
RELEVANCE FEEDBACK AND SPARSITY
HANDLING METHODS FOR TEMPORAL

DATA

a dissertation submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

doctor of philosophy

in

computer engineering

By

Bahaeddin ERAVCI

July 2018

RELEVANCE FEEDBACK AND SPARSITY HANDLING

METHODS FOR TEMPORAL DATA

By Bahaeddin ERAVCI

July 2018

We certify that we have read this dissertation and that in our opinion it is fully

adequate, in scope and in quality, as a dissertation for the degree of Doctor of

Philosophy.

Özgür Ulusoy(Advisor)

Hakan Ferhatosmanoğlu(Co-Adviser)

A. Enis Çetin

Uğur Güdükbay

Fatih Vehbi Çelebi

Yakup Sabri Özkazanç

Approved for the Graduate School of Engineering and Science:

Ezhan Karaşan
Director of the Graduate School

ii

ABSTRACT

RELEVANCE FEEDBACK AND SPARSITY
HANDLING METHODS FOR TEMPORAL DATA

Bahaeddin ERAVCI

Ph.D. in Computer Engineering

Advisor: Özgür Ulusoy

Co-Advisor: Hakan Ferhatosmanoğlu

July 2018

Data with temporal ordering arises in many natural and digital processes with an

increasing importance and immense number of applications. This study provides

solutions to data mining problems in analyzing time series both in standalone and

sparse networked cases. We initially develop a methodology for browsing time

series repositories by forming new time series queries based on user annotations.

The result set for each query is formed using diverse selection methods to increase

the effectiveness of the relevance feedback (RF) mechanism. In addition to RF,

a unique aspect of time series data is considered and representation feedback

methods are proposed to converge to the outperforming representation type

among various transformations based on user annotations as opposed to manual

selection. These methods are based on partitioning of the result set according to

representation performance and a weighting approach which amplifies different

features from multiple representations. We subsequently propose the utilization of

autoencoders to summarize the time series into a data-aware sparse representation

to both decrease computation load and increase the accuracy. Experiments

on a large variety of real data sets prove that the proposed methods improve

the accuracy significantly and data-aware representations have recorded similar

performances while reducing the data and computational load. As a more

demanding case, the time series dataset may be incomplete needing interpolation

approaches to apply data mining techniques. In this regard, we analyze a

sparse time series data with an underlying time varying network. We develop

a methodology to generate a road network time series dataset using noisy and

sparse vehicle trajectories and evaluate the result using time varying shortest

path solutions.

Keywords: Time Series, Relevance Feedback, Diversity, Autoencoder, Sparsity,

Time-Varying Graphs.

iii

ÖZET

ZAMANSAL VERİLER İÇİN İLGİLİLİK GERİ
BİLDİRİMİ VE SEYREKLİK ELE ALMA METOTLARI

Bahaeddin ERAVCI

Bilgisayar Mühendisliği, Doktora

Tez Danışmanı: Özgür Ulusoy

İkinci Tez Danışmanı: Hakan Ferhatosmanoğlu

Temmuz 2018

Zamansal ilişkiye sahip veriler, artan önemi ve çok sayıda uygulaması ile birçok

doğal ve dijital süreçte ortaya çıkar. Bu çalışma hem tek başına hem de seyrek ve

ağ ilişkili durumlarda zaman serilerinin analizinde veri madenciliği problemlerine

çözümler sunmaktadır. İlk olarak kullanıcı derecelendirmesine dayanan, yeni

zaman serisi sorguları oluşturarak zaman serisi veri depolarını taramak için bir

yöntem geliştirdik. Sonuç kümesi, ilgililik geri bildirim mekanizmasının etkinliğini

arttırmak için çeşitlilik içeren seçim yöntemleri kullanılarak oluşturulmuştur.

Geri bildirime ek olarak, zaman dizisi verilerinin benzersiz bir yönü göz önünde

bulundurularak, el ile yapılabilecek bir seçimin aksine, kullanıcı açıklamalarına

dayanan çeşitli dönüşümler arasında üstün performans gösteren temsil türüne

yakınsamak için temsil geri bildirim yöntemleri önerilmektedir. Bu yöntemler,

her bir temsil başarımına göre sonuç kümesinin bölümlendirilmesine ve birden çok

temsilin farklı özelliklerini kuvvetlendiren bir ağırlık yaklaşımına dayanmaktadır.

Daha sonra, hem işlem yükünü azaltmak hem de doğruluğunu arttırmak için, za-

man serilerini veri bağımlı seyrek temsillere indirgemek için oto-kodlayıcıların kul-

lanımını önermekteyiz. Çok çeşitli gerçek veri kümeleri üzerinde yapılan deneyler,

önerilen yöntemlerin doğruluğu önemli ölçüde geliştirdiğini kanıtlamakta olup

veriye duyarlı temsiller, verileri ve hesaplama yükünü azaltırken, benzer başarım

kaydetmiştir. Daha zorlu bir durum olarak, zaman serisi veri kümesi noksan olup,

veri madencilik tekniklerini uygulayabilmek için interpolasyon yaklaşımlarına

ihtiyaç duyulabilir. Bu bağlamda, zamana bağlı değişen bir ağ ile ilişkili seyrek bir

zaman dizisi verisini analiz ediyoruz. Gürültülü ve seyrek araç izlerini kullanarak

bir yol ağı zaman serisi veri kümesi oluşturmak için bir metodoloji geliştirdik ve

en kısa yol çözümlerini kullanarak değerlendirdik.

Anahtar sözcükler : Zaman Serileri, İlgililik Geri Bildirimi, Çeşitlilik, Otokod-

layıcı, Seyreklik, Zamanla Değişen Çizgeler.

iv

Acknowledgement

First and foremost, I gratefully thank my supervisors Özgür Ulusoy and Hakan

Ferhatosmanoğlu for their suggestions, supervision, and guidance throughout the

development of this thesis and my research career. I feel very fortunate for the

opportunity to have them as my research advisors. I am indebted to my thesis

monitoring committee members Enis Çetin and Uğur Güdükbay for their valuable

comments and discussions enriching my studies. I also thank the jury members

for their time and helpful remarks.

I also thank ASELSAN for the assistance throughout my studies as my

employer and for giving permission to pursue my goals.

Last, but by no means the least, I would like to thank my family, especially my

beloved wife, Sema, for her exhaustless encouragement and support throughout

the ups and downs of the life journey. I also dedicate this Ph.D. thesis to her

and my lovely boy, Mustafa Bilge who is the joy of our life. I appreciate all their

patience during my studies.

v

Contents

1 Introduction 1

1.1 Main Contributions . 5

1.2 Outline . 7

2 Related Work and Background 8

3 Diverse Relevance Feedback for Time Series 13

3.1 Problem Definition . 14

3.2 Relevance Feedback Framework 14

3.3 Time Series Representation . 15

3.4 RF with Diverse Top-k Retrieval 18

3.4.1 Algorithmic Complexity 24

3.5 Illustrative Analysis of Diverse Retrieval 25

3.6 Evaluation . 27

3.6.1 Experimental Setting . 27

3.6.2 Experimental Results . 31

3.7 Conclusion . 35

4 Variations of Time Series Relevance Feedback 38

4.1 Representation Feedback . 39

4.1.1 Representation Feedback via Top-k List Partitioning . . . 40

4.1.2 Representation Feedback via Weighting 41

4.1.3 Evaluation . 44

4.2 Time Series RF using Autoencoders 47

4.2.1 Algorithmic Complexity 50

4.2.2 Results for Diverse RF Using Autoencoder 51

vi

CONTENTS vii

4.3 Conclusion . 59

5 Temporal Graphs with Sparse Time Series 61

5.1 Data Model . 63

5.1.1 Trajectory Dataset . 63

5.1.2 Time Varying Graph Structure 64

5.2 Sparse Time Series Interpolation Process 65

5.2.1 Data Preparation . 66

5.2.2 Sparsity Analysis of Time Series 67

5.2.3 Interpolation and Filtering 70

5.3 Evaluation . 72

5.3.1 Experimental Setup . 73

5.3.2 Experimental Results . 75

5.4 Conclusion . 78

6 Conclusion and Future Work 80

A Datasets 93

List of Figures

3.1 Relevance feedback system . 15

3.2 An example SAX bitmap representation 16

3.3 Three level Dual-Tree Complex Wavelet Transform [1] 17

3.4 An example case of data and query movement with Rocchio based

algorithm . 22

3.5 Data distributions used in analysis 25

3.6 Performance for three rounds of RF for all the datasets (precision

scaled to 100 in y-axis versus dataset number in x-axis) 30

3.7 Histogram of increase in precision with different RF settings feedback 32

3.8 Normalized performances of different methods and representations 33

3.9 Normalized performances of different datasets versus purity of

dataset . 34

4.1 Representation feedback with top-k list partitioning 41

4.2 Representation feedback via weighting approach 42

4.3 Normalized performances of top-k partitioning representation feed-

back methods . 44

4.4 Accuracy comparison of top-k partitioning representation feedback

with item-only diversity . 45

4.5 Performance of representation feedback with weighting (precision

in y-axis vs RF round in x-axis) 46

4.6 Autoencoder network structure 49

4.7 2-D histograms (number of queries) of query precision under

different methods and transformations in the third iteration of RF

for Worms dataset . 54

viii

LIST OF FIGURES ix

4.8 Performance of RF with various configurations for datasets with

low precision . 56

5.1 Sample network . 62

5.2 Road Map of Milan . 64

5.3 Trajectory Density over Time . 65

5.4 System Structure . 66

5.5 Autocorrelation of An Edge Data 68

5.6 Sparsity of time series related with edges 69

5.7 Average Frequency Spectrum of The Most Populous 4000 Edges . 70

5.8 Sample Trajectory Distribution over All Time Slots 73

5.9 Path Size based Analysis . 76

5.10 Comparisons on Time-Varying Paths for the Same Query with

Different Start Times . 77

List of Tables

3.1 Average Increase (absolute) in Precision 31

4.1 Normalized precision improvements with varying autoencoders for

third round of RF . 52

4.2 Average precision levels for diverse RF with varying configurations 53

4.3 Total transformation runtime for all the datasets (minutes) 57

4.4 Total training time for autoencoders (minutes) 57

4.5 Total runtime of experiments (minutes) 58

A.1 Datasets used for experiments . 93

x

List of Publications

This dissertation is based on the following publications:

P.1 Bahaeddin Eravci and Hakan Ferhatosmanoglu, ”Diversity based relevance

feedback for time series search”, Proceedings of the VLDB Endowment

(PVLDB), v. 7(2), p.109-120, 2013 (also presented in VLDB 2014, 40th

International Conference on Very Large Data Bases, Hangzhou) https:

//doi.org/10.14778/2732228.2732230

P.2 Bahaeddin Eravci and Hakan Ferhatosmanoglu, ”Diverse Relevance Feed-

back for Time Series with Autoencoder Based Summarizations”, IEEE

Transactions on Knowledge and Data Engineering (TKDE), 2018, https:

//doi.org/10.1109/TKDE.2018.2820119

P.3 Elif Eser, Furkan Kocayusufolu, Bahaeddin Eravci, Hakan Ferhatosmanolu,

Josep L Larriba-Pey, ”Generating Time-Varying Road Network Data Using

Sparse Trajectories”, 2016 IEEE 16th International Conference on Data

Mining Workshops (ICDMW), p.1118-1124, 2016, https://doi.org/10.

1109/ICDMW.2016.0161

xi

Chapter 1

Introduction

Temporal data is common in many applications ranging from finance to healthcare

and practically in any process that records data with respect to time. A time

series can be defined as an array of numbers with temporal association within its

elements. Generation and storage of time series data, in parallel with other data

types, has reached a speed that was not possible to this day. Accumulation of

such data is also gaining momentum with new technologies, such as the decline

in the price and the miniaturization of different sensors (pressure, temperature,

inertial, etc.) and is expected to further increase with Internet of Things (IoT)

applications. In addition to one dimensional time series data, there is also a

recent rise in temporal data with an underlying network structure. We can

present examples of time varying graphs with time series data coupled with the

related spatial information of the sensor or time varying properties of different

social network users. This vast amount of data is expected to be translated into

insight and knowledge by browsing, exploring and extracting application oriented

information while taking temporal and network based relations into account.

Mining time series fall into several categories such as pattern recognition,

classification, clustering, and forecasting, and generally starts with identifying

a representation that harmonizes the end purpose of the application and the

property of time series data. One of the important tasks in time series mining

1

is browsing, where users seek “similar” time series from a database via query by

example, such as seeking online advertisements with similar view patterns for a

period of time, stocks that are related in terms of price or return, cities with

similar earthquake timing patterns. The volume of the time series data impedes

users ability to observe and analyze the whole database and find the similar series

manually.

Even though time series search and retrieval methods have been studied widely,

there is limited work in utilizing relevance feedback (RF), which has enjoyed a

great deal of attention in areas of text and information retrieval. In RF, a set of

data items is retrieved as a result of an initial query by example, and presented

to the user for evaluation. The informal goal is to present the right set of initial

results that maximize the information gain from the user feedback.

To the best of our knowledge, no prior work considered improving time-series

retrieval and relevance feedback (RF) by introducing diversity in the search

results before our work [2]. This study enriches machine learning and information

retrieval ideas of related nature by adapting it to time series using representations

that capture the temporal relations within the data in conjunction with diverse

retrieval. We study RF for retrieval in time series databases and adopt a query

by example approach where the user submits a time series query reflecting the

user intentions. Based on the initial query, a set of time series items according

to a criterion is retrieved from the database and presented to the user for

evaluation. The problem is to present a set of items to collect feedback in such a

way that maximizes the information from the evaluation process, as opposed to

the top matching set, correctly modeling and identifying the user intent for the

subsequent retrieval iterations. The user evaluates and annotates the presented

items to improve the results in the next round for finding the time series item

of interest. We utilize different representations of time series, and use diversity

between time series data in different rounds of retrieval process to further enhance

the user satisfaction by increasing the number of relevant items in the resultant

sets.

2

Given the large amount of research for identifying representation methods

in time series literature, finding the right representation for one’s intent is

an important task. The already available user feedback in RF iterations can

be used identify the appropriate representation for a query or an application

in this context. We develop a representation feedback method in which the

initial result set is populated with items from differing representations, and the

system identifies the appropriate one by analyzing the annotated items. The

user feedback is utilized to converge to the representation which satisfies the

user most by increasing the total number of items from the best performing

representation for the next rounds of retrieval. This can be useful in dynamic

databases where the properties of the data are changing or with systems serving

multiple user groups with different objectives each satisfied using a different

representation. Experimental results show that besides the intended use as

representation feedback, the method implicitly embodies item diversity as well

[2].

We expand the framework by using autoencoder neural networks to extract

sparse representations of the time series that both reduce the data size and

extract more appropriate representations. Autoencoders can also be effective

in combining multiple representations and selecting relevant features from best

performing representations by analyzing the dataset. Our study with experiments

spanning a diverse set of data aims to assess the potential of autoencoders use for

the general time series data even with relatively simple network structures. The

use of similar deep network techniques to learn data-aware representations which

can suit time series data generally by analyzing huge diverse time series datasets

can be an important tool in time series data mining. These general networks

can also be trained to specific tasks, e.g. stock analysis where stock movement

patterns are identified with years of human expertise [3].

Considerable amount of time series data mining methods accept complete and

standalone time series data. As a different aspect of temporal data, there are

different applications where graphs with time varying properties arise naturally.

These types of time series datasets can also be incomplete due to deficiency of

sensors/recorders in various nodes of the network. Management and analysis of

3

road networks is an example which is an important task for traffic management

and location based services (LBSs).

Road networks are spatial graphs with vertices representing the geo-locational

points and edges representing the roads between theses vertices. Most traditional

graph algorithms assume that the edges have static attributes, such as the length

of the road and the speed limit. A more enhanced and correct representation is a

time-varying road network that models the changing traffic information via graph

with each edge having a time-series attributed, rather than a single aggregate

static value.

In this perspective, we analyze the trajectories found in the Floating Car

Dataset of Telecom Italia [4] and generate a realistic time-varying graph dataset

with different travel times for each time slot for its edges [5]. This real data set

consists of sparse and noisy GPS trajectories collected from different vehicles.

