
RUNTIME VERIFICATION OF INTERNET OF THINGS
USING COMPLEX-EVENT PROCESSING

(RECEP)

A Dissertation

by

Koray İnçki

Submitted to the
Graduate School of Sciences and Engineering
In Partial Fulfillment of the Requirements for

the Degree of

Doctor of Philosophy

in the
Department of Computer Science

Özyeğin University
June 2018

Copyright © 2018 by Koray İnçki

RUNTIME VERIFICATION OF INTERNET OF THINGS
USING COMPLEX-EVENT PROCESSING

(RECEP)

Approved by:

Asst. Prof. Dr. İsmail Arı, Advisor
Department of Computer Science
Özyeğin University

Prof. Dr. Şebnem Baydere
Department of Computer Engineering
Yeditepe University

Assoc. Prof. Dr. Prof. Hasan Sözer
Department of Computer Science
Özyeğin University

Asst. Prof. Dr. Barış Aktemur
Department of Computer Science
Özyeğin University

Assoc. Prof. Dr. Mehmet S. Aktaş
Department of Computer Engineering
Yıldız Teknik University

Date Approved: 18 May 2018

To loving memory of my father, Recep İnçki, who is the role model for

me that it is never too late to learn...

iii

ABSTRACT

Increase in the computing power and memory accompanied with decreasing architec-

tural footprints has enabled conquering new frontiers in proliferation of technology in

the next industry revolution. More autonomous systems have been deployed thanks

to the advancing capabilities provided by embedded systems with such computing

power. Internet of Things (IoT) has emerged as an enabler of many achievements in

the industry through presenting a seamless integration of computing units, usually

in the form of an embedded system, by allowing interconnection of such embedded

systems without requiring human interaction. Engineering a system of systems (SoS)

constituted by IoT devices has been the new challenge of designing large scale systems,

as the scale of such a system could range from tens of devices in an ambient assisted

living (AAL) example to thousands of devices in a smart city application. Therefore,

the complexity of software engineering and verification of those SoS’s necessitates new

approaches that would facilitate those processes. In this thesis, we tackle the problem

of verifying IoT SoS’s at runtime. We first propose an event calculus that captures

the fundamental behavioral model of IoT messaging primitives. The event calculus

allows us to specify interaction of IoT devices in terms of events that represent sending

and receiving Constrained-Application Protocol (CoAP) messages. Representing the

behavior of CoAP endpoints in EC helps us define complex-event processing (CEP)

patterns that will later be used as runtime monitors. Existing research on runtime ver-

ification (RV) usually presents a solution with heavy formal methods, which hinders

the usefulness of method by intimidating the practitioners. We, therefore, propose a

model-driven engineering (MDE) approach for RV of IoT systems, which is expected

to promote the utilization of RV in industrial scenarios. We propose an extension to

iv

the UML2.5 profile, which enables us to customize a modeling tool so that we can

develop a domain-specific model (DSM) for verifying IoT systems. Later, in order to

allow automatically generating runtime monitors in the form of CEP statements, we

contribute a model-to-text (M2T) transformation utility in the modeling tool. The

contributions of the thesis are demonstrated in several case scenarios.

v

ÖZETÇE

Bilgisayar teknolojilerindeki artan işlemci gücü ve bellek kapasitesi, bununla birlikte

giderek azalan ölçekli mimari boyutları sayesinde endüstride yeni bir devir başladı,

Endüstri 4.0. Bu gelişmeler gömülü sistemlerin kapasitesini artırarak, bunların kul-

lanıldığı otonom sistemlerin her geçen gün daha fazla yaygınlaşmasını sağlamıştır.

Nesnelerin İnterneti (Internet of Things - IoT) gömülü sistemlerin insan etkileşimine

gereksinim duymadan birbiriyle etkileşebilmesini sağlayarak, endüstride pek çok ye-

niliğin başarılmasına yol açmıştır. IoT cihazlarından oluşan bir sistemlerin sistemi

(SoS) geliştirmek büyük ölçekli sistem tasarımında yeni bir zorluk olarak karşımıza

çıkmaktadır (örn., ortam destekli yaşama (ambient assisted living - AAL) uygula-

masında onlarca cihaz kullanılırken, akıllı şehir uygulamalarında binlerce cihaz kul-

lanılabilir). Bu yüzden, IoT cihazlarından oluşan SoS’lerin yazılımı geliştirilmesi

ve doğrulama süreçlerinde karşılaşılan zorlukların üstesinden gelebilmek için yeni

yaklaşımlara ihtiyaç vardır. Biz bu tezde IoT cihazlarından oluşan SoS’lerin koşum za-

manı doğrulamasının yapılabilmesi problemini ele aldık. Öncelikle, IoT mesajlaşma

öğelerinin temel davranış modelini tanımlayan bir olay kalkülüsü (event calculus -

EC) öneriyoruz. EC, bize IoT cihazları arasındaki Constrained-Application Proto-

col (CoAP) mesajı gönderme ve alma şeklinde gerçekleşen haberleşme aksiyonlarını

olaylar türünden tanımlayabilmemizi, dolayısıyla CoAP uç noktaları davranışlarını,

daha sonra koşum zamanı gözlemcileri olarak kullanacağımız, karmaşık olay işleme

(complex-event processing - CEP) şablonları tanımlamamıza imkan sağlıyor. Koşum

zamanı doğrulama (runtime verification - RV) alanındaki mevcut çalışmalar genel-

likle ağır formal yöntemler içeren çözümler önermektedir; bu nedenle, RV endüstride

pek yaygın kullanılmamaktadır. Bu problemi de dikkate alarak biz bu araştırmada,

vi

model-güdümlü mühendislik (model-driven engineering - MDE) yaklaşımlarını kul-

lanarak IoT sistemlerinin RV faaliyetleri için formal yöntemlere kıyasla daha kul-

lanılabilir bir çözüm sunduk. Bizim yaklaşımımızda, UML2.5 profilinde IoT alanına

özgü değişiklikler yaparak, alana-özgü modelleme (domain-specific modelling - DSM)

prensibine dayalı bir MDE çözümü sunulmuştur. Ayrıca, IoT için önerilen DSM kul-

lanılarak davranış modellerinden CEP ifadeleri biçiminde koşum zamanı gözlemcilerini

otomatik olarak üretebilmek icin modelden-yazıya dönüşüm (model-to-text - M2T)

tekniği ile yeni algoritmalar geliştirilmiştir. Tezde önerilen katkıların gösterimi için

MDE ve M2T teknikleri çeşitli durum çalısmalarında kullanılmıştır.

vii

ACKNOWLEDGEMENTS

Pursuing a PhD degree was a long-lasting goal of my life, because I believe in life-long

learning and research. But, I never had the real motivation and time to finish one,

until I met with Prof. Ismail Arı. I sincerely thank Prof. Ismail Ari for encouraging

me to pursue a PhD degree in Computer Science Department of Özyeğin Univer-

sity. From the very beginning, he guided me towards a thesis subject that has an

application-oriented system solution to a common industrial problem. Moreover, the

collaborative work ethic fostered in the Computer Science Department had positive

impetus on landing a state-of-the-art the thesis subject that is a candidate of having

a permanent impact in the literature. Prof. Arı and Prof. Sözer has cooperated in

inspiring such a novel research question that has driven my PhD dissertation. Es-

pecially during the first semester of my thesis, Prof. Sozer has demonstrated a very

keen virtue of selflessness and helped us comprehend the principles of RV domain. I

am also thankful to Prof. Mehmet S. Aktaş for his insightful remarks and intriguing

questions on the contributions of the thesis at during progress review meetings.

I also would like to thank my wife, Merve. She has always showed compassion and

patience towards me, whenever I felt like going nuts because of a software not working

properly, or not being able to finalize a paper on time. She had never complained

about me stealing time from our marriage, for endless hours some nights. Thank you,

Merve!

viii

TABLE OF CONTENTS

DEDICATION . iii

ABSTRACT . iv

ÖZETÇE . vi

ACKNOWLEDGEMENTS . viii

LIST OF TABLES . xii

LIST OF FIGURES . xiii

I INTRODUCTION . 1

1.1 Thesis Scope . 2

1.2 Motivation . 4

1.3 Contributions . 5

1.4 Thesis Overview . 7

II BACKGROUND . 9

2.1 Runtime Verification . 9

2.2 CoAP-based IoT Systems . 11

2.2.1 A Short Investigation of Lamport’s Timestamps on CoAP . . 15

2.3 Verification as a Service: Gaps and Opportunities 16

2.3.1 Cloud Computing . 18

2.3.2 Software Testing and Virtualization 21

2.3.3 Research Methodology . 21

2.3.4 Evaluation . 23

2.4 Related Work . 29

2.5 Conclusion . 29

III DERIVING AN EVENT CALCULUS FOR IOT 31

3.1 Event Calculus Revisited . 33

3.2 Representing IoT with Events: Leveraging MSCs 36

ix

3.3 Event Calculus for IoT . 40

3.3.1 Event Calculus for CoAP . 41

3.4 Case Study: Wireless Token Ring Protocol 46

3.5 Related Work . 49

3.6 Conclusion . 51

IV RUNTIME VERIFICATION OF IOT SYSTEMS USING CEP (RE-
CEP) . 53

4.1 Complex-Event Processing with Esper 55

4.2 Event Processing for Runtime Verification 58

4.3 CEP for IoT . 64

4.3.1 CoAP Event Generator . 64

4.4 Case Study: WTRP . 66

4.4.1 Implementation . 69

4.5 Discussion . 71

4.6 Related Work . 73

4.7 Conclusion . 75

V RUNTIME VERIFICATION AT THE EDGE OF THINGS . . . 76

5.1 Modeling Runtime Verification for IoT Systems 78

5.1.1 UML Profile Extension . 79

5.1.2 Model-driven engineering for Interoperability 80

5.1.3 A model-based RV solution for IoT systems 82

5.1.4 Implementation . 84

5.2 Verification at the Edge of Things 87

5.2.1 A Reference Verification Architecture 90

5.3 Case Study: Ambient-Assisted Living 92

5.4 Discussion . 96

5.5 Related Work . 98

5.6 Conclusion . 101

x

VI CONCLUSION . 103

REFERENCES . 107

VITA . 119

xi

LIST OF TABLES

1 Categorization of Literature Based on Test Level & Type 24

2 Categorization of Literature Based on Contribution & Delivery Model 25

3 SEC Predicates and Meaning . 35

4 Context and Event Verdicts for Figure.12 46

5 Predicates and Meanings for WTRP 70

6 Performance Results . 72

7 RV@Edge Architecture Components of Figure.28 91

xii

LIST OF FIGURES

1 Examples of different scales of IoT deployment[1] 2

2 Estimated number of IoT devices installed between 2016-2020 3

3 Contributions of the Thesis . 6

4 Verification Techniques . 10

5 Runtime Verification Recapped . 11

6 CoAP OSI Layering . 12

7 CoAP Message Format[2] . 13

8 Demonstration of CoAP Messaging Model [2] 14

9 Development and Test Life-Cycle . 18

10 Cloud Deployment & Delivery Models 19

11 How Event Calculus Works . 34

12 MSC for a CoAP Service S . 37

13 Cooja Simulation of WTRP . 47

14 Complex-Event Processing Conceptual View 56

15 Esper is a container for EPL Statements[81] 57

16 RV Process with Complex-Event Processing 59

17 CEP Assisted Runtime Verification Reference Architecture 63

18 Event Generation out of CoAP Messages 65

19 EPL Statement Flow for Figure.13 68

20 MDE Process for Interoperability . 81

21 UML Elements Syntactical Relations (adapted from [3]) 82

22 CoAP UML Profile Extension . 83

23 Healthcare Interoperability[4] . 85

24 Patient Consent Sequence Diagram 85

25 Algorithm for Generating EPL Statement of Success Verdict 86

26 Algorithm for Generating EPL Statement of Fail Verdict 87

27 Edge Computing Paradigm . 88

xiii

28 Conceptual Reference Verification Architecture 90

29 IoT-enabled AAL Example . 92

30 Sequence of Actions in CareWatch System 93

31 CareWatch Component View . 94

32 Sequence Diagram of CareWatch . 94

33 Increasing number of EPL statements 23 98

34 Future Work . 105

xiv

CHAPTER I

INTRODUCTION

Software and software systems have become so widespread that we cannot think of

any aspect in everyday life that does not involve a product with such a system in it.

The scale of computing capabilities has penetrated a diverse spectrum of application

domains encompassing end user artifacts such as key-chains, all the way up to an

industrial factory automation. A technology innovation driven by introduction of IoT

phenomenon has increased the momentum towards implementing systems of systems

(SoS) with more smartness features [5]. The driver behind such an impetus of IoT

is that it allows for engineering such integrated systems that merely require human

interaction; thereby, enabling invention of new functionalities that is composed of

autonomous endpoints operating in an accord with respect to a predefined service

composition definition.

Every new capability built on groundbreaking concepts brings along a challenge

in engineering the systems that we used to develop with older conventions. IoT

enabled SoS’s exemplify a domain of large-scale systems with so intricate detailed

design elements that it necessitates innovative engineering solutions to tackle with.

That is due to the fact that the size of an IoT system might scale from a system of

tens of endpoints up to thousands (Figure.1).

A smart city infrastructure (Figure.1) hosts diverse applications of IoT systems

[1]. The elements of such a system might contain smart parking, smart traffic lights,

smart metering and similar smart vertical domain applications. That’s why, such a

system might be composed of thousands of interconnected IoT enabled endpoints.

However, a smart house application is usually identified with individually operating

1

Figure 1: Examples of different scales of IoT deployment[1]

collection of IoT endpoints. Those systems generally operate in a stand-alone fashion,

allowing end user to conveniently monitor and control various sensors and actuators

in a house environment (Figure.1).

In the following sections of this chapter we will first specify the scope of this thesis.

Then, a motivational section will be identifying the underlying research questions,

which is followed by a section describing the contributions proposed in the thesis. A

particular section is dedicated to present an overview of the thesis document.

1.1 Thesis Scope

Embedded systems are everywhere; and IoT enabled devices are proliferating the

embedded systems in everyday life. According to a recent research by Gartner, Inc.

the estimated number of IoT devices installed in year 2020 will be 20,415 millions of

units1 (Figure.2). The total number of IoT devices installed in year 2017 has already

passed the total number of human beings on this planet.

IoT systems are enabled by several underlying technologies. One of those tech-

nologies that makes those systems easy to design, develop and test are the application

1https://www.gartner.com/newsroom/id/3598917

2

Figure 2: Estimated number of IoT devices installed between 2016-2020

layer communication protocols. Even though those systems might be built around

hundreds or thousands of devices that are manufactured by different companies, the

service-oriented architecture (SOA) principles adopted by some of the protocols fa-

cilitate engineering activities. Constrained-Application Protocol (CoAP), an OSI

Layer-7 application layer protocol [2], is designed with RESTful API guidelines ([6])

as the building block of the protocol. The IETF Constrained RESTful Environments

(CoRE) working group ([7]) has compiled the best practices as CoAP standard for

supporting a SOA-based application development experience for resource constrained

devices in IoT. RESTful services perspective has a tremendous advantage over other

architectural approaches when it comes to discovery, composition, integration and

execution of various services procured by different subsystems. Thus, engineering an

IoT as a SoS is extremely streamlined with the introduction of such application layer

protocols.

This thesis focuses on verification challenge of engineering a SoS with IoT devices,

which might be a good example for a large-scale system. There are already various

research efforts in testing the IoT ([8]). However, we particularly focus on runtime

verification (RV) of such systems, because we argue that proliferation of reliable

3

IoT would necessitate a feasible RV solution considering the penetration pace of the

phenomenon(Figure.2).

1.2 Motivation

Internet of Things (IoT) has drastically modified the industrial services provided

through autonomous machine-to-machine (M2M) interactions. Such systems com-

prise of devices manufactured by various suppliers. Verification of those systems is

particularly challenging due to high heterogeneity of deployed devices and the poten-

tial scale of the SoS’s in IoT domain.

RV has usually been considered as an intimidating verification method by the

practitioners ([9]). That’s why, it is poorly utilized in the industry. However, large-

scale systems such as IoT call for feasible solutions for RV, because of the fact that

those systems are deployed with such devices that are line-replaceable-units (LRUs);

which means that an IoT device can be easily swapped with another one providing

similar or new services. This capability has been introduced owing to the SOA based

CoAP protocol. Such a feature necessitates re-assuring the reliability of the overall

SoS at runtime, without interfering with the operational behaviors of the system.

Those systems with such LRUs necessitate a black-box verification approach.

Providing an online and non-instrumented RV solution for such IoT systems as

described above is the main motivation of this thesis. We sought for an online solution

because SoSs engineered with LRUs require instant verification of sustained reliability.

The driving idea behind providing a non-instrumented approach in such environments

as IoT where those devices from various manufacturers can be plugged in and out

of the SoS at will, is that we can not inject any instrumentation code to proprietary

commercial-off-the-shelf products.

Therefore, this thesis present a model-driven engineering approach for IoT sys-

tems to promote automatic RV. We introduce a concept of designing for RV, which

4

establishes a foundation on representing the messaging model of CoAP in terms of

events, then utilizing CEP techniques to yield success/failure verdicts on observed

behaviors of a SoS. The modeling support is achieved through deriving an extended

UML profile on an open-source modeling tool; and we propose to utilize an open-

source CEP engine, which we believe will enable fast adaptation of the contributions

of the thesis in the literature and the industry.

The aforementioned motivation elements can be more precisely defined in following

research questions, which are main drivers for the thesis:

1. How to propose an RV solution that does not intimidate practitioners, which

utilizes CEP tools?

2. How to enable an RV operation to be performed by using a CEP tool?

3. How to provide an intuitive process of RV for promoting its utilization?

1.3 Contributions

Figure.3 summarizes the contributions of this thesis. We first propose an event cal-

culus (EC) for enabling a transformation of message interactions occurring between

communicating IoT endpoints into simple events. The event calculus builds on the

idea of representing IoT behavior in Message Sequence Charts (MSC) ([10]). The EC

primitives specified for IoT help us devise Esper EPL statements for monitoring IoT

behavior at runtime.

Afterwards, the EC is utilized in order to develop a domain-specific meta-model

(DSM) for specifying IoT behaviors. The DSM is in fact an extension of UML2.5

profile such that it provides a means to describe IoT interactions on a sequence

diagram (SD). In order to automatically generate runtime monitors from SDs, we

5

Figure 3: Contributions of the Thesis

provide an extension of Papyrus2 modeling tool, which is an open-source Eclipse-

based software. We propose to use Acceleo3 model-to-text (M2T) transformation

algorithms for generating CEP EPL statements from those monitors.

By proposing a complementary MDE solution as an RV approach, we are able

to fill the gap between theoretical foundations of RV and practical verification oper-

ations. The thesis motivates RV problem for those IoT systems that communicate

on Constrained-Application Protocol (CoAP). That’s why, we also implement a non-

intrusive CoAP Sniffer and a CoAP Event generator that injects CoAP messages

captured from an IoT network into Esper CEP engine as simple events.

Note that aforementioned contributions explicitly address the research questions

listed in the previous section. To be more specific, using Esper CEP tool for describing

runtime monitors provides a seamless process for exercising the correctness properties

of SUT, which addresses the first question (Chapter.4). In order to enable using a

CEP tool, we first present a domain-specific EC that allows representing occurrences

of sending messages in a CoAP system via events; later, those events enable us to use

2https://www.eclipse.org/papyrus/
3https://www.eclipse.org/acceleo/

6

a CEP tool for RV (Chapter.3). For promoting an intuitive process of RV for IoT,

we democratize the process by providing an MDE-based automatic test generation

framework, which addresses the last research questions (Chapter.5).

1.4 Thesis Overview

The thesis is organized as follows.

Chapter.2 introduces the reader to background information on relevant litera-

ture. It discusses the fundamental tenets of runtime verification and software testing

as a service. This chapter is an extended version of the work described in [11]. The

work conducted justifies the significance of an edge computing based solution frame-

work for RV as a service.

Chapter.3 presents the event calculus formulated for representing communication

actions between IoT endpoints. Event calculus enables abstract description of CoAP

messaging events so that the interactions can be specified by a technology-independent

fashion. Basic occurrences such as sending and receiving a CoAP message are repre-

sented with proposed event calculus. Complex relations between those basic events

are captured by specific predicates introduced in this chapter. The chapter is a revised

version of the work presented in [12].

Chapter.4 elaborates on the fundamental information on CEP concepts and how

to apply them on event calculus proposed in Chapter.3. It first describes how to

represent IoT messaging primitives with as simple events in CEP statements. Later,

it goes on to specify template patterns that are utilized as runtime monitors for RV

of an IoT behavior. We also introduce a reference design of a passive network listener

for sniffing CoAP packages, whereby we promote a black-box verification approach.

This chapter is a revised version of the presented in [12] and [13].

7

Chapter.5 is a composition of the work we presented in [14] and [15]. Our con-

tributions in MDE approach for providing a seamless method of automatically gener-

ating runtime monitors for RV of IoT systems. The contributions are demonstrated

on various examples in the chapter.

Chapter.6 The conclusions and related work regarding each chapter is investi-

gated in the body of corresponding chapter. The last chapter of the thesis is dedicated

to explain overall contributions and future work in a coherent way.

8

CHAPTER II

BACKGROUND

This thesis proposes a RV approach for IoT systems with CoAP as the application

layer protocol. Therefore, we refer to several building blocks of both domains fre-

quently in the body of the thesis. That’s why, this chapter explains the fundamental

concepts of RV and CoAP. The chapter also goes on to describe the gaps and op-

portunities in the verification domain, where more frequently verification services are

procured as services over the cloud ([11]).

The details of techniques used to build the contributions are left to the correspond-

ing chapters where we elaborate on each contribution. This chapter is organized as

follows: Section.2.1 lays the foundation for the domain of discourse of this thesis,

runtime verification. The main characteristic of problem domain, IoT, is described as

CoAP protocol in Section.2.2. In the next section (Section.2.3) we survey the litera-

ture on testing-as-a-service (TaaS) in order to identify challenges and opportunities

for our research. After expressing related work in Section.2.4, we conclude the chapter

with a discussion of the gaps that we intend to fill in the remainder of the thesis.

2.1 Runtime Verification

Recent developments in software-as-a-service business has made it possible for soft-

ware systems to become much more prevalent than ever. Those systems operate

more autonomously thanks to innovations introduced as agent-based smart objects

[16]. Such improvements in engineering software systems necessitates innovative ap-

proaches to verification of those in order to enable reliable system operation.

With a broad perspective, verification methods can be listed as (i) theorem proving,

(ii) model checking, (iii) and testing [17] (see Figure.4). Theorem proving explores

9

Figure 4: Verification Techniques

the correctness of a software by using certain proof techniques. Model checking, a

technique that generally requires formal analysis of the system under test (SUT),

is more related with verifying a software automatically at design time (i.e., without

executing the SUT on production environment), which is usually represented as finite-

state machines. On the other hand, testing is practically examining the SUT to

demonstrate non-existence of faults in it [17].

Figure.4 summarizes the relation between different verification techniques. Theo-

rem proving and model checking are types of formal verification, which involve math-

ematical models and proofs of system correctness through formal algebra. Those two

types of verification constitute static analysis methods. However, RV, having its roots

in formal specification of a SUT and being applied to SUT at runtime, is a comple-

mentary technique between functional testing and formal verification. It allows for

reacting to unexpected behaviors at runtime [17].

Figure.5 recaps the principles of RV, which is formally defined as examining a

systems execution trace against its specification expressed in correctness properties.

A correctness property formally captures the expected behavior of a particular system

10

Figure 5: Runtime Verification Recapped

specification, which enables checking whether a runtime instance of the system con-

forms to that specification or not via runtime monitors. A runtime monitor is a tool

that observes execution trace of a SUT and generates verdicts on the verification of

a particular specification against its correctness property. Execution trace represents

a finite run of a program, usually expressed in SUT’s states.

