EU FEN BILIMLERI ENSTITUSU

EGE UNIVERSITESI

YUKSEK LiSANS TEZI

CUDA ILE PARALEL PROGRAMLAMA

Pelin KARAGOZOGLU

Tez Damismani :Prof. Dr. Aylin KANTARCI
Bilgisayar Miihendisligi Anabilim Dah

Sunus Tarihi : 16.05.2018

Bornova-iZMiR
2018

EGE UNIVERSITESI FEN BILIMLERI ENSTITUSU

(YUKSEK LiSANS TEZi)

CUDA ILE PARALEL PROGRAMLAMA

Pelin KARAGOZOGLU

Tez Damismani : Prof. Dr. Aylin KANTARCI

Bilgisayar Miihendisligi Anabilim Dah

Sunus Tarihi : 16.05.2018

Bornova-iZMIiR
2018

Pelin KARAGOZOGLU tarafindan yiiksek lisans tezi olarak sunulan “CUDA ile
Paralel Programlama” baslikli bu ¢aliyma EU Lisansiisti Egitim ve Ogretim
Yénetmeligi ile EU Fen Bilimleri Enstitiisii Egitim ve Ogretim Yonergesi'nin
ilgili hiikiimleri uyarinca tarafimizdan degerlendirilerek savunmaya deger
bulunmus ve 16/05/2018 tarihinde yapilan tez savunma smnavinda aday

oybirligi/oygoklugu ile bagarili bulunmustur.

Jiiri Uyeleri: imza

GK LU
Jiiri Bagkam : Prof. Dr. Aylin KANTARCI B ol A
Raportir Uye: Doc. Dr. Aysegiil ALAYBEYOGLU LAvL\

Uye : Yrd. Doc. Dr. Sebnem BORA s 3 00 ovor SEAIN

EGE UNiVERSITESI FEN BILIMLERI ENSTITUSU

ETIiK KURALLARA UYGUNLUK BEYANI

EU Lisansiistii Egitim ve Ogretim Yénetmeliginin ilgili hitkiimleri uyarmeca
Yiiksek Lisans Tezi olarak sundugum “CUDA ile Paralel Programlama™ baglikli
bu tezin kendi calismam oldugunu, sundugum tiim sonug, dokiiman, bilgi ve
belgeléﬁ bizzat ve bu tez ¢aligmasi kapsaminda elde ettigimi, bu tez galismasiyla
elde edilmeyen biitiin bilgi ve yorumlara atif yaptlglmi ve bunlar1 kaynaklar
listesinde usuliine uygun olarak verdigimi, tez ¢alismasi ve yazimi sirasinda patent
ve telif haklarini ihlal edici bir davranisimin olmadigini, bu tezin herhangi bir
bélumiinii bu Giniversite veya diger bir iiniversitede bagka bir tez ¢alismasi iginde
sunmadigimi, bu tezin planlanmasindan yazimina kadar biitiin sathalarda bilimsel
etik kurallarina uygun olarak davrandigimi ve aksinin ortaya ¢ikmasi durumunda

her tiirlii yasal sonucu kabul edecegimi beyan ederim.

16/05/2018
Imzasi

Pelin Karagtzoglu

ot

vil

OZET

CUDA iLE PARALEL
PROGRAMLAMA

KARAGOZOGLU, Pelin

Yiiksek Lisans Tezi, Bilgisayar Miihendisligi Anabilim Dali
Tez Danigmani: Prof. Dr. Aylin KANTARCI
Nisan 2018, 40 sayfa

Son zamanlarda GPU’larin biiyiik gelisme gdstermesi ile birlikte CPU’larin
yardimer islemcisi olarak farkli alanlarda da kullanilmaya baslamstir. Ozellikle,
NVIDIA’nin CUDA paralel programlama platformunu gelistiricilere sunmasiyla
birlikte GPU kullanimi goriintii isleme gibi biiyiik hesaplama gerektiren

uygulamalarin paralellestirilmesinde biiyiik kolayliklar saglamistir.

Bu tez kapsaminda da NVIDIA CUDA kullanimi ile GPU iizerinde paralel
programlama gelistirme incelenmis ve goriintlii isleme uygulamalarinin en ¢ok
kullanilan yontemlerinden histogram hesaplama ve esitleme algoritmalari CUDA
programlama yardimi ile paralellestirilerek algoritmalarin seri ve paralel
versiyonlar1 iki farklh CPU ve GPU iizerinde c¢alistirllmig, performans

karsilastirmalar1 yapilmstir.

Anahtar sozciikler: CUDA, histogram, histogram esitleme, paralel
programlama, CPU, GPU.

X

ABSTRACT

PARALLEL PROGRAMMING
WITH CUDA

KARAGOZOGLU, Pelin

MSc in Computer Eng.
Supervisor: Prof. Dr. Aylin KANTARCI
April 2018, 40 pages

Recently, GPUs show great improvements and they are being used in
different areas as a CPU coprocessor. Especially, after that NVIDIA’s CUDA
parallel programming platform is presented to developers, the GPU usage
provided great convenience in parallelizing application such as image processing

which requires large computation.

In this thesis, parallel programming development on GPU with CUDA was
investigated. Also histogram computation and equalization, the most commonly
used methods of image processing application, have been parallelized by using
CUDA parallel programming. In addition, to compare the execution times of
performance, both serial and parallel versions of these algorithms were executed
on two different CPU and GPUs.

Keywords: CUDA, histogram, histogram equalization, parallel
programming, CPU, GPU.

xi

TESEKKUR

Tez c¢alismast boyunca Onerileri, rehberligi, degerli yorumlar1 ve
destekleri i¢in danismanim Prof. Dr. Aylin Kantarci’ya tesekkiirlerimi sunarim.
Son olarak sevgili aileme her daim bana verdikleri destek ve sabir i¢in en igten

dileklerimle tesekkiir ederim.

xiii

ICINDEKILER
Sayfa
OZET ..o, vii
ABSTRACT ...ttt sttt st sb e st be st naeen X
TESEKKUR ..ottt ena s xi
SEKILLER DIZINT ..o XV
CIZELGELER DIZINI......oooiiiiiiiieeeeeeeeeeeeeeeeeeeeeee e, Xvii
SIMGELER VE KISALTMALAR DIZINIccccoocovimminiinierreinererrenenen, xviii
Lo GIRIS ettt 1
2. GPU MIMARISI ...ooouiitiitiecstiesie et 3
2.1 Genel GPU MIMATIST....cciueeiiieiiieiiieiie ettt ettt ettt siee s aee e ens 3
2.2 Heterojen Hesaplama...........c.eooeeeiiiiiiiiiiiieiie ettt 8
2.3 Fermi ve Maxwell MIMATiSTocuveruieierieniieiesiiesieeie ettt 11
2.3.1 Fermi MIMATIST «.ccueeevieriiieiieniieeiie et eiee et etee et esieeeteesiee bt esieeebeesaaeenseeseee 11
2.3.2 MaxWell MIMATTST.....eeureerieiirieniiesieeie ettt et 12
3. CPU VE GPU’DA GORUNTU ISLEMEc.coveiieeeeeeeeeeeeeeeeeee, 15
3.1 Histogram Hesaplama ve Esitleme...........cccooviiiiiniiiiiiiiiiieeeceieeeeeeee 15
3.2 CPU’da Histogram Hesaplama ve Esitleme..........cccoceverviniininiinicncnicnnne 16
3.3 GPU’da Histogram Hesaplama ve Esitleme............cccocceevvveviiiiienieeieenieene, 19
3.4. GPU Uzerinde Paylagilan Bellek Ve Global Bellek Kullanimi 21

3.4.1 Histogram hesaplamada paylasilan bellek kullanimiccccoevveennnnnee. 21

Xiv

ICINDEKILER (devam)
Sayfa
3.4.2 Histogram hesaplamada global bellek kullanimi..............cccccoeveiiiniiiennnennn. 24
4. DENEYLER VE SONUCLARooctiitiiiiieieetenieeeeseeeee et 26
4.1 TSt OTTAML ..ttt ettt e e s e e e s 26
4.2 CPU ve GPU Uzerinde Hesaplama Hiz Karsilastirmalart..................ccco........ 29
4.2.1 Global ve paylasilan bellek hizlarinin karsilagtiritlmasi..........ccccceeevevveneeee. 33
5. SONUC ...ttt ettt sttt ettt et e et e e st e teenseeaeesseenseeneenseenseeneans 36
KAYNAKLAR DIZIN. oottt 37

OZGECMIS ..ot s e es e s e s s e e e e es e es e eseee 40

XV

SEKILLER DiZiNi
Sekil Sayfa
2.1 CPU’nun donanimsal mimari Karsilagtirmast..........ccccueeeeveeeinieeeiieescieeeneeens 3
2.2 SM MUMATIST c.vteuteriieiieie ettt ettt et et e sttt et e sae e be et e sneenaeeneeseeenee 4
2.3 Is parcaciklari, blok’lar ve grid arasmdaki iligkic.cccoevevevrererererrnnnnn. 5
2.4 GPU igerisindeki belleKICr..........cccviiiiuiiiiiiiiiieeeeee e 7
2.5 CPU ve GPU’ NUN BITlESIMIeviieiiieeiiiecciee ettt 8
2.6 Heterojen Programlama modeli............ccoeevieriiiiiieniiieniiieiieieceee e, 10
2.7 Fermi MIMATIST ...cc.ceeiuieriiieiieiieeitie et eeiee st ettt e et siee et esiee et e saeeensee e 12
2.8 Maxwell SMM MIMATIST ..ceveruvereieriieieriieieeeesieesie ettt seee e eneens 13
3.1 @) Orijinal TESIM.cuveeuiiiiiiiriieeiteieet ettt ettt sttt 15
3.1 b) Orijinal resme histogram esitletme uygulandiktan sonra.............ccccoc...... 15
3.2 Seri histogram hesaplama algoritmast...........ccceevverieririiinieneeiienienecienene 16
3.3 CPU’da RGB renk resim i¢in kontrast iyilestirme fonksiyonu..................... 17
3.4 CPU’da goriintii histogram esitleme fonksiyonu.........cccceecveveevienicnenncnnene 18
3.5 Kiimiilatif dagilim fonksiyonu hesaplama formiilii............cccoovevcvieniienneennen. 18
3.6 Parlaklik degeri hesaplama formiilii..........cccoviiieiiiiiiiiiiiieee, 18
3.7 GPU’da kontrast iyilestirme fonkSiyonuccecvvevevierieecieenieicieenie e, 20
3.8 GPU’da paylasilan bellek kullanimai ile histogram hesaplama...................... 23
39 GPU’da bir resmin paralel hesaplama ile histogramini hesaplama

ASAMALATToeeiieiiiie ettt naees 23

3.10 GPU’da global bellek kullanimu ile histogram hesaplama........................... 24

XVi

SEKILLER DIiZiNi (devam)