After mapping the trajectories to the road network, we use time series analysis

and inference methods to estimate the missing values to generate a complete

time-varying graph. The initial data from the mapping process consists of a

very sparse time series data for each edge in the road network and to interpolate

missing data points, the frequency content of nearly-complete edges is identified

using spectrum analysis methods. We notice that the time series of interest are

band-limited and most of the signal power is in the low-pass region, i.e., the time

series are slow varying signals. This information is used as a model to complete

the missing data using minimum travel time for the respective edge and random

sample drawn from a normal distribution with parameters devise from the signal

itself. These two parameters are selected according to Nyquist-Shannon sampling

theorem to counter aliasing. After padding the signal, we use the fact that the

signals are expected to be band-limited to smooth the padded time series such

that the resultant signal is of the same model as the expected signals. The

resultant complete time series dataset with the underlying road network is stored

on Sparksee [6] graph database and a Java API is developed for easy manipulation

of the graph.

4

1.1 Main Contributions

The contributions of this dissertation include the following:

• We analyze and utilize different time series representations useful for

RF to capture a variety of global and local information. Spectrum

based transforms (Fast Fourier Transform and Dual-tree complex wavelet

transform) are considered due to its power to identify patterns localized

both in time and frequency domain and SAX-based transform is used to

identify time based patterns which can be essential for diversity based RF.

We construct a RF technique for time series by tuning such systems without

the need of explicitly defining features like amplitude shift, periodicity, etc.

• The performance of RF is enhanced by using diversity in the result set

improving the effectiveness and utilization of the user annotation for

additional improvements in precision.

• Two different on-the-fly representation selection mechanisms that choose

best performing representation types by further exploiting the valuable

feedback from the user are proposed.

• We study the use of autoencoders to decrease the complexity of the overall

features and extract useful data aware features. A representation map is

learned from the data and can be used in other time series tasks. The

presented approach exploits the advantages of RF and diversification, and

illustrates a potential use of autoencoder type networks in time series

retrieval.

• A rich set of experiments on 85 real data sets provide insights on the

feasibility of the general RF framework, performance of autoencoders and

how diversity can improve time series retrieval. We discuss the performance

of the developed methods under different data properties instead of specific

applications and analyze advantages of the methods with respect to different

cases.

5

• We apply time series analysis and interpolation methods to generate a time-

varying graph for road networks using sparse and noisy time series. This

process begins with analyzing the nearly-complete time series to create a

model of the series. Using this model, we generate the incomplete data

points to form a realistic full time series dataset for the network.

• To develop and validate algorithms/systems and for analysis of traffic for

dynamic road networks, the research community needs publicly available

time-varying graph datasets with edge weights varying over time based

on realistic patterns. Our generated time varying graph dataset and an

associated graph management tool is shared to support research on related

topics.

Experimental results show 0.23 point increase in precision averaged over all four

representations, with 0.48 point increase in specific cases in the third round of

RF. Introducing diversity into RF increases average precision by 6.3% relative to

RF with no transformations and 2.5% relative to the RF using the proposed

representation. Results also show that the representation feedback method

implicitly incorporates item diversity and converges to the better performing

representation, confirming it to be an effective way to handle changing data

properties and different user preferences.

Experiments with the autoencoders present runtime performance increases of

around 6-9x due to reduced total data volume with a mild degradation in the

average precision. We have also observed that in some challenging data cases,

where the precision is low, the accuracy improves when using autoencoders, which

is encouraging to further pursue this approach.

We performed experiments using the generated time varying graph dataset by

employing the system in a use case, evaluating the time-varying shortest path

solution. It is observed that the difference between the shortest paths using time-

varying versus static weights increases as the number of vertices increases. The

travel durations of these two types of shortest paths give differing results favoring

the use of the time-varying road network.

6

1.2 Outline

The rest of the dissertation is organized as following: A literature review

presenting the background information for the different components of the

dissertation is given in Chapter 2. The general time series RF framework with

its specific application and results is defined and presented in Chapter 3. We

also provide intuitional and statistical justification for use of diversity in RF

frameworks in this chapter. Chapter 4 details the extension of the proposed RF

framework with representation feedback and autoencoders. We detail the method

to generate a complete time varying graph from a sparse time series data with an

application on road networks in Chapter 5. Finally, we conclude the dissertation

in Chapter 6 with outlining possible future work.

7

Chapter 2

Related Work and Background

We present the current literature and its relations with the different aspects of

the proposed methods in this chapter. We first give the general literature review

of time series representations and different similarity measures used for various

purposes which is related with the proposed time series RF setting. We follow on

by noting the important research on relevance feedback presenting the different

perspectives from information retrieval to machine learning. Subsequently,

diversity related studies and its use in different contexts are presented which

contributes as an important aspect of our proposed methods. Since we develop

a retrieval framework ranking different time series items, we also discuss ranking

algorithms each tackling the problem in a different aspect. We include a concise

discussion of autoencoders focusing on its use in time series literature. Finally,

we present the background for time-varying graphs with a brief introduction to

route planning literature and discussion of different datasets already available in

the literature.

Time series data mining research has immense literature on the representation

of the time series, similarity measures, indexing methods, and pattern discovery

([7]). Generally, time series data mining tasks begin with identifying a

representation that links the end purpose of the application and the properties

of the time series. Various representations have been proposed to transform the

8

time series, each with a different perspective to meet the requirements of different

applications, user intents, and data properties. A class of representations, such as

piecewise aggregate approximation (PAA) and symbolic aggregate approximation

(SAX) [8], are used to identify features in the time domain, while others, including

discrete Fourier transform (DFT) and discrete wavelet transform (DWT), involve

frequency domain properties dealing with the periodic components in the series.

After the time series is transformed, measures of similarity are used for

comparing data items. A multitude of similarity measures (from Lp norms to

dynamic time warping (DTW), etc.) has been proposed [9, 10, 11]. Indexing

methods for similarity queries have also generated extensive interest in the

community given the computational load of the algorithms [12]. Besides using

geometric distance on coefficients [13], dynamic time warping (DTW) and other

elastic measures are used to identify similarities between time series due to non-

aligned data [9, 14, 11]. We also see approximate subsequence matching methods

proposed for large time series datasets with DTW distance in [15]. We report

recent work that proposes a relational database for time series by bi-clustering

the tables to allow quick retrieval under heavy loads [16]. Additionally, methods

to identify recorded sound excerpts by comparing various features of the signal

stored in a music database has been described in [17].

There has been significant work in information retrieval community for

relevance feedback (RF) since it was proposed in the 1970s ([18, 19, 20]) and

to this day there still is research on variants of this method or mix of this method

with different techniques ([21]). The first methods have concentrated on RF

query movement in which the query point was moved toward the relevant items.

Dimension weighting methods have been proposed for the same objective in [22].

There has also been use of RF in the image and multimedia retrieval applications

[23, 24, 25]. Lately, researchers pose the RF problem as a classification problem

and propose solutions in the context of machine learning [26, 27].

Combining relevance and diversity for ranking documents has been studied by

[28] in the context of text retrieval and summarization. They define a Maximal

Marginal Relevance (MMR) objective function to reduce redundancy while still

9

maintaining relevance to the query in re-ranking retrieved documents. There

are recent studies which analyze MMR type diversification and provide efficient

algorithms for finding the novel subset [29]. The problem of ambiguity in queries

and redundancy in retrieved documents has been studied in [30]. They propose

an evaluation framework and emphasize the importance of objective evaluation

functions. Researchers study diverse results in web search application by posing

the problem as an expectation maximization in [31]. A retrieval method for

maximizing diversity, which also assigns negative feedback to the documents that

are included in the result list is proposed by [32]. Given the considerable success

of applying diversity in retrieval in different domains, [33] proposes scalable

diversification methods for large datasets using MapReduce. Studies on using

relevance, diversity and density measures to rank documents in information

retrieval within an active learning setting have also found interest in the literature

[34]. Diverse results have been reported to increase user satisfaction for answering

ambiguous web queries [35] and for improving personalized web search accuracy

[36]. Graph based diversity measures for multi-dimensional data have also been

proposed in [37]. Methods to find the best representative of a data set based on

clustering has been investigated in [38].

Top-k retrieval has been studied also as a machine learning problem to rank

documents according to user behavior from analyzing implicit feedbacks like click

logs. A Bayesian based method is proposed as an active exploration strategy

(instead of naive selection methods) so that user interactions are more useful for

training the ranking system [39]. A diverse ranking for documents is suggested to

maximize the probability that new users will find at least one relevant document

in [40]. There is recent interest to address the biases (e.g., presentation bias

where initial ranking strongly influences the number of clicks the result receives)

in implicit feedbacks using a weighted SVM approach [41]. We also note some

studies concentrating on ways to balance diversity and relevance while learning

ranking of documents [42] [43]. One can approach the result set selection problem

using active learning where the main aim is to label parts of the dataset as

efficiently as possible for classification of any data item in the dataset. There is

a variety of techniques each with a different perspective such as minimization of

10

uncertainty concerning output values, model parameters and decision boundaries

of the machine learning method [44].

Contrary to its popularity in the information retrieval, RF and diversity have

not attracted much attention in time series community. Representation of time

series with line segments along with weight associated to the related segments

and explicit definition of global distortions have been used in time series relevance

feedback [45, 46]. We are not aware of any studies using representation feedback

for time series retrieval and diversification in such systems before our initial paper

on the issue.

Autoencoder neural networks formulate an unsupervised learning that uses

the input data as the output variable to be learned [47]. The network structure

and the training objectives force the outcome to be a sparse representation of

the input data. It has attracted a renewed interest lately with deep network

approaches generally utilizing restricted Boltzmann machines [48]. We also note

some recent work on time series visualization utilizing autoencoder structures

[49]. Time series forecasting with neural networks is reported to be advantageous

even with relatively small data cases in [50].

Incomplete time series is generated and has been studied under different

contexts. Tormene et.al. proposed a variant of DTW to match truncated

time series in [51] within a medical application. There is also interest in

accurate calculation of spectral content with time series of missing content with

applications in seismology [52]. Researchers have also focused on analyzing sparse

time series data due to an increase in number of sensors/apps recording temporal

data bursts. One study [53] focuses on prediction of power consumption at electric

vehicle charging stations using nearest neighbor methods while another paper

aggregates the sparse data in different time windows and uses weighing methods

to estimate free parking spaces in an urban setting [54].

Road networks and route planning has generated a great deal of interest due

to increasing mobility with increasing use of navigation systems and online route

planning services [55]. Computation of shortest paths over time-dependent road

11

networks is shown to be polynomially solvable with Dijkstra based solutions

adapted for these types of graphs [56, 57]. Route planning over time-dependent

graphs has also appeared in the literature aiming at reducing traffic jams [58]. As

an increasing trend, personalized route planning emerges by considering driver’s

preferences [59].

Major service providers such as Google, Yandex, and TomTom have the ability

to observe real time traffic in certain regions and can update their underlying road

network’s edge weights accordingly. However, most users and researchers do not

have access to such dynamic updates. The datasets used in the literature are

usually combinations of real maps with synthetically generated travel time-series

[56] or real data collected over a limited amount of time [58] [59]. This makes the

comparison of algorithms difficult because they usually have data dependencies

or these datasets are not publicly available via an API or web service.

Employing GPS traces to build or exploit road networks has also been studied

in the literature [60], [61]. In [60], GPS data are utilized to generate a road

network without any prior information about the network topology. In [61], GPS

data are employed with a road network for traffic and travel time estimation of

the paths by using probabilistic model based approaches.

12

Chapter 3

Diverse Relevance Feedback for

Time Series

This chapter presents the proposed framework for relevance feedback (RF) using

diversity amongst its result sets increasing the accuracy of retrieving similar items

from a time series database given a user specified query. Application of this

framework from different perspectives include the following:

• finding products with similar sale patterns in online commerce with respect

to a selected product

• identifying electrocardiography signals from past patients correlated with a

specific patient

• finding network nodes with similar communication loads extracted from

network logs

In each of these applications, the user queries the database and seeks relevant

time series items according to the specific application and intent.

13

3.1 Problem Definition

We consider a database, TSDB, of N time series: TSDB = {TS1, TS2, ..., TSN}.
Each item of TSDB: TSi, is a vector of real numbers which can be of different

size, i.e. TSi = [TSi(1), TSi(2), ..., TSi(Li)] where Li is the length of a particular

TSi. Given a query, TSq (not necessarily in TSDB), the problem is to find a

result set (a subset of TSDB) of k time series that will satisfy the expectation of

the user. Since we formulate the solution in an RF setting, the user is directed

for a binary feedback by annotating the items in the result set as relevant or

irrelevant.

3.2 Relevance Feedback Framework

RF is an important tool in information retrieval to increase user satisfaction where

the user is given a set of relevant items in each iteration and is expect to evaluate

and annotate the relevance of each item presented by the system. A feedback

mechanism is established where items that are more relevant are presented in the

successive rounds. The basic model is given in Figure 3.1. Each component of

the system shall be explained in the successive sections.

The framework proposed dictates the transformation of the time series, as a

preprocessing step, into the preferred representation (CWT, FFT, SAX, PAA

etc. according to properties of the time series in the database and the application

requirements) such that the relevant features are captured. The preprocessing

may also involve a normalization procedure (unit-norm, zero-mean, etc.) as

necessary. Given a user provided initial time series query (TSq), the relevant

transformation is applied and a transformed query vector, q, is calculated which

will be used in the similarity calculations and top-k retrieval process. Ti denotes

the transformed TSi according to the transformations explained in the previous

sections, i.e., Ti = F(TSi).

14

Figure 3.1: Relevance feedback system

3.3 Time Series Representation

The effectiveness of representation to decode the user intention is essential for

the performance of time series similarity match. The appropriate representation

depends on the application, time series properties and user intent. For example,

if the user intention is to figure out all the time series with specific periods

like weekly patterns, frequency domain approaches like DFT (Discrete Fourier

Transform) can serve the purpose. An important general property to consider

is the shift-invariance of the transform. This will allow correct retrieval even if

time series pairs have offset in time. Accurate and easy handling of time series

with varying length is another important criteria for the representation choice.

Transforms that help compare local and global properties of time series items

would be expected to be functional for diversity based browsing. Based on these

15

observations, we focus on different representation methods and approaches: based

on Wavelet Transform and based on SAX (Symbolic Aggregate approXimation in

[62]), in addition to Fast Fourier Transform (FFT), and the raw time series as a

baseline in our experiments. FFT is a computationally optimized version of DFT

with the same numerical outputs. Experiments with four different representations

provide insights on how different types of representation work with RF and how

they affect the precision for different datasets.

On one side, we will illustrate our approaches using these methods; and on

another we will evaluate the appropriateness of these successful representations

and provide insights on their use in our RF and diversity context.

Figure 3.2: An example SAX bitmap representation

SAX has gained a prominent place in the time series research community due

to its success in representation. SAX transforms the time series into a string

of elements from a fixed alphabet which gives the ability to exploit different

techniques already found and used in string manipulation. After the SAX

16

Figure 3.3: Three level Dual-Tree Complex Wavelet Transform [1]

transformation of the time series into a string, a post-processing method called

SAX-bitmap is utilized which turns the string into a matrix (SAX-bitmap image

in the visualization context) by counting the different substrings included in

the whole string. SAX-bitmap is reported to be intuitive, useful in extracting

important sub-patterns in the time series and is a perceptually appropriate

representation for humans in visualizing and interpreting time series ([62]). In

our context, we use it as a transformation of the time series to a vector which is

then used with different distance measures for similarity retrieval. The method

effectively counts the number of different local signatures after transforming the

original time series to SAX representation. The level of the representation (L)

corresponds to the length of the local patterns in the SAX representation. The

length of the output of the SAX-Bitmap transform is ML where M is the number

of symbols used in the SAX transformation, which is independent of the time

series length (Li).

SAX inherently divides the time series into blocks and normalizes the block

within itself which extracts local features of the time series useful for diverse

retrieval methods. The total number of occurrences in the whole time series gives

information about the global features as well.

17

Wavelet Transform (and its variants Discrete WT, Continuous WT, Complex

WT etc.) is a time-frequency representation used extensively in time-series

domain. The transformed data (scaleogram) provides a frequency and time

localization. The level of the representation (L) in CWT corresponds to the

height of low pass components of CWT which in turn corresponds to different

details of the low pass and high pass components. The upper part of the tree

is the real part of the transform and the lower part of the tree is the complex

part given in Figure 3.3. Dual-tree complex wavelet transform (named due to

two parallel filter banks in the process) is relatively shift-invariant with respect

to other flavors of the algorithm which is a reason behind its selection for this

study [63]. The magnitude of the complex and real part is used in this paper.

