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DETECTION AND CLASSIFICATION OF OLIVE QUALITY AND
DISEASES BY DEEP LEARNING METHODS

ABSTRACT

The increasing global demand for food, driven by climate change and pandemics,
poses significant risks to food security. Addressing these challenges in agriculture has
become more critical than ever. Recent studies have focused on classifying plant
diseases using advanced image processing techniques. While these models often
achieve high accuracy in controlled laboratory environments, maintaining similar
performance in real-world conditions remains a significant challenge. The study
introduces an automated classification approach for Peacock Eye Disease in olive
leaves by integrating deep learning and anomaly detection techniques. A
Convolutional Neural Network (CNN) trained on a well-annotated dataset from a
controlled laboratory setting was evaluated using real-world leaf images. However,
the model exhibited limitations when classifying field-collected leaves due to the

complexities of real-world conditions.

To address this, leaf segmentation was performed using the Segment Anything
Model (SAM), followed by anomaly detection through an autoencoder to remove
non-leaf elements. The laboratory-based CNN model was then tested on this refined
dataset, and its results were analyzed. Finally, a new CNN model was trained using
the manually labeled, refined dataset, and its classification performance was

compared with previous methods.

The results demonstrated that the dataset filtered by the autoencoder achieved
accuracy levels comparable to the dataset used to train the laboratory-based CNN
model. These findings indicate that automated segmentation and filtering techniques
can significantly reduce the need for manual annotation while maintaining
classification accuracy. The study underscores the challenges of applying models
trained in controlled laboratory settings to real-world conditions. It further

emphasizes the critical role of automated preprocessing techniques in enhancing the
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scalability and reliability of Al-driven agricultural disease classification.

Keywords: Olive disease detection and classification, segment anything model,

convolutional neural network, peacock eye disease



ZEYTIN KALITESI VE HASTALIKLARININ DERIN OGRENME
YONTEMLERI iLE BELIRLENMESI VE SINIFLANDIRILMASI

0z

Iklim degisikligi ve pandemilerin tetikledigi artan kiiresel gida talebi, gida
giivenligi acgisindan Onemli riskler olusturmaktadir. Tarimda bu zorluklarla basa
¢ikmak, her zamankinden daha kritik bir hale gelmistir. Son c¢aligmalar, gelismis
goriintii  isleme teknikleri kullanarak bitki hastaliklarinin = siniflandirilmasina
odaklanmistir. Bu modeller, kontrollii laboratuvar ortamlarinda yiiksek dogruluk
oranlarina ulagsa da, gercek diinya kosullarinda benzer performansi siirdiirmek

onemli bir zorluk olmaya devam etmektedir.

Bu ¢alisma, derin 6grenme ve anomali tespiti tekniklerini entegre ederek zeytin
yapraklarindaki Tavus Gozii Hastaligi’n1 otomatik olarak siniflandirmak igin bir
yontem sunmaktadir. Kontrollii bir laboratuvar ortaminda 1yi bir sekilde etiketlenmis
veri seti iizerinde egitilmis bir Evrisimli Sinir Ag1 (CNN), gercek diinya yaprak
goriintiileri kullanilarak degerlendirilmistir. Ancak model, gercek diinya kosullarinin
karmasiklig1 nedeniyle tarladan toplanan yapraklar1 siniflandirmada sinirlamalarla

karsilasmustir.

Bu sorunu ¢6zmek i¢in, Segment Anything Model (SAM) kullanilarak yaprak
segmentasyonu gerceklestirilmis ve ardindan bir otokodlayici (autoencoder) ile
anomali tespiti yapilarak yaprak olmayan unsurlar temizlenmistir. Laboratuvar
temelli CNN modeli, bu iyilestirilmis veri seti lizerinde test edilmis ve sonuglar analiz
edilmigtir. ~ Son olarak, manuel olarak etiketlenmis ve iyilestirilmis veri seti
kullanilarak yeni bir CNN modeli egitilmis ve smiflandirma performansi onceki

yontemlerle karsilastirilmistir.

Sonuglar, otokodlayici tarafindan filtrelenen veri setinin, laboratuvar temelli CNN
modelini egitmek i¢in kullanilan veri setiyle karsilagtirilabilir dogruluk seviyelerine

ulastigin1  gdstermistir. Bu bulgular, otomatik segmentasyon ve filtreleme
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tekniklerinin, smiflandirma dogrulugunu korurken manuel etiketleme ihtiyacini
onemli Ol¢lide azaltabilecegini ortaya koymaktadir. Bu ¢alisma, kontrollii laboratuvar
ortamlarinda egitilmis modellerin ger¢ek diinya kosullarina uygulanmasindaki
zorluklar1 vurgulamaktadir. Ayrica, otomatik 6n isleme tekniklerinin, tarimda yapay
zeka destekli hastalik smiflandirmasmin 6lgeklenebilirligini ve gilivenilirligini

artirmadaki kritik roliinii vurgulamaktadir.

Anahtar kelimeler: Zeytin hastaliklariin tespiti ve smiflandirilmasi, timiini

boliitleme modeli, evrisimli sinir aglari, kus gézii hastaligi
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CHAPTER ONE
INTRODUCTION

The global population is anticipated to surpass 9 billion by 2050, leading to a
predicted increase in food demand of over 70%, as the Food and Agriculture
Organization (FAO) reported (FAO (2009)). This extraordinary surge in demand
exerts significant pressure on global agricultural systems to enhance production while
preserving sustainability. Confronting this challenge is essential for attaining food
security and mitigating the danger of famine, especially in areas where agriculture
underpins the local economy. Nonetheless, other issues, such as climate change,
restricted arable land, and the widespread occurrence of plant diseases, provide

considerable challenges to sustainable crop production.

Plant diseases, specifically, pose a significant danger to worldwide agricultural
productivity. The annual loss of the crop yield due to plant diseases is estimated to be
more than %30 globally, worth hundreds of billions of dollars (Savary et al. (2019)).
In addition to economic repercussions, plant diseases can undermine food quality and
safety, disrupt global supply systems, and exacerbate the difficulties of fulfilling
future food requirements. The diseases impacting high-value crops, such as olives,
are particularly concerning due to their economic and cultural importance in various

places globally.

