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MF : Mean Field
MFG : Mean Field Game
MSG : Multi-level Stackelberg Game
LQ : Linear Quadratic
SDE : Stochastic Differential Equation
FBSDE : Forward-Backward Stochastic Differential Equation
BSDE : Backward Stochastic Differential Equation
SOC : Stochastic Optimal Control
HJB : Hamilton-Jacobi-Bellman
ITS : Intelligent Transportation System
MF-MSG : Mean Field Multilayer Stackelberg Game
MF-ITS : Mean Field Intelligent Transportation System
ITUCiTSim : Istanbul Technical University City Transportation Simulation
GGs : Greenhouse Gases
AI : Artificial Intelligence

xiii



xiv



SYMBOLS

X > 0 : A positive definite matrix
X ≥ 0 : A positive semi-definite matrix
Rn : n-dimensional real-valued vectors
Rm×n : m×n-dimensional real-valued matrices
xT : The transpose of x
XT : The transpose of a matrix X
‖x‖2

S : xT Sx, where x ∈Rn and S≥ 0
‖X‖ : The induced 2-norm for X ∈ Rn×n

In : The n × n-dimensional identity matrix
1n : The n-dimensional column vector whose elements are all 1
0n×m : The n × m-dimensional zero matrix
0n : 0n×1
u−i : {u1, ...,ui−1,ui+1, ...,uN}
Ω, Ft , t ≥ 0 : Natural complete filtered probability space augmented by all the P null sets in F

xv



xvi



LIST OF TABLES

Page

Table 5.1 : ITUCiTSim Istanbul............................................................................ 73

xvii



xviii



LIST OF FIGURES

Page

Figure 3.1 : Flow of the Stackelberg Game........................................................... 34
Figure 4.1 : Schema of the Stackelberg Game. ..................................................... 54
Figure 5.1 : State of the Global Leader. ................................................................ 67
Figure 5.2 : Average State of Followers................................................................ 67
Figure 5.3 : Average Control of Global Leaders. .................................................. 68
Figure 5.4 : Average Controls of Sub Leaders. ..................................................... 68
Figure 5.5 : Average Total Error of the Mean Field Term. ................................... 69
Figure 5.6 : State of the Global Leader in Games 1-4. ......................................... 70
Figure 5.7 : The Global Leader Cost in Games 1-4. ............................................. 70
Figure 5.8 : Followers’ Cost in Games 1-4. .......................................................... 71
Figure 5.9 : ITUCiTSim Monitoring Screen......................................................... 72
Figure 5.10: ITUCiTSim - Control Panel. ............................................................. 73
Figure 5.11: Istanbul E-80 Highway Road Map. ................................................... 74
Figure 5.12: Flow of the Kurtkoy Road Section. ................................................... 75
Figure 5.13: Mean Field of the Kurtkoy Road Section. ......................................... 75
Figure 5.14: Total Carbon Emission of the ITS. .................................................... 76
Figure 5.15: Flow for Kurtkoy after Accident. ...................................................... 77
Figure 5.16: Mean Field of Kurtkoy after Accident............................................... 77
Figure 5.17: Total Carbon Emission of the ITS after Accident. ............................ 78

xix



xx



MULTILAYER MEAN FIELD DIFFERENTIAL GAMES
IN MULTI-AGENT SYSTEMS AND

AN APPLICATION IN INTELLIGENT TRANSPORTATION

SUMMARY

In this thesis, we describe the results we have obtained on linear-quadratic hierarchical
Mean Field Stackelberg differential games with open-loop information structure. We
name this new class of games as Mean Field (MF) Multilayer Stackelberg Games
(MSG). The model that we have developed consists of three levels of decision making.
There is a leader at the top, sub-leaders are at the intermediate level, and followers are
at the lowest level. In this structure, Stackelberg Game is played between the leader,
sub-leaders and followers in turn. Firstly the leader plays with the sub-leaders and
then sub-leaders play with their followers. Consequently, the leader can control the
followers not directly, but only through the sub-leaders. The followers are weakly
coupled through a Mean Field term, affecting their individual costs. The main novelty
in this thesis is to extend the Mean Field Game to multi layer framework. Theoretically,
Mean Field Equilibrium arises in the infinite population limit. In our approach, instead
of computing the exact Stackelberg equilibrium, the Mean Field equilibrium policies
are obtained with the assumption of infinite population. When the population size is
sufficiently large, the resulting policy can be regarded as an approximate Stackelberg
equilibrium by the law of large numbers, therefore we apply this resulting policy to
the original problem in the finite population case. The performance of the developed
method is evaluated by a numerical example.

In the second part of the thesis, we adapt and apply the developed methodolgy to
Intelligent Transportation Systems (ITS) for future Smart Cities. So, another important
novelty of the thesis is to apply The Mean Field Game Theory to Automated Highway
System (AHS), in order to minimize both total consumed energy and travel time.
In this model, there is a Control Center which acts as a leader, Road Links in the
intermediate level act as sub-leaders and finally Vehicles are followers. The Control
Center, Road Links and Vehicles which are in consecutive layers play Mean Field
(MF) Multilayer Stackelberg Games (MSG). Although, the Control Center cannot
manipulate the Vehicles directly, it imposes its strategy through the Road Links in
the intermediary layer. The Vehicles of each Road Link are weakly coupled through a
Mean Field term, which affects their individual cost functions. In order to implement
this algorithm to ITS, we have developed our highly realistic simulation environment,
Istanbul Technical University City Transportation Simulation (ITUCiTSim) program.
The effectiveness of the proposed method is justified by simulations performed in
ITUCiTSim.
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ÇOKLU-KARAR VERİCİLİ SİSTEMLERDE
ÇOKLU DÜZLEM ORTALAMA ALAN DİFERANSİYEL OYUNLARI

VE AKILLI ULAŞIMDA BİR UYGULAMA

ÖZET

Son yıllarda çoklu karar vericili sistemlerin kontrol uygulamaları hızla artmaktadır.
Teknolojinin gelişmesi ile insanlık için bir çok uygulama alanı ortaya çıkmaktadır. Bil-
gisayarlardaki hesaplama kapasitelerinin her geçen gün artması, geçmişte hesaplama
zorluğu olan çalışma alanında daha fazla çözüm üretilmesine olanak sağlamaktadır.
Dünyadaki ekolojik düzenin hızla bozulduğu günümüzde akıllı şehirlerin, insanlığa
getirdiği optimum çözümler ile ekolojik bozulmanın azalmasını sağlamaktadır. Bir çok
parametrenin aynı anda değerlendirilmesi gereken uygulamalarda çoklu karar verici
sistemlere şiddetle ihtiyaç vardır.

Akıllı enerji dağıtım sistemlerinde aynı anda bir çok şebekeye dağıtılması gereken
enerjinin optimizasyonu amaçlanmaktadır. Enerji kaynaklarından yüzbinlerce
kullanıcıya enerji kayıplarını minimuma indirecek şekilde bir dağıtım yapılması
bir çoklu karar verici problemidir. Enerji problemini ele alırsak, günümüzde
doğayı korumak için kullanılması hayati olan rüzgar ve güneş enerjisi gibi sistemler
gerekmektedir. Bireysel kullanıcıların ürettikleri ihtiyaç fazlası enerjiyi şebekeye
verirken aynı optimizasyonun gerçekleşmesi ve bu enerjinin değişken dinamik koşullar
altında fiyatlanması da bir çoklu karar verici problemidir. Aynı şekilde son yıllarda
çalışmaları hızla artan elektrikli araçların şarj istasyonlarına bağlanması durumunda
ortaya çıkacan sistemin benzer şekilde bir çoklu kontrol problemi olarak çözülmesi
gerekmektedir.

Çoklu karar vericili sistemlerin akıllı şehirlerde sıklıkla kullanılması gereken bir başka
alan da akıllı ulaştırma sistemleridir. Şehir içindeki yollarda; bir akıllı kavşakta aynı
anda sistemin göz önüne alması gereken yayalar, araçlar, kurallar ve ortam koşulları
gibi bir çok parametre vardır. Daha büyük akıllı otobanlarda ise aynı anda bir çok
aracın değerlendirilmesi gerektiği gibi zaman ve enerji ile ilgili bir çok parametre
de göz önüne alınmalıdır. Karayollarının yanı sıra havalimanında uçakların zaman
ve yakıt optimizasyonu yaparak koordine edilmesi bir çok araştırmacı tarafından son
yıllarda fazlalıkla çalışılan bir çoklu karar verici sistem problemidir. Benzer problem
deniz limanlarında da mevcuttur.

Akıllı sehirlerde insanları optimum şekilde gidecekleri yere ulaştıracak problemlerin
çözümü dünyada en çok çalışılan konulardan biridir. Evinden işine gitmeyi amaçlayan
yüzbinlerce kişinin yaşadığı bir ortamda karar vericileri enerji, zaman, yoğunluk veya
farklı önceliklere göre mantıklı bir dağıtım yapmak önümüzdeki yıllarda çözülmesi
gereken en önemli sorunlardan biri olacaktır.

Çoklu karar verici problemlerinin günlük hayatta doğrudan insanlığın karşısına
çıktığı anlarda bu optimizasyonun yapılabilmesi için en önemli gereklilik veridir.
Yüzbinlerce karar vericinin etkilendiği sistemlerde problemin hızla çözülmesi
gerekirken kullanıcılardan verilerin uygun bir biçimde toplanması, daha sonra elde
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edilen sonucun aynı şekilde zamanında dağıtılması önümüzdeki yıllarda çözülmesi
gereken en önemli çoklu karar vericili sistem problemidir.

İnternet ağlarında büyük verinin toplanması, filtrelendirilmesi, sınıflandırılması
ve anlamlandırılması temelde çözülmesi gereken en önemli çoklu karar verici
problemlerinden biridir. Veri hızının fiziksel imkanlar ile her geçen yıl arttığı
günümüzde matematiksel yöntemler ile bu fiziksel artış desteklenmeli, bu sayede
optimum çözümler veri karmaşıklığına, anlamlandırılmasına ve hızına yeni çözümler
üretilmelidir. Bu tezin öncelikli amaçlarından biri de bu veri karmaşıklığını azaltacak
bir optimum çoklu kontrol yöntemi önermektir.

Önerilen çoklu kontrol yöntemi Ortalama Alan Oyun temelli bir oyun teorisidir.
Oyun Teorisi akıllı karar vericilerin en uygun kararı vermesini sağlayan matematiksel
modelleri oluşturan bir optimizasyon yöntemidir. Oyun Teorisi; ekonomi, politik
bilimler, psikoloji, bilgisayar bilimleri ve biyoloji alanlarında sıklıkla kullanılmaktadır.
Temel olarak bir oyuncunun kazandığı kadar diğer oyuncunun kaybettiği sıfır-toplam
oyunundan geliştirilmiştir. Modern oyun teorisi John von Neumann’ın iki oyunculu
sıfır-toplam karışık stratejili oyunun çözümünün var oluşunu ispatından sonra
gelişmiştir. Von Neumann’ın sürekli kompakt konveks kümelerde Brouwer sabit-nokta
(fixed-point) teorisini kullanarak gelistirdiği ispatı oyun teorisi ve ekonomi matematiği
alanında standart bir yöntem olmuştur.

Oyun teorisinde, oyunlar eğer oyuncular arasında maliyeti düşürmek için bir
yardımlaşma varsa iş birlikçi oyun; oyuncular arasında yardımlaşma yoksa ve
hepsi kendi maliyetlerini göz önünde bulunduruyorsa rekabetçi oyun türü olarak
adlandırılırlar. Nash Dengesi ise iki ya da daha çok oyuncunun bulunduğu rekabetçi
oyunlarda her oyuncunun diğer rakiplerinin stratejilerini göz önünde bulundurarak
kendi stratejilerini hesapladığı durumda, strateji değiştirmenin hiç bir oyuncuya
daha fazla kazanç kazandırmadığı denge durumudur. Yani eğer her bir oyuncu
bir strateji belirlediği durumda hiç bir oyuncu stratejisini değiştirerek herhangi bir
kazanç saylayamadığı için diğer oyuncuların kararları sabit kalıyor ise Nash Dengesi
sağlanmış demektir. Nash dengesi oyun teorisi içerisindeki en temel kavramlardan
biridir. Nash dengesinin gerçekliği uygulamalı ekonomi yöntemleri test edilerek
görülebilir.

Çoklu kontrol problemleri temel olarak iki şekilde ele alınır. Tek bir merkezde kontrol
algoritmasının geliştirildiği, merkezi kontrol yöntemi bunlardan ilkidir. Merkezi
kontrolde çok sayıda karar verici olması durumunda her bir karar vericinin verilerinin
toplanması ciddi bir zaman problemine yok açmaktadır. Ayrıca çok sayıda toplanan
verinin bir kontrol stretejisine dönüştürülmesi hesap karmaşıklığı büyük olan bir
problemin çözümünü gerektirmektedir. Bu problemi çözmek için son yıllarda
dağıtılmış kontrol yöntemi geliştirilmiştir. Dağıtılmış kontrol yönteminde bütün
verilerin tek bir merkezde toplanmasına gerek yoktur. Her bu karar verici kendi
verilerini göz önüne alarak merkezden ayrı kontrol stratejisini geliştirir. Çoklu kontrol
yöntemi olarak Nash denklemi kullanılmak istendiğinde çoklu karar vericilerin Nash
Dengesine ulaşması için birbirlerinin en doğru stratejilerini bilmeleri gerekmektedir.
Bu sebeple çoklu karar vericili bir sistemde karar verici sayısı arttıkça Nash Dengesine
ulaşmak hesaplanamayacak kadar karmaşık bir boyuta ulaşmaktadır.

Nash dengesinin çoklu karar vericilerde hesaplanmasının zorluklarından dolayı
mantıklı bir yaklaşık Nash Oyunu geliştirme ihtiyacı ortaya çıkmıştır. Bu yaklaşık
Nash Oyununa; Ortalama Alan Oyun yöntemi geliştirilerek bir çözüm getirilmiştir.
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Ortalama Alan Oyun Yönteminde her bir karar verici ortalama kütle değeri tarafından
etkilenmektedir. Bu etkiyi Ortalama Değer Terimi temsil etmektedir. Karar vericiler
Nash Oyununu bu ortalama alan terimini kullanarak oynarlar. Diğer bir deyişle her
karar verici ortalama alan değeri sayesinde birbirine zayıf olarak bağlıdır. Karar verici
sayısı sonsuza gittiği zaman karar vericilerin durumları deneysel olarak belirli bir
limite yakınsar. Bu sebeple yeterli sayıda fazla karar verici olduğu durumlarda optimal
kontrol probleminde kullanılan ortalama alan değeri dışarıdan girilen bir değer olarak
değerlendirilir. Bu şekilde bir yaklaşımla çoklu karar vericili dağıtılmış karmaşıklığı
yüksek Nash Oyunu, tek karar vericili bir optimal kontrol problemine dönüştürülebilir.
Bu optimal kontrol problemi ortalama alan değeri ile tutarlıdır ve problemin çözümü
yaklaşık olarak Nash Oyunun çözümüne eşittir.

Optimal kontrol probleminin sonucu, yaklaşık olarak Nash oyunu sonucuna
yakın olmasına rağmen ortalama alan oyunun çözümü matematiksel olarak farklı
denklemlerin çözülmesini gerektirir. Tek karar vericili optimal kontrol probleminden
farklı olarak ilerleyen zamanda Fokker-Planck kısmı diferensiyal denkleminin çözümü
ve geri zamanda ise Hamilton-Jacobi-Bellman kısmı diferensiyal denkleminin çözümü
gerekmektedir. Bu tip denklemlere ilişkili ileri-geri kısmı diferansiyel denklemler
denmektedir.

Literatürde çalışılan Ortalama Alan Oyunları sıklıkla rekabetçi Nash türünden
oyunlardır. Bu çalışmalarda çoklu hiyerarşik katmanlar kullanılmamıştır. Bizim
bu tezde yaptığımız yeniliklerden biri de çoklu hiyerarşik bir yapıda Stackelberg
Ortalama Alan Oyunu geliştirmektir. Stackelberg Oyununun ismi Heinrich Freiherr
von Stackelberg’den gelmektedir. Oyun teorisinde, Stackelberg Oyunu hem lider
hem de takip edici içeren bir oyundur. Lider bazı durumlarda pazar lideri olarak da
nitelendirilebilir. Stackelberg oyununda lider takipçilere kendi stratejisini ilan eder ve
takipçiler kendi kazançlarını liderin stratejisine göre optimize ederler. Lider de kendi
stratejisini belirlerken takipçilerin kendi stratejisini göz önüne alacağını da hesaba
katarak oyunu oynar ve karını maksimize eder. Lider takipçileri hakkında her veriyi
bilirken, takipçilerin böyle bir bilgisi yoktur.

Bu tezde biz öncelikle açık çevrim lineer-ikinci dereceden (quadratic) çoklu hiyerarşik
katmanlı ortalama alan Stackelberg oyunu geliştirip, daha sonra yeni teorik modeli,
C++ ile geliştirdiğimiz simülasyon programında Akıllı Ulaşım Sistemlerine uyguladık.
Geliştirdiğimiz model üç katmandan oluşmaktadır. En üst katman sistemin genel
lideridir. Bu akıllı ulaşım sisteminde kontrol merkezi olarak nitelendirilebilir. Genel
lider alt katmanlar ile Stackelberg Oyunu oynayarak kendi stratejisini sisteme empoze
eder. Ara katman alt lider ya da akıllı ulaşım sistemi için yol bölümleri olarak
düşünülebilir. En alt katmandaki takipçiler, akıllı ulaşım uygulamasında araçlar, ara
katman ile Stakelberg Ortalama Alan Oyunu oynar. Bu şekilde genel lider en alt
katmandaki takipçileri doğrudan kontrol edemez, ara katman sayesinde dolaylı olarak
kontrol edebilir. Her takipçi ve ara lider sistemin genel ortalama alan değeri ile
birbirleriyle ilişkili iken her ara liderin kontrol ettiği gruplar da kendi ortalama alan
değerleri ile takipçilerini ilişkilendirir.

Bu yeni lineer-ikinci dereceden çoklu hiyerarşik katmanlı ortalama alan Stackelberg
oyunu algoritması sayesinde genel lider sistemi ara liderlerden farklı maliyet
koşullarında optimize edebilmektedir. Ara liderlerin farklı çevre koşullarından
etkilendiği problemlerde ortalama alan oyununu katmanlara bölüp ara liderler
kullanmak zor çevre koşullarına adaptasyonu sağlamaktadır. Bu yöntemin akıllı ulaşım
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xxvi



1. INTRODUCTION

Control and coordination of multi-agent systems is an important and challenging

problem, and it has many diverse application areas such as mobile robotics [1], vehicle

formation [2], flocking [3], consensus problems [4], and micro-economics [5], among

others. In the literature, a significant amount of effort has been devoted to the theory

of multi-agent systems in order to characterize the optimal decision rules. In these

models, it is not feasible that a single agent has access to information available to all

the other agents as in centralized control. Hence importance of decentralized decision,

where each agent applies a strategy using only its local information, naturally arises.

In decentralized game problems, interaction between all agents should be incorporated

into the solution process in order to obtain Nash equlibria, which is the optimality

criterion used in noncooperative game theory [6–8]. However, solving Nash equlibria

with a large number of agents creates serious complexity issues, and therefore, has to

be abandoned. It is, therefore, reasonable to search for an approximate solution to the

Nash equilibrium. Mean field game framework [9, 10] has been introduced recently in

an attempt to overcome the difficulties that arise in solving for Nash equilibria of the

multi-agent differential game problems. In the mean field model, each individual agent

is affected by the average mass behavior of all agents which, is called the Mean Field

Term. In other words,the mean field term couples each agents weakly. The law of large

numbers dictates that a deterministic limit is converged by the empirical distribution of

agents’ state (i.e., mean field term), when the population size goes to infinity. Hence,

for large enough population sizes, we can view the mean field term as an external

variable to the optimal control problem that agents are faced with. Therefore, this

way, we can transform the decentralized multi-agent game problem to a single agent

decision problem under the condition that the state evaluation of an individual agent

should be consistent with the mean field term, which is a result of the law of large

numbers. This condition is called Nash certainty equivalence problem in technical

literature.
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In this thesis, we describe the results we have obtained on linear-quadratic hierarchical

Mean Field Stackelberg differential games with open-loop information structure. In

this game model, there are three levels. In the first level, there is a global leader

which plays a Stackelberg game with sub-leaders which are in the second level and

in the third level, there are followers which play a Stackelberg Mean Field game with

their sub-leaders. Hence, the leader cannot manipulate the followers directly, however,

sub-leaders link up followers to the leader as an intermediary layer. A Mean Field

term couples followers of each sub-leader weakly. The main novelty in this thesis is to

consider the Mean Field Game in accordance with a hierarchical multilayer structure

that arises in the infinite population limit and compute the Mean Field equilibrium

policies instead of computing exact Stackelberg equilibrium. Then the resulting

policies are applied to the original problem. In case the population size is sufficiently

large, the resulting policies will yield an approximate Stackelberg equilibrium, by the

law of large numbers. A similar problem which combines Stackelberg game and the

Mean Field approach was first searched in [11]. However, the model considered in [11]

constitutes of only two levels which significantly simplifies the problem.

Researchers examined the leader-follower mean field games in the past decade but they

usually solved the problem through Nash Games. Moon and Basar studied Stackelberg

game in Mean Field Games [12] recently. The contribution of this thesis to Stackelberg

differential mean field games is that the problem is solved in view of hierarchy layers,

a sub-layer is introduced to the game and multi leaders are added to this sub-layer.

The hierarchy of sub-leaders which play games on behalf of their followers makes it

possible to manage the followers in case of different sub goals. In [13], Stackelberg

equilibrium is solved from a multi layer point of view. In this thesis, Stackelberg Mean

Field approach of [11] and Stackelberg Multi Layer solution of [13] are combined.

