=1,2,...,n4

c

⋃{
ūj

i

}
j=1,2,...,n4

c

)
(2.44)

2.4.3.5 Uniqueness of CDF

If we only have information about the distribution of the derivatives of the

cumulative distribution function (CDF) and the boundary values of the CDF in higher

dimensions (d ≥ 3), it is impossible to definitively ascertain the shape of the CDF. To

preserve the the uniquness of CDF one must integrate a loss function to the network.

Firstly, we know that at a particular point the F̂c(xi; {θi
m},θc) satisfy

F̂c

(
x, {θi

m},θc

)
=

∫ xd

−∞
· · ·

∫ x2

−∞

∫ x1

−∞
f̂c
(
y, {θi

m},θc

)
dy1dy2 · · · dyd (2.45)

Approximation yields

F̂c

(
x, {θi

m},θc

)
≈ 1

n1
c

∑
y∈D1

c

flag(x,y) (2.46)

where

flag(x,y) =

1 ∀j ≤ d, yj < xj

0 otherwise
(2.47)
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According to the constraints the loss function can be defined as

L5
c

(
{θi

m},θc

)
=

1

n1
cn

5
c

n5
c∑

i=1

∣∣∣∣∣∣F̂c

(
xi, {θi

m},θc

)
−

∑
y∈D1

c

flag(xi,y)

∣∣∣∣∣∣ (2.48)

The loss L(5)
c involves the training samples: D5

c = {xi} where i = 1, . . . , n5
c

2.4.4 Integration of Main Loss Function

The loss functions of the marginal and copula networks can be defined respectively

as the linear combination of individual loss functions

Lm (θm) =
4∑

k=1

λkLk (θm) (2.49)

Lc

({
θi
m

}
,θc

)
=

5∑
k=1

λkLk

({
θi
m

}
,θc

)
(2.50)

2.5 Graphical Summary

A graphical summary from the work of Zeng (2022) is also added to visualize the

combined network structures neatly.
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Figure 2.7 General framework of Neural Copula and its networks: Marginal and Copula Model

Figure 2.8 Training of Neural Copula
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CHAPTER THREE

APPLICATION

3.1 Bernstein Copula Classifier

In this section, first Bernstein copula and well-known copula distribution

classifiers are compared in terms of classification performance on simulated data.

Then a classification performance analysis is conducted on benchmark biological data

through convex Bernstein copula classifier.

3.1.1 Simulation Study

In the simulation study, the focus is on classifying the generated copula random

variables. Two well-known copulas, the Gumbel and Clayton copulas, are designated

as two distinct classes, and observations are generated to represent various

dependence structures. Total of 100 observations are generated for each copula

family. We preferred small sample size for the simulation design since the used real

data in this study has small sample size (which is a frequent case in biomarker data)

and we wanted to obtain an equivalent observation. These two Archimedean families

of copulas exhibit different dependence characteristics: the Gumbel copula displays

right-tailed dependence, while the Clayton copula showcases left-tailed dependence.

Our interest lies in assessing how effectively the Bernstein copula classifier can

capture the patterns inherent in the selected parametric copulas. Furthermore,

observations generated from a Gaussian copula with varying dependence structures

are also classified.

In the machine learning process involving the Bernstein copula, a grid search is

performed, and only the best results are presented alongside the optimal grid sizes. To

prevent oversmoothing and expedite computation, grid size permutations are

employed. The maximum grid size for a bivariate Bernstein copula is set at 20, while

for a convex Bernstein copula, it is set at 6.
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Classification using the Gaussian distribution is performed within a Naive Bayes

framework. Naive Bayes is a valuable method for density-based machine learning

because it assumes independence between random variables, which greatly simplifies

the classification process. As a result, Gaussian Naive Bayes (GNB) is utilized as a

benchmark for the machine learning simulation. 10-fold cross validation with

repetition is used for evaluation criteria.Each 10-fold cross-validation is repeated 20

times. This repetition allows for the training and testing data to be drawn from

various parts of the dataset, enabling a comprehensive analysis of the performance of

the learned models. Simulations consist of weak-weak, strong-strong and

strong-weak associations in terms of Kendall’s tau correlations. In our evaluation, we

employ accuracy as a common performance measure in machine learning to assess

the classification model’s effectiveness.

In Figure 3.1, each figure illustrates the decision regions with actual test data

points. The first column displays the performance of the Bernstein copula classifier

for the fold in which the maximum accuracy is achieved. For the parametric copula

and Gaussian Naive Bayes classification, the figures are generated using the same

fold as the Bernstein copula. The GCC classifiers exhibit symmetrical patterns with

curved regions. In the case of a strong-weak structure, the classifier for the higher

Kendall’s tau tends to create its discriminating region in the middle due to the

symmetry of the associated data. In the 0.7− 0.7 case, GCC manages to capture more

of the structure, while in the 0.2 − 0.2 case, it struggles to determine adequate

regions. Interestingly, Gaussian Naive Bayes (GNB) categorizes regions as linear,

curved, and circular, depending on the best possible outcome for classification. In

comparison to BC and GCC, GNB fails to capture tail locations and focuses more on

central and non-central regions, especially when there are different associations

among learned models. Unlike GCC and GNB, BC exhibits asymmetric localizations

with irregular patterns.

Nevertheless, the patterns observed in BC are relatively close to GCC, especially

in cases involving strong-weak dependence structures. Overall, BC exhibits behavior

that is similar to GCC.
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Figure 3.1 Decision regions with actual test data points. **First column shows the Bernstein copula
classifier’s performance for the fold with maximum performance. For other columns, the displayed
results are obtained by using the same fold as BC in order to compare.
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3.1.2 Real Life Data:Coimbra Breast Cancer

Early detection and treatment plans are essential for the notorious diseases such as

breast cancer. Machine learning proves to be a valuable supportive tool in medical

area being an objective decision maker for the assessment of the diseases. To assess

the potential of the Bernstein copula classifier in this context, we establish a machine

learning framework for the Coimbra Breast Cancer dataset.The data is available on

UCI machine learning repository. The data consists of several features namely;

Glucose, Insulin, HOMA, Leptin, Adinopectin, Resistin, MCP-1, Age and Body Mass

Index (BMI). Those biomarkers were collected through consultation and blood

analysis for modeling of the obesity-associated breast cancer since they are valid

indicators K. et al. (2013). The data has total of 116 subjects; 52 of them are in the

control group and 64 subject shows presence of the breast cancer. In the simulation

analysis, the classification results obtained using the Bernstein copula are promising,

particularly when the density function is unknown. In further analysis, we extend our

investigation to real data classification within a high-dimensional framework to study

the behavior of the joint Bernstein copula density when there are more than two

variables involved. First, we adopt feature importance order from the study Patrício

et al. (2018). The order reflects the individual impact of biomarkers on breast cancer

models by using the Gini’s coefficient. In decreasing fashion, the order is; Glucose,

Resistin, Age, BMI, HOMA, Leptin, Insulin, Adinopectin, MCP-1. For classification

purposes, the first four biomarkers, ordered by their importance, are selected as the

feature space. As it can be seen in the Kendall’s tau values in Figure 3.2, there are

relatively low correlations between biomarkers, falling within the [-0.25, 0.25] range.