Peacock Eye Disease, caused by the fungal fungus Spilocaea oleaginea, is a serious
ailment that only affects olive plants. Peacock Eye Disease, was described for the
first time in Marseille, France by Castagne (1845). The disease is widespread in the
Mediterranean regions and in all olive growing areas and continents, where can cause
severe yield losses (Buonaurio et al. (2023)). Symptoms on shoots, leaf stalks, fruit
pedicels and peduncles, fruits and inflorescences are rare. The first symptoms on upper
leaf surface are characterized by circular brown green spots (2-10 mm in diameter),
which are barely visible as their colour is similar to that of the healthy surrounding

areas (Buonaurio et al. (2023)).



Olive plants, a cornerstone of Mediterranean agriculture and a vital source of olive
oil, are particularly susceptible to various diseases. Among them, Peacock Eye
Disease (Spilocaea oleaginea) is considered the most important disease affecting olive
trees, For instance in Palestine, where olive production contributes approximately
13% to the national income (Salman et al. (2011)). The advancing infection leads to
early leaf abscission, diminished tree vitality, decreased fruit yield, and, ultimately,
substantial reductions in olive production and quality. In the absence of early
detection and prompt therapy, Peacock Eye Disease can inflict significant harm,
adversely affecting farmers’ livelihoods and destabilizing the worldwide olive oil
industry, in which olives serve as a fundamental crop. Plant diseases represent a
substantial risk to world agriculture, resulting in large crop losses and economic
repercussions. Early disease detection is crucial for executing prompt interventions
and maintaining sustainable agricultural practices. Traditional methods of plant
disease identification, such as manual inspection, are labor-intensive and unsuitable
for extensive operations. Currently available laboratory datasets do not contain
images gathered and labeled from real-life situations (Arsenovic et al. (2019)).
Therefore, training is conducted with images taken in a controlled environment.
Laboratory datasets, generally comprise single-leaf photos obtained under optimal
settings, featuring consistent backgrounds and regulated lighting. Although these
datasets enable the training of very precise machine learning models, their efficacy
frequently declines when utilized on field photos characterized by overlapping
objects, noisy backgrounds, and fluctuating lighting conditions. The disparity
between laboratory-trained models and real-world applicability underscores the
necessity for more robust approaches adapted to field situations. The study introduces
an innovative method to address this gap by utilizing the SAM and autoencoders for
the detection of Peacock Eye Disease in olive tree foliage. SAM, an advanced
segmentation model, delineates objects in field photos, including leaves, branches,
and background components. Autoencoders enhance the segmentation output by
differentiating leaf objects from non-leaf elements, hence providing precise and
targeted inputs for disease categorization. The methodology tackles practical issues

by minimizing noise and enhancing model efficacy in intricate field situations. The



suggested method provides substantial enhancements in disease detection accuracy,
with the capacity to advance precision agriculture via scalable, automated solutions.
The research underscores the practical utility of this technology for on-site disease
identification, offering a framework that can be modified for various crops and
diseases. Our study is organized into five chapters, each addressing critical aspects of
the research. Chapter 1, Introduction provides a summary of the issue, the challenges
associated with real-world disease diagnosis, and the proposed solution. Chapter 2,
Literature Review, examines current research, emphasizing the limitations of
laboratory-trained models and the need for approaches tailored to field conditions.
Chapter 3, Methodology, outlines the proposed approach, including segmentation
with SAM, object differentiation using autoencoders, and disease categorization,
along with data preprocessing, which details the dataset used and the preprocessing
steps applied to prepare the data for analysis, as well as the implementation, which
discusses the technical execution of the methodology, including model training,
parameter optimization, and component integration. Chapter 4, Results & Analysis,
presents the study’s findings, evaluates the methodology’s performance, and
compares it with baseline approaches. Finally, Chapter 5, Conclusion and Further
Work, summarizes the findings, explores their implications for practical agriculture,
and outlines potential directions for future research. The study aims to show how the
proposed methodology effectively tackles real-world issues and enhances plant
disease detection methodologies, assuring both relevance and scalability for practical

applications.



CHAPTER TWO
LITERATURE REVIEW

Recent research has focused extensively on the detection of plant diseases using
computer-aided methods. Numerous studies on various plant diseases exist in the
literature. Numerous disease detection studies on olive leaf disease employ various
classification approaches. In these works, researchers employed several machine
learning methods and distinct deep learning models for categorization tasks. Below is

some research on olive leaf disease found in the literature.

Diker et al. (2024) devised a novel technique for classifying olive leaves afflicted
with Peacock Eye Disease, attaining an accuracy of 98.63%. They utilized a new
dataset including 954 photos, integrating deep learning architectures (ResNet101 and
MobileNet) with machine learning methods, including Random Forest and SVM.
Their study is notable for its equilibrium between precision and computational
efficiency, exceeding previous techniques such as VGG-based models. The
integration of CNN-based feature extraction with machine learning classifiers
illustrates the potential for scalable and cost-effective surveillance of agricultural

diseases.

Moupojou et al. (2024) introduced an ensemble model that integrates the SAM and
Fully Convolutional Data Description (FCDD) to enhance plant disease identification
in field pictures.  Their approach adeptly addresses issues such as intricate
backgrounds and overlapping foliage, enhancing classification accuracy by more than
10% on datasets like PlantDoc. The algorithm utilizes SAM for object segmentation,
employs FCDD for leaf identification, and classifies illnesses with a deep learning
model trained on PlantVillage data. The introduced model connects controlled
laboratory datasets with real-world field circumstances, providing an effective

solution for reliable plant disease diagnosis.

Li et al. (2023) presented the Agricultural Segment Anything Model Adapter

(ASA) to improve agricultural image segmentation. By modifying the



general-purpose SAM with domain-specific enhancements, ASA markedly enhanced
segmentation precision for agricultural applications such as crop disease and pest
identification. =~ The model attained a 41.48% enhancement in Dice scores for
coffee-leaf-disease segmentation and a 9.91% augmentation for pest segmentation
relative to the original SAM. The introduced model emphasizes the necessity of
modifying fundamental AI models for agricultural use, tackling issues such as
intricate backdrops and low-contrast subjects. The incorporation of lightweight
adapters into SAM illustrates a scalable approach for zero-shot segmentation in

agriculture, representing a significant leap for precision agriculture.