After developing the new type of multi agent control model as described above, it is

applied to the Intelligent Transportation Systems in Smart City, which is an envisaged

concept that is used for vast scope of application areas. There is no consistent

definition for Smart City among academia but it simply stands for a green, safe

and friendly city with improved life conditions for its inhabitants. These conditions

are strongly related to economic, social, and environmental standards of the city in

terms of city services for citizens, transportation, communication,health care systems,
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water, business, and energy infrastructure. In recent decades, the world population

has increased significantly and by the year 2050 it is expected that people of the

world will prevalently live in cities with a ratio of %70. Due to the fact that cities

are currently generating %80 of greenhouse gases, also consume %75 of the world’s

resources and energy, a significant amount of research has to be performed to preserve

world resources.

The development of ITS is a cornerstone in the design and implementation of smart

cities. Traffic congestion is a common problem all around the world. Governments

have to take precautions to assure efficient transportation systems. France, Belgium,

the UK and Netherlands have incorporated in a major project called as Connecting

Europe Facility, which aims to promote smart infrastructure using sensors; roads that

generate energy; real-time visual insights into traffic flows, truck platooning and to

decrease noise pollution and greenhouse emissions. Computer-controlled platooning

trucks, which reduce fuel consumption as well as carbon emission, are now on

the highways in Europe. They also help the traffic flow by reducing congestion.

Although some researchers claim that autonomous vehicles will only travel in

permitted roads because of their unpredictability, research on autonomous vehicles is

increasing significantly in recent years. Traffic Management Systems have proliferated

enormously throughout the years, since the first traffic lights were implemented in the

second half of the 19th century. However future requirements of ITS needs smarter

systems than traffic lights. Leading Information and Communication Technology

(ICT) companies of the world are now starting to develop infrastructure systems

for smart cities. Initially they tend to focus on utilities and traffic infrastructures

specifically. Wasted hours and fuels are the rudiments of the problems in terms of ITS.

Since there are a lot of ingredients in traffic assessments, day-to-day models do not

yield efficient results, therefore connected dynamic models are needed. Apparently, it

is not difficult to foresee that ITS will pave the way for the future smart cities. Yet,

more research effort is required to merge cooperative control and traffic management

strategies on individual vehicles. In this thesis instantaneous control of an AHS is

elaborated to expand the standards with respect to stochastic multi agent games in

smart cities.
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1.1 Literature Review

The optimal solution of the single agent decision problem provides an approximation

to Nash equilibria of games with large population sizes. However, unlike standard

single agent optimal control problem, the characterization of this optimal solution

leads to a Fokker-Planck partial differential equation evolving forward in time, and

a Hamilton-Jacobi-Bellman partial differential equation evolving backward in time.

These types of coupled forward-backward partial differential equations have been

studied in [14]. Researchers have examined various types of mean field models

recently such as mean field optimization and teams [15]; mean field stochastic control

[9, 16, 17]; mean field stochastic games [15, 18–20]; mean field stochastic difference

games [21], and mean field stochastic differential games [14, 22, 23]. In [11] Moon

and Basar show that stochastic mean filed Stackelberg game constitutes an ε-Nash

equilibrium for the followers, and then the authors prove that when N is sufficiently

large ε could be picked arbitrarily close to zero.

Implementations of large-scale systems in real life became more applicable following

a surge of computing power in the 1980s. Smart grids, cyber physical systems,

autonomous robotics, internet networks, social networks are some application areas

of large-scale systems. Aspects of successful large-scale systems require five factors.

These are scalability, availability, manageability, security and development practice.

Mean field games have enhanced scalability in large-scale systems in the past decade.

For instance, the control of coupled oscillators has been examined in [24]. Furthermore

mean field game theory has been implemented to a large number of plug-in electric

vehicles in [25] to design an efficient charging profile, to a large number of electric

water heating loads in [26] with the purpose of controlling them, and to a large-scale

molecular biology network in [27] with the aim of analyzing its behavior. The

application of mean field games in economics with a large number of firms is explained

in reference [28], and wireless power control for a large number of users is discussed

in [16].

Scenarios where there is one major agent and a large number of minor agents are

considered in references [29] and [30]. ε-Nash equilibrium is obtained, and stochastic

mean field approximation has been introduced in these papers. In [29] best stochastic

mean field process is calculated through the state augmentation method in K distinct
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models. Fixed point analysis is carried out to the problem with the purpose of obtaining

K distinct models in [30]. The nonlinear counterpart of mean field games with major

and minor agents is examined in [31].

The strategy of each agent is determined in a non-cooperative way in mean field

games that are discussed above, which are mainly known as Nash games. Furthermore

hierarchical decision making between the agents does not occur. In Stackelberg games,

however, the leader announces its optimum strategy beforehand based on follower’s

likely reactions. The leader knows everything that followers know but followers do

not. Then each follower states its optimum strategy according to leader’s strategy.

Subsequently the leader implements its announced strategy. The equilibrium strategy

in this game is called Stackelberg equilibrium [6]. In the literature dynamic games and

Stackelberg differential games have been examined comprehensively, since the 1970s

(see [6, 32–37] and references therein).

Networked models of smart cities connected via communication, to merge human

life and technology have also been studied in technical literature. ICT is a key

component for monitoring and analyzing the city because smart systems need instant

environmental information to provide more efficient cities. Key global technology

providers such as IBM, Cisco and Siemens invest in this area of constructing ICT

infrastructure. Hence the Internet of Things and Big Data framework become more of

an issue for smart cities. More detailed definitions for smart cities could be found in

survey papers [38–42].

Clearly smart city is a complicated concept, which is composed of many parts of the

human life. Hence for the purpose of sketching the concept of smart city, researchers

should put forward innovative models for different subsystems. There are many

components such as, road network, a rapid transit system, communication system,

railway network, gas supply system, street light system, firefighting system, waste

management system, economy system, apartment homes, power supply system, traffic

light system, digital library, hospital system, law enforcement, water supply system,

bridges, hotels, and office space. It is known that elder population proliferates on the

world recently. Nowadays %14 of the world population is aging hence a care service

model has been developed for smart city in [43]. The model provides smart shuttle

service for elderly people as regards their demands. Different components of a smart
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city are considered as a multi criteria cost function in [44]. Then they use different

architectures in order to construct a reasoning engine. Mobile crowd-sensing is a

concept, which stems from implicit or explicit mobile user data. It reduces investment

cost of infrastructures which are required for information in smart city. Therefore

a trustworthiness model has been developed with reference to smart citizen in [45]

with the intention of suggesting efficient crowd-sourcing algorithms. In [46] strategic

frameworks for Dubai have been examined from perceptive of ICT. A game theory

based hierarchic decision making algorithm for strategic energy management of a

smart city has been proposed in [47]. The hierarchic structure is of service to fill

an important gap, which is in accordance with subsystems of the energy manager.

Vast research has been conducted for improving traffic conditions such as flow, density,

speed in the literature. Most of them are in accordance with machine learning methods

on the purpose of prediction. Furthermore they cope with big data problem mostly. A

new ITS architecture for parallel transportation management and control system has

been developed in [48]. The architecture uses ITS cloud model, which composes of

four layers, namely application, platform, unified resource and physical layers. Hereby,

they estimate the traffic flow through Bayes expectation maximization in an artificial

system. A big data solution for ITS has been discussed in [49]. There, sensing

methods are presented with respect to different sensor types in traffic environment

under big data challenging. Consequently, new methods have been put forward with

the aim of handling big data. In [50], an ITS optimization method has been developed

as an ant colony based mobile crowd-sensing algorithm, which optimizes time and

path distances. A Stackelberg game type optimization technique is proposed for

highways in [51], which is a game between the leader and each follower separately

hence it ignores the interaction among followers. A traffic density based travel time

function has been developed in comparison to flow based one in [52]. Furthermore

the optimal time has been calculated under constraints for density, in this way a traffic

assignment problem has been solved. A correlation between weather conditions and

traffic flow has been studied by deep learning belief networks in [53]. Deep learning

algorithm uses historic traffic data and weather conditions of ongoing moment so

correlation value is computed. An intelligent trip modeling system has been proposed

to predict traveling speed using machine learning methods in [54]. Researchers have
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developed an intelligent speeding prediction system in [55] to reduce intentional

and unintentional speeding hence they prevent speeding-related traffic accidents and

injuries. A vehicle traffic predictive cruise control system has been proposed to

improve traffic operation and the fuel efficiency of vehicles based on the asymmetric

traffic theory in [56]. Unnecessary deceleration and acceleration actions have been

decreased under both uncongested and congested traffic conditions. The design,

development, implementation, and testing of a cooperative adaptive cruise control

system has been presented in [57]. It consists of two controllers, one to manage the

approaching maneuver to the leading vehicle and the other to regulate car-following

once the vehicle joins the platoon.

A large number of methods are used for traffic flow prediction such as autoregressive

and moving average models, Kalman filter, support vector machine or neural networks

in the literature. But rather than prediction we prefer to control the multi-agent system

meanwhile each follower converges to the flow by mean field theory individually. In

this way when vehicles travel on the highway, stop-and-go driving conditions will

be prevented resulting in lower carbon emission. Here, some application examples

are provided. Mean field game is applied to a routing network in terms of Wardrop

equilibrium, which was characterized by an equal traffic density on all used paths,

in [58] firstly. Production output adjustment in a large market has been investigated

in [59]. In this model, large number of producers supply a certain product with sticky

prices. A mean field game is played between vehicle owners and electric price for

electric vehicles in smart grid [60]. So, electric consumption has been optimized for

electric and hybrid vehicles through selling or buying energy while they connect to

smart grids.

1.2 Purpose of The Thesis and Contributions

• A new linear quadratic (LQ) Mean Field (MF) Multi-level Stackelberg game (MSG)

is developed [61]. This game consists of multi hierarchical levels. A global-leader

imposes its strategy on sub-leaders. It plays a stochastic Stackelberg Game with its

sub-leaders while considering mean field behavior of followers in upper level(1-2).

The lower level (2-3) contains mean field followers of the game, each sub-leader

plays Stackelberg mean field game among its followers.
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• We combine mutli-layer Stackelberg games such as described in [13] with mean

field games. So we have added more layers to the Stackelberg Mean Field game

[11]. Combination of mutli-layer stochastic Stackelberg games and mean field

constraints in optimal control problem yields more complex equations. However

partitioning the system to sub-problems increases the performance.

• We carried out our (MF-MSG) algorithm to a large scale tracking problem which

includes 1600 agents. Then we have examined the influence on the (MF-MSG)

algorithm via comparison with systems which have smaller number of agents and

one Stackelberg decision layer.

• A new type of Intelligent Transportation System (MF-ITS) is proposed for AHS in

future smart cities. This method should be considered as a new Intelligent Speed

Change algorithm in respect that each vehicle tends to converge its speed to the

mean field term. Besides it is an optimal multi agent control algorithm since each

vehicle estimates its optimal control with reference to its own and other agent’s

dynamics. Eventually, MF-ITS algorithm optimizes the system based on travel

time, traffic flow and energy control. In this way it comes up with a method, which

has positive effects on both environment and psychology of people.

• We have extended the research, new MF-MSG for ITS. We have used hierarchical

structure of MF-MSG so we could use different cost functions for sub-leaders or

global leader and different mean field term on the each part of the highway [62].

• There are mot many automated highway models for smart cities in the literature.

Hereby, ITS is modeled as a mean field game for the first time. Then we have tested

our algorithm on a realistic simulation program (ITUCiTSim), which is developed

for implementing the real time traffic scenarios on a ITS highway. Most researches

exploit past data of traffic conditions. Here, we come up with an instantaneous

control model of the AHS, which is not affected adversely in case traffic conditions

change day-to-day.

The rest of the thesis is organized as follows. Section 2 presents some mathematical

background about stochastic differential equations, forward-backward differential

equations, stochastic optimal control problem, and game theory. Section 3 deals
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with the approximate optimal control problem that each follower is faced with in the

mean field limit, when sub-leaders impose their arbitrary strategy to the followers.

Furthermore, approximate game problem of sub-leaders is solved subject to mean

field of each group. Global leader problem is solved as a Stackelberg game in this

section. In Section 4, we introduce the problem and explain the main difficulties to

solve the problem exactly when the number of agents on automated highway system

is large; we also translate the mean field problem to an ITS. Moreover we deal with

the approximate optimal control problem that each vehicle has to solve in the mean

field limit, when road-links impose their arbitrary strategies on the vehicles. Besides,

road-links approximate the game problems which are solved subject to the mean field

of each section of the AHS. The control center problem is also solved in this section,

within a Stackelberg game framework. In Section 5, firstly numerical experiments,

which consist of four different types of games that are related to different number

of agents strategy and a control to one-layer hierarchical level, are given. Then we

introduce our professional simulation program ITUCiTSim along with some examples

on traffic simulations from the literature. Then, the results of numerical experiments

are given for two different traffic scenarios. These are MFG control of vehicles under

normal traffic and after an accident occurs. Here, each road-section imposes its strategy

on a different number of vehicles and is managed by a control center in the Istanbul

simulation model. Finally, section 6 concludes the thesis with a brief summary of the

results and identifying directions for future research.
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2. MATHEMATICAL PRELIMINARIES

2.1 Stochastic Differential Equations

A stochastic differential equation (SDE) is a differential equation which also includes

stochastic terms. The solution of a SDE is a stochastic process. Some typical examples

of SDEs are Brownian motion and the Wiener process. However, other types of random

behavior are also possible (see further details [63]).

2.1.1 Probability spaces, random variables and stochastic processes

Some preliminary information about probability theory will be briefly given in this

section.

Definition 2.1.1.1. Let a set Ω be nonempty, and let F ⊆ 2Ω (2Ω is the set of all

subsets in Ω), named as a class, be nonempty. We show F as

(i) a π-system if A,B ∈F ⇒ A∩B ∈F ,

(ii) a λ -system if 
Ω ∈F ;
A,B ∈F , A⊆ B⇒ B\A ∈F ;
Ai ∈F , Ai ↑ A, i = 1,2, · · · ⇒ A ∈F ,

(iii) a σ -system if 
Ω ∈F ;
A,B ∈F , ⇒ B\A ∈F ;

Ai ∈F , , i = 1,2, · · · ⇒
∞⋃

i=1
Ai ∈F .

Hereby the σ -field is generated by A, in case σ(A) is the smallest σ -field containing

A.

Definition 2.1.1.2. The measurable space is shown as (Ω,F ). So a function P : F →

[0,1] is a probability measure P on a measurable space (Ω,F ) such that
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(i) P(∅),P(Ω) = 1,

(ii) if A1,A2, · · · ∈F and {Ai}∞
i=1 is disjoint (i.e. Ai∪A j =∅ if i 6= j) so

P
( ∞⋃

i=1

Ai
)
=

∞

∑
i=1

P(Ai).

Definition 2.1.1.3. The triple (Ω,F ,P) demonstrates a probability space. This is a

complete probability space in case F consists all subsets G of Ω with P-outer measure

zero, i.e. with

P∗(G ) := inf{P(F );F ∈F ,G ⊂F}= 0.

If there is a smallest σ -algebra HU including U in any family U of subsets of Ω,

namely

⋂
HU = {H ;H σ − algebra of Ω,U ⊂H }.

HU is named as the σ -algebra constituted by U .

The σ -algebra HX constituted by X is the smallest σ -algebra on Ω including all the

sets, if X : Ω→ Rn is any function, so that

X−1(U); U ⊂ Rn open.

It could be shown that

HX = X−1(B); B ∈B,

where B is the Borel σ -algebra on Rn. Overtly, HX is the smallest σ -algebra with this

feature, and X will then be HX -measurable.

Definition 2.1.1.4. If X : Ω→Rn, then an F -measurable function is a random variable

X . A probability measure µX on Rn is induced by every random variable , described by

µX(B) = P(X−1(B)),

the distribution of X is shown by µX .
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Definition 2.1.1.5. A collection of random variables taken from Rn constitutes a

stochastic process

{Xt}t∈T ,

on the probability space (Ω,F ,P).

Definition 2.1.1.6 (Cauchy Sequence [64]). A sequence {xn} in a normed space where

‖ xn− xm ‖→ 0 as n,m→ ∞ is a Cauchy Sequence; i.e., there is an integer N where

‖ xn− xm ‖< ε for all n,m > N, and given ε > 0.

In a normed space, every convergent sequence is a Cauchy Sequence since, if xn→ x

‖ xn− xm ‖=‖ xn− x+ x− xm ‖≤‖ xn− x ‖+ ‖ x− xm ‖→ 0.

Definition 2.1.1.7 (Banach Space). In case every Cauchy sequence from X has a limit

in X , a normed linear vector space X is complete. Thus Banach Space stems from a

complete normed vector space.

Definition 2.1.1.8 (The Lp Spaces). Let the Lp-norm of X ,‖ X ‖p in case of p ∈ [1,∞)

be a constant and X : Ω→ Rn be a random variable, then

‖ X ‖p=‖ X ‖Lp(P)=
(
|X(ω)|pdP(ω)

) 1
p
.

If p = ∞ we set

‖ X ‖∞=‖ X ‖L∞(P)= inf{N ∈ R; |X(ω)| ≤ N a.s.}.

The related Lp-spaces are given as

Lp(P) = Lp(Ω) = {X : Ω→ Rn; ‖ X ‖p< ∞}.

The Lp-spaces are Banach spaces, and they are also normed linear spaces. A Hilbert

space is a norm where p = 2, the space L2(P) , i.e. a complete inner product space,

with inner product

(X ,Y )L2(P) := E[X ·Y ]; X ,Y ∈ L2(P).

Definition 2.1.1.9 (Brownian Motion). There are some finite-dimensional distributions

of Bt on Ω where (Ω,F ,Px) is a probability space by Kolmogorov’s theorem. {Bt}t≥0

is a stochastic process and then

Px(Bt1 ∈ F1, · · · ,Btk ∈ Fk) =
∫

F1×···Fk

p(t1,x,x1) . . . p(tk− tk−1,xk−1,xk)dx1 . . .dxk,

is named as Brownian Motion.
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2.1.2 Ito integrals

Let a mathematical solution of a SDE be computed by ito Integrals.

dX
dt

= b(t,Xt)+σ(t,Xt) · "constant",

where b and σ are given functions is a stochastic differential equation containing noise.

Firstly 1-dimensional noise problem will be worked on the problem. Some stochastic

process Wt will be examined, on the purpose of describing the noise term, such that

dX
dt

= b(t,Xt)+σ(t,Xt) ·Wt . (2.1)

In engineering problems that cover lots of circumstances; on the purpose of deriving a

solution it should be assumed that Wt has, the following properties:

(i) {Wt} is stationary, i.e. the (joint) distribution of Wt1+t , . . . ,Wtk+t does not depend

on t.

(ii) E[Wt ] = 0 for all t.

(iii) t1 6= t2→Wt1 and Wt2 are independent.

Besides, the white noise process could be shown as Wt in stochastic processes

generally. Let

Xk+1−Xk = b(tk,Xk)∆tk +σ(tk,Xk)Wk∆tk, (2.2)

where

X j = Xt j , Wk =Wtk , ∆tk = tk+1− tk.

In this equation the only such process with continuous paths is the Brownian motion

Bt . Hence Vt = Bt should hold and attained from (2.2)

Xk = X0 +
k−1

∑
j=0

b(t j,X j)∆t j +
k−1

∑
j=0

σ(t j,X j)∆B j. (2.3)
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It could be shown easily that the limit of the right hand side of equation (2.3) exists,

when ∆t j→ 0. Subsequently the usual integration notation could be denoted by using

Xk = X0 +
∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dBs, (2.4)

and we can assume as a convention that equation (2.1) demonstrates that the equation

(2.4) is satisfied by a stochastic process Xt = Xt(ω).

Now the Ito’ integral could be shown for functions f ∈V

I[ f ](ω) =
∫ T

S
f (t,ω)dBt(ω),

where Bt denotes the 1-dimensional Brownian motion.

The natural idea is: Firstly, I[φ ] should be described for a basic class of functions φ .

Then, we demonstrate that each f ∈ V can be estimated by such φ ’s and we utilize

these to describe
∫

f dB as the limit of
∫

φdB as φ → f .

Its elementary form describes a function φ ∈V , in case of

φ(t,ω) = e j(ω) ·X [t j, t j+1)(t).

Finally since φ ∈V each function e j must be Ft j-measurable.

The integral is given for elementary functions φ(t,ω)∫ T

S
φ(t,ω)dBt(ω) = ∑

j≥0
e j(ω)[Bt j+1−Bt j ](ω).

Definition 2.1.2.1 (The Ito’ integral). Then the Ito’ integral of f (from S to T ) is

described by ∫ T

S
f (t,ω)dBt(ω) = lim

n→∞

∫ T

S
φn(t,ω)dBt(ω),

where a sequence of elementary functions is {φn} so that

E
[∫ T

S

(
f (t,ω)−φn(t,ω)

)2
]
→ 0 as n→ ∞.
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2.1.3 The Ito formula

When calculating a given integral, the base definition of Ito’ integrals cannot be used.

The solution is derived by chain rule, where the case resembles ordinary Riemann

integrals calculation but its basic definition is not used. The fundamental theorem of

calculus is used instead of basic definitions of Riemann integrals.

Hereby, we have only integration theory instead of differentiation theory. Even though

this kind of situation occurs, there is a solution. The Ito’ formula is a version of

the chain rule of an Ito’ integral. It is quite practical for the purpose of solving Ito’

integrals.

Definition 2.1.3.1 (1-dimensional Ito’ processes). A stochastic process Xt on

(Ω,F ,P) of the equation (2.5) is a (1-dimensional) Ito’ process (or stochastic integral)

where Bt is a 1-dimensional Brownian motion on (Ω,F ,P).

Xt = X0 +
∫ t

0
u(s,ω)ds+

∫ t

0
v(s,ω)dBs, (2.5)

where v ∈WH , such that

P
[∫ t

0
v(s,ω)2ds < ∞ for all t ≥ 0

]
.

It is assumed that u is Ht-adapted and

P
[∫ t

0
|u(s,ω)|ds < ∞ for all t ≥ 0

]
.

The equation (2.5) could occasionally be written in the shorter differential form as

dXt = udt + vdBt .

For instance, (2.5) could be presented by

d
(1

2
B2

t

)
=

1
2

dt +BtdBt .

