
DOKUZ EYLÜL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

DETECTION AND CLASSIFICATION OF OLIVE

QUALITY AND DISEASES BY DEEP LEARNING

METHODS

by
Cengiz Mehmet ALBOYACI

February, 2025

İZMİR



DETECTION AND CLASSIFICATION OF OLIVE

QUALITY AND DISEASES BY DEEP LEARNING

METHODS

A Thesis Submitted to the
Graduate School of Natural And Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of
Computer Science, Computer Science Program

by
Cengiz Mehmet ALBOYACI

February, 2025

İZMİR



M.Sc. THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “DETECTION AND CLASSIFICATION OF

OLIVE QUALITY AND DISEASES BY DEEP LEARNING METHODS”

completed by CENGIZ MEHMET ALBOYACI under supervision of ASST.

PROF. CAN ATILGAN and we certify that in our opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

................................................................................

Asst. Prof. Can ATILGAN

Supervisor

...............................................................................

Prof. Dr. Murat Erşen BERBERLER

Jury Member

...............................................................................

Asst. Prof. Kazım ERDOĞDU

Jury Member

Prof.Dr. Abdullah SEÇGİN
Director

Graduate School of Natural and Applied Sciences

ii



ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my thesis advisor,

Asst. Prof. Can ATILGAN, for his patient guidance and invaluable support throughout

this journey. His insights and encouragement have been instrumental in shaping this

work.

I extend my deepest gratitude to my dear Aylin GÖÇOĞLU for her unwavering

support and encouragement throughout this journey. Her motivation, patience, and

belief in me have made this experience even more meaningful. I would also like to

thank Semih MEMİŞ for our technical discussions, which have greatly contributed to

my curiosity for knowledge.

Special thanks to my family members, especially my mother, for shaping me into

the person I am today.

Cengiz Mehmet ALBOYACI

iii



DETECTION AND CLASSIFICATION OF OLIVE QUALITY AND

DISEASES BY DEEP LEARNING METHODS

ABSTRACT

The increasing global demand for food, driven by climate change and pandemics,

poses significant risks to food security. Addressing these challenges in agriculture has

become more critical than ever. Recent studies have focused on classifying plant

diseases using advanced image processing techniques. While these models often

achieve high accuracy in controlled laboratory environments, maintaining similar

performance in real-world conditions remains a significant challenge. The study

introduces an automated classification approach for Peacock Eye Disease in olive

leaves by integrating deep learning and anomaly detection techniques. A

Convolutional Neural Network (CNN) trained on a well-annotated dataset from a

controlled laboratory setting was evaluated using real-world leaf images. However,

the model exhibited limitations when classifying field-collected leaves due to the

complexities of real-world conditions.

To address this, leaf segmentation was performed using the Segment Anything

Model (SAM), followed by anomaly detection through an autoencoder to remove

non-leaf elements. The laboratory-based CNN model was then tested on this refined

dataset, and its results were analyzed. Finally, a new CNN model was trained using

the manually labeled, refined dataset, and its classification performance was

compared with previous methods.

The results demonstrated that the dataset filtered by the autoencoder achieved

accuracy levels comparable to the dataset used to train the laboratory-based CNN

model. These findings indicate that automated segmentation and filtering techniques

can significantly reduce the need for manual annotation while maintaining

classification accuracy. The study underscores the challenges of applying models

trained in controlled laboratory settings to real-world conditions. It further

emphasizes the critical role of automated preprocessing techniques in enhancing the
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scalability and reliability of AI-driven agricultural disease classification.

Keywords: Olive disease detection and classification, segment anything model,

convolutional neural network, peacock eye disease
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ZEYTİN KALİTESİ VE HASTALIKLARININ DERİN ÖĞRENME

YÖNTEMLERİ İLE BELİRLENMESİ VE SINIFLANDIRILMASI

ÖZ

İklim değişikliği ve pandemilerin tetiklediği artan küresel gıda talebi, gıda

güvenliği açısından önemli riskler oluşturmaktadır. Tarımda bu zorluklarla başa

çıkmak, her zamankinden daha kritik bir hale gelmiştir. Son çalışmalar, gelişmiş

görüntü işleme teknikleri kullanarak bitki hastalıklarının sınıflandırılmasına

odaklanmıştır. Bu modeller, kontrollü laboratuvar ortamlarında yüksek doğruluk

oranlarına ulaşsa da, gerçek dünya koşullarında benzer performansı sürdürmek

önemli bir zorluk olmaya devam etmektedir.

Bu çalışma, derin öğrenme ve anomali tespiti tekniklerini entegre ederek zeytin

yapraklarındaki Tavus Gözü Hastalığı’nı otomatik olarak sınıflandırmak için bir

yöntem sunmaktadır. Kontrollü bir laboratuvar ortamında iyi bir şekilde etiketlenmiş

veri seti üzerinde eğitilmiş bir Evrişimli Sinir Ağı (CNN), gerçek dünya yaprak

görüntüleri kullanılarak değerlendirilmiştir. Ancak model, gerçek dünya koşullarının

karmaşıklığı nedeniyle tarladan toplanan yaprakları sınıflandırmada sınırlamalarla

karşılaşmıştır.

Bu sorunu çözmek için, Segment Anything Model (SAM) kullanılarak yaprak

segmentasyonu gerçekleştirilmiş ve ardından bir otokodlayıcı (autoencoder) ile

anomali tespiti yapılarak yaprak olmayan unsurlar temizlenmiştir. Laboratuvar

temelli CNN modeli, bu iyileştirilmiş veri seti üzerinde test edilmiş ve sonuçlar analiz

edilmiştir. Son olarak, manuel olarak etiketlenmiş ve iyileştirilmiş veri seti

kullanılarak yeni bir CNN modeli eğitilmiş ve sınıflandırma performansı önceki

yöntemlerle karşılaştırılmıştır.

Sonuçlar, otokodlayıcı tarafından filtrelenen veri setinin, laboratuvar temelli CNN

modelini eğitmek için kullanılan veri setiyle karşılaştırılabilir doğruluk seviyelerine

ulaştığını göstermiştir. Bu bulgular, otomatik segmentasyon ve filtreleme
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tekniklerinin, sınıflandırma doğruluğunu korurken manuel etiketleme ihtiyacını

önemli ölçüde azaltabileceğini ortaya koymaktadır. Bu çalışma, kontrollü laboratuvar

ortamlarında eğitilmiş modellerin gerçek dünya koşullarına uygulanmasındaki

zorlukları vurgulamaktadır. Ayrıca, otomatik ön işleme tekniklerinin, tarımda yapay

zeka destekli hastalık sınıflandırmasının ölçeklenebilirliğini ve güvenilirliğini

artırmadaki kritik rolünü vurgulamaktadır.