Zhang et al. (2024) modified the SAM for plant identification and automated
phenotypic assessment, employing Explainable Contrastive Language—Image
Pretraining (ECLIP) for zero-shot segmentation. Their methodology obviated the
necessity for annotated datasets while attaining high precision in segmenting plant
components across varied situations. An essential innovation involved employing a
B-spline curve in the skeletonization process, enhancing measurement robustness,
and attaining a mean absolute error (MAE) of under 0.05 for the majority of samples.
In contrast to supervised models such as Mask-RCNN, their architecture provided
comparable segmentation performance without the necessity for labeled data. The
introduced study emphasizes SAM’s versatility in agricultural applications,
showcasing its capability to connect laboratory models with field-level disease
detection systems. The results are pertinent to study, especially in utilizing SAM for

the identification of plant diseases in practical environments.

Ksibi et al. (2022) introduced MobiRes-Net, a hybrid deep learning model that
integrates ResNet50 and MobileNet for the detection of olive leaf diseases. The
program utilized a dataset of 5,400 drone-acquired photos to categorize leaves into
four classifications: healthy, Aculus Olearius disease, olive scab, and peacock spot

illness. MobiRes-Net attained an accuracy of 97.08%, exceeding the performance of

individual models such as ResNet50 (94.86%) and MobileNet (95.63%).



CHAPTER THREE
MATERIALS AND METHODOLOGY

The method utilizes two distinct datasets, the Field Dataset and the Laboratory
Dataset, which are employed to develop an automated olive leaf disease detection
system. Figure 3.1 illustrates the sequential workflow adopted in the study, detailing

the key steps from data preprocessing to final classification.

Field Dataset
h
Laboratory
Dataset SAM
Segmentation

Y

Preprocessing

Autoencoder-Based
Anomaly Detection

v

Leaf
Objects

. ‘ Healty
CNN
Diseased

Figure 3.1 Diagram of the process

Final
Diseased
Class

h

The proposed system begins by processing input images through the SAM
segmentation module, which extracts and segments both leaf objects and background
elements. Next, an autoencoder-based anomaly detection model evaluates the
segmented objects, identifying actual leaves while filtering out non-leaf components.
Among the detected leaves, the Region of Interest (ROI) is selected based on the

lowest anomaly score, ensuring that the most representative leaf is chosen for further



analysis. Furthermore, the selected ROI is passed to the classifier, which has been
trained using the Laboratory Dataset containing healthy and diseased olive leaf
samples under controlled conditions. The classifier utilizes these training samples to
accurately determine whether the selected ROI corresponds to a healthy or diseased

leaf. The final disease class is then determined based on the classification process.

3.1 Materials

3.1.1 Field Dataset

Figure 3.2 Field dataset

The field dataset was constructed by collecting over 1,000 high-resolution images
of olive trees from Cobanhasan village, located in the Akhisar district of Manisa,
Turkey. These images were captured under diverse field conditions to ensure a
representative sample of real-world scenarios. However, during the data collection
process, a subset of images was intentionally captured to encompass the entire tree
structure, aiming to provide a holistic view of the foliage. While this approach was
initially intended to enhance the dataset’s comprehensiveness, it introduced
significant challenges during the segmentation phase. The primary challenge arose
during the application of the SAM, a state-of-the-art segmentation model designed for

object delineation in complex visual data. When processing images that captured



entire trees, SAM identified thousands of objects per image, including leaves,
branches, and background elements. This resulted in excessive computational costs
and prohibitive RAM usage, rendering the segmentation process inefficient for
large-scale analysis. Additionally, the resolution and spatial distance of the objects in
these wide-angle images posed a secondary challenge. While SAM demonstrated
robust segmentation capabilities, the low resolution of individual leaves and their
proximity to one another hindered the model’s ability to accurately isolate and
identify distinct leaf structures. To address these limitations, a strategic refinement of
the dataset was undertaken. Images captured from a greater distance, which primarily
focused on entire trees, were excluded from the final dataset. This decision was made
to prioritize computational efficiency and segmentation accuracy. The final curated
dataset comprised 100 high-resolution (4032x3024), close-up images of olive tree
foliage, ensuring that each image contained sufficient detail for precise segmentation
and subsequent disease detection. Figure 3.2 presents the visual representation of the
refined dataset, highlighting the quality and focus of the selected images. This refined
dataset not only reduced computational overhead but also enhanced the model’s
ability to accurately identify and analyze individual leaves, thereby improving the

overall efficacy of the disease detection pipeline.

3.1.2 Laboratory Dataset

Figure 3.3 Laboratory dataset

The laboratory dataset was obtained from the study by Diker et al. (2024), titled ”An
effective feature extraction method for olive peacock eye leaf disease classification.”

It comprises 954 olive leaf images captured under controlled conditions, including 572



healthy and 382 infected leaves. Figure 3.3 presents the visual representation of the
laboratory dataset. The images were acquired using a 48-megapixel camera within a 42
x 42 cm lighting box equipped with a specialized lighting system designed to eliminate
shadow formation in the background. The controlled acquisition environment ensures
clean and focused inputs, making this dataset particularly advantageous for training
classification models using transfer learning techniques. The consistency in lighting
and background conditions allows for enhanced feature extraction and contributes to

improved model performance.

3.2 Methodology

3.2.1 Preprocess

The preprocessing phase is crucial for preparing picture data for further analysis
and model training. The primary objective of this step was to standardize image
dimensions and provide uniformity throughout the dataset, which is essential for
optimal model performance. The original high-resolution photos, taken at 4032x3024
pixels, were shrunk to a consistent dimension of 224x224 pixels. The resizing was
executed to diminish computational complexity and memory consumption during
model training, while ensuring consistency between the field dataset and laboratory
dataset, hence facilitating smooth integration and comparison of findings. The aspect
ratio of the original photos was not kept during resizing to ensure uniformity
throughout the collection. This choice was made to prevent the introduction of
distortions or inconsistencies that may result from padding or cropping methods. The
resizing procedure employed bilinear interpolation, a prevalent technique for image
enlargement that optimizes computational efficiency and resolution. This approach
guarantees seamless transitions between pixels, reducing artifacts that may
compromise the model’s efficacy. Subsequent to resizing, the pixel values of the
pictures were normalized to a range of [0, 1] by dividing each pixel value by 255.
This normalization step is a conventional procedure in deep learning processes, since
it aids in stabilizing and expediting the training process. The field dataset includes

photographs captured in real-world environments, and the laboratory dataset contains



images acquired in controlled laboratory settings. Both datasets received the same
preprocessing procedures to guarantee compatibility and consistency in later analysis.
The final preprocessed dataset comprised images of 224x224 pixels, prepared for
incorporation into the segmentation and anomaly detection pipelines. This consistent
format guaranteed that the models could process the photos effectively and yield

dependable results.