The length of the transformed data is independent of the number of levels and is

given by 2dlog2 Lie.

CWT has a similar approach with SAX but with a different perspective. CWT

extracts some low-pass features, i.e., components which are in the lower frequency

band and are relatively slowly varying giving an averaged version of the overall

series and high pass features, i.e., components which are in the higher frequency

band and are relatively fast varying, related to detail and differential information

of the series. Down-sampling of the series along the branches allows the transform

to extract information from different zooms of the data. As a summary, CWT

decomposes the time series into local patterns in both time and frequency with

different scales and can help for diversity as different subsets of the information

given by the transformation provide different perspectives of the data.

3.4 RF with Diverse Top-k Retrieval

RF techniques inherently model the distribution around the query point with

a limited number of user annotated data items to increase the accuracy subse-

quently. After each iteration of RF, the user is given the opportunity to evaluate

the resultant items presented by the system. A variety of different techniques can

be utilized for the feedback mechanism, such as Rocchio’s algorithm ([18]) which

18

moves the query point in space closer to the relevant items. We have selected this

algorithm since it is one of the foremost algorithms used in information retrieval

for RF and is still considered with different variants as an important method

in recent studies [21, 64, 65]. We have adapted a modified version of Rocchio’s

algorithm. Rocchio method forms an additional query using the relevant and

irrelevant items for successive rounds of RF. Equation 3.1 details the procedure

where Rel is the set of items classified relevant, Irrel is the set of items classified

as irrelevant by the user.

qnew =
1

|Rel|

|Rel|∑
i=1

Reli −
1

|Irrel|

|Irrel|∑
i=1

Irreli (3.1)

Newly formed query vector is not dependent on the original query but the

original query affects the results via Equation 3.2 since the system uses the

original query with the newly formed query vectors in the previous RF stages to

calculate the distances. We also experimented with a Rocchio algorithm which

directly replaces original query at each iteration and found that the modified

version explained above performs better. For the successive iterations, a distance

is calculated with respect to all the query points of the previous iterations which

is outlined in Equation 3.2. The high level algorithm for RF system is shown in

Algorithm 1.

Dist(q1, q2, ..., qN , Ttest) =
1

N

N∑
i=1

Dist(qi, Ttest)

where N is the RF iteration number

(3.2)

The RF method at its essence forms new queries (or modifies the initial query

depending on the various implementations of the idea) and uses this new query

in the next iterations for retrieving the similar time series items in the database.

The main objective is to move the query vector closer to where more relevant

objects are expected.

Top-k retrieval part of the RF system identifies k time series to be presented

to the user who is seeking information relevant to the query, q. The general

19

Algorithm 1 High-level algorithm for diverse relevance feedback

1: Initialize k : number of items in result set
2: Initialize RFRounds : number of RF iterations
3: Initialize λ = [λ1, λ2, . . . , λRFRounds]: MMR parameters
4: Initialize α = [α1, α2, . . . , αRFRounds]: CBD parameters
5: Input q1 : initial query (transformed if needed)
6: Input TSDB : time series database (transformed if needed)
7: for i = 1→ RFRounds do
8: // Find Top-k results
9: if Nearest Neighbor then
10: R = Top-K(q1,. . . ,qi,k,TSDB)
11: else if MMR then
12: R = Top-K MMR(q1,. . . ,qi,k,λi,TSDB)
13: else if CBD then
14: R = Top-K CBD(q1,. . . ,qi,k,αi,TSDB)
15: end if
16: // User annotation of the result set
17: (Rel,Irrel) = User Grade(R)
18: // Expand query points via relevance feedback
19: qi+1 = Relevance Feedback(Rel,Irrel)
20: end for

method often used is to find the k-nearest neighbors which is a list of time

series ranked according to a defined distance function with respect to q. The

traditional assumption in this similarity model is that the data points closest

to the query, irrespective of direction and non-circular user intent, is related to

the user preference. However, there can be data points close to the query in

theoretical sense yet not related to the interest of the user. Moreover, the intent

of user can be already ambiguous itself or the query point may also be on the

boundary of the user intent.

In the above explained case, as the name nearest neighbor (NN) implies, only

the data points in the vicinity of the query point are retrieved with rankings

proportional to closeness of the data to the query. But the database may include

numerous time series items very similar to each other which can degenerate the

top-k list to an item list with very little variation. This degenerate top-k list will

give very limited novel information about the user intentions since q is already

known making RF less useful and wasting the time and annotation effort of the

20

user.

As a solution to the above issue, the user needs to be presented a top-k list with

diversity among items which are still close to the query point. With a balanced

diverse set of choices provided, the successive iterations of RF is expected to

better meet the user intentions.

We present an example to illustrate the mechanics of the query relocation in

Figure 3.4 and to discuss the potential advantages of utilizing diverse results.

We have plotted three different classes of data (using three normal distributions

with different means, each representing a user’s or a group of users’ interest)

and queries of two extreme cases: Q1 query on the boundary in terms of user

interests and a Q2 query near to the main relevant set. These queries are moved

to revised points (or the effect of using new queries translates to this effect via

Equation 3.2) Q′1 and Q′2 given that Data2 and Data3 are considered relevant by

the user respectively. If nearest neighbor (NN) retrieval is used, the result can be

a degenerate list with too little variation and limited information about the user

intentions since Q1 and Q2 are already known. If one provides a larger radius

around the query, which samples the region around the query, the displacement

of the vectors from their original location will be higher. On the other hand, over-

diversification of the results, causing very few relevant items finding a spot in the

result set, will hinder and lower the accuracy of the next phase of user annotation.

A probabilistic explanation to this intuition is also provided in Section 3.5.

We consider two different methods to diversify the top-k results in this

study: maximum marginal relevance (MMR) and cluster based diversity. MMR

(Algorithm 1 Line 12) merges the distance of the tested data item to both the

query and to the other items already in the relevant set. The diversity achieving

distance used is given in Equation 3.3 and a greedy algorithm is used until a

specific number of items is selected from the whole dataset. Dist function is

general and can be any distance function of choice. When λ is chosen as 1, the

DivDist collapses to an NN distance and the result turns to a mere top-k nearest

neighbor result. When λ decreases, the importance of the distance to the initial

query decreases which gives an end result of diverse set of items within itself but

21

Figure 3.4: An example case of data and query movement with Rocchio based
algorithm

are also related to the query.

DivDist(Tq, Ti, R) =

λDist(Tq, Ti)−
1

|R|
(1− λ)

|R|∑
j=1

Dist(Ti, Tj)
(3.3)

The second term of the DivDist involves pairwise comparisons of data points

in the database which is independent of the query and is performed repetitively

for each query. To decrease the running time of the algorithm, we use a look-up

table that stores all the possible pairwise distances calculated offline once at the

beginning for the particular database.

Cluster Based Diversity (CBD) method uses a different approach than the

optimization criteria as given in Equation 3.3. The method is inspired by [38]

22

which proposes method for finding best representatives of a data set. This method

(Algorithm 1 Line 14) retrieves Top-αk elements (α ≥ 1) with a NN approach

and then clusters the αk elements into k clusters. The parameter α controls

the diversity desired, increasing α increases the diversity of the result set. If α

is chosen as 1 then the results are the same as the NN case. We implement a

k-means algorithm for the clustering phase in this study. The data points nearest

to the cluster centers are chosen as the representative retrieved points which are

presented to the user. An advantage of CBD is that the tuning parameter α is

intuitive and the results are predictable.

We also notice that precision increase due to use of diversity depends

significantly on the data distribution. Since the diversification algorithms are

based on a distance directly or indirectly, the particular meaning of the features

is important for the overall performance. This is especially important in the case

of time series, as we have an autocorrelation within the elements. This observation

stresses that the representation of the time series which is chosen according to its

power in decoding general user intentions and its suitability for varying properties

of time series with respect to different applications, should also have the power

of decomposing time series into meaningful parts which have novel information.

These properties have been considered in choosing the suitable representation.

The method for diversification can be tailored with respect to the methods

used for searching and learning the user feedback. As an example, one can

also utilize a support vector machine (SVM) based binary classifier to learn the

relevant/irrelevant sets instead of the distance based ranking method used in this

study. In this case providing the cluster centers as in the proposed CBD method

will perform poorly since SVM classifier tries to learn the boundaries of the classes

and requires the instances around the border regions for optimal performance.

Hence, It will be better to sample the boundaries and form those type of queries

in the SVM case. Whereas, NN-like distance based models, similar to the one

considered in this paper, functions better if we learn the centroids of the relevant

data with low uncertainty. We can expect to have better results from the CBD

method which fits nicely with the distance based retrieval methods. This relation

needs to be taken into account when diversity achieving methods are used and

23

the ranking system should be compatible with the diversification technique for

satisfactory results.

3.4.1 Algorithmic Complexity

We present the algorithmic complexity of the retrieval methods in terms of N (the

number of time series in database), L (the length of time series or representation),

and k (the number of requested items). The NN based retrieval first calculates

distances to all items in dataset (O(NL)) and finds k nearest items (O(kN))

which corresponds to a total complexity of O(N(L+ k)) = O(N).

For the MMR case we have two possibilities with respect to Equation 3.3:

• Without memoization: Distance calculations to all items in the dataset

(O(NL)), distance calculations for relevant set items (O(N ·L · (k−1) · (k−
2)/2) = O(NLk2), finding the minimum distance element k times (O(kN))

with an overall complexity of O(NL(1 + k2)) = O(N).

• With memoization: Distance calculations to all items in the dataset

(O(NL)), distance calculations from lookup table for relevant set items

(O((k − 1) · (k − 2)/2) = O(k2), finding the minimum distance element k

times (O(kN)) with an overall complexity of O(N · (L+k)) = O(N) (where

NL� k2).

For the CBD case, we first find αk nearest neighbors (O(N(L + αk)) and

cluster the results. K-means clustering (based on Lloyd’s which has a limit i for

the number of iterations) is considered O(NkLi) = O(NkL) algorithm. The total

complexity for CBD case is O(N(L+ αk + Lki)) = O(N).

24

3.5 Illustrative Analysis of Diverse Retrieval

We now present an illustration of the intuition behind using diversity in the RF

context. Given a query, q, we retrieve a top-k list using NN with the last element

d distance away from the query. Figure 3.5 illustrates the relevant set, R ∼
N (0, σ2) and the irrelevant set, IR ∼ N (µ, σ2) assuming Gaussian distributions

for both.

Figure 3.5: Data distributions used in analysis

If there are N relevant and M irrelevant items, we can find the number of

25

relevant (k1) and irrelevant items (k2) in the top-k list with approximations as:

k1 = N ·
∫ q+d

q−d
R(x) dx ≈ N ·R(q) · 2d if k1 � N

k2 = M ·
∫ q+d

q−d
IR(x) dx ≈M · IR(q) · 2d if k2 �M

k = k1 + k2

(3.4)

We can then define and calculate the precision for the query as:

Prec(q) =
k1

k1 + k2

=
N ·R(q)

N ·R(q) +M · IR(q)
(3.5)

This formula follows the general fact that if R and IR are separable (µ is very

large) or if the query point is near the mean of R precision will be high. We also

observe that the performance is dependent on the accuracy of the known model

(i.e. the R and IR distributions) itself. We learn the model of the relevant set in

the RF setting by modifying the query according to the feedback from the user.

Consider a simplified RF model that forms the query for the next iteration (q2)

as the average of all the relevant items, i.e.:

q2 =

k1∑
i=1

Ri =

∫ q+d

q−d
x ·R(x) dx

=

√
σ2

2 · π
[eq−d − eq+d]

(3.6)

A diverse set of points around q would span a larger distance (δd) around the

query, which is also shown in Figure 3.5. In this case we get a modified q′2 from

the relevance feedback as:

q′2 =

k1∑
i=1

Ri =

∫ q+δd

q−δd
x ·R(x)dx

=

√
σ2

2 · π
[eq−δd − eq+δd] δ > 1

(3.7)

Diversity ensures q′2 < q2 which increases our understanding of the relevant

data distribution and consequently the query precision via Equation 3.5. If the

precision is already high (i.e., if R and IR are well separated or the query is not

near the R and IR boundary), then the precision increase due to diversity will

not be significant.

26

3.6 Evaluation

We evaluate the performance of the methods with experiments on all the data

(85 real data sets) currently available in the UCR time series repository [66]. The

data sets used with their respective properties are provided in Table A.1.

Since we have an unsupervised application, the training and test datasets are

combined to increase the size of the data sets. The numbering of the datasets

in this paper is according to the numbering given in the table. Some aggregate

properties of the datasets are as follows:

• Number of classes within separate data sets vary from 2 to 60

• Lengths of the time series (L) in the data sets vary from 24 to 2709

• Sizes (number of time series N) of the data sets vary from 40 to 16,637

3.6.1 Experimental Setting

We first transform all the time series data to CWT, SAX and FFT. SAX

parameters are N = Li, n = dN
5
e (meaning blocks of length 5), an alphabet of four

with SAX-Bitmap level of 4. The values for L and n can be optimized for different

data sets to further increase accuracy. We have experimented with several

different values around the vicinity of the given values (n = dN
6
e, L ∈ [3, 4])

for randomly selected datasets and have seen that the improvement in precision

is still evident on similar scales. For the Complex Wavelet Transformation we

utilized the Dual-Tree CWT implementation given in [67] with detail level L = 5.

We used both the complex and real parts by taking the absolute value of the

CWT coefficients. We performed the same experiments also on the raw time series

without any modification (TS) to compare the effectiveness of the representations.

Since the objective of this study is not to find solutions for specific cases

and we aim to enhance RF via diverse results for general cases, we did not fine

27

tune parameters, we used the same set of parameters for all the data sets for an

impartial treatment.

In the experiments, we explored 5 different methods of top-k retrieval:

1. nearest neighbor (NN)

2. MMR with λ = [0.5, 1, 1] (MMR1)

3. MMR with λ = [0.5, 0.75, 1] (MMR2)

4. CBD with α = [3, 1, 1] (CBD1)

5. CBD with α = [3, 2, 1] (CBD2)

In the stated configuration, we explore the effects of diversification on the

accuracy by varying the level of diversification in different iterations. We note that

MMR2 and CBD2 cases decrease the diversity in a more graceful way whereas

MMR1 and CBD1 go directly to NN case after the initial iteration. We did

not try to optimize the parameters (λ and α) of the diversification schemes and

the values present themselves as mere intuitive estimates. We implemented a

unit normalization method for each dataset and used cosine distance for all the

experiments.

We also implemented the method given in [46] to compare the performance of

our algorithms. This method uses a piecewise linear approximation (PLA-RF)

for time series and associates a weight for each part of the series when calculating

the distances to query. These weights are modified in each iteration of feedback

according to the user feedback.

In the experiments, we model the user as a person seeking similar time series

from the same class in the dataset. Under this model, the class of the series is

used to generate relevant/irrelevant user feedback after each RF iteration. Items

in the result set which are of the same class as the query are considered relevant

and vice versa. The experiments were performed on a leave-one-out basis such

that we use each and every time series in the database as a query and RF is

28

executed with the related parameters using the database excluding the query

itself. Accuracy is defined by precision value based on the classes of the retrieved

top-k set. Precision for the query is calculated using the resultant top-k list and

the averaged precision over all the time series in the database is considered as the

final performance criteria which are defined below:

Query Precision(Tq) = 1
10

∑10
i=1 δ(i)

Average Precision = 1
N

∑
∀Tq∈TSDB Query Precision(Tq)

where δ(i) =

{
1 if class of Tq is equal to class of Ri

0 otherwise

29

2
0

4
0

6
0

8
0

5
0

1
0
0

NN

T
S

2
0

4
0

6
0

8
0

5
0

1
0
0

C
W

T

2
0

4
0

6
0

8
0

5
0

1
0
0

S
A

X

2
0

4
0

6
0

8
0

5
0

1
0
0

F
F

T

2
0

4
0

6
0

8
0

5
0

1
0
0

MMR
1

2
0

4
0

6
0

8
0

5
0

1
0
0

2
0

4
0

6
0

8
0

5
0

1
0
0

2
0

4
0

6
0

8
0

5
0

1
0
0

2
0

4
0

6
0

8
0

5
0

1
0
0

MMR
2

2
0

4
0

6
0

8
0

5
0

1
0
0

2
0

4
0

6
0

8
0

5
0

1
0
0

2
0

4
0

6
0

8
0

5
0

1
0
0

2
0

4
0

6
0

8
0

5
0

1
0
0

CBD
1

2
0

4
0

6
0

8
0

5
0

1
0
0

2
0

4
0

6
0

8
0

5
0

1
0
0

2
0

4
0

6
0

8
0

5
0

1
0
0

2
0

4
0

6
0

8
0

5
0

1
0
0

CBD
2

2
0

4
0

6
0

8
0

5
0

1
0
0

2
0

4
0

6
0

8
0

5
0

1
0
0

2
0

4
0

6
0

8
0

5
0

1
0
0

R
o

u
n

d
 1

R
o

u
n

d
 2

R
o

u
n

d
 3

F
ig

u
re

3.
6:

P
er

fo
rm

an
ce

fo
r

th
re

e
ro

u
n
d
s

of
R

F
fo

r
al

l
th

e
d
at

as
et

s
(p

re
ci

si
on

sc
al

ed
to

10
0

in
y
-a

x
is

ve
rs

u
s

d
at

as
et

n
u
m

b
er

in
x
-a

x
is

)

30

3.6.2 Experimental Results

The experimental results for diversity in the result set are given in Figure 3.6

for all the data sets. Each row in the figure corresponds to one of five retrieval

methods and each column corresponds to the representation (TS, CWT, SAX,

and FFT) used. In each individual graph, the average precision in different RF

iterations is plotted with the data set number given in x-axis. We present an

aggregate result here to summarize the results.

