
0

EEGGEE ÜÜNN İİVVEERRSS İİTTEESS İİ

YÜKSEK LİSANS TEZİ

CUDA İLE PARALEL PROGRAMLAMA

Pelin KARAGÖZOĞLU

Tez Danışmanı :Prof. Dr. Aylin KANTARCI

Bilgisayar Mühendisliği Anabilim Dalı

Sunuş Tarihi : 16.05.2018

Bornova-İZMİR

 2018

EE
ÜÜ

FF

EE
NN

 BB
İİ LL

İİ MM
LL

EE
RR
İİ

EE
NN

SS
TT
İİ TT

ÜÜ
SS

ÜÜ

EGE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

(YÜKSEK LİSANS TEZİ)

CUDA İLE PARALEL PROGRAMLAMA

Pelin KARAGÖZOĞLU

Tez Danışmanı : Prof. Dr. Aylin KANTARCI

Bilgisayar Mühendisliği Anabilim Dalı

Sunuş Tarihi : 16.05.2018

Bornova-İZMİR

2018

vii

ÖZET

CUDA İLE PARALEL

 PROGRAMLAMA

KARAGÖZOĞLU, Pelin

Yüksek Lisans Tezi, Bilgisayar Mühendisliği Anabilim Dalı

Tez Danışmanı: Prof. Dr. Aylin KANTARCI

Nisan 2018, 40 sayfa

Son zamanlarda GPU’ların büyük gelişme göstermesi ile birlikte CPU’ların

yardımcı işlemcisi olarak farklı alanlarda da kullanılmaya başlamıştır. Özellikle,

NVIDIA’nın CUDA paralel programlama platformunu geliştiricilere sunmasıyla

birlikte GPU kullanımı görüntü işleme gibi büyük hesaplama gerektiren

uygulamaların paralelleştirilmesinde büyük kolaylıklar sağlamıştır.

Bu tez kapsamında da NVIDIA CUDA kullanımı ile GPU üzerinde paralel

programlama geliştirme incelenmiş ve görüntü işleme uygulamalarının en çok

kullanılan yöntemlerinden histogram hesaplama ve eşitleme algoritmaları CUDA

programlama yardımı ile paralelleştirilerek algoritmaların seri ve paralel

versiyonları iki farklı CPU ve GPU üzerinde çalıştırılmış, performans

karşılaştırmaları yapılmıştır.

Anahtar sözcükler: CUDA, histogram, histogram eşitleme, paralel

programlama, CPU, GPU.

viii

ix

ABSTRACT

PARALLEL PROGRAMMING

 WİTH CUDA

KARAGÖZOĞLU, Pelin

MSc in Computer Eng.

Supervisor: Prof. Dr. Aylin KANTARCI

April 2018, 40 pages

Recently, GPUs show great improvements and they are being used in

different areas as a CPU coprocessor. Especially, after that NVIDIA’s CUDA

parallel programming platform is presented to developers, the GPU usage

provided great convenience in parallelizing application such as image processing

which requires large computation.

In this thesis, parallel programming development on GPU with CUDA was

investigated. Also histogram computation and equalization, the most commonly

used methods of image processing application, have been parallelized by using

CUDA parallel programming. In addition, to compare the execution times of

performance, both serial and parallel versions of these algorithms were executed

on two different CPU and GPUs.

Keywords: CUDA, histogram, histogram equalization, parallel

programming, CPU, GPU.

x

xi

TEŞEKKÜR

 Tez çalışması boyunca önerileri, rehberliği, değerli yorumları ve

destekleri için danışmanım Prof. Dr. Aylin Kantarcı’ya teşekkürlerimi sunarım.

Son olarak sevgili aileme her daim bana verdikleri destek ve sabır için en içten

dileklerimle teşekkür ederim.

xii

xiii

İÇİNDEKİLER

Sayfa

ÖZET ... vii

ABSTRACT ... ix

TEŞEKKÜR ... xi

ŞEKİLLER DİZİNİ ... xv

ÇİZELGELER DİZİNİ .. xvii

SİMGELER VE KISALTMALAR DİZİNİ ... xviii

1. GİRİŞ ... 1

2. GPU MİMARİSİ ... 3

2.1 Genel GPU Mimarisi ... 3

2.2 Heterojen Hesaplama ... 8

2.3 Fermi ve Maxwell Mimarisi .. 11

2.3.1 Fermi mimarisi ... 11

2.3.2 Maxwell mimarisi ... 12

3. CPU VE GPU’DA GÖRÜNTÜ İŞLEME ... 15

3.1 Histogram Hesaplama ve Eşitleme .. 15

3.2 CPU’da Histogram Hesaplama ve Eşitleme .. 16

3.3 GPU’da Histogram Hesaplama ve Eşitleme .. 19

3.4. GPU Üzerinde Paylaşılan Bellek Ve Global Bellek Kullanımı 21

3.4.1 Histogram hesaplamada paylaşılan bellek kullanımı 21

xiv

İÇİNDEKİLER (devam)

Sayfa

3.4.2 Histogram hesaplamada global bellek kullanımı .. 24

4. DENEYLER VE SONUÇLAR ... 26

4.1 Test Ortamı .. 26

4.2 CPU ve GPU Üzerinde Hesaplama Hız Karşılaştırmaları 29

4.2.1 Global ve paylaşılan bellek hızlarının karşılaştırılması 33

5. SONUÇ .. 36

KAYNAKLAR DİZİNİ ... 37

ÖZGEÇMİŞ ... 40

xv

ŞEKİLLER DİZİNİ

Şekil Sayfa

2.1 CPU’nun donanımsal mimari karşılaştırması .. 3

2.2 SM mimarisi .. 4

2.3 İş parçacıkları, blok’lar ve grid arasındaki ilişki ... 5

2.4 GPU içerisindeki bellekler ... 7

2.5 CPU ve GPU’nun birleşimi ... 8

2.6 Heterojen Programlama modeli ... 10

2.7 Fermi Mimarisi .. 12

2.8 Maxwell SMM Mimarisi ... 13

3.1 a) Orijinal resim ... 15

3.1 b) Orijinal resme histogram eşitletme uygulandıktan sonra 15

3.2 Seri histogram hesaplama algoritması ... 16

3.3 CPU’da RGB renk resim için kontrast iyileştirme fonksiyonu 17

3.4 CPU’da görüntü histogram eşitleme fonksiyonu ... 18

3.5 Kümülatif dağılım fonksiyonu hesaplama formülü 18

3.6 Parlaklık değeri hesaplama formülü .. 18

3.7 GPU’da kontrast iyileştirme fonksiyonu ... 20

3.8 GPU’da paylaşılan bellek kullanımı ile histogram hesaplama 23

3.9 GPU’da bir resmin paralel hesaplama ile histogramını hesaplama

aşamaları .. 23

3.10 GPU’da global bellek kullanımı ile histogram hesaplama 24

xvi

ŞEKİLLER DİZİNİ (devam)