3.2.2 Segmentation with SAM

SAM, created by Meta Al Research, serves as a promptable segmentation
framework designed for general image segmentation tasks Kirillov et al. (2023).
SAM serves as a foundational framework for image segmentation, designed to
perform robust zero-shot segmentation across many image domains and tasks without
requiring more refinement. It achieves strong generalization by adjusting to various
downstream applications, employing a range of prompts—such as dots, boxes, or
masks—to dynamically guide segmentation. SAM’s design has two main
components: an image encoder and a mask decoder. The image encoder derives
salient information from the input image. SAM employs a Vision Transformer (ViT)
or a comparable deep learning framework for image analysis Dosovitskiy (2020). The
encoder converts the input image into a detailed feature map that encompasses spatial
and contextual information. This feature map serves as the foundation for the
subsequent mask production process. The encoder is pre-trained on a vast dataset of
over 11 million images and 1 billion masks, enabling it to generalize across diverse
image domains. It concurrently analyzes the entire image, capturing both local and
global information, which is crucial for identifying objects of various sizes and
shapes. The mask decoder employs the feature map generated by the image encoder
to create segmentation masks. Unlike traditional segmentation models that need
task-specific training, SAM’s decoder is designed to function in a zero-shot manner,
enabling it to generate masks for objects it has not explicitly encountered during
training. SAM can support several prompt types, such as points, boxes, or text, to

guide the segmentation process. In the study, no prompts were used, and SAM was

10



applied in automated segmentation mode. SAM independently generates masks for
all identifiable objects in the image without requiring user involvement. This is
achieved by employing its pre-trained expertise to recognize and delineate objects

based on their visual attributes.

The study utilized SAM in automatic segmentation mode to examine images of
field plants. The primary aim was to delineate all observable items, including leaves,
stems, fruits, and background elements like as the ground or sky. The SAM model
was initialized using a pre-trained checkpoint that includes the weights for the Vision
Transformer (ViT) architecture. The input photos were scaled with a scaling factor of
0.5 to diminish computing demand while preserving adequate resolution for precise
segmentation. The resized photos were subsequently input into the Sam Automatic
Mask Generator, which produced segmentation masks for all discernible items within
the images. These masks were created without the utilization of prompts. To improve
computational efficiency and focus on relevant elements, pixel-based thresholds were
utilized to filter the produced masks. To achieve this, adaptive thresholding was
implemented based on the pixel dimensions of the masks. The lower and upper
thresholds are established based on the minimum and maximum sizes of the
segmented masks, modified by a certain factor. This component established a
tolerance range to accommodate variability in object dimensions. These thresholds
were employed to differentiate between pertinent objects (e.g., leaves) and extraneous
elements (e.g., background or noise) to the greatest extent possible.Masks smaller
than a specified pixel size were discarded. This phase was crucial for eliminating
noise and irrelevant tiny elements, such as shadows, dust, or minor artifacts, which
could hinder the analysis, as illustrated in Figure 3.4. Masks surpassing a specified
pixel size were similarly omitted. This phase aimed to remove disproportionately
large masks associated with non-target elements, such as the sky, clouds, or tree
branches, which often occupy significant portions of the image but are extraneous to
this research. The application of pixel-based thresholds was essential for various
reasons. Without thresholds, SAM may generate an excessive number of masks,

including those for trivial items, leading to over-segmentation and extended
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Figure 3.4 Source image and segmented image after applying SAM with pixel-based thresholding

processing time. The analysis concentrated on the primary items of interest (e.g.,
leaves) by omitting masks that were either overly large or small, hence ensuring more
accurate and meaningful results. Minimizing the quantity of processed masks
diminished the computing burden, making the technique scalable for large

agricultural datasets.

A primary advantage of SAM is its ability to generalize across diverse image
domains without requiring task-specific fine-tuning. The study demonstrated that
SAM had significant performance in segmenting images of natural plants, even in the
absence of explicit cues. The amalgamation of automatic segmentation with
pixel-based thresholding enabled swift and accurate object isolation, allowing for
subsequent analysis, such as anomaly detection or classification. The implementation
of SAM in automatic segmentation mode, coupled with pixel-based thresholding,
highlights the model’s versatility and adaptability for practical applications. This
approach enhances the segmentation process while ensuring computational efficiency
and focus on the objects of concern. Future studies may explore the integration of

additional filtering techniques to enhance segmentation accuracy and efficiency.
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3.2.3 Auto Encoder Based Anomaly Detection

The autoencoder-based anomaly detection technique was utilized to overcome the
deficiencies of the SAM in differentiating leaf objects from non-leaf components (e.g.,
stems, soil, backdrop). Autoencoders, including an encoder and a decoder (Hinton and
Salakhutdinov, 2006), were trained solely on leaf masks to acquire the structural and
textural characteristics of leaves. During training, the encoder condensed the input data
into a latent space, while the decoder rebuilt the original input from this compressed
representation. The training goal was to reduce the Mean Squared Error (MSE) between
the input and reconstructed masks, allowing the autoencoder to faithfully replicate leaf

patterns (Bishop and Nasrabadi (2006)).

To optimize the efficiency and precision of the anomaly detection process, the
autoencoder was configured with an input image dimension of (64, 64, 3), wherein
images were downsized to 64x64 pixels with three color channels (RGB). The photos
were standardized to the range [0, 1] by dividing pixel values by 255. The encoder
had two convolutional layers: the initial layer featured 32 filters, while the subsequent
layer included 64 filters, both employing 3x3 kernels, ReLU activation, and ’same’
padding, succeeded by batch normalization to enhance learning stability. The feature
maps were further flattened and processed through a dense layer comprising 128
neurons to provide a compact latent space representation. The decoder employed a
symmetric architecture, initiating with a dense layer matching the input size and
utilizing a sigmoid activation function, thereafter reshaping the output to restore the
input image dimensions. The model was trained for 50 epochs with the Adam
optimizer and mean squared error loss function, with a batch size of 32. The dataset

was divided into 80% for training and 20% for validation.