Sekil Sayfa
3.11 GPU’da kiimiilatif dagilim fonksiyonun hesaplanmasi..........c.cc.cccoceeuenee 25
3.12 GPU’da goriintii histogramini esitleme fonksiyonuccccccveevveivennnennen. 25
4.1 RGB renkte orjinal GOTTNtlicocveveeeviiriiniiiiniereeieeceeeee e 27
4.2 RGB renkte histogram esitleme uygulanan gortintii...........c.cccceevvverveenennne. 28
4.3 Gri 6lgekli orjinal gOTUNLc..ooveriiiiiiiiiieierieeee e 28
4.4 Gri 6lgekli histogram esitleme uygulanan gorintii............ccceeeeveerreeeveenennne. 29
4.5 Uygulamanin 6rnek sonug eKrant..........coceevuerieneniiiniiniencnicneeeneceenen 29

4.6 Intel Core i7 — 2.00GHz ve Fermi Mimarisi ile gri 6lg¢ekli resimlerde
elde edilen GPU ve CPU sonuglarinin karsilastirmasi.............cccceeeeveeennee. 30

4.7 Intel Core i7 — 2.00GHz ve Fermi Mimarisi ile RGB renkte resimlerde elde
edilen GPU ve CPU sonuglarinin karsilagtirmastcccceeeveeeenveeeneeeenneen. 31

4.8 Intel Core 17 — 2.60GHz ve Maxwell Mimarisi ile gri 6lgekli resimlerde elde
edilen GPU ve CPU sonuglarinin karsilagtirmastccccceevveeeenveeecneeeenneen. 32

4.9 Intel Core i7 — 2.60GHz ve Maxwell Mimarisi ile RGB renkte resimlerde
elde edilen GPU ve CPU sonuglarinin karsilastirmasi.............cccceeeeveeenneen. 32

4.10 Fermi ve Maxwell Mimarisi ile Gri Olgekli resimlerde elde edilen CPU

sonuglarinin Karsilastirmasi.........c...cocuveiiiiieeiiieeciee e 33

4.11 Intel Core i7 — 2.60GHz ve 2.00Ghz ile Gri 6l¢ekli resimlerde elde edilen
GPU sonuglariin Karsilagtirmast..........cccveeeveeeeiieesiee e 33

4.12 Maxwell ve Fermi Mimarilerinde global bellek, paylasilan bellek kullanimi
ve 2.60Ghz -2.00Ghz CPU siirelerinin karsilastirilmasi.............ccccouveeeee.. 35

Xvil

CIZELGELER DiZiNi

Cizelge Sayfa

2.1 Kullanilan Fermi ve Maxwell Mimarisi’nin 6zellikleric.cccooceeneenne 14
4.1 Tez test platformlart ve araglari..........ccoeeevieeiiieiiiiiiie e, 26
4.2 Intel Core 17-2.00GHz ve Fermi Mimarisi ile elde edilen sonuglar-.............. 30
4.3 Intel Core 17-2.60GHz ve Maxwell Mimarisi ile elde edilen sonuglar......... 31
4.4 Histogram hesaplama yiiriitiilme Stireleri........cocceveieiieniienieiiiiceeee 34
4.5 Histogram hesaplama yuriitilme SUreleri.........oocevvverieeiiienieeiienieeieeee, 34

XViii

SIMGELER VE KISALTMALAR DiZiNi

Kisaltmalar

ALU Aritmetik mantik birimi

CDF Kiimiilatif dagitim fonksiyonu

CPU Merkezi islem birimi

CUDA Birlestirilmis hesaplama aygit mimarisi
DRAM Dinamik rastgele erisim bellegi

FPU Kayan nokta birimi

GPU Grafik islem birim

JPEG Birlesik fotograf uzmanlar1 grubu
LD/ST Yiikleme/depolama birimi

PCI Cevresel bilesen baglantisi

PGM Tasinabilir gri harita dosya formati
PPM Tasinabilir imge harita dosya formati
RGB Kirmizi, yesil, mavi

SFU Ozel fonksiyon birimi

SM Akis islemcisi

SMM Akis ¢ok islemcisi

SIMT Tek talimat ¢oklu is parcacigi

XX

SIMGELER VE KISALTMALAR DiZIiNi (devam)

Kisaltmalar

YUV Luminance (siyah-beyaz), chrominancel (mavi),

chrominance2 (kirmizi)

1. GIRIS

Giliniimiizde GPU’lar bilgisayar sistemleri i¢in vazge¢ilmez birimler haline
gelmistir. Bunun nedeni CPU’larin tek bir gorev i¢in hizli yanit siiresi saglayan,
az islemci cekirdegine sahip olarak tasarlanmis olmasidir. Ozellikle goriintii
isleme gibi yogun hesaplama ve paralellik gerektiren durumlarda CPU’nun
performansi yetersiz kalmaktadir. GPU’larin ise, igerisindeki yiizlerce c¢ekirdegi
kullanmasi ile birlikte paralel bir sekilde grafiksel ve biiylik hesaplamalari kolayca
yapabilme kabiliyetine sahip olmasi ve temel goriintii islemlerini yerine getiren
donanimlar igermesi, problemlerin ¢éziimiinde biiylik kolaylik saglamistir (Lee et
al., 2010).

GPU kullanimina olan ihtiyacin artmasiyla birlikte, NVIDIA tarafindan
2006 yilinda, paralel programlama mimarisi ve platformu olan birlestirilmis
hesaplama cihaz mimarisi CUDA piyasaya siriilmistir. CUDA, CPU ve
GPU’nun birlikte ¢alismasii destekleyen bir paralel programlama mimarisidir.
CUDA ile GPU kullanim1 ¢ok daha verimli ve kolay hale gelmistir (Yang et al.,
2008).

Bu tez c¢alismasi kapsaminda NVIDIA CUDA mimarisi kullanilarak,
goriintli islemenin en temel fonksiyonlar1 olan ve goriintiilerin kontrastinin
arttirilmasin1 ~ saglayan histogram hesaplama ve esitleme algoritmalari
paralellestirilmistir. GPU iizerinde gri tonlamali ve RGB renkli resimler
kullanilarak deneyler yapilmis ve bu sayede GPU’larin nasil programlandigi
hakkinda deneyim sahibi olunmasi amaglanmistir. Histogram hesaplama ve
esitleme algoritmalarinin hem seri hem de paralel kodu gelistirilerek CPU ve GPU
tizerinde performans ol¢timleri yapilmistir. Gelistirilen algoritmalar iki farkli GPU
hesaplama mimarisi olan Fermi ve Maxwell iizerinde denenmis ve farkl
mimarilerin performansa etkisi incelenmistir. Son olarak da ¢ok is parcacikli
ortamlarda karsimiza ¢ikan senkronizasyon probleminin GPU’lar iizerinde nasil

ele alindig1 incelenmistir.

Bu tez ¢alismasinin diger boliimlerinde sirasiyla, farkli GPU mimarileri ve
CUDA mimarisi, histogram hesaplama ve esitleme algoritmalari {izerinde yapilan
paralellestirme ve paralel programlamada yaygin bir problem olan
senkronizasyonun GPU’lar {lizerinde islem yapilirken nasil ¢oziildiigii hakkinda

bilgilere yer verilmistir.

Tezin deney ve sonuglar bolimiinde CPU ve GPU iizerinde yapilan
deneylerden ¢ikan sonuglar gosterilmis ve yorumlanmistir. Son olarak ¢alismanin

sonuglari ve gelecekte yapilabilecek ¢aligmalarla ilgili 6neri sunulmustur.

2. GPU MIMARISI

Ilk GPU NVIDIA tarafindan 1999 yilinda iiretilmistir ve 2003 yilindan
itibaren de grafiksel islemlerin disinda yiiksek derecede paralellik gerektiren
goriintii isleme vb. uygulamalarda, yiiksek performans ve verimlilik elde etmek
icin kullamlmaya baslanmustir. Onceleri uzun yiiriitme siirelerine sahip olan
goriintli uygulamalar1 tizerinde ¢alisma yapilmasi bliyiik problem olustururken,
simdilerde GPU’nun yiizlerce paralel islemci ¢ekirdegine sahip olmasi ile bu
problem ¢oziime kavusmustur (NVIDIA, 2007).

Sekil 2.1’ de GPU ve CPU mimarileri gosterilmektedir. Bu mimarilere
bakildiginda, CPU mimarisinin ¢ok az sayida matematiksel ve mantiksal islemleri
destekleyen Aritmetik Mantik Birimi’nden (ALU) olusurken biiyiik oranda
kontrol ve onbellek alanlarina sahip oldugu, GPU’nun ise cok sayida kiigiik
ALU’ya sahip oldugu ve onbellek alanlarina daha az yer ayirdigi goriilmektedir.
GPU, bu sayede bellek erisimlerinden kaynaklanan gecikmelere maruz kalmadan
cok daha fazla islemci c¢ekirdegini kullanarak hizli bir sekilde paralel
hesaplamalar1 yapabilmektedir (NVIDIA, 2007).

Contrl AW ||M.LI ‘ = :__ IlI i |
AU :""uu ‘ ~REENNERERNENEEEE
| m || | B EEE
W T

m] || |

W ITIITTIIT]
LTI TTTITITT

CPU GPU

Sekil 2.1 CPU’nun donanimsal mimari karsilagtirmasi (NVIDIA, 2007)

GPU’nun paralel hesaplama yeteneginden dogru ve verimli bir sekilde
yararlanilabilmesinin en 6nemli gereksinimlerinden biri de kullanilan GPU ve

CUDA mimarisi hakkinda gerekli bazi temel bilgilere sahip olunmasidir.

2.1 Genel GPU Mimarisi

GPU mimarisinde birden fazla bagimsiz is pargacigi (thread) tek bir talimat
(SIMT) kullanilarak ayn1 anda yiiriitiilebilme kabiliyetine sahiptir. Her GPU

Olceklenebilir sayida akis islemcisinden (SMs) olusur. GPU igerisinde onlarca SM
vardir, bu say1 GPU mimarisine ve versiyonuna gore degisiklik gosterir. Genel
GPU mimarisinde, her SM’in igerisinde akis islemcileri (SP) bulunur. SM’ler SP
tizerinde calisan ylizlerce is pargaciginin ayni anda yiiriitiilmesini saglar. Her SM
ayn1 anda birden fazla is parcacigl blogunu tutabilir ve her biri paylagilan bellege
ve kayitciya (register) sahiptir. Paylasilan bellek ve kayit¢inin boyutu kiiciik, fakat
bu belleklere erisim ¢ok hizlidir. Bu kaynaklar ayn1 SM iizerinde bulunan is

parcaciklari arasinda boliinmektedir. (Clua and Zamith, 2015).

SM’ler CUDA ¢ekirdeklerinden, paylasilan bellek, kayitci, yiikleme ve
saklama birimleri, sin(), cos() ve exp() gibi matematiksel islemleri yapan ozel
fonksiyon birimi (SFU) ve ¢ozgli zamanlayicist (warp schedular)’dan olusur.