The highest correlation value is observed in the pair (Glucose, Age) with a Kendall’s

tau-value of 0.13. Therefore, there is a need for a copula model that can capture data

with low dependence. In this case, the Bernstein copula with relatively lower grid

sizes would be more suitable, especially considering the symmetrical nature of the

dependence. To classify the presence of breast cancer, we establish learned models

using cross-validation. However, due to the limitations of the joint Bernstein copula

in handling high-dimensional data, we establish four-dimensional models. In addition
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to the Bernstein copula, we also implement the convex Bernstein copula as a classifier

to capture weighted density information from various calibrated Bernstein densities.

As discussed in Section 2.2.1, achieving copula validity requires marginal

transformation to uniformity, which is accomplished by solving the described

optimization problem. During cross-validation, each fold is learned through marginal

optimization. However, it’s worth noting that this process gradually slows down the

running time of the machine learning algorithm as the number of variables increases,

along with the grid size and dimension. The initial solution described in Section 2.2.1

is also employed as a support for the cases where global optimization is unattainable.

In situations where optimization cannot be achieved, the problematic folds are

excluded from the analysis, and the results are compared accordingly. In the context

of supervised learning, both 10-fold cross-validation with 20 repetitions and

leave-one-out cross-validation are applied.

In the first step, the grid search is implemented for each pair from

{3, 4, 5, 6} × {3, 4, 5, 6}. The grid search is configured in this specific manner

because, when the grid size exceeds 6, non-convergent results become increasingly

common, in addition to significantly slowing down the computation time. Table 3.1

displays the classification performance of BC for each grid. The ordered grid pairs of

6-4, 6-5, 6-6 provide relatively better performance. Overall, there are unbalanced

class-wise results observed as the grid size increases.

In the second step, the relatively better cases are selected, and the classification is

once again carried out, this time utilizing the convex Bernstein density as the

discriminant function. The weighted averages of the two Bernstein copulas are

integrated into the machine learning algorithm, as defined in the equation (2.7). The

copula is also can be referred as two component convex Bernstein. In Table 3.2, only

the Bernstein with a 4-6 grid order is displayed as it yields the best results among the

other options. It is evident that the convex Bernstein manages to address the

class-wise imbalance issue. The weights ranged among the permutations of

(0.2, 1 − 0.2) incremented by 0.05 and the pairs which have the best classification

result are displayed. The optimal results are achieved by assigning closer weights. In
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the table, the upper weight represents the weight of Bernstein estimated with the

greater grid size. For instance, if the upper weight is 0.4 for the grid pair 4-6, the

weight of c4 is 0.6, and the weight of c6 is 0.4. In the final results, global accuracy

increases along with balanced class-wise accuracies when weighting by 0.49, which

provides relatively optimal accuracy.

In Table 3.3, the comparison between mixed and global optimization is conducted

with equal weights, and leave-one-out cross-validation is included in addition to the 10-

fold cross-validation with 20 repetitions (10F20R). For the 10F20R approach, the mean

accuracy slightly increases when global accuracy is considered, even with 22 missing

folds.On the other hand, themean accuracy shows a slight improvement when 5missing

folds are addressed with mixed optimization. Additionally, there is a relatively larger

change in mean class 2 accuracy following the same pattern as the mean accuracy.

As the training sample size decreases (for 10F20R, training samples consist of data

with sizes of 104 or 105), the number of unsolved cases increases, and the neglected

folds can have a negative impact on accuracy, as seen in the case of 10F20R. In the

case of leave-one-out, where there are only 5 missing folds, including them by using

the initial solution even leads to a slight increase in accuracy. Therefore, especially

when there are many missing folds, optimizing with the initial solution may result in a

decrease in accuracy. In Table 3.4, In this case, we select the fold with the best-balanced

performance, achieving an accuracy of 0.83, a class 1 accuracy (specificity) of 0.8, and

a class 2 accuracy (sensitivity) of 0.8571. According to the confusion matrix for this

specific fold, our algorithm makes only one error case in both false positive and false

negative classifications.

Lastly, several widely known supervised learning algorithms are applied on the

breast cancer data along with the two component convex Bernstein. Results for the

analysis given in Table 3.5 and the included classifiers are; linear discriminant

analysis (LDA), quadratic discriminant analysis (QDA), logistic linear regression

(LLR), logistic linear regression involving all of the interactions (LLR inter.) and

convex Bernstein (CB). The classification is conducted using the same

four-dimensional feature set, as performance deteriorated when more features were

38



−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

A
ge

R
es

is
tin

B
M

I

Glucose

Age

Resistin

Figure 3.2 Kendall’s tau values for features for Coimbra Breast cancer data.

added. Only leave-one-out cross-validation is performed. Additionally, for CB

(Convex Bernstein), only mixed optimization is utilized, and a more detailed

parameter search is conducted to explore whether improved classification results can

be achieved. The implementation for CB is chosen with a grid configuration of

4, 6 − 4, 6 and weight values of 0.4, 0.6 − 0.55, 0.45. As a result, there is a slight

increase of 2% in Class 1 accuracy but a slight decrease of 1% in Class 2 accuracy.

Based on the results, classifiers, except for LLR inter. (Logistic Regression with

Interaction Terms), exhibited lower overall accuracy compared to CB. While CB is

slightly better than LLR for the given feature set, the LLR inter. model performed

better when 6 additional features were added to the 4 biomarkers, resulting in superior

performance in the 10-dimensional classification task. However, it is important to

note that 10-dimensional classification could not be performed with CB due to

computational difficulties, so a direct comparison in that context is not available.

Also, it is naturally expected to obtain a better performance by including feature

variations in the training data.
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Table 3.1 Four-variate Bernstein classifier results for the chosen grid sizes.
Class 1: Control, Class 2: Breast Cancer.
Number of no solutions shows number of non-convergent optimizations 200 models.

Accuracy Class 1 Accuracy Class 2 Accuracy Grid Size 1 Grid Size 2 No Sol. Cases
0.5942 0.7322 0.4767 3 3 0
0.5728 0.858 0.3404 4 3 0
0.5079 0.9516 0.1455 5 3 0
0.5907 0.9774 0.2806 6 3 20
0.5872 0.414 0.7335 3 4 0
0.6021 0.6912 0.5305 4 4 0
0.5694 0.7449 0.4217 5 4 0
0.6725 0.8916 0.5009 6 4 20
0.5279 0.0815 0.8913 3 5 1
0.5774 0.356 0.7574 4 5 1
0.5862 0.5928 0.5881 5 5 1
0.682 0.7818 0.6109 6 5 21
0.5177 0.0539 0.8962 3 6 9
0.5653 0.2181 0.844 4 6 9
0.5663 0.403 0.7 5 6 9
0.6813 0.6796 0.687 6 6 29

Table 3.2 Results for the 4-dimensional convex Bernsteinmodels (cCB) adoptedwith grid sizes of (4, 6−
4, 6).
Class 1: Control, Class 2: Breast Cancer.
Number of no solutions shows number of non-convergent optimizations (200 models).

