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VINE COPULA BASED MULTIVARIATE MODELLING FOR
CLASSIFICATION

ABSTRACT

In this thesis, the capabilities of statistical learning are investigated through various
classification applications on simulated and biological data. ~The models are
developed by fitting multi-dimensional data to standard and custom Bernstein
copulas, as well as vine density frameworks. A convex Bernstein copula approach is
proposed to address the imbalanced classification results observed with standard
Bernstein copulas. Vine classifiers demonstrate strong performance in terms of
classification scores and flexibility in capturing patterns within multi-dimensional
feature spaces. For constructing vine classifiers, a truncation framework based on the
classification performance of validation sets is proposed, which reduces the
complexity of the trained vine classifier. This truncated vine classifier achieves
relatively more balanced and improved results. Furthermore, a neural network
framework is employed to generate the underlying distribution and density functions
of gene expression data.  The impact of neural networks on density-based
classification is explored by connecting neural marginals to the vine density as its first

tree nodes.

Keywords: Statistical learning, Bayesian method, Bernstein copula, Vine density,

Neural marginal distribution



SINIFLANDIRMA iCiN VINE KOPULAYA DAYALI COK DEGIiSKENLI
MODELLEME

0z

Bu tezde, istatistiksel 0grenme yontemlerinin kapasitesi, simiile edilmis ve
biyolojik wveriler iizerindeki ¢esitli smiflandirma uygulamalariyla incelenmistir.
Modeller, ¢ok boyutlu verilerin standart ve 6zel Bernstein kopulasi ile vine yogunluk
fonksiyonu yontemleri iizerinden fit edilerek olusturulmustur. Standart Bernstein
kopulanin dengesiz siniflandirma sonuglarin1 ¢éziimlendirmek icin konveks bir
Bernstein copula yaklagimi 6nerilmistir. Vine siniflandiricilari, siniflandirma skorlari
ve ¢ok boyutlu 6znitelik uzayindaki desenleri yakalama esnekligi acisindan {istiin bir
performans gostermistir. Vine siniflandiricilarinin olusturulmasi sirasinda, validasyon
setlerinin siniflandirma performansina dayali bir kirpma (truncation) yontemi
onerilmis ve boylece egitilmis vine siiflandiricilarinin karmasik yapist azaltilmistir.
Kirpilmis vine smiflandiriciyla, nispeten daha dengeli ve yiiksek sonuclar elde
edilmigtir.  Ayrica, gen ekspresyonu veri setine ait temel dagilim ve yogunluk
fonksiyonlarini olusturmak igin bir sinir ag1 yontemi kullanilmistir. Sinir aglarinin
yogunluk fonksiyonu tabanli siniflandirma {izerindeki etkisi, sinirsel marjinal
dagilimlarin vine yogunluk fonksiyonunun ilk aga¢ diigiimleri olarak baglanmasiyla

incelenmistir.

Anahtar Kkelimeler: Istatistiksel 6grenme, Bayes ydntemi, Bernstein kopula, Vine

yogunluk fonksiyonu, Sinirsel marjinal dagilim
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CHAPTER ONE
INTRODUCTION

1.1 Overview

Machine Learning is a research field that focuses on providing machines with the
ability to recognize patterns through algorithms based on mathematical or statistical
theories. The general purpose of this field is to extract meaningful results from data
and to give machines the ability to distinguish objects from one another, similar to how
humans do. Machine Learning is regarded as a subfield of Artificial Intelligence due

to its endeavor to mimic human identification capabilities in computers.

The field of Statistical Learning can be described as one that focuses on using
statistical inference methods to perform machine learning tasks. This learning
approach forms the foundation of our research for the thesis. Primarily, in our
applications, probability distributions are utilized in various ways to create learned
models. In other words, the characteristics or patterns of the data are represented by
fitted distributions, and new data instances are labeled based on these distribution
models. The field utilizes supervised learning (e.g., regression and classification),
(e.g., clustering and dimensionality reduction), and more advanced techniques like
ensemble methods and neural networks in order to build models that can generalize
from data (Hastie (2009), James (2013)). Such techniques are foundational for tasks
like determining relationships between variables or making automated predictions in
finance, healthcare, and marketing (James (2013)). The classification based on

supervised approach is the base machine learning approach of the thesis.

Supervised classification is a subcategory of machine learning in which the classes
are known prior to the classification process. A class is a categorical variable
represented by a dataset consisting of features or variables. A learned model refers to
a machine learning algorithm that has extracted feature information from each class
and is ready to classify new data. From a statistical perspective, a learned model

corresponds to a fitted probability distribution, and a feature corresponds to a random



variable.

Naive Bayes is one of the well-known supervised classification methods based on
a probabilistic framework. Essentially, the method compares the probability density
functions of features to determine the class of a given data point. Due to its
independence assumption (hence “naive”), the method is relatively simple to apply.
However, this assumption makes it prone to failure when capturing complex
dependencies among features. Complex associations between features in

high-dimensional datasets are common in real-world machine learning problems.

To build an effective classification model, it is crucial to consider as many features
as possible to obtain sufficient information about the classes and create a robust
classification environment. However, joint distributions in high dimensions often lack
familiar forms outside generalizable distribution families, such as the Gaussian
distribution. To model a complex dependence structure, one can use copula
distributions. Furthermore, in high dimensions, vine copulas can be employed, where
bivariate copulas serve as building blocks for constructing flexible dependency

models.

Copulas are flexible distributions that can model or help to model joint dependence
structure. By using copula one can model joint association of random variables and
their marginal distributions independent from each other. A vast choice of copula
families exist to capture a bivariate dependence structure. But they do not possess
obvious forms in high dimensions. In order to bypass this limitation, using bivariate
copulas in a vine structure gives a very effective way to deal with the high
dimensional inference. Vine copula allows using bivariate copulas in multiple steps to
model multivariate structure. First ideas on vine copula is given in Joe (1996), then it
is defined and systemized as a study field in Bedford & Cooke (2001), Bedford &
Cooke (2002).

In the progression of vine copula construction, one needs to determine multiple

bivariate copula distributions. This problem is getting more complex as dimension



increases. Misspecification of copula families causes increase in error of a vine
model. In order to minimize error potential of a vine model, modifications are
integrated into the vine construction. The adopted vine models are tested based on the
classification metrics. Applying a full nonparametric or semiparametric procedure on
vine copula construction is a promising study topic. Estimating bivariate copula
distributions with the help of non-parametric procedures, error propagation in the vine
process can be avoided. There are several nonparametric candidate instead of copula
families. For example, Bernstein copulas have appropriate properties and flexibility
to use when the distribution is unknown. Furthermore hybrid methods can be used to
obtain more flexibility where vine nodes can have parametric or non-parametric
copula. In high dimensions building a full vine structure is time consuming and could
be redundant to obtain an optimal vine. Modified vines called truncated vine is a
simplifcation strategy which avoids unnecessary errors and it is based on replacing
certain tree nodes with independence copula after a cut point. For more details

address Kurowicka (2010) and Brechmann et al. (2012).

The last application of the research focuses on building artificial neural networks
to adopt cumulative distribution function and probability density function. The
framework in the Zeng & Wang (2022) is used in order to construct cdf and pdf
generating neural networks. According to the results on the benchmark datasets, the
trained Neural copula and its marginals are closer to the true distribution for both
tranining and test cases than classical models; t-copula, Frank copula and Gaussian
copula. In our application Neural copula framework is used to build marginal
distributions and copula distributions for each class labeled data of gene expression
benchmark dataset. The classification performance of neural copula is investigated in

the binary classification context.

1.2 Literature Review

The usage of statistical methods is prominent in the area of machine learning

whether they are used as performance or interpretability enhancer, or as a pattern



learning method. Okoli (2023) explored the integration of statistical inference
techniques, such as bootstrapping and confidence intervals, within the framework of
ALE, which quantifies feature importance in machine learning models. The methods
include adapting bootstrap algorithms to account for non-parametric data
distributions. This approach enhances interpretability in models like decision trees
and random forests by calculating more robust confidence intervals for ALE values
across multiple bootstrap samples. In the work of Lemaire et al. (2024) naive Bayes
classifiers are used for counterfactual optimization in binary classification tasks. It
modifies naive Bayes by iteratively adjusting feature values to maximize the
likelihood of a sample belonging to a target class. These adjustments provide insight
into decision boundaries and facilitate interpretability improvements. In Kovacs et al.
(2024), generalized naive Bayes(GNB) method is used to extend the classical naive
Bayes. The GNB introduces new algorithms that are specifically constructed to find a
better-fitting probability distribution. These algorithms include a greedy algorithm
and an optimal distribution algorithm based on Kullback-Leibler divergence, aiming
to maximize information content and minimize redundancy during the data-fitting
process. Experimental results indicate that the GNB algorithms often outperform
classical Naive Bayes and other related algorithms in terms of accuracy. In the work
of Gohari et al. (2023), Bayesian Latent Class Analysis (BLCA) is introduced to
define latent variable that acts as a parent of model’s parent attributes. This approach
helps in capturing complex dependencies among the attributes, which is a limitation
of the traditional naive Bayes (NB) classifier. The model is applied to real-world data
involving 976 Gastric Cancer (GC) patients and 1189 Non-ulcer dyspepsia (NUD)
patients. These results collectively indicate that the NB-BLCA model not only
enhances classification accuracy but also provides a robust framework for dealing
with real-world data complexities, particularly in the classification of gastric cancer

patients.

Applying machine learning methods for diagnostics, has an important role as a
study area. Diagnosis from an objective source allows for a thorough examination of

any doubts and contributes to establishing decision rules with minimal error.



Classification methods are very beneficial to control this process. In the work of
Torres-Roca et al. (2005), tumor cells are classified according to their radiation
sensitivity to enhance treatment protocol for cancer patients. McKinney et al. (2020),
developed an A.IL. system to help radiologists to spot breast cancer. Findings of the
preceding study is that, radiologists can spot breast cancer more accurately with the
help of machine learning. Thus, machine learning approach in health care, has a big

potential to become a standard.

Vine copula is used in many studies which involves high dimensional modeling.
There are many examples in financial area some of them are; Dissmann et al. (2013),
So & Yeung (2014), Loaiza Maya et al. (2015), Aloui & Aissa (2016), Scheffer &
Weil} (2017), Kraus & Czado (2017). As a different approach, Griler (2014) used
spatial vine copula to model emergency routine dataset and used spatial interpolation.
Soto et al. (2012) used vine copula in molecular docking problem and found that vine
copula based algorithms have relatively good performance. Vine distribution in the
context of machine learning is relatively limited study area. Carrera et al. (2016) used
D-vine classifiers for mind reading dataset. Chen (2016) also used D-vine classifiers
to benchmark machine learning datasets and compare the method with classical
methods including naive Bayes. Carrera et al. (2019), allowed flexibility by using
R-vine classifiers and consider all kinds of association between variables in the
model. Preceding study made a classification on Mars dunes. On the other hand, Sun
et al. (2019) proposed vector and reinforcement learning representation of vine
structure problem to find best possible vine model. Sahin & Joe (2024), also used
vine classifiers in their study. Each class in the dataset, univariate distributions are
fitted alongside a vine copula. This approach enables the calculation of posterior
probabilities for each class, which can then be utilized for discriminant analysis. The
results indicate that the vine copula-based classifier outperforms traditional
discriminant analysis methods and random forests, especially in scenarios where
features exhibit different dependent structures across classes. Vines also can be used
as a booster for the data management phase of a machine learning task as it can be

seen in the work of Konstantelos et al. (2018). The paper uses vine copulas primarily



for data preparation in machine learning tasks. Specifically, the vine copulas model
the dependencies between variables to generate synthetic datasets representative of
real-world system states. These datasets are then used to train machine learning
models, such as classifiers for power system security assessment. To reduce the
complexity of vine structure for the large data scalibility, only the Gaussian copula is
feed to the vine. The approach outperforms traditional sampling methods, producing
datasets that improve the performance of machine learning classifiers used in power

system security assessment.

1.3 Research Scope and Aims

In statistical learning, challenges often arise when fitting data labeled with classes,

including:

* Detecting appropriate fit for the non-obvious data patterns.

* Maintaining multivariable distributions to represent high dimensional feature

space.

To be able to overcome such problems, modifications on the distribution based
classifiers are proposed and tested on the simulated and experimental real life datasets
alongside with the classical approaches. The modifications are made particularly for
the Bernstein copula and vine density classifiers. To address such objectives, a
flexible distributional classifier algorithm was developed in R and progressively

modified.