Sekil 2.2° deki 6rnekte bir SM mimarisi gosterilmektedir.

Sekil 2.2 SM mimarisi (Cheng et al., 2014)

SM igerisindeki is parcaciklarinin birlesmesi ile olugsan gruba is pargacigi
blok’lar1 ad1 verilir. Bir blok’un igerisinde ki i par¢aciklarinin sayisi sinirlidir. Bu
say1 mimarilere gore degisiklik gosterebilir (Clua and Zamith, 2015). s pargacig

blok’larinin birlesimi ile olusan blok gruplarina ise grid adi verilir. Sekil 2.3° de
bu gruplarin birlesmesiyle

olusan is parcacig, blok ve grid yapisi
gosterilmektedir.
Host Device
Grid 1
Kernel 'l'———P Block Block Block
1 ©9 || (1,0 || @0
" Block | Block
L @1

Sekil 2.3 Is pargaciklari, blok’lar ve grid arasindaki iliski (New York University., 2017)

Her is parcaciginin ve blok’un kendilerine ait birer ID ’si vardir. Bu ID’ler,
threadldx, blockldx’dir, bir boyutlu, iki boyutlu ve ii¢ boyutlu olabilir. CUDA
blok’lar1 ve grid’leri ii¢ boyutta diizenler. Her bir boyuta vektdr yapisinin x, y, z

bilesenleri ile erisilebilir. (Cheng et al., 2014)

Threadldx, is parcaciginin blok igerisindeki yerini belirtir.
BlocklIdx, blok’un grid icerisindeki yerini belirtir.

e BlockDim, bir blok’un boyutunu ve igerisinde ¢alisan is pargacigi
sayisint belirtir, bu boyut icerisindeki is parcacigi sayisina gore
degisir.

e GridDim, bir grid’in boyutunu ve blok sayisini belirtir. (Cheng et
al., 2014)

Blok’lar warp schedular tarafindan her biri 32 adet is par¢acigindan olusan
warp’a boliiniirler. Warp igerisindeki tiim is parcaciklari ayn1 kodu yliriitlir ve bir
warp igerisindeki her is parcacigi kendi komut sayacina, durum kayitgisina ve
bagimsiz yiiriitme yoluna sahiptir. Warp’lar dagitict biriminin (Dispatch Unit)
temelidir ve farkli ig pargcacigr blok’larindan olusan iki warp es zamanl
calisabilme kabiliyetine sahiptir. SM {izerinde bir ¢ok warp programlanabilir fakat
SM’in kaynak kullana bilirligine bagli olarak tiim warp’lar aktif olmaz (NVIDIA,
2007; Paravecino, 2017).

Bir blok’daki tiim is parcaciklart ayn1 SM {izerinde calisir, bu nedenle ayni
blok’da bulunan is pargaciklar1 birbirleriyle isbirligi halindedir ve paylasilan
bellek araciligr ile iletisim saglarlar. Blok’lar ise birbirleriyle global bellegi
kullanarak iletigimi saglarlar. (Paravecino, 2017).

GPU farkli belleklerden olusur. Bu belleklerin hiyerarsik gosterimi sekil
2.4’de gosterilmektedir. Sirastyla bu bellekler; kayitci (register), paylasilan bellek
(shared memory), yerel bellek (local memory), global bellek (global memory),

sabit bellek (constant memory) ve doku bellegi (texture memory)’dir.

' Block (0, 0) Block (1, 0)

Sekil 2.4 GPU igerisindeki bellekler (Ding., 2014)

e Kayit¢i: En hizli bellek alanidir ve her is pargacigi igin 6zeldir. Kernel bu
bellek alanini sik erisilen is parcacigina 6zel degiskenleri tutmak i¢in
kullanir. Kernel’in yiiriitiilmesi tamamlandiktan sonra buradaki
degiskenlere tekrardan ulasilamaz (Cheng et al., 2014).

e Paylasilan Bellek: Her SM icin ayrilmistir. Sadece ayni blok’da ki is
parcaciklari bu bellege erisebilir. Paylasilan bellege erisim kayitci bellek
alanina erisim kadar hizlidir. Bu bellegin kullanimi ile global bellek
erisiminden kagiilabilir, paylasilan bellege erisim 4 saat donglisii
siirerken, genel bellege erisim 400-600 saat dongiisii slirer. Bir blok
bittiginde paylasilan bellek alani silinir. (Clua and Zamith, 2015; Yang
et al., 2008).

eYerel Bellek: Bu bellege sadece ait oldugu is pargacigi tarafindan
ulagilabilir. Buradaki veriler is parcaciginin ¢aligmasi sirasinda saklanip
sonrasinda silinir. Bellege erisim, yiiksek gecikme ve diisiik bant
genigligindedir (Cheng et al., 2014; Clua and Zamith, 2015).

¢ Global Bellek: GPU’nun en ¢ok kullanilan bellegidir, tiim is parcaciklari
tarafindan bu bellege erisim vardir. Yiiksek gecikme siiresine ve diigiik
bant genisligine sahiptir. Yasam siiresi uygulamanin omrii kadardir
(Cheng et al., 2014; Clua and Zamith, 2015).

e Sabit Bellek: 64KB’lik kiigiik bir bellektir, sadece okuma islemlerini
gergeklestirir. Ayni1 warp igerisindeki tiim is parcaciklarinin ayni bellek
adresinden okuma yaptig1 durumlarda en iyi performansi saglar (Cheng
et al., 2014; Clua and Zamith, 2015).

eDoku Bellegi: Bir c¢esit global bellektir. Sadece okuma islemlerini
gerceklestirir. Onbellektedir, doku ve veri yumusatilmas: gibi grafiksel
islemlerde kullanilir (Cheng et al., 2014; Clua and Zamith, 2015).

2.2 Heterojen Hesaplama

GPU tek basina c¢alisan bir islemci degildir, CPU’nun yardimci islemcisi
olarak calismaktadir. Hem CPU’nun hem de GPU’nun farkli program tiirleri i¢in
avantajlar1 vardir. Bu nedenle, birbirlerini tamamlayici 6zelliklere sahiptirler. En
iyi performansa birlikte kullanilmalariyla ulasilir. Bu kullanima heterojen
hesaplama adi verilmistir. Sekil 2.5’de goriildiigii gibi CPU ve GPU donanimlari
arasindaki baglanti PCI-Express veri yolu ile saglanir. Bu hesaplamada, CPU ana
bilgisayar (host), GPU ise aygit (device) olarak adlandirilir (Cheng et al., 2014).

ALU ALU
Control
ALU ALU
Cache
PCle Bus
DRAM DRAM
CPU GPU

Sekil 2.5 CPU ve GPU’nun birlesimi (Cheng et al., 2014)

CPU ve GPU’nun heterojen bir sekilde kullaniminda, uygulama CPU
tarafindan baglatilir. CPU, ortamin, kodlarin ve verilerin ydnetiminden
sorumludur. Veri biyiikligi kiigiik ve disiik seviye paralellik gerektiren seri
algoritmalar yiiriitiiliir. GPU’lar ise, hesaplamanin yogun oldugu ve biiyiik oranda
paralellik gerektiren boliimlerin hizlandirilmasi i¢in kullanilir. Bu durumda,
GPU’lar donanim hizlandiricisi olarak diistliniilebilir (Cheng et al., 2014).

Heterojen programlamanin kullanimini kolaylastiran en 6nemli etkenlerden
biri de NVIDIA’nin GPU’larda ki paralel hesaplamayr kullanan CUDA
programlama modelini ¢ikartmasidir. CUDA programi ana makine kodu (host) ve
cihaz kodundan (device) olusur. Sekil 2.6’da heterojen programlama modelinde
bir kernel fonksiyonunu cagirdigimizda sirasiyla yapilan iglemler
gosterilmektedir. Sekilde goriildiigi gibi derleme sirasinda device kodu host
kodundan ayrilir. GPU iizerinde c¢alisan paralel koda c¢ekirdek (kernel) adi
verilmistir ve C programlama kullanilarak yazilabilir, kernel kodu CPU tarafindan
cagirilir ve kernel’in ¢agrilmasiin ardindan device ¢alismaya baglar. Kernel GPU
tizerinde yiiriitiiliirken programin geriye kalan C kodlar1 CPU iizerinde ¢alistirilir.
Device’in kernel fonksiyonunu ¢alistirmasini bitirmesinin ardindan kontrol tekrar
CPU’ya gecer ve CPU yeni kernel fonksiyonunu ¢agirir (NVIDIA, 2018; Cheng
et al., 2014).

10

C Program

Sequential

Execution
Serial code Host j
Parallel kernel Device
Harne L s x|) Grid 0

Block (0, 0) Block (1, 0) Block (2, 0)

Block [0, 1) Block (1,1) Block (2, 1)

Sarial code Host
Device
Parallel kernsl
Grid 1

Kernelldgd»sx ()

E:

Block (0, 1) Block (1, 1)
Block (0, 2) Block (1, 2)

Sekil 2.6 Heterojen programlama modeli (NVIDIA, 2018)

Kernel’ler bir dizi is parcacigi tarafindan ¢alistirilir ve her biri ayni kodu
paralel olarak calistirir. Is parcacigi bir déngiideki bir yineleme gibi diisiiniilebilir
(Cheng et al., 2014). Heterojen hesaplamada is akis1 genel olarak asagidaki
gibidir;

e Ik olarak program CPU’daki verilerin hazirlanmasiyla baslar.

e Veriler CPU’dan GPU’nun genel bellegine kopyalanir.

e Is parcaciklar1 global bellekte ki verileri okuyarak yerel belleklerine
yazarlar. GPU, bu veriler iizerinde ¢alisip, hesaplamalari tamamlar.

e Son olarak sonug global bellege geri yazilir. (Cheng et al., 2014; Eklund et
al., 2013)

11

2.3 Fermi ve Maxwell Mimarisi

Bu tez kapsaminda iki farklit GPU mimarisi kullanilmistir bunlar Fermi ve
Maxwell Mimarileri’dir. NVIDIA, GPU donanim versiyonlarini tanimlamak igin
hesaplama kapasitesi terimini kullanmaktadir. Bu c¢alismada kullanilan
mimarilerden Fermi kiigiik hesaplama kapasitesine (2.x), Maxwell ise yiiksek

hesaplama kapasitesine (5.x) sahiptir.

2.3.1 Fermi mimarisi

Fermi Mimarisi 16 SM’den olusur ve her SM’de 32 CUDA ¢ekirdegi olacak
sekilde toplam 512 hizlandiric1 ¢ekirdek SM iizerine yerlestirilmistir. Her bir
CUDA ¢ekirdegi ardisik olarak dizilmis ALU’ya ve FPU’ya sahiptir. Bir SM’de
16 yiik/depo (load/store) birimi vardir, bu birim bir warp igerisindeki is pargacigi
sayisinin yarisi kadar yani 16 is pargacigi icin kaynak ve hedef adreslerinin
hesaplanmasini saglar. Ayrica SM’de 4 SFU bulunur, SFU’lar siniis, cosiniis ve

karekdk gibi talimatlar1 yonetirler (Cheng et al., 2014).