Accuracy Class 1 Accuracy Class 2 Accuracy Model 1 Weight Model 2 Weight No Soln. Cases
0.7266 0.7492 0.7116 0.48, 0.52 0.48, 0.52 24
0.7275 0.7503 0.7121 0.49, 0.51 0.49, 0.51 24
0.727 0.7495 0.7123 0.50, 0.50 0.50, 0.50 24
0.7265 0.746 0.7142 0.51, 0.49 0.51, 0.49 24
0.726 0.7447 0.714 0.52, 0.48 0.52, 0.48 24
0.726 0.7445 0.7135 0.53, 0.47 0.53, 0.47 24

Table 3.3 Convex Bernstein classifier (cCB) results for the 4-dimensional models where trained models
adoptedwith bothmixed optimization and global optimizationwithmissing folds. For both classification
models, Bernstein components have aggregated grid sizes of (4, 6 − 4, 6), weighted equally i.e.,
(0.5, 0.5− 0.5, 0.5).

Accuracy Class 1 Accuracy Class 2 Accuracy
10F20R 0.7267 0.7263 0.7229
Leave-one-out 0.7500 0.7885 0.7188
Optimization: Mixed
10F20R - 22 Missing Case 0.7205 0.7423 0.7013
Leave-one-out - 5 Missing Case 0.7477 0.7885 0.7119
Optimization: Global
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Table 3.4 Confusion matrix of convex Bernstein applied fold that shows real and predicted counts of
subjects.

Predicted Class
Actual Class Class 1 Class 2

Class 1 4 1
Class 2 1 6

Table 3.5 Comparison between well-known machine learning algorithms. Convex Bernstein trained
according to a detailed parameter search is included.

Classifier Accuracy Class 1 Accuracy Class 2 Accuracy
LDA 0.6983 0.6923 0.7031
QDA 0.7241 0.8077 0.6562
LLR 0.7414 0.7500 0.7344
LLR inter. 0.8276 0.8654 0.7969
CB 0.7500 0.8077 0.7031

3.2 Discussion

Probability distributions serve as powerful tools in machine learning, offering great

potential for improvement.Embracing a distributional approach when learning from

training datasets can result in a precise data fit. Nonetheless, accurately pinpointing

the underlying distribution structure, especially in real-life scenarios, remains a

significant challenge. Consequently, nonparametric approaches offer promising

opportunities for enhancement. In this study, a Bernstein copula implemented as a

classifier is used in cross validation procedure. The algorithm for the classification is

designed to search the optimal grid size that is capable of recognizing the test data

optimally. In the simulation study, the classes are defined based on two well-known

copulas: Gumbel and Clayton, each characterized by distinct tail dependencies. The

Gumbel copula represents a right-tail dependence structure, while the Clayton copula

represents a left-tail dependence structure. The Bernstein copula approach has

exhibited superior performance compared to the benchmark classification method,

Gaussian Naive Bayes. Moreover, the Bernstein copula approach demonstrates a

significant resemblance to the Gumbel-Clayton classifier, especially in cases

characterized by weak dependence. Particularly, when dealing with structures that

exhibit mixed correlations and tail dependencies, Gaussian Naive Bayes (GNB) fails
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to provide satisfactory accuracies.The figures from the best-case machine learning

simulations demonstrate that GNB is ineffective at capturing the tails of the data and

struggles with high levels of dependence. In a real data application, the Coimbra

breast cancer data is analyzed, and classification is performed using a four-variate

Bernstein copula. This approach results in relatively higher accuracies, although there

are unbalanced class-wise accuracies. To address the poor performance, the convex

Bernstein copula is employed with grid pairs that exhibit higher accuracies. This

approach effectively resolves the issue of class-wise imbalance. A weight search for

the discriminant functions leads to satisfactory results in comparison to the previous

analysis. Therefore, the integration of distributional information proves to be a

valuable tool, and there is potential for further enhancements in this approach.

Optimizing the contingency table before evaluating the Bernstein density is

perhaps the most prominent limitation. Transforming discrete variables to be equal to

md can pose challenges in this context. Therefore, it is advisable to use the Bernstein

copula for classification problems involving small feature spaces that have been

validated to explain the target variable. Based on the findings, as the number of

unknowns in the optimization algorithm approaches approximately 1000, the

optimization process becomes slower, and non-convergent results become more

apparent. Empirical observations suggest that using initial solutions in optimization

can lead to a slight decrease in accuracies, especially when there are many unsolvable

folds. However, in general, for efficiency, moderate dimensions are needed along

with the initial solution framework.

3.3 Vine Density Classifier

3.3.1 Simulation Study

In this section, we examine the efficacy of vine density machine learning

frameworks, comparing their performance to that of random forest and support vector

machines. The simulation is conducted using two classes of Gaussian distributions
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characterized by distinct dependence structures.

In simulation design, 500 observations are generated with 10 trials and the average

accuracy results are displayed. The first class is generated with a Gaussian copula

using τ = 0.7 , while the second class is generated with a Gaussian copula using

τ = 0.2. This is achieved by leveraging the vine copula simulation module of the

VineCopula package in R. The dataset consists of 5-dimensional data with 10 nodes,

where 4 nodes have Gaussian copula, and 6 nodes have independence copula (i.e.,

noise). The classification is based on a 10% test set and a 10% validation set, which

are used for trained model optimization. For evaluation process, we use accuracy

measure as a common performance measure in machine learning to assess the

classification model’s effectiveness. Accuracy is the ratio of correct predictions

obtained by the model to the total number of predictions. The accuracy is calculated

as:

Accuracy = (Number of correct predictions) / (Total number of predictions).

C1 and C2 are considered as Class 1 and Class 2 , respectively. Classes are

simulations of 5 dimensional vine density with 15 nodes where 10 of them are copula

distribution.Class 1 indicates the data generation process for vine that consists of

empirical marginals in the first tree, only Gaussian (0.7) copula calibration in the

second tree (4 nodes) and the independence copula for the rest of the trees (noise on 6

nodes). Class 2 has the same data generation process only difference is that the

second tree is built by using Gaussian (0.2) copula.

In Table 3.6 overall results are displayed. The full-parametric vine has the highest

accuracy, mean C2 accuracy, F1 score and AUC score while truncated-parametric

vine is relatively close in terms of all metrics excluding mean C2 accurracy. In terms

of accuracy, random forest and support vector machines fall behind the

full-parametric and truncated-parametric vine frameworks. The parametric

frameworks along with the truncated hybrid vine exhibit relatively more balanced

class-wise accuracies. Notably, the hybrid methods achieve higher class 1-based

accuracy compared to other vine frameworks. The performance of Bernstein vine is

43



relatively low for the simulated data. In summary, it can be inferred that achieving

high accuracy performances may not necessitate calibrating a full vine, as the

performance of the truncated-parametric model closely approximates that of the

full-parametric model.

In Table 3.7 and Table 3.8, the trim numbers are higher for the first class, as the

Gaussian distribution with a correlation parameter of 0.7 leads to more correlated tree

instances. Calibrating these trees provides valuable information for the training data.

Conversely, for second class trainings, either the first tree calibration is applied, or no

vine calibrations are used at all, as zero values indicate that the discriminant function

is a product of marginal distributions, corresponding to the naive Bayes method.

In Table 3.10 and Table 3.9, the simulation-wise performances, along with the

hyperparameters, are displayed for Support Vector Machines (SVM) and Random

Forest (RF), respectively. In the simulation scenario, the training model capacity is

optimized by selecting parameters that yield the highest accuracy from the validation

set.