Now the first main result is given by:

Theorem 2.1.3.2 (The 1-dimensional Ito’ formula)). An Ito’ process Xt could be

denoted by

dXt = udt + vdBt , (2.6)

In case g is twice continuously differentiable on [0,∞)×R and g(t,x)∈C2([0,∞)×R),

Yt = g(t,Xt).
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is an Ito’ process again, and

dYt =
∂g
∂ t

(t,Xt)dt +
∂g
∂x

(t,Xt)dXt +
1
2

∂ 2g
∂x2 (t,Xt) · (dXt)

2,

where (dXt)
2 = (dXt) · (dXt) is calculated by the fact that the rules

dt ·dt = dt ·dBt = dBt ·dt = 0 dBt ·dBt = dt.

Theorem 2.1.3.3 (The general Ito’ formula). Let

dXt = udt + vdBt ,

be an n-dimensional Ito’ process as stated. Assume that g(t,x) = (g1(t,x), . . . ,gp(t,x))

is a C2 map from ([0,∞)×Rn into Rp). Subsequently the process

Yt,ω = g(t,Xt)

is an Ito’ process again, whose component number k,Yk, is stated as

dYk =
∂gk

∂ t
(t,X)dt +∑

i

∂gk

∂xi
(t,X)dXi +

1
2 ∑

i, j

∂ 2g
∂xi∂x j

(t,X) ·dXidX j,

where

dt ·dt = dt ·dBi = dBi ·dt = 0 dBi ·dB j = δi jdt.

2.2 Forward-Backward Stochastic Differential Equations

In this section FBSDEs are given in finite time duration. A simple form of linear

FBSDEs is searched, on the purpose of deriving necessary conditions for solvability.

Subsequently we investigate necessary and sufficient conditions to assure solvability in

FBSDEs. The state for one-dimensional Brownian motion will be shown (see further

details [65]).

2.2.1 Solvability of linear FBSDEs

The system of coupled linear FBSDEs are taken into consideration:

dX(t) ={AX(t)+BY (t)+CZ(t)+Db(t)}dt

+{A1X(t)+B1Y (t)+C1Z(t)+D1σ(t)}dW (t),

dY (t) ={ÂX(t)+ B̂Y (t)+ĈZ(t)+ D̂b̂(t)}dt

+{Â1X(t)+ B̂1Y (t)+Ĉ1Z(t)+ D̂1σ̂(t)}dW (s),

X(0) =x, Y (T ) = GX(T )+Fg t ∈ [0,T ].

(2.7)
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Here, g is a random variable, furthermore b,σ , b̂ and σ̂ are stochastic processes and

A,B,C etc. are matrices of appropriate sizes. {Ft}t≥0-adapted processes X(·),Y (·) and

Z(·) are searched for, valued in Rn,Rm and Rl , respectively.

Definition 2.2.1.1. If the sequent is satisfied for all t ∈ [0,T ], then a triple (X ,Y,Z) ∈

M[0,T ] is named an adapted solution of (2.7), almost certain:

X(t) =x+
∫ t

0
{AX(s)+BY (s)+CZ(s)+Db(s)}ds

+
∫ t

0
{A1X(s)+B1Y (s)+C1Z(s)+D1σ(s)}dW (s),

Y (t) =GX(T )+Fg−
∫ T

t
{ÂX(s)+ B̂Y (s)+ĈZ(s)+ D̂b̂(s)}ds

−
∫ T

t
{Â1X(s)+ B̂1Y (s)+Ĉ1Z(s)+ D̂1σ̂(s)}dW (s).

(2.7) is accepted as solvable, in case (2.7) admits an adapted solution.

After some simplifications the following FBSDE is obtained:

dX(t) ={AX +BY +CZ}dt

+{A1X +B1Y +C1Z}dW (t),

dY (t) ={ÂX + B̂Y +ĈZ}dt +ZdW (s),

X(0) =0, Y (T ) = g t ∈ [0,T ].

(2.8)

By demonstrating

A =

[
A B
Â B̂

]
, C =

[
C
Ĉ

]
A1 =

[
A1 B1
0 0

]
, C1 =

[
C1
I

]
.

the equation (2.8) could be written as stated below:

d
([X

Y

])
={A

([X
Y

])
+CZ}dt +{A1

([X
Y

])
C1Z}dW (t),

X(0) =0, Y (T ) = g t ∈ [0,T ].

(2.8) is named as a (linear) stochastic control system, where (X ,Y ) is the state and Z

is the control.
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2.2.2 A Riccati type equation

In this subsection, a sufficient condition for unique solvability of (2.8) will be obtained.

We will attain a Riccati type equation and a BSDE in the form of (2.8).

Let an adapted solution of (2.8) be assumed as (X ,Y,Z) ∈M[0,T ]. Then X and Y are

related in accordance with the formula

Y (t) = P(t)X(t)+ p(t), ∀t ∈ [0,T ], a.s. (2.9)

where p : [0,T ]×Ω→ Rm is an {Ft}t≥0-adapted process and P : [0,T ]→ Rm×n is a

deterministic matrix-valued function. Then we obtain the equations for p(·) and P(·).

Initially, from the terminal condition and (2.9) in (2.8), we have

g = P(T )X(T )+ p(T ).

Let us assume

P(T ) = 0, p(T ) = g.

Due to fact that p(·) is necessitated to be {Ft}t≥0-adapted and g∈ L2
FT
(Ω;Rm), a BSDE

that p(·) satisfies is :

d p(t) =α(t)dt +q(t)W (t), t ∈ [0,T ]

p(T ) =g,
(2.10)

where α(·),q(·) ∈ L2
F(0,T ;Rm) are undetermined. Then, by Ito’ formula:

dY (t) ={ṖX +P[AX +BY +CZ]+α}dt

+{P[A1X +B1Y +C1Z]+q}dW (t),

={[Ṗ+PA+PBP]X +PCZ +PBp+α}dt

+{[PA1 +PB1P]+PC1Z +PB1 p+q}dW (t).

(2.11)

A comparison of (2.11) with the second equation in (2.8) yields:

[Ṗ+PA+PBP]X +PCZ +PBp+α = [Â+ B̂P]X +ĈZ + B̂p. (2.12)

It is possible to write (2.12) as

0 =[Ṗ+PA+PBP− Â− B̂P

+(PC−Ĉ)(I−PC1)
−1(PA1 +PB1P)]X

+[PB− B̂+(PC−Ĉ)(I−PC1)
−1PB1]p

+(PC−Ĉ)(I−PC1)
−1q+α.
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The differential equation of Rm×n-valued function P(·) is given as:

Ṗ+PA+PBP− Â− B̂P

+(PC−Ĉ)(I−PC1)
−1(PA1 +PB1P) = 0, t ∈ [0,T ],

P(T ) = 0.

(2.13)

We call (2.13) as a Riccati type equation. The solution P(·) over [0,T ] is given by

(2.13) so that

[I−PC1]
−1 is bounded for t ∈ [0,T ]. (2.14)

Unifying this with (2.10), it is understood that the next BSDE should be :

d p(t) =−
{
[PB− B̂+(PC−Ĉ)(I−PC1)

−1PB1]p

+(PC−Ĉ)(I−PC1)
−1q
}

dt +qW (t), t ∈ [0,T ]

p(T ) =g.

(2.15)

BSDE (2.15) gives a unique adapted solution (p(·),q(·)) ∈ N[0,T ], in case there is

a solution P(·) given by (2.13) so that (2.14) is satisfied. Subsequently it can be

expressed as:

Ã =A+BP+C(I−PC1)
−1(PA1 +PB1P),

Ã1 =A1 +B1P+C(I−PC1)
−1(PA1 +PB1P),

b̃ =Bp+C(I−PC1)
−1(PB1 p+q),

σ̃ =B1 p+C1(I−PC1)
−1(PB1 p+q).

It is understood that b̃,σ̃ are {Ft}t≥0-adapted processes, also Ã and Ã1 are

time-dependent matrix-valued functions. Then, under (2.14), a unique strong solution

is given by the following SDE:

dX(t) =(Ã+ b̃)dt +(Ã1 + σ̃)dW, t ∈ [0,T ],

X(0) =x.
(2.16)

A representation of the adapted solution of FBSDE (2.7) is presented by the next

theorem.

Theorem 2.2.2.1. Let (2.13) give a solution P(·) so that (2.14) holds. A unique adapted

solution (X ,Y,Z) ∈M[0,T ] is given by FBSDE (2.7) which is specified by (2.16), and

(2.15).
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2.3 Stochastic Optimal Control Problems

In this subsection it is concentrated on dynamic systems. These systems are defined by

Ito’ stochastic differential equations and are occasionally named as diffusion models.

White noise is the base source of uncertainty in these diffusion models. Because of

the fact that the systems are dynamic, the concerned decisions (controls), which are

made established upon the most updated information convenient to the decision makers

(controllers), should also change in time. An optimal decision among all possible

ones should be chosen by the decision makers, with the purpose of reaching the best

anticipated result with respect to their aims. These types of optimization problems are

known as stochastic optimal control problems (see further details [66]).

2.3.1 Formulations of stochastic optimal control problems

An m-dimensional standard Brownian motion W (·) is described, where the usual

condition is satisfied by a filtered probability space (Ω,F ,{Ft}t≥0,P). Then, take

into consideration the controlled stochastic differential equation:

dx(t) =b(t,x(t),u(t))dt +σ(t,x(t),u(t))dW (t),

x(0) =x0 ∈ Rn,
(2.17)

where b[0,T ]×Rn×U → Rn,σ : [0,T ]×Rn×U → Rn×m, with U being a specified

separable metric space, and T ∈ (0,∞) being fixed. The control function u(·) represents

the action, decision, or policy of the decision-makers (controllers). At any instant of

time the controller knows some information (as given by the information field {Ft}t≥0)

of what has happened up to that moment, however may not predict what will happen

subsequently because of the uncertainty of the system. This nonanticipative limitation

in mathematical terms could be represented as "u(·) is {Ft}t≥0-adapted". The control

u(·) is taken from the set

U [0,T ] = {u : [0,T ]×Ω→U | u(·) is {Ft}t≥0-adapted}.

Any u(·) ∈ U [0,T ] is named as a feasible control. Besides, it is possible that there

may be some constraints on the states. Equation (2.17) has random coefficients. Given

multifunction S(t) : [0,T ]→ 2Rn
. The state constraint can be specified as

x(t) ∈ S(t), ∀t ∈ [0,T ].
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It should be considered that other types of state constraints are also possible.

The cost functional is introduced as follows:

J(u(·)) = E
{∫ T

0
f (t,x(t),u(t))dt +h(x(T ))

}
. (2.18)

Definition 2.3.1.1. Let W (t) be a given m-dimensional standard motion, when

(Ω,F ,{Ft}t≥0,P) are specified to satisfy the usual conditions. A control u(·) is named

an admissible control, and (x(·),u(·)) an admissible pair, if

(i) x(·) is the unique solution of equation (2.17),

(ii) u(·) ∈ u[0,T ],

(iii) f (·,x(·),u(·)) ∈ LF (0,T ;R) and h(x(T )) ∈ LF (0,Ω;R).

(iv) some prescribed state constraints are satisfied,

U [0,T ] demonstrates the set of all admissible controls. Then the stochastic optimal

control problem can be given as:

Problem. Minimize (2.18) over U [0,T ]. The main purpose of the problem is to find

ū(·) ∈U [0,T ] (if it ever exists), so that

J(ū(·)) = inf
u(·)∈U [0,T ]

J(u(·)). (2.19)

2.3.2 Maximum principle and stochastic Hamiltonian systems

The key idea of Pontryagin’s maximum principle is derived from the classical calculus

of variations. Duality is used in the derivation of the maximum principle. The main

problem is that the Ito’ stochastic integral
∫ t+ε

t σdW is only of order
√

ε (rather than ε

as with the normal Lebesgue integral, hence the common first-order variation method

fails. To deal with this problem, first-order and second-order terms in the Taylor

expansion of the spike variation should be worked on. Subsequently a stochastic

Hamiltonian system that consists of two forward-backward stochastic differential

equations and a maximum condition with an additional term quadratic in the diffusion

coefficient are obtained (see further details [66]).

Let us make the following assumptions:
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(S0) W (t) generates {Ft}t≥0 which is the natural filtration, augmented by all the P-null

sets in F .

(S1) T > 0, and (U,d) is a separable metric space.

(S2) L > 0 is a constant, the maps b,σ , f , and h are measurable and there

is a modulus of continuity ω̄ : [0,∞) → [0,∞) so that for ϕ(t,x,u) =

b(t,x,u),σ(t,x,u), f (t,x,u),h(x), then

|ϕ(t,x,u)−ϕ(t, x̂, û)| ≤ L|x− x̂|+ ω̄(d(u, û)),

∀t ∈ [0,T ], x, x̂ ∈ Rn, u, û ∈U,

|ϕ(t,0,u)| ≤ L, ∀(t,u) ∈ [0,T ]×U.

(S3) The maps b,σ , f , and h are C2 in x. Furthermore, there is a modulus of

continuity ω̄ : [0,∞) → [0,∞), and a constant L > 0 so that for ϕ(t,x,u) =

b(t,x,u),σ(t,x,u), f (t,x,u),h(x),

|ϕx(t,x,u)−ϕx(t, x̂, û)| ≤ L|x− x̂|+ ω̄(d(u, û)),

|ϕxx(t,x,u)−ϕxx(t, x̂, û)| ≤ ω̄(|x− x̂|+d(u, û)),

∀t ∈ [0,T ], x, x̂ ∈ Rn, u, û ∈U.

The adjoint variable p(·) has a central role in the maximum principle. The adjoint

equation that p(·) (the terminal value is given) satisfies determines a backward ordinary

differential equation. However, if the time is reversed, it is equivalent to a forward

equation. Nevertheless the time can not be reversed in the stochastic case, as it might

ruin the nonanticipativeness of the solutions. Instead, the following terminal value

problem for a stochastic differential equation is introduced:

d p(t) =
{

bx(t, x̄(t), ū(t))T p(t)+
m

∑
j=1

σ
j

x (t, x̄(t), ū(t))
T q j

− fx(t, x̄(t), ū(t))T
}

dt +q(t)dW (t), t ∈ [0,T ],

p(T ) =−hx(x̄(T )).

(2.20)

Note that (p(·),q(·)) is a pair of {Ft}t≥0-adapted processes. Let the equation (2.20)

be a backward stochastic differential equation. The solution (p(·),q(·)) is necessitated

to be {Ft}t≥0-adapted, even though the equation is to be solved backwards (because

the terminal value is specified). Any pair of processes (p(·),q(·)) ∈ LF (0,T ;Rn)×

(LF (0,T ;Rn))m satisfying (2.20) is named an adapted solution of (2.20). (2.20)
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admits a unique adapted solution (p(·),q(·)), when (S0)-(S3) are satisfied, for any

(x̄(·), ū(·)) ∈ LF (0,T ;Rn)×U [0,T ] . Then (S0) could not be omitted.

The uncertainty or the risk factor in the system is introduced by an additional adjoint

equation as follows:

dP(t) =
{

bx(t, x̄(t), ū(t))T P(t)+P(t)bx(t, x̄(t), ū(t))

+
m

∑
j=1

σ
j

x (t, x̄(t), ū(t))
T P(t)σ j

x (t, x̄(t), ū(t))

+
m

∑
j=1

σ
j

x (t, x̄(t), ū(t))
T Q j(t)+Q j(t)σ j

x (t, x̄(t), ū(t))

−Hxx
(
t, x̄(t), ū(t), p(t),q(t)

)T
}

dt +
m

∑
j=1

Q j(t)dW j(t), t ∈ [0,T ],

p(T ) =−hxx(x̄(T )),

(2.21)

where the Hamiltonian H is given by

H(t,x,u, p,q) =
〈

p,b(t,x,u)
〉
+ tr[qT

σ(t,x,u)]− f (t,x,u)

(t,x,u, p,q) ∈ [0,T ]×Rn×U×Rn×Rn×m,
(2.22)

and (p(·),q(·)) is the solution to (2.20). In the above (2.21), the unknown is again a

pair of processes (P(·),Q(·)) ∈ L2
F (0,T ;Sn)× (L2

F (0,T ;Sn))m.

Theorem 2.3.2.1 (Stochastic Maximum Principle). If (S0)-(S3) hold and (x̄(·), ū(·))

are an optimal pair of the problem, then there are pairs of processes

(p(·),q(·)) ∈ L2
F (0,T ;Rn)× (L2

F (0,T ;Rn))m,

(P(·),Q(·)) ∈ L2
F (0,T ;Sn)× (L2

F (0,T ;Sn))m,

where

q(·) =
(
q1(·), . . . ,qm(·)

)
, Q(·) =

(
Q1(·), . . . ,Qm(·)

)
,

q j(·) ∈ L2
F (0,T ;Rn), Q j(·) ∈ L2

F (0,T ;Sn), 1≤ j ≤ m,

so the first-order and second-order adjoint equations (2.20) and (2.21) are satisfied,

respectively, so that

H(t, x̄(t),ū(t), p(t),q(t))−H(t, x̄(t),u(t), p(t),q(t))

−1
2

tr
(
{σ(t, x̄, ū)−σ(t, x̄,u)}T P(t)

· {σ(t, x̄, ū)−σ(t, x̄,u)}
)
≥ 0,

∀u ∈U t ∈ [0,T ],

(2.23)
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or, equivalently,

H(t, x̄(t), ū(t)) = max
u∈U

H(t, x̄(t),u(t)) t ∈ [0,T ]. (2.24)

The inequality (2.23) is named as the variational inequality, and (2.24) is named as

the maximum condition.

The system (2.17) along with its first-order adjoint system can be written as:

dx(t) =Hp(t,x(t),u(t), p(t),q(t))dt

+Hq(t,x(t),u(t), p(t),q(t))dW (t),

d p(t) =Hx(t,x(t),u(t), p(t),q(t))dt +q(t)dW (s),

x(0) =x0, p(T ) =−hx(x(T )).

(2.25)

The combination of (2.25), (2.20), and (2.24) (or (2.24) ) is named as an

(extended) stochastic Hamiltonian system, with its solution being a 6-tuple

(x(·),u(·), p(·),q(·),P(·),Q(·). Therefore, Theorem 2.3.2.1 could be rephrased as the

following.

Theorem 2.3.2.2. If (S0)-(S3) hold and the problem admits an optimal pair (x̄(·), ū(·),

then the stochastic Hamiltonian system (2.25), (2.20), and (2.24) (or (2.24)) are solved

by the optimal 6-tuple (x(·),u(·), p(·),q(·),P(·),Q(·) of the problem.

It is understood from the above result that system (2.25) (with u(·) given) is also named

as a forward-backward stochastic differential equation.

2.4 Game Theory

Game theory is a decision making method, which is played among players who may

act in cooperative or competitive behavior. The individuals are named as decision

makers or players. Main application areas of game theory are conflicting circumstances

arising in economy, politics and wars. Furthermore it is also studied by control theory,

dynamic programming and Pontryagin’s "maximum principle". Let "decisions" are

made by players, moreover there are "actions" constituting "strategies" on the other

hand. (see further details [6]).

Definition 2.4.0.1 (Saddle-Point Equilibrium). Let the players adopt row i∗, column

j∗ as a pair of strategies for a specified (m× n) matrix game A = {ai j}. Then, if the
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inequality

ai∗ j ≤ ai∗ j∗ ≤ ai j∗

is satisfied for all i = 1, . . . ,m and all j = I, . . . ,n, the strategy row i∗, column j∗

constitutes a saddle-point equilibrium, and the matrix game has a saddle point in pure

strategies. The related outcome ai∗ j∗ of the game is named as the saddle-point value,

and is indicated by V (A).

2.4.1 Continuous time infinite dynamic games (Differential games)

Some background and a general formulation of infinite dynamic games are provided

in this subsection. "Differential game" is a game whose dynamics is decribed by

differential equations. Since the term "differential game" is also used for other

classes of games, it would be more suitable to use "dynamic game" as the general

term. In infinite dynamic games, while the players obtain some dynamic information

throughout the decision process, the action sets of the players consist of an infinite

number of elements. Moreover, some games can be also described in discrete time.

(see further details [6]).

In the literature differential games are also named as continuous-time infinite dynamic

games, a differential equation specifies the state of decision problems in a time interval.

Hence, these games could be formulated in case of prespecified fixed duration as

follows:

Definition 2.4.1.1. A N-person dynamic game includes the following.

(i) The players’ set is an index set N = I, . . . ,N.

(ii) The duration of the change of the game is specified by a time interval [0,T ]which is

denoted a priori.

(iii) The trajectory space of the game is an infinite set So with some topological

structure. {x(t), 0 ≤ t ≤ T} creates the permissible state trajectories of the game and

specifies its elements. Moreover, S0 is a subset of a finite- dimensional vector space

for each fixed t ∈ [0,T ], x(t) ∈ S0.

(iv) The control (action) space of Pi, whose elements ui(t), 0≤ t ≤ T are the control

functions or simply the controls of Pi, for each i ∈ N is described by an infinite set U i
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with some topological structure. Moreover, for each fixed t ∈ [0,T ], ui(t) ∈ Si, there is

a set Si ⊆ Rm,(i ∈ N).

(v) A differential equation is introduced

dx(t)
dt

= f (t,x(t),u1(t), . . . ,un(t)), x(0) = x0, (2.26)

where the state trajectory of the game is denoted by xt . In the above equation the

specified initial state is x0 and the N-tuple of control functions are {ui(t), 0 ≤ t ≤

T}(i ∈ N).

(vi) For each i ∈ N a set-valued function η i(·) is identified as

η
i(t) = {x(s), 0≤ s≤ ε

i
t}, 0≤ ε

i
t ≤ t,

where the state information gained is indicated by η i(t), ε i
t is nondecreasing in t, and

recalled by Pi at time t ∈ [0,n]. The information pattern of Pi is specified by features

of η i(·) (actually, ε i
t ), and the information structure of the game is the collection (over

i ∈ N) of these information structures.

(vii) The cylinder sets x ∈ So,x(s) ∈ B where B is a Borel set in S0 and 0 ≤ s ≤ ε i
t

constitutes a sigma-field Ni
t ; in So. The information field of Pi is Ni

t , t ≤ t0.