Asagida sekil 2.7°de gorildiigi gibi bu mimaride SM’ler L2 Onbelligi
etrafinda konumlandirilmislardir ve tiim SM’ler bu bellegi paylasirlar. Ayrica her
SM’in 2 adet ¢0zgli zamanlayicist1 (warp schedular) ve 2 dagitict birimi
(dispatcher unit), paylasilan bellegi, 64 KB’lik kayitcist ve L1 onbellegi vardir.
Zamanlayic1 ve dagitict birimler SM’e bir is pargacigi blogu atandiginda 32°lik
warp’lara boliiniir ve ¢ozgli zamanlayicilar1 2 warp secer ve her warp’tan bir
talimati 16 CUDA ¢ekirdegine, ylik/depo birimine ve 4SFU’ya bildirir. Yine
sekilde 2.7°de goriildiigii gibi bu mimaride 1 GigaThread motoru (engine) ve
toplam 6GB’lik global bellek destegi saglayan 6 adet DRAM bulunmaktadir.
GigaThread motoru is pargacigi bloklarint SM’deki warp zamanlayicilarina

dagitmada gorev alir (Cheng et al., 2014).

2
‘T
[
s
ic
-
1]
[+]
I

Paylasilan Bellek
Kaydedici
L1 On Bellek

Sekil 2.7: Fermi Mimarisi (Cheng et al., 2014)

CUDA gekirdekleri Zamanlayia ve Dagitici

Birimleri

2.3.2 Maxwell mimarisi

Maxwell Mimarisi’nde onceki mimarilere gore giic verimliligini daha ¢ok
arttirmak i¢in yeni bir SM tasarimi yapilmistir. Diger mimarilere gore her SM
daha az sayida CUDA c¢ekirdeginden olusur. Bu yeni SM mimarisi daha kiigiik
akis cok islemcisi (SMM) olarak adlandirilmistir.

Sekil 2.7°de goriildiigii gibi her SMM yapis1 4 6zdes alt yapidan olusur. Her
birinde 32 c¢ekirdek, 8LD/ST birimi, 8SFU ve 16K kayit¢1 bulunur ve SMM
basina diisen CUDA c¢ekirdegi 128°dir, her saat dogiisiinde iki talimat génderen 4
warp zamanlayicisi, 8 doku birimi (texture unit) ve 8 talimat dagiticit birimden
olusur. Bu mimarideki en 6nemli degisimlerden biri de bellek hiyerarsisidir.
Paylasilan bellek icin 6zel bir alan ayrilmistir ve L1 6nbellegi doku 6n bellegi ile
birlestirilmistir. Diger mimarilerde bu alan L1 6nbellegi ve paylasilan bellek
arasinda boliiniiyordu (Harris, 2014;_Paravecino, 2017).

13

PolyMorph Engine 3.0
J[[Vertexfewwh][Tessetietor][Viewport Transtorm

Attribute Setup | [Abtribute Sstup || Stream Output

Instruction Buffer Instruction Buffer
Warp Scheduler | Warp Scheduler

Dispatah Unit Dispatch Unat Dispatch Unet Diespatch Unit
B S B B R

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
Core Core Core Core LoraT

Core Core Core Cora LBisT

Core £ Core Core Core LorET

Core) - Core Core Core LDvST

Core S Core Core LDisT

Core e - Core Core LorsT

Core Core LDrET

Core Cora LDIST

Texture | L1 Cache

Warp Scheduler | Warp Scheduler

Dispatch Unit Dispatch Unit Dispatch Unie Dixpatch Linit
= 9 £ A A

Register File (16,384 x 32-hit) Register File {16,384 x 32-bit)
Core Cora Cora Cora Core Cora LO/ST

Core Coare Coare L/ Caore Core LO/ST

Core Core Core Core LO/ST

Cora | Core Cora 4 Cora LO/ST

Core Core Core ; = Core LO/ST

Core Core Core LO/ST

Core | Cora Cora

Core Core

Sekil 2.8:Maxwell SMM Mimarisi (Clua and Zamith, 2015)

Cizelge 2.1°de tez ¢alismasinda kullanilan GPU mimarilerinin 6zellikleri
gosterilmigtir. Kiigiilk hesaplama kapasitesine sahip mimarilerin farkli
versiyonlarinda giincellemelere bagl olarak baz1 degisiklikler bulunmaktadir. Bu
nedenle yukarida bahsedilen genel Fermi Mimarisi’'ne gore kullanilan GPU

mimarisinde, 6rnegin; CUDA ¢ekirdek sayisi farklilik gostermektedir.

14

GeForce GT GeForce GTX
540M (Fermi) 960M (Maxwell)
Cuda Cekirdegi 96 640
Bellek Hizi (Mhz) 900 2500
Bellek Arayiizii 128-bit DDR3 128-bit GDDRS
Bellek Bant Genisligi 28.8 80
CUDA Kapasite 2.1 5.0
Versiyonu
Toplam Global Bellek 2.0 Mbytes 4.0 Mbytes
L2 Cache Boyutu 131072 bytes 2097152 bytes
Toplam Sabit Bellek 65536 bytes 65536 bytes
Blok Basina Paylasilan 49152 bytes 49152 bytes
Bellek Toplam
Blok Basina Toplam 32768 65536
Kayitc1 Sayisi
Warp Boyutu 32 32
Her Bir Cok Islemcili 1536 2048
Basina Maksimum s
Parcacig1 Sayisi
Her Blok Basina 1024 1024
Maksimum Is Parcacigi
Sayisi
Bir Blogun Her 1024 x 1024 x 64 1024 x 1024 x 64
Boyutunun Maksimum
Bityiikligii
Bir Grid’in Her 65535 x 65535 x 2147483647 x 65535
Boyutunun Maksimum 65535 X 65535
Biiyiikliigii
Maksimum Bellek 2147483647 bytes 2147483647 bytes
Arahg (pitch)

Cizelge 2.1 Kullanilan Fermi ve Maxwell Mimarisi’nin 6zellikleri

15

3. CPU VE GPU’DA GORUNTU ISLEME

Goriintli uygulamalarmin genellikle biiylik boyutta goriintiileri kullanmasi
ve hesaplama yogunlugunun yiiksek olmasi nedeniyle geleneksel goriintii isleme
yontemleri istenilen performansi saglayamamaktadir. Yiiksek veri paralelliginin
gerektigi bu durum i¢in GPU kullanimi en ideal ¢oziimlerden biridir (Zhang et al.,
2010).

Bu tez c¢alismasinda da goriintii islemenin en temel fonksiyonlarindan
histogram hesaplama ve esitleme kullanilarak CPU iizerinde seri ve GPU {izerinde
paralel goriintii kontrast1 iyilestirme programi gelistirilmistir. Gelistirilen seri ve
paralel goriintii isleme programlar1 2 farkli islemci lizerinde calistirilarak deney

sonuclar1 elde edilmistir.

3.1 Histogram Hesaplama ve Esitleme

Histogram hesaplama ve esitleme goriintii islemenin bir¢cok alaninda
kullanilan en temel fonksiyonlardandir. Histogram ile bir goriintiide farkli
yogunluklardaki piksel sayisini elde ederiz. Histogram esitleme ile de goriintiilerin
histogramindan elde ettigimiz piksel yogunluklarini kullanarak goriintii tonlarinin
tim gorlinti boyunca esitlenmesi ile kontrastin iyilestirilmesini saglariz.
Histogram esitleme bir¢ok goriintii ve video isleme uygulamasinda 6n isleme
basamagi olarak kullanilir (Wawud et al., 2017). Sekil 3.1°de gelistirdigimiz
goriintii isleme uygulamasi ile yapilmis kontrast iyilestirme Ornegi

gosterilmektedir.

(a) (b)
Sekil 3.1 a) Orijinal resim, b) Orijinal resme histogram esitletme uygulandiktan sonra

16

3.2 CPU’da Histogram Hesaplama ve Esitleme

Bu tez caligmasinda seri algoritma kodlarinin gelistirilmesi i¢in C
programlama dili kullanilmistir. Histogram bir dizi (array) olarak temsil edilir ve
histogram dizisi her bir 6gesi bin olarak adlandirilan kutulardan birine karsilik
gelir ve bu bin’lerden her birine diisen piksel sayisini igerir. Her renk kanali i¢in
256 bin tanimlanir (Sakharnykh 2015; Milic et al. 2013). Bir goriintiiniin her
pikselinin 0 ile 255 arasinda bir degere sahip oldugu varsayilir, piksel degeri bu

aralifa uydugu zaman bin degeri bir arttirilir.

Seri histogram hesaplama, paralel histogram hesaplamaya gore oldukga
basittir. Sekil 3.2°de basit olarak kullandigimiz seri histogram algoritmasi
gosterilmektedir. Kullandigimiz bu algoritmada hist degeri sonug histogramimizi
tutan bir dizidir, img degeri goriintli girdisidir, img_size goriintlimiiziin boyutunu

tutar, nbr_bin degeri ise renk kanali i¢in kullandigimiz bin degerini tutar.

void histogram_cpu(int * hist, unsigned char *img, int img_size,
int nbr_bin}{

int 1i;

for (1 =8; 1 < nbr_bin; i ++){
hist[i] = @;

I

for (1 =0; 1< img size; 1 ++){
hist[img[i]] ++;
)

Sekil 3.2 Seri histogram hesaplama algoritmasi

Sekil 3.3’de seri olarak bir girdi goriintiisiiniin histogram esitleme
fonksiyonu gosterilmektedir. Bu fonksiyon hem gri 6lgekli goriintiilerde hem de
RGB (kirmizi, yesil, mavi) renk goriintiilerde kullanilmistir. Fakat, RGB renk
goriintiileri lic renk kanalindan olusmaktadir, ve eger goriintiiyli ic ayr1 renk
kanalina bolerek her bir kanal i¢in ayr1 histogram esitleme uygulanirsa dogru
sonuglar elde edilemez. Bunun icin renk bilesenlerini yogunluk degerlerinden
ayiran bir renk uzay1 kullanilmalidir. Bu tez c¢alismasinda YUV renk uzayi
kullanimi tercih edilmistir. YUV wuzaymm Y bileseni rengin parlakligini

belirlerken U ve V bilesenleri ise rengin doygunlugunu ve tonunu belirler.