Şekil Sayfa

3.11 GPU’da kümülatif dağılım fonksiyonun hesaplanması 25

3.12 GPU’da görüntü histogramını eşitleme fonksiyonu 25

4.1 RGB renkte orjinal görüntü .. 27

4.2 RGB renkte histogram eşitleme uygulanan görüntü 28

4.3 Gri ölçekli orjinal görüntü .. 28

4.4 Gri ölçekli histogram eşitleme uygulanan görüntü 29

4.5 Uygulamanın örnek sonuç ekranı ... 29

4.6 Intel Core i7 – 2.00GHz ve Fermi Mimarisi ile gri ölçekli resimlerde

elde edilen GPU ve CPU sonuçlarının karşılaştırması 30

4.7 Intel Core i7 – 2.00GHz ve Fermi Mimarisi ile RGB renkte resimlerde elde

edilen GPU ve CPU sonuçlarının karşılaştırması .. 31

4.8 Intel Core i7 – 2.60GHz ve Maxwell Mimarisi ile gri ölçekli resimlerde elde

edilen GPU ve CPU sonuçlarının karşılaştırması .. 32

4.9 Intel Core i7 – 2.60GHz ve Maxwell Mimarisi ile RGB renkte resimlerde

elde edilen GPU ve CPU sonuçlarının karşılaştırması 32

4.10 Fermi ve Maxwell Mimarisi ile Gri ölçekli resimlerde elde edilen CPU

sonuçlarının karşılaştırması .. 33

4.11 Intel Core i7 – 2.60GHz ve 2.00Ghz ile Gri ölçekli resimlerde elde edilen
GPU sonuçlarının karşılaştırması ... 33

4.12 Maxwell ve Fermi Mimarilerinde global bellek, paylaşılan bellek kullanımı

ve 2.60Ghz -2.00Ghz CPU sürelerinin karşılaştırılması 35

xvii

ÇİZELGELER DİZİNİ

Çizelge Sayfa

2.1 Kullanılan Fermi ve Maxwell Mimarisi’nin özellikleri 14

4.1 Tez test platformları ve araçları ... 26

4.2 Intel Core i7-2.00GHz ve Fermi Mimarisi ile elde edilen sonuçlar 30

4.3 Intel Core i7–2.60GHz ve Maxwell Mimarisi ile elde edilen sonuçlar 31

4.4 Histogram hesaplama yürütülme süreleri .. 34

4.5 Histogram hesaplama yürütülme süreleri .. 34

xviii

SİMGELER VE KISALTMALAR DİZİNİ

Kısaltmalar

ALU Aritmetik mantık birimi

CDF Kümülatif dağıtım fonksiyonu

CPU Merkezi işlem birimi

CUDA Birleştirilmiş hesaplama aygıt mimarisi

DRAM Dinamik rastgele erişim belleği

FPU Kayan nokta birimi

GPU Grafik işlem birim

JPEG Birleşik fotoğraf uzmanları grubu

LD/ST Yükleme/depolama birimi

PCI Çevresel bileşen bağlantısı

PGM Taşınabilir gri harita dosya formatı

PPM Taşınabilir imge harita dosya formatı

RGB Kırmızı, yeşil, mavi

SFU Özel fonksiyon birimi

SM Akış işlemcisi

SMM Akış çok işlemcisi

SIMT Tek talimat çoklu iş parçacığı

xix

SİMGELER VE KISALTMALAR DİZİNİ (devam)

Kısaltmalar

YUV Luminance (siyah-beyaz), chrominance1 (mavi),

chrominance2 (kırmızı)

1

1. GİRİŞ

Günümüzde GPU’lar bilgisayar sistemleri için vazgeçilmez birimler haline

gelmiştir. Bunun nedeni CPU’ların tek bir görev için hızlı yanıt süresi sağlayan,

az işlemci çekirdeğine sahip olarak tasarlanmış olmasıdır. Özellikle görüntü

işleme gibi yoğun hesaplama ve paralellik gerektiren durumlarda CPU’nun

performansı yetersiz kalmaktadır. GPU’ların ise, içerisindeki yüzlerce çekirdeği

kullanması ile birlikte paralel bir şekilde grafiksel ve büyük hesaplamaları kolayca

yapabilme kabiliyetine sahip olması ve temel görüntü işlemlerini yerine getiren

donanımlar içermesi, problemlerin çözümünde büyük kolaylık sağlamıştır (Lee et

al., 2010).

GPU kullanımına olan ihtiyacın artmasıyla birlikte, NVIDIA tarafından

2006 yılında, paralel programlama mimarisi ve platformu olan birleştirilmiş

hesaplama cihaz mimarisi CUDA piyasaya sürülmüştür. CUDA, CPU ve

GPU’nun birlikte çalışmasını destekleyen bir paralel programlama mimarisidir.

CUDA ile GPU kullanımı çok daha verimli ve kolay hale gelmiştir (Yang et al.,

2008).

Bu tez çalışması kapsamında NVIDIA CUDA mimarisi kullanılarak,

görüntü işlemenin en temel fonksiyonları olan ve görüntülerin kontrastının

arttırılmasını sağlayan histogram hesaplama ve eşitleme algoritmaları

paralelleştirilmiştir. GPU üzerinde gri tonlamalı ve RGB renkli resimler

kullanılarak deneyler yapılmış ve bu sayede GPU’ların nasıl programlandığı

hakkında deneyim sahibi olunması amaçlanmıştır. Histogram hesaplama ve

eşitleme algoritmalarının hem seri hem de paralel kodu geliştirilerek CPU ve GPU

üzerinde performans ölçümleri yapılmıştır. Geliştirilen algoritmalar iki farklı GPU

hesaplama mimarisi olan Fermi ve Maxwell üzerinde denenmiş ve farklı

mimarilerin performansa etkisi incelenmiştir. Son olarak da çok iş parçacıklı

ortamlarda karşımıza çıkan senkronizasyon probleminin GPU’lar üzerinde nasıl

ele alındığı incelenmiştir.

Bu tez çalışmasının diğer bölümlerinde sırasıyla, farklı GPU mimarileri ve

CUDA mimarisi, histogram hesaplama ve eşitleme algoritmaları üzerinde yapılan

paralelleştirme ve paralel programlamada yaygın bir problem olan

senkronizasyonun GPU’lar üzerinde işlem yapılırken nasıl çözüldüğü hakkında

bilgilere yer verilmiştir.

2

Tezin deney ve sonuçlar bölümünde CPU ve GPU üzerinde yapılan

deneylerden çıkan sonuçlar gösterilmiş ve yorumlanmıştır. Son olarak çalışmanın

sonuçları ve gelecekte yapılabilecek çalışmalarla ilgili öneri sunulmuştur.

3

2. GPU MİMARİSİ

İlk GPU NVIDIA tarafından 1999 yılında üretilmiştir ve 2003 yılından

itibaren de grafiksel işlemlerin dışında yüksek derecede paralellik gerektiren

görüntü işleme vb. uygulamalarda, yüksek performans ve verimlilik elde etmek

için kullanılmaya başlanmıştır. Önceleri uzun yürütme sürelerine sahip olan

görüntü uygulamaları üzerinde çalışma yapılması büyük problem oluştururken,

şimdilerde GPU’nun yüzlerce paralel işlemci çekirdeğine sahip olması ile bu

problem çözüme kavuşmuştur (NVIDIA, 2007).

Şekil 2.1’ de GPU ve CPU mimarileri gösterilmektedir. Bu mimarilere

bakıldığında, CPU mimarisinin çok az sayıda matematiksel ve mantıksal işlemleri

destekleyen Aritmetik Mantık Birimi’nden (ALU) oluşurken büyük oranda

kontrol ve önbellek alanlarına sahip olduğu, GPU’nun ise çok sayıda küçük

ALU’ya sahip olduğu ve önbellek alanlarına daha az yer ayırdığı görülmektedir.

GPU, bu sayede bellek erişimlerinden kaynaklanan gecikmelere maruz kalmadan

çok daha fazla işlemci çekirdeğini kullanarak hızlı bir şekilde paralel

hesaplamaları yapabilmektedir (NVIDIA, 2007).

Şekil 2.1 CPU’nun donanımsal mimari karşılaştırması (NVIDIA, 2007)

GPU’nun paralel hesaplama yeteneğinden doğru ve verimli bir şekilde

yararlanılabilmesinin en önemli gereksinimlerinden biri de kullanılan GPU ve

CUDA mimarisi hakkında gerekli bazı temel bilgilere sahip olunmasıdır.

2.1 Genel GPU Mimarisi

GPU mimarisinde birden fazla bağımsız iş parçacığı (thread) tek bir talimat

(SIMT) kullanılarak aynı anda yürütülebilme kabiliyetine sahiptir. Her GPU

4

ölçeklenebilir sayıda akış işlemcisinden (SMs) oluşur. GPU içerisinde onlarca SM

vardır, bu sayı GPU mimarisine ve versiyonuna göre değişiklik gösterir. Genel

GPU mimarisinde, her SM’in içerisinde akış işlemcileri (SP) bulunur. SM’ler SP

üzerinde çalışan yüzlerce iş parçacığının aynı anda yürütülmesini sağlar. Her SM

aynı anda birden fazla iş parçacığı bloğunu tutabilir ve her biri paylaşılan belleğe

ve kayıtçıya (register) sahiptir. Paylaşılan bellek ve kayıtçının boyutu küçük, fakat

bu belleklere erişim çok hızlıdır. Bu kaynaklar aynı SM üzerinde bulunan iş

parçacıkları arasında bölünmektedir. (Clua and Zamith, 2015).

SM’ler CUDA çekirdeklerinden, paylaşılan bellek, kayıtçı, yükleme ve

saklama birimleri, sin(), cos() ve exp() gibi matematiksel işlemleri yapan özel

fonksiyon birimi (SFU) ve çözgü zamanlayıcısı (warp schedular)’dan oluşur.

Şekil 2.2’ deki örnekte bir SM mimarisi gösterilmektedir.

Şekil 2.2 SM mimarisi (Cheng et al., 2014)

5

SM içerisindeki iş parçacıklarının birleşmesi ile oluşan gruba iş parçacığı

blok’ları adı verilir. Bir blok’un içerisinde ki iş parçacıklarının sayısı sınırlıdır. Bu

sayı mimarilere göre değişiklik gösterebilir (Clua and Zamith, 2015). İş parçacığı

blok’larının birleşimi ile oluşan blok gruplarına ise grid adı verilir. Şekil 2.3’ de

bu grupların birleşmesiyle oluşan iş parçacığı, blok ve grid yapısı

gösterilmektedir.

Şekil 2.3 İş parçacıkları, blok’lar ve grid arasındaki ilişki (New York University., 2017)

Her iş parçacığının ve blok’un kendilerine ait birer ID ’si vardır. Bu ID’ler,

threadIdx, blockIdx’dir, bir boyutlu, iki boyutlu ve üç boyutlu olabilir. CUDA

blok’ları ve grid’leri üç boyutta düzenler. Her bir boyuta vektör yapısının x, y, z

bileşenleri ile erişilebilir. (Cheng et al., 2014)

 ThreadIdx, iş parçacığının blok içerisindeki yerini belirtir.