(viii) The strategy space of Pi is a prespecified class Γi of mappings γ i : [0,T ]×So→ Si,

with the property that ui(t) = γ i(t,x) is Ni
t -measurable. A permissible strategy for Pi is

Γi, and each of its elements is γ i.

(ix) For each i ∈ N two functionals qi : S0→ R, gi : [0,T ]×S0×S1×·· ·×SN → R are

described, such that the composite functional

Li(u1, . . . ,uN) =
∫ T

0
gi(t,x(t),u1(t), . . . ,uN(t)),

is well-defined for every u j(t) = γ j(t,x), γ j ∈ Γ j( j ∈ N),and the cost functional of Pi

in the game is of fixed duration for each i ∈ N. Li.

Definition 2.4.1.2. Pi’s information structure in an N-person continuous-time

deterministic dynamic game (differential game) of prespecified fixed duration [0,T ]

is

(i) open-loop (OL) pattern ε i
t = {x0}, t ∈ [0,T ],
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(ii) closed-loop perfect state (CLPS) pattern if

ε
i
t = {xs, 0≤ s≤ t}, t ∈ [0,T ],

(iii) ε-delayed closed-loop perfect state (ε (DCLPS) pattern if{
ε i

t = {x0, 0≤ s≤ ε},
ε i

t = {xs, 0≤ s≤ t− ε}, ε < t,

where ε > 0 is fixed,

(iv) memoryless (perfect state) (MPS) pattern if ε i
t = {x0,x(t)}, t ∈ [0,T ],

(v) feedback (perfect state) (FB) pattern if ε i
t = {x(t)}, t ∈ [0,T ].

Theorem 2.4.1.3. Let us assume So =Cn ∈ [0,T ] within the framework of description

2.4.1.1, and the information patterns of description 2.4.1.2. If

(i) for each x ∈ S0,ui ∈ Si, i ∈ N f (t,x,u1, . . . ,uN) is continuous in t ∈ [0,T ] ,

(ii) for some k > 0 f (t,x,u1, . . . ,uN) is uniformly Lipschitz in x,u1, . . . ,uN ,

‖ f (t,x,u1, . . . ,uN)− f (t, x̄, ū1, . . . , ūN) ‖

≤ k max
0≤t≤T

{‖ x(t)− x̄(t) ‖+ ∑
i∈N
‖ ui(t)− ūi(t) ‖},

x(·), x̄(·) ∈Cn[0,T ]; ui(·), ūi(·) ∈U i (i ∈ N)

(iii) for each x(·) ∈ Cn[0,T ] γ i ∈ Γi(i ∈ N),γ i(t,x) is continuous in t and uniformly

Lipschitz in x(·) ∈Cn[0,T ], a unique solution is admitted by the differential equation

(2.26), so that ui(t) = γ i(t,x)), and moreover this unique trajectory is continuous.

2.4.2 Hierarchical infinite dynamic games (Stackelberg games)

The Nash equilibrium solution concept is given heretofore, where the decision process

is not dominated by a single player. Now we introduce a hierarchical equilibrium

solution concept, which includes one player who is the leader of the game hence it

imposes his strategy on the other player(s). The original work is given by H. Von

Stackelberg (1934) [67], the leader has ability to impose its strategy in such a decision

problem, and the followers react to the leader’s strategy (see further details [6]).
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Definition 2.4.2.1. For a Stackelberg Game, let us assume that γ1∗ ∈ Γ1 is a

Stackelberg strategy for the leader (P1). An optimal strategy for the follower (P2)

includes any element γ2∗ ∈ R2(γ1∗) that consists of an equilibrium with γ1∗ . A

Stackelberg solution for the game with P1 as the leader is the pair {γ1∗,γ2∗}, and

the cost pair J1(γ1∗,γ2∗)), J2(γ1∗ ,γ2∗)) is the corresponding Stackelberg equilibrium

outcome.

Assume that in infinite dynamic games with fixed duration the Stackelberg solution is

derived. The number of players is limited to two in discrete time.

In case the information structure is open-loop and P1 behaves as the leader, the

Stackelberg solution for the class of two-person deterministic discrete-time infinite

dynamic games of prescribed fixed duration is given. So the state progresses according

to

xk+1 = fk
(
xk(t),u1

k(t),u
2
k(t)
)
, k ∈ K, (2.27)

where xk ∈ X = Rn,x1 is denoted a priori, ui
k ∈U i

k ⊆ Rmii = 1,2; and the stage-additive

cost functional for Pi is given as

Ji(γ1,γ2)∼= Li(u1,u2) =
K

∑
k=1

gi
k(xk+1,u1

k ,u
2
k ,xk), i = 1,2. (2.28)

Firstly note that, the control vectors u1,u2 (which are of dimensions m1K and m2K,

respectively) could lead to the cost functional Ji(u1,u2) by recursive substitution of

(2.27) into (2.28) assuming that the initial state x1, of the global leader is known a

priori. Then, if

(i) Ji is continuous on U1×U2(i = 1,2),

(ii) J2(u1, ·) is strictly convex on U2 for all u1 ∈U1,

(iii) In case U i is a closed and bounded subset of Rmi,(i = 1,2), a Stackelberg

equilibrium solution could be obtained for the open-loop infinite game. The unique

reaction curve of the follower by minimizing J2(u1,u2) over u2 ∈U2 for every fixed

u1 ∈U1 is defined by a brute-force method to attain the related solution, which is

a revealing optimization problem due to assumptions (i)-(iii) above. T 2 : U1→U2

demonstrates this unique mapping and minimization of J1(u1,T 2u1) over U1 is
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the optimization problem faced by P1 (the leader), hence in this open-loop game a

Stackelberg strategy for the leader is provided .

Every announced strategy γ1 ∈ Γ1 of the leader defines the unique optimal response of

the follower. Because of the fact that the information pattern is open-loop, the follower

has to solve an optimization problem, defined as (for each fixed u1 ∈U1)

min
u2∈U2

L2(u1,u2)

subject to

xk+1 = fk(xk,u1
k ,u

2
k) x1 given.

If a standard optimal control problem is unique under conditions (i)-(iii) then its

solution exists.

Lemma 2.4.2.2. Assume that additional to conditions (i)-(iii)

(iv) fk(·,u1
k ,u

2
k) is continuously differentiable on Rn,(k ∈ K),

(v) gk(·,u1
k ,u

2
k , ·) is continuously differentiable on Rn×Rn,(k ∈ K).

A unique optimal response of the follower (to be demonstrated by γ̄2(x1) = ū2) exists

under any explained strategy u1 = γ1 ∈ Γ1 of the leader. Then the following relations

hold:

x̄k+1 = fk(x̄k,u1
k , ū

2
k) x̄1 = x1, (2.29)

ū2
k = argu2

k∈U2
k

minH2
k (pk+1,u1

k ,u
2
k , x̄k), (2.30)

pk =
∂

∂xk
fk(x̄k,u1

k , ū
2
k)
′
[

pk+1 +
∂

∂xk+1
g2

k
(
x̄k+1,u1

k , ū
2
k , x̄k

)′]
+

+
[

∂

∂xk
g2

k
(
x̄k+1,u1

k , ū
2
k , x̄k

)]′
,

pK+1 = 0

(2.31)

H2
k (pk+1,u1

k ,u
2
k , x̄k)∼= g2

k
(

fk(xk,u1
k ,u

2
k),u

1
k ,u

2
k ,xk

)
+ pk+1 fk(xk,u1

k ,u
2
k)
′
, k ∈ K.

(2.32)
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Now, this optimal control problem associates with a sequence of n-dimensional

co-state vectors pk, . . . , pK+1.

Then assume that

(vi) fk(xk,u1
k , ·) is continuously differentiable on U2

k ,(k ∈ K),

(vii) g2
k(xk+1,u1

k , ·,xk, ·) is continuously differentiable U2
k ,(k ∈ K),

(viii) An inner-point solution for every u1 ∈ U1 is ū2 as in Lemma 2.4.2.2, then (2.30)

could in an equal manner be given as

5u2
k
H2

k (pk+1,u1
k , ū

2
k , x̄k) = 0, k ∈ K. (2.33)

If the Stackelberg strategy of the leader is obtained, L1(u1,u2) should be minimized,

because of fact that (2.33), (2.29) and (2.31) describe the unique optimal response of

the follower. Hence, the following optimal control problem deals with P1

min
u1∈U1

L1(u1,u2)

subject to

xk+1 = fk(xk,u1
k ,u

2
k), x1 given.

pk = Fk(xk,u1
k ,u

2
k , pk+1), pK+1 = 0

5u2
k
H2

k (pk+1,u1
k ,u

2
k ,xk) = 0, k ∈ K. (2.34)

where (2.32) defines the Hamiltonian and

Fk =
∂

∂xk
fk(xk,u1

k ,u
2
k)
′
pk+1 +

[
pk+1 +

[
∂

∂xk
g2

k
(
xk+1,u1

k ,u
2
k ,xk

)]′
. (2.35)

Theorem 2.4.2.3. Furthermore these conditions could be (i)-(viii) stated, so that

(vi) fk(xk, ·,u2
k), g2

k(xk+1, ·,u2
k ,xk) are continuously differentiable on U1

k ,(k ∈ K),

(vii) g1
k(·, ·, ·, ·) is continuously differentiable Rn×U1

k ×U2
k ×Rn,(k ∈ K),

(viii) fk(·,u1
k , ·) is twice continuously differentiable on Rn×U2

k , and g2
k(·,u1

k , ·) is twice

continuously differentiable on Rn×U2
k ×Rn,(k ∈ K).
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If an open-loop Stackelberg equilibrium strategy for the leader is defined by γ1∗
k (x1) =

u1∗
k ∈ Ǔ1

k , k ∈ K in the dynamic game formulated, then the following relations are

satisfied by finite vector sequences {λ1, . . . ,λK}, {µ1, . . . ,µK}, {v1, . . . ,vK}:

x∗k+1 = fk(x∗k ,u
1∗
k ,u2∗

k ), x∗1 = x1,

5u1
k
H1

k
(
λk,µk,vk, p∗k+1,u

1∗
k ,u2∗

k ,x∗k
)
= 0,

5u2
k
H1

k
(
λk,µk,vk, p∗k+1,u

1∗
k ,u2∗

k ,x∗k
)
= 0,

λ
′
k−1

∂

∂xk
H1

k
(
λk,µk,vk, p∗k+1,u

1∗
k ,u2∗

k ,x∗k
)
, λK = 0,

µ
′
k+1

∂

∂ pk+1
H1

k
(
λk,µk,vk, p∗k+1,u

1∗
k ,u2∗

k ,x∗k
)
, µ1 = 0,

5u2
k
H2

k
(

p∗k+1,u
1∗
k ,u2∗

k ,x∗k
)
= 0,

p∗k = Fk(x∗k ,u
1∗
k ,u2∗

k , p∗k+1), p∗k+1 = 0,

where

H1
k = g1

k
(

fk(xk,u1
k ,u

2
k),u

1
k ,u

2
k ,xk

)
+λ

′
k fk(xk,u1

k ,u
2
k)+µ

′
kFk(xk,u1

k ,u
2
k , pk+1)+

+v
′
k5u2

k
H2

k
(

pk+1,u1
k ,u

2
k ,xk

)′
.

(2.36)
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3. MEAN FIELD MULTILAYER STACKELBERG DIFFERENTIAL GAMES
IN MULTI-AGENT SYSTEMS

In this section, we consider a three layer version of the model of Stackelberg MFG.

Hence, in our model, followers can directly be affected by their sub-leaders instead

of the global leader. In addition, global leader and sub-leaders are still playing the

original Stackelberg game in the infinite population limit. This model is motivated by

the paper [13] in which multi-layer Stackelberg games have been studied. In order to

solve the problem, we use Stackelberg mean field approach of [11] and Stackelberg

multi layer solution of [13]. The section is organized as follows. In Section 3.1,

we introduce the problem and explain main challenges to establish true Stackelberg

equilibrium. Section 3.1.1 deals with the mean-field game of the followers. In

Section 3.1.2, sub-leaders’ problem is considered. Global leader problem is solved

as a Stackelberg game in Section 3.1.3.

3.1 Problem Statement

An exact formulation of the multilayer Stackelberg mean field game problem is given

in this section. Three hierarchical levels constitute the algorithm structure of the

decision making procedure. The global leader G0 is in the top level, the sub-leaders

S L i follow in the next step, which is the second. Finally N followers are in the third

level. Followers are placed into groups that are connected to a specific sub-leader (see

Fig. 3.1). A mean field term couples cost functions to be minimized, which belong to

each player. Players at levels two and three play Nash games with the players in the

same level, whereas across different levels Stackelberg game as in [13] is played.

The following controlled stochastic differential equation (SDE) denotes the state

equation of the global leader,

dx0(t) =
{

A0x0(t)+B0u0(t)
}

dt +D0dW0(t), (3.1)
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Figure 3.1 : Flow of the Stackelberg Game.

where, for each t ≥ 0,the state of the global leader is given by x0(t) ∈Rn, {W0(t), t ≥

0} is an n-dimensional Brownian motion, and its control is given by u0(t) ∈ Rn.

Time-invariant matrices G0, A0,B0, and D0, have appropriate dimensions. Here, S L

denotes the number of sub-leaders. Let N j be the number of followers connected with

sub-leader j ( j = 1, . . . ,S L ), the following SDE for t ≥ 0 specifies the state equation

of each sub-leader S L j , with initial states xl j(0):

dxl j(t) =
{

Alxl j(t)+Blul j(t)+
S L

∑
j=1
i 6= j

Blul j(t)+F0u0(t)
}

dt +DldWl j(t), (3.2)

where, for each t ≥ 0, the state of S L j is denoted by xl j(t) ∈ Rn, its control is

given by ul j(t)∈Rn, and {Wl j(t), t ≥ 0} is an n-dimensional Brownian motion. Here,

Al,Bl,F0, and Dlare the time-invariant matrices of S L j with appropriate dimensions.
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The number of followers F j
i ( 1≤ i≤ N j) for each sub-leader S L j is denoted by N j

and their state equations defined with initial conditions xl j
f i(0), for t ≥ 0 are given by:

dxl j
f i(t) =

{
Al j

f xl j
f i(t)+B f ul j

f i(t)+G f ul j(t)
}

dt +D f dW l j
f i (t), (3.3)

where, for each t ≥ 0, the state of the follower F l j
f i is denoted by xl j

f i(t)∈Rn, its control

is ul j
f i(t) ∈ Rn , and {W l j

f i (t), t ≥ 0} is an n-dimensional Brownian motion. Here,

Al j
f ,B f ,G f , and D f are time-invariant matrices of F j

i with appropriate dimensions.

Followers may have different dynamics in each group as Al j
f is indexed by j in this

model. Let ∑
S L
j=1 N j = N, where N is the sum of the followers in the game. As a

consequence, if N is a variable we can accept N j as a function of N (i.e., N j(N)). We

assume that for each j = 1, . . . ,S L , limN→∞
N

N j(N) > 1. Here, we are assuming that

there is only a finite number of follower groups, however when the total number of

followers is large, the number of followers related with each sub-leader is also large.

Let Ft be the σ -algebra generated by {xl j
f i(0),xl j(0),x0(0); 1≤ i≤ N, 1≤ j≤S L }

and {W l j
f i (τ), Wl j(τ), W0(τ); τ ≤ t, 1≤ i≤ N, 1≤ j ≤S L }; that is,

Ft = σ

(
xl j

f i(0), xl j(0), x0(0), W l j
f i (τ),Wl j(τ), W0(τ);τ ≤ t, 1≤ i≤ N, 1≤ j ≤S L

)
.

Let the centralized adapted open-loop information be Ft in the game model. We

further state F i, j
t =σ(xl j

f i(0), W l j
f i (τ); τ ≤ t) as the local information of the ith follower

of the jth sub-leader, which is also adapted open-loop, but decentralized.

Assumption

(a) x0(0), {xl j(0); 1 ≤ j ≤ S L }, and {xl j
f i(0); 1 ≤ i ≤ N j, 1 ≤ j ≤ S L } are

independent of each other and have bounded second moments.

(b) {W0(t); t ≥ 0}, {Wl j(t); 1 ≤ j ≤S L , t ≥ 0}, and {W l j
f i (t); 1 ≤ i ≤ N j, 1 ≤ j ≤

S L , t ≥ 0} are independent of each other, which are also independent of x0(0),

{xl j(0); 1≤ j ≤S L }, and {xl j
f i(0); 1≤ i≤ N j, 1≤ j ≤S L }.

The cost function for G0, to be minimized, is denoted by:

JN
0 (u0,uN) = E

∫ T

0

{
‖x0(t)−H0xN(t)‖2

Q0
+‖u0(t)‖2

R0

}
dt, (3.4)
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where Q0 > 0, H0 > 0, R0 > 0, and ‖·‖Q specifies the weighted Euclidean norm. Here,

xN(t) is the mean-field term denoted by

xN(t) =
1
N

S L

∑
j=1

N j

∑
i=1

xl j
f i(t).

Let xN(t) demonstrate the mass behavior of all followers. Here, the collection of

policies of all sub-leaders and followers is given by uN in the game; that is, uN =

{ul j,u
l j
f i;1 ≤ i ≤ N,1 ≤ j ≤ S L }. The penalty on tracking error is denoted by the

first term in the cost function JN
0 , and the penalty on the control effort is given by the

second term.

The cost function for S L j, to be minimized, is denoted by:

JN
l j(ul j,u0,uN

−l j) = E
∫ T

0

{
‖xl j(t)−HlxN

l j(t)‖
2
Ql
+‖ul j(t)‖2

Rl
+

2
S L

∑
k=1
k 6= j

uT
lk(t)Rlulk(t)+2uT

l j(t)L0u0(t)
}

dt,

where Ql > 0,Hl > 0, Rl > 0, L0 > 0, and uN
−l j(t) := uN(t)\{ul j(t)}. Here, the mean

field term related with sub-leader S L j is xN
l j and is denoted by

xN
l j(t) =

1
N j

N j

∑
i=1

xl j
f i(t).

Let the mass behavior of followers of S L j be demonstrated by xN
l j(t) . Here, the

penalty on the control effort of other sub-leaders and the global-leader are given by the

last two terms in the cost function JN
l j . Assume that the mean field term couples weakly

the sub-leaders with all the followers, and they are strongly coupled with each other

and the global leader through their controls.

The cost function for F l j
f i , to be minimized, is denoted by:

JN
f i,l j(u

l j
f i,u0,uN

−( f i,l j)) = E
∫ T

0

{
‖xl j

f i(t)−H f xN
l j(t)‖

2
Q f

+‖ul j
f i(t)‖

2
R f

+2ul j
f i

T
(t)Llul j(t)

}
dt,

(3.5)

where Q f > 0, H f > 0, R f > 0, and Ll > 0. Assume that the followers, that are in the

same group are coupled weakly with each other through their mean field term xN
l j(t)

and they are strongly coupled with their sub-leader through its control ul j.

As we addressed earlier, the adapted open-loop information structure considered in

this game model is first centralized. Therefore, the classes of admissible controls for
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G0, S L i and F l j
f i are L2

F (0,T ;Rn); that is, the set of all Ft adapted processes with

finite second moments.

Searching for the precise Stackelberg solution for a large number of agents, we

encounter two challenges. The first one is that when the number of followers N is large

(i.e., curse of dimensionality), Nash equilibria between followers is hard to calculate

for any arbitrary strategy of the leaders. Second one is that the sub-leaders encounter

a large number of constraints in their game problem when the number of followers

increases. As a result, it would be impossible to identify the precise solution and this

leads us to seek for an approximated equilibrium. Consequently, mean field approach

will be devised to compute the approximated equilibrium; that is, the mass behavior

of the followers will be incorporated into the limiting mean field term, and so, all of

the followers in each group can be represented by a generic agent which will decrease

the complexity of the solution exceedingly. In this way, instead of using centralized

information, only local information can be used for the players.

3.1.1 Stochastic mean field approximation for followers

In this part, the mean field approximation of Nash equilibrium for the game played

among N j followers of the jth sub-leader S L j is considered. Followers are linked

with the players in their group through the mean field term xN
l j(t) and they are linked

with followers in other groups via controls of their sub-leaders. Under the mean field

approach, given the rules of global leader and sub-leaders, a generic agent of each

group is faced with a stochastic control problem under a constraint on the expectation

of its state; that is, the mean field term xN
l j(t) is replaced by a deterministic quantity

zl j(t) that can be accepted as the limit of the xN
l j(t) by the law of large numbers.

Consider that when a generic agent acts optimally, the expectation of its state should

be the same with zl j(t) due to the Nash certainty equivalence (NCE) principle. The

optimal decision rule for the non-standard stochastic control problem is identified by

using the stochastic minimum principle.

Let the mean field term be denoted by zl j(t) (1≤ j ≤S L ) in the infinite population

limit N j→∞. Hence, in the infinite population limit, the control ul j and the mean field

term zl j(t) of the sub-leader can be considered as exogenous signals in the cost function
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of a generic follower. Consequently, a generic follower has to solve the following

stochastic control problem:

Minimize

J f i,l j(u
l j
f i,ul j) = E

∫ T

0

{
‖xl j

f i(t)−H f zl j(t)‖2
Q f

+‖ul j
f i(t)‖

2
R f

+2ul j
f i

T
(t)Llul j(t)

}
dt,

(3.6)

subject to

dxl j
f i(t) =

{
Al j

f xl j
f i(t)+B f ul j

f i(t)+G f ul j(t)
}

dt +D f dW l j
f i (t).

The stochastic minimum principle could be utilized to characterize the optimal policy

(see [66, Chapter 3, Theorem 3.2]) due to fact that this is a classical linear-quadratic

optimal stochastic control problem (with adapted open-loop information). To this end,

Hamiltonian for this problem is denoted by:

H l j
f i(x

l j
f i,u

l j
f i, p f i) =

1
2
‖xl j

f i(t)−H f zl j(t)‖2
Q f

+
1
2
‖ul j

f i(t)‖
2
R f

+ul j
f i

T
(t)Llul j(t)+Tr[rT

f i(t)D f ]

+ pT
f i(t)

[
Al j

f xl j
f i(t)+B f ul j

f i(t)+G f ul j(t)
]
.

