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ÖZET 

CUDA İLE PARALEL 

 PROGRAMLAMA 

KARAGÖZOĞLU, Pelin 

Yüksek Lisans Tezi, Bilgisayar Mühendisliği Anabilim Dalı 

Tez Danışmanı: Prof. Dr. Aylin KANTARCI 

Nisan 2018, 40 sayfa 

Son zamanlarda GPU’ların büyük gelişme göstermesi ile birlikte CPU’ların 

yardımcı işlemcisi olarak farklı alanlarda da kullanılmaya başlamıştır. Özellikle, 

NVIDIA’nın CUDA paralel programlama platformunu geliştiricilere sunmasıyla 

birlikte GPU kullanımı görüntü işleme gibi büyük hesaplama gerektiren 

uygulamaların paralelleştirilmesinde büyük kolaylıklar sağlamıştır.  

Bu tez kapsamında da NVIDIA CUDA kullanımı ile GPU üzerinde paralel 

programlama geliştirme incelenmiş ve görüntü işleme uygulamalarının en çok 

kullanılan yöntemlerinden histogram hesaplama ve eşitleme algoritmaları CUDA 

programlama yardımı ile paralelleştirilerek algoritmaların seri ve paralel 

versiyonları iki farklı CPU ve GPU üzerinde çalıştırılmış, performans 

karşılaştırmaları yapılmıştır.  

Anahtar sözcükler: CUDA, histogram, histogram eşitleme, paralel 

programlama, CPU, GPU. 
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ABSTRACT 

PARALLEL PROGRAMMING 

 WİTH CUDA 

KARAGÖZOĞLU, Pelin 

MSc in Computer Eng. 

Supervisor: Prof. Dr. Aylin KANTARCI 

April 2018, 40 pages 

Recently, GPUs show great improvements and they are being used in 

different areas as a CPU coprocessor. Especially, after that NVIDIA’s CUDA 

parallel programming platform is presented to developers, the GPU usage 

provided great convenience in parallelizing application such as image processing 

which requires large computation. 

In this thesis, parallel programming development on GPU with CUDA was 

investigated. Also histogram computation and equalization, the most commonly 

used methods of image processing application, have been parallelized by using 

CUDA parallel programming. In addition, to compare the execution times of 

performance, both serial and parallel versions of these algorithms were executed 

on two different CPU and GPUs.  

Keywords: CUDA, histogram, histogram equalization, parallel 

programming, CPU, GPU. 
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1. GİRİŞ 

Günümüzde GPU’lar bilgisayar sistemleri için vazgeçilmez birimler haline 

gelmiştir. Bunun nedeni CPU’ların tek bir görev için hızlı yanıt süresi sağlayan, 

az işlemci çekirdeğine sahip olarak tasarlanmış olmasıdır. Özellikle görüntü 

işleme gibi yoğun hesaplama ve paralellik gerektiren durumlarda CPU’nun 

performansı yetersiz kalmaktadır. GPU’ların ise, içerisindeki yüzlerce çekirdeği 

kullanması ile birlikte paralel bir şekilde grafiksel ve büyük hesaplamaları kolayca 

yapabilme kabiliyetine sahip olması ve temel görüntü işlemlerini yerine getiren 

donanımlar içermesi, problemlerin çözümünde büyük kolaylık sağlamıştır (Lee et 

al., 2010). 

GPU kullanımına olan ihtiyacın artmasıyla birlikte, NVIDIA tarafından 

2006 yılında, paralel programlama mimarisi ve platformu olan birleştirilmiş 

hesaplama cihaz mimarisi CUDA piyasaya sürülmüştür. CUDA, CPU ve 

GPU’nun birlikte çalışmasını destekleyen bir paralel programlama mimarisidir. 

CUDA ile GPU kullanımı çok daha verimli ve kolay hale gelmiştir (Yang et al., 

2008). 

Bu tez çalışması kapsamında NVIDIA CUDA mimarisi kullanılarak,  

görüntü işlemenin en temel fonksiyonları olan ve görüntülerin kontrastının 

arttırılmasını sağlayan histogram hesaplama ve eşitleme algoritmaları 

paralelleştirilmiştir. GPU üzerinde gri tonlamalı ve RGB renkli resimler 

kullanılarak deneyler yapılmış ve bu sayede GPU’ların nasıl programlandığı 

hakkında deneyim sahibi olunması amaçlanmıştır. Histogram hesaplama ve 

eşitleme algoritmalarının hem seri hem de paralel kodu geliştirilerek CPU ve GPU 

üzerinde performans ölçümleri yapılmıştır. Geliştirilen algoritmalar iki farklı GPU 

hesaplama mimarisi olan Fermi ve Maxwell üzerinde denenmiş ve farklı 

mimarilerin performansa etkisi incelenmiştir. Son olarak da çok iş parçacıklı 

ortamlarda karşımıza çıkan senkronizasyon probleminin GPU’lar üzerinde nasıl 

ele alındığı incelenmiştir. 

Bu tez çalışmasının diğer bölümlerinde sırasıyla, farklı GPU mimarileri ve 

CUDA mimarisi, histogram hesaplama ve eşitleme algoritmaları üzerinde yapılan 

paralelleştirme ve paralel programlamada yaygın bir problem olan 

senkronizasyonun GPU’lar üzerinde işlem yapılırken nasıl çözüldüğü hakkında 

bilgilere yer verilmiştir.  
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Tezin deney ve sonuçlar bölümünde CPU ve GPU üzerinde yapılan 

deneylerden çıkan sonuçlar gösterilmiş ve yorumlanmıştır. Son olarak çalışmanın 

sonuçları ve gelecekte yapılabilecek çalışmalarla ilgili öneri sunulmuştur. 
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2. GPU MİMARİSİ 

İlk GPU NVIDIA tarafından 1999 yılında üretilmiştir ve 2003 yılından 

itibaren de grafiksel işlemlerin dışında yüksek derecede paralellik gerektiren 

görüntü işleme vb. uygulamalarda, yüksek performans ve verimlilik elde etmek 

için kullanılmaya başlanmıştır. Önceleri uzun yürütme sürelerine sahip olan 

görüntü uygulamaları üzerinde çalışma yapılması büyük problem oluştururken, 

şimdilerde GPU’nun yüzlerce paralel işlemci çekirdeğine sahip olması ile bu 

problem çözüme kavuşmuştur (NVIDIA, 2007). 

Şekil 2.1’ de GPU ve CPU mimarileri gösterilmektedir. Bu mimarilere 

bakıldığında, CPU mimarisinin çok az sayıda matematiksel ve mantıksal işlemleri 

destekleyen Aritmetik Mantık Birimi’nden (ALU) oluşurken büyük oranda 

kontrol ve önbellek alanlarına sahip olduğu, GPU’nun ise çok sayıda küçük 

ALU’ya sahip olduğu ve önbellek alanlarına daha az yer ayırdığı görülmektedir. 

GPU, bu sayede bellek erişimlerinden kaynaklanan gecikmelere maruz kalmadan 

çok daha fazla işlemci çekirdeğini kullanarak hızlı bir şekilde paralel 

hesaplamaları yapabilmektedir (NVIDIA, 2007). 

 

Şekil 2.1 CPU’nun donanımsal mimari karşılaştırması (NVIDIA, 2007) 

GPU’nun paralel hesaplama yeteneğinden doğru ve verimli bir şekilde 

yararlanılabilmesinin en önemli gereksinimlerinden biri de kullanılan GPU ve 

CUDA mimarisi hakkında gerekli bazı temel bilgilere sahip olunmasıdır.  