 BlockIdx, blok’un grid içerisindeki yerini belirtir.

6

 BlockDim, bir blok’un boyutunu ve içerisinde çalışan iş parçacığı

sayısını belirtir, bu boyut içerisindeki iş parçacığı sayısına göre

değişir.

 GridDim, bir grid’in boyutunu ve blok sayısını belirtir. (Cheng et

al., 2014)

Blok’lar warp schedular tarafından her biri 32 adet iş parçacığından oluşan

warp’a bölünürler. Warp içerisindeki tüm iş parçacıkları aynı kodu yürütür ve bir

warp içerisindeki her iş parçacığı kendi komut sayacına, durum kayıtçısına ve

bağımsız yürütme yoluna sahiptir. Warp’lar dağıtıcı biriminin (Dispatch Unit)

temelidir ve farklı iş parçacığı blok’larından oluşan iki warp eş zamanlı

çalışabilme kabiliyetine sahiptir. SM üzerinde bir çok warp programlanabilir fakat

SM’in kaynak kullana bilirliğine bağlı olarak tüm warp’lar aktif olmaz (NVIDIA,

2007; Paravecino, 2017).

Bir blok’daki tüm iş parçacıkları aynı SM üzerinde çalışır, bu nedenle aynı

blok’da bulunan iş parçacıkları birbirleriyle işbirliği halindedir ve paylaşılan

bellek aracılığı ile iletişim sağlarlar. Blok’lar ise birbirleriyle global belleği

kullanarak iletişimi sağlarlar. (Paravecino, 2017).

GPU farklı belleklerden oluşur. Bu belleklerin hiyerarşik gösterimi şekil

2.4’de gösterilmektedir. Sırasıyla bu bellekler; kayıtçı (register), paylaşılan bellek

(shared memory), yerel bellek (local memory), global bellek (global memory),

sabit bellek (constant memory) ve doku belleği (texture memory)’dir.

7

Şekil 2.4 GPU içerisindeki bellekler (Ding., 2014)

 Kayıtçı: En hızlı bellek alanıdır ve her iş parçacığı için özeldir. Kernel bu

bellek alanını sık erişilen iş parçacığına özel değişkenleri tutmak için

kullanır. Kernel’in yürütülmesi tamamlandıktan sonra buradaki

değişkenlere tekrardan ulaşılamaz (Cheng et al., 2014).

 Paylaşılan Bellek: Her SM için ayrılmıştır. Sadece aynı blok’da ki iş

parçacıkları bu belleğe erişebilir. Paylaşılan belleğe erişim kayıtçı bellek

alanına erişim kadar hızlıdır. Bu belleğin kullanımı ile global bellek

erişiminden kaçınılabilir, paylaşılan belleğe erişim 4 saat döngüsü

sürerken, genel belleğe erişim 400-600 saat döngüsü sürer. Bir blok

bittiğinde paylaşılan bellek alanı silinir. (Clua and Zamith, 2015; Yang

et al., 2008).

8

 Yerel Bellek: Bu belleğe sadece ait olduğu iş parçacığı tarafından

ulaşılabilir. Buradaki veriler iş parçacığının çalışması sırasında saklanıp

sonrasında silinir. Belleğe erişim, yüksek gecikme ve düşük bant

genişliğindedir (Cheng et al., 2014; Clua and Zamith, 2015).

 Global Bellek: GPU’nun en çok kullanılan belleğidir, tüm iş parçacıkları

tarafından bu belleğe erişim vardır. Yüksek gecikme süresine ve düşük

bant genişliğine sahiptir. Yaşam süresi uygulamanın ömrü kadardır

(Cheng et al., 2014; Clua and Zamith, 2015).

 Sabit Bellek: 64KB’lik küçük bir bellektir, sadece okuma işlemlerini

gerçekleştirir. Aynı warp içerisindeki tüm iş parçacıklarının aynı bellek

adresinden okuma yaptığı durumlarda en iyi performansı sağlar (Cheng

et al., 2014; Clua and Zamith, 2015).

 Doku Belleği: Bir çeşit global bellektir. Sadece okuma işlemlerini

gerçekleştirir. Önbellektedir, doku ve veri yumuşatılması gibi grafiksel

işlemlerde kullanılır (Cheng et al., 2014; Clua and Zamith, 2015).

2.2 Heterojen Hesaplama

GPU tek başına çalışan bir işlemci değildir, CPU’nun yardımcı işlemcisi

olarak çalışmaktadır. Hem CPU’nun hem de GPU’nun farklı program türleri için

avantajları vardır. Bu nedenle, birbirlerini tamamlayıcı özelliklere sahiptirler. En

iyi performansa birlikte kullanılmalarıyla ulaşılır. Bu kullanıma heterojen

hesaplama adı verilmiştir. Şekil 2.5’de görüldüğü gibi CPU ve GPU donanımları

arasındaki bağlantı PCI-Express veri yolu ile sağlanır. Bu hesaplamada, CPU ana

bilgisayar (host), GPU ise aygıt (device) olarak adlandırılır (Cheng et al., 2014).

Şekil 2.5 CPU ve GPU’nun birleşimi (Cheng et al., 2014)

9

CPU ve GPU’nun heterojen bir şekilde kullanımında, uygulama CPU

tarafından başlatılır. CPU, ortamın, kodların ve verilerin yönetiminden

sorumludur. Veri büyüklüğü küçük ve düşük seviye paralellik gerektiren seri

algoritmalar yürütülür. GPU’lar ise, hesaplamanın yoğun olduğu ve büyük oranda

paralellik gerektiren bölümlerin hızlandırılması için kullanılır. Bu durumda,

GPU’lar donanım hızlandırıcısı olarak düşünülebilir (Cheng et al., 2014).

Heterojen programlamanın kullanımını kolaylaştıran en önemli etkenlerden

biri de NVIDIA’nın GPU’larda ki paralel hesaplamayı kullanan CUDA

programlama modelini çıkartmasıdır. CUDA programı ana makine kodu (host) ve

cihaz kodundan (device) oluşur. Şekil 2.6’da heterojen programlama modelinde

bir kernel fonksiyonunu çağırdığımızda sırasıyla yapılan işlemler

gösterilmektedir. Şekilde görüldüğü gibi derleme sırasında device kodu host

kodundan ayrılır. GPU üzerinde çalışan paralel koda çekirdek (kernel) adı

verilmiştir ve C programlama kullanılarak yazılabilir, kernel kodu CPU tarafından

çağırılır ve kernel’in çağrılmasının ardından device çalışmaya başlar. Kernel GPU

üzerinde yürütülürken programın geriye kalan C kodları CPU üzerinde çalıştırılır.

Device’ın kernel fonksiyonunu çalıştırmasını bitirmesinin ardından kontrol tekrar

CPU’ya geçer ve CPU yeni kernel fonksiyonunu çağırır (NVIDIA, 2018; Cheng

et al., 2014).

10

Şekil 2.6 Heterojen programlama modeli (NVIDIA, 2018)

Kernel’ler bir dizi iş parçacığı tarafından çalıştırılır ve her biri aynı kodu

paralel olarak çalıştırır. İş parçacığı bir döngüdeki bir yineleme gibi düşünülebilir

(Cheng et al., 2014). Heterojen hesaplamada iş akışı genel olarak aşağıdaki

gibidir;

 İlk olarak program CPU’daki verilerin hazırlanmasıyla başlar.

 Veriler CPU’dan GPU’nun genel belleğine kopyalanır.

 İş parçacıkları global bellekte ki verileri okuyarak yerel belleklerine

yazarlar. GPU, bu veriler üzerinde çalışıp, hesaplamaları tamamlar.

 Son olarak sonuç global belleğe geri yazılır. (Cheng et al., 2014; Eklund et

al., 2013)

11

2.3 Fermi ve Maxwell Mimarisi

Bu tez kapsamında iki farklı GPU mimarisi kullanılmıştır bunlar Fermi ve

Maxwell Mimarileri’dir. NVIDIA, GPU donanım versiyonlarını tanımlamak için

hesaplama kapasitesi terimini kullanmaktadır. Bu çalışmada kullanılan

mimarilerden Fermi küçük hesaplama kapasitesine (2.x), Maxwell ise yüksek

hesaplama kapasitesine (5.x) sahiptir.

2.3.1 Fermi mimarisi

Fermi Mimarisi 16 SM’den oluşur ve her SM’de 32 CUDA çekirdeği olacak

şekilde toplam 512 hızlandırıcı çekirdek SM üzerine yerleştirilmiştir. Her bir

CUDA çekirdeği ardışık olarak dizilmiş ALU’ya ve FPU’ya sahiptir. Bir SM’de

16 yük/depo (load/store) birimi vardır, bu birim bir warp içerisindeki iş parçacığı

sayısının yarısı kadar yani 16 iş parçacığı için kaynak ve hedef adreslerinin

hesaplanmasını sağlar. Ayrıca SM’de 4 SFU bulunur, SFU’lar sinüs, cosinüs ve

karekök gibi talimatları yönetirler (Cheng et al., 2014).