Anahtar kelimeler: Zeytin hastalıklarının tespiti ve sınıflandırılması, tümünü

bölütleme modeli, evrişimli sinir ağları, kuş gözü hastalığı
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CHAPTER ONE

INTRODUCTION

The global population is anticipated to surpass 9 billion by 2050, leading to a

predicted increase in food demand of over 70%, as the Food and Agriculture

Organization (FAO) reported (FAO (2009)). This extraordinary surge in demand

exerts significant pressure on global agricultural systems to enhance production while

preserving sustainability. Confronting this challenge is essential for attaining food

security and mitigating the danger of famine, especially in areas where agriculture

underpins the local economy. Nonetheless, other issues, such as climate change,

restricted arable land, and the widespread occurrence of plant diseases, provide

considerable challenges to sustainable crop production.

Plant diseases, specifically, pose a significant danger to worldwide agricultural

productivity. The annual loss of the crop yield due to plant diseases is estimated to be

more than %30 globally, worth hundreds of billions of dollars (Savary et al. (2019)).

In addition to economic repercussions, plant diseases can undermine food quality and

safety, disrupt global supply systems, and exacerbate the difficulties of fulfilling

future food requirements. The diseases impacting high-value crops, such as olives,

are particularly concerning due to their economic and cultural importance in various

places globally.

Peacock Eye Disease, caused by the fungal fungus Spilocaea oleaginea, is a serious

ailment that only affects olive plants. Peacock Eye Disease, was described for the

first time in Marseille, France by Castagne (1845). The disease is widespread in the

Mediterranean regions and in all olive growing areas and continents, where can cause

severe yield losses (Buonaurio et al. (2023)). Symptoms on shoots, leaf stalks, fruit

pedicels and peduncles, fruits and inflorescences are rare. The first symptoms on upper

leaf surface are characterized by circular brown green spots (2-10 mm in diameter),

which are barely visible as their colour is similar to that of the healthy surrounding

areas (Buonaurio et al. (2023)).
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Olive plants, a cornerstone of Mediterranean agriculture and a vital source of olive

oil, are particularly susceptible to various diseases. Among them, Peacock Eye

Disease (Spilocaea oleaginea) is considered the most important disease affecting olive

trees, For instance in Palestine, where olive production contributes approximately

13% to the national income (Salman et al. (2011)). The advancing infection leads to

early leaf abscission, diminished tree vitality, decreased fruit yield, and, ultimately,

substantial reductions in olive production and quality. In the absence of early

detection and prompt therapy, Peacock Eye Disease can inflict significant harm,

adversely affecting farmers’ livelihoods and destabilizing the worldwide olive oil

industry, in which olives serve as a fundamental crop. Plant diseases represent a

substantial risk to world agriculture, resulting in large crop losses and economic

repercussions. Early disease detection is crucial for executing prompt interventions

and maintaining sustainable agricultural practices. Traditional methods of plant

disease identification, such as manual inspection, are labor-intensive and unsuitable

for extensive operations. Currently available laboratory datasets do not contain

images gathered and labeled from real-life situations (Arsenovic et al. (2019)).

Therefore, training is conducted with images taken in a controlled environment.

Laboratory datasets, generally comprise single-leaf photos obtained under optimal

settings, featuring consistent backgrounds and regulated lighting. Although these

datasets enable the training of very precise machine learning models, their efficacy

frequently declines when utilized on field photos characterized by overlapping

objects, noisy backgrounds, and fluctuating lighting conditions. The disparity

between laboratory-trained models and real-world applicability underscores the

necessity for more robust approaches adapted to field situations. The study introduces

an innovative method to address this gap by utilizing the SAM and autoencoders for

the detection of Peacock Eye Disease in olive tree foliage. SAM, an advanced

segmentation model, delineates objects in field photos, including leaves, branches,

and background components. Autoencoders enhance the segmentation output by

differentiating leaf objects from non-leaf elements, hence providing precise and

targeted inputs for disease categorization. The methodology tackles practical issues

by minimizing noise and enhancing model efficacy in intricate field situations. The
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suggested method provides substantial enhancements in disease detection accuracy,

with the capacity to advance precision agriculture via scalable, automated solutions.

The research underscores the practical utility of this technology for on-site disease

identification, offering a framework that can be modified for various crops and

diseases. Our study is organized into five chapters, each addressing critical aspects of

the research. Chapter 1, Introduction provides a summary of the issue, the challenges

associated with real-world disease diagnosis, and the proposed solution. Chapter 2,

Literature Review, examines current research, emphasizing the limitations of

laboratory-trained models and the need for approaches tailored to field conditions.

Chapter 3, Methodology, outlines the proposed approach, including segmentation

with SAM, object differentiation using autoencoders, and disease categorization,

along with data preprocessing, which details the dataset used and the preprocessing

steps applied to prepare the data for analysis, as well as the implementation, which

discusses the technical execution of the methodology, including model training,

parameter optimization, and component integration. Chapter 4, Results & Analysis,

presents the study’s findings, evaluates the methodology’s performance, and

compares it with baseline approaches. Finally, Chapter 5, Conclusion and Further

Work, summarizes the findings, explores their implications for practical agriculture,

and outlines potential directions for future research. The study aims to show how the

proposed methodology effectively tackles real-world issues and enhances plant

disease detection methodologies, assuring both relevance and scalability for practical

applications.
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CHAPTER TWO

LITERATURE REVIEW

Recent research has focused extensively on the detection of plant diseases using

computer-aided methods. Numerous studies on various plant diseases exist in the

literature. Numerous disease detection studies on olive leaf disease employ various

classification approaches. In these works, researchers employed several machine

learning methods and distinct deep learning models for categorization tasks. Below is

some research on olive leaf disease found in the literature.

Diker et al. (2024) devised a novel technique for classifying olive leaves afflicted

with Peacock Eye Disease, attaining an accuracy of 98.63%. They utilized a new

dataset including 954 photos, integrating deep learning architectures (ResNet101 and

MobileNet) with machine learning methods, including Random Forest and SVM.

Their study is notable for its equilibrium between precision and computational

efficiency, exceeding previous techniques such as VGG-based models. The

integration of CNN-based feature extraction with machine learning classifiers

illustrates the potential for scalable and cost-effective surveillance of agricultural

diseases.