Table 3.1: Average Increase (absolute) in Precision

RF Round 2 3
NN 9.08 12.73
MMR(λ1) 14.19 19.98
MMR(λ2) 15.75 20.01
CBD(α1) 18.88 22.98
CBD(α2) 12.60 23.44
PLA-RF 3.7 4.4

We calculated the precision (scaled to 100) difference between different rounds

and the first round of RF for a particular representation, method and data set

(4 representations x 5 methods x 85 data sets = total 5100 cases). Histogram

of the resulting improvements is provided in Figure 3.7. Differences in precision

(averaged over all cases) are provided in Table 3.1 to quantify the performance

increase with the use of diverse RF. We also performed a t-test between the

average values given in the table and a zero mean distribution to verify the

statistical significance of the improvement. The p-values, in the range of 10−110,

are notably smaller than 0.05 which is considered as a threshold for significance.

RF with the configurations given in this study improves accuracy in all cases

without any dependence of data type or data representation and it provides

significant benefits with 0.50 point precision increases in some cases. We also

note that the proposed methods outperform the state of the art.

Since the experiments produced large amount of results (given the number of

time series data types, representations, top-k retrieval methods), for illustrative

purposes, we consider a reference case where the time series without any

31

0 5 10 15 20 25 30 35 40 45 50

Histogram of Precision Increase in RF Round 2

0

50

100

150
N

u
m

b
e

r
o

f
C

a
s
e

s

0 5 10 15 20 25 30 35 40 45 50

Histogram of Precision Increase in RF Round 3

0

20

40

60

80

100

N
u

m
b

e
r

o
f

C
a

s
e

s

NN MMR
1
) MMR

2
) CBD

1
CBD

2

Figure 3.7: Histogram of increase in precision with different RF settings feedback

transformation and NN only method is used. Accordingly, for each RF round

and each data set, the accuracy results are normalized to a total 100 with

respect to the base case for that particular data set and RF round. Figure

3.8 shows the normalized results averaged over all the experimental cases. CWT

based representation outperformed FFT, SAX and the time series without any

transformation (TS) in nearly all cases. We note that representation parameters

are not optimized and different results may be achieved by further optimizing

transformation parameters. We did not perform such rigorous testing since it

would divert us from the main focus of the study. However, CWT performed

better consistently with no need of parameter optimization.

32

NN MMR
1

MMR
2

CBD
1

CBD
2

70

80

90

100

110
RF Round 1

TS CWT SAX FFT

NN MMR
1

MMR
2

CBD
1

CBD
2

80

90

100

110
RF Round 2

NN MMR
1

MMR
2

CBD
1

CBD
2

90

100

110
RF Round 3

Figure 3.8: Normalized performances of different methods and representations

Although NN achieves the best performance in the first iterations of RF

as expected, introducing diversity in the first iteration leads to a jump in RF

performance exceeding NN in nearly all the cases. In RF round 3, CBD2,

the best performing method, adds 6.3% (p-value < 0.05) improvement over the

reference case and 2.5% (p-value < 0.05) over the case which uses NN method

with CWT. Diversity increases its effect further in the third rounds where NN

is outperformed even in more cases with similar performance advancements. We

also note that CBD1 and CBD2 perform best in second and third iterations

respectively. This also underlines the enhancement in performance due to

33

increased diversity if the number of iterations increases.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Purity

99

100

101

102

103

104

105

106

107

108

109

110

N
o

rm
a

liz
e

d
 P

re
c
is

io
n

 I
n

c
re

a
s
e

Datasets

Linear Fit

Figure 3.9: Normalized performances of different datasets versus purity of dataset

We also investigated the relation between cluster separability within the

dataset and the improvements due to diversity. For this purpose, we calculated a

separability score for each data set by using a k-means classifier and the average

accuracy of the classifier is considered as the separability of the data set. This

score, which is in the range 0 − 1, essentially quantifies the separability of the

classes where a score closer to 1 means easily classifiable datasets. We plot the

normalized precision described in the previous paragraphs against the purity of

the related dataset with the corresponding linear fit in Figure 3.9. Effect of

diversity is not significant where classes are already separable (datasets with

purity in the range [0.75, 1]) which is inline with our expectations. Positive effect

of diverse retrieval increases when the classes are more interleaved which is the

harder case in terms of system performance.

34

3.7 Conclusion

Even though combinations of diversity and RF have been explored in the fields

of information retrieval and text mining, this successful concept did not attract

much attention for time series analytics. This chapter explores the use of diversity

enhanced RF for improving system accuracy and increasing user satisfaction in

time series retrieval applications. We also illustrated the statistical background

of the potential of diversity for increasing RF precision.

Experimental results on a wide variety of real data demonstrates that regard-

less of the selected representation, even with a relatively simple RF model, user

feedback increases the retrieval accuracy. Results show precision improvements

even in just one iteration of user feedback confirming the suitability and potential

of RF in the similarity based time series search scenarios. Additionally results

endorse our intuition and shows even higher accuracy improvements when

diversity within the result set is used in the first iteration of RF in many of

the cases.

The intuitive cluster based diversity method, without any rigorous parameter

optimization, performed higher in terms of overall precision. Fine tuning of

the diversity balance according to the dataset properties and user objectives

can extend the improvements. We also note that methods with higher level of

diversity (MMR2 and CBD2) perform superior with respect to their counterparts

in the third iteration of RF. This also underlines the enhancement in performance

due to increased diversity as the number of iterations increases.

The analysis of the results in terms of cluster separability withing the dataset

provides evidence in favor of result diversification performing better in non-pure

and non-separable data cases which are the challenging cases in the performance

of machine learning and retrieval systems.

35

The presented results and analysis can serve as a basis for new approaches

for diversification of time series data. During our exploration of the topic, we

experimented different potential approaches for diversification of time series. We

adapted matching based similarity (e.g., k-n match [68]) and STFT (short time

fourier transform [69]) for time series diversification. However, we did not include

their discussions in this study as the proposed approaches produced better results

than these possible alternatives.

36

Algorithm 2 High-level algorithm for representation feedback system

1: r is given as the number of representations
2: Initialize parameter NumberOfIterations
3: q1 is given as the initial query in time domain
4: TSDBr is given as the time series database with representation r
5: if Representation Feedback via Weighting then
6: TSDB = Concatenation the representations (TSDBr)
7: Initialize β weights
8: Initialize parameter k // number of items to retrieve
9: else if Representation Feedback via Partitioning then
10: Initialize parameter ki for i : 1 . . . r
11: end if
12: for i = 1→ NumberOfIterations do
13: // Find Top-k results using any alternative method
14: if Representation Feedback via Weighting then
15: R = Top-K(q1,. . . ,qi,TSDB,β)
16: else if Representation Feedback via Partitioning then
17: R = ∅
18: for j = 1→ r do
19: R =R ∪ Top-K(qj1,. . . ,qji ,TSDBj,kj)
20: end for
21: end if
22: // Let user grade the retrieval results
23: (Rel,Irrel) = UserGrade(R)
24: // Expand query points via relevance feedback
25: if Representation Feedback via Weighting then
26: qi+1 = Relevance Feedback(Rel,Irrel)
27: else if Representation Feedback via Partitioning then
28: R = ∅
29: for j = 1→ r do
30: qji+1 = Relevance Feedback(Rel,Irrel)
31: end for
32: end if
33: // Update representation feedback parameters
34: if Representation Feedback via Weighting then
35: β = UpdateWeights(β,Rel,Irrel)
36: else if Representation Feedback via Partitioning then
37: ki = UpdateK(ki,Rel,Irrel)
38: end if
39: end for

37

Chapter 4

Variations of Time Series

Relevance Feedback

This chapter further examines the different variations of the RF system defined

in Chapter 3. We present two modifications to the proposed algorithms to satisfy

different application requirements and data properties.

Firstly, we propose representation feedback which is a distinctive aspect for

time series data. The proposed two methods tackle the problem of selecting the

satisfactory representation automatically without a human intervention using the

already available user annotations. This can be useful in cases where different

representations are relevant for different users (groups) or in dynamic cases where

optimal representation can vary because of the incoming data properties.

Secondly, we propose the use of autoencoders for learning data-aware repre-

sentations from the time series data to be used in our RF framework. Successful

application of this concept leads to decrease in both computational and memory

requirements of the retrieval engine. We also report that learning data-aware

representation leads to increase in accuracy in some cases which indicates the

potential of this method for other time series analytics tasks.

38

4.1 Representation Feedback

Choice of representation has significant effects on the accuracy of the system as

expected and observed from the experimental results with result diversity. This

can be caused by the properties of the time series such that meaningful and useful

clusters are not separated as good as a expected with particular representation

when compared with others. This issue can partially be addressed by offline

experimenting with different representations against some performance parameter

and choosing the representation for the system accordingly. But this approach

can fail when the data content and properties change with dynamic modifications

to the database. Secondly, a fixed and particular representation may not be

able to represent a user’s (or a user group’s) intention as well as some other

representation. Moreover, different users’ objectives can vary even when using the

same time series database. As an example, a group of users might be interested in

time domain features while other groups searching for a frequency domain feature.

A generic and universal time series representation appropriate for all the possible

application areas and user intentions is simply not possible, proved by the vast

amount of research effort on the problem. Hence, we naturally see different time

series representation proposed in the research community for different cases and

applications.

For alleviation of the representation choice problem, one can exploit the

user feedback for deciding on both related items and related representation(s).

We investigate two methods for representation feedback. The first method

partitions the top-k list proportionally to the different representations available

and attempts to find best performing representation or the best combination of

representations. Secondly, we concatenate different representation vectors and

use a feature learning method to select the best performing parts of a variety of

representations. The high level flow of the representation feedback algorithm is

given in Algorithm 2. This method is used in conjunction with query modification

in each iteration as presented in Chapter 3. The benefit of fusing different

time series representations is to reach an aggregate expressive power from each

representation, with implicit diversification to improve the RF performance.

39

4.1.1 Representation Feedback via Top-k List Partition-

ing

In this method, we populate the top-k list using retrieved items from numerous

representations and interpret the user annotation to converge to the represen-

tation which is expected to maximize user satisfaction. This method is used

in conjunction with the traditional query modification in the following RF

iterations. The important benefit of fusing different time series representations

is the expressive power of each representation which depicts a contrasting angle

of the data which may not be captured otherwise. This ensures a comprehensive

result set with an implicit diversity generated by the retrieval process further

improving RF performance. The modifications to the RF system is presented in

Figure 4.1.

Proposed technique partitions the k value of the system into different ki values

(where the sum of kis add up to k), each value regulating the share of different

representations in final result set. Equal distribution can be selected in the first

round of RF. Any priori knowledge about the performance of the representations

with respect to user intention or data properties can be used to calculate better

initial estimate. Feedbacks from all the user base of the RF system can be used

to set the starting ki values more accurately.

Top-k set from each of the representations available are found by using any of

the NN , MMR or CBD retrieval methods. ki items from each of the respective

top-k list are chosen, compiled into a single top-k list and presented to the user.

After evaluation of the user, ki values are updated according to the accuracy of

the related representation. Starting value and update of the ki partition are given

in Equation 4.1.

Initialization:

ki =

[
k

r

]
where r is number of representations

Update:

ki =
Number of relevant items from representation i

Number of relevant items
∀i ≤ r

(4.1)

40

Figure 4.1: Representation feedback with top-k list partitioning

4.1.2 Representation Feedback via Weighting

As our main aim is to understand the user intent and we lack any prior indication

about the intent, it is important to identify generic local and global features which

are beneficial in expressing different user targets. By building a framework built

on general principles, each user intention will be associated with a subset of

these generic features. For this purpose this technique begins with concatenation

of each representation forming a longer vector including different properties of

the time series, depending on the perspective and expressive power of each

representations used. This aggregate vector can be considered a new hyper-

vector which can map the user objectives more thoroughly, due to a composite

and holistic view of time series. Representations should be chosen such that

41

this combination includes possible user intents as much as possible by selecting

representations with different perspectives, each providing novel information. The

flow of the method is provided in Figure 4.2.

Figure 4.2: Representation feedback via weighting approach

Following the aggregation step, specific features important to the user should

be identified based on the interactions. For this purpose, a simple learning step

is implemented which is based on a linear model of the generic properties by

modifying similar approaches from information retrieval [22]. The user objective

is modeled as a normalized linear combination of the properties of the time series

where each weight corresponds to the relevance of the respective property for user

objective:

User Intention =
NF∑
j=1

βj.T j (4.2)

42

where NF : Number of features and
∑NF

j=1 β
j = 1.

To estimate the β weight parameters, we analyze the variation of the particular

feature within the relevant items. If a particular feature is favored by the user,

some consistent values in that particular field is expected and vice versa. We

determine the importance of each feature by comparing the decrease of the

standard deviation of the particular feature within the relevant items and the

variation of that specific feature in the whole dataset. We use this ratio as

an estimate for β parameters. Algorithm 3 details the estimation and iterative

update of β parameters. β importance weights are used in the similarity

calculations of top-k ranking to blend user preferences in the present ranking.

Importance weighting can be used in all of the previously explained diverse

retrieval methods by introducing the related process in the feedback updates

and the distance calculations.

Algorithm 3 Estimation and update of β parameters

1: INITIALIZATION
2: T ji : jth feature of time series i (or aggregated vector)
3: NF : number of features
4: σj = Standard deviation over T j1 , T

j
2 , . . . , T

j
N ∀j

5: βj = 1
NF ∀j : 1, . . . , NF

6: UPDATE
7: for each RF round do
8: if |Rel| > 3 then
9: Analyze standard deviation differences
10: for j = 1→ NF do
11: σ̂j = standard deviation over T ji where Ti ∈ (Rel)

12: ∆σj = σj

σ̂j

13: end for
14: Normalize ∆σj = ∆σj∑

j ∆σj ∀j : 1, . . . , NF

15: Update βj = ∆σj+βj

2
∀j : 1, . . . , NF

16: end if
17: end for

43

4.1.3 Evaluation

We have experimented with the proposed representation feedback method and

we summarize the results for its use in conjunction with item diversity. Results

of normalized performance with respect to the baseline (NN method in the first

round of RF) averaged over all the data sets are given in Figure 4.3. We note that,

in contrary to our item-only diverse RF method results provided in the previous

section, pure NN retrieval achieves similar performance when top-k partitioning

representation feedback is used. We associate this difference in results with the

observation that data items retrieved from different representations implicitly

provide a diverse result set which improves the performance of RF without the

need for further item diversity.

Figure 4.3: Normalized performances of top-k partitioning representation feed-
back methods

44

We also compare top-k partitioning representation feedback with the best

performing method found in the item diversity experiments in Figure 4.4. The

figure illustrates that our principle aim is achieved by the method and as the

RF process evolves with subsequent iterations the system converges to the best

performing representation. Pure NN retrieval is used in this comparison, since

it performed similarly to the other diverse retrieval methods when used in

combination with representation feedback.