Aşağıda şekil 2.7’de görüldüğü gibi bu mimaride SM’ler L2 önbelliği

etrafında konumlandırılmışlardır ve tüm SM’ler bu belleği paylaşırlar. Ayrıca her

SM’in 2 adet çözgü zamanlayıcısı (warp schedular) ve 2 dağıtıcı birimi

(dispatcher unit), paylaşılan belleği, 64 KB’lik kayıtçısı ve L1 önbelleği vardır.

Zamanlayıcı ve dağıtıcı birimler SM’e bir iş parçacığı bloğu atandığında 32’lik

warp’lara bölünür ve çözgü zamanlayıcıları 2 warp seçer ve her warp’tan bir

talimatı 16 CUDA çekirdeğine, yük/depo birimine ve 4SFU’ya bildirir. Yine

şekilde 2.7’de görüldüğü gibi bu mimaride 1 GigaThread motoru (engine) ve

toplam 6GB’lık global bellek desteği sağlayan 6 adet DRAM bulunmaktadır.

GigaThread motoru iş parçacığı bloklarını SM’deki warp zamanlayıcılarına

dağıtmada görev alır (Cheng et al., 2014).

12

Şekil 2.7: Fermi Mimarisi (Cheng et al., 2014)

2.3.2 Maxwell mimarisi

Maxwell Mimarisi’nde önceki mimarilere göre güç verimliliğini daha çok

arttırmak için yeni bir SM tasarımı yapılmıştır. Diğer mimarilere göre her SM

daha az sayıda CUDA çekirdeğinden oluşur. Bu yeni SM mimarisi daha küçük

akış çok işlemcisi (SMM) olarak adlandırılmıştır.

Şekil 2.7’de görüldüğü gibi her SMM yapısı 4 özdeş alt yapıdan oluşur. Her

birinde 32 çekirdek, 8LD/ST birimi, 8SFU ve 16K kayıtçı bulunur ve SMM

başına düşen CUDA çekirdeği 128’dir, her saat dögüsünde iki talimat gönderen 4

warp zamanlayıcısı, 8 doku birimi (texture unit) ve 8 talimat dağıtıcı birimden

oluşur. Bu mimarideki en önemli değişimlerden biri de bellek hiyerarşisidir.

Paylaşılan bellek için özel bir alan ayrılmıştır ve L1 önbelleği doku ön belleği ile

birleştirilmiştir. Diğer mimarilerde bu alan L1 önbelleği ve paylaşılan bellek

arasında bölünüyordu (Harris, 2014; Paravecino, 2017).

13

Şekil 2.8:Maxwell SMM Mimarisi (Clua and Zamith, 2015)

Çizelge 2.1’de tez çalışmasında kullanılan GPU mimarilerinin özellikleri

gösterilmiştir. Küçük hesaplama kapasitesine sahip mimarilerin farklı

versiyonlarında güncellemelere bağlı olarak bazı değişiklikler bulunmaktadır. Bu

nedenle yukarıda bahsedilen genel Fermi Mimarisi’ne göre kullanılan GPU

mimarisinde, örneğin; CUDA çekirdek sayısı farklılık göstermektedir.

14

Çizelge 2.1 Kullanılan Fermi ve Maxwell Mimarisi’nin özellikleri

 GeForce GT
540M (Fermi)

GeForce GTX
960M (Maxwell)

Cuda Çekirdeği 96 640

Bellek Hızı (Mhz) 900 2500

Bellek Arayüzü 128-bit DDR3 128-bit GDDR5

Bellek Bant Genişliği 28.8 80

CUDA Kapasite
Versiyonu

2.1 5.0

Toplam Global Bellek 2.0 Mbytes 4.0 Mbytes

L2 Cache Boyutu 131072 bytes 2097152 bytes

Toplam Sabit Bellek 65536 bytes 65536 bytes

Blok Başına Paylaşılan
Bellek Toplamı

49152 bytes

49152 bytes

Blok Başına Toplam
Kayıtçı Sayısı

32768 65536

Warp Boyutu 32 32

Her Bir Çok İşlemcili
Başına Maksimum İş

Parçacığı Sayısı

1536

2048

Her Blok Başına
Maksimum İş Parçacığı

Sayısı

1024 1024

Bir Bloğun Her
Boyutunun Maksimum

Büyüklüğü

1024 x 1024 x 64 1024 x 1024 x 64

Bir Grid’in Her
Boyutunun Maksimum

Büyüklüğü

65535 x 65535 x
65535

2147483647 x 65535
x 65535

Maksimum Bellek
Aralığı (pitch)

2147483647 bytes 2147483647 bytes

15

3. CPU VE GPU’DA GÖRÜNTÜ İŞLEME

Görüntü uygulamalarının genellikle büyük boyutta görüntüleri kullanması

ve hesaplama yoğunluğunun yüksek olması nedeniyle geleneksel görüntü işleme

yöntemleri istenilen performansı sağlayamamaktadır. Yüksek veri paralelliğinin

gerektiği bu durum için GPU kullanımı en ideal çözümlerden biridir (Zhang et al.,

2010).

Bu tez çalışmasında da görüntü işlemenin en temel fonksiyonlarından

histogram hesaplama ve eşitleme kullanılarak CPU üzerinde seri ve GPU üzerinde

paralel görüntü kontrastı iyileştirme programı geliştirilmiştir. Geliştirilen seri ve

paralel görüntü işleme programları 2 farklı işlemci üzerinde çalıştırılarak deney

sonuçları elde edilmiştir.

3.1 Histogram Hesaplama ve Eşitleme

Histogram hesaplama ve eşitleme görüntü işlemenin birçok alanında

kullanılan en temel fonksiyonlardandır. Histogram ile bir görüntüde farklı

yoğunluklardaki piksel sayısını elde ederiz. Histogram eşitleme ile de görüntülerin

histogramından elde ettiğimiz piksel yoğunluklarını kullanarak görüntü tonlarının

tüm görüntü boyunca eşitlenmesi ile kontrastın iyileştirilmesini sağlarız.

Histogram eşitleme birçok görüntü ve video işleme uygulamasında ön işleme

basamağı olarak kullanılır (Wawud et al., 2017). Şekil 3.1’de geliştirdiğimiz

görüntü işleme uygulaması ile yapılmış kontrast iyileştirme örneği

gösterilmektedir.

(a) (b)

Şekil 3.1 a) Orijinal resim, b) Orijinal resme histogram eşitletme uygulandıktan sonra

16

3.2 CPU’da Histogram Hesaplama ve Eşitleme

Bu tez çalışmasında seri algoritma kodlarının geliştirilmesi için C

programlama dili kullanılmıştır. Histogram bir dizi (array) olarak temsil edilir ve

histogram dizisi her bir öğesi bin olarak adlandırılan kutulardan birine karşılık

gelir ve bu bin’lerden her birine düşen piksel sayısını içerir. Her renk kanalı için

256 bin tanımlanır (Sakharnykh 2015; Milic et al. 2013). Bir görüntünün her

pikselinin 0 ile 255 arasında bir değere sahip olduğu varsayılır, piksel değeri bu

aralığa uyduğu zaman bin değeri bir arttırılır.

Seri histogram hesaplama, paralel histogram hesaplamaya göre oldukça

basittir. Şekil 3.2’de basit olarak kullandığımız seri histogram algoritması

gösterilmektedir. Kullandığımız bu algoritmada hist değeri sonuç histogramımızı

tutan bir dizidir, img değeri görüntü girdisidir, img_size görüntümüzün boyutunu

tutar, nbr_bin değeri ise renk kanalı için kullandığımız bin değerini tutar.

Şekil 3.2 Seri histogram hesaplama algoritması

Şekil 3.3’de seri olarak bir girdi görüntüsünün histogram eşitleme

fonksiyonu gösterilmektedir. Bu fonksiyon hem gri ölçekli görüntülerde hem de

RGB (kırmızı, yeşil, mavi) renk görüntülerde kullanılmıştır. Fakat, RGB renk

görüntüleri üç renk kanalından oluşmaktadır, ve eğer görüntüyü üç ayrı renk

kanalına bölerek her bir kanal için ayrı histogram eşitleme uygulanırsa doğru

sonuçlar elde edilemez. Bunun için renk bileşenlerini yoğunluk değerlerinden

ayıran bir renk uzayı kullanılmalıdır. Bu tez çalışmasında YUV renk uzayı

kullanımı tercih edilmiştir. YUV uzayının Y bileşeni rengin parlaklığını

belirlerken U ve V bileşenleri ise rengin doygunluğunu ve tonunu belirler.