Note that event calculus (EC) can be used for expressing state transitions in a

system ([18]), so as to indicate a state change. In order to allow using EC, we define

an execution trace to consist of a sequence of finite set of events in the SUT. The RV

literature has many approaches covering formal methods of representing correctness

properties and constructing runtime monitors (e.g., Linear Temporal Logic (LTL))

[17]. We are going to explain how we use EC and CEP techniques for specifying

correctness properties and runtime monitors in Chapter.3 and Chapter.4, respectively.

SOA-based systems interact through service compositions, that’s why we represent

each service request and reply message as an event, thereby enabling representation

of such systems with proper EC.

2.2 CoAP-based IoT Systems

Proliferation of Internet-based utilities and technologies have permanently altered

our lives for good. This phenomenon was reinforced by introduction of RESTful API

guidelines [19], which have elevated SOA adoption. Many of the Internet utilities are

widespread thanks to the utilization of web services that are architected according

to RESTful APIs [20]. IoT domain also benefit from RESTful-like application layer

11

Figure 6: CoAP OSI Layering

protocols (i.e., CoAP). CoAP is developed on RESTful guidelines so as to allow de-

veloping system architectures through SOA principles. Although CoAP demonstrates

HTTP-like interactions, it is specifically devised for resource-constrained devices with

limited battery, low memory footprint and limited computation power.

CoAP dictates a client/server communication pattern as in other RESTful ser-

vices (Figure.6), in which parties engage in an interaction by exchanging a series

of RequestandResponse messages. RequestandResponse semantic of CoAP interac-

tions enables us to represent the protocol layer as consisting of two implicit logical

layers (Figure.6). This logical representation allows us to manage request/response

messaging by means of matching method code and response code (i.e., Request/Re-

sponse layer), while the communication layer details of UDP and asynchronous mes-

saging are handled in a different logical layer (i.e., Message layer). A CoAP client

sends a Request message to a CoAP server, which defines the required action with a

special method code on a resource of the server. The resources hosted on a server are

identified by URIs (unified resource identifier), just as services in HTTP. Should the

server accomplish to process the corresponding Request, then it sends a Response

message back to the originating Client with a proper response code.

The messaging model of CoAP is an asynchronous interaction model. The mes-

sages are exchanged over UDP packets [2] (Figure.6). An entity participating in a

CoAP interaction is called an endpoint. In a CoAP network, an endpoint may engage

12

Figure 7: CoAP Message Format[2]

in interactions both as a client and a server at the same time. Figure.7 illustrates the

packet format for a CoAP message. A CoAP message is classified into four different

types: Confirmable (CON), Non-confirmable (NON), Acknowledgment (ACK), Reset

(RST). The kind of a message is indicated by a corresponding bit value in the Type(T)

field of a CoAP packet determines the type of a particular message. A message is

uniquely identified by a MessageID field that is 16 bits long. The MessageID field

is not only used for assigning a unique ID to a message, but also for supporting re-

liability in a UDP-based application layer protocol; whenever an endpoint receives a

message with a MessageID that is a duplicate of a previously received message, then

it’s removed without processing further ([2]). The MessageID value is used also for

matching messages of type ACK/RST to messages of type CON/NON.

Even though the CoAP is operated over an un-reliable transport layer protocol,

UDP, it is possible to improve reliability of IoT networks with CoAP devices by

transmitting the messages with CON type. When a sender sends a CON message,

the receiver of that message is expected to reply with a corresponding ACK message.

In case an ACK message is not received in a predefined timeout ([2]), a series of

re-transmission may be issued according to an exponential back-off mechanism, until

a valid ACK is received with the same MessageID. However, if an appropriate ACK

message is not received in EXCHANGE LIFETIME time, then the communica-

tion between sender and receiver is considered deficient. Note that, an endpoint might

13

Figure 8: Demonstration of CoAP Messaging Model [2]

respond with a RST message, if it is not capable of processing a CON message. A

Request can be conveyed via both a CON and NON message; and, the Response to

a corresponding Request might be separately sent in a CON/NON message, as well

as piggybacked in an ACK message.

Figure.8 illustrates the mechanics of asynchronous exchange of corresponding

CON and ACK messages between a pair of client and server endpoints. In Figure.8.a,

a Response to a corresponding CONfirmable Request message is sent piggybacked to

an ACK message for that particular CONRequest (i.e., notice how the MessageID

and TokenV alue fields). Figure.8.b demonstrates another version of CON,ACK cor-

respondence, in which the Response for the CONRequest message with MessageID

0xbc91 is sent back later in a separate CONResponse message with MessageID 0x23bc.

That’s why an ACK message has to be sent from server to client indicating that the

message with MessageID 0xbc91 has been received. Notice that the TokenV alue

fields of corresponding Response and Request messages in Figure.8.b match. The

TokenV alue field is used to ensure that a Reply message matches that of a corre-

sponding Request message that has occurred previously in the network.

Considering the fact that CoAP is a communication protocol, the behavior of an

IoT system with CoAP installed can be analyzed through Message Sequence Charts

14

(MSC), which is a formal description technique for communication protocols, devel-

oped by ITU-T [10]. It provides a trace language for the specification and description

of the communication behavior of system components and their environment by means

of message exchanges. Because the Z.120 presents the guidelines for an MSC in such

an intuitive and transparent manner that the MSC language is easy to learn, use, and

interpret. We are going to cover how to express a CoAP system in terms of events

occurring in the form of message exchanges by means of MSCs in Section.3.2.

2.2.1 A Short Investigation of Lamport’s Timestamps on CoAP

Lamport proposed a logical clock mechanism that enables synchronized communica-

tion amongst distributed computing platforms ([21]). The original problem of syn-

chronization has been identified as the challenge of ordering the events occurring in

distributed devices. The idea was to use a timestamp mechanism that observes a

causality relation amongst the events in a system. Causality relation means that one

event leads to another. An event is defined as a sending of a message from a process

to another. Hereby, if an event A causally “happens before” another event B, then

timestamp(A) < timestamp(B).

Lamport describes a HappensBefore logical relation among pairs of events denoted

with →. The relation is built on three rules:

1. on the same endpoint: a→ b, iff timestamp(a) < timestamp(b),

2. if EP1 sends message m to EP2: send(m)→ receive(m),

3. it is transitive; if a→ b and b→ c, then a→ c.

Those rules create a “partial order” amongst the events that are causally related to

each other.

Hereby, we explain how the Request/Response messaging model can be expressed

by using Lamport clocks, such that they exhibit a HappensBefore relation. Assuming

15

that the event of an endpoint EPi sending a Request message m to another endpoint

EPj is denoted by send(i, j,m) and the receiving of that message at EPj is denoted by

receive(i, j,m). According to the messaging model of CoAP, a corresponding Reply

message is assumed to be sent in a message n, which is denoted by events send(j, i, n)

and receive(j, i, n), respectively. Using the rules of Lamport clocks listed above, we

can show that send(i, j,m)→ send(j, i, n) as follows:

1. send(i, j,m)→ receive(i, j,m), by Rule 2;

2. receive(i, j,m)→ send(j, i, n), by Rule 1;

3. then, send(i, j,m)→ send(j, i, n), by Rule 3.

In following sections, we are going to build on these rules in order to come up with

an event calculus that captures temporal ordering amongst events in the system.

2.3 Verification as a Service: Gaps and Opportunities

Cloud computing has emerged as a new paradigm that facilitates the development

and utilization of highly flexible, elastic services on-demand, and over broadband

network access. Those attributes are motivating many organizations to move their

businesses to a cloud platform.

Software testing has been one of the best practice areas for migrating to cloud

environment. Virtualization, which is an enabling technology of cloud computing, was

first used for quickly creating virtual computation resources with different operating

systems (OS) to test software applications on various platforms [22]. Testing a new

software system often requires costly server, storage and network devices only for a

limited time [23]. These computing resources are either not used or underutilized

after testing, thus incurring extra cost on budget.

System and software verification activities demand excessive computing and hu-

man resources. For instance, to test the performance and scalability of a banking

16

application, the system must be stressed with requests from millions of users in a

short time interval. This is a realistic scenario that should be tested because people

rush to their bank accounts regularly on every payday. Reproducing such a scenario

would require the provider to set up a test harness (including the user databases)

to emulate the actions of millions of users. Similarly, mobile application providers

frequently have to deal with maintaining the quality of their services over a plethora

of various combinations of platforms [24]. The computing platforms may encompass

different browser technologies with diverse back-end support running on various mo-

bile OS. To ensure a reliable service, providers have to test their services on all these

platforms.

Yet, another challenge is that each distinct domain of knowledge requires those

involved in the verification of the applications in the domain to posses such sufficient

expertise that allows them to engage in the verification challenge. This issue is exacer-

bated on large-scale SoS that may consist of subsystems built on various technologies.

IoT is an example of such SoS’s, in which endpoints can be either resource-constrained

devices or full-fledged server computers; whereby, the practitioners of IoT verification

are confronted with mastering a broad spectrum of technologies in order to conduct

the tests on those systems. Consequently, it’s getting more and more difficult for

companies to employ the personnel with all the required skills for all kinds of system

attributes. However, we argue that in order to alleviate the issues introduced with

broad spectrum of enabling technologies involved in emergent innovations, such as

IoT, SOA principles should be adopted in design phases.

Test automation topic is frequently visited when software testing is considered

over the cloud. There are many test automation tools in the market, which address

different requirements in a testing life-cycle (Figure.9). We believe our review on the

subject matter will encourage the migration of those tools to the cloud.

One of the major drivers of cloud computing adoption is economies of scale. It

17

Figure 9: Development and Test Life-Cycle

supports a pay-per-use type of service procurement, thus eliminating an upfront in-

vestment in many cases. Testing tools and services are no exception. Development

teams can benefit from this paradigm for utilizing test tools when they need it and

as much as they need it, thus saving license fees.

We will enrich the discussion with current state-of-the-art software testing as a

service over the cloud; and the survey will classify related literature according to what

type of testing activities these services support for what type of application domains.

2.3.1 Cloud Computing

Cloud computing is a relatively recent term, which basically defines a new paradigm

for service delivery in every aspect of computing. It enables ubiquitous, convenient,

on-demand network access to a shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services) that can be rapidly provisioned

and released with minimal management effort or service provider interaction [25].

Cloud computing has been enabled by the developments in virtualization, dis-

tributed computing, utility computing, web and software services technologies [26].

It is especially based on two key concepts. The first one is SOA, which is the delivery

18

Figure 10: Cloud Deployment & Delivery Models

of an integrated and orchestrated suite of functions to an end-user. SOA enables end-

users to easily search, use and release services on-demand and at a desired quality

level. Workflows allow integration of services to deliver a business-valued application.

The second key concept is virtualization. Virtualization allows abstraction and isola-

tion of lower level functionalities and hardware, which enables portability of higher

level functions and sharing and/or aggregation of the physical resources.

2.3.1.1 Essential characteristics

Cloud computing exhibits the following essential characteristics. Rapid elasticity al-

lows end users to easily and rapidly provision new services and release them, enabling

them to pay for what they utilize and how much they use it. On-demand self-service

is an appealing characteristic for consumers because it provides them the flexibility

of provisioning a service exactly when they need it. The services provided over the

cloud are measured services, which means that consumers only pay for how much ser-

vice they consume; thus eliminating the need for investing in redundant computing

19

resources. Cloud computing has benefits at the providers’ end as well. A cloud com-

puting provider pools its computing resources in order to serve multiple consumers

by means of a multi-tenant provisioning model.

2.3.1.2 Delivery models

Even though there are several definitions for delivery models of cloud computing ser-

vices, three are widely adopted in the literature. Software as a Service (SaaS) delivery

model (Figure.10) is described as providing software applications/services over cloud

infrastructure for consumers. These applications are accessible from various platforms

through an easy-to-use client interface such as a web browser. Platform as a Service

(PaaS) delivery model enables consumers to deploy their solutions to the cloud by

means of platforms such as application servers and database services provided by the

Cloud Platform Provider. Infrastructure as a Service (IaaS) is the lowest level of ser-

vice model in cloud delivery models. In IaaS consumers acquire computing services

and can deploy their own custom-configured systems in these resources potentially

replicating their own existing infrastructures. Therefore, IaaS can also enable legacy

system and software compliance.

2.3.1.3 Deployment models

The deployment model of a cloud platform is also important to consider when de-

livering or procuring on-line services [25]. Public (Figure.10) cloud infrastructures

are provisioned for use by any consumer; infrastructure exists in the premise of the

provider. Private cloud infrastructure is provisioned for exclusive use of a single

organization and can be owned by a single organization, a third party, or some com-

bination of them. Community cloud infrastructure is provisioned for exclusive use

by a particular community of users from organizations that constitute the specific

community. Hybrid cloud is a composition of two or more of the models above.

20

2.3.2 Software Testing and Virtualization

Software testing is an integral part of the software development life cycle (Figure.9)

that span over all the development phases. One of the main challenges in software

testing is deploying and maintaining a real-world test platform at the outset of a

project. Virtualization technology has been utilized in testing various software since

its inception in 1960’s. IBM’s CP-40 project might be considered as the pioneer of vir-

tualization technology[22]. Among other goals of the project, CP-40 was mainly used

by researchers as a tool to evaluate and test the performance of operating systems.

Developments in network infrastructure triggered a spur in Web-based service

delivery. Riungu et.al. discuss the conditions that influence software testing as an

on-line service and elicit important research issues [27]. They define on-line soft-

ware testing as a model of software testing used to test an application provided as a

service to customers across the Internet. This model promotes a demand-driven soft-

ware testing market by enabling organizations and individuals to provide and acquire

testing services on-demand. The concepts that affect software testing as an on-line

service are domain knowledge, infrastructure, security, pricing, communication and

skills [27]. On-line testing reduces costs related to installing and maintaining testing

environment. It also introduces a new market where the providers and consumers

can reach skilled test engineers on-demand.

2.3.3 Research Methodology

The main purpose of this study is to classify research activities performed in cloud-

based testing area, clarify the terminology used, identify any gaps or open issues that

remain, and address those issues at a high level. There are currently two different

perspectives on “cloud testing” and both cases can be considered as valid forms of

“Testing as a Service” [28]:

1. Testing the cloud-resident applications,

21

2. Providing testing software as services in the cloud, and

3. Both of the above, i.e., testing cloud-resident applications by means of cloud-

resident testing services.

The former deals with how applications perform in terms of functional correctness

and speed when they are migrated to cloud. The latter deals with migration of the

testing process itself onto the cloud. This motivation enabled us to distinguish the

problem domains of the literature. After thorough review of the selected papers we

identified 11 major problem domains (Table.2.3.4.2 and Table.2.3.4.2) depending on

the problem/solution domain of the paper. The problem domains that we identified

allow us to make a distinction between whether the test service is provisioned for

cloud-resident applications or for other platforms (e.g., desktop applications, mobile

applications, etc.).

During our search for the related literature, we found the following keywords and

phrases to be useful:

� cloud application validation

� cloud application verification

� cloud computing testing

� software testing cloud

� testing cloud applications

� verification cloud

Cloud computing partially relates to, and even depends on prior technologies such

as virtualization, web services, utility computing, multi-core and parallel program-

ming and several others. One can go back and analyze how testing processes were

affected by these enabling technologies over a long period of time. IEEE, ACM, and

22

Science Direct are the main search engines we utilized for research. Due to prolif-

eration of recent publications directly on Cloud Computing we decided to focus on

publications dating 2009–2012, without limiting the search to any specific venue. Al-

most all conferences today in the fields of computer systems, data mining, software

engineering and even consumer electronics hold special sessions on cloud comput-

ing, IoT and correlations of those in the form of edge/fog computing. Therefore, we

did not lack any resources. Specifically, in these sessions we looked for papers that

mentioned the keywords and phrases listed above. We eliminated any duplicate and

incremental report. Our categorization approach resulted four distinct categories:

test level, test type, contribution and delivery model. Based on this analysis we were

able to identify trends and gaps.

2.3.4 Evaluation

Our survey of software testing literature resulted eleven problem domains, each of

which is analyzed according to Test Level, Test Type, Contribution and Delivery

Model.

2.3.4.1 Categorization

Test level categorizes the papers against the levels of traditional V-Model (Figure.9)

of software testing: unit, integration, system and acceptance testing. Test type ad-

dresses the type of test that the investigated paper studies: functional, performance,

security and interoperability. Contribution of papers classified according to the prob-

lem description: test execution automation, test case generation, a framework that

either defines a tool or a methodology or an evaluation paper. We further investigated

and extracted what type of delivery model that a specific research builds on.

23

Table 1: Categorization of Literature Based on Test Level & Type

.
Problem Domain Test Level Test Type

Acceptance
Testing

System Test-
ing

Unit Testing Integration
Testing

Functional
Testing

Performance
Testing

Security
Testing

Interoperability
Testing

Mobile App.s X [30], [24] [31] X [24] [30] [30] X

Cloud App.s X [32], [33],
[34], [35],
[36], [37], [38]

[33],
[34],[31],
[35]

[37], [39] [32], [33],
[34], [35],
[36], [37]

[32], [38] X X

Desktop App.s X [40], [33], [38] [31] X [40], [33] [38] X X

Web Services &
App.s

X [41], [42] [31] [26] [41], [42] [26], [42] X X

Distributed & Par-
allel App.s

X [43], [44],
[45], [46]

[31] X [43], [44],
[45], [46]

X X X

Cloud Service Dev.
& Deployment

X [47], [48], [49] [47], [50],
[31], [35]

[48], [47] [49], [50],
[35], [51],
[52], [53], [54]

[48], [51],
[55], [56]

[51] [51], [52], [57],
[58], [59]

Migration to Cloud X [60], [61],
[62], [63], [27]

[27] X [60], [63],
[27], [61], [62]

[63] [63] X

Cloud Infrastruc-
ture & Storage

X [64], [65],
[66], [67]

X X [66], [67] [64], [65] X X

Real-Time Sys-
tems

X [68], [69], [70] [69], [71],
[31]

X [68], [69], [70] [72] X X

Network Config. X [73] X X [73] X X X

Test Task Mang. [74] [75], [28], [74] [28], [74] X [75], [28], [74] X X X

Table 2: Categorization of Literature Based on Contribution & Delivery Model

.
Problem Domain Contribution Delivery Model

Test Execution
Automation

Test Case
Generation

Framework Evaluation SaaS PaaS IaaS

Mobile App.s [30], [24] [24], [31] X X X [30], [24] X

Cloud App.s [32], [36] [32] [32], [34],
[35], [37]

[33], [38] [32] [37] [37]

Desktop App.s X [31] [40] [33], [38] X X X

Web Services &
App.s

[42] [42], [31] [42] [26], [41] X [41], [42] X

Distributed & Par-
allel App.s

[44], [45] [31] [43] [46] X X [43], [44],
[45]

Cloud Service Dev.
& Deployment

[47] [47], [31],
[48], [50]

[76], [47],
[35], [39]

[49] [47], [48], [51],
[77], [54], [55],
[56], [78]

[39] X

Migration to Cloud [61] [61] X [60], [63],
[27], [62]

[61] X X

Cloud Infrastruc-
ture & Storage

[66], [65], [67] [66], [67] [66], [64] X [66], [65], [67] X [64]

Real-Time Systems [69], [70] [69], [70], [71] X [68], [72] [69], [71] [69], [70] X

Network Config. [73] [73] [73] X [73] X [73]

Test Task Mang. [75], [28] X [75], [74] X [28], [74] [28] X

2.3.4.2 Gaps

In our review, we could not identify any research that deals with effects of cloud

deployment model on providing software testing as a service over the cloud. We

believe that the deployment model has a critical role in procuring software testing

service as it is for other on-line services. For instance, community cloud model might

be further investigated for promoting community testing or crowd-testing (e.g., UTest

[29]).

Our categorization emphasizes correlation between testing level, testing type and

delivery model. It can be seen from Table.2.3.4.2 that interoperability testing presents

opportunities for further research, which refers to interoperability of cloud services.

Yet another domain of research for interoperability is large-scale systems such as IoT

([14]). Vast amount of heterogeneity in IoT devices raises new challenges to tackle for

providing and assuring a sustained interoperability of those systems. We discuss the

interoperability issue of IoT systems in Section.5.1. It’s also shown in Table.2.3.4.2

that acceptance testing has not been studied thoroughly.

We noticed that contribution of a literature and its delivery model are mostly inter-

related. For instance, it can be seen in Table.2.3.4.2 that [37] introduces a framework

for testing and it is classified as an IaaS delivery model; so is [43].

Workload distribution and management over the cloud has being studied by the

cloud community. Automated tests might be investigated in terms of their correlation

with available task management frameworks or infrastructures. This subject is not

studied thoroughly ([75], [28], [74]). We believe that task management issue in dis-

tributed and parallel applications has long been studied, and studying those solutions

might facilitate task management for testing over the cloud.

As more and more services are migrated to the cloud, verification of legacy ap-

plications over cloud will gain more attention by the research community. Especially

acceptance testing of those applications needs to be well-structured in order to reap

26

the benefits of cloud. Ding et al. describe why post-migration testing is necessary

when migrating a complex application to cloud in [61]. They introduce a black-box

approach for post-migration testing of Web applications without manually creating

test cases. They propose to automate those tests and present a software module called

Splitter. The tool executes automated functional test by using actual user workload

in real-time to compare responses from the migrated application against those from

the original production application before cut-over to the new platform. Migration

of legacy systems should not only be investigated in terms of system and functional

specifications but also studied in terms of performance, security, unit-level verification

and integration of composing services (Table.2.3.4.2).

Many cloud services are provisioned through composition of several services.In the

near future, several cloud infrastructure service providers may be utilized in providing

value-added cloud services. Thus, interoperability testing of cloud infrastructures and

real-time systems (e.g., IoT) requires further research.

2.3.4.3 Testing for the Cloud

Testing for the cloud defines the testing of applications that are specifically developed

to run on a cloud platform. This fact entails that the application might be utiliz-

ing parallel computing features of cloud computing or it might be a multi-threaded

application. Parallel program testing becomes more critical with the proliferation of

cloud computing services.

Cloud service development and deployment, test task management, cloud infras-

tructure and storage, cloud applications domains are good examples of testing for the

cloud. For example, Chan et.al. propose a graph-based modeling approach to cloud

applications and attempt to support the approach with a testing paradigm for cloud

applications [36]. The testing relates to the notion of model-driven engineering.

27

2.3.4.4 Testing on the Cloud

We distinguish the testing activities for on-premise applications as “testing on the

cloud”. In this type of service, the system under test resides either on-premise or on

the cloud for testing purposes, but it’s deployed on a platform other than cloud.

Testing for certification is a good example for testing on the cloud. On-demand

service delivery attribute of software testing over the cloud paradigm might attract

end-users to test the applications which they will install on their PC or mobile devices

or check the applications’ conformance to certain standards [33].

Unit testing activities are another area where on-demand software testing service

can be utilized. Symbolic execution concept has been migrated to cloud environ-

ment, which facilitates automatic test case generation for unit tests ([69], [70], [31]).

Symbolic execution presents opportunities for automatic test generation and test ex-

ecution automation; but it’s not widely studied according to the problem domains we

presented (Table.2.3.4.2). Thus it presents further research opportunities.

Testing activities usually mean verification activities. Verification and validation

should be considered as a complete service for the quality purposes. Verification and

Validation as a Service (VVaaS) should answer both questions: whether the software

does the right thing and whether the software is built to do the right thing. Thus

acceptance testing should be considered as a new test service to be provided over

cloud. VVaaS over the Cloud should be studied and promoted because one of the

goals of software testing research is to automate the testing activities as much as

possible, thereby

� significantly reducing the cost,

� minimizing human error and

� making regression testing easier.