1 2 3

RF Round

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

M
e

a
n

 P
re

c
is

io
n

TS with CBD
1

CWT with CBD
1

SAX with CBD
1

FFT with CBD
1

Representation feedback with NN

Figure 4.4: Accuracy comparison of top-k partitioning representation feedback
with item-only diversity

Secondly, we present the results for representation feedback via weighting on

multi-representation vectors. For clarity, we performed experiments on three

randomly chosen data sets: ECG200, fish and synthetic control with CWT,

TS, SAX and CWT+TS representations. NN and the CBD1 diverse retrieval

methods have been used for analyzing diversity effect on performance and the

results are depicted in Figure 4.5. After analyzing the results, we observe that

45

the weighting mechanism is not compatible with SAX-Bitmap representation

since the accuracy in the second round of RF is lower than the performance

the initial round of retrieval. We consider to possible explanations to this:

SAX-bitmap features may well be correlated with each other or SAX-bitmap

representation is not suitable for weighted similarity measures. Leaving out the

SAX-Bitmap representation, in most of the cases weighting approach can provide

significant performance gains. Moreover, contrary to top-k partitioning case,

diversity retrieval techniques can further enhance the accuracy of the system in

the weighted representation feedback case.

Figure 4.5: Performance of representation feedback with weighting (precision in
y-axis vs RF round in x-axis)

The figure also shows that the performance of combined representations (CWT

and TS representation couple is considered due incompatibility of SAX-Bitmap)

46

with representation feedback via weighting approach can increase the performance

of the RF system. We also note an interesting case, the synthetic control

data set, where the aggregated multi-representation (CWT+TS) has performed

considerably better than the individual representations. This can be considered

an example case to our previous assertion that the extended span of multiple

representations can explain different aspects of the data or user intention more

accurately leading to a more satisfactory overall system.

4.2 Time Series RF using Autoencoders

Autoencoders have been proposed in machine learning as a structure to learn

and transform the input data into a set of important parameters from which

the original data is synthesized back. In this respect, autoencoders are a good

candidate to extract useful data-oriented features which are also low-dimensional.

One can utilize autoencoders for two important prospects in time series: choosing

and blending different time series representations, and reducing the already

extracted set of features to important features. Since the autoencoder model does

not need any teacher who dictates the class of the time series, this unsupervised

learning method can be applied for RF based time-series retrieval achieving the

two goals via an analysis of the dataset.

Autoencoders are implemented using neural networks, defined by the layers

of neurons stacked on top of each other which can be connected in different

configurations. Each artificial neuron is composed of a weighted summation unit,

summing all the signals in its input and an activation function (σ) which is

generally chosen as a non-linear function. A class of neural networks called

multilayer perceptron (MLP) which has at least three layers (an input and

output layer, one or multiple hidden layers) is constructed of fully interconnected

neurons. The topology and the number of nodes in the network determine the

space of possible learnable functions whereas the weights between nodes after the

training phase defines the exact functionality of the network.

47

Time series data is used in the autoencoder network both as input and

output where the input data is first ‘encoded’ to a new representation space z

(z = Hencoder(TSi)) and then decoded using the encoded values to the final output

(TS ′i = Hdecoder(z)). The criteria for a learned model and representation is defined

by a loss function of choice based on the data and application which is usually the

discrepancy between the data and its generated counterpart. Although replicating

the input time series instead of classification or ranking may not be considered

a good learning target, the useful and important product of autoencoders is the

encoded data, z, which identifies key structures within the data. This process,

which can also be considered as a non-linear dimension reduction determining

local and global features, encodes the raw or transformed time series data into

a sparse vector to be used in the RF based retrieval framework. Autoencoder

essentially learns a data aware representation, and reduces the length of the

time series which will decrease the runtime of the retrieval process. It also

enables combining of different transformations and identifying important features

from different representations if used with multiple representations. The overall

algorithm is presented in Algorithm 4.

We employ an MLP based autoencoder network whose configuration is

provided in Figure 4.6 where TSi is the input time series and TS ′i is the

synthesized series using the encoded values (z) in the hidden layer. Constraining

the number of neurons in the encoder (hidden) layer to be considerably less than

the input layer forces the model to learn a subset of important features within

the data. We denote the parameter θ < 1 (defined in Algorithm 4 Line 8) as

the ratio of the number of neurons in the encoder to the number of input layer

neurons to quantify compression ratio.

We aim to minimize the difference between original and regenerated counter-

parts ((TSi − TS ′i)2) or (F(TSi) − F(TSi)
′)2)) in the training phase. Training

of the autoencoders (Algorithm 4 Line 10-13) is carried out by backpropagation

which is a gradient descent based optimization technique used widely in training

neural networks. We also include regularization parameters to the cost function

used in the optimization process so that each neuron in the hidden layer activates

with respect to a group of time series specializing to specific features present in

48

Figure 4.6: Autoencoder network structure

this particular group. The result of the training phase provides us the weight

matrix which characterizes the encoder functionality Hencoder.

After the training phase, the time series database and queries are encoded into

the newly learned representation using the weight matrix (Algorithm 4 Line 15-

18) and the retrieval phase with the diversity achieving methods can be executed

without any change.

The database (TSDB in Algorithm 4 Line 6) can be constituted of the

following: time series (TS), transformation (FFT, CWT, SAX, etc.) of time

49

series, a combination of time series and/or its representation (e.g. TS, FFT,

CWT features concatenated). If a combination is used the system can extract

different perspectives from multiple representations from the data similar to the

representation feedback process presented in Section 4.1.

4.2.1 Algorithmic Complexity

The initial size of time series database, N · L is reduced to N · [L
θ
] after the

encoding process which changes the values of the coefficients in the computational

complexity given in Section 3.4.1. This proportional decrease is achieved both in

terms of computational load and memory. The updated complexity values are

provided below:

The NN based retrieval first calculates distances to all items in dataset (O(N ·
[L
θ
])) and finds k nearest items (O(k ·N)) which corresponds to a total complexity

of O(N · [L
θ
] + kN) = O(N).

For the MMR case we have two possibilities with respect to Equation 3.3:

• Without memoization: Distance calculations to all items in the dataset

(O(N · [L
θ
])), distance calculations for relevant set items (O(N · [L

θ
] · (k− 1) ·

(k− 2)/2) = O(N · [L
θ
] · k2), finding the minimum distance element k times

(O(k ·N)) with an overall complexity of O(N · [L
θ
] · (1 + k2)) = O(N).

• With memoization: Distance calculations to all items in the dataset (O(N ·
[L
θ
])), distance calculations from lookup table for relevant set items (O(k−

1) · (k − 2)/2) = O(k2)), finding the minimum distance element k times

(O(k ·N)) with an overall complexity of O(N · [L
θ
] +N · k) = O(N) (where

N · [L
θ
]� k2).

For the CBD case, we first find αk nearest neighbors (O(N · ([L
θ
] + αk)) and

cluster the results. K-means clustering (based on Lloyd’s which has a limit i for

50

the number of iterations) is considered O(N · k · [L
θ
] · i) = O(N · k · [L

θ
]) algorithm.

The total complexity for CBD case is O(N · ([L
θ
] + αk + [L

θ
] · k · i)) = O(N).

4.2.2 Results for Diverse RF Using Autoencoder

We execute the same experimental setup, using TS, CWT, SAX representations

and NN , MMR1, MMR2, CBD1, CBD2 methods to evaluate the RF system

with autoencoders. Additionally, we also experimented on the combination of all

the representations (TOTAL) as the input to the system.

We have varied the sparsity index θ ∈ [3, 6, 9] to observe the effects of

compression on the results. Autoencoder hidden layer node numbers are selected

as [L
θ
] and are trained using MATLAB neural network toolbox with default values

except for sparsity regularization term which is selected as 4 instead of default 1

to emphasis sparsity in the encoder.

We have experimented on the full 85 data sets, containing time series data

of very different properties, to assess the generality of the autoencoder based

method. We denote the different cases with the respective input representation

and sparsity index, e.g. CWT 3 denotes the outputs of a trained autoencoder

with θ = 3 (length of data is reduced to a third of the original length) and CWT

transformed time series as input.

We use the normalized precision to quantify the performance, such that

precision in the first round of RF with NN is normalized to 100 and all the other

precision values are scaled respectively. The normalization is performed for each

dataset and transformation (each θ case is also considered a new transformation

since the data input for the RF system changes) separately to illustrate the effect

of RF more discretely. The results provided in Table 4.1 demonstrate that diverse

retrieval methods achieve similar accuracy improvements with the encoded data.

We also observe that even though we reduce the data into a much reduced form in

the θ = 9 case the diverse RF system is still working with graceful degradations

instead of a sudden breakdown in performance. Precision improvements for the

51

Table 4.1: Normalized precision improvements with varying autoencoders for
third round of RF

NN MMR1 MMR2 CBD1 CBD2

TS 119.7 120.0 119.7 122.3 123.5
TS3 120.3 121.4 121.5 123.2 124.3
TS6 119.7 120.4 120.2 122.5 123.7
TS9 119.0 120.0 120.0 122.4 123.6

CWT 119.2 119.5 119.0 121.4 122.3
CWT3 117.7 118.6 118.3 120.1 120.7
CWT6 117.6 118.5 118.4 119.8 120.3
CWT9 117.9 118.8 118.5 120.3 121.0

SAX 126.8 127.4 130.3 129.6 131.2
SAX3 121.4 119.8 121.8 123.7 124.7
SAX6 121.0 119.2 122.3 123.3 124.7
SAX9 119.8 118.2 121.1 122.4 123.9

FFT 119.5 119.9 119.4 121.7 122.3
FFT3 120.6 121.1 120.6 122.7 123.3
FFT6 119.5 120.3 119.9 121.8 122.6
FFT9 119.3 119.7 119.6 121.8 122.2

TOTAL 119.1 119.7 119.1 121.1 121.8
TOTAL3 118.5 119.3 118.7 120.4 121.0
TOTAL6 118.8 119.4 119.0 120.7 121.2
TOTAL9 118.5 119.3 118.9 120.4 121.1

TOTAL representation are also on a similar scale.

The average precision levels (scaled to 100) over all of the datasets are provided

in Table 4.2 with respective methods for the third RF round. We can see that

autoencoded features are performing without significant losses until θ = 6 value

except for SAX-Bitmap case which is considered important since the data is

reduced to 16.7% of its original size. The relatively close results are mainly due

to the averaging of the significant number of high performing databases in the

dataset which are evident in Figure 3.6.

We note the performance of the TOTAL representation which increases its

52

Table 4.2: Average precision levels for diverse RF with varying configurations

TS TS3 TS6 TS9

NN 85.0 84.8 83.9 82.3
MMR2 84.8 85.4 84.1 82.8
CBD2 86.9 86.9 86.0 84.8

CWT CWT3 CWT6 CWT9

NN 87.1 85.9 85.2 84.2
MMR2 86.9 86.2 85.6 84.6
CBD2 88.9 87.6 86.8 86.0

SAX SAX3 SAX6 SAX9

NN 71.9 65.5 64.5 63.4
MMR2 73.3 65.7 64.9 63.9
CBD2 74.1 67.2 66.4 65.4

FFT FFT3 FFT6 FFT9

NN 84.7 84.0 82.3 80.9
MMR2 84.4 84.0 82.5 81.0
CBD2 86.3 85.6 84.1 82.5

TOTAL TOTAL3 TOTAL6 TOTAL9

NN 86.9 88.7 88.3 88.2
MMR2 86.8 88.8 88.4 88.4
CBD2 88.5 90.2 89.8 89.9

performance as it gets sparser and outperforms all the other configurations,

supporting the expectation that the autoencoder can remove unnecessary features

from the representations and amplify the useful features directly by training

on the data. We also looked at the lowest performing 15 datasets (which

have precision levels below 70% after 3 rounds RF with the NN method), i.e.,

cases that need most improvements. The results for this subset are provided

in Figure 4.8 under different transformations and methods for the third RF

iteration. We present the results for NN and CBD2 with θ = 6 autoencoders

to illustrate the general case based on our previous findings. The performance

increases are visible for these datasets more explicitly with CBD2 for TOTAL6

approximately the upper bound and the base case NN with TS is the lower bound

for performance. We can see from the figure that the proposed transformations,

autoencoder structure and the diverse retrieval methods can increase the accuracy

considerably with nearly 0.20 point improvement (around one-third increase

relatively). In addition to these analysis, we experimented on using principal

53

component analysis (PCA) with similar compression values as an alternative to

autoencoders on randomly selected datasets and have observed that autoencoder

learned representations perform better in terms of precision.

Figure 4.7: 2-D histograms (number of queries) of query precision under different
methods and transformations in the third iteration of RF for Worms dataset

We illustrate the findings for query precisions and individual queries, over

Large Kitchen Appliances and Worms datasets, to get more insights on the

problem and the proposed approach. The method returns diverse results in

the first RF iteration, which directs the system for subsequent iterations. We

see that the queries are performing better under the CWT/FFT transformations

which identify more distinguishable features in these cases. We also observe that,

encoded TOTAL6 representation can distinguish the better performing transfor-

mation and amplifies it to increase the retrieval performance. This is depicted in

Figure 4.7 in which we plotted how the performance of individual queries change

with respect to retrieval method (NN vs CBD2) and transformation (TS vs

TOTAL6). If the precision in the first round of RF is very low for the query,

diversity RF has a minimal positive effect. The highest gains are seen in the

middle range of precision (0.2-0.7) where there is room for improvement and

enough information for the RF mechanism to work. It is also evident that choice

of representation can change the end result significantly for all query cases.

54

Algorithm 4 Overview of RF system using autoencoders

1: Initialize k : number of items in result set
2: Initialize RFRounds : number of RF iterations
3: Initialize λ = [λ1, λ2, . . . , λRFRounds]: MMR parameters
4: Initialize α = [α1, α2, . . . , αRFRounds]: CBD parameters
5: Input q1 : initial query (transformed if needed)
6: Input TSDB : time series database (transformed if needed)
7: // Parameters for autoencoder
8: Initialize θ for sparsity level of the autoencoder
9: σ as activation function of ANN
10: Train Autoencoder
11: Initialize network with Li input nodes, θ.Li input nodes and Li output nodes
12: Train the network using back propagation
13: Extract the weight and bias (W,b) matrices for encoder
14: Diverse Retrieval System
15: for i = 1→ N do
16: TSDB′(i) = σ(W.TSi + b)
17: end for
18: Transform the query : q′1 = σ(W.q1 + b)
19: for i = 1→ RFRounds do
20: // Find Top-k results
21: if Nearest Neighbor then
22: R = Top-K(q′1,. . . ,k,qi,TSDB

′)
23: else if MMR then
24: R = Top-K MMR(q′1,. . . ,qi,k,λi,TSDB

′)
25: else if CBD then
26: R = Top-K CBD(q′1,. . . ,qi,k,αi,TSDB

′)
27: end if
28: // User annotation of the result set
29: (Rel,Irrel) = User Grade(R)
30: // Expand query points via relevance feedback
31: qi+1 = Relevance Feedback(Rel,Irrel)
32: end for

55

Phoneme

Beef

InlineSkate

Worms

SmallKitchenAppliances

Haptics

ScreenType

Cricket_Y

LargeKitchenAppliances

Cricket_Z

Cricket_X

RefrigerationDevices

MiddlePhalanxTW

Adiac

50words

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

Mean Precision

N
N

 C
W

T

C
B

D
2
 C

W
T

N
N

 T
S

C
B

D
2
 T

S

C
B

D
2
 T

S
6

C
B

D
2
 C

W
T

6

C
B

D
2
 T

O
T

A
L

6

F
ig

u
re

4.
8:

P
er

fo
rm

an
ce

of
R

F
w

it
h

va
ri

ou
s

co
n
fi
gu

ra
ti

on
s

fo
r

d
at

as
et

s
w

it
h

lo
w

p
re

ci
si

on

56

4.2.2.1 Runtime Performance

We present the runtime performance of the methods, initially with the times of

the transformations into different representations. The computation platform is

MATLAB running on a Windows 10 with Intel i7 4720HQ 2.6 GHz processor and

16 GB of RAM. The accumulated runtime for all the 85 datasets is provided in

Table 4.3. SAX-Bitmap transformation is the slowest transform with a significant

difference. We think that this is mainly due to very efficient FFT libraries

available in MATLAB which is also used extensively in CWT transformation

code.