17

Şekil 3.3.’de RGB renkli görüntü için kullandığımız kontrast iyileştirme

fonksiyonumuz gösterilmektedir. Burada ilk olarak giriş görüntümüzü RGB renk

uzayından YUV uzayına dönüştürülür, sonrasında Y bileşeninin histogramı

çıkarılır ve elde edilen Y bileşenin histogramı ile histogram eşitleme yapılır bu

işlem sonucunda yeni Y bileşenimiz ile U ve V bileşenleri birleştirilir. Son olarak

da YUV uzayından tekrar RGB uzayına dönüştürme yapılarak sonuç görüntümüz

elde edilir.

Şekil 3.3 CPU’da RGB renk resim için kontrast iyileştirme fonksiyonu

Şekil 3.4’de gösterilen histogram eşitleme fonksiyonumuzda önceden

hesaplanmış olan giriş görüntüsünün histogram değeri hist_in ile alınır ve bu

fonksiyon içerisinde elimizdeki girdi görüntüsünün histogramını kullanarak

görüntünün yeni parlaklık değerleri elde edilir.

18

Şekil 3.4 CPU’da görüntü histogram eşitleme fonksiyonu

Görüntünün yeni parlaklık deperinin elde edilmesi için öncelikle şekil

3.5’deki formülü kullanılarak histogramın kümülatif dağılım fonksiyonunu

hesaplarız.

Şekil 3.5 Kümülatif Dağılım Fonksiyonu Hesaplama Formülü (Gaura, 2016)

Kümülatif dağılım fonksiyon (cdf) değerinin hesaplanmasının ardından ise

yeni parlaklık değerimizi şekil 3.6.’de ki formülü kullanarak hesaplarız.

Şekil 3.6 Parlaklık Değeri Hesaplama Formülü (Gaura, 2016)

19

 Buradaki cdfmin değeri kümülatif dağılım fonksiyonun sıfır olmayan en

küçük değeridir. L değeri parlaklık seviyesinin sayısını (nbr_bin) belirtir. Son

olarak oluşturduğumuz arama tablosunda (lut) hesapladığımız yeni parlaklık

değerleri saklanır ve en son bu tabloya göre görüntü tekrardan güncellenerek

sonuç görüntümüz elde edilir.

3.3 GPU’da Histogram Hesaplama ve Eşitleme

GPU üzerinde çalıştırılacak olan paralel algoritma kodları geliştirilirken C

programlamanın yanında NVIDIA CUDA platformu kullanılmıştır. Paralel

kodlama yapılırken dikkat edilmesi gereken kısımlar seri kodlamaya göre çok

daha fazladır. Bu nedenle paralel algoritmaların implementasyonu seri

algoritmalara göre oldukça zordur. Bir paralel algoritma implementasyonunda

kullanılacak iş parçacığı sayısı, blok sayısı ve paylaşılan bellek kullanımı gibi

birçok konu göz önünde bulundurulmalıdır.

Şekil 3.7’de gri ölçekli görüntülerde kullandığımız GPU üzerinde

çalıştırılan kontrast iyileştirme fonksiyonu gösterilmektedir. Buradaki

fonksiyonun aynısı RGB renk görüntüler içinde aynı şekilde uygulanır fakat

bölüm 3.2’de anlatılan CPU üzerinde kontrast iyileştirmede kullanılan YUV

uzayına dönüştürme aynı şekilde burada da yapılır ve Y bileşeni üzerinden

histogram hesaplama ve eşitleme işlemleri uygulanır. Şekil 3.7’de ki GPU

üzerinde CUDA C ile kontrast iyileştirme algoritmamızın implementasyonu

yapılırken şu adımlar izlenilmiştir; öncelikle aygıt tarafında paralel olarak

yürütülecek kernel fonksiyonlarımız başlatılmadan önce ana makina (host)’dan

aygıta (device) kullanılacak girdi verileri kopyalanır. Bu işlem için CUDA’nın

cudaMemcpy() fonksiyonunu kullanılır. Sonrasında C programlamada kullanılan

memset() fonksiyonu ile aynı işleve sahip olan cudaMemset() ile cdf ve

histogram’a 0 değerini veririz. Ardından kernel fonksiyonları çağırılmadan önce

yürütülme konfigürasyonları yaparak, GPU’da iş parçacıklarının nasıl

çalıştırılacağını belirleriz.

<<<blok sayısı , iş parçacığı sayısı>>> kernel fonksiyonlarının çağrılma

şeklidir, buradaki ilk değer grid içerisinde başlatılacak blok sayısını, ikinci değer

ise her bir blok içerisindeki iş parçacığı sayısını belirtir. Bu tez çalışmasında iş

parçacığı ve blok sayıları belirlenirken blok başına 256 iş parçacığı kullanılmıştır

bunun nedeni histogram hesaplamada bin değerinin 256 olmasıdır. İş parçacığı,

blok ve grid sayılarının uygun olarak verilmesi büyük öneme sahiptir, aksi

durumda uygulama doğru sonuçlar vermemektedir. Bu işlemlerin ardından

20

kernellerin çalışması bittiğinde son olarak cudaMemcpy() ile çıkış verileri

aygıttan ana makinaya tekrardan kopyalanır.

Şekil 3.7 GPU’da Kontrast İyileştirme Fonksiyonu

21

3.4. GPU Üzerinde Paylaşılan Bellek Ve Global Bellek Kullanımı

Bölüm 2.1’de bahsedildiği gibi paylaşılan bellek SM’de bulunan en hızlı

belleklerdendir erişim gecikmesi çok düşüktür (4 saat çevrimi kadar) ve yüksek

bant genişliğine sahiptir. Global bellek ise GPU’nun ana ve en çok kullanılan

belleğidir. Bu belleğe erişim gecikmesi çok daha yüksektir (400-600 saat

çevrimi). Paylaşılan belleğin ömrü iş parçacığı bloğu kadardır ve sadece aynı blok

içerisindeki iş parçacıkları ulaşabilirken, global belleğin ömrü uygulamanın ömrü

kadardır ve tüm çekirdeklerin (kernel) iş parçacıkları tarafından erişilebilir. Global

belleğe erişimin olabildiğince az yapılması istenir, CUDA programlamada aynı

blok içerisindeki iş parçacıkları tarafından birden fazla defa global bellekten

çekilmiş bir veriye erişilmesi gereken durumlarda aynı verilere yeniden global

bellekten erişilmesindense veriler paylaşılan belleğe kopyalanarak kullanılır.

Böylece uzun gecikme süresinden kaçınılır (Nickolls et al., 2008;Cheng, 2014).

Bu tez çalışmasında da GPU üzerinde histogram hesaplama yapılırken hem

global bellek hem de paylaşılan bellek kullanılmış ve performansları

incelenmiştir.

3.4.1 Histogram hesaplamada paylaşılan bellek kullanımı

Paylaşılan bellek ile histogram hesaplama yapılırken öncelikle her bloğun

histogramını tutmak için paylaşılan arabellek alanı ayrılır. Paylaşılan bellek

dizisinde ki her bir eleman değeri için 0 verilir. Bu işlem sonrasındaki adımda

paylaşılan bellekten değerler okunup değiştirileceği için bir bloktaki tüm iş

parçacığı için işlemin tamamlandığından emin olunması gerekir. Bunun için

_syncthreads() çağrısını kullanırız.

Senkronizasyon çağrısının kullanım nedeni iş parçacıkları arasında veri

paylaşımı yapıldığı zamanlarda yarış koşulları (race condition) meydana

gelmesidir. Yarış koşullarının oluşma nedeni bir blok içerisindeki iş

parçacıklarının mantıksal olarak paralel çalışmasına rağmen aslında tüm iş

parçacıklarının fiziksel olarak aynı anda çalıştırılamamalarıdır. Paylaşılan bellek

aynı anda erişilebilen eşit boyutlu 32 bellek modülüne (bank) ayrılır. 32’ye

bölünme nedeni bir warp içerisinde 32 iş parçacığı bulunmasıdır.

Bir bloktaki iş parçacıkları aynı paylaşılan bellek adresine erişebilir. Ortaya

çıkan bu durum bellek konumlarında tanımlanmamış davranışlara sebep olabilir.

İş parçacıklarının düzgün bir şekilde çalışmasını ve doğru sonuçların elde

22

edilmesini sağlamak için CUDA’nın sağladığı en basit senkronizasyon biçimi

olan ve bir çeşit bariyer görevi gören _syncthreads() kullanılır. Bir iş parçacığı bu

çağrıya ulaştığında bloğun içindeki tüm iş parçacıklarının aynı senkronizasyon

noktasına erişmesini bekler. _syncthreads()’ın aynı zamanda bir işlevi de aynı

blok içerisindeki iş parçacıkları arasındaki iletişimi koordine etmektir (Cheng et.

al., 2016; Gupta 2013).