An initial optimization step was performed using 100 segmented masks generated
by SAM to ascertain the best anomalous threshold. The reconstruction errors for
these masks were evaluated, and an ideal threshold value was established by
balancing precision and recall, ensuring an effective differentiation between leaf and

non-leaf objects. The final threshold was determined through statistical analysis using
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the equation:

Threshold = p+ o (3.1)

Alternatively, an experimentally optimized fixed threshold of 0.165 was employed.

During inference, the autoencoder analyzed segmented masks produced by SAM,
encompassing both foliar and non-foliar items. The reconstruction error for each
mask was determined as the mean squared error (MSE) between the input and the
rebuilt mask. A threshold was set to categorize masks with little reconstruction
mistakes as leaves (normal class) and those with significant reconstruction defects as
anomalies (non-leaf objects). The threshold was established using a blend of
statistical analysis and experimental validation, guaranteeing optimal differentiation

between leaf and non-leaf parts.

The amalgamation of SAM with autoencoder-based anomaly detection established
a resilient two-stage pipeline. SAM produced masks for all discernible items in the
field images, but the autoencoder enhanced these masks by eliminating non-leaf
components. This method markedly diminished noise and enhanced the quality of the
input data for ensuing classification jobs. The autoencoder’s capacity for
unsupervised operation rendered it especially appropriate for situations with scarce

labeled data, as it could efficiently generalize to unobserved abnormalities.

The autoencoder’s performance was assessed using measures including precision,
recall, and F1 score, which evidenced its efficacy in differentiating leaf objects from
background elements. Visual representations of the segmentation outcomes prior to
and after the anomaly identification were presented to demonstrate the method’s
effectiveness. A histogram of reconstruction errors further demonstrated a distinct
separation between leaf and non-leaf objects, hence corroborating the selected

threshold.

This methodology is inspired by the research of Shikhar and Sobti (2024), who
employed masked autoencoders for anomaly identification in aerial agricultural

imagery. Our methodology, however, enhances their research by incorporating SAM
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for preliminary segmentation and concentrating explicitly on leaf object recognition.

Subsequent studies may investigate the application of more sophisticated anomaly
detection models to improve segmentation precision. Such a technique is the
incorporation of Variational Autoencoders (VAEs), which provide a probabilistic
method for latent space modeling and have demonstrated enhancements in anomaly
identification (Kingma (2013)).  Moreover, Generative Adversarial Networks
(GANS), effectively utilized in unsupervised anomaly detection through the learning
of normal sample distributions, may offer a viable approach for enhancing
segmentation outcomes (Zenati et al. (2018)). Moreover, the method’s relevance to
additional agricultural activities, including fruit detection and disease localization,

necessitates further examination (Boulent et al. (2019)).

3.2.4 Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) are a category of deep learning
architectures tailored for image recognition and processing applications. In contrast to
conventional neural networks, CNNs utilize a hierarchical architecture to
autonomously and adaptively acquire spatial hierarchies of features from input
images (LeCun et al. (1998)). The architecture of a CNN generally comprises three
primary components; convolutional layers, pooling layers, and fully linked layers as

shown in Figure 3.5.

Convolutional layers utilize a sequence of filters on the input image to extract
localized characteristics, including edges, textures, and patterns. Each filter produces
a feature map by convolving with the input picture, subsequently using a non-linear
activation function (e.g., ReLU) to incorporate non-linearity (Krizhevsky et al.
(2012)). Pooling layers diminish the spatial dimensions of feature maps, enhancing
the model’s computational efficiency and reducing its susceptibility to overfitting
(Boureau et al. (2010)). This work utilized max pooling to extract the maximum value
from sub-regions of the feature map, thereby preserving dominating characteristics

and minimizing computational demands (Scherer et al. (2010)). At the conclusion of
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Figure 3.5 The basic architecture of CNN (Phung and Rhee, 2019)

the CNN, fully connected layers convert the feature maps into a one-dimensional
vector and execute classification, typically employing a softmax activation function in

the last layer to generate probability distributions for each class (Goodfellow (2016)).

This project involved training a CNN model using a laboratory dataset of leaf
pictures to differentiate between healthy and sick leaves. The dataset underwent
preprocessing by scaling photos to 224 x 224 pixels for uniformity across inputs, and
pixel values were normalized to [0, 1] to enhance convergence stability (Ioffe (2015)).
Data augmentation techniques, such as random flipping, rotation (+20°), and zooming
(£10%), were employed to enhance the dataset’s diversity and improve the model’s

generalization (Shorten and Khoshgoftaar (2019)).

The CNN architecture had five convolutional layers, each intended to extract
hierarchical spatial characteristics from leaf pictures. The initial layer, comprising 32
filters, identified low-level features like edges and textures, whereas subsequent
layers with 64 filters recognized intricate patterns such as leaf veins and disease spots.
Every convolutional layer was succeeded by ReLU activation and max pooling (2 x
2) to downsample the feature maps while preserving critical information (Zeiler and

Fergus (2014)).

To alleviate overfitting, dropout regularization was implemented at several stages:
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20% dropout following the initial two convolutional layers, 30% after the third and
fourth layers, and 40% subsequent to the fully connected layer (Srivastava et al. (2014)).
The ultimate categorization utilized a fully linked dense layer including 64 neurons,
succeeded by a softmax activation function to provide probability distributions across
the potential categories. The model utilized the Sparse Categorical Crossentropy loss

function, appropriate for multi-class classification tasks (Murphy (2012)).

Hyperparameters were selected based on previous studies and empirical
confirmation. The model was trained with a batch size of 32, chosen to optimize
computational efficiency and convergence stability. Studies indicate that smaller
batch sizes generally result in more variance in gradient updates, which might
enhance generalization, whereas overly large batch sizes may impair generalization
(Smith (2018)). The epoch count was established at 50, as initial studies revealed that
validation loss stabilized beyond this threshold, indicating the commencement of

overfitting (Goodfellow (2016)).

An exponential learning rate decay was employed to guarantee efficient weight

updates. The equation is given below.
n = le 3»10(-epoch/20) (3.2)

This method enabled the model to implement substantial initial adjustments,
promoting swift convergence during the initial training phases, while maintaining
stability in subsequent epochs (Loshchilov and Hutter (2016)). The Adam optimizer
was employed for its adjustable learning rate characteristics, which have
demonstrated enhanced convergence compared to conventional approaches like

Stochastic Gradient Descent (Kingma (2014)).