Table 4.3: Total transformation runtime for all the datasets (minutes)

CWT SAX FFT
4.28 62.87 0.76

We also examined how the training time of the autoencoder varies with respect

to θ parameter and to different transformations. The results for all the datasets

summed up is provided in Table 4.4. We observe that training time increases

with the length of encoded data. This is expected since the length of the time

series affects the number of nodes and the total number of weights in the network

which directly affects the total training times.

Table 4.4: Total training time for autoencoders (minutes)

θ = 3 θ = 6 θ = 9
TS 127.29 92 79.44
CWT 176.02 119.48 99.84
SAX 63.56 56.78 53.83
FFT 66.69 57.53 53.85
TOTAL 719.17 405.98 308.78

The total experiment runtime (over all the datasets total) is provided in

Table 4.5 with respect to different retrieval methods, sparsity index(θ) and

transformation methods. We note the significant reduction in runtime for

autoencoded data in which some cases we have 7 fold decrease with respect to

full time series data. Each transformation has a different runtime performance

57

which depends on the length of the transformed time series, which is expected,

as mentioned in Section 4.2.1 (Average length for different transformation is as

follows: TS: 422.2, CWT : 564.3, SAX: 256.0, FFT : 212.0, TOTAL: 1454.5).

We also see that the diversification methods, MMR and CBD, have comparable

runtime performances.

Table 4.5: Total runtime of experiments (minutes)

NN MMR1 MMR2 CBD1 CBD2

TS 119.5 148.7 157.3 136.8 151.8
TS3 41.6 58.1 66.9 55.4 68.1
TS6 21.8 35.0 43.9 34.7 46.6
TS9 15.4 27.6 36.7 28.1 39.6

CWT 125.2 156.1 164.4 142.3 157.8
CWT3 48.7 66.5 75.9 64.4 77.1
CWT6 25.2 39.1 49.0 39.8 52.2
CWT9 18.3 31.3 40.5 31.3 43.4

SAX 65.5 86.9 96.2 80.1 92.9
SAX3 29.7 44.7 54.3 42.4 54.5
SAX6 16.5 29.2 38.5 29.0 40.5
SAX9 11.3 23.1 32.4 23.5 34.8

FFT 61.2 81.1 90.0 76.6 90.0
FFT3 21.9 35.0 43.9 34.7 46.5
FFT6 12.0 23.6 32.3 24.6 36.0
FFT9 8.8 19.9 28.7 21.2 32.7

TOTAL 358.2 426.0 451.3 394.5 439.7
TOTAL3 134.4 166.0 175.1 152.3 168.9
TOTAL6 68.6 90.0 99.0 84.6 98.4
TOTAL9 46.8 64.1 73.1 61.6 74.6

58

4.3 Conclusion

In this chapter, we propose two different extensions to further enhance the time

series RF framework defined in Chapter 3 aiming to solve the representation

selection problem and to decrease the computational load of the system.

First of all, we propose a representation feedback method which automates

the off-line process of representation selection for time series data. This is an

important aspect of time series data since it can affect the end result of the

analytics task significantly. Among the two methods proposed, top-k partitioning

method forms the result set from a variety of different representations. According

to the relevancy of the selected items, the system self-regulates to increase the

items from the successful representation. Experimental results show that as the

RF iterations progresses the system converges to an optimal state in terms of

representations.

In the second representation feedback method, a hyper-vector aggregated from

the different representations is used and the system selects the appropriate parts

of the hyper-vector using the user preference. We report from the experimental

results that the hyper-vector representation can surpass the accuracy of individual

representations for some of the datasets which shows that the aggregate vector

can be more significant than the individual parts.

These on-the-fly representation selection methods can enhance the precision of

retrieval systems especially for dynamic data scenarios. We also note that these

mechanisms can tackle the problem of multiple user groups and multiple user

goals.

As a second extension, we propose the adoption of autoencoders to learn

representations directly from the data instead of transforms developed by humans.

While learning the representations, the autoencoder network is forced to compress

the time series into a more compact form by varying the parameters of the

structure and the training objective.

59

We show, both theoretically and empirically with the experimental results,

that the computational load of the retrieval system decreases significantly with

negligible degradation in accuracy. We also observe that for some specific cases,

the use of the sparser data-aware representation can out-perform the full time

series case in terms of accuracy while still benefiting the decrease in computational

load.

60

Chapter 5

Temporal Graphs with Sparse

Time Series

This chapter studies two relatively new aspects of temporal data: sparsity and

networked time series. Sparse series is generally non-uniformly sampled time

series data which can be caused by either missing data or because of the nature

of the process. We direct our attention to sparsity based on missing or incomplete

time series data with an application that lacks the full time series data because

of scarce number of data recorders.

Networked temporal data specifies an underlying graph with time series as its

properties or edges. To study different aspects of networked temporal data, we

generate time-varying graph data using vehicle trajectories in a road network.

A query we study is computation of shortest paths, which has been a focus of

theoretical research interest for years with the most important application in route

planning in road networks. The continuously increasing demand for mobility and

the growth of online routing services promises ever increasing interest for these

algorithms and systems.

Previous research on graphs have focused mainly on static features and

calculation of network properties based on static properties of the nodes.

61

However, analysis of the time varying properties of the network has a lot of

potential real world applications. In this context, we can define a time varying

network where each network node is denoted with vi, where i stands for the

numeration of the nodes. We can use a directional model for the interactions

between nodes and denote an edge going from vi to vj as eαij which extends

the frequent notations used for graphs. Since there can be numerous forms

of relations between two particular nodes, we have used α for the αth relation

between these two particular nodes vi and vj. Each of these relations is

also time varying which means that each eαij is a time series on its own i.e.

eαij = [· · · eαij(t − 1) eαij(t) e
α
ij(t + 1) · · ·]. We also see properties of the node

itself which are captured in our model with the property set for each node i:

p1
i , p

2
i , · · · , p

β
i . These parameters are also captured in time, each being a time

series: pβi = [· · · pβi (t − 1) pβi (t) pβi (t + 1) · · ·]. An example network with three

nodes is depicted in Figure 5.1 showing the related properties for the nodes and

the relationships between the nodes.

Figure 5.1: Sample network

The road network generated in this work is a specific case of the defined model

with nodes being the road interconnections and the edges being the time varying

travel durations as the single bi-directional relation between nodes. α being the

62

total number of relations per edge is one and β, the total number of properties

per node, is zero in our case.

We describe our data interpolation systematic using the available sparse GPS

trajectories followed by the data management system provided for the research

community. We also present experiments to show the effect of static and time

varying road network graphs on the shortest path solutions.

5.1 Data Model

This section describes the raw dataset that we use for further processing to

generate the dataset. We also present the time varying graph model used in

the process along with its parameters.

5.1.1 Trajectory Dataset

We have used the Floating Car Dataset provided under Telecom Italia Data

Challenge as the underlying raw data to generate the time varying graph

dataset. This dataset contains 65,956,914 different trajectories for the 61 days

between March and April, 2015 for the city of Milan [4]. The trajectory

traces include latitude-longitude pairs, time and speed information covering the

rectangular area between the minimum and maximum latitude-longitude pairs

within 45.3335945◦N, 8.9415892◦E and 45.5725183◦N, 9.376938◦E (Figure 5.2).

Figure 5.3 shows the distribution of the collected Telecom Italia trajectories

over time. It depicts the percentage of all the trajectories as y-axis and the time

slots in a day as x-axis. The figure shows that the density of the trajectories

increases during the rush hours, i.e., between 07:30-10:00 and 17:00-19:30, and

reaches to the maximum level at 18:15. The trajectories captured during rush

hours cover approximately 38% of the total. The time slots having the least

number of trajectories belong to the night hours, from 00:00 to around 05:00,

63

Figure 5.2: Road Map of Milan

and reaches the minimum level at 03:55.

5.1.2 Time Varying Graph Structure

We generate the road network as a directed graph with vertices as latitude-

longitude pairs and edges with both fixed and time-dependent weights. For time-

dependent weights, we seek to identify accurate travel time values for 288 time

slots in a day starting from 00:00 to 23:55. In the static weight case the average

travel time of the edge is considered.

We use OpenStreetMap (OSM) [70] to gather the topology of the underlying

road network which provides an XML file based on given geo-location boundaries

with latitude and longitude values along with sequences of roads. We build the

64

Figure 5.3: Trajectory Density over Time

network by representing the road/street intersections and end points as vertices

(vi) and the road/street segments as edges (ei). We also treat each direction of

double roads as different edges which generates a bi-directional graph.

For storage and manipulation of the data, we employ Sparksee, formerly known

as DEX, which is a scalable graph database [6]. Figure 5.4 shows the layers of

the system structure.

5.2 Sparse Time Series Interpolation Process

In this section, we explain our process to generate the time-varying graph from

the sparse floating car database. We first clean the data, build the road network

and match the GPS traces with the underlying network to form a sparse time

series dataset for the network. We then estimate the incomplete parts of the

dataset using time series analysis approaches.

65

Figure 5.4: System Structure

5.2.1 Data Preparation

We aim to assign accurate time-varying travel times to the edges of the underlying

graph using the trajectory dataset. After an initial analysis, we observe that the

GPS trajectories are typically noisy and sparse, thus, careful examination and

cleansing are required. For example, we observe that 33% of the trajectories

(21,706,508) have a speed of less than 10 km/h in our dataset. Around 27% of

this subset is considered noise in terms of our application, corresponding to the

starting of the engine or finalization of the trip which does not represent the

actual traffic. The remaining data are captured during an active driving session

and represent real traffic conditions such as waiting at the traffic lights or an

interruption due to an obstruction on the road. We distinguish these two cases

via interpolation based on the location and speed information of two consecutive

traces of the same trajectory, x′ and x. We remove the data for the starting and

ending traces of the trip. As a final step, we apply the following modifications in

order to detect unusual decelerations or stops, which also do not represent real

traffic conditions, and might be caused by instantaneous circumstances:

66

∀ trajectory traces x with v < 10 km/h :

v′ = ∆distance(x′, x)/∆time(x′, x)

v =

v′ v′ > v

v otherwise

(5.1)

where ∆distance(x′, x) is the physical distance between two traces, x′, and x.

∆time(x′, x) is the time spent to arrive from the location of trace x′ to that

of trace x. v is the recorded speed provided by the trace, and v′ is the speed

computed according to the movement and time difference between x′ and x. If

the calculated speed value indicates that the vehicle is faster, we replace the

recorded speed v with movement-based speed v′.

To summarize, we calculate a synthetic speed value considering the distances

from the current trace to the previous and the next traces of the driver and the

time spent. We then compare this value with an actual recorded value. If there

is a significant difference between these two values, we consider this trace as a

sudden stop/break and update the speed value to the calculated speed.

To efficiently match the trajectory points with the edges, we partition the

graph into spatial subgraphs by exploiting the planarity of the road network.

We compute the geographically closest edge for each trajectory point in the

corresponding subgraph. The double-ways are represented by two edges with

almost the same distance to the trajectory points. The direction is disambiguated

using the previous road matches for that trajectory, if available. If it is not

available, we make the direction assignment based on the geographic position of

the point.

5.2.2 Sparsity Analysis of Time Series

After we match all trajectory points with the corresponding network, we sort the

trajectory points of each edge by date and time. For each edge, we divide each day

67

into 288 time slots, i.e., with 5-minute periods in a day from 00:00 to 23:55 and

distribute each trajectory point of the corresponding edge to the corresponding

time slot.

The different dates show similar patterns for all the days of the week. Figure

5.5 depicts the autocorrelation function for a sample edge. The figure clearly

shows an autocorrelation of the signal within a day lag with peaks at one day

and at multiples of a day. This strengthens our intuition that the data has

a daily periodicity with a relatively high level of confidence. However, the

autocorrelation function does not exhibit a clear weekly period since we do not

observe a significantly higher peak at lag seven (day).

We observe that the patterns for weekdays and weekends is similar, which

apparently seems counter-intuitive. Thus, in practice, we do not observe any

significant difference in Milan. Hence, in order to avoid space inefficiency and

lessen sparsity, we merge the same time slots of all days’ (including weekdays and

weekends) trajectory data together to form the aggregated data for each edge.

Figure 5.5: Autocorrelation of An Edge Data

Note that we do not have any value for some time slots of different edges

due to the sparsity of the traces. Figure 5.6 represents the load ratio of edges

68

with respect to the time slots. The x-axis represents the time slots while y-axis

(load ratio) shows the percentage of edges that have travel time values based

on existing real data for the corresponding time slot. The time slots having the

maximum, 37%, and the minimum, 3.5%, load factors correspond to 18:20 and

03:55, respectively. This figure clearly shows the level of sparsity of the data.

Using commercial providers’ data with larger amounts of data per time slot, like

TomTom [71], would lead us to larger load ratios. In our case, the obtained ratios

expose the need for further estimations as we explain in the following sections.

Figure 5.6: Sparsity of time series related with edges

We also need to identify outlier speed values, i.e., recorded data not due to

traffic but due to various other reasons, such as cars run over the speed limits, etc.

To detect and exclude those outliers we apply Generalized Extreme Studentised

Deviate (ESD) Test [72], which is a generalization of Grubb’s Test for more than

one outlier. Once the outliers are removed, we expect that the remaining speed

values enable us to have a better understanding of the traffic condition at each

time slot. Because we employ travel time as weights in the time-varying graph, we

aggregate the length of the edges from OSM, then divide it by the speed values.

69

5.2.3 Interpolation and Filtering

We need to address two major issues to finalize the temporal graph with the

resultant vector with 288 weights spanning a day with 5-minute intervals:

• Missing Data: After forming the daily vectors, i.e., that contain 288 slots

per day per edge, we observed that 77.68% of the vector slots do not contain

any data.

• Noise: The data after the aggregation stage has noise, i.e., high frequency

components apparent as jumps in the data, associated with it.

To address these issues we compute the frequency spectrum of the most populous

edges to give an idea about the nature of the time series involved. The average

power of the respective frequencies is plotted in Figure 5.7.

Figure 5.7: Average Frequency Spectrum of The Most Populous 4000 Edges

The spectrum shows a band-limited signal with the majority of the content in

the low-pass region. The other components out of the region are the noise that

we observe in the aggregated signal. The signal of interest is depicted with a red

band in Figure 5.7. This shows us that the signal is band-limited. The cutoff

70

frequency for the signal is 0.0069/min which we select according to the noise

level.

Algorithm 5 Algorithm for interpolation and filtering
Input:
1) S: Incomplete time series for the edge of the given network
2) δ: Minimum travel time for edge n
Output: S: Completed time series for the edge of the given network

1: procedure DataInfo(S, δ)
2: S[n], time series for the respective edge
3: Calculate µ and σ from the complete data
4: Define I . a set for missing data intervals
5: for n = 1 : size(S) do
6: I[n] ← MissingDataIntervals(S[n]) . the time slots of S[n] having no

data
7: end for
8: S ′[n] = S[n]
9: for all I[n] ∈ I do

10: if Len(I[n]) ≥ 14 then
11: Fill I[n] with δ
12: else
13: Fill I[n] with samples drawn from N (µ, σ2)
14: end if
15: Update S ′[n] missing intervals with I[n]
16: end for
17: SLPF [n] = Low pass filter S ′[n]
18: Fill missing data of S[n] with SLPF [n]

According to the signals and systems theory, this signal has to be sampled

with at least Nyquist rate which is the twice the highest frequency (Fmax) in the

signal [73]. The minimum sampling interval for the signals of interest is given in

Equation 5.2.

FNyquist ≥ 2.Fmax ≥ 0.0139

Tsampling ≤
1

FNyquist
≤ 72 minutes ≤ 14 samples (5.2)

Equation 5.2 illustrates that any signal which has data with 14 consecutive

missing data is undersampled and will cause aliasing. We observe from the data

that this requirement does not hold for most of the edges of the data. To overcome

71

these problems we develop two solutions for the respective cases. If the length of

consecutive missing data is larger than 14 samples we use the minimum duration

for that edge. This minimum duration is calculated using the length of the edge

and the speed limit where available, or the value for urban areas (50 km/h).

Else, we draw a sample data from a normal distribution N (µ, σ2) where the

parameters µ and σ are calculated from the existent data for the edge. With

these corrections in the time series, we use a low pass filter with cutoff frequency

as depicted in Figure 5.7 (this filter is applied in the spectral domain) to compute

the final time series. This interpolation technique is also called sinc interpolation

or Whittaker-Shannon interpolation for band-limited signals. The flow of the

process is outlined in Algorithm 5.