Paylaşılan bellek ayrıldıktan sonra görüntünün her pikseli için uygun bin

değeri bulunduğunda ilgili sayaç arttırılır. Fakat paralel olarak histogram

hesaplama yapılırken aynı histogram bin değerini birden fazla iş parçacığı aynı

anda arttırmak isteyebilir buna engel olmak için CUDA’nın atomik

fonksiyonlarından atomicAdd() kullanılmıştır.

Atomik fonksiyonlar, bir iş parçacığının, diğer iş parçacıklarının müdahalesi

olmadan bellek işlemini kesintisiz bir şekilde gerçekleştirebildiği matematiksel

işlemlerdir. Yüzlerce iş parçacığı tarafından paylaşılan değerlerle çalışılması için

güvenli bir yoldur. Paralel iş parçacıkları arasındaki bellek erişiminin

senkronizasyonunu sağlayarak iş parçacıklarının birbirine müdahalesini

engellediğinden yarış koşulunun meydana gelmesini önler (Cheng et. al., 2016).

Şekil 3.8’de görüldüğü gibi histogram_priv değeri atomicAdd() fonksiyonu

ile başka bir iş parçacığı tarafından kesintiye uğramadan bellek adresindeki değeri

okuyup değeri bir arttırır ve sonucu tekrar bellek adresine yazar. Bloktaki tüm iş

parçacıkların aynı işlemi bitirdiğinden emin olunabilmesi için tekrardan

_syncthread() fonksiyonu kullanılır. Tüm bu işlemlerin sonunda paylaşılan

bellekteki sonuç değerleri global belleğe kopyalanır.

23

Şekil 3.8 GPU’da paylaşılan bellek kullanımı ile histogram hesaplama

Şekil 3.9’ de paralel histogram algoritmasının bir görüntünün histogramını

hesaplama adımlarını şematik olarak göstermektedir.

Şekil 3.9 GPU’da bir resmin paralel hesaplama ile histogramını hesaplama aşamaları (Sakharnykh,
2015)

24

3.4.2 Histogram hesaplamada global bellek kullanımı

Şekil 3.10’de gösterilen global bellekte histogram hesaplama yapan kernel

fonksiyonu, seri histogram hesaplama fonksiyonu ile oldukça benzerdir. Buradaki

fonksiyonun seri versiyonundan farkı atomicAdd() kullanımıdır. Diğerinden farklı

olarak atomicAdd() kullanım nedeni ise bir önceki bölümde bahsedilen birden

fazla iş parçacığının aynı bin değerini arttırmak istemesiyle ortaya çıkacak

problemleri önlemek içindir.

Şekil 3.10 GPU’da global bellek kullanımı ile histogram hesaplama

Şekil 3.11 ‘ de histogram eşitleme de yeni renk değerinin hesaplanması için

kullanılan cdf hesaplama fonksiyonu gösterilmektedir. Bu fonksiyonda daha

önceden elde ettiği görüntünün histogram dizisi içerisinde tarama yaparak doğru

değeri bulduğunda cdf’e yazar.

25

Şekil 3.11 GPU’da kümülatif dağılım fonksiyonun hesaplanması

Şekil 3.12’de gösterilen histogram eşitleme kernel fonksiyonumuzda

önceden hesaplanmış olan giriş görüntüsünün histogram değeri ve cdf değeri

alınarak, görüntünün yeni parlaklık değerleri elde edilir. Yeni değerin elde

edilmesi işleminde seri versiyonunda, şekil 3.6’da gösterilen aynı formül

kullanılır. Seri histogram eşitleme fonksiyonumuzdan tek farkı döngülerin yerine,

iş parçacıklarının koordinat değişkenlerinin kullanılmasıdır.

Şekil 3.12 GPU’da görüntü histogramını eşitleme fonksiyonu

26

4. DENEYLER VE SONUÇLAR

Bu tez çalışmasında görüntülerin kontrastını iyileştirmede kullanılan

histogram hesaplama ve eşitleme algoritmalarının paralel ve seri versiyonları

geliştirilerek CPU ve GPU üzerinde yürütülme performansları test edilerek

incelenmiştir. Aşağıdaki bölümlerde sırasıyla testlerimizi yaptığımız platformlar,

girdi görüntülerimiz, elde ettiğimiz sonuçlar ve analizlerimiz sunulmaktadır.

4.1 Test Ortamı

Çalışmamızda CUDA C’yi kullanarak GPU üzerinde paralel kod ve C

programlama ile CPU üzerinde seri kod derlemek için şekil 4.1’de gösterilmekte

olan araçlar ve platformlar kullanılarak geliştirme ve test ortamımız

hazırlanmıştır.

ASUS K53SJ

 Windows 10 işletim sistemi

 İşlemci; Intel Core i7 –

26300Q 2.00GHz

 Grafik Kartı; NVIDIA

GeForce GT 540M (Fermi

Mimarisi)

ASUS N552VW

 Windows 10 işletim sistemi

 İşlemci; Intel Core i7 –

6700HQ 2.60GHz

 Grafik Kartı; NVIDIA

GeForce GTX 940M

(Maxwell Mimarisi)

Kullanılan Araçlar:

 Visual Studio 2015

 NVIDIA Aygıt Sürücüsü

 CUDA Geliştirme Araçseti (CUDA Development Toolkit Version

8.0)

Çizelge 4.1 Tez Test Platformları ve Araçları

Tez çalışmasında deneyler çizelge 4.1’deki özelliklere sahip 2 farklı işlemci

ve grafik kartında yapılmıştır. Kullanılan grafik kartlarının mimarileri Fermi ve

Maxwell’dir. Bölüm 2.3 ‘de bahsedildiği gibi 2.1 hesaplama kapasitesine sahip

Fermi Mimarisi 16 SM’den oluşur, 16LD/ST birim, 64KB toplam önbelleği L1

önbelleği ve paylaşılan bellek tarafından kullanılır ve toplam 96 çekirdek içerir.

5.0 hesaplama kapasitesine sahip Maxwell Mimarisi ise SMM olarak adlandırılan

enerji verimliliğini büyük oranda arttıran farklı bir SM dizaynına sahiptir.

SMM’in geliştirilmiş alan verimliliği ile GPU başına düşen CUDA çekirdeği

27

Fermi Mimarisi’ne kıyasla önemli ölçüde yüksektir. Kullandığımız bu mimarinin

toplam çekirdek sayısı 640’dır. 32 LD/ST birimi, 32SFU ve Fermi’den farklı

olarak özel olarak ayrılmış 96 KB’lik paylaşılan bellek alanı vardır. (Harris, 2014)

Deneylerden elde edilen tüm sonuçlarda programımızın hem seri hem

paralel versiyonu için de kullandığımız iki farklı bilgisayarda ful şarjlı haldeyken

5’er kez çalıştırılmıştır. Her bir sonuç incelenerek en düşük ve yüksek değerler

çıkartıldıktan sonra geriye kalan 3 değerin ortalaması alınarak sonuç değerlerimiz

elde edilmiştir.

Histogram eşitleme yöntemi daha çok gri ölçekli sisli ve bulanık

görüntülerde iyi sonuç vermektedir fakat deneylerimizdeki amacın uygulamaların

performans sürelerini karşılaştırılması olması nedeniyle deneylerde kullanılacak

olan görüntü seçimi yapılırken tekdüze renklerden çok farklı renkleri içinde

bulunduran büyük boyutlu olmasına özen gösterilmiştir. Yapılan tüm deneyler

aynı görüntünün 3 farklı boyutu (534 x 356, 2136 x 1424 ve 4272 x 2848) için

denenmiştir. Kullanılan JPEG formatındaki RGB ve gri ölçekli görüntülerde RGB

renkteki, PPM gri ölçekli görüntü ise PGM formatına dönüştürülerek girdi olarak

kullanılmıştır. PPM ve PGM görüntü verilerinin kaydedilmesini sağlayan en

düşük görüntü formatlarıdır. Farklı uygulamalarda bu formatlarının kullanımı ile

görüntüler kolay bir şekilde okunabilir. Bu nedenle uygulamamızda bu

formatların kullanımı tercih edilmiştir.

Şekil 4.1 kullandığımız görüntünün RGB renkte ki orijinal halini

gösterilmektedir.

Şekil 4. 1 RGB renkte orjinal görüntü

28

Şekil 4.2 RGB renkteki orijinal resme histogram eşitleme uygulandıktan

sonra çıkan PPM formatındaki sonucun JPEG formatına dönüştürülmüş hali

gösterilmektedir.

Şekil 4. 2 RGB renkte histogram eşitleme uygulanan görüntü

Şekil 4.3’de deneyde kullanılan gri ölçekli orijinal resim ve şekil 4.4 ‘de

orijinal resme histogram eşitleme uygulandıktan sonra çıkan PGM formatındaki

sonucun JPEG formatına dönüştürülmüş hali gösterilmektedir.

Şekil 4. 3 Gri ölçekli orjinal görüntü

29

Şekil 4. 4 Gri ölçekli histogram eşitleme uygulanan görüntü

Şekil 4.5’de uygulamamızın CPU ve GPU üzerinde çalıştırılması ile elde

edilen sonuç ekranı gösterilmektedir.