17

Sekil 3.3.’de RGB renkli goriintii i¢in kullandigimiz kontrast iyilestirme
fonksiyonumuz gosterilmektedir. Burada ilk olarak giris goriintiimiizii RGB renk
uzayindan YUV uzayma doniistiiriiliir, sonrasinda Y bileseninin histogrami
cikarilir ve elde edilen Y bilesenin histogrami ile histogram esitleme yapilir bu
islem sonucunda yeni Y bilesenimiz ile U ve V bilesenleri birlestirilir. Son olarak
da YUV uzayindan tekrar RGB uzayina doniistiirme yapilarak sonug¢ goriintiimiiz
elde edilir.

PPM_IMG contrast_enhancement_rgh(PPM_IMG img_in)
{

PPM_IMG result;

YUV_IM@ yuv_med;

int hist[256];

unsigned char * y equ;

yuv_med = rgb2yuv(img_in);

y_equ = (unsigned char *)malloc(yuv_med.h*yuv_med.w*sizeof(unsigned char));
histogram(hist, yuv_med.img y, yuv_med.h * yuv_med.w, 256);

histogram equalization(y equ,yuv_med.img y,hist,yuv med.h * yuv med.w, 256);

free(yuv_med.img_y);

yuv_med.img y = y equ;
result = yuv2rgb(yuv med);

free(yuv_med.img y);
free(yuv_med.img u);
-l:p

ee(yuv_med.img v);

return result;

Sekil 3.3 CPU’da RGB renk resim igin kontrast iyilestirme fonksiyonu

Sekil 3.4’de gosterilen histogram esitleme fonksiyonumuzda onceden
hesaplanmis olan giris goriintlisiiniin histogram degeri hist in ile alimir ve bu
fonksiyon igerisinde elimizdeki girdi gorintiisiiniin histogramin1 kullanarak
goriintiinlin yeni parlaklik degerleri elde edilir.

18

void histogram_equalization(unsigned char * img_out, unsigned char * img_in,
int * hist_in, int img_size, int nbr_bin){
int *lut = (int *)malloc(sizecf(int)*nbr_bin};
int i, cdf, min, d;

cdf = @;
min = @;
i=8;

while(min == 8}{
min = hist_in[i++];
i

d = img_size - min;
for(i = @; 1 < nbr_bin; 1)4
cdf += hist_in[i];
lut[i] = (cdf - min)*(nbr bin - 1)/d;
if(lut[i] < @){
Lut[i] = &;
b

}

/* sonuc resmini elde etme */
for(i = @; 1 < img_size; 1 +H){
if(lut[img_in[i]] » 255){
img out[i] = 255;

b
else{

img_out[i] = (unsigned char)lut[img_in[i]];
b

Sekil 3.4 CPU’da goriintii histogram esitleme fonksiyonu

Gorilintlinin yeni parlaklik deperinin elde edilmesi i¢in Oncelikle sekil

3.5’deki formiilii kullanilarak histogramin kiimiilatif dagilim fonksiyonunu

hesaplariz.

i
cdf(i) =) n;
j=0
Sekil 3.5 Kiimiilatif Dagilim Fonksiyonu Hesaplama Formiilii (Gaura, 2016)

Kiimiilatif dagilim fonksiyon (cdf) degerinin hesaplanmasinin ardindan ise

yeni parlaklik degerimizi sekil 3.6.’de ki formiilii kullanarak hesaplariz.

‘ fdf ._ffifmin v (L—]]
(width x height) = cd
Sekil 3.6 Parlaklik Degeri Hesaplama Formiilii (Gaura, 2016)

19

Buradaki cdfy, degeri kiimiilatif dagilim fonksiyonun sifir olmayan en
kiigiik degeridir. L degeri parlaklik seviyesinin sayisini (nbr_bin) belirtir. Son
olarak olusturdugumuz arama tablosunda (lut) hesapladigimiz yeni parlaklik
degerleri saklanir ve en son bu tabloya gore goriintii tekrardan gilincellenerek

sonug goriintiimiiz elde edilir.

3.3 GPU’da Histogram Hesaplama ve Esitleme

GPU fiizerinde calistirilacak olan paralel algoritma kodlar1 gelistirilirken C
programlamanin yaninda NVIDIA CUDA platformu kullanilmistir. Paralel
kodlama yapilirken dikkat edilmesi gereken kisimlar seri kodlamaya gore ¢ok
daha fazladir. Bu nedenle paralel algoritmalarin implementasyonu seri
algoritmalara gore oldukca zordur. Bir paralel algoritma implementasyonunda
kullanilacak is parcacigi sayisi, blok sayis1 ve paylasilan bellek kullanimi gibi

bir¢cok konu g6z onilinde bulundurulmalidir.

Sekil 3.7°de gri Olgekli goriintiilerde kullandigimiz GPU {izerinde
calistirilan kontrast 1iyilestirme fonksiyonu gosterilmektedir. Buradaki
fonksiyonun aynisi RGB renk goriintiiler icinde ayni sekilde uygulanir fakat
boliim 3.2°de anlatilan CPU iizerinde kontrast iyilestirmede kullanilan YUV
uzayina doniistiirme ayni sekilde burada da yapilir ve Y bileseni iizerinden
histogram hesaplama ve esitleme islemleri uygulanir. Sekil 3.7°de ki GPU
iizerinde CUDA C ile kontrast iyilestirme algoritmamizin implementasyonu
yapilirken su adimlar izlenilmistir; Oncelikle aygit tarafinda paralel olarak
yuriitiilecek kernel fonksiyonlarimiz baglatilmadan 6nce ana makina (host)’dan
aygita (device) kullanilacak girdi verileri kopyalanir. Bu islem i¢in CUDA’nin
cudaMemcpy() fonksiyonunu kullanilir. Sonrasinda C programlamada kullanilan
memset() fonksiyonu ile aymi isleve sahip olan cudaMemset() ile cdf ve
histogram’a 0 degerini veririz. Ardindan kernel fonksiyonlar1 ¢agirilmadan 6nce
yuriitilme konfiglirasyonlar1 yaparak, GPU’da is parcaciklarinin nasil

calistirilacagini belirleriz.

<<<blok sayis1 , is parcacigi sayisi>>> kernel fonksiyonlarinin ¢agrilma
seklidir, buradaki ilk deger grid igerisinde baslatilacak blok sayisini, ikinci deger
ise her bir blok igerisindeki is parcacigi sayisini belirtir. Bu tez ¢alismasinda is
parcacig1 ve blok sayilar1 belirlenirken blok basina 256 is pargacigi kullanilmigtir
bunun nedeni histogram hesaplamada bin degerinin 256 olmasidir. Is parcacig,
blok ve grid sayilarinin uygun olarak verilmesi biiyiik oneme sahiptir, aksi

durumda uygulama dogru sonuglar vermemektedir. Bu islemlerin ardindan

20

kernellerin caligmas1 bittiginde son olarak cudaMemcpy() ile c¢ikis verileri

aygittan ana makinaya tekrardan kopyalanir.

PGM_IMG gpu_contrast_enhancement_g(PGM_IMG img_in)
{

PGM_IMG result;

unsigned char * d_result;

unsigned int * histo;

float * cdf:

result w = img_in w;
resulth = img_inh;

result img = (unsigned char *)malloc(result w * result h * sizeof{umnsigned char));

cudaMalloc(&d result result w * resulth * sizeof{unsigned char));
cudaMalloc((void **)&histo, 256*sizeof{unsigned int));

cudaMalloc((void **)&cdf, 256*sizeof(float));

cudaMemepy(d_result, img_in img, result w * result h * sizeof{unsigned char), cudaMemcpyHostToDevice);
cudaMemset(histo, 0, HISTOGRAM LENGTH*sizeof{unsigned int));
cudaMemset(cdf, 0, HISTOGRAM_LENGTH*sizeof{float));

int mumThreads = 256;

it blockSize = (result w * result h - 1)/236 + 1;

histogram_gpu<<<blockSize mumThreads>>> (histo, d_result, result w * result h);
calcCDF << <blockSize mumThreads >> >(cdf, histo, result.w * resulth, 256);
histEqualize << <blockSize mumThreads >> >(d_result, cdf, result w * result h);

cudaMemcpy(result.img, d result, result w * resulth * sizeoffunsigned char), cudaMemcpyDeviceToHost);
cudaFree(d_result);

return result;

Sekil 3.7 GPU’da Kontrast Iyilestirme Fonksiyonu

21

3.4. GPU Uzerinde Paylasilan Bellek Ve Global Bellek Kullanimi

Boliim 2.1°de bahsedildigi gibi paylasilan bellek SM’de bulunan en hizh
belleklerdendir erisim gecikmesi ¢ok diisiiktiir (4 saat ¢cevrimi kadar) ve yiiksek
bant genisligine sahiptir. Global bellek ise GPU’nun ana ve en ¢ok kullanilan
bellegidir. Bu bellege erisim gecikmesi ¢ok daha yiiksektir (400-600 saat
cevrimi). Paylasilan bellegin 6mrii is pargacigi blogu kadardir ve sadece ayni blok
igerisindeki is parcaciklar1 ulasabilirken, global bellegin 6mrii uygulamanin 6mri
kadardir ve tiim ¢ekirdeklerin (kernel) is pargaciklari tarafindan erisilebilir. Global
bellege erisimin olabildigince az yapilmasi istenir, CUDA programlamada ayni
blok icerisindeki is pargaciklari tarafindan birden fazla defa global bellekten
cekilmis bir veriye erigilmesi gereken durumlarda ayni verilere yeniden global
bellekten erisilmesindense veriler paylasilan bellege kopyalanarak kullanilir.

Boylece uzun gecikme siiresinden kagiilir (Nickolls et al., 2008;Cheng, 2014).

Bu tez calismasinda da GPU {izerinde histogram hesaplama yapilirken hem
global bellek hem de paylasilan bellek kullanilmis ve performanslar

incelenmistir.

3.4.1 Histogram hesaplamada paylasilan bellek kullanim

Paylagilan bellek ile histogram hesaplama yapilirken oncelikle her blogun
histogramin1 tutmak i¢in paylasilan arabellek alani ayrilir. Paylasilan bellek
dizisinde ki her bir eleman degeri i¢in O verilir. Bu islem sonrasindaki adimda
paylasilan bellekten degerler okunup degistirilecegi icin bir bloktaki tiim is
parg¢acigl i¢in islemin tamamlandigindan emin olunmasi1 gerekir. Bunun igin

_syncthreads() ¢agrisini kullaniriz.

Senkronizasyon ¢agrisinin kullanim nedeni is parcaciklar1 arasinda veri
paylasimi1 yapildigit zamanlarda yaris kosullar1 (race condition) meydana
gelmesidir. Yaris kosullarinin olugsma nedeni bir blok igerisindeki is
parcaciklarinin mantiksal olarak paralel ¢aligmasina ragmen aslinda tim is
parcaciklarinin fiziksel olarak ayni anda c¢alistirllamamalaridir. Paylasilan bellek
aynm anda erisilebilen esit boyutlu 32 bellek modiiliine (bank) ayrilir. 32’ye

boliinme nedeni bir warp igerisinde 32 is parcacigt bulunmasidir.