5.3 Evaluation

In this section, we compare traditional and time-dependent versions of shortest

paths solutions using the developed temporal graph and system. We aim to

quantify the difference in using a static weight graph and a time-varying graph in

finding the shortest path applications. Since the edges of the graph have different

travel time values (edge weights) for different time slots within a day, in time-

dependent shortest paths (TDSP) the employed travel time (edge weight) of an

edge changes depending when the path includes the edge. This information has

a cascading dependence on the travel times of the previous edges. The steps of

the TDSP we employ is given in Algorithm 6. The algorithm spreads from the

start vertex s to the destination vertex d, by iterating until there is no new vertex

to be processed, i.e., the shortest paths of all vertices that can be reached by s

are discovered, or d is already found (Line 8). For the edge weight between two

vertices, the algorithm uses the weight belonging to arrival time of the preceding

vertex as in Line 14.

For the standard shortest path problem, we utilize the same algorithm by

modifying the edge weight related parts (Line 12, 14). We discard the usage of

tstart and get the fixed edge weights, i.e., based on the average travel time on the

72

corresponding edges.

5.3.1 Experimental Setup

We sample the dataset by using the start and destination locations of randomly

selected 4,620 real trajectories. The distribution of the selected trajectories

(Figure 5.8) is similar to the trajectory density over the time slots (Figure 5.3).

Figure 5.8: Sample Trajectory Distribution over All Time Slots

We compare the time-varying versus static weight shortest paths using two

measures: similarity of resulting paths and gain of time-dependent shortest path

regarding the travel time. The similarity of paths is based on the common edges of

two given paths. Here we calculate the similarity between TDSP and traditional

shortest path using the Jaccard distance (Eq. 5.3). Hence, the range of similarity

index is [0,1].

sim(p1, p2) =
edgeSet(p1) ∩ edgeSet(p2)

edgeSet(p1) ∪ edgeSet(p2)
(5.3)

where p1 and p2 represent paths, i.e., an ordered vertex set.

73

Algorithm 6 Time Dependent Shortest Path (TDSP)

Input:
1) G(V,E): the spatiotemporal network whose each edge e has travel times for
different time slots
2) s: source vertex over the network
3) d: destination vertex over the network
4) tstart: start time of desired path for s and t.
Output: p: a path including vertex list

1: procedure TDSP(G, s, d, tstart)
2: p← ∅ . result path
3: Define D . a priority queue of vertices with travel time as priority index
4: D[s]← 0
5: Define P . a list of preceding vertices
6: P [s]← NIL
7: Define S . vertices having the shortest paths
8: while D.size 6= S.size ∨ d∈S do
9: v ← ExtractMin(D)

10: S ← S ∪ v . add v to discovered list
11: for all u ∈ outNeighbors(v) do
12: if u /∈ S ∧

D[u] > D[v] + edge(v, u).weight[tstart +D[v]] then
13: . the index of a vertex not included in D is +∞
14: D[u] ← D[v] + edge(v, u).weight[tstart + D[v]] . update travel time to

u
15: P [u]← v . update preceding of u
16: end if
17: end for
18: end while
19: if d ∈ D then
20: cur ← d
21: while cur 6= NIL do
22: p.addHead(cur)
23: cur ← P [cur]
24: end while
25: end if
26: return p

74

The gain on the path length, or more accurately path duration is as follows:

Θ(SPf (s, d), t)−Θ(SPtv(s, d), t)

Θ(SPf (s, d), t)
(5.4)

where the Θ function computes the duration of the path starting at t. SPtv and

SPf are the shortest paths obtained with the time-varying and fixed weights,

respectively. For each query, i.e. source-destination pair (s-d), we measure how

much gain one would get using a time-varying network instead of employing the

static network. For simplicity, we denote the path retrieved with time-varying

weights as SPtv and the one with fixed weights as SPf .

5.3.2 Experimental Results

Figure 5.9 presents the result of each measure with respect to path sizes, i.e.,

number of vertices of the paths, ranging from 1 to 80 for our road network. The

average similarity ranges from 0.18 to 1, for path sizes of 79 and 5, respectively.

Similarity between SPtvs and SPfs decreases as the path size increases (Figure

5.9a). Note that the fluctuations on the figures stem from varying the number of

samples we have for each path size. For example, there are 161 paths of length

23 vertices, and there are only 2 of length 76. Figure 5.9b illustrates that the

shortest path queries over time-varying network get higher gains, i.e., SPtv has

much lower travel time than SPf , as the number of vertices increases. Note that

the gain cannot be lower than 0, because if SPf had lower travel time at t, SPtv

would be the same as SPf according to TDSP algorithm (Algorithm 6). In other

words, if a path for a query provides more benefit, i.e., less travel time, than any

other paths starting at the same time, the path would be the resultant path of

TDSP. For the temporal graph the gain increases to 0.14, for the path with 80

vertices.

Figure 5.10 shows the results related to one query started at different times

to show the changes in the result paths. We choose a representative query with

an average of 37 vertices in all its resulting paths having the start times with

half-hour intervals. It means there are 48 different queries with the same source-

destination pair yet different start times. The x-axis of the figure represents the

75

(a) Similarity of Time-varying Shortest Paths vs Static Paths

(b) Gain of Time-varying Shortest Paths over Static Paths w.r.t. Path Length

Figure 5.9: Path Size based Analysis

76

start times of the query. The red line illustrates the similarity index between

SPtv and SPf with the corresponding start times. Similarity between SPtvs and

SPf varies in time reaching exact paths in some cases, i.e., similarity index 1,

and not exactly equal paths in other cases, with a worse case similarity index 0.5.

Additionally, we present the similarity between the consecutive shortest paths

with the green dashed line. According to the results, all result paths are at least

45% similar. In total, 15 different paths are retrieved and SPf is observed in the

time-varying shortest paths twice. On average, the consecutive paths are similar

in an hour period, probably because of the similar traffic patterns, in the period.

After the period, the selected path at the next start time change drastically, i.e.,

not smoothly any more. It may indicate the changes in the traffic conditions may

not evolve gradually. The paths belonging to night hours, i.e., 22:00-6:00, do not

change as much as the ones between 7:00 and 18:00.

The results confirm that time-varying shortest paths can reveal alternative

paths with shorter time routes and the paths are not necessarily similar to the

paths computed in static networks.

Figure 5.10: Comparisons on Time-Varying Paths for the Same Query with
Different Start Times

77

5.4 Conclusion

We presented a methodology to generate a time varying graph using a sparse raw

data to share with fellow researchers interested on time-varying graphs in the

context of road networks.

The applied data generation method consists of the following steps:

• matching the traces of a sparse GPS data with the underlying road network

• analyzing the time series properties and statistical features to define the

parameters of the the time-varying graph

• aggregating the matched data to a single day version with 5 minutes

sampling interval and cleaning the data with respect to our end application

• develop a time-series interpolation model for inferring and estimating the

missing data

In the interpolation phase, we analyze the near-full edges to understand the nature

of the signal using the spectral content of available time series data. We fill in the

missing data using two different values based on the length of missing portion.

After the complete time series is formed, we apply a band-limited filter to smooth

the signal with respect to the model that we have seen in near-full edges.

We utilize a scalable database, Sparksee, for the storage and manipulation of

the resultant graph. We also provide a Java API for easy utilization for research

purposes. Besides the basic operations on graphs such as retrieving edges and

vertices, we also include the shortest path computation methods for time-varying

and static weighted versions.

We employ the system in a use case, evaluating the time-varying shortest path

solution. We observe that the difference between the shortest paths using time-

varying versus fixed weights increases as the number of vertices increases. The

78

travel durations of these two types of shortest paths give different results favoring

the use of the time-varying road network.

Our work is a step towards generating data and systems for analysis and

management of time-varying graphs. One of the future directions is to build

larger time-varying graphs, e.g., a road network with a larger amount of GPS

traces. One can feed the database with more trajectory data and increase the ratio

of the real data against the synthetic (estimated) data; redistribute trajectories

considering each day of the week independently, instead of merging all trajectories

into one sample day. An accurate and scalable dataset and graph manipulation

tool can be used in smart city applications, route recommendation systems and

location based services.

One can also model social networks as temporal graphs with nodes being the

users and edges between the follow relation and retweet relation. Each node

can also have a number of parameters e.g. number of retweets, number of

followers, influence of users, measures of centrality which are all time dependent

and calculation of these parameters for time varying networks can be an important

extension of this study. As an example, estimation of time varying influence is an

application in social networks especially under challenging conditions like limited

network access [74]. Approximating the whole network to correctly track the

different time varying properties is also an important future research possibility.

79

Chapter 6

Conclusion and Future Work

Temporal data is created, stored, processed and analyzed in a wide range of

applications and the present momentum is increasing with the growing number

of data sources. There is a wealth of efforts to make the most out of this data

to enhance our understanding of temporal relations and also present the tools to

extract the required knowledge by the system users. Time series literature has

an extensive coverage for traditional data analytics tasks like classification and

clustering. We also see a unique side of time series data mining with different

transformations, various distance measures and forecasting applications.

This dissertation deals with two important applications for time series data

introducing adaptations from various fields. Our initial focus is on increasing

the accuracy of retrieval systems by exploiting the user annotations in different

perspectives. We also explore ways to reduce the computational load of such

methods. Secondly, we concentrate on generating a temporal graph dataset with

time series data as edges to form an open dataset to be used for validation of

similar applications by generating it from a significantly sparse data source.

We first build a retrieval system which utilizes relevance feedback and diversity

amongst the result set to fulfill the user requirements. We propose a framework

to improve the accuracy and user satisfaction while illustrating the statistical

80

background of the proposed perspective. A wide range of experiments with real

datasets demonstrates precision improvements even in a single iteration of user

feedback confirming the suitability of our approach. Including diversity within

the result set achieves accuracy improvements.

We further extend the time series RF framework by proposing a representation

feedback method automating the representation selection process. This is an

unique aspect of time series data and the chosen representation can affect the

end result of the retrieval task significantly. Among the two methods proposed,

the top-k partitioning method forms the result set from a variety of different

representation top-k results and weighting based feedback forms a hyper-vector

by concatenating different representations. In both of the methods, the system

self-regulates the selected items according to the user feedback to increase the

items relevant to the user. Experimental results show that as the RF iterations

progresses the system converges to an improved state in terms of representations.

Results also illustrate that representation feedback diversifies the result set

implicitly because of the use of various representations, which in turn improves

the precision even in a case of simple nearest neighbor retrieval. The proposed

on-the-fly representation selection methods can enhance the precision of retrieval

systems especially for dynamic data scenarios.

We develop an adoption of autoencoders by analyzing the data, to learn data-

aware representations to be used in the RF framework, while also compressing

the time series into a more compact form. This compressed sparse representation

decreases the computational load of the system significantly. We also report that

for some challenging data cases, data-aware representation can outperform the full

time series case in terms of accuracy in addition to the decrease in computational

load. An autoencoder trained with combinations of representations as input has

yielded meaningful performance improvements which shows the potential of this

approach.

We are witnessing a rise in time series data coupled with an underlying network

structure and incomplete time series raw datasets. An important special case is

a time-varying road network with edges constituting of time dependent travel

81

durations between nodes. We generate the time varying graph data by cleaning

and processing a sparse GPS trajectory dataset. We have analyzed the time

series properties and statistical features of the trajectories to develop a time-

series interpolation model for inferring and estimating the missing data. We

evaluated the generated temporal graph by comparing the shortest paths using

time-varying versus static weighted graph.

In the light of the results of this dissertation, the following interesting research

topics arise which can enrich the time series literature further:

• Fine tuning of the diversity balance using the parameters of MMR and

CBD method by taking the dataset properties and user objectives into

account can increment the improvements of the proposed RF framework.

The promising performance of the proposed CBD diversification method

can be extended to other data types such as text or image for similar

purposes.

• We have reported that autoencoders with MLP structure have been

successfully adopted. There is potential in using other neural network

structures to extract data-aware representations. Use of autoencoder,

and even stacked-autoencoders with larger datasets, to extract useful

representations is a potential direction for further research. To this end,

a universal time series autoencoder deep network can produce promising

results and may surpass the performance of human crafted representations.

• The time-varying graph dataset generated in our study can be enhanced

by building a larger time-varying road network with larger amount of GPS

traces from heterogeneous data sources. This will provide the research

community with a more accurate real dataset for validating new ideas.

• Incremental update methods to develop the time varying graph on-the-fly

as data arrives is also an important research area. This will allow the use of

a continuously revised and up-to-date state of the road network to be used

in route planning applications increasing its effectiveness.

82

• Efficient and accurate calculation of time varying network parameters such

as centrality can further enhance our understanding of networks and pave

way for time dependent analysis of clusters withing networks. There is also

prospect of improving accuracy of time series forecast tasks by taking the

underlying network into account as proposed under the general time varying

graph framework.

83

Bibliography

[1] Wikipedia, “Dual-tree complex wavelet transform figure,” 2005.

[2] B. Eravci and H. Ferhatosmanoglu, “Diversity based relevance feedback for

time series search,” PVLDB, vol. 7, no. 2, pp. 109–120, 2013.

[3] B. Eravci and H. Ferhatosmanoglu, “Diverse relevance feedback for time

series with autoencoder based summarizations,” IEEE Transactions on

Knowledge and Data Engineering, 2018. (accepted for publication).

[4] “Source of the dataset: Tim big data challenge 2015.” www.telecomitalia.

com/bigdatachallenge. Accessed: 2015-06-1.

[5] E. Eser, F. Kocayusufolu, B. Eravci, H. Ferhatosmanolu, and J. L. Larriba-

Pey, “Generating time-varying road network data using sparse trajectories,”

in 2016 IEEE 16th International Conference on Data Mining Workshops

(ICDMW), pp. 1118–1124, Dec 2016.

[6] N. Mart́ınez-Bazan, V. Muntés-Mulero, S. Gómez-Villamor, J. Nin, M.-

A. Sánchez-Mart́ınez, and J.-L. Larriba-Pey, “Dex: high-performance ex-

ploration on large graphs for information retrieval,” in Proceedings of the

sixteenth ACM conference on Conference on information and knowledge

management, pp. 573–582, ACM, 2007.

[7] T.-C. Fu, “A review on time series data mining,” Engineering Applications

of Artificial Intelligence, vol. 24, no. 1, pp. 164 – 181, 2011.

[8] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representation of

time series, with implications for streaming algorithms,” in Proceedings of

84

the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and

Knowledge Discovery, DMKD ’03, (New York, NY, USA), pp. 2–11, ACM,

2003.

[9] D. J. Berndt and J. Clifford, “Using Dynamic Time Warping to Find

Patterns in Time Series,” in Knowledge Discovery and Data Mining, pp. 359–

370, 1994.

[10] M. Gavrilov, D. Anguelov, P. Indyk, and R. Motwani, “Mining the stock

market (extended abstract): which measure is best?,” in Proceedings of the

sixth ACM SIGKDD international conference on Knowledge discovery and

data mining, pp. 487–496, 2000.

[11] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh, “Querying

and mining of time series data: Experimental comparison of representations

and distance measures,” Proc. VLDB Endow., vol. 1, pp. 1542–1552, Aug.

2008.

[12] A. Camerra, T. Palpanas, J. Shieh, and E. J. Keogh, “isax 2.0: Indexing

and mining one billion time series,” in Proceedings of the The 10th IEEE

International Conference on Data Mining (ICDM 2010), pp. 58–67, 2010.

[13] R. Agrawal, C. Faloutsos, and A. N. Swami, “Efficient similarity search in

sequence databases,” in Proceedings of the 4th International Conference on

Foundations of Data Organization and Algorithms, FODO ’93, pp. 69–84,

1993.

[14] S. Salvador and P. Chan, “Toward accurate dynamic time warping in linear

time and space.,” Intell. Data Anal., vol. 11, no. 5, pp. 561–580, 2007.

[15] V. Athitsos, P. Papapetrou, M. Potamias, G. Kollios, and D. Gunopulos,

“Approximate embedding-based subsequence matching of time series,” in

Proceedings of the 2008 ACM SIGMOD International Conference on Man-

agement of Data, SIGMOD ’08, (New York, NY, USA), pp. 365–378, ACM,

2008.

85

[16] S. Rhea, E. Wang, E. Wong, E. Atkins, and N. Storer, “Littletable: A time-

series database and its uses,” in Proceedings of the 2017 ACM International

Conference on Management of Data, SIGMOD ’17, (New York, NY, USA),

pp. 125–138, ACM, 2017.