Şekil 4. 5 Uygulamanın örnek sonuç ekranı

4.2 CPU ve GPU Üzerinde Hesaplama Hız Karşılaştırmaları

CPU için geliştirdiğimiz seri ve GPU için geliştirdiğimiz paralel kodlarımız

iki farklı işlemci ve grafik kartı üzerinde çalıştırılmış ve çizelge 4.2’de ve çizelge

4.3’de elde ettiğimiz tüm sonuçlar sunulmuştur. Çizelge 4.2’de gösterilen daha

düşük bir işlemci ve grafik kartı üzerinde elde edilen sonuçlara göre küçük

boyuttaki resimlerde CPU’nun az bir farkla olsa daha GPU’ya göre performansı

daha yüksek çıkmıştır. GPU üzerinde yapılan hesaplamalarda veri transferi için

gereken zamandan dolayı küçük boyutlu resimlerde çok fazla performansı artışı

30

elde edilememektedir. Buna ek olarak görüntü boyutu arttıkça GPU’nun CPU’ya

göre hesaplama performansında artış gözlenmektedir. Çizelge 4.2’de görüldüğü

gibi küçük boyutlu resimlerde CPU az bir farkla olsa da daha iyi performans

gösterirken, orta boyutlu resimde GPU performansının CPU’nun 2,8 katına kadar

çıktığı, büyük boyutlu resimlerde ise bu farkın 3,5 katına kadar çıktığı

görülmektedir.

Girdi Resim Boyutu GPU Süresi

(ms)

CPU Süresi

(ms)

Hızlanma

(kat sayısı)

534x356 (Gri Ölçekli)
5.40

4,76

0,88

534x356 (RGB Ölçekli) 7,72 13,60 1,76

2136x1424 (Gri Ölçekli) 26,94 75,48 2,80

2136x1424 (RGB Ölçekli) 66,10 210,55 3,18

4272x2848 (Gri Ölçekli) 88,40 297,84 3,37

4272x2848 (RGB Ölçekli) 231,79 819,23 3,53

Çizelge 4.2 Intel Core i7 – 2.00GHz ve Fermi Mimarisi ile elde edilen sonuçlar

Şekil 4.6 ve 4.7’da 2.00Ghz CPU ve Fermi Mimarisi’ne sahip GPU

üzerinde elde edilmiş sonuçları grafiksel olarak gösterilmektedir.

Şekil 4. 6 Intel Core i7 – 2.00GHz ve Fermi Mimarisi ile gri ölçekli resimlerde elde edilen GPU

ve CPU sonuçlarının karşılaştırması

31

Şekil 4. 7 Intel Core i7 – 2.00GHz ve Fermi Mimarisi ile RGB renkte resimlerde elde edilen GPU

ve CPU sonuçlarının karşılaştırması

Çizelge 4.3’de daha güçlü bir işlemci ve Maxwell Mimarisi ‘ne sahip grafik

kartından elde ettiğimiz sonuçlar gösterilmektedir. Çizelge 4.3’de görüldüğü gibi

küçük boyutlu resimlerde CPU az bir farkla olsa da daha iyi performans

gösterirken, orta boyutlu resimde GPU performansının CPU’nun 3,7 katına kadar

çıktığı, büyük boyutlu resimlerde ise bu farkın 4,5 katına kadar çıktığı

görülmektedir.

Girdi Resim Boyutu GPU

Süresi

(ms)

CPU

Süresi

(ms)

Hızlanma

(kat)

534x356 (Gri Ölçekli) 2.25 1,13 0,50

534x356 (RGB Ölçekli) 4,33 10,31 2,38

2136x1424 (Gri Ölçekli) 7,30 16,20 2,22

2136x1424 (RGB Ölçekli) 42,75 159,29 3,72

4272x2848 (Gri Ölçekli) 22,04 65,21 2,96

4272x2848 (RGB Ölçekli) 136,19 615,60 4,52

Çizelge 4.3 Intel Core i7 – 2.60GHz ve Maxwell Mimarisi ile elde edilen sonuçlar

Şekil 4.8 ve 4.9’da 2.60Ghz CPU ve Maxwell Mimarisi ‘ne sahip GPU

üzerinde elde edilmiş sonuçları grafiksel olarak gösterilmektedir.

32

Şekil 4. 8 Intel Core i7 – 2.60GHz ve Maxwell Mimarisi ile gri ölçekli resimlerde elde edilen

GPU ve CPU sonuçlarının karşılaştırması

Şekil 4. 9 Intel Core i7 – 2.60GHz ve Maxwell Mimarisi ile RGB renkte resimlerde elde edilen

GPU ve CPU sonuçlarının karşılaştırması

Şekil 4.10 2 farklı CPU üzerinde elde edilen sonuçların grafiksel olarak

karşılaştırması, şekil 4.11’ de ise 2 farklı GPU’dan elde edilen sonuçların grafiksel

olarak karşılaştırması görülmektedir. Şekil 4.11’ de Intel Core i7-2.60Hz ve

2.00Ghz işlemcilerin karşılaştırılması yapılmış ve 2.60Ghz işlemcinin

performansı gri ölçekli resimlerde 4,7 kata kadar hızlandığı görülmektedir. Şekil

4.11’de Fermi ve Maxwell Mimarisi ’ne sahip GPU sonuçları karşılaştırıldığında

4,6 kata kadar Maxwell’in performans artışı sağladığı görülmektedir.

33

Şekil 4. 10 Intel Core i7 – 2.60GHz ve 2.00Ghz ile Gri ölçekli resimlerde elde edilen CPU

sonuçlarının karşılaştırması

Şekil 4. 11 Fermi ve Maxwell Mimarisi ile Gri ölçekli resimlerde elde edilen GPU sonuçlarının

karşılaştırması

4.2.1 Global ve paylaşılan bellek hızlarının karşılaştırılması

Çizelge 4.4’de ve 4.5’de Fermi ve Maxwell Mimarileri’nde yapmış

olduğumuz histogram hesaplama işlemini CPU’da ve GPU üzerinde global bellek

ve paylaşılan bellek kullanımı ile elde edilen performans karşılaştırılmaları

gözükmektedir. Bu deneyde performans farklarının daha belirgin şekilde

incelenebilmesi için en büyük boyuttaki görüntü kullanılarak yürütülme sürelerini

hesaplanmıştır ve ana bellekten aygıt belleğine yapılan veri transfer süreleri

hesaba katılmamıştır. 2 farklı işlemci üzerinde yapılan deneylerden elde edilen

sonuçlara CPU’ya oranla GPU kullanımı ile büyük oranda performans artışı

sağlandığı görülmektedir. Çizelge 4.4’de Fermi Mimarisi üzerinde global bellek

ve paylaşılan bellek kullanımlarının performans hızları karşılaştırıldığında sonuç

değerlerinin arasında büyük oranda fark görülmemektedir. Paylaşılan bellek

34

gücünden tam olarak yararlanılabilmesi için verimli bir donanım gerekmektedir.

Bu donanım ihtiyacı Kepler ve sonraki mimari versiyonlarında karşılanmaktadır.

Kullanılan GPU’nun eski bir sürüm olan Fermi Mimari’si olmasından dolayı bu

deney sonucunda paylaşılan bellek kullanımından istenilen performans artışı elde

edilememiştir.

İşlemciler (ASUS K53SJ) Yürütülme Süresi (ms)

Intel Core i7 – 2.00GHz (CPU)

129,92

NVIDIA GeForce GT 540M (Fermi

GPU, Global Bellek)

17,12

NVIDIA GeForce GT 540M (Fermi

GPU, Paylaşılan Bellek)

18,53

Çizelge 4.4 Fermi Mimarisi’nde histogram hesaplama yürütülme süreleri

Çizelge 4.5’de Maxwell Mimarisi üzerinde global bellek ve paylaşılan

bellek kullanımlarının performans hızlarını karşılaştırdığımızda paylaşılan bellek

kullanımını global bellek kullanımına göre yaklaşık olarak 3 kat daha hızlı olduğu

görülmektedir. Global bellek CUDA bellekleri arasında en büyük ama aynı

zamanda en yavaş olan bellektir. Paylaşılan bellek ise global belleğe göre oldukça

küçüktür fakat çip üzerinde bulunduğundan dolayı bu belleğe erişim çok daha

hızlıdır. Paylaşılan bellek kullanımında bir blok içerisindeki global bellekten

çekilen verileri aynı blok içerisindeki diğer iş parçacıklarında kullanmak için bu

verileri paylaşılan belleğe koyulur. Böylece tekrar kullanmamız gerektiğinde

global bellekten yeniden bu verileri çekmek zorunda kalmayız (Harris, 2013). Bu

durumda global bellek yerine paylaşılan belleğin doğru bir şekilde kullanımı ile

global belleğin yoğun trafiğinden kaçınıp önemli ölçüde performans artışı

sağlanmaktadır.