Bir bloktaki is parcaciklar: ayni paylasilan bellek adresine erigebilir. Ortaya
¢ikan bu durum bellek konumlarinda tanimlanmamis davranislara sebep olabilir.

Is parcaciklarmin diizgiin bir sekilde calismasini ve dogru sonuglarin elde

22

edilmesini saglamak i¢cin CUDA’nin sagladigi en basit senkronizasyon big¢imi
olan ve bir ¢esit bariyer gorevi goren _syncthreads() kullanilir. Bir ig pargacigi bu
cagriya ulagtiginda blogun igindeki tiim is pargaciklarinin ayni senkronizasyon
noktasina erismesini bekler. syncthreads()’in ayn1 zamanda bir islevi de ayni
blok icerisindeki is parcaciklar1 arasindaki iletisimi koordine etmektir (Cheng et.
al., 2016; Gupta 2013).

Paylasilan bellek ayrildiktan sonra goriintiiniin her pikseli i¢in uygun bin
degeri bulundugunda ilgili sayac¢ arttirilir. Fakat paralel olarak histogram
hesaplama yapilirken ayni histogram bin degerini birden fazla is parcacigi ayni
anda arttirmak isteyebilir buna engel olmak i¢cin CUDA’nin atomik

fonksiyonlarindan atomicAdd() kullanilmstir.

Atomik fonksiyonlar, bir is parcaciginin, diger is parcaciklarinin miidahalesi
olmadan bellek islemini kesintisiz bir sekilde gerceklestirebildigi matematiksel
islemlerdir. Yiizlerce is parcacig tarafindan paylasilan degerlerle ¢alisilmasi igin
giivenli bir yoldur. Paralel is parcaciklart arasindaki bellek erisiminin
senkronizasyonunu saglayarak is pargaciklarinin birbirine miidahalesini

engellediginden yaris kosulunun meydana gelmesini onler (Cheng et. al., 2016).

Sekil 3.8’de goriildiigli gibi histogram_priv degeri atomicAdd() fonksiyonu
ile baska bir is pargacigi tarafindan kesintiye ugramadan bellek adresindeki degeri
okuyup degeri bir arttirir ve sonucu tekrar bellek adresine yazar. Bloktaki tiim is
parcaciklarin aynmi islemi bitirdiginden emin olunabilmesi icin tekrardan
_syncthread() fonksiyonu kullanilir. Tiim bu islemlerin sonunda paylasilan

bellekteki sonug degerleri global bellege kopyalanir.

23

__global__ wvoid histogram_kernel {unsigned int *histogram, unsigned char
*grayimg, unsigned int size) {

__shared__ unsigned int histogram_priv[256];

int tx = threadIdx.x;
int 1 = threadIdx.x + blockIdx.x * blockDim.x;
int offset = blockDim.x * gridDim.x;

if (tx < 256) {
histogram priv[tx] = @;

}

__syncthreads();

while (i < size) {
atomicAdd{ &(histogram_priv[grayimg[i]]}, 1};
i += offset;

}

__syncthreads();

if (tx < 256){

atomicAdd({ &(histogram[tx]), histogram_priv[tx]);
}
}

Sekil 3.8 GPU’da paylasilan bellek kullanimu ile histogram hesaplama

Sekil 3.9 de paralel histogram algoritmasinin bir goriintliniin histogramini

hesaplama adimlarini sematik olarak gostermektedir.

Blok Histogramlarmm

Giris Resmi - Sy .
. : i Her Blogun Gecici Histogramlan ~ Birlestirilmesi
CUDA |CUDA |CUDA r — S — N
block0 | block1 | block 2 _311"5_2‘ ‘ [[] 417199
block0
ofs[2[a] | |
block1
11fa]e] |]
block 2
1. Asama 2. Asama 3. Asama

Sekil 3.9 GPU’da bir resmin paralel hesaplama ile histogramini hesaplama agsamalar1 (Sakharnykh,
2015)

24

3.4.2 Histogram hesaplamada global bellek kullanimi

Sekil 3.10°de gosterilen global bellekte histogram hesaplama yapan kernel
fonksiyonu, seri histogram hesaplama fonksiyonu ile olduk¢a benzerdir. Buradaki
fonksiyonun seri versiyonundan farki atomicAdd() kullanimidir. Digerinden farkl
olarak atomicAdd() kullanim nedeni ise bir dnceki boliimde bahsedilen birden
fazla is parcaci@inin ayni bin degerini arttirmak istemesiyle ortaya cikacak

problemleri 6nlemek igindir.

_global void histogram kernel gmem (unsigned int *histogram, unsigned char *grayimg,
unsigned int size) {

int i = threadldx.x + blockIdx.x * blockDim.x;
int stride = blockDim.x * gridDim.x;
while (1 ¢ size)
{
atomicAdd(&(histogram[grayimg[i]]), 1);
i += stride;

Sekil 3.10 GPU’da global bellek kullanimui ile histogram hesaplama

Sekil 3.11 ¢ de histogram esitleme de yeni renk degerinin hesaplanmasi i¢in
kullanilan cdf hesaplama fonksiyonu gosterilmektedir. Bu fonksiyonda daha
onceden elde ettigi goriintiiniin histogram dizisi igerisinde tarama yaparak dogru

degeri buldugunda cdf’e yazar.

25

_global _ woid calcCDF (fleat * cdf, unsigned int * histe,int img_size, int length){
__shared float scan[SCAN_SIZE];
int 1 = threadIdx.x + blockDim.x*blockIdx.x;
if (i<SCAN SIZE &% i<length)
scan[i] = (float)histo[i] / (float)(img_size);
__syncthreads(};

for (unsigned int stride = 1; stride <= BLOCK SIZE; stride *= 2) {
unsigned int index = (threadIdx.x + 1)*stride * 2 - 1;
if (index<5CAN SIZE &% index < length)
scan[index] += scan[index - stride];

__syncthreads();
}
for (unsigned int stride = BLOCK_SIZE / 2; stridex@; stride /= 2) {
__syncthreads();
unsigned int index = (threadIdx.x + 1)*stride * 2 - 1;
if {index + stride < SCAN SIZE && index + stride < length) {
scan[index + stride] += scan[index];
}
}
__syncthreads();

if (1<SCAN_SIZE && i<length)
cdf[i] += scan[threadIdx.x];

Sekil 3.11 GPU’da kiimiilatif dagilim fonksiyonun hesaplanmasi

Sekil 3.12°de gosterilen histogram esitleme kernel fonksiyonumuzda
onceden hesaplanmis olan giris goriintiisiiniin histogram degeri ve cdf degeri
alinarak, goriintiiniin yeni parlaklik degerleri elde edilir. Yeni degerin elde
edilmesi isleminde seri versiyonunda, sekil 3.6’da gosterilen ayni formiil
kullanilir. Seri histogram esitleme fonksiyonumuzdan tek farki dongiilerin yerine,

1§ parcaciklarinin koordinat degiskenlerinin kullanilmasidir.

__glebal _ wveoid histogram_equalization_gpu(unsigned char * image, fleoat * cdf,
int size) {
int i = threadIdx.x + blockIdx.x * blockDim.x;
float cdfmin = cdf[e];
if (i<size) {
float x = 255.8F * (cdf[image[i]] - cdfmin) / (1.8F - cdfmin);
float start = @8.8F;
float end = 255.8F;
if (start > x)
x = start;
if (end < %)
¥ = end;
image[i] = (unsigned char)x;

Sekil 3.12 GPU’da goriintii histogramini esitleme fonksiyonu

26

4. DENEYLER VE SONUCLAR

Bu tez calismasinda goriintiilerin kontrastin1 iyilestirmede kullanilan
histogram hesaplama ve esitleme algoritmalarinin paralel ve seri versiyonlari
gelistirilerek CPU ve GPU iizerinde yiiriitiilme performanslar test edilerek
incelenmistir. Asagidaki boliimlerde sirasiyla testlerimizi yaptigimiz platformlar,

girdi goriintlilerimiz, elde ettigimiz sonuglar ve analizlerimiz sunulmaktadir.

4.1 Test Ortami

Calismamizda CUDA C’yi kullanarak GPU {izerinde paralel kod ve C
programlama ile CPU iizerinde seri kod derlemek i¢in sekil 4.1’de gosterilmekte

olan araclar ve platformlar kullanilarak gelistirme ve test ortamimiz

hazirlanmstir.
ASUS K53SJ ASUS N552VW

e Windows 10 isletim sistemi e Windows 10 isletim sistemi

e Islemci; Intel Core i7 — e Islemci; Intel Core i7 —
26300Q 2.00GHz 6700HQ 2.60GHz

e Grafik Kart1; NVIDIA e Grafik Karti; NVIDIA
GeForce GT 540M (Fermi GeForce GTX 940M
Mimarisi) (Maxwell Mimarisi)

Kullanilan Araclar:
e Visual Studio 2015
e NVIDIA Aygit Siirtictisti
e CUDA Gelistirme Aragseti (CUDA Development Toolkit Version
8.0)

Cizelge 4.1 Tez Test Platformlar1 ve Araglar

Tez galismasinda deneyler ¢izelge 4.1°deki 6zelliklere sahip 2 farkli islemci
ve grafik kartinda yapilmistir. Kullanilan grafik kartlarinin mimarileri Fermi ve
Maxwell’dir. B6liim 2.3 ‘de bahsedildigi gibi 2.1 hesaplama kapasitesine sahip
Fermi Mimarisi 16 SM’den olusur, 16LD/ST birim, 64KB toplam o6nbellegi L1
Onbellegi ve paylasilan bellek tarafindan kullanilir ve toplam 96 ¢ekirdek igerir.
5.0 hesaplama kapasitesine sahip Maxwell Mimarisi ise SMM olarak adlandirilan
enerji verimliligini biliylik oranda arttiran farkli bir SM dizaynina sahiptir.

SMM’in gelistirilmis alan verimliligi ile GPU basma diisen CUDA cekirdegi

27

Fermi Mimarisi’ne kiyasla dnemli dl¢tide yiiksektir. Kullandigimiz bu mimarinin
toplam ¢ekirdek sayisi1 640°dir. 32 LD/ST birimi, 32SFU ve Fermi’den farkl
olarak 6zel olarak ayrilmig 96 KB’lik paylasilan bellek alani vardir. (Harris, 2014)

Deneylerden elde edilen tiim sonuglarda programimizin hem seri hem
paralel versiyonu icin de kullandigimiz iki farkl bilgisayarda ful sarjli haldeyken
5’er kez calistirilmistir. Her bir sonug incelenerek en diisiik ve yiiksek degerler
cikartildiktan sonra geriye kalan 3 degerin ortalamasi alinarak sonug¢ degerlerimiz

elde edilmistir.