Table 3.6 Class 1: 4 Gaussian(0.7) - 6 Noise; Class 2: 4 Gaussian(0.2) - 6 Noise; 500 observations; 10
simulations

Method Mean Accuracy Mean C1 Acc. Mean C2 Acc. F1 Score AUC Score
full-parametric 0.877 0.8826 0.87224 0.88387 0.93574
full-bernstein 0.685 0.84129 0.55186 0.65205 0.74283
full-hybrid 0.775 0.93695 0.63703 0.74991 0.82907

truncated-parametric 0.863 0.88695 0.8426 0.86816 0.9281
truncated-bernstein 0.699 0.71305 0.68705 0.70636 0.77141
truncated-hybrid 0.852 0.90652 0.80555 0.85285 0.91984

svm 0.855 0.93478 0.78703 0.85296 0.9333
random forest 0.835 0.86087 0.81297 0.8407 0.90936

3.3.2 Gene Expression Data Classification Application

For the machine learning model evaluation, Monte Carlo cross validation method is

used such that dataset is sampled 20 times for the train-test split. Classification with

truncated vine also has validation set in the same manner. Performance metrics are

obtained by aggregating 20 classification tasks for each data. Note that, for some splits
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Table 3.7 Truncated parametric vine model simulations

Accuracy C1 Acc. C2 Acc. F1 Score AUC Score Trim Number C1 Trim Number C2
0.82 0.8913 0.7593 0.8200 0.9066 3 1
0.85 0.9130 0.7963 0.8515 0.9046 2 1
0.86 0.8913 0.8333 0.8654 0.9114 1 0
0.81 0.8696 0.7593 0.8119 0.8917 4 1
0.90 0.8913 0.9074 0.9074 0.9444 2 1
0.87 0.9348 0.8148 0.8713 0.9505 1 0
0.90 0.8261 0.9630 0.9123 0.9565 1 1
0.84 0.8043 0.8704 0.8546 0.9179 2 1
0.91 0.9130 0.9074 0.9159 0.9638 1 0
0.87 0.9348 0.8148 0.8713 0.9336 1 1

Table 3.8 Truncated hybrid vine model simulations

Accuracy C1 Acc. C2 Acc. F1 Score AUC Score Trim Number C1 Trim Number C2
0.81 0.8913 0.7407 0.8081 0.8969 2 0
0.82 0.9348 0.7222 0.8125 0.9026 2 0
0.86 0.8913 0.8333 0.8654 0.9114 1 0
0.77 0.8913 0.6667 0.7579 0.8482 2 1
0.88 0.8913 0.8704 0.8868 0.9400 1 0
0.87 0.9348 0.8148 0.8713 0.9505 1 0
0.89 0.8696 0.9074 0.8991 0.9481 4 0
0.85 0.8913 0.8148 0.8544 0.9114 4 0
0.91 0.9130 0.9074 0.9159 0.9638 1 0
0.86 0.9565 0.7778 0.8571 0.9255 2 0

Table 3.9 SVM model with polynomial kernel of third degree simulations

Accuracy C1 Acc. C2 Acc. F1 Score AUC Score svm_coef svm_gamma
0.81 0.913 0.7222 0.8041 0.8965 1 1
0.84 0.8913 0.7963 0.8431 0.9054 2 1
0.88 0.9348 0.8333 0.8823 0.9416 2 0.1
0.82 0.9348 0.7222 0.8125 0.9106 1 1
0.89 0.9565 0.8333 0.891 0.9461 3 0.1
0.89 0.9565 0.8333 0.891 0.9654 1 0.2
0.86 0.9348 0.7963 0.86 0.9513 3 0.1
0.77 0.8913 0.6667 0.7579 0.9042 1 0.1
0.94 0.9783 0.9074 0.9423 0.9791 1 0.2
0.85 0.9565 0.7593 0.8454 0.9328 2 0.1

vine structures are failed to be optimized, those cases are omitted.
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Table 3.10 Random Forest model simulations

Accuracy C1 Acc. C2 Acc. F1 Score AUC Score rf_nest rf_mdep rf_ms_split rf_ms_leaf
0.81 0.8696 0.7593 0.8119 0.8907 50 10 1 1
0.84 0.9348 0.7593 0.8368 0.877 50 5 1 1
0.86 0.8261 0.8889 0.8727 0.9235 50 5 1 1
0.83 0.8913 0.7778 0.8317 0.9052 150 5 1 2
0.89 0.913 0.8704 0.8953 0.9422 50 5 1 2
0.85 0.8913 0.8148 0.8544 0.9308 50 5 5 2
0.81 0.7609 0.8519 0.8288 0.9261 100 5 5 2
0.76 0.8043 0.7222 0.7647 0.8529 50 5 5 1
0.9 0.8478 0.9444 0.9107 0.9541 100 10 5 2
0.8 0.8696 0.7407 0.8 0.8911 150 10 5 2

3.3.2.1 GSE2109 Benchmark Data

The gene expression data series referenced by GSE2109 in NCBI repository are

used as a benchmark data for vine classification. The data originally created as

expression project for oncology (expO). The project expO seeks to manage cancer

patients clinically. The expression data holds a strong profile of malignant tumor

samples to establish distinguishing analysis among tissues. Data is reorganized and

standardized for various cancers in the OSF data portal. The classification analysis is

made for three different expression data namely; GSE2109 Kidney, GSE2109 Lung,

GSE2109 Uterus. Each subject has the prior class information on cancer whether

he/she is in early stage or late stage. Note that in the original curation, the first class is

labeled as the combination of 1 and 2 stages and the second class is labeled as the

combination of 3 and 4 stages. We address them early and late stages, respectively.

The curation techniques and detailed information are given in Golightly et al (2018).

The study aims to help researchers to make use of benchmark comparisons on

machine learning algorithms. Various machine learning methods were applied on the

data in the study Piccolo et al. (2021).

3.3.2.2 Classification of GSE2109 Benchmark Data

For each data genes are scored by the mutual information criteria and top five

expressed genes are selected. Mutual information is used for feature selection that

measures how much information one variable provides about other. Using this
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method, genes are ranked according to the degree to which their expression is linked

to the classification goal. The top five genes are chosen based on their scores. The

most useful characteristics for classification are these genes. An overview for the top

gene annotations are given based on the analysis reports in Human Protein Atlas

Portal. For the kidney tumor data, the gene with ID ENSG00000159899 came first.

The gene encodes natriuretic peptide receptor B (NPR2), a membrane receptor for

natriuretic peptides, primarily C-type natriuretic peptide (CNP), which activates

guanylyl cyclase upon ligand binding. Based on the findings, the expression levels

are altered in the case of kidney cancer and the expression levels show a significant

association with patient survival, where high expression refers to a relatively higher

survival chance. (Given in Table 3.11)

For the lung tumor data, the gene ENSG00000011426 is on top. It encodes an

actin-binding protein that is involved in cell growth and migration, and cytokinesis.

The gene has a significant association with patient survival, where lower expression

refers to a lower survival rate. Those two mentioned genes have relatively low

expression activity for overall cancer types and have no specific enrichment

observation for any cancer type. (Given in Table 3.12)

Lastly the gene ENSG00000124939 which involves in androgen receptor signaling

pathway and located in extracellular space has the most score in uterus data. The gene

shows no significant association with survival rate. However, this gene is more

actively transcribed in the RNA for the cancer types namely; Ovary Serous

Cystadenocarcinoma, Uterine Corpus Endometrial Carcinoma. In another words the

gene is group enriched for the mentioned types where uterus is also involved.