First, as a non-parametric approach the multivariate Bernstein copula classifier is
applied to learn the data patterns. Performance and limitations are investigated in the

context of classification.

Then vine density classifiers are employed for the machine learning tasks. Vines

are structured based on three different tecniques namely, parametric, non-parametric



and hybrid. In parametric case, the classic R-vine is fitted by feeding well-known
bivariate copula families into our algorithm. In non-parametric case the vine is
structured only by calibrating Bernstein copulas. Lastly for hybrid case, the vine is
structured by feeding both copula families and Bernstein copula into the algorithm.
Hence, the node distributions of the vine are chosen from parametric families and the

Bernstein copula.



CHAPTER TWO
METHODOLOGY

2.1 Copula

Let Xi,...,X; be the random variables with joint distribution function
H(zy,...,xq4) with marginals Fi(z;) = P(X; < x1),..., Fy(zq) = P(Xyq < z4).
Sklar’s theorem plays a crucial role in the theory of copula. The relation between the

copula and the joint distribution function of these random variables can be defined as

H(zy,...,xq) = C(Fi(x1),..., Fa(xq)) = Cluy, ..., ug).

where U; = Fy(x1),...,Ug = Fy(z4),and C : [0, 1]¢ — [0, 1] is a d-variate copula.
The copula function is unique if the marginals are continuous. Note that, this study is

restricted for the continuous case.

Copulas establish a link between a multivariate distribution and its individual
marginals. When the marginal distributions are integrated into the copula, the
multivariate distribution can be derived. Through copula calibration, the original
random variables are transformed from their initial marginal distributions into
uniform variates.In this manner, through copula inference, the relationship between
variables can be explored from the perspective of marginal distributions, leading to a
more comprehensive understanding of their associations. The copula distributions are
especially useful for the inferences involving the bivariate random vectors because
the bivariate copulas have various different forms to represent wide range of
dependence characteristics. Overall, their application in data analysis is beneficial in
terms of capturing non-obvious distribution structures in high dimensional data sets.

For more details, see Nelsen (2006).



2.2 Bernstein Copula Classifier Framework
2.2.1 Bernstein Copula

The Bernstein polynomial with degree m is given as

Bua(e) = ()0 =, )

where £k =0,.meN and 0 <z < 1.

Let U = (Uy, Us,...,Uy) be a discrete random vector with uniform margins over the
set S; = {0,1,...,m;_1} where m; denotes the grid size. Let the grid size of each
argument equal to each other i.e. m = m; = my = --- = my, then Bernstein copula

can be defined as

d

Cluy, g, .. yug) = Y Y ==Y alky/m kyfm, ... ka/m) [ [ Buw, (),

k1=0ko=0  kq=0 i=1

(2.2)

where,
d
ki, ko, . ka (ﬂU<k/m)

{wi}i € [0,1), {k}7" €57,

where S¢ is the d-dimensional set for k.

The equation (2.2) can be interpreted as Bernstein copula density is induced by U.
The constant function « can be any copula function to center the Bernstein copula. If
the unknown copula function is approximated, the equation (2.2) formally is known
as the empirical Bernstein copula. Hence, o refers to the counts of original
realizations, fall in equally spaced cells within the d-dimensional hypercube. Thus,

d is obtained from the « function

firstly contingency matrix with size of m
computations. Secondly, the smoothing effect of Bernstein polynomials is applied on

the empirical copula to complete the evaluation of Bernstein copula.



Numerous polynomial forms are available for representing continuous functions,
and Bernstein polynomials share certain properties with copula distribution functions.
Consequently, Bernstein polynomials can be applied in the context of copula theory.
Additionally, Bernstein polynomials exhibit properties such as closure under
differentiation and lower variance compared to common nonparametric estimators.

For more details address, Sancetta (2004).

The implemented Bernstein distribution algorithm consists of three primary
phases. These are Grid Fit, Uniform optimization and Bernstein Density
Computations which are given with detail in the next section. Since « is an empirical
copula within induced in d-dimensional canvas, to be a valid copula approximation
for each marginal component of « should be distributed uniformly. This validation is
not certain during the inference of Bernstein copula. In order to cover this condition,
Pfeifer et al. (2020) proposed contingency table transformation. Let ag be the
original entries of grid fit, and by be the entries of new contingency table, then

optimization problem can be stated as the following

Minimize i i (as — bst , (2.3)

s=1 t=1
subject to,
m m 1
Zlbsj = ;bzt = E and bij Z O,

where 7,7 =1,...,m.

Optimization problem is carried out by using guadprog library in R. To utilize the
library for this particular problem, a function is designed to dynamically implement
optimization for any contingency table derived from raw frequencies within grid
cells. If non-negativity condition is neglected, this problem also can be immediately

solved as a Lagrange problem. In this case, the general solution is

10



Qg Q.
bst =Agt — — — —
m

2
—, (2.4)
m m

where s, =1,...,m,

and ay matrix is the computed raw frequencies of the observations that fall into each
cell of md dimensional hypercube. To recover the negative entries in contingency table,
additive correction method can be used. Below, the final form of the contingency table

st 18 defined.

b:= —min{by|l <b, s <m},
bst + b
S Ll 25
“ T 1tmla 23)

where a is the original entry of the grid fit. The matrix ¢y provides initial or
suboptimal solution for the defined minimization problem. Both the description of
optimization problem and its initial solution can be easily enhanced to arbitrary

dimensions. For details refer to Pfeifer et al. (2020).

It’s important to note that both global and initial solutions are employed in real data

applications for the purpose of comparison.

2.2.2 Setting Bernstein Copula Classifier

In machine learning applications, a Bayes rule framework is implemented,
leveraging the joint Bernstein copula density. The Bernstein copula serves as an
approximation to the true copula function. Adjusting the degree of polynomials
allows for fine-tuning the smoothing effect in the Bernstein copula, ultimately leading
to a more accurate approximation. Moreover, higher grid sizes enhance the

smoothing and the capability to capture dependence patterns. When a sample is

11



approaching to the independence, the lower grid sizes would be more appropriate to
capture a symmetrical pattern.Indeed, as the correlation weakens and approaches
independence, the copula becomes increasingly similar to the independence copula,
resulting in a data scatter that exhibits a more symmetrical pattern. Hence, using low
grid sizes can indeed be more fitting for robustly capturing symmetrical patterns in
such cases. See, Pfeifer et al. (2020), Rose (2015). Each training set is learned with

the copula density which yields

m—1m-1  m—1 d
c(ug, ug, ..., uq) = Z Z - Z p(ki/m,ko/m, ... kq/m) HmBm_ljki(ui),
k1=0k2=0  ka=0 i=1
2.6)
where,

d
plkr, ko, . kg) = p(ﬂ(Ui — ki/m)).

i=1

In real data application, additionaly 2 component convex Bernstein density is used to

improve the discrimination ability. A Convex Bernstein density can be defined as

cop = Wy, + (1 — W)y, (2.7)

where w € [0, 1].

The equation (2.7) indicates a weighted average of two different Bernstein densities
estimated through sizes of m; and ms, respectively. Cross-validation processes
involve the initiation of various grid sizes to conduct a comprehensive analysis. The
selected grid size is then applied to the current training sets for each category,
resulting in contingency matrices. Subsequently, the test set is computed using the
Bernstein copula density, applying each categorywise pre-determined contingency
matrices.Following that, each observation in the test set is assigned to the category
with the higher density. This setup is analogous to Gaussian Naive Bayes, with the
key difference being that we abandon the independence assumption and employ the

joint Bernstein copula for modeling dependence.

More formally, let there are two classes with class index [, and d-variate realized

12



random vector pseudo-observations; u; = wuy;, g, ..., Ug, J = 1,...,n. After the

calibration of Bernstein densities, ¢;(u;|!), the unlabeled data point u; is assigned to

the class [ according to the decision rule,

GTZQ_TILQCWWZ(CZ(“J’ 1)) (2.8)

In this study, we focus on estimating each density function ¢;(u;|l) and prior

probabilities are set equals so m; = P(l) = % since 2-classes are considered.

The pseudo code for the classification process is presented in Figure 2.1, Figure 2.2

and Figure 2.3.

Step 1:

Step 2:

Grid Fit

Lol

gsize: grid size

glist: grid list

gpoints: grid points

C'M: contingency matrix

HitHHHHIH

Sfunction JointGridFit(data, gsize)

d = number of data column (dimension)

n = number of data row (size)

glist=for 1 : d do vector(1,2, ..., gsize)
gpoints = X g glist

# Initialize contingency matrix:

C'M = ZeroMatrix(row = gsize?, column = 1)
for (i in 1 : n) for (j in 1 : m?) (if (data; < gpoints;) (CM; + 1)/n  break)

Figure 2.1 Grid Fit step that is used in Bernstein copula module

Uniform Optimization

if optimization == TRUE

Run CM = function GridOptimizer(CM)

# GridOptimizer() function designed to establish the coefficients of quadratic
problem and constraints for the grid optimization problem in matrix forms then
feed them into solve. QP from quadprog library.

return C'M

Figure 2.2 Grid Optimization step that is used in Bernstein copula module

13



Step 3: Bernstein Density Computations
HitHH
sholder: summation holder
c: counter
HIHHIRHH
function BernDensity(CMobject = CM)
Initialize CMobject elements: d, gpoints, CM, gsize
n = number of of data row
nn =number of CM row
for(1 : d) index = find (data, gpoints == gsize)
gpoints = discard index from gpoints
CM = discard index from CM
# Initialize: ¢ = 0, sholder = Matriz(row = nn,column = 1), density =
Matriz(row = n, column = 1)
(for (jin 1:n)
(for (i in 1 : nn)

sholder, = gsize? x CM; * (apply product for 1
d(Binomial(gpoints; g4, gsize — 1,data; 4)))

)

Density; = summing up sholder

c=0

)

return Density

Figure 2.3 Density computation step that is used in Bernstein copula module

2.3 Vine Classifier Framework

2.3.1 Vine Distributions

Vine distribution process was developed through the works of Joe (1996), Bedford
and Cooke (2001, 2002) to adopt non-obvious joint copulas. Originally, the process
is known as the pair copula construction (PCC) and then embedded into the multiple
directed tree representation (hence the name; vine) and also become a graphical tool
to visualize distribution in arbitrary dimensions. The construction process of vines is
based on the exchanging the parts of conditional distributions with bivariate conditional
copula arguments. The chain rule, which refers to disintegrating a joint distribution into

conditional parts is given as
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flry,xe, . mp) = f(21) fze]2r) -0 flon]og, 22, o) T0y). (2.9)

The main conditional term for the exchange is given below,

f(@ilzy) = ci g, (F(ailey_,), F(aglay_;)) floley_)), (2.10)

where v_; is the vector which jth element is excluded.

The conditional arguments of copulas in the form of Eq. (2.10) can be expressed as,

8Ci,j\v_j(F<$i‘xV7j)aF<xj|xvfj))

h:ivF iltv) =
v Flailzy) OF (]2

(2.11)

The marginals F(x;|z,_;) and F(z;|zy_;)) in Eq. (2.11) can be calculated
recursively by plugging conditional copula term that calculated beforehand. The

initial form of h function yields

F(x;|z;) = : 2.12
( Z’ J) 8 F(l’]) ( )
In order to carry out h-function recursions for Bernstein vine, conditional
distribution form of the Bernstein copula must be integrated into the recursions. The
conditional Bernstein copula distribution in bivariate case can be defined with partial

derivative as below. (Janssen et al., 2016)

86’ 0C (u1, uz) m omel
= = Z Zp (k1, ko) By ey (u1) Bt 5, (12) (2.13)
k1=0 k2=0
where p® (ky, ko) refers that contingency matrix is completed by fixing the second

argument.

15



By using directed tree terminology, vine density can be defined in a compact fashion.
Let £ be the edge setand e € E; (1 = 2,....,n — 2), e = j(e), k(e)|D(e), where
{j(e), k(e)} is the conditioned set of bivariate elements and D(e) is the conditioning
set. The constraint set U that corresponds to edge e is defined as a complete union

shown as

U¢={jle),k(e),D(e)}. (2.14)

See Figure 2.4 which presents a five-dimensional vine density to see the calibration

scheme in detail.