2.1 Genel GPU Mimarisi 

GPU mimarisinde birden fazla bağımsız iş parçacığı (thread) tek bir talimat 

(SIMT) kullanılarak aynı anda yürütülebilme kabiliyetine sahiptir. Her GPU 
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ölçeklenebilir sayıda akış işlemcisinden (SMs) oluşur. GPU içerisinde onlarca SM 

vardır, bu sayı GPU mimarisine ve versiyonuna göre değişiklik gösterir. Genel 

GPU mimarisinde, her SM’in içerisinde akış işlemcileri (SP) bulunur. SM’ler SP 

üzerinde çalışan yüzlerce iş parçacığının aynı anda yürütülmesini sağlar. Her SM 

aynı anda birden fazla iş parçacığı bloğunu tutabilir ve her biri paylaşılan belleğe 

ve kayıtçıya (register) sahiptir. Paylaşılan bellek ve kayıtçının boyutu küçük, fakat 

bu belleklere erişim çok hızlıdır. Bu kaynaklar aynı SM üzerinde bulunan iş 

parçacıkları arasında bölünmektedir. (Clua and Zamith, 2015).  

SM’ler CUDA çekirdeklerinden, paylaşılan bellek, kayıtçı, yükleme ve 

saklama birimleri, sin(), cos() ve exp() gibi matematiksel işlemleri yapan özel 

fonksiyon birimi (SFU) ve çözgü zamanlayıcısı (warp schedular)’dan oluşur. 

Şekil 2.2’ deki örnekte bir SM mimarisi gösterilmektedir. 

 
Şekil 2.2 SM mimarisi (Cheng et al., 2014) 
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SM içerisindeki iş parçacıklarının birleşmesi ile oluşan gruba iş parçacığı 

blok’ları adı verilir. Bir blok’un içerisinde ki iş parçacıklarının sayısı sınırlıdır. Bu 

sayı mimarilere göre değişiklik gösterebilir (Clua and Zamith, 2015). İş parçacığı 

blok’larının birleşimi ile oluşan blok gruplarına ise grid adı verilir. Şekil 2.3’ de 

bu grupların birleşmesiyle oluşan iş parçacığı, blok ve grid yapısı 

gösterilmektedir.   

 
Şekil 2.3 İş parçacıkları, blok’lar ve grid arasındaki ilişki (New York University., 2017) 

Her iş parçacığının ve blok’un kendilerine ait birer ID ’si vardır. Bu ID’ler,  

threadIdx, blockIdx’dir, bir boyutlu, iki boyutlu ve üç boyutlu olabilir.  CUDA 

blok’ları ve grid’leri üç boyutta düzenler. Her bir boyuta vektör yapısının x, y, z 

bileşenleri ile erişilebilir. (Cheng et al., 2014) 

 ThreadIdx, iş parçacığının blok içerisindeki yerini belirtir. 

 BlockIdx, blok’un grid içerisindeki yerini belirtir.  
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 BlockDim, bir blok’un boyutunu ve içerisinde çalışan iş parçacığı 

sayısını belirtir,  bu boyut içerisindeki iş parçacığı sayısına göre 

değişir. 

 GridDim, bir grid’in boyutunu ve blok sayısını belirtir. (Cheng et 

al., 2014) 

Blok’lar warp schedular tarafından her biri 32 adet iş parçacığından oluşan 

warp’a bölünürler. Warp içerisindeki tüm iş parçacıkları aynı kodu yürütür ve bir 

warp içerisindeki her iş parçacığı kendi komut sayacına, durum kayıtçısına ve 

bağımsız yürütme yoluna sahiptir. Warp’lar dağıtıcı biriminin (Dispatch Unit) 

temelidir ve farklı iş parçacığı blok’larından oluşan iki warp eş zamanlı 

çalışabilme kabiliyetine sahiptir. SM üzerinde bir çok warp programlanabilir fakat 

SM’in kaynak kullana bilirliğine bağlı olarak tüm warp’lar aktif olmaz (NVIDIA, 

2007; Paravecino, 2017). 

Bir blok’daki tüm iş parçacıkları aynı SM üzerinde çalışır, bu nedenle aynı 

blok’da bulunan iş parçacıkları birbirleriyle işbirliği halindedir ve paylaşılan 

bellek aracılığı ile iletişim sağlarlar. Blok’lar ise birbirleriyle global belleği 

kullanarak iletişimi sağlarlar.  (Paravecino, 2017). 

GPU farklı belleklerden oluşur. Bu belleklerin hiyerarşik gösterimi şekil 

2.4’de gösterilmektedir. Sırasıyla bu bellekler; kayıtçı (register), paylaşılan bellek 

(shared memory), yerel bellek (local memory), global bellek (global memory), 

sabit bellek (constant memory) ve doku belleği (texture memory)’dir. 



7 
 

 

 
Şekil 2.4 GPU içerisindeki bellekler (Ding., 2014) 

 Kayıtçı: En hızlı bellek alanıdır ve her iş parçacığı için özeldir. Kernel bu 

bellek alanını sık erişilen iş parçacığına özel değişkenleri tutmak için 

kullanır. Kernel’in yürütülmesi tamamlandıktan sonra buradaki 

değişkenlere tekrardan ulaşılamaz (Cheng et al., 2014). 

 Paylaşılan Bellek: Her SM için ayrılmıştır. Sadece aynı blok’da ki iş 

parçacıkları bu belleğe erişebilir. Paylaşılan belleğe erişim kayıtçı bellek 

alanına erişim kadar hızlıdır. Bu belleğin kullanımı ile global bellek 

erişiminden kaçınılabilir, paylaşılan belleğe erişim 4 saat döngüsü 

sürerken, genel belleğe erişim 400-600 saat döngüsü sürer. Bir blok 

bittiğinde paylaşılan bellek alanı silinir. (Clua and Zamith, 2015; Yang 

et al., 2008). 
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 Yerel Bellek: Bu belleğe sadece ait olduğu iş parçacığı tarafından 

ulaşılabilir. Buradaki veriler iş parçacığının çalışması sırasında saklanıp 

sonrasında silinir. Belleğe erişim, yüksek gecikme ve düşük bant 

genişliğindedir (Cheng et al., 2014; Clua and Zamith, 2015). 

 Global Bellek: GPU’nun en çok kullanılan belleğidir, tüm iş parçacıkları 

tarafından bu belleğe erişim vardır. Yüksek gecikme süresine ve düşük 

bant genişliğine sahiptir. Yaşam süresi uygulamanın ömrü kadardır 

(Cheng et al., 2014; Clua and Zamith, 2015). 

 Sabit Bellek: 64KB’lik küçük bir bellektir, sadece okuma işlemlerini 

gerçekleştirir. Aynı warp içerisindeki tüm iş parçacıklarının aynı bellek 

adresinden okuma yaptığı durumlarda en iyi performansı sağlar (Cheng 

et al., 2014; Clua and Zamith, 2015). 

 Doku Belleği: Bir çeşit global bellektir. Sadece okuma işlemlerini 

gerçekleştirir. Önbellektedir, doku ve veri yumuşatılması gibi grafiksel 

işlemlerde kullanılır (Cheng et al., 2014; Clua and Zamith, 2015). 