Subsequent to training, the CNN model was employed to categorize the leaf
dataset derived from the autoencoder-based anomaly detection procedure. This
dataset exclusively comprised leaf objects, as non-leaf elements (e.g., stems, dirt)

were eliminated using the autoencoder. The model’s efficacy was assessed through
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accuracy, precision, recall, and F1-score, which are standard metrics for evaluating

classification models (Sokolova and Lapalme (2009)).

A number of tests were undertaken to compare the performance of the CNN models
trained on the laboratory dataset with the autoencoder-filtered dataset. The findings
indicated that the model trained on the autoencoder-filtered dataset attained superior
accuracy and F1 scores, suggesting that the exclusion of non-leaf elements markedly
enhanced the quality of the input data. This comparison underscores the significance
of preprocessing and filtering in improving the efficacy of deep learning models for

agricultural applications.

The proposed methodology exhibited encouraging findings; nonetheless, numerous
drawbacks were recognized. The efficacy of the CNN model may diminish when
utilized on more intricate images characterized by fluctuating lighting conditions or
obstructions. The dependence on a laboratory dataset for initial training may restrict
the model’s applicability to real-world field circumstances. Future research may
investigate the implementation of more sophisticated CNN designs, such as ResNet or
EfficientNet, which have demonstrated enhancements in classification efficacy for
large-scale image recognition applications (He et al. (2016); Tan and Le (2019)).
Furthermore, the incorporation of transfer learning methodologies and the acquisition
of larger, more varied datasets could improve the model’s resilience and relevance to

various agricultural contexts (Kornblith et al. (2019)).

3.3 Final Classification of Leaf Objects

In the concluding phase of the investigation, the segmented leaf images were
categorized into two classifications: healthy and diseased. The main objective of this
classification was to assess the efficacy of the autoencoder-based filtering method in
eliminating non-leaf items while maintaining the critical characteristics of the leaves
for illness categorization. To achieve this objective, we utilized a CNN model that
had been pre-trained on a standardized benchmark dataset. This enabled us to

evaluate the model’s ability to generalize to real-world, field-acquired leaf photos that
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have undergone automated filtering. The dataset utilized in this classification phase
comprised leaf pictures acquired following the autoencoder filtering procedure. The
photos were meticulously classified into healthy and diseased groups, establishing a
dependable ground truth for assessment. The dataset was subsequently preprocessed
to maintain alignment with the training parameters of the benchmark CNN. Each
image was shrunk to 256 x 256 pixels and normalized to a range of [0, 1] by min-max
scaling. Data augmentation methods, such as random flipping, rotation (+20°), and
zooming (£10%), were employed to enhance the diversity of the training dataset and

mitigate overfitting.

The classification model employed at this step utilized a fine-tuned CNN
architecture, which was originally trained on the benchmark dataset. Transfer
learning was utilized by loading the pre-trained CNN weights and subsequently
optimizing them with the filtered dataset, rather than building a model from the
ground up. In the fine-tuning process, the initial layers of the CNN were frozen to
preserve low-level feature representations, while the final four layers were unfrozen
to facilitate adaption to the newly introduced dataset. The concluding layers
comprised fully connected layers with a dropout rate of 0.3 to enhance generalization,

succeeded by a softmax activation function for binary classification.

Class weighting was integrated into the training process to mitigate class
imbalance (Bakirarar and Elhan (2023)). The class weights were computed according

to the dataset distribution utilizing the formula:

B N
< nanC

(3.3)

where N represents the total number of samples, nc is the number of samples in class
¢, and C' is the total number of classes. This weighting approach prevented the model
from exhibiting bias towards the predominant class (e.g., healthy leaves) and ensured

equitable contributions from both categories.

The model was trained with the Adam optimizer with a learning rate of 0.0005,
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a batch size of 32, and an early stopping criterion with a patience of 15 epochs to
mitigate overfitting. The employed loss function was sparse categorical cross-entropy,
appropriate for multi-class classification with integer labels. The model was assessed
using essential performance indicators, including accuracy, precision, recall, F1-score,

and a confusion matrix for class-wise performance analysis.

3.4 Performance Metrics

A confusion matrix is a commonly used tool to assess the performance of a
classification model by comparing its predictions with actual outcomes in a test
dataset. In this matrix, the rows correspond to the actual class labels, while the

columns represent the predicted classifications.

Table 3.1 Performance Metrics

Performance metrics Definition
TP+TN
Accuracy TP+FN+FPLTN B9
ol TP
Precision TP+FP (3.5)
TP
Recall TP+FN (3.6)
2x (Recall x Precision)
F1 Score Recall+ Precision (3.7)

The matrix clarifies four potential outcomes: A true positive (TP) arises when the
model accurately identifies the positive class, while a true negative (TN) denotes the
proper identification of the negative class. A false positive (FP) occurs when the
model erroneously categorizes a negative occurrence as positive, while a false
negative (FN) transpires when a positive case is inaccurately classified as negative.
Analyzing the confusion matrix allows for the calculation of numerous performance
metrics, including accuracy, precision, recall, and F1 score. The equations for these

metrics are presented in Table 3.1.
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CHAPTER FOUR
RESULTS