A unique density function f for a d-variate random vector X can be obtained by
transforming Eq. 2.9 in terms of copula functions recursively. Hence a d-variate
distribution can be expressed in terms of the product of bivariate (conditional) copulas

as,

d d—1
[y, m,) = [ka(xk)} X [H 11 ¢ @@ Fi@ne), Frene)|- 215)
k=1

i=1 eck;

Note that, if the left hand side density in Eq. 2.15 is expressed with its copula, this
equation becomes a vine copula with the simplification of right hand side marginals.
In this arrangement, 7 has marginals as nodes, then for 7%, each edge e € E; has

distributions with the general form,

Cite)k(e)D(e) (Fie)D(e)s Fr(e)D(e))- (2.16)

As the root nodes are fundamental for ordering and calibration, selecting a vine’s

root can influence the vine’s shape and distribution of nodes.

2.3.2 Structuring A Valid Vine Distribution

Dissman et al. (2013) proposed an algorithm which connects highly correlated

pairs in each tree by the widely known measure Kendall’s tau. Prioritizing the
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Figure 2.4 A five-dimensional R-vine graphic:Tree 4 has node set: Ny = {(1,5]23), (1,4/|23)} and edge
set: E4 = {(4,5|123)}. The edge (4, 5|123) can be inspected as contraint elements: j(e) = 4, j(e) = 5,
D(e) = {1,2,3}.

appropriate calibration of correlated variables in the early tree segments is important
since copulas are generally successful at independent cases. For Kendall’s tau 7; ;, the

objective function of absolute value summation yields,

max Z 17,41, (2.17)

edges e in spanning tree

where —1 < 7, ; < 1,7 # j denotes the edge elements of the spanning tree. In the
main algorithm, this optimization is achieved by the NetworkToolbox library of R. To
adopt a valid vine distribution, two constraints should be satisfied; connectedness of
tree and proximity condition. Therefore, while maximizing a particular spanning tree,
the constraints should be checked through the vine structure setup. Let V' be n— variate

vine, then connected tree and proximity conditions are defined as,

* Connected tree: Every node is reachable from any starting node only with total

of n — 1 edges.

* Proximity Condition: If {z;, z;} € E(any edge set of a spanning tree), then

17



|.CEZA.CE]| = 2, for ¢ 7&]

2.3.3 Machine Learning Framework: Vine Bayes

For the machine learning applications, vine densities are constructed as discriminant
functions which represent the training data for each class labels. Then the fitted vine
models are compared to determine the class membership of the current test data point.
In this study, we work on supervised data with two categories hence the decision rule
is defined accordingly. Let (x|I) = ((x1;, T2, - . ., x4;)|l) be realized d-variate random
vector for each categories | = 1,2 and sample size © = 1,2,...,n. In the learning
process, two vectors are fitted to the class labelled vine densities f(x|l) as in Eq. 2.15.

And then, the decision rule for test data point x; that is, assign x; to class L where,

L= arlgTan(f(xtU)). (2.18)

Classification procedure is applied with 3 different vine approaches; parametric
vine, Bernstein vine and hybrid vine. The posterior probability is set as equal i.e.
f(x¢|l) = 0.5. Parametric vine density involving independence, Gumbel, Clayton and
Gaussian bivariate copulas is used as a benchmark model. Bernstein vine is the vine
model fully integrated with Bernstein density and conditional Bernstein distribution.
And finally the hybrid vine model is referred to a semi-parametric vine process that
chooses between the parametric copulas and Bernstein copula and also assigns the
adequate one to the current vine node. The procedure of choosing among a

semi-parametric distribution candidates is given in the following section in detail.

2.3.4 Truncated Vine Model

Truncated vine distributions are the vines structured until a determined tree level
k. After the k' level, structuring does not continue and rest of the node densities are

evaluated as independence copula which is 1. The truncation level is implemented

18



inside of the vine distribution module, allowing establishment of vine until given level,
then the algorithm exits with the information of partial vine structure. Also, the density
algorithm of a pre-determined vine structure is adjusted in order to evaluate the density

(density product of each node) according to the limited structure.

A sample structure can be visualized in Figure 2.5. In earlier studies, Brechman et
al. (2012) used the truncated vine distributions based on Bayesian Information
Criterion (BIC) metric. They mainly examined the issue of whether, following a
specific tree, R-vine copulas can be pairwise reduced or, alternatively, simplified
using Gaussian pair-copulas. They used the simplification of a canonical vine copula
using a multivariate copula as previously treated by Heinen and Valdesogo (2009) and
Valdesogo (2009). Additionally, Carrera, D. (2019) employed BIC to create truncated
vines for a vine-based categorization technique. According to this strategy, a selected
metric is computed for each tree level of vine and if the metric of tree 7}, is smaller
than the previous tree 7} then the vine is truncated after the tree level k£ and the
independence copula assigns to all trees. In our work, we establish the truncation
level using this process in a machine learning validation. The truncation level is
chosen based on the validation set’s highest accuracy percentage. As a result, the
machine learning grid search technique for the cut-off parameter yields an optimal
level. By applying the truncated vine distributions, it is aimed to prevent possible
overfitting caused by the complex vine structures. As getting more copula densities
included in the vine, the model could suffer from complexity. In addition,
correlations are getting weak as trees advance, hence it will be more appropriate to
use independence copula after some tree level. To use the truncated vine in machine
learning, the validation set convention is used along with the training set. After
training the model with vine calibration, the model is tried on the validation set for all
of the cut points. And the cut point &£ which gives the highest accuracy is selected.
Hence, the decision metric is determined by the classification accuracy achieved on

the validation set.
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Figure 2.5 A five-dimensional truncated R-vine graphic. Vine is cut from tree level 3. Nodes(densities)
after the level 2 are taken as the independence copula.

2.3.5 Hybrid Vine Model

The process of selecting a copula from the candidate set of parametric copulas and
Bernstein copula for structuring a hybrid vine model has the following steps given
below. Note that, since the Bernstein copulas with the largest grid size always have
the higher score in our experiments, we use only one Bernstein copula with a moderate

grid size,

Step 1 Fit current data to parametric copulas and generate number of K simulations for

each parametric model.

Step 2 Compute mean Akaike score for each model then select the copula which has the

minimum score.

Step 3 Use the selected parametric copula and compute density values. This computed
values will be the baseline density. Then generate number of K simulations

based on this copula.
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Step 4 Compute the density values for number of K simulations by using both the

selected parametric copula and Bernstein copula. (candidate densities)

Step 5 Determine the mean relative distance between the baseline density and candidate

densities.

Step 6 Continue with the originally selected parametric copula if its distance is smaller
or change the selected parametric copula with the Bernstein copula if its distance

is smaller and assign it to the current vine node.

Akaike Information Criterion (AIC) score is obtained by the expression,

2k — 2L(0|u,v), (2.19)
where £ is the number of parameters,

and L is the copula log likelihood.

And then, relative distance is calculated by the distance formula below as in the study

of Rose (2015),

RDy, = M_ (2.20)

llce]|np
where N is the sample size and p is the distance order. In the distance calculcations

p set as 2 so, the numerator is equivalent to the mean squared error (MSE).

Pseudo-code for the selection process is also given in Algorithm 1. Note that, the
inner functions are only expressed with symbolic names to point out their role, and they
are either customly written or used from base functions of RStudio (2013) along with

the VineCopula package functions.
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1: function CopULASELECTOR(data, paramList, nonparamList, trialNumber,
relativeDistance())

2 > Initialize the vector that holds the average akaike score that corresponds to the ith cop

3 aic < vector()

4 for i in paramlList do

5: Initialize: aicDummy <— vector()

6: copPar <+ function fitCopula()

7 for j in trialNumber do

8 set jth random number seed

9 copSim < Simulated observations for data based on copPar

10: aicDummy[j] <— Akaike score based on the jth simulation

11: end for

12: aic < average of aicDummy

13: end for

14: > Initialize the following variables for the second part of the algorithm,
15: paramCopCand < minimum of aicDummy

16: baseCopPar < function fitCopula(data)

17: baseCopPdf < function copulaPdf(data, baseCopPar)

18: hybridCopList < string(paramCopCand, nonparamList)

19: > Vector that holds the average of relative distance that corresponds to ith

copula.

20: rd < vector()

21:

22: for 1 in hybridCopList do

23: Initialize: rdDummy < relative distance of the current trial

24: for j in trialNumber do

25: set jth random number seed

26: > Simulate a bootstrap sample with the ith copula and make needed
calculations.

27: copSim <— function simulateCopula()

28: bootstrapCopPar < function fitCopula(copSim)

29: bootstrapCopPdf <+  function  copulaPdf(copSim,
bootstrapCopPar)

30: rdDummy[j] < function relativeDistance(bootstrapCopPdf,
baseCopPdf)

31: end for

32: rd[i] < average of rdDummy

33: end forreturn chosenCop < copula that matches the minimum value index of
rd

34: end function

Figure 2.6 Select a copula in a semi-parametric environment.

2.4 Neural Copula

Neural networks can operate in parallel to learn and estimate cumulative

distribution functions (CDFs) through the integration of specialized loss functions.
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These loss functions enforce the necessary conditions for a model to satisfy the
properties of both CDFs and probability density functions (PDFs). To ensure the
validity of the probabilistic model, penalties for violating these conditions are
incorporated into the system. According to the work of Zeng & Wang (2022) Zeng
(2022) such networks have the capability of reaching a convergence. The study is
inspired from the applications on the constructing Archimedes copulas based on
neural networks Ling et al. (2020). In general, neural based distributions offer a
generalized distribution representation combined with pattern learning power of
neural networks. After calibrating a distribution as a tensor, necessity of fitting a data

into known distribution families can be bypassed.

2.4.1 Neural Copula General Framework

To construct a copula model with the network, the marginal model is first learned
using neural networks. As the initial step, marginal distributions are estimated through
several fully connected neural networks. These networks represent the arguments of
the copula and collectively form the marginal model. By estimating the CDF using the
marginal model, it is integrated into the copula network, resulting in the construction
of the copula’s CDF. TensorFlow’s automatic differentiation system enables efficient
computation of gradients for each argument, allowing the joint PDF to be estimated as

the gradient of the network with respect to its input layer.

Given the neural network’s flexibility in gradient computation, it is practical to first
estimate the CDF. Estimating the PDF directly with a neural network would require a

chain integration system, which is less flexible.

2.4.1.1 Constructing Marginal Networks

The fully connected marginal CDF which represented by fully connected neural

network can be expessed as:
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Input Layer:

W =2€QCR (2.21)
where 2 is the domain of z.
Hidden layer:
h/™" = tanh (W, h) +b/) je{0,1,...,1,—1} (2.22)
Output layer:
Fy, = Sigmoid (w'u'™ +b') € [0, 1] (2.23)

The marginal model is denoted as the Fm (z,0,,), where 0,, is the corresponding
network weights that is 6,, = {w/ } U {b/,} By conducting the gradient operation on

the whole network the PDF can be obtained as

A

5 dF,(z,0,,)
m(2,0n) = ————= 2.24
fnl, 6) = S (224)
2.4.1.2 Constructing Copula Network
The network that represens a copula is expressed as below.
Input Layer:
he =u=[u,...,ug" €0,1] (2.25)
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Hidden layer:

hi*! = tanh (Wlhi +b7) j€{0.1,....l. 1} (2:26)

Output layer:

C,n = Sigmoid (wu' + b') € [0, 1] (2.27)

L]

d denotes the dimension of the u vector.

L]

The copula model has total of /. — 1 hidden layers.

The j layer has the weight: w/ and bias: b’

For the estimated copula function C’m(u, 6.) set of all weights can be shown as

0. = {wi} U {b}}

By the networks gradient mechanism the PDF of copula can be obtained as:

C,, (2, 0,)

¢(u,8.) = o

By the estimated copula distribution, the PDF of the sampled data can be expressed

as

f (X7 {O;n}a 00) =c <F1 (371, 07ln> aFQ (l’g, 07271) P Fd (xdv gi) 700>
d
[1/ (=:.6%) (2.28)
=1

The CDF of the sampled data can be expressed as
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F(xA0,,1.0) = C (Fi (01,0),) , s (22,6%) ..., Fa (v0,0%) . 103,).6.)
(2.29)

2.4.2 Loss Functions of the Marginal Model
2.4.2.1 Log-loss

The fitness of fm(x,em) can be integrated in the loss function as maximum

likelihood:

1 & N
L) (0n) = === 10g (s, 0m) (2.30)
m =1
The loss L involves the training samples: D}, = {x;} wherei =1,...,n},

2.4.2.2 Non-negativeness

The violation of fm(x, 0,,) > 0 is added as penalty coming from the negative part:

L2(8,,) = / relu(— fon (2, O,0))drre 231)
Tm EQm

The sample version can be calculated as

!