Moupojou et al. (2024) introduced an ensemble model that integrates the SAM and

Fully Convolutional Data Description (FCDD) to enhance plant disease identification

in field pictures. Their approach adeptly addresses issues such as intricate

backgrounds and overlapping foliage, enhancing classification accuracy by more than

10% on datasets like PlantDoc. The algorithm utilizes SAM for object segmentation,

employs FCDD for leaf identification, and classifies illnesses with a deep learning

model trained on PlantVillage data. The introduced model connects controlled

laboratory datasets with real-world field circumstances, providing an effective

solution for reliable plant disease diagnosis.

Li et al. (2023) presented the Agricultural Segment Anything Model Adapter

(ASA) to improve agricultural image segmentation. By modifying the
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general-purpose SAM with domain-specific enhancements, ASA markedly enhanced

segmentation precision for agricultural applications such as crop disease and pest

identification. The model attained a 41.48% enhancement in Dice scores for

coffee-leaf-disease segmentation and a 9.91% augmentation for pest segmentation

relative to the original SAM. The introduced model emphasizes the necessity of

modifying fundamental AI models for agricultural use, tackling issues such as

intricate backdrops and low-contrast subjects. The incorporation of lightweight

adapters into SAM illustrates a scalable approach for zero-shot segmentation in

agriculture, representing a significant leap for precision agriculture.

Zhang et al. (2024) modified the SAM for plant identification and automated

phenotypic assessment, employing Explainable Contrastive Language–Image

Pretraining (ECLIP) for zero-shot segmentation. Their methodology obviated the

necessity for annotated datasets while attaining high precision in segmenting plant

components across varied situations. An essential innovation involved employing a

B-spline curve in the skeletonization process, enhancing measurement robustness,

and attaining a mean absolute error (MAE) of under 0.05 for the majority of samples.

In contrast to supervised models such as Mask-RCNN, their architecture provided

comparable segmentation performance without the necessity for labeled data. The

introduced study emphasizes SAM’s versatility in agricultural applications,

showcasing its capability to connect laboratory models with field-level disease

detection systems. The results are pertinent to study, especially in utilizing SAM for

the identification of plant diseases in practical environments.

Ksibi et al. (2022) introduced MobiRes-Net, a hybrid deep learning model that

integrates ResNet50 and MobileNet for the detection of olive leaf diseases. The

program utilized a dataset of 5,400 drone-acquired photos to categorize leaves into

four classifications: healthy, Aculus Olearius disease, olive scab, and peacock spot

illness. MobiRes-Net attained an accuracy of 97.08%, exceeding the performance of

individual models such as ResNet50 (94.86%) and MobileNet (95.63%).
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CHAPTER THREE

MATERIALS AND METHODOLOGY

The method utilizes two distinct datasets, the Field Dataset and the Laboratory

Dataset, which are employed to develop an automated olive leaf disease detection

system. Figure 3.1 illustrates the sequential workflow adopted in the study, detailing

the key steps from data preprocessing to final classification.

Figure 3.1 Diagram of the process

The proposed system begins by processing input images through the SAM

segmentation module, which extracts and segments both leaf objects and background

elements. Next, an autoencoder-based anomaly detection model evaluates the

segmented objects, identifying actual leaves while filtering out non-leaf components.

Among the detected leaves, the Region of Interest (ROI) is selected based on the

lowest anomaly score, ensuring that the most representative leaf is chosen for further
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analysis. Furthermore, the selected ROI is passed to the classifier, which has been

trained using the Laboratory Dataset containing healthy and diseased olive leaf

samples under controlled conditions. The classifier utilizes these training samples to

accurately determine whether the selected ROI corresponds to a healthy or diseased

leaf. The final disease class is then determined based on the classification process.

3.1 Materials

3.1.1 Field Dataset

Figure 3.2 Field dataset

The field dataset was constructed by collecting over 1,000 high-resolution images

of olive trees from Çobanhasan village, located in the Akhisar district of Manisa,

Turkey. These images were captured under diverse field conditions to ensure a

representative sample of real-world scenarios. However, during the data collection

process, a subset of images was intentionally captured to encompass the entire tree

structure, aiming to provide a holistic view of the foliage. While this approach was

initially intended to enhance the dataset’s comprehensiveness, it introduced

significant challenges during the segmentation phase. The primary challenge arose

during the application of the SAM, a state-of-the-art segmentation model designed for

object delineation in complex visual data. When processing images that captured
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entire trees, SAM identified thousands of objects per image, including leaves,

branches, and background elements. This resulted in excessive computational costs

and prohibitive RAM usage, rendering the segmentation process inefficient for

large-scale analysis. Additionally, the resolution and spatial distance of the objects in

these wide-angle images posed a secondary challenge. While SAM demonstrated

robust segmentation capabilities, the low resolution of individual leaves and their

proximity to one another hindered the model’s ability to accurately isolate and

identify distinct leaf structures. To address these limitations, a strategic refinement of

the dataset was undertaken. Images captured from a greater distance, which primarily

focused on entire trees, were excluded from the final dataset. This decision was made

to prioritize computational efficiency and segmentation accuracy. The final curated

dataset comprised 100 high-resolution (4032x3024), close-up images of olive tree

foliage, ensuring that each image contained sufficient detail for precise segmentation

and subsequent disease detection. Figure 3.2 presents the visual representation of the

refined dataset, highlighting the quality and focus of the selected images. This refined

dataset not only reduced computational overhead but also enhanced the model’s

ability to accurately identify and analyze individual leaves, thereby improving the

overall efficacy of the disease detection pipeline.

3.1.2 Laboratory Dataset

Figure 3.3 Laboratory dataset

The laboratory dataset was obtained from the study by Diker et al. (2024), titled ”An

effective feature extraction method for olive peacock eye leaf disease classification.”

It comprises 954 olive leaf images captured under controlled conditions, including 572
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healthy and 382 infected leaves. Figure 3.3 presents the visual representation of the

laboratory dataset. The images were acquired using a 48-megapixel camera within a 42

× 42 cm lighting box equipped with a specialized lighting system designed to eliminate

shadow formation in the background. The controlled acquisition environment ensures

clean and focused inputs, making this dataset particularly advantageous for training

classification models using transfer learning techniques. The consistency in lighting

and background conditions allows for enhanced feature extraction and contributes to

improved model performance.