2.2 Heterojen Hesaplama 

GPU tek başına çalışan bir işlemci değildir, CPU’nun yardımcı işlemcisi 

olarak çalışmaktadır. Hem CPU’nun hem de GPU’nun farklı program türleri için 

avantajları vardır. Bu nedenle, birbirlerini tamamlayıcı özelliklere sahiptirler. En 

iyi performansa birlikte kullanılmalarıyla ulaşılır. Bu kullanıma heterojen 

hesaplama adı verilmiştir. Şekil 2.5’de görüldüğü gibi CPU ve GPU donanımları 

arasındaki bağlantı PCI-Express veri yolu ile sağlanır. Bu hesaplamada, CPU ana 

bilgisayar (host), GPU ise aygıt (device) olarak adlandırılır (Cheng et al., 2014). 

 
Şekil 2.5 CPU ve GPU’nun birleşimi (Cheng et al., 2014) 
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CPU ve GPU’nun heterojen bir şekilde kullanımında, uygulama CPU 

tarafından başlatılır. CPU, ortamın, kodların ve verilerin yönetiminden 

sorumludur. Veri büyüklüğü küçük ve düşük seviye paralellik gerektiren seri 

algoritmalar yürütülür. GPU’lar ise, hesaplamanın yoğun olduğu ve büyük oranda 

paralellik gerektiren bölümlerin hızlandırılması için kullanılır. Bu durumda, 

GPU’lar donanım hızlandırıcısı olarak düşünülebilir (Cheng et al., 2014). 

Heterojen programlamanın kullanımını kolaylaştıran en önemli etkenlerden 

biri de NVIDIA’nın GPU’larda ki paralel hesaplamayı kullanan CUDA 

programlama modelini çıkartmasıdır. CUDA programı ana makine kodu (host) ve 

cihaz kodundan (device) oluşur. Şekil 2.6’da heterojen programlama modelinde 

bir kernel fonksiyonunu çağırdığımızda sırasıyla yapılan işlemler 

gösterilmektedir. Şekilde görüldüğü gibi derleme sırasında device kodu host 

kodundan ayrılır. GPU üzerinde çalışan paralel koda çekirdek (kernel) adı 

verilmiştir ve C programlama kullanılarak yazılabilir, kernel kodu CPU tarafından 

çağırılır ve kernel’in çağrılmasının ardından device çalışmaya başlar. Kernel GPU 

üzerinde yürütülürken programın geriye kalan C kodları CPU üzerinde çalıştırılır. 

Device’ın kernel fonksiyonunu çalıştırmasını bitirmesinin ardından kontrol tekrar 

CPU’ya geçer ve CPU yeni kernel fonksiyonunu çağırır (NVIDIA, 2018; Cheng 

et al., 2014). 
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Şekil 2.6 Heterojen programlama modeli (NVIDIA, 2018) 

Kernel’ler bir dizi iş parçacığı tarafından çalıştırılır ve her biri aynı kodu 

paralel olarak çalıştırır. İş parçacığı bir döngüdeki bir yineleme gibi düşünülebilir 

(Cheng et al., 2014). Heterojen hesaplamada iş akışı genel olarak aşağıdaki 

gibidir; 

 İlk olarak program CPU’daki verilerin hazırlanmasıyla başlar.  

 Veriler CPU’dan GPU’nun genel belleğine kopyalanır.  

 İş parçacıkları global bellekte ki verileri okuyarak yerel belleklerine 

yazarlar.  GPU,  bu veriler üzerinde çalışıp, hesaplamaları tamamlar. 

 Son olarak sonuç global belleğe geri yazılır. (Cheng et al., 2014; Eklund et 

al., 2013) 
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2.3 Fermi ve Maxwell Mimarisi 

Bu tez kapsamında iki farklı GPU mimarisi kullanılmıştır bunlar Fermi ve 

Maxwell Mimarileri’dir. NVIDIA, GPU donanım versiyonlarını tanımlamak için 

hesaplama kapasitesi terimini kullanmaktadır. Bu çalışmada kullanılan 

mimarilerden Fermi küçük hesaplama kapasitesine (2.x), Maxwell ise yüksek 

hesaplama kapasitesine (5.x) sahiptir. 

2.3.1 Fermi mimarisi 

Fermi Mimarisi 16 SM’den oluşur ve her SM’de 32 CUDA çekirdeği olacak 

şekilde toplam 512 hızlandırıcı çekirdek SM üzerine yerleştirilmiştir. Her bir 

CUDA çekirdeği ardışık olarak dizilmiş ALU’ya ve FPU’ya sahiptir. Bir SM’de 

16 yük/depo (load/store)  birimi vardır, bu birim bir warp içerisindeki iş parçacığı 

sayısının yarısı kadar yani 16 iş parçacığı için kaynak ve hedef adreslerinin 

hesaplanmasını sağlar. Ayrıca SM’de 4 SFU bulunur, SFU’lar sinüs, cosinüs ve 

karekök gibi talimatları yönetirler (Cheng et al., 2014). 

Aşağıda şekil 2.7’de görüldüğü gibi bu mimaride SM’ler L2 önbelliği 

etrafında konumlandırılmışlardır ve tüm SM’ler bu belleği paylaşırlar. Ayrıca her 

SM’in 2 adet çözgü zamanlayıcısı (warp schedular) ve 2 dağıtıcı birimi 

(dispatcher unit), paylaşılan belleği,  64 KB’lik kayıtçısı ve L1 önbelleği vardır. 

Zamanlayıcı ve dağıtıcı birimler SM’e bir iş parçacığı bloğu atandığında 32’lik 

warp’lara bölünür ve çözgü zamanlayıcıları 2 warp seçer ve her warp’tan bir 

talimatı 16 CUDA çekirdeğine, yük/depo birimine ve 4SFU’ya bildirir. Yine 

şekilde 2.7’de görüldüğü gibi bu mimaride 1 GigaThread motoru (engine) ve 

toplam 6GB’lık global bellek desteği sağlayan 6 adet DRAM bulunmaktadır. 

GigaThread motoru iş parçacığı bloklarını SM’deki warp zamanlayıcılarına 

dağıtmada görev alır (Cheng et al., 2014). 
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Şekil 2.7: Fermi Mimarisi (Cheng et al., 2014) 

2.3.2 Maxwell mimarisi 

Maxwell Mimarisi’nde önceki mimarilere göre güç verimliliğini daha çok 

arttırmak için yeni bir SM tasarımı yapılmıştır. Diğer mimarilere göre her SM 

daha az sayıda CUDA çekirdeğinden oluşur. Bu yeni SM mimarisi daha küçük 

akış çok işlemcisi (SMM) olarak adlandırılmıştır.  

Şekil 2.7’de görüldüğü gibi her SMM yapısı 4 özdeş alt yapıdan oluşur. Her 

birinde 32 çekirdek, 8LD/ST birimi, 8SFU ve 16K kayıtçı bulunur ve SMM 

başına düşen CUDA çekirdeği 128’dir, her saat dögüsünde iki talimat gönderen 4 

warp zamanlayıcısı, 8 doku birimi (texture unit) ve 8 talimat dağıtıcı birimden 

oluşur. Bu mimarideki en önemli değişimlerden biri de bellek hiyerarşisidir. 