1 & ;
2) ~ ,
LY On) ~ o §_l relu(—fon (21, 0,n)) (232)
The loss L' involves the training samples: D? = {x;} wherei =1,...,n2
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2.4.2.3 PDF Summation Over Domain Leads to 1

Penalty is added if the summation of fm(x, 0,,) over the domain is not 1 as

L¥(,,) = '1 —~ / fn(,0,)da (2.33)
TmEQm
The sample version can be calculated as:
nl
1 m R
L90,,) ~ |1 - - > fn(@i,0m) Am (2.34)
m =1
The loss L{Y involves the training samples: D3, = {x;} wherei = 1,...,n3,
2.4.2.4 CDF function constraints
Fm(x, 0,,,) must satisfy the following conditions:
£,(0,0,,) =0
(2.35)
F.(1,0,)=1
The loss function for the given constraint yields:
LW (0,,) = F,(0,0,,) + |1 — F,(1,6,,) (2.36)

The loss L' involves the training samples: D} =1{0,1}
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2.4.3 Loss Functions of the Copula Model
2.4.3.1 Log-loss

The fitness of f,(x;; {0° },0,) used as penalty in the loss:

LV{e: },6.) ——Zlogfc x; {6 },8,) (2.37)

The loss L involves the training samples: D! = {x;} wherei =1,... n!

2.4.3.2 Non-negativeness

The violation of f,(x;; {6 },6,) > 0 is added as penalty coming from the negative
part:

Lg2>({ejﬂ},ec):/ / relu(— fo(x;; {0° },0.))dxy - drg  (2.38)
r1€0 Tq3€Qq

With numerical approximation the calculation can be simply made as:
Lo} Z relu ( f. (x:,{00},6 )) (2.39)
The loss L involves the training samples: D? = {x;} where i = 1,..., n?

2.4.3.3 PDF Summation Over Domain Leads to 1

Similarly if the sum of fC (xz, {6' 1.6 ) over the domain is not 1 penalty is added:
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L¥({6:,},6.) = ‘1—/ / / fo(x:,{67,},0.) dx|  (2.40)
x1€Q1 Jaoes g€

Calculation can be approximated as

’I’L3 d
i IRy i
L6 },6,) ~ |1 — — > fe(xi,{653.6.) [T A (2.41)
=1 j=1
The loss L involves the training samples: D3 = {x;} wherei = 1,...,n?

2.4.3.4 CDF function constraints

A

C'(u, 0..) must satisfy Copula’s definition:

,

~

C(uy,0.) = C’(O,UQ, coyug,0.) =0

A

0(927 90) = CAv(“’l? O,Ug, <oy Ud, 00) =0

o

(uy,0.) = C(uy, uy,...,0,0,) =0

C(uy,0.) = C(ui,1,1,...,1,0,) = uy

(2.42)

C(uy,0.) = C(1,uz,1,...,1,0,) = uy

A

Clug,0.) = C(1,1,...,uq,0,) = ug

\

Corresponding loss function can be expressed as
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n

o

— ! (2.43)

00,000 = 3Ol 0+

=1 j5=1 =1 3

1

The loss LS involves the training samples:

d

D; = U <{QZ =12, 04 U {ﬂg}jzm ,,,,, ng) (2.44)

i=1
2.4.3.5 Uniqueness of CDF

If we only have information about the distribution of the derivatives of the
cumulative distribution function (CDF) and the boundary values of the CDF in higher
dimensions (d > 3), it is impossible to definitively ascertain the shape of the CDF. To
preserve the the uniquness of CDF one must integrate a loss function to the network.

Firstly, we know that at a particular point the F,(x;; {6" .}, 8,) satisfy

Fo (2. {60,},6,) / / / Fo (9, {00,).0.) dysdys - dya  (2.49)

Approximation yields

( {60! 1, 9 Z flag(x, y) (2.46)

¢ yeD}

where

1 Vi<d,y; <x;
flag(x,y) = ’ ’ (2.47)

0 otherwise
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According to the constraints the loss function can be defined as

5
L3 ({6} — Z (2:,{6.,},0.) — > _ flag(z;, y) (2.48)
C C =1 yEDl
The loss L involves the training samples: D? = {x;} where i = 1,...,n’

2.4.4 Integration of Main Loss Function

The loss functions of the marginal and copula networks can be defined respectively

as the linear combination of individual loss functions

4
= MLk (0,) (2.49)
k=1
L. ({6} .6.) =Y ML ({65} .6.) (2.50)
k=1

2.5 Graphical Summary

A graphical summary from the work of Zeng (2022) is also added to visualize the

combined network structures neatly.
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CHAPTER THREE
APPLICATION

3.1 Bernstein Copula Classifier

In this section, first Bernstein copula and well-known copula distribution
classifiers are compared in terms of classification performance on simulated data.
Then a classification performance analysis is conducted on benchmark biological data

through convex Bernstein copula classifier.

3.1.1 Simulation Study

In the simulation study, the focus is on classifying the generated copula random
variables. Two well-known copulas, the Gumbel and Clayton copulas, are designated
as two distinct classes, and observations are generated to represent various
dependence structures. Total of 100 observations are generated for each copula
family. We preferred small sample size for the simulation design since the used real
data in this study has small sample size (which is a frequent case in biomarker data)
and we wanted to obtain an equivalent observation. These two Archimedean families
of copulas exhibit different dependence characteristics: the Gumbel copula displays
right-tailed dependence, while the Clayton copula showcases left-tailed dependence.
Our interest lies in assessing how effectively the Bernstein copula classifier can
capture the patterns inherent in the selected parametric copulas. Furthermore,
observations generated from a Gaussian copula with varying dependence structures

are also classified.

In the machine learning process involving the Bernstein copula, a grid search is
performed, and only the best results are presented alongside the optimal grid sizes. To
prevent oversmoothing and expedite computation, grid size permutations are
employed. The maximum grid size for a bivariate Bernstein copula is set at 20, while

for a convex Bernstein copula, it is set at 6.

33



Classification using the Gaussian distribution is performed within a Naive Bayes
framework. Naive Bayes is a valuable method for density-based machine learning
because it assumes independence between random variables, which greatly simplifies
the classification process. As a result, Gaussian Naive Bayes (GNB) is utilized as a
benchmark for the machine learning simulation. 10-fold cross validation with
repetition is used for evaluation criteria.Each 10-fold cross-validation is repeated 20
times. This repetition allows for the training and testing data to be drawn from
various parts of the dataset, enabling a comprehensive analysis of the performance of
the learned models. Simulations consist of weak-weak, strong-strong and
strong-weak associations in terms of Kendall’s tau correlations. In our evaluation, we
employ accuracy as a common performance measure in machine learning to assess

the classification model’s effectiveness.

In Figure 3.1, each figure illustrates the decision regions with actual test data
points. The first column displays the performance of the Bernstein copula classifier
for the fold in which the maximum accuracy is achieved. For the parametric copula
and Gaussian Naive Bayes classification, the figures are generated using the same
fold as the Bernstein copula. The GCC classifiers exhibit symmetrical patterns with
curved regions. In the case of a strong-weak structure, the classifier for the higher
Kendall’s tau tends to create its discriminating region in the middle due to the
symmetry of the associated data. In the 0.7 — 0.7 case, GCC manages to capture more
of the structure, while in the 0.2 — 0.2 case, it struggles to determine adequate
regions. Interestingly, Gaussian Naive Bayes (GNB) categorizes regions as linear,
curved, and circular, depending on the best possible outcome for classification. In
comparison to BC and GCC, GNB fails to capture tail locations and focuses more on
central and non-central regions, especially when there are different associations
among learned models. Unlike GCC and GNB, BC exhibits asymmetric localizations

with irregular patterns.

Nevertheless, the patterns observed in BC are relatively close to GCC, especially
in cases involving strong-weak dependence structures. Overall, BC exhibits behavior

that is similar to GCC.
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Figure 3.1 Decision regions with actual test data points. **First column shows the Bernstein copula

classifier’s performance for the fold with maximum performance. For other columns, the displayed

results are obtained by using the same fold as BC in order to compare.
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3.1.2 Real Life Data:Coimbra Breast Cancer

Early detection and treatment plans are essential for the notorious diseases such as
breast cancer. Machine learning proves to be a valuable supportive tool in medical
area being an objective decision maker for the assessment of the diseases. To assess
the potential of the Bernstein copula classifier in this context, we establish a machine
learning framework for the Coimbra Breast Cancer dataset.The data is available on
UCI machine learning repository. The data consists of several features namely;
Glucose, Insulin, HOMA, Leptin, Adinopectin, Resistin, MCP-1, Age and Body Mass
Index (BMI). Those biomarkers were collected through consultation and blood
analysis for modeling of the obesity-associated breast cancer since they are valid
indicators K. et al. (2013). The data has total of 116 subjects; 52 of them are in the
control group and 64 subject shows presence of the breast cancer. In the simulation
analysis, the classification results obtained using the Bernstein copula are promising,
particularly when the density function is unknown. In further analysis, we extend our
investigation to real data classification within a high-dimensional framework to study
the behavior of the joint Bernstein copula density when there are more than two
variables involved. First, we adopt feature importance order from the study Patricio
et al. (2018). The order reflects the individual impact of biomarkers on breast cancer
models by using the Gini’s coefficient. In decreasing fashion, the order is; Glucose,
Resistin, Age, BMI, HOMA, Leptin, Insulin, Adinopectin, MCP-1. For classification
purposes, the first four biomarkers, ordered by their importance, are selected as the
feature space. As it can be seen in the Kendall’s tau values in Figure 3.2, there are
relatively low correlations between biomarkers, falling within the [-0.25, 0.25] range.
The highest correlation value is observed in the pair (Glucose, Age) with a Kendall’s
tau-value of 0.13. Therefore, there is a need for a copula model that can capture data
with low dependence. In this case, the Bernstein copula with relatively lower grid
sizes would be more suitable, especially considering the symmetrical nature of the
dependence. To classify the presence of breast cancer, we establish learned models
using cross-validation. However, due to the limitations of the joint Bernstein copula

in handling high-dimensional data, we establish four-dimensional models. In addition
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to the Bernstein copula, we also implement the convex Bernstein copula as a classifier
to capture weighted density information from various calibrated Bernstein densities.
As discussed in Section 2.2.1, achieving copula validity requires marginal
transformation to uniformity, which is accomplished by solving the described
optimization problem. During cross-validation, each fold is learned through marginal
optimization. However, it’s worth noting that this process gradually slows down the
running time of the machine learning algorithm as the number of variables increases,
along with the grid size and dimension. The initial solution described in Section 2.2.1
is also employed as a support for the cases where global optimization is unattainable.
In situations where optimization cannot be achieved, the problematic folds are
excluded from the analysis, and the results are compared accordingly. In the context
of supervised learning, both 10-fold cross-validation with 20 repetitions and

leave-one-out cross-validation are applied.

In the first step, the grid search is implemented for each pair from
{3,4,5,6} x {3,4,5,6}. The grid search is configured in this specific manner
because, when the grid size exceeds 6, non-convergent results become increasingly
common, in addition to significantly slowing down the computation time. Table 3.1
displays the classification performance of BC for each grid. The ordered grid pairs of
6-4, 6-5, 6-6 provide relatively better performance. Overall, there are unbalanced

class-wise results observed as the grid size increases.

In the second step, the relatively better cases are selected, and the classification is
once again carried out, this time utilizing the convex Bernstein density as the
discriminant function. The weighted averages of the two Bernstein copulas are
integrated into the machine learning algorithm, as defined in the equation (2.7). The
copula is also can be referred as two component convex Bernstein. In Table 3.2, only
the Bernstein with a 4-6 grid order is displayed as it yields the best results among the
other options. It is evident that the convex Bernstein manages to address the
class-wise imbalance issue. The weights ranged among the permutations of
(0.2,1 — 0.2) incremented by 0.05 and the pairs which have the best classification

result are displayed. The optimal results are achieved by assigning closer weights. In
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the table, the upper weight represents the weight of Bernstein estimated with the
greater grid size. For instance, if the upper weight is 0.4 for the grid pair 4-6, the
weight of ¢4 is 0.6, and the weight of cg is 0.4. In the final results, global accuracy
increases along with balanced class-wise accuracies when weighting by 0.49, which

provides relatively optimal accuracy.