28

2.4 Related Work

There is a vast amount of literature regarding software testing in the cloud and testing

cloud services. However, to the best of our knowledge, there is no comprehensive

literature review that categorizes exiting body of work according to problem and

solution domains. There have been previous works for identifying research issues for

software testing in the cloud [53]. These works are based on a survey conducted

with industry practitioners, in which issues are categorized from the application,

management, legal and financial perspectives. The analysis of this survey reveals

the requirements of a cloud-based testing solution from the viewpoint of industry

practitioners [27].

2.5 Conclusion

Cloud computing and software testing are likely to be active and popular research

fields in the near future. Traditional software testing techniques are being adapted

for the cloud. On the other hand, cloud computing itself is under constant evolu-

tion, continuously bringing in new opportunities and challenges for software testing

research. In this section, we have presented a classification of current research studies,

identified gaps in the literature and investigated the correlation of software testing

with different deployment models of cloud computing. Researchers in this field can

benefit from the results in selecting their research direction and identifying new re-

search opportunities for future work. We have observed that acceptance testing is an

open research area for testing over the cloud. Test task management is also among

the potential areas for further research.

As we defined in Section.2.1 RV is an intimidating method for practitioners of

verification. New computing paradigms such as IoT and edge computing promises

new types of utilization models for cloud services. Those systems requiring more

robust and scalable verification approaches call for unconventional solutions for RV.

29

Having interoperability as an ongoing issue in IoT systems, we believe that testing

for interoperability of those needs more emphasis as a research area to ensure reli-

able service composition by means of integrating services from heterogeneous device

manufacturers.

30

CHAPTER III

DERIVING AN EVENT CALCULUS FOR IOT

Considering the complexity of modern computers [79], comprehensive verification

techniques, such as model checking and theorem proving, can not practically analyze

the system’s correctness. On the other hand, functional testing can be considered

the most suitable method for determining correctness, which is examined only by a

subset of systemic behaviors. Nevertheless, functional tests may not reveal extraor-

dinary cases that complicated software might exhibit during execution. RV [80] is a

method in which monitors oversee the execution of a SUT in order to check whether

it meets a specific constraint, which is defined by a correctness property. Should the

monitor notice that the system is in violation of the property, then it can activate

the management mode, and therefore the system also leads to safe behavior.

IoT systems are heterogeneous systems in that each system may have differ-

ent computing, memory, power, networking, sensing and actuating capabilities. A

plethora of application layer protocols (e.g., CoAP, MQTT) are utilized for facilitat-

ing application development with such heterogeneous devices. Each protocol exhibits

unique interaction model; so, the choice of application layer protocol determines the

design and development phases of an IoT system. Thus, the application layer choice

also alters the event calculus to be used for specifying an IoT system. In this re-

search, we adopt CoAP as the application layer protocol, because it allows RESTful

application development framework, and promotes IoT proliferation by means of its

service-oriented messaging model. Such architecture principles as SOA adopted by

IoT protocols (i.e., CoAP) allow expressing an expected behavior of such a system by

means of events; so, it encourages to exercise those systems at runtime for checking

31

correctness properties defined at the design phase. The proposed solution can be

tailored for other protocols by following the steps explained in the chapter.

The focal idea behind this research is facilitating the RV process for IoT domain

applications by using open-source or commercial-off-the-shelf CEP tools (e.g., [81]).

In order to contrive such a purpose, we first need a seamless method of expressing IoT

systems in terms of event occurring in those. Because, CEP tools operate on simple

events (Chapter.4) for infer complex decisions on the circumstances taking place in

the system. We propose to tailor an event calculus (EC) specifically for IoT domain

so that we can achieve to express the expected behaviors of it in a human-readable

form that is also independent of any available CEP tool.

This chapter is a consolidated and extended version of our work in [12] and [13].

We leverage our argument on the interactions described in a MSC to specify message

exchanges of CoAP-based IoT systems in terms of events; a novel event calculus

for formally describing IoT system constraints has been specified by means of the

linearization of a MSC. Thereby, we enable specification of correctness properties

that are used for describing monitors in RV.

The chapter starts with an introduction of basic event calculus (EC) information,

and how to use it for new domains. Then, a section is dedicated to identifying princi-

ples of MSC’s that is used to describe communication protocol behavior. Afterwards,

a novel EC is proposed in a particular section, which elaborates how to represent

a runtime monitor in terms of complex-events obtained by applying the EC algebra

based on simple interactions occurring in an IoT system. The utilization of the pro-

posed approach is demonstrated on a case of wireless token ring protocol (WTRP),

which is a frequently utilized protocol for ensuring quality of service in WSNs such as

IoT. A separate section specifies the literature review on runtime verification solutions

proposed for IoT systems, embedded systems.

32

3.1 Event Calculus Revisited

In real world, we use natural language assertions to indicate the occurrence of a

change in the state of a phenomenon. For example, “The weather turned rainy”

sentence implies that the weather has changed state from “not raining” to “raining”.

Those occurrences that cause a change in the state of a phenomenon are called events.

Information systems can also be specified in terms of events occurring in the system.

Event calculus, first introduced by Kowalski and Sergot [82], is a method of repre-

senting occurrences in a domain of discourse with respect to temporal relations. Even

though it was initially used for making sense of database transactions, it can also be

used for program specifications [82]. Since its proposition, there have been several

attempts to extend its representational expressiveness. Kowalski [83] proposed a sim-

plified version of event calculus (SEC) that replaced the event occurrences with event

types. Table.3 presents some of the predicates of SEC.

The main goal of our study is to facilitate the research and practice in IoT do-

main by seamlessly conceptualizing the system under development in terms of event

occurrences. If we can automate the process by which we derive conclusions about ac-

tions occurring in a system, then we can develop much better engineering approaches

for common problems such as RV. EC provides tools for describing those systems in

terms of events [84, 85, 86]. In order to formulate an EC for a specific domain we

should;

� specify simple events in the system;

� specify the algebra that correlate those simple events in order to deduce complex

conclusions;

� define time-varying properties of the system.

An EC devised particularly for IoT domain would not only help specify the expected

behavior of a system in a human-readable form, but it also would facilitate utilization

33

Figure 11: How Event Calculus Works

of various event-processing engines for monitoring and verification of system behavior

at runtime.

Figure.11 illustrates how EC actually functions. An event is a construct of EC

that specifies what happens when in a system. In other words, an event is defined

as any happening in a context at certain time, that is irrevocable, which causes the

system state to change. Another construct of an EC is time-varying properties of a

system, which is called a fluent. A fluent allows describing how actions in a system

are reacted upon by a system. The verdicts determines what’s True, and when. An

EC allows for generating commonsense decisions about actions and corresponding

changes of them on a particular domain of discourse [18]. Therefore, we can list

fundamental constructs of an EC as;

� events,

� time-dependent attributes (called fluents),

� and timepoints.

The events are assumed to happen on a single time axis. Commonsense reasoning is

defined as humans making inferences on everyday situations [84]. Fluents (f) allow for

representing time-varying properties of a system. There are two concrete happenings

that rely on these building blocks;

1. an event can occur in a unique time instance,

2. a system property is true only at a single time-point.

34

Table 3: SEC Predicates and Meaning
Predicate Meaning
Initially(f) f is True at timepoint 0
HoldsAt(f, t) f is True at t
Happens(e, t) e occurs at t
Initiates(e, f, t) if e occurs at t, then f is True after t
Terminates(e, f, t) if e occurs at t, then f is False after t
StoppedIn(t1, f, t2) f is stopped between t1 and t2

As Mueller states [18], event calculus allows to conduct various operations such

as design, development and testing in a native computing paradigm on concurrent

events, continuous time, events with duration, partially ordered events, and triggered

events. In order to make use of commonsense reasoning for EC, we must first identify

the domain of interest, and then provide common knowledge on that domain. The

resulting situations that arise after an event happens at a particular moment in time

are then described.

For instance, a certain event occurring under particular conditions might trigger

a predefined system functionality. That is, if the event happens at a certain point in

time in a given context, then the corresponding system property becomes True after

that very same time instance. Likewise, yet another event might terminate a certain

system property, so the system property becomes False after that time-point when

the event happens [84].

EC algebra make use of predicate logic for elaborating time-varying properties of

a system, namely fluents. Researchers proposed various versions of EC [18]. The EC

that we use conforms to Simple Event Calculus (SEC) [18]. The predicate functions

and corresponding descriptions are given in Table.3.

In Table.3, Happens(e, t) states that an event e happens at a timepoint t; and the

Initiates(e, f, t) (respectively, Terminates(e, f, t)) means that if an event e happens

at time t, then it makes fluent f True (respectively, False) instantly. HoldsAt(f, t)

states that fluent f is True at timepoint t.

35

SEC allows us to descriptively specify event-driven requirements of an IoT system.

Our approach aims to provide an EC algebra that facilitate expressing IoT message

interactions. EC formulas allow to represent those systems in terms of events, in

other words, it lets us to transform communication primitives happening in time

domain into a discrete event domain. Thereby, EC enables using the logic theory for

verification of both design artifacts and runtime system. As pointed out in [86], EC

provides a representation that is very similar to interaction models such as RESTful

API’s. Besides, EC formulas involve a definitive time value; thus, allowing us to

distinguish between events occurring at the same time in an event-based system,

such as IoT, provided that a system behavior can be described in terms of events, we

can develop a domain-specific EC for it.

3.2 Representing IoT with Events: Leveraging MSCs

In our endeavor for representing IoT systems by using event calculus, we first need a

means to express the interaction between endpoints in terms of simple events. Mes-

sage Sequence Charts (MSC) are the fundamental means of providing a language

for representing execution trace of the specification and description of the communi-

cation behavior of system components and their environment by means of message

interchange [10]. An MSC specification describes the order of occurrence of mes-

sage interchange in communication protocols; and, each occurrence is defined as an

event. Therefore, MSC’s are best suited for describing behavior of communication

scenarios. It provides a graphical language that handles asynchronous interactions in

communication systems, such as CoAP.

MSC’s are frequently used in verification of communication systems in the liter-

ature ([87], [88], [89]). A major difference in interpretation of MSC with respect to

those literature is that we only deal with Request and Response asynchronous mes-

sages in our approach. We restrict ourselves to the send message events that are

36

Figure 12: MSC for a CoAP Service S

observable from the network in a black-box fashion because we promise to provide

a non-instrumented RV solution, whereas others elaborate on process level receive

message events, which are solely observable via a process-level code instrumentation.

We will utilize MSC to extract a specification for the SUT in terms of events

occurring in the system. Let’s consider the MSC of a CoAP system as in Figure.12.

The vertical lines in the figure are lifelines for each endpoint in a CoAP system, and a

lifeline illustrates the time axis for each endpoint. The time increases downwards on a

lifeline. Endpoints engage in interaction by sending and receiving asynchronous mes-

sages (i.e., m1,m2,m3, and m4). Each message send action generates an observable

event in the network (i.e., e1, e2, e3, and e4). Note that, in a Request-Reply interac-

tion model, every Reply message must be issued for a corresponding earlier Request

message; but, a Request message does not have to cause a Reply message, as it might

be the case that the Request is issued just as a control function, not a query. For the

sake of simplicity, we’ll assume in Figure.12 that (m1,m4) and (m2,m3) constitute

(Request,Reply) pairs of messages. This example demonstrates a CoAP scenario in

which a User requests a service from an endpoint (EP1), then in turn, EP1 requests

some other service from another endpoint (EP2), such that there is a causal relation

between events appearing on the vertical lines.

Let EP = {EP1, EP2, ..., EPn} be a set of endpoints in an IoT system, and let

A (A ≡ {m1,m2,m3,m4}) be a message alphabet for the sequence diagram under

37

inspection, where [n] denotes {1, 2, .., n}. We represent each asynchronous message

with the label send(i, j,m), which indicates the event of an endpoint EPi sending a

message m to an endpoint EPj. Note that since CoAP exhibits a Request/Response

type of messaging model, a message can be either a request message, mR, or a response

message mr (i.e., m ≡ mR ∪mr). We further define the set ε = {send(i, j,m) | i, j ∈

[n] m ∈ A} as the set of all send events. Remember that an EP can behave as both

a client and a server in a CoAP network; thus, a send(i, j,m) event can be either

a Request or a Reply event. Therefore, ε can be partitioned into εR and εr subsets

representing set of Request events and set of Reply events, respectively. ε = εR ∪ εr

is the set of all send events, where εR = {send(i, j,mR) | i, j ∈ [n] mR ∈ A} and

εr = {send(i, j,mr) | i, j ∈ [n] mr ∈ A}, respectively. The MSC M then can be

described as

1. a set of send events, E, containing two distinct sets of send events, ER and Er.

2. a mapping function ep that maps each event to an endpoint, ep : E 7→ [n]

3. a bijective mapping between each (Request, Reply) message pairs, f : ER 7→ Er

4. a labeling function, l that identifies each event as either Request or Reply, l :

E 7→ ε, such that l(ER) ⊆ εR and l(Er) ⊆ εr

5. ∀i ∈ [n], there exists a total order ≺i on the events of endpoint i, such that the

transitive closure of the relation ≺ .
= ∪i∈[n] ≺i ∪{(e, f(e))) | e ∈ ER} is a partial

order on E.

Let’s consider the MSC in Figure.12. The label for e1 for sending of message

m1 is send(User, EP1,m1). Note that, we have another event with f(e1)
−1 such

that m4 is a Reply message to m1; therefore, f(e1) = e4. An MSC is degenerate, if

there are two send message events e1 and e2 such that l(e1) = l(e2), where e1 ≺ e2

38

and f(e1) ≺ f(e2). A thorough coverage of non-degeneracy condition and MSC

formalization can be found in [88] and [87].

Now that we have a definition for an MSC, we can use this to express a specification

that an MSC can deliver. We define the specification of an MSC by its Linearization

[87]. Based on the non-degeneracy condition assured by the reliability option of CoAP

protocol, which prevents receiving of duplicate messages sent by an endpoint, a word

w = w1, w2, ..., w|E| over the alphabet A is a linearisation of an MSC M if there

exists a total order e = e1, e2, ..., e|E| of the events. The word is well-formed if each

reply event there is a corresponding request event. A Linearisation of an MSC M ,

which is represented by a word w over M (e.g., w1 = l(e1), w2 = l(e2), w3 = l(e3),

and w4 = l(e4) for Figure.12), is attained by a total order of events in E; and it is

considered as a string over ε. In other words, a Linearisation is said to exist if a total

order of (e1e2...en) exists between the events in E such that whenever ei ≺ ej we have

i ≺ j, and for w(i) = l(ei).

An MSC represents event interactions for a single service composition scenario in a

CoAP-based IoT system; therefore, the specification of an IoT system, Γ, that delivers

N distinct services, would consists of a disjoint set of N MSC Linearization. That

is, specification contains N MSCs M1, ...,MN each representing a distinct service

implementation, where E1, ..., EN are disjoint event sets. Let Σ = ∪Nj=1Ej be the

disjoint sets of events in Γ; Υ = ∪Nj=1Aj be the message alphabet of Γ, and Ψ =

∪Nj=1EPj be the set of endpoints in Γ. Then the language of an MSC Specification

Γ is the union of languages of all MSC’s in Γ. Note that the message alphabets

and endpoints in different MSC’s can be similar, because an endpoint may engage in

several similar interactions in various service compositions.

We have shown that a Linearization of a single MSC Mj ∈ Γ can be achieved by

means of send message events occurring on each endpoint, EPi ∈ Ψj where Ψj is the

set of endpoints for Mj. MSC guidelines [10] provide various graphical operations

39

such as co-region, par for detailed elaboration of communication scenarios. However,

we will assume no such operations exist on the MSCs we deal with; those are to be

handled in model-driven engineering approach we are working on. We will utilize

this event phenomenon in facilitating an event calculus for IoT systems in the next

section.

3.3 Event Calculus for IoT

From a system (network) viewpoint, sending a request or a response message in a

CoAP application constitutes an action. The motes in a CoAP network behaves

either as a client or a server [2].

Each method call (GET, POST, PUT, DELETE) in a request message requires a

corresponding response message, where each method call represents a different event

type. Let us assume that e1 represent a send request event from a client, and e2

represent a send response event from a server, respectively. The temporal ordering

between e1 and e2 (e1 ≺ e2) pairs can be described with the following axiom by using

SEC:

Follows(e1, t1, e2, t2) ≡ ∃ e1, e2, t1, t2 (Happens(e1, t1) ∧

Happens(e2, t2) ∧ (t1 < t2))

(1)

Hereby, e1 is either of GET, PUT, POST, DELETE and e2 is any valid response

code. Any time-varying system property (fluent) that relies on sequential-ordering of

messages can be represented by this predicate. Based on SEC, a fluent (f) that is ini-

tiated with the occurrence of an event will hold True until happening of a terminating

event.

40

HoldsAt(f, t) ≡ ∃ e1, e2, t (Initiates(e1, f, t1) ∧

Follows(e1, t1, e2, t2) ∧ Terminates(e2, f, t2) ∧

(t1 < t < t2))

(2)

Hereby, f can be any system specific time-varying property.

3.3.1 Event Calculus for CoAP

Considering an execution of the MSC Mi in Figure.12, the trace can be monitored

in terms of send message events in the network. As pointed out in [90], testing is an

event-centric activity; and events recorded as indications of actions in the execution

trace should match with the sequence of events occurring in the linearisation of MSC

Mi. The temporal order of events in a trace implicitly exhibit a follows relation

between each pair of consecutive events (Eq.1). Our aim is to formulate an event

calculus that is succinct enough to express both the expected behavior captured in

the linearisation of a MSC in terms of events, and the observed behavior captured

as the trace of events from a CoAP network. Consequently, we can compare both

behaviors to conclude with a Pass/Fail (Figure.5) decision at runtime.

Before we dive into the formulation of event calculus, let’s elaborate on types of

relations that might identify the correlation between events in a MSC. Remember

that, there is a visual and temporal/causal correlation between the events on the

vertical lines of a MSC for a CoAP scenario. Considering Figure.12, e1 happens both

visually and temporally before e2, because the events exhibit a causal relation in order

to deliver the required service. Note that, the follows relation is transitive, meaning

that if e2 follows e1 and e3 follows e2, then e3 follows e1. Based on these definitions,

we can define following relations for event sequences of a MSC Mk:

1. f(ej, ei) = ei ≺ ej where ei, ej ∈ Ek and ti < tj: defines the follows relation in

Mk

41

2. fi(ej, ei) = ei ≺i ej where ei, ej ∈ Ek and ti < tj: defines the immediately

follows relation between (ei, ej) such that @em ∈ Ek | (ei ≺ em) ∧ (em ≺ ej)

where (ti < tm) ∧ (tm < tj).

3. t(ei, ej) ≤ T : defines a temporal relation between two events such that ej

happens in at most T time after ei happens.

4. s(ei, ej): defines a domain-specific semantic relation between two events; for

instance, ej carries a token id that is bigger than ei.

, where Ek is the event set of MSC Mk. Those four relations will enable us to express

complex relations between events in terms of event calculus. Note that, relations (1)

and (2) must always be observed in a runtime verification scenario, but relations (3)

and (4) are observed only when they are defined in the correctness properties of a

SUT. Note also that, ≺ and ≺i relations are

� irreflexive, ¬(ei ≺ ei)∀ei ∈ Ek, and

� asymmetric, @ei, ej ∈ Ek | ei ≺ ej ∧ ej ≺ ei

As an example, let’s try to express a requirement of CoAP standard stating

that every CON type message must be followed by an ACK type message in EX-

CHANGE LIFETIME [2], by using the relations defined above. We can express this

requirement as

Req(CONi) = f(eACKi
, eCONi

) ∧

[t(eACKi
, eCONi

) < EXCHANGE LIFETIME]

(3)

, where (eCONi
, eACKi

) is any pair of send events for a CoAP message m as such

eCONi
denotes sending event of the confirmable message with MessageID i, and

eACKi
denotes its corresponding ACK message with the same MessageID, i [2].

42

Eq.3 states that every CON message must be followed by an ACK message in

EXCHANGE LIFETIME time. Hereby, we can use this equation to express runtime

monitors for failure and success situations of the requirement in terms of events.

In order to yield a Pass verdict for a particular CON message mi, the equation

must hold True for (CONi, ACKi) event pair. However, in order for the correctness

property expressed in Eq.3 to Fail, we must have;

¬Req(CONi) = ¬{f(eACKi
, eCONi

) ∧

[t(eACKi
, eCONi

) < EXCHANGE LIFETIME]}
(4)

or

¬Req(CON) = ¬f(eACK , eCON) ∨

[t(eACK , eCON) >= EXCHANGE LIFETIME]

(5)

Eq.5 states that Req(CON) is false either eACK does not occur at all after eCON, or

it occurs after EX.. time.

Event linearisation for the sample MSC in Figure.12 constitutes an expected be-

havior of message interactions between endpoints, such that it represents the specifi-

cation for the service S Requested by event e1:

Req(S) = e1 ≺ e2 ≺ e3 ≺ e4 (6)

, where Req(S) represents the requirement for service requested by e1. In a Re-

quest/Reply interaction model such as CoAP, User represents another endpoint that

requests a service provided by endpoint EP1 with event e1. In order for this sce-

nario to fail, event trace monitored at runtime must deviate from that of Eq.6. This

linerarization can be interpreted in event relations of MSC as

Req(S) = fi(e2, e1) ∧ fi(e3, e2) ∧

fi(e4, e3) ∧ [t(e4, e1) < T]

(7)

Note also that, the requirement can be satisfied only with a conjunction of all the

relational components that represent causal order of events in the expected behavior

43

MSC. In Eq.7, t(e4, e1) < T expresses a temporal constraint between events e4 and

e1. In case any of those relations is not observed at runtime, then the requirement is

not satisfied (Eq.8).

¬Req(S) = ¬fi(e2, e1) ∨ ¬fi(e3, e2) ∨ ¬fi(e4, e3)

∨ [t(e4, e1) >= T]

(8)

A CoAP network can provide communication among hundreds, even thousands

of endpoints delivering various services. Therefore, we need to devise a solution

for distinguishing repetitive invocations of a same service by different clients. We

propose to exert a notion of context on processing of events occurring as a result of

the invocation of a particular service (e.g., service S in Figure.12). A context for

a CoAP interaction scenario can be defined as the set of events sequences that are

visually traced on an MSC diagram in order to accomplish a Request for a certain

service. The events that are not related to the expected behavior is not relevant to

the Requested service, thus they are out of context. So, only those events that appear

on the diagram are context events.

A context CMSC can be described as follows:

1. CE : set of context events that appear on an MSC diagram

2. e0 : an initial Request event for the service of context

3. a set of pairwise follows relations: f(ej, ei),

4. an optional set of pairwise temporal constraints: t(ej, ei),

5. an optional set of pairwise semantic constraints: s(ej, ei),

, where ei, ej ∈ CE. Let Acomp be a subset of CE such that Acomp(ej, ei) = CE \(ej, ei).

Now that we have defined all the relations of an IoT system, we can interpret those

with event calculus. As SEC defines in its fundamental predicate logic, relations that

44

identify time dependent properties of a system constitute the domain-specific fluents

for that system. Thus, the relations defined for an MSC are fluents of CoAP-based

IoT system. We can tailor those in order to represent any combinations of complex

relations between event traces. By using the predicates of Table.3 we can express the

immediately follows relation of MSC as

fi(ej, ei) = Happens(ej, tj) ∧Happens(ei, ti) ∧

¬Happens(ek, tk)

(9)

, where ek ∈ Acomp(ej, ei) for (ti < tk), (tk < tj), and (ti < tj). Note that this

is an immediately follows relation defined over context CE, thus only those events

ek ∈ Acomp(ej, ei) can cause this relation to fail. It is important to note that the

investigation for fi(ej, ei) begins with occurrence of ei, therefore Happens(ei, ti) sets

a precondition for fi(ej, ei). Rooting on that precondition, ¬fi(ej, ei) can be expressed

as

¬fi(ej, ei) = fi(ek, ei) ∨ f(ei, ej) (10)

, where ek ∈ Acomp(ej, ei). Eq.10 states that fi(ej, ei) fails iff ei is followed by an

event ek ∈ Acomp(ej, ei) or ei follows ej. Eq.10 can be elaborated in event calculus

terms by expanding fi’s as in Eq.9

¬fi(ej, ei) =



Happens(ek, tk) ∧

Happens(ei, ti) ∧

¬Happens(ej, tj), if CondA

Happens(ej, tj) ∧

Happens(ei, ti), if CondB

(11)

45

Table 4: Context and Event Verdicts for Figure.12
Verdict EPL Statement for RV
CE {e1, e2, e3, e4}
e0 e1
Pass fi(e2, e1) ∧ fi(e3, e2) ∧ fi(e4, e3)
Fail fi(e3, e1) ∨ fi(e4, e1) ∨ fi(e4, e2) ∨ fi(e1, e2) ∨ fi(e3, e4) ∨ fi(e2, e3)

, where CondA ≡ {ek ∈ Acomp(ej, ei)} ∧ ti < tk) ∧ (tk < tj) ∧ (ti < tj), and

CondB ≡ ti > tj. Eq.11 states that ej does not immediately follows eiiff either ej

happens before ei or ek ∈ Acomp(ej, ei) happens immediately after ei.