According to the RNA expression overview, unlike the ENSG00000159899 and

ENSG00000011426, the expression activity is almost nonexistent for the other types

of cancer and is high for the given cancer types; hence, the term group enriched is

used.(Given in Table 3.13) The examined expression activity for the chosen uterus

data genes here also in parallel with its the classification results.
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Classification based on R-vine is carried with test percentages of 10%, 15% and

20%. For truncated vines, different percentages are used for pairs of test and

validation. In Table 3.14, there is a slight increase in truncated vine especially when

models are built with parametric vine. The accuracy results are in favor of the later

stage which is lesser class. The results in kidney data may suffer the imbalanced

situtation of the classes. The most balanced results are adopted for the second row of

non-parametric truncated vine(0.714; 0.704; 0.738). In Table 3.15, there is also

improvement in truncated vine and the last row of parametric truncated vine (0.718;

0.688; 0.764) has the most balanced performance and there exists a promising

increase in later stage accuracy. Lastly, the results for the uterus dataset is in

Table 3.16. The cancer stage distinguishment can be achieved with relatively high

performance for this data. With truncation, better results are obtained.

Accuracy-wise, the first row of parametric truncated vine (0.875; 0.936; 0.758) has

the highest performance. However, the first row of the non-parametric truncated vine

(0.87; 0.901; 0.801) has the most balanced result. In this case, the mean C2

accuracies are also kept relatively higher.

Lastly, hybrid vine models which have semi-parametric vine setup are used to

investigate existence of a boosting effect. Overall, the results are slightly differ from

the earlier ones. For this reason, only the results for the uterus dataset is given in

Table 3.17. Results are particularly closer to the parametric ones for all of the

benchmark datasets. It can be deduced that, semi-parametric algorithm for vine tends

to choose parametric copulas more. According to the results, there is no proof that

hybrid distribution setup does not have a boosting effect that goes beyond already

calculated parametric and non-parametric results. Accuracies of different vine setups

are displayed in the Figure 3.3, Figure 3.4, Figure 3.5 for all of the datasets.

In Figure 3.6, the cut points of the truncated vine models are displayed for each fold

of the uterus data. According to the findings one can see that, there is no need to fit a

vine distribution with full tree and nodes calibration to achieve a higher classification

performance. In fact, since zeros are the most appearent, just marginals will be enough

for a good performance in uterus data. However, the most balanced result achieved
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in the non-parametric case uses various cut points. For example, the model 1 uses cut

point 1, 7 seven times and cut point 2, 1 time which refers the model needed at least

one level tree generation in many cases. Overall, the models needed to fit vine fully in

just one instance which is the model 2 of non-parametric modeling.

Table 3.11 Top 5 selected genes for Kidney data

Gene Annotation MI Score
ENSG00000159899 0.1310481
ENSG00000198719 0.1260605
ENSG00000174640 0.1258081
ENSG00000187840 0.1242762
ENSG00000100234 0.1224906

Table 3.12 Top 5 selected genes for Lung data

Gene Annotation MI Score
ENSG00000011426 0.2340990
ENSG00000111665 0.2177974
ENSG00000117650 0.2156703
ENSG00000088325 0.2153979
ENSG00000123485 0.2062613

Table 3.13 Top 5 selected genes for Uterus data

Gene Annotation MI Score
ENSG00000124939 0.2882380
ENSG00000109794 0.2806210
ENSG00000082175 0.2795868
ENSG00000156049 0.2674682
ENSG00000129003 0.2657077

3.3.3 Discussion

Vine copulas model the distribution of high-dimensional random vectors by

capturing the relationships between pairs of conditional random variables. They offer

the flexibility to represent various dependence structures between pairs of random

variables. Moreover, the vine model fulfills generalization of copula in arbitrary

dimensions. This property makes vine copula highly flexible models for

computationally tractable estimation and model selection. We use vine densities as
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Table 3.14 Vine classifier performances on kidney tumor data. There are 132 early stage and 63 late
stage cancer subjects.

R-vine classifier Test Percent Validation Percent Mean Accuracy Mean C1 Accuracy Mean C2 Accuracy F1 Score AUC Score
0.1 - 0.6775 0.637015 0.74474 0.53479 0.7261

Parametric 0.15 - 0.66725 0.629235 0.75237 0.596665 0.752615
0.2 - 0.650005 0.617205 0.71968 0.575635 0.73271

0.1 - 0.605 0.48722 0.868905 0.569975 0.74199
Non-Parametric 0.15 - 0.62931 0.53198 0.843035 0.60246 0.73752

0.2 - 0.61922 0.52997 0.80126 0.59774 0.74951
Truncated R-vine classifier Test Percent Validation Percent Mean Accuracy Mean C1 Accuracy Mean C2 Accuracy F1 Score AUC Score

0.1 0.1 0.69 0.633 0.794 0.53 0.741
Parametric 0.2 0.1 0.696 0.671 0.739 0.581 0.772

0.1 0.2 0.7 0.66 0.791 0.55 0.727
0.2 0.2 0.691 0.679 0.717 0.62 0.77

0.1 0.1 0.703 0.633 0.844 0.461 0.687
Non-Parametric 0.2 0.1 0.714 0.704 0.738 0.543 0.723

0.1 0.2 0.695 0.641 0.809 0.487 0.655
0.2 0.2 0.7 0.684 0.738 0.538 0.7

Table 3.15 Vine classifier performances on lung tumor data. There are 53 early stage and 43 late stage
cancer subjects.

R-vine classifier Test Percent Validation Percent Mean Accuracy Mean C1 Accuracy Mean C2 Accuracy F1 Score AUC Score
0.1 - 0.655 0.634 0.710 0.541 0.725

Parametric 0.15 - 0.643 0.641 0.664 0.555 0.708
0.2 - 0.653 0.702 0.608 0.556 0.699

0.1 - 0.575 0.648 0.528 0.633 0.746
Non-Parametric 0.15 - 0.618 0.695 0.554 0.651 0.765

0.2 - 0.634 0.716 0.563 0.658 0.788
Truncated R-vine classifier Test Percent Validation Percent Mean Accuracy Mean C1 Accuracy Mean C2 Accuracy F1 Score AUC Score

0.1 0.1 0.655 0.641 0.686 - 0.674
Parametric 0.2 0.1 0.708 0.698 0.715 0.65 0.734

0.1 0.2 0.675 0.683 0.685 0.566 0.708
0.2 0.2 0.718 0.688 0.764 0.617 0.722

0.1 0.1 0.645 0.627 0.674 0.654 0.715
Non-Parametric 0.2 0.1 0.708 0.688 0.738 0.679 0.740

0.1 0.2 0.625 0.606 0.662 0.645 0.721
0.2 0.2 0.697 0.684 0.72 0.657 0.705

discrimination functions. Through the machine learning process in simulation study,

the densities represent the training data for each class label. Subsequently, class

membership of the test data is determined based on the vine model with the highest

density value. Truncated vine model approaches are proposed for the classification

procedure based on the vine Bayes context. Some hybrid vine structures are also

constructed by semi-parametric vine modeling which makes the selection between the

parametric copulas and Bernstein copulas with different grid sizes based on the

relative distance given in equation 2.20. Based on our observations, it always tends to

select the higher grid size to apply more smoothing effect on the distribution. Hence,

we fix the Bernstein copula grid size to 10 as the degree of polynomial should be

enough to capture the dependence pattern. If not, it will be practical to engage a
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Table 3.16 Vine classifier performances on uterus tumor data. There are 64 early stage and 41 late stage
cancer subjects.