In Table 3.3, the comparison between mixed and global optimization is conducted
with equal weights, and leave-one-out cross-validation is included in addition to the 10-
fold cross-validation with 20 repetitions (10F20R). For the 10F20R approach, the mean
accuracy slightly increases when global accuracy is considered, even with 22 missing
folds.On the other hand, the mean accuracy shows a slight improvement when 5 missing
folds are addressed with mixed optimization. Additionally, there is a relatively larger
change in mean class 2 accuracy following the same pattern as the mean accuracy.
As the training sample size decreases (for 10F20R, training samples consist of data
with sizes of 104 or 105), the number of unsolved cases increases, and the neglected
folds can have a negative impact on accuracy, as seen in the case of 10F20R. In the
case of leave-one-out, where there are only 5 missing folds, including them by using
the initial solution even leads to a slight increase in accuracy. Therefore, especially
when there are many missing folds, optimizing with the initial solution may result in a
decrease in accuracy. In Table 3.4, In this case, we select the fold with the best-balanced
performance, achieving an accuracy of 0.83, a class 1 accuracy (specificity) of 0.8, and
a class 2 accuracy (sensitivity) of 0.8571. According to the confusion matrix for this
specific fold, our algorithm makes only one error case in both false positive and false

negative classifications.

Lastly, several widely known supervised learning algorithms are applied on the
breast cancer data along with the two component convex Bernstein. Results for the
analysis given in Table 3.5 and the included classifiers are; linear discriminant
analysis (LDA), quadratic discriminant analysis (QDA), logistic linear regression
(LLR), logistic linear regression involving all of the interactions (LLR inter.) and
convex Bernstein (CB). The classification is conducted using the same

four-dimensional feature set, as performance deteriorated when more features were
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Figure 3.2 Kendall’s tau values for features for Coimbra Breast cancer data.

added. Only leave-one-out cross-validation is performed. Additionally, for CB
(Convex Bernstein), only mixed optimization is utilized, and a more detailed
parameter search is conducted to explore whether improved classification results can
be achieved. The implementation for CB is chosen with a grid configuration of
4,6 — 4,6 and weight values of 0.4,0.6 — 0.55,0.45. As a result, there is a slight
increase of 2% in Class 1 accuracy but a slight decrease of 1% in Class 2 accuracy.
Based on the results, classifiers, except for LLR inter. (Logistic Regression with
Interaction Terms), exhibited lower overall accuracy compared to CB. While CB is
slightly better than LLR for the given feature set, the LLR inter. model performed
better when 6 additional features were added to the 4 biomarkers, resulting in superior
performance in the 10-dimensional classification task. However, it is important to
note that 10-dimensional classification could not be performed with CB due to
computational difficulties, so a direct comparison in that context is not available.
Also, it is naturally expected to obtain a better performance by including feature

variations in the training data.
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Table 3.1 Four-variate Bernstein classifier results for the chosen grid sizes.

Class 1: Control, Class 2: Breast Cancer.

Number of no solutions shows number of non-convergent optimizations 200 models.

Accuracy | Class 1 Accuracy | Class 2 Accuracy | Grid Size 1 | Grid Size 2 | No Sol. Cases
0.5942 0.7322 0.4767 3 3 0
0.5728 0.858 0.3404 4 3 0
0.5079 0.9516 0.1455 5 3 0
0.5907 0.9774 0.2806 6 3 20
0.5872 0.414 0.7335 3 4 0
0.6021 0.6912 0.5305 4 4 0
0.5694 0.7449 0.4217 5 4 0
0.6725 0.8916 0.5009 6 4 20
0.5279 0.0815 0.8913 3 5 1
0.5774 0.356 0.7574 4 5 1
0.5862 0.5928 0.5881 5 5 1
0.682 0.7818 0.6109 6 5 21
0.5177 0.0539 0.8962 3 6 9
0.5653 0.2181 0.844 4 6 9
0.5663 0.403 0.7 5 6 9
0.6813 0.6796 0.687 6 6 29

Table 3.2 Results for the 4-dimensional convex Bernstein models (¢ g ) adopted with grid sizes of (4, 6—

4,6).

Class 1: Control, Class 2: Breast Cancer.

Number of no solutions shows number of non-convergent optimizations (200 models).

Accuracy | Class 1 Accuracy | Class 2 Accuracy | Model 1 Weight | Model 2 Weight | No Soln. Cases
0.7266 0.7492 0.7116 0.48,0.52 0.48,0.52 24
0.7275 0.7503 0.7121 0.49, 0.51 0.49, 0.51 24
0.727 0.7495 0.7123 0.50, 0.50 0.50, 0.50 24
0.7265 0.746 0.7142 0.51,0.49 0.51,0.49 24
0.726 0.7447 0.714 0.52,0.48 0.52,0.48 24
0.726 0.7445 0.7135 0.53,0.47 0.53,0.47 24

Table 3.3 Convex Bernstein classifier (cop) results for the 4-dimensional models where trained models

adopted with both mixed optimization and global optimization with missing folds. For both classification

models, Bernstein components have aggregated grid sizes of (4,6 — 4,6), weighted equally i.e.,
(0.5,0.5—0.5,0.5).

Accuracy | Class 1 Accuracy | Class 2 Accuracy
10F20R 0.7267 0.7263 0.7229
Leave-one-out 0.7500 0.7885 0.7188
Optimization: Mixed
10F20R - 22 Missing Case 0.7205 0.7423 0.7013
Leave-one-out - 5 Missing Case | 0.7477 0.7885 0.7119
Optimization: Global
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Table 3.4 Confusion matrix of convex Bernstein applied fold that shows real and predicted counts of

subjects.
Predicted Class
Actual Class | Class 1 | Class 2
Class 1 4 1
Class 2 1 6

Table 3.5 Comparison between well-known machine learning algorithms. Convex Bernstein trained
according to a detailed parameter search is included.

Classifier | Accuracy | Class 1 Accuracy | Class 2 Accuracy
LDA 0.6983 0.6923 0.7031
QDA 0.7241 0.8077 0.6562
LLR 0.7414 0.7500 0.7344
LLR inter. | 0.8276 0.8654 0.7969
CB 0.7500 0.8077 0.7031

3.2 Discussion

Probability distributions serve as powerful tools in machine learning, offering great
potential for improvement.Embracing a distributional approach when learning from
training datasets can result in a precise data fit. Nonetheless, accurately pinpointing
the underlying distribution structure, especially in real-life scenarios, remains a
significant challenge. Consequently, nonparametric approaches offer promising
opportunities for enhancement. In this study, a Bernstein copula implemented as a
classifier is used in cross validation procedure. The algorithm for the classification is
designed to search the optimal grid size that is capable of recognizing the test data
optimally. In the simulation study, the classes are defined based on two well-known
copulas: Gumbel and Clayton, each characterized by distinct tail dependencies. The
Gumbel copula represents a right-tail dependence structure, while the Clayton copula
represents a left-tail dependence structure. The Bernstein copula approach has
exhibited superior performance compared to the benchmark classification method,
Gaussian Naive Bayes. Moreover, the Bernstein copula approach demonstrates a
significant resemblance to the Gumbel-Clayton classifier, especially in cases
characterized by weak dependence. Particularly, when dealing with structures that

exhibit mixed correlations and tail dependencies, Gaussian Naive Bayes (GNB) fails
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to provide satisfactory accuracies.The figures from the best-case machine learning
simulations demonstrate that GNB is ineffective at capturing the tails of the data and
struggles with high levels of dependence. In a real data application, the Coimbra
breast cancer data is analyzed, and classification is performed using a four-variate
Bernstein copula. This approach results in relatively higher accuracies, although there
are unbalanced class-wise accuracies. To address the poor performance, the convex
Bernstein copula is employed with grid pairs that exhibit higher accuracies. This
approach effectively resolves the issue of class-wise imbalance. A weight search for
the discriminant functions leads to satisfactory results in comparison to the previous
analysis. Therefore, the integration of distributional information proves to be a

valuable tool, and there is potential for further enhancements in this approach.

Optimizing the contingency table before evaluating the Bernstein density is
perhaps the most prominent limitation. Transforming discrete variables to be equal to
m? can pose challenges in this context. Therefore, it is advisable to use the Bernstein
copula for classification problems involving small feature spaces that have been
validated to explain the target variable. Based on the findings, as the number of
unknowns in the optimization algorithm approaches approximately 1000, the
optimization process becomes slower, and non-convergent results become more
apparent. Empirical observations suggest that using initial solutions in optimization
can lead to a slight decrease in accuracies, especially when there are many unsolvable
folds. However, in general, for efficiency, moderate dimensions are needed along

with the initial solution framework.

3.3 Vine Density Classifier

3.3.1 Simulation Study

In this section, we examine the efficacy of vine density machine learning
frameworks, comparing their performance to that of random forest and support vector

machines. The simulation is conducted using two classes of Gaussian distributions
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characterized by distinct dependence structures.

In simulation design, 500 observations are generated with 10 trials and the average
accuracy results are displayed. The first class is generated with a Gaussian copula
using 7 = 0.7 , while the second class is generated with a Gaussian copula using
7 = 0.2. This is achieved by leveraging the vine copula simulation module of the
VineCopula package in R. The dataset consists of 5-dimensional data with 10 nodes,
where 4 nodes have Gaussian copula, and 6 nodes have independence copula (i.e.,
noise). The classification is based on a 10% test set and a 10% validation set, which
are used for trained model optimization. For evaluation process, we use accuracy
measure as a common performance measure in machine learning to assess the
classification model’s effectiveness. Accuracy is the ratio of correct predictions
obtained by the model to the total number of predictions. The accuracy is calculated

as:

Accuracy = (Number of correct predictions) / (Total number of predictions).
C1 and C2 are considered as Class 1 and Class 2 , respectively. Classes are
simulations of 5 dimensional vine density with 15 nodes where 10 of them are copula
distribution.Class 1 indicates the data generation process for vine that consists of
empirical marginals in the first tree, only Gaussian (0.7) copula calibration in the
second tree (4 nodes) and the independence copula for the rest of the trees (noise on 6
nodes). Class 2 has the same data generation process only difference is that the

second tree is built by using Gaussian (0.2) copula.

In Table 3.6 overall results are displayed. The full-parametric vine has the highest
accuracy, mean C2 accuracy, F1 score and AUC score while truncated-parametric
vine is relatively close in terms of all metrics excluding mean C2 accurracy. In terms
of accuracy, random forest and support vector machines fall behind the
full-parametric and truncated-parametric vine frameworks. The parametric
frameworks along with the truncated hybrid vine exhibit relatively more balanced
class-wise accuracies. Notably, the hybrid methods achieve higher class 1-based

accuracy compared to other vine frameworks. The performance of Bernstein vine is
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relatively low for the simulated data. In summary, it can be inferred that achieving
high accuracy performances may not necessitate calibrating a full vine, as the
performance of the truncated-parametric model closely approximates that of the

full-parametric model.

In Table 3.7 and Table 3.8, the trim numbers are higher for the first class, as the
Gaussian distribution with a correlation parameter of 0.7 leads to more correlated tree
instances. Calibrating these trees provides valuable information for the training data.
Conversely, for second class trainings, either the first tree calibration is applied, or no
vine calibrations are used at all, as zero values indicate that the discriminant function

is a product of marginal distributions, corresponding to the naive Bayes method.

In Table 3.10 and Table 3.9, the simulation-wise performances, along with the
hyperparameters, are displayed for Support Vector Machines (SVM) and Random
Forest (RF), respectively. In the simulation scenario, the training model capacity is
optimized by selecting parameters that yield the highest accuracy from the validation

set.