3.2 Methodology

3.2.1 Preprocess

The preprocessing phase is crucial for preparing picture data for further analysis

and model training. The primary objective of this step was to standardize image

dimensions and provide uniformity throughout the dataset, which is essential for

optimal model performance. The original high-resolution photos, taken at 4032x3024

pixels, were shrunk to a consistent dimension of 224x224 pixels. The resizing was

executed to diminish computational complexity and memory consumption during

model training, while ensuring consistency between the field dataset and laboratory

dataset, hence facilitating smooth integration and comparison of findings. The aspect

ratio of the original photos was not kept during resizing to ensure uniformity

throughout the collection. This choice was made to prevent the introduction of

distortions or inconsistencies that may result from padding or cropping methods. The

resizing procedure employed bilinear interpolation, a prevalent technique for image

enlargement that optimizes computational efficiency and resolution. This approach

guarantees seamless transitions between pixels, reducing artifacts that may

compromise the model’s efficacy. Subsequent to resizing, the pixel values of the

pictures were normalized to a range of [0, 1] by dividing each pixel value by 255.

This normalization step is a conventional procedure in deep learning processes, since

it aids in stabilizing and expediting the training process. The field dataset includes

photographs captured in real-world environments, and the laboratory dataset contains
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images acquired in controlled laboratory settings. Both datasets received the same

preprocessing procedures to guarantee compatibility and consistency in later analysis.

The final preprocessed dataset comprised images of 224x224 pixels, prepared for

incorporation into the segmentation and anomaly detection pipelines. This consistent

format guaranteed that the models could process the photos effectively and yield

dependable results.

3.2.2 Segmentation with SAM

SAM, created by Meta AI Research, serves as a promptable segmentation

framework designed for general image segmentation tasks Kirillov et al. (2023).

SAM serves as a foundational framework for image segmentation, designed to

perform robust zero-shot segmentation across many image domains and tasks without

requiring more refinement. It achieves strong generalization by adjusting to various

downstream applications, employing a range of prompts—such as dots, boxes, or

masks—to dynamically guide segmentation. SAM’s design has two main

components: an image encoder and a mask decoder. The image encoder derives

salient information from the input image. SAM employs a Vision Transformer (ViT)

or a comparable deep learning framework for image analysis Dosovitskiy (2020). The

encoder converts the input image into a detailed feature map that encompasses spatial

and contextual information. This feature map serves as the foundation for the

subsequent mask production process. The encoder is pre-trained on a vast dataset of

over 11 million images and 1 billion masks, enabling it to generalize across diverse

image domains. It concurrently analyzes the entire image, capturing both local and

global information, which is crucial for identifying objects of various sizes and

shapes. The mask decoder employs the feature map generated by the image encoder

to create segmentation masks. Unlike traditional segmentation models that need

task-specific training, SAM’s decoder is designed to function in a zero-shot manner,

enabling it to generate masks for objects it has not explicitly encountered during

training. SAM can support several prompt types, such as points, boxes, or text, to

guide the segmentation process. In the study, no prompts were used, and SAM was
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applied in automated segmentation mode. SAM independently generates masks for

all identifiable objects in the image without requiring user involvement. This is

achieved by employing its pre-trained expertise to recognize and delineate objects

based on their visual attributes.

The study utilized SAM in automatic segmentation mode to examine images of

field plants. The primary aim was to delineate all observable items, including leaves,

stems, fruits, and background elements like as the ground or sky. The SAM model

was initialized using a pre-trained checkpoint that includes the weights for the Vision

Transformer (ViT) architecture. The input photos were scaled with a scaling factor of

0.5 to diminish computing demand while preserving adequate resolution for precise

segmentation. The resized photos were subsequently input into the Sam Automatic

Mask Generator, which produced segmentation masks for all discernible items within

the images. These masks were created without the utilization of prompts. To improve

computational efficiency and focus on relevant elements, pixel-based thresholds were

utilized to filter the produced masks. To achieve this, adaptive thresholding was

implemented based on the pixel dimensions of the masks. The lower and upper

thresholds are established based on the minimum and maximum sizes of the

segmented masks, modified by a certain factor. This component established a

tolerance range to accommodate variability in object dimensions. These thresholds

were employed to differentiate between pertinent objects (e.g., leaves) and extraneous

elements (e.g., background or noise) to the greatest extent possible.Masks smaller

than a specified pixel size were discarded. This phase was crucial for eliminating

noise and irrelevant tiny elements, such as shadows, dust, or minor artifacts, which

could hinder the analysis, as illustrated in Figure 3.4. Masks surpassing a specified

pixel size were similarly omitted. This phase aimed to remove disproportionately

large masks associated with non-target elements, such as the sky, clouds, or tree

branches, which often occupy significant portions of the image but are extraneous to

this research. The application of pixel-based thresholds was essential for various

reasons. Without thresholds, SAM may generate an excessive number of masks,

including those for trivial items, leading to over-segmentation and extended
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Figure 3.4 Source image and segmented image after applying SAM with pixel-based thresholding

processing time. The analysis concentrated on the primary items of interest (e.g.,

leaves) by omitting masks that were either overly large or small, hence ensuring more

accurate and meaningful results. Minimizing the quantity of processed masks

diminished the computing burden, making the technique scalable for large

agricultural datasets.

A primary advantage of SAM is its ability to generalize across diverse image

domains without requiring task-specific fine-tuning. The study demonstrated that

SAM had significant performance in segmenting images of natural plants, even in the

absence of explicit cues. The amalgamation of automatic segmentation with

pixel-based thresholding enabled swift and accurate object isolation, allowing for

subsequent analysis, such as anomaly detection or classification. The implementation

of SAM in automatic segmentation mode, coupled with pixel-based thresholding,

highlights the model’s versatility and adaptability for practical applications. This

approach enhances the segmentation process while ensuring computational efficiency

and focus on the objects of concern. Future studies may explore the integration of

additional filtering techniques to enhance segmentation accuracy and efficiency.
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3.2.3 Auto Encoder Based Anomaly Detection

The autoencoder-based anomaly detection technique was utilized to overcome the

deficiencies of the SAM in differentiating leaf objects from non-leaf components (e.g.,

stems, soil, backdrop). Autoencoders, including an encoder and a decoder (Hinton and

Salakhutdinov, 2006), were trained solely on leaf masks to acquire the structural and

textural characteristics of leaves. During training, the encoder condensed the input data

into a latent space, while the decoder rebuilt the original input from this compressed

representation. The training goal was to reduce theMean Squared Error (MSE) between

the input and reconstructed masks, allowing the autoencoder to faithfully replicate leaf

patterns (Bishop and Nasrabadi (2006)).