Paylaşılan bellek için özel bir alan ayrılmıştır ve L1 önbelleği doku ön belleği ile 

birleştirilmiştir. Diğer mimarilerde bu alan L1 önbelleği ve paylaşılan bellek 

arasında bölünüyordu (Harris, 2014; Paravecino, 2017). 
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Şekil 2.8:Maxwell SMM Mimarisi  (Clua and Zamith, 2015) 

Çizelge 2.1’de tez çalışmasında kullanılan GPU mimarilerinin özellikleri 

gösterilmiştir. Küçük hesaplama kapasitesine sahip mimarilerin farklı 

versiyonlarında güncellemelere bağlı olarak bazı değişiklikler bulunmaktadır. Bu 

nedenle yukarıda bahsedilen genel Fermi Mimarisi’ne göre kullanılan GPU 

mimarisinde, örneğin; CUDA çekirdek sayısı farklılık göstermektedir. 
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Çizelge 2.1 Kullanılan Fermi ve Maxwell Mimarisi’nin özellikleri 

   

 

 GeForce GT 
540M (Fermi) 

GeForce GTX   
960M (Maxwell) 

Cuda Çekirdeği 96 640 

Bellek Hızı (Mhz) 900 2500 

Bellek Arayüzü 128-bit DDR3 128-bit GDDR5 

Bellek Bant Genişliği 28.8 80 

CUDA Kapasite 
Versiyonu 

2.1 5.0 

Toplam Global Bellek 2.0 Mbytes 4.0 Mbytes 

L2 Cache Boyutu 131072 bytes 2097152 bytes 

Toplam Sabit Bellek 65536 bytes 65536 bytes 

Blok Başına Paylaşılan 
Bellek Toplamı 

49152 bytes 

 

49152 bytes 

 

Blok Başına Toplam 
Kayıtçı Sayısı 

32768 65536 

Warp Boyutu 32 32 

Her Bir Çok İşlemcili 
Başına Maksimum İş 

Parçacığı Sayısı 

1536 

 

2048 

Her Blok Başına 
Maksimum İş Parçacığı 

Sayısı 

1024 1024 

Bir Bloğun Her 
Boyutunun Maksimum 

Büyüklüğü 

1024 x 1024 x 64 1024 x 1024 x 64 

Bir Grid’in Her 
Boyutunun Maksimum 

Büyüklüğü 

65535 x 65535 x 
65535 

2147483647 x 65535 
x 65535 

Maksimum Bellek 
Aralığı (pitch) 

2147483647 bytes 2147483647 bytes 
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3. CPU VE GPU’DA GÖRÜNTÜ İŞLEME 

Görüntü uygulamalarının genellikle büyük boyutta görüntüleri kullanması 

ve hesaplama yoğunluğunun yüksek olması nedeniyle geleneksel görüntü işleme 

yöntemleri istenilen performansı sağlayamamaktadır. Yüksek veri paralelliğinin 

gerektiği bu durum için GPU kullanımı en ideal çözümlerden biridir (Zhang et al., 

2010). 

Bu tez çalışmasında da görüntü işlemenin en temel fonksiyonlarından 

histogram hesaplama ve eşitleme kullanılarak CPU üzerinde seri ve GPU üzerinde 

paralel görüntü kontrastı iyileştirme programı geliştirilmiştir. Geliştirilen seri ve 

paralel görüntü işleme programları 2 farklı işlemci üzerinde çalıştırılarak deney 

sonuçları elde edilmiştir.  

3.1 Histogram Hesaplama ve Eşitleme 

Histogram hesaplama ve eşitleme görüntü işlemenin birçok alanında 

kullanılan en temel fonksiyonlardandır. Histogram ile bir görüntüde farklı 

yoğunluklardaki piksel sayısını elde ederiz. Histogram eşitleme ile de görüntülerin 

histogramından elde ettiğimiz piksel yoğunluklarını kullanarak görüntü tonlarının 

tüm görüntü boyunca eşitlenmesi ile kontrastın iyileştirilmesini sağlarız. 

Histogram eşitleme birçok görüntü ve video işleme uygulamasında ön işleme 

basamağı olarak  kullanılır (Wawud et al., 2017). Şekil 3.1’de geliştirdiğimiz 

görüntü işleme uygulaması ile yapılmış kontrast iyileştirme örneği 

gösterilmektedir. 

  
(a)                                 (b) 

Şekil 3.1 a) Orijinal resim, b) Orijinal resme histogram eşitletme uygulandıktan sonra 
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3.2 CPU’da Histogram Hesaplama ve Eşitleme 

Bu tez çalışmasında seri algoritma kodlarının geliştirilmesi için C 

programlama dili kullanılmıştır. Histogram bir dizi (array) olarak temsil edilir ve 

histogram dizisi her bir öğesi bin olarak adlandırılan kutulardan birine karşılık 

gelir ve bu bin’lerden her birine düşen piksel sayısını içerir. Her renk kanalı için 

256 bin tanımlanır (Sakharnykh 2015; Milic et al. 2013). Bir görüntünün her 

pikselinin 0 ile 255 arasında bir değere sahip olduğu varsayılır, piksel değeri bu 

aralığa uyduğu zaman bin değeri bir arttırılır. 

Seri histogram hesaplama, paralel histogram hesaplamaya göre oldukça 

basittir. Şekil 3.2’de basit olarak kullandığımız seri histogram algoritması 

gösterilmektedir. Kullandığımız bu algoritmada hist değeri sonuç histogramımızı 

tutan bir dizidir, img değeri görüntü girdisidir, img_size görüntümüzün boyutunu 

tutar, nbr_bin değeri ise renk kanalı için kullandığımız bin değerini tutar.  

 
Şekil 3.2 Seri histogram hesaplama algoritması 

Şekil 3.3’de seri olarak bir girdi görüntüsünün histogram eşitleme 

fonksiyonu gösterilmektedir. Bu fonksiyon hem gri ölçekli görüntülerde hem de 

RGB (kırmızı, yeşil, mavi) renk görüntülerde kullanılmıştır. Fakat, RGB renk 

görüntüleri üç renk kanalından oluşmaktadır, ve eğer görüntüyü üç ayrı renk 

kanalına bölerek her bir kanal için ayrı histogram eşitleme uygulanırsa doğru 

sonuçlar elde edilemez. Bunun için renk bileşenlerini yoğunluk değerlerinden 

ayıran bir renk uzayı kullanılmalıdır. Bu tez çalışmasında YUV renk uzayı 

kullanımı tercih edilmiştir. YUV uzayının Y bileşeni rengin parlaklığını 

belirlerken U ve V bileşenleri ise rengin doygunluğunu ve tonunu belirler.  
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Şekil 3.3.’de RGB renkli görüntü için kullandığımız kontrast iyileştirme 

fonksiyonumuz gösterilmektedir. Burada ilk olarak giriş görüntümüzü RGB renk 

uzayından YUV uzayına dönüştürülür, sonrasında Y bileşeninin histogramı 

çıkarılır ve elde edilen Y bileşenin histogramı ile histogram eşitleme yapılır bu 

işlem sonucunda yeni Y bileşenimiz ile U ve V bileşenleri birleştirilir. Son olarak 

da YUV uzayından tekrar RGB uzayına dönüştürme yapılarak sonuç görüntümüz 

elde edilir.  

 
Şekil 3.3 CPU’da RGB renk resim için kontrast iyileştirme fonksiyonu 

Şekil 3.4’de gösterilen histogram eşitleme fonksiyonumuzda önceden 

hesaplanmış olan giriş görüntüsünün histogram değeri hist_in ile alınır ve bu 

fonksiyon içerisinde elimizdeki girdi görüntüsünün histogramını kullanarak 

görüntünün yeni parlaklık değerleri elde edilir.  
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Şekil 3.4 CPU’da görüntü histogram eşitleme fonksiyonu 

 

Görüntünün yeni parlaklık deperinin elde edilmesi için öncelikle şekil 

3.5’deki formülü kullanılarak histogramın kümülatif dağılım fonksiyonunu 

hesaplarız. 