Table 3.6 Class 1: 4 Gaussian(0.7) - 6 Noise; Class 2: 4 Gaussian(0.2) - 6 Noise; 500 observations; 10

simulations

Method Mean Accuracy | Mean C1 Acc. | Mean C2 Acc. | F1 Score | AUC Score
full-parametric 0.877 0.8826 0.87224 0.88387 0.93574
full-bernstein 0.685 0.84129 0.55186 0.65205 0.74283
full-hybrid 0.775 0.93695 0.63703 0.74991 0.82907
truncated-parametric 0.863 0.88695 0.8426 0.86816 0.9281
truncated-bernstein 0.699 0.71305 0.68705 0.70636 0.77141
truncated-hybrid 0.852 0.90652 0.80555 0.85285 0.91984
svm 0.855 0.93478 0.78703 0.85296 0.9333
random forest 0.835 0.86087 0.81297 0.8407 0.90936

3.3.2 Gene Expression Data Classification Application

For the machine learning model evaluation, Monte Carlo cross validation method is
used such that dataset is sampled 20 times for the train-test split. Classification with
truncated vine also has validation set in the same manner. Performance metrics are

obtained by aggregating 20 classification tasks for each data. Note that, for some splits
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Table 3.7 Truncated parametric vine model simulations

Accuracy | C1 Acc. | C2 Acce. | F1 Score | AUC Score | Trim Number C1 | Trim Number C2
0.82 0.8913 | 0.7593 0.8200 0.9066 3 1
0.85 0.9130 | 0.7963 0.8515 0.9046 2 1
0.86 0.8913 | 0.8333 0.8654 09114 1 0
0.81 0.8696 | 0.7593 0.8119 0.8917 4 1
0.90 0.8913 | 0.9074 | 0.9074 0.9444 2 1
0.87 0.9348 | 0.8148 | 0.8713 0.9505 1 0
0.90 0.8261 | 0.9630 | 0.9123 0.9565 1 1
0.84 0.8043 | 0.8704 | 0.8546 0.9179 2 1
0.91 0.9130 | 0.9074 | 0.9159 0.9638 1 0
0.87 0.9348 | 0.8148 | 0.8713 0.9336 1 1

Table 3.8 Truncated hybrid vine model simulations

Accuracy | C1 Acc. | C2 Acc. | F1 Score | AUC Score | Trim Number C1 | Trim Number C2
0.81 0.8913 | 0.7407 | 0.8081 0.8969 2 0
0.82 0.9348 | 0.7222 | 0.8125 0.9026 2 0
0.86 0.8913 | 0.8333 0.8654 09114 1 0
0.77 0.8913 | 0.6667 | 0.7579 0.8482 2 1
0.88 0.8913 | 0.8704 | 0.8868 0.9400 1 0
0.87 0.9348 | 0.8148 | 0.8713 0.9505 1 0
0.89 0.8696 | 0.9074 | 0.8991 0.9481 4 0
0.85 0.8913 | 0.8148 | 0.8544 09114 4 0
0.91 0.9130 | 0.9074 | 0.9159 0.9638 1 0
0.86 0.9565 | 0.7778 | 0.8571 0.9255 2 0

Table 3.9 SVM model with polynomial kernel of third degree simulations

Accuracy | C1 Acc. | C2 Acc. | F1 Score | AUC Score | svm_coef | svm_gamma
0.81 0.913 0.7222 | 0.8041 0.8965 1 1
0.84 0.8913 | 0.7963 0.8431 0.9054 2 1
0.88 0.9348 | 0.8333 0.8823 0.9416 2 0.1
0.82 0.9348 | 0.7222 | 0.8125 0.9106 1 1
0.89 0.9565 | 0.8333 0.891 0.9461 3 0.1
0.89 0.9565 | 0.8333 0.891 0.9654 1 0.2
0.86 0.9348 | 0.7963 0.86 0.9513 3 0.1
0.77 0.8913 | 0.6667 | 0.7579 0.9042 1 0.1
0.94 0.9783 | 0.9074 | 0.9423 0.9791 1 0.2
0.85 0.9565 | 0.7593 0.8454 0.9328 2 0.1

vine structures are failed to be optimized, those cases are omitted.
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Table 3.10 Random Forest model simulations

Accuracy | C1 Acc. | C2 Acc. | F1 Score | AUC Score | rf_nest | rf_ mdep | rf_ms_split | rf_ms_leaf
0.81 0.8696 | 0.7593 0.8119 0.8907 50 10 1 1
0.84 0.9348 | 0.7593 | 0.8368 0.877 50 5 1 1
0.86 0.8261 | 0.8889 | 0.8727 0.9235 50 5 1 1
0.83 0.8913 | 0.7778 | 0.8317 0.9052 150 5 1 2
0.89 0913 0.8704 | 0.8953 0.9422 50 5 1 2
0.85 0.8913 | 0.8148 | 0.8544 0.9308 50 5 5 2
0.81 0.7609 | 0.8519 | 0.8288 0.9261 100 5 5 2
0.76 0.8043 | 0.7222 | 0.7647 0.8529 50 5 5 1
0.9 0.8478 | 0.9444 | 0.9107 0.9541 100 10 5 2
0.8 0.8696 | 0.7407 0.8 0.8911 150 10 5 2

3.3.2.1 GSE2109 Benchmark Data

The gene expression data series referenced by GSE2109 in NCBI repository are
used as a benchmark data for vine classification. The data originally created as
expression project for oncology (expO). The project expO seeks to manage cancer
patients clinically. The expression data holds a strong profile of malignant tumor
samples to establish distinguishing analysis among tissues. Data is reorganized and
standardized for various cancers in the OSF data portal. The classification analysis is
made for three different expression data namely; GSE2109 Kidney, GSE2109 Lung,
GSE2109 Uterus. Each subject has the prior class information on cancer whether
he/she is in early stage or late stage. Note that in the original curation, the first class is
labeled as the combination of 1 and 2 stages and the second class is labeled as the
combination of 3 and 4 stages. We address them early and late stages, respectively.
The curation techniques and detailed information are given in Golightly et al (2018).
The study aims to help researchers to make use of benchmark comparisons on
machine learning algorithms. Various machine learning methods were applied on the

data in the study Piccolo et al. (2021).

3.3.2.2 Classification of GSE2109 Benchmark Data

For each data genes are scored by the mutual information criteria and top five
expressed genes are selected. Mutual information is used for feature selection that

measures how much information one variable provides about other. Using this
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method, genes are ranked according to the degree to which their expression is linked
to the classification goal. The top five genes are chosen based on their scores. The
most useful characteristics for classification are these genes. An overview for the top
gene annotations are given based on the analysis reports in Human Protein Atlas
Portal. For the kidney tumor data, the gene with ID ENSG00000159899 came first.
The gene encodes natriuretic peptide receptor B (NPR2), a membrane receptor for
natriuretic peptides, primarily C-type natriuretic peptide (CNP), which activates
guanylyl cyclase upon ligand binding. Based on the findings, the expression levels
are altered in the case of kidney cancer and the expression levels show a significant
association with patient survival, where high expression refers to a relatively higher

survival chance. (Given in Table 3.11)

For the lung tumor data, the gene ENSG00000011426 is on top. It encodes an
actin-binding protein that is involved in cell growth and migration, and cytokinesis.
The gene has a significant association with patient survival, where lower expression
refers to a lower survival rate. Those two mentioned genes have relatively low
expression activity for overall cancer types and have no specific enrichment

observation for any cancer type. (Given in Table 3.12)

Lastly the gene ENSG00000124939 which involves in androgen receptor signaling
pathway and located in extracellular space has the most score in uterus data. The gene
shows no significant association with survival rate. However, this gene is more
actively transcribed in the RNA for the cancer types namely; Ovary Serous
Cystadenocarcinoma, Uterine Corpus Endometrial Carcinoma. In another words the
gene is group enriched for the mentioned types where uterus is also involved.
According to the RNA expression overview, unlike the ENSG00000159899 and
ENSG00000011426, the expression activity is almost nonexistent for the other types
of cancer and is high for the given cancer types; hence, the term group enriched is
used.(Given in Table 3.13) The examined expression activity for the chosen uterus

data genes here also in parallel with its the classification results.

47



Classification based on R-vine is carried with test percentages of 10%, 15% and
20%. For truncated vines, different percentages are used for pairs of test and
validation. In Table 3.14, there is a slight increase in truncated vine especially when
models are built with parametric vine. The accuracy results are in favor of the later
stage which is lesser class. The results in kidney data may suffer the imbalanced
situtation of the classes. The most balanced results are adopted for the second row of
non-parametric truncated vine(0.714; 0.704; 0.738). In Table 3.15, there is also
improvement in truncated vine and the last row of parametric truncated vine (0.718;
0.688; 0.764) has the most balanced performance and there exists a promising
increase in later stage accuracy. Lastly, the results for the uterus dataset is in
Table 3.16. The cancer stage distinguishment can be achieved with relatively high
performance for this data. With truncation, better results are obtained.
Accuracy-wise, the first row of parametric truncated vine (0.875; 0.936; 0.758) has
the highest performance. However, the first row of the non-parametric truncated vine
(0.87; 0.901; 0.801) has the most balanced result. In this case, the mean C2

accuracies are also kept relatively higher.

Lastly, hybrid vine models which have semi-parametric vine setup are used to
investigate existence of a boosting effect. Overall, the results are slightly differ from
the earlier ones. For this reason, only the results for the uterus dataset is given in
Table 3.17. Results are particularly closer to the parametric ones for all of the
benchmark datasets. It can be deduced that, semi-parametric algorithm for vine tends
to choose parametric copulas more. According to the results, there is no proof that
hybrid distribution setup does not have a boosting effect that goes beyond already
calculated parametric and non-parametric results. Accuracies of different vine setups

are displayed in the Figure 3.3, Figure 3.4, Figure 3.5 for all of the datasets.

In Figure 3.6, the cut points of the truncated vine models are displayed for each fold
of the uterus data. According to the findings one can see that, there is no need to fit a
vine distribution with full tree and nodes calibration to achieve a higher classification
performance. In fact, since zeros are the most appearent, just marginals will be enough

for a good performance in uterus data. However, the most balanced result achieved
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in the non-parametric case uses various cut points. For example, the model 1 uses cut
point 1, 7 seven times and cut point 2, 1 time which refers the model needed at least
one level tree generation in many cases. Overall, the models needed to fit vine fully in

just one instance which is the model 2 of non-parametric modeling.

Table 3.11 Top 5 selected genes for Kidney data

Gene Annotation

MI Score

ENSG00000159899

0.1310481

ENSG00000198719

0.1260605

ENSG00000174640

0.1258081

ENSG00000187840

0.1242762

ENSG00000100234

0.1224906

Table 3.12 Top 5 selected genes for Lung data

Gene Annotation

MI Score

ENSG00000011426

0.2340990

ENSGO00000111665

0.2177974

ENSG00000117650

0.2156703

ENSG00000088325

0.2153979

ENSG00000123485

0.2062613

Table 3.13 Top 5 selected genes for Uterus data

Gene Annotation

MI Score

ENSG00000124939

0.2882380

ENSG00000109794

0.2806210

ENSG00000082175

0.2795868

ENSG00000156049

0.2674682

ENSG00000129003

0.2657077

3.3.3 Discussion

Vine copulas model the distribution of high-dimensional random vectors by
capturing the relationships between pairs of conditional random variables. They offer
the flexibility to represent various dependence structures between pairs of random
variables. Moreover, the vine model fulfills generalization of copula in arbitrary
dimensions. This property makes vine copula highly flexible models for

computationally tractable estimation and model selection. We use vine densities as
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Table 3.14 Vine classifier performances on kidney tumor data. There are 132 early stage and 63 late

stage cancer subjects.

R-vine classifier Test Percent | Validation Percent | Mean Accuracy | Mean C1 Accuracy | Mean C2 Accuracy | F1 Score | AUC Score

0.1 - 0.6775 0.637015 0.74474 0.53479 | 0.7261
Parametric 0.15 - 0.66725 0.629235 0.75237 0.596665 | 0.752615

0.2 - 0.650005 0.617205 0.71968 0.575635 | 0.73271

0.1 - 0.605 0.48722 0.868905 0.569975 | 0.74199
Non-Parametric 0.15 - 0.62931 0.53198 0.843035 0.60246 | 0.73752

0.2 - 0.61922 0.52997 0.80126 0.59774 | 0.74951
Truncated R-vine classifier | Test Percent | Validation Percent | Mean Accuracy | Mean C1 Accuracy | Mean C2 Accuracy | F1 Score | AUC Score

0.1 0.1 0.69 0.633 0.794 0.53 0.741
Parametric 0.2 0.1 0.696 0.671 0.739 0.581 0.772

0.1 0.2 0.7 0.66 0.791 0.55 0.727

0.2 0.2 0.691 0.679 0.717 0.62 0.77

0.1 0.1 0.703 0.633 0.844 0.461 0.687
Non-Parametric 0.2 0.1 0.714 0.704 0.738 0.543 0.723

0.1 0.2 0.695 0.641 0.809 0.487 0.655

0.2 0.2 0.7 0.684 0.738 0.538 0.7

Table 3.15 Vine classifier performances on lung tumor data. There are 53 early stage and 43 late stage

cancer subjects.