To optimize the efficiency and precision of the anomaly detection process, the

autoencoder was configured with an input image dimension of (64, 64, 3), wherein

images were downsized to 64×64 pixels with three color channels (RGB). The photos

were standardized to the range [0, 1] by dividing pixel values by 255. The encoder

had two convolutional layers: the initial layer featured 32 filters, while the subsequent

layer included 64 filters, both employing 3×3 kernels, ReLU activation, and ’same’

padding, succeeded by batch normalization to enhance learning stability. The feature

maps were further flattened and processed through a dense layer comprising 128

neurons to provide a compact latent space representation. The decoder employed a

symmetric architecture, initiating with a dense layer matching the input size and

utilizing a sigmoid activation function, thereafter reshaping the output to restore the

input image dimensions. The model was trained for 50 epochs with the Adam

optimizer and mean squared error loss function, with a batch size of 32. The dataset

was divided into 80% for training and 20% for validation.

An initial optimization step was performed using 100 segmented masks generated

by SAM to ascertain the best anomalous threshold. The reconstruction errors for

these masks were evaluated, and an ideal threshold value was established by

balancing precision and recall, ensuring an effective differentiation between leaf and

non-leaf objects. The final threshold was determined through statistical analysis using
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the equation:

Threshold = µ + σ (3.1)

Alternatively, an experimentally optimized fixed threshold of 0.165 was employed.

During inference, the autoencoder analyzed segmented masks produced by SAM,

encompassing both foliar and non-foliar items. The reconstruction error for each

mask was determined as the mean squared error (MSE) between the input and the

rebuilt mask. A threshold was set to categorize masks with little reconstruction

mistakes as leaves (normal class) and those with significant reconstruction defects as

anomalies (non-leaf objects). The threshold was established using a blend of

statistical analysis and experimental validation, guaranteeing optimal differentiation

between leaf and non-leaf parts.

The amalgamation of SAM with autoencoder-based anomaly detection established

a resilient two-stage pipeline. SAM produced masks for all discernible items in the

field images, but the autoencoder enhanced these masks by eliminating non-leaf

components. This method markedly diminished noise and enhanced the quality of the

input data for ensuing classification jobs. The autoencoder’s capacity for

unsupervised operation rendered it especially appropriate for situations with scarce

labeled data, as it could efficiently generalize to unobserved abnormalities.

The autoencoder’s performance was assessed using measures including precision,

recall, and F1 score, which evidenced its efficacy in differentiating leaf objects from

background elements. Visual representations of the segmentation outcomes prior to

and after the anomaly identification were presented to demonstrate the method’s

effectiveness. A histogram of reconstruction errors further demonstrated a distinct

separation between leaf and non-leaf objects, hence corroborating the selected

threshold.

This methodology is inspired by the research of Shikhar and Sobti (2024), who

employed masked autoencoders for anomaly identification in aerial agricultural

imagery. Our methodology, however, enhances their research by incorporating SAM
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for preliminary segmentation and concentrating explicitly on leaf object recognition.

Subsequent studies may investigate the application of more sophisticated anomaly

detection models to improve segmentation precision. Such a technique is the

incorporation of Variational Autoencoders (VAEs), which provide a probabilistic

method for latent space modeling and have demonstrated enhancements in anomaly

identification (Kingma (2013)). Moreover, Generative Adversarial Networks

(GANs), effectively utilized in unsupervised anomaly detection through the learning

of normal sample distributions, may offer a viable approach for enhancing

segmentation outcomes (Zenati et al. (2018)). Moreover, the method’s relevance to

additional agricultural activities, including fruit detection and disease localization,

necessitates further examination (Boulent et al. (2019)).

3.2.4 Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) are a category of deep learning

architectures tailored for image recognition and processing applications. In contrast to

conventional neural networks, CNNs utilize a hierarchical architecture to

autonomously and adaptively acquire spatial hierarchies of features from input

images (LeCun et al. (1998)). The architecture of a CNN generally comprises three

primary components; convolutional layers, pooling layers, and fully linked layers as

shown in Figure 3.5.

Convolutional layers utilize a sequence of filters on the input image to extract

localized characteristics, including edges, textures, and patterns. Each filter produces

a feature map by convolving with the input picture, subsequently using a non-linear

activation function (e.g., ReLU) to incorporate non-linearity (Krizhevsky et al.

(2012)). Pooling layers diminish the spatial dimensions of feature maps, enhancing

the model’s computational efficiency and reducing its susceptibility to overfitting

(Boureau et al. (2010)). This work utilized max pooling to extract the maximum value

from sub-regions of the feature map, thereby preserving dominating characteristics

and minimizing computational demands (Scherer et al. (2010)). At the conclusion of

15



Figure 3.5 The basic architecture of CNN (Phung and Rhee, 2019)

the CNN, fully connected layers convert the feature maps into a one-dimensional

vector and execute classification, typically employing a softmax activation function in

the last layer to generate probability distributions for each class (Goodfellow (2016)).

This project involved training a CNN model using a laboratory dataset of leaf

pictures to differentiate between healthy and sick leaves. The dataset underwent

preprocessing by scaling photos to 224 × 224 pixels for uniformity across inputs, and

pixel values were normalized to [0, 1] to enhance convergence stability (Ioffe (2015)).

Data augmentation techniques, such as random flipping, rotation (±20°), and zooming

(±10%), were employed to enhance the dataset’s diversity and improve the model’s

generalization (Shorten and Khoshgoftaar (2019)).

The CNN architecture had five convolutional layers, each intended to extract

hierarchical spatial characteristics from leaf pictures. The initial layer, comprising 32

filters, identified low-level features like edges and textures, whereas subsequent

layers with 64 filters recognized intricate patterns such as leaf veins and disease spots.

Every convolutional layer was succeeded by ReLU activation and max pooling (2 ×

2) to downsample the feature maps while preserving critical information (Zeiler and

Fergus (2014)).

To alleviate overfitting, dropout regularization was implemented at several stages:
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20% dropout following the initial two convolutional layers, 30% after the third and

fourth layers, and 40% subsequent to the fully connected layer (Srivastava et al. (2014)).

The ultimate categorization utilized a fully linked dense layer including 64 neurons,

succeeded by a softmax activation function to provide probability distributions across

the potential categories. The model utilized the Sparse Categorical Crossentropy loss

function, appropriate for multi-class classification tasks (Murphy (2012)).