 
Şekil 3.5 Kümülatif Dağılım Fonksiyonu Hesaplama Formülü (Gaura, 2016) 

Kümülatif dağılım fonksiyon (cdf) değerinin hesaplanmasının ardından ise 

yeni parlaklık değerimizi şekil 3.6.’de ki formülü kullanarak hesaplarız.  

 
Şekil 3.6 Parlaklık Değeri Hesaplama Formülü (Gaura, 2016) 
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 Buradaki cdfmin değeri kümülatif dağılım fonksiyonun sıfır olmayan en 

küçük değeridir. L değeri parlaklık seviyesinin sayısını (nbr_bin) belirtir. Son 

olarak oluşturduğumuz arama tablosunda (lut) hesapladığımız yeni parlaklık 

değerleri saklanır ve en son bu tabloya göre görüntü tekrardan güncellenerek 

sonuç görüntümüz elde edilir.  

3.3 GPU’da Histogram Hesaplama ve Eşitleme 

GPU üzerinde çalıştırılacak olan paralel algoritma kodları geliştirilirken C 

programlamanın yanında NVIDIA CUDA platformu kullanılmıştır. Paralel 

kodlama yapılırken dikkat edilmesi gereken kısımlar seri kodlamaya göre çok 

daha fazladır. Bu nedenle paralel algoritmaların implementasyonu seri 

algoritmalara göre oldukça zordur. Bir paralel algoritma implementasyonunda 

kullanılacak iş parçacığı sayısı, blok sayısı ve paylaşılan bellek kullanımı gibi 

birçok konu göz önünde bulundurulmalıdır. 

Şekil 3.7’de gri ölçekli görüntülerde kullandığımız GPU üzerinde 

çalıştırılan kontrast iyileştirme fonksiyonu gösterilmektedir. Buradaki 

fonksiyonun aynısı RGB renk görüntüler içinde aynı şekilde uygulanır fakat 

bölüm 3.2’de anlatılan CPU üzerinde kontrast iyileştirmede kullanılan YUV 

uzayına dönüştürme aynı şekilde burada da yapılır ve Y bileşeni üzerinden 

histogram hesaplama ve eşitleme işlemleri uygulanır. Şekil 3.7’de ki GPU 

üzerinde CUDA C ile kontrast iyileştirme algoritmamızın implementasyonu 

yapılırken şu adımlar izlenilmiştir; öncelikle aygıt tarafında paralel olarak 

yürütülecek kernel fonksiyonlarımız başlatılmadan önce ana makina (host)’dan 

aygıta (device) kullanılacak girdi verileri kopyalanır. Bu işlem için CUDA’nın 

cudaMemcpy() fonksiyonunu kullanılır. Sonrasında C programlamada kullanılan 

memset() fonksiyonu ile aynı işleve sahip olan cudaMemset() ile cdf ve 

histogram’a 0 değerini veririz. Ardından kernel fonksiyonları çağırılmadan önce 

yürütülme konfigürasyonları yaparak, GPU’da iş parçacıklarının nasıl 

çalıştırılacağını belirleriz.  

<<<blok sayısı , iş parçacığı sayısı>>> kernel fonksiyonlarının çağrılma 

şeklidir, buradaki ilk değer grid içerisinde başlatılacak blok sayısını, ikinci değer 

ise her bir blok içerisindeki iş parçacığı sayısını belirtir. Bu tez çalışmasında iş 

parçacığı ve blok sayıları belirlenirken blok başına 256 iş parçacığı kullanılmıştır 

bunun nedeni histogram hesaplamada bin değerinin 256 olmasıdır. İş parçacığı, 

blok ve grid sayılarının uygun olarak verilmesi büyük öneme sahiptir, aksi 

durumda uygulama doğru sonuçlar vermemektedir. Bu işlemlerin ardından 



20 
 

 

kernellerin çalışması bittiğinde son olarak cudaMemcpy() ile çıkış verileri 

aygıttan ana makinaya tekrardan kopyalanır. 

 
Şekil 3.7 GPU’da Kontrast İyileştirme Fonksiyonu 
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3.4. GPU Üzerinde Paylaşılan Bellek Ve Global Bellek Kullanımı 

Bölüm 2.1’de bahsedildiği gibi paylaşılan bellek SM’de bulunan en hızlı 

belleklerdendir erişim gecikmesi çok düşüktür (4 saat çevrimi kadar) ve yüksek 

bant genişliğine sahiptir. Global bellek ise GPU’nun ana ve en çok kullanılan 

belleğidir. Bu belleğe erişim gecikmesi çok daha yüksektir (400-600 saat 

çevrimi). Paylaşılan belleğin ömrü iş parçacığı bloğu kadardır ve sadece aynı blok 

içerisindeki iş parçacıkları ulaşabilirken, global belleğin ömrü uygulamanın ömrü 

kadardır ve tüm çekirdeklerin (kernel) iş parçacıkları tarafından erişilebilir. Global 

belleğe erişimin olabildiğince az yapılması istenir, CUDA programlamada aynı 

blok içerisindeki iş parçacıkları tarafından birden fazla defa global bellekten 

çekilmiş bir veriye erişilmesi gereken durumlarda aynı verilere yeniden global 

bellekten erişilmesindense veriler paylaşılan belleğe kopyalanarak kullanılır. 

Böylece uzun gecikme süresinden kaçınılır (Nickolls et al., 2008;Cheng, 2014).   

 

Bu tez çalışmasında da GPU üzerinde histogram hesaplama yapılırken hem 

global bellek hem de paylaşılan bellek kullanılmış ve performansları 

incelenmiştir.  

3.4.1 Histogram hesaplamada paylaşılan bellek kullanımı  

Paylaşılan bellek ile histogram hesaplama yapılırken öncelikle her bloğun 

histogramını tutmak için paylaşılan arabellek alanı ayrılır. Paylaşılan bellek 

dizisinde ki her bir eleman değeri için 0 verilir. Bu işlem sonrasındaki adımda 

paylaşılan bellekten değerler okunup değiştirileceği için bir bloktaki tüm iş 

parçacığı için işlemin tamamlandığından emin olunması gerekir. Bunun için 

_syncthreads() çağrısını kullanırız. 

Senkronizasyon çağrısının kullanım nedeni iş parçacıkları arasında veri 

paylaşımı yapıldığı zamanlarda yarış koşulları (race condition) meydana 

gelmesidir. Yarış koşullarının oluşma nedeni bir blok içerisindeki iş 

parçacıklarının mantıksal olarak paralel çalışmasına rağmen aslında tüm iş 

parçacıklarının fiziksel olarak aynı anda çalıştırılamamalarıdır. Paylaşılan bellek 

aynı anda erişilebilen eşit boyutlu 32 bellek modülüne (bank) ayrılır. 32’ye 

bölünme nedeni bir warp içerisinde 32 iş parçacığı bulunmasıdır.  

Bir bloktaki iş parçacıkları aynı paylaşılan bellek adresine erişebilir. Ortaya 

çıkan bu durum bellek konumlarında tanımlanmamış davranışlara sebep olabilir. 