R-vine classifier Test Percent | Validation Percent | Mean Accuracy | Mean C1 Accuracy | Mean C2 Accuracy | F1 Score | AUC Score

0.1 - 0.655 0.634 0.710 0.541 0.725
Parametric 0.15 - 0.643 0.641 0.664 0.555 0.708

0.2 - 0.653 0.702 0.608 0.556 0.699

0.1 - 0.575 0.648 0.528 0.633 0.746
Non-Parametric 0.15 - 0.618 0.695 0.554 0.651 0.765

0.2 - 0.634 0.716 0.563 0.658 0.788
Truncated R-vine classifier | Test Percent | Validation Percent | Mean Accuracy | Mean C1 Accuracy | Mean C2 Accuracy | F1 Score | AUC Score

0.1 0.1 0.655 0.641 0.686 - 0.674
Parametric 0.2 0.1 0.708 0.698 0.715 0.65 0.734

0.1 0.2 0.675 0.683 0.685 0.566 0.708

0.2 0.2 0.718 0.688 0.764 0.617 0.722

0.1 0.1 0.645 0.627 0.674 0.654 0.715
Non-Parametric 0.2 0.1 0.708 0.688 0.738 0.679 0.740

0.1 0.2 0.625 0.606 0.662 0.645 0.721

0.2 0.2 0.697 0.684 0.72 0.657 0.705

discrimination functions. Through the machine learning process in simulation study,
the densities represent the training data for each class label. Subsequently, class
membership of the test data is determined based on the vine model with the highest
density value. Truncated vine model approaches are proposed for the classification
procedure based on the vine Bayes context. Some hybrid vine structures are also
constructed by semi-parametric vine modeling which makes the selection between the
parametric copulas and Bernstein copulas with different grid sizes based on the
relative distance given in equation 2.20. Based on our observations, it always tends to
select the higher grid size to apply more smoothing effect on the distribution. Hence,

we fix the Bernstein copula grid size to 10 as the degree of polynomial should be

enough to capture the dependence pattern. If not, it will be practical to engage a
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Table 3.16 Vine classifier performances on uterus tumor data. There are 64 early stage and 41 late stage
cancer subjects.

R-vine classifier Test Percent | Validation Percent | Mean Accuracy | Mean C1 Accuracy | Mean C2 Accuracy | F1 Score | AUC Score
0.1 - 0.825 0.86125 0.78001 0.704 0.886
Parametric 0.15 - 0.790625 0.854605 0.70137 0.7 0.859
0.2 - 0.804755 0.867015 0.70621 0.706 0.864
Non-Parametric 0.1 - 0.795 0.76028 0.87334 0.787 0.889
0.15 - 0.7875 0.75752 0.86119 0.744 0.876
0.2 - 0.77142 0.736775 0.850315 0.73 0.888
Truncated R-vine classifier | Test Percent | Validation Percent | Mean Accuracy | Mean C1 Accuracy | Mean C2 Accuracy | F1 Score | AUC Score
0.1 0.1 0.875 0.936 0.758 0.76 0.892
Parametric 0.2 0.1 0.84 0.906 0.719 0.716 0.889
0.1 0.2 0.845 0.878 0.774 0.753 0.899
0.2 0.2 0.84 0.903 0.733 0.706 0.873
Non-Parametric 0.2 0.1 0.843 0.896 0.754 0.716 0.888
0.1 0.2 0.86 0.885 0.797 0.749 0.901
0.2 0.2 0.843 0.896 0.756 0.715 0.872

Table 3.17 Truncated R-vine classifier performance with hybrid setup on uterus tumor data.

Test Percent | Validation Percent | Mean Accuracy | Mean C1 Accuracy | Mean C2 Accuracy | F1 Score | AUC Score

0.1 0.1 0.875 0.927 0.778 0.758 0.9
Semi-Parametric | 0.2 0.1 0.84 0.903 0.725 0.723 0.891

0.1 0.2 0.85 0.895 0.762 0.757 0.875

0.2 0.2 0.838 0.908 0.708 0.724 0.874

copula family instead since bivariate parametric copulas can be more sensitive to
capture solid dependence structures. Also high grid sizes for Bernstein copula does
not guarantee better performance and reduce the computational performance as can be
seen in the study Yamut & Hudaverdi (2023). The performance of the proposed
procedures is compared on the class membership of the current data. Some
well-known machine learning methods, such as Support Vector Machines (SVM) and
Random Forest, are employed to compare the performance of the proposed method. It
can be concluded that high accuracy performances can be achieved without fully
calibrating the vine copula structure. The performance of the truncated-parametric
copula closely approximates that of the full-parametric model. Moreover, when
compared with other techniques, the truncated-parametric vine model demonstrates

superior performance.

Furthermore, for the proposed vine type classification, dependence structures
among gene features are constructed using the pair copulas with Bernstein vine,
hybrid vine, and parametric vine modeling. Monte Carlo cross-validation is utilized
for the gene expression dataset and it is sampled 20 times for the train-test split.

Performance metrics are obtained by aggregating results from 20 classification tasks
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Figure 3.3 Accuracy versus test-validation percent line graphs for lung data with respect to the different

truncated vine approaches.
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Figure 3.4 Accuracy versus test-validation percent line graphs for kidney data with respect to the different

truncated vine approaches.

for each dataset.  This approach represents a selection copula process in a
semiparametric environment. In vine application, we observe as the tree levels
progressed and conditional observations accumulate, the dependence measure
Kendall’s tau tends to getting weaker. This suggests, co-movements of prominent

variables getting weaker as they are conditioned with more and more variables.

In general, for the gene data, there is a slight increase in accuracy observed in
truncated vine models when models are constructed using both parametric and
nonparametric vines. However, semiparametric designs do not exhibit the desired

boosting effect, as they closely resemble the results obtained from parametric models.
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Figure 3.5 Accuracy versus test-validation percent line graphs for uterus data with respect to the different

truncated vine approaches.
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Figure 3.6 Cut points of truncated vines for each model and fold.

Conversely, the nonparametric vine with truncation design yields the most impactful
result, demonstrating the most balanced classification performance in the Uterus gene
expression dataset. The F1 scores are relatively low in the results. Notably, the
highest F1 score is achieved in the full non-parametric case and the highest AUC
score is achieved in the truncated non-parametric case of the uterus data
classification. Based on the cut-off results on the uterus data cross validation, the

parametric approach relatively benefit more from the truncated vine as it tends to cut

53



vine off earlier levels than other methods. From this observation it can be deduced
that the bivariate parametric families captured most of the co-movement information
in earlier tree levels as they are flexible to detect existing dependence patterns. Also,

we can interpret the classification performances and cut point figures as

* Full calibration of the vine is unnecessary to achieve satisfactory classification

results.

* In certain datasets, relying solely on the naive approach, where the product of
marginals is used, may be insufficient, particularly when utilizing truncated vine
models. In such cases, various cross-validation strategies involve constructing

vine trees to enhance performance and achieve superior results.

Owing to the decomposable structure of pair copulas, researchers can analyze
gene-by-gene dependencies to better understand networks. Because pair-copula
constructions (PCCs) effectively depict the joint distribution of features, they can

enhance the effectiveness of predictive models.

3.4 Neural Density Based Classifier

In this section, the predictive power of neural network based distribution is
examined in machine learning classification task. Benchmark gene expression
survival data is used and the survival outcome profiles are classified for the task. In
the marginal distribution part, 5 layers are used along with the 5 hidden layer neurons.
In the copula part number of 5 hidden layers are used along with the 10 hidden layer
neurons. The networks are compiled with Nadam optimizer with learning rate of 0.01.

The general loss function is set as mean absolute error.
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3.4.1 GSE62564 Benchmark Survival Gene Expression Data

The GSE62564 dataset was curated to evaluate the predictive potential of RNA
sequencing compared to microarray data, with a focus on overall survival. Survival
outcomes were modeled as a binary classification problem, where a gene profile
labeled as 0 indicates subjects with favorable survival outcomes, and 1 represents
unfavorable outcomes. Cox regression was employed to model survival times and
assess the relationship between gene expression profiles and survival. Based on this
modeling approach, the curators demonstrated that subjects in the favorable survival
group had significantly longer survival periods compared to those in the unfavorable
group. GSE62564 benchmark data consist of 499 subjects and 43827 gene profiles.
The class labeled as favorable survival outcome has 393 subjects and the one labeled

as unfavorable survival outcome has 105 subjects.

3.4.2 Data Preprocessing

The RNA-sequence data is originally curated as RPM type data with log2
transformation. The data is extracted through GEO dataset module of Python. By
using the meta data the gene profiles are properly labeled with correspondent survival
outcomes. Gene selection conducted with the mutual information criteria and top
genes within the top five is gathered as the classification data. Then the data is
standardized by using the min-max scaling. In Figure ,one can deduce the correlation
between the chosen genes are relatively high Kendall’s tau. Hence for proper
classification modeling the dependence structure of genes are crucial. Due to the
imbalanced class random undersampling procedure is used in the the train/test split.
The size of unfavorable survival outcome is referenced as it is the class with lesser
subjects. 105 subjects are randomly chosen for both classes. %20 of the equalized
dataset is determined as the test data and the class distribution of the train and test is
preserved by using stratification. In the end, training data with 168 subjects obtained
where each class labeled data has 84 subjects along with the test data with 42

subjects.
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Kendall's Tau Correlation Matrix

Figure 3.7 Kendall’s tau correlation matrix of top five survival genes

3.4.3 Classification of Gene Expression Based Survival Data

3.4.3.1 Neural Copula Classification

Since the management of neural network which conditioned to build a copula is
difficult in arbitrary dimensions the classification of the survival data is made by two
genes. Hence, the top two gene profiles are extracted for the classification task. The
marginal neural networks and copula network are obtained after 2000 epochs. In
Figure 3.8 and Figure 3.9 the marginal distributions of class labeled data that
generated by neural networks can be displayed. In copula distributions that generated
by neural network can be displayed. According to the results, the networks provided
an adequate fit close to the true distributions. In Table 3.18 the classification results
on the survival data can be examined. Overall results are not poor however the recall
score is relatively low causing also lower F1 score. The recall score is especially
important since identifying at-risk patients is crucial for intervention. Predicting
at-risk patients influence clinical decision-making, like adjusting treatment plans or
monitoring high-risk patients. On the other hand, the AUC score is based unfavorable
survival class probabilities and indicates how well your model predicts patients who
are more likely to have an unfavorable survival outcome. Hence, AUC score is not

satisfying for identifying unfavorable survival characteristics of the patients.
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Nonetheless, model used two genes (features) for the problem and lacks sufficient

information.

3.4.3.2 Neural Marginal Based Vine Distribution

As the second step of the classification task vine density function is calibrated with
top five genes. The employed procedure is the full vine calibration with parametric,
Bernstein (non-parametric) and hybrid vine as in the previous section. As mentioned
in the previous application the root tree of the vine has a crucial role which means
calibration of the marginal distributions has a crucial effect on modeling of the vine
density. The difference is that the marginal distributions are generated through the
neural network procedure. Hence the CDF and PDF information of the marginal
distributions are fed to the vine density function by marginal neural network
computations. The classification performance of the neural marginal based vine
density compared to the vine density with parametric marginals. The parametric
marginal distributions are determined by Akaike criterion. The chosen marginal
distributions for the genes of the favorable survival class are; Weibull, Gaussian,
logistic, Weibull and Weibull. For the unfavorable survival group the chosen
marginals are; Gaussian, Weibull, Weibull, logistic and logistic. Neural marginal
distributions are generated with 2000 and 50000 epochs to investigate the effect of the
training capacity. These models are called as neural marginal based vine (NMBV). In
Figure 3.12, Figure 3.13 marginal distributions trained with 2000 epochs and in
Figure 3.14, Figure 3.15 marginal distributions trained with 50000 epochs can be
visualized. Overall an adequate fit can be observed for each gene in terms of CDF and
PDF. In the marginals trained with 50000 epochs, vertices of PDFs are relatively
more captured than the marginals trained with 2000 epochs. Nevertheless, capturing
the PDFs in more detail is not necessarily sign of a good trained model as this may
cause overfitting. In Table 3.19 the classification performance vine classifiers are
given. Naturally, by using more genes to train the models, the overall performance is
increased. The R-vine classifier with Bernstein approach has the best result among

the classifiers. On the other hand, NMBYV with Bernstein approach performed close to
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the best results when trained with 2000 epochs. When trained with 50000 epochs the
NMBYV performed poor results which shows a sign of overfitting in the model. The
parametric and hybrid approaches did not present a result that is particularly better

compared to the Bernstein approach.
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Figure 3.9 CDF and PDF plots of bivariate unfavorable survival data after 2000 epochs
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Figure 3.10 CDF and PDF plots of bivariate favorable survival data after 2000 epochs

3.4.3.3 Discussion

In this section, applications were carried out on how artificial neural networks can be

used in statistical learning problems and what results can be obtained. Additionally, it
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u

Figure 3.11 CDF and PDF plots of bivariate unfavorable survival data after 2000 epochs

Table 3.18 Classification performance of neural copula.