If we visit the sample MSC in Figure.12 again, we can elicit all the event traces

that cause the sample scenario to either succeed or fail as in Table.4. The event

relations appearing in Pass and Fail rows of the table represent runtime monitors

for the MSC in Figure.12 in terms of EC. Thereby, we can exploit event relations any

IoT with CoAP for determining correctness properties in event calculus, provided

that they are expressed in an MSC with such relations as in Eq.9 and Eq.11. In

Chapter.4, we are going to explore how we can translate those basic event calculus

predicates and constraints into complex event processing statements.

3.4 Case Study: Wireless Token Ring Protocol

In case when a wireless network needs to be self-healed, self-organized and be deprived

of any centralized features, the Wireless Token Ring Protocol (WTRP) is applied [91].

WTRP features high quality provisions for networks that exhibit limited bandwidth

and bounded latency characteristics. WTRP is best suited for resource-constrained

networks such as IoT, because it supports constructing ad-hoc networks dynamically,

provides energy saving measures and efficient transport mechanisms[91]. Token ring

protocol dictates observance of a predetermined order of messaging between partic-

ipating endpoints. The sequential order in such a system might be broken due to

several reasons, such as endpoints’ power shortage or movement of endpoints to out

46

Figure 13: Cooja Simulation of WTRP

of communication range. WTRP relies on individual nodes to employ specific algo-

rithms to bring back a functioning network whenever a failure occurs; we assume that

the sensor nodes are non-byzantine [92], but they might fail due to random system

failures such as poor programming skills. However, WTRP is expected to preserve

the order of token passing at all occasions. In order to verify the correctness of such

a sequential operation of WTRP algorithm, the system developers must monitor its

performance by observing the token transitions between endpoints.

Wireless Token Ring Protocol (WTRP) is a MAC-layer Protocol that is frequently

used in WSN, where the network is demanded to achieve self-healing, self-organization

and no-center features [91]. Its inherent characteristics make it suitable for provid-

ing quality of service in terms of bounded latency and reserved bandwidth, which

are quite important for real-time applications [93]. Improvements introduced in [94]

promote dynamic ad-hoc network structure expansion, energy saving and transport

efficiency enhancements, which are valuable attributes for CoRE (Constrained REST-

ful Environments) [2] devices as employed in IoT. Token ring sequence order might

be broken due to several reasons (e.g., battery of wireless node drains, mote moves

out of scope). The WTRP is designed to recover such situations by requiring each

47

node to implement certain algorithms in the protocol stack.

Initially(TO(m, 0)) is True for where m ≡ 1 (12)

Figure.13 demonstrates a simulation of WTRP network in Cooja [95]. We will use

the event calculus proposed here to express sequential relations between request and

response events. Note that, the token ring protocol is assumed to pass around the

token in increasing order of mote ids in the network; and mote with id1 is assumed

to own the token at time 0 (Eq.12).

Assuming that the network in Figure.13 is a token-ring network, we can represent

the effects of the request/response events by using following event calculus (For the

sake of simplicity, token is assumed to passed between motes in order of increasing

mote ids, i.e., first mote 1, then mote 2 and so on).

TO(m, t) is a predicate fluent function that determines which mote owns the

token at time t. For example, if m1 possesses the token at time t1, then TO(m1, t1)

will be True, otherwise False.

Send(m, t) describes an event where mote m sends a network message and also

passes token to the next mote in the topology. OO(t) is a predicate fluent function

that enables monitoring order of ownership of the token. Based on the initial assump-

tion that token is passed among motes in order of increasing mote ids OO(t) must

always be 1.

OO(t) ≡ 1, t (13)

HoldsAt(OO(t), t) ≡ ∀m1,m2 ∃t1, t2 (Happens(Send(m1, t1), t1) ∧

Initiates(Send(m1, t1), TO(m2, t1), t1) ∧

Terminates(Send(m1, t1), TO(m1, t1), t1) ∧

(m2 −m1 = 1) ∧ Happens(Send(m2, t2), t2) ∧ (t2 > t1))

(14)

48

During the normal operation of WTRP, the last equation must always hold. Thus,

by monitoring the validity of HoldsAt(OO(t), t) predicate, we can make sure that

token-ring protocol is running according to its specification. These predicate func-

tions, i.e. TO, OO, are fluents of WTRP.

3.5 Related Work

Chen et.al. [8] have proposed a methodology for interoperability testing of CoAP

implementations. As for the CoAP specifications [2], a set of interoperability tests

was selected. They favored passive testing for two reasons: First, the passive test does

not interfere with the execution of the SUT. That’s why, it is best suited for testing

interoperability at runtime. Second, passive tests do not introduce additional costs in

network communication, so they are more suitable for resource-constrained domains

such as IoT. Packets that are interchanged amongst CoAP endpoints are caught by a

network sniffer and logged. Recorded execution logs are examined offline against the

test scenarios by utilizing a test tool to determine if the runtime behavior complies

with the expected behavior. Our approach also employs packet sniffer component,

but we present a novel solution for online and non-intrusive testing of an IoT system.

Medhat et.al. [79] present a novel RV methodology for real-time cyber-physical

systems (CPS) that are real-time sensitive and have constrained physical resources

such as memory. Their proposed solution relies on two concepts: (i) The runtime

monitor is executed in certain periods. Events that happen between two monitor

calls are buffered and handled later by the monitor when it’s called. (ii) The monitor

is assumed to be flawless, meaning that, it does not generate false outputs (neither

positive, nor negative). Therefore, no event can be missed. The buffer for recording

events that occur between successive monitor runs is assumed to be of a bounded-

size. Their research deals with individual embedded system verification, and relies on

code instrumentation in order to enable runtime monitoring of the system. Thus, it

49

incurs memory overhead and possibly behavior alterations due to running monitoring

threads.

In [86], authors propose an online RV technique that relies on certain mediation

techniques, and use Complex-Event Processing (CEP) [81] to catch and mitigate

invalid calls. The approach tries to make sure that IoT entities are requested with

services that they are built for. The proposed architecture is composed of a mediation

platform that processes services calls, by which they aim to prevent invalid service

calls using CEP. Their proposed solution automatically produces the necessary com-

ponents to verify the service calls at runtime. Nevertheless, the proposed solution

depends on a mediation platform that is deployed as a special CoAP entity in the

same network where the SUT reside. In such an approach, SUT does not exhibit the

same execution trace as it would when it is deployed at the customer site without a

mediation platform, which modifies how the service calls are handled.

In [96], they propose a predictive runtime verification solution for CPS. CPS gener-

ally consist of embedded IoT systems. The main purpose of the solution is to prevent

any failure before it happens by means of prediction. The programs on CPS devices

must be instrumented in order to generate runtime events. Predictive monitors trigger

controlling operations such as stopping or repair for tuning the application behavior

whenever they detect or predict a failure. Their approach doesn’t deal with behavior

of system of IoT devices that is composed of more than one IoT device. Moreover,

the SUT must be instrumented in order to generate runtime verification data, which

is known to incur performance, behavior and memory footprint overheads.

In [97], Kane proposes an runtime monitoring architecture for observing safety-

critical vehicular systems through their black-box components. The proposed solution

consists of a passive bus-monitor that addresses particularly the CAN network used

in vehicles. The bus-monitor can analyze system properties that are observable on

the bus. Such monitor implementations manage all SUT components as black-box.

50

Note that aforementioned monitor implementations are crucial for such systems that

are composed of several sub-components provided by various manufacturers. Thus,

the intrinsic behavior of those components cannot be attained easily. The monitor

observes the CAN bus communication amongst the system components by attaching

itself directly on the system bus. This connection is associated with a semi-formal

interface that tracks the bus and generates atomic projections for a monitor based

on the observed bus status, which reflects the recorded image of the monitor. The

execution trace is a sequence of those recorded images. Our runtime verification

approach for IoT systems assumes a system of black-box IoT entities as the problem

domain, just as this monitoring approach treats the system of CAN bus attached

devices as a system of systems and attacks the RV of such system of systems as

black-boxes. It depends on the formal specification of component communication

amongst those devices. On the other hand, we present an event calculus framework

for formally specifying IoT system interaction and runtime monitor constraints, and

consequently facilitating use of CEP techniques for RV purposes.

3.6 Conclusion

The event calculus (EC) for CoAP-based IoT system interactions is provided in this

chapter. The EC is a tool for specifying requirements of an IoT system in terms of its

expected behavior as sequence of events that occur due to messaging model of CoAP.

The case study demonstrated that once a domain-specific EC algebra is developed,

it’s straightforward to generate runtime monitors in terms of EPL statements so as to

utilize a complex-event processing engine for runtime verification. The EC also will

allow us to derive a protocol-specific meta-model that can be used in representing

IoT systems with modeling languages such as UML. The MSC approach presented

in this chapter lays the foundation for our ongoing and future work on model-driven

engineering of IoT systems. We believe that RV verification scenarios including the

51

lower-layer IoT network protocols (i.e. a multi-layer MSC approach) will be of interest

to the community.

52

CHAPTER IV

RUNTIME VERIFICATION OF IOT SYSTEMS USING

CEP (RECEP)

do you explain why we need an event calculus for IoT. you should express how you

want to facilitate RV by using a complex-event processing engine, which executes

simple events occurring in a system, then yields decisions regarding the complex

relations of patterns amongst those events.

In 1999, when IoT phrase was first coined by K. Ashton [98] the computing phe-

nomenon experienced another paradigm shift. However, it took a decade for the

champions of computing in academia and industry to discover this new phenomenon.

Ashton asserted that “We need to empower computers with their own means of gath-

ering information, so they can see, hear and smell the world for themselves” [98]. In

this world, computers and things are to be integrated and interconnected seamlessly

so that they both “sense and act” on their environment without requiring any inter-

vention from humans. In recent studies by Fortino, et.al [5, 99], devices in IoT are

considered to be smart-objects. These objects are able to sense/actuate, store and

interpret information that they generate or they gather from the environment. They

interact with each other via several middleware constructs. These constructs mainly

follow service-oriented architecture (SOA) [100, 6, 101] specifications which facilitate

collaboration of “things” [100, 2].

The Request/Response and asynchronous interaction of CoAP provides a natural

support for sequential analysis of events occurring in an IoT network. Even though

there is a considerable effort in the literature for verification of such complex and

distributed systems [8], a practical solution for IoT systems that supports runtime

53

verification is still missing. In this chapter, we propose a CEP-based runtime mon-

itoring approach for IoT systems that leverage sequential relations between events

as explained in Chapter.3. We also explain the design of a passive network sniffer

for capturing CoAP packages without instrumenting the SUT. We further present

a simple case scenario to demonstrate the applicability of the approach on WTRP

execution.

Entities employed in IoT systems are generally resource-constrained devices; there-

fore, a new application layer protocol, CoAP [2], has been standardized for enabling

IoT system architectures with RESTful services [102, 103] whilst respecting the re-

source limitations. Service requests and responses that are implemented according

to CoAP messaging model can be described as an interaction of simple Request/Re-

sponse events, which collectively form complex results to yield desired behavior of

the system. There are considerable attempts towards verification of CoAP standard

implementations [8], but those studies lack any support for system-level verification.

Verification of heterogeneous systems such as IoT is inherently troublesome as it

might involve devices from various manufacturers, which complicates the verification

process by requiring knowledge of system interface contracts or development details

of individual components in the system. We propose a novel and generic approach

for verification of IoT systems that are designed with SOA principles. Our solution

approach is designed to yield failures in the form of complex-relations amongst simple

events that represent message interactions between endpoints in an IoT system. We

discover complex relations among simple events via consolidating them in a CEP

[104] engine, namely Esper [81], which allows for exerting various operations on those

simple events in order to deduce complex decisions. The solution does not intervene

with the operational system and as such it does not incur any overhead in system

communication or nor does it alter the system behavior (i.e., this is achieved through

passive CoAP sniffer).

54

CEP techniques have already been utilized for verification purposes such as net-

work congestion control and intrusion detection [104, 105, 106]; however to the best

of our knowledge, our study is the first of its kind to utilize CEP techniques for veri-

fication of an IoT system. The contributions of this chapter are (i) CEP statements

for the event-calculus proposed in Chapter.3; (ii) design of a non-intrusive network

sniffer for CoAP packages; and (iii) a case study on WTRP.

The organization of this chapter introduces the reader with CEP concepts through

an open-source CEP engine, Esper [81]. Then, we define how to utilize some of the

basic elements of Esper CEP engine for specifying runtime monitors for simple event

relations as defined in Section.3.3, which inherently help us transforming EC formulas

specified in 3 into EPL statements. The Section.4.3 further describes the design of

a non-intrusive CoAP Sniffer, that is built on open-source libraries. After demon-

strating the CEP contributions in Section.4.4, we discuss the performance results of

a demonstration on the case scenario WTRP in Section.4.5. Note that, Section.4.2

can be tailored to represent runtime monitors for new domains with a different EC

for that particular domain.

4.1 Complex-Event Processing with Esper

CEP is a technique that was initially introduced for deducing complex decisions in

business processes [104]. CEP tools enable us to make high-level decisions about

event-driven systems by inferring complex meanings out of simple events in various

domains [105, 106]. Simple events can be consolidated into complex events through

several transformations such as threshold-based filtering, joining, sequencing, and

well-known aggregation functions (Figure.14).

CEP provides techniques and tools to reveal complicated reasoning about large-

scale domain-specific software systems[81]. CEP is usually deployed with the aim of

55

Figure 14: Complex-Event Processing Conceptual View

decision making on runtime behaviors of systems. Some examples are database sys-

tems, network communication, intrusion detection, etc. Even though those complex

SoS’s produce terabytes of information, only a fraction of those are necessary for com-

ing up with intelligent decision pertaining to certain properties of them. In order to

achieve that, CEP engines correlate basic (or so called simple) events through special

transformation and aggregation functions.

Decision support systems come in various flavors, one of which is CEP. Deriving

complex decisions out of streams of simple events is the fundamental capability pro-

vided by CEP tools. Those simple events are defined as the immutable attributes of

actions taking place in the system, which trigger a transition the system state [81].

Those simple events are then exercised against predefined event patterns (Figure.14)

in order to reveal complex relations, which result in complex-events. According to

the definition in [81], new events can only be appended to a stream, but not removed

as they are immutable. A stream is the main building block of CEP in Esper. The

computation in Esper engine is performed as the evaluation of streaming events.

CEP engines, such as Esper [81], allow us to declare event descriptions and specify

patterns of interest by using normative representations. The normative representa-

tion in Esper is called Event Processing Language (EPL). EPL statements allow us to

define events and operations on those such that we can monitor for complex-relations

at runtime by deploy the statements on Esper CEP engine. EPL is a SQL-like declar-

ative language. EPL constructs allow us to build complicated and interrelated query

statements that will reveal complex-events implicitly occurring in the system. It is

used for aggregating information and deriving knowledge from one or more event

streams. EPL statements also enable us to join and merge event streams. Events are

56

Figure 15: Esper is a container for EPL Statements[81]

inserted and processed as continuous streams of information. The basic syntax for

EPL in Esper is as follows:

SELECT < select list >

FROM < stream def >

WHERE < search conditions >

(15)

The select clause in Eq.15 specifies the event properties or events to retrieve in

select list. The from clause specifies the event stream definitions and stream names

to use. The where clause specifies search conditions that specify which event or event

combinations to search for. There are other clauses such as having, group by, order by

in the language. For example, the following statement returns the time-stamp from

a Token-Ring event stream whenever the mote with id = 1 broadcasts a message.

select timestamp from TokenRing where moteId = 1 (16)

Esper defines a stream as a temporally ordered sequences of events. First, a stream

of simple events, representing fundamental immutable occurrences in a system, are

injected into Esper engine; later, the Esper engine performs series of event trans-

formations to determine whether event patterns of interest are satisfied or not (e.g.,

57

for detecting failures in a system). Essentially, Esper acts as a container for EPL

statements Figure.15. EPL statements fundamentally specify queries that analyze

events and time, and then detect situations. Esper provides a nest for EPL queries

and organizes their lifecycle and execution.

The EPL syntax given in [81] will facilitate our efforts in specifying runtime mon-

itors; thereby, generating those automatically by employing MDE techniques. The

memory and processing costs of streams in Esper is negligible (i.e., considerably zero)

[81].

4.2 Event Processing for Runtime Verification

RV of a system requires representing the specifications of the SUT in terms of monitor-

ing constructs. Then, the RV framework observes the behavior of the SUT to conclude

with particular verdicts of Pass and Fail for certain constraints. In this section, we

present a transformation methodology that will guide the process of generating EPL

statements from EC relations defined in Chapter.3, and a reference architecture that

employs the proposed framework.

In order to systematically define how an event processing solution can be tailored

for runtime verification, we suggest a process consisting of consecutive transformation

steps. Figure.16 summarizes the process that we defined for generating an event pro-

cessing solution for runtime verification. We have developed our reference architecture

incorporating Esper CEP engine by following those steps process. However, one can

tailor the process for event processing engines other than Esper by customizing the

steps 7 through 11.

Remember that in Section.3.2 we specified a concept of context for a enabling

analysis of expected behavior of a particular service composition. The concept of

context supports analyzing those simple events that are related to the correctness

property at hand, and ignoring any other event occurring in the system. That’s why

58

Figure 16: RV Process with Complex-Event Processing

CEP engines that we use should allow us to define a context for each service, and

help us express complex-event relations for Pass and Fail verdicts. Esper provides

a notion of context, which enables us to define a set of circumstances or facts that

surround a particular event [81]. A context takes a cloud of events and classifies them

into one or more event sets that are called context partitions. An event processing

operation that is associated with a context operates on each of these context partitions

independently. By this notion of context, we can analyze the events associated with

a particular MSC diagram under a certain context partition. The context partition

would be started with e0 for each CMSC (Table.4). The context can be terminated by

receiving of an end event or a timeout value defined for the particular MSC behavior.

The timeout value can be set as the maximum time it takes between the starting

event and the finishing event for the MSC under test. We can achieve those goals by

employing certain constructs in Esper CEP engine as listed in List.4.1.

59

Listing 4.1: Event Processing Steps

1 Create a Context per e0 o f each MSC

2 I n s e r t each MSC event in to Variant Stream

3 Apply MATCH RECOGNIZE pattern on Variant

4 Stream to observe Success

5 Apply EVERY pattern on Variant Stream to observe Fa i l u r e

6 End context at l a s t event or timeout

Moreover, the CoAP Events sniffed from the network should be filtered such that

only those events of the context for the particular correctness property, (note that,

each unique service composition case constitutes a unique context) are processed at

runtime monitors. Therefore, we utilize another construct of Esper, variant stream

(RV Spec) for maintaining an event stream that consists only of those defined un-

der the context CMSC . Remember that, in order to conclude with a Pass verdict

all the event correlations must be observed on the runtime event trace. Thus, we

use match recognize pattern processing construct of Esper. The [pattern element of

match recognize construct enables us to indicate an exact trace of events, each of

which immediately follows each other. Let us remind that the Fail can occur when-

ever any of the immediately follows relations (Eq.11) is violated. Thus, we need a

runtime monitor for each not immediately follows relation (¬fi).

Listing 4.2: EPL Statements for Context-Based RV of Figure.12

1 c r e a t e context CtxSample

2 i n i t i a t e d by pattern

3 [every−d i s t i n c t (s t a r t e v e n t . s rc Id , s t a r t e v e n t . dstId ,

4 s t a r t e v e n t . mId , s t a r t e v e n t . u r i) s t a r t e v e n t = CoAPEvent(s r c I d = e1 . id)]

@ inc lu s i v e

5 terminated by pattern [endevent = CoAPEvent(s r c I d = e4 . id , de s t Id = e4 .

destId , u r i = e4 . u r i) or t imer : i n t e r v a l (T)] ;

6

7 context CtxSample

60

8 c r e a t e var i ant schema RVSpec as CoAPEvent ;

9

10 context CtxSample

11 i n s e r t i n to RVSpec

12 s e l e c t * from CoAPEvent where s r c I d = e1 . id or s r c I d = e2 . id

13 or s r c I d = e3 . id or s r c I d = e4 . id ;

Let us now give an example on how to write the EPL statements for an MSC by

writing those for Figure.12. Code listing in List.4.2 summarizes the basic EPL state-

ment that we use for determining a Pass verdict at runtime. The context is initiated

for each distinct service invocation and terminated when receiving the terminating

event or a timeout T passes. Notice that each distinct service invocation is uniquely

identified by the triplet (srcId, destId,msgId) for a CoAP message. As you can see

from the code listing between lines 10 through 13, we insert only those events that

are associated with the context into the variant stream. The code listing in List.4.3

provides an example of how to detect a pattern of events that observe the visual order

as in MSC of Figure.12. Note that we tag each EPL statement with @Name(..) so

that we can distinguish visually the outputs of each statement. FAIL statement

returns the ending event for the context. If the context ends before the end event

arrives, then FAIL statement returns a nullpointer, thereby we can deduce that the

runtime monitor yielded Fail. However, if SUCCESS statement returns a count of

1, then it means that the runtime monitor yielded a Pass verdict. FAIL statement

is the complement of SUCCESS statement in List.4.3, so it’s not a comprehensive

Fail monitoring statement.

Listing 4.3: EPL Statements for Pass Verdict of Figure.12

1 @Name(’FAIL ’)

2 context CtxSample

3 s e l e c t context . endevent from RVSpec . std : l a s t e v e n t

4 output snapshot when terminated ;

61

5

6 @Name(’SUCCESS ’)

7 context CtxSample

8 s e l e c t count (*) as Succe s sVerd i c t from RVSpec

9 match recognize (

10 measures A. s r c I d as aId

11 pattern (A B C)

12 d e f i n e

13 A as A. s r c I d = e1 . id ,

14 B as B. s r c I d = e2 . id ,

15 C as C. s r c I d = e3 . id

16) output when terminated and context . endevent . s r c I d = e4 . id ;

The code listing in List.4.4 presents a case of Fail verdict as an EPL statement.

The every → operator allows us to represent custom event patterns that follow each

other. We can filter those events according to certain properties, such as event id.

The FAIL− 1 statement in List.4.4 states that when an event with id e1 is followed

by an event with id e3 or an event with id e4 and not by an event with id e2, then

return the count for that occasion. So, for each context, if that count equals to 1,

then this is a case for yielding a Fail verdict.