İş parçacıklarının düzgün bir şekilde çalışmasını ve doğru sonuçların elde 
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edilmesini sağlamak için CUDA’nın sağladığı en basit senkronizasyon biçimi 

olan ve bir çeşit bariyer görevi gören _syncthreads() kullanılır. Bir iş parçacığı bu 

çağrıya ulaştığında bloğun içindeki tüm iş parçacıklarının aynı senkronizasyon 

noktasına erişmesini bekler. _syncthreads()’ın aynı zamanda bir işlevi de aynı 

blok içerisindeki iş parçacıkları arasındaki iletişimi koordine etmektir (Cheng et. 

al., 2016; Gupta 2013). 

Paylaşılan bellek ayrıldıktan sonra görüntünün her pikseli için uygun bin 

değeri bulunduğunda ilgili sayaç arttırılır. Fakat paralel olarak histogram 

hesaplama yapılırken aynı histogram bin değerini birden fazla iş parçacığı aynı 

anda arttırmak isteyebilir buna engel olmak için CUDA’nın atomik 

fonksiyonlarından atomicAdd() kullanılmıştır. 

Atomik fonksiyonlar, bir iş parçacığının, diğer iş parçacıklarının müdahalesi 

olmadan bellek işlemini kesintisiz bir şekilde gerçekleştirebildiği matematiksel 

işlemlerdir. Yüzlerce iş parçacığı tarafından paylaşılan değerlerle çalışılması için 

güvenli bir yoldur. Paralel iş parçacıkları arasındaki bellek erişiminin 

senkronizasyonunu sağlayarak iş parçacıklarının birbirine müdahalesini 

engellediğinden yarış koşulunun meydana gelmesini önler (Cheng et. al., 2016).  

Şekil 3.8’de görüldüğü gibi histogram_priv değeri atomicAdd() fonksiyonu 

ile başka bir iş parçacığı tarafından kesintiye uğramadan bellek adresindeki değeri 

okuyup değeri bir arttırır ve sonucu tekrar bellek adresine yazar. Bloktaki tüm iş 

parçacıkların aynı işlemi bitirdiğinden emin olunabilmesi için tekrardan 

_syncthread() fonksiyonu kullanılır. Tüm bu işlemlerin sonunda paylaşılan 

bellekteki sonuç değerleri global belleğe kopyalanır. 
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Şekil 3.8 GPU’da paylaşılan bellek kullanımı ile histogram hesaplama 

Şekil 3.9’ de paralel histogram algoritmasının bir görüntünün histogramını 

hesaplama adımlarını şematik olarak göstermektedir. 

 

Şekil 3.9 GPU’da bir resmin paralel hesaplama ile histogramını hesaplama aşamaları (Sakharnykh, 
2015) 
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3.4.2 Histogram hesaplamada global bellek kullanımı  

Şekil 3.10’de gösterilen global bellekte histogram hesaplama yapan kernel 

fonksiyonu, seri histogram hesaplama fonksiyonu ile oldukça benzerdir. Buradaki 

fonksiyonun seri versiyonundan farkı atomicAdd() kullanımıdır. Diğerinden farklı 

olarak atomicAdd() kullanım nedeni ise bir önceki bölümde bahsedilen birden 

fazla iş parçacığının aynı bin değerini arttırmak istemesiyle ortaya çıkacak 

problemleri önlemek içindir. 

 
Şekil 3.10 GPU’da global bellek kullanımı ile histogram hesaplama 

  

Şekil 3.11 ‘ de histogram eşitleme de yeni renk değerinin hesaplanması için 

kullanılan cdf hesaplama fonksiyonu gösterilmektedir. Bu fonksiyonda daha 

önceden elde ettiği görüntünün histogram dizisi içerisinde tarama yaparak doğru 

değeri bulduğunda cdf’e yazar.  
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Şekil 3.11 GPU’da kümülatif dağılım fonksiyonun hesaplanması 

Şekil 3.12’de gösterilen histogram eşitleme kernel fonksiyonumuzda 

önceden hesaplanmış olan giriş görüntüsünün histogram değeri ve cdf değeri 

alınarak, görüntünün yeni parlaklık değerleri elde edilir. Yeni değerin elde 

edilmesi işleminde seri versiyonunda, şekil 3.6’da gösterilen aynı formül 

kullanılır. Seri histogram eşitleme fonksiyonumuzdan tek farkı döngülerin yerine, 

iş parçacıklarının koordinat değişkenlerinin kullanılmasıdır. 

 
Şekil 3.12 GPU’da görüntü histogramını eşitleme fonksiyonu 
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4. DENEYLER VE SONUÇLAR  

Bu tez çalışmasında görüntülerin kontrastını iyileştirmede kullanılan 

histogram hesaplama ve eşitleme algoritmalarının paralel ve seri versiyonları 

geliştirilerek CPU ve GPU üzerinde yürütülme performansları test edilerek 

incelenmiştir.  Aşağıdaki bölümlerde sırasıyla testlerimizi yaptığımız platformlar, 

girdi görüntülerimiz, elde ettiğimiz sonuçlar ve analizlerimiz sunulmaktadır. 

4.1 Test Ortamı 

Çalışmamızda CUDA C’yi kullanarak GPU üzerinde paralel kod ve C 

programlama ile CPU üzerinde seri kod derlemek için şekil 4.1’de gösterilmekte 

olan araçlar ve platformlar kullanılarak geliştirme ve test ortamımız 

hazırlanmıştır. 

ASUS K53SJ 

 Windows 10 işletim sistemi 

 İşlemci; Intel Core i7 – 

26300Q 2.00GHz 

 Grafik Kartı; NVIDIA 

GeForce GT 540M (Fermi 

Mimarisi) 

 

ASUS N552VW 

 Windows 10 işletim sistemi 

 İşlemci; Intel Core i7 – 

6700HQ 2.60GHz 

 Grafik Kartı; NVIDIA 

GeForce GTX 940M 

(Maxwell Mimarisi) 

 

Kullanılan Araçlar: 

 Visual Studio 2015 

 NVIDIA Aygıt Sürücüsü 

 CUDA Geliştirme Araçseti ( CUDA Development Toolkit Version 

8.0) 

Çizelge 4.1 Tez Test Platformları ve Araçları 

Tez çalışmasında deneyler çizelge 4.1’deki özelliklere sahip 2 farklı işlemci 

ve grafik kartında yapılmıştır. Kullanılan grafik kartlarının mimarileri Fermi ve 

Maxwell’dir. Bölüm 2.3 ‘de bahsedildiği gibi 2.1 hesaplama kapasitesine sahip 

Fermi Mimarisi 16 SM’den oluşur, 16LD/ST birim, 64KB toplam önbelleği L1 

önbelleği ve paylaşılan bellek tarafından kullanılır ve toplam 96 çekirdek içerir. 

5.0 hesaplama kapasitesine sahip Maxwell Mimarisi ise SMM olarak adlandırılan 

enerji verimliliğini büyük oranda arttıran farklı bir SM dizaynına sahiptir. 

SMM’in geliştirilmiş alan verimliliği ile GPU başına düşen CUDA çekirdeği 
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Fermi Mimarisi’ne kıyasla önemli ölçüde yüksektir. Kullandığımız bu mimarinin 

toplam çekirdek sayısı 640’dır. 32 LD/ST birimi, 32SFU ve Fermi’den farklı 

olarak özel olarak ayrılmış 96 KB’lik paylaşılan bellek alanı vardır. (Harris, 2014) 

Deneylerden elde edilen tüm sonuçlarda programımızın hem seri hem 

paralel versiyonu için de kullandığımız iki farklı bilgisayarda ful şarjlı haldeyken 

5’er kez çalıştırılmıştır. Her bir sonuç incelenerek en düşük ve yüksek değerler 

çıkartıldıktan sonra geriye kalan 3 değerin ortalaması alınarak sonuç değerlerimiz 

elde edilmiştir.  