(3.7)

The corresponding state and adjoint equations and the (unique) optimal control are

denoted by:

ul j
f i
∗
(t) =−R−1

f BT
f p f i(t)−R−1

f Llul j(t), (3.8)

dxl j
f i
∗
(t) =

{
Al j

f xl j
f i
∗
(t)−B f R−1

f BT
f p f i(t)−

(
B f R−1

f Ll−G f
)
ul j(t)

}
dt +D f dW l j

f i (t),

d p f i(t) =
{
−Al j

f
T

p f i(t)−Q f
[
xl j

f i
∗
(t)−H f zl j(t)

]}
dt + r f i(t)dW l j

f i (t)+ rli(t)dWli(t),

(3.9)

subject to the terminal condition on the adjoint variable, and the given initial condition

on xl j
f i

xl j
f i(t)

∣∣∣
t=0

= xl j
f i(0) p f i(T ) = 0.

Equation (3.9) is a forward-backward stochastic differential equation (FBSDE). Some

simplifications may be appropriate because of the fact that xl j
f i
∗
(t) and p f i(t) satisfy
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stochastic coupled differential equations. (3.9) can be changed into a different form

involving a Riccati type differential equation (RDE) by utilizing Ito’s Lemma. In this

way, dxl j
f i
∗
(t) and d p f i(t) are given in (3.9) could be transformed into a different form

and are decoupled. The equation could be transformed into a different form. Solving

this Riccati equation is sufficient to obtain the solution of (3.9).

Theorem 3.1.1.1. Given zl j(t) and ul j(t) ∈ L2
F (0,T ;Rn), consider the local optimal

control problem for F l j
f i . There exists a unique optimal controller ul j

f i
∗
. Moreover,

(xl j
f i
∗
, ul j

f i
∗
) ∈ L2

F (0,T ;Rn)× L2
F (0,T ;Rn) is the corresponding optimal control

solution if and only if

ul j
f i
∗
(t) =−R−1

f BT
f Z f i(t)x

l j
f i
∗
(t)−R−1

f BT
f Φ f i(t)−R−1

f Llul j(t), (3.10)

where

dxl j
f i
∗
(t) =

{[
Al j

f −B f R−1
f BT

f Z f i(t)
]
xl j

f i
∗
(t)−B f R−1

f BT
f Φ f i(t)−

(
B f R−1

f Ll−G f
)
ul j(t)

}
dt

+D f dW l j
f i (t),

(3.11)

dΦ f i(t) =
{[
−Al j

f +Z f i(t)B f R−1
f BT

f

]
Φ f i(t)+Q f H f zl j(t)−Z f i(t)

(
B f R−1

f Ll−G f
)
ul j(t)

}
dt

+{r f i(t)−Z f i(t)D f }dW l j
f i (t)+ rli(t)dWli(t),

(3.12)

xl j
f i(t)

∣∣∣
t=0

= xl j
f i(0), Φ f i(T ) = 0,

and the solution of the RDE is Z f i(t)

Ż f i(t)+Al j
f

T
Z f i(t)+Z f i(t)A

l j
f −Z f i(t)B f R−1

f BT
f Z f i(t)+Q f = 0,

Z f i(T ) = 0.
(3.13)

Proof. The proof is given in Appendix A.
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Note that Φ f i(t) is now decoupled from xl j
f i
∗
(t) and also there always exists a solution

Z f i(t) for the RDE in (3.13). Therefore, one can compute the optimal policies by

solving the decoupled SDE’s in (3.11) and (3.12). Finally, for given zl j and ul j,(
xl j

f i
∗
, p f i,r f i,rli

)
has a unique solution in L 2

F

(
0,T ;R2n,Rn×q,Rn×q).

Consider that in the optimal control problem for a generic agent given above, the mean

field term zl j(t) is accepted as an external variable. According to the Nash certainty

equivalence principle (NCE), the state evolution of a generic agent should be consistent

with the mean field term under the optimal control rule (i.e., the total population

behavior of the followers). This means that the expectation of the state of a generic

agent must be equal to the mean field term zl j(t). As a consequence, we denote the

expectation of the state under optimal rule and the corresponding co-state as zl j(t) and

pmi(t), respectively. With this notation, the coupled differential equations describing

the evolution of the mean field term can be obtained by evaluating the expectations of

the coupled SDE’s in (3.9); that is,

dzl j(t) =
{

Al j
f z∗l j(t)−B f R−1

f BT
f pmi(t)−

(
B f R−1

f Ll−G f
)
ul j(t)

}
dt,

d pmi(t) =
{
−Al j

f
T

pmi(t)−Q f
[
zl j(t)−H f zl j(t)

]}
dt,

(3.14)

subject to the boundary conditions:

zl j(t)
∣∣∣
t=0

= lim
N j→∞

1
N j

N j

∑
i=1

xl j
f i(0), pmi(T ) = 0. (3.15)

It must be mentioned that due to fact that the mean field term affects the cost

functions of sub-leaders and global leader, the coupled differential equation given in

(3.15) is a constraint between sub-leaders and the global leader in the game problem.

Nevertheless, concatenating the state of the leaders and
(
zl j(t), pmi(t)

)
could eliminate

this constraint, and the Hamiltonian can be rewritten by this new state representation.

3.1.2 Stochastic mean field approximation for sub leaders

In this section we consider the Nash game played among sub-leaders given the limiting

mean field term and the policy of the global leader. Recall that each sub-leader plays a

Stackelberg mean field game with its followers.
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We let zli(t) denote the limiting value of the mean field term in the ith group for

the infinite population case. Note that the mean field term zli(t), controls of other

sub-leaders {ul j(t)} j 6=i, and control of global leader u0(t) can be taken as exogenous

terms in ith sub-leader’s local control problem. Hence, ith sub-leader is faced with the

following control problem:

Minimize

Jli(uli,u0,uS L
−li ) =E

∫ T

0

{
‖xli(t)−Hlzli(t)‖2

Ql
+‖uli(t)‖2

Rl
+2

S L

∑
j=1
i 6= j

uT
l j(t)Rluli(t)

+2uT
li(t)L0u0(t)

}
dt,

(3.16)

where uS L
−li = (ul j) j 6=i, subject to state dynamics of the sub-leader, and dynamics of

the mean field term and its co-state (3.14), where the former is rewritten as:

dxli(t) = {Alxli(t)+Bluli(t)+
S L

∑
j=1
i 6= j

Blul j(t)+F0u0(t)}dt +DldWli(t).

The above optimal stochastic control problem is again solved using the stochastic

minimum principle [66, Chapter 3, Theorem 3.2] (see also [68]). To this end,

Hamiltonian of the control problem is given by:

Hli(xli,uli, pli,γli,βli) =
1
2
‖xli(t)−Hlzli(t)‖2

Ql
+

1
2
‖uli(t)‖2

Rl
+

S L

∑
j=1
i 6= j

uT
l j(t)Rluli(t)+

uT
li(t)L0u0(t)+Tr[rT

li (t)Dl]+ pT
li(t)

[
Alxli(t)+Bluli(t)+

S L

∑
j=1i6= j

Blul j(t)+F0u0(t)
]
+

γ
T
li (t)

[
Ali

f zli(t)−B f R−1
f BT

f pmi(t)−
(
B f R−1

f Ll−G f
)
uli(t)

]
+β

T
li (t)

[
−Al j

f
T

pmi(t)−

Q f
[
zli(t)−H f zli(t)

]]
.

Here, γli(t) and βli are adjoint functions, which correspond to the DEs satisfied by zli(t)

and pmi(t), in (3.14), respectively. The (unique) optimal control and the corresponding

state and adjoint equations are given as follows:
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u∗li(t) =−R−1
l BT

l pli(t)−
S L

∑
j=1
i 6= j

R−1
l RT

l ul j(t)−R−1
l L0u∗0(t)+R−1

l

(
B f R−1

f Ll−G f
)T

γli(t),

(3.17)

dx∗li(t) =
{

Alx∗li(t)−BlR−1
l BT

l pli(t)+
S L

∑
j=1
i 6= j

Bl
(
In−R−1

l RT
l
)
ul j(t)+

(
F0−BlR−1

l L0

)
u0(t)

+BlR−1
l

(
B f R−1

f Ll−G f
)T

γli(t)
}

dt +DldWl(t),

d pli(t) =
{
−AT

l pli(t)−Ql[x∗li(t)−Hlz∗li(t)]
}

dt + rli(t)dWl(t)+ r0(t)dW0(t),

(3.18)

subject to the boundary conditions:

xli(t)
∣∣∣
t=0

= xli(0), pli(T ) = 0.

Equations describing the dynamics of state and co-state for the mean field term are

given by:

dzli(t) =
{

Ali
f zli(t)−B f R−1

f BT
f pmi(t)+

(
B f R−1

f LlR−1
l BT

l −G f R−1
l BT

l

)
pli(t)

+
S L

∑
j=1
i 6= j

(
B f R−1

f LlR−1
l RT

l −G f R−1
l RT

l

)
ul j(t)+

(
B f R−1

f LlR−1
l L0−G f R−1

l L0

)
u0(t)

−
(
B f R−1

f Ll−G f
)
R−1

l

(
B f R−1

f Ll−G f
)T

γli(t)
}

dt,

dγli(t) =
{
−Ali

f
T

γli(t)−HT
l Ql[x∗li(t)−Hlz∗li(t)]+(In−H f )

T QT
f βli(t)

}
dt,

(3.19)

subject to the boundary conditions:

zli(0) = lim
Ni→∞

1
Ni

Ni

∑
j=1

xli
f j(0), γli(T ) = 0.

The Hamiltonian also contains mean field adjoint function pmi which has its own

dynamics, so we also need the associated adjoint function dynamics to complete the

necessary conditions. These dynamics are:
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d pmi(t) =
{
−Ali

f pmi(t)−Q f
[
z∗li(t)−H f z∗li(t)

]}
dt,

dβli(t) =
{

Ali
f

T
βli(t)+B f R−1

f BT
f γli(t)

}
dt,

(3.20)

subject to the boundary conditions:

βli(t)
∣∣∣
t=0

= 0, pmi(T ) = 0.

These equations will yield the optimal solution for the ith sub-leader given controls

of other sub-leaders {ul j(t)} j 6=i, and control of global leader u0(t). To find the

equilibrium solution for the sub-leaders, these equations must be expressed in matrix

form. We first write equations (3.18), (3.19) and (3.20) for all sub-leaders as a coupled

matrix FBSDE (see (3.21) below) to ease the notation. Then, the equation (3.21) is

transformed to a different form which involves a Riccati type equation using Ito’s

Lemma. Solving this Riccati equation is sufficient for obtaining the solution of FBSDE

(3.21), and for characterizing the equilibrium solution.

Let us set

Xl(t) = [x∗li(t), ...,x
∗
lS L (t),z∗li(t), ...,z

∗
lS L (t),βli(t), ...,βlS L (t)]T ,

Yl(t) = [pli(t), ..., plS L (t), pmi(t), ..., pmS L (t),γli(t), ...,γlS L (t)]T .

The overall coupled FBSDE that yields the equilibrium solution for sub-leaders can

be compactly written as (see Appendix A for the construction of the matrices in the

equation below):

dXl(t) = [Al1Xl(t)+Bl1Yl(t)+Cl1]dt +Dl1dWl(t)+Dl3dW0(t),

dYl(t) = [Al2Xl(t)+Bl2Yl(t)]dt +Dl2dWl(t)+Dl4dW0(t).
(3.21)

subject to the boundary conditions:

Xl(t)
∣∣∣
t=0

= Xl(0), Yl(T ) = 0.
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Theorem 3.1.2.1. Given the control of global leader u0(t), consider the game problem

for sub-leaders S L i, 1 ≤ i ≤ S L . There exists a unique equilibrium solution

{u∗li}S L
i=1 . Moreover {(x∗li, u∗li)}S L

i=1 is the corresponding equilibrium solution if and

only if for all i = 1, . . . ,S L ,

u∗li(t) =−R−1
l BT

l pli(t)−
S L

∑
j=1
i 6= j

R−1
l RT

l ul j(t)−R−1
l L0u∗0(t)+

(
R−1

l B f R−1
f Ll−R−1

l G f
)T

γli(t),

where

dXl(t) =
{

Al1Xl(t)+Bl1Λl(t)Xl(t)+Bl1Vl(t)+Cl1

}
dt−dWl(t), (3.22)

dVl(t)=
{
Bl2Vl(t)−Λ

T
l (t)Bl1Vl(t)−Λ

T
l (t)Cl1

}
dt+

{
Dl2−Λ

T
l
}

dWl(t)+Dl4dW0(t),

(3.23)

Xl(t)
∣∣∣
t=0

= Xl(0), Vl(T ) = 0,

and Λl(t) is the solution of the following RDE

Λ̇l(t)+Λ
T
l (t)Al1−Bl2Λl(t)−Λ

T
l (t)Bl1Λl(t)−Al2 = 0,

Λl(T ) = 0,
(3.24)

under the assumption that

det
{[

0 In
]

eAlt
[

In
0

]}
> 0, ∀ t ∈ (0,T ),

where the square matrix Al is given by

Al =

[
Al1 Bl1
Al2 Bl2

]
.

Proof. The proof is given in Appendix A.
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First (3.24) must be solved for Λl , then u∗li must be computed by solving decoupled

equations (3.22) and (3.23). Further details and solution of RDE is available in [65].

Remark 3.1.2.2. RDE is a non symmetric equation, so Al must satisfy the above

condition. Radon’s Lemma is used for solving Λl(t), see [65, (Chapter 2, Theorem

4.3)].

3.1.3 Stochastic mean field approximation for the global leader

In this section, the solution for the Stackelberg game between the global leader and

the sub-leaders is derived. Sub-leaders apply the equilibrium solution obtained in the

previous section given the control of global leader as an exogenous signal. The best

control for the global leader which will eventually yield the (approximate) Stackelberg

equilibrium is computed using the equilibrium solution that is derived in the previous

section. It must be mentioned that the global leader can not directly affect the followers

but can reach them only through sub-leaders.

Given the mean field term z(t), which is the limit of xN(t) for infinite population, the

global leader has to solve the following problem:

Minimize

J0(u0) = E
∫ T

0

{
‖x0(t)−H0z(t)‖2

Q0
+‖u0(t)‖2

R0

}
dt, (3.25)

subject to

dx0(t) =
{

A0x0(t)+B0u0(t)
}

dt +D0dW0(t).

Global leader problem is a stochastic Stackelberg game with one leader and many

followers (i.e. sub-leaders). The mean field term affects the cost function of the global

leader, therefore the corresponding Hamiltonian equation should contain the dynamics

of the global-leader as well as the dynamic equations of each sub-leader and mean field

term. The optimal control of the global leader is obtained by the stochastic minimum

principle [66, Chapter 3, Theorem 3.2] (see also [68]). The Hamiltonian of the local

control problem for the global leader is obtained as:

45



H0
(
x0,u0

)
=

1
2

∥∥x0(t)−H0z(t)
∥∥2

Q0
+

1
2
‖u0(t)‖2

R0
+Tr[rT

0 (t)D0]+ pT
0 (t)[A0x0(t)+B0u0(t)]+ γ

T
0 (t)[

A f z(t)−B f R−1
f BT

f pm0(t)−
(
B f R−1

f Ll−G f
)
u0(t)

]
+β

T
0 (t)

[
−AT

f pm0(t)−Q f
[
z(t)−H f z(t)

]]
+

S L

∑
i=1

α
T
0li(t)

[
Alxli(t)−BlR−1

l BT
l pli(t)+

S L

∑
j=1
i6= j

Bl
(
In−R−1

l RT
l
)
ul j(t)+

(
F0−BlR−1

l L0

)
u0(t)

+BlR−1
l

(
B f R−1

f Ll−G f
)T

γli(t)
]
+

S L

∑
i=1

δ
T
0li(t)

[
−AT

l pli(t)−Ql[xli(t)−Hlzli(t)]
]
+

S L

∑
i=1

β
T
0li(t)[

−Ali
f

T
pmi(t)−Q f

[
zli(t)−H f zli(t)

]]
+

S L

∑
i=1

γ
T
0li(t)

[
Ali

f zli(t)−B f R−1
f BT

f pmi(t)+
(

B f R−1
f LlR−1

l BT
l

−G f R−1
l BT

l

)
pli(t)+

S L

∑
j=1
i6= j

(
B f R−1

f LlR−1
l RT

l −G f R−1
l RT

l

)
ul j(t)+

(
B f R−1

f LlR−1
l L0−G f R−1

l L0

)

u0(t)−
(
B f R−1

f Ll−G f
)
R−1

l

(
B f R−1

f Ll−G f
)T

γli(t)
]
+

S L

∑
i=1

η
T
0li(t)

[
Ali

f
T

βli(t)+B f R−1
f BT

f γli(t)
]

+
S L

∑
i=1

ζ
T
0li(t)

[
−Ali

f
T

γli(t)−HT
l Ql[xli(t)−Hlzli(t)]+(In−H f )

T QT
f βli(t)

]
.

(3.26)

Here, γ0(t), β0, α0li(t), δ0li(t), β0li, γ0li(t), η0li(t) and ζ0li(t) are

adjoint functions, which are used for finding extremal trajectories of

z(t), pm0(t), xli(t), pli(t), pmi(t), zli(t), βli(t) and γli(t), respectively. The

state transition matrix of all followers is given by A f =
1

S L
∑

S L
j=1 Al j

f . The (unique)

optimal control and the corresponding state and adjoint equations are obtained as

follows:

u∗0(t) =−R−1
0 BT

0 p0(t)+R−1
0
(
B f R−1

f Ll−G f
)T

γ0(t)−
S L

∑
i=1

R−1
0
(
B f R−1

f LlR−1
l L0−G f R−1

l L0
)T

γ0li(t)

−
S L

∑
i=1

R−1
0
(
F0−BlR−1

l L0
)T

α0li(t),

dx∗0(t) =
{

A0x∗0(t)−B0R−1
0 BT

0 p0(t)−
S L

∑
i=1

B0R−1
0
(
B f R−1

f LlR−1
l L0−G f R−1

l L0
)T

γ0li(t)

+B0R−1
0
(
B f R−1

f Ll−G f
)T

γ0(t)−
S L

∑
i=1

B0R−1
0
(
F0−BlR−1

l L0
)T

α0li(t)
}

dt +D0dW0(t),

d p0(t) =
{
−AT

0 p0(t)−Q0[x∗0(t)−H0z∗(t)]
}

dt + r0(t)dW0(t).

(3.27)
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These stochastic coupled differential equations are valid for the sub-leaders. The

boundary conditions are:

x0(t)
∣∣∣
t=0

= x0(0), p0(T ) = 0.

Using (3.26), the states and adjoint dynamics of sub-leaders are obtained as follows:

dx∗li(t) =
{

Alx∗li(t)−
(

F0−BlR−1
l L0

)
R−1

0 BT
0 p0(t)+

S L

∑
j=1
i6= j

Bl
(
In−R−1

l RT
l
)
ul j(t)

+
(
F0−BlR−1

l L0
)
R−1

0
(
B f R−1

f Ll−G f
)T

γ0(t)+BlR−1
l

(
B f R−1

f Ll−G f
)T

γli(t)

−BlR−1
l BT

l pli(t)−
S L

∑
i=1

(
F0−BlR−1

l L0
)
R−1

0
(
B f R−1

f LlR−1
l L0−G f R−1

l L0
)T

γ0li(t)

−
S L

∑
i=1

(
F0−BlR−1

l L0
)
R−1

0
(
F0−BlR−1

l L0
)T

α0li(t)
}

dt +D0dW0(t),

dα0li(t) =
{
−AT

l α0li(t)+QT
l δ0li(t)−QT

l Hlζ0li(t)
}

dt + r0(t)dW0(t),

(3.28)

subject to the boundary conditions:

xli(t)
∣∣∣
t=0

= xli(0), α0li(T ) = 0.

Equations (3.29) below give the dynamics of co-states of the states of sub-leaders and

their adjoints:

d pli(t) =
{
−AT

l pli(t)−Ql
[
x∗li(t)−Hlz∗li(t)

]}
dt + rli(t)dWl(t)+ r0(t)dW0(t),

dδ0li(t) =
{

Alδ0li(t)+BlR−1
l BT

l α0li(t)
}

dt + r0(t)dW0(t),

(3.29)

subject to the boundary conditions:

δ0li(t)
∣∣∣
t=0

= 0, pli(T ) = 0.

Recall that z∗li(t) is the mean field value for sub-leaders. Adjoint functions γ0li are used

to estimate the optimal values of z∗li(t). States and co-states for mean field dynamics of

sub-leaders are given by
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dz∗li(t) =
{

Ali
f z∗li(t)−B f R−1

f BT
f pmi(t)−

(
B f R−1

f LlR−1
l L0−G f R−1

l L0

)
R−1

0 BT
0 p0(t)

+
(

B f R−1
f LlR−1

l L0−G f R−1
l L0

)
R−1

0
(
B f R−1

f Ll−G f
)T

γ0(t)+
(

B f R−1
f LlR−1

l BT
l

−G f R−1
l BT

l

)
pli(t)+

S L

∑
j=1
i 6= j

(
B f R−1

f LlR−1
l RT

l −G f R−1
l RT

l

)
ul j(t)−

S L

∑
i=1

(
B f R−1

f LlR−1
l L0

−G f R−1
l L0

)
R−1

0
(
B f R−1

f LlR−1
l L0−G f R−1

l L0
)T

γ0li(t)−
(
B f R−1

f Ll−G f
)
R−1

l

(
B f R−1

f Ll

−G f
)T

γli(t)−
S L

∑
i=1

(
B f R−1

f LlR−1
l L0−G f R−1

l L0

)
R−1

0
(
F0−BlR−1

l L0
)T

α0li(t)
}

dt,

dγ0li(t) =
{
−Ali

f
T

γ0li(t)−HT
l QT

l δ0li(t)+−QT
l H2

l ζ0li(t)+(In−H f )
T QT

f β0li(t)
}

dt,

(3.30)

subject to the boundary conditions:

zli(0) = lim
Ni→∞

1
Ni

Ni

∑
j=1

xli
f j(0), γ0li(T ) = 0.