R-vine classifier Test Percent Validation Percent Mean Accuracy Mean C1 Accuracy Mean C2 Accuracy F1 Score AUC Score
0.1 - 0.825 0.86125 0.78001 0.704 0.886

Parametric 0.15 - 0.790625 0.854605 0.70137 0.7 0.859
0.2 - 0.804755 0.867015 0.70621 0.706 0.864

Non-Parametric 0.1 - 0.795 0.76028 0.87334 0.787 0.889
0.15 - 0.7875 0.75752 0.86119 0.744 0.876
0.2 - 0.77142 0.736775 0.850315 0.73 0.888

Truncated R-vine classifier Test Percent Validation Percent Mean Accuracy Mean C1 Accuracy Mean C2 Accuracy F1 Score AUC Score
0.1 0.1 0.875 0.936 0.758 0.76 0.892

Parametric 0.2 0.1 0.84 0.906 0.719 0.716 0.889
0.1 0.2 0.845 0.878 0.774 0.753 0.899
0.2 0.2 0.84 0.903 0.733 0.706 0.873

Non-Parametric 0.2 0.1 0.843 0.896 0.754 0.716 0.888
0.1 0.2 0.86 0.885 0.797 0.749 0.901
0.2 0.2 0.843 0.896 0.756 0.715 0.872

Table 3.17 Truncated R-vine classifier performance with hybrid setup on uterus tumor data.

Test Percent Validation Percent Mean Accuracy Mean C1 Accuracy Mean C2 Accuracy F1 Score AUC Score
0.1 0.1 0.875 0.927 0.778 0.758 0.9

Semi-Parametric 0.2 0.1 0.84 0.903 0.725 0.723 0.891
0.1 0.2 0.85 0.895 0.762 0.757 0.875
0.2 0.2 0.838 0.908 0.708 0.724 0.874

copula family instead since bivariate parametric copulas can be more sensitive to

capture solid dependence structures. Also high grid sizes for Bernstein copula does

not guarantee better performance and reduce the computational performance as can be

seen in the study Yamut & Hudaverdi (2023). The performance of the proposed

procedures is compared on the class membership of the current data. Some

well-known machine learning methods, such as Support Vector Machines (SVM) and

Random Forest, are employed to compare the performance of the proposed method. It

can be concluded that high accuracy performances can be achieved without fully

calibrating the vine copula structure. The performance of the truncated-parametric

copula closely approximates that of the full-parametric model. Moreover, when

compared with other techniques, the truncated-parametric vine model demonstrates

superior performance.

Furthermore, for the proposed vine type classification, dependence structures

among gene features are constructed using the pair copulas with Bernstein vine,

hybrid vine, and parametric vine modeling. Monte Carlo cross-validation is utilized

for the gene expression dataset and it is sampled 20 times for the train-test split.

Performance metrics are obtained by aggregating results from 20 classification tasks
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Figure 3.3 Accuracy versus test-validation percent line graphs for lung data with respect to the different
truncated vine approaches.
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Figure 3.4 Accuracy versus test-validation percent line graphs for kidney data with respect to the different
truncated vine approaches.

for each dataset. This approach represents a selection copula process in a

semiparametric environment. In vine application, we observe as the tree levels

progressed and conditional observations accumulate, the dependence measure

Kendall’s tau tends to getting weaker. This suggests, co-movements of prominent

variables getting weaker as they are conditioned with more and more variables.

In general, for the gene data, there is a slight increase in accuracy observed in

truncated vine models when models are constructed using both parametric and

nonparametric vines. However, semiparametric designs do not exhibit the desired

boosting effect, as they closely resemble the results obtained from parametric models.
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Figure 3.5 Accuracy versus test-validation percent line graphs for uterus data with respect to the different
truncated vine approaches.

Figure 3.6 Cut points of truncated vines for each model and fold.

Conversely, the nonparametric vine with truncation design yields the most impactful

result, demonstrating the most balanced classification performance in the Uterus gene

expression dataset. The F1 scores are relatively low in the results. Notably, the

highest F1 score is achieved in the full non-parametric case and the highest AUC

score is achieved in the truncated non-parametric case of the uterus data

classification. Based on the cut-off results on the uterus data cross validation, the

parametric approach relatively benefit more from the truncated vine as it tends to cut
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vine off earlier levels than other methods. From this observation it can be deduced

that the bivariate parametric families captured most of the co-movement information

in earlier tree levels as they are flexible to detect existing dependence patterns. Also,

we can interpret the classification performances and cut point figures as

• Full calibration of the vine is unnecessary to achieve satisfactory classification

results.

• In certain datasets, relying solely on the naive approach, where the product of

marginals is used, may be insufficient, particularly when utilizing truncated vine

models. In such cases, various cross-validation strategies involve constructing

vine trees to enhance performance and achieve superior results.

Owing to the decomposable structure of pair copulas, researchers can analyze

gene-by-gene dependencies to better understand networks. Because pair-copula

constructions (PCCs) effectively depict the joint distribution of features, they can

enhance the effectiveness of predictive models.

3.4 Neural Density Based Classifier

In this section, the predictive power of neural network based distribution is

examined in machine learning classification task. Benchmark gene expression

survival data is used and the survival outcome profiles are classified for the task. In

the marginal distribution part, 5 layers are used along with the 5 hidden layer neurons.

In the copula part number of 5 hidden layers are used along with the 10 hidden layer

neurons. The networks are compiled with Nadam optimizer with learning rate of 0.01.

The general loss function is set as mean absolute error.
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3.4.1 GSE62564 Benchmark Survival Gene Expression Data

The GSE62564 dataset was curated to evaluate the predictive potential of RNA

sequencing compared to microarray data, with a focus on overall survival. Survival

outcomes were modeled as a binary classification problem, where a gene profile

labeled as 0 indicates subjects with favorable survival outcomes, and 1 represents

unfavorable outcomes. Cox regression was employed to model survival times and

assess the relationship between gene expression profiles and survival. Based on this

modeling approach, the curators demonstrated that subjects in the favorable survival

group had significantly longer survival periods compared to those in the unfavorable

group. GSE62564 benchmark data consist of 499 subjects and 43827 gene profiles.

The class labeled as favorable survival outcome has 393 subjects and the one labeled

as unfavorable survival outcome has 105 subjects.

3.4.2 Data Preprocessing

The RNA-sequence data is originally curated as RPM type data with log2

transformation. The data is extracted through GEO dataset module of Python. By

using the meta data the gene profiles are properly labeled with correspondent survival

outcomes. Gene selection conducted with the mutual information criteria and top

genes within the top five is gathered as the classification data. Then the data is

standardized by using the min-max scaling. In Figure ,one can deduce the correlation

between the chosen genes are relatively high Kendall’s tau. Hence for proper

classification modeling the dependence structure of genes are crucial. Due to the

imbalanced class random undersampling procedure is used in the the train/test split.