Histogram eşitleme yöntemi daha çok gri ölçekli sisli ve bulanık 

görüntülerde iyi sonuç vermektedir fakat deneylerimizdeki amacın uygulamaların 

performans sürelerini karşılaştırılması olması nedeniyle deneylerde kullanılacak 

olan görüntü seçimi yapılırken tekdüze renklerden çok farklı renkleri içinde 

bulunduran büyük boyutlu olmasına özen gösterilmiştir. Yapılan tüm deneyler 

aynı görüntünün 3 farklı boyutu (534 x 356, 2136 x 1424 ve 4272 x 2848)  için 

denenmiştir. Kullanılan JPEG formatındaki RGB ve gri ölçekli görüntülerde RGB 

renkteki, PPM gri ölçekli görüntü ise PGM formatına dönüştürülerek girdi olarak 

kullanılmıştır. PPM ve PGM görüntü verilerinin kaydedilmesini sağlayan en 

düşük görüntü formatlarıdır. Farklı uygulamalarda bu formatlarının kullanımı ile 

görüntüler kolay bir şekilde okunabilir. Bu nedenle uygulamamızda bu 

formatların kullanımı tercih edilmiştir. 

Şekil 4.1 kullandığımız görüntünün RGB renkte ki orijinal halini 

gösterilmektedir. 

 
Şekil 4. 1 RGB renkte orjinal görüntü 
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Şekil 4.2 RGB renkteki orijinal resme histogram eşitleme uygulandıktan 

sonra çıkan PPM formatındaki sonucun JPEG formatına dönüştürülmüş hali 

gösterilmektedir. 

  
Şekil 4. 2 RGB renkte histogram eşitleme uygulanan görüntü 

Şekil 4.3’de deneyde kullanılan gri ölçekli orijinal resim ve şekil 4.4 ‘de 

orijinal resme histogram eşitleme uygulandıktan sonra çıkan PGM formatındaki 

sonucun JPEG formatına dönüştürülmüş hali gösterilmektedir. 

  
Şekil 4. 3 Gri ölçekli orjinal görüntü 
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Şekil 4. 4 Gri ölçekli histogram eşitleme uygulanan görüntü 

Şekil 4.5’de uygulamamızın CPU ve GPU üzerinde çalıştırılması ile elde 

edilen sonuç ekranı gösterilmektedir. 

 

 
Şekil 4. 5 Uygulamanın örnek sonuç ekranı 

4.2 CPU ve GPU Üzerinde Hesaplama Hız Karşılaştırmaları 

CPU için geliştirdiğimiz seri ve GPU için geliştirdiğimiz paralel kodlarımız 

iki farklı işlemci ve grafik kartı üzerinde çalıştırılmış ve çizelge 4.2’de ve çizelge 

4.3’de elde ettiğimiz tüm sonuçlar sunulmuştur. Çizelge 4.2’de gösterilen daha 

düşük bir işlemci ve grafik kartı üzerinde elde edilen sonuçlara göre küçük 

boyuttaki resimlerde CPU’nun az bir farkla olsa daha GPU’ya göre performansı 

daha yüksek çıkmıştır. GPU üzerinde yapılan hesaplamalarda veri transferi için 

gereken zamandan dolayı küçük boyutlu resimlerde çok fazla performansı artışı 



30 
 

 

elde edilememektedir. Buna ek olarak görüntü boyutu arttıkça GPU’nun CPU’ya 

göre hesaplama performansında artış gözlenmektedir. Çizelge 4.2’de görüldüğü 

gibi küçük boyutlu resimlerde CPU az bir farkla olsa da daha iyi performans 

gösterirken, orta boyutlu resimde GPU performansının CPU’nun 2,8 katına kadar 

çıktığı, büyük boyutlu resimlerde ise bu farkın 3,5 katına kadar çıktığı 

görülmektedir. 

Girdi Resim Boyutu GPU Süresi 

(ms) 

CPU Süresi 

(ms) 

Hızlanma 

(kat sayısı) 

534x356 (Gri Ölçekli)  
5.40 

 
4,76 

0,88 

534x356 (RGB Ölçekli) 7,72 13,60 1,76 

2136x1424 (Gri Ölçekli) 26,94 75,48 2,80 

2136x1424 (RGB Ölçekli) 66,10 210,55 3,18 

4272x2848  (Gri Ölçekli) 88,40 297,84 3,37 

4272x2848 (RGB Ölçekli ) 231,79 819,23 3,53 

 
Çizelge 4.2 Intel Core i7 –  2.00GHz ve Fermi Mimarisi ile elde edilen sonuçlar 

Şekil 4.6 ve 4.7’da 2.00Ghz CPU ve Fermi Mimarisi’ne sahip GPU 

üzerinde elde edilmiş sonuçları grafiksel olarak gösterilmektedir. 

 

 
Şekil 4. 6 Intel Core i7 –  2.00GHz ve Fermi Mimarisi ile gri ölçekli resimlerde elde edilen GPU 

ve CPU sonuçlarının karşılaştırması 
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Şekil 4. 7 Intel Core i7 –  2.00GHz ve Fermi Mimarisi ile RGB renkte resimlerde elde edilen GPU 

ve CPU sonuçlarının karşılaştırması 
 

Çizelge 4.3’de daha güçlü bir işlemci ve Maxwell Mimarisi ‘ne sahip grafik 

kartından elde ettiğimiz sonuçlar gösterilmektedir. Çizelge 4.3’de görüldüğü gibi 

küçük boyutlu resimlerde CPU az bir farkla olsa da daha iyi performans 

gösterirken, orta boyutlu resimde GPU performansının CPU’nun 3,7 katına kadar 

çıktığı, büyük boyutlu resimlerde ise bu farkın 4,5 katına kadar çıktığı 

görülmektedir. 

Girdi Resim Boyutu GPU 

Süresi  

(ms) 

CPU 

Süresi 

(ms) 

Hızlanma 

(kat) 

534x356 (Gri Ölçekli) 2.25 1,13 0,50 

534x356 (RGB Ölçekli) 4,33 10,31 2,38 

2136x1424 (Gri Ölçekli) 7,30 16,20 2,22 

2136x1424 (RGB Ölçekli) 42,75 159,29 3,72 

4272x2848 (Gri Ölçekli) 22,04 65,21 2,96 

4272x2848 (RGB Ölçekli) 136,19 615,60 4,52 

Çizelge 4.3 Intel Core i7 –  2.60GHz ve Maxwell Mimarisi ile elde edilen sonuçlar 

Şekil 4.8 ve 4.9’da 2.60Ghz CPU ve Maxwell Mimarisi ‘ne sahip GPU 

üzerinde elde edilmiş sonuçları grafiksel olarak gösterilmektedir. 
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Şekil 4. 8 Intel Core i7 –  2.60GHz ve Maxwell Mimarisi ile gri ölçekli resimlerde elde edilen 

GPU ve CPU sonuçlarının karşılaştırması 

 
Şekil 4. 9 Intel Core i7 –  2.60GHz ve Maxwell Mimarisi ile RGB renkte resimlerde elde edilen 