Listing 4.4: EPL Statements for Fail Verdict of Figure.12

1 @Name(’FAIL−1 ’)

2 context CtxSample

3 s e l e c t count (*) as Fai lOneVerdict from pattern [

4 every rsp1 = RVSpec(s r c I d= e1 . id)−>((rsp2=RVSpec(s r c I d = e3 . id)

5 or rsp2 = RVSpec(s r c I d = e4 . id)) and not rsp3 = RVSpec(s r c I d

6 = e2 . id))]

7 output when terminated ;

Figure.17 shows how the reference architecture was designed in order to reveal

failure cases from simple coap events. CoAP Sniffer listens to the IPv6 network for

62

Figure 17: CEP Assisted Runtime Verification Reference Architecture

any CoAP communication, non-intrusively at runtime. Whenever it captures a new

CoAP message, it is parsed into an event representation in terms of SimpleCoAPEvent

Class. Each SimpleCoAPEvent instance represents a simple event, which is later

injected into the CEP engine (e.g., Esper). The EPL statements that are developed

specifically for the constraints of SUT processes those simple events, consequently

resulting in verdicts of Success or Failure in terms of complex events (i.e., red events

in the figure). Each instance of SimpleCoapEvent instance is uniquely identified with

an eventId, and instantiated with a timestamp value indicating occurrence of event,

a destId for destination identification, and a srcId for identifying the source of the

message.

The loosely-coupled design approach, thanks to RESTful-like CoAP, in the ref-

erence architecture (Figure.17) enables us to modify the building blocks of the ar-

chitecture without compromising the integrity. The Esper CEP engine, which is

implemented in Java, can be deployed on any platform that supports Java Virtual

Machine (JVM).

63

4.3 CEP for IoT

Any software system with distributed function calls can also be described as a col-

lection of events [107]. Interactions between components of an IoT system are also

events, as we have demonstrated in Section.3.2. Simple event logs can be synthesized

to reveal information about runtime behavior of a system compared to its expected

behavior. Every service request and response that occurs according to CoAP primi-

tive messaging methods causes various chains of events.

Esper engine runs along-side the system under inspection, and provided that cer-

tain events of interest occur, it raises a flag for each pattern of interest (e.g., for

detecting failures in a system). The APIs provided by such engines enable us to de-

sign continuous queries and complex causality relationships between disparate event

streams with an expressive EPL. EPL statements are continuously executed as live

data streams are pushed through. Esper has also a built-in support for specifying

EPL statements in Java language, thus enabling us to use Plain Old Java Objects

(POJO) classes to represent events and event relations.

4.3.1 CoAP Event Generator

Our runtime monitoring approach necessitates clearly determining the faulty behavior

of a system, and expressing each case in the language of CEP engine, called the

Event Processing Language (EPL). The solution architecture shown in Figure.18, is

composed of a network packet listener+parser and a CEP engine. The CoAP parser is

a non-intrusive network listener+parser that listens (implemented by Java class Parser

in Figure.18) to a specified IPv6 network [108] interface for all exchanged packets

on that network, filtering only CoAP packets, and finally generating simple events

based on captured CoAP packets. A simple event consists of the main descriptive

parameters of a CoAP message [2]. Such events are then sent to a CEP engine for

detection of abnormal situations.

64

Figure 18: Event Generation out of CoAP Messages

Our CoAP parser (Figure.18) utilizes an open-source Java network packet capture

library, named JPcap [109], for intercepting packets exchanged on an interface. Basic

events are produced by CoAP Parser by utilizing Californium open-source library

[110]. Californium is an implementation of CoAP protocol stack in Java, which allows

for writing RESTful applications based on CoAP protocol. We inherited raw packet

processing parts of this library, and added new features for producing simple CoAP

Events.

The architecture for event generator in Figure.18 does not strictly depend on the

open-source libraries used in the case study implementation; thus, any variant of

the same architecture, which might involve any other open-source libraries or propri-

etary implementations for sniffing CoAP packets other than JPcap and Californium

can be easily carried out, provided that they generate proper CoAP Events for the

Esper engine. It consists of two main components, a network sniffer and a CoAP

parser. Network sniffer must be able to capture CoAP Packets passively. Raw pack-

ets captured from network interface (tun0) are handled by Parser, which implements

RawPacketListener Interface in JPcap library. It further instantiates instances of

65

IPv6Packet, UDPacket, and CoapPacket classes for parsing CoAP messages from in-

coming raw packets. Then, it relays those to the coap parser; which parses each packet

and classifies them as either Request, Response, or Empty message [2]. Afterwards,

it generates a unique instance of SimpleEventClass. An instance of SimpleEventClass

must contain a unique identifier for each event (eventId), a timestamp for each event

(eventTime), an identifier for the owner of event (moteId) and the message type field

(coapMsgType). We preferred JPcap and Californium open source libraries for imple-

mentation of network sniffer and coap parser, respectively, for their wide community

support. Any other implementation that generates aforementioned SimpleCoapEvent

class instances with other libraries can easily be developed.

4.4 Case Study: WTRP

The motes in our experiment run on Contiki-OS, a real-time operating system (RTOS)

for IoT devices. Contiki-OS is an open-source RTOS [111], which comes with imple-

mentation of many protocols such as CoAP and a simulation environment, called

Cooja [95]. Cooja is not only a wireless network simulation environment, but also an

emulation environment that exhibits instruction level demonstration of user applica-

tions for several embedded platforms (e.g., Zolertia).

We demonstrate a token ring network scenario among Zolertia-Z1 motes in Cooja.

The experiment is set-up as shown in Figure.13. Motes 1 thru 5 are regular motes and

Mote-6 is a border router. According to the scenario, each mote has to possess a token

to send a broadcast message to the network. The motes in the simulation are engaged

in broadcast communication with all the other motes in range. If a message is received

by any mote that comes from a mote whose id violates HoldsAt(OO(t), t) predicate

(Eq.14), then it is an indication of a fault in the WTRP. In order to demonstrate

such faulty conditions, we added random seeded errors in the source code of the

application that runs on motes so that a mote randomly decides to communicate

66

with other parties without possessing the token. Mote 6 (border router) does not

participate in the token ring communication. A border router is utilized in order to

setup a connection between the simulation environment and host platform through a

serial-line Internet protocol interface. The border router passively listens to network

traffic in the token ring network, and relays all intercepted messages to the host

platform using a CoAP client-server connection. We included one client and one

server in our scenario in order to demonstrate the capability of passively verifying a

network of non-CoAP endpoints through a CoAP-installed border router.

The predicate function, HoldsAt(OO(t), t), evaluates to True if and only if m2 −

m1 = 1 (with one exception, when token is passed from mote-N to mote-1, in

a network of N motes). Thus, if we can detect cases where m2 − m1 6= 1 by

monitoring the broadcast messages of motes, then we can create a complex-event

identifying a failure situation. So, in CEP engine, we should be looking for correctness

of ¬HoldsAt(OO(t), t) function.

We used Esper CEP engine [81] to derive complex events out of basic CoAP events

and detect failure situations. Esper is an open-source CEP engine which supports de-

velopment in Java and C# programming languages. It provides a particular grammar

and language, called EPL, which allows introducing event definitions and correlations

among those events inside the CEP engine.

Figure.19 demonstrates how the EPL statements are organized in order to yield

a verdict about the order of ownership relation. Each CoAP Message intercepted

by CoapParser is injected into Esper as a simple event of type TokenEvent that

is and extension of CoapEvent class. Each simple event is decorated with event id

and timestamp. As we stated earlier, the events received from the network might be

out of order, thus we order all TokenEvent events with respect to their timestamp

values in order to avoid false positives. After that, all token events are maintained

in an ordered event window, which is an Esper EPL specific element that enables

67

Figure 19: EPL Statement Flow for Figure.13

managing events in data views. The order of ownership relation is later enforced on

that window. Note that, order of event occurrence might differ from order of event

arrival, thus, we must make sure that events are processed with respect to order of

event occurrence. That’s why we order the token window with respect to order of

event occurrence data.

Esper maintains events in streams, and EPL statements (Eq.17,18,19) are exerted

on stream of events to retrieve special relations or properties in those streams. We

did not used the concept of context in these EPL statements, because the experiment

was conducted in an isolated simulation environment, where no out of context events

was occurring.

create window OrderedUniqueTokenWin.std : unique(eventId).win : keepall()

as select eventId, moteId, eventT ime from TokenEvent

(17)

insert into OrderedUniqueTokenWin select eventId, moteId,

eventT ime from TokenEvent order by eventT ime

(18)

68

select a.eventId as aEvId, a.moteId as aId, b.moteId as bId,

b.eventId as bEvId from pattern [every a = OrderedUniqueTokenWin

→ b = OrderedUniqueTokenWin] where (((b.moteId − a.moteId) ! = 1))

(19)

As Esper select statement selects events from a stream, those events are re-

moved from the stream and update listeners are notified. But, in order to corre-

late sequential events with respect to their timeOfOccurrence properties, we need

to retain those events. Esper provides a particular data construct, called window,

that help us to decorate, maintain, and store events until it is undefined or the

events are explicitly discarded. Ordered TokenEvent events are inserted into the

OrderedUniqueTokenWin. The pattern for detecting out-of-order token process-

ing is executed on the OrderedUniqueTokenWin events. This last step generates

complex-events that make ¬HoldsAt(OO(t), t) = True.

4.4.1 Implementation

We have used a prominent real-time operating system that is particularly designed for

resource constrained embedded devices, Contiki [111]. The WTRP is implemented

on each mote of type Zolertia-Z1 according to [91]. The simulation in Figure.13 is run

on Cooja [95]. The configuration of the computer that we performed the simulation

is Intel i7-6700HQ CPU that runs at 2.6GHz with 16GB of RAM.

The simulation environment consists of 5 motes, each of which is uniquely iden-

tified with an increasing value of mode ids, and a border router that is used for

providing connectivity over IPv6 network. Each mote (mi) transmits a broadcast

message to the network when it owns the token and then passes the token on to the

next mote (mj) with id that satisfies mj −mi = 1 relation.

CoAP messages are passively captured by a sniffer as described in Section.4.3.

Captured messages are converted to SimpleCoapEvent instances and injected into

69

Table 5: Predicates and Meanings for WTRP
Predicate Meaning
TO(m,t) m owns the token at t
Diff(TO(mi, ti), TO(mj, tj)) TO mote id difference between successive messages

from mi and mj, True if 1, False otherwise
OO(Diff, t) Diff predicate holds at t

Esper CEP engine. A failure case is randomly generated by adding a random seeded

error function in WTRP algorithms of motes, which causes a mote to transmit a

message without owning the token. The failure situation is diagnosed by monitoring

for a sequence of messages that violate Eq.11. This condition renders the predicate

function OO(Diff,t) to become False. The mote that randomly transmits an erroneous

message also outputs an appropriate message to indicate the error situation in Cooja

simulation environment.

The predicates and corresponding meanings for WTRP are given in Table.5.

Diff(mi,mj) is a predicate that is assigned a boolean value depending on the mote

id difference between two consecutive token events (i.e., True if 1, False other-

wise). Diff is an example of a domain-specific constraint s(ei, ej) as we defined

in Section.3.3. OO(Diff,t) is a predicate function that determines whether or not

the order of ownership relation is preserved during successive transmissions at any

time t. Thus, having a OO(Diff, t) 6= 1 at time t indicates a Fail. As explained in

Section.3.3 OO relation must satisfy HoldAt(OO, t) ∀ t.

Listing 4.5: EPL Statement for Success in WTRP

1 @Name(’SUCCESS ’)

2 context CtxSample

3 s e l e c t count (*) as Succe s sVerd i c t from RVSpec

4 match recognize (

5 measures A. mId as a Id

6 pattern (A B C D)

7 d e f i n e

70

8 A as A. moteId = m1,

9 B as B. moteId = A. moteId + 1 ,

10 C as C. moteId = B. moteId + 1 ,

11 D as D. moteId = C. moteId + 1

12) output when terminated and context . endevent . moteId = m5;

The EPL statements in List.4.3 can be tailored to reflect event properties specific

to the WTRP case, but we can also represent those new predicates (i.e., semantic

relations for Diff) in EPL statements as shown in List.4.5. As for the Fail cases,

we can use the EPL statements shown in List.4.6, as well as those in List.4.4. Note

that the Diff(mi,mj) predicate indicates that mj − mi = 1 for any consecutive

TO(mj, tj) and TO(mi, ti) predicates where tj > ti ∧ @tk|ti < tk < tj. Therefore, the

difference between mote ids can also be expressed as mj = mi + 1.

Listing 4.6: EPL Statement for Failure in WTRP

1 @Name(’FAIL−1 ’)

2 context CtxSample

3 s e l e c t count (*) as Fai lOneVerdict from pattern

4 [every

5 rsp1 = RVSpec (s r c I d =2) −> ((rsp2=RVSpec (s r c I d =3) or

6 rsp2=RVSpec (s r c I d =4)) and not rsp3=RVSpec (s r c I d =6))

7] output when terminated ;

4.5 Discussion

In this experiment, the token was passed around randomly among motes every pe-

riod, instead of following a certain order. The scenarios are tailored such that we can

observe the performance of our solution approach on different network loads, conse-

quently with increasing numbers of events and errors. In order to achieve such results,

we ran each simulation for 10 minutes, in each of which each mote had possessed the

token for periods of 3, 5, 10, 15, and 20 seconds, so it can transmit messages; and

71

each simulation takes 10 minutes to complete. Note that as the period of broadcast

decreases the amount of message exchanges increases, thereby increasing the traffic

on the network. This enabled us to observe the robustness of our solution under

varying loads of events (Table.6).

Note that the motes simulated in Cooja for this research are examples of embedded

devices. We particularly implemented the experiment on Z1 motes as they appear

in Cooja. We preferred Zolertia type motes due to their available RAM capacity for

embedding CoAP client and server codes.

Table 6: Performance Results

Period CoojaEvt EsperEvt CoojaFlt EsperFlt Perf(%)

3 1021 1020 993 991 99,79
5 579 579 568 568 100
10 367 367 363 363 100
15 198 197 195 193 98,97
20 128 128 117 117 100

The results of simulation are obtained by observing the number of errors logged

in Cooja simulation environment and the number of errors captured in Esper CEP

engine. The performance of the solution is evaluated by considering the percentage

of errors that are successfully captured in Esper. CoojaEvt column shows total

number of events produced in Cooja environment, while EsperEvt indicates number

of simple TokenEvent events inserted in Esper. CoojaF lt shows total number of

token ring protocol failures occurred in Cooja, and EsperF lt shows total number

of violations detected in Esper. Period column values shows the broadcast period

allowed for each mote, during a scenario. As expected, more events are generated for

smaller transmission periods. Performance of our approach is evaluated by the ratio

of EsperF lt/CoojaF lt, which is given in Perf column in the table. As seen on the

Table.6, the performance of our verification approach reaches almost 100% success

72

rate. We observed that most of the failures generated in Cooja are detected in Esper.

However, there are two cases where we could not find all the errors in an event trace.

We believe that duplicate messages that might occur due to network condition can

cause such deviations; those errors deserve further investigation as future work.

The design of CoAPParser supports listening to raw CoAP communication be-

tween any numbers of motes, thus our solution can be ported to different scenarios.

This approach can be extended to verify IoT systems that utilize MQTT messag-

ing model and others, provided that those models are expressed with proper Event

Calculus as proposed in Section.3.3.

4.6 Related Work

Software is said to have a failure when the observed behavior deviates from the re-

quired behavior [112]. Software verification is a process of checking whether the

observed behavior of a system meets its predetermined specifications. It aims to lead

software quality, which has been studied in major body of recent research papers

[113, 114, 115]. Run-time verification is an approach that differentiates from classic

verification (i.e. theorem proving, model checking, and testing) [17] by the fact that it

deals with an actual run of a system. Runtime verification techniques rely on special

tools, called monitors, which operate over certain execution traces of a system and

make decisions on particular correctness properties [17]. A correctness property en-

ables monitors to yield a certain decision of True/False depending on the satisfiability

of that property. A run of a system is usually expressed in terms of a sequence of sys-

tem states, which consists of certain variables defining the context in the state. Such

an approach for verification can be achieved for those system specifications which can

be described by a sequence or a collection of events.

Verification of embedded systems requires delicate effort on resource utilization,

because the verification devices and implementations might alter the performance

73

and behavior of the system, thus jeopardizing the whole process. In [116], authors

architect a verification solution for embedded motes that run the TinyOS. They pro-

pose an approach which necessitates instrumentation of the application to be tested,

and requires another verification application to run on the same device, which col-

lects data emitted by the instrumentation code. This approach alters both individual

device behavior and system behavior which is composed of such devices. A less intru-

sive approach, that does not instrument the SUT, is favorable in order not to cause

deviation in timing and functional behavior. Therefore, in our approach, we choose

to adopt a passive monitor for observing the events in the system.

Certification of products involves testing of the product against certain well-

defined scenarios to yield a verdict indicating whether or not it conforms to the

standard specifications. For example, CoAP Plugtest events [117] were designed to

reveal interoperability issues between different implementations of the CoAP draft

[2], and consequently unearth the standard specifications. In [8], Chen, et al. de-

scribe their approach to this problem. They propose a verification architecture that

uses an open-source packet sniffer (Wireshark) to capture live CoAP network traffic

and save it in certain files to work on them later. After the run of the system is

completed, the solution approach passively (offline) tries to verify compliance of the

implementation to the standard specification. This research does not allow for testing

the application at runtime (online); and their approach merely deals with protocol

compliance testing, which means that one cannot verify a system that employs CoAP

as a communication model by using this approach.

Competitive approaches [8, 105, 118] for verification of IoT systems, either neces-

sitate a certain amount of intervention with the application code or provide offline

testing techniques. Another solution is devised solely for protocol testing [8], mean-

ing that it does not address application testing of a system that employs CoAP as

a messaging model. On the contrary, our approach neither requires an intervention

74

with the application code, nor operates on historical records of a run of a system;

while enabling a system test capability. In [105], Cubo, et al. attempt to identify

an approach for verification of Web of Things by using CEP. Their claimed architec-

ture lacks any descriptive details; moreover, they did not implement their proposed

solution.

4.7 Conclusion

In this chapter, we devised a novel solution for non-intrusive, non-instrumented,

and online runtime verification of IoT systems; which builds on the EC proposed in

Chapter.3. Our approach is an event-based solution which exploits RESTful service

paradigm employed in CoAP messaging model, thereby enabling utilization of Esper

CEP tool. IoT systems designed with CoAP model are represented as event-driven

systems; and consequently, we demonstrated how to leverage CEP techniques for ver-

ification of such a system. Our study not only provides an architectural solution, but

also involves integration of several open-source tools.

We believe that deriving ontology of events occurring in IoT domain with respect

to communication models is necessary to guide research in this domain. Our event

descriptions were extracted by textual representations of simple events and their

correlations.

75

CHAPTER V

RUNTIME VERIFICATION AT THE EDGE OF THINGS

IoT devices gained more prevalence in ambient assisted living (AAL) systems ([119]).

Reliability of AAL systems is critical especially in assuring the safety and well-being

of elderly people. Runtime verification (RV) is described as checking whether the

observed behavior of a system conforms to its expected behavior (Section.2.1). RV

techniques generally involves heavy formal methods; thus, it is poorly utilized in

the industry. Therefore, we propose a democratization of RV for IoT systems by

presenting a model-driven engineering (MDE) approach. In order to support modeling

expected behaviors of an IoT system, we leverage the modeling profiles provided by

Unified Modeling Language (UML); we particularly use UML version 2.5 [3], as it

was the latest one available at the time of our research. A domain-specific modeling

profile has been extended over UML, which later allows us to make use of Sequence

Diagrams (SDs) for specifying the expected behaviors of any IoT system. Later,

the expected behaviors are translated into runtime monitor statements expressed in

Event-Processing Language (EPL), which are proposed to have executed at the edge

of the IoT network. We further demonstrate our contributions on a sample AAL

system.

The increasing computing capacity of things enabled equipping those with full-

fledged operating systems and special-purpose software. Such improvements in IoT

systems will allow us to deploy certain processing tasks at the edge of an IoT network,

thereby providing expedited data processing without compromising data integrity and

security. An edge computing solution aims to provide a seamless integration between

IoT and cloud computing platform by using the processing power of gateway devices

76

at the edge of a network to filter, pre-process, aggregate or score IoT data. Edge

computing solutions utilize the power and flexibility of cloud services to run complex

analytic on those data and, in a feedback loop, support decisions and actions about

and on the physical world.

A majority of research on RV utilizes formal methods and logic programming such

as Linear Temporal Logic (LTL/T-LTL) [17] for specifying runtime monitors, that’s

why it has been considered intimidating by the practitioners for more than 50 years.

However, RV is a fundamental verification method that increases the user’s confidence

on a SUT, by exercising certain monitoring techniques on execution traces of SUT.

Considering the fact that an IoT SoS may be composed of hundreds or thousands of

devices that may be manufactured by a multitude of manufacturers, the reliability

of such a large scale system could be further assured by leveraging a feasible RV

solution. RV complements reliability of IoT systems by black-box testing approach,

which is one of the most appropriate testing approaches for such heterogenous large

scale systems [17].

IoT systems are increasingly deployed with service-oriented architecture (SOA)

principles, due to its ease of implementation and vast community adoption [120].

Thus, RV solutions that favor service-centric [17] nature of those systems are more

applicable. In this chapter, we complement our research on RV of event-based IoT

systems with a MDE framework that is proposed as a facilitator of proliferation for

RV of such large-scale SoS’s.

Interoperability is often defined as ability of two or more systems interacting

through provided interfaces of collaborating party [121]. In emerging domains such

as IoT, special purpose application layer protocols are proposed to govern the interop-

erability issues. Constrained-application protocol (CoAP) [2] is developed with best

practices in the industry, which specifies the interaction model and messaging formats

between IoT endpoints. Its fundamental messaging model inherits basic principles of

77

RESTful API model in [19].

We presented a proof of concept implementation of MDE-based RV for IoT systems

in [14]; however, the work fails to define a deployment model that supports practical

application. We extended our initial findings on representing basic interoperability

issues of IoT systems using CoAP. We improve our research by proposing a meta-

model for CoAP by extending the UML profile, and utilizing the meta-model for

automatically generating runtime monitors from behavioral models of IoT SUT.

The chapter is structured such that Section.5.1 introduces MDE approaches we

have contributed for RV of IoT systems. Then, we describe the design of a refer-

ence deployment architecture for RV-as-a-Service (RuVaaS) framework on edge of

things in Section.5.2. Section.5.3 demonstrates the proposed architecture on a case

of Ambient-Assisted Living system implemented on IoT running CoAP. The merits

of the contributions are discussed in Section.5.4, then, we provide a brief recap of

related work on MDE.

5.1 Modeling Runtime Verification for IoT Systems

IoT presents a new computing phenomenon for such devices that are smart yet

resource-constrained. Those things involve heterogeneous day-to-day smart objects

[5], which aim to seamlessly construct new services and applications through un-

tethered autonomous M2M collaborations. Interoperability is a major challenge in

achieving such a goal, as there might occur unprecedented interactions between those

objects. It is an issue in such SoS’s that are composed of subsystems with various

communication protocols, application interfaces. Interoperability challenge at proto-

col stack of network layers governs the issues related with implementation of protocol

specification; for example, CoAP-based devices must be interoperable with respect to

the CoAP standard [2, 8].

IoT SoS’s are intrinsically hot swap systems, such that an endpoint can be replaced

78

with another one providing the same services with the same device configurations.

However, the new endpoint may be flawed in certain features, inhibiting its expected

behaviors. Thereby, it may incur runtime failures even though the overall system

design is verified before its deployment. In order to support RV services at such

operating environments, we propose the MDE approach that leverage event-based

IoT systems, where interoperability can be assured through testing against certain

service agreements at runtime. It can be investigated further in findings that we

present in Section.2.3 that interoperability is an ongoing issue in such SoS’s that

heterogeneous subsystems compose a large-scale SoS as in IoT.

IoT systems usually consist of commercial-off-the shelf (COTS) products with

nearly no knowledge of internal implementation details, we promote a black-box test-

ing approach for providing interoperability. We propose that a model-driven engi-

neering approach that leverages the RESTful-like application layer interaction model

of CoAP-based IoT systems should facilitate interoperability testing efforts. MDE

as been utilized in several domains [122]. We demonstrate the applicability of MDE

in IoT domain through implementation of a case study with Papyrus [123] modeling

tool. Our previous work on runtime verification of IoT systems [12] has demonstrated

that an IoT system can be described in terms of simple events occurring in the sys-

tem. Thereby, we proposed a verification approach that utilized CEP technique. In

this thesis, we further that research with a MDE solution that allows automatically

generating test cases from sequence diagrams in a UML model.