The dynamics for pmi and β0li are given by

d pmi(t) =
{
−Ali

f
T

pmi(t)−Q f
[
z∗li(t)−H f z∗li(t)

]}
dt,

dβ0li(t) =
{

Ali
f β0li(t)+B f R−1

f BT
f γ0li(t)

}
dt,

(3.31)

subject to the boundary conditions:

β0li(t)
∣∣∣
t=0

= 0, pmi(T ) = 0.

z∗(t) denotes the mean field value and γ0 symbolizes its adjoint function for the global

leader. States and co-states for the mean field dynamics are given by

dz∗(t) =
{

A f z(t)−B f R−1
f BT

f pm0(t)+
(
B f R−1

f Ll−G f
)
R−1

0 BT
0 p0(t)−

(
B f R−1

f Ll−G f
)
R−1

0(
B f R−1

f Ll−G f
)T

γ0(t)+
S L

∑
i=1

(
B f R−1

f Ll−G f
)
R−1

0
(
B f R−1

f LlR−1
l L0−G f R−1

l L0
)T

γ0li(t)

+
S L

∑
i=1

(
B f R−1

f Ll−G f
)
R−1

0
(
F0−BlR−1

l L0
)T

α0li(t)
}

dt,

dγ0(t) =
{
−AT

f γ0(t)+HT
0 Q0[x∗0(t)−H0z∗(t)]+(In−H f )

T QT
f β0(t)

}
dt,

(3.32)

subject to the boundary conditions:

z(0) = lim
N→∞

1
N

S L

∑
i=1

Ni

∑
j=1

xli
f j(0), γ0(T ) = 0.
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Mean field co-state dynamics pm0 and its adjoint β0 for global leader are

d pm0(t) =
{
−AT

f pm0(t)−Q f
[
z(t)∗−H f z∗(t)

]}
dt,

dβ0(t) =
{

A f β0(t)+B f R−1
f BT

f γ0(t)
}

dt,

subject to the boundary conditions:

β0(t)
∣∣∣
t=0

= 0, pm0(T ) = 0.

The dynamics of other co-states that are effective in the dynamics of sub-leaders and

their corresponding adjoints are given by:

dγli(t) =
{
−Ali

f
T

γli(t)−HT
l Ql[x∗li(t)−Hlz∗li(t)]+(In−H f )

T QT
f βli(t)

}
dt +D0dW0(t),

dζ0li(t) =
{

Ali
f

T
ζ0li(t)−B f R−1

f BT
f η0li(t)−

(
B f R−1

f Ll−G f
)
R−1

l BT
l α0li(t)

+
(
B f R−1

f Ll−G f
)
R−1

l

(
B f R−1

f Ll−G f
)T

γ0li(t)
}

dt + r0(t)dW0(t),

(3.33)

subject to the boundary conditions:

ζ0li(t)
∣∣∣
t=0

= 0, γli(T ) = 0,

dβli(t) =
{

Ali
f

T
βli(t)+B f R−1

f BT
f γli(t)

}
dt,

dη0li(t) =
{
−Ali

f η0li(t)+(In−H f )
T QT

f ζli(t)
}

dt,
(3.34)

η0li(t)
∣∣∣
t=0

= 0, βli(T ) = 0.

In order to solve this FBSDE, first the problem is put in matrix form. Coupled FBSDE

(3.27), (3.28), (3.29), (3.30), (3.30), (3.31), (3.32), (3.33) and (3.34) are used to

construct a new form as coupled matrix FBSDE.

Let us set

X0(t) = [x∗0(t),z
∗(t),β0(t),x∗li(t), ...,x

∗
lS L (t),z∗li(t), ...,z

∗
lS L (t),βli(t), ...,βlS L (t),

δ0li(t), ...,δ0lS L (t),β0li(t), ...,β0lS L (t),ζ0li(t), ...,ζ0lS L (t)]T ,

Y0(t)=[p0(t), pm0(t),γ0(t), pli(t), ..., plS L (t), pmi(t), ..., pmS L (t),γli(t), ...,γlS L (t),

α0li(t), ...,α0lS L (t),γ0li(t), ...,γ0lS L (t),η0li(t), ...,η0lS L (t)]T ,
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dX0(t) = [A01X0(t)+B01Y0(t)+C01]dt +D01dW0(t),

dY0(t) = [A02X0(t)+B02Y0(t)]dt +D02dW0(t),
(3.35)

subject to the boundary conditions:

X0(t)
∣∣∣
t=0

= X0(0), Y0(T ) = 0.

Theorem 3.1.3.1. Given the equilibrium solution for sub-leaders and followers, and

the corresponding mean field term, consider the local optimal control problem for the

global leader. There exists a unique optimal controller u∗0 ∈ L2
F (0,T ;Rn), given by

u∗0(t) =−R−1
0 BT

0 p0(t)+R−1
0
(
B f R−1

f Ll−G f
)T

γ0(t)−
S L

∑
i=1

R−1
0
(
B f R−1

f LlR−1
l L0

−G f R−1
l L0

)T
γ0li(t)−

S L

∑
i=1

R−1
0
(
F0−BlR−1

l L0
)T

α0li(t),

where

dX0(t) =
{

A01X0(t)+B01Λ0(t)X0(t)+B01V0(t)+C01

}
dt +D01dW0(t), (3.36)

dV0(t) =
{
B02V0(t)−Λ

T
0 (t)B01V0(t)−Λ

T
0 (t)C01

}
dt+

{
D02−Λ

T
0
}

dW0(t), (3.37)

X0(t)
∣∣∣
t=0

= X0(0), V0(T ) = 0,

and Λ0(t) is the solution of the following RDE

Λ̇0(t)+Λ
T
0 (t)A01−B02Λ0(t)−Λ

T
0 (t)B01Λ0(t)−A02 = 0,

Λ0(T ) = 0,
(3.38)

under the assumption that

det
{[

0 In
]

eA0t
[

In
0

]}
> 0, ∀ t ∈ (0,T ),

where A0 is given by

A0 =

[
A01 B01
A02 B02

]
.
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Proof. The proof is given in Appendix A.

If Λ0 can be solved in (3.38), then X0(t), V0(t), and u∗0(t) can be computed by solving

the decoupled equations (3.36) and (3.37). Further details and solution of RDE can

be found in [65]. As derived above, u∗0(t) is the best response of the global leader

to the equilibrium solution of the sub-leaders and followers given its control. Hence,

the overall solution of the FBSDE in Theorem 3.1.3.1 with the control policies for

sub-leaders and followers are computed via Theorems 3.1.2.1 and 3.1.1.1 will yield

the (approximate) Stackelberg equilibrium.

Remark 3.1.3.2. Radon’s Lemma is used to solve Λ0(t) same as Lemma 3.1.2.1.
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4. MEAN FIELD DIFFERENTIAL GAMES IN INTELLIGENT
TRANSPORTATION SYSTEMS

In this section the game problem is introduced, which has been adapted to AHS in an

ITS. The goal is to propose a new multi agent control algorithm based on mean field

games to adjust traffic flow on an AHS according to the mean value of the ITS so that

stop-and-go driving conditions on the ITSs are eliminated. There are three levels in the

game problem as was implemented in chapter 3. AHS is separated into sub-sections so

that optimization could be came out according to different characteristics of the traffic

flow and environmental conditions. This kind of hierarchical control provides great

advantages on AHS since it allows the Control Center and Road-Links to optimize

different cost functions. Implementing the mean field game for ITS provides a

smoother flow on all vehicles, and also each vehicle determines its control according

to a dynamic energy cost. While each road link plays a game among vehicles in an

attempt to achieve a smoother flow in its own section, the global center also optimizes

travel time of the ITS. So, as fluctuation on each vehicle is reduced by the mean field

value, total energy and travel time are also optimized simultaneously.

The rest of the section is organized as follows. We first introduce the problem and then

explain the main difficulties to solve the problem exactly when the number of agents

is large on AHS, furthermore we translate mean field problem to on a ITS. Mean Field

Nash Game deals with the approximate optimal control problem that each vehicle is

faced with in the mean field limit, when road-links impose their arbitrary strategy to

the vehicles. Moreover, the approximate game problem of the road-links is solved

subject to mean field of each section of the AHS. Control center problem is also solved

according to Stackelberg game principles in this section.

4.1 Problem Statement

In the first level there is the global leader (control center), G0, who dominates

sub-leaders (road-links), RL i, which are at the second level. Stackelberg game is
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played between the global leader and the sub-leaders. The global leader wants to

minimize its own cost function, J N
0 . It chooses its strategy and then announces it to

the sub-leaders RL i who play a non-cooperative game among each other. There is

a total of N followers in the third level and each follower is assigned to a sub-leader.

Let RL be the number of sub-leaders and let Nl j be the number of followers linked

to sub-leader j, j = 1 . . .RL . Each sub-leader plays a Stackelberg mean field game

with its followers, (see Fig. 4.1) and wants to minimize its cost, denoted as J N
li .

Figure 4.1 : Schema of the Stackelberg Game.

The stochastic differential equation (SDE) describing the state of the control center is

given as:

dx0(t) = {a0x0(t)+b0u0(t)}dt +d0dw0(t), (4.1)

where x0 ∈R is the state of the control center, u0 ∈R is the control computed by the

control center, and {w0(t), t ≥ 0} is a one-dimensional Brownian motion. The state

equations of the road links, RL i, 1≤ i≤RL , are given by the following SDE’s

dxli(t) = {alxli(t)+bluli(t)+ f0u0(t)}dt +dldwli(t), (4.2)
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where xli ∈ R is the state of RL i, uli ∈ R is its control, and {wli(t), t ≥ 0} is a

one-dimensional Brownian motion. Above, f0 is a constant control of the global leader.

For each road link RL j, j = 1, . . . ,RL , the state equations of the followers, F l j
f i , 1≤

i≤ Nl j, dominated by RL j are given by:

dxl j
f i(t) = {a f ix

l j
f i(t)+b f iu

l j
f i(t)+g f iul j(t)}dt +d f dw f i(t), (4.3)

where xl j
f i ∈ R is the state of the vehicle, ul j

f i ∈ R is its control, and {w f i(t), t ≥ 0}

is a one-dimensional Brownian motion. Nl j is the number of vehicles governed by

road link RL j and ∑
RL
j=1 Nl j = N, where N is the total number of the vehicles in the

game. Let limN→∞

Nl j
N > 0 for each j = 1, . . . ,RL ; that is, the number of vehicles for

each road link is sufficiently large when the total number of followers is large. Each

vehicle may have different dynamics in each road link in our model, therefore different

a f i, b f i, g f i parameters can be assigned for each vehicle.

Assumption

(a) x0(0), {xl j
f i(0), 1≤ i≤N} and {xli(0), 1≤ i≤RL } are independent of each other.

(b) {w0(t), t ≥ 0}, {w f i(t), 1 ≤ i ≤ N, t ≥ 0}, and {wli(t), 1 ≤ i ≤ RL , t ≥ 0} are

independent of each other, which are also independent of x0(0), {xl j
f i(0), 1≤ i≤N}

and {xli(0), 1≤ i≤RL }.

The performance index to be minimized for the control center, G0 is given by:

JN
0 (u0,uN) =E

∫ T

0

{
q0[ξ0(t)x0(t)−ν

N(t)]2 + r01[u0(t)]2 + r02[T0(t)]2
}

dt, (4.4)

where q0 > 0 and r01 > 0, r02 > 0, are the weighting values on tracking error, control

and time respectively. The first term in JN
0 represents the penalty on tracking error of

the flow, the second term stands for the penalty on the control effort, and third term is

the penalty on the total travel time of ITS. It is possible to write:

ν
N(t) =ξ0(t)× zN(t), (4.5)

where νN(t) represents the traffic flow of the system, ξ0 is the density constant of

the AHS and zN(t) =
1
N

∑
N
i=1 x f i(t) is the mean field term that shows mass behavior
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of all vehicles. Here, it is assumed that mean field term gives the average velocity

of the vehicles. Flow is affected directly by the first term, if the velocity of the

followers converges to the mean field value, stop-and-go driving conditions are reduced

throughout all AHS. uN shows the controls of all other agents in the game; that is,

uN = {ul j,u
l j
f i;1≤ i≤ N,1≤ j ≤RL }.

In equations given below, flow based travel time function in ITS is represented by

T0(t), C is the capacity of the AHS determined by the maximum flow possible on the

highway, and t f is the time taken to traverse in free flow conditions (when the density

is zero and consequently the vehicles have free flow (maximum) speed). Bureau of

Public Roads (BPR) (now FHWA) uses formula (4.6) below for τ0(t) [69] which has

a parameter ατ with a typical value of 1 and βτ which typically ranges between 2 and

12. In this thesis, we have assumed ατ = 1 and βτ = 2 in our calculations.

T0(t) =t f τ0(t),

τ0(t) =
(

1+βτ

(νN

C

)ατ

)
.

(4.6)

The performance index to be minimized for road links RL i is given by:

JN
li (uli,u0,uN

−li) = E
∫ T

0

{
qli[ξli(t)xli(t)−ν

N
li (t)]

2 + rli[uli(t)]2 + l0uli(t)u0(t)
}

dt,

(4.7)

ν
N
li (t) =ξli(t)× zN

li (t). (4.8)

where qli > 0, rli > 0, and l0 > 0, are the weighting values on tracking error, control

and leader control respectively. The mean field term that describes the mass behavior

of the followers of RL i is denoted by zN
li (t) =

1
Nli

∑
Nli
i=1 xli

f j(t). The second and third

terms in the performance index JN
li represent the penalty on the control effort of the

road links and the global-leader. Sub-leaders are weakly coupled with all the vehicles

via the mean field term and they are strongly coupled with the global leader via their

controls. Traffic flow of each road link, represented by νN
li (t) is given in (4.8) where

ξli is the density of each road link. Each road link can reduce stop-and-go condition

according to its own flow value due to the sub-mean field effect on the cost function

(4.7).
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The performance index to be minimized for vehicles F l j
f i is given by:

JN
f i(u

l j
f i,u

N
− f i) =E

∫ T

0

{
q f i[x

l j
f i(t)− zN

l j(t)]
2 +G(ul j

f i,ul j)+ llu
l j
f i(t)ul j(t)

}
dt,

G(ul j
f i,ul j) =r f i1[u

l j
f i(t)]

2 + r f i2[x
l j
f i(t)]

2,

(4.9)

where q f i > 0, r f i1 > 0, r f i2 > 0, and ll > 0. G(ul j
f i,ul j) is the vehicle power related

function of the performance index. The first term of G(ul j
f i,ul j) is associated with the

penalty on the control value of the vehicle. r f i1 involves the mass of the vehicle due to

the fact that total energy is associated with the mass of the vehicle. The second term

of G(ul j
f i,ul j) represents the penalty on the velocity of the vehicle. When the vehicle

goes faster on the highway, it faces more obstructive resistance effect such as rolling

or speed correction. Therefore, coefficient r f i2 is related with approximated resistance

effects and mass value of the vehicle besides the weight value of the cost function in

our linear model (for detailed motor power models see [70]). Vehicles on the same

road link are weakly coupled with each other via the mean field term zN
l j and strongly

coupled with their sub-leader via their controls uli.

The classes of admissible controls for G0, S L i and F l j
f i is L2

F (0,T ;R); (the set of all

adapted processes with finite second moments).

The most important difficulty when seeking exact Stackelberg solution within a large

number of agents is that Nash equilibrium between followers is hard to obtain under

arbitrary strategies of the leaders when the number of followers N is large (i.e., curse of

dimensionality). The second major challenge is that when the number of the followers

increases, the leaders face large numbers of constraints in their game problem. Hence,

an exact solution would be impossible to obtain and mean field approach can be

devised to obtain an approximate equilibrium. When the mass behavior of the

followers are incorporated into the mean field term the totality of followers in each

sub-team can be represented by a generic agent which will considerably decrease the

complexity of the solution.

4.1.1 Stochastic mean field approximation for the vehicles

In this section, the mean field approximation of Nash equilibrium for the game played

among N j vehicles of the jth road-link S L j is developed. Vehicles are coupled
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through the mean field term xN
l j(t) with the players in their group and they are coupled

with vehicles in other groups via controls of their road-links.

The dynamics and the cost functions of the vehicles separated into groups are given

by (4.3) and (4.9). Each group is managed by its own sub-leader that may control its

followers to achieve a different task.

zl j(t) ∈ L2
F(0,T ;R) , 1 ≤ j ≤S L represents the sub-mean field term in the infinite

population limit Nl j → ∞. The sub-mean field term zl j(t) and the control uli of the

sub-leader are exogenous terms in the cost function of a generic vehicle. A generic

vehicle has to solve a stochastic control problem, given zl j(t) and uli, to minimize

its cost function (4.9) by using any admissible control ul j
f i(t). The (unique) optimal

control and the corresponding state and adjoint equations are given as follows:

dxl j
f i
∗
(t) =

{
al j

f xl j
f i
∗
(t)−

b2
f

2r f i1
p f i(t)+

(
g f −

b f ll
2r f i1

)
ul j(t)

}
dt +d f dw f i(t),

d p f i(t) =
{
−al j

f p f i(t)−2q f [x
l j
f i
∗
(t)−h f zl j(t)]−2r f i2xl j

f i
∗
(t)
}

dt+

ew f i(t)dw f i(t)+ ewli(t)dwl(t),

(4.10)

where the state of a generic follower is calculated according to boundary conditions:

xl j
f i(t) = xl j

f i(0) p f i(T ) = 0.

(4.10) is a forward backward stochastic differential equation (FBSDE). It can be

transformed into a different form which contains a Riccati differential equation (RDE)

using Ito’s Lemma and solving this Riccati equation is sufficient to obtain the solution

of the FBSDE (4.10).

Theorem 4.1.1.1. Given zl j ∈ L2
F (0,T ;R) and ul j(t) ∈ L2

F (0,T ;R), the local

optimal control problem for F l j
f i , 1≤ i≤ Nl j. admits a unique optimal controller ul j

f i
∗
.

Moreover (xl j
f i
∗
, ul j

f i
∗
) ∈ L2

F (0,T ;R)×L2
F (0,T ;R) is the corresponding optimal

control solution if and only if

ul j
f i
∗
(t) =−

b f

2r f i1
Z f i(t)x

l j
f i
∗
(t)−

b f

2r f
Φ f i(t)−

ll
2r f i1

ul j(t), (4.11)
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where

dxl j
f i
∗
(t) =

{[
al j

f −
b2

f

2r f i1
Z f i(t)

]
xl j

f i
∗
(t)−

b2
f

2r f i1
Φ f i(t)+

(
g f −

ll
2r f i1

)
ul j(t)

}
dt+

d f dw f i(t),
(4.12)

dΦ f i(t) =
{[
−al j

f +
b2

f

2r f i1
Z f i(t)

]
Φ f i(t)+2q f h f zl j(t)−

g f − ll
2r f

ul j(t)Z f i(t)
}

dt

+{ew f i(t)−Z f i(t)}dw f i(t)+ ewli(t)dwl(t),
(4.13)

xl j
f i(t) = xl j

f i(0), Φ f i(T ) = 0,

where Z f i(t) is the solution of the following RDE:

Ż f i(t)+2al j
f Z f i(t)−

b2
f

2r f i1
Z2

f i(t)+2(q f + r f i2) = 0,

Z f i(T ) = 0.

(4.14)

In the optimal control problem for a generic agent explained in detail above, the mean

field term zl j(t) is the exogenous variable. According to the Nash certainty equivalence

(NCE) principle the state evolution of a generic agent must be consistent with the mean

field term (i.e., the total population behavior) which means that the expectation of the

state of a generic agent must be equal to the mean field term zl j(t). In the following

derivations, expectation of the state of the agent (which is equal to mean field term)

and the corresponding co-state are as represented by x∗mi(t) and pmi(t), respectively

and the coupled differential equations describing the evolution of the mean field term

are obtained by taking the expectations of the coupled SDEs in (4.10).

4.1.2 Stochastic mean field approximation for the road links

In this section we consider the Nash game played among Road Links given the limiting

mean field term and the policy of the control center. Each Road Links plays a

Stackelberg mean field game with its vehicles.

The dynamics and the costs of road-links are given by equations (4.2) and (4.7)

respectively. Let us consider the SDE for RL i, 1 ≤ i ≤ RL . The cost function
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of a generic road-link which uses approximated mean field value of its own group is

described by (4.7) where zli(t) ∈ L2
F(0,T ;R) represents the infinite limit approximated

mean field term. The mean field term zli(t), and control of global leader u0(t) are

exogenous terms in ith road-link’s local control problem. The aim of each road-link

is to minimize its cost function (4.7) using an admissible control uli(t). The (unique)

optimal control and the corresponding state and adjoint equations are given as:

dx∗li(t) =
{

alx∗li(t)−
b2

l
2rl

pli(t)+
(

f0−
bll0
2rl

)
u∗0(t)−

(blg f

2rl
−

blb f ll
4r f rl

)
γli(t)

}
dt+

dldwl(t),

d pli(t) =
{
−al pli(t)−2qlξ

2
li(t)[x

∗
li(t)−hlz∗li(t)]

}
dt + ewli(t)dwl(t)+

ew0(t)dw0(t),
(4.15)

where the state of each road-link can be obtained according to the boundary conditions:

xli(t) = xli(0), pli(T ) = 0.

Each road-link has its own mean field term denoted by z∗li(t). Adjoint functions γli are

used to estimate the optimal values of z∗li(t). The dynamics of states and co-states for

mean field dynamics are obtained as:

dz∗li(t) =
{

ali
f z∗li(t)−

b2
f

2r f
pmi(t)−

(g f bl

2rl
−

blb f ll
4r f rl

)
pli(t)+

( b2
f l2

l

8r2
f rl

+
g2

f

2rl

)
γli(t)−(g f l0

2rl
−

l0b f ll
4r f rl

)
u∗0(t),

dγli(t) =
{
−ali

f γli(t)+2hlqlξ
2
li(t)[x

∗
li(t)−hlz∗li(t)]+(2q f −2q f h f +2r f 2)βli(t)

}
dt+

ewli(t)dwl(t)+ ew0(t)dw0(t),
(4.16)

subject to the boundary conditions:

z∗li(0) = lim
Ni→∞

1
Ni

Ni

∑
j=1

xli
f j(0), γli(T ) = 0.