The size of unfavorable survival outcome is referenced as it is the class with lesser

subjects. 105 subjects are randomly chosen for both classes. %20 of the equalized

dataset is determined as the test data and the class distribution of the train and test is

preserved by using stratification. In the end, training data with 168 subjects obtained

where each class labeled data has 84 subjects along with the test data with 42

subjects.
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Figure 3.7 Kendall’s tau correlation matrix of top five survival genes

3.4.3 Classification of Gene Expression Based Survival Data

3.4.3.1 Neural Copula Classification

Since the management of neural network which conditioned to build a copula is

difficult in arbitrary dimensions the classification of the survival data is made by two

genes. Hence, the top two gene profiles are extracted for the classification task. The

marginal neural networks and copula network are obtained after 2000 epochs. In

Figure 3.8 and Figure 3.9 the marginal distributions of class labeled data that

generated by neural networks can be displayed. In copula distributions that generated

by neural network can be displayed. According to the results, the networks provided

an adequate fit close to the true distributions. In Table 3.18 the classification results

on the survival data can be examined. Overall results are not poor however the recall

score is relatively low causing also lower F1 score. The recall score is especially

important since identifying at-risk patients is crucial for intervention. Predicting

at-risk patients influence clinical decision-making, like adjusting treatment plans or

monitoring high-risk patients. On the other hand, the AUC score is based unfavorable

survival class probabilities and indicates how well your model predicts patients who

are more likely to have an unfavorable survival outcome. Hence, AUC score is not

satisfying for identifying unfavorable survival characteristics of the patients.
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Nonetheless, model used two genes (features) for the problem and lacks sufficient

information.

3.4.3.2 Neural Marginal Based Vine Distribution

As the second step of the classification task vine density function is calibrated with

top five genes. The employed procedure is the full vine calibration with parametric,

Bernstein (non-parametric) and hybrid vine as in the previous section. As mentioned

in the previous application the root tree of the vine has a crucial role which means

calibration of the marginal distributions has a crucial effect on modeling of the vine

density. The difference is that the marginal distributions are generated through the

neural network procedure. Hence the CDF and PDF information of the marginal

distributions are fed to the vine density function by marginal neural network

computations. The classification performance of the neural marginal based vine

density compared to the vine density with parametric marginals. The parametric

marginal distributions are determined by Akaike criterion. The chosen marginal

distributions for the genes of the favorable survival class are; Weibull, Gaussian,

logistic, Weibull and Weibull. For the unfavorable survival group the chosen

marginals are; Gaussian, Weibull, Weibull, logistic and logistic. Neural marginal

distributions are generated with 2000 and 50000 epochs to investigate the effect of the

training capacity. These models are called as neural marginal based vine (NMBV). In

Figure 3.12, Figure 3.13 marginal distributions trained with 2000 epochs and in

Figure 3.14, Figure 3.15 marginal distributions trained with 50000 epochs can be

visualized. Overall an adequate fit can be observed for each gene in terms of CDF and

PDF. In the marginals trained with 50000 epochs, vertices of PDFs are relatively

more captured than the marginals trained with 2000 epochs. Nevertheless, capturing

the PDFs in more detail is not necessarily sign of a good trained model as this may

cause overfitting. In Table 3.19 the classification performance vine classifiers are

given. Naturally, by using more genes to train the models, the overall performance is

increased. The R-vine classifier with Bernstein approach has the best result among

the classifiers. On the other hand, NMBV with Bernstein approach performed close to
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the best results when trained with 2000 epochs. When trained with 50000 epochs the

NMBV performed poor results which shows a sign of overfitting in the model. The

parametric and hybrid approaches did not present a result that is particularly better

compared to the Bernstein approach.

Figure 3.8 CDF and PDF plots of bivariate favorable survival data after 2000 epochs

Figure 3.9 CDF and PDF plots of bivariate unfavorable survival data after 2000 epochs

Figure 3.10 CDF and PDF plots of bivariate favorable survival data after 2000 epochs

3.4.3.3 Discussion

In this section, applications were carried out on how artificial neural networks can be

used in statistical learning problems and what results can be obtained. Additionally, it
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Figure 3.11 CDF and PDF plots of bivariate unfavorable survival data after 2000 epochs

Table 3.18 Classification performance of neural copula.

Accuracy Precision Recall F1 Score AUC Score
0.81 0.93 0.67 0.78 0.82

was emphasized that vine densities can incorporate their marginal distributions as trees.

Such procedure is given as an alternative to generating multi dimensional distributions

using artificial neural networks as it is a difficult process.

It was observed that the vine distribution constructed with parametric marginals

and the Bernstein copula achieved better classification results, while the vine

distribution created with neural marginals and the Bernstein copula yielded results

close to it. Based on these findings, it can be said that parametric distribution families

provide a better fit for this dataset. However, it was also demonstrated that the vine

distribution calibrated with neural marginals could be a critical candidate for

scenarios where parametric families fall short. Overall, it was shown that the

dependency structure observed in the Kendall tau correlation matrix could be more

accurately calibrated with the smoothing effect of the Bernstein copula.

In cases trained with a high number of epochs, overfitting was observed for this

small dataset, resulting in performance even lower than two-dimensional classification
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Figure 3.12 CDF and PDF plots of the five favorable survival data genes after 2000 epochs

Figure 3.13 CDF and PDF plots of the five unfavorable survival data genes after 2000 epochs

Figure 3.14 CDF and PDF plots of the five favorable survival data genes after 50000 epochs

Figure 3.15 CDF and PDF plots of the five unfavorable survival data genes after 50000 epochs

for some cases.

In this application, where survival status of patients were classified, it was

demonstrated that, despite the small size of the genetic dataset, good results could be

obtained using the five dimensional vine approach with top five genes.
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Table 3.19 Classification results on survival data by depicted vine classifiers.

R-vine classifier Accuracy Precision Recall F1 Score AUC Score
Parametric 0.8095 0.8095 0.8095 0.8095 0.8571
Non-Parametric 0.881 0.8333 0.9521 0.8889 0.8639
Hybrid 0.8333 0.8182 0.8571 0.8372 0.8549
NMBV (2K epochs) Accuracy Precision Recall F1 Score AUC Score
Parametric 0.7619 0.7619 0.7619 0.7619 0.8254
Non-Parametric 0.8571 0.8261 0.9048 0.8637 0.8286
Hybrid 0.7857 0.7727 0.8095 0.7907 0.8345
NMBV (50K epochs) Accuracy Precision Recall F1 Score AUC Score
Parametric 0.6667 0.6667 0.6667 0.6667 0.7415
Non-Parametric 0.7619 0.7619 0.7619 0.7619 0.7475
Hybrid 0.7143 0.6957 0.7619 0.7273 0.7551
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CHAPTER FOUR

CONCLUSION

In this thesis, multivariate pattern capturing capacity of statistical learning through

Bayes procedure is investigated through various classification applications. Also,

frameworks on building learned models are proposed to achieve more flexible

distributional classifiers. The statistical learning through Bayes method is conducted

based on three main applications.