The main objective of this classification challenge is to create a strong and
efficient system for identifying and diagnosing peacock disease in olive tree leaves
through the integration of modern segmentation and classification techniques. This
study aims to tackle the difficulties of moving from controlled experimental datasets
to practical agricultural applications. The precise objectives of this research
encompass the following: Assessing the efficacy of a Convolutional Neural Network
(CNN) model trained on the olive peacock disease benchmark dataset for the
classification of individual leaf specimens as healthy or diseased. This research seeks
to evaluate the model’s capacity to generalize beyond the controlled parameters of the
benchmark dataset and to adapt to the intricacies of real-world datasets. Field Image
Dataset: This dataset consists of high-resolution photos of olive trees taken in
authentic agricultural environments. These photographs encompass diverse climatic
circumstances, including varying lighting, shadows, and intricate backgrounds (e.g.,
clouds, soil, and stems). The dataset represents the actual diversity of olive orchards
and functions as a testbed for implementing segmentation and classification pipelines
in tough and uncontrolled environments. The laboratory dataset comprises isolated
leaf pictures obtained under controlled settings. These photos constitute a benchmark
collection specifically designed for the detection of olive peacock illness. Each leaf is
meticulously categorized as either healthy or ill, guaranteeing superior annotations.
The laboratory dataset was utilized to build a Convolutional Neural Network (CNN)
model for binary classification, establishing a dependable baseline for disease
diagnosis. Assessing the efficacy of a hybrid preprocessing pipeline that integrates
the Segment Anything Model (SAM) and an autoencoder discriminator to extract leaf
objects from intricate olive tree photos. This pipeline aims to remove noise from
non-leaf entities, like the background, soil, clouds, and stems, which frequently
hinder classification efforts. Enabling precise classification of individual leaf objects
derived from segmented tree photos, offering accurate and actionable insights about

the health status of olive trees. Priority is given on attaining elevated specificity in
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illness detection at the object level. Improving classification accuracy and reliability
by minimizing misclassification due to irrelevant features through the differentiation
of leaf and non-leaf objects. This method guarantees that the model concentrates
exclusively on pertinent data, enhancing the reliability of disease identification.
Evaluating the feasibility and application of a benchmark-trained CNN model in
conjunction with SAM-based segmentation for datasets gathered in the field. This
stage connects benchmark circumstances with actual agricultural settings, tackling the
issues posed by fluctuating environmental and imaging conditions. Exhibiting the
scalability and feasibility of the suggested method for extensive applications in olive
orchards. The capacity to automate disease detection and diagnosis on a large scale
holds considerable promise for enhancing crop management methods and effectively
reducing disease burden. This work emphasizes the significance of integrating
advanced segmentation approaches, such as SAM, with customized classification
models to tackle practical agricultural issues. The results enhance the domain of
automated disease identification in precision agriculture, establishing a foundation for

subsequent study and practical implementations.

4.1 CNN Training Results

The CNN was trained using a laboratory dataset, with 80% allocated for training and
20% for testing. The model was optimized using the Adam optimizer with a learning
rate of 0.001, trained for 50 epochs and a batch size of 32. The training achieved
an accuracy of 96% on both the training and testing sets, as illustrated in Table 4.1.
The metrics of precision, recall, and F1-score were employed to evaluate the model’s
overall performance, demonstrating a strong ability to distinguish between healthy and

damaged leaves.

Table 4.1 The laboratory dataset CNN training performance

Class Accuracy | F1-Score | Recall | Precision
Healthy 0.96 0.97 0.99 0.96
Unhealthy 0.96 0.95 0.92 0.98
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Figure 4.1 illustrates that both training and validation accuracy exhibit a consistent
increase, converging at around 96% and 94%, respectively. The proximity of the
curves suggests negligible overfitting, affirming the model’s capacity to generalize
effectively to novel data. The variations are characteristic of natural picture

collections and indicate the difficulty in differentiating between healthy and diseased

leaves.
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Figure 4.1 Training and validation accuracy (a), F1-score (b), recall (c), precision (d) for laboratory

dataset
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The Segment Anything Model (SAM) effectively delineated leaves from photos of
trees. Nonetheless, as SAM lacks the intrinsic capability to identify objects, it also

extracted non-leaf elements, including branches, sky, and soil.
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A pixel-based filtering approach was devised during segmentation to improve
computational performance and concentrate on pertinent objects. This method
dynamically eliminated masks within a specified pixel threshold, thereby reducing
wasteful memory use and enhancing processing speed. The method facilitated the
elimination of minor artifacts and background noise, so preserving just the most
pertinent segmented items. The filtering enhanced segmentation quality but also

risked removing smaller leaves, potentially affecting classification performance.

Figure 4.2 Segmented image with pixel-based thresholding

4.3 Autoencoder Discriminator

The performance of the autoencoder-based anomaly detection method was
evaluated by analyzing the reconstruction loss during training, the distribution of
reconstruction errors, and the classification of segmented masks into normal and

anomalous categories.

4.3.1 Training and Validation Loss

The autoencoder was trained for 50 epochs using the Mean Squared Error (MSE)
loss function, with an Adam optimizer and a batch size of 32. The final training loss
was 0.0285, while the validation loss converged to 0.0274, indicating that the model
achieved stable learning without signs of overfitting. The similarity between training
and validation loss values suggests that the model generalizes well to unseen data,

effectively capturing the structural and textural patterns of leaf objects.
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4.3.2 Reconstruction Error Distribution

The distribution of reconstruction errors across the segmented masks is illustrated in
Figure 4.3, where the x-axis represents the reconstruction error, and the y-axis denotes

frequency.

Reconstruction Error Distribution

W Reconstruction Errors
=== Threshold

Frequency

0.050 0.075 0.100 0.125 0.150 0.175 0.200
Reconstruction Error

Figure 4.3 Reconstruction error distribution

The histogram has approximately normal distribution, indicating that most of the
segmented masks were reconstructed with consistent accuracy. The optimal anomaly
threshold was set at 0.165, as determined through a combination of statistical analysis
and empirical validation. The red dashed line in Figure 4.3 represents this threshold,

where:

* Masks with reconstruction errors below this threshold were classified as normal

(leaf objects).

» Masks with reconstruction errors exceeding this threshold were categorized as

anomalous (non-leaf objects, e.g., stems, soil, or background elements).
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4.3.3 Classification of Normal and Anomalous Masks

The autoencoder-based anomaly detection pipeline processed 24,790 segmented

masks produced by SAM. Of these:

Table 4.2 The number of normal and anomalous masks

Category Number of Masks | Percentage (%)
Normal (Leaf Objects) 18,151 73.2
Anomalous (Non-Leaf Objects) | 6,639 26.8
Total 24,790 100

Leaf Objects

Non-Leaf Objects

/79 NS

Figure 4.4 Leaf objects and background objects

This result indicates that approximately 27% of the segmented masks contained
non-leaf elements, which were effectively filtered out by the autoencoder. The

relatively high proportion of anomalies underscores the necessity of a robust filtering
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mechanism following SAM’s segmentation, as it prevents irrelevant components

from being forwarded to subsequent classification stages.