GPU ve CPU sonuçlarının karşılaştırması 

Şekil 4.10 2 farklı CPU üzerinde elde edilen sonuçların grafiksel olarak 

karşılaştırması, şekil 4.11’ de ise 2 farklı GPU’dan elde edilen sonuçların grafiksel 

olarak karşılaştırması görülmektedir. Şekil 4.11’ de Intel Core i7-2.60Hz ve 

2.00Ghz işlemcilerin karşılaştırılması yapılmış ve 2.60Ghz işlemcinin 

performansı gri ölçekli resimlerde 4,7 kata kadar hızlandığı görülmektedir. Şekil 

4.11’de Fermi ve Maxwell Mimarisi ’ne sahip GPU sonuçları karşılaştırıldığında 

4,6 kata kadar Maxwell’in performans artışı sağladığı görülmektedir. 
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Şekil 4. 10 Intel Core i7 –  2.60GHz ve 2.00Ghz ile Gri ölçekli resimlerde elde edilen CPU 

sonuçlarının karşılaştırması 

 
Şekil 4. 11 Fermi ve Maxwell Mimarisi ile Gri ölçekli resimlerde elde edilen GPU sonuçlarının 

karşılaştırması  

4.2.1 Global ve paylaşılan bellek hızlarının karşılaştırılması 

Çizelge 4.4’de ve 4.5’de Fermi ve Maxwell Mimarileri’nde yapmış 

olduğumuz histogram hesaplama işlemini CPU’da ve GPU üzerinde global bellek 

ve paylaşılan bellek kullanımı ile elde edilen performans karşılaştırılmaları 

gözükmektedir. Bu deneyde performans farklarının daha belirgin şekilde 

incelenebilmesi için en büyük boyuttaki görüntü kullanılarak yürütülme sürelerini 

hesaplanmıştır ve ana bellekten aygıt belleğine yapılan veri transfer süreleri 

hesaba katılmamıştır. 2 farklı işlemci üzerinde yapılan deneylerden elde edilen 

sonuçlara CPU’ya oranla GPU kullanımı ile büyük oranda performans artışı 

sağlandığı görülmektedir. Çizelge 4.4’de Fermi Mimarisi üzerinde global bellek 

ve paylaşılan bellek kullanımlarının performans hızları karşılaştırıldığında sonuç 

değerlerinin arasında büyük oranda fark görülmemektedir. Paylaşılan bellek 
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gücünden tam olarak yararlanılabilmesi için verimli bir donanım gerekmektedir. 

Bu donanım ihtiyacı Kepler ve sonraki mimari versiyonlarında karşılanmaktadır. 

Kullanılan GPU’nun eski bir sürüm olan Fermi Mimari’si olmasından dolayı bu 

deney sonucunda paylaşılan bellek kullanımından istenilen performans artışı elde 

edilememiştir. 

İşlemciler (ASUS K53SJ) Yürütülme Süresi (ms) 

Intel Core i7 –  2.00GHz (CPU) 

 

129,92 

NVIDIA GeForce GT 540M (Fermi 

GPU, Global Bellek) 

17,12 

NVIDIA GeForce GT 540M (Fermi 

GPU, Paylaşılan Bellek) 

18,53 

Çizelge 4.4 Fermi Mimarisi’nde histogram hesaplama yürütülme süreleri 

Çizelge 4.5’de Maxwell Mimarisi üzerinde global bellek ve paylaşılan 

bellek kullanımlarının performans hızlarını karşılaştırdığımızda paylaşılan bellek 

kullanımını global bellek kullanımına göre yaklaşık olarak 3 kat daha hızlı olduğu 

görülmektedir. Global bellek CUDA bellekleri arasında en büyük ama aynı 

zamanda en yavaş olan bellektir. Paylaşılan bellek ise global belleğe göre oldukça 

küçüktür fakat çip üzerinde bulunduğundan dolayı bu belleğe erişim çok daha 

hızlıdır. Paylaşılan bellek kullanımında bir blok içerisindeki global bellekten 

çekilen verileri aynı blok içerisindeki diğer iş parçacıklarında kullanmak için bu 

verileri paylaşılan belleğe koyulur. Böylece tekrar kullanmamız gerektiğinde 

global bellekten yeniden bu verileri çekmek zorunda kalmayız (Harris, 2013). Bu 

durumda global bellek yerine paylaşılan belleğin doğru bir şekilde kullanımı ile 

global belleğin yoğun trafiğinden kaçınıp önemli ölçüde performans artışı 

sağlanmaktadır.  

İşlemciler (ASUS N552VW) Yürütülme Süresi (ms) 

Intel Core i7 –  2.60GHz (CPU) 

 

28,43 

NVIDIA GeForce GTX 940M (Maxwell 

GPU, Global Bellek) 

7,22 

NVIDIA GeForce GTX 940M (Maxwell 

GPU, Paylaşılan Bellek) 

2,41 

Çizelge 4.5 Maxwell Mimarisi’nde histogram hesaplama yürütülme süreleri 
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Şekil 4.12’de 2.60Ghz ve 2.00Ghz CPU’da histogram hesaplama, Fermi ve 

Maxwell Mimarisi’ne sahip 2 farklı GPU üzerinde histogram hesaplama da global 

bellek ve paylaşılan bellek kullanımı ile elde edilen yürütülme sonuçları grafiksel 

olarak gösterilmektedir. 

 
Şekil 4. 12 Maxwell ve Fermi Mimarilerinde global bellek, paylaşılan bellek kullanımı ve 2.60Ghz 

-2.00Ghz CPU sürelerinin karşılaştırılması 



36 
 

 

5. SONUÇ   

Çalışmamızda görüntü işleme alanında kontrast iyileştirmede ve bir çok 

uygulamanın ön basamağı olarak en çok kullanılan yöntemlerden histogram 

eşitleme algoritması kullanılmıştır. Histogram eşitleme algoritmasının C 

programlama ile seri ve CUDA paralel programlama ile paralel versiyonları 

geliştirilerek 2 farklı GPU ve CPU üzerinde çalıştırılmış ve deney sonuçları 

gözlemlenmiştir. 

Yapılan tüm çalışmaların sonucunda uygun durumlarda GPU kullanımının 

CPU’ya göre büyük oranda performans kazanımı sağladığı görülmüştür. CUDA 

programlamanın GPU üzerinde çalışabilen paralel uygulamalar geliştirilmesine 

sağladığı kolaylık ile büyük oranda paralel hesaplama gerektiren görüntü işleme 

problemleri çözüme kavuşabilmektedir. 

Bu tez çalışmasında ayrıca, GPU ile CPU’ya göre performans kazanımının 

sağlandığının görülmesinin ardından GPU üzerinde global bellek ve paylaşılan 

bellek kullanımı incelenmiştir. Paylaşılan belleğin çip üzerinde bulunması ve 

erişim hızının oldukça yüksek olması, global belleğin ise CUDA bellekleri 

arasındaki en çok kullanılan fakat en yavaş bellek olmasından dolayı CUDA 

programlamada kullanıma uygun belleğin seçilmesi performans kazanımı 

açısından oldukça önemli olduğu deney sonuçlarından gözlemlenmiştir. Eğer bir 

blok içerisindeki iş parçacıkları tarafından birden fazla defa global bellekten 

çekilmiş bir veriye erişilmesi gerekiyorsa paylaşılan bellek kullanımının yaklaşık 

3 kata kadar hız kazandırabildiği görülmüştür. Gelecekteki çalışmalarımızda da, 

daha ileri düzey problemlerde CUDA kullanımını inceleyeceğiz. 
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