Histogram esitleme yontemi daha c¢ok gri oOleekli sisli ve bulanik
goriintiilerde iyi sonu¢ vermektedir fakat deneylerimizdeki amacin uygulamalarin
performans stirelerini karsilastirilmasi olmasi nedeniyle deneylerde kullanilacak
olan goriintii se¢imi yapilirken tekdiize renklerden ¢ok farkli renkleri iginde
bulunduran biiyiikk boyutlu olmasina 6zen gosterilmistir. Yapilan tiim deneyler
aynit gorlintiiniin 3 farkli boyutu (534 x 356, 2136 x 1424 ve 4272 x 2848) igin
denenmistir. Kullanilan JPEG formatindaki RGB ve gri 6lgekli goriintiilerde RGB
renkteki, PPM gri dlgekli goriintii ise PGM formatina doniistiiriilerek girdi olarak
kullanilmigtir. PPM ve PGM goriintii verilerinin kaydedilmesini saglayan en
diisiik goriintii formatlaridir. Farkli uygulamalarda bu formatlarinin kullanimu ile
goriintiiler kolay bir sekilde okunabilir. Bu nedenle uygulamamizda bu

formatlarin kullanimi tercih edilmistir.

Sekil 4.1 kullandigimiz goriintiiniin RGB renkte ki orijinal halini

gosterilmektedir.

28

Sekil 4.2 RGB renkteki orijinal resme histogram esitleme uygulandiktan
sonra ¢ikan PPM formatindaki sonucun JPEG formatina doniistiiriilmiis hali

gosterilmektedir.

2 B S R B

Sekil 4. 2 RGB renkte histogram esitleme uygulanan goriintii

Sekil 4.3’de deneyde kullanilan gri 6l¢ekli orijinal resim ve sekil 4.4 ‘de
orijinal resme histogram esitleme uygulandiktan sonra ¢ikan PGM formatindaki

sonucun JPEG formatina doniistiiriilmiis hali gosterilmektedir.

L5

Sekil 4. 3 Gri dlgekli orjinal goriintii

= op st B S S R e

Sekil 4. 4 Gri dlgekli histogram esitleme uygulanan goriintii

Sekil 4.5°de uygulamamizin CPU ve GPU iizerinde c¢alistirilmasi ile elde

edilen sonug ekrani gosterilmektedir.

[Compute] 11.516049
Press any ke)

Sekil 4. 5 Uygulamanin 6rnek sonug ekrani

4.2 CPU ve GPU Uzerinde Hesaplama Hiz Karsilastirmalar

CPU ig¢in gelistirdigimiz seri ve GPU i¢in gelistirdigimiz paralel kodlarimiz
iki farkli islemci ve grafik kart1 izerinde calistirilmis ve cizelge 4.2°de ve ¢izelge
4.3°de elde ettigimiz tiim sonuglar sunulmustur. Cizelge 4.2’de gosterilen daha
diisiik bir islemci ve grafik kart1 iizerinde elde edilen sonuglara gore kiigiik
boyuttaki resimlerde CPU’nun az bir farkla olsa daha GPU’ya gore performansi
daha yiiksek ¢ikmistir. GPU {izerinde yapilan hesaplamalarda veri transferi i¢in

gereken zamandan dolay1 kiiclik boyutlu resimlerde ¢ok fazla performansi artis

30

elde edilememektedir. Buna ek olarak goriintli boyutu arttikca GPU’nun CPU’ya

gore hesaplama performansinda artis gozlenmektedir. Cizelge 4.2’de gorildigi

gibi kii¢iik boyutlu resimlerde CPU az bir farkla olsa da daha iyi performans

gosterirken, orta boyutlu resimde GPU performansinin CPU’nun 2,8 katina kadar

ciktigi, biiyiikk boyutlu resimlerde ise bu farkin 3,5 katina kadar ¢iktig

goriilmektedir.
Girdi Resim Boyutu GPU Siiresi CPU Siiresi

(ms) (ms)

534x356 (Gri Olgekli) 540 476

534x356 (RGB Olgekli) 7,72 13,60
2136x1424 (Gri Olgekli) 26,94 75,48
2136x1424 (RGB Olgekli) 66,10 210,55
4272x2848 (Gri Olgekli) 88,40 297,84
4272x2848 (RGB Olcekli) 231,79 819,23

Hizlanma

(kat sayis1)

30,88
1,76
2,80
3,18
337

3,53

Cizelge 4.2 Intel Core i7 — 2.00GHz ve Fermi Mimarisi ile elde edilen sonuglar

Sekil 4.6 ve 4.7°da 2.00Ghz CPU ve Fermi Mimarisi’ne sahip GPU

iizerinde elde edilmis sonuglar1 grafiksel olarak gosterilmektedir.

350
300
250
200
150
100
: -
O ——

534x356 (Gri Olgekli) 2136x1424 (Gri Olgekli)

Yuritilme suresi (ms)

EGPU mCPU

4272x2848 (Gri Olcekli)

Sekil 4. 6 Intel Core i7 — 2.00GHz ve Fermi Mimarisi ile gri 6l¢ekli resimlerde elde edilen GPU
ve CPU sonuglarmin karsilastirmast

31

1000
w
£ 800
2
£ 600
g 400
s
5 200
=
. J
O e ——————
534x356 (RGB) 2136x1424 (RGB) 4272x2848 (RGB)
mGPU mCPU

Sekil 4. 7 Intel Core i7 — 2.00GHz ve Fermi Mimarisi ile RGB renkte resimlerde elde edilen GPU
ve CPU sonuglarmin karsilastirmasi

Cizelge 4.3°de daha giiglii bir islemci ve Maxwell Mimarisi ‘ne sahip grafik
kartindan elde ettigimiz sonuclar gosterilmektedir. Cizelge 4.3’de goriildiigl gibi
kiiciik boyutlu resimlerde CPU az bir farkla olsa da daha iyi performans
gosterirken, orta boyutlu resimde GPU performansinin CPU’nun 3,7 katina kadar

ciktig1, biiyiilk boyutlu resimlerde ise bu farkin 4,5 katina kadar c¢iktig

goriilmektedir.
Girdi Resim Boyutu GPU CPU Hizlanma
Siiresi Siiresi (kat)
(ms) (ms)

534x356 (Gri Olcekli) 2.25 1,13 40,50

534x356 (RGB Ol¢ekli) 4,33 10,31 2,38
2136x1424 (Gri Olcekli) 7,30 16,20 *2,22
2136x1424 (RGB Olgekli) 42,75 159,29 3,72
4272x2848 (Gri Olcekli) 22,04 65,21 *2,96
4272x2848 (RGB Olgekli) 136,19 615,60 4,52

Cizelge 4.3 Intel Core i7 — 2.60GHz ve Maxwell Mimarisi ile elde edilen sonuglar

Sekil 4.8 ve 4.9°da 2.60Ghz CPU ve Maxwell Mimarisi ‘ne sahip GPU

tizerinde elde edilmis sonuclar1 grafiksel olarak gdsterilmektedir.

32

70

60

50

40

30

20

" -
0 | ..

534x356 (Gri Olgekli) 2136x1424 (Gri Olgekli) 4272x2848 (Gri Olgekli)

Yuritilme suresi (ms)

EGPU mCPU

Sekil 4. 8 Intel Core i7 — 2.60GHz ve Maxwell Mimarisi ile gri 6lgekli resimlerde elde edilen
GPU ve CPU sonuglarinin karsilastirmasi

700
“‘é 600
= 500
s
= 400
wv
]
£ 300
2 200
5

0 — —
534x356 (RGB) 2136x1424 (RGB) 4272x2848 (RGB)
EGPU mECPU

Sekil 4. 9 Intel Core 17 — 2.60GHz ve Maxwell Mimarisi ile RGB renkte resimlerde elde edilen
GPU ve CPU sonuglarinin karsilastirmasi

Sekil 4.10 2 farkli CPU iizerinde elde edilen sonuglarin grafiksel olarak
karsilastirmasi, sekil 4.11° de ise 2 farkli GPU’dan elde edilen sonuglarin grafiksel
olarak karsilastirmas1 goriilmektedir. Sekil 4.11° de Intel Core i17-2.60Hz ve
2.00Ghz islemcilerin karsilastirilmasit yapilmis ve 2.60Ghz islemcinin
performansi gri 6l¢ekli resimlerde 4,7 kata kadar hizlandig1 goriilmektedir. Sekil
4.11’de Fermi ve Maxwell Mimarisi 'ne sahip GPU sonuglar1 karsilastirildiginda

4,6 kata kadar Maxwell’in performans artis1 sagladigi goriilmektedir.

33

400

300

200
100
o —i

534x356 (Gri Olgekli) 2136x1424 (Gri Olgekli) 4272x2848 (Gri Olgekli)
B CPU (2.60GHz) mCPU(2.00GHz)

Yuritilme suresi (ms)

Sekil 4. 10 Intel Core i7 — 2.60GHz ve 2.00Ghz ile Gri 6lgekli resimlerde elde edilen CPU
sonuglarinin karsilagtirmasi

100
90

80
70
60
50
40
30
20
10
0 |

534x356 (Gri Olgekli) 2136x1424 (Gri Olgekli) 4272x2848 (Gri Olgekli)

Yuritilme suresi (ms)

B GPU (Maxwell) ®mGPU(Fermi)

Sekil 4. 11 Fermi ve Maxwell Mimarisi ile Gri 6lgekli resimlerde elde edilen GPU sonuglarmin
karsilagtirmasi

4.2.1 Global ve paylasilan bellek hizlarinin karsilastirilmasi

Cizelge 4.4’de ve 4.5°de Fermi ve Maxwell Mimarileri’'nde yapmis
oldugumuz histogram hesaplama islemini CPU’da ve GPU {izerinde global bellek
ve paylasilan bellek kullanimi ile elde edilen performans karsilagtiriimalari
goziikmektedir. Bu deneyde performans farklarinin daha belirgin sekilde
incelenebilmesi i¢in en bilyiik boyuttaki goriintii kullanilarak yiiriitiilme stirelerini
hesaplanmistir ve ana bellekten aygit bellegine yapilan veri transfer siireleri
hesaba katilmamistir. 2 farkli islemci iizerinde yapilan deneylerden elde edilen
sonuglara CPU’ya oranla GPU kullanimi ile biiyilkk oranda performans artisi
saglandig1 goriilmektedir. Cizelge 4.4’de Fermi Mimarisi {lizerinde global bellek
ve paylasilan bellek kullanimlarinin performans hizlar1 karsilagtirildiginda sonug

degerlerinin arasinda biiyiikk oranda fark goriilmemektedir. Paylasilan bellek

34

giiciinden tam olarak yararlanilabilmesi i¢in verimli bir donanim gerekmektedir.
Bu donanim ihtiyact Kepler ve sonraki mimari versiyonlarinda karsilanmaktadir.
Kullanilan GPU’nun eski bir siiriim olan Fermi Mimari’si olmasindan dolay1 bu

deney sonucunda paylasilan bellek kullanimindan istenilen performans artisi elde

edilememistir.
Islemciler (ASUS K53SJ) Yiiriitiilme Siiresi (ms)
Intel Core i7 — 2.00GHz (CPU) 129,92
NVIDIA GeForce GT 540M (Fermi 17,12
GPU, Global Bellek)
NVIDIA GeForce GT 540M (Fermi 18,53