5.1.1 UML Profile Extension

Papyrus is a modeling tool developed on Eclipse Modeling Project [123]. There

are a plethora of applications supporting UML standards; however, those tools are

commercial applications that are driven by the proprietary companies. Eclipse open-

source platform has democratized the modeling experience to masses by incubating a

79

Model Development Tools (MDT) project. Since its initiation MDT project has been

the main modeling choice especially in open-source community.

Papyrus is a graphical model editing tool that builds on Eclipse MDT capabilities,

such as GEF, GMF and EMF [123]. The main advantage of using Papyrus over using

principle projects of Eclipse (GEF, GMF, EMF) is that it is so flexible that it en-

ables collaboration of different editors. This capability allows extending the Papyrus

graphical editing window by introducing pluggable diagram editors. Another advan-

tage is its inherent capability in developing DSM tools with such an ease for those

domains that can be extended on UML Profile [3]. Those capabilities encouraged us

to choose Papyrus as the basis for developing a DSM for CoAP-based IoT systems.

5.1.2 Model-driven engineering for Interoperability

Software intensive systems has increasingly being developed with component-based

architectures [124]. IoT systems are no exception to that adoption in the indus-

try. Particularly, application layer protocols such as CoAP have made it possible to

treat such systems purely as service-oriented systems. Monitoring of services in SOA

systems has been valuable for post mortem analysis [125]. Thus, we will define how

model-driven engineering approach can be used for describing the service interactions,

and consequently facilitate interoperability testing at runtime.

Interoperability issue might be present at various levels of communication layers.

Application level interoperability can be defined to occur between service calls, such

that endpoint-A calls a service that exists in endpoint-B with the correct signature

and parameters, and also data interoperability. In this research we address solely

service call interoperability.

80

Figure 20: MDE Process for Interoperability

Figure.20 illustrates the concept of using MDE in RV of IoT systems. A sys-

tem integrator first (Step-1) needs to model the interoperability scenarios in sequence

diagrams. Each diagram captures expected behavior of an individual service of a

particular endpoint in terms of CoAP interactions with other endpoints; thus, there

must be as much sequence diagrams as the number of services provided by an end-

point in an IoT system, in order for fully covering all behaviors. The interactions are

represented as asynchronous message exchanges in the sequence diagrams. In second

step, a model-to-text transformation algorithm is exerted on each sequence diagram

to transform event relations into EPL statements. EPL statements act as runtime

monitors. EPL statement is an executable special purpose instruction written in

Event Processing Language (EPL) of Esper CEP engine [81]. EPL statements are

implemented as (see Section.5.1.4) Java classes that can be run on any Java compat-

ible platform. Those are registered (in Step-3) with an Esper engine running either

on a stand-alone endpoint acting as an edge computing solution for interoperability

testing, or it can be provided as a service over a cloud implementation. In step 4,

the CoAP events that are captured from the running network by means of sniffing

(Section.4.3) it passively are injected into the Esper engine for monitoring through

complex-event processing. The Verdict can either be Pass or Fail depending on the

result.

81

Figure 21: UML Elements Syntactical Relations (adapted from [3])

5.1.3 A model-based RV solution for IoT systems

The modeling of IoT systems as smart objects has already been investigated in [126].

In this section we propose an extension to SD of UML 2.5 profile [3] that will be used in

modeling expected behavior of CoAP-based IoT systems. SD is a type of Interaction

Diagram, which captures the sequence of exchanges of messages between entities.

Modeling behavior of a system in terms of messages not only facilitates development

activities, but also allows deriving test scenarios for observing the expected behavior.

A SD may be composed of one or more lifelines, messages exchanged between

those lifelines, and combined fragments. A Lifeline (Figure.21) represent instances of

UML NamedElements on a SD. Each lifeline is represented with a vertical line on a

SD, and messages are drawn between those vertical lifelines to designate occurrence

of message ends at particular entities. A MessageOccurrenceSpecification element in-

dicates occurrence of a sendEvent or a receiveEvent of a particular Message. In UML

terminology, a SD is a type of Interaction, which is fundamentally an Interaction-

Fragment. An InteractionFragment might contain nested Fragments so as to capture

more complex interactions. In such scenarios CombinedFragments are used to enforce

82

Figure 22: CoAP UML Profile Extension

certain constraints or exert different aggregation operations on sets of MessageOccur-

renceSpecification’s. Events on a Lifeline are partially ordered with respect to the

visual order of MessageOccurrenceSpecifications appearing on the vertical lines. The

linearization of sendEvent ’s on a certain SD gives us an expected behavior of event

sequences when the SUT runs. We previously investigated the linearization of SD’s

[13], which help us in transforming SD’s into runtime monitors. Therefore, we will

not re-visit that concept.

In order to transform linearization of event occurrences, we need to apply M2T

algorithms on each SD. We will assume that a SD represents behavior for a single

service composition. A service composition is realized through collaboration of one

or more CoAP endpoints.

The CoAP metamodel is implemented as an extension to UML 2.5 profile for SD.

The profile captures essential characteristics of a CoAP endpoint, which allows us to

use CoAP specific Stereotypes in modeling behavior on SD’s. UML provides Compo-

nents as a type of NamedElements (Figure.21), which enables abstracting away inter-

nal structure details of a system, and focusing design on its interfaces. Components

interact with other components through functionalities that are interfaced through

Port ’s. We extend Component element of UML profile to represent a CoAPEndpoint

83

(Figure.22). A new stereotype CoAPMessage is specified for organizing CoAP spe-

cific message contents by extending the Class metaclass of UML profile. CoAPMes-

sageType and CoAPMessageCodes enumerations allow describing the attributes of

a CoAPMessage instance with respect to the network packaged captured by CoAP-

Sniffer (Figure.28). Port element is extended to represent a CoAPPort, which pro-

vides interfaces through IResponse or IRequest. IRequest and IResponse elements

in Figure.22 represent service access points by extending Interface element of UML

profile.

EPL statements are automatically generated for a particular SD by utilizing the

techniques we proposed in this section. We extend those algorithms to incorporate

transformation of SD’s with CombineFragments that are constrained by assert Inter-

actionOperand. assert is an operand that allows us to exert an assertion constraint on

a set of events. The visual order of events occurring on Lifelines covered by an assert

CombinedFragment are accepted as the only acceptable valid traces of a particular SD;

any other combination of event sequences would constitute invalid traces. Thereby,

the M2T methods generate EPL statements that either monitor for occurrence of

valid trace or invalid traces. We designed and developed an Eclipse plug-in to incor-

porate and distribute proposed solution (i.e., extended profile, M2T algorithms). The

details of M2T algorithms can be found in Section.5.1, where we succinctly explained

how to cover SUCCESS and FAILURE EPL statements (List.4.3, List.4.3).

5.1.4 Implementation

The example implementation assumes a healthcare system based on research in [4].

They present a case study on interoperability testing for HL7 systems with a sample

hardware reference implementation. The communication model is based on CoAP

(Figure.23).

In Section.3.3 we showed that an IoT system with CoAP can be expressed in terms

84

Figure 23: Healthcare Interoperability[4]

of send events in the system. Thus, we can represent a patient consent scenario with

a sequence diagram as in Figure.24. For ensuring privacy, a doctor must first request

patient’s consent for observing health data (e.g., ECG) (m1). After the patient grants

the consent (m2), the doctor can ask to observe the patient data (m3). After that, the

sensor on patient can periodically send the measured data (m4). Each ei represents

a send event for corresponding message mi.

Follows(ei, ti, ej, tj) ≡

∃ei, ti, ej, tjHappens(ei, ti) ∧Happens(ej, tj) ∧ (ti < tj) (20)

Figure 24: Patient Consent Sequence Diagram

The system in Figure.24 can be represented in terms of events (Eq.20) by using

Follows relations as described in Chapter.3. Eq.20 states that ei must be followed by

ej if they appear sequentially on the sequence diagram (e.g., e2 follows e1). Thus, by

observing if each sequential pair of (ei, ej) at runtime satisfies Follows relation we

can conclude that interoperability patient consent requirement. In order to conclude

85

with a Pass verdict (Eq.21), we must have e1 ≺ e2 ≺ e3 ≺ e4, where ≺ denotes

the precedence relation. For a Fail result (Eq.22), a ei ⊀ ej must hold for (i, j) ∈

{(1, 2), (2, 3), (3, 4)}, where ⊀ represents doesn’t precede relation. Eq.22 states that

the CEP engine must select all the complex events that occur as a result of m1 is

followed by either m3 or m4 message before an m2 event occurs in order to indicate

a failure situation. The same rule can be extended for other messages as well.

select ′SUCCESS ′from HealthEvent match recognize(

measures A.mId as a id, B.mId as b id, C.mId as c id,D.mId as d id

pattern (A B C D) define A as A.mId = m1, B as B.mId = m2,

C as C.mId = m3, D
′asD.mId = m4); (21)

Figure 25: Algorithm for Generating EPL Statement of Success Verdict

select ′FAIL′,m1 from pattern [everym1 = HealthEvent(mId = m1) − >

((m3 = HealthEvent(mId = m3) or m4 = HealthEvent(mId = m4)) and

not m2 = HealthEvent(mId = m2))] ; (22)

86

Figure 26: Algorithm for Generating EPL Statement of Fail Verdict

Figure.25 and Figure.26 list algorithms for generating EPL statements for Pass

and Fail cases of interoperability testing in Acceleo. Acceleo runs over XMI1 def-

initions of sequence diagrams, and generates Java classes containing corresponding

EPL statements (Eq.21 and Eq.22). After executing M2T code in Papyrus [123], a

Java class containing a similar EPL statement as in Eq.21 is generated. This EPL

statement selects all the matching sequences of messages as described in Figure.24.

The solution framework can be extended to other scenarios by following the pro-

cedure and implementation details described in Section.5.1. The event relations logic,

how to sniff a network for CoAP packets through a CoAP sniffer, and how to run

runtime monitors as EPL statements are explained in [12]. Note that, the solution

framework would be applicable to both online and offline testing provided that raw

CoAP packets are injected into the CoAP Sniffer. This solution enables for observing

interoperability of IoT systems at runtime.

5.2 Verification at the Edge of Things

Cloud computing has drastically shifted the information technologies services devel-

opment and deployment practices; thereby, it facilitated utilization of distributed

systems by concealing complexities of resource provisions behind service-oriented de-

livery and deployment models. IoT systems have tremendously increased demand for

1https://www.omg.org/spec/XMI/About-XMI/

87

Figure 27: Edge Computing Paradigm

computing power, network bandwidth and performance capabilities; because, those

systems continuously generate sensor data and engage in network communication

more frequently than conventional computing systems. Even though the data an-

alytic capabilities on cloud systems are more advanced than a traditional network

gateway, the quantity of service requests and corresponding responds puts unprece-

dented load on the system capabilities. Besides, IoT systems demand fast results for

data analytic as they are promised to seamlessly integrate IP enabled things. Thus,

cloud computing falls short of providing services with necessary quality of service

agreements.

Since the introduction of IoT paradigm, demand for high-speed data processing

approaches has increased. As a result of that demand along with high volume of

IoT data to be processed necessitated a more economical approach for data analytics,

which recognizes the limitations of network bandwidth. Edge computing paradigm

presents itself as a utility at the edge of the network, where data is produced [127].

Edge of things layer as illustrated in Edge layer of Figure.27 not only acts as border

88

routers connecting things to the cloud, but also as computing units that perform var-

ious functionalities such as data storage, caching, processing, which facilitate IoT and

cloud convergence. Data stream processing can be performed locally, thus enabling

faster analysis of sensor data. Speed of analysis becomes more critical in health-

care systems where data stream processing can be utilized for determining medical

emergencies.

Edge computing converges IoT and cloud computing by addressing most of the

subtle issues at the edge of the network [128]. Those issues are; (i)bandwidth overhead ;

an IoT system might generate gigabytes of data in matters of second (e.g., a Boeing

jet generates 5 GB of data per second [127]). Bursting that data onto Internet for

data analytic at a cloud facility would deplete the available bandwidth very quickly;

(ii)network latency ; IoT systems are destined to function in a real-time fashion, thus

requiring high-speed data processing for sensory data analytic; processing such op-

erations on the cloud incurs extra latency to network traffic; (iii)privacy ; some ap-

plication domains requires asserting privacy precautions on processing of sensor data

(e.g., especially in healthcare informatics area); and, (iv)security ; critical IoT data

has to be secured against possible attacks both in transit and at rest. Transferring

such data over the Internet would expose them to new vulnerabilities.

In following subsections we explain how to leverage border routers/gateways that

enable CoAP communication between IoT endpoints and the Internet as as a runtime

verification platform at the edge of things. We further explain how we extend the

UML profile so as to support automatically generating runtime monitors as EPL

statements for CoAP behaviors. Our verification approach differs from others in the

literature that are mainly built on instrumenting the SUT, in the cost of memory and

processing power [8]. EPL statements generated as RV monitors are deployed on edge

devices, thus does not incur any additional cost in terms of memory and processing

power to the SUT.

89

Figure 28: Conceptual Reference Verification Architecture

5.2.1 A Reference Verification Architecture

Cloud computing providers are motivated to support services that support various

use cases, and maintain them in a service pool, which supports on-demand service

delivery [129]. Reviewing the literature on cloud computing, we can acknowledge

benefits of different deployment and delivery methods (Section.2.3). This section

does not explain how to construct a cloud service for RV, but specify the allocation

of functionality of a RV solution on the interplay of IoT-Edge-Cloud triplet.

Figure.28 captures general concepts of how to deploy a RV service on edge of

things, which is presented to end users via a cloud service manager (RV Service Man-

ager). We will briefly describe the layers of functionality allocated to each component

of the architecture, then we will elaborate on Modeling Behaviors, Generating RMs

and RV @Edge designs in the next subsection. The descriptions for the components

of proposed architecture in Figure.28 is given in Table.7.

The user is expected to depict the expected behavior of the SUT via UML at

Design Time. After the expected behavior of an interaction is modeled on a SD,

90

Table 7: RV@Edge Architecture Components of Figure.28
Component Description
RV Service Manager Initiates a RV session through RV Factory. Uploads gener-

ated monitors to the cloud and conducts the RV session
RV Factory Enables configuration of a RV session (i.e., IP addresses of

endpoints, port numbers for services). Interacts with RM
Repository and Result Repository components for bookkeep-
ing of EPL statements and results. Manages a set of RV
@Edge components. Each RV @Edge component can be
started/stopped independent of other instances.

RM Repository Enables re-utilization of generated runtime monitors
Result Repository Allows recording of a particular RV session
RV @Edge Implements a RV management software for a set of IoT

endpoints, at the edge of network (i.e., border router or
gateway). Enables conducting RV for different SDs inde-
pendently of each other by allocating each as a session on a
different CEP engine.

RV Engine Enables conducting RV for a particular SD independently
of other behaviors as a RV session. Runtime monitors as
EPL statements are uploaded to RV Engine, the results of
monitoring actions are reported back to RV @Edge.

CoAP Sniffer Implements a passive network sniffer for CoAP [119]

model-to-text (M2T) operations are performed on SD so as to derive runtime moni-

tors. RV Service Client allows the user to initiate a RV session through RV Service

Manager at Run Time. After the service is initiated, end user needs to upload run-

time monitors onto the cloud. The results of RV session are monitored through the

Reporting component.

Since Esper engine is developed with Java technologies, it is recommended that

RV @Edge, RV Engine and CoAP Sniffer components are also implemented with

Java. Note that our reference architecture addresses Online RV, meaning that CoAP

events are generated out of live CoAP network traffic. However, Edge layer of this

reference architecture can also be implemented on a cloud platform so that it allows

performing post-mortem RV on a simulation of recorded/logged IoT network traffic.

91

Figure 29: IoT-enabled AAL Example

5.3 Case Study: Ambient-Assisted Living

IoT-enabled healthcare systems leverage on connectivity of many resources, which

involves both in-house and on-person sensors/actuators, to conduct comprehensive

data analytics and to deduce timely verdicts on wellbeing of a person. Timeliness is a

crucial attribute of such systems, which inherently determines life or death situations.

AAL environments are such healthcare informatics systems that are mostly utilized

in providing reliability and safety services of elderly people (Figure.29) or people with

cognitive impairment (CIP) [130].

AAL systems promise to (i) improve the quality of elderly living by accommo-

dating certain habits into people’s lives, such as reminder for daily sport routines

as walking, medication reminder; (ii) non-intrusively monitor vital health data and

daily activities of elderly people; (ii) facilitate immediate response in case of emer-

gency situations. An AAL system designed to support caring for an elderly person or

CIP might be composed of various sensors. Some of the sensors [130] that are most

commonly deployed in such systems are presence sensors, motion/location sensors,

temperature sensors, open/close sensors, and other body sensors.

The design and development of AAL systems must be meticulously carried out,

because such systems are safety-critical systems, on which people’s lives depend.

Particularly, the functionality that handle emergency situations are more critical then

others. That’s why, it’s expected that the designers of such systems observe the

92

Figure 30: Sequence of Actions in CareWatch System

regulations and guidelines embodied for those systems. However, various faults and

failures will eventually occur at runtime [130].

Emergency situations can be detected by implementing various analysis techniques

that collect and/or aggregate sensor data, then analyze those to yield a decision [119].

The analysis can be carried out by using, for instance, rule-based reasoning techniques

as in [119]. Failures conditions on such AAL systems might arise due to two main

reasons: (i) Faulty sensor data, (ii) Erroneous analysis.

CareWatch project [130] is an AAL system devised to preserve the safety of CIP

by avoiding unsupervised night time leaving of house, and enhancing caregiver sleep

quality. The proposed AAL system not only ensures well-being of CIP, but also of

caregiver. However, sleep quality of caregiver might be hindered by frequent inter-

ruptions generated by AAL system, due to false alarms. The runtime analysis can

be carried out (Figure.30) on a set of multimodal events generated by motion sensor,

bed presence sensor and door sensor. The system is specified to alert the caregiver in

case of an unsupervised stepping out of the house by CIP, and avoid any false alarms.

As the authors express in [130], the system reliability is still an open issue, even

though they lowered down the rate of false positive/negatives to 10%. This evaluation

intensifies the need of a RV solution for AAL systems. At the time of CareWatch

project, IoT paradigm was not contributed to the literature; that’s why, the original

CareWatch project was not built on IoT. However, it is still a viable example for

demonstrating the effectiveness of using edge of things concepts by assuming that it

was deployed on an IoT network.

93

Figure 31: CareWatch Component View

Figure 32: Sequence Diagram of CareWatch

This section demonstrates how the MDE approach in Section.5.2 can be demon-

strated on the motivating example described below. The SUT, CareWatch, will be

monitored for verifying that it doesn’t generate neither false negative nor false pos-

itive. The interactions of CareWatch system can be designed by first specifying

components constituting the system, then designing the expected behavior amongst

them on a SD.

The CareWatch SD is displayed in Figure.32. The SD is developed in Papyrus

modeling tool [123]. Notice the difference between Figure.32 and Figure.30. The SD

demonstrates a single scenario of generating an alarm in case of CIP’s unsupervised

leaving of the house. assert keyword on the upper left corner of the figure states that

a SUCCESS verdict can yield only if the event sequences in the assert Combined-

Fragment observe the same visual order as they appear on the diagram. Thus, any

deviation of order would result in FAILURE.

94

The sequence of events in Figure.32 specifies an expected behavior of CareWatch

system for a specific scenario. The scenario is initiated by occurrence of a sendE-

vent setSensorValue event emitted by the BedSensor. This event is registered with

CareWatch component for further processing. The sendEvent alarm event by Care-

Watch is generated only when sendEvent setSensorValue event by BedSensor is

immediately followed by sendEvent set-SensorValue of Motionsensor and sendE-

vent setSensorValue of DoorSensor. EPLs for this scenario is shown in List.5.1.

Notice that each run of the scenario is designated by a contextual representation

of the domain. Every time a BedSensor event occurs, a new context is generated to

verify that each unique BedSensor event has been given consideration for detecting

unsupervised nighttime leaving house. The statement labeled FAIL-X is an example

of detecting an event ei not immediately following another event ej. We needed to

add another statement for failure, FailTOut, which yields a failure if an alarm is not

generated after some period of time.

Listing 5.1: Generated EPLs for CareWatch System

1 context CtxLeaveUnsupervised

2 c r e a t e var i ant schema CWRV as CoAPEvent ;

3

4 context CtxLeaveUnsupervised

5 i n s e r t i n to CWRV

6 s e l e c t * from CoAPEvent where name = ”BedSensor” or ” MotionSensor ”

7 or ” DoorSensor ” or ”CareWatch” ;

8

9 @Name(’ FailX ’)

10 context CtxLeaveUnsupervised

11 s e l e c t count (*) Fai lOneVerdict from pattern [

12 every

13 rsp1 = CWRV(name=”BedSensor”)−>((rsp2=CWRV(name=” DoorSensor ”)

14 or rsp2=CWRV(name=”CareWatch”)) and

95

15 not rsp3=CWRV(name=” MotionSensor ”))]

16 output when terminated ;

17

18 @Name(’ FailTOut ’)

19 context CtxLeaveUnsupervised

20 s e l e c t count (*) Fai lOneVerdict from pattern [

21 every

22 rsp1 = CWRV(name=”BedSensor”)−>((rsp2=CWRV(name=” DoorSensor ”)−>

23 (rsp3=CWRV(name=” MotionSensor ”))−>rsp4=CWRV(name=”CareWatch”)))

24 in time . with in (THRESHOLD)]

25 output when terminated ;

26

27 @Name(’ Fa i lLas t ’)

28 context CtxLeaveUnsupervised

29 s e l e c t context . endevent from CWRV. std : l a s t e v e n t

30 output snapshot when terminated ;

31

32 @Name(’ Success ’)

33 context CtxLeaveUnsupervised

34 s e l e c t count (*) as Succe s sVerd i c t from CWRV

35 match recognize (

36 measures A. name as a name

37 pattern (A B C)

38 d e f i n e

39 A as A. name = ”BedSensor” ,

40 B as B. name = ” MotionSensor ” ,

41 C as C. name = ” DoorSensor ”

42) output when terminated and context . endevent . name = ”CareWatch” ;

5.4 Discussion

As shown in Figure.32, there are 4 distinct sendEvent instances in the SD, and 3

distinct event pairs (ei, ej) that have to follow each other immediately on the SD.

96

Referring to the event calculus we explored in [12], we can calculate the total num-

ber of EPL statements required for monitoring all possible combinations for both

Pass and Failure verdicts. List.5.1 indicates that a single EPL statement suffices

to observe a Pass verdict over a pair of events (ei, ej). However, in order to yield

a Failure verdict on the SD it takes three different type of EPL statements (i.e.,

FailX, FailLast, FailTOut). A FailX statement is necessary for each consecutive

pair of events on the SD (e.g., (e1, e2)). A single FailLast statement for the entire

SD is necessary to cover for the case of reaching end of stream before the last event

arrives for the specified context (List.5.1; and a single statement suffices for detecting

timeout situation (i.e., FailTOut). If we assume that there are N distinct events on

a particular SD with N−1 event pairs that are required to satisfy Follows relation as

stated in [12], then the total number of EPL statements required can be calculated

as in Eq.23.