İşlemciler (ASUS N552VW) Yürütülme Süresi (ms)

Intel Core i7 – 2.60GHz (CPU)

28,43

NVIDIA GeForce GTX 940M (Maxwell

GPU, Global Bellek)

7,22

NVIDIA GeForce GTX 940M (Maxwell

GPU, Paylaşılan Bellek)

2,41

Çizelge 4.5 Maxwell Mimarisi’nde histogram hesaplama yürütülme süreleri

35

Şekil 4.12’de 2.60Ghz ve 2.00Ghz CPU’da histogram hesaplama, Fermi ve

Maxwell Mimarisi’ne sahip 2 farklı GPU üzerinde histogram hesaplama da global

bellek ve paylaşılan bellek kullanımı ile elde edilen yürütülme sonuçları grafiksel

olarak gösterilmektedir.

Şekil 4. 12 Maxwell ve Fermi Mimarilerinde global bellek, paylaşılan bellek kullanımı ve 2.60Ghz

-2.00Ghz CPU sürelerinin karşılaştırılması

36

5. SONUÇ

Çalışmamızda görüntü işleme alanında kontrast iyileştirmede ve bir çok

uygulamanın ön basamağı olarak en çok kullanılan yöntemlerden histogram

eşitleme algoritması kullanılmıştır. Histogram eşitleme algoritmasının C

programlama ile seri ve CUDA paralel programlama ile paralel versiyonları

geliştirilerek 2 farklı GPU ve CPU üzerinde çalıştırılmış ve deney sonuçları

gözlemlenmiştir.

Yapılan tüm çalışmaların sonucunda uygun durumlarda GPU kullanımının

CPU’ya göre büyük oranda performans kazanımı sağladığı görülmüştür. CUDA

programlamanın GPU üzerinde çalışabilen paralel uygulamalar geliştirilmesine

sağladığı kolaylık ile büyük oranda paralel hesaplama gerektiren görüntü işleme

problemleri çözüme kavuşabilmektedir.

Bu tez çalışmasında ayrıca, GPU ile CPU’ya göre performans kazanımının

sağlandığının görülmesinin ardından GPU üzerinde global bellek ve paylaşılan

bellek kullanımı incelenmiştir. Paylaşılan belleğin çip üzerinde bulunması ve

erişim hızının oldukça yüksek olması, global belleğin ise CUDA bellekleri

arasındaki en çok kullanılan fakat en yavaş bellek olmasından dolayı CUDA

programlamada kullanıma uygun belleğin seçilmesi performans kazanımı

açısından oldukça önemli olduğu deney sonuçlarından gözlemlenmiştir. Eğer bir

blok içerisindeki iş parçacıkları tarafından birden fazla defa global bellekten

çekilmiş bir veriye erişilmesi gerekiyorsa paylaşılan bellek kullanımının yaklaşık

3 kata kadar hız kazandırabildiği görülmüştür. Gelecekteki çalışmalarımızda da,

daha ileri düzey problemlerde CUDA kullanımını inceleyeceğiz.

37

KAYNAKLAR DİZİNİ

Borke P., 1997, “PPM/ PGM / PBM image files”

http://paulbourke.net/dataformats/ppm/, (Erişim Tarihi: 5 Mart 2018)

Cheng, J., Grossman, M., and McKercher, T., 2014, Professional CUDA C

Programming, John Willey & Sons, Indianapolis, 8-264p.

Clua, E. G. W., Zamith, M., 2015, Programming in CUDA for Kepler and

Maxwell Architecture, Revista de Informatica Te ´ orica e Aplicada, 22 (2):

233-257 pp.

Ding C., “CUDA Tutorial”, http://geco.mines.edu/tesla/cuda_tutorial_mio/,

(Erişim Tarihi: 10 Mart 2018)

Eklund, A., Dufort, P., Forsberg, D. and LaConte, S. M., 2013, Medical

image processing on the GPU–past, present and future, Medical Image

Analysis, 17(8): 1073–1094 pp.

Gaura J., 2016, “Histogram Equalization”,

http://mrl.cs.vsb.cz/people/gaura/dzo/hist_en.pdf, (Erişim Tarihi: 25 Ocak

2018)

Ghorpade, J., Parande, J., Kulkarni, M. and Bawaskar, A., 2012, GPGPU

processing in CUDA architecture, Advance Computing: An International

Journal (ACIJ), 3(1):105-120p.

Gupta N., 2013, “Optimization in Histogram in CUDA”, http://cuda-

programming.blogspot.com.tr/2013/03/optimizing-histogram-cuda-code.html,

(Erişim Tarihi: 15 Ocak 2017)

Gupta N., 2013, “Fast Implementation of Histogram Cuda”, http://cuda-

programming.blogspot.com.tr/2013/03/further-optimization-in-histogram-

cuda.html, (Erişim Tarihi: 20 Ocak 2017)

Harris M., 2012, “How to Optimize Data Transfers in CUDA C/C++”,

https://devblogs.nvidia.com/how-optimize-data-transfers-cuda-cc, (Erişim

Tarihi: 28 Şubat 2018)

Harris M., 2013, “Using Shared Memory in CUDA C/C++”,

https://devblogs.nvidia.com/using-shared-memory-cuda-cc/ , (Erişim

Tarihi: 30 Ocak 2018)

38

KAYNAKLAR DİZİNİ (devam)

Harris, M., 2014, “5 Things You Should Know About the New Maxwell GPU

Architecture”, https://devblogs.nvidia.com/parallelforall/5-things-you-

should-know-about-new-maxwell-gpu-architecture/, (Erişim Tarihi: 23

Aralık 2017)

Lee, V., W., Kim C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A., D.,

Satish, N., Smelyanskiy, M., Chennupaty, S., Hammarlund, P.,

Singhal, R. and Dubey, P., 2010, Debunking the 100x GPU vs. CPU

Myth: an Evaluation of Throughput Computing on CPU and GPU, In

Proceedings of the 37th Annual International Aymposium on Computer

Architecture, 451-460p.

Milic U., Gelado, I., Puzovic, N., Ramirez, A. and Tomasevic, M., 2013,

Parallelizing General Histogram Application for CUDA Architectures, In

Embedded Computer Systems: Architectures, Modeling, and Simulation

(SAMOS XIII), 11-18p.

New York University, 2017, “Introduction to GPUs CUDA”, https://nyu-

cds.github.io/python-gpu/02-cuda/, (Erişim Tarihi 10 Mart 2018)

Nickolls J., Buck I., Garland M. and Skadron K., 2008, Scalable Parallel

Programming with CUDA, ACM Digital Library, 6(2): 42-53p.

NVIDIA, 2007, “NVIDIA’s Next Generation CUDA Compute Architecture

Fermi”,

https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi

_Compute_Architecture_Whitepaper.pdf, (Erişim Tarihi: 20 Aralık 2017)

NVIDIA, 2018, “CUDA C Programming Guide – NVIDIA Developer

Documentation”, http://docs.nvidia.com/cuda/cuda-c-programming-

guide/index.html#heterogeneous-programming__heterogeneous-

programming, (Erişim Tarihi: 20 Şubat 2018)

Paravecino, F. N., 2017, Characterization and Exploitation of Nested Parallelism

and Concurrent Kernel Execution to Accelerate High Performance

Applications, Dissertation, Northeastern University.

Sakharnykh, N., 2015, “GPU Pro Tip: Fast Histograms Using Shared Atomics

on Maxwell”, https://devblogs.nvidia.com/gpu-pro-tip-fast-histograms-

using-shared-atomics-maxwell/, (Erişim Tarihi: 20 Ocak 2018)

39

KAYNAKLAR DİZİNİ (devam)

Wadud M. A., Kabir M. H., M. Dewan A. A., and Chae O., 2017, A Dynamic

Histogram Equalization for Image Contrast Enhancement, IEEE

Transactions on Consumer Electronics, 53(2):593-600p.

Yang, Z.,Zhu, Y. and Pu. Y., 2008, Parallel image processing based on CUDA,

In International Conference on Computer Science and Software

Engineering 3:198-201p.

Zhang, N., Wang, J. L. and Chen. Y. shan, 2010, Image parallel processing

based on GPU, Advanced Computer Control (ICACC), 3:367-370p.

40

ÖZGEÇMİŞ

Ad Soyad : Pelin KARAGÖZOĞLU

Doğum Tarihi : 09.07.1992

Doğum Yeri : Balıkesir

Telefon : (+90) 538 974 51 18

E-posta : pelin.karagozoglu@gmail.com

Eğitim :

 2010 – 2015 Işık Üniversitesi Yazılım Mühendisliği Bölümü
3,21/4

 2006 – 2010 Balıkesir Cumhuriyet Anadolu Lisesi 85/100

İş Tecrübeleri :

 2015- 2018 Freelance Android Geliştiricisi

 2018- Halen Android Geliştircisi (HUAWEI)