The Hamiltonian includes mean field adjoint function pmi as a constraint, so a new

adjoint function βli can be written to estimate the optimal values of the mean field

adjoint function pmi. Their dynamics are given by:

d pmi(t) =
{
−ali

f pmi(t)− (2q f −2q f h f )z∗li(t)−2r f 2z∗li(t)
}

dt,

dβli(t) =
{

ali
f βli(t)+

b2
f

2r f
γli(t)+ ewli(t)dwl(t)

}
dt + ew0(t)dw0(t),

(4.17)
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subject to the boundary conditions:

βli(t)
∣∣∣
t=0

= 0, pmi(T ) = 0.

First, the coupled equations (4.15), (4.16) and (4.17) for all sub-leaders are written

as a coupled matrix FBSDE (see (4.18) below). Then, (4.18) is transformed into a

different form which contains a RDE, using Ito’s Lemma. Solving this Riccati equation

is sufficient to obtain the solution of the FBSDE (4.18).

Let us set

Xl(t) = [x∗li(t), ...,x
∗
lS L (t),z∗li(t), ...,z

∗
lS L (t),βli(t), ...,βlS L (t)]T ,

Yl(t) = [pli(t), ..., plS L (t), pmi(t), ..., pmS L (t),γli(t), ...,γlS L (t)]T .

The overall coupled FBSDE that yields the equilibrium solution for sub-leaders can be

compactly written in the following form:

dXl(t) = [Al1Xl(t)+Bl1Yl(t)+Cl1]dt +Dl1dWl(t)+Dl3dW0(t),

dYl(t) = [Al2Xl(t)+Bl2Yl(t)]dt +Dl2dWl(t)+Dl4dW0(t),
(4.18)

subject to the boundary conditions below:

Xl(t)
∣∣∣
t=0

= Xl(0), Yl(T ) = 0.

Theorem 4.1.2.1. Given the control of the global leader, u0(t), the game problem

for sub-leaders RL i, 1 ≤ i ≤ RL , admits a unique equilibrium solution {u∗li}RL
i=1 .

Moreover {(x∗li, u∗li)}RL
i=1 is the corresponding equilibrium solution if and only if for

all i = 1, . . . ,RL ,

u∗li(t) =−
bl

2rl
pli(t)−

l0
2rl

u∗0(t)−
( g f

2rl
−

b f ll
4r f rl

)
γli(t),

where

dXl(t) =
{

Al1Xl(t)+Bl1Λl(t)Xl(t)+Bl1Vl(t)+Cl1

}
dt−dWl(t), (4.19)

dVl(t) =
{

Bl2Vl(t)−Λ
T
l (t)Bl1Vl(t)−Λ

T
l (t)Cl1

}
dt +

{
Dl2−Λ

T
l
}

dWl(t)+Dl4dW0(t),

(4.20)
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Xl(t) = Xl(0), Vl(T ) = 0

Here, Λl(t) is the solution of the following RDE:

Λ̇l(t)+Λ
T
l (t)Al1−Bl2Λl(t)−Λ

T
l (t)Bl1Λl(t)−Al2 = 0,

Λl(T ) = 0,
(4.21)

where

det
{[

0 I
]

eAlt
[

I
0

]}
> 0, ∀ t ∈ (0,T ),

and the matrix Al is given by

Al =

[
Al1 Bl1
Al2 Bl2

]
.

4.1.3 Stochastic mean field approximation for the control center

Finally, a Stackelberg game is played between the control center and the road-links,

where road-links apply the equilibrium solution computed in the previous section given

the control of control center as an exogenous signal. The equilibrium solution that has

been derived in the previous section depends on the control of the control center. Here,

using these constraints the best result for the control center is obtained which will

eventually lead to the (approximate) Stackelberg equilibrium. In these calculations,

the control center can only reach the vehicles through road-links.

γ0(t), β0, α0li(t), δ0li(t), β0li, γ0li(t), η0li(t) and ζ0li(t) are adjoint

functions, which are used to obtain the extremal trajectory of

z(t), pm0(t), xli(t), pli(t), pmi(t), zli(t), βli(t) and γli(t) respectively. These

equations can be solved in a similar way as the road-links, as described in sub-section

4.1.2.

X0(t) = [x∗0(t),z
∗(t),β0(t),x∗li(t), ...,x

∗
lS L (t),z∗li(t), ...,z

∗
lS L (t),βli(t), ...,

βlS L (t),δ0li(t), ...,δ0lS L (t),β0li(t), ...,β0lS L (t),ζ0li(t), ...,ζ0lS L (t)]T ,

Y0(t) = [p0(t), pm0(t),γ0(t), pli(t), ..., plS L (t), pmi(t), ..., pmS L (t),γli(t), ...,

γlS L (t),α0li(t), ...,α0lS L (t),γ0li(t), ...,γ0lS L (t),η0li(t), ...,η0lS L (t)]T ,

dX0(t) = [A01X0(t)+B01Y0(t)]dt +D01dW0(t),

dY0(t) = [A02X0(t)+B02Y0(t)+C02]dt +D02dW0(t),
(4.22)
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subject to the boundary conditions:

X0(t)
∣∣∣
t=0

= X0(0), Y0(T ) = 0.

Theorem 4.1.3.1. Given the equilibrium solution for sub-leaders and followers, and

the corresponding mean field term, the local optimal control problem for G0, admits a

unique optimal controller u∗0 ∈ L2
F (0,T ;R), given by

u∗0(t) =−
b0

2r0
p0(t)−

( g f

2r0
−

b f ll
4r0r f

)
γ0(t)+

S L

∑
i=1

( g f l0
4r0rl

−
b f lll0

8r f rlr0

)
γ0li(t)−

S L

∑
i=1

( f0

2r0
− bll0

4r0rl

)
α0li(t),

where

dX0(t) =
{

A01X0(t)+B01Λ0(t)X0(t)+B01V0(t)
}

dt−dW0(t), (4.23)

dV0(t) =
{

B02V0(t)−Λ
T
0 (t)B01V0(t)+C02

}
dt +

{
D02−Λ

T
0
}

dW0(t), (4.24)

X0(t) = X0(0),V0(T ) = 0.

Here, Λ0(t) is the solution of the following RDE

Λ̇0(t)+Λ
T
0 (t)A01−B02Λ0(t)−Λ

T
0 (t)B01Λ0(t)−A02 = 0,

Λ0(T ) = 0,
(4.25)

where

det
{[

0 I
]

eA0t
[

I
0

]}
> 0, ∀ t ∈ (0,T ),

and the matrix A0 is given by

A0 =

[
A01 B01
A02 B02

]
.
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5. SIMULATION RESULTS

In this section two implementation works are presented. Firstly we have developed an

innovative mean field game type in chapter 3, which is a multilayer hierarchical mean

field game. Its theoretical analysis and mathematical equations are given extensively

in that chapter. Here, the first result that is presented is related to MF-MSG. There is a

global leader, which imposes its strategy to two sub-leaders. Two sub-leaders control

different large number of followers. MF-MSG is examined according to 4 different

test scenarios in MATLAB simulation environment.

The second implementation work given here has been developed for intelligent

transportation systems. We have applied theory, which is obtained in chapter 3 to

an ITS. This innovative work aims to control bunch of vehicles from a control center.

Sub-leaders would be different road links and followers would be vehicles. It is hard

to control lots of autonomous vehicles in a highway environment. Hence we have

developed a new simulation environment, which has been implemented with C++ by

QT editor. After the simulation program is explained in this section, scenarios with

normal traffic flow and accident will be presented.

5.1 Numerical Examples for the MF-MSG

In this subsection we provide a numerical example to illustrate the main results. The

following scalar dynamic equations for global leader, sub-leaders, and followers have

been employed:

dx0(t) = [0.02x0(t)+0.1u0(t)]dt +0.1dw0(t),

dxl1(t) = [0.02xl1(t)+0.1ul1(t)+0.01ul2(t)+0.1u0(t)]dt +0.1dwl1(t),

dxl2(t) = [0.02xl2(t)+0.1ul2(t)+0.01ul1(t)+0.1u0(t)]dt +0.1dwl2(t),

dx1
f i(t) = [0.027x1

f i(t)+0.2u1
f i(t)+0.05ul1(t)]dt +0.1dw f 1(t),

dx2
f i(t) = [0.029x2

f i(t)+0.2u2
f i(t)+0.05ul2(t)]dt +0.1dw f 2(t),
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There are only two sub-leaders in this example. The cost functions to be minimized

are given as follows:

JN
0 (u0) = E

∫ 10

0

{
0.1[x0(t)−1zN(t)]2 +[0.2(u0(t))]2

}
dt,

JN
l1(ul1,u0,uS L

−l1 ) = E
∫ 10

0

{
0.1[xl1(t)−1zl1N(t)]2 +0.2u2

l1(t)+0.02ul2(t)ul1(t)+

0.2ul1(t)u0(t)
}

dt,

JN
l2(ul2,u0,uS L

−l2 ) = E
∫ 10

0

{
0.1[xl2(t)−1zl2N(t)]2 +0.2u2

l2(t)+0.02ul1(t)ul2(t)+

0.2ul2(t)u0(t)
}

dt,

JN
f i(u

l j
f i,u0,uS L ) = E

∫ 10

0

{
0.015[xl j

f i(t)−1zN
l j(t)]

2 +[0.2ul j
f i(t)]

2 +1.2ul j
f i(t)ul j(t)

}
dt.

The aim of the global leader is to force the followers to keep their state value at the

mean field value. According to the simulation results the average mean field value

of the followers is nearly 25, but the individual value of each follower is different

from 25. The global leader tries to keep its own state value at 25, and also the

followers keep their own values nearly at 25 through (MF)-(MSG). In the following

results a comparison among four different games in a large scale tracking scenario is

demonstrated. Different numbers of agents and hierarchical levels are employed in

each game. Games start at the same initial conditions and use the same followers. The

specification of each game is given below:

Game 1 consists of 1600 followers in 3 hierarchical levels (MF-MSG).

Game 2 consists of 800 followers in 3 hierarchical levels (MF-MSG).

Game 3 consists of 200 followers in 3 hierarchical levels (MF-MSG).

Game 4 consists of 1600 followers in 2 hierarchical levels (MF-SG).

5.1.1 Simulation results for the MF-MSG

The state of the global leader, x0(t) is depicted in Figure 5.1. The mean field value

of the states converges to 25 in all the games. The global leader imposes its strategy

on all the followers. It can be observed that at the beginning of the simulation the

global leader is also affected by the mean field term, so it decreases its state value and
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Figure 5.1 : State of the Global Leader.

Figure 5.2 : Average State of Followers.

reaches the desired value nearly at 2nd simulation step. The global leader converges

to desired value faster if the number of agents increases as in Game 1. Since the mean

field error in Game 1 is smaller than in Game 2 and Game 3 the state of the global

leader fluctuates less. It can be said that is applied a negative control.

The average state of all followers, xl j
f i(t) is illustrated in Figure 5.2 where it can

be observed that the followers could nearly track the mean field term in all games.

Average error increases as the simulation proceeds since adapted open loop control is

applied. Each group performs differently due to their al j
f (t) parameters. The number

of followers higher in Game 1 compared to Game 2 and Game 3, so the followers in
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game 1 have smaller average state error. It can be concluded that as the mean field

error decreases, the followers perform better control and the average follower state

error decreases.

Figure 5.3 : Average Control of Global Leaders.

Figure 5.4 : Average Controls of Sub Leaders.

The average control of the global leader, u0(t) is shown in Figure 5.3. The global

leader applies negative control on sub-leaders while sub-leaders apply positive control

on the followers. Hence, followers are controlled indirectly by the global leader and

smoother control is achieved. Also, sub-leaders may act differently compared to the

leader.
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The average control of sub-leaders, uli(t) is depicted in Figure 5.4. In our work, an

additional layer of sub-leaders has been introduced compared to previous works which

has crucial effects. Even though the global leader intends to impose a different control

action, sub-leaders apply a specific control action to prevent unnecessary control

caused by the mean field mass effect. So, error and cost decrease substantially. Hence,

the additional layer of sub-leaders handles adverse effects of the environment more

efficiently.

Figure 5.5 : Average Total Error of the Mean Field Term.

The average error of mean field terms is the difference between the exact mean field

value and the approximated mean field value and it is illustrated in Figure 5.5. In

Game 3, the number of agents is the lowest and the error has the highest value It can

be observed that error decreases as the number of agents increases. Also, it is possible

to predict that the error will converge to zero if the number of agents goes to infinity.

In [11] Moon and Basar showed that.

A comparison of global leader states between Games 1 and 4, x0(t), in a different test

environment than the previous results is provided in Figure 5.6. It can be observed that

It can be observed that when initial state is higher than the desired value, both games

could track the reference. There are more fluctuations in Game 1, since the Stackelberg

game among sub-leaders and global-leader causes state trajectory variations. While the

global leader determines its strategy it must take sub-leaders’ dynamics into account.

Although individual state trajectories show fluctuations, overall system performance is
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Figure 5.6 : State of the Global Leader in Games 1-4.

better. Also, it is possible to observe that the global leader state trajectory of Game 4

shows higher error. Moreover the state error has decreased in the multi-layer Game 1.

Figure 5.7 : The Global Leader Cost in Games 1-4.

A comparison of average cost of the global leader and followers between Games 1 and

4 respectively, J0(t), J f i(t) is illustrated in Figure 5.7 and Figure 5.8. While the cost

of the global leader is approximately the same in both games, the additional sub-layer

introduced in Game 1 reduces cost of the followers significantly. In both of the games

there are 1600 agents which is the maximum number of agents in all the experiments. It

can be observed that multi-layer approach performs better than the one layer approach

due to specific control ability of sub-leaders’ groups, which is shown in Figure 5.4.
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Figure 5.8 : Followers’ Cost in Games 1-4.

In multi-layer game less cost is achieved compared to the one layer game. It can

be concluded that Game 1 is more efficient with respect to Game 4 both from the

perspective of cost and state error.

5.2 Numerical Examples for the MF-ITS

An important tool to test new ITS-oriented operational strategies and algorithms before

they can be implemented on actual AHS is computer simulation. Some examples

of professional Application Programming Interfaces (API) can be listed as Paramics

[71], AIMSUN [72], METANET [73], CORSIM [74], and VISSIM [75]. Realistic

conditions can be implemented before vehicles are on the road via an API which

provides data exchange between interface and simulation environment. Models that

have been developed have frequently been tested by already existing APIs. For

instance a dynamic programming based adaptive signal processing algorithm has

been proposed and tested using AIMSUN in [76]. In [77] authors used VISSIM

to build a new hardware-in-the-loop traffic signal simulation framework to bridge

traffic signals. On the other hand, in some works authors have developed their own

simulation environments due to discrepancies between their methods and the ready

to use simulation environments. For instance, in [78] authors needed an environment

in continuous time, however most of ready-to-be-used APIs had been designed to be
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used in discrete time, so they built their own API through C++, to develop a simulation

based iterative dynamic equilibrium traffic assignment model.

In this thesis, we needed to implement our complex algorithms on a new simulation

environment to manage conditions via our own code, so we have used our own API,

"ITUCiTSim", even though various useful ready-to-use simulation environments are

still in use.

5.2.1 Real time simulation environment (ITUCiTSim)

Istanbul Technical University City Transportation Simulation (ITUCiTSim) is a

professional program developed to test real time traffic conditions on AHSs [79]. It

has been developed with QT C++, to create realistic traffic models taking into account

road conditions, vehicle specifications, and traffic circumstances.

The monitoring screen of ITUCiTSim is depicted in Fig. 5.9. The desired road

kilometer interval can be monitored and road sections can be selected from the left

hand side of the screen. Each rectangle represents a different vehicle. Small and large

rectangles represent cars and light trucks, which have different motor specifications

and mass, respectively. Also, each color denotes different driver characteristics with

regard to speed interval. Each vehicle possesses its own speed limit characteristic even

if vehicles are included in the same color interval. The control panel of ITUCiTSim

is illustrated in Fig. 5.10. As can be seen from the figure, environmental conditions

can be adjusted as input parameters. Output parameters such as velocity, density, flow

and carbon emission are shown on the right hand side of the panel. Furthermore, an

accident can be created in the specific road kilometer with closed lines, which can be

selected before the accident.

Figure 5.9 : ITUCiTSim Monitoring Screen.
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Figure 5.10 : ITUCiTSim - Control Panel.

A realistic case study model of Istanbul’s E-80 highway has been employed to

construct ITUCiTSim, and the data on the road links is given in Fig. 5.11. Vehicle

specifications of ITUCiTSim are given in Table 5.1. Vehicle specifications must be

considered carefully in a simulation environment since they affect numerical results

directly.

Table 5.1 : ITUCiTSim Istanbul.

Vehicle Specifications
Model Car Light Truck
Power (HP) 200 400
Speed(km/h) 80 - 140 60 – 80
Weight (kg) 2000 5000
Motor (liter) 1.5 5
Vehicle ratio on the road %70 %30

5.2.2 Simulation results for the MF-ITS

In the thesis, simulations have been performed for the same road sections, vehicle

parameters, and models as in [79]. A simulation of Istanbul E-80 highway model

is developed using ITUCiTSim, the model is composed of 21 different road sections

modeled as road-links in the MFG. The game includes 6 mean field road section and

1600 vehicles managed by a control center. The vehicles are distributed between the

road links. The duration of the simulation is 2 minutes.

73



Kurtkoy Samandira IMES

AtasehirUmraniyeBeykozSariyer

Sisli Eyup Gaziosmanpasa Esenler

BagcilarMahmutbey 
East-WestIspartakuleAvcilar

Hadimkoy Catalca Kumburgaz

Sekerpinar 8 km 13.7 
km

4.6 
km

3.3 km

4.4 
km

7.4 
km

2.1 
km

3.6 km

3.9 
km

5.1 
km

Selimpasa

5.1 
km

6.2 km

2.7 
km

8.9 - 
2.5 
km

6 km

6 km 7.5 
km

11.8 
km

12.1 km

7.2 km

Figure 5.11 : Istanbul E-80 Highway Road Map.

1600 vehicles with their own characteristics are placed on random parts of six road

links, initially. As the vehicles start to drive, mean field game is applied to manage

them. The control center determines a cost function which is

JN
0 (u0,uN) = E

∫ T

0

{
q0[ξ0(t)x0(t)−ν

N(t)]2 + r01[u0(t)]2 + r02[T0(t)]2
}

dt.

Then it captures flow of the road , energy and travel time and imposes its strategy

on the road links based on this cost function. Road links impose their strategies on

their followers to minimize their cost functions with respect to their own traffic flow

and energy characteristics. As a consequence, each vehicle specifies its strategy with

reference to the mean field value while at the same time optimizing its cost function.

5.2.2.1 Normal traffic flow

Three different test scenarios with normal traffic flow conditions have been

implemented. Figure 5.12 illustrates flow of the road-links. It can be noted that under
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Figure 5.12 : Flow of the Kurtkoy Road Section.

mean field control a smoother flow is achieved. The flow does not change up to 60th

second but after that traffic density increases which leads to a rise of the flow on the

section of the road where accident has occurred

Figure 5.13 : Mean Field of the Kurtkoy Road Section.

During normal flow conditions the average speeds of the vehicles do not change as can

be seen in figure 5.13. However, fluctuations on average speed is more than mean field

test conditions. It van be observed that although the number of vehicles increases in

this road-link, the MFG-ITS algorithm provides constant velocity on the highway.

The carbon emission of all vehicles in time has been depicted in Figure 5.14. In each

test set different diversified car-truck ratio has been assigned which affects speed,
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Figure 5.14 : Total Carbon Emission of the ITS.

fuel consumption, and stop-and-go number of vehicles. The total carbon emission

is affected by vehicle characteristics in each different test set. It can be observed

from varied test results that MFG can cope with total carbon emission on the ITS

successfully. Total carbon emission is decreased approximately %6.35 at the end of

the two minutes journey. In these tests it is assumed that there is no accident. In the

case of an accident stop-and-go driving characteristic would increase, resulting in more

fuel consumption and carbon emission.

5.2.2.2 Traffic flow after an accident

In these test scenarios, it is assumed that all road lanes are closed due to an accident.

Then all lanes are re-opened and vehicles confront intense traffic. Hence the tests on

traffic flow after an accident scenario analyzes a traffic environment involving highly

intense stop-and-go driving conditions.

The flow of the road-link after an accident is depicted in Figure 5.15. The flows of

normal-1 and normal-2 cases are less than the flow observed in the mean field game.

Flow of the normal-3 scenario is faster than mean field games since average driving

speed characteristics of vehicles are higher in this test scenario. It can be concluded

that when vehicles are controlled via a mean field game, unnecessary stop-and-go is

prevented, hence all vehicles can accelerate together faster than the uncontrolled case.
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Figure 5.15 : Flow for Kurtkoy after Accident.

Figure 5.16 : Mean Field of Kurtkoy after Accident.

Average driving speed characteristics of vehicles in specified test scenarios are shown

in Figure 5.16. The test results reveal that average velocities of all scenarios

are approximately the same expect normal-3 because of its random environment

conditions. In normal-1 and normal-2, vehicles try to get away from the congestion

with a higher velocity but they fail to reach this higher velocity. Therefore they have

approximately the same average velocity, however their flows are smaller values. As a

result it can be concluded that mean field game helps to reduce the congestion.

The carbon emissions of all vehicles after an accident have been illustrated in Figure

5.17. It can be clearly seen that, in case of an accident MFG copes with total

77



Figure 5.17 : Total Carbon Emission of the ITS after Accident.

carbon emission on the ITS successfully. MFG reduces the total carbon emission

approximately %10.74 at end of the two-minutes journey.
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6. CONCLUSIONS AND RECOMMENDATIONS

Growing body of research has been performed on mean field games recently due

to fact that they provide an efficient solution for the multi agent control problems

with large number of agents. Nash games can be applied through this new type of

games. MFG involves large number of differential equations, which should be solved

to derive a useful solution. This thesis has contributed to the mean field theory from

a practical and useful point of view. Mean Field Multilayer Stackelberg Game can

deal with complicated scenarios by dividing the main problem into sub-tasks. Divide

and conquer technique is used in diverse research areas such as economics, politics,

and computer sciences. Idea of our innovative model stems from divide and conquer

technique. Hereby, complex problems could be divided to similar sub-systems, which

have similar dynamics in the environment. Thus sub-problems with more precise

models due to their analogous dynamics can be formulated and these sub-problems

can be more efficiently solved.