EPLCount = 2 + 2 ∗ (N − 1) (23)

Therefore, the total number of EPLs required to conduct a RV through CEP

is linearly proportionate to the number of distinct sendEvent instances in the SD

(Figure.33). The x-axis in the figure represents the total number of unique events that

are denoted in the SD (e.g., e1, e2, e3, e4 in Figure.32); whilst the y-axis represents total

number of EPLs required to fully cover all cases of a RV for a particular SD. If we were

to write EPL statements manually, then the effectiveness of using CEP techniques

would have been hindered. That’s why, using M2T algorithms along with an MDE

approach for automatically generating those EPLs presents a feasible solution. Our

future work could also include query plan optimizations among EPL statements, since

they serve shared event streams and continuous queries. Besides, CEP utilities enable

us to leverage built-in event patterns and event transformation methods for mutating

simple events towards complex-events with such ease.

97

Figure 33: Increasing number of EPL statements 23

The validation of using CEP as a RV solution has been investigated in our work

in [12], where the performance results indicated that nearly 100% fidelity can be

achieved by using CEP.

5.5 Related Work

A black-box testing approach for assuring interoperability assumes that the individual

components are thoroughly tested by the manufacturer. But, when it comes to the

complexities of the integrated heterogeneous system of systems, the runtime actions

of the system might be overlooked with black-box testing. In [122] Wu et al. proposes

using Unified Modeling Language (UML) [3] to express the expected behavior of a

component-based software. They utilize interaction diagrams to capture functionality

expected from the system. They explain how UML interaction diagrams can be used

to extract the context-dependence and content-dependence relations so as to use in

deciding if test cases are comprehensive or not. The research doesn’t provide any

guidance through implementation nor the automation of a model-driven engineering

approach.

Internet community is majorly built around web services concept, thus inter-

operability of those distributed and heterogeneous services is an ongoing challenge.

Bertolino et al. [131] proposed an audition framework for solving this problem. They

98

extend the UDDI registries so that the services registered to a directory is audited be-

fore it is registered. Thereby, they validate the claimed behavior of the service before

such services with the same UDDI registry can collaborate with proclaimed service

contracts. This is a solid contribution in service registry coordination, however it

lacks to observe the runtime behavior of services.

In [132], Smythe discusses that using a the modeling approach in development of

a distributed service oriented system facilitates both implementation and testing ef-

forts. The interoperability tests are automatically generated through a series of XML

Metadata Interchange (XMI) transformations over a UML model of the system. Our

approach also use XMI transformations in order to facilitate runtime EPL statements

for interoperability testing.

In [8] authors proposes a new solution for certification of products, which involves

conformance testing of IoT devices with respect to CoAP standards [2]. In their

approach, they first record the live network traffic, and save them in files for post

processing. When the system test run finishes, they collect those record files and

apply post mortem tests on those logs so as to find any deviation in the CoAP com-

munication primitives from the standard specification. The test cases are prerecorded

according to the standard specification. Since, they operate on recorded log files, the

approach does not scale well to runtime (online) interoperability testing. Moreover,

they focus solely on protocol implementation interoperability, so the solution does

not scale well for application specific interaction models.

The purpose of RV is detecting monitorable deviations or similarities between ex-

pected and observed behaviors of a SUT. MDE operates on abstract models of a SUT,

either dynamic or static, and it utilizes the information provided by the environment

for the system when generating test case [133]. They present a succint taxonomy of

MDE approach in the literature. The authors in [133] conducts a classification on

the main concepts of MDE. They lead the classification in three main categories: (i)

99

model specification, (ii) test generation, (iii) test execution. Our MDE model classifies

under online RV tool that proposes a functional operational paradigm, which is used

for test case specifications by using constraints for runtime monitor generation.

A most recent study in [134] delved into MDE as a service for IoT systems. They

aim to provide a general modeling design approach that will proliferate MDE in IoT

domain by exploiting the standards (i.e., CoAP, MQTT, HTTP). They propose a

verification process through a MDE approach that produces test cases. However, their

contribution is limited to the APIs (application programming interfaces) of FI-WARE

project, which is a EU funded FP7-ICT project [135]. Their contribution differs from

our proposal in the communication paradigm adopted, namely, they build on HTTP,

whereas our approach motivates RV of CoAP systems. Yet another difference between

the two is in the categories of MDE that those propose to address. Their solution goes

under test case generation and execution framework, whereas our solution classifies

under runtime monitor generation and RV framework.

Monitoring is an indispensible element of RV; yet, there have been less consid-

eration of involving capabilities for that in edge computing domain, according to a

recent study by Taherizadeh et.al. [136]. The research emphasizes that in order to

provide a decent level of quality in service provisions, it is required to have a mon-

itoring solution. In our research, we propose a monitoring solution at the edge of a

network so as to alleviate overheads imposed by interconnecting IoT and the cloud

for RV and monitoring purposes.

Systems that are designed according to SOA principles are inherently nominee

to be tested with MDE, because SOA systems can be easily specified with model

elements [132]. Smythe et.al. achieve automatic test generation for interoperability

testing. The automation is carried out through a succession of XMI transformations

applied on a UML model. We, too, perform a series of M2T transformations based

on XMI, but we generate runtime monitors in terms of EPL statements.

100

Devices that are manufactured by observing certain standards have to be tested

for compliance with those standards. A recent study by Chen et.al. [8] investigated

conformance test practices for IoT devices, which are employed with an implementa-

tion of CoAP standard [2]. They stimulate a SUT with certain input values such that

it yields predefined results as defined by the standard. Their approach is an offline

verification approach, which runs a system against recorded test cases. Moreover,

it aims at verification only the protocol implementation, not a general purpose IoT

application. Nevertheless, our proposed solution enables verification of an IoT at

runtime (online), and also can be extended to any IoT application with CoAP as its

application layer protocol.

5.6 Conclusion

Edge computing is an emerging phenomenon that complements distributed comput-

ing in IoT domain by facilitating seamless integration of IoT and cloud computing

capabilities. Deploying IoT systems in an edge computing architecture mitigates the

issues of network latency, computing power and battery life of resource constrained

devices. We proposed a novel edge of things solution to RV problem of IoT based AAL

systems. Our approach utilizes the EC proposed in Chapter.3 and event-based spec-

ification of IoT services by exploiting the CoAP messaging model. The event-based

specification is achieved through describing an event calculus approach for CoAP.

Then, a MDE framework is presented, which leverages event calculus representation,

that enables to design interaction model between IoT endpoints. Those models are

then utilized to automatically generate runtime monitors in terms of EPL statements

and used in CEP engines. We believe that our solution presents a coherent design,

development and execution process for RV, consequently contributing to the democ-

ratization of it. Our future work will focus on complementing RV for IoT concept

with other application layer protocols.

101

The chapter presented a framework for facilitating interoperability testing of IoT

systems. It promotes interoperability through model-driven engineering techniques.

We utilized sequence diagrams in order to describe expected interactions between

endpoints. Then, those are extracted from the diagram so as to compose a set of

runtime monitors in terms of CEP EPL statements. We demonstrated the applicabil-

ity of this approach with a case study on a healthcare system. Our future work will

address a more comprehensive interoperability approach by involving structural and

semantics testing; which will present a domain-specific metamodel for CoAP-based

IoT systems, and the framework will be incorporated in a cloud service such that the

solution can be used as a service. We believe that we can model the interactions be-

tween IoT systems with thorough event relations, which elaborates on the application

layer protocol behavior.

102

CHAPTER VI

CONCLUSION

Runtime verification (RV) has usually been considered as a method of formally prov-

ing the correctness of a software system, either through model checking or theorem

proving techniques. Although, there are several convenient RV solutions that are

used for individual program verification, there was not a feasible one that could be

easily adapted in industrial scenarios. We envision an IoT SoS as consisting of many

subsystems, each of which is an embedded system with limited computing resources.

Those IoT systems are assumed to employ CoAP application layer protocol, which

enables those devices to engage in interactions with each other through predefined

services (provided and required).

A major contribution of our thesis might be presumed to present a streamlined

process of runtime verification for IoT systems. Even though, RV can be intimidating

to some practitioners as well as researchers, we believe that our solution approach

encourage those to practice RV at many different domains that can be expressed

in terms of events, especially those designed with SOA principles. We transform a

hard-to-analyze problem (RV) into an event domain that help us to express complex

relations between interacting devices in terms of simple events representing commu-

nication actions taking place in the SUT.

The EC that we proposed for transforming raw CoAP messages into simple events

is a novel contribution in using EC for IoT, which addresses the second research ques-

tion that we defined in Section.1.2. An IoT system consisting of several endpoints

actually constitutes a SoS’s, with each subsystem being a CoAP-enabled IoT device;

103

therefore, a particular IoT system performs its expected behavior as a result of com-

position of various sub-services supplied by constituting endpoints. Thus, the EC

proposed in the thesis captures the essentials of a RESTful-like system architecture;

which is expected to expedite its proliferation. The complex relations such as Follows,

Timeout, Semantic are articulated in the corresponding chapters.

Representing complex-relations between IoT endpoints in a human-readable form

later enabled us to utilize complex-event processing techniques that already exist

in the literature. We adopted an open-source CEP engine, Esper, for running run-

time monitors as event-processing agents, which addresses the first research question

in Section.1.2. By plugging a passive and non-intrusive CoAP Sniffer into an IoT

network, we were able to conduct an online RV experience without incurring any

communication overhead. The CoAP Sniffer in fact acted as a mediator of CEP,

because it transforms raw CoAP messages into Esper events. We later exert several

pattern detection rules on streams of CoAP events in the system by utilizing EPL

statements.

The democratization of the RV operation is achieved through contributing a

model-driven engineering approach for CoAP-based IoT systems. Our contributions

in MDE consist of a DSM for CoAP domain and M2T algorithms for generating run-

time monitors in the form of EPL statements from an Eclipse based modeling tool.

The representation of a CoAP in a MSC has enabled us to analogically use sequence

diagrams in UML profile. We were able to extend the UML profile in order to incor-

porate the DSM we’ve defined for CoAP. The contribution on MDE has addressed

the third research question in Section.1.2.

To the best of our knowledge, this thesis contributes utilization of Event Calcu-

lus, as well as Complex-Event Processing techniques in runtime verification of IoT

systems for the very first time. We believe that using such a human-readable formal

specification approach will alleviate the intimidation factor of RV as perceived by

104

Figure 34: Future Work

the industry, and whereby will promote its adoption. However, further research is

required to investigate how EC addresses the state space explosion problem that is

frequently experienced when conducting RV.

On a broader perspective, the skeleton of our contributions is democratization of

RV for RESTful-like systems by using MDE techniques integrated with CEP methods.

That single contribution is a candidate of paradigm shift in reliability of IoT systems.

As the Internet claims its major role in the next industry revolution, SOA-based

systems are going to be employed much more than ever. Because, having a RESTful-

like interface simplifies the engineering of such large-scale systems. That’s why, we

seek to extend our work in providing similar capabilities to other domains, as well as

IoT systems with other application-layer protocols such as MQTT.

Even though the theoretical foundation of the paper has been proven to be valid,

the contributions of the thesis in terms of case studies and implementation can be

argued to be limited to certain tools that we have used, such as Papyrus and Esper.

Moreover, the messaging behavior that exhibit only Request/Response model limits

105

the proliferation of the contributions to those domains that adopt the same interac-

tion pattern. However, there are other modeling and CEP tools, as well as various

application layer protocols to cover for. That’s why we foresee to extend our research

to reflect upon those limitations and provide feasible solutions as in Figure.34. We

continue our research such that the framework will incorporate a more generic event

calculus that captures both Request/Response and Push/Pull behaviors as in CoAP

and MQTT protocols, respectively. In order to achieve that we will modify the net-

work event generator into an IoT event generator, and the UML profile extension will

be improved so as to involve the M2T algorithms for Push/Pull behavior, as well.

106

Bibliography

[1] S. Kubler, “Building an IoT OPen innovation Ecosystem for connected smart
objects,” 2015.

[2] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application protocol
(CoAP),” 2014.

[3] “UML - Unified Modeling Language. version 2.5,” may 2015.

[4] R. D. Snelick, L. E. Gebase, and M. Skall, “Conformance Testing and Interop-
erability: A Case Study in Healthcare Data Exchange,” in International Con-
ference on Software Engineering Research and Practice, SERP’08, (Las Vegas,
NV), 2008.

[5] G. Fortino and P. Trunfio, Internet of Things Based on Smart Objects, Tech-
nology, Middleware and Applications. Italy: Springer, 2014.

[6] R. T. Fielding and R. N. Taylor, “Principled Design of the Modern Web Archi-
tecture,” ACM Trans. Internet Technol., vol. 2, pp. 115–150, may 2002.

[7] Core, “IETF Constrained RESTful Environments (core) Working Group,” 2018.

[8] N. Chen, C. Viho, A. Baire, X. Huang, and J. Zha, “Ensuring Interoperabil-
ity for the Internet of Things: Experience with CoAP Protocol Testing,” Au-
tomatika, vol. 54, no. 4, 2013.

[9] J. P. Bowen and M. G. Hinchey, “Seven More Myths of Formal Methods,” IEEE
Software, vol. 12, pp. 34–41, jul 1995.

[10] “ITU Z.120: Message Sequence Charts,” tech. rep., 2011.

[11] K. Incki, I. Ari, and H. Sozer, “A Survey of Software Testing in the Cloud,” in
2012 IEEE Sixth International Conference on Software Security and Reliability
Companion, pp. 18–23, 2012.

[12] K. Incki, I. Ari, and H. Sozer, “Runtime verification of IoT systems using Com-
plex Event Processing,” in Proceedings of the 2017 IEEE 14th International
Conference on Networking, Sensing and Control, ICNSC 2017, 2017.

[13] K. Incki and I. Ari, “A Novel Runtime Verification Solution for IoT Systems,”
IEEE Access, 2018.

[14] K. Incki and I. Ari, “Observing Interoperability of IoT Systems Through Model-
Based Testing,” in 3rd EAI International Conference on Interoperability in IoT,
2017.

107

[15] K. Incki and I. Ari, “Democratization of Runtime Verication for IoT Systems:
An Edge Computing Approach (accepted),” Elsevier Computers and Electrical
Engineering, no. Special, 2018.

[16] G. Fortino, W. Russo, C. Savaglio, W. Shen, and M. Zhou, “Agent-Oriented
Cooperative Smart Objects: From IoT System Design to Implementation,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, pp. 1–18,
2017.

[17] M. Leucker and C. Schallhart, “A brief account of runtime verification,” The
Journal of Logic and Algebraic Programming, vol. 78, no. 5, pp. 293–303, 2009.

[18] E. T. Mueller, “Event Calculus,” 2008.

[19] R. Fielding, Architectural Styles and the Design of Network-based Software Ar-
chitectures. PhD thesis, University of Irvine, 2000.

[20] L. Richardson and S. Ruby, Restful Web Services. O’Reilly, first ed., 2007.

[21] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed Sys-
tem,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[22] A. F. V. Frederic P. Miller and M. John, IBM Cp-40. VDM Publishing, 2010.

[23] W. Kim, S. D. Kim, E. Lee, and S. Lee, “Adoption issues for cloud comput-
ing,” in Proceedings of the 7th International Conference on Advances in Mobile
Computing and Multimedia, MoMM ’09, (New York, NY, USA), pp. 2–5, ACM,
2009.

[24] Y. Ridene and F. Barbier, “A model-driven approach for automating mobile ap-
plications testing,” in Proceedings of the 5th European Conference on Software
Architecture: Companion Volume, ECSA ’11, (New York, NY, USA), pp. 9:1—
-9:7, ACM, 2011.

[25] P. Mell and T. Grance, “The NIST Definition of Cloud Computing (Draft)
Recommendations of the National Institute of Standards and Technology,” Nist
Special Publication, vol. 145, p. 7, 2011.

[26] M. A. Vouk, “Cloud Computing Issues , Research and Implementations,” Com-
ponents, pp. 31–40, 2008.

[27] L. M. Riungu, O. Taipale, and K. Smolander, “Software Testing as an Online
Service: Observations from Practice,” 2010 Third International Conference on
Software Testing Verification and Validation Workshops, pp. 418–423, 2010.

[28] L. Yu, W.-T. Tsai, X. Chen, L. Liu, Y. Zhao, L. Tang, and W. Zhao, “Testing
as a Service over Cloud,” in Service Oriented System Engineering (SOSE), 2010
Fifth IEEE International Symposium on, pp. 181–188, jun 2010.

108

[29] “UTest - Online Software Testing Services Community,” 2012.

[30] S. Baride and K. Dutta, “A cloud based software testing paradigm for mobile
applications,” ACM SIGSOFT Software Engineering Notes, vol. 36, pp. 1–4,
2011.

[31] M. Staats and C. P\vas\vareanu, “Parallel symbolic execution for structural
test generation,” in Proceedings of the 19th international symposium on Soft-
ware testing and analysis, ISSTA ’10, (New York, NY, USA), pp. 183–194,
ACM, 2010.

[32] Z. M. Jiang, “Automated analysis of load testing results,” in Proceedings of
the 19th international symposium on Software testing and analysis, ISSTA ’10,
(New York, NY, USA), pp. 143–146, ACM, 2010.

[33] G. Candea, S. Bucur, and C. Zamfir, “Automated software testing as a service,”
in Proceedings of the 1st ACM symposium on Cloud computing, SoCC ’10, (New
York, NY, USA), pp. 155–160, ACM, 2010.

[34] J. S. Rellermeyer, M. Duller, and G. Alonso, “Engineering the cloud from soft-
ware modules,” in Proceedings of the 2009 ICSE Workshop on Software Engi-
neering Challenges of Cloud Computing, CLOUD ’09, (Washington, DC, USA),
pp. 32–37, IEEE Computer Society, 2009.

[35] L. Zhao, A. Liu, and J. Keung, “Evaluating Cloud Platform Architecture with
the CARE Framework,” in Proceedings of the 2010 Asia Pacific Software En-
gineering Conference, APSEC ’10, (Washington, DC, USA), pp. 60–69, IEEE
Computer Society, 2010.

[36] W. K. Chan, L. Mei, and Z. Zhang, “Modeling and testing of cloud applica-
tions,” in Services Computing Conference, 2009. APSCC 2009. IEEE Asia-
Pacific, pp. 111–118, 2009.

[37] A. I. Avetisyan, R. Campbell, I. Gupta, M. Heath, S. Ko, G. Ganger,
M. Kozuch, D. O’Hallaron, M. Kunze, T. Kwan, K. Lai, M. Lyons, D. Milojicic,
H. Y. Lee, Y. C. Soh, N. K. Ming, J.-Y. Luke, and H. Namgoong, “Open Cir-
rus: A Global Cloud Computing Testbed,” Computer, vol. 43, no. 4, pp. 35–43,
2010.

[38] L. Riungu-kalliosaari, O. Taipale, and K. Smolander, “Testing in the Cloud :
Exploring the Practice,” IEEE Software, vol. PP, p. 1, 2011.

[39] N. Zhou, D. P. An, L.-J. Zhang, and C.-H. Wong, “Leveraging Cloud Platform
for Custom Application Development,” in Proceedings of the 2011 IEEE Inter-
national Conference on Services Computing, SCC ’11, (Washington, DC, USA),
pp. 584–591, IEEE Computer Society, 2011.

109

[40] T. Vengattaraman, P. Dhavachelvan, and R. Baskaran, “A Model of Cloud
Based Application Environment for Software Testing,” CoRR, vol. abs/1004.1,
p. XX, 2010.

[41] W. Jun and F. Meng, “Software Testing Based on Cloud Computing,” in Pro-
ceedings of the 2011 International Conference on Internet Computing and In-
formation Services, ICICIS ’11, (Washington, DC, USA), pp. 176–178, IEEE
Computer Society, 2011.

[42] N. Snellman, A. Ashraf, and I. Porres, “Towards Automatic Performance and
Scalability Testing of Rich Internet Applications in the Cloud,” in Proceedings of
the 2011 37th EUROMICRO Conference on Software Engineering and Advanced
Applications, SEAA ’11, (Washington, DC, USA), pp. 161–169, IEEE Computer
Society, 2011.

[43] T. Hanawa, H. Koizumi, T. Banzai, M. Sato, S. Miura, T. Ishii, and
H. Takamizawa, “Customizing Virtual Machine with Fault Injector by Integrat-
ing with SpecC Device Model for a Software Testing Environment D-Cloud,”
in Proceedings of the 2010 IEEE 16th Pacific Rim International Symposium on
Dependable Computing, PRDC ’10, (Washington, DC, USA), pp. 47–54, IEEE
Computer Society, 2010.

[44] T. Banzai, H. Koizumi, R. Kanbayashi, T. Imada, T. Hanawa, and M. Sato,
“D-Cloud: Design of a Software Testing Environment for Reliable Distributed
Systems Using Cloud Computing Technology,” in Proceedings of the 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid Computing,
CCGRID ’10, (Washington, DC, USA), pp. 631–636, IEEE Computer Society,
2010.

[45] T. Hanawa, T. Banzai, H. Koizumi, R. Kanbayashi, T. Imada, and M. Sato,
“Large-Scale Software Testing Environment Using Cloud Computing Technol-
ogy for Dependable Parallel and Distributed Systems,” in Proceedings of the
2010 Third International Conference on Software Testing, Verification, and Val-
idation Workshops, ICSTW ’10, (Washington, DC, USA), pp. 428–433, IEEE
Computer Society, 2010.

[46] S. R. S. Souza, M. A. S. Brito, R. A. Silva, P. S. L. Souza, and E. Zaluska,
“Research in concurrent software testing: a systematic review,” in Proceedings
of the Workshop on Parallel and Distributed Systems: Testing, Analysis, and
Debugging, PADTAD ’11, (New York, NY, USA), pp. 1–5, ACM, 2011.

[47] W.-T. Tsai, P. Zhong, J. Balasooriya, Y. Chen, X. Bai, and J. Elston, “An
Approach for Service Composition and Testing for Cloud Computing,” in Au-
tonomous Decentralized Systems (ISADS), 2011 10th International Symposium
on, pp. 631–636, mar 2011.

110

[48] C. R. Senna, L. F. Bittencourt, and E. R. M. Madeira, “An environment for
evaluation and testing of service workflow schedulers in clouds,” in High Per-
formance Computing and Simulation (HPCS), 2011 International Conference
on, pp. 301–307, jul 2011.

[49] A. F. Mohammad and H. Mcheick, “Cloud Services Testing: An Understand-
ing,” Procedia CS, vol. 5, pp. 513–520, 2011.

[50] L. Zhang, T. Xie, N. Tillmann, J. de Halleux, X. Ma, and J. Lu, “Environ-
ment Modeling for Automated Testing of Cloud Applications,” IEEE Software,
Special Issue on Software Engineering for Cloud Computing, vol. 1, p. xx, 2012.

[51] T. M. King and A. S. Ganti, “Migrating Autonomic Self-Testing to the Cloud,”
in Proceedings of the 2010 Third International Conference on Software Testing,
Verification, and Validation Workshops, ICSTW ’10, (Washington, DC, USA),
pp. 438–443, IEEE Computer Society, 2010.

[52] T. Rings, J. Grabowski, and S. Schulz, “On the Standardization of a Testing
Framework for Application Deploymenton Grid and Cloud Infrastructures,” in
Proceedings of the 2010 Second International Conference on Advances in System
Testing and Validation Lifecycle, VALID ’10, (Washington, DC, USA), pp. 99–
107, IEEE Computer Society, 2010.

[53] L. M. Riungu, O. Taipale, and K. Smolander, “Research Issues for Software
Testing in the Cloud,” in Cloud Computing Technology and Science (Cloud-
Com), 2010 IEEE Second International Conference on, pp. 557–564, 2010.

[54] W.-T. Tsai, Q. Shao, Y. Huang, and X. Bai, “Towards a scalable and robust
multi-tenancy SaaS,” in Proceedings of the Second Asia-Pacific Symposium on
Internetware, Internetware ’10, (New York, NY, USA), pp. 8:1—-8:15, ACM,
2010.

[55] G. Wang, A. R. Butt, P. Pandey, and K. Gupta, “Using realistic simulation
for performance analysis of mapreduce setups,” in Proceedings of the 1st ACM
workshop on Large-Scale system and application performance, LSAP ’09, (New
York, NY, USA), pp. 19–26, ACM, 2009.