4.3.4 Discussion of Findings

The results demonstrate that the autoencoder successfully differentiates between
leaf and non-leaf components based on reconstruction errors. The anomaly detection
process significantly reduces noise in the dataset, improving the overall quality of the
segmented masks before further classification. The consistency in training and
validation loss suggests that the model is well-calibrated for the task, and the
threshold of 0.165 effectively separates relevant and irrelevant objects, as reflected in

the clear distinction observed in the reconstruction error histogram.

4.4 Final Classification of Leaf Objects

4.4.1 Prediction of Leaf Objects with Benchmark Dataset-Trained CNN Model

The performance assessment of the CNN model, trained on the
autoencoder-filtered dataset, was executed utilizing standard classification measures.
The classification results were evaluated based on accuracy, precision, recall, and
Fl-score, and further analyzed with a confusion matrix to examine the model’s

predictions for healthy and diseased leaves.

The acquired metrics are displayed in Table 4.3, illustrating the model’s
comparative performance across several evaluation criteria.  Furthermore, the
confusion matrix in Figure Y depicts the allocation of true positive, false positive,
false negative, and true negative predictions for each category. These results elucidate
the model’s categorization inclinations and its efficacy in differentiating between

healthy and unhealthy leaf samples.
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Table 4.3 Prediction of Leaf Objects with Benchmark Dataset-Trained CNN model

Class Accuracy | F1-Score | Recall | Precision
Healthy 0.87 0.84 0.84 0.85
Unhealthy 0.87 0.89 0.89 0.88

The confusion matrix (Figure 4.5) further illustrates the classification results:

Confusion Matrix

180

Healthy

True Label

Diseased

| -20
Healthy Diseased
Predicted Label

Figure 4.5 Confusion matrix of leaf objects with benchmark dataset-trained CNN Model

* True Positives (Healthy): 120
* False Positives (Healthy misclassified as Diseased): 24
The model, developed under controlled laboratory circumstances, has shown
robust performance in illness categorization. Nonetheless, several healthy leaves were

inaccurately categorized, possibly due to unpredictability caused by real-world

conditions in the segmented dataset.
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4.4.2 Classification of Labeled Leaf Objects with CNN Model

This model was trained directly on labeled leaf objects, indicating that the segmented

dataset was manually tagged as “Healthy” or "Diseased” prior to training.

Table 4.4 Classification of labeled leaf objects with CNN model

Class Accuracy | F1-Score | Recall | Precision
Healthy 0.87 0.84 0.83 0.85
Unhealthy 0.87 0.89 0.89 0.88

Confusion Matrix
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100
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Figure 4.6 Classification of labeled leaf objects with CNN model

* True Positives (Diseased): 178

* False Negatives (Diseased misclassified as Healthy): 22
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CHAPTER FIVE
CONCLUSIONS

The current research aimed to address the following two primary obstacles: the
restricted applicability of laboratory-controlled datasets in real-world scenarios and the
automation of the labor-intensive human annotation procedure for leaf classification.

Our findings indicate that both objectives have been satisfactorily accomplished.

5.1 Practical Relevance of Laboratory Datasets

Historically, deep learning models for plant disease identification depend on
datasets gathered in controlled laboratory environments. Nevertheless, these models
frequently demonstrate diminished performance in real-world contexts when
fluctuations in illumination, backdrop intricacy, and occlusions introduce
interference. To evaluate this, we trained a CNN model on a benchmark dataset of
laboratory-controlled leaf pictures, which were manually annotated as healthy or
diseased.  Utilized the trained model on actual leaf pictures obtained from
comprehensive tree shots, with segmentation executed via the Segment Anything
Model (SAM). Noted that performance was markedly diminished owing to
background noise (e.g., soil, sky, branches), highlighting the constraints of

conventional datasets in practical scenarios.

5.2 Automating the Annotation Procedure for Leaf Classification

The manual annotation of extensive plant datasets is a laborious and expensive

endeavor. We presented a two-stage pipeline to automate this process:

Leaf Segmentation Utilizing SAM: The Segment Anything Model (SAM) was

employed to isolate individual leaf regions from complete tree pictures.

Anomaly Detection Utilizing Autoencoders: Given that SAM does not categorize
objects, we utilized an autoencoder-based anomaly detection technique to eliminate

non-leaf entities (including soil, branches, and clouds). This enabled the automatic
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creation of a more refined dataset without human involvement.

To ascertain the efficacy of this method: We trained a CNN classifier on the
automatically segmented and filtered dataset and evaluated its performance against
the CNN model trained on the manually labeled benchmark dataset.  Our
classification findings exhibited significant consistency across both datasets,
indicating that our automated annotation method yields classification accuracy

comparable to that of manually labeled datasets.

Assessment of Performance: Key performance parameters, including accuracy,
precision, recall, and F1-score, were examined for comparison. The benchmark CNN
model trained on a laboratory dataset vs the CNN model trained on a real-world

dataset acquired by automated segmentation and anomaly filtering.

The final results demonstrate that the SAM + Autoencoder-based dataset attains
classification accuracy comparable to the manually labeled benchmark dataset. The
automated pipeline effectively diminishes background noise interference and
enhances classification performance in real-world scenarios. The necessity for
manual annotation is much diminished, rendering the system scalable for extensive
agricultural datasets. Our results indicate that benchmark datasets developed in
controlled environments fail to generalize to real-world photos, highlighting the
necessity for more versatile and resilient data preparation methods. The suggested
SAM + Autoencoder framework efficiently automates data annotation and improves
classification efficacy in practical applications. The findings indicate that anomaly
detection and automated segmentation methods can serve as effective instruments for
classifying plant diseases, hence diminishing reliance on expensive manual

annotation.

5.3 Future Work

The research conducted has shown encouraging findings; yet, there are various areas

for future enhancement. Ensemble Learning: Integrating various models (e.g., CNN
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and Transformer) to improve classification robustness.

Self-Supervised Learning: Investigating unsupervised feature extraction methods to

diminish reliance on annotations.

Broadened Plant Species Testing: Evaluating the methodology across a wider array

of plant species to determine its generalizability.

Enhanced Anomaly Detection:  Exploring sophisticated anomaly detection

techniques, including GAN-based filtering, to further optimize the dataset.

Our methodology offers a scalable, automated, and efficient solution for the
diagnosis of plant diseases in real-world scenarios, facilitating future progress in

Al-driven agriculture.
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