The first application is based on Bernstein copula classifiers. A binary simulation

study is conducted and it is shown that Bernstein copula classifier are able to capture

the patterns of actual model that is Gumbel - Clayton copula characteristics and

exhibited superior performance compared to the Gaussian naive Bayes as the

generated data has correlation. In classification of Coimbra breast cancer data,

four-variate convex Bernstein classifier manage to bypass the imbalanced

classification results of standard Bernstein copula classifier. The experimented

convex Bernstein classifier also showed relatively better results compared to the

conventional machine learning methods. Moreover it is also shown that, the

optimization of Bernstein copula’s contingency table are prominent step in the

analysis. The computation scale difficulty and non-convergent results of contingency

table optimization is overcame by initial solution approach with affordable decrease

in the performance.

The next application consists of using vine density approach in modeling patterns

of features as connected bivariate copulas. The class membership of the novel data is

determined based on the highest vine density among models. Vines are calibrated

fully by using well-known copula families, Bernstein copula. Also, a hybrid method

is investigated where vine trees are created by both parametric copulas or Bernstein

copula. In order to obtain less complex and more generalized vine classifier a

truncation process is conducted by determining a cut level for vine trees. The cut

point is determined as the one which gives the maximum accuracy on the validation

set. In the simulation study, high accuracy can be achieved without fully calibrating
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the vine copula structure. The truncated-parametric copula performs similarly to the

full-parametric model and outperforms other techniques. According to the

classification study on gene expression data the it has shown that vine classifiers are

in general able to classify a small size gene expression data. Notably, the full

parametric vine reached the highest F1 score and non-parametric truncated vine

reached highest AUC score among the other vine classifiers. On the other hand, the

hybrid method Based on the appropriate performance of the truncated vine models it

is deduced that full parametrization of vine is not a necessity to obtain a generalized

vine classifier and solely product of marginals also might not be enough for better

classification. In such situations cross-validation approach on truncated vine can

enhance the performance.

As last application, the power of neural networks combined with distributional

classifiers and the classification performances put to test for benchmark survival data.

In more detail, the neural marginals arer combined with the vine density as its first

tree nodes to create a neural marginal based vine density. The vine distribution with

parametric marginals and the Bernstein copula achieved the best classification results,

while neural marginals performed comparably. This suggests parametric distributions

fit the dataset better. However, neural marginals proved valuable when parametric

families were insufficient. In general, for this dataset the Bernstein copula’s

smoothing effect effectively calibrated the dependency structure examined in the

Kendall tau correlation matrix.
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APPENDICES

A.1

In the appendix, a summarized outline of created R functions which used in the

applications are provided below. Also, the custom vine structure function is compared

with official R package.

A.1.1 R Modules of Statistical Learning Frameworks

CustomVineStructure function deploys a valid vine stucture corresponds to the

d-variate probability density function. The function contains custom handler

functions to carry out generating conditional observations, h-function recursions and

on choosing the spanning tree that has optimal correlation sum. The spanning tree

optimization is provided by NetworkToolbox library for maximum objective and for

minimum objective it is provided by the igraph library.

CustomVineStructure(Dataset, SpanningTreeRule = "max",

calibration_process, parametricMarginals = T,

trimVine = NULL, vineObject = NULL, preMarginals = NULL)

• Dataset: d-variate copula observations object.

• SpanningTreeRule: Decising spanning tree rule with respect to minimum or

maximum of the total of Kendall’s tau. Values: ’min’, ’max’.

• calibration_process: Calibration handler function for bivariate copulas of the

vine.

• parametricMarginals: Flag for using parametric or empirical marginals.

• trimVine: Tree cut point for truncated vine.

• vineObject: Pre-structured vine object to make calibration continue from the

last determined tree.
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• preMarginals: Pre-calculated marginal values to integrate in the first tree of the

vine.

CustomVineDensity function computes density of d-variate data object with respect

to pre-determined vine order and estimated parameters.

CustomVineDensity(vineobject, Dataset, preDist = NULL,

preDensity = NULL)

• vineobject: Pre-structured vine object to compute vine density values.

• Dataset: d-variate copula observations object.

• preDist: Pre-calculated marginal distribution values.

• preDensity: Pre-calculated marginal density values.

CopulaComputer(BiData, dist_type = "dens",

onlypar = F, calibration_process = NULL)

• BiData: Given bivariate data to be evaluated.

• dist_type: The form of the copula function. Options are; ”dens” and ”cond”.

• calibration_process: This argument is a handler function, which can be used

with CopulaSelectorSetup() or CopulaManualSetup() and it allows

specification of candidate copulas, selection criterias, trial numbers and extra

distribution options.

• onlypars: If true, return the estimated parameter of selected copula.
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calibration_process = CopulaSelectorSetup(

select_param = c("Gumbel", "Clayton"),

select_nonparam = c("Bernstein5", "Bernstein7"),

criteria = selectioncriteria(measure = "rd", porder = 2),

dist_options = nonpara_options(IntSoln=TRUE)

)

##########################################################

calibration_process = CopulaSelectorSetup(

select_param = c("Gumbel", "Clayton", "Gaussian"),

trial = 20,

)

##########################################################

calibration_process = CopulaManualSetup("Gumbel", 2.2)

##########################################################

calibration_process = CopulaManualSetup("Bernstein10",

dist_options = nonpara_options(IntSoln=TRUE))

• select_param: Parametric copula candidates.

• select_nonparam: Bernstein copula candidates.

• criteria: Selection criteria for choosing from candidate copulas.

• dist_options: Details on calibrating bivariate copulas.

• trial: Number of times that the criteria will be computed in order to compute

final weighted criteria.
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selectioncriteria = function(measure, porder)(testValues,

benchValues)

• measure: Selection criteria function. Options are; ’rd’ (relative distance),

’mse’ (mean squared error)

• porder: Order of the criteria function.

• testValues: True values that fitted to candidate distributions.

• benchValues: Simulated values from a candidate distribution.

GridJointDensityFit function computes the raw density values on n× n contingency

matrix (grid) then carries out optimization on the Bernstein copula arguments to make

them satisfy the uniformity condition of the copula.

GridJointDensityFit = function(X, gridsize = 5, GridOptim = TRUE,

IntSoln = FALSE)

• X: Data object that will be fitted to the Bernstein copula

• gridsize: The degree of Bernstein polynomial.

• GridOptim: Flag of choice of using optimization on contingency matrix.

• IntSoln: Flag of using initial solution approach on contingency matrix

optimization (Lagrange).
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BernJointDensity computes the density values of Bernstein copula for given dataset

with and the provided contingency matrix. BernPartial2 computes the values of

conditional distribution of Bernstein copula with respect to the second for given

dataset with and the provided contingency matrix.

BernJointDensity = function(X, CMobject)

BernPartial2 = function(X, CMobject)

• X: Referenced data object for computation.

• CMobject: Fitted contingency matrix.

A.1.2 Custom Vine and R’s VineCopula Codes Cross Validation

Our custom vine structure function is compared with R’s VineCopula package with

a standard vine procedure in order to test the validity of our approach. In Figure A.1, it

can be seen that our algorithm chosen the same structure as the default framework of the

package for the first and last trees of simulated 10 dimensional data. Only the Kendall’s

tau is slightly differ. It is suspected that the library uses parametric calculation instead

of the sample Kendall’s tau as our algorithm does. Still, the structure is identical with

its proportional correlations.
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Tree 1 of custom algorithm Tree 9 of custom algorithm

Tree 1 of VineCopula package Tree 9 of VineCopula package

Figure A.1 Output of the vine structure for simulated observations. The first column shows the first tree,
and the second column shows the last one.
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