[56] S. Gaisbauer, J. Kirschnick, N. Edwards, and J. Rolia, “VATS: Virtualized-
Aware Automated Test Service,” in Proceedings of the 2008 Fifth International
Conference on Quantitative Evaluation of Systems, (Washington, DC, USA),
pp. 93–102, IEEE Computer Society, 2008.

[57] Y. Wang and J. Wei, “VIAF: Verification-Based Integrity Assurance Framework
for MapReduce,” 2011 IEEE 4th International Conference on Cloud Computing,
pp. 300–307, 2011.

[58] P. Zech, “Risk-Based Security Testing in Cloud Computing Environments,”
2011 Fourth IEEE International Conference on Software Testing Verification
and Validation, pp. 411–414, 2011.

111

[59] X. Zhang, H. Liu, B. Li, X. Wang, H. Chen, and S. Wu, “Application-Oriented
Remote Verification Trust Model in Cloud Computing,” 2010 IEEE Second
International Conference on Cloud Computing Technology and Science, pp. 405–
408, 2010.

[60] V. Tran, J. Keung, A. Liu, and A. Fekete, “Application migration to cloud: a
taxonomy of critical factors,” in Proceedings of the 2nd International Workshop
on Software Engineering for Cloud Computing, SECLOUD ’11, (New York, NY,
USA), pp. 22–28, ACM, 2011.

[61] X. Ding, H. Huang, Y. Ruan, A. Shaikh, B. Peterson, and X. Zhang, “Split-
ter: a proxy-based approach for post-migration testing of web applications,” in
Proceedings of the 5th European conference on Computer systems, EuroSys ’10,
(New York, NY, USA), pp. 97–110, ACM, 2010.

[62] T. Parveen and S. R. Tilley, “When to Migrate Software Testing to the Cloud?,”
in ICST Workshops, pp. 424–427, IEEE Computer Society, 2010.

[63] P. Mohagheghi and T. Saether, “Software Engineering Challenges for Migration
to the Service Cloud Paradigm: Ongoing Work in the REMICS Project,” in
Proceedings of the 2011 IEEE World Congress on Services, SERVICES ’11,
(Washington, DC, USA), pp. 507–514, IEEE Computer Society, 2011.

[64] J. H. Kim, S. M. Lee, D. S. Kim, and J. S. Park, “Performability Analysis
of IaaS Cloud,” in Proceedings of the 2011 Fifth International Conference on
Innovative Mobile and Internet Services in Ubiquitous Computing, IMIS ’11,
(Washington, DC, USA), pp. 36–43, IEEE Computer Society, 2011.

[65] P. Joshi, H. S. Gunawi, and K. Sen, “PREFAIL: a programmable tool for
multiple-failure injection,” SIGPLAN Not., vol. 46, pp. 171–188, oct 2011.

[66] C. Pham, D. Chen, Z. Kalbarczyk, and R. K. Iyer, “CloudVal: A framework
for validation of virtualization environment in cloud infrastructure,” in Proceed-
ings of the 2011 IEEE/IFIP 41st International Conference on Dependable Sys-
tems&Networks, DSN ’11, (Washington, DC, USA), pp. 189–196, IEEE Com-
puter Society, 2011.

[67] L. Martignoni, R. Paleari, G. Fresi Roglia, and D. Bruschi, “Testing system
virtual machines,” in Proceedings of the 19th international symposium on Soft-
ware testing and analysis, ISSTA ’10, (New York, NY, USA), pp. 171–182,
ACM, 2010.

[68] J. S. Bolin, J. B. Michael, and M.-T. Shing, “Cloud Computing Support for
Collaboration and Communication in Enterprise-Wide Workflow Processes,”
2011 IEEE World Congress on Services, pp. 589–593, jul 2011.

[69] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and G. Candea, “Cloud9: a
software testing service,” SIGOPS Oper. Syst. Rev., vol. 43, pp. 5–10, jan 2010.

112

[70] S. Bucur, V. Ureche, C. Zamfir, and G. Candea, “Parallel symbolic execution for
automated real-world software testing,” in Proceedings of the sixth conference
on Computer systems, EuroSys ’11, (New York, NY, USA), pp. 183–198, ACM,
2011.

[71] Y. Kim and M. Kim, “SCORE: a scalable concolic testing tool for reliable
embedded software,” in Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering, ES-
EC/FSE ’11, (New York, NY, USA), pp. 420–423, ACM, 2011.

[72] G. Chang, E. Law, and S. Malhotra, “Demonstration of LMMP automated
performance testing using cloud computing architecture,” in Proceedings of the
2nd International Workshop on Software Engineering for Cloud Computing,
SECLOUD ’11, (New York, NY, USA), p. 71, ACM, 2011.

[73] H. Liu and D. Orban, “Remote network labs: an on-demand network cloud for
configuration testing,” SIGCOMM Comput. Commun. Rev., vol. 40, pp. 83–91,
jan 2010.

[74] L. Yu, X. Li, and Z. Li, “Testing Tasks Management in Testing Cloud Environ-
ment,” in Proceedings of the 2011 IEEE 35th Annual Computer Software and
Applications Conference, COMPSAC ’11, (Washington, DC, USA), pp. 76–85,
IEEE Computer Society, 2011.

[75] J. M. Ferris, “Systems and Methods for Software Test Management in Cloud-
Based Network,” 2009.

[76] S. Hosono, H. Huang, T. Hara, Y. Shimomura, and T. Arai, “A Lifetime Sup-
porting Framework for Cloud Applications,” in Proceedings of the 2010 IEEE
3rd International Conference on Cloud Computing, CLOUD ’10, (Washington,
DC, USA), pp. 362–369, IEEE Computer Society, 2010.

[77] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Speculative analysis: ex-
ploring future development states of software,” in Proceedings of the FSE/SDP
workshop on Future of software engineering research, FoSER ’10, (New York,
NY, USA), pp. 59–64, ACM, 2010.

[78] M. Oriol and F. Ullah, “YETI on the Cloud,” in Software Testing, Verification,
and Validation Workshops (ICSTW), 2010 Third International Conference on,
pp. 434–437, apr 2010.

[79] R. Medhat, B. Bonakdarpour, D. Kumar, and S. Fischmeister, “Runtime Mon-
itoring of Cyber-Physical Systems Under Timing and Memory Constraints,”
ACM Trans. Embed. Comput. Syst., vol. 14, pp. 79:1—-79:29, oct 2015.

[80] S. Colin and L. Mariani, “Run-Time Verification,” in Model-Based Testing of
Reactive Systems, pp. 525–555, Springer, Berlin, Heidelberg, 2005.

113

[81] “Esper: Complex-Event Processing Engine,” 2018.

[82] R. Kowalski and M. Sergot, “A logic-based calculus of events,” New Gener
Comput, vol. 4, no. 67, 1986.

[83] R. Kowalski, “Database updates in the event calculus,” The Journal of Logic
Programming, vol. 12, pp. 121–146, jan 1992.

[84] E. T. Mueller, “Automating Commonsense Reasoning Using the Event Calcu-
lus,” Commun. ACM, vol. 52, pp. 113–117, jan 2009.

[85] G. Spanoudakis, C. Kloukinas, and K. Androutsopoulos, “Towards Security
Monitoring Patterns,” in Proceedings of the 2007 ACM Symposium on Applied
Computing, SAC ’07, (New York, NY, USA), pp. 1518–1525, ACM, 2007.

[86] W. Gaaloul, S. Bhiri, and M. Rouached, “Event-Based Design and Runtime
Verification of Composite Service Transactional Behavior,” IEEE Transactions
on Services Computing, vol. 3, pp. 32–45, jan 2010.

[87] B. Mitchell, “Resolving race conditions in asynchronous partial order scenarios,”
IEEE Transactions on Software Engineering, vol. 31, pp. 767–784, sep 2005.

[88] R. Alur, K. Etessami, and M. Yannakakis, “Inference of message sequence
charts,” in Proceedings of the 2000 International Conference on Software Engi-
neering. ICSE 2000 the New Millennium, pp. 304–313, jun 2000.

[89] H. Dan and R. M. Hierons, “Conformance Testing from Message Sequence
Charts,” in 2011 Fourth IEEE International Conference on Software Testing,
Verification and Validation, pp. 279–288, mar 2011.

[90] F. Belli, M. Beyazit, and A. Memon, “Testing is an Event-Centric Activity,” in
2012 IEEE Sixth International Conference on Software Security and Reliability
Companion, pp. 198–206, jun 2012.

[91] F. Wei, X. Zhang, H. Xiao, and A. Men, “A modified wireless token ring proto-
col for wireless sensor network,” in 2012 2nd International Conference on Con-
sumer Electronics, Communications and Networks (CECNet), pp. 795–799, apr
2012.

[92] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem,”
ACM Trans. Program. Lang. Syst., vol. 4, pp. 382–401, jul 1982.

[93] D. Lee, R. Attias, A. Puri, R. Sengupta, S. Tripakis, and P. Varaiya, “A wireless
token ring protocol for intelligent transportation systems,” in ITSC 2001. 2001
IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585),
pp. 1152–1157, 2001.

[94] M. Ergen, D. Lee, R. Sengupta, and P. Varaiya, “WTRP - wireless token ring
protocol,” IEEE Transactions on Vehicular Technology, vol. 53, pp. 1863–1881,
nov 2004.

114

[95] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-Level Sen-
sor Network Simulation with COOJA,” in Proceedings. 2006 31st IEEE Con-
ference on Local Computer Networks, pp. 641–648, nov 2006.

[96] K. Yu, Z. Chen, and W. Dong, “A Predictive Runtime Verification Framework
for Cyber-Physical Systems,” in 2014 IEEE Eighth International Conference
on Software Security and Reliability-Companion, pp. 223–227, jun 2014.

[97] A. Kane, “Runtime Monitoring for Safety Critical Embedded Systems,” oct
2015.

[98] K. Ashton, “That ’Internet of Things’ Thing,” 2009.

[99] G. Fortino, A. Guerrieri, W. Russo, and C. Savaglio, “Integration of agent-based
and Cloud Computing for the smart objects-oriented IoT,” in Proceedings of the
2014 IEEE 18th International Conference on Computer Supported Cooperative
Work in Design (CSCWD), pp. 493–498, may 2014.

[100] T. Teixeria, S. Hachem, V. Issarny, and N. Georgantas, “Service Oriented Mid-
dleware for the Internet of Things: A Perspective,” 2011.

[101] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio, “Interacting
with the SOA-Based Internet of Things: Discovery, Query, Selection, and On-
Demand Provisioning of Web Services,” IEEE Transactions on Services Com-
puting, vol. 3, pp. 223–235, jul 2010.

[102] F. Belqasmi, R. Glitho, and C. Fu, “RESTful web services for service provision-
ing in next-generation networks: a survey,” IEEE Communications Magazine,
vol. 49, pp. 66–73, dec 2011.

[103] W. Qin, Q. Li, L. Sun, H. Zhu, and Y. Liu, “RestThing: A Restful Web Service
Infrastructure for Mash-Up Physical and Web Resources,” in 2011 IFIP 9th
International Conference on Embedded and Ubiquitous Computing, pp. 197–
204, oct 2011.

[104] D. C. Luckham, The Power of Events: An Introduction to Complex Event Pro-
cessing in Distributed Enterprise Systems. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2001.

[105] J. Cubo, L. Gonzlez, A. Brogi, E. Pimentel, and R. Ruggia, “Towards Run-
Time Verification of Compositions in the Web of Things using Complex Event
Processing,” in In IX Jornadas de Ciencia e Ingeniera de Servicios (JCIS),
(Madrid, Spain), 2013.

[106] C. Y. Chen, J. H. Fu, T. Sung, P. F. Wang, E. Jou, and M. W. Feng, “Complex
event processing for the Internet of Things and its applications,” in 2014 IEEE
International Conference on Automation Science and Engineering (CASE),
pp. 1144–1149, aug 2014.

115

[107] S. Qadeer and S. Tasiran, “Runtime verification of concurrency-specific correct-
ness criteria,” International Journal on Software Tools for Technology Transfer,
vol. 14, no. 3, pp. 291–305, 2012.

[108] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification,”
RFC 2460, RFC Editor, dec 1998.

[109] “jpcap - a network packet capture library,” 2017.

[110] M. Kovatsch, M. Lanter, and Z. Shelby, “Californium: Scalable cloud services
for the Internet of Things with CoAP,” in 2014 International Conference on
the Internet of Things (IOT), pp. 1–6, oct 2014.

[111] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible op-
erating system for tiny networked sensors,” in 29th Annual IEEE International
Conference on Local Computer Networks, pp. 455–462, nov 2004.

[112] N. Delgado, A. Q. Gates, and S. Roach, “A taxonomy and catalog of runtime
software-fault monitoring tools,” IEEE Transactions on Software Engineering,
vol. 30, pp. 859–872, dec 2004.

[113] M. Sahinoglu, K. Incki, and M. Aktas, Mobile application verification: A sys-
tematic mapping study, vol. 9159. 2015.

[114] M. S. Aktas and M. Kapdan, “Structural Code Clone Detection Methodology
Using Software Metrics,” International Journal of Software Engineering and
Knowledge Engineering, vol. 26, no. 02, pp. 307–332, 2016.

[115] M. Kapdan, M. S. Aktas, and M. Yigit, “On the Structural Code Clone Detec-
tion Problem: A Survey and Software Metric Based Approach,” 2015.

[116] D. Bucur, “Temporal monitors for TinyOS,” 2012.

[117] “ETSI: CoAP 4 Plugtests,” 2014.

[118] C. Watterson and D. Heffernan, “Runtime verification and monitoring of em-
bedded systems,” IET Software, vol. 1, pp. 172–179, oct 2007.

[119] K. Incki and M. S. Aktas, “Improving Awareness in Ambient-Assisted Liv-
ing Systems: Consolidated Data Stream Processing,” in International Confer-
ence on IoT Technologies for HealthCare. HealthyIoT 2016, vol. 187, pp. 89–94,
Springer, 2016.

[120] L. D. Xu, W. He, and S. Li, “Internet of Things in Industries: A Survey,”
Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2233–2243, 2014.

[121] G. Aloi, G. Caliciuri, G. Fortino, R. Gravina, P. Pace, W. Russo, and
C. Savaglio, “Enabling IoT interoperability through opportunistic smartphone-
based mobile gateways,” Journal of Network and Computer Applications,
vol. 81, pp. 74–84, 2017.

116

[122] Y. Wu, M.-H. Chen, and J. Offutt, “UML-Based Integration Testing for
Component-Based Software,” in Proceedings of the Second International Con-
ference on COTS-Based Software Systems, ICCBSS ’03, (London, UK, UK),
pp. 251–260, Springer-Verlag, 2003.

[123] S. Gerard, C. Dumoulin, P. Tessier, and B. Selic, “Papyrus: A UML2 Tool for
Domain-Specific Language Modeling,” in Model-Based Engineering of Embedded
Real-Time Systems, vol. 6100, pp. 361–368, Springer, 2010.

[124] P. Allen and S. Frost, Component-based Development for Enterprise Systems:
Applying the SELECT Perspective. New York, NY, USA: Cambridge University
Press, 1998.

[125] G. Canfora and M. D. Penta, “Testing services and service-centric systems:
challenges and opportunities,” IT Professional, vol. 8, pp. 10–17, mar 2006.

[126] G. Fortino, R. Gravina, W. Russo, and C. Savaglio, “Modeling and Simulating
Internet-of-Things Systems: A Hybrid Agent-Oriented Approach,” Computing
in Science Engineering, vol. 19, no. 5, pp. 68–76, 2017.

[127] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision and
Challenges,” Internet of Things, vol. 3, pp. 637–646, oct 2016.

[128] “Fog Computing and the Internet of Things: Extend the Cloud to Where the
Things Are,” tech. rep., Cisco, 2015.

[129] A. Jula, E. Sundararajan, and Z. Othman, “Cloud computing service compo-
sition: A systematic literature review,” in Expert Systems with Applications,
2014.

[130] M. Rowe, S. Lane, and C. Phipps, “CareWatch: A Home Monitoring System for
Use in Homes of Persons With Cognitive Impairment,” Top Geriatr Rehabil.,
vol. 23, no. 1, pp. 3–8, 2007.

[131] A. Bertolino and A. Polini, “The audition framework for testing Web services
interoperability,” in 31st EUROMICRO Conference on Software Engineering
and Advanced Applications, pp. 134–142, aug 2005.

[132] C. Smythe, “Initial Investigations into Interoperability Testing of Web Services
from their Specification Using the Unified Modelling Language,” in Proc. of In-
ternational Workshop on Web Services Modeling and Testing (WS-MaTe 2006),
2006.

[133] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based testing
approaches,” Software Testing, Verification & Reliability, vol. 22, 2012.

[134] A. Ahmad, F. Bouquet, E. Fourneret, F. Le Gall, and L. B., “Model-Based
Testing as a Service for IoT Platforms,” in Leveraging Applications of Formal
Methods, Verification and Validation: Discussion, Dissemination, Applications.

117

ISoLA 2016 (M. T. and S. B., eds.), vol. 9953 of Lecture Notes in Computer
Science, Springer, 2016.

[135] “FI-WARE: Future Internet Core Platform Project. EU FP7-ICT Project,”
2014.

[136] S. Taherizadeh, A. C. Jones, I. Taylor, Z. Zhao, and V. Stankovskia, “Monitor-
ing self-adaptive applications within edge computing frameworks: A state-of-
the-art review,” Journal of Systems and Software, vol. 136, pp. 19–38, 2018.

[137] T. Dillon, C. Wu, and E. Chang, “Cloud Computing: Issues and Challenges,” in
Advanced Information Networking and Applications (AINA), 2010 24th IEEE
International Conference on, pp. 27–33, apr 2010.

[138] D. E. Vega, I. Schieferdecker, and G. Din, “Design of a Test Framework for
Automated Interoperability Testing of Healthcare Information Systems,” in
2010 Second International Conference on eHealth, Telemedicine, and Social
Medicine, pp. 134–140, feb 2010.

[139] M. Spichkova, H. S. Heinz, and I. Peake, “From abstract modelling to remote
cyber-physical integration/interoperability testing,” vol. 1403, 2014.

[140] “Papyrus Modeling Environment,” 2018.

[141] D. Budgen and P. Brereton, “Performing systematic literature reviews in soft-
ware engineering,” Int. Conf. Soft. Engin., p. 1051, 2006.

[142] J. Moreno, “A Testing Framework for Cloud Storage Systems,” ETH Zurich,
no. March, p. 66, 2010.

118

VITA

EDUCATION

Doctor of Philosophy, Computer Science, Özyeğin University,

İstanbul, 2018 (expected)
Thesis: Runtime Verification of IoT Systems Using Complex-Event Processing

Advisor: Asst. Prof. Dr. İsmail Arı, GPA: 3.60

Master of Science, Electrical Engineering, University of Southern California,
Los Angeles, CA/USA, 2000
Focus: Computer Networks, GPA: 3.53

Bachelor of Science, Electrical & Electronics Engineering, Çukurova University,
Adana, 1997
Senior Project: Investigation of EEG Signals with Neural Network Techniques
Advisor: Asst. Prof. Dr. Sokol Saliu, GPA.: 79.9 / 100

EXPERIENCE

Freelance Consultant and Occupational Trainer, Adana
05/01/2017 - present
Compiling and conducting occupational training courses on Software Testing,
Test Automation, Mobile Application Testing, and Web Application Testing.

Senior Instructor, Adana Science and Technology University, Adana
01/01/2015 - 04/29/2017
Prepare and conduct lectures to Bachelor of Science students in Computer
Engineering, Electrical Engineering and Management Information Systems
departments: Introduction to C Programming, Algorithms and Programming,
Discrete Mathematics and Its Applications

119

Institute Deputy Director, TÜBİTAK BİLGEM Information Technologies Inst.
(BTE), Kocaeli 08/2012 - 05/2014
� Executing research activities, projects and personnel on IED, Avionics,
Real-Time Systems and Maritime Defense Systems
� Strategic Business Development Experience with Turkish Undersecretary of
Defense (UoD), and Armed Forces Command High Ranking Officers. Secured
contracts with DoD and UoD.
� Conducting International R&D Collaboration with Fraunhofer
� Reorganization of the Institute with ∼ 330 researchers
� Management and Coordination of ∼ 60 research engineers working on concurrent
projects under my directorate, majority of whom had M.Sc. and Ph.D. degrees.
� Technology Transfer of Selected Products

Program Manager (Turkish tx/fx jet), TÜBİTAK, Kocaeli & Ankara
04/2013 - 05/2014

� Engaging TÜBİTAK with the UoD, DoD and Private Sector defense industry to
partake in the Programme by developing relations
� Building and management of a team of 20 high-caliber engineers/scientist from 7
different research institutes

Project Manager, TÜBİTAK BİLGEM BTE, Kocaeli
12/2011 - 02/2013
� Turkeys first indigeneous DO-178B Level-A Certifiable, ARINC-653 and
POSIX-1003 compliant Safety-Critical real-time operating system was successfully
delievered to the customer (∼ 1000 KLOC, deployed on several mil-spec platforms)
� Exceptional leadership in crisis management and risk mitigation, re-scheduling
of tasks and deadlines, re-planning, project management, and securing a 12 months
deadline extension by negotiating with all stakeholders, for a project that was other-
wise doomed to fail. Restructuring of teams and reassignment of roles and responsi-
bilities over a team of approximately 40 software & firmware engineers
� Extensive use and generating know-how on full SDLC management at CMMI -
Level 3 maturity

Software Team Leader, TÜBİTAK BİLGEM BTE, Kocaeli
09/2006 - 12/2011
� The first indigenous ARINC-653 and POSIX-1003 compliant, DO-178B Level-A
certifiable real-time operating system (RTOS), Extensive programming experience at
system level with C, and partly C++
� Product and Software Engineering Process Ownership from Requirements to
Delivery for a team of 25 senior software engineers
� Resource planning, team building, role assignment, know-how development over
particular subject matters, enabling the team to train themselves on RTOS essentials
by engaging them in collaborative research and development teams
� URL: http://bilgem.tubitak.gov.tr/en/content/rtos/gis-real-time-operating-system

120

Assistant Project Manager, TÜBİTAK BİLGEM BTE, Kocaeli
01/2009 - 02/2012 (URL: http://ytkdl.bilgem.tubitak.gov.tr/)
� Founding executive member of Center for Software Testing and Quality Assessment
by securing a fund from Department of Development of Turkish Republic.
� Building Business Relations with National Software companies and Public Sector
� Established and trained a team of Software Quality Engineers and Management of
Software Quality Process and Team for the Institute
� Established TSE (Turkish NIST) accredited certification laboratories for TS 13298
and TS ISO/IEC 25051

Head of Software Technologies Department, TÜBİTAK BİLGEM BTE, Gebze
09/2007 - 08/2012
� Software Process Engineering/Improvement Transition Process Owner (IEEE 12207,
CMMI - Level 3)
� Consult the Inst. Director on Software Engineering & Resource Planning Issues
when embarking on new projects
� Established coding standards for Java, C++, and software engineering processes
that were to be applied by all projects in the Institute. Observed the conformance of
projects to the standards through periodical reviews.

Senior Software Engineer, TÜBİTAK BİLGEM BTE, Kocaeli
10/2002 - 09/2006
� Design, develop with C++ and verify integration of MXF-484 radio subsystem to
attack helicopter avionics system through MIL-STD-1553B bus communication lines.
� Design, develop with C++ and verify modernization of Link-11 tactical data
communication subsystem on GENESIS, G-Class frigate modernization project.

Software Engineer, PRI/BROOKS Automation, Mountain View, California
02/2001 - 06/2002
Design, develop with Java and verify a distributed real-time shop-floor dispatcher
system for LfS (Leverage for Scheduling) software. Achieved a modular GUI system
development through use of MVC, Java Swing and AWT. Tested on customer premises
(www.tsmc.com)

121