In this thesis, we have applied MF-MSG algorithm to solve an important automated

highway problem in smart cities. The importance of smart cities is increasing

constantly among societies. The number of people living in cities is rising hence

governments need more intelligent systems in order to optimize the management of

time, energy, and wasted products. Smart cities should decrease time and energy

consumption so emission of greenhouse gases must be decreased. One of the most

important reasons of greenhouse gas emission is vehicles. Hence, it is expected

that multi-agent control of non-autonomous vehicles on highways would lead to a

significant decrease in this emission. There is an increasing research on autonomous

vehicles recently and products of companies will be on the highway in near future.

Autonomous vehicles could be easily directed through a control center to optimize

energy and time. Therefore, a high necessity will arise for an algorithm which

optimizes the large number of vehicles on an automated highway. This thesis has

also contributed a solution to the important automated highway problem.
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In this thesis, we have developed a new type of mean field game, which is a hierarchical

layered game (MF-MSG). Then we have applied the new mean field game to the

automated highway of the fictional smart city model of Istanbul. Hereby, we construct

both a theoretical mean field model and give contributions to an environmental problem

in a real life scenario.

6.1 Conclusion on MF-MSG

We have developed a new type of mean field approach for a class of multi-agent control

problems. We call this new approach as Mean Field (MF) Multilayer Stackelberg

Games (MSG). The approach enhances flexibility and applicability of the MFG. By the

use of MF-MSG, agents can manage the system more efficiently when they encounter

different kinds of restrictions. For example when some of the agents are affected by

disturbances, they could be managed more robustly, since each group parameter could

be adjusted separately in the physical system. Moreover sub-leaders may play different

games among each other such as cooperative or rivalry games.

An optimal reference tracking problem is considered in this work. Each follower

solves a local optimal control problem with its own group mean field term. Then

sub-leaders solve their local optimal control problems, as nonstandard constrained

optimization problems, with constraints imposed by the mean field process induced by

all Nash followers. Finally the global leader solves its local optimal control problem

as a Stackleberg Game while mean field process is arranged by sub-leaders. The

global leader imposes its strategy on sub-leaders. Between levels 1 and 2, sub-leaders

determine their strategies according to mean field of all the followers. Each sub-leader

dominates its followers in level 3. Mean field game is played between level 2 and level

3. Each follower uses its group mean field value when sub-leaders determine their

strategies.

Although the global leader can control the entire multi-agent system, it can not reach

followers directly. The global leader controls sub-leaders through a Stackelberg Game

and also sub-leaders manage their followers via a Stackelberg Mean Field Game. So

sub-leaders can control their groups in spite of different environmental conditions.

Furthermore they can also guide groups that have varied dynamics. In this way total

cost and error decrease compared to previous approaches. Consequently we have
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shown four different experiments which demonstrate that cost efficiency increases and

error converges to zero when the number of agent, goes to infinity.

We have implemented the case with 2 sub-leaders. If number of agents increases,

more sub-leaders can be added to the system to increase efficiency. The case where a

sub-leader controls a large number of agents is similar to a one layer case. Increasing

the number of layers leads to a (simultaneous) increase in performance, but also

aggravates computational load. So in the design this trade-off must be solved.

6.2 Conclusion on MF-ITS

In the second part of the thesis, we have applied the developed methodology of

MF-MSG on an intelligent transportation system for future smart cities. In our

approach, a control center will manage each vehicle in an automated highway in

a multi-agent framework. There is a considerable body of technical literature on

multi-agent control, however in large scale systems complexity is a major issue.

Accordingly, we have introduced an innovative model for ITS whose analysis utilizes

mean field game theory. In this model, complexity among vehicles is solved using

MFGs in a Nash Game. In this model, the control center manages road links via its

strategy, and also each vehicle determines its optimal action with respect to flow of its

road link. The control center minimizes its cost function with respect to total travel

time, energy and flow, and vehicles minimize their own cost functions with respect to

only flow and their own energy functions.

Such a large scale ITS is not yet realizable in a real world scenario, therefore in

this thesis we have developed an advanced simulation environment (ITUCiTSim) to

perform our tests. In ITUCiTSim, a real road model of Istanbul’s E-80 highway has

been built, then the developed MF-ITS algorithm has been applied for the case of

1600 vehicles in 6 road-links, the duration of the tests have been chosen as 2 minutes.

2 different scenarios have been tested: Normal traffic flow and traffic flow after an

accident. Test results show that, MF-ITS achieves smoother multi-agent control. It is

also observed that each vehicle attains approximately the same velocity as computed by

its cost function. Traffic congestion increases fuel consumption and carbon emission,

this situation will not change even if the vehicles have low speed. When the whole

system is controlled by MF-ITS each vehicle minimizes its own cost function, hence
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a significant reduction in total carbon emission is observed. The results show that as

stop-and-go movements are prevented by controlling the vehicles, carbon emission

is reduced under normal or congested flow conditions. Eventually, our MF-ITS

algorithm could be used as an efficient control method with regard to environmental

and economic issues in future smart cities.

6.3 Future Works

Complex AI problems can be effectively transformed into sub-problems using

hierarchical systems. Mean field game theory is a useful tool for multi-agent decision

making systems hence it will be required more complex differential equations in these

types of games. If we choose stochastic differential equations in MFGs with the aim

of modeling real world scenarios, then we could develop new solutions for SDEs. For

example, in this thesis we dealt with the stochastic problem where noise terms did

not contain any control parameter. If control parameter were affected by noise, then a

different kind of solution would be required.

The mathematical part of this theses includes rich scientific problems, application

of this mathematics to real world problems would be an important contributions to

scientific literature. AI methods such as learning systems, natural language processing,

computer vision, and decision-making systems will design the future life of humanity.

All of these systems include huge amount of complex data so simplifying the problem

of a decision making system to sub-problems would be crucial in finding the solution.

Nowadays data science is intensely used in most of the industry. Firstly user or

environment data should be collected by a big data system. Big data is a concept, which

manages huge amount of on-line data on a server. Thus intelligent systems could serve

to a specific purpose, while they analyze exact requirements of a person through data

science. Lots of implementation problems exist in big data and data science research

area. Due to fact that both concepts include complex multi system problems, mean

field games could be an efficient tool to obtain the solutions of these problems. If they

can be modeled from the perspective of the multi agent game theory problem, mean

field theory would optimize some of these implementation problems. Our innovative

hierarchical model would also be an efficient tool.
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Consequently, our approach could be implemented on large scale systems which

consist of agents that have different dynamics. We could apply this theory in varied

problems on AI, data science, big data, computer vision, machine learning, intelligent

traffic management, power grids or biological networks.

As future work, we intend to improve our model taking into account more

complicated traffic scenarios such as crossroads driving characteristics and more

complex mathematical models as in semi-autonomous highways.
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APPENDIXES

APPENDIX A

We will restrict our attention to the case S L = 2, for clarity of exposition.

For Sub-Leaders in Theorem 3.1.2.1

Al1 = diag
{

Al,Al,Al1
f ,A

l2
f ,A

l1
f ,A

l2
f
}
, Bl2 =−Al1,

Al2=



−Ql 0 QlHl 0 0 0
0 −Ql 0 QlHl 0 0
0 0 −Q f (1−H f ) 0 0 0
0 0 0 −Q f (1−H f ) 0 0

−HT
l Ql 0 QT

l H2
l 0 (In−H f )

T QT
f 0

0 −HT
l Ql 0 QT

l H2
l 0 (In−H f )

T QT
f

 ,

Cl1=



Bl
(
In−R−1

l RT
l

)
ul2(t)+

(
F0−BlR−1

l L0

)
u∗0(t)

Bl
(
In−R−1

l RT
l

)
ul1(t)+

(
F0−BlR−1

l L0

)
u∗0(t)(

B f R−1
f LlR−1

l RT
l −G f R−1

l RT
l

)
ul2(t)+

(
B f R−1

f LlR−1
l L0−G f R−1

l L0

)
u∗0(t)(

B f R−1
f LlR−1

l RT
l −G f R−1

l RT
l

)
ul1(t)+

(
B f R−1

f LlR−1
l L0−G f R−1

l L0

)
u∗0(t)

0
0


,

Dl1 =


Dl
Dl

0n×m
0n×m

rl1n×m
rl2n×m

 , Dl2 =


rl1n×m
rl2n×m
0n×m
0n×m
0n×m
0n×m

 , Dl3 =


0n×m
0n×m
0n×m
0n×m
r0n×m
r0n×m

 , Dl4 =


r0n×m
r0n×m
0n×m
0n×m
0n×m
0n×m

 ,

BlA =
(

B f R−1
f LlR−1

l BT
l −G f R−1

l BT
l

)
,

BlB = BlR−1
l

(
B f R−1

f Ll−G f
)T

,

BlC =−
(
B f R−1

f Ll−G f
)
R−1

l

(
B f R−1

f Ll−G f
)T

,
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Bl1 =



−BlR−1
l BT

l 0 0 0 BlB 0
0 −BlR−1

l BT
l 0 0 0 BlB

BlA 0 −B f R−1
f BT

f 0 BlC 0
0 BlA 0 −B f R−1

f BT
f 0 BlC

0 0 0 0 B f R−1
f BT

f 0
0 0 0 0 0 B f R−1

f BT
f


.

For Global-Leader in Theorem 3.1.3.1 The structure of the matrices of the global
leader are similar to those of the sub-leaders.
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APPENDIX B

Proof of Theorem 3.1.1.1. Equation (3.9) is derived using Hamilton equation (3.7),
see [66, Chapter 3, Theorem 3.2]. Let us set

p f i(t) = Z f i(t)x
l j
f i
∗
(t)+Φ f i(t), (A.1)

Z f i(T ) = 0 Φ f i(T ) = G f , G f ∈ L2
F (Ω,R),

Equation (3.9) is a FBSDE, therefore Ito’s formula is utilized to obtain the solution of
the stochastic differential equation. The adjoint function is,

d p f i(t) =

{
Ż f i(t)x

l j
f i
∗
(t)+Z f i(t)

[[
Al j

f −B f R−1
f BT

f Z f i(t)
]
xl j

f i
∗
(t)−B f R−1

f BT
f Φ f i(t)−

(
B f R−1

f Ll−G f
)
ul j(t)

]
+ Φ̇ f i(t)

}
dt +Z f i(t)dw f i(t),

=

{[
−Al j

f +Z f i(t)B f R−1
f BT

f

]
Φ f i(t)+Q f H f zl j(t)−Z f i(t)

(
B f R−1

f Ll−G f
)
ul j(t)

}
dt

+{r f i(t)−Z f i(t)D f }dW l j
f i (t)+ rli(t)dWli(t),

Equilibrium of adjoint function of (3.9) is equal to above Ito’s formula solution, then
it can be written

0 =

{[
Ż f i(t)+Al j

f
T

Z f i(t)+Z f i(t)A
l j
f −Z f i(t)B f R−1

f BT
f Z f i(t)+Q f

]
xl j

f i
∗
(t)+ Φ̇ f i(t)+[

Al j
f −B f R−1

f BT
f Z f i(t)

]
Φ f i(t)+

(
B f R−1

f Ll−G f
)
Z f i(t)ul j(t)−Q f H f zl j(t)

}
dt

+
{

Z f i(t)+Z f i(t)D f − r f i(t)
}

dWf i(t)− rli(t)dWli(t).

(A.2)

A RDE is obtained from the first part of equation (A.2. The solution of this RDE is
employed in forward-backward differential equation (3.9).

0 = Ż f i(t)+Al j
f

T
Z f i(t)+Z f i(t)A

l j
f −Z f i(t)B f R−1

f BT
f Z f i(t)+Q f .

The dynamic of Φ f i(t) can be determined from second part of the equation (A.2):

dΦ f i(t) =
{[
−Al j

f +Z f i(t)B f R−1
f BT

f

]
Φ f i(t)+Q f H f zl j(t)−Z f i(t)

(
B f R−1

f Ll−G f
)
ul j(t)

}
dt

+{r f i(t)−Z f i(t)D f }dW l j
f i (t)+ rli(t)dWli(t),

The state dynamics can be written from equation (3.9) to find xl j
f i
∗
(t) as follows:

dxl j
f i
∗
(t) =

{
Al j

f xl j
f i
∗
(t)−B f R−1

f BT
f p f i(t)−

(
B f R−1

f Ll−G f
)
ul j(t)

}
dt +D f dW l j

f i (t),
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If equation (A.1 is substituted for p f i(t) ), dxl j
f i
∗
(t) is obtained as:

dxl j
f i
∗
(t) =

{[
Al j

f −B f R−1
f BT

f Z f i(t)
]
xl j

f i
∗
(t)−B f R−1

f BT
f Φ f i(t)−

(
B f R−1

f Ll−G f
)
ul j(t)

}
dt

+D f dW l j
f i (t).

After finding the solution of the dynamic equations, its optimality must also be
demonstrated. J f i(u

l j
f i
∗
,u0,uS L ) and xl j

f i
∗
(t) are convex and Lipschitz continuous in

ul j
f i. Hence, (xl j

f i
∗
,ul j

f i
∗
(t)) is optimal. See [66, Chapter 2, Section 5].

The Riccati equation has a unique solution for Z f i(t). So, forward backward equation
(A) and (3.12) has a unique solution under control (3.10). We can conclude about the
uniqueness of the solution to (3.9) from the existence of a unique solution to (3.13) and
the uniqueness of the solution to (3.10) follows from the existence of a unique solution
of (3.9). See [65, Chapter 2] .

This completes the proof.
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APPENDIX C

Proof of Theorem 3.1.2.1 Equation (3.18) is derived using Hamilton equation (3.17),
see [66, Chapter 3, Theorem 3.2]. Let us set

Yl(t) = Λl(t)Xl(t)+Vl(t), (A.3)

Λl(T ) = 0 Yl(T ) = Gli, Gli ∈ Rn,

Equation (3.18) is a FBSDE, therefore Ito’s formula is utilized to obtain the solution
of the stochastic differential equation. The adjoint function is:

dYl(t) =
{

Λ̇l(t)Xl(t)+Λ
T
l (t)

[
Al1Xl(t)+Bl1Yl(t)+Cl1

]
+ V̇l(t)

}
dt +Λ

T
l dWl(t),

=[Al2Xl(t)+Bl2Yl(t)]dt +Dl2dWl(t)+Dl4dW0(t),
(A.4)

Equilibrium of adjoint function of (3.18) is equal to above Ito’s formula solution, then
it can be written

0 =
{[

Λ̇l(t)+Λ
T
l (t)Al1−Bl2Λl(t)−Λ

T
l (t)Bl1Λl(t)−Al2

]
Xl(t)+ V̇l(t)+Λ

T
l (t)Bl1Vl(t)

+Λ
T
l (t)Cl1−Bl2Vl(t)

}
dt +

{
Λ

T
l −Dl2

}
dWl(t)−Dl4dW0(t),

(A.5)

A Riccati equation is obtained from the first part of equation (A.5), this RDE is
employed to solve the forward-backward differential equation (3.18).

0 = Λ̇l(t)+Λ
T
l (t)Al1−Bl2Λl(t)−Λ

T
l (t)Bl1Λl(t)−Al2

dVl(t) follows from the second part of equation (A.5) as:

dVl(t)=
{[

Bl2−Λ
T
l (t)Bl1

]
Vl(t)−Λ

T
l (t)Cl1

}
dt+

{
Dl2−Λ

T
l (t)

}
dWl(t)+Dl4dW0(t).

We can rewrite equation (A.3) to find Xl(t) as:

Vl(t) = Yl(t)−Λl(t)Xl(t),

Using Ito’s formula we obtain:

V̇l(t) =
{

Ẏl(t)− Λ̇l(t)Xl(t)−Λ
T
l (t)Ẋl(t)

}
dt−Λ

T
l (t)dWl(t),

If equation (A.4) is put into the equation above, then it can be formulated as:

V̇l(t) =
{

Λ̇l(t)Xl(t)+Λ
T
l (t)Al1Xl(t)+Λ

T
l (t)Bl1Λl(t)Xl(t)+Λ

T
l (t)Bl1Vl(t)+Λ

T
l (t)Cl1

+ V̇l(t)− Λ̇l(t)Xl(t)−Λ
T
l (t)Ẋl(t)

}
dt−Λ

T
l (t)dWl(t),
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Finally dXl(t) is derived as:

Ẋl(t) =
{

Al1Xl(t)+Bl1Λl(t)Xl(t)+Bl1Vl(t)+Cl1

}
dt−dWl(t).

Equation (3.24) is a non symmetric Riccati equation and its solution can be obtained
by Radon’s Lemma. If the non symmetric Riccati Equation is solved using Radon’s
Lemma, we get:[

Ṁl(t)
˙Nl(t)

]
=

[
Al1 −Bl1
−Al2 Bl2

][
Ml(t)
Nl(t)

]
dt,

[
Ml(T )
Nl(T )

]
=

[
In
0

]
,

Ml(t) is invertible, then

Λl(t) = Nl(t)M−1
l (t),

The necessary and sufficient condition for uniqueness of the non symmetric Riccati
Equation [65, (Chapter 2, Theorem 4.3)], is;

det
{[

0 In
]

eAlt
[

In
0

]}
> 0, ∀ t ε (0,T ),

Here Al matrix is denoted as,

Al =

[
Al1 Bl1
Al2 Bl2

]
.

After finding the solution of the dynamic equations, its optimality must also be
demonstrated. Jli(uli,u0,uS L

−li ) and Xl are convex and Lipschitz continuous in uli.
Hence, (Xl,uli(t)) is optimal. See [66, Chapter 2, Section 5].

The Riccati equation has a unique solution for Λl(t). Hence, forward backward
equation (3.22) and (3.23) have a unique solution under control (4.1.2.1). We can
conclude about the uniqueness of the solution to (3.18) from the existence of a unique
solution to (3.24) and the uniqueness of the solution to (4.1.2.1) follows from the
existence of a unique solution of (3.18). See [65, Chapter 2].

This completes the proof.
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APPENDIX D

Proof of Theorem 3.1.3.1 Let us set

Y0(t) = Λ0(t)X0(t)+V0(t), (A.6)

Λ0(T ) = 0 Y0(T ) = G0, G0 ∈ Rn.

The dynamics of Y0 can be expressed in two different ways by using Ito’s formula.

dY0(t) =
{

Λ̇0(t)X0(t)+Λ
T
0 (t)

[
A01X0(t)+B01Y0(t)+C01(t)

]
+ V̇0(t)

}
dt +Λ

T
0 dW0(t),

=[A02X0(t)+B02Y0(t)]dt +D02dW0(t).
(A.7)

Subtracting the second equation from the first one, we obtain

0 =
{[

Λ̇0(t)+Λ
T
l (t)A01−B02Λ0(t)−Λ

T
0 (t)B01Λ0(t)−A02

]
X0(t)+ V̇0(t)+Λ

T
0 (t)B01V0(t)

+Λ
T
0 (t)C01−B02V0(t)

}
dt +

{
Λ

T
0 −D02

}
dW0(t).

(A.8)

The following Riccati equation is derived from the first part of equation (A.8),

0 = Λ̇0(t)+Λ
T
0 (t)A01−B02Λ0(t)−Λ

T
0 (t)B01Λ0(t)−A02 (A.9)

dV0(t) follows from the second part of equation (A.8), as:

dV0(t) =
{[

B02−Λ
T
0 (t)B01

]
V0(t)−Λ

T
0 (t)C01

}
dt +

{
D02−Λ

T
0 (t)

}
dW0(t).

We can rewrite equation (A.6) to find X0(t) as:

V0(t) = Y0(t)−Λ0(t)X0(t).

Using Ito’s formula we obtain:

V̇0(t) =
{

Ẏ0(t)− Λ̇0(t)X0(t)−Λ
T
0 (t)Ẋ0(t)

}
dt−Λ

T
0 (t)dW0(t).

If equation (A.7) is put into the equation above, then we obtain

V̇0(t) =
{

Λ̇0(t)X0(t)+Λ
T
0 (t)A01X0(t)+Λ

T
0 (t)B01Λ0(t)X0(t)+Λ

T
0 (t)B01V0(t)+Λ

T
0 (t)C01

+ V̇0(t)− Λ̇0(t)X0(t)−Λ
T
0 (t)Ẋ0(t)

}
dt−Λ

T
0 (t)dW0(t).

It is shown that dX0(t) satisfies the following SDE

Ẋ0(t) =
{

A01X0(t)+B01Λ0(t)X0(t)+B01V0(t)+C01

}
dt−dW0(t).
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To show the existence of a unique equilibrium solution, it is sufficient to prove
the existence of a unique solution to the RDE given in (A.9). Equation (A.9) is a
non-symmetric Riccati equation and its solution can be found by Radon’s Lemma; that
is, if (M0,N0) is a solution of the following equation[

Ṁ0(t)
˙N0(t)

]
=

[
A01 −B01
−A02 B02

][
M0(t)
N0(t)

]
dt,

[
M0(T )
N0(T )

]
=

[
In
0

]
,

where M0(t) is invertible; then the solution of the Riccati equation in (A.9) is given
by

Λ0(t) = N0(t)M−1
0 (t),

For existence and uniqueness of a solution of RDE [65, (Chapter 2, Theorem 4.3)], a
necessary and sufficient condition is

det
{[

0 In
]

eA0t
[

In
0

]}
> 0, ∀ t ε (0,T ),

where A0 can be denoted as

A0 =

[
A01 B01
A02 B02

]
.

For our case, the solution is given by

Λ0(t) =
{[

0 In
]

eA0(t−T )
[

In
0

]}{[
n 0

]
eA0(t−T )

[
In
0

]}−1

= N0(t)M−1
0 (t).

This completes the proof.
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