Hyperparameters were selected based on previous studies and empirical

confirmation. The model was trained with a batch size of 32, chosen to optimize

computational efficiency and convergence stability. Studies indicate that smaller

batch sizes generally result in more variance in gradient updates, which might

enhance generalization, whereas overly large batch sizes may impair generalization

(Smith (2018)). The epoch count was established at 50, as initial studies revealed that

validation loss stabilized beyond this threshold, indicating the commencement of

overfitting (Goodfellow (2016)).

An exponential learning rate decay was employed to guarantee efficient weight

updates. The equation is given below.

η = 1e−3»10(−epoch/20) (3.2)

This method enabled the model to implement substantial initial adjustments,

promoting swift convergence during the initial training phases, while maintaining

stability in subsequent epochs (Loshchilov and Hutter (2016)). The Adam optimizer

was employed for its adjustable learning rate characteristics, which have

demonstrated enhanced convergence compared to conventional approaches like

Stochastic Gradient Descent (Kingma (2014)).

Subsequent to training, the CNN model was employed to categorize the leaf

dataset derived from the autoencoder-based anomaly detection procedure. This

dataset exclusively comprised leaf objects, as non-leaf elements (e.g., stems, dirt)

were eliminated using the autoencoder. The model’s efficacy was assessed through
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accuracy, precision, recall, and F1-score, which are standard metrics for evaluating

classification models (Sokolova and Lapalme (2009)).

A number of tests were undertaken to compare the performance of the CNN models

trained on the laboratory dataset with the autoencoder-filtered dataset. The findings

indicated that the model trained on the autoencoder-filtered dataset attained superior

accuracy and F1 scores, suggesting that the exclusion of non-leaf elements markedly

enhanced the quality of the input data. This comparison underscores the significance

of preprocessing and filtering in improving the efficacy of deep learning models for

agricultural applications.

The proposed methodology exhibited encouraging findings; nonetheless, numerous

drawbacks were recognized. The efficacy of the CNN model may diminish when

utilized on more intricate images characterized by fluctuating lighting conditions or

obstructions. The dependence on a laboratory dataset for initial training may restrict

the model’s applicability to real-world field circumstances. Future research may

investigate the implementation of more sophisticated CNN designs, such as ResNet or

EfficientNet, which have demonstrated enhancements in classification efficacy for

large-scale image recognition applications (He et al. (2016); Tan and Le (2019)).

Furthermore, the incorporation of transfer learning methodologies and the acquisition

of larger, more varied datasets could improve the model’s resilience and relevance to

various agricultural contexts (Kornblith et al. (2019)).

3.3 Final Classification of Leaf Objects

In the concluding phase of the investigation, the segmented leaf images were

categorized into two classifications: healthy and diseased. The main objective of this

classification was to assess the efficacy of the autoencoder-based filtering method in

eliminating non-leaf items while maintaining the critical characteristics of the leaves

for illness categorization. To achieve this objective, we utilized a CNN model that

had been pre-trained on a standardized benchmark dataset. This enabled us to

evaluate the model’s ability to generalize to real-world, field-acquired leaf photos that
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have undergone automated filtering. The dataset utilized in this classification phase

comprised leaf pictures acquired following the autoencoder filtering procedure. The

photos were meticulously classified into healthy and diseased groups, establishing a

dependable ground truth for assessment. The dataset was subsequently preprocessed

to maintain alignment with the training parameters of the benchmark CNN. Each

image was shrunk to 256 × 256 pixels and normalized to a range of [0, 1] by min-max

scaling. Data augmentation methods, such as random flipping, rotation (±20°), and

zooming (±10%), were employed to enhance the diversity of the training dataset and

mitigate overfitting.

The classification model employed at this step utilized a fine-tuned CNN

architecture, which was originally trained on the benchmark dataset. Transfer

learning was utilized by loading the pre-trained CNN weights and subsequently

optimizing them with the filtered dataset, rather than building a model from the

ground up. In the fine-tuning process, the initial layers of the CNN were frozen to

preserve low-level feature representations, while the final four layers were unfrozen

to facilitate adaption to the newly introduced dataset. The concluding layers

comprised fully connected layers with a dropout rate of 0.3 to enhance generalization,

succeeded by a softmax activation function for binary classification.

Class weighting was integrated into the training process to mitigate class

imbalance (Bakirarar and Elhan (2023)). The class weights were computed according

to the dataset distribution utilizing the formula:

Wc = N

nc»C
(3.3)

where N represents the total number of samples, nc is the number of samples in class

c, and C is the total number of classes. This weighting approach prevented the model

from exhibiting bias towards the predominant class (e.g., healthy leaves) and ensured

equitable contributions from both categories.

The model was trained with the Adam optimizer with a learning rate of 0.0005,
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a batch size of 32, and an early stopping criterion with a patience of 15 epochs to

mitigate overfitting. The employed loss function was sparse categorical cross-entropy,

appropriate for multi-class classification with integer labels. The model was assessed

using essential performance indicators, including accuracy, precision, recall, F1-score,

and a confusion matrix for class-wise performance analysis.

3.4 Performance Metrics

A confusion matrix is a commonly used tool to assess the performance of a

classification model by comparing its predictions with actual outcomes in a test

dataset. In this matrix, the rows correspond to the actual class labels, while the

columns represent the predicted classifications.

Table 3.1 Performance Metrics

Performance metrics Definition

Accuracy TP+TN
TP+FN+FP+TN (3.4)

Precision TP
TP+FP (3.5)

Recall TP
TP+FN (3.6)

F1 Score
2×(Recall×Precision)

Recall+Precision (3.7)

The matrix clarifies four potential outcomes: A true positive (TP) arises when the

model accurately identifies the positive class, while a true negative (TN) denotes the

proper identification of the negative class. A false positive (FP) occurs when the

model erroneously categorizes a negative occurrence as positive, while a false

negative (FN) transpires when a positive case is inaccurately classified as negative.