Accuracy | Precision | Recall | F1 Score | AUC Score
0.81 0.93 0.67 0.78 0.82

was emphasized that vine densities can incorporate their marginal distributions as trees.
Such procedure is given as an alternative to generating multi dimensional distributions

using artificial neural networks as it is a difficult process.

It was observed that the vine distribution constructed with parametric marginals
and the Bernstein copula achieved better classification results, while the vine
distribution created with neural marginals and the Bernstein copula yielded results
close to it. Based on these findings, it can be said that parametric distribution families
provide a better fit for this dataset. However, it was also demonstrated that the vine
distribution calibrated with neural marginals could be a critical candidate for
scenarios where parametric families fall short. Overall, it was shown that the
dependency structure observed in the Kendall tau correlation matrix could be more

accurately calibrated with the smoothing effect of the Bernstein copula.

In cases trained with a high number of epochs, overfitting was observed for this

small dataset, resulting in performance even lower than two-dimensional classification
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Figure 3.15 CDF and PDF plots of the five unfavorable survival data genes after 50000 epochs

for some cases.

In this application, where survival status of patients were classified,

it was

demonstrated that, despite the small size of the genetic dataset, good results could be

obtained using the five dimensional vine approach with top five genes.

60



Table 3.19 Classification results on survival data by depicted vine classifiers.

R-vine classifier Accuracy | Precision | Recall | F1 Score | AUC Score
Parametric 0.8095 0.8095 | 0.8095 | 0.8095 0.8571
Non-Parametric 0.881 0.8333 | 0.9521 | 0.8889 0.8639
Hybrid 0.8333 0.8182 | 0.8571 | 0.8372 0.8549
NMBY (2K epochs) | Accuracy | Precision | Recall | F1 Score | AUC Score
Parametric 0.7619 0.7619 | 0.7619 | 0.7619 0.8254
Non-Parametric 0.8571 0.8261 | 0.9048 | 0.8637 0.8286
Hybrid 0.7857 0.7727 | 0.8095 | 0.7907 0.8345
NMBY (50K epochs) | Accuracy | Precision | Recall | F1 Score | AUC Score
Parametric 0.6667 0.6667 | 0.6667 | 0.6667 0.7415
Non-Parametric 0.7619 0.7619 | 0.7619 | 0.7619 0.7475
Hybrid 0.7143 0.6957 |0.7619 | 0.7273 0.7551
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CHAPTER FOUR
CONCLUSION

In this thesis, multivariate pattern capturing capacity of statistical learning through
Bayes procedure is investigated through various classification applications. Also,
frameworks on building learned models are proposed to achieve more flexible
distributional classifiers. The statistical learning through Bayes method is conducted

based on three main applications.

The first application is based on Bernstein copula classifiers. A binary simulation
study is conducted and it is shown that Bernstein copula classifier are able to capture
the patterns of actual model that is Gumbel - Clayton copula characteristics and
exhibited superior performance compared to the Gaussian naive Bayes as the
generated data has correlation. In classification of Coimbra breast cancer data,
four-variate convex Bernstein classifier manage to bypass the imbalanced
classification results of standard Bernstein copula classifier. The experimented
convex Bernstein classifier also showed relatively better results compared to the
conventional machine learning methods. Moreover it is also shown that, the
optimization of Bernstein copula’s contingency table are prominent step in the
analysis. The computation scale difficulty and non-convergent results of contingency
table optimization is overcame by initial solution approach with affordable decrease

in the performance.

The next application consists of using vine density approach in modeling patterns
of features as connected bivariate copulas. The class membership of the novel data is
determined based on the highest vine density among models. Vines are calibrated
fully by using well-known copula families, Bernstein copula. Also, a hybrid method
is investigated where vine trees are created by both parametric copulas or Bernstein
copula. In order to obtain less complex and more generalized vine classifier a
truncation process is conducted by determining a cut level for vine trees. The cut
point is determined as the one which gives the maximum accuracy on the validation

set. In the simulation study, high accuracy can be achieved without fully calibrating
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the vine copula structure. The truncated-parametric copula performs similarly to the
full-parametric model and outperforms other techniques. According to the
classification study on gene expression data the it has shown that vine classifiers are
in general able to classify a small size gene expression data. Notably, the full
parametric vine reached the highest F1 score and non-parametric truncated vine
reached highest AUC score among the other vine classifiers. On the other hand, the
hybrid method Based on the appropriate performance of the truncated vine models it
is deduced that full parametrization of vine is not a necessity to obtain a generalized
vine classifier and solely product of marginals also might not be enough for better
classification. In such situations cross-validation approach on truncated vine can

enhance the performance.

As last application, the power of neural networks combined with distributional
classifiers and the classification performances put to test for benchmark survival data.
In more detail, the neural marginals arer combined with the vine density as its first
tree nodes to create a neural marginal based vine density. The vine distribution with
parametric marginals and the Bernstein copula achieved the best classification results,
while neural marginals performed comparably. This suggests parametric distributions
fit the dataset better. However, neural marginals proved valuable when parametric
families were insufficient. In general, for this dataset the Bernstein copula’s
smoothing effect effectively calibrated the dependency structure examined in the

Kendall tau correlation matrix.
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APPENDICES

Al

In the appendix, a summarized outline of created R functions which used in the
applications are provided below. Also, the custom vine structure function is compared

with official R package.

A.1.1 R Modules of Statistical Learning Frameworks

CustomVineStructure function deploys a valid vine stucture corresponds to the
d-variate probability density function. The function contains custom handler
functions to carry out generating conditional observations, h-function recursions and
on choosing the spanning tree that has optimal correlation sum. The spanning tree
optimization is provided by NetworkToolbox library for maximum objective and for

minimum objective it is provided by the igraph library.

CustomVineStructure(Dataset, SpanningTreeRule = "max",
calibration_process, parametricMarginals =T,

trimVine = NULL, vineObject = NULL, preMarginals = NULL)

+ Dataset: d-variate copula observations object.

* SpanningTreeRule: Decising spanning tree rule with respect to minimum or

maximum of the total of Kendall’s tau. Values: *min’, *'max’.

* calibration_process: Calibration handler function for bivariate copulas of the

vine.
* parametricMarginals: Flag for using parametric or empirical marginals.
» trimVine: Tree cut point for truncated vine.

» vineObject: Pre-structured vine object to make calibration continue from the

last determined tree.
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preMarginals: Pre-calculated marginal values to integrate in the first tree of the

vine.

CustomVineDensity function computes density of d-variate data object with respect

to pre-determined vine order and estimated parameters.

CustomVineDensity(vineobject, Dataset, preDist = NULL,

preDensity = NULL)

L]

vineobject: Pre-structured vine object to compute vine density values.
Dataset: d-variate copula observations object.
preDist: Pre-calculated marginal distribution values.

preDensity: Pre-calculated marginal density values.

CopulaComputer (BiData, dist_type = '"dens",

onlypar = F, calibration_process

NULL)

BiData: Given bivariate data to be evaluated.

dist_type: The form of the copula function. Options are; ”dens” and “cond”.

calibration_process: This argument is a handler function, which can be used
with  CopulaSelectorSetup() or CopulaManualSetup() and it allows
specification of candidate copulas, selection criterias, trial numbers and extra

distribution options.

onlypars: If true, return the estimated parameter of selected copula.

69



calibration_process = CopulaSelectorSetup(

select_param = c("Gumbel", "Clayton"),

select_nonparam = c("Bernsteinb5", "Bernstein7"),

criteria = selectioncriteria(measure = "rd", porder = 2),
dist_options = nonpara_options(IntSoln=TRUE)

)
g

calibration_process = CopulaSelectorSetup(

select_param = c("Gumbel", "Clayton", "Gaussian"),
trial = 20,
)

EE T S s s s s s S s s s
calibration_process = CopulaManualSetup("Gumbel", 2.2)
g
calibration_process = CopulaManualSetup("Bernsteinl0Q",

dist_options = nonpara_options(IntSoln=TRUE))

* select param: Parametric copula candidates.

* select nonparam: Bernstein copula candidates.

* criteria: Selection criteria for choosing from candidate copulas.

* dist_options: Details on calibrating bivariate copulas.

* trial: Number of times that the criteria will be computed in order to compute

final weighted criteria.
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selectioncriteria = function(measure, porder) (testValues,

benchValues)

* measure: Selection criteria function. Options are; ’rd’ (relative distance),

’mse’ (mean squared error)

» porder: Order of the criteria function.

» testValues: True values that fitted to candidate distributions.

* benchValues: Simulated values from a candidate distribution.

GridJointDensityFit function computes the raw density values on n X n contingency
matrix (grid) then carries out optimization on the Bernstein copula arguments to make

them satisfy the uniformity condition of the copula.

GridJointDensityFit = function(X, gridsize = 5, GridOptim = TRUE,
IntSoln = FALSE)

X: Data object that will be fitted to the Bernstein copula

L]

gridsize: The degree of Bernstein polynomial.

GridOptim: Flag of choice of using optimization on contingency matrix.

IntSoln: Flag of using initial solution approach on contingency matrix

optimization (Lagrange).
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BernJointDensity computes the density values of Bernstein copula for given dataset
with and the provided contingency matrix. BernPartial2 computes the values of
conditional distribution of Bernstein copula with respect to the second for given

dataset with and the provided contingency matrix.

BernJointDensity = function(X, CMobject)

BernPartial2 = function(X, CMobject)

» X: Referenced data object for computation.

* CMobject: Fitted contingency matrix.

A.1.2 Custom Vine and R’s VineCopula Codes Cross Validation

Our custom vine structure function is compared with R’s VineCopula package with
a standard vine procedure in order to test the validity of our approach. In Figure A.1, it
can be seen that our algorithm chosen the same structure as the default framework of the
package for the first and last trees of simulated 10 dimensional data. Only the Kendall’s
tau is slightly differ. It is suspected that the library uses parametric calculation instead
of the sample Kendall’s tau as our algorithm does. Still, the structure is identical with

its proportional correlations.
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> myvine$TREE_STRUCTURE

[rn
NewNodeIndex DistIndex corr
1 1,5 0.5688889
2 2,5 0.6016162
3 3 3,5 0.4953535 [[9]]
4 4 4,5 0.5725253 NewNodeIndex DistIndex corr
5 5 4,8 0.5919192 i 1 9,10|63182475 0.06020202
6 6 4,9 0.5555556
7 7 4,10 0.5587879
8 8 5,7 0.5951515
9 9 6,8 0.5579798
Tree 1 of custom algorithm Tree 9 of custom algorithm

R-vine copula with the following pair-copulas:
Tree 1:

4,9 (.Bumbe'l (par = 2.09, tau = 0.52)

5,3 Gumbel (par = 1.97, tau = 0.49)

5,1 Gumbel (par = 2.08, tau = 0.52) E——

g? gmg:} EE: = g'ig' ::E = g'gig 10,96,1,2,7,8,3,5,4 Gumbel (par = 1.06, tau = 0.05)
4,5 Gumbel (par = 2.21, tau = 0.55)

8,6 Gumbel (par = 2.06, tau = 0.51)

4,8 Gumbel (par = 2.32, tau = 0.57)

10,4 Gumbel (par = 2.31, tau = 0.57)

Tree 1 of VineCopula package ~ Tree 9 of VineCopula package

Figure A.1 Output of the vine structure for simulated observations. The first column shows the first tree,

and the second column shows the last one.
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