[17] A. L.-C. Wang, C. J. P. Barton, D. S. Mukherjee, and P. Inghelbrecht,

“Method and system for identifying sound signals,” May 2014. US Patent

8,725,829.

[18] J. Rocchio, Relevance feedback in information retrieval. In: The SMART

Retrieval System Experiments in Automatic Document Processing., pp. 313–

323. 1971.

[19] G. Salton, ed., The SMART Retrieval System Experiments in Automatic

Document Processing. 1971.

[20] G. Salton and C. Buckley, “Improving retrieval performance by relevance

feedback,” Journal of the American Society for Information Science, vol. 41,

pp. 288–297, 1990.

[21] H. Zamani, J. Dadashkarimi, A. Shakery, and W. B. Croft, “Pseudo-

relevance feedback based on matrix factorization,” in Proceedings of the

25th ACM International on Conference on Information and Knowledge

Management, CIKM ’16, (New York, NY, USA), pp. 1483–1492, ACM, 2016.

[22] Y. Ishikawa, R. Subramanya, and C. Faloutsos, “Mindreader: Querying

databases through multiple examples,” in VLDB 98, Proceedings of 24rd

International Conference on Very Large Data Bases, August 24-27, 1998,

New York City, New York, USA, pp. 218–227, 1998.

[23] X. S. Zhou and T. S. Huang, “Relevance feedback in image retrieval: A

comprehensive review,” Multimedia systems, vol. 8, no. 6, pp. 536–544, 2003.

[24] M. L. Kherfi, D. Ziou, and A. Bernardi, “Combining positive and negative

examples in relevance feedback for content-based image retrieval,” J. Visual

Communication and Image Representation, vol. 14, no. 4, pp. 428–457, 2003.

86

[25] Y. Rui, T. S. Huang, S. Mehrotra, and M. Ortega, “A relevance feedback

architecture for content-based multimedia information retrieval systems,”

in Content-Based Access of Image and Video Libraries, 1997. Proceedings.

IEEE Workshop on, pp. 82–89, IEEE, 1997.

[26] Z. Su, H. Zhang, S. Li, and S. Ma, “Relevance feedback in content-based

image retrieval: Bayesian framework, feature subspaces, and progressive

learning,” Image Processing, IEEE Transactions on, vol. 12, no. 8, pp. 924–

937, 2003.

[27] S. Tong and E. Chang, “Support vector machine active learning for image

retrieval,” in Proceedings of the ninth ACM international conference on

Multimedia, MULTIMEDIA ’01, pp. 107–118, 2001.

[28] J. Carbonell and J. Goldstein, “The use of mmr, diversity-based reranking

for reordering documents and producing summaries,” Proc. of SIGIR ’98,

pp. 335–336, 1998.

[29] A. Borodin, A. Jain, H. C. Lee, and Y. Ye, “Max-sum diversification,

monotone submodular functions, and dynamic updates,” ACM Trans.

Algorithms, vol. 13, pp. 41:1–41:25, July 2017.

[30] C. Charles, K. Maheedhar, C. Gordon, V. Olga, A. Azin, B. Stefan, and

M. Ian, “Novelty and diversity in information retrieval evaluation,” in

Proceedings of SIGIR, SIGIR ’08, pp. 659–666, 2008.

[31] D. Rafiei, K. Bharat, and A. Shukla, “Diversifying web search results,”

in Proceedings of the 19th International Conference on World Wide Web,

WWW ’10, (New York, NY, USA), pp. 781–790, ACM, 2010.

[32] H. Chen and D. R. Karger, “Less is more: probabilistic models for retrieving

fewer relevant documents,” in Proceedings of SIGIR, SIGIR ’06, pp. 429–436,

2006.

[33] M. Hasan, A. Mueen, and V. Tsotras, “Distributed diversification of large

datasets,” in 2014 IEEE International Conference on Cloud Engineering,

pp. 67–76, March 2014.

87

[34] X. Zuobing, A. Ram, and Z. Yi, “Incorporating diversity and density in

active learning for relevance feedback,” in Proceedings of the 29th European

conference on IR research, ECIR’07, pp. 246–257, 2007.

[35] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong, “Diversifying search

results,” in Proceedings of the Second ACM International Conference on Web

Search and Data Mining, WSDM ’09, pp. 5–14, 2009.

[36] F. Radlinski and S. Dumais, “Improving personalized web search using result

diversification,” in Proceedings of the 29th annual international ACM SIGIR

conference on Research and development in information retrieval, SIGIR ’06,

pp. 691–692, 2006.

[37] O. Kucuktunc and H. Ferhatosmanoglu, “l-diverse nearest neighbors brows-

ing for multidimensional data,” IEEE Transactions on Knowledge and Data

Engineering, vol. 25, no. 3, pp. 481–493, 2013.

[38] B. Liu and H. V. Jagadish, “Using trees to depict a forest.,” PVLDB, vol. 2,

no. 1, pp. 133–144, 2009.

[39] F. Radlinski and T. Joachims, “Active exploration for learning rankings from

clickthrough data,” in Proceedings of the 13th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’07, (New York,

NY, USA), pp. 570–579, ACM, 2007.

[40] F. Radlinski, R. Kleinberg, and T. Joachims, “Learning diverse rankings with

multi-armed bandits,” in Proceedings of the 25th International Conference

on Machine Learning, ICML ’08, (New York, NY, USA), pp. 784–791, ACM,

2008.

[41] T. Joachims, A. Swaminathan, and T. Schnabel, “Unbiased learning-to-

rank with biased feedback,” in Proceedings of the Tenth ACM International

Conference on Web Search and Data Mining, WSDM ’17, (New York, NY,

USA), pp. 781–789, ACM, 2017.

88

[42] K. Hofmann, S. Whiteson, and M. de Rijke, “Balancing exploration and

exploitation in learning to rank online,” in Proceedings of the 33rd Euro-

pean Conference on Advances in Information Retrieval, ECIR’11, (Berlin,

Heidelberg), pp. 251–263, Springer-Verlag, 2011.

[43] T.-Y. Liu, “Learning to rank for information retrieval,” Found. Trends Inf.

Retr., vol. 3, pp. 225–331, Mar. 2009.

[44] N. Rubens, D. Kaplan, and M. Sugiyama, “Active learning in recom-

mender systems,” in Recommender Systems Handbook (P. Kantor, F. Ricci,

L. Rokach, and B. Shapira, eds.), pp. 735–767, Springer, 2011.

[45] E. Keogh and M. Pazzani, “An enhanced representation of time series which

allows fast and accurate classification, clustering and relevance feedback,” in

Proceedings of 4th KDD, 1998.

[46] E. Keogh and M. J. Pazzani, “Relevance feedback retrieval of time series

data,” in Proceedings Of The 22 Th Annual International ACM-SIGIR Con-

ference On Research And Development In Information Retrieval, pp. 183–

190, 1999.

[47] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Parallel distributed pro-

cessing: Explorations in the microstructure of cognition, vol. 1,” ch. Learning

Internal Representations by Error Propagation, pp. 318–362, Cambridge,

MA, USA: MIT Press, 1986.

[48] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data

with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[49] N. Gianniotis, S. D. Kgler, P. Tio, and K. L. Polsterer, “Model-coupled

autoencoder for time series visualisation,” Neurocomputing, vol. 192, pp. 139

– 146, 2016.

[50] N. Ahmed, A. Atiya, N. E. Gayar, and H. El-Shishiny, “An Empirical

Comparison of Machine Learning Models for Time Series Forecasting,”

Econometric Reviews, vol. 29, no. 5-6, pp. 594–621, 2010.

89

[51] P. Tormene, T. Giorgino, S. Quaglini, and M. Stefanelli, “Matching

incomplete time series with dynamic time warping: an algorithm and an

application to post-stroke rehabilitation,” Artificial Intelligence in Medicine,

vol. 45, no. 1, pp. 11 – 34, 2009.

[52] S. Baisch and G. H. Bokelmann, “Spectral analysis with incomplete time

series: an example from seismology,” Computers & Geosciences, vol. 25,

no. 7, pp. 739 – 750, 1999.

[53] M. Majidpour, C. Qiu, P. Chu, R. Gadh, and H. R. Pota, “Fast prediction

for sparse time series: Demand forecast of ev charging stations for cell phone

applications,” IEEE Transactions on Industrial Informatics, vol. 11, pp. 242–

250, Feb 2015.

[54] P. Mrazovic, B. Eravci, J. L. Larriba-Pey, H. Ferhatosmanoglu, and

M. Matskin, “Understanding and predicting trends in urban freight trans-

port,” in 2017 18th IEEE International Conference on Mobile Data Man-

agement (MDM), pp. 124–133, May 2017.

[55] D. Schultes, Route Planning in Road Networks. Saarbrücken, Ger-

many, Germany: VDM Verlag, 2008.

[56] B. George and S. Shekhar, “Time-aggregated graphs for modeling spatio-

temporal networks,” in Advances in conceptual modeling-theory and practice,

pp. 85–99, Springer, 2006.

[57] S. E. Dreyfus, “An appraisal of some shortest-path algorithms,” Operations

research, vol. 17, no. 3, pp. 395–412, 1969.

[58] H. Wang, G. Li, H. Hu, S. Chen, B. Shen, H. Wu, W.-S. Li, and K.-L. Tan,

“R3: a real-time route recommendation system,” Proceedings of the VLDB

Endowment, vol. 7, no. 13, pp. 1549–1552, 2014.

[59] J. Letchner, J. Krumm, and E. Horvitz, “Trip router with individualized

preferences (trip): Incorporating personalization into route planning,” in

Proceedings of the National Conference on Artificial Intelligence, vol. 21,

p. 1795, Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press;

1999, 2006.

90

[60] L. Cao and J. Krumm, “From gps traces to a routable road map,” in

Proceedings of the 17th ACM SIGSPATIAL international conference on

advances in geographic information systems, pp. 3–12, ACM, 2009.

[61] T. Hunter, R. Herring, P. Abbeel, and A. Bayen, “Path and travel time

inference from gps probe vehicle data,” NIPS Analyzing Networks and

Learning with Graphs, vol. 12, no. 1, 2009.

[62] N. Kumar, N. Lolla, E. Keogh, S. Lonardi, and C. A. Ratanamahatana,

“Time-series bitmaps: a practical visualization tool for working with large

time series databases,” in SIAM 2005 Data Mining Conference, pp. 531–535,

SIAM, 2005.

[63] I. Selesnick, R. Baraniuk, and N. Kingsbury, “The dual-tree complex wavelet

transform,” Signal Processing Magazine, IEEE, vol. 22, pp. 123 – 151, nov.

2005.

[64] J. Miao, J. X. Huang, and Z. Ye, “Proximity-based rocchio’s model for

pseudo relevance,” in Proceedings of the 35th International ACM SIGIR

Conference on Research and Development in Information Retrieval, SIGIR

’12, (New York, NY, USA), pp. 535–544, ACM, 2012.

[65] I. Ruthven and M. Lalmas, “A survey on the use of relevance feedback for

information access systems,” Knowl. Eng. Rev., vol. 18, pp. 95–145, June

2003.

[66] E. Keogh, Q. Zhu, B. Hu, Y. Hao, X. Xi, L. Wei, and C. A. Ratanamahatana,

“The ucr time series classification/clustering homepage,” 2011.

[67] S. Cai and K. Li, “Dual-tree complex wavelet transform matlab code,” 2003.

[68] A. K. Tung, R. Zhang, N. Koudas, and B. C. Ooi, “Similarity search:

a matching based approach,” in Proceedings of the 32nd international

conference on Very large data bases, pp. 631–642, VLDB Endowment, 2006.

[69] J. Allen, “Short term spectral analysis, synthesis, and modification by

discrete fourier transform,” Acoustics, Speech and Signal Processing, IEEE

Transactions on, vol. 25, no. 3, pp. 235–238, 1977.

91

[70] M. Haklay and P. Weber, “Openstreetmap: User-generated street maps,”

IEEE Pervasive Computing, vol. 7, no. 4, pp. 12–18, 2008.

[71] “Tomtom city.” http://www.tomtom.com/en_gb/traffic-news/. Ac-

cessed: 2016-07-1.

[72] “Michael thomas flanagan’s java scientific library.” http://www.ee.ucl.ac.

uk/~mflanaga/java/.

[73] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals & Systems.

Prentice-Hall signal processing series, Upper Saddle River, N.J. Prentice

Hall London: Prentice Hall international, 1997.

[74] K. Bingol, B. Eravci, C. O. Etemoglu, H. Ferhatosmanoglu, and B. Gedik,

“Topic-based influence computation in social networks under resource con-

straints,” IEEE Transactions on Services Computing, 2016. (accepted for

publication).

92

Appendix A

Datasets

The properties of the 85 real data sets, all the data currently available in the

UCR time series repository[66] is found in Table A.1.

Table A.1: Datasets used for experiments

No. Name
Number

of classes

Time

series

length

Dataset

size

1 50Words 50 270 905

2 Adiac 37 176 781

3 ArrowHead 3 251 211

4 Beef 5 470 60

5 Beetle Fly 2 512 40

6 Bird Chicken 2 512 40

7 CBF 3 128 930

8 Car 4 577 120

9 Chlorine Concentration 3 166 4307

10 CinC ECG Torso 4 1639 1420

11 Coffee 2 286 56

12 Computers 2 720 500

93

13 Cricket X 12 300 780

14 Cricket Y 12 300 780

15 Cricket Z 12 300 780

16 Diatom Size Reduction 4 345 322

17
Distal Phalanx Outline Age

Group
3 80 539

18
Distal Phalanx Outline Cor-

rect
2 80 876

19 Distal Phalanx TW 6 80 539

20 ECG 200 2 96 200

21 ECG 5000 5 140 5000

22 ECG Five Days 2 136 884

23 Earthquakes 2 512 461

24 Electric Devices 7 96 16637

25 Fish 7 463 350

26 Face (all) 14 131 2250

27 Face (four) 4 350 112

28 Faces UCR 14 131 2250

29 Ford A 2 500 4921

30 Ford B 2 500 4446

31 Gun-Point 2 150 200

32 Ham 2 431 214

33 Hand Outlines 2 2709 1370

34 Haptics 5 1092 463

35 Herring 2 512 128

36 Inline Skate 7 1882 650

37 Insect Wingbeat Sound 11 256 2200

38 Italy Power Demand 2 24 1096

39 Large Kitchen Appliances 3 720 750

40 Lightning-2 2 637 121

94

41 Lightning-7 7 319 143

42 MALLAT 8 1024 2400

43 Meat 3 448 120

44 MedicalImages 10 99 1141

45
Middle Phalanx Outline

Age Group
3 80 554

46
Middle Phalanx Outline

Correct
2 80 891

47 Middle Phalanx TW 6 80 553

48 Mote Strain 2 84 1272

49
Non-Invasive Fetal ECG

Thorax1
42 750 3765

50
Non-Invasive Fetal ECG

Thorax2
42 750 3765

51 OliveOil 4 570 60

52 OSU Leaf 6 427 442

53 Phalanges Outlines Correct 2 80 2658

54 Phoneme 39 1024 2110

55 Plane 7 144 210

56
Proximal Phalanx Outline

Age Group
3 80 605

57
Proximal Phalanx Outline

Correct
2 80 891

58 Proximal Phalanx TW 6 80 605

59 Refrigeration Devices 3 720 750

60 Screen Type 3 720 750

61 Shapelet Sim 2 500 200

62 Shapes All 60 512 1200

63 Small Kitchen Appliances 3 720 750

64 Sony AIBO Robot Surface 2 70 621

65 Sony AIBO Robot SurfaceII 2 65 980

95

66 Star Light Curves 3 1024 9236

67 Strawberry 2 235 983

68 Swedish Leaf 15 128 1125

69 Symbols 6 398 1020

70 Toe Segmentation1 2 277 268

71 Toe Segmentation2 2 343 166

72 Trace 4 275 200

73 TwoLead ECG 2 82 1162

74 Two Patterns 4 128 5000

75 UWave Gesture Library All 8 945 4478

76 Wine 2 234 111

77 Word Synonyms 25 270 905

78 Worms 5 900 258

79 Worms Two Class 2 900 258

80 Synthetic Control 6 60 600

81 uWave Gesture Library X 8 315 4478

82 uWave Gesture Library Y 8 315 4478

83 uWave Gesture Library Z 8 315 4478

84 Wafer 2 152 7174

85 Yoga 2 426 3300

96