Analyzing the confusion matrix allows for the calculation of numerous performance

metrics, including accuracy, precision, recall, and F1 score. The equations for these

metrics are presented in Table 3.1.
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CHAPTER FOUR

RESULTS

The main objective of this classification challenge is to create a strong and

efficient system for identifying and diagnosing peacock disease in olive tree leaves

through the integration of modern segmentation and classification techniques. This

study aims to tackle the difficulties of moving from controlled experimental datasets

to practical agricultural applications. The precise objectives of this research

encompass the following: Assessing the efficacy of a Convolutional Neural Network

(CNN) model trained on the olive peacock disease benchmark dataset for the

classification of individual leaf specimens as healthy or diseased. This research seeks

to evaluate the model’s capacity to generalize beyond the controlled parameters of the

benchmark dataset and to adapt to the intricacies of real-world datasets. Field Image

Dataset: This dataset consists of high-resolution photos of olive trees taken in

authentic agricultural environments. These photographs encompass diverse climatic

circumstances, including varying lighting, shadows, and intricate backgrounds (e.g.,

clouds, soil, and stems). The dataset represents the actual diversity of olive orchards

and functions as a testbed for implementing segmentation and classification pipelines

in tough and uncontrolled environments. The laboratory dataset comprises isolated

leaf pictures obtained under controlled settings. These photos constitute a benchmark

collection specifically designed for the detection of olive peacock illness. Each leaf is

meticulously categorized as either healthy or ill, guaranteeing superior annotations.

The laboratory dataset was utilized to build a Convolutional Neural Network (CNN)

model for binary classification, establishing a dependable baseline for disease

diagnosis. Assessing the efficacy of a hybrid preprocessing pipeline that integrates

the Segment Anything Model (SAM) and an autoencoder discriminator to extract leaf

objects from intricate olive tree photos. This pipeline aims to remove noise from

non-leaf entities, like the background, soil, clouds, and stems, which frequently

hinder classification efforts. Enabling precise classification of individual leaf objects

derived from segmented tree photos, offering accurate and actionable insights about

the health status of olive trees. Priority is given on attaining elevated specificity in
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illness detection at the object level. Improving classification accuracy and reliability

by minimizing misclassification due to irrelevant features through the differentiation

of leaf and non-leaf objects. This method guarantees that the model concentrates

exclusively on pertinent data, enhancing the reliability of disease identification.

Evaluating the feasibility and application of a benchmark-trained CNN model in

conjunction with SAM-based segmentation for datasets gathered in the field. This

stage connects benchmark circumstances with actual agricultural settings, tackling the

issues posed by fluctuating environmental and imaging conditions. Exhibiting the

scalability and feasibility of the suggested method for extensive applications in olive

orchards. The capacity to automate disease detection and diagnosis on a large scale

holds considerable promise for enhancing crop management methods and effectively

reducing disease burden. This work emphasizes the significance of integrating

advanced segmentation approaches, such as SAM, with customized classification

models to tackle practical agricultural issues. The results enhance the domain of

automated disease identification in precision agriculture, establishing a foundation for

subsequent study and practical implementations.

4.1 CNN Training Results

The CNNwas trained using a laboratory dataset, with 80% allocated for training and

20% for testing. The model was optimized using the Adam optimizer with a learning

rate of 0.001, trained for 50 epochs and a batch size of 32. The training achieved

an accuracy of 96% on both the training and testing sets, as illustrated in Table 4.1.

The metrics of precision, recall, and F1-score were employed to evaluate the model’s

overall performance, demonstrating a strong ability to distinguish between healthy and

damaged leaves.

Table 4.1 The laboratory dataset CNN training performance

Class Accuracy F1-Score Recall Precision
Healthy 0.96 0.97 0.99 0.96
Unhealthy 0.96 0.95 0.92 0.98
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Figure 4.1 illustrates that both training and validation accuracy exhibit a consistent

increase, converging at around 96% and 94%, respectively. The proximity of the

curves suggests negligible overfitting, affirming the model’s capacity to generalize

effectively to novel data. The variations are characteristic of natural picture

collections and indicate the difficulty in differentiating between healthy and diseased

leaves.

(a) (b)

(c) (d)

Figure 4.1 Training and validation accuracy (a), F1-score (b), recall (c), precision (d) for laboratory
dataset

4.2 Segment Anything Model

The Segment Anything Model (SAM) effectively delineated leaves from photos of

trees. Nonetheless, as SAM lacks the intrinsic capability to identify objects, it also

extracted non-leaf elements, including branches, sky, and soil.
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A pixel-based filtering approach was devised during segmentation to improve

computational performance and concentrate on pertinent objects. This method

dynamically eliminated masks within a specified pixel threshold, thereby reducing

wasteful memory use and enhancing processing speed. The method facilitated the

elimination of minor artifacts and background noise, so preserving just the most

pertinent segmented items. The filtering enhanced segmentation quality but also

risked removing smaller leaves, potentially affecting classification performance.

Figure 4.2 Segmented image with pixel-based thresholding

4.3 Autoencoder Discriminator

The performance of the autoencoder-based anomaly detection method was

evaluated by analyzing the reconstruction loss during training, the distribution of

reconstruction errors, and the classification of segmented masks into normal and

anomalous categories.

4.3.1 Training and Validation Loss

The autoencoder was trained for 50 epochs using the Mean Squared Error (MSE)

loss function, with an Adam optimizer and a batch size of 32. The final training loss

was 0.0285, while the validation loss converged to 0.0274, indicating that the model

achieved stable learning without signs of overfitting. The similarity between training

and validation loss values suggests that the model generalizes well to unseen data,

effectively capturing the structural and textural patterns of leaf objects.
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4.3.2 Reconstruction Error Distribution

The distribution of reconstruction errors across the segmented masks is illustrated in

Figure 4.3, where the x-axis represents the reconstruction error, and the y-axis denotes

frequency.

Figure 4.3 Reconstruction error distribution

The histogram has approximately normal distribution, indicating that most of the

segmented masks were reconstructed with consistent accuracy. The optimal anomaly

threshold was set at 0.165, as determined through a combination of statistical analysis

and empirical validation. The red dashed line in Figure 4.3 represents this threshold,

where:

• Masks with reconstruction errors below this threshold were classified as normal

(leaf objects).

• Masks with reconstruction errors exceeding this threshold were categorized as

anomalous (non-leaf objects, e.g., stems, soil, or background elements).
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4.3.3 Classification of Normal and Anomalous Masks

The autoencoder-based anomaly detection pipeline processed 24,790 segmented

masks produced by SAM. Of these:

Table 4.2 The number of normal and anomalous masks

Category Number of Masks Percentage (%)
Normal (Leaf Objects) 18,151 73.2
Anomalous (Non-Leaf Objects) 6,639 26.8
Total 24,790 100

Figure 4.4 Leaf objects and background objects

This result indicates that approximately 27% of the segmented masks contained

non-leaf elements, which were effectively filtered out by the autoencoder. The

relatively high proportion of anomalies underscores the necessity of a robust filtering
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mechanism following SAM’s segmentation, as it prevents irrelevant components

from being forwarded to subsequent classification stages.