GPU, Paylasilan Bellek)

Cizelge 4.4 Fermi Mimarisi’nde histogram hesaplama yiiriitiilme siireleri

Cizelge 4.5°de Maxwell Mimarisi lizerinde global bellek ve paylasilan
bellek kullanimlarinin performans hizlarimi karsilastirdigimizda paylasilan bellek
kullanimini global bellek kullanimina goére yaklasik olarak 3 kat daha hizli oldugu
goriilmektedir. Global bellek CUDA bellekleri arasinda en biiyiilk ama ayni
zamanda en yavas olan bellektir. Paylasilan bellek ise global bellege gore oldukca
kiigiiktiir fakat ¢ip lizerinde bulundugundan dolay1 bu bellege erisim ¢ok daha
hizhidir. Paylasilan bellek kullaniminda bir blok igerisindeki global bellekten
cekilen verileri ayni blok igerisindeki diger is parcaciklarinda kullanmak i¢in bu
verileri paylasilan bellege koyulur. Boylece tekrar kullanmamiz gerektiginde
global bellekten yeniden bu verileri ¢cekmek zorunda kalmayiz (Harris, 2013). Bu
durumda global bellek yerine paylasilan bellegin dogru bir sekilde kullanimi ile

global bellegin yogun trafiginden kaginip Onemli Olgiide performans artist

saglanmaktadir.
Islemciler (ASUS N552VW) Yiiriitiilme Siiresi (ms)
Intel Core i7 — 2.60GHz (CPU) 28,43
NVIDIA GeForce GTX 940M (Maxwell 7,22
GPU, Global Bellek)
NVIDIA GeForce GTX 940M (Maxwell 2,41

GPU, Paylasilan Bellek)

Cizelge 4.5 Maxwell Mimarisi’nde histogram hesaplama yiiriitiilme siireleri

35

Sekil 4.12°de 2.60Ghz ve 2.00Ghz CPU’da histogram hesaplama, Fermi ve
Maxwell Mimarisi’ne sahip 2 farkli GPU {izerinde histogram hesaplama da global
bellek ve paylasilan bellek kullanimi ile elde edilen yiiriitiillme sonuglari grafiksel

olarak gosterilmektedir.

140
120
100
80
60
40

20 .
0

ASUS N552VW Maxwell ASUS K53SJ Fermi

Yuritilme Stres (ms)

B Global Bellek(GPU) m Paylasilan Bellek (GPU) m®CPU

Sekil 4. 12 Maxwell ve Fermi Mimarilerinde global bellek, paylasilan bellek kullanimi ve 2.60Ghz
-2.00Ghz CPU siirelerinin karsilastiriimasi

36

5. SONUC

Calismamizda goriintii isleme alaninda kontrast iyilestirmede ve bir ¢ok
uygulamanin 6n basamagi olarak en c¢ok kullanilan yontemlerden histogram
esitleme algoritmast kullanilmigtir. Histogram esitleme algoritmasinin C
programlama ile seri ve CUDA paralel programlama ile paralel versiyonlari
gelistirilerek 2 farkli GPU ve CPU f{izerinde calistirilmis ve deney sonuglari

gozlemlenmistir.

Yapilan tiim ¢aligmalarin sonucunda uygun durumlarda GPU kullaniminin
CPU’ya gore biiyiik oranda performans kazanimi sagladigir goriilmiistir. CUDA
programlamanin GPU iizerinde calisabilen paralel uygulamalar gelistirilmesine
sagladig1 kolaylik ile biiyiik oranda paralel hesaplama gerektiren goriintii igleme

problemleri ¢oziime kavusabilmektedir.

Bu tez ¢alismasinda ayrica, GPU ile CPU’ya gore performans kazaniminin
saglandiginin goriilmesinin ardindan GPU f{izerinde global bellek ve paylasilan
bellek kullanimi incelenmistir. Paylasilan bellegin ¢ip iizerinde bulunmasi ve
erisim hizinin oldukga yiiksek olmasi, global bellegin ise CUDA bellekleri
arasindaki en ¢ok kullanilan fakat en yavas bellek olmasindan dolay1 CUDA
programlamada kullannrma uygun bellegin secilmesi performans kazanimi
acisindan olduk¢a 6nemli oldugu deney sonuglarindan gozlemlenmistir. Eger bir
blok icerisindeki is pargaciklari tarafindan birden fazla defa global bellekten
cekilmis bir veriye erisilmesi gerekiyorsa paylasilan bellek kullaniminin yaklagik
3 kata kadar hiz kazandirabildigi goriilmiistiir. Gelecekteki ¢alismalarimizda da,

daha ileri diizey problemlerde CUDA kullanimini inceleyecegiz.

37

KAYNAKLAR DiZiNi

Borke P., 1997, “PPM/ PGM / PBM image files”
http://paulbourke.net/dataformats/ppm/, (Erisim Tarihi: 5 Mart 2018)

Cheng, J., Grossman, M., and McKercher, T., 2014, Professional CUDA C
Programming, John Willey & Sons, Indianapolis, 8-264p.

Clua, E. G. W., Zamith, M., 2015, Programming in CUDA for Kepler and
Maxwell Architecture, Revista de Informatica Te “ orica e Aplicada, 22 (2):
233-257 pp.

Ding C., “CUDA Tutorial”, http://geco.mines.edu/tesla/cuda_tutorial mio/,
(Erigim Tarihi: 10 Mart 2018)

Eklund, A., Dufort, P., Forsberg, D. and LaConte, S. M., 2013, Medical
image processing on the GPU-past, present and future, Medical Image
Analysis, 17(8): 1073—1094 pp.

Gaura J., 2016, “Histogram Equalization”,
http://mrl.cs.vsb.cz/people/gaura/dzo/hist_en.pdf, (Erisim Tarihi: 25 Ocak
2018)

Ghorpade, J., Parande, J., Kulkarni, M. and Bawaskar, A., 2012, GPGPU
processing in CUDA architecture, Advance Computing: An International
Journal (ACI1J), 3(1):105-120p.

Gupta N., 2013, “Optimization in Histogram in CUDA”, http://cuda-
programming.blogspot.com.tr/2013/03/optimizing-histogram-cuda-code.html,
(Erisim Tarihi: 15 Ocak 2017)

Gupta N., 2013, “Fast Implementation of Histogram Cuda”, http://cuda-
programming.blogspot.com.tr/2013/03/further-optimization-in-histogram-
cuda.html, (Erisim Tarihi: 20 Ocak 2017)

Harris M., 2012, “How to Optimize Data Transfers in CUDA C/C++”,
https://devblogs.nvidia.com/how-optimize-data-transfers-cuda-cc, (Erisim
Tarihi: 28 Subat 2018)

Harris M., 2013, “Using Shared Memory in CUDA C/C++”,
https://devblogs.nvidia.com/using-shared-memory-cuda-cc/ , (Erisim
Tarihi: 30 Ocak 2018)

38

KAYNAKLAR DIiZiNi (devam)

Harris, M., 2014, “5 Things You Should Know About the New Maxwell GPU

Architecture”, https://devblogs.nvidia.com/parallelforall/5-things-you-

should-know-about-new-maxwell-gpu-architecture/, (Erisim Tarihi: 23
Aralik 2017)

Lee, V., W., Kim C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A., D.,
Satish, N., Smelyanskiy, M., Chennupaty, S., Hammarlund, P.,
Singhal, R. and Dubey, P., 2010, Debunking the 100x GPU vs. CPU
Myth: an Evaluation of Throughput Computing on CPU and GPU, In
Proceedings of the 37th Annual International Aymposium on Computer
Architecture, 451-460p.

Milic U., Gelado, 1., Puzovic, N., Ramirez, A. and Tomasevic, M., 2013,
Parallelizing General Histogram Application for CUDA Architectures, In
Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS XIII), 11-18p.

New York University, 2017, “Introduction to GPUs CUDA?”, https://nyu-
cds.github.io/python-gpu/02-cuda/, (Erisim Tarihi 10 Mart 2018)

Nickolls J., Buck 1., Garland M. and Skadron K., 2008, Scalable Parallel
Programming with CUDA, ACM Digital Library, 6(2): 42-53p.

NVIDIA, 2007, “NVIDIA’s Next Generation CUDA Compute Architecture
Fermi”,
https://www.nvidia.com/content/PDF/fermi_white papers/NVIDIA_ Fermi
_Compute_ArchitectureWhitepaper.pdf, (Erisim Tarihi: 20 Aralik 2017)

NVIDIA, 2018, “CUDA C Programming Guide — NVIDIA Developer

Documentation”, http://docs.nvidia.com/cuda/cuda-c-programming-

guide/index.html#heterogeneous-programming__heterogeneous-

programming, (Erigim Tarihi: 20 Subat 2018)

Paravecino, F. N., 2017, Characterization and Exploitation of Nested Parallelism
and Concurrent Kernel Execution to Accelerate High Performance

Applications, Dissertation, Northeastern University.

Sakharnykh, N., 2015, “GPU Pro Tip: Fast Histograms Using Shared Atomics

on Maxwell”, https://devblogs.nvidia.com/gpu-pro-tip-fast-histograms-

using-shared-atomics-maxwell/, (Erigim Tarihi: 20 Ocak 2018)

39

KAYNAKLAR DIiZiNi (devam)

Wadud M. A., Kabir M. H., M. Dewan A. A., and Chae O., 2017, A Dynamic
Histogram Equalization for Image Contrast Enhancement, IEEE

Transactions on Consumer Electronics, 53(2):593-600p.

Yang, Z.,Zhu, Y. and Pu. Y., 2008, Parallel image processing based on CUDA,
In International Conference on Computer Science and Software

Engineering 3:198-201p.

Zhang, N., Wang, J. L. and Chen. Y. shan, 2010, Image parallel processing
based on GPU, Advanced Computer Control (ICACC), 3:367-370p.

40

OZGECMIS

Ad Soyad :Pelin KARAGOZOGLU
Dogum Tarihi : 09.07.1992

Dogum Yeri : Balikesir

Telefon 1 (+90) 538 974 51 18
E-posta : pelin.karagozoglu@gmail.com
Egitim

= 2010 — 2015 Istk Universitesi Yazilim Miihendisligi Boliimii
3,21/4

= 2006 —2010 Balikesir Cumhuriyet Anadolu Lisesi 85/100

Is Tecriibeleri :
= 2015- 2018 Freelance Android Gelistiricisi
= 2018- Halen Android Gelistircisi (HUAWEI)