4.3.4 Discussion of Findings

The results demonstrate that the autoencoder successfully differentiates between

leaf and non-leaf components based on reconstruction errors. The anomaly detection

process significantly reduces noise in the dataset, improving the overall quality of the

segmented masks before further classification. The consistency in training and

validation loss suggests that the model is well-calibrated for the task, and the

threshold of 0.165 effectively separates relevant and irrelevant objects, as reflected in

the clear distinction observed in the reconstruction error histogram.

4.4 Final Classification of Leaf Objects

4.4.1 Prediction of Leaf Objects with Benchmark Dataset-Trained CNN Model

The performance assessment of the CNN model, trained on the

autoencoder-filtered dataset, was executed utilizing standard classification measures.

The classification results were evaluated based on accuracy, precision, recall, and

F1-score, and further analyzed with a confusion matrix to examine the model’s

predictions for healthy and diseased leaves.

The acquired metrics are displayed in Table 4.3, illustrating the model’s

comparative performance across several evaluation criteria. Furthermore, the

confusion matrix in Figure Y depicts the allocation of true positive, false positive,

false negative, and true negative predictions for each category. These results elucidate

the model’s categorization inclinations and its efficacy in differentiating between

healthy and unhealthy leaf samples.
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Table 4.3 Prediction of Leaf Objects with Benchmark Dataset-Trained CNN model

Class Accuracy F1-Score Recall Precision
Healthy 0.87 0.84 0.84 0.85
Unhealthy 0.87 0.89 0.89 0.88

The confusion matrix (Figure 4.5) further illustrates the classification results:

Figure 4.5 Confusion matrix of leaf objects with benchmark dataset-trained CNN Model

• True Positives (Healthy): 120

• False Positives (Healthy misclassified as Diseased): 24

The model, developed under controlled laboratory circumstances, has shown

robust performance in illness categorization. Nonetheless, several healthy leaves were

inaccurately categorized, possibly due to unpredictability caused by real-world

conditions in the segmented dataset.
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4.4.2 Classification of Labeled Leaf Objects with CNN Model

Thismodel was trained directly on labeled leaf objects, indicating that the segmented

dataset was manually tagged as ”Healthy” or ”Diseased” prior to training.

Table 4.4 Classification of labeled leaf objects with CNN model

Class Accuracy F1-Score Recall Precision
Healthy 0.87 0.84 0.83 0.85
Unhealthy 0.87 0.89 0.89 0.88

Figure 4.6 Classification of labeled leaf objects with CNN model

• True Positives (Diseased): 178

• False Negatives (Diseased misclassified as Healthy): 22
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CHAPTER FIVE

CONCLUSIONS

The current research aimed to address the following two primary obstacles: the

restricted applicability of laboratory-controlled datasets in real-world scenarios and the

automation of the labor-intensive human annotation procedure for leaf classification.

Our findings indicate that both objectives have been satisfactorily accomplished.

5.1 Practical Relevance of Laboratory Datasets

Historically, deep learning models for plant disease identification depend on

datasets gathered in controlled laboratory environments. Nevertheless, these models

frequently demonstrate diminished performance in real-world contexts when

fluctuations in illumination, backdrop intricacy, and occlusions introduce

interference. To evaluate this, we trained a CNN model on a benchmark dataset of

laboratory-controlled leaf pictures, which were manually annotated as healthy or

diseased. Utilized the trained model on actual leaf pictures obtained from

comprehensive tree shots, with segmentation executed via the Segment Anything

Model (SAM). Noted that performance was markedly diminished owing to

background noise (e.g., soil, sky, branches), highlighting the constraints of

conventional datasets in practical scenarios.

5.2 Automating the Annotation Procedure for Leaf Classification

The manual annotation of extensive plant datasets is a laborious and expensive

endeavor. We presented a two-stage pipeline to automate this process:

Leaf Segmentation Utilizing SAM: The Segment Anything Model (SAM) was

employed to isolate individual leaf regions from complete tree pictures.

Anomaly Detection Utilizing Autoencoders: Given that SAM does not categorize

objects, we utilized an autoencoder-based anomaly detection technique to eliminate

non-leaf entities (including soil, branches, and clouds). This enabled the automatic
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creation of a more refined dataset without human involvement.

To ascertain the efficacy of this method: We trained a CNN classifier on the

automatically segmented and filtered dataset and evaluated its performance against

the CNN model trained on the manually labeled benchmark dataset. Our

classification findings exhibited significant consistency across both datasets,

indicating that our automated annotation method yields classification accuracy

comparable to that of manually labeled datasets.

Assessment of Performance: Key performance parameters, including accuracy,

precision, recall, and F1-score, were examined for comparison. The benchmark CNN

model trained on a laboratory dataset vs the CNN model trained on a real-world

dataset acquired by automated segmentation and anomaly filtering.

The final results demonstrate that the SAM + Autoencoder-based dataset attains

classification accuracy comparable to the manually labeled benchmark dataset. The

automated pipeline effectively diminishes background noise interference and

enhances classification performance in real-world scenarios. The necessity for

manual annotation is much diminished, rendering the system scalable for extensive

agricultural datasets. Our results indicate that benchmark datasets developed in

controlled environments fail to generalize to real-world photos, highlighting the

necessity for more versatile and resilient data preparation methods. The suggested

SAM + Autoencoder framework efficiently automates data annotation and improves

classification efficacy in practical applications. The findings indicate that anomaly

detection and automated segmentation methods can serve as effective instruments for

classifying plant diseases, hence diminishing reliance on expensive manual

annotation.

5.3 Future Work

The research conducted has shown encouraging findings; yet, there are various areas

for future enhancement. Ensemble Learning: Integrating various models (e.g., CNN
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and Transformer) to improve classification robustness.

Self-Supervised Learning: Investigating unsupervised feature extraction methods to

diminish reliance on annotations.

Broadened Plant Species Testing: Evaluating the methodology across a wider array

of plant species to determine its generalizability.

Enhanced Anomaly Detection: Exploring sophisticated anomaly detection

techniques, including GAN-based filtering, to further optimize the dataset.

Our methodology offers a scalable, automated, and efficient solution for the

diagnosis of plant diseases in real-world scenarios, facilitating future progress in

AI-driven agriculture.
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